
Carmit Hazay
Martijn Stam (Eds.)

LN
CS

 1
40

08

42nd Annual International Conference on the Theory
and Applications of Cryptographic Techniques
Lyon, France, April 23–27, 2023, Proceedings, Part V

Advances in Cryptology –
EUROCRYPT 2023

Lecture Notes in Computer Science 14008
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Carmit Hazay · Martijn Stam
Editors

Advances in Cryptology –
EUROCRYPT 2023
42nd Annual International Conference on the Theory
and Applications of Cryptographic Techniques
Lyon, France, April 23–27, 2023
Proceedings, Part V

Editors
Carmit Hazay
Bar-Ilan University
Ramat Gan, Israel

Martijn Stam
Simula UiB
Bergen, Norway

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-30588-7 ISBN 978-3-031-30589-4 (eBook)
https://doi.org/10.1007/978-3-031-30589-4

© International Association for Cryptologic Research 2023
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-8951-5099
https://orcid.org/0000-0002-5319-4625
https://doi.org/10.1007/978-3-031-30589-4

Preface

The 42nd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Eurocrypt 2023, was held in Lyon, France between April
23–27 under the auspices of the International Association for Cryptologic Research. The
conference had a record number of 415 submissions, out of which 109 were accepted.

Preparation for the academic aspects of the conference started in earnest well over a
year ago, with the selection of a program committee, consisting of 79 regular members
and six area chairs. The area chairs played an important part in enabling a high-quality
reviewprocess; their rolewas expanded considerably from last year and, for the first time,
properly formalized. Each area chair was in charge of moderating the discussions of the
papers assigned under their area, guiding PCmembers and reviewers to consensus where
possible, and helping us in making final decisions. We created six areas and assigned
the following area chairs: Ran Canetti for Theoretical Foundations; Rosario Gennaro
for Public Key Primitives with Advanced Functionalities; Tibor Jager for Classic Public
Key Cryptography; Marc Joye for Secure and Efficient Implementation, Cryptographic
Engineering, andReal-WorldCryptography;GregorLeander for SymmetricCryptology;
and finally Arpita Patra for Multi-party Computation and Zero-Knowledge.

Prior to the submission deadline, PC members were introduced to the reviewing
process; for this purpose we created a slide deck that explained what we expected from
everyone involved in the process and how PC members could use the reviewing system
(HotCRP) used by us. An important aspect of the reviewing process is the reviewing
form, which we modified based on the Crypto’22 form as designed by Yevgeniy Dodis
and Tom Shrimpton. As is customary for IACR general conferences, the reviewing
process was two-sided anonymous.

Out of the 415 submissions, four were desk rejected due to violations of the Call
for Papers (non-anonymous submission or significant deviations from the submission
format). For the remaining submissions, the review process proceeded in two stages. In
the first stage, every paper was reviewed by at least three reviewers. For 109 papers a
clear, negative consensus emerged and an early reject decision was reached and commu-
nicated to the authors on the 8th of December 2022. This initial phase of early rejections
allowed the program committee to concentrate on the delicate task of selecting a program
amongst the more promising submissions, while simultaneously offering the authors of
the rejected papers the opportunity to take advantage of the early, full feedback to improve
their work for a future occasion.

The remaining 302 papers progressed to an interactive discussion phase, which was
open for two weeks (ending slightly before the Christmas break). During this period, the
authors had access to their reviews (apart from some PC only fields) and were asked to
address questions and requests for clarifications explicitly formulated in the reviews. It
gave authors and reviewers the opportunity to communicate directly (yet anonymously)
with each other during several rounds of interaction. For some papers, the multiple
rounds helped in clarifying both the reviewers’ questions and the authors’ responses.

vi Preface

For a smaller subset of papers, a second interactive discussion phase took place in the
beginning of January allowing authors to respond to new, relevant insights by the PC.
Eventually, 109 papers were selected for the program.

The best paper award was granted to the paper “An Efficient Key Recovery Attack
on SIDH” by Wouter Castryck and Thomas Decru for presenting the first efficient key
recovery attack against the Supersingular Isogeny Diffie-Hellman (SIDH) problem. Two
further, related papers were invited to the Journal of Cryptology: “Breaking SIDH in
Polynomial Time” by Damien Robert and “A Direct Key Recovery Attack on SIDH”
by Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope and Benjamin
Wesolowski.

Accepted papers written exclusively by researchers who were within four years
of PhD graduation at the time of submission were eligible for the Early Career Best
Paper Award. There were a number of strong candidates and the paper “Worst-Case
Subexponential Attacks on PRGs of Constant Degree or Constant Locality” by Akın
Ünal was awarded this honor.

The program further included two invited talks: Guy Rothblum opened the pro-
gram with his talk on “Indistinguishable Predictions and Multi-group Fair Learning”
(an extended abstract of his talk appears in these proceedings) and later during the con-
ference Vadim Lyubashevsky gave a talk on “Lattice Cryptography: What Happened
and What’s Next”.

First and foremost, we would like to thank Kevin McCurley and Kay McKelly for
their tireless efforts in the background, making the whole process so much smoother for
us to run. Thanks also to our previous co-chairs Orr Dunkelman, Stefan Dziembowski,
Yevgeniy Dodis, Thomas Shrimpton, Shweta Agrawal and Dongdai Lin for sharing the
lessons they learned and allowing us to build on their foundations. We thank Guy and
Vadim for accepting to give two excellent invited talks. Of course, no program can be
selected without submissions, so we thank both the authors of accepted papers, as well
as those whose papers did not make it (we sincerely hope that, notwithstanding the dis-
appointing outcome, you found the reviews and interaction constructive). The reviewing
was led by our PC members, who often engaged expert subreviewers to write high-
quality, insightful reviews and engage directly in the discussions, and we are grateful to
both our PC members and the subreviewers. As the IACR’s general conferences grow
from year to year, a very special thank you to our area chairs, our job would frankly
not have been possible without Ran, Rosario, Tibor, Marc, Gregor, and Arpita’s tireless
efforts leading the individual papers’ discussions. And, last but not least, we would like
to thank the general chairs: Damien Stehlé, Alain Passelègue, and BenjaminWesolowski
who worked very hard to make this conference happen.

April 2023 Carmit Hazay
Martijn Stam

Organization

General Co-chairs

Damien Stehlé ENS de Lyon and Institut Universitaire de France,
France

Alain Passelègue Inria, France
Benjamin Wesolowski CNRS and ENS de Lyon, France

Program Co-chairs

Carmit Hazay Bar-Ilan University, Israel
Martijn Stam Simula UiB, Norway

Area Chairs

Ran Canetti Boston University, USA

(for Theoretical Foundations)

Rosario Gennaro Protocol Labs and CUNY, USA

(for Public Key Primitives with Advanced Functionalities)

Tibor Jager University of Wuppertal, Germany

(for Classic Public Key Cryptography)

Marc Joye Zama, France

(for Secure and Efficient Implementation, Cryptographic Engineering, and Real-World
Cryptography)

Gregor Leander Ruhr-Universität Bochum, Germany

(for Symmetric Cryptology)

Arpita Patra Google and IISc Bangalore, India

(for Multi-party Computation and Zero-Knowledge)

viii Organization

Program Committee

Masayuki Abe NTT Social Informatics Laboratories and Kyoto
University, Japan

Adi Akavia University of Haifa, Israel
Prabhanjan Ananth UC Santa Barbara, USA
Gilad Asharov Bar-Ilan University, Israel
Marshall Ball New York University, USA
Christof Beierle Ruhr University Bochum, Germany
Mihir Bellare UC San Diego, USA
Tim Beyne KU Leuven, Belgium
Andrej Bogdanov Chinese University of Hong Kong, China
Xavier Bonnetain Inria, France
Joppe Bos NXP Semiconductors, Belgium
Chris Brzuska Aalto University, Finland
Ignacio Cascudo IMDEA Software Institute, Spain
Nishanth Chandran Microsoft Research India, India
Chitchanok Chuengsatiansup The University of Melbourne, Australia
Michele Ciampi The University of Edinburgh, UK
Ran Cohen Reichman University, Israel
Jean-Sébastien Coron University of Luxembourg, Luxembourg
Bernardo David IT University of Copenhagen, Denmark
Christoph Dobraunig Intel Labs, Intel Corporation, Hillsboro, USA
Léo Ducas CWI Amsterdam and Leiden University,

Netherlands
Maria Eichlseder Graz University of Technology, Austria
Pooya Farshim IOHK and Durham University, UK
Serge Fehr CWI Amsterdam and Leiden University,

Netherlands
Dario Fiore IMDEA Software Institute, Spain
Pierre-Alain Fouque Université Rennes 1 and Institut Universitaire de

France, France
Steven Galbraith University of Auckland, New Zealand
Chaya Ganesh IISc Bangalore, India
Si Gao Huawei Technologies Co., Ltd., China
Daniel Genkin GeorgiaTech, USA
Craig Gentry TripleBlind, USA
Benedikt Gierlichs KU Leuven, Belgium
Rishab Goyal UW-Madison, USA
Vipul Goyal NTT Research and CMU, USA
Viet Tung Hoang Florida State University, USA
Andreas Hülsing Eindhoven University of Technology, Netherlands

Organization ix

Antoine Joux CISPA, Helmholtz Center for Cybersecurity,
Germany

Karen Klein ETH Zurich, Switzerland
Markulf Kohlweiss University of Edinburgh and IOHK, UK
Jooyoung Lee KAIST, Korea
Gaëtan Leurent Inria, France
Shengli Liu Shanghai Jiao Tong University, China
Yunwen Liu Cryptape Technology Co., Ltd., China
Stefan Lucks Bauhaus-Universität Weimar, Germany
Hemanta Maji Purdue, USA
Alexander May Ruhr University Bochum, Germany
Nele Mentens Leiden University, Netherlands and KU Leuven,

Belgium
Tal Moran Reichman University, Israel
Michael Naehrig Microsoft Research, USA
Ngoc Khanh Nguyen EPFL, Switzerland
Emmanuela Orsini Bocconi University, Italy and KU Leuven,

Belgium
Jiaxin Pan NTNU, Norway
Omkant Pandey Stony Brook University, USA
Anat Paskin-Cherniavsky Ariel University, Israel
Chris Peikert University of Michigan and Algorand, Inc., USA
Léo Perrin Inria, France
Giuseppe Persiano Università di Salerno, Italy
Thomas Peters UCLouvain, Belgium
Christophe Petit Université libre de Bruxelles, Belgium and

University of Birmingham, UK
Krzysztof Pietrzak ISTA, Austria
Bertram Poettering IBM Research Europe – Zurich, Switzerland
Bart Preneel KU Leuven, Belgium
Divya Ravi Aarhus University, Denmark
Christian Rechberger TU Graz, Austria
Ron Rothblum Technion, Israel
Carla Ràfols Universitat Pompeu Fabra, Spain
Paul Rösler FAU Erlangen-Nürnberg, Germany
Yu Sasaki NTT Social Informatics Laboratories, NIST

Associate, Japan
Dominique Schröder FAU Erlangen-Nürnberg, Germany
Omri Shmueli Tel Aviv University, Israel
Janno Siim Simula UiB, Norway
Daniel Slamanig AIT Austrian Institute of Technology, Austria
Yifan Song Tsinghua University, China

x Organization

Qiang Tang The University of Sydney, Australia
Serge Vaudenay EPFL, Switzerland
Fernando Virdia Intel Labs, Switzerland
Meiqin Wang Shandong University, China
Mor Weiss Bar-Ilan University, Israel
David Wu UT Austin, USA

Additional Reviewers

Behzad Abdolmaleki
Damiano Abram
Hamza Abusalah
Leo Ackermann
Amit Agarwal
Ghous Amjad
Benny Applebaum
Gal Arnon
Thomas Attema
Benedikt Auerbach
Lukas Aumayr
Gennaro Avitabile
Melissa Azouaoui
Saikrishna Badrinarayanan
Karim Baghery
Kunpeng Bai
Shi Bai
David Balbás
Manuel Barbosa
Khashayar Barooti
James Bartusek
Andrea Basso
Balthazar Bauer
Carsten Baum
Michiel van Beirendonck
Josh Benaloh
Fabrice Benhamouda
Ward Beullens
Amit Singh Bhati
Ritam Bhaumik
Alexander Bienstock
Alexander Block
Jonathan Bootle
Cecilia Boschini

Katharina Boudgoust
Christina Boura
Zvika Brakerski
Lennart Braun
Marek Broll
Ileana Buhan
Matteo Campanelli
Federico Canale
Anne Canteaut
Gaëtan Cassiers
Wouter Castryck
Pyrros Chaidos
André Chailloux
T.-H. Hubert Chan
Anirudh Chandramouli
Rohit Chatterjee
Hao Chen
Long Chen
Mingjie Chen
Yanbo Chen
Yanlin Chen
Yilei Chen
Yu Long Chen
Wei Cheng
Céline Chevalier
James Chiang
Wonhee Cho
Wonseok Choi
Wutichai Chongchitmate
Hien Chu
Valerio Cini
Christine Cloostermans
Andrea Coladangelo
Daniel Collins

Organization xi

Sandro Coretti-Drayton
Craig Costello
Elizabeth Crites
Miguel Cueto Noval
Jan-Pieter D’Anvers
Sourav Das
Alex Davidson
Gabrielle De Micheli
Cyprien Delpech de Saint Guilhem
Patrick Derbez
Lalita Devadas
Siemen Dhooghe
Jesus Diaz
Khue Do
Jelle Don
Rafael Dowsley
Avijit Dutta
Sébastien Duval
Christoph Egger
Tariq Elahi
Lynn Engelberts
Felix Engelmann
Muhammed F. Esgin
Thomas Espitau
Andre Esser
Simona Etinski
Prastudy Fauzi
Patrick Felke
Hanwen Feng
Rex Fernando
Tako Boris Fouotsa
Danilo Francati
Sapir Freizeit
Paul Frixons
Rachit Garg
Sanjam Garg
Aymeric Genêt
Marios Georgiou
Satrajit Ghosh
Niv Gilboa
Valerie Gilchrist
Emanuele Giunta
Aarushi Goel
Eli Goldin
Junqing Gong

Alonso González
Lorenzo Grassi
Jiaxin Guan
Zichen Gui
Aurore Guillevic
Aditya Gulati
Aldo Gunsing
Chun Guo
Divya Gupta
Felix Günther
Hosein Hadipour
Mohammad Hajiabadi
Shai Halevi
Peter Hall
Shuai Han
Patrick Harasser
David Heath
Lena Heimberger
Alexandra Henzinger
Julia Hesse
Minki Hhan
Dennis Hofheinz
Maya-Iggy van Hoof
Sam Hopkins
Akinori Hosoyamada
Kristina Hostáková
Martha Norberg Hovd
Yu-Hsuan Huang
Loïs Huguenin-Dumittan
Kathrin Hövelmanns
Yuval Ishai
Muhammad Ishaq
Tetsu Iwata
Michael John Jacobson, Jr.
Aayush Jain
Samuel Jaques
Jinhyuck Jeong
Corentin Jeudy
Ashwin Jha
Mingming Jiang
Zhengzhong Jin
Thomas Johansson
David Joseph
Daniel Jost
Fatih Kaleoglu

xii Organization

Novak Kaluderovic
Chethan Kamath
Shuichi Katsumata
Marcel Keller
John Kelsey
Erin Kenney
Hamidreza Khorasgani
Hamidreza Khoshakhlagh
Seongkwang Kim
Elena Kirshanova
Fuyuki Kitagawa
Bor de Kock
Konrad Kohbrok
Lisa Kohl
Sebastian Kolby
Dimitris Kolonelos
Ilan Komargodski
Yashvanth Kondi
Venkata Koppula
Alexis Korb
Matthias Krause
Hugo Krawczyk
Toomas Krips
Mike Kudinov
Péter Kutas
Thijs Laarhoven
Yi-Fu Lai
Baptiste Lambin
Nathalie Lang
Abel Laval
Laurens Le Jeune
Byeonghak Lee
Changmin Lee
Eysa Lee
Seunghoon Lee
Sihyun Lee
Dominik Leichtle
Jannis Leuther
Shai Levin
Chaoyun Li
Yanan Li
Yiming Li
Xiao Liang
Jyun-Jie Liao
Benoît Libert

Wei-Kai Lin
Yao-Ting Lin
Helger Lipmaa
Eik List
Fukang Liu
Jiahui Liu
Qipeng Liu
Xiangyu Liu
Chen-Da Liu-Zhang
Satya Lokam
Alex Lombardi
Patrick Longa
George Lu
Jinyu Lu
Xianhui Lu
Yuan Lu
Zhenliang Lu
Ji Luo
You Lyu
Reinhard Lüftenegger
Urmila Mahadev
Mohammad Mahmoody
Mohammad Mahzoun
Christian Majenz
Nikolaos Makriyannis
Varun Maram
Laurane Marco
Ange Martinelli
Daniel Masny
Noam Mazor
Matthias Meijers
Fredrik Meisingseth
Florian Mendel
Bart Mennink
Simon-Philipp Merz
Tony Metger
Pierre Meyer
Brice Minaud
Kazuhiko Minematsu
Victor Mollimard
Tomoyuki Morimae
Nicky Mouha
Tamer Mour
Marcel Nageler
Mridul Nandi

Organization xiii

María Naya-Plasencia
Patrick Neumann
Hai Nguyen
Ky Nguyen
Phong Q. Nguyen
Ryo Nishimaki
Olga Nissenbaum
Anca Nitulescu
Ariel Nof
Julian Nowakowski
Adam O’Neill
Sai Lakshmi Bhavana Obbattu
Miyako Ohkubo
Eran Omri
Claudio Orlandi
Michele Orrù
Elisabeth Oswald
Omer Paneth
Guillermo Pascual-Perez
Kenneth G. Paterson
Sikhar Patranabis
Alice Pellet-Mary
Maxime Plancon
Antigoni Polychroniadou
Alexander Poremba
Bernardo Portela
Eamonn Postlethwaite
Emmanuel Prouff
Kirthivaasan Puniamurthy
Octavio Pérez Kempner
Luowen Qian
Tian Qiu
Willy Quach
Håvard Raddum
Srinivasan Raghuraman
Justin Raizes
Sebastian Ramacher
Hugues Randriambololona
Shahram Rasoolzadeh
Simon Rastikian
Joost Renes
Nicolas Resch
Alfredo Rial Duran
Doreen Riepel
Silvia Ritsch

Melissa Rossi
Mike Rosulek
Yann Rotella
Lawrence Roy
Roozbeh Sarenche
Amirreza Sarencheh
Pratik Sarkar
Arish Sateesan
Christian Schaffner
Carl Richard Theodor Schneider
Markus Schofnegger
Peter Scholl
André Schrottenloher
Gregor Seiler
Sruthi Sekar
Nicolas Sendrier
Meghna Sengupta
Jinrui Sha
Akash Shah
Siamak Shahandashti
Moni Shahar
Shahed Sharif
Laura Shea
Abhi Shelat
Yaobin Shen
Sina Shiehian
Jad Silbak
Alice Silverberg
Luisa Siniscalchi
Tomer Solomon
Karl Southern
Nicholas Spooner
Sriram Sridhar
Srivatsan Sridhar
Akshayaram Srinivasan
François-Xavier Standaert
Uri Stemmer
Lukas Stennes
Patrick Steuer
Christoph Striecks
Patrick Struck
Chao Sun
Erkan Tairi
Akira Takahashi
Abdullah Talayhan

xiv Organization

Titouan Tanguy
Stefano Tessaro
Emmanuel Thomé
Sri AravindaKrishnan Thyagarajan
Yan Bo Ti
Mehdi Tibouchi
Tyge Tiessen
Bénédikt Tran
Andreas Trügler
Daniel Tschudi
Aleksei Udovenko
Jonathan Ullman
Dominique Unruh
Vinod Vaikuntanathan
Daniele Venturi
Michiel Verbauwhede
Javier Verbel
Gilles Villard
Mikhail Volkhov
Satyanarayana Vusirikala
Benedikt Wagner
Roman Walch
Hendrik Waldner
Alexandre Wallet
Michael Walter
Mingyuan Wang
Yuyu Wang
Florian Weber
Hoeteck Wee
Puwen Wei
Charlotte Weitkaemper

Weiqiang Wen
Benjamin Wesolowski
Daniel Wichs
Wessel van Woerden
Ke Wu
Keita Xagawa
Hanshen Xiao
Jiayu Xu
Yingfei Yan
Xiuyu Ye
Kevin Yeo
Eylon Yogev
Albert Yu
Aaram Yun
Alexandros Zacharakis
Thomas Zacharias
Michal Zajac
Greg Zaverucha
Runzhi Zeng
Cong Zhang
Lei Zhang
Ren Zhang
Xinrui Zhang
Yuqing Zhao
Yu Zhou
Dionysis Zindros
Giorgos Zirdelis
Lukas Zobernig
Arne Tobias Ødegaard
Morten Øygarden

Sponsoring Institutions

– Platinum Sponsor: Université Rennes 1 and PEPR Quantique, Zama
– Gold Sponsor: Apple, Cryptolab, ENS de Lyon, ENS PSL, Huawei, Sandbox AQ,

Thales, TII
– Silver Sponsor: Algorand Foundation, ANSSI, AWS, PQShield
– Bronze Sponsor: Cosmian, CryptoExperts, CryptoNext Security, IBM, Idemia, Inria,

LIP

Contents – Part V

Cryptographic Protocols

Unique-Path Identity Based Encryption with Applications to Strongly
Secure Messaging . 3

Paul Rösler, Daniel Slamanig, and Christoph Striecks

End-to-End Secure Messaging with Traceability Only for Illegal Content 35
James Bartusek, Sanjam Garg, Abhishek Jain, andGuru-Vamsi Policharla

Asymmetric Group Message Franking: Definitions and Constructions 67
Junzuo Lai, Gongxian Zeng, Zhengan Huang, Siu Ming Yiu, Xin Mu,
and Jian Weng

Password-Authenticated TLS via OPAQUE and Post-Handshake
Authentication . 98

Julia Hesse, Stanislaw Jarecki, Hugo Krawczyk, and Christopher Wood

Randomized Half-Ideal Cipher on Groups with Applications to UC
(a)PAKE . 128

Bruno Freitas Dos Santos, Yanqi Gu, and Stanislaw Jarecki

End-to-End Encrypted Zoom Meetings: Proving Security
and Strengthening Liveness . 157

Yevgeniy Dodis, Daniel Jost, Balachandar Kesavan,
and Antonio Marcedone

Caveat Implementor! Key Recovery Attacks on MEGA . 190
Martin R. Albrecht, Miro Haller, Lenka Mareková,
and Kenneth G. Paterson

Public-Key Cryptanalysis

Finding Many Collisions via Reusable Quantum Walks: Application
to Lattice Sieving . 221

Xavier Bonnetain, André Chailloux, André Schrottenloher, and Yixin Shen

Just How Hard Are Rotations of Zn? Algorithms and Cryptography
with the Simplest Lattice . 252

Huck Bennett, Atul Ganju, Pura Peetathawatchai,
and Noah Stephens-Davidowitz

xvi Contents – Part V

M-SIDH and MD-SIDH: Countering SIDH Attacks by Masking
Information . 282

Tako Boris Fouotsa, Tomoki Moriya, and Christophe Petit

Disorientation Faults in CSIDH . 310
Gustavo Banegas, Juliane Krämer, Tanja Lange, Michael Meyer,
Lorenz Panny, Krijn Reijnders, Jana Sotáková, and Monika Trimoska

On the Hardness of the Finite Field Isomorphism Problem 343
Dipayan Das and Antoine Joux

New Time-Memory Trade-Offs for Subset Sum – Improving ISD
in Theory and Practice . 360

Andre Esser and Floyd Zweydinger

A New Algebraic Approach to the Regular Syndrome Decoding Problem
and Implications for PCG Constructions . 391

Pierre Briaud and Morten Øygarden

An Efficient Key Recovery Attack on SIDH . 423
Wouter Castryck and Thomas Decru

A Direct Key Recovery Attack on SIDH . 448
Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope,
and Benjamin Wesolowski

Breaking SIDH in Polynomial Time . 472
Damien Robert

Signature Schemes

A Lower Bound on the Length of Signatures Based on Group Actions
and Generic Isogenies . 507

Dan Boneh, Jiaxin Guan, and Mark Zhandry

Short Signatures from Regular Syndrome Decoding in the Head 532
Eliana Carozza, Geoffroy Couteau, and Antoine Joux

The Return of the SDitH . 564
Carlos Aguilar-Melchor, Nicolas Gama, James Howe,
Andreas Hülsing, David Joseph, and Dongze Yue

Chopsticks: Fork-Free Two-Round Multi-signatures from Non-interactive
Assumptions . 597

Jiaxin Pan and Benedikt Wagner

Contents – Part V xvii

Threshold and Multi-signature Schemes from Linear Hash Functions 628
Stefano Tessaro and Chenzhi Zhu

New Algorithms for the Deuring Correspondence: Towards Practical
and Secure SQISign Signatures . 659

Luca De Feo, Antonin Leroux, Patrick Longa, and Benjamin Wesolowski

Revisiting BBS Signatures . 691
Stefano Tessaro and Chenzhi Zhu

Non-interactive Blind Signatures for Random Messages . 722
Lucjan Hanzlik

Rai-Choo! Evolving Blind Signatures to the Next Level . 753
Lucjan Hanzlik, Julian Loss, and Benedikt Wagner

Author Index . 785

Cryptographic Protocols

Unique-Path Identity Based Encryption
with Applications to Strongly Secure

Messaging

Paul Rösler1(B) , Daniel Slamanig2 , and Christoph Striecks2

1 FAU Erlangen-Nürnberg, Erlangen, Germany
paul.roesler@fau.de

2 AIT Austrian Institute of Technology, Vienna, Austria
{daniel.slamanig,christoph.striecks}@ait.ac.at

Abstract. Hierarchical Identity Based Encryption (HIBE) is a well
studied, versatile tool used in many cryptographic protocols. Yet, since
the performance of all known HIBE constructions is broadly consid-
ered prohibitive, some real-world applications avoid relying on HIBE
at the expense of security. A prominent example for this is secure mes-
saging: Strongly secure messaging protocols are provably equivalent to
Key-Updatable Key Encapsulation Mechanisms (KU-KEMs; Balli et al.,
Asiacrypt 2020); so far, all KU-KEM constructions rely on adaptive
unbounded-depth HIBE (Poettering and Rösler, Jaeger and Stepanovs,
both CRYPTO 2018). By weakening security requirements for better
efficiency, many messaging protocols dispense with using HIBE.

In this work, we aim to gain better efficiency without sacrificing
security. For this, we observe that applications like messaging only need
a restricted variant of HIBE for strong security. This variant, that we
call Unique-Path Identity Based Encryption (UPIBE), restricts HIBE
by requiring that each secret key can delegate at most one subordinate
secret key. However, in contrast to fixed secret key delegation in Forward-
Secure Public Key Encryption, the delegation in UPIBE, as in HIBE, is
uniquely determined by variable identity strings from an exponentially
large space. We investigate this mild but surprisingly effective restriction
and show that it offers substantial complexity and performance advan-
tages.

More concretely, we generically build bounded-depth UPIBE from
only bounded-collusion IBE in the standard model; and we generically
build adaptive unbounded-depth UPIBE from only selective bounded-
depth HIBE in the random oracle model. These results significantly
extend the range of underlying assumptions and efficient instantiations.
We conclude with a rigorous performance evaluation of our UPIBE
design. Beyond solving challenging open problems by reducing complex-
ity and improving efficiency of KU-KEM and strongly secure messag-
ing protocols, we offer a new definitional perspective on the bounded-
collusion setting.

The full version [38] of this article is available in the IACR eprint archive as article
2023/248, at https://eprint.iacr.org/2023/248.
c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14008, pp. 3–34, 2023.
https://doi.org/10.1007/978-3-031-30589-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30589-4_1&domain=pdf
http://orcid.org/0000-0002-2324-5671
http://orcid.org/0000-0002-4181-2561
http://orcid.org/0000-0003-4724-8022
https://eprint.iacr.org/2023/248
https://doi.org/10.1007/978-3-031-30589-4_1

4 P. Rösler et al.

1 Introduction

Traditionally, Hierarchical Identity Based Encryption (HIBE) [21,29] is moti-
vated by a real-world scenario in which a sender wants to securely encrypt
a message to a receiver without knowing their individual public key. Using a
global main public key as well as a string that identifies the receiver (e.g., their
email address bob@pc.2023.ec.iacr.org), the sender can encrypt the message
via (H)IBE. To decrypt a ciphertext, the receiver can obtain their individual
secret key by requesting delegation from the global main secret key. The hier-
archy in HIBE provides a fine grained, leveled delegation: the secret key of
bob@pc.2023.ec.iacr.org is delegated from secret key of pc.2023.ec.iacr.
org which proceeds up to delegation from secret key of org. Thereby, each secret
key can only delegate secret keys of subordinate identities. For the specific case
of Identity Based Encryption (IBE) [7,41], only the global main secret key can
delegate identity-specific secret keys, which reduces the level depth to 1.

HIBE as a Powerful Building Block. Independent of this real-world use
case, HIBE turns out to be a versatile, powerful tool in the design of larger
cryptographic protocols. For example, HIBE is used as the main component in
designs of Broadcast Encryption (BE) [13], Forward-Secure Public Key Encryp-
tion (FS-PKE) [8], Puncturable FS-PKE [25], 0-RTT Key Exchange with For-
ward Secrecy [12,27], and Key-Updatable Key Encapsulation Mechanisms (KU-
KEM) for Ratcheted Key Exchange (RKE) [37]. In most of these cases, the
reason for relying on HIBE is rather the strength of HIBE secret key delegation
than the traditional motivation of encrypting messages to an identity whose
individual public key is unknown.

Notably, not all of these constructions utilize the full power of standard
HIBE. For instance, FS-PKE can be based on relaxed Binary-Tree Encryption
(BTE) [8,33]. Furthermore, KU-KEM constructions [3,30,32,37] only delegate
secret keys along a single path of identities.

Introducing Unique-Path IBE. Motivated by such restricted delegations, we
introduce the notion of Unique-Path Identity Based Encryption (UPIBE). As in
HIBE, UPIBE allows a sender to encrypt messages to a receiver whose individual
public key is unknown by using only a string that specifies the receiver’s identity
as well as a global main public key. On the receiver side, UPIBE assumes that
a secret key in one level delegates at most one secret key of the subjacent level.
In contrast to FS-PKE, unique-path delegation in UPIBE still respects identity
(sub-)strings from an exponential size string space on each level. Consequently, a
receiver with email address bob@pc.2023.ec.iacr.org cannot decrypt cipher-
texts encrypted to identity charlie@pc.2023.ec.iacr.org. Beyond the cryp-
tographic utility, there are real-world examples for such a unique-path delegation
behavior in linear vertical or horizontal hierarchies.1

One perspective on UPIBE could be that it lifts the bounded-collusion setting
from IBE [15] to HIBE by restricting adversaries in corrupting at most one
1 E.g., the chronological succession of presidents in a particular state or a ranking list

that results from a competition.

Unique-Path Identity Based Encryption with Applications 5

delegated secret key in the identity hierarchy. Instead, we view the characteristic
of UPIBE complementary or even orthogonal to the bounded-collusion setting:
While bounded collusion means that the overall number of corrupted secret keys
is limited, UPIBE limits the number of delegations—and, hence, corruptions—
structurally per delegated secret key. In the specific case of UPIBE, we permit one
delegation per secret key, but this can be extended to two or more delegations
per secret key. Indeed, one of our results motivates research on HIBE with at
most two delegations per secret key (see Sect. 4), which we leave as a question
for future work and concentrate on UPIBE here.

UPIBE as an Abstraction of KU-KEM. In the context of strongly secure
messaging, many cryptographic protocols use a building block called Key-
Updatable Key Encapsulation Mechanism (KU-KEM) [3,30,32,37]. This extend-
ed form of standard KEM provides an update mechanism with which public
keys and secret keys can be updated independently with respect to arbitrary
bit strings. In addition to the security guarantees of a standard KEM, updates
in KU-KEM are required to achieve forward-secrecy and effective divergence.
This means that an updated secret key cannot decrypt ciphertexts directed to
prior versions of the secret key; and an incompatibly updated secret key cannot
decrypt ciphertexts produced with a corresponding (incompatible) public key.

The only known construction of KU-KEM relies on black-box HIBE with
unbounded hierarchy depth secure against adaptive adversaries [3,30,32,37]. This
induces a significant performance penalty and limits the choice of underlying
assumptions (e.g., no practical2 unbounded-depth HIBE from lattices is known).
Intuitively, KU-KEM secret key updates are realized via sequential HIBE del-
egations. Replacing black-box HIBE in this construction by black-box UPIBE
is trivial. Thus, using a black-box HIBE scheme to realize UPIBE is henceforth
referred to as trivial UPIBE construction. By introducing UPIBE as a more gen-
eral notion for KU-KEM, we are the first to lift this specific tool to a suitable
abstraction and reduce the power of (underlying) HIBE to the essential. As we
will see, this also allows for a substantial gain in efficiency.

Definitions and Constructions of Secure Messaging. KU-KEM was
developed as a building block for constructions of secure messaging proto-
cols.Interestingly, the impractical performance of prior KU-KEM constructions
even affected security definitions in the messaging literature. These definitions
can be divided into two categories: (1) those that require full security with
respect to the modeled threats and (2) those that relax the security requirements
by limiting adversarial power. Generally, relaxed definitions allow for more effi-
cient constructions. Specifically, the majority of fully secure messaging protocols
relies on KU-KEM [3,30,32,37], whereas the main motivation for relaxing secu-
rity definitions was to analyze or develop practical protocols that can dispense
with employing KU-KEM for better efficiency [2,18,31]. To emphasize and sub-

2 We stress that the construction of selective-secure HIBE with unbounded delegations
from CDH [17] or from any fully secure IBE [16] is an impressive, yet rather theoretic
result.

6 P. Rösler et al.

stantiate this partition of the literature, Balli et al. [3] proved that KU-KEM
is equivalent to fully secure messaging under weak randomness. We conclude
that KU-KEM and, therefore, UPIBE play a central role in (strongly) secure
messaging.

Efficiency of UPIBE and KU-KEM. The inefficiency of the trivial KU-
KEM construction from black-box HIBE leads to two questions that were posed
as open problems in prior work [3,30,37] and which we will address via the
UPIBE approach:

(1) Can we build (KU-KEM from) UPIBE based on weaker assumptions?
(2) Can we build (KU-KEM from) UPIBE with better efficiency?

We are the first to affirm both questions in three steps.But instead of only giving
answers for the specific case of KU-KEM, we generalize it to the UPIBE setting
which highlights the reasons for our improvements.

First, we consider bounded-depth UPIBE, which means that the maximal
number of secret-key delegation levels is bounded a priori. Our generic construc-
tion of bounded-depth UPIBE is based on bounded-collusion IBE, for which
we have practical instantiations from standard assumptions like DDH or QR
in the standard model [15,23,42].3 In a second step, we extend the design of
our bounded-depth UPIBE construction to obtain an unbounded-depth UPIBE
scheme. This unbounded-depth UPIBE construction with adaptive security can
be based on bounded-depth HIBE with only selective security in the random
oracle model. Finally, we prove that KU-KEM can be based on UPIBE, where
the number of key updates in KU-KEM is proportionate to the number of key
delegations in UPIBE.

Instantiating our unbounded-depth UPIBE construction with the bounded-
depth HIBE by Boneh et al. [5] reveals the strengths of our approach. We com-
pare this instantiation to the best known instantiation of trivial unbounded-
depth UPIBE via the unbounded-depth HIBE by Gong et al. [24]. This com-
parison shows that our construction is significantly more efficient by most rel-
evant measures. In particular, it outperforms the trivial approach substantially
in terms of performance, ciphertext sizes, and encryption key sizes.

A notable feature of our unbounded-depth UPIBE construction is that its
efficiency can be dynamically configured via a parameter ε. Roughly, ε trades
ciphertext size against secret key size. Depending on the performance priorities
in a setting (bandwidth, algorithm runtime, etc.) and depending on the expected
user behavior (average length of identity strings, average number of encryptions
per identity, etc.), this parameter can optimize our construction for deployment
under various conditions. Setting the parameter ε to infinity yields the known
trivial UPIBE construction [30,37]; consequently, there always exists an ε for
which our new UPIBE construction is indeed the best known one.

3 An alternative approach from standard assumptions would be to rely on the fully
secure IBE from CDH by Garg and Döttling [17]. Unfortunately, this will not yield
a practical instantiation.

Unique-Path Identity Based Encryption with Applications 7

Contributions. Our first contribution is to abstract the tools in KU-KEM con-
structions to the more general field of Identity Based Encryption by, simultane-
ously, reducing the power of standard HIBE to the essential: Unique-Path IBE.
Our definition from Sect. 2 shows that this new perspective on structurally lim-
ited delegation and collusion is seamlessly embedded in existing (H)IBE notions.

For comprehensibility, we start with building the simpler bounded-depth
UPIBE construction in Sect. 3, which is secure in the standard model (StM):

Adaptive Bounded-Collusion IBE =⇒ StM Adaptive Bounded-Depth UPIBE

This construction shows that UPIBE can be based on significantly reduced com-
plexity assumptions with a practically (see Footnote 2) relevant design. We also
give a concrete instantiation with small ciphertexts (two group elements) and
secret keys (six group elements and one symmetric key) from DDH that takes
advantage of construction internals of a bounded-collusion IBE by Dodis et
al. [15].

By developing two powerful extensions on top of our first generic UPIBE
construction, we are ultimately able to build unbounded-depth UPIBE:

Adaptive Bounded-Depth HIBE =⇒ StM Adaptive Unbounded-Depth UPIBE

While conceptually inheriting core ideas of our bounded -depth UPIBE, this sec-
ond unbounded -depth UPIBE construction in Sect. 4 unfolds the full strength
of our approach. Its efficiency is dynamically configurable for different deploy-
ment settings and, instantiated with the most suitable bounded-depth selective
HIBE [5], it reaches the best performance results compared to existing work.
Along the way, inspired by techniques that turn selective secure bounded-depth
HIBEs adaptive secure [4,5], we develop a guessing technique which allows for a
significantly broader choice of underlying assumptions and more efficient instan-
tiations in the random oracle model (ROM):

Selective Bounded-Depth HIBE =⇒ ROM Adaptive Unbounded-Depth UPIBE

We note that when instantiating our construction with lattice HIBEs [1,10], we
obtain the first KU-KEM secure under conjectured post-quantum assumptions.

We systematically analyze the performance of our approach when being used
to instantiate KU-KEM in Sect. 7. It is notable that all prior KU-KEM construc-
tions are a trivial special case of our new techniques. This means that our new
constructions always offer the best (known) performance. For clarity, we first
present semantically secure constructions of UPIBE. Using techniques known
from KEM combiners [22], we show in Sect. 5 that our constructions can also be
made secure against chosen-ciphertext attacks if the underlying (H)IBE schemes
are.

1.1 Technical Overview

To understand the core idea of our UPIBE constructions, we briefly discuss the
subtle difference between the security definitions of standard HIBE and UPIBE.

8 P. Rösler et al.

Although these definitions are conceptually identical, the crucial limitation of
UPIBE is that at most one delegation per secret key is permitted. This means
that the large tree of delegated secret keys in HIBE is reduced to a unique
delegation path in UPIBE. Consequently, adversaries will essentially expose at
most one UPIBE secret key—all descendant UPIBE keys can be obtained via
delegation by the adversary itself. Consider the identity string that corresponds
to this exposed UPIBE secret key. In relation to this identity string, our natural
security definition requires only two types of challenge ciphertexts to remain
secure: (1) those that are encrypted to true prefix identity strings and (2) those
that are encrypted to identity strings branching off the exposed key’s identity
string. All remaining challenges can be solved trivially with the exposed secret
key. Our UPIBE constructions exploit this fact to turn all prefix identity strings
(case 1) into branched off identity strings (case 2) by adding a special suffix at
the end of every UPIBE identity string.

Combined HIBE Exposure. Having the definitional difference in mind, we
will see that multiple colluding exposures in HIBE can be significantly more
damaging than the single permitted exposure in UPIBE. More concretely, HIBE
constructions have to make sure that challenge ciphertexts remain secure under
any combination of (non-trivial) secret key exposures in the delegation hierar-
chy. Since the unique-path delegation in UPIBE permits at most one exposure,
UPIBE constructions have to protect challenge ciphertexts only against the sin-
gle most damaging secret key exposure. We illustrate this gap by considering
the effect of a specific combination of HIBE secret key exposures.

For this we let two exposed HIBE secret keys have identities idex,1 = (id ′
1)

and idex,2 = (id1, id ′
2), and a single HIBE challenge have identity idch =

(id1, id2), such that id1, id ′
1, id2, id ′

2 ∈ {0, 1}λ, where λ is the bit-length per
delegated sub-identity string. This means, idex,2 and idch branch in delegation
level 2 with id ′

2 �= id2, and idex,1 branches off the former two identity strings in
level 1 with id ′

1 �= id1. Observe that the exposed key with identity idex,1 still
contains information for delegating subordinate keys to the second level, e.g.,
to sub-identity id2 which results in full identity id∗ = (id ′

1, id2). In contrast,
the exposed key with identity idex,2 does not (need to) contain this information
anymore as it is delegated to level 2 already. However, exposed key with iden-
tity idex,2 may contain information about its own delegation path along the first
level with sub-identity string id1, which differs from the information contained in
exposed key with identity idex,1 = (id ′

1). One major difficulty for building HIBE
is to make sure that the information about delegation along id1 from exposed
key idex,2 cannot be combined harmfully with the secrets available for delega-
tion to level 2 from exposed key idex,1. In particular, this combination should
not suffice to obtain a secret key for identity (id1, id2) = idch because this would
solve the challenge. Since the single permitted exposure in UPIBE prevents such
combined exposures, we can simplify the design of our UPIBE constructions,
which makes them more efficient. We stress that this difference between HIBE
and UPIBE is an inevitable implication of our natural definition.

Unique-Path Identity Based Encryption with Applications 9

Fig. 1. Conceptual illustration of delegations in the trivial, bounded-depth, and
unbounded-depth UPIBE constructions (here with ε = 2). The black (path of) arrows
realize delegation of a UPIBE identity string with level depth 8. Light gray arrows
indicate alternative and further delegations. White circles represent the (composed)
main public key(s) and filled dots represent the (composed) delegated secret key(s).

Bounded-Depth UPIBE. One interpretation of the above observation is that
our constructions can assume key material for lower level delegations to be per se
harmless. Using this guarantee, our bounded-depth UPIBE construction imple-
ments each UPIBE delegation level with an individual IBE instance. Intuitively,
this turns the vertical delegation path into a horizontal delegation sequence, as
illustrated in Fig. 1. Our construction’s UPIBE main public and secret key con-
sist of all underlying IBE instances’ main public and secret keys, respectively. For
encryption, the UPIBE identity string is split into multiple IBE sub-strings. The
UPIBE ciphertext is then obtained by executing IBE encryption for each level’s
sub-string and concatenating the resulting IBE ciphertexts. On UPIBE delega-
tion, the respective level’s IBE main secret key is removed after delegating an
identity-specific secret key for that level. To prove security of this construction,
we use the fact that every challenge identity branches off the exposed key’s iden-
tity in one of it’s passed delegation levels. Our reduction embeds an underlying
IBE challenge in this branching level, which turns a successful UPIBE adversary
into a successful IBE adversary. The above description of our scheme is highly
simplified and neglects subtle enhancements that lead to better performance.
Although conceptually simple in the bounded-depth case, this construction does
not extend (trivially) to the unbounded-depth setting.

Unbounded-Depth UPIBE. Therefore, we develop two crucial extensions:
First, we replace each delegation level by an ε-level delegation epoch. In every
such epoch, ε many sequential delegations can be processed. (See Fig. 1 where
ε = 2.) This reduces the number of concatenated ciphertexts by a factor of 1/ε.
Then, we add an epoch-progression mechanism on top of our construction. With
this mechanism, delegation from a fully-delegated epoch progresses dynamically
to the next fresh epoch. This allows us to dispose of the static list of IBE instances
from our bounded-depth construction. One can think of the epoch-progression

10 P. Rösler et al.

mechanism as a Forward-Secure PKE scheme that generates at every step a fresh
starting point for a multi-level epoch in which the actual UPIBE delegations
are conducted. The security proof for our unbounded-depth UPIBE follows the
same idea as the one for our bounded-depth construction, only that it reduces to
bounded-depth HIBE. To rely on only selective bounded-depth HIBE, we develop
a special guessing technique that avoids the exponential loss factor induced by
known techniques [4,5] for turning selective HIBE adaptive secure. We believe
that the solid design—in addition to its enhanced performance—makes our con-
struction attractive for practical applications (such as secure messengers).

Chosen-Ciphertext Security. We investigate the options to obtain CCA
security for UPIBE. Unfortunately, the well known generic BCHK (often also
called CHK) compiler for HIBEs [6,9] is not applicable to UPIBE. While opting
for a form of verification-by-re-encryption akin to the Fujisaki-Okamoto (FO)
transform [19] is applicable, one introduces significant computational overhead
as well as is bound to the ROM. Instead, we leverage chosen-ciphertext security
of the underlying building blocks by effectively tying together the concatenated
ciphertexts in every UPIBE ciphertext. For simplicity, we referred to UPIBE as
a Message Encryption primitive so far, but all our results actually consider Key
Encapsulation. Therefore, in the case of bounded-depth UPIBE we can make use
of techniques developed in the context of KEM combiners [22]. These versatile
techniques only change the final computation of the encapsulated UPIBE key
instead of explicitly authenticating the concatenated ciphertext. A similar idea,
though in the ROM, can be applied in the case of unbounded-depth UPIBE
where the underlying HIBE instances can be efficiently made CCA secure via
the BCHK compiler. As a result, our chosen-ciphertext secure constructions are
only minimally less efficient than our semantically secure ones.

2 UPIBE Definition

For clarity, we consider Identity Based Key Encapsulation primitives instead
of Identity Based Message Encryption in this work. In line with this, we call
public and secret keys encapsulation and decapsulation keys, respectively. Since
Unique-Path IBE is a special case of Hierarchical IBE, we introduce all relevant
IBE notions modularly at once.

Syntax. All of the considered Identity Based Encapsulation (IBE) schemes are
quadruples IE = (IE.gen, IE.enc, IE.dec, IE.del) of algorithms with encapsulation
and decapsulation key spaces EK and DK, respectively, symmetric key space K,
and ciphertext space C.

We specify the considered types of IBE via parameters L, λ, and D. L fixes
the maximal number of sequential delegations (i.e., the maximal number of levels
aka. The depth), λ fixes the bit-length of identity strings for each delegation, and
D fixes the maximal number of delegations per decapsulation key. That means,
for unbounded-depth HIBE we have (L,D) = (∞, 2λ), for bounded-depth HIBE
we have (L,D) = (L, 2λ) for some fixed value L, for unbounded-depth UPIBE we

Unique-Path Identity Based Encryption with Applications 11

have (L,D) = (∞, 1), and for bounded-depth UPIBE we have (L,D) = (L, 1) for
some fixed value L. We treat bounded-collusion IBE as a bounded-depth HIBE
with L = 1 such that the number of colluding users is encoded as the number of
maximal delegations for the main decapsulation key D = D for some constant D.

The four IBE algorithms’ syntax is defined as follows:

– IE.gen : ∅ →$ EK × DK
– IE.enc : EK × {0, 1}l·λ →$ C × K, where 0 < l ≤ L
– IE.dec : DK × C → K
– IE.del : DK × {0, 1}λ →$ DK

For efficiency reasons, we add derivation algorithm IE.der : EK × {0, 1}λ →$

EK that computes (compact) identity-specific encapsulation keys. This allows
for reducing the combined size of a main encapsulation key ek and a multi-level
identity string id = (id1, . . . , id l), such that IE.enc(ek , (id1, . . . , id l)) can be
turned into IE.enc(IE.der(. . . IE.der(ek , id1) . . . , id l), ε).

Correctness. For correctness of all considered types of IBE with parameters L,
λ, and D, we require for all (ek , dk0) ←$ IE.gen, all id = (id1, . . . , id l) with
id i ∈ {0, 1}λ, 0 < i ≤ l ≤ L, all dk i ←$ IE.del(dk i−1, id i), and all (c, k) ←$

IE.enc(ek , id), that IE.dec(dk l, c) = k.

Security. We define experiment INDb
IE(A), b ∈ {0, 1} that models multi-instance

key indistinguishability. For all considered types of IBE schemes IE, this exper-
iment provides the following oracles to adversary A for which we provide a full
pseudo-code specification in the full version [38] :

– Gen: Generates a fresh main key pair (ek , dk) ←$ IE.gen and returns ek
– Del(i, id , id∗): Delegates decapsulation key dk i,(id,id∗) ←$ IE.del(dk i,id , id∗)

from dk i,id with identity string id∗ ∈ {0, 1}λ, unless dk i,id results from L
sequential delegations from a main decapsulation key, or D delegations from
dk i,id were already queried

– Chall(i, id): Issues a challenge encapsulation (c, k0) ←$ IE.enc(ek i, id) to
main encapsulation key ek i and identity string id ∈ {0, 1}l·λ, 0 < l ≤ L and
returns c as well as key kb, where k1 ←$ K, unless an exposed decapsulation
key was delegated from ek i’s main decapsulation key dk i with an identity
string that equals or is a prefix of id

– Exp(i, id): Exposes decapsulation key dk i,id , generated or delegated from
main decapsulation key dk i and identity string id , unless a challenge encap-
sulation to ek i and identity string id ′ was queried, such that (ek i, dk i) form
a main key pair and id equals or is a prefix of id ′

Eventually, the adversary terminates by outputting a guess b′ and wins iff b = b′.
If adversary A specifies the challenge(s) at the beginning of the game without

adaptively seeing the return values of other queries, we call A selective and
otherwise adaptive.

With the above adversarial oracles, we capture chosen-plaintext attacks.
Selective chosen-plaintext attacks is a rather weak adversary model that helps us

12 P. Rösler et al.

focusing on the core of our novel ideas when presenting our constructions. Yet, we
also present adaptive chosen-ciphertext secure constructions. An adversary,
attacking such constructions, can additionally query the following oracle:

– Dec(i, id , c): Decapsulates k ← IE.dec(dk i,id , c) of ciphertext c under dk i,id

and returns k, unless c was given to A as a challenge encapsulation to
ek i and id , dk i,id was (sequentially) delegated from dk i with respect to id ,
and (ek i, dk i) form a main key pair

Definition 1. The advantage of adversary A in winning INDb
IE is

AdvindIE (A) :=
∣
∣Pr[IND0

IE(A) = 1] − Pr[IND1
IE(A) = 1]

∣
∣ .

Compared to standard (bounded-depth) (H)IBE security experiments, the
only difference is our restriction to at most D delegation queries per decapsulation
key. Yet, challenges can be queried without limiting the choice of identity strings,
even for UPIBE.

3 Bounded-Depth UPIBE from Bounded-Collusion IBE

We present our bounded-depth UPIBE construction in Fig. 2 by explaining its
components one after another, starting with decapsulation keys and ciphertexts.

Structure of Keys and Ciphertexts. The core idea behind our UPIBE construc-
tions is that delegations along the unique ‘vertical’ path of identity levels are
realized ‘horizontally’. That means, for each delegation level in our UPIBE con-
struction from Fig. 2 with bounded-depth L, we use a separate bounded-collusion
IBE instance. Think of these IBE instances being placed horizontally next to one
another from left to right as shown in Fig. 1.

To understand this idea, we describe the structure of UPIBE decapsulation
keys. A UPIBE decapsulation key delegated to level l contains three different
types of keys, two of which are IBE decapsulation keys: (1) One ordinary del-
egated IBE decapsulation key for each of the first l levels, (2) an additional
special delegated IBE decapsulation key for only level l, and (3) a symmetric
forwarding key from which (un-delegated) IBE main decapsulation keys for all
remaining L− l levels are computed. See Fig. 2 lines 02–06 for UPIBE key gener-
ation that consists of generating all IBE main encapsulation keys and sampling
the initial symmetric forwarding key.

A UPIBE ciphertext, encapsulated to level l (i.e., to identity id ∈ {0, 1}l·λ),
consists of one IBE ciphertext for each of the first l − 1 levels encoded with
suffix 1 (lines 23–25) and one additional IBE ciphertext that targets the special
delegated IBE decapsulation key at level l encoded with suffix 0 (line 26). To
decapsulate the former l − 1 ciphertexts (lines 33–34), the receiver needs to be
in possession of the first l−1 ordinary delegated IBE decapsulation keys. Hence,
successful decapsulation shows that the receiver holds a UPIBE decapsulation
key that was correctly delegated along the first l−1 levels of the identity path. By
also being able to decapsulate the special lth IBE ciphertext (lines 35–36), the

Unique-Path Identity Based Encryption with Applications 13

Proc IE.gen
00 E[·] ← ⊥; D[·] ← ⊥
01 fk0 ←$ {0, 1}λ

02 For l = 0 to L − 1:
03 (fk l+1, s) ← G(fk l)
04 (ek ′, dk ′) ← IE.gen′(s)
05 E[l] ← ek ′

06 ek ← E; dk ← (0, ⊥, fk0)
07 Return (ek , dk)

Proc IE.del(dk , id)
08 Require id ∈ {0, 1}λ

09 (l, D, fk) ← dk
10 Require l < L
11 If l > 0:
12 (dk ′

0, dk
′
1) ← D[l − 1]

13 D[l − 1] ← dk ′
1

14 (fk ′, s) ← G(fk)
15 (ek ′, dk ′) ← IE.gen′(s)
16 dk ′

0 ←$ IE.del′(dk ′, id‖0)
17 dk ′

1 ←$ IE.del′(dk ′, id‖1)
18 D[l] ← (dk ′

0, dk
′
1)

19 dk ← (l + 1, D, fk ′)
20 Return dk

Proc IE.enc(ek , id)
21 Require id ∈ {0, 1}l·λ, 0 < l ≤ L
22 E ← ek
23 id0‖ . . . ‖id l−1 ← id with idj ∈ {0, 1}λ

24 For j = 0 to l − 2:
25 (c′

j , k
′
j) ←$ IE.enc′(E[j], idj‖1)

26 (c′
l−1, k

′
l−1) ←$ IE.enc′(E[l − 1], id l−1‖0)

27 C ← c′
0‖ . . . ‖c′

l−1

28 K ← W(k′
0, . . . , k

′
l−1, C)

29 Return (C, K)

Proc IE.dec(dk , C)
30 (l, D, fk) ← dk
31 c0‖ . . . ‖cl′−1 ← C with cj ∈ C
32 Require l = l′

33 For j = 0 to l − 2:
34 k′

j ←$ IE.dec′(D[i], cj)
35 (dk ′

0, dk
′
1) ← D[l − 1]

36 k′
l−1 ←$ IE.dec′(dk ′

0, cl−1)
37 K ← W(k′

0, . . . , k
′
l−1, C)

38 Return K

Fig. 2. Construction of bounded-depth UPIBE IE with parameters (L, λ,D = 1) from
PRG G and bounded-collusion IBE scheme IE′ with parameters (L′, λ′,D′) = (1, λ +
1, 2) and ciphertext space C. Core function W is realized as XOR-sum

⊕l−1
j=0 k′

j and
ignores input C. In our chosen-ciphertext secure instantiation, we additionally generate
a dummy ciphertext ĉ ←$ C and key k̂ ←$ K in IE.gen, which is included into ek and
W to pad all unused indices i ≤ L with ĉ and k̂ respectively.

receiver additionally shows that it holds the full UPIBE decapsulation key that
was delegated along all l levels—and particularly not a UPIBE decapsulation
key that was delegated along an extended identity path.

While a UPIBE ciphertext is a concatenation of all l IBE ciphertexts, the
encapsulated UPIBE key is an XOR-sum of all l encapsulated IBE keys (lines 27–
28). We generalize the computation of the encapsulated key via core function W
to simplify the description of our chosen-ciphertext secure construction in Sect. 5.

Delegation of a UPIBE decapsulation key is in line with the above ideas by
conducting four steps: (a) Removing the special IBE decapsulation key at current
level l, yet keeping all ordinary IBE decapsulation keys until level l (lines 11–13),
(b) computing the next forwarding key as well as a seed by evaluating a PRG on
the current forwarding key (line 14), (c) generating the main IBE decapsulation
key at level l+1 from the obtained seed (line 15), and delegating both the special
delegated IBE decapsulation key for level l + 1 (line 16) as well as the ordinary
delegated IBE decapsulation key for level l + 1 (line 17) from this new main
IBE decapsulation key, and, lastly, (d) removing the just obtained main IBE
decapsulation key at level l + 1 as well as the old forwarding key.

14 P. Rösler et al.

Intuition for Security. The security argument for this construction uses the fact
that adversaries can expose at most one UPIBE decapsulation key per instance
during the security experiment.4 This single exposure reveals precisely one spe-
cial delegated IBE decapsulation key—the current one—, the chain of ordinary
IBE decapsulation keys that were delegated along the exposed UPIBE key’s
identity path, and the current symmetric forwarding key from which future lev-
els’ IBE main decapsulation keys can be obtained. After such an exposure, two
types of UPIBE ciphertexts must remain secure: Those that target true pre-
fixes of the exposed key’s identity string, and those that target identity strings
branching off the exposed key’s identity string.5 Ciphertexts targeting a true
prefix identity string, indeed, remain secure because their decapsulation requires
the use of a higher level special delegated IBE decapsulation key. Such prior
level special IBE keys were removed before the exposure and are, therefore, not
contained in the exposed UPIBE key. Similarly, the decapsulation of cipher-
texts that target a branched off identity string require the use of an inaccessible
IBE decapsulation key—namely, an ordinary IBE decapsulation key that was
delegated along this branch. Consequently, exposed UPIBE decapsulation keys
do not affect ciphertexts that are required to remain secure. Finally, we note
that at most two delegated decapsulation keys per IBE instance are leaked at
an exposure of a UPIBE decapsulation key. Thus, relying on bounded-collusion
IBE suffices, where the number of colluding users is at most 2.

Performance. Bounded-depth UPIBE (and bounded-depth KU-KEM) actually
often suffice for secure messaging protocols.6 So far, the only known instantiation
of bounded-depth UPIBE is trivially derived from bounded-depth HIBE. With
our bounded-depth UPIBE construction we demonstrate a significant reduction
in complexity of the underlying hardness assumption: bounded-collusion IBE
instead of bounded-depth HIBE. Furthermore, we use this construction to make
the reader familiar with the core ideas of our unbounded-depth UPIBE construc-
tion in Sect. 4.

Without any additional assumptions on the underlying bounded-collusion
IBE, the size of UPIBE encapsulation keys in our construction is linear in the
maximal level depth L, UPIBE decapsulation keys grow with the number of
conducted delegations, and UPIBE ciphertexts grow in the bit-length of their
corresponding identity string.

When instantiating our construction with the DDH-based bounded-collusion
IBE by Dodis et al. [15], we can take advantage of the group structure to aggre-
gate and shrink encapsulation keys, decapsulation keys, and ciphertexts. We give

4 With the exposed UPIBE decapsulation key, the adversary can compute all subse-
quent delegations and decapsulations itself, so further exposures are meaningless.

5 Branching here means that for two identity strings id , id∗ with �∗ = min(|id |, |id∗|),
strings id and id∗ differ in at least one of the first �∗ bits.

6 E.g., the number of conducted key delegations in the bidirectional messaging protocol
in [36, see page 22] is upper-bounded by the maximal number of ciphertexts that
cross the wire during a round-trip time (i.e., at most a few dozens).

Unique-Path Identity Based Encryption with Applications 15

the concrete instantiation in the full version [38] in which a UPIBE decapsula-
tion key consists of 6 exponents and 1 symmetric key, a UPIBE ciphertext con-
sists of 2 group elements, and a UPIBE encapsulation key consists of 2+3(L− l)
group elements, where l is the level for which the current encapsulation key
is derived via algorithm IE.der. This is highly efficient for settings in which
distribution and storage of large encapsulation keys is cheap.7 Enhancing this
construction to also obtain a compact, constant size encapsulation key remains
an interesting open problem.

Security. For clarity, we first consider chosen-plaintext security INDb
IE of our

UPIBE construction:

Theorem 1. Bounded-depth UPIBE protocol IE from Fig. 2 offers adaptive key
indistinguishability in the standard model. More precisely, for every adaptive
chosen-plaintext adversary A attacking protocol IE in games INDb

IE according
to Definition 1 with parameters (L, λ,D = 1), there exists an adversary BG

attacking PRG G and an adaptive chosen-plaintext adversary BIE′ attacking
bounded-collusion IBE IE′ in games INDb

IE′ according to Definition 1 with param-
eters (L′, λ′,D′) = (1, λ + 1, 2) such that AdvindIE (A) ≤ qGen · L2 · AdvindG (BG) +
qGenl ·qChall ·L ·AdvindIE′(BIE′), where qGen and qChall are the number of queries to
oracles Gen and Chall by adversary A, respectively, and the running time of BG

and BIE′ is about that of A.

Security Proof Overview. For clarity in notation, we refer to oracles in
game INDb

X by adding the scheme’s identifier X as a subscript to the oracle
names (i.e., GenX , ChallX , etc). Also, we first sketch our proof by focusing on
a reduction from single-instance security of UPIBE to multi-instance security of
IBE.

Using the PRG, we begin with a hybrid argument that replaces all unex-
posed symmetric forwarding keys and IBE main key pairs with independently
sampled ones. Our reduction BIE′ then almost directly passes oracle queries
from adversary A against our UPIBE construction IE in game INDIE to oracles
of game INDIE′ against the underlying bounded-collusion IBE scheme IE′. The
responses of oracles in game INDIE′ can then be used almost directly to answer
adversary A’s oracle queries in game INDIE. That means, A’s queries to oracle
GenIE can be answered by using responses of simple queries to oracle GenIE′ ;
the same holds for queries to oracle DelIE.

However, embedding challenges from game INDIE′ in challenges of
game INDIE is non-trivial. To understand this, we observe that the hardness
of a challenge in game INDIE depends on the delegation path of the first (and
w.l.o.g. only) exposed UPIBE decapsulation key in game INDIE. More precisely,
let id∗ be the identity string that corresponds to the delegation path of the first
7 Consider asymmetric communication for which ciphertexts should be small and

encapsulation keys can be large: E.g., sending large encapsulation keys on hardware
memory from time to time via resupply flights to the International Space Station,
and sending ciphertexts over the air back to earth.

16 P. Rösler et al.

exposure via oracle ExpIE. A challenge directed to identity string id is only con-
sidered hard if id is a true prefix of id∗, or if id and id∗ differ in at least one
of their first �∗ bits, where �∗ = min(|id |, |id∗|). On a query to oracle ChallIE
with identity string id , our reduction BIE′ splits id into its λ-long sub-strings and
then identifies in which of these sub-strings the first difference between id and id∗

occurs. For this branching sub-string, reduction BIE′ queries an IBE challenge
via oracle ChallIE′ . The resulting IBE challenge-ciphertext and IBE challenge-
key are then embedded in the corresponding UPIBE challenge-ciphertext and
UPIBE challenge-key output of oracle ChallIE. However, reduction BIE′ learns
string id∗ only as soon as adversary A calls oracle ExpIE. Hence, for each chal-
lenge issued before this first exposure query, reduction BIE′ has to guess in which
sub-string the identities branch. Embedding this guessing step in a hybrid argu-
ment introduces a loss factor of at most qGen · qChall · L, where qGen and qChall

are the numbers of queries to oracles GenIE and ChallIE by adversary A, resp.,
and L is the maximal number of delegation levels for our UPIBE construction.
We provide our formal proof for multi-instance security in the full version [39].

4 Unbounded-Depth UPIBE from Bounded-Depth HIBE

Our unbounded-depth UPIBE construction extends our bounded-depth con-
struction from Sect. 3 twofold: Horizontally, it replaces each level—realized by
an IBE instance in our bounded-depth construction—by a multi-level epoch.
Each epoch can internally handle up to ε sub-identity levels/delegations. The
second extension replaces the static list of IBE main keys at the top of our
bounded-depth UPIBE construction by a dynamic epoch-progression mech-
anism. This mechanism realizes a dynamic progression from one epoch to
another and, thereby, eliminates the a-priori bounded number of sub-identity
levels/delegations; see Fig. 1 for a schematic illustration.

The only component used to build our unbounded-depth UPIBE construction
is a single bounded-depth HIBE scheme. To understand how the (unbounded
number of) UPIBE delegations are processed by this bounded-depth HIBE, we
invite the reader to look at the tree of identities/delegations in this HIBE that
is indicated by gray (dotted) lines and arrows in Fig. 1.

Epoch-Progression via Forward-Secure PKE Technique. In the top α levels of
the HIBE tree, we implement the epoch-progression mechanism, where α =

log(2κ/ε)� and κ is the security parameter. Of these α top HIBE delegation lev-
els, we only make use of a binary delegation (sub-)tree. Each path in this binary
tree part of the HIBE tree is the binary-encoding of an epoch number, where
first epoch 0 is encoded as the left-most path and last epoch 2κ/ε−1 is encoded
as the right-most path. The lowest nodes in this top binary tree part (i.e., nodes
in level α) represent epoch starting nodes. The first epoch starts at the left-most
node which corresponds to the identity string that binary-encodes 0 (i.e., 0α·λ′

,
where λ′ is the bit-length of HIBE identity sub-strings per level/delegation). We
defer the explanation of how UPIBE delegations are realized within epochs to

Unique-Path Identity Based Encryption with Applications 17

the next paragraph. As soon as an epoch is completed, the next epoch starts at
the adjacent binary-tree node to the right in level α. (That is, starting nodes of
epochs 2 and 3 correspond to identity strings 0α·λ′−1‖1 and 0(α−1)·λ′−1‖1‖0λ′

,
respectively, where each level’s identity sub-string contains a (λ′ − 1)-long 0-bit
padding prefix.)

Progression from one epoch starting node to the next one follows the well
known idea of Forward-Secure PKE from Binary Tree Encryption [8].8 Roughly,
the epoch-progression mechanism iteratively delegates HIBE decapsulation keys
along the α-long path from the root to the current epoch starting node. During
this path delegation, also decapsulation keys of (binary-tree) siblings along this
path are delegated. After each delegation on this path, the respective parent
node’s key from which the two sibling keys were delegated is deleted. Only the
first epoch progression starts at the root of the HIBE tree. All following epoch
progressions start from the lowest level for which a delegated sibling key exists.
This mechanism ensures that only starting nodes of future epochs but not of
previous epochs are accessible.

Multi-level Epochs. Our UPIBE construction splits identity strings of length l ·λ
into ε · λ-long epoch sub-strings. Each individual epoch sub-string is delegated
in ε steps vertically in the HIBE tree under its epoch starting node (i.e., each
epoch contains ε delegation levels). Hence, every epoch sub-string in the HIBE
tree looks exactly the same as its UPIBE identity sub-string counterpart (see
Fig. 1). However, instead of being concatenated vertically in the HIBE tree, one
can think of the vertical epoch sub-strings hanging next to one another from left
to right under their epoch starting nodes in level α.

Structure of Keys and Ciphertexts. Despite these two crucial extensions, the
overall idea of our unbounded-depth UPIBE construction is very close to its
bounded-depth counterpart from Sect. 3. This becomes evident when looking at
the structure of UPIBE decapsulation keys and ciphertexts.

A UPIBE decapsulation key at delegation level l contains three types of del-
egated HIBE decapsulation keys: (1) up to α epoch-progression decapsulation
keys, (2) one ordinary decapsulation key for each of the previous
l/ε�−1 epochs
and, potentially, one ordinary decapsulation key for the current epoch, and (3) a
special decapsulation key for the current epoch. The epoch-progression decapsu-
lation keys replace the single symmetric forwarding key from our bounded-depth
construction. This allows for efficient delegation of future epochs’ initial decapsu-
lation keys, yet preventing access to previous epochs’ initial decapsulation keys.
Ordinary and special decapsulation keys are used for the actual decapsulation
of UPIBE ciphertexts (almost) as in our bounded-depth construction.

The concrete components of a UPIBE decapsulation key are as follows. One
ordinary HIBE decapsulation key, delegated to the lowest HIBE tree level α +

8 For clarity in our explanation, we slightly deviate from the original BTE-to-FS-PKE
idea by Canetti et al. [8]: We do not use all nodes in the BTE tree as epoch starting
points but only nodes in the lowest level of this BTE component.

18 P. Rösler et al.

ε, is stored for each finished epoch. All remaining HIBE decapsulation keys,
ever delegated in these prior epochs, are removed from the (delegated) UPIBE
decapsulation key. For the current epoch, a special decapsulation key delegated
to HIBE level α+(l mod ε) in that epoch is stored in the UPIBE decapsulation
key, where l is the overall number of UPIBE delegations so far. When delegating
the UPIBE decapsulation key, this special HIBE decapsulation key is replaced
by a new one for the next level. Only in the last level α+ ε of the current epoch
where (l = −1 mod ε), the UPIBE decapsulation key contains two HIBE keys:
a special and an ordinary HIBE decapsulation key.

A UPIBE ciphertext for level l consists of one HIBE ciphertext per existing
epoch, where
l/ε� is the number of existing epochs. Each of the first
l/ε� − 1
ciphertexts is directed to its epoch’s ordinary decapsulation key, and the last
ciphertext is directed to the current epoch’s special decapsulation key.

All UPIBE delegations within an epoch delegate a new special HIBE decap-
sulation key from the previous level’s special HIBE decapsulation key. After each
delegation, this previous special HIBE decapsulation key is removed. In the low-
est level of an epoch—in HIBE tree level α + ε—an additional ordinary HIBE
decapsulation key is delegated the from previous level’s special HIBE decapsu-
lation key. This ordinary HIBE decapsulation key is never removed from the
UPIBE decapsulation key.

Intuition for Security. The intuitive security argument for this construction
resembles the one from Sect. 3. Recall that, on exposure of a UPIBE decapsula-
tion key, only those UPIBE encapsulations must remain secure whose targeted
identity string either is a true prefix of the exposed key’s identity string or
branches off the exposed key’s identity string (See Footnote 5). Encapsulations
to true prefix identity strings have their last HIBE encapsulation directed to
an earlier special HIBE decapsulation key. This special key is not stored in the
exposed UPIBE decapsulation key anymore, since the latter only contains the
current level’s special HIBE decapsulation key. Encapsulations to branched off
identity strings have the HIBE encapsulation of the branching epoch directed
to an ordinary HIBE decapsulation key that was never stored in the exposed
UPIBE decapsulation key. Finally, all exposed decapsulation keys of the epoch-
progression mechanism only reveal parts of the HIBE tree from which future
epochs can be delegated. Thus, UPIBE encapsulations of our unbounded-depth
construction remain secure under non-trivial exposures of UPIBE decapsulation
keys.

Construction. We specify our unbounded-depth UPIBE construction formally
in Fig. 3. This construction uses a bounded-depth HIBE with maximal level
depth L = α + ε =
log(2κ/ε)� + ε, where κ is the security parameter.

The UPIBE encapsulation key consists solely of the main HIBE encapsulation
key. The initial UPIBE decapsulation key is generated by executing the epoch-
progression mechanism with the main HIBE decapsulation key to derive the
first epoch’s starting decapsulation key (Fig. 3, lines 02–06). More concretely,
this mechanism delegates one ephemeral and one stored decapsulation key in

Unique-Path Identity Based Encryption with Applications 19

Proc IE.gen
00 E[·] ← ⊥; Dep [·] ← ⊥; Dfs [·] ← ⊥
01 (ek ′, dk ′

0) ←$ IE.gen′

02 For j = 0 to α − 1:
03 dk ′′

0 ←$ IE.del′(dk ′
0, 0

λ+1)
04 dk ′′

1 ←$ IE.del′(dk ′
0, 0

λ‖1)
05 dk ′

0 ← dk ′′
0 ; Dfs [j] ← dk ′′

1

06 Dep [0] ← dk ′
0

07 ek ← ek ′; dk ← (0, Dfs , Dep)
08 Return (ek , dk)

Proc IE.enc(ek , id)
09 Require id ∈ {0, 1}l·λ, l ∈ N

+

10 id0‖ . . . ‖id l−1 ← id with idj ∈ {0, 1}λ

11 d ← l mod ε; e ← �l/ε�
12 For e′ = 0 to e − 2:
13 id ′ ← ε
14 (e′

0, . . . , e
′
α−1) ← e′ with e′

j ∈ {0, 1}
15 For j = 0 to α − 1:
16 id ′ �← 0λ‖e′

j

17 For d′ = 0 to ε − 2:
18 id ′ �← ide′·ε+d′‖1
19 id ′ �← ide′·ε+ε−1‖0
20 (c′

e′ , k′
e′) ← IE.enc′(ek , id ′)

21 id ′ ← ε
22 (e′

0, . . . , e
′
α−1) ← e − 1 with e′

j ∈ {0, 1}
23 For j = 0 to α − 1:
24 id ′ �← 0λ‖e′

i

25 For d′ = 0 to d − 1:
26 id ′ �← id (e−1)·ε+d′‖1
27 (c′

e−1, k
′
e−1) ← IE.enc′(ek , id ′)

28 C ← c′
0‖ . . . ‖c′

e−1

29 K ← W(k′
0, . . . , k

′
e−1, C)

30 Return (C, K)

Proc IE.dec(dk , C)
31 (l, Dfs , Dep) ← dk
32 d ← l mod ε; e ← �l/ε�
33 c0‖ . . . ‖ce′−1 ← C with cj ∈ C
34 Require e = e′

35 For j = 0 to e − 2
36 k′

j ←$ IE.dec′(Dep [j], cj)
37 If d 	= ε − 1: dk ′

1 ← Dep [e − 1]
38 Else: (dk ′

0, dk
′
1) ← Dep [e − 1]

39 k′
e−1 ←$ IE.dec′(dk ′

1, ce−1)
40 K ← W(k′

0, . . . , k
′
e−1, C)

41 Return K

Proc IE.del(dk , id)
42 Require id ∈ {0, 1}λ

43 (l, Dfs , Dep) ← dk
44 d ← l mod ε; e ←
l/ε�
45 If d = 0 ∧ e > 0:
46 (dk ′

0, dk
′
1) ← Dep [e − 1]

47 Dep [e − 1] ← dk ′
0

48 j ← msdb(e − 1, e)
49 dk ′

0 ← Dfs [j]; Dfs [j] ← ⊥
50 For j to α − 1:
51 dk ′′

0 ←$ IE.del′(dk ′
0, 0

λ+1)
52 dk ′′

1 ←$ IE.del′(dk ′
0, 0

λ‖1)
53 dk ′

0 ← dk ′′
0 ; Dfs [j] ← dk ′′

1

54 Dep [e] ← dk ′
0

55 If d 	= ε − 1:
56 Dep [e] ←$ IE.del′(Dep [e], id‖1)
57 Else:
58 dk ′

0 ←$ IE.del′(Dep [e], id‖0)
59 dk ′

1 ←$ IE.del′(Dep [e], id‖1)
60 Dep [e] ← (dk ′

0, dk
′
1)

61 dk ← (l + 1, Dfs , Dep)
62 Return dk

Fig. 3. Generic construction of unbounded-depth UPIBE IE from bounded-depth
HIBE scheme IE′ with ciphertext space C. Function msdb(x, y) computes the most
significant bit in which the bit-representations of x and y differ and core function W
is realized as XOR-sum

⊕e−1
j=0 k′

j and ignores input C. In our chosen-ciphertext secure
instantiation we instantiate W with random oracle H�.

each of the first α HIBE levels (lines 03–04). Ephemeral key dk ′
0 is replaced after

delegating the two decapsulation keys of the next level. Stored key dk ′
1 will be

used for future epoch progressions. In level α, ephemeral key dk ′
0 is set as the

first epoch’s starting decapsulation key. We explain the specific encoding- and
padding-scheme for identity strings at the end of this paragraph.

UPIBE encapsulation splits the targeted identity string id into ε·λ-long epoch
sub-strings. Our pseudo-code separates the processing of the first e − 1 epoch
sub-strings (lines 12–20) from the last epoch’s sub-string (lines 21–27). Roughly,
each epoch sub-string (composed in lines 17–19 resp. 25–26) is prepended with
a binary encoding of the corresponding epoch number (lines 14–16 resp. 22–

20 P. Rösler et al.

24). The binary encoding prefix represents the epoch-progression path to the
epoch’s starting node. For every epoch, an HIBE encapsulation directed to the
concatenated string of binary-encoded epoch number and epoch identity sub-
string is executed (line 20 resp. 27). The final UPIBE ciphertext is a simple
concatenation of all epoch HIBE ciphertexts; the output UPIBE key is an XOR-
sum of all encapsulated epoch HIBE keys.

On UPIBE decapsulation, the input ciphertext is decomposed, and each of
the resulting HIBE ciphertexts is decapsulated. For all previous epochs, the
stored lowest level ordinary decapsulation key is used for decapsulation (lines 35–
36). In the current epoch, the special decapsulation key is used for this (line 39).
Depending on whether the current epoch reached its lowest level or not, the spe-
cial decapsulation key is stored solitarily (line 37) or together with the ordinary
decapsulation key (line 38).

In most cases, UPIBE delegation simply uses the current epoch’s special
HIBE decapsulation key together with input identity string id to delegate a new
special HIBE decapsulation key that replaces the prior one (lines 56). Only if
the lowest level of the current epoch is reached, an additional ordinary HIBE
decapsulation key is delegated and stored (line 58–60). A subsequent delega-
tion starts a new epoch and, therefore, uses the epoch-progression mechanism
(lines 45–54). This mechanism starts by deleting the previous epoch’s special
decapsulation key (lines 46–47). Then, it identifies the lowest existing decapsu-
lation key in the underlying binary-tree structure (line 48) with which the next
epoch starting node is delegated (lines 50–54). This subsequent starting node—
basically the immediate neighbor node in the binary tree—is used as the new
epoch’s initial decapsulation key.

We elaborate on some implementation details. To realize a binary tree in the
epoch-progression mechanism, the binary encoding of epoch numbers is padded
with (λ′ − 1 = λ) leading 0-bits in every level (lines 03–04, 16, 24, 51–52). For
the composition of epoch sub-strings, each level’s identity sub-string is appended
with a 1-bit (lines 18, 26) except for the last level in any previous epoch; previous
epochs’ last level sub-strings have an appended 0-bit (lines 19). This corresponds
to the use and delegation of special and ordinary decapsulation keys (lines 56,
58–59).

Depth of Multi-level Epochs. Our unbounded-depth UPIBE construction is
parameterized by variable ε that determines the number of delegations per epoch.
We note that for ε = ∞, our UPIBE construction reduces to the known trivial
delegation design via unbounded -depth HIBE [3,30,37]. Thus, there is always
an ε for which our construction is at least as efficient as the previous approach.
Beyond that, using the flexibility of parameter ε, our construction’s performance
can be adapted to different use cases. For example, depending on whether cipher-
texts or decapsulation keys should be small, and depending on the expected
number of delegations in a setting, an optimal value ε can be configured. Our
full evaluation is in Sect. 7.

Unique-Path Identity Based Encryption with Applications 21

2-Delegation HIBE. We want to note that each HIBE decapsulation key in
our construction from Fig. 3 delegates at most two child decapsulation keys.
Thus, while reducing the level depth parameter L substantially from infinity in
UPIBE to a bounded value in the underlying HIBE, parameter D only grows
from 1 delegation per secret key in UPIBE to 2 in the underlying HIBE. With
our definition framework from Sect. 2 and our new perspective on delegation-
restricted HIBE, we lay the foundation for future work that may investigate
whether bounded-depth HIBE with limited delegation of D = 2 can be built
more efficiently than general bounded-depth HIBE.

Security. To support comprehensibility and avoid idealized assumptions, we first
reduce adaptive chosen-plaintext security INDb

IE of our UPIBE construction to
adaptive security of the underlying HIBE in the standard model. In Sect. 4.1,
we augment our reduction with a new guessing technique that allows us to
trade the strength of the underlying HIBE (only selective security instead of
adaptive security) against idealized assumptions (random oracle model instead of
standard model). Relying only on selective secure HIBEs for adaptive security of
our UPIBE significantly extends the class of available HIBE constructions from
the literature. For full security against chosen-ciphertext attacks, we consider
different generic and direct techniques in Sect. 5.

Theorem 2. Unbounded-depth UPIBE protocol IE from Fig. 3 offers adaptive
key indistinguishability in the standard model. More precisely, for every adaptive
chosen-plaintext adversary A attacking protocol IE in games INDb

IE according
to Definition 1 with parameters (L = ∞, λ,D = 1), there exists an adaptive
chosen-plaintext adversary B attacking bounded-depth HIBE IE′ in games INDb

IE′

according to Definition 1 with parameters (L′, λ′,D′) = (
log(2κ/ε)�+ε, λ+1, 2)
such that AdvindIE (A) ≤ qGen · qChall ·
llong/ε� ·AdvindIE′(B), where κ is the security
parameter, ε is the construction’s epoch-depth parameter, qChall and qChall are
the numbers of queries to oracles Gen and Chall by adversary A, respectively,
llong is the level-depth of the longest identity string queried to oracle Chall by
adversary A, and the running time of B is about that of A.

Security Proof Overview. Our security proof for Theorem 2 is very similar to the
one for Theorem 1. The major technical difference is that here the security of each
UPIBE instance is reduced to only one bounded-depth HIBE instance’s security.
Reduction B, again, simulates all oracle queries of adversary A in game INDIE

via queries to oracles in game INDIE′ . As in our proof from Sect. 3, for certain
UPIBE challenge queries to oracle ChallIE, the reduction has to guess where to
embed underlying HIBE challenges of game INDIE′ . A hybrid argument that
implements theses guesses cause the loss factor in our advantage bound. The
general strategy for embedding challenges is to determine where the identity
string input of oracle ChallIE branches off the delegation path of (potentially)
exposed UPIBE decapsulation keys. In contrast to our proof of Theorem 1,
reduction B here only needs to guess the epoch of the sub-string in which the
identity strings of challenge and exposure branch lie. We provide our formal
proof in the full version [38].

22 P. Rösler et al.

4.1 Relaxing Assumptions: Adaptive UPIBE from Selective HIBE

The above outlined standard model proof for our unbounded-depth UPIBE
construction from Fig. 3 relies on adaptive secure bounded-depth HIBE. Yet,
the most suitable bounded-depth HIBEs (e.g., [5]) are only selective secure.
Generic techniques for turning selective secure schemes adaptive secure, as done
in [1,4,5,10], rely on the random oracle model and induce an exponential loss
factor in the HIBE’s maximal level depth L. The simple idea of these techniques
is to replace each identity sub-string in the construction by the output of a ran-
dom oracle evaluated on this identity sub-string (i.e., id0‖ . . . ‖id l is replaced by
H(id0)‖ . . . ‖H(id l)). The reduction then embeds sub-strings of the selective chal-
lenge identity in randomly chosen random-oracle-outputs. A reduction succeeds
if it embeds the selective challenge sub-strings in those random-oracle-outputs
whose input identity sub-strings form the adaptive challenge. This induces an
exponential loss in the maximal number of identity sub-strings per adaptive chal-
lenge. This is problematic because our UPIBE construction relies on an adaptive
secure bounded-depth HIBE with parameter L = α+ ε =
log(2κ/ε)�+ ε, which
is linear in the security parameter κ. Thus, the loss factor would be exponential
in κ when following the generic approach of turning the underlying HIBE adap-
tive secure [1,4,5,10] before using this HIBE to instantiate our unbounded-depth
UPIBE construction.

Solution: Guessing Essentials Only. Due to the way our construction makes use
of the underlying bounded-depth HIBE, we can carefully change the generic app-
roach from [4,5] in order to relax the assumption on the HIBE from adaptive
to selective security. Our main observation is that the two (virtual) compo-
nents in our UPIBE construction—epoch-progression mechanism and multi-level
epochs—encode information of different density. For this, consider an HIBE iden-
tity string to which our UPIBE encapsulation internally issues an HIBE encap-
sulation. The first part of such an HIBE identity string encodes an integer that
represents the epoch number in the upper epoch-progression mechanism. The
second part encodes a sub-string of the actual UPIBE identity string (i.e., the
identity sub-string for one epoch).

In order to embed a selective HIBE challenge in the adaptive UPIBE chal-
lenge, our reduction has to predict the branching epoch’s full HIBE identity
string in advance. In this epoch, the UPIBE challenge identity branches off the
delegated identity of the corresponding (exposed) UPIBE decapsulation key. To
predict this epoch’s full HIBE identity string, we treat the two parts—epoch
number and sub-string of UPIBE identity—differently. The branching epoch
number can simply be guessed with high probability. The reason is that poly-
nomially bounded users (and adversaries) only issue UPIBE identity strings of
polynomial length. Thus, also the number of epochs used to represent a UPIBE
identity string is polynomially bounded. To predict the second part of the HIBE
identity string—the branching epoch’s sub-string of the actual UPIBE identity
string—we employ the generic technique [4,5] based on the random oracle model.

Unique-Path Identity Based Encryption with Applications 23

Since the depth of each multi-level epoch is bounded by constant parameter ε,
the loss induced by this technique is only polynomial (not exponential) in κ.

Concrete Adjustments. We interpose a random oracle H in the following lines of
our construction in Fig. 3: 18: id ′ �← H(ide′·ε+d′‖1); 19: id ′ �← H(ide′·ε+ε−1‖0);
26: id ′ �← H(id (e−1)·ε+d′‖1); 56: Dep [e] ←$ IE.del′(Dep [e],H(id‖1)); 58: dk ′

0 ←$

IE.del′(Dep [e],H(id‖0)); 59: dk ′
1 ←$ IE.del′(Dep [e],H(id‖1)). However, we leave

the identity sub-strings of the upper epoch-progression mechanism untouched.
Thus, lines 03–04, 16, 24, and 51–52 remain the same. A full proof of following
Theorem 3 is given in the full version [39].

Theorem 3. Adjusting unbounded-depth UPIBE protocol IE from Fig. 3 offers
adaptive key indistinguishability in the random oracle model. More precisely,
let H be a random oracle, then for every adaptive chosen-plaintext adver-
sary A attacking protocol IE in games INDb

IE according to Definition 1 with
parameters (L = ∞, λ,D = 1), there exists a selective chosen-plaintext adver-
sary B attacking bounded-depth HIBE IE′ in games INDb

IE′ according to Def-
inition 1 with parameters (L′, λ′,D′) = (
log(2κ/ε)� + ε, λ + 1, 2) such that
AdvindIE (A) ≤ qGen · qChall · ((llong)2 · (qH)ε) · AdvindIE′(B), where κ is the security
parameter, ε is the construction’s epoch-depth parameter, qGen, qChall, and qH
are the number of queries to oracles Gen, Chall and the random oracle by adver-
sary A, respectively, llong is the level-depth of the longest identity string queried
to oracle Chall by adversary A, and the running time of B is about that of A.

5 CCA Secure UPIBE

Now we turn our focus on the task of achieving chosen-ciphertext security for
bounded- and unbounded-depth UPIBE. While it might be tempting to think
that similar to HIBEs one could generically convert CPA-secure UPIBE into
CCA-secure ones using the BCHK (often also called CHK) compiler [6,9], this
unfortunately does not work: BCHK needs one delegation per decapsulation
from the same decapsulation key, but UPIBE only offers one delegation for
each decapsulation key in total. Thus, we need to adopt different strategies for
constructing CCA-secure UPIBE.

5.1 Bounded-Depth UPIBE

FO-Transform. Having in mind that we construct bounded-depth UPIBE from
(bounded-collusion) IBE, a natural choice is to apply the Fujisaki-Okamoto (FO)
transform [19] and in particular one of its modular variants [28]. FO typically
considers single instances, but in our construction of UPIBE one has to deal
with multiple parallel IBE ciphertexts and this requires some care. Recently,
Cini et al. in [11] considered this issue of parallel ciphertexts in FO for reducing
decryption errors as well as constructing Bloom-Filter KEMs (BFKEMs) from
IBE. Though [11] relies on a single IBE instance, it is quite straightforward to

24 P. Rösler et al.

adapt their approach to UPIBE.9 Unfortunately, using FO in this way, besides
being bound to the random oracle model (ROM), requires an overhead of l
encryptions of the underlying IBE during decapsulation, which can be significant.

Split-Key PRF. An alternative, more efficient, and more flexible approach is
made possible when we view our UPIBE construction in Sect. 3 as parallel
bounded-collusion IBE and take inspiration from Giacon et al. [22]. In par-
ticular, recall that our overall ciphertext C = c′

0‖ . . . ‖c′
l−1 is the concatenation

of l ciphertexts of independent IBEs and the encapsulation key is computed
as K ← W(k′

0, . . . , k
′
l−1, C), where W represents what is called a core func-

tion by Giacon et al. [22]. We note that [22] focuses on parallel KEM com-
biners, and show that if W is a split-key pseudorandom function (skPRF), it
yields a CCA-secure KEM if at least one of the l KEMs is CCA secure. Various
instantiations of skPRFs in the ROM and standard model with different types
of trade-offs are discussed in [22]. For instance the PRF-then-XOR composi-
tion W(k′

0, . . . , k
′
l−1, C) :=

⊕l−1
i=0 Fi(k′

i, C), where Fi’s are PRFs, is a skPRF in
the standard model. Our focus now is not on combiners and as the use of our
instances is dynamic (i.e., the depth can vary), this does not work for UPIBE.
Here we need to require that all instances are CCA secure. Nevertheless, as
we discuss below, the use of an skPRF still gives advantages when it comes to
standard model constructions.

Achieving CCA-Secure IBE. While CCA security can be easily achieved in the
ROM by starting from a CPA-secure (bounded-collusion) IBE and applying the
FO transform, the overall overhead due to the FO is identical when directly
applying FO (as discussed above). However, we can obtain CCA-secure bounded-
depth UPIBE in the standard model when relying on an IBE scheme that directly
provides CCA security in the standard model (e.g., [20] or the CCA-secure ver-
sion of the bounded-collusion IBE in [15]). Alternatively, if one accepts that the
IBEs are replaced by CPA-secure depth 2 HIBEs, one can simply use the BCHK
compiler [6,9].

Now, we will show that the bounded-depth UPIBE protocol from Fig. 2
is CCA-secure when the underlying bounded-collusion IBE IE′ is CCA-secure
(e.g., [15]) and the core function W is based on a split-key pseudorandom func-
tion F with n = L (cf. the full version [38] for the definition). For reasons that
we will discuss below, we include a special KEM key k̂ and a special ciphertext
ĉ into ek of the UPIBE protocol IE in order to “pad” calls to W to always take
L inputs (for all cases where depth l < L).

Theorem 4. Bounded-depth UPIBE protocol IE from Fig. 2 offers adaptive
key indistinguishability under chosen-ciphertext attacks in the standard model.

9 We would sample a random key k and derive (r0, . . . , rl−1, k
′) = G(k) from a random

oracle G and encapsulate ki with randomness ri for the i’th instance such that
K = k0 ⊕ . . . ⊕ kl−1 and then use k′ as the overall encapsulation key.

Unique-Path Identity Based Encryption with Applications 25

More precisely, for every adaptive chosen-ciphertext adversary A attack-
ing protocol IE in games INDb

IE according to Definition 1 with parame-
ters (L, λ,D = 1), there exists an adversary BG attacking PRG G, an adver-
sary BW against the split-key pseudorandomness of W , and an adaptive chosen-
ciphertext adversary BIE′ attacking bounded-collusion IBE IE′ in games INDb

IE′

according to Definition 1 with parameters (L′, λ′,D′) = (1, λ + 1, 2) such
that AdvindIE (A) ≤ qGenL

2 ·
(

qGenqChallLAdvindG (BG) + 1
)

+ 2qGenqChallL ·
(

qChall Adv
pr
Fi
(BW)+AdvindIE′(BIE′)

)

, where qChall and qGen are the number of
queries to oracle Chall and Gen by adversary A, and the running times of BG,
BW, and BIE′ is about that of A.

Security Proof Overview. The strategy for the proof is analogous to that of
Theorem 1, but we will proceed in a sequence of Games moving from the game
IND0

IE to IND1
IE, which allows us to follow the strategy by Giacon et al. [22].

In contrast to their proof, in our case all instances are required to be CCA
secure. This is since we require CCA security of the underlying IBE IE′ at the
branching positions of identities that are asked to the challenge oracle, which
can be placed at any of the L positions adaptively. We need to take some care
when using the pseudorandomness of the split-key pseudorandom function for
W, as we use n = L but the number of required inputs vary with the actual
depth of the identities l. Therefore, we always use L inputs for calls to W where
for the L − l rightmost inputs we simply use a fixed key k̂ and ciphertext ĉ (we
will not make this fact explicit in the proof). We provide a formal proof in the
full version [38].

5.2 Unbounded-Depth UPIBE

For the same reasons as discussed in Sect. 5.1 we prefer to avoid a generic use
of the FO transform for proving CCA security of our unbounded-depth UPIBE.
Unfortunately, the generic skPRF approach pursued in Sect. 5.1 requires an a
priori bound on the depth, which is not the case for unbounded-depth UPIBE.

Consequently, although we follow the same overall idea, as already mentioned
in Fig. 3, we instantiate the core function W directly by a random oracle H�,
i.e., derive the overall key as K ← H�(k1, . . . , kl, c1, . . . , cl) where (ki, ci) are
the encapsulation outputs of the chosen-ciphertext secure bounded HIBE. Since
our focus is on efficiency, and the strategy to prove Theorem 3 already requires
the ROM, this seems to be a meaningful choice. For CCA security of the single
ciphertexts of the underlying bounded-depth HIBE, the most efficient approach
is a use of the BCHK compiler [6,9]. This yields a very flexible approach as
due to the choice of the required strongly secure signature scheme there are
many performance and bandwidth trade-offs available (see also Sect. 7). Using
this strategy we can show the following for our unbounded-depth UPIBE. The
proof of Theorem 5 is provided in the full version [38].

26 P. Rösler et al.

Theorem 5. Adjusting unbounded-depth UPIBE protocol IE from Fig. 3 as
described in Sect. 4.1 offers adaptive key indistinguishability under chosen-
ciphertext attacks in the random oracle model. More precisely, let H and
H� be random oracles, then for every adaptive chosen-ciphertext adversary A
attacking protocol IE in games INDb

IE according to Definition 1 with param-
eters (L = ∞, λ,D = 1), there exists a selective chosen-ciphertext adver-
sary B attacking bounded-depth HIBE IE′ in games INDb

IE′ according to Def-
inition 1 with parameters (L′, λ′,D′) = (
log(2κ/ε)� + ε, λ + 1, 2) such that
AdvindIE (A) ≤ qGen · qChall · ((llong)2 · (qH)ε) ·

(

AdvindIE′(B) + qChall·qH�

|K|
)

where κ

is the security parameter, ε is the construction’s epoch-depth parameter, qChall,
qGen, qH and qH� are queries to oracles Chall, Gen and random oracles H and H�

by adversary A, respectively, llong is the level-depth of the longest identity string
queried to oracle Chall by adversary A, and the running time of B is about that
of A.

6 Key-Updatable KEM from UPIBE

A Key-Updatable Key Encapsulation Mechanism (KU-KEM) [30,37] is a KEM
K = (K.gen,K.enc,K.dec,K.up) with additional update algorithms K.up for
encapsulation keys and decapsulation keys. The computation of each update
ek ′ ←$ K.up(ek , ad) resp. dk ′ ←$ K.up(dk , ad) is determined by a bit string ad
that is arbitrarily chosen by the user. One can think of these update bit strings
as new information (aka. associated data) that is added to the context of the
ongoing session. Updates of encapsulation keys and decapsulation keys can be
conducted independently without information being transmitted between hold-
ers of encapsulation and decapsulation key. The feature of independent updates
with respect to bit strings constitutes the crucial difference to significantly weaker
notions like Updatable PKE [14,31] that offer more efficient instantiations. We
refer the interested reader to a discussion by Balli et al. [3] who elaborate on the
shortcomings of Updatable PKE in the context of strongly secure messaging.

As long as both components of a KU-KEM key pair are updated with respect
to the same bit strings—meaning, their context is updated compatibly—, the key
pair remains compatible. More precisely, a generated pair consisting of encap-
sulation key and decapsulation key remains compatible if the list of bit strings
for updates applied on the encapsulation key equals the list of bit strings for
updates applied on the decapsulation key. We follow the slightly stronger vari-
ant of KU-KEM by Balli et al. [3] that furthermore requires for compatibility of
a key pair that the list of bit strings for updates together with the list of sent
and received encapsulation ciphertexts equals on both sides.

For security of KU-KEM, two goals beyond pure key-indistinguishability are
required: (1) Forward-secrecy, meaning that an updated future version of the
current decapsulation key can be exposed to an adversary without harming con-
fidentiality of ciphertexts produced with a current or previous (compatible) ver-
sion of the corresponding encapsulation key—in short, old ciphertexts remain

Unique-Path Identity Based Encryption with Applications 27

secure if future decapsulation keys are exposed; (2) Effective divergence, mean-
ing that an incompatible decapsulation key can be exposed to an adversary
without harming confidentiality of ciphertexts produced with the corresponding
(incompatible) encapsulation key—in short, any difference in update bit strings
makes encapsulation key and decapsulation key fully independent.

KU-KEM is a special form of UPIBE where KU-KEM update bit strings
are implemented via UPIBE identity sub-strings, KU-KEM decapsulation key
updates are realized via UPIBE delegations, and KU-KEM encapsulation key
updates are realized via UPIBE derivations. The construction of KU-KEM
from UPIBE is, therefore, straight forward: K.gen := IE.gen; K.up(ek , ad) :=
IE.der(ek , ad = id) resp. K.up(dk , ad) := IE.del(dk , ad = id); K.enc(ek) exe-
cutes IE.enc(ek , ε) and updates ek via IE.der(ek , ad = c); K.dec(dk , c) executes
IE.dec(dk , c) and updates dk via IE.del(dk , ad = c). (Pseudo-code is given in
the full version [38].) This construction was first proposed by Poettering and
Rösler [37] and slightly adapted in other works [3,30]. Yet, we are the first
to reduce the underlying assumption from general unbounded-depth HIBE to
unbounded-depth UPIBE. For space reasons, we defer the formal definition
of KU-KEM by Balli et al. [3] as well as our proof of Theorem 6 to the full
version [38]. This proof tightly reduces the security of the KU-KEM construc-
tion to adaptive chosen-ciphertext security of the underlying unbounded-depth
UPIBE scheme.

Theorem 6. KU-KEM protocol K offers one-wayness of encapsulated keys.
More precisely, for every adaptive chosen-ciphertext adversary A attacking
protocol K , there exists an adaptive chosen-ciphertext adversary B attacking
unbounded-depth HIBE IE in games INDb

IE according to Definition 1 with param-
eters (L′, λ′,D′) = (∞, λ, 1) such that AdvkuowK (A) ≤ AdvindIE (B), where the run-
ning time of B is about that of A.

7 Evaluation

Our evaluation considers (asymptotic and concrete) parameter sizes of one-way
CCA (formally, KUOW) secure KU-KEMs built trivially from unbounded-depth
HIBEs on the one side and KU-KEMs based on our UPIBE construction that
relies on bounded-depth HIBEs from Sect. 5.2 on the other side. Before starting
the concrete analysis, we note that CCA security of (un)bounded-depth HIBEs
can be generically achieved efficiently via the BCHK transform [6,9] using a
strongly secure one-time-signature scheme.10

Since we have applicability and performance in mind for our application
towards optimally secure messaging protocols, we include bounded-depth HIBE
schemes that are secure in the random-oracle model (ROM). Moreover, we
looked at all applicable unbounded-depth HIBEs and selected three construc-
tions [24,34,35] that suit the application we have in mind best. Depending on
10 In our concrete setting, for standard-model HIBEs, we use Groth’s pairing-free sig-

nature scheme [26] while for HIBEs in the ROM, we use Schnorr signatures [40].

28 P. Rösler et al.

Table 1. Comparison of CCA secure KU-KEMs with parameter sizes and perfor-
mance instantiated from the standard-model unbounded-depth HIBEs L [35], LP [34],
and GCTC [24] (trivially) and the bounded-depth HIBE BBG [5] (via our KU-KEM-
from-UPIBE approach from Sect. 6). Here, α + ε is the maximum level (and α can be
considered linear in the security parameter), l is the current number of key updates, γ
is the output bit length of a collision-resistant hash function, and ε is the epoch-depth
in our UPIBE. n ≥ 1 is the performance parameter of GCTC [24]. We use the type-3
pairing setting with e : G1 × G2 → GT for prime-order groups G1, G2, and GT . Here,
we do not consider the tightness of the reductions to the underlying assumptions.

UPIBE Via HIBE Encapsulation key size Ciphertext size Decapsulation key size Model
Triv. L [35] 60|G1| + 2|GT | + lλ (10l + 12)|G1| (10l + 60)|G2| StM
Triv. LP [34] (2γ + 4)|G1| + (2γ + 6)|G2| + lλ (7l + 11)|G1| (7l + 2)|G2| StM
Triv. GCTC [24] (3n + 9 + �l/n�)|G1| + 3|GT | (9�(l + 1)/n� + 2)|G1| ((9 + 3n)�l/n� + 3n + 9 − 3l)|G2| StM
Ours BBG [5] (1 + �l/ε�)|G1| + 1|G2| (3�l/ε�)|G1| (O(α · (α + ε)) + �l/ε� + α)|G2| ROM

UPIBE Via HIBE Key generation (# exp.) Encapsulation (# exp.) Decapsulation (# exp., # pairings) Ass.
Triv. L [35] 60 (G1), 80 (G2), 2 (GT) 60l + 62 (G1), 2 (GT) (61l (G2), 10l + 1) DLIN
Triv. LP [34] (2γ + 4) (G1), (2γ + 6) (G2) (7l + 11) (G2), 2 (GT) ((7(l + 1) + 2) (G2), (7l + 2) + 1) SXDH
Triv. GCTC [24] 6(n + 3) (G2), 1 (GT) (15�l/n� + 3l) (G1), 3 (GT) (15�l/n� + 3l (G2), 9�l/n� + 1) SXDH
Ours BBG [5] 1 (G1), 1 (G2) ((�l/ε� + 5) (G1), 1 (GT) (ε + α/ε + 2) (G2), 2�l/ε�) BDHE

the concrete bounded-depth HIBE scheme, it is a common technique to reduce
public parameter sizes in the ROM [5]. This, however, does not work generi-
cally. Particularly, in the HIBE scheme by Gong et al. (GCTC) [24], the under-
lying encapsulation key structure seemingly prevents this form of parameter
compression. The same seems to be the case for Langrehr-Pan (LP) [34], while
Lewko (L) [35] already has compact encapsulation keys (however, with a large
constant).

For our KU-KEM construction via the UPIBE paradigm (where we only
require a selectively secure HIBE with polynomially bounded depth), the
strongest candidate is the Boneh-Boyen-Goh (BBG) HIBE [5]. Here, encapsula-
tion key size is only two group elements using the ROM. However, we cannot
utilize the ROM to reduce the size of BBG decapsulation keys since these keys
require a certain structure. Hence, the BBG HIBE has linear-size decapsula-
tion keys, but enjoys constant-size encapsulation keys and ciphertexts (all in the
maximal depth).

By considering the most efficient (un)bounded-depth HIBE schemes, we con-
duct a fair comparison between KU-KEMs from trivial UPIBE via unbounded-
depth HIBE and KU-KEMs from our novel UPIBE construction. In Table 1, we
list CCA secure KU-KEMs from CCA secure (un)bounded-depth HIBEs with
relevant size and performance parameters.

We see that all but one known trivial KU-KEM instantiations via [24,34,35]
have ciphertext and decapsulation-key sizes that scale linearly in the number
of delegations (which corresponds to KU-KEM key updates). Only GCTC [24]
has a trade-off for ciphertext and key sizes via their performance parameter
n. With our non-trivial UPIBE approach from bounded-depth HIBEs, taking
the BBG scheme [5] as instantiation, we obtain ciphertext sizes that only scale
linearly in the number of epochs, which can be adjusted by the depth-parameter ε

Unique-Path Identity Based Encryption with Applications 29

Fig. 4. Comparison of CCA secure KU-KEM encapsulation and decapsulation key as
well as ciphertext sizes in kilobytes (KB) from (un)bounded-depth HIBEs. For the
pairing group, we chose BLS12-381 (which gives around 128 bit security); this means
per element in G1, G2, and GT , we have 382, 764, 4572 bits.

as described in Sect. 4. Moreover, our KU-KEM approach via BBG enjoys very
short encapsulation keys. This yields a significant reduction in encapsulation key
and ciphertext sizes for KU-KEMs compared to other approaches (see Table 1).

Detailed Analysis. For our following analysis concerning parameter sizes and per-
formance, from the three trivial standard-model KU-KEMs based on unbounded-
depth HIBEs [24,34,35], we chose GCTC [24] which outperforms the other
two—particularly because of their scalability parameter n that allows to trade-
off ciphertext and encapsulation/decapsulation key sizes.11 Hence, the GCTC
scheme is the best suitable reference instantiation of KU-KEM via the trivial
UPIBE construction for a concrete comparison regarding the applications we
have in mind.

Application Requirements. Our focus is on short ciphertexts and encapsulations
keys (for bandwidth reasons) while on the sender and the receiver sides, we

11 Essentially, GCTC [24] improves Lewko [35] towards shorter ciphertext sizes and LP
[34] deals with tightness of the Lewko scheme [35], at the expense of rather large
encapsulation keys (see γ-factor).

30 P. Rösler et al.

Fig. 5. Comparison of CCA secure KU-KEM key generation, encapsulation, and decap-
sulation performance from un-/bounded-depth HIBEs. We estimate that a G1 expo-
nentiation is 10 times more efficient than a pairing.

want fast encapsulation and fast decapsulation, respectively. As we argue now,
our non-trivial UPIBE approach with BBG outperforms the trivial KU-KEM
construction with GCTC in all of the metrics mentioned above. We recall that
our KU-KEM decapsulation is based on the actual ciphertext decapsulation
and an additional key delegation of the underlying HIBE. Moreover, we can
compress the identity string via algorithm IE.der to compute an identity-specific
encapsulation key for BBG and GCTC. We currently do not see how to perform
this compression for [34,35].

Bandwidth Comparison. We observe that the performance parameter n in GCTC
plays a similar role as our depth parameter ε in UPIBE; hence, we compare it at
the same level. As illustrative examples, we choose ε = n = 6 and ε = n = 40.
From the graphs in Figs. 4 and 5, we see that the encapsulation key for the
BBG-based KU-KEM is very short. The ciphertext size of all KU-KEMs scales
with ε and n. Our BBG-based approach has the shortest ciphertext sizes of all.
For decapsulation key sizes, the GCTC approach is more efficient; however, as
we argued with the application of secure messaging in mind, this is tolerable.
Hence, concerning parameter sizes, we conclude that the BBG approach has
shorter ciphertexts and smaller encapsulation key at the expense of slightly larger
decapsulation keys compared to the trivial GCTC-based KU-KEM approach.

Computation Comparison. In terms of computation complexity (Fig. 5), we see
that the BBG approach significantly outperforms the GCTC-based approach for
encapsulation and decapsulation. The (initial) key generation for the BBG-based
and for GCTC-based approaches are comparable efficiency-wise and constant in
the number of key updates; our approach needs α many exponentiations while
GCTC’s number of exponentiations scales linearly in their performance parame-
ter n. For encapsulation and decapsulation (where latter uses key delegation and
decryption of the underlying HIBE), the BBG-based KU-KEM is more efficient;
particularly, in situations when a large number of key updates is needed. See

Unique-Path Identity Based Encryption with Applications 31

that the larger ε, the more efficient is the decapsulation of the BBG-based KU-
KEM approach. The reason is that the BBG HIBE ciphertexts are of constant
size and need only a constant number of pairings per ciphertext for decryption.

Summary. In conclusion, a KU-KEM via our unbounded-depth UPIBE construc-
tion, instantiated with the BBG HIBE, has shorter ciphertext and encapsulation-
key sizes compared to the GCTC-based solution with analogous parameter
choices (being the most efficient unbounded-depth HIBE known for trivial
UPIBE) at the expense of a slightly larger decapsulation key. Additionally, the
decapsulation and, particularly, the encapsulation of the BBG-based KU-KEM
are significantly more efficient compared to the GCTC-based trivial KU-KEM.
Hence, for our envisioned application of strongly secure messaging, we can toler-
ate slightly larger decapsulation keys while achieving more efficient decapsulation
and encapsulation as those operations happen rather often in KU-KEMs.

Acknowledgements. This work was supported by the ECSEL Joint Undertaking
(JU) under grant agreement No 826610 (Comp4Drones) and by the Austrian Science
Fund (FWF) and netidee SCIENCE under grant agreement P31621-N38 (Profet).

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28

2. Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: security notions, proofs, and
modularization for the signal protocol. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11476, pp. 129–158. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-17653-2_5

3. Balli, F., Rösler, P., Vaudenay, S.: Determining the core primitive for optimally
secure ratcheting. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol.
12493, pp. 621–650. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64840-4_21

4. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3_14

5. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_26

6. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from
identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2007)

7. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8_13

8. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_16

https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-030-17653-2_5
https://doi.org/10.1007/978-3-030-17653-2_5
https://doi.org/10.1007/978-3-030-64840-4_21
https://doi.org/10.1007/978-3-030-64840-4_21
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-39200-9_16

32 P. Rösler et al.

9. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3_13

10. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–
552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_27

11. Cini, V., Ramacher, S., Slamanig, D., Striecks, C.: CCA-secure (Puncturable)
KEMs from encryption with non-negligible decryption errors. In: Moriai, S., Wang,
H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 159–190. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64837-4_6

12. Derler, D., Jager, T., Slamanig, D., Striecks, C.: Bloom filter encryption and appli-
cations to efficient forward-secret 0-RTT key exchange. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 425–455. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78372-7_14

13. Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless receivers. In:
Feigenbaum, J. (ed.) ACM CCS-9 DRM Workshop 2002 (2002)

14. Dodis, Y., Karthikeyan, H., Wichs, D.: Updatable public key encryption in the
standard model. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13044, pp.
254–285. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90456-2_9

15. Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65–82. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_5

16. Döttling, N., Garg, S.: From selective IBE to full IBE and selective HIBE. In:
Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 372–408. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_13

17. Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assump-
tion. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 537–
569. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_18

18. Durak, F.B., Vaudenay, S.: Bidirectional asynchronous ratcheted key agreement
with linear complexity. In: Attrapadung, N., Yagi, T. (eds.) IWSEC 2019. LNCS,
vol. 11689, pp. 343–362. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26834-3_20

19. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_34

20. Gentry, C.: Practical identity-based encryption without random oracles. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Hei-
delberg (2006). https://doi.org/10.1007/11761679_27

21. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-36178-2_34

22. Giacon, F., Heuer, F., Poettering, B.: KEM combiners. In: Abdalla, M., Dahab, R.
(eds.) PKC 2018. LNCS, vol. 10769, pp. 190–218. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-76578-5_7

23. Goldwasser, S., Lewko, A., Wilson, D.A.: Bounded-collusion IBE from key homo-
morphism. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 564–581. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_32

24. Gong, J., Cao, Z., Tang, S., Chen, J.: Extended dual system group and shorter
unbounded hierarchical identity based encryption. Des. Codes Cryptogr. 80(3),
525–559 (2016)

https://doi.org/10.1007/978-3-540-24676-3_13
https://doi.org/10.1007/978-3-540-24676-3_13
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-030-64837-4_6
https://doi.org/10.1007/978-3-319-78372-7_14
https://doi.org/10.1007/978-3-030-90456-2_9
https://doi.org/10.1007/3-540-46035-7_5
https://doi.org/10.1007/978-3-319-70500-2_13
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-030-26834-3_20
https://doi.org/10.1007/978-3-030-26834-3_20
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/11761679_27
https://doi.org/10.1007/3-540-36178-2_34
https://doi.org/10.1007/978-3-319-76578-5_7
https://doi.org/10.1007/978-3-319-76578-5_7
https://doi.org/10.1007/978-3-642-28914-9_32

Unique-Path Identity Based Encryption with Applications 33

25. Green, M.D., Miers, I.: Forward secure asynchronous messaging from puncturable
encryption. In: 2015 IEEE Symposium on Security and Privacy, pp. 305–320. IEEE
Computer Society Press, May 2015. https://doi.org/10.1109/SP.2015.26

26. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230_29

27. Günther, F., Hale, B., Jager, T., Lauer, S.: 0-RTT key exchange with full for-
ward secrecy. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol.
10212, pp. 519–548. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56617-7_18

28. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70500-2_12

29. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-46035-7_31

30. Jaeger, J., Stepanovs, I.: Optimal channel security against fine-grained state com-
promise: the safety of messaging. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10991, pp. 33–62. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96884-1_2

31. Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: almost-optimal guar-
antees for secure messaging. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11476, pp. 159–188. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17653-2_6

32. Jost, D., Maurer, U., Mularczyk, M.: A unified and composable take on ratcheting.
In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 180–210.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_7

33. Katz, J.: Binary tree encryption: constructions and applications. In: Lim, J.-I., Lee,
D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 1–11. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24691-6_1

34. Langrehr, R., Pan, J.: Unbounded HIBE with tight security. In: Moriai, S., Wang,
H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 129–159. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64834-3_5

35. Lewko, A.: Tools for simulating features of composite order bilinear groups in the
prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4_20

36. Poettering, B., Rösler, P.: Asynchronous ratcheted key exchange. Cryptology
ePrint Archive, Report 2018/296 (2018). eprint.iacr.org/2018/296

37. Poettering, B., Rösler, P.: Towards bidirectional ratcheted key exchange. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 3–32.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_1

38. Rösler, P., Slamanig, D., Striecks, C.: Unique-path identity based encryption
with applications to strongly secure messaging. Cryptology ePrint Archive, Paper
2023/248 (2023). eprint.iacr.org/2023/248

39. Rösler, P., Slamanig, D., Striecks, C.: Unique-path identity based encryption with
applications to strongly secure messaging. In: Hazay, C., Stam, M. (eds.) EURO-
CRYPT 2023, LNCS 14008, pp. 3–34. Springer, Heidelberg (2023)

https://doi.org/10.1109/SP.2015.26
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-319-56617-7_18
https://doi.org/10.1007/978-3-319-56617-7_18
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/3-540-46035-7_31
https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-030-36033-7_7
https://doi.org/10.1007/978-3-540-24691-6_1
https://doi.org/10.1007/978-3-030-64834-3_5
https://doi.org/10.1007/978-3-642-29011-4_20
https://doi.org/10.1007/978-3-642-29011-4_20
http://www.eprint.iacr.org/2018/296
https://doi.org/10.1007/978-3-319-96884-1_1
http://www.eprint.iacr.org/2023/248

34 P. Rösler et al.

40. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0_22

41. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7_5

42. Tessaro, S., Wilson, D.A.: Bounded-collusion identity-based encryption from
semantically-secure public-key encryption: generic constructions with short cipher-
texts. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 257–274. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_15

https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/978-3-642-54631-0_15

End-to-End Secure Messaging
with Traceability Only for Illegal Content

James Bartusek1, Sanjam Garg1,3, Abhishek Jain2,
and Guru-Vamsi Policharla1(B)

1 University of California, Berkeley, USA
guruvamsi.policharla@gmail.com

2 Johns Hopkins University, Baltimore, USA
3 NTT Research, Sunnyvale, USA

Abstract. As end-to-end encrypted messaging services become widely
adopted, law enforcement agencies have increasingly expressed concern
that such services interfere with their ability to maintain public safety.
Indeed, there is a direct tension between preserving user privacy and
enabling content moderation on these platforms. Recent research has
begun to address this tension, proposing systems that purport to strike
a balance between the privacy of “honest” users and traceability of “mali-
cious” users. Unfortunately, these systems suffer from a lack of protection
against malicious or coerced service providers. In this work, we address
the privacy vs. content moderation question through the lens of pre-
constrained cryptography [Ananth et al., ITCS 2022]. We introduce the
notion of set pre-constrained (SPC) group signatures that guarantees
security against malicious key generators. SPC group signatures offer
the ability to trace users in messaging systems who originate pre-defined
illegal content (such as child sexual abuse material), while providing secu-
rity against malicious service providers. We construct concretely efficient
protocols for SPC group signatures, and demonstrate the real-world fea-
sibility of our approach via an implementation. The starting point for
our solution is the recently introduced Apple PSI system, which we sig-
nificantly modify to improve security and expand functionality.

1 Introduction

End-to-end encrypted services offer users the ability to communicate informa-
tion, with the guarantee that even the service provider itself cannot access the
raw information that it is storing or transmitting. Billions of people worldwide
are now using end-to-end encrypted systems such as WhatsApp and Signal.

However, the strong data privacy guarantees offered by end-to-end encryption
(E2EE) technology have not been universally celebrated. Law enforcement and
national security agencies have argued that such services interfere with their
ability to prosecute criminals and maintain public safety [19,30]. In particular,
E2EE appears to directly conflict with the goals of content moderation, which

c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14008, pp. 35–66, 2023.
https://doi.org/10.1007/978-3-031-30589-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30589-4_2&domain=pdf
https://doi.org/10.1007/978-3-031-30589-4_2

36 J. Bartusek et al.

refers to the ability to screen, monitor, or trace the origin of user-generated
content.

One prominent example of the use of content moderation is in fighting the
proliferation of child sexual abuse material, or CSAM. In the United States, the
proposed EARN IT act [28] would enable legal action to be taken against internet
service providers that fail to remove CSAM material from their service. It has
been argued that the proposed legislation would inhibit the use of E2EE, which
prevents service providers from detecting in the first place if they are hosting or
transmitting CSAM [37]. In fact, a 2019 open letter to Facebook signed by then
U.S. Attorney General William Barr along with international partners explicitly
requested that Facebook not proceed with its planned implementation of E2EE,
due to its tension with CSAM detection [29].

One can imagine that this “encryption debate” polarizes to two conceivable
outcomes: a world with E2EE but without any content moderation, or a world
without E2EE but with content moderation. Since neither of these outcomes
seems to be truly satisfactory, it becomes vital to explore the space in between,
or more fundamentally, to identify if any such space even exists. Indeed, the
past few years have seen researchers paying increased attention to this very
question, as covered for example by a recent report [31] released by the Center
for Democracy and Technology, a technical report on the risks of client side
scanning [2] and a recent talk about the question of CSAM detection vs. E2EE
given at Real World Crypto 2022 [35].

In this work, we explore the viability of using cryptographic techniques to
balance the need for both user privacy and illegal content moderation in mes-
saging systems. Along the way, we also study content moderation in the context
of encryption systems used by cloud service providers. This might be of inde-
pendent interest.

Prior Solutions. In the setting of encrypted messaging systems, the principle
goal of illegal content moderation is to identify the existence of illegal content in
the system and uncover the identity of the originator of such content. The desir-
able privacy goals are to (i) hide the messages exchanged in the system, even
from the server, and (ii) preserve the anonymity of the originator of any harmless
content that is forwarded through the system. Note that this latter property is
crucial in many real-world scenarios, e.g., whistleblowers may desire to use the
protection provided by E2EE without the threat of being de-anonymized. A
recent proposal [32] in this direction fails to adequately balance these goals,
allowing a malicious server to de-anonymize any user, thereby completely vio-
lating the fundamental guarantee of E2EE.

We also note that some recent works have attempted to address the funda-
mentally different but related question of content moderation for misinformation,
and we refer to Sect. 1.3 and Sect. 1.4 for discussion on this.

The Problem. The main problem with existing proposals (including the “trace-
back” systems for addressing misinformation that we discuss later) is that they
suffer from a glaring lack of protection against a server who wishes to use the
system beyond its prescribed functionality. This is a serious problem, not only

End-to-End Secure Messaging with Traceability Only for Illegal Content 37

because the server itself might have malicious intent, but also because of the
threat of coercion from powerful actors that may want to use the technology for
surveillance or censorship.

This lack of built-in protection fundamentally damages the transparency of
E2EE, reducing the incentive for users to adopt the systems for their communi-
cation. While these works have indeed tried to strike a balance between privacy
and content moderation, we believe that, for the deterrence of pre-defined,1 ille-
gal content (such as CSAM), they have over-compromised on privacy. In this
work, we seek to build systems that offer similar content tracing functionality,
while offering greater transparency and rigorous cryptographic guarantees about
the possible scope of server behavior.

1.1 Summary of Our Contributions

We present novel definitions and efficient protocols for illegal content moderation
in the setting of encrypted messaging.

Set Pre-constrained (SPC) Group Signatures. We propose a new notion of
set pre-constrained group signatures which can be implemented in an end-to-end
secure messaging application. This allows tracing users who send illegal content
while ensuring privacy for everyone else.

– Definition: In SPC group signatures, a database D (of illegal content) can
be encoded within the group’s public key. The key requirement is that the
signer of any message m ∈ D can be de-anonymized by the group manager
but signers of messages m /∈ D remain anonymous even to the group manager.
Our definitions model malicious group managers and ensure that the group’s
public key encodes a database D that is authorized by a third-party such as
the US National Center for Missing and Exploited Children (or more gener-
ally, multiple third parties). Furthermore, the public key is publicly-verifiable,
so all clients in the system can verify for themselves (without knowing D)
whether the group manager’s public key encodes an acceptable D.2

– Construction: We provide a concretely efficient construction of SPC group
signatures based on standard bilinear map assumptions, in the Random Ora-
cle model. In this construction, we allow the group manager’s public key to
grow with the size of D. Crucially, however, the running time of the signing
algorithm (with oracle access to the public key) as well as verification and
tracing is independent of the size of D.

1 By pre-defined, we mean any content that has been classified as “illegal”, for example
by a governmental body, before the parameters of the cloud storage or messaging
system are sampled. Updating parameters to include new content classified as illegal
is an interesting question in this context, which we discuss further in Sect. 1.3.

2 In the body, we generalize our definition to consider general functionalities F as
opposed to just the set-membership function specified by D. However, all of our
constructions in this work target the special case of sets D, and we restrict our
attention to such functionalities in the overview.

38 J. Bartusek et al.

SPC Encryption. Along the way to constructing SPC group signatures, we
define and construct efficient set pre-constrained (SPC) encryption schemes. Our
construction builds and improves upon the recent Apple PSI protocol [10]: (1)
We identify a gap in their proof of security against a malicious server and show
how to efficiently build on top of their protocol in order to close this gap. (2)
Further, we augment their construction to achieve a stronger notion of security
that provides guarantees on the integrity of the database embedded in the public
key (analogous to SPC group signatures).

Our SPC encryption scheme has public keys of size linear in the database D
and constant encryption and decryption times. We demonstrate that this asymp-
totic efficiency trade-off is likely the “best-possible” in that further improvements
would imply the elusive notion of doubly-efficient private information retrieval
[11,12], which is not known to exist under standard cryptographic assumptions.

Evaluation. We implement our SPC group signature scheme and provide bench-
marks in the full version [8]. We find that signing and verification take tens of
milliseconds, and signature size is in the order of a few kilobytes3. When instanti-
ated over the BN254 curve, the communication overhead for typical image sizes of
400 KB is under 1% and the additional computation incurs a ∼15% overhead on
top of message delivery time. We view these results as strong initial evidence that
illegal content moderation in E2EE messaging systems – with security against
malicious servers – can indeed be performed in the real world. While our current
focus is on illegal content moderation, we believe that the efficiency properties of
our SPC group signature and encryption schemes make them attractive tools for
other applications that involve membership testing against a private “blocklist”.
Examples include privacy-preserving DNS blocklisting [25] where the blocklist
could be proprietary, and anonymous credential systems where it is desirable to
hide revocation attributes.

1.2 Our Approach

In this work, we aim to build a messaging system that satisfies, at the very least,
the following set of requirements.

1. The system is end-to-end encrypted. In particular, the server cannot learn
anything at all about the content transmitted in the system unless it receives
some side information from a user participating in the system.

2. The originator of any piece of content remains anonymous to any user that
receives the forwarded content.

3. If a user receives some illegal content, they can report it to the server, who
can then determine the identity of the user who originated the content. This
holds even if the content has been forwarded an arbitrary number of times
before being reported.

3 More precisely, for the BN254 curve, this translates to 3.5 KB per SPC group sig-
nature.

End-to-End Secure Messaging with Traceability Only for Illegal Content 39

4. The originator of any harmless content remains anonymous, even from the
perspective of the server who may receive a report about the content.

Näıve Approaches. To demonstrate the challenges in realizing all four prop-
erties, we first consider some existing approaches.

As a first attempt, we could try simply using end-to-end encryption. While
this may satisfy the first two properties, it clearly does the support the third
constraint, which we refer to as traceability.

A natural next attempt would be to use a group signature scheme [9,15]
underneath E2EE in order to recover this property of traceability. In a group
signature scheme, there is a group manager that generates a master public key
mpk and a master secret key msk. A new client enters the system by interacting
with the group manager in order to receive a client-specific secret key sk. Any
client can use their sk to produce a signature σ on a message m, which can be
verified by anyone that knows mpk. On the one hand, the identity of the signer
remains anonymous from anyone that knows σ but not msk. On the other hand,
knowing msk allows the group manager to determine which client produced σ.
Thus, we can satisfy the first three goals above by having the messaging service
provider additionally take on the role of the group manager. Each user in the
system would then obtain a signing key sk from the server, and then attach
a signature to any piece of content that they send (where the signature is also
transmitted under the encryption). Unfortunately, this solution does not prevent
the server from colluding with a user to identify the originator of any piece of
content received by that user. That is, this solution appears to be fundamentally
at odds with the crucial fourth requirement, or anonymity, stated above.

Despite some prior attempts at recovering a notion of anonymity in group
signature (see Sect. 1.3 from some more discussion), we conclude that existing
frameworks are insufficient for capturing the security that we demand. In order
to address this issue, we must somehow constrain the ability of the group man-
ager to de-anonymize anyone in the system.

SPC Group Signatures: Definitions. This motivates our first contribution,
which is the definition of a set pre-constrained group signature, or SPC group
signature. In this primitive, the group manager’s master public key will be com-
puted with respect to some set D of illegal content (which should remain hidden
from clients even given the master public key). The novel security property we
desire is that the anonymity of a client who produces a signature on some mes-
sage m /∈ D remains intact, even from the perspective of the group manager.

More concretely, we ask for the following (informally stated) set of security
properties.

– Traceability : the identity of a client who signs a message m ∈ D should be
recoverable given the signature and the master secret key.

– Client-server anonymity : the identity of a client who signs a message m /∈ D
should be hidden, even given the master secret key.

40 J. Bartusek et al.

– Set-hiding: the master public key should not reveal the set D.4

– Unframeability: no party, not even the master secret key holder, should be
able to produce a signature that can be attributed to an honest client.

– Client-client anonymity : the identity of a client who signs any message m
should be hidden from the perspective of any party who does not have the
master secret key.

At this point, we must stop to consider the meaningfulness of the above
security definitions as stated. In particular: who decides D? Clearly, if D is
set to be the whole universe of messages, then this is no more secure than a
standard group signature. And if an adversarial group manager is trying to
break the client-server anonymity of the above scheme, what is preventing them
from generating their master public key with respect to this “trivial” set D?

In order to constrain D in a meaningful way, we introduce a predicate P
into the definition of client-server anonymity. The description of P will be fixed
at setup time along with some public parameters pp known to everybody in
the system and secret parameters sp known only to the group manager (we will
discuss below the reason we include secret parameters). We will model client-
server anonymity using an ideal functionality Fanon that takes a set of items D
as input from the group manager and a sequence of pairs of identities and mes-
sages (pk1,m1), . . . , (pkk,mk) from the client (who represents all clients in the
system). If P(pp, sp,D) = 0, the functionality aborts, and otherwise it delivers
{mi}i∈[k], {pki}i:mi∈D to the group manager.

This gives us a generic framework for specifying how to constrain the pos-
sible D used by the group manager. In particular, we are able to delegate the
responsibility of constraining D to a third-party (e.g. the National Center for
Missing and Exploited Children, or NCMEC), who is tasked with setting up
the parameters (pp, sp) for the predicate P. That is, we can gracefully split
the responsibility of implementing/maintaining the encrypted messaging system
(by e.g. WhatsApp) and the responsibility of specifying what constitutes illegal
content (by e.g. NCMEC or a collection of such agencies).

Perhaps the most natural example of P is the “subset” predicate, which is
parameterized by a set D∗ of “allowed” messages (e.g. the entire database of
illegal content as defined by NCMEC), and accepts only if D ⊆ D∗. In this case,
since D∗ itself represents illegal content, we do not want to make it public. Thus,
we set sp = D∗, and pp = |D∗|. We refer to security with respect to this subset
predicate as authenticated-set security.

In our full definition, we explicitly consider the third-party Auth as a par-
ticipant in the system, who begins by setting up a pp and sp of their choice.
Then, we require security against an adversary that corrupts either the client
(and thus cannot learn anything about D), the group manager (and thus can
only learn {pki}i:mi∈D for some “valid” D), or the third-party Auth (and thus
cannot learn anything about any of the identities pki). Note that security is only
vacuous if the adversary manages to corrupt both the group manager and Auth

4 Note that if we want to prevent even the group manager from seeing/storing the
illegal content, we can set D to be hashes of the content itself.

End-to-End Secure Messaging with Traceability Only for Illegal Content 41

at the very beginning of the protocol, and thus is able to set sp and D as it
wishes. While this seems like a potential limitation, our framework is general
enough to support a de-centralized Auth. That is, we could consider many third-
parties Auth1, . . . ,Auth� who each specify a database D∗

i , and set P to accept D
only if (for example) D ⊆ D∗

1 ∩ · · · ∩ D∗
� . Thus, in order to compromise the sys-

tem, an adversary would have to corrupt the group manager and all third-party
authorities simultaneously, while the key generation procedure is occurring.

SPC Group Signatures: Construction. We next investigate the feasibility
and efficiency of constructing SPC group signatures. To do so, we abstract out
the basic “pre-constraining” property we need from the group signature scheme,
and re-state it in the context of an encryption scheme.

That is, we first define a scheme for what we call set pre-constrained encryp-
tion, or SPC encryption, with the following properties.

– The public key pk is generated with respect to some database D of items.
– The public key pk should not reveal D, since D may consist of sensitive or

harmful content.
– Any user, given pk, can encrypt a message m with respect to an item x such

that the key generator (using sk) can recover m if x ∈ D, but learns nothing
about m if x /∈ D.

We note that our terminology is inspired by the recent work of Ananth et al.
[4] who proposed the notion of pre-constrained encryption. However, our defini-
tions and constructions are quite different; see Sect. 1.4 for further discussion.

Our security definition for set pre-constrained encryption mirrors the
anonymity definition explained above, where the key generator for the encryp-
tion scheme now plays of role of the group generator. Specifically, we can still
parameterize security by a predicate P and parameters (pp, sp) set up by a
third-party Auth.

Now, we describe a generic construction of an SPC group signature scheme
from an SPC encryption scheme plus standard crytographic tools: a one-way
function F , a digital signature scheme, and a zero-knowledge non-interactive
argument of knowledge.

The group manager will take as input some set D and sample a public key
for the SPC encryption scheme computed with respect to D. It will also include
a verification key for the signature scheme in its master public key. A client can
join the system by sampling a secret s, setting id = F (s) to be their public
identity, and obtaining a signature on id from the group manager. Now, to sign
a message m, the client first encrypts their identity id with respect to item m
using the SPC encryption scheme, producing a ciphertext ct. Then, they produce
a zero-knowledge proof π that

“I know some id, a signature on id, and s such that id = F (s), such that
ct is an SPC encryption of id with respect to m”

Observe that given any valid signature (ct, π) on a message m ∈ D, the group
manager should be able to recover the id that produced (ct, π) by decrypting ct.

42 J. Bartusek et al.

We refer to this property as traceability. One subtle issue that emerges here is
that π can only attest that ct is in the space of valid ciphertexts encrypting
id under item m, and cannot show that ct was sampled correctly. Thus, we will
need to require that the SPC encryption is perfectly correct, that is, ct is perfectly
binding to id when m ∈ D.

Next, we see that any signature (ct, π) on a message m hides id from any
other client, which gives us the client-client anonymity property. More specific
to our case, we can also show that any signature (ct, π) on a message m /∈ D hides
id, even from the server, which we capture using our simulation-based security
definition.

Finally, we highlight the notion of unframeability, which requires that a mali-
cious server cannot produce a signature (ct, π) that can be opened to the id of
any honest client. Intuitively, this follows because the server will not know the
pre-image s of id, and so cannot produce a valid proof π.

SPC Encryption: Construction. With this generic compiler in hand, we pro-
vide a concretely efficient construction of SPC encryption, and then a concretely
efficient instantiation of the generic compiler described above. This results in
a practical proposal for SPC group signatures, which is our main constructive
result.

Our construction of SPC encryption builds on top of the Apple PSI protocol
[10]. This protocol already satisfies the basic syntax that we require, namely, the
ability to embed a set D in the public key pk of an encryption scheme. How-
ever, their security notion is much weaker than the authenticated-set security we
desire, and described above. Nevertheless, we can capture the security they do
claim to achieve using our generic framework, and we refer to it as bounded-set
security. In more detail, in their scheme, the key generator is completely free to
choose the set D, as long as the size of D is below some public bound n. That
is, pp = n, sp is empty, and P(n,D) = 1 if |D| ≤ n.

Building on their basic scheme, we provide three new contributions.

– We observe that the proof of security (for bounded-set security) given in the
Apple PSI paper [10] only holds when the bound n is large enough with
respect to other system parameters. This results in a large gap between cor-
rectness (the number of items that an honest server programs into its public
key) and security (the number of items that a malicious server can poten-
tially program into its public key). We show how to remedy this in a con-
cretely efficient manner, completely closing this gap and achieving essentially
no difference between the correctness and security bounds.

– We build on top of the protocol in a different manner in order to establish
an efficient protocol that satisfies our novel (and much stronger) definition of
authenticated-set security.

– We show how to tweak these schemes in order to obtain the perfect correct-
ness guarantee needed to make our compiler from SPC encryption to SPC
group signatures work. Interestingly, we lose an “element-hiding” property
of the scheme in this process. Luckily, we don’t require this property for our
compiler, since elements correspond to messages in the SPC group signature

End-to-End Secure Messaging with Traceability Only for Illegal Content 43

scheme, which we are not worried about leaking to the server in the event of
a user report.

An in-depth overview of the Apple PSI protocol and the technical ideas
involved in our improved constructions are given in Sect. 3.1.

Finally, we derive a concretely efficient instantiation of the SPC encryption
to SPC group signature compiler, which makes use of structure-preserving sig-
natures [1] and the Groth-Sahai proof system [24]. We provide an overview of
the technical ideas involved in our constructions in Sect. 4.3. We also implement
the resulting SPC group signature scheme and provide further discussion and
benchmarking in the full version [8].

SPC Encryption: Limitations. As a separate contribution, we investigate
generic asymptotic efficiency properties of SPC encryption. We identify three
desirable “succinctness” properties with respect to the database size n: succinct
public-key size, succinct encryption time, and succinct decryption time, where
in each case, succinctness refers to poly-logarithmic complexity in n. The Apple-
PSI-based protocols have non-succinct public-key size, but succinct encryption
and succinct decryption. A natural question is whether it is also possible to
achieve succinct public key. We observe the following, and provide more details
in the full version.

– There are techniques in the literature [3] that can achieve succinct public key
and succinct encryption with either (i) non-succinct decryption with element-
hiding, or (ii) succinct decryption without element-hiding, from standard
cryptographic assumptions. However, these constructions are impractical and
not suitable for real-world deployment.

– An “optimal” SPC encryption scheme with succinct public key, succinct
encryption, succinct decryption, and element-hiding implies the elusive notion
of doubly-efficient private-information retrieval [11,12], which is not known
to exist under any standard cryptographic assumption.

Thus, while the Apple PSI paper is not explicit about why they settled for a
protocol with a non-succinct public key, our analysis validates this choice.

1.3 Discussion

CSAM Deterrence vs. Misinformation. As mentioned above, CSAM deter-
rence and combating misinformation are two of the most prominent applications
of online content moderation. While both applications indeed fall under the
umbrella of content moderation, they each introduce unique challenges from a
cryptosystem perspective. The pre-constraining techniques that we make use
of in this paper are designed specifically for the deterrence of illegal content,
such as CSAM. On the other hand, the “traceback” systems introduced in prior
works such as [34,38,43] are arguably geared more towards the application of
combating misinformation.

Perhaps the biggest distinction between these applications from a crypto-
graphic perspective is their amenability to pre-definition. As already discussed,

44 J. Bartusek et al.

illegal content must be pre-defined in some sense, for example by a govern-
mental body. It is crucial to take advantage of this pre-definition in designing
cryptosystems for illegal content deterrence. Indeed, since the description of the
illegal content itself can be baked into the parameters of the system, we can
hope to obtain rigorous guarantees about which content is being tracked and
monitored by the system administrator.

On the other hand, it is not even clear in the first place how to define mis-
information, or even who has the authority to define it. Plus, new content that
could potentially be classified as misinformation is constantly being created and
distributed. Thus, it is less clear how to obtain rigorous security guarantees
against potentially malicious servers in the setting of misinformation deterrence.
A potential approach could be to allow new content (such as new misinformation
or abuse) to be added to the “constrained” set, so that the originators of prior
messages containing this content could be traced. This feature is reminiscent of
“retrospective” access to encrypted data as considered in [22] in a somewhat
different context. They show that such access requires the use of powerful (and
currently very inefficient) cryptographic tools, and it would be interesting to see
if the same implications hold in the setting of tracing in end-to-end encrypted
messaging systems.

Deniability vs. Unframeability. Another difference between illegal content
and misinformation from a cryptographic perspective is reflected in the tech-
nical tension between the notions of deniability and unframeability. Deniability
essentially asks that messages between users can be simulated without any user-
specific secrets, where indistinguishability from real messages holds from the
perspective of an entity with full information, including user and even server
secrets. This can certainly be a desirable property of encrypted messaging sys-
tems, especially when there is a threat of coercion from powerful outside sources.
However, this property conflicts with unframeability against malicious servers,
since it enables servers to produce these simulated messages [42]. While deniabil-
ity has been a sought-after feature of encrypted systems with traceback function-
ality [38], it actually appears to be counter-productive in systems that are meant
to detect originators of CSAM or other illegal content. Indeed, it is important
that not only can the server identify the originator, but also that the server can
convince law enforcement of the identity of the content originator. On the other
hand, we view unframeability against malicious servers as a crucial property of
CSAM deterrence systems, since users can face dramatic consequences if framed
for the generation or dissemination of illegal content. Thus, our techniques are
tailored to obtain the strongest notion of unframeability and no deniability,5

while prior work [38] that focused on combating misinformation took the oppo-
site approach.

5 Though we note that one could potentially alter our group signature scheme to
obtain deniability at the cost of unframeability, by including in the zero-knowledge
argument a clause along the lines of “OR I know the master secret key”.

End-to-End Secure Messaging with Traceability Only for Illegal Content 45

On Security Against Malicious Servers. In this work, we took steps towards
ensuring privacy and anonymity against malicious (or even honest-but-curious)
servers in encrypted systems with support for content moderation. As mentioned
earlier in the introduction, it is absolutely vital to explore the space of solutions
to the “encrytion debate” that don’t give up fully on either end-to-end encryption
or content moderation. There is much more work to be done in this space, and
we view our techniques as one tool in an ever-expanding toolbox of techniques
meant to address the broad question of privacy vs. content moderation.

In particular, while we remove the need to trust service providers (think,
WhatsApp), the notion of authenticated-set security essentially moves this trust
to a third party (think NCMEC). We consider this progress, since it splits the
responsibility of providing a messaging service and defining illegal content. More-
over, as discussed earlier, our scheme would immediately extend to support mul-
tiple third parties that can each attest to the validity of the server’s public
parameters, further splitting the trust. However, we acknowledge that there is
opportunity to further improve the transparency and trust in such content mod-
eration systems.

Additional Challenges and Future Directions. We conclude our discussion
with a few directions for future work. First, a desirable property of encrypted
illegal content moderation systems is the ability to update public parameters to
include new illegal content. As discussed in the Apple PSI paper [10], a simple
way to handle updates is to redo setup and release the updated public key as part
of system update. Achieving more efficient updates, however, is an interesting
direction for future work. For example, if an update only corresponds to locations
that are changed, it may start leaking the positions that correspond to database
elements. This suggests the need for creative solutions, for example the use of
differential privacy techniques to hide this leakage.

Next, we did not consider thresholding in this work, which would protect the
privacy of content or anonymity of users until multiple matches were found in
the database. While this is straightforward to incorporate into SPC encryption,
it is not as immediate for SPC group signatures, at least if the goal is to maintain
concrete efficiency. We leave an exploration of this to future work.

Next, we chose to use Groth-Sahai proof systems in order to demonstrate
that SPC group signatures could be constructed with reasonable efficiency. How-
ever, there are other tools available, such as efficient SNARGs (succinct non-
interactive arguments) that may result in better verification time at the cost of
increased signer work. We leave further investigation of this to future work.

Finally, we mention broader considerations that would come with using our
system in the real world. In the system, the actual database D would likely
not consist of the actual CSAM images themselves, but rather hashes of CSAM
images computed using a perceptual hash function, such as Apple’s NeuralHash
[5]. This introduces the possibility of adversarial use of the hash function, for
example targeted collision-finding. We view this as an important attack vector
to consider, especially when using these hash functions in conjunction with cryp-
tographic protocols meant to provide privacy against malicious servers. Explo-

46 J. Bartusek et al.

ration of this topic is outside the scope of the current work, and we refer the
reader to [40] and references therein for current research on the topic.

1.4 Related Work

Pre-constrained Cryptography. Our work borrows the terminology of pre-
constrained cryptography from Ananth et al. [4] because of sharing a similar
vision – that of putting pre-specified restrictions on the key generation authority.
Our definitions and constructions, however, are different from [4]. First, we note
that the notion of (set) pre-constrained group signatures is new to our work,
while Ananth et al. [4] only focus on (pre-constrained) encryption systems. In
the setting of pre-constrained encryption, the notion of malicious security in [4]
is weaker than ours and allows the authority to choose any “constraint” from a
class of constraints. This weaker notion is not meaningful in our setting, as it
allows the service provider (think, WhatsApp) to use an arbitrary set of their
choice. Ananth et al. propose constructions for different flavors of pre-constrained
encryption; the one that comes closest to our setting relies on indistinguishability
obfuscation [7], and is presently only of theoretical interest. In contrast, we
provide concretely efficient constructions for our setting.

Traceback Systems. While our work focuses on moderation for pre-defined
illegal content, there has also been much recent work on the adjacent question
of moderation for misinformation or abusive content. Solutions for this problem
typically build “traceback” mechanisms into end-to-end encrypted systems [27,
34,38,43], extending the reach of so-called “message franking” systems [17,26,
42]. These solutions rely on user reporting to identify the existence of harmful
content. Once a report is received by the server, the server and reporting user can
work together to identify the originator of the harmful message. Unfortunately,
these systems suffer from various drawbacks [21]: (1) They allow a colluding
server and users to de-anonymize the originator of any message, even if the
content is harmless. (2) Initial solutions in this space additionally require the
help of users on the traceback path to identify the originator, and do not maintain
their anonymity. While the latter drawback was addressed in the recent work of
[38], no known solution provides security guarantees against malicious servers.
Our system addresses both of these shortcomings, for our specific setting of
illegal content moderation.

Group Signatures. Finally, we mention a related line of work on group sig-
natures with message-dependent opening (GS-MDO) [18,33]. Here, trust is split
between the group manager and an additional entity called the “admitter”. The
identity of a group member that produces a signature on a message m can be
revealed only if the group manager and admitter combine their private informa-
tion. Unlike SPC group signatures, GS-MDO does not require any “commitment”
to, or “pre-constraining” of, the set of messages that can be de-anonymized. This
means that even after the system parameters are set up, the group manager and
admitter can in principle work together to de-anonymize every signature while

End-to-End Secure Messaging with Traceability Only for Illegal Content 47

still acting “semi-honestly” w.r.t. the protocol specification. In particular, clients
of the system will not have the peace of mind guaranteed by public parameters
that are publicly “authenticated” to only allow de-anonymization of a particular
set of illegal content specificied by some trusted (collection of) third party(ies).

2 Preliminaries

The security parameter is denoted by λ ∈ N. A function f : N → N is said
to be polynomial if there exists a constant c such that f(n) ≤ nc for all n ∈
N, and we write poly(·) to denote such a function. A function f : N → [0, 1]
is said to be negligible if for every c ∈ N, there exists N ∈ N such that for
all n > N , f(n) < n−c, and we write negl(·) to denote such a function. A
probability is noticeable if it is not negligible, and overwhelming if it is equal to
1 − negl(λ) for some negligible function negl(λ). For a set S, we write s ← S to
indicate that s is sampled uniformly at random from S. For a random variable
D, we write d ← D to indicate that d is sampled according to D. An algorithm
A is PPT (probabilistic polynomial-time) if its running time is bounded by
some polynomial in the size of its input. For two ensembles of random variables
{D0,λ}λ∈N, {D1,λ}λ∈N, we write D0 ≈c D1 to indicate that for all PPT A, it
holds that

∣
∣ Pr

d←D0,λ

[A(d) = 1] − Pr
d←D1,λ

[A(d) = 1]
∣
∣ ≤ 1

2
+ negl(λ).

2.1 Basic Cryptographic Primitives and Assumptions

We will use a standard symmetric-key encryption scheme (Enc,Dec) with key
space K that satisfies random key robustness, which states that for any message
m, Prk,k′←K[Dec(k′,Enc(k,m)) = ⊥] = 1 − negl(λ). We will also make use of a
standard digital signature scheme (Gen,Sign,Verify) that is existentially unforge-
able under chosen message attacks (EUF-CMA).

2.2 Non-interactive Arguments of Knowledge

Let L be an NP language and let R be the associated binary relation, where a
statement x ∈ L if and only if there exists a witness w such that (x,w) ∈ R. A
non-interactive argument system for R consists of algorithms Setup,Prove,Verify,
where Setup(1λ) outputs a string crs, Prove(crs, x, w) outputs a proof π, and
Verify(crs, x, π) outputs either 1 to indicate accept or 0 to indicate reject. We
say that a non-interactive argument system for a relation R that satisfies the
standard notions of completeness, knowledge extraction, and zero-knowledge, is a
zero-knowledge non-interactive argument of knowledge (ZK-NIAoK) for R. We
will use the fact that the following relations all have highly efficient ZK-NIAoKs
in the ROM. Let G be a group of order q with generator g.

– The relation RDLog = {((g, h), α) : h = gα}. A ZK-NIAoK for RDLog follows
from applying the Fiat-Shamir heuristic [20] to Schnorr’s sigma protocol [41].

48 J. Bartusek et al.

– The relation RDH = {((g, h1, h2, h3), α) : (h1 = gα) ∧ (h3 = hα
2)}. A ZK-

NIAoK for RDH follows from applying the Fiat-Shamir heuristic to Chaum
and Pederson’s sigma protocol [14].

– For any n and k ≤ n, the relation RDLogk
n

= {((g, h1, . . . , hn), (S, {αi}i∈S)) :
(|S| = k) ∧ (∀i ∈ S, hi = gαi)}. A ZK-NIAoK for RDLogk

n
follows from apply-

ing the Fiat-Shamir heuristic to the protocol of [16]. Moreover, an efficient
succinct argument system for this language whose size is logarithmic in n,
was shown recently by [6].

2.3 Groth-Sahai Proofs

Let G be a bilinear group generator that on input 1λ returns (p,G1,G2,
T, e, g1, g2), where G1,G2,T are groups of order p, where p is a λ-bit prime.
g1 is a generator of G1, g2 is a generator of G2, and e is a non-degenerate bilin-
ear map. That is, e(g, g) is a generator of T, and for all a, b ∈ Zp, it holds
that e(ga

1 , gb
2) = e(g1, g2)ab. The DDH assumption is assumed to hold in each

of G1 and G2. In other words, the SXDH (symmetric external Diffie-Hellman)
assumption is assumed to hold.

Groth and Sahai [24] constructed efficient non-interactive zero-knowledge
proof systems for statements that involve equations over bilinear maps. “GS
proofs” can prove certain statements that consist of the equations over vari-
ables X1, . . . , Xm ∈ G1, Y1, . . . , Yn ∈ G2, x1, . . . , and xm′ , y1, . . . , yn′ ∈ Zp.
Although, the GS proof system can handle many types of equation, we restrict
our attention to two categories. The first type is pairing product equations –
∏n

i=1 e(Ai, Yi)
∏m

i=1 e(Xi, Bi)
∏m

i=1

∏n
j=1 e(Ai, Bj)cij = 1T, for constants Ai ∈

G1, Bi ∈ G2, cij ∈ Zp, where 1T is the identity in T and b) multi-scalar expo-
nentiations –

∏n′

i=1 Ayi

i

∏m
i=1 Xbi

i

∏m
i=1

∏n′

j=1 X
cijyj

i = T1, for constants Ai, T1 ∈
G1, bi, cij ∈ Zp and analogous statements for multi-scalar exponentiation in G2.

GS proofs are in the common random string model, and satisfy the com-
pleteness and zero-knowledge properties described in Sect. 2.2. However, they
only satisfy a weaker notion of knowledge extraction which has been referred
to as partial knowledge extraction [23]. This property states that if the witness
consists of both group elements and exponents, only the group elements are
extractable.

2.4 Cuckoo Hashing

A cuckoo hashing scheme consists of the algorithms (Setup,Hash), and is param-
eterized by a universe U of elements.

– Setup(λ, n, ε) → (n′, h0, h1) : the setup algorithm takes as input an integer
parameter λ, an integer bound n, and ε ≥ 0, and outputs an integer n′ and
two hash functions h0, h1 : U → [n′], where n′ is a deterministic function of
λ, n, and ε.

End-to-End Secure Messaging with Traceability Only for Illegal Content 49

– Hash(h0, h1,D) → T : the (deterministic) hashing algorithm takes hash func-
tions h0, h1 : U → [n′] and a set D ⊆ U , and outputs a table T = [T1, . . . , Tn′],
where each Ti is either an element in D or ⊥.

For correctness, we demand that for every x ∈ U , h0(x) �= h1(x). We will assume
that this is the case for every pair of even adversarially chosen hash functions.6

Each non-⊥ element of T is distinct. Finally, for any n, ε and set D ⊆ U of size
n, it holds that with probability 1 − negl(λ) over (m,h0, h1) ← Setup(λ, n, ε),
there exists a set D′ ⊆ D such that |D′| ≥ (1 − ε)|D| and such that for any
x ∈ D′, either Th0(x) = x or Th1(x) = x, where T := Hash(h0, h1,D).

3 Set Pre-constrained Encryption

In this section, we define and construct set pre-constrained (SPC) encryption.
We start by providing an overview in Sect. 3.1. We then present formal definitions
of SPC encryption in Sect. 3.2, and constructions in Sect. 3.3. In the full version
[8] we demonstrate that an optimal version of SPC encryption implies doubly-
efficient private information retrieval and also prove security of our protocols.

3.1 Overview

The Basic Apple PSI Protocol. We start by recalling the basic Apple PSI
protocol, viewed as an encryption scheme. “Basic” here refers to the protocol
without the extra threshold or synthetic match functionalities, which we will not
consider explicitly in this work.

A key technique used in Apple’s protocol is the Naor-Reingold Diffie-Hellman
random self reduction [36]. Let G be a cyclic group of order q with generator
g, and let h1, h2, h3 be three other group elements. Suppose that β, γ ← Zq are
sampled as uniformly random exponents, and h′

2 :=β ·hγ
2 , h′

3 := hβ
1 · hγ

3 . Then
it holds that (i) if (g, h1, h2, h3) is a Diffie-Hellman tuple (that is, there exists α
such that gα = h1 and hα

2 = h3), then (g, h1, h
′
2, h

′
3) is a Diffie-Hellman tuple,

and (ii) if (g, h1, h2, h3) is not a Diffie-Hellman tuple, then (h′
2, h

′
3) are fresh

uniformly random group elements.
Now, this self-reduction can be used to construct a set pre-constrained

encryption scheme for a single-item set {x} as follows. Let H be a hash function
that hashes items to group elements (H will be treated as a random oracle in
the security proof). The key generator, on input an item x, will sample α ← Zq

and publish (A = gα, B = H(x)α) as the public key. Note that (g,A,H(x), B)
is a Diffie-Hellman tuple, while for any x′ �= x, (g,A,H(x′), B) is not a Diffie-
Hellman tuple. This suggests a natural encryption scheme. Given the public
key, an item y, and a message m, the encryption algorithm will run the Naor-
Reingold self-reduction on (g,A,H(y), B) to produce group elements (Q,S), and
then treat S as a secret key for encrypting the message m. That is, the ciphertext
6 For example, h1 can be defined to first hash x and then check if the hash is equal to

h0(x) and if so add 1.

50 J. Bartusek et al.

will consist of (Q,SEncS(m)), where SEnc is a symmetric-key encryption scheme.
If y �= x, then S will be uniformly random, even from the key generator’s per-
spective, so m remains hidden. On the other hand, if y = x, then (g,A,Q, S)
is a Diffie-Helman tuple, and the element S = Qα can be computed by the key
generator and used to recover m.

This scheme can easily be extended to support larger set sizes, by having
the key generator publish (A,H(x1)α, . . . , H(xn)α) as the public key, where
x1, . . . , xn is its input set. However, the naive extensions of the encryption and
decryption algorithms described above will have running time that grows with
the size n of the set. The authors of the Apple PSI system make use of a technique
called cuckoo hashing to significantly reduce this running time. Concretely, the
key generator will hash the set (x1, . . . , xn) into a table T of size n′ = (1 + ε)n
for some constant ε, using randomly sampled hash keys h0, h1. The guarantee
is that with high probability, for most xi, either Th0(xi) = xi or Th1(xi) = xi.
Note that T will have n′ − n empty entries, which we denote with ⊥. The key
generator will then publish (A,B1, . . . , Bn′) as the public key, where for each
i ∈ [n′], if Ti = x then Bi = H(x)α, while if Ti = ⊥ then Bi = gr for a random
exponent r. Now, to encrypt a message m with respect to an item y, one only
has to produce two pairs (Q0,SEncS0(m)), (Q1,SEncS1(m)), where (Qb, Sb) is
the result of applying the Naor-Reingold self-reduction to (g,A,H(y), Bhb(y)).

This results in a set pre-constrained encryption scheme that can handle pre-
constraining sets of size n with a public key of about n′ = (1 + ε)n group ele-
ments, and encryption and decryption algorithms whose running times do not
grow with the size of n. One can show (in the random oracle model) that this
scheme already satisfies set-hiding under the DDH assumption, and can be made
to satisfy element-hiding from DDH, as long as the two pairs (Q0,SEncS0(m)),
(Q1,SEncS1(m)) that constitute the ciphertext are randomly permuted, and
B1, . . . , Bn′ are all distinct group elements.

Achieving Bounded-Set and Authenticated-Set Security. Next, we show
that augmenting the above template with simple and efficient zero-knowledge
arguments suffices to achieve first bounded-set and next authenticated-set secu-
rity. While the potential utility of adding zero-knowledge arguments to Apple’s
PSI system has previously been discussed informally [13,39], we view our for-
malization and efficient realization of rigorous security definitions as a necessary
and important contribution in this space.

The Apple PSI paper [10] actually already claims to achieve bounded-set
security, which guarantees that a malicious key generator can only decrypt mes-
sages that are encrypted with respect to some set of items of size at most B.
However, it is left unclear what B is, and how it depends on other parameters
in the system. In fact, their proof completely breaks down if B < n′. In par-
ticular, their proof relies on extracting the input set X of the key generator by
observing random oracle queries, potentially adding one item x to X for each
group element Bi in the public key. If the resulting X is such that |X| > B,
then the ideal functionality aborts, and the malicious key generator would not
receive encryptions from the client. However, this behavior does not reflect what

End-to-End Secure Messaging with Traceability Only for Illegal Content 51

would happen in the real world, where the client would not be able to tell how
large the key generator’s “effective input” actually is.

This issue in the proof occurs with good reason, since a malicious key genera-
tor can indeed publish (A,H(x1)α, . . . , H(xn′)α) for n′ items x1, . . . , xn′ without
being detected. However, correctness for honest key generators is only guaran-
teed to hold for up to n items (due to the cuckoo hashing). Thus, in the best
case, we hope for a scheme that achieves bounded-set security with bound n.

We show how to achieve this by instructing the key generator to append to
their key (A,B1, . . . , Bn′) a zero-knowledge non-interactive proof of knowledge
that they know the discrete logarithm α of A and at least n′ − n discrete loga-
rithms {ri} of the elements B1, . . . , Bn′ . Highly efficient proofs supporting these
languages are known [6,16]. Intuitively, the n′ − n group elements Bi for which
the generator knows ri such that Bi = gri are “useless” for decrypting encrypted
messages. To see why, recall that, due to the Naor-Reingold self-reduction, Bi can
only be used to decrypt with respect to an item x such that (g,A,H(x), Bi) forms
a Diffie-Hellman tuple. However, if the generator knows an x, α, and ri such that
this holds, they can break the discrete logarithm problem, since H(x) = gr/α

and H(x) can be programmed by a reduction. Thus, only at most n of the ele-
ments (B1, . . . , Bn′) will actually be useful for decrypting messages, which we
leverage to show bounded-set security with a bound of n.

Next, we consider our notion of authenticated-set security, which introduces
a third party that chooses the set D. In our scheme, the third party first
sends D to the key generator. Then, the key generator prepares a public key
(A,B1, . . . , Bn′). In the honest case, for each i it either holds that there exists
x ∈ D such that (g,A,H(x), Bi) form a Diffie-Hellman tuple, or the generator
knows ri such that Bi = gr

i . Now, these are claims that the generator can prove
efficiently in zero-knowledge to the third party. The third party will then checks
these proofs, and if all verify, will sign the set of group elements (A,B1, . . . , Bn′)
under its public verification key. We show in Sect. 3.3 that this is sufficient for
achieving authenticated-set security.

3.2 Definitions

A set pre-constrained encryption (SPCE) scheme ΠSPCE[U ,M, n, ε] consists of
algorithms (Gen,Enc,Dec), and is parameterized by a universe U of elements, a
message space M, a set size n, and a correctness parameter ε. U ,M, n, ε may
actually be infinite families parameterized by the security parameter λ, though
we suppress mention of this for ease of notation.

– Gen(1λ,D) → (pk, sk): the parameter generation algorithm takes as input a
security parameter 1λ and a set D ⊆ U of size at most n, and outputs a public
key pk and a secret key sk.

– Enc(pk, x,m) → ct: the encryption algorithm takes as input a public key pk,
an item x ∈ U , and a message m ∈ M, and outputs a ciphertext ct.

– Dec(sk, ct) → {m,⊥}: the decryption algorithm takes as input a secret key
sk and a ciphertext ct and outputs either a message m ∈ M or a symbol ⊥.

52 J. Bartusek et al.

We note that any SPC encryption scheme can be utilized for encrypted cloud
storage as follows. The server initially publishes pk, and whenever the client
wants to upload some content x, they would sample an (element-hiding) SPC
encryption of (x,m), where m is arbitrary “associated data” (e.g. the name of
the client). Then, if x ∈ D, the server would be able to use sk to recover the
associated data m. Otherwise (x,m) will remain hidden from the server.

Efficiency. By default, all algorithms in an SPC encryption scheme should be
polynomial-time in the size of their inputs, and n,|x|,|m| should be polynomial-
size in λ. However, we will want to consider a more fine-grained notion of effi-
ciency with respect to the size n of the set D, which may be a large polynomial.
We say that the scheme has succinct public-key if |pk| = poly(λ, log n), succinct
encryption if the running time of Enc is poly(λ, log n), and succinct decryption
if the running time of Dec is poly(λ, log n).

Correctness. We define notions of correctness for an SPC encryption scheme.
We first consider the following notion of ε-correctness, where the parameter
ε essentially determines an upper bound on the fraction of the set D that is
“dropped” by the Gen algorithm.7

Definition 1. An SPC encryption scheme (Gen,Enc,Dec) is ε-correct for some
ε ≥ 0 if for any λ ∈ N and D ⊆ U , it holds that with probability 1 − negl(λ) over
(pk, sk) ← Gen(1λ,D), there exists a D′ ⊆ D such that |D′| ≥ (1 − ε)|D| and for
any x ∈ D′ and m ∈ M, Pr[Dec(sk,Enc(pk, x,m)) = m] = 1 − negl(λ).

Next, we define the stronger notion of perfect ε-correctness that will be useful for
our application of SPC encryption to building SPC group signatures in Sect. 4.

Definition 2. An SPC encryption scheme (Gen,Enc,Dec) is perfectly ε-correct
for some ε ≥ 0 if the following two properties hold for any λ ∈ N and D ⊆ U .

– With probability 1 − negl(λ) over (pk, sk) ← Gen(1λ,D), there exists a
D′ ⊆ D such that |D′| ≥ (1 − ε)|D| and for any m and x ∈ D′,
Pr[Dec(sk,Enc(pk, x,m)) = m] = 1.

– For all (pk, sk) ∈ Gen(1λ,D), x,m, Pr[Dec(sk,Enc(pk, x,m)) ∈ {m,⊥}] = 1.

Security. We define security using the simulation framework, via an ideal func-
tionality described in Fig. 1. The ideal functionality FP

SPCE takes place between
a server, who runs Gen and Dec, a client, who runs Enc, and a third party Auth,
whose role will be described below. In full generality, the server’s input is a
function F , but in our applications, we will always parse F as a description of
a database D of items. The client’s input is a sequence of items and messages
(x1,m1), . . . , (xk,mk). The client should learn nothing about D, Auth should
learn nothing about the messages m1, . . . , mk, and the server should learn only
{mi}i:xi∈D (and potentially the elements {xi}i∈[k]).

7 Traditionally, one might expect ε to be negligible, and thus suppressed in the defini-
tion. However, our protocols will make use of cuckoo hashing which may introduce
an inverse-polynomial ε.

End-to-End Secure Messaging with Traceability Only for Illegal Content 53

To make security against the server meaningful, we must place some restric-
tion on D. We do this (in a modular way) by parameterizing the functionality
with a predicate P. This predicate may depend on some public parameters pp
(known to both client and server) and some secret parameters sp (known only
to the server). It is the job of Auth to set up these parameters. We allow a mali-
cious adversary to corrupt either the server, the client, or Auth. We note that
one could also consider collusions between any pair of parties, but in each case
security becomes vacuous, so we do not consider this in our proofs of security.

Below, we describe the instantiations of P that we will consider in this work:
one will define what we call bounded-set security and the other will define what
we call authenticated-set security.

FP
SPCE

Parties: server S, client C, and authority Auth.
Parameters: universe U , message space M.

– Obtain input (pp, sp) from Auth. Deliver pp to both C and S, and sp
to S.

– Obtain input F = (FS , FAuth) from S and deliver F to Auth. Abort
and deliver ⊥ to all parties if P(pp, sp, F) = 0.

– Obtain input (x1, m1), . . . , (xk, mk) from client, where each xi ∈ U
and each mi ∈ M.

– Deliver FS({xi, mi}i∈[k]) to server and FAuth({xi, mi}i∈[k]) to Auth.

Fig. 1. Ideal functionality for SPC encryption. P is a predicate that takes as input some
public parameters pp, secret parameters sp, and a pair of functions F = (FS , FAuth),
and outputs a bit.

Bounded-Set Security. Here, we define two predicates P[BS] and P[BS-EH],
where BS stands for bounded-set, and EH stands for element-hiding. For each,
the public parameters pp are parsed as an integer n, there are no secret param-
eters sp, and F is parsed as the description of a database D ⊆ U . The predicate
then outputs 1 if and only if |D| ≤ n. For P[BS],

FS({xi,mi}i∈[k]) = {xi}i∈[k], {mi}i:xi∈D, FAuth({xi,mi}i∈[k]) = {xi}i∈[k],

and for P[BS-EH],

FS({xi,mi}i∈[k]) = k, {mi}i:xi∈D, FAuth({xi,mi}i∈[k]) = k.

Authenticated-Set Security. Here, we define two predicates P[AS] and P[AS-EH],
where AS stands for authenticated-set. For each, the public parameters pp are
parsed as an integer n, the secret parameters are parsed as a database D∗ ⊆ U

54 J. Bartusek et al.

of size n, and F is parsed as a database D ⊆ U . The predicate then outputs 1 if
and only if D ⊆ D∗. For P[AS],

FS({xi,mi}i∈[k]) = {xi}i∈[k], {mi}i:xi∈D, FAuth({xi,mi}i∈[k]) = {xi}i∈[k],

and for P[AS-EH],

FS({xi,mi}i∈[k]) = k, {mi}i:xi∈D, FAuth({xi,mi}i∈[k]) = k.

One can also define a game-based notion of security against outsiders by
extending standard notions of semantic security to capture the indistinguisha-
bility of ciphertexts corresponding to encryptions of two different messages. We
defer this to the full version [8].

3.3 Construction

We begin by giving templates for SPC encryption based on Apple’s PSI protocol
[10]. These schemes will have succinct encryption and succinct decryption, but
non-succinct public-key. We will first describe a scheme ΠBasic−EH

SPCE (Protocol 2)
that satisfies ε-correctness and security against outsiders with element-hiding.
Then, we describe a related scheme ΠBasic−PC

SPCE (Protocol 3) that satisfies perfect
ε-correctness but only security against outsiders without element-hiding, and
is tailored to support encrypting messages that are group elements. This latter
scheme will be useful for our construction of set pre-constrained group signatures
in Sect. 4. Following these basic templates, we will then show how to (efficiently)
upgrade each to obtain bounded-set and authenticated-set security, resulting in
schemes ΠBS−EH

SPCE ,ΠBS−PC
SPCE ,ΠAS−EH

SPCE ,ΠAS−PC
SPCE .

Ingredients:

– A cyclic group G of prime order q in which the DDH problem is assumed to
be hard.

– A symmetric-key encryption scheme (RobEnc,RobDec) with keyspace K that
satisfies random key robustness (Sect. 2.1).

– Hash functions H : U → G \ {0} and G : G → K modeled as random oracles,
where G maps the uniform distribution over G to (negligibly close to) the
uniform distribution over K.

– A cuckoo hashing scheme (CH.Setup,CH.Hash) (Sect. 2.4).

Achieving Bounded-Set Security. It can in fact be shown that
ΠBasic−EH

SPCE [U ,M, n, ε] (resp. ΠBasic−PC
SPCE [U ,G, n, ε]) already securely emulates

FP[BS-EH]
SPCE (resp. FP[BS]

SPCE) with set size pp = n′ where n′ is such that (n′, ·, ·) ←
CH.Setup(λ, n, ε). However, n′ may be much larger than n, which means a large
gap between correctness (an honest server would be able to decrypt with respect
to (1 − ε)n items) and security (a dishonest server would potentially be able to
decrypt with respect to up to n′ items).

Below, we show that an efficient tweak to the basic schemes results in schemes
ΠBS−EH

SPCE ,ΠBS−PC
SPCE (Protocol 4) that completely close this gap. That is, for any n,

the schemes ΠBS−EH
SPCE ,ΠBS−PC

SPCE securely emulate FP[BS-EH]
SPCE , FP[BS]

SPCE with pp = n.

End-to-End Secure Messaging with Traceability Only for Illegal Content 55

ΠBasic−EH
SPCE [U , M, n, ε]

Parameters: universe U , message space M, set size n, correctness param-
eter ε, and security parameter λ.
Setup: description of the group G with generator g, and random oracles
H, G.
Gen(1λ, D):

– Run (n′, h0, h1) ← CH.Setup(λ, n, ε) and then T :=
CH.Hash(h0, h1, D).

– Sample α ← Zq and set A := gα.
– Define ˜T as follows. For each i ∈ [n′], if Ti = ⊥ then sample ri ← Zq

and set ˜Ti := gri , and otherwise set ˜Ti := H(Ti)
α.

– Output pk := (h0, h1, A, ˜T) and sk := α.

Enc(pk, x, m):

– Parse pk as (h0, h1, A, ˜T) and abort if there are any duplicate entries

in ˜T .
– For b ∈ {0, 1}, sample βb, γb ← Zq, and compute Qb := gβb ·

H(x)γb , Sb := Aβb · ˜T
γb
hb(x)

, ctb := RobEnc(G(Sb), m). Sample b ←
{0, 1} and output ct := (Qb, ctb, Q1−b, ct1−b).

Dec(sk, ct):

– Parse sk as α and ct as (Q0, ct0, Q1, ct1).
– For b ∈ {0, 1} and compute mb := RobDec(G(Qα

b), ctb). If exactly one
of m0 or m1 is not ⊥, then output this message, and otherwise output
⊥.

Fig. 2. Basic SPC encryption with element-hiding

Observe that the correctness properties of ΠBasic−EH
SPCE ,ΠBasic−PC

SPCE are preserved
by this transformation, due to the completeness of the ZK-NIAoKs, and the secu-
rity against outsiders properties are also preserved, due to the zero-knowledge
of the ZK-NIAoKs.

Achieving Authenticated-Set Security. Next, we describe schemes
ΠAS−EH

SPCE ,ΠAS−PC
SPCE (Protocol 5) that satisfy authenticated set security. In order to

achieve this notion, we will relax Gen to be an interactive protocol between the
server and Auth, with the following syntax. Gen〈Server,Auth(D)〉(1λ) → (pk, sk)
where the parameter generation protocol takes place between a server and Auth
with input a set D ⊆ U , and outputs to the server a public key pk and a secret
key sk.

Observe that the correctness properties of ΠBasic−EH
SPCE ,ΠBasic−PC

SPCE are preserved
by the transformation, due to the completeness of the ZK-NIAoKs and correct-

56 J. Bartusek et al.

ΠBasic−PC
SPCE [U ,G, n, ε]

Parameters: same as ΠBasic−EH
SPCE , except that the message space is the set of

group elements in G.
Setup: Same as ΠBasic−EH

SPCE .
Gen(1λ, D): Same as ΠBasic−EH

SPCE , except that h0, h1, T are included in sk,
and we abort if there does not exist a D′ ⊆ D such that |D′| ≥ (1 − ε)|D|
and such that for any x ∈ D′, either Th0(x) = x or Th1(x) = x.
Enc(pk, x, m):

– Parse pk as (h0, h1, A, ˜T) and abort if there are any duplicate entries

in ˜T .
– For b ∈ {0, 1}, sample βb, γb ← Zq, and compute Qb := gβb ·

H(x)γb , Sb := Aβb · ˜T
γb
hb(x)

. Output ct := (x, Q0, S0 · m, Q1, S1 · m).

Dec(sk, ct):

– Parse sk as (h0, h1, T, α) and ct as (x, Q0, S
′
0, Q1, S

′
1).

– If there exists exactly one b ∈ {0, 1} such that Thi(x) = x, then output
m = S′

b/Qα
b . Otherwise, output ⊥.

Fig. 3. Basic SPC encryption with perfect correctness

ΠBS−EH
SPCE [U , M, n, ε], ΠBS−PC

SPCE [U ,G, n, ε]

Parameters: Same as ΠBasic−EH
SPCE , ΠBasic−PC

SPCE . Note that the parame-
ters λ, n, and ε determine a maximum hash table size n′, where
(n′, ·, ·) ← Setup(λ, n, ε).

Setup: Let (ProveDLog,VerifyDLog) be a ZK-NIAoK for RDLog and let
(Prove

D̃Log
,Verify

D̃Log
) be a ZK-NIAoK for R

DLogn′−n

n′
(Sect. 2.2). Both of

these proof systems are in the random oracle model and have no additional
setup, so there is no additional setup required for ΠBS−EH

SPCE , ΠBS−PC
SPCE .

Gen(1λ, D): Same as ΠBasic−EH
SPCE , ΠBasic−PC

SPCE , except that proofs

πA ← ProveDLog((g, A), α) and π
˜T ← Prove

D̃Log
((g, ˜T), {ri}i:Ti=⊥)

are computed and appended to the public key pk.

Enc(pk, x, m): Same as ΠBasic−EH
SPCE , ΠBasic−PC

SPCE , except that the algo-
rithm aborts if either of πA or π

˜T fails to verify, or the number of group

elements in ˜T is greater than n′.

Dec(sk, ct): same as ΠBasic−EH
SPCE , ΠBasic−PC

SPCE .

Fig. 4. SPC encryption with bounded-set security

End-to-End Secure Messaging with Traceability Only for Illegal Content 57

ΠAS−EH
SPCE [U , M, n, ε], ΠAS−PC

SPCE [U ,G, n, ε]

Parameters: same as ΠBasic−EH
SPCE , ΠBasic−PC

SPCE .

Setup: let (Sig.Gen, Sig.Sign, Sign.Verify) be a EUF-CMA secure sig-
nature scheme (Sect. 2.1). Before the protocol begins, Auth will sample
(vkAuth, skAuth) ← Sig.Gen(1λ) and broadcast vkAuth to all parties. Also, let
(ProveDLog,VerifyDLog) be a ZK-NIAoK for RDLog and (ProveDH,VerifyDH)
be a ZK-NIAoK for RDH (Sect. 2.2). Both of these proof systems are
in the random oracle model, so require no additional setup beyond
ΠBasic−EH

SPCE , ΠBasic−PC
SPCE .

Gen〈Server,Auth(D)〉(1λ):

– Auth sends D to Server.
– Server first runs the Gen algorithm of ΠBasic−EH

SPCE , ΠBasic−PC
SPCE on input

(1λ, D) to obtain output (h0, h1, A, ˜T), α, along with table T and
randomness {ri}i:Ti=⊥. Next, compute πA ← ProveDLog((g, A), α).

Finally, for each i ∈ [n′], where n′ is the size of T, ˜T :

• If Ti = ⊥, compute πi ← ProveDLog((g, ˜Ti), ri).

• If Ti 	= ⊥, compute πi ← ProveDH((g, A, H(Ti), ˜Ti), α).

Send (A, T, ˜T , πA, {πi}i∈[n′]) to Auth.
– Auth runs VerifyDLog((g, A), πA) and for each i ∈ [n′]: if Ti = ⊥,

runs VerifyDLog((g, ˜Ti), πi) and if Ti 	= ⊥, check that Ti ∈ D and

runs VerifyDH((g, A, H(Ti), ˜Ti), πi). If all checks pass, compute σ ←
Sig.Sign(sk, (A, ˜T)), and return σ.

– Server outputs pk := (h0, h1, A, ˜T , σ) and sk := α.

Enc(pk, x, m): same as ΠBasic−EH
SPCE , ΠBasic−PC

SPCE , except that it first runs

Sig.Verify(vkAuth, (A, ˜T), σ)a and aborts if the signature fails to verify.
Dec(sk, ct): same as ΠBasic−EH

SPCE , ΠBasic−PC
SPCE .

a Note that this verification only needs to be done once per user and not
every time Enc is run, since the public key does not change.

Fig. 5. SPC encryption with authenticated-set security

ness of Sig, and the security against outsiders properties are also preserved, due
to the zero-knowledge of the ZK-NIAoKs.

4 SPC Group Signatures

In this section, we define and construct SPC group signatures. We present formal
definition of SPC group signatures in Sect. 4.1, and constructions in Sect. 4.2 and
Sect. 4.3. We defer proofs of security to the full version [8].

58 J. Bartusek et al.

4.1 Definitions

A set pre-constrained group signature (SPCGS) scheme ΠSPCGS[M,P, n, ε] con-
sists of algorithms Gen,Sign,Verify,Open, along with an interactive protocol
KeyGen. We refer to the party that runs Gen as the group manager GM, and
the KeyGen protocol is run by GM and a client C. It is parameterized by a mes-
sage space M, an identity (or public key) space P, a set size n, and a correctness
parameter ε.

– Gen(1λ,D) → (mpk,msk). The parameter generation algorithm takes as input
a security parameter 1λ and a set D ⊆ M of size at most n, and outputs a
master public key mpk and a master secret key msk.

– KeyGen〈GM(msk),C〉 → (pk, sk). The KeyGen protocol is run by the group
manager GM with input msk and a client C. It delivers an identity pk ∈ P to
both GM and C, and an identity signing key sk to C.

– Sign(mpk, sk,m) → σ. The signing algorithm takes as input the master public
key mpk, an identity signing key sk, and a message m ∈ M, and outputs a
signature σ.

– Verify(mpk,m, σ) → {�,⊥}. The verification algorithm takes as input the
master public key mpk, a message m ∈ M, and a signature σ, and outputs
either � or ⊥, indicating accept or reject.

– Open(msk, σ) → {pk,⊥}. The opening algorithm takes as input the master
secret key msk and signature σ, and outputs either an identity pk ∈ P or ⊥.

We imagine using an SPC group signature scheme for encrypted messaging
as follows. We assume that there is already a standard end-to-end encrypted
messaging system in place, and the server additionally publishes mpk for the
SPCGS scheme. Each client runs a KeyGen protocol with the server in order to
obtain their identity pk and their secret key sk. Then, whenever they want to
send a message m, they additionally compute a signature σ on m, and send the
message (m,σ) under the end-to-end encryption. Any message received that does
not have a properly verifying signature is immediately discarded by the client
algorithm. Finally, if an honest client receives a pair (m,σ) for some illegal
content m, they can report this to the server, who can run the Open algorithm
in order to determine which identity produced the signature σ.

We now port the definitions of bounded-set and authenticated-set security
against malicious servers (as previously defined for SPC encryption) to the
group signature setting. Further, we follow standard definitions of traceability,
anonymity, and unframeability for group signatures.

Definition 3 (Correctness). An SPC group signature scheme (Gen,KeyGen,
Sign,Verify,Open) is correct if for any λ ∈ N,D ⊆ M, and message m ∈ M,
it holds with probability 1 − negl(λ) over (mpk,msk) ← Gen(1λ,D), (pk, sk) ←
KeyGen〈GM(msk),C〉, and σ ← Sign(mpk, sk,m) that Verify(mpk,m, σ) = 1.

Security. We formulate several notions of security for an SPC group signature
scheme. First, we define a notion of traceability, which ensures that any signature

End-to-End Secure Messaging with Traceability Only for Illegal Content 59

on a message m ∈ D that is accepted by the verification algorithm will leak the
identity of the signer to the master secret key holder.

Definition 4 (Traceability). An SPC group signature scheme (Gen,KeyGen,
Sign,Verify,Open) is ε-traceable for some ε ≥ 0 if for any PPT adversary A,
λ ∈ N, and D ⊆ M, it holds that with probability 1− negl(λ) over (mpk,msk) ←
Gen(1λ,D), there exists a D′ ⊆ D with |D′| ≥ (1 − ε)|D|, such that

Pr

⎡

⎣

IsValid[mpk](m,σ, pk) = 1
∧ (m ∈ D′)
∧ (pk /∈ IAdv)

:
(m,σ) ← AOAKG,OOpen,OHKG,OSign

pk ← Open(msk, σ)

⎤

⎦ = negl(λ),

where the oracles OAKG,OOpen,OHKG,OSign, set IAdv and predicate IsValid[mpk]
are defined as follows.

– OAKG (KeyGen initiated by the Adversary) has msk hard-coded and, when
initialized, acts as the group manager in the KeyGen protocol. Define IAdv to
be the set of identities obtained by GM(msk) as a result of the interactions
between A and OAKG.

– OOpen has msk hard-coded, and on input a signature σ, outputs Open(msk, σ).
– OHKG (KeyGen initiated by an Honest party) has msk hard-coded and, when

queried, runs KeyGen〈GM(msk),C〉 → (pk, sk), and returns pk (and not sk).
Define IHon to be the set of pk’s output by OHKG.

– OSign takes a message m and an identity pk as input. If pk /∈ IHon, return
nothing, and otherwise let sk be the secret key associated with pk and return
Sign(mpk, sk,m). Define J to be the set of (m, pk) queried to OSign.

– IsValid[mpk](m,σ, pk) outputs (Verify(mpk,m, σ) = 1) ∧ ((m, pk) /∈ J). That
is, it accepts if the adversary produced a valid message signature pair that was
not a query to its signing oracle.

Next, we define the notion of unframeability, which ensures that an adversary
cannot produce a verifying signature with respect to some identity pk for which
they do not hold the corresponding sk, even if they know the master secret key.

Definition 5 (Unframeability). An SPC group signature scheme (Gen,
KeyGen,Sign,Verify,Open) satisfies unframeability if for any PPT adversary A
and D ⊆ M,

Pr

⎡

⎣

Verify(mpk, m, σ) = 1

∧ (mpk,msk) ∈ Gen(1λ, D)
∧ ((m, pk) /∈ J) ∧ (pk ∈ IHon)

: (mpk,msk, m, σ) ← AOHKG,OSign (1λ, D)
pk ← Open(msk, σ)

⎤

⎦ = negl(λ),

where the oracles OHKG,OSign and sets IHon,J are defined as in Definition 4.

Now, we consider the notion of anonymity, which protects the identity of any
signer who produces a signature on a message m /∈ D, even against the group
manager. Here, we will follow our simulation-based notion of security for SPC
encryption. The ideal functionality FP

anon takes place between a group manager

60 J. Bartusek et al.

GM who runs Gen, interacts in KeyGen, and runs Open, a client, who interacts in
KeyGen and runs Sign, and an authority Auth, whose role will be described below.
In full generality, the group manager’s input is a function F , but in our applica-
tions, we will always parse F as a description of a database D of messages. The
client’s input is a sequence of identities and messages (pk1,m1), . . . , (pkk,mk).
The client should learn nothing about D, Auth should learn nothing about the
identities {pki}i∈[k], and the group manager should learn nothing about the iden-
tities {pki}i:mi /∈D, except perhaps how many “repeats” there are (if we don’t
require the property of unlinkability).

To make security against the server meaningful, we must place some restric-
tion on D. We do this (in a modular way) by parameterizing the functionality
with a predicate P. This predicate may depend on some public parameters pp
(known to both client and group manager) and some secret parameters sp (known
only to the group manager). It is the job of Auth to set up these parameters.

Below, we describe the instantiations of P that we will consider in this work:
one will define what we call bounded-set security and the other will define what
we call authenticated-set security.

FP
anon

Parties: Group manager and client.
Parameters: message space M, identity space I.

– Obtain input (pp, sp) from Auth. Deliver pp to both group manager
and client, and sp to group manager.

– Obtain input F = (FGM, FAuth) from group manager and deliver F to
Auth. Abort and deliver ⊥ to all parties if P(pp, sp, F) = 0.

– Obtain input (pk1, m1), . . . , (pkk, mk) from client, where each pki ∈ I
and each mi ∈ M.

– Deliver FGM({pki, mi}i∈[k]) to group manager and FAuth({pki, mi}i∈[k])
to Auth.

Fig. 6. Ideal functionality for SPC group signatures with anonymity. P is a predicate
that takes as input some public parameters pp, and a pair of functions F = (FS , FAuth),
and outputs a bit.

Bounded-Set Security. Here, we define two predicates P[BS] and P[BS-link],
where link stands for linkability. For each, the parameters pp are parsed as an
integer n, there are no secret parameters sp, and F is parsed as a description of
a database D ⊆ M. The predicate then outputs 1 if and only if |D| ≤ n. For
P[BS],

FGM({pki,mi}i∈[k]) = {pki}i:mi∈D, {mi}i∈[k], FAuth({pki,mi}i∈[k]) = {mi}i∈[k],

End-to-End Secure Messaging with Traceability Only for Illegal Content 61

and for P[BS-link],

FGM({pki,mi}i∈[k]) = {pki}i:mi∈D,Aux({pki}i:mi /∈D), {mi}i∈[k],

where for any multiset S, Aux(S) consists of the number of distinct elements in
S along with how many times each appears, and

FAuth({pki,mi}i∈[k]) = {mi}i∈[k].

Authenticated-Set Security. Here, we define two predicates P[AS] and P[AS-EH].
For each, the public parameters pp are parsed as an integer n, the secret param-
eters are parsed as a database D∗ ⊆ M of size n, and F is parsed as a database
D ⊆ M. The predicate then outputs 1 if and only if D ⊆ D∗. For P[AS],

FGM({pki,mi}i∈[k]) = {pki}i:mi∈D, {mi}i∈[k], FAuth({pki,mi}i∈[k]) = {mi}i∈[k],

and for P[AS-link],

FGM({pki,mi}i∈[k]) = {pki}i:mi∈D,Aux({pki}i:mi /∈D), {mi}i∈[k],

where for any multiset S, Aux(S) consists of the number of distinct elements in
S along with how many times each appears, and

FAuth({pki,mi}i∈[k]) = {mi}i∈[k].

Finally, we consider “client-client” anonymity and unlinkability, which con-
siders the security of signatures against other clients. Here, we can hope for
stronger security properties, since clients do not hold the master secret key and
thus might not be able to de-anonymize signatures even on messages m ∈ D.
Thus, we give separate (game-based) definitions of anonymity and unlinkability
against adversarial clients.

Definition 6 (Anonymity). An SPC group signature scheme (Gen,KeyGen,
Sign,Verify,Open) satisfies client-client anonymity if for any PPT adversary
A, λ ∈ N, D ⊆ M, and m ∈ M, it holds that with probability 1 − negl(λ)
over (mpk,msk) ← Gen(1λ,D), (pk0, sk0) ← KeyGen〈GM(msk),C〉, (pk1, sk1) ←
KeyGen〈GM(msk),C〉,

Pr
[

AOAKG,OHKG,OSign

(
mpk, pk0,
pk1, σ

)

= b :
b ← {0, 1}

σ ← Sign(mpk, skb,m)

]

≤ 1
2

+ negl(λ),

where the oracles OAKG,OHKG, and OSign are defined as in Definition 4.

Definition 7 (Unlinkability). An SPC group signature scheme (Gen,KeyGen,
Sign,Verify,Open) satisfies client-client unlinkability if for any PPT adversary
A, λ ∈ N, D ⊆ M, and messages m0,m1 ∈ M, it holds that with probability
1 − negl(λ) over (mpk,msk) ← Gen(1λ,D), (pk0, sk0) ← KeyGen〈GM(msk),C〉,
(pk1, sk1) ← KeyGen〈GM(msk),C〉,

Pr

⎡

⎣AOAKG,OHKG,OSign

(

mpk, pk0,
pk1, σ0, σ1

)

= b :
σ0 ← Sign(mpk, sk0, m0)

b ← {0, 1}
σ1 ← Sign(mpk, skb, m1)

⎤

⎦ ≤ 1

2
+ negl(λ),

where the oracles OAKG,OHKG, and OSign are defined as in Definition 4.

62 J. Bartusek et al.

4.2 Generic Construction

We show how to construct an SPC group signature scheme generically from an
SPC encryption scheme that satisfies certain properties, plus a few standard cryp-
tographic tools. Our construction is given in the random oracle model, though
we note that if we were willing to assume an additional simulation-soundness
property of the ZK-NIAoK, then we would not require a random oracle. It is
presented in Protocol 7.

Ingredients:

– An SPC encryption scheme ΠSPCE = (SPCE.Gen,SPCE.Enc,SPCE.Dec) that
satisfies perfect ε-correctness, security against outsiders, and either bounded-
set security or authenticated-set security (Sect. 3).

– A one-way relation (R,R.Gen,R.Sample) (Sect. 2.1). Let P denote the set of
instances.

– An EUF-CMA secure signature scheme Sig = (Sig.Gen,Sig.Sign,Sig.Verify)
with message space P (Sect. 2.1).

– A ZK-NIAoK scheme ZK = (ZK.Setup,ZK.Prove,ZK.Verify) in the common
random string model for general NP relations (Sect. 2.2).

– A random oracle H.

4.3 An Efficient Instantiation

We now summarize our approach for a concretely efficient instantiation of the
above generic template, based on constructions of SPC encryption schemes from
Sect. 3. Note that we will need a concretely efficient instantiation of a zero-
knowledge argument system that can be used to prove statements that involve
verifying signatures and the correctness of SPC encryption. Our goal here is
to avoid non-black-box use of the cryptography needed for signatures and SPC
encryption. Thus, we use bilinear maps, and make use of the Groth-Sahai proof
system [24], which can efficiently prove statements that involve certain oper-
ations in pairing groups.8 We combine the GS proof system with the use of
structure-preserving signatures [1], which support messages, verification keys,
and signatures that consist solely of group elements. We provide details of the
scheme, implementation and benchmarking in the full version [8].

Our construction will make use of a bilinear map G = (p,G1,G2,T, e, g1, g2)
where the SXDH assumption is assumed to hold, as described in Sect. 2.3. The
group signature scheme ΠSPCGS[M,G1, n, ε] will have an arbitrary message space
M and identities consisting of group elements in G1. The four ingredients are
instantiated as follows.

8 We remark that, although GS proofs only satisfy partial knowledge extraction (see
Sect. 2.3), this is sufficient for our construction. Indeed, the signatures extracted in
order to show ε-traceability and unframeability only consist of group elements, and
the one-way relation witness extracted during the proof of unframeability is also a
group element.

End-to-End Secure Messaging with Traceability Only for Illegal Content 63

ΠSPCGS[M, P, n, ε]

Parameters: message space M, identity space P, set size n, correctness
parameter ε, and security parameter λ.

Setup: pp ← R.Gen(1λ) and a random oracle H.

Gen(1λ, D): run (pkSPCE, skSPCE) ← SPCE.Gen(1λ, D)a and (vkSig, skSig) ←
Sig.Gen(1λ). Set mpk := (pkSPCE, vkSig) and msk := (skSPCE, skSig).

KeyGen〈GM(msk),C〉: the client C samples random coins s, com-
putes (pk, w) := R.Sample(pp; s), and sends pk to GM. GM parses msk
as (skSPCE, skSig) and then computes and sends σid ← Sig.Sign(skSig, pk). C
sets sk := (s, σid).

Sign(mpk, sk, m): parse mpk as (pkSPCE, vkSig) and sk as (s, σid), com-
pute (pk, w) := R.Sample(pp; s), sample random coins r, and compute
ct := SPCE.Enc(pkSPCE, m, pk; r). Let crs := H(m, ct), and compute
π ← ZK.Prove(crs, (pp, pkSPCE, vkSig, m, ct), (pk, s, w, σid, r)) for the relation
that checks that

– ct = SPCE.Enc(pkSPCE, m, pk; r),
– (pk, w) = R.Sample(pp; s),
– and Sig.Verify(vkSig, pk, σid).

Output σ := (ct, crs, π).

Verify(mpk, m, σ) : parse mpk as (pkSPCE, vkSig) and σ as
(ct, crs, π), check that H(m, ct) = crs and if so output
ZK.Verify(crs, (pp, pkSPCE, vkSig, m, ct), π).

Open(msk, σ) : parse msk as (skSPCE, skSig) and σ as (ct, crs, π), and
output SPCE.Dec(skSPCE, ct).

a If the SPC encryption scheme satisfies authenticated-set security, this
will be an interactive procedure between GM and Auth.

Fig. 7. Generic construction of SPC group signatures.

– SPC
encryption: Either the scheme ΠBS−PC

SPCE [M,G1, n, ε] or ΠAS−PC
SPCE [M,G1, n, ε]

from Sect. 3.
– One-way relation: The Diffie-Hellman relation in G1, where R is the set of

tuples (g, gα, gβ , gα·β) ∈ G
4
1. R.Gen outputs (g, gα) = (g, h), and R.Sample

chooses randomness β and outputs (gβ , hβ). This relation is one-way from
the hardness of the computational Diffie-Hellman problem in G1.

– Signature scheme: The structure-preserving signature scheme from [1].
– ZK-NIAoK: The Groth-Sahai proof system (Sect. 2.3).

64 J. Bartusek et al.

Details of our concretely efficient scheme can be found in the full version [8].

Acknowledgments. First, second and fourth authors were supported in part by
DARPA under Agreement No. HR00112020026, AFOSR Award FA9550-19-1-0200,
NSF CNS Award 1936826, and research grants by the Sloan Foundation, and Visa
Inc. The first and the fourth author were also supported by a grant from the CLTC.
The third author was supported in part by NSF CNS-1814919, NSF CAREER 1942789,
Johns Hopkins University Catalyst award, AFOSR Award FA9550-19-1-0200, Office of
Naval Research Grant N00014-19-1-2294, JP Morgan Faculty Award, and research gifts
from Ethereum, Stellar and Cisco. Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the authors and do not necessarily
reflect the views of the United States Government or DARPA.

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 12

2. Abelson, H., et al.: Bugs in our pockets: the risks of client-side scanning (2021).
https://doi.org/10.48550/ARXIV.2110.07450

3. Alamati, N., Branco, P., Döttling, N., Garg, S., Hajiabadi, M., Pu, S.: Laconic
private set intersection and applications. In: Nissim, K., Waters, B. (eds.) TCC
2021. LNCS, vol. 13044, pp. 94–125. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-90456-2 4

4. Ananth, P., Jain, A., Jin, Z., Malavolta, G.: Pre-constrained encryption. In: ITCS.
LIPIcs, vol. 215, pp. 4:1–4:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2022). https://doi.org/10.4230/LIPIcs.ITCS.2022.4

5. Apple (2021) CSAM Detection Technical Summary
6. Attema, T., Cramer, R., Fehr, S.: Compressing proofs of k -Out-Of-n partial knowl-

edge. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp.
65–91. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8 3

7. Barak, B., et al.: On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

8. Bartusek, J., Garg, S., Jain, A., Policharla, G.V.: End-to-end secure messaging with
traceability only for illegal content. Cryptology ePrint Archive, Paper 2022/1643
(2022). https://eprint.iacr.org/2022/1643

9. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 38

10. Bhowmick, A., Boneh, D., Myers, S., Tarbe, K., Talwar, K.: The apple PSI system
(2021)

11. Boyle, E., Ishai, Y., Pass, R., Wootters, M.: Can we access a database both locally
and privately? In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp.
662–693. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3 22

12. Canetti, R., Holmgren, J., Richelson, S.: Towards doubly efficient private informa-
tion retrieval. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp.
694–726. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3 23

https://doi.org/10.1007/978-3-642-14623-7_12
https://doi.org/10.48550/ARXIV.2110.07450
https://doi.org/10.1007/978-3-030-90456-2_4
https://doi.org/10.1007/978-3-030-90456-2_4
https://doi.org/10.4230/LIPIcs.ITCS.2022.4
https://www.apple.com/child-safety/pdf/CSAMDetectionTechnicalSummary.pdf
https://doi.org/10.1007/978-3-030-84259-8_3
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://eprint.iacr.org/2022/1643
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-319-70503-3_22
https://doi.org/10.1007/978-3-319-70503-3_23

End-to-End Secure Messaging with Traceability Only for Illegal Content 65

13. Canetti, R., Kaptchuk, G.: The broken promise of apple’s announced forbidden-
photo reporting system - and how to fix it (2021). https://www.bu.edu/riscs/2021/
08/10/apple-csam/

14. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-48071-4 7

15. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

16. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

17. Dodis, Y., Grubbs, P., Ristenpart, T., Woodage, J.: Fast message franking: from
invisible salamanders to encryptment. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10991, pp. 155–186. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96884-1 6

18. Emura, K., et al.: Group signatures with message-dependent opening: formal def-
initions and constructions. Sec. Commun. Netw. 2019 (2019). https://doi.org/10.
1155/2019/4872403

19. Federal Bureau of Investigation. Going Dark: Are Technology, Privacy, and Public
Safety on a Collision Course? [speech] (2014)

20. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

21. Green, M.: Thinking about “traceability” (2021). https://blog.cryptography
engineering.com/2021/08/01/thinking-about-traceability/

22. Green, M., Kaptchuk, G., Van Laer, G.: Abuse resistant law enforcement access
systems. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS,
vol. 12698, pp. 553–583. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-77883-5 19

23. Groth, J.: Fully anonymous group signatures without random oracles. In: Kuro-
sawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-76900-2 10

24. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

25. Grubbs, P., Arun, A., Zhang, Y., Bonneau, J., Walfish, M.: Zero-knowledge mid-
dleboxes. In: USENIX Security Symposium, pp. 4255–4272. USENIX Association
(2022)

26. Grubbs, P., Lu, J., Ristenpart, T.: Message franking via committing authenticated
encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403,
pp. 66–97. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9 3

27. Issa, R., Alhaddad, N., Varia, M.: Hecate: abuse reporting in secure messengers
with sealed sender. In: 31st USENIX Security Symposium (USENIX Security 22),
pp. 2335–2352 (2022)

28. U.S. Senate Committee on the Judiciary (2020). Graham, Blumenthal, Hawley,
Feinstein Introduce EARN IT Act to Encourage Tech Industry to Take Online C
hild Sexual Exploitation Seriously

29. U.S. Department of Justice (2020). International Statement: End-To-End Encrypti
on and Public Safety

https://www.bu.edu/riscs/2021/08/10/apple-csam/
https://www.bu.edu/riscs/2021/08/10/apple-csam/
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/978-3-319-96884-1_6
https://doi.org/10.1007/978-3-319-96884-1_6
https://doi.org/10.1155/2019/4872403
https://doi.org/10.1155/2019/4872403
https://www.fbi.gov/news/speeches/going-dark-are-technology-privacy-and-public-safety-on-a-collision-course
https://www.fbi.gov/news/speeches/going-dark-are-technology-privacy-and-public-safety-on-a-collision-course
https://doi.org/10.1007/3-540-47721-7_12
https://blog.cryptographyengineering.com/2021/08/01/thinking-about-traceability/
https://blog.cryptographyengineering.com/2021/08/01/thinking-about-traceability/
https://doi.org/10.1007/978-3-030-77883-5_19
https://doi.org/10.1007/978-3-030-77883-5_19
https://doi.org/10.1007/978-3-540-76900-2_10
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-319-63697-9_3
https://www.judiciary.senate.gov/press/rep/releases/graham-blumenthal-hawley-feinstein-introduce-earn-it-act-to-encourage-tech-industry-to-take-online-child-sexual-exploitation-seriously
https://www.judiciary.senate.gov/press/rep/releases/graham-blumenthal-hawley-feinstein-introduce-earn-it-act-to-encourage-tech-industry-to-take-online-child-sexual-exploitation-seriously
https://www.judiciary.senate.gov/press/rep/releases/graham-blumenthal-hawley-feinstein-introduce-earn-it-act-to-encourage-tech-industry-to-take-online-child-sexual-exploitation-seriously
https://www.justice.gov/opa/pr/international-statement-end-end-encryption-and-public-safety
https://www.justice.gov/opa/pr/international-statement-end-end-encryption-and-public-safety

66 J. Bartusek et al.

30. U.S. Department of Justice (2020). International Statement: End-To-End Encrypti
on and Public Safety

31. Kamara, S., et al.: Outside looking in: approaches to content moderation in end-
to-end encrypted systems (2021)

32. Kulshrestha, A., Mayer, J.R.: Identifying harmful media in end-to-end encrypted
communication: efficient private membership computation. In: USENIX Security
Symposium, pp. 893–910. USENIX Association (2021)

33. Libert, B., Joye, M.: Group signatures with message-dependent opening in the
standard model. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 286–
306. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9 15

34. Liu, L., Roche, D.S., Theriault, A., Yerukhimovich, A.: Fighting fake news in
encrypted messaging with the fuzzy anonymous complaint tally system (facts).
Cryptology ePrint Archive, Report 2021/1148 (2021)

35. Green, M.: An evaluation of the risks of client-side scanning (2022)
36. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random

functions. J. ACM 51, 231–262 (2004)
37. Newman, L.: The EARN IT Act Is a Sneak Attack on Encryption. Wired (2020)
38. Peale, C., Eskandarian, S., Boneh, D.: Secure complaint-enabled source-tracking

for encrypted messaging. In: Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, pp. 1484–1506 (2021)

39. Pinkas, B.: The private set intersection (PSI) protocol of the apple CSAM
detection system (2021). https://decentralizedthoughts.github.io/2021-08-29-the-
private-set-intersection-psi-protocol-of-the-apple-csam-detection-system/

40. Prokos, J., et al.: Squint hard enough: evaluating perceptual hashing with machine
learning. Cryptology ePrint Archive, Report 2021/1531 (2021)

41. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

42. Tyagi, N., Grubbs, P., Len, J., Miers, I., Ristenpart, T.: Asymmetric message frank-
ing: content moderation for metadata-private end-to-end encryption. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 222–250. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 8

43. Tyagi, N., Miers, I., Ristenpart, T.: Traceback for end-to-end encrypted messaging.
In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Commu-
nications Security, pp. 413–430 (2019). https://doi.org/10.1145/3319535.3354243

https://www.justice.gov/opa/pr/international-statement-end-end-encryption-and-public-safety
https://www.justice.gov/opa/pr/international-statement-end-end-encryption-and-public-safety
https://doi.org/10.1007/978-3-319-04852-9_15
https://www.wired.com/story/earn-it-act-sneak-attack-on-encryption/
https://decentralizedthoughts.github.io/2021-08-29-the-private-set-intersection-psi-protocol-of-the-apple-csam-detection-system/
https://decentralizedthoughts.github.io/2021-08-29-the-private-set-intersection-psi-protocol-of-the-apple-csam-detection-system/
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/978-3-030-26954-8_8
https://doi.org/10.1145/3319535.3354243

Asymmetric Group Message Franking:
Definitions and Constructions

Junzuo Lai1 , Gongxian Zeng2(B) , Zhengan Huang2(B) , Siu Ming Yiu3 ,
Xin Mu2 , and Jian Weng1(B)

1 College of Information Science and Technology, Jinan University,
Guangzhou, China

cryptjweng@gmail.com
2 Peng Cheng Laboratory, Shenzhen, China

gxzeng@cs.hku.hk, zhahuang.sjtu@gmail.com, mux@pcl.ac.cn
3 The University of Hong Kong, Hong Kong, China

smyiu@cs.hku.hk

Abstract. As online group communication scenarios become more and
more common these years, malicious or unpleasant messages are much
easier to spread on the internet. Message franking is a crucial crypto-
graphic mechanism designed for content moderation in online end-to-
end messaging systems, allowing the receiver of a malicious message to
report the message to the moderator. Unfortunately, the existing mes-
sage franking schemes only consider 1-1 communication scenarios.

In this paper, we systematically explore message franking in group
communication scenarios. We introduce the notion of asymmetric group
message franking (AGMF), and formalize its security requirements.
Then, we provide a framework of constructing AGMF from a new primi-
tive, called HPS-KEMΣ. We also give a construction of HPS-KEMΣ based
on the DDH assumption. Plugging the concrete HPS-KEMΣ scheme into
our AGMF framework, we obtain a DDH-based AGMF scheme, which
supports message franking in group communication scenarios.

Keywords: Message franking · Hash proof system · Key
encapsulation mechanism · Signature of knowledge

1 Introduction

In recent years, secure messaging applications have become extremely popular
for conversations between individuals and groups. Billions of people communi-
cate with each other via messaging applications like Facebook Messager, Twit-
ter, Signal, Google Allo, etc. every day. However, these messaging applications
are abused for the spread of malicious information such as harassment messages,
phishing links, fake information and so on. Facebook Messager [20,21] introduced
the concept of message franking, which was formally studied in [24] later. Gener-
ally, (symmetric or asymmetric) message franking [21,24,36] provides account-
ability, i.e., it allows the receiver to report the malicious messages to some moder-
ator (e.g., the platform or some trusted third party), and meanwhile guarantees
c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14008, pp. 67–97, 2023.
https://doi.org/10.1007/978-3-031-30589-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30589-4_3&domain=pdf
http://orcid.org/0000-0001-5780-8463
http://orcid.org/0000-0002-8421-4916
http://orcid.org/0000-0003-3509-787X
http://orcid.org/0000-0002-3975-8500
http://orcid.org/0000-0002-2747-5677
http://orcid.org/0000-0003-4067-8230
https://doi.org/10.1007/978-3-031-30589-4_3

68 J. Lai et al.

that no fake reports can be fabricated to frame an honest sender. Deniability, as
also an explicit goal of Facebook’s message franking based moderation system
[21], is formalized for asymmetric message franking (AMF) in [36]. Informally,
deniability ensures that when the receiver reports some malicious messages, only
the moderator is able to validate the report. In other words, after a compromise,
the sender can deny sending the messages technically, in order to avoid backlash
or embarrassment (for more explanations, please refer to [36]). Now, message
franking is a vital security feature for secure messaging applications, especially
in government affairs, business and so on.

Compared with symmetric message franking, asymmetric message frank-
ing supports third-party moderation, decoupling the platform and the mod-
erator, which enables cross-platform moderation of multiple messaging systems.
As pointed out in [36], this property is necessary in decentralized or federated
messaging systems like Matrix [2] or Mastodon [1], and is advantageous if the
platform cannot adequately moderate messages, or if sub-communities want to
enforce their own content policies.

However, the existing AMF [36] only considers the case of 1-1 communica-
tion. As for another common scenarios, group communications, no works have
ever related to this topic. Group communication plays an important role in team-
work or other multi-user scenarios, and many popular instance communication
tools support it, such as WhatsApp and Signal. In addition, the IETF launched
the message-layer security (MLS) working group, which aims to standardize an
eponymous secure group messaging protocol. At the meanwhile, the academic
researchers also paid lots of attention, such as [3,4,13,23,39].

Contributions. In this paper, we systematically explore message franking in
group communication scenarios. The contributions are listed as follows.

– We introduce a new primitive called asymmetric group message franking
(AGMF), and formalize its security notions.

– We present a variant of key encapsulation mechanism (KEM), called
HPS-KEMΣ, and provide a construction based on the decisional Diffie-
Hellman (DDH) assumption. The construction can be extended to be built
based on the k-Linear assumption.

– We provide a framework of constructing AGMF from HPS-KEMΣ, and show
that it achieves the required security properties. Actually, we also obtain a
framework of constructing AMF from HPS-KEMΣ (i.e., when the size of the
receiver set is 1).

When plugging the concrete HPS-KEMΣ scheme into our AGMF framework,
we obtain an AGMF scheme based on the DDH assumption, which implies a

Asymmetric Group Message Franking: Definitions and Constructions 69

DDH-based AMF scheme. Note that the only existing AMF scheme [36]1 is
constructed based on a somewhat exotic assumption, knowledge-of-exponent
assumption (KEA) [5], or the Gap Diffie-Hellman (GDH) assumption [6].

AGMF Primitive. In the context of AGMF, there are three kinds of parties
involved: the sender, the multiple receivers, and the moderator (or called the
judge). Syntactically, similar to AMF, an AGMF consists of nine algorithms:
three algorithms for generating public parameters and key pairs, three algo-
rithms (Frank, Verify, Judge) for creating and verifying genuine signatures, and
the other three algorithms (Forge, RForge, JForge) for forging signatures. In a
nutshell, the sender invokes the signing algorithm Frank to generate signatures
for a receiver set. Any receiver calls Verify (with his/her secret key as input) to
verify the received signatures. If some receiver reports some malicious message
to the moderator, the moderator verifies the report with algorithm Judge. Algo-
rithms Forge, RForge and JForge are not intended to be run by legitimate users.
Their existence guarantee deniability in particular compromise scenarios.

We consider three kinds of security requirements for AGMF: accountability,
deniability, and receiver anonymity.

– Accountability. Accountability is formalized with two special properties:
sender binding and receiver binding. Sender binding guarantees that any
sender should not be able to trick receivers into accepting unreportable mes-
sages, and receiver binding guarantees that any receivers cannot deceive the
judge or other honest receivers (to frame the innocent sender).

– Deniability. Deniability is formalized with three special properties: univer-
sal deniability, receiver compromise deniability and judge compromise deni-
ability. Universal deniability is formalized to guarantee deniability when no
receiver secret key or judge secret key is compromised. Receiver compromise
deniability is formalized to guarantee deniability when the secret keys of
some receivers in the receiver set are compromised. Judge compromise deni-
ability is formalized to guarantee deniability when the judge’s secret key is
compromised.

– Receiver Anonymity. Receiver anonymity is formalized to guarantee that any
one (except for the receivers in the receiver set), including the judge, cannot
tell which receiver set a signature is generated for.

When formalizing the above security requirements, the existence of multiple
receivers in group communication scenarios introduces new security risks, making
the security models in AGMF different from that in AMF.
1 Very recently, Issa et al. also consider a kind of AMF, called Hecate [28], but it is

somewhat different from [36]. Firstly, [36] and this paper only focus on the intrin-
sic/fundamental security properties of A(G)MF, while Hecate [28] also considers
others, e.g., forward/backward secrecy. Secondly, [36] only needs one round of com-
munication and can generate the AMF signature on the fly, but Hecate [28] intro-
duces an AMF with preprocessing model, resulting in one more preprocessing round
with the moderator to get a “token” before generating the AMF signature. Hence,
we follow the definition in [36], not considering Hecate [28] when talking about AMF.

70 J. Lai et al.

First of all, due to the existence of multiple receivers, it is natural to consider
that the adversary in the security models of AGMF is able to corrupt some of
the receivers. These corruptions bring in the following concerns.

– Compared with receiver binding for AMF, which requires that any single
receiver cannot deceive the judge to frame the innocent sender, receiver bind-
ing for AGMF requires that any corrupted receivers cannot deceive the judge
or the other honest receivers to frame the innocent sender.

– Recall that receiver compromise deniability for AMF requires that a party
with the receiver’s secret key is able to create a signature, such that for
other parties with access to this secret key, it is indistinguishable from
honestly-generated signatures. Comparatively, receiver compromise deniabil-
ity for AGMF requires that any corrupted users in the receiver set are able to
create a signature, such that for other parties with access to these corrupted
users’ secret keys, it is indistinguishable from honestly-generated signatures.

Secondly, we also formalize a new security notion called receiver anonymity,
which is not considered in AMF. Receiver anonymity requires that any one
(except for the receivers in the receiver set), including the judge, cannot tell
which receiver set a signature is generated for. With receiver anonymity, the
receivers in group communication scenarios can report the malicious messages to
the moderator with less concerns. If the AGMF scheme does not support receiver
anonymity, then the judge can know some information about the identities of
receivers from the report. Then the reporter may be at the risk of vengeance,
especially if the judge is possible to leak the receiver’s identity information to
the sender. As a result, it would silence the reporters. Actually, anonymity has
already been considered in many group scenarios, such as accountable anony-
mous group messaging system [14,35,38], and proactively accountable anony-
mous messaging [15].

More importantly, in all our proposed security models, the adversary is allowed
to corrupt the receivers adaptively. In other words, how many and whose secret
keys are compromised is unpredictable in practical scenarios, which is greatly dif-
ferent from that in AMF (i.e., only one receiver’s secret key is compromised). Com-
pared with non-adaptive corruptions (i.e., the adversary is required to announce
all the corrupted users at the beginning before seeing all users’ public keys), adap-
tive corruptions are more natural, and cryptographic schemes supporting adaptive
corruptions are much more difficult to obtain, as mentioned in [3,25,26,29].

AGMF Construction. Following, we highlight the technical details of our
AGMF construction.

HPS-KEMΣ. In order to provide a framework of constructing AGMF, we intro-
duce a new primitive. This primitive is a variant of key encapsulation mechanism
(KEM) satisfying that (i) it can be interpreted from the perspective of hash proof
system (HPS) [17], and (ii) for some special relations (about the public/secret
keys, the encapsulated keys and ciphertexts), there exist corresponding Sigma
protocols [16]. We call this primitive HPS-based KEM supporting Sigma protocols
(HPS-KEM Σ).

Asymmetric Group Message Franking: Definitions and Constructions 71

A HPS-KEMΣ scheme HPS-KEMΣ mainly contains six algorithms: Setup, KG,
encapc, encapk, decap and encap∗

c . In a nutshell, Setup outputs a public parame-
ter, and KG outputs a pair of public/secret user keys. Taking the public parameter
as input, without user’s public key, encapc outputs a well-formed ciphertext, and
encap∗

c outputs a ciphertext which could be well-formed or ill-formed. The algo-
rithm encapk, sharing the same randomness space with encapc, takes the public
parameter and user’s public key as input, and outputs an encapsulated key. With
user’s secret key, the algorithm decap is invoked to decapsulate the ciphertexts to
get the encapsulated keys. The correctness demands that given a ciphertext out-
put by encapc with randomness r, decap will recover an encapsulated key, which is
equivalent to that generated by encapk with the same randomness r.

It is required that there are Sigma protocols to prove that some results are
exactly output by KG, encapc, encapk or encap∗

c . We also require the following
properties informally.

1. Universality: when given a public key, it is difficult for any unbounded adver-
sary without the corresponding secret key to generate an ill-formed ciphertext
c, an encapsulated key k and a witness w (indicating that c is generated via
encap∗

c), such that with the ciphertext c as input, decap outputs a key equal
to k.

2. Unexplainability: it is difficult to generate a ciphertext c and a witness w
(indicating that c is generated via encap∗

c), such that c is well-formed.
3. Indistinguishability: the ciphertext output by encap∗

c is indistinguishable from
the well-formed ciphertext output by encapc.

4. SK-second-preimage resistance: when given a pair of public and secret keys,
it is difficult to generate another valid secret key for this public key.

5. Smoothness: when given a public key, the algorithm decap, fed with a cipher-
text generated via encap∗

c and a user’s secret key randomly sampled from the
set of secret keys corresponding to the public key, will output a key uniformly
distributed over the encapsulated key space.

AGMF from HPS-KEMΣ. Taking HPS-KEMΣ as a building block, we construct
AGMF as follows.

The public/secret key pairs of all users (including the judge) are generated
by invoking the key generation algorithm KG of the HPS-KEMΣ.

Given a pair of sender’s public/secret keys (pks, sks), a receiver set S =
{pkri}i∈[|S|], the judge’s public key pkJ and a message m, the sender calls Frank
to generate the signature as follows:

(1) Compute c ← encapc(pp; r), kJ ← encapk(pp, pkJ; r) and (kri ←
encapk(pp, pkri ; r))pkri∈S with the same randomness r.

(2) Consider the following relation

R = { ((sks, r, r
∗), (pp, pks, pkJ, c, kJ)) :

((sks, pks) ∈ Rs ∧ (r, (c, kJ, pkJ)) ∈ Rc,k)
∨ ((r∗, c) ∈ R∗

c) }
(1)

where Rs is a relation proving that the sender’s public/secret keys are valid,
Rc,k is a relation proving that (c, kJ) are generated via encapc and encapk

72 J. Lai et al.

with the same randomness r, and R∗
c is a relation proving that c is a cipher-

text output by encap∗
c with randomness r∗. As the HPS-KEMΣ guarantees

that there are Sigma protocols for KG, encapc, encapk and encap∗
c , we can

obtain a signature of knowledge (SoK) scheme for R by applying the Fiat-
Shamir transform [22] and composition operations of Sigma protocols [7].

(3) Employ the SoK scheme for R to generate a signature proof π of state-
ment (pp, pks, pkJ, c, kJ) for a message m = (m||{kri}pkri∈S) with a witness
(sks, r).

(4) Return the signature σ = (π, c, kJ, {kri}pkri∈S).

The verification algorithm Verify and the moderation algorithm Judge work
similarly. When some receiver receives a message and a signature or the judge
receives a report with a message and a signature, the first step of these algo-
rithms is to verify if the proof π in the signature is valid. If not valid, Verify
(resp., Judge) returns 0; otherwise, Verify (resp., Judge) returns 1 if and only if
decap(pp, skr, c) ∈ {kri} (resp., decap(pp, skJ, c) = kJ).

Now we turn to describe the forging algorithms Forge, RForge and JForge.
Given a sender’s public keys pks, a receiver set S = {pkri}i∈[|S|], the judge’s

public key pkJ and a message m, the universal forging algorithm Forge proceeds
as follows:

(1) Compute c ← encap∗
c(pp; r∗) with randomness r∗, kJ ← K, and (kri ←

K)pkri∈S .
(2) Employ the SoK scheme for R in Eq. (1) to generate a signature proof π

of statement (pp, pks, pkJ, c, kJ) for a message m = (m||{kri}pkri∈S) with a
witness r∗.

(3) Return the signature σ = (π, c, kJ, {kri}pkri∈S).

Given a sender’s public key pks, a receiver set S = {pkri}i∈[|S|], the corrupted
receivers’ secret keys {skri}pkri∈Scor (where Scor ⊂ S), the judge’s public key pkJ

and a message m, the receiver compromise forging algorithm RForge proceeds
similarly to Forge, except that (kri)pkri∈S are generated as follows: for each pkri ∈
S\Scor, samples kri ← K; for each pkri ∈ Scor, computes kri ← decap(pp, skri , c).

Given a sender’s public keys pks, a receiver set S = {pkri}i∈[|S|], the judge’s
secret key skJ and a message m, the judge compromise forging algorithm JForge
proceeds similarly to Forge, except that kJ is generated by kJ ← decap(pp, skJ, c).

Security Analysis. Now we briefly show that our AGMF framework provides
accountability, deniability and receiver anonymity.

Informally, sender binding requires that any malicious sender cannot generate
a signature such that an honest receiver accepts it but the judge rejects it. If
there exists an adversary generating such a signature σ = (π, c, kJ, {kri}pkri∈S),
then we have: (i) π is a valid proof for the relation R; (ii) k′ = decap(pp, skr, c) ∈
{kri}pkri∈S ; (iii) decap(pp, skJ, c) �= kJ. Observe that to generate the valid proof
π for R, the adversary needs to know witness (sks, r) or r∗. According to (i)
and (iii), it implies that the adversary generates π using the witness r∗, which
suggests that c is generated via encap∗

c . The unexplainability of HPS-KEMΣ

implies that c is not well-formed with overwhelming probability. So according to
(ii), (c, k′, r∗) leads to a successful attack on universality of HPS-KEMΣ.

Asymmetric Group Message Franking: Definitions and Constructions 73

Receiver binding requires that any malicious receivers cannot generate a sig-
nature such that an honest receiver or the judge accepts it.

– Supposing that there exists an adversary generating a signature σ = (π, c, kJ,
{kri}pkri∈S) such that an honest receiver accepts it, we have: (i) π is a valid
proof for the relation R; (ii) k′ = decap(pp, skr, c) ∈ {kri}pkri∈S . Observe
that to generate the valid proof π for R, the adversary needs to know witness
(sks, r) or r∗.

• If the adversary knows (sks, r), it implies that sks is a valid secret key of
the sender. Since the adversary is not allowed to corrupt the sender, it is
contradictory to SK-second-preimage resistance of HPS-KEMΣ.

• If the adversary knows r∗, it implies that c is generated via encap∗
c . The

unexplainability of HPS-KEMΣ guarantees that c is not well-formed with
overwhelming probability. So according to (ii), (c, k′, r∗) leads to a suc-
cessful attack on universality of HPS-KEMΣ.

– Supposing that there exists an adversary generating a signature σ = (π, c, kJ,
{kri}pkri∈S) such that the judge accepts it, we have: (i) π is a valid proof for
the relation R; (ii) decap(pp, skJ, c) = kJ. With similar analysis, this leads
to a successful attack on SK-second-preimage resistance or universality of
HPS-KEMΣ.

Next, we turn to analyze universal deniability, receiver compromise denia-
bility, and judge compromise deniability of our AGMF framework. Due to the
similarity of security analysis of these deniabilities, here we just show how uni-
versal deniability is achieved.

Universal deniability requires that the outputs of Frank and Forge are indis-
tinguishable. For the generation of signature σ = (π, c, kJ, {kri}pkri∈S), the dif-
ferences between the two algorithms are as follows.

– (c, kJ, {kri}pkri∈S): Algorithm Frank computes c ← encapc(pp; r), kJ ← encapk

(pp, pkJ; r) and (kri ← encapk(pp, pkri ; r))pkri∈S with the same randomness
r, while algorithm Forge computes c ← encap∗

c(pp; r∗) with randomness r∗,
and samples kJ ← K and (kri ← K)pkri∈S .

The indistinguishability of HPS-KEMΣ guarantees that c output by encapc

is indistinguishable from that output by encap∗
c . When c ← encapc(pp; r), we

have encapk(pp, pkri ; r) = decap(pp, skri , c) and encapk(pp, pkJ; r) = decap(pp,
skJ, c). On the other hand, when c ← encap∗

c(pp; r∗), the smoothness of
HPS-KEMΣ guarantees that the encapsulated keys kri ← decap(pp, skri , c)
and kJ ← decap(pp, skJ, c) are indistinguishable from those random keys
kri ← K and kJ ← K. Therefore, through hybrid arguments, we can show
that (c, kJ, {kri}pkri∈S) output by Frank and Forge are indistinguishable.

– π: Frank generates a signature proof π for R with a witness (sks, r), while Forge
generates π for R with a witness r∗. Because of zero knowledge property of
the SoK scheme for R, anyone cannot distinguish the proof output by Frank
from that output by Forge.

74 J. Lai et al.

Finally, we briefly explain why our AGMF framework achieves receiver
anonymity. Informally, receiver anonymity requires that given two receiver sets
S0 and S1 with the same size, a signature generated by Frank for S0 is indistin-
guishable from that for S1. According to the above security analysis of universal
deniability, the signature output by Frank is indistinguishable from that output
by Forge. Notice that, the signature generated by Forge does not contain any
information about the receiver set. Thus, the signatures generated by Frank for
S0 and for S1 are indistinguishable.

Construction of HPS-KEMΣ. Inspired by the DDH-based HPS [17], we provide
a construction of HPS-KEMΣ, which can be extended to be built based on the
k-Linear assumption. The main algorithms are constructed as follows.

KG outputs a pair of public/secret keys (pk, sk) = (gx1
1 gx2

2 , (x1, x2)), where
g1, g2 are two generators of group G of prime order p, and x1, x2 are uniformly
sampled from Z

∗
p.

To generate a well-formed ciphertext c, encapc outputs c = (u1, u2) = (gr
1, g

r
2),

where r is uniformly random sampled from Z
∗
p.

For generating a ciphertext, encap∗
c chooses randomness r∗ = (r, r′) ∈ Z

∗
p
2

and outputs c = (u1, u2) = (gr
1, g

r′
1).

Algorithm encapk outputs an encapsulated key k = pkr, where r is uniformly
random sampled from Z

∗
p.

When inputting a ciphertext c = (u1, u2) and a secret key sk = (x1, x2), the
algorithm decap outputs a key k′ = ux1

1 ux2
2 .

Note that there are Sigma protocols for KG, encapc, encapk or encap∗
c :

Okamoto’s Sigma protocol [31] for KG, the Chaum-Pedersen protocol [11] for
encapc and encapk with the same randomness, and Schnorr’s Sigma protocol
[33] for encap∗

c .
Now we show our HPS-KEMΣ construction achieves the required properties.
With similar analysis in [17], we can easily obtain universality, indistinguisha-

bility and smoothness of our construction.
For unexplainability, suppose that there exists an adversary breaking the

unexplainability of our scheme. In other words, the adversary generates c =
(u1, u2) and w = (r, r′), such that (i) (u1 = gr

1) ∧ (u2 = gr′
1), and (ii) c is well-

formed. Note that c is well-formed implies that u2 = gr
2. So we can compute

logg1
g2 = r′

r , solving the DL problem.
For SK-second-preimage resistance (SK-2PR), suppose that there exists an

adversary breaking the SK-2PR of our scheme. In other words, given a pub-
lic/secret key pair (pk, sk) = (gx1

1 gx2
2 , (x1, x2)), the adversary outputs another

secret key sk′ = (x′
1, x

′
2) such that pk = g

x′
1

1 g
x′
2

2 . We can compute logg1
g2 =

(x1 − x′
1)/(x′

2 − x2), solving the DL problem.

Discussion I: Lower bound. Following we present a lower bound of the size
of AGMF signature.

Theorem 1. Any AGMF with receiver binding and receiver compromise deni-
ability must have signature size Ω(n), where n is the number of the members in
S.

Asymmetric Group Message Franking: Definitions and Constructions 75

Proof. Suppose that there exists a distinguisher D who knows all receivers’ secret
keys. Given a signature generated by RForge with a corrupted receiver set Scor,
D can distinguish whether someone is in Scor or not, by verifying validity of
the signature. Note that receiver binding and receiver deniability guarantee that
only the receivers in Scor would accept the signature. Thus, D can determine the
set Scor when given a signature generated by RForge. Therefore, the signature
must contain enough bits to indicate Scor. Since Scor ⊆ S and it can be an
arbitrary subset, there are 2|S| = 2n kinds of different subsets. Thus, the bit
length of signature is at least log2 2|S| = log2 2n = n. Considering that the
signature output by Frank is indistinguishable from that output by RForge, the
bit length of signature output by Frank is also Ω(n). 	

When plugging the concrete HPS-KEMΣ scheme into our AGMF framework,
we obtain an AGMF scheme based on the DDH assumption. The bit length of
the signature would be 9×|Z∗

p|+(n+3)×|G|, where n is the number of receivers
and p is the order of group G.

Theorem 1 indicates that the size of signature of AGMF is linear in n, and
the coefficient of n in the size of signature of our AGMF scheme is |cvm|, which
is almost optimal. Note that a proof with similar idea is given by Damg̊ard et
al. in [18, Theorem 1], to show the lower bound of the size of multi-designated
verifier signatures with any-subset simulation and strong unforgeablity.

Discussion II: AGMF when n = 1. Note that our method actually provides
a framework of constructing AMF from HPS-KEMΣ (i.e., when the size of the
receiver set is 1). The AMF scheme [36] is firstly constructed based on a some-
what exotic assumption, the KEA assumption [5]. As mentioned by Tyagi et al.
[36], the KEA assumption poses a challenge for interpreting the concrete security
analyses since the KEA extractor is not concretely instantiated. Then, they also
show a variant scheme that can be proven secure using the GDH assumption [6],
at the cost of signatures with slightly larger size. Specifically, the bit length of the
AMF signature [36] based on the GDH assumption would be 9 × |Z∗

p| + 4 × |G|.
When plugging the concrete HPS-KEMΣ scheme into the AMF framework,

we obtain a DDH-based AMF scheme. Although the size of the signature of our
AMF scheme would be 9 × |Z∗

p| + 4 × |G| as well, we stress that at the same
security level, the binary representation of the group element in our scheme has
smaller size than that in the GDH-based AMF scheme [36].

Discussion III: AGMF from AMF [36] Directly. A trivial construction of
AGMF is extended directly from the existing AMF [36], e.g., integrating AMF
[36] with the “trivial” Signal group key mechanism (i.e., a set of individual links
to each member of the group).

The extension has two shortcomings: i) the signature contains n NIZK proofs,
and ii) it needs a non-standard assumption, which is inherited from AMF [36].
Our scheme does not have these shortcomings. We also consider another exten-
sion in the full version of this paper. The key point is that we extend the relation
used in AMF [36] for one receiver to a relation for multiple receivers. However,
this extension also has similar shortcomings mentioned above. Due to the space

76 J. Lai et al.

limitations, more details of the extension will be given in the full version of this
paper.

Discussion IV: Integrating AGMF with Group Messaging Protocols.
For end-to-end encryption systems, there are kinds of requirements, including
message franking, privacy, forward/backward security, etc. Our paper focuses
on asymmetric message franking in group communication scenarios, not caring
about the other intrinsic security of group messaging protocols (e.g., privacy
and authenticity in the form of post-compromise forward secrecy). Discussing a
unified security model capturing other security properties is out of the scope of
this paper and we remain it as a future work.

A potential method to integrate AGMF with group messaging protocols (e.g.,
[3,13,14,23]) is similar to AMF. In other words, we treat the output of AGMF
as a signature and then encrypt the message and the signature following these
protocols.

Related Work. The technique of symmetric message franking (SMF) was
firstly introduced by Facebook [20,21]. Grubbs et al. [24] initiated a formal
study of SMF, formalizing a cryptographic primitive called compactly commit-
ting authenticated encryption with associated data (AEAD), and then showing
that many in-use AEAD schemes can be used for SMF. Dodis et al. [19] pointed
out that the Facebook SMF scheme is actually insecure, and proposed an efficient
single-pass construction of compactly committing AEAD. Observing that in all
previous SMF schemes, to make a report the receiver has to reveal the whole
communication for a session, Leontiadis et al. [30] and Chen et al. [12] indepen-
dently presented SMF constructions to tackle this problem. In CRYPTO 2019,
Tyagi et al. [36] initiated a formal study of AMF, formalizing security notions
of accountability and deniability for AMF, and showing an AMF construction
via signature of knowledge [8].

Recently, some works [28,32,37] explore source-tracking, which allows the
moderator to pinpoint the original source of a viral message rather than the
immediate sender of the message (in the setting of message franking [24,36]).
These works mainly focus on end-to-end encrypted messaging. It is an interesting
direction to consider source-tracking in group settings.

Group messaging and its variants have been studied in many works [3,4,13,
14,23,39], focusing on different properties or security requirements. To the best
of our knowledge, currently there are no variants of group messaging which can
provide the aforementioned accountability, deniability and anonymity simulta-
neously.

In 2020, Damg̊ard et al. [18] proposed the notion of off-the-record for any
subset in the constructions of multi-designated verifier signature (MDVS) for the
group Off-the-Record messaging. The notion is somewhat similar to the receiver
compromise deniability defined in this paper. As designated verifier signature
does not have all desired properties in the setting of AMF [36], the MDVS
construction [18] does not provide all required properties (e.g., accountability)
in our AGMF scenarios either.

Asymmetric Group Message Franking: Definitions and Constructions 77

Roadmap. We recall some preliminaries in Sect. 2. Then in Sect. 3, we present
the primitive of AGMF and formalize its security notions of accountability, deni-
ability and receiver anonymity. Next, in Sect. 4, we introduce a primitive called
HPS-KEMΣ and present a concrete construction. Taking HPS-KEMΣ as a build-
ing block, we provide a framework of constructing AGMF, and show that it
achieves accountability, deniability and receiver anonymity in Sect. 5.

2 Preliminaries

Notations. Throughout this paper, let λ denote the security parameter. For any
k ∈ N, let [k] := {1, 2, · · · , k}. For a finite set S, we denote by |S| the number of
elements in S, and denote by a ← S the process of uniformly sampling a from
S. For a distribution X, we denote by a ← X the process of sampling a from X.
For any probabilistic polynomial-time (PPT) algorithm Alg, we write Alg(x; r)
for the process of Alg on input x with inner randomness r, and use y ← Alg(x)
to denote the process of running Alg on input x with uniformly sampled inner
randomness r, and assigning y the result.

Now we recall the definitions of non-interactive zero knowledge (NIZK) proof
system in the random oracle model, Sigma protocol, and the Fiat-Shamir heuris-
tic [22] as follows. For convenience, the recalled NIZK is a variant integrating
the notion of signature of knowledge in [9,10,36] and the notion of NIZK in [7].

NIZK Proof System. Let M be a message space. For a witness space X
and a statement space Y, let R ⊆ X × Y be a relation. A NIZK proof scheme
NIZKR = (prove, verify) for witness-statement relation R ⊆ X × Y is a pair of
PPT algorithms associated with a message space M and a proof space Π.

• π ← NIZKR.prove(m,x, y): The prove algorithm takes (m,x, y) ∈ M×X ×Y
as input, and outputs a proof π ∈ Π.

• b ← NIZKR.verify(m,π, y): The verification algorithm takes (m,π, y) ∈ M ×
Π × Y as input, and outputs a bit b ∈ {0, 1}.

It is required to satisfies completeness, existential soundness, and zero-knowledge
in the random oracle model. The formal definitions are recalled as follows.

– Completeness. For all m ∈ M and all (x, y) ∈ R, we always have
NIZKR.verify (m,NIZKR.prove(m,x, y), y) = 1.

– Existential soundness. For any PPT adversary A, Advsound
NIZK,A(λ) is negli-

gible, where Advsound
NIZK,A(λ) is the probability that A outputs (m, y) ∈ M×Y

and π ∈ Π, such that NIZKR.verify(m,π, y) = 1 and (x′, y) /∈ R for all x′ ∈ X .
– Zero-knowledge. There is a PPT simulator S = (Sprove,Sro), such that for

any PPT adversary A, the advantage

Advzk
NIZK,A(λ) :=

∣
∣
∣Pr[Greal

NIZK,A(λ) = 1] − Pr[Gideal
NIZK,A,S(λ) = 1]

∣
∣
∣

is negligible, where Greal
NIZK,A and Gideal

NIZK,A,S are both in Fig. 1. Suppose that
NIZKR makes use of a hash function Hash, and the hash function Hash with

78 J. Lai et al.

output length len in Fig. 1 is modeled as a random oracle (a local array H is
employed).

Greal
NIZK,A(λ):

b ← AO(1λ)
Return b

Oprove(m, x, y):
If (x, y) /∈ R: Return ⊥
π ← prove(m, x, y)
Return π

Oro(str):
If H[str] = ⊥:

r ← {0, 1}len; H[str] := r
Return H[str]

Gideal
NIZK,A,S(λ):

b ← AO(1λ)
Return b

Oprove(m, x, y):
If (x, y) /∈ R: Return ⊥
(st, π) ← Sprove(st, m, y)
Return π

Oro(str):
(st, r) ← Sro(st, str)
Return r

Fig. 1. Games for defining zero knowledge of NIZKR

Sigma Protocol. A Sigma protocol for R ⊆ X × Y consists of two efficient
interactive protocol algorithms (P, V), where P = (P1, P2) is the prover and
V = (V1, V2) is the verifier, associated with a challenge space CL. Specifically,
for any (x, y) ∈ R, the input of the prover (resp., verifier) is (x, y) (resp., y).
The prover first computes (cm, aux) ← P1(x, y) and sends the commitment cm
to the verifier. The verifier (i.e., V1) returns a challenge cl ← CL. Then the
prover replies with z ← P2(cm, cl, x, y, aux). Receiving z, the verifier (i.e., V2)
outputs b ∈ {0, 1}. The tuple (cm, cl, z) is called a conversation. We require that
V does not make any random choices other than the selection of cl. For any
fixed (cm, cl, z), if the final output of V (y) is 1, (cm, cl, z) is called an accepting
conversation for y. Correctness requires for all (x, y) ∈ R, when P (x, y) and
V (y) interact with each other, the final output of V (y) is always 1.

The corresponding security notions are as follows.

Definition 1 (Knowledge soundness). We say that a Sigma protocol (P, V)
for R ⊆ X × Y provides knowledge soundness, if there is an efficient determin-
istic algorithm Ext such that on input y ∈ Y and two accepting conversations
(cm, cl, z), (cm, cl′, z′) where cl �= cl′, Ext always outputs an x ∈ X satisfying
(x, y) ∈ R.

Definition 2 (Special HVZK). We say that a Sigma protocol (P, V) for R ⊆
X ×Y with challenge space CL is special honest verifier zero knowledge (special
HVZK), if there is a PPT simulator S which takes (y, cl) ∈ Y ×CL as input and
satisfies the following properties:

Asymmetric Group Message Franking: Definitions and Constructions 79

(i) for all (y, cl) ∈ Y ×CL, S always outputs a pair (cm, z) such that (cm, cl, z)
is an accepting conversation for y;

(ii) for all (x, y) ∈ R, the tuple (cm, cl, z), generated via cl ← CL and (cm, z) ←
S(y, cl), has the same distribution as that of a transcript of a conversation
between P (x, y) and V (y).

The Fiat-Shamir heuristic. Let M be a message space, and (P, V) =
((P1, P2), (V1, V2)) be a Sigma protocol for a relation R ⊆ X × Y, where
its conversations (cm, cl, z) belong to some space CM × CL ×Z. Let Hash :
M × CM → CL be a hash function. The Fiat-Shamir non-interactive proof sys-
tem NIZKFS = (proveFS, verifyFS), with proof space Π = CM × Z, is as follows:

• proveFS(m,x, y): On input (m,x, y) ∈ M × X × Y, this algorithm firstly
generates (cm, aux) ← P1(x, y) and cl = Hash(m, cm, y), and then computes
z ← P2(cm, cl, x, y, aux). Finally, it outputs π = (cm, z).

• verifyFS(m, (cm, z), y): On input (m, (cm, z), y) ∈ M ×(CM × Z) × Y, this
algorithm firstly computes cl = Hash(m, cm, y), and then runs V2(y) to check
whether (cm, cl, z) is a valid conversation for y. If so, verifyFS returns 1;
otherwise, it returns 0.

According to [7,22], NIZKFS is an NIZK proof system if Hash is modeled as
a random oracle. To be noted, in order to reduce the size of π, we replace cm
with cl (i.e., we have π = (z, cl)), following [7].

Due to the page limitations, the cryptographic assumptions (the discrete
logarithm assumption and the decisional Diffie-Hellman assumption) used in
our security proofs will be recalled in the full version of this paper.

3 Asymmetric Group Message Franking

In this section, we introduce a primitive called asymmetric group message frank-
ing (AGMF) and formalize its security notions. Generally, AGMF is a crypto-
graphic primitive providing accountability, deniability and receiver anonymity
in group communication scenarios simultaneously.

3.1 AGMF Algorithms

We will firstly present the detailed notations of AGMF, and then explain the
syntax of the algorithms.

Formally, an asymmetric group message franking (AGMF) scheme AGMF =
(Setup,KGJ,KGu,Frank,Verify, Judge,Forge,RForge, JForge) is a tuple of algo-
rithms associated with a public key space PK, a secret key space SK, a message
space M and a signature space SG. Without loss of generality, we assume that
all pk inputs are in PK, all sk inputs are in SK, all m inputs are in M, and all
σ inputs are in SG.

The detailed descriptions of the nine algorithms are as follows.

80 J. Lai et al.

• pp ← Setup(λ): The setup algorithm takes the security parameter as input,
and outputs a global public parameters pp.

• (pkJ, skJ) ← KGJ(pp): The randomized key generation algorithm KGJ takes
pp as input, and outputs a key pair (pkJ, skJ) for the judge.

• (pk, sk) ← KGu(pp): The randomized key generation algorithm KGu takes pp
as input, and outputs a key pair (pku, sku) for users. Below we usually use
(pks, sks) (resp., (pkr, skr)) to denote sender (resp., receiver) public/secret
key pair.

• σ ← Frank(pp, sks, S, pkJ,m): The franking algorithm takes the public param-
eter pp, a sender’s secret key sks, a polynomial-size receiver’s public key set
S = {pkri}i∈[|S|] ⊂ PK, the judge’s public key pkJ and a message m as input,
and outputs a signature σ.

• b ← Verify(pp, pks, skr, pkJ,m, σ): The deterministic receiver verification algo-
rithm takes (pp, pks, skr, pkJ), a message m and a signature σ as input, and
outputs a bit b, which indicates that the signature is valid or not.

• b ← Judge(pp, pks, skJ,m, σ): The deterministic judge authentication algo-
rithm takes (pp, pks, skJ), a message m and a signature σ as input, and returns
b ∈ {0, 1}.

• σ ← Forge(pp, pks, S, pkJ,m): The universal forging algorithm, on input
(pp, pks, S, pkJ) and a message m, returns a “forged” signature σ, where
S ⊂ PK.

• σ ← RForge(pp, pks, (pkri , skri)pkri∈Scor , S, pkJ,m): The receiver compromise
forging algorithm takes (pp, pks, (pkri , skri)pkri∈Scor , S, pkJ) and a message m
as input, and returns a “forged” signature σ, where Scor ⊂ S ⊂ PK.

• σ ← JForge(pp, pks, S, skJ,m): The judge compromise forging algorithm takes
(pp, pks, S, skJ) and a message m as input, and outputs a “forged” signature
σ, where S ⊂ PK.

Correctness. For any normal signature generated by Frank, the correctness
requires that (i) each receiver in the receiver set can call Verify to verify the
signature successfully, and (ii) the moderator can invoke Judge to validate a
report successfully once he receives a valid report. The formal requirements are
shown as follows.

Given any pp generated by Setup, any key pairs (pks, sks) and (pkr, skr)
output by KGu, and any key pair (pkJ, skJ) output by KGJ, we require that
for any S ⊂ PK satisfying pkr ∈ S, any message m ∈ M, and any σ ←
Frank(pp, sks, S, pkJ,m), it holds that:

(1) Verify(pp, pks, skr, pkJ,m, σ) = 1;
(2) Judge(pp, pks, skJ,m, σ) = 1.

3.2 Security Notions for AGMF

Now we formalize some security notions for AGMF, including the security
notions for accountability, deniability and receiver anonymity of AGMF. Note
that we consider the adaptive security in the following games. It means that the

Asymmetric Group Message Franking: Definitions and Constructions 81

adversary A is allowed to query the corruption oracle on different public keys
adaptively, obtaining corresponding secret keys.

Accountability. Analogous to the setting of end-to-end communication, one
of the most important security requirements in group scenarios is to prevent
malicious impersonation. In other words, AGMF needs to ensure that no one will
be impersonated successfully as long as her/his secret key is not compromised.
Specifically, AGMF needs to guarantee that (i) no receivers can trick the judge
or any receiver in the receiver set (except the adversarial receiver herself if she is
also in this set) into accepting a message that is not actually sent by the sender,
and (ii) no sender can create a signature such that it is accepted by some receiver
but meanwhile rejected by the judge. Following the terminology in AMF [36], we
also refer to these security requirements as receiver binding and sender binding,
respectively.

Gr-bind
AGMF,A,n(λ):

pp ← Setup(λ); (pkJ, skJ) ← KGJ(pp)
Qsig := ∅; U := ∅; Ukey := ∅; Ucor := ∅
For i = 1 . . . n:

(pki, ski) ← KGu(pp); U ← U ∪ {pki}
Ukey ← Ukey ∪ {(pki, ski)}

(pk∗
s , pk∗

r , m∗, σ∗) ← AO(pp, U, pkJ)
If Verify(pp, pk∗

s , sk∗
r , pkJ, m∗, σ∗) = 1:

If pk∗
s , pk∗

r /∈ Ucor:
If �(pk∗

s , S′, m∗) ∈ Qsig s.t. pk∗
r ∈ S′:

Return 1
If Judge(pp, pk∗

s , skJ, m∗, σ∗) = 1:
If (pk∗

s /∈ Ucor) ∧ (�(pk∗
s , S′, m∗) ∈ Qsig):

Return 1
Return 0

OCor(pk′):
Ucor ← Ucor ∪ {pk′}
Return sk′ s.t. (pk′, sk′) ∈ Ukey

OFrank(pk′
s, S′, m′):

Qsig ← Qsig ∪ {(pk′
s, S′, m′)}

Return Frank(pp, sk′
s, S′, pkJ, m′)

OVerify(pk′
s, pk′

r, m′, σ′):
Return Verify(pp, pk′

s, sk′
r, pkJ, m′, σ′)

OJudge(pk′
s, m′, σ′):

Return Judge(pp, pk′
s, skJ, m′, σ′)

Gs-bind
AGMF,A,n(λ):

pp ← Setup(λ); (pkJ, skJ) ← KGJ(pp)
U := ∅; Ukey := ∅; Ucor := ∅
For i = 1 . . . n:

(pki, ski) ← KGu(pp); U ← U ∪ {pki}
Ukey ← Ukey ∪ {(pki, ski)}

(pk∗
s , pk∗

r , m∗, σ∗) ← AO(pp, U, pkJ)
If pk∗

r ∈ Ucor: Return 0
b1 ← Verify(pp, pk∗

s , sk∗
r , pkJ, m∗, σ∗)

b2 ← Judge(pp, pk∗
s , skJ, m∗, σ∗)

Return b1 ∧ ¬b2

OCor(pk′):
Ucor ← Ucor ∪ {pk′}
Return sk′ s.t. (pk′, sk′) ∈ Ukey

OFrank(pk′
s, S′, m′):

Return Frank(pp, sk′
s, S′, pkJ, m′)

OVerify(pk′
s, pk′

r, m′, σ′):
Return Verify(pp, pk′

s, sk′
r, pkJ, m′, σ′)

OJudge(pk′
s, m′, σ′):

Return Judge(pp, pk′
s, skJ, m′, σ′)

Fig. 2. Games for defining receiver-binding and sender-binding of AGMF

Now, we present the formal definitions as below.

Definition 3 (r-BIND). An AGMF scheme AGMF is receiver-binding, if for
any PPT adversary A, its advantage

Advr-bind
AGMF,A,n(λ) := Pr[Gr-bind

AGMF,A,n(λ) = 1]

is negligible, where Gr-bind
AGMF,A,n(λ) is defined in Fig. 2.

82 J. Lai et al.

Definition 4 (s-BIND). An AGMF scheme AGMF is sender-binding, if for
any PPT adversary A, its advantage

Advs-bind
AGMF,A,n(λ) := Pr[Gs-bind

AGMF,A,n(λ) = 1]

is negligible, where Gs-bind
AGMF,A,n(λ) is defined in Fig. 2.

Remark 1. The receiver binding game Gr-bind
AGMF,A,n(λ) is much more complicated

than that in AMF [36], essentially because in the setting of group scenarios,
there are multiple receivers. For example, compared with the receiver binding
game in AMF, here we additionally need to consider the probability that A
tricks the other honest receivers in the same receiver set. We want to stress that
this security model implies unforgeability.

Remark 2. In Gr-bind
AGMF,A,n(λ), if A outputs (pk∗

s , pk∗
r , σ∗,m∗) such that

Verify(pp, pk∗
s , sk∗

r , pkJ,m
∗, σ∗) = 1, then A wins only if

(pk∗
s /∈ Ucor) ∧ (pk∗

r /∈ Ucor) ∧ (� (pk∗
s , S′,m∗) ∈ Qsig s.t. pk∗

r ∈ S′).

That’s because (i) if pk∗
s ∈ Ucor or there is some (pk∗

s , S′,m∗) ∈ Qsig such that
pk∗

r ∈ S′, A can trivially win; (ii) if pk∗
r ∈ Ucor, A still can generate such a tuple

to win this game by running algorithm RForge.

Remark 3. Compared with the security models of receiver-binding and sender-
binding in AMF [36], here we provide the adversary A with more abilities. For
example, in Gr-bind

AGMF,A,n(λ) and Gr-bind
AGMF,A,n(λ), A is allowed to query OFrank on

(pk′
s, S

′,m′) and query OVerify on (pk′
s, pk′

r,m
′, σ′), where pk′

s can be any users’
public keys (including pk∗

s and pk∗
r), and so can pk′

r. The ability is not provided
in the receiver/sender binding game of AMF in [36].

Deniability. To support deniability, we need to consider universal deniability,
receiver compromise deniability, and judge compromise deniability for AGMF.
Generally speaking, universal deniability requires that any non-participating
party (i.e., no access to the secret key of the sender, the secret key of any user
in the receiver set, or the secret key of the judge) can create a signature, such
that for other non-participating parties, it is indistinguishable from honestly-
generated signatures. Receiver compromise deniability requires that any cor-
rupted users in the receiver set are able to create a signature, such that for other
parties with access to these corrupted users’ secret keys, it is indistinguishable
from honestly-generated signatures. Judge compromise deniability requires that
a party with the judge’s secret key is able to create a signature, such that for
other parties with access to the judge’s secret key, it is indistinguishable from
honestly-generated signatures.

The formal definitions are presented as follows.

Definition 5 (UnivDen). An AGMF scheme AGMF is universally deniable,
if for any PPT adversary A, its advantage

AdvUnivDen
AGMF,A,n(λ) := |Pr[GUnivDen

AGMF,A,n(λ) = 1] − 1
2
|

is negligible, where GUnivDen
AGMF,A,n(λ) is defined in Fig. 3.

Asymmetric Group Message Franking: Definitions and Constructions 83

GUnivDen
AGMF,A,n(λ):

b ← {0, 1}; pp ← Setup(λ)
(pkJ, skJ) ← KGJ(pp)
U := ∅; Ukey := ∅; Ucor := ∅; Q∗ := ∅
For i = 1 . . . n:

(pki, ski) ← KGu(pp); U ← U ∪ {pki}
Ukey ← Ukey ∪ {(pki, ski)}

b′ ← AO(pp, U, pkJ)
Return (b = b′)

OCor(pk′):
If pk′ ∈ Q∗: Return ⊥
Ucor ← Ucor ∪ {pk′}
Return sk′ s.t. (pk′, sk′) ∈ Ukey

OF-F(pk′
s, S′, m′):

If S′ ∩ Ucor �= ∅ : Return ⊥
Q∗ ← Q∗ ∪ S′

σ0 ← Frank(pp, sk′
s, S′, pkJ, m′)

σ1 ← Forge(pp, pk′
s, S′, pkJ, m′)

Return σb

GReComDen
AGMF,A,n (λ):

b ← {0, 1}; pp ← Setup(λ)
(pkJ, skJ) ← KGJ(pp)
U := ∅; Ukey := ∅; Ucor := ∅; Q∗ := ∅
For i = 1 . . . n:

(pki, ski) ← KGu(pp); U ← U ∪ {pki}
Ukey ← Ukey ∪ {(pki, ski)}

b′ ← AO(pp, U, pkJ)
Return (b = b′)

OCor(pk′):
If pk′ ∈ Q∗: Return ⊥
Ucor ← Ucor ∪ {pk′}
Return sk′ s.t. (pk′, sk′) ∈ Ukey

OF-RF(pk′
s, S′, S′

cor, m′):
If (S′

cor � S′) ∨ ((S′ \ S′
cor) ∩ Ucor �= ∅): Return ⊥

Q∗ ← Q∗ ∪ (S′ \ S′
cor)

σ0 ← Frank(pp, sk′
s, S′, pkJ, m′)

σ1 ← RForge(pp, pk′
s, (pkri , skri)pkri∈Scor , S′, pkJ, m′)

Return σb

GJuComDen
AGMF,A,n (λ):

b ← {0, 1}; pp ← Setup(λ)
(pkJ, skJ) ← KGJ(pp)
U := ∅; Ukey := ∅; Ucor := ∅; Q∗ := ∅
For i = 1 . . . n:

(pki, ski) ← KGu(pp); U ← U ∪ {pki}
Ukey ← Ukey ∪ {(pki, ski)}

b′ ← AO(pp, U, pkJ, skJ)
Return (b = b′)

OCor(pk′):
If pk′ ∈ Q∗: Return ⊥
Ucor ← Ucor ∪ {pk′}
Return sk′ s.t. (pk′, sk′) ∈ Ukey

OF-JF(pk′
s, S′, m′):

If S′ ∩ Ucor �= ∅: Return ⊥
Q∗ ← Q∗ ∪ S′

σ0 ← Frank(pp, sk′
s, S′, pkJ, m′)

σ1 ← JForge(pp, pk′
s, S′, skJ, m′)

Return σb

Fig. 3. Games for defining universal deniability, receiver compromise deniability, and
judge compromise deniability of AGMF

Definition 6 (ReComDen). An AGMF scheme AGMF is receiver-compromise
deniable, if for any PPT adversary A, its advantage

AdvReComDen
AGMF,A,n (λ) := |Pr[GReComDen

AGMF,A,n (λ) = 1] − 1
2
|

is negligible, where GReComDen
AGMF,A,n (λ) is defined in Fig. 3.

Definition 7 (JuComDen). An AGMF scheme AGMF is judge-compromise
deniable, if for any PPT adversary A, its advantage

AdvJuComDen
AGMF,A,n (λ) := |Pr[GJuComDen

AGMF,A,n (λ) = 1] − 1
2
|

is negligible, where GJuComDen
AGMF,A,n (λ) is defined in Fig. 3.

Remark 4. In universal deniability game (resp., judge compromise deniability
game), for A’s each OF-F-oracle (resp., OF-JF-oracle) query (pk′

s, S
′,m′), A is

not allowed to see the secret keys of the receivers in S′. In receiver compromise
deniability game, for A’s each OF-RF-oracle query (pk′

s, S
′, S′

cor,m
′), A is not

allowed to see the secret keys of the receivers in S′\S′
cor. We use Q∗ to specify

the receivers whose secret keys are not provided to A.

84 J. Lai et al.

Remark 5. Note that in these games, the adversary is allowed to access the
sender’s secret key, as long as the sender is not in the receiver set. Compared
with the judge compromise deniability formally defined in AMF [36], where the
adversary A is offered both the receiver’s and the judge’s keys, our judge com-
promise deniability only provides the judge’s key to A. We stress that the judge
compromise deniability formally defined in [36] conflicts with strong authentica-
tion (i.e., as pointed out in [36], “forgeries by the moderator cannot be detected
by the receiver”). Our judge compromise deniability follows one of the ideas of
the judge compromise deniability formalization when considering strong authen-
tication, which is also introduced in [36, Appendix B]. Some more discussions
on definitions of deniability will be given in the full version of this paper, due to
the space limitations.

Receiver Anonymity. Generally speaking, receiver anonymity requires that
any one (except for the receivers in the receiver set), including the judge, cannot
tell which receiver set a signature is generated for. With receiver anonymity, the
receivers in group communication scenarios can report the malicious messages
to the moderator with less concerns.

The formal definition is presented as follows.

Definition 8 (RecAnony). An AGMF scheme AGMF is receiver anonymous,
if for any PPT adversary A, its advantage

AdvRecAnony
AGMF,A,n(λ) := |Pr[GRecAnony

AGMF,A,n(λ) = 1] − 1
2
|

is negligible, where GRecAnony
AGMF,A,n(λ) is defined in Fig. 4.

GRecAnony
AGMF,A,n (λ):

b ← {0, 1}; pp ← Setup(λ); (pkJ, skJ) ← KGJ(pp)
U := ∅; Ukey := ∅; Ucor := ∅
Q∗

tpl := ∅; Q∗ := ∅
For i = 1 . . . n:

(pki, ski) ← KGu(pp); U ← U ∪ {pki}
Ukey ← Ukey ∪ {(pki, ski)}

(pk∗
s , S0, S1, m∗, st) ← AO

1 (pp, U, pkJ, skJ)
If |S0| �= |S1|: Return 0
If ((S0 ∪ S1) ∩ Ucor) �= ∅: Return 0
Q∗ ← Q∗ ∪ (S0 ∪ S1)
σ∗ ← Frank(pp, sk∗

s , Sb, pkJ, m∗)
Q∗

tpl ← Q∗
tpl ∪ {(pk∗

s , pkr, m∗, σ∗) | pkr ∈ S0 ∪ S1}
b′ ← AO

2 (σ∗, st)
Return (b = b′)

OCor(pk′):
If pk′ ∈ Q∗: Return ⊥
Ucor ← Ucor ∪ {pk′}
Return sk′ s.t. (pk′, sk′) ∈ Ukey

OFrank(pk′
s, S′, m′):

Return Frank(pp, sk′
s, S′, pkJ, m′)

OVerify(pk′
s, pk′

r, m′, σ′):
If pk′

s ∈ Ucor: Return ⊥
If (pk′

s, pk′
r, m′, σ′) ∈ Q∗

tpl: Return ⊥
Return Verify(pp, pk′

s, sk′
r, pkJ, m′, σ′)

Fig. 4. Game for defining receiver anonymity of AGMF

Discussion. In the following sections, we will present an AGMF scheme achiev-
ing the above security features. In fact, our scheme can be proved secure
under stronger security models. For example, the receiver anonymity game

Asymmetric Group Message Franking: Definitions and Constructions 85

GRecAnony
AGMF,A,n(λ) in Fig. 4 can be strengthened by allowing the adversary to know

the secret keys of the users belonging to S0 ∩ S1. Our scheme also achieves
the strengthened receiver anonymity. It is an interesting direction to further
strengthen these security models.

4 HPS-Based KEM Supporting Sigma Protocols

In this section, we introduce a new primitive, which we will take as a building
block to construct AGMF in Sect. 5. This primitive is a variant of key encap-
sulation mechanism (KEM) satisfying that (i) it can be interpreted from the
perspective of hash proof system (HPS) [17], and (ii) for some special relations
(about the public/secret keys, the encapsulated keys and ciphertexts), there
exist corresponding Sigma protocols. We call this primitive HPS-based KEM
supporting Sigma protocols (HPS-KEM Σ). We also provide a concrete construc-
tion based on the DDH assumption. Note that our construction can be easily
extended to be built based on the k-Linear assumption [27,34].

4.1 Definition

A HPS-KEMΣ scheme HPS-KEMΣ = (KEMSetup,KG,CheckKey, encapc, encapk,
encap∗

c , decap,CheckCwel) is a tuple of algorithms associated with a secret key
space SK, an encapsulated key space K, where encapc and encapk have the same
randomness space RS, and we denote by RS∗ the randomness space of encap∗

c .

• pp ← KEMSetup(1λ): On input a security parameter λ, it outputs a public
parameter pp.

• (pk, sk) ← KG(pp): On input the public parameter pp, it outputs a pair of
public/secret keys (pk, sk).

• b ← CheckKey(pp, sk, pk): On input the public parameter pp, a secret key
sk and a public key pk, it outputs a bit b. Let SKpp,pk := {sk ∈ SK |
CheckKey(pp, sk, pk) = 1}.

• c ← encapc(pp; r): On input the public parameter pp with inner random-
ness r ∈ RS, it outputs a well-formed ciphertext c. Let Cwell-f

pp := {c =
encapc(pp; r) | r ∈ RS}.

• k ← encapk(pp, pk; r): On input the public parameter pp and a public key pk
with inner randomness r ∈ RS, it outputs an encapsulated key k ∈ K.

• c ← encap∗
c(pp; r∗): On input the public parameter pp with inner randomness

r∗ ∈ RS∗, it outputs a ciphertext c. Let C∗
pp := {encap∗

c(pp; r∗) | r∗ ∈ RS∗}.
We require that Cwell-f

pp ⊂ C∗
pp.

• k′ ← decap(pp, sk, c): On input the public parameter pp, the ciphertext c and
a secret key sk, it outputs an encapsulated key k′ ∈ K.

• b ← CheckCwel(pp, c, r∗): On input the public parameter pp, a ciphertext c
and a random number r∗ ∈ RS∗, it outputs a bit b.

86 J. Lai et al.

To generate a well-formed ciphertext and its corresponding encapsulated
key, one can invoke encapc and encapk at the same time with the same ran-
domness r. For simplicity, we introduce another algorithm encap, and use
“(c, k) ← encap(pp, pk; r)” to denote the procedures “c ← encapc(pp; r), k ←
encapk(pp, pk; r)”. Note that only k contains the information about the public
key pk. Correctness is as follows.

(1) For any pp generated by KEMSetup(1λ), and any (pk, sk) output by KG(pp),
CheckKey(pp, sk, pk) = 1.

(2) For any pp generated by KEMSetup(1λ), any (pk, sk) satisfying CheckKey(pp,
sk, pk) = 1, and any (c, k) ← encap(pp, pk), it holds that decap(pp, sk, c)
= k.

(3) For any pp generated by KEMSetup(1λ), and any c generated with
encap∗

c(pp; r∗), CheckCwel(pp, c, r∗) = 1 if and only if c ∈ Cwell-f
pp .

For any pp generated by KEMSetup(1λ), we define some relations as follows:

Rs = {(sk, pk) : CheckKey(pp, sk, pk) = 1}
Rc,k = {(r, (c, k, pk)) : (c, k) = encap(pp, pk; r)}
R∗

c = {(r∗, c) : c = encap∗
c(pp; r∗)}

(2)

We require that for each relation in Eq. (2), there is a Sigma protocol.
We also require the properties: universality, unexplainability, indistinguisha-

bility, SK-2PR and smoothness, the definitions of which are as follows.

Definition 9 (Universality). We say that a HPS-KEMΣ scheme HPS-KEMΣ

is universal, if for any computationally unbounded adversary A, the advantage

Advuniv
HPS-KEMΣ,A(λ) := Pr[Guniv

HPS-KEMΣ,A(λ) = 1]

is negligible, where Guniv
HPS-KEMΣ,A(λ) is defined in Fig. 5.

Guniv
HPS-KEMΣ,A(λ):

pp ← KEMSetup(1λ), (pk, sk) ← KG(pp)
(c, k, w) ← A(pp, pk) s.t. ((w, c) ∈ R∗

c) ∧ (c /∈ Cwell-f
pp)

If k = decap(pp, sk, c): Return 1
Else Return 0

Fig. 5. Game for defining universality of HPS-KEMΣ

Definition 10 (Unexplainability). We say that a HPS-KEMΣ scheme
HPS-KEMΣ is unexplainable, if for any PPT adversary A, the advantage

Advunexpl

HPS-KEMΣ,A(λ) := Pr[Gunexpl

HPS-KEMΣ,A(λ) = 1]

is negligible, where Gunexpl
HPS-KEMΣ,A(λ) is defined in Fig. 6.

Asymmetric Group Message Franking: Definitions and Constructions 87

Gunexpl

HPS-KEMΣ,A(λ):

pp ← KEMSetup(1λ); (c, w) ← A(pp) s.t. (w, c) ∈ R∗
c

If c ∈ Cwell-f
pp : Return 1

Else Return 0

Fig. 6. Game for defining unexplainability of HPS-KEMΣ

Remark 6. Generally, unexplainability requires that for any PPT adversary, it
is difficult to explain a well-formed ciphertext as a result generated with encap∗

c .

Definition 11 (Indistinguishability). We say that a HPS-KEMΣ scheme
HPS-KEMΣ is indistinguishable, if for any PPT adversary A, the advantage

Advind
HPS-KEMΣ,A(λ) := |Pr[Gind

HPS-KEMΣ,A(λ) = 1] − 1
2
|

is negligible, where Gind
HPS-KEMΣ,A(λ) is defined in Fig. 7.

Definition 12 (SK-2PR). We say that a (HPS-KEMΣ) scheme HPS-KEMΣ

is SK-second-preimage resistant, if for any PPT adversary A, the advantage

Advsk-2pr

HPS-KEMΣ,A(λ) := Pr[Gsk-2pr

HPS-KEMΣ,A(λ) = 1]

is negligible, where Gsk-2pr

HPS-KEMΣ,A(λ) is defined in Fig. 7.

Gind
HPS-KEMΣ,A(λ):

pp ← KEMSetup(1λ)
b ← {0, 1}
c0 ← encapc(pp)
c1 ← encap∗

c(pp)
b′ ← A(pp, cb)

Return (b′ ?
= b)

Gsk-2pr

HPS-KEMΣ,A(λ):

pp ← KEMSetup(1λ)
(pk, sk) ← KG(pp)
sk′ ← A(pp, pk, sk)
If (sk′ �= sk) ∧ (CheckKey(pp, sk′, pk) = 1):

Return 1
Return 0

Fig. 7. Games for defining indistinguishability and SK-second-preimage resistance of
HPS-KEMΣ

Definition 13 (Smoothness). We say that a HPS-KEMΣ scheme HPS-KEMΣ

is smooth, if for any fixed pp generated by KEMSetup and any fixed pk generated
by KG,

Δ((c, k), (c, k′)) ≤ negl(λ),

where c ← encap∗
c(pp), k ← K, sk ← SKpp,pk and k′ = decap(pp, sk, c).

Remark 7. Smoothness guarantees that 1
|SKpp,pk| is a negligible function of λ.

88 J. Lai et al.

4.2 Construction

Here, we present a concrete construction of HPS-KEMΣ, which satisfies all the
aforementioned security properties. The algorithms are described as follows.

• KEMSetup(1λ): Given a security parameter λ, choose a prime-order group G

such that the order of G is p and the bit-length of p is λ. Then, choose the
generators g1, g2 of G uniformly at random. The public parameter is

pp = (G, p, g1, g2).

• KG(pp): Given the public parameter pp = (G, p, g1, g2), choose two random-
nesses (x1, x2) ∈ Z

∗
p
2, set h = gx1

1 gx2
2 and the pair of public/secret keys is set

as
(pk = h, sk = (x1, x2)).

• CheckKey(pp, sk, pk): Given the public parameter pp = (G, p, g1, g2) and a
pair of public/secret keys (pk = h, sk = (x1, x2)), check whether gx1

1 gx2
2 = h

holds. If not, output 0; otherwise output 1.
• encapc(pp; r): Given the public parameter pp = (G, p, g1, g2) and a random-

ness r ∈ Z
∗
p, output a well-formed encapsulated ciphertext

c = (u1 = gr
1, u2 = gr

2).

• encapk(pp, pk; r): Given the public parameter pp = (G, p, g1, g2), a public key
pk = h and a randomness r ∈ Z

∗
p, output an encapsulated key k = hr.

• encap∗
c(pp; r∗): Given the public parameter pp = (G, p, g1, g2) and randomness

r∗ = (r, r′) ∈ Z
∗
p
2, output a ciphertext

c = (u1 = gr
1, u2 = gr′

1).

• decap(pp, sk, c): Given the public parameter pp = (G, p, g1, g2), an encap-
sulated ciphertext c = (u1, u2) and a secret key sk = (x1, x2), output an
encapsulated key k′ = ux1

1 ux2
2 .

• CheckCwel(pp, c, r∗): Given the public parameter pp = (G, p, g1, g2), a cipher-
text c = (u1, u2) and a random number r∗ = (r, r′) ∈ Z

∗
p
2, it outputs 1 if

gr
2 = u2; otherwise, it outputs 0.

It is clear that the above construction satisfies correctness. Then the relations
Rs, Rc,k and R∗

c are constructed as follows.

Rs = {((x1, x2), pk) : pk = gx1
1 gx2

2 }
Rc,k = {(r, ((u1, u2), k, pk)) : u1 = gr

1 ∧ u2 = gr
2 ∧ k = pkr}

R∗
c = {((r, r′), (u1, u2)) : u1 = gr

1 ∧ u2 = gr′
1 }

(3)

We show that there are Sigma protocols for relations Rs, Rc,k and R∗
c :

Okamoto’s Sigma protocol [31] for Rs, the Chaum-Pedersen protocol [11] for
Rc,k and Schnorr’s Sigma protocol [33] for R∗

c .
We now prove that the above construction satisfies universality, unexplain-

ability, indistinguishability, SK-second-preimage resistance, and smoothness. For-
mally, we have the following theorems.

Asymmetric Group Message Franking: Definitions and Constructions 89

Theorem 2. The above HPS-KEMΣ scheme is universal.

Theorem 3. If the DL assumption holds in G, the above HPS-KEMΣ scheme
is unexplainable.

Theorem 4. If the DDH assumption holds in G, the above HPS-KEMΣ scheme
is indistinguishable.

Theorem 5. If the DL assumption holds in G, the above HPS-KEMΣ scheme
is SK-second-preimage resistant.

Theorem 6. The above HPS-KEMΣ scheme is smooth.

The proofs of Theorem 2–6 are as follows.

Proof (of Theorem 2). For any computationally unbounded adversary A attack-
ing universality of HPS-KEMΣ, let (pp = (G, p, g1, g2), pk = gx1

1 gx2
2) be A’s input,

where (pk, sk = (x1, x2)) are generated by KG(pp). Denote by a := logg1
g2. Let

(c = (u1, u2), k, w = (r, r′)) be A’s final output satisfying ((w, c) ∈ R∗
c) ∧ (c /∈

Cwell-f
pp).

Note that (w, c) ∈ R∗
c implies that u1 = gr

1 and u2 = gr′
1 . On the other hand,

since Cwell-f
pp = {(gr̃

1, g
r̃
2) | r̃ ∈ Z

∗
p} = {(gr̃

1, g
ar̃
1) | r̃ ∈ Z

∗
p}, we derive that r′ �= ar.

As a result,

decap(pp, sk, c) = ux1
1 ux2

2 = grx1
1 gr′x2

1 = g
r(x1+ax2)+r′x2−rax2
1

= (gx1
1 gx2

2)r · g
(r′−ra)x2
1 = pkr · g

(r′−ra)x2
1 .

Notice that sk = (x1, x2) is uniformly sampled from Z
∗
p
2, and the only infor-

mation that A has about sk is logg1
pk = x1 + ax2. Thus, from A’s point

of view, given (pp, pk), x2 is still uniformly distributed, which implies that
decap(pp, sk, c) = pkr · g

(r′−ra)x2
1 is also uniformly distributed.

Hence, Advuniv
HPS-KEMΣ,A(λ) = Pr[k = decap(pp, sk, c)] is negligible, concluding

the proof of this theorem. 	

Proof (of Theorem 3). Suppose that there exists a PPT adversary A winning the
game of unexplainability with non-negligible probability. It is easy to construct
a PPT algorithm B that makes use of A to solve the DL problem with non-
negligible probability. Algorithm B is given a random tuple (G, p, g, ga), and
runs A as follows.

B first sets g1 = g and g2 = ga, and sends the public parameter pp =
(G, p, g1, g2) to A. Then, the adversary A outputs (w, c) ∈ R∗

c . Parse c = (u1, u2)
and w = (r, r′). Note that (w, c) ∈ R∗

c guarantees that u1 = gr
1 and u2 = gr′

1 . If
A wins the game of unexplainability, then c ∈ Cwell-f

pp , which means that u1 = gr
1

and u2 = gr
2. In this case, we have u2 = gr

2 = gr′
1 . Therefore, B can output a = r′

r
as the solution of the DL problem. 	

90 J. Lai et al.

Proof (of Theorem 4). Suppose that there exists a PPT adversary A winning
the game of indistinguishability with non-negligible probability. It is easy to
construct a PPT algorithm B that makes use of A to solve the DDH problem
with non-negligible probability. Algorithm B is given a random tuple (G, p, g,
ga, gb, Z), where Z = gab or Z is uniformly and independently sampled in G. B
runs A as follows.

B first sets g1 = g, g2 = ga, u1 = gb, u2 = Z. Then, it sends the public
parameter pp = (G, p, g1, g2) and the encapsulated ciphertext c = (u1, u2) to the
adversary A. Finally, A outputs a bit and B also outputs the bit.

Observe that, if Z = gab, then u1 = gb
1, u2 = gb

2, and from the perspective of
the adversary the distribution of the ciphertext c = (u1, u2) is identical to the
distribution of the well-formed encapsulated ciphertext generated by encapc. If
Z is a random element in G, then u1, u2 are random elements in G, and from
the perspective of the adversary the distribution of the ciphertext c = (u1, u2)
is identical to the distribution of the ciphertext generated by encap∗

c . Therefore,
if A can win the game of indistinguishability with non-negligible probability, B
can make use of A to solve the DDH problem with non-negligible probability. 	

Proof (of Theorem 5). Suppose that there exists a PPT adversary A winning
the game of SK-second-preimage resistance with non-negligible probability. It
is easy to construct a PPT algorithm B that makes use of A to solve the DL
problem with non-negligible probability. Algorithm B is given a random tuple
(G, p, g, ga), and runs A as follows.

B first sets g1 = g and g2 = ga. Next, it chooses x1, x2 ∈ Z
∗
p uniformly at

random, and generates a pair of public/secret keys (pk = gx1
1 gx2

2 , sk = (x1, x2)).
Then, B sends the public parameter pp = (G, p, g1, g2) and the pair of pub-
lic/secret keys (pk, sk) to A. The adversary A outputs a secret key sk′ = (x′

1, x
′
2).

If A wins the game of SK-second-preimage resistance, we have sk′ �= sk and
CheckKey(pp, sk′, pk) = 1. That is to say, g

x′
1

1 g
x′
2

2 = gx1
1 gx2

2 and x′
1 �= x1, x

′
2 �= x2.

Therefore, B can output a = (x1 − x′
1)/(x′

2 − x2) as the solution of the DL
problem. 	

Proof (of Theorem 6). For any fixed pp = (G, p, g1, g2) and any fixed pk = h
generated by KG, let a := logg1

g2, b := logg1
h. Then, SKpp,pk = {(x1, x2) ∈

Z
∗
p
2 | x1 + ax2 = b}.

Note that the ciphertext space of encap∗
c is C∗ = (G \ {1G})2, where 1G

is the identity element of G, and the encapsulated key space K = G. For all
ĉ ∈ (G \ {1G})2, we parse ĉ = (û1, û2), and write S1 := {(û1, û2) ∈ (G \ {1G})2 |
logg1

û2 �= a logg1
û1} and S2 := {(û1, û2) ∈ (G \ {1G})2 | logg1

û2 = a logg1
û1}.

Asymmetric Group Message Franking: Definitions and Constructions 91

So,

Δ((c, k), (c, k′)) =
1
2

∑

(ĉ,k̂)∈C∗×K
|Pr[(c, k) = (ĉ, k̂)] − Pr[(c, k′) = (ĉ, k̂)]|

=
1
2

∑

ĉ∈S1

∑

k̂∈K
|Pr[(c, k) = (ĉ, k̂)] − Pr[(c, k′) = (ĉ, k̂)]|

+
1
2

∑

ĉ∈S2

∑

k̂∈K
|Pr[(c, k) = (ĉ, k̂)] − Pr[(c, k′) = (ĉ, k̂)]|. (4)

We present the following two lemmas with postponed proofs.

Lemma 1.
∑

ĉ∈S1

∑

k̂∈K |Pr[(c, k) = (ĉ, k̂)] − Pr[(c, k′) = (ĉ, k̂)]| = 0.

Lemma 2.
∑

ĉ∈S2

∑

k̂∈K |Pr[(c, k) = (ĉ, k̂)] − Pr[(c, k′) = (ĉ, k̂)]| = 2
p .

Combining Eq. (4), Lemma 1 and Lemma 2, we obtain Δ((c, k), (c, k′)) = 1
p ,

concluding the proof of this theorem.
So what remains is to prove the above two lemmas.

Proof (of Lemma 1). For any ĉ = (û1, û2) ∈ S1 and any k̂ ∈ K = G, we have
Pr[(c, k) = (ĉ, k̂)] = 1

(p−1)2p , and Pr[(c, k′) = (ĉ, k̂)] = 1
(p−1)2 Pr[k′ = k̂ | c = ĉ].

Note that c = (gr
1, g

r′
1) = ĉ implies r = logg1

û1 and r′ = logg1
û2. Since

ĉ ∈ S1, we obtain r′ �= ar. We also notice that sk = (x1, x2) is uniformly
sampled from SK, so the distribution of sk can be seen as “uniformly sampling
x2 from Z

∗
p, and letting x1 = b−ax2”. As a result, given a fixed c = ĉ (i.e., given

fixed r = logg1
û1 and r′ = logg1

û2), when sk ← SK, k′ = decap(pp, sk, c) =

grx1
1 gr′x2

1 = g
r(b−ax2)+r′x2
1 = hrg

(r′−ar)x2
1 is uniformly distributed over K. Hence,

Pr[k′ = k̂ | c = ĉ] = 1
p .

So we conclude that for any ĉ ∈ S1 and any k̂ ∈ K, Pr[(c, k′) = (ĉ, k̂)] =
1

(p−1)2p = Pr[(c, k) = (ĉ, k̂)]. 	

Proof (of Lemma 2). For any ĉ = (û1, û2) ∈ S2 and any k̂ ∈ K = G, we have
Pr[(c, k) = (ĉ, k̂)] = 1

(p−1)2p , and Pr[(c, k′) = (ĉ, k̂)] = 1
(p−1)2 Pr[k′ = k̂ | c = ĉ].

Note that c = (gr
1, g

r′
1) = ĉ implies r = logg1

û1 and r′ = logg1
û2. Since

ĉ ∈ S2, we obtain r′ = ar. Thus, given a fixed c = ĉ (i.e., given fixed r =
logg1

û1 and r′ = logg1
û2), we derive that k′ = decap(pp, sk, c) = grx1

1 gr′x2
1 =

g
r(b−ax2)+r′x2
1 = hrg

(r′−ar)x2
1 = hr = hlogg1

û1 , which is also fixed (since pk = h
and û1 are both fixed values).

92 J. Lai et al.

Hence,
∑

ĉ∈S2

∑

k̂∈K
|Pr[(c, k) = (ĉ, k̂)] − Pr[(c, k′) = (ĉ, k̂)]|

=
∑

ĉ∈S2

∑

k̂∈K
| 1
(p − 1)2p

− 1
(p − 1)2

Pr[k′ = k̂ | c = ĉ]|

=
∑

ĉ∈S2

(
∑

k̂ �=h
logg1 û1

| 1
(p − 1)2p

− 0| + | 1
(p − 1)2p

− 1
(p − 1)2

· 1|)

=
∑

ĉ∈S2

((p − 1)
1

(p − 1)2p
+

1
(p − 1)p

) =
∑

ĉ∈S2

2
(p − 1)p

=
2
p
.

	

Thus, we complete the proof. 	

5 Generic Construction of AGMF from HPS-KEMΣ

In this section, we provide a framework of constructing AGMF from HPS-KEMΣ,
and show that it achieves the required securities.

Let HPS-KEMΣ = (KEMSetup,KG,CheckKey, encapc, encapk, encap
∗
c , decap,

CheckCwel) be a HPS-KEMΣ scheme supporting universality, unexplainability,
indistinguishability, SK-second-preimage resistance and smoothness, where RS
denotes the randomness space of encapc and encapk, RS∗ denotes the random-
ness space of encap∗

c , and K denotes the encapsulated key space.
Our generic AGMF scheme AGMF = (Setup,KGJ,KGu,Frank,Verify, Judge,

Forge,RForge, JForge) is described as follows.
Setup, KGJ and KGu are shown in Fig. 8, where Setup directly invokes the

setup algorithm of HPS-KEMΣ, and both KGJ and KGu invoke the key generation
algorithm of HPS-KEMΣ.

Setup(λ): pp ← KEMSetup(1λ); Return pp

KGJ(pp): (pkJ, skJ) ← KG(pp); Return (pkJ, skJ)

KGu(pp): (pk, sk) ← KG(pp); Return (pk, sk)

Fig. 8. Algorithm descriptions of Setup, KGJ and KGu

The main body of AGMF (i.e., Frank, Verify and Judge) is shown in Fig. 9.
Specifically, algorithm Frank calls encapc and encapk of HPS-KEMΣ to generate
a well-formed ciphertext and encapsulated keys respectively. Besides, it calls a
NIZK proof algorithms NIZKR.PoK to generate a NIZK proof, where the relation
R is defined in Eq. (5) and NIZKR = (PoK,PoKVer) is a NIZK proof using the
Fiat-Shamir transform from the Sigma protocols induced by HPS-KEMΣ. The
verification algorithm Verify and the moderation algorithm Judge are similar.

Asymmetric Group Message Franking: Definitions and Constructions 93

Frank(pp, sks, S, pkJ, m):
r ← RS; c ← encapc(pp; r); kJ ← encapk(pp, pkJ; r)
For pkri ∈ S:

kri ← encapk(pp, pkri ; r)
x ← (sks, r, ⊥); y ← (pp, pks, pkJ, c, kJ)
m ← (m||{kri}pkri∈S); π ← NIZKR.PoK(m, x, y)
Return σ ← (π, c, kJ, {kri}pkri∈S)

Verify(pp, pks, skr, pkJ, m, σ):
(π, c, kJ, {kri}pkri∈S) ← σ; y ← (pp, pks, pkJ, c, kJ)
m ← (m||{kri}pkri∈S)

If NIZKR.PoKVer(m, π, y) = 0: Return 0
If decap(pp, skr, c) ∈ {kri}pkri∈S : Return 1
Return 0

Judge(pp, pks, skJ, m, σ):
(π, c, kJ, {kri}pkri∈S) ← σ; y ← (pp, pks, pkJ, c, kJ)
m ← (m||{kri}pkri∈S)

If NIZKR.PoKVer(m, π, y) = 0: Return 0
If decap(pp, skJ, c) �= kJ: Return 0
Return 1

Fig. 9. Algorithm descriptions of Frank, Verify and Judge

They first call NIZKR.PoKVer to check if the NIZK proof is valid, and then call
decap with the receiver’s/judge’s secret key to check whether the encapsulated
key and the corresponding decapsulated key are identical or not.

The three forging algorithms (i.e., Forge, RForge, JForge), focusing on dif-
ferent compromise scenarios, are described in Fig. 10. They firstly call encap∗

c

of HPS-KEMΣ to generate an ill-formed ciphertext. Then, for each one of the
receivers (and for the judge) whose secret key is not compromised, randomly
samples an encapsulated key from K; for each one of the receivers (and for the
judge) whose secret key is compromised, employ decap to generate an encapsu-
lated key. Finally, they call NIZKR.PoK to generate a NIZK proof.

For the NIZK proof system NIZKR = (PoK,PoKVer) used in Fig. 9 and
Fig. 10, we obtain it as follows. The relation R is defined in Eq. (5).

R = { ((sks, r, r
∗), (pp, pks, pkJ, c, kJ)) :

((sks, pks) ∈ Rs ∧ (r, (c, kJ, pkJ)) ∈ Rc,k)
∨ ((r∗, c) ∈ R∗

c) }
(5)

where Rs, Rc,k and R∗
c are defined in Eq. (2). Note that for every sub-relation

(i.e., Rs, Rc,k, R∗
c), the HPS-KEMΣ scheme guarantees that there is a Sigma

protocol. So, with the technique of trivially combining Sigma protocols for
AND/OR proofs [7, Sec. 19.7], we obtain a new Sigma protocol for relation
R. Then, using the Fiat-Shamir transform, we derive a NIZK proof system
NIZKR = (PoK,PoKVer) for R in the random oracle model.

Now, we provide some explanations about relation R.

94 J. Lai et al.

Forge(pp, pks, S, pkJ, m):
r∗ ← RS∗; c ← encap∗

c(pp; r∗); kJ ← K
For pkri ∈ S: kri ← K
x ← (⊥, ⊥, r∗); y ← (pp, pks, pkJ, c, kJ); m ← (m||{kri}pkri∈S)

π ← NIZKR.PoK(m, x, y)
Return σ ← (π, c, kJ, {kri}pkri∈S)

RForge(pp, pks, {pkri , skri}pkri∈Scor , S, pkJ, m):

�Scor here is the set of corrupted receivers
r∗ ← RS∗; c ← encap∗

c(pp; r∗); kJ ← K
For pkri ∈ S\Scor: kri ← K
For pkri ∈ Scor: kri ← decap(pp, skri , c)
x ← (⊥, ⊥, r∗); y ← (pp, pks, pkJ, c, kJ); m ← (m||{kri}pkri∈S)

π ← NIZKR.PoK(m, x, y)
Return σ ← (π, c, kJ, {kri}pkri∈S)

JForge(pp, pks, S, skJ, m):
r∗ ← RS∗; c ← encap∗

c(pp; r∗); kJ ← decap(pp, skJ, c)
For pkri ∈ S: kri ← K
x ← (⊥, ⊥, r∗); y ← (pp, pks, pkJ, c, kJ); m ← (m||{kri}pkri∈S)

π ← NIZKR.PoK(m, x, y)
Return σ ← (π, c, kJ, {kri}pkri∈S)

Fig. 10. Algorithm descriptions of Forge, RForge and JForge

The first part (i.e., ((sks, pks) ∈ Rs)∧ ((r, (c, kJ, pkJ)) ∈ Rc,k)) of the expres-
sion of R contains two sub-parts: (i) ((sks, pks) ∈ Rs) guarantees the authenti-
cation of the sender; (ii) ((r, (c, kJ, pkJ)) ∈ Rc,k) guarantees that the ciphertext
c and the corresponding encapsulated key kJ for the judge are well-formed, and
further convinces the receiver that c and kJ can be verified successfully by the
judge. In other words, once the receiver reports to the judge, the judge will
accept the report.

The second part (i.e., ((r∗, c) ∈ R∗
c)) of the expression of R is prepared to

guarantee deniability. More specifically, it is prepared for the forgers (including
the universal, the receivers and the judge) to construct a valid NIZK proof,
since they do not know the sender’s secret key. The three forging algorithms in
Fig. 10 show that the forgers generate the ill-formed ciphertext via encap∗

c(pp; r∗).
Therefore, the forgers can always obtain the witness r∗ for the second part of R.

The relation R combines the two parts with an “OR” operation, so either
the sender or the forgers can generate a valid NIZK proof for R.

Remark 8. In our framework AGMF, in order to reduce the size of signature,
kJ and kri are all encapsulated in the same ciphertext c. This suggests that
KGJ and KGu are built based on the identical HPS-KEMΣ. Actually, kJ can be
encapsulated in another ciphertext, which can be generated with an independent
HPS-KEMΣ. Hence, the judge can run KGJ based on an independent HPS-KEMΣ,
to generate the public/secret key pair. In this case, the obtained AGMF can
support third-party moderation better.

Asymmetric Group Message Franking: Definitions and Constructions 95

Correctness. Now we show the correctness of the above scheme AGMF here.
For any signature σ ← Frank(pp, sks, S, pkJ,m) and any pkr ∈ S, we parse σ =
(π, c, kJ, {kri}pkri∈S), and let y := (pp, pks, pkJ, c, kJ) and m := (m||{kri}pkri∈S).

We first analyze the output of Verify as follows: (i) the correctness of NIZKR

guarantees that NIZKR.PoKVer(m,π, y) = 1; (ii) the correctness of HPS-KEMΣ

guarantees that decap(pp, skr, c) ∈ {kri}pkri∈S since pkr ∈ S. So, Verify will
return 1.

Next, we analyze the output of Judge as follows: (i) the correctness of NIZKR

guarantees that NIZKR.PoKVer(m,π, y) = 1; (ii) the correctness of HPS-KEMΣ

guarantees that decap(pp, skJ, c) = kJ. Therefore, Judge will also return 1.

Security. For security, we have the following theorem.

Theorem 7. If a HPS-KEMΣ scheme HPS-KEMΣ is universal, unexplainable,
indistinguishble, SK-second-preimage resistant and smooth, and NIZKR = (PoK,
PoKVer) is a Fiat-Shamir NIZK proof system for R, then our scheme AGMF
achieves the accountability (receiver binding and sender binding), deniability
(universal deniability, receiver compromise deniability, and judge compromise
deniability) and receiver anonymity simultaneously.

Due to the page limitations, the proof of Theorem 7 will be provided in the
full version of this paper.

Acknowledgements. We would like to express our sincere appreciation to the anony-
mous reviewers for their valuable comments and suggestions! Junzuo Lai was supported
by National Natural Science Foundation of China under Grant No. U2001205, Guang-
dong Basic and Applied Basic Research Foundation (Grant No. 2023B1515040020),
Industrial project No. TC20200930001. Siu Ming Yiu was supported by HKU-SCF
FinTech Academy and Shenzhen-Hong Kong-Macao Science and Technology Plan
Project (Category C Project: SGDX20210823103537030). Xin Mu was supported by the
National Natural Science Foundation of China (62106114). Jian Weng was supported
by National Natural Science Foundation of China under Grant Nos. 61825203 and
U22B2028, Major Program of Guangdong Basic and Applied Research Project under
Grant No. 2019B030302008, National Key Research and Development Plan of China
under Grant No. 2020YFB1005600, Guangdong Provincial Science and Technology
Project under Grant No. 2021A0505030033, Science and Technology Major Project of
Tibetan Autonomous Region of China under Grant No. XZ202201ZD0006G, National
Joint Engineering Research Center of Network Security Detection and Protection Tech-
nology, and Guangdong Key Laboratory of Data Security and Privacy Preserving.

References

1. Mastodon social network (2018). https://joinmastodon.org/
2. Matrix: an open network for secure, decentralized communication (2018). https://

matrix.org/
3. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and improve-

ments for the IETF MLS standard for group messaging. In: Micciancio, D., Ris-
tenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 248–277. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-56784-2 9

https://joinmastodon.org/
https://matrix.org/
https://matrix.org/
https://doi.org/10.1007/978-3-030-56784-2_9

96 J. Lai et al.

4. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Modular design of secure group
messaging protocols and the security of MLS. In: ACM CCS 2021, pp. 1463–1483
(2021)

5. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
273–289. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-
8 17

6. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-45682-1 30

7. Boneh, D., Shoup, V.: A graduate course in applied cryptography. Draft 0.5 (2020)
8. Camenisch, J.: Group signature schemes and payment systems based on the dis-

crete logarithm problem. Ph.D. thesis, ETH Zurich (1998)
9. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups.

In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0052252

10. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006). https://
doi.org/10.1007/11818175 5

11. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-48071-4 7

12. Chen, L., Tang, Q.: People who live in glass houses should not throw stones:
targeted opening message franking schemes. Cryptology ePrint Archive, Report
2018/994 (2018)

13. Cohn-Gordon, K., Cremers, C., Garratt, L., Millican, J., Milner, K.: On ends-to-
ends encryption: asynchronous group messaging with strong security guarantees.
In: CCS 2018, pp. 1802–1819 (2018)

14. Corrigan-Gibbs, H., Ford, B.: Dissent: accountable anonymous group messaging.
In: CCS 2010, pp. 340–350 (2010)

15. Corrigan-Gibbs, H., Wolinsky, D.I., Ford, B.: Proactively accountable anonymous
messaging in verdict. In: USENIX Security 2013, pp. 147–162 (2013)

16. Cramer, R.: Modular design of secure yet practical cryptographic protocols. Ph.
D. thesis, CWI and University of Amsterdam (1996)

17. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

18. Damg̊ard, I., Haagh, H., Mercer, R., Nitulescu, A., Orlandi, C., Yakoubov, S.:
Stronger security and constructions of multi-designated verifier signatures. In: Pass,
R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551, pp. 229–260. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64378-2 9

19. Dodis, Y., Grubbs, P., Ristenpart, T., Woodage, J.: Fast message franking: from
invisible salamanders to encryptment. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10991, pp. 155–186. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96884-1 6

20. Facebook: Facebook messenger app (2016). https://www.messenger.com/
21. Facebook: Messenger secret conversations technical whitepaper (2016). https://

fbnewsroomus.files.wordpress.com/2016/07/secret conversations whitepaper-1.
pdf

https://doi.org/10.1007/978-3-540-28628-8_17
https://doi.org/10.1007/978-3-540-28628-8_17
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/BFb0052252
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-030-64378-2_9
https://doi.org/10.1007/978-3-319-96884-1_6
https://doi.org/10.1007/978-3-319-96884-1_6
https://www.messenger.com/
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf

Asymmetric Group Message Franking: Definitions and Constructions 97

22. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

23. Goldberg, I., Ustaoğlu, B., Van Gundy, M.D., Chen, H.: Multi-party off-the-record
messaging. In: CCS 2009, pp. 358–368 (2009)

24. Grubbs, P., Lu, J., Ristenpart, T.: Message franking via committing authenticated
encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403,
pp. 66–97. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9 3

25. Hofheinz, D.: Algebraic partitioning: fully compact and (almost) tightly secure
cryptography. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp.
251–281. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-
9 11

26. Hofheinz, D.: Adaptive partitioning. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10212, pp. 489–518. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56617-7 17

27. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 31

28. Issa, R., AlHaddad, N., Varia, M.: Hecate: Abuse reporting in secure messengers
with sealed sender. Cryptology ePrint Archive (2021)

29. Jafargholi, Z., Kamath, C., Klein, K., Komargodski, I., Pietrzak, K., Wichs, D.: Be
adaptive, avoid overcommitting. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 133–163. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 5

30. Leontiadis, I., Vaudenay, S.: Private message franking with after opening privacy.
Cryptology ePrint Archive, Report 2018/938 (2018). https://eprint.iacr.org/2018/
938

31. Okamoto, T.: An efficient divisible electronic cash scheme. In: Coppersmith, D.
(ed.) CRYPTO 1995. LNCS, vol. 963, pp. 438–451. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-44750-4 35

32. Peale, C., Eskandarian, S., Boneh, D.: Secure complaint-enabled source-tracking
for encrypted messaging. In: CCS 2021, pp. 1484–1506 (2021)

33. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

34. Shacham, H.: A Cramer-Shoup Encryption Scheme from the Linear Assumption
and from Progressively Weaker Linear Variants. Cryptology ePrint Archive, Report
2007/074 (2007)

35. Syta, E., Corrigan-Gibbs, H., Weng, S.C., Wolinsky, D., Ford, B., Johnson, A.:
Security analysis of accountable anonymity in dissent. TISSEC 17(1), 1–35 (2014)

36. Tyagi, N., Grubbs, P., Len, J., Miers, I., Ristenpart, T.: Asymmetric message frank-
ing: content moderation for metadata-private end-to-end encryption. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 222–250. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 8

37. Tyagi, N., Miers, I., Ristenpart, T.: Traceback for end-to-end encrypted messaging.
In: CCS 2019, pp. 413–430 (2019)

38. Wolinsky, D.I., Corrigan-Gibbs, H., Ford, B., Johnson, A.: Dissent in numbers:
making strong anonymity scale. In: OSDI 2012, pp. 179–182 (2012)

39. Wong, C.K., Gouda, M., Lam, S.S.: Secure group communications using key graphs.
IEEE/ACM Trans. Network. 8(1), 16–30 (2000)

https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-319-63697-9_3
https://doi.org/10.1007/978-3-662-49096-9_11
https://doi.org/10.1007/978-3-662-49096-9_11
https://doi.org/10.1007/978-3-319-56617-7_17
https://doi.org/10.1007/978-3-319-56617-7_17
https://doi.org/10.1007/978-3-540-74143-5_31
https://doi.org/10.1007/978-3-319-63688-7_5
https://doi.org/10.1007/978-3-319-63688-7_5
https://eprint.iacr.org/2018/938
https://eprint.iacr.org/2018/938
https://doi.org/10.1007/3-540-44750-4_35
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/978-3-030-26954-8_8

Password-Authenticated TLS
via OPAQUE and Post-Handshake

Authentication

Julia Hesse1(B), Stanislaw Jarecki2, Hugo Krawczyk3, and Christopher Wood4

1 IBM Research Europe – Zurich, Rüschlikon, Switzerland
jhs@zurich.ibm.com

2 UC Irvine, Irvine, USA
stanislawjarecki@gmail.com

3 Algorand Foundation, Boston, USA
hugokraw@gmail.com

4 Cloudflare, San Francisco, USA
caw@heapingbits.net

Abstract. OPAQUE is an Asymmetric Password-Authenticated Key
Exchange (aPAKE) protocol being standardized by the IETF (Inter-
net Engineering Task Force) as a more secure alternative to the tra-
ditional “password-over-TLS” mechanism prevalent in current practice.
OPAQUE defends against a variety of vulnerabilities of password-over-
TLS by dispensing with reliance on PKI and TLS security, and ensur-
ing that the password is never visible to servers or anyone other than
the client machine where the password is entered. In order to facilitate
the use of OPAQUE in practice, integration of OPAQUE with TLS is
needed. The main proposal for standardizing such integration uses the
Exported Authenticators (TLS-EA) mechanism of TLS 1.3 that supports
post-handshake authentication and allows for a smooth composition with
OPAQUE. We refer to this composition as TLS-OPAQUE and present
a detailed security analysis for it in the Universal Composability (UC)
framework.

Our treatment is general and includes the formalization of components
that are needed in the analysis of TLS-OPAQUE but are of wider appli-
cability as they are used in many protocols in practice. Specifically, we
provide formalizations in the UC model of the notions of post-handshake
authentication and channel binding. The latter, in particular, has been
hard to implement securely in practice, resulting in multiple protocol
failures, including major attacks against prior versions of TLS. Ours is
the first treatment of these notions in a computational model with com-
posability guarantees.

We complement the theoretical work with a detailed discussion of
practical considerations for the use and deployment of TLS-OPAQUE in
real-world settings and applications.

Keywords: Transport Layer Security · Passwords · Authentication

J. Hesse–This work was supported by the Swiss National Science Foundation (SNSF)
under the AMBIZIONE grant “Cryptographic Protocols for Human Authentication
and the IoT”.
c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14008, pp. 98–127, 2023.
https://doi.org/10.1007/978-3-031-30589-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30589-4_4&domain=pdf
https://doi.org/10.1007/978-3-031-30589-4_4

Password-Authenticated TLS via OPAQUE and PHA 99

1 Introduction

For a multitude of reasons, passwords remain a ubiquitous type of authenticator.
Despite the existence of tools for improving passwords (password managers)
and password-less authentication protocols (e.g., WebAuthn), password-based
authentication remains commonplace. Legacy software and lack of support for
modern alternatives, integration issues for better tooling to improve password
quality, and usability problems in adopting any new form of authenticator have
all contributed in one way or another to the prolonged usage of passwords for
authentication onn the Internet (and beyond).

As a result, much of the security infrastructure depends to a large extent on
passwords. And, yet, the prime mechanism of client-server password authentica-
tion in practice has not changed in the last decades and remains the traditional
password-over-TLS (more generally, the transport of passwords over channels
protected by public key encryption). Weaknesses of this mechanism include,
though are not limited to: visibility of plaintext passwords to the application
server and to other decrypting intermediaries, accidental storage of passwords in
the clear (as several high-profile incidents have shown [1,2]), and ease of pass-
word leakage in the event of phishing attacks.

Recently, the IETF (Internet Engineering Task Force) has initiated a pro-
cess of standardizing a much stronger mechanism, the so-called Asymmetric
Password-Authenticated Key Exchange (aPAKE) that does not rely on PKI
(except, optionally, at user registration time) and ensures that user passwords
are never visible outside the client machine. Essentially, aPAKE protocols are
as secure as possible, restricting attacks to unavoidable password guesses and
offline attacks upon server compromise. The specific protocol chosen for instan-
tiation of the aPAKE standard is OPAQUE [9,18]. In addition to enjoying the
aPAKE security (including an enhancement in the form of security against pre-
computation attacks), OPAQUE offers the flexibility of working with any authen-
ticated key exchange mechanism. Hence, it is a natural candidate for integration
with existing protocols such as TLS 1.3, IKEv2, etc.

Clearly, integration with TLS is desirable for improving the security of pass-
word authentication in TLS, but also because while OPAQUE provides authenti-
cation and key exchange, it does not offer the secure channels required to protect
data; TLS provides such functionality via its record layer. Additionally, integra-
tion with TLS allows for protection of user account information during a login
protocol.

A natural approach to such integration is to use the post-handshake authen-
tication (PHA) mechanism of TLS 1.31 [23] that allows clients to authenticate
after the TLS handshake (the key establishment component of TLS) has com-
pleted, and within the ensuing record-layer session (where data is exchanged
under the protection of the keys established by the handshake). For example, a
server can serve public webpages to an unauthenticated client but may require
client authentication once the client requests access to restricted pages, thus

1 Except if said otherwise, we use ‘TLS’ to refer to TLS 1.3.

100 J. Hesse et al.

triggering post-handshake authentication by the client. More general support
for PHA is provided in a TLS 1.3 extension standard called Exported Authenti-
cators (TLS-EA) [26] (we often shorten TLS-EA to EA). EA extends the post-
handshake client authentication component of TLS 1.3 and can support multi-
ple authentications within the same TLS session for both clients and servers.
As such, EA is a natural tool for integrating OPAQUE into TLS 1.3 as a way
to enable strong password authentication within TLS connections. While EA
natively supports certificate-based authentication, its fields can easily be repur-
posed for transporting OPAQUE’s signature-based authentication. This integra-
tion of OPAQUE and TLS-EA, referred to here as TLS-OPAQUE, has been pro-
posed for standardization in the TLS Working Group of the IETF [27] (Fig. 1).

Fig. 1. (Post-)Authentication options for TLS channels. Left: The Exported Authen-
ticators TLS extention (TLS-EA) allows both channel endpoints to subsequently add
more public-key identities to a TLS channel. Right: TLS-OPAQUE allows to subse-
quently add (asymmetric) password identities to a TLS channel.

In this work we investigate the security of the above schemes: TLS-EA
as a general post-handshake mechanism and TLS-OPAQUE for password-
authenticated TLS. However, our treatment is more general and independent
of any particular protocol instantiation. We formalize the notion of post-
handshake authentication in the Universal Composability (UC) setting [11] with
two authentication flavors: via public-key certificates as the EA protocol [26]
specifies and via passwords as TLS-OPAQUE requires.

While this formalization of PHA serves the analysis of EA and TLS-
OPAQUE, post-handshake authentication is a more general notion implemented
in practice as extension to multiple protocols, including IPsec, SSH as well as
previous versions of TLS. In general terms, the PHA main functionality is to
enable multiple authentications (possibly using different credentials and identi-
ties) of a previously established channel between two endpoints; it guarantees
that in each of these authentications, the authenticating parties are the same as
those that established the channel in the first place.

Thus, a crucial ingredient in the implementation of any PHA protocol is
a mechanism for binding the PHA authentications to the original channel. A
common design, that we follow in our PHA instantiations, is to define a channel
binding value generated at the time of the original channel establishment and

Password-Authenticated TLS via OPAQUE and PHA 101

passed to PHA for inclusion in all subsequent authentications. This channel
binder can take the form of a handshake transcript digest, a cryptographic key, or
a combination of both. While the notion itself is simple, its implementation in the
real world has been remarkably challenging and has led to serious security failures
against multiple protocols, including major attacks against previous versions of
TLS such as the notorious renegotiation [22,24,25] and triple-handshake attacks
[5]. See [6] for an account of attacks on multiple protocols based on PHA failures
due to wrong channel binding designs. It is a main goal and motivation of our
work to set an analytical framework and proofs to prevent this type of failures
in new designs such as those presented here.

To capture the channel binding requirements, we extend the traditional for-
malism of secure channel functionalities [12] with a channel binder element that
is output from the channel generation module (e.g., a key exchange) and used by
parties engaging in a PHA as a way to bind their post-handshake authentication
to the original channel establishment. Informally, we set two requirements on the
channel binder: being unique among all channels established by an honest party
and being pseudorandom. The latter property enables the use of the binder as a
cryptographic key in the process of post-handshake authentication. The unique-
ness element is crucial for defeating what is known as channel synchronization
attacks [3,6], the source of many of the serious attacks against PHA mecha-
nisms in practice. We formally prove in Theorem1 in Sect. 4 that TLS 1.3 with
its Exporter Main Secret (EMS) implements a secure channel with such binder
qualities.

We frame the security of post-handshake authentication via a UC function-
ality that enforces that only valid credentials presented by the original end-
points of the channel (technically, those that know the binder’s cryptographic
key) are accepted. Our PHA formalism comes in two flavors: one that supports
public keys as the post-handshake authentication means and one that supports
password-based authentication. The first flavor captures the essence of the secu-
rity requirements of TLS-EA, namely, the ability to support any number of
PK-based authentications2 by the creators of a TLS channel, and only by those.
Therefore formally proving the security of the TLS-EA protocol from [26] reduces
to showing that the protocol realizes the PK-based PHA functionality. This is
shown in Theorem 2 in Sect. 5. In particular, the proof of this theorem validates
that the channel binder defined by TLS 1.3 (called EMS, for Exporter Master
Secret) has the required properties for the purpose of implementing a secure
post-handshake authentication mechanism.

We now consider the TLS-OPAQUE protocol [19,27] that uses the TLS-EA
mechanism to transport the OPAQUE messages for providing password-based
post-handshake authentication to the TLS channel. To prove security of this
protocol, we show it realizes our password-based PHA functionality. The latter
functionality essentially ensures that any mechanism that realizes the function-
ality provides authentication guarantees similar to those of an aPAKE. Namely,
the key established upon channel creation (even if anonymous at the time) is

2 In the particular case of TLS-EA, it is signature-based authentication.

102 J. Hesse et al.

authenticated by the client and server; the only way to subvert the protocol
is by an online password guessing attack or an offline dictionary attack if the
server is compromised. Furthermore, not only does the password-based PHA
functionality ensure the correct authentication by the endpoints of the original
channel but it also guarantees that no other than these endpoints will succeed in
such authentication. By proving that TLS-OPAQUE realizes the password-based
PHA functionality (Theorem 3 in Sect. 6) we get that TLS-OPAQUE enjoys all
these aPAKE-like security properties.

On a technical level, our analysis of TLS-OPAQUE builds on the proven
guarantees of EA detailed above. In a nutshell, TLS-OPAQUE strips the key
exchange part from OPAQUE, and uses only OPAQUE’s password authenti-
cation mechanism to authenticate the already established TLS key material.
This authentication is signature-based and can be outsourced to EA. We detail
in Sect. 2 how exactly TLS-OPAQUE is combined from both EA and (parts
of) OPAQUE. A main goal of our analysis is to tame the complexity of TLS-
OPAQUE by modularizing the security proof: we first prove the security of EA,
and then analyze the security of TLS-OPAQUE assuming that EA is already
secure. We refer the reader to the technical roadmap below for a summary of all
formal results in the paper, and how they combine with each other.

Altogether, our work delivers the first formal analysis of TLS-EA in the
UC framework, and of TLS-OPAQUE overall. Our modular approach yields
formal models for widely-used concepts such as channel binders as well as public-
key and password-based post-handshake authentication. Our models deepen the
understanding of these concepts, and we expect them to be useful for real-world
protocol analysis beyond our work.

Finally, we would like to highlight a fundamental element in our treatment:
We do not assume the original channel to be authenticated upon creation, only
that no one other than the endpoints of the channel can transmit over the
channel (as enforced by the encryption and authentication keys created within
the channel, e.g., via a plain Diffie-Hellman exchange). Therefore, the security of
TLS-OPAQUE depends on the Diffie-Hellman key exchange of TLS 1.3 but not
on the server and/or client authentication of this exchange. Thus, TLS-OPAQUE
is secure even if the original channel was anonymous. On the other hand, if
this channel was originally authenticated, say by the server, that authentication
property is additional to the password-based authentication provided by TLS-
OPAQUE.

Deployment considerations. TLS-OPAQUE provides real improvements for
password-based authentication systems in a variety of environments. Mobile
applications, for example, can use TLS-OPAQUE for secure password authen-
tication without any risk of disclosing the password to the server, and without
any noticeable change in user experience. Use cases where TLS-OPAQUE is used
without fallback to password-over-TLS also mitigate common phishing vectors:
even if an attacker can intercept the underlying TLS connection, clients never
reveal the plaintext password to the attacker. TLS-OPAQUE also complements

Password-Authenticated TLS via OPAQUE and PHA 103

modern authentication technologies such as password managers and multi-factor
authentication protocols such as WebAuthn [16].

Using TLS-OPAQUE is not without tradeoffs, however, as TLS-OPAQUE
requires changes to applications and the underlying TLS implementations. How-
ever, such changes are not insurmountable in practice. Additionally, in environ-
ments where fallback to password-over-TLS authentication must be supported
for backwards compatibility purposes, such as the web, concerns such as phishing
remain. Client-side user interface changes may help mitigate such risks, though
additional user studies are required to demonstrate feasibility.

Technical roadmap. The analysis of real-world protocols in abstract
complexity-theoretic formalisms like the UC framework typically requires sim-
plifications that ignore many technical aspects of the full specifications. Yet,
such analysis serves to validate the core cryptographic design at the basis of the
protocols. To be concrete, in Sect. 2 (Figs. 3 and 5), we present the core cryp-
tographic elements extracted from IETF RFCs and Internet Drafts [23,26,27]
that we analyze and that we use as the basis for abstract representation of these
protocols in subsequent sections.

Our formal treatment includes the following elements. In Sect. 4 we formalize
secure channels exporting pseudorandom and unique channel binders in the UC
framework (functionality FcbSC in Fig. 6), and prove in Theorem 1 that the TLS
handshake protocol implements such functionality. We then formalize in Sect. 5
secure channels with post-handshake public-key authentication (functionality
FPHA in Fig. 8), and present a modular version of TLS-EA (ΠEA in Fig. 9) that
uses secure channels with binders (i.e., FcbSC) as an abstract building block. The-
orem2 proves that this modular version of TLS-EA implements FPHA. Invoking
the UC composition theorem on Theorems 1 and 2 yields our first main result,
namely that “real” EA, which corresponds to ΠEA with calls to the handshake
part of TLS 1.3 instead of FcbSC, securely implements FPHA.

We then turn to analyze TLS-OPAQUE. First, we formalize secure channels
with post-handshake password authentication (functionality FpwPHA in Fig. 10),
and present a modular version of TLS-OPAQUE (ΠTLS−OPAQUE in Fig. 12) that
uses secure channels with post-handshake public-key authentication (i.e., FPHA)
as an abstract building block. Theorem 3 proves that this modular version of
TLS-OPAQUE implements FpwPHA. Invoking again the UC composition theorem
on Theorems 2 and 3 yields our second main result, namely that “real” TLS-
OPAQUE, which corresponds to ΠTLS−OPAQUE with calls to TLS-EA (i.e., ΠEA)
instead of FPHA, securely implements FpwPHA.

The full version of this paper [15] provides previously known security notions
for signatures and MACs, as well as details on Oblivious Pseudorandom Func-
tions (OPRFs), a detailed walk-through of functionality FcbSC, considerations
for implementing, deploying, operating, and using TLS-OPAQUE in a variety of
use case, and full proofs and sketches of all our Theorems.

Related work. TLS 1.3 is perhaps one of the most carefully analyzed security
protocols used on the Internet today. Our work analyzes, in the UC model, the
aspects of TLS 1.3 that are directly relevant to TLS-EA and TLS-OPAQUE,

104 J. Hesse et al.

yet it may set a basis for a broader UC analysis of TLS 1.3. Our study of
these protocols also fits with the analysis-prior-to-deployment approach that
characterized the development of TLS 1.3,

Partial study of post-handshake authentication in a game-based model
appears in [21] which focused on post-handshake client authentication as a way
of upgrading a unilaterally authenticated key exchange to a mutually authenti-
cated one, but did not consider the server side or multiple authentications. In
particular, it did not analyze the security of the TLS-EA mechanism.

Most relevant to the subject of our work is the analysis of channel binding
and post-handshake authentication techniques (under the notion of compound
authentication) presented in [6]. The paper analyzes these techniques in several
deployed protocols (but not TLS 1.3), showing a variety of attacks due to short-
comings in the channel binding design. They carry a formal analysis of these
mechanisms using the protocol analyzer ProVerif [8]. Extending this work, [17]
presents an automated analysis of the Exported Authenticators (TLS-EA) pro-
tocol [26] based on a symbolic model of the protocol using the Tamarin Prover.
Additional papers relevant to the analysis of channel binding mechanisms in
practice (particularly pointing to vulnerabilities) include [3,4,7,13,25]. Finally,
we mention [10] who formalize (using game-based definitions) a notion of channel
binding but with a different functionality than ours. In their case the binding is
between identities and a key in a 3-party key exchange setting. Their mechanisms
and formal treatment do not seem to apply to our setting.

2 TLS-OPAQUE Specification

In this section we describe the protocols we study in this work: OPAQUE, TLS
1.3 Handshake, TLS-EA, and TLS-OPAQUE. We start by recalling OPAQUE
[9,18] in schematic form in Fig. 2 (more details are included in the presentation
of TLS-OPAQUE in Fig. 5).

Figure 2 (simplified schematic OPAQUE protocol). During registra-
tion, the user creates an “envelope” containing a user’s private key and a server’s
public key. The envelope is protected (for secrecy and authentication) by a key
computed jointly between user and server using an Oblivious PRF (OPRF) (to
which the user inputs its password and the server inputs a secret user-specific
OPRF key; neither party learns the other’s input). The server stores the enve-
lope as well as the user’s public key and the server’s own private key. For login,
the user receives the envelope from the server and obtains the key to unlock the
envelope by running the OPRF with the client using the same password as upon
registration. Now, user and server have the keys to run an authenticated key
exchange between them (for TLS-OPAQUE, these keys will be signature keys
similar to those used in TLS).

Next, we recall the elements from the TLS 1.3 handshake that play a role in
this work, and which serve as a basis for TLS-EA and TLS-OPAQUE.

Simplified schematic TLS Handshake (Fig. 3). The figure shows a
schematic representation of a subset of the TLS 1.3 handshake, the key exchange

Password-Authenticated TLS via OPAQUE and PHA 105

Fig. 2. OPAQUE registration (top) and key exchange (bottom).

Fig. 3. Schematic representation of TLS 1.3 Handshake (showing subset considered in
our analysis).

Fig. 4. Key Derivation in TLS 1.3

106 J. Hesse et al.

part of TLS. It is intended to show the components that play a role in the proto-
cols studied here. The first two flows show the exchange of nonces (randC , randS)
and an unauthenticated Diffie-Hellman run between client and server resulting
in a key gxy from which a key, HS (for Handshake Secret), is extracted as shown
in the key derivation tree in Fig. 4. In the next message, the server authenti-
cates to the client using TLS’s sign-and-mac mechanism. The signature (called
CertificateVerify in TLS) is applied to the handshake transcript and is veri-
fied by the client using the server’s public key transported in a certificate CertS .
The MAC part (known as the Finish message) uses key HSmS derived from
HS and is applied to the transcript as well. The following message shows client
authentication mimicking the server’s where the signature part is optional; only
the MAC part is mandatory in TLS 1.3. Messages authS and authC are protected
using an authenticated encryption with keys HSeS and HSeC also derived from
HS. Our analysis in the following sections proves security of TLS-EA and TLS-
OPAQUE even if the handshake DH is unauthenticated, hence from the point
of view of this analysis these authentication messages can be omitted.3 Each of
the transcripts tr1, ..., tr4 cover all previous elements in the handshake until the
point of use of the transcript. However, since our analysis does not require the
sending of the auth messages, we can set tr ← (randC , gx, randS , gy).

Handshake’s key derivation (Fig. 4). The figure shows a key derivation tree
used by TLS 1.3. Some of the keys have separate server and client derivations
(e.g., HSCS ,HSCC) but for simplicity we show them as one key. The root of
the tree, gxy, is the product of the handshake’s DH exchange. A key HS (for
Handshake Secret) is extracted from gxy and from it a tree of keys is derived;
we explain their roles. Key HTS (for Handshake Traffic Secret) spawns two keys:
HSe for encrypting messages authS and authC , and HSm used as a MAC key in
server and client authentication. Key MS (for Main Secret) has two siblings ATS
(Application Traffic Secret) and EMS (Exporter Main Secret). Key AEK, derived
from ATS, is used to derive Authenticated Encryption keys for protecting data
exchanged in the record layer (that follows the handshake) - it can be thought
as the session key in a traditional AKE. EMS spawns HSC and MK which play
the critical role (see below) of channel binders in TLS-EA and TLS-OPAQUE.
The extraction of HS from gxy and the derivation of MS use HKDF-Extract while
all other derivations use a PRF implemented via HKDF-Expand (because of the
particular way that the derivation of MS uses HKDF-Extract, also this derivation
can be seen as produced by a PRF). All derivations use public labels and parts of
the transcript to enforce domain separation and (computational) independence
of the keys.

3 Proving our results in the case of an unauthenticated handshake, shows that although
TLS handshake is commonly authenticated by the server, TLS-EA’s security does
not depend on this authentication. On the other hand, when certificate-based
server authentication is present during the handshake that precedes a run of TLS-
OPAQUE, one gets the benefits of both certificate-based and password-based authen-
tications.

Password-Authenticated TLS via OPAQUE and PHA 107

Fig. 5. The TLS-OPAQUE protocol, formed by the subset of the TLS handshake shown
in Fig. 3 and the present figure. Omitting blue-colored parts (which correspond to
the OPAQUE envelope decryption) one obtains two TLS-EA instances. (Color figure
online)

Figure 5 (TLS-EA and TLS-OPAQUE protocols). We are now ready to
explain TLS-EA and TLS-OPAQUE. We show protocol TLS-OPAQUE in Fig. 5.
However, if one ignores all the blue-colored elements in Fig. 5, one obtains two
instances of the TLS-EA protocol [26], the first one authenticating the server to
the client, the second one vice versa. This presentation shows how TLS-OPAQUE
is built as an extension of TLS-EA, because all the additional cryptography
required by OPAQUE is carried using CCR and SCR extension fields of TLS-EA.
Note that Fig. 5 shows only the post-handshake authentication parts of TLS-
OPAQUE and TLS-EA, while the full protocols are obtained by running the
TLS handshake shown in Fig. 3 followed by the post-handshake authentication
shown in Fig. 5.

TLS-EA allows an application that established a TLS connection via the
handshake to request its peer (client or server) to authenticate at any time
after the handshake is completed. For the client to request server authenti-
cation, TLS-EA defines a message ClientCertificateRequest (abbreviated
CCR) that includes a nonce called certificate_request_context and which
we denote by CCR.nonce. In addition, CCR has an extensions field (we denote
it CCR.ext) where an application can carry additional auxiliary information.
The analogous message ServerCertificateRequest (SCR) (or simply called
CertificateRequest in the case of the server) is used by the server to request
client authentication. The response to such requests is an authentication message
by the responder that includes a certificate, a signature and a MAC, implement-

108 J. Hesse et al.

ing the regular sign-and-mac mechanism of TLS with elements σ and mac (i.e.,
TLS’s CertificateVerify and Finish messages). The keys for generating and
verifying σ correspond to the public keys transported in the certificates (this
changes in the case of OPAQUE – see below). The goal of this authentication
is not only to validate the identity of the peer but also to tie this peer to the
specific connection (or handshake session) on which TLS-EA is executed and to
the secure channel (record layer) established by this handshake. A party accept-
ing a set of credentials via TLS-EA is linking these credentials to the party with
whom it originally ran the handshake even if that party did not authenticate
with these credentials during the handshake, and possibly did not authenticate
during the handshake at all.

Linkage of an authentication to the handshake is obtained via a channel
binder that in TLS-EA (and in our modeling in Sect. 4) is composed of two
elements: a transcript digest (HSC) included under the signature σ and a MAC
key (MK) used to produce the value mac. Key MK needs to have properties
similar to a session key in a regular key exchange protocol. Informally, it can
be seen in the derivation tree of Fig. 4 that MK is a descendant of the original
key gxy and is independent (via PRF derivations) from keys used elsewhere by
the protocol such as ATS and HTS (exact requirements and proofs are provided
in our extensive formal treatment in the following sections). What is less clear
is why HSC qualifies as a handshake transcript digest. This property follows
from the fact that EMS is computed as an output of a PRF computed on input
the handshake’s transcript tr, with the PRF instantiated by HKDF [20]. Hence
EMS is the product of a chain of hashes computed on tr, and since none of these
hash computations is truncated, this ensures that EMS is an output of a collision
resistant function computed on tr. The digest property also applies to HSC which
is derived from EMS using HKDF, hence as the output of a chain of collision
resistant hashes.

The uncolored part of Fig. 5 shows the flows for the case where a client
request is followed by a server response and then a server request is followed by
a client response. Protocol TLS-OPAQUE adds the colored elements that trans-
port OPAQUE messages inside the extension fields of TLS-EA. This includes
OPAQUE’s OPRF messages and the user’s envelope transmitted from server to
client. In this case, signature authentication uses the OPAQUE keys rather than
the normal certificate-based keys of TLS. For the client, it uses the private key
contained in the envelope and for the server it is the server’s signing key stored
at the server and whose corresponding public key is included in the envelope.
Verification at the server uses the user’s public key stored at the server.

Note on the Record Layer Protection of TLS-OPAQUE Messages. When the
TLS-EA messages are transported over TLS’s record layer, all the messages
in Fig. 5 are protected by the record layer keys (derived from AEK). In our
treatment we ignore this protection as TLS-EA does not mandate transmission
within the channel4. Thus our results establish that TLS-EA and TLS-OPAQUE
4 From [26]: “The application MAY use the existing TLS connection to transport the

authenticator.” The use of MAY makes this protected transport optional.

Password-Authenticated TLS via OPAQUE and PHA 109

security does not depend on this protection. On the other hand, the addition
of this layer of protection does not jeopardize security; this is so since AEK
is derived from ATS which is (computationally) independent from any element
used in TLS-EA. Indeed, the latter only uses keys derived from EMS which is a
sibling of ATS in the derivation from MS, hence independent from AEK (formally,
one can simulate the record layer encryption using a random independent ATS).
Finally, we note that while not required for TLS-OPAQUE security, running
TLS-OPAQUE over a protected record layer can provide privacy to user account
information transmitted as part of the protocol.

3 Preliminaries

Notation. We denote by x ← A the assigment of the outcome of A to variable
x if A is an algorithm or a function. In case A is a set, x ← A denotes that x is
sampled uniformly at random from A.

Oblivious PseudoRandom Functions. An Oblivious Pseudorandom Func-
tion (OPRF) is a 2-party protocol between an evaluator and a server, where
the evaluator contributes an input x and the server contributes a PRF key k.
The outcome of the protocol is that the evaluator learns PRFk(x) but nothing
beyond, and the server learns nothing at all. OPRFs have been extensively used
in password-based protocols, and they are also the main building block of the
OPAQUE protocol [18]. We use a UC formalization of OPRFs by Jarecki et
al. [18], modified regarding its output of transcripts which we now describe on a
high level. The OPRF functionality of [18] has a (session-wise unique) “transcript
prefix” prfx that the adversary contributes. If the view of both parties of this pre-
fix match, the adversary cannot use the honest evaluation session anymore to
evaluate the PRF himself (e.g., by modifying the transcript). For the purpose of
analyzing TLS-OPAQUE, we introduce two changes to their functionality:

1. We add a “transcript postfix” pstfx, which is also determined by the adversary.
prfx and pstfx together constitute the full transcript of the OPRF protocol. In
particular, if the view of both parties on prfx and pstfx match, then the OPRF
output computed by the evaluator is guaranteed to be correct.

2. We let the evaluator output prfx and require the sender to input prfx. Likewise,
the sender outputs pstfx and the evaluator requires it as input to complete
the evaluation. These changes are only syntactical since as outputs both prfx
and pstfx are adversarially-determined, and as inputs both are leaked to the
adversary. However, in TLS-OPAQUE the OPRF transcript is transported
over EA messages, hence making it fully visible to the environment enables
a modular usage of FOPRF in our analysis of TLS-OPAQUE.

Furthermore, our functionality FOPRF fixes an important omission in the OPRF
functionality as written in [18]. Namely, if the adversary compromises server
PS , the adversary gains the ability not only to offline evaluate the (O)PRF
values, via interface Eval (as in [18]), but also to perform server-side operations in
the online protocol instances, via interface SndrComplete. Our functionality

110 J. Hesse et al.

FOPRF is shown in the full version of this paper [15], where we also present a slight
modification of the 2HashDH protocol of [18] which UC-emulates our modified
FOPRF.

Corruption model. In this paper we consider two types of corruption. First,
every party can be statically and maliciously corrupted by the adversary using
standard “corrupt party P” instructions that can be issued by the adver-
sary in the UC model at the beginning of the protocol, against any party
P [11]. This means that party P will be corrupted from its first activation
on, and can deviate arbitrarily from the protocol code. Second, our function-
alities FOPRF,FPHA,FpwPHA have a special type of corruption we call “com-
promise” (modeled, respectively, by adversarial interfaces Compromise and
StealPwdFile). If such corruption happens to a party which stores long-term
protocol data, such as in our setting a server storing an OPRF key or password
files, the adversary obtains the stored data. However, the server continues to
follow the protocol honestly. Formally, a compromise is hence an adaptive but
passive corruption.

4 Secure Channels with Binders

In this section we analyze the security of TLS 1.3 Handshake, Fig. 3 as a uni-
versally composable unauthenticated secure channel establishment protocol. The
Key Exchange (KE) part of the TLS 1.3 Handshake generates a communication
key which is subsequently used to implement a secure channel, i.e. the secure
message transmission, and a channel binder, which can be subsequently used by
TLS-EA and TLS-OPAQUE to bind post-execution authentication decisions to
this secure channel.5

In Fig. 6 we show functionality FcbSC which models both parts, i.e. an (unau-
thenticated) secure channel establishment extended by outputting an (exported)
channel binder, and a secure communication using this channel. The first part
is implemented by interfaces NewSession, Attack, and Connect, the second
by interfaces Send, Deliver, and interface ExpireSession allows any party
to close the channel. Functionality FcbSC in Fig. 6 is a standard unauthenticated
secure channel functionality (e.g., [12]), extended with a channel binder CB. We
mark this extension with gray boxes. The channel binder CB is output to both
channel endpoints. The code that determines CB is very similar to the way in
which (unauthenticated) key exchange (KE) is modeled in UC [12]. Just like
a session key created by KE, CB is a random bitstring if the adversary allows
two parties to passively “connect” by transmitting the messages between them.
However, if the adversary plays a man-in-the-middle, which is modeled by the

5 TLS Handshake includes authentication, implemented by messages authS and authC
in Fig. 3. However, as mentioned in footnote 3, we treat it as unauthenticated key
exchange/secure channel establishment, because this allows us to show that the
security of TLS-EA and TLS-OPAQUE is independent of the security of the initial
authentication performed within the TLS 1.3 Handshake.

Password-Authenticated TLS via OPAQUE and PHA 111

Attack interface, it can arbitrarily set the channel binder the attacked par-
ties output, subject to it being unique among all channel binders output by
honest parties. This is how channel binders differ from session keys: It makes
no difference if P and P ′ use the same session key on two attacked sessions,
because the adversary can anyway decrypt all messages sent by P and it can
re-encrypt them so they are successfully received by P ′. On the contrary, any
authentication action, whether via TLS-EA or TLS-OPAQUE done by P will
pertain to its channel binder CB for that session, and because FcbSC enforces
that the channel binder output CB′ of P ′ satisfies CB′ �= CB, the signatures
issued in protocols TLS-EA and TLS-OPAQUE protocols by P (cf. Fig. 5) are
useless for creating signatures that can be accepted by P ′. In Fig. 5 the chan-
nel binder role is played by key EMS, and since value HSCC is derived from
EMS using HKDF-Expand, which is both a PRF and a collision-resistant hash, if
EMS �= EMS′ then HSCC �= HSC′

C , and since HSCC is one of the signed fields,
unforgeability of a signature implies that the signature σC issued by P is not
useful in authenticating to P ′. In our analysis of TLS-HS below we will argue
that it realizes functionality FcbSC with CB implemented as EMS, see Fig. 6.

We refer the reader to the full version of this paper [15] for an explanation
of FcbSC interfaces.

4.1 TLS 1.3 as UC Secure Channel with Binder

We analyze TLS 1.3 as a realization of the ideal functionality FcbSC. In Fig. 7 we
specify how TLS 1.3 implements FcbSC commands NewSession and Send, used
resp. to start a handshake, shown in Fig. 3, and to send a message on a secure
channel established by it, and we show how parties form their outputs based on
received network messages, resp. in Finalize which finalizes the handshake, and
Received which stands for receiving a message on the channel.

The implementation in Fig. 7 follows the schematic protocol of Fig. 3 except
for adding cid fields to the handshake messages, which model sender TCP port
number. Also, in Fig. 7 for brevity we denote function HKDF-Extract used to
derive the handshake secret HS from the Diffie-Hellman value gxy as H, treated
as a Random Oracle in the security analysis, and we shortcut the derivation
of the Exporter Main Secret EMS (which is output as channel binder) and
the traffic-encrypting keys AEKC ,AEKS from HS using key derivation function
KDFf (MS, tr) for flags f ∈ {0, 1, 2}, where KDFf (k, x) stands for KDF(k, (x|f)).
The key derivation procedure in Fig. 3 can be rendered by setting each derived
key in this way. Since function HKDF-Expand used in TLS 1.3 is implemented
as HMAC, it implies that KDF is both a secure PRF and a collision-resistant
hash on full input (k, x|f) [20], and we use both properties in the security anal-
ysis. Finally, we emulate TLS message transport by implementing command
(Send, cid,m) of P as sending (cid′, c) where cid′ is the presumed counterparty
channel identifier for session (P, cid) and c = AEnc(AEKP , (ctr,m)) where ctr
is the current value of the counter for this traffic direction. (Note that each
direction, P-to-P ′ and P ′-to-P, uses a separate key AEK and counter ctr.)

The security of TLS handshake and message transport is captured as follows:

112 J. Hesse et al.

Fig. 6. Secure channel functionality FcbSC. Without gray parts, the functionality imple-
ments secure unauthenticated channels. The gray parts provide both ends of a channel
with a high-entropy unique “channel binder” CB that can be used for, e.g., subsequent
authentication.

Theorem 1 (Security of TLS as unauthenticated secure channel). TLS
1.3 handshake and message transport protocol specified in Fig. 7 UC-emulates
functionality FcbSC in the FRO-hybrid model, with H modeled as random oracle,
if function KDF is both a PRF and a CRH, AEnc is CUF-CCA secure, and the
Gap CDH assumption holds on group 〈g〉, assuming static malicious corruptions.

We refer to the full version of this work [15] for the cryptographic assumptions
in this theorem, and for its full proof. Sketching it briefly, we exhibit simulator
S which sends Zi = gzi for random zi on behalf of each session i = (P, cid),
hence it can predict its outputs in case of active attacks, but if two honest
parties are passively connected S picks a random key AEK (which it uses to
emulate secure channel communication) while FcbSC picks channel binder EMS
independently at random. Since in the protocol AEK and EMS are derived via
KDF from HS = H(K) for K = gzi∗zj , computing this value given passively
observed values Zi = gzi and Zj = gzj is related to breaking Diffie-Hellman. By

Password-Authenticated TLS via OPAQUE and PHA 113

Fig. 7. TLS 1.3 as realization of functionality FcbSC

hybridizing over all sessions, and guessing the identity of a passively connected
counterparty and the H query which computes the key, it is possible that one
could base security on a standard computational DH assumption, albeit with
very loose security reduction. Instead, we show a tight reduction to the gap
version of the Square DH assumption (which is equivalent to Gap CDH). The
reduction embeds a randomization of a single SqDH challenge into all Zi values,
and uses the DDH oracle to detect hash queries H(K) for K = DH(Z ′

i, Z
′
j) into

which it can either embed a chosen key HS, if one of Z ′
i, Z

′
j is adversarial, or

which it can map to the SqDH challenge, if both Z ′
i and Z ′

j come from honest
parties.

5 Post-Handshake Authentication

In this Section we provide a model for post-handshake authentication (PHA),
that is, a secure channel that allows for later public key authentication of the
channel endpoints after already establishing the (unauthenticated) channel. As a
side product, we will prove security of “real-world” TLS-EA. Namely, we demon-
strate that Exported Authenticators is a secure post-handshake authentication
protocol.

5.1 Post-Handshake Authentication Model

Figure 8 shows a UC model FPHA for post-handshake authentication, which
allows establishing an unauthenticated secure channel between any two parties,

114 J. Hesse et al.

Fig. 8. FPHA model for post-handshake authentication, which allows for public key
authentication on an already existing unauthenticated channel. FPHA offers mode = std
key generation as used by, e.g., EA, as well as transportable-key mode tk, which makes
FPHA a useful modular building block for, e.g., TLS-OPAQUE. For brevity we omit the
overall session identifier from all interfaces.

Password-Authenticated TLS via OPAQUE and PHA 115

and then performing subsequent authentication of that channel with public keys.
On a very high level, FPHA provides the following guarantees:

– Unforgeability: Eve cannot authenticate to Bob under Alice’s public key;
– Channel binding: Eve cannot authenticate (even with her own keys) on

channels that she is not an endpoint of.

An honest walk-through. We exemplarily describe channel establishment
and authentication for two parties C and S, with C authenticating to S. We ask
the reader to ignore fields mode, ak, ske of FPHA for the sake of this walk-through;
an explanation of these special fields follows further below.

FPHA inherits [C.1] all channel interfaces of FcbSC, but without channel binder
CB, implementing secure but unauthenticated channels. Both C and S call
NewSession of FPHA to establish a channel. Let us assume that the adver-
sary decides to connect their requests. Both parties receive a Finalize notifica-
tion and learn the channel identifier cidC/cidS under which the other endpoint
knows the channel. We note however that neither C nor S learn with whom they
actually got connected. The established channel can be used to send messages
securely.

To tell his peer on channel cidC who he is actually connected to, C first
generates a key by querying FPHA with (KeyGen, kid, ε, ε, std), resulting in
output (key, kid, ε, ε, ε, pk) with [G.1] adversarially-chosen but [G.2] fresh pk.
kid denotes a non-secret identifier which helps C managing her public keys. ε
denotes an empty string – these fields are only used in a special mode of FPHA

called transportable key mode (mode = tk, see explanation further below). For
this walkthrough, we use standard key generation (mode = std). FPHA adds
pk to [G.3] lists pkReg and pkey[C]. pkReg contains all public keys generated
through FPHA (in any mode). pkey[C] is a list containing all standard public
keys that C generated through FPHA, and which C can use for authenticating
on her channels.

Now that C has created pk, C wants to use pk to authenticate to S on
channel cidC . To do so, C queries (AuthSend, S, cidC , ssid, ctx, ε, ε, pk, std). ctx
denotes optional auxiliary public context information that C wants to transmit
alongside the authentication request. If [S.2.1] C is allowed to authenticate under
pk, FPHA records (Auth, C, cidC , S, cidS , ssid, ctx, pk), representing the fact that
C successfully performed authentication under pk in this channel. FPHA then
informs the adversary about the authentication attempt, including all its data
and whether authentication was successful (the bit b).

To receive the result of C’s authentication, the receiver S has to choose a
public key and a context for verification. This data is contributed by S via inter-
face AuthVerify, allowing applications to actively choose under which public
key and context verification should be performed. Hence, we assume these public
values to be transmitted by the application. In case the verifier wants to perform
verification under the same pk and ctx that C performed the authentication with,
FPHA [V.2] outputs success.

116 J. Hesse et al.

Transportable key mode. FPHA as described above binds usage of pk to S,
the party who generated pk via interface KeyGen. This is however not realis-
tic in dynamic settings, where, e.g., S transfers her keys to another machine
in encrypted form. A concrete example is OPAQUE, where secret keys are
encrypted and the resulting envelopes are sent to the server, who then stores
them. In order to enable a modular analysis of such “key-handling” protocols, we
introduce the notion of transportable keys to the UC framework, and to our FPHA.
When generating a transportable key by querying (KeyGen, kid, ak, aux, tk),
a party provides a key identifier kid, an application key ak and an optional
label aux. FPHA keeps the application key secret but [G.1] leaks all other values
to the adversary. The requesting party then receives back [G.1] adversarially-
generated key envelope ske and public key pk. One can think of these values
as ske being an encryption of sk belonging to pk, encrypted symmetrically with
key ak. FPHA stores (aux, pk) in tkey[ak, ske]. The semantics of the tkey array are
as follows: whoever provides input i, where tkey[i] = (aux, pk), can authenticate
under pk (see below), and [T.2] retrieve label aux and public key pk via interface
GetAuxData. Hence, knowledge of both application key ak and envelope ske
will be sufficient to authenticate under pk. Since the requesting party outputs
ske, ske can be used by applications which require secret keys to be objects that
can be sent around, stored, further encrypted etc.

To authenticate with transportable keys, S calls AuthSend with inputs
ak, ske and mode = tk. In case [S.1] ak, ske are not known to FPHA (i.e.,
tkey[ak, ske] does not store any pk), no security is guaranteed and the adversary
obtains ak, ske. FPHA then [S.2] checks again whether tkey[ak, ske] stores pk, and
if so, it grants authentication by creating the corresponding Auth record includ-
ing pk, and notifies the adversary about the authentication attempt, including
all its data and whether authentication was successful (bit b). We note that the
double check of tkey[ak, ske] is necessary since the adversary could have registered
ak, ske in between both checks.

Adversarial interfaces. The adversary A can register both std and tk
keys via interface KeyGen. FPHA adds such compromised keys to set pkComp.
For transportable keys ak, ske, the adversary can also reveal which public
key they “work for”, by querying (GetAuxData, ak, ske). FPHA returns [T.2]
(aux, pk) = tkey[ak, ske] (or ⊥ if empty) and [T.1] adds pk to pkComp, account-
ing for A now knowing transportable keys for pk. Altogether, in pkComp we find
all keys generated in any mode by FPHA that are compromised: the adversary can
authenticate with these keys (as well as unknown keys /∈ pkReg) on his channels
[A.1] using the ActiveAttack interface. A can always make authentication fail
by [V.1-2] sending f = 0 in its AuthVerify query to FPHA. Regarding leakage,
A learns all inputs of AuthSend except for uncompromised transportable keys
ak, ske, as well as public verification values pk, ctx. With such a strong adversary,
FPHA guarantees that an authentication mechanism does not rely on the secrecy
of messages.

On usage of party identifiers. Our modeling of PHA, just as our modeling
of unauthenticated channels in Sect. 4, does not provide any initial guarantees

Password-Authenticated TLS via OPAQUE and PHA 117

about the identity of a peer. Hence, throughout this paper, party identifiers are
interpreted only as process identifiers. For example, pid could be a unique com-
bination of IP address and port, and we make only the minimal assumption that
it is always the same process sending from this addresses’ port. Consequently,
party identifiers are used by functionalities only to determine which messages
were generated by the same process. In protocol instructions, sending a message
requires specification of an intended recipient, and hence we add the intended
recipient to input AuthSend of FPHA. However, since our modeling of unau-
thenticated channels is weak in the sense that parties are oblivious of which
process (i.e., which pid) their channel actually got connected to, the intended
recipient might not coincide with the process holding the other end of the chan-
nel. By this we capture an authentication-less setting with a network adversary
who is freely rerouting/rewriting messages. Consequently, FPHA overlooks any
mismatch in a party’s perception and instead bases authentication decisions for
a specific channel and pk solely on whether an endpoint (=pid) is eligible to
authenticate under pk.

5.2 The Exported Authenticators Protocol

The EA protocol that we consider for our analysis is depicted in Fig. 9. It gen-
eralizes Exported Authenticators as specified in Sect. 2 in several aspects:

1. ΠEA abstracts from the channel establishment and can provide post-
handshake authentication for any “handshake” protocol that securely instan-
tiates FcbSC

2. ΠEA works with standard signature keys and transportable keys (see below),
which enable ΠEA to use key material provided by an application

3. ΠEA does not hash messages before signing/mac’ing
4. ΠEA sends messages in the clear instead of sending them over the channel-to-

authenticate
5. Public key and context are verification is provided by the application instead

of being sent by the authenticator
6. Fields EACert and extensions ext are subsumed in the ctx object, about which

no further assumptions are made

In ΠEA, parties can establish channels by calling FcbSC. If the channel is
finalized, the endpoints share a unique channel binder EMS (cf. Sect. 4 for
details). The endpoints, let’s call them C and S, then derive transcript digest
and MAC keys MKC ,MKS ,HSCC ,HSCS from EMS. We note that this is the
only place in this paper where the roles clt, srv have an effect: these are
roles that parties have in some application, such as TLS, and they help us
here to derive different digest and MAC key for C and S from public labels
lblMK,clt, lblMK,srv, lblHSC,clt, lblHSC,srv that reflect these roles.

ΠEA is a multi-party protocol that allows arbitrary parties to establish chan-
nels with each other, allows unlimited generation of keys and unlimited numbers
of unilateral authentication sessions per channel. We exemplarily describe such

118 J. Hesse et al.

Fig. 9. Protocol ΠEA is a unidirectional post-handshake authentication of channel
binder EMS provided by hybrid functionality FcbSC. We depict a C-to-S authentica-
tion flow with either std key mode or transportable key mode tk . For brevity we
omit the functionality’s identifier sid from all queries and messages.

an authentication performed by C for a channel with S as depicted in Fig. 9.
We start with standard signing keys and for now ignore the gray parts of the
figure. Upon input (KeyGen, kid, ak, aux, std), C generates a key pair (sk, pk)
by running the key generation of the signature scheme (values ak, aux are ignored
in normal mode), and outputs pk to the application. When C wants to authen-
ticate on her channel cidC , she looks up6 identifier cidS in the Finalize output

6 We assume C to learn this information as otherwise, when sending messages over
plain connections, we would have no mean of informing S which channel the authen-
tication is intended for. This can be avoided by instead sending messages over the
secure channel.

Password-Authenticated TLS via OPAQUE and PHA 119

of FcbSC, and signs message (HSCC , ssid, ctx) with sk, where ssid is the EA nonce
and ctx is the EACert field (containing identity information such as, e.g., a cer-
tificate) that C wants to convey. Then C macs the message together with the
signature under mac key MKC . C then sends all values to S, who accepts or
rejects depending on whether signature and mac verify for HSCC ,MKC that S
computes from channel binder EMS for her channel cidS .

Instantiating transportable keys. A transportable key is a protected secret
key, also called envelope throughout the paper. One can think of an envelope as,
e.g., an encryption of the secret key. ΠEA allows parties to export such envelopes
to the application. Since this way envelopes can “travel” to other parties who
can then attempt to extract the secret key from them, transportable keys can be
used by any party who possesses both the envelope and whatever is required to
unlock the secret key from it. A transportable key requires a signature key pair
(pk, sk) ← KG(1λ). Then, an encryption key k is generated as k ← H(ak, nonce),
where ak is an application key, and H hashes to the key space of a symmet-
ric cipher. The envelope is then ske ← (nonce, ae), where ae is an encryption of
aux, sk under k, for auxiliar information (e.g., a label) aux. Obviously, the applica-
tion key ak is enough to decrypt sk from envelope ske. Hence, the authentication
step in ΠEA can alternatively be conducted by an authenticator C running on
inputs ak, ske, pk (cf. gray parts in Fig. 9): before signing and mac’ing, C first
recovers sk from ak, ske.

This concludes our description of ΠEA, and we are ready to state its security.
We refer to the full version [15] for the formal definitions of the cryptographic
assumptions within the Theorem and for the full proof.

Theorem 2 (Security of ΠEA). Protocol ΠEA depicted in Fig. 9 UC-emulates
functionality FPHA in the (FRO,FcbSC)-hybrid model, PRF is both a secure PRF
and a collision-resistant hash function, with H modeled as random oracle, (KG,
PKGen,Sign,Vfy) a perfectly complete and EUF-CMA-secure signature scheme,
MAC is perfectly complete and EUF-CMA-secure MAC, and (AEnc,ADec) a
CUF-CCA- and RKR-secure encryption scheme that is equivocable, and restric-
tion to static malicious corruptions and adaptive server compromise.

There are 6 discrepancies described above between ΠEA and EA as described
in Sect. 2. As already argued in Sect. 1, (4) does not void security, and neither
does hashing (3). (1), (2), (5), (6) are strict generalizations of the Exported
Authenticators protocol. Hence, the security of TLS-EA follows from the security
of ΠEA, with FcbSC instantiated with the TLS-HS through the standard UC
composition theorem [11].

Corollary 1. Protocol TLS-EA specified in Sect. 2 securely realizes FPHA.

6 Security of TLS-OPAQUE

6.1 Password-Based Post-Handshake Authentication

We give a model FpwPHA for password-based post-handshake authentication in
Fig. 10. On a high level, FpwPHA guarantees the following:

120 J. Hesse et al.

– Limitation to one guess per online attack: Each run of the protocol
reveals at most one bit of information about the opponent’s password to each
participant;

– Resistance to offline attacks: Dictionary attacks on passwords are pre-
vented unless a server is compromised;

– Resistance to precomputation attack: An attacker cannot speed up dic-
tionary attacks through computation performed prior to server compromise;

– Enable rate limiting: Servers can map login attempts to registered user
accounts;

– Channel binding: One cannot authenticate (even with correct password)
on channels one is not an endpoint of;

We explain how the functionality can be used by a client C and server S
to first establish an unauthenticated channel, and then subsequently authen-
ticate to each other using a password (client) and password file (server). We
emphasize how FpwPHA enforces the above guarantees alongside our explanation.
To start, the client registers [F.1] with the server by storing some password-
dependent information (called password file), under some user name uid. This
results in FpwPHA registering that a file with uid, pw was stored at S, by [C.1]
installing record file. This process can be stopped by the adversary by not
sending StorePwdComplete, allowing analysis of protocols with interactive
registration phase and without guaranteed delivery of messages.

Parties C and S can establish an unauthenticated channel by calling FpwPHA’s
NewSession interface. See Sect. 4 or description of FPHA in Sect. 5.1 for more
details. We note that registration and channel establishment do not rely on each
other and can thus be performed in arbitrary order.

Having concluded registration and channel establishment, parties connected
via a channel can now authenticate to each other using password (client) and
file (server). Password authentication is always initialized by the client calling
pwInit with credential uid, pw. The client also specifies the channel to authen-
ticate, cidC , and intended recipient S. Similar to our modeling of EA, FpwPHA

ignores intended recipients and instead [In.4] refers to (session, ∗, ∗) records to
figure out who the end points of a channel are. Assuming that C’s channel cidC

is with S, FpwPHA [In.4] stores a record (pwAuth, ssid, C, cidC , S, cidS , uid, pw,
init, 0) and [In.5] notifies S of the authentication session, the channel and the
uid, where disclosure of the uid enables rate-limiting. This record reflects ini-
tiator and responder roles by order of mention. Having been notified, S can now
either accept or decline to participate by calling pwProceed for said session. An
application can hence apply rate-limiting policies, such as “at most 5 authentica-
tion attempts for uid per minutes” by calling pwProceed in a policy-conforming
way. pwProceed will only move authentication forward [P.3] if there is a file
stored for S and uid: if the password in that file matches pw, then the state of
the pwAuth record is rewritten to match, otherwise it is rewritten to fail. It
is instructive to see that FpwPHA bases this decision on password data held by
corresponding channel endpoints [In.4], ensuring that authentication can only be

Password-Authenticated TLS via OPAQUE and PHA 121

Fig. 10. FpwPHA model of password-based post-handshake authentication, again omit-
ting session identifier sid.

122 J. Hesse et al.

successful for parties sharing a channel (channel binding). Finally, FpwPHA cre-
ates adversarially-scheduled (via interface pwDeliver) outputs [D.4] reflecting
the state of the pwAuth record [D.2-3], namely fail or match, towards both C
and S, notifying them about the outcome of authentication. As soon as two out-
puts are delivered, FpwPHA [D.3] marks a record as completed, which concludes
the authentication flow.

Adversarial interfaces. FpwPHA has a very simple leakage pattern - all inputs
are public except for passwords (see messages to A in [F.1],[In.2] and [P.1]).
To account for interactive protocols, we let adversary A acknowledge all hon-
est inputs ([C.1],[In.1] and [P.1]), modeling Denial-of-Service attacks at different
stages of the execution, and we let A make any authentication session fail [D.1].
StealPwdFile,OfflTestPwd and Impersonate model adaptive compro-
mise of server’s password files. If the attacker wants to compromise a file, say,
for uid stored at server S, it informs FpwPHA by sending (StealPwdFile, S, uid).
FpwPHA [S.2] marks the corresponding file as compromised, which “unlocks” inter-
faces OfflTestPwd and Impersonate (resistance to offline attacks): A
can now make unlimited password guesses against the file via OfflTestPwd
[O.1], and it can use the file to actively play the role of the honest server S
in authentication sessions described above, using (Impersonate, ssid, S, uid, ε)
[Im.1]. We capture the ability of the attacker of compute its own password files
by an optional input pw to Impersonate. If this input [Im.2] is set, A is spec-
ifying which password it wants to use for file creation. A can only mount such
attacks on an attacked channel, which is enforced by FpwPHA by [In.3] checking
whether the attacked client a channel that is flagged att. If so, FpwPHA creates
[In.3] a pwAuth record with A as server and follows the procedure of honest
authentication, except that it expects A to use an Impersonate query instead
of pwProceed. This concludes already the description of active attacks that
FpwPHA allows to mount against a client. We further note that FpwPHA features
a strong OfflTestPwd interface since it enforces resistance to precompu-
tation attacks [18]: FpwPHA does not allow to pre-register guesses7 and obtain
a batched reply upon file compromise. Further, as common for asymmetric pass-
word authentication models, server compromise constitutes a form of corruption,
which requires permission from the environment Z, and hence StealPwdFile
and OfflTestPwd can only be queried by A upon being instructed by Z.

ActiveAttack and TestPwd interfaces allow an adversary to actively
attack server S, guessing which password was used to generate a file. A initializes
such attack by calling ActiveAttack, specifying S, uid. FpwPHA initializes the
[A.1] corresponding pwAuth record with A in client role and [A.2] notifies the
server. A can postpone the password guess, allowing analysis of protocols such
as TLS-OPAQUE, where the attacker is not committed to a password guess
from the very beginning of the attack. We complement the ActiveAttack

7 As a real-world example of an attack that is excluded by FpwPHA, imagine an adver-
sary preparing a list of hashed password guesses and, upon compromise, searching
this list for a match. See [14] for a “non-strong” aPAKE functionality allowing for
such attacks.

Password-Authenticated TLS via OPAQUE and PHA 123

interface with interface TestPwd, with inputs S, uid and password guess pw.
Since cracking a password file of S, uid results in the insecurity of all ongoing
and future authentication session with S, uid, interface TestPwd is not session-
based but file-based, and a successful guess results in all ongoing active attacks
against this file being successful (i.e., FpwPHA [T.1.1] rewrites the correspond-
ing pwAuth records to match). To make sure that the number of adversarial
TestPwd queries does not exceed the number of active attacks against a specific
file, i.e., to ensure limitation to one guess per online attack, we let FpwPHA

maintain a counter ctr[S, uid] for every file ([P.2],[T.1] and [T.1.2]), indicating the
remaining password guesses that A can issue against the file for uid.

On Registration and Authentication. Typically, user registration will assume
some form of authenticated channels for the user and servers to identify each
other. This authentication can take many forms from PKI to physical rendezvous.
However, we do not force authentication into the model so it can also support, for
example, anonymous settings where no authentication, or one-way authentica-
tion, is deemed sufficient. We stress that besides optional authentication during
registration, our modeling (and TLS-OPAQUE in particular) is “password-only”
where the user is not assumed to carry any information other than the password.

6.2 A UC Version of TLS-OPAQUE

We now give a modular representation of TLS-OPAQUE in Fig. 12, called
ΠTLS−OPAQUE, which allows for asymmetric password authentication on an unau-
thenticated channel. ΠTLS−OPAQUE is a UC protocol where parties issue calls to
one instance of each functionality FPHA for PHA, and FOPRF for an oblivious
pseudorandom function (OPRF), (see the full version [15] for details on OPRFs).

In a nutshell, parties use the OPRF to turn their passwords into an appli-
cation key rw. During registration, rw is used to generate a key pair at FPHA,
of which the server stores the public key. To authenticate, a client then recom-
putes rw from pw, then uses rw to recover (pk, sk) from FPHA, and subsequently
authenticates to the server using sk and the public-key authentication interface
of FPHA. The flow is depicted in Fig. 11. It is important to note that, due to our
modular modeling, the client never actually sees the key pair (pk, sk), because
FPHA never gives out actual keys. However, FPHA has the option to bootstrap
key generation from any string, in our case the PRF value rw. Since the client
can recover rw from only a password, it can, during authentication, re-claim the
key pair at FPHA from only pw. This concept of transportable keys in FPHA was
explained in more detail in the previous section, and it is the central tool that
allows us to abstract the public-key building block of TLS-OPAQUE, i.e., write
TLS-OPAQUE modularly with calls to FPHA.

ΠTLS−OPAQUE consists of three phases: registration, channel establishment
and asymmetric password authentication.

Registration: If client C with username uidC and password pwC wants to
register with server S, then C initiates by sending uidC to S. S then creates a
(normal) public key pkS at FPHA and sends it to C. Both parties engage in an
OPRF protocol, where S plays the server role on random key K and C evaluates

124 J. Hesse et al.

Fig. 11. Flows of TLS-OPAQUE using calls to hybrid functionalities FOPRF and FPHA.
Left: registration and channel establishment. Right: password authentication of the
unautenticated channel. Note that the key pair (pk, sk) is implicit in FPHA and is never
seen by P. It is generated and can be re-claimed from the application key rw.

rw = PRFK,S||uid(pwC). Finally C then generates a transportable key at FPHA

with application key ak = rw and aux = pkS , receiving back ske, pkC , C sends
ske, pkC to S and erases her memory, and S stores (uidC , ske, pkS , pkC) as the
password file.

Channel Establishment: C and S establish an unauthenticated channel
as in Fig. 9. If establishment goes unattacked, the channel is established between
C and S, but both parties are oblivious of whether they actually got connected
to the intended process. From their point of view, they might be connected to
the adversary, or to a different honest process.

Password Authentication: In order to establish some knowledge about the
counterparty in their channel, a party can initiate a password authentication. In
our example, C initiates such authentication on his channel cidC , with username
uidC and password pwC . On a high level, both C and S will now each perform
one public-key authentication, where S uses pkS stored in the password file,
and C uses key material contained in the envelope ske that S piggy-backs to
his own authentication flow using the ctx field of FPHA’s interface AuthSend.
To authenticate with public keys, both parties invoke FPHA. S, using “normal”
public key pkS to authenticate, invokes it in std mode. C, who receives ske
from S, recovers application key rw = PRFK,S||uid(pwC) by engaging with S
in one PRF evaluation of FOPRF with session identifier sid = S||uid. C then
starts an authentication using transportable keys rw, ske. Both parties piggy-
back the OPRF transcript values a′, b′ to their authentication flows using ctx
fields of FPHA. If C sees a successful authentication under public key pkS , which
C retrieves as auxiliary data from ske using FPHA interface GetAuxData, then
C outputs success, else it outputs failure. If S sees a successful authentication
under pkC from the password file, C outputs success, else C outputs failure.
Due to the guarantees of FPHA, both parties can only output success if they are
connected to each other, and if S has a password file that corresponds to pwC

entered by C.
ΠEA generalizes TLS-OPAQUE as specified in Sect. 2 in several aspects:

Password-Authenticated TLS via OPAQUE and PHA 125

Fig. 12. Protocol ΠTLS−OPAQUE, using channel and public-key authentication facilities
provided by FPHA. We exemplarily show C registering a password with S, and sub-
sequent authentication of a channel between C, providing a clear-text password, and
S, using the data stored at registration. ε denotes the empty string. For brevity we
omit handling of NewSession, Send and ExpireSession inputs, which are simply
relayed to FPHA. We also omit the identifiers with which FPHA and FOPRF are called. An
application can simply set those to be, e.g., tls-opaque_pha and tls-opaque_oprf.

126 J. Hesse et al.

1. ΠTLS−OPAQUE abstracts from the exact secure channel with post-handshake
public-key authentication and can provide post-handshake password authen-
tication based on any protocol that securely instantiates FPHA

2. ΠTLS−OPAQUE sends messages in the clear instead of sending them over the
channel-to-authenticate

3. ΠTLS−OPAQUE abstracts from the underlying OPRF protocol and can be
instantiated with any OPRF that securely realizes FOPRF.

We are now ready to state the security of TLS-OPAQUE. We refer to the
full version [15] for the definition of FOPRF and the full proof.

Theorem 3 (Security of ΠTLS−OPAQUE). Protocol ΠTLS−OPAQUE (Fig. 12) UC-
emulates functionality FpwPHA in the (FPHA,FOPRF)-hybrid model with respect to
static malicious corruptions and adaptive server compromise.

Corollary 2. Protocol TLS-OPAQUE specified in Sect. 2 securely realizes
FpwPHA.

The corollary follows from instantiating FPHA with ΠEA (Theorem 2) using the
UC composition theorem [11], where in turn FcbSC is instantiated with the
TLS 1.3 protocol snippet from Fig. 7 (Theorem 1), and FOPRF instantiated with
2HashDH [15].

References

1. Facebook stored hundreds of millions of passwords in plain text (2019). https://
www.theverge.com/2019/3/21/18275837/facebook-plain-text-password-storage-
hundreds-millions-users

2. Google stored some passwords in plain text for fourteen years (2019). https://
www.theverge.com/2019/5/21/18634842/google-passwords-plain-text-g-suite-
fourteen-years

3. Asokan, N., Niemi, V., Nyberg, K.: Man-in-the-middle in tunnelled authentication
protocols. In: Christianson, B., Crispo, B., Malcolm, J.A., Roe, M. (eds.) Security
Protocols 2003. LNCS, vol. 3364, pp. 28–41. Springer, Heidelberg (2005). https://
doi.org/10.1007/11542322_6

4. Bhargavan, K., Blanchet, B., Kobeissi, N.: Verified models and reference imple-
mentations for the TLS 1.3 standard candidate. In: IEEE Symposium on Security
and Privacy, pp. 483–502. IEEE Computer Society (2017)

5. Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Pironti, A., Strub, P.-Y.: Triple
handshakes and cookie cutters: breaking and fixing authentication over TLS. In:
IEEE Symposium on Security and Privacy, pp. 98–113. IEEE Computer Society
(2014)

6. Bhargavan, K., Delignat-Lavaud, A., Pironti, A.: Verified contributive channel
bindings for compound authentication. In: NDSS (2015)

7. Bhargavan, K., Leurent, G.: Transcript collision attacks: breaking authentication
in TLS, IKE and SSH. In: 23rd Annual Network and Distributed System Security
Symposium, NDSS (2016)

8. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules.
In: IEEE Computer Security Foundations Workshop CSFW-14, pp. 82–96. IEEE
Computer Society (2001)

https://www.theverge.com/2019/3/21/18275837/facebook-plain-text-password-storage-hundreds-millions-users
https://www.theverge.com/2019/3/21/18275837/facebook-plain-text-password-storage-hundreds-millions-users
https://www.theverge.com/2019/3/21/18275837/facebook-plain-text-password-storage-hundreds-millions-users
https://www.theverge.com/2019/5/21/18634842/google-passwords-plain-text-g-suite-fourteen-years
https://www.theverge.com/2019/5/21/18634842/google-passwords-plain-text-g-suite-fourteen-years
https://www.theverge.com/2019/5/21/18634842/google-passwords-plain-text-g-suite-fourteen-years
https://doi.org/10.1007/11542322_6
https://doi.org/10.1007/11542322_6

Password-Authenticated TLS via OPAQUE and PHA 127

9. Bourdrez, D., Krawczyk, H., Lewi, K., Wood, C.: The OPAQUE Asymmetric
PAKE Protocol, draft-irtf-cfrg-opaque, July 2022. https://tools.ietf.org/id/draft-
irtf-cfrg-opaque

10. Brzuska, C., Jacobsen, H.: A modular security analysis of EAP and IEEE 802.11.
In: Cryptology ePrint Archive, Paper 2017/253 (PKC 2017) (2017)

11. Canetti, R., Universally composable security: a new paradigm for cryptographic
protocols. In: IEEE Symposium on Foundations of Computer Science - FOCS 2001,
pp. 136–145. IEEE (2001)

12. Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and
secure channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
337–351. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_22

13. Cremers, C., Horvat, M., Scott, S., van der Merwe, T.: Automated analysis and
verification of TLS 1.3: 0-rtt, resumption and delayed authentication. In: IEEE
Symposium on Security and Privacy, pp. 470–485. IEEE Computer Society (2016)

14. Gentry, C., MacKenzie, P., Ramzan, Z.: A method for making password-based
key exchange resilient to server compromise. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 142–159. Springer, Heidelberg (2006). https://doi.org/10.
1007/11818175_9

15. Hesse, J., Jarecki, S., Krawczyk, H.: Password-authenticated tls via opaque
and post-handshake authentication. Cryptology ePrint Archive, Report 2023/220
(2023). https://ia.cr/2023/220

16. Hodges, J., Jones, J.C., Jones, M.B., Kumar, A., Lundberg, E.: Web authentica-
tion: an API for accessing public key credentials level 2, August 2021. https://
www.w3.org/TR/webauthn-2/

17. Hoyland, J.: An analysis of TLS 1.3 and its use in composite protocols. Ph.D.
thesis, RHUL, Egham, UK (2018)

18. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol secure
against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 456–486. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78372-7_15

19. Krawczyk, H.: The OPAQUE Asymmetric PAKE Protocol, draft-krawczyk-
cfrg-opaque-06, June 2020. https://www.ietf.org/archive/id/draft-krawczyk-cfrg-
opaque-06.txt

20. Krawczyk, H.: Cryptographic extraction and key derivation: the HKDF scheme. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 631–648. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14623-7_34

21. Krawczyk, H.: Unilateral-to-mutual authentication compiler for key exchange (with
applications to client authentication in tls 1.3). In: ACM CCS 2016 (2016)

22. Ray, M., Dispensa, S.: Authentication gap in tls renegotiation (2009)
23. Rescorla, E.: The transport layer security (TLS) protocol version 1.3, rfc 8446,

August 2018. http://www.rfc-editor.org/rfc/rfc8446.txt
24. Rex, M.: Mitm attack on delayed TLS-client auth through renegotiation, November

2009
25. Salowey, J., Rescorla, E.: TLS renegotiation vulnerability (2009)
26. Sullivan, N.: Exported Authenticators in TLS, RFC 9261, July 2022. https://

datatracker.ietf.org/doc/html/rfc9261
27. Sullivan, N., Krawczyk, H., Friel, O., Barnes, R.: OPAQUE with TLS

1.3, draft-sullivan-tls-opaque-01, February 2021. https://datatracker.ietf.org/doc/
html/draft-sullivan-tls-opaque

https://tools.ietf.org/id/draft-irtf-cfrg-opaque
https://tools.ietf.org/id/draft-irtf-cfrg-opaque
https://doi.org/10.1007/3-540-46035-7_22
https://doi.org/10.1007/11818175_9
https://doi.org/10.1007/11818175_9
https://ia.cr/2023/220
https://www.w3.org/TR/webauthn-2/
https://www.w3.org/TR/webauthn-2/
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://www.ietf.org/archive/id/draft-krawczyk-cfrg-opaque-06.txt
https://www.ietf.org/archive/id/draft-krawczyk-cfrg-opaque-06.txt
https://doi.org/10.1007/978-3-642-14623-7_34
http://www.rfc-editor.org/rfc/rfc8446.txt
https://datatracker.ietf.org/doc/html/rfc9261
https://datatracker.ietf.org/doc/html/rfc9261
https://datatracker.ietf.org/doc/html/draft-sullivan-tls-opaque
https://datatracker.ietf.org/doc/html/draft-sullivan-tls-opaque

Randomized Half-Ideal Cipher on Groups
with Applications to UC (a)PAKE

Bruno Freitas Dos Santos , Yanqi Gu , and Stanislaw Jarecki(B)

University of California, Irvine, Irvine, USA
{brunof,yanqig1,sjarecki}@uci.edu

Abstract. An Ideal Cipher (IC) is a cipher where each key defines a
random permutation on the domain. Ideal Cipher on a group has many
attractive applications, e.g., the Encrypted Key Exchange (EKE) pro-
tocol for Password Authenticated Key Exchange (PAKE) [8], or asym-
metric PAKE (aPAKE) [31,33]. However, known constructions for IC on
a group domain all have drawbacks, including key leakage from timing
information [12], requiring 4 hash-onto-group operations if IC is an 8-
round Feistel [22], and limiting the domain to half the group [9] or using
variable-time encoding [39,47] if IC is implemented via (quasi-) bijec-
tions from groups to bitstrings [33].

We propose an IC relaxation called a (Randomized) Half-Ideal Cipher
(HIC), and we show that HIC on a group can be realized by a mod-
ified 2-round Feistel (m2F), at a cost of 1 hash-onto-group operation,
which beats existing IC constructions in versatility and computational
cost. HIC weakens IC properties by letting part of the ciphertext be non-
random, but we exemplify that it can be used as a drop-in replacement
for IC by showing that EKE [8] and aPAKE of [33] realize respectively
UC PAKE and UC aPAKE even if they use HIC instead of IC. The
m2F construction can also serve as IC domain extension, because m2F
constructs HIC on domain D from an RO-indifferentiable hash onto D
and an IC on 2κ-bit strings, for κ a security parameter. One applica-
tion of such extender is a modular lattice-based UC PAKE using EKE
instantiated with HIC and anonymous lattice-based KEM.

1 Introduction

The Ideal Cipher Model (ICM) dates back to the work of Shannon [46], and
it models a block cipher as an Ideal Cipher (IC) oracle, where every key, even
chosen by the attacker, defines an independent random permutation. Formally,
an efficient adversary who evaluates a block cipher on any key k of its choice
cannot distinguish computing the cipher on that key in the forward and backward
direction from an interaction with oracles Ek(·) and E−1

k (·), where {Ei} is a
family of random permutations on the cipher domain. The Ideal Cipher Model
has seen a variety of applications in cryptographic analysis, e.g. [13,24,28,37,
38,44,45,48], e.g. the analysis of the Davies-Meyer construction of a collision-
resistant hash [13,45], of the Even-Mansour construction of a cipher from a
c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14008, pp. 128–156, 2023.
https://doi.org/10.1007/978-3-031-30589-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30589-4_5&domain=pdf
http://orcid.org/0009-0009-5474-0008
http://orcid.org/0000-0001-6577-2704
http://orcid.org/0000-0002-5055-2407
https://doi.org/10.1007/978-3-031-30589-4_5

Randomized Half-Ideal Cipher on Groups with Applications to UC (a)PAKE 129

public pseudorandom permutation [28], or of the DESX method for key-length
extension for block ciphers [38]. A series of works [18,19,22,26,36] shows that
ICM is equivalent to the Random Oracle Model (ROM) [7]. Specifically, these
papers show that n-round Feistel, where each round function is a Random Oracle
(RO), implements IC for some n, and the result of Dai and Steinberger [22]
shows that n = 8 is both sufficient and necessary. Other IC constructions include
iterated Even-Mansour and key alternating ciphers [4,21,27], wide-input (public)
random permutations [10,11,20], and domain extension mechanisms, e.g. [17,34],
constructions based on

Ideal Ciphers on Groups: Applications. All the IC applications above con-
sider IC on a domain of fixed-length bitstrings. However, there are also attractive
applications of IC whose domain is a group. A prominent example is a Password
Authenticated Key Exchange (PAKE) protocol called Encrypted Key Exchange
(EKE), due to Bellovin and Meritt [8]. EKE is a compiler from plain key exchange
(KE) whose messages are pseudorandom in some domain D, and it implements
a secure PAKE if parties use an IC on domain D to password-encrypt KE mes-
sages.1 The EKE solution to PAKE is attractive because it realizes UC PAKE
given any key-private (a.k.a. anonymous) KEM [5], or KE with a mild “ran-
dom message” property, at a cost which is the same as the underlying KE(M)
if the cost of IC on KE(M) message domain(s) is negligible compared to the
cost of KE(M) itself. However, instantiating EKE with e.g. Diffie-Hellman KE
(DH-KE) [25] requires an IC on a group because DH-KE messages are random
group elements.

Recently Gu et al. [33] and Freitas et al. [31] extended the EKE paradigm
to cost-minimal compilers which create UC asymmetric PAKE (aPAKE), i.e.
PAKE for the client-server setting where one party holds a one-way hash of
the password instead of a password itself, from any key-hiding Authenticated
Key Exchange (AKE). The AKE-to-aPAKE compilers of [31,33] are similar to
the “EKE” KE-to-PAKE compiler of [8] in that they also require IC-encryption
of KE-related values, but they use IC to password-encrypt a KEM public key
rather than KE protocol messages. The key-hiding AKE’s exemplified in [31,33],
namely HMQV [40] and 3DH [42], are variants and generalizations of DH-KE
where public keys are group elements, hence the AKE-to-aPAKE compilers of
[31,33] instantiated this way also require IC on a group.

Ideal Ciphers on Groups: Existing Constructions. The above motivates
searching for efficient constructions of IC on a domain of an arbitrary group.
Note first that a standard block cipher on a bitstring domain does not work.
The elements of any group G can be encoded as bitstrings of some fixed length
n, but unless these encodings cover almost all n-bit strings, i.e. unless (1−|G|/2n)
is negligible, encrypting G elements under a password using IC on n-bit strings

1 Bellare et al. [6] showed that EKE+IC is a game-based secure PAKE, then Abdalla
et al. [1] showed that EKE variant with explicit key confirmation realizes UC PAKE,
and recently McQuoid et al. [43] showed that a round-minimal EKE variant realizes
UC PAKE as well (however, see more on their analysis below).

130 B. F. D. Santos et al.

exposes a scheme to an offline dictionary attack, because the adversary can
decrypt a ciphertext under any password candidate and test if the decrypted
plaintext encodes a G element.

Black and Rogaway [12] showed an elegant black-box solution for an IC on G
given an IC on n-bit strings provided that c = (2n/|G|) is a constant: To encrypt
element x ∈ G under key k, use the underlying n-bit IC in a loop, i.e. set x0 to
the n-bit encoding of x, and xi+1 = IC.Enck(xi) for each i≥ 0, and output as the
ciphertext the first xi for i≥ 1 s.t. xi encodes an element of group G. (Decryption
works the same way but using IC.Dec.) This procedure takes expected c uses of
IC.Enc, but timing measurement of either encryption or decryption leaks roughly
log c bits of information on key k per each usage, because given the ciphertext
one can eliminate all keys which form decryption cycles whose length does not
match the length implied by the timing data.

To the best of our knowledge there are only two other types of constructions
of IC on a group. First, the work of [18,19,22,26,36] shows that n-round Feistel
network implements an IC for n ≥ 8. Although not stated explicitly, these results
imply a (randomized) IC on a group, where one Feistel wire holds group elements,
the xor gates on that wire are replaced by group operations, and hashes onto
that wire are implemented as RO hashes onto the group. However, since n = 8
rounds is minimal [22], this construction incurs four RO hashes onto a group
per cipher operation. Whereas there is progress regarding RO-indifferentiable
hashing on Elliptic Curve (EC) groups, see e.g. [29], current implementations
report an RO hash costs in the ballpark of 25% of scalar multiplication. Hence,
far from being negligible, the cost of IC on group implemented in this way would
roughly equal the DH-KE cost in the EKE compiler. The second construction of
(randomized) IC combines any (randomized) quasi-bijective encoding of group
elements as bitstrings with an IC on the resulting bitstrings [33]. However, we
know of only two quasi-bijective encodings for Elliptic Curve groups, Elligator2
of Bernstein et al. [9] and Elligator2 of Tibouchi et al. [39,47], and both have
some practical disadvantages. Elligator2 works for only some elliptic curves, and
it can encode only half the group elements, which means that any application
has to re-generate group elements until it finds one in the domain of Elligator2.
Elligator2 works for a larger class of curves, but its encoding procedure is non-
constant time and it appears to be significantly more expensive than one RO hash
onto a curve. Elligator2 also encodes each EC element as a pair of underlying
field elements, effectively doubling the size of the EC element representation.

IC Alternative: Programmable-Once Public Function. An alternative
path was recently charted by McQuoid et al. [43], who showed that a 2-round
Feistel, with one wire holding group elements, implements a randomized cipher
on a group which has some IC-like properties, which [43] captured in a notion
of Programmable Once Public Function (POPF). Moreover, they argue that
POPF can replace IC in several applications, exemplifying it with an argument
that EKE realizes UC PAKE if password encryption is implemented with a
POPF in place of IC. This would be very attractive because if 2-round Feistel
can indeed function as an IC replacement in applications like the PAKE of

Randomized Half-Ideal Cipher on Groups with Applications to UC (a)PAKE 131

[8] or the aPAKE’s of [31,33], this would form the most efficient and flexible
implementation option for these protocols, because it works for any group which
admits RO-indifferentiable hash, and it uses just one such hash-onto-group per
cipher operation.

However, it seems difficult to use the POPF abstraction of [43] as a replace-
ment for IC in the above applications because the POPF notion captures 2-round
Feistel properties with game-based properties which appear not to address non-
malleability. For that reason we doubt that it can be proven that UC PAKE is
realized by EKE with IC replaced by POPF as defined in [43]. (See below for
more details.) The fact that the POPF abstraction appears insufficient does not
preclude that UC PAKE can be realized by EKE with encryption implemented
as 2-round Feistel, but such argument would not be modular. Moreover, each
application which uses 2-round Feistel in place of IC would require a separate
non-modular proof. Alternatively, one could search for a “POPF+” abstraction,
realized by a 2-round Feistel, which captures sufficient non-malleability proper-
ties to be useful as an IC replacement in PAKE applications, but in this work
we chose a different route.

Our Results: Modified 2-Feistel as (Randomized) Half-Ideal Cipher.
Instead of trying to work with 2-Feistel itself, we show that adding a block
cipher BC to one wire in 2-Feistel makes this transformation non-malleable, and
we capture the properties of this construction in the form of a UC notion we call
a (Randomized) Half-Ideal Cipher (HIC). In Fig. 1 we show a simple pictorial
comparison of 2-Feistel, denoted 2F, and our modification, denoted m2F. The
modified 2-Feistel has the same efficiency and versatility as the 2-Feistel used
by McQuoid et al. [43]: It works for any group with an RO-indifferentiable hash
onto a group, it runs in fixed time, and it requires only one RO hash onto a
group per cipher operation.

One drawback of m2F is that the ciphertext is longer than the plaintext
by 2κ bits, where κ is a security parameter. However, that is less than any IC
implementation above (including POPF, which does not realize IC) except for
Elligator2: IC results from n-round Feistel have loose security bounds, hence
they need significantly longer randomness to achieve the same provable security;
Elligator2 adds κ bits for general moduli, due to encoding of field elements as
random bitstrings; Elligator2 uses an additional field element, which adds at
least 2κ bits, plus another κ bits for the field-onto-bits encoding; Finally, 2-
Feistel requires at least 3κ bits of randomness when used in EKE [43].

The UC HIC notion is a relaxation of an Ideal Cipher notion, but it does not
prevent applicability in protocols like [8,31,33], which we exemplify by showing
that the following protocols remain secure with (any realization of) IC replaced
by (any realization of) HIC:

(I) UC PAKE is realized by an EKE variant with IC replaced by HIC, using
round-minimal KE with a random-message property;

(II) UC PAKE is realized by an EKE variant with IC replaced by HIC, using
anonymous KEM with a uniform public keys property;

132 B. F. D. Santos et al.

Hpw ·

+ H′
pw

r ∈ {0, 1}n
M ∈ G

s ∈ {0, 1}n T ∈ G

Hpw ·

BC H′
pw

r ∈ {0, 1}n
M ∈ G

k ∈ {0, 1}µ

s ∈ {0, 1}n T ∈ G

Fig. 1. Left: two-round Feistel (2F) used in McQuoid et al. [43]; Right: our circuit m2F.
The change from 2F to m2F is small: If k = H ′(pw , T), then 2F sets s = k ⊕ r, whereas
m2F sets s = BC.Enc(k, r), where BC is a block cipher.

(III) UC aPAKE is realized by KHAPE [33] with IC replaced by HIC, using key-
hiding AKE.

Regarding the first two proofs, we are not aware of full proofs exhibited
for the corresponding statements where these EKE variants use IC instead of
HIC, but the third proof follows the blueprint of the proof given in [33] for the
KHAPE protocol using IC, and it exemplifies how little such proof changes if IC
is replaced by HIC.

Half-Ideal Cipher. The first difference between IC on group G and HIC on
group G is that the latter is a cipher on an extended domain D = R × G

where R = {0, 1}n is the randomness space, for n ≥ 2κ where κ is the security
parameter. In the decryption direction, HIC acts exactly like IC on domain D,
i.e. unless ciphertext c ∈ D is already associated with some plaintext in the
permutation table defined by key k, an adversarial decryption of c under key
k returns a random plaintext m, chosen by the HIC functionality with uniform
distribution over those elements in domain D which are not yet assigned to
any ciphertext in the permutation table for key k. However, in the encryption
direction HIC is only half-ideal in the following sense: If plaintext m is not yet
associated with any ciphertext in the permutation table for key k then encryption
of m under key k returns a ciphertext c = (s, T) ∈ D = R × G s.t. the T ∈ G

part of c can be freely specified by the adversary, and the s ∈ R part of c is then
chosen by the HIC functionality at random with uniform distribution over s’s s.t.
c = (s, T) is not yet assigned to any plaintext in the permutation table for key
k. In short, HIC decryption on any (k, c) returns a random plaintext m (subject
to the constraint that HIC(k, ·) is a permutation on D), but HIC encryption on
any (k,m) returns c = (s, T) s.t. T can be correlated with other values in an

Randomized Half-Ideal Cipher on Groups with Applications to UC (a)PAKE 133

arbitrary way, which is modeled by allowing the adversary to choose it, but s is
random (subject to the constraint that HIC(k, ·) is a permutation).2

Intuitively, the reason the adversarial ability to manipulate part of IC cipher-
text does not affect typical IC applications is that these applications typically
rely on the following properties of IC: (1) that decryption of a ciphertext on
any other key from the one used in encryption outputs a random plaintext, (2)
that any change to a ciphertext implies that the corresponding plaintext is ran-
dom and hence uncorrelated to the plaintext in the original ciphertext, and (3)
that no two encryption operations can output the same ciphertext, regardless
of the keys used, and moreover that the simulator can straight-line extract the
unique key used in a ciphertext formed in the forward direction. Only properties
(2) and (3) could be affected by the adversarial ability to choose the T part
of a ciphertext in encryption, but the fact that the s part is still random, and
that |s| ≥ 2κ, means that just like in IC, except for negligible probability each
encryption outputs a ciphertext which is different from all previously used ones.
Consequently, just like in IC, a HIC ciphertext commits the adversary to (at
most) a single key used to create that ciphertext in a forward direction, the sim-
ulator can straight-line extract that key, and the decryption of this ciphertext
under any other key samples random elements in the domain.

Further Applications: IC Domain Extension, LWE-Based UC PAKE.
The modified 2-Feistel construction can also be used as a domain extender for
(randomized) IC on bitstrings. Given an RO hash onto {0, 1}t and an IC on
{0, 1}2κ, the m2F construction creates a HIC on {0, 1}t, for any t = poly(κ). The
modified 2-Feistel is simpler than other IC domain extenders, e.g. [17,34], and it
has better exact security bounds, hence it is an attractive alternative in applica-
tions where HIC can securely substitute for IC on a large bitstring domain. For
example, by our result (II) above, m2F on long bitstrings can be used to imple-
ment UC PAKE from any lattice-based IND-secure and anonymous KEM. This
includes several post-quantum LWE-based KEM proposals in the NIST com-
petition, including Saber [23], Kyber [14], McEliece [2], NTRU [35], Frodo [3],
and possibly others.3 Such UC PAKE construction would add only 3κ bits in
bandwidth to the underlying KEM, and its computational overhead over the
underlying KEM operations would be negligible, i.e. the LWE-based UC PAKE
would have essentially exactly the same cost as the LWE-based unauthenticated
Key Exchange, i.e. an IND-secure KEM. We show a concrete construction of UC
PAKE from Saber KEM in the full version [30].

2 This describes only the adversarial interface to the HIC functionality. Honest parties’
interface is as in IC in both directions, except that it hides encryption randomness,
i.e. encryption takes only input M ∈ G and decryption outputs only the M ∈ G part
of the “extended” HIC plaintext m ∈ D.

3 Two recent papers [41,49] investigate anonymity of several CCA-secure LWE-based
KEMs achieved via variants of the Fujisaki-Okamoto transform [32] applied to the
IND-secure versions of these KEM’s. However, the underlying IND-secure KEM’s
are all anonymous, see e.g. [41,49] and the references therein.

134 B. F. D. Santos et al.

Half-Ideal Cipher versus POPF. Our modified 2-Feistel construction and
the UC HIC abstraction we use to capture its properties can be thought of as
a “non-malleability upgrade” to the 2-Feistel, and to the game-based POPF
abstraction used by McQuoid et al. [43] to capture its properties. One reason
why the UC HIC notion is an improvement over the POPF notion is that a
UC tool is easier to use in protocol applications than a game-based abstraction.
More specifically, the danger of game-based properties is that they often fail to
adequately capture non-malleability properties needed in protocol applications,
e.g. in the EKE protocol, where the man-in-the-middle attacker can modify the
ciphertexts exchanged between Alice and Bob.4 Indeed, POPF properties seem
not to capture ciphertext non-malleability. As defined in [43], POPF has two
security properties, honest simulation and uncontrollable outputs. The first one
says that if ciphertext c is output by a simulator on behalf of an honest party,
then decrypting it under any key results in a random element in group G, except
for the (key,plaintext) pair, denoted (x∗, y∗) in [43], which was programmed into
this ciphertext by the simulator. The second property says that any ciphertext
c∗ output by an adversary decrypts to random elements in group G for all keys
except for key k∗, denoted x∗ in [43], which was used by the adversary to create
c∗ in the forward direction, and which can be straight-line extracted by the simu-
lator.5 However, these properties do not say that the (key,plaintext) pairs behind
the adversary’s ciphertext c∗ cannot bear any relation to the (key,plaintext) pairs
behind the simulator’s ciphertext c.

Note that non-malleability is necessary in a protocol application like EKE,
and for that reason we think that it is unlikely that EKE can provably realize
UC PAKE based on the POPF properties alone. Consider a cipher Enc on a
multiplicative group s.t. there is an efficient algorithm A s.t. if c = Enc(k,M)
and c∗ = A(c) then M∗ = Dec(k, c∗) satisfies relation M∗ = M2 if lsb(k) = 0,
and m∗ = m3 if lsb(k) = 1. If this cipher is used in EKE for password-encryption
of DH-KE messages then the attacker would learn lsb of password pw used by
Alice and Bob: If the attacker passes Alice’s message cA = Enc(pw , gx) to Bob,
but replaces Bob’s message cB = Enc(pw , gy) by sending a modified message
c∗
B = A(cB) to Alice, then c∗

B = Enc(pw , gy·(2+b)) where b = lsb(pw), hence
an attacker who sees Alice’s output kA = gxy·(2+b) and Bob’s output kB =
gxy, can learn bit b by testing if kA = (kB)(2+b). More generally, any attack A
which transforms ciphertext c = Enc(k,M) to ciphertext c∗ = Enc(k∗,M∗) s.t.
(k,M, k∗,M∗) are in some non-trivial relation, is a potential danger for EKE.
We do not believe that 2-Feistel is subject to such attacks, but POPF properties
defined in [43] do not seem to forbid them.

4 A potential benefit of a game-based notion over a UC notion is that the former
could be easier to state and use, but this does not seem to be the case for the POPF
properties of [43], because they are quite involved and subtle.

5 Technically [43] state this property as pseudorandomness of outputs of any weak-
PRF on the decryptions of c∗ for any k �= k∗, and not the pseudorandomness of the
decrypted plaintexts themselves.

Randomized Half-Ideal Cipher on Groups with Applications to UC (a)PAKE 135

If one uses 2-Feistel directly rather than the POPF abstraction then it might
still be possible to prove that EKE with 2-Feistel realizes UC PAKE. We note
that 2-Feistel is subject to the following restricted form of “key-dependent mal-
leability”, which appears not to have been observed in [43] and which would
have to be accounted for in such proof. Namely, consider an adversary who
given ciphertext c = (s, T) outputs ciphertext c∗ = (s∗, T ∗) for any T ∗ and
s∗ s.t. s∗ ⊕ H′(pw∗, T ∗) = s ⊕ H′(pw∗, T). Note that this adversary is not per-
forming a decryption of c under pw∗, because it is not querying H(pw∗, r) for
r = s⊕H′(pw∗, T), but plaintexts M∗ = Dec(pw , c∗) and M = Dec(pw , c) satisfy
a non-trivial relation M∗/M = T ∗/T if pw = pw∗ and not otherwise. On the
other hand, since this adversarial behavior seems to implement just a different
form of an online attack using a unique password guess pw∗, it is still possible
that EKE realizes UC PAKE even when password encryption is implemented as
2-Feistel. However, rather than considering such non-modular direct proofs for
each application of IC on a group, in this paper we show that a small change in
the 2-Feistel circuit implies realizing a HIC relaxation of the IC model, and this
HIC relaxation is as easy to use as IC in the security proofs for protocols like
EKE [8] or aPAKE’s of Gu et al. [31,33].

Finally, we note that an extension of the above attack shows that 2-Feistel
itself, without our modification, cannot realize the HIC abstraction. Observe that
if the adversary computes t hashes Zi = H(pw , ri) for some pw and r1, ..., rt and
then t hashes kj = H′(pw , Tj) for some T1, ..., Tt, then it can combine them to
form t2 valid (plaintext, ciphertext) pairs (Mij , cij) under key pw where Mij =
Zi · Tj and cij = (ri⊕kj , Tj). Note that the t2 plaintexts are formed using just
2t group elements (Z1, T1), ..., (Zt, Tt), so they are correlated. For example, the
value of quotient Mij/Mi′j is the same for every j. Creating such correlations
on plaintexts is impossible in the UC HIC, hence 2-Feistel by itself, without our
modification, does not realize it.

Roadmap. In Sect. 2, we recall the syntax and properties of Key Exchange
(KE) and Key Encapsulation Mechanism (KEM). In Sect. 3 we define the UC
notion of Half-Ideal Cipher (HIC). In Sect. 4 we present the modified 2-Feistel
construction, and we show that it realizes UC HIC. In Sect. 5 we define two
variants of the EKE protocol, denoted EKE and EKE-KEM, based on respectively
KE and KEM, with password encryption implemented as HIC, and we show that
both variants realizes UC PAKE.

Because of space constraints we defer some parts to the full version of this
paper [30]. Specifically, the full version contains the details of game changes
used in the security proofs of the above two results, i.e. that modified 2-Feistel
realizes UC RIC, and that EKE with encryption using HIC realizes UC PAKE.
It also contains the security proof of the EKE-KEM protocol, and the proof that
the KHAPE protocol of [33] realizes UC aPAKE with IC encryption replaced
by HIC. It also illustrates an instantiation of EKE-KEM protocol with Saber
KEM [23], and compares the resulting protocol to prior lattice-based PAKEs.

136 B. F. D. Santos et al.

2 Preliminaries

We focus our treatment of the EKE protocol to instantiations that use Key
Exchange (KE) with either a single simultaneous flow or 2 flows. Since a 2-flow
KE is equivalent to a key encapsulation mechanism (KEM), we will use “KE” to
refer to a single-round key exchange, and “KEM” to a KEM and to a two-flow
key exchange implied by it.

2.1 Single-Round Key Exchange (KE) Scheme

A (single-round) KE scheme is a pair of algorithms KA = (msg, key), where:

– msg, on input a security parameter κ, generates message M and state x;
– key, on input state x and incoming message M ′, generates session key K .

The correctness requirement is that if two parties exchange honestly generated
messages then they both output the same session key, i.e. if (x1,M1)←msg(1κ)
and (x2,M2)←msg(1κ) then key(x1,M2) = key(x2,M1). The KE security
requirement is that a KE transcript hides the session key, but as noted by Bel-
lare et al. [6], the EKE protocol requires an additional property of KE called
a random-message property, namely that messages output by msg are indistin-
guishable from values sampled from a uniform distribution over some domain
M. (In the security analysis of EKE by [6], the EKE employs an Ideal Cipher
on domain M for password-encryption of KE protocol messages.)

Definition 1. KE scheme (msg, key) is secure if distributions {(M1,M2,K)}
and {(M1,M2,K ∗)} are computationally indistinguishable, where
(x1,M1)←msg(1κ), (x2,M2)←msg(1κ), K←key(x1,M2), and K ∗ r←− {0, 1}κ.

Definition 2. KE scheme (msg, key) has the random-message property on
domain M, indexed by sec. par. κ, if the distribution {M | (x,M)←msg(1κ)}
is computationally indistinguishable from uniform over set M[κ].

2.2 Key Encapsulation Mechanism (KEM)

A KEM scheme is a tuple of efficient algorithms KEM = (kg, enc, dec), where:

– kg, on input secpar κ, generates public and private keys pk and sk ;
– enc, on input a public key pk , generates ciphertext e and session key K ;
– dec, on input a private key sk and a ciphertext e, outputs a session key K .

The correctness requirement is that if (sk , pk)←kg(1κ) and (e,K)←enc(pk) then
dec(sk , e) = K . Note that KEM models any 2-flow key exchange scheme, where
the public key pk is the initiator’s message, and the ciphertext e is the respon-
der’s message. We require IND security of KEM, and two additional random-
ness/anonymity properties: First, public keys must be uniform in the sense that
their distribution must be indistinguishable from a uniform distribution over
some set PK. Secondly, KEM must be anonymous [5], i.e. ciphertexts must be

Randomized Half-Ideal Cipher on Groups with Applications to UC (a)PAKE 137

unlinkable to public keys. Note that these are slightly weaker properties than
we asked of KA. Since a key exchange implied by KEM takes 2 flows, the EKE
variant using KEM, see Fig. 10 in Sect. 5.1, can use the (randomized) ideal cipher
only for the first flow, i.e. the public key, while the second flow, i.e. the KEM
ciphertext, can be sent as is, as long as the responder attaches to it a key con-
firmation message. Consequently, the second message must be unlinkable to the
first, but it does not have to be indistinguishable from a random element in a
domain of an ideal cipher.

Definition 3. KEM scheme is IND secure if distributions {(pk , e,K)} and
{(pk , e,K ∗)} are computationally indistinguishable, where (sk , pk) r←− kg(1κ),
(e,K) r←− enc(pk) and K ∗ r←− {0, 1}κ.

Definition 4. KEM scheme has uniform public keys for domain PK, indexed
by the security parameter κ, if the distribution {pk | (sk , pk) r←− kg(1κ)} is com-
putationally indistinguishable from uniform over set PK[κ]

Definition 5. KEM scheme is anonymous if distributions {(pk0, pk1, e0)}
and {(pk0, pk1, e1)} are computationally indistinguishable, where (sk0, pk0)

r←−
kg(1κ), (sk1, pk1)

r←− kg(1κ), (e0,K0)
r←− enc(pk0), and (e1,K1)

r←− enc(pk1).

Note that the last two properties are trivially achieved by the Diffie-Hellman
KEM, where both the public keys and ciphertexts are random group elements.
However, both properties are also achieved by several lattice-based KEM’s, as
discussed in Sect. 1.

3 Universally Composable Half-Ideal Cipher

We define a new functionality FHIC in the UC framework ([15]), called a (Ran-
domized) Half-Ideal Cipher (HIC), where the ‘half’ in the name refers to the fact
that only half of the ciphertext is random to the adversary during encryption,
as we explain below.

UC HIC is a weakening of the UC Ideal Cipher notion. Intuitively, we allow
adversaries to predict or control part of the output of the cipher while the remain-
der is indistinguishable from random just as in the case of IC. Formally, we can
interpret this as allowing the adversary to embed some tuples in the table that
the functionality uses - but in a very controlled manner. We define the UC notion
of Half-Ideal Cipher via functionality FHIC defined in Fig. 2.6

Notes on FHIC Interfaces. A half-ideal cipher functionality FHIC is
parametrized by the (randomized) cipher domain D = R × G, where the first
component is the randomness and the second is the plaintext. Figure 2 sepa-
rates between FHIC interfaces Enc and Dec which are used by honest parties, and
the adversarial interfaces AdvEnc and AdvDec. Interfaces Enc and Dec model

6 In Fig. 2 we use pw to denote keys used in the HIC cipher because we use vari-
ables k and K for other keys in the later sections. Moreover, in PAKE and aPAKE
applications the role of a HIC key is played by a password.

138 B. F. D. Santos et al.

Fig. 2. Ideal functionality FHIC for (Randomized) Half-Ideal Cipher on D = R × G

honest-party’s usage of HIC, i.e. a real-world implementation of HIC will con-
sists of two algorithms, Enc and Dec, where Enc on input key pw and plaintext
M ∈ G outputs a ciphertext c ∈ D and Dec on input key pw and ciphertext
c ∈ D outputs a plaintext M ∈ G. Our target realization of these procedures is
a randomized cipher, i.e. a family of functions Πpw s.t. for each pw ∈ {0, 1}∗,
Πpw is a permutation on D, and both Πpw and Π−1

pw are efficiently evaluable
given pw . Given cipher Π, algorithm Enc(pw ,M) picks r

r←− R and outputs
c←Πpw (m) for m = (r,M), while Dec(pw , c) computes m←Π−1

pw (c) and output
M for (r,M) = m.

Functionality Walk-Through. Functionality FHIC reflects honest user’s inter-
faces to randomized encryption: When an honest party P encrypts a message it
specifies only M ∈ G and delegates the choice of randomness r

r←− R to the
functionality. Similarly, when an honest party decrypts a ciphertext, the func-
tionality discards the randomness r and reveals only M to the application. This

Randomized Half-Ideal Cipher on Groups with Applications to UC (a)PAKE 139

implies that honest parties must use fresh randomness at each encryption and
must discard it (or at least not use it) at decryption. By contrast, an adversary A
has stronger interfaces than honest parties (for notational simplicity we assume
corrupt parties interact to FHIC via A), namely: (1) When A encrypts it can
choose randomness r at will; (2) When A decrypts it learns the randomness r
and does not have to discard it; (3) A can manipulate the (plaintext, ciphertext)
table of each permutation Πpw in the following way: If we denote ciphertexts
as c = (s, T) ∈ R × G, the adversary has no control of the s component of the
ciphertext at encryption, i.e. it is random in R (up to the fact that the map
has to remain a permutation), but the adversary can freely choose the T com-
ponent. Items (1) and (2) are consequences of the fact that HIC is a randomized
cipher, but item (3) is what makes this cipher Half-Ideal, because the adversary
can control part of the value c = Enc(pw ,m) during encryption, namely its G
component.

The above relaxations of Ideal Cipher (IC) properties are imposed by the
modified 2-Feistel construction, which in Sect. 4 we show realizes this model.
However, this relaxation is harmless for many IC applications the following rea-
son: In a typical IC application the benefit of ciphertext randomness is that it
(1) hides the plaintext, and (2) it prevents the adversary from creating the same
ciphertext as an encryption of two different plaintexts under two different keys.
For both purposes randomness in the s ∈ R component of the ciphertext suffices
as long as R is large enough to prevent ever encountering collisions.

The adversarial interfaces AdvEnc and AdvDec of FHIC reflect the above, and
give more powers than the honest party’s interfaces Enc and Dec. In encryption
query AdvEnc, the adversary is allowed to pick its own randomness r and the
T ∈ G part of the resulting ciphertext, while its s part is chosen at random in R.
In decryption AdvDec, the adversary can decrypt any ciphertext c = (s, T) and
it learns the full plaintext m = (r,M), but FHIC chooses the whole plaintext m
at random. (This is another motivation for the monicker ‘half-ideal’: FHIC lets
the adversary have some control over ciphertexts in encryption but it does not
let the adversary have any control over plaintexts in decryption.)

Our goal when designing FHIC was to keep all IC properties which are useful
in applications while allowing for efficient concrete instantiation of FHIC for a
group domain G. Most importantly, ciphertext collisions in encryption can occur
only with negligible probability, which is crucial in our HIC applications: An
adversarial ciphertext c commits the adversary to a single key pw on which the
adversary could have computed c as an encryption of some message of its choice.
Secondly, just as with an ideal cipher, the adversary cannot learn any information
on encrypted plaintexts except via decryption with correct decryption key.

4 Half-Ideal Cipher Construction: Modified 2-Feistel

We modify the two-round Feistel construction of the Programmable Once Public
Functions (POPF) of McQuoid et al. [43] by replacing the xor operation in the
second round by an application of an ideal block cipher BC on bitstrings, with
keys and plaintext block both of size 2κ where κ is the security parameter.

140 B. F. D. Santos et al.

We call this construction a modified 2-Feistel, denoted m2F. This construction
takes (1) an ideal cipher BC on bitstrings, i.e. an ideal cipher whose domain
is {0, 1}n and key space is {0, 1}μ, (2) a random oracle hash H′ with range
{0, 1}μ, and (3) a random oracle hash H whose range is an arbitrary group G,
and creates a (Randomized) Half-Ideal Cipher (HIC) over domain D = R × G

where R = {0, 1}n. In essence, we combine a random oracle hash onto a group
and a bitwise ideal cipher to create a half-ideal cipher over a group. The exact
security analysis of the m2F construction shows that μ and n can both be set to
2κ for this construction to realize UC HIC.

For each key pw , function m2Fpw is pictorially shown in Fig. 1. Here we define
it by the algorithms which compute m2Fpw and m2F−1

pw . (Throughout the paper
we denote group G operation as a multiplication, but this is purely a notational
choice, and the construction applies to additive groups as well.)

m2Fpw : {0, 1}n × G → {0, 1}n × G (1)

where:
m2Fpw (r,M):

1. T←M/H(pw , r)
2. k←H′(pw , T)
3. s←BC.Enc(k, r)
4. Output (s, T)

m2F−1
pw (s, T):

1. k←H′(pw , T)
2. r←BC.Dec(k, s)
3. M←H(pw , r) · T
4. Output (r,M)

The following theorem captures the security of the m2F construction:

Theorem 1. Construction m2F realizes functionality FHIC in the domain R×G

for R = {0, 1}n if H : {0, 1}∗ × {0, 1}n → G, H′ : {0, 1}∗ × G → {0, 1}μ are
random oracles, BC : {0, 1}μ × {0, 1}n → {0, 1}n is an ideal cipher, and μ and
n are both Ω(κ).

Proof. The proof for Theorem 1 must exhibit a simulator algorithm SIM, which
plays a role of an ideal-world adversary interacting with functionality FHIC, and
then show that no efficient environment Z can distinguish, except for negligible
probability, between (1) a real-world game, i.e. an interaction with (1a) honest
parties who execute Z’s encryption and decryption queries using Enc and Dec
implemented with circuit m2F (see Sect. 3), and (1b) RO/IC oracles H, H′, BC,
BC−1, and (2) an ideal-world game, i.e. an interaction with (2a) parties P who
execute Z’s encryption and decryption using interfaces Enc,Dec of FHIC, and
(2b) simulator SIM, who services Z’s calls to H, H′, BC, BC−1 using interfaces
AdvEnc and AdvDec of FHIC.

We start by describing the simulator algorithm SIM, shown in Fig. 3. Note
that SIM interacts with an adversarial environment algorithm Z by servicing
Z’s queries to the RO and IC oracles H,H′,BC,BC−1. Intuitively, SIM populates
input, output tables for these functions, TH,TH′ and TBC, in the same way as
these idealized oracles would, except when SIM detects a possible encryption or

Randomized Half-Ideal Cipher on Groups with Applications to UC (a)PAKE 141

Fig. 3. Simulator SIM for the proof of Theorem 1

decryption computation of the modified 2-Feistel circuit. In case SIM decides
that these queries form either computation of m2F or m2F−1 on new input, SIM
detects that input, invokes the adversarial interfaces AdvEnc or AdvDec of FHIC

to find the corresponding output, and it embeds proper values into these tables
to emulate the circuit leading to the computation of this output. The detection of
m2F and m2F−1 evaluation is relatively straightforward: First, SIM treats every
BC.Dec query (k, s) as a possible m2F−1 evaluation on key pw and ciphertext
c = (s, T) for T s.t. k = H′(pw , T). If it is, SIM queries FHIC.AdvDec on (pw , c)
to get m = (r,M). Since this is a random sample from the HIC domain, with
overwhelming probability H was not queried on r so SIM can set H(pw , r) to
M/T . Second, SIM treats every BC.Enc query (k, r) as possible m2F evaluation
on (r,M) s.t. M = H(pw , r) · T for T s.t. k = H′(pw , T). However, here is where
the difference between IC and HIC shows up: The FHIC.AdvEnc query fixes the
encryption of m = (r,M) to c = (s, T), and whereas s can be random (and
SIM can set BC.Enc(k, r) := s for any c = (s, T) returned by FHIC.AdvEnc as
encryption of m under key pw), value T was fixed by H′ output k (except for
the negligible probability of finding collisions in H′). This is why our FHIC model
must allow the simulator, i.e. the ideal-world adversary, to fix the T part of the
ciphertext in the adversarial encryption query AdvEnc.

142 B. F. D. Santos et al.

Fig. 4. The ideal-world Game 0, and its modification Game 1 (text in gray)

Randomized Half-Ideal Cipher on Groups with Applications to UC (a)PAKE 143

Fig. 5. Game-changes (part 1) in the proof of Theorem 1

144 B. F. D. Santos et al.

Fig. 6. Game-changes (part 2) in the proof of Theorem 1

Proof Overview. The proof must show that for any environment Z, its view
of the real-world game defined by algorithms Enc,Dec which use the randomized
cipher m2F, and the ideal-world game defined by functionality FHIC and simula-
tor SIM of Fig. 3. The proof starts from the ideal-world view, which we denote as
Game 0, and via a sequence of games, each of which we show is indistinguishable
from the next, it reaches the real-world view, which we denote as Game 9. For
space-constraint reasons we include the details of the game changes and reduc-
tions to the full version [30], but we show the code of all successive games in
Figs. 4, 5, and 6. Figure 4 describes the ideal-world Game 0 and its mild modifi-
cation Game 1. All these games, starting from Game 0 in Fig. 4, interact with an
adversarial environment Z, and each game provides two types of interfaces cor-
responding two types of Z’s queries: (a) the honest party’s interfaces Enc,Dec,
which Z can query via any honest party, and (b) RO/IC oracles H,H′,BC,BC−1,
which Z can query via its “real-world adversary” interface. Figure 4 defines two
sub-procedures, FHIC.AdvEnc and FHIC.AdvDec, whose code matches exactly the
corresponding interfaces of FHIC. These subprocedures are used internally by
Game 0: They are invoked by the code that services Z’s queries BC.Enc and
BC.Dec, because Game 0 follows SIM’s code on these queries, and AdvDec is also
invoked by Dec, because this is how FHIC implements Dec.

Figures 5 and 6 describe the modifications created by all subsequent games,
except for the last one, the real-world game denoted Game 9, which is very
similar to Game 8, which is the last game shown in Fig. 6. By the arguments for
indistinguishability of successive games shown in the full version [30], the total
distinguishing advantage of environment Z between the real-world and the ideal-
world interaction is upper-bounded by the following expression, which sums up
the bounds given by equations shown in the proof, see [30]:

|P0 − P9| ≤ q2
(

10
2n

+
4

2n · |G| +
6
2μ

)
≤ q2

(
14
2n

+
6
2μ

)

Since this quantity is negligible, this implies Theorem1

Notes on Exact Security. By the above equation, the distinguishability advan-
tage implies by our proof can be upper-bounded as O(q2/2n) + O(q2/2μ). We

Randomized Half-Ideal Cipher on Groups with Applications to UC (a)PAKE 145

assert that both of these factors are unavoidable for our m2F construction. First,
while in the FHIC functionality we allow the T component of two AdvEnc adver-
sarial calls to be completely independent, this is not the case in our modified
two-round Feistel encryption: reuse of a (pw , r) pair implies relations between
the T component of different encryption calls that are not seen in FHIC. Hence we
must avoid r collisions in Enc calls, irrespective of how our proof is structured,
and asymptotically this gives a q2/2n factor in the distinguishing advantage.

Secondly, we need to avoid H′ collisions. Indeed, if H′(pw , T) = H′(p̂w , T̂)
then m2F’s decryptions using (pw , T) and (p̂w , T̂) create the same s �→ r map,
which would be in stark contrast to our functionality’s ideal-cipher like decryp-
tion behavior. We conclude that the q2/2μ term also can’t be avoided. Notice
that these two terms dominate the probability of the environment distinguishing
m2F from our functionality FHIC. In particular, they do not involve |G|, i.e., the
size of the message space of our FHIC.

5 Encrypted Key Exchange with Half-Ideal Cipher

We show that the Encrypted Key Exchange (EKE) protocol of Bellovin and
Meritt [8] is a universally composable PAKE if the password encryption is imple-
mented with a (Randomized) Half-Ideal Cipher on the domain of messages out-
put by the key exchange scheme, provided that the key exchange scheme has
the random-message property (see Sect. 2). As discussed in the introduction, the
same statement was argued by Rosulek et al. [43] with regards to password-
encryption implemented using a Programmable Once Public Function (POPF)
notion defined therein, which can also be thought of as a weak form of ideal
cipher. However, since as we explain in the introduction, the POPF notion is
unlikely to suffice in an EKE application, so we need to verify that the notion
of UC (Randomized) Half-Ideal Cipherdoes suffice in such application.

In Fig. 7 we show the Encrypted Key Exchange protocol EKE, specialized
to use a Half-Ideal Cipher for the password-encryption of the message flows
of the underlying Key Agreement scheme KA. In Fig. 7 we assume that KA is
a single-round scheme. In Sect. 5.1 we extend this to the case of two-flow KA,
i.e. to EKE protocol instantiated with a KEM scheme. We note that these two
treatments are incomparable because in the case of single-flow KA we start from
a more restricted KA scheme and we argue security of a single-flow version of
EKE, whereas in the case of two-flow KA, i.e. if KA = KEM, we start from a more
general KA scheme but we argue security of a two-flow version of EKE.

The EKE instantiation shown in Fig. 7 assumes that the Half-Ideal Cipher
HIC works on domain D = R × M where M is the message domain of the
scheme KA. The “randomness” set R is arbitrary, but its size influences the
security bound we show for such EKE instantiations. In particular we require
that log(|R|) ≥ 2κ. If HIC is instantiated with the modified 2-Feistel construction
m2F of Sect. 4, one can set R = {0, 1}2κ, and this instantiation of EKE will send
messages whose sizes match those of the underlying KA scheme extended by 2κ
bits of randomness due to the Half-Ideal Cipher encryption.

146 B. F. D. Santos et al.

In Fig. 7 for presentation clarity we assume that party identifiers P0,P1 are
lexicographically ordered. The full protocol will use two helper functions order
and bit, defined as order(sid,P,CP) = (sid,P,CP) and bit(P,CP) = 0 if P <lex CP,
and order(sid,P,CP) = (sid,CP,P) and bit(P,CP) = 1 if CP <lex P7. Party P
on input (NewSession, sid,P,CP, pw) will then set fullsid←order(sid,P,CP) and
b←bit(P,CP) and it will use HIC.Enc on key p̂w b = (fullsid, b, pw) to encrypt
its outgoing message, and it will use HIC.Dec on key p̂w¬b = (fullsid,¬b, pw) to
decrypt its incoming message.

Fig. 7. EKE: Encrypted Key Exchange with Half-Ideal Cipher

In Theorem 2 below we show that protocol EKE realizes the (multi-session
version of) the PAKE functionality of Canetti et al. [16], denoted FpwKE (e.g.,
see [30]). The reason we target the multi-session version of PAKE functionality
directly, rather than targeting its single-session version and then resorting to
Canetti’s composition theorem [15] to imply the security of an arbitrary (and
concurrent) number of EKE instances, is that for the latter to work we would
need the underlying UC HIC to be instantiated separately for each EKE session
identifier sid. Our UC HIC notion of Sect. 3 is a “global” functionality, i.e. it
does not natively support separate instances indexed by session identifiers. The
modified 2-Feistel construction could support such independent instances of HIC
by prepending sid to the inputs of all its building block functions H,H′,BC, where
in the last case value sid would have to be prepended to the key of the (ideal)
block-cipher BC. However, this implies longer inputs for each of these blocks,
which is especially problematic in case of the block cipher, so it is preferable not
to rely on it and show security for a protocol variant where each EKE instance
accesses a single HIC functionality, and hence can be implemented with the same
instantiation of the modified 2-Feistel HIC construction.

Theorem 2. If KA is a secure key-exchange scheme with the random-message
property on domain M and HIC is a UC Half-Ideal Cipher over domain R×M,
then protocol EKE, Fig. 7, realizes the UC PAKE functionality FpwKE.
7 We assume that no honest P ever executes (NewSession, sid,P,CP, ·) for CP = P.

Randomized Half-Ideal Cipher on Groups with Applications to UC (a)PAKE 147

Fig. 8. Simulator SIM for the proof of Theorem 2

Proof. Let Z be an arbitrary efficient environment. In the rest of the proof
we will assume that the real-world adversary A is an interface of Z. In Fig. 8
we show the construction of a simulator algorithm SIM, which together with
functionality FpwKE defines the ideal-world view of Z. As is standard, the role
of SIM is to emulate actions of honest parties executing protocol EKE given the
information revealed by functionality FpwKE, and to convert the actions of the
real-world adversary into queries to FpwKE. (In Fig. 8 we use Psid to denote P’s
session indexed by sid which is emulated by SIM.) The proof then consists of a

148 B. F. D. Santos et al.

sequence of games, shown in Fig. 9, starting from the real-world game, Game 0,
where Z interacts with the honest parties running protocol EKE, and ending with
the ideal-world game, Game 7, where Z interacts via dummy honest parties with
functionality FpwKE which in turn interacts with simulator SIM. (This last game
is not shown in Fig. 9 because its code can be derived from the code of simulator
SIM, Fig. 8, and functionality FpwKE, e.g., see [30].) We note that in each game
in Fig. 9 we write output [...] for output of queries that service Z’s interaction
with EKEinstances, and we write “return [...]” for output of queries that service
Z’s interaction with FHIC.

At each step we prove that the two consecutive games are indistinguishable,
which implies the claim by transitivity of computational indistinguishability.
Note that we argue security of EKE in the FHIC-hybrid model. Specifically, algo-
rithm SIM emulates a “global” FHIC functionality which services any number of
EKE protocol instances. Note that Z or A can call FHIC on keys which correspond
to all strings p̂w = (fullsid, b, pw) including for fullsid corresponding to sessions
which were not (yet) started by Z. Indeed, algorithm SIM treats queries pertain-
ing to any key p̂w equally, and embeds random ciphertext c in response to Enc
queries, random partial ciphertext s in response to AdvEnc queries, and random
KA message M in response to AdvDec and Dec queries, saving the corresponding
KA local state in (backdoor, . . .) records. Since Dec is a wrapper over AdvDec we
assume that the adversary uses only interface AdvDec, and we implement the
EKE code of Psid using AdvDec as well.

The intuition for the simulation is that it sends an outgoing EKE message on
behalf of Psid at random, since this is how HIC encryptions are formed. SIM ser-
vices HIC encryption queries as FHIC does except that it collects the ciphertexts
created by any encryption query and the ciphertexts chosen for every honest ses-
sion in set Cset, and aborts if either process regenerates a ciphertext in Cset. Here
we use the fact that even though an adversary can set the T part of the cipher-
text c = (s, T) resulting from an adversarial encryption query AdvEnc, the s part
of c is chosen at random, and this prevents ciphertext collisions (except with neg-
ligible probability) if |R| ≥ 22κ. Hence, assuming that R is big enough, we have
that (1) each adversarial ciphertext can be matched to (at most) one password
on which it decrypts to a non-random value in space M, and (2) the simulator
can extract this unique password and retrieve the corresponding plaintext (SIM
stores the key p̂w which was used to create ciphertext c in the c2pw table by
setting c2pw[c]←p̂w). Moreover, since by the same collision-resistant property of
FHIC ciphertexts the adversary cannot “hit” any honest session Psid’s ciphertext
c via an encryption query, the decryption of Psid’s ciphertext on each password
is also a random value in M. By the message-randomness property of KA, simu-
lator SIM can embed messages of fresh KA instances into each decryption query,
and combining this with fact (1) above allows for a reduction of EKE instances
corresponding to “wrong” password guesses to the KA’s security.

Let qIC be the bound on the number of queries Z makes to the interfaces
of the (randomized) ideal cipher FHIC, and let qP be the upper-bound on the

Randomized Half-Ideal Cipher on Groups with Applications to UC (a)PAKE 149

number of honest EKE sessions Psid which Z invokes for any identifiers P, sid.8

Let εKA.sec and εKA.rand be the upper-bounds on the distinguishing advantage
against, respectively, the security and the random-message properties of the key
exchange scheme KA (see Sect. 2) of an adversary whose computational resources
are roughly those of an environment Z extended by execution of qIC + qP

instances of the key exchange scheme KA.9

For space-constraint reasons we defer the details of the game changes and
reductions to the full version [30], but we show the code of all successive games
in Fig. 9. By the arguments for indistinguishability of successive games, the total
distinguishing advantage of environment Z between the real-world and the ideal-
world interaction is upper-bounded by the following expression, which sums up
the bounds argued in the full proof, see [30]:

(qIC + qP)
[

1
|R| ·

{
2qP + qIC + 2 · qIC + qP

|M|
}

+ εKA.rand + qP · εKA.sec

]
(2)

Since this quantity is negligible if R = {0, 1}n for n = O(κ), it implies Theorem 2.

Notes on Exact Security. The dominating factors are (qIC + qP)2/|R| and
(qIC + qP) · (εKA.rand + qP · εKA.sec). The first factor is due to possible collisions
in Half-Ideal Cipher, and it is unavoidable using an arbitrary HIC realization
because it is the probability of generating the same ciphertext c as an encryption
of two different KA instances under two different passwords, which would also
form an explicit attack on the security of EKE (the adversary would effectively
make two password guesses in one on-line interaction). However, whereas the
bound (qIC)2/|R| is tight if the encryption is modeled as a Half-Ideal Cipher,
we do not know if it is tight in relation to the specific modified 2-Feistel instan-
tiation of Half-Ideal Cipher, because we do not know how to stage an explicit
attack on EKE using modified 2-Feistel along these lines. This relates to the fact
that whereas the modified 2-Feistel realizes functionality FHIC, this functionality
allows more freedom to the adversary than the modified 2-Feistel construction.
Namely, whereas FHIC allows the adversary to encrypt any messages M using a
ciphertext c = (s, T) where T can be freely set, the same is not true about the
modified 2-Feistel construction, where for any fixed M the adversary can choose
T from the set of values of the form T = M/H(pw, r) for some r.

The second factor is due to reductions to KA security properties. Note that
some KA schemes, e.g. Diffie-Hellman, have perfect message-randomness, i.e.
εKA.rand = 0. Further, if the KA scheme is random self-reducible, as is Diffie-
Hellman, then this factor can be reduced to εKA.sec because a reduction to KA
security for the transition between Games 4 and 5, see the proof in [30], can then
be modified so that it deals with all honest sessions at once instead of staging a
hybrid argument over all sessions, and it embeds randomized versions of the KA
challenge into each decryption query rather than guessing a target query.
8 We assume that Z invokes at most two sessions for any fixed identifier sid.
9 This bound involves qIC + qP instead of qP key exchange instances because our

reductions to KA security run KA.msg for each adversarial AdvDec query to FHIC.

150 B. F. D. Santos et al.

Fig. 9. Game changes for the proof of Theorem 2 (compare Fig. 8 for notation)

Randomized Half-Ideal Cipher on Groups with Applications to UC (a)PAKE 151

5.1 EKE with Half-Ideal Cipher: The KEM Version

In Fig. 10 we show protocol EKE-KEM, which is a KEM version of the EKE
protocol using a Half-Ideal Cipher. In the 1-flow protocol EKE considered in
Fig. 7, the message flows are generated by a single-round KA scheme, whereas
here we consider an EKE variant which is built from any two-flow key exchange,
i.e. KEM, see Sect. 2.2. The drawback is that it is 2-flow instead of 1-flow, but
the benefits are that the HIC can be used only for one message, so if KEM is
instantiated with Diffie-Hellman and HIC is implemented using m2F, this implies
a single RO hash onto a group per party instead of two such hashes. Moreover,
this version of EKE can use any CPA-secure KEM as a black box, as long as the
KEM satisfies the anonymity and uniform public keys properties, which implies,
e.g., lattice-based UC PAKE given any lattice-based KEM with these properties.

Fig. 10. EKE-KEM: Encrypted Key Exchange with Half-Ideal Cipher (KEM version)

Note that in the protocol of Fig. 10 party P0 outputs a random session key
if the key confirmation message τ fails to verify. This is done only so that the
protocol conforms to the implicit-authentication functionality FpwKE. In practice
P0 could output ⊥ in this case, and this would implement explicit authentication
in the P1-to-P0 direction.

Theorem 3. If KEM is IND secure, anonymous, and has uniform public keys in
domain PK (see Sect. 2.2), HIC is a UC Half-Ideal Cipher in domain R×PK, and
H is an RO hash, then protocol EKE-KEM realizes the UC PAKE functionality
FpwKE.

The proof of Theorem 3 is deferred to the full version [30]. It follows the
same blueprint as the proof of Theorem 2. The most important intuition needed
for the adaptation of the proof of Theorem2 to the proof of Theorem 3 is why
it works for KEMs that satisfy the anonymity property: The key issue is that

152 B. F. D. Santos et al.

we need anonymity of the KEM ciphertext e only for honest keys pk and not
for adversarial ones, and the reason for this is that the only non-random pk
under which an honest party encrypts is the key pk decrypted under a unique
password guess pw∗ used in the adversarial ciphertext c this party receives. If
pw∗ equals to P1’s password pw then this session is already successfully attacked,
so the non-randomness of P1’s ciphertext is not an issue. But if pw∗
= pw
then KEM ciphertext e is effectively encrypted under key pk ′ = AdvDec(pw , c)
which is random, and the key confirmation works as a commitment to the KEM
key pk decrypted from HIC ciphertext c, hence also to the password used in
that decryption. This commitment is also effectively encrypted under the KEM
session key K , hence it can be verified only by a party which created pk and
HIC-encrypted it under the right pw . Here we again rely on the property of HIC,
which just like IC assures that decryption under any password except for the
unique password committed in the ciphertext results in a random plaintext, i.e.
a random KEM public key pk , which makes the KEM session key K encrypted
under such pk hidden to the adversary by KEM security.

We note that the key confirmation could involve directly pw instead of pk ,
but pk is a commitment to pw unless the adversary creates a collision in HIC
plaintext, and using pk instead of pw lets P0 erase pw after sending its first mes-
sage. This way an adaptive compromise on party P0 during protocol execution
allows for offline dictionary attack on the password, but does not leak it straight
away. (Note that adaptive party compromise is not part of our security model.)
We note also that RO hash H can probably be replaced by a key derivation
function which is both a CRH (because it needs to commit to pk) and a PRF
(because it must encrypt this commitment under K), but since HIC implies RO
hash (and indeed our m2Fuses it) we opt for the simpler option of RO hash to
compute the authenticator.

6 Applications of Half-Ideal Cipher to aPAKE

Gu et al. [33] proposed an asymmetric PAKE protocol called KHAPE which is a
generic compiler from any UC key-hiding Authenticated Key Exchange (AKE),
using an Ideal Cipher on the domain formed by (private, public) key pairs of the
AKE. We show that KHAPE realizes UC aPAKE if IC is replaced by HIC. For
lack of space the proof of the following Theorem is deferred to the full version
[30]. For reference, for AKE functionality FkhAKE see e.g., [33], and for aPAKE
functionality FaPAKE see e.g., [30].

Theorem 4. Protocol KHAPE of [33] realizes the UC aPAKE functionality
FaPAKE if the AKE protocol realizes the Key-Hiding AKE functionality FkhAKE

assuming that kdf is a secure PRF and HIC is a half-ideal cipher over message
space of private and public key pairs in AKE.

We note that Freitas et al. [31] showed a UC aPAKE which improves upon
protocol KHAPE of [33] in round complexity. The aPAKE of [31] relies on IC in
a similar way as protocol KHAPE, and the proof therein should also generalize
to the case when IC is replaced by HIC.

Randomized Half-Ideal Cipher on Groups with Applications to UC (a)PAKE 153

References

1. Abdalla, M., Catalano, D., Chevalier, C., Pointcheval, D.: Efficient two-party
password-based key exchange protocols in the UC framework. In: Malkin, T. (ed.)
CT-RSA 2008. LNCS, vol. 4964, pp. 335–351. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-79263-5 22

2. Albrecht, M.R., et al.: Classic McEliece: NIST round 3 submission (2021). https://
csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions

3. Alkim,E., et al.: FrodoKEM: NIST round 3 submission (2021). https://csrc.nist.
gov/Projects/post-quantum-cryptography/round-3-submissions

4. Andreeva, E., Bogdanov, A., Dodis, Y., Mennink, B., Steinberger, J.P.: On the
indifferentiability of key-alternating ciphers. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8042, pp. 531–550. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40041-4 29

5. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1 33

6. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45539-6 11

7. Bellare, M., Rogaway, P.: Random Oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 1993, pp. 62–73. ACM Press, November 1993. https://doi.
org/10.1145/168588.168596

8. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols
secure against dictionary attacks. In: IEEE Computer Society Symposium on
Research in Security and Privacy - S&P 1992, pp. 72–84. IEEE (1992)

9. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: elliptic-curve
points indistinguishable from uniform random strings. In: Sadeghi, A.R., Gligor,
V.D., Yung, M. (eds.) ACM CCS 2013, pp. 967–980. ACM Press, November 2013.
https://doi.org/10.1145/2508859.2516734

10. Bernstein, D.J., et al.: Gimli: a cross-platform permutation. In: Fischer, W.,
Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 299–320. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66787-4 15

11. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 313–314. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 19

12. Black, J., Rogaway, P.: Ciphers with arbitrary finite domains. In: Preneel, B. (ed.)
CT-RSA 2002. LNCS, vol. 2271, pp. 114–130. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45760-7 9

13. Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based
hash-function constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 320–335. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45708-9 21

14. Bos, J., et al.: CRYSTALS - kyber: a CCA-secure module-lattice-based KEM. In:
2018 IEEE European Symposium on Security and Privacy (EuroS P), pp. 353–367
(2018). https://doi.org/10.1109/EuroSP.2018.00032

15. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: IEEE Symposium on Foundations of Computer Science - FOCS 2001,
pp. 136–145. IEEE (2001)

https://doi.org/10.1007/978-3-540-79263-5_22
https://doi.org/10.1007/978-3-540-79263-5_22
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-642-40041-4_29
https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/2508859.2516734
https://doi.org/10.1007/978-3-319-66787-4_15
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/3-540-45760-7_9
https://doi.org/10.1007/3-540-45760-7_9
https://doi.org/10.1007/3-540-45708-9_21
https://doi.org/10.1007/3-540-45708-9_21
https://doi.org/10.1109/EuroSP.2018.00032

154 B. F. D. Santos et al.

16. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally com-
posable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005). https://doi.org/10.
1007/11426639 24

17. Coron, J.-S., Dodis, Y., Mandal, A., Seurin, Y.: A domain extender for the ideal
cipher. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 273–289. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2 17

18. Coron, J.-S., Patarin, J., Seurin, Y.: The random oracle model and the ideal cipher
model are equivalent. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
1–20. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 1

19. Dachman-Soled, D., Katz, J., Thiruvengadam, A.: 10-round feistel is indifferen-
tiable from an ideal cipher. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 649–678. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 23

20. Daemen, J., Hoffert, S., Assche, G.V., Keer, R.V.: The design of Xoodoo and
Xoofff. IACR Trans. Symm. Cryptol. 2018(4), 1–38 (2018). https://doi.org/10.
13154/tosc.v2018.i4.1-38

21. Dai, Y., Seurin, Y., Steinberger, J., Thiruvengadam, A.: Indifferentiability of iter-
ated even-mansour ciphers with non-idealized key-schedules: five rounds are nec-
essary and sufficient. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10403, pp. 524–555. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63697-9 18

22. Dai, Y., Steinberger, J.: Indifferentiability of 8-round feistel networks. In: Rob-
shaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 95–120. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4 4

23. D’Anvers, J.-P., Karmakar, A., Sinha Roy, S., Vercauteren, F.: Saber: module-LWR
based key exchange, CPA-secure encryption and CCA-secure KEM. In: Joux, A.,
Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 282–305.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6 16

24. Desai, A.: The security of all-or-nothing encryption: protecting against exhaustive
key search. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 359–375.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6 23

25. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976)

26. Dodis, Y., Puniya, P.: Feistel networks made public, and applications. In: Naor,
M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 534–554. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-72540-4 31

27. Dodis, Y., Stam, M., Steinberger, J., Liu, T.: Indifferentiability of confusion-
diffusion networks. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS,
vol. 9666, pp. 679–704. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49896-5 24

28. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT 1991.
LNCS, vol. 739, pp. 210–224. Springer, Heidelberg (1993). https://doi.org/10.1007/
3-540-57332-1 17

29. Faz-Hernandez, A., Scott, S., Sullivan, N., Wahby, R., Wood, C.: Hashing to ellip-
tic curves, irft-cfrg active draft (2022). https://datatracker.ietf.org/doc/draft-irtf-
cfrg-hash-to-curve/

30. Freitas Dos Santos, B., Gu, Y., Jarecki, S.: Randomized half-ideal cipher on groups
with applications to UC (a)PAKE. Cryptology ePrint Archive, Report 2023/295
(2023). http://eprint.iacr.org/2023/295

https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/978-3-642-11799-2_17
https://doi.org/10.1007/978-3-540-85174-5_1
https://doi.org/10.1007/978-3-662-49896-5_23
https://doi.org/10.1007/978-3-662-49896-5_23
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://doi.org/10.13154/tosc.v2018.i4.1-38
https://doi.org/10.1007/978-3-319-63697-9_18
https://doi.org/10.1007/978-3-319-63697-9_18
https://doi.org/10.1007/978-3-662-53018-4_4
https://doi.org/10.1007/978-3-319-89339-6_16
https://doi.org/10.1007/3-540-44598-6_23
https://doi.org/10.1007/978-3-540-72540-4_31
https://doi.org/10.1007/978-3-662-49896-5_24
https://doi.org/10.1007/978-3-662-49896-5_24
https://doi.org/10.1007/3-540-57332-1_17
https://doi.org/10.1007/3-540-57332-1_17
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/
http://eprint.iacr.org/2023/295

Randomized Half-Ideal Cipher on Groups with Applications to UC (a)PAKE 155

31. Dos Santos, B.F., Gu, Y., Jarecki, S., Krawczyk, H.: Asymmetric PAKE with
low computation and communication. In: Dunkelman, O., Dziembowski, S. (eds)
Advances in Cryptology – EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes
in Computer Science, vol 13276. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-07085-3 5

32. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

33. Gu, Y., Jarecki, S., Krawczyk, H.: KHAPE: asymmetric PAKE from key-hiding key
exchange. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp.
701–730. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8 24

34. Guo, C., Lin, D.: Improved domain extender for the ideal cipher. Cryptogr. Com-
mun. 7(4), 509–533 (2015). https://doi.org/10.1007/s12095-015-0128-7

35. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

36. Holenstein, T., Künzler, R., Tessaro, S.: The equivalence of the random oracle
model and the ideal cipher model, revisited. In: Fortnow, L., Vadhan, S.P. (eds.)
43rd ACM STOC, pp. 89–98. ACM Press, June 2011. https://doi.org/10.1145/
1993636.1993650

37. Jaulmes, É., Joux, A., Valette, F.: On the security of randomized CBC-MAC
beyond the birthday paradox limit a new construction. In: Daemen, J., Rijmen,
V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 237–251. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45661-9 19

38. Kilian, J., Rogaway, P.: How to protect DES against exhaustive key search. In:
Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 252–267. Springer, Heidel-
berg (1996). https://doi.org/10.1007/3-540-68697-5 20

39. Kim, T., Tibouchi, M.: Invalid curve attacks in a GLS setting. In: Tanaka, K.,
Suga, Y. (eds.) IWSEC 2015. LNCS, vol. 9241, pp. 41–55. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-22425-1 3

40. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11535218 33

41. Grubbs, P., Maram, V., Paterson, K.G.: Anonymous, robust post-quantum public
key encryption. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology
– EUROCRYPT 2022. Lecture Notes in Computer Science, vol. 13277. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-07082-2 15

42. Marlinspike, M., Perrin, T.: The X3DH key agreement protocol (2016). https://
signal.org/docs/specifications/x3dh/

43. McQuoid, I., Rosulek, M., Roy, L.: Minimal symmetric PAKE and 1-out-of-n OT
from programmable-once public functions. In: 2020 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2020, Virtual Event, USA, 9–13
November 2020 (2020). https://doi.org/10.1145/3372297.3417870, https://eprint.
iacr.org/2020/1043

44. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, New York (1990). https://doi.org/
10.1007/0-387-34805-0 40

45. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers:
a synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
368–378. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2 31

https://doi.org/10.1007/978-3-031-07085-3_5
https://doi.org/10.1007/978-3-031-07085-3_5
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/978-3-030-84259-8_24
https://doi.org/10.1007/s12095-015-0128-7
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1145/1993636.1993650
https://doi.org/10.1145/1993636.1993650
https://doi.org/10.1007/3-540-45661-9_19
https://doi.org/10.1007/3-540-68697-5_20
https://doi.org/10.1007/978-3-319-22425-1_3
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/978-3-031-07082-2_15
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/x3dh/
https://doi.org/10.1145/3372297.3417870
https://eprint.iacr.org/2020/1043
https://eprint.iacr.org/2020/1043
https://doi.org/10.1007/0-387-34805-0_40
https://doi.org/10.1007/0-387-34805-0_40
https://doi.org/10.1007/3-540-48329-2_31

156 B. F. D. Santos et al.

46. Shannon, C.E.: Communication theory of secrecy systems. The Bell Syst. Tech. J.
28(4), 656–715 (1949). https://doi.org/10.1002/j.1538-7305.1949.tb00928.x

47. Tibouchi, M.: Elligator squared: uniform points on elliptic curves of prime order as
uniform random strings. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS,
vol. 8437, pp. 139–156. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-45472-5 10

48. Winternitz, R.S.: Producing a one-way hash function from DES. In: Chaum, D.
(eds.) Advances in Cryptology. Springer, Boston (1984). https://doi.org/10.1007/
978-1-4684-4730-9 17

49. Xagawa, K.: Anonymity of NIST PQC Round 3 KEMs. In: Dunkelman, O., Dziem-
bowski, S. (eds) Advances in Cryptology – EUROCRYPT 2022. EUROCRYPT
2022. Lecture Notes in Computer Science, vol 13277. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-07082-2 20

https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1007/978-3-662-45472-5_10
https://doi.org/10.1007/978-3-662-45472-5_10
https://doi.org/10.1007/978-1-4684-4730-9_17
https://doi.org/10.1007/978-1-4684-4730-9_17
https://doi.org/10.1007/978-3-031-07082-2_20

End-to-End Encrypted Zoom Meetings:
Proving Security and Strengthening

Liveness

Yevgeniy Dodis1 , Daniel Jost1 , Balachandar Kesavan2,
and Antonio Marcedone2(B)

1 New York University, New York, USA
{dodis,daniel.jost}@cs.nyu.edu

2 Zoom Video Communications, San Jose, USA
{balachandar.kesavan,antonio.marcedone}@zoom.us

Abstract. In May 2020, Zoom Video Communications, Inc. (Zoom)
announced a multi-step plan to comprehensively support end-to-end
encrypted (E2EE) group video calls and subsequently rolled out basic
E2EE support to customers in October 2020. In this work we provide
the first formal security analysis of Zoom’s E2EE protocol, and also lay
foundation to the general problem of E2EE group video communication.

We observe that the vast security literature analyzing asynchronous
messaging does not translate well to synchronous video calls. Namely,
while strong forms of forward secrecy and post compromise security
are less important for (typically short-lived) video calls, various live-
ness properties become crucial. For example, mandating that partici-
pants quickly learn of updates to the meeting roster and key, media
streams being displayed are recent, and banned participants promptly
lose any access to the meeting. Our main results are as follows:
1. Propose a new notion of leader-based continuous group key agreement

with liveness, which accurately captures the E2EE properties specific
to the synchronous communication scenario.

2. Prove security of the core of Zoom’s E2EE meetings protocol in the
above well-defined model.

3. Propose ways to strengthen Zoom’s liveness properties by sim-
ple modifications to the original protocol, which have since been
deployed in production.

1 Introduction

Group video communication tools have gained immense popularity both in per-
sonal and professional settings. They were instrumental in bringing people closer
together at a time when travel and in-person interaction were severely limited
by the COVID-19 pandemic. Zoom Video Communications, Inc. (Zoom) is one
of the leading providers of video communications with millions of active users,

Yevgeniy Dodis and Daniel Jost–Research conducted while contracting for Zoom.

c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14008, pp. 157–189, 2023.
https://doi.org/10.1007/978-3-031-30589-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30589-4_6&domain=pdf
http://orcid.org/0000-0003-1013-6318
http://orcid.org/0000-0002-6562-9665
http://orcid.org/0000-0001-5109-1641
https://doi.org/10.1007/978-3-031-30589-4_6

158 Y. Dodis et al.

and aims to distinguish itself not just in ease-of-use and richness of features, but
also by offering strong security and privacy capabilities.

Historically, Zoom meetings have been encrypted in transit between the
clients and the Zoom servers. This allows Zoom to offer features that require
the server to access meeting streams, such as live transcription and the ability
to join a meeting by dialing a phone number through the telephony network. In
May 2020, Zoom announced a multistep plan to comprehensively support end-to-
end (E2E) encrypted group video calls [46] and rolled out basic E2EE support to
the public in October 2020 [32]. E2EE protects the privacy of attendees against
any compromise to Zoom’s infrastructure/keys.

Zoom has also published a whitepaper [11] describing its protocol, design
goals, and methodology for E2EE meetings. The whitepaper explains how the
protocol is run as part of a group call and provides intuition on the threat model
and security. Subsequent academic work has performed an initial analysis of the
protocol [29], emphasizing a number of potential attacks at the boundary of
the threat model outlined in the whitepaper. However, this security analysis is
far from comprehensive and does not include any formal security definitions or
theorems.

Group Video Calls. E2EE group video calls have not gained any major
scrutiny from the academic community. This stands in stark contrast to related
fields such as secure text messaging, where the ubiquitously used Signal proto-
col [34] has received significant attention [2,10,17]. For secure group messaging,
the Internet Engineering Task Force (IETF) has even launched the Messaging
Layer Security (MLS) working group [8] with mutual support from industry and
academia, resulting in a number of analyses [3–5].

A defining feature of any group video call that distinguishes it from the asyn-
chronous nature of text messaging is that video calls happen in real-time with all
participants online at the same time. This suggests that protocols could achieve
strong liveness properties generally deemed to be intrinsically unattainable in
messaging. First, an attacker should not be able to arbitrarily delay communi-
cation. For example, if Alice sends a video stream at time t, then Bob should
not accept it at a time significantly later than t. Depending on the type of con-
tent, such delays may pose a significant threat; for instance, if the message is an
instruction to buy or sell a certain stock, then the ability to delay it might allow
an attacker to front-run the transaction. Second, if the meeting host decides
on a certain management action, such as adding or removing parties, then an
attacker must not be able to delay or prevent those decisions from taking effect.
These liveness properties are new and not demanded in the (asynchronous) group
messaging setting, in which the network attacker can simply pretend that the
initiating party is offline, without any of the other parties being able to detect
the attack.

End-to-End Encrypted Zoom Meetings 159

Goals of This Work. In this work we aim to analyze the core of Zoom’s E2EE
meetings protocol1. We follow the approach successfully used to analyze (group)
messaging protocols and single out the key agreement using the abstraction of
a so-called continuous group key agreement (CGKA) protocol [3], albeit with
weaker forward secrecy (FS) and post-compromise security (PCS) properties
than for secure messaging, as explained below. The CGKA abstraction estab-
lishes a sequence of shared symmetric keys, accounting for the need to re-key
when parties join or leave the meeting (even without strong FS/PCS). The cur-
rent key — known exactly to the current members of the meeting — can then
be used with authenticated encryption with associated data (AEAD) to achieve
secure communication.

To provide the first formal security analysis of Zoom’s E2EE protocol, our
main objectives are, thus, to:

1. Propose a CGKA definition that takes Zoom’s unique aspects into account
and captures the liveness properties made possible by the online assumption.

2. Provide an analysis of the core of Zoom’s E2EE protocol in the above well-
defined model.

To the best of our knowledge, Zoom is the only E2EE group video protocol
that aims to provide stringent liveness properties. We believe our work is the
first in the realm of CGKA to formalize and analyze such assurances. As part of
this process, we observed that Zoom’s liveness assurances could be strengthened
and thus, we set out to:

3. Propose tangible strengthenings to Zoom’s liveness properties, via two simple
modifications to the protocol which offer different tradeoffs between efficiency
and security. Zoom has evaluated these modifications and deployed one of
them in production (in version 5.13 of the Zoom meetings client).

1.1 Contributions

Definition. We formally define a leader-based continuous group key agreement
with liveness (LL-CGKA), which encompasses all the desired security properties
of Zoom’s core E2EE meetings protocol in a single security game1. In general
terms, an LL-CGKA protocol requires the following properties:

– At each stage of the meeting, the shared symmetric key is only known to the
set of current participants as decided by the current meeting host.

– All participants have a consistent view of the set of current meeting partici-
pants (as displayed in the UI) as well as of the key.

– Changes to the group, decided by the meeting host, are applied within a
bounded (and short) amount of time; otherwise, participants drop out of the
meeting.

1 We analyze the Zoom E2EE meetings protocol as deployed in the Zoom meeting
client version 5.12. In this paper, we refer to this version as the current proto-
col/scheme.

160 Y. Dodis et al.

Attacker Model. We consider a powerful adversary that has control over the evo-
lution of the group, fully controls the network and Zoom’s server infrastructure,
and can passively corrupt any parties, thereby obtaining their current state.
We remark, however, that most of our guarantees hold only when the current
meeting leader and participants execute the protocol honestly, and any active
attackers previously in the meeting have been removed.

FS and PCS. Due to the short-lived nature of video calls, our CGKA notion,
however, differs from those in realm of secure messaging by requiring neither
strong forward secrecy nor post-compromise security guarantees within a single
meeting. An attacker compromising a party’s state in an ongoing meeting may
learn both past and future content of said meeting. We do, however, require the
following properties: first, corrupting a party must not reveal any of the meeting’s
content before the party has been admitted or after it has been removed by the
meeting host. Second, compromising a party after a meeting has ended must
not compromise the meeting in any form (weak FS). Third, even if a party’s
long-term secret have been leaked, this party can still securely join meetings as
long as the adversary does not act as an active meddler-in-the-middle.

Modularization. One of the contributions of this work is to distill out basic
building blocks of Zoom’s protocol, which could be instantiated differently in
pursuit of improved efficiency or, e.g. to achieve post-quantum security. To
this end, we consider the intermediate continuous multi-recipient key encap-
sulation (cmKEM) abstraction from which we then build the aforementioned
LL-CGKA notion. Put simply, the former naturally captures that in Zoom’s
protocol a designated party (the meeting host) chooses the symmetric key and
distributes it to all the meeting participants. The latter abstraction then mod-
els the core of Zoom’s E2EE meetings protocol, including the unique liveness
properties.

Finally, we discuss how Zoom’s overall protocol is built on top of the
LL-CGKA protocol, considering audio and video encryption. In particular, we
relate the respective confidentiality, authenticity and liveness assurances to those
of the LL-CGKA notion.

We remark that the above modularization follows Zoom’s whitepaper [11]
version 4.0, with the cmKEM notion roughly corresponding to Sects. 7.6.2 - 7.6.6,
the LL-CGKA notion to Sect. 7.6.7, and video stream encryption discussed in
Sects. 7.2 and 7.11, among others.

Liveness. One of the main novelties of Zoom’s E2EE protocol is its focus on
liveness properties. They assure that whenever the host adds or removes a par-
ticipant, the action cannot be withheld by an adversary for any extended period
of time. That is, if for instance the host removes a member from the group, such
as when removing a candidate at the end of an interview so that the hiring panel
can reach a decision, that member must no longer be able to decrypt meeting
contents even if they manage to compromise Zoom’s cloud infrastructure or exert
significant control over the network.

End-to-End Encrypted Zoom Meetings 161

In this work, we present a simple time-based model that allows us to for-
malize and analyze those liveness properties. Our model balances simplicity and
generality by assuming that parties have access to local clocks that all run at
the same speed, but are otherwise not assumed to be synchronized. We then
formalize liveness as follows: whenever a participant is in a given state at time
t, then the meeting host has been in the same state recently, i.e., at some time
t′ ≥ t − Δ where Δ is some protocol-dependent liveness slack. Turned around,
whenever the host moves on to a new state (e.g., by changing the group roster)
then all participants must also move on within time Δ (or else drop from the
meeting).

While the protocol we analyze1 achieves good liveness properties, these assur-
ances degrade in the number of host changes. As part of this paper we pro-
pose two potential improvements. First, we propose a modification that strictly
improves on the liveness and yields bounds independent of the number of host
changes. This comes at the cost of increased communication by making the pro-
tocol more interactive. As an alternative, we propose a strengthening that does
not incur any communication overhead and improves on Zoom’s properties if
parties have well-synchronized clocks; we believe this to be the common case
for modern devices. After testing, Zoom implemented the first option, which is
deployed in version 5.13 of the Zoom meetings client.

1.2 Related Work

We have already commented above on the relationship of this work to the areas
of secure messaging.

Group Video Calls. There are numerous solutions for group video calls. The
vast majority offers transport layer encryption, with some of them [7,11,16,43,
44] offering E2EE group calls, and others offering this feature only for two-party
calls [27,34]. While some of the solutions do offer intuitive security descriptions
in the form of a whitepaper, such as Wire [44], Cisco [16], and WhatsApp [43],
to the best of our knowledge only Cisco WebEx enjoys formal security claims,
as it is directly built on top of the IETF MLS draft [3–5,8].

Liveness. The terms liveness, liveliness, and aliveness are frequently used to
describe various authentication properties of key agreement protocols, e.g., in [33]
(and many subsequent works). Those properties, roughly speaking, guarantee
that if one party completes a run of the protocol, then its peer at some point
also has run the same protocol. (Slightly stronger variants exist.) As such most
of those definitions not only have no direct relation to physical time but also are
typically not enforced on an ongoing basis, contrary to our liveness definition.
Further, in the context of E2EE group messaging, some work previously used the
liveness as synonymous to correctness [39] — with no direct relation to actions
having to occur in a timely manner.

162 Y. Dodis et al.

However, using timing is not new in the design and analysis of cryptographic
protocols. Some such works (e.g., [23,30,37]) use timing assumptions to improve
efficiency (or overcome impossibility results) for problems which do not inher-
ently require timing assumptions. Other works (e.g., [9,12,22,40]) use various
forms of “moderately hard function” to achieve different cryptographic proper-
ties which critically rely on the notion of time. The type of liveness used in this
work is much more closely related to more traditional distributed computing
literature (e.g., [21,24]) on consensus and, more recently, blockchain protocols
(e.g., [26,36]). However, the existence of a unique meeting leader, coupled with
the online assumption, makes Zoom’s protocol (and our security model) much
more lightweight. Finally, the use of heartbeats to ensure liveness is similar to
the heartbeat extension of the TLS protocols [41].

Related Notions. The cmKEM notion is an extension of multi-recipient
Key Encapsulation (mKEM) [38,42,45] to the setting of dynamically changing
groups. Zoom’s scheme is based around the authenticated public-key encryption2

scheme from the libsodium library [20]. It is very similar to one of the early
authenticated public-key encryption schemes formally analyzed by An [6] (and
simpler then the recently analyzed HPKE standard [1]).

The LL-CGKA notion is further related to Dynamic Group Key Agreement
with an extensive body of literature, notable examples including [14,28,31]. Sim-
ilar to CGKA, the Dynamic GKA notion supports changes to group membership
during a session and, in fact, in terms of FS and PCS guarantees those notions
resemble our LL-CGKA notion more closely than most prior CGKA variants.
In contrast to CGKA, Dynamic GKA schemes are designed for an interactive
setting, i.e., typically require all parties to contribute to any one operation via
interactive rounds, and / or rely on a trusted group manager. (In contrast to
LL-CGKA the group manager is, however, static and cannot be replaced mid-
session.) Further, we note that while group video calls in principle can tolerate
interactive protocols, such as [31], requiring several parties to contribute to each
operation can be nevertheless problematic, as for example parties can unexpect-
edly drop out. Furthermore, we believe this simplifies extending our notion for
a more advanced group video call protocol, compared to a Dynamic GKA based
one. Closely related to Dynamic GKA are further Multicast Encryption, e.g.,
[35], and line of work on Logical Key Hierarchies, e.g., [15].

Another related notion to both cmKEM and LL-CGKAis Multi-Stage
Authenticated Key Exchange [25]. Several variants, each with slightly different
guarantees, have been considered and the notion has e.g., been used to analyze
the Double Ratchet protocol [18]. In contrast to CGKA, Multi-Stage AKE has
exclusively been applied to the two-party setting.

2 Authenticated public-key encryption schemes are often also referred to as signcryp-
tion schemes. The latter term is however more commonly used to denote schemes
satisfying insider security rather than outsider security, as achieved by libsodium’s
scheme.

End-to-End Encrypted Zoom Meetings 163

2 Continuous Multi-Recipient KEM

Zoom’s protocol works by having a designated party distribute shared symmetric
key material to all the participants upon each change to the group. We abstract
this as a Continuous Multi-Recipient Key Encapsulation (cmKEM) scheme that
allows the designated party to encapsulate a stream of shared symmetric keys to
a dynamically evolving set of recipients. This results in a sequence of independent
and uniformly random keys, each only known to the authorized parties. We
number the states (i.e., keys) using two counters: the epoch and a sub-epoch
called period.3

In the following, we call the designated party leader.4 We assume that the
leader is told whom to add or remove, ignoring policy aspects.

The cmKEM notion distinguishes long-term identities and ephemeral users.
Each long-term identity id is assumed to have an associated public key ipk. A
party id can then create one or more ephemeral users, identified by uid, each
linked to a specific meeting. That is, each meeting will consist of a group of
ephemeral uids that just exist for the duration of that meeting. Roughly speaking,
in Zoom, each long-term identity id corresponds to a device; if a user logs into
multiple devices, each will have its own long-term key material. Note that a
device can be part of the same meeting under different ephemeral identities over
time, e.g., after leaving the meeting and then rejoining it.

To cope with the leader suddenly losing connection, leader switches are ini-
tiated by the (untrusted) server without any hand-off. As a result, a user uid
can be asked at any point of time to become the new leader of a meeting, with
any given set of participants, as long as they are associated with the same meet-
ing. To simplify notation, we introduce the notion of a session that denotes a
segment of meeting between leader changes.

2.1 Syntax

For simplicity, we define the clients’ cmKEM algorithms to be non-interactive,
making all the interaction explicit by having multiple algorithms. User algo-
rithms moreover have implicit access to a PKI described in the next section.
The server aids the protocol execution by performing explicit message routing.

Definition 1. A cmKEM scheme consists of the following algorithms. For ease
of presentation, the client state ust is assumed to expose the current key ust.k,
epoch ust.e, and period ust.p.

3 Looking ahead, rotating the period instead of the full epoch during group additions is
more efficient. Zoom’s protocol currently does not take advantage of period rotations,
but we capture and analyze this option since it is being considered as a future
optimization.

4 Typically the leader coincides with the meeting host, but if e.g. the host is on a
low-bandwidth connection those concepts can be decoupled.

164 Y. Dodis et al.

User management:

– (ust, uid, sig) ← CreateUser(id,meetingId) creates an ephemeral user belonging
to id and the meeting meetingId. It outputs the initial state ust, the user’s
identity uid, and credentials sig binding uid to id.

– (id, ipk) ← Identity(uid) and meetingId ← Meeting(uid) deterministically com-
pute uid’s long-term information, and associated meeting respectively.

Session management:

– (ust′,M) ← StartSession(ust, {(uidi, adi, sigi)}i∈[n]) instructs the user to start
a new session with the given members. For each member, credentials sigi as
well as associated data adi (which need to match with the user’s respective
value when joining) are provided. The welcome message M is to be distributed
to the other group members by the server.

– ust′ ← JoinSession(ust, uidlead, siglead,m, ad) makes the user join the leader’s
session using their share m of the welcome message.

Group and management (leader):

– (ust′,M) ← Add
(
ust, {(uidi, adi, sigi)}i∈[n], newEpoch

)
adds the users uid1 to

uidn to the group. The boolean flag newEpoch indicates whether this action
should create a new epoch or period.

– (ust′,M) ← Remove(ust, {uidi}i∈[n]) removes the users uid1 to uidn from the
group.

Message processing (non-leaders):

– ust′ ← Process(ust,m) lets a participant advance to the next epoch or period.

Message passing (server):

– pub ← InitSplitState() generates an initial public server state.
– (pub, {(uidi,mi)}i∈[n]) ← Split(pub,M) deterministically splits M into shares

mi for each recipient.

2.2 PKI

The ephemeral user id’s uid are bound to the long-term identity id via the
credentials. To this end, id has a long-term signing key isk. In order to pre-
vent meddler-in-the-middle (MITM) attacks, other parties must authenticate
the respective long-term public key ipk. For the sake of our analysis, we assume
a simple (long-term) public-key infrastructure (PKI). The PKI provides to each
long-term identity id their respective private signing key isk while allowing all
other users to verify that the respective public verification key ipk belongs to id.

Zoom currently does not have any such PKI but relies on the host reading
out a meeting leader security code — a digest of ipk — that all participants then
compare to ensure they have the host’s correct key. Authentication crucially

End-to-End Encrypted Zoom Meetings 165

depends on the leader visually recognizing participants and vice versa. Formal-
izing the exact guarantees given by this process is outside the scope of this work
— specifically because the authenticity is only established during and not before
a meeting, and because it relies on non-cryptographic assumptions such as the
host recognizing participants’ faces.

In the future, Zoom plans to build a PKI based on key transparency and
external identity providers, whose analysis is left for future work. We refer to
the full version of this work for a more in-depth discussion on how Zoom cur-
rently verifies public keys, as well as their ongoing efforts for improving user
authentication.

2.3 Security Definition

The security notion for the cmKEM primitive encompasses all the desired secu-
rity properties in a single game. We next describe its the high-level workings,
with the full formal definition presented in the full version of this work.

Game Overview. The attacker has full control over the evolution of the group
and the network. We now sketch the various oracles the adversary may call.
First, the adversary can create a user for a provided long-term identity id and
meeting meetingId. The game ensures that the generated user id uid is unique.

The adversary can then instruct uidlead to start a session for a provided list
of participants and their respective credentials. Afterwards, they can instruct a
user uid to join uidlead’s session using a welcome message m of the adversary’s
choice. The leader can also be instructed to add or remove members. In the
former case, it is up to the adversary to specify whether this should initiate a
new epoch or period. Finally, the adversary can get a participant uid to process
an arbitrary message m. (The protocol might of course reject such malicious
messages.)

The game ensures that additions and removals only succeed if the adversary
does not try to add existing members or remove nonexistent ones. Additionally,
the leader must not remove themselves from the group. (This would have to be
done by instructing another party to assume the role of the leader, excluding
the old leader from the group.) The game keeps track of, for each leader’s epoch
and period, the leader’s view of the session state, which consists of the meeting
key and participant roster. Throughout the execution, the game then ensures
consistency of the parties’ view with their leader’s respective view, which we
discuss below.

The attacker can passively corrupt long-term identities, which reveals (a)
the secret states of all still active associated ephemeral identities and (b) the
long-term identity’s signing key from the PKI.

Key Confidentiality. The adversary must not be able to distinguish the keys
produced by the cmKEM scheme from random ones. To this end, the adversary
may try to guess a bit b by challenging a state’s key (identified by the leader,

166 Y. Dodis et al.

epoch, and period) to either receive the real key (if b = 0) or a uniform random
one (if b = 1). Additionally, the game allows the adversary to instead request the
actual key, irrespective of the bit b, which may be useful since it is not subject
to the same restrictions on compatible corruptions described below.

The game needs to rule out trivial wins stemming from the adversary being
able to compute certain keys themselves after passively corrupting parties. Since
Zoom’s scheme neither encompasses forward secrecy (FS) nor post-compromise
security (PCS) within a session, this has to be reflected in our notion. In short,
corrupting a user potentially reveals the key for all epochs and periods where he
has been a member of a given session. However, keys must remain secure in the
following situations:

– A user must never know keys from before being added to, or after having
been removed from the group. Hence, the confidentiality of those keys must
not be affected by compromising the given user.

– Corrupting a device after a session has ended, i.e., after the respective
ephemeral identity has been deleted, must not affect the sessions’ confiden-
tiality.5

– Corrupting a long-term identity id (and thus learned isk) must not affect the
security of future sessions involving an honestly generated ephemeral identity
uid for id. (The adversary might of course impersonate id by creating a valid
ephemeral user uid′ instead, which would compromise the session’s security.)

Consistency Properties. Parties must agree on the key for each epoch and
period within a given session. That is, no two parties should ever output con-
flicting keys, unless after an active attack in which the adversary uses either the
leader’s or the receiving party’s leaked state to tamper with the messages.6 Con-
sistency, moreover, takes into account at which point in time parties can reach a
given state. Our notion distinguishes between epochs and periods, among other,
due to those properties differing. Participants must only move to an epoch once
their leader arrived there, while for periods we allow participants to run ahead
and, thus, reach periods that formally are not supposed to exist. (Still, parties
must agree on the keys for those spurious periods.)

Finally, consistency must hold even if the adversary tampers with, reorders,
or replaces messages — as long as the involved parties are honest. Due to the
leader-based nature of the cmKEM primitive, a malicious leader however could
always break consistency by simply sending inconsistent messages to the respec-
tive parties. To formalize outsider security, we thus simply deem attacks enabled
by corrupting one of the involved parties trivial and no longer enforce consis-
tency properties for a user uid once either uid or their leader uidlead has been
corrupted.

5 I.e., similar to TLS, we require FS on the granularity of sessions.
6 This formalizes an outsider notion actually achieved by Zoom. Stronger protocols

could tolerate leaking the recipient’s state.

End-to-End Encrypted Zoom Meetings 167

Member Authentication. For many of the operations, such as adding users
to an existing session or instructing a user to join another session, the adversary
is allowed to provide the respective user identifiers. Our security notion ensures
that the adversary cannot impersonate long-term identities unless they have
been corrupted, i.e., the adversary cannot inject an ephemeral user uid unless
the associated long-term identity id has been corrupted.

2.4 Zoom’s Scheme

Zoom’s cmKEM scheme uses point-to-point encryption — i.e., does not leverage
any efficiency gains from sending the same message to multiple recipients — to
communicate fresh keys to the participants. It is based around Diffie-Hellman key
exchange over a cyclic group G = 〈g〉 with a fixed generator g. The identifier uid
mainly consists of a Diffie-Hellman public key upk ∈ G, alongside the contextual
data of the meeting identifier, the user’s long-term identity id, and the user’s
long-term public key ipk, and a signature under the user’s long-term signing key
isk binding it all together. The respective secret key usk := DLogg(upk) is stored
as part of the protocol’s state. See Fig. 1 for a formal description of the scheme.

For each epoch, the leader samples a new seed, from which the sequence of
period keys are derived by iteratively applying a PRG to derive the key and seed
for the next period of that epoch3. (Observe that this construction is forward
secure.) When removing parties, the leader initiates the next epoch and com-
municates the new seed to all remaining participants, as described below. They
then all derive the first key and the seed for the second key using the PRG. Anal-
ogously, to add participants with newEpoch = true, the leader communicates
the seed to all participants. More efficiently, however, when adding participants
with newEpoch = false, the leader only sends the seed for the next key to the
freshly joined parties and instructs the others to just ratchet forward.

To send a seed to a party, the scheme first derives for each recipient a shared
symmetric key from a Diffie-Hellman element of its own secret key usk and the
recipient’s public key upk′. The scheme uses HKDF for this derivation, which
for the purpose of the security analysis we model as an random oracle. For
efficiency reasons, this key is cached as part of the sender’s secret state and
reused for future messages to or from the same party. The seed is then encrypted
using nonce-based AEAD, for a random nonce that is transmitted as part of
the resulting ciphertext. The associated data contains the meeting and sender
identifiers, and a fixed context string.

Server Protocol. The protocol works by delivering the respective AEAD-
ciphertext to each party and sending a special “ratchet period” message to
parties for which no such ciphertext is specified. For simplicity, we model that
the message M = (G,C) sent to the server includes the current set of recip-
ients. More concretely, each user uid′ for which C contains a share obtains
m = (‘epoch′,C[uid′]), while for other users the server delivers m = ‘period′.

168 Y. Dodis et al.

Fig. 1. The client protocol of Zoom’s cmKEM scheme. The protocol implicitly main-
tains a state ust, which exposes the key ust.k, epoch ust.e, and period ust.p.

End-to-End Encrypted Zoom Meetings 169

Security. The following theorem establishes the security of the scheme.

Theorem 1. Zoom’s cmKEM scheme is secure according to the outlined def-
inition under the Gap-DH assumption, if the AEAD scheme is secure, Hash
collision resistant, the signature scheme is EUF-CMA secure, the PRG satisfies
the standard indistinguishability from random notion, and HKDF is modeled as
a random oracle.

A full proof is presented in the full version of this work. In short, based on
the security of Gap Diffie Hellman, we can first switch to an hybrid where we
use independently generated symmetric keys, as opposed to the outputs of the
DH operation (between the leader and each participant), programming the ran-
dom oracle to make things look consistent on corruption. Then, we can argue
that each of the adversary’s winning conditions in the game cannot be trig-
gered, based on the unforgeability of the signature scheme (credentials cannot
be forged), the authenticity of the AEAD (malicious keys cannot be injected),
and the confidentiality of the AEAD (encrypted keys cannot be distinguished
from encryptions of random messages).

According to the whitepaper [11], Zoom’s scheme performs Diffie-Hellman
over Curve25519.7 We note that the Gap-DH assumption (rather than e.g. CDH)
appears to be rather intrinsic to this kind of simple Diffie-Hellman based pro-
tocol and has been assumed for Curve25519 before [1,10]. Moreover, Zoom uses
XChaCha20Poly1305 with 192-bit nonces as the nonce-based AEAD scheme, and
HKDF for both the key-derivation as well as the PRG. (We model the latter use
as a PRG to clarify the exact required security properties.) Finally, for a signa-
ture scheme, Zoom uses EdDSA over Ed25519 satisfying EUF-CMA security [13].

3 Leader-Based GCKA with Liveness

We now abstract the core of Zoom’s E2EE meetings protocol1 as a leader-based
continuous group key agreement with liveness (LL-CGKA) scheme. On a high
level, the primitive works similarly to the previously introduced cmKEM one,
with the following differences: (1) participants are aware of the group roster
and in particular only use keys for which they know the roster, (2) as a result
participants can no longer run ahead of their leader in terms of the period, and
(3) liveness is enforced.

Liveness. To achieve liveness, the LL-CGKA primitive is time based. More con-
cretely (1) algorithms can depend on time and (2) in addition to event-based
actions (e.g., reacting to an incoming packet), there are also time-driven actions.
We make the following (simplifying) assumptions:

7 Technically, Curve25519 breaks the abstraction of cyclic groups we, for simplicity,
use for the presentation of our scheme. We refer to the analysis of the HPKE stan-
dard [1] for an extended discussion and the formalization of nominal groups with
the respective Gap-DH assumption. Their results directly apply to our construction.

170 Y. Dodis et al.

– Each party has a local clock, which all run at the same speed (constant drift).
– Local algorithms complete instantaneously, i.e., no time elapses between invo-

cation and completion. As a consequence, the algorithms simply take the
party’s current time as an input argument.

We remark that the vast majority of Zoom meetings last only a couple of
hours, limiting any practical clock drift significantly and, thus, justifying the
former assumption.

3.1 Syntax

The algorithms of a LL-CGKA scheme closely follow the ones of a
cmKEM scheme, with two major differences. First, client algorithms take the
current local time as input. Second, there are clock ticking algorithms that allow
to specify clock-driven actions, i.e., actions that happen at a certain time rather
upon receiving a message.

As in cmKEM, the server performs message routing. Additionally, it hands
out the current public8 group state to newly joining parties, freeing the leader
from maintaining additional state.

Definition 2. A LL-CGKA scheme consists of the algorithms described in the
following, where, for ease of presentation, the client state ust is assumed to expose
the following fields:

– The user’s current epoch ust.e and period ust.p.
– For each epoch and period a key ust.k[e, p] (or ⊥ if not known yet). It is

assumed that operations do not change keys once they are defined.
– The user’s current view on the group ust.G.

User Management:

– (ust, uid, sig) ← CreateUser(time, id,meetingId) creates an ephemeral user for
the given identity and meeting. Outputs the user’s initial state ust, their iden-
tity uid, and credentials sig binding uid to id.

– id ← Identity(uid) and meetingId ← Meeting(uid) are deterministic algorithms
that return the ephemeral user’s long-term identity and meeting, respectively.

– ust′ ← CatchUp(ust, time, grpPub) prepares the user for joining the group by
processing the current public group state grpPub provided by the sever.

Leader’s Algorithms:

– (ust′,M) ← Lead(ust, time, {(uidi, sigi)}i∈[n]) instructs the user to become the
new group leader with the specified participants. Outputs a message to be split
and distributed to the other group members.

8 By public, we mean known to the (untrusted) Zoom server; i.e., the current roster,
but not any keys.

End-to-End Encrypted Zoom Meetings 171

– (ust′,M) ← Add(ust, time, {(uidi, sigi)}i∈[n]) is used to add users uid1 to uidn
to the group.

– (ust′,M) ← Remove(ust, time, {uidi}i∈[n]) is used to remove users uid1 to uidn
from the group.

– (ust′,M) ← LeaderTick(ust, time) is executed on each clock tick by the leader.
Outputs the leader’s updated state and an optional messages M.

Participants’ Algorithms:

– ust′ ← Follow(ust, time,m, uid′
lead, sig

′
lead) instructs the user to treat uid′

lead as
the new leader. Expects the first message share m from the new leader.

– ust′ ← Process(ust, time,m) is used by participants to process any incoming
message m.

– (alive, sig′) ← ParticipantTick(ust, time) is executed by a participant on each
clock tick. The flag alive indicates whether the participant is still in the meet-
ing or dropped out (for a violation of liveness) and optionally updates the
credentials (for the server) with sig′ = ⊥ denoting no update.

Server’s Algorithms:

– pub ← Init() generates an initial server state.
–

(
pub′, {(uidi,mi)}i∈[n]

) ← Split(pub,M) is a deterministic algorithm that
takes message M and splits out each user uid’s share m.

– grpPub ← GroupState(pub,meetingId) is a deterministic algorithm that
returns the public group state.

We discuss correctness, and in particular how it is affected by the liveness
properties, in the full version of this work.

Meeting Flow. Let us briefly discuss how Zoom uses the above defined
LL-CGKA abstraction to orchestrate a meeting. To start a meeting, Zoom
instructs the initial host to invoke the Lead algorithm. For a participant to
join the meeting, the server first hands them the most recent public group state
(using GroupState) that the participant processes using CatchUp. Afterwards,
the participant is instructed of the leader (using Follow) where alongside it is
given their respective message share from the message the leader generated in the
respective Add invocation. Observe that at this point the participant might not
have a usable symmetric key yet. Instead, it might take up to the next message
generated by LeaderTick for the participant to fully join the meeting.

To switch leaders, the new one is instructed to invoke Lead and all other
participants are instructed to invoke Follow. Note that it is not required for the
new leader to have joined the meeting beforehand — the CatchUp algorithm can
directly be followed by Lead (instead of Follow) to immediately start as the new
leader.

172 Y. Dodis et al.

3.2 Security Definition

Overall, the game follows closely the one of the cmKEM primitive outlined in
Sect. 2.3. In the following we discuss the key aspects and highlight the differences
to the cmKEM game. We refer to the full version of this work for a formal
definition.

Clocks. The security game maintains a global clock time. Each honestly created
user uid maintains a local clock that is specified as an offset to the global one;
that is, all local clocks run at the same speed. (For our analysis, we do not
make use of the fact that two users uid and uid′ belonging to the same long-term
identity id, i.e. a device, typically would have the same local clock. Obviously
our results also hold for this special case.)

The adversary chooses each user’s offset and drives the global clock, i.e.,
decides whenever the clock is supposed to advance by a tick. Those ticks model
an abstract discrete unit of time, which can be thought of as milliseconds or
nanoseconds, roughly corresponding to the precision of clocks used by the various
parties. Whenever the adversary ticks the global clock, each party’s local clock
thus also advances, and their respective procedures LeaderTick or ParticipantTick
are invoked, depending on whether the party is currently a leader or not.

Liveness. An important objective of the LL-CGKA primitive is to ensure live-
ness: all participants must either keep up with the current meeting’s state or
drop out of the meeting. This is formalized as follows: whenever ParticipantTick
indicates that uid is still alive, then the participant’s state must not be too out-
dated, which in turn is defined as that the participant’s current leader must have
been in the same state recently. How recently exactly is a parameter of our secu-
rity definition we call the liveness slack ; we introduce the concrete slack achieved
by Zoom’s protocol as part of its description below.

Observe that this formalization essentially means that whenever the leader
makes a change to the group by either adding or removing parties — resulting in
an epoch or period change — then this change cannot be withheld by a malicious
server. We thus call this property key liveness and briefly discuss content liveness
in Sect. 5.

Confidentiality. Group key confidentiality is formalized analogously to the
one of a cmKEM scheme. That is, upon a challenge, the security game outputs,
depending on a bit b, either the real or an independent uniform random key. We
remark that the game only allows to challenge keys for epochs and periods that
are to be used in the higher-level application, omitting those that are skipped
by the LPL mechanism and hence never output. This simplifies the notion as, in
contrast to the cmKEM security notion, each challengeable key has a well-defined
group roster associated.

End-to-End Encrypted Zoom Meetings 173

Consistency, Authenticity, and No-Merging. The game ensures both key
consistency and group consistency, meaning that for a given honest (and uncom-
promised) leader, epoch, and period, all (uncompromised) participants agree on a
key and group roster. A malicious server can cause the group to split by assigning
different leaders to different partitions of the group, in which case those parti-
tions will no longer agree on the key. Furthermore, two parties, say Alice and
Bob, in different partitions might both believe to have a third party Charlie in
their group, or even believe to be in the same group with the other party. (That
is, the group rosters output by different partitions are not guaranteed to be dis-
joint.) However, the game ensures that after such an aforementioned (inherent)
splitting attack, the various partitions cannot be re-merged into a consistent
state, which makes the attack easier to detect.

Remark 1 (Insider security). This work focuses on outsider security, and only
formalizes limited insider security guarantees. For instance, whenever the adver-
sary performs a trivial injection, enabled by e.g. a corruption of the leader, most
security properties are (temporarily) disabled. On the other hand, we do formal-
ize that confidentiality and authenticity recover after switching from a malicious
leader to an honest one. While Zoom’s protocol does not aim to provide strong
guarantees in the presence of malicious insiders (as full insider security would
e.g. require asymmetric authentication for video data), a more comprehensive
analysis of the properties it does achieve would nevertheless be interesting.

3.3 Zoom’s Scheme

We now describe Zoom’s LL-CGKA scheme. On a high-level, the protocol
enhances the cmKEM scheme by having the leader broadcasting the group mem-
bership to the participants and regularly broadcast so-called heartbeat messages
for liveness. A formal description is presented in Figs. 2 and 3. Additional details
can be found in the full version of this work.

Leader Participant List. For the participants to learn the group roster, the
session leader broadcasts the so-called leader participant list (LPL) tabulating
the members. The LPL is, for bandwidth efficiency, represented as a linked list
of differential updates containing the set of added and removed participants
since the last LPL. Each message also references the leader’s current epoch e
and period p. For efficiency reasons, an LPL message is not sent on every single
change to the group roster, but on regular intervals instead. (It is skipped if
no change to the group roster has been done in the meantime.) To ensure that
parties know to whom they speak to, the scheme only proceeds to epochs and
periods for has been certified by an LPL message. (Re-keying is nevertheless
done eagerly, potentially leading to unused keys.)

The protocol furthermore relies on the LPL to communicate the group to
newly joining parties. To avoid having new parties process the entire history
of LPL messages, thus increasing the server’s storage requirement, the leader

174 Y. Dodis et al.

Fig. 2. The client part of Zoom’s overall LL-CGKA scheme. The description implicitly
keeps the state ust.

End-to-End Encrypted Zoom Meetings 175

Fig. 3. Helper algorithms for the client part of Zoom’s overall LL-CGKA scheme.

will from time to time use a special coalesced LPL message encoding the entire
group.9 A joining party therefore needs all the links up to and including the latest
coalesced message only. The frequency of coalesced messages is determined by
the parameter max-links.

Heartbeats. The LPL messages are unauthenticated. To authenticate them,
the leader broadcasts a signature (of a hash) thereof under the leader’s long-
term identity key. Those signatures moreover form another hash chain, with
each signature including the hash of the previous one, to ensures the continuity
of the meeting. That is, while certain splitting attacks — where a malicious
server might tell subgroups to accept different leaders — are unavoidable, those
diverging meetings cannot be rejoined later.

The leader broadcasts one such signature at least at a fixed interval Δheartbeat,
even when no LPL has been sent for lack of any change to the group membership.
Since they are regularly sent, these signatures are called heartbeat messages and
double as a mechanism to ensure liveness. To this end, the signature additionally
includes the latest epoch e, and period p. Hence, if an attacker attempts to with-
hold either key rotations or updates to the membership, causing a participant to
9 In the deployed version of the protocol, the coalesced LPL also includes a list of

all participants who were in the meeting at some point in the past but have since
left. This additional information is displayed in the client’s user interface, but is not
modeled in this work.

176 Y. Dodis et al.

be stuck in an old state, they would need to withhold the heartbeat message as
well, for this to go unnoticed. As a countermeasure, participants drop out from
the meeting if they do not receive a heartbeat message for too long.

For this mechanism to not abruptly end meetings (despite potential network
hiccups), participants do not expect to receive the heartbeats in perfectly regular
intervals. Rather, each heartbeat itself contains a timestamp time′ (the sending
time) whose state it certifies. Receiving this heartbeat then prolongs the liveness
of the receiver until time time′ + δ + Δlive, when the party will drop out if no
further heartbeat has been received. Here, δ denotes an estimate on the clock
drift (between the participant and their respective leader) and Δlive denotes a
protocol parameter. In a best effort to prevent this from happening, the server
will elect a new leader whenever the current one struggles to upload heartbeats.

The protocol estimates the clock drift δ as follows: Upon receiving the first
heartbeat with timestamp t′ at local time t from a given leader, the protocol
simply assumes that t− t′ is the drift, i.e., that the heartbeat has been delivered
instantaneously. Clearly, t′ + δ = t is an upper bound on the effective sending
time. Upon receiving a subsequent heartbeat, the party corrects the drift to t−t′

whenever this is smaller, and otherwise keeps it unchanged. Hence, if the network
delay, and thus the interval between received heartbeat, increases (e.g., due to
a network attacker) then each subsequently received heartbeat extends liveness
by a smaller amount, until the party eventually drops out. Conversely, if the
network delay decreases, the drift estimates and, hence, the liveness assurances
improve.

Evolving the Group. The protocol uses the cmKEM scheme to rotate keys
whenever the group membership changes. The participants, however, do not
immediately transition to the new epoch or period upon receiving such a
cmKEM message. Rather, they just store the new key. Only once the group
membership is known via receiving a corresponding LPL message and heart-
beat, they transition to the new epoch and period and advertise the respective
key for content encryption to the higher-level protocol. For membership changes
containing only additions, the protocol avoids overly frequent epoch changes by
rotating the period instead, however, limiting the number of consecutive periods
to a fixed number pMAX.

Joining a Meeting. To join a meeting, a party needs to learn the latest key
and group roster in an authenticated manner. The former is communicated via a
cmKEM message and the latter via the sequence of LPL messages starting with
the latest coalesced one. Authentication of the LPL is achieved by verifying the
latest heartbeat message that certifies the final LPL message, as well as epoch
and period numbers. (The previous links are implicitly authenticated due to the
links forming a hash chain.)

Leader Changes. A newly elected leader continues the meeting by starting a
new cmKEM session and generating a coalesced LPL message and a heartbeat,

End-to-End Encrypted Zoom Meetings 177

which the server then distributes to the other participants. The new leader will
continue the relevant counters (i.e., e, p, and t) and hash chains where the old
leader left off, such that they uniquely identify a meeting state. The server is
responsible to ensure that the party has the latest state the moment it becomes
the new leader.

Note that the new leader obtains the group roster from the server, rather
than deducing it from the previous LPL messages. Otherwise, they might inad-
vertently revert some of the previous leader’s final changes to the group, if for
instance the previous leader added or removed a party on the cmKEM level but
did not manage to broadcast a corresponding LPL message before dropping out.
Users are shown a warning on every leader change, and are advised to manually
check whether the group roster displayed in their client matches the expected
one.

The Server Scheme. The messages the leader uploads consist of up to three
components, a cmKEM message, a LPL and a heartbeat message. If the mes-
sage contains a cmKEM message, then the server splits this using the respective
cmKEM algorithm and forwards the respective share alongside the LPL and
heartbeat (if present) to the users. Otherwise, the server forwards the LPL and
heartbeat messages to the last known roster, as derived from the cmKEM mes-
sages. See the full version of this work for details.

Security. Security is summarized in our main result below, with a more detailed
proof given in the full version of this work.

Theorem 2. Zoom’s LL-CGKA scheme is secure with the liveness slack of P
being at most

min(n · Δlive, tnow − tjoined) + Δlive,

where tnow denotes the current time, tjoined the time P joined the meeting, and
n denotes the number of distinct leaders P encountered so far. Liveness holds
if all those leaders have followed the protocol, while all other properties hold as
long as the current leader is honest.

Proof (Sketch). Confidentiality and key consistency follow directly from the
underlying cmKEM scheme which is used to distribute the group keys. While
the LL-CGKA notion mandates slightly stronger properties, those additional
assurances relate directly to members only transitioning to subsequent periods
if their leader initiated this. This is ensured by parties only transitioning to a new
state once a heartbeat certified it, leveraging the unforgeability of the employed
signature scheme. Similarly, group consistency — i.e., authenticity of each par-
ticipant’s view on the group roster — is ensured by the combined LPL and
heartbeat mechanism, with the LPL distributing the group and the heartbeat
authenticating the LPL. Additionally, the hash links of the heartbeat messages
yields the no-merging property after a group-splitting attack.

178 Y. Dodis et al.

Finally, observe that liveness slack is directly linked to the accuracy of each
party’s estimate on the clock drift with their respective leader: If the estimate
were precise, then each party would have a liveness slack of at most Δlive since
they would know exactly when the last heartbeat they received has been sent
allowing them to drop out Δlive after. Further, the estimate only degrades by at
most Δlive with each leader change — the maximum interval between receiving
the old leader’s last heartbeat and the new leader’s first one.

The above theorem relies on the underlying cmKEM scheme being secure
according to the respective definition, the signature scheme being EUF-CMA
secure, and the hash function being collision resistant. According to the
whitepaper [11], Zoom’s instantiation uses SHA256 and EdDSA (as provided
by libsodium) for the hash function and signature algorithm, respectively, sat-
isfying those requirements [13,19].

Concrete Parameters. At the time of writing, Zoom uses Δlive = 100s,
Δheartbeat = 10s, ΔLPL = 2s, and max-links = 20, respectively. Moreover,
pMAX = 0, i.e., Zoom always ratchets the full epoch instead of the period3.

4 Improved Liveness

4.1 Limitations of Zoom’s Protocol

For a typical meeting with a single (honest) host that stays online for the dura-
tion of the entire meeting — and thus is the leader for the entire meeting —
Zoom’s current scheme1 provides strong liveness properties. Indeed, to the best
of our knowledge, Zoom is the only E2EE group video protocol that provides
any such liveness assurance. As highlighted by Theorem 2, however, there two
distinct aspects with respect to which the assurances could be further improved:

1. Zoom’s current liveness assurance degrade in the number of meeting lead-
ers encountered. This is sub-optimal for a protocol such as Zoom where the
(untrusted) server can initiate leader changes.10

2. While all other security properties, such as key confidentiality and authentic-
ity, recover after removing a malicious party from the meeting, liveness does
not.11

We particularly stress that both aspects are not merely deficiencies of our
analysis. Concrete but contrived attacks exist, even if they could be mitigated
by countermeasures relying on the end user, such as user-interface warnings.
10 This is currently remedied by the client showing a warning upon each leader change,

since the leader-authentication codes anyway require to repeat the authentication
process in this event. With the introduction of the advanced PKI replacing the
leader-authentication codes, Zoom might however consider dropping those warnings.

11 Note that Zoom does not aim to provide strong guarantees while a malicious insider
is part of the meeting. Yet, removing a malicious party should ideally reestablish
security without the need to restart the entire meeting.

End-to-End Encrypted Zoom Meetings 179

Lemma 1. Even with all honest participants, the liveness properties of Zoom’s
LL-CGKA scheme degrade in the number of leader changes, assuming an all
powerful malicious server carefully orchestrating the meeting.

Proof. Consider a meeting with parties P1, P2, . . . , Pn, as well as a designated
party P ∗. All parties, unbeknownst to each other, have precisely synchronized
clocks. The party P1 is the one to start the meeting and act as its initial leader.
When adding the parties P2, . . . , Pn to the meeting, the network adversary deliv-
ers the respective messages immediately. That is, the moment those parties
create their ephemeral user identities uid2, . . . , uidn, party P1 is immediately
instructed to add them to the meeting using Add producing M, and the respec-
tive shared obtained by split are handed to the parties to execute Follow without
any delay. (To this end, assume that the heartbeat interval perfectly aligns with
the moment all those parties join.) This results in each of those parties estimating
their drift to be 0, i.e., δuidj [uid1] = 0 for j ∈ {2, . . . , n}.

In contrast, when party P ∗ joins the meeting their respective ephemeral iden-
tity uid∗ is still handed immediately to P1, but the respective response delayed by
Δlive. Assuming P ∗ created their identity at time t and got the LL-CGKA mes-
sage at time t + Δlive, but with timestamp t, then P ∗ assumes that their clock
runs ahead by Δlive, i.e., δuid∗ [uid1] = Δlive. All subsequent heartbeats from P1

are then delivered to P ∗ with a delay of Δlive. As a result, if P1 sends a further
heartbeat at time t′, P ∗ will set lastHb ← t′ + Δlive and therefore extend the
time until they drop out until t′ + 2Δlive (instead of the optimal t′ + Δlive).

Next, consider P1 sending their last heartbeat at time t2 ≥ t+Δlive (which is
delivered to all parties as previously described) and immediately afterwards the
party P2 becoming the leader, still at time t2. Again, the messages derived from
the output of Lead are distributed to P3, . . . , Pn without delay, again resulting in
δuidj [uid2] = 0. For P ∗, on the other hand, P1’s last heartbeat is delivered at time
t2+Δlive, extending liveness until t2+2Δlive. The adversary now takes advantage
of the fact by delaying the first message from P2 as well as all subsequent ones
by 2Δlive. This process can then be repeated with sequentially switching leaders
to P3, P4, . . . , Pn, leading to a liveness slack of (n + 1)Δlive. �	
Lemma 2. If parties join a meeting that currently has a malicious leader col-
luding with a party with extensive control over Zoom’s server infrastructure, then
the liveness assurance can be arbitrarily broken even after all malicious parties
have been removed from the meeting (and a honest leader has taken over).

Proof. Consider a malicious insider attacker PM starting a meeting. Moreover,
assume that there are two honest parties PA and PB, where first PA wants
to join and at a later point PB wants to join. Assume that all have perfectly
synchronized clocks. In the meeting, attacker first adds PA to the group, without
any delay, i.e., such that δuidA [uidM] = 0. At time t, right when PB is about to
join (e.g., once PB advertised their ephemeral uidB) the malicious insider does
the following:

180 Y. Dodis et al.

1. PM creates k heartbeat messages t + 1, t + 2, . . . , t + k (when t denotes the
number of heartbeats created so far) for which they pretend to be normally
spaced out by Δheartbeat with respect to the included timestamps.

2. PM then adds PB to the meeting in state t+k, i.e., the first heartbeat signing
over the LPL containing uidB is with counter t + k + 1.

The attacker controlling Zoom’s server infrastructure now delivers those mes-
sages as follows:

1. Immediately deliver the welcoming message, including the (t+k+1)-th heart-
beat, at time t to PB . As a result PB will set δuidB [uidM] = −k · Δheartbeat,
since to PB it looks like the clock of PM simply runs ahead.

2. Immediately make PB the new leader at time t.
3. Deliver all the k intermediate heartbeats to PA at the regular interval

Δheartbeat. At time t + k · Δheartbeat first deliver the messages corresponding
to PB joining and then, immediately afterwards, the first message from the
new leader PB.

It is easy to see that PA does not drop out as they get heartbeats exactly as
if the meeting would progress normally. More concretely, to PA it looks like a
perfectly normal meeting in which PB joins at time t + k · Δheartbeat. At the end,
PA will still accept the message from PA, thinking that the clock of PA must
run ahead.

As a result, we now propose two alternative strengthened liveness protocols.

4.2 Additional Interaction

As a first proposal we suggest adding additional interaction in the form of spo-
radic messages of each participant. This proposal has been implemented in the
Zoom meeting client since version 5.13.

The Protocol. Concretely, our enhancement to Zoom’s protocol is as follows:
First, each party generates an unpredictable nonce nonce (from some nonce space
N , e.g., 192-bit strings) at regular intervals. These nonces are seen as part of a
party’s credential and hence ParticipantTick outputs new credentials whenever
the nonce is update. (In practice one would of course only upload the nonce, not
the entire credentials, each time.) For simplicity, we choose the same parameter
Δlive as for the overall liveness slack.

Whenever a new leader is elected, they get each participants latest nonce from
the server. We encode this as part of the credentials sig for the Lead algorithm,
which can now be thought as some sort of time-based credentials. The new leader
then uses those nonces as associated data for the cmKEM primitive (which for
Zoom’s instantiation means it is used as associated data for the authenticated
PKE). The same mechanism is used for adding new members to the group.

Each party as part of the Follow algorithm provides their current nonce as
associated data to JoinSession, thus verifying that the new leader used the correct

End-to-End Encrypted Zoom Meetings 181

Fig. 4. The proposed changes with respect to Zoom’s scheme from Fig. 2.

one. To prevent race conditions, parties moreover stores their second latest nonce
nonce′ and try with that one if JoinSession initially fails. See Fig. 4 for a formal
description of the changes with respect to Zoom’s current scheme from Fig. 2.

Security. Our proposal improves the liveness properties twofold. First, the live-
ness slack no longer degrades in the number of leader changes. Second, liveness
now holds even if a past leader has been corrupted as long as the current leader
is honest.

182 Y. Dodis et al.

We now state the resulting theorem. A more formal version thereof and a
proof can be found in the full version of this work.

Theorem 3. The modified LL-CGKA scheme from Fig. 4 is secure with the
liveness slack of P being at most

min
{
min(3, n) · Δlive, tnow − tjoined

}
+ Δlive,

where tnow denotes the current time, tjoined the time P joined the meeting, and
n denotes the number of distinct leaders P encountered so far. In contrast to
Theorem 2, liveness holds if the current leader is honest (as apposed to all leaders
encountered so far), analogous to all other properties.

4.3 Leveraging Clock Synchronicity

In this section, we explore an alternative approach towards mitigating the
degrading liveness properties. Concretely, we propose to leverage pre-existing
clock synchronicity to achieve better liveness properties without having to intro-
duce additional communication. For E2EE protocols, however, it is undesir-
able to simply assume synchronized clocks since this, for all practical purposes,
implies assuming a trusted reference clock (some time server) and introduces
additional friction for users on misconfigured devices (for example, with the
wrong timezone settings.).

Unfortunately, even detecting whether clocks are synchronized is non-trivial.
For instance, consider the interaction between a participant P and a leader L
depicted in Fig. 5: in one situation, L’s clock is in sync while in the other situation
L’s clock runs ahead — yet the scenarios look completely indistinguishable to
both P and L. As such, we propose the following hybrid strategy:

– For correctness, i.e., functionality of the scheme, assume clocks to be properly
synchronized. After all, Zoom is usually run on modern devices such as laptop
computers or smartphones that generally do have well synchronized clocks.
An honest Zoom server could moreover detect erroneous time setting and
instruct the client to re-synchronize their clock (either displaying a warning
or do it automatically with a somewhat trusted external server).

– For security, well synchronized clocks should yield tight liveness assurances,
while worst case liveness should degrade to the current1 protocol’s properties.

The Protocol. We now discuss our proposed mechanism. In a nutshell, our
proposed improvement works by each party P not maintaining a single (best-
effort) estimate δP [L] to their current leader L, but strict lower and upper bounds
δmin
P [L] ≤ offsetL→P ≤ δmax

P [L] on their respective drift offsetL→P gradually
improved over the course of the protocol execution. Analogous to the current
estimate, those bounds are derived from simple causality observations and in
turn used to adjust the timestamp indicated as part of the heartbeat messages.
See Fig. 6 for a formal description of the proposed modifications with respect to
Zoom’s current scheme.

End-to-End Encrypted Zoom Meetings 183

Fig. 5. The leader L’s clock running ahead (right) negatively affects liveness as the
addition of P ’ can be withhold longer from P .

Fig. 6. The proposed changes with respect to Zoom’s scheme from Fig. 2.

Deriving Bounds. To this end, consider the case that P receives a heartbeat
with timestamp timeL (according to L’s clock) at time tnow (according to P ’s
clock). Clearly, P knows that the heartbeat has not been sent after tnow, i.e.
timeL + offsetL→P ≤ tnow. Furthermore, assume that (for whatever reason) P
knows that this heartbeat has been sent definitively not before tthen. P can use

184 Y. Dodis et al.

this to deduce the following bounds:

tthen − timeL ≤ δmax
P [L] and δmin

P [L] ≤ tnow − timeL.

P will only update a bound if it improves the current one. (At the beginning,
the protocol initializes them to δmax

P [L] = +∞ and δmin
P [L] = −∞.)

In our protocol, P will have a meaningful such lower bound tthen in the
following two situations:

– Upon Joining the Meeting: When P joins the meeting, the first heartbeat
they get will sign over an LPL containing their freshly generated ephemeral
key. Hence, that heartbeat must have been sent after the time tjoined when P
generated the key.

– Upon Receiving the First Heartbeat from a New Leader L′: The
protocol works by having P deducing a lower bound on when the last heart-
beat of the old leader was sent, and the new leader L′ indicating as part of
the heartbeat a lower bound on the elapsed duration elapsed between the last
heartbeat of the old leader L and their first one. Hence, upon receiving the
first heartbeat from L′, P can use timeL + δmin

P [L] + elapsed as a lower bound
on the sending time.
Observe that the new leader L’ can deduce a lower bound on elapsed based
on the last heartbeat from L as follows: If L′ has already been part of the
meeting, it can leverage their own bound δmax

L′ [L] to deduce the upper bound
timeL + δmax

L′ [L] on the prior heartbeat’s sending time. Otherwise, L′ can use
the time they got the last heartbeat from the server as part of CatchUp yield-
ing at least some (very conservative) bound.

For subsequent heartbeats of the same leader, P only updates the upper
bound (if tighter than the previous one).

Correcting the Drift. We then modify the “conversion” of timestamp that P
performs accordingly. That is, whenever P receives a heartbeat with times-
tamp time′

L, in Zoom’s protocol P assumes that this has been sent at local
time time′

P := time′
L + δP [L] and correspondingly delays dropping out until

time′
P + Δlive. Unfortunately, after a number of leader changes the uncertainty

on δP [L] (and thus in our improved protocol the difference between δmin
P [L] and

offsetL→P ≤ δmax
P [L]) can become quite large. This potentially means that this

“converted” timestamp might be actually less accurate than the sent one, leading
to the degradation in provable liveness observed for Zoom’s protocol.

We, thus, want to be careful not to destroy the assurances in case the clocks
are well synchronized. Hence, the protocol conservatively adjusts the received
timestamp if and only if the leader’s clock is surely behind or ahead, respectively:

time′
P :=

⎧
⎪⎨

⎪⎩

time′
L + δmin

P [L] if δmin
P [L] > 0,

time′
L + δmax

P [L] if δmax
P [L] < 0,

time′
L otherwise.

End-to-End Encrypted Zoom Meetings 185

Security. We now state the respective security statement. A more formal ver-
sion thereof and a proof is given in the full version of this work.

Theorem 4. The modified LL-CGKA scheme from Fig. 6 is secure with the
following improved liveness slack

min
{|offsetL→P |, n · Δlive, tnow − tjoined

}
+ Δlive,

where offsetL→P denotes the clock drift between P and their respective leader
L, tnow denotes the current time, tjoined the time P joined the meeting, and n
denotes the number of distinct leaders P encountered so far. Liveness holds if all
those leaders have followed the protocol, while all other properties hold as long
as the current leader is honest.

5 Meeting Stream Security

The notion of LL-CGKA formalizes the key agreement portion of Zoom’s E2EE
meeting protocol. While our formal analysis stops at the level of the key agree-
ment, we now comment on how these guarantees extend to the full protocol.

The symmetric meeting key that participants agree upon is leveraged in a
straightforward way to provide security guarantees for the whole meeting, by
composing it with AEAD. Concretely, given the meeting key, Zoom clients derive
a specific per-stream subkey by using HKDF and mixing in a specific stream
identifier which depends on the stream type as well as the participant identifier.
This subkey is used by each participant to encrypt their streams using AES-
GCM. Incrementing nonces provide protection against replay and out of order
delivery.

Confidentiality and Authenticity. Informally, confidentiality of the meeting
key (as formalized in the LL-CGKA abstraction) implies confidentiality of the
streams, as distinguishing encrypted meeting streams from encryptions of ran-
dom noise would require breaking the AEAD scheme. Similarly, AEAD provides
integrity protection against external attackers who do not have access to the
meeting key, guaranteeing that any received ciphertexts was produced by some-
one with knowledge of the meeting (sub)key. As pointed out in the whitepa-
per [11], it is possible for attendees with privileged network access to tamper
with each other’s streams.

Liveness. The liveness properties proven for the LL-CGKA directly guarantee
that group operations in an E2EE meeting cannot be withheld, and extend
analogously to the encrypted meeting streams, but with different parameters.
Indeed, as of version 5.13 of the Zoom meetings client, meeting participants stop
decryption using old meeting keys shortly after a newer one is advertised from the
key agreement, i.e., the LL-CGKA scheme (with a tolerance Δstream = 10 seconds
to account for network latency). In addition, meeting leaders rotate these keys

186 Y. Dodis et al.

at least once every t = 5 minutes even when there is no change in the participant
list. Assuming the above, the protocol guarantees that each packet sent by an
honest participant and successfully decrypted was sent within t + Δstream + Δ of
its decryption, where Δ is the liveness slack from the key agreement protocol.
Alternatively, the protocol could include the heartbeat counter from the key
agreement as associated data in the video encryption, yielding liveness Δ +
Δstream + Δheartbeat without the need to frequently re-key.12

6 Conclusions

In this work, we provided the first formal security analysis of Zoom’s E2EE
meetings protocol, which is one of the most popular group video communication
tools in the world. Our work lead to a deployed improvement of the Zoom E2EE
meetings protocol, which strengthens its security properties. Of independent
interest, our work is also the first that defines and studies liveness in the context
of end-to-end encryption, which we hope should find other applications beyond
Zoom meetings.

References

1. Alwen, J., Blanchet, B., Hauck, E., Kiltz, E., Lipp, B., Riepel, D.: Analysing the
HPKE standard. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021.
LNCS, vol. 12696, pp. 87–116. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-77870-5 4

2. Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: security notions, proofs, and
modularization for the signal protocol. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11476, pp. 129–158. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-17653-2 5

3. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and improve-
ments for the ietf mls standard for group messaging. In: Micciancio, D., Ristenpart,
T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 248–277. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56784-2 9

4. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Modular design of secure
group messaging protocols and the security of MLS. In: Vigna, G., Shi, E. (eds.)
ACM CCS 2021. pp. 1463–1483. ACM Press (Nov 2021). https://doi.org/10.1145/
3460120.3484820

5. Alwen, J., Coretti, S., Jost, D., Mularczyk, M.: Continuous group key agreement
with active security. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551,
pp. 261–290. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-
2 10

6. An, J.H.: Authenticated encryption in the public-key setting: Security notions and
analyses. Cryptology ePrint Archive, Report 2001/079 (2001), https://eprint.iacr.
org/2001/079

7. Apple: Facetime & privacy. https://www.apple.com/legal/privacy/data/en/face-
time/

12 This is, however, non-trivial to achieve in a backwards compatible way.

https://doi.org/10.1007/978-3-030-77870-5_4
https://doi.org/10.1007/978-3-030-77870-5_4
https://doi.org/10.1007/978-3-030-17653-2_5
https://doi.org/10.1007/978-3-030-17653-2_5
https://doi.org/10.1007/978-3-030-56784-2_9
https://doi.org/10.1145/3460120.3484820
https://doi.org/10.1145/3460120.3484820
https://doi.org/10.1007/978-3-030-64378-2_10
https://doi.org/10.1007/978-3-030-64378-2_10
https://eprint.iacr.org/2001/079
https://eprint.iacr.org/2001/079
https://www.apple.com/legal/privacy/data/en/face-time/
https://www.apple.com/legal/privacy/data/en/face-time/

End-to-End Encrypted Zoom Meetings 187

8. Barnes, R., Beurdouche, B., Millican, J., Omara, E., Cohn-Gordon, K., Robert, R.:
The messaging layer security (mls) protocol (draft-ietf-mls-protocol-latest). Tech.
rep., IETF (Oct 2020), https://messaginglayersecurity.rocks/mls-protocol/draft-
ietf-mls-protocol.html

9. Bellare, M., Goldwasser, S.: Verifiable partial key escrow. In: Graveman, R., Jan-
son, P.A., Neuman, C., Gong, L. (eds.) ACM CCS 97. pp. 78–91. ACM Press (Apr
1997). https://doi.org/10.1145/266420.266439

10. Bienstock, A., Fairoze, J., Garg, S., Mukherjee, P., Raghuraman, S.: What is the
exact security of the signal protocol? Preprint (2021), https://cs.nyu.edu/afb383/
publication/uc signal/uc signal.pdf

11. Blum, J., et al.: Zoom cryptography whitepaper - v4.0. https://github.com/zoom/
zoom-e2e-whitepaper/raw/master/archive/zoom e2e v4.pdf (2022)

12. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-44598-6 15

13. Brendel, J., Cremers, C., Jackson, D., Zhao, M.: The provable security of ed25519:
Theory and practice. In: 2021 IEEE Symposium on Security and Privacy (SP). pp.
1659–1676 (2021). https://doi.org/10.1109/SP40001.2021.00042

14. Bresson, E., Chevassut, O., Pointcheval, D.: Dynamic group diffie-hellman key
exchange under standard assumptions. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 321–336. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-46035-7 21

15. Canetti, R., Garay, J., Itkis, G., Micciancio, D., Naor, M., Pinkas, B.: Multicast
security: a taxonomy and some efficient constructions. In: IEEE INFOCOM ’99.
Conference on Computer Communications. Proceedings. Eighteenth Annual Joint
Conference of the IEEE Computer and Communications Societies. The Future is
Now (Cat. No.99CH36320). vol. 2, pp. 708–716 (1999)

16. Cisco: Zero-trust security for webex - white paper. https://www.cisco.com/c/en/
us/solutions/collateral/collaboration/white-paper-c11-744553.html (2021)

17. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the signal messaging protocol. J. Cryptol. 33(4), 1914–1983
(2020). https://doi.org/10.1007/s00145-020-09360-1

18. Cohn-Gordon, K., Cremers, C.J.F., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the signal messaging protocol. In: 2017 IEEE European Sympo-
sium on Security and Privacy, EuroS&P 2017, pp. 451–466. IEEE (2017). https://
doi.org/10.1109/EuroSP.2017.27, https://doi.org/10.1109/EuroSP.2017.27

19. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard Revisited: how
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 26

20. Denis, F.: The sodium cryptography library. https://download.libsodium.org/doc/
(Jun 2013)

21. Dolev, D., Strong, H.R.: Polynomial algorithms for multiple processor agreement.
In: 14th ACM STOC. pp. 401–407. ACM Press (May 1982). https://doi.org/10.
1145/800070.802215

22. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-48071-4 10

23. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: 30th ACM STOC.
pp. 409–418. ACM Press (May 1998). https://doi.org/10.1145/276698.276853

https://messaginglayersecurity.rocks/mls-protocol/draft-ietf-mls-protocol.html
https://messaginglayersecurity.rocks/mls-protocol/draft-ietf-mls-protocol.html
https://doi.org/10.1145/266420.266439
https://cs.nyu.edu/afb383/publication/uc_signal/uc_signal.pdf
https://cs.nyu.edu/afb383/publication/uc_signal/uc_signal.pdf
https://github.com/zoom/zoom-e2e-whitepaper/raw/master/archive/zoom_e2e_v4.pdf
https://github.com/zoom/zoom-e2e-whitepaper/raw/master/archive/zoom_e2e_v4.pdf
https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1109/SP40001.2021.00042
https://doi.org/10.1007/3-540-46035-7_21
https://doi.org/10.1007/3-540-46035-7_21
https://www.cisco.com/c/en/us/solutions/collateral/collaboration/white-paper-c11-744553.html
https://www.cisco.com/c/en/us/solutions/collateral/collaboration/white-paper-c11-744553.html
https://doi.org/10.1007/s00145-020-09360-1
https://doi.org/10.1109/EuroSP.2017.27
https://doi.org/10.1109/EuroSP.2017.27
https://doi.org/10.1109/EuroSP.2017.27
https://doi.org/10.1007/11535218_26
https://download.libsodium.org/doc/
https://doi.org/10.1145/800070.802215
https://doi.org/10.1145/800070.802215
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1145/276698.276853

188 Y. Dodis et al.

24. Feldman, P., Micali, S.: Optimal algorithms for byzantine agreement. In: 20th
ACM STOC, pp. 148–161. ACM Press (May 1988). https://doi.org/10.1145/62212.
62225]

25. Fischlin, M., Günther, F.: Multi-stage key exchange and the case of Google’s QUIC
protocol. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 2014, pp. 1193–1204.
ACM Press (Nov 2014). https://doi.org/10.1145/2660267.2660308

26. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains
of variable difficulty. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 291–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 10

27. Gruszczyk, J.: End-to-end encryption for one-to-one microsoft teams calls
now generally available. Microsoft Teams Blog - December 14, 2021. https://
techcommunity.microsoft.com/t5/microsoft-teams-blog/end-to-end-encryption-
for-one-to-one-microsoft-teams-calls-now/ba-p/3037697 (12 2021)

28. Harder, E.J., Wallner, D.M.: Key Management for Multicast: Issues and Archi-
tectures. RFC 2627 (Jun 1999). 10.17487/RFC2627, https://www.rfc-editor.org/
info/rfc2627

29. Isobe, T., Ito, R.: Security analysis of end-to-end encryption for zoom meetings.
In: Baek, J., Ruj, S. (eds.) Information Security and Privacy, pp. 234–253. Springer
International Publishing, Cham (2021)

30. Katz, J.: Efficient and non-malleable proofs of plaintext knowledge and applica-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 211–228.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 13

31. Kim, Y., Perrig, A., Tsudik, G.: Tree-based group key agreement. Cryptology
ePrint Archive, Report 2002/009 (2002), https://eprint.iacr.org/2002/009

32. Krohn, M.: Zoom rolling out end-to-end encryption offering. Zoom Blog - October
14, 2020. https://blog.zoom.us/zoom-rolling-out-end-to-end-encryption-offering/
(10 2020)

33. Lowe, G.: A hierarchy of authentication specifications. In: Proceedings 10th Com-
puter Security Foundations Workshop, pp. 31–43 (1997). https://doi.org/10.1109/
CSFW.1997.596782

34. Marlinspike, M., Perrin, T.: The double ratchet algorithm (11 2016), https://
whispersystems.org/docs/specifications/doubleratchet/doubleratchet.pdf

35. Panjwani, S.: Tackling adaptive corruptions in multicast encryption protocols. In:
Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 21–40. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-70936-7 2

36. Pass, R., Seeman, L., shelat, a.: Analysis of the blockchain protocol in asynchronous
networks. In: Coron, J.S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS,
vol. 10211, pp. 643–673. Springer, Heidelberg (Apr / May 2017). https://doi.org/
10.1007/978-3-319-56614-6 22

37. Perrig, A., Song, D., Canetti, R., Tygar, J.D., Briscoe, B.: Timed Efficient Stream
Loss-Tolerant Authentication (TESLA): Multicast Source Authentication Trans-
form Introduction. IETF RFC 4082 (Informational) (2005)

38. Pinto, A., Poettering, B., Schuldt, J.C.: Multi-recipient encryption, revisited. p.
229–238. ASIA CCS ’14, Association for Computing Machinery, New York, NY,
USA (2014). https://doi.org/10.1145/2590296.2590329, https://doi.org/10.1145/
2590296.2590329

39. Poettering, B., Rösler, P., Schwenk, J., Stebila, D.: SoK: game-based security mod-
els for group key exchange. In: Paterson, K.G. (ed.) CT-RSA 2021. LNCS, vol.
12704, pp. 148–176. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
75539-3 7

https://doi.org/10.1145/62212.62225]
https://doi.org/10.1145/62212.62225]
https://doi.org/10.1145/2660267.2660308
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://techcommunity.microsoft.com/t5/microsoft-teams-blog/end-to-end-encryption-for-one-to-one-microsoft-teams-calls-now/ba-p/3037697
https://techcommunity.microsoft.com/t5/microsoft-teams-blog/end-to-end-encryption-for-one-to-one-microsoft-teams-calls-now/ba-p/3037697
https://techcommunity.microsoft.com/t5/microsoft-teams-blog/end-to-end-encryption-for-one-to-one-microsoft-teams-calls-now/ba-p/3037697
https://www.rfc-editor.org/info/rfc2627
https://www.rfc-editor.org/info/rfc2627
https://doi.org/10.1007/3-540-39200-9_13
https://eprint.iacr.org/2002/009
https://blog.zoom.us/zoom-rolling-out-end-to-end-encryption-offering/
https://doi.org/10.1109/CSFW.1997.596782
https://doi.org/10.1109/CSFW.1997.596782
https://whispersystems.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://whispersystems.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://doi.org/10.1007/978-3-540-70936-7_2
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1145/2590296.2590329
https://doi.org/10.1145/2590296.2590329
https://doi.org/10.1145/2590296.2590329
https://doi.org/10.1007/978-3-030-75539-3_7
https://doi.org/10.1007/978-3-030-75539-3_7

End-to-End Encrypted Zoom Meetings 189

40. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto (1996)

41. Seggelmann, R., Tuexen, M., Williams, M.: Transport layer security (tls) and data-
gram transport layer security (dtls) heartbeat extension. IETF RFC 6520 (Stan-
dards Track) (2012)

42. Smart, N.P.: Efficient key encapsulation to multiple parties. In: Blundo, C., Cimato,
S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 208–219. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30598-9 15

43. WhatsApp: Whatsapp encryption overview (2017), retrieved 05/2020 from https://
www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

44. Wire Swiss GmbH: Wire security whitepaper. https://wire-docs.wire.com/
download/Wire+Security+Whitepaper.pdf (2021)

45. Yang, Z.: On constructing practical multi-recipient key-encapsulation with short
ciphertext and public key. Sec. and Commun. Netw. 8(18), 4191–4202 (dec 2015).
https://doi.org/10.1002/sec.1334, https://doi.org/10.1002/sec.1334

46. Yuan, E.S.: Zoom acquires keybase and announces goal of developing the most
broadly used enterprise end-to-end encryption offering. Zoom Blog - May 7, 2020.
https://blog.zoom.us/zoom-acquires-keybase-and-announces-goal-of-developing-
the-most-broadly-used-enterprise-end-to-end-encryption-offering/ (5 2020)

https://doi.org/10.1007/978-3-540-30598-9_15
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://wire-docs.wire.com/download/Wire+Security+Whitepaper.pdf
https://wire-docs.wire.com/download/Wire+Security+Whitepaper.pdf
https://doi.org/10.1002/sec.1334
https://doi.org/10.1002/sec.1334
https://blog.zoom.us/zoom-acquires-keybase-and-announces-goal-of-developing-the-most-broadly-used-enterprise-end-to-end-encryption-offering/
https://blog.zoom.us/zoom-acquires-keybase-and-announces-goal-of-developing-the-most-broadly-used-enterprise-end-to-end-encryption-offering/

Caveat Implementor! Key Recovery
Attacks on MEGA

Martin R. Albrecht1, Miro Haller2 , Lenka Mareková3(B) ,
and Kenneth G. Paterson2

1 King’s College London, London, UK
martin.albrecht@kcl.ac.uk

2 Applied Cryptography Group, ETH Zurich, Zurich, Switzerland
miro.haller@ethz.ch, kenny.paterson@inf.ethz.ch

3 Information Security Group, Royal Holloway, University of London, London, UK

lenka.marekova.2018@rhul.ac.uk

Abstract. MEGA is a large-scale cloud storage and communication
platform that aims to provide end-to-end encryption for stored data.
A recent analysis by Backendal, Haller and Paterson (IEEE S&P 2023)
invalidated these security claims by presenting practical attacks against
MEGA that could be mounted by the MEGA service provider. In
response, the MEGA developers added lightweight sanity checks on the
user RSA private keys used in MEGA, sufficient to prevent the previous
attacks.

We analyse these new sanity checks and show how they themselves
can be exploited to mount novel attacks on MEGA that recover a target
user’s RSA private key with only slightly higher attack complexity than
the original attacks. We identify the presence of an ECB encryption ora-
cle under a target user’s master key in the MEGA system; this oracle
provides our adversary with the ability to partially overwrite a target
user’s RSA private key with chosen data, a powerful capability that we
use in our attacks. We then present two distinct types of attack, each type
exploiting different error conditions arising in the sanity checks and in
subsequent cryptographic processing during MEGA’s user authentication
procedure. The first type appears to be novel and exploits the manner
in which the MEGA code handles modular inversion when recomputing
u = q−1 mod p. The second can be viewed as a small subgroup attack
(van Oorschot and Wiener, EUROCRYPT 1996, Lim and Lee, CRYPTO
1998). We prototype the attacks and show that they work in practice.

As a side contribution, we show how to improve the RSA key recov-
ery attack of Backendal-Haller-Paterson against the unpatched version
of MEGA to require only 2 logins instead of the original 512.

We conclude by discussing wider lessons about secure implementation
of cryptography that our work surfaces.

c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14008, pp. 190–218, 2023.
https://doi.org/10.1007/978-3-031-30589-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30589-4_7&domain=pdf
http://orcid.org/0000-0001-8796-5064
http://orcid.org/0000-0001-8616-4150
http://orcid.org/0000-0002-5145-4489
https://doi.org/10.1007/978-3-031-30589-4_7

Caveat Implementor! Key Recovery Attacks on MEGA 191

1 Introduction

MEGA is a cloud storage and communication platform with over 265 million
user accounts and more than 10 million daily users [14], advertising itself as
secure and private by design. The platform distinguishes itself from other major
providers by offering end-to-end encryption for stored data. On MEGA, user files
should remain confidential even if the storage provider is malicious or has been
compromised through a breach, implying security in a strong threat model. The
security of MEGA in this setting was recently analysed in detail by [2], which
describes five attacks on the cryptographic protocol used by MEGA to authenti-
cate users and encrypt user data. The first two of these attacks completely broke
the confidentiality of user files. Shortly after, [29] significantly improved the first
attack in [2], reducing its requirement of 512 user logins to just 6.

At their heart, the attacks in [2] exploit the lack of both key separation and
integrity protection for stored keys in the MEGA design: a single user mas-
ter key is used to encrypt both the user’s RSA private key (used during user
authentication) and the user’s file encryption keys themselves; meanwhile AES
in ECB mode is used for the encryption. This allowed the authors of [2] to cor-
rupt the RSA private key in certain ways that leaked useful information during
the authentication protocol, as well as to “cut and paste” AES-ECB blocks from
file encryption keys into the RSA private key.

The authors of [2] proposed an immediate and non-invasive mitigation step
in the form of adding a MAC to the existing construction.1 In response, MEGA
chose to not implement this or any of the other originally suggested counter-
measures. Instead, MEGA added extra sanity checks in the client software to do
more validation of payloads during or after decryption [17]. These checks were
sufficient to prevent the specific attacks of [2,29].

Shortly after MEGA released their patch addressing the attacks of [2], they
made one other change which (as we will show below) further increased the attack
surface of their code: they added detailed error reporting during the decryption
and sanity checking processes done by the client as part of the authentication
protocol [18]. The errors produced during these steps are mostly distinguishable
from one another and the error messages are sent to the server in place of the
usual authentication response. A malicious storage provider can exploit this
verbose behaviour, triggering the errors by supplying specially crafted inputs
in an attempt to learn something about the decrypted data.

1.1 Contributions

In the MEGA infrastructure, each user has a master key kM that is used with
AES-ECB mode to encrypt multiple items, including the user’s RSA private
1 This by itself does not suffice for authenticated encryption security, but presents

the “immediate” level of countermeasures, i.e. the most easily achievable solution
in the short term. [2] outlines further levels of countermeasures termed “minimal”
and “recommended”, which provide better guarantees but require more fundamental
changes to the MEGA platform.

192 M. R. Albrecht et al.

key and individual file encryption keys (in a special obfuscated format). In this
work we describe two new attacks on the patched MEGA infrastructure in the
malicious server setting which achieve an AES-ECB decryption capability under
kM. These attacks can be used to recover individual 128-bit blocks of a target
user’s RSA private key. Combining this with lattice techniques, we can efficiently
recover the entirety of the target user’s RSA private key after recovering four
specific blocks. Once this private key is recovered, the adversary can trivially
decrypt the RSA ciphertexts appearing in file sharing messages to recover the
keys needed to decrypt any files shared with the target user. The attacks can
also be used to recover individual file encryption keys directly. As with [2], these
attacks exploit the lack of key separation and integrity protection in the MEGA
design, showing that the patch and further changes made by MEGA in response
to [2] were not only insufficient but actively harmful.

Both attacks make use of an ECB encryption oracle that is present in the
MEGAdrop feature, a part of the MEGA system that is supposed to be inde-
pendent of the authentication protocol, yet uses the same master key kM. This
feature enables the receiving of shared files from unregistered users. In short,
MEGAdrop encrypts a newly shared file’s encryption key to a user’s public RSA
key, but the user’s client then silently re-encrypts that file encryption key under
kM using AES-ECB whenever the user is logged in. Since a malicious server can
arbitrarily choose the file encryption key when sharing files with the user and
then observe the resulting AES-ECB ciphertext, this provides the ECB encryp-
tion oracle that we need. For technical reasons explained later, we obtain two
AES-ECB encrypted 128-bit blocks for each use of the oracle. Notably, the ECB
encryption oracle can be realised without any user interaction. Details can be
found in Sect. 2.

The attacks also exploit the distinguishable errors arising during user authen-
tication. We describe the individual errors in detail in Sect. 2. Both attacks can
be seen as key overwriting attacks, since they rely on manipulating the values
that are interpreted as the RSA private key by the client, and on including
the target AES-ECB ciphertext block in a particular position in the encoded
and encrypted RSA private key. This causes the errors that are triggered dur-
ing client-side cryptographic processing to depend on the target plaintext block.
User interaction is formally required for these attacks, which is why we measure
their cost in terms of the number of login attempts they need (they are otherwise
computationally inexpensive). As a secondary measure of attack complexity, we
account for the number of ECB encryption oracle calls needed.

The first attack, described in Sect. 3, exploits an implicit error in the com-
putation of modular inverses when sanity checking the RSA private key. It is an
(un)fortunate consequence of an otherwise harmless bug in the code (not check-
ing whether an inverse exists) which is caught by the client and reported to the
server. The malicious server can use this oracle repeatedly to learn the value of
the target AES-ECB plaintext block modulo a number of small primes, which
enables recovery of the full block using the CRT. The attack requires on aver-

Caveat Implementor! Key Recovery Attacks on MEGA 193

age 29.29 login attempts per recovered AES-ECB plaintext block and 66 ECB
encryption oracle queries per attacked user.

The second attack, described in Sect. 4, relies on how RSA decryption is
carried out by the client during user authentication. It exploits a legacy artefact
in the code that changes the resulting RSA plaintext length if a certain byte
condition on the plaintext does not hold, in combination with an explicit error
arising from a plaintext length check that is again reported to the server. The core
idea is as follows. Because the user’s RSA private key is encrypted as a sequence
of AES-ECB blocks, we can use the ECB encryption oracle to overwrite parts
of that key – including p, q , and d – on the granularity of 128-bit blocks. The
attack exploits this capability to mount a small order subgroup attack [12,34] by
overwriting the RSA primes p, q with values such that (p − 1)(q − 1) has known
small prime factors. The attack also overwrites d with a value that is completely
known except in the target plaintext block. By also choosing the RSA ciphertext,
the server can force the client’s RSA decryption to take place in any one of the
small subgroups corresponding to each of the small prime factors of (p−1)(q−1).
Then, the malicious server can use the length check oracle repeatedly to learn
the overwritten value of d, and hence the target plaintext block, modulo each of
the small primes. The final step again combines these values using the CRT to
recover the target block.

We present two main versions of the second attack: one that is simpler but
which requires a large amount of precomputation and one that is more complex
but only requires negligible precomputation. On average, these versions require
211.24 and 211.63 login attempts per block, respectively. In both versions, this
second attack requires a smaller number (up to 15) of ECB encryption oracle
queries per attacked user than our first attack does. Further, this second attack
exploits different errors from the first one and also relies on behaviours resulting
from the “legacy” check on the second byte of plaintext. We include this attack
to showcase that the existence of such checks and differentiated error reporting
increases the attack surface.

Since the two attacks work on a per-block basis, we discuss how best to
recover the entire RSA private key of the target user with the help of lattice
techniques in Sect. 5. This reduces the number of blocks that need to be recovered
using either of the two attacks to 4 instead of the 9 that would be required if
the attacks were used directly to e.g. recover all of p. The attack complexity
of recovering the full RSA private key using our first attack is then 211.29 login
attempts on average.

As a side contribution, we show in Sect. 6 how to combine the ECB encryption
oracle obtained from the MEGAdrop feature with the second attack in [2] to
recover a target user’s RSA private key from an unpatched MEGA client using
only 2 logins (compared to the 512 logins needed in [2] and the 6 needed in [29]).
This shows that the original, unpatched MEGA system was even weaker than
previously thought.

We conclude by briefly discussing attack mitigation in Sect. 7, noting the
problematic nature of relying on easy-to-implement countermeasures that do

194 M. R. Albrecht et al.

not properly address the core security vulnerabilities. In that section, we also
draw wider lessons from our work.

1.2 Related Work

The work of [2] provided a detailed overview of the MEGA infrastructure as well
as attacks on confidentiality and integrity of user data stored on the platform.
The follow-up work [29] significantly reduced the amount of user interaction
required by the first attack of [2] but was already prevented by MEGA’s patches.
The attacks in this work draw inspiration from the small-order subgroup attacks
on DH [12,34] and the key overwriting attacks on OpenPGP [5,10]. The use of
a plaintext checking oracle is reminiscent of Bleichenbacher’s attack on RSA
with PKCS#1 v1.5 encoding [4] but we target private key recovery rather than
plaintext recovery.

1.3 Validation

We have verified the presence of the ECB encryption oracle, implemented the
attacks and verified them in practice on test account data, using a TLS-MitM
setup with mitmproxy [33] to minimise interaction with the real MEGA servers
and a locally-run MEGA web client (version 4.21.4) [15]. We made a single
modification to the web client to automatically simulate repeated client login
attempts after one initial manual login. The attacks were able to recover arbi-
trary AES-ECB-encrypted blocks of the test user’s RSA private key with query
costs consistent with our analysis (averaging 29.30 login attempts for the first
attack). We also implemented a proof of concept for recovering the entire RSA
private key given four known blocks using lattice techniques. The code is avail-
able as supplementary material.

1.4 Disclosure

We contacted MEGA to inform them of the vulnerabilities in their system on
29.09.2022. We suggested a 90-day disclosure period. We also suggested mitiga-
tions, stressing the importance of providing proper cryptographic integrity for
data stored under users’ master keys. MEGA acknowledged receipt of our dis-
closure on 30.09.2022. They said they would begin working on fixes and liaise
with us before deploying them. On 28.11.2022, MEGA informed us that they
were working on hardening their client software, which would include chang-
ing how private keys are stored, removing the ECB encryption oracle as well as
replacing the asmcrypto.js library. We provided high-level feedback on the pro-
posed changes. The upgrade should mitigate against our specific attacks as well
as potential future attacks, though we have not reviewed the changes in detail.
Given the scale of the changes, we agreed to move the disclosure to 06.03.2023 to
coincide with the rolling-out of the upgraded client software and the publication
of this paper. MEGA awarded a bug bounty.

Caveat Implementor! Key Recovery Attacks on MEGA 195

2 Oracles

2.1 Notation

We begin by establishing some notation that we use throughout. Concatenation
is denoted by ‖ . [m]k denotes an encryption of m under the key k , where
the algorithm is determined by the context. B denotes bytes, and for x , |x |B
denotes the length of x in bytes and |x |b denotes the length of x in bits.2 For
a tuple X = (x0 , . . . , xn−1), |X | = n denotes its size. For a byte string m =
b0 ‖ b1 ‖ . . . ‖ bn−1 of length n and s, t ∈ N, we define m[s] := bs , and m[s :
t] := bs ‖ . . . ‖ bt−1 for s < t . An empty object is denoted by null, and a zero
byte by 00. ZeroPad(m,n) := 00 ‖ 00 ‖ . . . ‖ m such that |m|B = n, i.e. left-pad
m with zero bytes. If it is necessary to distinguish between a byte representation
and other types, m (as opposed to m) denotes a byte string. Conversion between
byte strings and integers remains implicit, so we may write m ← m and vice-
versa. (Z/nZ)× denotes the multiplicative group of integers modulo n. By x ←$S
we denote x sampled uniformly at random from S . In our attacks, B denotes a
target plaintext block, which is a byte string with |B |b = 128. To differentiate it
from a value computed while attempting to recover this block (which could be
different if the attack is not correct), we denote the computed value by B∗.

2.2 ECB Encryption Oracle

MEGA’s webclient exposes an ECB encryption oracle under a user’s master
key kM. This oracle allows MEGA, or anyone controlling their infrastructure, to
encrypt 32 bytes of chosen plaintext in AES-ECB mode under the target user’s
master key kM in a single query. Since AES-ECB without any additional measures
does not provide any integrity protection, ciphertexts containing blocks that the
adversary queried to the oracle cannot be distinguished without additional tests
on the expected structure of the plaintext.

The oracle stems from code related to the MEGAdrop feature as shown in
Fig. 1. MEGAdrop enables anyone to upload files to a folder in the cloud storage
of the recipient without needing an account on MEGA. The recipient activates
MEGAdrop for one of their folders and obtains a link that they can share with
others. Unlike shared folders, senders do not see any file stored in the MEGAdrop
upload folder.

2 For x ∈ Z, the value of |x |b as understood by the MEGA client implementations
is not always exact. In the big integer representation used by the web client, |x |b is
normally rounded up to the closest multiple of 8 or 32.

196 M. R. Albrecht et al.

Fig. 1. Overview of the ECB encryption oracle under a user’s master key kM.

The left algorithm of Fig. 2 describes the upload feature of MEGAdrop. The
adversary can pick some file key kF, nonce NF, and file F during the upload process
for the MEGAdrop folder at the link L. The upload feature locally encrypts the
file with AES-CCM using kF and some nonce NF picked by the client. Backendal
et al. describe MEGA’s encryption in more detail3 on lines 2–11 of Fig. 2 in [2].

MEGAdrop.upload(kF, NF,F ,L)

1 : [F]kF , Tcond ← File.enc(kF, NF,F)

2 : k
obf
F ← ObfKey(kF, NF, Tcond)

3 : pk ← Server.lookup(L)

4 :
[
k
obf
F

]
pk

← RSA.Enc(pk , kobfF)

5 : Server.upload([F]kF ,
[
k
obf
F

]
pk

)

Webclient.update()

1 : while true do

2 : τ ← Server.fetch update(kM, sk)

3 : if τ �= ⊥ then

4 : [F]kF ,
[
k
obf
F

]
pk

← τ

5 : k
obf
F ← RSA.Dec(sk ,

[
k
obf
F

]
pk

)

6 :
[
k
obf
F

]
kM

← AES-ECB.Enc(kM, k
obf
F)

7 : Server.upload(
[
k
obf
F

]
kM

)

8 : endif

9 : endwhile

Fig. 2. MEGAdrop pseudocode. MEGAdrop.upload encrypts a file F with key kF and
nonce NF, uploaded to the MEGAdrop folder with link L. Webclient.update shows how
active clients regularly poll for updates and re-encrypt node keys immediately.

To instantiate an ECB encryption oracle, the adversary sets kobfF to 32 bytes
of its choosing. Since kobfF = (kF ⊕ x) ‖ x for x = NF ‖ Tcond , the obfuscated
key defines the values for kF, NF, and Tcond used in the file encryption (cf.
Fig. 4 in [2]). The adversary can use the file reconstruction part of the fram-
ing attack described in [2] to obtain a file F that, when encrypted with kF
and NF, produces the MAC tag value Tcond . Consequently, the adversary can
run MEGAdrop.upload(kF, NF,F ,L) to upload kobfF , encrypted under the receiver’s
public RSA key, to the server.

Section 9.12 of MEGA’s security white paper [16] states that to “conserve
CPU cycles, RSA-encrypted keys are transformed into AES-encrypted keys when

3 For instance, we omit the file attributes in our description for simplicity.

Caveat Implementor! Key Recovery Attacks on MEGA 197

encountered”. Indeed, the webclient regularly polls for new files in the back-
ground and, when encountering an RSA-encrypted key [kobfF]pk , re-encrypts kobfF

with kM and AES-ECB to produce an AES-ECB ciphertext that we denote by
[kobfF]kM . It then uploads this updated key to the server (cf. [24]) as shown in
the right half of Fig. 2. Therefore, the malicious server can learn the AES-ECB
plaintext-ciphertext pair (kobfF , [kobfF]kM).

While testing this oracle in mitmproxy [33], we noticed that the server can
pretend that a new file was uploaded to a MEGAdrop folder. The webclient
re-encrypts the key as described in Fig. 2 even if the recipient does not use
MEGAdrop and the file has an invalid path. Thus, we have an efficient ECB
encryption oracle that does not require any user interaction and leaves no per-
sistent traces in the user’s cloud storage. It encrypts 32 B per query and can be
accessed repeatedly.

2.3 Oracles from Decoding and Decryption Error Reports

Consider the authentication and session ID exchange that takes place every time
a user logs into their account, summarized in Fig. 3 and described in more detail
in [2]. Let ke be the user’s 128-bit symmetric encryption key derived from their
password, kM the user’s 128-bit symmetric master key and (pk , sk) the user’s
2048-bit RSA keypair.

Fig. 3. Simplified overview of the MEGA login procedure.

Here, we focus on one part of this exchange, namely when the server responds
to the user’s request with the tuple ([kM]ke , [privk]kM , [m]pk , uh), where [kM]ke
and [privk]kM are AES-ECB-encrypted, [m]pk is RSA-encrypted and uh is in
plaintext. Then, privk encodes the secret key sk for RSA-CRT as shown in
Fig. 4, m encodes the session ID sid and uh is an 11-byte user handle string.
The exact alignments of the fields in privk with respect to the AES-ECB block
boundaries will be important in our attacks. The processing done by the client
after it decrypts [kM]ke is shown in Fig. 5. This is the updated behaviour resulting
from the patches described in Sect. 1 and converted into pseudocode as faithfully
as possible, i.e. in some cases surfacing lower-level processing if it is relevant.

In Fig. 5, we adopt the notation “require condition else error” to mean that
the client checks the condition and if it is not satisfied, it aborts and outputs

198 M. R. Albrecht et al.

Fig. 4. Encoding of the RSA secret key together with the block boundaries marking
the start of different 16-byte AES-ECB blocks. Each length encoding field consists of
2 bytes, meaning that data fields start progressively further into AES-ECB blocks.

the error to the server. Decoding between base64-strings, bytes and integers is
left implicit unless relevant to some error. Computation of a−1 mod b should be
understood to return null if gcd(a, b) �= 1.

In DecodePrivk(privk), the function Parse(privk) sequentially reads through
the bytes of privk whose expected form, shown in Fig. 4, is len(q) ‖ q ‖ len(p) ‖ p
‖ len(d) ‖ d ‖ len(u) ‖ u ‖ pad where len(x) denotes the two-byte big-endian
length encoding of the byte-length of x and pad is padding, and returns the
tuple of integers P = (q , p, d , u). If DecPrivkAndSid(·) returns successfully, then
sid is sent to the server in the requests that follow. Notice that in addition to
DecPrivkAndSid(·) returning a range of different error messages depending on
the processing of secret values, it also modifies the resulting plaintext depending
on whether the second byte of the RSA-decrypted value is 00 or not (line 9
of DecryptSid(·, ·)), a quirk that is explained in the original code only with the
comment “Old bogus padding workaround” [23].

Caveat Implementor! Key Recovery Attacks on MEGA 199

DecPrivkAndSid(kM, [privk]kM , [m]pk , uh):

1 : require |uh|B = 11 else ⊥1

2 : privk ← AES-ECB.Dec(kM, [privk]kM)

3 : sk ← DecodePrivk(privk)

4 : m ← DecryptSid(sk , [m]pk)

5 : require |m|B = 255 else (⊥2, |m|B)

6 : require m[16 : 27] = uh else ⊥3

7 : sid ← m[0 : 43]

8 : return sid

DecryptSid(sk , [m]pk):

1 : N , e, d , p, q , dp , dq , u ← sk

2 : c ← [m]pk

3 : require c < N else ⊥7

4 : x ← cdp mod p; y ← cdq mod q

5 : t ← x − y mod p

6 : h ← u · t mod p

7 : m ← h · q + y mod 2|N |b

8 : m ← ZeroPad(m, |N |B)

9 : if m[1] �= 00 then

10 : m
′ ← 00 ‖ m

11 : else

12 : m
′ ← m

13 : return m
′[2 : |m′|B]

DecodePrivk(privk):

1 : P , pad ← Parse(privk)

2 : require |P | = 4 ∧ |pad|B < 16 else ⊥4

3 : q , p, d , u ← P

4 : N ← p · q
5 : e ← d−1 mod (p − 1)(q − 1)

6 : dp ← d mod p; dq ← d mod q

7 : u ′ ← q−1 mod p

8 : require u ′ �= null else ⊥5

9 : cond ← |p|b, |q |b, |u|b > 1000 ∧ |d |b > 2000

10 : require cond ∧ (u ′ = u) else ⊥4

11 : sk ← N , e, d , p, q , dp , dq , u

12 : require e �= null else ⊥6

13 : return sk

Fig. 5. Client decoding and decryption to process the session ID, derived from [23,25–
27].

Caught and Uncaught Exceptions. Some of the errors shown in Fig. 5 are
implicit, i.e. they are a result of lower-level exceptions caught at a higher level
(the ones corresponding to ⊥5 and ⊥6). In all cases, they are shown at the exact
place where the code aborts.

Further, due to some lower-level bugs in asmcrypto.js [19], the bigint and
crypto library used by the web client, there are cases where the implementation
never terminates:

200 M. R. Albrecht et al.

– In DecodePrivk(privk) during Parse(privk), if one of q , p, d , u is 0.
– In DecodePrivk(privk) during the computation of q−1 mod p [21], if q mod
p = 0. We observed that this is because the implementation of gcd(0, p) never
terminates. The same issue arises during the computation of d−1 mod (p −
1)(q − 1) if d mod (p − 1)(q − 1) = 0.

Similarly, there are cases when the implementation returns incorrect output:

– In DecryptSid(sk , c) during the computation of x ← cdp mod p (and likewise
y ← cdq mod q), there are several issues.

• If p is even, the code computes x = 0 regardless of the other input val-
ues, because modular power computations were not implemented for even
moduli [20].

• If |p|b > 1024, the implementation of Montgomery reduction [22] does
not return correct values, and so the output x is also incorrect.

We were forced to work around some of these implementation errors in our
attacks.

3 Attack Based on Modular Inverse Computation

Our first attack enables block-by-block plaintext recovery of AES-ECB blocks
encrypted under kM. In particular, this enables RSA private key recovery, i.e. the
recovery of privk. Let [B]kM be such a target ciphertext block with unknown
target plaintext block B , for example corresponding to an unknown block of q
from privk.

This attack is in the malicious server setting, or equivalently the TLS-MitM
setting, and makes use of the ECB encryption oracle described in Sect. 2.2. It
exploits the error type ⊥5, which arises on line 7 and line 8 of DecodePrivk(privk)
in Fig. 5 when gcd(p, q) �= 1. To get to this point, the server must submit inputs
such that none of the previous error types are triggered. The server will only
replace the [privk]kM value and expect to abort before executing DecryptSid(·, ·),
so the only condition that must be satisfied is the one on line 2, which requires
that the decrypted privk parses into 4 values without too much extra padding.
Then, error ⊥5 can be distinguished from any of the errors that could follow,
though with overwhelming probability this will be error ⊥4 from line 10 due to
the server overwriting parts of privk.

The main idea behind this attack rests in the observation that if the server
can construct [privk∗]kM such that the decrypted and decoded p is divisible by a
small prime r , and the decrypted and decoded q contains the target block B in its
least-significant position, then the outputting of error ⊥5 leaks that gcd(p, q) �= 1
and thus (if some further conditions are satisfied), that q mod r = 0. From this,
the server can learn the value of B mod r . Repeating this for a sufficient num-
ber of different primes ri and combining the values using the Chinese Remain-
der Theorem (CRT), the server can learn the value of B mod r0 · . . . · rn−1.
If |r0 · . . . · rn−1|b ≥ 128, the server recovers B .

Caveat Implementor! Key Recovery Attacks on MEGA 201

In the following subsections, we describe two versions of the attack in more
detail, starting with the simple, block-aligned version and then describing an
attack that is more general and resistant to simple fixes. Both versions have been
implemented and verified using our TLS-MitM setup described in Sect. 1.3.

3.1 Block-Aligned, Small-Length Version

The attack proceeds in two distinct phases. The first phase calls the ECB encryp-
tion oracle to obtain a set of chosen-plaintext blocks, which are then combined
with a target block to form the ciphertexts submitted to the client as part of the
second phase. The second phase relies on the client making a number of online
login attempts. The ECB encryption oracle calls are shown as [x]kM ← OECBkM(x)
(if x consists of 2� blocks, this call will involve � uses of the actual oracle described
in Sect. 2.2). The content of the modified ciphertexts that will be submitted to
the client is shown in Fig. 6. Note that we aim to reduce the number of OECBkM()
calls by ensuring most of the content consists of all-zero blocks (or blocks con-
taining the value 1), which only need to be queried once.

Fig. 6. The plaintext content of cti,t , where the all-zero blocks are light green, the
blocks containing 1 are dark green and the placement of the target block B is in red.
(Color figure online)

PrecomputationUsing theECBEncryptionOracle.Take {r0, . . . , rn−1} =
{7, 11, . . . , 103}, n = 24 small odd primes such that their product R =

∏n−1
i=0 ri

has |R|b ≥ 128. Let [B]kM be the target ciphertext block and denote by B∗ the
plaintext block computed as part of this attack.

1. Generate a random prime p′ such that |p′|b = 256.
2. Let d ′ ← 1, u ′ ← 1 and encode them as byte strings d′, u′ such that |d′|B =

254, |u′|B = 126.
3. Let rest ← len(d′) ‖ d′ ‖ len(u′) ‖ u′ and obtain [rest]kM ← OECBkM(rest).
4. For i ∈ {0, . . . ,n − 1}, do the following:

(a) Compute p ← p′ ·ri and encode it as a byte string p such that |p|B = 126.4
(b) Let ptpi ← len(p) ‖ p and obtain [ptpi]kM ← OECBkM(ptpi).

5. For t ∈ {0, . . . , rn−1 − 1}, do the following:
(a) Compute q∗ ← 2128 · t and encode it as a byte string q∗ such that |q∗|B =

126.
(b) Let ptqt ← len(q∗) ‖ q∗[0 : 110], which skips the last block of q∗ to make

space for the target. Obtain [ptqt]kM ← OECBkM(ptqt).
6. For i ∈ {0, . . . ,n − 1}, do the following:

(a) For t ∈ {0, . . . , ri − 1}, do the following:
Store cti,t ← [ptqt]kM ‖ [B]kM ‖ [ptpi]kM ‖ [rest]kM .

4 We include the prime p′ for several reasons. First, because of one of the uncaught
errors, we must make sure that q mod p �= 0. Further, to avoid false positives from
error ⊥5, we need the gcd(p, q) �= 1 signal to be equivalent to gcd(p, q) = ri .

202 M. R. Albrecht et al.

Online Attack. Suppose we have a set of cti,t as described above.

1. For i ∈ {0, . . . ,n − 1}, do the following:
(a) For t ∈ {0, . . . , ri − 1}, do the following:

i. When the client initiates a login, respond to the client’s request with
([kM]ke , cti,t , [m]pk , uh), where everything but cti,t is as it would be
in an honest response.

ii. If the client returns ⊥5, save the value of t and break out of this loop.
(b) Save B∗

i ← −2128 · t mod ri .
2. Then, compute B∗ mod R by solving the system B∗ ≡ B∗

i (mod ri) for i ∈
{0, . . . ,n − 1} using CRT.

Correctness. Notice that for each decrypted cti,t , DecodePrivk(·) results in p ←
p′ ·ri and q ← 2128 ·t+B . The error ⊥5 will be triggered if and only if gcd(p, q) �=
1, which is equivalent to gcd(p, q) = ri , since p′ is a prime larger than q . Hence
⊥5 is triggered if and only if q mod ri = 0, and so if and only if B ≡ −2128 · t
(mod ri). This means that for the computed value B∗

i we have B∗
i ≡ B (mod ri).

It follows that B∗ ≡ B (mod R). Since R is such that |R|b ≥ 128 and |B |b = 128,
we deduce that B∗ = B (over the integers).

Cost. First, we count the cost of recovering the target in terms of ECB encryption
oracle calls, assuming that each repeated value (such as an all-zero block) is only
queried once. As can be seen in Fig. 6, the encoding of q∗, p, d ′ and u ′ is block-
aligned. The value rest consists of four non-zero blocks: two blocks that include
a length encoding, and two identical blocks containing the value 1. Next, ptpi
also has four non-zero blocks: one length-encoding block and three blocks for
p′ · ri since |p′ · ri |b < 263 < 3 · 128; similarly, ptqt has two non-zero blocks: one
length-encoding block and one block for t since |t |b ≤ |rn−1|b < 128. Finally,
notice that ptpi [0 : 16] is the same for all i , and similarly ptqt [0 : 16] is the
same for all t , so the length-encoding blocks can be reused. Recalling that each
use of the oracle returns two blocks of ciphertext, together the attack requires
� 1
2 · (1 + 3 + 2 + n · 3 + rn−1)� = 91 ≈ 26.5 queries. Further, the result of these

queries can be reused when recovering multiple blocks for a given target user.
Second, we count the number of online login attempts. On average, the attack

requires 1
2 ·

∑n−1
i=0 ri = 627 ≈ 29.29 logins (210.29 in the worst case).5

3.2 Full-Length Version

The attack in Sect. 3.1 could technically be prevented by a number of simple
checks, e.g. by moving the check on bit lengths before the client computes
q−1 mod p (and so possibly triggers ⊥5), by ensuring that |p|b, |q |b = 1024 or
that d , u �= 1. However, none of these changes would prevent this type of attack:
5 Note that the attack can be easily modified to use one less login for each ri . This is

because, in the online phase, if the server does not get a positive answer from the
oracle for any of the values t ∈ {0, . . . , ri − 2}, it means that the value ri − 1 is the
correct one and so does not need to be submitted explicitly.

Caveat Implementor! Key Recovery Attacks on MEGA 203

here we provide a more general version that would still work if these changes
were made. The content of the modified ciphertexts that will be submitted to
the client is shown in Fig. 7.

Fig. 7. The plaintext content of cti,t , where the all-zero blocks are light green, the
parts containing fixed values are dark green, the placement of the target block B is
in red and the placement of the unmodified values from ct is in yellow. (Color figure
online)

Precomputation Using the ECB Encryption Oracle. As before, take
{r0, . . ., rn−1} = {7, 11, . . . , 103}, n = 24 small odd primes such that their
product R =

∏n−1
i=0 ri has |R|b ≥ 128. Let [B]kM be the target ciphertext block

and denote by B∗ the plaintext block computed as part of this attack. Let
ct ← [privk]kM be the original ciphertext encrypting the user’s private RSA key.

1. Let d ′ ← 22047 and encode it as a byte string d′ such that |d′|B = 256.
2. Let ptd ← 00 00 00 01 ‖ len(d′) ‖ d′[0 : 10] and get [ptd]kM ← OECBkM(ptd).
3. Let [rest]kM ← ct[272 : |ct|B]. The slice begins with the ciphertext block that

encrypts the most-significant full block of the original d .
4. For i ∈ {0, . . . ,n − 1}, do the following:

(a) Compute p ← 21023 + 232 · � + 1 for � such that p ≡ 0 (mod ri) and p/ri
is prime. Encode it as a byte string p such that |p|B = 128.

(b) Let ptpi ← 00 01 ‖ len(p) ‖ p[0 : 124] and get [ptpi]kM ← OECBkM(ptpi).
5. For t ∈ {0, . . . , rn−1 − 1}, do the following:

(a) Compute q∗ ← 21023 + 2128+16 · t + 1 and encode it as a byte string q∗

such that |q∗|B = 128.
(b) Let ptqt ← len(q∗) ‖ q∗[0 : 110] and obtain [ptqt]kM ← OECBkM(ptqt).

6. For i ∈ {0, . . . ,n − 1}, do the following:
(a) For t ∈ {0, . . . , ri − 1}, do the following:

Store cti,t ← [ptqt]kM ‖ [B]kM ‖ [ptpi]kM ‖ [ptd]kM ‖ [rest]kM .

Correctness. In this version, the precomputation must construct a modified
ciphertext such that all values q , p, d , u are of the expected bit length. Recall
that the plaintext encoding has the form: len(q) ‖ q ‖ len(p) ‖ p ‖ len(d) ‖ d
‖ len(u) ‖ u ‖ pad. Since each value is encoded by prefixing a two-byte length
field and the original lengths are either 1024 bits or 2048, the values in the
resulting plaintext are not block-aligned. This is why we construct the “partial”
block ptd in Step 2. separately: it is composed of the final 4 bytes of p, len(d′)
and the first 10 bytes of d ′. Similarly, the block-aligned plaintext ptp in Step 4b
begins with another partial block which consists of the final 2 bytes of q∗, len(p)

204 M. R. Albrecht et al.

and the first 12 bytes of p.6 Finally, the modified blocks are “stitched” together
in Step 6a as in the simple version of the attack, ensuring that the target B is
interpreted as the last “full” block of q .

Cost. Finding p of the correct form for each i in Step 4a is easy and takes
326 ≈ 28.35 trials on average for the given primes ri . This step is independent
of user data and so can be reused to attack multiple users. With reference to
Fig. 7, note that both ptpi and ptqt will likely have two non-zero blocks each.
We assume the reuse of the length-encoding blocks as in Sect. 3.1. Thus the
attack requires � 1

2 · (1 + 1 + 2 + n + rn−1)� = 66 ≈ 26.04 queries.

Online Attack. Suppose we have a set of cti,t as described above.

1. For i ∈ {0, . . . ,n − 1}, do the following:
(a) For t ∈ {0, . . . , ri − 1}, do the following:

i. When the client initiates a login, respond to the client’s request with
([kM]ke , cti,t , [m]pk , uh), where everything but cti,t is as it would be
in an honest response.

ii. If the client returns ⊥5, save the value of t and break out of this loop.
(b) Save B∗

i ← (216)−1 · (−21023 − 2128+16 · t − 1) mod ri .
2. Then, compute B∗ mod R by solving the system B∗ ≡ B∗

i (mod ri) for i ∈
{0, . . . ,n − 1} using CRT.

Correctness. Recall that for each decrypted cti,t , DecodePrivk(·) gets p ←
21023 + 232 · � + 1 and q ← 21023 + 2128+16 · t + 216 · B + 1. The overwrit-
ten values are encoded so that the parsing succeeds, and there are no other
explicit errors that could be triggered before the error we are using for the
attack.7 The error ⊥5 will be triggered if and only if gcd(p, q) �= 1, which
is equivalent to gcd(p, q) = ri with high probability, since p/ri is a large
prime and the probability that q ≡ 0 (mod (p/ri)) is ≈ 1/(p/ri) ≤ 2−1016.
Hence ⊥5 is triggered if and only if q mod ri = 0, and hence if and only if
B = (216)−1 · (−21023 − 2128+16 · t − 1) mod ri . Thus we have B∗

i ≡ B (mod ri).
The rest of the analysis follows as for the simpler version of the attack.

Cost. The attack requires the same number of online login attempts as the
simpler version in Sect. 3.1. We confirmed this in our implementation: in 500 runs
of the attack recovering random ECB-encrypted blocks, the average number of
login attempts required by the full version of the attack was 632 ≈ 29.30. The
histogram is shown in Fig. 8.

6 That is, ptd[0 : 4] = p[124 : 128] for all p, and ptpi [0 : 2] = q∗[126 : 128] for all q∗.
7 There is a possibility that d∗ mod (p−1)(q −1) = 0 where d∗ ← d ′ +(d mod 21968)

and d is the original value encrypted in ct. Because of the uncaught non-termination
bug arising during the computation of (d∗)−1 mod (p − 1)(q − 1), in this case the
attack would fail, but this is highly unlikely to happen in practice.

Caveat Implementor! Key Recovery Attacks on MEGA 205

Fig. 8. Number of login attempts used by the attack over 500 runs.

4 Attack Based on Small Subgroups

Here, we present our second AES-ECB decryption attack. In terms of login
attempts it is less efficient than the attack in Sect. 3. However it requires fewer
uses of the ECB encryption oracle. Further, it exploits a number of additional
errors and also behaviours resulting from the “legacy” check on the second byte
of the RSA plaintext.

The attack is also in the malicious server/TLS-MitM setting and uses the
ECB encryption oracle from Sect. 2.2 with the aim of recovering blocks of d
from the original privk (or any other AES-ECB-encrypted blocks that can be
placed in their position). It exploits the errors ⊥2 and ⊥3 arising on line 5 and
line 6 of DecPrivkAndSid(kM, [privk∗]kM , c∗, uh∗) in Fig. 5 for an adversarially
supplied privk∗ (created with the help of the ECB encryption oracle), c∗ and
uh∗. It also requires working around some of the uncaught exceptions described
in Sect. 2.3. To reach the needed error, the checks that trigger the earlier errors
⊥1,⊥4,⊥5,⊥6 and ⊥7 must all be satisfied: uh∗ must be a UTF-8 string of size
11, privk∗ must encode q∗, p∗, d∗, u∗ of sufficient length such that gcd(q∗, p∗) =
1 and gcd(d∗, (p∗ − 1)(q∗ − 1)) = 1 so that the corresponding inverses exist,
u∗ = (q∗)−1 mod p∗ and c∗ < N ∗ where N ∗ = p∗ · q∗.

Under these constraints, observe that DecryptSid(sk , c∗) behaves differently
depending on whether the second byte of the decrypted value m∗ ← (c∗)d

∗
mod

N ∗ is 00, where m∗ is first zero-padded to the length of N ∗ to form m∗. Suppose
the server supplied p∗, q∗ such that |N ∗|B = 256. Let m ← DecryptSid(sk , c∗)
and m′ be the intermediate value such that m = m′[2 : |m′|B]. Then, based on the
error returned by the client, the server can distinguish the following two cases:

– Case (⊥2, 254): This means that |m|B = 254, so |m′|B = 256 = |N ∗|B = |m∗|B,
so the condition on line 9 was not satisfied, i.e. m∗[1] = 00.8

8 Note that the server does not know whether this is because prior to zero-padding, we
have |m∗|B ≤ |N ∗|B − 2 and therefore trivially m∗[1] = 00 or because |m∗|B = |N ∗|B
and m∗[1] = 00. However, the root cause is immaterial to our attack.

206 M. R. Albrecht et al.

– Case ⊥3: This means that |m|B = 255, so |m′|B = 257 = |N ∗|B + 1 = |m∗|B + 1,
which can only arise if m′ = 00 ‖ m∗ and so m∗[1] �= 00.

A similar case analysis can be done for arbitrary values of |N ∗|B; then the
errors may be swapped. However due to the bugs in the modular power imple-
mentation in MEGA code, the attack actually only works for |N ∗|B ≤ 256.

We explain next how to exploit this behavioural difference to leak information
about a target user’s RSA private key.

The server constructs [privk∗]kM using the ECB encryption oracle such that
in the “d” field it knows the plaintext for all blocks except the least-significant
full block. That block will be the target of the attack; it can be an arbitrary
AES-ECB-encrypted block [B]kM . Let d∗ denote the “d” component constructed
in this way. The server must also precompute p∗, q∗ of a special form and a
number of values m∗ with m∗[1] = 00 such that it can interpret one of the errors
arising on decryption of a corresponding ciphertext as confirmation of a correct
“guess”.

At a high level, the primes p∗ and q∗ are constructed so that (p∗ −1)(q∗ −1)
contains small prime factors ri of a given bit length such that their product is
at least 128 bits.9 Let G = (Z/N ∗

Z)× so that |G| = (p∗ − 1)(q∗ − 1). For each
factor ri , the server computes gi ∈ G such that gi has order ri and such that
a value ti ∈ {1, . . . , ri − 1} (or a set of such values Ti) exists with the property
that gi ti mod N ∗ has second byte 00 after zero-padding to the length of N ∗. The
value of u∗ is then set to (q∗)−1 mod p∗.

Then, in the online phase of the attack, the server submits privk∗ constructed
using the ECB encryption oracle to contain q∗, p∗, d∗, u∗. For each ri , it sets
xi = 1, 2, . . . , ri − 1 and submits c∗

i,t ← gi xi mod N ∗ until the client returns
the error that confirms the second byte of the decrypted value was 00 (which is
(⊥2, 254) in the case that |N ∗|B = 256 which we will use in the attack). Then,
based on the precomputed values it learns that, for the specific value xi triggering
the error, xi · d∗ ≡ ti (mod ri). Here d∗ is a value that is known except for its
least significant full block, where it contains B . From this equation, the value
of B (mod ri) can be recovered. Finally, using CRT and taking some care with
non-block-aligned inputs, allows recovery of the block B .

The attack is described in more detail in the following subsections, first a
simpler but less-efficient version and then the full version. The ECB encryption
oracle calls are shown as [x]kM ← OECBkM(x) as before. Since both versions of the
attack must “stitch” AES-ECB blocks together to create the final ciphertext,
we provide the algorithm in Fig. 9 to avoid repetition. This algorithm combines
the chosen values q∗, p∗, d′, u∗ so that they parse as expected, with the target
block B being placed in the position of the least-significant full block of d∗ and
overwriting the corresponding block of d′. This is visualised in Fig. 10.

9 The factors do not need to be common between (p∗ − 1) and (q∗ − 1), and can be
freely distributed between the two.

Caveat Implementor! Key Recovery Attacks on MEGA 207

Stitch(q∗, p∗, d′, u∗, [B]kM)

1 : pt0 ← len(q∗) ‖ q
∗ ‖ len(p∗) ‖ p

∗ ‖ len(d′) ‖ d
′[0 : 234]

2 : pad←$ ({0, 1}8)8 // random padding, could also be 00s

3 : pt1 ← d
′[250 : 256] ‖ len(u∗) ‖ u

∗ ‖ pad

4 : [pt0]kM ← OECBkM(pt0)

5 : [pt1]kM ← OECBkM(pt1)

6 : ct
∗ ← [pt0]kM ‖ [B]kM ‖ [pt1]kM

7 : return ct
∗

Fig. 9. Combining modified values produced using the ECB encryption oracle with the
target ciphertext block in the correct format, reusing known AES-ECB blocks where
possible. This assumes that |q∗|B = |p∗|B = |u∗|B = 128 and |d′|B = 256, as is the case
for legitimate MEGA keys.

Fig. 10. The plaintext content of ct∗, with the placement of the target block B in red.
(Color figure online)

4.1 Simplified Version

This version of the attack assumes a single ti value per factor, which simplifies
the presentation but imposes a high cost at the precomputation stage. Further,
there is a non-negligible probability of the attack aborting and thus failing to
complete. We will remove this restriction in the full version of the attack below.

Precomputation. Take {r0, . . . , rn−1} where each ri is a prime such that
|ri |b = 8, and n is such that |

∏n−1
i=0 ri |b ≥ 128. This imposes the constraint

16 ≤ n ≤ 19. Let [B]kM be the target ciphertext block.

1. Find primes p∗, q∗ such that |p∗|b = |q∗|b = 1024 and

p∗ = 2 ·

⎛

⎝
�n/2�−1∏

i=0

ri

⎞

⎠ · p′ + 1, q∗ = 2 ·

⎛

⎝
n−1∏

i=�n/2�
ri

⎞

⎠ · q ′ + 1

where p′, q ′ is each a product of 2-4 large primes.10 Encode p∗, q∗ as byte
strings p∗, q∗.

2. Set N ∗ ← p∗ · q∗ and G ← (Z/N ∗
Z)×.

10 These primes could repeat, the goal here is to avoid (p∗ − 1)(q∗ − 1) having any
other small factors except for r0, . . . , rn−1.

208 M. R. Albrecht et al.

3. For i ∈ {0, . . . ,n − 1}:
(a) Find gi ∈ G of order ri , e.g. by sampling h ←$G and computing gi ←

h(p∗−1)(q∗−1)/ri mod N ∗ until gi �= 1.
(b) Find a value ti ∈ {1, . . . , ri − 1} such that for m ← g tii mod N ∗; m ←

ZeroPad(m,N ∗), we have m[1] = 00. If no such ti is found or there are
multiple possible values, restart the precomputation.

4. Compute u∗ ← (q∗)−1 mod p∗ and encode it as a byte string u∗ with |u∗|b =
1024.

5. Let d ′ ← 22047 + 1 and encode it as a byte string d′ with |d′|b = 2048.
6. Obtain ct∗ ← Stitch(q∗, p∗, d′, u∗, [B]kM). Let d∗ ← d ′ + 248 · B (where B is

the unknown target block) denote the unknown value in the “d” field that
will arise on decrypting ct∗.11

Success Probability. For random m ∈ G we have Pr[m[1] = 00] = 2−8. For each
factor ri the probability that Step 3b finds exactly one suitable ti is (ri −1) ·2−8 ·
(
1 − 2−8

)ri−2, which is greater than 0.18 for 27 < ri < 28. However, this needs
to occur for all n factors where n ≥ 16 to get a product of sufficient length to
recover B using CRT, so the overall success probability is of the order ≈ 2−39 or
less. To reduce the required amount of precomputation, in Sect. 4.2 we increase
the bit length of each factor to ensure that there is at least one suitable ti for
each ri and provide a strategy to disambiguate between multiple fitting ti values.

Online Attack. Let R =
∏n−1

i=0 ri and ct∗, {gi}i∈I , {ti}i∈I be as computed
before, for I = {0, . . . ,n − 1}.

1. When the client initiates a login, respond to the client’s request with ([kM]ke ,
ct∗, [m]pk , uh), where everything but ct∗ is as it would be in an honest
response. If the client returns ⊥6, abort.

2. For i ∈ {0, . . . ,n − 1}, do the following:
(a) For x ∈ {1, . . . , ri − 1}, do the following:

i. Compute c∗
i,x ← (gi)x mod N ∗.

ii. When the client initiates a login, respond to the client’s request with
([kM]ke , ct∗, c∗

i,x , uh), where everything but ct∗ and c∗
i,x is as it would

be in an honest response.12

iii. If the client returns (⊥2, 254), save the value of x and break out of
this loop.

(b) If there is a saved value x , then we have d∗ ≡ x−1 · ti (mod ri) for
unknown d∗.

3. Then, use CRT to compute d∗ mod R from the values collected in Step 2b.
Recall that by construction d∗ = d ′ + 248 · B , so d∗ = 22047 + 248 · B + 1.
Hence compute

11 Note that by the choice of d ′, overwriting the least significant full block of d ′ with
B is equivalent to adding 248 · B to d ′.

12 An honest response refers to the data that an honest server would have sent. Note
that in this case, the “honest” uh will not match the value recovered from c∗

i,x , but
this check only comes after the errors triggered by the attack. The attacker could
equally replace the uh value with an arbitrary 11-byte UTF-8 string.

Caveat Implementor! Key Recovery Attacks on MEGA 209

B ≡
(
248

)−1 ·
(
d∗ − 22047 − 1

)
(mod R),

to recover the target plaintext block since |R|b ≥ 128.

Cost. In the worst case, the main cost of the online attack is
∑

i∈I(ri − 1) login
attempts. This is bounded from above by n · (28 − 1) ≈ 212.24 for n ≤ 19. In the
average case, for each i we expect Step 2a to conclude after approximately 1

2 ·28
trials, so the overall bound becomes n · 27 ≈ 211.24 for n ≤ 19.

Probability of Abort. Note that the attack aborts if it receives error ⊥6. This error
is returned whenever the decrypted d∗ = d ′ + 248 · B is such that gcd(d∗, (p∗ −
1)(q∗ − 1)) �= 1. Since d∗ is odd by construction,13 the error can only be caused
if at least one of the following is true:

– d∗ ≡ 0 (mod ri) for at least one ri ,
– d∗ ≡ 0 (mod p′

j) for at least one p′
j | p′, or

– d∗ ≡ 0 (mod q ′
k) for at least one q ′

k | q ′.

The values p′
j , q

′
k are large primes by construction, so the probability of an

abort being caused by those cases is negligible. However, each factor ri is only
8 bits in size, which means that assuming a random B the probability that
the attack aborts because d∗ ≡ 0 (mod ri) for at least one ri is bounded by
n · 2−7 ≈ 0.15 with n ≤ 19. In Sect. 4.2, we discuss strategies for avoiding the
abort.

Correctness. Now, assume the attack does not abort. By construction, the values
of q∗, p∗, d ′, u∗ pass the check on bit length, we have gcd(q∗, p∗) = 1, u∗ =
(q∗)−1 mod p∗ and all c∗

i,x < N ∗. During DecryptSid(sk , c∗
i,x), the client will

compute m =
(
c∗
i,x

)d∗
mod N ∗ = (gi)

x ·d∗
mod N ∗. If it is the case that m =

(gi)
ti mod N ∗ and therefore x ·d∗ ≡ ti (mod ri), the second byte of zero-padded

m will be 00 and so the client will return (⊥2, 254) to the server. Otherwise, it
will proceed with the computation and with very high probability return ⊥3,
since the uh value will not match the relevant substring of m. Hence the attack
recovers the target plaintext block.

4.2 Full Version

Here, we provide strategies to improve the running time and the success prob-
ability of our second attack. First, we discuss the use of multiple ti values per
factor ri , incorporate this into the attack and show the effect of this strategy.
For practical purposes, this strategy is already sufficient to reduce the precom-
putation cost and the likelihood of aborts.
13 This is also why we cannot make the block-aligned simplification for this attack,

because if we aligned it such that the least-significant block of d∗ is full and therefore
placed our target block B there, then if B ≡ 0 (mod 2) the client would output error
⊥6 on all queries.

210 M. R. Albrecht et al.

In this version of the attack, we increase the bit length of the factors ri . As
a result, the probability of finding a suitable ti value during precomputation is
increased. However this also implies that there will be more than one such value.
We therefore have to also amend the online part of the attack to provide a way
of determining which t ∈ Ti value has caused the expected error for a given x .
There are multiple ways in which this could be achieved, and here we describe
one option.

Take ri , Ti and assume that we got the (⊥2, 254) error for some x ∈
{1, . . . , ri − 1}. We can test each potential value tj ∈ Ti by submitting another
query c∗

i,xj
← (gi)xj mod N ∗ where xj ← x · t−1

j mod ri . If the guess for tj is
correct, we have x · d∗ ≡ tj (mod ri), and so decryption of c∗

i,xj
will produce

(gi)xj ·d
∗

mod N ∗ = (gi)x ·t−1
j ·d∗

mod N ∗ = gi as the plaintext. Then, as long as
gi is such that its second byte is not 00, which we can ensure in the precompu-
tation phase, the check that produces ⊥2 will pass. Since the server knows gi
and is able to set uh to arbitrary 11-byte values, it can also make sure to pass
the check that produces ⊥3, and therefore get 43 bytes of gi from the client via
the returned sid value when the guess is correct. However, if the guess is not
correct, it is very unlikely that the server-modified uh would match the resulting
plaintext, leading to ⊥3. So the server can distinguish between the two cases.

Precomputation. Take {r0, . . . , rn−1} where each ri is a prime such that
|ri |b = 12, and n is such that for R ←

∏n−1
i=0 ri we have |R|b ≥ 128, so

11 ≤ n ≤ 12. Let [B]kM be the target ciphertext block.

1. Find primes p∗, q∗ such that |p∗|b = |q∗|b = 1024 and

p∗ = 2 ·

⎛

⎝
�n/2�−1∏

i=0

ri

⎞

⎠ · p′ + 1, q∗ = 2 ·

⎛

⎝
n−1∏

i=�n/2�
ri

⎞

⎠ · q ′ + 1

where p′, q ′ is each a product of 2-4 large primes. Encode p∗, q∗ as byte strings
p∗, q∗.

2. Set N ∗ ← p∗ · q∗ and G ← (Z/N ∗
Z)×.

3. For i ∈ {0, . . . ,n − 1}:
(a) Find g ∈ G of order ri , e.g. by sampling h ←$G and computing g ←

h(p∗−1)(q∗−1)/ri mod N ∗ until g �= 1.
(b) Initialise Ti = ∅.
(c) For t ∈ {1, . . . , ri − 1}, do the following:

i. Let g′ ← ZeroPad(g ′,N ∗) for g ′ ← g t mod N ∗.
ii. If g′[1] = 00, add t to Ti . Else if g′[17 : α] for some α ≥ 28 is a valid

UTF-8 string of size 1114, save gi ← g ′, a ← t and uh∗
i ← g′[17 : α].

(d) If Ti = ∅ or a is undefined, restart the precomputation.

14 Note that an 11 B byte string interpreted as a valid UTF-8 string will likely not be a
string of size 11, i.e. a string consisting of 11 characters, since not all byte values are
interpreted as text and non-ASCII characters require multiple bytes to encode [36].

Caveat Implementor! Key Recovery Attacks on MEGA 211

(e) Shift Ti by replacing each t ∈ Ti by t · a−1 mod ri . This ensures that the
values in Ti are with respect to the new generator gi instead of g .

4. Compute u∗ ← (q∗)−1 mod p∗ and encode it as a byte string u∗ with |u∗|b =
1024.

5. Compute d ′ ← 22047 + 248+128 · δ + 1 for δ < R such that d ′ ≡ 0 (mod R).
Encode it as a byte string d′ with |d′|b = 2048.

6. Obtain ct∗ ← Stitch(q∗, p∗, d′, u∗, [B]kM).

Success Probability. Increasing the bit length of the factors means that now
for each factor ri the probability that Step 3(c)ii finds at least one suitable t
is 1 − (1 − 2−8)ri−1, which is greater than 0.9996 for 211 < ri < 212. Across
all n factors for n ≤ 12, it is still greater than 0.99. Next, the probability
that a random 11-byte string is a valid UTF-8 string is ≈ 0.001634. Hence
for each factor ri the probability that at least one such string will be found is
1 − (1 − 0.001634)ri−1 > 0.9648, and across all factors it is at least 0.65. In
practice, if the precomputation fails at this point, it can simply be re-run again
with different ri values.

Cost. This version tests all possible values of t for every ri , so overall it must
check at most n · 212 ≈ 215 values of g t (these can however be cycled through
for each ri). The prime generation is a one-time cost in the sense that the values
can be reused in attacks on multiple users. Finally, since d ′ will be composed
mostly of zero-blocks, building the ciphertext ct∗ requires up to 15 uses of the
ECB encryption oracle (which, recall, produces 2 blocks at a time).

Online Attack. Let ct∗, {gi}i∈I , {Ti}i∈I be the values computed before where
I = {0, . . . ,n − 1}.

1. When the client initiates a login, respond to the client’s request with ([kM]ke ,
ct∗, [m]pk , uh), where everything but ct∗ is as it would be in an honest
response. If the client returns ⊥6, abort.

2. For i ∈ I, do the following:
(a) For x ∈ {2, . . . , ri − 1}, do the following:

i. Compute c∗
i,x ← (gi)x mod N ∗.

ii. When the client initiates a login, respond to the client’s request with
([kM]ke , ct∗, c∗

i,x , uh), where everything but ct∗ and c∗
i,x is as it would

be in an honest response.
iii. If the client returns (⊥2, 254), save the value of x and break out of

this loop.
(b) If Ti = {ti} has a single element, skip this step. Otherwise, for t ∈ Ti , do

the following:
i. Let x ′ ← x · t−1 mod ri .
ii. Compute c∗

i,x ′ ← (gi)x
′
mod N ∗.

iii. When the client initiates a login, respond to the client’s request with
([kM]ke , ct∗, c∗

i,x ′ , uh∗
i), where only [kM]ke is as it would be in an honest

response.

212 M. R. Albrecht et al.

iv. If the client returns sid = gi [1 : 44], save the value ti ← t and break
out of this loop.

(c) We have that d∗ = d ′ + 248 ·B ≡ x−1 · ti (mod ri), and so B ≡
(
248

)−1 ·
x−1 · ti (mod ri).

3. Then, use CRT to compute B mod R from the values collected in Step 2c,
which in turn recovers the target plaintext block since |R|b ≥ 128.

Success Probability. As in the attack in Sect. 4.1, this attack aborts if it receives
error ⊥6. However, the probability that this happens becomes smaller with the
increased bit length of the factors ri . Assuming a random B , for 12-bit factors
the probability of an abort is bounded by n · 2−11 ≈ 0.006 with n ≤ 12. In the
full version of this work we give a more complex attack strategy that avoids the
abort altogether.

In practice, the attack’s success probability may be impacted by another
factor, namely differing implementations of UTF-8 validation. Suppose that the
values g produced in Step 3(c)ii of the precomputation in Sect. 4.2 have valid
UTF-8 substrings of size 11 in Python: this does not guarantee that they will
be interpreted as such by the Javascript webclient. This requires implementing
additional strategies for disambiguation in case the UTF-8-based one never yields
the expected sid request.15

Cost. In the worst case, the main cost of the online phase of the attack is the∑
i∈I(ri −1) login attempts needed. This is bounded by n · (212 −1) ≈ 215.58 for

n ≤ 12. In the average case, for each i we expect Step 2a to conclude after at
most 28 trials and Step 2b to finish after around 1

2 · |Ti | ≈ 1
2 ·ri ·2−8 trials. Added

together, the number of login attempts needed in the average case is bounded
by n · (28 + 1

2 · 212 · 2−8) ≈ 211.63 for n ≤ 12. Performing the experimental
analysis over a large number of runs as in Sect. 3.2 would be more difficult due
to the interaction between the disambiguation strategies and the web client with
automated logins, which causes the web client to freeze or begin sending requests
in large batches. This can impact the success rate (in particular, the attack may
produce one x or t value that is slightly off) and hinders automating the attack.
We stress that this is purely an artefact of our proof-of-concept implementation.

Note that to keep the presentation of the attacks simpler, we have assumed
specific values of |ri |b and thus constrained the value of n. In reality, using
different values would allow making a different tradeoff between the precom-
putation cost and the number of login attempts needed in the online phase.
For instance, using 10-bit primes would lower the (online) worst-case bound to
n · (210 − 1) ≈ 213.91 for n ≤ 15, but slightly increase the (online) average-case
bound to n · (28 + 1

2 · 210 · 2−8) ≈ 211.92 login attempts. It would also make the

15 One alternative is to instead for all t ∈ Ti submit x ′ ← x · t−1 · tj mod ri for some
tj ∈ Ti , tj �= t , and use the original error (⊥2, 254) as the confirmation signal. This
still has a potential for false positives and false negatives, however. A final, and most
expensive, failover strategy is then to cycle through all values of x , saving the ones
for which the client returns (⊥2, 254) and then running an offline computation to
determine which x values are matched to which t values.

Caveat Implementor! Key Recovery Attacks on MEGA 213

precomputation phase much less likely to succeed in a single run: the probability
of finding suitable t values for all ri would fall to around 0.11, while the proba-
bility of finding generators with suitable UTF-8 substrings for all ri would only
be around 0.0002.

5 Recovering the RSA Private Key

Our attacks in Sects. 3 and 4 can be seen as building generic AES-ECB decryp-
tion oracles. In this section, we turn this capability into an RSA private key
recovery attack. Naively we would expect to call our costly AES-ECB decryp-
tion oracle up to nine times: each factor p, q of N has 1024 bits, but these are
not perfectly aligned with AES block boundaries, necessitating to cover (partial)
plaintexts from nine different 128-bit blocks. However, using a post-processing
stage, we can reduce this number to four.

In particular, as illustrated in Fig. 4, the block alignments of p and q differ.
For reasons that will become apparent below we will need to recover at least
512 bits. Based on the specific alignments, we will aim to recover the 512+16
least significant bits of q: 512 bits (i.e. four 128-bit blocks) are recovered using
the attacks from Sects. 3 and 4 and the least significant 16 bits are “recovered”
using exhaustive search (which avoids the query cost of recovering a fifth block).
If instead we targeted p, we would need to recover 32 bits using exhaustive
search, which would have prohibitive cost. Thus, next, we discuss how to recover
the remaining bits of q given the � = 512 + 16 least significant bits of q. In
particular, we will solve the following computational problem.

Definition 1. Let N = p · q be a 2048-bit RSA modulus with p, q having 1024
bits each. Given � consecutive least significant bits of q, recover q.

Our approach is a simple combination of exhaustive search, lattice reduction
and root finding over Z following Coppersmith’s method [6]. In particular, we use
the Howgrave-Graham variant [8,9,13,28] of this algorithm. Let �log2 q� − � <
1024, q = 2�log2 q�−� · r + q′

0, where r are the bits we are trying to recover
and |q′

0| ≤ 2� are the known bits of q. Then r satisfies f ′(x) ≡ 0 mod q for
f ′(x) := q′

0 + 2�log2 q�−� · x mod q. Given this we can consider

q0 := 2−�log2 q�+� · q′
0 and f(x) := q0 + x mod q

and note that r still satisfies f(x) ≡ 0 mod q. That is, we translate our prob-
lem into one where the most significant bits are known rather than the least
significant ones, cf. [28].

From this, the algorithm proceeds by constructing several polynomials that
evaluate to zero modulo q or a multiple thereof, such as (powers of) N . In more
detail, Let h ≥ 2 ∈ N and u < h ∈ N, for 0 ≤ i < h we let

fi(x) :=

{
Nu−i · (q0 + x)i for 0 ≤ i < u,

xi−u · (q0 + x)u for u ≤ i < h.

For example, picking h = 4 and u = 2 we get

214 M. R. Albrecht et al.

N2, N · q0 + N · x, q20 + 2 q0 · x + x2 and q20 · x + 2 q0 · x2 + x3.

First, note that all fi(x) evaluate to zero modulo qu at the correct r. Second,
note the maximal degree of the fi(x) is h − 1, i.e. max0≤i<h(deg(fi(x))) = h − 1
and thus each polynomial has at most h coefficients.

Now, letting X = 2�log2 q�−� and f
(j)
i denote the coefficient of xj in fi(x),

we construct a matrix A where the entry Ai,j := f
(j)
i · Xj . Continuing with our

example, we would have

A :=

⎛

⎜
⎜
⎝

N2 0 0 0
N · q0 N · X 0 0

q20 2 q0 · X X2 0
0 q20 · X 2 q0 · X2 X3

⎞

⎟
⎟
⎠ .

Since the matrix is triangular we can read off the determinant det(A) =
Nu·(u+1)/2 · Xh·(h−1)/2. The rows of this matrix A span a lattice which con-
tains a vector v of Euclidean norm ‖v‖ ≤

√
h ·

(
Nu·(u+1)/2 · Xh·(h−1)/2

)1/h
by

Minkowski’s theorem. In other words, there exists an integer-linear combination
of the rows of A that produces a vector with at most this Euclidean norm.
Using lattice reduction we can find this shortest vector.16 Now, given a vector of
Euclidean norm ‖v‖ we know that its �1 norm, i.e. the sum of the absolute values
of its entries, is bounded by |v|1 ≤

√
h · ‖v‖. Finally, if v �= 0 and |v|1 ≤ qu,

we can extract a polynomial that evaluates to zero modulo qu on r but which
evaluated at r is strictly smaller than qu.17 In other words, this polynomial eval-
uates to zero at r over Z. The algorithm concludes by finding the roots of this
polynomial, which can be accomplished in polynomial time (and efficiently in
practice).

To select h and u, by abuse of notation let h also be a formal variable and
set u := 1/2 · h − 1. As in [8, p. 102], we then find a root > 0 of

1024 − �

2048
· h · (h − 1) − u · h + u · (u + 1).

This succeeds for � > 512 and the solution grows as � approaches 512 from above.
As mentioned above, in our setting we consider � = 512 + 16: We run the

attack from Sect. 3 on four blocks to recover 512 bits and run an exhaustive
search over the remaining 16 bits (which are contained in a non-aligned block).
In this setting, we picked h = 36 and u = 18. In our experiments, using LLL,
finding a sufficiently short vector takes about 26 s on a Intel(R) Xeon(R) Gold
6252 CPU @ 2.10 GHz using SageMath/FPLLL [31,32]. In 1024 experiments,
16 The traditional presentation of this algorithm invokes the LLL algorithm which gives

a short vector that is at most an exponential factor away from the shortest vector.
However, the lattice dimensions involved here are in the range where the shortest
vector problem (SVP) can be solved efficiently in practice – say, up to dimension
150 [7] – and we may thus simply assume we solve SVP. In any case, the exponential
factor is ≈ 1.0219h which is < 3 for h ≤ 50.

17 We extract g(x) as g(j) := vj/Xj ∈ Z.

Caveat Implementor! Key Recovery Attacks on MEGA 215

we obtained a success rate of 100%. Thus, we expect to be able to recover q in
time 216 · 26 seconds, or about 20 core days.18

The overall cost of the RSA private key recovery attack is 4 · 29.29 = 211.29 ≈
2500 login attempts, 66 ECB encryption oracle calls, and about 20 core days of
computation (using the attack of Sect. 3 in combination with the attack in this
section).

6 Attacking Unpatched Clients

We briefly revisit the attacks of [2] against unpatched MEGA clients in the light
of our discovery of the ECB encryption oracle described in Sect. 2.2.

Attack 1 in [2] uses an estimated 512 logins to recover a target user’s RSA
private key. The number of logins required was subsequently reduced to 6 in [29]
by using more sophisticated lattice techniques.

Attack 2 in [2] then exploits knowledge of that private key to recover two
blocks of AES-ECB plaintext per login. This is done by overwriting two blocks
of the encrypted version of u with the target AES-ECB ciphertext blocks and
selecting a carefully crafted RSA ciphertext in the authentication protocol; the
session ID returned by the client in that protocol then leaks the two AES-ECB
plaintext blocks. This approach is used to build an efficient procedure for recov-
ering file encryption keys in [2].

Interestingly, however, the RSA private key used in Attack 2 in [2] does
not need to be the target user’s true key – it only needs to be a key known
to the adversary and any valid RSA private key (in the appropriate format)
will do. Hence, an adversary can use the ECB encryption oracle to create a
suitably encrypted, known RSA private key. By carefully reusing all-zero blocks
for most of q, p and d, the number of ECB encryption oracle calls needed can
be made as small as 7. The adversary then applies Attack 2 from [2] with the
target AES-ECB ciphertext blocks being selected from those encrypting the least
significant bits of q (from the actual private key). With two applications of the
attack, the adversary recovers 4 plaintext blocks, or 512 bits of q. Applying the
lattice attack from Sect. 5, the adversary recovers the full RSA private key.

The cost of the attack is 2 login attempts and a small number of ECB encryp-
tion oracle calls.

Note that Attack 2 of [2] is prevented by patched MEGA client code because
of the requirement that the client-selected 11-byte string uh appear in m at a
specific location and because overwriting u with a target ciphertext would make
the check at line 10 in DecodePrivk(privk) fail.

18 We note that this computation is “proudly parallel” or “embarrassingly parallel”.
This is because for each of our 216 guesses we can run an independent lattice reduc-
tion. We also note that the running time is independent of whether the input instance
corresponds to a correct or incorrect guess. Moreover, incorrect solutions resulting
from incorrect guesses can be filtered out using the known public key.

216 M. R. Albrecht et al.

7 Discussion and Future Work

On the one hand, the conclusion to be drawn from this work for practitioners
and designers is no different from the one derived from [2]. The root causes
at play here were already identified in [2], whose suggestion of protecting the
integrity of encrypted keys using a MAC would have prevented the attacks in
this work as well. Further, the existence of the ECB encryption oracle in a feature
completely separate from the attacked protocol highlights the continued fragility
of the MEGA infrastructure, made possible also by the lack of key separation.

However, our attacks also highlight issues going beyond the ones exposed
in previous works. First, some of the errors that our attacks exploit as oracles
are not explicit, but derive from bugs in the big integer arithmetic provided by
asmcrypto.js. This presents a challenge already mentioned in [3] which called
for a verified big integer library that could serve as a common core for different
projects. In the case considered here, such a library would need to be cross-
compilable to JavaScript or WebAssembly. We consider this a pressing area for
future work.

There are also further lessons to be drawn for a cryptanalytic audience. First,
our attacks serve as an additional example of key overwriting attacks [2,5,10],
a class of attacks that appears to deserve more exploration in terms of targets
(deployed in practice) and attack refinement. Moreover, our attacks make use of
the detailed and verbose error reporting by MEGA clients. This enables powerful
side-channel attacks that can be observed remotely,19 highlighting the practical
significance of these classes of attacks. Finally, our work, along with other recent
works attacking widely deployed protocols such as [1,5,11,30,35], underlines
that while it might seem that the “golden age” of cryptographic attacks against
deployed protocols is over – given the level of academic involvement and formal
rigour that went into the design of TLS 1.3 – the target has simply moved up
the stack. As cryptographic applications move beyond “simple” protection of
data in transit or at rest, more complex cryptographic solutions are deployed at
scale, often without significant input from the cryptographic community. This
suggests a broad and impactful field for cryptanalysis of targets “in the wild”.
It is well known that attacks are typically required to convince practitioners
to adopt cryptographic recommendations. This in turn suggests that to achieve
the adoption of more secure and formally analysed cryptographic solutions in
practice, further cryptanalytical work on the “current generation” of deployed
solutions is needed.

Finally, the two attacks presented in this work require a large number of
login attempts. This was also the case for the first attack of [2] and used as
an argument by MEGA that the attack was not practical. However, later work
by [29] reduced the number of login attempts to six, and we have further reduced
it to just two. Beyond reinforcing the truism that attacks only get better, this
poses the open problem to improve the attacks presented in this work in terms
of login attempt complexity.

19 In contrast to timing-based side-channel attacks, generally considered less practical
in the remote, as opposed to local, setting.

Caveat Implementor! Key Recovery Attacks on MEGA 217

Acknowledgements. The research of Mareková was carried out in part during a
visit to the Applied Cryptography Group at ETH Zürich. She was also supported by
the EPSRC and the UK Government as part of the Centre for Doctoral Training in
Cyber Security at Royal Holloway, University of London (EP/P009301/1). The work
of Paterson was supported in part by a gift from VMware. The work of Albrecht was
done while Albrecht was at Royal Holloway.

References

1. Albrecht, M.R., Mareková, L., Paterson, K.G., Stepanovs, I.: Four attacks and a
proof for Telegram. In: 43rd IEEE Symposium on Security and Privacy, SP 2022,
San Francisco, CA, USA, 22–26 May 2022, pp. 87–106. IEEE (2022). https://doi.
org/10.1109/SP46214.2022.9833666

2. Backendal, M., Haller, M., Paterson, K.G.: MEGA: malleable encryption goes awry.
In: 44th IEEE Symposium on Security and Privacy (2023, to appear). https://
eprint.iacr.org/2022/959

3. Barbosa, M., et al.: SoK: computer-aided cryptography. In: 2021 IEEE Symposium
on Security and Privacy, pp. 777–795. IEEE Computer Society Press, May 2021.
https://doi.org/10.1109/SP40001.2021.00008

4. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol.
1462, pp. 1–12. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055716

5. Bruseghini, L., Paterson, K.G., Huigens, D.: Victory by KO: attacking OpenPGP
using key overwriting. In: ACM Conference on Computer and Communications
Security (ACM CCS) (2022, to appear). https://doi.org/10.3929/ethz-b-000545839

6. Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring
with high bits known. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 178–189. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-
9 16

7. Ducas, L., Stevens, M., van Woerden, W.: Advanced lattice sieving on GPUs, with
tensor cores. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS,
vol. 12697, pp. 249–279. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-77886-6 9

8. Howgrave-Graham, N.A.: Computational Mathematics Inspired by RSA.
Ph.D. thesis, University of Bath (1998). https://researchportal.bath.ac.uk/en/
studentTheses/computational-mathematics-inspired-by-rsa

9. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp.
131–142. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024458

10. Klima, V., Rosa, T.: Attack on private signature keys of the OpenPGP format,
PGP(TM) programs and other applications compatible with OpenPGP. Cryptol-
ogy ePrint Archive, Report 2002/076 (2002). https://eprint.iacr.org/2002/076

11. Len, J., Grubbs, P., Ristenpart, T.: Partitioning oracle attacks. In: Bailey, M.,
Greenstadt, R. (eds.) USENIX Security 2021, pp. 195–212. USENIX Association,
August 2021

12. Lim, C.H., Lee, P.J.: A key recovery attack on discrete log-based schemes using a
prime order subgroup. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
249–263. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052240

13. May, A.: Using LLL-reduction for solving RSA and factorization problems. In:
Nguyen, P., Vallée, B. (eds.) The LLL Algorithm. Information Security and Cryp-
tography. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02295-
1 10

https://doi.org/10.1109/SP46214.2022.9833666
https://doi.org/10.1109/SP46214.2022.9833666
https://eprint.iacr.org/2022/959
https://eprint.iacr.org/2022/959
https://doi.org/10.1109/SP40001.2021.00008
https://doi.org/10.1007/BFb0055716
https://doi.org/10.3929/ethz-b-000545839
https://doi.org/10.1007/3-540-68339-9_16
https://doi.org/10.1007/3-540-68339-9_16
https://doi.org/10.1007/978-3-030-77886-6_9
https://doi.org/10.1007/978-3-030-77886-6_9
https://researchportal.bath.ac.uk/en/studentTheses/computational-mathematics-inspired-by-rsa
https://researchportal.bath.ac.uk/en/studentTheses/computational-mathematics-inspired-by-rsa
https://doi.org/10.1007/BFb0024458
https://eprint.iacr.org/2002/076
https://doi.org/10.1007/BFb0052240
https://doi.org/10.1007/978-3-642-02295-1_10
https://doi.org/10.1007/978-3-642-02295-1_10

218 M. R. Albrecht et al.

14. MEGA: About Us, September 2022. https://mega.io/about
15. MEGA: Mega.nz web client (2022). https://github.com/meganz/webclient
16. MEGA: Security White Paper, June 2022. https://mega.nz/SecurityWhitepaper.

pdf
17. MEGA: webclient - #15273: Patch for ETH Zurich exploit, June 2022.

https://github.com/meganz/webclient/commit/d2a0d054d4dbb90f035b3b4b421f
780adafaa78e

18. MEGA: webclient - #15295: Output detailed information about RSA
decoding failures, June 2022. https://github.com/meganz/webclient/commit/
cd4ab89b2cd0e388b0ea55753b86c8808f810138

19. MEGA: webclient - asmcrypto.js, August 2022. https://github.com/meganz/
webclient/blob/v4.21.4/js/vendor/asmcrypto.js

20. MEGA: webclient - asmcrypto.js: Modulus, August 2022. https://github.com/
meganz/webclient/blob/v4.21.4/js/vendor/asmcrypto.js#L10325

21. MEGA: webclient - asmcrypto.js: Modulus inverse. https://github.com/meganz/
webclient/blob/v4.21.4/js/vendor/asmcrypto.js#L10382 (August 2022)

22. MEGA: webclient - asmcrypto.js: mredc, August 2022. https://github.com/
meganz/webclient/blob/v4.21.4/js/vendor/asmcrypto.js#L9706

23. MEGA: webclient - asmcrypto.js: RSA decrypt, August 2022. https://github.com/
meganz/webclient/blob/v4.21.4/js/vendor/asmcrypto.js#L10746

24. MEGA: webclient - crypto.js: api updfkeysync, September 2022. https://github.
com/meganz/webclient/blob/v4.21.4/js/crypto.js#L3050

25. MEGA: webclient - crypto.js: crypto decodeprivkey, August 2022. https://github.
com/meganz/webclient/blob/v4.21.4/js/crypto.js/#L2047

26. MEGA: webclient - nodedec.js: crypto rsadecrypt, August 2022. https://github.
com/meganz/webclient/blob/v4.21.4/nodedec.js/#L550

27. MEGA: webclient - security.js: decryptRsaKeyAndSessionId, August 2022.
https://github.com/meganz/webclient/blob/v4.21.4/js/security.js#L1231

28. Micheli, G.D., Heninger, N.: Recovering cryptographic keys from partial informa-
tion, by example. Cryptology ePrint Archive, Report 2020/1506 (2020). https://
eprint.iacr.org/2020/1506

29. Ryan, K., Heninger, N.: Cryptanalyzing MEGA in six queries. Cryptology ePrint
Archive, Report 2022/914 (2022). https://eprint.iacr.org/2022/914

30. Shakevsky, A., Ronen, E., Wool, A.: Trust dies in darkness: shedding light on sam-
sung’s TrustZone keymaster design. Cryptology ePrint Archive, Report 2022/208
(2022). https://eprint.iacr.org/2022/208

31. Stein, W., et al.: Sage Mathematics Software Version 9.5. The Sage Development
Team (2022). http://www.sagemath.org

32. The FPLLL development team: FPLLL, a lattice reduction library (2021). https://
github.com/fplll/fplll

33. The mitmproxy development team: mitmproxy - an interactive HTTPS proxy
(2022). https://mitmproxy.org/

34. van Oorschot, P.C., Wiener, M.J.: On Diffie-Hellman key agreement with short
exponents. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 332–
343. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 29

35. Vanhoef, M., Ronen, E.: Dragonblood: analyzing the dragonfly handshake of WPA3
and EAP-pwd. In: 2020 IEEE Symposium on Security and Privacy, pp. 517–533.
IEEE Computer Society Press, May 2020. https://doi.org/10.1109/SP40000.2020.
00031

36. Wikipedia: UTF-8 (2022). https://en.wikipedia.org/wiki/UTF-8

https://mega.io/about
https://github.com/meganz/webclient
https://mega.nz/SecurityWhitepaper.pdf
https://mega.nz/SecurityWhitepaper.pdf
https://github.com/meganz/webclient/commit/d2a0d054d4dbb90f035b3b4b421f780adafaa78e
https://github.com/meganz/webclient/commit/d2a0d054d4dbb90f035b3b4b421f780adafaa78e
https://github.com/meganz/webclient/commit/cd4ab89b2cd0e388b0ea55753b86c8808f810138
https://github.com/meganz/webclient/commit/cd4ab89b2cd0e388b0ea55753b86c8808f810138
https://github.com/meganz/webclient/blob/v4.21.4/js/vendor/asmcrypto.js
https://github.com/meganz/webclient/blob/v4.21.4/js/vendor/asmcrypto.js
https://github.com/meganz/webclient/blob/v4.21.4/js/vendor/asmcrypto.js#L10325
https://github.com/meganz/webclient/blob/v4.21.4/js/vendor/asmcrypto.js#L10325
https://github.com/meganz/webclient/blob/v4.21.4/js/vendor/asmcrypto.js#L10382
https://github.com/meganz/webclient/blob/v4.21.4/js/vendor/asmcrypto.js#L10382
https://github.com/meganz/webclient/blob/v4.21.4/js/vendor/asmcrypto.js#L9706
https://github.com/meganz/webclient/blob/v4.21.4/js/vendor/asmcrypto.js#L9706
https://github.com/meganz/webclient/blob/v4.21.4/js/vendor/asmcrypto.js#L10746
https://github.com/meganz/webclient/blob/v4.21.4/js/vendor/asmcrypto.js#L10746
https://github.com/meganz/webclient/blob/v4.21.4/js/crypto.js#L3050
https://github.com/meganz/webclient/blob/v4.21.4/js/crypto.js#L3050
https://github.com/meganz/webclient/blob/v4.21.4/js/crypto.js/#L2047
https://github.com/meganz/webclient/blob/v4.21.4/js/crypto.js/#L2047
https://github.com/meganz/webclient/blob/v4.21.4/nodedec.js/#L550
https://github.com/meganz/webclient/blob/v4.21.4/nodedec.js/#L550
https://github.com/meganz/webclient/blob/v4.21.4/js/security.js#L1231
https://eprint.iacr.org/2020/1506
https://eprint.iacr.org/2020/1506
https://eprint.iacr.org/2022/914
https://eprint.iacr.org/2022/208
http://www.sagemath.org
https://github.com/fplll/fplll
https://github.com/fplll/fplll
https://mitmproxy.org/
https://doi.org/10.1007/3-540-68339-9_29
https://doi.org/10.1109/SP40000.2020.00031
https://doi.org/10.1109/SP40000.2020.00031
https://en.wikipedia.org/wiki/UTF-8

Public-Key Cryptanalysis

Finding Many Collisions via Reusable
Quantum Walks

Application to Lattice Sieving

Xavier Bonnetain1, André Chailloux2, André Schrottenloher3(B) ,
and Yixin Shen4

1 Université de Lorraine, CNRS, Inria, Nancy, France
2 Inria, Paris, France

3 Inria, Univ. Rennes, IRISA, Rennes, France
andre.schrottenloher@m4x.org

4 Royal Holloway, University of London, Egham, UK

Abstract. Given a random function f with domain [2n] and codomain
[2m], with m ≥ n, a collision of f is a pair of distinct inputs with the same
image. Collision finding is an ubiquitous problem in cryptanalysis, and
it has been well studied using both classical and quantum algorithms.
Indeed, the quantum query complexity of the problem is well known to
be Θ(2m/3), and matching algorithms are known for any value of m.

The situation becomes different when one is looking for multiple col-
lision pairs. Here, for 2k collisions, a query lower bound of Θ(2(2k+m)/3)
was shown by Liu and Zhandry (EUROCRYPT 2019). A matching algo-
rithm is known, but only for relatively small values of m, when many
collisions exist. In this paper, we improve the algorithms for this problem
and, in particular, extend the range of admissible parameters where the
lower bound is met.

Our new method relies on a chained quantum walk algorithm, which
might be of independent interest. It allows to extract multiple solutions of
an MNRS-style quantum walk, without having to recompute it entirely:
after finding and outputting a solution, the current state is reused as the
initial state of another walk.

As an application, we improve the quantum sieving algorithms for the
shortest vector problem (SVP), with a complexity of 20.2563d+o(d) instead
of the previous 20.2570d+o(d).

Keywords: Quantum algorithms · quantum walks · collision search ·
lattice sieving

1 Introduction

Quantum walks are a powerful algorithmic tool which has been used to pro-
vide state-of-the-art algorithms for various important problems in post-quantum

Part of this work was done while André Schrottenloher was at CWI, Amsterdam, The
Netherlands.

c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14008, pp. 221–251, 2023.
https://doi.org/10.1007/978-3-031-30589-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30589-4_8&domain=pdf
http://orcid.org/0000-0002-1329-8630
http://orcid.org/0000-0002-8657-9337
https://doi.org/10.1007/978-3-031-30589-4_8

222 X. Bonnetain et al.

cryptography, such as the shortest vector problem (SVP) via lattice sieving [9],
the subset sum problem [4], information set decoding [22], etc.

These applications are all established under a particular quantum walk frame-
work called the MNRS framework [26], and the quantum walks look for marked
nodes in a so-called Johnson graph [22] (or a product of Johnson graphs). When
walking on this particular graph, the MNRS framework is somewhat rigid. First,
it requires to setup the uniform superposition of all nodes along with their
attached data structure, then it applies multiple times reflection operators which
move this quantum state close to the uniform superposition of all marked nodes.

Due to this rigidity, previously, the best way to find k different marked nodes
was to run the whole quantum walk (including the setup) k times. In [9] the
authors noticed that a way to output multiple solutions instead of a single one
with quantum walks would improve the quantum time complexity of their algo-
rithm for solving the SVP.

A natural observation which guides us throughout this paper is that in certain
cases, after obtaining the uniform superposition of all marked nodes via the
MNRS quantum walk, it is possible to retrieve part of the solution and start
another MNRS quantum walk using the remaining part of the quantum state as
the new starting state. By doing so, we avoid repeating the setup cost for each
new quantum walk, and we now benefit from a trade-off.

In particular, using this observation, we tackle the following problem:

Problem 1 (Multiple collision search). Let f : {0, 1}n → {0, 1}m, n ≤ m ≤ 2n
be a random function. Let k ≤ 2n − m. Find 2k collision pairs, that is, pairs of
distinct x, y such that f(x) = f(y).

The constraints on the input and output domain are such that a significant
(Θ

(
22n−m

)
) number of collisions pairs exist in the random case. This problem

has several applications both in asymmetric and symmetric cryptography. For
example, the problem of finding multiple vectors close to a target vector, which
appears in lattice sieving (as mentioned above) can be seen as a special case. The
limited-birthday problem in symmetric cryptanalysis (e.g., impossible differential
attacks and rebound distinguishers [16]) is another example.

Lower Bounds. While quantum query lower bounds for the collision problem
(with a single solution) had been known for a longer time, Liu and Zhandry
proved more recently in [25] a query lower bound in Ω

(
22k/3+m/3

)
to find 2k

solutions, which holds for all values of m ≥ n.
For relatively small values of k and m (precisely, k ≤ 3n − 2m, as we explain

in Sect. 6), the BHT collision search algorithm [8] allows to reach this bound.
Besides this algorithm, Ambainis’ algorithm [2] uses a quantum walk to find one
collision in time Õ (

2m/3
)
. However, no matching algorithm was known for other

values, neither in time nor in queries.

Contributions. Our main contribution in this paper is a chained quantum
walk algorithm to solve the multiple collision search problem. We formalize the

Finding Many Collisions via Reusable Quantum Walks 223

intuitive idea that the output state of a quantum walk can be reused, to some
extent, as the starting state of another. For any admissible values of k, n,m such
that k ≤ m

4 , our algorithm requires O
(
2

2
3k+m

3

)
queries, and also Õ

(
2

2
3k+m

3

)

quantum gates (i.e., time) and space in the qRAM model.

Theorem 4 (Sect. 4). Let f : {0, 1}n → {0, 1}m, n ≤ m ≤ 2n be a
random function. Let k ≤ min(2n − m,m/4). There exists a quantum
algorithm making O (

22k/3+m/3
)

quantum queries to f and with a gate
count Õ (

22k/3+m/3
)
, that outputs 2k collision pairs of f .

By combining our algorithm with the BHT approach, we can now meet
the lower bound over all values of k, n,m, except a range of (k,m) contained
in

[
n
3 , n

] × [n, 1.6n], as summarized in Fig. 1. Nevertheless, our approach also
improves the known complexities in this range.

Fig. 1. Gate count exponent in the algorithm depending on the relative values of k, m
and n. Both our algorithm and the BHT approach can be extended to the whole
triangle, but we show only the one achieving the best complexity. In the purple region
(bottom left), both approaches reach the same complexity exponent 2k

3
+ m

3
.

Using our new algorithm, we improve the state-of-the-art time complexity
of quantum sieving to solve the SVP in [9] from 20.2570d+o(d) to 20.2563d+o(d)

quantum gates. We also provide time-memory trade-offs that are conjectured to
be tight [15]:

Theorem 7 (Sect. 4). Let f : {0, 1}n → {0, 1}m, n ≤ m ≤ 2n be a random
function. For all k ≤ � ≤ max(2n−m,m/2), there exists an algorithm that
computes 2k collisions using Õ (

2�
)

qubits and Õ (
2k+m/2−�/2

)
quantum

gates and quantum queries to f .

224 X. Bonnetain et al.

Organization. In Sect. 2 we provide several technical preliminaries on quantum
algorithms, especially Grover’s quantum search algorithm. Indeed, an MNRS
quantum walk actually emulates a quantum search, and these results are helpful
in analyzing the behavior of such a walk. In Sect. 3, we give important details
on the MNRS framework, and in particular, the vertex-coin encoding, which
is a subtlety often omitted from depictions of the framework in the previous
literature. In Sect. 4 we detail our algorithm assuming a suitable quantum data
structure is given, and in Sect. 5 we detail the quantum radix trees. While they
were already proposed in [21], we give new (or previously omitted) details relative
to the radix tree operations, memory allocation, and how we can efficiently and
robustly extract collisions. We give a general summary of the multiple collision
search problem in Sect. 6 and our applications in Sect. 7.

2 Preliminaries

In this section, we give some preliminaries on collision search, quantum algo-
rithms and Grover search, which are important for the analysis of quantum
walks and their data structures.

2.1 Collision Search

In this paper, we study the problem of collision search in random functions.

Problem 2. Let f : {0, 1}n → {0, 1}m (n ≤ m) be a random function. Find a
collision of f , that is, a pair (x, y), x �= y such that f(x) = f(y).

The case m < n can be solved by the same algorithms as the case m = n by
reducing f to a subset of its domain. This is why in the following, we focus only
on m ≥ n. The average number of collisions is O (

22n−m
)
. When m ≥ 2n, we can

assume that exactly one collision exists, or none. Distinguishing between these
two cases is the problem of element distinctness, which is solved by searching for
the collision. In all cases, the collision problem can be solved in:

• Θ(2m/2) classical time (and queries to f). When m = n, the problem is the
easiest, as it requires only O (

2n/2
)

time and poly(n) memory using Pollard’s
rho method. When m = 2n, the problem is harder since the best algorithm
also uses Θ(2n) memory.

• Θ(2m/3) quantum time (and quantum queries to f). A first algorithm was
given by Brassard, Høyer and Tapp to reach this for m = n [8], then the
lower bound was proven to be Ω(2m/3) [1], and afterwards, Ambainis solved
the element distinctness problem (the case m = 2n) by a quantum walk
algorithm [2] which can be adapted for any value of m.

Finding Many Collisions via Reusable Quantum Walks 225

In our case, we want to solve the problem of multiple collision search: as
there will be expectedly many collisions in the outputs of f , we want to find a
significant (exponential in n) number of them.

Problem 3. Let f : {0, 1}n → {0, 1}m, n ≤ m ≤ 2n, k ≤ 2n−m. Find 2k distinct
collisions of f .

Here the state of the art differ classically and quantumly:

• Classically, it is well known that the problem can be solved for any m and k
in Θ(2(k+m)/2) queries (as long as 2k does not exceed the average number of
collisions of f).

• Quantumly, Liu and Zhandry [25] gave a query lower bound Ω(22k/3+m/3).
However, a matching algorithm is only known for small m. For example, this
lower bound is matched for m = n by adapting the BHT algorithm [17,25].

Note that we assume that the collision pairs are fully distinct. In the case m <
n, k ≥ m, there are not enough distinct images, and we only obtain multicollision
tuples. The lower bound of [25] does not apply here. If m < n and k ≤ m, we
restrict the inputs of the function to a set of size {0, 1}m, and this case is covered
by a variant of the BHT algorithm. Thus, like in the case of a single collision,
we will only consider n ≤ m.

On the Memory Complexity. For m = n, the best known classical algorithm
for multiple collision-finding is the parallel collision search (PCS) algorithm by
van Oorschot and Wiener [28]. It generalizes Pollard’s rho method which finds a
single collision in O (

2n/2
)

time and poly(n) memory. Dinur [12] showed that in
this regime, the time-space trade-off of the PCS algorithm is optimal. Using a
restricted model of computation, it can also be shown optimal for larger values
of m.

Quantumly, a time-space lower bound of T 3S ≥ Ω
(
23k+m

)
has been

shown [15]. However, the authors conjecture this bound can be improved to
T 2S ≥ Ω

(
22k+m

)
. All known quantum algorithms for collisions, including our

new algorithms, match this conjectured lower bound.

2.2 Quantum Algorithms

We refer to [27] for an introduction to quantum computation. We write our
quantum algorithms in the standard quantum circuit model, where algorithms
are written as a sequence of standard quantum gates. We are interested in the
minimal achievable gate count. This means that we do not consider any paral-
lelization trade-offs, even though there is some literature on the topic for SVP
algorithms [24]. By default, we use the (universal) Clifford+T gate set, although
our complexity analysis remains asymptotic, and we do not detail our algorithms
at the gate level.

226 X. Bonnetain et al.

Memory Models. Many memory-intensive quantum algorithms require some kind
of quantum random-access model (qRAM), which can be stronger than the stan-
dard quantum circuit model. One can encounter two types of qRAM:

• Classical memory with quantum random access (QRACM): a classical mem-
ory of size M can be addressed in quantum superposition in polylog(M) oper-
ations.

• Quantum memory with quantum random access (QRAQM): M qubits can be
addressed in quantum superposition in polylog(M) operations.

The QRAQM model is required by most quantum walk based algorithms for
cryptographic problems, e.g., subset-sum [3,4], information set decoding [22] and
the most recent quantum algorithm for lattice sieving [9]. It requires to augment
the set of gates available with a “qRAM” gate addressing all M memory cells
(e.g., individual bits) in superposition. In this paper, we use a definition taken
from [2]:

|y1, . . . , yM 〉 |x〉 |i〉 qRAM�−−−→ |y1, . . . , yi−1, x, yi+1, . . . yM 〉 |yi〉 |i〉 . (1)

This operation implies the ability to read in superposition by querying the cell
at index i, but also to write. This is necessary for efficient data structures such as
the ones studied in [2] or the quantum radix trees from the literature (see Sect. 5).

While the qRAM gate can be simulated with Õ (M) Clifford+T gates, in
the following, the gate count of our algorithms is given asymptotically on the
“Clifford + T + qRAM” gate set, so we assume the qRAM has unit cost, as is
required by previous works.

Collision Finding Without qRAM. To date, the best quantum algorithms for
collision finding, and the ones that reach the query lower bound, require the
qRAM model: the BHT algorithm [8] uses QRACM and Ambainis’ quantum
walk uses QRAQM [2] to define gate-efficient quantum data structures. Initially
Ambainis used a skip list. We will focus on the more recent quantum radix tree,
but the QRAQM requirement remains the same.

To some extent, it is possible to get rid of qRAM. For m = n, the complexity
rises from O (

2m/3
)

to O (
22m/5

)
gates [10]. For m = 2n, the complexity rises

to O (
23m/7

)
[20]. These algorithms can also be adapted for multiple collision

finding, where they will outperform the classical ones for some parameter ranges
(but not all).

2.3 Grover’s Algorithm

In this section, we recall Grover’s quantum search algorithm [14] and give a
few necessary results for the rest of our analysis. Indeed, as shown in [26], an
MNRS quantum walk actually emulates a quantum search, up to some error.
If we manage to put this error aside, the analysis of the walk follows from the
following lemmas.

Finding Many Collisions via Reusable Quantum Walks 227

Original Quantum Search. In the original setting of Grover’s search, we have
a function g : {0, 1}n → {0, 1} and the goal is to find x st. g(x) = 1 using
queries to g. In the quantum setting, we have access to the unitary Og : |x〉 |b〉 →
|x〉 |b ⊕ g(x)〉, which is an efficient quantum unitary if g is efficiently computable.
In particular we can compute |ψU 〉 = 1√

2n

∑
x∈{0,1}n |x〉 |g(x)〉 with a single call

to Og. Let ε = |{x:g(x)=1}|
2n . We also define the normalized states

|ψB〉 =
1

√
(1 − ε)2n

∑

x:g(x)=0

|x〉 |g(x)〉 , |ψG〉 =
1√
ε2n

∑

x:g(x)=1

|x〉 |g(x)〉

and |ψU 〉 =
√

1 − ε |ψB〉 +
√

ε |ψG〉. Let H = span({|ψB〉 , |ψG〉}). Let Rotθ be
the θ-rotation unitary in H:

Rotθ(cos(α) |φB〉 + sin(α) |ψG〉) = cos(α + θ) |ψB〉 + sin(α + θ) |ψG〉 .

For a fixed ε, let α = arcsin(
√

ε) so that

|φU 〉 =
√

1 − ε |ψB〉 +
√

ε |ψG〉 = cos(α) |ψB〉 + sin(α) |ψG〉 ,

For a state |ψ〉 ∈ H, let Ref |ψ〉 be the reflection over |ψ〉 in H:

Ref|ψ〉 |ψ〉 = |ψ〉 and Ref|ψ〉
∣
∣ψ⊥〉

= − ∣
∣ψ⊥〉

where
∣
∣ψ⊥〉

is any state in H orthogonal to |ψ〉1 We have

Ref |ψU 〉Ref |ψB〉 = Rot2α .

Assume that we have access to a checking oracle Ocheck which performs:
{

Ocheck |ψB〉 |0〉 = |ψB〉 |0〉
Ocheck |ψG〉 |0〉 = |ψG〉 |1〉

In the standard setting described above, this is just copying the last register.
Starting from an “initial state” |ψU 〉, we apply repeatedly an iterate consisting of
a reflection over |ψU 〉, and a reflection over |ψB〉. This progressively transforms
the current state into the “good state” |ψG〉. Typically Ref |ψU 〉 is constructed
from a circuit that computes |ψU 〉 and Ref |ψB〉 is implemented using the checking
oracle above: in that case, we are actually performing an amplitude amplifica-
tion [7].

Proposition 1 (Grover’s algorithm, known α). Consider the following
algorithm, with α ≤ π/4:

1. Start from |ψU 〉.
2. Apply Rot2α = Ref |ψU 〉Ref |ψB〉 N times on |ψU 〉 with N = �π/2−α

2α �.
3. Apply Ocheck and measure the last qubit.
1 For a fixed |ψ〉, ∣

∣ψ⊥〉

is actually unique up to a global phase.

228 X. Bonnetain et al.

This procedure measures 1 wp. at least 1 − 4α2 and the resulting state is |ψG〉.
Proof. Let us define γ = α + 2Nα. We have

(Rot2α)
n |ψU 〉 = cos(α + 2Nα) |ψB〉 + sin(α + 2Nα) |ψG〉 = cos(γ) |ψB〉 + sin(γ) |ψG〉 .

Notice that we chose N st. γ ≤ π
2 < γ + 2α so π

2 − γ ∈ [0, 2α). After applying
the checking oracle, we obtain the state

cos(γ) |ψB〉 |0〉 + sin(γ) |ψG〉 |1〉 .

Measuring the last qubit gives outcome 1 with probability sin2(γ) and the result-
ing state in the first register is |ψG〉. In order to conclude, we compute

sin2(γ) = cos2(π/2 − γ) ≥ cos2(2α) ≥ 1 − 4α2. �
In our algorithms, we will start not from the uniform superposition |ψU 〉, but

from the bad subspace |ψB〉. We show that this makes little difference.

Proposition 2. (Starting from |ψB〉, known α). Consider the following
algorithm, with α ≤ π/4:

1. Start from |ψB〉.
2. Apply Rot2α = Ref |ψU 〉Ref |ψB〉 N ′ times on |ψB〉 with N ′ = �π/2

2α �.
3. Apply the checking oracle and measure the last qubit.

This procedure measures 1 with probability at least 1−4α2 and the resulting state
is |ψG〉.
Proof. The proof is essentially the same as the previous one. Let γ′ = 2N ′α. We
have

(Rot2α)N ′ |ψB〉 = cos(2N ′α) |ψB〉+sin(2N ′α) |ψG〉 = cos(γ′) |ψB〉+sin(γ′) |ψG〉 .

Notice that we chose N ′ st. γ′ ≤ π
2 < γ′ + 2α so π

2 − γ′ ∈ [0, 2α). After applying
the checking oracle, we obtain the state

cos(γ′) |ψB〉 |0〉 + sin(γ′) |ψG〉 |1〉 .

Measuring the last qubit gives 1 wp. sin2(γ′) and the resulting state in the first
register is |φG〉. In order to conclude, we compute

sin2(γ′) = cos2(π/2 − γ′) ≥ cos2(2α) ≥ 1 − 4α2. �
After applying the check and measuring, if we don’t succeed, we obtain the

state |ψB〉 again. So we can run the quantum search again.
In Grover’s algorithm, we have a procedure to construct |ψU 〉 and we use this

procedure to initialize the algorithm and to perform the operation Ref|ψU 〉. A
quantum walk will have the same general structure as Grover’s algorithm, but
we will manipulate very large states |ψU 〉. Though |ψU 〉 is long to construct (the
setup operation), performing Ref |ψU 〉 will be less costly.

In the MNRS framework, |ψU 〉 is chosen as the unique eigenvector of eigen-
value 1 of an operator related to a random walk in a graph. To perform Ref |ψU 〉
efficiently, we use phase estimation on this operator.

Finding Many Collisions via Reusable Quantum Walks 229

3 Quantum Walks for Collision Finding

In this section, we present MNRS quantum walks, which underlie most crypto-
graphic applications of quantum walks to date, and give important details on
their actual implementation using a vertex-coin encoding.

3.1 Definition and Example

We consider a regular, undirected graph G = (V,E), which in cryptographic
applications (e.g., collision search), is usually a Johnson graph (as in this paper)
or a product of Johnson graphs (a case detailed e.g. in [22]).

Definition 1 (Johnson graph). The Johnson graph J(N,R) is a regular,
undirected graph whose vertices are the subsets of [N] containing R elements,
with an edge between two vertices v and v′ iff |v ∩ v′| = R − 1. In other words, v
is adjacent to v′ if v′ can be obtained from v by removing an element and adding
an element from [N]\v in its place.

In collision search, a vertex in the graph specifies a set of R inputs to the
function f under study, where its domain {0, 1}n is identified with [2n]. Let
M ⊆ V be a set of marked vertices, e.g., all the subsets S ⊆ {0, 1}n which
contain a collision of f : ∃x, y ∈ S, x �= y, f(x) = f(y). A classical random walk
on G finds a marked vertex using Algorithm 1.

Algorithm 1: Classical random walk on G

Setup an arbitrary vertex x ∈ V
repeat

repeat
Update: move to a random adjacent vertex

until the current vertex is uniformly random
Check if the current vertex is marked

until the current vertex is marked

The quantum walk is analogous to this process. Let ε = |M |
|V | be the proportion

of marked vertices and δ be the spectral gap of G. Starting from any vertex,
after O (

1
δ

)
updates, we sample a vertex of the graph uniformly at random. For

a Johnson graph J(N,R), δ = N
R(N−R) � 1

R . Let S be the time to Setup, U the
time to Update, C the time to Check a given vertex. Then Algorithm 1 finds
a marked vertex in time: O (

S + 1
ε

(
1
δU + C

))
. Magniez et al. [26] show how to

translate this generically in the quantum setting, provided that quantum analogs
of these operations (SETUP, UPDATE, CHECK) can be implemented.

Theorem 1 (From [26]). Assume that quantum algorithms SETUP, UPDATE
and CHECK are given. Then there exists a quantum algorithm that

230 X. Bonnetain et al.

finds a marked vertex with gate count: Õ
(
S + 1√

ε

(
1√
δ
U + C

))
instead of

O
(

1√
ε

(S + C)
)

with a naive search.

Using this framework generically, we can recover the complexity of Ambainis’
algorithm for collision search: Õ (

2m/3
)

for any codomain bit-size m. We use the
Johnson graph J(2n, 2m/3). Its spectral gap is approximately 2−m/3. A vertex is
marked if and only if it contains a collision, so the probability of being marked is
approximately 22m/3−m = 2−m/3. Using a quantum data structure for unordered
sets, we can implement SETUP in gate count Õ (

2m/3
)
, UPDATE and CHECK

in poly(n). The formula of Theorem 1 gives the complexity Õ (
2m/3

)
.

3.2 Details of the MNRS Framework

In the d-regular graph G = (V,E), for each x ∈ V , let Nx be the set of neighbors
of x, of size d. In the case G = J(N,R), we have d = R(N − R). For a vertex
x, let |x〉 be an arbitrary encoding of x as a quantum state, let D(x) be a data
structure associated to x, and let |x̂〉 = |x〉 |D(x)〉.
Remark 1. The encoding of x is commonly thought of as the set itself, and the
data structure as the images of the set by f . But whenever we look at quantum
walks from the perspective of gate count (and not query complexity), an efficient
quantum data structure is already required for x itself, i.e., an unordered set data
structure in the case of a Johnson graph, and one cannot really separate x from
D(x). This is why we will favor the notation |x̂〉.

For a vertex x, let |px〉 be the uniform superposition over its neighbors:
|px〉 = 1√

d

∑
y∈Nx

|y〉, and: |p̂x〉 = 1√
d

∑
y∈Nx

|ŷ〉. From now on, we consider a
walk on edges rather than vertices in the graph, and introduce:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|ψU 〉 = 1√
|V |

∑
x∈V |x̂〉 |px〉 the superposition of vertices (and neighbors)

|ψM 〉 = 1√
|M |

∑
x∈M |x̂〉 |px〉 the superposition of marked vertices

A = span{|x̂〉 |px〉}x∈V

B = span{|p̂y〉 |y〉}y∈V

Let RefA and RefB be respectively the reflection over the space A and the
space B. The core of the MNRS framework is to use these operations to emulate
a reflection over |ψU 〉. By alternating such reflections with reflections over |ψM 〉
(using the checking procedure), the quantum walk behaves exactly as a quantum
search, and the analysis of Sect. 2.3 applies.

Proposition 3 (From [26]). Let W = RefBRefA. We have 〈ψU |W |ψU 〉 = 1.
For any other eigenvector |ψ〉 of W , we have 〈ψ|W |ψ〉 = eiθ with θ ∈ [2

√
δ, π/2].

To reflect over |ψU 〉, we perform a phase estimation of the unitary W , which
allows to separate the part with eigenvalue 1, from the part with eigenvalue eiθ

Finding Many Collisions via Reusable Quantum Walks 231

with θ ∈ [2
√

δ, π/2]. The phase estimation circuit needs to call W a total of
O

(
1√
δ

)
times to estimate θ up to sufficient precision. It has some error, which

can be made insignificant with a polynomial increase in complexity; thus in the
following, we will consider the reflection RefU to be exact.

To construct W , we need to implement RefA and RefB . We first remark that:

RefB = SWUP ◦ RefA ◦ SWUP , (2)

where SWUP |x̂〉 |y〉 = |ŷ〉 |x〉. This SWUP (Swap-Update) operation can fur-
thermore be decomposed into an update of the database (UPD) followed by a
register swap:

|x̂〉 |y〉 = |x〉 |D(x)〉 |y〉 UPD−−−→ |x〉 |D(y)〉 |y〉 Swap−−−→ |y〉 |D(y)〉 |x〉 = |ŷ〉 |x〉 , (3)

so SWUP = Swap ◦ UPD.
We would then implement RefA using an update unitary that, from a vertex

x, constructs the uniform superposition of neighbors. However this would require
us to write log2(|V |) data, and in practice, |V | is doubly exponential (the vertex
is represented by an exponential number of bits). Thankfully, in d-regular graphs,
and in particular in Johnson graphs, we can avoid this loophole by making the
encoding of edges more compact. Instead of storing a pair of vertices (x, y), which
will eventually result in having to rewrite entire vertices, we can store a single
vertex and a direction, or coin.

3.3 Vertex-Coin Encoding

The encoding is a reversible operation: OEnc |x̂〉 |y〉 = |x̂〉 |cx→y〉 , which com-
presses an edge (x, y) by replacing y by a much smaller register of size �log2(d)�.
Note that we only need the existence of such a circuit. We never use it during the
algorithms; all operations are directly performed using the compact encoding.

Let
∣
∣ψcoin

Unif

〉
= 1√

d

∑
c |c〉 be the uniform superposition of coins. In the vertex-

coin encoding, RefA corresponds to I ⊗ Ref|ψcoin
Unif 〉:

RefA = O−1
Enc ◦

(
I ⊗ Ref|ψcoin

Unif 〉
)

◦ OEnc.

Now, for the SWUP operation, we have to decompose again UPD and Swap in
the encoded space. First, we define UP′

D such that:

|x〉 |D(x)〉 |cx→y〉 UP ′
D−−−→ |x〉 |D(y)〉 |cx→y〉 .

Moreover, we define Swap′ such that:

|x〉 |cx→y〉 Swap′
−−−−→ |y〉 |cy→x〉 .

and we define SWUP′ = Swap′ ◦ UP′
D (we abuse notation here, by extending

Swap′ where we apply the identity to the middle register), so:

SWUP′ |x̂〉 |cx→y〉 = |ŷ〉 |cy→x〉 ,

232 X. Bonnetain et al.

and SWUP′ = OEnc ◦ SWUP ◦ O−1
Enc. So we define

⎧
⎪⎨

⎪⎩

Ref ′
A = I ⊗ Ref|ψcoin

Unif 〉 = OEnc ◦ RefA ◦ O−1
Enc

Ref ′
B = SWUP′ ◦ Ref ′

A ◦ SWUP′ = OEnc ◦ RefB ◦ O−1
Enc

W ′ = Ref ′
B ◦ Ref ′

A

(4)

By putting everything together, we have W ′ = OEnc ◦ W ◦ O−1
Enc. Since OEnc is

a unitary operator, W and W ′ are unitarily equivalent, i.e., they have the same
eigenvalues. Thus, Proposition 3 applies to W ′ the same as it does to W , and
gives its spectral properties. We can perform phase estimation on W ′, and com-
bine afterwards with Proposition 1. Since constructing the uniform superposition
of coins is trivial, all relies on the unitary SWUP′.

Theorem 2 (MNRS, adapted). Let |x̂〉 be an encoding of the vertex x
(incl. data structure) and assume that a vertex-coin encoding is given. Let
α = arcsin

√
ε. Starting from the state: 1√

|V |
∑

x∈V |x̂〉 ∣
∣ψcoin

Unif

〉
, apply

⌊
π/2−α

2α

⌋

iterates of: • a checking procedure which flips the phase of marked vertices; • a
phase estimation of W ′; then apply the checking again and measure. With prob-
ability at least 1 − 4α2, we measure 1 and collapse on the uniform superposition
of marked vertices.

Finally, we can adapt this analysis by starting from the bad vertices, with a
proof that is the same as Proposition 2. This will be the main building block of
our new algorithm.

Theorem 3 (MNRS, starting from bad vertices). Starting from the state:
1√

|V |−|M |
∑

x∈V \M |x̂〉 ∣
∣ψcoin

Unif

〉
(the superposition of unmarked vertices), apply

⌊
π/2
2α

⌋
iterates of: • a checking procedure which flips the phase of marked vertices;

• a phase estimation of W ′; then apply the checking again and measure. With
probability at least 1 − 4α2, we measure 1 and collapse on the uniform superpo-
sition of marked vertices. Otherwise, we collapse on the uniform superposition
of unmarked vertices.

Coins for a Johnson Graph. In a Johnson graph J(N,R), a coin c = (j, z) is a
pair where:

• j ∈ [R] is the index of the element that will be removed from the current
vertex (given an arbitrary ordering, e.g. the lexicographic ordering of bit-
strings).

• z ∈ [N − R] is the index of an element that does not belong to the current
vertex, and will be added as a replacement.

Finding Many Collisions via Reusable Quantum Walks 233

4 A Chained Quantum Walk to Find Many Collisions

In this section, we prove our main result.

Theorem 4. Let f : {0, 1}n → {0, 1}m, n ≤ m ≤ 2n be a random function. Let
k ≤ min(2n−m,m/4). There exists a quantum algorithm making O (

22k/3+m/3
)

quantum queries to f and using Õ (
22k/3+m/3

)
Clifford+T+qRAM gates, that

outputs 2k collision pairs of f .

Our new algorithm, which is detailed in Sect. 4.1 and Sect. 4.2, solves the
case k ≤ m

4 . The case k ≤ 2n − m was already solved by adapting the BHT
algorithm, as detailed in Sect. 6.

Note that if we are only interested in the query complexity, our technique is
still necessary to improve over previous results, but the radix tree data structure
that we detail in Sect. 5 can be replaced by a simple ordered list with expensive
update operations (see [19]).

4.1 New Algorithm

We detail here our chained quantum walk algorithm. Recall that the Johnson
graph J(N,R) is the regular, undirected graph whose vertices are subsets of size
R of [N], and edges connect each pair of vertices which differ in exactly one
element. We identify [N] with {0, 1}n, the domain of f .

We assume that an efficient quantum unordered set data structure is given,
which makes vertices in the Johnson graph correspond to quantum states, while
allowing to implement efficiently the operations required for the MNRS quantum
walks. It will be detailed in Sect. 5. In the following we write |S〉 for the quantum
state corresponding to a set S.

Idea of Our Algorithm. After running a quantum walk on a Johnson graph,
we obtain a superposition of vertices which contain a collision. We remove the
collision from the vertex, and we measure the elements that form this collision:
we still obtain a superposition of sets, which might be exploited for the next
walk. The sets in this superposition have a very important property: because we
just removed the collision (more generally, we will remove all collisions that the
vertex contains), they actually do not contain one with certainty. Thus, we do
not have the uniform superposition of vertices of our next MNRS walk, but the
uniform superposition of unmarked vertices. However, we have seen that this
made little difference, and we can continue using Theorem 3. When we measure
the result of a walk step, it will succeed with at least constant probability. In
the case of failure, we collapse on the superposition of unmarked vertices again,
which means we simply have to restart the walk. The extraction of collisions
modifies the walk parameters (vertex size, graph, marked vertices) in a way that
we track throughout the algorithm, and is detailed below.

234 X. Bonnetain et al.

Technical Details. Let C be a table in classical memory of all the multi-collisions
found so far. This table contains entries of the form: u : (x1, . . . , xr) where
f(x1) = . . . = f(xr) = u forms a multicollision of f , indexed by the image. We
define the size of C, its set of preimages and its set of images:

{
Preim(C) :=

⋃
u:(x1,...,xr)∈C{x1, . . . , xr}

Im(C) :=
⋃

u:(x1,...,xr)∈C{u} (5)

Given the table C, given a size parameter R, we define the two sets of sets:
⎧
⎪⎨

⎪⎩

V C
R := {S ⊆ ({0, 1}n\Preim(C)) , |S| = R}

MC
R := {S ⊆ ({0, 1}n\Preim(C)) , |S| = R,

(∃x �= y ∈ S, f(x) = f(y) ∨ ∃z ∈ S, f(z) ∈ Im(C))}
(6)

The first one will be the set of vertices for the current walk, and the second
one its set of marked vertices. As we can see, the current walk excludes a set of
previously measured inputs, and a vertex is marked if it leads to a new collision,
or to a preimage of one of the previously measured images. The second case
simply extends one of the currently known multicollision tuples. The probability
for a vertex to be marked can be easily computed, and we just need to bound it
as follows:

max
(

R|Im(C)|
2m

,
R(R − 1)

2m+1

)
≤ εR,C ≤ R|Im(C)|

2m
+

R(R − 1)
2m+1

,

since any vertex containing a collision, or a preimage from the table C, is marked.
In Sect. 5, we will show that with an appropriate data structure, there exists

an extraction algorithm EXTRACT which does the following:

EXTRACT : C,R,
1

√
|MC

R |
∑

S∈MC
R

|S〉 �→ C ′, R′,
1

√
|V C′

R′ \MC′
R′ |

∑

S∈V C′
R′ \MC′

R′

|S〉 ,

where R′ = R − r for some value r, and C ′ contains exactly r new elements
(collisions adding new entries, or preimages going into previous entries). Thus,
EXTRACT transforms the output of a successful walk into the set of unmarked
vertices for the next walk.

We can now give Algorithm 2, depending on a tunable parameter �.

4.2 Complexity Analysis

Theorem 5 (Time-memory tradeoff). For all k ≤ � ≤ min(2k/3 +
m/3,m/2), Algorithm 2 computes 2k collisions using Õ (

2�
)

qubits and
Õ (

2k+m/2−�/2
)

Clifford+T+qRAM gates.

Proof. We start by noticing that although Algorithm 2 outputs a set of mul-
ticollisions rather than collisions, the number of collisions and multicollisions

Finding Many Collisions via Reusable Quantum Walks 235

Algorithm 2: Chained quantum walk algorithm for multiple collisions.
Input: quantum access to f : {0, 1}n → {0, 1}m, parameter k
Output: a table of multicollisions C such that |Im(C)| ≥ 2k

C ← ∅, R ← 2� /* Initialize an empty table */

|ψ〉 ← ∑

S∈V C
2�

|S〉 /* SETUP */

while |Im(C)| < 2k do
Run the quantum walk:

• Starting state: |ψ〉 =
∑

S∈V C
R

\MC
R

|S〉
• Graph: J({0, 1}n\Preim(C), R) (Johnson graph with vertices of size R,

excluding the preimages of C)
• Marked vertices: MC

R

• Iterates: �(π/2)/(2α)	, where α = arcsin
√

εR,C

• Spectral gap: δ � 1
R

Apply CHECK and measure the result: let flag be the output
if flag is true then

/* The state collapses on:
∑

S∈MC
R

|S〉 */

Apply EXTRACT (contains measurements)

• Update the table C
• Update the current width R
• Update the state: |ψ〉 =

∑

S∈V C
R

\MC
R

|S〉

/* Otherwise, the state collapses on:
∑

S∈V C
R

\MC
R

|S〉 for the

previous R and C. There is nothing to extract from it, C and

R remain unchanged. */

return C

that are actually obtained are closely related. Indeed, for a function from [2n]
to [2n], there is a polynomial (in n) limit to the width of multicollisions that
can appear for a non-negligible fraction of the functions. Indeed, by Theorem 4
in [13], the average number of r-collisions in such a random function is 2ne−1

r! .
Thus, there exists a universal constant c such that with probability 1 − o(2−n),
such a random function does not have any r-collision with r ≥ cn.

This means that regardless of the state of the current table C, we have:

|Im(C)| ≤ |Preim(C)| ≤ cn|Im(C)| .

In particular, by taking 2� greater than cn2k+1, we ensure that during the algo-
rithm, R > 2�−1. This means that we never run out of elements.

Secondly, we can bound εR,C ≥ R(R−1)
2m+1 . This allows to upper bound easily

the time complexity of any of the walks: if the current vertex size is R then it
runs for O (

2m/2/R
)

iterates, and each iterate contains Õ
(√

R
)

operations. The
constants in the O are the same throughout the algorithm. This means that we
can upper bound the complexity of each walk by Õ

(
2m/2/

√
R

)
≤ Õ (

2m/2−�/2
)
.

236 X. Bonnetain et al.

By Theorem 3, the success probability of this walk is bigger than 1 − 4εR,C .
If we do not succeed, the CHECK followed by a measurement make the current
state collapse again on the superposition of unmarked vertices, and we run the
exact same walk again. Note that for this algorithm to work, we must have
εR,C < 0.5. This corresponds to the probability that the list contains a collision,
or a new preimage of Im(C), which is Õ (

22�−m
)
. Hence, we must have � ≤ m/2.

Then, as � ≤ 2k/3 + m/3, the final complexity of the algorithm is

Õ
(
2� + 2k2m/2−�/2

)
= Õ

(
2k+m/2−�/2

)
,

where 2� is the cost of the SETUP, and the second term accounts for all the
walk steps. ��

5 Quantum Radix Trees and Extractions

In this section, we detail the quantum radix tree data structure, a history-
independent unordered set data structure introduced in [21]. We show that it
allows to perform, exactly and in a polynomial number of Clifford+T+qRAM
gates, the two main operations required for our walk: SWUP′ and EXTRACT.
We describe these operations in pseudocode, while ensuring that they are
reversible and polynomial.

5.1 Logical Level

Following [21], the quantum radix tree is an implementation of a radix tree storing
an unordered set S of n-bit strings. It has one additional property: its concrete
memory layout is history-independent. Indeed, there are many ways to encode
a radix tree in memory, and as elements are inserted and removed, we cannot
have a unique bit-string T (S) representing a set S. We use instead a uniform
superposition of all memory layouts of the tree, which makes the quantum state
|T (S)〉 unique, and independent of the order in which the elements were inserted
or removed. Only the entry point (the root) has a fixed position.

We separate the encoding of S into |T (S)〉 in two levels: first, a logical level, in
which S is encoded as a unique radix tree R(S); second, a physical level, in which
R(S) is encoded into a quantum state |T (S)〉. The logical mapping S → R(S)
is standard.

Definition 2 (From [21]). Let S be a set of n-bit strings. The radix tree R(S)
is a binary tree in which each leaf is labeled with an element of S, and each edge
with a substring, so that the concatenation of all substrings on the path from the
root to the leaf yields the corresponding element. Furthermore, the labels of two
children of any non-leaf node start with different bits.

By convention, we put the “0” bit on the left, and “1” on the right. In addition
to the n-bit strings stored by the tree, we append to each node the value of an
�-bit invariant which can be computed from its children, and depends only on
the logical structure of the radix tree, not its physical structure. Typically the
invariant can count the number of elements in the tree.

Finding Many Collisions via Reusable Quantum Walks 237

Fig. 2. Tree R(S) representing the set S = {0000, 0010, 1001, 1011, 1111} (the example
is taken from [21]).

5.2 Memory Representation

We now detail the correspondence from R(S) to |T (S)〉. We suppose that a
quantum bit-string data structure is given, that handles bit-strings of length
between 0 and n and performs operations such as concatenation, computing
shared prefixes, testing if the bit-string has a given prefix, in time poly(n).

State of the Memory. We suppose that O (Mn) qubits of memory are given,
where M ≥ R will be set later on. We divide these qubits into M cells of O (n)
qubits each, which we index from 0 to M − 1. We encode cell addresses on
m = �log2 M� + 1 bits, and we also define an “empty” address ⊥. Each cell
will be either empty, or contain a node of the radix tree, encoded as a tuple
(i, al, ar, �l, �r) where:

• i is the value of the invariant
• al and ar (m-bit strings) are respectively the memory addresses of the cells

holding the left and right children, either valid indices or ⊥. A node with
al = ar = ⊥ is a leaf.

• �l and �r are the labels of the left and right edges. (ε if the node is a leaf,
where ε is the empty string).

In other words, we have added to the tree R(S) a choice of memory locations
for the nodes, which we name informally the memory layout of the tree. The
structure of R(S) itself remains independent on its memory layout.

The root of the tree is stored in cell number 0. In Fig. 3, we give an example
of a memory representation of the tree R(S) of Fig. 2. We take as invariant the
number of leaves which, at the root, gives the number of elements in the set. It
is important to note that memory cells have an “empty” default state, which
allows the radix tree to support size changes. Whether a cell is empty or not
depends on the memory layout.

A radix tree encoding a set of size R contains 2R − 1 nodes (including the
root), which means that we need (a priori) no more than M = 2R − 1 cells in
our memory. In addition to the bit-strings x, we could add any data dx to which
x serves as a unique index. (This means adding another register which is non-
empty for leaf nodes only). Finally, it is possible to account for multiplicity of
elements in the tree by adding multiplicity counters, but since this is unnecessary
for our applications, we will stick to the case of unique indices.

238 X. Bonnetain et al.

Fig. 3. Example of memory layout for the tree of Fig. 2, holding the set S =
{0000, 0010, 1001, 1011, 1111}.

Definition. Let S be a set of size R, encoded in a radix tree with 2R−1 nodes. We
can always take an arbitrary ordering of the nodes in the tree, for example the
lexicographic ordering of the paths to the root (left = 0, right = 1). This means
that, for any sequence of non-repeating cell addresses I, of length 2R−1, we can
define a mapping: S, I �→ TI(S) which specifies the writing of the tree in memory,
by choosing the addresses I = (i1 = 0, . . . , i2R−1) for the elements. For example,
the tree of Fig. 3 would correspond to the sequence (0, 1, 3, 4, 2, 5, 8, 9, 7). We can
then define the quantum radix tree encoding S as the quantum state:

|T (S)〉 =
∑

valid sequences I

|TI(S)〉 , (7)

where we take a uniform superposition over all valid memory layouts.
For two different sets S and S′, and for any pair I, I ′ (even if I ′ = I), we

have TI′(S) �= TI(S′): the encodings always differ. This means that, as expected,
we have 〈T (S)|T (S′)〉 = 0.

Memory Allocator. In order to maintain this uniform superposition over all
possible memory layouts, we need an implementation of a memory allocator. This
unitary ALLOC takes as input the current state of the memory, and returns a
uniform superposition over the indices of all currently unoccupied cells. Possible
implementations of ALLOC are detailed in Sect. 5.4.

5.3 Basic Operations

We show how to operate on the quantum radix trees in poly(n) Clifford+T
+qRAM gates. We start with the basics: lookup, insertion and deletion.

Lookup. We define a unitary LOOKUP which, given S and a new element x,
returns whether x belongs to S:

LOOKUP : |x〉 |T (S)〉 |0〉 �→ |x〉 |T (S)〉 |x ∈ S〉 . (8)

Finding Many Collisions via Reusable Quantum Walks 239

Algorithm 3: LOOKUP as a classical algorithm.
Input: element x, quantum radix tree T (S)
Output: whether x ∈ S
(i, al, ar, �l, �r) ← root
y ← ε (empty string)
while al �= ⊥ (node is not a leaf) do

if y||�l is a prefix of x then
y ← y||al

(i, al, ar, �l, �r) ← node at address al

else if y||�r is a prefix of x then
y ← y||al

(i, al, ar, �l, �r) ← node at address ar

else
Break (not a solution)

return true if y = x

We implement LOOKUP by descending in the radix tree R(S); the pseudocode
is given in Algorithm 3. Since the “while” loop contains at most n iterates,
quantumly these n iterates are performed controlled on a flag that says whether
the computation already ended. After obtaining the result, they are recomputed
to erase the intermediate registers.

Insertion. We define a unitary INSERT, which, given a new element x, inserts
x in the set S. If x already belongs to S, its behavior is unspecified.

INSERT : |x〉 |T (S)〉 �→ |x〉 |T (S ∪ {x})〉 . (9)

The implementation of INSERT is more complex, but the operation is still
reversible. The pseudocode is given in Algorithm 4. At first, we find the point of
insertion in the tree, then we call ALLOC twice to obtain new memory addresses
for two new nodes. We modify locally the layout to insert these new nodes,
including a new leaf for the new element x. Then, we update the invariant on
the path to the new leaf. Finally, we uncompute the path to the new leaf (all
the addresses of the nodes on this path). To do so, we perform a loop similar to
LOOKUP, given the knowledge of the newly inserted element x.

Deletion. The deletion can be implemented by uncomputing INSERT, since it
is a reversible operation. It performs:

INSERT† : |x〉 |T (S ∪ {x})〉 �→ |x〉 |T (S)〉 . (10)

240 X. Bonnetain et al.

Algorithm 4: INSERT as a classical algorithm.
Input: element x, quantum radix tree T (S)
Output: element x, quantum radix tree T (S ∪ {x})
Find the first node j1 : (i, al, ar, �l, �r) such that y is a prefix of x, y||�l is not a
prefix of x and y||�r is not a prefix of x either. Write all the addresses of the
nodes on the path from the root to j1

/* If at this point we have found that the element belongs to S
instead, then the rest of the computation is meaningless. */

/* By construction �l starts with 0 and �r starts with 1. One of them

shares a non-empty prefix z with the remaining part of x. Without

loss of generality, we assume that it is �l. */

Let �l = z||t and x = y||z||x′

Call ALLOC to obtain an address j2
Replace al with j2 in the node j1 : (i, al, ar, �l, �r) (move al to a temporary
register)

Call ALLOC to obtain an address j3
Write at address j3: (∗, ⊥, ⊥, ε, ε)
/* Information at this point: x, al, j2, j3, the path to j1 and the tree

*/

if t starts with 0 then
Move al and cut �l to modify the two nodes in positions j1 and j2 as
follows: j1 : (i, j2, ar, z, �r) and j2 : (∗, al, j3, t, x

′).
else

Move al and cut �l to modify the two nodes in positions j1 and j2 as
follows: j1 : (i, j2, ar, z, �r) and j2 : (∗, j3, al, t, x

′).

/* We make this choice so that the left edge is always labeled

starting with a 0 and the right edge with a 1 */

/* Since we have moved j3 and al, the remaining information is: x,
the modified tree, j2 and the path to j1 (actually the path to x
in the new tree) */

Recompute the invariants on the path to x, in reverse order (starting from the
address j2).

/* The recomputation of the invariants is reversible (but we still

know the path to x) */

Do a lookup of x to uncompute the path to x.
/* Now the only information that remains is x, T (S ∪ {x}). */

The deletion of an element that is not in S is unspecified.

Quantum Lookup. We can implement a “quantum lookup” unitary QLOOKUP
which produces a uniform superposition of elements in S having a specific prop-
erty P . The only requirement is that the invariant of nodes has to store the
number of nodes in the subtree having this property (and so, leaf nodes will
indicate if the given x satisfies P (x) or not).

QLOOKUP : |T (S)〉 |0〉 �→ |T (S)〉
∑

x∈S|P (x)

|x〉 . (11)

Finding Many Collisions via Reusable Quantum Walks 241

This unitary is implemented by descending in the tree coherently (i.e., in
superposition over the left and right paths) with a weight that depends on the
number of solutions in the left and right subtrees. First, we initialize an address
register |a〉 to the root. Then, for n times (the maximal depth of the tree), we
update the current address register as follows:

• We count the number of solutions in the left and right subtrees of the node
at address |a〉 (say, tl and tr).

• We map |a〉 to |a〉
(√

tl

tl+tr
|left child of a〉 +

√
tr

tl+tr
|right child of a〉

)
. (We

do nothing if |a〉 is a leaf).

In the end, we obtain a uniform superposition of the paths to all elements satisfy-
ing P . We can query these elements, then uncompute the paths using an inverse
LOOKUP. Likewise, we can also perform a quantum lookup of pairs satisfying
a given property, e.g., retrieve a uniform superposition of all collision pairs in S.

5.4 Quantum Memory Allocators

We now define the unitary ALLOC, which given the current state of the memory,
creates the uniform superposition of unallocated cells:

ALLOC : |current memory〉 |0〉 �→ |current memory〉
∑

i unoccupied

|i〉 . (12)

We do not need to define a different unitary for un-allocation; we only have to
recompute ALLOC to erase the addresses of cells that we are currently cleaning.
To implement ALLOC, we add to each memory cell a flag indicating if it is
allocated. We propose two approaches.

Quantum Search Allocation. Classically, we can allocate new cells by simply
choosing addresses at random and checking if they are already allocated or not.
Quantumly, we can follow this approach using a quantum search over all the
cells for unallocated ones. Obviously, for this approach to be efficient, we need
the proportion of unallocated cells to be always constant. Besides, if we keep
a counter of the number of allocated cells (which does not vary during our
quantum walk steps anyway), we can make this operation exact using Amplitude
Amplification (Theorem 4 in [7]). Indeed, this counter gives the proportion of
allocated cells, so we know exactly the probability of success of the amplified
algorithm.

We can implement this procedure with a single iteration of quantum search
as long as we have a 33% overhead on the maximal number of allocated cells
(similarly to the case of searching with a single query studied in [11]).

242 X. Bonnetain et al.

Quantum Tree Allocation. A more standard, but less time-efficient approach to
implement ALLOC is to organize the memory cells in a complete binary tree (a
heap), so that each node of the tree stores the number of unallocated cells in its
children. This tree is not a quantum radix tree, since its size never changes, and
no elements are inserted or removed. In order to obtain the uniform superposition
of free cell addresses, we mimic the approach of QLOOKUP.

5.5 Higher-Level Operations for Collision Walks

We now implement efficiently the higher-level operations required by our
algorithms: setting up the initial vertex (SETUP), performing a quantum
walk update (SWUP′), looking for collisions (CHECK) and extracting them
(EXTRACT).

Representation. We consider the case of (multi-)collision search. Here the set S is
a subset of [N] = {0, 1}n, but we also need to store the images of these elements
by the function f : {0, 1}n → {0, 1}m. Let F = {f(x)||x, x ∈ S}. A collision of
f is a pair (f(x)||x), (f(y)||y) such that f(x) = f(y), i.e., the bit-strings have
the same value on the first m bits.

Since our goal is to retrieve efficiently the collision pairs, we will store both
a radix tree T (S) to keep track of the elements, and T (F) to keep track of the
collisions. One should note that the sets F and S have the same size. When
inserting or deleting elements, we insert and delete both in T (S) and T (F).
These trees are stored in two separate chunks of memory cells.

SETUP. The unitary SETUP starts from an empty state |0〉 and initializes the
tree to a uniform superposition of subsets of a given set. As long as sampling
uniformly at random from this set is efficient, we can implement SETUP using
a sequence of insertions in a tree that starts empty.

SWUP’. We show an efficient implementation of the unitary SWUP′:

SWUP′ |T (S)〉 |T (F)〉 |cS→S′〉 = |T (S′)〉 |T (F ′)〉 |cS′→S〉 (13)

where cS→S′ is the coin register which contains information on the transition of
a set S to a set S′. As we have detailed before, the coin is encoded as a pair (j, z)
where j ∈ [R] is the index of an element in S, which has to be removed, and
z ∈ [N − R] is the index of an element in {0, 1}n\S, which has to be inserted.
We implement SWUP′ as follows:

1. First, we convert the coin register to a pair x, y where: • y is the z-th element
of {0, 1}n which is not in S and • x is the j-th element of S (according to
the lexicographic ordering of bit-strings). For the first, we need a specific
algorithm detailed in the full version of the paper [5], which accesses the tree
T (S). The second can be done easily if the invariant of each node stores the
number of leaves in its subtree. Note that both the mapping from z to y, and
from j to x, are reversible. At this point the state is |T (S)〉 |T (F)〉 |x, y〉.

Finding Many Collisions via Reusable Quantum Walks 243

2. We use INSERT† to delete x from T (S), and delete f(x)||x from T (F).
3. We use INSERT to insert y in T (S) and f(y)||y in T (F). At this point the

state is: |T (S′)〉 |T (F ′)〉 |x, y〉 where S′ = (S\{x}) ∪ {y} and F ′ is the set of
corresponding images.

4. Finally, we convert the pair x, y back to a coin register.

Remark 2 (Walking in a reduced set). In our walk, we actually reduce the set
of possible elements, due to the previously measured collisions. So the coin does
not encode an element of {0, 1}n\S, but of {0, 1}n\S\Preim(C), where C is our
current table of multicollisions. An adapted algorithm is also given in the full
version of the paper [5] for this case.

Checking. We make the CHECK operation trivial, by defining an appropriate
invariant of the tree T (F). For each node in the tree, we count the number
of multicollisions and preimages of Im(C) that the subtree rooted at this node
contains. Then, the unitary CHECK simply tests whether the invariant at the
root is zero.

During the operations of insertion and deletion in the tree, the invariant can
be updated appropriately. Besides checking if the inserted element creates a new
collision (resp., the deleted element removes one), we also need to check whether
the image belongs to the set Im(C). During the run of the algorithm, Im(C) is
classical, and can be stored in quantum-accessible classical memory.

Extracting. The most important property for our chained quantum walk is the
capacity to extract multicollisions from the radix tree, in a way that preserves
the rest of the state, and allows to reuse a superposition of marked vertices for
the current walk, as a superposition of unmarked vertices for the next one. Recall
from Sect. 4.1 that we have defined a table of multicollisions C, a set V C

R of sets
of size R in {0, 1}n\Preim(C), and a set MC

R ⊆ V C
R of marked vertices, which

contain either a new element mapping to Im(C), or a new collision. Recall also
from the proof of Theorem 5 that a random function, with probability 1−o(2−n),
does not admit an r-collision (x1, . . . , xr) with r = O (n) for some appropriate
constant. This limit on the size of multicollisions ensures that the extraction
does not reduce too much the size of the current vertex.

The operation EXTRACT does:

EXTRACT : C,R,
1

√
|MC

R |
∑

S∈MC
R

|S〉 �→ C ′, R′,
1

√
|V C′

R′ \MC′
R′ |

∑

S∈V C′
R′ \MC′

R′

|S〉 ,

i.e., it updates the current vertex state, but also reduces R to a smaller value R′,
and updates the table C into a bigger table C ′. It is implemented as Algorithm 5.
Although it is not strictly necessary, we have separated the subroutine CHECK
into: CHECKP, which finds whether the set contains a new preimage of C, and
CHECKC, which finds whether there is a new collision.

We now prove the correctness of Algorithm 5. We start with the uniform
superposition of marked vertices, i.e., sets S ⊆ {0, 1}n\Preim(C) of size R, which

244 X. Bonnetain et al.

Algorithm 5: Multicollision extraction: EXTRACT.
Input: C, R, uniform superposition over MC

R

Output: C′ R′, uniform superposition over V C′
R′ \MC′

R′
flag ← true
C′ ← C, R′ ← R
Apply CHECKP and measure the result: let flag be the output
while flag is true do

Perform a “quantum lookup” of the solution (new preimage)
Select one uniformly at random, denote it x

Copy x outside the tree; apply INSERT† to remove it; measure x
R′ ← R − 1
Insert x in C′, at the index of its image f(x)
Apply CHECKP and measure the result: let flag be the output

Apply CHECKC and measure the result: let flag be the output
while flag is true do

Perform a “quantum lookup” of the solution (new collision)
Select one uniformly at random, denote it (x1, . . . , xr)
Write r in a new register
Copy (x1, . . . , xr) outside the tree

Apply INSERT† a total of O (n) times, in a controlled way depending on
the exact value of r, to remove x1, . . . , xr

Measure r and x1, . . . , xr

R′ ← R − r
Insert a new entry (x1, . . . , xr) in C′

Apply CHECKC and measure the result: let flag be the output

contain at least a solution tuple x1, . . . , xr which is either a (multi)-collision, or
a new preimage.

The first loop removes all new preimages. Each time we measure an element,
we collapse on the superposition of sets which contained it. After CHECKP
returns 0 for the first time, the state collapses on the uniform superposition of
all sets S such that:

S ⊆ ({0, 1}n\Preim(C ′)) , |S| = R′ = R − t,
(
∀z ∈ S, f(z) /∈ Im(C ′)

)
,

where t is the number of iterates of the loop that we had to perform. There is
a variable number of such iterates but we expect only one to occur on average,
since the typical case is for vertices to contain only one solution.

The second loop will run until there are no collisions anymore. New preimages
cannot appear since we extract entire multicollision tuples. At the first loop iter-
ate, assuming that CHECKC returns 1, we collapse on the uniform superposition
of sets:

S ⊆ ({0, 1}n\Preim(C ′)) , |S| = R′,
(
∀z ∈ S, f(z) /∈ Im(C ′) ∧ ∃x, y ∈ S, x �= y, f(x) = f(y)

)
.

Finding Many Collisions via Reusable Quantum Walks 245

We select one of the solutions (x1, . . . , xr) at random, remove it, and measure
the tuple x1, . . . , xr. Let u = h(x1). After measurement, the state collapses on
all sets that do not contain x1, . . . , xr, and contain no preimage of u.

Since we update R′ and C ′ accordingly, we obtain the sets:

S ⊆ ({0, 1}n\Preim(C ′)) , |S| = R′,
(
∀z ∈ S, f(z) /∈ Im(C ′)

)
.

After repeatedly calling CHECKC and measuring, we will continue extracting
collisions until CHECKC returns 0, i.e., we have collapsed on the sets which do
not contain a collision. At this point, we have a uniform superposition of:

S ⊆ ({0, 1}n\Preim(C ′)) , |S| = R′,
(
∀z ∈ S, f(z) /∈ Im(C ′) ∧ ∀x, y ∈ S, f(x) �= f(y)

)
.

This is, by definition, the set of unmarked vertices (see Equation (6)).
Note that for this algorithm to work, we need to maintain invariants of

the number of solutions (new preimages and multicollisions) that any subtree
contains. These invariants only decrease during the loop iterates, and they are
updated accordingly when we remove the solutions from the tree.

6 Searching for Many Collisions, in General

As we have seen, our new algorithm is valid (and tight) for all values of n, m
and k ≤ 2n − m such that k ≤ m

4 . Two approaches can be used for higher k.

BHT. A standard approach to find multiple collisions, which works when m is
small, is to extend the BHT algorithm [8]. We select a parameter �, then make
2� queries, and look for 2k collisions on this list of queries. This is done by a
quantum search on {0, 1}n for an input colliding with the list.

There are on average 22n−m collision pairs in the function, so a random
element of {0, 1}n has a probability O (2n−m) to be in a collision pair. This
gives O (

2�−m+n
)

collision pairs for the initial list.
Thus, a search for a collision with the list has O (

2�−m+n
)

solutions in a

search space of size 2n, and it requires
√

2n

2�+m−n = 2(m−�)/2 iterates.

If this procedure is to output 2k collisions, we need � such that 2�−m+n ≥ 2k

i.e. � − m + n ≥ k. By trying to equalize the complexity of the two steps, we
obtain: � = k + m−�

2 =⇒ � = 2k
3 + m

3 which is only valid for k ≤ 3n − 2m. For
a bigger k, we can repeat this. We find 23n−2m collisions in time (and memory)
22n−m, and we do this 2k−(3n−2m) times, for a total time Õ (

2k+m−n
)
. If we

want to restrict the memory then we obtain the tradeoff of Õ (
2k+m/2−�/2

)
time

using O (
2�

)
memory.

Using Our Method. If k > m/4, then the memory limitation in Theorem 5 on
� becomes relevant. In that case, as we are restricted to � ≤ m/2, the minimal
achievable time is Õ (

2k+m/2−�/2
)

= Õ (
2k+m/4

)
.

246 X. Bonnetain et al.

Conclusion. The time and memory complexities of the problem are the following
(in log2 and without polynomial factors):

• If k ≤ 3n − 2m: 2k
3 + m

3 time and memory using BHT
• Otherwise, if k ≤ m

4 : 2k
3 + m

3 time and memory using our algorithm
• Otherwise, if m ≤ 4

3n: k + m − n time and 2n − m memory using BHT
• Otherwise, if m ≥ 4

3n: k + m
4 time and m

2 memory using our algorithm

This situation is summarized in Fig. 1, and it allows us to conclude:

Theorem 6. Let f : {0, 1}n → {0, 1}m, n ≤ m ≤ 2n be a random function.
Let k ≤ 2n − m. There exists an algorithm finding 2k collisions in Õ (

2C(k,m,n)
)

Clifford+T+qRAM gates, and using Õ (
2C(k,m,n)

)
quantum queries to f , where:

C(k,m, n) = max
(

2k

3
+

m

3
, k + min

(
m − n,

m

4

))
. (14)

Proof. We check that: k ≤ 3n − 2m ⇐⇒ 2k
3 + m

3 ≥ k + m − n and k ≤ m
4 ⇐⇒

2k
3 + m

3 ≥ k + m
4 . ��

We conjecture that the best achievable complexity is, in fact, C(k,m, n) =
2k
3 + m

3 for any admissible values of k, m and n. It would however require a non-
trivial extension of our algorithm, capable of outputting collisions at a higher
rate than what we currently achieve.

In terms of time-memory trade-offs, we can summarize the results as:

Theorem 7 (General Time-memory tradeoff). For all k ≤ � ≤ min(2k/3+
m/3,max(2n − m,m/2)), there exists an algorithm that computes 2k collisions
using Õ (

2�
)

qubits and Õ (
2k+m/2−�/2

)
Clifford+T+qRAM gates and quantum

queries to f .

Similarly, as in [15], we conjecture that the trade-off should be achievable for
all � ≤ 2k/3 + m/3.

7 Applications

In this section, we show how our algorithm can be used as a building block for
lattice sieving and to solve the limited birthday problem. We also discuss the
problem of multicollision search.

7.1 Improvements in Quantum Sieving for Solving the Shortest
Vector Problem

In this section, we present the improvement of our reusable quantum walks to
lattice sieving algorithms. A lattice L = L(b1, . . . ,bd) := {∑d

i=1 zibi : zi ∈ Z} is
the set of all integer combinations of linearly independent vectors b1, . . . ,bd ∈
R

d. We call d the rank of the lattice and (b1, . . . ,bd) a basis of the lattice.

Finding Many Collisions via Reusable Quantum Walks 247

The most important computational problem on lattices is the Shortest Vector
Problem (SVP). Given a basis for a lattice L ⊆ R

d, SVP asks to compute a non-
zero vector in L with the smallest Euclidean norm. The main lattice reduction
algorithm used for lattice-based cryptanalysis is the famous BKZ algorithm [29].
It internally uses an algorithm for solving (near) exact SVP in lower-dimensional
lattices. Therefore, finding faster algorithms to solve exact SVP is critical to
choosing security parameters of cryptographic primitives.

Previously, the fastest quantum algorithm solved SVP under heuristic
assumptions in 20.2570d+o(d) time [9]. It applies the MNRS quantum walk tech-
nique to the state-of-the-art classical algorithm called lattice sieving, where we
combine close vectors together to obtain shorter vectors at each step. It was
noted in [9] that the algorithm could be slightly improved if we could find many
marked vertices in a quantum walk without repaying the setup each time, which
is exactly what we showed in Sect. 4. We redid the analysis of [9] with this
improvement and show the following

Proposition 4. There exists a quantum algorithm that solves SVP under
heuristic assumptions in 20.2563d+o(d)

Proving this statement requires to restate the whole framework and analysis
of [9]. We briefly present here the main calculation to achieve our result but we
refer to the full version of the paper [5] for a more comprehensive analysis. Let
Vd(α) be the ratio of the volume of a spherical cap of angle α to the volume of
the d-dimensional sphere. We have Vd(α) = poly(d) sind(α) .

Proposition 5. The algorithms of [9] has the following asymptotic running
time:

T = max{1, N c−ζ} · (N + N1−cFAS1). (15)

where N = 1
Vd(π/3) , α st. Vd(α) = N−(1−c), θ∗

α = 2arcsin(1
2 sin(α)), ζ st. N ζ =

N2cVd(θ∗
α), and FAS1 is the running time of the FAS1 subroutine.

The authors of [9] use a quantum walk in order to solve the FAS1 problem.

Proposition 6 ([9]). For a parameter c1, let β st. Vd(β) = 1
Nc1 , ρ0 st.

Nρ0 = Vd(β)
Wd(β,θ∗

α) , where Wd(β, θ∗
α) = poly(d) ·

(
1 − 2 cos2(β)

1+cos(θ∗
α)

)d/2

. In order to
solve FAS1 with parameter c1, it is enough to repeat Nρ0 times a quantum walk
on a graph where we each time need to find N ζ−ρ0 marked elements with the
following properties

S = N c1 , δ = N−c1 , ε = N2c1−ρ0Vd−1(θ∗
α), U = 1, C = 1.

Using Theorem 4, we obtain FAS1 = Nρ0 ·
(
S + Nζ−ρ0√

ε

(
1√
δ
U + C

))
. We take

the following set of parameters: c ≈ 0.3875, c1 ≈ 0.27 which gives ζ ≈ 0.1568
and ρ0 ≈ 0.1214. Notice that with these parameters, we are indeed in the range
of Theorem 4 since the number of solutions we extract is 2k = N ζ−ρ0 ≈ N0.0354

248 X. Bonnetain et al.

and the range of the function f on which we collision is 2m = 2c1 ≈ N0.27 (the
number of points in the code), so we indeed have k ≤ m

4 . The parameters of the
quantum walk become:

S ≈ N0.27, ε ≈ N−0.2, δ ≈ N−0.27, U = C = 1 .

This gives FAS1 ≈ N0.27. Plugging this into Equation (15), we get a total
running time of T = N1.2347 which is equal to T = 20.2563d+o(d) improving
slightly the previous running time of 20.2570d+o(d).

7.2 Solving the Limited Birthday Problem

The following problem is very common in symmetric cryptanalysis. It appears
for example in impossible differential attacks [6], but also in rebound distin-
guishers [16]. In the former case we use generic algorithms to solve the problem
for a black-box E, and in the latter, a valid distinguisher for E is defined as an
algorithm outputting the pairs faster than the generic one.

Problem 4 (Limited Birthday). Given access to a black-box permutation E :
{0, 1}n → {0, 1}n and possibly its inverse E−1, given two vector spaces Din

and Dout of sizes 2Δin and 2Δout respectively, find 2k pairs x, x′ such that x �=
x′, x ⊕ x′ ∈ Din, E(x) ⊕ E(x′) ∈ Dout.

For simplicity, we will focus only on the time complexity of the problem,
although some parameter choices require a large memory as well. Classically the
best known time complexity is given in [6]:

max
(

min
Δ∈{Δin,Δout}

(√
2k+n+1−Δ

)
, 2k+n+1−Δin−Δout

)
. (16)

This complexity is known to be tight for 2k = 1 [16].
In the quantum setting, we need to consider superposition access to E

and possibly E−1 to have a speedup on this problem. Previously the meth-
ods used [23] involved only individual calls to Ambainis’ algorithm (when there
are few solutions) or an adaptation of the BHT algorithm (when there are many
solutions).

The quantum algorithm, as the classical one, relies on the definition of struc-
tures of size 2Δin , which are subsets of the inputs of the form Tx = {x⊕v, v ∈ Din}
for a fixed x. For a given structure Tx, we can define a function hx : {0, 1}Δin →
{0, 1}n−Δout such that any collision of hx yields a pair solution to the lim-
ited birthday problem. The expected number of collisions of a single hx is
C := 22Δin+Δout−n, and there are three cases:

1. C < 1: we follow the approach of [23], which is to repeat 2k times a Grover
search among structures, to find one that contains a pair (this is done with
Ambainis’ algorithm). The time exponent is k + n−Δout

2 − Δin
3 .

2. 1 < C < 2k: we need to consider several structures and to extract all of their
collision pairs. Using Theorem 6 this gives a time exponent:

max
(

k +
2
3
(n − Δin − Δout), k + min

(
n − Δout − Δin,

n − Δout

4

))

Finding Many Collisions via Reusable Quantum Walks 249

3. 2k < C: we need only one structure. To recover 2k pairs, we need a time
exponent (by Theorem 6):

max
(

2k

3
+

n − Δout

3
, k + min

(
n − Δout − Δin,

n − Δout

4

))

Finally, we can swap the roles of Δin and Δout and take the minimum. Unfor-
tunately this does not lead to an equation as simple as Equation (16).

7.3 On Multicollision-Finding

A natural extension of this work would be to look for multicollisions.

Problem 5 (r-collision search). Let f : {0, 1}n → {0, 1}m be a random function.
Find an r-collision of f , that is, a tuple (x1, . . . , xr) of distinct elements such
that f(x1) = . . . = f(xr).

As with collisions, the lower bound by Liu and Zhandry [25] is known to be
tight when m ≤ n. The corresponding algorithm is an extension of the BHT
algorithm which constructs increasingly smaller lists of i-collisions, starting with
1-collisions (evaluations of the function f on arbitrary points) and ending with
a list of r-collisions.

This algorithm, given in [17,18], finds 2k r-collisions in time and memory:

Õ
(

2k 2(r−1)
2r−1 2m 2(r−1)−1

2r−1

)
.

As with 2-collisions, it is possible to extend it when m > n. Of course, there’s
a constraint: the list i must contain more tuples that are part of an i+1-collision
than the size of the list i + 1.

The size of each i-collision list is Ni = 2k 2r−2r−i

2r−1 2m 2r−i−1
2r−1 . The probability

that an i-collision extends to an i + 1-collision is of order 2n−m. Hence, for the
algorithm to work, we must have, for all i, Ni+1/Ni ≤ 2n−m. This means:

k
2r−i−1

2r − 1
− m

2r−i−1

2r − 1
≤ n − m .

This constraint is the most restrictive for the largest possible i, r −1. We obtain
the following constraint, which subsumes the others:

k
1

2r − 1
+ m

(
1 − 1

2r − 1

)
≤ n .

This gives the point up to which this algorithm meets the lower bound. We
could use our new algorithm as a subroutine in this one, to find 2-collisions, and
this would allow to relax the constraint over N2/N1. Unfortunately, this cannot
help to find multicollisions, as the other constraints are more restrictive. More
generally, these constraints show that it is not possible to increase the range of
the BHT-like r-collision algorithm solely by using an r − i-collision algorithm
with an increased range.

250 X. Bonnetain et al.

Acknowledgments. A.S. wants to thank Nicolas David and Maŕıa Naya-Plasencia
for discussions on the limited birthday problem. A.S. has been supported by ERC-
ADG-ALGSTRONGCRYPTO (project 740972). Y.S. is supported by EPSRC grant
EP/S02087X/1 and EP/W02778X/1. This work received funding from the France 2030
program managed by the French National Research Agency under grant agreement No.
ANR-22-PETQ-0007 EPiQ and ANR-22-PETQ-0008 PQ-TLS. All authors would like
to thank Schloss Dagstuhl and the organizers of the Dagstuhl Seminar 21421 “Quantum
Cryptanalysis” where this work was initiated, and the reviewers of EUROCRYPT 2023
for helpful comments.

References

1. Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and the element
distinctness problems. J. ACM 51(4), 595–605 (2004)

2. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput.
37(1), 210–239 (2007)

3. Bernstein, D.J., Jeffery, S., Lange, T., Meurer, A.: Quantum algorithms for the
subset-sum problem. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp.
16–33. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38616-9 2

4. Bonnetain, X., Bricout, R., Schrottenloher, A., Shen, Y.: Improved classical and
quantum algorithms for subset-sum. In: Moriai, S., Wang, H. (eds.) ASIACRYPT
2020. LNCS, vol. 12492, pp. 633–666. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64834-3 22

5. Bonnetain, X., Chailloux, A., Schrottenloher, A., Shen, Y.: Finding many collisions
via reusable quantum walks. IACR Cryptol. ePrint Arch, p. 676 (2022)

6. Boura, C., Naya-Plasencia, M., Suder, V.: Scrutinizing and improving impossible
differential attacks: applications to CLEFIA, Camellia, LBlock and Simon. In:
Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 179–199.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 10

7. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification
and estimation. Contemp. Math. 305, 53–74 (2002)

8. Brassard, G., HØyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free
functions. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380,
pp. 163–169. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054319

9. Chailloux, A., Loyer, J.: Lattice sieving via quantum random walks. In: Tibouchi,
M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 63–91. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-92068-5 3

10. Chailloux, A., Naya-Plasencia, M., Schrottenloher, A.: An efficient quantum col-
lision search algorithm and implications on symmetric cryptography. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 211–240. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 8

11. Chi, D.P., Kim, J.: Quantum database search by a single query. In: Williams, C.P.
(ed.) QCQC 1998. LNCS, vol. 1509, pp. 148–151. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-49208-9 11

12. Dinur, I.: Tight time-space lower bounds for finding multiple collision pairs and
their applications. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS,
vol. 12105, pp. 405–434. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-45721-1 15

https://doi.org/10.1007/978-3-642-38616-9_2
https://doi.org/10.1007/978-3-030-64834-3_22
https://doi.org/10.1007/978-3-030-64834-3_22
https://doi.org/10.1007/978-3-662-45611-8_10
https://doi.org/10.1007/BFb0054319
https://doi.org/10.1007/978-3-030-92068-5_3
https://doi.org/10.1007/978-3-319-70697-9_8
https://doi.org/10.1007/3-540-49208-9_11
https://doi.org/10.1007/978-3-030-45721-1_15
https://doi.org/10.1007/978-3-030-45721-1_15

Finding Many Collisions via Reusable Quantum Walks 251

13. Flajolet, P., Odlyzko, A.M.: Random mapping statistics. In: Quisquater, J.-J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 329–354. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4 34

14. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Com-
puting 1996, pp. 212–219. ACM (1996)

15. Hamoudi, Y., Magniez, F.: Quantum time-space tradeoff for finding multiple col-
lision pairs. In: TQC. LIPIcs, vol. 197, pp. 1:1–1:21. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2021)

16. Hosoyamada, A., Naya-Plasencia, M., Sasaki, Y.: Improved attacks on sliscp per-
mutation and tight bound of limited birthday distinguishers. IACR Trans. Symm.
Cryptol. 2020(4), 147–172 (2020)

17. Hosoyamada, A., Sasaki, Yu., Tani, S., Xagawa, K.: Improved quantum
multicollision-finding algorithm. In: Ding, J., Steinwandt, R. (eds.) PQCrypto
2019. LNCS, vol. 11505, pp. 350–367. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-25510-7 19

18. Hosoyamada, A., Sasaki, Y., Tani, S., Xagawa, K.: Quantum algorithm for the
multicollision problem. Theor. Comput. Sci. 842, 100–117 (2020)

19. Jaques, S., Schanck, J.M.: Quantum cryptanalysis in the RAM model: claw-finding
attacks on SIKE. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11692, pp. 32–61. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 2

20. Jaques, S., Schrottenloher, A.: Low-gate quantum golden collision finding. In:
Dunkelman, O., Jacobson, Jr., M.J., O’Flynn, C. (eds.) SAC 2020. LNCS, vol.
12804, pp. 329–359. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
81652-0 13

21. Jeffery, S.: Frameworks for Quantum Algorithms. Ph.D. thesis, University of
Waterloo, Ontario, Canada (2014). http://hdl.handle.net/10012/8710

22. Kachigar, G., Tillich, J.-P.: Quantum information set decoding algorithms. In:
Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 69–89. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-59879-6 5

23. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Quantum differential
and linear cryptanalysis. IACR Trans. Symm. Cryptol. 2016(1), 71–94 (2016)

24. Kirshanova, E., Mårtensson, E., Postlethwaite, E.W., Moulik, S.R.: Quantum algo-
rithms for the approximate k -list problem and their application to lattice sieving.
In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp.
521–551. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5 19

25. Liu, Q., Zhandry, M.: On finding quantum multi-collisions. In: Ishai, Y., Rijmen,
V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 189–218. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17659-4 7

26. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. SIAM
J. Comput. 40(1), 142–164 (2011)

27. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)
28. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic appli-

cations. J. Cryptol. 12(1), 1–28 (1999)
29. Schnorr, C.: A hierarchy of polynomial time lattice basis reduction algo-

rithms. Theor. Comput. Sci. 53, 201–224 (1987). https://doi.org/10.1016/0304-
3975(87)90064-8

https://doi.org/10.1007/3-540-46885-4_34
https://doi.org/10.1007/978-3-030-25510-7_19
https://doi.org/10.1007/978-3-030-25510-7_19
https://doi.org/10.1007/978-3-030-26948-7_2
https://doi.org/10.1007/978-3-030-26948-7_2
https://doi.org/10.1007/978-3-030-81652-0_13
https://doi.org/10.1007/978-3-030-81652-0_13
http://hdl.handle.net/10012/8710
https://doi.org/10.1007/978-3-319-59879-6_5
https://doi.org/10.1007/978-3-030-34578-5_19
https://doi.org/10.1007/978-3-030-17659-4_7
https://doi.org/10.1016/0304-3975(87)90064-8
https://doi.org/10.1016/0304-3975(87)90064-8

Just How Hard Are Rotations of Zn?
Algorithms and Cryptography

with the Simplest Lattice

Huck Bennett2, Atul Ganju1, Pura Peetathawatchai3,
and Noah Stephens-Davidowitz1(B)

1 Cornell University, Ithaca, USA
noahsd@gmail.com

2 Oregon State University, Corvallis, USA
3 Stanford University, Stanford, USA

Abstract. We study the computational problem of finding a shortest
non-zero vector in a rotation of Zn, which we call ZSVP. It has been a
long-standing open problem to determine if a polynomial-time algorithm
for ZSVP exists, and there is by now a beautiful line of work showing how
to solve it efficiently in certain very special cases. However, despite all of
this work, the fastest known algorithm that is proven to solve ZSVP is
still simply the fastest known algorithm for solving SVP (i.e., the prob-
lem of finding shortest non-zero vectors in arbitrary lattices), which runs
in 2n+o(n) time.

We therefore set aside the (perhaps impossible) goal of finding an effi-
cient algorithm for ZSVP and instead ask what else we can say about the
problem. E.g., can we find any non-trivial speedup over the best known
SVP algorithm? And, if ZSVP actually is hard, then what consequences
would follow? Our results are as follows.
1. We show that ZSVP is in a certain sense strictly easier than SVP

on arbitrary lattices. In particular, we show how to reduce ZSVP
to an approximate version of SVP in the same dimension (in fact,
even to approximate unique SVP, for any constant approximation
factor). Such a reduction seems very unlikely to work for SVP itself,
so we view this as a qualitative separation of ZSVP from SVP. As a
consequence of this reduction, we obtain a 2n/2+o(n)-time algorithm
for ZSVP, i.e., the first non-trivial speedup over the best known
algorithm for SVP on general lattices. (In fact, this reduction works
for a more general class of lattices—semi-stable lattices with not-
too-large λ1.)

Due to space constraints, we have omitted some discussion, proofs, and figures from
this version of the paper. We strongly encourage the reader to look at the full version,
which is available at [7].
Part of this work was while H.B. was at the University of Michigan and supported by
the National Science Foundation under Grant No. CCF-2006857. N.S. was supported
in part by the National Science Foundation under Grant No. CCF-2122230. The views
expressed are those of the authors and do not necessarily reflect the official policy or
position of the National Science Foundation.

c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14008, pp. 252–281, 2023.
https://doi.org/10.1007/978-3-031-30589-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30589-4_9&domain=pdf
https://doi.org/10.1007/978-3-031-30589-4_9

Just How Hard Are Rotations of Zn? Algorithms and Cryptography 253

2. We show a simple public-key encryption scheme that is secure if
(an appropriate variant of) ZSVP is actually hard. Specifically, our
scheme is secure if it is difficult to distinguish (in the worst case) a
rotation of Zn from either a lattice with all non-zero vectors longer
than

√
n/ log n or a lattice with smoothing parameter significantly

smaller than the smoothing parameter of Zn. The latter result has
an interesting qualitative connection with reverse Minkowski theo-
rems, which in some sense say that “Zn has the largest smoothing
parameter.”

3. We show a distribution of bases B for rotations of Zn such that, if
ZSVP is hard for any input basis, then ZSVP is hard on input B.
This gives a satisfying theoretical resolution to the problem of sam-
pling hard bases for Zn, which was studied by Blanks and Miller [9].
This worst-case to average-case reduction is also crucially used in
the analysis of our encryption scheme. (In recent independent work
that appeared as a preprint before this work, Ducas and van Woer-
den showed essentially the same thing for general lattices [15], and
they also used this to analyze the security of a public-key encryp-
tion scheme. Similar ideas also appeared in [5,11,20] in different
contexts.)

4. We perform experiments to determine how practical basis reduction
performs on bases of Z

n that are generated in different ways and
how heuristic sieving algorithms perform on Z

n. Our basis reduction
experiments complement and add to those performed by Blanks and
Miller, as we work with a larger class of algorithms (i.e., larger block
sizes) and study the “provably hard” distribution of bases described
above. Our sieving experiments confirm that heuristic sieving algo-
rithms perform as expected on Z

n.

1 Introduction

A lattice L ⊂ R
n is the set of all integer linear combinations of linearly indepen-

dent basis vectors B := (b1, . . . , bn) ∈ R
n×n, i.e.,

L = L(B) = {z1b1 + · · · + znbn : zi ∈ Z} .

Lattices have recently played a central role in cryptography, as many powerful
cryptographic schemes have been constructed using lattices. (See [32] and the
references therein.) These schemes’ security rests on the hardness of (worst-case)
computational problems related to lattices, such as the Shortest Vector Problem
(SVP), in which the goal is to find a non-zero lattice vector whose �2 norm is
minimal, given a basis B for the lattice.

Perhaps the simplest example of a lattice is the integer lattice Z
n, which has

the identity matrix as a basis. Of course, the shortest non-zero vectors in Z
n are

simply the standard basis vectors and their negations ±e1, . . . ,±en, which have
length one. So, it is trivially easy to find a shortest non-zero vector in Z

n by
simply outputting one of these vectors. Other computational lattice problems
are also easy when the relevant lattice is Z

n.

254 H. Bennett et al.

However, suppose that we are given some basis B for a rotation of Zn, i.e.,
a basis B such that the lattice L(B) generated by this basis is RZ

n for some
orthogonal matrix R ∈ On(R). Of course, if the basis B is simply R itself, then
it is still easy to find a shortest vector in this lattice. (Any column of R will do.)
But, it does not need to be so easy. For example, the lovely matrix

B :=

⎛
⎜⎜⎜⎜⎜⎝

3
√

3898 −5382
√

2
1949

31195√
3898

15857
3 ·

√
2

1949

0
√

682378
1949 −110727

√
2

664977361
676011√

1329954722

0 0
√

64221
682378

67240
3 ·

√
2

21911498769

0 0 0 1
3
√
128442

⎞
⎟⎟⎟⎟⎟⎠

is a basis for a rotation of Z4, but it is not immediately clear how to find a vector
of length one in the lattice generated by B.1 We write ZSVP for the problem of
finding vectors of length one in a rotation L of Zn, given a basis for L.

Indeed, this is a well known problem, and it has been a long-standing open
problem to settle the complexity of ZSVP, leading to a beautiful line of work
[12,17,19,22,24,25,38]. Frustratingly, despite all of this wonderful work, the
fastest known algorithm that is proven to solve ZSVP is still simply the fastest
known algorithm that is proven to solve SVP on arbitrary lattices, a 2n+o(n)-
time algorithm [2]. So, we do not even know whether ZSVP is any easier at all
than SVP on arbitrary lattices, let alone whether there exists a polynomial-time
algorithm!

1.1 Our Results

In this paper, we set aside the (apparently difficult) question of whether a
polynomial-time algorithm for ZSVP exists and instead ask what else we can
say about ZSVP. Specifically, we study the following questions.

1. Can we at least solve ZSVP in time better than 2n+o(n)? (In other words,
can we at least do better than just plugging in an algorithm that solves SVP
on all lattices?)

2. If it is hard to solve ZSVP (or variants of it), does this imply any interesting
cryptography?

3. In particular, is there some (efficiently sampleable) distribution of instances
of ZSVP such that these instances are provably hard if ZSVP is hard in the
worst case? I.e., is there a “hardest possible” distribution of bases suitable
for use in cryptography?

4. Do known algorithms perform any differently on rotations of Zn empirically?

We essentially give positive answers to all of these questions, giving a richer
perspective on ZSVP and related problems, as we detail below.
1 Of course, this is not actually a hard problem, since it is only four-dimensional and

SVP can be solved efficiently when the dimension n is constant. Indeed, one example
of a unit length vector in this lattice is Bz, where z := (59, 396, 225, −326)T .

Just How Hard Are Rotations of Zn? Algorithms and Cryptography 255

Provably Faster Algorithms for Z
n. Our first main result, presented in

Sect. 5, is an exponential-time algorithm for ZSVP that is faster than the fastest
known algorithm for SVP over arbitrary lattices. In fact, we show something
significantly stronger: an efficient dimension-preserving reduction from ZSVP to
γ-approximate GapSVP over general lattices for any constant γ = O(1) (where
GapSVP is the decision version of SVP in which the goal is simply to determine
whether there exists a short vector, rather than to actually find one). In other
words, we show that in order to find an exact shortest non-zero vector in a rota-
tion of Zn, it suffices to simply approximate the length of a shortest non-zero
vector in an arbitrary lattice. (In fact, we reduce to the γ-unique Shortest Vector
Problem, which is SVP in which the shortest vector is guaranteed to be a factor
of γ shorter than “the second shortest vector,” appropriately defined.)

Theorem 1 (Informal. See Corolloary 2). There is an efficient reduction
from ZSVP to γ-approximate GapSVP (in fact, to γ-unique SVP, a potentially
easier problem) in the same dimension for any constant γ = O(1).

If we plug in the fastest known algorithm for O(1)-GapSVP, we immedi-
ately obtain a 2n/2+o(n)-time provably correct algorithm for ZSVP [2]. (And,
under a purely geometric conjecture, we obtain a running time of (4/3)n+o(n) ≈
20.415n [37].) See the full version [7] for a discussion of a more general class of
lattices to which these results apply.

However, the specific running times are perhaps less interesting than the high-
level message: solving exact SVP on rotations of Zn is no harder than solving
approximate (or even unique) SVP on arbitrary lattices in the same dimension.
We certainly do not expect such a reduction to work for arbitrary lattices, so
this shows that there is in fact something inherently “easier” about Z

n.

A Public-Key Encryption Scheme. Our next main result, presented in
Sect. 4, is a public-key encryption scheme whose security can be based on the
(worst-case) hardness of variants of ZSVP.

To be clear, we feel that it is premature to base the security of real-world
cryptography on the hardness of ZSVP and related problems. Indeed, although
ZSVP is fairly well-studied, it is not nearly as well-studied as, e.g., (plain) SVP or
factoring, and should therefore be treated with more skepticism. Furthermore,
there is currently no consensus about whether ZSVP is actually hard among
those who study it.

With that said, we show an encryption scheme that is secure if it is difficult
to distinguish a rotation of Zn either from (1) a lattice with no non-zero vec-
tors with length less than roughly γ for γ ≈ √

n/ log n; or (2) from a lattice
with smoothing parameter ηε(L) smaller than ηε(Zn)/α for any α > ω(1). (See
Sect. 2.1 for the definition of the smoothing parameter.) We call these problems
γ-ZGapSVP and α-ZGapSPP, respectively.

Theorem 2 (Informal, see Theorem 12). There is a public-key encryption
scheme that is secure if either γ-ZGapSVP or α-ZGapSPP is hard, for γ ≈√

n/ log n and any α > ω(1).

256 H. Bennett et al.

We stress that both ZGapSVP and ZGapSPP are worst-case (promise) prob-
lems. In particular, our encryption scheme is secure unless there is a polynomial-
time algorithm that correctly distinguishes all bases of rotations of Zn from all
lattices that either have no short vectors or have small smoothing parameter. (A
critical step in our proof is a worst-case to average-case reduction showing how
to sample a basis for a rotation of Zn that is provably as secure as any basis.
We discuss this more below.)

We note that the approximation factor γ ≈ √
n/ log n might look quite

impressive at first. Specifically, prior work shows public-key encryption schemes
that are secure if γ′-GapSVP (as opposed to γ-ZGapSVP) is hard for γ′ ≈ n3/2,
where γ′-GapSVP asks us to distinguish a lattice with a non-zero vector with
length at most one from a lattice with no non-zero vectors with length less
than γ′. So, our approximation factor γ ≈ √

n/ log n seems much better. (And,
perhaps it is. In particular, we do not know algorithms that solve γ-ZGapSVP
faster than γ′-GapSVP or even γ-GapSVP.)

Of course, our reduction only works for γ-ZGapSVP, which is potentially
a much easier problem than γ-GapSVP, or even than γ′-GapSVP. (Indeed, we
are not even willing to conjecture that ZSVP is hard, let alone γ-ZGapSVP.)
And, from another perspective, the approximation factor of γ ≈ √

n/ log n seems
rather weak. Specifically, since Z

n (and any rotation of Zn) has determinant one,
it is trivial by Minkowski’s theorem to distinguish a rotation of Zn from a lattice
with no non-zero vectors with length less than roughly

√
n. So, from this point

of view, our approximation factor γ is just a factor of
√

log n smaller than trivial.
The approximation factor α for ZGapSPP is harder to interpret, but in the

full version [7] we include some discussion.

Sampling Provably Secure Bases. Our next main result, presented in Sect. 3,
is a way to sample a “hardest possible” basis B for a rotation of Zn. For example,
we show an explicit (efficiently sampleable) distribution of bases B for rotations
of Zn such that, if it is hard to solve ZSVP in the worst case, then it is hard to
solve ZSVP on input B. The basic idea is to use the discrete Gaussian sampling
algorithm of [18] to use any basis of a rotation L of Zn to obtain many discrete
Gaussian samples from L—sufficiently many that we have a generating set of L.
We can then apply any suitable algorithm that converts a generating set into a
basis. (Similar ideas have previously appeared in somewhat different contexts [5,
11,20]. In particular, [11] introduced the idea of sampling a “discrete Gaussian
basis” from an arbitrary basis. More recently, in independent work that was
published on ePrint before this work, [15] used similar ideas in a context very
similar to ours. See Sect. 1.2.)

This gives a theoretically rigorous answer to the question studied by Blanks
and Miller [9], who considered the relative hardness of solving ZSVP for different
input bases and asked whether there was a clear choice for a how to generate
“hardest possible” bases. We show that there is in fact a relatively simple input
distribution that is provably as hard as any other. Indeed, we have already
implicitly mentioned this result, as it is crucially used in the security reductions
for our encryption scheme.

Just How Hard Are Rotations of Zn? Algorithms and Cryptography 257

Experimental Results for ZSVP. Our final contribution, presented in Sect. 6,
consists of a number of experimental results showing how practical heuristic
lattice algorithms perform on Z

n.
Our first such set of experiments ran state-of-the-art basis reduction algo-

rithms on bases of Zn that were generated in different ways and compared their
effectiveness.2 These experiments complement similar experiments performed by
Blanks and Miller [9]. Our experiments differ from those of Blanks and Miller
in that we used the BKZ algorithm with larger block sizes; performed more tri-
als; and performed experiments on the distribution of bases resulting from our
worst-case to average-case reduction.

Here, our results were broadly comparable to those of [9]. See Sect. 6.1 for
the details. However, we note that our new experiments on the distribution of
bases resulting from worst-case to average-case reductions suggest that these
bases achieve comparable security to the bases studied in [9] with much shorter
vectors (which corresponds to a more efficient encryption scheme).

Our second set of experiments document a threshold phenomenon that is
evident in these basis reduction experiments with Z

n. Specifically, the output of
basis reduction algorithms run on bases of Zn is almost always an exact shortest
non-zero vector or a vector much longer than this. I.e., once basis reduction
finds a vector in Z

n whose length is below some threshold, it nearly always
simply finds a shortest vector. We document this phenomenon in our context.
(After a preliminary version of this paper was released, we learned of a body
of work studying this phenomenon in a larger context and providing compelling
heuristic explanations of it, such as in [4,13]. See [14, Sect. 4.2] for more recent
experiments, discussion of this phenomenon in the specific context of Zn, and
additional references.)

Our third and final set of experiments studies the performance of a heuristic
sieving algorithm on Z

n. Specifically, we ran the Gauss sieve, due to Miccian-
cio and Voulgaris [30], on Z

n. In fact, Zn is a particularly interesting lattice for
heuristic sieving algorithms because Z

n is known to grossly violate the heuristics
that are used to design and analyze these algorithms. (See Sect. 6.3.) Neverthe-
less, we confirm that the Gauss sieve performs more-or-less exactly the same on
Z

n as it does on other lattices—in spite of the fact that some of the heuristic
justification for the Gauss sieve does not extend to Z

n. To our knowledge, such
experiments had not been published before.

1.2 Related Work

As we mentioned above, there is by now a beautiful sequence of works showing
polynomial-time algorithms for certain special cases of ZSVP [12,17,19,24,25].
A summary of their results is beyond the scope of this work, but we note that
their techniques are very different from those in this work with the exception
of Szydlo’s heuristic algorithm [38]. In particular, Szydlo presented a heuristic

2 Note that we ran these experiments directly on bases of Zn, rather than on rotations
of bases of Zn because the algorithms themselves are rotation invariant.

258 H. Bennett et al.

algorithm that solves ZSVP by finding many vectors of length roughly c
√

n
(where the constant c > 0 is unspecified), which can be viewed as a heuristic
reduction from ZSVP to c

√
n-SVP. In contrast, we give an efficient reduction

with a proof of correctness from ZSVP to γ-uSVP for any constant γ (and, more
generally, a roughly (n/γ2)γ2

-time reduction for γ ≤ √
n/2).

Our public-key encryption scheme is quite similar to a scheme recently pro-
posed by Ducas and van Woerden [15], in a beautiful independent work that
appeared as a preprint before the present work was finished. On one hand, Ducas
and van Woerden’s construction is more general than ours—it works with any
“remarkable” lattice, of which Z

n is an example. (We do note in passing that
our constructions also make sense for a more general class of lattices, but we
do not attempt to make this precise.) On the other hand, because we specialize
to Z

n, our scheme is arguably simpler, and the hardness assumptions that we
require for security, while formally incomparable, are arguably weaker.

Perhaps the biggest difference is that in [15], the ciphertext is a target point
that is very close to the lattice, effectively within the unique decoding radius
of Z

n, i.e., 1/2 (or for more general lattices, within whatever radius one can
efficiently decode, uniquely). And, the [15] decryption algorithm recovers the
unique lattice vector within this distance of the target point. In this context, Zn

is not a particularly good lattice because its unique decoding radius is rather
small (relative to, e.g., its determinant). (Of course, Ducas and van Woerden list
many “remarkable” lattices, many of which are better suited to their construc-
tion.) In contrast, our ciphertext is a target point that is quite far away from
the lattice, at distance Θ(

√
n) (well above the radius at which unique decoding

is possible), and our decryption algorithm simply determines whether the target
is closer or farther than a certain threshold value. Indeed, our scheme is par-
ticularly well suited to Z

n (as we discuss more in the full version [7]). Because
of this difference, our scheme achieves security under arguably weaker hardness
assumptions. The assumptions are not directly comparable, however, as [15]’s
hardness assumptions concern the lattice Z

n ⊕ αZn for a cleverly chosen scaling
factor α, whereas our hardness assumptions work with Z

n directly. Ducas and
van Woerden also show a signature scheme and a zero-knowledge proof, while
we do not.

Ducas and van Woerden’s work also contains more-or-less the same worst-
case to average-case reduction that we describe in Sect. 3, and therefore also
more-or-less the same distribution of bases that we propose. Indeed, in this
case their work is essentially strictly more general than ours. (Similar ideas also
appeared in [5,11,20], though in different contexts.)

Blanks and Miller introduced two of the basis-generating procedures that
we study, and performed experiments on them to determine if basis reduction
algorithms could break them [9]. Our empirical work on different bases for Zn is
best viewed as follow-up work to [9]. In particular, we perform more trials and
run BKZ with larger block sizes. Additionally, we perform experiments on the
discrete Gaussian bases described above, which were not considered in [9].

Just How Hard Are Rotations of Zn? Algorithms and Cryptography 259

Finally, we note that recent follow-up work to this paper [8] has continued
the study of the cryptosystem that we propose.

2 Preliminaries

We write In for the identity matrix. We write On(R) for the set of all orthogonal
linear transformations. That is On(R) is the set of matrices R ∈ R

n×n with the
property that RT R = In. We often informally refer to orthogonal transforma-
tions as “rotations.” We refer to integer-valued matrices with determinant ±1
(i.e., matrices in GLn(Z)) as unimodular. By default logarithms are base e.

We refer the reader to the full version [7] for basic definitions of lattices, the
successive minima λi, the lattice determinant, the Gram matrix, SVP, GapSVP,
and unique SVP.

2.1 The Continuous and Discrete Gaussian Distributions
and the Smoothing Parameter

For a vector y ∈ R
n and parameter s > 0, we write

ρs(y) := exp(−π‖y‖2/s2)

for the Gaussian mass of y with parameter s. We write Dn
s for the symmetric

continuous Gaussian distribution on R
n, that is, the distribution with probability

density function given by

Pr
X∼Dn

s

[X ∈ S] =
1
sn

·
∫

S

ρs(y)dy

for any (measurable) subset S ⊆ R
n. We simply write Ds for D1

s .
We prove the following lemma in the full version [7]. It shows that when X

is sampled from Dn
s , dist(X,Zn) is highly concentrated.

Lemma 1. For any s > 0, positive integer n, and ε > ε0

Pr
X∼Dn

s

[|dist(X,Zn)2 − ν| > εn] ≤ 2 exp(−(ε − ε0)2n/10) ,

where ν := n
12 − exp(−πs2)

π2 · n, and ε0 := exp(−4πs2)
6 · (1 + 1/s2).

The Gaussian mass of a lattice L ⊂ R
n with parameter s > 0 is

ρs(L) :=
∑
y∈L

ρs(y) .

The discrete Gaussian distribution DL,s is the distribution over L induced by
this measure, i.e., for any y ∈ L,

Pr
X∼DL,s

[X = y] = ρs(y)/ρs(L) .

We will need the following theorem from [10], which is a slight strengthening
of a result in [18].

260 H. Bennett et al.

Theorem 3. There is an efficient algorithm that takes as input a basis B =
(b1, . . . , bn) ∈ R

n×n for a lattice L ⊂ R
n and a parameter s ≥ √

log(2n + 4)/π ·
maxi ‖bi‖ and outputs a sample from DL,s.3

For ε > 0, the smoothing parameter of a lattice L ⊂ R
n is the unique param-

eter ηε(L) > 0 such that
ρ1/ηε(L)(L∗) = 1 + ε .

Lemma 2 ([29, Lemma 4.1]). For any lattice L ⊂ R
n and parameter s >

ηε(L) for some ε ∈ (0, 1), if X ∼ Dn
s , then X mod L is within statistical distance

ε/2 of the uniform distribution modulo L.

Lemma 3 ([29, Lemma 3.2]). For any lattice L ⊂ R
n and any ε > 2−n

ηε(L) ≤ √
n/λ1(L∗) .

Lemma 4 ([20, Lemma 5.4]). For any s ≥ 1 and m ≥ n2 + n log(s
√

n)(n +
20 log log(s

√
n)), if y1, . . . ,ym ∼ DZn,s are sampled independently from DZn,s,

then y1, . . . ,ym is a generating set of Zn except with probability 2−Ω(n).

2.2 Lattice Problems

We will use a result of Lyubashevsky and Micciancio that gives an efficient,
dimension-preserving reduction from γ-uSVP to γ-GapSVP for polynomially
bounded γ = γ(n).

Theorem 4 ([28, Theorem 3]). For any 1 ≤ γ ≤ poly(n), there is a
dimension-preserving Cook reduction from γ-uSVP to γ-GapSVP.

We will also make use of the following algorithm.

Theorem 5 ([2, Corollary 6.6]). There is a 2n/2+o(n)-time algorithm that
solves γ-GapSVP with γ = 1.93 + o(1).

Lattice problems on rotations of Z
n. We say that two lattices L1, L2 of

dimension n are isomorphic, which we denote by L1
∼= L2, if there exists R ∈

On(R) such that R(L1) = L2. We call lattices L satisfying L ∼= Z
n “rotations of

Z
n.” We define γ-ZSVP to be γ-SVP with the additional requirement that the

input basis B satisfy L(B) ∼= Z
n.

Definition 1. For γ = γ(n) ≥ 1, the γ-approximate Shortest Vector Problem
on rotations of Zn (γ-ZSVP) is the search problem defined as follows. Given a
basis B ∈ R

n×n of a lattice L satisfying L ∼= Z
n as input, output a non-zero

vector v ∈ L with ‖v‖ ≤ γ · λ1(L).

When γ = 1, we simply write γ-ZSVP as ZSVP.

3 In fact, the algorithm even works for any parameter s ≥ √
log(2n + 4)/π ·maxi ‖b̃i‖,

where b̃i is the ith Gram-Schmidt vector of the basis B.

Just How Hard Are Rotations of Zn? Algorithms and Cryptography 261

2.3 Primitive Vectors and Vector Counting

Given a lattice L, a vector x ∈ L is called primitive if x /∈ aL for any integer a >
1. Note that 0 is not primitive regardless of L. Let Lprim denote the set of prim-
itive vectors in L. For a lattice L and r > 0, let N(L, r) := |{x ∈ L : ‖x‖ ≤ r}|
and let Nprim(L, r) := |{x ∈ Lprim : ‖x‖ ≤ r}| /2, where in the latter expression
we divide by two so that we effectively count ±x ∈ L as a single vector.

We will use the following bound from [34] on the number of integer points in
a ball rBn

2 for various radii r, where Bn
2 denotes the closed Euclidean unit ball.

Proposition 1 ([34, Claim 8.2]). For any n ≥ 1 and any radius 1 ≤ r ≤ √
n

with r2 ∈ Z,
(2n/r2)r2 ≤ |Zn ∩ rBn

2 | ≤ (2e3n/r2)r2
.

A lattice L ⊆ R
n satisfying det(L′) ≥ 1 for all sublattices L′ ⊆ L is called

semi-stable. We will also use the following bound from [34] on |L ∩ rBn
2 | where

L is a semi-stable lattice.

Proposition 2 ([34, Corollary 1.4, Item 1]). Let t := 10(log n + 2) and let
L be a semi-stable lattice. Then for any r ≥ 1, |L ∩ rBn

2 | ≤ 3eπt2r2
/2.

2.4 Probability

Lemma 5 (Chernoff-Hoeffding bound [21]). Let X1, . . . , XM ∈ [0, 1] be
independent and identically distributed random variables. Then, for s > 0,

Pr
[∣∣∣ME[Xi] −

∑
Xi

∣∣∣ ≥ sM
]

≤ 2e−Ms2/10 .

3 How to Sample a Provably Secure Basis

In this section, we show how to sample a basis B for a rotation of Zn that is
“provably at least as secure as any other basis.” In particular, we show a distri-
bution of bases B of rotations of Zn that can be sampled efficiently given any
basis of a rotation of Zn together with the orthogonal transformation R map-
ping the original lattice to the new lattice. This implies that “if a computational
problem can be solved efficiently given a basis from this distribution, then it can
be solved efficiently given any basis.” (We do not try to make this very general
statement formal. In particular, we do not try to classify the set of computational
problems for which this result applies. Instead, we simply provide an example.)
Similar ideas appeared in [5,11,15,20].

We say that an algorithm A that takes as input vectors y1, . . . ,yN ∈ L that
form a generating set of a lattice L and outputs a basis B of L is rotation-
invariant if for any orthogonal transformation R ∈ On(R), A(Ry1, . . . , RyN) =
R(A(y1, . . . ,yN)). For example, the LLL algorithm yields an efficient rotation-
invariant algorithm that converts a generating set to a basis, and in Sect. 3.1
we give a more efficient algorithm that also does this. Given such an A, our
distribution is then the following.

262 H. Bennett et al.

Definition 2. For any efficient rotation-invariant algorithm A that converts a
generating set to a basis and parameter s = s(n) ≥ 1 the distribution (A, s)-
ZDGS is sampled as follows. For i = 1, 2, 3, . . . , sample zi ∼ DZn,s. Let
B := A(z1, . . . ,zi). If B ∈ Z

n×n is full rank and |det(B)| = 1, then sam-
ple a uniformly random orthogonal matrix R ∼ On(R) and output B′ := RB.
Otherwise, continue the loop.

Notice that the resulting basis is in fact a basis of a rotation of Zn, specifically,
RZ

n. By Lemma 4, the above procedure terminates in polynomial time except
with negligible probability.

Theorem 6. For any efficient rotation-invariant algorithm A that converts a
generating set into a basis, there is an efficient randomized algorithm that takes
as input a basis B = (b1, . . . , bn) ∈ R

n×n for a rotation L of Zn and a parameter
s ≥ √

log(2n + 4)/π ·max ‖bi‖ and outputs a basis B′ ∈ R
n×n generating L′ that

is distributed exactly as (A, s)-ZDGS together with an orthogonal transformation
R ∈ On(R) such that RL = L′.

Proof. The algorithm behaves as follows. For i = 1, 2, 3, . . ., the algorithm uses
the procedure from Theorem 3 to sample yi ∼ DL,s, where L is the lattice
generated by B. It then computes B† := A(y1, . . . ,yi). If the lattice generated by
B† has full rank and determinant one, then the algorithm outputs B′ := RB† and
R, where R ∼ On(R) is a uniformly random rotation. Otherwise, it continues.

To see why this is correct, let R′ ∈ On(R) be an orthogonal transformation
such that Z

n = R′L. Let y′
i := R′yi, and notice that the y′

i are distributed
as independent samples from DZn,s. It follows from the fact that A is rotation
invariant that R′B† = A(y′

1, . . . ,y
′
i). Clearly B† is full rank and has determi-

nant one if and only if R′B† has this same property. Therefore, B′ is distributed
exactly as R(R′)−1A(y′

1, . . . ,y
′
i) (conditioned on the rank and determinant con-

ditions being satisfied). Since R is a uniformly random orthogonal transforma-
tion, this is distributed identically to R′′A(y′

1, . . . ,y
′
i) for R′′ ∼ On(R). Notice

that this is exactly the ZDGS distribution.
Finally, as we observed above, Lemma 4 implies that after poly(n, log s) sam-

ples, y′
1, . . . ,y

′
i will generate Z

n with high probability, in which case y1, . . . ,yi

will generate L. Therefore, the algorithm terminates in polynomial time (with
high probability).

The following corollary shows that we can achieve the same result for a fixed
parameter s (regardless of the length of the input basis).

Corollary 1. For any efficient rotation-invariant algorithm A that converts a
generating set into a basis, there is an efficient randomized algorithm that takes
as input any basis B ∈ R

n×n for a rotation L of Zn and outputs a basis B′ ∈
R

n×n generating L′ and rotation R such that B′ is distributed as (A, s)-ZDGS
and RL = L′, where s = 2n.

Proof. The algorithm simply runs the LLL algorithm on B, receiving as output
some basis B† = (b†

1, . . . , b
†
n) for L with ‖b†

i‖ ≤ 2n/2. It then runs the procedure
from Theorem 6 and outputs the result.

Just How Hard Are Rotations of Zn? Algorithms and Cryptography 263

Using Corollary 1, we can easily reduce worst-case variants of lattice problems
on rotations of Zn to variants in which the input basis is sampled from ZDGS.
As an example, we show a random self-reduction for SVP over rotations of Zn

below. (We also use this idea in Sect. 4.)

Definition 3. For any γ = γ(n) ≥ 1 and any efficient rotation-invariant algo-
rithm A, the (A, γ)-acZSVP problem is defined as follows. The input is a basis
B ∈ R

n×n sampled from (A, 2n)-ZDGS generating a rotation L of Zn. The goal
is to output y ∈ L with 0 < ‖y‖ ≤ γ.

Theorem 7. For any efficient rotation-invariant algorithm A and any γ ≥ 1,
there is an efficient reduction from γ-ZSVP to (A, γ)-acZSVP.

Proof. The reduction takes as input a basis B ∈ R
n×n for a rotation L of Zn

and simply runs the procedure from Corollary 1, receiving as output a basis B′

sampled from (A, 2n)-ZDGS generating L′ together with a rotation R such that
RL = L′. It then calls its (A, γ)-acZSVP oracle on input B′, receiving as output
some vector y′ ∈ L′. Finally, it outputs y := R−1y′.

3.1 A Rotation-Invariant Generating Set to Basis Conversion
Algorithm

For completeness, we now specify and analyze a rotation-invariant algorithm
(Algorithm 1) for converting a generating set Y = (y1, . . . ,yN) to a basis.
After we published a preliminary version of this work, we learned that Li and
Nguyen developed a very similar algorithm in [26, Algorithm B.1], and showed
an optimized variant in [27, Section 4].

The algorithm A itself is perhaps best viewed as a “lazy” variant of the LLL
algorithm. In particular, unlike LLL, A simply works to find some basis of the
lattice generated by Y , and makes no attempt to further reduce the basis. More
quantitatively, in Theorem 8, we upper bound the number of swaps performed
by Algorithm 1 for (rotations of) integer lattices by n log2 β, where n is the
rank of the input lattice and β is the maximum norm of a vector in the input
generating set Y . (It is common in the literature to state the running time of
basis reduction algorithms in this form.) For comparison, standard analysis of
the LLL algorithm (see, e.g., [33]) upper bounds the number of swaps it performs
by O(n2 log β).

Define the (generalized) Gram-Schmidt vectors corresponding to a sequence
y1, . . . ,yN of (not necessarily linearly independent) vectors as follows:

ỹ1 := y1 ,

ỹi := yi −
∑
j<i,
ỹj �=0

〈yi, ỹj〉
〈ỹj , ỹj〉

ỹj for i = 2, . . . , N .

We next prove that Algorithm 1 is correct, rotation invariant, and in fact
quite efficient. Recall that a generating-set-to-basis conversion algorithm A being

264 H. Bennett et al.

Algorithm 1: Rotation-Invariant Generating Set to Basis Conversion
Input: A generating set Y = (y1, . . . ,yN) ∈ R

m×N of a lattice L of rank
1 ≤ n ≤ N .

Output: A basis of L.

// Size-reduction step.

Compute the Gram-Schmidt vectors ỹ1, . . . , ỹN corresponding to y1, . . . ,yN .
for i = 2, . . . , N do

for j = i − 1, . . . , 1 with ỹj �= 0 do
yi ← yi − �μi,j	 · yj // μi,j := 〈yi, ỹj〉/〈ỹj , ỹj〉.

end

end
Delete any identically zero columns from Y , and update N to be the new
number of columns in Y .

// Swap step.

if there exists i ∈ {2, . . . , N} such that ỹi = 0 then
Swap yj and yi, where j < i is the minimum index such that
yi ∈ span(y1, . . . ,yj).

goto size-reduction step.
end

return Y .

rotation invariant means that for all input generating sets Y ∈ R
m×N and R ∈

Om(R), RA(Y) = A(RY).

Theorem 8. On input a generating set Y = (y1, . . . ,yN) ∈ R
m×N of a lattice

L of rank n ≥ 1, Algorithm 1 outputs a basis of L. Furthermore, Algorithm 1 is
rotation invariant and performs at most n log2 β − log det(L) swap operations,
where β := maxi∈{1,...,N} ‖yi‖. In particular, if L is (a rotation of an) integer
lattice then det(L) ≥ 1 and so Algorithm 1 performs at most n log2 β swaps.

Proof. In the full version [7], we include a (straightforward) proof that Algorithm
1 does in fact output a basis and is in fact rotation invariant.

It remains to upper bound the number of swaps performed by Algorithm 1.
Define the potential function

P (Y) :=
∏

i∈{1,...,N},
ỹ i �=0

‖ỹi‖ ,

and note that P (Y) is equal to the determinant of the sublattice of L spanned by
vectors yi with ỹi �= 0. Therefore, because the algorithm maintains the invariant
that Y is a generating set of L, we have that P (Y) ≥ det(L). Using the same
invariant, we also have that at each iteration there are exactly n vectors with
non-zero Gram-Schmidt vectors. So, by definition of β, the input generating set

Just How Hard Are Rotations of Zn? Algorithms and Cryptography 265

Y0 = (y1, . . . ,yN) satisfies

P (Y0) =
∏

i∈{1,...,N},
ỹ i �=0

‖ỹi‖ ≤
∏

i∈{1,...,N},
ỹ i �=0

‖yi‖ ≤ βn . (1)

Finally, we show that P (Y) decreases by a multiplicative factor of at least 2
after each swap operation. Let Y = (y1, . . . ,yN) and Y ′ = (y′

1, . . . ,y
′
N) denote

the respective generating sets in Algorithm 1 before and after performing a given
swap operation on yj and yi for j < i.

We claim that ỹ′
k = ỹk for all k �= j. This is immediate for k < j because

y′
k = yk for such k. For k > j, it follows by noting that span(y′

1, . . . ,y
′
j) =

span(y1, . . . ,yj), which in turn follows by noting that, by the algorithm’s choice
of i and j, y′

j = yi and yi ∈ span(y1, . . . ,yj)\ span(y1, . . . ,yj−1). Furthermore,
yi ∈ span(y1, . . . ,yj) \ span(y1, . . . ,yj−1) implies that ỹj is non-zero.

Let πk denote projection onto span(y1, . . . ,yk)⊥. We then have that

P (Y ′)
P (Y)

=
∏

k∈{1,...,N},
ỹk �=0

‖ỹ′
k‖

‖ỹk‖ =
‖ỹ′

j‖
‖ỹj‖

=
‖πj−1(yi)‖

‖ỹj‖
=

|μi,j | · ‖ỹj‖
‖ỹj‖

≤ 1/2 .

The final equality again uses the fact that yi ∈ span(y1, . . . ,yj), and the inequal-
ity holds because μi,j := 〈yi, ỹj〉/〈ỹj , ỹj〉 has magnitude at most 1/2 after the
size-reduction step.

Therefore, by Eq. (1), Algorithm 1 performs at most

log2(P (Y0)/det(L)) ≤ n log2 β − log det(L)

swap operations, as needed.

4 We Have an Encryption Scheme to Sell You

We now consider the possibility that it actually is “hard to recognize Z
n” (where

we must formalize what this means rather carefully), and we show that this
implies the existence of a relatively simple public-key encryption scheme. (See
also [8] for follow-up work implementing the scheme and studying its security.)

The encryption scheme itself is described below. There are public parameters
s > 0 and r > 0, which are functions of the security parameter n (i.e., s = s(n)
and r = r(n)). In particular, the parameter s will control the length of the basis
used as the public key, and the parameter r is a noise parameter. In the full
version [7], we provide more discussion of these parameters.

– Gen(1n): Sample vectors z1,z2,z3, . . . independently from DZn,s until
z1, . . . ,zk generate Z

n. Run Algorithm 14 on input z1, . . . ,zk to obtain a
basis B of Zn and let G := BT B. Output sk := B and pk := G.

4 One can instead run any rotation-invariant algorithm that converts generating sets
into bases, as defined in Sect. 3. We simply suggest Algorithm 1 for concreteness.

266 H. Bennett et al.

– Enc(pk, b ∈ {0, 1}):
• If b = 0, sample X ∈ R

n from a continuous Gaussian distribution with
probability density function

det(G)1/2

rn
· exp(−πXTGX/r2) =

det(B)
rn

· exp(−πXTGX/r2) ,

and output c := X mod 1 (i.e., the coordinates of c are the fractional
parts of the coordinates of X).

• If b = 1, output uniformly random c ∼ [0, 1)n.
– Dec(sk, c): Set t = (t1, . . . , tn)T := Bc. Output 1 if

∑
(ti − �ti�)2 > d and 0

otherwise, where

d :=
n

12
− exp(−πr2)

2π2
· n .

We first concern ourselves with the correctness of this scheme. In particular,
the following lemma tells us that the decryption algorithm will answer correctly
except with probability roughly exp(−e−πr2

n). In order to be conservative, we
will want to take r to be as big as possible, so we will take r to be slightly smaller
than

√
log n/π. E.g., we can take r =

√
log n/(10π). This is the maximal choice

for r up to a constant, since if we took, e.g., r ≥ √
log n, then ciphertexts of zero

would be statistically close to ciphertexts of one, making decryption failures
unreasonably common.

Lemma 6. For r ≥ 1, let δ := exp(−πr2). Then, the decryption algo-
rithm described above outputs the correct bit b except with probability at most
2 exp(−cδ2n) for some constant c > 0.

Proof. For the case b = 1, we simply notice that t is uniformly random in
a fundamental domain of Z

n. It follows that ti − �ti� is uniformly random in
the interval [−1/2, 1/2) and independent of the other coordinates. In particular
E[(ti−�ti�)2] = 1/12. It then follows from the Chernoff-Hoeffding bound (Lemma
5) that

Pr
[∑

(ti − �ti�)2 ≤ d
]

≤ exp(−δ2n/1000) .

We now consider the case b = 0. Write c = X + z for z ∈ Z
n. Then,

t = Bc = BX + Bz = BX mod 1. (Here, we crucially rely on the fact that
B is an integer matrix.) Notice that BX is distributed exactly as a continuous
Gaussian with covariance B(r2G−1)BT = r2, i.e., as Dn

r . Therefore,
∑

(ti−�ti�)2
is distributed identically to dist(Y ,Zn)2, where Y ∼ Dn

r . By Lemma 1,

Pr[dist(Y ,Zn)2 > d] ≤ 2 exp(−(d − ν − εn)2/10) ,

where ν := n
12 − δ

π2 ·n, and ε := δ4/3. Notice that d−ν−εn
n = δ

2π2 −δ4/3 > δ/100.
The result follows.

Just How Hard Are Rotations of Zn? Algorithms and Cryptography 267

4.1 Basic Security

We now observe that the above scheme is semantically secure if (and only if)
the following problem is hard. The only distinction between this problem and
the problem of breaking the semantic security of the encryption scheme is that
in the problem below the underlying lattice is specified by a worst-case basis
B instead of an average-case Gram matrix G. We will reduce between the two
problems using the ideas from Sect. 3.

Here and below, we have an additional parameter ρ, which is a bound on the
lengths of the input basis vectors. If we set s = 2n in our encryption scheme,
then we could remove ρ by using the LLL algorithm, as we did in Sect. 3.

Definition 4. For parameters ρ = ρ(n) > 0 and r = r(n) > 0, the (ρ, r)-ZGvU
problem (Gaussian versus Uniform mod Z

n) is the promise problem defined as
follows. The input is a basis B = (b1, . . . , bn) ∈ R

n×n such that ‖bi‖ ≤ ρ
that generates a rotation of Z

n, and a vector y ∈ [0, 1)n, where y is sampled
as follows. A bit b ∼ {0, 1} is sampled uniformly at random. If b = 0, y =
B−1X mod 1 for X ∼ Dr, and if b = 1, y ∼ [0, 1)n. The goal is to output b.

We say that (ρ, r)-ZGvU is hard if no probabilistic polynomial-time algorithm
A can solve this problem with probability better than 1/2 + negl(n).

Theorem 9. If (ρ, r)-ZGvU is hard for some ρ, r, then the above encryption
scheme is semantically secure with parameters s :=

√
log(2n + 4)/π · ρ and r.

Proof. Suppose that there is a probabilistic polynomial-time adversary B that
has non-negligible advantage in breaking the semantic security of the encryption
scheme. We construct an efficient algorithm E that solves ZGvU with probability
non-negligibly larger than 1/2.

The algorithm E takes as input a basis B ∈ R
n×n generating a lattice L,

and y ∈ [0, 1)n. It then uses the procedure from Theorem 6 with Algorithm 1 to
convert this into a basis B′ for a rotation of L and sets G := (B′)T B′. It then
sets c := (B′)−1By mod 1. Finally, E calls B on input G and c and outputs
whatever B outputs.

It is clear that E is efficient. Furthermore, if y is uniformly random modulo
1, then clearly c is also uniformly random modulo 1. On the other hand, if
y = B−1X mod 1 for X ∼ Dr, then

c = (B′)−1By mod 1 = (B′)−1X mod 1 .

Notice that (B′)−1X is distributed exactly as a Gaussian with covariance r2G−1.
Therefore, when b = 0, c is distributed exactly like an encryption of zero, and
when b = 1, c is distributed exactly like an encryption of one.

4.2 A Worst-Case to Average-Case Reduction (of a Sort)

Of course, ZGvU is a rather artificial problem. Below, we show reductions to
it from worst-case problems that ask us to distinguish Z

n from a lattice that is

268 H. Bennett et al.

different from Z
n in a specific way. These can be thought of as “Zn versions” of

the traditional worst-case lattice problems GapSPP and GapSVP.
Recall that ηε(Zn) ≈ √

log(2n/ε)/π for small ε.

Definition 5. For any approximation factor α = α(n) ≥ 1, ε ∈ (0, 1/2), and a
length bound ρ = ρ(n) > 0, the problem (α, ε, ρ)-ZGapSPP is defined as follows.
The input is a basis B = (b1, . . . , bn) ∈ R

n×n for a lattice L satisfying ‖bi‖ ≤ ρ.
The goal is to output YES if L ∼= Z

n and to output NO if ηε(L) < ηε(Zn)/α.

The below reduction shows that if (α, ε, ρ)-ZGapSPP is hard, then our
encryption scheme with r :=

√
log n/(10π) is secure for any ε < n−ω(1) and

α ≤ ηε(Zn)/r ≈ √
10 log(n/ε)/ log n ≈ √

log(1/ε)/ log n.

Theorem 10. For any efficiently computable ε = ε(n) ∈ (0, 1/2) and integer
� = �(n) ≥ 100n/(δ − ε)2, there is a reduction from (α, ε, ρ)-ZGapSPP to (ρ, r)-
ZGvU that runs in time poly(n) · � and answers correctly except with probability
at most 2−n, where α := ηε(Zn)/r and the success probability of the ZGvU oracle
is 1/2 + δ, provided that δ > ε.

In particular, if (α, ε, ρ)-ZGapSPP is hard for any negligible ε = ε(n) <
n−ω(1), then (ρ, r)-ZGvU is hard.

Proof. The reduction takes as input a basis B for a lattice L ⊂ R
n and behaves

as follows. For i = 1, . . . , �, it samples a uniformly random bit bi ∼ {0, 1}. If
bi = 0, it samples Xi ∼ Dn

r and sets yi := B−1Xi mod 1, and if bi = 1, it
samples yi ∼ [0, 1)n. It then calls the ZGvU oracle on input B and yi, receiving
as output some bit b∗

i ∈ {0, 1}.
Let p be the fraction of indices i such that bi = b∗

i . The algorithm outputs
YES if p ≥ 1/2 + ε +

√
20n/�. Otherwise, it outputs NO.

The running time is clear. To prove correctness, we first notice that in the
YES case, the input to the ZGvU oracle is distributed identically to the ZGvU
input. It follows that for each i, Pr[b∗

i = bi] = 1/2+ δ. Furthermore, these events
are independent. Therefore, by the Chernoff-Hoeffding bound (Lemma 5),

Pr[p < 1/2 + ε +
√

20n/�] ≤ 2 exp(−�(δ − ε −
√

20n/�)2/10) ≤ 2−n ,

as needed.
On the other hand, in the NO case, by Lemma 2, yi is within statistical

distance ε of a uniformly random element in [0, 1)n. It follows that, regardless
of the behavior of the oracle, for each i, Pr[b∗

i = bi] ≤ 1/2 + ε, and again these
events are independent. Therefore, by the Chernoff-Hoeffding bound again,

Pr[p ≥ 1/2 + ε +
√

20n/�] ≤ 2 exp(−2n) ≤ 2−n ,

as needed.

(Note that the following definition is not simply the restriction of GapSVP to
rotations L of Zn—which would be a meaningless problem since all such L have
λ1(L) = 1. Instead, it is the problem of distinguishing Z

n from a lattice L with

Just How Hard Are Rotations of Zn? Algorithms and Cryptography 269

significantly larger λ1(L∗). Of course, since Z
n is self dual, and since one can

efficiently test whether a lattice is self dual, we could without loss of generality
restrict our attention to self-dual lattices and then equivalently work with λ1(L)
instead of λ1(L∗).)

Definition 6. For parameters ρ = ρ(n) > 0 and γ = γ(n) ≥ 1, the problem
(ρ, γ)-ZGapSVP is defined as follows. The input is a basis B = (b1, . . . , bn) ∈
R

n×n for a lattice L satisfying ‖bi‖ ≤ ρ. The goal is to output YES if L ∼= Z
n

and to output NO if λ1(L∗) > γ.

Theorem 11. For any ε = ε(n) with 2−n < ε < 1/2, ρ = ρ(n) > 0, and
γ = γ(n) ≥ 10

√
n/ log(n/ε), there is an efficient reduction from (ρ, γ)-ZGapSVP

to (α, ε, ρ)-ZGapSPP for α := γ
√

log(n/ε)/n/10.

Proof. The reduction simply calls its ZGapSPP oracle on its input, and outputs
whatever the oracle outputs. To see that this reduction is correct, it suffices to
consider the NO case. Indeed, by Lemma 3 if λ1(L∗) > γ, then ηε(L) <

√
n/γ ≤

10
√

n/ log(n/ε) · ηε(Zn)/γ = ηε(Zn)/α, so that the oracle must output NO.

4.3 Putting Everything Together

Finally, we put the reductions above together to obtain a correct public-key
encryption scheme that is secure assuming that ZGapSVP (or even ZGapSPP) is
hard.

Theorem 12. Let r :=
√

log n/(10π), and let d be as in Lemma 6. Then,
the above encryption scheme is correct, and for any s = s(n) > 0 and any
2−n < ε < n−ω(1) the scheme is secure either if (α, ε, ρ)-ZGapSPP is hard
for α := ηε(Zn)/r ≈ √

10 log(n/ε)/ log n and ρ := s/
√

(log 2n + 4)/π or if
(ρ, γ)-ZGapSVP is hard for γ := 10

√
n/ log(n/ε) · α ≈ √

10n/ log n.

5 Reductions and Provable Algorithms

In this section, we give a reduction from ZSVP to approximate (unique-)SVP. In
particular, our main result yields a randomized polynomial-time reduction from
ZSVP to γ-uSVP for any constant γ ≥ 1. By combining this reduction with a
known approximation algorithm for uSVP, we show that for any constant ε > 0
there is a 2n/2+o(n)-time algorithm for ZSVP.5 This improves exponentially over
the fastest known algorithm for SVP on general lattices [2], which runs in 2n+o(n)

time and was previously the fastest known algorithm even for the special case of
ZSVP. In fact, our 2n/2+o(n)-time algorithm works more generally for semi-stable
lattices whose minimum distance is not too large.

We note that our reduction is similar to the reduction from SVP to uSVP
in [36] though it works in a very different regime (we solve exact ZSVP using
5 We note again in passing that under a purely geometric conjecture we would in fact

obtain a running time of (4/3)n+o(n) ≈ 20.415n [37].

270 H. Bennett et al.

a γ-uSVP oracle for any constant γ, while [36] solves approximate SVP using a
γ-uSVP oracle for γ ≤ 1 + O(log n/n)).

Interpreted differently, our reduction also shows conditional hardness of
uSVP. Namely, if one were to hypothesize that there is no (possibly randomized)
polynomial-time algorithm for ZSVP, then it implies that there is no random-
ized polynomial-time algorithm for solving γ-uSVP for any constant γ ≥ 1. This
is notable because uSVP is not known to be NP-hard for any constant factor
greater than 1. We also note that our main reduction generalizes to arbitrary
lattices with few short vectors and may be of independent interest.

5.1 The Main Reduction and Algorithms

We next present our main reduction, from which we get our main algorithms.

Sampling using a γ-uSVP oracle Our reduction crucially uses the following
theorem, which shows how to use a γ-uSVP oracle to sample short primitive
vectors. It is very similar to results in [1,35], but those results are in a slightly
different form from what we need. See the full version of the paper [7] for a proof.

Theorem 13. For any γ = γ(n) ≥ 1 and r > 0, there is a polynomial-time
randomized algorithm with access to a γ-uSVP oracle that takes as input (a
basis of a) lattice L and an integer A′ ≥ A := Nprim(L, γr) and outputs a vector
y ∈ L such that if x ∈ L is a primitive vector with ‖x‖ ≤ r then

Pr[y = x] ≥ 1
200A′ log(100A′)

.

Furthermore, the algorithm makes a single query to its γ-uSVP oracle on a full-
rank sublattice of L.

We emphasize that Theorem 13 holds for any r > 0, but that r need not be
provided as input.

The Main Reduction. We now present our main reduction. Intuitively, it says
that exact SVP is not much harder than approximate uSVP on lattices with few
short vectors. Namely, it says that there is an algorithm for solving exact SVP
by making roughly A/G queries to a γ-uSVP oracle (and which uses roughly
A/G time overall), where A := Nprim(L, γ · λ1(L)) and G := Nprim(L, λ1(L)).6

Theorem 14. Let γ = γ(n) ≥ 1 and let L be a lattice of dimension n. Let G :=
Nprim(L, λ1(L)) and let A := Nprim(L, γ · λ1(L)). Then there is a randomized
Turing reduction from (exact) SVP on L to γ-uSVP that makes (A/G) ·poly(n)
queries to its γ-uSVP oracle, runs in (A/G) · poly(n) time overall, and makes
all oracle queries on full-rank sublattices of L. In particular, the reduction is
dimension-preserving.
6 We have used the standard mnemonic of G representing “good” vectors and A rep-

resenting “annoying” vectors, although here A representing “all” primitive vectors
shorter than γ · λ1(L), including the good vectors, is more appropriate. We note in
passing that 2G is the so-called kissing number of L.

Just How Hard Are Rotations of Zn? Algorithms and Cryptography 271

Proof. It suffices to prove the claim for γ ≤ 2n/2. Indeed, suppose that the claim
is true for γ = 2n/2. Then we can solve SVP on L using Nprim(L, 2n/2 · λ1(L)) ·
poly(n) queries to a 2n/2-uSVP oracle and in Nprim(L, 2n/2 ·λ1(L)) ·poly(n) time
overall. But, because the 2n/2-uSVP oracle can be instantiated with a poly(n)-
time algorithm (the LLL algorithm [23]), this implies that there is an algorithm
that solves SVP on L and runs in Nprim(L, 2n/2 · λ1(L)) · poly(n) time (without
using any oracles), and therefore an algorithm that runs in Nprim(L, γ · λ1(L)) ·
poly(n) time and has access to a γ-uSVP oracle for any γ > 2n/2.

The reduction from SVP on L to γ-uSVP for γ ≤ 2n/2 works as follows:

1. Guess G′ satisfying G/2 ≤ G′ ≤ G, and guess A′ satisfying A ≤ A′ ≤ 2A.
2. Sample K := �200A′ log(100A′)/G′�·n vectors y1, . . . ,yK using the algorithm

in Theorem 13 with (a basis of) L and A′ as input.
3. Return a shortest vector among the vectors y1, . . . ,yK .

Due to space constraints, we defer proving correctness and performing run-
time analysis to the full versionof the paper [7].

Algorithms from Theorem. 14 Let TuSVP(γ, n) denote the fastest runtime of
a (possibly randomized) algorithm for γ-uSVP on lattices of dimension n. By
combining the reduction in Theorem 14, the point counting bound for Z

n in
Proposition 1, the reduction from approximate uSVP to approximate GapSVP
from Theorem 4, and the algorithm for (1.93 + o(1))-uSVP from Theorem 5 we
get the following algorithmic result for ZSVP.

Corollary 2. For 1 ≤ γ ≤ √
n, there is a randomized algorithm that solves

ZSVP on lattices of dimension n in (2e3n/γ2)γ2 · TuSVP(γ, n) · poly(n) time. In
particular, there is a randomized algorithm that solves ZSVP on lattices L of
dimension n in 2n/2+o(n) time.

Proof. By the rotational invariance of the �2 norm and Proposition 1,

A := Nprim(L, γ · λ1(L)) = Nprim(Zn, γ · λ1(Zn)) ≤ N(Zn, γ) ≤ (2e3n/γ2)γ2
.

The main result then follows immediately from Theorem 14.
The 2n/2+o(n)-time algorithm for ZSVP follows by instantiating the main

result with TuSVP(1.93+o(1), n) ≤ 2n/2+o(n), which follows by combining the fast
algorithm for (1.93+o(1))-GapSVP from Theorem 5 with the efficient dimension-
preserving reduction from uSVP to GapSVP in Thoerem 4.

We again emphasize that the 2n/2+o(n)-time algorithm in Corollary 2 sub-
stantially improves over the 2n+o(n)-time SVP algorithm for general lattices from
[2], which was also the previous fastest known algorithm for ZSVP.

In fact, Theorem 14 leads to a 2n/2+o(n)-time algorithm for SVP on a much
larger class lattices than rotations of Zn, namely, on semi-stable lattices L with
λ1(L) not too large. (Recall that a semi-stable lattice L is one with det(L′) ≥ 1
for all sublattices L′ ⊆ L.) Namely, combining Theorem 14 with the point-
counting bound for semi-stable lattices in Proposition 2 gives such an algorithm.

272 H. Bennett et al.

Corollary 3. Let γ = γ(n) ≥ 1 and let t := 10(log n + 2). There is a ran-
domized algorithm that solves SVP on semi-stable lattices L of dimension n
in (3eπt2(γ·λ1(L))2/2) · TuSVP(γ, n) · poly(n) time. In particular, there is a ran-
domized algorithm that solves SVP on semi-stable lattices of dimension n with
λ1(L) ≤ o(

√
n/ log n) in 2n/2+o(n) time.

Proof. The main result follows by plugging r := γ · λ1(L) into Proposition 2
to upper bound A := Nprim(L, γ · λ1(L)) and then invoking Theorem 14. The
2n/2+o(n)-time algorithm for semi-stable lattices of dimension n with λ1(L) ≤
o(

√
n/ log n) follows by noting that, if γ = O(1) (in particular, if γ = 1.93+o(1)),

then eπt2(γ·λ1(L))2/2 = 2o(n). Indeed, the claim then follows by again using the
fact that TuSVP(1.93 + o(1), n) ≤ 2n/2+o(n).

We note that Theorem 14 and Corollaries 2 and 3 answer a special case of an
interesting question of Ducas and van Woerden [15], which asks whether there is a
reduction from exact SVP on “f -unusual” lattices—essentially lattices for which
Minkowski’s Theorem (or, more-or-less equivalently, the Gaussian heuristic) is
loose by a factor of at least f—to (approximate) uSVP. Semi-stable lattices L are
Ω(

√
n/λ1(L))-unusual in this sense (in particular, rotations of Zn are Θ(

√
n)-

unusual), and so we answer a special case of this question. Our results do not
hold for f -unusual lattices more generally, essentially because a lattice that is
loose with Minkowski’s Theorem may nevertheless have a dense sublattice (i.e.,
may not be semi-stable).

Hardness from Thoerem. 14 Corollaries 2 and 3 combine the reduction in
Theorem 14 with algorithms for γ-uSVP to get algorithms for SVP on rotations
of Zn and certain semi-sstable lattices. However, interpreting the reduction in the
other direction—assuming that SVP on rotations of Zn and certain semi-stable
lattices is hard—leads to new hardness results for approximate uSVP. Namely,
if one assumes that there is no randomized polynomial-time algorithm for ZSVP
then there is also no randomized polynomial-time algorithm for solving γ-uSVP
for any constant γ ≥ 1. This is notable because γ-uSVP is not known to be
NP-hard (or to the best of our knowledge, known to be hard under any other
generic complexity-theoretic assumption) for any constant γ > 1. Indeed, it is
only known to be NP-hard (under randomized reductions) for γ = 1+1/poly(n);
see [3,36]. Similarly, if one assumes that there is no randomized quasipolynomial-
time algorithm for SVP on stable lattices with sufficiently small minimum dis-
tance then there is also no randomized quasipolynomial-time algorithm for solv-
ing γ-uSVP for any quasipolynomial γ.

We also get similar hardness for the α-Bounded Distance Decoding Problem
(α-BDD), the problem in which, given a (basis of a) lattice L and a target point
t satisfying dist(t,L) ≤ α · λ1(L) as input, the goal is to output a closest lattice
point to t (i.e., x ∈ L satisfying ‖t − x‖ = dist(t,L)).

Corollary 4. The following hardness results hold for γ-uSVP and α-BDD:

1. If there is no randomized poly(n)-time algorithm for ZSVP, then there is no
randomized poly(n)-time algorithm for γ-uSVP for any constant γ ≥ 1 or for
α-BDD for any constant α > 0.

Just How Hard Are Rotations of Zn? Algorithms and Cryptography 273

2. If there is no randomized 2poly(log n)-time algorithm for SVP on stable lat-
tices L with λ1(L) ≤ poly(log n), then there is no randomized 2poly(log n)-time
algorithm for γ-uSVP for any γ ≤ 2poly(log n) or for α-BDD for any α with
(1/α) ≤ 2poly(log n).

Proof. The contrapositive of the claims for uSVP follow immediately from
Corollaries 2 and 3. The claims for BDD follow from this by additionally not-
ing that [28] gives an efficient reduction from γ-uSVP to (1/γ)-BDD for any
γ = γ(n) ≤ poly(n).

6 Experiments

The code and raw data for our experiments can be found at [6].

6.1 Experiments on Different Procedures for Generating Bases

In this section, we present experimental results examining the effectiveness of
standard basis reduction algorithms for solving ZSVP. Specifically, we generate
bases of Zn (which we then treat as instances of ZSVP) using three procedures:
discrete-Gaussian-based sampling, unimodular-matrix-product-based sampling,
and Bézout-coefficient-based sampling. Using each of these procedures, we gen-
erate bases in dimensions n = 128, 256, and 512 with a variety of settings for
procedure-specific parameters.7 These results extend those in [9], which included
experiments on bases generated using the second two procedures.

For each basis generating procedure (and corresponding set of parameters),
we run the LLL algorithm and BKZ reduction algorithm (as implemented in
fplll [16]) with different block sizes. For BKZ, we use block sizes 3, 4, 5, 10,
and 20—though in dimension 512, we left out block size 20 for most of our
experiments due to computational constraints. We often treat LLL as “BKZ
with block size 2” (though this is not strictly true). We run these algorithms
sequentially. That is, we run BKZ with block size 3 on the matrix returned by
the LLL algorithm, we run BKZ with block size 4 on the matrix returned by
BKZ with block size 3, and so forth.

For each parameter set of each basis generation procedure, we performed this
experiment twenty times, and we report below on the smallest block size that
found a shortest non-zero vector in the lattice (where, again, we think of LLL
as BKZ with block size 2), if one was found. More data can be found in the
associated repository [6].

At a high level, the data tell a relatively simple story. We were able to find
a shortest vector in all cases in dimension 128 (often with block size 10). In
dimensions 256 and 512, we were generally unable to find shortest vectors when
the basis was generated with “reasonable parameters,” where the definition of
which parameters settings are reasonable of course depends on the procedure
used to generate the basis.
7 We note that these experiments were actually performed on bases of Zn itself—not

rotations of Zn—because this allows us to work with bases with integer entries. This
does not affect our results because all of our algorithms are invariant under rotation.

274 H. Bennett et al.

Discrete Gaussian-Based Sampling. We start by presenting the results of
experiments performed on bases generated essentially as described in Sect. 3
(which is also what we use for our encryption scheme in Sect. 4). However, we
make three minor modifications. First, instead of sampling vectors one at a time
until we find a generating set of Zn, we simply sample n+10 vectors. Empirically,
we found that this yielded a generating set with high probability. Notice that
this is much better than what is proven in Lemma 4. See also [31].

Second, recall that the basis sampling procedure in Sect. 3 requires an algo-
rithm A that converts such a generating set into a basis (and is rotation invari-
ant), as does our description of the sampling technique below. Since LLL is such
an algorithm, and since we intend to run LLL anyway, we simply skip this step
and run LLL directly on the generating set. Third, we do not bother to apply a
rotation to the basis, because the algorithms that we are running are invariant
under rotation (as noted in Footnote 7).

Table 1. Experimental results for basis reduction performed on bases generated using
the discrete-Gaussian-based construction described in Sect. 6.1. The entries under each
block size represent the number of times (out of a total of twenty experiments) that a
shortest non-zero vector was found with a given block size (but no smaller block size),
and the entries in the “unbroken” column represent the number of times that we failed
to find a shortest non-zero vector. Non-zero entries are highlighted.

block size

n s 2 3 4 5 10 20 unbroken

128 1 20 0 0 0 0 0 0

128 10 0 0 1 1 18 0 0

128 1000 0 0 0 3 17 0 0

256 1 2 2 1 0 3 3 9

256 10 0 0 0 0 0 0 20

256 1000 0 0 0 0 0 0 20

512 1 0 0 0 0 0 0 20

512 10 0 0 0 0 0 0 20

512 1000 0 0 0 0 0 0 20

In our experiments, we took s ∈ {1, 10, 1000}. See Table 1. Setting s = 1
is not a “reasonable” parameter choice, as the resulting vectors are unreason-
ably sparse. (Each coordinate of each vector in the generating set is zero with
probability roughly 0.92.) In particular, we would certainly not recommend using
parameter s = 1 for cryptography. Nevertheless, interestingly, in all twenty runs,
we were actually unable to find a shortest vector even for s = 1 in dimension
n = 512.

For s = 10 and s = 1000, we found shortest vectors in dimension n = 128
(as we did in all experiments in n = 128 dimensions) and failed to find shortest
vectors in dimensions n = 256 and n = 512. The data suggest that there was not
too much difference between parameter s = 10 and parameter s = 1000. E.g., in
dimension n = 128, there is no obvious difference between the block size needed

Just How Hard Are Rotations of Zn? Algorithms and Cryptography 275

to break the s = 10 case and the block size needed to break the s = 1000 case.
(In contrast, LLL was able to break the s = 1 case.)

Unimodular Matrix Product Sampling. The second basis sampling tech-
nique that we analyze was proposed in [9], where it is called Algorithm 3. To
introduce it, we start by discussing a family of embedding maps φk1,...,kd

:
R

d×d → R
n×n for size d subsets of indices {k1, . . . , kd} ⊆ {1, . . . , n} that embed

a smaller d × d matrix H into a larger n × n matrix φ(H):

(φk1,...,kd
(H))i′,j′ =

{
Hi,j if i′ = ki and j′ = kj for some i, j ≤ d;
1i′=j′ otherwise,

where H = (Hi,j) ∈ R
d×d and φk1,...,kd

(H) = H ′ = (H ′
i′,j′) ∈ R

n×n. With this,
we can define the next basis sampling technique, which we call “unimodular
matrix product” sampling.

The algorithm takes as input a dimension n, a block size 2 ≤ d ≤ n, an
entry magnitude size bound B ≥ 1, and a word length L ≥ 1. It then samples L
uniformly random matrices M1, . . . ,ML from GLd(Z) ∩ [−B,B]d×d. I.e., each
Mi is sampled from the set of all integer matrices with entries of magnitude
at most B and determinant ±1. Additionally, it samples L uniformly random
subsets K1, . . . ,KL ⊆ {1, . . . , n} of d indices with Ki = {k

(i)
1 , . . . , k

(i)
d }. Finally,

it outputs the basis A :=
∏L

i=1 φ
k
(i)
1 ,...,k

(i)
d

(Mi). (We also refer the reader to the
description of this algorithm in [9, Algorithm 3].)

In our experiments, we considered all combinations of parameters d ∈
{2, 3, 4}, B = 1, and L ∈ {10n, 20n, 30n, 40n, 50n}, except that we did not per-
form experiments with some of the larger parameter choices when n = 512 when
our experiments failed to find short vectors with smaller parameters. See Table 2.
(These parameter settings are roughly in line with those studied in in [9].)

We refer the reader to the full version [7] for discussion of our results and a
comparison with those in [9].

Bézout-Coefficient-Based Sampling. We next describe our third basis-
sampling algorithm, which was suggested by Joseph Silverman and studied as
Algorithm 4 in [9]. The algorithm is based on the following observation. Given
the matrix M = (m1, . . . ,mn−1) ∈ Z

n×(n−1), if (and only if) all the minors in
M of size n − 1 have no non-trivial common factor, then there exists a vector
a for which the matrix M ′ := (m1, . . . ,mn−1,a) is unimodular. Moreover, if
this is the case, then we can find such a vector a efficiently using the extended
Euclidean algorithm.

Indeed, with these observations, this Bézout-coefficient-based sampling algo-
rithm is straightforward to describe. It takes as input a dimension n and an entry
magnitude size bound B ≥ 1. It repeatedly samples a uniformly random matrix
M = (m1, . . . ,mn−1) ∈ {−B,−(B − 1), . . . , B − 1, B}n×(n−1) until the minors
of M of size n−1 have no non-trivial common factors. It then uses the extended

276 H. Bennett et al.

Table 2. Experimental results for basis reduction performed on bases generated using
the product of sparse unimodular matrices method described in Sect. 6.1. The entries
under each block size represent the number of times (out of a total of twenty trials)
that a shortest non-zero vector was found with a given block size (but no smaller block
size), and the entries in the “unbroken” column represent the number of times that we
failed to find a shortest non-zero vector. Non-zero entries are highlighted. Cells that
are grayed out represent block sizes that were not tested.

block size

n B L d 2 3 4 5 10 20 unbroken

128 1 1280 2 20 0 0 0 0 0 0

128 1 2560 2 0 0 1 3 16 0 0

128 1 3840 2 0 0 1 5 14 0 0

128 1 5120 2 0 0 1 3 16 0 0

128 1 6400 2 0 0 0 2 18 0 0

128 1 1280 3 0 0 2 5 13 0 0

128 1 2560 3 0 0 0 4 16 0 0

128 1 3840 3 0 0 1 5 14 0 0

128 1 5120 3 0 0 1 4 15 0 0

128 1 6400 3 0 0 1 4 15 0 0

128 1 1280 4 0 0 1 5 14 0 0

128 1 2560 4 0 0 3 5 12 0 0

128 1 3840 4 0 0 2 4 14 0 0

128 1 5120 4 0 1 3 2 14 0 0

128 1 6400 4 0 0 0 4 16 0 0

block size

n B L d 2 3 4 5 10 20 unbroken

256 1 2560 2 20 0 0 0 0 0 0

256 1 5120 2 0 0 0 0 0 0 20

256 1 7680 2 0 0 0 0 0 0 20

256 1 10240 2 0 0 0 0 0 0 20

256 1 12800 2 0 0 0 0 0 0 20

256 1 2560 3 0 0 0 0 0 0 20

256 1 5120 3 0 0 0 0 0 0 20

256 1 7680 3 0 0 0 0 0 0 20

256 1 10240 3 0 0 0 0 0 0 20

256 1 12800 3 0 0 0 0 0 0 20

256 1 2560 4 0 0 0 0 0 0 20

256 1 5120 4 0 0 0 0 0 0 20

256 1 7680 4 0 0 0 0 0 0 20

256 1 10240 4 0 0 0 0 0 0 20

256 1 12800 4 0 0 0 0 0 0 20

block size

n B L d 2 3 4 5 10 20 unbroken

512 1 5120 2 20 0 0 0 0 0

512 1 10240 2 20 0 0 0 0 0

512 1 15360 2 0 0 0 0 0 20

512 1 20480 2 0 0 0 0 0 20

512 1 25600 2 0 0 0 0 0 20

512 1 5120 3 0 0 0 0 0 20

512 1 10240 3 0 0 0 0 0 20

512 1 15360 3 0 0 0 0 0 20

512 1 5120 4 0 0 0 0 0 20

Euclidean algorithm to compute a such that M ′ := (m1, . . . ,mn−1,a) is uni-
modular, and outputs M ′. (We also refer the reader to the description of this
algorithm in [9, Algorithm 4].) In our experiments, we took B ∈ {1, 10, 100}. See
Table 3.

We refer the reader to the full version [7] for discussion of minor differences
between our implmentation and the implementation in [9].

Our experiments showed that the effect of the parameter B was not dis-
cernible in our experiments. Indeed, for dimensions 256 and 512, our algorithms
failed to find a shortest vector for all choices of B, including B = 1. And, in
dimension 128, we found a shortest vector in all cases (as we always did), but
the block size needed shows no obvious dependence on B. These results are quite
similar to those in [9].

Just How Hard Are Rotations of Zn? Algorithms and Cryptography 277

Table 3. Experimental results for basis reduction performed on bases generated using
the Bézout-coefficient-based construction described in Sect. 6.1. The entries under each
block size represent the number of times (out of a total of twenty experiments) that
a shortest non-zero vector was found with a given block size (but no smaller block
size), and the entries in the “unbroken” column represent the number of times that we
failed to find a shortest non-zero vector. Non-zero entries are highlighted. Cells that
are grayed out represent block sizes that were not tested.

block size

n B 2 3 4 5 10 20 unbroken

128 1 0 0 0 3 17 0 0

128 10 0 0 1 2 17 0 0

128 100 0 0 1 6 13 0 0

256 1 0 0 0 0 0 0 20

256 10 0 0 0 0 0 0 20

256 100 0 0 0 0 0 0 20

512 1 0 0 0 0 0 20

512 10 0 0 0 0 0 20

512 100 0 0 0 0 0 20

6.2 A Threshold Phenomenon

In our data, we noticed a phenomenon. We found that the shortest vector in the
bases returned by our basis reduction algorithms almost always had either length
one or had length larger than some threshold τ . After a preliminary version
of this work was published, we learned about a body of work studying such
phenomena and providing compelling heuristic explanations for it. And, Ducas,
Postlethwaite, Pulles, and van Woerden did additional experiments shedding
much more light on this phenomenon [14].

In an earlier version of this work, we speculated more about the causes of this
phenomenon and guessed that the threshold was roughly τ ≈ √

n/2, but [14] give
strong evidence that it actually happens at τ ≈ Θ(n). We now simply include
the results of our experiments in Fig. 1 and refer the reader to [14] for more
information and additional references.

6.3 Sieving Experiments

Finally, we ran experiments with heuristic sieving on Z
n. In some sense, Zn is

a particularly interesting lattice for heuristic sieving algorithms because Z
n vio-

lates the Gaussian heuristic, which says that the number of non-zero lattice vec-
tors of length at most r (in a determinant-one lattice) should be approximately
equal to the volume of a ball with radius r, which is roughly (2πer2/n)n/2 in
large dimensions. Of course, Zn completely violates this for small radii. E.g., Zn

has 2n non-zero lattice vectors with length at most 1, while the ball of radius
1 has volume roughly (2πe/n)n/2, which is much less than one. More generally,
for small radii r � √

n, Zn has roughly (Cn/r2)r2
points in a ball of radius r

278 H. Bennett et al.

Fig. 1. On the left is a histogram of the squared norm of the shortest vector found by
BKZ with block size ≤ 5 for discrete Guassian bases with n = 128 and s = 1000. On
the right is the same histogram without the trials where this norm was 1.

(as in Proposition 1), which is of course much larger than the volume of such a
ball.

One might not expect this to cause actual problems for sieving algorithms,
but it is worth testing. So, we ran experiments using the Gauss sieve, due to
Micciancio and Voulgaris [30], running trials in dimensions 20 ≤ n ≤ 50 with
Gaussian parameters s ∈ {10, 100, 1000}. We ran twenty trials with each pair of
values (n, s) (for a total of 20 · 31 · 3 = 1680 trials). We found that the behavior
of this sieving procedure on Z

n was quite similar to its predicted behavior on
lattices that do satisfy the Gaussian heuristic.

Of course, the most important metric of a sieving algorithm is whether it
actually finds a shortest non-zero vector. We adopted the common heuristic of
running the algorithm until it finds the zero vector (i.e., until there is a collision),

Fig. 2. Scatter plot of the number of vectors sampled by the sieving algorithm in
different dimensions with different parameters s, together with the fitted line 6.4·1.15n.
(The fact that the three different parameter values are not distinguishable in the plot
reflects the fact that the number of sampled vectors was essentially independent of the
parameter size, which is to be expected.)

Just How Hard Are Rotations of Zn? Algorithms and Cryptography 279

and we studied how often the algorithm found a shortest non-zero vector before
this happened. It would be natural to guess that this should happen in all but a
1/(2n+1) fraction of the trials—i.e., we assume that the first vector found with
length either 0 or 1 is chosen uniformly at random from the 2n+1 such vectors.
This heuristic matches the data reasonably well.

Next, the number of vectors N sampled by the algorithm (a measure of
its space complexity) was well approximated by N ≈ 6.4 · 1.15n, as shown
in Fig. 2. This is completely in line with the predicted behavior of roughly
N = O∗((4/3)n/2) ≈ 1.15n (even though this prediction is partially based on
a heuristic that does not directly apply to Z

n), and in line with the numbers
reported by Micciancio and Voulgaris and others for sieving experiments on
other lattices. So, if sieving algorithms perform differently on Z

n, the difference
is rather small. This result did not noticeably depend on the parameter s—i.e.
on the lengths of the vectors sampled—which is also what one would expect from
a basic heuristic model.

Fig. 3. The number of comparisons made by Micciancio and Voulgaris’s Gauss sieve
algorithm on Z

n with different Gaussian parameters s. The trend lines are (roughly)
500 · 1.37n, 1000 · 1.37n, and 1500 · 1.37n respectively.

The running time of the algorithm is also well within what we would expect.
For example, for parameter s = 10, our running times were well approximated
by 1.40n/43000 seconds (we did not attempt to optimize our code for speed),
compared to the expected running time of O∗((4/3)n) ≈ 1.33n, and the running
time appears to be proportional to the logarithm of the parameter s, which is
again what would be expected. Of course, this running time is subject to many
minor implementation details. A less fickle measure is the number of comparisons
made by the algorithm (i.e., the number of times that the algorithm tests whether
subtracting one vector from another will make the latter vector shorter). For
this data the simple exponential fit is quite tight and relatively close to what
we expect. E.g., for s = 10, the number of comparisons is well approximated by
500 · 1.37n; for s = 100, the fit was 1000 · 1.37n; and for s = 1000, the fit was

280 H. Bennett et al.

1500 · 1.37n. See Fig. 3. The slightly larger base of the exponent can likely be
explained by lower-order effects, which would require data from a wider range
of dimensions to fully explore.

References

1. Aggarwal, D., Chen, Y., Kumar, R., Li, Z., Stephens-Davidowitz, N.: Dimension-
preserving reductions between SVP and CVP in different p-norms. In: SODA
(2021)

2. Aggarwal, D., Dadush, D., Regev, O., Stephens-Davidowitz, N.: Solving the short-
est vector problem in 2n time using discrete Gaussian sampling. In: STOC (2015)

3. Aggarwal, D., Dubey, C.K.: Improved hardness results for unique shortest vector
problem. Inf. Process. Lett. 116(10), 631–637 (2016)

4. Albrecht, M.R., Göpfert, F., Virdia, F., Wunderer, T.: Revisiting the expected cost
of solving uSVP and applications to LWE. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10624, pp. 297–322. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70694-8 11

5. Aono, Y., Espitau, T., Nguyen, P.Q.: Random lattices: theory and practice.
https://espitau.github.io/bin/random lattice.pdf

6. Bennett, H., Ganju, A., Peetathawatchai, P., Stephens-Davidowitz, N.: Experi-
ments on solving SVP on rotations of Z

n (2021). https://github.com/poonpura/
Experiments-on-Solving-SVP-on-Rotations-of-Z-n

7. Bennett, H., Ganju, A., Peetathawatchai, P., Stephens-Davidowitz, N.: Just how
hard are rotations of Zn? Algorithms and cryptography with the simplest lattice
(2021). https://eprint.iacr.org/2021/1548

8. Bennett, H., Little, R.: Revisiting the BGPS rotations-of-Zn cryptosystem: An
implementation, challenges, and attacks. Preprint (2023)

9. Blanks, T.L., Miller, S.D.: Generating cryptographically-strong random lattice
bases and recognizing rotations of Z

n. In: Cheon, J.H., Tillich, J.-P. (eds.)
PQCrypto 2021 2021. LNCS, vol. 12841, pp. 319–338. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-81293-5 17

10. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of Learning with Errors. In: STOC (2013)

11. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lat-
tice basis. J. Cryptol. 25(4), 601–639 (2012), preliminary version in EUROCRYPT
2010. https://doi.org/10.1007/978-3-642-13190-5 27

12. Chandrasekaran, K., Gandikota, V., Grigorescu, E.: Deciding orthogonality in
Construction-A lattices. SIAM J. Discret. Math. 31(2), 1244–1262 (2017)

13. Dachman-Soled, D., Ducas, L., Gong, H., Rossi, M.: LWE with side information:
attacks and concrete security estimation. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020. LNCS, vol. 12171, pp. 329–358. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-56880-1 12

14. Ducas, L., Postlethwaite, E.W., Pulles, L.N., van Woerden, W.: Hawk: Module LIP
makes lattice signatures fast, compact and simple. In: Asiacrypt (2023). https://
doi.org/10.1007/978-3-031-22972-5 3

15. Ducas, L., van Woerden, W.: On the lattice isomorphism problem, quadratic forms,
remarkable lattices, and cryptography. In: EUROCRYPT (2022). https://doi.org/
10.1007/978-3-031-07082-2 23

https://doi.org/10.1007/978-3-319-70694-8_11
https://doi.org/10.1007/978-3-319-70694-8_11
https://espitau.github.io/bin/random_lattice.pdf
https://github.com/poonpura/Experiments-on-Solving-SVP-on-Rotations-of-Z-n
https://github.com/poonpura/Experiments-on-Solving-SVP-on-Rotations-of-Z-n
https://eprint.iacr.org/2021/1548
https://doi.org/10.1007/978-3-030-81293-5_17
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-030-56880-1_12
https://doi.org/10.1007/978-3-030-56880-1_12
https://doi.org/10.1007/978-3-031-22972-5_3
https://doi.org/10.1007/978-3-031-22972-5_3
https://doi.org/10.1007/978-3-031-07082-2_23
https://doi.org/10.1007/978-3-031-07082-2_23

Just How Hard Are Rotations of Zn? Algorithms and Cryptography 281

16. FPLLL development team: fplll, a lattice reduction library, Version: 5.4.1. https://
github.com/fplll/fplll,

17. Geißler, K., Smart, N.P.: Computing the M = UTU integer matrix decomposition.
In: Cryptography and Coding (2003)

18. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC (2008)

19. Gentry, C., Szydlo, M.: Cryptanalysis of the revised NTRU signature scheme. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 299–320. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 20

20. Haviv, I., Regev, O.: On the lattice isomorphism problem. In: SODA (2014)
21. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.

Am. Stat. Assoc. 58, 13–30 (1963)
22. Hunkenschröder, C.: Deciding whether a lattice has an orthonormal basis is in

co-NP (2019)
23. Lenstra, A.K., Lenstra, H.W., Jr., Lovász, L.: Factoring polynomials with rational

coefficients. Math. Ann. 261(4), 515–534 (1982)
24. Lenstra, H.W., Silverberg, A.: Revisiting the gentry-Szydlo algorithm. In: Garay,

J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 280–296. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 16

25. Lenstra, H.W., Silverberg, A.: Lattices with symmetry. J. Cryptol. 30(3), 760–804
(2017)

26. Li, J., Nguyen, P.Q.: Approximating the densest sublattice from Rankin’s inequal-
ity. LMS J. Comput. Math. 17(A), 92–111 (2014)

27. Li, J., Nguyen, P.Q.: Computing a lattice basis revisited. In: ISAAC (2019)
28. Lyubashevsky, V., Micciancio, D.: On bounded distance decoding, unique shortest

vectors, and the minimum distance problem. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 577–594. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-03356-8 34

29. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. SIAM J. Comput. 37(1), 267–302 (2007)

30. Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the Shortest
Vector Problem. In: SODA (2010)

31. Nguyen, P.Q., Pujet, L.: The probability of primitive sets and generators in lattices
(2022)

32. Peikert, C.: A decade of lattice cryptography. Foundations Trends Theoret. Com-
put. Sci. 10(4), 283–424 (2016)

33. Regev, O.: LLL algorithm (2004). https://cims.nyu.edu/regev/teaching/lattices
fall 2004/ln/lll.pdf

34. Regev, O., Stephens-Davidowitz, N.: A reverse Minkowski theorem. In: STOC
(2017)

35. Stephens-Davidowitz, N.: Discrete Gaussian sampling reduces to CVP and SVP.
In: SODA (2016)

36. Stephens-Davidowitz, N.: Search-to-decision reductions for lattice problems with
approximation factors (slightly) greater than one. In: APPROX (2016)

37. Stephens-Davidowitz, N.: Lattice algorithms (2020). https://www.youtube.com/
watch?v=o4Pl-0Q5-q0, talk as part of the Simons Institute’s semester on lattices

38. Szydlo, M.: Hypercubic lattice reduction and analysis of GGH and NTRU sig-
natures. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 433–448.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 27

https://github.com/fplll/fplll,
https://github.com/fplll/fplll,
https://doi.org/10.1007/3-540-46035-7_20
https://doi.org/10.1007/978-3-662-44371-2_16
https://doi.org/10.1007/978-3-642-03356-8_34
https://doi.org/10.1007/978-3-642-03356-8_34
https://cims.nyu.edu/regev/teaching/lattices_fall_2004/ln/lll.pdf
https://cims.nyu.edu/regev/teaching/lattices_fall_2004/ln/lll.pdf
https://www.youtube.com/watch?v=o4Pl-0Q5-q0
https://www.youtube.com/watch?v=o4Pl-0Q5-q0
https://doi.org/10.1007/3-540-39200-9_27

M-SIDH and MD-SIDH: Countering
SIDH Attacks by Masking Information

Tako Boris Fouotsa1(B) , Tomoki Moriya2 , and Christophe Petit3,4

1 LASEC-EPFL, Lausanne, Switzerland
tako.fouotsa@epfl.ch

2 The University of Tokyo, Tokyo, Japan
tomoki moriya@mist.i.u-tokyo.ac.jp

3 Université Libre de Bruxelles, Brussels, Belgium
Christophe.Petit@ulb.be

4 University of Birmingham, Birmingham, UK

Abstract. The SIDH protocol is an isogeny-based key exchange proto-
col using supersingular isogenies, designed by Jao and De Feo in 2011.
The protocol underlies the SIKE algorithm which advanced to the fourth
round of NIST’s post-quantum standardization project in May 2022. The
algorithm was considered very promising: indeed the most significant
attacks against SIDH were meet-in-the-middle variants with exponential
complexity, and torsion point attacks which only applied to unbalanced
parameters (and in particular, not to SIKE).

This security picture dramatically changed in August 2022 with new
attacks by Castryck-Decru, Maino-Martindale and Robert. Like prior
attacks on unbalanced versions, these new attacks exploit torsion point
information provided in the SIDH protocol. Crucially however, the new
attacks embed the isogeny problem into a similar isogeny problem in a
higher dimension to also affect the balanced parameters. As a result of
these works, the SIKE algorithm is now fully broken both in theory and
in practice.

Given the considerable interest attracted by SIKE and related pro-
tocols in recent years, it is natural to seek countermeasures to the new
attacks. In this paper, we introduce two such countermeasures based
on partially hiding the isogeny degrees and torsion point information in
the SIDH protocol. We present a preliminary analysis of the resulting
schemes including non-trivial generalizations of prior attacks. Based on
this analysis we suggest parameters for our M-SIDH variant with public
key sizes of 4434, 7037 and 9750 bytes respectively for NIST security
levels 1, 3, 5.

Keywords: Isogenies · SIDH attacks · Countermeasures · M-SIDH ·
MD-SIDH

1 Introduction

In 1994, Peter Shor [35] described a polynomial quantum algorithm to solve the
integer factorization problem and the discrete logarithm problem. This implies
c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14008, pp. 282–309, 2023.
https://doi.org/10.1007/978-3-031-30589-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30589-4_10&domain=pdf
http://orcid.org/0000-0003-1821-8406
http://orcid.org/0000-0002-7845-4737
http://orcid.org/0000-0003-3482-6743
https://doi.org/10.1007/978-3-031-30589-4_10

M-SIDH and MD-SIDH: Countering SIDH Attacks by Masking Information 283

that the widely deployed cryptographic protocols we use today would become
vulnerable in presence of a large-scale quantum computer. To mitigate this
threat, research on post-quantum cryptography, namely cryptographic protocols
that will hopefully remain secure against both classical and quantum comput-
ers, has considerably developed in the last two decades. Several standardization
competitions were initiated, among which the NIST PQC [29]. Many new can-
didates for post-quantum hard problems have been suggested to date based on
lattices, codes, isogenies, multivariate systems of equations, and other problems.

Isogenies are maps between elliptic curves. For cryptographic applications,
we restrict ourselves to curves defined over finite fields Fq. When there exists an
isogeny φ : E → E′, we say the elliptic curves E and E′ are isogenous. There
are infinitely many isogenies connecting two isogenous elliptic curves. The pure
isogeny problem is stated as follows.

Problem 1. Given two isogenous elliptic curves E and E′, compute an isogeny
from E to E′.

An isogeny from a curve E to itself is called an endomorphism of E, and the
set of all the endomorphisms of E (together with the 0 map) is called the endo-
morphism ring of E.

Over finite fields, there are two categories of elliptic curves, namely ordinary
elliptic curves and supersingular elliptic curves. The endomorphism ring of any
ordinary curve is an order in a quadratic imaginary field (hence is commutative),
whereas the endomorphism ring of a supersingular curve is a maximal order in
a quaternion algebra (hence is non-commutative). Isogenies connect ordinary
curves between themselves and supersingular curves between themselves.

There is a straightforward adaptation of the well-known Diffie-Hellman key
exchange protocol to isogenies in the ordinary/commutative case. This is in fact
what is done in isogeny based schemes like CRS [14,34], CSIDH [8], OSIDH [10]
and derivatives. The high level idea is as follows: there is a starting curve E0.
Alice selects a secret isogeny φA : E0 → EA, and Bob selects a secret isogeny
φB : E0 → EB . Both parties exchange EA and EB . Each party recomputes
their secret isogeny from the other party’s public curve. Since the isogenies “are
commutative”, they get the same end curve EAB (up to isomorphism) whose
j-invariant is used as the shared secret. Note that the isogeny EA → EAB

computed by Alice is not exactly the isogeny φA since they do not have the
same domain and codomain. This isogeny is in general denoted by φ′

A. Similarly,
Bob’s isogeny is also denoted by φ′

B . This is illustrated in Fig. 1 where we have
φ′

A ◦ φB = φ′
B ◦ φA.

When it comes to using supersingular curves, designing a Diffie-Hellman type
key exchange is less straightforward because their endomorphism rings are non-
commutative. In 2011, Jao and De Feo [24] had a brilliant idea on how to obtain
a commutative diagram in the supersingular case. To achieve this goal:

1. One fixes the respective degrees A and B of the isogenies φA and φB , with A
and B coprime;

2. Alice reveals the images of a basis of the B-torsion of E0 (that is E0[B]), and
Bob reveals the image of a basis of the A-torsion of E0 (that is E0[A]).

284 T. B. Fouotsa et al.

E0 EA

EB EAB

φA

φ′
B

φB

φ′
A

Fig. 1. Generic commutative isogeny key exchange.

This idea led to the Supersingular Isogeny Diffie-Hellman protocol (SIDH),
which has received a lot of attention in the last decade. This protocol and other
isogeny-based schemes are attractive for their very compact secret and public
keys. This has been one of the most valuable advantages of SIKE, a Key Encapsu-
lation Mechanism (KEM) derived from SIDH, compared to other post-quantum
KEMs. SIKE became widely regarded as a promising post-quantum candidate
for standardization, and in particular the algorithm made it to the 4th round of
the NIST competition.

With the exception of the CGL hash function [9] and GPS signatures [21],
most isogeny-based protocols in the literature do not directly rely on the
pure isogeny problem, but on some variants of this problem. In the case of
SIDH/SIKE, an attacker is provided with additional non-trivial information:
the degree of the isogeny and the images of torsion points. More precisely, the
security of SIDH relies on the following problem.

Problem 2. Let E0 be a supersingular curve defined over Fp2 with p = AB−1. Set
E0[A] = 〈P,Q〉. Let φ : E0 → E′ be an isogeny of degree B and let P ′ = φ(P),
Q′ = φ(Q). Given E0, P , Q, E′, P ′ and Q′, compute the isogeny φ.

Furthermore, in SIDH/SIKE, the starting curve E0 is special: its endomor-
phism ring is publicly available. In 2017, Petit [31] exploited the knowledge of
the endomorphism ring of E0 and the torsion point information to design attacks
that recover the secret isogeny in polynomial time assuming that A � B. After
a recent improvement [32], the attack still required imbalanced A and B, hence
it does not apply to SIDH where A ≈ B.

In July 2022, Castryck and Decru [7] described devastating attacks on SIDH
that recovered the secret key in SIDH and SIKE, instantiated with the NIST
parameters, in a few hours. The attacks were also developed in a concurrent
work by Maino and Martindale [26]. Various follow-up works by other authors
quickly improved the practical runtime time to minutes and seconds, and clari-
fied the asymptotic complexities. The best attacks on balanced SIDH parameters
had suddenly gone from exponential time to subexponential time, with a fur-
ther reduction to polynomial time complexity when the endomorphism ring of
the starting curve is available (as was the case in SIKE). Things could only
get worse for SIDH, and a few days later they did, when Robert described an

M-SIDH and MD-SIDH: Countering SIDH Attacks by Masking Information 285

improved attack with polynomial time complexity working for arbitrary starting
curves [33].

We note that like Petit’s attacks before them, the Castryck-Decru-Maino-
Martindale-Robert attacks exploit knowledge of both torsion point information
and the degree of the secret isogeny.

While the Castryck-Decru-Maino-Martindale-Robert attacks constitute a
clear cryptanalysis breakthrough on a flagship isogeny-based cryptographic pro-
tocol, they do not apply to other isogeny-based schemes in which no torsion point
information is revealed: CRS [14,34], CSIDH [8] and CSIDH-based signatures
(SeaSign [15], SCI-FiSh [3], . . .), CGL [9], GPS [21], SQISign [17], and many
more. The new attacks do not imply that the whole of isogeny-based cryptogra-
phy is insecure, but only that the field is getting mature! In particular, a natural
question now is whether one can find countermeasures against the Castryck-
Decru-Maino-Martindale-Robert attacks and repair the SIDH protocol.

Contributions1. In this paper, we propose and analyze two countermeasure can-
didates to the Castryck-Decru attack: Masked-Degree SIDH (MD-SIDH) and
Masked torsion points SIDH (M-SIDH).

The main idea in MD-SIDH is to mask the degree of the secret isogeny:
the degrees A and B of the secret isogenies in SIDH are no longer fixed, but
uniformly random divisors of A and B respectively. To prevent the degree from
being recovered by a pairing computation and some discrete logarithms in a
group of smooth order, the images of the torsion points are scaled by a random
integer.

The main idea in M-SIDH is to keep the degrees of the secret isogenies fixed
as in SIDH, and mask only the torsion point information: the images of the
torsion points are scaled by a random integer. To prevent an efficient recovery
of the secret scalar used in M-SIDH (using pairings and discrete logarithms), we
set the isogeny degrees A and B to have t ≥ 2λ distinct prime divisors, so that
the scalar cannot be recovered despite the fact that its square modulo A or B is
known.

We perform a thorough security analysis of the two countermeasures, includ-
ing non-trivial extensions of prior attacks. In particular, we give an expected
polynomial time attack on the M-SIDH variant when the starting curve has a
known small endomorphism, and a reduction from any MD-SIDH instance to
an M-SIDH instance. We also show that isogeny degrees in the M-SIDH variant
must have at least 2λ distinct factors, where λ is the security parameter. Finally,
we provide non-trivial variants of adaptive attacks on SIDH, including the GPST
attack and the Fouotsa-Petit attack.

Based on our analysis, the M-SIDH variant is the most promising one as it
features smaller keys at identical security levels. The variant must be used with
a randomly generated starting curve to avert the attack mentioned above (note
that this is not an issue in a key encapsulation mechanism as the starting curve
may be constructed by the key generation algorithm). Our analysis suggests

1 This paper is an extended merge of the preprints [18] and [27].

286 T. B. Fouotsa et al.

that public key sizes of 4434, 7037 and 9750 bytes are sufficient to reach AES-
128, AES-192 and AES-256 security levels (NIST security levels 1, 3, 5), and
asymptotically public keys should be a factor O(log λ) larger than in SIDH.

1.1 Outline

In Sect. 2 we briefly present the SIDH protocol and discuss attacks on SIDH.
In Sect. 3 we describe our two constructions Masked-degree SIDH and Masked
SIDH (M-SIDH). In Sects. 4, 5 and 6, we do a security analysis of both schemes
and in Sect. 7 we suggest parameters. We conclude the paper in Sect. 8.

2 The SIDH Protocol and Attacks

The Supersingular Isogeny Diffie-Hellman protocol (SIDH) is a key exchange
protocol designed by Jao and De Feo [24], which underlies the SIKE submission
to NIST post-quantum cryptography project [23]. Interest in the SIDH protocol
grew steadily since 2011, but passive cryptanalytic success remained limited until
new attacks fully broke it in August 2022.

2.1 The SIDH Protocol

The SIDH protocol is a Diffie-Hellman-like key exchange scheme that uses torsion
point information to complete a (pseudo) commutative diagram:

(E0, PA, QA, PB , QB)

��

 (EA, φA(PB), φA(QB))

��
(EB , φB(PA), φB(QA)) EAB

∼= EBA

The precise scheme is as follows:

Public parameter: Let E0 be the elliptic curve of j-invariant 1728. Set a prime
p as p = 2eA3eB − 1. Let PA and QA (resp. PB and QB) be points generating
E0[2eA] ∼= (Z/2eAZ)2 (resp. E0[3eB] ∼= (Z/3eBZ)2).

Public key (Alice): Alice first generates a random value kA ∈ (Z/2eAZ)× as
her secret key. Let RA = PA + kAQA. Alice computes an isogeny φA : E0 →
EA := E0/〈RA〉 and image points φA(PB), φA(QB). Alice sends to Bob EA

and these image points as a public key.
Public key (Bob): Bob first generates a random value kB ∈ (Z/3eBZ)× as

his secret key. Let RB = PB + kBQB . Bob computes an isogeny φB : E0 →
EB := E0/〈RB〉 and image points φA(PB), φA(QB). Bob sends to Alice EB

and these image points as a public key. Let kB be his secret key.
Shared key: Let R′

A = φB(PA) + kAφB(QA), and let R′
B = φA(PB) +

kBφA(QB). Alice computes EAB := EB/〈R′
A〉, and Bob computes an isogeny

EBA := EA/〈R′
B〉. The value j(EAB) = j(EBA) is the shared key.

The SIDH protocol is the basis of the SIKE algorithm, which was selected
for Round 4 of NIST post-quantum standardization project in June 2022.

M-SIDH and MD-SIDH: Countering SIDH Attacks by Masking Information 287

2.2 Cryptanalysis Attempts and Successes

A natural problem to consider in the cryptanalysis of SIDH is the isogeny with
torsion problem: Problem 2 with A = 2eA and B = 3eB . One approach to solve
this problem is to entirely ignore the torsion point information, and recover
the isogeny with some advanced brute force strategy such as a meet-in-the-
middle algorithm or Van Oorschot-Wiener’s algorithm [36]. These approaches
have guided the parameter selection of SIKE submission to NIST [23].

The first passive attacks exploiting torsion point information2 were intro-
duced by Petit [31]. The key idea in his attack is to consider an endomorphism
Ψ of E′ of the form

ψ = d + φ ◦ θ ◦ φ̂

where d ∈ Z and θ is a trace 0 non scalar endomorphism of E0 such that

deg ψ = d2 + B2 deg θ

divides A. Provided such parameters, one can use torsion point information on
φ to deduce torsion point information on ψ, then use this information to recover
ker ψ via a (smooth order hence efficient) discrete logarithm computation, and
finally deduce φ. Note that this strategy requires at least partial knowledge of
the endomorphism ring of E0 (for θ) and moreover it only works if A is large
enough compared to B. (In particular, it does not work when A ≈ B as in SIKE.)
Improvements in later work increased the range of parameters vulnerable to these
attacks but they did not fundamentally change these limitations [5,32].

In August 2022, Castryck and Decru [7] (and independently Maino and Mar-
tindale [26]) introduced new powerful attacks against SIDH, with polynomial
time complexity when the endomorphism ring of E0 is known and subexpo-
nential complexity in general. Extensions by Robert [33] further reduced the
complexity to polynomial time in the general case. In a sense, these attacks can
be seen as generalizations of previous torsion point attacks3, but with a key
additional insight: they crucially embed the SIDH isogeny problem into a higher
dimensional isogeny problem, where more endomorphisms are readily available.
In a nutshell, Robert’s attack considers the genus 8 Abelian variety E4

0 × E′4,
and its endomorphism

Ψ =
(

α0 Φ̂

−Φ α̂′

)
,

2 Torsion point information was previously used in active attacks against SIDH [20]
and prompted the inclusion of a CCA transform (a variant of Fujisaki-Okamoto
transform) within SIKE.

3 The original Castryck-Decru’s paper did not initially make a connection with prior
torsion point attacks, but this connection then rapidly emerged and is clearly
described in [26,33].

288 T. B. Fouotsa et al.

where Φ is the natural extension of φ on E4
0 , Φ̂ is its dual, and α0 and α′ are the

endomorphisms on E4
0 and E′4 with action given by the matrix

M =

⎛
⎜⎜⎝

a0 a1 a2 a3

−a1 a0 −a4 a3

−a3 a4 −a1 a2

−a4 −a3 a2 a1

⎞
⎟⎟⎠

with a0, a1, a2, a3 such that a := a2
0 + a2

1 + a2
2 + a2

3 = A − B. We then have

ΨΨ̂ = AI8

where Ψ̂ =
(

α̂0 −Φ̂
Φ α′

)
is the dual of Ψ , i.e., Ψ is an endomorphism of degree A.

As in previous torsion point attacks, one can evaluate Ψ on the A torsion using
torsion point information provided in the SIDH problem. One can then compute
Ψ and finally deduce φ.

From now on we will refer to these attacks as “the CD-MM-R attacks”.
Compared to previous torsion point attacks, these new attacks do not require any
knowledge on the endomorphism ring of the starting curve, and work whenever
A ≥ B. One can further improve this to A ≥ √

B as in the “dual isogeny variant”
of [32]: let a := A2 − B; recover the first halves of the endomorphisms Ψ and Ψ̂
using torsion point information; and finally deduce the whole of Ψ and φ [33].

While they do not require any knowledge of End(E0), the new attacks still use
torsion point information and general SIDH parameters, including the isogeny
degrees. In the following section, we describe two countermeasures: the first one
consists in making the torsion point images while the second one consists in
masking the isogeny degrees.

3 Masked SIDH Variants

Recall that the CD-MM-R attack requires two main ingredients:

1. the degree A of the secret supersingular isogeny φ : E0 → E;
2. the images φ(P), φ(Q) of a torsion basis (P,Q) of the B-torsion E0[B] where

B is an integer coprime to A such that B > A.

The countermeasures we suggest here consist in masking each of the above.
Firstly, we suggest Masked torsion points SIDH or M-SIDH for short, in which
one masks the torsion point images by scaling them with a random scalar. Sec-
ondly, we suggest Masked-degree SIDH or MD-SIDH for short, in which the
isogenies computed do not have a fixed degree.

In the rest of this paper, we will often use the following lemma.

Lemma 3. Let φ : E −→ E′ be an isogeny of unknown degree d and let B be a
smooth integer coprime to d such that E[B] ⊂ E(Fp2). Set E[B] = 〈P,Q〉. Then
given P, Q, φ(P) and φ(Q), there exists a polynomial time algorithm to recover
d mod B.

M-SIDH and MD-SIDH: Countering SIDH Attacks by Masking Information 289

Proof. One computes the Weil pairing values eB(P,Q) and eB(φ(P), φ(Q)) =
eB(P,Q)deg φ, then one solves a discrete logarithm instance between both quan-
tities to recover d mod B. Since E[B] ⊂ E(Fp2), the pairing computations run
in polynomial time. Since B is smooth, then using the Pohlig-Hellman algorithm
the discrete logarithm computation runs in polynomial time as well. �

3.1 Masked Torsion Points Variant

The aim here is to instantiate SIDH such that the direct images φ(P), φ(Q) of
P and Q are not available to adversaries, but the key exchange still succeeds:
this means that when given a point R ∈ E0[B], one should be able to compute
a generator of the group φ(〈R〉).

To achieve this goal, the images φ(P), φ(Q) of P and Q are scaled by a
random integer α ∈ Z/BZ

×. That is instead of revealing φ(P), φ(Q), one reveals
[α]φ(P), [α]φ(Q). Note that since the degree of the secret isogeny φ is fixed, one
can recover α2 deg φ by applying Lemma 3, from which one derives α2 mod B.
Taking a square root α0 of α2, one recovers [αα−1

0]φ(P) and [αα−1
0]φ(Q) where

(αα−1
0)2 = 1 mod B. Hence one can sample α directly from μ2(B) where

μ2(N) = {x ∈ Z/NZ | x2 = 1 mod N}.

Note that for the scheme to be secure against the CD-MM-R attack, it is nec-
essary that an attacker should not be able to recover the scalar α. The isogeny
degrees are chosen such that there is an exponential number of square roots of
1 modulo B. This leads to the following variant of SIDH: M-SIDH.

Public parameter: Let λ be the security parameter and let t = t(λ) ∈ N be an
integer depending on λ. Let p = ABf − 1 be a prime such that A =

∏t
i=1 	i

and B =
∏t

i=1 qi are coprime integers, 	i, qi are distinct small primes, A ≈
B ≈ √

p and f is a small cofactor. Let E0 be a supersingular curve defined over
Fp2 . Set E0[A] = 〈PA, QA〉 and E0[B] = 〈PB , QB〉. The public parameters
are E0, p, A, B, PA, QA, PB, QB .

Public key (Alice): Alice samples uniformly at random two integers α and
a from μ2(B) and Z/AZ respectively. She computes the cyclic isogeny
φA : E0 → EA = E0/ 〈PA + [a]QA〉. Her public key is the tuple pkA =
(EA, [α]φA(PB), [α]φA(QB)) and her secret key is skA = a. The integer α is
deleted.

Public key (Bob): Analogously, Bob samples uniformly at random two inte-
gers β and b from μ(A) and Z/BZ respectively. His public key is pkB =
(EB , [β]φB(PA), [β]φB(QA)) where φB : E0 → EB = E0/ 〈PB + [b]QB〉 and
his secret key is skB = b. The integer β is deleted.

Shared key: Upon receiving Bob’s public key (EB , Ra, Sa), Alice checks that
eA(Ra, Sa) = eA(PA, QA)B , if not she aborts. She computes the isogeny φ′

A :
EB → EBA = EB/ 〈Ra + [a]Sa〉. Her shared key is j(EBA). Similarly, upon
receiving (EA, Rb, Sb), Bob checks that eB(Rb, Sb) = eB(PB , QB)A, if not he

290 T. B. Fouotsa et al.

aborts. He computes the isogeny φ′
B : EA → EAB = EA/ 〈Rb + [b]Sb〉. His

shared key is j(EAB).

The problem underlying the security of M-SIDH is stated as follows.

Problem 4. Let A = 	1 · · · 	t and let B = q1 · · · qt be two smooth coprime inte-
gers, let f be a small cofactor such that p = ABf − 1 is a prime, with A ≈ B.
Let E0/Fp2 be a supersingular elliptic curve such that #E0(Fp2) = (p + 1)2 =
(ABf)2, set E0[B] = 〈P,Q〉. Let φ : E0 → E be a uniformly random A-isogeny
and let α be a uniformly random element of μ2(B).
Given E0, P,Q,EA, P ′ = [α]φ(P), Q′ = [α]φ(Q), compute φ.

It is immediate that Problem 4 is not hard for too small values of t. Recall
that we want 1 to have an exponential number of square roots modulo A and
modulo B. At first, one may be tempted to set t = λ so that there are about 2λ

square roots of 1 modulo A and modulo B. But, as we will see in Sect. 4, this is
not secure and t needs to be larger.

The main difference between Problem 4 and Problem 2 is that in Problem 4
torsion point images are only provided up to a scalar multiple (more precisely, a
square root of unity). When trying to apply Robert’s attack, the endomorphism
Ψ appearing in this attack can no longer be evaluated exactly and its kernel
can no longer be computed directly. The same holds for the attacks described in
Castryck-Decru and Maino-Martindale papers.

3.2 Masked-Degree Variant

Rather than masking the torsion points as described in the previous section,
we suggest a second countermeasure where one masks the degree of the secret
isogeny.

Set the prime p to be of the form p = ABf − 1 where A and B are two
smooth coprime integers, and f is a small cofactor. Alice will use cyclic isogenies
of degree A′ dividing A and Bob will use cyclic isogenies of degree B′ dividing
B. In an SIDH prime A = 	eA

A and B = 	eB

B , hence A and B have only eA + 1
and eB + 1 divisors respectively. For this reason, one needs to move away from
SIDH primes and use CSIDH-style primes with A = 	a1

1 · · · 	at
t and B = qb1

1 · · · qbt
t

where t, as well as the ais and the bis, depend on the security parameter λ.
To generate her public key, Alice samples a random degree A′ (divisor of

A) for her secret isogeny, samples a random point RA ∈ E0[A′], computes the
A′-isogeny φA : E0 → EA := E0/〈RA〉 and φA(PB), φA(QB) where E0[B] =
〈PB , QB〉. But, by Lemma 3, any adversary can recover A′ = deg φA. In order
to avoid this, Alice also generates a uniformly random integer α ∈ Z/BZ

× and
outputs (EA, [α]φA(PB), [α]φA(QB)) as her public key. More precisely, Masked-
degree SIDH (MD-SIDH) is as follows:

Public parameter: Let E0 be a supersingular elliptic curve. Let t = t(λ) ∈ N

be an integer depending4 on λ. Let A = 	a1
1 · · · 	at

t and B = qb1
1 · · · qbt

t be
4 Note that we use the same notation t = t(λ) for M-SIDH and MD-SIDH. It will

always be clear from the context whether we are referring to M-SIDH or MD-SIDH.

M-SIDH and MD-SIDH: Countering SIDH Attacks by Masking Information 291

two smooth coprime integers such that p = ABf − 1 is a prime (where f is
a small cofactor). Set PA and QA (resp. PB and QB) be points generating
E0[A] = 〈PA, QA〉 and E0[B] = 〈PB , QB〉.

Public key (Alice): Alice samples a uniformly random divisor A′ of A and
a random point RA ∈ E0[A′]. Her secret key is skA = RA. She computes
the isogeny φA : E0 → EA := E0/〈RA〉 together with φA(PB) and φA(QB).
She samples a uniformly random integer5 α ∈ Z/BZ

× and her public key is
pkA = ([α]φA(PB), [α]φA(QB)).

Public key (Bob): Bob samples a uniformly random divisor B′ of B and a
random point RB ∈ E0[B′]. His secret key is skB = RB. He computes the
isogeny φB : E0 → EB := E0/〈RB〉 together with φB(PA) and φB(QA).
He samples a uniformly random integer β ∈ Z/AZ

× and his public key is
pkB = ([β]φB(PA), [β]φB(QA)).

Shared key: From [β]φB(PA) and [β]φB(QA), Alice recovers 〈R′
A〉 = 〈φB(RA)〉.

From [α]φA(PB), [α]φA(QB), Bob recovers 〈R′
B〉 = 〈φA(RB)〉. Alice com-

putes EAB := EB/〈R′
A〉, and Bob computes EBA := EA/〈R′

B〉. The value
j(EAB) = j(EBA) is the shared key.

The problem underlying the security of MD-SIDH is stated as follows.

Problem 5. Let A = 	a1
1 · · · 	at

t and let B = qb1
1 · · · qbt

t be two smooth coprime
integers, let f be a small cofactor such that p = ABf −1 is a prime, with A ≈ B.
Let E0/Fp2 be a supersingular elliptic curve such that #E0(Fp2) = (p + 1)2 =

(ABf)2, set E0[B] = 〈P,Q〉. Let A′ = 	
a′
1

1 · · · 	a′
t

t be a uniformly random divisor of
A and and let α be a uniformly random element of Z/BZ

×. Let φ : E0 → EA be a
uniformly random isogeny of degree A′. Given E0, P,Q,EA, P ′ = [α]φ(P), Q′ =
[α]φ(Q), compute φ.

The MD-SIDH protocol can be seen as a generalization of the M-SIDH pro-
tocol, where the degree is no longer fixed and the torsion point hidden scalars α
and β are no longer restricted to square roots of unity. From a security point of
view, hiding the isogeny degrees might present the attacker with an additional
obstacle in running the CD-MM-R attacks, since these degrees are explicitly
used to construct attack parameters.

3.3 On the Effectiveness of the Countermeasures

We provide some arguments on why we believe the CD-MM-R attacks do not
extend to the countermeasures.

The attacks embed the secret isogeny φ of degree B into a higher genus
isogeny Ψ of degree A = B+a where a = A−B and A is the order of the torsion
points. In M-SIDH, the degree of the secret isogeny is β2B where β is a secret

5 The integers α (for Alice) and β (for Bob) can be deleted immediately after key
generation.

292 T. B. Fouotsa et al.

scalar and β2 (mod A) = 1. Embedding this isogeny into a higher genus isogeny
the same way would lead to an isogeny of degree

β2B + a = β2B + A − B = A + B(β2 − 1) = A

(
1 + B

β2 − 1
A

)
.

This degree is unknown to the attacker, because he does not know β. Now, since
the degree of Ψ is A(1+B β2−1

A), then Ψ = Ψ2 ◦Ψ1 where Ψ1 has degree A and Ψ2

has degree 1 + B β2−1
A . Evaluating Ψ on the A torsion (using the masked torsion

point information available) gives you Ψ1. The isogeny Ψ2 whose unknown degree
1+B β2−1

A is larger than B and probably non smooth remains unknown. Hence,
one cannot recover Ψ . Clearly, if β = ±1 then β2 = 1 and Ψ2 has degree 1 and
Ψ is fully recovered.

A similar argument applies for MD-SIDH as well. In MD-SIDH, the degree of
the secret isogeny is β2B′ where β is a secret scalar and B′ is a random divisor
of B (say B = B′B1). Embedding this isogeny into a higher genus isogeny the
same way would lead to an isogeny of degree

β2B′ + a = β2B′ + A − B′B1 = A + B′(β2 − B1).

This degree is unknown to the attacker, because he does not know neither β nor
B′ (or B1). Let d = gcd(A, β2 − B1), then Ψ = Ψ2 ◦ Ψ1 where Ψ1 has degree
d and Ψ2 has degree A

d + B′ β2−B1
d . Evaluating Ψ on the A torsion (using the

masked torsion point information available) gives you Ψ1. The isogeny Ψ2 whose
unknown degree A

d +B′ β2−B1
d is larger than B and probably non smooth remains

unknown. Hence, one cannot recover Ψ .

Remark 6. One could try to use a different value a′ instead of a = A − B when
embedding the secret isogeny into a higher genus isogeny. This would only make
things more complicated. In fact the unknown degree of Ψ is β2B+a′ for M-SIDH
and β2B′ + a′ for MD-SIDH. As before, setting d to be the greatest common
divisor of this degree and A, then Ψ = Ψ2◦Ψ1 where Ψ1 has degree d. The isogeny
Ψ1, can be recovered, but Ψ2 whose unknown degree is larger than A and B, and
is probably non smooth cannot be efficiently recovered.

4 Security Analysis of the Masked Torsion Points Variant

Recall that the M-SIDH variant differs from SIDH in that parties send torsion
point images only up to a constant α, which is a square root of unity.

We first describe a general attack that simply consists of guessing enough
exact torsion point information to run the CD-MM-R attacks. This attack has
exponential complexity in the number of prime divisors of A and B, and it works
for any starting curve, even when the endomorphism ring is unknown.

We then describe a polynomial time attack when the initial curve is j = 1728,
and we generalize it to starting curves with (known) small degree endomor-
phisms. We argue that it appears hard to extend this attack to the case where
the endomorphism ring of the starting curve is unknown.

M-SIDH and MD-SIDH: Countering SIDH Attacks by Masking Information 293

We end this section with a suggestion of parameters with respect to our
analysis. In what follows we consider an isogeny of degree B, with images of
torsion points of order A revealed up to a scalar α.

4.1 Guessing Enough Exact Torsion Point Information

Since Bob’s isogeny has degree B ≈ A, then we only need the exact images of
the

√
B ≈ √

A torsion points to run the CD-MM-R attacks. We are provided
with the images of the A-torsion points where A = 	1 · · · 	t.

Let n ≥ 1 be the largest index such that
√

B ≤ 	n · · · 	t. Set N = 	n · · · 	t.
Then Bob’s secret isogeny φB can be recovered from its action on the N -torsion
points. From the action of [α] ◦ φB on the A-torsion points, one deduces the
action of [α] ◦ φB on the N -torsion points. The only thing preventing us from
applying the CD-MM-R attack is the unknown square root of unity α. Since N
has t − n + 1 prime factors, then there are at most 2t−n+1 square roots of unity
modulo N . One can hence try all these square roots of unity till one gets one for
which the CD-MM-R attack is successful.

The overall complexity of this attack is Õ(2t−n+1) using a classical computer.
Since N ≈ √

A and N is made up of the largest prime factors of A, then we
must have t/2 < n, which implies t − n + 1 ≤ t/2. This attack is summarized in
Algorithm 1. We deduce Theorem 7.

Algorithm 1. Attack by using less torsion point information
Require: E0, PA, QA, EB , P ′ = [β]φB(PA), Q′ = [β]φB(QA) from an M-SIDH

instance.
Ensure: φB .
1: Set N = �n · · · �t where n ≥ 1 be the largest index such that

√
B ≤ �n · · · �t;

2: Compute P1 = [A
N

]P ′ and Q1 = [A
N

]Q′;
3: for each square root γ of unity modulo N do
4: try to run the CD-MM-R attack to recover φB from E0, PA, QA, EB , [γ−1]P1,
5: Q′ = [γ−1]Q1;
6: if The CD-MM-R attack is successful then
7: return φB .

Theorem 7. Algorithm1 is correct and runs in time Õ(2t−n+1) using a classical
computer with t − n + 1 ≤ t/2.

The above discussion only considers classical security. When we use a
quantum computer, the complexity of the attack can be improved because
Grover algorithm [22] allows us to find the correct γ in Algorithm 1 in time
Õ(2(t−n+1)/2). We deduce Theorem 8.

Theorem 8. Algorithm1 is correct and runs in time Õ(2(t−n+1)/2) using a
quantum computer with t − n + 1 ≤ t/2.

294 T. B. Fouotsa et al.

Remark 9. From Theorem 7 and 8, the value t should be greater than or equal
to 2λ for AES-λ security (i.e. λ bits of classical security and λ/2 bits of quantum
security).

4.2 Polynomial Time Attack When E0 Has j-invariant = 1728

Castryck-Decru, Maino-Martindale and Robert’s new SIDH attacks seem to
require exact knowledge of torsion point images, motivating the M-SIDH variant.
On the other hand, older torsion point attacks only required these images up to
a constant [2,19], though of course they also required A much larger than B.
This suggests looking for an improved attack combining the best of both worlds.

Let ι ∈ End(E0) : (x, y) → (−x, iy) be a non-trivial automorphism of E0 and
let

ψ := φ ◦ ι ◦ φ̂

be the “lollipop endomorphism” constructed in Petit’s attack and variants (see
Sect. 2.2). As the images of torsion points through φ are provided up to a scalar
α where α2 = 1 mod A, then we have that

[α]φ ◦ ι ◦ [̂α]φ = [α2] ◦ φ ◦ ι ◦ φ̂ = [α2] ◦ ψ.

Hence, from the action of [α]φ on the A-torsion, one can recover the action of
[α2] ◦ ψ on the A-torsion. Since α2 = 1 mod A, then the images of A−torsion
points through ψ are exact. Moreover as ψ has degree B2 ≈ A2 and images of
torsion points of order A are known, we can apply Robert’s attack to ψ instead
of φ! After recovering ψ, one can recover ϕ efficiently.

Remark 10. One can recover ψ from φ as in [31]: compute G := kerφ ∩ E′[B]
and extract the largest cyclic subgroup in G. Generically this is a large subgroup
of kerφ, and the remaining part of kerφ is simply guessed. Note that the pow-
ersmooth case (as in M-SIDH) is considered a worst case in [31], but even in this
“worst case situation” the cost is shown to be polynomial time in expectation
(for randomly chosen φ).

4.3 Generalization to Other Starting Curves

More generally, given the endomorphism ring of the starting curve, one can apply
the LLL algorithm to compute a short non scalar endomorphism in it. One can
then replace the endomorphism ι of degree 1 in the previous attack by another
higher degree endomorphism θ.

As deg ψ = B2 deg θ and Robert’s attack requires deg ψ ≤ A2, this strategy
would require to first guess the action of φ on a torsion A′ subgroup with A′ ≥√

deg θ, up to a scalar. This involves guessing the images of two cyclic A′-torsion
subgroups, hence it requires O(A′2) ≈ deg θ attempts.

The attack will be relevant for any starting curve with a small non-trivial
endomorphism. For generic curves, we will have deg θ ≈ √

p, so the attack will
not provide any improvement over a trivial guessing strategy.

M-SIDH and MD-SIDH: Countering SIDH Attacks by Masking Information 295

4.4 Generalization Attempt to Unknown Endomorphism Rings

When the endomorphism ring of the starting curve is unknown to the attacker,
one may hope to generalize the previous attack in the same way as previous tor-
sion point attacks were generalized by the Castryck-Decru’s, Maino-Martindale’s
and Robert’s attacks: by embedding the isogeny problem into an isogeny problem
of higher dimension.

In particular, one could try to achieve this is by considering the genus 3
product A := E0 × E0 × E′, and an endomorphism

ψ : (P1, P2, P3) → (P1, P2, φ2θ12φ̂1(P3))

where φi : E
(i)
0 → E′ for i = 1, 2 are two copies of the secret isogeny φ, and

θ12 : E
(1)
0 → E

(2)
0 is a small degree isogeny from one copy of E0 to the other

one. However, a closer look at this attempt reveals that φ2θ12φ̂1 is just a scalar
multiplication on E′, and it can therefore not help to recover φ. Other similar
strategies we tried led to the same issue.

5 Security Analysis of the Masked Degree Variant

In this section, we discuss the security of our second countermeasure MD-SIDH.
First, we prove that the square-free part of the degree of the secret isogeny can
be recovered efficiently; this is done in Subsect. 5.1 below (together with 5.2
for a technical lemma). In Subsect. 5.3 we show how to reduce any instance of
Masked-degree SIDH into an instance of Masked torsion points SIDH when the
square-free part of the secret isogeny is known. The latter implies that all the
attacks presented in Sect. 4 can be extended to MD-SIDH through this reduction.
Taking this into account, we suggest parameters for MD-SIDH in Subsect. 7.3.

Recall that in the MD-SIDH setting, A = 	a1
1 · · · 	at

t , B = qb1
1 · · · qbt

t and
p = ABf − 1 where f is a small cofactor. We are targeting Bob’s secret isogeny
φ : E0 → EB whose degree B′ = q

b′
1

1 · · · qb′
t

t is an unknown divisor of B, and we are
provided with E0, P,Q,EB , P ′ = [β]φ(P), Q′ = [β]φ(Q) where E0[A] = 〈P,Q〉
and β ∈ Z/AZ

× is unknown.

5.1 Recovering the Degree up to Squares

From Lemma 3, one can assume that β2B′ mod A is known. In this section we
show how to deduce a small set of candidates for the square-free part of B′.

Let D(B) be the set of positive divisors of B. Given b′ = (b′
1, · · · , b′

t) ∈ Z
t,

we write B(b′) = q
b′
1

1 · · · qb′
t

t , and similarly if B′ = B(b′), we write b′ = b(B′).
These maps restrict to a one-to-one correspondence between

∏t
i=1 Z/(bi + 1)Z

and D(B). For simplicity, we suppose that the 	is and the qis are odd primes6.
6 The case where �i = 2 in general does not fit our definition of χ since there are more

than two square roots of 1 modulo 2r for r > 2. Nevertheless, if the power of 2 diving
A or B is at least 4, then the security of the scheme is not affected.

296 T. B. Fouotsa et al.

Let χ�
ai
i

be the natural surjection χ�
ai
i

: (Z/	ai
i Z)× → (Z/	ai

i Z)×/

((Z/	ai
i Z)×)2 ∼= {−1, 1}. Consider the map

Φ : Zt −→ {−1, 1}t

b′ �−→
(
χ�

a1
1

(B(b′)), . . . , χ�
at
t

(B(b′))
)

,

where we regard B(b′) as an element in (Z/	bi
i Z)×. Clearly, Φ is a group mor-

phism and (2Z)t ⊂ ker Φ. This implies that the following group homomorphism
is well-defined:

Φ : (Z/2Z)t −→ Im(Φ) ⊂ {−1, 1}t

b′ �−→ Φ(b′).

Since the cardinality of the domain of the group morphism Φ is 2t, then
#ker Φ = 2tΦ for some 0 ≤ tΦ ≤ t. This implies that when given Φ(b(B′)),
we have #Φ

−1
(Φ(b(B′))) = 2tΦ . In other words, giving Φ(b(B′)) is the same as

giving t − tΦ bits of information about b(B′) mod 2. Furthermore, when tΦ = 0,
that is when Φ is an isomorphism, then Φ(b′) uniquely determines b(B′) mod 2.
Note that for any representative b′ in the class b(B′) + 2Zt, the integers B(b′)
and B′ have the same square-free factor.

Lemma 11. Consider the notations above. Let B′
1 be the square-free part of B′.

Then given E0, P, Q, EB , P ′ and Q′, there exists a probabilistic polynomial
time algorithm that reduces the search space for B′

1 to a set of order 2tΦ where
2tΦ = #ker Φ.

Proof. From P, Q,EB , P ′, and Q′, use Lemma 3 to recover d = β2B′ mod A.
Compute

Φ(b(d)) =
(
χ�

a1
1

(β2B′), · · · , χ�
at
t

(β2B′)
)

=
(
χ�

a1
1

(B′), · · · , χ�
at
t

(B′)
)

= Φ(b(B′)).

Compute ker Φ and a preimage b0 of Φ(b(d)) with respect to Φ. Return the set
{B(b) | b ∈ b0 + ker Φ} of square-free integers.

Clearly, all the computational steps described above run in polynomial time.
The correctness follows from the properties of the morphism Φ and Φ discussed
before the lemma. �

In the next subsection, we show that tΦ is expected to be small for most
parameters, and the squarefree part of B′ can therefore be guessed with a high
probability.

5.2 On the Value of tΦ

In this section we estimate tΦ. We start by observing the following.

Lemma 12. Let t be an integer and let M be a random t × t matrix over F2.
Then as t tends towards ∞, we have have t − 2 ≤ rank(M) with probability
0.9947145498.

M-SIDH and MD-SIDH: Countering SIDH Attacks by Masking Information 297

Proof. Let pt(k) be the probability that a uniformly random t × t-matrix over
F2 has rank t − k. Then, from [25, p.33] and [11, Theorem 1], it holds that

π(k) := lim
t→∞ pt(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞∏
i=1

(
1 − 1

2i

)
, (k = 0)

∏∞
i=k+1(1 − (1/2i))∏k

i=1(1 − (1/2i))

1
2k2 , (k ≥ 1).

From [11, Table 1], we have π(0) is about 0.2887880951, π(1) is about
0.5775761902, π(2) is about 0.1283502645, and π(k)’s for k ≥ 3 are less than
0.0052387863. Therefore,

Pr(k ≤ 2) = π(0) + π(1) + π(2) ≈ 0.9947145498.

�
Consider the matrix M∗ of the morphism (1 − Φ̄)/2 (operations are done

component wise). Lemma 12 applies to random matrices and t needs to be
somehow large. In practice, t is relatively small, t ≈ O(λ) where λ is the security
parameter, and, A and B are system parameters, which could in theory be chosen
to maximize tφ. However, for the sake of the scheme’s practicality, the integers
A and B need to be as small as possible. Also, in order to not weaken one of the
participants, A and B need to satisfy A ≈ B. With these constraints, we do not
expect to have 2 < tΦ. Intuitively, if 2 < tΦ, then there are tΦ square-free integers
that are all quadratic residues modulo all the t prime power divisors of A. Given
a random square-free integer N , N is a quadratic residue modulo a given prime
power with probability 1

2 , hence it is a quadratic residue modulo t “independent”
distinct prime powers with probability roughly 1

2t . Since t ≈ O(λ), then 1
2t is

negligible. Hence the probability that there exists many such integers N rapidly
decreases below 1

2λ . For example, given t, let 	1, q1, 	2, q2, . . . , 	t, qt be the smallest
2t odd primes. For t = 64, 96, 128, 192, 286, 420, 426, 566, 637, 856, we obtained
tΦ = 1, 0, 1, 2, 0, 0, 1, 0, 1, 0 respectively.

In conclusion, we believe that it is computationally hard in practice to come
up with integers A and B such that 2 � tΦ. Also, if ever such integers were
computed, A and B would be too large, which would lead to an impractical
scheme.

5.3 Reduction to the M-SIDH Variant

We now show how to reduce a MD-SIDH instance to an M-SIDH instance.
Recall that in the MD-SIDH case (Problem 5), we are given E0, P,Q,

EB , P ′ = [β]φ(P), Q′ = [β]φ(Q), where E0[A] = 〈P,Q〉, φ is a random isogeny
of degree B′ with B′ being a random divisor of B, and β is a random integer
coprime to A; and we are asked to recover φ.

Following Subsects. 5.1 and 5.2, we assume that the square-free part of the
degree of the secret isogeny is known. Let B′

1 be the square-free part of B′. Let

298 T. B. Fouotsa et al.

B0 be the largest divisor of B which is equal to B′ up to squares, and let β0 be
the divisor of B such that B0 = β2

0B
′. Since B is a smooth integer and we know

B′
1, we can compute B0.

Let φ0 = [β0] ◦ φ. We then know deg φ0 = β2
0 deg φ = β2

0B
′ = B0 ≤ B.

Moreover, we have
{

P ′ = [β]φ(P) = [(ββ−1
0) · β0]φ(P) = [ββ−1

0]φ0(P)
Q′ = [β]φ(Q) = [(ββ−1

0) · β0]φ(Q) = [ββ−1
0]φ0(Q)

From Lemma 3, we can recover β2B′ mod A, and compute

β2
1 = β2

0B
′ · (β2B′)−1 mod A = (β0 · β−1)2 mod A.

We sample a random square root β′
1 of β2

1 mod A, namely β′
1 = μβ1 where μ is

some square root of unity modulo A. We compute
{

[β′
1]P

′ = [μ · β1]P ′ = [μ · β0 · β−1 · β]φ(P) = [μ · β0]φ(P) = [μ]φ0(P)
[β′

1]Q
′ = [μ · β1]P ′ = [μ · β0 · β−1 · β]φ(Q) = [μ · β0]φ(Q) = [μ]φ0(Q)

From here, one solves for φ0 where E0, P , Q, EB , [μ]φ0(P), [μ]φ0(Q) and
deg φ0 = β2

0B
′ are provided. This is in fact an M-SIDH instance, with the only

difference that the secret isogeny is not cyclic. This is not a problem since the
higher genus torsion points attack has no restriction on the type of isogeny (cyclic
or not) in play.

5.4 Reduction Impact: Porting M-SIDH Attacks to MD-SIDH

In this section we revisit the attacks of Sect. 4 and check that they still apply
when the secret isogeny is not cyclic. Recall that the isogeny to recover here is
φ0 = [β0] ◦ φ where β0 is an unknown integer such that the degree B0 = β2

0B
′

of φ0 divides B. We are provided with the B0 = deg φ0 and the action of φ0 on
the A torsion group up to a scalar (a root of unity modulo A).

We start with Robert’s attack (see Sect. 2.2), and observe that neither the
definition of the isogeny Ψ nor the way φ is deduced from this isogeny rely
on φ being a cyclic isogeny. The attack of Sect. 4.1 simply guesses the exact
torsion point images on the minimal amount of torsion point information needed
for Robert’s attack. As before, allowing for non cyclic isogenies does not affect
Robert’s attack.

Regarding the attack of Sect. 4.2, one first applies Robert’s attack on ψ =
φ0 ◦ ι ◦ φ̂0 = [β2

0] ◦φ ◦ ι ◦φ, then one deduces the isogeny φ0 using [31, §4.3]. The
first part is again an application of Robert’s attack to a non cyclic isogeny. The
second part requires some clarification.

When φ0 = φ is cyclic (β0 = 1), in [31, §4.3], the attacker computes G :=
ker ψ ∩ EB [B0], which clearly contains kerφ, and is in general isomorphic to
Z/NZ×Z/N ′

Z for some N ′|N |B0 such that NN ′ = B0. When N ′ = 1 we have
G = ker φ. For a cyclic isogeny φ, we have N ′ > 1 exactly when ι leaves either
ker φ ∩ E0[N ′] or ker φ̂ ∩ EB [N ′] invariant: this leaves at most 2r candidates for

M-SIDH and MD-SIDH: Countering SIDH Attacks by Masking Information 299

ker φ, where r is the number of prime factors in N ′. But, since φ is uniformly
random (because it is the secret isogeny), then N ′ is relatively small and hence
has very few prime factors.

Let us return to the case where φ0 = [β0] ◦ φ with φ being cyclic and β0 > 1
is unknown, and let us assume that ψ = φ0 ◦ ι ◦ φ̂0 = [β2

0] ◦ φ ◦ ι ◦ φ has been
recovered. After evaluating ψ on the B0 torsion, we will get a group isomorphic
to Z/CZ × Z/C ′

Z where C ′|C|B0. Since ψ is divisible by β2
0 , the β2

0 -torsion is
killed by ψ and the group Z/CZ×Z/C ′

Z is the group one would have got if one
was evaluating φ ◦ ι ◦ φ on the B′ = B0/β2

0 torsion. Hence CC ′ = B′ = deg φ as
discussed in the previous paragraph and β0 =

√
B0/B′. One then recovers φ as

in the previous paragraph.

6 Adaptive Attacks

In this section, we show that M-SIDH and MD-SIDH, as SIDH, are vulnerable
to adaptive attacks. We also discuss the use of B-SIDH primes in M-SIDH and
future work. We first discuss the Fouotsa-Petit attack, then the GPST attack.

6.1 Fouotsa-Petit Adaptive Attack

Fouotsa-Petit [19] adaptive attack consists in actively transforming a balanced
SIDH instance (A ≈ B) into an imbalanced one (B < A∗ = NA where N ≈ p),
then running Petit’s torsion point attacks [31,32] on the imbalanced SIDH (where
the secret isogeny has degree B and the torsion points have order A∗ = NA) to
recover the secret isogeny.

In [19, Section 3.2], the authors show that Petit’s torsion point attacks can
be run even when the torsion point images are scaled with an unknown scalar.
Petit’s attacks also apply to non cyclic isogenies. In fact, to recover an isogeny
φ : E −→ E′ from its action on large enough torsion points, Petit’s attack (see
Sect. 2.2) uses the torsion point information and a suitable endomorphism θ of
E to compute the endomorphism ψ = φ ◦ θ ◦ φ of E′; then the techniques of [31,
§4.3] (also see Sect. 5.4) are used to recover φ. As before, φ not being cyclic does
not impact the first step where one recovers ψ. There are some subtleties when
trying to recover φ from ψ when φ is non cyclic, but they were already covered
in Sect. 5.4. However, Petit’s attacks do require knowledge of the degree of the
secret isogeny.

The generalization of the Fouotsa-Petit [19] adaptive attack to M-SIDH is
therefore straightforward. For MD-SIDH, one can use the techniques from Sect. 5
to reduce the MD-SIDH instance to an M-SIDH instance, and then run the
Fouotsa-Petit attack on the M-SIDH instance.

6.2 GPST Adaptive Attack

Recall that in the GPST attack on SIDH, Bob (the honest party) has a static
secret key/public key pair (b, (EB , φB(PA), φB(QA)). Alice (the dishonest party)

300 T. B. Fouotsa et al.

maliciously generates public keys (EA, R, S) with modified torsion points images,
and repeatedly runs the key exchange with Alice using these malicious public
keys. The attack assumes that Alice is provided with an oracle O(EA, R, S,E′)
that outputs 1 if E′ is the shared secret computed by the honest Bob when using
(EA, R, S) as Alice’s public key, and 0 otherwise. Then the GPST adaptive attack
recovers the secret b with only log b queries to the oracle O. The attack provides
the points (Ri, Si) to be used at each query. We refer to [20] for details about
the GPST adaptive attack.

One thing to notice here is that

O(EA, R, S,E′) = 1 ⇐⇒ EA/〈R + [b]S〉 = EA/〈φA(PB) + [b]φA(QB)〉
⇐⇒ 〈R + [b]S〉 = 〈φA(PB) + [b]φA(QB)〉

where the second equivalence holds except with neglible probability. Hence,
assuming EA is fixed, we can see O as an oracle that when given R,S, outputs 1
if 〈R+[b]S〉 = 〈φA(PB)+[b]φA(QB)〉, and 0 if not. Note that the malicious points
R and S are obtained by doing a linear combination of φA(PB) and φA(QB),
say R = [e1]φA(PB) + [e2]φA(QB) and S = [f1]φA(PB) + [f2]φA(QB).

When it comes to M-SIDH, the image points are scaled with a secret invertible
scalar β. But, as the scalar is invertible and everything is linear, the attack can
proceed in the same way.

For MD-SIDH, the degree B′ of Bob’s secret isogeny is an unknown divisor
of B. The torsion points R and S are first scaled by the secret integer B1 = B

B′
before being used by Bob; that is Bob computes the isogeny EA → EA/〈[B1](R+
[b]S)〉. Hence our new oracle here acts as follows: when given R and S, it outputs
1 if 〈[B1](R + [b]S)〉 = 〈[B1](φA(PB) + [b]φA(QB))〉, and 0 otherwise.

Here, blindly applying the GPST adaptive attack would not work, as the
attacker first needs to recover the degree B′ of the secret isogeny or equivalently
the integer B1 = B

B′ . Moreover unlike for the Fouotsa-Petit attack, one cannot
simply apply our reduction from Sect. 4 to recover the degree and then apply
GPST attack, because the GPST attack assumes a cyclic secret isogeny.

To recover the integer B1, we instead use the above oracle. Let qe be a prime
power divisor of B. We would like to recover the largest integer e′ ≤ e such that
qe′

divides B′. We repeatedly query the oracle with the points

Ri = φA(PB) +
[
B

qi

]
φA(QB), Si = φA(QB), 1 ≤ i ≤ e.

We have the following lemma.

Lemma 13. With the notations as above, we have

O

(
φB(PA) +

[
B

qi

]
φA(QB), φA(QB)

)
= 1

if and only if qi divides B1.

M-SIDH and MD-SIDH: Countering SIDH Attacks by Masking Information 301

Proof. Set Ri = φA(PB) +
[

B
qi

]
φA(QB) and Si = φA(QB). We have

〈[B1](Ri + [b]Si)〉 = 〈[B1](φA(PB) +
[

B
qi

]
φA(QB) + [b]φA(QB))〉

= 〈[B1] (φA(PB) + [b]φA(QB)) + [B
qi][B1]φA(QB)〉.

Clearly, the points [B1](φA(PB) + [b]φA(QB)) and [B1]φA(QB) have order B′

and are linearly independent. Hence

〈[B1] (φA(PB) + [b]φA(QB))〉 = 〈[B1] (φA(PB) + [b]φA(QB))+
[
B

qi

]
[B1]φA(QB)〉

if and only if B
qi = 0 mod B′, that is if and only if qi divides B1. The Lemma

then follows from the definition of the oracle O. �
Using Lemma 13, one recovers each prime power divisor q

e′
i

i of B1 = B
B′ with at

most ei queries, where B = qe1
1 · · · qet

t , i = 1, . . . , t. The total maximum number
of queries to recover the secret degree B′ is

∑t
i=1 ei. Once the degree is recovered,

one then runs the usual GPST attack.

7 Parameter Selection and Efficiency

In this section,wediscuss the choice of the starting curveE0, andweuse the analysis
from the previous sections to infer parameter selections for both M-SIDH and MD-
SIDH. We conclude that the M-SIDH variant is always more secure than the MD-
SIDH variant at comparable parameter sizes, and discuss its efficiency.

7.1 Choosing the Starting Curve E0

From the attack in Sect. 4.2 and its generalization to MD-SIDH in Sect. 5.4, an
elliptic curve with a short-degree endomorphism (e.g., the curve of j-invariant
1728) should not be used for a starting curve in either scheme. Therefore the
setup algorithm needs to generate E0 as a curve with no short-degree endomor-
phism. There are three possibilities here:

1. the endomorphism ring of the curve is public,
2. the endomorphism ring of the curve is not public, but known by one party

(either Alice or Bob);
3. the endomorphism ring is unknown to everyone.

The advantage of the first possibility is that since the endomorphism ring of
E0 is public, everyone can verify that E0 does not have small endomorphisms
by determining the norm of the shortest element End(E0) (this is a dimension 4
lattice, so computing the shortest element is easy). One can use Bröker’s algo-
rithm [6] to generate E0, or obtain E0 by performing a random walk from a
supersingular curve computed using Bröker’s algorithm. The first option is not
secure since the supersingular curves generated using Bröker’s algorithm have

302 T. B. Fouotsa et al.

small endomorphisms. In the second option, the party that generates the curve
could backdoor it. In fact, they could generate a weak curve in the sense of [32].
Weak curves are curves for which Petit’s torsion point attack has the best effi-
ciency for a given set of parameters.

In the second scenario, one of the participants generates the curve and does
not reveal its endomorphism ring. This party could hence potentially cheat and
use a curve with small endomorphisms or a weak curve, then use it to attack the
other party. This is not acceptable for a key exchange protocol. Nevertheless, in
the setting of a SIKE-type key encapsulation mechanism or public key encryption
scheme, we can let the key generation algorithm generate the starting curve and
publish it together with their public key: indeed using a weak curve here would
only make their own secret key weaker.

Regarding the third scenario, one should note that generating a supersingu-
lar curve with unknown endomorphism ring is a hard problem [4,28]. Instead,
one can rely on a trusted third party (possibly simulated by a multiparty pro-
tocol [1]) to generate a truly random supersingular E0 curve by performing a
long random walk for a known supersingular curve, and forgets (deletes) the
walk they used. Then the obtained curve could be used as starting curve for the
schemes suggested in this scheme.

In conclusion, restricting E0 to curves which do not have small endomor-
phisms is sufficient when instantiating M-SIDH and MD-SIDH. Nevertheless,
one would need to trust the party generating the curve since they could backdoor
it (we could not find a method to generate curves with no small endomorphisms
in the literature). Since we would need to trust them anyway, it is better to just
ask this party to generate a curve with unknown endomorphism ring. This can
also be done using the MPC techniques described in [1].

7.2 Parameter Selection for M-SIDH

Recall that the M-SIDH primes are of the form p = ABf − 1 where A = 	1 · · · 	t

and B = q1 · · · qt are coprime integedo	i, qi are distinct small primes, A ≈ B ≈√
p and f is a small cofactor. Let λ be the security parameter. From Subsect.

4.1, we need t − n + 1 ≥ λ for classical security and t − n + 1 ≥ 2λ for quantum
security, where n is the largest integer satisfying

√
B ≤ 	n · · · 	t, where λ is a

security parameter.
We now explain how to generate the public parameters of M-SIDH for AES-λ

security (i.e., classical λ bits security and quantum λ/2 bits security). Given λ,
we sample the 2t smallest primes for t ≥ 2λ, we partition them into two sets of
equal size, we use the first set to get A and we use the second to get B, such
that A ≈ B. We then check the value t − n + 1 described in Subsect. 4.1. If
λ < t − n + 1, we restart with a larger t. If λ ≥ t − n + 1, find a cofactor f such
that p = ABf − 1 is prime.

For AES-128 (NIST level 1), AES-192 (NIST level 3) and AES-256 (NIST
level 5) security levels, Table 1 presents the key sizes, including secret key, public
key and compressed public key. The suggested primes for M-SIDH are

M-SIDH and MD-SIDH: Countering SIDH Attacks by Masking Information 303

p128 = 22 · 	1 · · · 	571 · 10 − 1,

p192 = 22 · 	1 · · · 	851 · 207 − 1

and
p256 = 22 · 	1 · · · 	1131 · 13 − 1

respectively; where 	i is the ith odd prime. Alice uses A = 22 · 	2 · 	4 · · · 	t−2 and
Bob uses B = 	1 · 	3 · · · 	t−1.

Table 1. Suggested parameters for 128, 192 and 256 bits of security.

AES NIST p (in bits) secret key public key compressed pk

128 level 1 5911 ≈ 369 bytes 4434 bytes ≈ 2585 bytes

192 level 3 9382 ≈ 586 bytes 7037 bytes ≈ 4103 bytes

256 level 5 13000 ≈ 812 bytes 9750 bytes ≈ 5687 bytes

7.3 Parameter Selection for MD-SIDH

We showed in previous sections that MD-SIDH can be broken by the same
attacks as M-SIDH. Therefore, t − n + 1 must be greater than or equal to λ
for AES-λ security, where n is the largest integer such that there is a subset
S ⊂ {1, . . . , t} satisfying

√
B ≤ ∏

i∈S 	ai
i and n = t+1−#S. Moreover, to mask

the degree of the secret isogeny, the size of the space of degrees needs to be 2λ+t

since the Weil pairing will reduce it by a factor 2t.
Given λ, we sample the 2t smallest primes for t ≥ λ, we set a1 = · · · = aλ =

b1 = · · · = bλ = 3 and the other exponents are 1, and we partition them into two
sets of equal size. We use the first set to get A and the second to get B, such that
A ≈ B. We check the value t−n+1 described above. If λ < t−n+1, we restart
with a larger t. If λ ≥ t − n + 1, we find a cofactor f such that p = ABf − 1 is
prime.

For AES-128 (NIST level 1), AES-192 (NIST level 3) and AES-256 (NIST
level 5) security levels, Table 2 presents the key sizes: secret key, public key and
compressed public key. The suggested primes for M-SIDH are

p128 = 23 · 	31 · · · 	3255	256 · · · 	839 · 537 − 1,

p192 = 23 · 	31 · · · 	3383	384 · · · 	1273 · 131 − 1

and

p256 = 23 · 	31 · · · 	3511	512 · · · 	1711 · 1485 − 1

respectively; where 	i is the ith odd prime. Alice uses A = 23·	32 · · · 	3λ−2	λ · · · 	t−2

and Bob uses B = 	31 · · · 	3λ−1	λ+1 · · · 	t−1.

304 T. B. Fouotsa et al.

Table 2. Suggested parameters for 128, 192 and 256 bits of security.

AES NIST p (in bits) secret key public key compressed pk

128 level 1 13810 ≈ 863 bytes 10358 bytes ≈ 6040 bytes

192 level 3 22291 ≈ 1393 bytes 16719 bytes ≈ 9751 bytes

256 level 5 31226 ≈ 1951 bytes 23420 bytes ≈ 13660 bytes

7.4 Preliminary Efficiency Analysis

From the two subsections above, it is clear that the M-SIDH variant is more
secure than the MD-SIDH variant for comparable parameter sizes.

Compressed public key sizes for M-SIDH have 2585, 4103 and 5687 bytes at
security levels 128, 192 and 256. This is roughly 6.8, 7.3 and 7.8 bigger than
previously suggested SIKE keys for the same security levels. Asymptotically,
Keys scale quasi-linearly in the security parameter, whereas SIKE keys scaled
linearly.

Computations required in M-SIDH are similar to those required in SIDH,
with additional (comparably negligible) scalar multiplications to mask torsion
points, individual isogeny steps of degrees O(λ log λ) instead of 2 and 3, and
larger parameter sizes. In SIDH, we have O(λ log λ) isogeny steps with optimal
strategies [16], with each step costing O(1) field operations. Field sizes are O(λ)
so each field operation costs O(λ log λ) bit operations asymptotically, neglecting
log log factors. This leads to a total asymptotic bit complexity of O(λ2 log2 λ)
bit operations. In M-SIDH, we use O(λ) primes each of size O(log λ), so the total
prime size is O(λ log λ). There are still O(λ log λ) steps involved with optimal
strategies. Each step requires O(

√
λ log λ) field operations using square root Vélu

formulae. Field operations cost O(λ log2 λ) bit operations asymptotically, again
neglecting log log factors. This gives a total of O(λ2.5 log7/2 λ) bit operations.
Concrete efficiency should be determined in future work, but a slowdown com-
pared to SIDH should be expected, with a factor in the order of O(

√
λ log3/2 λ).

Most efficiency and implementation tricks developed for SIDH should also be
available for M-SIDH, and potentially more, but we argue in Appendix B that
the B-SIDH approach will not be applicable.

8 Conclusion and Perspectives

We introduced two variants of the SIDH protocols aimed at defeating the
Castryck-Decru-Maino-Martindale-Robert recent attacks. The two variants
respectively hide the secret isogeny degree and the torsion point information to
the attacker (more precisely they only reveal an integer multiple of the degree,
and they reveal torsion point images only up to a scalar).

Our thorough security analysis of both variants suggests that the M-SIDH
variant offers the best security-efficiency tradeoff. Public key sizes are 4434, 7037
and 9750 bytes respectively for AES-128 (NIST level 1), AES-192 (NIST level 3)

M-SIDH and MD-SIDH: Countering SIDH Attacks by Masking Information 305

and AES-256 (NIST level 5) security, and efficiency is expected to asymptotically
be a factor in the order of O(

√
λ log3/2 λ) slower compared to SIDH.

Our work suggests that it may be possible to repair the SIDH protocol,
although at a non negligible efficiency cost, and it similarly offers a way forward
to the numerous cryptographic schemes based on SIDH that were developed in
recent years. Further work should aim at developing additional countermeasures
and at improving the efficiency and security analysis of our schemes.

Acknowledgements. We thank Castryck and Onuki for their valuable feedback on
a preliminary version of the results in this paper, as well as those of the participants
at ANTS 2022 that also gave us some feedback. The first author thanks Andrea Basso
and Luca De Feo for several discussions regarding this work. We thank anonymous
reviewers for their valuable feedback. This research was in part conducted under a
contract of “Research and development on new generation cryptography for secure
wireless communication services” among “Research and Development for Expansion of
Radio Wave Resources (JPJ000254)”, which was supported by the Ministry of Internal
Affairs and Communications, Japan. Christophe Petit’s work is in part supported by
an EPSRC fellowship grant (EP/V011324/1).

A On the claims of ePrint 2022/1667

The ePrint 2022/1667 vaguely claims attacks on M-SIDH. Reading through it,
it clearly does not contain any attack against M-SIDH; it is easy to see that the
“experimental evidence” provided there only applies to SIDH parameters and
does not generalize to the parameters we recommend.

This ePrint paper runs the Castryck-Decru attack on Masked SIDH instan-
tiated with SIDH primes, that is A = 2a and B = 3b. Note that using SIDH
primes in Masked SIDH is totally insecure at the first place. Nevertheless, when
the 2a torsion points are masked, intuitively, one expects the Castryck-Decru
attack to succeed 50% of the time. In fact, there are 4 roots of unity modulo
2a, these are 1, −1, 2a−1 − 1 and 2a−1 + 1. As precised earlier in Sect. 3.3, the
attack succeeds when β = 1,−1, hence one expects the Castryck-Decru attack
to succeed when the masking scalar β is 1 or −1, and fail when β is 2a−1 − 1
or 2a−1 + 1. The ePrint 2022/1667 ran the attack and noticed that the attack
always succeeds, then claimed that this would be the case even when the cor-
rect parameters are used. We have already explained why we do not expect the
attack to work on Masked degree instantiated with the correct parameters (see
Sect. 3.3). Now, why does the Castryck-Decru attack works 100% of the time
(instead of 50%) when instantiated with SIDH parameters? Well, it turns out
it is because the Castryck-Decru attack does not fully use the torsion points
provided in the public key, but scales them by a small power of 2 first. This is
because the implementation of the attack needs a′ and b′ such that c = 2a′ − 3b′

is smooth and its prime factors are congruent to 1 mod 4 (this is required for the
attack to be efficient, see [7]). This implies that the order of the torsion points

306 T. B. Fouotsa et al.

actually used in the attack divides 2a−1. Therefore, the masking scalar β which
lies in {1,−1, 2a−1−1, 2a−1+1} becomes β mod 2a−1 = 1,−1 (mod 2a−1). This
justifies why the Castryck-Decru attack always succeeds when SIDH primes are
used.

The attack clearly does not succeed when the torsion point images having
order 2a′

are masked with a scalar which is neither 1 nor −1 modulo 2a′
. This

can be verified using the sage implementation of the attack provided in [30]. One
goes to the line where the torsion point images of order 2a′

are computed (for
example, in line 57 of the file castryck decru shortcut.sage in https://github.
com/jack4818/Castryck-Decru-SageMath), and replaces the torsion points 2alp∗
PB and 2alp ∗QB by (2ai−1−1)∗2alp ∗PB and (2ai−1−1)∗2alp ∗QB respectively.

Note. The non-applicability of the attacks claimed in the ePrint 2022/1667 to
M-SIDH was also pointed out on Twitter by Luca De Feo, Steven Galbraith,
Péter Kutas, Benjamin Wesolowski and other isogenists, and we thank them for
that.

B Using B-SIDH primes in M-SIDH

B-SIDH is one variant of SIDH proposed by Costello [12]. The main characteristic
of B-SIDH is the use of quadratic twists. This allows us to use the torsion points
in E[p − 1] and E[p + 1] without extending the base field, while in the original
SIDH, points which we can use must be in E[p + 1]. Thus, the size of the prime
for B-SIDH is at most half that for SIDH.

If we can adapt this technique to our scheme, then the size of the prime may
be at most halved. Since the MD-SIDH primes are larger than twice the M-SIDH
primes, we only consider the case of M-SIDH.

In the setting of SIDH, the size of A needs to be large enough for its security;
however, in the setting of M-SIDH, the number of primes dividing A needs to
large enough. Therefore, the restriction of smoothness is harder in M-SIDH than
in SIDH.

To use the B-SIDH method for M-SIDH, we need to find a prime p satisfying
the following property:

p + 1 = 	1 · · · 	t · f,

p − 1 = q1 · · · qt · f ′,

where t ≥ 2λ, and 	1, . . . , 	t and q1, . . . , qt are distinct primes, respectively.
The basic approach to find the B-SIDH prime is to construct an integer m

such that both m and m + 1 are smooth. If 2m + 1 is prime, we set p = 2m + 1.
In [12] and [13], some methods to find such m’s are proposed. The current most
useful method is the method proposed in [13]. The main idea of this method
is to use already known solutions of the Prouhet-Tarry-Escott (PTE) problem,
which provide pairs of integer coefficient polynomials a(x) = (x−a1) · · · (x−as)

https://github.com/jack4818/Castryck-Decru-SageMath
https://github.com/jack4818/Castryck-Decru-SageMath

M-SIDH and MD-SIDH: Countering SIDH Attacks by Masking Information 307

and b(x) = (x − b1) · · · (x − bs) whose difference is a constant value c. If we find
an integer 	 such that all 	 − ai’s and 	 − bi’s are smooth, and a()/c and b()/c
are integers, then b()/c can be taken as m.

The main issue with this approach is that such 	’s have a very small proba-
bility to exist. For a polynomial a ∈ Z[x], define

Ψa(N,M) = #{1 ≤ m ≤ N | a(m) is M -smooth}.

Then, heuristically it holds that Ψa(N,N1/u)/N ∼ ρ(d1u) · · · ρ(dku) as N → ∞,
where d1, . . . , dk are degrees of distinct irreducible factors of a, and ρ is the
Dickman–de Bruijn function.

Since t ≥ 2λ, both m and m + 1 are divided by at least 2λ distinct primes.
Then, we heuristically assume that the target value m is m1/λ-smooth. Since
	 ≈ m1/s, the probability of target 	’s is

Ψa(m1/s,m1/λ)
m1/s

∼ ρ(λ/s)s.

Note that s is less than or equal to 12 for an already known solution of the
PTE problem. With λ = 128, we have ρ(λ/s)s < 2−463; with λ = 192, we have
ρ(λ/s)s < 2−835; and with λ = 256, we have ρ(λ/s)s < 2−1246.

References

1. Basso, A., et al.: Supersingular curves you can trust. Cryptology ePrint Archive,
Report 2022/1469 (2022). https://eprint.iacr.org/2022/1469

2. Basso, A., Kutas, P., Merz, S.-P., Petit, C., Sanso, A.: Cryptanalysis of an oblivious
PRF from supersingular isogenies. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT
2021. LNCS, vol. 13090, pp. 160–184. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-92062-3 6

3. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5 9

4. Booher, J., et al.: Failing to hash into supersingular isogeny graphs. Cryptology
ePrint Archive, Report 2022/518 (2022). https://eprint.iacr.org/2022/518

5. Bottinelli, P., de Quehen, V., Leonardi, C., Mosunov, A., Pawlega, F., Sheth, M.:
The dark SIDH of isogenies. Cryptology ePrint Archive, Report 2019/1333 (2019).
https://eprint.iacr.org/2019/1333

6. Bröker, R.: Constructing supersingular elliptic curves. J. Comb. Numb. Theory
1(3), 269–273 (2009)

7. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH (preliminary
version). Cryptology ePrint Archive, Report 2022/975 (2022). https://eprint.iacr.
org/2022/975

8. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

https://eprint.iacr.org/2022/1469
https://doi.org/10.1007/978-3-030-92062-3_6
https://doi.org/10.1007/978-3-030-92062-3_6
https://doi.org/10.1007/978-3-030-34578-5_9
https://eprint.iacr.org/2022/518
https://eprint.iacr.org/2019/1333
https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15

308 T. B. Fouotsa et al.

9. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from
expander graphs. J. Cryptol. 22(1), 93–113 (2007). https://doi.org/10.1007/
s00145-007-9002-x

10. Colò, L., Kohel, D.: Orienting supersingular isogeny graphs. Cryptology ePrint
Archive, Report 2020/985 (2020). https://eprint.iacr.org/2020/985

11. Cooper, C.: On the rank of random matrices. Rand. Struct. Algor. 16(2),
209–232 (2000). https://doi.org/10.1002/(SICI)1098-2418(200003)16:2〈209::AID-
RSA6〉3.0.CO;2-1

12. Costello, C.: B-SIDH: supersingular isogeny Diffie-Hellman using twisted torsion.
In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 440–463.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3 15

13. Costello, C., Meyer, M., Naehrig, M.: Sieving for twin smooth integers with solu-
tions to the prouhet-tarry-escott problem. In: Canteaut, A., Standaert, F.-X. (eds.)
EUROCRYPT 2021. LNCS, vol. 12696, pp. 272–301. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-77870-5 10

14. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006). https://eprint.iacr.org/2006/291

15. De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group
actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp.
759–789. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 26

16. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014). https://
doi.org/10.1515/jmc-2012-0015

17. De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: SQISign: compact
post-quantum signatures from quaternions and isogenies. In: Moriai, S., Wang, H.
(eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 64–93. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64837-4 3

18. Fouotsa, T.B.: SIDH with masked torsion point images. Cryptology ePrint Archive,
Report 2022/1054 (2022). https://eprint.iacr.org/2022/1054

19. Fouotsa, T.B., Petit, C.: A new adaptive attack on SIDH. In: Galbraith, S.D. (ed.)
CT-RSA 2022. LNCS, vol. 13161, pp. 322–344. Springer, Cham (2022). https://
doi.org/10.1007/978-3-030-95312-6 14

20. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingu-
lar isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016.
LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53887-6 3

21. Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature schemes
based on supersingular isogeny problems. J. Cryptol. 33(1), 130–175 (2019).
https://doi.org/10.1007/s00145-019-09316-0

22. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: 28th
Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM Press,
Philadephia (1996). https://doi.org/10.1145/237814.237866

23. Jao, D., et al.: SIKE. Technical report, National Institute of Standards and Tech-
nology (2020). https://csrc.nist.gov/projects/post-quantum-cryptography/post-
quantum-cryptography-standardization/round-3-submissions

24. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

25. Kovalenko, I., Levitskaya, A., Savchuk, M.: Selected Problems in Probabilistic
Combinatorics. Naukova Dumka, Kiev (1986)

https://doi.org/10.1007/s00145-007-9002-x
https://doi.org/10.1007/s00145-007-9002-x
https://eprint.iacr.org/2020/985
https://doi.org/10.1002/(SICI)1098-2418(200003)16:2<209::AID-RSA6>3.0.CO;2-1
https://doi.org/10.1002/(SICI)1098-2418(200003)16:2<209::AID-RSA6>3.0.CO;2-1
https://doi.org/10.1007/978-3-030-64834-3_15
https://doi.org/10.1007/978-3-030-77870-5_10
https://eprint.iacr.org/2006/291
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1515/jmc-2012-0015
https://doi.org/10.1515/jmc-2012-0015
https://doi.org/10.1007/978-3-030-64837-4_3
https://eprint.iacr.org/2022/1054
https://doi.org/10.1007/978-3-030-95312-6_14
https://doi.org/10.1007/978-3-030-95312-6_14
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/s00145-019-09316-0
https://doi.org/10.1145/237814.237866
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://doi.org/10.1007/978-3-642-25405-5_2

M-SIDH and MD-SIDH: Countering SIDH Attacks by Masking Information 309

26. Maino, L., Martindale, C.: An attack on SIDH with arbitrary starting curve. Cryp-
tology ePrint Archive, Report 2022/1026 (2022). https://eprint.iacr.org/2022/1026

27. Moriya, T.: Masked-degree SIDH. Cryptology ePrint Archive, Report 2022/1019
(2022). https://eprint.iacr.org/2022/1019

28. Mula, M., Murru, N., Pintore, F.: Random sampling of supersingular elliptic curves.
Cryptology ePrint Archive, Report 2022/528 (2022). https://eprint.iacr.org/2022/
528

29. National Institute of Standards and Technology: Post-quantum cryptography stan-
dardization (2016). https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Post-Quantum-Cryptography-Standardization

30. Oudompheng, R., Pope, G.: A note on reimplementing the castryck-decru attack
and lessons learned for SageMath. Cryptology ePrint Archive, Report 2022/1283
(2022). https://eprint.iacr.org/2022/1283

31. Petit, C.: Faster algorithms for isogeny problems using torsion point images. In:
Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 330–353.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 12

32. de Quehen, V., et al.: Improved torsion-point attacks on SIDH variants. In: Malkin,
T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp. 432–470. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-84252-9 15

33. Robert, D.: Breaking SIDH in polynomial time. Cryptology ePrint Archive, Report
2022/1038 (2022). https://eprint.iacr.org/2022/1038

34. Rostovtsev, A., Stolbunov, A.: Public-Key Cryptosystem Based On Isogenies.
Cryptology ePrint Archive, Report 2006/145 (2006). https://eprint.iacr.org/2006/
145

35. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: 35th Annual Symposium on Foundations of Computer Science, pp. 124–134.
IEEE Computer Society Press, Santa Fe (1994). https://doi.org/10.1109/SFCS.
1994.365700

36. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic appli-
cations. J. Cryptol. 12(1), 1–28 (1999). https://doi.org/10.1007/PL00003816

https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/1019
https://eprint.iacr.org/2022/528
https://eprint.iacr.org/2022/528
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://eprint.iacr.org/2022/1283
https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1007/978-3-030-84252-9_15
https://eprint.iacr.org/2022/1038
https://eprint.iacr.org/2006/145
https://eprint.iacr.org/2006/145
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1007/PL00003816

Disorientation Faults in CSIDH

Gustavo Banegas1(B), Juliane Krämer2(B), Tanja Lange3,4(B),
Michael Meyer2(B), Lorenz Panny4(B), Krijn Reijnders5(B),

Jana Sotáková6(B), and Monika Trimoska5(B)

1 Inria and Laboratoire d’Informatique de l’Ecole polytechnique,
Institut Polytechnique de Paris, Palaiseau, France

gustavo@cryptme.in
2 University of Regensburg, Regensburg, Germany

juliane.kraemer@ur.de, michael@random-oracles.org
3 Eindhoven University of Technology, Eindhoven, The Netherlands

tanja@hyperelliptic.org
4 Academia Sinica, Taipei, Taiwan

lorenz@yx7.cc
5 Radboud University, Nijmegen, The Netherlands
krijn@cs.ru.nl, monika.trimoska@ru.nl

6 University of Amsterdam and QuSoft, Amsterdam, The Netherlands

j.s.sotakova@uva.nl

Abstract. We investigate a new class of fault-injection attacks against
the CSIDH family of cryptographic group actions. Our disorientation
attacks effectively flip the direction of some isogeny steps. We achieve
this by faulting a specific subroutine, connected to the Legendre symbol
or Elligator computations performed during the evaluation of the group
action. These subroutines are present in almost all known CSIDH imple-
mentations. Post-processing a set of faulty samples allows us to infer
constraints on the secret key. The details are implementation specific,
but we show that in many cases, it is possible to recover the full secret
key with only a modest number of successful fault injections and modest
computational resources. We provide full details for attacking the origi-
nal CSIDH proof-of-concept software as well as the CTIDH constant-time

The full version with additional material can be found at https://ia.cr/2022/1202.
Author list in alphabetical order; see https://ams.org/profession/leaders/
CultureStatement04.pdf. This work began at the online Lorentz Center workshop
“Post-Quantum Cryptography for Embedded Systems” held in February 2022. This
research was funded in part by the European Commission through H2020 SPARTA,
the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
SFB 1119 – 236615297 and under Germany’s Excellence Strategy—EXC 2092 CASA—
390781972 “Cyber Security in the Age of Large-Scale Adversaries”, the Taiwan’s
Executive Yuan Data Safety and Talent Cultivation Project (AS-KPQ-109-DSTCP),
the German Federal Ministry of Education and Research (BMBF) under the project
QuantumRISC (ID 16KIS1039), the Academia Sinica Investigator Award AS-IA-
109-M01, the Dutch Research Council (NWO) through Gravitation-grant Quantum
Software Consortium – 024.003.037, and a gender balance subsidy of the Faculty of
Science, Radboud University, project number 6201362. This work was done in part
while Tanja Lange was visiting the Simons Institute for the Theory of Computing.
Date of this document: 2023-02-23.

c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14008, pp. 310–342, 2023.
https://doi.org/10.1007/978-3-031-30589-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30589-4_11&domain=pdf
https://ia.cr/2022/1202
https://ams.org/profession/leaders/CultureStatement04.pdf
https://ams.org/profession/leaders/CultureStatement04.pdf
https://sparta.eu/
https://doi.org/10.1007/978-3-031-30589-4_11

Disorientation Faults in CSIDH 311

implementation. Finally, we present a set of lightweight countermeasures
against the attack and discuss their security.

Keywords: Fault-injection attack · isogenies of elliptic curves ·
post-quantum cryptography

1 Introduction

Isogeny-based cryptography is a contender in the ongoing quest for post-quantum
cryptography. Perhaps the most attractive feature is small key size, but there
are other reasons in favor of isogenies: Some functionalities appear difficult to
construct from other paradigms. For instance, the CSIDH [15] scheme gives
rise to non-interactive key exchange. CSIDH uses the action of an ideal-class
group on a set of elliptic curves to mimic (some) classical constructions based
on discrete logarithms, most notably the Diffie–Hellman key exchange. Recently,
more advanced cryptographic protocols have been proposed based on the CSIDH
group action: the signature schemes SeaSign [22] and CSI-FiSh [8], threshold
schemes [23], oblivious transfer [27], and more.

The group action in CSIDH and related schemes is evaluated by computing
a sequence of small-degree isogeny steps; the choice of degrees and “directions”
is the private key. Thus, the control flow of a straightforward implementation
is directly related to the secret key, which complicates side-channel resistant
implementations [3,7,12,26,30,31].

In a side-channel attack, passive observations of physical leakage (such as
timing differences, electromagnetic emissions, or power consumption) during the
execution of sensitive computations help an attacker infer secret information. A
more intrusive class of physical attacks are fault-injection attacks or fault attacks:
By actively manipulating the execution environment of a device (for instance,
by altering the characteristics of the power supply, or by exposing the device
to electromagnetic radiation), the attacker aims to trigger an error during the
execution of sensitive computations and later infer secret information from the
outputs, which are now potentially incorrect, i.e., faulty.

Two major classes of faults are instruction skips and variable modifications.
Well-timed skips of processor instructions can have far-reaching consequences,
e.g., omitting a security check entirely, or failing to erase secrets which sub-
sequently leak into the output. Variable modifications may reach from simply
randomized CPU registers to precisely targeted single-bit flips. They cause the
software to operate on unexpected values, which (especially in a cryptographic
context) may lead to exploitable behavior. In practice, the difficulty of inject-
ing a particular kind of fault (or a combination of multiple faults) depends on
various parameters; generally speaking, less targeted faults are easier.

Our Contributions. We analyze the behavior of existing CSIDH implementa-
tions under a new class of attacks that we call disorientation faults. These faults
occur when the attacker confuses the algorithm about the orientation of a point

312 G. Banegas et al.

used during the computation: The effect of such an error is that a subset of
the secret-dependent isogeny steps will be performed in the opposite direction,
resulting in an incorrect output curve.

The placement of the disorientation fault during the algorithm influences the
distribution of the output curve in a key-dependent manner. We explain how an
attacker can post-process a set of faulty outputs to fully recover the private key.
This attack works against almost all existing CSIDH implementations.

To simplify exposition we first assume access to a device that applies a secret
key to a given public key (i.e., computing the shared key in CSIDH) and returns
the result (e.g., an HSM providing a CSIDH accelerator). We also discuss variants
of the attack with weaker access; this includes a hashed version where faulty
outputs are not revealed as-is, but passed through a key-derivation function
first, as is commonly done for a Diffie–Hellman-style key exchange, and made
available to the attacker only indirectly, e.g., as a MAC under the derived key.

Part of the tooling for the post-processing stage of our attack is a some-
what optimized meet-in-the-middle path-finding program for the CSIDH isogeny
graph, dubbed pubcrawl. This software is intentionally kept fully generic with
no restrictions specific to the fault-attack scenario we are considering, so that it
may hopefully be usable out of the box for other applications requiring “small”
neighborhood searches in CSIDH in the future. Applying expensive but feasi-
ble precomputation can speed up post-processing for all attack variants and is
particularly beneficial to the hashed version of the attack.

To defend against disorientation faults, we provide a set of countermeasures.
We show different forms of protecting an implementation and discuss the pros
and cons of each of the methods. In the end, we detail two of the protections
that we believe give the best security. Both of them are lightweight, and they do
not significantly add to the complexity of the implementation.

Note on Security. We emphasize that CSIDH, its variants, and the protocols
based on the CSIDH group action are not affected by the recent attacks that
break the isogeny-based scheme SIDH [14,29,34]. These attacks exploit specific
auxiliary information which is revealed in SIDH.

CSIDH is a relatively young cryptosystem, being introduced only in 2018,
but it is based on older systems due to Couveignes [21] and Rostovtsev and
Stolbunov [35] which have received attention since 2006. The best non-quantum
attack is a meet-in-the-middle attack running in O(4

√
p); a low-memory version

was developed in [24]. On a large quantum computer Kuperberg’s attack can
be mounted as shown in [19]. This attack runs in L√

p(1/2) calls to a quan-
tum oracle. The number of oracle calls was further analyzed in [9] and [33]
for concrete parameters, while [7] analyzes the costs per oracle call in number
of quantum operations. Combining these results shows that breaking CSIDH-
512 requires around 260 qubit operations on logical qubits, i.e., not taking into
account the overhead for quantum error correction. Implementation papers such
as CTIDH [3] use the CSIDH-512 prime for comparison purposes and also offer
larger parameters. Likewise, we use the CSIDH-512 and CTIDH-512 parameters
for concrete examples.

Disorientation Faults in CSIDH 313

Related Work. Loop-abort faults on the SIDH cryptosystem [25], discussed for
CSIDH in [10], lead to leakage of an intermediate value of the computation rather
than the final result. Replacing torsion points with other points in SIDH [36,37]
can be used to recover the secret keys; faulting intermediate curves in SIDH [2]
to learn if secret isogeny paths lead over subfield curves can also leak information
on secret keys. But the two latter attacks cannot be mounted against CSIDH
due to the structural and mathematical differences between SIDH and CSIDH.

Recently, several CSIDH-specific fault attacks were published. One can mod-
ify memory locations and observe if this changes the resulting shared secret [11].
A different attack avenue is to target fault injections against dummy compu-
tations in CSIDH [10,28]. We emphasize that these are attacks against spe-
cific implementations and variants of CSIDH. Our work, in contrast, features a
generic approach to fault attacks, exploiting an operation and data flow present
in almost all current implementations of CSIDH.

2 Background

CSIDH is based on a group action on a certain set of elliptic curves. We assume
some familiarity with elliptic curves and isogenies, see [15] for details.

2.1 CSIDH

We fix a prime p of the form p = 4 · �1 · · · �n − 1 with distinct odd primes �i.
We define E to be the set of supersingular elliptic curves over Fp in Montgomery
form, up to Fp-isomorphism. All such curves admit an equation of the form
EA : y2 = x3 +Ax2 +x with a unique A ∈ Fp. For EA ∈ E , the group of rational
points EA(Fp) is cyclic of order p+1. The quadratic twist of EA ∈ E is E−A ∈ E .

Isogeny Steps. For any �i and any EA ∈ E there are two �i-isogenies, each lead-
ing to another curve in E . One has kernel generated by any point P+ of order �i

with both coordinates in Fp. We say this �i-isogeny is in the positive direction
and the point P+ has positive orientation. The other �i-isogeny has kernel gen-
erated by any point P− of order �i with x-coordinate in Fp but y-coordinate in
Fp2 \ Fp. We say this isogeny is in the negative direction and the point P− has
negative orientation. Replacing EA by the codomain of a positive and negative
�i-isogeny from EA is a positive and negative �i-isogeny step, respectively. As the
name suggests, a positive and a negative �i-isogeny step cancel.

Fix i ∈ Fp2\Fp with i2 = −1 ∈ Fp and note that a negatively oriented point
is necessarily of the form (x, iy) with x, y ∈ Fp. Moreover, x ∈ F

∗
p defines a

positively oriented point on EA whenever x3 + Ax2 + x is a square in Fp, and a
negatively oriented point otherwise.

314 G. Banegas et al.

The Group Action. It is a non-obvious, but very useful fact that the isogeny
steps defined above commute: Any sequence of them can be rearranged arbitrar-
ily without changing the final codomain curve [15]. Thus, taking a combination
of various isogeny steps defines a group action of the abelian group (Zn,+) on E :
The vector (e1, . . . , en) ∈ Z

n represents |ei| individual �i-isogeny steps, with the
sign of ei specifying the orientation: if li denotes a single positive �i-isogeny
step, the action of (e1, . . . , en) ∈ Z

n on a curve E denotes the sequence of steps
(le1

1 · · · len
n) ∗ E. We refer to (e1, . . . , en) as an exponent vector.

2.2 Algorithmic Aspects

Every step is an oriented isogeny, so applying a single l±1
i step requires a point P

with two properties: P has order �i and the right orientation. The codomain of
E → E/〈P 〉 is computed using either the Vélu [39] or

√
élu [5] formulas.

Determining Orientations. All state-of-the-art implementations of CSIDH
use x-only arithmetic and completely disregard y-coordinates. So, we sample a
point P by sampling an x-coordinate in Fp. To determine the orientation of P ,
we then find the field of definition of the y-coordinate, e.g., through a Legendre
symbol computation. An alternative method is the “Elligator 2” map [6] which
generates a point of the desired orientation.

Sampling Order-� Points. There are several methods to compute points of
given order �. The following Las Vegas algorithm is popular for its simplicity
and efficiency: As above, sample a uniformly random point P of either positive
or negative orientation, and compute Q := [(p + 1)/�]P . Since P is uniformly
random in a cyclic group of order p+1, the point Q has order � with probability
1 − 1/�. With probability 1/�, we get Q = ∞. Retry until Q 	= ∞. Filtering for
points of a given orientation is straightforward.

Multiple Isogenies from a Single Point. To amortize the cost of sampling
points and determining orientations, implementations usually pick some set S
of indices of exponents of the same sign, and attempt to compute one isogeny
per degree �i with i ∈ S from one point. If d =

∏
i∈S �i and P a random point,

then the point Q = [p+1
d]P has order dividing d. If [d/�i]Q 	= ∞ we can use it

to construct an isogeny step for �i ∈ S. The image of Q under that isogeny has
the same orientation as P and Q and order dividing d/�i.

In CSIDH and its variants, the set S of isogeny degrees depends on the secret
key and the orientation s of P . For example in Algorithm 1 (from [15]), for the
first point that is sampled with positive orientation, the set S is {i | ei > 0}.

The order of a random point P is not divisible by �i with probability 1/�i.
This means that in many cases, we will not be able to perform an isogeny for
every i ∈ S, but only for some (large) subset S′ ⊂ S due to P lacking factors
�i in its order for those remaining i ∈ S \ S′. In short, a point P performs the
action

∏
i∈S′ lsi for some S′ ⊂ S, with s the orientation of P (interpreted as

Disorientation Faults in CSIDH 315

Algorithm 1. Evaluation of CSIDH group action
Input: A ∈ Fp and a list of integers (e1, . . . , en).
Output: B ∈ Fp such that

∏
[li]

ei ∗ EA = EB

1: while some ei �= 0 do
2: Sample a random x ∈ Fp, defining a point P .
3: Set s ← IsSquare(x3 + Ax2 + x).
4: Let S = {i | ei �= 0, sign(ei) = s}. Restart with new x if S is empty.
5: Let k ← ∏

i∈S �i and compute Q ← [p+1
k

]P .
6: for each i ∈ S do
7: Set k ← k/�i and compute R ← [k]Q. If R = ∞, skip this i.
8: Compute φ : EA → EB with kernel 〈R〉.
9: Set A ← B, Q ← φ(Q), and ei ← ei − s.

10: return A.

±1). Sampling a point and computing the action
∏

i∈S′ lsi is called a round ; we
perform rounds for different sets S until we compute the full action a =

∏
lei
i .

Strategies. There are several ways of computing the group action as efficiently
as possible, usually referred to as strategies. The strategy in Algorithm 1 is called
multiplicative strategy [7,15,31]. Other notable strategies from the literature are
the SIMBA strategy [30], point-pushing strategies [18], and atomic blocks [3].

1-Point and 2-Point Approaches. The above samples a single point, com-
putes some isogenies with the same orientation, and repeats this until all
steps l±1

i are processed. This approach, introduced in [15], is called 1-point
approach. In contrast, one can sample two points per round, one with positive
and one with negative orientation, and attempt to compute isogenies for each
degree �i per round, independent of the sign of the ei [32]. Constant-time algo-
rithms require choosing S independent of the secret key, and all state-of-the-art
constant-time implementations use the 2-point approach, e.g., [3,17].

Keyspace. In both CSIDH and CTIDH, each party’s private key is an integer
vector (e1, . . . , en) sampled from a bounded subset K ⊂ Z

n, the keyspace. Differ-
ent choices of K have different performance and security properties. The original
scheme [15] uses Km = {−m, . . . ,m}n ⊂ Z

n, e.g. m = 5 for CSIDH-512. As
suggested in [15, Rmk. 14] and shown in [30], using different bounds mi for each
i can improve speed. The shifted keyspace K+

m = {0, . . . , 2mi}n was used in [30].
Other choices of K were made in [16,17,32], and CTIDH [3] (see Sect. 5.2).

3 Attack Scenario and Fault Model

Throughout this work, we assume physical access to some hardware device con-
taining an unknown CSIDH private key a. In the basic version of the attack,
we suppose that the device provides an interface to pass in a CSIDH public-key

316 G. Banegas et al.

curve E and receive back the result a ∗ E of applying a to the public key E as
in the second step of the key exchange.

We assume that the attacker is able to trigger an error during the compu-
tation of the orientation of a point in a specific round of the CSIDH algorithm:
whenever a point P with orientation s ∈ {−1, 1} is sampled during the algo-
rithm, we can flip the orientation s �→ −s as shown below. This leads to some
isogenies being computed in the opposite direction throughout the round. The
effect of this flip will be explored in Sect. 4.

Diffie–Hellman key agreement typically hashes the shared secret to derive
symmetric key material, instead of directly outputting curves. Our attacks
are still applicable in this hashed version, although the complexity for post-
processing steps from Sect. 4 will increase. We postpone this discussion to Sect. 7.

Square Check. In CSIDH, cf. Algorithm 1, the point P is generated in Step 2
and its orientation s is determined in Step 3. The function IsSquare determines
s by taking as input the non-zero value z = x3 + Ax2 + x, and computing the
Legendre symbol of z. Hence, s = 1 when z is a square and s = −1 when z is
not a square. Many implementations simply compute s ← z

p−1
2 .

A successful fault injection in the computation z ← x3 + Ax2 + x, by skip-
ping an instruction or changing the value randomly, ensures random input to
IsSquare and so in about half of the cases the output will be flipped by s �→ −s.
In the other half of the cases, the output of IsSquare remains s. The attacker
knows the outcome of the non-faulty computation and can thus discard those
outputs and continue with those where the orientation has been flipped.

There are other ways to flip the orientation s. For example, one can also
inject a random fault into x after s has been computed, which has a similar
effect. The analysis and attack of Sects. 4 and 5 apply to all possible ways to flip
s, independent of the actual fault injection. The countermeasures introduced in
Sect. 9 prevent all possible ways to flip s that we know of.

Faulting the Legendre symbol computation in IsSquare, in general, leads to
a random Fp-value as output instead of ±1. The interpretation of this result is
heavily dependent on the respective implementation. For instance, the CSIDH
implementation from [15] interprets the output as boolean value by setting s = 1
if the result is +1, and −1 otherwise. In this case, faults mostly flip in one direc-
tion: from positive to negative orientation. Thus, faulting the computation of z
is superior in our attack setting.

Elligator. Implementations using a 2-point strategy often use Elligator 2 [6].
On input of a random value, Elligator computes two points P and P ′ of opposite
orientations. An IsSquare check is used to determine the orientation of P . If P
has positive orientation, we set P+ ← P and P− ← P ′. Otherwise, set P+ ← P ′

and P− ← P . Again, we can fault the input to this IsSquare check, which flips
the assignments to P+ and P−; hence, the orientation of both points is flipped.

As before, this means that all isogenies computed using either of these points
are pointing in the wrong direction. A notable exception is CTIDH, where two
independent calls to Elligator are used to produce points for the 2-point strategy.

Disorientation Faults in CSIDH 317

This is due to security considerations, and the algorithmic and attack implica-
tions are detailed in Sect. 5.2.

4 Exploiting Orientation Flips

In Sect. 3, we defined an attack scenario that allows us to flip the orientation s
in Line 3. If this happens, the net effect is that we will select an incorrect set
S′ with opposite orientation, and hence perform an isogeny walk in the opposite
direction for all the indices in S′. Equivalently, the set S selected in Line 3
has opposite orientation to the point P . For simplicity, we will always fix the
set S first and talk about the point P being flipped. We assume that we can
successfully flip the orientation in any round r, and that we get the result of the
faulty evaluation, which is some faulty curve Et 	= a ∗ E.

4.1 Implications of Flipping the Orientation of a Point

In this section, all points will have full order, so Line 7 never skips an i.
Suppose we want to evaluate the group action

∏
i∈S li ∗ EA for some set

of steps S. Suppose we generate a negatively oriented point P , but flipped its
orientation. This does not change the point (still negatively oriented), but if we
use P to evaluate the steps in what we believe is the positive direction, we will
in fact compute the steps in the negative direction: Ef =

∏
i∈S l−1

i ∗ EA. More
generally, if we want to take steps in direction s and use a point of opposite
orientation, we actually compute the curve Ef =

∏
i∈S l−s

i ∗ EA.
Suppose we flip the orientation of a point in one round of the isogeny compu-

tation EB = a ∗ EA and the rest of the computation is performed correctly. The
resulting curve Et is called a faulty curve. If the round was computing steps for
isogenies in S with direction s, the resulting curve satisfies EB =

∏
i∈S l2s

i ∗ Et,
that is, the faulty curve differs from the correct curve by an isogeny whose degree
is given by the (squares of) primes �i for i ∈ S, the set S in the round we faulted.
We call S the missing set of Et.

Distance Between Curves. We define the distance d between two curves E
and E′ as the lowest number of different degrees for isogenies φ : E → E′.
Note that the distance only tells us how many primes we need to connect two
curves, without keeping track of the individual primes �i or their multiplicity.
Specifically for a faulty curve with EB =

∏
i∈S l2s

i ∗ Et, we define the distance
to EB as the number of flipped steps |S|. Note that each li appears as a square;
this gets counted once in the distance.

Positive and Negative Primes. Suppose the secret key a is given by the
exponent vector (ei). Then every �i is used to take ei steps in direction sign(ei).
Define the set of positive primes L+ := {i | ei > 0}, negative primes L− :=
{i | ei < 0}, and neutral primes L0 := {i | ei = 0}. For 1-point strategies and
any faulty curve Et with missing set S, we always have S ⊂ L+ or S ⊂ L−.

318 G. Banegas et al.

However, using 2-point strategies, the sets S may contain positive and negative
primes. We use the terminology ‘flipping a batch’ when we refer to the effect of
an orientation flip to the primes being performed: when we flip the orientation
s of a negative point from negative to positive, the final result has performed a
batch of positive primes in the negative direction.

Example 1. Take CSIDH-512. Assume we flip the orientation s �→ −s of the first
point P . From Algorithm 1, we see the elements of S are exactly those i such
that |ei| ≥ 1 and sign(ei) = −s. Therefore, we have S = L−s.

4.2 Faulty Curves and Full-Order Points

We continue to assume that all points have full order, so Line 7 never skips an i,
and analyze which faulty curves we obtain by flipping the orientation in round r.
We treat the general case in Sect. 4.3 and Sect. 4.4.

Effective Curves. For any strategy (cf. Sect. 2.2), the computation in round r
depends on what happened in previous rounds. In a 2-point strategy, we sample
both a negative and a positive point and use them to perform the isogenies in
both directions. So assuming points of full order, the round-r computation and
the set S do not depend on the previous round but only the secret key.

In a 1-point strategy, we sample 1 point per round, and only perform isogenies
in the direction of that point. So the set S in round r depends additionally on
what was computed in previous rounds. However, the computation in round r
only depends on previous rounds with the same orientation. The orientation of
a round refers to which primes were used. Hence, a positive round means that
the steps were performed for the positive primes, in the positive or negative
direction.

Notation. Let + and − denote the positive and negative orientation, respectively.
For a 1-point strategy, we encode the choices of orientations by a sequence of ±.
We denote the round r in which we flip the orientation of a point by parentheses
(·). We truncate the sequence at the moment of the fault because the rest of
the computation is computed correctly. Hence, ++(−) means a computation
starting with the following three rounds: the first two rounds were positive, the
third one was a negative round with a flipped orientation, so the steps were
computed for the negative primes, but in the positive direction.

Consider a flip of orientation in the second round. There are four possible
scenarios:

+(+). Two positive rounds, but the second positive batch of primes was flipped
and we took the steps in negative direction instead.

+(−). One positive round, one negative batch flipped to the positive direction.
−(+). One negative round, one positive batch flipped to the negative direction.
−(−). Two negative rounds, the second negative batch flipped to positive.

All four cases are equally likely to appear for 1-point strategies, but result in
different faulty curves. Since the computation only depends on previous rounds

Disorientation Faults in CSIDH 319

with the same orientation, the case +(−) is easily seen to be the same as (−)
and + + (−): all three are cases where the orientation of the point was flipped
the first time a negative round occurred. However, the cases +(+) and −(+) are
different: the latter is equivalent to (+). For example, in CSIDH, the set S for
(+) is {i | ei ≥ 1}, and the set S′ for +(+) is {i | ei ≥ 2}, differing exactly at
the primes for which ei = 1.

Example 2 (CSIDH). For a secret key (1,−2,−1, 3) in CSIDH with primes L =
{3, 5, 7, 11}, the case +(−) takes us to a faulty curve that is two {5, 7}-isogenies
away from the desired curve, whereas the case −(−) results in a curve two 5-
isogenies away.

Effective Round. Let Er,+ be the faulty curve produced by the sequence +· · ·+(+)
of length r, and Er,− the curve produced by sequence −· · ·−(−). We call the curves
Er,± effective round-r curves. For a 2-point strategy, all faulty curves from round
r are effective round-r curves. For 1-point strategies, effective round-r curves can
be produced from other sequences as well, e.g. +(−) produces the effective round
1 curve E1,− and ++−−+(−) produces an effective round-3 curve E3,−. To get an
effective round-r sample Er,+ from a round n, the last sign in the sequence must
be (+), and the sequence must contain a total of r pluses.

Lemma 4.1. Assume we use a 1-point strategy. The probability to get any effec-
tive round-r sample if we successfully flip in round n is equal to

(
n−1
r−1

) · 1
2n−1 .

Torsion Sets Sr,+ and Sr,−. Define the set Sr,s as the missing set of the
effective round-r curve with orientation s, i.e., EB =

∏
i∈Sr,s l2s

i ∗ Er,s. For
example in CSIDH, the sets S1,± were already discussed in Example 1 and in
general, Sr,+ = {i | ei ≥ r} and Sr,− = {i | ei ≤ −r}.

4.3 Missing Torsion: Faulty Curves and Points of Non-full Order

In Sect. 4.2, we worked under the unrealistic assumption that all points we
encounter have full order. In this section, we relax this condition somewhat:
we assume that every point had full order (and hence all isogenies were com-
puted) up until round r, but the point P generated in round r potentially has
smaller order. We call this the missing torsion case. The remaining relaxation
of non-full order points in earlier rounds will be concluded in Sect. 4.4.

If the point P used to compute isogenies in round r does not have full order,
the faulty curve Et will differ from the effective round-r curve Er,s by the primes
�i with i ∈ Sr,s which are missing in the order of P .

Round-r Faulty Curves. For simplicity, assume that we are in round r, in the
case +· · ·+(+), and that none of the isogenies in the previous rounds failed. In
round r, a negative point P is sampled, but we flip its orientation, so the batch
of positive primes will be computed in the negative direction.

If the point P has full order, we obtain the curve Er,+ at the end of the
computation, which differs from EB exactly at primes contained in Sr,+. If,

320 G. Banegas et al.

however, the point P does not have full order, a subset S ⊂ Sr,+ of steps will
be computed, leading to a different faulty curve Et. By construction, the curve
Et is related to EB via EB =

∏
i∈S l2i ∗ Et.

Assume we repeat this fault in T runs, leading to different faulty curves Et.
Let n(Et) be the number of times the curve Et occurs among the T samples. For
each such Et, we know EB =

∏
i∈St

l2s
i ∗ Et, where St ⊂ Sr,+ is determined by

the order of Pt. As Pt is a randomly sampled point, it has probability �i−1
�i

that
its order is divisible by �i, and so probability 1

�i
that its order is not divisible by

�i. This gives us directly the probability to end up at Et: the order of the point
Pt should be divisible by all �i for i ∈ St, but not by those �i for i ∈ Sr,+ \ St.
This is captured in the following result.

Proposition 4.2. Let Pt be a random negative point, where we flip the ori-
entation s to positive. The probability that we compute the faulty curve Et =∏

i∈St
l−2
i ∗ EB is exactly pt =

∏
i∈St

�i−1
�i

· ∏
i∈Sr,+\St

1
�i

.

In CTIDH, the success probability of each point to match that of the smallest
prime in the batch to hide which prime is handled. But for fixed batches, an
analogous results to Proposition 4.2 can be given.

The expected number of appearances n(Et) of a curve Et is n(Et) ≈ pt · T
for T runs. As �i−1

�i
≥ 1

�i
for all �i, the probability pt is maximal when St = Sr,+.

We denote this probability by pr,+. Hence, the curve that is likely to appear the
most in this scenario over enough samples, is the curve Er,+ which we defined
as precisely that curve with missing set Sr,+. For now, we focused solely on the
positive curves. Taking into account the negative curves too, we get:

Corollary 4.3. Let Er,+ =
∏

i∈Sr,+ l−2
i ∗ EB and let Er,− =

∏
i∈Sr,− l2i ∗ EB.

Then Er,+ and Er,− have the highest probability to appear among the effective
round-r faulty curves. As a consequence, the largest two values n(E) of all effec-
tive round-r curves are most likely n(Er,+) and n(Er,−)

Example 3 (CSIDH). We have S1,+ = {i | ei ≥ 1} and so p1,+ is the probability
that a random point P has order divisible by all primes �i with ei ≥ 1. This
probability depends on the secret key a and we can estimate p1,+ if we collect
enough faulty curves. Moreover, if e1 	= 0, then �1 = 3 dominates either p1,+ or
p1,− through the relatively small probability of 2/3 that P has order divisible
by 3. Thus, if n(E1,−) is larger than n(E1,+), then we assume p1,− is larger
than p1,+ and so we expect e1 ≥ 0. In such a case, we expect to see another
faulty curve Et with n(Et) half the size of n(E1,+); this curve Et has almost full
missing set S1,+, but does not miss the 3-isogeny. That is, St = S1,+ \ {1}, with
probability pt := 1

�1
· �1

�1−1 ·p1,+ = 1
2 ·p1,+. This curve Et is very “close” to E1,+;

they are distance 1 apart, precisely by l21.

The precise probabilities pr,+ and pr,− depend highly on the specific imple-
mentation we target. Given an implementation, the values of pr,+ and pr,− allow
for a concrete estimate on the size of n(E) for a specific curve E. Because �i

that are missing in the order of Pt skip the misoriented steps, the curves in

Disorientation Faults in CSIDH 321

the neighborhood of Er,+ differ by two �i-isogenies for i ∈ Sr,+ \ St in positive
direction while those around Er,− differ by two �i-isogenies for i ∈ Sr,− \ St in
negative direction.

Distance Between Samples. We can generalize Example 3 for any two faulty
curves Et and Et′ that are effective round-r samples of the same orientation,
using Proposition 4.2.

Corollary 4.4. Let Et and Et′ both be effective round-r samples with the same
orientation s and missing torsion sets St and St′ . Let SΔ denote the difference in
sets St and St′ , i.e., SΔ = (St\St′)∪(St′ \St). Then Et and Et′ are distance |SΔ|
apart, by Et =

(∏
i∈St′\St

l2s
i · ∏

i∈St\St′ l
−2s
i

)
∗ Et′ . In particular, any effective

round-r curve Et with orientation s is close to Er,s: since St ⊂ Sr,s, SΔ is small.

Corollary 4.4 will be essential to recover information on Sr,+ out of the
samples Et: Recovering small isogenies between samples allows us to deduce
which i are in Sr,+ or Sr,−, and so leaks information about ei.

4.4 Torsion Noise

Orthogonally to Sect. 4.3, we now examine the case that missing torsion occurred
in an earlier round than the round we are faulting.

Example 4 (CSIDH). Suppose that e1 = 1 and that in the first positive round,
the point generated in Line 2 of Algorithm 1 had order not divisible by �1, but
all other points have full order. Thus, the �1-isogeny attempt fails in the first
positive step. Consider now the second positive round. From Sect. 4.2, we would
expect to be computing steps in S2,+ = {i | ei ≥ 2}. But no �1-isogeny has
been computed in the first round, so it will be attempted in this second positive
round. If we now fault the second positive point, we obtain a faulty curve that is
also missing �1, that is, Et = l−2

1 ∗ E2,+. Unlike the faulty curves from Sect. 4.3,
the positively oriented isogeny goes from Et towards E2,+. Also, note that in this
scenario if e1 = 2, a fault in round 2 would still result in the curve E2,+, because
the set S2,+ contains �1 already, and so the missed �1-isogeny from round 1 will
be computed in later rounds.

We refer to the phenomenon observed in Example 4 as torsion noise. More
concretely, torsion noise happens when we fault the computation in round r for
a run which is computing an �i-isogeny in round r for |ei| < r because it was
skipped in a previous round.

Torsion noise is rarer than missing torsion but can still happen: the isogeny
computation needs to fail and the fault must come when we are “catching up”
with the computation. For CSIDH, torsion noise can only happen if r > |ei| and
the computation of the �i-isogeny failed in at least r − |ei| rounds. Torsion noise
is unlikely for large �i because the probability that an isogeny fails is about 1/�i.

322 G. Banegas et al.

For small primes, such as �i ∈ {3, 5, 7}, we observe a lot of torsion noise. This
can slightly affect the results as described in Sect. 4.3, but has no major impact
on the results in general. Concretely, torsion noise may make it impossible to
determine the correct ei for the small primes given only a few faulted curves.
Nevertheless, their exact values can be brute-forced at the end of the attack.

Remark 1 (Orientation of torsion noise). Faulty curves affected by torsion noise
require contrarily oriented isogenies to the curves Er,s than the remaining faulty
curves. Therefore, if torsion noise happens and we find a path from such a curve
Et → Er,s, then we can infer not just the orientation of the primes in this path,
but often also bound the corresponding exponents ei.

4.5 Connecting Curves from the Same Round

Suppose we have a set of (effective) round-r faulty curves with the same ori-
entation s, and suppose r and s are fixed. In Corollary 4.4, we show that such
curves are close to each other. In particular, the path from Et to Er,s uses only
degrees contained in the set Sr,s. Finding short paths among faulty curves gives
us information about Sr,s, and hence about the secret key.

Component Graphs. Starting from a set {Et} of round-r faulty curves with
orientation s, we can use them to define the graph Gr,s as follows: The vertices
of Gr,s are given by {Et}, and the edges are steps between the curves, labeled
by i if the curves are connected by two �i-isogenies. For convenience, we sparsify
the graph Gr,s and regard it as a tree with the curve Er,s as the root.

Edges. Starting from a set of faulty curves, it is easy to build the graphs Gr,s.
We can identify the roots of these graphs Er,s using Corollary 4.3. Then the
distance from the root to any round-r faulty curve with the same orientation
is small (cf. Corollary 4.4). Therefore, we can find the edges by applying short
walks in the isogeny graph. Note that edges of Gr,s give information on Sr,s.

Missing Vertices. If we do not have enough faulty curves {Et}, it may not be
possible to connect all the curves with single steps, i.e. isogenies of square degree
(see Corollary 4.4). For convenience, we assume that we have enough curves. In
practice, we include in the graph Gr,s any curve on the path between Et to Er,s.

Components. We imagine the graphs Gr,s as subgraphs of the isogeny graph
of supersingular elliptic curves with edges given by isogenies. Computing short
paths from Er,s will give us enough edges so that we can consider the graphs
Gr,s to be connected. Hence we call them components.

Secret Information. An effective round-r faulty curve Et with torsion set
St ⊂ Sr,+ can easily be connected by a path with labels Sr,+ \St. Moreover, the
orientation Er,+ → Et is positive. Therefore, we can identify which components

Disorientation Faults in CSIDH 323

are positive, and all the labels of the edges are necessarily in Sr,+, that is, the
prime �i is positive. Torsion noise can be recognized from the opposite direction
of the edges (see Remark 1). In either case, the components Gr,s give us the
orientation of all the primes occurring as labels of the edges.

Sorting Round-r Samples. Suppose we are given a set of round-r faulty
curves {Et}, but we do not have information about the orientation yet. We can
again use Corollary 4.3 to find the root of the graph; then we take small isogeny
steps until we have two connected components G1, G2. It is easy to determine the
direction of the edges given enough samples; ignoring torsion noise, the positively
oriented root will have outgoing edges.

In summary, we try to move curves Et from a pile of unconnected samples
to one of the two graphs by finding collisions with one of the nodes in Gr,+

resp. Gr,−. The degrees of such edges reveal information on Sr,+ and Sr,−: An
edge with label i in Gr,+ implies i ∈ Sr,+, and analogously for Gr,− and Sr,−.
Figure 1 summarizes the process, where, e.g., Er,+ → E7 shows missing torsion
and E8 → Er,+ is an example of torsion noise.

Fig. 1. Building up the component graphs of faulty curves.

4.6 Connecting the Components Gr,s

Now, we explain how to connect the components Gr,s for different rounds r.
The distance of these components is related to the sets Sr,+ and Sr,−. We then
show that it is computationally feasible to connect the components via a meet-
in-the-middle attack. Connecting two components gives us significantly more
knowledge on the sets Sr,+ and Sr,−, such that connecting all components is
enough to reveal the secret a in Sect. 4.7.

324 G. Banegas et al.

Information from Two Connected Components. We take CSIDH as an
example. Recall that we have Sr,+ = {i | ei ≥ r}, and so Er,+ =

∏
i∈Sr,+ l−2

i ∗EB .
This means that, e.g., we have S3,+ ⊂ S2,+, and E2,+ has a larger distance from
EB than E3,+. The path between E3,+ and E2,+ then only contains steps of
degrees �i such that i ∈ S2,+\S3,+, so ei = 2. In general, it is easy to see that
finding a single isogeny that connects a node Et3 from G3,+ and a node Et2 in
G2,+ immediately gives the connection from E3,+ to E2,+. Hence, we learn all
�i with ei = 2 from the components G3,+ and G2,+.

In the general case, if we find an isogeny between two such graphs, say Gr,+

and Gr′,+, we can compute the isogeny between the two roots Er,+ and Er′,+

of these graphs. The degree of this isogeny Er,+ → Er′,+ describes precisely the
difference between the sets Sr,+ and Sr′,+. The example above is the special
case r′ = r + 1, and in CSIDH we always have S(r+1),+ ⊂ Sr,+, so that the
difference between Sr,+ and S(r+1),+ is the set of �i such that ei = r. In other
CSIDH-variants, such sets are not necessarily nested, but connecting all compo-
nents still reveals ei as Sect. 4.7 will show. In general, we connect two subgraphs
by a distributed meet-in-the-middle search which finds the shortest connection
first.

Distance Between Connected Components. As we have shown, connect-
ing two components Gr,+ and Gr′,+ is equivalent to finding the difference in
sets Sr,+ and Sr′,+. The distance between these sets heavily depends on the
implementation, as these sets are determined by the key a and the evaluation of
this key. For example, in CSIDH-512, the difference between Sr,+ and S(r+1),+

are the ei = r, which on average is of size 74
11 ≈ 6.7. In practice, this distance

roughly varies between 0 and 15. For an implementation such as CTIDH-512, the
sets Sr,+ are smaller in general, on average of size 7, and the difference between
such sets is small enough to admit a feasible meet-in-the-middle connection.
See Sect. 6 for more details on how we connect these components in practice.

4.7 Revealing the Private Key

So far, we showed how connecting different components Gr,+ and Gr′,+ reveals
information on the difference between the sets Sr,+ and Sr′,+. In this section, we
show that when all components are connected, we can derive the secret a. This
wraps up Sect. 4: Starting with disorientations in certain rounds r, we derive the
secret a from the resulting graph structure, assuming enough samples.

From Differences of Sets to Recoveries of Keys. By connecting the graphs
of all rounds, including the one-node-graph consisting of just the correct curve
EB , we learn the difference between the sets Sr,+ and S(r+1),+ for all rounds r
(as well as for Sr,− and S(r+1),−). A single isogeny from some Gr,+ to EB =
a ∗ EA then recovers Sr,+ for this round r: Such an isogeny gives us an isogeny
from Er,+ =

∏
i∈Sr,+ l−2

i ∗ EB to EB , whose degree shows us exactly those

Disorientation Faults in CSIDH 325

�i ∈ Sr,+. From a connection between the components Gr,+ and Gr′,+, we learn
the difference in sets Sr,+ and Sr′,+. From Sr,+, we can then deduce Sr′,+.
Therefore, if all graphs Gr,+ for different r are connected, and we have at least
one isogeny from a node to EB , we learn the sets Sr,+ for all rounds r (and
equivalently for Sr,−). From the knowledge of all sets Sr,+ and Sr,− we then
learn a = (ei): the sign of ei follows from observing in which of the sets Sr,+

or Sr,− the respective �i appears, and |ei| equals the number of times of these
appearances.

In practice however, due to missing torsion and torsion noise, connecting all
components may not give us the correct sets Sr,+ resp. Sr,−. In such a case, one
can either gather more samples to gain more information, or try to brute-force
the difference. In practice, we find that the actual set Sr,+ as derived from a and
the set S̃r,+ derived from our attack (leading to some a′) always have a small
distance. A simple meet-in-the-middle search between a′ ∗ EA and a ∗ EA then
quickly reveals the errors caused by missing torsion and torsion noise.

4.8 Complexity of Recovering the Secret a

The full approach of this section can be summarized as follows:

1. Gather enough effective round-r samples Et per round r, using Lemma 4.1.
2. Build up the components Gr,+ and Gr,− using Corollaries 4.3 and 4.4.
3. Connect components to learn the difference in sets Sr,+ and Sr′,+.
4. Compute the sets Sr,+ and Sr,− for every round and recover a.

The overall complexity depends on the number of samples per round, but is
in general dominated by Step 3. For Step 2, nodes are in most cases relatively
close to the root Er,+ or to an already connected node Et, as shown in Corollary
4.4.

For Step 3, components are usually further apart than nodes from Step 2. In
general, the distance between components Gr,+ and Gr′,+ depends heavily on
the specific design choices of an implementation. In a usual meet-in-the-middle
approach, where n is the number of �i over which we need to search and d is
the distance between Gr,+ and Gr′,+, the complexity of finding a connection is
O(

(
n

d/2

)
). Note that we can use previous knowledge from building components

or finding small-distance connections between other components to reduce the
search space and thus minimize n for subsequent connections. We analyze this
in detail for specific implementations in Sect. 5.

5 Case Studies: CSIDH and CTIDH

The previous steps are dependent on the actual implementation. Concretely,
we select two main implementations: CSIDH-512 and CTIDH-512. We discuss
CSIDH-512 in Sect. 5.1, CTIDH-512 in Sect. 5.2, and we analyze other imple-
mentations in Sect. 5.3.

326 G. Banegas et al.

5.1 Breaking CSIDH-512

The primes used in CSIDH-512 [15] are L = {3, 5, . . . , 377, 587}, and exponent
vectors are sampled as (ei) ∈ {−5, . . . , 5}74 uniformly at random. For any k ∈
{−5, . . . , 5} we expect about 1

11 · 74 primes �i with ei = k; this count obeys a
binomial distribution with parameters (74, 1/11). We expect to see about 5

11 ·74 ≈
33.6 positive and negative primes each, and about 1

11 · 74 ≈ 6.7 neutral primes.
In CSIDH-512, the group action is evaluated as displayed in Algorithm 1,

using a 1-point strategy. In particular, after generating a point with orientation
s, we set S = {i | ei 	= 0, sign(ei) = s}. If the value of s is flipped, we set
S = {i | ei 	= 0, sign(ei) = −s}, but we perform the steps in direction s.

Now, we specialize the four steps to secret-key recover defined in Sect. 4.8.

Building Components Gr,+ and Gr,−. Step 2 of the attack on CSIDH-512
works exactly as described in Sect. 4.5. If Et and Et′ are effective samples from
the same round with the same orientation, their distance is small (Corollary
4.4). We can thus perform a neighborhood search on all of the sampled curves
until we have 10 connected components Gr,± for r ∈ {1, . . . , 5}, as in Fig. 1.
This step is almost effortless: most curves will be distance 1 or 2 away from the
root Er,s. In practice, using round information and number of occurrences, we
identify the 10 curves Er,± for r = 1, . . . , 5, and explore all paths of small length
from those 10 curves, or connect them via a meet-in-the-middle approach (e.g.,
using pubcrawl, see Sect. 6). The degrees of the isogenies corresponding to the
new edges in Gr,± reveal information on the sets Sr,±, which can be used to
reduce the search space when connecting the components Gr,±.

Filter-and-Break It, Until You Make It. Step 3 is the most computationally
intensive step, as it connects 11 components (Gr,± and EB) into a single large
connected component. We argue that it is practical for CSIDH-512.

More specifically, we want to find connections between Gr,± and G(r+1),±, as
well as connections from G5,± to EB . This gives us 10 connections, corresponding
to the gaps {i | ei = k} for k ∈ [−5, 5] \ {0}. Figure 2 shows an abstraction of
this large connected component.

Fig. 2. Large connected component associated to an attack on CSIDH-512.

Since there are 74 primes in total, and only 10 gaps, at least one of these
gaps is at most 7 primes. If we assume that at least 5 of the exponents are 0 (we

Disorientation Faults in CSIDH 327

expect ≈ 7 to be 0), then the smallest distance is at most 6 steps, easily found
using a meet-in-the-middle search, see Sect. 6.

Let us call support the set of isogeny degrees used in a meet-in-the-middle
neighborhood search. We can connect all components by a meet-in-the-middle
search with support {�1, . . . , �74}. This becomes infeasible for large distances, so
instead, we adaptively change the support. We start by finding short connections,
and use the labels we find to pick a smaller support for searching between certain
components, i.e., filter some of the �i out of the support.

First, we learn the orientation of the components by identifying G1,± and
considering the direction of the edges. Effective round-1 samples do not have
torsion noise, so the root E1,+ has only outgoing edges, whereas the root E1,−

has only incoming edges. The labels of the edges of G1,+ must be positive primes,
and all components with a matching label are also positive. Next, all the labels
that appear as degrees of edges in Gr,+ for any r are necessarily positive. Finally,
positively oriented components can only be connected by positive primes, so we
can remove from the support all the primes that we know are negative. Similarly
for negative orientations.

After finding the first connection we restrict the support even more: we know
that any label i appears in at most one connection. Hence, whenever we find
a connection, we get more information about orientation and can reduce the
support for further searches, allowing us to find larger connections. Each rep-
etition gives more restrictions on the support until we find the full connected
component.

Recovering the Secret Key. From the connected components, we recover all
of the sets Sr,± and we compute the secret key as described in Sect. 4.7.

Example 5 (Toy CSIDH-103). Figure 3 shows the resulting connected graph for
a toy version of CSIDH using Algorithm 1 with the first n = 21 odd primes and
private keys in {−3, . . . ,+3}n. Each round was faulted 10 times.

The distances between the components are very small and hence connecting
paths are readily found. We sparsify the graph to plot it as a spanning tree;
the edges correspond to positive steps of the degree indicated by the label. This
graph comes from the secret key

(−1, +1, +2, +3, −2, +3, +2, +3, +1, +2, −3, −3, +2, +3, −2, −3, −2, +2, +1, −3, 0).

Required Number of Samples. Recovering the full secret exponent vector
in CSIDH-512 equates to computing the sets Sr,+ and Sr,− for r ∈ {1, . . . , 5}.
Recall that to compute these sets we need to build a connected component
including subcomponents Gr,+ and Gr,− for r ∈ {1, . . . , 5}, and EB (the one-
node-graph consisting of just the public key). We build the components Gr,+

and Gr,− by acquiring enough effective round-r samples. More effective round-r
samples may give more vertices in Gr,±, and more information about Sr,±.

Let Tr be the number of effective round-r samples and let T =
∑

Tr. A first
approach is to inject in round r until the probability is high enough that we have

328 G. Banegas et al.

Fig. 3. Example isogeny graph of faulty curves obtained from attacking the fictitious
CSIDH-103 implementation from Example 5. An edge labeled i denotes the isogeny
step li. The EB curve and the root faulty curves Er,s are rendered in black (from
left to right: E1,+, E2,+, E3,+, EB , E3,−, E2,−, E1,−), other faulty curves appearing
in the dataset are gray, and white circles are “intermediate” curves discovered while
connecting the components. The primes appearing on the connecting path between Ei,±

and Ei+1,± are exactly the primes appearing i times with orientation ±. For example,
the primes indexed by 2, 9, 19 appearing between E1,+ and E2,+ have exponent +1 in
the secret key.

enough effective round-r samples. For CSIDH-512, we take T1 = 16, T2 = 16,
T3 = 32, T4 = 64 and T5 = 128, so that T = 256. From Lemma 4.1, we then
expect 8 round-5 samples (4 per orientation) and the probability that we do not
get any of the elements of G5,+ or G5,− is about 1.7%.

This strategy can be improved upon. Notice that we need round-5 samples,
and so in any case we need T5 rather large (in comparison to Ti with i < 5) to
ensure we get such samples. But gathering samples from round 5 already gives
us many samples from rounds before. Using Lemma 4.1 with T5 = 128, we get
on average 8 effective round-1 samples, 32 effective round-2 samples, 48 effective
round-3 samples, 32 effective round-4 samples and 8 effective round-5 samples.
In general, attacking different rounds offers different tradeoffs: attacking round
9 maximizes getting effective round-5 samples, but getting a round-1 sample in
round 9 is unlikely. Faulting round 1 has the benefits that all faulty curves are
effective round-1 curves; that no torsion noise appears; and that missing torsion
quickly allows to determine the orientation of the small primes. Finally, note that
gathering T faulty samples requires approximately 2T fault injections, since, on
average, half of the faults are expected to will flip the orientation.

5.2 Breaking CTIDH-512

CTIDH [3] partitions the set of primes �j into b batches, and bounds the number
of isogenies per batch. For a list N ∈ Z

b
>0 with

∑
Nk = n and a list of non-

negative bounds m ∈ Z
b
≥0 define the keyspace as

KN,m :=
{
(e1, . . . , en) ∈ Z

n
∣
∣ ∑Ni

j=1 |ei,j | ≤ mi for 1 ≤ i ≤ b
}

,

Disorientation Faults in CSIDH 329

where (ei,j) is a reindexed view of (ei) given by the partition into batches.
CTIDH-512 uses 14 batches with bounds mi ≤ 18, requiring at least 18

rounds. In every round, we compute one isogeny per batch; using a 2-point
strategy, we compute isogenies in both positive and negative direction. So, all
round-r samples are effective round-r samples.

Injecting Faults. To sample oriented points, CTIDH uses the Elligator-2 map
twice. First, Elligator is used to sample two points P+ and P− on the starting
curve EA. A direction s is picked to compute an isogeny, the point Ps is used to
take a step in that direction to a curve EA′ , and the point Ps is mapped through
the isogeny. Then another point P ′

−s is sampled on EA′ using Elligator.
We will always assume that we inject a fault into only one of these two

Elligator calls (as in Sect. 3). Hence, as for CSIDH and 1-point strategies, we
again always obtain either positively or negatively oriented samples.

Different Rounds for CTIDH-512. Per round, CTIDH performs one �i,j

per batch Bi. Within a batch, the primes �i,j are ordered in ascending order:
if the first batch is B1 = {3, 5} and the exponents are (2,−4), then we
first compute 2 rounds of 3-isogenies in the positive direction, followed by 4
rounds of 5-isogenies in the negative direction. We can visualize this as a queue
[3+, 3+, 5−, 5−, 5−, 5−] (padded on the right with dummy isogenies for the
remaining rounds up to m1). CTIDH inflates the failure of each isogeny to that
of the smallest prime in the batch to hide how often each prime is used; in our
example, the failure probability is 1/3.

This implies that the sets Sr± contain precisely the r-th prime in the queue
for the batch Bi. With 14 batches and an equal chance for either orientation, we
expect that each Sr± will contain about 7 primes. Furthermore, each set Sr±

can contain only one prime per batch Bi.
The small number of batches and the ordering of primes within the batches

make CTIDH especially easy to break using our disorientation attack.

Components for CTIDH-512. Given enough samples, we construct the
graphs Gr,s; the slightly higher failure probability of each isogeny (because of
inflating) somewhat increases the chances of missing torsion and torsion noise.
The distance of the root curves Er,s to the non-faulted curve EB is bounded by
the number of batches. Per round r, the sum of the distances of Er,± to EB is
at most 14, so we expect the distance to be about 7.

The distance between two graphs Gr,s and G(r+1),s is often much smaller.
We focus on positive orientation (the negative case is analogous). The distance
between Gr,+ to G(r+1),+ is given by the set difference of Sr,+ and S(r+1),+.
If these sets are disjoint and all primes in round r and r + 1 are positive, the
distance is 28, but we expect significant overlap: The set difference contains the
indices i such that either the last �i-isogeny is computed in round r or the first
�i-isogeny is computed in round r + 1. Note that these replacements need not

330 G. Banegas et al.

come in pairs. In the first case, the prime �i is replaced by the next isogeny �j

from the same batch only if �j is also positive. In the second case, the prime �i

might have followed a negative prime that preceded it in the batch.
Therefore, given Sr,+, one can very quickly determine S(r+1),+ by leaving

out some �i’s or including subsequent primes from the same batch. In practice,
this step is very easy. Finding one connection EB → Er,+ determines some set
Sr,+, which can be used to quickly find other sets Sr′,+. This approach naturally
also works going backwards, to the set S(r−1),+.

Directed Meet-in-the-Middle. Using a meet-in-the-middle approach, we
compute the neighborhood of EB and all the roots Er,± (or components Gr,±) of
distance 4. This connects EB to all the curves at distance at most 8. Disregard-
ing orientation and information on batches, if we have N curves that we want
to connect, the naive search will require about 2 · (

74
4

) · N ≈ 221 · N isogenies.
The actual search space is even smaller as we can exclude all paths requiring
two isogenies from the same batch.

Moreover, isogenies in batches are in ascending order. So, if in round r we see
that the 3rd prime from batch Bi was used, none of the rounds r′ > r involves
the first two prime, and none of the rounds r′ < r can use the fourth and later
primes from the batch for that direction.

Late rounds typically contain many dummy isogenies and the corresponding
faulty curves are especially close to the public key. We expect to rapidly recover
Sr,± for the late round curves, and work backwards to handle earlier rounds.

Required Number of Samples. In CTIDH, we can choose to inject a fault
into the first call of Elligator or the second one. We do not see a clear benefit of
prioritizing either call. Unlike for CSIDH and 1-point strategies, there is no clear
benefit from targeting a specific round. Assume we perform c successful faults
per round per Elligator call, expecting to get samples for both orientations per
round. As CTIDH-512 performs 18 rounds (in practice typically up to 22 because
of isogeny steps failing), we require T = 18 ·2 ·c successful flips. It seems possible
to take c = 1 and hence T = 36 (or up to T = 44) samples.

With just one sample per round r (and per orientation s), the torsion effects
will be significant and we will often not be able to recover Sr,s precisely. Let S̃r,s

denote the index set recovered for round r and sign s. We can correct for some
of these errors, looking at S̃r′,± for rounds r′ close to r. Consider only primes
from the same batch B, then the following can happen:

– No prime from B is contained in either S̃r,+ or S̃r,−: all primes from B are
done or missing torsion must have happened. We can examine the primes
from the batch B which occur in neighboring rounds S̃(r±1),± and use the
ordering in the batch to obtain guesses on which steps should have been
computed if any.

– One prime from B is contained in S̃r,+ ∪ S̃r,−: we fix no errors.
– Two primes from B are contained in S̃r,+ ∪ S̃r,−: the smaller one must have

come from torsion noise in a previous round and can be removed.

Disorientation Faults in CSIDH 331

Remark 2. It is possible to skip certain rounds to reduce the number of samples,
and recover the missing sets Sr,s using information from the neighboring rounds.
We did not perform the analysis as to which rounds can be skipped, we feel that
already two successful faults per round are low enough.

Even a partial attack (obtaining information only from a few rounds) reveals
a lot about the secret key thanks to the batches being ordered, and can reduce
the search space for the secret key significantly. One may also select the rounds
to attack adaptively, based on the information recovered from Sr,s.

Recovering the Secret Key. Once we recover all the sets Sr,s, the secret key
can be found as a =

∏
r

(∏
i∈Sr,+ li · ∏

j∈Sr,− l−1
j

)
. If we misidentify Sr,s due to

torsion effects, we have to perform a small search to finish.

5.3 Other Variants of CSIDH

SIMBA. Implementations using SIMBA [30] can be attacked similarly to
CSIDH (cf. Sect. 5.1). SIMBA divides the n primes �i into m prides (batches),
and each round only computes �i-isogenies from the same pride. That is, each
round only involves up to �n/m� isogenies, and the setup of the prides is publicly
known. In each round, fewer isogenies are computed, the sets Sr,s are smaller
and the distances between the components Gr,s are shorter. It is therefore easier
to find isogenies connecting the components, and recover the secret key.

Dummy-Free CSIDH. Dummy-free implementations [1,16,18] replace pairs
of dummy �i-isogenies by pairs of isogenies that effectively cancel each other [16].
This is due to the fact that li ∗ (l−1

i ∗ E) = l−1
i ∗ (li ∗ E) = E. Thus, computing

one �i-isogeny in positive direction and one �i-isogeny in negative direction has
the same effect as computing two dummy �i-isogenies. However, this approach
requires fixing the parity of each entry of the private key ei, e.g., by sampling
only even numbers from [−10, 10] to reach the same key space size as before. The
implementation of [16] therefore suffers a slowdown of factor 2. Nevertheless, such
dummy-free implementations mitigate certain fault attacks, such as skipping
isogenies, which in a dummy-based implementation would directly reveal if the
skipped isogeny was a dummy computation and give respective information on
the private key. Dummy-free CSIDH [1] computes |ei| �i-isogenies per i in the
appropriate direction, and then computes equally many �i isogenies in both
directions which cancel out, until all required isogenies have been computed.
For instance, for an even ei sampled from [−10, 10], choosing ei = 4 would be
performed by applying l1i in the first 5 rounds, applying l−1

i in round 6 and 7,
applying l1i again in round 8 and 9, and finishing with l−1

i in round 10.
Notice that all isogenies start in the correct direction, and that we learn |ei|

from disorientation faults if we know in which round the first li is applied in
the opposite direction. Therefore, if we apply the attack of Sect. 4 and learn all
sets Sr,+ and Sr,−, we can determine ei precisely. Even better, it suffices to

332 G. Banegas et al.

only attack every second round: It is clear that each prime will have the same
orientation in the third round as in the second round, in the fifth and fourth, et
cetera. Due to the bounds used in [1], large degree �i do not show up in later
rounds, which decreases the meet-in-the-middle complexity of connecting the
components Gr,+ and G(r+1),+ for later rounds r.

SQALE. SQALE [17] only uses exponent bounds ei ∈ {−1, 1}. To get a large
enough key space, more primes �i are needed; the smallest instance uses 221 �i.
SQALE uses a 2-point strategy and only requires one round (keeping in mind
the isogeny computation may fail and require further rounds).

Set S+ = S1,+ = {i | ei = 1} and S− = S1,− = {i | ei = −1}. If the sampled
points in round 1 have full order, the round 1 faulty curves are either:

– the ‘twist’ of EB : all the directions will be flipped (if both points are flipped),
– or the curve E+ = (

∏
S+ l−2

i) ∗ EB , if the positive point was flipped,
– or the curve E− = (

∏
S− l2i) ∗ EB , if the negative point was flipped.

As |S+| ≈ |S−| ≈ n/2 > 110, we will not be able to find an isogeny to either of
these curves using a brute-force or a meet-in-the-middle approach.

However, SQALE samples points randomly, and some of the isogeny compu-
tation will fail, producing faulty curves close to E± (and curves with the same
orientation will be close to each other, as in Sect. 4.5). Getting enough faulty
curves allows the attacker to get the orientation of all the primes �i, and the
orientation of the primes is exactly the secret key in SQALE. We note that
[18] in another context proposes to include points of full order into the system
parameters and public keys such that missing torsion and torsion noise do not
occur. If this is used for SQALE, our attack would not apply.

6 The pubcrawl Tool

The post-processing stage of our attack requires reconstructing the graph of
connecting isogenies between the faulty CSIDH outputs. We solve this problem
by a meet-in-the-middle neighborhood search in the isogeny graph, which is
sufficiently practical for the cases we considered. In this section, we report on
implementation details and performance results for our pubcrawl software.

We emphasize that the software is not overly specialized to the fault-attack
setting and may therefore prove useful for other “small” CSIDH isogeny searches
appearing in unrelated contexts.

Algorithm. pubcrawl implements a straightforward meet-in-the-middle graph
search: Grow isogeny trees from each input node simultaneously and check for
collisions; repeat until there is only one connected component left. The set of
admissible isogeny degrees (“support”) is configurable, as are the directions of
the isogeny steps (“sign”, cf. CSIDH exponent vectors), the maximum number of
isogeny steps to take from each target curve before giving up (“distance”), and
the number of prime-degree isogenies done per graph-search step (“multiplicity”,
to allow for restricting the search to square-degree isogenies).

Disorientation Faults in CSIDH 333

Size of Search Space. The number of vectors in Z
n of 1-norm ≤ m is [20, § 3]

Gn(m) =
m∑

k=0

(
n

k

)(
m − k + n

n

)

.

Similarly, the number of vectors in Z
n
≥0 of 1-norm ≤ m equals

Hn(m) =
m∑

k=0

(
k + n − 1

n − 1

)

.

Implementation. The tool is written in C++ using modern standard library
features, most importantly hashmaps and threading. It incorporates the latest
version of the original CSIDH software as a library to provide the low-level
isogeny computations. Public-key validation is skipped to save time. The shared
data structures (work queue and lookup table) are protected by a simple mutex;
more advanced techniques were not necessary in our experiments.

We refrain from providing detailed benchmark results for the simple reason
that the overwhelming majority of the cost comes from computing isogeny steps
in a breadth-first manner, which parallelizes perfectly. Hence, both time and
memory consumption scale almost exactly linearly with the number of nodes
visited by the algorithm.

Concretely, on a server with two Intel Xeon Gold 6136 processors (offering
a total of 24 hyperthreaded Skylake cores) using GCC 11.2.0, we found that
each isogeny step took between 0.6 and 0.8 core ms, depending on the degree.
Memory consumption grew at a rate of ≈ 250 bytes per node visited, although
this quantity depends on data structure internals and can vary significantly.
Example estimates based on these observations are given in Table 1.

Table 1. Example cost estimates per target curve for various pubcrawl instances,
assuming each isogeny step takes 0.7 ms and consumes 250 bytes.

sign |support| distance cardinality of search space core time memory

both 74 ≤ 4 20, 549, 801 ≈ 224.29 4.0 h 5.1 GB

both 74 ≤ 5 612, 825, 229 ≈ 229.19 5.0 d 153.2 GB

both 74 ≤ 6 15, 235, 618, 021 ≈ 233.83 123.4 d 3.8 TB

both 74 ≤ 7 324, 826, 290, 929 ≈ 238.24 7.2 y 81.2 TB

both 74 ≤ 8 6, 063, 220, 834, 321 ≈ 242.46 134.6 y 1.5 PB

both 74 ≤ 9 100, 668, 723, 849, 029 ≈ 246.52 2234.5 y 25.2 PB

one 74 ≤ 4 1, 426, 425 ≈ 220.44 16.6 min 356.6 MB

one 74 ≤ 5 22, 537, 515 ≈ 224.43 4.4 h 5.6 GB

one 74 ≤ 6 300, 500, 200 ≈ 228.16 2.4 d 75.1 GB

one 74 ≤ 7 3, 477, 216, 600 ≈ 231.70 28.2 d 869.3 GB

334 G. Banegas et al.

There is no doubt that pubcrawl could be sped up if desired, for instance by
computing various outgoing isogeny steps at once instead of calling the CSIDH
library as a black box for each individually.

7 Hashed Version

The attacker-observable output in Diffie–Hellman-style key agreements is not the
shared elliptic curve, but a certain derived value. Typically, the shared elliptic
curve is used to compute a key k using a key derivation function, which is
further used for symmetric key cryptography. So we cannot expect to obtain
(the Montgomery coefficient of) a faulty curve Et but only a derived value such
as k = SHA-256(Et) or MACk(str) for some known fixed string str.

The attack strategies from Sect. 4 and Sect. 5 exploit the connections between
the various faulty curves, but when we are only given a derived value, we are
unable to apply isogenies. We argue that our attack, however, still extends to
this more realistic setting as long as the observable value is computed deter-
ministically from Et and collisions do not occur. For simplicity, we refer to the
observable values as hashes H(E) of the faulty curves E. We assume that we
can derive H(E) for a given E, but that we cannot recover E given only H(E).

As we lack the possibility to apply isogenies to the hashes, we must adapt
the strategy from Sect. 4. Given a set of faulty curves, we can no longer gener-
ate the neighborhood graphs, nor find connecting paths between these graphs,
and it is harder to learn the orientation of primes, which helped to reduce the
possible degrees of the isogenies when applying pubcrawl. If we only see hashes
of the faulty curves, we cannot immediately form the neighborhood graphs and
determine orientations. But from the frequency analysis (Corollary 4.3), we can
still identify the two most frequent new hashes h1, h2 per round as the probable
hashes of H(Er,±). For example, when faulting CSIDH in the first point, the
two most common hashed values are our best guesses for the hashes of E1,±,
and when we consider faults in the second point, we guess H(E2,±) to be the
most common hashes that have not appeared in round 1.

To recover E given a hash H(E), we run a one-sided pubcrawl search starting
from EB , where we hash all the curves we reach along the way, until we find a
curve that hashes to H(E). In practice, we run pubcrawl with one orientation
(or both, in parallel) until we recognize H(Er,±). Having identified Er,±, we can
then run a small neighborhood search around Er,± to identify the hashes of the
faulty curves Et close to Er,±. In contrast to the unhashed version, in the hashed
version we can only recover the faulty curves Et by a one-sided search from a
known curve E, instead of a meet-in-the-middle attack. In particular, the only
known curve at the beginning of the attack is EB .

Example 6 (CTIDH-512). In CTIDH, in the worst case the distance from EB

to any Er,± is 14 (one prime per batch, all with the same orientation) and the
average distance is 7 (Sect. 5.2). Thus, in a hashed variant, if we launch pubcrawl
in both directions up to a distance 7, we are likely to already identify many hashes

Disorientation Faults in CSIDH 335

H(Et) and can recover Et. We then crawl around these Et to identify the other
faulty curves. When we recover all Et, we proceed as in Sect. 5.2.

Summarizing, in the hashed version, the main difference compared to the
approach in Sect. 5 is that we can no longer mount meet-in-the-middle attacks
between faulty curves, but we must always perform a one-way search from a given
curve to a hash. Hence, we do not get the square-root speedup from meeting in
the middle. Despite this increase in cost, this does not mean we cannot attack a
hashed version. Although the brute-force search required to recover Er,± given
only H(Er,±) can get very expensive, especially for CSIDH over large fields Fp,
such a search always remains cheaper than the security level, as we only need to
cover the gaps beteen all Er,± and EB .

8 Exploiting the Twist to Allow Precomputation

In this section, we use quadratic twists and precomputation to significantly
speed up obtaining the private key a given enough samples Et, especially for
the “hashed” version described in Sect. 7.

Using the Twist. The attack target is a public key EB = a ∗ E0. Previously
(Sect. 3), we attacked the computation of a ∗ E0 with disorientation faults. In
this section, we will use E−B as the input curve instead: Negating B is related
to inverting a because E−B = a−1 ∗ E0. Moreover, applying a to E−B gives us
back the curve E0 and faulting this computation then produces faulty curves
close to the fixed curve E0. As E−B is the quadratic twist of EB , we will refer
to this attack variant as using the twist.

The main trick is that twisting induces a symmetry around the curve E0.
This can be used to speed up pubcrawl: the opposite orientation of Et (starting
from E0) reaches E−t, so we can check two curves at once. By precomputing a
set C of curves of distance at most d to E0, a faulty curve Et at distance d′ ≤ d
is in C and can immediately be identified via a table lookup. Note that C can
be precomputed once and for all, independent of the target instance, as for any
secret key a′ the faulty curves end up close to E0. The symmetry of E−t and Et

also reduces storage by half.
Finally, this twisting attack cannot be prevented by simply recognizing that

E−B is the twist of EB and refusing to apply the secret a to such a curve: An
attacker can just as easily pick a random masking value z and feed z∗E−B to the
target device. The faulty curves Et can then be moved to the neighborhood of
E0 by computing z−1 ∗ Et at some cost per Et, or the attacker can precompute
curves around z ∗ E0. The latter breaks the symmetry of Et and E−t and does
not achieve the full speedup or storage reduction, but retains the main benefits.

Twisting CTIDH. The twisting attack is at its most powerful for CTIDH.
As noted before, the sets Sr,± are small in every round for CTIDH. The crucial

336 G. Banegas et al.

observation is that in each round and for each orientation, we use at most one
prime per batch (ignoring torsion noise, see Sect. 4.4). For a faulty curve Et,
the path Et → E0 includes only steps with the same orientation and uses at
most one prime per batch. With batches of size Ni, the total number of possible
paths per orientation is

∏
i(Ni +1), which is about 235.5 for CTIDH-512. Hence,

it is possible to precompute all possible faulty curves that can appear from
orientation flips from any possible secret key a.

Extrapolating the performance of pubcrawl (Sect. 6), this precomputation
should take no more than a few core years. The resulting lookup table occupies
≈ 3.4 TB when encoded naively, but can be compressed to less than 250 GB
using techniques similar to [38, § 4.3].

Twisting CSIDH. For this speed-up to be effective, the distance d we use to
compute C must be at least as large as the smallest |Sr,±|. Otherwise, no faulty
curves end up within C. For CSIDH, the smallest such sets are Srmax,±, where
rmax is the maximal exponent permitted by the parameter; e.g., for CSIDH-512
rmax = 5 and S5,± have an expected size ≈ 7. Precomputing C for d ≤ 7 creates a
set containing

∑7
i=0

(
74
i

) ≈ 231 curves. Such a precomputation will either identify
S5,± immediately, or allow us to find these sets quickly by considering a small
neighborhood of the curves E5,±.

Note that for all the earlier rounds r < rmax, the sets Sr,s include Srmax,s.
Therefore, if we have the orientation s and the set Srmax,s, we can shift all the
faulty curves by two steps for every degree in Srmax,s. If we have misidentified the
orientation, this shift moves the faulty curves in the wrong direction, away from
E0. This trick is particularly useful for larger r as eventually many isogenies
need to be applied in the shifts and we will have identified the orientation of
enough primes so that the search space for pubcrawl becomes small enough to
be faster.

Twisting in the Hashed Version. Precomputation extends to the hashed
version from Sect. 7: we simply precompute C′ which instead of Et includes H(Et)
for all Et in the neighborhood of E0. Again, this works directly for attacking a
hashed version of CTIDH and the effective round-rmax curves in CSIDH. To use
precomputation for different rounds, one can replace the starting curve E−B that
is fed to the target device by the shift given exactly by the primes in Srmax,s (or,
adaptively, by the part of the secret key that is known). This has the same effect
as above: shifting all the curves Et with the same orientation closer towards E0,
hopefully so that the H(Et) are already in our database. If they are not then
likely the opposite orientation appeared when we faulted the computation.

Summary. The benefit of using the twist with precomputation is largest for
the hashed versions: we need a brute force search from E0 in any case, and so we
would use on average as many steps per round as the precomputation takes. For

Disorientation Faults in CSIDH 337

the non-hashed versions, the expensive precomputation competes with meet-in-
the-middle attacks running in square root time. This means that in the hashed
version we do not need to amortize the precomputation cost over many targets
and have a clear tradeoff between memory and having to recompute the same
neighborhood searches all over again and again.

9 Countermeasures

We present our countermeasures and estimate their costs. A comparison with
countermeasures to other attacks is provided in the full version.

9.1 Protecting Square Checks Against Fault Attacks

The attack described in Sect. 3 can be applied to all implementations of CSIDH
that use a call to IsSquare to determine the orientations of the involved point(s).
The main weakness is that the output of IsSquare is always interpreted as s = 1
or s = −1, and there is no obvious way of reusing parts of the computation to
verify that the output is indeed related to the x-coordinate of the respective
point. For instance, faulting the computation of the Legendre-input z = x3 +
Ax2+x results in a square check for a point unrelated to the actual x-coordinate
in use, and yields a fault success probability of 50%.

Two possible countermeasures rely on redundant computation, namely,
repeating the execution of IsSquare and computing with y-coordinates. Both of
these countermeasures incur significant performance loss. Moreover, for repeated
computation, an attacker may be able to skip these instructions entirely.

Using Pseudo y-Coordinates. We propose a more efficient countermeasure:
compute pseudo y-coordinates after sampling points. We sample a random x-
coordinate and set z = x3 + Ax2 + x. If z is a square in Fp, we can compute
the corresponding y-coordinate ỹ ∈ Fp through the exponentiation ỹ =

√
z =

z(p+1)/4, and hence ỹ2 = z. Conversely, if z is a non-square in Fp, the same
exponentiation outputs ỹ ∈ Fp such that ỹ2 = −z. Thus, as an alternative to
IsSquare, we can determine the orientation of the sampled point by computing
z = x3 + Ax2 + x, and the pseudo y-coordinate ỹ = z(p+1)/4. If ỹ2 = z, the
point has positive orientation, if ỹ2 = −z it has negative orientation. If neither
of these cases applies, i.e., ỹ2 	= ±z, a fault must have occurred during the
exponentiation, and we reject the point.

This method may seem equivalent to computing the sign s using IsSquare
as it does not verify that z has been computed correctly from x. But having
an output ỹ ∈ Fp instead of the IsSquare output −1 or 1 allows for a stronger
verification step later. Algorithm 2 shows the addition of this countermeasure.

In order to verify the correctness of the countermeasure, we add a verification
step. First, we recompute z via z′ = x3 + Ax2 + x, and in case of a correct
execution, we have z = z′. Thus, we have s · z′ = ỹ2, which we can use as
verification of the correctness of the computations of s, z, z′, and ỹ. If this were
implemented through a simple check, an attacker might be able to skip this check.

338 G. Banegas et al.

Algorithm 2. Evaluation of CSIDH group action with countermeasure
Input: A ∈ Fp and a list of integers (e1, . . . , en).
Output: B ∈ Fp such that

∏
[li]

ei ∗ EA = EB

1: while some ei �= 0 do
2: Sample a random x ∈ Fp, defining a point P .
3: Set z ← x3 + Ax2 + x, ỹ ← z(p+1)/4.
4: Set s ← 1 if ỹ2 = z, s ← −1 if ỹ2 = −z, s ← 0 otherwise.
5: Let S = {i | ei �= 0, sign(ei) = s}. Restart with new x if S is empty.
6: Let k ← ∏

i∈S �i and compute Q′ = (XQ′ : ZQ′) ← [p+1
k

]P .
7: Compute z′ ← x3 + Ax2 + x.
8: Set XQ ← s · z′ · XQ′ , ZQ ← ỹ2 · ZQ′ .
9: Set Q = (XQ : ZQ).

10: for each i ∈ S do
11: Set k ← k/�i and compute R ← [k]Q. If R = ∞, skip this i.
12: Compute φ : EA → EB with kernel 〈R〉.
13: Set A ← B, Q ← φ(Q), and ei ← ei − s.

14: return A.

Hence, we perform the equality check through the multiplications XQ = s·z′·XQ′

and ZQ = ỹ2 · ZQ′ , and initialize Q = (XQ : ZQ) only afterwards, in order to
prevent an attacker from skipping Step 8. If s · z′ = ỹ2 holds as expected, this is
merely a change of the projective representation of Q′, and thus leaves the point
and its order unchanged. However, if s · z′ 	= ỹ2, this changes the x-coordinate
XQ/ZQ of Q to a random value corresponding to a point of different order.
If Q does not have the required order the isogeny computation will produce
random outputs in Fp that do not represent supersingular elliptic curves with
overwhelming probability. We can either output this random Fp-value, or detect
it through a supersingularity check (see [4,15]) at the end of the algorithm and
abort. The attacker gains no information in both cases. The supersingularity
check can be replaced by a cheaper procedure [10]: Sampling a random point P
and checking if [p + 1]P = ∞ is cheaper and has a very low probability of false
positives, which is negligible in this case.

There are several ways in which an attacker may try to circumvent this
countermeasure. A simple way to outmaneuver the verification is to perform the
same fault in the computation of z and z′, such that z = z′, but z 	= x3+Ax2+x.
To mitigate this, we recommend computing z′ using a different algorithm and
a different sequence of operations, so that there are no simple faults that can
be repeated in both computations of z and z′ that result in z = z′. Faults in
the computation of both z and z′ then lead to random Fp-values, where the
probability of z = z′ is 1/p.

The attacker may still fault the computation of s in Step 4 of Algorithm 2.
However, this will now also flip the x-coordinate of Q to −x, which in general
results in a point of random order, leading to invalid outputs. The only known
exception is the curve E0 : y2 = x3 + x: In this case, flipping the x-coordinate
corresponds to a distortion map taking Q to a point of the same order on the

Disorientation Faults in CSIDH 339

quadratic twist. Thus, for E0, flipping the sign s additionally results in actually
changing the orientation of Q, so these two errors effectively cancel each other
in Algorithm 2 and the resulting curve is the correct output curve after all.

Protecting Elligator. Recall from Sect. 3 that two-point variants of CSIDH,
including CTIDH, use the Elligator map for two points simultaneously, which
requires an execution of IsSquare in order to correctly allocate the sampled
points to P+ and P−.

We can adapt the pseudo y-coordinate technique from Sect. 9.1: we determine
orientations and verify their correctness by applying this countermeasure for
both P+ and P− separately. We dub this protected version of the Elligator
sampling Elligreator. An additional benefit is that faulting the computations
of the x-coordinates of the two points within Elligator (see [16, Algorithm 3]) is
prevented by Elligreator.

In CTIDH, each round performs two Elligator samplings, and throws away
one point respectively. Nevertheless, it is not known a priori which of the two
points has the required orientation, so Elligreator needs to check both points
anyway in order to find the point of correct orientation.

On the one hand, adding dummy computations, in this case sampling points
but directly discarding some of them, might lead to different vulnerabilities such
as safe-error attacks. On the other hand, sampling both points directly with
Elligreator at the beginning of each round (at the cost of one additional
isogeny evaluation) may lead to correlations between the sampled points, as
argued in [3]. It is unclear which approach should be favored.

9.2 Implementation Costs

Implementing this countermeasure is straightforward. While IsSquare requires
an exponentiation by (p − 1)/2, our pseudo y-coordinate approach replaces this
exponent by (p + 1)/4, which leads to roughly the same cost. (Note that neither
has particularly low Hamming weight.) Furthermore, we require a handful of
extra operations for computing z′, XQ, and ZQ in Steps 7 and 8 of Algorithm
2. For the computation of z′ we used a different algorithm than is used for
the computation of z, incurring a small additional cost. Therefore, using this
countermeasure in a 1-point variant of CSIDH will essentially not be noticeable
in terms of performance, since the extra operations are negligible in comparison
to the overall cost of the CSIDH action.

In 2-point variants, we use Elligreator, which requires two exponentiations
instead of one as Elligator does. Thus, the countermeasure is expected to add a
more significant, yet relatively small overhead in 2-point variants as in CTIDH.
CTIDH uses two calls to Elligreator per round, and both executions contain
two pseudo-y checks respectively. We estimate the cost of our countermeasure in
CTIDH-512. The software of [3] reports an exponentiation by (p − 1)/2 to cost
602 multiplications (including squarings). Since CTIDH-512 requires roughly 20

340 G. Banegas et al.

rounds per run, we add two additional exponentiations by (p + 1)/4 per round,
and these have almost the same cost of 602 multiplications, the overhead is
approximately 2·20·602 = 24080 multiplications. Ignoring the negligible amount
of further multiplications we introduce, this comes on top of a CTIDH-512 group
action, which takes 438006 multiplications on average. Thus, we expect the total
overhead of our countermeasure to be roughly 5.5% in CTIDH-512.

References

1. Adj, G., Chi-Domı́nguez, J., Rodŕıguez-Henŕıquez, F.: Karatsuba-based square-
root Vélu’s formulas applied to two isogeny-based protocols. J. Cryptogr. Eng.
(2022). https://doi.org/10.1007/s13389-022-00293-y, https://ia.cr/2020/1109

2. Adj, G., Chi-Domı́nguez, J.J., Mateu, V., Rodŕıguez-Henŕıquez, F.: Faulty isoge-
nies: a new kind of leakage. Cryptology ePrint Archive, Paper 2022/153 (2022).
https://ia.cr/2022/153

3. Banegas, G., et al.: CTIDH: faster constant-time CSIDH. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2021(4), 351–387 (2021). https://doi.org/10.46586/tches.
v2021.i4.351-387

4. Banegas, G., Gilchrist, V., Smith, B.: Efficient supersingularity testing over GF(p)
and CSIDH key validation. Math. Cryptol. 2(1), 21–35 (2022). https://journals.
flvc.org/mathcryptology/article/view/132125

5. Bernstein, D.J., De Feo, L., Leroux, A., Smith, B.: Faster computation of isogenies
of large prime degree. In: Galbraith, S.D. (ed.) Proceedings of the Fourteenth Algo-
rithmic Number Theory Symposium, pp. 39–55. Mathematics Sciences Publishers
(2020). https://doi.org/10.2140/obs.2020.4.39, https://ia.cr/2020/341

6. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: elliptic-curve
points indistinguishable from uniform random strings. In: Sadeghi, A., Gligor,
V.D., Yung, M. (eds.) 2013 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 2013, Berlin, Germany, 4–8 November 2013, pp. 967–980.
ACM (2013). https://doi.org/10.1145/2508859.2516734, https://ia.cr/2013/325

7. Bernstein, D.J., Lange, T., Martindale, C., Panny, L.: Quantum circuits for the
CSIDH: optimizing quantum evaluation of isogenies. In: Ishai, Y., Rijmen, V.
(eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 409–441. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17656-3 15, https://ia.cr/2018/1059

8. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S. (eds.)
Advances in Cryptology - ASIACRYPT 2019–25th International Conference on the
Theory and Application of Cryptology and Information Security, Kobe, Japan, 8–
12 December 2019, Proceedings, Part I. Lecture Notes in Computer Science, vol.
11921, pp. 227–247. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-
030-34578-5 9, https://ia.cr/2019/498

9. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH. In: Can-
teaut and Ishai [13], pp. 493–522. https://doi.org/10.1007/978-3-030-45724-2 17,
https://ia.cr/2018/537

10. Campos, F., Kannwischer, M.J., Meyer, M., Onuki, H., Stöttinger, M.: Trouble
at the CSIDH: protecting CSIDH with dummy-operations against fault injection
attacks. In: 17th Workshop on Fault Detection and Tolerance in Cryptography,
FDTC 2020, Milan, Italy, 13 September 2020, pp. 57–65. IEEE (2020). https://
doi.org/10.1109/FDTC51366.2020.00015, https://ia.cr/2020/1005

https://doi.org/10.1007/s13389-022-00293-y
https://ia.cr/2020/1109
https://ia.cr/2022/153
https://doi.org/10.46586/tches.v2021.i4.351-387
https://doi.org/10.46586/tches.v2021.i4.351-387
https://journals.flvc.org/mathcryptology/article/view/132125
https://journals.flvc.org/mathcryptology/article/view/132125
https://doi.org/10.2140/obs.2020.4.39
https://ia.cr/2020/341
https://doi.org/10.1145/2508859.2516734
https://ia.cr/2013/325
https://doi.org/10.1007/978-3-030-17656-3_15
https://ia.cr/2018/1059
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-34578-5_9
https://ia.cr/2019/498
https://doi.org/10.1007/978-3-030-45724-2_17
https://ia.cr/2018/537
https://doi.org/10.1109/FDTC51366.2020.00015
https://doi.org/10.1109/FDTC51366.2020.00015
https://ia.cr/2020/1005

Disorientation Faults in CSIDH 341

11. Campos, F., Krämer, J., Müller, M.: Safe-error attacks on SIKE and CSIDH. In:
Batina, L., Picek, S., Mondal, M. (eds.) SPACE 2021. LNCS, vol. 13162, pp. 104–
125. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95085-9 6

12. Campos, F., Meyer, M., Reijnders, K., Stöttinger, M.: Patient zero and patient
six: zero-value and correlation attacks on CSIDH and SIKE. Cryptology ePrint
Archive, Paper 2022/904 (2022). https://ia.cr/2022/904

13. Canteaut, A., Ishai, Y. (eds.): LNCS, vol. 12106. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45724-2

14. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH (preliminary
version). Cryptology ePrint Archive, Paper 2022/975 (2022). https://ia.cr/2022/
975

15. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S.D. (eds.)
Advances in Cryptology - ASIACRYPT 2018–24th International Conference on the
Theory and Application of Cryptology and Information Security, Brisbane, QLD,
Australia, 2–6 December 2018, Proceedings, Part III. Lecture Notes in Computer
Science, vol. 11274, pp. 395–427. Springer, Heidelberg (2018). https://doi.org/10.
1007/978-3-030-03332-3 15, https://ia.cr/2018/383

16. Cervantes-Vázquez, D., Chenu, M., Chi-Domı́nguez, J.-J., De Feo, L., Rodŕıguez-
Henŕıquez, F., Smith, B.: Stronger and faster side-channel protections for CSIDH.
In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol. 11774,
pp. 173–193. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30530-
7 9, https://ia.cr/2019/837

17. Chávez-Saab, J., Chi-Domı́nguez, J., Jaques, S., Rodŕıguez-Henŕıquez, F.: The
SQALE of CSIDH: sublinear Vélu quantum-resistant isogeny action with low expo-
nents. J. Cryptogr. Eng. 12(3), 349–368 (2022). https://doi.org/10.1007/s13389-
021-00271-w, https://ia.cr/2020/1520

18. Chi-Domı́nguez, J., Rodŕıguez-Henŕıquez, F.: Optimal strategies for CSIDH. Adv.
Math. Commun. 16(2), 383–411 (2022). https://doi.org/10.3934/amc.2020116,
https://ia.cr/2020/417

19. Childs, A.M., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quan-
tum subexponential time. J. Math. Cryptol. 8(1), 1–29 (2014). https://doi.org/10.
1515/jmc-2012-0016, https://arxiv.org/abs/1012.4019

20. Conway, J.H., Sloane, N.J.A.: Low dimensional lattices vii: coordination sequences.
Proc. Roy. Soc. Lond. Ser. A 453, 2369–2389 (1997)

21. Couveignes, J.M.: Hard Homogeneous Spaces. IACR Cryptology ePrint Archive
2006/291 (2006). https://ia.cr/2006/291

22. De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group
actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp.
759–789. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 26,
https://ia.cr/2018/824

23. De Feo, L., Meyer, M.: Threshold Schemes from Isogeny Assumptions. In: Kiayias,
A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111,
pp. 187–212. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-
6 7, https://ia.cr/2019/1288

24. Delfs, C., Galbraith, S.D.: Computing isogenies between supersingular elliptic
curves over Fp. Des. Codes Cryptogr. 78(2), 425–440 (2016). https://doi.org/10.
1007/s10623-014-0010-1, https://arxiv.org/abs/1310.7789

25. Gélin, A., Wesolowski, B.: Loop-abort faults on supersingular isogeny cryp-
tosystems. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346,

https://doi.org/10.1007/978-3-030-95085-9_6
https://ia.cr/2022/904
https://doi.org/10.1007/978-3-030-45724-2
https://doi.org/10.1007/978-3-030-45724-2
https://ia.cr/2022/975
https://ia.cr/2022/975
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://ia.cr/2018/383
https://doi.org/10.1007/978-3-030-30530-7_9
https://doi.org/10.1007/978-3-030-30530-7_9
https://ia.cr/2019/837
https://doi.org/10.1007/s13389-021-00271-w
https://doi.org/10.1007/s13389-021-00271-w
https://ia.cr/2020/1520
https://doi.org/10.3934/amc.2020116
https://ia.cr/2020/417
https://doi.org/10.1515/jmc-2012-0016
https://doi.org/10.1515/jmc-2012-0016
https://arxiv.org/abs/1012.4019
https://ia.cr/2006/291
https://doi.org/10.1007/978-3-030-17659-4_26
https://ia.cr/2018/824
https://doi.org/10.1007/978-3-030-45388-6_7
https://doi.org/10.1007/978-3-030-45388-6_7
https://ia.cr/2019/1288
https://doi.org/10.1007/s10623-014-0010-1
https://doi.org/10.1007/s10623-014-0010-1
https://arxiv.org/abs/1310.7789

342 G. Banegas et al.

pp. 93–106. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6 6,
https://ia.cr/2017/374

26. Hutchinson, A., LeGrow, J., Koziel, B., Azarderakhsh, R.: Further optimizations
of CSIDH: a systematic approach to efficient strategies, permutations, and bound
vectors. In: Conti, M., Zhou, J., Casalicchio, E., Spognardi, A. (eds.) ACNS 2020.
LNCS, vol. 12146, pp. 481–501. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-57808-4 24, https://ia.cr/2019/1121

27. Lai, Y.-F., Galbraith, S.D., Delpech de Saint Guilhem, C.: Compact, efficient and
UC-secure isogeny-based oblivious transfer. In: Canteaut, A., Standaert, F.-X.
(eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 213–241. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-77870-5 8, https://ia.cr/2020/1012

28. LeGrow, J.T., Hutchinson, A.: (Short Paper) Analysis of a strong fault attack
on static/ephemeral CSIDH. In: Nakanishi, T., Nojima, R. (eds.) IWSEC 2021.
LNCS, vol. 12835, pp. 216–226. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-85987-9 12, https://ia.cr/2020/1006

29. Maino, L., Martindale, C.: An attack on SIDH with arbitrary starting curve. Cryp-
tology ePrint Archive, Paper 2022/1026 (2022). https://ia.cr/2022/1026

30. Meyer, M., Campos, F., Reith, S.: On lions and elligators: an efficient constant-
time implementation of CSIDH. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019.
LNCS, vol. 11505, pp. 307–325. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-25510-7 17, https://ia.cr/2018/1198

31. Meyer, Michael, Reith, Steffen: A faster way to the CSIDH. In: Chakraborty,
Debrup, Iwata, Tetsu (eds.) INDOCRYPT 2018. LNCS, vol. 11356, pp. 137–152.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05378-9 8, https://ia.
cr/2018/782

32. Onuki, H., Aikawa, Y., Yamazaki, T., Takagi, T.: (Short paper) A faster constant-
time algorithm of CSIDH keeping two points. In: Attrapadung, N., Yagi, T. (eds.)
Advances in Information and Computer Security - 14th International Workshop on
Security, IWSEC 2019, Tokyo, Japan, August 28–30, 2019, Proceedings. Lecture
Notes in Computer Science, vol. 11689, pp. 23–33. Springer (2019). https://doi.
org/10.1007/978-3-030-26834-3 2, https://ia.cr/2019/353

33. Peikert, C.: He gives C-sieves on the CSIDH. In: Canteaut and Ishai [13], pp.
463–492. https://doi.org/10.1007/978-3-030-45724-2 16, https://ia.cr/2019/725

34. Robert, D.: Breaking SIDH in polynomial time. Cryptology ePrint Archive, Paper
2022/1038 (2022). https://ia.cr/2022/1038

35. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. IACR
Cryptology ePrint Archive 2006/145 (2006), https://ia.cr/2006/145

36. Tasso, É., De Feo, L., El Mrabet, N., Pontié, S.: Resistance of isogeny-based cryp-
tographic implementations to a fault attack. In: Bhasin, S., De Santis, F. (eds.)
COSADE 2021. LNCS, vol. 12910, pp. 255–276. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-89915-8 12, https://ia.cr/2021/850

37. Ti, Y.B.: Fault attack on supersingular isogeny cryptosystems. In: Lange, T., Tak-
agi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 107–122. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59879-6 7, https://ia.cr/2017/379

38. Udovenko, A., Vitto, G.: Breaking the $IKEp182 challenge. IACR Cryptology
ePrint Archive 2021/1421 (2021). https://ia.cr/2021/1421

39. Vélu, J.: Isogénies entre courbes elliptiques. Comptes Rendus de l’Académie
des Sciences de Paris 273, 238–241 (1971). https://gallica.bnf.fr/ark:/12148/
cb34416987n/date

https://doi.org/10.1007/978-3-319-59879-6_6
https://ia.cr/2017/374
https://doi.org/10.1007/978-3-030-57808-4_24
https://doi.org/10.1007/978-3-030-57808-4_24
https://ia.cr/2019/1121
https://doi.org/10.1007/978-3-030-77870-5_8
https://ia.cr/2020/1012
https://doi.org/10.1007/978-3-030-85987-9_12
https://doi.org/10.1007/978-3-030-85987-9_12
https://ia.cr/2020/1006
https://ia.cr/2022/1026
https://doi.org/10.1007/978-3-030-25510-7_17
https://doi.org/10.1007/978-3-030-25510-7_17
https://ia.cr/2018/1198
https://doi.org/10.1007/978-3-030-05378-9_8
https://ia.cr/2018/782
https://ia.cr/2018/782
https://doi.org/10.1007/978-3-030-26834-3_2
https://doi.org/10.1007/978-3-030-26834-3_2
https://ia.cr/2019/353
https://doi.org/10.1007/978-3-030-45724-2_16
https://ia.cr/2019/725
https://ia.cr/2022/1038
https://ia.cr/2006/145
https://doi.org/10.1007/978-3-030-89915-8_12
https://doi.org/10.1007/978-3-030-89915-8_12
https://ia.cr/2021/850
https://doi.org/10.1007/978-3-319-59879-6_7
https://ia.cr/2017/379
https://ia.cr/2021/1421
https://gallica.bnf.fr/ark:/12148/cb34416987n/date
https://gallica.bnf.fr/ark:/12148/cb34416987n/date

On the Hardness of the Finite Field
Isomorphism Problem

Dipayan Das(B) and Antoine Joux

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

dipayan.das@cispa.de, joux@cispa.de

Abstract. The finite field isomorphism (FFI) problem was introduced in
PKC’18, as an alternative to average-case lattice problems (like LWE, SIS,
or NTRU). As an application, the same paper used the FFI problem to
construct a fully homomorphic encryption scheme. In this work, we prove
that the decision variant of the FFI problem can be solved in polynomial
time for any field characteristics q = Ω(βn2), where q, β, n parametrize
the FFI problem. Then we use our result from the FFI distinguisher to
propose polynomial-time attacks on the semantic security of the fully
homomorphic encryption scheme. Furthermore, for completeness, we also
study the search variant of the FFI problem and show how to state it as
a q-ary lattice problem, which was previously unknown. As a result, we
can solve the search problem for some previously intractable parameters
using a simple lattice reduction approach.

1 Introduction

The Finite Field Isomorphism (FFI) problem has been introduced in [4] as a
new hard problem to study post-quantum cryptography. Informally, it states
the following.

For a hidden element x (with sparse minimal polynomial) in the finite field
Fqn , if small β-bounded linear combinations of powers of x are given, in terms
of powers of a uniform generator y, it is hard to recover x.

The decisional version of the problem states the following.
Given the y-basis representation of finite field elements, it is hard to decide

whether they are picked from the FFI distribution or the uniform distribution,
with a non-negligible advantage over random guessing.

The FFI assumption is based on the fact that the basis transformation con-
verts “good” representations to “bad” representations of Fqn . At a high level
of abstraction, the heuristics of the FFI problem is comparable to many lattice
problems, which involve recovering a “good” secret basis from a “bad” public
basis (example, [7,8]). However, despite this high-level similarity, the details are
quite different and a dedicated security analysis is required.

In the papers [4,9], the authors thoroughly analyzed the generic hardness of
the FFI problem. From their analysis, the best known attack for the decisional
problem has 2O(n) time complexity, whereas the best known attack for the search
c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14008, pp. 343–359, 2023.
https://doi.org/10.1007/978-3-031-30589-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30589-4_12&domain=pdf
http://orcid.org/0000-0002-7681-1868
http://orcid.org/0000-0003-2682-6508
https://doi.org/10.1007/978-3-031-30589-4_12

344 D. Das and A. Joux

problem has O(n!) time complexity. Based on their analysis, they proceed to
propose a fully homomorphic encryption scheme [4] and a signature scheme [9]
as applications of the FFI problem.

1.1 Our Contribution

This paper re-examines the hardness of the FFI problem in both its decisional and
computational versions. We use basic finite field theory to study the hardness of
the FFI problem.

In Sect. 4, we prove the values of the trace of the hidden polynomial x-basis
are bounded in absolute value by n. The proof is based on combinatorial tech-
niques. Thus, by a linearity argument, the trace of FFI samples can be bounded
in absolute value by βn2. This observation provides a polynomial-time distin-
guisher to solve the decisional version of the FFI problem for any field with
characteristic q ≥ 4βn2.

In Sect. 5, we complement the attack on the decisional FFI problem by break-
ing the semantic security of the fully homomorphic encryption scheme from [4].
First, we give a simple semantic attack by using the bound on the trace of the
ciphertext. Then we provide an additional semantic attack that offers a slight
improvement on the lower bound on the field characteristic q, using the distri-
bution of the trace of the inverse of the finite field elements. Both attacks apply
to the proposed parameter of the scheme.

In Sect. 6, we exploit the notion of dual basis of a finite field basis to solve
the computational FFI problem. By definition, the trace of any basis element
with respect to its dual basis can be expressed as the Kronecker delta function.
Consequently, the traces of FFI samples with respect to the dual x-basis are
bounded by β. Using this observation, we recover the dual x-basis from the
given FFI samples Ai. This is done by reducing an adequate lattice built from
traces of well-chosen finite field elements. We also show that a partial recovery of
the dual x-basis can be leverage into a full cryptanalysis with good probability.

Finally, we provide some experiments on lattice reduction to find the shortest
vectors in this lattice.

2 Preliminaries

2.1 Notations

The parameter q denotes a (moderately large) prime integer throughout the
paper.

The finite field with q elements is denoted by Fq. All vectors are in columns
and are denoted with bold letters. We identify polynomials and vectors as being
the same data type using the coefficient embedding. For any vector v, we write
‖v‖ for the �∞ norm of v, and ‖v‖2 for the �2 norm of v. Representatives of the
elements of Fq are centered around zero, i.e. chosen in the interval

[
− q−1

2 , q−1
2

]
.

The rationale for using this representation is that it is much better adapted to
the goal of obtaining vectors with short norms.

On the Hardness of the Finite Field Isomorphism Problem 345

2.2 Reminders from Finite Field Theory

For every prime q and every positive integer n, there exists a unique finite field
with qn elements. It is denoted by Fqn . The prime q and the integer n are
respectively called the characteristic and degree of the finite field.

Let f(x) and F (y) be two irreducible polynomials of degree n over Fq. We
can construct two isomorphic representations of the finite field Fqn as X :=
Fq[x]/(f(x)) and Y := Fq[y]/(F (y)). Every element of Fqn can be uniquely
represented by a polynomial in x with coefficients in Fq and degree less than n.
Similarly, there is a representation in terms of y. In other words, the set

{1,x, . . . ,xn−1}

is a basis of Fqn , viewed as a vector space over Fq. This basis is called the x-
polynomial-basis or x-basis for short. For ease of reading, we denote finite field
elements known in the x-basis by small letters and elements known in the y-basis
by capital letters.

To explicit an isomorphism between these two representations of Fqn , it suf-
fices to know the representation in the x-basis of a root of F (y) or conversely
the y-representation of a root of f(x). Note that each of the two polynomials
has n distinct roots, which are images of each other by the q-th power Frobenius
map.

For every element α ∈ Fqn , its conjugates are obtained by repeatedly apply-
ing the Frobenius map, i.e. they are α, αq, . . . , αq(n−1)

. They are distinct if and
only if the minimal polynomial of α has degree n. The trace of an element in
Fqn is defined as the sum of all its conjugates:

Tr(α) := α + αq + · · · + αq(n−1) ∈ Fq

The trace function is linear, i.e.

Tr(α + cβ) = Tr(α) + cTr(β)

for any α,β ∈ Fqn and c ∈ Fq.
Moreover, for every linear map L from Fqn to Fq, there exists a unique

element β in Fqn such that:

∀α ∈ Fqn : L(α) = Tr(β · α).

We denote this linear function by Lβ .
To every basis ω1,ω2, . . . ,ωn of Fqn we associate a dual basis1

ω̂1, ω̂2, . . . , ω̂n ∈ Fqn , defined as the unique one which satisfies:

Tr(ωiω̂j) = δj
i

where δj
i is the Kronecker delta function. From this definition, it is clear that

the bidual of a basis, i.e. the dual of its dual, is the basis itself.
1 Note that this notion of the dual basis of a finite field does not correspond to the

idea of the dual basis of a lattice. This paper only uses the term dual basis to refer
to the former notion.

346 D. Das and A. Joux

2.3 Lattice Reduction

Given a (full rank) matrix B ∈ Z
d×d, the lattice L generated by the basis B

is the set L(B) := {Bz : z ∈ Z
d}, d is the lattice dimension. A lattice is called

q-ary if it contains qZd as a sublattice. The volume of a lattice L(B) is defined
as Vol(L) := |det(B)|. Any lattice of dimension d ≥ 2 has infinitely many
bases that generate the same lattice, and any two bases B,B′ are related by a
unimodular matrix U such that B = B′U . Note that the unimodular matrix
stands on the right because we use the convention of having vectors in columns.
The volume of a lattice is independent of the choice of lattice basis.

For a random lattice L, the Gaussian heuristic estimates the Euclidean
norm of the shortest non-zero vector in the lattice, which is approximately√

d
2πeVol(L)1/d [5].
For any basis B, we write B∗ to represent the Gram-Schmidt orthogonal-

ization (GSO) of B, where the i-th vector of B∗ is given by b∗
i := πi(bi). Here,

the notation πi denotes the projection of a vector orthogonally to the vector
subspace spanned by b1, b2, . . . , bi−1.

A central problem in the algorithmics of lattices is to find shortest non-zero
vectors (SVP) from a lattice basis B. This can be a handy tool in cryptanal-
ysis. The most widely used lattice reduction algorithm is LLL [11] which is
polynomial-time but only yields an approximation of SVP within an exponen-
tial factor. Since this can be insufficient for cryptanalysis, it is standard practice
to use slower algorithms that produce better approximations.

For our needs, we use the implementation of the blockwise Korkine-Zolotarev
(BKZ) algorithm provided with the fplll software [13].

2.4 Semantic Attack of an Encryption Scheme

An encryption scheme (KeyGen,Enc,Dec) that only encrypts bits (i.e. with
message space {0, 1}) has (t, δ) attack against the semantic security if there exists
an adversary A winning the following game against a challenger C.

– C samples m ←↩ {0, 1}, (pk, sk) ←↩ KeyGen(1λ).

– C gives pk, c := Enc(pk,m) to A.

– A outputs m′ ∈ {0, 1}.

A wins the game if A has running time t and advantage δ, where the advantage
is defined by

|Pr[m′ = m] − Pr[m′ �= m]|

3 Finite Field Isomorphism Problem

This section formally describes the FFI problem in both its computational and
decisional forms.

On the Hardness of the Finite Field Isomorphism Problem 347

Let X,Y be two representations of the finite field Fqn as before. In the rest
of the paper, we assume n ≥ 50 to be out of range of easy exhaustive search
attacks. The defining polynomial of X is sampled uniformly from the set of all
sparse irreducible polynomials of the form xn +g(x) with deg g(x) ≤ 	n/2
 and
‖g(x)‖ ≤ 1, i.e. g(x) has ternary coefficients. The defining polynomial of Y is
sampled uniformly from the set of arbitrary monic irreducible polynomials. Let
φ(y) be an isomorphism from X to Y. Note that there is an efficient algorithm
to compute an isomorphism between the two representations [2].2 Let χβ be a
distribution over X that samples polynomials ai(x) with ‖ai(x)‖ ≤ β. Let Ai(y)
be the corresponding image of ai(x) under the isomorphism φ.

Definition 1 (Computational Finite Field Isomorphism Problem
(CFFIq,k,n,β)). Given Y by F (y) and k samples A1(y), . . . ,Ak(y) recover f(x).

Definition 2 (Decisional Finite Field Isomorphism Problem
(DFFIq,k,n,β)). Given Y by F (y) and k samples B1(y),B2(y), . . . ,Bk(y) that are
either sampled from FFI distribution (having pre-images bounded by β) or sampled
uniformly at random in Y, DFFIq,k,n,β problem is to distinguish, with some non-
negligible advantage, the correct source distribution of the samples Bi(y).

Note that the sparsity constraint on the defining polynomial of X is not
directly included in the definition of the FFI problem given in [4,9]. However, the
noise growth analysis of [4, Appendix B] explicitly rewrites3 f(x) as xn +f ′(x)
and proceeds to bound the noise-growth during multiplication in X under the
assumption that the degree d of f ′ satisfies d < n/2. For clarity, we instead chose
to directly include this low-degree constraint as part of the definition.

3.1 Previous Attacks

In this section, we briefly describe all the attacks that have been considered for
both decisional and computational FFI problem in [4,9].

Decisional Finite Field Isomorphism Problem

Lattice Attack
The decisional FFI problem could be solved by predicting if there is any
good representation of the given samples, which is very unlikely for uniform
samples. To achieve this, the authors of [4,9] suggested lattice reduction on
the q-ary lattice

LA ,q := {ai ∈ Z
k : AΨi = ai mod q for some Ψi ∈ Z

n}
2 In practice, SageMath provides the FiniteFieldHomomorphism generic(Hom(.))

function available under sage.rings.finite rings.hom finite field package for
this task.

3 In the rewriting, f ′(x) does not denote the derivative of f but an auxiliary poly-
nomial. In our definition, we use the notation g(x) to avoid any possible confusion
with the derivative.

348 D. Das and A. Joux

with each row of the matrix A generated from the given y-basis represen-
tations of samples. For FFI samples, there are unusually short vectors in the
lattice that corresponds to the x-basis (or small linear combination of x-basis)
representation. For uniform samples, it is highly unlikely to have such short
vectors in the lattice.

Computational Finite Field Isomorphism Problem

Hybrid Attack
The authors of [4,9] propose to find the shortest vectors in the lattice LA ,q,
in the hope that they correspond to the coefficients of some powers of x.
Since the shortest vectors appear in a somewhat random-looking order, the
authors suggested adding a combinatorial algorithm to resolve the ordering
issue and recover the x-basis representations of the FFI samples. This gives
an attack to the computational FFI problem. They estimate the cost of the
combinatorial step to be O(n!), thus infeasible. One might argue that this
could possibly be improved by some form of meet-in-the-middle to O(

√
n!).

We do not examine this direction since we show in Sect. 6 that we can get rid
of the combinatorial step altogether.

Non-linear Attack
The non-linear attack involves solving the non-linear system of equations
to recover the hidden isomorphism φ using Gröbner basis computation. An
adversary can solve for 2n − 2 unknowns of (φ, (ai(x)) from the equation
φ(ai(x)) = Ai(y). Solving such an equation is believed to be hard.

4 Proposed Attack on the Decisional FFI Problem

This section proposes a new polynomial-time attack on the DFFI problem. We
show that when a sample Ai(y) comes from the FFI distribution, the underlying
trace of Ai(y) is bounded by a small multiple of n2. We use this fact to mount
a distinguishing attack on the DFFI problem.

Lemma 1. Let f(x) := xn + σ1x
n−1 + σ2x

n−2 + · · · + σn be the defining poly-
nomial of X, where σi ∈ {−1, 0, 1} for �n/2 ≤ i ≤ n, 0 otherwise4.

Then

Tr(xi) ≡

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n (mod q), if i = 0
0 (mod q), if 1 ≤ i ≤ �n/2 − 1
±i (mod q), if σi �= 0 and �n/2 ≤ i ≤ n − 1
0 (mod q), if σi = 0 and �n/2 ≤ i ≤ n − 1

4 Indeed, the smallest i with σi �= 0 satisfies i + deg g = n. Since deg g = �n/2� this
corresponds to i = �n/2�.

On the Hardness of the Finite Field Isomorphism Problem 349

Proof. The definition of trace function gives Tr(xi) = n when i = 0. To prove the
Lemma for i > 0, let us first recall the Girard-Newton identities relating the sum
of powers to symmetric polynomials. Given n arbitrary numbers w0, . . . , wn−1 in
an arbitrary ring, define their symmetric polynomials as usual by: σ1 =

∑n−1
i=0 wi,

σ2 =
∑

0≤i<j<n wiwj , σ3 =
∑

0≤i<j<k<n wiwjwk, . . . , σn =
∏n−1

i=0 wi. Then, for
any 1 ≤ d < n, we have:

n−1∑

i=0

wd
i = (−1)d

∑

r1+2r2+···+drd=d
ri∈N

d · (r1 + r2 + · · · + rd − 1)!
r1!r2! . . . rd!

d∏

j=1

(−σj)
rj (1)

Note that the coefficients in this equation, while written as fractions for nota-
tional purposes are, in fact, integers. As a consequence, the identity holds in
every ring. In particular, when working modulo q as we are. However, to avoid
any potential division by 0, the coefficients should first be computed as exact
integers and only reduced modulo q afterwards.

The set of all the roots of f(x) are given by

{α0 := x,α1 := xq, . . . ,αn−1 := xqn−1}

Let now the (σj)1≤j≤n denote the n symmetric polynomials in these roots. We
know that we can write

f(x) = xn − σ1x
n−1 + σ2x

n−2 − . . . (−1)nσn.

Thus, σ1 = σ2 = · · · = σ�n/2	−1 = 0.
Since, Tr(xi) is a sum of i-th power of αjs, we can use the above identity to

express it in terms of the σjs. Depending on the value of i, two cases arise:

Case 1 (1 ≤ i ≤ �n/2 − 1). Since all contributions include a σj for j ≤ i with
value zero, there is no non-zero term in the sum of the right-hand side of Eq. (1),
we have

Tr(xi) = 0

Case 2 (�n/2 ≤ i ≤ n − 1). Again, since σj = 0 for 1 ≤ j ≤ �n/2 − 1, there
is exactly one element in the set {(r1, r2, . . . , ri) :

∑i
l=1 lrl = i} that contributes

in the sum of the right-hand side of Eq. (1), namely (r1 = 0, r2 = 0, . . . , ri = 1).
Indeed, the sum of two contributions above �n/2 is always greater than i. This
gives

Tr(xi) =

{
±i for non-zero σi,

0 for σi = 0

Lemma 2. Let Ai(y) be an FFIq,k,n,β sample. Then |Tr(Ai(y))| ≤ 0.39βn2.

Proof. Let ai(x) be the representation of Ai(y) in the x-basis. Since the trace
of a finite field element is invariant to the basis representation, both ai(x) and

350 D. Das and A. Joux

Ai(y) must have the same trace. So in order to bound the trace of Ai(y), it is
sufficient to bound the trace of ai(x). By the linearity of the trace and by the
previous Lemma, we have

|Tr(Ai(y))| ≤ β

n∑

j=�n/2	
j

≤ 0.39βn2 for n ≥ 50.

Theorem 1. Let q ≥ 1.56βn2, then there exists a polynomial-time algorithm
with advantage 1 − Ω(1/2k) to distinguish the DFFIq,k,n,β problem.

Proof. Let B1(y),B2(y), . . . ,Bk(y) be the given k samples to distinguish
between FFI distribution and uniform distribution. The distinguisher finds the
correct distribution of the samples by computing the trace of the samples. In a
finite field, the trace function is uniformly distributed. Thus for a uniform sample
Bi(y), Tr(Bi(y)) is uniformly distributed over Fq. For an FFI sample Bi(y), by
the previous Lemma, |Tr(Bi(y))| ≤ 0.39βn2. Combining the number of samples
and condition on q, the distinguisher outputs 1 when the samples come from
FFI distribution with probability 1, and outputs 1 when the samples come from
uniform distribution with probability at most 1/2k.

It is only left to show that the distinguisher is indeed polynomial-time. The
running time of the attack is dominated by trace computation of finite field
elements. Since the trace of a finite field element can be computed efficiently in
time n1+o(1) log2+o(1) q using iterated Frobenius [10,12], this is polynomial-time.

5 Proposed Semantic Attack on the Fully Homomorphic
Encryption Scheme

In this section, we propose a polynomial-time attack on the semantic security of
the fully homomorphic encryption scheme E := (KeyGen,Enc,Dec,Eval) from [4].
The working principle of the scheme is given below.

– KeyGen(1λ) : Generate the FFI parameters Ξ := (n, q, β) as a function of λ,
and two representations of the finite field by sampling f(x),F (y) with an iso-
morphism φ like before. Choose two integers (S, s) satisfying

(
S
s

)
≥ 2λ. Sam-

ple S many ci(x) from the distribution χβ and construct Ci(y) := pφ(ci(x))
for fixed constant p := 2. In the rest of the section, we assume p is equal to
2 as in [4].
The secret key is sk := (Ξ,φ,f(x)).
The public key is pk := (Ξ,C1(y),C2(y), . . . ,CS(y),F (y), s, p).

– Enc(m, pk) : The encryption of a message m ∈ {0, 1} is

C :=
∑

i∈[s]

Ci(y) + m

for uniformly random s samples Ci(y).

On the Hardness of the Finite Field Isomorphism Problem 351

– Dec(C, sk) : The decryption recovers m by computing

m′ := p
∑

i∈[s]

ci(x) + m mod p

using the inverse of the secret isomorphism φ.

– Eval(C,C(1),C(2), . . . ,C(l)) : The homomorphic evaluation of ciphertexts of
a circuit C with gates (+,×) are done using homomorphic addition and mul-
tiplication (with noise management) on C(i)s. It is shown that for q = 2nε

with ε ∈ (0, 1), the above encryption scheme E is fully homomorphic using
circular security and bootstrapping techniques (Theorem 3 of [4]).

The result of Theorem 1 invalidates the semantic security of the fully homo-
morphic encryption scheme E (Theorem 1 of [4]). The next Theorem gives a
polynomial-time algorithm to break the semantic security of E .5

Theorem 2. Let q > 0.44sβ2n5 + 0.78βn2, then there exists a deterministic
polynomial time attack against the semantic security of the fully homomorphic
encryption scheme E defined as above.

Proof. Let the challenger C give the public key pk ←↩ KeyGen(1λ) and an encryp-
tion C of a message m ←↩ {0, 1} to the adversary A. Then

C = p
∑

i∈[s]

φ(ci(x)) + m (2)

A wins the semantic game by the following analysis.
We consider the following two cases for the choice of n.

1. When p = 2 is not a divisor of n.

Note that
∑

i∈[s] φ(ci(x)) is an FFIq,1,n,sβ sample. So the trace of the sum-
mation is small. By the linearity of trace and from Eq. (2),

Tr(C) = pTr(
∑

i∈[s]

φ(ci(x))) + Tr(m)

Since Tr(1) = n and p is not a divisor of n, A breaks the semantic game for
the encryption C as below.

Tr(C) mod p = 0, Return C is an encryption of 0
= n mod p = 1, Return C is an encryption of 1

5 Note that the attack does not use the homomorphic property of the encryption
scheme, just regular encryptions of bits.

352 D. Das and A. Joux

2. When p = 2 is a divisor of n.
In this case, Tr(C) mod p will be 0 for both encryptions of 0 and 1. To get a
semantic attack, A needs to do a small modification here.
A picks an FFIq,1,n,β sample C∗ (with pre-image c∗) such that |Tr(C∗)| is not
a multiple of p. As any field isomorphism map elements in Fq to itself, this
happens with probability 1/p for each p−1Ci(y), where Ci(y) for 1 ≤ i ≤ S
are the public key samples, so A almost surely knows such a sample.
Multiplying both sides of Eq. (2) by C∗, we get

CC∗ = p φ

⎛

⎝(
∑

i∈[s]

ci(x))c∗

⎞

⎠ + mC∗ (3)

By the ternary sparse choice of the minimal polynomial of x, the noise of poly-
nomial multiplication in X grows at most by a factor of n3 (Eq. 5 of [4]). So,
the product of φ(

∑
i∈[s] ci(x)) and φ(c∗) is an FFIq,1,n,0.28sβ2n3 sample, and

hence, by Lemma 2, the absolute value of the trace is bounded by 0.11sβ2n5.
By the linearity of trace, we have from Eq. (3)

Tr(CC∗) = p Tr

⎛

⎝φ

⎛

⎝(
∑

i∈[s]

ci(x))c∗)

⎞

⎠

⎞

⎠ + mTr(C∗)

Since Tr(C∗) is not a multiple of p, A breaks the semantic game for the
encryption C as below.

Tr(CC∗) mod p = 0, Return C is an encryption of 0
= 1, Return C is an encryption of 1

If the q is chosen as in the Theorem to avoid modular reduction, A returns
m′ ∈ {0, 1} with advantage δ = 1. The adversary A runs in polynomial time by
the argument given in Theorem 1.

Below we also provide an alternative approach to break the semantic security
of the homomorphic encryption scheme that gives a tighter lower bound on q.
The main ingredient of this approach is to break the semantic security of the
scheme by the distribution of the trace of the inverse of p.

Theorem 3. Let q > 0.44sβ2n5 + 0.39βn2, then there exists a deterministic
polynomial time attack against the semantic security of the fully homomorphic
encryption scheme E defined as above.

Proof. Let the challenger C give the public key pk ←↩ KeyGen(1λ) and an encryp-
tion C of a message m ←↩ {0, 1} to the adversary A. A computes

Cp−1 =
∑

i∈[s]

φ(ci(x)) + mp−1 (4)

A wins the semantic game by the following analysis.
We consider the following two cases for the choice of n.

On the Hardness of the Finite Field Isomorphism Problem 353

1. When p = 2 is not a divisor of n.
Since any field isomorphism φ map elements in Fq to itself,

∑
i∈[s] φ(ci(x)) is

an FFIq,1,n,sβ sample. As a consequence, from Eq. (4), Cp−1 is an FFIq,1,n,sβ

sample for an encryption of 0, thus have small trace. But for an encryption
of 1, by linearity, trace of Cp−1 is dominated by the trace of 1/p. We now
claim the absolute value of Tr(1/p) is close to the boundary point (q − 1)/2
of the Fq representation, thus trace of Cp−1 is large.
By the definition of trace,

Tr(1/p) = n/p mod q

= n(q + 1)/p mod q

= (n + q)/p mod q since p is not a divisor of n

(5)

To see the validity of the last line of the above equation, writing n = pi + 1,
we have

n(q + 1)/p mod q = (pi + 1)(q + 1)/p mod q

= i + (q + 1)/p mod q

= (n + q)/p mod q

Finally, we have |Tr(1/p)| = (q − n)/p in the representation of Fq. Thus A
breaks the semantic game for the encryption C from Lemma 2 as below.

|Tr(Cp−1)| ≤0.39sβn2, Return C is an encryption of 0
Otherwise, Return C is an encryption of 1

2. When p = 2 is a divisor of n.
In this case, from the first line of Eq. (5), the trace of Cp−1 will be small for
both encryptions of 0 and 1. To get a semantic attack, A needs to do a small
modification here as in the previous Theorem.
A picks an FFIq,1,n,β sample C∗ such that |Tr(C∗)| is not a multiple of p.
Multiplying both sides of Eq. (4) by C∗, we get

C∗Cp−1 = C∗
∑

i∈[s]

φ(ci(x)) + mC∗p−1 (6)

Again, by the choice of the minimal polynomial of x, the noise of polynomial
multiplication in X grows at most by a factor of n3 (Eq. 5 of [4]). For an
encryption of 0, since C∗ and Cp−1 are FFIq,1,n,β and FFIq,1,n,sβ samples,
respectively, C∗Cp−1 is an FFIq,1,n,0.28sβ2n3 sample. Thus the trace of the
product C∗Cp−1 is still small. But for an encryption of 1, by Eq. (6), the
trace of C∗Cp−1 is dominated by the trace of second summand C∗p−1. Since
the absolute value of Tr(C∗p−1) is close to the boundary point (q − 1)/2, the
trace of CC∗p−1 is large in this case.
To see the above claim, let Tr(C∗) = t, where |t| ≤ 0.39βn2 and |t| is not a
divisor of p. By the linearity of trace and from the previous analysis,

Tr(C∗p−1) = 1/pTr(C∗)
= (t + q)/p mod q

354 D. Das and A. Joux

Finally, we have |Tr(C∗p−1)| = (q − t)/p in the representation of Fq.
By the Eq. 5 of [4] and Lemma 2, A breaks the semantic game for the encryp-
tion C as below.

|Tr(CC∗p−1)| ≤0.11 sβ2n5, Return C is an encryption of 0
Otherwise, Return C is an encryption of 1

The condition on q in the Theorem ensures A returns m′ ∈ {0, 1} with advantage
δ = 1. The adversary A runs in polynomial time by the argument given in
Theorem 1.

Effect of the Attacks on the Recommended Parameters: The recom-
mended parameters of [4] (Appendix C, Table 1) for the different level of the
(somewhat) fully homomorphic encryption scheme falls within the range of our
semantic attacks, except the first level (which has a small q and tolerates very
little noise).

6 Proposed Attack on the Computational FFI Problem

In this section, we first express the CFFI problem as a lattice problem. The
improvement over the previous attack is that here we can avoid the additional
combinatorial step (see Subsect. 3.1) to solve the CFFI problem. Furthermore, we
show how to solve the problem from a small number of shortest lattice vectors.
We rely on the dual of the x-basis recovered from the shortest vectors of a q-ary
lattice generated from FFI samples.

We first define a q-ary lattice for the given FFI samples.

Definition 3 (Trace lattice). Let A1(y),A2(y), . . . ,Ak(y) be the FFIq,k,n,β

samples for k > n. We define a generating matrix T of order k × n with coeffi-
cients in Fq and ij-th element defined by Tr(Ai(y)yj−1). The q-ary trace lattice
is defined as

LT ,q = {α ∈ Z
k : T C = α mod q for some C ∈ Z

n}

By linearity of trace, the lattice LT ,q contains traces of every finite field element
(represented in y-basis) with respect to FFI samples Ai(y).

Lemma 3. The q-ary lattice LT ,q has the following properties.

1. Its dimension is k.
2. Its volume is qk−n.
3. It contains n linearly independent vectors αi such that ‖αi‖ ≤ β for 1 ≤ i ≤

n.

Proof. The first two properties of the Lemma are true for any q-ary lattice of
this form. We prove the third point.

On the Hardness of the Finite Field Isomorphism Problem 355

For 1 ≤ i ≤ n, let Ci−1 be the dual x-basis in the finite field Fqn . Then,
recalling the definition of the dual basis,

Tr(xj−1Ci−1) = δj−1
i−1

It follows from the linearity of the trace function that any FFI sample Aj has

|Tr(AjCi−1)| ≤ β

Thus the trace lattice contains n linearly independent vectors αi (corresponding
to each Ci−1), such that

‖αi‖ = ‖Tr(AjCi−1)‖ ≤ β, 1 ≤ j ≤ k

This concludes the proof.

Since β is reasonably smaller than (q − 1)/2, the n vectors αi are very likely
the shortest vectors in the lattice LT ,q. The lattice vectors αi have Euclidean
norm bounded above by β

√
k, which is much smaller than that of the Gaussian

heuristics.
Note that the shortest vectors of the trace lattice correspond to the dual x-

basis, given in the y-basis representation. By recomputing the dual of this dual
basis, we obtain the x-basis in the form of its y-basis representation, thus recover-
ing the hidden isomorphism φ. This approach eliminate the O(n!) cost associated
with the combinatorial step of the previously mentioned hybrid attack.

In practice, it is generally too costly to find the n shortest vectors in a lattice
and thus get the complete Ci-basis by just using lattice reduction. When apply-
ing BKZ reductions with high block size using aborting techniques [3], which is
often seen in cryptanalysis, it is more reasonable to only expect getting a small
number of shortest lattice vectors. To account for this, we give a probabilistic
approach to recover φ from a subset of two or more elements of the Ci-basis.
This is based on the observation that each lattice vector associated with the
Ci-basis has the same expected norm and is all as likely to appear as a shortest
vector while reducing the lattice LT ,q. We can thus assume that we are getting
random elements from the Ci-basis.

Lemma 4. In a set of m > 1 elements, sampled uniformly at random from the
set of all the dual x-basis, there is, with probability Ω(m2/n), at least a pair of
dual x-basis elements (Ci,Cj) whose quotient gives φ.

Proof. For the uniform choice of the dual x-basis elements, there exists at least a
pair of consecutive elements (Ci,Cj) with probability O(m2/n), i.e. a pair with
j = i + 1.

In the good case for us, this pair with j = i + 1 is going to satisfy Ci = xCj

which allows us to compute x as Ci/Cj .
To see why, recall that by definition, Ci is the unique element such that, for

all 0 ≤ k < n, Tr(xkCi) = δk
i . Similarly, Cj satisfies Tr(xkCj) = δk

j .

356 D. Das and A. Joux

Rewriting Tr(xk−1(xCj)) for Tr(xkCj), we can check that xCj already sat-
isfy all necessary conditions needed for Ci, except the final one with k = n.

However, we now prove that even this final equation is often satisfied. When,
it is, we indeed have Ci = xCj . We can compute the missing condition as
follows:

Tr(xn−1(xCj)) = Tr(xnCj) = Tr(−g(x)Cj),

the last equality holds because xn = −g(x) (mod f(x)). Since g has degree
< n, Tr(−g(x)Cj) is simply the coefficient of xj in −g. When g is chosen as
in Sect. 3, as a uniform ternary polynomial of degree ≤ 	n/2
, this coefficient is
always zero when j > 	n/2
 and it is zero with probability at least 1/3 otherwise.

6.1 Lattice Reduction on Trace Lattice

In this section, we discuss the experimental results of lattice reduction to find the
shortest non-zero vectors in the trace lattice. The parameter (n, q) = (256, 32771)
appeared in the level 1 fully homomorphic encryption scheme of [4]. We consider
(n, q) close to it for our experiments.

The sample size k, which is the lattice dimension, is the parameter that
dominates the running time of lattice reduction. If k is too small, for instance,
too close to n, the lattice reduction technique could not extract any meaningful
vectors. If k is too large, then the running time of the lattice reduction algorithm
is too slow. In our experiments, we choose k = 2n.

For small n, it is convenient to recover the shortest vectors with a small block
size BKZ algorithm, as expected6. But as n increases, the larger block size makes
the attack inadequate. To circumvent this, we reduce the lattice dimension by
applying a pre-processing lattice reduction step with a smaller block size, whose
cost is negligible in the context of the attack.

The choice of the parameters (n, q) in our experiments allow to find “some-
what” short vectors in the trace lattice during the pre-processing step. These
short vectors do not correspond to the dual x-basis, as expected, but have mean-
ingful properties.

Let C̄i be the recovered finite field basis corresponding to the short lattice
vectors. Heuristically, the C̄i-basis act as a pseudo dual x-basis in Fqn , i.e.

|Tr(C̄ix
j)| � β

As a result, for any FFI sample Aj

|Tr(C̄iAj)| � nβ2 (7)

The recovered C̄i-basis contains information about x. To exploit this additional
information of x, we generate a new integer trace lattice LT̄ ⊂ Z

k of dimension

6 For example, we recover the complete dual x-basis for the parameter (n = 100,
q = 10007) using BKZ block size 5.

On the Hardness of the Finite Field Isomorphism Problem 357

Table 1. Experimental results

n q Pre-Processing C̄i-basis Final Status

200 32771 BKZ 12 � BKZ 60 Solved

240 32771 BKZ 20 � – Unsolved

256 32771 BKZ 21 � – Unsolved

1

10

100

1000

10000

100000

0 50 100 150 200

Initial reduction
Final reduction

Fig. 1. Gram-Schmidt norms in log scale

n from the lattice basis T̄ computed using the C̄i-basis (instead of y-basis in
Definition 3).7 The observation from Eq. (7) ensures the basis vectors are unusu-
ally small in a (relatively) low dimensional lattice, which allows using stronger
lattice reduction algorithms effectively to recover the shortest vectors. The
details of our experiments are given in Table 1.

In general, the running time of a BKZ lattice reduction algorithm is expo-
nential on the blocksize. The authors of [3] successfully perform high blocksize
BKZ reductions (with extreme pruning originated in [6]) on different lattices for
a small number of rounds under the heuristics that most of the progress of BKZ
algorithm is made in the early rounds. In the experiments, we also use a similar
approach.

We apply a high block size BKZ algorithm (with extreme pruning) on the
lattice basis T̄ , aborting regularly to check if some shortest lattice vectors are
achieved, continuing otherwise. For (n = 200, q = 32771), we could able to find five

7 It is to be noted that we can always generate arbitrary many samples by doing simple
arithmetic from the given FFI samples.

358 D. Das and A. Joux

shortest vectors within 7 days of running BKZ 60 (aborting regularly) in an Intel
Xeon CPU E5-2683 v4 @ 2.10 GHz with 1200 MHz MHz processor. The Gram-
Schmidt norms of the reduced bases are given in Fig. 1. For other parameters, we
couldn’t find the shortest vectors running the (high block size) aborted BKZ reduc-
tion in the fplll software for a couple of months. The application of a more sophis-
ticated lattice reduction approach is beyond the scope of the current paper. We,
therefore, invite the cryptanalytic efforts on the other set of parameters, possibly
using more advanced lattice reduction tools (example, G6K [1]).

7 Conclusion

In this paper, we illustrate on the FFI problem that having a lattice-reduction
approach that fails to solve a problem does not necessarily imply that the prob-
lem itself is difficult. Indeed, lattice reduction might not be the optimal strategy
to approach it.

Acknowledgements. We thank Anand Kumar Narayanan for helpful discussions on
the finite field computation. This work has been supported by the European Union’s
H2020 Programme under grant agreement number ERC-669891.

References

1. Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W.,
Stevens, M.: The general Sieve Kernel and new records in lattice reduction. In:
Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology - EUROCRYPT 2019–38th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Darmstadt, Germany, 19–23 May 2019, Proceedings, Part II. LNCS,
vol. 11477, pp. 717–746. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-17656-3 25

2. Bosma, W., Cannon, J.J., Steel, A.K.: Lattices of compatibly embedded finite
fields. J. Symb. Comput. 24(3/4), 351–369 (1997). https://doi.org/10.1006/jsco.
1997.0138

3. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) Advances in Cryptology - ASIACRYPT 2011–17th International
Conference on the Theory and Application of Cryptology and Information Security,
Seoul, South Korea, 4–8 December 2011. Proceedings. LNCS, vol. 7073, pp. 1–20.
Springer, Cham (2011). https://doi.org/10.1007/978-3-642-25385-0 1

4. Doröz, Y., et al.: Fully homomorphic encryption from the finite field isomorphism
problem. In: Abdalla, M., Dahab, R. (eds.) Public-Key Cryptography - PKC 2018–
21st IACR International Conference on Practice and Theory of Public-Key Cryp-
tography, Rio de Janeiro, Brazil, 25–29 March 2018, Proceedings, Part I. LNCS,
vol. 10769, pp. 125–155. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-76578-5 5

5. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.)
Advances in Cryptology - EUROCRYPT 2008, 27th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Istanbul,
Turkey, 13–17 April 2008. Proceedings. LNCS, vol. 4965, pp. 31–51. Springer,
Cham (2008). https://doi.org/10.1007/978-3-540-78967-3 3

https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1006/jsco.1997.0138
https://doi.org/10.1006/jsco.1997.0138
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-319-76578-5_5
https://doi.org/10.1007/978-3-319-76578-5_5
https://doi.org/10.1007/978-3-540-78967-3_3

On the Hardness of the Finite Field Isomorphism Problem 359

6. Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning.
In: Gilbert, H. (ed.) Advances in Cryptology - EUROCRYPT 2010, 29th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Monaco/French Riviera, 30 May–3 June 2010. Proceedings. LNCS, vol.
6110, pp. 257–278. Springer, Cham (2010). https://doi.org/10.1007/978-3-642-
13190-5 13

7. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice
reduction problems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
112–131. Springer, Cham (1997). https://doi.org/10.1007/BFb0052231

8. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Cham (1998). https://doi.org/10.1007/BFb0054868

9. Hoffstein, J., Silverman, J.H., Whyte, W., Zhang, Z.: A signature scheme from the
finite field isomorphism problem. J. Math. Cryptol. 14(1), 39–54 (2020). https://
doi.org/10.1515/jmc-2015-0050

10. Kedlaya, K.S., Umans, C.: Fast modular composition in any characteristic. In: 49th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, 25–
28 October 2008, Philadelphia, PA, USA, pp. 146–155. IEEE Computer Society
(2008). https://doi.org/10.1109/FOCS.2008.13

11. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261(ARTICLE), 515–534 (1982). https://doi.
org/10.1007/BF01457454

12. Narayanan, A.K.: Fast computation of isomorphisms between finite fields using
elliptic curves. In: Budaghyan, L., Rodŕıguez-Henŕıquez, F. (eds.) Arithmetic of
Finite Fields - 7th International Workshop, WAIFI 2018, Bergen, Norway, 14–16
June 2018, Revised Selected Papers. LNCS, vol. 11321, pp. 74–91. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-05153-2 4

13. The FPLLL Development Team: FPLLL, a lattice reduction library, Version: 5.4.2
(2022). https://github.com/fplll/fplll

https://doi.org/10.1007/978-3-642-13190-5_13
https://doi.org/10.1007/978-3-642-13190-5_13
https://doi.org/10.1007/BFb0052231
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1515/jmc-2015-0050
https://doi.org/10.1515/jmc-2015-0050
https://doi.org/10.1109/FOCS.2008.13
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/978-3-030-05153-2_4
https://github.com/fplll/fplll

New Time-Memory Trade-Offs for Subset
Sum – Improving ISD in Theory

and Practice

Andre Esser1(B) and Floyd Zweydinger2

1 Technology Innovation Institute, Abu Dhabi, UAE
andre.esser@tii.ae

2 Ruhr University Bochum, Bochum, Germany
floyd.zweydinger@rub.de

Abstract. We propose new time-memory trade-offs for the random
subset sum problem defined on (a1, . . . , an, t) over Z2n . Our trade-offs
yield significant running time improvements for every fixed memory
limit M ≥ 20.091n. Furthermore, we interpolate to the running times
of the fastest known algorithms when memory is not limited. Techni-
cally, our design introduces a pruning strategy to the construction by
Becker-Coron-Joux (BCJ) that allows for an exponentially small success
probability. We compensate for this reduced probability by multiple ran-
domized executions. Our main improvement stems from the clever reuse
of parts of the computation in subsequent executions to reduce the time
complexity per iteration.

As an application of our construction, we derive the first non-trivial
time-memory trade-offs for Information Set Decoding (ISD) algorithms.
Our new algorithms improve on previous (implicit) trade-offs asymptot-
ically as well as practically. Moreover, our optimized implementation
also improves on running time, due to reduced memory access costs. We
demonstrate this by obtaining a new record computation in decoding
quasi-cyclic codes (QC-3138). Using our newly obtained data points we
then extrapolate the hardness of suggested parameter sets for the NIST
PQC fourth round candidates McEliece, BIKE and HQC, lowering pre-
vious estimates by up to 6 bits and further increasing their reliability.

Keywords: representation technique · information set decoding ·
code-based cryptography · record computation · security estimates ·
NIST PQC

1 Introduction

For the ongoing NIST PQC standardisation process to be successful, large crypt-
analytic efforts analysing the involved primitives are required. This includes
theoretical studies of the asymptotically best attacks as well as experiments

Funded by BMBF under Industrial Blockchain-iBlockchain.
c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14008, pp. 360–390, 2023.
https://doi.org/10.1007/978-3-031-30589-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30589-4_13&domain=pdf
http://orcid.org/0000-0001-5806-3600
https://doi.org/10.1007/978-3-031-30589-4_13

New Time-Memory Trade-Offs for Subset Sum – Improving ISD 361

on a meaningful scale to safely extrapolate the hardness of cryptographic-sized
instances. This methodology, combining theory and practice, is well established
for conventional (number-theoretic) cryptographic systems and has found its
adaptation to post-quantum secure schemes in recent years [1,20,25,28,41].

The best attacks on post-quantum schemes often suffer from high memory
demands [6,8,9,11,18]. This either leads to an immense slowdown of the algorithm
due to physical access times or, in the worst case, prevents its application entirely. In
practice, both cases usually lead to a fallback to more memory-efficient but asymp-
totically inferiorprocedures. In thesecases time-memory trade-offs for thebestalgo-
rithms are needed which allow to tailor their memory consumption to any given
amount while (only slightly) increasing their running time.

For post-quantum secure candidates, especially from code- and lattice-families,
severaloftheknownattacksarebuiltontechniquesinitiallyintroducedinthecontext
of the (random) subset sum problem [8,15,32,33]. This is because the underlying
problems can usually be formulated as (vectorial) variants of subset sum, as it is the
case for LPN/LWE, SIS or the syndrome decoding problem.

The subset sum problem defined on (a1, . . . , an, t) ∈ Z2n asks to find a subset
S ⊆ {1, . . . , n} such that

∑
i∈S ai = t mod 2n. For this problem time-memory

trade-offs are actually well studied [4,17,19,30]. However, the translations of
those trade-offs to the aforementioned applications are mostly missing. The rea-
son is the very diverse landscape of optimal trade-offs for subset sum, i.e., for
different memory limitations there exist different optimal trade-offs. Further-
more, these trade-offs often do not match the design of the fastest subset sum
algorithm used in the original application, which implies a separate translation
effort for each algorithm.

In this work we construct new improved time-memory trade-offs for the sub-
set sum problem. In contrast to previous works, our constructions follow the
design by Becker-Coron-Joux (BCJ) [7], which is the basis for the fastest known
algorithms. This allows for an easy adaptation of our trade-off to known appli-
cations of the BCJ algorithm. Further, our trade-offs reduce the running time
of previous approaches for any fixed memory significantly. Only for very small
available memory a trade-off based on a memory-less algorithm by Esser and
May [27] becomes favourable. In total this reduces the trade-off landscape to
only two algorithms.

We illustrate the potential of our trade-off by formalizing its application to the
syndrome decoding problem, whose hardness forms the basis of code-based cryptog-
raphy. Informally, the problem asks to find a low Hamming weight solution e ∈ F

n
2

to the matrix-vector equation He = s, where H ∈ F
r×n
2 and s ∈ F

r
2. Moreover,

it allows for a direct translation to a vectorial subset sum variant. Denote by hi the
columns of H, then (h1, . . . , hn, s) defines a subset sum instance overFn

2 , i.e., we are
looking for a small subset of the hi that sums to s overFn

2 .
Information Set Decoding (ISD) algorithms now solve this problem by

first applying a dimension reduction technique, which yields an instance with
decreased n, r and smaller solution weight. Then an adaptation of the BCJ sub-
set sum algorithm over F2 is applied to solve this reduced instance. Since the

362 A. Esser and F. Zweydinger

dimension reduction technique, in contrast to the subset sum algorithm, does not
require any memory, every ISD algorithm inherits a naive time-memory trade-
off. That is, reduce the instance size sufficiently so that the latter applied BCJ
algorithm does not exceed the given memory. So far this simple interpolation to
a full dimension-reduction based ISD algorithm proposed by Prange in 1962 [37],
was the best known trade-off strategy. Our adaptation now yields the first time-
memory trade-offs for advanced ISD algorithms improving their performance
asymptotically as well as in practice.

1.1 Related Work

SubsetSum. Anysubsetsuminstancecanbesolvedintimeandmemorypoly(n)·2 n
2

via a meet-in-the-middle algorithm [29]. Schroeppel and Shamir [38] then showed
howto reduce thememorycomplexity topoly(n) ·2 n

4 .Later, their technique formed
the basis for a series of advanced time-memory trade-offs [16,17,19].

The second key-ingredient for most subset sum trade-offs [7,16,27,30] is the
so-called representation technique introduced by Howgrave-Graham and Joux
(HGJ) in [30]. In their work they constructed the first algorithm breaking the 2 n

2

time bound for random subset sum instances by achieving running time 20.337n.
In the cryptographic setting we usually encounter random instances, i.e., the
vector a := (a1, . . . , an) is chosen uniformly at random and the target is set to t =
〈a, e〉 for a randomly chosen solution vector e ∈ {0, 1}n of Hamming weight n

2 .
Howgrave-Graham and Joux then split the solution e = e1+e2 with ei ∈ {0, 1}n

of weight n/4. Now, there exist multiple, namely
(

n/2
n/4

)
, such representations of

e, i.e., different combinations e1, e2 that sum to e. The core observation is that
it suffices to find a single of these representations to recover the solution. This
representation is then constructed using a search-tree imposing restrictions on
the exact form of the solution (similar to Wagners k-tree algorithm [43]) so
that in expectation one representation satisfies all restrictions. Becker, Coron
and Joux (BCJ) [7] improved the running time to 20.291n by choosing ei ∈
{−1, 0, 1}n to increase the amount of representations. Later Bonnetain, Bricout,
Schrottenloher and Shen (BBSS) [12] further extended the digit set to ei ∈
{−1, 0, 1, 2}n yielding a time and memory complexity of 20.283n.

As mentioned, the time-memory trade-off landscape for subset sum is diverse
[7,16,19,22,27,30]. Additionally, there are several techniques [17,19,36] improv-
ing the time-memory behaviour of the k-tree algorithm, which forms the founda-
tion of the fastest known subset sum algorithms. However, since these techniques
usually introduce asymmetries in the matching algorithm, which are inherently
difficult to combine with the representation technique, they did not find a broad
adaptation in trade-offs for the subset sum problem yet.

Information Set Decoding. ISD algorithms are the fastest known algorithms to
solve general instances of the syndrome decoding problem and form the basis
in assessing the security of code-based schemes. Introduced originally by Prange
[37], the class was extended by several improved algorithms over the years [9,

New Time-Memory Trade-Offs for Subset Sum – Improving ISD 363

21,33,34,39]. All these works improve the running time by using more advanced
subset sum techniques to solve the reduced instance after dimension reduction,
which simultaneously increases the memory requirements. Surprisingly, there has
been very limited work on time-memory trade-offs for ISD algorithms. Karpman
and Lefevre [31] recently constructed advanced time-memory trade-offs for the
special case of decoding ternary codes based on a subset sum trade-off strategy
known as Dissection [19]. Further, a work by Wang et al. [44] extends an early
ISD algorithm from Stern [39] by the Dissection approach. However, this trade-
off is entirely outperformed by the previously mentioned implicit trade-offs of
more advanced ISD procedures.

1.2 Our Contribution

Subset Sum. As a first contribution we give a generalized description of the BCJ
algorithm, that combines previous interpretations from [12,26]. This descrip-
tion then forms the basis for one of our main contributions which are new
time-memory trade-offs for the random subset sum problem. Our constructions
yield significantly improved running times for every fixed memory M ≥ 20.091n,
which corresponds to more than two-thirds of the meaningful memory param-
eters. Recall that M = 20.283n memory is sufficient to instantiate the fastest
known algorithm with time complexity T = M . In Fig. 1 we illustrate the per-
formance of our new trade-offs in comparison to previous works. For example, if
the memory is limited to 20.17n, we improve the running time from 20.51n down
to 20.4n, corresponding to an improvement by a factor of 20.11n.

Fig. 1. Our new subset sum trade-offs in comparison to the previously best known
time-memory trade-offs. The dashed line illustrates the minimum running time over
the algorithms given in [7,16,19,22,27,30]. The dotted and solid lines are obtained via
our trade-off Algorithm 2 (see Sect. 4). For a memory larger than 20.091n (20.093n resp.)
our new trade-offs are superior to previous approaches.

364 A. Esser and F. Zweydinger

From a technical side we allow the BCJ and BBSS construction to impose
larger restrictions on the representation-space, yielding an exponentially small
success probability. We then perform multiple randomized executions to compen-
sate for the reduced probability. In this context we introduce a novel strategy
of reusing lower levels of the search-tree in subsequent randomized executions
to reduce the time complexity per iteration. Note that while Dinur in [17] also
reuses the first level of his list construction in later repetitions, this is motivated
by the use of different algorithms to construct the first and later levels. An
asymmetry that makes the incorporation of representations even more difficult.
In contrast our technique is symmetric, allows for easy incorporation of repre-
sentations and, moreover, precisely exploits this embedding of representations
when reusing lists in later stages. Also our technique extends well to every level
of the construction.

Furthermore, to obtain instantiations for small memory parameters and to
further reduce the time complexity, we then integrate the Dissection framework
[19] in our construction, inspired by the combination of Wagners k-tree and
Dissection in [17].

Information Set Decoding. We give the first non-trivial time-memory trade-offs
for advanced ISD algorithms by combining our trade-offs with the ISD algorithms
by May-Meuer-Thomae (MMT) [33] and Becker-Joux-May-Meurer (BJMM) [9].
Overall this yields asymptotic improved running times for every fixed memory.
Moreover, for the MMT algorithm we are able to improve the memory, while
maintaining its running time.

On the practical side, we extend the fastest implementation of the
MMT/BJMM algorithm from [28] by our trade-off strategy observing memory
and time improvements. Using our optimized implementation we obtain a new
record computation in decoding quasi-cyclic codes (QC-3138) [3]. Further we
re-break several old records, consuming less resources, i.e., time and memory.
Hence, our trade-off is the first asymptotic improvement of the MMT algorithm
that transfers to the implementation level. Eventually, using our newly obtained
data-points in combination with an estimation script we extrapolate the hardness
of suggested parameter sets for code-based NIST PQC fourth round candidates
McEliece, BIKE and HQC, resulting in reduced security estimates by up to 6
bits compared to previous works. This improvement is even more significant
considering that the bit-complexity estimates of code-based schemes have essen-
tially been stable over the past decades, which is especially true for quasi-cyclic
schemes. In this context, we provide estimates following two different methodolo-
gies, a conventional approximation of the bit complexity and an extrapolation
method based on our practical experiments, recently suggested in [28]. Overall
we find that both methods paint a comparable picture regarding the security
claims of proposed parameter sets, invalidating claims that the latter method
would lead to drastically decreased estimates [42].

New Time-Memory Trade-Offs for Subset Sum – Improving ISD 365

All our used estimation and optimization scripts are available at https://
github.com/FloydZ/Improving-ISD-in-Theory-and-Practice.1 Our adapted
implementation of the BJMM algorithm can be found at https://github.com/
FloydZ/Decoding.

Outline. In Sect. 2 we set up necessary notation and cover some basics on the
Dissection technique. Subsequently, in Sect. 3 we give the generalized description
of the BCJ algorithm, which is then used as a basis to build our new trade-offs in
Sect. 4. Eventually, in Sect. 5 we give the asymptotic and practical results of our
decoding application including security estimates for all NIST PQC candidates
of the ongoing forth round.

2 Preliminaries

All logarithms are base 2. We define H(x) := −x log(x) − (1 − x) log(1 − x)
to be the binary entropy function with H−1 its inverse on [0, 1

2]. Extending
this definition, we also use the 2-way entropy function defined as g(x, y) :=
−x log(x) − y log(y) − (1 − x − y) log(1 − x − y). We simplify binomial and
multinomial coefficients via Sterling’s formula as

(
n

αn

)

� 2nH(α) and
(

n

αn, βn, ·

)

� 2ng(α,β),

where
(

n
αn,βn,·

)
:=

(
n

αn,βn,(1−α−β)n
)
. We use standard landau notation, with Õ-

notation suppressing poly-logarithmic factors and write A = Õ (B) as A � B.
Our asymptotic complexity statements are all to be understood up to poly-
logarithmic factors, even though we sometimes drop the Õ for convenience.

For a vector x ∈ F
n
2 we denote by wt(x) its Hamming weight. Additionally

we denote by 〈x, y〉 the inner product of two vectors x, y.
All our algorithms target the random subset sum problem defined as follows,

even if we might omit the term random sometimes.

Definition 2.1 (Random Subset Sum Problem). Let a := (a1, . . . , an) ∈
Z

n
2n be drawn uniformly at random. For a random e ∈ {0, 1}n with wt(e) = n

2 , let
t := 〈a, e〉. The random subset sum problem is given (a, t) find any e′ ∈ {0, 1}n

satisfying 〈a, e′〉 = t. We call any such e′ a solution and (a, t) an instance.

Our definition of the subset sum problem asks for a solution in {0, 1}n. How-
ever, algorithms like the BCJ algorithm approach the problem in a divide-and-
conquer manner, which requires solving sub-instances with solutions in a differ-
ent domain D. These sub-instances are usually solved via a meet-in-the-middle
strategy, which we later exchange by a more memory efficient strategy known as
Dissection.

1 Our numerical optimization scripts are based on a code by Bonnetain et al. [12]
accessible at https://github.com/xbonnetain/optimization-subset-sum.

https://github.com/FloydZ/Improving-ISD-in-Theory-and-Practice
https://github.com/FloydZ/Improving-ISD-in-Theory-and-Practice
https://github.com/FloydZ/Decoding
https://github.com/FloydZ/Decoding
https://github.com/xbonnetain/optimization-subset-sum

366 A. Esser and F. Zweydinger

Schroeppel-Shamir and Dissection. A standard meet-in-the-middle solves
a subset sum instance with solution in a set D in time and memory |D| 1

2 [29].
Therefore it first splits D = D1 × D2, with |Di| = |D| 1

2 , enumerates all pos-
sible elements of D1 and D2 separately in lists L1 and L2 and then searches
for a solution in D by combining elements from L1 and L2. The algorithm by
Schroeppel and Shamir [38] now achieves the same time complexity of |D| 1

2 while
improving the memory complexity to |D| 1

4 . It works similarly by first splitting
D = D1 × D2 × D3 × D4 with |Di| = |D| 1

4 and then enumerating all elements of
Di in lists Li. Next an artificial constraint is introduced restricting the search
to solutions which lie in a specific subset (D12 × D34) ⊆ D. This constraint is
used to combine elements from L1 and L2 to obtain only elements from D12 in
a new list L12 and analogously elements from D34 in a new list L34 by combin-
ing L3 and L4. From there the two lists L12 and L34 are combined as in the
usual meet-in-the-middle case to search for a solution in D. As a priori it is
not known in which subset the solution is located the algorithm partitions D in
multiple subsets and re-applies the procedure for each of them. The Dissection
framework introduced in [19] offers instantiations with less memory in form of
a continues time-memory trade-off starting from the Schroeppel-Shamir algo-
rithm. Besides the Schroeppel-Shamir algorithm our constructions make use of
another instantiation of this framework, a so-called 7-Dissection. A 7-Dissection
runs in time |D|4/7 and uses memory |D|1/7. Moreover, with more memory its
time complexity can be gradually decreased until it reaches the complexity of
the Schroeppel-Shamir algorithm. Technically a 7-Dissection works similar to
the Schroeppel-Shamir technique by initially splitting D = D1 × . . . × D7 and
creating seven corresponding lists. Then multiple times artificial constraints are
introduced to combine the lists most effectively, while, eventually, the algorithms
is iterated for each possible choice of the constraints.

We summarize the time and memory complexity of the 7-Dissection in the
following lemma. For more details on the dissection framework the reader is
referred to [19].

Lemma 2.1 (7-Dissection, [19]). Let 1
7 ≤ λ ≤ 1

4 . The 7-Dissection algorithm
finds all solutions e ∈ D to a random subset sum instance in expected time
|D| 2(1−λ)

3 and expected memory |D|λ.

3 The Generalized BCJ Algorithm

In this section we give a general description of the BCJ Algorithm [7] for solving
the random subset sum problem. This description forms the basis for our new
trade-offs presented in the following section. We advise the reader to follow
Fig. 2. In our exposition we assume a certain familiarity of the reader with the
representation technique, otherwise we refer to [7,30] for an introduction.

New Time-Memory Trade-Offs for Subset Sum – Improving ISD 367

Fig. 2. Generalized tree construction of the BCJ Algorithm in depth 4. Shaded areas
on the right of a list L indicate that for all elements v ∈ L the inner product 〈a,v〉
matches a predefined value cv (resp. t) on those bits.

Basic Idea. To construct a solution e of the subset sum problem the BCJ
algorithm splits e in the sum of two addends, i.e.,

e = z1 + z2 .

Here the zi are chosen from a set, such that there exist multiple different repre-
sentations of the solution, i.e., different tuples that sum to e. The goal is then
to examine a respective fraction of the space of the z1, z2 to find one of these
representations.

From 〈a, e〉 = 〈a, z1 + z2〉 = t mod 2n we have by linearity

〈a, z1〉 = t − 〈a, z2〉 mod 2n. (1)

Note that the value of 〈a, z1〉 is not known. However, by considering only those
z1 which fulfill 〈a, z1〉 = cz1 mod 2� for some fixed integer cz1 we are able to
impose a constraint on the search space. Here � := �1 +�2 +�3 is an optimization
parameter of the algorithm, with the �i’s being positive integers. Moreover, since
each representation of e fulfills Eq. (1) the value of cz2 := 〈a, z2〉 = t − cz1

mod 2� is fully determined once cz1 is fixed.
The construction of the z1 and z2 then works recursively. Therefore, they are

split again in the sum of two addends

z1 = y1 + y2 and z2 = y3 + y4 ,

and we fix the values 〈a, y1〉 and 〈a, y3〉 to some constraints cy1 mod 2�1+�2

and cy3 mod 2�1+�2 . Note that this again determines the inner product of the

368 A. Esser and F. Zweydinger

remaining addends for any representation (y1, y2) of z1 and (y3, y4) of z2 as

cy2 := 〈a, y2〉 = cz1 − cy1 mod 2�1+�2 and cy4 := 〈a, y4〉 = cz2 − cy3 mod 2�1+�2

The recursion continues once more by splitting the yi = x2i−1 + x2i and
introducing four additional modular constraints cx2i−1 mod 2�1 . These modular
constraints together with the cyi

’s determine the values of inner products cx2i
:=

〈a, x2i〉 mod 2�1 , since we have

cz2 := t − cz1 mod 2�

cy2i
:= czi

− cy2i−1 mod 2�1+�2 , i = 1, 2
cx2i

:= cyi
− cx2i−1 mod 2�1 , i = 1, 2, 3, 4

(2)

Eventually, the xi’s are split in a meet-in-the-middle fashion, i.e.,

xi = (w2i−1, 0n/2) + (0n/2, w2i),

giving only a single representation of each xi.
The algorithm now starts by enumerating all possible values for the wi in the

base lists Li. Then two lists are merged at a time in a new list by only considering
those elements which fulfill the current constraint modulo 2�1 , 2�1+�2 , 2� or 2n

respectively (compare to Fig. 2). After the level-i list construction only those
elements are kept whose coordinates follow a predefined distribution Di, while
all others are discarded. The choice of these distributions mainly determines
the existing amount of representations and ultimately the performance of the
algorithm. We give the pseudocode of the procedure in Algorithm 1.

Complexity. Let the expected list sizes before filtering on level i be Li and let
the probability of any element of a level-i list surviving the filter be qi. Since
the level-1 lists are constructed from the Cartesian product of the level-0 lists
by enforcing a modular constrained on �1 bits we have

L1 = (L0)2

2�1
.

Analogously the level-2 lists are constructed from the filtered level-1 lists by
enforcing a modular constrained on �1 + �2 bits. However, since the last �1 bits
are already fixed to some value in the previous step we only enforce a new
constraint on �2 bits, which results in

L2 = (q1 · L1)2

2�2
.

Analogously we obtain

L3 = (q2 · L2)2

2�3
and L4 = (q3 · L3)2

2n−�
.

New Time-Memory Trade-Offs for Subset Sum – Improving ISD 369

Algorithm 1: BCJ Algorithm

Input : a ∈ (Z2n)n, t ∈ Z2n

Output : e ∈ F
n
2 with 〈a, e〉 = t mod 2n

1 Choose optimal �1, �2, �3 and Di, i = 0, 1, 2, 3
2 Enumerate

L2i−1 = {w2i−1 | w2i−1 ∈ D0 × 0n/2}
L2i = {w2i | w2i ∈ 0n/2 × D0}, i = 1, . . . , 8

3 Choose random cz1 ∈ F
�
2, cy1 , cy3 ∈ F

�1+�2
2 , cx1 , cx3 , cx5 , cx7 ∈ F

�1
2

4 Set remaining constraints according to Eq. (2)
5 Compute (and filter)

L
(1)
i = {xi | 〈a,xi〉 = cxi mod 2�1 ,xi = w2i−1 + w2i}

from L2i−1, L2i, i = 1, . . . , 8 , then filter such that L
(1)
i ⊆ D1

L
(2)
i = {yi | 〈a,yi〉 = cyi mod 2�1+�2 ,yi = x2i−1 + x2i},

from L
(1)
2i−1, L

(1)
2i , i = 1, . . . , 4 , then filter such that L

(2)
i ⊆ D2

L
(3)
i = {zi | 〈a, zi〉 = czi mod 2�, zi = y2i−1 + y2i},

from L
(2)
2i−1, L

(2)
2i , i = 1, 2 , then filter such that L

(3)
i ⊆ D3

L = {e | 〈a, e〉 = t mod 2n, e = z2i−1 + z2i}
from L

(3)
1 , L

(3)
2 , then filter such that L ⊆ {0, 1}n

return e ∈ L

The construction of each unfiltered list can be performed via hashing in time
linear in the list’s sizes giving an expected time complexity of

T = max
i

(Li) .

Since we need to store only filtered lists and the filtering can be performed
on-the-fly the memory complexity becomes M = maxi(qi · Li).

Correctness. Obviously the constraint’s sizes �1, �2 and �3 cannot be chosen
arbitrarily large if one representation of the solution should survive all imposed
constraints. On the other hand we need to ensure that multiple representations
do not lead to the construction of duplicate elements in intermediate lists to
ensure a proper list distribution. This leads to further restrictions on the size of
�1, �2 and �3, called saturation constraints in [12] or simply lower bounds in [26].

In [12] this is formalized by ensuring that each list after filtering at every level
is not larger than the size of the set filtered for, reduced by the total enforced
constraint. Since by the randomness of the instance the elements distribute uni-
formly, it follows that the lists will not contain duplicate elements with high
probability. The sets for which we filter on level i are Di, i = 1, 2, 3, 4. Note

370 A. Esser and F. Zweydinger

that the choice of the sets Di, i 	= 4 can be optimized, while the set D4 has to
describe the valid set of solutions, which is the set of binary vectors of length n.

Hence, to guarantee that there are no duplicates present in the level-1, level-2
and level-3 lists we need to ensure that

q1 · L1 ≤ |D1|
2�1

and q2 · L2 ≤ |D2|
2�1+�2

and q3 · L3 ≤ |D3|
2�

(3)

Next let us write the probabilities qi in terms of the Di and the corresponding
representations. Therefore, let 2ri denote the amount of different representations
of any element from Di+1 as the sum of two elements from Di. Then we have

qi+1 = |Di+1| · 2ri

|Di|2
, (4)

describing the probability that a random sum of two elements from Di forms a
representation of any element from Di+1.

Recall that we construct level-1 elements xi = (w2i−1, w2i) ∈ D0 × D0 = D1
in a meet-in-the-middle fashion from level-0 elements wj , which implies L0 =√

|D1|. As this gives only a single representation of any level-1 element, we have
r0 = 0, which leads to q1 = 1, i.e., for this choice of D0 there is no filtering on
level one. It follows that the first saturation constraint from Eq. (3) is always
fulfilled since

q1 · L1 = (L0)2

2�1
= |D1|

2�1
.

The second constraint of Eq. (3) gives

q2 · L2 = |D2| · 2r1

|D1|2 · (L0)4

22�1+�2

!
≤ |D2|

2�1+�2
⇔ r1 ≤ �1.

Analogously we get from the last saturation constraint

q3 · L3 = q3 · (q2)2 · (L1)4

24�1+2�2+�3
= 22r1+r2 · |D3|

24�1+2�2+�3

!
≤ |D3|

2�
⇔ 2r1 + r2 ≤ 3�1 + �2.

Eventually, to find exactly one representation of the solution in the final list we
need to ensure that q4 · L4 = 1, which yields

q4 · L4 = q4 · (q3)2 · (q2)4(L1)8

2n+7�1+3�2+�3
= 24r1+2r2+r3 · |D4|

2n+7�1+3�2+�3

!= 1

⇔ 4r1 + 2r2 + r3 = 7�1 + 3�2 + �3, (5)

since we have |D4| = 2n, as D4 is the set of binary vectors of length n.

Instantiation. The description of the general BCJ algorithm gives several
degrees of freedom, including the choice of sets Di, i = 1, 2, 3 and the size of
the constraints �1, �2, �3. The original BCJ algorithm restricts all Di’s to include

New Time-Memory Trade-Offs for Subset Sum – Improving ISD 371

only vectors with coordinates in {0, ±1}. The purpose of including −1’s is sim-
ply to increase the number of representations. Since the final goal is to construct
a binary vector, minus one entries are supposed to cancel out with one entries
in the addition. Thus, the distribution D3 is chosen as vectors of length n with
exactly ω3 := n/4+α3 one entries and m3 := α3 minus one entries for some small
α3, which has to be optimized. The distribution D2 is then composed similarly as
vectors of length n with ω2 := ω3/2+α2 one entries and m2 := m3/2+α2 minus
one entries, where again α2 minus ones are supposed to cancel out. Analogously
the level-1 distribution is chosen as vectors of length n with ω1 := ω2/2+α1 one
entries and m1 := m2/2 + α1 minus one entries, expecting α1 cancellations. An
overview of this choice of distributions is given in Table 1. The size of these sets
is

|Di| =
(

n

ωi, mi, ·

)

� 2g(ωi
n ,

mi
n)n,

while the number of representations is given as

2ri−1 =
(

ωi

ωi/2

)(
mi

mi/2

)(
n − ωi − mi

αi−1, αi−1, ·

)

� 2ωi+mi+ρi ,

where ρi := g
(

αi

n−ωi−mi
, αi

n−ωi−mi

)
(n − ωi − mi).

Table 1. Choices of Di made by BCJ and BBSS algorithm. The table states the
proportion of coordinates equal to 1 (ωi), −1 (mi) and 2 (ci). The proportion of zeros
is 1 − ωi − mi − ci. Set D0 has half the proportions of D1.

Here the two binomial coefficients count the number of possibilities how to
distribute the one and minus one entries of an element from Di equally over
a sum of two elements. The multinomial coefficient then counts the number of
possibilities how the remaining minus one and one entries can cancel out.

Note that the algorithm splits D1 into D0 × D0, where D0 is the set of
vectors of length n/2 containing exactly ω1/2 ones and m1/2 minus ones. This
leads to all Di only including balanced elements, i.e., elements which contain
an equal amount of ones (resp. minus ones) on their first and second half of
the coordinates. However, this affects the sizes of the Di and the amount of
representations only by a polynomial factor, which is subsumed in the Landau
notation.

372 A. Esser and F. Zweydinger

Eventually, the BCJ algorithm chooses �1 = r1 and �2 = r2 −r1, which yields
�3 = r3 − r2. A numerical optimization of the αi results in a time complexity of
20.291n for the BCJ configuration.

Bonnetain et al. [12] then showed that a more flexible choice of �1 and �2 and
correspondingly adapted �3 allows to decrease the time complexity to 20.289n.
They also showed that extending the digit set of the Di to {0, ±1, 2} allows to
further decrease the time complexity to 20.283n, yielding the best known time
complexity for the random subset sum problem.

The BCJ algorithm achieves optimal time complexity for a depth of the
search-tree of four. However, in general the optimal depth varies with the appli-
cation. We therefore give for completeness and later reference the complexity
and saturation constraints for variable depth in Appendix A.

4 New Subset Sum Trade-Off

The (generalized) BCJ algorithm from the previous section already inherits some
time-memory trade-off potential. That is, one can try to optimize the choice of
the �i with respect to the memory usage, since the larger the �i the smaller the
list’s sizes. However, the overall size of the �i’s is bounded by the restriction that
the last list should contain a representation of the solution.

On a high level our new trade-off works by relaxing this restriction, i.e. we
do not require the last list to contain a solution. This allows to balance the lists
more memory-friendly. We then perform multiple randomized executions of the
algorithm to ensure that we find a solution overall. However, let alone this is
not sufficient to obtain our improvements. The main runtime advantage of our
improved trade-off comes from our observation that we can reuse parts of the
tree in subsequent randomized executions, reducing the cost per iteration. A
second improvement stems from our use of the Dissection framework [19] for the
construction of the level-1 lists.

Note that if we change some bit-constraints in the tree (the values of cv
in Fig. 2) not necessarily all levels are affected. That means we do not need to
re-compute all lists of the tree, but only those which depend on the changed con-
straints. Now, if the computation of each list had the same complexity, this strat-
egy would only yield a constant factor improvement since at least one list needs to
be recomputed. However, by adapting parameters accordingly and exploiting the
involved filtering, we can guarantee that the creation of frequently reconstructed
lists (from already existing lists) is much cheaper than a reconstruction of the
whole tree. This partial reconstruction strategy in combination with relaxing the
correctness constraint from Eq. (5) allows us to obtain significant improvements
for rather high memory parameters M ≥ 20.169n.

From there on the base lists, which are so far a meet-in-the-middle split of
the first level domains start dominating the memory. The only possibility for the
algorithm to decrease the size of those lists is to choose a set D1 with smaller
size on level 1. For the BCJ algorithm this means including less −1 entries,
until ultimately no −1 entries are included in the enumeration. In this case

New Time-Memory Trade-Offs for Subset Sum – Improving ISD 373

the base lists require a memory of
(

n/2
n/32

)
� 20.169n. From there the list sizes

are as small as possible and we can not obtain instantiations for less memory.
We circumvent this problem by exchanging the meet-in-the-middle strategy for
exhaustive examination of the level-1 domain by the 7-Dissection algorithm. We
find that apart from offering instantiations for memory parameters M < 20.169n,
this gives also (slight) time improvements in the high memory regime M ≥
20.169n as the optimization can choose a more optimal, usually larger set D1
(implying larger D0) without exceeding the memory limit.

Fig. 3. Our new trade-off in depth 4. Dashed boxes frame different subtrees Ti, which
are rebuild 2ti times. The level-1 lists are constructed using the 7-Dissection algorithm.

Note that the 7-Dissection in our setting requires a memory of at least
(

n
n/16

)1/7 � 20.049n. To obtain instantiations for every M > 0 we could exchange
the 7-Dissection by a c-Dissection for c > 7. However, since for a memory of
M ≤ 20.091n a trade-off based on an algorithm by Esser-May offers a better time
complexity anyway, we stick with a 7-Dissection for simplicity.

Adaptation of the BCJ Algorithm. We advise the reader to follow Fig. 3.
Let T be the full tree and Ti, i = 1, 2, 3 the subtrees only including the lists from

374 A. Esser and F. Zweydinger

level i onwards. We denote by 2ti the number of times we rebuild the subtree Ti

from the (already existing) lists of the previous level.
We start by changing only the upper �3 bits of the modular constraint cz1

which requires recomputing only the subtree T3, since the level-i lists for i ≤ 2 do
not depend on these bits. Since there are only 2�3 choices for those bits we have
t3 ≤ �3. If 2�3 iterations are not sufficient to find the solution we start modifying
the upper �2 bits of the modular constraints cy1 , cy2 , cz1 mod 2�2 . This implies
again that t2 ≤ 3�2. Still, for every different choice of those bits we recompute
the subtree T3 another 2t3 times for different choices of the upper �3 bits. If
23�2+�3 iterations are still not sufficient to find a solution, we eventually start
modifying the lower �1 bits of the chosen modular constraints. Again for each
choice of lower bits we reconstruct the tree T2 and T3 several times. Furthermore,
as there are seven constraints that can be freely chosen we have t1 ≤ 7�1

Finally, instead of computing the level-1 lists via a meet-in-the-middle algo-
rithm we now use the 7-Dissection algorithm.

The pseudocode of our modified BCJ trade-off is given in Algorithm 2.

Complexity. The memory complexity stays as before with the only difference
that the memory requirement of the base lists is now substituted by the memory
requirement M7D of the 7-Dissection algorithm, i.e.,

M = max(M7D, q1L1, q2L2, q3L3, q4L4).

To balance the memory requirement we instantiate the 7-Dissection algorithm
with M7D = |D1|max(1

7 ,λ′) memory where |D1|λ′ = maxi(qiLi).
The analysis of the time complexity also follows along the lines of the previous

analysis, with the essential difference that the three subtrees are now computed
differently many times.

A single construction of subtree T1 can be performed in time

T1 = max(T7D, L1, L2, L3, L4),

where T7D is the time it takes to compute the level-1 lists via the 7-Dissection
algorithm. Recall that instantiated with |D1|δ memory, the 7-Dissection runs in
time T7D = |D1|max

(
2(1−δ)

3 , 12

)

(compare to Lemma 2.1). The subtrees T2 and T3
can then be computed in time

T2 = max(q1 · L1, L2, L3, L4) and T3 = max(q2 · L2, L3, L4),

as they can be computed from the stored and already filtered level-1 respectively
level-2 lists. Now the total time complexity becomes

T = max(2t1 · T1, 2t1+t2 · T2, 2t1+t2+t3 · T3),

as subtree Ti is rebuild 2t1+...+ti many times.

New Time-Memory Trade-Offs for Subset Sum – Improving ISD 375

Algorithm 2: BCJ Trade-Off

Input : a ∈ (Z2n)n, t ∈ Z2n

Output : e ∈ {0, 1}n with 〈a, e〉 = t mod 2n

1 Choose optimal �1, �2, �3 and Di, i = 1, 2, 3, let r := r3 + 2r2 + 4r1

2 repeat 2t1 := 2max(7�1−r,0) times
3 Choose random cz1 ∈ F

�
2, cy1 , cy3 ∈ F

�1+�2
2 , cx1 , cx3 , cx5 , cx7 ∈ F

�1
2

4 Set remaining constraints according to Eq. (2)
5 Compute

L
(1)
i = {xi | 〈a,xi〉 = cxi mod 2�1 ,xi ∈ D1, },

via 7-Dissection, i = 1, . . . , 8

6 repeat 2t2 := 2max(7�1+3�2−r,0)−t1 times
7 Choose randomly the upper �2 bits of cz1 , cy1 , cy3 mod 2�1+�2

8 Update cz2 , cy2 , cy4 according to Eq. (2)
9 Compute

L
(2)
i = {yi | 〈a,yi〉 = cyi mod 2�1+�2 ,yi ∈ D2,yi = x2i−1 + x2i},

from L
(1)
2i−1, L

(1)
2i , i = 1, . . . , 4

10 repeat 2t3 := 2max(7�1+3�2+�3−r,0)−t1−t2 times
11 Choose randomly the upper �3 bits of cz1
12 Update cz2 according to Eq. (2)
13 Compute

L
(3)
i = {zi | 〈a, zi〉 = czi mod 2�, zi ∈ D3, zi = y2i−1 + y2i},

from L
(2)
2i−1, L

(2)
2i , i = 1, 2

L = {e | 〈a, e〉 = t mod 2n, e ∈ D4, e = z2i−1 + z2i},

from L
(3)
1 , L

(3)
2

if |L| > 0 then
14 return e ∈ L

Correctness. Most of the correctness follows from the correctness of the BCJ algo-
rithm and the 7-dissection algorithm. Note that we instantiate the 7-Dissection
with at least |D1| 1

7 memory, which is the minimum requirement given by Lemma
2.1.

The main difference to before is that we relaxed the restriction given in
Eq. (5), such that the last list is not guaranteed to contain a solution anymore.
However, we compensate for this by multiple randomized constructions of the
final list. In contrast to completely independent executions of the algorithm,
which would select all constraints uniformly at random, we only randomize the
constraints affecting certain subtrees. However, note that under the standard
assumption that the representations distribute independently and uniformly over
all constraints, any set of constraints has the same independent probability of

376 A. Esser and F. Zweydinger

leading to a representation of the solution. Now, since we change at least one
constraint for every reconstruction of the final list, we can treat the iterations
as independent.

In order to ensure that over all iterations we find at least one representation,
the final list’s size accumulated over all its reconstructions must be at least one,
which leads to (compare to Eq. (5))

q4 · L4 · 2t1+t2+t3 ≥ 1
⇔ 4r1 + 2r2 + r3 + t1 + t2 + t3 ≥ 7�1 + 3�2 + �3.

Note that this constraint is fulfilled for our choice of

t1 = max(7�1 − r, 0)
t2 = max(7�1 + 3�2 − r, 0) − t1

t3 = max(7�1 + 3�2 + �3 − r, 0) − t1 − t2,

where r := r3 + 2r2 + 4r1 and the maximum is needed since we need to build
each subtree at least once.

Configuration of Our Trade-Off. In terms of distributions we adopt the
choice of the original BCJ algorithm, specified in Table 1. We then optimize
the parameters αi, �i, i = 1, 2, 3 numerically. We optimize such that the time
is minimized, while simultaneously ensuring that the saturation constraints are
satisfied and a given memory limit of M = 2λn is not exceeded.

The resulting trade-off curve is depicted in Fig. 1. We observe that our trade-
off outperforms all existing approaches for M ≥ 20.093n. Prior to our work,
this interval was covered by a diverse landscape of different trade-offs including
[7,16,19,22,27,30]. For M < 20.093n a trade-off given in [22] based on a memory-
free algorithm by Esser-May [27] becomes superior to our procedure.

Extending the Digit Set. We also adopted the choice of distributions made by the
BBSS algorithm [12] (see Table 1). We find that the refined choice of the Di gives
an overall slight improvement, interpolating smoothly to their 20.283n algorithm.
The resulting trade-off curve is depicted in Fig. 1 as well, which remains superior
to [22,27] as long as M ≥ 20.091n.

Increasing the Tree-Depth. We also performed a numerical optimization of our
trade-off with increased tree-depth of five. However, we were not able to obtain
better instantiations, i.e., instantiations with lower time complexity for a given
memory.

Linear Approximations. Observe that both our trade-offs split in three almost
linear segments (compare to Fig. 1). To ease the comparison of further results
to our trade-offs, we provide a linear approximation T = −a · M + b of these
segments in Table 2. This allows to easily compare to the (approximate) running
time of our trade-off, without rerunning the optimization of parameters.

New Time-Memory Trade-Offs for Subset Sum – Improving ISD 377

Table 2. Slope a and y-intercept b of the linear approximations T = −a · M + b of
the three different segments, each denoted by the maximal memory available in the
segment. Left columns refer to the trade-off using BCJ-like representations, while right
columns use BBSS-syle representations.

Translation of Provable Variant from Previous Works. In the original
works of Howgrave-Graham-Joux [30] and Becker-Coron-Joux [7] the constraints
on each level i are modelled as cv mod

∏i
j=1 Mi for Mi a prime close to 2�i . This

allows to apply a result for the distribution of random modular sums from [35]. In
turn the authors are able to analyze the distribution of the list sizes throughout
the algorithm as well as the probability that a representation of the solution
survives a certain set of constraints. The algorithm in its provable variant is
then adapted to repeat the construction of each level for N · 2εn random set of
constraints, for an arbitrarily small constant ε > 0, and to abort constructions
that exceed the expected memory complexity. It is then shown that this variant
succeeds with a maximum overhead factor of N3 ·23εn in time using its expected
memory complexity with probability 1 − c−N for some constant c.

In spirit this re-randomization technique translates to our new trade-offs.
Therefore first note, that we choose Mi = 2�i as modulus just for ease of expo-
sition, instead we could analogous to [7,30] choose primes close to 2�i . Now,
whenever we have to exchange a set of constraints on any level, i.e., in lines 3,7
and 11 of Algorithm 2, we have to repeat this exchange N · 2εn times to make
sure the algorithm is successful and not aborted for at least one of those repe-
titions. Clearly, the running time is at most increased by a factor of N3 · 23εn

while the success probability becomes (1 − c−N)R, where R = 2t1+t2+t3 is the
maximum number of times a constraint is exchanged. Note that this probability
for large enough N = poly(n) is still overwhelming.

To ensure that there are enough “unused” constraints available for the re-
randomization approach, we have to restrict the values of t1, t2, t3 to a maximum
of 7�1 − δ, 3�2 − δ and �3 − δ, respectively, where δ := εn + log N . Technically,
this leads to a slightly worse trade-off, but since ε is an arbitrarily small constant
this performance gap becomes arbitrarily small.

5 Application to Decoding Binary Linear Codes

A linear code C ⊂ F
n
2 is a k-dimensional subspace of Fn

2 and can efficiently be
described via a parity-check matrix H ∈ F

(n−k)×n
2 , such that C = {c ∈ F

n
2 |

Hc = 0}. Decoding an error-prone codeword y := c + e to c is polynomial-time
equivalent to recovering e from the so-called syndrome s := Hy = H(c+e) = He.
This leads to the following definition of the syndrome decoding problem.

378 A. Esser and F. Zweydinger

Definition 5.1 (Syndrome Decoding Problem). Let H ∈ F
(n−k)×n
2 be the

parity-check matrix of a code of length n and dimension k, with constant code-
rate R := k

n . Given a syndrome s ∈ F
n−k
2 and an integer ω the syndrome

decoding problem asks to find a vector e ∈ F
n
2 of Hamming weight wt(e) = ω

satisfying He = s.

Note that the problem admits a unique solution as long as ω ≤ � d−1
2 , where

d is the minimum distance of the code, i.e., the minimum Hamming distance
between two codewords. We call the setting with unique solution half distance
decoding, while for ω ≤ d we refer to full distance decoding. In those regimes, the
time complexity generally increases with ω, such that we only consider the cases
where ω is equal to those upper bounds. Further, random linear codes are known
to achieve a minimum distance that is equal to the Gilbert-Varshamov bound of
d ≈ H−1(1 − k

n)n, i.e., the minimum distance is a function of the rate R := k
n

and the code-length n. In our asymptotic analysis we maximize the complexity
over all constant rates R to obtain a runtime formula which only depends on n.

The best known algorithms to solve the syndrome decoding problem are
Information Set Decoding (ISD) algorithms. In the full and half distance setting
these algorithms have exponential time and memory complexity of the form
Õ (2cn) for some constant c depending on the algorithm. On the other hand,
cryptographic applications usually use a a sublinear weight, i.e., ω = o(n). In
these cases the running time of ISD algorithms is subexponential of the form
Õ (2cω) for some constant c. Moreover, it was shown [40] that in this case all
known ISD algorithms converge to the same running time, i.e., they obtain the
same constant c. However, in practical experiments advanced ISD algorithms
were shown to provide significant speedups [10,28].

We therefore first analyse our trade-offs in the full and half distance decoding
setting, which allow to easily verify their superiority since they obtain improved
constants c. We then study the practical effect of our trade-offs by providing an
optimized implementation. Finally, we extrapolate the hardness of cryptographic
schemes using our obtained data points.

Information Set Decoding. Information Set Decoding algorithms first apply
a permutation matrix P to the columns of the parity-check matrix. This allows
to redistribute the weight of the error since the permuted instance H′ := HP has
as valid solution e′ := P−1e, since HP(P−1e) = s. Then H′ is transformed into
semi-systematic form via Gaussian elimination modelled via the multiplication
with an invertible matrix Q

QH′(P−1e) =
(

In−k−� H1
0 H2

)

(e1, e2) = (e1 + H1e2, H2e2) = Qs = (s1, s2),

(6)

where we write e′ := P−1e = (e1, e2) ∈ F
n−k−�
2 × F

k+�
2 with � an optimization

parameter of the algorithm. Let us further assume that the permutation dis-
tributes the weight on e′ such that wt(e1) = ω − p and wt(e2) = p, for some p
that has to be optimized, too.

New Time-Memory Trade-Offs for Subset Sum – Improving ISD 379

Now Eq. (6) yields a (dimension) reduced syndrome decoding instance in
form of the equation H2e2 = s2 with weight-p solution e2 ∈ F

k+�
2 . Usually,

e2 is not a unique solution to this reduced instance. The algorithm therefore
computes all solutions x to this smaller instance and checks if the corresponding
e1 = s1 + H1x has weight ω − p. In this case P(e1, x) forms a solution to the
original syndrome decoding instance. If no solution is found, the algorithm is
repeated for another random permutation.

Complexity. Let us briefly argue about the complexity of such a procedure. The
probability of distributing the weight on e′ as desired is

q :=
(

n−k−�
ω−p

)(
k+�

p

)

(
n
ω

) . (7)

Hence, we expect that after q−1 random permutations one of them distributes the
weight as desired. If now the cost to retrieve all weight-p solutions to the reduced
instance for any of those permutations is TS, the total complexity becomes

T = Õ
(
q−1 · TS

)
.

In a nutshell different ISD algorithms differentiate in how they retrieve the
solutions to the reduced instance. Usually they consider the reduced instance as
a vectorial subset sum instance, where the solution encodes a size-p subset of
the columns of H2 that sums to s2. Then they make use of advanced algorithms
for subset sum, such as the BCJ algorithm, to retrieve the solutions to that
instance. It is not hard to see, that instead of working over Z2n , the generalized
BCJ algorithm outlined in Sect. 3 and, hence, also our improved trade-off from
Sect. 4, work analogously over F

n
2 .

5.1 Improved ISD Trade-Offs

The May-Meurer-Thomae (MMT) ISD algorithm [33] originally uses the BCJ
construction in depth-2 to retrieve the solutions to the reduced instance. In
the following we give an improved version of the MMT algorithm based on
our new subset sum trade-off from Sect. 4. Our version improves the overall
memory complexity and yields a better trade-off curve, i.e., we achieve runtime
improvements for every fixed memory.

To make use of our generalized trade-off description (in depth 2) we need to
define appropriate sets D0, D1 and D2. Then, to retrieve the running time we
calculate the amount of existing representations and optimize the parameter �1.
The pseudocode of our improved MMT algorithm is given in Algorithm 3.

Note that in our ISD application we find that already using the Schroeppel-
Shamir technique for level-1 list construction, rather than the 7-Dissection, offers
optimal instantiations for all memory parameters M > 0. We therefore stick with
the Schroeppel-Shamir technique in our description for simplicity.

380 A. Esser and F. Zweydinger

Algorithm 3: New MMT Trade-Off

Input : H ∈ F
(n−k)×n
2 , s ∈ F

n−k
2 , w ∈ N

Output : e ∈ F
n
2 ,He = s

1 Choose optimal �, �1, p

2 let r1 = log
(

p
p/2

)

3 π�1 : F�
2 → F

�1
2 , π�1(x1, . . . , x�) = (x1, . . . , x�1)

4 repeat
5 choose random permutation matrix P

6 H̄ =
(
In−k−� H1

0 H2

)

= QHP, Qs = (s1, s2)

7 repeat 2�1−r1 times
8 Choose random t ∈ F

�1
2

9 Compute
L

(1)
1 = {z1 | π�1(H2z1) = t, z1 ∈ D1} , via Schroeppel-Shamir

L
(1)
2 = {z2 | π�1(H2z2 + s2) = t, z2 ∈ D1} , via Schroeppel-Shamir

10 Compute L = {e2 | H2e2 = s2, e2 = z1 + z2} from L
(1)
1 , L

(2)
2

11 for e2 ∈ L do
12 e1 = H1e2 + s1
13 if wt(e1) ≤ ω − p then
14 return P (e1, e2)

Complexity. We let D2 be the set of vectors from F
k+�
2 with weight p, as it

defines our solution set. The MMT algorithm now chooses D1 as vectors from
F

k+�
2 with weight p/2. Finally D0 is the set of vectors from F

k+�
2

2 and weight p/4,
i.e., a meet-in-the-middle split of D1, hence |D0| =

√
|D1|. The size of D1 is

|D1| =
(

k + �

p/2

)

,

while the amount of representations of one element from D2 as sum of two
elements from D1 is

2r1 =
(

p

p/2

)

� 2p.

Observe that the binomial coefficient counts the possibilities to distribute half
of the ones of the target vector over the first addend, while the other half must
then be covered by the second addend. Now, to find one representation of each
solution to the reduced instance in the final list we need to ensure (compare to
Eq. (8))

�1
!= r1.

Our trade-off from Sect. 4 now allows for �1 > r1 and compensates by repeating
the procedure. Note that in depth-2 we have no further saturation constraints,

New Time-Memory Trade-Offs for Subset Sum – Improving ISD 381

nor can we make use of reconstructing different levels differently many times. The
time complexity for finding all solutions to the vectorial subset sum problem then
becomes

TS = 2�1−r1 · max(
√

|D1|, |D1|/2�1 , |D1|2/2�+�1)

The memory complexity is equal to the level-0 and level-1 lists, since elements
of the final list can be checked on the fly for being a solution. Moreover, by using
the Schroeppel-Shamir algorithm for the construction of the level-1 lists we can
reduce the memory required for storing the level-0 lists from |D0| =

√
|D1| to√

|D0| = |D1|1/4 (see Sect. 2), which yields

M = max(|D1|1/4, |D1|/2�1).

5.2 Asymptotic Behavior of New Trade-Offs’

For the asymptotic classification of our algorithmic improvement let us first
consider the half distance setting, i.e., ω := H(1− k

n) · n
2 . Here our MMT variant

improves the memory complexity by almost a square-root down to 20.0135n from
20.0213n of standard MMT, while maintaining the same time complexity of T =
20.05364n. The optimal parameters for our MMT variant in this case are

� = 0.0278n, �1 = 0.0091n and p = 0.0064n,

where the found worst case rate is k = 0.45n as for standard MMT. We now
further optimized the time complexity of our trade-off under a memory limitation
of M ≤ 2λn for decreasing λ. Figure 4 shows the complete trade-off curves for
both MMT variants – the original and our improved version. We observe that
our trade-off outperforms the original trade-off for all memory parameters.

In the full distance setting we obtain a similar improvement. Here our
improved MMT algorithm improves the memory complexity down to 20.0375n

from previously 20.053n, while achieving the same time complexity of 20.112n.
Again we obtain runtime improvements over standard MMT for any fixed mem-
ory.

Even though, the MMT algorithm is not the asymptotically fastest ISD algo-
rithm, so far none of its known asymptotic improvements [9,13,14,23,34] did
transfer to the implementation level. This makes the MMT algorithm the pre-
ferred choice for record computations [3] as well as security estimates [28].

BJMM Algorithm. However, we also analyzed the algorithm by Becker-Joux-
May-Meurer (BJMM) [9], which in contrast to the MMT algorithm uses slightly
different sets Di. That is, the vectors on each level have a slightly increased
weight. Then, in the F2-addition of those vectors some weight is assumed to can-
cel to still obtain a vector of weight p. The different possibilities, how the weight
can cancel, increase the amount of representations and lead to an increased opti-
mal tree-depth of three. This increased tree-depth allows us to make use of our
subtree reconstruction technique yielding an improved trade-off curve also shown

382 A. Esser and F. Zweydinger

Fig. 4. Comparison between the implicit (solid) and our new trade-off (dashed) for the
MMT and BJMM algorithm. Complexity uses known worst case rates of the algorithm
in the full distance (left) and half distance setting (right).

in Fig. 4. We observe that the refined choice of the Di gives the algorithm a pos-
sibility to balance the list sizes if memory is not limited. For that reason our
strategy yields improvements only for limited memory in the case of the BJMM
algorithm.

5.3 Practical Results and Security Estimates

We adapted the MMT/BJMM implementation from [28] to our new trade-off
strategy. Interestingly, besides reducing the memory requirements we also obtain
practical running time improvements, which stem from less, usually costly mem-
ory accesses.

We were able to solve several instances provided at https://decodingchallenge.
org [3], which were either unsolved or broken using more time and memory. Most
notably, we obtained a new record computation in the quasi-cyclic setting, which
follows the parameter selection of NIST fourth round candidates BIKE and HQC.

New Record Computation. Precisely, we solved the QC-3138 instance with
code parameters (n, k, ω) = (3138, 1569, 56) with an estimated bit complexity
of 66.7 (respectively 60.7 if counted in 64-bit register operations) in only 2.23
CPU years. We estimated the expected time to solve this instance on our cluster,
based on the processed permutations per second, to about 9.47 CPU years. The
previous best implementation from [28] would need an expected amount of 30.31
CPU years, i.e., our implementation is about 3.2 times faster on this instance.

We also analysed the performance of our implementation on the next instance
QC-3366 with parameters (n, k, ω) = (3366, 1683, 58), which has an estimated

https://decodingchallenge.org
https://decodingchallenge.org

New Time-Memory Trade-Offs for Subset Sum – Improving ISD 383

bit security of 68.7. We obtain an expected running time of 30.2 CPU years,
which corresponds to an improvement by a factor of 5.7.

Furthermore we re-broke the previous QC-2918 record instance with parame-
ters (n, k, ω) = (2918, 1459, 54) two times in just 224 CPU days, almost precisely
hitting its expectation, which is about 6.9 times faster than the previous best
implementation.

On McEliece like medium-sized instances we obtain a speedup by a factor
of about 2.5. For the current record instance McEliece-1284 using parameters
(n, k, ω) = (1284, 1028, 24) we estimated a running time of 11.06 CPU years,
where the initial record computation expected 26.28 CPU years, corresponding
to a speedup of about 2.4. Considering the next (unsolved) McEliece record
instance with parameters (n, k, ω) = (1347, 1078, 25), we estimate a running
time of about 59.74 CPU years, improving from the previous estimate of 156.6
CPU years by a factor of 2.6.

Security Estimates. Next we investigate the impact of our improvement on the
security of cryptographic sized instances. Therefore, we first adapted the estima-
tion scripts from [24] to incorporate our trade-off strategy, which allows us to pre-
cisely estimate the bit-complexity of given instances. Following previous works
[5,24,28] we consider different memory access cost models. A memory access cost
tries to model the practically faced memory access timings, by penalizing the
algorithm for a high memory usage. Precisely, an algorithm with time complexity
T and memory complexity M is assumed to have cost T · f(M), where f deter-
mines the penalty. We consider the established models of constant, logarithmic
and cube-root access costs, which correspond to f(M) = 1, f(M) = log M and
f(M) = 3

√
M .

From here we follow two different estimation methodologies. First, we use our
estimation script to obtain bit complexity estimates, which we compare directly
against similar estimates obtained in [24]. For the second methodology we then
extrapolate the time it would take to solve an instance of proposed parameters
from our obtained record computations, comparing our results against a similar
estimation performed in [28].

Let us start with the bit complexity estimation using our script.

Bit Complexity Estimation. The commonly addressed security categories 1,
3 and 5 defined by NIST relate their security to the security of AES-128, –192
and –256. NIST specifies the bit complexity to break those AES instantiations
as 143, 207 and 272 respectively.

BIKE/HQC. In Table 3 we state the security margin in bits the corresponding
parameter set has over breaking AES with corresponding key-size. Precisely the
table states TScheme−TAES, where TScheme is the bit complexity estimate obtained
from our script and TAES the bit complexity of breaking AES, i.e., 143, 207 or
272 respectively. The number in parenthesis states the improvement over the
estimation performed in [24], i.e., one obtains their result as the sum of both
numbers.

384 A. Esser and F. Zweydinger

Table 3. Bit-difference in security of BIKE/HQC and AES with respective key-length
considering different memory access cost.

As expected, we obtain essentially the same security margin as [24] if no
memory access cost is imposed. However, for logarithmic and, especially, for cube-
root memory access costs, our time-memory trade-offs yield reduced security
estimates. Furthermore, note that the improvement in the cube-root case is even
higher than the improvement of representation-based ISD algorithms like MMT
over early algorithms like Stern and Dumer on these instances [24].

Table 4. Bit-difference in security of McEliece and AES with respective key-length
considering different memory access cost.

New Time-Memory Trade-Offs for Subset Sum – Improving ISD 385

In the case of BIKE we distinguish message and key security as both settings
allow for slightly different speedups [2].

McEliece. For the round 4 parameter sets of McEliece we performed a similar
estimation shown in Table 4.

Since in the McEliece setting ISD algorithms tend to use very high amounts
of memory we also consider memory-limited settings. In those we restrict the
memory consumption of the algorithm to not exceed 280 or 260 bits respectively.
We reduce the security estimates for McEliece by up to 6 bits and obtain the
best results in memory-limited settings, where our new time-memory trade-offs
can play its strength. Again the number in brackets indicates by how much we
reduced the previous estimate from [24].

Note that under cube-root memory access cost none of the optimal algorith-
mic configurations exceeds 260 bits of memory.

Table 5. Bit-difference in security of BIKE/HQC and AES with respective key-length
considering different memory access cost obtained via extrapolation methodology.

Extrapolation Methodology. Now, let us provide a security estimation,
where we extrapolate the time to solve an instance of suggested parameters from
our obtained record computations, as recently proposed in [28]. This methodol-
ogy scales the time of the largest experiment in the respective setting by the
difference in the bit-complexity of our experiment and the suggested parame-
ters.

Methodology Example. Let us give a brief example of that methodology. Take the
HQC category 1 parameter set (n, k, ω) = (35338, 17669, 132), in the constant
memory access setting. This instance achieves a bit complexity of 144.7 according

386 A. Esser and F. Zweydinger

to our estimator, while our QC-3138 record has a bit complexity of 66.7 and took
us about 2.24 CPU years to compute. We, therefore, extrapolate the time for
breaking the HQC 128-bit parameters to 2.24 · 2144.7−66.7 ≈ 279.16 CPU years.

To then set this time into context to the security categories 1, 3 and 5 that
relate their security to the security of AES-128, -192 and -256, the time complex-
ity of breaking AES on the used cluster is estimated. Therefore, one benchmarks
the number of AES encryptions the cluster is able to perform per second from
which the expected time to break AES with respective key size is obtained.
While this methodology introduces platform dependencies, it allows for direct
comparison between (scaled) practical experiments for both settings.

BIKE/HQC. Table 5 states the security margin (in bits) the corresponding
parameter set has over breaking AES. Precisely the table states log TScheme

TAES
. Here,

TScheme is the estimated time to break the schemes parameters and TAES the esti-
mated time to break the corresponding AES instantiation on our cluster. The
number in parentheses states the improvement over the analysis performed in
[28].

We now observe already improvements in the constant memory access set-
ting, which reflects our obtained speedup on the mid-sized instance used for the
extrapolation. Still we obtain higher gains towards higher memory access costs,
due to the reduced memory usage. Overall the margins are slightly lower using
the extrapolation methodology compared to the bit complexity estimate, with
larger differences towards higher memory access costs. This is because some
of the memory access costs are accounted to the mid-sized instance, which is
subtracted from the overall estimate in the extrapolation.

Table 6. Bit-difference in security of Classic McEliece and AES with respective key-
length considering different memory access cost obtained via extrapolation methodol-
ogy.

New Time-Memory Trade-Offs for Subset Sum – Improving ISD 387

McEliece. For the round 4 parameter sets of McEliece we performed a similar
extrapolation shown in Table 6. For this extrapolation we used the expected time
complexity of 59.74 CPU years for the McEliece-1347 instance.

While reducing the estimate in all settings, the overall picture stays the same
under both estimation methods: Essentially all but the category 3 parameter set
reach their security claims if cube-root memory access costs are imposed.

Acknowledgement. This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) - Project-ID MA 2536/12 and by BMBF under
Industrial Blockchain – iBlockchain.

A Generalization to Arbitrary Depth d

Note that in general we have

Li+1 = (qi · Li)2

2�i
,

where �i is the additional bitwise constraint introduced on level i. The time and
memory complexity are then given as before. The saturation constraints extend
to

qi · Li ≤ |Di|
2�1+...+�i

for i = 2, . . . , d − 1,

where d is the depth of the tree. Together with the definition of the filtering
probability given in Eq. (4), we can rewrite the saturation constraints for each
level i as

i∑

j=1
(2i−j − 1)�j ≥

i∑

j=1
2i−j · rj for i = 1, . . . d − 2,

where there exist 2rj different representations of any element from Dj+1 as a sum
of two elements from Dj . Finally, the requirement of finding one representation
of the solution in the final list is expressed via the condition

qd · Ld = 1,

which similar to the saturation constraints rewrites to
d−1∑

j=1
(2d−j − 1)�j =

d−1∑

j=1
2d−j−1 · rj . (8)

References

1. Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W.,
Stevens, M.: The general sieve kernel and new records in lattice reduction. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 717–746.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_25

https://doi.org/10.1007/978-3-030-17656-3_25

388 A. Esser and F. Zweydinger

2. Aragon, N., et al.: BIKE: bit flipping key encapsulation (2020)
3. Aragon, N., Lavauzelle, J., Lequesne, M.: decodingchallenge.org (2019). https://

decodingchallenge.org
4. Austrin, P., Kaski, P., Koivisto, M., Määttä, J.: Space–time tradeoffs for sub-

set sum: an improved worst case algorithm. In: Fomin, F.V., Freivalds, R.,
Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7965, pp. 45–56.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39206-1_5

5. Baldi, M., Barenghi, A., Chiaraluce, F., Pelosi, G., Santini, P.: A finite regime
analysis of information set decoding algorithms. Algorithms 12(10), 209 (2019)

6. Bardet, M., et al.: Improvements of algebraic attacks for solving the rank decoding
and MinRank problems. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS,
vol. 12491, pp. 507–536. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64837-4_17

7. Becker, A., Coron, J.-S., Joux, A.: Improved generic algorithms for hard knap-
sacks. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 364–385.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_21

8. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest
neighbor searching with applications to lattice sieving. In: Krauthgamer, R.
(ed.) 27th SODA, pp. 10–24. ACM-SIAM (Jan 2016). https://doi.org/10.1137/1.
9781611974331.ch2

9. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes
in 2n/20: How 1+1= 0 improves information set decoding. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_31

10. Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece cryp-
tosystem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp.
31–46. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88403-3_3

11. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. In: 32nd ACM STOC, pp. 435–440. ACM Press
(May 2000). https://doi.org/10.1145/335305.335355

12. Bonnetain, X., Bricout, R., Schrottenloher, A., Shen, Y.: Improved classical and
quantum algorithms for subset-sum. In: Moriai, S., Wang, H. (eds.) ASIACRYPT
2020. LNCS, vol. 12492, pp. 633–666. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64834-3_22

13. Both, L., May, A.: Optimizing bjmm with nearest neighbors: full decoding in
22/21n and mceliece security. In: WCC Workshop on Coding and Cryptography,
vol. 214 (2017)

14. Both, L., May, A.: Decoding linear codes with high error rate and its impact
for LPN security. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS,
vol. 10786, pp. 25–46. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
79063-3_2

15. Bricout, R., Chailloux, A., Debris-Alazard, T., Lequesne, M.: Ternary syndrome
decoding with large weight. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS,
vol. 11959, pp. 437–466. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-38471-5_18

16. Delaplace, C., Esser, A., May, A.: Improved low-memory subset sum and LPN
algorithms via multiple collisions. In: Albrecht, M. (ed.) IMACC 2019. LNCS, vol.
11929, pp. 178–199. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
35199-1_9

17. Dinur, I.: An algorithmic framework for the generalized birthday problem. Designs,
Codes Cryptogr. 1–30 (2018)

https://decodingchallenge.org
https://decodingchallenge.org
https://doi.org/10.1007/978-3-642-39206-1_5
https://doi.org/10.1007/978-3-030-64837-4_17
https://doi.org/10.1007/978-3-030-64837-4_17
https://doi.org/10.1007/978-3-642-20465-4_21
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-540-88403-3_3
https://doi.org/10.1145/335305.335355
https://doi.org/10.1007/978-3-030-64834-3_22
https://doi.org/10.1007/978-3-030-64834-3_22
https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1007/978-3-030-38471-5_18
https://doi.org/10.1007/978-3-030-38471-5_18
https://doi.org/10.1007/978-3-030-35199-1_9
https://doi.org/10.1007/978-3-030-35199-1_9

New Time-Memory Trade-Offs for Subset Sum – Improving ISD 389

18. Dinur, I.: Cryptanalytic applications of the polynomial method for solving multi-
variate equation systems over GF(2). In: Canteaut, A., Standaert, F.-X. (eds.)
EUROCRYPT 2021. LNCS, vol. 12696, pp. 374–403. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-77870-5_14

19. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Efficient dissection of compos-
ite problems, with applications to cryptanalysis, knapsacks, and combinatorial
search problems. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 719–740. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5_42

20. Ducas, L., Stevens, M., van Woerden, W.: Advanced lattice sieving on gpus, with
tensor cores. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS,
vol. 12697, pp. 249–279. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-77886-6_9

21. Dumer, I.: On minimum distance decoding of linear codes. In: Proceedings 5th
Joint Soviet-Swedish International Workshop on Information Theory, pp. 50–52
(1991)

22. Esser, A.: Memory-efficient algorithms for solving subset sum and related problems
with cryptanalytic applications. Ph.D. thesis, Ruhr University Bochum, Germany
(2020)

23. Esser, A.: Revisiting nearest-neighbor-based information set decoding. Cryptology
ePrint Archive (2022)

24. Esser, A., Bellini, E.: Syndrome decoding estimator. In: PKC 2022. LNCS, vol.
13177, pp. 112–141. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-
97121-2_5

25. Esser, A., Kübler, R., May, A.: LPN decoded. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10402, pp. 486–514. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63715-0_17

26. Esser, A., May, A.: Better sample-random subset sum in 20.255n and its impact on
decoding random linear codes. arXiv preprint arXiv:1907.04295, withdrawn (2019)

27. Esser, A., May, A.: Low weight discrete logarithm and subset Sum in 20.65n

with polynomial memory. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12107, pp. 94–122. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45727-3_4

28. Esser, A., May, A., Zweydinger, F.: McEliece needs a break - solving McEliece-
1284 and quasi-cyclic-2918 with modern ISD. In: Dunkelman, O., Dziembowski,
S. (eds.) EUROCRYPT 2022, Part III. LNCS, vol. 13277, pp. 433–457. Springer,
Heidelberg (2022). https://doi.org/10.1007/978-3-031-07082-2_16

29. Horowitz, E., Sahni, S.: Computing partitions with applications to the knapsack
problem. J. ACM (JACM) 21(2), 277–292 (1974)

30. Howgrave-Graham, N., Joux, A.: New generic algorithms for hard knapsacks. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 235–256. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_12

31. Karpman, P., Lefevre, C.: Time-memory tradeoffs for large-weight syndrome decod-
ing in ternary codes. In: Public-Key Cryptography - PKC 2022–25th IACR Inter-
national Conference on Practice and Theory of Public-Key Cryptography. LNCS,
vol. 13177, pp. 82–111. Springer (2022). https://doi.org/10.1007/978-3-030-97121-
2_4

32. May, A.: How to meet ternary LWE keys. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021. LNCS, vol. 12826, pp. 701–731. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-84245-1_24

https://doi.org/10.1007/978-3-030-77870-5_14
https://doi.org/10.1007/978-3-642-32009-5_42
https://doi.org/10.1007/978-3-642-32009-5_42
https://doi.org/10.1007/978-3-030-77886-6_9
https://doi.org/10.1007/978-3-030-77886-6_9
https://doi.org/10.1007/978-3-030-97121-2_5
https://doi.org/10.1007/978-3-030-97121-2_5
https://doi.org/10.1007/978-3-319-63715-0_17
https://doi.org/10.1007/978-3-319-63715-0_17
http://arxiv.org/abs/1907.04295
https://doi.org/10.1007/978-3-030-45727-3_4
https://doi.org/10.1007/978-3-030-45727-3_4
https://doi.org/10.1007/978-3-031-07082-2_16
https://doi.org/10.1007/978-3-642-13190-5_12
https://doi.org/10.1007/978-3-030-97121-2_4
https://doi.org/10.1007/978-3-030-97121-2_4
https://doi.org/10.1007/978-3-030-84245-1_24
https://doi.org/10.1007/978-3-030-84245-1_24

390 A. Esser and F. Zweydinger

33. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in Õ(20.054n).
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_6

34. May, A., Ozerov, I.: On computing nearest neighbors with applications to decoding
of binary linear codes. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 203–228. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46800-5_9

35. Nguyen, P.Q., Shparlinski, I.E., Stern, J.: Distribution of modular sums and
the security of the server aided exponentiation. In: Cryptography and Compu-
tational Number Theory, pp. 331–342. Springer (2001). https://doi.org/10.1007/
978-3-0348-8295-8_24

36. Nikolić, I., Sasaki, Yu.: Refinements of the k-tree algorithm for the generalized
birthday problem. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9453, pp. 683–703. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48800-3_28

37. Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf.
Theory 8(5), 5–9 (1962)

38. Schroeppel, R., Shamir, A.: A T = O(2n/2), S = O(2n/4) algorithm for certain
NP-complete problems. SIAM J. Comput. 10(3), 456–464 (1981)

39. Stern, J.: A method for finding codewords of small weight. In: Cohen, G., Wolf-
mann, J. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer, Hei-
delberg (1989). https://doi.org/10.1007/BFb0019850

40. Canto Torres, R., Sendrier, N.: Analysis of information set decoding for a sub-linear
error weight. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 144–161.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8_10

41. Udovenko, A., Vitto, G.: Breaking the $ikep182 challenge. Cryptology ePrint
Archive, Report 2021/1421 (2021). https://eprint.iacr.org/2021/1421

42. Various: Round 3 official comment: Classic McEliece (2021). https://groups.google.
com/a/list.nist.gov/g/pqc-forum/c/ldAzu9PeaIM/m/VhLBcydEAAAJ

43. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45708-9_19

44. Wang, M., Liu, M.: Improved information set decoding for code-based cryptosys-
tems with constrained memory. In: Wang, J., Yap, C. (eds.) FAW 2015. LNCS,
vol. 9130, pp. 241–258. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19647-3_23

https://doi.org/10.1007/978-3-642-25385-0_6
https://doi.org/10.1007/978-3-662-46800-5_9
https://doi.org/10.1007/978-3-662-46800-5_9
https://doi.org/10.1007/978-3-0348-8295-8_24
https://doi.org/10.1007/978-3-0348-8295-8_24
https://doi.org/10.1007/978-3-662-48800-3_28
https://doi.org/10.1007/978-3-662-48800-3_28
https://doi.org/10.1007/BFb0019850
https://doi.org/10.1007/978-3-319-29360-8_10
https://eprint.iacr.org/2021/1421
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/ldAzu9PeaIM/m/VhLBcydEAAAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/ldAzu9PeaIM/m/VhLBcydEAAAJ
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/978-3-319-19647-3_23
https://doi.org/10.1007/978-3-319-19647-3_23

A New Algebraic Approach
to the Regular Syndrome Decoding
Problem and Implications for PCG

Constructions

Pierre Briaud1,2(B) and Morten Øygarden3

1 Sorbonne Universités, UPMC Univ Paris 06, Paris, France
2 Inria, Team COSMIQ, Paris, France

pierre.briaud@inria.fr
3 Simula UiB, Bergen, Norway

morten.oygarden@simula.no

Abstract. The Regular Syndrome Decoding (RSD) problem, a variant
of the Syndrome Decoding problem with a particular error distribution,
was introduced almost 20 years ago by Augot et al.. In this problem, the
error vector is divided into equally sized blocks, each containing a single
noisy coordinate. More recently, the last five years have seen increased
interest in this assumption due to its use in MPC and ZK applications.
Generally referred to as “LPN with regular noise” in this context, the
assumption allows to achieve better efficiency when compared to plain
LPN. In all previous works of cryptanalysis, it has not been shown how
to exploit the special feature of this problem in an attack.

We present the first algebraic attack on RSD. Based on a careful
theoretical analysis of the underlying polynomial system, we propose
concrete attacks that are able to take advantage of the regular noise
distribution. In particular, we can identify several examples of concrete
parameters where our techniques outperform other algorithms.

1 Introduction

The Regular Syndrome Decoding (RSD) problem is a variant of the well-known
Syndrome Decoding (SD) problem, which is the standard assumption in code-
based cryptography.

Definition 1 (Computational Syndrome Decoding (SD)). Let (n, k, h) ∈
N

3 with k ≤ n and h ≤ n. Sample H ← F
(n−k)×n a full-rank matrix over a

finite field F and e ← F
n such that e is of Hamming weight |e| = h. Given

(H, sT := HeT), the goal is to recover the error vector e.

In the following, we will denote by R := k/n (resp. ρ := h/n) the rate of the
associated linear code (resp. error rate). RSD was introduced by Augot, Finiasz
and Sendrier [6] as the underlying assumption for the Fast Syndrome-Based
hash function. The only difference with SD lies in the choice of a particular error
distribution:
c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14008, pp. 391–422, 2023.
https://doi.org/10.1007/978-3-031-30589-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30589-4_14&domain=pdf
http://orcid.org/0000-0002-0191-3181
http://orcid.org/0000-0003-1783-1700
https://doi.org/10.1007/978-3-031-30589-4_14

392 P. Briaud and M. Øygarden

Definition 2 (Computational Regular Syndrome Decoding (RSD)).
Let (h, k, β) ∈ N

3 and n = hβ. Sample H ← F
(n−k)×n a full-rank matrix over

a finite field F and e := (e1|| . . . ||eh) ← F
n such that ei ∈ F

β is of Hamming
weight |ei| = 1 for 1 ≤ i ≤ h. Given (H, sT := HeT), recover the error e.

More recently, this problem has gained a renewed interest since its introduction
in secure computation. Its first use in this context is due to Hazai, Orsini, Scholl
and Soria-Vazques in their TinyKeys approach to design MPC-protocols with
improved efficiency [31]. Later, Boyle et al. suggested to rely on this assump-
tion to build efficient Pseudo Random Correlation Generators (PCGs). These
primitives enable the generation of long sources of correlated randomness for
more advanced MPC and ZK applications [18]. This latter idea has been further
considered in a series of works [19,20,42,44], where RSD is often referred to as
“LPN with regular noise”.

LPN-Based Cryptography. In these more recent constructions, the LPN
problem is instantiated either with the primal or the dual formulation. The
search version of dual LPN is the computational SD problem stated in Defini-
tion 1 while primal LPN is the standard decoding problem for linear codes. Even
though these formulations are clearly equivalent in theory, choosing one instead
of the other has an impact in terms of efficiency. This can be seen when trying
to design a simple PRG relying on LPN. Given a seed (m,e) ∈ F

k × F
n and a

public matrix G ∈ F
k×n with |e| = h, the output of the naive primal LPN-based

PRG is mG + e ∈ F
n. In particular, it is generally acknowledged by the com-

munity that this construction can only achieve quadratic stretch [18, Section 1.2
page 4][11, Section 2.5 page 9]. This is due to the fact that the length n cannot
be chosen too large compared to k and h, otherwise there will be k error-free
positions with non-negligible probability. On the contrary, the dual construction
e �→ eHT ∈ F

n−k whose seed is just the low weight vector e does not exhibit the
same constraint. By fixing the weight and increasing n, one can indeed get an
output size mostly independent of the seed size. Other advantages of the dual
formulation is that the product eHT is cheap to compute and the matrix H
can be seen as a compression mapping F

n → F
n−k. This may represent a useful

property for practical applications.
To improve computational efficiency without affecting security, it was pro-

posed to choose d-local codes in the primal formulation, i.e., matrices G such
that the Hamming weight of each column is a small integer d [4]. Such codes are
not suitable in the dual construction, see for instance [11,18]. Therefore, other
code families such as quasi-cyclic codes [1] or MDPC codes [37] have be chosen
in this case. More importantly for us, and for the same purpose of efficiency,
various constructions have adopted a regular distribution for e [18–20,42,44].

Parameter Range. LPN instances used in the context of [18–20,42,44] typi-
cally have a higher size for the secret k, as well as a lower noise, than parameters
encountered in code-based cryptography. Echoing the above remark on primal

A New Algebraic Approach to the Regular Syndrome Decoding Problem 393

and dual LPN, the few proposed parameter sets may be divided into two cate-
gories depending on the application:

– instances used in the primal formulation have a rather small code rate R
(non-constant) and noise rate ρ slightly larger than O(n−1/2).

– instances used in the dual formulation have constant code rate (often 1/2 or
3/4) and a weight h mostly independent from n.

Finally, the standard LPN problem is usually stated over the binary field F2,
but some constructions require an LPN assumption over a larger field F of size
typically |F| ≥ 256, for example [18,19,42], or even over more general integer
rings [10,11] or polynomial rings [21].

Exploiting the Regular Distribution. A first security analysis of this type
of LPN instances (over F2128) was performed by Boyle et al. in [18, §5.1]. Later
constructions also use it as a black box to derive their parameters [42,44]. In
this particular regime, the best attacks are the folklore Gaussian attack and the
Pooled Gauss variant [27], ISD algorithms [12,14,28,35,36,39] which may all be
seen as refinements of the original Prange algorithm [38] and finally Statisti-
cal Decoding [23,32]. More recently, [34] studied the assumption for the same
parameter range, but in a more general setting (larger fields or integer rings, not
only Bernoulli distribution). Notably, they claim that some of the estimates of
[18] are too conservative over large fields: ISD algorithms are still the best attack
in this case, but the advantage of advanced ISD variants compared to Pooled
Gauss (e.g., Prange) quickly deteriorates when |F| increases. Finally, they show
that the cost of Statistical Decoding is much higher than claimed in [18]. In
particular, this is no longer the best attack even by taking into account the most
recent development of [23] since the latter does not seem to perform well in this
regime.

We remark that the use of a regular distribution is not seen as a clear weak-
ness by the community [18,19,31,34,42,44], meaning that RSD is not believed
to be particularly easier than SD in this PCG-relevant parameter zone. Thus,
regular LPN instances are treated as random LPN instances to derive param-
eters. The only extensive survey about the cryptanalysis of RSD in all weight
regimes was given in [31, Appendix B]. They conclude that ISD algorithms are
the best attack on both SD and RSD when there is a unique solution. They
also try to adapt the ISD algorithms to the regular structure [31, Appendix
B.3] but the improvement does not seem apparent1. Finally, we have not found
similar attempts to enhance LPN or SD attacks by exploiting the regular distri-
bution and there does not seem to be any RSD-specific attack described in the
literature.

1 “ISD is always the most efficient attack and has roughly the same cost when con-
sidering SD and RSD” [31, p. 49].

394 P. Briaud and M. Øygarden

Contribution. In this paper, we show that the regular noise distribution used
in LPN may indeed be exploited by an attacker by presenting a new algebraic
attack on the Regular Syndrome Decoding Problem. Contrary to known attacks,
it is not an adaptation of SD techniques to solve RSD as it crucially benefits
from the regular structure. It also differs in nature from the previous attacks
(Gaussian Elimination, ISD and Statistical Decoding) which all boil down to
exploiting a set of linear equations. More importantly, this allows us to identify
a parameter range (relevant to cryptography) where algebraic attacks are not
only competitive, but also outperform these algorithms.

Our attack is based on solving a polynomial system in the coordinates of
the error e by combining the set of n − k parity-check equations HeT = 0
with another quadratic system which encodes the regular structure and which
does not depend on the particular RSD instance. More precisely, for each block
ei := (ei,1, . . . , ei,β) ∈ F

β for 1 ≤ i ≤ h, we consider all equations of the form
ei,j1ei,j2 = 0 for j1 < j2. Over F2, we consider a variant of this combined system
by adding extra structural equations of the same type. We then apply standard
algorithms, e.g. XL/Gröbner bases, but a first theoretical contribution lies in
the complexity analysis to estimate the degree at which the system is solved
and which is always a challenge in algebraic cryptanalysis. For that purpose, we
proceed by isolating the structural part of the system that we analyze on its
own. Then, we formalize the assumption that the parity-check equations behave
nicely in the quotient ring formed by the structural part, mimicking Bardet’s
definitions of semi-regularity [7]. In cases when the predicted solving degree is
too large, we also propose a hybrid approach to decrease the complexity by fixing
zero coordinates in the error e in the style of the regular version of Prange’s
algorithm given in [31, Appendix B.3].

In the same way as the Arora-Gê attack [5] takes advantage of a large number
of LWE samples, our attack performs best on RSD instances where there are
many parity-check equations (i.e. with smaller code rate R). This is typically
the case for the parameter sets used to instantiate the primal LPN formulation.
Under similar assumptions on our specialized systems, this hybrid technique
allows us to obtain very competitive complexities for several parameters of this
kind, see Table 1. Note that these various assumptions have been extensively
tested.

In Table 1, we also notice that the attack seems to suffer less than linear
algebra-based techniques – Gaussian elimination or ISD algorithms – when the
field size is increased. Indeed, for all but the last parameter set, the increase
in complexity when going from F2 to F2128 is smaller for our attack than for
the previously best known algorithms. Our method also seems to perform better
in some regimes compared to others. In particular, we try to strengthen these
initial intuitions by providing a sketch of asymptotic analysis of the complexity
of solving our plain systems.

A New Algebraic Approach to the Regular Syndrome Decoding Problem 395

Table 1. Time complexity over F2 and F2128 on parameter sets from [18,34]

n k h Best F2 [34] This work F2 Best F2128 [34] This work F2128

222 64770 4788 147 103 156 111

220 32771 2467 143 126 155 131

218 15336 1312 139 123 153 133

216 7391 667 135 141 151 151

214 3482 338 132 140 150 152

212 1589 172 131 136 155 152

210 652 106 176 146 194 180

2 Preliminaries

2.1 Algebraic Background

Let A denote a polynomial ring over a field F in n variables. A polynomial f ∈ A
is homogeneous if all its monomials have the same degree and affine otherwise.
There are two standard methods for turning an affine polynomial into a homo-
geneous polynomial that we will use in our analysis. For an affine polynomial f ,
the first one considers the polynomial f (h) which only consists of the terms in
f of degree deg(f) (i.e., discarding all lower degree terms). The second method
is to homogenize f by expanding the polynomial ring with a homogenization
variable y and by defining f (y)(x1, . . . , xn, y) := (1/y)deg(f)f(x1/y, . . . , xn/y).

An ideal is homogeneous if there exists a set of homogeneous generators. We
will turn an affine ideal I ⊂ A into a homogeneous ideal I(h) (resp. I(y)) by
applying f (h) (resp. f (y)) to each of its generators. When I is homogeneous, the
set Id := {f ∈ I, deg(f) = d} = I ∩ Ad is a subspace of Ad the vector space of
homogeneous polynomials of total degree d.

Hilbert Function and Hilbert Series. For a homogeneous ideal I ⊂ A, we
consider the Hilbert function:

HFA/I : N −→ N

d �−→ dimF(Ad/Id).

The Hilbert series is a convenient tool to study the combinatorial structure of
homogeneous ideals.

Definition 3 (Hilbert series). Let I ⊂ A be a homogeneous ideal. The Hilbert
series of the quotient ring A/I is defined by

HA/I(z) :=
∞∑

d=0

HFA/I(d) · zd. (1)

396 P. Briaud and M. Øygarden

Over a finite field F, we implicitly add all the field equations of the form x
|F|
i −

xi = 0 for 1 ≤ i ≤ n. Therefore, we will study zero-dimensional ideals, i.e.,
ideals I such that the quotient A/I is a finite dimensional vector space. For such
ideals, we call degree of regularity dreg the smallest integer d such that Id = Ad.
In this particular case, the Hilbert series is a polynomial.

Regular and Semi-regular Sequences. Unfortunately, Hilbert series are dif-
ficult to compute in general. Still, there is a known expression for the series of
a subclass of systems whose definition is related to the notion of zero-divisor.
When m ≤ n, we say that a homogeneous system F := {f1, . . . , fm} is regular if
fi is not a zero divisor in A/〈f1, . . . , fi−1〉 for any 1 ≤ i ≤ m. The Hilbert series
of such a system is given by

Proposition 1. Let F := {f1, . . . , fm} be a homogeneous regular system such
that deg (fi) = di for 1 ≤ i ≤ m. We have

HA/〈F〉(z) =
∏m

i=1(1 − zdi)
(1 − z)n

.

This definition has been extended to the overdetermined case, m > n, with the
notion of semi-regular sequences introduced by Bardet.

Definition 4 (Semi-regular sequence, [7]). Consider F := {f1, . . . , fm} a
homogeneous sequence such that I := 〈F〉 is zero-dimensional with degree of
regularity dreg. The sequence F is said to be semi-regular if I �= A and if for
1 ≤ i ≤ m, gifi = 0 in A/〈f1, . . . , fi−1〉 with deg (gifi) < dreg implies gi = 0 in
A/〈f1, . . . , fi−1〉.
Over F2, there is a similar definition but which needs to take the Frobenius
morphism into account:

Definition 5 (Semi-regular sequence over F2, [7]). Let S denote the quo-
tient ring F2[x]/〈x2

1, . . . , x
2
n〉. A homogeneous sequence F := {f1, . . . , fm} with

degree of regularity dreg is semi regular over F2 if I �= S and if for 1 ≤
i ≤ m, gifi = 0 in S/〈f1, . . . , fi−1〉 with deg (gifi) < dreg implies gi = 0 in
S/〈f1, . . . , fi〉.
The Hilbert series is also known for such systems. In particular, it is a polynomial
since the corresponding ideal is zero-dimensional.

Proposition 2 ([7]). Let F := {f1, . . . , fm} be a homogeneous semi-regular

system where deg (fi) = di for 1 ≤ i ≤ m and let Sm,n,d(z) =
∏m

i=1(1−zdi)

(1−z)n . We
have

HA/〈F〉(z) = [Sm,n,d(z)]+ ,

where [·]+ means truncation after the first non-positive coefficient.

A New Algebraic Approach to the Regular Syndrome Decoding Problem 397

Proposition 3 ([7]). Let F := {f1, . . . , fm} be a homogeneous semi-regular sys-
tem over F2 where deg (fi) = di for 1 ≤ i ≤ m and let Tm,n,d(z) = (1+z)n

∏m
i=1(1+zdi)

.
We have

HA/〈F〉(z) = [Tm,n,d(z)]+ .

Finally, an affine sequence F := {f1, . . . , fm} is said to be semi-regular in [7,
Def. 3.5.1] if the homogeneous sequence F (h) := {f

(h)
1 , . . . , f (h)

m } is semi-regular
in the sense of Definition 4. Interestingly, it turns out that this subclass of sys-
tems is somehow large since it is conjectured that most systems behave as such
(this is related to the Fröberg conjecture [30]). In simpler terms, we may say
that randomly chosen polynomial systems with m ≤ n (resp. m > n) have an
overwhelming probability of being regular (resp. semi-regular).

Unfortunately, we will see that the polynomial systems considered in this
work cannot be directly analyzed by these tools. This issue is uniquely related
to structural equations inherent in the systems. It is then possible to split the
polynomial system in two: the first part can be treated in a prior analysis, and the
second part can be assumed to be generic. At this stage, we will be able to rely
on the same algebraic tools as used in proofs of Proposition 2 and Proposition 3
to derive our final Hilbert series, up to minor technical amendments.

2.2 Solving Polynomial Systems

Gröbner basis techniques are generally used to solve cryptographically relevant
polynomial systems, keeping in mind that this approach is closely related to the
XL algorithm [26]. Both approaches typically depend on the notion of Macaulay
matrix. If F is homogeneous, the (homogenous) Macaulay matrix Md(F) is
defined as the coefficient matrix of (μi,j ·fj)i, 1≤j≤m where μi,j is any monomial
of degree d − deg(fi). If F is affine, we prefer to consider M≤d(F) where now
deg (μi,j) ≤ d − deg(fi) and where the columns are indexed by all monomials of
degree ≤ d.

XL Wiedemann. The main idea of XL is to solve by linearization an aug-
mented system in degree ≤ d obtained from F by multiplying the initial poly-
nomials by all monomials of the suitable degree. The value of d is chosen such
that there are enough linearly independent equations compared to the number
of monomials and the matrix of the linearized system is simply the Macaulay
matrix M≤d(F). In the particular case when the linear system in degree d has
a unique solution and is sparse enough, this approach may greatly benefit from
the use of the Wiedemann algorithm [43] or its further improvements [25,41].
The application of the Wiedemann algorithm to solve Macaulay matrices has
been implemented and studied in [24]. In our setting, we can estimate the cost
of this approach to find the solution of the linear system to be

3 · nμ · M2
≤d, (2)

398 P. Briaud and M. Øygarden

where nμ is the number of terms in the polynomials of F (i.e. the row weight
of M≤d(F)), where M≤d is the number of columns in M≤d(F) and where the
choice of a hidden constant equal to 3 is very standard in the literature on
multivariate cryptography, see for example [13, Prop 3 p. 219], [17].

Witness Degree. While the degree of regularity dreg is usually employed as
the main parameter to estimate the complexity of Gröbner basis algorithms on
homogeneous systems, we will require a related, though slightly different notion
in the case of XL Wiedemann. A first reason is that we have just defined dreg for
homogeneous systems whereas we will typically apply this algorithm on affine
equations. To this end, let us recall the witness degree dwit, originally introduced
in [8, Definition 2] for the binary case. For an ideal I, the notation LM(I) denotes
the monomial ideal generated by the leading monomials of all polynomials in I
for an arbitrary graded ordering.

Definition 6 (Witness degree). Let F := {f1, . . . fm} be an affine polyno-
mial system over Fq, and I := 〈F〉 its associated ideal. Define the Fq-vector
spaces

I≤d := {p ∈ I | deg(p) ≤ d} ,

J≤d :=

{
p ∈ I | p =

m∑

i=1

gifi, and deg(gi) ≤ d − deg(fi) for 1 ≤ i ≤ m

}
.

The witness degree dwit of F is defined as the smallest integer d0 such that
I≤d0 = J≤d0 and LM(I≤d0) = LM(I).

We will be interested in cases where F contains fewer than n affine polynomials,
whereas its Gröbner basis is either {1}, or a set of n affine polynomials. Thus
there are non-trivial polynomials

∑
gifi ∈ I where the coefficients of the higher

degree terms sum to zero. It follows that if F is also semi-regular, then dreg is
a lower bound on the degree d such that J≤d = I≤d. This ensures dwit ≥ dreg.
Even under these assumptions, we remark that dreg is only attached to F (h),
whereas the purpose of dwit is precisely to analyze the lower degree parts of F
as well.

We will later see examples where dwit is strictly larger than dreg, so we need
a more accurate estimate of the former than this lower bound. If the input
polynomial system admits no solutions (i.e., 〈F〉 = 〈1〉), its witness degree can
be upper bounded by the degree of regularity of the corresponding homogenized
system by adding an extra homogenization variable y (see beginning of Sect. 2.1).
In other words, we have

Proposition 4. Let F = {f1, . . . , fm, xq
1 − x1, . . . , x

q
n − xn} be a sequence of

polynomials in Fq[x1, . . . , xn] that admits no solutions, and let I(y) be its asso-

ciated homogenized ideal. Then dwit(F) ≤ dreg

(
I(y)

)
.

A New Algebraic Approach to the Regular Syndrome Decoding Problem 399

This statement is shown2 in [8, Proposition 5].
Note that the requirement of F being non-consistent makes sense since the

BooleanSolve algorithm presented in [8] is a hybrid algorithm, and the majority
of calls to a polynomial system solver is made for systems without any solutions.
We will indeed follow the same strategy for the hybrid systems considered in
Sect. 4. However, on the plain system, Proposition 4 cannot be applied readily to
bound dwit. Instead, we will propose a more direct approach of inspecting affine
Macaulay matrices in Sect. 3.2.

3 Algebraic Modeling of the RSD Problem

In this section, we introduce the polynomial systems that we consider for the
RSD problem. We will work over a polynomial ring A = F[e], where each error
vector entry ei,j is treated as an indeterminate to be solved for. The equations
of the polynomial systems are obtained from the n − k parity-check equations
sT = HeT to which we add constraints coming from the regular structure.
Modeling 1 is used to solve RSD over an arbitrary (large) field F while Modeling 2
is specific to the binary case.

Modeling 1 (Over a large field). For a given RSD instance (H, sT) over F,
Modeling 1 is the sequence of polynomials F := P ∪ B, where

i) P is the set of the n−k linear polynomials given by the parity-check equations
sT = HeT;

ii) B is the set of quadratic polynomials that describe the regular form of the
error vector e, namely ei,j1ei,j2 = 0 for 1 ≤ i ≤ h and 1 ≤ j1 < j2 ≤ β.

We also include the so-called field equations e
|F|
i,j − ei,j = 0, so that the ideal

generated by Modeling 1 is zero-dimensional. However, these equations will not
be useful for the computation due to their large degree and thus the situation
is completely different over F2 in that respect. Also, note that Modeling 1 only
captures the fact that the Hamming weight in each block is at most 1 since we
have no information on the non-zero coordinate. Over F2 however, we know that
this non-zero component is equal to 1.

Modeling 2 (Over F2). For a given binary RSD instance (H, sT), Modeling 2
is the sequence of polynomials FF2 = P ∪ B ∪ QF2 ∪ LF2 , where P and B are as
in Modeling 1 and where:

i) QF2 is the set of field equations e2i,j − ei,j = 0 for 1 ≤ i ≤ h and 1 ≤ j ≤ β;
ii) LF2 is the set of h linear equations 1 − ∑β

j=1 ei,j = 0 for 1 ≤ i ≤ h which
express the fact that each block has a unique non-zero coordinate.

2 The statement in [8, Proposition 5] is only for F2, but we note that the same proof
also works for the case of Fq.

400 P. Briaud and M. Øygarden

In both cases, the main contribution is the set P containing n − k = n(1 −
R) parity-check equations. Therefore, this approach is expected to be relevant
for instances with non-constant rate. This is the case of the parameter sets
used to instantiate primal LPN, see [18,34,42,44]. From the public generator
matrix G, we trivially construct the equivalent dual LPN instance and we then
use Modeling 1 or 2 on this dual problem. Finally, we see that the unknowns
are merely the coordinates of the error vector e. In particular, we expect as
many solutions as the initial RSD instance, i.e. 1, for the range of parameters
of interest3. This will be needed to justify the use of the XL algorithm later.

3.1 Deriving Hilbert Series

The goal of this section is to compute the Hilbert series (Definition 3) of the
homogeneous ideals I := 〈F (h)〉 and IF2 := 〈F (h)

F2
〉 associated to Modeling 1 and

Modeling 2 respectively. We start by observing that these sequences cannot be
analyzed as semi-regular systems. Indeed, consider the equations f1 := e1,1e1,2

and f2 := e1,2e1,3. Since e1,1f2 = 0 in A/〈f1〉, the polynomial f2 is a non-trivial
zero divisor in A/〈f1〉. Note that this type of cancellation does not depend on
the particular RSD instance, but rather comes from the regular structure of e.
Thus, it still makes sense to compute Hilbert series that will be valid for generic
instances of the RSD problem.

Hilbert Series for Modeling 1. Recall that Modeling 1 is the sequence F =
P ∪B, where P are the parity-check equations and where B describes the regular
structure of the error vector. The first step will be to compute the Hilbert series
HS(z) by monomial counting, for S := A/〈B(h)〉. Since S is not a polynomial
ring, we will not formally speak about (semi-)regular sequences over S. Yet,
we still want to capture the core idea of the remaining parity-check equations
behaving nicely, by introducing the following assumption for Modeling 1.

Assumption 1. Consider an instance F of Modeling 1 and let dreg be the degree
of regularity of I := 〈F (h)〉. Define the quotient ring S := A/〈B(h)〉 and let
P(h) = {p

(h)
1 , . . . , p

(h)
n−k} denote the set of linear parity-check equations. We

assume that for 1 ≤ i ≤ n−k, gipi = 0 in S/〈p1, . . . , pi−1〉 with deg (gipi) < dreg
implies gi = 0 in S/〈p1, . . . , pi−1〉.
Relying on this assumption, we can obtain the final Hilbert series for I := 〈F (h)〉:

Theorem 1. Under Assumption 1, the Hilbert series of the homogeneous ideal
I := 〈F (h)〉 associated with Modeling 1 is given by

HA/I(z) =
[
(1 − z)n−k ·

(
1 + β · z

1−z

)h
]

+

, (3)

3 Even though the weight h is slightly larger than the Gilbert-Varshamov distance,
the regular structure is a much stronger requirement.

A New Algebraic Approach to the Regular Syndrome Decoding Problem 401

where [.]+ means truncation after the first non-positive coefficient, and where we

call (1 − z)n−k ·
(
1 + β · z

1−z

)h

the generating series of I.

Proof. The proof can be found in AppendixA.1. ��

Hilbert Series for Modeling 2. Modeling 2 contains extra structural equa-
tions, starting from the field equations in QF2 . A difficulty arises when adding
the last set of equations LF2 since it yields another type of cancellation. For
1 ≤ i ≤ h and 1 ≤ j0 ≤ β, we indeed have:

ei,j0 ·
⎛

⎝−
β∑

j=1

ei,j

⎞

⎠ = 0 mod
{
e2i,j0 , {ei,j1ei,j2}j1<j2

}
. (4)

In other words, any polynomial in L(h)
F2

is a zero divisor in A/〈B(h) ∪ Q(h)
F2

〉. To
keep the same type of analysis as with Modeling 1, we may use LF2 to remove h
variables. More formally, we define the graded ring homomorphism

L : F2[e] −→ F2[x]
ei,j �−→ xi,j , for 1 ≤ i ≤ h and 1 ≤ j < β

ei,β �−→
β−1∑

j=1

xi,j for 1 ≤ i ≤ h.

Definition 7. Consider an instance of Modeling 2, and L be as detailed above.
We then define A′ := L (A), I ′ := L(I(h)), B′ := L(B(h)), Q′ := L(Q(h)

F2
) and

S′ := A′/〈B′ ∪ Q′〉.
The following lemma shows that A′ is a polynomial ring and describes the struc-
ture of S′.

Lemma 1. A′ is isomorphic to F2[x1, . . . , xh(β−1)]. Moreover, the ideal 〈B′∪Q′〉
is generated by G = {xi,jxi,l | 1 ≤ i ≤ h and 1 ≤ j, l < β}.
Proof. The first statement is immediate from the definition of L. For the second
statement, we note that G is exactly the image of generators of B(h) ∪ Q(h)

F2

that does not contain an element ei,β . To see that the image of the remaining
generators of Q(h)

F2
does not add anything new, we get

L(e2i,β) =

⎛

⎝
β−1∑

j=1

x2
i,j

⎞

⎠ = 0 mod G.

The cancellations of the remaining generators of B(h) were already pointed out
by (4). ��

402 P. Briaud and M. Øygarden

We can furthermore use Lemma 1 to count the number of monomials in S′.
Indeed, the possible monomials are squarefree and contain only one variable per
block due to the shape of G. In particular, a degree d monomial defines a set of d
blocks. Then, each block contains β − 1 relevant variables instead of β since we
reduce modulo LF2 . This shows that there are

(
h
d

)
(β − 1)d degree d monomials

in S′.
We now need to adopt a similar assumption as with Modeling 1. Note the

strong similarity between Definition 5 and the following Assumption 2:

Assumption 2. Consider an instance of Modeling 2 with degree of regularity
dreg, and let S′ be as defined in Definition 7. For every parity-check equation,
pi, write p′

i = L(p(h)i). We assume that for 1 ≤ i ≤ n − k, gip
′
i = 0 in

S′/〈p′
1, . . . , p

′
i−1〉 with deg (gi)+deg (p′

i) < dreg implies gi = 0 in S′/〈p′
1, . . . , p

′
i〉.

Theorem 2. Under Assumption 2, the Hilbert series of the homogeneous ideal
IF2 := 〈F (h)

F2
〉 associated to Modeling 2 is given by

HA/IF2
(z) =

[
(1+(β−1)·z)h

(1+z)n−k

]

+
. (5)

Proof. The proof can be found in AppendixA.2. ��

3.2 Estimating the Witness Degree

As explained at the end of Sect. 2, we will use the witness degree dwit of the input
polynomial system (see Definition 6) to estimate the cost of the XL Wiedemann
approach.

By definition, the system F of Modeling 1 (resp. Modeling 2) admits at least
one solution and we will assume that it is unique for the range of parameters of
interest. Note that a polynomial system that includes field equations4 and admits
a unique solution (a1, . . . , an) has reduced Gröbner basis {x1 −a1, . . . , xn −an}.
Recalling the conditions in Definition 6 and if I := 〈F〉, we have LM(I≤1) =
LM(I) and dim(I≤d) = dim(A≤d) − 1. In particular, we can say that dwit(F) is
the smallest degree such that the rank of the associated affine Macaulay matrix
is equal to the number of columns minus one.

We will use this observation to provide an estimate of the witness degree.
Note that semi-regularity can be seen as the assumption that the homogeneous
Macaulay matrices have maximal rank; we now adopt the assumption that the
affine Macaulay matrices achieve maximal rank. With this assumption, we can
reuse the Hilbert Series machinery we have developed in this section. Consider
the untruncated version of the series in Eqs. (3) and (5). The coefficient in a
term of degree d < dreg is positive and it coincides with the number of columns

4 The field equations ensure that the ideal is radical, and the result follows from
Hilbert’s Nullstellensatz. In practice, the reliance on field equations can typically be
eased for sufficiently overdetermined systems. Thus we will assume that this also
holds for Modeling 1, even when the field equations are not explicitly included in F .

A New Algebraic Approach to the Regular Syndrome Decoding Problem 403

that cannot be reduced in the homogeneous Macaulay matrix of degree d. When
d ≥ dreg, the coefficient is non-positive and measures the number of “excess”
rows after full reduction of this matrix. When these rows are considered in their
full affine form they will, in general, not sum to zero. Coming back to the poly-
nomial representation, they yield what we typically call degree falls or degree fall
polynomials in the literature.

Finally, we arrive at the following estimate for the witness degree by summing
these coefficients.

Estimate (Plain witness degree). Let F be the polynomial system of
Modeling 1 (resp. Modeling 2) and let H denote the untruncated series of Eq. (3)
(resp. Eq. (5)). Then we estimate dwit(F) to be

dwit,(0,0) := min

⎧
⎨

⎩d ∈ Z≥1

∣∣∣∣∣

d∑

j=0

[zj] (H(z)) ≤ 0

⎫
⎬

⎭ , (6)

where [zj] (H(z)) denotes the coefficient of the monomial zj in H.

We have found this estimate to be accurate in all our experiments, which are
further reported in AppendixC.

4 Hybrid Approach

As is standard in algebraic cryptanalysis, the complexity of our approach essen-
tially depends on the value of dreg or dwit. However, for most of the parameter
sets that we have studied, these degrees seem too high for straightforward alge-
braic techniques to be competitive with other types of attacks.

To decrease these degrees and possibly improve the overall complexity, we
propose to add new equations in the same e variables which may hold with
probability 0 < P < 1. The idea is the same as in a standard hybrid approach
[16]: we hope that the complexity gain in solving the resulting system may
supersede the loss coming from adding these equations since we have to repeat
the process O(P−1) times on average to find a solution. Due to the nature of the
RSD problem, a natural idea is to fix linear constraints of the form ei′,j′ = 0. Note
that this is exactly what the Prange algorithm does by picking an information
set I and then assuming that eI = 0. In our case, these constraints reduce the
number of non-zero monomials in degree d ≥ 1 (even though the number of
equations at hand also decreases) and thus we hope that the specialized system
with these constraints will be solved at a smaller degree. In the following, we
develop this hybrid approach for Modeling 1, noting that the case of Modeling 2
works in the same way.

4.1 Guessing Error-Free Positions in All Blocks

A first idea is to guess the same number of error-free positions in all blocks. A
similar approach was followed in [31, B.3] to adapt ISD algorithms to a regular

404 P. Briaud and M. Øygarden

error distribution. Each block in the RSD problem can be seen as a random
vector of length β and weight 1. The success probability of guessing u error-free
positions is

(
β−1

u

)
/
(
β
u

)
. By exploiting the regular structure, one may guess the

same number of positions in each block with probability

P(u) :=

((
β−1

u

)
(
β
u

)
)h

= (1 − u/β)h. (7)

The improvement by using Eq. (7) instead of the naive probability in the
Prange algorithm (or even in more involved ISD variants) was not really apparent
in [31] (“ISD is always the most efficient attack and has roughly the same cost
when considering SD and RSD” [31, p. 49]). Still, we can try to adopt the same
technique for Modeling 1. We start by guessing that the top part of size 0 ≤ u ≤ β
is error-free in each block, which holds with probability (1 − u/β)h. The main
difference with [31, B.3] is that we will have uh � k. Indeed, we need to guess
much fewer error-free positions to decrease the solving degree of Modeling 1 while
the Prange linear system “stays” in degree 1 and needs more equations. In case
of failure, we consider a permutation matrix P π ∈ F

n×n which permutes the
coordinates in each block (so that the regular structure is maintained) and we
try again on the RSD instance (HP −1

π , s) which has error εT = P πeT. By fixing
the ei,j variables to zero for 1 ≤ i ≤ h and 1 ≤ j ≤ u, the number of possible
non-zero monomials in degree d is now given by the coefficient of zd in

(
1 + (β − u) · z

1−z

)h

.

To derive the Hilbert series of the specialized system, we need to adapt
Assumption 1 (see Assumption 3 in AppendixB.1) to ensure that fixing vari-
ables does not introduce unexpected cancellations at higher degree among the
system of n − k parity-check equations {p1, . . . , pn−k}. Under this new assump-
tion, the Hilbert series of the hybrid system is obtained by applying Theorem1
to an RSD instance with block size β − u:

HA/I,hyb1,u(z) =
[
(1 − z)n−k ·

(
1 + (β − u) · z

1−z

)h
]

+

(8)

Hence, while both the number of equations and monomials of degree d ≥ 1
are affected by adding the zero constraints, they are still on a form that is
captured by the Hilbert series studied in Sect. 3. In practice, we typically require
a weaker form of Assumption 3. Indeed, the optimal choice of u is rather small
for the parameters that we will study in Sect. 5. Heuristically, we have more
confidence in our assumption with a smaller u as it implies less specialization of
the polynomial system. Finally, we note that a similar statement for specialized
systems is also present in the standard hybrid approach for semi-regular systems,
see [16, Hypothesis 3.3]. Starting from a semi-regular system {f1, . . . , fm}, they
assume that all the specialized versions

{f1(x1, . . . , xn−k,v), . . . , fm(x1, . . . , xn−k,v)}, ∀v ∈ F
k, ∀0 ≤ k ≤ n

are semi-regular.

A New Algebraic Approach to the Regular Syndrome Decoding Problem 405

4.2 Restricting to f ≤ h Blocks

A slightly more general approach is to guess 0 ≤ u ≤ β error-free positions in only
0 ≤ f ≤ h blocks so that the success probability becomes P(f,u) := (1 − u/β)f .
Under a similar assumption (see Assumption 3 in AppendixB.1 which encom-
passes both strategies), we can obtain the Hilbert series

HA/I,hyb2,f,u(z) =

⎡
⎢⎢⎢⎣(1 − z)n−k ·

(
1 + (β − u) · z

1 − z

)f

︸ ︷︷ ︸
constraint

·
(

1 + β · z

1 − z

)h−f

︸ ︷︷ ︸
no constraint

⎤
⎥⎥⎥⎦

+

(9)

4.3 Witness Degree for the Hybrid Approach

Similary to what we did in Sect. 3.2 for the plain system, we now derive an
estimate of dwit for the specialized system. Since the plain system is expected
to have a unique solution, the majority of guesses will be wrong, i.e., resulting
in polynomial systems without any solutions. In that respect, the situation is
similar to that of the original BooleanSolve algorithm of [8]. We can in this case
use Proposition 4 to upper bound the witness degree by the degree of regularity
of the homogenized system.

We will assume that the hybrid systems form semi-regular systems with the
extra variable y. Under this assumption, it is straightforward to adapt the Hilbert
series given by Eq. (8) and Eq. (9) to the homogenized versions in the following
manner:

HA/I,hybi,f,u(z)/(1 − z), (10)

for i ∈ {1, 2}. For the hybrid approach on Modeling 2, we similarly divide by
(1−z) the series in Eq. (21) AppendixB.2. The degree of regularity of the homog-
enized systems is then obtained in the usual manner, i.e., by computing the first
non-positive coefficient in the associated series. We note that this adaptation on
the Hilbert series is in line with the earlier literature (c.f. [8, Proposition 6]) and
it has been accurate in our experiments (see AppendixC).

4.4 Complexity with XL Wiedemann

The cost of the hybrid approach of Sect. 4.2 can now be computed as follows.
For each pair (f, u) where 0 ≤ f ≤ h and 0 ≤ u ≤ β, we proceed as explained
in Sect. 4.3 to obtain an upper-bound on the witness degree which we denote by
dwit,(f,u) and that we use as our estimate of the real witness degree. To apply
Eq. (2), we then need the value M(f,u)

≤dwit,(f,u)
which is the number of monomials

of degree ≤ dwit,(f,u) in the specialized system. It depends on both f, u and

dwit,(f,u). Indeed, let H(S,f,u)(z) =
(
1 + (β − u) · z

1−z

)f

·
(
1 + β · z

1−z

)h−f

. We
have

M(f,u)
≤dwit,(f,u)

=
dwit,(f,u)∑

j=0

[zj]
(H(S,f,u)(z)

)
, (11)

406 P. Briaud and M. Øygarden

where we recall that [zj] (H(z)) is the coefficient of the monomial zj in the series
H. Finally, we need to estimate the quantity nμ which is the number of non-
zero terms in one row of the Macaulay matrix. This is directly related to the
monomial content of the initial parity-check equations. We can assume that the
matrix H is given in systematic form, so that nμ ≤ k + 1 = O(k). For the
specialized system, we can actually choose to fix the f bottom blocks of the
error5 to obtain the better factor nμ,(f,u) ≤ k + 1 − f · u. This allows to possibly
gain a few bits in the final complexity.

Proposition 5. Under Assumption 3 and the assumptions described in
Sect. 4.3, the time complexity in F-operations of the hybrid approach of Sect. 4.2
on Modeling 1 is estimated by

O
⎛

⎝ min
0≤f≤h
0≤u≤β

(
P−1
(f,u) · 3 · nμ,(f,u) ·

(
M(f,u)

≤dwit,(f,u)

)2
)⎞

⎠ ,

where

P(f,u) := (1 − u/β)f ,
nμ,(f,u) := k + 1 − f · u,
M(f,u)

≤dwit,(f,u)
is defined in Eq. (11),

and where dwit,(f,u) is the index of the first non-positive coefficient in the gener-
ating series given in Eq. (10).

We can obtain a similar statement for Modeling 2 (see Proposition 7 in
AppendixB.2). Finally, we want to stress the fact that the specializations pro-
posed in Sects. 4.1 and 4.2 are possibly the most naive ways to fix variables in
the system. Even though they seem to lead the best success probability since
we take advantage of the regular structure, other approaches might allow to
decrease the solving degree faster.

4.5 Rationale and Experimental Verification

The assumptions that we use can be seen as very similar to those generally
encountered in algebraic cryptanalysis. More specifically, in our systems these
genericity assumptions concern the linear parts of the parity-check equations,
and these polynomials simply depend on the matrix H. Even though the under-
lying code C is typically chosen d-local in the primal formulation, the parity-check
matrix obtained from the public matrix G has no reason to be special in a cer-
tain sense. Otherwise, such a particular property may probably be exploited by
attacks or indicate that this instantiation is weaker than standard LPN.

In a very similar context, the well-known Arora-Gê system [5] to solve LWE
is generally assumed to be semi-regular [2,40]. In [3], some practical experiments
5 There is no loss of generality: this can be seen as choosing a monomial ordering

which favors the upper variables and then fixing somehow small variables.

A New Algebraic Approach to the Regular Syndrome Decoding Problem 407

have been performed to confirm this hypothesis ([3, §7.1]) and we also note that
they try to prove (a weaker form of) it in some particular cases ([3, A.2]). Their
experiments verify that the solving degree of Arora-Gê coincides with that of a
random system of the same size.

We have experimentally tested the assumptions made throughout Sects. 3
and 4, the details of which are available in AppendixC. More specifically, we
have tested Assumptions 1, 2 and their hybrid counterparts; the hybrid dwit

estimate for Modeling 1 and 2; and finally the plain dwit estimate for Modeling 1.
Assumptions 1 and 2 have been correct in all our experiments, and we have
only been able to observe discrepancies for a few hybrid cases of Modeling 2
(see Appendix C.1 for further discussion). Finally, the estimates on the witness
degree have been correct in all the tested cases.

5 Application to Some Parameters

We now estimate the complexity of the attack using the hybrid technique of
Sect. 4.2 on some LPN parameter sets with non-constant rate taken from primal
LPN instantiations. For each parameter set, we compute the optimal complexity
using Proposition 5 for Modeling 1 (resp. Proposition 7 from AppendixB.2 for
Modeling 2). We report the pair (f, u) that leads to the best complexity and the
associated estimate on the witness degree dconj := dwit,(f,u). When f and u are
positive, we use the upper bound from Sect. 4.3 for dwit,(f,u), and when f = u =
0, we use the estimate in Eq. (6). The sparsity factor is k + 1 − f · u over large
fields or min (k + 1 − f · u, k/2 + 1) over F2. The constant from Wiedemann’s
algorithm is taken equal to 3 as presented in Eq. (2). For illustration, we also
give the complexity of the attack without fixing any variables.

The parameters we will consider were first proposed by [18, Table 1]. Their
security over F2 has been re-evaluated in the recent paper [34], where the same
parameters are also analyzed over the larger field F = F2128 (see [34, Table 3]).
They are presented in Table 2 and Table 3, respectively. Finally, [34, Table 1] also
gives parameters whose initial security target was 128 using the analysis of [18]
but which are thought to be much harder according to [34]. These parameters
are presented in Tables 4 and 5. When n/h is not an integer, we set β = �n/h�
and fix the last n−hβ coordinates to zero. Note that the number of parity-check
equations at hand is still n − k.

Small Scale. In Table 2 and Table 3, “Best” refers to the best attack according
to the analysis of [34]. In the binary case, the best attack according to [34] are
advanced ISD algorithms. For a field size log2(|F|) = 128, they note that the
Pooled Gauss attack and ISD perform equally. As Gauss can be considered as a
special case of ISD, this is quite reminiscent of the result of Canto-Torres [22]
which states that all ISD variants converge to the same cost when |F| tends to
infinity and which is basically the cost of Prange’s algorithm.

408 P. Briaud and M. Øygarden

Larger Scale. The parameters of [34, Table 1] are obtained simply by increasing
the weight h and keeping the same triples (n, k, β) as in the original parameters
from [18]. In order words, the noise rate increases but the code rate remains
the same. They were chosen so that they just achieve 128 bit security according
to the analysis of [18] but [34] considers them to be much harder, see Column
“Best” in Tables 4 and 5.

Table 2. Hybrid approach of Sect. 4.2 over F2 (Modeling 2).

n k h Best [34] dconj plain (f, u) dconj XL hybrid Sect. 4.2

222 64770 2735 104 2 (0, 0) 2 103

220 32771 1419 99 3 (1159, 2) 2 98

218 15336 760 95 3 (657, 7) 2 104

216 7391 389 91 4 (373, 10) 2 108

214 3482 198 86 6 (197, 11) 2 106

212 1589 98 83 8 (88, 13) 2 103

210 652 57 94 12 (54, 9) 2 101

Table 3. Hybrid approach of Sect. 4.2 over F2128 (Modeling 1).

n k h Best [34] dconj plain (f, u) dconj XL hybrid Sect. 4.2

222 64770 2735 108 2 (0, 0) 2 104

220 32771 1419 107 3 (1246, 3) 2 102

218 15336 760 105 3 (670, 8) 2 107

216 7391 389 103 4 (374, 11) 2 111

214 3482 198 101 6 (197, 12) 2 110

212 1589 98 100 8 (96, 13) 2 107

210 652 57 111 14 (55, 10) 2 111

Ferret and Wolverine. We have also tested our methods on the parameters
from [44] and [42]. While most of them seem resistant to the attack, a notable
exception is the one-time parameter set with |F| = 261−1, n = 642048, k = 19870
and h = 2508 from [42, Table 2]. The authors of [42] claim to achieve 128 bits
of security whereas the more recent methods of [34] would suggest that this is
too conservative. More precisely, [34, Provided script] estimates 154 bit security.
Four our part, we estimate that plain Modeling 1 solves the problem with 126
bit complexity in degree d = 3.

A New Algebraic Approach to the Regular Syndrome Decoding Problem 409

Table 4. Hybrid approach of Sect. 4.2 over F2 (Modeling 2).

n k h Best [34] dconj plain (f, u) dconj XL hybrid Sect. 4.2

222 64770 4788 147 2 (0, 0) 2 103

220 32771 2467 143 3 (2340, 4) 2 125

218 15336 1312 139 4 (676, 1) 3 122

216 7391 667 135 5 (604, 7) 2 139

214 3482 338 132 7 (322, 7) 2 138

212 1589 172 131 11 (154, 7) 2 135

210 652 106 176 19 (104, 4) 3 145

Table 5. Hybrid approach of Sect. 4.2 over large field F2128 (Modeling 1).

n k h Best [34] dconj plain (f, u) dconj XL hybrid Sect. 4.2

222 64770 4788 156 3 (4237, 1) 2 110

220 32771 2467 155 3 (0, 0) 3 131

218 15336 1312 153 4 (995, 2) 3 133

216 7391 667 151 6 (613, 8) 2 150

214 3482 338 150 8 (324, 8) 2 150

212 1589 172 155 12 (157, 8) 2 150

210 652 106 194 24 (105, 5) 3 179

5.1 Comments on the Results

Overall, we see the complexity of our attack is rather close to the best attack
even if clearly a bit above this value for most instances in Tables 2 and 3. In a
way, the high witness degree for the plain system is circumvented by the hybrid
component of our attack which can be seen as an analogue of Prange’s algorithm.
Therefore, we should not expect a big gap between the complexities in this case
because our attack is not a pure algebraic attack. Also, this difference is much
reduced in the parameters from Tables 4 and 5 (Larger Scale) compared to those
of Tables 2 and 3 (Smaller Scale). We also observe that our attack is extremely
efficient compared to ISD when we can solve at degree 2, 3 without fixing a lot
of variables (see for instance the first three rows in Tables 4 and 5). This may
suggest a weak zone of parameters which is not encompassed by former ISD
algorithms.

Secondly, the algebraic attack seems to compare better to known techniques
for larger fields. As mentioned earlier, the main reason may be that the advantage
of ISD algorithms over Prange/Pooled Gauss worsens when |F| → +∞. In our
case, even though the witness degree for plain Modeling 1 is slightly higher than
the one of Modeling 2, the difference is not enough (at most 1 for all parameter
sets except the last row in Tables 4 and 5) to expect a similar increase in the
cost as we observe for ISD.

410 P. Briaud and M. Øygarden

6 Asymptotic Analysis

This section aims to illustrate the concrete results shown in Sect. 5 by providing
a sketch of asymptotic analysis. Note that a study of convergence speed is out of
the scope of this work, so the results presented here should be viewed as a purely
theoretical contribution. Recall that our motivation for introducing the witness
degree was to analyze the Wiedemann algorithm, which is likely to be the best
tool for linear algebra for the parameters we have discussed so far. Since there
are other linear algebra algorithms that may perform asymptotically better than
the Wiedemann algorithm (see, e.g., [33]), we choose to focus on the degree of
regularity for the remainder of this section. We start by exploring a potentially
weak range of parameters where the RSD problem can be solved at degree 2.
Then we go on to obtain an asymptotic equivalent of the degree of regularity in
Sect. 6.2 for the plain system. All cases are considered over F2 using Modeling 2.

From this partial analysis, the next natural question would be to perform a
broader comparison to known attacks, in particular to ISD algorithms. There is
also the question of analyzing and comparing the hybrid versions of our attack.
We leave both questions for future work.

6.1 Solving at Low Degree

First, note that the number of monomials in degree ≤ d in Modeling 2 can be well
approximated by

(
h
d

)
(β − 1)d which is the number of exact degree d monomials

(see the discussion right after Lemma 1). Using Proposition 7 AppendixB.2, we
see that the complexity is polynomial in the degree of regularity dreg. In par-
ticular, having a constant dreg is a sufficient condition for the algorithm to run
in polynomial time. Moreover, we noted in Sect. 5.1 that our techniques proved
especially effective when plain RSD was close to being solved at a small degree.
Thus, we start our analysis by exploring the potentially weak zone of parameters
where Modeling 2 meets the strong condition being solved at degree 2. This will
happen whenever the coefficient in front of z2 in the series HA/IF2

(z) given in
Eq. (5) is non-positive. This coefficient reads

κ2 :=
(
n−k+1

2

)
+ (β − 1)2

(
h
2

) − (n − k)h(β − 1).

In all generality, we can view this coefficient as a function of the length n, the
code rate R and the error rate ρ and study the behaviour when n → +∞. More
precisely, we get

κ2 =
n · (ρ3n − 2nRρ2 + R2ρn − 1 + 3ρ − Rρ − ρ2

)

2ρ
.

Note that if the code rate R dominates over ρ, the possibly dominant term in
the numerator is either R2ρn or −1. If the term R2ρn tends to zero, the main
contribution in the numerator comes from the −1 term and κ2 is asymptotically
negative. Note also that we can find such a zone which is non-trivial in a crypto-
graphic sense. Indeed, recall that the standard adaptation of Prange’s algorithm

A New Algebraic Approach to the Regular Syndrome Decoding Problem 411

to the regular case would be to guess k/h error-free coordinates per block. The
success probability of this approach is then (1 − k/h/n/h)h = (1 − R)h. This
gives a complexity of e−h·ln(1−R), and assuming that R = o(1) the main term
in the exponent −h · ln(1 − R) is hR = nρR. If for instance hR = nρR ∼ nα

for 0 < α < 1, it may give a subexponential algorithm. On the contrary, we can
clearly find code rates for which R2ρn → 0 under this condition.

To simplify the analysis even further, we consider particular functions R =
φ(n) and ρ = ψ(n) and view κ2 := κ(n) as a function of n. Upon inspection
of Table 6, it seems relevant to study a regime of the form ρ := n−a and R :=
log (n) ·n−a for some 0 < a < 1 even if we extrapolate from a very small number
of values. With this particular choice, we obtain

κ2(n) = −na+1

2 + (log(n)−1)2n2−2a

2 + 3n
2 − (log(n)+1)n1−a

2 . (12)

Lemma 2. Under Assumption 2, the degree of regularity of plain Modeling 2 for
an RSD instance with ρ := n−a and R := log (n) · n−a is asymptotically equal to
2 when a > 1/3. ��
Proof. In Eq. (12), the term −n1+a

2 dominates when a+1 > 2−2a, hence a > 1/3.
��
Recall that the Prange exponent is nRρ = n1−2a log (n) in this case, which leaves
a possibly relevant zone for our attack when 1/3 < a < 1/2.

Another choice of interest from Table 6 is ρ := n−a and R := n−b for some
0 < b < a. In this case, we have

κ := n2−2a

2 + n2−2b

2 − n2−a−b − n1+a

2 + 3n
2 − n1−a

2 − n1−b

2 . (13)

Lemma 3. Under Assumption 2, the degree of regularity of plain Modeling 2
for an RSD instance with ρ := n−a and R := n−b for some 0 < b < a is
asymptotically equal to 2 when a + 2b > 1.

Proof. In Eq. (13), the dominant term is either n2−2b

2 or −n1+a

2 . The second
dominates when 1 + a > 2 − 2b, that is, a + 2b > 1. ��
In this case the Prange exponent is nRρ = n1−a−b, and there is a possibly
relevant zone for our attack when 1 − b < a + b < 1.

6.2 Asymptotic Analysis of dreg

A more accurate complexity analysis requires to estimate the degree of regularity
dreg, which is done in the following Proposition 6:

Proposition 6. When n → +∞, the degree of regularity dreg of Modeling 2
behaves asymptotically as follows:

1. For constant code rate R and noise rate ρ = o(1), let κR := 2−R−2
√

1 − R >
0. We have

dreg ∼ κRh.

412 P. Briaud and M. Øygarden

Table 6. General trends for the parameters of Sect. 5

n k h b := 1 − log(k)
log (n)

a := 1 − log(h)
log (n)

R/(log2 (n)ρ)

222 64770 2735 0.27 0.48 1.08

220 32771 1419 0.25 0.48 1.15

218 15336 760 0.23 0.47 1.12

216 7391 389 0.20 0.46 1.19

214 3482 198 0.16 0.46 1.26

212 1589 98 0.11 0.45 1.35

210 652 57 0.07 0.42 1.14

222 64770 4788 0.27 0.44 0.61

220 32771 2467 0.25 0.44 0.66

218 15336 1312 0.23 0.42 0.65

216 7391 667 0.20 0.41 0.69

214 3482 338 0.16 0.40 0.74

212 1589 172 0.11 0.38 0.77

210 652 106 0.07 0.33 0.62

2. For R = o(1) and ρ = o(1) such that ρ = o(R), we have

dreg + 1 ∼ R2

4 h.

3. Finally, for R = o(1) and ρ = o(1) such that ρ = λR is linear in R with
λ < 1, we have

dreg + 1 ∼ (1−λ)2R2

4 h. (14)

The main tool for the proof is the so-called saddle-point method. A detailed
account of this approach in the context of Hilbert series can be found in [7,
Chap. 4]. Each coefficient in the series can be obtained as a Cauchy integral,
namely

[zd]HA/IF2
(z) =

1
2iπ

∮
1

zd+1
HA/IF2

(z)dz.

The saddle-point method allows to study the asymptotic behaviour of this inte-
gral for fixed d. Since we are interested in the value of d such that the integral
vanishes when n → +∞, we then cancel the main term in the resulting develop-
ment in order to obtain the first term in the development of dreg. The full proof
can be found in Appendix D.

Asymptotics with Hybrid Approach. It is possible to carry out the same
analysis for the system obtained after hybrid approach but this is more technical.
We leave this problem as a future work. In this case, the relevant question would
be to find the best asymptotic trade-off between the cost coming from the fixed

A New Algebraic Approach to the Regular Syndrome Decoding Problem 413

variables and the one of the solving step. This has already been studied in the
case of quadratic semi-regular systems, see for instance [15, §4.3].

Acknowledgments. We express our warm gratitude to the Eurocrypt23’ reviewers
for their suggestion to analyze the witness degree. We also thank Geoffroy Couteau for
motivating the study of this problem and for insightful discussions.

A Proof of Theorems 1 and 2

This section contains the proofs of Theorem 1 and Theorem 2. Our main con-
tribution is the strategy of splitting the system into two parts as described
above. The structural part requires to compute some Hilbert series HS(z) (resp.
HS′(z)). On the rest of the equations, most of the technical work as explained
in the main text was to state Assumption 1 (resp. Assumption 2) in order to
mimick Bardet’s definitions of semi-regularity (resp. semi-regularity over F2).
From there, this structure of the proof is exactly the same as in [7, §3.3.2,§3.3.3].

A.1 Proof of Theorem 1

The theorem easily follows from the following lemmata.

Lemma 4. Let S denote the quotient ring A/〈B(h)〉, where B(h) consists of the
quadratic parts of the structural equations from Modeling 1. We have

HS(z) =
(
1 + β · z

1−z

)h

. (15)

Proof. The quotient S can be seen as the set of polynomials whose monomials
involve at most one ei,j variable in each block 1 ≤ i ≤ h. For a given block,
admissible monomials have only one variable but their degree can be arbitrary.
Therefore, the Hilbert series “for one block” will be 1+β · z

1−z . Finally, a general
d monomial is a product of such monomials for distinct blocks and such that
the sum of their degrees is equal to d. Relying on the same symbolic argument
as presented in [29] which gives the generating series of a Cartesian product, we
finally obtain the series in (15). ��
Lemma 5. Let I denote the homogeneous ideal associated to Modeling 1. Under
Assumption 1, we have

HA/I(z) =
[
(1 − z)n−k · HS(z)

]+
.

Proof. This may be seen as a particular case of [7, §3.3.2]. We give the proof here
for the sake of completeness. To simplify notation, we write {f1, . . . , fn−k} for
the set of homogeneous parity-check equations P(h). For 1 ≤ j ≤ n−k, we denote
by I(j) the ideal 〈B(h), f1, . . . , fj〉 in A and I(0) = 〈B(h)〉. For 1 ≤ j ≤ n−k and
up to the degree of regularity of I, Assumption 1 states that we have the exact
sequence of vector spaces when d < dreg:

0 → (A/I(j − 1))d−1 → (A/I(j − 1))d → (A/I(j))d → 0

414 P. Briaud and M. Øygarden

This gives the following equality between Hilbert functions

HFA/I(j−1)(d − 1) − HFA/I(j−1)(d) + HFA/I(j)(d) = 0. (16)

Consider now the abstract sequence hd,j defined by hd,j = dimF(Sd) if j = 0 or
d = 0 and the induction relation

hd,j = hd,j−1 − hd−1,j−1. (17)

Let Gj denote the generating series for (hd,j)d≥0. From Eq. (17) and by multi-
plying by z we easily obtain Gj(z) = (1 − z)Gj−1(z). The generating series for
(hd,0)d≥0 being G0(z) := HS(z) we get Gn−k(z) = (1 − z)n−kHS(z). As long as
the involved quantities are positive, Eq. (16) and Eq. (17) may be seen as the
same relation. Therefore, the final Hilbert series is

HA/I(z) =
[
(1 − z)n−k · HS(z)

]
+

.

��

A.2 Proof of Theorem 2

Recall A′ and S′ from Definition 7. Theorem 2 easily follows from the following
lemmata.

Lemma 6. We have
HS′(z) = (1 + (β − 1) · z)h

. (18)

Proof. From the set of generators G described in Lemma 1, we observe that the
admissible monomials of S′ involve at most one variable from each block, with
degree at most 1. The result follows by reasoning in a similar way as in the proof
of Lemma 4. ��
Lemma 7. Let I denote the homogeneous ideal associated to Modeling 2. Under
Assumption 2, we have

HA/I(z) =
[HS′(z)/(1 + z)n−k

]
+

.

Proof (sketch). By construction, we clearly have HA/I(z) = HA′/I′(z), for the
ideal I ′ introduced in Definition 7. As in the proof of Lemma 5, we simplify nota-
tion by writing {f1, . . . , fn−k} for the set of homogeneous parity-check equations
L(P(h)), and for 1 ≤ j ≤ n − k, we denote by I ′(j) the ideal 〈B′,Q′, f1, . . . , fj〉
in A′ and I ′(0) = 〈B′,Q′〉. Assumption 2 ensures that the following sequence is
exact for d < dreg.

0 → (A′/I ′(j))d−1
×fj−−→ (A′/I ′(j − 1))d

π−→ (A′/I ′(j))d → 0.

The rest of the proof now proceeds in the same way as [9, proof of Proposition
9], starting from the equality between Hilbert functions

HFA′/I′(j)(d − 1) − HFA′/I′(j−1)(d) + HFA′/I′(j)(d) = 0. (19)

A New Algebraic Approach to the Regular Syndrome Decoding Problem 415

Similarly, we consider the sequence cd,j defined by cd,j = dimF(S′
d) if j = 0 or

d = 0 and the recurrent formula

cd,j = cd,j−1 − cd−1,j . (20)

Let Cj denote the generating series for (cd,j)d≥0. Multiplying by z in Eq. (20)
yields (1 + z)Cj(z) = Cj−1(z) and we have the border condition C0(z) =
HA′/I′(0)(z) = HS′(z). This finally gives

HA/I(z) = HA′/I′(z) =
[HS′(z)
(1 + z)n−k

]

+

.

��

B Missing Details in Section 4

B.1 Regularity Assumption for Specialized Modeling 1

For any invertible matrix P , for 0 ≤ f ≤ h and for 0 ≤ u ≤ β, let P−1
u,f denote

the map that applies P−1 and then fixes the initial u variables to 0 in the last
f blocks of the error.

Assumption 3. Let P be the set of parity-check equations from an instance
of Modeling 1. For every permutation matrix P which stabilizes each block of
the error, for 0 ≤ f ≤ h and for 0 ≤ u ≤ β, we assume P(h) ◦ P−1

u,f satisfies

Assumption 1 with ring A ◦ P−1
u,f and quotient ring S ◦ P−1

u,f .

We need the full version of this assumption for the approach of Sect. 4.2 while
only the particular case f = h is required for Sect. 4.1.

B.2 XL Wiedemann Complexity for Modeling 2

The success probability P(f,u) := (1 − u/β)f is independent of the algebraic
system. Over F2, we may consider that nμ ≈ k

2 + 1 in general instead of simply
nμ ≤ k + 1 for the number of non-zero terms per equation. We leave it to the
reader to state the equivalent of Assumption 3 for Modeling 2. All the following
results are under this assumption, as well as the assumptions noted in Sect. 4.3.
We now give the complexity of the hybrid approach of Sect. 4.2 on Modeling 2.
The degree of regularity dreg,(f,u) is obtained as the index of the first non-positive
coefficient in the series

(1 + (β − 1 − u) · z)f · (1 + (β − 1) · z)h−f

(1 + z)n−k
(21)

As noted in Sect. 4.3, this series is divided by (1 − z), to derive an upper bound,
dwit,(f,u), on the witness degree. Finally, the analogue of Eq. (11) is

M(f,u)
≤dwit,(f,u)

=
dwit,(f,u)∑

j=0

[zj]
(H(S′,f,u)(z)

)
,

416 P. Briaud and M. Øygarden

where H(S′,f,u)(z) := (1 + (β − 1 − u) · z)f · (1 + (β − 1) · z)h−f .

Proposition 7. The time complexity in F2 operations of the hybrid approach of
Sect. 4.2 on Modeling 2 is estimated by

O
⎛

⎝ min
0≤f≤h
0≤u≤β

(
P−1
(f,u) · 3 · nμ,(f,u) ·

(
M(f,u)

≤dwit,(f,u)

)2
)⎞

⎠ .

C Experiments

In this section, we present experiments that we have run on randomly generated
instances of the RSD problem in order to check the validity of the assumptions
from Sect. 3 and 4.

C.1 Hilbert Series

We give the parameter sets as (h, β, k, f, u)t, where h, β and k describe the RSD
problem, where f, u are the parameters for the hybrid approach of Sect. 4.2 and
where t is the number of times that we have repeated the experiment. For an
affine ideal I, we compute the Hilbert series of the ideal I(h) associated with
the homogeneous upper part of I. For some of the hybrid systems, we have also
computed the Hilbert series of the homogenized ideal I(y) (see Sect. 2.1 for the dif-
ference between these two notions). The tests have been run using the computer
algebra system Magma V2.27-1 and the built-in command HilbertSeries(·).
Experiments for Modeling 1. The systems we have tested for Modeling 1 are
listed in Table 7, where we also give the associated degree of regularity dreg. In
all tests, the experimentally found Hilbert series is equal to the Hilbert series of
Eq. (9), meaning, in particular, that Assumption 1 and 3 have been true in all
our experiments. For most of the hybrid systems, we have also computed the
Hilbert series of the homogenized ideals I(y) and given the associated degree of
regularity d(y)reg. The Hilbert series in all of these tests have been equal to (the
truncation of) those predicted by Eq. (10).

Table 7. Tested Hilbert Series from Hybrid Modeling 1 systems over F101.

System dreg d(y)
reg System dreg d(y)

reg System dreg d(y)
reg

(5, 6, 15, 0, 0)5 3 - (5, 6, 20, 0, 0)5 4 - (5, 8, 20, 0, 0)5 3 -

(5, 8, 30, 0, 0)5 4 - (7, 7, 30, 0, 0)5 4 - (8, 6, 30, 0, 0)5 5 -

(10, 4, 25, 0, 0)5 6 - (12, 7, 50, 3, 2)1 5 - (7, 8, 30, 2, 3)10 3 3

(7, 8, 30, 6, 3)10 2 3 (10, 7, 40, 5, 2)10 4 4 (10, 7, 40, 5, 3)10 3 4

Experiments for Modeling 2. Table 8 contains tests for Hilbert series on
Modeling 2. The experimental Hilbert series of the plain cases (f = u = 0) are

A New Algebraic Approach to the Regular Syndrome Decoding Problem 417

all described by our theory. While the majority of hybrid cases we have tested
are accurately described by (21), we have been able to find a few discrepancy
with the theoretical values. The systems marked by † both included a single
case where the experimental Hilbert series deviated slightly from (21) in one
of its terms. The system marked by ‡ was another type of outlier, where the
quotient A/I contained a few cubic elements in half of the tested cases. We note
that for the system marked by ‡, the corresponding (untruncated) series (21) is
exactly zero at term z2. Thus the homogeneous Macaulay matrix of degree 2 will
be a square matrix over F2 (after removing trivial syzygies), and the quotient
A/I will contain cubic terms whenever this matrix fails to be of full rank. For
the other tested cases, the series have a negative coefficient at the term corre-
sponding to the degree of regularity, indicating that the homogeneous Macaulay
matrices will be rectangular. We believe that this difference explains the peculiar
behaviour observed for case ‡. Finally, we have performed the same experiments
as in Modeling 1 for the ideals I(y) and we obtained the same conclusive results
regarding Eq. (10).

Table 8. Tested Hilbert Series from Hybrid Modeling 2 systems over F2.

System dreg d(y)
reg System dreg d(y)

reg System dreg d(y)
reg

(10, 6, 30, 0, 0)10 3 – (10, 6, 30, 3, 3)10 2 2 (10, 6, 40, 0, 0)10 4 –

(10, 6, 40, 6, 2)†10 3 – (14, 7, 50, 0, 0)10 4 – (14, 7, 50, 2, 2)10 3 4

(14, 7, 50, 10, 2)10 2‡ 3 (15, 6, 70, 10, 3)†10 5 – (20, 6, 70, 5, 3)10 4 4

(20, 6, 70, 10, 3)10 3 3 (15, 6, 60, 2, 1)1 5 – (20, 20, 150, 0, 0)1 3 –

(20, 20, 150, 15, 4)10 2 3 (20, 20, 100, 0, 0)10 2 –

C.2 Witness Degree for Plain Systems

We have also tested the witness degree for (non-hybrid) systems of Modeling 1.
In these tests, we have created the affine Macaulay matrix of degree 2 or 3 and
then computed its rank to check if it has a unique solution. The witness degree
in all these tests was the same as the value estimated by Eq. (6) in Sect. 3.2.
Details are given in Table 9, where the systems are denoted (h, β, k).

Table 9. Witness degree for Modeling 1 systems over F101.

System dwit System dwit System dwit System dwit

(8, 8, 18) 2 (4, 12, 21) 2 (15, 8, 27) 2 (12, 7, 20) 2

(7, 5, 16) 3 (8, 4, 13) 3 (4, 8, 20) 3 (8, 5, 18) 3

418 P. Briaud and M. Øygarden

D Proof of Proposition 6

Proof. The starting point is the Cauchy integral

Id(n) :=
1

2iπ

∫
1

zd+1

(1 + (β − 1) · z)h

(1 + z)n−k

︸ ︷︷ ︸
=en·f(z)

dz,

where we set f(z) := −d + 1
n

·log(z)−(1 − R)·log(1+z)+ρ·log(1+(ρ−1−1)·z).

We study the behaviour of this integral when n grows. Using Cauchy’s integral
theorem, we can make the path of integration to meet the saddle points so that
the integral concentrates in the neighborhood of these saddle points when n
tends to +∞. These saddle points are solutions to the equation

zf ′(z) = −d + 1
n

− (1 − R) · z

1 + z
+ (1 − ρ)

z

1 + (ρ−1 − 1) · z
= 0.

It may be be rewritten as a quadratic equation P (z) = p2 · z2 + p1 · z + p0 = 0,
where

p2 := (ρ − 1) · (d + 1 + (1 − R − ρ)n) ,

p1 := ρRn − nρ2 − d − 1,

p0 := −ρ · (d + 1).

Then, the standard argument is that P must have a double root, i.e. the saddle
points have to coalesce (otherwise the integral is exponential, see for example [7,
p. 94], [3, A.1.] for details). Writing that the discriminant Δ(P) is equal to zero
yields a quadratic equation A · d2 + B · d + C = 0, where

A := (2ρ − 1)2,

B := −4Rρ2n − 4ρ3n + 2Rρn + 10nρ2 − 4ρn + 8ρ2 − 8ρ + 2,

C := R2ρ2n2 + ρ4n2 − 2Rρ3n2 − 4Rρ2n − 4ρ3n + 2Rρn + 10nρ2 − 4nρ + (2ρ − 1)2.

Solving for d gives

d =
−Rρn − ρ2n + 2nρ − 2ρ + 1 ± √

δ

1 − 2ρ

= −1 +
ρn

(±2
√

1 − R
√

1 − ρ + 2 − ρ − R
)

1 − 2ρ
, (22)

where
√

δ := 2n
√

Rρ3 − Rρ2 − ρ3 + ρ2 = 2nρ
√

1 − R
√

1 − ρ. We want the
smallest positive root which is given by the minus case of ±

√
δ, in the equation

above. The end of the proof then consists in studying Eq. (22) in the different
regimes:

A New Algebraic Approach to the Regular Syndrome Decoding Problem 419

– For constant code rate R and ρ = o(1), we obtain

−2
√

1 − R
√

1 − ρ + 2 − ρ − R = (2 − R) − 2
√

1 − R + o(1),

hence dreg ∼ κRh, where κR := (2 − R) − 2
√

1 − R > 0.
– For R = o(1) and ρ = o(1) we have

−2
√

1 − R
√

1 − ρ = −2
(
1 − R

2 − R2

8 + o(R2)
)(

1 − ρ
2 − ρ2

8 + o(ρ2)
)

= −2 + R + ρ + R2

4 + ρ2

4 − Rρ
2 + o(Rρ),

hence −2
√

1 − R
√

1 − ρ + 2 − ρ − R = R2

4 + ρ2

4 − Rρ
2 + o(Rρ). This gives us

dreg + 1 ∼ R2

4 h if r = o(R) and dreg + 1 ∼ R2

4 (1 − λ)2h if ρ = λR is linear in
R with λ < 1.

��

References

1. Aguilar-Melchor, C., Blazy, O., Deneuville, J.C., Gaborit, P., Zémor, G.: Efficient
encryption from random quasi-cyclic codes. IEEE Trans. Inf. Theory 64(5), 3927–
3943 (2018). https://doi.org/10.1109/TIT.2018.2804444

2. Albrecht, M., Cid, C., Faugère, J.C., Fitzpatrick, R., Perret, L.: On the complexity
of the arora-ge algorithm against LWE. In: SCC 2012 - Third International Con-
ference on Symbolic Computation and Cryptography, Castro Urdiales, Spain, pp.
93–99 (2012). https://hal.inria.fr/hal-00776434

3. Albrecht, M.R., Cid, C., Faugère, J.C., Perret, L.: Algebraic Algorithms for LWE.
Cryptology ePrint Archive, Paper 2014/1018 (2014). https://eprint.iacr.org/2014/
1018

4. Applebaum, B., Damg̊ard, I., Ishai, Y., Nielsen, M., Zichron, L.: Secure arithmetic
computation with constant computational overhead. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 223–254. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63688-7 8

5. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto,
L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 403–415.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22006-7 34

6. Augot, D., Finiasz, M., Sendrier, N.: A family of fast syndrome based crypto-
graphic hash functions. In: Dwason, E., Vaudenay, S. (eds.) MYCRYPT 2005:
First International Conference on Cryptology in Malaysia. Lecture Notes in Com-
puter Science, vol. 3715, pp. 64–83. Springer, Kuala Lumpur (2005). https://doi.
org/10.1007/11554868 6, https://hal.inria.fr/inria-00509188

7. Bardet, M.: Étude des systèmes algébriques surdéterminés. Applications aux codes
correcteurs et à la cryptographie. Theses, Université Pierre et Marie Curie - Paris
VI (2004). https://tel.archives-ouvertes.fr/tel-00449609

8. Bardet, M., Faugère, J.C., Salvy, B., Spaenlehauer, P.J.: On the complexity of
solving quadratic Boolean systems. J. Complex. 29(1), 53–75 (2013). https://doi.
org/10.1016/j.jco.2012.07.001

https://doi.org/10.1109/TIT.2018.2804444
https://hal.inria.fr/hal-00776434
https://eprint.iacr.org/2014/1018
https://eprint.iacr.org/2014/1018
https://doi.org/10.1007/978-3-319-63688-7_8
https://doi.org/10.1007/978-3-642-22006-7_34
https://doi.org/10.1007/11554868_6
https://doi.org/10.1007/11554868_6
https://hal.inria.fr/inria-00509188
https://tel.archives-ouvertes.fr/tel-00449609
https://doi.org/10.1016/j.jco.2012.07.001
https://doi.org/10.1016/j.jco.2012.07.001

420 P. Briaud and M. Øygarden

9. Bardet, M., Faugère, J.C., Salvy, B., Yang, B.Y.: Asymptotic behaviour of the
index of regularity of quadratic semi-regular polynomial systems. In: Gianni, P.
(ed.) The Effective Methods in Algebraic Geometry Conference (MEGA 2005),
pp. 1–14 (2005)

10. Baum, C., Braun, L., Munch-Hansen, A., Razet, B., Scholl, P.: Appenzeller to brie:
efficient zero-knowledge proofs for mixed-mode arithmetic and Z2k. In: Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2021, pp. 192–211. Association for Computing Machinery, New York (2021).
https://doi.org/10.1145/3460120.3484812

11. Baum, C., Braun, L., Munch-Hansen, A., Scholl, P.: Mozz2karella: efficient vector-
ole and zero-knowledge proofs over z2k. In: Advances in Cryptology - CRYPTO
2022: 42nd Annual International Cryptology Conference, CRYPTO 2022, Santa
Barbara, CA, USA, 15–18 August 2022, Proceedings, Part IV, p. 329–358. Springer,
Heidelberg (2022). https://doi.org/10.1007/978-3-031-15985-5 12

12. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes
in 2n/20: how 1 + 1 = 0 improves information set decoding. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 31

13. Bernstein, D.J., Buchmann, J., Dahmen, E.: Post-Quantum Cryptography.
Springer, Dordrecht (2008). https://doi.org/10.1007/978-3-540-88702-7, https://
cds.cern.ch/record/1253241

14. Bernstein, D.J., Lange, T., Peters, C.: Smaller decoding exponents: ball-collision
decoding. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 743–760.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 42

15. Bettale, L.: Cryptanalyse algébrique : outils et applications. Ph.D. thesis, Univer-
sité Pierre et Marie Curie - Paris 6 (2012)

16. Bettale, L., Faugère, J.C., Perret, L.: Hybrid approach for solving multivariate
systems over finite fields. J. Math. Cryptol. 3(3), 177–197 (2010). https://doi.org/
10.1515/jmc.2009.009, https://hal.archives-ouvertes.fr/hal-01148127

17. Beullens, W.: Improved cryptanalysis of UOV and rainbow. In: Canteaut, A., Stan-
daert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 348–373. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-77870-5 13

18. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2018, pp. 896–912. Association for Computing Machinery, New York
(2018). https://doi.org/10.1145/3243734.3243868

19. Boyle, E., et al.: Efficient two-round OT extension and silent non-interactive secure
computation. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2019, pp. 291–308. Association for Computing
Machinery, New York (2019). https://doi.org/10.1145/3319535.3354255

20. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudo-
random correlation generators: silent OT extension and more. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 489–518. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 16

21. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseu-
dorandom correlation generators from ring-LPN. In: Micciancio, D., Ristenpart,
T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 387–416. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56880-1 14

22. Canto Torres, R.: Asymptotic analysis of ISD algorithms for the q−ary case. In:
Proceedings of the Tenth International Workshop on Coding and Cryptography
WCC 2017 (2017). http://wcc2017.suai.ru/Proceedings WCC2017.zip

https://doi.org/10.1145/3460120.3484812
https://doi.org/10.1007/978-3-031-15985-5_12
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-540-88702-7
https://cds.cern.ch/record/1253241
https://cds.cern.ch/record/1253241
https://doi.org/10.1007/978-3-642-22792-9_42
https://doi.org/10.1515/jmc.2009.009
https://doi.org/10.1515/jmc.2009.009
https://hal.archives-ouvertes.fr/hal-01148127
https://doi.org/10.1007/978-3-030-77870-5_13
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-56880-1_14
http://wcc2017.suai.ru/Proceedings_WCC2017.zip

A New Algebraic Approach to the Regular Syndrome Decoding Problem 421

23. Carrier, K., Debris-Alazard, T., Meyer-Hilfiger, C., Tillich, J.P.: Statistical decod-
ing 2.0: reducing decoding to LPN. In: Advances in Cryptology-ASIACRYPT
2022: 28th International Conference on the Theory and Application of Cryptol-
ogy and Information Security, Taipei, Taiwan, 5–9 December 2022, Proceedings,
Part IV, pp. 477–507. Springer, Heidelberg (2022). https://doi.org/10.1007/978-
3-031-22972-5 17

24. Cheng, C.-M., Chou, T., Niederhagen, R., Yang, B.-Y.: Solving quadratic equations
with XL on parallel architectures. In: Prouff, E., Schaumont, P. (eds.) CHES 2012.
LNCS, vol. 7428, pp. 356–373. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33027-8 21

25. Coppersmith, D.: Solving homogeneous linear equations over GF(2) via block
wiedemann algorithm. Math. Comput. 62(205), 333–350 (1994). https://doi.org/
10.2307/2153413

26. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-45539-6 27

27. Esser, A., Kübler, R., May, A.: LPN decoded. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10402, pp. 486–514. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63715-0 17

28. Finiasz, M., Sendrier, N.: Security bounds for the design of code-based cryp-
tosystems. In: Advances in Cryptology - ASIACRYPT 2009, 15th Interna-
tional Conference on the Theory and Application of Cryptology and Infor-
mation Security, Tokyo, Japan, 6–10 December 2009. Proceedings. Lec-
ture Notes in Computer Science, vol. 5912, pp. 88–105. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-10366-7 6. https://www.iacr.org/
archive/asiacrypt2009/59120082/59120082.pdf

29. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University
Press, Cambridge (2009). https://doi.org/10.1017/CBO9780511801655. http://
www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521898065

30. Fröberg, R.: An inequality for Hilbert series of graded algebras. Mathematica
Scandinavica 56, 117–144 (1985). https://doi.org/10.7146/math.scand.a-12092.
https://www.mscand.dk/article/view/12092

31. Hazay, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: TinyKeys: a new approach to
efficient multi-party computation. In: Advances in Cryptology - CRYPTO 2018.
Lecture Notes in Computer Science, vol. 10993, pp. 3–33. Springer, Heidelberg
(2018). https://doi.org/10.1007/s00145-022-09423-5

32. Jabri, A.A.: A statistical decoding algorithm for general linear block codes. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 1–8.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45325-3 1

33. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of
the 39th International Symposium on Symbolic and Algebraic Computation, pp.
296–303 (2014). https://doi.org/10.1145/2608628.2608664

34. Liu, H., Wang, X., Yang, K., Yu, Y.: The hardness of LPN over any integer ring
and field for PCG applications. Cryptology ePrint Archive, Paper 2022/712 (2022).
https://eprint.iacr.org/2022/712

35. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in Õ(20.054n).
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 6

https://doi.org/10.1007/978-3-031-22972-5_17
https://doi.org/10.1007/978-3-031-22972-5_17
https://doi.org/10.1007/978-3-642-33027-8_21
https://doi.org/10.1007/978-3-642-33027-8_21
https://doi.org/10.2307/2153413
https://doi.org/10.2307/2153413
https://doi.org/10.1007/3-540-45539-6_27
https://doi.org/10.1007/978-3-319-63715-0_17
https://doi.org/10.1007/978-3-319-63715-0_17
https://doi.org/10.1007/978-3-642-10366-7_6
https://www.iacr.org/archive/asiacrypt2009/59120082/59120082.pdf
https://www.iacr.org/archive/asiacrypt2009/59120082/59120082.pdf
https://doi.org/10.1017/CBO9780511801655
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521898065
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521898065
https://doi.org/10.7146/math.scand.a-12092
https://www.mscand.dk/article/view/12092
https://doi.org/10.1007/s00145-022-09423-5
https://doi.org/10.1007/3-540-45325-3_1
https://doi.org/10.1145/2608628.2608664
https://eprint.iacr.org/2022/712
https://doi.org/10.1007/978-3-642-25385-0_6

422 P. Briaud and M. Øygarden

36. May, A., Ozerov, I.: On computing nearest neighbors with applications to decoding
of binary linear codes. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 203–228. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46800-5 9

37. Misoczki, R., Tillich, J.P., Sendrier, N., Barreto, P.S.L.M.: MDPC-McEliece: new
McEliece variants from moderate density parity-check codes. In: 2013 IEEE Inter-
national Symposium on Information Theory, pp. 2069–2073 (2013). https://doi.
org/10.1109/ISIT.2013.6620590

38. Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf.
Theory 8(5), 5–9 (1962). https://doi.org/10.1109/TIT.1962.1057777

39. Stern, J.: A method for finding codewords of small weight. In: Cohen, G., Wolf-
mann, J. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer, Hei-
delberg (1989). https://doi.org/10.1007/BFb0019850

40. Sun, C., Tibouchi, M., Abe, M.: Revisiting the hardness of binary error LWE. In:
Liu, J.K., Cui, H. (eds.) ACISP 2020. LNCS, vol. 12248, pp. 425–444. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-55304-3 22

41. Thomé, E.: Subquadratic computation of vector generating polynomials and
improvement of the block wiedemann algorithm. J. Symb. Comput. 33(5), 757–775
(2002). https://doi.org/10.1006/jsco.2002.0533

42. Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: fast, scalable, and
communication-efficient zero-knowledge proofs for boolean and arithmetic circuits.
In: 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco,
CA, USA, 24–27 May 2021, pp. 1074–1091. IEEE (2021). https://doi.org/10.1109/
SP40001.2021.00056

43. Wiedemann, D.: Solving sparse linear equations over finite fields. IEEE Trans. Inf.
Theory 32(1), 54–62 (1986). https://doi.org/10.1109/TIT.1986.1057137

44. Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: fast extension for Corre-
lated OT with Small Communication. In: Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2020, pp. 1607–1626.
Association for Computing Machinery, New York (2020). https://doi.org/10.1145/
3372297.3417276

https://doi.org/10.1007/978-3-662-46800-5_9
https://doi.org/10.1007/978-3-662-46800-5_9
https://doi.org/10.1109/ISIT.2013.6620590
https://doi.org/10.1109/ISIT.2013.6620590
https://doi.org/10.1109/TIT.1962.1057777
https://doi.org/10.1007/BFb0019850
https://doi.org/10.1007/978-3-030-55304-3_22
https://doi.org/10.1006/jsco.2002.0533
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1109/SP40001.2021.00056
https://doi.org/10.1109/TIT.1986.1057137
https://doi.org/10.1145/3372297.3417276
https://doi.org/10.1145/3372297.3417276

An Efficient Key Recovery Attack
on SIDH

Wouter Castryck1,2(B) and Thomas Decru1

1 imec-COSIC, KU Leuven, Leuven, Belgium
wouter.castryck@esat.kuleuven.be

2 Vakgroep Wiskunde: Algebra en Meetkunde, Universiteit Gent, Ghent, Belgium
thomas.decru@esat.kuleuven.be

Abstract. We present an efficient key recovery attack on the Super-
singular Isogeny Diffie–Hellman protocol (SIDH). The attack is based
on Kani’s “reducibility criterion” for isogenies from products of elliptic
curves and strongly relies on the torsion point images that Alice and
Bob exchange during the protocol. If we assume knowledge of the endo-
morphism ring of the starting curve then the classical running time is
polynomial in the input size (heuristically), apart from the factorization
of a small number of integers that only depend on the system parame-
ters. The attack is particularly fast and easy to implement if one of the
parties uses 2-isogenies and the starting curve comes equipped with a
non-scalar endomorphism of very small degree; this is the case for SIKE,
the instantiation of SIDH that recently advanced to the fourth round
of NIST’s standardization effort for post-quantum cryptography. Our
Magma implementation breaks SIKEp434, which aims at security level 1,
in about ten minutes on a single core.

Keywords: isogeny-based cryptography · SIDH · elliptic curves ·
genus 2 curves

1 Introduction

We present a new and powerful key recovery attack on the Supersingular Isogeny
Diffie–Hellman key exchange protocol (SIDH), proposed in 2011 by Jao and De
Feo [25] and considered the flagship of isogeny-based cryptography. Its instan-
tiation SIKE [24] recently advanced to the fourth round of the post-quantum
cryptography standardization process, currently run by NIST [33].

The attack is based on a “reducibility criterion” from 1997 due to Kani [26,
Theorem 2.6] for determining whether an isogeny emanating from a product of
two elliptic curves takes us again to a product of elliptic curves, rather than

This work was supported in part by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement
ISOCRYPT - No. 101020788) and by CyberSecurity Research Flanders with reference
number VR20192203.

c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14008, pp. 423–447, 2023.
https://doi.org/10.1007/978-3-031-30589-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30589-4_15&domain=pdf
http://orcid.org/0000-0002-0191-5216
http://orcid.org/0000-0003-0253-4180
https://doi.org/10.1007/978-3-031-30589-4_15

424 W. Castryck and T. Decru

to the Jacobian of a genus 2 curve as one would expect. This heavily outper-
forms previous attack strategies, such as the ones discussed in [11,31,36,37, Sect.
5], both in theory and in practice. Run on a single core, the appended Magma
code [2] breaks the Microsoft SIKE challenges $IKEp182 and $IKEp217 from [32]
in about 55 s and 85 s, respectively. A run on the SIKEp434 parameters, previ-
ously believed to meet NIST’s quantum security level 1, took roughly 10 m, again
on a single core. We also ran the code on random instances of SIKEp503 (level 2),
SIKEp610 (level 3) and SIKEp751 (level 5), which on average took about 20 m,
55 m and 3 h 15 m, respectively.

For the sake of exposition, we concentrate on the concrete set-up of SIKE
and comment on more general parameter choices as we see fit. Our attack tar-
gets Bob’s private key, which is a secret 3b-isogeny ϕ : Estart → E between
two supersingular elliptic curves Estart, E. The starting curve Estart is a system
parameter and is endowed with two independent points P0, Q0 ∈ Estart of order
2a; the exponents a, b are system parameters too. Bob’s public key consists of
the codomain E and the image points ϕ(P0), ϕ(Q0). As explained in Sect. 4, it
follows from Kani’s criterion that for any isogeny γ : Estart → C of degree 2a−3b

(assume for now that this is positive) the (2a, 2a)-isogeny from C × E with ker-
nel generated by (γ(P0), ϕ(P0)), (γ(Q0), ϕ(Q0)) must again land on a product
of elliptic curves. The idea behind our attack is that landing on a product is
extremely unlikely if E,ϕ(P0), ϕ(Q0) do not constitute a valid public key triple.
In other words, we can use Kani’s criterion as a decision tool. An easy search-
to-decision reduction then allows to recover ϕ. The details of this reduction can
be found in Sect. 6.

The main bottleneck is finding and evaluating the auxiliary isogeny γ; once
this is done, the decision algorithm amounts to computing a length-a chain of
(2, 2)-isogenies, which is very efficient (Richelot isogenies). Our focus lies on the
cases where Estart is one of

y2 = x3 + x, y2 = x3 + 6x2 + x, (1)

which are supersingular in characteristic p ≡ 3 mod 4. The former was the start-
ing curve of SIKE when it was submitted to the first round of the NIST stan-
dardization effort. The use of the latter curve was proposed from the second
round onwards. Both curves come equipped with an explicit endomorphism 2i
satisfying 2i ◦ 2i = [−4]. As discussed in Sect. 5, this feature often lends itself to
a very simple construction of γ, apart from the cost of factoring 2a − 3b (pre-
computable). In practice, the success probability is high enough for setting our
search-to-decision reduction in motion, where now polynomially many integers
of size O(2a) must be factored; concretely, these integers are all of the form
2a−j − 3b−i. As the reader can tell from the above timings, the resulting attack
on SIKE is devastating.

While the endomorphism 2i is sufficient for a practical break of SIKE in
all security levels, the asymptotic time complexity is only sub-exponential; more
precisely, modulo the said factorizations, we expect it to run in time Lp(1/4), see
Sect. 10. In order to reach a polynomial runtime (heuristically and again modulo

An Efficient Key Recovery Attack on SIDH 425

factorization), one must also resort to non-scalar endomorphisms of other very
small degrees. Such endomorphisms may not exist on Estart, but in view of the
work of Love and Boneh [29] one can easily find explicit isogenies to curves on
which they do occur. The KLPT algorithm from [27] then allows to transform
a degree 2a − 3b isogeny emanating from such a curve into the desired instance
of γ : Estart → C. In fact, for this approach, it is not required that Estart is
among (1): any starting curve whose endomorphism ring is known will do.

Remark 1. If the endomorphism ring of Estart is unknown, then one can still
construct γ efficiently in case 2a −3b happens to be smooth. This event is highly
unlikely, but as explained in Sect. 11 one can create more leeway by extending ϕ
and by guessing how it acts on small-order torsion; as was pointed out to us by
De Feo and Wesolowski (independently), the resulting attack runs heuristically
in time Lp(1/2 + ε).

We finally note that our attack also breaks instantiations of SIDH that make
other torsion choices for Alice and Bob. Indeed, the strategy can be used for
the recovery of a secret �b

B-isogeny from �a
A-torsion point information for any

small primes �A, �B, as long as �b
B = O(�a

A); in particular, when applied to SIKE
this also allows to find Alice’s private key. It can even handle non-prime-power
torsion, as used in for example B-SIDH [9]. Our claims on the asymptotic runtime
still apply, but away from �A = 2 implementing the attack is more cumbersome
because one can no longer rely on fast Richelot isogenies; see Sect. 11 for a more
elaborate discussion.

Follow-Up Work

After a first version of this paper was posted online, several improvements and
extensions have made an appearance; for the sake of chronology, the remainder
of this paper is free of references to these follow-up works, but let us give a quick
overview. It was observed by Maino and Martindale [30],1 Oudompheng [34],
Petit (personal communication) and Wesolowski [45] that Kani’s machinery also
allows for a direct key recovery, which is considerably faster than our decisional
approach. Various other speed-ups were found in an effort led by Oudompheng
and Pope to reimplement the attack in SageMath [35,40], and in a parallel effort
by Steel to fine-tune our Magma implementation. Notably, the Magma kernel
was updated with improved Fp2 -arithmetic, resulting in a faster execution of our
code (the initial timings were slower by factors 4 to 8, roughly). In the case of
a starting curve with known endomorphism ring, Wesolowski rigorously proved,
assuming the generalized Riemann hypothesis, that the auxiliary isogeny γ can
be constructed in polynomial time, without any need for factorizations [45]. The
most remarkable follow-up work is due to Robert [38], who showed how to get rid,
unconditionally, of all endomorphism ring assumptions by working with abelian
eightfolds rather than surfaces (using an idea that is reminiscent of the Zarhin
1 Right before posting our paper online, we learned that the authors of [30] had started

pursuing related ideas.

426 W. Castryck and T. Decru

trick). He also crushed the hope for secure higher-dimensional variants of SIDH.
Fouotsa, Moriya and Petit have proposed an interesting (yet impractical) variant
of SIDH that aims at thwarting the current attacks [18].

2 Impact and Non-impact on Isogeny-Based
Cryptosystems

Our attack also impacts various cryptographic schemes that build on SIDH,
or make use of similar hardness assumptions, such as B-SIDH [9], SHealS [19]
and k-SIDH [1]. As discussed in Sect. 11, even in the case of a starting curve
with unknown endomorphism ring, our attack lowers the security of all these
schemes. Here, an interesting target is Séta [13], which allows much leeway for
an attacker, coming from largely imbalanced torsion levels.2 On the other hand,
we stress that the attack relies crucially on the torsion point images exchanged
by Alice and Bob, as well as on the knowledge of the degree of the secret isogeny.
In particular, it cannot be adjusted in an obvious way to attack primitives that
do not reveal this information, such as CRS/CSIDH [7,10,39] and SQISign [12],
and the general supersingular isogeny path problem remains unaffected [44]. We
forward the reader to an online project, initiated by De Feo, which attempts
at organizing the most popular isogeny-based cryptographic protocols and their
best classical and quantum attacks [14].

3 Concrete Set-Up

Concretely, we will describe an algorithm which, upon input of

(i) an SIDH prime p, i.e., p = 2a3bf −1 for integers a ≥ 2, b, f ≥ 1 with 2a ≈ 3b,
(ii) an elliptic curve E0/Fp2 with #E0(Fp2) = (p + 1)2,
(iii) generators P0, Q0 of E0[2a],
(iv) a 3β-isogeny τ : E0 → Estart for some β ≥ 0, where Estart is one of the two

curves (1) that have served as starting curves in SIKE,
(v) the codomain E/Fp2 of a secret cyclic 3b-isogeny ϕ : E0 → E,
(vi) the generators P = ϕ(P0) and Q = ϕ(Q0) of E[2a],

returns the isogeny ϕ. For simplicity we assume that ϕ is uniquely determined,
which is true with overwhelming probability. If 2a−1 > 3b/2 then this is guaran-
teed by [43, Lemma 3.1]. A note on input (iv): when attacking SIKE, at the initial
stage we will have β = 0 and E0 = Estart, so the reader can keep this setting
in mind for now. But our search-to-decision reduction will involve a recursion
during which the value of β will grow, whence this more general formulation.
Moreover, we also want to cope with larger values of β when discussing other
starting curves with a known endomorphism ring.

2 Séta is now fully broken in view of Robert’s work [38].

An Efficient Key Recovery Attack on SIDH 427

4 Decision via Kani’s Reducibility Criterion

We first study the following decision variant: we assume to be given (i), (ii), (iii)
and an elliptic curve E/Fp2 satisfying #E(Fp2) = (p+1)2, along with generators
P,Q of E[2a]. The goal is to decide whether or not

(D) there is a 3b-isogeny ϕ : E0 → E such that ϕ(P0) = P and ϕ(Q0) = Q.

We impose two technical conditions that will be discussed in more detail later
on:

– We suppose that 2a > 3b.
– Let c = 2a − 3b. We assume that we can compute the images Pc = γ(P0)

and Qc = γ(Q0) under an arbitrary c-isogeny γ : E0 → C to some codomain
curve C.

We let x ∈ Z denote a multiplicative inverse of 3b modulo 2a. Note that −x is
then a multiplicative inverse of c modulo 2a.

4.1 (2a, 2a)-Subgroups Built from Torsion Point Information

If (D) holds then we can consider the isogeny

ψ = [−1] ◦ ϕ ◦ γ̂ : C → E,

where we note that ψ(Pc) = −cP and ψ(Qc) = −cQ. For all R,S ∈ C[2a] we
have that

e2a(xψ(R), xψ(S)) = e2a(R,S)x2c3b

= e2a(R,S)−1

or in other words the group homomorphism

[x] ◦ ψ|C[2a] : C[2a] → E[2a]

is a so-called “anti-isometry” with respect to the 2a-Weil pairing. This implies
that the group

〈(Pc, xψ(Pc)), (Qc, xψ(Qc))〉 = 〈(Pc, P), (Qc, Q)〉 (2)

is maximally isotropic with respect to the 2a-Weil pairing on the product C ×E
(equipped with the product polarization). Indeed,

e2a((Pc, xψ(Pc)), (Qc, xψ(Qc))) = e2a(Pc, Qc)e2a(xψ(Pc), xψ(Qc)) = 1

because the Weil pairing on C × E is just the product of the Weil pairings of
the corresponding components.

Therefore it concerns the kernel of a (2a, 2a)-isogeny of principally polarized
abelian surfaces. By writing this isogeny as a composition of (2, 2)-isogenies, it
can be viewed as a walk of length a in the (2, 2)-isogeny graph of superspecial
principally polarized abelian surfaces over Fp, all of whose vertices are defined

428 W. Castryck and T. Decru

over Fp2 . These vertices come in two types: about p2/288 products of supersin-
gular elliptic curves and about p3/2880 Jacobians of superspecial genus 2 curves,
see e.g. [3]. Therefore it is to be expected that most isogenies in the chain are
between Jacobians of genus 2 curves, and such isogenies can be computed effi-
ciently using “classical” formulae due to Richelot [42]. But the first step is clearly
an exception to this: with overwhelming probability, this is a “gluing” step, map-
ping the product C × E to a Jacobian (more precisely, by Theorem 1 below this
can only fail if C ∼= E). Formulae for this gluing step were derived in [23] and
are recalled in Sect. 8.

4.2 Kani’s Theorem

What is the role of the isogeny γ in all this? Its aim is to force us into the
exceptional situation where the last step of the chain is split, i.e., the codomain
of our (2a, 2a)-isogeny is again a product of elliptic curves. In that case the
anti-isometry xψ|C[2a] and the group (2) are called “reducible”. This event is
characterized by the theorem of Kani [26, Theorem 2.6]:

Definition 1. Let C,E be two elliptic curves and N ≥ 2 an integer. Let ψ :
C → E be a separable isogeny and let H1,H2 ⊂ ker ψ be subgroups such that
H1 ∩ H2 = {0}, #H1 · #H2 = deg ψ and #H1 + #H2 = N . Then the triplet
(ψ,H1,H2) is called an isogeny diamond configuration of order N between C
and E.

Theorem 1. Let (ψ,H1,H2) be an isogeny diamond configuration of order N ≥
2 between two elliptic curves C and E. Let d = gcd(#H1,#H2), let n = N/d
and let ki = #Hi/d for i = 1, 2. Then ψ factors uniquely over [d], i.e. ψ = ψ′◦[d]
and there is a unique reducible anti-isometry ι : C[N] → E[N] such that

ι(k1R1 + k2R2) = ψ′(R2 − R1) for all Ri ∈ [n]−1Hi (i = 1, 2) . (3)

Moreover, if N ≤ p then every reducible anti-isometry C[N] → E[N] is of this
form.

Remark 2. Kani allows for inseparable isogenies in Definition 1, in which case
#Hi should be interpreted as the degree of the corresponding subgroup scheme.
When doing so, the condition N ≤ p in Theorem 1 can be discarded; this was
merely added to ensure that ψ is separable.

In our case, the kernel of ψ is a group of order c3b, so it admits two (unique)
subgroups H1,H2 of respective orders c and 3b. We clearly have that H1 ∩H2 =
{0} and

#H1 + #H2 = 2a, #H1 · #H2 = deg ψ,

so the triplet (ψ,H1,H2) is an isogeny diamond configuration of order 2a. Then
Kani’s theorem implies that our anti-isometry xψ|C[2a] is reducible. Indeed, let
us check condition (3) explicitly: we need to verify that

xψ(cR1 + 3bR2) = ψ(R2 − R1)

An Efficient Key Recovery Attack on SIDH 429

for all points R1, R2 such that 2aR1 ∈ H1 and 2aR2 ∈ H2 (note that d = 1 in
our case). But this is easy: since ψ(R1) and ψ(R2) are 2a-torsion points, we can
rewrite the left hand side as

xcψ(R1) + x3bψ(R2) = 3−b(2a − 3b)ψ(R1) + 3−b3bψ(R2)
= ψ(R2) − ψ(R1)
= ψ(R2 − R1)

as wanted (recall that x3b ≡ −xc ≡ 1 mod 2a).

4.3 Decision Strategy

Our decision strategy amounts to testing whether or not quotienting out C × E
by (2) takes us to a product of elliptic curves, as depicted in Fig. 1. As we have
just argued, if (D) holds, then we pass the test.

x

y

z

E

E′
(2,2)−−−−→

x

y

z

H1 (2,2)−−−−→
x

y

z

H2 (2,2)−−−−→ . . .

(2, 2)

(2, 2)

x

y

z

Ha

x

y

z

F

F ′

Fig. 1. Decision strategy based on Kani’s reducibility criterion.

For now, we content ourselves with the loose heuristic that if (D) does not
hold, then the test should fail with overwhelming probability because the propor-
tion of products of elliptic curves among all vertices in the graph is only about
10/p. We can actually be a bit more precise about this heuristic in the cases that
are relevant for our attack, namely the “wrong guesses” in our search-to-decision
reduction: see Remark 4.

5 Constructing and Evaluating the Auxiliary Isogeny γ

The assumption that we can (efficiently) compute the image points Pc and Qc

under a degree-c isogeny is non-trivial, and this is where we need the factorization

430 W. Castryck and T. Decru

of c = 2a − 3b. It is also here that we rely on the special nature of Estart: both
options come with an endomorphism 2i satisfying 2i ◦ 2i = [−4]. Indeed, on
Estart : y2 = x3 + x we have the automorphism i : (x, y) �→ (−x,

√−1y) and we
simply let 2i = [2] ◦ i. For Estart : y2 = x3 + 6x2 + x we can obtain 2i as the
composition of its outgoing 2-isogeny to y2 = x3 +x, the automorphism i on the
latter curve, and the dual of the said 2-isogeny.

5.1 Construction

There is a reasonable chance that the prime factorization of c only involves prime
factors that are congruent to 1 mod 4; this chance is inversely proportional to√

a by a theorem of Landau (see Sect. 10 for a more detailed discussion). As far
as we are aware, the only known way to find out is by factoring c explicitly. Once
this factorization is done and all prime factors are indeed congruent to 1 mod 4,
we can efficiently write c = u2 + 4v2 = (u + 2iv)(u − 2iv). Then

γstart = [u] + [v] ◦ 2i

is an easy-to-evaluate degree-c endomorphism of Estart.

Remark 3. The method for finding u and v is classical: e.g., in the squarefree
case, one computes ∏

primes �|c
gcd(z� + i, �)

using Euclid’s algorithm over the Gaussian integers; here z� is any integer such
that z2� ≡ −1 mod �. The outcome is among ±(u + 2iv),±i(u + 2iv).

Then in order to find γ, we use the isogeny τ from input (iv). Let τ̃ : Estart →
C be the isogeny with kernel γstart(τ(E0[3β])) = γstart(ker τ̂). Then τ̃ ◦γstart ◦ τ :
E0 → C is a 32βc-isogeny vanishing on E0[3β], so it factors over [3β] and we can
let

γ =
τ̃ ◦ γstart ◦ τ

3β
.

It remains to see that γ is easy to evaluate on our 2a-torsion points P0 and Q0.
For this, we first discuss a special case.

5.2 Evaluation: Case β ≤ b

This is the only relevant case when attacking SIDH with base curve E0 = Estart,
as in the case of SIKE: while β will grow during our search-to-decision reduction,
it will never grow beyond b. But then we always have that ker τ̂ ⊂ Estart[3b] ⊂
Estart(Fp2). So we can explicitly write down a generator T ∈ Estart(Fp2) of ker τ̂
and compute the isogeny τ̃ with kernel 〈γstart(T)〉. Evaluating γ in our 2a-torsion
points P0 and Q0 is then simply done by feeding them to τ̃ ◦γstart ◦τ and scalar-
multiplying the outcome with a multiplicative inverse of 3β modulo 2a. (In fact,
this evaluation will naturally simplify in the context of our search-to-decision
reduction.)

An Efficient Key Recovery Attack on SIDH 431

5.3 Evaluation: General Case

If β > b then we cannot simply evaluate γstart in a generator of ker τ̂ , unless
we base-change to a potentially very large and costly extension of Fp2 . But note
that the isogeny τ̃ is precisely the pushforward isogeny [γstart]∗τ̂ that was studied
in [12, Sect. 4]. This suggests the following alternative method for computing τ̃ .
Note that the specific choice of Estart comes with an explicit isomorphism

ι : End(Estart) → Ostart

where Ostart is a maximal order in the quaternion algebra Bp,∞ = 〈1, i, j, ij〉Q
with i2 = −1 and j2 = −p. Then:

1. First, one converts the isogeny τ̂ : Estart → E0 into a left ideal Iτ̂ ⊂ Ostart

of norm 3β , e.g. following [20, Algorithm 3]. In fact, in the main use cases of
this general method, a large component of the isogeny τ̂ will arise from its
corresponding left Ostart-ideal; so in those cases this step can be simplified.

2. Next, one computes the left ideal Iτ̃ = [(ι(γstart))]∗Iτ̂ using the formula
from [12, Lemma 3]; this ideal again has norm 3β .

3. Finally, one converts the ideal Iτ̃ into a length-β chain of 3-isogenies ema-
nating from Estart, e.g. using [20, Algorithm 2]. Then τ̃ is the composition of
these 3-isogenies.

Then, here too, evaluating γ in P0 and Q0 is done by applying τ̃ ◦ γstart ◦ τ and
scalar-multiplying with an inverse of 3β modulo 2a.

5.4 Away from the Endomorphism 2i

We conclude by remarking that there are many other candidate-ways for con-
structing the isogeny γ. Just to give one similar example, decompositions of the
form c = u2+3v2 are useful as soon as one knows an explicit path to y2 = x3+1,
because this curve comes equipped with an endomorphism ω such that ω2 = −3.
This type of examples will reappear in Sect. 10. A different kind of example is the
case where c is very smooth: in that case one can construct the desired c-isogeny
γ : E0 → C as a composition of small degree isogenies without knowing a path
to some special-featured curve. Even though this event is highly unlikely, there
are tricks to create more leeway; see Sect. 11 for a more elaborate discussion.

6 Key Recovery Algorithm: Basic Version

We resume with the set-up from Sect. 3. The previous sections suggest the fol-
lowing iterative approach to full key recovery. We assume for simplicity that
β = 0, so that the base curve E0 coincides with Estart. Recall that this is the
case in SIKE. In the general case, one should just replace the maps κ̂1 : E1 → E0,
κ̂2κ1 : E2 → E0, . . . below with their compositions with τ .

432 W. Castryck and T. Decru

6.1 Iteration

For the first iteration, choose β1 ≥ 1 minimal such that there exists some α1 ≥ 0
for which

c1 = 2a−α1 − 3b−β1

is of the form u2
1 + 4v2

1 . Write ϕ = ϕ1 ◦ κ1 with κ1 a 3β1-isogeny. To an attacker,
there are a priori 3β1 options for κ1 (this assumes knowledge of an “incoming
isogeny”, otherwise there are 4 · 3β1−1 options). For each of these options, we
can run our decision algorithm on

(ii) the curve E1 = κ1(E0),
(iii) the generators P1 = κ1(2α1P0) and Q1 = κ1(2α1Q0) of E1[2a−α1],
(iv) the 3β1 -isogeny κ̂1 : E1 → E0,
(v) the codomain E; if the guess is correct then it is connected to E1 via the

unknown isogeny ϕ1 of degree 3b−β1 ,
(vi) the generators 2α1P, 2α1Q of E[2a−α1]

where the numbering (ii)–(vi) is chosen to be consistent with our set-up from
Sect. 3. According to our heuristic assumption discussed in Sect. 4.3, we expect
that only the correct guess for κ1 will pass the test; see also Remark 4 below.

Let us discuss in more detail what “running the test” amounts to in this case.
First, one must compute the images Pc1 , Qc1 of P1, Q1 under the isogeny

γ1 =
˜̂κ1 ◦ γstart ◦ κ̂1

3β1
(4)

where ˜̂κ1 : Estart → C1 is the isogeny with kernel γstart(ker κ1), with γstart =
[u1] + 2i ◦ [v1]. Observe that this simplifies: all one should do is compute

Pc1 = 2α1 ˜̂κ1γstart(P0), Qc1 = 2α1 ˜̂κ1γstart(Q0). (5)

Once these points have been computed, one checks whether the quotient of C1×E
by the (2a−α1 , 2a−α1)-subgroup

〈(Pc1 , 2
α1P), (Qc1 , 2

α1Q)〉 (6)

is again a product of elliptic curves. This is done by computing the corresponding
chain of (2, 2)-isogenies. With overwhelming probability, the first a−α1−1 steps
in this chain amount to one gluing step followed by a−α1 −2 Richelot isogenies
between Jacobians of genus 2 curves. An easy “δ = 0 test” then checks whether
or not the last step splits (see Sect. 8 for algorithmic details).

If the test fails, then we try again with a different guess for κ1. We remark
that, even in the case of a wrong guess, the subgroup (6) is always maximally
isotropic with respect to the Weil pairing, so this is not the way in which one can
detect having taken the wrong direction: one really has to perform the gluing
and its successive Richelot walk. (The failure of detecting wrong steps using the
Weil pairing is well-known, see e.g. [21, Sect. 7.2]; with some imagination, our
attack can be viewed as a refinement of this approach.) If the test passes, then
very likely we have found the correct instance of κ1.

An Efficient Key Recovery Attack on SIDH 433

Remark 4. If a wrong guess for κ1 passes the test, then in view of Kani’s theorem
the points Pc1 , Qc1 must be connected to 2α1P , 2α1Q via an anti-isometry coming
from an isogeny ψ : C1 → E fitting in an isogeny diamond configuration of order
2a−α1 . It is easy to see that the natural candidate for ψ, namely the degree
3b+β1(2a−α1 − 3b−β1)-isogeny

ϕ ◦ κ̂1 ◦ γ̂1 : C1 → E,

does not fit in such an isogeny diamond. Indeed, if it would, then we would have

3b+β1(2a−α1 − 3b−β1) = k(2a−α1 − k) (7)

for some natural number
k ∈ [1, 2a−α1 − 1]. (8)

Modulo 2a−α1 the Eq. (7) implies 32b ≡ k2, so that k is congruent to one of

3b, −3b, 3b + 2a−α1−1, −3b + 2a−α1−1.

In particular, k and 2a−α1 −k must be of the form ±3b +λ2a−α1−1. On the other
hand, (7) implies that either k or 2a−α1 − k is divisible by 3b+β1 . This can only
happen if the corresponding λ is non-zero and divisible by 3b, but then (unless
we are in the trivial boundary case α1 = a, β1 = b) we necessarily fall outside
the interval (8): a contradiction.

Remark 5. We did not manage to fully rule out the existence of instances of ψ
other than ϕ◦κ̂1◦γ̂1. However, at least heuristically, the odds are strongly against
this. Indeed, loosely speaking, these instances would need to act on C1[2a−α1] in
essentially the same way as ϕ ◦ κ̂1 ◦ γ̂1 does, and a variation on [43, Lemma 3.1]
shows that there is typically no room for another such isogeny.

Once we have found the correct κ1 we continue from E1. That is, we let
β2 > β1 be minimal such that there is some α2 ≥ 0 for which c2 = 2a−α2−3b−β2 is
of the form u2

2+4v2
2 . Now one tries to recover the 3β2−β1-component κ2 : E1 → E2

such that ϕ1 = ϕ2 ◦ κ2. In this case, for each guess for κ2 one computes

Pc2 = 2α2 ˜κ̂2κ1γstart(P0), Qc2 = 2α2 ˜κ̂2κ1γstart(Q0)

with ˜κ̂2κ1 : Estart → C2 the isogeny with kernel γstart(ker κ2κ1) and γstart =
[u2] + 2i ◦ [v2]. One then checks whether

〈(Pc2 , 2
α2P), (Qc2 , 2

α2Q)〉 ⊂ C2 × E

is reducible or not. By continuing in this way, one eventually retrieves all of ϕ.

434 W. Castryck and T. Decru

6.2 Step Sizes

The gaps between the consecutive integers 0, β1, β2, β3, . . . , βr = b should be as
small as possible, because this reduces the number of possible guesses in each
iteration. More concretely, the expected number of (2, 2)-chains that need to be
computed is

1
2

(
3β1 + 3β2−β1 + 3β3−β2 + . . . + 3b−βr−1

)
. (9)

A necessary condition on each βi is that b−βi is odd, except in the last iteration
where we have βr = b. Indeed, if b − βi > 0 is even then

ci = 2a−αi − 3b−βi ≡ 3 mod 4

cannot be of the form u2
i + 4v2

i . Therefore the best we can hope is that the
sequence grows by steps of two, in which case the estimate (9) becomes about
9b/4. Asymptotically, this hope is too good to be true, but for the concrete SIKE
parameters experiment shows that this optimal estimate lies close to reality, with
the only exceptions corresponding to small βi. This makes sense: as βi grows,
the amount of leeway (i.e., the number of candidate αi’s) grows as well, and
moreover the probability of success increases as ci is allowed to get smaller.
Example: for the parameters of SIKEp434 where we have a = 216 and b = 137,
one quickly finds suitable αi for every even βi in {0, 1, . . . , b} \ {4}.

6.3 Rephrasing in Terms of Bob’s Secret Key

In practice, SIDH comes with public generators PBob, QBob of E0[3b] and Bob’s
secret isogeny ϕ is encoded as the integer

skBob ∈ [0, 3b)

for which ker ϕ = 〈PBob + skBob QBob〉. Upon expanding

skBob = k1 + k23β1 + . . . + kr3βr−1 , ki ∈ [0, 3βi−βi−1 − 1)

(where we let β0 = 0), we observe that

ker κ1 = 〈3b−β1PBob + k13b−β1QBob〉. (10)

So the first iteration amounts to

– guessing k1,
– determining the 3β1 -isogeny ˜̂κ1 : Estart → C1 with kernel γstart(ker κ1), with

ker κ1 as in (10),
– computing the points Pc1 , Qc1 ∈ C1 as in (5),
– checking whether or not the subgroup (6) is reducible.

After finding k1, we proceed with

ker κ2 = 〈3b−β2PBob + (k1 + k23β1)3b−β2QBob〉
in order to determine k2 via trial-and-error, and so on. So the attack deter-
mines skBob digit by digit. If all the gaps are of size two, then this amounts to
determining one base-9 digit of skBob at a time.

An Efficient Key Recovery Attack on SIDH 435

6.4 Walking Backwards

As was pointed out to us by De Feo, it may be simpler to reconstruct Bob’s secret
isogeny ϕ starting from its tail. That is: using the same c1 = 2a−α1 − 3b−β1 , one
instead writes ϕ = κ1 ◦ ϕ1 and one makes a guess for κ̂1. Now writing

E1 = κ̂1(E), P1 = κ̂1(2α1P), Q1 = κ̂1(2α1Q),

letting γstart be our degree-c1 endomorphism on E0 = Estart, and writing

Pc1 = 2α1γstart(P0), Qc1 = 2α1γstart(Q0),

one now should check whether the subgroup

〈(Pc1 , yP1), (Qc1 , yQ1)〉 ⊂ E0 × E1

is reducible, with y a multiplicative inverse of 3β1 modulo 2a−α1 . The advantage
of this approach is that one can work (and keep working throughout the iteration)
with γstart directly, i.e., one avoids the need for transformations of the kind (4).

7 Speed-Ups

We can speed up key recovery as follows:

7.1 Take αi as Large as Possible

If for a given βi there indeed exists some αi ≥ 0 such that ci = 2a−αi − 3b−βi is
positive and free of prime factors congruent to 3 mod 4, then usually αi is not
the unique integer with that property, so there is some freedom. The larger we
choose αi, the smaller will be the length a − αi of our chain of (2, 2)-isogenies.
Therefore, it is more efficient to take larger αi’s.

7.2 Use a Precomputed Table

We have precomputed a table which for all s ∈ {1, 3, 5, . . . , 239} stores the
smallest integer t(s) such that 2t(s) − 3s is a product of primes congruent to 1
modulo 4. It also stores corresponding values for u and v. The table is available
as uvtable.m and can be used as follows: for every candidate-βi such that b−βi is
odd, one checks whether or not t(b−βi) ≤ a. If not, then we proceed to the next
candidate. If yes, then we can use this instance of βi, and we choose a− t(b−βi)
as a corresponding value for αi. This makes sure that αi is as large as possible,
and moreover we have ui, vi readily available, without the need for factoring.
Our table is sufficiently large to be used for each of the proposed parameter sets
for SIKE, up to SIKEp751 targeting NIST’s security level 5.

436 W. Castryck and T. Decru

7.3 Extend Bob’s Secret Isogeny Where Useful

Imagine that some candidate-βi does not admit an integer αi ≥ 0 such that
2a−αi −3b−βi is a product of primes congruent to 1 mod 4 (e.g., because b−βi > 0
is even). But imagine that βi−1 does. Then one can prolong Bob’s secret isogeny
with an arbitrary 3-isogeny ϕ′ and let P ′ = ϕ′(P) and Q′ = ϕ′(Q). Treating ϕ′◦ϕ
as the new secret isogeny, the relevant expression now becomes 2a−αi − 3b+1−βi ,
and we know that there exists some αi ≥ 0 for which this is a product of primes
congruent to 1 mod 4. We can now use our attack to determine Bob’s secret key
modulo 3βi and proceed.

In practice, this means that most step sizes drop from 2 to 1, or in other
words that we are determining one base-3 digit of skBob at a time. The only
possibly larger step occurs at the beginning of the iteration. For instance, in
the case of SIKEp751, the smallest β1 such that 2a − 3b−β1 > 0 is β1 = 6, so
we cannot hope for a smaller first gap. This implies a rather costly start of the
algorithm: of the 3 h15 m that we spent on breaking SIKEp751, almost 2 h were
needed for determining the first 6 out of 239 ternary digits of skBob.

Remark 6. If 2a is considerably smaller than 3b, then it probably makes more
sense to attack Alice’s private key instead of Bob’s, using chains of (3, 3)-
isogenies; see Sect. 11. Of course, if 2a gets much smaller than 3b, then one
enters the regime of the torsion-point attacks from [36,37].

Remark 7. There is a 1/4 probability that the random isogeny ϕ′ matches with
the dual of the last degree-3 component of ϕ. In this case, the wrong guesses are
also at distance 3b−βi from E, so this creates false positives, leaving us clueless
about which is the correct guess. However, this is easy to fix: if multiple guesses
pass the test, then all one needs to do is change ϕ′, and then we have identified
the dual direction once and for all. If this happens, then it will be discovered
when trying to determine the ternary digit at position β2 = β1 + 1 (and this
does not affect the correctness of the first β1 digits, as these were determined
without the use of ϕ′).

8 Computing Chains of (2, 2)-isogenies

In this section we explain how to determine whether or not a (2a, 2a)-subgroup
〈(Pc, P), (Qc, Q)〉 of a product of elliptic curves C ×E is reducible. Throughout,
we avoid dealing with certain exceptional cases, e.g. every genus 2 curve H :
y2 = h(x) = c6x

6 + c5x
5 + . . . + c0 encountered is assumed to satisfy c6 �= 0, so

that it has two places ∞1,∞2 at infinity, and all points on its Jacobian JH that
we deal with are assumed to be representable as (α1, β1) + (α2, β2) − ∞1 − ∞2

with α1 �= α2, so that they have a Mumford representation of the form [x2 +
u1x + u0, v1x + v0]. Moreover, all our chains of (2, 2)-isogenies are assumed to
start off by gluing C×E into a Jacobian, after which we never run into a product
of elliptic curves again, except possibly at the a-th and last step. The exceptions
to these assumptions are expected to occur with probability O(p−1), so we see
no need to discuss nor implement them.

An Efficient Key Recovery Attack on SIDH 437

8.1 Gluing Elliptic Curves into a Jacobian

In the first step we want to glue the curves C and E into the Jacobian of a genus
2 curve H via the (2, 2)-subgroup 〈(2a−1Pc, 2a−1P), (2a−1Qc, 2a−1Q)〉. We also
need to push the points (Pc, P), (Qc, Q) through the corresponding isogeny. The
relevant equations are as follows. We refer to [23, Proposition 4] and its proof for
further details.

Proposition 1. Let C/K : y2 = (x − α1)(x − α2)(x − α3) and E : y2 = (x −
β1)(x − β2)(x − β3) be elliptic curves over a field K of characteristic different
from two. Write Δα for the discriminant of (x − α1)(x − α2)(x − α3) and Δβ

for the discriminant of (x − β1)(x − β2)(x − β3). Furthermore, define

a1 = (α3 − α2)2/(β3 − β2) + (α2 − α1)2/(β2 − β1) + (α1 − α3)2/(β1 − β3),

b1 = (β3 − β2)2/(α3 − α2) + (β2 − β1)2/(α2 − α1) + (β1 − β3)2/(α1 − α3),
a2 = α1(β3 − β2) + α2(β1 − β3) + α3(β2 − β1),
b2 = β1(α3 − α2) + β2(α1 − α3) + β3(α2 − α1),
A = Δβa1/a2, B = Δαb1/b2,

h(x) = − (
A(α2 − α1)(α1 − α3)x2 + B(β2 − β1)(β1 − β3)

)

· (
A(α3 − α2)(α2 − α1)x2 + B(β3 − β2)(β2 − β1)

)

· (
A(α1 − α3)(α3 − α2)x2 + B(β1 − β3)(β3 − β2)

)
.

Then the (2, 2)-isogeny with domain C × E and kernel
〈
((α1, 0), (β1, 0)), ((α2, 0), (β2, 0))

〉

has as codomain the Jacobian of a genus 2 curve H defined by y2 = h(x). The
degree-2 morphisms of the dual isogeny are given by

ϕ1 : H → C

(x, y) �→ (s1/x2 + s2, (Δβ/A3)(y/x3)),
ϕ2 : H → E

(x, y) �→ (t1x2 + t2, (Δα/B3)y),

where

s1 = −(B/A)(a2/a1),

s2 =
1
a1

(
α1(α3 − α2)2

β3 − β2
+

α2(α1 − α3)2

β1 − β3
+

α3(α2 − α1)2

β2 − β1

)
,

t1 = −(A/B)(b2/b1),

t2 =
1
b1

(
β1(β3 − β2)2

α3 − α2
+

β2(β1 − β3)2

α1 − α3
+

β3(β2 − β1)2

α2 − α1

)
.

438 W. Castryck and T. Decru

The morphisms ϕi extend to the Jacobian JH by mapping

[∑

j

Pj

] →
∑

j

ϕ(Pj)

and they combine into a (2, 2)-isogeny Φ : JH → C ×E, the dual of which is our
isogeny of interest. To compute the image of a point (Pc, P) ∈ C × E under this
dual isogeny, it suffices to compute some [D] ∈ Φ−1{(Pc, P)} ⊂ JH and then
double it. Indeed, then we have

2[D] = Φ̂Φ([D]) = Φ̂(Pc, P)

as wanted.
Let D = PH + QH − ∞1 − ∞2 represent a point on JH . As mentioned, we

assume that its Mumford representation is of the form [x2 + u1x + u0, v1x + v0].
To avoid the need for field extensions, let us express ϕi(PH + QH) for i = 1, 2
directly in terms of u0, u1, v0, v1. Note that the divisor ∞1 + ∞2 maps to ∞,
both under ϕ1 and under ϕ2, so it suffices to concentrate on PH + QH .

The calculation is easiest for ϕ2, where the line connecting ϕ2(PH) and
ϕ2(QH) has slope

λ2 = − (Δα/B3)v1
t1u1

and then ϕ2(PH + QH) is
(

λ2
2 +

3∑

i=1

βi − t1(u2
1 − 2u0) − 2t2 , −λ2

(
· · · − t2 + (u0v1 − u1v0)

t1
v1

))
(11)

with · · · denoting a copy of the first coordinate. To derive formulae for ϕ1, note
that this map is of a very similar kind, except for the transformation

·̃ : (x, y) �→ (1/x, y/x3)

by which it is preceded. Let ũ0, ũ1, ṽ0, ṽ1 be the Mumford coordinates of P̃H+Q̃H ,
then an easy calculation shows:

ũ0 =
1
u0

, ũ1 =
u1

u0
, ṽ0 =

u1v0 − u0v1
u2
0

, ṽ1 =
u2
1v0 − u0v0 − u0u1v1

u2
0

.

Thus the formulae for the coordinates of ϕ1(PH + QH) are the same as in (11),
except for swapping the αi’s and the βi’s and for substituting ũ0, ũ1, ṽ0, ṽ1 for
u0, u1, v0, v1.

This gives us 4 equations in the unknowns u0, u1, v0, v1:
⎧
⎪⎪⎨

⎪⎪⎩

x(ϕ1(PH + QH)) = x(Pc),
y(ϕ1(PH + QH)) = y(Pc),
x(ϕ2(PH + QH)) = x(P),
y(ϕ2(PH + QH)) = y(P).

(12)

An Efficient Key Recovery Attack on SIDH 439

Together with the equation

2v2
0 − 2v0v1u1 + v2

1(u
2
1 − 2u0) = 2c0 + (−u1)c1 + (u2

1 − 2u0)c2
+ (−u3

1 + 3u0u1)c3 + (u4
1 − 4u2

1u0 + 2u2
0)c4

+ (−u5
1 + 5u3

1u0 − 5u1u
2
0)c5

+ (u6
1 − 6u4

1u0 + 9u2
1u

2
0 − 2u3

0)c6,

expressing that [D] ∈ JH , this system is expected to have 4 solutions, all of
which are defined over Fp2 . (In practice, we found these solutions by clearing
denominators in (12), running a Gröbner basis computation, and discarding
solutions having zeroes among their coordinates, because they are most likely
parasite solutions that were created when clearing denominators.) Taking any of
these solutions and doubling the corresponding point on JH produces the desired
image of (Pc, P).

8.2 Richelot Isogenies

By assumption, the next a − 2 steps are (2, 2)-isogenies between Jacobians of
genus 2 curves. Such maps are called Richelot isogenies and they are classical;
for a contemporary exposition, including explicit formulae, we refer to Smith’s
thesis [42, Chapter 8]. Starting from a hyperelliptic curve H : y2 = h(x) and a
(2, 2)-subgroup

〈
[g1(x), 0], [g2(x), 0]

〉
, g1(x) = x2 + g11x + g10, g2(x) = x2 + g21x + g20

of its Jacobian, one lets g3(x) = h(x)/(g1(x)g2(x)) = g32x
2 + g31x + g30. One

then computes

δ = det

⎛

⎝
g10 g11 1
g20 g21 1
g30 g31 g32

⎞

⎠

and h′(x) = g′
1(x)g′

2(x)g′
3(x) where

g′
i(x) = δ−1

(
dgj

dx
gk − gj

dgk

dx

)
for (i, j, k) = (1, 2, 3) , (2, 3, 1) , (3, 1, 2).

Then the codomain of our Richelot isogeny is the Jacobian of H ′ : y2 = h′(x). We
use different notation for the coordinates because pushing a point through this
isogeny is done via the “Richelot correspondence”, which is the curve X ⊂ H×H ′

defined by

X : g1(x)g′
1(x) + g2(x)g′

2(x) = yy − g1(x)g′
1(x)(x − x) = 0.

It naturally comes equipped with two projection maps π : X → H, π′ : X → H ′.
The isogeny is then

JH → JH′ : [D] �→ [π′
∗π

∗D] (pullback along π and pushforward along π′).

440 W. Castryck and T. Decru

This means that in order to compute the image of a point [x2 + u1x + u0, v1x +
v0] ∈ JH , one should eliminate the variables x, y from the system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x2 + u1x + u0 = 0,
y = v1x + v0,
y2 = h(x),
g1(x)g′

1(x) + g2(x)g′
2(x) = 0,

yy = g1(x)g′
1(x)(x − x).

We expect the last two equations of its reduced Gröbner basis (with respect to
the lexicographic order with x ≺ y ≺ y ≺ x) to be of the form

y = v′
3x

3 + v′
2x

2 + v′
1x + v′

0, x4 + u′
3x

3 + u′
2x

2 + u′
1x + u′

0 = 0

and then [x4 + u′
3x

3 + u′
2x

2 + u′
1x+ u′

0, v
′
3x

3 + v′
2x

2 + v′
1x+ v′

0] are non-reduced
Mumford coordinates for the image on JH′ .

8.3 Split or Not?

We now want to check whether or not the a-th (2, 2)-isogeny takes us back to
a product of elliptic curves. This is easy: we proceed as if we are dealing with
a Richelot isogeny (just the codomain computation, no points need be pushed
through anymore). It can be shown that the determinant δ vanishes if and only if
the codomain is a product of elliptic curves instead of the Jacobian of a genus 2
curve. Therefore the final and deciding step in our computation simply amounts
to verifying whether or not δ = 0.

9 Magma Code

This paper comes with the following auxiliary Magma files, which are available
at https://homes.esat.kuleuven.be/∼wcastryc/.

– richelot aux.m contains auxiliary functions, mainly for computing chains of
(2, 2)-isogenies, where the functions FromProdtoJac and FromJactoJac are
implementations of the methods described in Sect. 8,

– uvtable.m contains precomputed values of u and v as described in Sect. 7.2,
– runs of SIKE challenge1.m, resp. SIKE challenge2.m, load the first two files

and break $IKEp182, resp. $IKEp217, by running the algorithm from Sect. 6,
incorporating the speed-ups from Sect. 7,

– a run of SIKEp434.m generates random input for the SIKEp434 parameters
and runs the algorithm from Sect. 6, again incorporating the speed-ups from
Sect. 7; to attack SIKEp503, SIKEp610 and SIKEp751 one simply replaces the
line a := 216; b := 137; by

a := 250; b := 159;, a := 305; b := 192;, a := 372; b := 239;,

respectively.

The reader can execute these files in order to confirm the approximate timings
mentioned in Sect. 1. We ran them in Magma V2.27-5 on an Intel Xeon CPU
E5-2630v2 at 2.60 GHz.

https://homes.esat.kuleuven.be/~wcastryc/

An Efficient Key Recovery Attack on SIDH 441

10 Achieving (heuristic) Polynomial Runtime

As x → ∞, the number of integers c in the interval [0, x] that admit a decom-
position of the form c = u2 + 4v2 is asymptotic to

0.5731...√
ln x

x,

by (a variation on) a theorem of Landau, see [41]. We can use this to estimate
the probability that our strategy from Sect. 5 succeeds in constructing an isogeny
γ : E0 → C of degree c = 2a − 3b: it is about 0.5731/

√
a ln 2 ≈ 0.6884/

√
a.

Let us now revisit the first iteration of our key recovery algorithm from
Sect. 6, where we choose β1 ≥ 1 such that there exists an α1 ≥ 0 for which
c1 = 2a−α1 − 3b−β1 is of the form u2

1 + 4v2
1 . In view of Landau’s theorem, we

expect that we should try in the order of
√

a pairs (α1, β1) before we succeed. So
the smallest β1 is expected to be of magnitude 4

√
a. While this is good enough

for breaking the concrete parameter sets of SIKE, the asymptotic runtime is
Lp(1/4) rather than polynomial: indeed, there are 3β1 options for κ1 to guess
from.

Remark 8. The first iteration dominates the overall runtime. Indeed, once suit-
able α1, β1 are found, the expression 2a−α1 −3b−β1 can be recycled in the remain-
ing iterations by extending Bob’s secret isogeny, as explained in Sect. 7.3.

To achieve a polynomial time complexity, we extend the attack from sums of
squares to more general quadratic forms and hope that there is a prime number
n ≤ a such that c1 can be written as u2

1 + nv2
1 . Heuristically, this happens

with overwhelming probability. We can loosely argue this as follows. Based on
a generalization of Landau’s theorem, see again [41], for every n the success
probability remains inversely proportional to

√
a. If the events of being of the

form u2
1 + nv2

1 are “sufficiently independent” as n varies, and if the implicit
constants do not decay too quickly, then the probability of failure overall is in
the order of (

1 − 1√
a

)π(a)

≈
(

1 − 1√
a

)a/ ln a

,

which decreases as e−√
a/ ln a (here π is the prime-counting function). In partic-

ular, we expect that we can simply take β1 = 1 in this case.
Once such a decomposition u2

1 + nv2
1 is found, we proceed as follows. The

techniques from Love and Boneh [29] allow for the polynomial-time construction
of an isogeny ν : Estart → Nstart, where Nstart is an elliptic curve possessing
an endomorphism

√
ni satisfying

√
ni ◦ √

ni = [−n]. Thus we can consider the
degree-c endomorphism γstart = [u1] +

√
ni ◦ [v1] on Nstart. This endomorphism

can be transformed into the desired degree-c isogeny γ : E0 → C along ν ◦ τ :
E0 → Nstart, as outlined in Sect. 5.

442 W. Castryck and T. Decru

Remark 9. In general, when compared to the method from Remark 3, it becomes
more cumbersome to test whether or not an integer of the form c = 2a−3b admits
a decomposition u2 +nv2 (and find corresponding u, v). Again we need to factor

c = �1�2 · · · �s,

where for simplicity we assume that c is squarefree, i.e., the �i are pairwise
distinct primes. Then a necessary condition is that −n is a quadratic residue
modulo each �i. In this case we can decompose �iZ[

√−n] = lili into a product
of two prime ideals of norm �i. We then look for a relation of the form

1 =
s∏

i=1

[li]σi , σi ∈ {±1} (13)

in the ideal-class group of Z[
√−n]. If we succeed, then the ideal

s∏

i=1

l
δσi,1

i l
δσi,−1

i

(with δ·,· the Kronecker delta) is a principal ideal of norm c, hence generated by
u +

√−nv for integers u, v of the desired form. All ideal-class group arithmetic
can be done in polynomial time, see e.g. [22], because n ≤ a. The identity (13) is
of knapsack type, but we nevertheless expect being able to decide if it exists (and
find it) in polynomial time, because the expected value of s is log log c ≈ log a
by the Hardy–Ramanujan theorem.

11 Generalizations

In this final section, we move away from the SIKE set-up and discuss how to
attack more general instantiations of SIDH.

11.1 Arbitrary Torsion

There is no theoretical obstruction to attacking Alice’s public key instead of
Bob’s. In this case one will end up computing a chain of (3, 3)-isogenies, which is
more convoluted, but still doable using the machinery from [4]; see also [17]. The
formulae are still practical and recovering Alice’s private key can then be done
bit by bit (except possibly for some offset of the kind discussed in Sect. 7.3). Alto-
gether, we expect having to compute approximately a chains of (3, 3)-isogenies
of length at most b in order to retrieve Alice’s private key. The expression Δ in
the formulae from [4] plays a similar role as δ in the Richelot isogeny formulae,
in the sense that Δ = 0 occurs if and only if the codomain of the (3, 3)-isogeny is
the product of two elliptic curves, see [6]. Therefore, verifying whether the final
(3, 3)-isogeny splits is just as easy.

More generally, one can attack SIDH when set up using arbitrary small primes
�A, �B instead of just 2, 3, or even more general smooth torsion as in B-SIDH.

An Efficient Key Recovery Attack on SIDH 443

Inherently, this changes nothing to our attack, except that now one must com-
pute (�, �)-isogenies for primes � ≥ 5. For isogenies between Jacobians of genus
2 curves, we refer to the work of Cosset and Robert [8], whose formulae are a
lot more involved than those to compute (2, 2)- and (3, 3)-isogenies, but they
are polynomial in � and likely practical enough to complete the attack. The glu-
ing of elliptic curves and splitting of Jacobians is succinctly explained by Kuhn
in [28]; for a more elaborate and practical exposition, see also [15, Sect. 1.4].
Away from � = 2, 3 we are not aware of a straightforward decision algorithm to
verify whether an (�, �)-subgroup of a given Jacobian of a genus 2 curve results in
a product of elliptic curves: the easiest way seems to try and compute an (�, �)-
isogeny to a Jacobian as in [8] and see if the theta constants fail to create a genus
2 curve. Alternatively, one can write down a system of equations expressing that
our Jacobian is “(�, �)-split” (i.e., (�, �)-isogenous to a product of elliptic curves)
via our given subgroup, and verify whether this system is consistent, see [15].

11.2 Other Starting Curves with a Known Endomorphism Ring

Setting up SIDH with another starting curve E0 with known endomorphism ring
does not prevent the attack. Indeed, in view of [16,44], such a curve can always
be assumed to come equipped with an explicit 3β-isogeny τ : E0 → Estart for
some β ≥ 0, where Estart is any of the curves from (1). Therefore we fall under
the set-up from Sect. 3.

11.3 Base Curves Whose Endomorphism Ring is Unknown

We now discuss the scenario of a base curve E0 without known endomorphism
ring. In particular, no path to Estart is known. As indicated in Sect. 5.4, if c =
2a−3b is smooth then it remains possible to construct the auxiliary isogeny γ. In
fact, if we no longer exploit special features of E0, then it makes more sense to let
γ emanate from E rather than E0, leading us to considering γ◦ϕ : E0 → C. This
isogeny has degree c3b and can again be used to decide whether or not (D) is true:
this should be the case if and only if the subgroup 〈(P0, xγ(P)), (Q0, xγ(Q))〉 ⊂
E0 × C is reducible, with x a multiplicative inverse of 3b modulo 2a.

Remark 10. Computing γ works as follows. Write c as a product of small primes
�1�2 · · · �s and for each i = 1, . . . , s let ri denote the multiplicative order of
−p modulo �i. Because p2-Frobenius acts as [−p], we can find a non-trivial
point in E0[�1] ⊂ E0(Fp2r1) and the subgroup it generates is defined over Fp2 .
So this is the kernel of an Fp2 -rational degree-�1 isogeny γ1 : E0 → C1 that
can be computed and evaluated using formulae of Vélu type. By repeating this
construction, we eventually obtain γ as a composition γs ◦ γs−1 ◦ . . . ◦ γ1 where
each γi is an Fp2 -rational �i-isogeny.

Turning this decision method into a key recovery algorithm works along the
lines of Sect. 6. First, we look for the smallest β ≥ 1 for which there exists an
integer α ≥ 0 such that

c = 2a−α − 3b−β (14)

444 W. Castryck and T. Decru

is smooth (this is an optimistic goal!). Then, for each guess for the first degree-
3β-component κ1 of ϕ, we run our test to see whether or not there exists a
degree-3b−β-isogeny κ1(E0) → E mapping 2ακ1(P0) to 2αP and 2ακ1(Q0) to
2αQ. There are 3β possible guesses, so clearly β should be small enough for this
to be feasible.

Once κ1 is found, we can proceed by steps of degree 3 as in Sect. 7.3. Since
smoothness is such a rare event, it actually makes sense to recycle the expres-
sion (14) all along. Then we can also recycle our auxiliary isogeny γ, i.e., it only
has to be computed once, including pushing through torsion points. Concretely:
when guessing κ2, we extend γ with an extra degree-3 isogeny ϕ′ : C → E′ and
we test if we took the right direction by checking whether or not there is a degree
c3b−β-isogeny mapping 2ακ2κ1(P0) to 2αϕ′γ(P) and 2ακ2κ1(Q0) to 2αϕ′γ(Q).
Iterating this process will recreate the entire isogeny chain.

In summary: as soon as we can find a small β ≥ 1 with a corresponding α ≥ 0
such that (14) is smooth, then our attack applies. The likelihood of finding a
smooth c of this form is very small, but there are at least two methods for
creating more leeway for an attacker:

– We can extend Bob’s secret isogeny ϕ : E0 → E by an arbitrary isogeny
ε : E → F of some smooth degree e and work with ε ◦ ϕ instead of ϕ. This
allows us to look for a smooth integer of the form c = 2a−α − e3b−β and
construct a corresponding degree-c isogeny γ : F → C.

– A second tweak can be obtained by any algorithm that can efficiently solve
the following problem for a fixed d:

• Let H/Fp2 be a genus 2 curve with superspecial Jacobian J , and d > 1
an integer. Is there a (d, d)-isogeny Ψ : J → A such that A is a product
of elliptic curves?

Indeed, this allows us to work with expressions of the form c = d2a−α −
e3b−β . Each test then amounts to computing a (2a−α, 2a−α)-isogeny, using
the torsion point data as before, and then checking if the resulting Jacobian
is (d, d)-split. Verifying whether a given Jacobian is (d, d)-split is likely to
be most efficient by means of a computation similar to those in [15], [28].
Alternatively, one can exhaust over all O(d3) outgoing (d, d)-isogenies.

E.g., consider a = 110 and b = 67 as in $IKEp217, along with the identity

59 · 67 · 107 · 4432 · 487 · 1049 · 2711 · 8297 = 109 · 2110−35 − 119 · 367−20.

Assuming that we do not know a path from E0 to Estart, we could still try to
recover Bob’s key by computing

– one-time isogenies E
ε−→ F

γ−→ C, dominated in cost by a 2711-isogeny and
a 8297-isogeny over extension fields of respective degrees 2710 and 2074,

– computing all 320-isogenous neighbours of the base curve, gluing them
together by means of a (275, 275)-isogeny and checking which one of the result-
ing Jacobians is (109, 109)-split.

The second step immediately reveals the first 20 ternary digits of Bob’s secret
key and we can then easily find the remaining digits as explained above.

An Efficient Key Recovery Attack on SIDH 445

Remark 11. It was pointed out to us by De Feo and Wesolowski that the above
considerations lead to an algorithm which, heuristically, runs in time Lp(1/2+ε).
To see this, it suffices to pick α, β in the order of

√
a. Then, by letting d, e range

over random integers in [1, 2
√

a], we can think of c as a random integer of size
roughly 2a. Following well-known heuristics [5], after about

√
a

√
a = Lp(1/2 + ε)

tries we expect to find an instance of c that is 2
√

a-smooth. Using these values
of c, d, e, the remainder of the attack is expected to run in time Lp(1/2).

Acknowledgements. We thank Craig Costello, Luca De Feo, Luciano Maino, Fred-
erik Vercauteren, Benjamin Wesolowski, Yifan Zheng and the anonymous reviewers for
helpful discussions, questions and suggestions.

References

1. Azarderakhsh, R., Jao, D., Leonardi, C.: Post-quantum static-static key agreement
using multiple protocol instances. In: Adams, C., Camenisch, J. (eds.) Selected
Areas in Cryptography - SAC 2017, pp. 45–63. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-72565-9 3

2. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symbolic Comput. 24(3–4), 235–265 (1997). https://doi.org/10.1006/
jsco.1996.0125

3. Brock, B.: Superspecial curves of genera two and three. Ph.D. thesis, Princeton
University (1994)

4. Bruin, N., Flynn, E.V., Testa, D.: Descent via (3, 3)-isogeny on Jacobians of genus
2 curves. Acta Arithmetica 165(3), 201–223 (2014). http://eudml.org/doc/279018

5. Canfield, E.R., Erdös, P., Pomerance, C.: On a problem of Oppenheim concerning
“factorisatio numerorum.” J. Number Theory 17(1), 1–28 (1983). https://doi.org/
10.1016/0022-314X(83)90002-1

6. Castryck, W., Decru, T.: Multiradical isogenies. In: Anni, S., Karemaker, V.,
Lorenzo Garćıa, E. (eds.) 18th International Conference Arithmetic, Geometry,
Cryptography, and Coding Theory, Contemporary Mathematics, vol. 779, pp. 57–
89. American Mathematical Society (2022). https://doi.org/10.1090/conm/779

7. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an effi-
cient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.)
Advances in Cryptology - ASIACRYPT 2018, vol. 3, pp. 395–427. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03332-3 15

8. Cosset, R., Robert, D.: Computing (�, �)–isogenies in polynomial time on Jacobians
of genus 2 curves. Math. Comput. 84(294), 1953–1975 (2015). https://www.ams.
org/journals/mcom/2015-84-294/S0025-5718-2014-02899-8/

9. Costello, C.: B-SIDH: supersingular isogeny Diffie-Hellman using twisted torsion.
In: Moriai, S., Wang, H. (eds.) Advances in Cryptology - ASIACRYPT 2020, vol.
2, pp. 440–463. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-
3 15

10. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Paper
2006/291 (2006). https://eprint.iacr.org/2006/291

https://doi.org/10.1007/978-3-319-72565-9_3
https://doi.org/10.1007/978-3-319-72565-9_3
https://doi.org/10.1006/jsco.1996.0125
https://doi.org/10.1006/jsco.1996.0125
http://eudml.org/doc/279018
https://doi.org/10.1016/0022-314X(83)90002-1
https://doi.org/10.1016/0022-314X(83)90002-1
https://doi.org/10.1090/conm/779
https://doi.org/10.1007/978-3-030-03332-3_15
https://www.ams.org/journals/mcom/2015-84-294/S0025-5718-2014-02899-8/
https://www.ams.org/journals/mcom/2015-84-294/S0025-5718-2014-02899-8/
https://doi.org/10.1007/978-3-030-64834-3_15
https://doi.org/10.1007/978-3-030-64834-3_15
https://eprint.iacr.org/2006/291

446 W. Castryck and T. Decru

11. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014). https://
doi.org/10.1515/jmc-2012-0015

12. De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: SQISign: compact
post-quantum signatures from quaternions and isogenies. In: Moriai, S., Wang, H.
(eds.) Advances in Cryptology - ASIACRYPT 2020, vol. 1, pp. 64–93. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-64837-4 3

13. De Feo, L., et al.: Séta: supersingular encryption from torsion attacks. In: Tibouchi,
M., Wang, H. (eds.) Advances in Cryptology - ASIACRYPT 2021, vol. 4, pp. 249–
278. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5 9

14. De Feo, L., et al.: (open project): Is SIKE broken yet? (2022). https://
issikebrokenyet.github.io/

15. Djukanovic, M.: Split Jacobians and lower bounds on heights. Ph.D. thesis, Uni-
versité de Bordeaux (2017)

16. Eisenträger, K., Hallgren, S., Lauter, K., Morrison, T., Petit, C.: Supersingular
isogeny graphs and endomorphism rings: Reductions and solutions. In: Nielsen,
J.B., Rijmen, V. (eds.) Advances in Cryptology - EUROCRYPT 2018, vol. 3, pp.
329–368. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 11

17. Flynn, E.V., Ti, Y.B.: Genus two isogeny cryptography. In: Ding, J., Steinwandt, R.
(eds.) Post-quantum Cryptography, pp. 286–306. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-25510-7 16

18. Fouotsa, T.B., Moriya, T., Petit, C.: M-SIDH and MD-SIDH: countering SIDH
attacks by masking information. Cryptology ePrint Archive, Paper 2023/013
(2023). https://eprint.iacr.org/2023/013

19. Fouotsa, T.B., Petit, C.: SHealS and HealS: isogeny-based PKEs from a key valida-
tion method for SIDH. In: Tibouchi, M., Wang, H. (eds.) Advances in Cryptology
- ASIACRYPT 2021, vol. 4, pp. 279–307. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-92068-5 10

20. Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature schemes
based on supersingular isogeny problems. In: Takagi, T., Peyrin, T. (eds.) Advances
in Cryptology - ASIACRYPT 2017, vol. 1, pp. 3–33. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 1

21. Galbraith, S.D., Vercauteren, F.: Computational problems in supersingular elliptic
curve isogenies. Quantum Inf. Process. 17(10), 1–22 (2018). https://doi.org/10.
1007/s11128-018-2023-6

22. Hafner, J.L., McCurley, K.S.: A rigorous subexponential algorithm for computation
of class groups. J. Am. Math. Soc. 2(4), 837–850 (1989). https://doi.org/10.1090/
S0894-0347-1989-1002631-0

23. Howe, E.W., Leprévost, F., Poonen, B.: Large torsion subgroups of split Jacobians
of curves of genus two or three. Forum Math. 12(3), 315–364 (2000). https://doi.
org/10.1515/form.2000.008

24. Jao, D., et al.: Supersingular Isogeny Key Encapsulation. https://csrc.nist.gov/
Projects/post-quantum-cryptography/round-4-submissions

25. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.Y. (ed.) Post-Quantum Cryptography, pp. 19–
34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

26. Kani, E.: The number of curves of genus two with elliptic differentials. J. für die
reine und angewandte Mathematik 1997(485), 93–122 (1997). https://doi.org/10.
1515/crll.1997.485.93

https://doi.org/10.1515/jmc-2012-0015
https://doi.org/10.1515/jmc-2012-0015
https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/978-3-030-92068-5_9
https://issikebrokenyet.github.io/
https://issikebrokenyet.github.io/
https://doi.org/10.1007/978-3-319-78372-7_11
https://doi.org/10.1007/978-3-030-25510-7_16
https://doi.org/10.1007/978-3-030-25510-7_16
https://eprint.iacr.org/2023/013
https://doi.org/10.1007/978-3-030-92068-5_10
https://doi.org/10.1007/978-3-030-92068-5_10
https://doi.org/10.1007/978-3-319-70694-8_1
https://doi.org/10.1007/s11128-018-2023-6
https://doi.org/10.1007/s11128-018-2023-6
https://doi.org/10.1090/S0894-0347-1989-1002631-0
https://doi.org/10.1090/S0894-0347-1989-1002631-0
https://doi.org/10.1515/form.2000.008
https://doi.org/10.1515/form.2000.008
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1515/crll.1997.485.93
https://doi.org/10.1515/crll.1997.485.93

An Efficient Key Recovery Attack on SIDH 447

27. Kohel, D., Lauter, K., Petit, C., Tignol, J.P.: On the quaternion �-isogeny path
problem. LMS J. Comput. Math. 17(A), 418–432 (2014). https://doi.org/10.1112/
S1461157014000151

28. Kuhn, R.M.: Curves of genus 2 with split Jacobian. Trans. Am. Math. Soc. 307(1),
41–49 (1988). https://doi.org/10.2307/2000749

29. Love, J., Boneh, D.: Supersingular curves with small non-integer endomorphisms.
In: Algorithmic Number Theory Symposium (ANTS-XIV), MSP Open Book
Series, vol. 4, pp. 7–22 (2020). https://doi.org/10.2140/obs.2020.4.7

30. Maino, L., Martindale, C.: An attack on SIDH with arbitrary starting curve. Cryp-
tology ePrint Archive, Paper 2022/1026 (2022). https://eprint.iacr.org/2022/1026

31. Martindale, C., Panny, L.: How to not break SIDH. Cryptology ePrint Archive,
Paper 2019/558 (2019). https://eprint.iacr.org/2019/558, Presented at CFAIL
2019, Columbia University

32. Microsoft: SIKE cryptographic challenge. https://www.microsoft.com/en-us/
msrc/sike-cryptographic-challenge

33. National Institute of Standards and Technology (NIST): Post-quantum cryp-
tography standardization process. https://csrc.nist.gov/projects/post-quantum-
cryptography

34. Oudompheng, R.: A note on implementing direct isogeny determination in the
Castryck–Decru attack. https://www.normalesup.org/∼oudomphe/textes/202208-
castryck-decru-shortcut.pdf

35. Oudompheng, R., Pope, G.: A note on reimplementing the Castryck–Decru attack
and lessons learned for SageMath. Cryptology ePrint Archive, Paper 2022/1283
(2022). https://eprint.iacr.org/2022/1283

36. Petit, C.: Faster algorithms for isogeny problems using torsion point images. In:
Takagi, T., Peyrin, T. (eds.) Advances in Cryptology - ASIACRYPT 2017, vol.
2, pp. 330–353. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-
9 12

37. de Quehen, V., et al.: Improved torsion-point attacks on SIDH variants. In: Malkin,
T., Peikert, C. (eds.) Advances in Cryptology - CRYPTO 2021, vol. 3, pp. 432–470.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9 15

38. Robert, D.: Breaking SIDH in polynomial time. Cryptology ePrint Archive, Paper
2022/1038 (2022). https://eprint.iacr.org/2022/1038

39. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryp-
tology ePrint Archive, Paper 2006/145 (2006). https://eprint.iacr.org/2006/145

40. SageMath: The Sage Mathematics Software System. https://www.sagemath.org
41. Shanks, D., Schmid, L.P.: Variations on a theorem of Landau. Part I. Math. Com-

put. 20(96), 551–569 (1966). https://doi.org/10.2307/2003544
42. Smith, B.: Explicit endomorphisms and correspondences. Ph.D. thesis, University

of Sydney (2006)
43. Urbanik, D., Jao, D.: SoK: the problem landscape of SIDH. In: Emura, K., Seo,

J.H., Watanabe, Y. (eds.) Proceedings of the 5th ACM on ASIA Public-Key Cryp-
tography Workshop, APKC@AsiaCCS, Incheon, Republic of Korea, 4 June 2018,
pp. 53–60. ACM (2018). https://doi.org/10.1145/3197507.3197516

44. Wesolowski, B.: The supersingular isogeny path and endomorphism ring prob-
lems are equivalent. In: 2021 IEEE 62nd Annual Symposium on Foundations
of Computer Science (FOCS), pp. 1100–1111 (2022). https://doi.org/10.1109/
FOCS52979.2021.00109

45. Wesolowski, B.: Understanding and improving the Castryck–Decru attack on SIDH
(2022). https://www.bweso.com/papers.php

https://doi.org/10.1112/S1461157014000151
https://doi.org/10.1112/S1461157014000151
https://doi.org/10.2307/2000749
https://doi.org/10.2140/obs.2020.4.7
https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2019/558
https://www.microsoft.com/en-us/msrc/sike-cryptographic-challenge
https://www.microsoft.com/en-us/msrc/sike-cryptographic-challenge
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://www.normalesup.org/~oudomphe/textes/202208-castryck-decru-shortcut.pdf
https://www.normalesup.org/~oudomphe/textes/202208-castryck-decru-shortcut.pdf
https://eprint.iacr.org/2022/1283
https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1007/978-3-030-84252-9_15
https://eprint.iacr.org/2022/1038
https://eprint.iacr.org/2006/145
https://www.sagemath.org
https://doi.org/10.2307/2003544
https://doi.org/10.1145/3197507.3197516
https://doi.org/10.1109/FOCS52979.2021.00109
https://doi.org/10.1109/FOCS52979.2021.00109
https://www.bweso.com/papers.php

A Direct Key Recovery Attack on SIDH

Luciano Maino1(B), Chloe Martindale1, Lorenz Panny2, Giacomo Pope1,3,
and Benjamin Wesolowski4,5,6

1 University of Bristol, Bristol, UK
{luciano.maino,chloe.martindale}@bristol.ac.uk, giacomo.pope@nccgroup.com

2 Academia Sinica, Taipei, Taiwan
lorenz@yx7.cc

3 NCC Group, Cheltenham, UK
4 Univ. Bordeaux, CNRS, Bordeaux INP, IMB, UMR 5251, 33400 Talence, France

benjamin.wesolowski@math.u-bordeaux.fr
5 INRIA, IMB, UMR 5251, 33400 Talence, France

6 ENS de Lyon, CNRS, UMPA, UMR 5669, Lyon, France

Abstract. We present an attack on SIDH utilising isogenies between
polarized products of two supersingular elliptic curves. In the case of
arbitrary starting curve, our attack (discovered independently from [8])
has subexponential complexity, thus significantly reducing the security
of SIDH and SIKE. When the endomorphism ring of the starting curve
is known, our attack (here derived from [8]) has polynomial-time com-
plexity assuming the generalised Riemann hypothesis. Our attack applies
to any isogeny-based cryptosystem that publishes the images of points
under the secret isogeny, for example Séta [13] and B-SIDH [11]. It does
not apply to CSIDH [9], CSI-FiSh [3], or SQISign [14].

Keywords: SIDH · Elliptic curve · Isogeny · Cryptanalysis

1 Introduction

Supersingular Isogeny Diffie-Hellman (SIDH) [19] is a key exchange proposed
in 2011 by Jao and De Feo. It has since become an archetype of isogeny-based

Author list in alphabetical order; see https://ams.org/profession/leaders/
CultureStatement04.pdf. This paper is a merge of [24] by Maino and Martin-
dale, which gives an attack on SIDH, and [39] by Wesolowski, which constitutes the
proof of the main result in this paper. The implementation and algorithmic details of
the implementation were contributed by Panny and Pope. This research was funded in
part by the UK Engineering and Physical Sciences Research Council (EPSRC) Centre
for Doctoral Training (CDT) in Trust, Identity, Privacy and Security in Large-scale
Infrastructures (TIPS-at-Scale) at the Universities of Bristol and Bath, the Academia
Sinica Investigator Award AS-IA-109-M01, the Agence Nationale de la Recherche
under grant ANR MELODIA (ANR-20-CE40-0013), and the France 2030 program
under grant agreement No. ANR-22-PETQ-0008 PQ-TLS.

c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14008, pp. 448–471, 2023.
https://doi.org/10.1007/978-3-031-30589-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30589-4_16&domain=pdf
https://ams.org/profession/leaders/CultureStatement04.pdf
https://ams.org/profession/leaders/CultureStatement04.pdf
https://doi.org/10.1007/978-3-031-30589-4_16

A Direct Key Recovery Attack on SIDH 449

cryptography, a branch of cryptography whose security relates to the presumed
hardness of computing isogenies: given two (supersingular) elliptic curves over
a finite field, find an isogeny between them. Many other such cryptosystems
have been developed [3,9,11,13,14], fuelled by the presumed quantum hardness
of the isogeny problem, thereby providing security against quantum adversaries.
The influence of SIDH is notably illustrated by its incarnation “Supersingular
Isogeny Key Encapsulation” (SIKE) [18], a primitive submitted to the NIST
standardisation effort to find a new quantum-safe cryptographic standard [27].

Yet, the security of SIDH (hence, SIKE) is not guaranteed by the hardness of
the ‘pure’ isogeny problem. It in fact relies on a variant, where the image of some
torsion points under a hidden isogeny are also revealed. This is the supersingular
isogeny with torsion (SSI-T) problem.

Supersingular Isogeny with Torsion (SSI-T):
Given coprime integers A and B, two supersingular elliptic curves E0/Fp2

and EA/Fp2 connected by an unknown degree-A isogeny ϕA : E0 → EA,
and given the restriction of ϕA to the B-torsion of E0, recover an isogeny ϕ
matching these constraints.

This variant has been shown to be weaker than the pure isogeny problem in
a line of work pioneered by Petit [30] in 2017 and expanded in multiple papers in
the last 5 years [5,16,31]. However, the SIKE parameters had not been affected
by these attacks, which all applied only to variants of SIDH.

In this paper, we present an algorithm that solves SSI-T for parameters that
were believed to be secure, including SIKE as well as a few other similar protocols
such as B-SIDH [11] and Séta [13]. The first such polynomial-time algorithm was
described (and demonstrated against SIKE) by Castryck and Decru [8]: they
show that when the endomorphism ring End(E0) is known (as is the case in
SIKE, B-SIDH or Séta), then SSI-T can be solved in polynomial time, under
plausible heuristic assumptions. The idea of the algorithm of [8] is the following.
First, they guess a small part of the isogeny ϕA. Based on this guess, they
construct some isogeny Φ : EA × E → X, where E is a carefully crafted elliptic
curve, and X is some abelian surface. They prove that the guess is correct if
X is itself a product of elliptic curves, which can be efficiently detected. This
guessing approach allows one to reconstruct ϕA one ternary-bit at a time, at a
cost dominated by the many 2-dimensional isogenies Φ that must be computed.

The present work is semi-independent: it is the merge of a mostly indepen-
dently discovered1 attack against SIDH [24], with another work [39] subsequent
to [8]. In addition to the independent discovery to [8] of such an attack, our main
contributions reside in:

Practicality: We develop methods fast enough to possibly find constructive
applications. Similarly to [8], we solve SSI-T via isogenies between elliptic
products like EA × E, but we avoid using the iterative ‘decision strategy’.

1 Maino had been working together with Castryck and Decru on a tangentially related
project using similar underlying ideas.

450 L. Maino et al.

Instead, we recover the isogeny ϕA directly from a component of the matrix
form of a (B,B)-isogeny, for some integer B > 0. As a result, in favourable
settings, only one 2-dimensional isogeny computation is required,2 instead of
one per ternary-bit of the secret.
Provability: When End(E0) is known, we prove that our method runs
in provable polynomial time, assuming the generalised Riemann hypothesis
(GRH). When End(E0) is unknown, we prove that there is a subexponen-
tial attack.

The attack is further supported by a SageMath [36] proof-of-concept imple-
mentation available at:

https://github.com/Breaking-SIDH/direct-attack

In the case where End(E0) is unknown, Robert [32] proved, following the first
version of this work, that there also is a polynomial-time attack. This is asymp-
totically the fastest known attack in this setting. However, it involves the com-
putation of a special 8-dimensional endomorphism of E4

0 ×E4
A (or 4-dimensional,

under plausible heuristics), which may limit its practicality.
Finally, note that as in [8] and [32], our attack makes full use of the public

torsion points, and as such, it has no effect on isogeny-based cryptosystems that
do not publish images of points under a secret isogeny, such as CSIDH [9], CSI-
FiSh [3], and SQISign [14].

Outline

The success of our attack on the SSI-T problem relies on Theorem 1, which
is proved in Sect. 2. This section additionally includes background material on
polarized abelian surfaces. Section 3 describes a subexponential algorithm to
solve the SSI-T problem without using knowledge of the endomorphism ring of
the starting curve. In Sect. 4, we then show how knowledge of the endomorphism
ring improves the performance of the attack, resulting in a provable polynomial
time algorithm to solve the SSI-T problem. The paper concludes with Sect. 5
which we use to discuss future work.

Acknowledgements

We would like to thank Christophe Petit for useful comments regarding methods
to compute isogenies with irrational kernel points and Eda Kirimli, for useful
discussions. We are also extremely grateful to Luca De Feo, who shared with us a
better method to find attack parameters during ANTS-XV, which in particular
led to the argument in this paper that our algorithm has subexponential com-
plexity. We would also like to thank COSIC and KU Leuven, especially Wouter
Castryck and Thomas Decru, for hosting Luciano Maino as an intern, sparking
his collaboration that led to this paper.

2 Together with the computation of the image of one point under said isogeny.

https://github.com/Breaking-SIDH/direct-attack

A Direct Key Recovery Attack on SIDH 451

2 The Core of the Attack

Let all notation be as in the SSI-T problem statement above. The core of the
attack is the following. First suppose that B > A, and that we have access to
some isogeny ϕf : E → E0 of degree f = B −A, given in any form that allows to
evaluate it on the B-torsion. We postpone the discussion on finding such a ϕf ,
as the method may depend on the context. Assuming ϕf is provided, we give
an algorithm (Algorithm 1) that recovers a generator of ker(ϕA) (i.e., solves
SSI-T), at a cost dominated by one evaluation of a (B,B)-isogeny with known
kernel (with an A-torsion point as input), and two evaluations of ϕ̂f (with two
B-torsion points as input). In this section, we focus on the design and analysis
of Algorithm 1 for this core task.

The idea is the following. Write gA : E → F for the isogeny of kernel
ϕ̂f (ker(ϕA)), and gf : F → EA for the isogeny of kernel gA(ker(ϕf)), so that the
following diagram commutes:

E0 EA

E F .

ϕf

ϕA

gA

gf

(1)

Now, consider the 2-dimensional isogeny

Φ : E × EA −→ E0 × F
(P,Q) �−→ (ϕf (P) − ϕ̂A(Q), gA(P) + ĝf (Q)).

Observe that −ϕ̂A is equal to the composition

EA

0×idEA−−−−−→ E × EA
Φ−→ E0 × F

pr1−−→ E0,

where the first map is the inclusion map with image {0} × EA, the middle
map is Φ, and the last is the natural projection map. Assuming that each map
in this composition is efficiently computable, then we can evaluate ϕ̂A on any
input. That directly leads to a recovery of ker(ϕA), hence to a solution of SSI-
T. The difficulty is in proving that each step is indeed efficiently computable.
The computation of the first inclusion is trivial. The step Φ requires a delicate
analysis of this 2-dimensional isogeny, to prove that its kernel can be computed,
and that this kernel permits an efficient evaluation of Φ. The last step—the
projection—may seem clear, but in fact hides a subtlety. The decomposition
E0×F is only available if Φ is of a certain kind: it must behave well with respect
to the implicit product polarizations of the domain and codomain.

452 L. Maino et al.

2.1 Isogenies Between Abelian Surfaces

Abelian surfaces can come equipped with a polarization. A polarization of X is
an isogeny λX : X → X∨ to the dual variety X∨. For a primer on the theory of
polarizations, we refer the reader to [26]; for the purpose at hand, we recall in
this section the relevant useful facts as a black-box.

Computationally, a polarization is essentially the data of an equation of the
abelian surface. A relevant example: given two elliptic curves E1 and E2, the
surface E1 × E2 comes naturally equipped with a product polarization λE1,E2 ,
which is computationally represented by the data of the equations of E1 and E2.

The importance of this notion becomes clear in the context of supersingular
curves. If E1/Fp2 and E2/Fp2 are supersingular, the abelian surface E1 × E2 is
called superspecial. There is a unique isomorphism class of superspecial abelian
surfaces over Fp2 . In particular, if E3 and E4 are any other supersingular curves
defined over Fp2 , then E1 × E2 and E3 × E4 are isomorphic as abelian surfaces.
However, they can be distinguished by their implicit product polarizations: the
polarized surfaces (E1 ×E2, λE1,E2) and (E3 ×E4, λE3,E4) are isomorphic if and
only if E1

∼= Ei and E2
∼= Ej for {i, j} = {3, 4}.

Given a positive integer B, a B-isogeny Φ : (X,λX) → (Y, λY) is an isogeny
such that [B] ◦ λX = Φ∨ ◦ λY ◦ Φ, where Φ∨ : Y ∨ → X∨ is the dual isogeny. A
(B,B)-isogeny is a B-isogeny between abelian surfaces whose kernel is isomor-
phic to (Z/BZ)2. As we shall mention in Sect. 3.1, there are algorithms which,
given a source (X,λX), and the kernel of a (B,B)-isogeny Φ : (X,λX) → (Y, λY),
compute the target (Y, λY) and can evaluate Φ at points, in time polynomial in
log(B) and in the largest prime factor of B. In particular, if

Φ : E1 × E2 −→ E3 × E4

is a (B,B)-isogeny with respect to the product polarizations, the algorithm is
given as input equations of E1 and E2, and generators of ker(Φ), and recovers
equations for E3 and E4. It can also take as input two points P1 ∈ E1 and
P2 ∈ E2, and output P3 and P4 such that Φ(P1, P2) = (P3, P4).

Finally, as products of elliptic curves will be of particular interest, let us
introduce some convenient notation. Given four elliptic curves E1, E2, E

′
1, and

E′
2, and four isogenies ϕij : Ei → E′

j for i, j ∈ {1, 2}, the matrix

M =
(

ϕ11 ϕ12

ϕ21 ϕ22

)

,

represents the isogeny

Φ : E1 × E2 −→ E′
1 × E′

2

(P1, P2) �−→ (ϕ11(P1) + ϕ12(P2), ϕ21(P1) + ϕ22(P2)).

We call M a matrix form of Φ.

2.2 The Algorithm

Our attack is a consequence of the following theorem, which is based on a cri-
terion due to Kani [20]. This criterion determines whether a polarized isogeny
originating from an elliptic product admits an elliptic product as codomain.

A Direct Key Recovery Attack on SIDH 453

Theorem 1. Let f , A, and B be pairwise coprime integers such that B = f +A,
and let E, EA, E0, and F be elliptic curves connected by the following commu-
tative diagram of isogenies:

E0 EA

E F

ϕf
ϕ

ϕA

gA

gf

(2)

where deg(ϕf) = deg(gf) = f and deg(ϕA) = deg(gA) = A.
The isogeny

Φ =
(

ϕf −ϕ̂A

gA ĝf

)

∈ Hom(E × EA, E0 × F),

is a (B,B)-isogeny with respect to the natural product polarizations on E × EA

and E0 × F , and has kernel ker(Φ) = {([A]P,ϕ(P)) | P ∈ E[B]}.
This theorem allows us to compute the isogeny Φ efficiently (as long as B

is smooth—preferably a power of 2 for good practical performance). Further-
more, it implies that this computation leads to the product polarization on the
codomain. It leads to the following result.

Corollary 1. Algorithm 1 is correct and costs two evaluations of ϕ̂f on B-torsion
input points, at most two evaluations of a (B,B)-isogeny (given by its kernel) on
A-torsion input points, and one inversion modulo B.

Algorithm 1: Solving SSI-T, provided an isogeny of degree B − A.
Input: Coprime integers A and B, two supersingular elliptic curves E0/Fp2 and

EA/Fp2 connected by an unknown degree-A isogeny ϕA : E0 → EA of
cyclic kernel, a basis {PB , QB} of E0[B], a basis {PA, QA} of EA[A], the
image points P ′

B = ϕA(PB), Q′
B = ϕA(QB), an isogeny ϕf : E → E0 of

degree f = B − A.
Output: A generator of ker(ϕA).

1 Let c ∈ Z such that cf ≡ 1 mod B.
2 Let P ′′

B = [c] ◦ ϕ̂f (PB) and Q′′
B = [c] ◦ ϕ̂f (QB). We have ϕA ◦ ϕf (P ′′

B) = P ′
B , and

ϕA ◦ ϕf (Q′′
B) = Q′

B .
3 Let Φ : E × EA → E0 × F be the (B, B)-isogeny with kernel

〈([A]P ′′
B , P ′

B), ([A]Q′′
B , Q′

B))〉.
4 Compute Φ(0, PA) = (P ′

A, x). We have P ′
A = ϕ̂A(PA).

5 Return P ′
A if it has order A.

6 Else, compute Φ(0, QA) = (Q′
A, y) (satisfying Q′

A = ϕ̂A(QA)), and return Q′
A.

454 L. Maino et al.

Remark 1. Note that while the algorithm necessitates at most two evaluations
of the (B,B)-isogeny, a single one is often sufficient. Indeed, suppose the basis
{PA, QA} is uniformly random. If, for instance, A = 2a, then [2a−1]PA �∈ ker ϕ̂A

(i.e., P ′
A has order A) with probability 2/3. Even if P ′

A does not have order
precisely A, it is likely to be close to A, in which case P ′

A generates most of
ker(ϕA), and a simple exhaustive search can recover the missing information.

2.3 Proof of Theorem 1

In this section, we prove Theorem 1.

Prelude on the Adjoint. Consider an isogeny Φ : E1 × E2 → E′
1 × E′

2 repre-

sented by the matrix M =
(

ϕ11 ϕ12

ϕ21 ϕ22

)

, where ϕij : Ei → E′
j . The adjoint of Φ

is the isogeny Φ̃ : E′
1 × E′

2 → E1 × E2 represented by the matrix

M̃ =
(

ϕ̂11 ϕ̂21

ϕ̂12 ϕ̂22

)

.

Our interest in this notion is that it offers a practical characterisation of isogenies
that preserve the product polarizations: the isogeny Φ is a B-isogeny with respect
to the product polarizations if and only if M̃M = BId2, where Id2 is the identity.
While this property seems standard, let us provide a proof that only relies on
well-documented properties of pairings. First, we show that the adjoint is closely
related to the dual.

Lemma 1. We have Φ̃ = λ−1
E1,E2

◦ Φ∨ ◦ λE′
1,E′

2
, where

Φ∨ : (E′
1 × E′

2)
∨ → (E1 × E2)∨,

is the dual.

Proof. The dual Φ∨ is the unique isogeny that satisfies

eE′
1×E′

2,n(Φ(P), Q) = eE1×E2,n(P,Φ∨(Q)),

for any positive integer n, any P ∈ (E1 × E2)[n], and any Q ∈ (E′
1 × E′

2)
∨[n],

where e−×−,n denotes the (unpolarized) Weil pairings. Let us show that Ψ =
λE1,E2 ◦ Φ̃ ◦ λ−1

E′
1,E′

2
satisfies this property (hence Ψ = Φ∨, proving the lemma).

Recall that the polarized Weil pairing e
λE1,E2
n (for the product polarization

λE1,E2 : E1 × E2 → (E1 × E2)∨) satisfies

e
λE1,E2
n (P,Q) = eE1×E2,n(P, λE1,E2(Q)) = eE1,n(P1, Q1)eE2,n(P2, Q2),

A Direct Key Recovery Attack on SIDH 455

where P = (P1, P2) and Q = (Q1, Q2) are in (E1 × E2)[n], and eEi,n are the
Weil pairings on elliptic curves. We deduce that

e
λE′

1,E′
2

n (Φ(P), Q) =
∏

j

∏

i

eE′
j ,n(ϕij(Pi), Qj)

=
∏

j

∏

i

eEi,n(Pi, ϕ̂ij(Qj))

= e
λE1,E2
n (P, Φ̃(Q)).

It follows that

eE′
1×E′

2,n(Φ(P), Q) = e
λE′

1,E′
2

n (Φ(P), λ−1
E′

1,E′
2
(Q))

= e
λE1,E2
n (P, Φ̃ ◦ λ−1

E′
1,E′

2
(Q))

= eE1×E2,n(P, λE1,E2 ◦ Φ̃ ◦ λ−1
E′

1,E′
2
(Q)),

hence Ψ = Φ∨ as desired. �	
Lemma 2. Let B be a positive integer. An isogeny Φ : E1 × E2 → E′

1 × E′
2 is a

B-isogeny with respect to the product polarizations if and only if Φ̃ ◦ Φ = [B].

Proof. Recall that Φ is a B-isogeny with respect to the product polarizations if
and only if [B] ◦ λE1,E2 = Φ∨ ◦ λE′

1,E′
2

◦ Φ. The result thus immediately follows
from Lemma 1. �	
For the rest of this section, assume the notation from Theorem 1.

Lemma 3. We have that Φ is a B-isogeny with respect to the product polariza-
tions.

Proof. The isogeny Φ has matrix form
(

ϕf −ϕ̂A

gA ĝf

)

, so its adjoint has matrix

form
(

ϕ̂f ĝA

−ϕA gf

)

. We have

(

ϕ̂f ĝA

−ϕA gf

) (

ϕf −ϕ̂A

gA ĝf

)

=
(

[deg(ϕf) + deg(gA)] 0
0 [deg(ϕA) + deg(gf)]

)

=
(

[B] 0
0 [B]

)

.

The result follows from Lemma 2. �	

456 L. Maino et al.

Lemma 4. We have ker(Φ) = {([A]P,ϕ(P)) | P ∈ E[B]}.
Proof. Let K = {([A]P,ϕ(P)) | P ∈ E[B]}, and let us show that ker(Φ) = K.
The inclusion K ⊆ ker(Φ) follows from

Φ([A]P,ϕ(P)) = (ϕf ([A]P) − ϕ̂A ◦ ϕ(P), gA([A]P) + ĝf ◦ ϕ(P))
= ([A] ◦ ϕf (P) − ϕ̂A ◦ ϕA ◦ ϕf (P), [A] ◦ gA(P) + ĝf ◦ gf ◦ gA(P))
= ([A − A] ◦ ϕf (P), [A + f] ◦ gA(P))
= (0, [B] ◦ gA(P)) = (0, 0).

To show that ker(Φ) ⊆ K, let ([A]P,Q) ∈ ker(Φ). Then, ϕf ([A]P) = ϕ̂A(Q),
hence

[A] ◦ ϕ(P) = ϕA ◦ ϕf ([A]P) = ϕA ◦ ϕ̂A(Q) = [A]Q.

Since P ∈ E[B], and A and B are coprime, we deduce Q = ϕ(P), hence
([A]P,Q) ∈ K. �	

Theorem 1 now follows from Lemma 3 and Lemma 4: the isogeny Φ is
a B-isogeny with respect to the product polarizations, with kernel ker(Φ) =
{([A]P,ϕ(P)) | P ∈ E[B]} isomorphic to (Z/BZ)2, hence it is a (B,B)-isogeny.

3 The Case of Unknown Endomorphism Ring

To use Theorem 1 to solve the SSI-T problem, any f -isogeny ϕf : E → E0

suffices. When End(E0) is unknown, for example in the case of a trusted setup,
the problem faced by the attacker is that the computation of ϕf is not necessarily
easy as there is no reason to expect B − A to be smooth. To mitigate this, we
increase our pool of available cofactors f by brute-forcing the last few steps of
ϕA and/or by brute-forcing some extra torsion-point images; this amounts to
multiplying A and B respectively by small (fractions of) integers. For ease of
notation, in all that follows we will assume that A = �a

A and B = �b
B , where �A

and �B are coprime integers.
The picture that we should keep in mind when reading through the attack

below is the following commutative diagram, where:

– ϕA : E0 → EA is the secret isogeny,
– ϕf : E → E0 is a f -isogeny chosen by the attacker,3

– ϕ�iA
: E′ → EA is a guess of the (dual of the) last i steps of ϕA,

– ϕ′ : E0 → E′ is the corresponding first a − i steps of ϕA such that ϕA =
ϕ�iA

◦ ϕ′, and
– ϕ : E → E′ is the f�a−i

A -isogeny to which we apply Theorem 1.

3 In practice, the attacker computes ϕ̂f and deduces ϕf from this.

A Direct Key Recovery Attack on SIDH 457

E0 E′ EA

E

ϕf ϕ

ϕ′ ϕ�iA

ϕA

(3)

The attack is described in Algorithm 2, which is a natural generalisation of
Algorithm 1. The parameters e, i, j are introduced to make f = eB�−j

B −A�−i
A > 0

smooth enough and apply Theorem 1 on the parameters A � A�−i
A , B � eB�−j

B ,
and f � eB�−j

B −A�−i
A . Once a f -isogeny ϕf : E → E0 is computed, the attacker

reconstructs an eB�−j
B -basis on E matching the B-basis on E0 defined in the

setup stage in SIDH. Then, the attacker guesses the last i steps of the secret
isogeny ϕA computing an isogeny ϕ�iA

: E′ → EA of degree �i. For each guess, it
is necessary to check all the eB�−j

B -torsion points matching the B-torsion points
on EA defined by the public key. For each pair of the eB�−j

B -torsion points found,
the attacker tries to compute a (eB�−j

B , eB�−j
B)-isogeny Φ as in Theorem 1. If

the codomain of Φ consists of an elliptic product, the first a − i steps of the
secret isogeny are revealed in one of the components of the matrix form of Φ.
This high-level overview is made clear in Algorithm 2.

Remark 2. Step 5 in Algorithm 2 has a small chance of causing the overall
algorithm to fail, as a split Jacobian may accidentally be the codomain for an
incorrect guess. However it is easy to check whether or not E0 is a factor, and
furthermore the chance of failure is very small.

To discuss the complexity of this attack we should split it into three parts:

1. The precomputation step (Step 1); this can be done once and for all for each
parameter set A,B.

2. The cofactor isogeny computation (Step 2); if SIDH is set up with a fixed
(arbitrary) E0, this can be done once and for all for this E0.

3. The online steps (Steps 3 to 7); these steps need to be performed for every
new public key.

The Cost of the Cofactor Isogeny Computation. The cofactor isogeny remains
fixed and is chosen by the attacker. As such, it does not need to be recomputed
at any point due to a wrong guess when brute-forcing. We compute the isogeny
ϕf via a chain of isogenies ϕqf of prime degree qf . It is worth noting that
if a square factor appears in the factorization of f , we can simply perform a
scalar multiplication [qf] rather than computing two qf -isogenies. The cost of
computing ϕqf for the larger factors qf is discussed in detail in Sect. 3.2; an
estimate (in terms of Fp-multiplications) can be given as Õ(qf

2).

458 L. Maino et al.

Algorithm 2: Solving SSI-T, general approach.

Input: Coprime integers A = �a
A and B = �b

B , two supersingular elliptic curves
E0/Fp2 and EA/Fp2 connected by an unknown degree-A isogeny
ϕA : E0 → EA, a basis {PB , QB} of E0[B], a basis {PA, QA} of E0[A], the
image points ϕA(PB), ϕA(QB).

Output: A generator of ker(ϕA).

1 Compute integers e, j, f , and i such that the overall cost according to the

estimates in Sect. 3.1 is minimised, and eB�−j
B = f + A�−i

A . For ease of notation,
we set A′ = A�−i

A and B′ = B�−j
B .

2 Compute a curve that is f -isogenous to E0, define the dual of the computed
isogeny to be ϕf : E → E0, and compute ϕ̂f (PB), ϕ̂f (QB). For more details, see
Sect. 3.2.

3 Compute a basis {PeB′ , QeB′} of E[eB′] such that [e]PeB′ = [�j
B]ϕ̂f (PB) and

[e]QeB′ = [�j
B]ϕ̂f (QB).

4 Choose a guess ϕ�i
A

: E′ → EA for the last i steps of ϕA, recall the definition of the

corresponding ϕ : E → E′ from diagram (3), and choose R, S ∈ E′[eB′] such that

[e]R = [�−i
A f�j

B]ϕ̂�i
A

◦ ϕA(PB)

and
[e]S = [�−i

A f�j
B]ϕ̂�i

A
◦ ϕA(QB),

i.e. R, S are a guess for the images ϕ(PeB′), ϕ(QeB′) respectively.
5 Compute a (eB′, eB′)-isogeny with domain E × E′ and kernel

ker(Φguess) = 〈([A′]PeB′ , R), ([A′]QeB′ , S)〉.
If the codomain splits, continue (see Remark 2). Else, return to Step 4 and take a
new guess (ϕ�i

A
, R, S). For more details see Sect. 3.3.

6 Choose a basis {P, Q} of E′[A′]; compute ̂ϕ′(P) and ̂ϕ′(Q) via

Φ(0E , P) = (− ̂ϕ′(P), ĝf (P))) and Φ(0E , Q) = (− ̂ϕ′(Q), ĝf (Q))).

7 Compute ker(ϕ′) = 〈 ̂ϕ′(P), ̂ϕ′(Q)〉 and return a generator of ker(ϕ�i
A

◦ ϕ′).

The Cost of the Online Steps. The discussion in Sect. 3.1 approximates the cost
of Steps 3 to 7 by ≈ C · e4�i

Aq4e log qe, where qe is the largest prime dividing e
and C is polynomial in log(p). We allow i and e to grow to increase the pool of
options for f in order to get a smaller qf , where qf is the largest prime dividing f .

The Precomputation. If SIDH is set up to start every key exchange with a new
E0, the optimal choice of (e, i, j, f) for the attacker ensures that the cost of
Step 2 is approximately the same as the cost of Steps 3 to 5. One could perform
a brute force search over all parameters (e, i, j, f) such that q2f ≤ e4�i

Aq4e log qe

and 0 ≤ j ≤ b, which would be costly.

A Direct Key Recovery Attack on SIDH 459

Even though this exhaustive search should be done once and for all, the
search space for SIKE parameters is too big to be bruteforced. However, since
sharing the first version of this paper [25], Luca De Feo shared with us a heuris-
tic subexponential algorithm for the precomputation leading both to a subex-
ponential cofactor isogeny computation and to subexponential online steps. His
argument is as follows: suppose that we wish to target A ≈ B ≈ 2b. To achieve
subexponential complexity L2b(c, 1/2), one can see from the complexity discus-
sion of the online and cofactor steps above that it is sufficient to find parameters

(e, i, j, f) such that e, �i
A ≈ 2

√
b, and f is

√
b

√
b
-smooth.

To achieve this, we search for solutions to the equation

xA�−i
A + yB�−j

B = z, (4)

where x, y ≤ 2
√

b, z is
√

b

√
b
-smooth, and i and j are fixed at some chosen values

such that �i
A ≈ �j

B ≈ 2
√

b. This corresponds to e = −y (not necessarily coprime
to B) and f = −xz; if xz, y > 0 then we switch the roles of A and B and
this will correspond to e = −x and f = −yz. Writing f = −xz corresponds to
decomposing ϕf : Ef → E0 into a degree-(−z) isogeny ϕ−z : Ef → E′

0 and a
degree-x isogeny ϕx : E′

0 → E0, and recovering ϕA ◦ϕx by applying Algorithm 2
with A = xA, E0 = E′

0, and ϕA = ϕA ◦ ϕx. Pictorially, this situation can be
summarised by the following diagram.

E0E′
0 E′ EA

E

ϕ−z

ϕx

ϕ

ϕ′ ϕ�iA

ϕA

To find such (x, y, z) for a given (i, j), we run Euclid’s xgcd algorithm on
(A�−i

A , B�−j
B) until we find (x0, y0, z0) and (x1, y1, z1) such that xi, yi ≈ 2

√
b/2;

this should correspond to zi ≈ 2b−√
b/2. Then, we search through all linear

combinations uz0 + vz1 with u, v ≤ 2
√

b/2 and save the smoothest result; call

this z. An integer (such as z) of size 2b is
√

b

√
b
-smooth with probability ρ(β),

where 2b/β =
√

b

√
b

and ρ is the Dickman-ρ function which can be approximated

by ρ(β) ≈ β−β . Therefore, we are likely to find a
√

b

√
b
-smooth choice z if the

number of choices for (u, v), that is 2
√

b, is ≈ ββ . A short calculation shows that

log2(β
β) =

√
b

(

1 +
2 − 2 log2 log2 b

log2 b

)

≈ log2(2
√

b).

We give some examples for concrete parameters in Sect. 3.1.

460 L. Maino et al.

3.1 Heuristic Complexity of Algorithm 2

Here, we give some details on and study the complexity of the first four steps
of Algorithm 2 in the case relevant to SIKE, namely A = 3a and B = 2b, with
a focus on the Microsoft challenge parameters A = 367 and B = 2110 and the
parameters A = 3137 and B = 2216 that were proposed for NIST Level I.

Choosing Parameters. To understand Step 1, we recall the commutative
diagram that we keep in mind during this attack, where:

– ϕA : E0 → EA is the secret isogeny,
– ϕf : E → E0 is a f -isogeny chosen by the attacker,
– ϕ�iA

: E′ → EA is a guess of the last i steps of ϕA,
– ϕ′ : E0 → E′ is the corresponding first a − i steps of ϕA such that ϕA =

ϕ�iA
◦ ϕ′, and

– ϕ : E → E′ is the f�a−i
A -isogeny to which we apply Theorem 1.

E0 E′ EA

E

ϕf ϕ

ϕ′ ϕ�iA

ϕA

(5)

Choosing f . The shape of f determines the complexity of computing ϕf . The
cofactor f does not need to be small as the isogeny can be precomputed once
and for all, but it does need to be smooth: considering the extreme case that f is
a prime ≈ A, computing ϕf directly will be harder than computing ϕA directly
(because of the extension field arithmetic). Exactly how smooth we require f to
be depends on what we hope we can achieve in complexity for the attack. If qf

is the largest prime divisor (of odd multiplicity) of f , the complexity of Step 2
will be dominated by the cost of the computation of a qf -isogeny, which involves
operations in the field of definition of a generator of the kernel of the isogeny. The
field of definition is unfortunately hard to control, and large field extensions can
have a very serious performance impact. However, note that the required degree
depends on arithmetic properties of the pair (p, qf), rather than just the size of
qf : for some values of qf the minimal k for which E(Fpk) contains a qf -torsion
point will be much smaller than qf , but the typical case in our setting is k ≈ qf .
Based on this preliminary discussion, we will see in more detail in Sect. 3.2 that
the cost of computing ϕqf , and therefore ϕf , can be approximated as Õ(q2f).

A Direct Key Recovery Attack on SIDH 461

Choosing i and e. The cost coming from i is the cost of brute-forcing all the
cyclic 3i = �i

A-isogenies from EA, which costs ≈ 3i multiplications in Fp2 .
This is however multiplied by the brute-force cost of guessing the images of the
e-torsion points in Step 4 and by the cost of computing Φ. Guessing the images
of the e-torsion points amounts to checking all the pairs of points of order e on
E′, which is ≈ e4. As a result, we have to run Steps 3 to 5 of Algorithm 2 ≈ e43i

times.
Additionally, the isogeny Φ (which we will attempt to compute ≈ e43i

times) is an (eB′, eB′)-isogeny; in particular it factors via an (e, e)-isogeny.
So, in addition we require e to be qe-smooth, where qe is the largest prime
for which it is feasible to compute (qe, qe)-isogenies (potentially over an exten-
sion field, which again will add a non-negligible cost). The need for the compu-
tation of the (e, e)-isogeny is the main barrier to implementing our algorithm for
the proposed NIST parameters, as to do so requires a working implementation of
(qe, qe)-isogenies, which while should theoretically be possible and reasonably fast,
requires some research toachieve. There exists literature on this topic [4,6,22,23],
from which we have made a baseline assumption that computations of
(qe, qe)-isogenies over Fpk can be performed in O(q3e) multiplications in Fpk .
However, there is very little existing work in the way of practical imple-
mentation of supersingular Jacobians and products of elliptic curves. We do
note here that it would be possible to avoid implementing the factors of the
(e, e)-isogenies to also map to and from products of elliptic curves, as we can
ensure to start and finish the computation of Φ with a (2,2)-isogeny, which may
make the practical implementation of (e, e)-isogenies with regards to this attack
a more achievable goal.

Working with our baseline assumption that a (qe, qe)-isogeny can be com-
puted in approximately q3e multiplications over the base field of its kernel, we
expect the cost of computing Φ as a (eB, eB)-isogeny to be dominated by the
cost of computing a (qe, qe)-isogeny where qe is the largest prime factor of e. We
leave a careful analysis of the sizes of the field extensions for genus 2 to later work
that includes a practical implementation of (qe, qe)-isogenies for prime qe �= 2,
but let us assume for the sake of argument that the slow down for the extension
field arithmetic scales with qe similarly to the elliptic curve case. Then, assum-
ing that the field extensions required are large enough that it is best to use the
Fast Fourier Transform for multiplication, we approximate the cost of comput-
ing the (qe, qe)-isogeny by O(q3e · qe log qe). This is probably an overestimate:
more research is needed into the existence of

√
élu-style-algorithms in the case of

abelian surfaces. However, if the attack costs 2λ, note that e is already forced to
be relatively small compared to this by the fact that we have to search through
≈ e4 pairs of possible images of e-torsion points. Because of this, we can expect
e to be fairly smooth compared to f , for example, so qe (and the corresponding
field extension) need not be particularly large.

In our choice of parameters for our toy example, we have chosen to demonstrate
the use of e without the need to delve into (qe, qe)-isogenies for qe > 2 by choosing
e = 2. In this case we need a field extension of degree 4 for the 2b+1-torsion
points. This is not special to this instance but a consequence of the fact that the

462 L. Maino et al.

pull-back of the multiplication-by-2 map contains a square root (and no other
rational but not integral powers), and so each lift of a point of order 2i to a
point of order 2i+1 will either double the degree of the field extension or keep it
the same.

Choosing j. The choice of j only potentially effects the precomputation step,
Step 1 of Algorithm 1, as we achieve B′ = 2−jB-torsion points by multiplying
the known B-torsion by 2j ; for this reason we have no restrictions on non-
negative j. Notice that we do not require e to be coprime to B, so e may contain
powers of two, accounting also for the possibility of negative j.

Concrete Attack Parameters. We present here some choices of attack parameters
in three cases of interest: two toy examples to test our algorithm, the Microsoft
challenge parameters, and the parameters of SIKEp434 that were proposed for
NIST Level I.

Toy Parameters: First, we construct a small example to test our algorithm using
the 34-bit prime p = 219 · 39 − 1, with attack parameters e = 2, i = 1, j = 0 and
f = 5·13·17·23·41. The largest field extension that we need for the computation
of ϕf is Fp20 , for the 41-isogeny. The largest field extension for e = 2 is Fp4 , for
the pullbacks of the order-219 points to order-220 points. This runs in less than
10 s on a single core on a standard laptop; see our code linked below.

We additionally demonstrate our attack on the 64-bit prime p = 233 ·319 −1,
which was introduced in [29] as a small example instance for the Castryck–Decru
attack, using the attack parameters (e, i, j, f) = (1, 3, 5, 5 · 11 · 13 · 19 · 47 · 353).
The largest field extension involved in computing ϕf is Fp176 , for the 353-isogeny.
As e = 1, no extension is required to perform point division. This runs in less
than 1 min on a single core on a standard laptop.

Our code for attacking both of the above parameter sets is available at:

https://github.com/Breaking-SIDH/direct-attack

Challenge Parameters: We consider one of the sets of challenge parameters put
forward by Microsoft [12]: A = 367, B = 2110, i = 7, e = 1, j = 2,

f = 5 · 7 · 133 · 432 · 73 · 151 · 241 · 269 · 577 · 613 · 28111 · 321193.

The largest field extension we would need for the computation of ϕ321193

using
√

élu is of degree 642384; in this case it might be faster to use a variant
of Kohel’s algorithm to avoid the extension field arithmetic (see Sect. 3.2). The
extension field degrees for all the factors of f are given by

[k, qf] = [8, 5], [12, 7], [24, 13], [28, 43], [144, 73], [75, 151], [480, 241],
[67, 269], [1152, 577], [1224, 613], [56220, 28111], [642384, 321193].

The choice of i = 7 also means that we need to run Steps 3 to 5 of Algorithm 2 up
to 37 ≈ 211 times. In particular, if the SIDH instantiation uses a fixed (arbitrary)
starting curve, the computation of ϕf can be performed as a precomputation

https://github.com/Breaking-SIDH/direct-attack

A Direct Key Recovery Attack on SIDH 463

and the attack on an individual public key is relatively fast, just the computation
of some (2, 2)-isogenies and 3-isogenies of elliptic curves, repeated potentially 37

times.
We have thus far restricted ourselves to e and B being a powers of two,

as we want to demonstrate our attack and do not yet have adequate resources
at our disposal to compute (�, �)-isogenies for � > 2. However, looking at the
Microsoft challenge parameters can already illustrate the freedom that being
able to compute efficiently (�, �)-isogenies for � �= 2 can provide: we open up
more options for attack parameters, including in this case in which one requires
very little brute-force (only repeating Steps 4 to Step 5 up to 4 times): A = 2110,
B = 367, A′ = 2a−j = 2108, B′ = 3b−i = 348, e = 1, and

f = 5 · 7 · 13 · 61 · 73 · 431 · 593 · 607 · 881 · 36997 · 139393 · 227233.

The extension field degrees for all the factors of f are given by

[k, qf] = [8, 5], [12, 7], [24, 13], [60, 61], [144, 73],
[860, 431], [1184, 593], [303, 607], [220, 881],
[73992, 36997], [34848, 139393], [56808, 227233].

NIST Level I Parameters: To select attack parameters for SIKEp434, that is,
with A = 3137 and B = 2216, we rely on the algorithm for parameter selec-
tion outlined in the ‘precomputation step’ complexity analysis of Sect. 3. Table 1
shows some outputs of the algorithm for SIKEp434 parameters; these represent
(i, j, x, y, z) such that

x3137−i + y2216−j = z.

We leave the details on the best parameter choice to further study, as all
these parameters require a working implementation of (�, �)-isogenies for � > 2.
Note that the last entry in the table only requires the computation of (3, 3)-
isogenies, at the expense of some smoothness of f = −yz; the largest degree of
elliptic-curve isogeny required in this choice is 11144321.

3.2 Computing the Cofactor Isogeny

First, notice that any finite subgroup of an elliptic curve appearing in the SIDH
setting defines an Fp2 -rational isogeny: this is simply because Frobenius equals
a scalar multiplication for the supersingular elliptic curves employed by SIDH,
hence stabilizes any subgroup by definition. Thus, when computing isogeny fac-
tors ϕq : En → En+1 of ϕf , the rationality of En+1 or of the images of rational
points on En is no concern. Moreover, if Kohel’s algorithm or the ‘irrational’
variant of the

√
élu algorithm [1, Sect. 4.14] is used, evaluating the isogeny at

points in some E(Fpr) can be done using arithmetic in Fpr rather than (as is
the case for Vélu and

√
élu) the potentially much bigger composite of the fields

of definition of the kernel points and the evaluation point.
In order to make an approximation of the complexity of computing ϕf on

which we can base our search for good parameters for our attack, we ran some

464 L. Maino et al.

Table 1. Some possible attack parameters for SIKEp434

i j x y z

19 27 41 · 2333 −101 · 241 −54 · 19 · 47 · 61 · 857 · 2903 · 60889 · 216617

·342497 · 2309969 · 2945407 · 3951767 · 4037069

16 24 1823581 −239 · 6553 −11 · 13 · 19 · 29 · 631 · 6043 · 16451 · 29759 · 139987

·364513 · 1850837 · 3464849 · 6344729 · 26440207

15 27 123551 −2546657 −52 · 29 · 103 · 1549 · 28201 · 55933 · 243431

·1874903 · 4421117 · 6553021 · 14183149 · 39691591

16 29 5 · 72 · 1171 −7884713 −173 · 853 · 883 · 8627 · 26759 · 692929 · 3500557

·5202137 · 6065333 · 15108221 · 28512793

16 25 79 · 139 · 499 −197 · 47777 −5 · 11 · 17 · 571 · 35099 · 40639 · 48889 · 81281

·138899 · 1285429 · 8464307 · 13664309 · 17314859

16 24 −467 · 5419 5 · 434689 −7 · 103 · 109 · 2791 · 3643 · 36191 · 47581 · 99817

·401119 · 749467 · 2690497 · 2863607 · 3014203

16 25 −197 · 9391 11 · 307 · 941 −5 · 233 · 431 · 659 · 4219 · 237277 · 371341 · 820643

·2362589 · 3896323 · 14204429 · 55510211

17 26 −1 1 −11 · 23 · 31 · 131 · 281 · 311 · 601 · 3331 · 8059 · 8761

·163411 · 1164091 · 2101681 · 4027511 · 11144321

experiments to investigate the behaviour of extension degrees for different values
of p. As an illustration we consider E1728/Fp with p = 22163137 − 1 as in the
proposed NIST Level I parameters for SIKE. Only the even-degree fields are
relevant as we are working with extensions of Fp2 . Figures 1(a), (b), and (c)
show the qf for which there exists an even k ≤ 1000 such that there is an Fpk -
rational point of order qf (only the minimal even k is depicted). In total, we find
72% of the primes < 102 (cf. Fig. 1(a)), 62.5% of the primes < 103 (cf. Fig. 1(b)),
and 22% of the primes < 104 (cf. Fig. 1(c)). Based on these experiments, to guide
our parameter selection for our attack we crudely estimate that the minimal field
extension degree k for the maximal qf dividing f is close to degree qf over Fp2 .
Below, we will often use the fact k ≤ qf .

To compute with elements in an extension field of degree k, one requires an
irreducible polynomial of that degree over the ground field (here, Fp2). There
are many algorithms for this task. We specifically mention one approach due to
Shoup [33], which has a complexity of Õ(k2 + k log p) operations in Fp.

To find a point of order qf , we may then sample a random point P ∈ E(Fpk)
and multiply it by a cofactor on the order of pk. Using square-and-multiply,
this amounts to O(k log p) multiplications in Fpk . Thus, finding a point of order
qf in this way costs Õ(k2 log p) when using FFT-based multiplication for Fpk .
Under the assumption that log p ∈ (log qf)O(1), which would for instance follow
from the heuristic estimates on f given above, this gives us a rough estimate of
Õ(q2f) for the complexity of computing the kernel of a ϕq-isogeny. Note that if
the largest factor of the smoothest possible choice of f only admits very large

A Direct Key Recovery Attack on SIDH 465

extension fields, it will be worthwhile to opt for a slightly less smooth f , i.e., a
slightly bigger qf , for which the field extensions are smaller.

To compute a large-degree isogeny from an explicit kernel point over Fpk ,
we can either apply

√
élu directly over Fpk or first recover the kernel polynomial

using [15, Algorithm 4] and then run Kohel’s algorithm. The cost for the first
method is Õ(q1/2

f) arithmetic operations in Fpk , or Õ(q3/2
f) operations in Fp

using FFT-based multiplication in Fpk . The cost for the second method is O(q2f).
(Note that the first method will require working in composite extension fields to
evaluate the isogeny at points, whereas the second gives an expression for the
isogeny with coefficients in Fp2 .)

Overall, the dominating part of the algorithm is the large scalar multiplica-
tion to find the kernel of a qf -isogeny. Therefore, to guide our choice of attack
parameters, we take the complexity of computing and evaluating large-degree
isogenies to be Õ(q2f).

We mention in passing that the field extension degree can be halved whenever
it is even, by using x-only elliptic-curve arithmetic.

An Alternative Approach. Instead of finding an irreducible polynomial for Fpk

and computing a large scalar multiplication, it is also possible to extract an
isogeny kernel from the qf -division polynomial directly, as follows.

The qf -division polynomial for E/Fp2 is the unique monic squarefree poly-
nomial with coefficients in Fp2 whose roots are precisely the x-coordinates of
nonzero qf -torsion points on E. It can either be precomputed for a generic
curve E with symbolic coefficients (e.g., a single Montgomery coefficient A)
or computed directly for a given E using a recursive expression [34, Exercise
3.7]. A careful analysis of both approaches to computing division polynomials
is given in [2, Sect. 9]: Evaluation of a precomputed polynomial can be faster if
qf is fairly small, but once qf is large enough that multiplying polynomials of
degree q2f benefits from FFT-based multiplication, it becomes faster to compute
the polynomials instantiate for a given E directly. For these large qf , the cost of
computing the division polynomial is O(q2f log qf) base-ring operations.

Let Fp2k be the smallest extension of Fp2 where the qf -torsion is defined,
and define k′ = k/2 if k is even and k′ = k otherwise. All irreducible divi-
sors of the division polynomial have degree k′: for the curves used in SIDH, the
p2-Frobenius π equals [−p], hence for any point P = (x, y) of order qf we have
πk(P) = [(−p)k]P = P . Dropping the y-coordinate corresponds to quotienting
the elliptic-curve group by negation, which shows xk′

= x, and k′ is minimal with
this property since k was minimal. Thus, the irreducible divisor of ψqf which van-
ishes at x has degree k′ as claimed. We may thus apply ‘equal-degree splitting’—see
e.g. [17, Algorithm 14.8])— recursively to find a single irreducible divisor h of ψqf .
This involves O(d log p+log qf) operations on polynomials of degree O(q2f); assum-
ing the use of FFT-based multiplication the cost in Fp-operations is Õ(q3f) log p.
By construction h is then a minimal polynomial for a qf -isogeny in the sense
of [15, Definition 15]. We may compute the isogeny in time O(k′qf) + Õ(qf) by
running [15, Algorithm 3] and applying Kohel’s algorithm. Overall, the cost for

466 L. Maino et al.

qf < 102

qf < 103

qf < 104

(a)

(b)

(c)

Fig. 1. Extension field degrees < 1000 needed for Fpk -rational qf -torsion

A Direct Key Recovery Attack on SIDH 467

this is Õ(q3f) log p, which is worse than finding an irreducible polynomial first
and then running the multiplication-based method above.

3.3 Computing (�, �)-isogenies

In order for our algorithm to reach its full potential, it is necessary to consider
integers e in Step 1 of Algorithm 2 that do not divide B, and in particular
are not necessarily powers of two. It may also be that there is a nice parameter
choice (e, i, j, f) with A a power of 2 and B a power of 3 (cf. the attack parameter
suggestions in Sect. 3.1), or one may want to consider more general setups. In all of
these cases, in Step 5 of Algorithm 2 it will be necessary to compute (�, �)-isogenies
for � �= 2, which as observed above requires more research to achieve practically
(for � = 3 there is however already some interesting work on this topic [6]). For
this reason, we leave all instantiations of the attack that use e not dividing B to
future work and focus on the case of (2, 2)-isogenies, that is, B = 2b and e | B.
Recall that we set B′ = B2−j , where 0 ≤ j ≤ b.

In order to compute the chain of (2, 2)-isogenies whose composition is the
(eB′, eB′)-isogeny Φ, we need to able to compute three different flavours of
(2, 2)-isogenies between principally polarized abelian surfaces:

– A (2,2)-isogeny from a Jacobian of a genus 2 curve to a Jacobian of a genus
2 curve, for which we refer to reader to [37, Sect. 2.3.1].

– A (2,2)-isogeny from a product of elliptic curves to the Jacobian of a genus 2
curve, for which we refer the reader to [8] for more details. (This is required
for the first step of Φ).

– A (2,2)-isogeny from a Jacobian of a genus 2 curve to a product of ellip-
tic curves, for which we refer the reader to [35, Proposition 8.3.1]. (This is
required for the last step of Φ).

Our proof-of-concept implementation uses Rémy Oudompheng and collabo-
rators’ SageMath implementation [28,29] for these steps.

4 The Case of Known Endomorphism Ring

Algorithm 1 solves SSI-T, assuming that B > A, and an isogeny ϕf : E → E0

of degree B − A is known, in a way that allows efficient evaluation of ϕ̂f on the
B-torsion. In this section, we describe how to find such an isogeny in polynomial
time, provided E0 and a description of the endomorphism ring End(E0).

More precisely, we prove the following theorem. An efficient representation
of an isogeny ϕ is an encoding of the isogeny, together with an algorithm that
can evaluate it on points in time polynomial in the length of the input.

Theorem 2. Assume the generalised Riemann hypothesis. There is an algo-
rithm that solves the following task in polynomial time (in the length of the
input): given a supersingular curve E0, four endomorphisms of E0 in efficient
representation, and a positive integer f , finds an isogeny ϕ : E0 → E of degree
f in efficient representation.

468 L. Maino et al.

Together with Corollary 1, this theorem immediately implies a polynomial
time algorithm for SSI-T, when the endomorphism ring of E0 is known, and
assuming the generalised Riemann hypothesis (GRH).

Algorithm 3: Finding an ideal of prescribed norm.
Input: A basis (αi)

4
i=1 of End(E0) in efficient representation, and an integer f

coprime to 2 and p.
Output: A left ideal I of norm f in End(E0)

1 Find a solution of deg(α0) = z2
0f with α0 ∈ End(E0) and z0 ∈ Z. It is a

homogenous quadratic equations of dimension 5, so can be solved in polynomial
time by [7].

2 Deduce another solution (α, z) for which z is coprime with f , using the technique
of [38, Algorithm 7, Step 3].

3 Return I = End(E0)α + End(E0)f .

Proof of Theorem 2. The idea is the following: first, find an ideal I in End(E0) of
norm f . Then, assuming GRH, one can find the codomain of ϕ = ϕI : E0 → E
and evaluate ϕ on any input using [16, Lemma 3.3].

Finding the ideal I requires more explanation. First observe that the problem
reduces to the case where f is coprime to 2p: write f = 2ipjf ′ with (f ′, 2p) = 1,
solve the problem for f ′, and then compose the resulting isogeny with i isogenies
of degree 2 and j Frobenius isogenies. The steps to find I are then given in
Algorithm 3. Let us explain Step (2). Finding the desired solution heuristically
is simple, so the motivation of the following discussion is mostly to get a provable
method. Write the solutions (α, z) in the form (x, z) ∈ Z

4×Z, where x represents
the coefficients of α in the provided basis of End(E0). The equation can then be
written as xtGx = z2f , or xtQx = 0, where G is the Gram matrix of the basis,
and Q = G ⊕ 〈−f〉 (the 5 × 5 matrix with G in the upper-left corner, −f in the
lower-right corner, and zeros elsewhere). Note that we can assume that x0 (the
vector of coordinates of α0) is primitive (i.e., the greatest common divisor of its
coefficients is 1) and z0 ∈ Z>0. We are looking for another solution where x is
coprime with f . The rest of the proof reproduces mutatis mutandi the technique
of [38, Algorithm 7, Step 3]. From [10, Proposition 6.3.2], the general solution
X = (x, z) is given by

X = d((RtQR)X0 − 2(RtQX0)R),

for arbitrary R ∈ Q
5 and d ∈ Q

∗, where X0 = (x0, z0) is our initial solution. Fix
d = 1. Write R = (rx, rz) with rx ∈ Z

4 and rz ∈ Z. The last coordinate of X is
given by the integral quadratic form

rt
xGrxz0 − 2rt

xGx0rz + fz0r
2
z =

(rxz0 − x0rz)tG(rxz0 − x0rz)
z0

.

A Direct Key Recovery Attack on SIDH 469

It is of rank 4, so let M ∈ M4×4(Z) be a matrix whose columns generate Λ =
z0Z

4 + x0Z, and

g(v) =
vt(M tGM)v

z0
.

It is positive definite, since G is and z0 > 0. Let us show that g is (almost)
primitive. If s is a prime that does not divide z0, both M and z0 are invertible
modulo s, so g is primitive at s because G is. Now suppose s | z0. Then, writing
Mv = rxz0 − x0rz, we have

g(v) ≡ −2rt
xGx0rz mod s.

Therefore, if s �= 2 and Gx0 �≡ 0 mod s, then g is primitive at s. If Gx0 ≡ 0
mod s, since x0 is primitive, s must divide disc(G), so s is 2 or p. This proves
that the only primes where g might not be primitive are 2 and p. We can then
write g = g′/a where g′ is primitive and a may only be divisible by the primes 2
and p. Applying [38, Proposition 3.6], we can find in polynomial time a v such
that z′ = g′(v) is a prime larger than f . With z = az′, we obtain a solution of
xtGx = fz2. Since f is coprime to 2p, it is also coprime to z.

5 Future Work

We have provided an implementation of a toy example, but with a practical
implementation of (�, �)-isogenies for � > 2 it should be possible to provide a prac-
tical implementation of larger interesting instances. Additionally, our implemen-
tation does not yet incorporate the fast (2,2)-isogeny formulas of Kunzweiler [21],
which especially when working over field extensions will have a positive impact
on performance.

Finally, given the speed of recovering the secret isogeny using our algorithm,
especially in the case of known endomorphism ring, we also hope that it will be
possible to use these methods for constructive purposes.

References

1. Bernstein, D.J., De Feo, L., Leroux, A., Smith, B.: Faster computation of isogenies
of large prime degree. In: Galbraith, S. (ed.) ANTS XIV: Proceedings of the Four-
teenth Algorithmic Number Theory Symposium, pp. 39–55. Mathematical Sciences
Publishers (2020). https://iac.r/2020/341

2. Bernstein, D.J., Lange, T., Martindale, C., Panny, L.: Quantum circuits for the
CSIDH: optimizing quantum evaluation of isogenies. In: Ishai, Y., Rijmen, V.
(eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 409–441. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17656-3 15

3. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5 9

https://iac.r/2020/341
https://doi.org/10.1007/978-3-030-17656-3_15
https://doi.org/10.1007/978-3-030-34578-5_9

470 L. Maino et al.

4. Bisson, G., Cosset, R., Robert, D.: AVIsogenies (abelian varieties and isogenies).
MAGMA package. https://gitlab.inria.fr/roberdam/avisogenies

5. Bottinelli, P., de Quehen, V., Leonardi, C., Mosunov, A., Pawlega, F., Sheth, M.:
The Dark SIDH of Isogenies. Preprint (2019). https://ia.cr/2019/1333

6. Bröker, R., Howe, E.W., Lauter, K.E., Stevenhagen, P.: Genus-2 curves and Jaco-
bians with a given number of points. LMS J. Comput. Math. 18(1), 170–197 (2015).
https://doi.org/10.1112/S1461157014000461

7. Castel, P.: Solving quadratic equations in dimension 5 or more without factoring.
Open Book Ser. 1(1), 213–233 (2013)

8. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH (preliminary
version). Preprint (2022). https://ia.cr/2022/975

9. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

10. Cohen, H.: Number Theory: Volume I: Tools and Diophantine Equations, vol. 239.
Springer, New York (2008). https://doi.org/10.1007/978-0-387-49923-9

11. Costello, C.: B-SIDH: supersingular isogeny Diffie-Hellman using twisted torsion.
In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 440–463.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3 15

12. Costello, C.: The case for SIKE: a decade of the supersingular isogeny problem. In:
The NIST 3rd Post-Quantum Cryptography Standardization Conference (2021).
https://ia.cr/2021/543

13. De Feo, L., et al.: Séta: supersingular encryption from torsion attacks. In: ASI-
ACRYPT (4). LNCS, vol. 13093, pp. 249–278. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-92068-5 9

14. De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: SQISign: compact
post-quantum signatures from quaternions and isogenies. In: Moriai, S., Wang, H.
(eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 64–93. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64837-4 3

15. Eriksen, J.K., Panny, L., Sotáková, J., Veroni, M.: Deuring for the People: Super-
singular Elliptic Curves with Prescribed Endomorphism Ring in General Charac-
teristic. Preprint (2023). https://ia.cr/2023/106

16. Fouotsa, T.B., Kutas, P., Merz, S., Ti, Y.B.: On the isogeny problem with torsion
point information. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) Public Key
Cryptography (1). LNCS, vol. 13177, pp. 142–161. Springer, Cham (2022). https://
doi.org/10.1007/978-3-030-97121-2 6

17. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 3rd edn. Cambridge
University Press, Cambridge (2013)

18. Jao, D., et al.: Supersingular Isogeny Key Encapsulation. Submission to [27] (2017,
2019, 2020). https://sike.org

19. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

20. Kani, E.: The number of curves of genus two with elliptic differentials (1997).
https://doi.org/10.1515/crll.1997.485.93

21. Kunzweiler, S.: Efficient Computation of (2n, 2n)-Isogenies. Preprint (2022).
https://ia.cr/2022/990

22. Lubicz, D., Robert, D.: Fast change of level and applications to isogenies. In: ANTS
XV: Proceedings of the Fifteenth Algorithmic Number Theory Symposium (2022).
https://doi.org/10.1007/s40993-022-00407-9

https://gitlab.inria.fr/roberdam/avisogenies
https://ia.cr/2019/1333
https://doi.org/10.1112/S1461157014000461
https://ia.cr/2022/975
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-0-387-49923-9
https://doi.org/10.1007/978-3-030-64834-3_15
https://ia.cr/2021/543
https://doi.org/10.1007/978-3-030-92068-5_9
https://doi.org/10.1007/978-3-030-92068-5_9
https://doi.org/10.1007/978-3-030-64837-4_3
https://ia.cr/2023/106
https://doi.org/10.1007/978-3-030-97121-2_6
https://doi.org/10.1007/978-3-030-97121-2_6
https://sike.org
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1515/crll.1997.485.93
https://ia.cr/2022/990
https://doi.org/10.1007/s40993-022-00407-9

A Direct Key Recovery Attack on SIDH 471

23. Lubicz, D., Somoza, A.: AVIsogenies SageMath package. https://gitlab.inria.fr/
roberdam/avisogenies/-/tree/sage

24. Maino, L., Martindale, C.: An attack on SIDH with arbitrary starting curve.
Preprint (2022). Version 2: https://eprint.iacr.org/archive/2022/1026/20220825:
192029

25. Maino, L., Martindale, C.: An attack on SIDH with arbitrary starting curve.
Preprint (2022). Version 1: https://eprint.iacr.org/archive/2022/1026/20220808:
211318

26. Milne, J.S.: Abelian varieties. In: Cornell, G., Silverman, J.H. (eds.) Arithmetic
Geometry, pp. 103–150. Springer, New York (1986). https://doi.org/10.1007/978-
1-4613-8655-1 5

27. National Institute of Standards and Technology: Post-Quantum Cryptography
Standardization, December 2016. https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography/Post-Quantum-Cryptography-Standardization

28. Oudompheng, R., Panny, L., Pope, G., et al.: SageMath Reimplementation of the
SIDH key recovery attack (2022). https://github.com/jack4818/Castryck-Decru-
SageMath

29. Oudompheng, R., Pope, G.: A note on Reimplementing the Castryck-Decru attack
and lessons learned for SageMath. Preprint (2022). https://ia.cr/2022/1283

30. Petit, C.: Faster algorithms for isogeny problems using torsion point images. In:
Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 330–353.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 12

31. de Quehen, V., et al.: Improved torsion-point attacks on SIDH variants. In: Malkin,
T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp. 432–470. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-84252-9 15

32. Robert, D.: Breaking SIDH in polynomial time. Preprint (2022). https://ia.cr/
2022/1038

33. Shoup, V.: Fast construction of irreducible polynomials over finite fields. J. Symb.
Comput. 17(5), 371–391 (1994). https://doi.org/10.1006/jsco.1994.1025

34. Silverman, J.H.: The Arithmetic of Elliptic Curves, vol. 106. Springer, New York
(2009). https://doi.org/10.1007/978-0-387-09494-6

35. Smith, B.: Explicit endomorphisms and correspondences. Ph.D. thesis, University
of Sydney (2005)

36. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
9.6) (2022). https://sagemath.org

37. Ti, Y.B.: Isogenies of Abelian Varieties in Cryptography. Ph.D. thesis, University
of Auckland (2019)

38. Wesolowski, B.: The supersingular isogeny path and endomorphism ring problems
are equivalent. In: 62nd IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2021, Denver, CO, USA, 7–10 February 2022, pp. 1100–1111. IEEE
(2021). https://doi.org/10.1109/FOCS52979.2021.00109

39. Wesolowski, B.: Understanding and improving the Castryck-Decru attack on SIDH.
Preprint (2022)

https://gitlab.inria.fr/roberdam/avisogenies/-/tree/sage
https://gitlab.inria.fr/roberdam/avisogenies/-/tree/sage
https://eprint.iacr.org/archive/2022/1026/20220825:192029
https://eprint.iacr.org/archive/2022/1026/20220825:192029
https://eprint.iacr.org/archive/2022/1026/20220808:211318
https://eprint.iacr.org/archive/2022/1026/20220808:211318
https://doi.org/10.1007/978-1-4613-8655-1_5
https://doi.org/10.1007/978-1-4613-8655-1_5
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://github.com/jack4818/Castryck-Decru-SageMath
https://github.com/jack4818/Castryck-Decru-SageMath
https://ia.cr/2022/1283
https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1007/978-3-030-84252-9_15
https://ia.cr/2022/1038
https://ia.cr/2022/1038
https://doi.org/10.1006/jsco.1994.1025
https://doi.org/10.1007/978-0-387-09494-6
https://sagemath.org
https://doi.org/10.1109/FOCS52979.2021.00109

Breaking SIDH in Polynomial Time

Damien Robert1,2(B)

1 INRIA Bordeaux-Sud-Ouest, 200 Avenue de la Vieille Tour,
33405 Talence Cedex, France
damien.robert@inria.fr

2 Institut de Mathématiques de Bordeaux, 351 cours de la liberation,
33405 Talence Cedex, France

Abstract. We show that we can break SIDH in (classical) polynomial
time, even with a random starting curve E0.

1 Introduction

1.1 Result

We extend the recent attacks by [CD22,MM22] and prove that there exists a
proven polynomial time attack on SIDH [JD11,DJP14]/SIKE [JAC+17], even
with a random starting curve E0.

Both papers had the independent beautiful idea to use isogenies between
abelian surfaces (using [Kan97, Sect. 2]) to break a large class of parameters
for SIDH. Namely, on a random starting curve E0, if the degree of the secret
isogenies are NA > NB , their attack essentially applies whenever a := NA − NB

is smooth. This is highly unlikely, however they use the fact that it is possible
to tweak the parameters NA and NB to augment the probability of success (or
reduce the smoothness bound on a), see Sect. 6. In the case where End(E0) is
known, [CD22] also have a (heuristic) polynomial time attack, essentially because
one can use the endomorphism ring to compute an a-isogeny on E0 even if a is
not smooth, see Sect. 5.

A natural idea is to work in higher dimensions to extend the range of param-
eters for which an attack is possible, even on a random curve E0. We show in
Sect. 2 that by going to dimension 8, it is possible to break in polynomial time all
parameters for SIDH. The algorithm is deterministic, except for a randomized
polynomial time precomputation (which does not depend on E0) to decompose
NA − NB as a sum of four integer squares (see Remark 1).

From now and for the rest of this paper, we let NA > NB be two coprime
integers, and we assume that we are given their factorisations. We denote by �N

the largest prime divisor of an integer N , and by �A the largest prime divisor of
NA, and �B the largest prime divisor of NB .

Theorem 1. Assume that we are given a decomposition NA − NB = a2
1 + a2

2 +
a2
3 + a2

4 as a sum of four integer squares. Let φB : E0 → EB be a NB-isogeny

c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14008, pp. 472–503, 2023.
https://doi.org/10.1007/978-3-031-30589-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30589-4_17&domain=pdf
https://doi.org/10.1007/978-3-031-30589-4_17

Breaking SIDH in Polynomial Time 473

defined over a finite field Fq. Assume that E0[NA] ⊂ E0(Fq) and that we are
given a basis (P1, P2) of E0[NA] and the image of φB on this basis.

Then there is an algorithm Eval(E0, EB , P1, P2, φB(P1), φB(P2), P) which
returns φB(P) for any point P of E0(Fq) in ˜O(�8A log NA) arithmetic operations
over Fq.

In particular, if Ker φB ⊂ E0[NB](Fq) and we are given a basis R1, R2 of
E0[NB](Fq), there is an algorithm

ComputeKernel(E0, EB , P1, P2, R1, R2, φB(P1), φB(P2))

which returns a generator for the kernel of φB in ˜O(�8A log NA + �
1/2
B log NB)

arithmetic operations over Fq.

Proof (Outline) The full proof will be given in Sect. 2.
Notably, we will build in Sect. 2, Lemma 1 an explicit NA-endomorphism1

F : E4
0 ×E4

B in dimension g = 8 (given by an 8× 8 matrix) such that evaluating
F at (P, P, P, P,Q,Q,Q,Q), for any P ∈ E0(Fq), Q ∈ EB(Fq) allows to recover
φB(P) and ˜φB(Q), where ˜φB is the dual (more precisely contragredient) isogeny.
Furthermore the kernel of F is described by 8 explicit rational generators which
can be computed in time O(log NA) by Lemma 2.

This reduces evaluating φB to evaluating the isogeny F in dimension 8 on a
point given generators of its kernel. As explained in Sect. 2, using the algorithm
of [LR23], such an isogeny can be evaluated, via the naive algorithm to compute
smooth isogenies, in time O(�8A log NA +log2 NA). This cost can even be reduced
to ˜O(�8A log NA) using the optimised computation of smooth isogenies of [DJP14,
Sect. 4.2.2].

In particular, if KerφB ⊂ E0[NB](Fq), and we are given a basis of
E0[NB](Fq), we can evaluate φB on this basis by two calls to Eval, and then
solve a DLP in a cyclic group of order NB for a cost of ˜O(log NB�

1/2
B) by Pohlig-

Hellman’s algorithm to recover a generator of KerφB . We refer to Sect. 2 for
more details and an alternative strategy to recover the kernel. ��
Remark 1. – The decomposition of a as a sum of four squares is a precom-

putation step that only depends on NA and NB . It can be done in random
polynomial time O(log2 a) binary operations by [RS86,PT18]. This is the only
step of the algorithm which is not deterministic, we refer to [PT18, Sect. 5]
for conjectural deterministic polynomial time algorithms.

– In the context of SIDH, E0 and EB will be supersingular curves defined over
Fq = Fp2 , the factorisations of NB and NA are known and we are given a
basis of E0[NA], E0[NB] over Fq, along with the evaluation of a NA-isogeny
φA on the basis of E0[NB] and of a NB-isogeny φB on the basis of E0[NA], see
Sect. 1.3. So we can apply Theorem 1 if NA > NB . Otherwise, if NB > NA

we will simply try to recover Alice’s secret isogeny φA instead.

1 We refer to Definition 1 for the definition of a N -isogeny F : A → B in higher
dimension, if A and B are elliptic curves this simply means that F is of degree N .

474 D. Robert

By considering the dual isogeny ˜F , we will also see in Sect. 6.4 that as in
[QKL+21], in Theorem 1 it is also possible to directly reconstruct φB (with
the same complexity) as long as N2

A > NB .
– When �A = O(1), or even �A = O(log log NA), the attack is thus “quasi-

linear”, i.e., in ˜O(log NA) arithmetic operations in Fq. So it is as efficient
asymptotically as the key exchange itself (with a higher constant of course).

– The attack also breaks the TCSSI-security assumption of [DDF+21, Prob-
lem 3.2].

– Another contribution of this paper is to give a precise (but heuristic, see
Heuristic 1) complexity bound for a dimension 4 attack: ˜O(log NA�4A) arith-
metic operations (after a precomputation), see Sect. 4. This precise complex-
ity bound uses the fact mentioned above that we can also explicitly build a
N2

A-isogeny F rather than just a NA-isogeny. This gives more freedom for the
tweaking of parameters needed for the dimension 4 attack.

– The method of Sects. 2 and 3 shows that the following powerful embedding
lemma holds: for any N -isogeny f : A → B between abelian varieties of
dimension g, and any N ′ > N , it is possible to efficiently embed f as a matrix
coefficient of a N ′-isogeny F in dimension 8g (or 4g or 2g in certain cases).
This provides considerable flexibility at the cost of going up in dimension,
and was used in [Rob22b] to show that an isogeny over a finite field always
admits an efficient representation.

In this paper, if not specified our complexities should be understood as arith-
metic complexities over the base field.

1.2 Outline

We prove Theorem 1 in Sect. 2. This Section is written to be short and self-
contained, and since it applies in all cases, without requiring any parameter
tweaks, the complexity analysis is straightforward. We recommend the reader,
unless interested in the gory details of the dimension 2 and 4 attacks, to skip
directly to this section.

For reasons stated in Remark 3, for practical attacks it would be more conve-
nient to stay in lower dimension. We first describe a common framework encapsu-
lating possible dimension 2g attacks in Sect. 3, before describing our dimension 4
attack in Sect. 4. We explain how the dimension 2 attacks of [CD22,MM22] fit
into this common framework in Sect. 5. Parameter tweaks, needed for the dimen-
sions 2 attack and the dimension 4 attack, are described in Sect. 6.

For this introduction, we give more context in Sect. 1.3 to explain how our
attacks fit into the broad class of “torsion point attacks” in Sect. 1.4, and summa-
rize in Sect. 1.5 the different complexities of the different dim 2, 4 and 8 attacks
of [CD22,MM22,Rob22a].

1.3 Context

Supersingular Isogeny Diffie-Hellman (SIDH) is a post-quantum key exchange
protocol initially proposed in [JD11] with further ameliorations (among many

Breaking SIDH in Polynomial Time 475

other papers) in [DJP14,CLN16]. A standard transform gives a key encapsula-
tion method SIKE (supersingular isogeny key encapsulation) [JAC+17], which
was submitted to the NIST post-quantum competition and recently selected as
an alternative candidate in the fourth round of the competition.

The key hardness problem of many isogeny based protocols is based on the
difficulty of recovering a large degree isogeny f : E → E′ between two ordinary
or supersingular elliptic curves, the so-called isogeny path problem. To the best
of our knowledge, without more information on E and E′ (like an explicit repre-
sentation of part of their endomorphism rings) this problem still has exponential
quantum security for supersingular curves.

However, for the SIDH key exchange, Bob will reveal not only the codomain
EB of his secret NB-isogeny φB : E0 → EB (NB a large smooth number) but
also the action of φB on the NA-torsion E0[NA] for an integer NA prime to NB ,
typically by revealing the image Q1 = φB(P1), Q2 = φB(P2) of a basis (P1, P2)
of E0[NA]. This added information then allows Alice to pushforward her secret
NA isogeny φA : E0 → EA to φ′

A : EB → EAB , via Kerφ′
A = φB(Ker φA). Alice

also reveals the action of her secret isogeny φA on E0[NB], and then Bob can
pushforward his secret NB isogeny to φ′

B : EA → EAB via Kerφ′
B = φA(Ker φB).

The codomain is the same since the maps φ′
B ◦ φA : E0 → EA → EAB and

φ′
A ◦ φB : E0 → EB → EAB have the same kernel Ker φA + Ker φB :

E0 EB

EA EAB

φB

φA φ′
A

φ′
B

The supersingular curve EAB is then the common secret of Alice and Bob.
But as we will see, this is a key weakness that allows one to break the SIDH

key exchange. This is worth emphasising: the work of [CD22,MM22,Rob22a]
only breaks SSI-T, the supersingular isogeny with torsion problem, not the more
general supersingular isogeny path problem. In particular, it does not apply to
protocols like [CLM+18,DKL+20].

1.4 Torsion Points Attacks

Let us recall the setup. Eve wants to recover the secret NB-isogeny φB , and she
knows the image of φB on a basis of E0[NA]. It has been well known that the
publication of these so called torsion points could, for some parameters, reduce
the security of the supersingular isogeny problem.

Petit in [Pet17] had the first key idea of the following “torsion points” attack:
assume that the attacker Eve could somehow combine Bob’s secret NB-isogeny
φB and/or its dual ˜φB with an isogeny α she controls into a NA-isogeny F :
E0 → E′. Eve knows the action of φB on E0[NA] because Bob published it,
and she also knows the action of the dual isogeny ˜φB : EB → E0 on EB [NA].
Indeed, if (P1, P2) is a basis of E0[NA], and Q1 = φB(P1), Q2 = φB(P2), then

476 D. Robert

˜φB(Q1) = NBP1, ˜φB(Q2) = NBP2. Notice that Q1, Q2 is a basis of EB [NA] since
NA is prime to NB .

Since she knows the action of α too because she controls it, she can recover
the action of F on (a basis of) E0[NA]. It is then easy for Eve to compute the
kernel of F using some linear algebra and discrete logarithms, see Lemma 4.
These discrete logarithms are inexpensive because NA is assumed to be smooth.

From this kernel KerF , she can then evaluate F on any point of E0 via an
isogeny algorithm, from which she can try to recover φB if extracting φB from
F is possible.

In his attack, Petit considers for F an endomorphism of E0 of the form
F = ˜φB ◦γ ◦φB +[d], where γ is a trace 0 endomorphism (meaning that γ̃ = −γ)
of degree e. Then it is easy to check that F is a (N2

Be+d2)-isogeny, so it remains
to find parameters such that N2

Be + d2 = NA, and to construct a γ of degree e.
From the knowledge of F , it is not too hard to extract φB.

Remark 2. A variant is to “tweak” the parameters, in order to increase the
range of susceptible parameters. For instance if we can find parameters such
that N2

Be + d2 = uNA with u smooth, then F will be a uNA-isogeny. We only
know its action on E0[NA], so we cannot recover it directly. However F is a
composition F2 ◦ F1 of a NA-isogeny F1 followed by an u-isogeny F2, so we can
at least recover F1 and then try to brute force F2. A similar strategy holds for
higher dimensional attacks, we will describe more possible tweaks in Sect. 6.

This attack, while powerful, can only apply to unbalanced parameters (here
NA > N2

B); and requires the knowledge of a non-trivial endomorphism of E0.
Further work, like [QKL+21], improves the range of parameters susceptible to
these attacks, but still requires a non-trivial endomorphism.

For SIKE’s NIST submission, such an endomorphism is easy to find because
the starting curve E0 = ENIST is defined over Fp. So in [Cos21], Costello argues
that if this line of “torsion points” attacks is improved to reach the SIKE param-
eters submitted to NIST, a preventive measure would be to switch the starting
elliptic curve E0 to a “random” one, so that Eve has no prior information on its
endomorphism ring. (This was not considered for SIKE’s submission because it
would involve either a trusted multipartite setup to build E0 or for Alice to first
walk a random path and publish a “random” E0, hence adding some complexity
to the key exchange.)

The second key breakthrough was in the recent attacks by [CD22,MM22] by
Castryck–Decru and Maino–Martindale respectively (we refer to Sects. 1.5 and
5 for more details on these two articles). They both, independently, had the
beautiful idea that it is possible to extend the range of parameters susceptible
to “torsion points” attack by constructing a NA-isogeny F in dimension 2, on
a product of two supersingular curves. Indeed, going up in dimension largely
opens up the range of isogeny we can construct explicitly.

They exploit the following lemma, due to Kani in [Kan97] as part of his deep
work on classifying covers C → E of elliptic curves by genus 2 curves: given a
NB-isogeny φB : E0 → EB and an a-isogeny α : E0 → E′, with a prime to NB ,
it is possible to build an explicit (a + NB)-isogeny F : E0 × E” → EB × E′

Breaking SIDH in Polynomial Time 477

in dimension 2 (see Lemma 6 for a generalisation to dimension g). This means,
assuming NA > NB , that Eve can break SIDH as long as she can find an isogeny
from E0 of degree a = NA − NB .

This is in particular the case whenever a is smooth, and is the focus of Maino
and Martindale’s article (Castryck and Decru also consider this case briefly).
While the probability to get a smooth a is small, tweaking the parameters can
increase it, and subsequent analysis by De Feo showed that this gives a (heuristic)
subexponential L(1/2) attack. In particular, torsion points attacks can apply
even to “random curves”!

Castryck and Decru furthermore exploit the fact that for the NIST submis-
sion, the curve E0 = ENIST is either y2 = x3 + x or y2 = x3 + 6x2 + x. It
has an explicit endomorphism 2i, hence it is easy to construct an a-isogeny α
(which can be evaluated efficiently) whenever a = a2

1 + 4a2
2. In particular, they

obtain a (heuristic) polynomial time attack for this specific E0 (assuming the
factorisation of a is precomputed).

Our current work stems from the fact that it is easy to extend Kani’s lemma
to dimension g abelian varieties (see Sect. 3). Namely, from an a-isogeny and
a NB-isogeny in dimension g (with a prime to NB), we can build an explicit
(a+NB)-isogeny in dimension 2g. We will apply this to the diagonal embedding
of φB to Eg

0 → Eg
B , this is still an NB-isogeny, so it remains to find an a-isogeny

on Eg
0 , where a = NA − NB . We then exploit that even if we do not know

End(E0), on E2
0 we can always build endomorphisms of the form α =

(

a1 a2

−a2 a1

)

,

which give (a2
1+a2

2)-endomorphisms. Hence we get a dimension 2g attack, g = 2,
whenever a = a2

1 + a2
2 (eventually after parameter tweaks).

The general case stems from the fact that an integer is always a sum of four
squares: a = a2

1+a2
2+a2

3+a2
4, from which we can then build an a-endomorphism

α on E4
0 in dimension g = 4, hence get a dimension 2g = 8 attack. The fact

that there always exist a-endomorphisms on A4 for any abelian variety A and
any integer a was first used by Zarhin in [Zar74] to show that A4 × ̂A4 always
has a principal polarisation, and is known as “Zarhin’s trick” or the “quaternion
trick”.

We remark also that unlike the decomposition of a as a sum of two squares,
which requires its factorisation, the decomposition as a sum of four squares can
be done in (random) polynomial time, see Remark 1. It is then easy to build
by hand a (NB + a)-endomorphism on E4

0 × E4
B , we will see in Sect. 2 that

F =
(

α ˜φB

−φB α̃

)

fits.

As mentioned above, this endomorphism F can be seen as a special case
of the dimension g generalisation in Sect. 3 of Kani’s lemma to build isogenies
on product of abelian varieties. But it can also be seen as a variant of Petit’s
endomorphism to higher dimension. Indeed, if F1 is a d1-endomorphism and
F2 is a d2-endomorphism, then F1 + F2 is a (d1 + d2)-endomorphism whenever
˜F1F2 = −˜F2F1. Our dimension 8 endomorphism is the case F = F1 + F2 with

478 D. Robert

F1 =
(

α 0
0 α̃

)

an a-endomorphism and F2 =
(

0 ˜φB

−φB 0

)

, a NB-endomorphism.

Petit’s endomorphism F = ˜φB ◦ γ ◦ φB + [d] is the case where F1 = ˜φB ◦ γ ◦ φB

is antisymmetric (i.e., of trace 0, i.e., ˜F1 = −F1) and F2 = [d] is symmetric (i.e.,
˜F2 = F2), with F1F2 = F2F1.

1.5 Complexities of the Different Attacks

The article by Castryck and Decru was first posted on 2022-07-30, with only
minor revisions since. As mentioned above, this article mainly focuses on the
dimension 2 attack when E0 = ENIST is NIST’s starting curve, i.e., contains the
endomorphism 2i. In this case they obtain a heuristic polynomial time algorithm
(with no explicit bound).

The heuristic is due to two reasons. First in [CD22], Castryck and Decru guess
a starting path for φB and use F as an oracle to know if the guess was correct
or not, then they iterate the process. The heuristic is then that if a wrong path
is guessed, the codomain of F will be a Jacobian of a superspecial curve rather
than a product of two supersingular elliptic curves. Assuming heuristically that
the codomain of F for a wrong guess is uniform among all superspecial surfaces,
the probability of a mistake is ≈ 1/p, hence negligible. But, as first noticed
by Maino and Martindale in [MM22], and also independently by Oudompheng
[Oud22], Petit, and Wesolowski [Wes22b], the isogeny F allows one to directly
recover φB. This gives a more direct attack (no need to guess many isogenies),
and removes the first heuristic.

The second reason is that for their attack to work on the starting curve
E0 = ENIST, they need a = NA − NB to be of the form a = a2

1 + 4a2
2. In this

case they can build an a-isogeny α which can be evaluated in O(log a) arithmetic
operations. For a uniform integer less than x, the probability to be decomposed
in this form is roughly 1/

√
log x (see Remark 9), so assuming that parameter

tweaks behave like uniform integers, we may assume that we can tweak the
parameters without increasing their size too much in such a way that the attack
can apply. Also this decomposition (which is a precomputation) supposes access
to a factorisation oracle; hence is in polynomial time only in the quantum model.

This second heuristic (and the need for factorisation) can be removed (under
GRH) using work by Wesolowski [Wes22b] explaining how to directly build a
NA − NB-isogeny α when End(E0) is known. More precisely, Wesolowski builds
an ideal Iα of norm a which represents α, and evaluating α on a point is done
by using [FKM+22, Lemma 3.3]. Constructing this isogeny and then evaluating
it on a point can be done in polynomial time, but there is no clear complexity
bound as of yet. But the evaluation of α on a basis of E0[NA] can be seen as
a polynomial time precomputation, depending on E0. Via this precomputation,
the attack then reduces to evaluating a NA-isogeny F in dimension 2.

We mention also that Castryck and Decru implemented their attack in
Magma (so far this is the only publicly available implemented attack), which
showed that it was practical, breaking Microsoft’s and the NIST submis-

Breaking SIDH in Polynomial Time 479

sion parameters. The timings were then considerably improved in an open
source reimplementation in Sage [POP+22], where Oudompheng implemented
the direct isogeny recovery of [MM22] and the extended parameter tweaks of
[Rob22a] (see Sect. 5).

The article by Maino and Martindale was posted on 2022-08-08, with a second
major revision on 2022-08-25, fixing an error where their initial endomorphism
candidate did not respect the product polarisations. The second version uses
the correct matrix from [Rob22a,Oud22,Wes22b]. They focus on the case where
End(E0) is not known, which was also briefly investigated by Castryck and
Decru. The first version does not contain a complexity estimate, but in the
second version they use an analysis due to De Feo which shows that, using
slightly more general parameter tweaks, they have a heuristic subexponential
L(1/2) attack. They then incorporated work by Panny, Pope and Wesolowski in
their submission to eurocrypt [MMP+23].

This current article [Rob22a] was first posted on 2022-08-11 focusing mainly
on the polynomial time dimension 8 attack (and explaining very briefly the
dimension 4 attack). It was followed by revisions expanding on the dimension 4
attack and its complexity, and on giving a general dimension 2g framework.

At the time of its posting, [Rob22a] was the only one containing a precise com-
plexity estimate, and the only available polynomial time attack (with or without
random starting curve) with no heuristics. Due to the work of Wesolowski and
De Feo mentioned above, and the improved parameters tweaks of Sect. 6, the
current situation (as far as I am aware) is now as follows:

– When E0 = ENIST is NIST’s starting curve, the attack of Castryck-Decru
using the endomorphism 2i (as implemented in [POP+22]) is in heuristic poly-
nomial time. We refer to Proposition 3 for a complexity analysis: We can find
a decomposition NA = (b1+4b22)NB/D+(a1+4a2

2) where D is a divisor of NB

heuristically of magnitude Θ(log NB) in O(log3 NA) binary operations for this
precomputation step. The attack is then in ˜O(D log NA�2A) = ˜O(log2 NA�2A)
arithmetic operations. We can reduce the magnitude of D to Θ(

√
log NB)

(heuristically) at the price of doing O(
√

log NB) factorisation calls in the pre-
computation. The attack is then in ˜O(log1.5 NA�2A) arithmetic operations.
(In their version updated for the submission to eurocrypt, Castryck and Decru
argue in [CD22, Sect. 10] that their attack is in heuristic subexponential time
L(1/4) when using only the endomorphism 2i, and that they need to consider
more general endomorphisms to obtain an heuristic polynomial time attack.
This discrepancy with our analysis above comes from the fact that we use
more general parameter tweaks.)
Using [Wes22b], the dimension 2 attack can also apply to any elliptic curve
with known endomorphism ring in proven polynomial time under GRH (but
the exact degree has not been bounded yet). More precisely, after a polyno-
mial time precomputation to construct the a-isogeny α and its action on a
basis of E0[NA], the attack is the same as in Theorem 1 except that F is
computed in dimension 2, hence its evaluation costs ˜O(log NA�2A) arithmetic
operations in Fq, see Proposition 4.

480 D. Robert

– When E0 is a “random” curve, the dimension 2 attack of Maino and Mar-
tindale (and also Castryck and Decru) is in (heuristic) subexponential time
L(1/2) [MM22].
The dimension 4 attack of Sect. 4 is in heuristic polynomial time (because
it needs parameter tweaks). The precomputation is very similar to the pre-
computation done for Castryck-Decru using the endomorphism 2i (because
both attacks rely on decomposing an integer as a sum of two squares), except
that in this case we can also build a N2

A-isogeny with no added (asymptotic)
cost by Sect. 6.4. Under Heuristic 1, the precomputation costs O(log3 NA)
binary operations to find a decomposition N2

A = (b21 + 2b2)2NB + (a2
1 + a2

2),
and then the attack is in ˜O(log NA�4A) arithmetic operations by Proposition
2. We stress that for the dimension 4 attack the heuristic only concerns the
average complexity of finding this decomposition of N2

A (provided it exists),
not the attack itself.
The dimension 8 attack of Sect. 2 is in proven polynomial time, and is in
˜O(log NA�8A) arithmetic operations by Theorem 1. The precomputation step
is the decomposition of NA − NB as a sum of four squares and can be done
in randomized O(log2 NA) binary operations.
The dimension 8 (resp., 4) attack remains the only proven (resp., heuristic)
polynomial time attack for a random curve E0.

– When �A = O(1) (or even O(log log NA)), the dimension 8, dimension 4, and
if End(E) is known, the dimension 2 attacks, all have quasi-linear complexity
of ˜O(log NA) arithmetic operations.
The constants involved will be larger for the higher dimensional attack, how-
ever the precomputation of the dimension 8 attack is faster than the precom-
putation of the dimension 2 attack. Furthermore, in dimension 2, when E
has known endomorphisms but is not ENIST, the precomputation step also
depends on the starting curve E0. An implementation is ongoing to compare
timings.

1.6 Thanks

Many thanks are due to the persons who commented on the prior versions. Spe-
cial thanks to Benjamin Wesolowski and Marco Streng. Thanks to the anony-
mous referees for numerous suggestions to improve the exposition of this paper.

This work was supported by the ANR ANR-19-CE48-0008 project Ciao.

2 Dimension 8 Attack

Since NA > NB , write NA = NB + a for a positive integer a > 0. It is harmless
to suppose that NA is prime to NB , otherwise if d = gcd(NA, NB), we could
recover the kernel of a d-isogeny through which φB factors (since we know its
action on E0[d] ⊂ E0[NA]), so we could reduce to solving the problem with new
coprime parameters N ′

A = NA/d, N ′
B = NB/d.

Breaking SIDH in Polynomial Time 481

As NA is prime to NB , gcd(NA, a) = 1. Let M ∈ M4(Z) be a 4 × 4 matrix
such that MT M = a Id. Explicitly we write a = a2

1 + a2
2 + a2

3 + a2
4 and take

M =

⎛

⎜

⎜

⎝

a1 −a2 −a3 −a4

a2 a1 a4 −a3

a3 −a4 a1 a2

a4 a3 −a2 a1

⎞

⎟

⎟

⎠

,

the matrix of the multiplication of a1+a2i+a3j+a4k in the standard quaternion
algebra Z[i, j, k] i2 = j2 = k2 = −1, ij = k. Let α0 be the endomorphism
on E4

0 represented by the matrix M . The dual (with respect to the product
principal polarisation) α̃0 of α0 is represented by the matrix MT (since integer
multiplications are their own dual), so α̃0α0 = a Id, hence α0 is an a-isogeny,
which can be evaluated in O(log a) arithmetic operations. We let αB be the
endomorphism of E4

B given by the same matrix M , and by abuse of notation
we denote by φB Id : E4

0 → E4
B the diagonal embedding of φB : E0 → EB . We

remark that since α0 is given by an integral matrix, it commutes with φB in the
sense that we have the equation: φBα0 = αBφB :

E4
0 E4

B

E4
0 E4

B

φB Id

α0 αB

φB Id

Lemma 1. With the notations above, let F =
(

α0
˜φB Id

−φB Id α̃B

)

, where ˜φB is

the dual isogeny EB → E0 of φB. Then F is a NA-endomorphism on the 8-
dimensional abelian variety X = E4

0 × E4
B.

Proof. This is a special case of Lemma 6 in Sect. 3.2 below. We give a direct

proof: since the dual ˜F of F is given by ˜F =
(

α̃0 −˜φB Id
φB Id αB

)

by Lemma 3 in

Sect. 3.1 below, we compute

˜FF = F ˜F =
(

NB + a 0
0 NB + a

)

= NA Id .

Hence F is a NA-isogeny on X (with respect to the product polarisations). ��
As in Sect. 1.4, since Bob reveals the action of φB on a basis of the NA-

torsion, the action of F on the NA-torsion is explicit, hence we can recover its
kernel. We can also directly recover Ker F as follows:

Lemma 2. Let (P1, P2) be a basis of E0[NA]. The kernel of F is given by the 8
generators (g1, . . . , g8) = {(α̃0(P), (φB Id)(P))} for P = (P1, 0, 0, 0), (P2, 0, 0, 0),
(0, P1, 0, 0), (0, P2, 0, 0), (0, 0, P1, 0), (0, 0, P2, 0), (0, 0, 0, P1), (0, 0, 0, P2). These
generators can be computed in O(log a) arithmetic operations in E0(Fq).

482 D. Robert

Proof. The kernel is given by the image of ˜F on X[NA]. Since a is prime to NA,
by Lemma 6 in Sect. 3.2 below, Ker F is exactly the image of ˜F on E4

0 [NA] × 0:
Ker F = {(α̃0(P), (φB Id)(P)) | P ∈ E4

0 [NA]}. ��
We can now prove Theorem 1.

Proof (of Theorem 1). Since we have generators of the kernel of F , we can
compute F (on any point P ∈ X(Fq)) using an isogeny algorithm in dimension 8.
We decompose the NA-endomorphism F as a chain of �-isogenies for � the prime
factors of NA. If �A is the largest prime divisor of NA, the complexity of the first
�A-isogeny computation will first be ˜O(log NA) arithmetic operations in A(Fq) to
compute the multiples NA

�A
gi, followed by the individual �A-isogeny computations

on P and the gi. These isogeny computations cost O(�8A) operations over Fq using
[LR23]. Since we compute a composition of at most O(log NA) isogenies, the total
cost of evaluating F on P is O(log2 NA + log NA�8A log �A). This naive method
uses O(log NA) �-isogeny calls where � | NA, and multiplications which cost
O(log2 NA) in total. The optimised method of [DJP14, Sect. 4.2.2] shows that
by increasing the number of isogeny calls to ˜O(log NA), the multiplication cost
can be reduced to ˜O(log NA) multiplications by � | NA. This optimised version
thus costs ˜O(�8A log NA+�A log NA) = ˜O(�8A log NA). (Note that since a �-isogeny
in dimension 8 is going to be much more expensive than a multiplication by �, for
practical attacks it will be important to apply the optimised weighted strategy
of [DJP14, Sect. 4.2.2] rather than their balanced strategy.)

Thus we can evaluate F on any point of X, so we can evaluate φB or ˜φB

on any point of E0 (resp., EB). This is enough to recover the kernel of φB on
E0, this is a special case of Lemma 5 and Remark 5 in Sect. 3.1 below. We can
give a direct proof: if KerφB ⊂ E0[NB](Fq) and we are given a basis (R1, R2)
of E0[NB](Fq) (we allow the possibility for R2 to be 0 if E0[NB](Fq) is cyclic),
we can compute φB(R1), φB(R2) in two calls to the evaluation of F . We can
then solve a DLP to recover a minimal linear relation between φB(R1) and
φB(R2) from which we obtain a generator for the kernel of φB. The DLP costs
˜O(�1/2

B log NB) arithmetic operations by Lemma 4 below.
We also remark that if EB [NB] is rational, we have an alternative strategy

to recover Ker φB. Indeed it is the image of ˜φB on EB [NB]. So if (Q1, Q2) is
a basis of EB [NB], we compute Q′

i = ˜φB(Qi) by evaluating F on the point
(0, 0, 0, 0, Qi, 0, 0, 0), and the kernel of φB is generated by whichever Q′

i has
order NB . Checking the order costs O(log NB log log NB) operations in E0(Fq)
using a binary tree.

This concludes the complexity analysis of Theorem 1. ��
Remark 3. The isogeny computations in [LR23,BCR10,Som21] use a (level m =
4 or m = 2) theta model of X, which we can compute as the (fourfold) product
theta structure of the theta models of E0 and EB . It is also well known how to
switch between the theta model and the Weierstrass model on an elliptic curve,
and it is not hard to extend the conversion to the product of elliptic curves, since
the product theta structure is given by the Segre embedding. The arithmetic on

Breaking SIDH in Polynomial Time 483

the theta models can be done in O(1) arithmetic operations in a O(1)-extension
of Fq (if 8 | NANB the theta model will already be rational). However the big
O() notation hides an exponential complexity in the dimension g. In dimension 8
and level m = 4, the theta model uses 216 coordinates, so we would need in
practice to switch to the Kummer model by working in level m = 2 which “only”
requires 28 coordinates. This is another reason why we would prefer to compute
an endomorphism in dimension g = 4 rather than g = 8: in dimension 4 we
would only need 28 coordinates in level m = 4, or 24 coordinates in level m = 2.

Finally, there is one technical difficulty when working with the theta model
in level m: it involves choosing a level m symmetric theta structure. Even if we
start with a product theta structure on E4

0 ×E4
B , when computing F we will not

generally end with a product theta structure. So we need to correct the level m
structure we end up with by a symplectic action to get a product structure:
this is important to project back to E0. We can either try all of them (this is
a O(1) operation, but with a very big constant since we are in dimension 8). A
much better strategy, if NA is prime to m, is to guess the image of E0[m] by φB.
Since we know the image of α, if our guess is correct, this directly gives us the
symplectic matrix we need to correct our theta structure with. So this greatly
lowers the number of matrices we need to test. If m is not prime to NA, we need
to guess the image of E0[mNA] under φB instead; recall that we already know
the image of E0[NA], so we also have few guesses to make. In fact, if m | NA we
can also use Sect. 6.4 to write F as a (NA/m)-isogeny followed by an m-isogeny,
and in this case we have enough information to directly know how to glue the
theta structures together in the middle.

Remark 4. It is immediate to generalise Theorem 1 to recover a NB-isogeny φB

between abelian varieties E0, EB of dimension g. The attack reduces to comput-
ing one NA-isogeny in dimension 8g (or eventually 4g or even 2g if the parameters
allow for it).

The same proof as above holds; the complexity of evaluating the dimension 8g
NA-isogeny will be ˜O(log NA�8g) arithmetic operations using [LR23] and the fast
smooth isogeny computation of [DJP14, Sect. 4.2.2]. We can then recover KerφB

using Lemma 5 below.

3 Description of the Dimension 2g Attack

In this section we generalize the construction of Sect. 2, which will be used in
Sects. 4 and 5 to mount an attack in dimensions 4 and 2.

3.1 N-isogenies

Definition 1. A N -isogeny f : (A, λA) → (B, λB) of principally polarised
abelian varieties is an isogeny such that f∗λB := f̂ ◦ λB ◦ f = NλA, where
f̂ : B̂ → Â is the dual isogeny. Letting ˜f = λ−1

A f̂λB be the dual isogeny
˜f : B → A of f with respect to the principal polarisations, this condition is
equivalent to ˜ff = N .

484 D. Robert

If ΘB is a divisor associated to λB, then since λB : P
→ t∗P ΘB − ΘB ∈
Pic0(B) = ̂B (where tP is the translation by P), we see that f∗λB is the polari-
sation associated to f∗ΘB , so f is a N -isogeny exactly when this polarisation is
equal to NλA.

If ΘA is a divisor associated to λA, sections of mΘA give coordinates on A (if
m ≥ 3 we get a projective embedding by Lefschetz’ theorem). Given a suitable
model of (A,mΘA), a representation of the kernel K = Ker f of a N -isogeny
f (for instance coordinates for its generators), and the coordinates of a point
P ∈ A, a N -isogeny algorithm will output a suitable model of (B,mΘB) and
the coordinates of the image f(P) in this model. For instance, the N -isogeny
algorithm from [LR23] uses a theta model of level m = 2 or m = 4, and in dimen-
sion g can compute the image of an N -isogeny in O(Ng) arithmetic operations
over the base field (where the theta model is defined).

Note that in general, for a N -isogeny algorithm, we only have the kernel
K and the source polarised abelian variety (A,ΘA). We first need to check
that the divisor NΘA descends through the isogeny f : A → B = A/K. This
implies that K must be a subgroup of the kernel of the polarisation NλA : A →
Â associated to NΘA. And by descent theory [Mum66, Proposition 1 p. 291];
[Mum70, Theorem 2 p. 231], the descents of NΘA correspond exactly to level
subgroups ˜K of K in Mumford’s theta group G(NΘA). Hence NΘA descends
if and only if K is isotropic for the commutator pairing of G(NΘA) (and the
descent ΘB will be of degree one if and only if K is maximal isotropic by a
standard degree computation). Mumford proves in [Mum70, (5) p. 229] that this
commutator pairing is yet another incarnation of the Weil pairing. So the descent
condition is thus equivalent to K being maximal isotropic for eN,ΘA

in A[N], as
is well known (see e.g., [Kan97, Proposition 1.1]). Such a K is usually the entry
point of a N -isogeny algorithm.

Our current situation is different: we already have a target codomain B with
a polarisation λB, and we want NΘA to descend to λB , not just any other
principal polarisation λ′

B (of which there will be many, see Remark 7). So it
does not suffice to check that Ker f is maximal isotropic for the Weil pairing, we
want f∗ΘB � NΘA (isomorphism up to algebraic equivalence), i.e., ˜f ◦ f = N .

If this condition is satisfied, we know that NΘA descend, hence by the above
discussion we automatically know that Ker f is maximal isotropic. Another way
to see that without invoking descent theory is to use the fact that Ker f =
Im ˜f | B[N], and that since f̂ is the dual of f for the Weil pairings eA,N on
(A×Â)[N] and eB,N on (B×B̂)[N], then ˜f is the dual of f for the Weil pairings
eλA,N on (A × A)[N] and eλB ,N on (B × B)[N]. In particular, if x, y ∈ Ker f ,
x = ˜f(x′), y = ˜f(y′) for x′, y′ ∈ B[N], so eλA,N (x, y) = eλA,N (˜f(x′), ˜f(y′)) =
eλB ,N (x′, f ◦ ˜f(y′)) = eλB ,N (x′, Ny′) = 1.

We need the following standard Lemma:

Breaking SIDH in Polynomial Time 485

Lemma 3. If F =
(

a b
c d

)

: (A, λA)× (B, λB) → (C, λC)× (D,λD), then for the

product polarisations on A × B and C × D, ˜F =
(

ã c̃
˜b ˜d

)

.

Proof. Recall that we have a canonical isomorphism Â � Pic0(A), and that
under this isomorphism the dual of f is given by f̂ = f∗. This shows that

F̂ : Ĉ×D̂ → Â×B̂ is given by F̂ =
(

â ĉ

b̂ d̂

)

(see e.g., [EGM12, Proposition 11.28]).

Since the product polarisations act component by component by definition (see
e.g., the proof of [BL04, Corollary 5.3.6] or the proof of [Kan16, Proposition 61]),

we then get that ˜F =
(

ã c̃
˜b ˜d

)

. ��

We will also use the fact that once we have evaluated an isogeny on a basis
of the N -torsion it is easy to evaluate it on any other N -torsion point:

Lemma 4. Let f : A → B be an isogeny between abelian varieties. Assume
that the N -torsion of A is rational and that we are given a basis (P1, . . . P2g) of
it. Then given the evaluation f(Pi) of all Pi, it is possible to evaluate f on a
point P ∈ A[N] in time ˜O(log N�

1/2
N) arithmetic operations, where �N denotes

the largest prime divisor of N .

Proof. Given a point P ∈ A[N], we can evaluate the Weil pairing eN (P, Pi) in
O(log N) arithmetic operations (this assumes we work over a model which can
compute the Weil pairing; this will be the case in the theta model by [LR10,
LR15]).

From the Weil pairing matrix of the eN (Pi, Pj), we can first do O(g2) discrete
logarithm computations from a N -th root of unity ζ to get a matrix with coeffi-
cients in Z/NZ. By linear algebra over Z/NZ, it is easy to compute a symplectic
basis (a1, . . . , ag, a

′
1, . . . a

′
2g) of the N -torsion, along with the values of f on this

basis. Using a naive linear algebra algorithm, this can be done in O(g3 log N).
The dominant cost will be the discrete logarithms.

The Pohlig-Hellman algorithm [PH78] has complexity O(E log N�
1/2
N) oper-

ations in A, where if N =
∏

�ei
i , E =

∑

ei. The iterative version of Pohlig-
Hellman’s algorithm which increases the current exponent e in the �i-discrete
logarithm by 1 at each step, can be replaced by a Newton like version which
double the precision. This faster variant, described in [Sho09, Sect. 11.2.3], has
complexity2

˜O(log N�
1/2
N).

Given the symplectic basis, one can decompose a point P in this basis
by O(g) calls to the Weil pairing and discrete logarithms. Evaluating f(P)
can thus be done in ˜O(log N�

1/2
N). If P =

∑g
i=1 λiai + λ′

ia
′
i, then f(P) =

∑g
i=1 (λif(ai) + λ′

if(a′
i)). ��

2 Since we use the Weil pairing to reduce to DLPs over F
∗
q , the index calculus method

gives an algorithm subexponential in �N rather than in ˜O(�
1/2
N). But in our applica-

tions �N will be small, so the generic algorithm will be faster in our case.

486 D. Robert

We can use Lemma 4 to recover the kernel of a N -isogeny given its evaluation
on a basis of the N -torsion.

Lemma 5. Let g be a fixed integer, and f : A → B be a N -isogeny in dimen-
sion g and ˜f : B → A the contragredient isogeny. Assume that we are given a
rational basis P1, . . . , P2g and Q1, . . . , Q2g of A[N] and B[N] respectively, and
either the images of the basis Pi by f or the images of the basis Qi by ˜f . Then
it is possible to recover a basis of Ker f in ˜O(log N�

1/2
N) arithmetic operations.

If Ker f is of rank g and we are given the image of the basis Qi by ˜f , it is
also possible to recover a basis of Ker f in ˜O(log N) arithmetic operations.

Proof. Assume first we are given the images f(Pi). Since f is an isogeny, Ker f ⊂
A[N]. Since we are given a rational basis of B[N], we can first transform this
into a symplectic basis (b1, . . . , bg, b

′
1, . . . b

′
g) as in the proof of Lemma 4. We

can express f(Pi) in this basis using the Weil pairing and discrete logarithms,
and solve a linear system over Z/NZ. The discrete logarithms will dominate the
complexity analysis and cost ˜O(log N�

1/2
N). We remark that in this situation, we

do not require a full rational basis of A[N], we just need that Ker f ⊂ A[N](Fq)
and to have a basis of A[N](Fq).

If we are given the images ˜f(Qi), then since f is a N -isogeny, Ker f = Im ˜f |
B[N], so the ˜f(Qi) generate Ker f . Like above, using discrete logarithms (via
the Weil pairing), we can then extract a basis of Ker f by linear algebra.

If Ker f is of rank g, we can also find a basis of Ker f by finding a subset of
g points of the basis Qi such that the ˜f(Qi) generate the full kernel. We write
the 2g × 2g Weil pairing matrix of the Pi with the ˜f(Qi), and we look for a
2g × g submatrix that generates the full image. This reduces to finding a g × g
submatrix whose determinant δ is of primitive order N .

If ω(N) is the number of distinct prime divisors of N , checking if δN/� = 1
for each prime � | N costs O(ω(N) log N) arithmetic operations. This can be
improved to O(log N log log N) using a binary tree. Note however that this last
method has a complexity exponential in g. ��
Remark 5. Let f : A → B be a N -isogeny between abelian varieties in dimen-
sion g whose kernel if of rank g. If Ker f ⊂ A(Fq) and we are given the image of
f on a basis of A[N](Fq), but we are not given a basis of B[N], we can no longer
reduce to DLPs over F

∗
q via the Weil pairing so we need to use a multidimensional

DLP. By [Sut11], we can recover a basis of Ker f in ˜O(log N�
g/2
N).

Likewise, if Ker f = ˜f(B[N](Fq)) (this holds if B[N] ⊂ B(Fq) or more gen-
erally if the N -Tate pairing is trivial on Ker f × Ker f), and we are given the
image of ˜f on a basis of B[N](Fq), we obtain generators of Ker f from which we
can extract a basis in ˜O(log N�

g/2
N) by [Sut11].

Breaking SIDH in Polynomial Time 487

3.2 Isogeny Diamonds

The endomorphism F of Sect. 2 is a particular case of a construction due to Kani
for g = 1 [Kan97, Sect. 2, Proof of Theorem 2.3], which generalises immediately
to g > 1.

We define a (d1, d2)-isogeny diamond as a decomposition of a d1d2-isogeny
f : A → B between principally polarised abelian varieties of dimension g into
two different decompositions f = f ′

1 ◦ f1 = f ′
2 ◦ f2 where f1 is a d1-isogeny and

f2 is a d2-isogeny. Then f ′
1 will be a d2-isogeny and f ′

2 a d1-isogeny:

A A1

A2 B

f1

f2 f ′
1

f ′
2

Lemma 6 (Kani). Let f = f ′
1 ◦ f1 = f ′

2 ◦ f2 be a (d1, d2)-isogeny diamond

as above. Then F =

(

f1 ˜f ′
1

−f2 ˜f ′
2

)

is a d-isogeny F : A × B → A1 × A2 where

d = d1 + d2.

Its kernel is given by the image of ˜F =
(

˜f1 − ˜f2
f ′
1 f ′

2

)

on (A1 × A2)[d]. If d1 is

prime to d2, we also have Ker F = {(˜f1(P), f ′
1(P)) | P ∈ A1[d]}, the kernel is

thus of rank 2g.

Proof. We check, using Lemma 3, that ˜FF = d Id. Furthermore if d1 is prime
to d2, then the restriction of ˜F to A1[d] × {0} is injective, hence its image spans
the full kernel since #A1[d] = d2g. ��
The matrix F from Sect. 2 is a special case of Lemma 6 where A = E4

0 , B = E4
B

and F is actually an endomorphism.

3.3 Description of the Attack

Write NA = NB + a, a > 0. Suppose that we can find an explicit a-isogeny
α0 : Eg

0 → X0. Then we can consider the following pushout:

Eg
0 Eg

B

X0 XB

φB

α0 αB

φ′
B

Hence we have the following isogeny diamond

X0 Eg
0

XB Eg
B

α̃0

φ′
B φB

α̃B

488 D. Robert

so by Lemma 6, F =
(

α̃0
˜φB

−φ′
B αB

)

is a NA-isogeny F : X0 × Eg
B → Eg

0 × XB . In

particular, KerF is the image of ˜F on (Eg
0 ×XB)[NA]. Since a is prime to NB , it

is also the image of ˜F on Eg
0 [NA] × 0: Ker F = {(α0(P), φB(P)) | P ∈ Eg

0 [NA]}.
In particular, we don’t need to build XB , we will recover it when evaluating F .
Evaluating F gives the evaluation of ˜φB which we can use to recover the kernel
of φB.

Notice that if α0 : E0 → E′ is an a-isogeny, then diag(α0) : Eg
0 → X0 := E′g

is also an a-isogeny. So on our product of elliptic curves, we can always compose
or precompose with smooth isogenies, see Sect. 6.2.

To increase the parameters susceptible to this attack, we can also postcom-
pose and precompose φB : Eg

0 → Eg
B by isogenies β1, β2. Write NA = bNB + a,

a, b > 0; eventually applying the parameter tweaks of Sect. 6. Note that since NA

is coprime to NB , then dividing by gcd(NA, a, b) if necessary, we may assume
that NA, a, b are coprime. Write b = b1b2, and suppose that we can find an
explicit b1-isogeny β1 : Eg

0 → Y0, a b2-isogeny β2 : Eg
B → YB , and an a-isogeny

α0 : Eg
0 → X0. Let γ = β2 ◦φB ◦ ˜β1 : Y0 → YB , it is a bNB-isogeny. Consider the

following pushouts,

Y0 Eg
0 Eg

B YB

Z0 X0 XB ZB

α′
0

φB

α0

β1

β2

αB α′
B

β′
1

φ′
B β′

2

since a is prime to bNB , γ′ = β′
2 ◦ φ′

B ◦ ˜β′
1 : Z0 → ZB is a NBb-isogeny and

α′
0, α

′
B are a-isogenies.

We thus have the following isogeny diamond

Z0 Y0

ZB YB

˜α′
0

γ′ γ

˜α′
B

so by Lemma 6, F =
(

˜α′
0 γ̃

−γ′ α′
B

)

is a NA-isogeny F : Z0 × YB → Y0 × ZB . In

particular, KerF is the image of ˜F on (Y0 × ZB)[NA]. Since a is prime to bNB ,
it is also the image of ˜F on Y0[NA] × 0: Ker F = {(α′

0(P), γ(P)) | P ∈ Y0[NA]}.
Note that as before, this means that we don’t need to construct ZB explicitly,
however in this case we need to construct the pushout Z0.

This allows one to compute F as a smooth NA-isogeny of dimension 2g
in time O(log2 NA + log NA�2g

A) by [LR23] or even ˜O(log NA�2g
A) via the fast

isogeny decomposition of [DJP14, Sect. 4.2.2]. We can hence evaluate F on the
NA-torsion to recover the kernel of ˜F , which allows us to evaluate ˜F too. In
particular, we can compute γ = β2 ◦ φB ◦ ˜β1 on any point of Y0. It remains

Breaking SIDH in Polynomial Time 489

to recover φB from γ. Applying ˜β2 and β1, we can always recover bφB, hence
we may recover φB whenever b is prime to NB . Otherwise, we at least recover
a (NB/ gcd(b,NB))-isogeny through which φB factors, and we iterate, which
is possible as long as gcd(b,NB) < NB . Alternatively, since F gives us the
evaluation of γ̃, we can recover b˜φB by the same method, which is also enough
to give the kernel of φB as long as b is prime to NB .

In summary we have reduced recovering φB to evaluating the isogeny F in
dimension 2g:

Theorem 2. Let φB : E0 → EB be a NB-isogeny defined over a finite field Fq.
Assume that E0[NA] ⊂ E0(Fq) and that we are given a basis (P1, P2) of E0[NA]
and the image of φB on this basis.

Suppose that we can find a, b > 0 such that NA = bNB + a, with a, b,Na

coprime, b = b1b2, and an b1-isogeny β1 : Eg
0 → Y0, a b2-isogeny β2 : Eg

B → YB,
and an a-isogeny α0 : Eg

0 → X0. Assume furthermore for simplicity that
gcd(b,NB) = 1 (or is small). Let T be a bound on the arithmetic operations
required to evaluate β1, β2 (and their duals) and the pushout α′ of α and β1 on
a basis of the NA-torsion of Eg

0 , Eg
B , Y0 respectively. Then, there is an algo-

rithm to evaluate φB on any point P ∈ E0(Fq)(resp. ˜φB on any point in
EB(Fq)) in O(�2g

A log NA + log2 NA + T) arithmetic operations in Fq, or even
in ˜O(�2g

A log NA + T).

Remark 6. In the situation of Theorem 2, we will see in Sect. 6 ways to tweak
the parameters NA, NB to improve our range of parameters which can be decom-
posed as in the Theorem. Since we can evaluate φB and ˜φB, we can use Lemma 5
and Remark 5 to recover a generator of its kernel.

We leave to the reader the case where we have an isogeny αB : Eg
B →

XB constructed from EB instead of the isogeny α0. Note that, using discrete
logarithms if needed, we only need to evaluate α0, β1, β2 on a basis of the NA-
torsion of their respective domains. It is thus better to build the isogenies from
Eg

0 rather than from Eg
B , indeed for α′ and β1 these evaluations can then be

seen as a precomputation (involving the parameters and E0).

Remark 7. In dimension 8, the domain (and codomain) of F is a product of
supersingular elliptic curves, so is a superspecial abelian variety. The same is
true for the isogeny F in dimension 2g: since F is a NA-isogeny with NA prime
to the characteristic of the base field, F , or its decomposition into a product of
�-isogenies, preserves the a-number of the intermediate abelian varieties. Hence
they have a-number equal to 2g, so they are still superspecial. By a theorem
due to Deligne, Ogus and Shioda [Shi79, Theorem 3.5], they are all isomorphic
(without the polarisation!) to E2g

0 . So in the decomposition of F we always stay
on the same abelian variety E2g

0 , except that we gradually change its polarisation.
For instance in the dimension 2 attack, we start with a product polarisation
but the intermediate polarisations will generically be indecomposable, hence
correspond to Jacobians of genus 2 hyperelliptic superspecial curves.

490 D. Robert

4 Dimension 4 Attack

In dimension 2, we can always write an a-endomorphism on E2
0 whenever a =

a2
1 + a2

2. So using Sect. 3, we can do a dimension 4 attack whenever we can find
a, b > 0 such that NA = bNB + a and both a and b are a sum of two squares.
Note that unlike the decomposition of a as a sum of four squares from Sect. 2,
these decompositions into a sum of two squares requires the factorisation of a, b.
To increase our probability of success, we can also tweak the parameters NA and
NB as explained in Sect. 6.

Remark 8. Since we can always prolong α and β by isogenies of smooth degree
using Sect. 6.2, we can consider the more general decompositions: NA = (b21 +
b22)eNB + (a2

1 + a2
2)f with e, f sufficiently smooth. But smooth integers are of

negligible density compared to sum of two squares, so for simplicity we focus
only on the case e = f = 1 here.

Theorem 3. Let φB : E0 → EB be a NB-isogeny defined over a finite field Fq.
Assume that E0[NA] ⊂ E0(Fq) and that we are given a basis (P1, P2) of E0[NA]
and the image of φB on this basis.

Suppose that we can find a, b > 0 such that NA = bNB + a with NA, a, b
coprime and a, b can be written as a sum of two squares: a = a2

1+a2
2, b = b21+b22.

Assume furthermore for simplicity that gcd(b,NB) has its odd prime divisors
congruent to 1 modulo 4, and if 2 | gcd(b,NB) then 4 � b.

Then, given the decomposition of a and b as these sums of two squares (e.g.,
given their factorisations), we can evaluate φB on any point P ∈ E0(Fq) in time
O(�4A log �A log NA + log2 NA) arithmetic operations in Fq, or even ˜O(log NA�4A)
with the fast variant of smooth isogeny computation.

As in Remark 6, we can use Lemma 5 and Remark 5 to recover a generator of
Ker φB.

Proof. Write α =
(

a1 −a2

a2 a1

)

, β =
(

b1 −b2
b2 b1

)

. These matrices can be interpreted

as endomorphisms α0 of E2
0 or αB of E2

B and commute with φB Id: βBφB Id =
φB Idβ0, αBφB Id = φB Idα0. Furthermore, α̃α = (a2

1 + a2
2) Id, so α is an a-

endomorphism, and similarly β is a b-endomorphism:

E2
0 E2

0

E2
B E2

B

φBβ

α0

φBβ

αB

We can now apply Theorem 2. We can also check directly using Lemma 6 or a

direct computation, that F =

(

α0 φ̃B Id˜βB

−βBφB Id α̃B

)

is a NA-endomorphism

of E2
0 × E2

B with NA = a + bNB . Its kernel is given by Ker F =

Breaking SIDH in Polynomial Time 491

{(α̃0(P), βBφB Id(P)) | P ∈ E2
0 [NA]}. We can thus evaluate F , hence evaluate

βBφB Id = φB Id β0 on any point in E2
0(Fq) in O(log2 NA +log NA�4A) arithmetic

operations over Fq by [LR23].
In this situation we can recover more than just bφB . Indeed from the matrix

βBφB Id we can directly recover b1φB and b2φB; so if b′ = gcd(b1, b2), we can
recover b′φB in O(log b) arithmetic operations on EB . This means that we can
recover the kernel of a NB/ gcd(NB , b′)-isogeny E0 → E′

B through which φB

factors. If gcd(NB , b′) = 1 we have directly recovered φB , otherwise we iterate
the process, which is possible as long as gcd(NB , b′) < NB .

Under the hypothesis of Theorem 3, we have gcd(NB , b′) = 1 by Remark 9
below, so we can directly recover φB . ��
Remark 9 (Sum of two squares). To decompose a number b as a sum of two
squares b = b21+b22 is the same as finding a factorisation b = (b1+ib2)(b1−ib2) =
ββ in the Gaussian integers Z[i]. The order Z[i] ⊂ Q(i) is of discriminant −4,
so it is the maximal order, and it is euclidean, hence is principal. The prime
(2) = ((1 + i)(1 − i)) =

(

(1 + i)2
)

is ramified, and the other integer primes are
unramified. By the quadratic reciprocity law, when p is an odd prime, −1 is a
square modulo p if and only if p ≡ 1 (mod 4). Hence when p ≡ 1 (mod 4) it
splits in Z[i], otherwise when p ≡ 3 (mod 4) it stays inert. In particular, p is a
sum of two squares if and only if p = 2 or p ≡ 1 (mod 4).

We deduce that b is a sum of two squares if and only if all odd primes
p ≡ 3 (mod 4) dividing b have even exponent vp(b). Also, gcd(b1, b2) |
gcd(β, β) | 2 gcd(b1, b2). Therefore, if b = b21 + b22, gcd(b1, b2) = 2�v2(b)/2� ×
∏

p|b,p≡3 (mod 4) pvp(b)/2. In particular, b admits a primitive representation as a
sum of two squares if and only if the odd prime divisors of b are all congruent
to 1 modulo 4 and 4 � b. We will call such a sum b = b21 + b22 with gcd(b1, b2) = 1
a primitive sum of two squares. More generally, if the odd prime divisors of
gcd(b,NB) are congruent to 1 modulo 4, and either 2 � NB or 4 � b, we can find
a decomposition b = b21 + b22 such that gcd(b1, b2, NB) = 1.

In Sect. 5, we will need decompositions of the form b = b21 + 4b22. Such a
decomposition exists if β ∈ Z[2i], which is a suborder of Z[i] of index 2. So b
admits such a decomposition if and only if it can be written a sum of two squares
and v2(b) is even.

Furthermore, the number of integers less than x that can be written as a
sum of two squares is given by the asymptotic behaviour of the L-function
L(s) = (1 − 1

2s)−1
∏

p≡1 (mod 4)(1 − 1
ps)−1

∏

p≡3 (mod 4)(1 − 1
p2s)−1 at s = 1.

By Perron’s formula, it is equivalent to Cx/
√

log x [LeV12, Volume 2, pp. 260–
263], where C ≈ 0.7642 is the Landau-Ramanujan constant. Adapting the
proof, the same asymptotic bound holds for the number of integers that are
a primitive sum of two squares (resp., of the form b21 + 4b22) via the L-function
L(s) = (1+ 1

2s)
∏

p≡1 (mod 4)(1− 1
ps)−1 (resp., L(s) = (1− 1

22s)−1
∏

p≡1 (mod 4)(1−
1
ps)−1

∏

p≡3 (mod 4)(1− 1
p2s)−1), except with a different constant C ≈ 0.49 (resp.,

C ≈ 0.57).

492 D. Robert

4.1 Parameter Selection

In order to find parameters such that we may apply Theorem 3, a first idea is the
following. We search, using Sect. 6, for parameters a, b such that eNA = bNB/D+
a, where e is an integer, D is some divisor of NB (that we will want as small
as possible), and a, b primitive sum of two squares. Since NA > NB , there are
O(eD) possible choices for b, among which Ω(eD/

√
log eD) will be a primitive

sum of two squares by Remark 9. We thus have Ω(eD/
√

log eD) candidates for
a. If we make the heuristic assumption that these a behave like a random integer
between 0 and NA, the probability to find an a that is a sum of two squares is
Ω(1/

√
log NA) by Remark 9. Hence we need to take eD = ˜O(

√
log NA). There are

O(D) candidate D-isogenies through which φB may factor, and we need to apply
Theorem 3 to each of these candidates. Likewise, there are O(e3) possibilities
to guess the image of φB on the NAe-torsion (and this does not even take into
account the cost of finding the eNA-torsion which possibly lives in an extension
of Fq). Thus it appears that for the tweaking of parameters, it is preferable to
use e = 1, D = ˜O(

√
log NA). So these parameter tweaks will lose a factor O(D)

in the final arithmetic complexity of the attack.
However, for the dimension 4 attack, we will see that by using Sect. 6.4 we

can actually set e = NA without extra cost (asymptotically).
The question remains of the cost of the precomputation of the parameters

a, b. We can directly iterate through sums of two squares for b, but checking
if a is a sum of two squares requires its factorisation. Here we can use a trick
from [Wes22a]: we restrict to the case a is a prime congruent to 1 modulo 4.
This only requires a primality test, hence is much less expensive. However the
probability that a is a prime (congruent to 1 modulo 4) will only be (heuristically)
Ω(1/ log NA), so this strategy will require larger parameters eD. Luckily, for the
dimension 4 attack we can take e = NA as we have seen, which is more than
large enough.

Reframing the above discussion, we need the following heuristic:

Heuristic 1. – Let N1 > N2 be two coprime integers, with N2 and N1/N2

sufficiently large. Then if b is uniform amongst the numbers x < N1/N2

that are sum of two squares (resp., a primitive sum of two squares, resp.,
of the form u2 + 4v2), the probability that a = N1 − bN2 is a sum of two
squares (resp., a primitive sum of two squares, resp., of the form u2 + 4v2)
is Ω(1/

√
log N1).

– Under the same assumptions, if b is uniform amongst the numbers x < N1/N2

that are sum of two squares (resp., a primitive sum of two squares, resp., of
the form u2 + 4v2), the probability that a = N1 − bN2 is prime and a sum of
two squares is Ω(1/log N1).

Motivation. The motivation behind this heuristic is that the a we get will behave
like a uniform integer between 1 and N1. The density of sum of two squares
(resp., a primitive sum of two squares, resp., of the form u2 + 4v2) less than
N1 is equal asymptotically to C/

√
log N1, where C depends on the exact form

Breaking SIDH in Polynomial Time 493

we want. Likewise, the density of primes congruent to 1 less than N1 is equiv-
alent asymptotically to C/ log N1 by the prime number theorem and Dirichlet’s
theorem on arithmetic progressions. ��

This heuristic allows us to derive the following complexity cost of the pre-
computation step.

Proposition 1. Assume Heuristic 1 is true. Let N1 > N2 be two coprime inte-
gers, with N2 sufficiently large. If ε > 0, then there is a constant Cε such that
if N1/N2 > Cε log1/2 N1, we can find with probability > 1 − ε a decomposition
N1 = bN2 + a where a, b are sum of two squares (resp., a primitive sum of two
squares, resp., of the form u2 + 4v2). This decomposition requires on average
O(

√
log N1) factorisation calls and O(log2.5 NA) binary operations.

If N1/N2 > Cε log N1, we can find such a decomposition on average O(log N1)
tests of primality. It will cost on average O(log3 N1) binary operations.

Proof. By Heuristic 1, we need to sample Ω(log1/2 N1) b of the form b21 + b22 to
find an a which is also a sum of two squares, or Ω(log N1) if we also want a
prime. The same also holds for the other decomposition, only the constant in
the Ω changes.

We first look at the complexity analysis of the second case. Testing the primal-
ity of a via the Miller-Rabin pseudo-primality test [Mil76,Rab80] costs O(log2 a),
and we have the same average complexity to find an integer z such that z2 = −1
(mod a) (this is more or less equivalent to the Miller-Rabin pseudo-primality
test). From z and a, a continued fraction expansion allows one to decompose
a as a sum of two squares, so given z, the decomposition a = a2

1 + a2
2 can be

done in time O(log2 a) by the Euclidean algorithm (it is well known that the
complexity can be improved to ˜O(log a), see e.g., [BCG+17, Sect. 6.3]) for a
total complexity of O(log2 a) on average to test the primality of a and write it
as a sum of two squares.

For the first case, we need to factor a to see if it can be written as a sum of
two squares. Given the prime factors of a, we can use the method above to find
the decomposition of a into irreducible factors in the Gaussian integers Z[i], so
we can also decompose a as a sum of two squares in time O(log2 a). ��
Proposition 2. Assume Heuristic 1 is true. The precomputation step of the
dimension 4 attack takes average time O(log3 NA) binary operations to find a
decomposition N2

A = (b21 + b22)NB + a2
1 + a2

2. Once this decomposition is found,
the dimension 4 attack can be done in ˜O(log NA�4A) arithmetic operations.

Proof. By Heuristic 1, we can find e | NA such that eNA = (b21+b22)NB+(a2
1+a2

2)
with b1, b2 coprime. This precomputation costs ˜O(log3 NA) by Proposition 1. We
can now construct an eNA-endomorphism F : X → X where X = E2

0 × E2
B as

in Theorem 3. We only know its action on X[NA], but by considering ˜F , we
can explicitly decompose F as F = F2 ◦ F1 where F1 is a NA-isogeny and F2 an
e-isogeny, see Sect. 6.4. This decomposition costs ˜O(log NA+log e�4A) to compute
(more precisely: to recover the domain of F2 and its kernel), and evaluating F

via this decomposition costs ˜O(log NA�4A). ��

494 D. Robert

5 Dimension 2 Attack

We briefly describe how the dimension 2 attacks, due to [CD22,MM22], fit into
the general framework of Sect. 3.

Write NA = bNB + a. To apply Sect. 3 for g = 1, we need to construct an
a-isogeny α = α0 : E0 → X0 and a b-isogeny β : E0 → Y0 (or β : EB → YB) to
get the push-out square:

Y0 E0 EB

Z0 X0 XB

α′
0

φB

α0

β

αB

β′
φ′
B

The corresponding isogeny diamond

Z0 Y0

XB EB

˜α′
0

φ′
B◦ ˜β′ φB◦˜β

α̃B

shows that F =

(

˜α′
0 β ◦ ˜φB

−φ′
B ◦ ˜β′ αB

)

is a NA-isogeny F : Z0 × EB → Y0 × XB

by Lemma 6.
If we don’t assume that End(E0) is known, we can only construct an a-

endomorphism whenever a is a square: if a = a2
1 we take the a-endomorphism

[a1]. More generally, since it is also easy to construct isogenies of smooth degree
starting from E0 or EB (see Sect. 6.2), the framework of Sect. 3 shows that the
attack applies whenever NA = b21eNB + a2

1f where e, f are sufficiently smooth.
This is essentially the attack of [MM22]; in the first version they only looked
at NA − NB smooth (and tweaking of parameters), but to get a subexponential
complexity they needed to look at the more general NA = eNB + f case, which
was already considered in [CD22] (squares are of negligible density compared to
smooth numbers, so we can forget about them).

As mentioned in Sect. 1.5, in [CD22] the authors use the matrix F as an oracle
attack, which requires many isogeny guesses compared to the direct isogeny
recovery of [MM22]. However, they also use the fact that for the parameters of
SIKE submitted to NIST (or the Microsoft challenge [Cos21]), E0 has a known
endomorphism γ = 2i, so End(E0) ⊃ Z[2i]. Hence we can construct an explicit
a-endomorphism α on E0 whenever a = a2

1 + 4a2
2, which is possible whenever

all primes p such that p ≡ 3 mod 4 or p = 2 are of even exponent in a by
Remark 9. By Sect. 3, prolonging by isogenies of smooth degrees if necessary, for
this starting curve E0 the attack holds whenever NA = (b21 + 4b22)eNB + (a2

1 +
4a2

2)f . Otherwise, one needs to do some guesses, as in Sect. 6. In [CD22], the
authors only look at NA = NB + (a2

1 + 4a2
2)f , but in [POP+22], Oudompheng,

inspired by an earlier version of this paper describing the dimension 4 attack,

Breaking SIDH in Polynomial Time 495

implemented the more general formula above. This bumped down the time to
solve the SIKEp217 challenge from 9 to 2 s and SIKEp964 instances from more
than one hour to thirty seconds.

The discussion of Sect. 4.1 shows:

Proposition 3. Assume Heuristic 1 is true and assume that E0 has known
endomorphism γ = 2i. The dimension 2 attack has, after a precomputa-
tion step involving O(

√
log NA) factorisations and O(1) calls to γ, complexity

˜O(log1.5 NA�2A) arithmetic operations.
Alternatively, we can dispense with factorisations in the precomputation step

at the cost of increasing the complexity of the attack: still under Heuristic 1,
after a precomputation step costing O(log3 NA) binary operations and O(1) calls
to γ, the dimension 2 attack has complexity ˜O(log2 NA�2A) arithmetic operations.

Proof. We proceed as in the proof of Proposition 2. In Proposition 1, we require
a, b to decompose as a = a2

1+4a2
2 and b = b21+4b22. To find such a and b, we look

for relations NA = bNB/D+a where D is a divisor of NB . When we look for a a
sum of two squares in Proposition 1, we can take D = Θ(

√
log NA), if we require

furthermore that a is prime to decrease the precomputation cost, then we need
D = Θ(log NA)). We assume implicitly that it is possible to find a divisor D of
NB of this magnitude, this will be the case if NB is sufficiently smooth.

Also, since the endomorphisms α and β are built from γ, the evaluation cost
of these endomorphisms will depend on the cost of evaluating γ. But we only need
to evaluate α, β on NA-torsion points, so we may consider the computation of γ
on a basis of E0[NA] to be a precomputation (depending on E0). Evaluating α

and β then takes ˜O(log NA�
1/2
A) by Lemma 4. When E0 = ENIST, the evaluation

of γ is done in O(1), so evaluating α and β can be done directly in O(log NA).
Once these precomputations are done, the evaluation of F takes time

˜O(log NA�2A) arithmetic operations. We need to multiply this complexity by
O(D), the number of isogenies we need to guess. ��

When E0 = ENIST has known endomorphisms, Castryck and Decru use
[KLP+14,LB20] to build a path from ENIST to E0. This allows them to pushfor-
ward the a-isogeny αNIST from ENIST to an a-isogeny α on E0 using the methods
of [GPS17,GPS20,DKL+20]. This time, evaluating α on rational points can only
be done in polynomial time. But since the attack only needs the action of α on
the NA-torsion, it is sufficient to evaluate α on a basis of E0[NA]. This can be
seen as a precomputation, which in this case involves not only the parameters
NA, NB but also the starting curve E0. The remaining evaluations on points of
NA-torsion can then be done in ˜O(log NA�

1/2
A) by Lemma 4.

Recall also from Sect. 1.5 that [Wes22b] gives a method to construct an a-
isogeny in proven polynomial time on any supersingular elliptic curve with known
endomorphism ring. This isogeny can also be evaluated in polynomial time.
Applying this to a = NA − NB , computing this a-endomorphism α and its
evaluation on a basis E0[NA] can be seen as a precomputation, and then we
have a direct isogeny recovery without parameter tweaks as in Sect. 2, except we
only need to compute isogenies in dimension 2 rather than 8.

496 D. Robert

Proposition 4 (Wesolowski). If End(E0) is known, after a polynomial time
precomputation to compute an a-isogeny α and its action on the NA-torsion, the
dimension 2 attack has complexity ˜O(log NA�2A) arithmetic operations.

Unfortunately, it is not clear what is the exact bound on the precomputation
step of Wesolowski’s approach.

Finally, we mention that for the isogeny computations in dimension 2, since
any principally polarised surface is either a Jacobian or a product of two elliptic
curves, one can also use the Jacobian model of [CE14] (which can be extended
to the case of product of elliptic curves), rather than the theta model of [LR23].

6 Parameter Tweaks

We recall the decomposition of the parameters we need for the different attacks
from the generic framework of Sect. 3:

– In dimension 8, or in dimension 2 when End(E0) has known endomorphism
ring (using [Wes22b]), no tweaks!

– In dimension 4, we need a decomposition NA = e(b21 + b22)NB + f(a2
1 + a2

2),
e, f sufficiently smooth. For the dimension 2 attack of [CD22] where End(E0)
has endomorphism 2i, we need the very similar decomposition NA = (b21 +
4b22)eNB + (a2

1 + 4a2
2)f .

– For [MM22], in dimension 2 when End(E0) is not known, we need NA =
eNB + f with e, f sufficiently smooth.

These decompositions rely on the fact that we can build isogenies of smooth
degree on E0 and EB ; we detail that complexity in Sect. 6.2.

We can furthermore tweak the parameters NA and NB as follows, as in
the strategies of [CD22,MM22]. In the following, we assume that we are in the
context of SIDH, so E0, EB are supersingular elliptic curves defined over Fq with
q = p2.

1. We can replace NA by N ′
A = NA/dA where dA any divisor of NA.

2. We can replace NB by NB/dB , where dB is a small divisor of NB . This
requires guessing the first dB-isogeny step of φB , and we have O(dB) guesses.

3. We can replace NA by N ′
A = eNA where e is a small integer prime to NB .

This means that we will construct F a (N ′
A = eNA)-isogeny in dimension 2g,

but we only know its action on the NA-torsion. To evaluate F (e.g., to recover
its kernel), we need to know its action on the N ′

A-torsion. For a general e, we
explain possible strategies in Sect. 6.3, strategies which can be much improved
when e | NA, see Sect. 6.4.

The rest of this section is devoted to determining the complexity of these
tweaks.

Breaking SIDH in Polynomial Time 497

6.1 Constructing a Basis of the e-torsion of E

We look at the complexity of building a basis of the e-torsion on E.

Lemma 7. Let E/Fq be a supersingular elliptic curve, and k the degree of the
smallest extension where E[�] ⊂ E(Fqk). We can find a basis of the e-torsion in
randomized time ˜O(k2 log2 q) = O(e2 log2 q) operations.

Proof. By the group structure theorem of supersingular elliptic curves, since
πqk = (−p)k where πqk is the Frobenius of E/Fqk , E(Fqk) � Z/((−p)k − 1) ⊕
Z/((−p)k − 1). Hence the smallest extension of Fq where the e-torsion points of
E live is of degree k, the order of −p modulo e, so k = O(e). Sampling a basis of
the e-torsion of E can be done by constructing the field Fqk , sampling random

points in E(Fqk), multiplying by the cofactor (−p)k−1
e and then checking if we

have a basis using the Weil pairing. The construction of Fqk costs ˜O(k2 log q +
k log2 q) using [Sho94] or ˜O(k log5 q) using [CL13]. The dominant cost will be
the sampling phase, which costs O(k log q) arithmetic operations in Fqk . In total
we get ˜O(k2 log2 q) = O(e2 log2 q) operations. ��

6.2 Building a Smooth Isogeny on a Supersingular Elliptic Curve
E/Fp2

We want to build a smooth isogeny of degree e. We can build it as a composition
of O(log e) �-isogenies, for primes � | e. If � | NANB , since we have access
to a rational NA and NB torsion basis, we can simply use it to sample an
element of order � in time O(min(log NA, log NB)) arithmetic operations, and
the isogeny can then be computed in time ˜O(

√
�) arithmetic operations using

sqrtVelu [BDL+20].
We now detail the general case.

Lemma 8. Let E/Fq be a supersingular elliptic curve. We can recover the kernel
of a �-isogeny with domain E in ˜O(�2 log q + � log2 q) arithmetic operations.

Proof. Since πq = [−p], all cyclic kernels of order � of E are rational, and their
generators live in an extension of degree at most k = O(�), the order of −p mod-
ulo �. We can construct Fqk then sample a generator (any non zero point P of �-
torsion) in O(k2 log2 q) operations as in Sect. 6.1, then compute the isogeny using
Vélu’s formula [Vél71] or the sqrtVelu algorithm [BDL+20] in time O(�k log q)
(resp., ˜O(�1/2k log q)) for a total cost of ˜O(k2 log2 q + �1/2k log q) = ˜O(�2 log2 q).

An alternative is to compute and factor the �-division polynomial ψ�. It is of
degree O(�2) and can be computed in time ˜O(�2 log q) via the recurrence formula.
Furthermore, all points of �-torsion live in the same extension of degree k. If �
is odd and P ∈ E[�], xP will live in the same extension as P unless k is even,
in which case π

k/2
q P = −P so xP lives in an extension of degree k/2. This

shows that the factors of ψ� are all of the same degree k if k is odd or k/2
if k is even. We can then skip the distinct degree factorisation phase, hence

498 D. Robert

compute a factorisation of ψ� in time ˜O(�2 log2 q) by [VS92]. Any factor Q of
ψf then gives us a construction of Fqk and of a point of �-torsion P in E(Fqk)
via, if E : y2 = h(x), P =

(

x mod Q(x), y mod (y2 − h(x), Q(x))
)

. Note that
the polynomial y2 − h(x) splits in Fq[x]/Q(x) if deg Q = k, otherwise it is
irreducible, deg Q = k/2 and it allows one to construct Fqk as a degree 2 tower
over Fqk/2 = Fq[x]/Q(x). We can then apply Vélu or sqrtVelu to P as above,
for a total cost of ˜O(�2 log2 q).

A third method is to construct a �-isogeny using the �-modular polynomial
φ� (and its derivative), as in the SEA algorithm [Sch95]. We can evaluate this
modular polynomial in time ˜O(�2 log q) by an easy adaptation of [Kie20] (see
[Rob21, Remark 5.3.9]), then recover a root in time ˜O(� log2 q). Recovering the
isogeny can then be done in quasi-linear time by solving a differential equation
[BMS+08,Rob21, Sect. 4.7.1]. This reduces the complexity to ˜O(�2 log q+� log2 q)
operations. ��

6.3 Recovering a NAe-isogeny from Its Action on the NA -torsion

We have a NAe-isogeny F in dimension 2g, that Eve built from the secret isogeny
φB : E0 → EB and some auxiliary isogeny she controls. She wants to recover F
in order to retrieve φB from it.

One way to do that is to guess the action of φB on the eNA-torsion of E0.
This requires one to compute a basis of the eNA-torsion on E0, as described
in Sect. 6.1, possibly taking an extension of degree k, and then guessing the
images of φB on the NAe-torsion. Note that since the NA-torsion is rational by
assumption, we have k = O(e). Guessing the image of φB on this basis involves
O(e3)-tries, using the compatibility of φB with the Weil pairing and the known
image of the NA-torsion.

An alternative strategy, when the codomain Y of F : X → Y is known, is as
follows: since F is a (N ′

A = eNA)-isogeny, and we know the action of φB on the
NA-torsion, we can still recover Ker F ∩ X[NA]. So taking a maximal isotropic
subgroup of KerF ∩ X[NA] for the Weil pairing eNA

(for the F we build in
Sect. 3, this intersection is already maximal isotropic), we can thus recover F1 in
a decomposition F = F2 ◦ F1, with F1 a NA-isogeny and F2 an e-isogeny. Then
we can try to bruteforce F2 by an e-isogeny search in dimension 2g.

6.4 Recovering a N2
A -isogeny from Its Action on the NA -torsion

When F : X → Y is a NAe-isogeny with e | NA, and the action of F on X[NA]
is known, then by using the dual ˜F there is a much better strategy to recover
F than in Sect. 6.3. This is the same strategy used in [QKL+21] when F is an
endomorphism of elliptic curves.

Lemma 9. Let F : X → Y be a Ne-isogeny between principally polarised
abelian varieties in dimension g, whose kernel has rank g. Assume that we are
given a basis of X[N], Y [N] over Fq along with the image of F on this basis of

Breaking SIDH in Polynomial Time 499

X[N], and that e | N . Then we can decompose F = F2 ◦ F1 with F1 : X → X1 a
N -isogeny and F2 : X1 → Y an e-isogeny. Furthermore, we can compute a basis
of the kernels of F , ˜F , F1 and ˜F2 in ˜O(log N�

1/2
N); and a basis of the kernel

of F2 in ˜O(log N�
1/2
N) along with 2g evaluations of ˜F2. Once the kernels of F1

and F2 are computed, we can evaluate F on any point in ˜O(log N�g
N) arithmetic

operations.

Proof. Since K = Ker F is of rank g, it admits a symplectic complement K ′:
X[eNA] = K ⊕ K ′, and Ker ˜F = F (X[eNA]) = F (K ′). Decompose F = F2 ◦ F1,
F1 : X → X1, F2 : X1 → Y , with KerF1 = Ker F ∩ X[NA] = K[NA]. Then
we have Ker ˜F2 = ImF2 | X1[e] = ImF | X[e] = Ker ˜F ∩ Y [e] = F (K ′)[e] =
F (K ′[e]) (indeed ImF | X[e] ⊂ Im F2 | X1[e] but they have the same cardinality
e2g since the kernel is of rank 2g, so we have equality). So we can build F1 from
X through its kernel KerF ∩ X[NA] (which is maximal isotropic of rank 2g in
X[NA]), build ˜F2 from Y through its kernel ImF | X[e], then compute KerF2 =
Im ˜F2 | Y [e] to recover F2, hence F = F2 ◦ F1. We can recover these kernels
via DLPs as in Lemma 4. We also notice that evaluating ˜F2 takes ˜O(log e�g

e)
arithmetic operations.

Once we have the kernels of F1 and F2 evaluate F by an isogeny
algorithm. ��
Example 1. Note that the isogeny F in dimension 2g constructed in Sect. 3 has
its kernel of rank 2g. In particular this strategy applies for the attacks in dimen-
sion 4 of Sect. 4 and in dimension 8 of Sect. 2.

Let us detail this case: in these examples, the endomorphism F of Eg
0 ×Eg

B is

always of the form F =
(

α0
˜β ˜φB Id

−φBβ α̃B

)

with α0 an a-endomorphism of Eg
0 , β a

b-endomorphism of Eg
0 , and αB the a-endomorphism of Eg

B making the diagram
commute:

Eg
0 Eg

B

Eg
0 Eg

B

φBβ

α0 αB

φBβ

We also have a, b,NA coprime to each other. In particular, KerF =
{(α̃0(P), (φBβ)(P)) | P ∈ Eg

0 [eNA]}, and Ker ˜F = {(α0(P), (−φBβ)(P)) |
P ∈ Eg

0 [eNA]} are of rank g. We decompose F = F2 ◦ F1, where Ker F1 =
Ker F [NA] = {(α̃0(P), (φBβ)(P)) | P ∈ Eg

0 [NA]}, and Ker ˜F2 = Ker ˜F [e] =
{(α0(P), (−φBβ)(P)) | P ∈ Eg

0 [e]}. Since we know the image of φB on a basis of
E0[NA], we know the image of φB on a basis of E0[e] via O(log(NA/e)) arithmetic
operations. So we can recover the image of φBβ on this basis in ˜O(log NA�

1/2
A)

and O(1) evaluations of β by Lemma 4. We also need O(1) calls to α0.
In these examples, the endomorphisms β and α0 can be evaluated in time

O(log NA), so the kernel of F1 and of ˜F2 can be computed in time ˜O(log NA�
1/2
A).

A linear complement of Ker ˜F2 is given by 0 × Eg
B [e]. Indeed it is of rank g and

500 D. Robert

cardinality q2g, and if x = (0, Q) ∈ Ker ˜F2, then Q = −φBβ(P) for a P ∈ Eg
0 [e]

such that α0P = 0. But this implies aP = 0, hence P = 0 since a is prime to
e | NA, so Q = 0. So KerF2 = ˜F2(0 × Eg

B [e]) can be recovered in 2g calls to the
evaluation of the e-isogeny ˜F2.

The total cost to recover the domain of F2 and a basis of its kernel is thus
˜O(log NA�

1/2
A + log e�2g

e) = ˜O(log NA�2g
A).

Unfortunately, this strategy does not work for the dimension 2 attack of
Sect. 5, because (with the notations of this Section), XB is constructed as a
pushout, and we only obtain it when we compute the codomain of F . But this
means that if F is a N2

A-isogeny, there is no easy way to obtain Ker ˜F [NA], hence
split F as a product of two NA-isogenies, without first computing F fully.

7 Open Problem

By Theorem 1 and Remark 1, we have a new toolbox for recovering an NB-
isogeny f : A → B given its action on the NA-torsion as long as N2

A ≥ NB and
NA is sufficiently smooth. This tool allows one to break SIDH efficiently in all
cases. Can it also be used to build new isogeny based cryptosystems?

References

[BDL+20] Bernstein, D., De Feo, L., Leroux, A., Smith, B.: Faster computation of
isogenies of large prime degree. In: Algorithmic Number Theory Symposium
(ANTS XIV), vol. 4.1, pp. 39–55. Mathematical Sciences Publishers (2020).
arXiv:2003.10118. https://msp.org/obs/2020/4/p04.xhtml

[BL04] Birkenhake, C., Lange, H.: Complex Abelian Varieties, vol. 302.
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles
of Mathematical Sciences], pp. xii+635. Springer, Cham (2004). ISBN: 3-
540-20488-1, https://doi.org/10.1007/978-3-662-06307-1

[BCR10] Bisson, G., Cosset, R., Robert, D.: AVIsogenies. Magma package
devoted to the computation of isogenies between abelian varieties
(2010). https://www.math.u-bordeaux.fr/damienrobert/avisogenies/. Free
software (LGPLv2+), Registered to APP (Reference IDDN.FR.001.440011.
000.R.P.2010.000.10000). Latest version 0.7, Released on 13 Mar 2021

[BMS+08] Bostan, A., Morain, F., Salvy, B., Schost, E.: Fast algorithms for computing
isogenies between elliptic curves. Math. Comput. 77(263), 1755–1778 (2008)

[BCG+17] Bostan, A., et al.: Algorithmes efficaces en calcul formel (2017). https://
hal.inria.fr/hal-01431717/document

[CD22] Castryck, W., Decru, T.: An efficient key recovery attack on SIDH (prelim-
inary version). Cryptology ePrint Archive, Paper 2022/975 (2022). https://
eprint.iacr.org/2022/975

[CLM+18] Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an
efficient post-quantum commutative group action. In: Peyrin, T., Galbraith,
S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03332-3 15

http://arxiv.org/abs/2003.10118
https://msp.org/obs/2020/4/p04.xhtml
https://doi.org/10.1007/978-3-662-06307-1
https://www.math.u-bordeaux.fr/damienrobert/avisogenies/
https://hal.inria.fr/hal-01431717/document
https://hal.inria.fr/hal-01431717/document
https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975
https://doi.org/10.1007/978-3-030-03332-3_15

Breaking SIDH in Polynomial Time 501

[Cos21] Costello, C.: The case for SIKE: a decade of the supersingular isogeny
problem. In: Cryptology ePrint Archive (2021)

[CLN16] Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for super-
singular isogeny Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016. LNCS, vol. 9814, pp. 572–601. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53018-4 21, https://ecc2017.cs.
ru.nl/slides/ecc2017-costello.pdf

[CE14] Couveignes, J.-M., Ezome, T.: Computing functions on Jacobians and their
quotients. LMS J. Comput. Math. 18(1), 555–577 (2014). arXiv:1409.0481

[CL13] Couveignes, J.-M., Lercier, R.: Fast construction of irreducible polynomials
over finite fields. Israel J. Math. 194(1), 77–105 (2013)

[DDF+21] De Feo, L., et al.: Séta: supersingular encryption from Torsion attacks.
In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093,
pp. 249–278. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
92068-5 9

[DJP14] De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247
(2014)

[DKL+20] De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: SQISign: com-
pact post-quantum signatures from quaternions and isogenies. In: Moriai,
S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 64–93.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4 3

[EGM12] Edixhoven, B., van der Geer, G., Moonen, B.: Abelian Varieties. Book
Project (2012). http://van-der-geer.nl/gerard/AV.pdf

[FKM+22] Fouotsa, T.B., Kutas, P., Merz, S.P., Ti, Y.B.: On the isogeny problem
with torsion point information. In: Hanaoka, G., Shikata, J., Watanabe, Y.
(eds.) Public-Key Cryptography, PKC 2022. LNCS, vol. 13177, pp. 142–161.
Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97121-2 6

[GPS17] Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature
schemes based on supersingular isogeny problems. In: Takagi, T., Peyrin,
T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 3–33. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70694-8 1

[GPS20] Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature
schemes based on supersingular isogeny problems. J. Cryptol. 33(1), 130–
175 (2020)

[JAC+17] Jao, D., et al.: SIKE: supersingular isogeny key encapsulation (2017).
https://sike.org/

[JD11] Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011.
LNCS, vol. 7071, pp. 19–34. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25405-5 2

[Kan97] Kani, E.: The number of curves of genus two with elliptic differentials. J.
für die reine und angewandte Mathematik 485, 93–122 (1997)

[Kan16] Kani, E.: The moduli spaces of Jacobians isomorphic to a product of two
elliptic curves. Collectanea mathematica 67(1), 21–54 (2016)

[Kie20] Kieffer, J.: Evaluating modular polynomials in genus 2 (2020). arXiv:
2010.10094 [math.NT]. HAL: hal-02971326

[KLP+14] Kohel, D., Lauter, K., Petit, C., Tignol, J.-P.: On the quaternion isogeny
path problem. LMS J. Comput. Math. 17(A), 418–432 (2014)

[LeV12] LeVeque, W.J.: Topics in Number Theory, vol. I and II. Courier Corpora-
tion, New York (2012)

https://doi.org/10.1007/978-3-662-53018-4_21
https://ecc2017.cs.ru.nl/slides/ecc2017-costello.pdf
https://ecc2017.cs.ru.nl/slides/ecc2017-costello.pdf
http://arxiv.org/abs/1409.0481
https://doi.org/10.1007/978-3-030-92068-5_9
https://doi.org/10.1007/978-3-030-92068-5_9
https://doi.org/10.1007/978-3-030-64837-4_3
http://van-der-geer.nl/gerard/AV.pdf
https://doi.org/10.1007/978-3-030-97121-2_6
https://doi.org/10.1007/978-3-319-70694-8_1
https://sike.org/
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-642-25405-5_2
https://arxiv.org/abs/2010.10094
https://hal.science/hal-02971326

502 D. Robert

[LB20] Love, J., Boneh, D.: Supersingular curves with small noninteger endomor-
phisms. In: Open Book Series (ANTS XIV), vol. 4(1), pp. 7–22 (2020).
https://msp.org/obs/2020/4/p02.xhtml

[LR10] Lubicz, D., Robert, D.: Efficient pairing computation with theta functions.
In: Hanrot, G., Morain, F., Thomé, E. (eds.) ANTS 2010. LNCS, vol. 6197,
pp. 251–269. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14518-6 21

[LR15] Lubicz, D., Robert, D.: A generalisation of Miller’s algorithm and applica-
tions to pairing computations on abelian varieties. J. Symb. Comput. 67,
68–92 (2015). https://doi.org/10.1016/j.jsc.2014.08.001

[LR23] Lubicz, D., Robert, D.:. Fast change of level and applications to isogenies.
Res. Number Theory (ANTS XV Conf.) 9(1), 7 (2023). https://doi.org/10.
1007/s40993-022-00407-9

[MM22] Maino, L., Martindale, C.: An attack on SIDH with arbitrary starting curve.
Cryptology ePrint Archive, Paper 2022/1026 (2022). https://eprint.iacr.
org/2022/1026

[MMP+23] Maino, L., Martindale, C., Panny, L., Pope, G., Wesolowski, B.: A direct
key recovery on SIDH. In: Eurocrypt. Springer, Cham (2023)

[Mil76] Miller, G.L.: Riemann’s hypothesis and tests for primality. J. Comput. Syst.
Sci. 13(3), 300–317 (1976)

[Mum66] Mumford, D.: On the equations defining abelian varieties. I. Invent. Math.
1, 287–354 (1966)

[Mum70] Mumford, D.: Abelian Varieties. Tata Institute of Fundamental Research
Studies in Mathematics, vol. 5, pp. viii+242. Published for the Tata Insti-
tute of Fundamental Research, Bombay (1970)

[Oud22] Oudompheng, R.: A note on implementing direct isogeny determination in
the Castryck-Decru SIKE attack, August 2022. http://www.normalesup.
org/oudomphe/textes/202208-castryckdecru-shortcut.pdf

[Pet17] Petit, C.: Faster algorithms for isogeny problems using torsion point images.
In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625,
pp. 330–353. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70697-9 12

[PH78] Pohlig, S., Hellman, M.: An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance (Corresp.). IEEE Trans. Inf.
Theory 24(1), 106–110 (1978)

[PT18] Pollack, P., Treviño, E.: Finding the four squares in Lagrange’s theorem.
Integers 18, A15 (2018)

[POP+22] Pope, G., Oudompheng, R., Panny, L., et al.: Castryck-Decru Key Recov-
ery Attack on SIDH, August 2022. https://github.com/jack4818/Castryck-
Decru-SageMath

[QKL+21] de Quehen, V., et al.: Improved torsion-point attacks on SIDH variants. In:
Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp. 432–
470. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9 15

[Rab80] Rabin, M.O.: Probabilistic algorithm for testing primality. J. Number The-
ory 12(1), 128–138 (1980)

[RS86] Rabin, M.O., Shallit, J.O.: Randomized algorithms in number theory. Com-
mun. Pure Appl. Math. 39(S1), S239–S256 (1986)

[Rob21] Robert, D.: Efficient algorithms for abelian varieties and their mod-
uli spaces. HDR thesis. Université Bordeaux, June 2021. http://
www.normalesup.org/robert/pro/publications/academic/hdr.pdf. Slides:
2021-06-HDR-Bordeaux.pdf (1h, Bordeaux)

https://msp.org/obs/2020/4/p02.xhtml
https://doi.org/10.1007/978-3-642-14518-6_21
https://doi.org/10.1007/978-3-642-14518-6_21
https://doi.org/10.1016/j.jsc.2014.08.001
https://doi.org/10.1007/s40993-022-00407-9
https://doi.org/10.1007/s40993-022-00407-9
https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/1026
http://www.normalesup.org/oudomphe/textes/202208-castryckdecru-shortcut.pdf
http://www.normalesup.org/oudomphe/textes/202208-castryckdecru-shortcut.pdf
https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1007/978-3-319-70697-9_12
https://github.com/jack4818/Castryck-Decru-SageMath
https://github.com/jack4818/Castryck-Decru-SageMath
https://doi.org/10.1007/978-3-030-84252-9_15
http://www.normalesup.org/robert/pro/publications/academic/hdr.pdf
http://www.normalesup.org/robert/pro/publications/academic/hdr.pdf
http://www.normalesup.org/robert/pro/publications/slides/2021-06-HDR-Bordeaux.pdf

Breaking SIDH in Polynomial Time 503

[Rob22a] Robert, D.: Breaking SIDH in polynomial time, August 2022
[Rob22b] Robert, D.: Evaluating isogenies in polylogarithmic time, August 2022

[Sch95] Schoof, R.: Counting points on elliptic curves over finite fields. J. Théor.
Nombres Bordeaux 7(1), 219–254 (1995)

[Shi79] Shioda, T.: Supersingular K3 surfaces. In: Lønsted, K. (ed.) Algebraic
Geometry. LNM, vol. 732, pp. 564–591. Springer, Heidelberg (1979).
https://doi.org/10.1007/BFb0066664

[Sho94] Shoup, V.: Fast construction of irreducible polynomials over finite fields. J.
Symb. Comput. 17(5), 371–391 (1994)

[Sho09] Shoup, V.: A Computational Introduction to Number Theory and Algebra.
Cambridge University Press, Cambridge (2009)

[Som21] Somoza, A.: thetAV. Sage package devoted to the computation with abelian
varieties with theta functions, rewrite of the AVIsogenies magma package
(2021). https://gitlab.inria.fr/roberdam/avisogenies/-/tree/sage

[Sut11] Sutherland, A.: Structure computation and discrete logarithms in finite
abelian p-groups. Math. Comput. 80(273), 477–500 (2011)

[Vél71] Vélu, J.: Isogénies entre courbes elliptiques. Compte Rendu Académie Sci-
ences Paris Série A-B 273, A238–A241 (1971)

[VS92] Von Zur Gathen, J., Shoup, V.: Computing Frobenius maps and factoring
polynomials. Comput. Complexity 2(3), 187–224 (1992)

[Wes22a] Wesolowski, B.: The supersingular isogeny path and endomorphism ring
problems are equivalent. In: 2021 IEEE 62nd Annual Symposium on Foun-
dations of Computer Science (FOCS), pp. 1100–1111. IEEE (2022)

[Wes22b] Wesolowski, B.: Understanding and improving the Castryck-Decru attack
on SIDH, August 2022. https://www.dropbox.com/s/pmv3lrsg1gayl13/
attacksidh.pdf?dl=0

[Zar74] Zarhin, J.G.: A remark on endomorphisms of abelian varieties over function
fields of finite characteristic. Math. USSR-Izvestiya 8(3), 477 (1974)

https://doi.org/10.1007/BFb0066664
https://gitlab.inria.fr/roberdam/avisogenies/-/tree/sage
https://www.dropbox.com/s/pmv3lrsg1gayl13/attacksidh.pdf?dl=0
https://www.dropbox.com/s/pmv3lrsg1gayl13/attacksidh.pdf?dl=0

Signature Schemes

A Lower Bound on the Length
of Signatures Based on Group Actions

and Generic Isogenies

Dan Boneh1, Jiaxin Guan2(B) , and Mark Zhandry2,3

1 Stanford University, Stanford, USA
2 Princeton University, Princeton, USA

jiaxin@guan.io
3 NTT Research, Inc., Sunnyvale, USA

Abstract. We give the first black box lower bound for signature proto-
cols that can be described as group actions, which include many based on
isogenies. We show that, for a large class of signature schemes making
black box use of a (potentially non-abelian) group action, the signa-
ture length must be Ω(λ2/ log λ). Our class of signatures generalizes all
known signatures that derive security exclusively from the group action,
and our lower bound matches the state of the art, showing that the signa-
ture length cannot be improved without deviating from the group action
framework.

1 Introduction

Post-quantum cryptography aims to develop classical cryptosystems that remain
secure against an adversary who has access to a large-scale quantum com-
puter. One approach to post-quantum cryptography relies on the observation
that Shor’s discrete log algorithm [35] does not apply in an algebraic struc-
ture called a group action. This gives rise to group-action-based cryptography
for post-quantum public key encryption, key exchange, digital signatures, and
more [1,4,21]. The resulting cryptosystems look somewhat similar to classical
systems that rely on the difficulty of discrete log in a finite cyclic group.

Informally, a group action is a mapping of the form ∗ : G × X → X, where
G is a finite group and X is a set, such that for any g1, g2 ∈ G and any x ∈ X,
we have g1 ∗ (g2 ∗ x) = (g1g2) ∗ x. Moreover, if e ∈ G is the identity of G then
e ∗ x = x for all x ∈ X. The discrete log problem for such a group action is
to find a g ∈ G, if one exists, such that x0 = g ∗ x1, given only x0, x1 ∈ X as
input. Note that Shor’s algorithm fails to solve this problem precisely because
there is no efficiently computable group operation on the set X. The best known
quantum algorithms for group action discrete log run in sub-exponential time in
the security parameter [22,23,29,31].

Currently the most widely studied cryptographic group action is derived
from isogeny graphs of elliptic curves [7,33]. To avoid the sub-exponential quan-
tum algorithm mentioned above, some constructions use supersingular isogeny
c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14008, pp. 507–531, 2023.
https://doi.org/10.1007/978-3-031-30589-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30589-4_18&domain=pdf
http://orcid.org/0000-0003-1823-8845
http://orcid.org/0000-0001-7071-6272
https://doi.org/10.1007/978-3-031-30589-4_18

508 D. Boneh et al.

graphs [17,20], which present less structure than a group action. However, a
recent attack by Castryck and Decru [5] and Maino and Martindale [25] shows
that certain key exchange protocols that rely on supersingular isogeny graphs
(in particular, rely on the SIDH assumption) are insecure. The attack does not
appear to affect various isogeny-based signature schemes such as SeaSign [9,12],
CSI-FiSh [3,8,16], and SQISign [10,11].

Short Signatures. An important open problem in post-quantum cryptography
is to construct a signature scheme for which the combined length of a public
key and a signature is comparable to that of the Schnorr scheme, namely 32 +
64 = 96 bytes (for 128-bit security). The four post-quantum NIST signature
finalists [6] have the following combined public-key/signature lengths: 3740 bytes
for Dilithum2, 1563 bytes for Falcon512, and over 50 KB for both Rainbow
variants. These numbers are an order of magnitude higher than the combined
length for the Schnorr scheme. We note that the combined public-key/signature
length for SQISign is only 268 bytes—better than the NIST candidates, but still
worse than Schnorr. SQISign uses specific properties of supersingular isogenies,
and is not a generic group-action signature scheme.

Can we do better? One might expect that due to the similarity between
group-action-based systems and systems using a finite cyclic group, one should
be able to design a post-quantum Schnorr-like signature scheme using a generic
group action. However, this remains an open problem. For example, the signature
scheme SeaSign [9], which can be described as a generic group-action signature
scheme (as in Sect. 1.3), has a combined public-key/signature length of about
3 KB (see column 3 of Table 2 from [9]). In this paper we show that this is no
accident.

1.1 Our Results

Let λ be a security parameter. Our main result is a lower bound of Ω(λ2/ log λ)
for a wide class of group-action-based signatures. This lower bound matches the
signature length of state-of-the-art constructions such as SeaSign. Concretely,
we prove the following theorem about identification (ID) protocols:

Theorem 1.1 (Informal). For any public-coin identification protocol secure
against eavesdropping in a black box (potentially non-abelian) group action
model, the sender must send at least (λ − 1)/ log2 λ set elements in order to
achieve soundness 2−λ.

Here, public coin means that the verifier generates its messages by simply sam-
pling uniform bit strings. Note that Theorem 1.1 works for any such group action;
in particular we do not assume any regularity or transitivity. Also note that by
handling non-abelian group actions, our model easily incorporates features like
twists, as twists can be seen as action by a slightly larger group arising from a
semi-direct product.

A Lower Bound on the Length of Signatures Based on Group Actions 509

Since set elements need to be at a minimum λ bits to prevent solving dis-
crete logarithms, we thus obtain a lower bound of (λ − 1)2/ log2 λ bits for the
communication from prover to verifier.

All known efficient group-action-based signature schemes are built by trans-
forming a public coin ID protocol into a signature, typically via Fiat-Shamir [18],
but other transforms are also possible [37]. Thus, our lower bound yields a lower
bound on the length of signatures in such protocols.

Our Model of Black Box Group Actions. We formalize black box group actions
by adapting Maurer’s [26] generic group model to the black box group action
setting. In this model, instead of getting set elements “in the clear”, all parties
are only given handles to the set elements, and then operate on these handles
via an oracle. This reflects how current group-action based signature and ID
protocols are constructed. Below, we discuss why we choose to adapt Maurer’s
model instead of Shoup’s [36] model.

Extensions. We also discuss several extensions to structures that generalize
group actions. In particular, many isogenies cannot be framed straightforwardly
as group actions. We therefore formalize a graph action model, which generalizes
group actions to these more general structures, and observe that our impossibil-
ity readily applies in this more general setting as well.

1.2 Discussion

Schnorr identification requires sending only a single group element, and secu-
rity can be proven under the discrete logarithm assumption in plain groups.
Theorem 1.1 shows that the situation is quite different in the group action set-
ting. In the language of [32], our result shows there is no semi-black box construc-
tion of an efficient ID protocol from hard discrete logarithms over group actions.
Even more, “discrete logarithm” can be replaced by any problem that is (clas-
sically) unconditionally hard in generic group actions, including CDH and even
more exotic assumptions such as the linear hidden shift assumption [1]. Thus, to
sidestep our lower bound, one must design signatures that are not based on ID
protocols, rely on non-generic use of the group action, or rely on cryptographic
hardness assumptions beyond what a group action alone provides.

On Our Black Box Model. A natural question is whether our lower bound also
applies to an analog of Shoup’s generic group model tailored to group actions,
replacing handles with random labels. Unfortunately, lower bounding signatures
in Shoup’s model appears to be very challenging. In particular, a lower bound
in such a model would imply as a special case a lower bound in the random
oracle model (ROM)1. Even through the best-known (many-time) random oracle
signatures have signature size Ω(λ3) [27]2, it is a long-standing open problem to
1 Shoup’s generic groups imply random oracles [39], and the proof readily adapts to

group actions with random labels.
2 If the number of messages is a priori bounded, it is possible to have signatures of

length O(λ2) [28].

510 D. Boneh et al.

obtain any non-trivial bound. We cannot even rule out that optimal O(λ)-length
signatures from random oracles exist. We sidestep this major barrier by instead
utilizing Maurer’s model.

Our model of group actions using handles captures all known techniques for
efficient ID protocols from group actions. However, it is known that such a model
fails to capture a number of standard generic techniques [38]. These standard
generic techniques are typically used in symmetric key settings, as they involve
operations like breaking strings into individual bits or XORs. Such operations
break algebraic structure, seemingly negating the purpose of introducing alge-
braic tools in the first place. Nevertheless, such techniques could perhaps be
employed in combination with algebraic tools to achieve more efficient signa-
tures. As such, our impossibility does not fully rule out short signatures from
group actions, but still represents a significant barrier.

On ID Protocols. At a technical level, our lower bound is for ID protocols. This
is because it is known that signatures are impossible in Maurer’s generic group
model [15], and the impossibility readily extends to our formalization of the
black box group action model using handles. As such, any direct lower bound
for signatures in our group action model would be completely meaningless.

Thus, any attempt at proving a lower bound for signatures is presented with
a conundrum: work in Shoup’s version of group actions, where the long-standing
open problem of signature length from random oracles presents a major barrier.
Or work in Maurer’s model, where signatures are simply impossible.

While signatures do not exist in Maurer’s version of black box groups/group
actions, ID protocols do exist. The transformation from ID protocol to signature,
say via Fiat-Shamir, is then the only part of the signature that doesn’t work in
Maurer’s model. This is because applying Fiat-Shamir requires hashing a group
element/set element into a bit string. Such hashing is of course allowed in the
standard model, but it is forbidden in Maurer’s since only the group (action)
operation is allowed to be applied to elements. Fortunately, the most efficient
signature schemes from groups and group actions are obtained by transforming
ID protocols.

The Fiat-Shamir transformation is well-understood, both classically [2,30]
and quantumly [14,24], and adds zero signature-length overhead over the under-
lying ID protocol3. But the length of any signature based on ID protocols is
always lower-bounded by the ID protocol itself. Thus, our lower bound imme-
diately applies to signatures based on ID protocols, which captures all-known
practical group-action based signatures. Thus, our lower bound shows that a
Ω(λ2/ log2 λ) signature length is inherent with current techniques.

Note that our lower bound is only for public coin protocols. This is inher-
ent, as group actions give public key encryption, and any public key encryption
scheme can be turned into an ID protocol, as follows [13]: the verifier encrypts
a random message and sends the ciphertext, and the prover simply decrypts the
ciphertext and sends the resulting message. The number of set elements in the

3 Other transforms such as Unruh’s [37] do require overhead.

A Lower Bound on the Length of Signatures Based on Group Actions 511

protocol is just the number of set elements in a ciphertext, which in the case
of group-action-based public key encryption, is just a constant. This protocol,
however, is secret coin, as the verifier’s message is a ciphertext that hides both
the message and the encryption randomness. Such secret coin ID protocols are
not amenable to Fiat-Shamir or related transformations, and there is no known
direct way to turn them into signatures. Thus, our restriction to public coin
protocols is justified by the ultimate goal of lower-bounding signatures.

1.3 Technical Overview

Existing Group Action-Based Signatures. The main group-action-based signa-
tures are built from a public coin identification (ID) protocol, and then by
converting the ID protocol into a signature. This conversion is typically Fiat-
Shamir [18], but other transforms are possible [37]. For reasons explained above,
we focus on analyzing the underlying ID protocol.

Throughout, we will focus on the number of set elements sent by the prover,
which is a proxy for the total communication of the ID protocol. Note that when
converting into a signature scheme, usually not all the terms of the ID protocol
need to be sent explicitly, since they can be computed from the other terms for
a valid signature. Nevertheless, the number of set elements remains linear in the
total signature size.

The usual way to build an ID protocol from group actions, is the following
adaptation of Schnorr’s identification protocol [34] for plain groups:

– The public key contains two set elements x0, x1 such that x0 = g ∗ x1. The
secret key is a random g ∈ G.

– The prover first chooses a random h ∈ G, and sends a = h ∗ x1.
– The verifier replies with a random bit b.
– The prover then outputs r = hgb−1.
– The verifier checks that a = r ∗ xb

The ID protocol is easily seen to be zero knowledge. The protocol has (classical)
soundness error 1/2: if an adversary can break security with probability non-
negligibly greater than 1/2, then a standard rewinding argument shows that it
can compute hgb−1 for both b = 0 and b = 1; dividing gives g, the discrete log
between x0 and x1, which is presumably hard to compute. On the other hand, it
is trivial to break security with probability 1/2: the prover simply guesses the bit
b, and computes a = r ∗ xb for a random r. Conditioned on the guess for b being
correct, the transcript seen by the verifier will have the correct distribution.

To achieve better soundness, one can run the protocol many times, either
sequentially or in parallel. To get soundness error 2−λ, one would need λ trials,
requiring λ set elements to be sent from the prover.

One can do slightly better, at the cost of a somewhat larger public key.
Abstracting an optimization of De Feo and Galbraith [9] (See [9], Sect. 4) to the
setting of group actions, consider the following protocol:

– The public key contains P set elements x1, . . . , xP . The secret key is g2, . . . , gP

such that xi = gi ∗ x1 for i > 1.

512 D. Boneh et al.

– The prover chooses a random h ∈ G, and sends a = h ∗ x1.
– The verifier replies with a random c ∈ [P]
– The prover then outputs r = hg−1

c , where g1 = 1.
– The verifier checks that a = r ∗ xc

The above protocol achieves soundness error 1/P , without any additional set
elements in the protocol, but at the cost of expanding the public key to P set
elements. To achieve soundness error 2−λ, we can set P = λ/ log λ, and repeat the
protocol P times. The result is public keys and protocol transcripts containing
P set elements.

Generalizing both protocols, if we let P,N be the number of set elements in
the public key and protocol transcript, and S the soundness error, both protocols
above have S = P−N .

We note that if one relaxes zero knowledge, then smaller soundness error is
possible. For example, for security against direct attacks, the prover can just
reveal g, and now soundness matches the hardness of computing discrete log-
arithms. For eavesdropping security where the attacker sees t transcripts, one
can modify the large public key protocol above to have the prover simply reveal
a discrete logarithm between x1 and a random choice of xi. While this latter
scheme has noticeable soundness error, in both cases here the prover actually
sends no set elements at all. Other strategies are possible to improve soundness
in the bounded eavesropping setting. Nevertheless, for schemes of this nature, it
seems to always be the case that t ≤ P .

Our Lower Bound. Our main result is that for eavesdropping security under t
transcripts, for any desired polynomial poly:

S ≥ (1 − P/t − 1/poly) × P−N (1)

For unbounded transcripts, this shows that the S = P−N of the known group-
action-based protocols is essentially tight. It also shows to get non-trivial sound-
ness when the prover sends no elements at all requires the number of elements
in the public key to be at least as large as the number of transcripts, matching
intuition for such schemes.

Intuition. We now provide the intuition for our lower bound. Consider the col-
lection of set elements seen by the verifier, which we will call V . V includes both
set elements in the public key, as well as set elements sent by the prover and
any set elements computed by the verifier. Now, consider a group action query
by the verifier, such as g ∗ x, resulting in output y. The verifier therefore knows
the discrete logarithm between x and y. Since the protocol is public coin, this
means the discrete logarithm is also revealed by the protocol transcript.

By looking at all such queries, we induce a graph structure on V , where we
connect the input and output nodes of any query by the verifier. Since discrete
logarithms compose, the verifier knows the discrete logarithm between any two
connected nodes.

A Lower Bound on the Length of Signatures Based on Group Actions 513

We can now assume, essentially without loss of generality, that no two public
key nodes are in the same connected component. After all, if they were, then
the protocol transcript reveals the discrete logarithm between these nodes. If
the protocol were zero-knowledge, this would mean the discrete logarithm can
be computed from publicly-available information. Even in the eavesdropping
setting, it means the discrete logarithm can be computed from the transcripts
provided to the adversary. In either case, this means that one of the two nodes
was in some sense superfluous. We can make this precise, showing that if the ID
protocol is secure even if the adversary sees sufficiently many transcripts, then we
can compile the protocol into one where all public key components are in different
connected components. This transformation slightly impacts correctness, and
results in the P/t term in Eq. 1.

We then give an adversary for any scheme where the public key nodes are in
different connected components. Essentially, whenever the adversary is required
to send a set element y, it simply guesses which of the public key nodes x that y
will be connected to, and generates y such that it knows the discrete logarithm
between y and x. We show, essentially, that conditioned on the guess being
correct for every node sent by the prover, our adversary can correctly simulate
the protocol execution, and convince the verifier. The probability of guessing
correctly at every step is exactly P−N , where P is the number of public key
elements, and N is the number of elements sent by the prover.

For technical reasons, the above does not quite work perfectly. Essentially,
our simulation ensures that the graph seen by the verifier has an edge everywhere
it should, but does not guarantee that the graph has no edges where it should
not. But we observe that if there is a bad edge in the simulated graph, this
connects two nodes that should not be connected. We are able to argue, roughly,
that this means we can remove nodes from the graph, somewhat analogous to
how we handled public key elements in the same connected component. As in
that case, there is still some error in the simulation, though it can be made an
arbitrary small polynomial. This results in the 1/poly term in Eq. 1.

Formalizing the above intuition is non-trivial. The main difficulty, analogous
to all black box separations, is that the construction and adversary could com-
pletely ignore the group action and just run some standard-model short signature
scheme such as Schnorr.

Following Impagliazzo-Rudich [19], we block such a construction by giving
the adversary unlimited private computation and only bound the number of
queries to the group action to a polynomial. This captures constructions whose
only source of hardness is the group action.

With unlimited private computation, we can brute force any signature scheme
that does not use the group action. The challenge comes in attacking schemes
that are a combination of using the group action, but also using standard-model
building blocks, as a naive brute force will result in exponentially many queries.

We formalize the above intuition through a sequence of protocol simplifica-
tion steps, where we gradually restrict the prover and verifier, showing that the
simplifications are without loss of generality. Eventually we reach a simplified

514 D. Boneh et al.

protocol where we can apply the intuition above and prove our lower bound. See
Sect. 3 for details.

Extensions. In Sect. 4, we discuss a couple of extensions to our main lower bound.
We first consider a generalized model where it is possible to directly sample set
elements, without having to derive them from other elements. While no existing
group-action-based signature utilizes such direct sampling, it is supported by
elliptic curves and therefore important to consider. We show, with some key
modifications to our main proof, that our lower bound applies in this model as
well.

We also give a generalization of black box group actions, that we call black
box graph actions. This captures many of the features of group actions, but
eliminates the group structure on the acting set, instead viewing the action as
a walk on a graph. This is how isogeny-based signatures tend to work anyway,
and by generalizing to a less-structured object, we make our lower bound more
general. Our lower bound does not use any particular features of the group
structure, and trivially adapts to a graph action.

2 Preliminaries

Notation: We use λ ∈ Z to denote the security parameter. We use x ← y
to denote the assignment of the value of y to x. We write x ←$ S to denote
sampling an element from the set S independently and uniformly at random. For
a randomized algorithm A we write y ←$ A(x) to denote the random variable
that is the output of A(x). We use [n] for the set {1, . . . , n}. We denote vectors
in bold font: u ∈ Z

m
q is a vector of length m whose elements are each in Zq.

2.1 Group Actions

A group action consists of a (not necessarily abelian) group G, a set X, and a
binary operation ∗ : G × X → X satisfying the following properties:

– Identity: If e ∈ G is the identity element, then e ∗ x = x for any x ∈ X.
– Compatibility: For all g, h ∈ G and x ∈ X, (gh) ∗ X = g ∗ (h ∗ X).

For applications to cryptography, we want the group action to have certain
computationally intractible problems. A typical minimal hard problem is that
of computing “discrete logarithms”: computing g from x and g ∗ x.

Our Model of Black Box Group Actions. Here, we give our model of a black
box group action. Our model is analogous to Maurer’s [26] model for generic
groups, but adapted to group actions. In our case, we model the group itself as a
standard-model object, but then the set elements are only provided via handles.
In more detail, the following oracles are provided to all parties:

A Lower Bound on the Length of Signatures Based on Group Actions 515

– Eq(〈x〉, 〈y〉) takes as input two handles for set elements x, y, are returns 1 if
x = y and 0 otherwise.

– Act(g, 〈x〉) takes as input a group element g and a handle 〈x〉 to a set element,
and returns a handle 〈y〉 for the set element y = g ∗ x.

Additionally, all parties are provided with a handle 〈x0〉 to a starting set element
x0. Each query incurs unit cost, and all computation outside of queries is zero
cost. Algorithms are not allowed any computation on handles, except to pass
them to other algorithms or send as inputs to the oracles Eq,Act. The only
handles an algorithm can query to Eq,Act are those provided explicitly as input
(including 〈x0〉), or provided as output of prior queries to Act. A probabilistic
polynomial time algorithm is a probabilistic algorithm in this model whose total
cost is bounded by a polynomial.

Remark 2.1. The above model assumes there is a single starting handle 〈x0〉,
and the only way to derive additional set elements is to act on this handle. This
is how existing isogeny-based identification protocols work. However, isogenies
provide a bit more functionality: in particular, it is possible to sample directly
into the set elements. This does not give the adversary any more power, since
such directly sampled elements will be essentially random and unrelated to any
other element. However, such sampling could potentially be used in protocol
design.

We will not allow such sampling for the rest of this section, as it allows
us to explain our main ideas in a simpler manner. In Sect. 4.1 we extend the
black box group action model to capture such a functionality, and show that our
impossibility also extends to this model.

Verification Oracle. We can augment our black box group action model with
the following oracle:

– Ver(g, 〈x〉, 〈y〉) which returns 1 if g ∗ x = y and 0 otherwise.

This oracle can readily be simulated as Eq(Act(g, 〈x〉), 〈y〉), so including Ver does
not change the model. However, this oracle will still be convenient for our proofs.
Concretely, we will make crucial use of the following lemma:

Lemma 2.2. Let A be a deterministic algorithm in the black box group action
model that may take as input handles 〈x1〉, . . . , 〈xn〉 and non-handle terms,
and outputs k handles 〈y1〉, . . . , 〈yk〉, as well as non-handle terms. Let q be the
number of queries A makes. Then there is another algorithm A′ with identical
input/output behavior to A. However, A′ is restricted in the following way:

– It makes no queries to Eq.
– It makes at most O(q) queries to Ver, which must all come before any Act

query.
– After making its queries to Ver, it makes exactly k queries to Act in parallel

to produce its handle outputs: 〈y1〉 = Act(g1, 〈xi1〉), . . . , 〈yk〉 = Act(gk, 〈xik
〉).

After making the Act queries, A′ is not allowed to make any queries to any
oracle.

516 D. Boneh et al.

Lemma 2.2 allows us to reduce general algorithms to relatively simple forms,
which will make analyzing them easier. Note that Lemma 2.2 applies also to
randomized algorithms by considering the random coins as an input. Then A′

will also get these same random coins. We now prove Lemma 2.2.

Proof. Consider a general algorithm A in the black box group action model,
which makes arbitrary queries to Eq and Act. We construct A′ as follows. We
assume that integers and set elements are encoded such that they are disjoint.
A′ creates “dummy” handles 〈1〉, . . . , 〈n〉, which it feeds into A along with any
non-handle inputs. These dummy handles will be stand-ins for the true handles
〈x1〉, . . . , 〈xn〉 provided to A′. We will also create a table T containing tuples
(j, g, i), which correspond to the dummy handle 〈j〉 being a stand-in for the
real handle 〈g ∗ xi〉. Therefore, T is initialized to contain the tuples (i,1, i) for
i = 1, . . . , n. We will maintain that A only ever sees dummy handles.

A′ simulates A on the dummy handles 〈1〉, . . . , 〈n〉 as well as any non-handle
inputs to A′. However, A′ will intercept all the queries A makes. On each query:

– If the query has the form Act(g, 〈j〉) query, A′ looks up an entry (j, g′, i) in T ,
which will be guaranteed to exist. It will then add the entry (j′, g · g′, i) to T ,
where j′ is one more than the number of entries in T so far. A′ then replies
with the dummy handle 〈j′〉. Note that the entry (j, g′, i) ∈ T means that 〈j〉
is a stand-in for 〈g′ ∗ xi〉. Therefore, A expects the result of the query to be
〈(g · g′) ∗ xi〉, corresponding exactly to the newly added entry (j′, g · g′, i).

– If the query has the form Eq(〈j0〉, 〈j1〉), look up entries (j0, g0, i0), (j1, g1, i1)
in T , which are guaranteed to exist. Then it makes a query b ← Ver(g−1

1 ·
g0, 〈xi0〉, 〈xi1〉) and replies with b. Note that since 〈j0〉 is a stand-in for
〈g0 ∗ xi0〉 and 〈j1〉 is a stand-in for 〈g1 ∗ xi1〉, we have equality if any only
if g0 ∗ xi0 = g1 ∗ xi1 ⇔ (g−1

1 · g0) ∗ xi0 = xi1 , which is exactly the result of the
Ver query.

Finally, when it A outputs handles 〈j1〉, . . . , 〈jk〉, A′ will look up entries
(jt, gt, it) ∈ T for t = 1, . . . , k. It will then make a single round of Act queries
〈yt〉 = Act(gt, xit

). Observe that 〈jt〉 is exactly a stand-in for 〈gt ∗ xit
〉 = 〈yt〉.

A′ will output 〈y1〉, . . . , 〈yk〉, as well as any non-handle outputs of A.
At every step, we therefore see that A′ simply replaces the handles A sees

with appropriate stand-ins, but correctly answers the Eq queries and produces
the correct output handles and non-handle elements. Thus A′ perfectly simulates
the outputs of A. ��

We then define an abstract model for ID protocols that use a graph action.

2.2 ID Protocols Using a Group Action Oracle

Here, we define the abstract model for an ID protocol using a group action oracle.
An ID protocol in the black box group action model consists of the following
algorithms:

A Lower Bound on the Length of Signatures Based on Group Actions 517

– Gen(), a probabilistic algorithm which makes a polynomial number of queries,
and samples a public key/secret key pair (pk, sk). We will always assume
without loss of generality that sk is just the random coins used in Gen().
On the other hand, pk may contain a combination of both (handles to) set
elements and non-set element terms.

– P(pk, sk), a probabilistic interactive algorithm that makes a polynomial num-
ber of queries, which takes as input (pk, sk), and interacts with a verifier
through several rounds of interaction. In general, the prover’s messages may
contain any combination of handles to set elements and also non-set element
terms.

– V(pk), a probabilistic interactive algorithm that makes a polynomial number
of queries, which takes as input pk, and interacts with the prover. In general,
the verifier’s messages may contain any combination of handles to set elements
and also non-set element terms. At the end of the interaction, V outputs a
bit b.

We denote the interaction of of P and V by b ←$ V(pk) ⇐⇒ P(pk, sk). The
transcript of the interaction is the list T of all messages sent. As we are in
the black box group action model, we bound the number of queries of each
algorithm to polynomial, but do not otherwise bound the computation outside
of the queries.

Definition 2.3. A protocol Π = (Gen,P,V) has completeness C if

Pr[1 ←$ V(pk) ⇐⇒ P(pk, sk)] ≥ C ,

where the probability is over (pk, sk) ←$ Gen() and the random coins of P,V.
We do not define soundness, but instead define the opposite of soundness, since
we are interested showing that protocols with too little communication are
unsound:

Definition 2.4. A protocol Π = (Gen,P,V) is (t, S)-unsound if there exists an
algorithm A making polynomially many queries such that

Pr[1 ←$ V(pk) ⇐⇒ A(pk, T1, . . . , Tt)] ≥ S ,

where T1, . . . , Tt are t transcripts of independent trials of V(pk) ⇐⇒ P(pk, sk).
Here, the probability is over (pk, sk) ←$ Gen(), the randomness of the transcripts
Ti, and the random coins of A,V.
Definition 2.5. We say a protocol Π is public coin if V’s random coins can be
written as (c1, . . . , ck) such that the ith message of V is ci.

For a public coin protocol, we will equivalently think of V as just being an
algorithm which takes as input the transcript and outputs a bit b. The execution
of the protocol itself simply chooses each message from the verifier uniformly at
random.

518 D. Boneh et al.

Notation. We will be using the following notation for ID protocols throughout
this paper:

C: the correctness probability t: number of transcripts given to the adversary
S: the soundness error P : the number of set elements in the public key
R: the number of rounds N : the number of set elements sent by the prover

We will be considering multiple ID protocols throughout this paper, which
we distinguish by subscripts, e.g. Π1,Π2, In such cases, we will use the same
subscripts for our notation: e.g. C1, C2, . . . for correctness probability, etc.

3 The Lower Bound

This section contains our main theorem, a lower bound on the communication
of any secure group-action-based ID protocol.

3.1 The Main Theorem

Theorem 3.1. If a public coin ID protocol Π in the black box group action model
has completeness C, then for any polynomial t, the protocol is (t, S)-unsound,
for S ≥ (C − P/t − 1/poly) × P−N , where poly is any polynomial. In particular,
if S ≤ 2−λ, C ≥ 0.99 and t ≥ 2.05P , then N ≥ (λ − 1)/ log2 P .

In other words, if we want λ-bit security, we need the number of set elements
sent by the prover to be at least (λ − 1)/ log2 P . As each set element itself
will generally be at least λ bits, and the number of public key elements is a
polymomial, this means λ bits of security requires total prover communication
size of Ω(λ2/ log λ). This corresponds to the size of signatures once we apply
Fiat-Shamir.

In the remainder of this section, we now prove this theorem using a sequence of
protocol simplification steps.

3.2 Normal Form Protocols

Label the set elements of the public key 1, . . . , P . Given a transcript T , we
will then number the set elements in T as P + 1, . . . , P + N in the order they
appear in T . Let V = [P + N]. We will somewhat abuse notation and refer to
{1, . . . , P} ⊆ V as public key elements, and {P + 1, . . . , P + N} as transcript
elements.

Definition 3.2. A public coin ID protocol is in normal form if the following are
true:

– Verification is deterministic conditioned on the transcript.
– Verification only queries Ver and not Act,Eq.

A Lower Bound on the Length of Signatures Based on Group Actions 519

– The final message from the prover contains a list Q, where each entry in Q has
the form (g, i, j, b). Here, i, j ∈ [P + N] index into the combined set elements
of the public key and transcript, g is a group element, and b is a bit. Let
xi, xj be the elements at position i and j, respectively. (g, i, j, b) corresponds
to querying Ver(g, 〈xi〉, 〈xj〉) and receiving outcome b.

– The verifier first makes verification queries corresponding to those in Q: for a
tuple (g, i, j, b), it queries b′ ← Ver(g, 〈xi〉, 〈xj〉). These are the only queries it
makes. If any of the query responses are inconsistent with Q, that is if b �= b′,
the verifier immediately aborts and rejects.
Assuming all queries are consistent, the verifier is allowed arbitrary subse-
quent deterministic computation to decide whether to accept or reject, but it
can make no additional queries.

Lemma 3.3. If there is a public coin ID protocol Π in the group action model,
then there is also a normal form ID protocol Π1 such that t1 = t, C1 = C,S1 =
S,N1 = N,P1 = P,R1 = R + 2.

Proof. First, observe that we can trivially make any protocol have deterministic
verification by adding to the end of the protocol a message from V to P contain-
ing the random coins of V. We therefore assume deterministic verification. By
Lemma 2.2, since verification outputs a bit (and therefore no handles), we can
also assume the verifier only makes queries to Ver and not Eq,Act.

Now that verification is deterministic, let P1 be the new prover, which runs
P. Then, at the end of running P, P1 runs the verifier for itself, to see exactly
what queries the verifier will make, assembling the query list Q.

We now explain how to construct V1. First, for each (g, i, j, b) ∈ Q, V1 makes
the corresponding query to Ver, obtaining b′. If b �= b′, then V1 immediately
aborts and rejects.

If b = b′ for each (g, i, j, b) ∈ Q, then V1 runs V on the first r + 1 messages
of the transcript, except that it has to intercept all of the Ver queries V makes,
which correspond to an entry (g, i, j, b) ∈ Q, and answers the query with b.

It is straightforward that V1 ⇐⇒ P1 exactly simulates the behavior of V ⇐⇒
P, and so C1 = C. For soundness, consider an adversary A1 that convinces
V1 with probability S1. We construct an adversary A that convinces V with
probability S. A runs A1, and just discards the query list Q that A′ outputs. If
A1 wins, then it must be that all queries V1 (and hence V) makes are consistent
with Q, and also that V accepts. In other words, V accepts transcript T whenever
V1 accepts transcript T1, where T is the same as T ′ but with the query list Q
discarded. Hence S ≥ S1. ��

3.3 The Transcript Graph

Recall that V = [P +N] indexes the combined set elements of the public key and
transcript, with [P] corresponding to the public key elements and [P +1, P +N]
corresponding to the transcript elements.

Consider running the verifier V. Any accepting Ver query by V corresponds
to an edge between nodes in V ; call this edge set of accepting queries E. Then

520 D. Boneh et al.

GT = (V,E) forms an undirected graph. GT is the transcript graph of T . We note
that verification may be randomized, yielding different transcript graphs each
time. However, we will always assume a normal form protocol with deterministic
verification, meaning that GT is uniquely determined by the protocol transcript.

We say that a transcript graph is valid if there is no path between any two
distinct public key elements. In other words, each public key element lies in a
different connected component. Otherwise, a transcript graph is invalid.

3.4 Respecting Verifiers

Definition 3.4. A respecting verifier for a normal-form protocol is one that
always rejects transcripts with invalid transcript graphs.

Lemma 3.5. If there is a public coin normal form ID protocol Π1 in the group
action model, then there is also a public coin normal form ID protocol Π2 with
a respecting verifier, such that t2 = 0, C2 ≥ C1 − N1/t1, S2 ≤ S1, N2 = N1, P2 ≤
P1, R2 = R1.

Proof. The intuition is that we use the provided protocol transcripts to com-
pute the discrete logarithms between public key elements, and then use this
information to represent certain public key elements in terms of others. This lets
us remove such public key elements. If the next protocol run would have likely
connected two public key elements together, then the previous runs would have
also likely connected them anyway, meaning one of the elements would not have
been in the public key in the first place.

In more detail, given Π1 = (Gen1,P1,V1) for a public coin normal form ID
protocol, we construct Π2 = (Gen2,P2,V2) as follows.

Gen2(): First run (pk1, sk1) ←$ Gen1(). Now run P1(pk1, sk1) ⇐⇒ V1(pk1) for
t1 independent trails, collecting transcripts T1, . . . , Tt1 . It then computes the
transcript graphs GT1 , . . . , GTt1

. Then for i = 1, . . . , P1, it does the following:

– If the i-th public key set element 〈xi〉 is connected to any previous public key
set element 〈xj〉 at position j < i through any path of edges in ∪�∈[t1]GT�

,
take the minimal such j. Then use the queries in T� to determine the group
element g such that xi = g ∗ xj . Delete 〈xi〉 from the public key, and replace
it with the pair (j, g). If there is no such path, then leave 〈xi〉 as is.

Note that since j is minimal, in particular xj is not connected to any x� for
� < j. So if 〈xi〉 is replaced with (j, g), it must mean that 〈xj〉 has not been
deleted.

Then pk2 = pk1, except with all the deleted set elements replaced by the
appropriate (j, g). sk2 = sk1

4.

4 Technically, we assumed sk was the random coins of Gen, and so our sk2 should also
include the random coins used to generate the Ti. However, this information will not
be needed in the actual protocol, so we can think of sk2 as being just sk1.

A Lower Bound on the Length of Signatures Based on Group Actions 521

P2: P2 runs P1, except that any time P2 would need a deleted 〈xi〉 from the
public key, P2 re-computes it as 〈xi〉 = Act(g, 〈xj〉) for the appropriate (j, g).

V2: V2 runs V1, except that any time V1 would needs a deleted 〈xi〉 from the
public key, V2 re-computes it as 〈xi〉 = Act(g, 〈xj〉) for the appropriate (j, g).
Moreover, at the end of the protocol V2 computes the transcript graph GT ,
defined over the non-deleted elements in pk2, and automatically rejects if GT is
invalid.

Security. If V2 did not check the validity of GT , then the interaction between
P2 and V2 is identical to that of P1,V1, since each just re-computes the correct
〈xi〉 as needed. Moreover, notice that computing pk2 from pk1 can be done by
an adversary for P1,V1 using the t1 transcripts provided to it in the passive
security game. Adding a reject condition in V2 only decreases the adversary’s
success probability.

Correctness. In order to establish the correctness of the protocol, we just need
to bound the probability GT is invalid. Fix some (pk1, sk1). For any transcript
graph GT , let G′

T be the induced graph with nodes in [P1], where there is an
edge between two nodes in [P1] if and only if there is a path between those nodes
in GT . Let ni be the number of connected components in G′

i := ∪j≤iG
′
Tj

, and
ei = E[ni] be the expectation of ni. Note that n0 = P1, ni ≥ 0 for all i, and
ni+1 ≤ ni. Therefore, these (in)equalities hold in expectation.

Moreover, i �→ ei is convex, meaning ei − ei+1 ≤ ei−1 − ei for all i. To
see this, let n′

i be the number of connected components in G′
Ti−1

∪ G′
Ti+1

. The
difference relative to ni is that we swap out G′

Ti
for G′

Ti+1
. Let e′

i = E[n′
i]. Since

G′
Ti

and G′
Ti+1

come from the same distribution, we must have e′
i = ei. Now let

ri := ni−1 − ni and r′
i := ni−1 − n′

i. This means G′
Ti+1

connects ri+1 pairs of
the connected components of G′

i together, and r′
i pairs of connected components

of G′
i−1. For every connection G′

Ti+1
makes between connected components of

G′
i, there are corresponding connected components of G′

i−1 that it also connects,
since the connected components of G′

i−1 is just a refinement of the connected
components of G′

i. Thus r′
i ≥ ri+1, meaning E[ri] = E[r′

i] ≥ E[ri+1]. Hence
ei − ei+1 ≤ ei−1 − ei.

By the triangle inequality, this means |et1+1 − et1 | ≤ P1/t1. In particular,
Pr[nt1+1 < nt1] < P1/t1. But notice that nt1+1 = nt1 corresponds to the tran-
script graph of P2 ⇐⇒ V2 being valid. This is because pk2 has exactly nt1 public
key elements remaining, one for each connected component in ∪j∈[t1]G

′
Tj

. Then
any edge between remaining public key elements in pk2 would have reduced the
number of connected components, implying nt1+1 < nt1 .

Therefore, except with probability P1/t1, the transcript graph for P2 ⇐⇒ V2

is valid. This means V2 accepts with probability at least C2 ≥ C1 − P1/t1. ��

522 D. Boneh et al.

3.5 Guessing Provers

A guessing prover has the following structure:

– The prover initially guesses a random partition W of V , such that each set
in the partition contains exactly one public key element. In other words, for
each transcript element in V , the prover chooses a random public key element
to associate the transcript element to. The number of possible W is PN .

– Recall by Lemma 2.2 that we can always assume the prover only queries Act
on input set elements, and immediately outputs the result of the query as an
set output. Consider such a query 〈y〉 = Act(g, 〈x〉). The prover guarantees
that for any such query, 〈y〉 is in the same element of W as is 〈x〉.

– Let W ′ be the partition corresponding to the connected components of the
final transcript graph GT . Then if W ′ is not a refinement of W , the prover
aborts and sends ⊥ for its last message (which the verifier would presumably
reject if it were respecting).

– The prover never makes any queries to Eq.

Lemma 3.6. If there is a public coin normal form ID protocol Π2 with a respect-
ing verifier in the group action model and t2 = 0, then there is a public coin nor-
mal form ID protocol Π3 with a respecting verifier and guessing prover such that
t3 = 0, C3 ≥ C2 × P−N2

2 , S3 ≤ S2, N3 = N2, P3 = P2, R3 = R2. In particular,
conditioned on P3 not sending ⊥, its correctness probability is at least C2.

Proof. Recall that we assume P is given the random coins used during setup. In
particular, P is able to compute the discrete logs between public key elements.
This means it always knows the discrete logs between any group elements, and
can therefore answer any Eq query by itself without making the query.

P3 simply runs P2, except that it processes each query. Suppose P2 computes
〈y〉 = Act(g, 〈x1〉) for public key element 〈x1〉, while P3 needs to compute 〈y〉 =
Act(g′, 〈x2〉) for some other public key element 〈x2〉. Since P3 can compute the
discrete log h such that x1 = h ∗ x2, we can simply set g′ = gh. Thus, P3

perfectly simulates the messages of P2, until the last message. Importantly, all
the previous messages are independent of W .

Whenever the prover convinces the verifier, since the verifier is respecting,
the transcript graph is valid and must therefore have each public key element in a
different connecting component. Let W ′ be the associated partition of the public
key elements. Since W ′ is independent of W , we must have that W ′ = W with
probability P−N2

2 . In particular, W ′ is a refinement of W with probability at least
P−N2
2 . Hence, the overall correctness probability is at least C3 ≥ C2 × P−N2

2 . ��

3.6 Finishing the Proof of Theorem 3.1

We are now ready to finish the proof of Theorem 3.1, by showing the following

Lemma 3.7. If there is a public coin normal form ID protocol Π2 with a
respecting verifier in the group action model, then for any polynomial poly,
S2 ≥ (C2 − 1/poly) × P−N2

2

A Lower Bound on the Length of Signatures Based on Group Actions 523

Proof. We first invoke Lemma 3.6 to arrive at a protocol Π3 with soundness
error S3 ≤ S2, and where the guessing prover P3 has correctness C2 conditioned
on it not sending ⊥ in the last message, for an overall correctness probability
C3 ≥ C2 × P−N2

2 .
We create a family of malicious provers A(i), which are only given pk3, and

attempt to simulate P3. Let aux3 be the non-set element part of pk3. A(i) samples
random coins for Gen3, conditioned on Gen3 outputting aux3. By Lemma 2.2, the
part of Gen3 that outputs aux3 maps bits to bits, and so makes no oracle queries
at all. Therefore, sampling the random coins can be done without making any
queries. Let sk

(1)
3 be the obtained public key.

In the case of A(1), we now simply run P3(pk3, sk
(1)
3). Let q(1) be the prob-

ability of convincing the verifier, conditioned on the final message of P3 not
being ⊥. When ignoring the set elements, sk(1)3 is identically distributed to sk3.
Therefore, P3(pk3, sk

(1)
3) is identically distributed to P3(pk3, sk3), unless (1) the

P3(pk3, sk
(1)
3) does not send ⊥, and also (2) there is a query in (g, i, j, b) ∈ Q

where b �= Ver(g, 〈xi〉, 〈xj〉). We note that if i, j are in the same part of the par-
tition W , then this is guaranteed to never happen, since all elements within a
partition element are generated as in the honest P3. Also, recall that the verifier
is respecting, meaning for i, j in different parts, it rejects if ever b = 1.

Therefore, the only “bad” case is when i, j are in different parts of the parti-
tion W , A(1) generates (g, i, j, b = 0), but actually Ver(g, 〈xi〉, 〈xj〉) = 1, meaning
g ∗ xi = xj . But observe that, in this case, the actual Ver query reveals the dis-
crete log between two public key elements, which presumably should be hard.
We will use this bad event to create a different adversary with a better success
probability.

Concretely, let A(2), generates sk(1)3 , but then simulates for itself the interac-
tion V3(pk) ⇐⇒ A(1)(pk3, sk

(1)
3) (choosing its own messages for V3), but condi-

tioned on the final transcript graph GT yielding a partition W ′ that is a refine-
ment of W . Note that since P3 never makes queries to Eq and the transcript
graph GT does not contain set elements, determining whether the simulation
has W ′ being a refinement of W can be computed without making any ora-
cle queries at all (by Lemma 2.2). So even though this event is exponentially
unlikely, conditioning on this event can be done with only a polynomial number
of queries (namely the number of queries in the protocol). Let p(1) be the prob-
ability a discrete log is revealed. By our conditioning on P3 not sending ⊥, we
have that (C3 − q(1)) ≤ p(1).

Then A(2) chooses sk
(2)
3 from the same distribution as sk

(1)
3 , except that if

any discrete logs g ∗ xi = xj are revealed in the first step, it also conditions
on Gen producing public key elements with these discrete log. As before, this
conditional sampling can be done without making any queries. Now A(2) simply
runs P3(pk3, sk

(2)
3). Let q(1) be the probability of convincing the verifier, con-

ditioned on the final output of P3 not being ⊥. Now by similar arguments as
before, P3(pk3, sk

(2)
3) is identically distributed to P3(pk3, sk3), unless a “bad”

case occurs, where Q contains (g, i, j, b = 0) such that Ver(g, 〈xi〉, 〈xj〉) = 1.

524 D. Boneh et al.

Except here, the “bad” case must also reveal a “new” discrete log, meaning
g ∗ xi = xj could not be derived from any discrete logs revealed in the first step.
This is because if g ∗ xi = xj could be derived from the discrete logs in the first
step, our conditioning on the discrete logs in the first step would have ensured
that Q contained the correct value of b. Let p(2) be the probability that a new
discrete log is revealed. By our conditioning, we have that (C3 − q(2)) ≤ p(2).

We similarly define A(3),A(4), We have that (C3 − q(i)) ≤ p(i).
Now, note that there can only be at most P3 −1 “new” discrete logs revealed

across the various steps. This means that, for any u,
∑u

i=1 p(i) ≤ P3 − 1. This in
particular means that, for any u, there must be an i ∈ [u] such that p(i) < P3/u.
So for any desired polynomial error poly, there will be some i ≤ poly × P3

such that p(i) < 1/poly, in which case q(i) > C3 − 1/poly. In other words, A(i),
conditioned on not outputting ⊥ in the final message, convinced the verifier with
probability at least C3 − 1/poly. Then, since A(i) outputs something other than
⊥ with probability at least P−N3

3 , the overall soundness error of A(i) is at least
S3 ≥ (C3 − 1/poly) × P−N3

3 .
It remains to show that A(i) makes a polynomial number of queries. Indeed,

the sampling of the various sk
(j)
3 requires no queries, and then A(i) runs i exe-

cutions of the protocol, each incurring a polynomial number of queries. Since i
itself is polynomial, the total query count is polynomial. ��

4 Extensions

Here, we discuss a few possible different models for black box group actions,
extending our model from Sect. 3.

4.1 Direct Sampling

We now consider a model which captures the following feature of isogeny-based
group actions: the ability to directly sample into the set elements, without having
to act on existing elements. Our model is identical to the model from Sect. 2,
except that it provides an additional random oracle for sampling elements:

– Eq(〈x〉, 〈y〉) takes as input two handles for set elements x, y, are returns 1 if
x = y and 0 otherwise.

– Act(g, 〈x〉) takes as input a group element g and a handle 〈x〉 to a set element,
and returns a handle 〈y〉 for the set element y = g ∗ x.

– Samp(s) takes as input a string s ∈ {0, 1}λ and outputs 〈L(s)〉 where L :
{0, 1}λ → X is a uniform random function.

As before, each query incurs unit cost, and all computation outside of queries
is zero cost. Algorithms are not allowed any computation on handles, except
to pass them to other algorithms or send as inputs to the oracles Eq,Act. The
only handles an algorithm can query to Eq,Act are those provided explicitly as
input, or provided as output of prior queries to Act or Samp. Note that we do
not explicitly provide an 〈x0〉 as it is redundant, given Samp.

A Lower Bound on the Length of Signatures Based on Group Actions 525

We call this model the extended black box group action model. We now prove
the following:

Theorem 4.1. If a public coin ID protocol Π in the extended black box group
action model has completeness C, then for any polynomial t, the protocol is (t, S)-
unsound, for S ≥ (C −P/t−1/poly)× (P +1)−N , where poly is any polynomial.
In particular, if S ≤ 2−λ, C ≥ 0.99 and t ≥ 2.05P , then N ≥ (λ−1)/ log2(P +1).

Note that the quantitative theorem statement is almost identical to that of
Theorem 3.1, except that P−N is replaced with (P +1)−N . This slightly weaker
bound is inconsequential for security.

Proof. The proof follows a very similar outline to the proof of Theorem 3.1, with
a couple of key changes.

Normal Form Protocols. We first define a normal form protocol similar to
Definition 3.2, but with some changes:

– Verification is deterministic conditioned on the transcript. This is identical to
Definition 3.2.

– Verification only queries Ver,Samp and not Act,Eq. This is identical to Defi-
nition 3.2, except that we allow for Samp queries.

– The final message from the prover contains a list Q, where each entry in Q
has either the form (g, i, j, b) or s. Here, (g, i, j, b) represents an Act query as
in Definition 3.2. The new part are terms of the form s, which correspond to
a query Samp(s).

– The verifier first makes queries corresponding to those in Q. These are the
only queries it makes. If any of the query responses are inconsistent with Q,
the verifier immediately aborts and rejects.
Assuming all queries are consistent, the verifier is allowed arbitrary subse-
quent deterministic computation to decide whether to accept or reject, but it
can make no additional queries.

By an essentially identical proof to that of Lemma 3.3, we can conclude the
following:

Lemma 4.2. If there is a public coin ID protocol Π in the group action model,
then there is also a normal form ID protocol Π1 such that t1 = t, C1 = C,S1 =
S,N1 = N,P1 = P,R1 = R + 2.

The Transcript Graph. We define the transcript graph similarly to Sect. 3, except
that we also include the results of any verifier queries to Samp as nodes in the
graph. We connect nodes in this graph via accepting Ver queries as before.

We say that a transcript graph is valid if there is no path between any two
public key elements, and also no path between a public key element and an Samp
element. We include paths of length zero in our notion of paths, so every node
has a path to itself. In other words, each public key element lies in a different
connected component, and those connected components are distinct from any
connected component containing an Samp element. Otherwise, a transcript graph
is invalid.

526 D. Boneh et al.

Respecting Verifiers. As in Sect. 3, a respecting verifier for a normal-form pro-
tocol is one that rejects invalid transcript graphs, except we use our updated
notion of invalid transcripts. We now state an updated version of Lemma 3.3 to
work with extended group actions, which follows from an essentially identical
argument.

Lemma 4.3. If there is a public coin normal form ID protocol Π1 in the
extended group action model, then there is also a public coin normal form ID
protocol Π2 with a respecting verifier, such that t2 = 0, C2 ≥ C1 − N1/t1, S2 ≤
S1, N2 = N1, P2 ≤ P1, R2 = R1.

Guessing Provers. A guessing prover has the following structure:

– The prover initially guesses a random partition W of V into P + 1 sets, P
of which contain exactly one public key element, and the final set containing
none. The difference from Sect. 3 is that we allow for this extra set containing
no public key elements. The number of possible W is (P +1)N , slightly more
than in Sect. 3 owing to the additional set.

– The prover only queries Act on input set elements or the result of a Samp
query. It then immediately outputs the result of the Act query as an set
output. Moreover, for any such query 〈y〉 = Act(g, 〈x〉), the prover guarantees
that 〈y〉 and 〈x〉 are in the same element of W . This is the same as Sect. 3,
except we allow the prover to derive its outputs also from Samp queries.

– Let W ′ be the partition corresponding to the connected components of the
final transcript graph GT . Then if W ′ is not a refinement of W , the prover
aborts and sends ⊥ for its last message (which the verifier would presumably
reject if it were respecting).

– The prover never makes any queries to Eq.

The following is proved via an almost identical proof to Lemma 3.6:

Lemma 4.4. If there is a public coin normal form ID protocol Π2 with a respect-
ing verifier in the extended group action model and t2 = 0, then there is a public
coin normal form ID protocol Π3 with a respecting verifier and guessing prover
such that t3 = 0, C3 ≥ C2 × P−N2

2 , S3 ≤ S2, N3 = N2, P3 = P2, R3 = R2. In
particular, conditioned on P3 not sending ⊥, its correctness probability is at least
C2.

Finishing the Proof. We now give an extension of Lemma 3.7, which finishes the
proof of Theorem 4.1:

Lemma 4.5. If there is a public coin normal form ID protocol Π2 with a
respecting verifier in the group action model, then for any polynomial poly,
S2 ≥ (C2 − 1/poly) × (P2 + 1)−N2

The proof follows an almost identical argument to that of Lemma 3.7, leveraging
Lemma 4.4. Putting Lemmas 4.2, 4.3, and 4.5 together gives Theorem 4.1.

��

A Lower Bound on the Length of Signatures Based on Group Actions 527

4.2 Black Box Graph Actions

Here, we generalize the group structure of the black box group action to what
we call a graph action. Instead of a group, there is a labelled directed graph
G = (X,E) whose nodes are the set X, satisfying the following properties:

– Reversibility: If there is an edge (x, y) ∈ E, then (y, x) ∈ E.
– Composition: If there is a path p from x to y, then the edge (x, y) ∈ E.
– Unambiguous labels: For any node x, all the outgoing edges from x have

distinct labels. Likewise, all the incoming edges to x have distinct labels.
There may be overlapping edges amongst between the incoming and outgoing
edges.

– Base labels: There is a set S of labels, such that for every node x ∈ X and
every label s ∈ S, there is an incoming edge and an outgoing edge from x
with label s.

In the case of a group action, the edge labels are group elements, and for
all nodes x and group elements g, the edge (x, g ∗ x) ∈ E and has label g.
Reversibility, composition, and unambiguous labels follow immediately from the
basic properties of group actions.

Now the following oracles are provided to all parties:

– Eq(〈x〉, 〈y〉) takes as input two handles for set elements x, y, are returns 1 if
x = y and 0 otherwise.

– Act(�, 〈x〉) takes as input a label � and a handle 〈x〉 to a node. If there is an
edge (x, y) ∈ E with label �, then output (�′, 〈y〉), where �′ is the label for
(y, x) ∈ E. Otherwise output ⊥.

– Inv(�, 〈x〉) takes as input a label � and a handle 〈x〉 to a node. If there is an
edge (y, x) ∈ E with label �, then output (�′, 〈y〉), where �′ is the label for
(x, y) ∈ E. Otherwise output ⊥.

– Comp(�1, �2, 〈x〉) takes as input labels �1, �2 and a handle 〈x〉 to a node. If
there are edges (x, y) ∈ E and (y, z) ∈ E with labels �1, �2 respectively, then
output �3, the label for the edge (x, z). Otherwise output ⊥.

Like with the group action model, each query incurs unit cost, and all compu-
tation outside of queries is zero cost. Algorithms are not allowed any computation
on handles, except to pass them to other algorithms or send as inputs to the
oracles Eq,Act, Inv,Comp. A probabilistic polynomial time algorithm is a prob-
abilistic algorithm in this model whose total cost is bounded by a polynomial.
We can also consider extending the model to include an Samp which generates
handles to random nodes.

By inspecting our proof of Theorem 3.1, we see that our lower bound also
holds in the black box graph action model. The limitation of this model, however,
is that for many graphs, there is trivially no security. Thus, while our impos-
sibility for short signatures will apply for arbitrary graphs, in many cases the
impossibility is uninteresting as there will be more trivial attacks.

In more detail, consider an adversary given a handle 〈x〉 to a node. The
adversary can choose two arbitrary labels �1, �2, and compute Comp(�1, �2, 〈x〉),

528 D. Boneh et al.

resulting in a label �3. Observe that �1, �2, �3 are given as bit-strings, as opposed
to handles.

For a general graph structure, it may be that Comp(�1, �2, 〈x〉) �=
Comp(�1, �2, 〈y〉) for different nodes x, y. Thus, �3 potentially tells us informa-
tion about x. If the adversary can generate many such (�1, �2) pairs, then after
a polynomial number of queries x may be uniquely determined by the list of
�3 = Comp(�1, �2, 〈x〉) values. In such a case, the graph action trivially has no
security: an adversary can de-reference 〈x〉 into x by making a polynomial num-
ber of queries to get a list of �3 values, and then brute force search for a node
x ∈ G with the given composition structure. This brute force search may require
exponential computation, but since the query count is polynomial this would be
considered an adversary in the black box graph action model.

Such a trivial insecurity does not contradict our lower bound, but would
render it meaningless.

The obvious way out would be for the graph to have the property that
Comp(�1, �2, 〈x〉) = Comp(�1, �2, 〈y〉) for all x, y, or at least for equality to hold
with overwhelming probability over random x, y. In other words, for any �1, �2,
there is a unique �3 such that Comp(�1, �2, 〈x〉) = �3 for most x.

But in this case, if we define �1 × �2 as the unique �3, this gives us a group
structure on the set of labels, and this group acts on the set X. Thus, it appears
that to avoid trivial attacks, we actually imposed a group action structure, and
thus reduce to the case of Sect. 3.

4.3 A Fully Idealized Graph Action

Here, we present a fully idealized graph action model, which allows for general
graphs (not corresponding to group actions) without rendering the graph action
model trivially insecure.

The idea is to protect edge labels behind handles, in addition to the nodes.
This means that, even though Comp(�1, �2, 〈x〉) �= Comp(�1, �2, 〈y〉), the actual
output of Comp(�1, �2, 〈x〉) is a handle. Attempting to brute force search for x
given the list of label handles is no longer possible without making exponentially
many queries.

This model is incomparable to the previous graph action model and also the
group action model: while it prevents the attacker from making use of the bit
representation of edge labels, it also prevents the construction from making use of
such labels. In much of the group action and isogeny literature, the protocols do
not need the bit representation, and would work with such a fully idealized graph
action model. But there are construction techniques that would make use of such
a bit representation (see [38] for a discussion in the context of generic groups),
and our fully idealized model would not allow for such techniques. Thus, while
the model extends the graph structure, it limits constructions in other ways.

We now give the model. The graph G = (X,E) is still defined in the same
way, but we modify the oracles that are provided to the parties:

– Eq(〈x〉, 〈y〉) takes as input two handles for set elements x, y, are returns 1 if
x = y and 0 otherwise.

A Lower Bound on the Length of Signatures Based on Group Actions 529

– Act(〈�〉, 〈x〉) takes as input a handle 〈�〉 to a label and a handle 〈x〉 to a node.
If there is an edge (x, y) ∈ E with label �, then output (〈�′〉, 〈y〉), where �′ is
the label for (y, x) ∈ E. Otherwise output ⊥.

– Inv(〈�〉, 〈x〉) takes as input a handle 〈�〉 to a label and a handle 〈x〉 to a node.
If there is an edge (y, x) ∈ E with label �, then output (〈�′〉, 〈y〉), where �′ is
the label for (x, y) ∈ E. Otherwise output ⊥.

– Comp(〈�1〉, 〈�2〉, 〈x〉) takes as input handles 〈�1〉, 〈�2〉 to labels and a handle
〈x〉 to a node. If there are edges (x, y) ∈ E and (y, z) ∈ E with labels �1,
�2 respectively, then output 〈�3〉, the handle to the label for the edge (x, z).
Otherwise output ⊥.

The following is a straightforward extension of Theorem 3.1:

Theorem 4.6. If a public coin ID protocol Π in the fully idealized black box
graph action model has completeness C, then for any polynomial t, the protocol is
(t, S)-unsound, for S ≥ (C −P/t−1/poly)×P−N , where poly is any polynomial.
In particular, if S ≤ 2−λ, C ≥ 0.99 and t ≥ 2.05P , then N ≥ (λ − 1)/ log2 P .

References

1. Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group
actions and applications. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS,
vol. 12492, pp. 411–439. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64834-3 14

2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 1993, pp. 62–73. ACM Press (Nov 1993). https://doi.org/10.
1145/168588.168596

3. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-fish: efficient isogeny based signa-
tures through class group computations. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-34578-5 9

4. Brassard, G., Yung, M.: One-way group actions. In: Menezes, A.J., Vanstone, S.A.
(eds.) CRYPTO 1990. LNCS, vol. 537, pp. 94–107. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-38424-3 7

5. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH (preliminary
version). Cryptology ePrint Archive, Report 2022/975 (2022). https://eprint.iacr.
org/2022/975

6. Chen, L., Chen, L., Jordan, S., Liu, Y.K., Moody, D., Peralta, R., Perlner, R.,
Smith-Tone, D.: Report on post-quantum cryptography, vol. 12. US Department
of Commerce, National Institute of Standards and Technology (2016)

7. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006). https://eprint.iacr.org/2006/291

8. Cozzo, D., Smart, N.P.: Sashimi: cutting up CSI-FiSh secret keys to produce
an actively secure distributed signing protocol. In: Ding, J., Tillich, J.-P. (eds.)
PQCrypto 2020. LNCS, vol. 12100, pp. 169–186. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-44223-1 10

https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/3-540-38424-3_7
https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2006/291
https://doi.org/10.1007/978-3-030-44223-1_10
https://doi.org/10.1007/978-3-030-44223-1_10

530 D. Boneh et al.

9. De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group
actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp.
759–789. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 26

10. De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: SQISign: compact
post-quantum signatures from quaternions and isogenies. In: Moriai, S., Wang, H.
(eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 64–93. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64837-4 3

11. De Feo, L., Leroux, A., Wesolowski, B.: New algorithms for the deuring correspon-
dence: SQISign twice as fast. Cryptology ePrint Archive, Report 2022/234 (2022).
https://eprint.iacr.org/2022/234

12. Decru, T., Panny, L., Vercauteren, F.: Faster SeaSign signatures through improved
rejection sampling. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol.
11505, pp. 271–285. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25510-7 15

13. Dodis, Y., Kiltz, E., Pietrzak, K., Wichs, D.: Message authentication, revisited. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
355–374. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 22

14. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the fiat-shamir transforma-
tion in the quantum random-oracle model. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11693, pp. 356–383. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26951-7 13

15. Döttling, N., Hartmann, D., Hofheinz, D., Kiltz, E., Schäge, S., Ursu, B.: On the
impossibility of purely algebraic signatures. In: Nissim, K., Waters, B. (eds.) TCC
2021. LNCS, vol. 13044, pp. 317–349. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-90456-2 11

16. El Kaafarani, A., Katsumata, S., Pintore, F.: Lossy CSI-FiSh: efficient signature
scheme with tight reduction to decisional CSIDH-512. In: Kiayias, A., Kohlweiss,
M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp. 157–186.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6 6

17. Feo, L.D., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014)

18. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

19. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: 21st ACM STOC, pp. 44–61. ACM Press (May 1989). https://doi.
org/10.1145/73007.73012

20. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

21. Ji, Z., Qiao, Y., Song, F., Yun, A.: General linear group action on tensors: a
candidate for post-quantum cryptography. In: Hofheinz, D., Rosen, A. (eds.) TCC
2019. LNCS, vol. 11891, pp. 251–281. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-36030-6 11

22. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM J. Comput. 35(1), 170–188 (2005)

23. Kuperberg, G.: Another subexponential-time quantum algorithm for the dihedral
hidden subgroup problem. In: Proceedings of TQC, vol. 22, pp. 20–34 (2013)

https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-64837-4_3
https://eprint.iacr.org/2022/234
https://doi.org/10.1007/978-3-030-25510-7_15
https://doi.org/10.1007/978-3-030-25510-7_15
https://doi.org/10.1007/978-3-642-29011-4_22
https://doi.org/10.1007/978-3-642-29011-4_22
https://doi.org/10.1007/978-3-030-26951-7_13
https://doi.org/10.1007/978-3-030-26951-7_13
https://doi.org/10.1007/978-3-030-90456-2_11
https://doi.org/10.1007/978-3-030-90456-2_11
https://doi.org/10.1007/978-3-030-45388-6_6
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1145/73007.73012
https://doi.org/10.1145/73007.73012
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-030-36030-6_11
https://doi.org/10.1007/978-3-030-36030-6_11

A Lower Bound on the Length of Signatures Based on Group Actions 531

24. Liu, Q., Zhandry, M.: Revisiting post-quantum fiat-shamir. In: Boldyreva, A., Mic-
ciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 326–355. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26951-7 12

25. Maino, L., Martindale, C.: An attack on SIDH with arbitrary starting curve. Cryp-
tology ePrint Archive, Report 2022/1026 (2022). https://eprint.iacr.org/2022/1026

26. Maurer, U.: Abstract models of computation in cryptography. In: Smart, N.P. (ed.)
Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg
(2005). https://doi.org/10.1007/11586821 1

27. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 32

28. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

29. Peikert, C.: He gives C-Sieves on the CSIDH. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12106, pp. 463–492. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45724-2 16

30. Pointcheval, D., Stern, J.: Provably secure blind signature schemes. In: Kim, K.,
Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 252–265. Springer,
Heidelberg (1996). https://doi.org/10.1007/BFb0034852

31. Regev, O.: A subexponential time algorithm for the dihedral hidden subgroup
problem with polynomial space (2004)

32. Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between crypto-
graphic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 1

33. Rostovtsev, A., Stolbunov, A.: Public-Key Cryptosystem Based On Isogenies.
Cryptology ePrint Archive, Report 2006/145 (2006). https://eprint.iacr.org/2006/
145

34. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

35. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and fac-
toring. In: 35th FOCS, pp. 124–134. IEEE Computer Society Press (Nov 1994).
https://doi.org/10.1109/SFCS.1994.365700

36. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

37. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle
model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp.
755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-
6 25

38. Zhandry, M.: To label, or not to label (in generic groups). In: Dodis, Y., Shrimp-
ton, T., (eds.) CRYPTO 2022, Part III. LNCS, vol. 13509, pp. 66–96. Springer,
Heidelberg (2022). https://doi.org/10.1007/978-3-031-15982-4 3

39. Zhandry, M., Zhang, C.: The relationship between idealized models under com-
putationally bounded adversaries. Cryptology ePrint Archive, Report 2021/240
(2021). https://eprint.iacr.org/2021/240

https://doi.org/10.1007/978-3-030-26951-7_12
https://eprint.iacr.org/2022/1026
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/BFb0034852
https://doi.org/10.1007/978-3-540-24638-1_1
https://eprint.iacr.org/2006/145
https://eprint.iacr.org/2006/145
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-031-15982-4_3
https://eprint.iacr.org/2021/240

Short Signatures from Regular Syndrome
Decoding in the Head

Eliana Carozza1, Geoffroy Couteau2(B), and Antoine Joux3

1 IRIF, Université Paris Cité, Paris, France
carozza@irif.fr

2 CNRS, IRIF, Université Paris Cité, Paris, France
couteau@irif.fr

3 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
joux@cispa.de

Abstract. We introduce a new candidate post-quantum digital signa-
ture scheme from the regular syndrome decoding (RSD) assumption, an
established variant of the syndrome decoding assumption which asserts
that it is hard to find w-regular solutions to systems of linear equa-
tions over F2 (a vector is regular if it is a concatenation of w unit vec-
tors). Our signature is obtained by introducing and compiling a new
5-round zero-knowledge proof system constructed using the MPC-in-the-
head paradigm. At the heart of our result is an efficient MPC protocol in
the preprocessing model that checks correctness of a regular syndrome
decoding instance by using a share ring-conversion mechanism.

The analysis of our construction is non-trivial and forms a core tech-
nical contribution of our work. It requires careful combinatorial analysis
and combines several new ideas, such as analyzing soundness in a relaxed
setting where a cheating prover is allowed to use any witness sufficiently
close to a regular vector. We complement our analysis with an in-depth
overview of existing attacks against RSD.

Our signatures are competitive with the best-known code-based sig-
natures, ranging from 12.52 KB (fast setting, with signing time of the
order of a few milliseconds on a single core of a standard laptop) to about
9 KB (short setting, with estimated signing time of the order of 15 ms).

1 Introduction

In this work, we introduce a new zero-knowledge proof for proving knowledge of a
solution to the regular syndrome decoding problem, using the MPC-in-the-head
paradigm. Compiling our zero-knowledge proof into a signature scheme using the
Fiat-Shamir paradigm yields a new scheme with plausible post-quantum security
and highly competitive performances compared to the state of the art.

Zero-knowledge, Signatures, and Syndrome Decoding. Zero-knowledge
proofs of knowledge allow a prover to convince a verifier of his knowledge of

c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14008, pp. 532–563, 2023.
https://doi.org/10.1007/978-3-031-30589-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30589-4_19&domain=pdf
https://doi.org/10.1007/978-3-031-30589-4_19

Short Signatures from RSD in the Head 533

a witness for a NP statement without revealing anything beyond this. Zero-
knowledge proofs enjoy countless applications in cryptography. In particular,
the Fiat-Shamir transform [23] allows to convert any public-coin zero-knowledge
proof system into a signature scheme; this transformation is one of the leading
approaches to the construction of efficient signature schemes.

The syndrome decoding problem asks, given a matrix H ∈ F
k×K
2 and a

target vector y ∈ F
k
2 , to find a vector x ∈ F

K
2 of Hamming weight w such that

H · x = y. The average-case hardness of the syndrome decoding problem (for
random matrices H and appropriate parameters (K, k,w)) is one of the leading
candidate post-quantum cryptographic assumptions. The first zero-knowledge
proof of knowledge for the syndrome decoding problem was introduced in the
seminal work of Stern [35] three decades ago. Unfortunately, Stern’s proof has a
large soundness error : a cheating prover can convince a verifier with probability
2/3 without knowing a correct solution x. To achieve a low soundness error,
e.g. 2−128, the protocol must therefore be repeated τ times, with τ such that
(2/3)τ ≤ 2−128. This adds a significant communication overhead, resulting in a
large signature size after compilation with Fiat-Shamir.

Code-Based Signatures. Digital signatures form the backbone of authenti-
cation on the Internet. However, essentially all deployed constructions will be
rendered insecure in the presence of a quantum computer [34]. This motivates
the search for alternative constructions of digital signature schemes, that rely on
assumptions conjectured to withstand quantum computers. The recent call of
the NIST1 for standardizing post-quantum primitives has boosted the research
for efficient post-quantum signatures, particularly code-based signatures.

Among the many candidate code-based signature schemes, the Fiat-Shamir
approach, used in the seminal work of Stern, has received careful scrutiny [8,
9,20,21,25]. Indeed, while some alternative approaches such as Wave [18] and
Durandal [2] manage to reach smaller signature sizes (under somewhat more
exotic but plausible assumptions), they typically require the signer to know a
trapdoor associated with the code matrix, leading to huge public keys (since the
public key must include the full matrix H). In contrast, Fiat-Shamir signatures
require no such trapdoor, and the random matrix H can be heuristically com-
pressed to a short seed using a pseudorandom generator, yielding comparatively
tiny public keys (in addition to relying on more traditional assumptions). This
comes at the expense of slightly larger signature sizes. Nevertheless, the standard
efficiency measure (size of the signature + size of the public key) strongly favors
the Fiat-Shamir line of work.

The MPC in the Head Paradigm. Several recent works on Fiat-Shamir
code-based digital signatures use the MPC in the head paradigm, introduced in
the seminal work of [27] (MPC stands for multiparty computation). At a high
level, this paradigm lets the prover run an MPC protocol in his head, where the

1 https://csrc.nist.gov/projects/post-quantum-cryptography.

https://csrc.nist.gov/projects/post-quantum-cryptography

534 E. Carozza et al.

(virtual) parties are given shares of the witness, and the target function verifies
that the witness is correct. Then, the prover commits to the views of all parties,
and the verifier asks to see a random subset of the views, checks that they are
consistent, and that the output indeed corresponds to the witness being correct.
Soundness stems from the fact that a cheating prover (not knowing a valid wit-
ness) cannot produce consistent views for all parties, and zero-knowledge follows
from the security of the MPC protocol against a honest-but-curious adversary
(which gets to see the views of a subset of corrupted parties).

The MPC in the head paradigm reduces the construction of efficient zero-
knowledge proofs to the search for suitable MPC protocols with low commu-
nication overhead. In recent years, it has led to some of the most competitive
candidate post-quantum signature schemes [5,29], and was used in particular
in the most efficient Fiat-Shamir code-based signature scheme (and the most
efficient code-based signature scheme overall, under the signature + public key
size metric) known to date [21].

1.1 Our Contribution

In this work, we introduce a new zero-knowledge proof system for a variant of the
syndrome decoding problem, using the MPC in the head paradigm. The variant
of the syndrome decoding problem which we consider is the regular syndrome
decoding (RSD) problem. Given a matrix H ∈ F

k×K
2 and a syndrome y ∈ F

k
2 , the

RSD problem with parameters (k,K,w) asks to find a weight-w regular solution
x ∈ F

K
2 to H · x = y, where regular means that x is a concatenation of w

unit vectors (i.e., x is divided in w equal-length blocks, and has a single 1 per
block). The regular syndrome decoding problem is a well-established variant of
syndrome decoding: it was introduced in 2003 in [3] as the assumption underlying
the FSB candidate to the NIST hash function competition, and was subsequently
analyzed in [7,24,30], among others. It has also been used and analyzed in many
recent works on secure computation, such as [10–14,16,26,32,36,37].

Brief Overview of Our Approach. While we use the MPC in the head
paradigm, as in previous works [9,20,21,25], our choice of the underlying MPC
protocol departs significantly from all previous work. Our starting point is the
observation that checking H · x = y and checking the structure of x can each be
done using linear operations, over F2 for the former, and over Z for the latter.
In standard MPC protocol, linear operations over a ring R are usually “for free”,
provided that the values are shared over R. Therefore, the only component that
requires communication is a share conversion mechanism, to transform shares
over F2 into shares over a larger integer ring. We introduce a share conversion
protocol which exhibit very good performances. However, our protocol works in
the preprocessing model, where the parties are initially given correlated random
string by a trusted dealer. The use of preprocessing in the MPC in the head
paradigm has appeared in previous works [25,29], and handling the preprocessing
phase usually incurs a significant communication overhead (due to the need to
check that it was correctly emulated by the prover).

Short Signatures from RSD in the Head 535

Nevertheless, a core technical contribution of our work is a method, tailored
to our setting, to handle the preprocessing phase for free (i.e. without incurring
any communication overhead). At a high level, we achieve this by letting the
verifier randomly shuffle the preprocessing strings, instead of verifying them.
A careful and non-trivial combinatorial analysis shows that a cheating prover
has very low probability of providing an accepting proof for any choice of the
initial (pre-permutation) preprocessing strings, over the choice of the verifier
permutation. Furthermore, we observe that the cheating probability becomes
much lower if we focus on cheating provers using a witness which is far from a
regular witness (in the sense that it has multiple non-weight-1 blocks). For an
appropriate setting of the parameters, the hardness of finding solutions close to
regular witnesses becomes equivalent to the standard regular syndrome decoding
assumption (where the solution must be strictly regular), hence this relaxation
of the soundness still yields a signature scheme (after compilation with Fiat-
Shamir) whose security reduces to the standard RSD assumption.

To complement our analysis, we also provide an analysis of the RSD assump-
tion. We analyze the relation of RSD to the standard syndrome decoding assump-
tion depending on the parameter regime, and reviewed existing attacks on RSD
from the literature, fine-tuning and improving the attacks on several occasions.
Eventually, we develop a new “adversary-optimistic” attack against RSD, show-
ing how a linear-time solution to the approximate birthday problem would yield
faster algorithms for RSD (in our parameter choices, we assumed that such an
algorithm exists for the sake of choosing conservative parameters). We provide
a more in-depth overview in the technical overview (Sect. 3).

Performances. While analyzing our approach is relatively involved, the proto-
col structure is extremely simple. The computation of our zero-knowledge proof
is mostly dominated by simple XORs, calls to a length-doubling PRG (which
can be instantiated very efficiently from AES over platforms with hardware sup-
port for AES) and calls to a hash function. This is in contrast with previous
works, which always involved much more complex operations, such as FFTs [21]
or compositions of random permutations [9,20]. While we do not yet have an
optimized implementation of our new signature scheme (we plan to get such
an implementation in a future work), we carefully estimated the runtime of all
operations using standard benchmarks, making conservative choices when the
exact cost was unclear (we explain our calculations in details in Sect. 5). Our
conservative choices likely overestimate the real runtime of these operations.
Of course, the runtimes extrapolated this way ignore other costs such as the
cost of copying and allocating memory. Nevertheless, in Banquet, another can-
didate post-quantum signature scheme using the MPC-in-the-head paradigm,
the memory costs were estimated to account for 25% of the total runtime. We
therefore expect our extrapolated number to be relatively close to real runtimes
with a proper implementation. Our numbers indicate that our signature scheme
is highly competitive with the state of the art, even if our extrapolated runtimes

536 E. Carozza et al.

are off by more than a factor two, which we view as a strong indication that an
optimized implementation will achieve competitive runtimes.

For communication, we provide eight sets of parameters. The first four param-
eters use RSD parameters which guarantee a security reduction to the standard
RSD assumption, and we view them as our main candidate parameters. They
correspond respectively to a fast signature (rsd-f), two medium signatures (rsd-
m1 and rsd-m2) achieving a reasonable speed/size tradeoff, and a short signature
(rsd-s). The last four parameters (arsd-f, arsd-m1, arsd-m2, and arsd-s) use a
more aggressive setting of the RSD parameters, where security reduce instead
to a more exotic assumption, namely, the security of RSD when the adversary
is allowed to find an almost regular solution (with some fixed number of “faulty
blocks” allowed). Since this variant has not yet been thoroughly analyzed, we
view these parameters mainly as a motivation for future cryptanalysis of variants
of RSD with almost-regular solutions.

We represent in Table 1 the results of our estimations and compare them
to the state-of-the-art in code-based signature schemes. Compared to the best-
known code-based signature scheme of [21], our conservative scheme (under stan-
dard RSD) achieves significantly smaller signature sizes than their scheme based
on syndrome decoding over F2 (12.52 KB for our fast variant versus 17 KB for
Var2f, and 9.69 to 8.55 KB for our shorter variants versus 11.8 KB for Var2s).
In terms of runtime, our estimates are significantly faster than their reported
runtimes (except rsd-s, which is on par with Var2s), hence our runtimes should
remain competitive with a proper implementation, even if memory costs turn
out to be higher than expected. Their most efficient scheme (variants Var3f and
Var3s) relies on the conjectured hardness of syndrome decoding assumption over
F256, which has been much less investigated. Yet, our conservative RSD-based
schemes remain competitive even with their most efficient scheme: we get slightly
larger signatures (12.42 KB versus 11.5 KB, and 9.13 KB versus 8.26 KB), and
comparable runtimes. Since the RSD assumption over F2 has been more inves-
tigated, we view our signature scheme as a competitive and viable alternative.

2 Preliminaries

Given an integer n ∈ N, we denote by [n] the set {1, · · · , n}. We use bold lower-
case for vectors, and uppercase for matrices. Given a vector v ∈ F

n and a permu-
tation π : [n] �→ [n], we write π(v) to denote the vector (vπ(1), vπ(2), · · · , vπ(n)).
Given u,v ∈ {0, 1}n, we write u⊕v for the bitwise-XOR of u and v, and u�v
for the bitwise-AND (also called Schur product, or Hadamard product) of u and
v, and HW(u) for the Hamming weight of u (i.e. its number of nonzero entries).
Given a set S, we write s ←r S to indicate that s is sampled uniformly from S.
Given a probabilistic Turing machine A and an input x, we write y ←r A(x)
to indicate that y is sampled by running A on x with a uniform random tape,
or y ← A(x; r) when we want to make the random coins explicit. We assume
familiarity with some basic cryptographic notions, such as commitment schemes,
collision-resistant hash functions, and the random oracle model.

Short Signatures from RSD in the Head 537

Table 1. Comparison of our signature scheme with other code-based signature schemes
from the literature, for 128 bits of security. All timings are in millisecond. Reported
timings are those extracted in [21] from the original publications, using a 3.5 Ghz Intel
Xeon E3-1240 v5 for Wave, a 2.8 Ghz Intel Core i5-7440HQ for Durandal, and a 3.8 GHz
Intel Core i7 for [20,21]. Our timings are estimated runtimes with the methodology
given in Sect. 5.2.

Scheme |sgn| |pk| tsgn Assumption

Wave 2.07 KB 3.2 MB 300 large-weight SD over F3,
(U, U + V)-codes indist.

Durandal - I 3.97 KB 14.9 KB 4 Rank SD over F2m

Durandal - II 4.90 KB 18.2 KB 5 Rank SD over F2m

LESS-FM - I 9.77 KB 15.2 KB – Linear Code Equivalence
LESS-FM - II 206 KB 5.25 KB – Perm. Code Equivalence
LESS-FM - III 11.57 KB 10.39 KB – Perm. Code Equivalence
[25] - 256 24.0 KB 0.11 KB – SD over F256

[25] - 256 19.8 KB 0.12 KB – SD over F1024

[20] (fast) 22.6 KB 0.09 KB 13 SD over F2

[20] (short) 16.0 KB 0.09 KB 62 SD over F2

[9] Sig1 23.7 KB 0.1 KB – SD over F2

[9] Sig2 20.6 KB 0.2 KB – (QC)SD over F2

[21] - Var1f 15.6 KB 0.09 KB – SD over F2

[21] - Var1s 10.9 KB 0.09 KB – SD over F2

[21] - Var2f 17.0 KB 0.09 KB 13 SD over F2

[21] - Var2s 11.8 KB 0.09 KB 64 SD over F2

[21] - Var3f 11.5 KB 0.14 KB 6 SD over F256

[21] - Var3s 8.26 KB 0.14 KB 30 SD over F256

Our scheme - rsd-f 12.52 KB 0.09 KB 2.8∗ RSD over F2

Our scheme - rsd-m1 9.69 KB 0.09 KB 17∗ RSD over F2

Our scheme - rsd-m2 9.13 KB 0.09 KB 31∗ RSD over F2

Our scheme - rsd-s 8.55 KB 0.09 KB 65∗ RSD over F2

Our scheme - arsd-f 11.25 KB 0.09 KB 2.4∗ f -almost-RSD over F2

Our scheme - arsd-m1 8.76 KB 0.09 KB 15∗ f -almost-RSD over F2

Our scheme - arsd-m2 8.28 KB 0.09 KB 28∗ f -almost-RSD over F2

Our scheme - arsd-s 7.77 KB 0.09 KB 57∗ f -almost-RSD over F2
∗ Runtimes obtained using conservative upper bounds on the cycle counts of all
operations as described in Sect. 5.2, and assuming that the signature is ran on one
core of a 3.8 GHz CPU. We stress that these parameters ignore costs such as copying
or allocating memory, and should be seen only as a first-order approximation of the
real runtimes.

538 E. Carozza et al.

Given a vector u ∈ Z
�
T and an integer T , we write (u1, · · · ,un) ←r �u�T

to indicate that the vectors ui (called the i-th additive share of u) are sampled
uniformly at random over Z

�
T conditioned on

∑
i ui = u. We sometime abuse

this notation and write �u�T to denote the tuple (u1, · · · ,un). For a vector
v ∈ {0, 1}�, we write �v�T with T > 2 using the natural embedding of {0, 1}
into ZT .

2.1 Syndrome Decoding Problems

Given a weight parameter w, the syndrome decoding problem asks to find a
solution of Hamming weight w (under the promise that it exists) to a random
system of linear equations over F2. Formally, let SK

w denote the set of all vectors
of Hamming weight w over F

K
2 . Then:

Definition 1 (Syndrome Decoding Problem). Let K, k,w be three integers,
with K > k > w. The syndrome decoding problem with parameters (K, k,w) is
defined as follows:

– (Problem generation) Sample H ←r F
k×K
2 and x ←r SK

w . Set y ← H · x.
Output (H, y)

– (Goal) Given (H, y), find x ∈ SK
w such that H · x = y.

A pair (H, y) is called an instance of the syndrome decoding problem. In
this work, we also consider variants of the syndrome decoding problem, with
different restrictions on the solution vector x. In our context, it is useful to
rephrase the constraint on x as a linear equation over N: the solution vector x
must satisfy the constraint 〈x,1〉 = w, where 1 is the all-1 vector, and the inner
product is computed over the integers (note that this view is of course specific
to syndrome decoding over F2). Other standard variants of syndrome decoding
from the literature can also be viewed as instances of a more general notion of
syndrome decoding under N-linear constraints, which we introduce below:

Definition 2 (Syndrome Decoding under N-Linear Constraints). Let
K, k,w, c be four integers, with K > k > w and k > c. Let L ∈ N

c×K be a
matrix and v ∈ N

c be a vector; we call (L,v) the N-linear constraint. We say
that (L,v) is a feasible constraint if it is possible to sample a uniformly random
element from the set {x ∈ {0, 1}K : L · x = v} in time poly(K).

The syndrome decoding problem with parameters (K, k,w) and feasible N-
linear constraint (L,v) is defined as follows:

– (Problem generation) Sample a matrix H ←r {0, 1}k×K and a vector x ←r

{x ∈ {0, 1}K : L · x = v}. Set y ← H · x mod 2. Output (H, y).
– (Goal) Given (H, y), find x ∈ {0, 1}K such that

• H · x = y mod 2 (the F2-linear constraint), and
• L · x = v over N (the N-linear constraint).

Short Signatures from RSD in the Head 539

Examples. Setting c = 1, L = (1, · · · , 1), and v = w corresponds to the
constraint “x has Hamming weight w”, and is the standard syndrome decoding
problem. A common variant in the literature [3,7,10–14,16,24,26,30,32,36,37]
is the regular syndrome decoding problem, where x is instead required to be a
concatenation of w unit vectors, each of length K/w. We recover this variant
by setting c = w, v = (1, · · · , 1)ᵀ, and defining L as the matrix with rows
Li = (0 · · · 0, 1 · · · 1, 0 · · · 0), where the band of ones is from (i − 1) · K/w + 1 to
i ·K/w. Eventually, the d-split syndrome decoding problem from [22], where the
vector x is divided into d blocks of weight w/d, is also easily seen to fit in this
framework.

2.2 Honest-Verifier Zero-Knowledge Arguments of Knowledge

Given a two-party interactive protocols between PPT algorithms A with input
a and B with input b where only B gets an output, we introduce two random
variables: 〈A(a), B(b)〉 denotes the output of the protocol, and View(A(a), B(b))
denotes the transcript of the protocol.

Definition. A honest-verifier zero-knowledge argument of knowledge with
soundness error ε for a NP language L = {x ∈ {0, 1}∗ : ∃w, (x,w) ∈ RL ∧|w| =
poly(|x|)} with relation RL is a two-party interactive protocol between a prover
P and a verifier V which satisfies the following properties:

– Perfect Completeness: for every (x,w) ∈ RL, the verifier always accept
the interaction with a honest prover: Pr[〈P(x,w),V(x)〉 = 1] = 1.

– ε-Soundness: [6] for every PPT algorithm P̃ such that Pr[〈P̃(x),V(x)〉 = 1] =
ε̃ > ε, there exists an extractor algorithm E which, given rewindable black-
box access to P̃, outputs a valid witness w′ for x in time poly(λ, (ε̃ − ε)−1)
with probability at least 1/2.

– Honest-Verifier Zero-Knowledge (HVZK): an argument of knowledge
is (computationally, statistically, perfectly) HVZK if there exists a PPT sim-
ulator Sim such that for every (x,w) ∈ RL, Sim(x) ≡ View(P(x,w),V(x)),
where ≡ denotes computational, statistical, or perfect indistinguishability
between the distributions.

Gap-HVZK. A gap honest-verifier zero-knowledge argument of knowledge [15]
with gap L′, where L′ ⊇ L is an NP language with relation RL′ , is defined
as a honest-verifier zero-knowledge argument of knowledge, with the following
relaxation of ε-soundness: the extractor E is only guaranteed to output a witness
w′ such that (x,w′) ∈ L′. Concretely, in our setting, the witness is a valid
solution to the syndrome decoding problem, and the language L′ contains all
strings which are sufficiently close (in a well-defined sense) to a valid solution.
This is similar in spirit to the notion of soundness slack often used in the context
of lattice-based zero-knowledge proof, where the honest witness is a vector with
small entries, and the extracted vector can have significantly larger entries.

540 E. Carozza et al.

2.3 The MPC-in-the-Head Paradigm

The MPC-in-the-head paradigm was introduced in the seminal work of [27]. It
provides a compiler which, given an n-party secure computation protocol for
computing a function f ′ in the honest-but-curious model, produces a honest-
verifier zero-knowledge argument of knowledge of x such that f(x) = y, for some
public value y, where f ′ is a function related to f . In our context, the focus is
on zero-knowledge for syndrome decoding problems, for which, for example, a
typical choice of f would include a hardcoded description of the matrix H and
from a vector x, f would output f(x) = (H · x,HW(x)).

At a high level (and specializing to MPC in the head with all-but-one additive
secret sharing – the original compiler is more general), the compiler proceeds
by letting the prover additively share the witness x into (x1, · · · , xn) among
n virtual parties (P1, · · · , Pn), run in his head an MPC protocol for securely
computing f ′(x1, · · · , xn) = f(

∑
i xi) (where the sum is over some appropriate

ring), and commit to the views of all parties. Then, the verifier queries a random
size-(n − 1) subset of all views, which the prover opens. The verifier checks that
these views are consistent and that the output is correct – for example, equal
to (y, w) (when proving knowledge of x such that H · x = y and HW(x) = w).
She accepts if all checks succeeded. Soundness follows from the fact that the
MPC protocol is correct, hence if the prover does not know a valid x, one of the
views must be inconsistent with the output being correct (the soundness error
is therefore 1/n). Honest-verifier zero-knowledge follows from the fact that the
MPC protocol is secure against passive corruption of n − 1 parties (and the fact
that n − 1 shares of x leak no information about x).

3 Technical Overview

In this section, we provide a detailed overview of our zero-knowledge proof, and
highlight the technical challenges in constructing an analyzing the proof.

3.1 Our Template Zero-Knowledge Proof

We start with the construction of a zero-knowledge proof of knowledge of a
solution to an instance of the syndrome decoding problem, using the MPC-in-
the-head paradigm. More generally, our protocol handles naturally any syndrome
decoding under N-linear constraints problem for some N-linear constraint (L,v),
see Definition 2. To this end, we construct an n-party protocol Π where the
parties have shares of a solution x ∈ {0, 1}K to the syndrome decoding problem,
and securely output H ·x mod 2 and L ·x over N. Given the output of the MPC
protocol, the verifier checks (1) that the execution (in the prover’s head) was
carried out honestly (by checking a random subset of n − 1 views of the parties)
and (2) that the two outputs are equal to y and v respectively.

The high level intuition of our approach is the following: in MPC proto-
cols, it is typically the case that linear operations are extremely cheap (or even

Short Signatures from RSD in the Head 541

considered as “free”), because they can be computed directly over secret values
shared using a linear secret sharing scheme (such as additive sharing, or Shamir
sharing), without communicating. In turn, we observe that several variants of
the syndrome decoding problem reduce to finding a solution x that satisfy two
types of linear constraints: one linear constraint over F2 (typically, checking that
H · x = y given a syndrome decoding instance (H, y)) and one linear constraint
over N (e.g. checking that 〈x,1〉 = w, i.e. that the Hamming weight of x is w).
Now, an appropriate choice of linear secret sharing scheme can make any one
of these two constraints for free in Π: if x is additively shared over F2, then
verifying H · x = y is for free, while if x is additively shared over a large enough
integer ring R = ZT (such that no overflow occurs when computing L · x over N
for any x ∈ {0, 1}K), then verifying L · x = v is for free.

Share Conversion. By the above observation, the only missing ingredient to
construct Π is a share conversion mechanism: a protocol where the parties start
with F2-shares �x�2 of x, and securely convert them to R-shares �x�T of x. Our
next observation is that for any integer ring ZT , this can be done easily using
appropriate preprocessing material. Consider the case of a single bit a ∈ {0, 1};
the parties initially have F2-shares �a�2 of a. Suppose now that the parties receive
the (�b�2, �b�T) for a random b ∈ {0, 1} from a trusted dealer. The parties can
locally compute �a⊕ b�2 and open the bit c = a⊕ b by broadcasting their shares.
Now, since a = c ⊕ b = c + b − 2b over N, only two cases may arise:

Case 1: c = 1. Then a = 1 − b and so �a�T = �1 − b�T .
Case 2: c = 0. Then a = b and so �a�T = �b�T

Therefore, the parties can compute �a�T as c · �1 − b�T + (1 − c) · �b�T . This
extends directly to an integral solution vector x. Hence, in the protocol Π, prior
to the execution, a trusted dealer samples a random vector r ←r {0, 1}K and
distribute (�r�2, �r�T) to the parties, where T is such that no overflow can occur
when computing L·x mod T (in order to simulate N-linear operations). A similar
technique was used previously, in a different context, in [19,33].

The MPC Protocol. Building on this observation, we introduce an MPC
protocol in the preprocessing model, where the trusted dealer picks a random
bitstring r, and distributes (�r�2, �r�T) to the parties. On input additive shares
of the witness x over F2, the parties can open z = r + x. Using the above
observation, all parties can reconstruct shares �x�T . Then, any linear equation
on x over either F2 or ZT can be verified by opening an appropriate linear
combination of the F2-shares or of the ZT shares (this last step does not add
any communication when compiling the protocol into a zero-knowledge proof).

Handling the Preprocessing Material. At a high level, there are two stan-
dard approaches to handle preprocessing material using MPC-in-the-head. The
first approach was introduced in [29]. It uses a natural cut-and-choose strategy:

542 E. Carozza et al.

the prover plays the role of the trusted dealer, and executes many instances of
the preprocessing, committing to all of them. Afterwards, the verifier asks for
openings of a subset of all preprocessings, and checks that all opened strings
have been honestly constructed. Eventually, the MPC-in-the-head compiler is
applied to the protocol, using the unopened committed instances of the pre-
processing phases. This approach is very generic, but induces a large overhead,
both computationally and communication-wise. The second approach is tailored
to specific types of preprocessing material, such as Beaver triples. It is inspired
by the classical sacrificing technique which allows to check the correctness of a
batch of Beaver triples, while sacrificing only a few triples. It was used in works
such as Banquet [5], or more recently in [21].

Unfortunately, the first approach induces a large overhead, and the second
one is tailored to specific types of preprocessing material. In our context, the
structure of the preprocessing material makes it unsuitable. Fortunately, we show
that, in our setting, the preprocessing material can be handled essentially for
free.

Our technique works as follows: we let the prover compute (and commit to)
the preprocessing material (�r�2, �r�T) himself, but require that the coordinates
of r are shuffled using a uniformly random permutation (chosen by the verifier)
before being used in the protocol. Crucially, as we show in our analysis, the
verifier never needs to check that the preprocessing phase was correctly executed
(which would induce some overhead): instead, we demonstrate that a malicious
prover (who does not know a valid witness) cannot find any (possibly incorrect)
preprocessing material that allows him to pass the verification with the randomly
shuffled material with high probability.

Fundamentally, the intuition is the following: it is easy for the malicious
prover to know values x, x′ such that H · x = y mod 2 and L · x′ = v mod T . To
pass the verification test in the protocol, a malicious prover must therefore fine-
tune malicious preprocessing strings (s, t) such that the value z� (1− t) + (1−
z)� t, computed from z = s⊕ x for some x such that H · x = y mod 2, is equal
to a value x′ such that L · x′ = v mod T (recall that in the honest protocol, the
prover should use s = t = r). But doing so requires a careful choice of the entries
(si, ti): intuitively, the prover needs si = ti whenever xi = x′

i, and si = 1 − ti
otherwise. However, when the coordinates of (s, t) are randomly shuffled, this
is not the case with high probability. While the high-level intuition is clear, we
note that formalizing it requires particularly delicate combinatorial arguments.

Full Description of the MPC Protocol. Let (H, y) be an instance of the
N-linear syndrome decoding problem with parameters (K, k,w) and feasible N-
linear constraint (L,v). Let x ∈ {0, 1}K denote a solution for this instance.
We construct an n-party protocol Π in the preprocessing model, where the
parties inputs are additive shares of x over F2. The protocol Π securely computes
H ·x mod 2 and L ·x in the honest-but-curious setting, with corruption of up to
n − 1 parties. Let par ← (K, k,w, c,H,L). The protocol Πpar is represented on
Fig. 1.

Short Signatures from RSD in the Head 543

Parameters: The protocol Π operates with n parties, denoted (P1, · · · , Pn).
(K, k, w, c) are four integers with K > k > w and k > c. H ∈ {0, 1}k×K and
L ∈ N

c×K are public matrices. Let par ← (K, k, w, c, H, L), and let T ← ‖L · 1‖1.
We view (x1, · · · ,xn) as forming additive shares �x�2 over F2 of a vector x ∈
{0, 1}K .
Inputs: Each party Pi has input xi ∈ {0, 1}K .
Preprocessing: The trusted dealer samples r ←r {0, 1}K . He computes �r�2 =
(s1, · · · , sn) ←r Share2(r) and �r�T = (t1, · · · , tn) ←r ShareT (r), viewing bits as
elements of the integer ring ZT in the natural way. It distributes (si, ti) to each
party Pi.
Online Phase: The protocol proceeds in broadcast rounds.

– The parties compute �y′�2 = H · �x�2 and �z�2 = �r�2 + �x�2. All parties open
y′ and z.

– The parties compute �v′�T ← L · (z� �1− r�T + (1− z)� �r�T), viewing z as
a vector over ZT in the natural way.

– All parties open v′.

Output. The parties output (y′,v′).

Fig. 1. Protocol Πpar for securely computing H · x mod 2 and L · x in the honest-but-
curious up to n − 1 corruptions.

A Template Zero-Knowledge Proof. Building upon the above, we describe
on Fig. 2 a template zero-knowledge proof. Looking ahead, our final zero-
knowledge proof does (1) instantiate this template for a carefully chosen flavor
of syndrome decoding with N-linear constraints, and (2) introduce many opti-
mizations to the proof, building both upon existing optimizations from previous
works, and new optimizations tailored to our setting.

3.2 Concrete Instantiation for Regular Syndrome Decoding

With the template construction in mind, we can now discuss our concrete choice
of syndrome decoding problem with N-linear constraints. Our target is the regu-
lar syndrome decoding problem, where the linear constraint states that the wit-
ness x should be a concatenation of w unit vectors (see Sect. 2.1). The rationale
behind this choice stems from the communication complexity of the template
zero-knowledge proof from Fig. 2. Intuitively, the communication is dominated
by the cost of transmitting the vectors over the ring ZT (i.e. the ti vectors): send-
ing each such vector requires K · log T bits. Looking ahead, even with proper
optimizations, the zero-knowledge proof cannot be competitive with state-of-
the-art constructions communication-wise whenever the value of T = ‖L · 1‖1 is
large.

Typically, for the standard syndrome decoding problem, we have T = K,
hence the communication involves a K · logK term, and the overhead is too
large (when choosing concrete parameters, K is typically in the thousands,
hence K logK is of the order of a few kilobytes, which becomes a few dozen

544 E. Carozza et al.

Parameters. (K, k, w, c) are four integers with K > k > w and k > c.
H ∈ {0, 1}k×K and L ∈ N

c×K are public matrices. y ∈ {0, 1}k and v ∈ {0, 1}c are
public vectors. Let par ← (K, k, w, c, H, L), and let T ← ‖v‖1. Let Commit be a
non-interactive commitment scheme.
Inputs. The prover and the verifier have common input par and (y,v), which
jointly form an instance of the N-linear syndrome decoding problem. The prover
additionally holds a witness x ∈ {0, 1}K which is a solution of the instance:
H · x = y mod 2 and L · x = v(= v mod T).
Witness Sharing. The prover samples (x1, · · · ,xn) ←r Share2(x). Each share xi

is the input of the virtual party Pi.
Round 1. The prover runs the trusted dealer of Πpar and obtains
((s1, · · · , sn), (t1, · · · , tn)) = (�r�2, �r�T). He computes and sends ci ←r

Commit(xi, si, ti) for i = 1 to n to the verifier.
Round 2. The verifier picks a uniformly random permutation π ←r SK and sends
it to the prover.
Round 3. The prover runs the online phase of Πpar where the parties
(P1, · · · , Pn) have inputs (x1, · · · ,xn), using the shuffled preprocessing material
(�π(r)�2, �π(r)�T). For each party Pi, let msgi = (y′

i, zi,v
′
i) denote the list of all

messages sent by Pi during the execution. The prover sends (msg1, · · · ,msgn) to
the verifier.
Round 4. The verifier chooses a challenge d ∈ [n] and sends it to the prover.
Round 5 The prover opens all commitments cj for j �= d to the verifier.
Verification. The verifier checks:

– that all commitments were opened correctly;
– that the output of Πpar with transcript (msg1, · · · ,msgn) is equal to (y,v);
– that the messages msgj sent by Pj are consistent with (xj , sj , tj).

The verifier accepts if and only if all checks succeed.

Fig. 2. Template 5-round zero-knowledge proof for N-linear syndrome decoding using
MPC-in-the-head with the protocol Πpar

kilobytes after parallel repetitions). On the other hand, regular syndrome decod-
ing appears to minimize this cost: the value of T is only K/w. Hence, by choosing
the weight appropriately, we can reduce the value of T .

The regular syndrome decoding problem is also far from new: it was intro-
duced in [3] as the assumption underlying the security of a candidate for the
SHA-3 competition, and was subsequently studied in numerous works, includ-
ing [7,24,30], and more recently in [26]. The hardness of the regular syndrome
decoding problem is also the core assumption underlying many recent works in
secure computation with silent preprocessing, see e.g. [10–14,16,32,36,37] and
references therein. It is therefore a well-established assumption.

In the following, we focus on the regular syndrome decoding problem as
our primary instantiation of the template. Looking ahead, we seek to minimize
the value of T = K/w. Concretely, as we show in Sect. 4.1, a standard chinese
remainder theorem trick allows to work over the ring ZT/2 instead of ZT , as long
as gcd(T/2, 2) = 1 (i.e. T/2 is odd; intuitively, this is because the “mod 2 part”

Short Signatures from RSD in the Head 545

of the equation L · x = v mod T can be obtained at no cost from the F2-sharing
of x, hence it only remains to get L ·x mod T/2 and use the CRT to reconstruct
L · x mod T). The smallest possible value of T/2 satisfying the above constraint
is T/2 = 3, implying T = K/w = 6. We therefore set w = K/6, which is the
smallest value of w that sets the bitsize of the vectors ti to its minimal value of
K · log(T/2) = K · log 3.

3.3 Combinatorial Analysis

Our discussion so far hinged upon the assumption that when the preprocessing
material is randomly shuffled by the verifier, a cheating prover has very low
success probability. A core technical contribution of our work is to provide a
bound on this success probability. We define (informally) a combinatorial bound
to be a quantity p that bounds the probability of a cheating prover to find
preprocessing material that causes the verifier to accept the interaction.

Definition 3 (Combinatorial bound – informal). A real p ∈ (0, 1) is a
combinatorial bound for the template zero-knowledge proof if for every incorrect
witness x, and every pair (s, t), the probability, over the random choice of a
permutation π, that x satisfies the following equations:

– x′ = z � (1 − π(t)) + (1 − z) � π(t) with z = π(s) ⊕ x
– H · x = y mod 2, L · x = v mod 2, and L · x′ = v mod T/2

is upper-bounded by p.

Note that the last two equations stem from the use of the gcd trick, where
the “mod 2 part” of the equation L · x = v mod T is verified directly on the
original shares of x modulo 2, and the remaining equation is checked modulo
T/2 (assuming that gcd(2, T/2) = 1). Proving a tight combinatorial bound turns
out to be a highly non-trivial task. In this section, we overview the key technical
challenges one faces, and outline our solution.

A Balls-and-bins Analysis. A key difficulty in the analysis is that we must
handle arbitrary choices of the strings (s, t) chosen by the prover, but also arbi-
trary (invalid) witnesses x. In our concrete instantiation, we use the regular
syndrome decoding problem, and always enforce T = K/w = 6 (this is the
choice which maximizes efficiency). Therefore, we focus on this setting in our
analysis. In this case, the setting becomes: assume that we are given an incor-
rect witness x, which is a concatenation of w length-T blocks x1, · · · , xw. The
equation L · x = v mod 2 translates to the condition that each block xj has odd
Hamming weight; since T = 6, we have HW(xj) ∈ {1, 3, 5} for j = 1 to w.

Let us now fix a position i ≤ K. The pair (sπ(i), tπ(i)) ∈ F2 ×F3 “transforms”
xi into x′

i as follows: x′
i = (xi ⊕sπ(i)) · (1−2tπ(i))+ tπ(i). In fact, the six elements

of F2 × F3 fall in three categories, depending on their effect on xi:

– (Identity) x′
i = xi. This happens whenever sπ(i) = tπ(i).

546 E. Carozza et al.

– (Flip) x′
i = 1 ⊕ xi. This happens whenever tπ(i) ∈ {0, 1} ∧ sπ(i) �= tπ(i).

– (Constant 2) x′
i = 2. This happens whenever tπ(i) = 2.

Therefore, the prover choice of (s, t) boils down to choosing a sequence of
(copy, flip, const2) operators, which are randomly shuffled, and then applied to
each bit of the witness x. We formulate the experiment as a balls-into-bins exper-
iment: the witness x is seen as a sequence of K bins, where the i-th bin is labeled
by xi. The prover chooses K balls, where each ball represents an operator (we
call type-A, type-B, and type-C the copy, flip, and const2 operators respectively).
Then, the balls are randomly thrown into the bins (with exactly one ball per
bin), and the label of each bin is changed according to the operator of the ball
it receives. The prover wins if, in the end, the sum of the labels in each block of
bins is 1 modulo 3 (corresponding to checking that each block of x′ has Hamming
weight equal to 1 modulo 3).

Our analysis distinguishes two situations, depending on the balls chosen by
the prover: either at least 60% of the balls are of the same type (we say that this
type dominates the balls – the choice of the threshold is somewhat arbitrary),
or the types are well-spread (no type appears more than 60% of the time).
Intuitively, these cases correspond to two different ‘failure modes’:

- Dominant Scenario. Here, the prover’s best choice is to pick x ’very close’
to a valid witness (say, with a single incorrect block), and to set almost all balls
to be type-A balls (type-A is what a honest prover would pick). Then, a few
type-B balls are inserted, and the prover hopes that the permutation puts the
type-B balls exactly within the incorrect blocks of x (hence correcting them).
Alternatively, the prover could also pick x to be close to an ’anti-valid’ witness
(i.e. a valid witness with all its bits flipped) and set almost all balls to be type-B
balls, to the same effect. In any case, bounding this scenario is done by bounding
the probability that the incorrect blocks of x receive balls of the dominant types.

- Well-Spread Scenario. In the well-spread scenario, each bin receive a ball
taken randomly from the initial set of balls. Since it is well-spread, this implies
that the label of each bin is mapped to an element of {0, 1, 2}, with a well-spread
probability mass on each of the options. For the prover to win, sufficiently many
of the labels must be correctly set (so that all blocks have labels summing to
1 mod 3). If the random variables for each label were independent, a Chernoff
bound would show that this happens with very low probability. While the labels
are not independent from each other, a little bit of work allows to reduce the
problem to bounding a hypergeometric distribution, for which strong Chernoff-
style bounds exist (see the full version).

To bound the dominant scenario, we use a (slightly involved) counting argu-
ment, enumerating the total number of winning configurations for the prover,
for each choice of (1) the number of incorrect blocks in x (denoted �), and (2)
the number of balls of the dominant type (denoted θ), and divide it by the
total number of configurations. For each choice of (�, θ), this provides an explicit
(albeit complex) formula for the bound. We conjecture that the best choice of
�, θ is to set � = 1 and θ = K − 1 (i.e., using a witness with a single incorrect
block). Though we do not have a proof of this statement, we can still compute

Short Signatures from RSD in the Head 547

a bound explicitly by minimizing the formula over all possible choices of � and
θ. When picking concrete parameters, we use a Python script to compute the
bound explicitly, given in the full version (we note that the output of the script
confirmed the conjecture for all parameters we tried).

In contrast, in the well-spread scenario, our analysis bounds p using a
Chernoff-style bound for hypergeometric distribution, which provides directly
an explicitly and simple formula for computing p in this case. Due to the expo-
nential decay of the bound, we observe that the well-spread scenario is in fact
never advantageous for a malicious prover: the best strategy is always to set
(s, t) so as to be in the dominant scenario.

Allowing Almost-Regular Witnesses. A careful reader might have noticed
an apparent issue in our previous analysis: assume that a cheating prover uses
an antiregular witness x (i.e., a vector such that x ⊕ 1 is regular), and only
type-B balls (i.e. the pairs (si, ti) are such that si = 1 − ti). Then it passes
the verifier checks exacty as an honest prover would: the antiregular vector x
still has blocks of odds Hamming weight, and for any choice of π, x′ is now
equal to 1 ⊕ x: that is, a regular vector. Concretely, this means that our zero-
knowledge proof is not a proof of knowledge of a regular solution, but rather a
proof of knowledge of either a regular or an antiregular solution. Nevertheless,
when building a signature scheme, this is not an issue: it simply implies that
unforgeability relies instead on the hardness of finding a regular or antiregular
solution to an RSD instance. But it is a folklore observation that this variant of
RSD does in fact reduce to the standard RSD problem, with only a factor 2 loss
in the success probability, hence this does not harm security.

In fact, we push this approach even further. The bound p which we obtain
by the previous analysis is essentially tight, but remains relatively high for our
purpose. Concretely, fixing a value of K ≈ 1500 (this is roughly to the range of
our parameter choices), we get p ≈ 1/250. This bound is met when the prover
uses a witness which is regular almost everywhere, with at most one exceptional
block, where it has Hamming weight 3 or 5 (or the antiregular version of that).
In this case, the prover builds (s, t) honestly, except on a single position (si, ti),
where he sets si = 1 − ti. Then, with probability 1/250, the permutation aligns
i with the unique faulty block (there are 250 blocks in total), and the (si, ti)
pair “corrects” the faulty block, passing the verifier checks. Even though a 1/250
bound is not too bad, in our context it largely dominates the soundness error
of the proof. This stems from the fact that our protocol has extremely low
computational costs, hence we can freely set the number n of virtual parties
much higher than in previous works, e.g. n = 1024 or n = 2048, while still
achieving comparable computational costs. In this high-n setting, the hope is
to achieve a soundness error close to the best possible value of 1/n, in order to
minimize the number of parallel repetitions (hence reducing communication).

To get around this limitation, we choose to allow almost-regular witnesses
(or almost-antiregular witnesses). Concretely, we relax the soundness of our zero-
knowledge proof to guarantee only that a successful cheating prover must at least

548 E. Carozza et al.

know an almost-regular (or almost-antiregular) witness, i.e., a witness whose
blocks all have weight 1 except one, which might have weight 1, 3, or 5. This form
of zero-knowledge proof with a gap between the language of honest witnesses
and the language of extracted witnesses is not uncommon in the literature. In
particular, it is similar in spirit to the notion of soundness slack in some lattice-
based zero-knowledge proofs, where a witness is a vector with small entries,
and an extracted witness can have much larger entries [4,17]. By using this
relaxation, our bound p improves by (essentially) a quadratic factor: a cheating
prover must now cheat on (at least) two positions (si, ti), and hope that both
align with the (at least) two incorrect blocks of x. Concretely, using K ≈ 1500,
our combinatorial analysis gives p ≈ 3 · 10−5 in this setting, which becomes a
vanishing component of the soundness error (dominated by the 1/n term).

When building a signature scheme from this relaxed zero-knowledge proof,
we use the Fiat-Shamir transform on a 5-round protocol, and must therefore
adjust the number of repetitions to account for the attack of [28]. For a bound
of p as above, this severely harms efficiency. Following the strategy of [21], we
avoid the problem by making p much smaller. Concretely, denoting τZK the
smallest integer such that (1/n + p · (1 − 1/n))τZK ≤ 2−λ, the optimal number
of repetitions which one can hope for in the signature scheme is τ = τZK + 1.
Therefore, denoting f the number of faulty blocks in the witness, we set f to
be the smallest value such that the resulting bound p yields τ = τZK + 1, hence
achieving the optimal number of repetitions. At this stage, the unforgeability of
the signature now reduces to the hardness of finding either an almost-regular or
an almost-antiregular solution to an RSD problem (with up to f faulty block),
which seems quite exotic (though it remains in itself a plausible assumption).
For the sake of relying only on the well-established RSD assumption, we set
parameters such that, except with 2−λ probability, a random RSD instance does
not in fact have any almost-regular or almost-antiregular solution (with up to f
faulty blocks) on top of the original solution. This implies that, for this choice
of parameters, this “f -almost-RSD” assumption is in fact equivalent to the RSD
assumption (with essentially no loss in the reduction).

Summing Up. We first describe and construct an optimized zero-knowledge
argument of knowledge, following the template outlined in this technical
overview. We compile our new zero-knowledge proof into a signature using Fiat-
Shamir. We use the combinatorial analysis to identify a bound p on the prob-
ability that the verifier picks a bad permutation, and formally prove that the
zero-knowledge proof achieves ε-soundness, where ε = (1/n + p · (1 − 1/n)) (n
being the number of parties in the MPC protocol). To achieve optimal efficiency
for the signature scheme, we reduce p by allowing up to f faulty blocks in the wit-
ness, and select RSD parameters such that the underlying assumptions remains
the standard RSD assumption despite this relaxation of the proof soundness.
Due to the page limitations, and although the combinatorial analysis of our con-
struction (the bound p) is a core technical contribution of our work, we had to

Short Signatures from RSD in the Head 549

defer it to the full version, to cover the description of the zero-knowledge proof
of the signature scheme in the main body.

3.4 Cryptanalysis of RSD

We complement our analysis by providing an overview of the security of RSD.
In particular, we give a precise picture of how RSD relates to the standard syn-
drome decoding assumption, depending on the parameters (K, k,w). Concretely,
we define a “RSD uniqueness bound”, analogous to the Gilbert-Varshamov (GV)
bound for standard syndrome decoding, and show that (1) above the GV bound,
RSD is always easier than SD; (2) below the RSD uniqueness bound, RSD
becomes in fact harder than SD, and (3) in between the two bounds is a gray
zone, where the hardness of the two problems is not directly comparable. Looking
ahead, our choice of parameters lies inside this gray zone, and corresponds to a
setting where a random RSD instance does not have additional f -almost-regular
solutions with high probability, to guarantee a tight reduction to the standard
RSD assumption even when allowing such relaxed solutions.

We also overview existing attacks on RSD, and in most cases revisit and
improve them to exploit more carefully the structure of the RSD problem, obtain-
ing significant speedups. Eventually, we design a new attack which outperforms
all previous attacks. Our attack is not fully explicit: it requires an approximate
birthday paradox search (i.e., finding an almost-collision between items of two
lists). For the sake of being conservative, when choosing concrete parameters, we
assume that this approximate birthday paradox can be solved in time linear in
the list size (it is far from clear how to perform such a fast approximate collision
search, but it does not seem implausible that it can be done, hence we choose
to stay on the safe side. We view finding such an algorithm as an interesting
open problem). Due to space limitations, the details on our analysis of the RSD
problem are deferred to the full version.

4 Zero-Knowledge Proof for Regular Syndrome Decoding

4.1 Optimizations

We start from the template given in the Technical Overview (Sect. 3), and refine
it using various optimizations. Some of these optimizations are standard, used
e.g. in works such as [5,21,29] (we present them as such when it is the case),
and others are new, tailored optimizations.

Using a Collision-Resistant Hash Function. The “hash trick” is a standard
approach to reduce the communication of public coin zero-knowledge proofs.
It builds upon the following observation: in a zero-knowledge proof, the veri-
fication equation on a list of messages (m1, · · · ,m�) often makes the messages
reverse samplable: the verifier can use the equation to recover what the value
of (m1, · · · ,m�) should be. Whenever this is the case, the communication can

550 E. Carozza et al.

be reduced by sending h = H(m1, · · · ,m�) instead of (m1, · · · ,m�), where H
denotes collision-resistant hash function. The verification proceeds by recon-
structing (m1, · · · ,m�) and checking that h = H(m1, · · · ,m�), and security fol-
lows from the collision resistance of H. As h can be as small as 2λ-bit long, this
significantly reduces communication.

Using Regular Syndrome Decoding in Systematic Form. Without loss
of generality, we can set H to be in systematic form, i.e. setting H = [H ′|Ik],
where Ik denotes the identity matrix over {0, 1}k×k. This strategy was used in
the recent code-based signature of [21]. Using H in systematic form, and writing
x as x = (x1|x2) where x1 ∈ F

K−k
2 , x2 ∈ F

k
2 , we have Hx = H ′x1 + x2 = y.

Since the instance (H, y) is public, this implies that the prover need not share
x entirely over F2: it suffices for the prover to share x1, and all parties can
reconstruct �x2�2 ← y ⊕ H ′ · �x1�2. Additionally, the parties need not opening z
entirely: denoting π(r) = (r1|r2), the parties can open instead �z1�2 = �x1 ⊕r1�2
and define z2 = H ′z1 ⊕ y. This way, they can reconstruct the complete z as
z = (z1|z2). The rest of the protocol proceeds as before. Following the above
considerations, and to simplify notations, from now on we refer to the short
vector of length K −k in the small field (previously indicated with x1) simply as
x and to the long vector of size K in the large field as x̃ (i.e. x̃ = (x|H ′x ⊕ y)).

Exploiting the Regular Structure of x. We further reduce the size of x using
an optimization tailored to the RSD setting. Thanks to its regular structure, we
can divide x into w blocks each of size T = K/w. But since each block has exactly
one non-zero entry, given the first T − 1 entries (b1, · · · , bT−1) of any block, the
last entry can be recomputed as bT = 1⊕⊕T−1

i=1 bi. In the zero-knowledge proof,
the prover does therefore only share T − 1 out of the T bits in each block of x
among the virtual parties. Similarly, the size of r1 and z1 are reduced by the
same factor, since only T − 1 bits of each block need to be masked.

Reducing the Size of the Messages. With the above optimizations, the
equation Hx̃ = H ′x ⊕ x2 = y needs not be verified anymore: it now holds by
construction, as x̃ is defined as (x|H ′x⊕y). This removes the need to include yi in
the messages msgi sent by each party Pi; this is in line with previous works, which
also observed that linear operations are for free with proper optimizations. The
message of each party becomes simply msgi = (zi,v′

i). Note that in this concrete
instantiation the entries of v′

i are computed as 〈1, x̃i
j〉, where the vectors x̃i

j for
j = 1 to w are the blocks of Pi’s share of the vector z�(1−π(t))+(1−z)�π(t).

Using the Chinese Remainder Theorem. In the zero-knowledge proof, ver-
ifying any linear equation modulo 2 on the witness x̄ is for free communication-
wise. Ultimately, the verifier wants to check that 〈x̄j ,1〉 = 1 mod T . Setting T to
be equal to 2 modulo 4 guarantees that T is even, and gcd(T/2, 2) = 1. Hence,
it suffices to work over the integer ring ZT/2 instead of ZT , to let the verifier
check the equation 〈x̄j ,1〉 = 1 mod T/2 for j = 1 to w. Indeed, by the Chinese

Short Signatures from RSD in the Head 551

remainder theorem, together with the relations 〈x̄j ,1〉 = 1 mod 2 (which can
be checked for free), this ensures that 〈x̄j ,1〉 = 1 mod T for j = 1 to w. This
reduces the size of the ti vectors from K · log T to K · log(T/2). As outlined in
Sect. 3.2, we actually set T = 6 in our concrete instantiation, hence executing
the protocol over the integer ring Z3, the smallest possible ring satisfying the
coprimality constraint.

Compressing Share with PRG. Another standard technique from [29] uses
a pseudorandom generator to compress all-but-one shares distributed during the
input sharing and preprocessing phases. Indeed, writing �x�2 = (x1, . . . ,xn),
then xn = x − ⊕n−1

i=1 xi mod 2. Denoting also �r�2 = (s1, . . . , sn) and �r�T =
(t1, . . . , tn), it holds that

∑n
i=1 ti =

⊕n
i=1 si mod T , which rewrites to tn =

⊕n
i=1 si − ∑n−1

i=1 ti mod T .
We can compress the description of these shares by giving to each party Pi

a λ−bit seed seedi and letting each of them apply a pseudorandom generator to
seedi in order to obtain (pseudo)random shares xi, si and ti. All shares of s can
be compressed this way (since s need just be a random vector), and all-but-one
shares of �x�2 and t. The missing shares can be obtained by letting Pn receive
an auxiliary string auxn defined as:

auxn ←
(

x −
n−1⊕

i=1

xi mod 2,
n⊕

i=1

si −
n−1∑

i=1

ti mod T

)

.

We refer to the information shared with each party as the state of the party. For
each Pi for 1 ≤ i ≤ n − 1, we therefore have statei = seedi. The last party Pn

has staten = (seedn|auxn): in the online phase of the protocol each party seedn

can be used to randomly generate sn.

Tree-Based Generation of the Seeds. To further reduce the overhead of
communicating the seeds, we apply the standard tree-based technique of [29]
and generate the seeds as the leaves of a complete binary tree. We introduced a
master seed seed∗ from which we generate n minor seeds seed1, · · · , seedn as the
leaves of a binary tree of depth log n, where the two children of each nodes are
computed using a length-doubling pseudorandom generators. This way, revealing
all seeds except seedj requires only sending the seeds on the nodes along the co-
path from the root to the j-th leave, which reduces the communication from
λ · (n − 1) to λ · log n. Note that due to this optimization, when compiling the
proof into a signature, collisions among seed∗ for different signatures are likely
to appear after 2λ/2 signatures. To avoid this issue, an additional random salt
of length 2λ must be use, see Sect. 5.

Using Deterministic Commitments. As in [29] and other previous works,
we observe that all committed values are pseudorandom. Therefore, the commit-
ment scheme does not have to be hiding: in the random oracle model, it suffices
to instantiate Commit(x; r) deterministically as H(x) for zero-knowledge to hold.

552 E. Carozza et al.

Final Zero Knowledge Protocol. We represent on Fig. 3 our final zero-
knowledge proof of knowledge for a solution to the regular syndrome decoding
problem, taking into account all the optimizations outlined above, except the use
of deterministic commitments (using deterministic commitments requires using
the ROM, which is otherwise not needed for the zero-knowledge proof. Looking
ahead, we still use this optimization when compiling the proof to a signature
using Fiat-Shamir, since we use the ROM at this stage anyway).

4.2 Security Analysis

We now turn to the security analysis of the protocol. A crucial component of our
analysis is a combinatorial bound, which we introduce below. Before, we state
some definition.

Definition 4 (f-Strongly invalid candidate witness). We say that x ∈ F
K
2

is a f -weakly valid witness if x is almost a regular vector (in the sense that it
differs from a regular vector in at most f blocks), or almost an antiregular vector.
Formally, let (xj)j≤w be the w length-K/w blocks of x. Assume that K/w is even.
Then x is an f-weakly valid witness if

1. ∀j ≤ w, HW(xj) = 1 mod 2, and
2. |{j : HW(xj) �= 1}| ≤ f or |{j : HW((1 ⊕ x)j) �= 1}| ≤ f ,

where 1⊕x is the vector obtained by flipping all bits of x. If x is not an f-weakly
valid witness, we say that x is an f -strongly invalid candidate witness.

Below, set T ← K/w. We assume for simplicity that the parameters are
such that w divides K, and that T = 2 mod 4. Note that this ensures that
a block xj of the candidate witness x has Hamming weight 1 if and only if
∑K/w

i=1 xj
i = 1 mod T/2 and

∑K/w
i=1 xj

i = 1 mod 2.

Definition 5 (Combinatorial Bound). Given a vector u ∈ N
K divided into

w length-K/w blocks uj, we denote Succ(u) the event that
∑K/w

i=1 uj
i = 1 mod T/2

for all j ≤ w. Then, a combinatorial bound for the zero-knowledge proof of Fig. 3
with parameters (K,w) is a real p = p(K,w, f) ∈ (0, 1) such that for any f-
strongly invalid candidate witness x ∈ F

K
2 satisfying ∀j ≤ w, HW(xj) = 1 mod 2

(i.e. x still satisfies condition 1 of Definition 4), and for any pair of vectors
(s, t) ∈ F

K
2 × Z

K
T/2,

Pr[π ←r PermK , x′ ← π(t) + (x ⊕ π(s)) � (1 − 2π(t)) : Succ(x′)] ≤ p(K,w, f),

where PermK denotes the set of all permutations of {1, · · · ,K}.
Informally, the combinatorial bound p is a bound on the probability that

a malicious prover passes the verification without guessing the subset of views
requested by the verifier. The formal notion relax what we mean by a mali-
cious prover, by requesting that they use a witness sufficiently far from a honest
regular witness. Looking ahead, this feature allows us to obtain much smaller

Short Signatures from RSD in the Head 553

Inputs: The prover and the verifier have a matrix H ∈ F
k×K
2 = [H′|Ik] and a vector y ∈ F

k
2 .

The prover also knows a regular vector x̃ = (x|x2) ∈ F
K
2 with Hamming weight HW(x̃) = w

and such that Hx̃ = y.
Parameters and notations. We let n denote number of parties. We let x′ denote the vector
obtained by deleting the T -th bit in each block of x. We call “expanding” the action of recom-
puting x from x′, i.e. adding a T -th bit at the end of each length-(T − 1) block, computed as
the opposite of the XOR of all bits of the block.
Round 1 The prover emulates the preprocessing phase of Π as follows:

1. Chooses a random seed seed∗;
2. Uses seed∗ as the root of a depth-log n full binary tree to produce the leaves (seedi, σi)

using a length-doubling PRG for each i ∈ [n];
3. Use (seed1, · · · , seedn−1) to create pseudorandom shares (x′

1, · · · ,x′
n−1) of x′, as well as

vectors (si, ti) ∈ F
(T−1)·(K−k)/T
2 ×Z

K
T/2. Use seedn to create sn as well. Let xi denote the

vector obtained by “expanding” x′
i to K − k bits;

4. Let s′
i denote the value obtained by “expanding” si to a (K − k)-bit vector, and let s′ ←

⊕n
i=1 s′

i. Set s ← (s′|H′ · s′ ⊕ y). Define

auxn ←
(

x
′ ⊕

n−1⊕

i=1

xi, s
′ −

n−1∑

i=1

ti mod T/2

)

;

5. Sets statei = seedi for 1 ≤ i ≤ n − 1 and staten = seedn||auxn;
6. For each i ∈ [n] computes comi := Commit(statei, σi);
7. Computes h := H(com1, · · · , comn) and sends it to the verifier.

Round 2 The verifier chooses a permutation π ∈ SK−k and sends it to the prover.
Round 3 The prover:

1. Simulates the online phase of the n parties protocol Π using the pairs (π(si), π(ti)) as the
preprocessing material of the i-th party:

– for each i ∈ [n] compute z′
i = x′

i ⊕ π(si) getting �z1�2 = (z1, · · · , zn) by “expanding”
the z′

i’s;
– Define z2 = H′ · z1 ⊕ y and z = (z1|z2);
– Set �x̄�T/2 = (x̄1, . . . , x̄n) where x̄i = z + (1 − 2z) 	 π(ti) mod T/2;
– For each i ∈ [n] compute:

• w̄j
i = HW(x̄i

j) mod T/2 for all the blocks 1 ≤ j ≤ w;
• msgi = (zi, (w̄

j
i)1≤j≤w);

2. Compute h′ = H(msg1, · · · ,msgn);
3. Send z1 and h′ to the verifier. // sending z′

1 actually suffices

Round 4 The verifier chooses a challenge d ∈ [n] and sends it to the prover.
Round 5 The prover sends (statei, σi)i�=d and comd.
Verification The verifier checks that everything is correct:

1. Recompute ¯comj = Commit(statej , σj) for j
= d;
2. Recompute msgi for all i
= d using statei and z1;
3. Recompute

m̄sgd =

⎛

⎜
⎝z1 −

∑

i�=d

zi,

⎛

⎝1 −
∑

i�=d

w̄
j
i

⎞

⎠

1≤j≤w

⎞

⎟
⎠ ;

4. Check if h = H(¯com1, · · · , comd, · · · , ¯comn);
5. Check if h′ = H(msg1, · · · , m̄sgd, · · · ,msgn).

Fig. 3. A five-round zero-knowledge proof of knowledge of a solution to the regular
syndrome decoding problem

554 E. Carozza et al.

combinatorial bounds for concrete choices of parameters. When building a sig-
nature scheme from the zero-knowledge proof, we further prove that finding a
“relaxed” witness is at least as hard as solving the standard regular syndrome
decoding problem, hence justifying that this relaxation does not harm security.

Theorem 6. Let Commit be a non-interactive commitment scheme, and H be
collision-resistant hash function. Let p be a combinatorial bound for the protocol
of Fig. 3. The protocol given on Fig. 3 is a gap honest-verifier zero-knowledge
argument of knowledge for the relation R such that ((H, y), x) ∈ R if H · x =
y mod 2 and x is a regular vector of weight w. The gap relation R′ is such that
((H, y), x) ∈ R′ if H · x = y mod 2 and x is an f-weakly valid witness. The
soundness error of the proof is at most ε = p+ 1/n − p/n.

The completeness of the protocol naturally derives from its definition. In the
full version, we prove the honest-verifier zero-knowledge and soundness proper-
ties.

4.3 Communication

The expected communication of the zero-knowledge argument amounts to:

4λ + τ ·
(

λ(log n + 1) +
(
2n − 1

n

)
T − 1

T
(K − k) +

(
n − 1

n

)

K log2 T

)

bits,

where we assume that hashes are 2λ bits long, and commitments are λ bits long,
and where τ denotes the number of parallel repetitions of the proof.

5 A Signature Scheme from Regular Syndrome Decoding

A signature scheme is composed of three algorithms (KeyGen,Sign,Verify).
KeyGen, starting with a security parameter λ, returns a key pair (pk, sk) where
pk and sk are respectively the public key and the private key. The algorithm Sign
on an input a message m and the secret key sk, gives a signature σ. Verify with
input a message m, a public key pk and a signature σ, returns 0 or 1 depend-
ing on whether the signature σ is verified for m under pk or not. The security
property for a signature scheme is the existential unforgeability against chosen
message attacks: given a public key pk and an oracle access to Sign(sk, ·) it is
hard to obtain a pair (s,m) such that m was not queried to the signing oracle
and Verify(pk, s,m) = 1.

In this section, we turn our 5-round protocol into a signature scheme using
the Fiat-Shamir transform. The switch from an interactive protocol to a non-
interactive protocol is done by calculating the two challenges π and d (corre-
sponding respectively to the challenges chosen by the verifier in rounds 2 and 4
of our 5-round protocol) as follows:

h1 = H(m, salt, h), π ← PRG(h1), h2 = H(m, salt, h, h
′
), d ← PRG(h2)

Short Signatures from RSD in the Head 555

where m is the input message, H is an hash function and h and h′ are the Round
1 and Round 3 hash commitments merged for the τ repetitions. As in previous
works, we use a salt salt ∈ {0, 1}2λ to avoid 2λ/2-query attack resulting from
collisions between seeds. We also take into account the forgery attack presented
by Kales and Zaverucha [28] against the signature schemes obtained by applying
the Fiat-Shamir transform to 5-round protocols. Adapting this attack to our
context yields a forgery cost of

costforge = min
τ1,τ2:τ1+τ2=τ

{
1

∑τ
i=τ1

(
τ
i

)
pi(1 − p)τ−i

+ nτ2

}

(1)

5.1 Description of the Signature Scheme

In our signature scheme, the key generation algorithm randomly samples a syn-
drome decoding instance (H, y) with solution x. We describe it on Fig. 4.

Inputs: A security parameter λ.

1. Randomly chooses a seed ← {0, 1}λ;
2. Using a pseudorandom generator with seed to obtain a regular vector x ∈ F

K
2

with HW(x) = w and a matrix H;
3. Compute y = Hx;
4. Set pk = (H, y) and sk = (H, y, x).

Fig. 4. Key generation algorithm of the signature scheme

For a secret key sk = (H, y, x) and a message m ∈ {0, 1}∗, the signing
algorithm is described on Fig. 5. Given a public key pk = (H, y), a message
m ∈ {0, 1}∗ and a signature σ, the verification algorithm is described in Fig. 6.

Theorem 7. Suppose the PRG used is (t, εPRG)-secure and any adversary run-
ning in time t has at most an advantage εSD against the underlying d-split syn-
drome decoding problem. Model the hash functions H0,H1,H2 as random oracles
with output of length 2λ-bit. Then chosen-message adversary against the signa-
ture scheme depicted in Fig. 5, running in time t, making qs signing queries,
and making q0, q1, q2 queries, respectively, to the random oracles, succeeds in
outputting a valid forgery with probability

Pr[Forge] ≤ (q0 + τns)
2

2 · 22λ
+

qs (qs + q0 + q1 + q2)
22λ

+qs·τ ·εPRG+εSD+Pr[X+Y = τ]

(2)
where ε = p + 1

n − p
n , with p given in the full version, X = maxα∈Q1{Xα}

and Y = maxβ∈Q2{Yβ} with Xα ∼ Binomial(τ, p) and Yβ ∼ Binomial
(
τ − X, 1

n

)

where Q1 and Q2 are sets of all queries to oracles H1 and H2.

The proof of Theorem 7 follows directly from the standard analysis of Fiat-
Shamir-based signatures from 5-round identification protocol. It is identical to
the proof of Theorem 5 in [21], and we omit it here.

556 E. Carozza et al.

Inputs: A secret key sk = (H, y, x) and a message m ∈ {0, 1}∗.
Sample a random salt ∈ {0, 1}2λ.
Phase 1 For each iteration e ∈ [τ]

1. Choose a random seed seede ← {0, 1}λ;
2. Use seede and salt as input of a pseudorandom generator to produce seede

i for
each i ∈ [n];

3. Compute auxe
n;

4. Set statee
i = seede

i for 1 ≤ i ≤ n − 1 and statee
n = seede

n||auxe
n;

5. Use all the states to create, through a pseudorandom generator:
– �xe�2 = (xe

1, . . . ,xe
n);

– s = �re
1�2 = (se1, . . . , sen);

– t = �re�q = (te1, . . . , ten);
6. For each i ∈ [n] computes come

i := H0(salt, i, state
e
i).

Phase 2

1. Compute h1 = H1(m, salt, com1
1, · · · , com1

n, · · · , com1
τ , · · · , comτ

n);
2. Obtain πe

{e∈τ} ∈ SK−k via a pseudorandom generator using h1.

Phase 3 For each iteration e ∈ [τ]

1. Each party Pi computes zei = xe
i ⊕ π(sei);

2. The parties get �ze
1�2 = (ze1, · · · , zen) and set �ze

2�2 = H ′�ze
1�2 ⊕ y and so

ze = (ze
1|ze

2);
3. Obtain �x̄e�q = (x̄e

1, . . . , x̄e
n) where x̄e

i = ze + (1 − 2ze) ∗ π(tei);
4. For each j ∈ [n] compute:

– w̄j,e
i = 〈1, x̄i

j,e〉 for all the blocks 1 ≤ j ≤ w;

– msge
i =

(
zei ,

{
w̄j,e

i

}
1≤j≤w

)
.

Phase 4

1. Compute h2 = H2(m, salt, h1,msg11, · · · ,msg1n, · · · ,msgτ
1 , · · · ,msgτ

n);
2. Obtain de

{e∈τ} ∈ [n] via a pseudorandom generator using h2.

Phase 5 Output the signature

σ = salt|h1|h2|(statee
i�=d|come

de){e∈τ}.

Fig. 5. Signing algorithm of the signature scheme

5.2 Parameters Selection Process

In this section, we explain how to select parameters for the zero-knowledge argu-
ment system of Sect. 4.1 and the signature scheme of Sect. 5. Let f be the number
of faulty blocks (of Hamming weight 3 or 5) allowed in the witness extracted from
a cheating prover. Looking ahead, f is chosen as the smallest value that mini-
mizes τ , the number of repetitions of the underlying zero-knowledge argument,
which has a strong impact on the size of the signature. Given a candidate value f ,
our selection of the parameters (K, k,w) proceeds as outlined below. We remind

Short Signatures from RSD in the Head 557

Inputs: A public key pk = (H, y), a message m ∈ {0, 1}∗ and a signature σ.

1. Split the signature as follows

σ = salt|h1|h2|(statee
i�=d|come

de){e∈τ};

2. Recompute πe
{e∈τ} ∈ SK−k via a pseudorandom generator using h1;

3. Recompute de
{e∈τ} ∈ [n] via a pseudorandom generator using h2;

4. For each iteration e ∈ [τ]
– For each i �= d recompute ¯come

i = H0(salt, i, state
e
i);

– Use all the states, except statee
de , to simulate the Phase 3 of the signing

algorithm for all parties but the de−th, obtaining msge
i�=de ;

– Compute

¯msge
de =

⎛
⎝ze

1 −
∑
i�=d

zei ,

⎧⎨
⎩1 −

∑
i�=d

w̄j,e
i

⎫⎬
⎭

1≤j≤w

⎞
⎠ ;

5. Check if h1 = H1(m, salt, com1
1, · · · , com1

n, · · · , com1
τ , · · · , comτ

n);
6. Check if h2 = H2(m, salt, h1,msg11, · · · ,msg1n, · · · ,msgτ

1 , · · · ,msgτ
n);

7. Output ACCEPT if both condition are satisfied.

Fig. 6. Verification algorithm of the signature scheme

the reader that we always enforce w = K/6 to get a blocksize 6, in order to work
over the smallest possible field F3 in the zero-knowledge proof. We also set the
target bit-security to λ = 128.

Choosing k. As explained in the full version, we set k such that even when
allowing f > 0 faulty blocks in the zero-knowledge proof, the assumption under-
lying the unforgeability of the signature remains equivalent to the standard RSD
assumption. Concretely, this is achieved by setting k to

k ←
⌈

log2

(
f∑

i=0

6w−i ·
(

w

i

)

· 26i

)⌉

+ b · λ,

with b = 1. We also consider a second choice of parameters, in which we set
b = 0 in the above equation. This second choice of parameters corresponds
to the f -almost-RSD uniqueness bound, the threshold where the number of
almost-regular solution becomes close to 1. This setting should intuitively leads
to the hardest instance of the almost-RSD problem. However, it does not reduce
anymore to the standard RSD problem, since a random RSD instance might
have irregular (but almost-regular) solutions. We use this alternative choice as
a way to pick more aggressive parameters, under an exotic (albeit plausible)
assumption.

Choosing K. Having chosen k (as a function of w = K/6), we turn our attention
to K. Here, we use the attacks described in the full version, to select the smallest
K such that, when setting k as above, we achieve λ bits of security against all

558 E. Carozza et al.

attacks. We note that the approximate birthday paradox attack (see full version)
is always the most efficient attack, by a significant margin. Yet, it relies upon the
assumption that approximate collisions can be found in linear time, and no such
linear-time algorithm is known as of today. We view this optimistic evaluation
of the attack efficiency as leading to a conservative choice of parameters.

Computing p. Equipped with a candidate instance (K, k,w) for a number f
of faulty blocks, we use the formula of a lemma in the full version to compute a
bound p on the probability that a malicious prover can use an incorrect witness
(with at least f + 1 faulty blocks) in the first part of the zero-knowledge proof.
More precisely, since computing p exactly using the code given in the full version
takes a few hours of computation, we first set p using the value predicted by a
conjecture, which is in the full version (which we found to match with all exact
calculations we tried with the formula). Then, once we get a final choice of all
parameters, we verify that the final bound p obtained was indeed correct, by
running the explicit formula (hence running the code only once).

Computing τ . We compute the number of repetitions τ of the zero-knowledge
argument, and of the signature scheme. This is where the parameter selection
differs in each case:

Zero-Knowledge Argument. For the zero-knowledge argument, τ is computed as
the smallest value such that ετ ≤ 2−λ, where ε = 1/n+p · (1−1/n), n being the
number of parties. Here, there is no optimal choice of f . Instead, f is a tradeoff:
choosing f = 0 guarantees that the zero-knowledge argument achieves standard
soundness (with no gap) but makes ε higher. A larger f reduces p, hence ε, but
introduces a gap in soundness. In any case, as soon as p � 1/n, we have ε ≈ 1/n.
In practice, using f = 1 already leads to p < 5 · 10−5, which is much smaller
than any reasonable value of 1/n (since increasing n to such values would blow
up computation). Hence, the only reasonable choices are f = 0 (for standard
soundness) and f = 1 (for optimal efficiency).

Signature Scheme. The signature scheme is obtained by compiling the zero-
knowledge argument using Fiat-Shamir. Since we are compiling a 5-round zero-
knowledge proof, the attack of Kales and Zaverucha [28] applies, and we must
choose τ according to Eq. 1. This changes completely the optimal choice, since it
is no longer true that any value of p � 1/n already leads to the smallest possible
τ . In fact, by the convexity of Eq. 1, the smallest possible τ one can hope for is
τZK+1, where τZK is the optimal value of τ for the zero-knowledge argument (i.e.
the smallest value such that ετZK ≤ 2−λ). Our strategy is therefore the following:
we compute τ with Eq. 1 for our candidate choice of f . Then, if τ > τZK + 1,
we increase f by 1, and restart the entire procedure (choosing new parameters
K, k, recomputing p, etc.). After a few iterations, the procedure converges and
yields the smallest number f of faulty blocks such that the resulting value of τ
is minimal.

Short Signatures from RSD in the Head 559

Choosing n. Eventually, it remains to choose the number of parties n. This
choice is orthogonal to the other choices: a larger n always decreases communi-
cation (since it lowers the soundness error), but it increases computation (which
scales linearly with n). To choose n, we use the same strategy as Banquet [5]: we
set n to a power of two, targeting a signing time comparable to that of previous
works (on a standard laptop) for fairness of comparison. Then, we compute all
parameters (K, k,w, f, τ), and reduce n to the smallest value which still achieves
λ bits of security.

Runtime Estimations. Eventually, it remains to estimate the runtime of the
signature and verification algorithms of our signature scheme. Unfortunately, we
do not yet have a full-fledged implementation of our signature scheme. We plan
to write an optimized implementation of our new signature scheme in a future
work. In the meantime, we use existing benchmark to conservatively estimate
the runtime of our scheme. We consider the following implementation choices:

– The tree-based PRG is implemented with fixed-key AES. This is the standard
and most efficient way to implement such PRGs over machines with hardware
support for AES [1].

– The commitment scheme is implemented with fixed-key AES when commit-
ting to short values (λ bits), and with SHAKE when committing to larger
values.

– The hash function is instantiated with SHAKE.

For fixed-key AES operations, the estimated runtime using hardware instructions
is 1.3 cycles/byte [31]. For SHAKE, the runtime strongly depends on a machine.
However, according to the ECRYPT benchmarkings2, on one core of a modern
laptop, the cost of hashing long messages ranges from 5 to 8 cycles/byte (we
used 8 cycles/byte in our estimations, to stay on the conservative side). Eventu-
ally, we also counted XOR operations (XORing two 64-bit machine words takes
one cycle) and mod-3 operations. The latter are harder to estimate without a
concrete implementation at hand. However, the contribution to the overall cost
is relatively small: even estimating conservatively up to an order of magnitude
of overhead compared to XOR operations has a minor impact on the overall
runtime. We assumed an order of magnitude of overhead in our estimations, to
remain on the conservative side. Eventually, when converting cycles to runtime,
we assumed a 3.8 GHz processor, the same as in the previous work of [21], to
facilitate comparison with their work (which is the most relevant to ours).

Of course, the above estimations ignore additional costs such as allocating
or copying memory, and should therefore only be seen as a rough approximation
of the timings that an optimized implementation could get. For comparison, in
the Banquet signature scheme [5], another candidate post-quantum signature
scheme based on the MPC-in-the-head paradigm, 25% of the runtime of their
optimized implementation was spent on allocating and copying memory, and
75% on the actual (arithmetic and cryptographic) operations.
2 https://bench.cr.yp.to/results-hash.html.

https://bench.cr.yp.to/results-hash.html

560 E. Carozza et al.

Results. We considered two settings: a conservative setting, where the under-
lying assumption reduces to the standard RSD assumption, and an aggressive
setting, where the parameters rely on the conjectured hardness of the f -almost-
RSD assumption. All our numbers are reported on Table 1. We obtained the
following parameters:

Conservative Setting (standard RSD). We obtain an optimal choice of number
f of faulty blocks equal to f = 12. Given this f , we set K = 1842, k = 1017,
and w = 307. We targeted 128 bits of security against all known attacks, assum-
ing conservatively that approximate birthday collisions can be found in linear
time to estimate the cost of our most efficient attack. In this parameter range,
the solution to the random RSD instance is the only 12-almost-regular solution
except with probability 2−128, hence 12-almost-RSD reduces to standard RSD.
With these parameters, we considered three values of n. Each time, we first set
n to a power of two, compute the optimal value of τ , and then reduce n to the
smallest value that still works for this value of τ .

– Setting 1 – fast signature (rsd-f): τ = 18, n = 193. In this setting, the
signature size is 12.52 KB. The runtime estimated with our methodology
described above is 2.7 ms.

– Setting 2 – medium signature 1 (rsd-m1): τ = 13, n = 1723. In this setting,
the signature size is 9.69 KB. The runtime estimated with our methodology
described above is 17 ms.

– Setting 3 – medium signature 2 (rsd-m2): τ = 12, n = 3391. In this setting,
the signature size is 9.13 KB. The runtime estimated with our methodology
described above is 31 ms.

– Setting 4 – short signature 2 (rsd-s): τ = 11, n = 7644. In this setting,
the signature size is 8.55 KB. The runtime estimated with our methodology
described above is 65 ms.

Aggressive Setting (f-almost-RSD). In this setting, we set k at the f -almost-
RSD uniqueness bound (the threshold above which the number of f -almost-
regular solutions approaches 1). In this setting, there might be additional almost-
regular solution beyond the regular solution x for a random RSD instance, hence
f -almost-RSD does not reduce directly to the standard RSD assumption. We
consider this assumption to be plausible but exotic, and investigate how relying
on it improves the parameters. We view the conservative parameters as our main
choice of parameters. The aggressive parameters yield noticeable improvements
in signature size and runtime, which could motivate further cryptanalysis of
this exotic variant. We provide four settings of parameters, comparable to our
conservative settings, using the optimal value f = 13 and the same numbers n
of parties as above. In this setting, we have K = 1530, k = 757, and w = 255.

Acknowledgement. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie
grant agreement No 945332.

Short Signatures from RSD in the Head 561

The first and second author acknowledge the support of the French Agence
Nationale de la Recherche (ANR), under grant ANR-20-CE39-0001 (project SCENE).
This work was also supported by the France 2030 ANR Project ANR-22-PECY-003
SecureCompute.

The third Author of this work has been supported by the European Union’s H2020
Programme under grant agreement number ERC-669891.

References

1. Advanced Encryption Standard (AES). National Institute of Standards and Tech-
nology (NIST), FIPS PUB 197, U.S. Department of Commerce (2001)

2. Aragon, N., Blazy, O., Gaborit, P., Hauteville, A., Zémor, G.: Durandal: a rank
metric based signature scheme. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11478, pp. 728–758. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17659-4_25

3. Augot, D., Finiasz, M., Sendrier, N.: A fast provably secure cryptographic hash
function. Cryptology ePrint Archive, Report 2003/230 (2003). https://eprint.iacr.
org/2003/230

4. Baum, C., Damgård, I., Larsen, K., Nielsen, M.: How to prove knowledge of small
secrets (2016). https://eprint.iacr.org/2016/538

5. Baum, C., de Saint Guilhem, C.D., Kales, D., Orsini, E., Scholl, P., Zaverucha,
G.: Banquet: short and fast signatures from AES. In: Garay, J.A. (ed.) PKC 2021.
LNCS, vol. 12710, pp. 266–297. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-75245-3_11

6. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-48071-4_28

7. Bernstein, D.J., Lange, T., Peters, C., Schwabe, P.: Really fast syndrome-based
hashing. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol.
6737, pp. 134–152. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-21969-6_9

8. Beullens, W.: Sigma protocols for MQ, PKP and SIS, and fishy signature schemes.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 183–
211. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_7

9. Bidoux, L., Gaborit, P., Kulkarni, M., Mateu, V.: Code-based signatures from
new proofs of knowledge for the syndrome decoding problem. arXiv preprint
arXiv:2201.05403 (2022)

10. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Lie,
D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 896–912. ACM
Press (2018)

11. Boyle, E., et al.: Correlated pseudorandomness from expand-accumulate codes. In:
Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13508, pp. 603–633.
Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-15979-4_21

12. Boyle, E., et al.: Efficient two-round OT extension and silent non-interactive secure
computation. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS
2019, pp. 291–308. ACM Press (2019)

13. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudo-
random correlation generators: silent OT extension and more. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 489–518. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_16

https://doi.org/10.1007/978-3-030-17659-4_25
https://doi.org/10.1007/978-3-030-17659-4_25
https://eprint.iacr.org/2003/230
https://eprint.iacr.org/2003/230
https://eprint.iacr.org/2016/538
https://doi.org/10.1007/978-3-030-75245-3_11
https://doi.org/10.1007/978-3-030-75245-3_11
https://doi.org/10.1007/3-540-48071-4_28
https://doi.org/10.1007/3-540-48071-4_28
https://doi.org/10.1007/978-3-642-21969-6_9
https://doi.org/10.1007/978-3-642-21969-6_9
https://doi.org/10.1007/978-3-030-45727-3_7
http://arxiv.org/abs/2201.05403
https://doi.org/10.1007/978-3-031-15979-4_21
https://doi.org/10.1007/978-3-030-26954-8_16

562 E. Carozza et al.

14. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudo-
random correlation generators from ring-LPN. In: Micciancio, D., Ristenpart, T.
(eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 387–416. Springer, Heidelberg
(Aug (2020)

15. Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized schnorr
proofs (2009). https://eprint.iacr.org/2009/050

16. Couteau, G., Rindal, P., Raghuraman, S.: Silver: silent VOLE and oblivious trans-
fer from hardness of decoding structured LDPC codes. In: Malkin, T., Peikert,
C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp. 502–534. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-84252-9_17

17. Cramer, R., Damgard, I., Xing, C., Yuan, C.: Amortized complexity of zero-
knowledge proofs revisited: achieving linear soundness slack (2016). https://eprint.
iacr.org/2016/681

18. Debris-Alazard, T., Sendrier, N., Tillich, J.-P.: Wave: a new family of trapdoor one-
way preimage sampleable functions based on codes. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 21–51. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5_2

19. Escudero, D., Ghosh, S., Keller, M., Rachuri, R., Scholl, P.: Improved primitives
for MPC over mixed arithmetic-binary circuits. In: Micciancio, D., Ristenpart, T.
(eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 823–852. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56880-1_29

20. Feneuil, T., Joux, A., Rivain, M.: Shared permutation for syndrome decoding: New
zero-knowledge protocol and code-based signature. Cryptology ePrint Archive,
Report 2021/1576 (2021). https://eprint.iacr.org/2021/1576

21. Feneuil, T., Joux, A., Rivain, M.: Syndrome decoding in the head: Shorter signa-
tures from zero-knowledge proofs. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO
2022. LNCS, vol. 13508, pp. 541–572. Springer, Heidelberg (2022). https://doi.org/
10.1007/978-3-031-15979-4_19

22. Feneuil, T., Joux, A., Rivain, M.: Syndrome decoding in the head: shorter signa-
tures from zero-knowledge proofs. Cryptology ePrint Archive (2022)

23. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

24. Finiasz, M., Gaborit, P., Sendrier, N.: Improved fast syndrome based cryptographic
hash functions. In: Proceedings of ECRYPT Hash Workshop, vol. 2007, p. 155.
Citeseer (2007)

25. Gueron, S., Persichetti, E., Santini, P.: Designing a practical code-based signature
scheme from zero-knowledge proofs with trusted setup. Cryptology ePrint Archive,
Report 2021/1020 (2021). https://eprint.iacr.org/2021/1020

26. Hazay, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: TinyKeys: a new approach to
efficient multi-party computation. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10993, pp. 3–33. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96878-0_1

27. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, pp.
21–30. ACM Press (2007)

28. Kales, D., Zaverucha, G.: An attack on some signature schemes constructed from
five-pass identification schemes. In: Krenn, S., Shulman, H., Vaudenay, S. (eds.)
CANS 2020. LNCS, vol. 12579, pp. 3–22. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-65411-5_1

https://eprint.iacr.org/2009/050
https://doi.org/10.1007/978-3-030-84252-9_17
https://eprint.iacr.org/2016/681
https://eprint.iacr.org/2016/681
https://doi.org/10.1007/978-3-030-34578-5_2
https://doi.org/10.1007/978-3-030-56880-1_29
https://eprint.iacr.org/2021/1576
https://doi.org/10.1007/978-3-031-15979-4_19
https://doi.org/10.1007/978-3-031-15979-4_19
https://doi.org/10.1007/3-540-47721-7_12
https://eprint.iacr.org/2021/1020
https://doi.org/10.1007/978-3-319-96878-0_1
https://doi.org/10.1007/978-3-319-96878-0_1
https://doi.org/10.1007/978-3-030-65411-5_1
https://doi.org/10.1007/978-3-030-65411-5_1

Short Signatures from RSD in the Head 563

29. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: Lie, D., Mannan, M., Backes, M.,
Wang, X. (eds.) ACM CCS 2018, pp. 525–537. ACM Press (2018)

30. Meziani, M., Dagdelen, Ö., Cayrel, P.-L., El Yousfi Alaoui, S.M.: S-FSB: an
improved variant of the FSB hash family. In: Kim, T., Adeli, H., Robles, R.J.,
Balitanas, M. (eds.) ISA 2011. CCIS, vol. 200, pp. 132–145. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23141-4_13

31. Münch, J.P., Schneider, T., Yalame, H.: VASA: vector AES instructions for security
applications. Cryptology ePrint Archive, Report 2021/1493 (2021). https://eprint.
iacr.org/2021/1493

32. Rindal, P., Schoppmann, P.: VOLE-PSI: fast OPRF and circuit-PSI from vector-
OLE. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol.
12697, pp. 901–930. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
77886-6_31

33. Rotaru, D., Wood, T.: MArBled circuits: mixing arithmetic and boolean circuits
with active security. Cryptology ePrint Archive, Report 2019/207 (2019). https://
eprint.iacr.org/2019/207

34. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: 35th FOCS, pp. 124–134. IEEE Computer Society Press (1994)

35. Stern, J.: Designing identification schemes with keys of short size. In: Desmedt,
Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 164–173. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48658-5_18

36. Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: fast, scalable, and
communication-efficient zero-knowledge proofs for boolean and arithmetic circuits,
pp. 1074–1091. IEEE Computer Society Press (2021)

37. Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: fast extension for cor-
related OT with small communication. In: Ligatti, J., Ou, X., Katz, J., Vigna, G.
(eds.) ACM CCS 20, pp. 1607–1626. ACM Press (2020)

https://doi.org/10.1007/978-3-642-23141-4_13
https://eprint.iacr.org/2021/1493
https://eprint.iacr.org/2021/1493
https://doi.org/10.1007/978-3-030-77886-6_31
https://doi.org/10.1007/978-3-030-77886-6_31
https://eprint.iacr.org/2019/207
https://eprint.iacr.org/2019/207
https://doi.org/10.1007/3-540-48658-5_18

The Return of the SDitH

Carlos Aguilar-Melchor1 , Nicolas Gama1 , James Howe1(B) ,
Andreas Hülsing2 , David Joseph1 , and Dongze Yue1

1 SandboxAQ, Palo Alto, USA
{carlos.aguilar-melchor,nicolas.gama,james.howe,

david.joseph,dongze.yue}@sandboxaq.com
2 Eindhoven University of Technology, Eindhoven, The Netherlands

andreas@huelsing.net

Abstract. This paper presents a code-based signature scheme based on
the well-known syndrome decoding (SD) problem. The scheme builds
upon a recent line of research which uses the Multi-Party-Computation-
in-the-Head (MPCitH) approach to construct efficient zero-knowledge
proofs, such as Syndrome Decoding in the Head (SDitH), and builds sig-
nature schemes from them using the Fiat-Shamir transform.

At the heart of our proposal is a new approach, Hypercube-MPCitH,
to amplify the soundness of any MPC protocol that uses additive secret
sharing. An MPCitH protocol with N parties can be repeated D times
using parallel composition to reach the same soundness as a protocol
run with ND parties. However, the former comes with D times higher
communication costs, often mainly contributed by the usage of D ‘aux-
iliary’ states (which in general have a significantly bigger impact on
size than random states). Instead of that, we begin by generating ND

shares, arranged into a D-dimensional hypercube of side N containing
only one ‘auxiliary’ state. We derive from this hypercube D sharings of
size N which are used to run D instances of an N party MPC proto-
col. Hypercube-MPCitH leads to a protocol with 1/ND soundness error,
requiring ND offline computation, but with only N · D online computa-
tion, and only 1 ‘auxiliary’. As the (potentially offline) share generation
phase is generally inexpensive, this leads to trade-offs that are superior
to just using parallel composition.

Our novel method of share generation and aggregation not only
improves certain MPCitH protocols in general but also shows in concrete
improvements of signature schemes. Specifically, we apply it to the work
of Feneuil, Joux, and Rivain (CRYPTO’22) on code-based signatures,
and obtain a new signature scheme that achieves a 8.1x improvement in
global runtime and a 30x improvement in online runtime for their short-
est signatures size (8,481 Bytes). It is also possible to leverage the fact
that most computations are offline to define parameter sets leading to
smaller signatures: 6,784 Bytes for 26 ms offline and 5,689 Bytes for 320
ms offline. For NIST security level 1, online signature cost is around 3
million cycles (<1 ms on commodity processors), regardless of signature
size.

A. Hülsing is funded by an NWO VIDI grant (Project No. VI.Vidi.193.066).

c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14008, pp. 564–596, 2023.
https://doi.org/10.1007/978-3-031-30589-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30589-4_20&domain=pdf
http://orcid.org/0000-0003-2745-884X
http://orcid.org/0000-0001-7308-9171
http://orcid.org/0000-0002-6498-3099
http://orcid.org/0000-0003-2215-4134
http://orcid.org/0000-0002-6040-4061
http://orcid.org/0000-0002-8608-5046
https://doi.org/10.1007/978-3-031-30589-4_20

The Return of the SDitH 565

1 Introduction

Zero Knowledge (ZK) proofs of knowledge have become a fundamental crypto-
graphic tool for modern privacy-preserving technologies and have many appli-
cations which range from authentication to online voting to machine learning.
The idea of ZK proofs is that one party (a prover) can convince another party
(a verifier) of the truth of a statement without revealing any other information
about the statement itself.

A method for constructing efficient ZK proofs is to use the so-called MPC-
in-the-Head (MPCitH) paradigm [IKO+07], in which semi-honest Multi-Party
Computation (MPC) protocols are used as a basis. These protocols do not reveal
any information on the secret used to prove a statement, even if some of the par-
ties internal execution is revealed to an attacker. At a high-level, the MPCitH
protocol has a prover which (i) secretly splits its secret input into shares, (ii)
simulates “in their head” parties using said shares for the execution of a MPC
protocol, and (iii) commits to this execution and partially reveals the internal
execution of a subset of the parties to a verifier given some challenge. These inter-
nal executions can then be checked for consistency by the verifier. To ensure that
the prover has a very low probability to cheat, the verifier runs this protocol mul-
tiple times. The zero-knowledge aspect of the overall protocol naturally inherits
from a resilience to semi-honest adversaries of the underlying MPC protocol,
as the verifier will only get to see a subset of the internal executions and the
protocol will not reveal anything other than the correctness of the statement.

A recent proposal by Feneuil, Joux, and Rivain [FJR22] used this MPCitH
idea to improve signature schemes based on the syndrome decoding (SD) prob-
lem; we refer to this work as SDitH. Previous proposals to make a signature
scheme based on SD, such as those by Stern [Ste94], suffered from a high sound-
ness error, which aligns to a malicious prover’s probability of cheating. Protocols
with a higher soundness error require many more repetitions, compared to a pro-
tocol with a smaller soundness error, in order to achieve a target security level.
Utilizing MPCitH in [FJR22] has enabled a low soundness error of 1/N , for a
party size N , whilst also being able to use a conservative code-based hardness
assumption. At the time of writing, this approach makes the signature scheme
the most performant code-based signature scheme of the common “signature size
+ public key size” metric. Twisting the more traditional permute-and-mask-
the-witness approach using MPCitH has also led to new interesting signature
schemes [BG22] under other metrics (rank-metric) or for other problems (the
Permuted Kernel Problem).

Another reason for this work is the NIST PQC standardization process. None
of the code-based signatures were accepted by NIST into round 2, however, at the
time of writing, we have many promising KEM candidates in the fourth round.
An MPCitH-based signature, Picnic [ZCD+20], was apart of the NIST PQC
process, but NIST ultimately decided to standardize SPHINCS+ due to some
security concerns with Picnic’s use of LowMC, but also because “future cryp-
tosystems that evolve out of the multi-party-computation-in-the-head paradigm
may eventually prove significantly superior to the third-round Picnic design”.

566 C. Aguilar-Melchor et al.

These two reasons are the motivation for this research; improving and opti-
mizing a promising MPCitH-based signature scheme, which utilizes a well-
established and conservative code-based hardness assumption.

1.1 Contributions

– We propose Hypercube-MPCitH, a general geometrical hypercube approach
for MPCitH that allows, from a state that was generated and committed for
N parties, to obtain the same soundness as in a classical MPC-in-the-head
by simulating the work of only log2(N) parties instead of N .

– This approach runs multiple linked instances of MPCitH with only one
masked auxiliary state, which significantly reduces the communication of the
ZK protocol (and thus signature size) with respect to running independent
instances of MPCitH with one auxiliary state for each of them.

– Applying these optimizations to SDitH, we observe a reduction of one third
in signature size, for similar computational costs and security.

– As for SDitH, the signature resulting from our construction can be split in an
offline and an online phase. But, unlike in SDitH, most of the computational
cost is associated to the offline phase. Thus the online part of the signature
is extremely fast in comparison, even for much smaller signatures.

2 Preliminaries

In this section we describe some standard cryptographic preliminaries which are
similar to those in [FJR22]. For the entirety of this paper we will denote F as a
finite field. The Hamming weight of a vector x ∈ F

m, denoted as wt(x), is the
number of non-zero coordinates of x. We define the concatenation of two vectors
x1 ∈ F

m1 and x2 ∈ F
m2 as (x1|x2) ∈ F

m1+m2 . For any m ∈ N>0, the integer
set {1, 2, . . . ,m} is denoted as [m]. For a probability distribution D, we use the
notation d ← D to denote the value d is sampled from D. For a finite set S, the
notation s ← S denotes that the value s has been uniformly sampled at random
from S. For an algorithm A, out ← A(in) further means that out is obtained by
a call to A on input in, using uniform random coins whenever A is probabilistic.
We also abbreviate probabilistic polynomial time as PPT.

For ease of reference we provide Table 1 for a complete list of all the param-
eters and notations used in this work, with some helpful descriptions.

2.1 Basic Cryptographic Definitions and Lemmas

Definition 1 (Indistinguishability). Two distributions X,Y are (t, ε)-
indisting-uishable if for an algorithm running in time t, and D : {0, 1}m → {0, 1},
Pr[D(X) = 1] − Pr[D(Y) = 1]| ≤ ε(λ). The distributions are: computationally
distinguishable when t = poly(λ) and ε is a negligible function in λ; and statis-
tically indistinguishable when ε is a negligible function in λ for unbounded t.

The Return of the SDitH 567

Table 1. Descriptions of the notation and parameters used in our scheme.

Indices:

i Index of a leaf party, in [ND]

i∗ Index of challenge party, which remains hidden

(i1, . . . , iD) Representation of i on dimension D hypercube with side N

(k, j) Index of a main party in [D] × [N], where k indexes the hypercube dimension

Fpoly Field extension of FSD from which S, Q, P, F coefficients are drawn

Fpoints Field from which α, β,v, r, ε are drawn.

Multi-Party Computation:

Main party Party using an aggregated share and for which we actually run the MPC protocol

Π The MPC computation, described in Algorithm 2

a, b, c Elements of the Beaver triplet such that a · b = c

α, β,v Communications output, drawn from Fpoints

�X�i ith secret share of X

{�X�} A full sharing, such that all shares add up to give X

t Number of random evaluation points

p False positive probability.

Syndrome Decoding:

S,Q,P,F Polynomials in Fpoly which encode the syndrome decoding proof

aux Uncompressed secret shares of leaf party i = ND, �S�|�Q�|�P �|�a�|�b�|�c�
(statei, ρi) State and commitment randomness of a leaf party. For i �= ND,

statei is a pseudorandom seed, and stateND = (seedND ||aux)

q Syndrome decoding instance

m Code length

k Vector dimension

w Hamming weight bound

d For the d-splitting variant.

Signature Parameters:

λ The security parameter

ε The soundness parameter

D The dimension of the hypercube

ND The number of secret shares

τ The number of repetitions

Definition 2 (Pseudorandom generation (PRG)). Let G : {0, 1}∗ →
{0, 1}∗ and let �(·) be a polynomial such that for any input s ∈ {0, 1}λ we have
G(s) ∈ {0, 1}�(λ). Then, G is a (t, ε)-secure pseudorandom generator if (i) Expan-
sion: �(λ) > λ and (ii) Pseudorandomness: the distributions {G(s)|s ← {0, 1}λ}
and {r|r ← {0, 1}�(λ)} are (t, ε)-indistinguishable.

The standard cryptographic notion of tree PRG (TreePRG), initially pro-
posed by Goldreich, Goldwasser, and Micali [GGM84], is used extensively in our
construction. The general idea is to extend a length-doubling PRG and consider
it over a tree structure: we start with a master seed (mseed) which is used to
label the root node of a tree and expanded using a PRG into N sub-seeds in a
structured way. For each node, its label is used as the seed of the PRG function,

568 C. Aguilar-Melchor et al.

which generates two seeds that label the two children of the node. By proceed-
ing iteratively at each level, over �log2(N)� levels, we construct a binary tree
with at least N leaves, labeled with PRG seeds that we denote (seedi)i∈[N]. For
any index i∗, we can get the list of the N − 1 seeds (seedi)i∈[N],i �=i∗ out of the
sibling path of seedi∗, which contains just �log2(N)� seeds. This becomes a key
component to efficiently generate the witness shares in Sect. 3.2.

In our security proofs, we make use of the following lemma, which in essence
says that a large subset A of a product space X × Y has many large areas.

Lemma 1 (Splitting Lemma [PS00]). Let A ⊂ X ×Y , and Pr[(x, y) ∈ A] ≥
κ. Then for any α ∈ [0, 1), let

B = {(x, y) ∈ X × Y |Pry′∈Y [(x, y′) ∈ A] ≥ (1 − α) · κ}, (1)

Then the following are true: Pr[B] ≥ α · κ and Pr[B|A] ≥ α.

Lemma 2 (Forking Lemma for 5-pass protocols [DGV+16]). Let S be
an 5-pass signature scheme with security parameter k. Let A be a PPT algo-
rithm given only the public data as input. Assume that A, after querying the
2 random oracles O1,O2 polynomially often in k, outputs a valid signature
(σ0, σ1, σ2, h1, h2) for message m with a non-negligible probability. Let us con-
sider a replay of this machine A with the same random tape (as a Turing
machine), the same response to the query corresponding to O1 but a differ-
ent output to O2. Then running A and its reply results in two valid signatures
(σ0, σ1, σ2, h1, h2) and (σ0, σ1, σ

′
2, h1, h

′
2) for the same message m and h2
= h′

2

with a non-negligible probability.

While proving equality of polynomials can be inefficient, we can say some-
thing about the likelihood that two polynomials are different and yet are equal
at certain points. This enables us to reduce the checking of polynomial relations
to instead checking simple integer arithmetic relations, up to some well defined
probabilistic error.

Lemma 3 (Multi-point Schwarz-Zippel lemma). Let P ∈ F[x] be a non
zero polynomial in one variable of degree at most d and S ⊆ F a non empty set
of size at least t. For R ⊆ S drawn uniformly from size t subsets of S,

Pr[P (r) = 0,∀r ∈ R] ≤
(
d
t

)

(|S|
t

) . (2)

Proof. Let D ⊆ Fq denote the roots of P . Clearly |D| ≤ d, since a non-zero
polynomial in one variable over a field has at most as many roots as its degree.
The lemma follows since R is chosen uniformly from the

(|S|
t

)
size t subsets of S

and there are at most
(
d
t

)
size t subsets of D. �

The Return of the SDitH 569

2.2 Zero-Knowledge Proofs

We define below the required properties for a zero-knowledge proof of knowledge.
A proof of knowledge for some language L ∈ NP is a two-party protocol between
prover P and verifier V, denoted 〈P,V〉 that should satisfy certain properties.
The intention is for P to prove to V that their common input belongs to the
language, i.e. w ∈ L.

Definition 3 ((Perfect) Completeness). A proof of knowledge 〈P,V〉 is
complete if, when both prover and verifier follow the protocol honestly, and the
prover has knowledge of a legitimate witness w, then for every witness w ∈ L
the verifier accepts with probability 1:

Pr[〈P,V〉(w) = 1] = 1. (3)

Definition 4 (Soundness). A proof of knowledge is sound, with soundness
error κ, if for a probabilistic polynomial time adversary, A, with w /∈ L, the
probability of an honest verifier accepting is less than κ:

Pr[〈A,V〉(w) = 1] ≤ κ. (4)

Put differently, this means that a prover without a valid witness w cannot
convince the verifier to accept with probability greater than κ.

Definition 5 (Honest Verifier Zero-Knowledge (HVZK)). A proof of
knowledge is HVZK if there exists a probabilistic polynomial time simulator S
that, without knowing a witness, outputs transcripts such that its output distri-
bution is computationally indistinguishable from the distribution of transcripts
derived from honest executions of the protocol 〈P,V〉.

This means that running the protocol does not reveal any information about
the witness to an honest observer. We use zero-knowledge proof as a shorthand
for HVZK proof of knowledge.

The main protocol in this paper is a zero-knowledge proof. This protocol is
built with the MPC-in-the-Head construction, which allows to transform a multi-
party computation protocol into a zero-knowledge proof. Before introducing the
MPC-in-the-Head construction, we will first present some building tools needed
for that construction: commitments, and additive secret sharing, a simple but
efficient tool to build some MPC protocols.

2.3 Commitments

A commitment scheme is a cryptographic primitive that allows one to publish
a value C, called commitment, associated to some other hidden value which
can be revealed at a later stage through a procedure called opening using a
decommitment value D. Once a party has committed to a hidden value, they
should not be able to change the value, and no other party should be able to
glean any knowledge of the value that has been committed, until the committing
party opens the commitment.

570 C. Aguilar-Melchor et al.

Definition 6 (Commitment scheme). A commitment scheme consists of
two PPT algorithms, com,open, where

– com(M) - on input M ∈ {0, 1}∗ the commitment algorithm outputs (C,D) ←
com(M,ρ) where ρ is the commitment randomness.

– open(C,D) outputs M or ⊥.

Definition 7 (Correctness). If com(M) → (C,D), then open(C,D) → M .

A secure commitment scheme has the following two properties:

Definition 8 (Binding). A commitment scheme is perfectly binding if, for all
probabilistic polynomial time (in security parameter κ) algorithm A, the proba-
bility of finding C,D,D′ such that open(C,D) = M , open(C,D′) = M ′, and
M
= M ′ is zero, and computationally binding if the probability is a negligible
function in κ.

Definition 9 (Hiding). A commitment scheme is perfectly, statistically, or
computationally (respectively) hiding if, for any two messages M,M ′, the dis-
tributions {C : (C,D) ← com(M)}κ∈N, and {C : (C,D) ← com(M ′)}κ∈N are
perfectly, statistically, or computationally indistinguishable.

A commitment scheme cannot be both perfectly hiding and perfectly bind-
ing simultaneously. In order to see this, suppose first that the scheme is per-
fectly binding, and one publishes the commitment comk(open, x), therefore no
other pair (open, x) outputs comk(open, x). Then a computationally unbounded
adversary can try inputs (open′, x′) until they find the correct inputs (open, x),
which uniquely give the correct output.

2.4 Additive Secret Sharing and Computing on Shares

In order to perform multi-party computations, it is necessary to break up and
then distribute the input data of the function to be evaluated amongst multiple
parties. In this work, we use an approach to break and use this data called
additive secret sharing. It is defined by the following two routines:

– Share(x): The Share routine randomly samples the (N − 1)-tuple (�x�1,
�x�2,. . ., �x�N−1) ← (Fm)N−1, and then computes �x�N ← x − ∑N−1

i=1 �x�i.
The final output is a tuple of N shares �x� ← (�x�1, �x�2, . . . , �x�N).

– Reconstruct(�x�): The Reconstruct routine combines all N shares together
by summation to obtain the original value x ← ∑N

i=1�x�i.

In practice, one can compress the output of Share(x) by expanding shares
(�x�1, �x�2, . . . , �x�N−1) from random seeds, however most of the terms in the
final share �x�N must be communicated in full, without compression. We call
this final share aux, which is defined explicitly in Algorithm 1.

A secret value x can thus be distributed to N parties in a MPC scenario.
Each party i in the MPC protocol receives share �x�i. It is important to observe
that the parties cannot learn anything of x unless they have all N shares. The

The Return of the SDitH 571

parties are able to perform the following computations and obtain valid shares
of a new secret-shared value:

– Addition of shares: Let �xA�, �xB� be two sets of shares distributed among
parties. �xA + xB�i := �xA�i + �xB�i.

– Addition with a constant: �x + c� := �x�1 + c, �x�2, . . . , �x�N .
– Multiplication with a constant: �c · x�i := c · �x�i.
– Multiplication of shares: Multiplication is possible using Beaver triples

[Bea92] with additional communication between parties (where the parties
are given as additional input a secret-shared triplet �a�, �b�, �c� where a, b are
unknown to all players and c = ab). This additional triplet is sacrificed in
order to validate another triplet, which is defined in the following.

One can evaluate an arbitrary function f over additive shares by decomposing
f into an arithmetic circuit using the four types of computation listed above.

2.5 MPC-in-the-Head Paradigm

The MPC-in-the-Head (MPCitH) paradigm originated from the work of Ishai,
Kushilevitz, and Ostrovsky [IKO+07] and provides a path towards building ZK
proofs for arbitrary circuits from secure multi-party computation (MPC) proto-
cols. In this work, we use a semi-honest MPC protocol with additive shares that
evaluates a Boolean decision function. The protocol has the following properties:

– N -party decision function evaluation: The N parties P1, . . . ,PN each possess
an additive share �x�i of the input x. The parties jointly evaluate a decision
function f : Zm → {0, 1} on x.

– Semi-honest (N − 1)-Security: Assuming the parties adhere to the protocol,
the additive shares guarantee that any N − 1 parties cannot recover any
information about the secret x.

One can efficiently build a ZK proof of knowledge of a secret value x for which
f(x) = 1, for a predicate f that has either a unique solution, or is hard to fulfill.
The prover proceeds as follows:

– Generate shares of the secret �x� ← Share(x) and distribute the shares
among N imaginary parties.

– Simulate the decision function evaluation procedure among the N imaginary
parties “in the head”.

– Commit to the view (initial share, secret random tape, and inbound/out-
bound communications) of each party and send commitment to the verifier.

– Send the shares of the final computed result �f(x)� to the verifier, which
should reconstruct to 1.

The verifier performs the following steps to verify the proof:

– Randomly choose N − 1 parties, then ask the prover to reveal the views of
those parties.

572 C. Aguilar-Melchor et al.

– Upon receiving the views, verify whether the views are consistent with an
honest execution of the MPC protocol and agree with the commitments.

– The verifier accepts if the views are consistent and the final shares �f(x)�
indeed reconstruct to 1.

Some challenge randomness of the decision function f can be provided by the
verifier. Therefore, the views of each party (input shares, random tape, initial
message from preprocessing phase) prior to the joint function evaluation must
be committed before the prover receives the randomness to prevent cheating.

The verifier does not learn any information about the secret value because
they only see N − 1 shares. The random selection of N − 1 parties results in a
soundness error of 1

N for the MPCitH protocol.

2.6 Syndrome Decoding

The zero-knowledge proof protocol we propose in this paper uses MPC-in-the-
Head to prove a solution is known to a syndrome decoding problem. Syndrome
decoding (SD) is a problem that is central to many code-based cryptosystems. A
syndrome is the result of multiplying a vector with a parity-check matrix, which
implies that being a codeword is equivalent to having syndrome 0. The Coset
Weights flavor of the SD problem [BMT78] can be expressed as follows:

– Challenge: Parity-check matrix H ← F
(m−k)×m
q , syndrome y ∈ F

m−k
q .

– Required Output: Vector x ∈ F
m
q with wt(x) ≤ w and Hx = y.

During challenge generation, H and x (with wt(x) = w) are drawn uniformly at
random, and then y = Hx is calculated. For cryptographically relevant param-
eters, with overwhelming probability there exists only one solution x′ such that
wt(x′) ≤ w, and that is x′ = x which has weight w.

The two most significant approaches to solving the syndrome decoding prob-
lem are information-set decoding and birthday algorithms. In order for a SD-
based cryptosystem to achieve security level λ it is necessary to select parameters
such that each approach takes more than 2λ operations to solve the underlying
syndrome decoding instance.

2.7 Syndrome Decoding in the Head

In this section we describe the methodology of generating zero-knowledge proofs
(ZKP) from MPCitH applied to the syndrome decoding problem, as laid out in
[FJR22]. For efficiency, we assume that H is in standard form H = (H′|Im−k),
where H′ ∈ F(m−k)×k

q . This enables us to express

y = Hx = H′xA + xB, (5)

so we only need to send xA to reveal the solution. The MPC protocol defined
divides up xA into shares �xA�, from which parties can reconstruct shares of
�x�. The protocol then verifies that y = Hx and that x has weight less than or
equal to w by proving polynomial relations.

The Return of the SDitH 573

2.7.1 Polynomial Construction
Let FSD be the finite field over which the syndrome decoding problem is defined.
Let Fpoly ⊇ FSD with |Fpoly| > m. Let φ : FSD → Fpoly define the inclusion of
FSD in Fpoly. We take a bijection, f , between {1, . . . , |Fpoly|} and Fpoly and for
ease of notation we denote fi instead of f(i).

The prover builds three polynomials, S,Q, and P in order to prove the weight
constraint. Polynomial S ∈ Fpoly[X] is the interpolation over the point (fi, xi),
with S(fi) = φ(xi), deg(S) ≤ m − 1, and Q[X] ∈ Fpoly[X] is Q =

∏
E(X − fi),

where E is a subset of [m] of order |E| = w, such that the non-zero coordinates
of x are contained in E. Accordingly, Q has degree w. Polynomial P is defined
as P = S · Q/F,where F =

∏
[m](X − fi). Ultimately, the polynomial relation

S · Q = P · F, (6)

must be satisfied in order to prove that wt(x) ≤ w. The left-hand side is designed
so that SQ(fi) = 0 for all fi ∈ [m]. This is because S is zero everywhere that x
is zero (by construction, as S is interpolated over x), and Q is zero everywhere
that x is not zero. Polynomial S has degree m − 1 and Q has degree w.

On the right-hand side, by construction the public polynomial F is zero over
f1, f2, . . . , fm, and polynomial P is required because F has degree m, whereas
m < deg(SQ) ≤ m + w − 1. If the prover can convince the verifier that they
know P,Q such that S ·Q = P ·F = 0 at all points fi ∈ [m], then at each point
fi, either S(fi) = φ(xi) = 0, or Q(fi) = 0. But since Q has degree w, it can be
zero at at most w points, therefore S is non-zero in at most w points fi, and so
x has weight of at most w.

In order to verify the polynomial relation of Eq. 6, the polynomial S·Q−P·F
is evaluated at a series of points to check that it evaluates to zero everywhere.
This is because, by the Schwartz-Zippel lemma (Lemma 3), it is unlikely that
the relation of Eq. 6 holds true at a random point, if the polynomial relation is
not true in general. Picking t points at random to test the relation amplifies this
result. Therefore the probability that the relation is satisfied at points {rk}k∈[t]

without Eq. 6 being true becomes some sufficiently small probability we call p.
This event is referred to as a false positive, which we denote F . False positives
affect the soundness of a ZKP, as they represent a way to be accepted by a
verifier, but without knowledge of a valid witness. Consequently, the soundness
error of an MPCitH protocol based on syndrome decoding would be

1 −
(
1 − 1

N

)
(1 − p) =

1
N

+ p − 1
N

· p. (7)

2.7.2 Polynomial Relation Proof via MPC-in-the-Head
The shares that are distributed to parties are shares of xA ∈ F

k
SD, the coefficients

of Q ∈ F
w
poly, and coefficients of P ∈ F

w+1
poly , as well as the shares of t Beaver

triplets (ak, bk, ck = akbk) ∈ F
3
points. A party’s share is denoted with double

square brackets and an index, e.g., �x�i. Shares of polynomials are shares of the
polynomial’s coefficients. For Q, only the last w − 1 coefficients are shared due

574 C. Aguilar-Melchor et al.

to Q being monic. Instead of evaluating the full relation of Eq. 6, we validate the
relation holds true at t randomly selected points r ∈ F

t
points, as explained in the

previous section to reduce the probability of F . In order to further reduce p, the
points ri are sampled from a larger space Fpoints ⊃ Fpoly as this makes it more
unlikely that an untrue polynomial relation looks correct at a given point ri. In
order to verify the multiplication triple S(rk) · Q(rk) = P · F(rk), we sacrifice a
Beaver triple ak · bk = ck. The protocol proceeds as follows:

1. Sample H ∈ F
(m−k)×m
q ,x ∈ F

m
q uniformly and compute Hx = y ∈ F

(m−k)
q .

2. Sample r, ε ∈ F
t
points × F

t
points uniformly at random.

3. Construct �x� and express it over Fpoly.
4. Interpolate the shares �S(rk)� and construct �Q(rk)�, and �F · P(rk)�.
5. Run MPC protocol to verify the triple (�S(rk)�, �Q(rk)�, �P · F(rk)�) with

sacrificed triple (�ak�, �bk�, �ck�).
(a) Set �αk� = εk · �Q(rk)� + �ak� and set �βk� = �S(rk)� + �bk�.
(b) Parties open �αk� and �βk� on bulletin board to construct αk and βk.
(c) Parties set �vk� = εk · �F · P(rk)� − �ck� + αk · �bk� + βk · �ak� − αk · βk.
(d) Parties open �vk� to obtain vk and check that it encodes zero.

2.7.3 False-positive Probability
To evaluate the false positive probability, necessary (along with N) to compute
the soundness in Eq. 7, consider that at each point rk, either S(rk) · Q(rk) −
P · F(rk) = 0 or is non-zero, so for i of the t challenge points to satisfy the
relation (equivalently, to be roots of S · Q − P · F), there are

maxl≤m+w−1

(
l
i

)(|Fpoints|−l
t−i

)

(|Fpoints|
t

) , (8)

ways this can happen by Lemma 3, since S ·Q−P ·F has degree less than m+w,
thus it has at most m + w − 1 roots, from which i of t challenge points could
be selected. For the i points being roots of the polynomial, having ck = akbk

makes the MPC protocol pass with probability 1; for the t − i cases where the
challenge points are not roots, S(rk) ·Q(rk)
= P(rk) ·F(rk). In these cases, the
MPC protocol will pass if and only if ck = ak · bk + εk(SQ − PF)(rk), which
depends linearly on εk and thus can only be guessed correctly with probability
1/Fpoints. Since it needs to occur for all non-root positions, this gives a proba-
bility (1/|Fpoints|)t−i. Combining the above reasoning, the probability Pr[F] = p
of F , is

p ≤
t∑

i=0

maxl≤m+w−1

(
l
i

)(|Fpoints|−l
t−i

)

(|Fpoints|
t

) ·
(1

|Fpoints|
)t−i

. (9)

A less tight but more intuitive bound can be given by considering that each
of the t challenge points is either a root of S · Q − P · F which occurs with
probability ≤ m+w−1

|Fpoints| , else it is not a root, and only satisfies the relation if εk was
guessed correctly, with probability ≤ 1

|Fpoints| . Summing these two probabilities

The Return of the SDitH 575

(for a given challenge point), and considering that this must happen for all t
challenge points, we arrive at the loose bound p ≤ (m+w

|Fpoints|)
t. It is necessary that

p be comfortably smaller than 1/N which is the target soundness error of the
MPCitH protocol in order to preserve zero-knowledge for a ZKP.

3 Batch MPCitH on a Hypercube for ZK Proofs

Here we describe how to reduce computational costs while preserving the sound-
ness in MPCitH. We do this by arranging shares onto a hypercube, then per-
forming MPCitH executions on various combinations of the shares. In Sect. 3.1,
we introduce a (standalone) parameter, n, for the party size, as this will make
comparisons with SDitH (using n = N) and our scheme (using n = ND).

3.1 High-Level Description

In the MPCitH setup described in Sect. 2.5, the initial commitment boils down
to PRNG expansion from seeds for the first n − 1 input shares, subtraction to
the plaintext for the last share, and commitments. Using this initial commit-
ment the prover would then, in a traditional MPCitH protocol, simulate the
MPC algorithm on each of these n parties to be able to produce the relevant
communications. Once the n − 1 commitments would be opened, the verifier
would also need to replay those n − 1 computations for the consistency check.
Instead of following that approach, we propose here a geometric method, when
n = 2D is a power of two, using the same initial commitment, where the prover
and the verifier only need to evaluate log2(n) + 1 of these evaluations, for the
exact same soundness error than the original protocol.

An MPCitH computation based on an additive secret sharing relies on shares
of the MPC parties adding up to the witness for which we want a ZK proof.
Additive secret sharing correctness does not depend on how these shares are
sampled: they can be uniform samples, additions of uniform samples, etc. As long
as the shares add up to the witness, the result of the computation is correct. Our
hypercube approach proposes a way to re-express one instance of the protocol
over n = ND parties into D instances of N parties, and how to obtain shares for
the N parties on each of the D instances. For each of these instances the shares
of the N parties add up to the original witness, thus each of these instances will
be correct no matter the additive scheme or the functionality computed.

We first explain the construction on a two dimensional toy example, shown
in Fig. 1. Let’s suppose we consider a traditional 4-party protocol with shares s1,
s2, s3, aux that sum up to the witness. If we distribute them in a 2-dimensional
hypercube of side 2 (i.e., a two-by-two square) we obtain:

Per construction we have s1 + s2 + s3 + aux = Witness. The hypercube
approach leads to an MPC execution for two parties holding m1 = (s1 + s2) and
m2 = (s3 + aux) on one side, and an MPC execution for two parties holding
n1 = (s1 + s3) and n2 = (s2 + aux) on the other side. By associativity and
commutativity, in both cases the sum of the shares is equal to the witness, and

576 C. Aguilar-Melchor et al.

n1 = s1 + s3

n2 = s2 + aux

s1

s3

s2

aux

m1 = s1 + s2

m2 = s3 + aux

n1 n2

Fig. 1. A simple 2-dimensional example of our hypercube construction.

both MPCitH executions will lead to a correct result. Just as the traditional
4-party protocol would have. The non-trivial part is to prove that by doing this,
the soundness error in the presence of a dishonest prover is the same in the
hypercube splitting as it is in the original protocol; it will be the target of the
next sections.

From a performance standpoint, using a 2-dimensional hypercube of side 2
provides no advantage. In the traditional approach we would: generate 4 states,
commit to 4 states, and compute with 4 MPC parties. In our approach we also
generate a state, commit, and do an MPC computation 2+2 = 4 times. However,
when the dimension D increases we see an advantage appear. For instance, if an
MPCitH protocol does a 256 party protocol, as in SDitH, it requires 256 state
generations and commitments. By using an 8-dimensional hypercube of side 2
we will then do only do 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 = 16 MPC computations
instead of 256, originally. We reveal exactly the same information: we open 255
initial states and give the communications that would have resulted from the
unopened state, so we keep the same proof size, but we reduce the MPC cost
by a factor of more than 10. For any functionality. As the computational costs
become smaller, it is of course also possible to increase the number of parties to
compensate, and get smaller proofs.

Finally, an additional benefit of Hypercube-MPCitH is that we can avoid,
for most of the D executions, running the MPC protocol for all the parties.
Indeed, each of the D executions corresponds to a given aggregation of the same
hypercube shares. Thus each secret shared variable that occurs throughout a run
of the MPC algorithm corresponds to the same plaintext when the shares are
summed up. Therefore the prover only needs to compute these plaintext values
once, for instance by evaluating the first N parties, and then, for the remaining
D − 1 runs, the last share is simply deduced by the difference to the plaintext
value. Consequently, only N − 1 parties need to be evaluated instead of N per
run, 1 + (N − 1)D in total. On the previous example of a 256 parties protocol,
with this improvement, the prover needs only to do 2+1+1+1+1+1+1+1 = 9
MPC computations instead of 16 in the last paragraph, and of 256 in the original
protocol.

For functionalities for which the MPC computation part is significantly more
expensive than the initial state generation and commitment phase (which is in
general the case) this allows to balance out the two phases, by increasing n, which
only has a logarithmic impact in the amount of dimensions, until both costs are

The Return of the SDitH 577

comparable, which can lead for such functionalities to completely unreachable
parameters with the traditional approach. The more complex the functionality
is, the larger the gap closed, and the hypercube improvement, will be.

For the sake of generality, we will in the next sections consider a general
hypercube of side N and dimension D. The n = ND original parties (also
called leaf-parties) are indexed on the D dimensions by coordinates (i1, . . . , iD) ∈
[1, N]D. For each dimension k ∈ [1,D], we have one MPC run between N main
parties, and by convention, for each index j ∈ [1, N], the main party of index
(k, j) regroups the contributions of the leaf-party shares whose k-th coordinate
is j Hence, for each axis k ∈ [1,D], the main parties (k, 1), . . . , (k,N) form a
partition of the leaf parties. With this partitioning, whenever we disclose the
values of ND − 1 leaf shares and keep a single one hidden, it automatically dis-
closes the value of exactly N − 1 out of N main-parties shares on each of the D
axes. As in Table 1, we define a main party as a party using an aggregated share
and for which we actually run the MPC protocol.

3.2 Leaf Witness Share Generation

For SDitH [FJR22] the master seed is expanded into N party seeds. The witness
shares for parties 1, . . . , N − 1 are then generated by expanding these seeds into
random �x�, �Q�, and �P� in their respective domains. And the shares for party
N are defined to be the difference between the sum of the random shares for
parties 1, . . . , N − 1, and the witness x,Q,P.

In our protocol, it is necessary to generate ND leaf seeds, from which the
polynomial shares and other randomness (e.g., Beaver triple shares) are gener-
ated. In practice, this part is done identically to in [FJR22], whereby TreePRG
is used to recursively expand the master seed until one has ND leaf seeds.

As depicted in Fig. 2, the master seed is expanded to generate the leaf party
seeds, which are then expanded into the leaf witness shares in the canonical way.
The leaf parties are indexed by i′ ∈ [1, . . . , ND].

3.3 Leaf Witness Shares on a Hypercube

A geometric mapping is necessary in order to manipulate the results in the
hypercube setting described in Sect. 3.1. Section 3.2 explained how to output
ND leaf parties and their witness shares. To arrange them on a hypercube, we
rewrite the index i′ ∈ [1, . . . , ND] equivalently as i′ = (i1, . . . iD) where each
ik ∈ [1, . . . , N]. To reveal the entire hypercube, except for a single leaf party, it
is enough to reveal the sibling path of the hidden leaf party. The verifier (who will
eventually receive ND − 1 leaf nodes) can reconstruct the hypercube geometry
themselves, using the same indexing convention as the signer.

578 C. Aguilar-Melchor et al.

Algorithm 1. ZK proof from Syndrome Decoding on a hypercube in the head
Input: Both parties have H = (H ′|Im−k) ∈ F

(m−k)×m
SD and the syndrome y ∈ F

(m−k)
SD .

The prover knows x ∈ F
m
SD with y = Hx and wt(x) ≤ w.

Round 1 (Computation of witness):
1. Choose E ⊂ [m] such that |E| = w and the non-zero coordinates of x are in E.
2. Compute Q(X) =

∏
i∈E(X − fi) ∈ Fpoly(X).

3. Compute S(X) ∈ Fpoly(X) by interpolation over the coordinates of x s.t. S(fi) = xi.
4. Compute P (X) = S(X)·Q(X)/F (X) with F (X) ∈ Fpoly(X) s.t. F (X) =

∏m
i=1(X−fi).

5. Sample a root seed: seed ← {0, 1}λ.
6. Expand root seed seedi recursively using TreePRG to obtain ND leafs and (seedi′ , ρi′)
7. Initialize each main party share to zero: The index of a party is (k, j) ∈ [1, . . . , D] ×
[1, . . . , N] and contains all leaf parties whose k-th coordinate is j
for each party (k, j) ∈ [1, . . . , D] × [1, . . . , N] do

Set �xA�(k,j), �Q�(k,j), �P�(k,j), �a�(k,j), �b�(k,j), and �c�(k,j) to zero.

8. Generate polynomial shares (at leaf level):
for each leaf i′ ∈ [1, . . . , ND] do

if i′ �= ND then
{�a�i′ , �b�i′ , �c�i′} ← PRG(seedi′), (�xA�i′ , �Q�i′ , �P�i′) ← PRG(seedi′)
statei′ = seedi′

else
�a�ND , �b�ND ← PRG(seedND), �c�ND = 〈a,b〉 − ∑

i′ �=ND �c�i′

�xA�ND = xA − ∑
i′ �=ND �xA�i′

�Q�ND = Q − ∑
i′ �=ND �Q�i′ , �P�ND = P − ∑

i′ �=ND �P�i′ ,
aux = (�xA�ND , �Q�ND , �P�ND , �c�ND), and stateND = seedND ||aux

� Add the leaf party’s shares to the corresponding main party share and represent
the leaf party by its index on the hypercube i′ = (i1 . . . iD), where ik ∈ [1, . . . , N].

for each main party index p in {(1, i1), (2, i2), ..., (D, iD)} do
�xA�p += �xA�i′ , �Q�p += �Q�i′ , and �P�p += �P�i′

�a�p += �a�i′ , �b�p += �b�i′ , and �c�p += �c�i′

9. Leaf parties commit to their state comi′ = Com(statei′ , ρi′).
10. Compute h = Hash(com1, . . . , comND) and send to the verifier

Round 2 (Get evaluation points):
The verifier picks t challenge points, which we denote as vectors r ∈ F

t
points and

ε ∈ F
t
points, and sends (r, ε) to the prover.

Round 3: For each axis k ∈ [1, . . . , D] execute Algorithm 2 between the main parties
(k, 1), . . . , (k, N) → (�α�k, �β�k, �v�k). Prover builds hash h′ = Hash(H1, . . . , HD) where
Hk ← Algorithm2(�xA�, �Q�, �P�, �a�, �b�, �c�, r, ε) and sends h′ to the verifier.

Round 4: Verifier uniformly picks (i∗1, . . . , i
∗
D) ← [1, . . . , N]D and sends it to prover.

Round 5: Prover sends (statei1,...,iD , ρi1,...,iD) ∀ (i1, . . . , iD) �= (i∗1, . . . , i
∗
D), i.e., the

sibling path, using TreePRG. Prover also sends com(i∗
1 ,...,i∗

D
), �α�(i∗

1 ,...,i∗
D

), �β�(i∗
1 ,...,i∗

D
)

Verification: Verifier accepts if and only if:
1. For each i′ �= i∗, expand all states to get leaf party states (they have D log N seeds

in the sibling path, and each of these is expanded down to the leaf party level, giving
ND −1 leaves), and use comi∗ provided. Then compute h and verify that it is equal
to the one from Step 11, where h = Hash(com1, . . . , comi∗ , . . . comND)

2. For k ∈ [1, . . . , D] : Run Alg. 3 to get �α�, �β�, �v�, and each Hk and check that:
(a) α, β,v is the same for all D runs of Algorithm 3.
(b) H = Hash(H1, . . . , HD) agrees with h′ provided in Round 3.

The Return of the SDitH 579

Algorithm 2. Execute Π on a full set of parties
Input: �xA�, �Q�, �P�, �a�, �b�, �c�, r, ε.
Output: �α�, �β�, �v�, H

Parties locally set �xB� = y − H′�xA�.
Parties locally compute �S� via interpolation of �x� = (�xA� | �xB�).

// Compute �α�, �β�, �v� coordinate-wise:
for l ∈ [t] do

Parties locally evaluate �S(rl)�, �Q(rl)�, �P(rl)�.
Parties set �αl� = εl�Q(rl)� + �al�.
Parties set �βl� = �S(rl)� + �bl�.
Parties open �αl� and �βl� to get αl, βl.
Parties locally set

�vl� = −�cl� + 〈εlF (rl) · �P (rl)�〉 + 〈αl, �bl�〉 + 〈βl, �al�〉 − 〈αl, βl〉.

Compute H = Hash(�α�, �β�, �v�)

1 hidden
share

to disclose N − 1 leaf shares, we need
to reveal only log2(N) seeds

expand
com

m
it

leaf
share

expand
com

m
it

leaf
share

expand
com

m
it

leaf
share

expand
com

m
it

last
leaf

share
aux

hidden
path

TreeP
RG

Tr
eeP

RG

TreePRG

master seed

Fig. 2. Witness generation via seed expansion for a depth 3 tree. The ND leaf party
witness shares are derived directly from their seeds, but the N · D main party witness
shares are defined as the sum of their leaf party shares. Subsequently, to open all the
leaf seeds except one, we reveal only the log(ND) sibling nodes along the hidden path
(which requires log(ND) space).

580 C. Aguilar-Melchor et al.

Algorithm 3. Verify a partition of parties
Input: Secret-shares �xA�, �Q�, �P�, �a�, �b�, �c�, r, ε. The Party that contains the hid-

den leaf party i∗ (hereafter partially-disclosed Party) uses as shares the partial aggre-
gation from its disclosed leaf parties. The other Parties use fully aggregated shares.
Index i∗ and communication α, β,v of the hidden leaf party i∗.

Output: �α�, �β�, �v�, H
Parties locally set �xB� = y − H′�xA�.
Parties locally compute �S� via interpolation of �x� = (�xA� | �xB�).
for l ∈ [t] do � Compute �α�, �β�, �v� coordinate-wise.

Parties locally evaluate �S(rl)�, �Q(rl)�, �P(rl)�.
Parties set �αl� = εl�Q(rl)� + �al�. and �βl� = �S(rl)� + �bl�.
The Partially-disclosed Party adds i∗ communications to �αl� and �βl�.
Parties open �αl� and �βl� to get αl, βl.
All Parties but the partially-disclosed one locally set

�vl� = −�cl� + 〈εlF (rl) · �P (rl)�〉 + 〈αl, �bl�〉 + 〈βl, �al�〉 − 〈αl, βl〉.
The local share �vl� of the partially-disclosed Party is set so that vl = 0

Compute H = Hash(�α�, �β�, �v�)

3.4 Main Party Witness Shares

To construct the witness shares of the main parties in dimension k, one aggre-
gates the shares of all leaf parties (i1, . . . , iD) which share the same index ik. For
example, in dimension 1, the share of Q of the jth main party, denoted (1, j),
would be �Q�(1,j) =

∑
i′
2,...,i′

D
�Q�(j,i′

2,...,i′
D), which is a sum over ND−1 of the

leaf party shares of Q. One can consider that the following high-level flow is
used to generate and ultimately aggregate the shares in order to generate the
main party shares. On the left hand side the TreePRG is used as a compression
technique; in the middle, the leaf seeds are expanded into shares and arranged
in a hypercube geometry; on the right the shares are aggregated in order to
provide the MPCitH inputs. It is helpful to think of the TreePRG compression
and the hypercube arrangement/aggregation as separate techniques, which are
combined here for the purposes of generating efficient signatures.

seed
TreePRG−−−−−−→ {seedi′}i′∈[ND]

PRG−−−→ {�x�i′ , �P�i′ , �Q�i′}i′∈[ND]

∑

−→ �x�k, �P�k, �Q�k,

3.5 Proofs of Security

The proofs in this section closely follow [FJR22] due to similarities in underlying
hardness assumptions. Protocol 1 implicitly defines the interaction between an
honest prover executing the odd rounds 1, 3, 5 and an honest verifier executing
the even rounds 2, 4. Throughout the security proof, a general prover, not nec-
essarily knowing the secret, is a party that reads and produces the same type of
messages as the honest prover, without necessarily following the algorithm.

The Return of the SDitH 581

We first show that an honest prover is accepted with certainty, and conversely,
any prover who commits to a bad witness that does not encode the SD secret in
the first round has probability lower than ε ≈ 1/ND of being accepted. Conse-
quently, any prover that has a higher rate of acceptance necessarily knows the
secret. Then, we prove that the protocol is zero knowledge, since its transcript
distribution can be simulated without the secret.

Theorem 1 ((Perfect) Completeness). Protocol 1 is perfectly complete.
That is to say, a prover with knowledge of a witness w (contained in sk) who
performs P(sk) correctly, will be accepted by a verifier V(pk) with probability 1.

Proof Proof of Theorem 1 For any choice of randomness for P,V, the computa-
tions of P pass all of the the verification checks of V by construction. �
Lemma 4. A prover P̃ that commits to a bad witness s.t. S·Q
= P·F in Round
1 of Protocol 1 and is unable to find a commitment/hash collision has probability
≤ ε = (p + (1 − p)/ND) of being accepted by an honest verifier V.

Proof. For V to accept, given S · Q
= P · F, one of two scenarios must occur:

1. the random value �v� encodes is zero with probability p, or otherwise,
2. P̃ must cheat on the communications they send, which correspond to the

MPCitH protocols on the main parties, so that it appears that the resulting
v is the zero vector.

After the initial commitment, V sends the challenge points r, ε. In the first sce-
nario, with probability p, the plaintext vector v generated by the MPC pro-
tocol is the zero vector (i.e., on all t points, it happens to be the case that
δ = (S ·Q−P ·F)(r) is zero, and/or that the beaver triplets committed in round
1 satisfy c − ab = εδ.)

However, with probability (1 − p), at at least one of the challenge points,
S ·Q(ri)
= P ·F(ri), meaning at least one of the coordinates of v = c−ab−εδ is
non zero. In this case, the communications �α�, �β�, �v� resulting from an honest
execution will not be accepted therefore P̃ must alter some communications so
that the resultant v is the zero vector.

In Round 3, P̃ commits to his communications to D independent SDitH runs
(one for each dimension on the hypercube). Let us assume that he needs to cheat
on the communications of a single run (out of D), and without loss of generality,
this can be cheating on the shares of α (cheating on β or v) are equally valid).

The �α� in this dimension consists of N main party shares �α�i. So P̃ must
pick one to cheat on, having 1/N chance of success. Each of the main party
shares consists of the sum of N (D−1) leaf shares in that particular slice, and all
but one of the leaf shares will be opened. Therefore P̃ must cheat on the share
�α� of a single leaf party s, shifting its value by δ
= 0. Cheating on more than
one leaf party means certain detection as all but one leaf parties are opened, and
cheating on none means that v is not the zero vector so won’t be accepted.

However, leaf party s belongs to a single main share for each run of
SDitH (one for each dimension of the hypercube). In each of these other main
shares,their value for �α� must be shifted by the same δ, as they cannot offset

582 C. Aguilar-Melchor et al.

this value using other leaf parties, as all but one leaf party is revealed in Round 5
so this would mean certain detection. Thus each main share to which s belongs
must cheat in their respective SDitH. No other cheating pattern is possible,
because all leaf parties bar one are revealed in Round 5, so only one leaf party
can cheat by δ, and this is exhibited in one main party for each dimension.

The only way to avoid detection using this method, is if the (uniformly
random) challenge i∗ in Round 4 gives the exact coordinates of s, as this means
the main party to which s belongs in each dimension is the one that remains
hidden. This has probability (1/N)D, and is equivalent to the challenge leaving
hidden the exact leaf party s out of ND leaf parties. Hence, in a non-false positive
scenario, P̃ has ≤ 1/ND chance of cheating. This yields the bound p+(1−p)/ND

for the prover to be accepted using a bad witness in round 1. �
Theorem 2 (Soundness). If an efficient prover P̃ with knowledge of only
(H,y) can convince verifier V with probability

ε̃ = Pr[〈P̃,V〉 → 1] > ε = (p + (1 − p)
1

ND
), (10)

where p is bounded in Eq. 9, then there exists an extraction function E that
produces a commitment collision, or a good witness x′ such that Hx′ = y and
wt(x′) < w by making an average number of calls to P̃ is bounded from above:

4
ε̃ − ε

·
(
1 +

2ε̃ ln 2
ε̃ − ε

)
(11)

Should a prover P̃ cheat with probability p ≤ ε then this is not an issue, as
it corresponds to ordinary vanilla cheating, i.e. cheating on a particular node,
hoping that node does not have to be revealed at challenge time, or by hoping to
guess some polynomials S,Q,P,F which do not satisfy S · Q = P · F in general,
but which are equal at the challenge points which are subsequently selected.

Sketch of the proof of Theorem 2: The proof largely follows the soundness
proof for the original SDitH [FJR22] scheme. The main difference lies in the
details of witness extraction. More specifically, in the argument why we can
extract. In our case, we are running D instances of SDitH in parallel. For each
instance, the state of each party is secret shared. These secret shares are arranged
in a hypercube, so every share is used as a secret share of D different instances.
The first message contains a commitment to each of these secret shares.

Regarding extraction we prove (as for SDitH) that we can extract a candidate
witness (an x s.t. Hx = y) as soon as we see two accepting transcripts that
agree on the commitments, i.e., the first message, but disagree on the second
challenge. As we always open all but one commitment, and this second challenge
that decides which commitment not to open differs for the two transcripts, we
learn the openings of all commitments (assuming that the commitment scheme
is binding). It remains to argue that this is sufficient for extraction.

The soundness proof for the original SDitH protocol also shows that a can-
didate witness can be extracted from two accepting transcripts that share the

The Return of the SDitH 583

same commitments but differ in the second challenge. This does not immediately
imply extraction in our case as we committed to secret shares of the state and
communications of the parties. However, we can rephrase the extraction condi-
tion shown for SDitH as the following; extraction is possible given the opened
state and communication for all parties, so long as each party is verified in at
least one accepting transcript. As only one commitment is not opened per tran-
script, there is the state and communication of exactly one party per SDitH proof
that is not verified in each transcript. As the second challenges differ between
the two transcripts per assumption, there has to be at least one dimension, in
which the unopened leaf party secret shares belong to different main parties. In
this dimension, we have obtained the openings of all main parties. Furthermore,
in this dimension, the state and communication of each main party was verified
during the verification of at least one of the transcripts. Therefore, we can apply
the extraction argument of the original SDitH protocol. Equivalently, one now
has knowledge of all leaf parties which together represent a complete sharing of
the witness, and by the argument above, all leaf parties have been verified in
at least one transcript. It remains to show that the candidate witness is a good
witness, i.e., has wt(x) < w. This follows the same argument from SDitH proof.

Proof. Assume the commitment scheme is perfectly binding (as opposed to com-
putationally binding), as per Definition 8. For two sets of transcripts with the
same initial commitment h = Hash(com1, . . . comND), but different challenge
leaf parties i∗
= j∗, either:

– �x�, �Q�, �P� differ and one finds a collision in the commitment hash, or
– the openings are equal in both transcripts, and therefore the shares �x�, �Q�,

and �P� are also equal in both transcripts.

In the second case, the witness can be recovered from two transcripts with i∗
=
j∗ where i∗, j∗ ∈ [1, . . . ND] are the challenge indices in the first and second
transcripts respectively. This is because in the first case the verifier receives the
ND − 1 leaf parties which are not i∗, and in the second transcript they receive
the ND −1 leaf parties which are not j∗. Thus with both transcripts, the verifier
knows the full set of witness shares and so can reconstruct the full witness by
summing all of the ND leaf party shares.

Now we explain why this means the extractor function is able to learn a good
witness. Consider the hypercube geometry: i∗
= j∗ means that their coordinates
in the hypercube are not equal in at least one position (i∗1, . . . , i

∗
D)
= (j∗

1 , . . . , j∗
D).

Let the first coordinate in which they differ be i∗k
= j∗
k . Then for the MPCitH

protocol for dimension k, one has two transcripts with different hidden (main)
parties, where the sum of witness shares for both runs has been successfully
verified. This scenario almost identically resembles the protocol of [FJR22], thus
the remainder of the proof of soundness proceeds in the same manner.

In the following we demonstrate that to generate two such accepted tran-
scripts with the same initial commitment but different challenge points, the
witness must be good. Call �x�, �Q�, and �P� a good witness if S · Q = F · P.

584 C. Aguilar-Melchor et al.

Rh is the random variable for the randomness used to generate the initial com-
mitment, with rh being a given value of Rh.

The extractor works by simple application of the Forking lemma, Lemma 2:
P̃ is run with honest V until successful transcript T1 is found, having second
challenge i∗. Then rewind P̃, using the same randomness rh as in T1 until one
gets a successful transcript T2 with different second challenge j∗. Then extract
the witness. If the witness is bad, start over.

Next we estimate how many calls to P̃ the extractor E makes. Let α ∈ (0, 1)
such that (1 − α) · ε̃ > ε. We say rh is ‘good’ if Pr[succP̃ |rh] ≥ (1 − α) · ε̃.
By the splitting lemma (Lemma 1), Pr[rh is good|succP̃] ≥ α, which implies
that a good randomness can be found after gathering roughly 1/α successful
transcripts. Also, by (the converse of) Lemma 4, when rh is good, since the
probability (1 − α)ε̃ > ε, then the initial commitment provided by the tran-
script necessarily encodes a good witness, that can be extracted from any other
successful transcript that starts from rh.

Given a good transcript T1 (i.e. a success in the outer loop) we now provide
a lower bound on the number of iterations of the inner loop in order to find
another good transcript T2 with the same randomness rh such that i∗
= j∗.

Pr[succP̃ ∩ i∗ �= j∗|rh good] = Pr[succP̃ |rh good] − Pr[succP̃ ∩ i∗ = j∗|rh good]

≥ Pr[succP̃ |rh good] − 1

ND

≥ (1 − α)ε̃ − 1

ND

≥ (1 − α)ε̃ − ε.

(12)

Then by running P̃ for L repetitions one has a probability greater than 1/2
of obtaining a second transcript T2 with a different challenge leaf party to T1,
where both T1 and T2 are generated using the same (good) randomness rh, where

L >
ln 2

ln 1
1−((1−α)ε̃−ε)

� ln 2
(1 − α)ε̃ − ε

. (13)

Denote the expected number of calls to P̃ as E(P̃). Then E(P̃) can be written
as a recursive formula; as a function of firstly the probability of succeeding in
the outer loop to obtain T1, and secondly the probability of obtaining T2 with
L calls once one has found a successful transcript T1. Step by step, this is

1. Make an initial call to P̃.
2. If we do not find T1, with probability (1 − Pr[succP̃])), then repeat the pro-

cedure from Step 1.
3. If we find a successful T1, then rh is good with probability α by the splitting

lemma (Lemma 1). Then make L calls to P̃, after which there is probability
above 1/2 of success. If successful, terminate, else return to Step 1.

4. The probability that rh is bad is 1 − α. Thus, there is no guarantee on the
probability of finding T2. Make L calls to P̃ (because we do not yet know
that rh is bad), then when unsuccessful, return to Step 1.

The Return of the SDitH 585

Consequently, if a call in Step 1 to P̃ does not yield T1, then repeat Step
1. If Step 1 is successful, giving T1, then we perform L further calls seeking to
obtain T2, because we do not know a priori whether rh is good or bad. If rh is
good (with probability α), then there is 1/2 probability that we find T2 and the
algorithm terminates. With rh good, there is also 1/2 probability that we do
not find T2. If rh is bad (with probability (1 − α), there is no guarantee about
finding T2 so to provide an upper bound for the number of calls to P̃ we say
that this part is always unsuccessful at finding T2. Thus

Pr[no T2|succP̃] = Pr[no T2|rh good] + Pr[no T2|rh bad] = α/2 + (1 − α),

and in this case return to Step 1. So the expression for E(P̃) can be written

E(P̃) ≤ 1 + (1 − Pr[succP̃])E(P̃)
︸ ︷︷ ︸

Do not find T1

+ Pr[succP̃]
(
L +

(
1 − α

2

)
E(P̃)

)

︸ ︷︷ ︸
Find T1

, (14)

which reduces to

E(P̃) ≤ 2
αε̃

(
1 + ε̃L

)
=

2
αε̃

(
1 +

ε̃ ln 2
(1 − α)ε̃ − ε

)
. (15)

Define (1 − α)ε̃ = 1
2 (ε + ε̃) , i.e., halfway between ε and ε̃ in order to obtain

a formula in terms of just ε and ε̃. Then we arrive at the upper bound

E(P̃) ≤ 4
ε̃ − ε

(
1 +

2ε̃ ln 2
ε̃ − ε

)
. (16)

�
We now prove that the protocol is zero-knowledge. The main intuition is

that any prover who learns the challenge points r, ε from Round 2 challenge
before committing to the state on Round 1 can update c in the aux to force a
false positive. Similarly any prover who learns the challenge coordinates i∗ from
Round 4 before committing to the MPC communications on Round 3 can alter
the communication of the hidden party such that v becomes the zero vector.
The following simulator exploits the second option.

Theorem 3 (Honest-Verifier Zero Knowledge (HVZK)). If the PRG of
Algorithm 1 and commitment Com are indistinguishable from the uniform ran-
dom distribution, then Algorithm 1 is Honest-Verifier Zero Knowledge.

Proof. To prove the HVZK property, we construct a simulator S which outputs
transcripts of Algorithm 1 which are computationally indistinguishable from
real transcripts. For this we assume that the PRG of Algorithm 1 is (t, εPRG)-
secure and the commitment Com is (t, εCom)-hiding. For ease of reading, in the
following, we sometimes denote general leaf party indices (ik1 , . . . , ikD

) by i′,
and the challenge party index (i∗1, . . . , i

∗
D) as simply i∗. First consider a sim-

ulator, S, described in Algorithm 4 which produces the transcript responses

586 C. Aguilar-Melchor et al.

Algorithm 4. HVZK Simulator
Sample seed ←$ {0, 1}λ.
Generate (seedi′ , ρi′) for all leaf parties via TreePRG(seed).
Step 1 (Sample Challenges):
Where CH1 = {r, ε} ← F

t
points × F

t
points and CH2 = i∗ ← [1, . . . , ND]

Step 2 (Generate ND Leaf Party States):
Expand root seedi recursively via TreePRG to get ND leaf states and (seedi′ , ρi′)
Step 3 (Generate Leaf Party Commitments and Witness Shares):
for i′ �= i∗ do

Compute comi′ = Hash(statei′ , ρi′)
if i′ �= ND then

Expand the leaf party seeds into witness shares
else

Generate aux for the last leaf party, i′ = ND, randomly draw �xA�ND ,
�Q�ND , �P�ND , and �c�ND .

for i′ = i∗ do
Draw comi∗ at random

Compute initial commitment COM = Hash(com1, . . . , comi∗ , . . . , comND)
Step 4 (Generate Party Communications):
Draw �α�i∗ and �β�i∗ uniformly at random from their respective domains.
for k ∈ [1, . . . , D] do

if ik �= i∗k then
Get communications {�α�ik , �β�ik , �v�ik} as stated in Algorithms 1, 2

if i∗k then
Compute party communication shares �α�i∗

k
, �β�i∗

k
, �v�i∗

k
by running Π on

the sum of the witnesses of the N − 1 revealed leaf parties in their respective slices,
as described in Algorithm 1, then add on �α�i∗ and �β�i∗

Set �v�i∗ = − ∑
i′ �=i∗�v�.

Step 5 (Output transcript):
RSP1 = h′ = Hash(H1, ..., HD) where Hk ← Alg. 2(�xA�, �Q�, �P�, �a�, �b�, �c�, r, ε)
RSP2 = comi∗ , �α�i∗ , �β�i∗ , {(statei1,...,iD , ρi1,...,iD) ∀ (i1, . . . , iD) �= (i∗1, . . . , i

∗
D)}.

Output (COM, CH1, RSP1, CH2, RSP2)

(COM,CH1,RSP1,CH2,RSP2). Next we demonstrate that this simulator pro-
duces indistinguishable transcripts from the distribution of real transcripts by
starting with a simulator that produces ‘true’ transcripts, and altering the out-
puts section-by-section until arriving at S defined above. At each simulator alter-
ation we argue why the distribution remains unchanged.

True transcripts (v0): This takes as input a witness xA as well as the
honest verifier’s challenges (r, ε, i∗). It then executes Algorithm 1 correctly, hence
its output distribution is the ‘correct’ distribution.

Simulator v1: In this simulator, the only difference versus v0 is that ran-
domness in leaf party i∗ is replaced with true randomness. If i∗ = (N, . . . , N)
then �xA�ND , �Q�ND , and �P�ND are generated in the usual way. So the wit-
ness shares of all leaf parties still sum to give the input witness (and by exten-
sion, all parties for each MPCitH run in [1, . . . , D]), therefore only �a�ND and

The Return of the SDitH 587

�b�ND are random (and by extension, so are the shares �a�, �b� for the D par-
ties [(1, N), . . . , (D,N)] which contain challenge leaf party i∗ = ND). We can
see that the difficulty in distinguishing the output of Simulator v1 from the real
distribution is equal to distinguishing εPRG from true randomness.

Simulator v2: Replace �xA�ND , �Q�ND , �P�ND , and �c�ND with true ran-
domness (i.e. sample these shares randomly, and not via the protocol). This
means that �xA�, �Q�, and �P� are now independent of input witness, so the
inputs to S are reduced to the challenges (ch1, ch2).

For i∗ = ND this means that only �α�i∗ , �β�i∗ are affected because in this
scenario aux is not sent in RSP2. These shares do not change in distribution
from Simulator v1 to Simulator v2 because we already have in Simulator v1 the
�α�i∗ and �β�i∗ which appear to be uniformly distributed and are unaffected by
the other parties, and �v�i∗ = −∑

i�=i∗�v�i.
For i∗
= ND only aux is affected in the transcript. In Simulator v1, aux is

computed via the sum of true uniform randomness of leaf party i∗, and every
other leaf party’s pseudo-randomness, also generating aux via true uniform ran-
domness does not alter the distribution between Simulators v1 and v2.

Simulator v3: Here, �α�i∗ , �β�i∗ are also drawn via true randomness (affect-
ing communications of party i∗). But these already appear to be uniformly dis-
tributed in Simulator v2, thus the output distribution does not change between
Simulator v2 and v3. The outputs of Simulator v3 (RSP1, RSP2) are thus indis-
tinguishable from those of an honest execution of Algorithm 1. To obtain a
global HVZK simulator we take the simulator described in Algorithm 4, apply
the hiding property of comi∗ , with the final simulator performing as follows:

1. Generate random challenges ch1, ch2.
2. Run Simulator v3 to get RSP1, RSP2.
3. For initial leaf party commitments i′
= i∗ compute comi′ = Com(statei′ , ρi′).
4. For leaf party i∗, draw comi∗ at random.
5. Set initial commitment to Com = Hash(com1, ..., comND).

The output of the global HVZK simulator is (t, εPRG + εCom)-indistinguishable
from the real distribution. �

4 A Signature Scheme Based on Syndrome Decoding
with Hypercube-MPCitH

In order to transform our ZK proof into a signature we use a classical Fiat-
Shamir transform [FS87]. Both the transform and the associated proof closely
follow the proof provided in the original SDitH proposal [FJR22], which in turn
is similar in nature to the Picnic proof [ZCD+20]. For this section, the reader is
referred to the full version of this paper [AMGH+22, Section 4].

5 Performance and Analysis

In this section we analyse the protocol with respect to the communication cost.
We provide costs for the ZK protocol, in order to compare with the others using

588 C. Aguilar-Melchor et al.

syndrome decoding, and then provide parameters and costs for the signature
scheme. In the original SDitH work, the authors present a variant of the under-
lying SD problem known as the d−split problem, and explain how their signature
scheme can be adapted to be based on this variant of the SD problem. We do not
present the same adaptations to this problem for our signature scheme. How-
ever, the difference presented by the d−split problem affects only the underlying
hardness assumptions, and so it is still instructive to present parameter sets for
the d−split variants for comparison with the previous signature schemes.

There are a few points in the protocol which we do not include as their impact
is arbitrarily small compared to the main communication cost, these being the
challenges from the verifier. The communication cost is then calculated from:

– Com: the hash, h, of the ND commitments.
– Res1: the hash, h′, of the D hashes output from the MPC simulation.
– Res2: the (statei1,...,iD , ρi1,...,iD)∀ (i1, . . . , iD)
= (i∗1, . . . , i

∗
D), com(i∗

1 ,...i∗
D),

�α�(i∗
1 ,...,i∗

D), �β�(i∗
1 ,...,i∗

D).

If we consider each leaf (i′ = (i1, · · · , iD) ∈ {1, · · · , ND}) of the hypercube,
for all but the final leaf (i′
= ND) the cost of each statei′ is the size of a seed of
λ bits. For the case of the final leaf (i′ = ND), the statei′ consists of seedND and
the auxiliary which consists of (i) the plaintext share �xA�ND , (ii) the shares
�Q�ND , �P�ND being two polynomials of degree w−1, and (iii) the shares �c�ND

of the t points of Fpoints.
The only parts within the commitment and responses that are affected by

the hypercube component, D, is the number of, and thus size of, the seed and
commitment randomness. This in essence becomes a sibling path, of length D,
from (statei∗

1 ,...,i∗
D

, ρi∗
1 ,...,i∗

D
) to the tree root, which will cost at most D·λ·log2(N)

bits. For the remaining costs, we have the commitment com(i∗
1 ,...i∗

D) of 2λ bits
and �α�(i∗

1 ,...,i∗
D), �β�(i∗

1 ,...,i∗
D) are elements of Fpoints. We then calculate the size

of the communication cost (in bits) of a single round of the protocol as:

Total Size = 4λ size of h and h′.

+ k · log2(|FSD|) size of �xA�ND .

+ 2w · log2(|Fpoly|) sizes of �Q�ND and �P�ND .

+ (2 · d + 1) · t · log2(|Fpoints|) sizes of �α�(i∗
1 ,...,i∗

D
), �β�(i∗

1 ,...,i∗
D

), �c�ND .

+ D · λ · log2(N) size of the seeds.

+ 2λ size of com(i∗
1 ,...i∗

D
).

In order to achieve the target security level and soundness, 2−λ, we perform
τ parallel repetitions. Using the definition of the forgery cost in Eq. 17 in
[AMGH+22] and predefined values for false positivity, we find the minimum
number of repetitions, τ , that satisfies Eq. 17. Also, we do not need to repeat
this process for the entire communication costs, the values for h and h′ can be
merged for each τ . Thus, the total communication cost (in bits) of the scheme

The Return of the SDitH 589

with τ repetitions is:

Size = 4λ + τ · (k · log2(|FSD|) + 2w · log2(|Fpoly|)
+ (2d + 1) · t · log2(|Fpoints|) + D · λ · log2(N) + 2λ).

Using Eq. 10 we have the obtained soundness error as (p + (1 − p) 1
ND)τ .

5.1 Comparing Code-Based Zero-Knowledge Protocols

The SDitH protocol is not the first proposal for a zero-knowledge protocol using
syndrome decoding. There have been other proposals for identity schemes and
signature schemes, we can compare these protocols on different instances of syn-
drome decoding for 128-bit security. Table 2 shows this comparison which is also
given in [FJR22], which also provides further calculation costs and parameters.
Each scheme in Table 2 utilizes the same parameters (m, k,w); either Instance 1
[FJR21] which is SD on F2 for (1280, 640, 132) or Instance 2 [CVE11] which is
SD on F28 for (208, 104, 78), for the given communication costs.

In order to directly compare with [FJR22], we utilize the same parameters for
(N , τ , |Fpoly|, |Fpoints|, t), which only differ in (N, τ), in which our protocol opti-
mizes. Our protocol also differs slightly in the calculation of the soundness error,
ε, which affects the security level being attained; with SDitH using (p+ 1

N −p· 1
N)

whereas we use (p + 1
ND − p · 1

ND).

SDitH ZKP parameters:
Instance 1:
Short: (256, 16, 211, 222, 2); ετ = 2−128

Fast: (32, 26, 211, 222, 1); ετ = 2−129.6

Instance 2:
Short: (256, 16, 28, 224, 2); ετ = 2−128

Fast: (32, 26, 28, 224, 1); ετ = 2−130.0

Our ZKP parameters:
Instance 1:
Shorter: (212, 11, 211, 222, 2); ετ = 2−132

Shortest: (216, 8, 211, 222, 2); ετ = 2−128

Instance 2:
Shorter: (212, 11, 28, 224, 2); ετ = 2−132

Shortest: (216, 8, 28, 224, 2); ετ = 2−128

For Instance 1 and Instance 2, and using a target soundness of 2−128, Table 2
provides the corresponding communication costs for the different ZK protocols
using syndrome decoding. We reuse the parameters used in SDitH for the Fast
and Short variants, thus we achieve similar costs for these. We also extended
these parameters for a large number of simulated parties to achieve Shorter and
Shortest variants. This means the Fast parameters for SDitH are also the fastest
parameters for our scheme, with the speed monotonically decreasing as go from
Short, Shorter, and Shortest. Details on the communication costs for the other
protocols can be found in the full version of [FJR22, Appendix B]. Also, it is
worth noting that there are some differences between the proved statements; i.e.
either proving the equality or inequality for the Hamming weight of w.

590 C. Aguilar-Melchor et al.

Table 2. Communication sizes of ZK protocols using syndrome decoding.

Scheme Year Instance 1 Instance 2 Proved Statement

Stern [Ste94] 1993 37.4 KB 46.1 KB y = Hx, wt(x) = w

Véron [Vér97] 1997 31.7 KB 38.7 KB message decoding

CVE11 [CVE11] 2010 – 37.4 KB y = Hx, wt(x) = w

AGS11 [AGS11] 2011 24.8 KB – y = Hx, wt(x) = w

GPS22 [GPS22] (Short) 2021 – 15.2 KB y = Hx, wt(x) = w

GPS22 [GPS22] (Fast) 2021 – 19.9 KB y = Hx, wt(x) = w

FJR21 [FJR21] (Short) 2021 12.9 KB 15.6 KB y = Hx, wt(x) = w

FJR21 [FJR21] (Fast) 2021 20.0 KB 24.7 KB y = Hx, wt(x) = w

SDitH [FJR22] (Short) 2022 9.7 KB 6.9 KB y = Hx, wt(x) ≤ w

SDitH [FJR22] (Fast) 2022 14.4 KB 9.7 KB y = Hx, wt(x) ≤ w

Ours (shortest) 2022 6.0 KB 4.5 KB y = Hx, wt(x) ≤ w

Ours (shorter) 2022 7.5 KB 5.5 KB y = Hx, wt(x) ≤ w

Ours (short) 2022 9.7 KB 6.9 KB y = Hx, wt(x) ≤ w

Ours (fast) 2022 14.4 KB 9.7 KB y = Hx, wt(x) ≤ w

5.2 Parameter Selection

Here we derive the parameters we use for our proposed signature scheme. Due to
similarities with SDitH we utilize the same values for many of the parameters;
this also makes it simpler to compare the two protocols in terms of efficiency and
communication costs. As with SDitH, the parameters chosen are for attaining
at least 128 bits of security, equivalent to the NIST Level 1 security level.

5.2.1 Syndrome Decoding and MPC Parameters
To estimate the security of cryptographic schemes based on the hardness of
solving a syndrome decoding instance for a random linear code over F2 we use
algorithms which perform the best practical attacks. Currently this is a version of
the Information-Set Decoding (ISD) algorithm [MMT11], based on previous work
by Finiasz and Sendrier [FS09]. Recently an argument was made that the lower
bound cost of the attack can be calculated by considering the cost of its topmost
recursion step [FJR21]. The details of the algorithm will be omitted since the
SD parameters will be reused from [FJR22], but we provide a description of each
parameter set (or variant) and their differences below. Each variant listed will
have associated parameters for (q,m, k, w, d) which define its hardness.

– Variant 1: based on the standard binary syndrome decoding problem with
some parameters used from [FJR21].

– Variant 2: based on the d-split binary syndrome decoding problem, where d
is chosen such that m/d ≤ 28, meaning that Fpoly = F28 .

– Variant 3: based on the syndrome decoding problem defined over F28 with
some parameters used from [CVE11].

The Return of the SDitH 591

Table 3. The SD and MPC parameters for our protocol, originally from [FJR22].

Scheme SD Parameters MPC Parameters

q m k w d |Fpoly| |Fpoints| t p

Variant 1 2 1280 640 132 1 211 222 6 ≈ 2−69

Variant 2 2 1536 888 120 6 28 224 5 ≈ 2−79

Variant 3 28 256 128 80 1 28 224 5 ≈ 2−78

Table 4. SDitH [FJR22] parameters with key and signature sizes for λ = 128.

Scheme Aim Parameters Sizes (in bytes)

N τ pk sk Sign (Max)

Variant 1 Fast 32 27 96 16 16 422

Short 256 17 96 16 11 193

Variant 2 Fast 32 27 97 16 17 866

Short 256 17 97 16 12 102

Variant 3 Fast 32 27 144 16 12 115

Short 256 17 144 16 8 481

The MPC parameters (which follow from [FJR22]) are chosen so the result-
ing communication cost is small, thus the smallest possible field for Fpoly is
used as the communication includes polynomials in this field. The SD and MPC
parameters for the three variants are provided in Table 3.

5.2.2 Signature Scheme Parameters
With SD and MPC parameters we can propose parameters for our signature
scheme and provide costs. The signature parameters that primarily contribute
to the communication cost are (N,D, τ, |Fpoly|, |Fpoints|, t). We fix many of these
parameters for comparison, these being those shown in Table 3.

Table 4 shows the parameters proposed for SDitH. The parameters are
derived using the three different variations, as well as having two different values
for the party size, N , with the aim of producing a fast computation version, for
N = 32, and a short communication cost version, for N = 256. Once the party
size is defined, the number of repetitions, τ can thus be calculated such that they
gain the target security level, which in this work is at least 128 bits of security.

The parameters in which our protocol primarily optimizes over SDitH are the
party size, being N or in our case ND, and the resulting repetitions required, τ .
A large part of the signature scheme in SDitH is the auxiliary, being made up
of (�xA�N , �Q�N , �P�N , �c�N), which is then repeated for each τ . Being able to
significantly reduce τ means we drastically reduce this cost. In Fig. 3, we show
the relationship between τ and D and how this affects the size of the signature.

592 C. Aguilar-Melchor et al.

In our parameter selection, we fix the value for N = 2 and adapt for different
dimension sizes, D. It is possible for parameters to become equivalent, e.g., (N =
216, τ = 9) produces the same communication costs and computations as (N =
2562, τ = 9), however the former parameters require significantly less (potentially
expensive) MPC computations and in turn require (probably less expensive) hash
calculations. This quality in the flexibility we gain with parameters is particularly
coveted when its applications on a variety of hardware is considered; which range
from CPUs with dedicated instructions for field arithmetic, to mid-range devices
with AES-NI and SHA extension support, to low-end constrained devices with
limited ISA support for cryptographic operations.

A list of our scheme’s parameters are given in Table 5. Similarly to SDitH we
provide parameters for the three SD and MPC variants, and those parameters
with the aim of having short communication costs (for N = 216 and N = 212)
and fast computations (N = 28 and N = 25). The associated public-key and
secret-key values are unchanged compared to SDitH, the major differences are
seen in the signature sizes and computation costs. We use similar nomenclature
to SDitH, but due to the savings we make in performance, we ‘upgrade’ their
previous parameters from Fast and Short, to Faster and Fast, respectively. The
latter parameters we propose increase the dimension size, thus the party size in
the MPC protocol, which finally results in Short and Shorter parameters.

Fig. 3. The relationship between the dimension, D, and the repetitions rate, τ , using
N = 2. Parameters and signature sizes provided for Variant 3.

Table 6 provides a comparison between SDitH and our scheme, with an
overview of their similarities and differences. The major differences are in the
online costs of the signature schemes, which is also the most computationally
expensive part of SDitH and is thus the reason we see these significant improve-
ments. In SDitH, there is one MPC computation per secret share, meaning N
MPC computations are required. However, in our proposal, by placing the secret
shares onto a hypercube, we only need MPC computations for all-but-the-final
row (N−1) per dimension (D), with an additional computation for the auxiliary;
thus requiring (N −1) ·D+1 MPC computations in total. This is achieved while

The Return of the SDitH 593

Table 5. Our parameters with key and signature sizes in bytes for λ = 128.

Scheme Aim Parameters Sizes (in bytes)

N D τ pk sk Sign (Max)

Variant 1 Fast 2 5 27 96 16 16 422

Short 2 8 17 96 16 11 193

Shorter 2 12 12 96 16 8 698

Shortest 2 16 9 96 16 7 125

Variant 2 Fast 2 5 27 97 16 17 866

Short 2 8 17 97 16 12 102

Shorter 2 12 12 97 16 9 340

Shortest 2 16 9 97 16 7 606

Variant 3 Fast 2 5 27 144 16 12 115

Short 2 8 17 144 16 8 481

Shorter 2 12 12 144 16 6 784

Shortest 2 16 9 144 16 5 689

maintaining the same number of secret shares in both signature schemes; thus
for equivalent signature sizes we achieve a much faster signature runtime, and
conversely for similar runtimes (i.e., 5.96 vs 7.17 ms) we achieve a much smaller
signature size. We also see the similarities between the two schemes in Table 6,
those being specifically their offline costs.

5.3 Implementation

We focus on the implementation of Variant 3 parameters, since these are the most
interesting as they provide the fastest and smallest signatures. The Hypercube-
MPCitH approach does not affect key generation; the secret and public keys
are identical, both seeded and expanded. We provide benchmarks for signature
and verification runtimes of our scheme compared to SDitH in Table 7. For fair
comparison, the same processor is used, and the SDitH authors kindly shared
their code for the benchmarks. We also ran the SDitH implementation for the
Shorter parameter set, however the Shortest parameters gave issues and have
thus been omitted.

In both implementations, the offline phase uses the AES native instructions
for seed expansion and SHAKE for hash and commitments purposes. Both imple-
mentations also rely on a fast gf256 library1, which utilizes AVX2 instructions.
Our processor does not support the newer Galois Field New Instructions (GFNI)

1 https://github.com/catid/gf256.

https://github.com/catid/gf256

594 C. Aguilar-Melchor et al.

Table 6. Variant 3 signature generation costs for SDitH vs our scheme. Our MPC
computation costs are calculated as (N −1) ·D+1 for signing, (N −1) ·D for verifying.
Thus, (i) for equivalent signature sizes our scheme is significantly faster, (ii) for similar
runtimes (i.e., 2.87 vs 5.96 ms) are signatures are significantly smaller. Both ran on a
single CPU core of a 3.1 GHz Intel Core i9-9990K.

Scheme Secret Shares Offline Costs Online Costs Signature Costs

State Commits MPC Size Time
Gen. Comps (Bytes) (ms)

Ours (N = 2, D = 5) 32 32 32 6 12 115 1.30

SDitH (N = 32) 32 32 32 32 12 115 5.96

Ours (N = 2, D = 8) 256 256 256 9 8 481 2.87

SDitH (N = 256) 256 256 256 256 8 481 23.56

Ours (N = 2, D = 12) 4096 4096 4096 12 6 784 26.43

SDitH (N = 212) 4096 4096 4096 4096 6 784 313.70

Table 7. Reference implementation benchmarks of SDitH [FJR22] vs our scheme for
λ = 128. Both ran on a single CPU core of a 3.1 GHz Intel Core i9-9990K.

Scheme Aim Signature Size Parameters Sign Time (in ms) Verify Time

N D τ Offline Online Total (in ms) Total

SDitH Fast 12 115 32 – 27 0.87 5.03 5.96 4.74

[FJR22] Short 8 481 256 – 17 4.33 18.95 23.56 20.80

(Variant 3) Shorter 6 784 212 – 12 59.24 251.14 313.70 244.30

Shortest 5 689 216 – 9 – – – –

Ours (Variant 3) Fast 12 115 2 5 27 0.47 0.83 1.30 0.98

Short 8 481 2 8 17 2.26 0.61 2.87 2.59

Shorter 6 784 2 12 12 25.93 0.50 26.43 25.79

Shortest 5 689 2 16 9 320.24 0.42 320.66 312.67

opcodes. For the same number of leaf shares, N for SDitH and ND for our
protocol, the performance of both signature schemes in the offline phase are
more or less the same as the one in their implementation, which confirms our
expectations, and highlights that both software implementations are equivalent
in performance, the performance differences observed come from the protocol
differences. Our online phase however is largely accelerated compared to the ref-
erence implementation, which confirms the expected ND → N · D algorithmic
speedup. Again, we can verify that the gain is roughly N · D/ND as we would
expect from comparable implementations. In fact, our online costs are more-or-
less constant for a given security level as they are in N · D · τ and the security
is roughly in log2 N · D · τ (and N is constant). Besides being roughly constant,
they are also very small, less than 1 ms, and can probably be further optimized.

Acknowledgements. We would like to thank Thibauld Feneuil, Antoine Joux, and
Matthieu Rivain for their input and feedback on an earlier version of this paper, as
well as dharing their source code with us. We also thank Adrien Guinet for his help
on improving the performance of our implementation. We would also like to thank

The Return of the SDitH 595

the anonymous reviewers of EUROCRYPT 2023 for their constructive feedback which
helped improved the quality of the paper.

References

[AGS11] Aguilar, C., Gaborit, P., Schrek, J.: A new zero-knowledge code based
identification scheme with reduced communication. In: 2011 IEEE Infor-
mation Theory Workshop, pp. 648–652. IEEE (2011)

[AMGH+22] Aguilar-Melchor, C., Gama, N., Howe, J., Hülsing, A., Joseph, D.,
Yue, D.: The return of the SDitH. Cryptology ePrint Archive, Report
2022/1645 (2022). https://eprint.iacr.org/2022/1645

[Bea92] Beaver, D.: Efficient multiparty protocols using circuit randomization.
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 34

[BG22] Bidoux, L., Gaborit, P.: Compact post-quantum signatures from proofs
of knowledge leveraging structure for the PKP, SD and RSD Problems
(2022)

[BMT78] Berlekamp, E., McEliece, R., Tilborg, H.V.: On the inherent intractabil-
ity of certain coding problems (corresp.) IEEE Trans. Inf. Theory 3,
384–386 (1978)

[CVE11] Cayrel, P.-L., Véron, P., El Yousfi Alaoui, S.M.: A zero-knowledge iden-
tification scheme based on the q-ary syndrome decoding problem. In:
Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544,
pp. 171–186. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-19574-7 12

[DGV+16] Dagdelen, Ö., Galindo, D., Véron, P., El Yousfi Alaoui, S.M., Cayrel, P.-
L.: Extended security arguments for signature schemes. Designs Codes
Crypt. 2, 441–461 (2016)

[FJR21] Feneuil, T., Joux, A., Rivain, M.: Shared permutation for syndrome
decoding: new zero-knowledge protocol and code-based signature. Cryp-
tology ePrint Archive, Report 2021/1576 (2021). https://eprint.iacr.org/
2021/1576

[FJR22] Feneuil, T., Joux, A., Rivain, M.: Syndrome decoding in the head: shorter
signatures from zero-knowledge proofs. Cryptology ePrint Archive,
Report 2022/188 (2022). https://eprint.iacr.org/2022/188

[FS09] Finiasz, M., Sendrier, N.: Security bounds for the design of code-based
cryptosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 88–105. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10366-7 6

[FS87] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.
org/10.1007/3-540-47721-7 12

[GGM84] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions (extended abstract). In: 25th FOCS, pp. 464–479. IEEE Computer
Society Press (1984). https://doi.org/10.1109/SFCS.1984.715949

[GPS22] Gueron, S., Persichetti, E., Santini, P.: Designing a practical code-based
signature scheme from zero-knowledge proofs with trusted setup. Cryp-
tography 1, 5 (2022)

https://eprint.iacr.org/2022/1645
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-642-19574-7_12
https://doi.org/10.1007/978-3-642-19574-7_12
https://eprint.iacr.org/2021/1576
https://eprint.iacr.org/2021/1576
https://eprint.iacr.org/2022/188
https://doi.org/10.1007/978-3-642-10366-7_6
https://doi.org/10.1007/978-3-642-10366-7_6
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1109/SFCS.1984.715949

596 C. Aguilar-Melchor et al.

[IKO+07] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from
secure multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th
ACM STOC, pp. 21–30. ACM Press (2007). https://doi.org/10.1145/
1250790.1250794

[MMT11] May, A., Meurer, A., Thomae, E.: Decoding random linear codes in
Õ(20.054n). In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS,
vol. 7073, pp. 107–124. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 6

[PS00] Pointcheval, D., Stern, J.: Security arguments for digital signatures and
blind signatures. J. Cryptol. 3, 361–396 (2000). https://doi.org/10.1007/
s001450010003

[Ste94] Stern, J.: Designing identification schemes with keys of short size. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 164–173.
Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5 18

[Vér97] Véron, P.: Improved identification schemes based on error-correcting
codes. Appl. Algebra Eng. Commun. Comput. 1, 57–69 (1997)

[ZCD+20] Zaverucha, G., et al.: Technical report, National Institute of Standards
and Technology (2020). https://csrc.nist.gov/projects/post-quantum-
cryptography/post-quantum-cryptography-standardization/round-3-
submissions

https://doi.org/10.1145/1250790.1250794
https://doi.org/10.1145/1250790.1250794
https://doi.org/10.1007/978-3-642-25385-0_6
https://doi.org/10.1007/978-3-642-25385-0_6
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/3-540-48658-5_18
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

Chopsticks: Fork-Free Two-Round
Multi-signatures from Non-interactive

Assumptions

Jiaxin Pan1 and Benedikt Wagner2,3(B)

1 NTNU – Norwegian University of Science and Technology, Trondheim, Norway
jiaxin.pan@ntnu.no

2 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
benedikt.wagner@cispa.de

3 Saarland University, Saarbrücken, Germany

Abstract. Multi-signatures have been drawing lots of attention in
recent years, due to their applications in cryptocurrencies. Most early
constructions require three-round signing, and recent constructions have
managed to reduce the round complexity to two. However, their secu-
rity proofs are mostly based on non-standard, interactive assumptions
(e.g. one-more assumptions) and come with a huge security loss, due to
multiple uses of rewinding (aka the Forking Lemma). This renders the
quantitative guarantees given by the security proof useless.

In this work, we improve the state of the art by proposing two efficient
two-round multi-signature schemes from the (standard, non-interactive)
Decisional Diffie-Hellman (DDH) assumption. Both schemes are proven
secure in the random oracle model without rewinding. We do not require
any pairing either. Our first scheme supports key aggregation but has
a security loss linear in the number of signing queries, and our second
scheme is the first tightly secure construction.

A key ingredient in our constructions is a new homomorphic dual-
mode commitment scheme for group elements, that allows to equivocate
for messages of a certain structure. The definition and efficient construc-
tion of this commitment scheme is of independent interest.

Keywords: Multi-Signatures · Tightness · Forking Lemma ·
Commitment Scheme · Round Complexity

1 Introduction

A multi-signature scheme [5,24] allows N parties to jointly sign a message, where
each party i holds an independent key pair (pki, ski). Recently, multi-signature

J. Pan—Supported by the Research Council of Norway under Project No. 324235.

c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14008, pp. 597–627, 2023.
https://doi.org/10.1007/978-3-031-30589-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30589-4_21&domain=pdf
https://doi.org/10.1007/978-3-031-30589-4_21

598 J. Pan and B. Wagner

schemes have been drawing new attention due to their applications in cryp-
tocurrencies. In this setting, multiple parties share ownership of funds, and can
use multi-signatures to sign transactions spending these funds. For details, we
refer to [8]. A trivial construction is that each signer i computes a signature σi

using ski, and the final signature is (σ1, . . . , σN). Yet, this trivial approach leads
to large signature size. Motivated by this, cryptographers are proposing more
sophisticated multi-signature schemes with interactive signing protocols to com-
press the signature size. In this work, we focus on concrete security of two-round
multi-signature schemes.

Security Models. There are different models in which multi-signatures have been
proposed and analyzed. Namely, schemes may require interactive key generation
[31], or require that keys are verified and include a proof of possesion of the secret
key [11,14]. Other schemes require to use a knowledge of secret key assumption
[7,29]. Besides these models, the widely accepted model for multi-signatures
nowadays is the so called plain public key model, introduced by Bellare and
Neven in their seminal work [5]. In this model, each signer generates her key pair
independently, and no knowledge assumption or proof of possession is needed.
In this paper, we are interested in the plain public key model.

Concrete Security and Tightness. Cryptographic schemes are proven secure
using reductions. To prove security of a scheme S, we transform any adver-
sary AS against the security of S with success probability εS into a solver AΠ

for some underlying hard problem Π with success probability εΠ. Thereby, we
establish a bound εS ≤ L · εΠ. We call L the security loss. Ideally, we want
the underlying hardness assumption to be as standard as possible, since a more
standard assumption gives us more confidence on the scheme’s security. We also
want the security loss as small as possible, since it relates the concrete security
of our scheme to the hardness of the underlying computational problem. This is
reflected when we use the security proof as a quantitative statement to derive
concrete parameters for scheme S based on cryptanalytic results for the well-
studied problem Π. Roughly speaking, to get κ bits of security for S, we have
to guarantee κ + log L bits of security for Π. If L is large, or depends on choices
of the adversary unknown at deployment time, instantiating the scheme in this
way leads to prohibitively large parameters, or is not even possible. This moti-
vates striving for a tight reduction, i.e. a reduction where L is a small constant.
Tightness has been studied for many primitives, including standard digital signa-
tures and related primitives, e.g., [6,22,26,28]. Unfortunately, most of existing
multi-signature schemes are non-tight. Even worse, existing two-round multi-
signature schemes have only non-tight reductions based on strong, non-standard
assumptions.

Limitations of Existing Constructions. An overview of existing schemes (based
on assumptions in cyclic groups) and their properties and security loss can be
found in Table 1. In the plain public key model, Bellare and Neven [5] constructed
a three-round multi-signature scheme (BN) based on the Discrete Logarithm

Chopsticks: Fork-Free Two-Round Multi-signatures 599

Assumption (DLOG). Proving the security of this scheme relies on rewinding and
uses the (general) Forking Lemma [5], which leads to a highly non-tight security
bound. To improve this, Bellare and Neven introduced a second three-round con-
struction (BN+) tightly based on the Decisional Diffie-Hellman (DDH) Assump-
tion. Further works focus on key aggregation [8,16,30]. This feature allows to
publicly compute a single aggregated key from a given list of public keys, which
can later be used for verification. The key aggregation property saves bandwidth
and is desirable in many applications. Notably, the three-round scheme Musig
[8,30] can be seen as a variant of BN that supports key aggregation. The scheme
is based on DLOG and a double forking technique is introduced for its analysis.
This leads to a security bound of the form ε4S ≤ L · εΠ, which is useless in terms
of concrete security. Using the Decisional Diffie-Hellman (DDH) assumption, a
tightly secure variant Musig+ of Musig has been proposed in [16].

To further reduce round complexity, recent works focused on two-round con-
structions [2,4,11,13,32]. However, while achieving certain desirable properties
(e.g. deterministic signing [33]) the proposed schemes have their drawbacks in
terms of assumptions and concrete security. The scheme [33] makes use of heavy
cryptographic machinery and is not comparable with others in terms of effi-
ciency. Further, even in the more idealized models such as the algebraic group
model, security proofs of most two-round schemes rely on non-standard interac-
tive assumptions [2,4,11,32]. The only exceptions are [4,9,13]. A second draw-
back is the apparent need for (double) rewinding in the random oracle model
[4,9,13,14,32]. While such security proofs show the absence of major structural
attacks, concrete parameters are not supported by cryptanalytic evidence.

Our Goal. Motivated by the state of the art, we study whether interac-
tive assumptions and rewinding techniques are necessary for two-round multi-
signatures. If not, we want to construct a scheme without either of them. Ideally,
our scheme comes with additional features such as key aggregation or a fully tight
security proof. We summarize our central question as follows, which is of both
practical and theoretical interest.

Can we construct two-round multi-signatures
from non-interactive pairing-free assumptions without the use of rewinding?

1.1 Our Contribution

Our work answers the above question in the affirmative. Our contributions are
the first two multi-signature schemes that are two-round from a non-interactive
assumption without using the Forking Lemma. Both of our schemes are proven
secure in the random oracle model based on the DDH assumption. Concretely,
we construct

1. a two-round multi-signature scheme with a security loss O(QS) and key aggre-
gation, where QS is the number of signing queries, and

2. the first two-round multi-signature scheme with a fully tight security proof

600 J. Pan and B. Wagner

We compare our schemes with existing schemes in Table 11. For roughly 128 bit
security, our second scheme can be instantiated with standardized 128 bit secure
curves, in contrast to all previous two-round schemes. For our first scheme, its
proof is non-tight, but it does not rely on rewinding and has tighter security based
on standard, non-interactive assumptions than other non-tight schemes (such as
HBMS and Musig2). Hence, as long as the number of signing queries QS is less
than 2192−128 = 264, we can implement our first scheme with a standardized
192-bit secure curve to achieve 128-bit security, while this is not the case for
HBMS and Musig2. We note that our schemes do not have some additional
beneficial properties (e.g. having Schnorr-compatible signatures or supporting
preprocessing) as in Musig2 [32]. We leave achieving these properties without
rewinding as an interesting open problem.

Table 1. Comparison of existing multi-signature schemes (top) in the random oracle
model with our schemes (bottom). Here, QH , QS denote the number of random ora-
cle and signing queries, respectively, ε denotes the advantage of an adversary against
the scheme. The algebraic one-more discrete logarithm (AOMDL) assumption is a
(stronger) interactive variant of DLOG.

Scheme Assumption Rounds Key Aggregation Loss

BN [5] DLOG 3 ✗ O(QH/ε)

BN+ [5] DDH 3 ✗ O(1)

Musig [8,30] DLOG 3 ✓ O(Q3
H/ε3)

Musig+ [16] DDH 3 ✓ O(1)

Musig2 [32] AOMDL 2 ✓ O(Q3
H/ε3)

HBMS [4] DLOG 2 ✓ O(Q4
SQ3

H/ε3)

Ours (Sect. 3.2) DDH 2 ✓ O(QS)

Ours (Sect. 3.3) DDH 2 ✗ O(1)

A crucial building block for our construction is a special kind of DDH-based
commitment scheme without pairings. Concretely, our commitment scheme has
the following properties.

– It commits to pairs of group elements in a homomorphic way.
– It has a dual-mode property, i.e. indistinguishable keys in statistically hiding

and statistically binding mode, with tight multi-key indistinguishability.
– The hiding mode offers a special form of equivocation trapdoor, which allows

to open commitments to group elements output by the Honest-Verifier Zero-
Knowledge (HVZK) simulator of Schnorr-like identification protocols.

Such a commitment scheme can be useful to construct other interactive signa-
ture variants, and we believe that this is of independent interest. In this paper,
1 We do not consider proofs in the (idealized) algebraic group model and do not list

schemes that are not in the plain public key model.

Chopsticks: Fork-Free Two-Round Multi-signatures 601

we construct the first commitment scheme satisfying the above properties simul-
taneously without using pairings. Our commitment scheme can be seen as an
extension of the commitment scheme in [3]2. Contrary to our scheme, the com-
mitment scheme in [3] commits to single group elements and no statistically
binding mode is shown, which makes it less desirable for our multi-signature con-
structions. Other previous commitment schemes either have no trapdoor prop-
erty [19,20], or homomorphically commit to ring or field elements [21,35]. To
the best of our knowledge, there is only a solution using pairings [18].

1.2 Concurrent Work

In a concurrent work (also at Eurocrypt 2023), Tessaro and Zhu [37] also pre-
sented (among other contributions) a new two-round multi-signature scheme.
Both our work and theirs focus on avoiding interactive assumptions. However,
while we additionally remove the security loss, Tessaro and Zhu concentrate on
having a partially non-interactive scheme. That is, the first round of the signing
protocol is independent of the message being signed. In a nutshell, they general-
ize Musig2 to linear function families. Then, under a suitable instantiation, the
interactive assumption for Musig2 can be avoided. Similar to Musig2, the result-
ing scheme is partially non-interactive. Still, their scheme inherits the security
loss of Musig2 due to (double) rewinding.

1.3 Technical Overview

We give an intuitive overview of our constructions and the challenges we solve.

Schnorr-Based Multi-Signatures. We start by recalling the basic template for
multi-signatures based on the Schnorr identification scheme [36]. Let G be a
group of prime order p with generator g. We explain the template using the vector
space homomorphism F : x �→ gx mapping from Zp to G, and write both domain
and range additively. In a first approach to get a multi-signature scheme, we let
each signer i with secret key ski sample a random ri ∈ Zp, and send Ri := F(ri)
to all other signers. Then, an aggregated R is computed as R =

∑
i Ri. From

this R, signers derive challenges ci using a random oracle. Then, each signer
computes a response si = ciski+ri and sends this response. Finally, the signature
contains R and the aggregated response s =

∑
i si. Verification is very similar

to the verification of Schnorr signatures. As each signer in this simple two-round
scheme is almost identical to the prover algorithm of the Schnorr identification
scheme, one may hope that this scheme is secure. However, early works already
noted that it is not [5].

While there are concrete attacks against the scheme, for our purposes it is
more important to understand where the security proof fails. The proof fails when
we try to simulate honest signer without knowing its secret key sk1. Following

2 Drijvers et al. [14] showed a flaw in the proof of the multi-signature scheme presented
in [3], but it does not affect their commitment scheme.

602 J. Pan and B. Wagner

Schnorr signatures and identification, this would be done by sampling R1 :=
F(s1) − c1pk1 for random c1 an s1, and then programming the random oracle
accordingly at position R. The problem in the multi-signature setting is that we
first have to output R1, and then the adversary can output the remaining Ri,
such that he has full control over the aggregate R. Thus, the random oracle may
already be defined. Previous works [5,8,30] solve this issue by introducing an
additional round, in which all signers commit to their Ri using a random oracle.
This allows us to extract all Ri from these commitments in the reduction, and
therefore R has enough entropy to program the random oracle.

A second problem that we encounter in the above approach is the extraction
of a solution from the forgery. Namely, to extract a discrete logarithm of pk1,
we need to rely on rewinding. Some of the well-known schemes [8,30] even use
rewinding multiple times. This leads to security bounds with essentially no useful
quantitative guarantee for concrete security.

Towards a Scheme without Rewinding. To avoid rewinding, our first idea is to
rely on a different homomorphism F. Namely, we borrow techniques from lossy
identification [1,26,27] and use F : x �→ (gx, hx) for a second generator h ∈ G.
We can then give a non-rewinding security proof for the three-round schemes in
[5,8,30]. Concretely, we first switch pk1 from the range of F to a random element
in G

2, using the DDH assumption. Then, we can argue that a forgery is hard
to compute using a statistical argument. We note that this idea is (implicitly)
already present in [5,16]. As we will see, combining it with techniques to avoid
the extra round is challenging.

Towards Two-Round Schemes. To go from a three-round scheme as above to a
two-round scheme, our goal is to avoid the first round. Recall that this round
was needed to simulate R1 using random oracle programming. Our idea to tackle
the simulation problem is a bit different. Namely, going back to the (insecure)
two-round scheme, our goal is to send R1 after we learn c1. If we manage to do
that, we can simulate by setting it as R1 := F(s1) − c1pk1 for random s1. Of
course, just sending R1 after learning c1 should only be possible for the reduction.
Following Damg̊ard [12], this high-level strategy can be implemented using a
trapdoor commitment scheme Com, and sending com1 = Com(ck, R1) as the
first message. The challenges ci are then derived from an aggregated commitment
com using the random oracle. Later, the reduction can open this commitment to
F(s1)−c1pk1 using the trapdoor for commitment key ck. To support aggregation,
the commitment scheme should have homomorphic properties. Note that this
approach has been used in the lattice setting in a recent work [13]. However,
implementing such a commitment scheme for (pairs of) group elements is highly
non-trivial, as we will see. Also, as already pointed out in [13], it is hard to make
this two-round approach work while avoiding rewinding at the same time. The
reason is that a trapdoor commitment scheme can not be statistically binding.
But if we want to make use of the statistical argument from lossy identification
discussed above, we need that R is fixed before the ci are sampled, which requires
statistical binding. With a computationally binding commitment scheme, we

Chopsticks: Fork-Free Two-Round Multi-signatures 603

end up in a rewinding reduction (to binding) again. Our first technical main
contribution is to overcome this issue.

Chopstick One: Our Scheme Without Rewinding. Our idea to overcome the
above problem is to demand a dual-mode property from the commitment scheme
Com. Namely, there should be an indistinguishable second way to set up the
commitment key ck, such that for such a key the scheme is statistically binding.
This does not solve the problem yet, because we require ck to be in trapdoor
mode for simulation, and in binding mode for the final forgery. The solution is
to sample ck in a message-dependent way using another random oracle, which
is (for other reasons) already done in earlier works [13,14]. In this way, we can
embed a binding commitment key in some randomly guessed random oracle
queries, and a trapdoor key in others. Note that this requires a tight multi-
key indistinguishability of the commitment scheme. Assuming we have such a
commitment scheme, we end up with our first construction, which is presented
formally in Sect. 3.2. Of course, this strategy still has a security loss linear in the
number of signing queries due to the guessing argument, but it avoids rewinding,
leading to an acceptable security bound. In addition, we can implement the
approach in a way that supports key aggregation.

Chopstick Two: Our Fully Tight Scheme. The security loss in our first scheme
results from partitioning random oracle queries into two classes, namely queries
returning binding keys, and queries returning trapdoor keys. To do such a par-
titioning in a tight way, we may try to use a Katz-Wang random bit approach
[17]. This simple approach can be used in standard digital signatures. However,
it turns out that it does not work for our case. To see this, recall that following
this approach, we would compute two message-dependent commitment keys

ck0 := H(0,m), ck1 := H(1,m).

Then, for each message, we would embed a binding key in one branch, and a
trapdoor key in the other branch, e.g. ck0 binding and ck1 with trapdoor. In the
signing protocol, we would abort one of the branches pseudorandomly based on
the message. Then we could use the trapdoor branch in the signing, and hope
that the forgery uses the binding branch. However, this strategy crucially relies
on the fact that the aborting happens in a way that is pseudorandom to the
adversary. Otherwise the adversary could always choose the trapdoor branch for
his forgery. While we can implement this in a signature scheme, in our multi-
signature scheme this fails, because all signers must use the same commitment
key to make aggregation possible. At the same time, the aborted branch must
depend on secret data of the simulated signer to remain pseudorandom.

To solve this problem, we observe that the above approach uses a pseudo-
random “branch selection” and aborts the other branch. Our solution can be
phrased as a pseudorandom “branch-to-key matching”. Namely, we give each
signer two public keys (pki,0, pki,1). The signing protocol is run in two instances
in parallel. One instance uses ck0, and one uses ck1 as above. More precisely, we

604 J. Pan and B. Wagner

commit to R0 via ck0 and to R1 via ck1. Then we aggregate and determine the
challenges ci,0 and ci,1. However, before sending the response si = (si,0, si,1),
each signer separately determines which key to use in which instance, i.e. it
computes

si,0 = ci,0 · xi,bi + ri,0, si,1 = ci,1 · xi,1−bi + ri,1,

where bi is a pseudorandom bit that each signer i computes independently, and
that will be included in the final signature to make verification possible. This
decouples the public key that is used from the commitment key that is used. Now
we are ready to discuss the implication of this change. Namely, our reduction
chooses pk1,0 honestly and pk1,1 as a lossy key, i.e. random instead of in the range
of F. Then, in each signing interaction, the reduction can match the honest
public key with the binding commitment key and the lossy public key with
the trapdoor commitment key by setting b1 accordingly. In this way, we can
simulate one branch using the actual secret key, and the other branch using the
commitment trapdoor. For the forgery, we hope that the matching is the other
way around, such that binding commitment key and lossy public key match,
which makes the statistical argument from lossy identification possible. Overall,
this approach leads to our fully tight scheme, presented in Sect. 3.3.

The Challenge of Instantiating the Commitment. One may observe that we
shifted a lot of the challenges that we encountered into properties of the under-
lying commitment scheme. This naturally raises the question if such a commit-
ment scheme can be found. In fact, constructing this commitment scheme can
be understood as our second technical main contribution.

Let us first explain why it is non-trivial to construct such a scheme. The
main barrier results from the algebraic structure that we demand. Namely, we
need to commit to group elements3 R ∈ G. A naive idea would be to use any
trapdoor commitment scheme, e.g. Pedersen commitments, by first encoding R
in the appropriate message space. However, this would destroy all homomorphic
properties that we need, and we should not forget that we need a dual-mode
property. This brings us to Groth-Sahai commitments [20], which can commit to
group elements. Indeed, these commitments are homomorphic, and have (indis-
tinguishable from) random keys, such that we can sample them using a ran-
dom oracle. They are also dual-mode based on DDH, which allows us to use
the random self-reducibility of DDH to show tight multi-key indistinguishabil-
ity. However, the trapdoor property turns out to be the main challenge. To see
why this is problematic, note that the opening information of these commit-
ments typically contains elements from Zp that are somehow used as exponents.
There are exceptions to this rule, like [18], but they use pairings and the DLIN
assumption, which we aim to avoid. This means that the trapdoor should allow
us to sample exponents, given a group element R to which we want to open the
commitment. This naturally corresponds to having a trapdoor for the discrete
logarithm problem, which we do not have.
3 In the actual construction, we need to commit to pairs of group elements, but we

consider the simpler setting of one group element in this overview.

Chopsticks: Fork-Free Two-Round Multi-signatures 605

Our Solution: Weakly Equivocable Commitments. Our starting point is the com-
mitment scheme for group elements given in [20]. Namely, commitment keys
correspond to matrices A = (Ai,j)i,j ∈ G

2×2, and to commit to a message
R = gr ∈ G with randomness (α, β) ∈ Zp, one computes

com := (C0, C1)
t :=

(
Aα

1,1 · Aβ
1,2, R · Aα

2,1 · Aβ
2,2

)t

.

That is, setting E = (Ei,j)i,j ∈ Zp such that gEi,j = Ai,j , we can write the
discrete logarithm of com as (0, r)t + E · (α, β)t. In binding mode, matrix E is
a matrix of rank 1, while E has full rank in hiding mode. It is easy to see that
this commitment scheme to group elements is homomorphic. However, we stress
that there is no simple solution to implement a trapdoor for equivocation. To
see this, note that if we want to open a commitment com to a message R′ ∈ G,
we need to output a suitable tuple (α, β). If we knew the discrete logarithm of
com, then we still would need to know the discrete logarithm of R′ to find such
a tuple. The key insight of our trapdoor construction is that we do not need to
be able to open com to any message R′. Instead, it will be sufficient if we can
open it to messages of the form R′ = gs · pkc, where we do not know c when we
fix the commitment com, but we know pk when setting up A. To explain why
this helps, assume we want to find a valid opening (α, β) in this case. Then we
need to satisfy

com =
(

C0

C1

)

=
(

0
gspkc

)

· gE ·(α,β)t .

It seems like we did not make progress, because even if we know the discrete
logarithms of C0, C1, the term pkc is not known in the exponent. Now, our key
idea to solve this is to write and generate A with respect to basis pk in the
second row. Namely, we generate A as

A =
(

A1,1 A1,2

A2,1 A2,2

)

:=
(

gd1,1 gd1,2

pkd2,1 pkd2,2

)

.

In this way, the equation that we need to satisfy becomes
(

C0

C1

)

=
(

gd1,1α+d1,2β

gspkc+d2,1α+d2,2β

)

.

Next, we get rid of the term gs by shifting C1 accordingly. Namely, recall that we
can sample s at random long before we learn c. Setting C0 = gτ and C1 = gspkρ

for random τ, ρ, we obtain the equation
(

gτ

pkρ

)

=
(

gd1,1α+d1,2β

pkc+d2,1α+d2,2β

)

.

Given the trapdoor D = (di,j)i,j , this can easily be solved for (α, β) by solving
(τ, ρ − c)t = D · (α, β)t. We are confident that such a weak and structured
equivocation property can be used in other applications as well, and formally
define this type of commitment scheme in Sect. 3.1.

606 J. Pan and B. Wagner

2 Preliminaries

We denote the security parameter by λ ∈ N, and all algorithms get 1λ implicitly
as input. We write x $← S if x is sampled uniformly at random from a finite
set S, and we write x ← D if x is sampled according to a distribution D. We
write y ← A(x), if y is output from (probabilistic) algorithm A on input x with
uniform coins. To make the coins explicit, we use the notation y = A(x; ρ).
The notation y ∈ A(x) indicates that y is a possible output of A(x). We use
standard asymptotic notation, and the notions of negligible functions, and PPT
algorithms. If G is a security game, we write G ⇒ b to state that G outputs b.
In all our games, numerical variables are implicitly initialized with 0, and lists
and sets are initialized with ∅. We define [K] := {1, . . . ,K}, and denote the
Bernoulli distribution with parameter γ ∈ [0, 1] by Bγ .

Multi-signatures. We introduce syntax and security for multi-signatures, follow-
ing the established security notions in the plain public key model [5]. We will
assume that there is an canonical ordering of given multi-sets, e.g. lexicographi-
cally, that allows us to uniquely encode multi-sets P = {pk1, . . . , pkN}. For this
encoding, we write 〈P〉 throughout the paper. Further, for simplicity of notation,
we assume that the honest public key in our security definition is the entry pk1

in this multi-set.

Alg MS.Exec(P, S,m)
01 let P = {pk1, . . . , pkN}, S = {sk1, . . . , skN}
02 for i ∈ [N] : (pm1,i, St1,i) ← Sig0(P, sk,m)
03 M1 := (pm1,1, . . . , pm1,N)
04 for i ∈ [N] : (pm2,i, St2,i) ← Sig1(St1,i, M1)
05 M2 := (pm2,1, . . . , pm2,N)
06 for i ∈ [N] : σi ← Sig2(St2,i, M2)
07 if ∃i �= j ∈ [N] s.t. σi �= σj : return ⊥
08 return σ := σ1

Fig. 1. The algorithm MS.Exec for a (two-round) multi-signature scheme MS =
(Setup,Gen, Sig,Ver), representing an honest execution of the signing protocol Sig.

Definition 1 (Multi-signature Scheme). A (two-round) multi-signature
scheme is a tuple of PPT algorithms MS = (Setup,Gen,Sig,Ver) with the fol-
lowing syntax:

– Setup(1λ) → par takes as input the security parameter 1λ and outputs global
system parameters par. We assume that par implicitly defines sets of public
keys, secret keys, messages and signatures, respectively. All algorithms related
to SIG take at least implicitly par as input.

– Gen(par) → (pk, sk) takes as input system parameters par, and outputs a public
key pk and a secret key sk.

Chopsticks: Fork-Free Two-Round Multi-signatures 607

– Sig = (Sig0,Sig1,Sig2) is split into three algorithms:
• Sig0(P, sk,m) → (pm1, St1) takes as input a multi-set P = {pk1, . . . , pkN}

of public keys, a secret key sk, and a message m, and outputs a protocol
message pm1 and a state St1.

• Sig1(St1,M1) → (pm2, St2) takes as input a state St1 and a tuple M1 =
(pm1,1, . . . , pm1,N) of protocol messages, and outputs a protocol message
pm2 and a state St2.

• Sig2(St2,M2) → σi takes as input a state St2 and a tuple M2 =
(pm2,1, . . . , pm2,N) of protocol messages, and outputs a signature σ.

– Ver(P,m, σ) → b is deterministic, takes as input a multi-set P = {pk1, . . . ,
pkN} of public keys, a message m, and a signature σ, and outputs a bit b ∈
{0, 1}.

We require that MS is complete, i.e. for all par ∈ Setup(1λ), all N = poly(λ), all
(pkj , skj) ∈ Gen(par) for j ∈ [N], and all messages m, we have

Pr
[

Ver(P,m, σ) = 1
∣
∣
∣
∣
P = {pk1, . . . , pkN},S = {sk1, . . . , skN},
σ ← MS.Exec(P,S,m)

]

= 1,

where algorithm MS.Exec is defined in Fig. 1.

Definition 2 (Key Aggregation). A multi-signature scheme MS = (Setup,
Gen,Sig,Ver) is said to support key aggregation, if the algorithm Ver can be split
into two deterministic polynomial time algorithms Agg,VerAgg with the following
syntax:

– Agg(P) → p̃k takes as input a multi-set P = {pk1, . . . , pkN} of public keys
and outputs an aggregated key p̃k.

– VerAgg(p̃k,m, σ) → b is deterministic, takes as input an aggregated key p̃k, a
message m, and a signature σ, and outputs a bit b ∈ {0, 1}.

Precisely, algorithm Ver(P,m, σ) can be written as VerAgg(Agg(P),m, σ).

Definition 3 (MS-EUF-CMASecurity). Let MS = (Setup,Gen,Sig,Ver) be a
multi-signature scheme and consider the game MS-EUF-CMA defined in
Fig. 2. We say that MS is MS-EUF-CMAsecure, if for all PPT adversaries A,
the following advantage is negligible:

AdvMS-EUF-CMA
A,MS (λ) := Pr

[
MS-EUF-CMAA

MS(λ) ⇒ 1
]
.

Linear Function Families. To present our constructions in a modular way, we
make use of the abstraction of linear function families. Our definition is close
to previous definitions [10,23,25]. As it is not needed for our instantiations, we
restrict our setting to vector spaces instead of pseudo modules.

Definition 4 (Linear Function Family). A linear function family (LFF) is
a tuple of PPT algorithms LF = (Gen,F) with the following syntax:

608 J. Pan and B. Wagner

Game MS-EUF-CMAA
MS(λ)

01 par ← Setup(1λ)
02 (pk, sk) ← Gen(par)
03 Sig := (Sig0,Sig1,Sig2)
04 (P∗,m∗, σ∗) ← ASig(par, pk)
05 if pk /∈ P∗ ∨ (P∗,m∗) ∈ L :
06 return 0
07 return Ver(P∗,m∗, σ∗)

Oracle Sig0(P,m)
08 let P = {pk1, . . . , pkN}
09 if pk1 �= pk : return ⊥
10 L := L ∪ {(P,m)}
11 sid := sid + 1, ctr[sid] := 1
12 (pm1, St1) ← Sig0(P, sk,m)
13 (pm1[sid], St1[sid]) := (pm1, St1)
14 return (pm1[sid], sid)

Oracle Sig1(sid, M1)
15 if ctr[sid] �= 1 : return ⊥
16 let M1 = (pm1,1, . . . , pm1,N)
17 if pm1[sid] �= pm1,1 : return ⊥
18 ctr[sid] := ctr[sid] + 1
19 (pm2, St2) ← Sig1(St1[sid], M1)
20 (pm2[sid], St2[sid]) := (pm2, St2)
21 return pm2[sid]

Oracle Sig2(sid, M2)
22 if ctr[sid] �= 2 : return ⊥
23 let M2 = (pm2,1, . . . , pm2,N)
24 if pm2[sid] �= pm2,1 : return ⊥
25 ctr[sid] := ctr[sid] + 1
26 σ ← Sig2(St2[sid], M2)
27 return σ

Fig. 2. The game MS-EUF-CMA for a (two-round) multi-signature scheme MS and
an adversary A. For simplicity of exposition, we assume that the canonical ordering of
multi-sets is chosen such that pk is always at the first position if it is included.

– Gen(1λ) → par takes as input the security parameter 1λ and outputs parame-
ters par. We assume that par implicitly defines the following sets:

• A set of scalars Spar, which forms a field.
• A domain Dpar, which forms a vector space over Spar.
• A range Rpar, which forms vector space over Spar.

We omit the subscript par if it is clear from the context, and naturally denote
the operations of these fields and vector spaces by + and ·.

– F(par, x) → X is deterministic, takes as input parameters par, an element
x ∈ D, and outputs an element X ∈ R. For all parameters par, F(par, ·)
realizes a homomorphism, i.e.

∀s ∈ S, x, y ∈ D : F(par, s · x + y) = s · F(par, x) + F(par, y).

We omit the input par if it is clear from the context.

We formalize necessary conditions under which a linear function family can be
used to construct so called lossy identification [1]. Our constructions will rely on
such linear function families. We also give a similar definition that captures a
similar property in the context of key aggregation.

Definition 5 (Lossiness Admitting LFF). We say that a linear function
family LF = (Gen,F) is εl-lossiness admitting, if the following properties hold:

– Key Indistinguishability. For any PPT algorithm A, the following advan-
tage is negligible:

AdvkeydistA,LF (λ) := | Pr
[
A(par,X) = 1

∣
∣par ← Gen(1λ), x $← D, X := F(x)

]

− Pr
[
A(par,X) = 1

∣
∣par ← Gen(1λ), X $← R

]
|.

Chopsticks: Fork-Free Two-Round Multi-signatures 609

– Lossy Soundness. For any unbounded algorithm A, the following probability
is at most εl:

Pr

⎡

⎣F(s) − c · X = R

∣
∣
∣
∣
∣
∣

par ← Gen(1λ), X $← R,
(St,R) ← A(par,X),
c $← S, s ← A(St, c)

⎤

⎦ .

Definition 6 (Aggregation Lossy Soundness). We say that a linear func-
tion family LF = (Gen,F) satisfies εal-aggregation lossy soundness, if for any
unbounded algorithm A, the following probability is at most εal:

Pr

⎡

⎢
⎢
⎣F(s) − c ·

N∑

i=1

aiXi = R

∣
∣
∣
∣
∣
∣
∣
∣

par ← Gen(1λ), X1
$← R,

(St, (X2, a2), . . . , (XN , aN)) ← A(par,X1),
a1

$← S, (St′, R) ← A(St, a1),
c $← S, s ← A(St′, c)

⎤

⎥
⎥
⎦ .

Assumptions. We recall the computational assumptions that we need.

Definition 7 (DDH Assumption). Let GGen be an algorithm that on input 1λ

outputs the description of a prime order group G of order p with generator g. We
say that the DDH assumption holds relative to GGen, if for all PPT algorithms
A, the following advantage is negligible:

AdvDDH
A,GGen(λ) := | Pr

[

A(G, p, g, h, ga, ha) = 1
∣
∣
∣
∣
(G, g, p) ← GGen(1λ),
h $← G, a $← Zp

]

−Pr
[

A(G, p, g, h, ga, gb) = 1
∣
∣
∣
∣
(G, g, p) ← GGen(1λ),
h $← G, a, b $← Zp

]

|.

In the following, we define an equivalent variant of the DDH assumption,
uDDH3. uDDH3 is the 2-fold U3,1-Matrix-DDH (MDDH) assumption (with ter-
minology in [15]). By its random self-reducibility [15, Lemma 1], the 2-fold U3,1-
Matrix-DDH (MDDH) assumption (namely, the uDDH3 assumption) is tightly
equivalent to the U3,1-MDDH assumption. By Lemma 1 in [28], U3,1-MDDH is
tightly equivalent to U1-MDDH that is the DDH assumption. Hence, the DDH
and uDDH3 assumptions are tightly equivalent.

Definition 8 (uDDH3Assumption). Let GGen be an algorithm that on input
1λ outputs the description of a prime order group G of order p with generator
g. We say that the uDDH3 assumption holds relative to GGen, if for all PPT
algorithms A, the following advantage is negligible:

AdvuDDH3
A,GGen(λ) := | Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

A(G, p, g, (hi,j)i,j∈[3]) = 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(G, g, p) ← GGen(1λ),
a, b $← Zp,
h1,1, h2,1, h3,1

$← G

h1,2 := ha
1,1, h1,3 := hb

1,1

h2,2 := ha
2,1, h2,3 := hb

2,1

h3,2 := ha
3,1, h3,3 := hb

3,1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

−Pr
[

A(G, p, g, (hi,j)i,j∈[3]) = 1
∣
∣
∣
∣
(G, g, p) ← GGen(1λ),
∀(i, j) ∈ [3] × [3] : hi,j

$← G

]

|.

610 J. Pan and B. Wagner

3 Constructions

In this section, we present our construction of two-round multi-signatures. First,
we give a definition of a special commitment scheme that will be used in both
constructions. Then, we present the constructions in an abstract way. For the
instantiation, we refer to Sect. 4.

3.1 Preparation: Special Commitments

In this section we define a special kind of commitment scheme. We will make
use of such a scheme in our constructions of multi-signatures. Before we give
the definition, we explain the desired properties at a high level. First of all, we
want to be able to commit to elements R ∈ R in the range of a given linear
function family. Second, we need the commitment scheme to be homomorphic in
both messages and randomness, allowing us to aggregate commitments during
the signing protocol. Third, we need a certain dual mode property, ensuring that
we can set up keys either in a perfectly hiding or in a perfectly binding mode.
This will allow us to make the commitment key for the forgery binding, while
associating a equivocation trapdoor to the keys used to answer signing queries.
We emphasize that we do not need a full-fledged equivocation feature. This is
because we already know parts of the structure of messages to which we want
to open the commitment. Looking ahead, this is the reason we can instantiate
the commitment in the DDH setting.

Game Q-KEYDISTA
0,CMT(λ)

01 par ← LF.Gen(1λ), x $← D
02 if (par, x) /∈ Good : return 0
03 for i ∈ [Q] : cki ← BGen(par)
04 β ← A(par, x, (cki)i∈[Q])
05 return β

Game Q-KEYDISTA
1,CMT(λ)

06 par ← LF.Gen(1λ), x $← D
07 if (par, x) /∈ Good : return 0
08 for i ∈ [Q] : cki

$← Kpar

09 β ← A(par, x, (cki)i∈[Q])
10 return β

Fig. 3. The games KEYDIST0,KEYDIST1 for a special commitment scheme CMT
and an adversary A.

Definition 9 (Special Commitment Scheme). Let LF = (LF.Gen,F) be a
linear function family and G = {Gpar},H = {Hpar} be families of subsets of
abelian groups with efficiently computable group operations ⊕ and ⊗, respectively.
Let K = {Kpar} be a family of sets. An (εb, εg, εt)-special commitment scheme for
LF with key space K, randomness space G and commitment space H is a tuple
of PPT algorithms CMT = (BGen,TGen,Com,TCom,TCol) with the following
syntax:

– BGen(par) → ck takes as input parameters par, and outputs a key ck ∈ Kpar.

Chopsticks: Fork-Free Two-Round Multi-signatures 611

– TGen(par,X) → (ck, td) takes as input parameters par, and an element X ∈
R, and outputs a key ck ∈ Kpar and a trapdoor td.

– Com(ck, R;ϕ) → com takes as input a key ck, an element R ∈ R, and a
randomness ϕ ∈ Gpar, and outputs a commitment com ∈ Hpar.

– TCom(ck, td) → (com, St) takes as input a key ck and a trapdoor td, and
outputs a commitment com ∈ Hpar and a state St.

– TCol(St, c) → (ϕ,R, s) takes as input a state St, and an element c ∈ S, and
outputs randomness ϕ ∈ Gpar, and elements R ∈ R, s ∈ D.

We omit the subscript par if it is clear from the context.
Further, the algorithms are required to satisfy the following properties:

– Homomorphism. For all par ∈ LF.Gen(1λ), ck ∈ Kpar, R0, R1 ∈ R and
ϕ0, ϕ1 ∈ G, the following holds:

Com(ck, R0;ϕ0) ⊗ Com(ck, R1;ϕ1) = Com(ck, R0 + R1;ϕ0 ⊕ ϕ1).

– Good Parameters. There is a set Good, such that membership to Good can
be decided in polynomial time, and

Pr
[
(par, x) /∈ Good | par ← LF.Gen(1λ), x $← D

]
≤ εg,

– Uniform Keys. For all (par, x) ∈ Good, the following distributions are iden-
tical:

{(par, x, ck) | ck $← Kpar} and {(par, x, ck) | (ck, td) ← TGen(par,X)}.

– Special Trapdoor Property. For all (par, x) ∈ Good, and all c $← S, the
following distributions T0 and T1 have statistical distance at most εt:

T0 :=

⎧
⎨

⎩
(par, ck, td, x, c, com, tr)

∣
∣
∣
∣
∣
∣

(ck, td) ← TGen(par,F(x))
(com, St) ← TCom(ck, td),
tr ← TCol(St, c)

⎫
⎬

⎭

T1 :=

⎧
⎪⎪⎨

⎪⎪⎩

(par, ck, td, x, c, com, tr)

∣
∣
∣
∣
∣
∣
∣
∣

(ck, td) ← TGen(par,F(x))
r $← D, R := F(r), ϕ $← G,
com := Com(ck, R;ϕ),
s := c · x + r, tr := (ϕ,R, s)

⎫
⎪⎪⎬

⎪⎪⎭

– Multi-Key Indistinguishability. For every Q = poly(λ) and any PPT
algorithm A, the following advantage is negligible:

AdvQ-keydist
A,CMT (λ) := | Pr

[
Q-KEYDISTA

0,CMT(λ) ⇒ 1
]

− Pr
[
Q-KEYDISTA

1,CMT(λ) ⇒ 1
]
|,

where games KEYDIST0,KEYDIST1 are defined in Fig. 3.
– Statistically Binding. There exists some (unbounded) algorithm Ext, such

that for every (unbounded) algorithm A the following probability is at most
εb:

Pr

⎡

⎣Com(ck, R′;ϕ′) = com
∧ R �= R′

∣
∣
∣
∣
∣
∣

par ← LF.Gen(1λ),
ck ← BGen(par), (com, St) ← A(ck),
R ← Ext(ck, com), (R′, ϕ′) ← A(St)

⎤

⎦ .

612 J. Pan and B. Wagner

3.2 Our Construction with Key Aggregation

In this section, we construct a two-round multi-signature scheme with key
aggregation. Although the scheme will not be tight, the security proof will
not use rewinding, leading to an acceptable security loss. For our scheme,
we need a lossiness admitting linear function family LF = (LF.Gen,F).
It should also satisfy aggregation lossy soundness. Further, let CMT =
(BGen,TGen,Com,TCom,TCol) be an (εb, εg, εt)-special commitment scheme for
LF with key space K randomness space G and commitment space H. We make
use of random oracles H : {0, 1}∗ → K , Ha : {0, 1}∗ → S, and Hc : {0, 1}∗ → S.
We give a verbal description of our scheme MSa[LF,CMT].

Setup and Key Generation. The public parameters of the scheme are par ←
LF.Gen(1λ) defining the linear function F = F(par, ·). To generate a key (algo-
rithm Gen), a user samples sk := x $← D. The public key is pk := X := F(x).

Key Aggregation. For N users with public keys P = {pk1, . . . , pkN}, the aggre-
gated public key p̃k is computed (by algorithm Agg) as

p̃k := X̃ :=
N∑

i=1

ai · Xi,

where pki = Xi and ai := Ha(〈P〉, pki) for each i ∈ [N].

Signing Protocol. Suppose N users with public keys P = {pk1, . . . , pkN} want
to sign a message m ∈ {0, 1}∗. We describe the signing protocol (algorithms
Sig0,Sig1,Sig2) from the perspective of the first user, which holds a secret key
sk1 = x1 for public key pk1 = X1.

1. Commitment Phase. The user derives the aggregated public key p̃k as
described above. Then, it derives a commitment key ck := H(p̃k,m) depend-
ing on the message. The user samples an element r1

$← D and sets
R1 := F(r1). Next, it commits to R1 by sampling ϕ1

$← G and setting
com1 := Com(ck, R1;ϕ1). Finally, it sends pm1,1 := com1 to all users.

2. Response Phase. Let M1 = (pm1,1, . . . , pm1,N) be the list of messages output
in the commitment phase. Here, message pm1,i is sent by user i and has the
form pm1,i = comi. With this notation, the user aggregates the commitments
via com :=

⊗
i∈[N] comi. It computes the challenge c and coefficient a1 via

c := Hc(p̃k, com,m) and a1 := Ha(〈P〉, pk1). Then, it computes the response
s1 as s1 := c · a1 · x1 + r1.
Finally, the user sends pm2,1 := (s1, ϕ1) to all users.

3. Aggregation Phase. Let M2 = (pm2,1, . . . , pm2,N) be the list of messages
output in the response phase. Here, message pm2,i is sent by user i and has
the form pm2,i = (si, ϕi). To compute the final signature, users aggregate the
responses and commitment randomness as follows:

s :=
∑

i∈[N]

si, ϕ :=
⊕

i∈[N]

ϕi.

Chopsticks: Fork-Free Two-Round Multi-signatures 613

They output the final signature σ := (com, s, ϕ).

Verification. For verification (algorithm Ver), let P = {pk1, . . . , pkN} be a
multi-set of public keys, m ∈ {0, 1}∗ be a message, and σ = (com, s, ϕ) be
a signature. To verify σ, we determine the aggregated public key p̃k = X̃ as
above. We reconstruct the commitment key ck := H(p̃k,m), and the challenge
c := Hc(p̃k, com,m). Then, we output 1 if and only if the following equation
holds:

com = Com
(
ck,F(s) − c · X̃;ϕ

)
.

Completeness easily follows from the homomorphic properties of CMT and F.
For a similar calculation, we refer to the proof of Lemma 2.

Lemma 1. Let LF be a linear function family. Let CMT be a (εb, εg, εt)-special
commitment scheme for LF. Then MSa[LF,CMT] is complete.

Theorem 1. Let LF be a εl-lossiness admitting linear function family with
εal-aggregation lossy soundness. Let CMT be a (εb, εg, εt)-special commitment
scheme for LF. Further, let H : {0, 1}∗ → K,Ha : {0, 1}∗ → S, and Hc : {0, 1}∗ →
S be random oracles. Then MSa[LF,CMT] is MS-EUF-CMAsecure.

Concretely, for any PPT algorithm A that makes at most QH, QHa
, QHc

, QS

queries to oracles H,Ha,Hc,Sig0, respectively, there are PPT algorithms B,B′

with T(B) ≈ T(A),T(B′) ≈ T(A) and

AdvMS-EUF-CMA
A,MSa[LF,CMT](λ) ≤ εg + 4Q2

Sεt + 4QSεg + 4QSQHQHc
εb

+
4QS

|R| +
4QSQHa

QHc

|S| + 4QSQHa
QHc

εal

+ 4QS

(
AdvQH-keydist

B,CMT (λ) + AdvkeydistB′,LF (λ)
)

.

We postpone the proof to the full version [34].

3.3 Our Tight Construction

In this section, we present a tightly secure two-round multi-signature scheme
MSt[LF,CMT] = (Setup,Gen,Sig,Ver). Let us first describe the building blocks
that we need. We make use of a lossiness admitting linear function family
LF = (LF.Gen,F). Also, let CMT = (BGen,TGen,Com,TCom,TCol) be an
(εb, εg, εt)-special commitment scheme for LF with key space K randomness space
G and commitment space H. We make use of random oracles H : {0, 1}∗ → K,
Hb : {0, 1}∗ → {0, 1}, and Hc : {0, 1}∗ → S. We give a verbal description of the
scheme.

Setup and Key Generation. The public parameters of the scheme are par ←
LF.Gen(1λ). They define the linear function F = F(par, ·). To generate a key
(algorithm Gen), a user samples x0, x1

$← D and a seed seed $← {0, 1}λ. Then, it
sets

sk := (x0, x1, seed), pk := (X0,X1) := (F(x0),F(x1)).

614 J. Pan and B. Wagner

Signing Protocol. Suppose N users with public keys P = {pk1, . . . , pkN} want
to sign a message m ∈ {0, 1}∗. We describe the signing protocol (algorithms
Sig0,Sig1,Sig2) from the perspective of the first user, which holds a secret key
sk1 = (x1,0, x1,1, seed1) for public key pk1 = (X1,0,X1,1).

1. Commitment Phase. The user derives commitment keys ck0 := H(0, 〈P〉,m),
ck1 := H(1, 〈P〉,m) depending on the message. Then, the user computes a bit
b1 := Hb(seed1, 〈P〉,m). It samples two elements r1,0, r1,1

$← D and sets

R1,0 := F(r1,0), R1,1 := F(r1,1).

Next, it commits to the resulting elements by sampling ϕ1,0, ϕ1,1
$← G and

setting

com1,0 := Com(ck0, R1,0;ϕ1,0), com1,1 := Com(ck1, R1,1;ϕ1,1).

Finally, it sends pm1,1 := (b1, com1,0, com1,1) to all users.
2. Response Phase. Let M1 = (pm1,1, . . . , pm1,N) be the list of messages output

in the commitment phase. Here, message pm1,i is sent by user i and has
the form pm1,i = (bi, comi,0, comi,1). With this notation, the user sets B :=
b1 . . . bN ∈ {0, 1}N . Then, it aggregates the commitments via

com0 :=
⊗

i∈[N]

comi,0, com1 :=
⊗

i∈[N]

comi,1.

It computes user specific challenges via

c1,0 := Hc(pk1, com0,m, 〈P〉, B, 0), c1,1 := Hc(pk1, com1,m, 〈P〉, B, 1),

and the responses as

s1,0 := c1,0 · x1,b1 + r1,0, s1,1 := c1,1 · x1,1−b1 + r1,1.

Observe that the bit b1 determines the link between the responses, challenges,
and public keys. Finally, the user sends pm2,1 := (s1,0, s1,1, ϕ1,0, ϕ1,1) to all
users.

3. Aggregation Phase. Let M2 = (pm2,1, . . . , pm2,N) be the list of messages
output in the response phase. Here, message pm2,i is sent by user i and has
the form pm2,i = (si,0, si,1, ϕi,0, ϕi,1). To compute the final signature, users
aggregate the responses and commitment randomness as follows:

s0 :=
∑

i∈[N]

si,0, s1 :=
∑

i∈[N]

si,1, ϕ0 :=
⊕

i∈[N]

ϕi,0, ϕ1 :=
⊕

i∈[N]

ϕi,1.

They define σ0 := (com0, ϕ0, s0), σ1 := (com1, ϕ1, s1) and output the final
signature σ := (σ0, σ1, B).

Chopsticks: Fork-Free Two-Round Multi-signatures 615

Verification. For verification (algorithm Ver), let P = {pk1, . . . , pkN} be a multi-
set of public keys, m ∈ {0, 1}∗ be a message, and σ = (σ0, σ1, B) be a signature.
To verify σ, we write B = b1 . . . bN , σ0 = (com0, ϕ0, s0) and σ1 = (com1, ϕ1, s1).
Further, we write the public keys pki as pki = (Xi,0,Xi,1). We reconstruct the
commitment keys ck0 := H(0, 〈P〉,m), ck1 := H(1, 〈P〉,m), and the user specific
challenges

ci,0 := Hc(pki, com0,m, 〈P〉, B, 0), ci,1 := Hc(pki, com1,m, 〈P〉, B, 1).

Then, we output 1 if and only if the following two equations hold:

com0 = Com

(

ck0,F(s0) −
N∑

i=1

ci,0 · Xi,bi ;ϕ0

)

com1 = Com

(

ck1,F(s1) −
N∑

i=1

ci,1 · Xi,1−bi ;ϕ1

)

.

Lemma 2. Let LF be a linear function family. Let CMT be a (εb, εg, εt)-special
commitment scheme for LF. Then MSt[LF,CMT] is complete.

The proof is an easy calculation and is given in the full version [34].

Theorem 2. Let LF be a εl-lossiness admitting linear function family. Let CMT
be a (εb, εg, εt)-special commitment scheme for LF. Further, let H : {0, 1}∗ → K,
Hb : {0, 1}∗ → {0, 1},Hc : {0, 1}∗ → S be random oracles. Then MSt[LF,CMT] is
MS-EUF-CMAsecure.

Concretely, for any PPT algorithm A that makes at most QH, QHb
, QHc

, QS

queries to oracles H,Hb,Hc,Sig0, respectively, there are PPT algorithms B,B′

with T(B) ≈ T(A),T(B′) ≈ T(A) and

AdvMS-EUF-CMA
A,MSt[LF,CMT](λ) ≤ QHb

2λ
+ 4εg + 2QSεt + 2QHQHc

εb + 2QHc
εl

+ 2 · AdvQH-keydist
B,CMT (λ) + 2 · AdvkeydistB′,LF (λ).

Proof. Set MS := MSt[LF,CMT]. Let A be a PPT algorithm as in the statement.
We prove the claim via a sequence of games G0-G8. For each game Gi, i ∈ [8],
we define

Advi := Pr [Gi ⇒ 1] .

Game G0: We define G0 to be exactly as MS-EUF-CMAA
MS, with the follow-

ing modification: The adversary A does not get access to oracle Sig2. Note that
in MS, algorithm Sig2 does not make any use of the secret key or a secret state
and can be publicly run using the messages output in Sig0 and Sig1. Therefore,
for any adversary in the original game, there is an adversary in game G0 that
simulates oracle Sig2 and has the same advantage.

Before we proceed, let us describe game G0 in more detail to fix some nota-
tion. In the beginning, the game samples parameters par ← LF.Gen(1λ). It also

616 J. Pan and B. Wagner

samples a public key pk∗ = (X1,0,X1,1) = (F(x1,0),F(x1,1)) for a secret key
sk∗ = (x1,0, x1,1, seed1) with x1,0, x1,1

$← D, seed1
$← {0, 1}λ. Then, it runs A on

input par, pk∗ with access to the following oracles:

– Signing oracles Sig0,Sig1: The oracles simulate algorithms Sig0 and Sig1

on secret key sk∗, respectively. Here, A can submit a query Sig0(P,m) to
start a new interaction in which message m is signed for public keys P =
{pk1, . . . , pkN}. We assume that pk∗ = pk1, and the oracle adds (P,m) to a
list L.

– Random oracles H,Hb,Hc: The random oracles H,Hc are simulated honestly
via lazy sampling. To this end, the game holds maps h, hc that map the inputs
of the respective random oracles to their outputs. Random oracle Hb, however,
is simulated by forwarding the query to an internal oracle H̄b with the same
interface. This oracle holds a similar map ĥb, is kept internally by the game,
and is not provided to the adversary. Looking ahead, this indirection allows
us to distinguish queries to Hb that some of the following games issue from
the queries that the adversary issues.

In the end, A outputs a forgery (P∗,m∗, σ∗). The game outputs 1 if and only if
pk∗ ∈ P∗,(P∗,m∗) /∈ L, and Ver(P∗,m∗, σ∗) = 1. Without loss of generality, we
assume that the public key pk∗ is equal to pk1 for P∗ = {pk1, . . . , pkN}. To fix
notation, write σ∗ = (σ∗

0 , σ∗
1 , B∗), B∗ = b∗

1 . . . b∗
N and σ∗

0 = (com∗
0, ϕ

∗
0, s

∗
0), σ

∗
1 =

(com∗
1, ϕ

∗
1, s

∗
1). Clearly, we have

Adv0 = AdvMS-EUF-CMA
A,MSt[LF,CMT](λ).

Game G1: In game G1, we add an abort. Namely, the game sets bad := 1, and
aborts, if the adversary makes a random oracle query Hb(seed1, ·). Note that this
does not include the queries that are made by the game itself, as these are done
using oracle H̄b directly. As the only information about seed1 that A gets are the
values of Hb(seed1, ·), and seed1 is sampled uniformly at random from {0, 1}λ,
we can upper bound the probability of bad by QHb

/2λ. Therefore, we have

|Adv0 − Adv1| ≤ Pr [bad] ≤ QHb

2λ
.

Game G2: In game G2, we restrict the winning condition. Namely, the
game outputs 0, if the forgery (P∗,m∗, σ∗) output by A satisfies b∗

1 �= 1 −
H̄b(seed1, 〈P∗〉,m∗). Recall that b∗

1 is the bit related to pk1 = pk∗ that is included
in the signature σ∗. Assuming G1 outputs 1, we know that (P∗,m∗) /∈ L.
Therefore, A can only get information about the bit H̄b(seed1, 〈P∗〉,m∗), if it
queries the wrapper random oracle Hb at this position. However, in this case
G1 would set bad := 1 and abort. Thus, the view of A is independent of bit
H̄b(seed1, 〈P∗〉,m∗). We obtain

Adv2 = Pr [G2 ⇒ 1] = Pr
[
G1 ⇒ 1 ∧ b∗

1 = 1 − H̄b(seed1, 〈P∗〉,m∗)
]

=
1
2
Adv1.

Chopsticks: Fork-Free Two-Round Multi-signatures 617

Game G3: In game G3, the game aborts if (par, x1,1) /∈ Good, where Good is as
in the definition of a special commitment scheme. It is clear that

|Adv2 − Adv3| ≤ Pr [(par, x1,1) /∈ Good] ≤ εg.

Game G4: In game G4, we change the behavior of random oracle H. Recall
that before, to answer a query H(b, 〈P〉,m) for which the hash value has not
been defined, a key ck $← K was sampled and returned. In this game, the oracle
instead distinguishes two cases. In the first case, if b = 1 − H̄b(seed1, 〈P〉,m),
the game samples (ck, td) ← TGen(par,X1,1). It also stores tr[〈P〉,m] := td,
where tr is a map. In the second case, if b = H̄b(seed1, 〈P〉,m), it samples ck ←
BGen(par). In both cases, ck is returned as before. To see that G3 and G4 are
indistinguishable, we first note that for the first case, the distribution of ck stays
the same. This is because we can assume (par, x1,1) ∈ Good due to the previous
change. The keys returned in the second case are indistinguishable by the multi-
key indistinguishability of CMT. More precisely, we give a reduction B against
the multi-key indistinguishability of CMT that interpolates between G3 and G4.
The reduction gets as input par, x1,1 and QH commitment keys ck1, . . . , ckQH

. It
simulates G3 for A with par while embedding the commitment keys in random
oracle responses for queries H(b, 〈P〉,m) with b = 1 − H̄b(seed1, 〈P〉,m). In the
end, it outputs whatever the game outputs4 . We have

|Adv3 − Adv4| ≤ AdvQH-keydist
B,CMT (λ).

Game G5: In game G5, we change the signing oracles Sig0,Sig1. Our goal is
to eliminate the use of the secret key component x1,1. Recall that in previous
games, oracle Sig0 derived a bit b1 := H̄b(seed1, 〈P〉,m) and sampled random
r1,0, r1,1 and ϕ1,0, ϕ1,1. Then, these were used with to compute commitments
com1,0, com1,1, which where then output together with b1. Then, in oracle Sig1

the values s1,0, s1,1 were computed using the secret keys x1,b1 , x1,1−b1 , respec-
tively.

In this game, we change how the commitment ϕ1,1−b1 and the value s1,1−b1

is computed to eliminate the dependency on x1,1. Namely, in oracle Sig0, we
do not compute r1,1−b1 , ϕ1,1−b1 and R1,1−b1 anymore. Instead, we compute the
commitment com1,1−b1 via

td := tr[〈P〉, ,m], (com1,1−b1 , St) ← TCom(ck1−b1 , td).

Note that ck1−b1 = H(1−b1, 〈P〉,m), and therefore ck1−b1 and td were generated
using TGen(par,X1,1) due to the change in G4. Later, in oracle Sig1, we derive

(ϕ1,1−b1 , R1−b1 , s1,1−b1) ← TCol(St, c1,1−b1).

Then, message pm2,1 := (s1,0, s1,1, ϕ1,0, ϕ1,1) is output as before.

4 Note that at this point, it was important that we introduced the oracle H̄b. This
is because otherwise, if we queried Hb(seed1, ·) in oracle H, game G3 would always
output 0 and the games would not be indistinguishable.

618 J. Pan and B. Wagner

We can easily argue indistinguishability by using the special trapdoor prop-
erty of CMT QS0 many times and get

|Adv4 − Adv5| ≤ QSεt.

Game G6: Here we do not abort if (par, x1,1) /∈ Good anymore. That is, we
revert the change introduced in G3. It is clear that

|Adv5 − Adv6| ≤ Pr [(par, x1,1) /∈ Good] ≤ εg.

Game G7: In game G7, we change how the public key component X1,1 is com-
puted. Recall that before, X1,1 is computed as X1,1 := F(x1,1) for x1,1

$← x1,1
$←

D. Also, note that due to the previous changes, the value x1,1 is not used any-
more. In G7, we sample X1,1

$← R. A direct reduction B′ against the key indis-
tinguishability of the lossiness admitting linear function family LF shows indis-
tinguishability of G6 and G7. Concretely, B′ gets par and X1,1 as input, and
simulates G6 for A. In the end, it outputs whatever the game outputs. We have

|Adv6 − Adv7| ≤ AdvkeydistB′,LF (λ).

Game G8: Ins game G8, we change how Hc is executed. Concretely, consider
a query Hc(pk, com,m, 〈P〉, B, b) with pk = pk∗ and b = H̄b(seed1, 〈P〉,m).
For these queries, the game now runs R ← Ext(H(b, 〈P〉,m), com) and stores
r[com,m, 〈P〉, B] := R, where r is another map. Here, Ext is the (unbounded)
extractor for the statistical binding property of CMT. The rest of the oracle
does not change. Note that for b of this form, the value ck = H(b, 〈P〉,m)
is sampled as ck ← BGen(par) (cf. G4). We also slightly change the winning
condition of the game. Namely, in G8, consider the forgery (P∗,m∗, σ∗) with
σ∗ = (σ∗

0 , σ∗
1 , B∗), B∗ = b∗

1 . . . b∗
N , and let R∗

0, R
∗
1 ∈ R be the values that

are computed during the execution of Ver(P∗,m∗, σ∗). The game returns 0 if
R∗

1−b∗
1

�= r[com∗
1−b∗

1
,m∗, 〈P∗〉, B∗].

We claim that indistinguishability of G7 and G8 can be argued using the
statistical binding property of CMT. To see this, assume that G7 outputs 1.
Then, due to the change in G2, we know that 1 − b∗

1 = H̄b(seed1, 〈P∗〉,m∗).
Therefore, in the corresponding query Hc(pk1, com

∗
1−b∗

1
,m∗, 〈P∗〉, B∗, 1−b∗

1) algo-
rithm Ext was run and the value r[com∗

1−b∗
1
,m∗, 〈P∗〉, B∗] is defined. Next, by

definition of Ver, we have Com(ck1−b∗
1
, R∗

1−b∗
1
;ϕ∗

1−b∗
1
) = com∗

1−b∗
1
. Therefore, if

R∗
1−b∗

1
�= r[com∗

1−b∗
1
,m∗, 〈P∗〉, B∗], we have a contradiction to the statistical bind-

ing property of CMT. More precisely, we sketch an (unbounded) reduction from
the statistical binding property. Namely, this reduction gets as input par and a
commitment key ck∗. Then, the reduction guesses iH

$← [QH] and iHc

$← [QHc
]. It

simulates game G8 honestly, except for query iH to random oracle H and query
iHc

to random oracle Hc. If it had to sample a ck ← BGen(par) in the former
query, it instead responds with ck∗. Similarly, if it had to run Ext in the latter
query, it outputs com to the binding experiment. If these queries are the queries
of interest (i.e. query iH was used to derive ck1−b∗

1
and query iHc

was used to
derive c∗

1,1−b∗
1
) for the forgery, and R∗

1−b∗
1

�= r[com∗
1−b∗

1
,m∗, 〈P∗〉, B∗], then the

Chopsticks: Fork-Free Two-Round Multi-signatures 619

reduction outputs R∗
1−b∗

1
;ϕ∗

1−b∗
1
. Otherwise, it outputs ⊥. It is easy to see that if

the reduction guesses the correct queries and the bad event separating G7 and
G8 occurs, then it breaks the statistical binding property. As the view of A is
as in G8, and independent of (iH, iHc

), we obtain

|Adv7 − Adv8| ≤ QHQHc
εb.

Finally, we use lossy soundness of LF to bound the probability that G8 out-
puts 1. To do that, we give an unbounded reduction from the lossy soundness
experiment, which is as follows.

– The reduction gets par,X1,1 as input. It samples î $← [QHc
]. Then, it simulates

G8 honestly until A outputs a forgery, except for query î to oracle Hc.
– Consider this query Hc(pk, com,m, 〈P〉, B, b). The reduction aborts its exe-

cution, if the hash value for this query is already defined, or if pk �=
pk∗ ∨ b �= H̄b(seed1, 〈P〉,m). Otherwise, it runs R̂ ← Ext(H(b, 〈P〉,m), com)
as in G8. Then, it parses P = {pk1, . . . , pkN} and B = b1 . . . bN . It parses
pki = (Xi,0,Xi,1) for each i ∈ [N], and it sets ci,b = Hc(pki, com,m, 〈P〉, B, b)
for each i ∈ [N] \ {1}. Next, it defines

R := R̂ +
N∑

i=2

ci,b · Xi,b̂i
,

where b̂i := (b + bi) mod 2. It outputs R to the lossy soundness game and
obtains a value c in return. Then, it sets hc[pk, com,m, 〈P〉, B, b] := c and
continues the simulation as in G8.

– When the reduction gets the forgery (P∗,m∗, σ∗) from A, it runs all the
verification steps in G8. Additionally, it checks if the value Hc(pk1, com

∗
1−b∗

1
,

m∗, 〈P∗〉, B∗, 1 − b∗
1) was defined during query î to Hc. If this is not the case,

it aborts its execution. Otherwise, it returns s := s∗
1−b∗

1
to the lossy soundness

game.

It is clear that the view of A is independent of the index î until a potential abort
of the reduction. Also, if the reduction does not abort its execution, it perfectly
simulates game G8 for A. Thus, it remains to show that if G8 outputs 1, then
the values output by the reduction satisfy F(s) − c · X1,1 = R. Once we have
shown this, it follows that

Adv8 ≤ QHc
εl.

To show the desired property, assume that the reduction does not abort and
G8 outputs 1. Then, define b̂∗

i = (1 − b∗
1 + bi) mod 2 for all i ∈ [N]. Note that

b̂∗
i = 1. Due to the change in G2, we have

b = 1 − b∗
1 = H̄b(seed1, 〈P∗〉,m∗).

As the reduction guessed the right query and does not abort, we have

c∗
1,1−b∗

1
= Hc(pk1, com

∗
1−b∗

1
,m∗, 〈P∗〉, B∗, 1 − b∗

1) = c.

620 J. Pan and B. Wagner

Due to the change in G8, we have

F(s∗
1−b∗

1
) −

N∑

i=1

c∗
i,1−b∗

1
· Xi,b̂∗

i
= R∗

1−b∗
1

= R̂.

Therefore, we have

F(s) − c · X1,1 = F(s∗
1−b∗

1
) − c∗

1,1−b∗
1

· X1,1

= F(s∗
1−b∗

1
) −

N∑

i=1

c∗
i,1−b∗

1
· Xi,b̂∗

i
+

N∑

i=2

c∗
i,1−b∗

1
· Xi,b̂∗

i

= R̂ +
N∑

i=2

c∗
i,1−b∗

1
· Xi,b̂∗

i
= R.

Concluded. ��

4 Instantiation

In this section, we show how to instantiate the building blocks that are needed for
our constructions in the previous section. Concretely, we give a linear function
family and a commitment scheme based on the DDH assumption. Then, we also
discuss the efficiency of the resulting multi-signature schemes.

4.1 Linear Function Family

We make use of the well-known [27] linear function family LFDDH = (Gen,F)
based on the DDH assumption. Precisely, let GGen be an algorithm that on input
1λ outputs the description of a prime order group G of order p with generator
g. Then, Gen runs GGen and outputs5 par := (g, h) ∈ G

2 for h $← G. Then, the
set of scalars, domain, range, and function F(par, ·) are given as follows:

S := Zp, D := Zp, R := G × G, F(par, x) := (gx, hx).

It is easily verified that this constitutes a linear function family. Due to space
limitation, the proofs of the following two lemmas are postponed to the full
version [34].

Lemma 3. Assuming that the DDH assumption holds relative to GGen, the lin-
ear function family LFDDH is εl-lossiness admitting, with εl ≤ 3/p. Concretely,
for any PPT algorithm A there is a PPT algorithm B with T(B) ≈ T(A) and

AdvkeydistA,LFDDH
(λ) ≤ AdvDDH

B,GGen(λ).

Lemma 4. Linear function family LFDDH satisfies εal-aggregation lossy sound-
ness with εal ≤ 4/p.

5 We omit the description of G from par to make the presentation concise.

Chopsticks: Fork-Free Two-Round Multi-signatures 621

4.2 Commitment Scheme

We give a special trapdoor commitment scheme CMTDDH = (BGen,TGen,Com,
TCom,TCol) for the linear function family LFDDH. For given parameters of
LFDDH, the commitment scheme has key space K := G

3×3 and message space
D = G × G. It has randomness space G = Z

3
p and commitment space H = G

3.
Both are associated with the natural componentwise group operations. We
describe the algorithms of the scheme verbally.

– BGen(par) → ck: Sample g1, g2, g3
$← G, and a, b $← Zp, and set

ck := A :=

⎛

⎝
A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

⎞

⎠ :=

⎛

⎝
g1 ga

1 gb
1

g2 ga
2 gb

2

g3 ga
3 gb

3

⎞

⎠ ∈ G
3×3.

– TGen(par,X = (X1,X2)) → (ck, td): Sample di,j
$← Zp for all (i, j) ∈ [3] × [3]

and set

ck := A :=

⎛

⎝
A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

⎞

⎠ :=

⎛

⎝
gd1,1 gd1,2 gd1,3

X
d2,1
1 X

d2,2
1 X

d2,3
1

X
d3,1
2 X

d3,2
2 X

d3,3
2

⎞

⎠ ∈ G
3×3.

Next, set

td := (D,X1,X2), for D :=

⎛

⎝
d1,1 d1,2 d1,3

d2,1 d2,2 d2,3

d3,1 d3,2 d3,3

⎞

⎠ ∈ Z
3×3
p .

– Com(ck, R = (R1, R2);ϕ) → com: Let ϕ = (α, β, γ) ∈ Z
3
p. Compute

com := (C0, C1, C2), for

⎛

⎝
C0

C1

C2

⎞

⎠ :=

⎛

⎜
⎝

Aα
1,1 · Aβ

1,2 · Aγ
1,3

R1· Aα
2,1 · Aβ

2,2 · Aγ
2,3

R2· Aα
3,1 · Aβ

3,2 · Aγ
3,3

⎞

⎟
⎠ .

– TCom(ck, td) → (com, St): Sample τ, ρ1, ρ2, s
$← Zp. Set St := (td, τ, ρ1, ρ2, s)

and compute

com := (C0, C1, C2), for

⎛

⎝
C0

C1

C2

⎞

⎠ :=

⎛

⎝
gτ

Xρ1
1 · gs

Xρ2
2 · hs

⎞

⎠ .

– TCol(St, c) → (ϕ,R, s): Set R := (R1, R2) :=
(
gs · X−c

1 , hs · X−c
2

)
. Then, if

D is not invertible, return ⊥. Otherwise, compute

ϕ := (α, β, γ), for

⎛

⎝
α
β
γ

⎞

⎠ = D−1 ·

⎛

⎝
τ

ρ1 + c
ρ2 + c

⎞

⎠ .

622 J. Pan and B. Wagner

Theorem 3. If the DDH assumption holds relative to GGen, then CMTDDH is a
(εb, εg, εt)-special commitment scheme for LFDDH, with

εb ≤ 1/p, εg ≤ 2/p, εt ≤ 6/p.

Concretely, for any PPT algorithm A, there is a PPT algorithm B with T(B) ≈
T(A) and

AdvQ-keydist
A,CMTDDH

(λ) ≤ AdvuDDH3
B,GGen(λ) +

6
p
.

The homomorphism property is trivial to check. Next, we define the set Good as
in the definition of a special commitment scheme. Namely, we define

Good = {((g, h), x) ∈ G
2 × Zp | (g, h) ∈ LF.Gen(1λ) ∧ h �= g0 ∧ x �= 0}.

Clearly, for (g, h) ← LF.Gen(1λ) and x $← Zp, the probability that ((g, h), x) /∈
Good is at most 2/p. Therefore, εg ≤ 2/p. In the following we also need the
following observation: If ((g, h), x) ∈ Good, then the elements g, h, gx, hx are all
generators of G. The rest of proof of the theorem is given in separate lemmas.

Lemma 5. CMTDDH satisfies the uniform keys property of an (εb, εg, εt)-special
commitment scheme for LFDDH.

Proof. Let (par, x) ∈ Good for par = (g, h). Let (X1,X2) = F(x) = (gx, hx).
Consider the distribution of ck for (ck, td) ← TGen(par, (X1,X2)). Then ck has
the form ⎛

⎝
gd1,1 gd1,2 gd1,3

X
d2,1
1 X

d2,2
1 X

d2,3
1

X
d3,1
2 X

d3,2
2 X

d3,3
2

⎞

⎠ ∈ G
3×3

for uniformly random and independent exponents di,j ∈ Zp (i, j ∈ [3]). As
g,X1,X2 are generators, we see that ck is uniform over G3×3, proving the claim.

��
Lemma 6. CMTDDH satisfies the special trapdoor property of an (εb, εg, εt)-
special commitment scheme for LFDDH, where εt ≤ 6/p.

Proof. Let ((g, h), x) ∈ Good and c ∈ Zp. Set (X1,X2) := (gx, hx). We have to
show that the distributions T0 and T1 of tuples

((g, h),A,D,X1,X2, x, c, (C0, C1, C2), α, β, γ,R1, R2, s)

are identical. Here, we have (A,D,X1,X2) ← TGen(par, (X1,X2)). The remain-
ing components in T0 are generated via

((C0, C1, C2), St) ← TCom(ck, td), ((α, β, γ), (R1, R2), s) ← TCol(St, c),

and in T1 via

r $← Zp, R1 := gr, R2 := hr, s := c · x + r

α, β, γ $← Zp, (C0, C1, C2) := Com(A, (R1, R2); (α, β, γ)).

Chopsticks: Fork-Free Two-Round Multi-signatures 623

First, we make the assumption that in both distributions, the matrix D has full
rank. The probability that this does not hold can easily be bounded by 3/p.

We can equivalently6 write T1 as

s $← Zp, R1 := gs · X−c
1 , R2 := hs · X−c

2 ,

α, β, γ $← Zp, (C0, C1, C2) := Com(A, (R1, R2); (α, β, γ)).

Using that D is full rank and g,X1,X2 are generators of G, we see that in
this distribution, (C0, C1, C2) is uniform over G

3. Therefore, this is identically
distributed to the distribution that we get from

s $← Zp, R1 := gs · X−c
1 , R2 := hs · X−c

2 ,

τ, ρ1, ρ2
$← Zp, (C0, C1, C2) := (gτ ,Xρ1

1 gs,Xρ2
2 hs),

and then finding the unique values (α, β, γ) that satisfy (C0, C1, C2) =
Com(A, (R1, R2); (α, β, γ)). We claim that this can be done using (α, β, γ)t :=
D−1(τ, ρ1 + c, ρ2 + c)t, which is equivalent to distribution T0.

To see this, note that (C0, C1, C2) = Com(A, (R1, R2); (α, β, γ)) is equivalent
to
⎛

⎝
C0

C1

C2

⎞

⎠ =

⎛

⎜
⎝

Aα
1,1 · Aβ

1,2 · Aγ
1,3

R1· Aα
2,1 · Aβ

2,2 · Aγ
2,3

R1· Aα
3,1 · Aβ

3,2 · Aγ
3,3

⎞

⎟
⎠ =

⎛

⎝
gd1,1α · gd1,2β · gd1,3γ

gs · X−c
1 · X

d2,1α
1 · X

d2,2β
1 · X

d2,3γ
1

hs · X−c
2 · X

d3,1α
2 · X

d3,2β
2 · X

d3,3γ
2

⎞

⎠ .

Using the way we generate (C0, C1, C2), we see that the gs and hs terms cancel
out, and this is equivalent to

⎛

⎝
gτ

Xρ1
1

Xρ2
2

⎞

⎠ =

⎛

⎝
gd1,1α · gd1,2β · gd1,3γ

X
d2,1α
1 · X

d2,2β
1 · X

d2,3γ
1

X
d3,1α
2 · X

d3,2β
2 · X

d3,3γ
2

⎞

⎠⇐⇒

⎛

⎝
τ

ρ1 + c
ρ2 + c

⎞

⎠ = D ·

⎛

⎝
α
β
γ

⎞

⎠ .

This concludes the proof. ��

Lemma 7. CMTDDH satisfies the statistically binding property of an (εb, εg, εt)-
special commitment scheme for LFDDH, with εb ≤ 1/p.

Proof. We describe an unbounded algorithm Ext, that takes as input a commit-
ment key ck = A = (Ai,j)i,j ∈ G

3×3, and a commitment com = (C0, C1, C2) ∈
G

3, and outputs a tuple R = (R1, R2) ∈ G × G. It is given as follows:

1. Extract discrete logarithms c = (c0, c1, c2)t ∈ Z
3
p and a = (a0, a1, a2)t ∈ Z

3
p

such that ⎛

⎝
C0

C1

C2

⎞

⎠ =

⎛

⎝
gc0

gc1

gc2

⎞

⎠ and

⎛

⎝
A1,1

A2,1

A3,1

⎞

⎠ =

⎛

⎝
ga0

ga1

ga2

⎞

⎠ .

6 This corresponds to the HVZK property of linear identification protocols.

624 J. Pan and B. Wagner

2. If a0 = 0, return ⊥. Otherwise, let e2 = (0, 1, 0)t and e3 = (0, 0, 1)t. Note
that a,e2,e3 form a basis of Z3

p.
3. Write c as c = ta + r1e2 + r2e3 for t, r1, r2 ∈ Zp, and return (R1, R2) :=

(gr1 , gr2).

To finish the proof, let A be any algorithm. We have to bound the probability

Pr

⎡

⎢
⎢
⎢
⎢
⎣

Com(A, (R′
1, R

′
2);ϕ

′) = (C0, C1, C2)
∧ (R1, R2) �= (R′

1, R
′
2)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(g, h) ← LF.Gen(1λ),
A ← BGen(par),
((C0, C1, C2), St) ← A(A),
(R1, R2) ← Ext(A, (C0, C1, C2)),
(R1, R

′
2, ϕ

′) ← A(St)

⎤

⎥
⎥
⎥
⎥
⎦

.

Note that the probability that Ext outputs ⊥ in this experiment is 1/p, as A1,1

is uniform in G. We assume that Ext does not output ⊥, and want to show that
the above probability conditioned on this event is zero. First, it is easy to see
that we have Com(A, (R1, R2); (t, 0, 0)) = (C0, C1, C2). Further, assume that A
outputs (R′

1, R
′
2) = (gr′

1 , gr′
2) and ϕ′ = (α, β, γ) such that

Com(A, (R′
1, R

′
2);ϕ

′) = (C0, C1, C2) = Com(A, (R1, R2); (t, 0, 0)).

Using the definition of Com and BGen, we see that this implies the vector (0, r1−
r′
1, r2 − r′

2)
t is in the span of a. As a0 �= 0 this implies that it is the zero vector,

showing that R1 = R′
1 and R2 = R′

2. ��

Lemma 8. For any PPT algorithm A, there is a PPT algorithm B with T(B) ≈
T(A) and

AdvQ-keydist
A,CMTDDH

(λ) ≤ AdvuDDH3
B,GGen(λ) +

6
p
.

The lemma is proven by a simple reduction. Looking at one fixed commitment
key Ai, indistinguishability would directly follow from the uDDH3 assumption.
To give a tight reduction for any Q = poly(λ), we use the random self-reducibility
of uDDH3. We postpone it to the full version [34].

4.3 Efficiency

In our full version [34], we discuss the efficiency of our schemes both asymptot-
ically, as well as in terms of concrete parameters.

Acknowledgments. We thank the anonymous reviewers from Eurocrypt 2023 for
their useful feedback and suggestions. In particular, it was pointed out the similarity
between the commitment scheme of Bagherzandi, Cheon, and Jarecki in [3] and ours.

Chopsticks: Fork-Free Two-Round Multi-signatures 625

References

1. Abdalla, M., Fouque, P.-A., Lyubashevsky, V., Tibouchi, M.: Tightly-secure sig-
natures from lossy identification schemes. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 572–590. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4 34

2. Kılınç Alper, H., Burdges, J.: Two-round trip schnorr multi-signatures via delin-
earized witnesses. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol.
12825, pp. 157–188. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
84242-0 7

3. Bagherzandi, A., Cheon, J.H., Jarecki, S.: Multisignatures secure under the discrete
logarithm assumption and a generalized forking lemma. In: Ning, P., Syverson,
P.F., Jha, S. (eds.) ACM CCS 2008, pp. 449–458. ACM Press (2008). https://doi.
org/10.1145/1455770.1455827

4. Bellare, M., Dai, W.: Chain reductions for multi-signatures and the HBMS scheme.
In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 650–
678. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5 22

5. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a gen-
eral forking lemma. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S.
(eds.) ACM CCS 2006, pp. 390–399. ACM Press (2006). https://doi.org/10.1145/
1180405.1180453

6. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine
message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8616, pp. 408–425. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44371-2 23

7. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-diffie-hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36288-6 3

8. Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller
blockchains. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol.
11273, pp. 435–464. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03329-3 15

9. Boschini, C., Takahashi, A., Tibouchi, M.: MuSig-L: lattice-based multi-signature
with single-round online phase. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022,
Part II. LNCS, vol. 13508, pp. 276–305. Springer, Heidelberg (2022). https://doi.
org/10.1007/978-3-031-15979-4 10

10. Chairattana-Apirom, R., Hanzlik, L., Loss, J., Lysyanskaya, A., Wagner, B.: PI-
cut-choo and friends: Compact blind signatures via parallel instance cut-and-choose
and more. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part III. LNCS, vol.
13509, pp. 3–31. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-
15982-4 1

11. Crites, E., Komlo, C., Maller, M.: How to prove schnorr assuming schnorr: security
of multi- and threshold signatures. Cryptology ePrint Archive, Report 2021/1375
(2021). https://eprint.iacr.org/2021/1375

12. Damg̊ard, I.: Efficient concurrent zero-knowledge in the auxiliary string model. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6 30

https://doi.org/10.1007/978-3-642-29011-4_34
https://doi.org/10.1007/978-3-030-84242-0_7
https://doi.org/10.1007/978-3-030-84242-0_7
https://doi.org/10.1145/1455770.1455827
https://doi.org/10.1145/1455770.1455827
https://doi.org/10.1007/978-3-030-92068-5_22
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1007/978-3-662-44371-2_23
https://doi.org/10.1007/978-3-662-44371-2_23
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-031-15979-4_10
https://doi.org/10.1007/978-3-031-15979-4_10
https://doi.org/10.1007/978-3-031-15982-4_1
https://doi.org/10.1007/978-3-031-15982-4_1
https://eprint.iacr.org/2021/1375
https://doi.org/10.1007/3-540-45539-6_30

626 J. Pan and B. Wagner

13. Damg̊ard, I., Orlandi, C., Takahashi, A., Tibouchi, M.: Two-round n-out-of-n and
multi-signatures and trapdoor commitment from lattices. In: Garay, J.A. (ed.)
PKC 2021. LNCS, vol. 12710, pp. 99–130. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-75245-3 5

14. Drijvers, M., et al.: On the security of two-round multi-signatures. In: 2019 IEEE
Symposium on Security and Privacy, pp. 1084–1101. IEEE Computer Society Press
(2019). https://doi.org/10.1109/SP.2019.00050

15. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1 8

16. Fukumitsu, M., Hasegawa, S.: A tightly secure ddh-based multisignature with
public-key aggregation. Int. J. Netw. Comput. 11(2), 319–337 (2021). http://www.
ijnc.org/index.php/ijnc/article/view/257

17. Goh, E.-J., Jarecki, S., Katz, J., Wang, N.: Efficient signature schemes with
tight reductions to the diffie-hellman problems. J. Cryptol. 20(4), 493–514 (2007).
https://doi.org/10.1007/s00145-007-0549-3

18. Groth, J.: Homomorphic trapdoor commitments to group elements. Cryptology
ePrint Archive, Report 2009/007 (2009). https://eprint.iacr.org/2009/007

19. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for
NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175 6

20. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

21. Guillou, L.C., Quisquater, J.-J.: A practical zero-knowledge protocol fitted to secu-
rity microprocessor minimizing both transmission and memory. In: Barstow, D.,
et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg
(1988). https://doi.org/10.1007/3-540-45961-8 11

22. Han, S., et al.: Authenticated key exchange and signatures with tight security in
the standard model. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol.
12828, pp. 670–700. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
84259-8 23

23. Hauck, E., Kiltz, E., Loss, J.: A modular treatment of blind signatures from iden-
tification schemes. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol.
11478, pp. 345–375. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17659-4 12

24. Itakura, K., Nakamura, K.: A public-key cryptosystem suitable for digital mul-
tisignatures. NEC Res. Dev. 71, 1–8 (1983)

25. Katz, J., Loss, J., Rosenberg, M.: Boosting the security of blind signature schemes.
In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 468–
492. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5 16

26. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight secu-
rity reductions. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.) ACM CCS 2003, pp.
155–164. ACM Press (2003). https://doi.org/10.1145/948109.948132

27. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identifi-
cation schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815,
pp. 33–61. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 2

https://doi.org/10.1007/978-3-030-75245-3_5
https://doi.org/10.1007/978-3-030-75245-3_5
https://doi.org/10.1109/SP.2019.00050
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
http://www.ijnc.org/index.php/ijnc/article/view/257
http://www.ijnc.org/index.php/ijnc/article/view/257
https://doi.org/10.1007/s00145-007-0549-3
https://eprint.iacr.org/2009/007
https://doi.org/10.1007/11818175_6
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/3-540-45961-8_11
https://doi.org/10.1007/978-3-030-84259-8_23
https://doi.org/10.1007/978-3-030-84259-8_23
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-92068-5_16
https://doi.org/10.1145/948109.948132
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-662-53008-5_2

Chopsticks: Fork-Free Two-Round Multi-signatures 627

28. Langrehr, R., Pan, J.: Unbounded HIBE with tight security. In: Moriai, S., Wang,
H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 129–159. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64834-3 5

29. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate
signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006).
https://doi.org/10.1007/11761679 28

30. Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple Schnorr multi-signatures
with applications to Bitcoin. Des. Codes Cryptogr. 87(9), 2139–2164 (2019).
https://doi.org/10.1007/s10623-019-00608-x

31. Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures: extended
abstract. In: Reiter, M.K., Samarati, P. (eds.) ACM CCS 2001, pp. 245–254. ACM
Press (2001). https://doi.org/10.1145/501983.502017

32. Nick, J., Ruffing, T., Seurin, Y.: MuSig2: simple two-round schnorr multi-
signatures. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp.
189–221. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0 8

33. Nick, J., Ruffing, T., Seurin, Y., Wuille, P.: MuSig-DN: schnorr multi-signatures
with verifiably deterministic nonces. In: Ligatti, J., Ou, X., Katz, J., Vigna, G.
(eds.) ACM CCS 2020, pp. 1717–1731. ACM Press (2020). https://doi.org/10.
1145/3372297.3417236

34. Pan, J., Wagner, B.: Chopsticks: fork-free two-round multi-signatures from non-
interactive assumptions. Cryptology ePrint Archive, Paper 2023/198 (2023).
https://eprint.iacr.org/2023/198, https://eprint.iacr.org/2023/198

35. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

36. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991). https://doi.org/10.1007/BF00196725

37. Tessaro, S., Zhu, C.: Threshold and multi-signature schemes from linear hash func-
tions. In: Eurocrypt 2023, LNCS (to appear). Springer, Heidelberg (2023)

https://doi.org/10.1007/978-3-030-64834-3_5
https://doi.org/10.1007/11761679_28
https://doi.org/10.1007/s10623-019-00608-x
https://doi.org/10.1145/501983.502017
https://doi.org/10.1007/978-3-030-84242-0_8
https://doi.org/10.1145/3372297.3417236
https://doi.org/10.1145/3372297.3417236
https://eprint.iacr.org/2023/198,
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/BF00196725

Threshold and Multi-signature Schemes
from Linear Hash Functions

Stefano Tessaro and Chenzhi Zhu(B)

Paul G. Allen School of Computer Science & Engineering,
University of Washington, Seattle, USA
{tessaro,zhucz20}@cs.washington.edu

Abstract. This paper gives new constructions of two-round multi-signa-
tures and threshold signatures for which security relies solely on either
the hardness of the (plain) discrete logarithm problem or the hardness
of RSA, in addition to assuming random oracles. Their signing protocol
is partially non-interactive, i.e., the first round of the signing protocol is
independent of the message being signed.

We obtain our constructions by generalizing the most efficient
discrete-logarithm based schemes, MuSig2 (Nick, Ruffing, and Seurin,
CRYPTO ’21) and FROST (Komlo and Goldberg, SAC ’20), to work
with suitably defined linear hash functions. While the original schemes
rely on the stronger and more controversial one-more discrete logarithm
assumption, we show that suitable instantiations of the hash functions
enable security to be based on either the plain discrete logarithm assump-
tion or on RSA. The signatures produced by our schemes are equivalent
to those obtained from Okamoto’s identification schemes (CRYPTO ’92).

More abstractly, our results suggest a general framework to trans-
form schemes secure under OMDL into ones secure under the plain DL
assumption and, with some restrictions, under RSA.

1 Introduction

Many novel applications, such as digital wallets [25], are re-energizing a multi-
decade agenda aimed at developing new efficient multi-signatures [33] and thresh-
old signatures [18,19] from a variety of assumptions. Threshold signatures are
also at the center of standardization efforts by NIST [42] and IETF [15]. Both
signature types are relatively straightforward to obtain from pairings (using,
e.g., BLS [13,14]); however, specific implementation constraints make pairing-
free schemes, which are based on either variants of the discrete logarithm or RSA
problems, appealing in several contexts.

This paper aims to build the best possible pairing-free multi-signatures and
threshold signatures under the weakest possible assumptions. As our main con-
tribution, we develop new two-round protocols that are secure under the (1)
discrete logarithm assumption and (2) the RSA assumption. In both cases, we
also assume the random oracle model (ROM) [10]. Our RSA multi-signatures
require a trusted setup to produce a public RSA modulus with unknown factor-
ization. The signatures produced by both schemes resemble those proposed by
c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14008, pp. 628–658, 2023.
https://doi.org/10.1007/978-3-031-30589-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30589-4_22&domain=pdf
http://orcid.org/0000-0002-3751-8546
http://orcid.org/0000-0002-4276-2797
https://doi.org/10.1007/978-3-031-30589-4_22

Threshold and Multi-signature Schemes from Linear Hash Functions 629

Okamoto [46]. Furthermore, our signing protocols are partially non-interactive,
i.e., the first round messages do not depend on the message being signed, which
is a desirable property in practice.
Significance. Our DL-based schemes are the first partially non-interactive 2-
round schemes based solely on the hardness of the discrete logarithm assumption.
For threshold signatures, in particular, no two-round scheme is known from only
the discrete logarithm assumption. For RSA, the landscape is more complex,
and our main contribution is to provide a viable multi-signature scheme, as all
prior solutions impose restrictions.
Our approach. Our schemes are the outcome of the same paradigm applied
to the two most efficient DL-based schemes, FROST [6,37] and MuSig2 [43]. It
is not known how to prove the security of either scheme under the plain discrete
logarithm assumption, and they are instead proved secure under the (stronger)
one-more discrete logarithm assumption (OMDL) [8], an assumption that has
been the subject of criticism [35,36]. As we explain next, our paradigm can be
seen as a general recipe to remove the OMDL assumption from these schemes.

The main ingredient of our approach are linear hash functions, which have
also been used in recent works [3,30,31] to abstract identification schemes from
which signature variants are derived. Here, we observe that both FROST ad
MuSig2 can naturally be generalized by replacing the exponentiation map x Þ
gx with a linear hash function F : D Ñ R, where D,R are S-modules for a
field S. We generically refer to these instantiations as FROST-H and MuSig2-H.
(In fact, we present two variants for FROST-H but make no distinction in the
introduction.) In particular, we require that:

– F is an epimorphism of S-modules from D to R, i.e., F is a surjection from D
to R such that for any r P S and x, y P D, F(x ` r ¨ y) “ F(x) ` r ¨ F(y) .

– F is not a monomorphism, which is equivalent to postulating that there exists
z˚ P D such that z˚ ‰ 0 and F(z˚) “ 0.

We then define a natural analogue of the OMDL assumption, which we refer to as
the Algebraic One-More Preimage Resistance (AOMPR). Roughly speaking, the
corresponding security game allows the attacker to obtain multiple challenges
Xi “ F(xi) for a random element xi Ð$ D, and the attacker also gets access to an
inversion oracle which, on input X P R, returns a element in the preimage set of
X under F. The restriction here, and hence the term algebraic, is that X must be
an affine combination of previously obtained Xi’s, and this affine combination
is given to the inversion oracle, along with X. (This makes the assumption
falsifiable since the oracle can efficiently answer such inversion queries.) To win
the game, the attacker is then asked to invert q `1 challenges after querying the
inversion oracle at most q times.

Our results then follow from the combination of the following two theorems,
which we state here informally:

Theorem (informal). The security of FROST-H and MuSig2-H follows
from the AOMPR assumption on the underlying linear hash function.

630 S. Tessaro and C. Zhu

Theorem (informal). If F is collision-resistant, then the AOMPR
assumption holds with respect to F.

The proof of the first theorem is, on its own, not particularly surprising and
mostly generalizes the prior proofs in the literature, in particular those of [43]
and [6]. Our main contribution here is to notice that these proofs, and the result-
ing schemes, can be abstracted in terms of linear hash functions. In particular,
for threshold signatures, as in [6], we consider an abstract setting with an ideal
distributed key generation, and we target the security notions of TS-SUF-2 and
TS-SUF-3, which were shown to be achieved by two variants of FROST, both
of which we model here abstractly. Since we are targeting feasibility, we are less
concerned with the concrete round complexity of distributed key generation and
could use any secure multi-party computation protocol for this task.

In contrast, the rough intuition behind a proof of the latter theorem is that
for any execution of a (wlog deterministic) adversary A playing the AOMPR
game with challenges X “ F(x), since F is not a monomorphism, there exists
another execution with challenges X “ F(x′) such that x ‰ x′, but the views
of A are identical in the two executions. Then, if A wins the game given x by
outputting y such that F(y) “ X, A also wins the game given x′ by outputting
y. Therefore, we have F(x) “ F(y) “ F(x′) ^ (x ‰ y _ x′ ‰ y), which implies
that we can find a collision in at least one of the executions. Indeed, special
cases of this technique already underlie several works, including Okamoto’s [46],
but our main challenges are to prove the concrete mapping of x′ from x and to
package this in terms of the AOMPR abstraction.

1.1 DL-Based Instantiations

To obtain an instantiation of FROST-H and MuSig2-H based on the hardness
of the discrete logarithm (DL) problem, we can use the Pedersen linear hash
function [49]

F(x1, x2) “ gx1Zx2 ,

which is well known to be collision-resistant under the hardness of DL whenever
g, Z are generators of a group with prime size p. While MuSig2 and FROST
produce valid Schnorr signatures [52], the signatures produced by our DL-based
instantiations of FROST-H and MuSig2-H are slightly less efficient, and effectively
compatible with Okamoto’s signatures [46]. Here, as in Schnorr signatures, the
secret signing key is x P Zp, and the public verification key pk “ gx, and a
signature for a message m P {0, 1}˚ has format

σ “ (R “ gaZb, a ` H(pk,m,R) ¨ x, b) ,

where H is a hash function that is modeled as a random oracle in our proofs. To
verify a signature (R, a, b), we check that gaZb “ R ¨pkH(pk,M,R). The only differ-
ence from Okamoto’s scheme [46] is that the latter uses a secret key (x1, x2) P Z

2
p,

and a signature has form (R “ gaZb, a ` c ¨ x1, b ` c ¨ x2), where c “ H(pk,m,R),

Threshold and Multi-signature Schemes from Linear Hash Functions 631

i.e., here, we restrict the scheme to the case where (x1, x2) “ (x, 0). This opti-
mization is generic and could have been applied to Okamoto’s scheme directly;
however, it is particularly advantageous for threshold signatures since it lets us
leverage any distributed key generation protocol for Schnorr signatures. Here,
we need a trusted setup to generate Z as a random group element independent
of g, but we note that this is a minimal setup since it can be made transparent,
e.g., g, Z can be generated as outputs of a hash function.
Related work (DL). Our DL-based threshold signatures are the first two-
round scheme with security proved based solely on the discrete logarithm
assumption in the ROM. The most efficient protocol is FROST [6,37], which
is slightly more efficient than our scheme since it generates plain Schnorr sig-
natures; however, FROST relies on the stronger OMDL assumption. Though
schemes based solely on the discrete logarithm assumption exist [28,39,55], they
use more rounds. We stress that not all schemes achieve the same security goals,
and here we target the notions of [6], whereas Lindell [39] targets UC security.

Our DL-based scheme gives the first partially non-interactive two-round
multi-signatures based on plain DL and the ROM. It is almost as efficient as
MuSig2 [43], which is based on OMDL. Drijvers et al. [21] proposed a less effi-
cient two-round scheme, called mBCJ, based on DL and ROM only, and it repairs
a prior scheme by Bagherzandi, Cheon, and Jarecki [4]. mBCJ signatures, less
efficient than ours, consist of two group elements and three scalars, and public
keys also consist of one group element and two scalars. Moreover, mBCJ is not
partially non-interactive (i.e., the first round does depend on the message being
signed). Another option is the MuSig-DN scheme [44], but it relies on heavy
machinery from zero-knowledge proofs.

A more efficient DL-based alternative is the HBMS scheme by Bellare and
Dai [7], but HBMS is not partially non-interactive. Further, our security reduc-
tion is tighter than that of HBMS. Most relevant to us, Lee and Kim [38] gave
a multi-signature scheme based on Okamoto signatures that, however, is proved
secure only in the AGM [24]; their signing is also not partially non-interactive.

More recently, Pan and Wagner [47] proposed a two-round multi-signature
scheme based only on the Decisional Diffie-Hellman (DDH) assumption with a
tight reduction, but their scheme is also not partially non-interactive.

Finally, the work of Drijvers et al. [21], as well as recent ROS attacks [12],
also surfaced several security issues in earlier DL-based proposals that we do not
discuss here.

1.2 RSA-Based Instantiation

The situation with RSA is slightly more complex since the above framework,
as is, does not appear to support an RSA instantiation directly: no natural
RSA-based linear hash function realizes an appropriate S-module where S is a
field, which is of critical importance for our constructions and proofs of theorems.
However, we show that the framework can be adapted to support the RSA-based
linear hash function

F(x1, x2) “ xe
1w

x2 ,

632 S. Tessaro and C. Zhu

based on public parameters par “ (N, e,w), where N is an RSA modulus, e P ZN̊

is a prime such that gcd(e, φ(N)) “ 1 and w P ZN̊ . We refer to this linear hash
function as RLHF. Here, it is important to note that the supported scalar space
is set to S :“ Z, which is only a ring. (We refer to such hash functions as weak
linear hash functions.)
RSA-specific challenges. We now describe the problems caused by the lack
of inversion in S, and briefly explain how we fix them for the specific case of
RLHF. We stress that these fixes are very ad-hoc for RSA, and do not work in
general for weak linear hash functions.

– FROST-H generates signing keys using Shamir secret sharing [53], which
requires the scalar space to be a field in order to compute the Lagrange
coefficients. This is a common problem for RSA-based threshold schemes [16,
54], and we address it via the standard trick of multiplying the Lagrange
coefficients with a large number to make them integers.

– One place in the proof of our first informal theorem above (reducing the
security of MuSig2-H and FROST-H to AOMPR) where the scalar space needs
to be a field is to invert challenges X P Rn, given a linear equation AX “
F(b), where A in Snˆn, X in Rn, and b in Dn. Since S is a field in our
original proof, we show that A has full rank; thus, one can compute x such
that X “ F(x) by multiplying the inverse of A on both sides of the equation.
Clearly, this fails if S is not a field. Fortunately, to instantiate RLHF, we find
that this equation can be solved efficiently whenever A has full rank modulo e
(which, recall, is a prime), and we show this condition holds whenever we need
to solve the equation in the proof for the special case of RLHF. In addition, for
MuSig2-H, we require one of the prime factors of N to be a safe prime in order
to make the reduction go through. We also show how to remove this safe-prime
requirement by minimally modifying the key aggregation algorithm.

– For our second informal theorem (reducing AOMPR to the collision-resistance
of the linear hash function), we need the scalar space to be a field upon showing
that, for any matrix B P S�ˆq for � ă q, there exists u P Sq such that
1. Bu “ 0;
2. uiz

˚ ‰ 0 for some i P [q], where z˚ is an a prior fixed non-zero element in
D such that F(z˚) “ 0.

Again, if S is a ring, such an u might not exist. However, for the RSA-based
linear hash function, since S “ Z, we can always find a non-zero u P Z

q such
that Bu “ 0. Showing the second condition involves some technical details
of RLHF, but roughly, we need to show that there exists i P [q] such that
ui ı 0 mod e.

Resulting schemes. Our RSA-based instantiations of FROST-H and
MuSig2-H produce signatures that also resemble the RSA-based signatures by
Okamoto [46]. Given public parameters par “ (N, e,w), where e P ZN̊ is a prime
such that gcd(e, φ(N)) “ 1 and w P ZN̊ , the secret signing key is x P ZN̊ , and
the public verification key pk “ xe, and a signature for a message m P {0, 1}˚
has format

σ “ (R “ aewb, a ¨ xH(pk,m,R), b) .

Threshold and Multi-signature Schemes from Linear Hash Functions 633

To verify a signature (R, s, b), one checks whether sewb “ R ¨ pkH(pk,m,R). We
give a simpler scheme that assumes that N is the product of safe primes, but we
then drop this restriction in a slightly less efficient scheme.

We note that this scheme’s drawback is that the public parameters par must
be generated honestly. In the multi-signature case, this requires a trusted setup,
whereas in the threshold signature case, par could be generated as part of the
distributed key generation process. An important open question is whether we
can remove a trusted setup, but we note that no better construction without a
trusted setup is known, as we discuss next. Another unusual aspect of our use
of the RSA assumption is that we require e to be large and prime, but this does
not appear to weaken the assumption in any way.
Related work (RSA). Threshold signatures based on RSA go back to the
work of Shoup [54], whose scheme is more efficient than ours since it is round
optimal. Shoup’s basic scheme guarantees only the inability to come up with a
signature for messages for which no party has issued a signature share. A stronger
notion would require that the only way to issue a valid signature is for sufficiently
many honest parties to contribute, i.e., if k signature shares are needed for a valid
signature to be created, and t parties can be corrupted, no valid signature should
be generated unless at least k´t parties create shares. (This notion is referred to
as TS-UF-1 in [6,11].) To achieve this stronger notion, Shoup [54] modifies the
scheme and relies on a variant of the DDH assumption, which we do not need
here. All previous works on RSA-based threshold signatures [2,16,17,22,23,26,
27,51] do not consider this stronger security goal, although some of these works
consider properties such as proactivity [2,51], robustness [23,27,51], removing
trusted dealers [16,22], and adaptive-security [2], which we do not consider.

Our RSA-based instantiation of MuSig2-H improves upon the state-of-the-
art even further. Indeed, only a few works on RSA multi-signatures, e.g., [1,20],
support fully non-interactive signing, but they all assume a trusted third party
that distributes all signing keys and that the number of signers is fixed. Oth-
ers [29,32,34,40,41,45,46,48,50] support only sequential signing, i.e., all sign-
ers engage in the signing process one by one. Another relevant line of works
addresses identity-based multi-signatures [5,9] (IBMS). IBMS can be viewed as
multi-signature schemes where each ID plays the role of the public key for each
signer. However, if used as a multi-signature scheme, these schemes require a
trusted dealer to generate the keys for each signer. Also, they do not support
key aggregation, which our scheme supports.

2 Preliminaries

2.1 Notations

For any positive integers k ă n, [n] denotes {1, . . . , n}, and [k..n] denotes
{k, . . . , n}. We use κ to denote the security parameter. For a finite set S, |S|
denotes the size of S, and x Ð$ S denotes sampling an element uniformly from
S and assigning it to x.

634 S. Tessaro and C. Zhu

2.2 Basic Algebra

Modules. For any ring R with multiplicative identity 1 and any abelian group
(M, `), we say M is an R-module if there exists an operation ¨ : R ˆ M Ñ M
such that for any a, b P R and any x, y P M , (i) a ¨ (x ` y) “ a ¨ x ` a ¨ y , (ii)
(a ` b) ¨ x “ a ¨ x ` b ¨ x, (iii) (ab) ¨ x “ a ¨ (b ¨ x), (iv) 1 ¨ x “ x. Also, we use 0 to
denote the identity of M .
Module Homomorphisms. For any R-modules M and N , a map f : M Ñ N
is a homomorphism of R-modules if for any r P R and x, y P M , f(x ` r ¨ y) “
f(x)`r ¨f(y) . We say a homomorphism f is an epimorphism if f is a surjection.
We say a homomorphism f is a monomorphism if f is an injection.
Characteristic of a Field. For any field F, the characteristic of F, denoted
by char(F), is the smallest positive number k such that k ¨1 “ ∑k

i“1 1 “ 0, where
1 denotes the multiplicative identity of F and 0 denotes the additive identity of
F. If k does not exist, we say the characteristic of F is 0.

3 Algebraic One-More Preimage Resistance

In this section, we first give the definition of linear hash functions, then define
collision resistance and algebraic one-more preimage resistance (AOMPR) of a
linear hash function family, and finally show AOMPR is implied by collision
resistance.

3.1 Linear Hash Functions

The notion of linear hash functions is introduced in [30,31], which is in turn
adapted from [3]. We adapt the definition from [30] by additionally requiring
the scalar set S to be a field and D and R to be S-modules, which is necessary
for the reduction from collision resistance to AOMPR and for our constructions
in Sect. 4 to work.

Definition 1. A linear hash function family LHF is a pair of algorithms
(PGen,F) such that

a) PGen is a randomized algorithm that takes as input the security parameter 1κ

and returns the system parameter par that defines three sets S “ S(par),D “
D(par) and R “ R(par), where S is a field, and D and R are S-modules.
Moreover, we require |S| ě 2κ, |D| ě 2κ, and |R| ě 2κ.

b) F is a deterministic function that takes as input the system parameter par and
an element x P D and returns an element in R such that F(par , ¨) : D Ñ R
is a epimorphism of S-modules. Moreover, F is not a monomorphism, which
is equivalent to there exists z˚ P D such that z˚ ‰ 0 and F(par , z˚) “ 0. For
simplicity, we omit par from the input of F from now on.

Threshold and Multi-signature Schemes from Linear Hash Functions 635

Game CRA
LHF(κ) :

par ← PGen(1κ)
(x1, x2) Ð$ A(par)
If x1 ‰ x2 and F(x1) “ F(x2) then

Return 1
Return 0

Fig. 1. The CR security game for a linear hash family LHF “ (PGen,F).

Game AOMPRA
LHF(κ) :

par Ð$ PGen(1κ)
cid ← 0 ; � ← 0
{yi}iP[cid] ← AChal,PI(par)
If � ě cid then return 0
If ∀ i P [cid] F(yi) “ Xi then

Return 1
Return 0

Oracle Chal() :

cid ← cid ` 1
xcid Ð$ D ; Xcid ← F(xcid)
Return Xcid

Oracle PI(Y, α, {βi}iP[cid]) :

Require: Y “ F(α) ` ∑
iP[cid] βiXi

� ← � ` 1
Return α ` ∑

iP[cid] βixi

Fig. 2. The AOMPR game for a linear hash function family LHF “ (PGen,F). For the
inputs of PI, X is in R, α is in D, and each βi is in S.

Collision Resistance. Collision resistance of linear hash functions is anal-
ogous to collision resistance of cryptographic hash functions, which ensures
that it is hard to find two distinct inputs that map to the same output. The
CRA

LHF game is defined in Fig. 1. The corresponding advantage of A is defined
as AdvcrLHF(A, κ) :“ Pr

[
CRA

LHF “ 1
]
.

3.2 Algebraic One-More Preimage Resistance

We introduce the notion of algebraic one-more preimage resistance (AOMPR)
for linear hash functions, which is formally defined via the game AOMPRA

LHF,
as described in Fig. 2. It guarantees that any adversary given a description of
a linear hash function (S,D,R,F) cannot invert q ` 1 challenges X1, . . . , Xq`1,
where Xi “ F(xi) for xi Ð$ D, by making at most q queries to the PI oracle that,
on any input Y P R that is an affine combination of the challenges, outputs an
element in the preimage of Y . It is syntactically analogous to the algebraic one-
more discrete logarithm (AOMDL) problem [43], where the adversary wants to
compute the discrete logarithms of q ` 1 random challenges in G by making
at most q queries to the DLog oracle, which outputs the discrete logarithm of
the input Y only when Y is an affine combination of the challenges and the
combination is known to the adversary.

636 S. Tessaro and C. Zhu

The following theorem, our main result on AOMPR, shows that AOMPR of
a linear hash function family is implied by its collision resistance.

Theorem 1. For any linear hash function family LHF and any AOMPR adver-
sary A making at most q queries to Chal, there exists an adversary B for the
CRLHF game running in a similar running time as A such that Advaompr

LHF (A, κ) ď
2AdvcrLHF(B, κ) .

Proof. (of Theorem 1). Given an adversary A for the AOMPRLHF game, with-
out loss of generality, we assume that A is deterministic, queries Chal exactly
q times, and queries PI exactly q ´ 1 times. The construction of B is straight-
forward. After receiving par from the CRLHF game, B runs A on input par by
simulating the oracles Chal and PI exactly the same as in the AOMPRLHF

game. After A outputs {yi}iP[q], if

D i P [q] such that F(yi) “ Xi and yi ‰ xi, (1)

where xi and Xi are generated in the oracle Chal, then B outputs (xi, yi).
Otherwise, B aborts.
Analysis of B. Denote the event WINB as after A returns, the condition (1)
holds. If WINB occurs, B wins the CRLHF game since F(xi) “ Xi “ F(yi), which
implies AdvcrLHF(B, κ) “ Pr [WINB].

It is left to show that Pr [WINB] ě 1
2Adv

aompr
LHF (A, κ). Since A is deterministic,

the execution of A is fixed given the pair (par ,x), where x P Dq denotes the
randomness generated in the oracle Chal. Denote the event WINA as A wins
the AOMPRLHF game simulated by B. Since B simulate the game perfectly, we
know Pr[WINA] “ Advaompr

LHF (A, κ). For each par , denote

WA :“ {x | WINA occurs given (par ,x)} ,

WB :“ {x | WINB occurs given (par ,x)} .

Claim 1. For each par, there exists a bijection Φ : WA Ñ WA such that for
any x P WA, we have x P WB _ Φ(x) P WB.

From the above claim, we can conclude the proof since Pr [WINB] “ Pr[x P
WB] “ 1

2 (Pr[x P WB] ` Pr[Φ(x) P WB]) ě 1
2Pr[x P WB _ Φ(x) P WB] ě

1
2Pr[x P WA] “ 1

2Pr[WINA] “ 1
2Adv

aompr
LHF (A, κ). ��

Proof. (of Claim 1). We construct Φ as follows. For each x P WA, consider the
execution of A given (par ,x). Denote B P S(q´1)ˆq as the query matrix of the
execution, which is defined as follows.

Definition 2. Given an execution of an adversary A for the AOMPR game,
where A makes q queries to Chal and � queries to PI, define the query matrix
of the execution as B P S�ˆq such that Bi,j “ β

(j)
i for i P [cid(j)] and Bi,j “ 0

otherwise, where β
(j)
i and cid(j) are the values of βi and cid when A makes the

j-th query to PI.

Threshold and Multi-signature Schemes from Linear Hash Functions 637

We now define
Φ(x) :“ x ` u(B)z˚ ,

where z˚ P D and u(B) P Sq are defined in the following claim.

Claim 2. There exists z˚ P D such that F(z˚) “ 0 and for any matrix A P S�ˆq

where 0 ă � ă q, there exists a vector u(A) P Sq and i P [q] such that

Au(A) “ 0 ^ D i P [q] : u
(A)
i z˚ ‰ 0 . (2)

Proof (of Claim 2). Since F is not a monomorphism from D to R, there exists a
non-zero element z˚ P D such that F(z˚) “ 0. Since S is a field and A has rank
at most � ă q, there exists a non-zero vector u(A) P Sq such that Au(A) “ 0.
Also, since u(A) is non-zero, there exists i P [q] such that u

(A)
i ‰ 0, and since S

is a field and z˚ ‰ 0, we have u
(A)
i z˚ ‰ 0.

Analysis of Φ. For simplicity, we use u to denote u(B) in the following analysis.
We first show that the executions of A given (par ,x) and given (par , Φ(x))
are identical. Since F(Φ(x)) “ F(x) ` u ¨ F(z˚) “ F(x) ` u ¨ 0 “ F(x), the
challenges output by Chal are the same in the two executions. For the j-th
query to PI, suppose the prior views of A are identical. Then, A must make
the same query

(
X(j), α(j), {β

(j)
i }iP[cid(j)]

)
in both executions. Since Bu “ 0, we

have α(j) ` ∑
iP[cid(j)] β

(j)
i xi “ α(j) `

(
β(j)

)T

x “ α(j) `
(
β(j)

)T

(x ` uz˚) “
α(j) `∑

iP[cid(j)] β
(j)
i (Φ(x))i, where β(j) denotes the j-th row of B. Therefore, A

receives the same value from PI in both executions. By induction, the views of
A are identical in both executions and thus A outputs the same values in both
executions, which implies Φ(x) P WA and thus Φ is a map from WA to WA.

Then, it is not hard to see that x P WB _ Φ(x) P WB. Since the executions
of A given x and Φ(x) are identical, the outputs y1, . . . , yq of A are also identical
in the two executions. Since there exists i P [q] such that uiz

˚ ‰ 0, we have either
yi ‰ xi or yi ‰ xi ` ui ¨ z˚, which means WINB occurs either in the execution
given x or Φ(x).

It is left to show that Φ is a bijection. Since both the domain and range of
Φ are WA, which is a finite set, it is enough to show that Φ is an injection. For
any x1,x2 P WA such that Φ(x1) “ Φ(x2), since the execution of A given x1

is identical to that given Φ(x1) and the execution of A given x2 is identical to
that given Φ(x2), we know the executions of A given x1 and x2 are identical,
which implies the query matrix B in the two executions are identical. Therefore,
we have Φ(x1) “ x1 ` uz˚ and Φ(x2) “ x2 ` uz˚ for the same u P Sq, which
implies x1 “ x2. This shows that Φ is an injection. ��

4 Schemes Based on Linear Hash Functions

For a cyclic group G with prime size p and generator g, we can view the descrip-
tion of a linear hash function with description (S,D,R,F) as an analogue to

638 S. Tessaro and C. Zhu

(G, p, g), where R corresponds to the group G, the preimage under the function
F corresponds to the discrete logarithm to base g, and S corresponds to the
field of scalar Zp. Also, the AOMPR game is analogous to the AOMDL game.
This suggests a general way of transforming any scheme that is secure under the
AOMDL assumption into a scheme that is constructed from linear hash func-
tions and is secure under the AOMPR assumption. In this section, we discuss
how this idea is applied to two specific examples: MuSig2 [43], a multi-signature
scheme, and FROST [37], a threshold signature scheme.

4.1 Multi-signatures

MuSig2 [43] is a two-round multi-signature scheme with key aggregation. More-
over, the first signing round is message-independent. We first give the syntax and
security definition of two-round multi-signatures following [43], then present a
new scheme MuSig2-H based on LHF that is transformed from MuSig2, and finally
show the security of the new scheme under the AOMPR assumption.
Syntax. A two-round multi-signature scheme with key aggregation is a
tuple of efficient (randomized) algorithms MS “ (Setup,KeyGen,KeyAgg,
PreSign, PreAgg,Sign,SignAgg,Ver) that behave as follows. The setup algorithm
Setup(1κ) returns a system parameter par , and we assume par is given to all
other algorithms implicitly. The key generation algorithm KeyGen() returns a
pair of secret and public keys (sk, pk). The (deterministic) key aggregation algo-
rithm KeyAgg takes as input a multiset of public keys L with size at most 2κ

and returns an aggregate public key apk. For n signers, where the i-th signer has
key-pair (ski, pki), the signing protocol between them and an aggregator node
to sign a message m P {0, 1}˚ is defined by the following experiment:

(ppi, sti) ← PreSign() , for each i P SS ,

app ← PreAgg({pp1, . . . , ppn}) ,

(out i, sti) ← Sign(sti, app, ski, pki,m, {pkj}jP[n]z{i}) , for each i P SS ,

σ ← SignAgg({out1, . . . , outn}) ,

(3)

where each signer runs the algorithms PreSign and Sign; the aggregator node runs
the algorithms PreAgg and SignAgg and outputs the signature σ. The aggregator
node can be one of the signers and is untrusted in our security model. The
(deterministic) verification algorithm Ver(apk,m, σ) outputs a bit that indicates
whether or not σ is valid for apk and m or not. We say that MS is (perfectly)
correct if, for any m P {0, 1}˚, Pr[Ver(KeyAgg({pk1, . . . , pkn}),m, σ)] “ 1, where
σ is generated in the experiment in (3) and the probability is taken over the
sampling of the system parameter par , all key-pairs {(ski, pki)}iP[n].
Security. The security notion of multi-signatures considered in the prior
work [43] is referred to as MS-UF-CMA, which guarantees that it is not pos-
sible to forge a valid multi-signature that involves at least one honest party.
The MS-UF-CMA game for a multi-signature scheme MS is defined in Fig. 3,
where MS.HF denotes the space of the hash functions used in MS from which

Threshold and Multi-signature Schemes from Linear Hash Functions 639

Game MS-UF-CMAA
MS(κ) :

par ← Setup(1κ)
H Ð$ MS.HF
(sk, pk) Ð$ KeyGen()
sid ← 0
S ← H ; S′ ← H ; Q ← H
(L, m, σ) ← ASign,Sign′,RO(par , pk)
If pk R L ^ (L, m) R Q

^ Ver(KeyAgg(L), m, σ) “ 1 then
Return 1

Return 0

Oracle PreSign() :

sid ← sid ` 1 ; S ← S Y {sid}
(pp, st(sid)) ← PreSign()
Return pp

Oracle Sign(k, app, m, L) :

If k R S then return K
out ← Sign(st(k), app, sk, m, L)
L ← L Y {pk}
Q ← Q Y {(L, m)}
S ← Sz{k} ; S′ ← S′ Y {k}
Return out

Oracle RO(x) :

Return H(x)

Fig. 3. The MS-UF-CMA game for a mutil signature scheme MS.

the random oracle is drawn. In the game, we assume the adversary corrupts
the aggregator node and all signers except one and can engage in any num-
ber of (concurrent) signing sessions with the honest party. The corresponding
advantage of A is defined as Advms-uf-cma

MS (A, κ) :“ Pr
[
MS-UF-CMAA

MS(κ) “ 1
]
.

Our Scheme. Figure 4 shows the scheme MuSig2-H, which is transformed from
MuSig2 [43] with the parameter ν “ 4, where ν denotes the number of nonces
generated in the first round of the signing protocol. In addition to the general
transformation, we do two optimizations to MuSig2-H. First, in KeyGen(), the
secret key sk is not sampled from D but from a subset Dkey Ď D such that F is
a bijection from Dkey to R. It can reduce the size of the secret key to the size
of the public key. Also, the range of each hash function is set to Shash instead
of S, where Shash is an arbitrary subset of S with size at least 2κ. Further, we
require the characteristic of the field S to be at least 2κ.

The original paper shows the unforgeability of MuSig2 under the AOMDL
assumption. Analogous to that, the following theorem shows that the security
of MuSig2-H[LHF] is implied by AOMPR of the underlying linear hash function
family LHF in the random oracle model.

Theorem 2. For any MS-UF-CMA adversary A making at most qs queries to
PreSign and qh queries to RO, there exists an AOMPR adversary B making
at most 4qs ` 1 queries to Chal running in time roughly four times that of A
such that

Advms-uf-cma
MuSig2-H[LHF](A, κ) ď 4

√
q3 ¨ Advaompr

LHF (B, κ) ` (16q2 ` 15)/2κ ,

where q “ qh ` qs ` 1.

640 S. Tessaro and C. Zhu

Setup(1κ) :

par ← PGen(1κ)
Return par

KeyGen() :

sk Ð$ Dkey ; pk ← F(sk)
Return (sk, pk)

KeyAgg(L) :

{pk1, . . . , pkn} ← L
For i P [n] do

ai ← Hagg(L, pki)
Return apk ← ∑

iP[n] aipki

Ver(apk, m, σ) :

c ← Hsig(apk, R, m) ; (R, s) ← σ
If F(s) “ R ` capk then return 1
Return 0

PreSign() :

For j P [4] do
rj Ð$ D ; Rj ← F(rj)

pp ← (R1, . . . , R4)
st ← (r1, . . . , r4)
Return (pp, st)

PreAgg({pp1, . . . , ppn}) :

For i P [n] do
(Ri,1, . . . , Ri,4) ← ppi

For j P [4] do
Rj ← ∑

iP[n] Ri,j

Return app ← (R1, . . . , R4)

Sign(st, app, sk, pk, m, L) :

(r1, . . . , r4) ← st
L ← L Y {pk}
apk ← KeyAgg(L)
a ← Hagg(L, pk)
(R1, . . . , R4) ← app
b ← Hnon(apk, (R1, . . . , R4), m)
R ← ∑

jP[4] b
j´1Rj

c ← Hsig(apk, R, m)
s ← ∑

jP[4] b
j´1rj ` ca ¨ sk

Return out ← (R, s)

SignAgg({out1, . . . , outn}) :

(R, s) ← out1
For i P [2..n] do

(Ri, si) ← out i

If Ri ‰ R then return K
s ← s ` si

Return σ ← (R, s)

Fig. 4. The multi-signature scheme MuSig2-H[LHF], where LHF “ (PGen,F) is a linear
hash function family. We assume n ď 2κ and |L| ď 2κ. Dkey is a subset of D such
that F is a bijection from Dkey to R. Further, Hagg(¨) :“ H(1, ¨), Hnon(¨) :“ H(2, ¨),
Hsig(¨) :“ H(3, ¨), where H : {0, 1}˚ Ñ Shash, Shash Ď S, and |Shash| ě 2κ. Moreover,
we require char(S) ě 2κ.

We prove the above theorem using the same techniques as used in the security
proof of MuSig2 [43] to construct B given an adversary A. Here, we briefly
highlight the differences:

– We need to show that B simulates the MS-UF-CMAMuSig2-H[LHF] game per-
fectly when no bad event occurs and that the bad events occur with a negligi-
ble probability (Claim 3 and Lemma 2) when the secret key is sampled from
Dkey instead of Zp, and the randomness rj is sampled from D instead of Zp.

– We need to show that B can compute a preimage for each challenge (Claim 4
and Claim 5) instead of the discrete logarithm to the base element. More
precisely, the problem can be described as follows. Denote the challenges by
U1, . . . , U� P R. After the interaction with A, B computes a matrix A P S�ˆ�

Threshold and Multi-signature Schemes from Linear Hash Functions 641

ForkA(x, v1, v
′
1, . . . , vq′ , v′

q′) :

Pick the random coin ρ of A at random
h1, h

′
1, . . . , hq, h

′
q ← H

(I, J, Out) ← A(x, h1, . . . , hq, v1, . . . , vq′ ; ρ)
If I “ K or J “ K then return K
(I ′, J ′, Out′) ← A(x, h1, . . . , hI´1, h

′
I , . . . , h′

q, v1 . . . , vJ´1, v
′
J , . . . , v′

q′ ; ρ)
If I �“ I ′ or hI “ h′

I then return K
Return (I, Out, Out′)

Fig. 5. The forking algorithm built from A for Lemma 1.

and a vector b P D� such that A ¨ U “ F(b), we need to show that A has full
rank and thus B can compute a vector u “ A´1b such that F(u) “ U .

Before turning to the proof, we first recall the following variant of the forking
lemma from [43] that will be used in the proof.

Lemma 1. Let q, q′ ě 1 be integers and H,V be two sets. Let A be a random-
ized algorithm that, on input x, h1, . . . , hq, v1, . . . , vq′ , outputs a tuple (I, J,Out),
where I P {K} Y [q], J P {K} Y [q′ ` 1] and Out is a side output. Let IG be a
randomized algorithm that generates x. The accepting probability of A is defined
as acc(A) “ Pr[(I, J,Out) Ð$ A(x, h1, . . . , hq, v1, . . . , vq′) : I ‰ K ^ J ‰ K] ,
where the probability is over x Ð$ IG, h1, . . . , hq Ð$ H, v1, . . . , vq′ Ð$ V and the
random coins of A. Consider algorithm ForkA described in Fig. 5. The accepting
probability of ForkA is defined as

acc(ForkA) “ Pr[α Ð$ ForkA(x, v1, v
′
1, . . . , vq′ , v′

q′) : α ‰ K] ,

where the probability is over x Ð$ IG, v1, v
′
1, . . . , vq′ , v′

q′ Ð$ V . Then,

acc(ForkA) ě acc(A)
(

acc(A)
q ´ 1

H

)
.

Proof. (of Theorem 2). Let A be an adversary as described in the theorem.
Denote the output message-signature pair of A as (L˚,m˚, σ˚ “ (R˚, z˚)). With-
out loss of generality, we assume A always queries RO on Hsig(apk˚,m˚, R˚)
before A returns, where apk˚ “ KeyAgg(L˚), and always queries RO on
Hnon(apk, (R1, . . . , R4),m) prior to each Sign(k, (R1, . . . , R4),m,L) query,
where apk “ KeyAgg(L). (This adds up to qs ` 1 additional RO queries, and we
let q “ qh ` qs ` 1.)

We first construct an algorithm C compatible with the syntax in Lemma 1,
then construct an algorithm C′ from ForkC , and finally construct B from ForkC′

.
The adversary C. The input of C consists of par , which defines a linear hash
function (S,D,R,F), and uniformly random elements h

(agg)
1 , . . . , h

(agg)
q , h

(sig)
1 ,

. . . , h
(sig)
q , h

(non)
1 , . . . , h

(non)
q P Shash. Also, C can access oracles Chal and PI,

defined the same way as those in the AOMPRLHF game. (We can think of this
oracle as part of C in the context of the Forking Lemma.) For simplicity, when

642 S. Tessaro and C. Zhu

C makes a query (X,α, {βi}) to PI, we omit the coefficients α, {βi} whenever
they are clear from the context.

To start with, C makes 4qs ` 1 queries to Chal and denotes the challenges
as X, U1, . . . , U4qs

P D. Then, C initializes H to an empty table. In addition, it
initializes counters ctrs,ctragg, ctrsig, ctrnon to 0 and a function dt to an empty
table, which are used to record the PI query related to each Uj .

We also use a flag BadKey, initially set to false, to denote whether a bad
event occurs. Then, C sets pk ← X and runs A(par , pk) with access to the oracles

˜PreSign, S̃ign, R̃O, which are simulated as follows.

R̃O query Hagg(x): If Hagg(x) ‰ K, C returns Hagg(x). Otherwise, parse x as
(L, p̃k). If the parsing fails, or X �P L, C sets Hagg(x) Ð$ Shash and returns
Hagg(x). Otherwise, C increases ctragg by 1, sets Hagg(L,X) ← h

(agg)
ctragg and

Hagg(L, pk′) Ð$ Shash for each pk′ P L and pk′ ‰ X. Let apk ← KeyAgg(L).
If apk P K, B sets BadKey ← true. Otherwise, C sets K ← K Y {apk} and
returns Hagg(x).

R̃O query Hnon(x): If Hnon(x) ‰ K, C returns Hnon(x). Otherwise, parse x

as (ãpk, (R1, . . . , R4),m). If the parsing fails, C sets Hnon(x) Ð$ Shash and
returns Hnon(x). Otherwise, C increases ctrnon by 1 and sets Hnon(x) ←
h
(non)
ctrnon

. Also, C computes R ← ∑
iP[4](h

(non)
ctrnon

)j´1Rj . If Hsig(ãpk, R,m) “ K,

C increases ctrsig by 1 and sets Hsig(ãpk, R,m) “ h
(sig)
ctrsig . Finally, C returns

Hnon(x).
R̃O query Hsig(x): If Hsig(x) ‰ K, C returns Hsig(x). Otherwise, parse x as

(ãpk, m, R). If the parsing fails, C sets Hsig(x) Ð$ Shash and returns Hsig(x).
Otherwise, C increases ctrsig by 1 and sets Hsig(x) ← h

(sig)
ctrsig . Finally, C sets

K ← K Y {ãpk} and returns Hsig(x).
˜PreSign(i) query: Same as in the game MS-UF-CMAMuSig2-H, except in the

simulation of algorithm Sign, C first increases ctrs by 1 and sets R1,i ←
Ui`4(ctrs´1) for i P [4].

S̃ign(k, app,m,L) query: Same as in the game MS-UF-CMAMuSig2-H, except in
the simulation of algorithm Sign′, C sets s ← PI(

∑
jP[4] b

j´1Ui`4(k´1)`ca¨pk),
and sets dt(k) ← (b, c, a, s).

After receiving the output (L˚,m˚, σ˚ “ (R˚, s˚)) from A, C returns K if
BadKey “ true or A does not win the game. Otherwise, C computes apk˚ ←
KeyAgg(L˚) and:

– Isig as the index such that Hsig(apk˚,m˚, R˚) is set to h
(sig)
Isig

;
– Jsig as the value of ctrnon when Hsig(apk˚,m˚, R˚) is assigned;
– Iagg as the index such that Hagg(L˚,X) is set to h

(agg)
Iagg

;
– Jagg as the value of ctrnon when Hagg(apk˚,m˚, R˚) is assigned.

Since A wins the game by our simulation, we know such Iagg and Isig must exist.
Then, C returns (Isig, Jsig,Out), where Out consists of all variables received or
generated by C.

Threshold and Multi-signature Schemes from Linear Hash Functions 643

Analysis of C. To use Lemma 1, we define IG as the algorithm that sets par Ð$

PGen(1κ), uniformly samples h
(agg)
1 , . . . , h

(agg)
q P Shash, and returns (par , h

(agg)
1 ,

. . . , h
(agg)
q). Also, (h(sig)

1 , . . . , h
(sig)
q) plays the role of (h1, . . . , hq), and (h(non)

1 ,

. . . , h
(non)
q) plays the role of (v1, . . . , vq′).

We now show that C simulates the game MS-UF-CMA perfectly. In the real
game, sk is uniformly sampled from Dkey, and, since F is a bijection from Dkey to
S, pk is uniformly distributed over S, which is identical to the simulation. Also,
it is clear that the output distributions of each R̃O query and each ˜PreSign

query are identical to those of the real game. For the simulation of S̃ign, from
the MS-UF-CMA game, we know that C makes at most one query to PI for
each session k. Therefore, from the AOMPR game, we know s1 is uniformly
distributed over the preimage of

∑
jP[4] b

j´1Ui`4(k´1) ` ca1 ¨ pk given the view of
the adversary, which is identical to the real game.

Therefore, since C simulates the game MS-UF-CMA perfectly, acc(C) ě
Advms-uf-cma

MuSig2-H[LHF](A) ´ Pr[BadKey], where Pr [BadKey] is the probability that
BadKey “ true at the end of C’s execution. By the following claim and Lemma 1,

acc(ForkC) ě (Advms-uf-cma
MuSig2-H[LHF](A) ´ (2q2 ` 1)/2κ)2/q ´ 1

|Shash|

ě (Advms-uf-cma
MuSig2-H[LHF](A))2

q
´ 4q ` 3

2κ
.

(4)

Claim 3. Pr[BadKey] ď 2q2`1
2κ .

Proof (of Claim 3). Consider a R̃O query Hagg(L, p̃k) from A such that X P L
and Hagg(L,X) is not assigned prior to the query. The aggregated key from L

can be represented as apk “ (X)t¨h(agg)
ctragg Z, where t is the number of times X

appears in L and Z :“ ∑
pkPL,pk‰X pkHagg(L,pk), which is independent of h

(agg)
ctragg .

BadKey is set to true if and only if apk P K. We use the following lemma, which
we show later, to bound the probability that apk P K.

Lemma 2. For any X P R and any integer t, denote C(t,X) :“ {(ts) ¨ X | s P
Shash}. We say X is Good if and only if |C(t,X)| “ |Shash| for any 1 ď t ď 2κ.
Then, we have PrX Ð$ R[X is not Good] ď 1/2κ.

Suppose X is Good. Given Z, since t ď 2κ, we have that apk is uniformly
distributed over the set {Y Z | Y P C(t,X)}, which has size |Shash|. Also, from
the execution, we have that |K| ď q ` qs ď 2q, and thus the probability that
BadKey is set to true after the query is at most |K| / |Shash| ď 2q/2κ. Since
there are at most q RO queries, the probability that BadKey is set to true
during the simulation is at most 2q2/2κ. Therefore, we have that Pr[BadKey] ď
Pr[X is not Good] ` Pr[BadKey ^ X is Good] ď 2q2`1

2κ . ��
Proof (of Lemma 2). For any 1 ď t ď 2κ, s1, s2 P S, and X P R such that
s1 ‰ s2 and X ‰ 0, since char(S) ě 2κ, we know that t ¨ (s1 ´ s2) ‰ 0 and thus
t ¨(s1 ´s2) ¨X ‰ 0, which implies ts1 ¨X ‰ ts2 ¨X. Therefore, |C(t,X)| “ |Shash|,

644 S. Tessaro and C. Zhu

which means that X is Good. Thus, we have that PrX←R[X is not Good] ď
PrX←R[X “ 0] “ 1

|R| ď 1/2κ. ��

Construct C′ from ForkC. The input of C′ consists of par , which defines a lin-
ear hash function (S,D,R,F) and uniformly random elements h

(agg)
1 , . . . , h

(agg)
q

h
(non)
1 , h

(non)
1

′
, . . . , h

(non)
q , h

(non)
q

′ P Shash. Also, C′ can access oracles Chal
and PI defined the same way as those in the AOMPR game. To begin, C′ runs
ForkC(par , h

(agg)
1 , . . . , h

(agg)
q , h

(non)
1 , h

(non)
1

′
, . . . , h

(non)
q , h

(non)
q

′
). All queries to ora-

cle Chal from the first execution of C′ are relayed by B to its own Chal oracle,
and for all Chal queries from the second execution of C′, B answers them with
the same challenges as in the first execution. All PI queries from ForkC′

are
relayed by B to its own PI oracle.

After ForkC returns (Isig, Jsig,Out,Out′), by the following claim, C′ computes
x̃ such that F(x̃) “ apk˚ and returns (Iagg, Jagg, (x̃,Out,Out′)), where Iagg, Jagg,
and apk˚ are from Out.

Claim 4. If ForkC returns (Isig, Jsig,Out,Out′), C′ can compute x̃ such that
F(x̃) “ apk˚, where apk˚ is from Out.

Proof (of Claim 4). We directly use the notations in the description of
C to denote the variables in Out and use (¨)′ to denote the variables in
Out′. Since ForkC does not return K, we have Hsig(apk˚,m˚, R˚) “ hI ‰
h′

I “ H′
sig(apk

˚,m˚, R˚). Since the two executions of C are identical before
Hsig(apk˚,m˚, R˚) is assigned hI , we know (apk˚,m˚, R˚) “ (apk˚′

,m˚′, R˚′).
Therefore, we have F(s˚) “ R˚ ` hIapk

˚ and F(s˚′) “ R˚ ` h′
Iapk

˚, and C′

computes x̃ ← s˚´s˚′
hI ´h′

I
. ��

Analysis of C′. To use Lemma 1, we define IG as the algorithm that sets
par Ð$ PGen(1κ) and returns par . Also, (h(agg)

1 , . . . , h
(agg)
q) plays the role of

(h1, . . . , hq), and ((h(non)
1 , h

(non)
1

′
), . . . , (h(non)

q , h
(non)
q

′
)) plays the role of (v1, . . .

, vq′). It is clear that acc(C′) “ acc(ForkC). Therefore, by Lemma 1 and (4),
acc(ForkC′

) ě (acc(ForkC))2/q ´ 1
|Shash| ě (Advms-uf-cma

MuSig2-H[LHF](A))4/q3 ´ 15
2κ .

Construct B from ForkC′
. We now give a construct of the AOMPR adver-

sary B using ForkC′
and the available Chal and PI oracles. To start with, B

receives par from the AOMPRLHF game and uniformly samples h
(non)
1 , h

(non)
1

′
,

h
(non)
1

′′
, h

(non)
1

′′′
, . . . , h

(non)
q , h

(non)
q

′
, h

(non)
q

′′
, h

(non)
q

′′′ P Shash. Then, B runs ForkC′

on input par , (h(non)
1 , h

(non)
1

′
), (h(non)

1

′′
, h

(non)
1

′′′
), . . . , (h(non)

q , h
(non)
q

′
), (h(non)

q

′′
,

h
(non)
q

′′′
), where (h(non)

i , h
(non)
i

′
) plays the role of vi and (h(non)

i

′′
, h

(non)
i

′′′
) plays

the role of v′
i. All Chal queries from the first execution of C′ are relayed by B

to its own Chal oracle, and, for all Chal queries from the second execution
of C′, B answers them with the same challenges as the first execution. All PI
queries from ForkC′

are relayed by B to its own PI oracle. Without loss of gener-
ality, we can assume all challenges are different since otherwise B can solve them

Threshold and Multi-signature Schemes from Linear Hash Functions 645

trivially. Denote the event BadHash as any two of the scalars h
(non)
1 , h

(non)
1

′
,

h
(non)
1

′′
, h

(non)
1

′′′
, . . . , h

(non)
q , h

(non)
q

′
, h

(non)
q

′′
, h

(non)
q

′′′
are same. Since they are

sampled uniformly from Shash, we know Pr[BadHash] ď (4q)2/ |Shash| ď 16q2

2κ .
Then, we can conclude the proof with the following claim, which implies
Advaompr

LHF (B) ě acc(ForkC)´Pr[BadHash] ě (Advms-uf-cma
MuSig2-H[LHF](A))4/q3 ´ 16q2`15

2κ .

Claim 5. If ForkC′
returns (Iagg, Jagg,Out,Out′) and BadHash does not occur,

B can win the game AOMPRLHF.

��
Proof (proof of Claim 5). Denote (x̃,Out(1),Out(2)) ← Out and (x̃′, Out(3),
Out(4)) ← Out′, and we use (¨)(i) to denote the variables in Out(i). The
total number of Chal queries is 4qs ` 1, and the corresponding challenges are
X,U1, . . . , U4qs

.
We first show how to compute x˚ such that F(x˚) “ X. Since ForkC′

returns

Iagg, we have H(1)
agg(L˚(1),X) “ h

(agg)
Iagg

‰ h
(agg)
Iagg

′ “ H(3)
agg(L˚(3),X). Since the two

executions of C are identical before Hsig is assigned h
(agg)
Iagg

, we have L˚(1) “ L˚(3)

(we denote L˚(1) as L˚ from here forward) and H(1)
agg(L˚, pk′) “ H(3)

agg(L˚, pk′)
for any pk′ P L˚ and pk′ ‰ X. Therefore, the aggregated keys from L˚ in the
two execution can be represented as apk˚(1) “ t ¨ h

(agg)
Iagg

¨ X ` Z , apk˚(3) “
t ¨ h

(agg)
Iagg

′ ¨ X ` Z, where t is the number of times X appears in L˚ and Z :“
∑

pk′PL˚,pk′‰X H(1)
agg(L˚, pk) ¨pk′ . By Claim 4, F(x̃) “ apk˚(1) and F(x̃′) “ apk˚(3).

Therefore, B computes x˚ “ x̃´x̃′

t(h
(agg)
Iagg

´h
(agg)
Iagg

′
)
.

We now show how to compute u1, . . . , u4qs
such that F(ui) “ Ui. For k P [qs],

dt(i)(k) “ (b, c, a, s) ‰ K if and only if C queries PI on
∑

jP[4] b
j´1Ui`4(k´1) `

ca ¨ X. Define a set T :“ {(b, c ¨ a, s) : i P [4], dt(i)(k) “ (b, c, a, s)}. The
total number of PI queries for simulating those PI queries from C is equal
to |T |. From the execution of B, we know for any i1, i2 P [4] and i1 ‰ i2,
where (b, c, a, s) “ dt(i1)(k) and (b′, c′, a′, s′) “ dt(i2)(k), if b “ b′, then we have
(b, c, a, s) “ (b′, c′, a′, s′). Therefore, we know for any distinct (b, v, s), (b′, v′, s′) P
T , it holds that b ‰ b′. Also, we have |T | ď 4. If |T | ă 4, B picks an arbitrary
b′ P Shashz{b : (b, v, s) P T} and sets s′ ← PI

(∑
jP[4] b

′j´1
Ui`(4´1)k

)
. Then, B

adds (b′, 0, s′) to T and repeats this until T has size 4. Denote the elements in
T as (b1, v1, s1), . . . , (b4, v4, s4), and we have AU “ F(s), where

A “
⎛

⎜
⎝

1 b1 b21 b31
...

...
...

...
1 b4 b24 b34

⎞

⎟
⎠ , U “

⎛

⎜
⎝

U1`4(k´1)

...
U4k

⎞

⎟
⎠ , s “

⎛

⎜
⎝

s1 ´ v1x
˚

...
s4 ´ v4x

˚

⎞

⎟
⎠ .

Since A is a Vandermonde matrix over the field S, A has full rank. Therefore, B
can compute (u1`(k´1)4, . . . , uk4)T “ A´1s. Also, the number of PI queries for

646 S. Tessaro and C. Zhu

simulating the PI queries from C and computing T is equal to 4. Therefore, the
total number of PI queries made by B is 4qs, which implies B wins the game
AOMPRLHF. ��

4.2 Threshold Signatures

FROST1 [37] and a more efficient version FROST2 [6] of FROST1 are (partially)
non-interactive threshold signature schemes as formalized in [6]. We first give the
syntax and security definitions of non-interactive threshold signature schemes
following [6], then present new schemes based on LHF that are transformed from
FROST1/2, and finally show the security of the new schemes under the AOMPR
assumption.
Syntax. A (partially) non-interactive threshold signature schemes for n sign-
ers and threshold t is a tuple of efficient (randomized) algorithms TS “ (Setup,
KeyGen, SPP, LPP, LR,PS,Agg,Vf) that behave as follows. Parties involved are
a leader and n signers. The setup algorithm Setup(1κ) initializes the state sti
for each signer i P [n] and st0 for the leader and returns a system parameter
par . We assume par is given to all other algorithms implicitly. The key gener-
ation algorithm KeyGen() returns a public verification key pk, public auxiliary
information aux, and a secret key ski for each signer i.

The signing protocol consists of two rounds: a message-independent pre-
processing round and a signing round. In the pre-processing round, any signer
i can run SPP(sti) to generate a pre-processing token pp, which is sent to the
leader, and the leader runs LPP(i, pp, st0) to update its state st0 to incorporate
token pp. In a signing round, for any signer set SS Ď [n] with size t and message
m P {0, 1}˚, the leader runs LR(m,SS , st0) to generate a leader request lr with
lr .msg “ m and lr .SS “ SS and sends lr to each signer i P SS . Then, each
signer i runs PS(lr , i, sti) to generate its partial signature psig i. Finally, the
leader computes a signature σ for m by running Agg({psig i}iPSS). In summary,
the signing protocol between signers in SS and the leader to sign a message
m P {0, 1}˚ is represented by the following experiment:

(ppi, sti) ← SPP() , st0 ← LPP(i, ppi, st0) , for each i P SS ,

(lr , st0) ← LR(m,SS , st0) ,

(psig i, sti) ← PS(lr , i, sti) , for each i P SS ,

σ ← Agg({psig i}iPSS) .

(5)

The (deterministic) verification algorithm Vf(pk,m, σ) outputs a bit that indi-
cates whether or not σ is valid for pk and m or not. We say that TS is (perfectly)
correct if for any SS Ď [n] and any m P {0, 1}˚, Pr[Vf(pk,m, σ)] “ 1, where σ is
output from the experiment in (5) and the probability is taken over the sampling
of the system parameter par and the randomness of KeyGen.
Security. A hierarchy for security notions of threshold signatures is pro-
posed in [6]. Here, we focus on two of them, TS-SUF-2 and TS-SUF-3, which
are achieved by FROST2 and FROST1, respectively. TS-SUF-2 and TS-SUF-3

Threshold and Multi-signature Schemes from Linear Hash Functions 647

require that there exists an efficient strong verification algorithm SVf that takes
as input a public key pk, a leader request lr , and a signature σ and outputs a
bit that indicates whether σ is obtained legitimately for lr . SVf satisfies that for
each (pk, lr), there exists at most one signature σ such that SVf(pk, lr , σ) “ 1
and for any SS Ď [n] and any m P {0, 1}˚, Pr[SVf(pk, lr , σ)] “ 1, where lr and
σ are generated in the experiment in (5) and the probability is taken over the
sampling of the system parameter par and the randomness of KeyGen. TS-SUF-2
guarantees that an adversary can generate a valid signature σ for m only if it
receives partial signatures from at least t ´ |CS | honest parties for the same
leader request lr such that lr .msg “ m and SVf(pk, lr , σ) “ 1, where CS denotes
the set of corrupted signers.

TS-SUF-3 is defined only for schemes where lr additionally specifies a func-
tion lr .PP that maps each i P lr .SS to a pre-processing token generated by signer
i. TS-SUF-3 guarantees that an adversary can generate a valid signature σ for
m only if, in addition to the condition of TS-SUF-2, it receives partial signatures
from each honest signer i such that lr .PP(i) is honestly generated by signer i for
lr . Formally, the TS-SUF-2 game and the TS-SUF-3 game are defined in Fig. 6,
where TS.HF denotes the space of the hash functions used in TS from which the
random oracle is drawn. The advantage of A for the TS-SUF-X game is defined
as Advts-suf-XTS (A, κ) :“ Pr

[
TS-SUF-XA

TS(κ) “ 1
]

for X P {2, 3}.
Our Schemes. Figure 7 shows the protocols FROST1-H and FROST2-H that
are transformed from FROST1 and FROST2, respectively. In addition to the
general transformation, we need to pick an injection x(¨) : [n] Ñ S. The choice of
x(¨) can be arbitrary, and the corresponding Lagrange coefficient for a set of index
S Ď [n] and i P S is defined as λS

i :“ ∏
jPSz{i}

xj

xi´xj
. We analyse the correctness

of the scheme in the full version of this paper. Also, similar to the multi-signature
case, we optimize the schemes by sampling key shares from Dkey Ď D and setting
the hash range to be Shash Ď S.

The following theorems show that, under the AOMPR assumption,
FROST2-H is TS-SUF-2-secure and FROST1-H is TS-SUF-3-secure in the ran-
dom oracle model. We prove the theorems in the full version of this paper.

Theorem 3. For any TS-SUF-2 adversary A game making at most qs queries
to PPO and qh queries to RO, there exists an AOMPR adversary B making at
most 2qs ` t queries to Chal running in time roughly equal two times that of
A such that Advts-suf-2FROST2-H[LHF](A, κ) ď √

q ¨ (Advaompr
LHF (B, κ) ` (3q2)/2κ) , where

q “ qh ` qs ` 1.

Theorem 4. For any TS-SUF-3 adversary A making at most qs queries to
PPO and qh queries to RO, there exists an AOMPR adversary B making at
most 2qs ` t queries to Chal running in time roughly equal two times that of
A such that Advts-suf-3FROST1-H[LHF](A, κ) ď 4n ¨ q ¨ √(Advaompr

LHF (B, κ) ` 6q/2κ) , where
q “ qh ` qs ` 1.

648 S. Tessaro and C. Zhu

Game TS-SUF-2A
TS(κ) , TS-SUF-3A

TS(κ) :

par ← Setup(1κ) ; H Ð$ TS.HF
L ← H ; S ← () ; S′ ← ()
(m, σ) ← AInit,PPO,PSignO,RO(par)
If (Vf(pk, m, σ) ‰ 1) then return 0

Return (not Dlr : lr .msg “ m ^ SVf(pk, lr , σ)

^ |S(lr)| ě t ´ |CS |)
For lr P L do

S′(lr) ← {i P HS ∩ lr .SS : lr .PP(i) P PPi}
Return (not Dlr : lr .msg “ m ^ SVf(pk, lr , σ)

^ |S(lr)| ě max{S′(lr), t ´ |CS |})

Oracle Init(CS) :

HS ← [n]zCS
(pk, aux, sk1, . . . , skn) ← KeyGen()
For i P HS do

sti.sk ← ski ; sti.pk ← pk ; sti.aux “ aux

Return pk, aux, {ski}iPCS

Oracle PPO(i) :

Require: i P HS
(pp, sti) Ð$ SPP(sti)
PPi ← PPi Y {pp}
Return pp

Oracle PSignO(i, lr) :

m ← lr .msg
Require: lr .SS Ď [n] and
i P HS
L ← L Y {lr}
(psig , st′i) Ð$ PS(lr , i, sti)
If (psig ‰ K) then

S(lr) ← S(lr) Y {i}
Return psig

Oracle RO(x) :

Return H(x)

Fig. 6. The TS-SUF-2 game and the TS-SUF-3 game for a threshold signature scheme
TS. The TS-SUF-2 game contains all but the dashed box, and the TS-SUF-3 game
contains all but the solid box.

5 Instantiations

5.1 Instantiations from the Discrete Logarithm Problem

Discrete Logarithm Problem. The discrete logarithm problem is formal-
ized by the DLog game defined in the left side of Fig. 8. The group generation
algorithm GGen(1κ) outputs (G, p, g), where G is a cyclic group with prime
size p ě 2κ and generator g. The corresponding advantage of A is defined as
AdvdlogGGen(A, κ) :“ Pr

[
DLogA

GGen “ 1
]
.

Instantiation. Following the instantiation from [30], a linear hash function
family GLHF is instantiated from a group generation algorithm GGen as follows.

– On input 1κ, PGen runs GGen(1κ) and receives a group description (G, p, g).
Then, PGen uniformly samples Z P G and returns κ ← (G, p, g, Z).

– Given κ “ (G, p, g, Z), define S :“ Zp , D :“ Z
2
p , R :“ G . Also, for any

(x1, x2) P Z
2
p, define F(x1, x2) :“ gx1Zx2 .

– The operation over D is defined as follows. For any (x1, y1), (x2, y2) P D and
s P S, (x1, y1) ` (x2, y2) “ (x1 ` x2, y1 ` y2) and s ¨ (x1, y1) “ (sx1, sy1).

– The operation over R is defined as follows. For any x1, x2 P R and s P S,
x1 ` x2 “ x1x2 , s ¨ x1 “ xs

1, where x1x2 and xs
1 are the group operations

of G.

Threshold and Multi-signature Schemes from Linear Hash Functions 649

Setup(1κ) :

par Ð$ PGen(1κ)
For i P [n] do

st0.curPPi ← H
sti.mapPP ← ()

Return par

KeyGen() :

For i P [0..t ´ 1] do
ai Ð$ Dkey

For i P [n] do
ski Ð$

∑t´1
j“0 aj ¨ xj

i ; pki ← F(ski)
pk ← F(a0)
aux ← (pk1, . . . , pkn)
Return pk, aux, {ski}iP[1..n]

SPP(sti) :

r Ð$ D ; s Ð$ D
pp ← (F(r),F(s))
sti.mapPP(pp) ← (r, s)
Return (pp, sti)

LPP(i, pp, st0) :

st0.curPPi ← st0.curPPi Y {pp}
Return st0

LR(M,SS , st0) :

If D i P SS : st0.curPPi “ H then
Return K

lr .msg ← M ; lr .SS ← SS
For i P SS do

Pick ppi from st0.curPPi

lr .PP(i) ← ppi

st0.curPPi ← st0.curPPiz{ppi}
Return (lr , st0)

Vf(pk, m, σ) :

(R, s) ← σ
c ← H2(pk, m, R)
Return (F(s) “ R ` c ¨ pk)

CompPar(pk, lr) :

m ← lr .msg ; (R˚, s˚) ← σ
For i P lr .SS do

di ← H1(pk, lr , i)

di ← H1(pk, lr)

(Ri, Si) ← lr .PP(i)
R ← ∑

iPlr.SS(Ri ` diSi)
c ← H2(pk, M, R)
Return (R, c, {di}iPlr.SS)

PS(lr , i, sti) :

ppi ← lr .PP(i)
If sti.mapPP(ppi) “ K then

Return (K, sti)
(ri, si) ← sti.mapPP(ppi)
sti.mapPP(ppi) ← K
(R, c, {dj}jPlr.SS)

← CompPar(sti.pk, lr)
zi ← ri ` di ¨ si ` c ¨ λlr.SS

i ¨
sti.sk
Return ((R, zi), sti)

Agg(PS, st0) :

R ← K ; z ← 0
For (R′, z′) P PS do

If R “ K then R ← R′

If R �“ R′ then return
(K, st0)

z ← z ` z′

Return ((R, z), st0)

SVf(pk, lr , σ) :

(R˚, z˚) ← σ
(R, c, {dj}jPlr.SS)

← CompPar(sti.pk, lr)
Return (R “ R˚) ^
(F(z˚) “ R ` c ¨ pk

Fig. 7. The protocol FROST1-H[LHF] and FROST1-H[LHF], where LHF “ (PGen,F) is
a linear hash function family. The protocol FROST1-H contains all but the dashed box,
and the protocol FROST2-H contains all but the solid box. Further, n is the number
of parties, and t is the threshold of the schemes. x(¨) is an injection from [n] to S and
λlr.SS

i denotes the Lagrange coefficient which is computed as λlr.SS
i :“ ∏

jPSz{i}
xj

xj´xi
.

Dkey is a subset of D such that F is a bijection between Dkey and S. The function Hi(¨)
is computed as H(i, ¨) for i “ 1, 2, where H : {0, 1}˚ Ñ S.

650 S. Tessaro and C. Zhu

Game DLogA
GGen(κ) :

(G, p, g) Ð$ GGen(1κ)
Z Ð$ G

z Ð$ A(G, p, g, Z)
If gz “ Z then

Return 1
Return 0

Game RSAA
RGen(κ) :

(N, e) Ð$ RGen(1κ)
w Ð$ ZN̊

u Ð$ A(N, e, w)
If ue “ w then

Return 1
Return 0

Fig. 8. The DLog game and the RSA game.

The following theorem shows that GLHF is a linear hash function family and
collision resistance of GLHF is implied by the discrete logarithm assumption. [30]
shows similar statements, and we also give the proof in the full version of this
paper.

Lemma 3. For any group generation algorithm GGen, GLHF[GGen] is a lin-
ear hash function family (Definition 1). Moreover, for any adversary A for the
CRGLHF[GGen] game, there exists an adversary B for the DLogGGen game such that
AdvcrGLHF[GGen](A, κ) ď AdvdlogGGen(B, κ).

To instantiate MuSig2-H, FROST1-H, and FROST2-H, we set Dkey :“
{(x, 0) : x P Z} and Shash :“ S. It is clear that char(S) “ p ě 2κ, F is
a bijection from Dkey to R, and |Shash| “ |S| ě 2κ. Also, for instantiating
FROST1-H and FROST2-H, we set xi :“ i.

By combining Theorem 1 and Lemma 3 with the theorems in Sect. 4, we show
the security of MuSig2-H, FROST1-H, and FROST2-H instantiated from GLHF
under the discrete logarithm assumption in the random oracle model.

5.2 Instantiations from the RSA Problem

RSA Problem. The RSA problem we use here is formalized by the RSA game
defined on the right side of Fig. 8. The RSA parameter generation algorithm
RGen(1κ) outputs (N, e), where N “ P ¨ Q for two primes P and Q and e is
a prime such that gcd(N, e) “ gcd(φ(N), e) “ 1 such that φ(N) ě 2κ and
e ě 2κ.1 The corresponding advantage of A is defined as AdvrsaRGen(A, κ) :“
Pr

[
RSAA

RGen “ 1
]
.

Instantiation. To instantiate linear hash function families from the RSA prob-
lem, we have to use a weaker notion, referred to as weak linear hash functions,
which are the same as linear hash functions except that S is only required to
be a ring instead of a field. Formally, we construct a weak linear hash function
family, RLHF, from an RSA parameter generation algorithm RGen as follows.

1 Comparing this to the plain RSA problem, here we additionally require that e is
prime such that gcd(N, e) “ 1 and e ě 2κ.

Threshold and Multi-signature Schemes from Linear Hash Functions 651

– On input 1κ, PGen runs RGen(1κ) and receives (N, e). Then, PGen uniformly
samples w P ZN̊ and returns par ← (N, e,w).

– Given par “ (N, e,w), define S :“ Z , D :“ Ze ˆ ZN̊ , R :“ ZN̊ . Also, for
any (a, x) P Ze ˆ ZN̊ , define F(a, x) :“ waxe P ZN̊ .

– The operations of D are defined as follows. For any (a1, x1), (a2, x2) P D
and s P S, (a1, x1) ` (a2, x2) “ (a1 ` a2, x1x2w

�(a1`a2)/e�) and s ¨ (a1, x1) “
(sa1, x

s
1w

�sa1/e�), where a1 ` a2 and sa1 are computed over Ze.
– The operations of R are defined as follows. For any x1, x2 P R and s P S,

x1 ` x2 “ x1x2 , s ¨ x1 “ xs
1, where x1x2 is the multiplicative operation over

ZN̊ and xs
1 is the exponential operation over ZN̊ . Note here and also in the

following discussion, we use “`” to denote the group operation of R instead
of the additive operation over Z and “¨” to denote the scalar multiplicative
operation of R instead of the multiplicative operation over Z.

The preceding instantiation is similar to the one from [30]. The only difference
is that we set S to Z in order to make both D and R to be S-modules. The
following theorem shows that RLHF is a weak linear hash function family and
collision resistance of RLHF is implied by the RSA assumption. We give the proof
in the full version of this paper.

Lemma 4. For any RSA parameter generation algorithm RGen, RLHF[RGen]
is a weak linear hash function family. Moreover, for any adversary A for the
CRRLHF[RGen] game, there exists an adversary B for the RSARGen game such that
AdvcrRLHF[RGen](A, κ) ď AdvrsaRGen(B, κ).

Reduction from CR to AOMPR. Unfortunately, Theorem 1 does not hold
for weak linear hash functions: in the proof of Claim 1, if S is not a field, it is
possible that there does not exist u satisfying the condition in (2). Nonetheless,
we can show for RLHF that the reduction still works. Formally, we have the
following theorem.

Theorem 5. For any adversary A for the AOMPRRLHF game, there exists an
adversary B for the CRRLHF game running in a similar running time as A such
that Advaompr

RLHF (A, κ) ď 2AdvcrRLHF(B, κ).

Proof (of Theorem 5). We prove the above theorem following the proof of Theo-
rem 1, where the only difference is that in the proof of Claim 1, we need to show
the following fact:

There exists z˚ P D such that F(z˚) “ 0, and, for any matrix B P S�ˆq

with � ă q, there exists a vector u P Sq and i P [q] such that Bu “ 0
and uiz

˚ ‰ 0, where 0 denotes the identity of D and R and the additive
identity of S.

We prove the above fact for RLHF as follows. Given the parameter (N, e,w)
that defines (S,D,R,F), the identity of D is (0, 1), and the identity of R is 1.
We first set z˚ “ (e ´ 1, w1´1/e), where 1/e denotes the multiplicative inverse
of e over Zφ(N). 1/e exists since gcd(φ(N), e) “ 1. We can verify that F(z˚) “

652 S. Tessaro and C. Zhu

we´1`e(1´1/e) “ 1. Since � ă q, we can always find a non-zero vector v P Z

such that Bv “ 0 using Gaussian eliminations. Denote k :“ gcd({vi}iP[q]). Let
u “ v/k, and we have gcd({ui}iP[q]) “ 1. Therefore, there exists i P [q] such that
ui ı 0 mod e and thus uiz

˚ ‰ (0, 1). Since Bu ¨ k “ Bv “ 0 and k ‰ 0, we know
Bu “ 0. ��

Solving Linear Equations. Another issue with weak linear hash functions
is that it is unclear how to invert challenges X P R given AX “ F(b), where
A P Snˆn and b P Dn, which is a common problem we encounter in the security
proofs in Sect. 4. In these proofs, to solve this problem, we show A has full rank
and then, since S is a field, we can compute x P Dn such that F(x) “ X by
multiplying the inverse of A on both sides of the equation. However, in the case
of weak linear hash functions, A might not have an inverse.

Fortunately, for RLHF, we show that such linear equations can be solved
efficiently if A has full rank modulo e, which is formally stated in the following
lemma.

Lemma 5. For any integer n ě 1 and any parameter par “ (N, e,w) for RLHF,
which defines (S,D,R,F), given A P Snˆn, X P Rn, and b P Dn such that A
has full rank modulo e and AX “ F(b), there exists an efficient algorithm with
input (A,X, b) that outputs x P Dn such that F(xi) “ Xi.

Proof. We compute x as follows.

1. Since A has full rank modulo e and e is a prime, we can efficiently compute
the inverse of A modulo e as A′.

2. Set C ← A′A. Since A′ is the inverse of A modulo e, we know for any i, j P [n],

Ci,j ≡
{

1 mod e, for i “ j

0 mod e, o.w .
.

3. Set b′ ← A′b and xi ← b′
i ´ ∑

jP[n] �Ci,j/e� ¨ (0,Xj) for each i P [n].

Since AX “ F(b), we have CX “ A′AX “ A′F(b) “ F(A′b) “ F(b′), which
implies F(b′

i) “ ∑
jP[n] Ci,jXj “ ∏

jP[n] X
Ci,j

j . Therefore, due to the above prop-

erty of C, for i P [n], F(xi) “ F(b′
i) ´ ∑

jP[n] X
e�Ci,j/e�
j “ ∏

jP[n] X
Ci,j´e�Ci,j/e�
j “

Xi. ��

Dkey and Shash. For instantiating MuSig2-H, FROST1-H, and FROST2-H from
RLHF, we set Dkey :“ {(0, x) | x P ZN̊} and Shash :“ Z2κ . It is clear that F is
bijection from Dkey to R and |Shash| ě 2κ.

5.3 Multi-signatures from RSA

To instantiate MuSig2-H from RLHF, we additionally require that for N “ P ¨Q,
P is a safe prime and P ą 2κ`1 for the security proof to go through. We discuss
how to remove this requirement later in this section. To show the security, we

Threshold and Multi-signature Schemes from Linear Hash Functions 653

prove Theorem 2 holds if LHF is replaced by RLHF. Combining it with Theo-
rem 5 and Lemma 4 shows the security of RLHF-based MuSig2-H under the RSA
assumption in the random oracle model.

We now show the proof of Theorem 2 for the case LHF “ RLHF by discussing
only those places that differ from the original proof of Theorem 2.

Proof (of Theorem 2 for RLHF). We follow the original proof of Theorem 2 to
construct the adversary B. Then, we just need to show that Claim 3, Claim 4,
and Claim 5 hold.

Proof (of Claim 3 for RLHF). We only need to show that Lemma 2 holds for
RLHF, and the rest is the same as the original proof of Claim 3. Denote r P ZP̊ as
the primitive root of ZP̊ . For any X P ZN̊ “ R, there exists k P ZP̊ ´1 such that
X ≡ rk mod P . Suppose k ‰ P ′. For any 1 ď t, s ď 2κ ă P ′ and any 1 ď s ă
P ′, we have (X)ts ≡ rkts ı r0 mod P , which implies (X˚)t¨s1 ‰ (X˚)t¨s2 for any
distinct s1, s2 P Z2κ “ Shash. Therefore, we have |C(t,X)| “ |Shash|. Therefore,
X is Good if X ı rP ′

mod P . Therefore, we have PrX Ð$ R[X is not Good] ď
PrX Ð$ Z

˚
N

[X ≡ rP ′
mod P] ď 1/(P ´ 1) ď 1/2κ. ��

Proof (of Claim 4 for RLHF). Following the original proof of Claim 4, we have
F(s˚) “ R˚ ` hI ¨ apk˚ and F(s˚′) “ R˚ ` h′

Iapk
˚, which implies (hI ´ h′

I) ¨ apk˚ “
F(s˚ ´ s˚′). Assume h′

I ă hI without loss of generality. Since hI , h
′
I P Shash “

Z2κ Ď Ze, we have 1 ď hI ´ h′
I ă e. Therefore, C′ computes x̃ using Lemma 5

for the case n “ 1. ��
Proof (of Claim 5 for RLHF). The total number of Chal queries made by B
is 4qs ` 1 and the corresponding challenges are X,U1, . . . , U4qs

. We follow the
original proof to show how B computes x˚, u1, . . . , u4qs

such that F(x˚) “ X and
F(ui) “ Ui for i P [4qs].

To compute x˚, following the original proof, we have F(x̃) “ t ¨ h
(agg)
Iagg

¨ X `
Z , F(x̃′) “ t ¨ h

(agg)
Iagg

′ ¨ X ` Z, where h
(agg)
Iagg

‰ h
(agg)
Iagg

′ P Shash “ Z2κ , 1 ď
t ď 2κ, and Z P R. Therefore, we have t(h(agg)

Iagg
´ h

(agg)
Iagg

′
) ¨ X “ F(x̃ ´ x̃′).

Assume h
(agg)
Iagg

′ ă h
(agg)
Iagg

without loss of generality. We have 1 ď t ď 2κ ă e and

1 ď (h(agg)
Iagg

´ h
(agg)
Iagg

′
) ď 2κ ă e, which implies t(h(agg)

Iagg
´ h

(agg)
Iagg

′
) ı 0 mod e.

Therefore, B computes x˚ using Lemma 5 for the case n “ 1.
For each k P [qs], to compute u1`4(k´1), . . . , u4k, following the original proof,

we have AU “ F(s), where

A “
⎛

⎜
⎝

1 b1 b21 b31
...

...
...

...
1 b4 b24 b34

⎞

⎟
⎠ , U “

⎛

⎜
⎝

U1`4(k´1)

...
U4k

⎞

⎟
⎠ , s “

⎛

⎜
⎝

s1
...
s4

⎞

⎟
⎠ . (6)

Also, bi P Shash “ Z2κ Ď Ze for i P [4], and b1, . . . , b4 differ from each other.
Therefore, A is a Vandermonde matrix modulo e, which implies A has full rank
modulo e. Therefore, B can compute u1`4(k´1), . . . , u4k using Lemma 5 for the
case n “ 4. Then, the rest follows from the original proof. ��

654 S. Tessaro and C. Zhu

Removing the safe-prime requirement. We briefly mention how to remove
the safe-prime requirement by slightly modifying MuSig2-H as follows. Denote
the modified schemes as MuSig2-HR. MuSig2-HR is identical to MuSig2-H except:

– In algorithm KeyAgg(L), it additionally computes a0 ← H′(L), where H′(L) :
{0, 1}˚ Ñ Dkey, and sets apk ← F(a0) ` ∑

iP[n] aipki.
– In algorithm Sign, after s is assigned, it additionally computes a0 ← c ¨ H′(L)

and returns (R, a0, s).
– In algorithm SignAgg({(R(1), a

(1)
0 , s(1)), . . . , (R(n), a

(n)
0 , s(n))}), it checks if

(R(1), a
(1)
0), . . . , (R(n), a

(n)
0) are all the same. If not, it aborts. Otherwise, it

returns σ ← (R(1), a
(1)
0 ` ∑

iP[n] s
(i)).

We can show the security of MuSig2-HR following the proof of Theorem 2
for RLHF. The only difference is the proof of Claim 3, which is also the only
place where we need the safe-prime condition. Claim 3 essentially shows that for
any new RO query Hagg(L, p̃k), the probability that apk ← KeyAgg(L) collides
with the set K of existing aggregated keys is small. We can easily show it for
MuSig2-HR since, for any new L in the random oracle model, H′(L) is uniformly
random over Dkey; thus, apk ← KeyAgg(L) is uniformly random over R even
given previous queries, which implies the collision probability is small.

5.4 Threshold Signatures from RSA

To instantiate FROST1-H and FROST2-H from RLHF, the only difficulty is that
the Lagrange coefficient λS

i might not be defined in S “ Z for S Ď [n]. To fix
this, we set xi “ i for i P [n] and modify the schemes as follows.

Denote the modified schemes as FROST1-HR and FROST2-HR. Define λ̃S
i :“

rΔ ¨ λlr .SS
i , where Δ “ n! and r P Ze̊ is the multiplicative inverse of Δ modulo

e. FROST1-HR/FROST2-HR is identical to FROST1-H/ FROST2-H except:

– In algorithm PS, the Lagrange coefficient λS
i is replaced by λ̃S

i , and (R, c, zi)
is returned as a partial signature.

– In algorithm Agg, we additionally set z̃ ← z´(ck) ¨(0, pk), where k “ �rΔ/e�,
and return (R, z̃) as the signature.

It is not hard to show the correctness of the schemes. Since the denominator
of λS

i , which is equal to
∏

jPS(i ´ j), divides i!(n ´ i)! and thus divides Δ, we
know λ̃S

i P Z. Also, for a leader request lr , if each signer i in lr .SS follows the
protocol to compute the partial signature (R, c, zi), we have F(z) “ R`(crΔ)¨pk,
where z “ ∑

iPlr .SS zi. Since r is the multiplicative inverse of Δ modulo e, we
have rΔ “ ke ` 1. Since F(0, pk) “ pke, we have F(z̃) “ R ` c ¨ pk, which implies
(R, z̃) is a valid signature.

We show the security of FROST2-HR and FROST1-HR under the RSA
assumption in the random oracle model by showing Theorem 3 and Theorem 4
hold for RLHF and combining them with Theorem 5 and Lemma 4. We give a
more detailed analysis in the full version of this paper.

Threshold and Multi-signature Schemes from Linear Hash Functions 655

Acknowledgments. We thank the EUROCRYPT 2023 reviewers for their useful
comments and feedback. This research was partially supported by NSF grants CNS-
2026774, CNS-2154174, a JP Morgan Faculty Award, a CISCO Faculty Award, and a
gift from Microsoft.

References

1. Aboud, S.J., Al-Fayoumi, M.A.: Two efficient RSA digital multisignature and blind
multisignature schemes. In: Hamza, M.H. (ed.) IASTED International Conference
on Computational Intelligence, Calgary, Alberta, Canada, 4–6 July 2005, pp. 359–
362. IASTED/ACTA Press (2005)

2. Almansa, J.F., Damg̊ard, I., Nielsen, J.B.: Simplified threshold RSA with adaptive
and proactive security. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 593–611. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 35

3. Backendal, M., Bellare, M., Sorrell, J., Sun, J.: The Fiat-Shamir Zoo: relating
the security of different signature variants. In: Gruschka, N. (ed.) NordSec 2018.
LNCS, vol. 11252, pp. 154–170. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03638-6 10

4. Bagherzandi, A., Cheon, J.H., Jarecki, S.: Multisignatures secure under the discrete
logarithm assumption and a generalized forking lemma. In: Ning, P., Syverson,
P.F., Jha, S. (eds.) ACM CCS 2008, pp. 449–458. ACM Press (Oct 2008). https://
doi.org/10.1145/1455770.1455827

5. Bagherzandi, A., Jarecki, S.: Identity-based aggregate and multi-signature schemes
based on RSA. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol.
6056, pp. 480–498. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13013-7 28

6. Bellare, M., Crites, E.C., Komlo, C., Maller, M., Tessaro, S., Zhu, C.: Better than
advertised security for non-interactive threshold signatures. In: Dodis, Y., Shrimp-
ton, T. (eds.) CRYPTO 2022, Part IV. LNCS, vol. 13510, pp. 517–550. Springer,
Heidelberg (2022). https://doi.org/10.1007/978-3-031-15985-5 18

7. Bellare, M., Dai, W.: chain reductions for multi-signatures and the HBMS scheme.
In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 650–
678. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5 22

8. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. J. Cryptol.
16(3), 185–215 (2003). https://doi.org/10.1007/s00145-002-0120-1

9. Bellare, M., Neven, G.: Identity-based multi-signatures from RSA. In: Abe, M.
(ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 145–162. Springer, Heidelberg (2006).
https://doi.org/10.1007/11967668 10

10. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 1993, pp. 62–73. ACM Press (Nov 1993). https://doi.org/10.
1145/168588.168596

11. Bellare, M., Tessaro, S., Zhu, C.: Stronger security for non-interactive threshold
signatures: Bls and frost. Cryptology ePrint Archive (2022)

12. Benhamouda, F., Lepoint, T., Loss, J., Orrù, M., Raykova, M.: On the (in)security
of ROS. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS,
vol. 12696, pp. 33–53. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
77870-5 2

https://doi.org/10.1007/11761679_35
https://doi.org/10.1007/978-3-030-03638-6_10
https://doi.org/10.1007/978-3-030-03638-6_10
https://doi.org/10.1145/1455770.1455827
https://doi.org/10.1145/1455770.1455827
https://doi.org/10.1007/978-3-642-13013-7_28
https://doi.org/10.1007/978-3-642-13013-7_28
https://doi.org/10.1007/978-3-031-15985-5_18
https://doi.org/10.1007/978-3-030-92068-5_22
https://doi.org/10.1007/s00145-002-0120-1
https://doi.org/10.1007/11967668_10
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-030-77870-5_2

656 S. Tessaro and C. Zhu

13. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-diffie-hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36288-6 3

14. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45682-1 30

15. Connolly, D., Komlo, C., Goldberg, I., Wood, C.A.: Two-Round Threshold Schnorr
Signatures with FROST. Internet-Draft draft-irtf-cfrg-frost-10, Internet Engineer-
ing Task Force (Sep 2022). https://datatracker.ietf.org/doc/draft-irtf-cfrg-frost/
10/, work in Progress

16. Damg̊ard, I., Koprowski, M.: Practical threshold RSA signatures without a trusted
dealer. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 152–165.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 10

17. De Santis, A., Desmedt, Y., Frankel, Y., Yung, M.: How to share a function securely.
In: 26th ACM STOC, pp. 522–533. ACM Press (May 1994). https://doi.org/10.
1145/195058.195405

18. Desmedt, Y.: Society and group oriented cryptography: a new concept. In: Pomer-
ance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 120–127. Springer, Heidelberg
(1988). https://doi.org/10.1007/3-540-48184-2 8

19. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 28

20. Desmedt, Y., Frankel, Y.: Shared generation of authenticators and signatures. In:
Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 457–469. Springer, Hei-
delberg (1992). https://doi.org/10.1007/3-540-46766-1 37

21. Drijvers, M., et al.: On the security of two-round multi-signatures. In: 2019 IEEE
Symposium on Security and Privacy, pp. 1084–1101. IEEE Computer Society Press
(May 2019). https://doi.org/10.1109/SP.2019.00050

22. Fouque, P.-A., Stern, J.: Fully distributed threshold RSA under standard assump-
tions. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 310–330.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1 19

23. Frankel, Y., MacKenzie, P.D., Yung, M.: Robust efficient distributed RSA-key gen-
eration. In: Coan, B.A., Afek, Y. (eds.) 17th ACM PODC, p. 320. ACM (Jun/Jul
1998). https://doi.org/10.1145/277697.277779

24. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33–62.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 2

25. Gennaro, R., Goldfeder, S., Narayanan, A.: Threshold-optimal DSA/ECDSA sig-
natures and an application to bitcoin wallet security. In: Manulis, M., Sadeghi,
A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 156–174. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-39555-5 9

26. Gennaro, R., Halevi, S., Krawczyk, H., Rabin, T.: Threshold RSA for dynamic and
Ad-Hoc Groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 88–
107. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 6

27. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust and efficient sharing of
RSA functions. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 157–172.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 13

28. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. J. Cryptol. 20(1), 51–83 (2006). https://
doi.org/10.1007/s00145-006-0347-3

https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-45682-1_30
https://datatracker.ietf.org/doc/draft-irtf-cfrg-frost/10/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-frost/10/
https://doi.org/10.1007/3-540-44987-6_10
https://doi.org/10.1145/195058.195405
https://doi.org/10.1145/195058.195405
https://doi.org/10.1007/3-540-48184-2_8
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/3-540-46766-1_37
https://doi.org/10.1109/SP.2019.00050
https://doi.org/10.1007/3-540-45682-1_19
https://doi.org/10.1145/277697.277779
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-39555-5_9
https://doi.org/10.1007/978-3-540-78967-3_6
https://doi.org/10.1007/3-540-68697-5_13
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1007/s00145-006-0347-3

Threshold and Multi-signature Schemes from Linear Hash Functions 657

29. Harn, L., Kiesler, T.: New scheme for digital multisignatures. Electron. Lett.
25(15), 1002–1003 (1989)

30. Hauck, E., Kiltz, E., Loss, J.: A modular treatment of blind signatures from iden-
tification schemes. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol.
11478, pp. 345–375. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17659-4 12

31. Hauck, E., Kiltz, E., Loss, J., Nguyen, N.K.: Lattice-based blind signatures, revis-
ited. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp.
500–529. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1 18

32. Itakura, K.: A public-key cryptosystem suitable for digital multisignatures (1983)
33. Itakura, K; Nakamura, K.: A public-key cryptosystem suitable for digital multisig-

natures. NEC research & development (1983)
34. Kiesler, T., Harn, L.: Rsa blocking and multisignature schemes with no bit expan-

sion. Electron. Lett. 18(26), 1490–1491 (1990)
35. Koblitz, N., Menezes, A.: Another look at non-standard discrete log and diffie-

hellman problems. J. Math. Cryptol. 2(4), 311–326 (2008). https://doi.org/10.
1515/JMC.2008.014, https://doi.org/10.1515/JMC.2008.014

36. Koblitz, N., Menezes, A.J.: Another look at “provable security”. J. Cryptol. 20(1),
3–37 (2007). https://doi.org/10.1007/s00145-005-0432-z

37. Komlo, C., Goldberg, I.: FROST: flexible round-optimized schnorr threshold signa-
tures. In: Dunkelman, O., Jacobson, Jr., M.J., O’Flynn, C. (eds.) SAC 2020. LNCS,
vol. 12804, pp. 34–65. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
81652-0 2

38. Lee, K., Kim, H.: Two-round multi-signatures from okamoto signatures. Cryptol-
ogy ePrint Archive, Report 2022/1117 (2022). https://eprint.iacr.org/2022/1117

39. Lindell, Y.: Simple three-round multiparty schnorr signing with full simulatability.
Cryptology ePrint Archive, Paper 2022/374 (2022).https://eprint.iacr.org/2022/
374

40. Mambo, M., Okamoto, E., et al.: On the security of the rsa-based multisignature
scheme for various group structures. In: Australasian Conference on Information
Security and Privacy, pp. 352–367. Springer (2000)

41. Mitomi, S., Miyaji, A.: A Multisignature Scheme with Message Flexibility, Order
Flexibility and Order Verifiability. In: Dawson, E.P., Clark, A., Boyd, C. (eds.)
ACISP 2000. LNCS, vol. 1841, pp. 298–312. Springer, Heidelberg (2000). https://
doi.org/10.1007/10718964 25

42. National Institute of Standards and Technology: Multi-Party Threshold Cryptog-
raphy (2018-Present). https://csrc.nist.gov/Projects/threshold-cryptography

43. Nick, J., Ruffing, T., Seurin, Y.: MuSig2: simple two-round schnorr multi-
signatures. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp.
189–221. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0 8

44. Nick, J., Ruffing, T., Seurin, Y., Wuille, P.: MuSig-DN: Schnorr multi-signatures
with verifiably deterministic nonces. In: Ligatti, J., Ou, X., Katz, J., Vigna, G.
(eds.) ACM CCS 2020, pp. 1717–1731. ACM Press (Nov 2020). https://doi.org/
10.1145/3372297.3417236

45. Okamoto, T.: A digital multisignature scheme using bijective public-key cryptosys-
tems. ACM Trans. Comput. Syst. (TOCS) 6(4), 432–441 (1988)

46. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp.
31–53. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4 3

47. Pan, J., Wagner, B.: Chopsticks: Fork-free two-round multi-signatures from non-
interactive assumptions. In: EUROCRYPT 2023 (2023)

https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-56880-1_18
https://doi.org/10.1515/JMC.2008.014
https://doi.org/10.1515/JMC.2008.014
https://doi.org/10.1515/JMC.2008.014
https://doi.org/10.1007/s00145-005-0432-z
https://doi.org/10.1007/978-3-030-81652-0_2
https://doi.org/10.1007/978-3-030-81652-0_2
https://eprint.iacr.org/2022/1117
https://eprint.iacr.org/2022/374
https://eprint.iacr.org/2022/374
https://doi.org/10.1007/10718964_25
https://doi.org/10.1007/10718964_25
https://csrc.nist.gov/Projects/threshold-cryptography
https://doi.org/10.1007/978-3-030-84242-0_8
https://doi.org/10.1145/3372297.3417236
https://doi.org/10.1145/3372297.3417236
https://doi.org/10.1007/3-540-48071-4_3

658 S. Tessaro and C. Zhu

48. Park, S., Park, S., Kim, K., Won, D.: Two efficient RSA multisignature schemes. In:
Han, Y., Okamoto, T., Qing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 217–222.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0028477

49. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

50. Pon, S.F., Lu, E.H., Lee, J.Y.: Dynamic reblocking rsa-based multisignatures
scheme for computer and communication networks. IEEE Commun. Lett. 6(1),
43–44 (2002)

51. Rabin, T.: A simplified approach to threshold and proactive RSA. In: Krawczyk,
H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 89–104. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0055722

52. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

53. Shamir, A.: How to share a secret. Commun. Assoc. Comput. Mach. 22(11), 612–
613 (1979)

54. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 15

55. Stinson, D.R., Strobl, R.: Provably secure distributed Schnorr signatures and a (t,
n) threshold scheme for implicit certificates. In: Varadharajan, V., Mu, Y. (eds.)
ACISP 2001. LNCS, vol. 2119, pp. 417–434. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-47719-5 33

https://doi.org/10.1007/BFb0028477
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/BFb0055722
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/3-540-47719-5_33
https://doi.org/10.1007/3-540-47719-5_33

New Algorithms for the Deuring
Correspondence

Towards Practical and Secure SQISign Signatures

Luca De Feo1(B) , Antonin Leroux2,3,4,5, Patrick Longa6,
and Benjamin Wesolowski7,8,9

1 IBM Research Europe, Zürich, Switzerland
eurocrypt23@defeo.lu
2 DGA-MI, Bruz, France

antonin.leroux@polytechnique.org
3 IRMAR, Université de Rennes, Rennes, France

4 LIX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris,
Palaiseau, France

5 INRIA, Saclay, France
6 Microsoft Research, Redmond, USA

plonga@microsoft.com
7 Univ. Bordeaux, CNRS, Bordeaux INP, IMB, UMR 5251, 33400 Talence, France

benjamin.wesolowski@math.u-bordeaux.fr
8 INRIA, IMB, UMR 5251, 33400 Talence, France

9 ENS de Lyon, CNRS, UMPA, UMR 5669, Lyon, France

Abstract. The Deuring correspondence defines a bijection between iso-
genies of supersingular elliptic curves and ideals of maximal orders in a
quaternion algebra. We present a new algorithm to translate ideals of
prime-power norm to their corresponding isogenies — a central task of
the effective Deuring correspondence. The new method improves upon
the algorithm introduced in 2021 by De Feo, Kohel, Leroux, Petit and
Wesolowski as a building-block of the SQISign signature scheme. SQISign
is the most compact post-quantum signature scheme currently known,
but is several orders of magnitude slower than competitors, the main
bottleneck of the computation being the ideal-to-isogeny translation. We
implement the new algorithm and apply it to SQISign, achieving a more
than two-fold speedup in key generation and signing with a new choice of
parameter. Moreover, after adapting the state-of-the-art Fp2 multiplica-
tion algorithms by Longa to implement SQISign’s underlying extension
field arithmetic and adding various improvements, we push the total
speedups to over three times for signing and four times for verification.

In a second part of the article, we advance cryptanalysis by showing a
very simple distinguisher against one of the assumptions used in SQISign.
We present a way to impede the distinguisher through a few changes to
the generic KLPT algorithm. We formulate a new assumption captur-
ing these changes, and provide an analysis together with experimental
evidence for its validity.

This research was funded in part by the Agence Nationale de la Recherche under grant
ANR-20-CE40-0013 MELODIA, and the France 2030 program under grant ANR-22-
PETQ-0008 PQ-TLS

c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14008, pp. 659–690, 2023.
https://doi.org/10.1007/978-3-031-30589-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30589-4_23&domain=pdf
http://orcid.org/0000-0002-9321-0773
http://orcid.org/0000-0003-1249-6077
https://doi.org/10.1007/978-3-031-30589-4_23

660 L. De Feo et al.

Keywords: Post-quantum cryptography · Isogenies · Group actions

1 Introduction

Isogeny-based cryptography is one of the active areas of post-quantum cryptog-
raphy. Protocols constructed from isogenies between supersingular curves are
generally very compact (in particular with respect to key sizes) but less efficient
than other families of schemes. A good illustration of this situation is the recent
signature scheme SQISign of De Feo, Kohel, Leroux, Petit and Wesolowski [8,9].
It is, by a decent margin, the most compact post-quantum signature scheme, but
signing takes a couple of seconds, which is several orders of magnitude slower
than other solutions. In a way reminiscent of Galbraith, Petit and Silva [14],
SQISign makes a constructive use of the Deuring correspondence, a mathemat-
ical equivalence between supersingular elliptic curves (and isogenies connect-
ing them) and maximal orders in a quaternion algebra (and ideals connecting
them). This correspondence was first introduced to isogeny-based cryptography
for cryptanalytic ends [10,12,16,26], but it has since revealed its potential as a
constructive tool: for signatures [8,14], for encryption schemes [7], and for key
exchange [17]. These applications exploit the following idea: certain problems
involving elliptic curves and isogenies are hard to solve, but their quaternion
counterparts are easy. A trapdoor can be used to translate between both worlds,
letting the secret holder solve problems that would otherwise be hard. Note that
SQISign’s security is not affected by the recent attacks against SIDH [3,20,21].

Better algorithms for the Deuring correspondence therefore have both con-
structive and destructive applications. The main technical contribution of [8] is a
pair of algorithms to solve two of the major tasks of the computational Deuring
correspondence: translating ideals to isogenies, and finding quaternion �-isogeny
paths. The efficiency of SQISign is mostly governed by the ideal-to-isogeny trans-
lation, while its security strongly depends on properties of the quaternion-path-
finding algorithm. In this work, we improve both.

Translating Ideals to Isogenies. Polynomial time algorithms to translate ideals
to isogenies have been known since at least 2016 [12,14], however these were
hardly practical, and certainly too slow for cryptographic purposes. One of the
main contributions in SQISign [8] is the design and implementation of a new
practical algorithm for this task. Despite this considerable improvement, the
ideal-to-isogeny translation remains the main bottleneck in SQISign.

Our first contribution is a new algorithm to translate ideals to isogenies
when the norm of the ideal is a power of a small prime � (IdealToIsogenyEichler,
Algorithm 5). The new algorithm proves to be more efficient than the one in [8],
as we demonstrate by applying it to SQISign.

One important building block here is an algorithm to solve norm equations
inside any maximal order (SpecialEichlerNorm, Algorithm 3), which may be of
independent interest.

Security of SQISign. In [8], SQISign was proven existentially unforgeable under
several computational assumptions, among which there is an ad hoc assumption

New Algorithms for the Deuring Correspondence 661

on the distribution of the outputs of the quaternion-path-finding algorithm. We
show that this assumption does not hold, by presenting a simple and efficient
distinguisher. Although we are unable to derive a complete attack, this shows
that the security of SQISign relies on an easy problem.

We explain how to modify the path-finding algorithm so that our distin-
guisher does not work anymore. We formulate a computational assumption for
the modified algorithm, and analyze it via the study of ideals and isogenies
derived from solutions of norm equations over maximal orders.

Plan. This article is organized as follows. After a brief technical overview, we
introduce in Sect. 2 the fundamental mathematical notions and notations. In
Sect. 3 we focus on solving norm equations inside unforgettable orders and intro-
duce our new algorithm SpecialEichlerNorm. In Sect. 4, we present in full detail
our new ideal-to-isogeny algorithm. The application of our method to SQISign
and the associated C implementation are discussed in Sect. 5. This section also
reports our results after adapting the efficient multiplication algorithms over
Fp2 proposed by Longa [18] to our proposed parameters for SQISign. Finally, in
Sect. 6, we study the security of SQISign.

1.1 Technical Overview

We now give a succinct outline of our technical contributions.

Translating Ideals to Isogenies. The main bottleneck in SQISign is the
following task: given a maximal order O corresponding to the endomorphism
ring of some curve E defined over a finite field Fp2 , given an ideal I of norm a
prime power �e corresponding to an isogeny ϕI : E → E′ of the same degree �e,
compute an �-isogeny walk for ϕI (i.e., a sequence of isogenies of degree � whose
composition is ϕI).

Following [12,14], this is achieved by decomposing the isogeny ϕI = ϕm ◦
· · · ◦ ϕ1 into isogenies ϕi : Ei → Ei+1 of smaller degree �f , where f is a system
parameter depending on p. Such decomposition requires computing the endomor-
phism rings Oi of each intermediate curve Ei, a task for which SQISign (see [9,
Algorithm 9]) employs a variant of the KLPT algorithm [16]. Our main techni-
cal contribution consists in replacing the full endomorphism ring Oi by a single
well-chosen endomorphism ωi, computed by SpecialEichlerNorm (Algorithm 3),
a new algorithm to solve norm equations inside any maximal order.

SpecialEichlerNorm is not, per se, faster than KLPT: the true performance
gain happens further down the line. Indeed, KLPT produces a representation of
Oi by using an isogeny of degree T coprime to �, where T ≈ p3/2 is another
fixed system parameter. In contrast, the degree of the endomorphism ωi output
by SpecialEichlerNorm is only T ≈ p5/4. These endomorphisms then need to
be evaluated on the torsion subgroup Ei[�f], something that can only be done
efficiently when T is a smooth integer and Ei[T] is defined over a small degree
extension of Fp2 .

662 L. De Feo et al.

All these facts combined create a strong constraint �fT |(p2d − 1) for some
small integer d, and in fact SQISign even forces d = 1, for maximum efficiency.
Primes p such that p2 − 1 has such a large smooth factor are extremely difficult
to find, and thus the overall efficiency of SQISign comes from a balancing act
between f , the smoothness of T , and the computational resources available to
search for p. In this light, it is clear that moving from T ≈ p3/2 to T ≈ p5/4

constitutes a big improvement as one may hope to find better “SQISign-friendly”
primes, as we do here. In fact, even using the same prime p as in [8], our new
algorithm leads to a (smaller) improvement because we can ignore some factors
of T and use a smaller endomorphism degree T ′|T .

Security of SQISign. The SQISign signature scheme is obtained by applying
the Fiat–Shamir transform [13] to an interactive identification scheme. While it is
straightforward to prove that the identification scheme is a 2-special sound proof
of knowledge of an endomorphism (a statement closely related to the knowledge
of the endomorphism ring [1,25]), proving zero-knowledge turns out to be much
more difficult.

Indeed, De Feo et al. could not construct a statistically indistinguishable
simulator, and had to resort instead to a computational assumption [9, Prob-
lem 2] stating that the ideals in output of the quaternion-path-finding algorithm
SigningKLPT [9, Algorithm 5] are indistinguishable from uniformly random ide-
als of the same norm. They provided evidence for the assumption by showing
that the output of SigningKLPT is uniformly distributed in an exponentially
large set whose size does not depend on the secret.

We show that their assumption does not hold by proving that the first step of
the 2-isogeny walk constituting the response isogeny is not distributed uniformly
among the possible first steps. Indeed, we show that the ideal I output by Signing-
KLPT is contained in an ideal of norm 2 that is not uniformly distributed. This
condition can be easily checked, immediately implying that SQISign signatures
can be distinguished with non-negligible advantage from random 2-isogeny walks
of fixed length.

This bias is due to the fact that RepresentInteger a sub-algorithm of Signing-
KLPT, solves norm equations inside a suborder of a special maximal order O0

(see definition in Sect. 2.1). We present in Sect. 3.1 a variant of RepresentInteger
fixing the bias, then we provide both heuristic and empirical evidence that the
newly defined distribution cannot be distinguished by considering the first k-
steps of the response for some small k.

2 Preliminaries

Throughout this work, p is a prime number and Fp2 is a finite field of size p2.
A negligible function f : Z>0 → R>0 is a function whose growth is bounded

by O(x−n) for all n > 0. In the analysis of a probabilistic algorithm, we say that
an event happens with overwhelming probability if its probability of failure is a
negligible function of the length of the input.

New Algorithms for the Deuring Correspondence 663

We say that a distinguishing problem is hard when any probabilistic poly-
nomial-time distinguisher has a negligible advantage with respect to the length
of the instance. Two distributions are computationally indistinguishable if their
associated distinguishing problem is hard.

2.1 Mathematical Background on the Deuring Correspondence

We now briefly present mathematical notions used in this article.

Elliptic Curves, Isogenies and Endomorphisms. Elliptic curves are abelian
varieties of dimension 1, and isogenies are non-constant morphisms between
them. The degree of an isogeny is its degree as a rational map. An isogeny is
separable if its degree is equal to the size of its kernel. Let E be an elliptic
curve. To any finite subgroup G of E, one can associate a separable isogeny
ϕ : E → E/G with kernel ker ϕ = G, and this isogeny is unique up to an
isomorphism of the target. Isogenies can be computed from their kernels with
Vélu’s formula [23]. An isogeny from a curve E to itself is an endomorphism of
E; together with the constant zero-map they form a ring, denoted by End(E).
In positive characteristic, End(E) is isomorphic either to an order in a quadratic
imaginary field or a maximal order in a quaternion algebra. In the first case, the
curve is said to be ordinary and otherwise it is supersingular. We focus on the
supersingular case in this article. Silverman’s book [22] is a good reference for
more details on elliptic curves and isogenies.

Supersingular elliptic curves over Fp always have a model defined over Fp2 .
Furthermore, this model can always be chosen so that all its endomorphisms are
also defined over Fp2 . This property is preserved by the Fp2 -isogeny class, and
in this article, we work in one such class.

Quaternion Algebras, Orders and Ideals. The endomorphism rings of
supersingular elliptic curves over Fp2 are isomorphic to maximal orders of Bp,∞,
the quaternion algebra ramified at p and ∞. We fix a basis 1, i, j, k of Bp,∞,
satisfying i2 = −q, j2 = −p and k = ij = −ji for some positive integer q. The
canonical involution of conjugation sends an element α = a + ib + jc + kd to
α = a − (ib + jc + kd). A fractional ideal I is a Z-lattice of rank four inside
Bp,∞. We denote by n(I) the norm of I as the largest rational number such
that n(α) ∈ n(I)Z for any α ∈ I. Given fractional ideals I and J , if J ⊆ I
then the index [I : J] is defined to be the order of the finite quotient group
I/J . We define the ideal conjugate I = {α, α ∈ I}. An order O is a subring
of Bp,∞ that is also a fractional ideal. An order is called maximal when it is
not contained in any other larger order. The left order of a fractional ideal is
defined as OL(I) = {α ∈ Bp,∞ | αI ⊂ I} and similarly for the right order OR(I).
Then I is said to be an (OL(I),OR(I))-ideal or a left OL(I)-ideal. A fractional
ideal is integral if it is contained in its left order, or equivalently in its right
order; we refer to integral ideals hereafter as ideals. An ideal can be written
as I = OL(I)α + OL(I)n(I) = OL(I)〈α, n(I)〉 for some α ∈ OL(I). Two left
O-ideals I and J are equivalent if there exists β ∈ B×

p,∞, such that I = Jβ. For

664 L. De Feo et al.

a given O, this defines equivalences classes of left O-ideals, and we denote the
set of such classes by Cl(O). We will reuse the following notation from [8]: for
any ideal K and any α ∈ B×

p,∞, we write χK(α) = Kα/n(K). Ideals equivalent
to K are precisely the ideals χK(α) with α ∈ K \ {0}. An Eichler order is the
intersection of two maximal orders.

The Deuring Correspondence. In [11], Deuring made the link between ellip-
tic curves and quaternion algebras over Q by showing that the endomorphism
ring of a supersingular elliptic curve E defined over Fp2 is isomorphic to a
maximal order in Bp,∞. Fix a supersingular elliptic curve E0, and an order
O0 � End(E0). The curve/order correspondence allows one to associate each
outgoing isogeny ϕ : E0 → E1 to an integral left O0-ideal, and every such ideal
arises in this way (see [15] for instance). Through this correspondence, the ring
End(E1) is isomorphic to the right order of this ideal. This isogeny/ideal corre-
spondence is defined in [24], and in the separable case, it is explicitly given as
follows.

Definition 1. Given I an integral left O0-ideal coprime to p, we define the I-
torsion E0[I] = {P ∈ E0(Fp2) : α(P) = 0 for all α ∈ I}. To I, we associate
the separable isogeny ϕI of kernel E0[I]. Conversely given an isogeny ϕ, the
corresponding ideal is defined as Iϕ = {α ∈ O0 : α(P) = 0 for all P ∈ ker(ϕ)}.

We summarize properties of the Deuring correspondence in Table 1, borrowed
from [8].

Table 1. The Deuring correspondence, a summary [8].

Supersingular j-invariants over Fp2 Maximal orders in Bp,∞
j(E) (up to Galois conjugacy) O ∼= End(E) (up to isomorpshim)

(E1, ϕ) with ϕ : E → E1 Iϕ integral left O-ideal and right O1-ideal

θ ∈ End(E0) Principal ideal Oθ

deg(ϕ) n(Iϕ)

ϕ̂ Iϕ

ϕ : E → E1, ψ : E → E1 Equivalent ideals Iϕ ∼ Iψ

Supersingular j-invariants over Fp2 Cl(O)

τ ◦ ρ : E → E1 → E2 Iτ◦ρ = Iρ · Iτ

N -isogenies (up to isomorphism) Cl(O), with Eichler order O of level N

Special Extremal Order. A special extremal order is an order O0 in Bp,∞
which contains a suborder of the form R + jR, where R = Z[ω] ⊂ Q(i) is a
quadratic order and ω has minimal discriminant. When p ≡ 3 mod 4, we have
the special extremal order O0 =

〈
1, i, i+j

2 , 1+k
2

〉
, with i2 = −1, j2 = −p and

k = ij. It is isomorphic to the endomorphism ring End(E0) of the elliptic curve
of j-invariant 1728. For the rest of the paper, we fix this special extremal order
O0, with subring Z[ω], and the corresponding elliptic curve E0.

New Algorithms for the Deuring Correspondence 665

2.2 The SQISign Protocol

We now present SQISign [8], the main target for applying the present work. The
signature scheme is based on an interactive identification protocol, made non-
interactive through the classic Fiat–Shamir transform. The initial setup and key
generation are as follows.

setup : λ → param] Pick a prime number p and a supersingular elliptic curve E0

defined over Fp2 , with known special extremal endomorphism ring O0. Select
an odd smooth number Dc of λ bits and D = 2e where e is larger than the
diameter of the supersingular 2-isogeny graph.

keygen : param → (pk = EA, sk = τ)] Pick a random isogeny walk τ : E0 → EA,
leading to a random elliptic curve EA. The public key is EA, and the secret
key is the isogeny τ .

The goal of the prover is to prove knowledge of the secret τ (or equivalently
End(EA)). Intuitively, the prover will reach that goal by finding a path between
two vertices of the isogeny graph, a task notoriously hard without the knowledge
of the endomorphism ring. Concretely, the prover engages in the following Σ-
protocol with the verifier.

Commitment. The prover generates a random (secret) isogeny walk ψ : E0 →
E1, and sends E1 to the verifier.

Challenge. The verifier sends the description of a cyclic isogeny ϕ : E1 → E2

of degree Dc to the prover.
Response. From the isogeny ϕ ◦ ψ ◦ τ̂ : EA → E2, the prover constructs a new

isogeny σ : EA → E2 of degree D such that ϕ̂ ◦σ is cyclic, and sends σ to the
verifier.

Verification. The verifier accepts if σ is an isogeny of degree D from EA to E2

and ϕ̂ ◦ σ is cyclic. They reject otherwise.

Fig. 1. A picture of the identification protocol

The main algorithmic challenge in this Σ-protocol is the response computa-
tion and this is the task that we try to improve throughout this work. It is made
of two parts: a computation over the quaternions called SigningKLPT that gives

666 L. De Feo et al.

an ideal, and a translation of this ideal into the corresponding response isogeny
σ. In [8], this translation is achieved with IdealToIsogeny [9, Algorithm 9] and
we present our new variant IdealToIsogenyEichler as Algorithm 5.

2.3 Algorithms from Previous Works

We will rely upon or mention several algorithms existing in the literature. In
the interest of conciseness, we will use the algorithms below without describing
them. The interested reader will find pseudo-code for most of them in [8,9], the
others are standard:

– Cornacchia(M): either find x, y such that x2 + y2 = M or output ⊥.
– RepresentInteger(M), given M ∈ N with M > p, finds γ ∈ O0 of norm dividing

M .
– EquivalentPrimeIdeal(I), given a left O0-ideal I, finds the smallest equivalent

left O0-ideal of prime norm.
– EquivalentRandomEichlerIdeal(I,N), given a left O0-ideal I and an integer N ,

finds a random equivalent left O0-ideal of norm coprime to N .
– IdealModConstraint(I, γ), given a left O0-ideal I of norm N , and γ ∈ O0 of

norm Nn, finds (C0 : D0) ∈ P
1(Z/NZ) such that γj(C0 + ωD0) ∈ I.

– EichlerModConstraint(I, γ, δ), given a left O0-ideal I of norm N , and γ, δ ∈ O0

of norms coprime with N , finds (C0 : D0) ∈ P
1(Z/NZ) such that γj(C0 +

ωD0)δ ∈ Z + I.
– StrongApproximation(N,C0,D0), given a prime N and C0,D0 ∈ Z, and a

subset N ⊂ N, finds μ = λμ0 + Nμ1 ∈ O0 of norm in N (striving for the
smallest possible), with μ0 = j(C0 + ωD0) and μ1 ∈ O0. When N = {d ∈
N, d|D} for some D ∈ N, we simply write StrongApproximation. We will also
use the notation �• = {�e, e ∈ N}.

Remark 2. Variants of RepresentInteger and StrongApproximation (denoted as
FullXxx) will be presented as Algorithms 1 and 2 in Sect. 3. Their formulations
differ only slightly from the ones introduced in [8], but we will argue these
modifications are necessary.

Remark 3. The algorithm EquivalentPrimeIdeal above finds the smallest possible
solution. We sometimes use its randomized version (written RandomEquivalent-
PrimeIdeal) where we choose a random output among a set of solutions of small
norm.

3 Solving Norm Equations Inside Maximal Orders

In this section, we consider the following problem: given a maximal order O
of Bp,∞, and a set of integers N , find an element β ∈ O with n(β) ∈ N . The
relevant case for our application is the following: we fix an integer T , and N is the
set of divisors of T 2. Algorithms to solve this task are presented in [9, Section 5.1],
but they find solutions that are not well distributed in O: they always fall in a

New Algorithms for the Deuring Correspondence 667

particular sublattice, inducing a bias that affects both the efficiency and security
of its applications. We explain how to eliminate this bias.

For ease of exposition, we fix p ≡ 3 mod 4, and the special extremal order
O0 = 〈1, i, i+j

2 , 1+k
2 〉 (see page 6), where we set ω = i. Most of what follows

remains true for other primes and special extremal orders under small adjust-
ments.

The method underlying Algorithm 3 follows the blueprint introduced in [9,
Section 5.1]: find an Eichler order of small prime level embedded inside both O
and the special extremal order O0 (considered as an implicit parameter of the
algorithm below) and solve the norm equation inside this Eichler order. As a
first step, we study in Sect. 3.1 the problem of solving norm equations in the
full maximal order O0 (rather than the convenient suborder Z[i, j] as in [8,16]).
This study, and the resulting new algorithms, will prove useful for Algorithm 3
(as pointed out in Remark 7) and also prevents a simple distinguisher against a
problem relating to the zero-knowledge property of SQISign; the latter point is
further investigated in Sect. 6.

3.1 Special Extremal Order Case: Exploiting the Full Order

We first deal with norm equations in the special extremal order O0. In this
case, algorithms from [8,16] only find solutions in the suborder Z[i, j], exploiting
the orthogonal basis 〈1, i, j, k〉. This suborder has index 4 inside O0, so many
potential solutions are excluded, a source of complications for some applications.
In this section, we describe how to heuristically obtain well-distributed solutions
in O0.

The norm form of 〈1, i, j, k〉 is f : (x, y, z, t) → x2 + y2 + p(z2 + t2) and the
usual way to find a representation of a given integer M (a method common to
both RepresentInteger and StrongApproximation) is to choose z, t (possibly with
some additional conditions) until M−p(z2+t2) is a prime represented by x2+y2,
then use Cornacchia’s algorithm [4] to solve x2 + y2 = M − p(z2 + t2). Solutions
in the full order O0 can be found from solutions in Z[i, j] thanks to Lemma 4.
Let g : (x, y, z, t) → (x + t/2)2 + (y + z/2)2 + p((z/2)2 + (t/2)2) be the norm
form of O0 = 〈1, i, i+j

2 , 1+k
2 〉.

Lemma 4. An integer M is represented by g if and only if 4M is represented
by f with x = t mod 2 and y = z mod 2.

Proof. If we have M = (x+ t/2)2 +(y + z/2)2 +p((z/2)2 +(t/2)2), we have that
4M = (2x + t)2 + (2y + z)2 + p(z2 + t2). Thus, an integer M is represented by g
(with solution (x, y, z, t)) if and only if 4M is represented by f with a solution
(x′, y′, z′, t′) = (2x + t, 2y + z, z, t) satisfying x′ = t′ mod 2 and y′ = z′ mod 2.

From Lemma 4 and the algorithm RepresentInteger from [16], we derive
FullRepresentInteger in Algorithm 1. It has exactly the same specifications as
RepresentInteger (and the same goes for StrongApproximation and FullStrong-
Approximation). Just as RepresentInteger is heuristically believed to return well-
distributed solutions in Z[i, j], the variant FullRepresentInteger is believed to

668 L. De Feo et al.

Algorithm 1. FullRepresentInteger(M)
Input: M ∈ Z such that M > p
Output: γ = x + yi + z i+j

2
+ t 1+k

2
with n(γ) = M .

1: Set m′ = �
√

4M
p

� and sample a random integer z′ ∈ [−m′, m′].

2: Set m′′ = �
√

4M
p

− z′2� and take a random t′ inside [−m′′, m′′]. Set M ′ = 4M −
p((z′)2 + (t′)2).

3: If Cornacchia(M ′) = ⊥ go back to Step 1. Otherwise set x′, y′ = Cornacchia(M ′).
4: If x′ 	= t′ mod 2 or z′ 	= y′ mod 2 then go back to Step 1.
5: Set γ = (x′ + iy′ + jz′ + kt′)/2.
6: return γ.

return well-distributed solutions in O0. This distribution depends on the fac-
torization pattern of the inputs to the Cornacchia subroutine. This question is
further investigated in Sect. 6, with heuristic and experimental evidence.

The running time of FullRepresentInteger is the same as the running time of
RepresentInteger, divided by the success probability of the condition in Step 4.
Heuristically, this constant is 2/3: the solutions (x′, y′, z′, t′) mod 2 of the equa-
tion x′2 + y′2 + p(z′2 + t′2) = 0 mod 4 are (0, 0, 0, 0), (1, 1, 1, 1), (1, 0, 0, 1),
(0, 1, 1, 0), (1, 0, 1, 0), and (0, 1, 0, 1). Among these 6, there are 2 that do not lead
to γ/2 ∈ O0: the solutions (1, 0, 1, 0) and (0, 1, 0, 1).

Remark 5. One might wonder why we do not propose to swap x′ and y′ when
the constraint modulo 2 is not satisfied. Undeniably, this would be a good way
to ensure that each set of values x′, y′, z′, t′ leads to a solution. However, this
introduces a distinguishable bias, precisely of the kind investigated in Sect. 6.

The StrongApproximation algorithm can also be modified to find solutions
in the full order O0 with Lemma 4. In Algorithm 2, we present FullStrong-
Approximation as a generic reduction to StrongApproximation. Thanks to Lemma
4, properties of the distribution of the output of FullStrongApproximation directly
follow from properties of the distribution of StrongApproximation. As in the case
of FullRepresentInteger, we expect the running time of FullStrongApproximation
to be equal to the running time of StrongApproximation multiplied by 3/2.

Algorithm 2. FullStrongApproximation
Input: A prime number N , two values C, D ∈ Z.
Output: μ ∈ O0 such that 2μ = λμ0 + Nμ1 with μ0 = j(C + ωD), μ1 ∈ O0, and

n(μ) ∈ N .
1: Let 4N = {4n | n ∈ N}.
2: Set μ′ = StrongApproximation(N, C, D).
3: If μ′ 	∈ 2O0, go back to Step 2.
4: return μ = μ′/2.

New Algorithms for the Deuring Correspondence 669

3.2 Norm Equations in Generic Maximal Orders: The Algorithm

We are now ready to describe an algorithm to solve equations inside generic
maximal orders. For simplicity, we restrict the description to the case that will
be useful for our new variant of ideal to isogeny translation (see Sect. 4). Thus,
we require that the algorithm outputs elements of norm dividing T 2 for some
parameter T and that the solution β satisfies the following constraint: given
the additional input K, a left O-ideal of norm � coprime to T , we need that
β �∈ Z + K (see Step 5 in Algorithm 3). A justification for this constraint is
provided in Sect. 4.1.

Algorithm 3. SpecialEichlerNorm(O,K)
Input: O a maximal order and K a left O-ideal of norm
.
Output: β ∈ O � (Z + K) of norm dividing T 2.
1: Compute I = I(O0, O), the ideal connecting O0 to O.
2: Set L = RandomEquivalentPrimeIdeal(I), N = n(L) and compute α s.t L = Iα.
3: Compute K′ = α−1Kα
4: Compute (C : D) = EichlerModConstraint(L, 1, 1).
5: Enumerate all possible solutions of μ = FullStrongApproximation(N, C, D) until

μ 	∈ Z + K′. If it fails go back to Step 2.
6: return β = αμα−1.

Proposition 6. Under plausible heuristics, the algorithm SpecialEichlerNorm is
correct and terminates with constant probability when T > p5/4.

Proof. Under the heuristics from [16], we know that the value N = n(L) has
size approximately p1/2 when L is the output of RandomEquivalentPrimeIdeal.
Then, it was proven in [8] that EichlerModConstraint is correct and terminates.
We argued correctness and termination with constant probability for FullStrong-
Approximation in Sect. 3.1. Now, we introduce the following heuristic assump-
tion: the output μ of FullStrongApproximation satisfies μ �∈ Z + K ′ with proba-
bility approximately [O0 : Z + K ′]−1 (which is the probability one would get
if μ ∈ O0 were drawn uniformly in a large enough ball). Even though the
precise distribution of μ appears difficult to analyse, this heuristic is plausible
since the algorithm FullStrongApproximation seems to constrain possible values
of μ only locally at N and T , both coprime with �. The proof is concluded by
the fact that FullStrongApproximation(N, ·) finds at least one solution with con-
stant probability when T 2 > pN3 ≈ p5/2 (see [9, Section 5.3]). Thus, we have
proven heuristic termination. For correctness, it is easy to see that n(μ) = n(β)
and so the correctness of FullStrongApproximation proves that n(β)|T 2. Since
μ ∈ Z + L = O0 ∩ OR(L) where L = Iα, and since O = αOR(L)α−1, we have
that β ∈ O. Since μ �∈ Z + K ′, then αμα−1 �∈ Z + αK ′α−1 = Z + K.

Remark 7. Note that the new heuristic introduced in the proof of Proposition 6
would not have held if we had used the StrongApproximation from [16]. Indeed,

670 L. De Feo et al.

the solutions of StrongApproximation lie in Z〈1, i, j, k〉 which is contained in the
Eichler order (Z+O0〈1+i, 2〉). Thus, when K∩L = O0〈1+i, 2〉∩L, the condition
μ �∈ Z + K can never be satisfied. This is why it is important to use our new
variant FullStrongApproximation.

Failures. Algorithm 3 may fail when the heuristics used in the proof of Propo-
sition 6 are not accurate. In particular, the problematic case is when the size
of the output of RandomEquivalentPrimeIdeal(I) is bigger than expected. This
situation occurs when there exists a representative in the ideal class of I with
norm considerably smaller than p1/2 (see the bounds on the norm of elements
in a Minkowski-reduced basis of a lattice from [16, §3.1]). There are only a
negligible number of problematic maximal orders but we still need to handle
those few bad cases. The simplest solution to avoid that problem altogether is
to increase the size of T . We have the absolute bound N < p and so we can
ensure termination by taking T > p2. However, we want the bound of T to be as
tight as possible and so this is not a suitable solution for us. There is a way to
handle the bad cases without increasing T but it does not always work. Let us
assume for the rest of this paragraph that there exists J ∼ I with n(J) � p1/2.
FullStrongApproximation(M, ·) does not strictly require its input M to be prime
(see [9, §6.3]) and so FullStrongApproximation can be modified to work with n(J)
in input instead of N . We can also run EichlerModConstraint with J instead of
L if we accept possible failures due to non-invertible elements mod n(J). Since
n(J) � p1/2 it should be possible to complete the computation when T ≈ p5/4.
However, we may be in trouble with the additional condition μ �∈ Z+K. Indeed,
if J ⊂ K, this constraint will never be satisfied because μ ∈ Z + J . If n(J) is
coprime with �, this will not happen but it can occur when �|n(J).

In summary, SpecialEichlerNorm cannot terminate on input O,K with T ≈
p5/4 when O is connected to O0 with an ideal of small norm included in K. We
will explain in Sect. 4.3 how to overcome this obstacle.

4 A New Algorithm for Ideal to Isogeny Translation

The goal of this section is to introduce our new algorithm to perform the ideal-
to-isogeny translation required in computations of the effective Deuring corre-
spondence. We start with an informal overview of how our new method manages
to be more efficient than previous ones. A more detailed cost analysis tailored
to SQISign will be provided in Sect. 5.1.

The goal is, given as input an O-ideal I of norm D and a curve E with
End(E) ∼= O, to compute the kernel of the D-isogeny ϕI : E → E/E[I]. We
assume for simplicity that this isogeny is cyclic (this is the important case for
us). For this task, SQISign introduces [9, Algorithm 9] a generalization of [14,
Algorithm 2]. Its principle is the following: evaluate the endomorphisms cor-
responding to elements of I on a basis of the D-torsion, then solve a discrete
logarithm to find a generator of kerϕI .

New Algorithms for the Deuring Correspondence 671

For this algorithm to be efficient, it is necessary that the evaluation points
are defined over an extension of Fp of small degree. In [9], this is solved by
decomposing the ideal I as a chain of ideals Ii of smaller norm Di: small enough
that the Di-torsion is defined over Fp2 . The idea is then to apply the technique
introduced in [14], enhanced with several tricks, to translate each Ii.

It is not obvious, however, how to evaluate endomorphisms of all the Ii at
arbitrary points. This task is easy in special cases: for example, the explicit cor-
respondence between the maximal order O0 = 〈1, i, (i+ j)/2, (1+ ij)/2〉 and the
endomorphism ring of E0 : y2 = x3 + x was leveraged in [14]. Instead, for ide-
als Ii of a generic order O, the ideal-to-isogeny translation of [9] first computes
an isogeny walk φK of degree T , coprime to Di, from a special curve E0 to E
(see [9, Algorithm 7]), then evaluates it at the points of order Di. The repeated
evaluation of such isogenies of large degree is the bottleneck of the computa-
tion, consequently the size and smoothness of T greatly affect performance. In
SQISign, φK is computed using a variant of the KLPT algorithm [16], and thus
it is required to have T > p3/2.

Here, in Sect. 4.1 we introduce IdealToIsogenyEichler, a new variant of
IdealToIsogeny that only requires one well-chosen endomorphism of End(E) to
perform the translation above. The endomorphism is computed by SpecialEichler-
Norm and translated to an isogeny from E to itself. We will show in Lemma 8
that the kernel of ϕI can be found via a single evaluation at a point of order D.
Like in [9], we will use T -isogenies, with T coprime to D, and, thanks to Propo-
sition 6, we need T ≈ p5/4. This reduction in size affords us a lot more flexibility
in the choice of p. Several tradeoffs can be made on the size and smoothness of
T and Di; in any case, our new method speeds up SQISign key generation and
signing, as we will demonstrate in Sect. 5.3.

4.1 Ideal to Isogeny Translation

Below, we introduce the new IdealToIsogenyEichler algorithm. We remind the
reader that the goal of this algorithm in SQISign is to derive the response isogeny.
It takes an ideal computed with SigningKLPT as input and outputs the response
isogeny.

The specifications are exactly the same as those of [9, Algorithm 9] and we
follow the same idea to apply sequentially a sub-algorithm that performs the
translation for ideals of small norm. In our case, this sub-algorithm is called
IdealToIsogenyEichler, we introduce it below as Algorithm 4, and it works for
ideals of norms �f (it is analogous to [9, Algorithms 7 and 8]). Overall, our
algorithm IdealToIsogenyEichler builds upon three sub-routines: IdealToIsogeny
that is [14, Algorithm 2] (performing the ideal-to-isogeny translation on O0-
ideals by performing operations on the D-torsion), SpecialEichlerNorm presented
in Algorithm 3 (that replaces KLPT) and IdealToIsogenyEichler. For the rest of
this section, we fix the prime p and we take f as the largest exponent such that
�f |(p2 − 1)/2. We also fix a parameter T coprime with � dividing p2 − 1 and
assume that T > p5/4.

672 L. De Feo et al.

The Sub-algorithm. IdealToIsogenyEichler describes a way to translate O-
ideals of norm �f into �f -isogenies of domain E where O ∼= End(E), using
one evaluation of an element of End(E). Intuitively, the idea is to choose an
endomorphism θ such that P, θ(P) constitutes a basis of the �f -torsion for some
point P given in input. We now present Lemma 8 to explain how the generator
of the kernel of the desired isogeny can be obtained as a linear combination of
P, θ(P)

Lemma 8. Let E be a supersingular curve and O ∼= End(E) be a maximal order.
Let K and I be two O-ideals of norm �f not contained in �O. Let θ ∈ O � (Z +
K +�O) have norm coprime to �. Let E[K] = 〈P 〉, then E[I] = 〈[C]P +[D]θ(P)〉
iff gcd(C,D, �) = 1 and α ◦ (C + Dθ) ∈ K for any α s.t I = O〈α, �f 〉.
Proof. Let us take Q = [C]P + [D]θ(P) and assume that E[I] = 〈Q〉. Since
Q has order �f , it is clear that gcd(C,D, �) = 1. Let us take α ∈ I such that
I = O〈α, �f 〉. This condition is equivalent to kerα ∩ E[�f] = E[I]. We want to
show that α◦(C+Dθ) ∈ K i.e. that α◦(C+Dθ)(P) = 0 which is straightforward
since E[I] = 〈[C]P + [D]θ(P)〉. Conversely, let us assume that gcd(C,D, �) = 1
and α ◦ (C + Dθ) ∈ K for any α s.t I = O〈α, �f 〉. Taking such an α we get that
α ◦ (C + Dθ)(P) = 0 which must imply that [C]P + [D]θ(P) = λQ for some
λ ∈ Z and Q such that E[I] = 〈Q〉. If we show that gcd(λ, �f) = 1 then we will
have shown our result as P and θ(P) have order �f . Let us assume this is not
the case. We have gcd(λ, �f) = �e0 for e0 > 0. Then the point P0 = [�f−e0]P
of order �e0 satisfies [D]θ(P0) = [−C]P0. Since gcd(C,D, �) = 1, we must have
gcd(D, �) = 1 and so θ(P0) = [μ]P0 where μ = −C/D mod �e0 . This proves
that we have θ ∈ Z + K + �e0O ⊂ Z + K + �O which contradicts our initial
assumption. Hence, gcd(λ, �f) = 1 and we have proven the result.

Let us go back to IdealToIsogenyEichler. The correct endomorphism θ is com-
puted during Step 2, then the computation of α,C,D as in Lemma 8 is performed
during Steps 3 and 4. The representation of End(E) that we use to compute θ
is based on an isogeny ϕJ : E0 → E of norm in �•. The ideal J and the corre-
sponding isogeny ϕJ are included in the inputs, and we use them during Step 6
to compute the isogenies ϕ1, ϕ2 that compose the endomorphism θ; in this step,
[J]∗H denotes the pullback of H by J and ϕ = [ϕ]∗ψ the pushforward of ψ by
ϕ (see [9, Section 4.1]). After that, we evaluate θ on the point P during Step 7
and then, we apply Lemma 8 during Step 8 to compute the kernel of ϕI . In the
execution of IdealToIsogenyEichler during IdealToIsogenyEichler, ϕJ will be com-
posed of all the �f isogenies computed during the previous iterations. The point
P will then be a generator of the kernel of the dual of the isogeny computed
in the previous step. For efficiency, we will take θ of norm dividing T 2 so we
can represent θ using two isogenies ϕ1, ϕ2 of degree n1, n2 dividing T such that
θ = ϕ2 ◦ ϕ̂1.

Proposition 9. Under plausible heuristics, IdealToIsogenyEichler is correct and
terminates with overwhelming probability.

New Algorithms for the Deuring Correspondence 673

Algorithm 4. IdealToIsogenyEichler(O, I, J, ϕJ , P)
Input: I a left O-ideal of norm
f , an (O0, O)-ideal J of norm
• and ϕJ : E0 → E

the corresponding isogeny, a generator P of E[
f] ∩ ker(ϕ̂J).
Output: ϕI of degree
f

1: Set K = J + O
f .
2: Compute θ = SpecialEichlerNorm(O, K + O
) of norm dividing T 2.
3: Select α ∈ I s.t I = O〈α,
f 〉.
4: Compute C, D s.t. α · (C + Dθ) ∈ K and gcd(C, D,
) = 1 using linear algebra.
5: Take any n1|T and n2|T s.t n1n2 = n(θ). Compute H1 = O〈θ, n1〉 and H2 =

O〈θ, n2〉.
6: Compute Li = [J]∗Hi, and ϕi = [ϕJ]∗IdealToIsogeny(Li) for i ∈ {1, 2}.
7: Compute Q = ϕ̂2 ◦ ϕ1(P).
8: Compute ϕI of kernel 〈[C]P + [D]Q〉.
9: return ϕI .

Proof. By Proposition 6, we have that SpecialEichlerNorm is correct and termi-
nates with overwhelming probability under plausible heuristics. Apart from the
execution of SpecialEichlerNorm, the only step that neeeds justification is Step 4.
First, it is not clear that such a solution must always exist. In fact, the existence
of such C,D follows from θ �∈ Z + (K + �O). This condition implies that P, θ(P)
form a basis of E[�f], for otherwise we would have [�f−1]P = [�f−1]θ(P) and so
θ ∈ Z + (K + �O), since E[K] = 〈P 〉. When it exists, a solution C,D can easily
be found using linear algebra in a similar fashion to EichlerModConstraint.

Correctness follows from Lemma 8. When we identify the endomorphisms α
and [C] + [D]θ in End(E) with their image through the isomorphism between
End(E) and O, we get that the composition α ◦ (C + Dθ) becomes the mul-
tiplication of the quaternion elements α · (C + Dθ). Thus, by Lemma 8, the
values C,D computed at Step 4 are such that kerϕI = 〈[C] + [D]θ(P)〉. By
definition of H1,H2, we have that θ = ϕ̂2 ◦ ϕ1 and this concludes the proof that
the output isogeny is indeed the one corresponding to I through the Deuring
Correspondence.

The Full Algorithm. Now we are ready for our full algorithm. For simplicity,
we assume in Algorithm 5 that the ideal input to IdealToIsogenyEichler has norm
�e, where e = fg for some g ∈ N. The general case is easily derived.

Proposition 10. Under plausible heuristics, IdealToIsogenyEichler is correct
and terminates with overwhelming probability.

Proof. It is easily verified that the Oi, Ii, Ji, ϕJ ◦ ϕI , Pi are correct inputs to
IdealToIsogenyEichler. Thus, the result follows from Proposition 9.

Below, we explain more precisely how to perform Step 7 of IdealToIsogeny-
Eichler. The technical details were left out of the description in Algorithm 4 to
clarify the explanations but they are important for an efficient implementation.
Throughout this entire section, we have avoided the issues of potential failures of

674 L. De Feo et al.

Algorithm 5. IdealToIsogenyEichler(I, J, ϕJ)
Input: I a left O-ideal of norm
e with e = fg, an (O0, O)-ideal J of norm
• and

ϕJ : E0 → E the corresponding isogeny
Output: ϕI of degree
e.
1: Set Ji = J , Ii = I +
fO, I ′

i = I−1
i I, Oi = O.

2: Set ϕi of degree
f as the isogeny such that ϕ̂J = ϕ′ ◦ ϕi

3: Set ϕI = [1]E and Ei = E.
4: for i ∈ [1, g] do
5: Compute Pi ∈ Ei[

f] s.t ker ϕi = 〈Pi〉.
6: Compute ϕIi = IdealToIsogenyEichler(Oi, Ii, Ji, ϕI ◦ ϕJ , Pi).
7: Set ϕi = ϕ̂Ii , ϕI = ϕIi ◦ ϕI and Ei is the codomain of ϕIi .
8: Set Ji = Ji · Ii, Oi = OL(I ′

i), Ii = I ′
i +
fOi and I ′

i = I−1
i I ′

i.
9: end for

10: return ϕI .

SpecialEichlerNorm that were mentioned at the end of Sect. 3.2. We will discuss
in Sect. 4.3 how to perform the computation in this eventuality.

4.2 A Detailed Description of the Ideal Translation Algorithm.

Endomorphism Evaluation. In Step 7 of IdealToIsogenyEichler we need to
evaluate the endomorphisms θ = ϕ̂2 ◦ ϕ1 after the two isogenies ϕ1, ϕ2 have
been computed. One might assume that it suffices to push P through ϕ1 and
then do the same through ϕ̂2. This apparently simple algorithm is not so easy
to implement. The first problem lies with signs. Efficient isogeny algorithms are
using x-only arithmetic which imply that we can only evaluate isogenies up to
signs. This is problematic as the ultimate goal is to compute [C]P + [D]θ(P).
Solving this issue requires to evaluate several other points through ϕ1, ϕ2 and
there does not seem to be another easy way to remove the ambiguity. The second
issue is with the dual computation in itself. For an isogeny ϕ of degree T and
kernel 〈P 〉, computing ϕ̂(R) for some point R would first require to compute
ϕ(Q) where Q is of order T and orthogonal to P to get ker ϕ̂, before using this
kernel to compute ϕ̂(R). In the context of SQISign where T -isogenies have kernel
made of two points, this is already 2 T -isogeny computations and 3 evaluations
(see Sect. 5.1 for a more detailed account on operation estimates). Together with
the computation of ϕ1(P), we have a total of 3 T -isogeny computations and
4 evaluations and this is without whatever would be required to lift the sign
ambiguity.

Targeting the application to IdealToIsogenyEichler, we present in Algorithm 6
a method to compute the kernel of ϕI in Step 8 of Algorithm 4, without comput-
ing the intermediate value Q in Step 7. This method evaluates an endomorphism
of the form C +Dθ, where θ = ϕ̂2 ◦ϕ1, at an arbitrary point P ; it requires only 2
T -isogeny computations and 5 evaluations, plus a few discrete logarithms, which
are efficient as long as P has smooth order.

New Algorithms for the Deuring Correspondence 675

Here is a sketch of how the method works, using x-only arithmetic. Let
(P,Q) be a basis of the �f -torsion. The main principle is to express ϕ1(P) as
a linear combination of ϕ2(P), ϕ2(Q) and see that ϕ̂2 ◦ ϕ1(P) is a multiple of
the linear combination of P,Q with the same coefficients. When dealing with
x-only arithmetic we need also to compute ϕ2(P + Q) to perform the discrete
log computations. Finally, to lift the ambiguity (the linear combination that we
obtain is only up to sign) we use the trace of θ = ϕ̂2◦ϕ1 (which can be computed
by expressing θ in the basis 〈1, i, j, k〉). In the basis P,Q, the action of θ can be
seen as a matrix of M2(Z/�f

Z). This matrix is essentially the one we obtain with
the coefficient of the two discrete logarithms and so it suffices to check the value
of the trace to lift any sign ambiguity.

In Algorithm 6 we call to a function xBIDIM(x(R), x(P), x(Q), x(P + Q)),
which computes the two-dimensional discrete logarithm of R to base (P,Q), i.e.
a pair of scalars a, b such that x(R) = x([a]P + [b]Q). Assuming R,P,Q have
order �f , it has complexity O(f).

Algorithm 6. EndomorphismEvaluation(ϕ1, ϕ2, C,D, t, P)
Input: Two isogenies ϕ1, ϕ2 : E → E′, scalars C, D, the trace t = tr(ϕ̂2 ◦ ϕ1) and a

point P of order
f

Output: [C]P + [D]ϕ̂2 ◦ ϕ1(P)
1: Compute Q such that P, Q is a basis of E[
f] and compute P + Q.
2: Compute x(ϕ1(P)), x(ϕ1(Q)), x(ϕ2(P)), x(ϕ2(Q)), x(ϕ2(P + Q)).
3: Compute x1, x2 = xBIDIM(x(ϕ1(P)), x(ϕ2(P)), x(ϕ2(Q)), x(ϕ2(P + Q)) and

x3, x4 = xBIDIM(x(ϕ1(Q)), x(ϕ2(P)), x(ϕ2(Q)), x(ϕ2(P + Q))).
4: Change the signs of (x1, x2), (x3, x4) until (x1 + x4) deg ϕ2 = t mod
f .
5: Set a = C + x1D and b = x2D.
6: Compute R = [a]P + [b]Q.
7: return R.

Remark 11. For the signature, one needs to compute a canonical representation
of the output of IdealToIsogenyEichler. The method from [9, Section 8.5] is to
compute a deterministic basis at each intermediate curve Ei and represent the
kernel of the next step as a linear combination of this basis. The first point of the
basis can be taken as the kernel of the previous isogeny, so it suffices to pick one
other point. Typically, this would be done in Step 1 of EndomorphismEvaluation
in the choice of Q.

On T -isogenies Computation. The computation of T -isogenies during Step 6
is an important part of IdealToIsogenyEichler. The optimization we describe next
was already used in the code implementing [9], but no explanation was given.
We simply fill this void. The task at hand can be divided in two parts: the
IdealToIsogeny and the push-forward through ϕJ . Since IdealToIsogeny is always
performed on the special order O0, the action of a basis of End(E0) ∼= O0 on
a basis of the T -torsion can be precomputed (and stored as matrices). Then,

676 L. De Feo et al.

for an ideal given in input, it suffices to decompose the elements of this ideal
on the basis of O0 and use the precomputed matrices to get the action of these
elements on the T -torsion basis before doing some linear algebra to find the linear
combination of the basis that will generate the kernel of the desired isogeny. After
the execution of IdealToIsogeny, it suffices to push the generators of the kernels
through ϕJ . For a given execution, we do not know how to do better than what is
described above. However IdealToIsogenyEichler is executed sequentially with an
isogeny ϕJ of increasing size, thus, if we do it naively, we will end up evaluating
the first isogenies many times. To avoid this extra computation, it suffices to push
the basis of the T -torsion through each ϕI and store it. If the basis is the same
as the one used to precompute the action of End(E0), it suffices to apply the
linear combination obtained from IdealToIsogeny to the pushed basis to obtain
directly the generator of the kernel. Over the course of the entire execution, this
will save a non-negligible amount of �f -isogeny computations.

4.3 Handling Special Failure Cases

In the analysis proposed at the end of Sect. 3.2, we explained that there are
some inputs O,K for which the computation of SpecialEichlerNorm(O,K) will
fail if T ≈ p5/4. In rare occasions, we will encounter an order Oi that is one
of those bad orders, causing the execution of IdealToIsogenyEichler at the i-th
iteration in IdealToIsogenyEichler to fail. Since we cannot afford to increase the
size of T , we can handle this issue in two manners: revert to the method of [8]
to perform the translation, or use a special extremal order other than O0 with
SpecialEichlerNorm.

Applying the IdealToIsogeny�f from [8]. At first glance going back to the
old method might seem like an odd thing to do. However, the failure cases for
SpecialEichlerNorm are actually good cases for the method from [8] because there
is an ideal of norm M � p1/2 connecting O0 and O. As we explained, this is only
a bad thing for SpecialEichlerNorm because we have an additional constraint with
the ideal K but IdealToIsogeny does not suffer from the same limitation. Ideal-
ToIsogeny relies on the KLPT algorithm that will succeed in finding an element
of norm T 2 if T ≈ pM . Hence, when M < p1/4, we can hope to make it work
with T ≈ p5/4. However, there is an obvious range of degrees p1/4 � M � p1/2

where this solution will not work. This is why in practice, we will use the second
method described below.

Using Another Special Extremal Order. The bad property depends on
the special extremal order O0 that we use. In practice, when p = 3 mod 4, it is
standard in the literature to use the maximal extremal order 〈1, i, 1+k

2 , i+j
2 〉, but

this canonical example is not the only maximal order matching the definition of
extremal orders given in [16]. We recall that a maximal order in Bp,∞ containing
a given quadratic order O exists when p is an inert prime in the quadratic imag-
inary field associated to O. Even if other quadratic orders will not be as efficient
as Z[i] ⊂ O0, the complexity of SpecialEichlerNorm is logarithmic in disc O and

New Algorithms for the Deuring Correspondence 677

so we can expand the range of choices without affecting the performance too
much. Thus, we can gather a small list of good candidates for O0 and enumerate
through that list until we find one that does not have the bad property. To prove
that this idea works, we need to make sure that a maximal order O will not have
the bad property with all the extremal orders. Unfortunately, we do not have a
definitive proof of this fact and are reduced to make it a heuristic assumption.
Boneh and Love [19] showed that maximal quaternion orders admitting embed-
dings of small quadratic orders are far apart in the isogeny graph. While this
conveys the right idea, their bound in [19, Proposition 4.5] is too loose to help
us. In practice, switching to another maximal order seems to work well enough
in our implementation.

5 Parameters and Implementation for SQISign

We now present our methodology to set parameters for SQISign using our new
ideal-to-isogeny algorithm, and report on our implementation. We start with
a method to give a rough estimate of the relative efficiency of two parameter
choices. Based on these estimates, we report on our search for new primes bet-
ter suited to our new algorithm. Finally, we benchmark our implementation,
including the improvements provided by the state-of-the-art algorithms for the
arithmetic over Fp2 [18], and compare it to the original SQISign implementation.

For the rest of this section we let p be a prime such that �fT | (p2−1), where
T is smooth and coprime with �. Following [8], we will take � = 2, as this leads to
the fastest verification and simplest implementation overall. It is an interesting
question whether other choices for � could lead to useful compromises. With the
choice of � = 2, the authors from [8] advised to take a σ of degree 21000.

5.1 Cost Estimate

It was already observed in [8] that algebraic operations over Fp2 make up for most
of the cost of SQISign: up to ≈ 90% in our experiments. It is thus reasonable
to ignore computations over the quaternions and linear algebra, and focus on
these. Ideally, we would count the number of Fp2 -operations performed for each
choice of parameters, however this is already difficult given the complexity of the
algorithms. Instead, we will use a much coarser metric based on four indicators.

We are only going to compare [9, Algorithm 9] and Algorithm 5. Both algo-
rithms decompose an ideal of norm �e into ideals of smaller norm. The former
decomposes into ideals of norm �2f+Δ for some constant Δ, which are then trans-
lated to isogenies by [9, Algorithm 8]. The latter decomposes into ideals of norm
�f , which are translated by Algorithm 4. Both sub-algorithms consist mostly of
isogeny computations of degree T and �f . For each of them, we will count:

(Tc) How many isogenies of degree T are computed ;
(Te) On how many points the isogenies of degree T are evaluated ;
(�c) How many isogenies of degree �f are computed/evaluated;

678 L. De Feo et al.

(Δc) How many meet-in-the-middle searches for isogenies of degree �Δ are per-
formed (this is exclusive to [9, Algorithm 8]).

The costs of Tc and Te depend on the factorization of T . Instead of using
the full factorization, we will only base our estimate on a bound B such that
all prime factors of T are < B. Using [2], the costs of computing and evaluating
an isogeny of prime degree n grow as

√
n (ignoring logarithmic factors), we will

thus multiply Tc and Te by
√

B. Since � is small, the cost of computing and
evaluating an isogeny of degree �f grows as f log(f) (ignoring the dependency
in �), we shall thus multiply �c by this factor. Finally, the meet-in-the-middle
requires to compute all

√
�Δ isogenies, so we multiply Δc by

√
�Δ.

Given an ideal of norm �e, SQISign will call [9, Algorithm 8] ≈ e/(2f + Δ)
times, whereas our new method will call Algorithm 5 ≈ e/f times. For this
reason, we shall divide all counts by 2f + Δ and f , respectively.

Summarizing, for [9, Algorithm 8] we will use the following 4-valued estimator:

(Tc

√
B , Te

√
B , �cf log(f) ,

√
�ΔΔc)/(2f + Δ), (1)

where the division is applied component-wise. For Algorithm 5, given that it does
not use a meet-in-the-middle search, we will instead use

(Tc

√
B/f , Te

√
B/f , �c log(f)). (2)

Original method. For convenience, Algorithm 7 reproduces [9, Algorithm 8] with-
out modifications. Some of the steps therein are quite vague, so we also refer to
the code at https://github.com/SQISign/sqisign.

The operation count for Algorithm 7 goes as follows: Step 3 is 2 Te (push kerϕ1

through ϕJ) and 1 �c (compute ϕ1), Step 8 is 1 Tc (compute ψ1), Step 9 is 1 Te,
1 Tc (compute ψ2 and ker ρ2) and 1 �c (compute ϕ2), Step 10 is 1 Δc, Step 11 is
2 Te (compute ker ψ̂1), 2 �c (push ker ψ̂1 through ρ2 ◦ η), 1 Tc and 1 Te (compute
ψ′
1 and ker ϕ̂2), 1 �c (compute ϕ2) and 1 Δc (compute θ). Thus a total of 3 Tc, 6

Te, 2 Δc and 5 �c.

New Method. Step 7 requires to solve a DLP instance over the �f -torsion and we
overestimate the complexity by saying that this is equivalent to 1 �c operation
(asymptotically it is the same cost but the DLP is faster in practice). We obtain
the following count: 2 Tc for Step 6, 5 Te and 1 �c for Step 7 (see Algorithm 6),
Step 8 is 1 �c. Overall, we get 2 Tc, 5 Te and 2 �c.

5.2 New Prime Search

Recall that the main advantage of our new ideal-to-isogeny algorithm is to
decrease T from ∼ p3/2 to ∼ p5/4. Primes p such that �fT | (p2 − 1)for such large

https://github.com/SQISign/sqisign

New Algorithms for the Deuring Correspondence 679

Algorithm 7. IdealToIsogeny(I, J,K, ϕJ , ϕK) [9, Algorithm 8]
Input: I a left O0-ideal of norm dividing T 2
2f+Δ, an O0-ideal in J containing I of

norm dividing T 2, and an ideal K ∼ J of norm a power of
, as well as ϕJ and ϕK .
Output: ϕ = ϕ2 ◦ θ ◦ ϕ1 : E1 → E2 of degree
2f+Δ such that ϕI = ϕ ◦ ϕJ , L ∼ I of

norm dividing T 2 and ϕL.
0: Write ϕJ , ϕK : E0 → E1.
1: Let I1 = I +
fO0.
2: Let ϕ′

1 = IdealToIsogeny(I1).
3: Let ϕ1 = [ϕJ]∗ϕ′

1 : E1 → E3.
4: Let L = KLPT(I).
5: Let α ∈ K such that J = χK(α).
6: Let β ∈ I such that L = χI(β).
7: Let γ = βα/n(J). We have γ ∈ K, γ̄ ∈ L, and n(γ) = T 2
2f+Δn(K).
8: Let H1 = 〈γ, n(K)
fT 〉. We have ϕH1 = ψ1 ◦ ϕ1 ◦ ϕK : E0 → E5, where ψ1 has

degree T .
9: Let H2 = 〈γ,
fT 〉. We have ϕH2 = ρ2 ◦ ψ2 : E0 → E6, where ψ2 has degree T and

ρ2 has degree
f .
10: Find η : E5 → E6 of degree
Δ with meet-in-the-middle.
11: Let ϕ2 ◦ θ = [ψ̂1]∗ρ̂2 ◦ η : E3 → E2 and ψ′

1 = [ϕ̂2 ◦ η]∗ψ̂1

12: return ϕ = ϕ2 ◦ θ ◦ ϕ1, L and ψ′
1 ◦ ψ2.

T are rare, and thus a search must be performed in order to instantiate SQISign.
Following [8], we focus on primes of ≈ 256 bits, which offer ≈ 128 bits of classical
security. In [8], the prime p with

p + 1 = 233 · 521 · 72 · 11 · 31 · 83 · 107 · 137 · 751 · 827 · 3691 · 4019 · 6983
· 517434778561 · 26602537156291 ,

p − 1 = 2 · 353 · 43 · 1032 · 109 · 199 · 227 · 419 · 491 · 569 · 631 · 677 · 857 · 859
· 883 · 1019 · 1171 · 1879 · 2713 · 4283

is recommended, giving f = 33 and a T > 2393 that is 213-smooth. We shall call
it p6983, after the largest factor in T . This prime can be used both for the old and
the new method, however in our new method we can discard some of the largest
factors of T , getting down to a T ′ > 2333 that is 211-smooth. Knowing that Δ = 14
in [8], we can already use our estimator to compare the two methods. The values
are reported in Table 4. Based on this metric, it appears that the new method
could be slightly faster than the old one.

However, a less stringent requirement on T makes the search for p consider-
ably easier, it is thus natural to look for a new one that is better adapted to our
method. The prime p6983 was found using an XGCD-based method described in [9,
Appendix C], which we used to find more primes. In the meantime, more algo-
rithms to find primes such that p2 − 1 is smooth were introduced in [5,6]. Unfor-
tunately, only the sieve of [5], when looking for primes of the form p = 2xn − 1,
adapts well to the requirement of having 2f | (p2 − 1) for some moderately large
f . Indeed, we can modify this method by forcing 2�f/n� | x. Trying to do the same
in the sieve of [6] leads to a search space too small to yield any primes.

680 L. De Feo et al.

Regardless of the method we use, given that we look for a smaller T , we can
choose to either increase f or decrease the smoothness bound B on T . Looking
at estimator (2), it appears that we can divide the first two entries by 2 in one of
two ways: multiplying f by 2, or dividing B by 4. We experimented with both.
We used the method of [5] to look for primes p = 261x4 − 1, sieving the whole
interval x ∈ [247, 249[in approximately 360 cpu-days. We found 398 integers such
that p2 − 1 has a 211-smooth odd factor of more than 330 bits, of which 15 were
prime (see Table 2); none of them has a large enough 210-smooth factor.

Table 2. List of integers x ∈ [247, 249[such that 261x4 − 1 is prime and x4(215x −
1)(215x + 1)(230x2 + 1) contains a 211-factor > 2330.

143189100303149 369428710635531 391443251922757 411099446409699

424067696488337 431716591494287 491224940548057 491531434028942

512391149388477 512583833108361 514414280000642 515727186701509

548396183941255 550470785518701 562456538440551

Using the XGCD method of [9], we found out that we could obtain primes with
f ≈ 64 and B = 212 at a reasonable cost. The best candidate we found, which we
name p3923, has 254 bits and

p + 1 = 265 · 52 · 7 · 11 · 19 · 292 · 372 · 47 · 197 · 263 · 281 · 461 · 521
· 3923 · 62731 · 96362257 · 3924006112952623 ,

p − 1 = 2 · 365 · 13 · 17 · 43 · 79 · 157 · 239 · 271 · 283 · 307 · 563 · 599
· 607 · 619 · 743 · 827 · 941 · 2357 · 10069 .

Despite the slightly larger smoothness bound, we found that p3923 performs better
in practice than primes of the form 261x4−1, probably owing to the large power of
3, which contributes favorably to T -isogeny computations. Moreover, the fact that
p′ = −p−1 mod 2w ≡ 1 for standard computer wordlengths like w = 32, 64 bits
enables the use of variants of [18, Alg. 5] to implement the multiplication over Fp2

(in contrast, primes like p6983 are limited to use the slightly more complex [18, Alg.
2]; see §5). Finally, practical implementations of the underlying field arithmetic
can also benefit from the extra room at the word boundary that the 254-bit length
provides.

Reporting the estimator values for p3923 in Table 3, we see that applying our
new algorithm to the new prime yields a significant gain during T -isogeny com-
putations and meet-in-the-middle at the cost of a modest loss during �f -isogeny
computations. Since the former tends to affect performance much more than the
latter, in practice, we expect our new method to compare favorably to the old
one. We will see in the next section that, in practice, the gain is even larger than
predicted by our rough estimator. Finding more accurate estimators to guide the
prime search in SQISign is an interesting problem for future research.

New Algorithms for the Deuring Correspondence 681

Table 3. Operation estimates for several variants of ideal-to-isogeny translation. B is
the smoothness bound of T .

algorithm p log(p) f B Tc Te
c Δc estimator

Old p6983 256 33 213 3 6 5 2 (3.4, 6.8, 10.4, 3.2)

New p6983 256 33 211 2 5 2 – (2.7, 6.9, 10.1)

New p3923 254 65 212 2 5 2 – (2.0, 4.9, 12.0)

Other Changes. Having a smaller T forces some other changes to SQISign’s
challenge and commitment steps. To get λ bits of security, the commitment must
have degree T ′ ≥ 22λ, while the challenge must have degree Dc ≥ 2λ coprime to
T ′. The authors of [8] could take T ′Dc = T ≈ p3/2 ≈ 23λ. To optimize verification,
they chose Dc to be as smooth as possible, i.e., Dc = 353521.

However, with a smaller T , we can no longer have T = T ′Dc. Instead, we
incorporate some powers of � in Dc; incidentally, this happens to increase veri-
fication speed. For p3923, we take Dc = 265340, which is a marked improvement
over Dc = 353521. Of course, one could also incorporate powers of 2 to Dc with
p6983. But p6983 +1 only contains a factor 233, so verification with p3923 still beats
p6983.

In fact, at the cost of increasing the signer’s work, it is possible to take Dc as
a power of �, which could further decrease verification time. The concrete gain for
the instantiation with p3923 will be the difference between a 264-isogeny computa-
tion and a 340-isogeny computation. This is a marginal gain compared to the cost
for the signer (at least several additional executions of IdealToIsogenyEichler), so
we chose not to pursue this idea further.

5.3 C Implementation

We took the official SQISign implementation1 and incorporated our new ideal-to-
isogeny algorithm plus some other minor improvements. In particular, we imple-
mented the compression method described in [9, §8.5] for verification, which, along
with the use of powers of 2 in the challenge degree Dc, explains the faster verifica-
tion. In addition, we fully rewrote the hand-optimized assembly implementation
of the Fp2 arithmetic layer and, more importantly, adapted to our primes the faster
multiplication algorithms over Fp2 from [18] (specifically, we use Algorithm 2 for
p6983 and adapted Algorithm 5 to p3923).

Our code is available at https://github.com/SQISign/sqisign-ec23. We ran
benchmarks on two platforms: a 3.4GHz Intel Core i7-6700 (Skylake) processor,
and a 3.2GHz Intel Core i7-8700 (Coffee Lake) processor. As is standard prac-
tice, Turbo Boost was deactivated during the tests. The results are summarized
in Table 4. With all our improvements, and moving from p6983 to p3923, we observe
a more than 4× speedup in key generation and verification, while signing is sped
up by more than 3×. For instance, we report signing computations averaging

1 https://github.com/SQISign/sqisign.

https://github.com/SQISign/sqisign-ec23
https://github.com/SQISign/sqisign

682 L. De Feo et al.

Table 4. Performance comparison between the original implementation of SQISign [8]
and our implementations using the proposed optimizations. Results are shown in mil-
lions of cycles (rounded to the nearest 106), and correspond to the average counts of
100 runs for key generation and signature, and of 250 runs for verification. The columns
“Std.” correspond to results using standard implementations for the arithmetic over Fp2 ,
while the columns “Opt.” report results using the optimized Fp2 algorithms from [18].
The cost reductions obtained for each operation, relative to the results from [8], are
shown in the columns “%”.

SQISign [8] New/p6983 New/p3923

p6983 Std. % Opt. % Std. % Opt. %

3.4GHz Intel Core i7-6700 (Skylake)

Keygen 1,828 2,792 −53% 2,243 −23% 670 63% 421 77%

Sign 7,020 6,074 13% 4,178 40% 3,311 53% 1,987 72%

Verify 143 87 39% 52 64% 66 54% 30 79%

3.2GHz Intel Core i7-8700 (Coffee Lake)

Keygen 1,242 1,916 −54% 1,529 −19% 463 63% 286 77%

Sign 4,811 4,086 15% 2,850 41% 2,274 53% 1,354 72%

Verify 99 60 39% 37 63% 46 54% 21 79%

424 msec. on a 3.2GHz Intel machine, well below the over a second computa-
tion reported in [8]. Meanwhile, verification times average 6.7 msec. on the same
machine, which is ∼ 4.6× faster than the mark obtained by [8].

We note that the proposed prime p3923 gets an additional boost in performance
because of its synergy with the techniques from [18]. Indeed, this prime facilitates
the use of a variant of [18, Alg. 5] by exploiting the fact that p′ = −p−1 mod 2w ≡
1 for a computer wordlength of w = 64 bits, in contrast to p6983 which is limited
to use the somewhat slower [18, Alg. 2].

6 Cryptanalysis

In this section, we present a distinguisher against one of the computational
assumptions underlying the security of SQISign. This distinguisher does not lead
to an attack on the signature scheme but it invalidates the claimed hardness of the
problem. We present a fix to protect the scheme against the distinguisher and pro-
pose further theoretical analysis and experimental results to argue that a modified
assumption holds.

More concretely, we show in Sect. 6.1 that the set PNτ
involved in the formula-

tion of Problem 14 has a problematic property that leads to a distinguisher. Fortu-
nately, a slight change of SigningKLPT, explained in Sect. 6.1, seems to be enough
to remove the problem. In Sect. 6.2, we analyse the new assumption more precisely,
to argue that it does not suffer from a similar weakness.

New Algorithms for the Deuring Correspondence 683

Before getting to our contributions, we give a quick summary of some of the
relevant content from [8] regarding the zero-knowledge property of the underlying
identification scheme. We start in Algorithm 8 with the description of the Signing-
KLPT algorithm from [8].

Algorithm 8. SigningKLPT(I, Iτ)
Input: Iτ a left O0-ideal and right O-ideal of norm Nτ , and I, a left O-ideal.
Output: J ∼ I of norm
e, where e is fixed.
1: Compute K = EquivalentRandomEichlerIdeal(I, Nτ)
2: Compute K′ = [Iτ]∗K and set L = EquivalentPrimeIdeal(K′), L = χK′(δ) for δ ∈ K′

with N = n(L). Set e0 = e0(N) and e1 = e − e0.
3: Compute γ = RepresentInteger(N
e0).
4: Compute (C0 : D0) = IdealModConstraint(L, γ).
5: Compute (C1 : D1) = EichlerModConstraint(Z + Iτ , γ, δ).
6: Compute C = CRTNτ ,N (C0, C1) and D = CRTNτ ,N (D0, D1). If
ep(C2+D2) is not

a quadratic residue, go back to Step 3.
7: Compute μ = StrongApproximation(NNτ , C, D) of norm
e1

8: Set β = γμ.
9: return J = [Iτ]∗χL(β).

In SQISign, the output J of SigningKLPT is converted into the correspond-
ing isogeny σ, and the signature is a representation of this isogeny. The zero-
knowledge property is proved assuming the hardness of Problem 14, described
below. This assumption formalises that σ is indistinguishable from a random
isogeny of the same degree.

The structure of this isogeny is analysed in [8], with more details in [9,
Lemma 13] reproduced here as Lemma 12 for the reader’s convenience.

Lemma 12. Let L ⊂ O and β ∈ L be as in steps 2, 8 respectively of Algorithm 8.
The isogeny σ corresponding to the output J of Algorithm 8 is equal to σ = [τ]∗ι,
where ι is an isogeny of degree �e verifying β = ι̂ ◦ ϕL.

Before giving a precise statement of the distinguishing problem, we need
to recall some notation from [8]. For what follows, we keep the notation intro-
duced in Lemma 12 and Algorithm 8. For a given ideal L of norm N , we con-
sider UL,Nτ

as the set of all isogenies ι computed as in Lemma 12 from elements
β = γμ ∈ L where γ is any possible output of the non-deterministic function
RepresentInteger(N�e0(N)), and μ is computed as in Algorithm 8.

For an equivalence class C in Cl(O0) we write UC,Nτ
for UL,Nτ

where L =
EquivalentPrimeIdeal(C) (recall that EquivalentPrimeIdeal is deterministic).

Definition 13. PNτ
=

⋃
C∈Cl(O0)

UC,Nτ

For D ∈ N and a supersingular curve E, we define IsoD,j(E) as the set of cyclic
isogenies of degree D, whose domain is a curve inside the isomorphism class of E.
When P is a subset of IsoD,j(E) and τ : E → E′ is an isogeny with gcd(deg τ,D) =
1, we write [τ]∗ P for the subset {[τ]∗ ϕ | ϕ ∈ P} of IsoD,j(E′). Finally, we denote

684 L. De Feo et al.

by K a probability distribution on the set of cyclic isogenies whose domain is E0,
representing the distribution of SQISign private keys. With these notations, we
define the following computational problem:

Problem 14. Let p be a prime, and D a smooth integer. Let τ : E0 → EA be a
random isogeny drawn from K, and let Nτ be its degree. Let PNτ

⊂ IsoD,j0 as in
Definition 13, and let Oτ be an oracle sampling random elements in [τ]∗PNτ

. Let
σ : EA → � of degree D where either

1. σ is uniformly random in IsoD,j(EA);
2. σ is uniformly random in [τ]∗ PNτ

.

The problem is, given p,D,K, EA, σ, to distinguish between the two cases with a
polynomial number of queries to Oτ .

6.1 An Attack on SQISign’s Zero-Knowledge Assumption

Our distinguisher for Problem 14 is a consequence of the limitations pointed out
in Sect. 3.1 and it occurs specifically when � = 2 (which is the value used in [8] and
in our implementation), so for the rest of this section and the next we take D = 2e.
Lemma 15 and the resulting Proposition 16 links the observations of Sect. 3.1 to
a property on the set [τ]∗PNτ

.

Lemma 15. Let L be an O0-ideal of norm N and let γ be an element in O0 of norm
N�e for some prime N . Let us take μ ∈ O0 such that β = γμ ∈ L. If γ ∈ 〈1, i, j, k〉,
then χL(β) ⊂ O0〈1 + i, 2〉.
Proof. We have γ ∈ 〈1, i, j, k〉 ⊂ O0〈1 + i, 2〉. Now, χL(β) = O0〈μγ, 2e〉, hence
μγ ∈ O0γ ⊆ O0〈1 + i, 2〉 = O0〈1 + i, 2〉, which proves the proposition.

Proposition 16. Let D = 2e and τ,Nτ be as in Problem 14 and let the set PNτ
be

defined from Algorithm 8. There exists an isogeny ι0 ∈ Iso2,j(E0) such that every
ι ∈ PNτ

can be decomposed as ι = ι1 ◦ ι0 where ι1 is an isogeny of degree 2e−1.

Proof. Let J be the ideal corresponding to σ ∈ [τ]∗PNτ
. By definition of PNτ

,
ι corresponds to the ideal χL(γμ). It is easily verified that L, γ, μ satisfy the
requirements of Lemma 15 and that γ ∈ 〈1, i, j, k〉 since it is a possible output
of RepresentInteger. Thus, we can apply Lemma 15 and we get that χL(β) ⊂
O0〈1 + i, 2〉. This proves the result by taking ι0 to be the isogeny corresponding
to the ideal O0〈1 + i, 2〉.

Thus, Proposition 16 implies that, when defined as in Definition 13, the family
PNτ

satisfies one of the special properties introduced in [9, Appendix B.2]. Indeed,
we obtain that I1τ = {ι1 of degree 2, s.t ∃ι2, ι2◦ι1 ∈ PNτ

} has size 1 (instead of 3),
and so a trivial distinguisher can be built against Problem 14 simply by looking
at the distribution of the first step of σ.

A fix against the attack. To block the distinguisher, it suffices to use the Full-
RepresentInteger variant that we described in Algorithm 1 during Step 3 of Algo-
rithm 8, instead of RepresentInteger. This alternate version of the algorithm was

New Algorithms for the Deuring Correspondence 685

designed specifically to produce solutions γ that were not necessarily contained
in 〈1, i, j, k〉. If γ = (x′ + y′i + z′j + t′k)/2 it is easy to see that γ �∈ 〈1, i, j, k〉
as soon as (x′, y′, z′, t′) �= (0, 0, 0, 0) mod 2. Our analysis at the end of Sect. 3.1
showed that there were 4 possible configurations for (x′, y′, z′, t′) mod 2 and each
can be obtained when the value of m′ is bigger than 1 (which we may assume). The
reasoning above justifies that #I1τ > 1 but not that it reaches the desired value
of 3. Let us write I1, I2 the two other O0 ideals of norm 2. It can be verified that
I1 = I2i. Since (x′ + y′i + z′j + t′k)i = −y′ + x′i + t′j − z′k, it is easy to see
that if some outputs of FullRepresentInteger are contained in I1, then the same
must be true for I2 (and conversely). This proves that #I1τ = 3, i.e., all three
first steps are possible. Yet, there could still be a bias in the distribution of that
step, which would still give rise to an attack on Problem 14. We argue in the next
section that there is no such exploitable bias. Note that with the modifications we
just described, the set PNτ

must be updated accordingly to obtain security under
the hardness of Problem 14.

6.2 Further Analysis on the First Steps of σ

We continue the analysis by looking at what happens beyond the first 2-isogeny
of the elements ι ∈ PNτ

. Henceforth, we will consider the set PNτ
associ-

ated to a modified version of SigningKLPT. First, we replace RepresentInteger by
FullRepresentInteger as suggested in Sect. 6.1. Second, we modify the computa-
tion of the exponent e0. Instead of setting a unique value e0(N) and then taking
e0 = e0(N), we propose to take e0(N) as a range of values from which e0 will
be sampled. The rationale behind this last modification is to cover more γ’s (and
expand the size of Ik

τ as a result) and it will play a role in the proof of Proposition
20. The proposed range for e0(N) will be given precisely below.

For any k ∈ N smaller than e, let us define πk : ι → ιk where ιk is the unique
isogeny of degree 2k such that ι = ι′ ◦ ιk. We will study the sets Ik

τ = πk(PNτ
). We

will start by trying to estimate #Ik
τ for values of k ≈ 1/2 log(p). Our analysis cul-

minates in Proposition 20, which we prove under several plausible assumptions.
Even though it does not prove that Problem 14 is hard, showing that #Ik

τ is expo-
nential in the security parameter rules out attacks similar to the one outlined in
Sect. 6.1.

A truly meaningful result would be to show that the distribution Dk
τ of the

πk(ι) when ι is uniformly random in PNτ
is indistinguishable from the uniform

distribution on the isogenies of degree 2k. In the end of this section, we will try to
argue that the Dk

τ are not biased for small values of k. The result we obtain are
not very formal but we back them up with experimental results.

The size of Ik
τ . Our goal is to show that Ik

τ contains a good portion of the isoge-
nies of degree 2k for values of k ≈ p1/2. Our final result is stated in Proposition
20 and basically follows from the fact that the isogenies of Ik

τ only depend on the
quaternion element γ of norm N�e0 when k ≤ e0 (this fact follows from the anal-
ysis underlying Lemma 12).We recall that in the definition of PNτ

, γ is a possible

686 L. De Feo et al.

output of FullRepresentInteger such that the end of the computation in Algorithm
8 terminates. Thus, one of the main ingredients of our proof is a result (stated as
Proposition 17) on the number of γ of norm M that can be obtained as output of
FullRepresentInteger. We use the notation ΓM for the set of primitive γ ∈ O0 of
norm M .

For Proposition 17, we assume that the algorithm Cornacchia outputs ⊥ on
input M ′ when M ′ is not a near-prime (the multiple of a prime by a smooth factor)
or if M ′ is a near-prime but cannot be represented by the quadratic form x2 + y2.
Otherwise, the algorithm outputs any of the possible solutions to the quadratic
equation.

Proposition 17. Let M > p. Under plausible heuristics, there exists a constant
c1 > 0 such that the number of γ ∈ ΓM that are possible outputs of FullRepresent-
Integer on input M is larger than #ΓMc1/ log(M).

Proof. Let 2γ = x′ + iy′ + jz′ + kt′ and M ′ = 4M − p(f(z′, t′)). Given our
assumption on Cornacchia, γ is going to be an admissible output if and only if M ′

is a near-prime and the pair z′, t′ can be sampled during the first two steps of Algo-
rithm 3. For z′, t′ it is easy to verify that this is the case. Indeed, the value of |z′|
must be smaller than 2m. Thus, there is a possibility that this value is picked. After
that, we know that the correct value of |t′| must be smaller than m′ and so there
is also a possibility that the correct value is picked. Then, under the assumption
that the M ′ behave as normal integers of the same size, we get that there exists a
constant c1 such that a fraction c1/ log(M) of all the M ′ are near-primes. Thus,
the same fraction of γ are going to be possible outputs of FullRepresentInteger and
this concludes the proof.

Before proceeding to the last part of the proof, we will need some of the esti-
mates used in [9, Section 6.4]. We give without proof a reformulation of [9, Lemmas
9 and 10] as Lemmas 18 and 19.

Lemma 18. There exists ε = O(log log(p)) such that for a random class C ∈
Cl(O0), the norm N of EquivalentPrimeIdeal(C) verifies log(p)/2 − ε < log(N) <
log(p)/2 + ε with overwhelming probability.

Lemma 19. For any κ ∈ N, there exists η0 = O(log log(p) + log(κ)) such that
for any e0 ≥ log(p) − log(N) + ε + η0, the probability that there exists a solution
γ = FullRepresentInteger(N�e0) that will lead to a correct execution of SigningKLPT
is higher than 1 − 2−κ.

We recall that we study PNτ
for a modified version of SigningKLPT (the full

list of changes is given in the beginning of this section) that samples the expo-
nent e0 inside a range that we denote by e0(N). We define e0(N) = [log2(p) −
log2(N) + ε + η0, log2(p) − log2(N) + ε + η0 + δ], where ε, η0 are defined as in
Lemmas 18 and 19 (these results tells us that the execution of SigningKLPT suc-
ceeds with overwhelming probability when e0 ∈ e0(N)). We also introduce the
variable parameter δ upon which the statement of Proposition 20 will depend.If

New Algorithms for the Deuring Correspondence 687

we want that SigningKLPT terminates with overwhelming probability we need to
have δ = O(log log(p)) so that e1 = e − e0 remains in the range prescribed by [9,
Lemma 11].

Proposition 20. Let δ be a positive value and ε, η0 be as defined for Lemmas 18
and 19. If k ∈ [log�(p)

2 + η0,
log�(p)

2 + 2ε + η0 + δ], then under plausible heuristics
there exists a constant c > 0 such that

#Ik
τ ≥ c · 2 · 3k−1/(log(p) + δ).

Proof. Let ϕ be an isogeny of degree 2k. We write Iϕ for the corresponding ideal
and Lϕ = EquivalentPrimeIdeal(Iϕ), Nϕ = n(Lϕ). There exists a quaternion ele-
ment γϕ of norm Nϕ2k such that O0γϕ = Iϕ · Lϕ. It can be easily verified that
ϕ ∈ Ik

τ if and only γϕ is in the set of possible γ involved in the definition of PNτ
.

We write this set Γτ . For γϕ to be in Γτ , we need to verify the following things:
k ∈ e0(Nϕ), γϕ is a possible output of FullRepresentInteger on input Nϕ2k and the
rest of the computation of SigningKLPT (Step 4 to Step 7) must succeed from γϕ.

Lemmas 18 and 19 and the definition of e0(N) and k ensures that only a neg-
ligible number of isogenies ϕ would have k �∈ e0(Nϕ). After that, if we assume
that γϕ is distributed correctly in the ΓNϕ2k , Proposition 17 tells us there exists
a constant c2 > 0 such that more than a fraction c2/(log(p) + δ) of the γϕ will
be possible outputs of FullRepresentInteger. Finally, we can make the assumption
that a constant fraction of those γϕ will satisfy the last requirement (see the anal-
ysis led in [8] to justify this assumption). Thus, we obtain that there exists some
constant c > 0 such that a fraction bigger than c/(log(p) + δ) of all the γϕ are
contained in Γτ , and we can conclude the proof.

Proposition 20 does not fully rule out a simple distinguisher. Proposition 20
proves that Ik

τ is large, which is necessary for security. To rule out the distin-
guisher, one needs to understand the distribution, which is the matter of the fol-
lowing paragraph.

The distribution Dk
τ is another matter of importance. Biased distributions, espe-

cially for small values of k, can be easily detected which would break Problem
14. Once again, our analysis focuses on the quaternion element γ and on the dis-
tribution O0〈γ, �k〉 among the ideals of norm 2k. If 2γ = x + yi + zj + tk for
x, y, z, t ∈ Z, it can be shown that O0〈γ, �k〉 will depend on the values of (x, y, z, t)
mod (2�k). It is easy to argue that the values of z, t are sampled without any bias
mod (2�k) when m′,m′′ are big enough compared to �k (which we may assume
since we look at small values of k). After that, we can only argue informally that
the near-primality condition on M −pf(z, t) should not introduce any bias on the
value of z, t mod 2 · �k. It also seems plausible that the output of Cornacchia on
random near-prime inputs of a given size should not skew the distribution of x, y
but we cannot really prove it.

688 L. De Feo et al.

The formulation of our new algorithm FullRepresentInteger avoids several pit-
falls that would have lead to noticeable bias in the distribution of x, y, z, t mod 2.
This is for instance the explanation behind Remark 5.

Experimental evidence. We present below in Fig. 2 the result of an experiment to
study the distributions Dk

τ for small values of k. The results are consistent with
our informal analysis.

Fig. 2. Distribution of the k-first steps of σ for 10 SQISign keys and random ideal in
input over 1000 attempts.

7 Open Problems

Arguably, the contributions presented in this work bring off solid progress towards
the development of practical and secure SQISign signatures. Nevertheless, a num-
ber of questions remains open. The first one is about efficiency. In particular, we
need finer cost metrics to improve our understanding of our algorithm’s behavior.
This is important for both optimization and parameter selection. The second one
is about further improvements of the ideal-to-isogeny procedure. Our new algo-
rithm simplifies and improves upon the method from [8], yet it is still slow and the
algorithm remains convoluted. Short of any radically new ideas, one might try to
improve what we already have. The impact of improving the quality of the out-
puts of KLPT has been argued in [8], and the same is true for SpecialEichlerNorm.
In general, any improvement in solving norm equations inside the lattices of Bp,∞
could have a positive impact on our scheme. Finally, cryptanalysis of SQISign still
needs maturity. We provided some heuristic evidence that our proposed fixes pre-
vent distinguishing attacks. However, future work should try to come up with a
formal proof, even based on heuristics, that distributions of simulated transcripts
are statistically close to real ones.

References

1. Arpin, S., Chen, M., Lauter, K.E., Scheidler, R., Stange, K.E., Tran, H.T.N.: Ori-
enteering with one endomorphism. Cryptology ePrint Archive, Report 2022/098
(2022), https://eprint.iacr.org/2022/098

https://eprint.iacr.org/2022/098

New Algorithms for the Deuring Correspondence 689

2. Bernstein, D.J., De Feo, L., Leroux, A., Smith, B.: Faster computation of isogenies of
large prime degree. Open Book Series 4(1), 39–55 (2020). https://doi.org/10.2140/
obs.2020.4.39

3. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH (preliminary
version). Cryptology ePrint Archive, Report 2022/975 (2022), https://eprint.iacr.
org/2022/975

4. Cornacchia, G.: Su di un metodo per la risoluzione in numeri interi dell’equazione∑n
h=0 chxn−hyh = p. Giornale di Matematiche di Battaglini 46, 33–90 (1908)

5. Costello, C.: B-SIDH: supersingular isogeny diffie-hellman using twisted torsion.
In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 440–463.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3 15

6. Costello, C., Meyer, M., Naehrig, M.: Sieving for twin smooth integers with solu-
tions to the prouhet-tarry-escott problem. In: Canteaut, A., Standaert, F.-X. (eds.)
EUROCRYPT 2021. LNCS, vol. 12696, pp. 272–301. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-77870-5 10

7. De Feo, L., et al.: Séta: supersingular encryption from torsion attacks. In: Tibouchi,
M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 249–278. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-92068-5 9

8. De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: SQISign: compact post-
quantum signatures from quaternions and isogenies. In: Moriai, S., Wang, H. (eds.)
ASIACRYPT 2020. LNCS, vol. 12491, pp. 64–93. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-64837-4 3

9. De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: SQISign: compact post-
quantum signatures from quaternions and isogenies. Cryptology ePrint Archive,
Report 2020/1240 (2020), https://eprint.iacr.org/2020/1240

10. De Feo, L., Masson, S., Petit, C., Sanso, A.: Verifiable delay functions from super-
singular isogenies and pairings. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT
2019. LNCS, vol. 11921, pp. 248–277. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-34578-5 10

11. Deuring, M.: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper.
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 14(1),
197–272 (1941)

12. Eisenträger, K., Hallgren, S., Lauter, K., Morrison, T., Petit, C.: Supersingular
isogeny graphs and endomorphism rings: reductions and solutions. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 329–368. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 11

13. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

14. Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature schemes
based on supersingular isogeny problems. J. Cryptol. 33(1), 130–175 (2019).
https://doi.org/10.1007/s00145-019-09316-0

15. Kohel, D.: Endomorphism rings of elliptic curves over finite fields. Ph.D. thesis, Uni-
versity of California at Berkley (1996), http://www.i2m.univ-amu.fr/perso/david.
kohel/pub/thesis.pdf

16. Kohel, D.R., Lauter, K., Petit, C., Tignol, J.P.: On the quaternion
-isogeny path
problem. LMS J. Comput. Math. 17(A), 418–432 (2014). https://doi.org/10.1112/
S1461157014000151

17. Leroux, A.: A new isogeny representation and applications to cryptography. In:
Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part II. LNCS, vol. 13792, pp. 3–
35. Springer, Heidelberg (Dec 2022). https://doi.org/10.1007/978-3-031-22966-4 1

https://doi.org/10.2140/obs.2020.4.39
https://doi.org/10.2140/obs.2020.4.39
https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975
https://doi.org/10.1007/978-3-030-64834-3_15
https://doi.org/10.1007/978-3-030-77870-5_10
https://doi.org/10.1007/978-3-030-92068-5_9
https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/978-3-030-64837-4_3
https://eprint.iacr.org/2020/1240
https://doi.org/10.1007/978-3-030-34578-5_10
https://doi.org/10.1007/978-3-030-34578-5_10
https://doi.org/10.1007/978-3-319-78372-7_11
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/s00145-019-09316-0
http://www.i2m.univ-amu.fr/perso/david.kohel/pub/thesis.pdf
http://www.i2m.univ-amu.fr/perso/david.kohel/pub/thesis.pdf
https://doi.org/10.1112/S1461157014000151
https://doi.org/10.1112/S1461157014000151
https://doi.org/10.1007/978-3-031-22966-4_1

690 L. De Feo et al.

18. Longa, P.: Efficient algorithms for large prime characteristic fields and their appli-
cation to bilinear pairings and supersingular isogeny-based protocols. Cryptology
ePrint Archive, Report 2022/367 (2022), https://eprint.iacr.org/2022/367

19. Love, J., Boneh, D.: Supersingular curves with small noninteger endomorphisms.
Open Book Series 4(1), 7–22 (2020). https://doi.org/10.2140/obs.2020.4.7

20. Maino, L., Martindale, C.: An attack on SIDH with arbitrary starting curve. Cryp-
tology ePrint Archive, Report 2022/1026 (2022), https://eprint.iacr.org/2022/1026

21. Robert, D.: Breaking SIDH in polynomial time. Cryptology ePrint Archive, Report
2022/1038 (2022), https://eprint.iacr.org/2022/1038

22. Silverman, J.H.: The Arithmetic of Elliptic Curves, Gradute Texts in Mathematics,
vol. 106. Springer-Verlag (1986)

23. Vélu, J.: Isogénies entre courbes elliptiques. Comptes rendus de l’Académie des Sci-
ences, Séries A-B 273, A238–A241 (1971)

24. Waterhouse, W.C.: Abelian varieties over finite fields. Annales scientifiques de
l’École Normale Supérieure 2(4), 521–560 (1969)

25. Wesolowski, B.: Orientations and the supersingular endomorphism ring problem.
In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part III. LNCS,
vol. 13277, pp. 345–371. Springer, Heidelberg (May / Jun 2022). https://doi.org/
10.1007/978-3-031-07082-2 13

26. Wesolowski, B.: The supersingular isogeny path and endomorphism ring problems
are equivalent. In: 2021 IEEE 62nd Annual Symposium on Foundations of Com-
puter Science (FOCS), pp. 1100–1111 (2022). https://doi.org/10.1109/FOCS52979.
2021.00109

https://eprint.iacr.org/2022/367
https://doi.org/10.2140/obs.2020.4.7
https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/1038
https://doi.org/10.1007/978-3-031-07082-2_13
https://doi.org/10.1007/978-3-031-07082-2_13
https://doi.org/10.1109/FOCS52979.2021.00109
https://doi.org/10.1109/FOCS52979.2021.00109

Revisiting BBS Signatures

Stefano Tessaro and Chenzhi Zhu(B)

Paul G. Allen School of Computer Science & Engineering, University of Washington,
Seattle, USA

{tessaro,zhucz20}@cs.washington.edu

Abstract. BBS signatures were implicitly proposed by Boneh, Boyen,
and Shacham (CRYPTO ’04) as part of their group signature scheme,
and explicitly cast as stand-alone signatures by Camenisch and Lysyan-
skaya (CRYPTO ’04). A provably secure version, called BBS+, was then
devised by Au, Susilo, and Mu (SCN ’06), and is currently the object
of a standardization effort which has led to a recent RFC draft. BBS+
signatures are suitable for use within anonymous credential and DAA
systems, as their algebraic structure enables efficient proofs of knowl-
edge of message-signature pairs that support partial disclosure.

BBS+ signatures consist of one group element and two scalars. As our
first contribution, we prove that a variant of BBS+ producing shorter
signatures, consisting only of one group element and one scalar, is also
secure. The resulting scheme is essentially the original BBS proposal,
which was lacking a proof of security. Here we show it satisfies, under
the q-SDH assumption, the same provable security guarantees as BBS+.
We also provide a complementary tight analysis in the algebraic group
model, which heuristically justifies instantiations with potentially shorter
signatures.

Furthermore, we devise simplified and shorter zero-knowledge proofs
of knowledge of a BBS message-signature pair that support partial dis-
closure of the message. Over the BLS12-381 curve, our proofs are 896 bits
shorter than the prior proposal by Camenisch, Drijvers, and Lehmann
(TRUST ’16), which is also adopted by the RFC draft.

Finally, we show that BBS satisfies one-more unforgeability in the
algebraic group model in a scenario, arising in the context of credentials,
where the signer can be asked to sign arbitrary group elements, meant
to be commitments, without seeing their openings.

1 Introduction

The seminal works of Camenisch and Lysyanskaya [16,17] highlighted how cer-
tain digital signature schemes with suitable algebraic structures are amenable
to applications such as anonymous credentials, direct anonymous attestation
(DAA), and group signatures. These schemes easily enable the signing of a com-
mitment, typically by being algebraically compatible with a Pedersen commit-
ment [31], and support very efficient zero-knowledge proofs of knowledge of a
valid message-signature pair.
c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14008, pp. 691–721, 2023.
https://doi.org/10.1007/978-3-031-30589-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30589-4_24&domain=pdf
http://orcid.org/0000-0002-3751-8546
http://orcid.org/0000-0002-4276-2797
https://doi.org/10.1007/978-3-031-30589-4_24

692 S. Tessaro and C. Zhu

This paper revisits and improves BBS signatures [6,10,15], one of the most
efficient pairing-based schemes with these properties, which has recently been
in the midst of renewed interest in the context of decentralized identity. This
has led to reference implementations [1,2], to a standardization effort by the
W3C Verifiable Credentials Working group, and to an RFC draft [28]. BBS is
also a building block for DAA [12,15,18], and is used by Intel SGX’s EPID
protocol [13]. Furthermore, BBS signatures are theoretically interesting, due to
their simplicity and efficiency. Most applications, and the RFC draft, consider
the provably-secure version of BBS referred to as BBS+ [6,15], whose signatures
consist of one group element in G1 and two scalars in Zp, where p is the group
order.

Our contributions, in a nutshell. As our first main contribution, we prove
the strong unforgeability of a variant of BBS+ which produces shorter signatures
only consisting of one group element and one scalar. The resulting scheme is in
fact the original BBS signature scheme by Boneh, Boyen, and Shacham [10]
as stated by Camenisch and Lysyanskaya [17], for which however no proof of
security was known. Our new proof gives us a more efficient version of the scheme
that can replace BBS+ in applications and standards with no loss, and re-affirms
the security of prior works (e.g., [12,18]) which already used this optimized
version but relied on an incorrect proof.

Furthermore, we provide a tighter security proof in the Algebraic Group
Model [23], which also supports potentially shorter signatures. We also optimize
the associated proofs of knowledge of BBS signatures, achieving substantial sav-
ings over the current state-of-the-art [28]. Finally, we study the security of BBS
in contexts where group elements are signed, and show that the scheme satis-
fies, in the AGM, a security property which is a natural weakening of what is
achieved by structure-preserving signatures [5].

BBS+. The BBS+ scheme was proposed by Au, Susilo, and Mu [6], based on
ideas by [10,17], and proved secure under the q-SDH assumption. The proof was
then adapted to type-3 pairings by Camenisch, Drijvers, and Lehmann [15]. It
signs vectors m P Z

�
p. To do so, the public parameters consist of �`2 generators

g1, h0, h1, . . . , h� P G1, and a signature has the format pA, e, sq, where s, e P Zp

are randomly chosen, and

A “
(

g1h
s
0

�∏
i“1

h
m [i]
i

) 1
x`e

.

Here, x P Zp is the secret key, and given the public key X2 “ gx
2 P G2, and a

pairing, it is easy to verify a valid BBS+ signature.

Security for BBS signatures. The only difference between BBS and BBS+
is the additional term hs

0 in the latter, which mandates the inclusion of s in the
signature. A natural question is whether this term is necessary, or instead an
artifact of the proofs [6,15]. Indeed, no attack seems to affect plain BBS, without
the term hs

0, but prior proof attempts (e.g., [12]) contained fundamental errors.

Revisiting BBS Signatures 693

We prove that (plain) BBS signatures are indeed secure under the q-SDH
assumption. The concrete security guarantees are essentially identical to those
established for BBS+, and this suggests a more efficient drop-in replacement
for BBS+ in existing applications. Our techniques close in particular gaps left
by incorrect proofs, and can be used to prove exculpability of the original BBS
group signature scheme [10].

Tight AGM bounds. Our new proof, not unlike the prior proofs for BBS+,
is not tight, i.e., it incurs a multiplicative loss equal to the number of signing
queries q. As a strong hint that this loss may be artificial, we give a tight proof
for BBS signatures in the Algebraic Group Model [23].

Our AGM analysis also addresses a different artificial aspect of the standard-
model analysis, namely the random choice of e values from Zp. Instead, our AGM
analysis merely asks that these values are unlikely to collide, and their collision
probability becomes a term (meant to be negligible) in the security bound. This
allows for more flexibility, in that the e values could be generated from a counter
or (assuming random oracles) as a hash of the message. It also suggests a BBS
variant, which we call truncated BBS, where e is chosen from Z22λ , where λ is
the desired security level (typically, λ “ 128). On BLS12-381, this does not have
any benefit. However, as in all schemes based on q-SDH, one may want to assess
the potential impact of attacks such as those by Brown and Gallant [14] and
Cheon [20] and choose an even bigger curve—in that case, truncation of the
scalar may become effective.

Signing commitments. An important question is to which extent BBS can be
thought as a signature scheme signing a user-supplied group element, i.e., an
element C P G1 is signed as pC 1

x`e , eq. Indeed, in the context of blind issuance of
credentials, one can think of C “ g1h

m1
1 · · · hm�

� as a commitment sent from the
user to the signer, and the signer’s response pC1{px`eq, eq is a valid BBS signature
on m “ pm1, . . . ,m�q. It is not hard to see that this form of BBS does not yield a
secure signature scheme over group elements as e.g., a signature on C can easily
be transformed, by squaring it, into a signature on C2. However, we show that,
in the AGM, BBS satisfies a form of one-more unforgeability, where obtaining
signatures of q group elements does not enable the attacker to produce valid
BBS signatures (e.g., by “opening” these group elements as commitments) on
more than q messages. This is sufficient in the context of blind issuance.

Zero-knowledge PoKs. We also revisit the problem of proving knowledge
of a BBS message-signature pair with new zero-knowledge proofs of knowledge
which are shorter than state-of-the art solutions adopted in the RFC draft [28]
and initially proposed in [15]. To prove knowledge of a BBS message-signature
pair pm, σq, without revealing k out of the � components of m, our proof (when
compiled as a NIZK via the Fiat-Shamir transform) consists of 2 elements in
G1, as well as k ` 3 scalars in Zp. The proof adopted in the RFC draft, in
contrast, consists of 3 elements in G1, and k ` 5 scalars. While a reduction by
one scalar is possible due to our removal of the random value s from a signature,
the remaining optimizations are the result of a different approach.

694 S. Tessaro and C. Zhu

Related schemes. We note that when signing individual elements of Zp, the
simpler Boneh-Boyen signatures [9] would typically outperform BBS. The closest
scheme to BBS is the one by Pointcheval-Sanders (PS) [32]. PS signatures consist
of two group elements, and are comparably efficient to the short version of BBS
from this paper. However, both the public and the secret keys grow linearly with
�, the length of the message vector to be signed, whereas in BBS they consist of a
single element. (The group generators in BBS can be generated as the output of
a hash function, and they should not be part of the key materials.) PS signatures
feature properties which BBS does not possess, including re-randomizability and
aggregability. The latter property is essential for their use in the recent Coconut
system [33], for which BBS does not appear suitable.

Outline. Our new proof for BBS is given in Sect. 3, followed by our AGM
analysis in Sect. 4. Our new zero-knowledge proofs are given in Sect. 5, and our
analysis of BBS as a signature scheme on group elements is in Sect. 6. We give
a technical overview next.

1.1 Technical Overview

New BBS proof. It is instructive to first review existing proofs [6,15] for
BBS+. To this end, we consider the special case where we sign a single scalar
m P Zp, i.e., a signature under secret key x P Zp takes form, for random s, e P Zp,

σ “ pA, s, eq , where A “ (g1hs
0h

m
1)

1
x`e .

If an attacker obtains q adaptively chosen signatures pAi, si, eiq for message
mi P Zp and finally produces a valid forgery pA˚, e˚, s˚q for a message m˚ P Zp,
we can identify three cases, which are to be addressed differently:

(1) There exists an i P [q] such that Ai “ A˚ and ei “ e˚
(2) There exists an i P [q] such that Ai ‰ A˚ and ei “ e˚
(3) e˚ R {e1, . . . , eq}.

The most challenging case is (2). Indeed, (1) implies that g1h
si
0 hmi

1 “ g1h
s˚
0 hm˚

1 ,
while psi,miq ‰ ps˚,m˚q, which in turn implies a break of the discrete logarithm
assumption in G1. For (3), instead, one resorts to a by-now classical technique
by Boneh and Boyen [9]. The key point here is that to break q-SDH, given
g1, g

x
1 , . . . , gxq

1 P G1, along with g2, g
x
2 in G2, it is enough to compute g

ppxq{px`eq
1 ,

for a polynomial ppXq which is not divisible by X ` e. This indeed allows us to
recover g

1{px`eq
1 , which gives us a valid q-SDH solution.

To do so, the reduction picks e1, . . . , eq ahead of time. It uses gx
2 as the public

key, but uses new generators g1 “ g
θppxq
1 , h0 “ g

αppxq
1 and h1 “ g

βppxq
1 for G1,

where ppXq “ ∏q
i“1pX ` eiq and α, β, θ ←$ Zp. Note that g1, h0, h1 can easily be

computed from gxi

1 for i P [q], since ppXq has degree q, and that for any m, s,
and i P [q], the reduction can always simulate a signature pg1hs

0h
m
1 q 1

x`ei , since
ppXq is divisible by X` ei. Moreover, a forgery for e˚ R {e1, . . . , eq}, allows us to

compute pe˚, g
1

x`e˚
1 q, and break q-SDH.

Revisiting BBS Signatures 695

Handling Case (2). The value s was crucial in [6,15] to deal with (2). To see
how it was used, let us assume that we can actually guess the index i for which
(2) occurs. Then, with p′pXq “ ∏

j‰ipX ` ejq, the reduction can set

g1 “ g
θp′pxq
1 , h0 “ g

px`eiqδ´1
α

1 , h1 “ hβ
0 .

Queries for j ‰ i can be answered as above for any ps,mq, since p′pXq is divisible
by X` ei. In contrast, for the i-th query, on message mi, the reduction can only
answer for the specific choice of si “ α ´ β · mi, since

Ai “ (g1h
si
0 hmi

1)
1

x`ei “
(
g

px`eiqδ
1

) 1
x`ei “ gδ

1 .

Despite the fact that si depends on mi, one can show that its distribution is
uniform. If the attacker now produces a forgery with e˚ “ ei, it means that we
have

A˚ “
(
g1h

s˚
0 hm˚

1

) 1
x`ei “ g

1
x`ei

(
1` px`eiqδ´1

α ps˚`βm˚q
)

1

and the reduction can solve q-SDH because 1` pX`eiqδ´1
α ps˚`βm˚q is not divisible

by X ` ei.

Our improvement. The reduction for BBS+ programs s in a message-
dependent way to handle (2). Our main idea here is to let e play this role
instead, thus dispensing with the use of s, and in fact obtaining a slightly sim-
pler reduction. Concretely, for BBS, we drop h0, as it is not needed any more,
and we set up

g1 “ g
αp′pxqpx`εiq
1 , h1 “ g

βp′pxq
1 .

Here, p′pXq is as above, and α, β, εi are random, and, most importantly, εi will
not necessarily equal ei. Now, every query j ‰ i can be answered as before. To
answer the i-th query, however, we first observe that

Ci “ g1h
mi
1 “ g

αp′pxqpx`εiq
1 · g

βp′pxqmi

1 “ g
αp′pxqpx`εi` β

α miq
1 .

We are going to show that if we set ei “ εi ` β
αmi, not only we can compute

Ai “ C
1

x`ei
i , but also, this ei has the right distribution. This last argument

is somewhat involved. For example, it turns out that if message mi is such
that x ` εi ` β

αmi “ 0, the distribution of ei is not correct. Luckily, however,
this is the only case, and moreover, if this indeed happened, this would mean
x “ ´εi ´ β

αmi, and we could break q-SDH directly. If we then obtain a forgery
pA˚, e˚q with e˚ “ ei for a message m˚, we note that the discrete logarithm of
A˚ is

DLg1pA˚q “ αp′pxqpx ` εi ` β
αm˚q

x ` εi ` β
αmi

.

However, one can show that X` εi ` β
αmi does not divide αp′pXqpX` εi ` β

αm˚q
if mi ‰ m˚.

696 S. Tessaro and C. Zhu

AGM Security. In the AGM, we restrict our focus to algebraic adversaries,
and in the case of BBS, this means that the adversary outputs a forgery A˚
and its representation in terms of g1, h1, . . . , h�, as well as the G1-part the prior
signatures A1, . . . , Aq. We note that the discrete logarithm of each Ai equals
ϕy
m i,ei

pxq, where x is the secret key, y is the vectors of discrete logarithms of h1

relative to g1, and

ϕy
m i,ei

pXq “ 1 ` xy,miy
X ` ei

.

Analogously, the discrete logarithm of A˚ for a forgery A˚, e˚ for a message m˚
equals ϕy

m ˚,e˚ pxq. Further, the algebraic adversary gives us a representation of
ϕy
m ˚,e˚ pxq as an affine combination of the ϕy

m i,ei
pxq’s. Our key observation is that

unless some very specific properties are satisfied by y, the function ϕy
m ˚,e˚ pXq, as

opposed to its evaluation at x, cannot be expressed as an affine combination of
the functions ϕy

m i,ei
pXq. Therefore, x must be a zero to a (known) polynomial

of degree at most q, and it can be recovered by factoring this polynomial. It
also turns out that whenever the choice of y does not allow this argument to
go through, we are going to be able to recover a non-trivial discrete-logarithm
relation, and break the discrete logarithm problem directly.

BBS Signatures of Committed Values. Our AGM proof will enable us to
also study the scenario where the adversary can query an oracle on an arbi-
trary C P G1 and obtain C

1
x`e for a random e. We show that in the AGM it

is impossible, except with negligible probability, to come up with q ` 1 valid
BBS signatures upon querying this oracle q times. The main difficulty is that an
AGM adversary here can query this oracle with group elements which are com-
binations of the outputs of previous queries. However, we are going to show how
an algebraic adversary making q oracle queries can be simulated by one making
queries to the actual BBS signing oracle. To do this, we rely on a property of our
AGM proof above, namely that the statement holds even if the values e1, e2, . . .
are known to the adversary beforehand, and we use this to give an inductive
argument which shows how to build these signing queries in order to emulate
the oracle signing a group element instead.

New Proofs of Knowledge. We give new Σ-protocols to prove knowledge
of a message-signature pair for BBS, given, possibly, partial knowledge of the
message. Our basic observation is that valid signature pA, eq for m satisfies
epA,X2q “ epB, g2q, where B “ CpmqA´e, and Cpmq “ g1

∏�
i“1 h

m [i]
i . For the

case where m is fully known to the verifier, for example, our prover commits
to a randomized version of A,B, namely A “ Ar and B “ Br “ CpmqrA

´e
.

Then, the prover engages in a homomorphism proof [29] to show knowledge of
a representation pr, eq of B to the base Cpmq and A.

2 Preliminaries

Notation. We will use the shorthand [n] “ {1, . . . , n}. We will denote formal
variables in polynomials with sans-serif letters X,Y, . . ., and for any modulus p,

Revisiting BBS Signatures 697

we let Zp[X] be the ring of formal polynomials apXq “ ∑d
i“0 aiX

i with coefficients
in Zp. As usual, d is the degree of apXq.

Throughout the paper, we adopt as far as possible the concrete security and
efficiency approach, and avoid qualitative statements. We refer to “efficient”
informally to stress that an algorithm is meant to be as efficient as possible, but
make theorems precise by giving explicit reductions in their proofs.

Groups and pairings. We work with prime-order groups. For such a group
G, we denote by 1G the identity element, and let G

˚ “ G \ {1G} be the set
of p ´ 1 generators. We use multiplicative notation, and generally denote group
elements with upper case letters, scalars with lower case ones, with the exception
of generators. For a generator g P G

˚ and a group element X P G, we also let
DLgpXq be the discrete logarithm x P Zp of X to the base g, i.e., gx “ X.

For prime-order groups G1, G2, GT , a bilinear map is an efficiently com-
putable function e : G1 ˆ G2 Ñ GT which satisfies both (1) bi-linearity, i.e.,
e (Ax, By) “ e (A,B)xy for all A P G1, B P G2, and x, y P Zp, and (2) non-
triviality, i.e., e (g1, g2) P GT̊ for all generators g1 P G1̊ and g2 P G2̊. We normally
consider a group parameters generation algorithm GGen such that GGenp1λq out-
puts a description pp, G1, G2, GT , eq such that G1, G2, GT are groups of order p,
e : G1 ˆ G2 Ñ GT is a bilinear map, and p is a λ-bit prime.

Our treatment is compatible with type-3 pairings (cf. e.g. [24]) like BLS
curves [7] which allow for some of the most efficient implementations, e.g., using
BLS12-381 [11]. The most relevant property is that G1 ‰ G2 and no efficiently
computable homomorphism G2 Ñ G1 exists.

Signature schemes. A signature scheme SS consists of a setup algorithm
SS.Setup, a key generation algorithm SS.KG, a (possibly randomized) signing
algorithm SS.Sign, and a deterministic verification algorithm SS.Ver, satisfying
the usual syntax and correctness requirement. In particular, SS.Setup outputs
parameters par, upon which all algorithms depend. We also let the message space
SS.M “ SS.Mpparq depend on par. (We implicitly assume that the signing algo-
rithm returns an error symbol ⊥, which is not a valid signature, if the message
is not in the message space.) We target strong unforgeability, which is defined
by Game SUFA

SSpλq in Fig. 1. The corresponding advantage metric is

AdvsufSS pA, λq “ Pr
[
SUFA

SSpλq
]

.

The security assumptions. We will use the following variant of the q-Strong
Diffie-Hellman (q-SDH) assumption, as defined by Boneh and Boyen [9] in a
format meant to support type-3 pairings. It is formalized by Game q-SDHA

GGenpλq
on the left of Fig. 2. We also consider the related q-Discrete Logarithm (q-DL)
assumption, as formulated on the right of Fig. 2 by Game q-DLA

GGenpλq, which only
differs in the winning condition. We associate with these games the corresponding
advantage metrics

Advq-sdh
GGenpA, λq “ Pr

[
q-SDHA

GGenpλq
]

, Advq-dl
GGenpA, λq “ Pr

[
q-DLA

GGenpλq
]

. (1)

698 S. Tessaro and C. Zhu

Game SUFA
SSpλq:

S Ð ∅, par ←$ SS.Setupp1λq
pvk, skq ←$ SS.KGpparq
pM ˚, σ˚q ←$ ASignppar, vkq
If pM ˚, σ˚q R S ∧ SS.Verppar, vk, M ˚, σ˚q then

Return true

Return false

Oracle SignpMq:
σ ←$ SS.Signppar, sk, Mq
If σ ‰ ⊥ then S

∪Ð {pM, σq}
Return σ

Fig. 1. Strong unforgeability.

Game q-SDHA
GGenpλq:

par “ pp, G1, G2, GT , eq Ð GGenp1λq
g1 ←$ G1̊, g2 ←$ G2̊

x ←$ Zp

pc, Zq ←$ Appar, g1, pgxi

1 qiP[q], g2, gx
2 q

Return Z “ g
1{px`cq
1

Game q-DLA
GGenpλq:

par “ pp, G1, G2, GT , eq Ð GGenp1λq
g1 ←$ G1̊, g2 ←$ G2̊

x ←$ Zp

x′ ←$ Appar, g1, pgxi

1 qiP[q], g2, gx
2 q

Return x′ “ x

Fig. 2. Assumptions. The assumptions could also be defined with respect to fixed
generators, but this would invalidate some of our security proofs.

We note that the q-SDH assumption implies the q-DL assumption for any q, as
finding x implies finding g

1{px`cq
1 for any c. The converse is not known to be true

in general, but it is true for algebraic adversaries [8]. Notation-wise, we drop q
whenever it equals one, and refer to the resulting assumption as the Discrete
Logarithm (DL) assumption.

Remark 1. Our security proofs will repeatedly rely on the observation (due to
Boneh and Boyen [9]) that, given g1, g

x
1 , gx2

1 , . . . , gxq

1 , computing A “ g
ppxq{px´eq
1 ,

for any known non-zero polynomial ppXq P Zp[X] with degree at most q such that
ppeq ‰ 0, leads to a break q-SDH. This is because, by the polynomial remainder
theorem, we can write ppXq “ dpXqpX´eq`r, where the remainder r “ ppeq P Zp

is a non-zero integer mod p, whereas dpXq has degree at most q ´ 1. Therefore,
A “ g

dpxq`r{px´eq
1 , and also,

pAg
´dpxq
1 q1{r “ g

1
x´e

1

can be efficiently computed, and p´e, g
1{px´eq
1 q is a q-SDH solution.

3 New Proof for (Short) BBS Signatures

3.1 Description and Implementation Details

Figure 3 describes a version of BBS with shorter signatures than BBS+ [6]. We
refer formally to this scheme as BBS “ BBS[GGen,De, �], where GGen is a group
parameter generator, De is a distribution over Zp, and � ě 1 a parameter. We

Revisiting BBS Signatures 699

Algorithm BBS.Setupp1λq :

pp, G1, G2, GT , eq Ð GGenp1λq
g1 ←$ G1̊, h1 ←$ G

�
1, g2 ←$ G2̊

par Ð pp, g1,h1, g2, G1, G2, GT , eq
Return par

Algorithm BBS.KGpparq :
pp, g1,h1, g2, G1, G2, GT , eq Ð par
x ←$ Zp; X2 Ð gx

2

sk Ð x; vk Ð X2

Return psk, vkq

Algorithm BBS.Signpsk “ x,mq :

C Ð g1
∏

i h1[i]
m [i]

e ←$ De

A Ð C
1

x`e

Return σ “ pA, eq
Algorithm BBS.Verpvk,m, σ “ pA, eqq :

C Ð g1
∏

i h1[i]
m [i]

Return epA, ge
2vkq “ epC, g2q

Fig. 3. BBS signature. The scheme is parameterized by GGen, De, and the message
length � “ �pλq ě 1. Here, group operations are in the groups G1 and G2 determined
by the parameters.

omit De whenever it is understood to be the uniform distribution over Zp, and
� whenever it is clear from the context. Here, the message space is BBS.M “ Z

�
p,

and it depends on the parameters in that the modulus p is determined by GGen
via BBS.Setup. There is an unlikely event that the inversion to compute 1{px`eq
during signature issuance fails because x ` e “ 0—for ease of syntax, we use the
convention that 1{0 “ 0. The BBS` scheme is a special case where each signed
message m is such that its first component, m[1], is randomly chosen. (And,
therefore, needs to be made part of the signature.)

Modeling choices. Our modeling is similar to that of [6,10,15], in that in par-
ticular we fix the message length via �. One can easily accommodate unbounded-
length messages, as in practice, the generators in h1 do not need to be fixed
beforehand, and h1[i] can be the output of a hash function (modeled as a ran-
dom oracle) on some input that depends on i. This allows us to also sign messages
in Zp̀ , given a suitable encoding. (The RFC draft [28] suggests hashing a length-
dependent set of parameters into the first message block, although more efficient
encodings certainly exist.)

We also model BBS as randomized, as this feature may be useful in some
contexts, but we can de-randomize the scheme by applying a PRF to m, or
(more efficiently) to C, to derive e.

3.2 Security Analysis

We show security of BBS in the standard model, under the q-SDH assumption, for
the setting where De is the uniform distribution over Zp. Here, q is the number of
signing queries issued by the signer. Note that this theorem also implies security
of BBS+, as it corresponds to a special case of BBS where the first block of each
signed message is randomly chosen, and included in the signature.

Theorem 1 (Security of BBS). Let GGen be a group parameter generator,
producing groups of order p “ ppλq. For every SUF adversary A issuing at most

700 S. Tessaro and C. Zhu

q “ qpλq signing queries, there exist adversaries B1, B2, and B3 such that

AdvsufBBS[GGen]pA, λq ď q · Advq-sdh
GGenpB1, λq ` AdvdlGGenpB2, λq

` Advq-sdh
GGenpB3, λq ` q2

2p
` q ` 2

p
.

The adversaries B1, B2 and B3 are given explicitly in the proof, and run in time
roughly comparable to that of A.

The proof of the theorem is given in Sect. 3.3 below. The concrete bound is
essentially the same as prior analyses of BBS+ [6,15], and we incur a factor q
loss in the reduction. Below, in Theorem 2, we give a tight reduction to q-DL in
the algebraic group model, which suggests this loss may be artificial.

Discussion of concrete parameters. Even assuming the tight bound as
the correct one, the reliance on q-SDH raises the question of the extent to which
parameters should accommodate for Cheon’s attack [20] on q-SDH/q-DL, which
achieves complexity (roughly) Op√p{qq for certain choices of q. The RFC [28]
suggests the use of BLS12-381 [11], which gives (roughly) a 256-bit group order.
We could accommodate for roughly q “ 236, for example, while still having
110-bit security. (This type of reasoning was for example adopted to justify
BLS12-381 in zkSNARKs [4].) But even then, we observe that the only way we
know to actually break BBS via Cheon’s attack is the reduction by Jao and
Yoshida [27], which requires all signatures to be on the same message, with
different e-values.1 Not only this situation is unlikely to arise, but it does not
occur if we de-randomize BBS, which is the choice the RFC also adopted for
BBS+. It is an excellent question to see whether a similar attack exists even for
de-randomized BBS.

3.3 Proof of Theorem 1

Let us consider an interaction of the adversary A in the SUF game, where the
adversary finally outputs a forgery pm˚, σ˚q, where σ˚ “ pA˚, e˚q. We define
three events, depending on the specific format of the forgery:

– Forge1: This is the event where σ˚ is a valid forgery, and a prior Sign query
has output a signature σi “ pAi, eiq for Ai ‰ A˚, ei “ ei̊ , and some message
mi ‰ m˚.

– Forge2: This is the event where σ˚ is a valid forgery, and a prior Sign query
output the same signature σi “ σ˚ for a message mi ‰ m˚, or the forgery
A˚ equals 1G1 .

– Forge3: This is the event where σ˚ is a valid forgery and completely fresh, i.e.,
neither of Forge1 or Forge2 occurs.

1 Roughly, their attack considers the setting where g
1

x`ei is obtained for multiple ei’s.

Revisiting BBS Signatures 701

As the union of these three events equal the event that pm˚, σ˚q is a valid forgery,
the union bound yields

AdvsufBBSpA, λq ď Pr [Forge1] ` Pr [Forge2] ` Pr [Forge3] .

We will proceed in upper bounding these three probabilities via separate reduc-
tions. The hardest case is the analysis of Forge1, and this is where out proof
differs from prior work. The analyses of Forge2 and Forge3 are essentially the
same as in the original analysis of BBS+. The theorem statement then follows
by combining Lemmas 1, 2, and 3, which we state next. The proof of Lemma 1
is given below in Sect. 3.4, whereas the proofs of Lemmas 2 and 3, which are
more standard, are deferred to the full version.

Lemma 1 (Analysis of Forge1). There exists a q-sdh adversary B1 such that

Pr [Forge1] ď q · Advq-sdh
GGenpB1, λq ` q2

2p
` 1

p
.

Lemma 2 (Analysis of Forge2). There exists a dl adversary B2 such that

Pr [Forge2] ď AdvdlGGenpB2, λq ` 1
p

.

Lemma 3 (Analysis of Forge3). There exists a q-sdh adversary B3 such that

Pr [Forge3] ď Advq-sdh
GGenpB3, λq ` q

p
.

3.4 Proof of Lemma 1

We give an overview of the adversary B1 that underlies the reduction to q-SDH
for Forge1. The formal pseudocode description is in Fig. 4, although we omit there
some lengthier and tedious descriptions of how to compute certain elements, and
give them here in the text instead. Recall that q is a bound on the number of
generated signatures, i.e., the number of queries to Sign issued by the adversary
A. We assume here that exactly q queries are made, without loss of generality.

Given the q-SDH setup g1,X1,1 “ gx
1 , . . . , X1,q “ gxq

1 , g2,X2 “ gx
2 , the adver-

sary B1 first generates a suitable setup to run A. In particular, it picks random
values ε1, . . . , εq ←$ Zp, as well as randomizers α ←$ Zq̊ and β1, . . . , βq ←$ Zq.
Then, the generators g1 P G1̊ and h1 P G

�
1 are set to

g1 “ g
α·ppxq·px`εi˚ q
1 , h1[i] Ð g

βi·ppxq
1 for all i P [�],

where i˚ ←$ [q] and
ppXq “

∏
iP[q]\{i˚}

pX ` εiq .

702 S. Tessaro and C. Zhu

Adversary B1ppar, g1, pX1,iqiP[q], g2, X2,1q :

pp, G1, G2, GT , eq Ð par
i˚ ←$ [q]; cnt Ð 0; Sigs Ð ∅; x˚ Ð ⊥
ε1, . . . , εq ←$ Zp

α ←$ Zp̊; β1, β2, . . . , β� ←$ Zp

g1 Ð g
α·ppxq·px`εi˚ q
1

For i “ 1 to � do h1[i] Ð g
βi·ppxq
1

X2 Ð X2,1; par Ð pp, g1,h1, g2, G1, G2, GT , eq
pm˚, A˚, e˚q ←$ ASignppar, X2q
C˚ Ð g1

∏q
i“1 h1[i]

m ˚[i]

If ei˚ “ e˚ ∧ epA˚, X2g
e˚
2 q “ e (C˚, g2) ∧

pA˚, e˚q R Sigs then
If x˚ ‰ ⊥ then

Return p0, g
1{x˚
1 q // direct break

If ei˚ R {ei}iP[q]\{i˚} then

γ Ð ∑�
i“1 βipm˚[i] ´ mi˚ [i]q

Return pei˚ ,
[
A˚ · pA´1

i˚ q] 1
γ q

Oracle Signpmq :
cnt Ð cnt ` 1, mcnt Ð m
Ccnt Ð g1

∏q
i“1 h1[i]

m [i]

If cnt ‰ i˚ then
ecnt Ð εcnt

Else
ecnt Ð εi˚ ` ∑�

i“1
βi
α
m[i]

If Ccnt “ 1G1 then
x˚ Ð {x′ P {´ecnt} ∪

{εi}i‰i˚ | gx′
1 “ X1,1}

ecnt Ð εcnt

Acnt Ð C
1

x`ecnt
cnt

σcnt Ð pAcnt, ecntq
Sigs

∪Ð {σcnt}
Return σcnt

Fig. 4. Adversary B1 in the proof of Lemma 1. Recall that once ε1, . . . , εq are
fixed and understood from the context, we use the shorthand ppXq “ ∏

iP[q]\{i˚}pX `εiq
for convenience. In the pseudo-code, we omit the explicit computations of g, h1, and
Acnt from Ccnt, which are detailed in the text.

It is not hard to see that g1 and h1 can be computed efficiently from part of the
q-SDH setup g1,X1,1, . . . , X1,q. Moreover, at least informally, it should be clear
that as long as x R {´ε1, . . . , ´εq}, the distributions of g1 and h1 are correct,
i.e., they are uniform in G1̊ and G

�
1, respectively, since g1 P G1̊. (The formal

argument about the correctness of distributions is given below, and this is only
meant to serve as some intuition.) We stress that our simulation will not be
correct if x P {´ε1, . . . , ´εq}, so it is easiest to assume that this is not the case
to understand the rest of the reduction.

Handling signing queries. The oracle Sign then simulates the correct signing
oracle, keeping a query counter cnt. Whenever cnt ‰ i˚, it is not hard to see that
Sign can easily answer the query using ecnt “ εcnt. Indeed, if x ` εcnt ‰ 0, on
input m, the simulate Sign can compute

Acnt “
(

g1

�∏
i“1

h1[i]m [i]

) 1
x`εcnt

“ g
pipxq[αpx`εi˚ q`∑�

i“1 βim [i]]
1 ,

where pipxq “ ∏
iR{cnt,i˚}px ` εiq. It is easy to detect x ` εcnt “ 0, and in that

case, Acnt “ 1G1 by definition.

Revisiting BBS Signatures 703

Crucially, when cnt “ i˚ the adversary B1 answers the signing query differ-
ently. We observe first that, with Ccnt Ð g1

∏q
i“1 h1[i]m [i],

DLg1pCcntq “ α · ppxq · px ` εi˚ q `
�∑

i“1

βim[i]ppxq

“ α · ppxq
(

x ` εi˚ `
�∑

i“1

βi

α
m[i]

)
.

(2)

Here, there are two cases. Either Ccnt “ 1G1 , and then we return Acnt “ 1G1 ,
along with a ecnt “ εcnt. Alternatively, and more interestingly, if Ccnt ‰ 1G1 , we
set ei˚ “ εi˚ ` ∑�

i“1
βi

α m[i], and

Ai˚ “ C
1

x`ei˚
i˚ “ g

α·ppxq
1 ,

which can be efficiently computed. The bulk of our analysis below will show that
if Ci˚ ‰ 1G1 , then we indeed generate a random ei˚ in this way.

Note that by equation (2) if Ci˚ “ 1G1 , then x “ ´εi˚ ´ ∑�
i“1

βi

α m[i] or
x P {εi}i‰i˚ , and hence we can directly break of q-SDH. (The variable x˚ here
stores the recovered discrete logarithm.) To simplify the analysis below, in this
case, it is convenient for the reduction B1 to defer breaking q-SDH to end, and
return the signature p1G1 , εi˚ q instead.

Extracting a solution. Assume now that A outputs a valid forgery m˚, σ˚,
where σ˚ “ pA˚, e˚q, e˚ “ ei˚ , and A˚ ‰ Ai˚ . Further, assume that Ci˚ ‰ 1G1 ,
which implies that x ` ei˚ ‰ 0 and ppxq ‰ 0. (If this was not true, as highlighted
above, we would have extracted x already.) Then,

DLg1pA˚q “ αppxqx ` εi˚ ` ∑�
i“1

βi

α m˚[i]
x ` εi˚ ` ∑�

i“1
βi

α m[i]

“ α · ppxq ` ppxq
∑�

i“1 βipm˚[i] ´ m[i]q
x ` ei˚

.

Further, because Ai˚ ‰ A˚ but e˚ “ ei˚ , we also have γ “ ∑�
i“1 βipm˚[i]´m[i]q ‰

0, and then [
A˚ · pA´1

i˚ q] 1
γ “ g

ppxq
x`ei˚
1 .

If ei˚ R {ei}iP[q]\{i˚}, X ` ei˚ does not divide ppXq. We can then compute g
1

x`ei˚
1

using Remark 1 and break q-SDH.

Formal analysis. We now proceed with a formal analysis to show that the
probability guarantees for B1 as stated in the lemma indeed hold. To this end,
we use Pr0[·] to denote probabilities in the experiment SUFA

BBSpλq, where A plays
the SUF game against BBS. Similarly, we use Pr1[·] to denote probabilities in
the simulated experiment where A is run within B1 in Game q-SDHB1

GGenpλq.

704 S. Tessaro and C. Zhu

In both experiments, we can define the event Forge1, as it only depends
on the output of the adversary and the property of this output relative to its
earlier signing query. Moreover, let Forge

piq
1 for i P [q] be the event that Forge1

happens and the i-th query is the first signing query that satisfies the condition
for Forge1 to happen. Let GoodE be the event that all ei’s are distinct. Note that
B1 is guaranteed to output a q-SDH solution if Forgepiq

1 happens and i “ i˚ and,
moreover, GoodE also occurs. Also, note that the probability that GoodE and
Forge

piq
1 occurs is independent of whether i “ i˚ or not, and therefore

Advq-sdh
GGenpB1, λq ě

q∑
i“1

Pr1
[
GoodE ∧ Forge

piq
1

]
· Pr1 [i˚ “ i]

“ 1
q

·
q∑

i“1

Pr1
[
GoodE ∧ Forge

piq
1

]
“ 1

q
· Pr1 [GoodE ∧ Forge1] .

We rely on the following central lemma, which in particular shows that
the simulation of A’s execution within B is nearly correct. While the intuition
has been given above, the formal proof is rather subtle and we rely on the H-
coefficient method [19,30] to prove the following.

Lemma 4. Pr0 [GoodE ∧ Forge1] ´ Pr1 [GoodE ∧ Forge1] ď q
p .

Before turning to a proof of the lemma in Sect. 3.5 below, we observe that
plugging the inequality of the lemma into the above yields

Advq-sdh
GGenpB1, λq ě 1

q
· Pr0 [GoodE ∧ Forge1] ´ 1

p

ě 1
q

(
Pr0 [Forge1] ´ Pr0

[
GoodE

]) ´ 1
p

.

On the other hand, Pr0
[
GoodE

] ď (
q
2

)
1
p ď q2

2p , and thus we obtain the bound in
Lemma 1 by re-arranging terms.

3.5 Proof of Lemma 4

We assume A to be deterministic without loss of generality. We describe the
transcripts of the interaction of A in the SUF and within B1 as part of the
q-SDH experiment, respectively, via the following two random variables

T0 “ pg1, g2,h1, x, i˚, pm1, e1q, . . . , pmq, eqqq ,

T1 “ pg1, g2,h1, x, i˚, pm1, e1q, . . . , pmq, eqqq
where in T0, i˚ is sampled uniformly from [q], independently of everything else.
We do not include X2, as X2 “ gx

2 in both experiments. Moreover, in both
experiments, the first component A1, A2, . . . of the the answer to each signature
query is removed, as it is also a deterministic function of the rest of the transcript.

Revisiting BBS Signatures 705

Similarly, the final forgery pA˚, e˚q is also a function of T0/T1. For this reason,
we note that that the event GoodE∧Forge1 is deterministically determined from
T0 and T1, in their respective experiments, i.e., there exists a Boolean function
φ such that φpTbq “ 1 if and only if the event happens in the corresponding
experiment. Therefore,

Pr0 [GoodE ∧ Forge1] ´ Pr1 [GoodE ∧ Forge1] ď SDpT0, T1q ,

where SDpT0, T1q “ 1
2

∑
τ |Pr [T0 “ τ] ´ Pr [T1 “ τ]| is the total variation dis-

tance, which we upper bound by a special case of Patarin’s H-coefficient
method [30], which we introduce on the way. (We use the formalism from [26]
here.)

Interpolation probabilities. Concretely, for any potential value τ of Tb for
b P {0, 1}, which we denote as

τ “ pg
1
, g

2
,h1, x, i˚, pm1, e1q, . . . , pmq, eqqq ,

we let p0pτq and p1pτq be its interpolation probabilities, i.e., the probabilities
that we pick randomness in the respective experiment that would lead to tran-
script τ if queries m1, . . . ,mq are fixed ahead of time. (These probabilities are
independent of A, and only depend on τ and the randomness of the experiment.)
We want to isolate the following type of good transcript.

Definition 1 (Good transcript). We call τ good if x R {´e1, . . . , ´eq}. Oth-
erwise, τ is bad.

We are then going to prove that for all good transcripts τ , p0pτq “ p1pτq. This
is enough to conclude the proof, as it implies that

SDpT0, T1q ď Pr [T0 is bad] “ Pr0 [x P {´e1, . . . , ´eq}] ď q

p
.

To compute p1pτq for a good transcript τ , we assume that the generator g1 given
to B1 is fixed. (Of course, it is actually sampled randomly from G1̊ as part of the
q-SDH instance, but the interpolation probability is the same conditioned on any
particular choice, and thus we fix it.) The randomness then consists of i˚ ←$ [q],
x ←$ Zp, α ←$ Zp̊, ε1, . . . , εq ←$ Zp, and g2 ←$ G2̊. To generate the transcript τ ,
we need in particular

i˚ “ i˚, g2 “ g
2
, x “ x, pεiqiP[q]\{i˚} “ peiqiP[q]\{i˚}

and as these values are chosen independently, this is true with probability

1
q

· 1
p ´ 1

· 1
p

· 1
pq´1

“ 1
qpp ´ 1qpq

over the choice of i˚, g2, x, {εi}ıP[q]\{i˚}. Let us assume this initial part of the
transcript is consistent. We also need β1, . . . , β� to ensure h1 “ h1, which, con-
ditioned on x “ x, is equivalent to the fact that

ppxq · βi “ DLg1ph1[i]q for all i P [�].

706 S. Tessaro and C. Zhu

Because τ is good, ppxq ‰ 0, and therefore the � equalities hold with probability
1{p� over the choice of β1, . . . , β�.
Finally, conditioned on i˚, g2, x, {εi}ıP[q]\{i˚}, {β}iP[�] satisfying all above con-
straints, we need εi˚ and α to ensure that

g1 “ g
αppxqpx`εi˚ q
1 “ g

1
, ei˚ “ ei˚ .

There are two cases here, depending on m “ mi˚ and the associated value

C “ g
1

�∏
i“1

h1[i]
m [i] .

Case 1: C “ 1G1 . Then, in this case, B1 ensures ei˚ “ εi˚ , and this value, which
is uniform, equals ei˚ with probability 1{p. Conditioned on this,

ppxqpx ` εi˚ q “ ppxqpx ` ei˚ q ‰ 0

because τ is good. Thus g
1

“ g
αppxqpx`εi˚ q
1 holds with probability 1{pp ´ 1q

over the choice of α from Zp̊.
Case 2: C ‰ 1G1 . For convenience, we write e “ ei˚ , ε “ εi˚ , a “ DLg1pg

1
q, and

y “ ∑
i βim[i]. Here, α ←$ Zp̊ and ε ←$ Zp need to satisfy

αppxqpx ` εq “ a

ε ` 1
α

y “ e

The second equation directly implies that

ε “ e ´ 1
α

· y . (3)

Substituting this into the first equation yields

α · ppxq
(

x ` e ´ 1
α

· y

)
“ ppxqpαpx ` eq ´ yq “ a .

Re-arranging terms we get

α “ a{ppxq ` y

x ` e
. (4)

This is indeed a value in Zp̊ for two reasons. First off, x ` e ‰ 0 as τ is good.
Second, a{ppxq`y ‰ 0. Indeed, if instead a{ppxq`y “ 0 were true, we would
have

C “ g
1

�∏
i“1

h1[i]
m [i] “ g

a
1

�∏
i“1

g
ppxq·βi·m [i]
1 “ g

a`ppxqy
1 “ g01 “ 1G1 ,

a contradiction with the fact that we are in Case 2. Therefore, the probability
over the choice of α, ε that (3) and (4) are both satisfied is 1

ppp´1q .

Revisiting BBS Signatures 707

Game SUF`A
GGen,eG,eSpλq:

Sigs Ð ∅; cnt Ð 0
pp, G1, G2, GT , eq ←$ GGenp1λq
g1 ←$ G1̊, h1 ←$ G1, g2 ←$ G2̊

par Ð pp, g1,h1, g2, G1, G2, GT , eq
ste Ð eGpp, G1, G2, GT , eq
x ←$ Zp; X2 Ð gx

2 ; sk Ð x; vk Ð X2

pm˚, pA˚, e˚qq ←$ ASignppar, ste, vkq
If pm˚, pA˚, e˚qq R Sigs then

C˚ ←$ g1
∏�

i“1 h1[i]
m ˚[i]

If e
(
A˚, X2g

e˚
2

)
“ e (C˚, g2) then return

true

Return false

Oracle Signpmq:
cnt Ð cnt ` 1
ecnt Ð eSpste, cntq
Ccnt Ð g1

∏�
i“1 h1[i]

m [i]

Acnt Ð C
1{px`ecntq
cnt

Sigs
∪Ð {pm, pAcnt, ecntqq}

Return Acnt

Fig. 5. Stronger security for BBS. Stronger ad-hoc unforgeability achieved by BBS
in the AGM, where the ei’s are sampled deterministically from an algorithm that uses
an initially generated state ste, known to the adversary.

Therefore, in summary, we have

p1pτq “ 1
qpp ´ 1qpq

· 1
p�

· 1
ppp ´ 1q “ 1

qpp ´ 1q2pq`�`1
.

It is not hard to observe that we also have

p0pτq “ 1
pq`�`1pp ´ 1q2q ,

because g1, g2 are uniform over G1̊, h1 is uniform over G
�
1, and x, e1, . . . , eq are

uniform in in Zp, and i˚ is uniform in [q].

4 Tighter Proofs for BBS in the AGM

This section complements the above standard-model analysis with a tight anal-
ysis of BBS in the algebraic group model (AGM) [23]. In addition, we prove here
that security holds even if the attacker is given the values e1, e2, . . . ahead of
time, and we allow these values to be sampled from a more general distribution.
The former fact will be helpful later in Sect. 6. The latter fact will allow for
instantiations of BBS with shorter signatures in some contexts, as we explain
further below.

Stronger security. We formalize our security goal in terms of Game SUF`
in Fig. 5. This is not a generic security game, as it is specific to BBS, but clearly,
it does imply its strong unforgeability in a number of settings when the scheme
instantiation corresponds to a particular pick to eG and eS. The ad-hoc feature
is that we allow part of the signature (namely, the e value in a pair pA, eq)
to be generated initially. To model this, in addition to the group parameter

708 S. Tessaro and C. Zhu

generator GGen, the game is parameterized by a pair of algorithms, eG and eS,
where eG, on input the group parameters, outputs a state ste, and then eSpste, iq
(deterministically) outputs the value ei used for the i-th signature. The initial
state ste is given to the adversary, who can run eS to pre-compute the ei’s. It
will be convenient to define the collision probability

δeG,eSpq, λq “ Pr

[
par ←$ GGenp1λq
ste ←$ eGpparq : ∃1 ď i < j ≤ q : eSpste, iq “ eSpste, jq

]
.

We also define the advantage metric

Advsuf`GGen,eG,eSpA, λq “ Pr
[
SUF`A

GGen,eG,eSpλq] .

Algebraic security. We are now ready to state our main theorem, which is
proved below in Sect. 4.1. We dispense with a full formalization of the AGM [23],
as its use is relatively straightforward here. Namely, we consider algebraic adver-
saries that provide an explanation of the element A˚ P G1 contained in the
forgery in terms of all previously seen group elements in G1, which include the
generators g1,h1, as well as the issued signatures. (Because we consider type-3
pairings, we do not include G2 elements in these representations.) We also give
our reduction here to q-DL, as opposed to q-SDH as in the case of Theorem 1,
but note that the assumptions are equivalent in the AGM.

Theorem 2 (AGM Security of BBS). Let GGen be a group parameter gener-
ator, producing groups of order ppλq, and let eG, eS as above. For every algebraic
SUF+ adversary A issuing at most q signing queries, there exist adversaries B1

and B2 such that

Advsuf`GGen,eG,eSpA, λq ď Advq-dl
GGenpB1, λq ` AdvdlGGenpB2, λq ` δeG,eSpq, λq ` 1

ppλq .

The adversaries B1 and B2 are given explicitly in the proof, and have running
times comparable to that of A. The adversary B1 need to additionally factor a
polynomial of degree (at most) q.

The only property required from eG and eS is that δeG,eSpq, λq is small. We
note that the lack of collisions is a necessary condition. Indeed, if we generate
two signatures pA, eq, pA′, eq for messages m and m′, respectively, it is easy to
verify that ppA · A′q 1

2 , eq is a signature for 1
2 pm ` m′q, where 1

2 is the inverse of
2 mod p.

The above theorem supports the security (in the AGM) of some interesting
and natural instantiations of BBS with shorter signatures, which we discuss next.

Counter BBS. One natural instantiation, which we refer to as Counter BBS,
generates the ei’s from a counter, i.e., eSpste, iq “ i. This can be advantageous if
the signer can reliably maintain such a counter. Signatures then would consist of
a group element in G1 and then log q additional bits, where q is an upper bound
on the number of issued signatures. In particular, one could safely set q “ 250

in many applications, leading to very short signatures.

Revisiting BBS Signatures 709

Truncated BBS. A different application scenario considers a conservative
instantiation that uses a 384-bit group G1 to prevents Cheon’s attack [20]. Then,
the above bound allows us to choose the ei’s from Z2256 , as opposed to Zp for a
384-bit prime p, hence saving 128-bit of signature length. We refer to the result-
ing scheme as Truncated BBS. While we need to rely on the AGM to trust this
optimization, we do note that the uniformity of the ei’s needed by Theorem 1
appears to be an artifact of the proof, and does not appear to prevent actual
attacks.

4.1 Proof of Theorem 2

Before we turn to the construction of the adversaries B1 and B2, and their formal
analysis, we introduce the algebraic framework that will guide their construction.

Algebraic framework. To start with, in an execution of SUF`A
GGen,eG,eSpλq,

it is convenient to associate the discrete logarithms of group elements in G1 with
formal rational functions (which are then evaluated in the actual execution to
obtain the discrete logarithm). In particular, let us denote the discrete logarithms
of h1 to the base g1 by the vector y P Z

�
p. Then, the i-th Sign query for m P Z

�
p,

where ei “ e, returns a value with discrete logarithm ϕy
m ,epxq, where

ϕy
m ,epXq “ 1 ` xy,my

X ` ei
.

Here, xx,yy denotes inner product in Zp. It turns out that these functions are
essentially linearly independent, except for some unfortunate configurations for
y. This is captured by the following central lemma.

Lemma 5. Let e1, . . . , eq P Zp be distinct, let y P Z
�
p, and let m1, . . . ,mq P

Z
�
p. Further, let pm˚, e˚q R {pmi, eiq}iP[q]. Then, assume that there exist

λ1, . . . , λq, γ P Zp such that

ϕy
m ˚,e˚ pXq “

q∑
i“1

λi · ϕy
m i,ei

pXq ` γ . (5)

Then, one of the following two conditions must be true:

(i) There exists i P [q] such that e˚ “ ei and 1 ´ λi ` xy,m˚ ´ λi · miy “ 0.
(ii) We have e˚ R {e1, . . . , eq}, but 1 ` xy,m˚y “ 0.

Proof. To verify (i), assume indeed that e˚ P {e1, . . . , eq}, and wlog, let e˚ “ e1.
We multiply both sides of (5) by ppXq “ ∏�

i“1pX ` eiq, and after re-arranging
terms, we get

(1 ´ λ1 ` xy,m˚ ´ λ1 · m1y) · p1pXq “ γ · ppXq `
q∑

i“2

λi · ϕy
m i,ei

pXq · pipXq , (6)

where we have used the shorthand pipXq “ ∏
jP[q]\{i}pX ` ejq “ ppXq{pX ` eiq.

We claim that the LHS and RHS of (6) cannot be identical functions, unless

710 S. Tessaro and C. Zhu

1 ´ λ1 ` xy,m˚ ´ λ1 · m1y “ 0. Indeed, the RHS is always divisible by X ` e1,
because either λ2, . . . , λq are all 0, in which case this is vacuously true, or ppXq
and pipXq for i ě 2 are divisible by pX ` e1q. In contrast, if 1 ´ λ1 ` xy,m˚ ´
λ1 · m1y ‰ 0, then the RHS is not divisible by X ` e1 because p1pe1q ‰ 0.

Let us consider instead the case e˚ R {e1, . . . , eq}. For notational convenience,
we let eq`1 “ e˚, p′pXq “ ∏

iP[q`1]pX`eiq, and p′
kpXq “ ∏

iP[q`1]\{k}pX`eiq. Then,
multiplying both sides of (5) by p′pXq yields

p1 ` xy,m˚yq · p′
q`1pXq “ γ · p′pXq `

q∑
i“2

λi · ϕy
m i,ei

pXq · p′
ipXq .

We notice that if 1 ` xy,m˚y ‰ 0 the LHS is non-zero, and not divisible by
X`eq`1, as p′

q`1peq`1q ‰ 0. In contrast, the RHS is always divisible by X`eq`1.
A contradiction. ��
Overview of the reduction. Let A be an algebraic adversary in Game
SUF`A

GGen,eG,eSpλq. It initially receives group elements g1 P G1, h1 P G
�
1, along

with G2 elements g2,X2 “ gx
2 . For each signing query, she also gets Ai P G1.

Finally, when producing a forgery pm˚, pA˚, e˚qq, by virtue of being algebraic, the
adversary A also provides a representation pγ0, γ1, . . . , γ�, λ1, . . . , λqq P Z

q`�`1
p

of A˚ such that

A˚ “ gγ0
1

�∏
i“1

h1[i]γi

q∏
i“1

Aλi
i “ pC˚q 1

x`e˚ “ g
ϕy

m ˚,e˚ pxq
1 ,

where y[i] “ DLg1ph1[i]q for all i P [�]. Further, we have Ai “ g
ϕy

m i,ei
pxq

1 . There-
fore, setting γ “ γ0 ` ∑

iP[�] γi · y[i], this implies in particular that

γ `
q∑

i“1

λi · ϕy
m i,ei

pxq ´ ϕy
m ˚,e˚ pxq “ 0 .

Let us now assume that the two conditions in Lemma 5 do not hold, and that
e1, . . . , eq are distinct. Then, Lemma 5 implies that

ρpXq “ γ `
q∑

i“1

λi · ϕy
m i,ei

pXq ´ ϕy
m ˚,e˚ pXq ‰ 0 ,

and therefore x is one of its zeros. Assuming that x R {´e1, . . . , ´eq, ´e˚}, such
zeros can be obtained by factoring the non-zero polynomial

qpXq “ ρpXq ·
∏

eP{e1,...,eq,e˚}
pX ` eq ,

which has degree at most q ` 1. One of the zeros has to equal x.
We still need to handle the case where either 1 ` xy,m˚y “ 0 or 1 ´ λi `

xy,m˚ ´ λi · miy “ 0. It is however not hard to see that this gives us non-
trivial discrete logarithm relation, and we can use this to compute the discrete
logarithm directly.

Revisiting BBS Signatures 711

Formal reduction. To formalize the above analysis, we consider three events
during the execution of Game SUF`A

GGen,eG,eSpλq:
– Forge: This is the event that A outputs a successful forgery and wins the

game.
– Rel: This is the event that the forgery is for a message m˚ such that either

Condition (i) or (ii) of Lemma 5 holds.
– Col: Is the event that there exist distinct i, j P [q] with ei “ ej .

Then, by the law of total probability,

Advsuf`GGen,eG,eSpA, λq “ Pr
[
Forge ∧ Rel

] ` Pr [Forge ∧ Rel]

ď Pr
[
Forge ∧ Rel ∧ Col

] ` Pr
[
Forge ∧ Rel ∧ Col

] ` Pr [Rel]

ď Pr [Col] ` Pr
[
Forge ∧ Rel ∧ Col

] ` Pr [Rel] .

By definition, we know that Pr [Col] “ δeG,eSpq, λq. We now give adversaries B1

and B2 such that

Pr
[
Forge ∧ Rel ∧ Col

] ď Advq-dl
GGenpB1q , Pr [Rel] ď AdvdlGGenpB2q ` 1

p
.

The adversary B1. If x R {´e1, . . . , ´eq} (which can be checked right away,

and gives x), the reduction simulates the original generator g1 as g1 “ g
αppxq
1 ,

where ppxq “ ∏
iP[q]px ` eiq. (This can be computed given the inputs X1,i “ gxi

for i P [q].) Since α P Zp̊ and ppxq ‰ 0, the simulation is perfect. Also, we
can easily compute the answers to Sign queries due to our choice of g1. The
adversary then checks that qpXq is non-zero (which is implied by Rel), and if so,
proceeds to compute its zeros. It is easy to verify that the adversary succeeds
with probability at least Pr

[
Forge ∧ Rel ∧ Col

]
.

The adversary B2. The construction is somewhat standard. Let us assume one
of the two conditions leading to Rel occurs in Game SUF`A

GGen,eG,eSpλq. First, if
(i) occurs for some i P [q], then

g1´λi
1

�∏
j“1

h
m ˚[j]´λim i[j]
1 “ 1G1 . (7)

In contrast, if (ii) occurs, then

g1

�∏
j“1

h
m i[j]
1 “ 1G1 . (8)

Therefore, in both cases, we obtain a non-zero vector pa, bq P Z
�`1
p such that

ga
1

∏
iP[�] h1[i]b[i] “ 1G1 . Given the DL instance X1,1 “ gx

1 P G1, the adversary
B2 simulates the generator by picking αi, βi ←$ Zp for i P [�], and lets

g1 “ X1,1 “ gx
1 , h1[i] “ Xαi

1,1g
´βi

1 “ gαix´βi

1 for i P [�] .

712 S. Tessaro and C. Zhu

This simulates the right distribution if X1,1 ‰ 1G1 , which is ensured beforehand.
Then, as outlined above, the adversary simulates a correct execution with A,
and checks if we obtain a non-trivial relation as above. If so, we are given a
non-zero pa, bq P Z

�`1
p such that

ax `
�∑

i“1

b[i] · pαix ´ βiq “ 0 ,

and, in turn, we get

x “
∑�

i“1 βib[i]

a ` ∑�
i“1 αib[i]

.

Note that this is well defined, unless a ` ∑�
i“1 αib[i] “ 0. However, because

pa, bq ‰ 0, and the fact that the αi’s are uniform and independent given the
adversary’s view, this happens with probability at most 1{p. This concludes the
proof. ��

5 Efficient Proofs of Knowledge for BBS Signatures

We discuss zero-knowledge proofs of knowledge (zkPoK) of a BBS message-
signature pair pm, σq that are shorter than those from [15] adopted by the RFC
draft [28]. If we do not want to reveal k of the components of m, our proof (when
compiled as a NIZK via the Fiat-Shamir transform) consists of 2 elements in G1,
as well as k ` 3 scalars in Zp. The prior proof, in contrast, consists of 3 elements
in G1, and k`5 scalars. The benefit of our new proofs is also computational: We
save 4 group exponentiations in G1 and 3 scalar multiplications for the prover,
and save 3 group exponentiations in G1 for the verifier. We note that the CDL
proofs are tailored at BBS+, but even for the latter scheme, we can achieve
savings, as we can think of a BBS+ signature for m as a BBS signature for
ps,mq, for a secret s, and merely increase k by one.

5.1 Proofs of Knowledge for Signatures

We consider zkPoKs associated with a signature scheme SS with message space
SS.Mpparq “ Mpparq� for some set M that can depend on the public parameters
par, and some understood vector length � “ �pλq. We give proofs of knowledge
of a signature consistent with a partial message vector m P (M ∪ {�})�. For any
two such partial messages m,m′, we denote m ⊆ m′ if for all i P [�], m[i] ‰ �
implies m[i] “ m′[i].

We only consider three-move public-coin protocols between a prover and a
verifier, described by a tuple PoK “ pPoK.P1,PoK.P2,PoK.C,PoK.Vq. Informally,
we think of running the protocol in settings where the parameters for SS are
available, i.e., par ←$ SS.Setupp1λq, psk, vkq ←$ SS.KGpparq, and the protocol is
run as follows, on private input pm, σq, where m P M�, and public input m′ P
(M ∪ {�})�:

Revisiting BBS Signatures 713

Distribution RealAPoK,SSpλq:
par ←$ SS.Setupp1λq
psk, vkq ←$ SS.KGpparq
pm′,m, σq ←$ Appar, sk, vkq
If m′ ⊆ m ∧ SS.Verppar, vk, pm, σqq then

pa, stPq ←$ PoK.P1ppar, vk,m′, pm, σqq
c ←$ PoK.Cppar, vkq
s ←$ PoK.P2pstP, cq
Return psk, vk,m′, pa, c, sqq

Return ⊥

Distribution IdealA,S,L
PoK,SSpλq:

par ←$ SS.Setupp1λq
psk, vkq ←$ SS.KGpparq
pm′,m, σq ←$ Appar, sk, vkq
If m′ ⊆ m ∧ SS.Verppar, vk, pm, σqq
then

z ←$ Lppar, skq
pa, c, sq ←$ Sppar, vk,m′, zq
Return psk, vk,m′, pa, c, sqq

Return ⊥

Fig. 6. Distributions for the definition of HVZK

(1) The prover initially takes inputs par, vk, and a candidate signature-
message pair pm, σq, and outputs pa, stPq ←$ PoK.P1ppar, vk,m′,
pm, σqq. The message a is sent to the verifier.

(2) The verifier outputs c ←$ PoK.Cppar, vkq, and the challenge c is sent
to the prover.

(3) The prover outputs s ←$ PoK.P2pstP, cq, and sends s to the verifier.
(4) Finally, the verifier outputs a Boolean value PoK.Vppar, vk,m′, a, c, sq P

{true, false}.

We say that PoK is correct if, whenever SS.Verppar, vk, pm, σqq “ true and
m′ ⊆ m, then the verifier also outputs true.

Special Soundness. We target special soundness. To this end, we say that
ppar, vk,m′, a, c, sq is an accepting transcript if par is a valid output of SS.Setup,
vk is a valid output of SS.KGpparq, c is a valid output of PoK.Cppar, vkq, and
PoK.Vppar, vk,m′, a, c, sq is true.

Definition 2. We say that PoK as above is special-sound if there exists an effi-
cient algorithm Extract which, given any two valid transcripts ppar, vk,m′, a, c, sq,
ppar, vk,m′, a, c′, s′q such that c ‰ c′, then pm, σq Ð Extractppar, vk, a,
pc, sq, pc′, s′qq is such that SS.Verppar, vk, pm, σqq “ true and m′ ⊆ m.

We do not specify more general soundness goals further, as the use of spe-
cial soundness will largely depend on the concrete security game modeling the
security of the system using the PoK.

Honest-Verifier Zero-Knowledge. The protocols we give will be shown to
be honest-verifier zero-knowledge, which suffices for their use as NIZKs via the
Fiat-Shamir transform. We will in fact weaken the notion to allow for some leak-
age of the parameters given to the simulator. In particular, we model such leakage
as a (possibly randomized) function Lppar, skq taking as input the parameters
and the signing key.

Definition 3 (HVZK). The protocol PoK for SS as above is perfectly L-honest-
verifier zero-knowledge (L-HVZK) if there exists an efficient simulator S such

714 S. Tessaro and C. Zhu

that for all A and λ P N, the distributions RealAPoK,SSpλq and IdealA,S,L
PoK,SSpλq given

in Fig. 6 are identical.

5.2 Protocols

Full disclosure. We start with the protocol for the case m “ m′, i.e., the full-
disclosure case. Recall that a BBS signature for a message m P Z

�
p takes form

σ “ pA “ Cpmq1{px`eq, eq, where Cpmq “ g1
∏�

i“1 h1[i]m [i]. We assume from
now on that A ‰ 1G1 , and this assumption is almost without loss of generality,
as a valid signature with A “ 1G1 implies finding a non-trivial DLOG relation,
as Cpmq “ 1G1 would be true as well. Recall that the signature is valid if

epA, ge
2X2q “ epCpmq, g2q ,

where X2 “ gx
2 is the verification key. However, by bilinearity,

epA, ge
2X2q “ epA, ge

2q · epA,X2q “ epAe, g2q · epA,X2q .

And therefore, one can equivalently check that

epA,X2q “ epCpmq · A´e, g2q . (9)

The main idea is to provide suitably randomized versions of A and B “ Cpmq ·
A´e, which can be computed from a signature pA, eq, and extend this with a
proof of correctness attesting to the format of these values. In particular, we use
A “ Ar and B “ pCpmq · A´eqr, for which we still have epA,X2q “ epB, g2q.
Protocol description. Concretely, we consider the following Σ-protocol:

– Given a signature pA, eq for the message m with A ‰ 1G1 , the prover picks
r Ð Zp̊, and computes

A Ð Ar , B Ð pCpmqA´eqr “ CpmqrA
´e

.

It also picks α, β ←$ Zp, and computes U Ð CpmqαA
β
. It sends pA,B,Uq to

the verifier.
– The verifier picks a random challenge c ←$ Zp, and sends it to the prover
– The prover responds with ps, tq, where

s Ð α ` r · c , t Ð β ´ e · c .

– The verifier accepts if and only if

epA,X2q “ epB, g2q , U · B
c “ CpmqsA

t
.

Revisiting BBS Signatures 715

Special-soundness. It is not hard to see that the protocol is special sound.
Indeed, given A,B,U , as well as c1 ‰ c2, and ps1, s1, t1, t2q such that

epA,X2q “ epB, g2q , U · B
ci “ CpmqtiA

si for i “ 1, 2 ,

we can first extract r and e such that B “ CpmqrA
´e

, because

B
c1´c2 “ Cpmqt1´t2A

s1´s2
,

and thus we can set r “ pt1 ´ t2q{pc1 ´ c2q and e “ ps2 ´ s1q{pc1 ´ c2q. If

r �“ 0, then pA “ A
r´1

, eq is a valid signature on m, because epA,X2q “ epB, g2q
implies that epAr´1

,X2q “ epBr´1

, g2q, and B
r´1 “ CpmqA´e. If r “ 0, then

epA,X2q “ epA´e
, g2q, which means x “ ´e, and this gives us a signature on m.

Zero-knowledge. The protocol is L-HVZK, for L which, on input g1, x, out-
puts pgr

1, g
rx
1 q for r ←$ Zp̊, i.e., a random pair of form pU,Uxq. The simulator then

computes A ←$ G1̊, and set C “ A
x P G1 – this can be done by re-randomizing

the leakage pU,Uxq. Then, the simulator picks a random challenge c ←$ Zp, as
well as random s, t ←$ Zp, and sets U “ CpmqsA

t
B

´c
.

The fact that the simulator needs a sample pU,Uxq, and cannot simulate
solely given the parameters and the verification key X2 “ gx

2 is a technical
oddity inherited from the use of type-3 pairings, and was also present in prior
protocols [15]. Indeed, it is hard to compute gx

1 from the verification key gx
2 .

However, this additional leakage is not really harmful. For example, any signature
pA, eq on a message m already satisfies Ax “ Cpmq · A´e, and thus the protocol
leaks no more than any valid message-signature pair. In particular, BBS remains
secure given such leakage.

Partial disclosure. For the case m′
� m, the components m[i] for which

m′[i] “ � become parts of the witness. We let I :“ {i P [�] : m[i] “ �} and
J “ [n] \ I. We also let CJ pmq “ g1

∏
iPJ h1[i]m [i], and note that CJpmq can be

computed from the public input m′ by the verifier.

– Given a signature pA, eq for the message m with A ‰ 1G1 , the prover picks
r Ð Zp̊, and computes

A Ð Ar , B Ð pCpmqA´eqr “ CJ pmqr ·
(∏

iPI

h1[i]m [i]

)r

· A
´e

.

It also picks α, β ←$ Zp, and also δi ←$ Zp for every i P I and computes

U Ð CJpmqα · A
β ·

∏
iPI

h1[i]δi

It sends pA,B,Uq to the verifier.
– The verifier picks a random challenge c ←$ Zp, and sends it to the prover

716 S. Tessaro and C. Zhu

– The prover responds with ps, t, puiqiPIq, where

s Ð α ` r · c , t Ð β ´ e · c , ui Ð δi ` r · m[i] · c ∀i P I .

– The verifier accepts if and only if

epA,X2q “ epB, g2q , U · B
c “ CJ pmqsA

t ∏
iPI

h1[i]ui .

One can easily adapt the arguments for the above protocols for full disclosure
to show special soundness and L-HVZK.

NIZKs. Our protocols can be transformed into NIZKs in the random ora-
cle model via the Fiat-Shamir transform [21] or Fischlin’s transform [22].
For the Fiat-Shamir version, the prover computes A,B,U as above, then lets
c Ð Hpm′, A,B,Uq, and finally computes s, t, puiqiPI as above. The final proof
is

π “ pA,B, c, s, t, puiqiPIq .

Verification checks that epA,X2q “ epB, g2q and that c “ Hpm′, A,B,Uq with

U Ð B
´c

CJpmqsA
t ∏

iPI

h1[i]ui .

Note that we could include U instead of c, but this leads to longer proofs
for curves like BLS12-381, where elements in G1 have longer descriptions than
scalars.

6 Signatures for Group Elements and Blind Issuance

One central property of BBS is its support of blind issuance, the setting where
a user sends a commitment C P G1 to the signer to obtain a pair σ “ pA, eq
with A “ C

1
x`e —if C “ g1

∏�
i“1 h1[i]m [i] for a message m, then σ is a valid

signature on m, but crucially, the signer never learns m. In fact, the user could
make m[1] uniform, turning C into a perfectly-hiding (generalized) Pedersen
commitment [31]. This approach is particularly important when σ acts as a
credential, and we want to hide the actual attributes from the issuer. Blind
issuance of BBS signatures is also part of an unofficial draft [3], which also
requires the addition of a proof of knowledge for a representation of C, which
consists of Op�q scalars and can be expensive when � is large. Here, we show
that in the AGM the scheme is already sufficiently secure without such a proof.
A suitable proof of knowledge is however still necessary if the user needs to
reveal part of the attributes to the issuer, to prove these are consistent with
the commitment. However, we note that this aspect would be orthogonal to our
analysis below.

Revisiting BBS Signatures 717

Game OMUF`A
GGen,eG,eSpλq:

cnt Ð 0
pp, G1, G2, GT , eq ←$ GGenp1λq
g1 ←$ G1̊, h ←$ G1, g2 ←$ G2̊

par Ð pp, g1,h1, g2, G1, G2, GT , eq
ste Ð eGpp, G1, G2, GT , eq
x ←$ Zp; X2 Ð gx

2 ; sk Ð x; vk Ð X2

{pmi̊ , pAi̊ , ei̊qq}iP[q′] ←$ ASdhppar, ste, vkq
For all i P [q′] do Ci̊ Ð g1

∏
jP[�] h1[j]

m i̊[j]

If ∀i P [q′]: e
(
Ai̊ , X2g

ei̊
2

)
“ e (Ci̊ , g2) then

Return pq′ > cntq
Return false

Oracle SdhpCq:
cnt Ð cnt ` 1
ecnt Ð eSpste, cntq
Acnt ←$ C

1
x`ecnt

Return Acnt

Fig. 7. One-more unforgeability of BBS. This game captures the one-more unforgeabil-
ity of BBS when given an Sdh oracle which returns C1{px`eiq for its i-th query, where ei

is generated via eS. We assume here that A returns a set of q′ distinct forgery attempts
(i.e., no double entry are present in the list returned by A.)

One-more unforgeability. BBS can be thought as a signature scheme signing
a group element C P G1 as σ “ pA “ C

1
x`e , eq. However, it does not achieve

unforgeability when signing group elements (as in the case of structure-preserving
signatures (SPS) [5]). Indeed, the attacker, given σ “ pA, eq, directly obtains
other valid signatures, such as σ′ “ pA2, eq, which is a valid signature for C2 ‰ C.
Nonetheless, if C “ g1

∏�
i“1 h1[i]m [i], it is very unlikely that the attacker can

exhibit a message m′ such that C2 “ g1
∏�

i“1 h1[i]m
′[i], i.e., such that pA2, eq is

valid for m′.
We formalize this by showing BBS satisfies one-more unforgeability (OMUF),

where given access q times to an oracle Sdh that signs group elements as above—
i.e., on input C P G1 it returns σ “ pA, eq with A “ C

1
x`e —it is impossible

for the attacker to come up with q ` 1 valid BBS signatures. This property is
defined via Game OMUF`A

GGen,eG,eSpλq in Fig. 7. Similar to Sect. 4, the game is
parameterized by the group generator GGen and by a pair of algorithms eG, eS
used to generate the ei’s ahead of time. We also define

Advomuf`
GGen,eG,eSpA, λq “ Pr

[
OMUF`A

GGen,eG,eSpλq] .

We stress that we could define a general notion of signatures on commitment
values, and require that upon obtaining q signatures on arbitrary elements from
the commitment space, the attacker cannot come up with q ` 1 valid signa-
tures on commitments, along with their openings. However, we prefer the rather
straightforward BBS-specific game as a better illustration of this property.

Main result. We prove now that BBS satisfies one-more unforgeability in the
AGM, and we do so via a reduction to its SUF` security as defined in Sect. 4.

Theorem 3 (One-more unforgeability). Let GGen be a group parameter
generator, producing groups of order ppλq, and let eG, eS as above. For every

718 S. Tessaro and C. Zhu

algebraic OMUF+ adversary A issuing at most q “ qpλq Sdh queries, there
exists an algebraic SUF+ adversary B such that

Advomuf`
GGen,eG,eSpA, λq ď Advsuf`GGen,eG,eSpB, λq ` δeG,eSpq, λq .

The adversary B issues q Sign queries, and runs in time equal that of running
A, plus the time needed to perform Opq3q operations in Zp.

The proof is deferred to the full version due to lack of space. The main challenge
in the proof is to show how the signing oracle can be used to simulate signing a
group element, given its representation. This is easy to do if the representation
is only in terms of g1 and h1, but the challenge is that the representation can
also depend on prior signatures.

Theorem 3 yields the following corollary when combined with Theorem 2.

Corollary 1 (One-more unforgeability). Let GGen be a group parameter
generator, producing groups of order ppλq, and let eG, eS as above. For every
algebraic OMUF+ adversary A issuing at most q Sdh queries, there exists a
q-DL adversary C1 and a DL adversary C2 such that

Advomuf`
GGen,eG,eSpA, λq ď Advq-dl

GGenpC1, λq ` AdvdlGGenpC2, λq ` 2δeG,eSpq, λq ` 1
ppλq .

The adversaries C1 and C2 are obtained by using B from Theorem 3 within the
adversaries of Theorem 2.

Applications. As mentioned above, a typical application of BBS signatures
is in the context of credentials. The above result validates the security of the
canonical solution where the user obtains a credential for a vector of attributes
m by sending C “ g1

∏�
i“1 h1[i]m [i] to the authority, which in turn responds

with the actual credential pC 1
x`e , eq for a random e. The OMUF security from

Theorem 3 and Corollary 1 implies that a malicious user (or any set of multiple
such users) can only obtain q credentials by interacting with the authority q
times. The user can then show the credential multiple times in an unlinkable
way by using the zk-PoKs from Sect. 5, typically compiled via the Fiat-Shamir
transform. These showings are then consistent with at most q attribute vectors.
When issuing a credential, the user does not need to send any proof of knowledge
along with C, unless the credential issuing needs to enforce some format on the
values contained by C, in which case extra proofs need to be sent along.

We note that analyzing the security of the entire credential system is non-
trivial, especially if we want to resort to PoKs compiled via the Fiat-Shamir
transform, which are not online extractable. We believe that a security analysis
of variants of this system is however possible, albeit very tedious, in the AGM,
where one can resort to the online-extractability of the proposed PoKs from
Sect. 5 in the AGM, along the lines of [25]. This goes however beyond the scope
of this paper.

Revisiting BBS Signatures 719

Acknowledgments. We wish to thank Christian Paquin and Greg Zaverucha for
extensive discussions around BBS and for providing feedback throughout this project.
We also thank the EUROCRYPT 2023 reviewers for their excellent comments and
suggestions. This research was partially supported by NSF grants CNS-2026774, CNS-
2154174, a JP Morgan Faculty Award, a CISCO Faculty Award, and a gift from
Microsoft.

References

1. BBS+ implementation. https://github.com/mattrglobal/bbs-signatures, Accessed
10 Apr 2022

2. BBS+ implementation. https://github.com/microsoft/bbs-node-
referenceAccessed 10 Apr 2022

3. Blind signatures extension of the BBS signature scheme. https://identity.
foundation/bbs-signature/draft-blind-bbs-signatures.txt Accessed 10 Apr 2022

4. Cheon’s attack and its effect on the security of big trusted setups. https://ethresear.
ch/t/cheons-attack-and-its-effect-on-the-security-of-big-trusted-setups/6692
Accessed 10 Apr 2022

5. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 12

6. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k -TAA. In: De Prisco, R.,
Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg
(2006). https://doi.org/10.1007/11832072 8

7. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed
embedding degrees. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS,
vol. 2576, pp. 257–267. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36413-7 19

8. Bauer, B., Fuchsbauer, G., Loss, J.: A classification of computational assumptions
in the algebraic group model. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO
2020. LNCS, vol. 12171, pp. 121–151. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-56880-1 5

9. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2007). https://doi.org/
10.1007/s00145-007-9005-7

10. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-28628-8 3

11. Bowe, S.: BLS12-381: New zk-SNARK elliptic curve construction. https://
electriccoin.co/blog/new-snark-curve/ (2017)

12. Brickell, E., Li, J.: A pairing-based DAA scheme further reducing TPM resources.
In: Acquisti, A., Smith, S.W., Sadeghi, A.-R. (eds.) Trust 2010. LNCS, vol.
6101, pp. 181–195. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13869-0 12

13. Brickell, E., Li, J.: Enhanced privacy ID from bilinear pairing for hardware authen-
tication and attestation. Int. J. Inf. Priv. Secur. Integr. 1(1), 3–33 (2011). https://
doi.org/10.1504/IJIPSI.2011.043729, https://doi.org/10.1504/IJIPSI.2011.043729

14. Brown, D.R.L., Gallant, R.P.: The static Diffie-Hellman problem. Cryptology
ePrint Archive, Report 2004/306 (2004), https://eprint.iacr.org/2004/306

https://github.com/mattrglobal/bbs-signatures
https://github.com/microsoft/bbs-node-reference
https://github.com/microsoft/bbs-node-reference
https://identity.foundation/bbs-signature/draft-blind-bbs-signatures.txt
https://identity.foundation/bbs-signature/draft-blind-bbs-signatures.txt
https://ethresear.ch/t/cheons-attack-and-its-effect-on-the-security-of-big-trusted-setups/6692
https://ethresear.ch/t/cheons-attack-and-its-effect-on-the-security-of-big-trusted-setups/6692
https://doi.org/10.1007/978-3-642-14623-7_12
https://doi.org/10.1007/11832072_8
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/978-3-030-56880-1_5
https://doi.org/10.1007/978-3-030-56880-1_5
https://doi.org/10.1007/s00145-007-9005-7
https://doi.org/10.1007/s00145-007-9005-7
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://electriccoin.co/blog/new-snark-curve/
https://electriccoin.co/blog/new-snark-curve/
https://doi.org/10.1007/978-3-642-13869-0_12
https://doi.org/10.1007/978-3-642-13869-0_12
https://doi.org/10.1504/IJIPSI.2011.043729
https://doi.org/10.1504/IJIPSI.2011.043729
https://doi.org/10.1504/IJIPSI.2011.043729
https://eprint.iacr.org/2004/306

720 S. Tessaro and C. Zhu

15. Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous attestation using the strong
diffie hellman assumption revisited. In: Franz, M., Papadimitratos, P. (eds.) Trust
2016. LNCS, vol. 9824, pp. 1–20. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-45572-3 1

16. Camenisch, J., Lysyanskaya, A.: A Signature Scheme with Efficient Protocols. In:
Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7 20

17. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 4

18. Chen, L.: A DAA scheme requiring less TPM resources. In: Bao, F., Yung, M.,
Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 350–365. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16342-5 26

19. Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–
350. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 19

20. Cheon, J.H.: Security analysis of the strong diffie-hellman problem. In: Vaude-
nay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg
(2006). https://doi.org/10.1007/11761679 1

21. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

22. Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with
online extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–
168. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 10

23. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33–62.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 2

24. Galbraith, S., Paterson, K., Smart, N.: Pairings for cryptographers. Cryptology
ePrint Archive, Report 2006/165 (2006), https://eprint.iacr.org/2006/165

25. Ghoshal, A., Tessaro, S.: Tight state-restoration soundness in the algebraic group
model. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp.
64–93. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9 3

26. Hoang, V.T., Tessaro, S.: Key-alternating ciphers and key-length extension: exact
bounds and multi-user security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 3–32. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53018-4 1

27. Jao, D., Yoshida, K.: Boneh-Boyen signatures and the strong Diffie-Hellman prob-
lem. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 1–16.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03298-1 1

28. Looker, T., Kalos, V., Whitehead, A., Lodder, M.: The BBS Signature
Scheme. Internet-Draft draft-irtf-cfrg-bbs-signatures-01, Internet Engineering Task
Force (Oct 2022), https://datatracker.ietf.org/doc/draft-irtf-cfrg-bbs-signatures/
01/, work in Progress

29. Maurer, U.: Unifying zero-knowledge proofs of knowledge. In: Preneel, B. (ed.)
AFRICACRYPT 2009. LNCS, vol. 5580, pp. 272–286. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02384-2 17

30. Patarin, J.: A proof of security in Op2nq for the Benes scheme. In: Vaudenay,
S. (ed.) AFRICACRYPT 08. LNCS, vol. 5023, pp. 209–220. Springer, Heidelberg
(Jun (2008)

https://doi.org/10.1007/978-3-319-45572-3_1
https://doi.org/10.1007/978-3-319-45572-3_1
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-642-16342-5_26
https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.1007/11761679_1
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/978-3-319-96881-0_2
https://eprint.iacr.org/2006/165
https://doi.org/10.1007/978-3-030-84252-9_3
https://doi.org/10.1007/978-3-662-53018-4_1
https://doi.org/10.1007/978-3-662-53018-4_1
https://doi.org/10.1007/978-3-642-03298-1_1
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bbs-signatures/01/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bbs-signatures/01/
https://doi.org/10.1007/978-3-642-02384-2_17

Revisiting BBS Signatures 721

31. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

32. Pointcheval, D., Sanders, O.: Short randomizable signatures. In: Sako, K. (ed.)
CT-RSA 2016. LNCS, vol. 9610, pp. 111–126. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-29485-8 7

33. Sonnino, A., Al-Bassam, M., Bano, S., Meiklejohn, S., Danezis, G.: Coconut:
Threshold issuance selective disclosure credentials with applications to distributed
ledgers. In: NDSS 2019. The Internet Society (Feb 2019)

https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/978-3-319-29485-8_7

Non-interactive Blind Signatures
for Random Messages

Lucjan Hanzlik(B)

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

hanzlik@cispa.de

Abstract. Blind signatures allow a signer to issue signatures on mes-
sages chosen by the signature recipient. The main property is that the
recipient’s message is hidden from the signer. There are many appli-
cations, including Chaum’s e-cash system and Privacy Pass, where no
special distribution of the signed message is required, and the message
can be random. Interestingly, existing notions do not consider this prac-
tical use case separately. In this paper, we show that constraining the
recipient’s choice over the message distribution spawns a surprising new
primitive that improves the well-established state-of-the-art. We formal-
ize this concept by introducing the notion of non-interactive blind sig-
natures (NIBS). Informally, the signer can create a presignature with a
specific recipient in mind, identifiable via a public key. The recipient
can use her secret key to finalize it and receive a blind signature on a
random message determined by the finalization process. The key idea
is that online interaction between the signer and recipient is unneces-
sary. We show an efficient instantiation of NIBS in the random oracle
model from signatures on equivalence classes. The exciting part is that,
in this case, for the recipient’s public key, we can use preexisting keys for
Schnorr, ECDSA signatures, El-Gamal encryption scheme or even the
Diffie-Hellman key exchange. Reusing preexisting public keys allows us
to distribute anonymous tokens similarly to cryptocurrency airdropping.
Additional contributions include tagged non-interactive blind signatures
(TNIBS) and their efficient instantiation. A generic construction in the
random oracle or common reference string model based on verifiable ran-
dom functions, standard signatures, and non-interactive proof systems.

Keywords: Blind Signatures · Non-Interactive Scheme · Random
Oracle Model · Signatures on Equivalence Classes

1 Introduction

Blind signatures are a cryptographic primitive introduced by David Chaum [16].
Contrary to standard digital signature schemes, the signing process is an inter-
active protocol between two parties: the signer and the user (also called the
recipient). The main property of blind signature schemes is like the name sug-
gests blindness. It ensures that the signer does not ‘see’ the signed message. Blind
c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14008, pp. 722–752, 2023.
https://doi.org/10.1007/978-3-031-30589-4_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30589-4_25&domain=pdf
https://doi.org/10.1007/978-3-031-30589-4_25

Non-interactive Blind Signatures for Random Messages 723

signatures also require one-more unforgeability, where an adversary has access
to a signing oracle and must return one-more message-signature pair than the
number of queries made.

Blind signature schemes find many applications. In Chaum’s seminal work
[16], it was shown how to use a blind signature for electronic cash (or e-cash),
the forerunner of modern cryptocurrencies. The design of e-cash inspired many
follow-up work [4,12,21,37]. The idea is elegant but simple. The bank issues
e-cash as signatures on random identifiers chosen by users. To spend, the user
shows the identifier (i.e., message) and the corresponding signature to the mer-
chant, who can collect the amount from the bank. The bank keeps a list of
‘used’ identifiers to prevent double-spending. To make transactions unlinkable,
the bank uses a blind signature to create the signature together with the user.

E-cash implements the idea of a single-use unlinkable electronic coins (e-
coins), coupons or tokens. This interpretation inspired recent advances. Tum-
blebit [31] is a cryptographic tumbler that uses blind signatures as a building
block. It introduces an intermediary party that issues a single-use coupon in
exchange for cryptocurrency. The payer can send this coupon to another user
who can redeem it for cryptocurrency. To ensure unlinkability, the intermediary
issues several coupons in a given interval, creating an anonymity set. Blind-
ness provides the property that any combination of sender/recipient is equally
likely for the given anonymity set. This idea was also used in Privacy Pass [17],
which relies on single-use coupons to make web browsing using anonymous net-
works more user-friendly. One of the use cases of Privacy Pass allows users to
redeem coupons while omitting the increased number of CAPTCHAs that service
providers challenge when using anonymous networks. Privacy Pass was recently
extended with a rate-limiting version [32] also called Private Access Tokens. One
of the main changes is that the coupon is not created on a random message but
rather on a challenge created by the server. The challenge is to ensure that mali-
cious users do not hoard coupons to circumvent daily limits. Blind signatures are
used differently in voting schemes [14] and anonymous credentials (AC) [6,23].
Voters can get a signed receipt without revealing their vote. In AC, blind sig-
natures provide means for issuing unlinkable credentials. Contrary to the e-cash
application, the signed message in those applications is not a random identifier.

We observe that the user can randomly choose the blindly signed message in
many applications, and the selected message does not need to be from a specific
distribution. Following this, we consider the following research question.

Can we use this observation to move research on blind signatures forward?

Prior Work on Blind Signatures

In his seminal work [16], David Chaum introduced the idea of blind signatures.
He defined a signing function s that commutes with a function c. The user
can now send c(m) to the signer, who signs this blinded message and returns
s(c(m)). Because of the commutativeness property, the user can extract s(m)
using the inverse function c−1 without the signer learning anything about the
signed message m. It is worth noting that the user can always pick what gets

724 L. Hanzlik

Table 1. Comparison between two-move blind signatures, Privacy Pass, and our NIBS
and TNIBS. n denotes the number of signatures/tokens issued concurrently. All results
are given in bits and refer to a 3072-bit RSA modulus, BLS12-381 [11] parameters
for pairing-based schemes and a standard 256-bit elliptic curve for Privacy Pass. We
assume that messages/nonces are 128-bit long. We indicate if the first message of user
U can be reused by signer S to issue new tokens.

Scheme Communication complexity |m| + |sig| |pk| Reusable
1st msg.

Security

U → S S → U

Blind BLS [10] n × 382 n × 382 510 3072 ✗ ROM

Privacy Pass [17] n × 257 n × 257 + 512 385 257 ✗ ROM

RSA (PAT) [16,35] n × 3072 n × 3072 3200 3072 ✗ ROM

NIBS 382† n × 1655 1909 1526 ✓ ROM+GGM

TNIBS 382† n × 2546 2800 1526 ✓ ROM+GGM

Our Generic O(1)† O(n) ✓ ROM or CRS

†− The recipient’s public key must be sent to the signer. There is no cost if a PKI is available.

signed. The main security properties defined by Chaum are that the inverse
function s−1 does not leak anything about s, and c(x) does not leak anything
about x. Those intuitions for unforgeability and blindness were more formally
captured in follow-up work.

Pointcheval and Stern [40,41] defined unforgeability using a so-called one
more forgery. Instead of defining it as the inability to extract the secret key s
from the public key s−1, they introduced a security experiment where the adver-
sary is given oracle access to the signer. The winning condition is to output k+1
message-signature pairs while only making k queries to the oracle. Juels, Luby,
and Ostrovsky [33] introduced a formal experiment defining the notion of blind-
ness, where the adversary must guess the order in which it issues two messages
(m0,m1) of its choosing. This definition considers the signing keys to be hon-
estly generated by the experiment and given to the adversary. Contrary to that,
the adversary outputs the public key in the maliciously generated key model
[18]. The adversary is not required to execute the key generation algorithm or
even to know the corresponding secret key. At the end of the blindness experi-
ment, the adversary also receives the corresponding signatures (σ0, σ1). If one of
the signatures was incorrect or the user algorithm aborted, the adversary gets
(⊥,⊥) instead information about which interaction failed. Camenisch, Neven,
and Shelat introduced blindness under selective failure [13], which considers this
additional information. Fischlin and Schröder later showed [19] how to turn every
blind signature scheme into a selective-failure blind one.

Chaum’s definition considers what we call today a two-move blind signa-
ture scheme with one message from the user and one from the signer. While
follow-up work considers the interaction between the user and signer as an inter-
active protocol with multiple rounds, two-move blind signatures are considered
round-optimal and provide concurrent security. Many round-optimal schemes
were proposed [18,22,34], including the practical blind BLS scheme [10] with

Non-interactive Blind Signatures for Random Messages 725

concise signature size. Interestingly, in his work Pass [38], calls two-move blind
signatures non-interactive. Notably, interaction is inherent since the user must
keep an internal state to de-blind the signer’s response. Three-move blind signa-
tures were also explicitly defined [29] since they can be generically constructed
from linear identification schemes in the random oracle model. Constructing such
schemes from standard assumptions without the random oracle or common ref-
erence string model seems hard [20]. We can build blind signatures from various
assumptions, including post-quantum secure ones [3,30]. Recently, Chairattana-
Apirom et al. [15] showed how to build concurrent secure blind signature schemes
from discrete logarithm and RSA-type assumptions.

Paraphrasing the research question stated above. Can we use the observation
that in many applications, the user can randomly choose the message to design
something new that was not considered in prior work and opens a new chapter
in the blind signature literature?

Our Contribution

In the case of two-move blind signatures, the user/recipient sends the requested
message in the blinded form to the signer and later uses the interactions state to
unblind the response. Our main idea is that since the recipient does not require
any specific distribution or structure of the message, the message can be an
output of the unblinding step. In other words, there is no need for interaction.

We capture this by defining a new cryptographic primitive called non-
interactive blind signatures for random messages or NIBS for short. As it turned
out, defining meaningful notation for such signatures is not simple, and the fol-
lowing strawman approach does not work. Since no interaction is required, the
signer can create a presignature psig on some random message/nonce and share
it. The recipient can then finalize the presignature to a signature on a random
message. As already mentioned, such a notion does not work and cannot pro-
vide meaningful security properties. The problem with defining non-interactive
blind signatures in that way is that the recipient can repeat the process and
get a new message-signature pair. The returned pair must be a signature on a
new message. Otherwise, the signer could link the issuing process to the final
signature. Fortunately, our notion of NIBS does not have the same problems as
the strawman approach.

What is needed is some secret input from the recipient. The natural idea is to
use the recipient’s public key. The signer must include the recipient’s public key
as input to the signing process. The returned presignature can be finalized using
the recipient’s secret key and the signer’s nonce. Later, we will show a scheme
where we can use, for example, the recipient’s PKI public key or ephemeral keys
from TLS connections. Using the preexisting public key of the recipient, we can
use NIBS in various applications where we cannot use standard blind signatures.

The main contribution of this paper is the formal definition of NIBS and an
appropriate security model. The intuition behind NIBS can be easily explained
using an analogous notion to the one used by Chaum [16]. The signer com-
putes a presignature s(nonce, c) using issuing function s, a nonce of its choosing,

726 L. Hanzlik

and the recipient’s function c. The recipient can finalize the presignature using
c−1(nonce, s(nonce, c)) = (m, s(m)), i.e., use the corresponding secret key c−1 to
its public key c. We require that m and s(m) not leak any information about
c and the used nonce. We capture those properties using two definitions called
recipient blindness and nonce blindness. The former captures the property that
m and s(m) do not leak information about c while the latter property that they
do not leak any information about nonce. We formally define recipient blindness
via an experiment where the adversary is explicitly given two honestly generated
public keys of recipients and outputs two presignatures finalized by the experi-
ment to (m0, sig0) and (m1, sig1). Finally, the adversary is given (m0, sig0) and
(m1, sig1) in random order. For nonce blindness, the adversary is given just one
recipient public key. In both cases, we do not consider aborts, i.e., if one of the
signatures cannot be finalized, we give (⊥,⊥) to the adversary. Our blindness
definitions are defined in the malicious key model, where the adversary generates
the signing key. We also define an honest key model notion. For unforgeability,
we consider the standard one-more definition. The adversary gets access to an
oracle returning presignatures for the adversary-specified nonce and public key.
In the end, the adversary must return more valid signatures than queries, similar
to one-more unforgeability of standard blind signatures.

NIBS are distinct from two-move blind signatures [38] and standard blind
signatures in general. The former supports recipient-specified messages, while in
NIBS, the message is an output of the unblinding process and is unpredictable for
the recipient and the signer. NIBS can be issued without interaction, given the
recipient’s public key. Standard blind signatures are inherently interactive and
require the recipient to keep a state to unblind the signer’s response successfully.
There are two ways of using NIBS. The first way is to use an existing PKI for
recipients’ public keys. A signer can issue presignatures to a set of users without
interacting with them and publish the corresponding presignatures. Recipient
blindness ensures that a given final message-signature pair cannot be linked to
any particular recipient in the set. Nonce blindness allows the signer to repeat
the process and issue more than one presignature per user. Alternatively, NIBS
can be part of a two-move protocol. The first message is a freshly generated
recipient public key, and the signer’s response is the presignature. The result
is not a standard two-move blind signature since the recipient will receive a
signature under a random message. However, as we already discussed, this is
acceptable in many applications. The main advantage compared to standard
blind signature is that we can reuse the first message of the two-move protocol
with NIBS in consecutive runs. The same is not possible for standard blind
signatures. Nonce blindness ensures that reusing the recipient’s public key does
not allow an adversary to link final message-signature pairs to a recipient.

The main disadvantage of non-interactive blind signatures is that there is
no simple way of including information about the freshness of the signature.
Consider the following scenario. The user must provide a fresh signature that
she adheres to the service’s policies to access it, which might include a per-day
limit. The signature is implemented via a blind signature scheme to protect the

Non-interactive Blind Signatures for Random Messages 727

user’s privacy. Of course, the user can hoard signatures and reuse them later.
So the service requires that a challenge be signed instead of a random message,
and NIBS cannot be used here. However, note that we already know how to date
blind signatures [2] using partial blindness. We can formalize a similar definition
in the non-interactive setting. Our next contribution is the definition of tagged
non-interactive blind signatures TNIBS.

Definitions themself are not attractive if one cannot instantiate them with
existing cryptography. Therefore we show how to build NIBS and TNIBS effi-
ciently in the random oracle model. The central primitive we use are signatures
on equivalence classes (SPS-EQ) [24,27] and their tagged version (TBEQ) [28].
Interestingly, both schemes support recipient public keys in the form of standard
discrete logarithm public keys pk = gsk. Thus, our construction supports keys
from various schemes like El-Gamal encryption, Diffie-Hellman key exchange,
Schnorr, and DSA/ECDSA signatures. One caveat is that the underlying group
(generated by g) must be a source group for which an admissible bilinear pair-
ing function exists. Fortunately, we know how to construct such pairing-friendly
groups [9] and use them to support the above algorithms. As our last contri-
bution, we propose a generic construction of NIBS and TNIBS, which we can
construct by generalizing ideas from the equivalence class construction. Both
generic constructions are setup-free but rely on the random oracle model. We
targetted a setup-free setting since it, by definition, allows to reuse recipients
keys from different schemes, i.e., the recipients are not required to use a common
reference string (CRS) to generate their keys. However, one can easily translate
both schemes to work with a CRS instead of the random oracle model. For com-
pleteness, we will now summarize our contribution. In this paper, we improved
the state-of-the-art of blind signatures as follows.

1. We introduce the notion and security model for (tagged) non-interactive blind
signatures.

2. We show a very efficient construction in the random oracle model from sig-
natures on equivalence classes that works well with preexisting public keys.

3. We provide a generic construction of NIBS and TNIBS in the random ora-
cle model using verifiable random functions, digital signatures, and non-
interactive proofs. Depending on the requirements, one can easily replace
the random oracle model with the common reference string model.

Our Techniques

One of the main contributions of our paper is the efficient instantiation of non-
interactive blind signatures in the random oracle model. Our construction is
based on signature on equivalence classes that were already used as a building
block to construct round-optimal blind signatures [22,23]. A SPS-EQ signature
on (g, gx) can be transformed to a signature under (gr, grx) without the secret
signing key. Moreover, the transformed signature on (gr, grx) is indistinguishable
from a fresh signature on this message. This property is called the perfect adap-
tation of signatures. Together with the fact that messages (g, gx) and (gr, grx)

728 L. Hanzlik

are indistinguishable, under the decisional Diffie-Hellman assumption, form the
main privacy property used in the design of [22,23].

The idea of our construction is as follows. The signer uses the SPS-EQ scheme
to sign (gskR ,H(nonce)), where gskR is the recipients public key. It is worth not-
ing that this key can be a preexisting public key of the recipient, as already
mentioned in the introduction. The equivalence class signature is the NIBS pres-
ignature the user receives from the signer. The user can easily check the presig-
nature using the SPS-EQ verification function. The interesting part follows. The
actual NIBS signature is a SPS-EQ signature on the message (g,H(nonce)sk

−1
R),

also called the canonical representative of the equivalence class [5]. Note that
we fix the first component of the message vector to g for the user to be able to
compute exactly one blind signature from a presignature.

The unforgeability of the scheme directly follows from the unforgeability of
the SPS-EQ scheme and the canonical representative notion. A “fresh” blind
signature implies a signature on a class that was not signed already, which con-
stitutes a valid forgery for the SPS-EQ scheme. On the other hand, blindness
follows from the perfect adaptation of the SPS-EQ scheme and the inverse and
strong decisional Diffe-Hellman assumptions. The idea is that anyone but the
recipient cannot distinguish H(nonce) from H(nonce)sk

−1
R . Thanks to careful ran-

dom oracle programming, we show that the blindness of our construction relies
on those assumptions.

We can easily modify this construction to support tags. In other words, with
small changes, we can construct a TNIBS scheme using the same ideas. Hanzlik
and Slamanig [28] introduced the notion of tag-based equivalence class signa-
tures TBEQ. Contrary to SPS-EQ, they allow the signer to specify a tag τ that
remains unchanged even after the user transforms the signature to a differ-
ent representative of the same class. The idea of our TNIBS scheme is simple.
We replace the SPS-EQ scheme in the NIBS construction above with a TBEQ
scheme. The resulting construction is a tag-based, non-interactive blind signa-
ture scheme. Blindness follows from the same assumptions. The main difference
is the unforgeability, which is now based on the unforgeability of the TBEQ
scheme.

Surprisingly this construction follows a blueprint that we describe in the form
of our generic construction. Firstly, we notice that the message in the construc-
tion is H(nonce)sk

−1
R . The key property we use is that this value is unpredictable

for the signer. Otherwise, the blindness property cannot hold. Looking at this
value more closely, we notice that it can be interpreted as an evaluation of a
pseudo-random function (PRF) on input nonce with key skR. In other words, the
presignature defines the input to the PRF and its key. The blind signature is a
signature on the evaluation of the PRF. Note that rather than a PRF, we have to
consider a verifiable random function (VRF) since it provides a verification key
that can be used as a public key. Finally, we observe that the SPS-EQ signature
ensures that the recipient can only receive a valid blind signature if she correctly
evaluates the VRF. Thus, the signature on equivalence classes actually acts as

Non-interactive Blind Signatures for Random Messages 729

a proof system that binds the recipient and ensures correct evaluation of the
random function.

Equipped with all those observations, we define our generic construction
as follows. The signer creates the presignature by signing the recipient’s VRF
verification key pkR and a nonce nonce. Since the presignature is a standard
digital signature, it can be easily verified. The random blind signature message
m is the evaluation of the VRF on nonce. The signature is a non-interactive proof
that the recipient knows a signature on pkR and nonce and that m is a proper
evaluation of a VRF with key pkR on input nonce. We can also use this blueprint
to construct TNIBS generically. The only difference is that the presignature is
additionally a signature under the tag τ . The statement of the proof system also
changes a bit and now must include τ as part of the statement.

Applications

Privacy Pass. Privacy Pass [17] is a system designed to make life easier for
anonymous network users who frequently solve CAPTCHAs. The idea is to let
users first get a single-use token from an issuer via a non-anonymous network
connection and let them redeem those tokens instead of solving CAPTCHAs.
This provides a more user-friendly experience when using an anonymous net-
work like TOR or a VPN connection. A Privacy-pass token is composed of the
input and output of an oblivious pseudo-random function, where the issuer holds
the function’s secret key. During the issuing process, the user’s platform (e.g.,
browser extension) requests an evaluation of the PRF on a chosen random input,
similar to the e-cash scenario. It is worth noting that an oblivious PRF can be
seen as a designated-verifier blind signature.

Recently, a rate-limiting version of Privacy Pass [32] called Private Access
Token (PAT) was introduced. In this new variant, the number of tokens a user
can get depend on a policy enforced by a trusted mediator. Moreover, the RSA
blind signature scheme is used instead of the oblivious PRF, and the signed
message is chosen as part of the service’s challenge. This new version was recently
introduced into iOS 16 and is supported by Apple1. In this setting, iCloud plays
the role of the mediator and enforces the service’s access policy. If the policy
applies to the user, the issuer finalizes an RSA blind signature query made by
the user. For a formal analysis of the RSA blind signature scheme used in PAT,
see [35]. In both versions, the user and issuer must repeat the protocol several
times to create multiple tokens at once, i.e., batch issuing. Although both parties
can execute the protocol concurrently, the user is always required to participate.
The same problem arises in the case of issuing more tokens after some time. We
can improve this using (tagged) non-interactive blind signatures (see Table 1).

As we mentioned multiple times in the e-cash scenario, we are not always
interested in the structure of the signed message and only care about the fresh-
ness of the token. This is also the case for the standard version of Privacy Pass,
where the user chooses the input of the oblivious PRF. Replacing the oblivious

1 https://developer.apple.com/videos/play/wwdc2022/10077/.

https://developer.apple.com/videos/play/wwdc2022/10077/

730 L. Hanzlik

PRF with NIBS would improve the communication complexity in the case of
multi-token issuance. In such a case, the user sends her public key to the issuer
and reives n presignatures, which can be finalized into n unique tokens. The
communication complexity from the user to the issuer is independent of n. The
issuer can also afterward decide on the number of issued tokens. The exciting
part is that to create more tokens, the issuer does not need to interact with the
user and can make fresh presignatures using the user’s public key. This design
allows the issuer to issue new tokens periodically without interaction. Users can
then later download them at their convenience. It is worth noting that this is
impossible with an oblivious PRF or standard blind signatures, which inherently
require interaction between both parties.

Unfortunately, standard NIBS cannot replace the RSA blind signature scheme
in Private Access Token since the service and not the user chooses the signed
message. PAT was introduced to enforce an access policy and only issue tokens
for users adhering to the policy. Because the service chooses the blindly signed
message, it knows that the user must conform to the latest policy, and the proof
is fresh. Otherwise, a malicious user could hoard and use tokens during a given
period breaking any per-day (or other) time policies. It is worth noting that the
service gains no additional properties by picking a non-random message since it
is hidden from both the mediator and the issuer. To get around this, instead of
using NIBS, we can use the tagged version TNIBS. The tag remains unchanged
after the user transforms the presignature into the final signature. This way, the
service can date signatures. Using TNIBS instead of the RSA blind signature
would have the same benefits as using NIBS in the case of the standard Privacy
Pass. Moreover, our TNIBS solution is DLP based, which would be an alternative
to the required RSA assumption.

Whistleblowing System. Ring signatures [42] were introduced as a way for
whistleblowers to leak trusted intel without revealing their identity. According
to a recent EU directive [1], big companies must implement a whistleblowing
system for their employees to leak information anonymously about any miscon-
duct of the employer. Ring signatures would be an ideal candidate to support
such a system. The whistleblower combines the public keys of all employees and
creates the ring signature. This solution does not work in case no PKI is imple-
mented at the company. An alternative approach would be to build a system
supporting Privacy Pass. A company or third-party supported service would
issue single-use tokens to verified employees, who can later redeem the token
with the intel. Unfortunately, this solution is inherently not private. Employees
must first request a token, making them a target, i.e., whistleblowers hide inside
the anonymity set of token owners and not in the set of all employees.

Implementing a whistleblowing system using NIBS would mitigate some of
those problems. Assuming the recipient’s public key is the ephemeral Diffie-
Hellman key used for establishing a TLS connection, the system could look
as follows. Every time an employee connects to some internal system of the
company, she gets a token for the whistleblowing system. To redeem the token,
the employee must install a plugin that retains the ephemeral TLS credential and

Non-interactive Blind Signatures for Random Messages 731

later uses them to finalize the NIBS. It is worth noting that in this design, the
company is oblivious to who installed the plugin, and potentially all employees
could be the owner of a token showing up in the whistleblowing system. This
application shows the power of our non-interactive blind signatures. We can use
NIBS in systems where all recipients are potential users and can either use the
presignature or just ignore it without the signer knowing about their choice.

Airdropping e-coins. Airdropping is a mechanism that allows sending cryptocur-
rency to users. This technique is frequently used to bootstrap interest in a cur-
rency by gifting cryptocurrency to users. An ideal scheme preserves the privacy
of the recipient [43] once she redeems her coins. An airdropping system must
also provide means for public accountability so that users can check that the
airdropping mechanism will only produce a limited number of unique tokens.

Tublebit [31] is a protocol for anonymous cryptocurrency payments. At its
core, the protocol implements the e-cash scenario. A designated party called
the tumbler issues blind signatures for cryptocurrency payments. Blind signa-
tures can later be redeemed to finalize the payment. Non-interactive blind signa-
tures can add the airdropping functionality to the tumbler, introducing potential
ways to attract new users. The key property of NIBS that allows this is non-
interactives. The tumbler can look for publicly available public keys/addresses
(e.g., on the blockchain or Github) and blindly drop NIBS to their owners.

Lottery System. NIBS can also be used to implement a fair lottery system.
Users can register their public key for a given round by paying the lottery fee.
What each user receives from the service is a NIBS presignature. The lottery
winner is the user with a valid signature under the smallest/biggest message. This
approach requires the service to replace the signing key with each lottery round.
However, if we use the tagged version, the service can easily tag each signature
with the round for which it was created. The lottery is fair, and the service
cannot predict the outcome of the lottery because of the blindness property.
On the other hand, because of one-more unforgeability, only users that pay can
receive the prize.

Open Problems and Relation to Impossibility Results

The main open problem is to design an efficient NIBS scheme without pairings.
Although one can instantiate our generic construction without using them, it will
probably not be efficient due to the general-purpose use of proof systems. Effi-
cient instantiations of NIBS from post-quantum assumptions are also desired.
Another interesting problem is instantiating NIBS from standard assumptions
without the CRS or random oracle model. Fischlin and Schröder [20] showed
that constructing a statistical blind three-move blind signature from standard
falsifiable assumptions without relying on the random oracle model or the com-
mon reference string model is impossible. The results carry over to two-move
schemes and computational blind schemes with certain additional constraints.

732 L. Hanzlik

Fortunately, there exist ways to circumvent those impossibility results, e.g., using
complexity leveraging [25].

As already mentioned, one way of using NIBS is to run a two-move proto-
col. One would think this means that impossibility results also apply to NIBS.
However, this is unclear and requires further investigation. Recall that a two-
move protocol from NIBS is not a standard blind signature. In the latter, the
recipient can arbitrarily choose the message, whereas, in the former protocol, the
message depends on the nonce selected by the signer and the recipient’s secret
key. In other words, despite the NIBS two-move protocol being useful in similar
applications as standard blind signatures, the notion is different.

We leave two open questions here. The first would be to verify if one can
extend the impossibility results to blind signature schemes, where the message
is not chosen by the recipient but is an output of the signing protocol. Note that
the two-move protocol based on NIBS is an instantiation of such blind signatures.
A positive answer to this question would mean that NIBS cannot be instantiated
from standard falsifiable assumptions without ROM or a trusted setup phase.
Alternatively, one could try to construct such a NIBS scheme, implying that the
impossibility results from [20] do not hold if the message is not chosen by the
recipient but as part of the protocol.

2 Preliminaries

2.1 Notation, Bilinear Groups and Assumptions

We denote by y ← A(x) the execution of algorithm A on input x and with
output y. By r ←$ S we mean that r is chosen uniformly at random over the set
S. We will use 1G to denote the identity element in group G and [n] to denote
the set {1, . . . , n}. Throughout the paper we will use the multiplicative notation
and by AO we denote an algorithm A that has access to oracle O.

Definition 1 (Bilinear Groups). Let us consider cyclic groups G1, G2, GT

of prime order p. Let g1, g2 be generators of respectively G1 and G2. We call
e : G1 × G2 → GT a bilinear map (pairing) if it is efficiently computable and
the following holds: 1) Bilinearity: ∀(S, T) ∈ G1 × G2, ∀a, b ∈ Zp, we have
e(Sa, T b) = e(S, T)a·b, 2) Non-degeneracy: e(g1, g2) �= 1 is a generator of group
GT . We will consider Type-3 pairings, i.e., there is no efficiently computable
isomorphism between G1 and G2.

Definition 2 (Inverse Decisional Diffie-Hellman Assumption in G1 [7]).
For all PPT adversaries A given elements (gα

1 , gβ
1)∈ G

2
1 it is hard to decide

whether β = α−1 mod p or β ←$Z
∗
p. We will use AdvinvDDH(A) to denote the

advantage of the adversary A in solving this problem.

Definition 3 (Strong Decisional Diffie-Hellman Assumption in G1 [39]).
For all PPT adversaries A given elements (gα

1 , gβ
1 , gβ−1

1 , gγ
1)∈ G

4
1 it is hard to

decide whether γ = α ·β mod p or γ ←$Z
∗
p. We will use AdvsDDH(A) to denote

the advantage of the adversary A in solving this problem.

Non-interactive Blind Signatures for Random Messages 733

2.2 Signature Schemes

Definition 4. A signature scheme SIG consists of three PPT algorithms
(KeyGen,Sign,Verify) with the following syntax.

KeyGen(λ): On input a security parameter λ, it outputs a public and secret signing
key (pk, sk).

Sign(sk,m): On input a key sk and a message m, it outputs a signature σ.
Verify(pk,m, σ): On input a public key pk, a message m and a signature σ, it

outputs either 0 or 1.

We require the following properties of a signature scheme.

Correctness: For every security parameter λ ∈ N and every message m given
that (pk, sk) ← SIG.KeyGen(λ), sig ← SIG.Sign(sk,m) it holds that

SIG.Verify(pk,m, sig) = 1.

Existential Unforgeability under Chosen Message Attacks: Every PPT
adversary A has at most negligible advantage in the following experiment.

EUF-CMAA,SIG(λ)

Q := ∅
(sk, pk) ← SIG.KeyGen(λ)

(m∗, σ∗) ← AO1(sk,·)(pk)

return m∗ �= m ∀m ∈ Q ∧
SIG.Verify(pk,m∗, σ∗) = 1

O1(sk,m)

σ ← SIG.Sign(sk,m)

Q := Q ∪{m}
return σ

The advantage of A is defined by AdvSIG(A) = Pr[EUF-CMAA,SIG(λ) = 1].

2.3 Dual-Mode Witness Indistinguishable Proofs

In our generic construction, we will use non-interactive proofs. To this end, we
will use the dual-mode non-interactive witness indistinguishable proof system
proposed by Groth-Sahai (GS) [26]. The main property of this system is that
there exists a common reference string (crs) that can be either in the “binding”
or “hiding” modes. Depending on the type, the system satisfies perfect soundness
and extractability or perfect witness indistinguishability.

An interesting property of GS proofs [26] is that crs is composed of group
elements that depending on the mode, fulfill a specific relation, e.g., a DDH tuple
can be used as in the binding mode, and a non-DDH tuple in the hiding mode.
Thus, instead of generating the common string by a trusted party, we can use
the random oracle to output it. The idea is that with high probability, we will
end up with a string in the hiding mode by querying the random oracle Hcrs(1),
which outputs values of the form of reference strings. On the other hand, the
reduction in the proof can program oracle Hcrs to output a string in binding
mode.

734 L. Hanzlik

Definition 5 (Dual-Mode Witness Indistinguishable Proofs). A dual-
mode witness indistinguishable proof system for language LR consists of algo-
rithms DMWI = (Setup,Prove,Verify,Extract) with the following syntax.

Setup(λ, binding): On input of security parameter, it outputs a common reference
string crs which we call binding. It additionally outputs a trapdoor tdExt.

Setup(λ, hiding): On input of security parameter, it outputs a common reference
string crs, which we call a hiding reference string.

Prove(crs, x, w): On input a common reference string crs, a statement x and a
witness w, it outputs a proof π.

Verify(crs, x, π): On input the common reference string crs, a statement x, a proof
π, it outputs either 0 or 1.

Extract(tdExt, x, π): On input the extraction trapdoor tdExt, a statement x and a
proof π, it outputs a witness w.

We require that DMWI meets the following properties.

Mode Indistinguishability: For all λ we define the advantage of A against
mode indistinguishability as follows: AdvmodeIND,A(λ) =

∣
∣
∣ Pr

⎡

⎣mode = mode∗ :
mode←$ {binding, hiding};
(crs) ← Setup(λ,mode);

mode∗ ← A(λ, crs)

⎤

⎦ − 1
2

∣
∣
∣,

where the probability is taken over the random choice of mode and the random
coins of Setup. We say that the proof system is mode indistinguishable if for
all PPT adversaries, A the advantage is negligible.

Perfect Completeness in both Modes: For all security parameters λ ∈ N,
all statements x ∈ LR and all witnesses w for which R(x,w) = 1, crs ←
Setup(λ, binding), and π ← Prove(crs, x, w) it holds that Verify(crs, x, π) = 1.
The same holds for crs ← Setup(λ, hiding).

Perfect Soundness in Binding Mode: For all adversaries A we have

Pr
[

(crs, tdExt) ← Setup(λ, binding) : Verify(crs, x, π) = 1
(x, π) ← A(crs) ∧ x /∈ LR

]

= 0

Extractability in Binding Mode: For any (x, π), it holds:

Pr
[

(crs, tdExt) ← Setup(λ, binding) : Verify(crs, x, π) = 1
w ← Extract(tdExt, x, π) =⇒ R(x,w) = 1

]

= 1

Perfect Witness-Indistinguishability in Hiding Mode: We say that proof
system for language LR is perfectly witness indistinguishable if all adversaries
A the following is 0:

∣
∣
∣ Pr

⎡

⎢
⎢
⎣

crs ← Setup(λ, hiding)

: b̂ ← A(crs, π∗)
(x,w0, w1) ← A(crs)

b←$ {0, 1}
π∗ ← Prove(crs, x, wb)

⎤

⎥
⎥
⎦

− 1
2

∣
∣
∣,

where A is restricted to outputs such that R(x,w0) = R(x,w1) = 1.

Non-interactive Blind Signatures for Random Messages 735

2.4 Verifiable Random Function [36]

Definition 6 (Verifiable Random Function VRF). A verifiable random
function VRF = (Gen,Eval,P,V) with input length n(λ) and output length m(λ)
consists of the following PPT algorithms:

Gen(λ): On input of security parameter, outputs secret key skVRF and public ver-
ification key pkVRF.

Eval(skVRF, x): On input a secret key skVRF and input value x ∈ {0, 1}n(λ) it
returns the output value y ∈ {0, 1}m(λ)

P(skVRF, x): On input a secret key skVRF and x this prover algorithm outputs a
proof πVRF that y is consistent with the verification key pkVRF.

V(pkVRF, πVRF, x, y): On input a verification key pkVRF, proof πVRF, x, y this algo-
rithm outputs 1 or 0.

We require that VRF meets the following properties.

Completness: For every security parameter λ and input x ∈ {0, 1}n(λ)

Pr

⎡

⎣

(skVRF, pkVRF) ← Gen(λ)
: V(pkVRF, πVRF, x, y) = 1y ← Eval(skVRF, x)

πVRF ← P(skVRF, x)

⎤

⎦ = 1.

Uniqueness: For every security parameter λ and input x ∈ {0, 1}n(λ), arbitrary
verification key pkVRF, there exists at most a single y ∈ {0, 1}m(λ) for which
there exists an accepting proof πVRF. That is, if

V(pkVRF, πVRF, x, y) = V(pkVRF, π
′
VRF, x, y′) = 1

then y = y′.
Adaptive Indistinguishability: Every PPT adversary A has at most negligible

advantage in the following experiment.

ExpA,VRF(λ)

Q := ∅
b ←$ {0, 1}
(skVRF, pkVRF) ← Gen(λ)

(st, x∗) ← AO1(skVRF,·)(pkVRF)

y0 ← Eval(skVRF, x
∗)

y1 ←$ {0, 1}m(λ)

b̄ ← AO1(skVRF,·)(st, yb)

return b = b̄ ∧ x∗ �∈ Q

O1(skVRF, x)

y ← Eval(skVRF, x)

πVRF ← P(skVRF, x)

Q := Q ∪{x}
return (y, πVRF)

The advantage of A is defined by AdvVRF(A) = Pr[ExpA,VRF(λ) = 1].

736 L. Hanzlik

2.5 Structure-Preserving Signatures of Equivalence Classes

Structure-preserving signatures on equivalence classes (SPS-EQ) [24,27] can be
used to sign equivalence classes [M] of vectors M ∈ (G∗

i)
� for 	 > 1 and with

equivalence relation: M,N ∈ G
�
i : M ∼R N ⇔ ∃ s ∈ Z

∗
p : M = Ns.

Definition 7 (SPS-EQ). An SPS-EQ scheme SPS-EQ on message space (G∗
i)

for i ∈ {1, 2} consists of the following PPT algorithms.

KeyGenEQ(λ,): On input of security parameter λ and input message vector length
	 > 1, it outputs a key pair (skEQ, pkEQ).

SignEQ(skEQ,M): On input of input a secret key skEQ and representative M ∈
(G∗

i)
�, outputs a signature σEQ for equivalence class [M].

ChgRepEQ(M,σEQ, μ, pk): On input of input representative M ∈ (G∗
i)

� of equiv-
alence class [M], a signature σEQ on M , a value μ and a public key pkEQ,
returns an updated message-signature pair (M ′, σ′), where the new represen-
tative is M ′ = Mμ and σ′

EQ its corresponding (or, updated) signature.
VerifyEQ(pkEQ,M, σEQ): On input of a public key pkEQ, a representative M ∈

(G∗
i)

�, and a signature σEQ it deterministically outputs a bit b ∈ {0, 1}.
VKeyEQ(skEQ, pkEQ): On input of secret key skEQ and a public key pkEQ, it deter-

ministically checks if it represents a valid key pair and outputs a bit b.

Definition 8 (Correctness). An SPS-EQ scheme on (G∗
i)

� is called correct
if for all security parameters λ ∈ N, 	 > 1, (skEQ, pkEQ) ← KeyGenEQ(λ,),
M ∈ (G∗

i)
� and μ ∈ Z

∗
p:

VKeyEQ(skEQ, pkEQ) = 1 ∧ Pr
[

VerifyEQ(M,SignEQ(M, skEQ), pkEQ) = 1
]

= 1

∧ Pr
[

VerifyEQ(ChgRepEQ(M,SignEQ(M, skEQ), μ, pkEQ), pkEQ) = 1
]

= 1.

Definition 9 (EUF-CMA). For scheme SPS-EQ and adversary A we define the
following experiment:

EUF-CMAA,SPS-EQ(λ,)

Q := ∅
(skEQ, pkEQ) ← KeyGenEQ(λ, �)

(M∗, σ∗
EQ) ← AO1(skEQ,·)(pkEQ)

return [M∗] �= [M] ∀M ∈ Q ∧
VerifyEQ(pk, M∗, σ∗

EQ) = 1

O1(skEQ,M)

σ ← SignEQ(skEQ, M)

Q := Q ∪{M }
return σEQ

A SPS-EQ over (G∗
i)

� is unforgeable if for all PPT adversaries A, their advantage
defined as AdvSPS-EQ(A) = Pr[EUF-CMAA,SPS-EQ(λ,) = 1] is negligible.

Definition 10 (Perfect adaption of signatures under malicious
keys [23]). Let 	 > 1. A SPS-EQ scheme on (G∗

i)
� perfectly adapts signatures

under malicious keys if for all tuples (pkEQ,M, σEQ, μ) with

M ∈ (G∗
i)

� ∧ VerifyEQ(M,σEQ, pkEQ) = 1 ∧ μ ∈ Z
∗
p

we have that the output of ChgRepEQ(M,σEQ, μ, pkEQ) is a uniformly random
element in the space of signatures, conditioned on VerifyEQ(Mμ, σ′

EQ, pkEQ) = 1.

Non-interactive Blind Signatures for Random Messages 737

In this work, we will use the scheme presented by Fuchsbauer, Hanser, and
Slamanig in [24]. A signature on a message (M1, . . . ,M�) ∈ (G∗

1)
� is of the form

(Z, Y1, Y2) where Z =
(
∏�

i=1(Mi)xi

)y

, Y1 = g
1/y
1 , Y2 = g

1/y
2 and x1, . . . , x� is the

secret key of the signer. The signatures can be adapted to a signature on message
(M b

1 , . . . ,M b
�) using random coins r, b ← Z

∗
p and computing (Zr·b, Y 1/r

1 , Y
1/r
2).

2.6 Tag-Based Equivalence Class Signatures

Hanzlik and Slamanig [28] introduced the notion of tag-based equivalence class
signatures (TBEQ). Additionally, to the message M being a representative of
class [M], the signature scheme support an auxiliary tag τ ∈ {0, 1}∗. The key
idea is that the tag remains the same for a given signature and does not change
with the change of the representation. They also propose an efficient instantiation
of their scheme, which is an adaptation of scheme from [24] with an additional
component H(τ)

1
y in σEQ. We define TBEQ more formally below.

Definition 11 (TBEQ). Tag-Based Equivalence Class Signature TBEQ consists
of the following PPT algorithms.

KeyGenTEQ(λ,): On input of security parameters λ and message vector length
	 > 1, it outputs a key pair (skTEQ, pkTEQ).

SignTEQ(skTEQ,M, τ): On input of a secret key skTEQ, representative M ∈ (G∗
i)

�,
and tag τ ∈ {0, 1}∗, outputs a signature σTEQ for equivalence class [M].

ChgRepTEQ(M,σTEQ, μ, pk): On input of representative M ∈ (G∗
i)

� of equivalence
class [M], a signature σTEQ on M , a value μ and a public key pkTEQ, returns
an updated message-signature pair (M ′, σ′), where the new representative is
M ′ = Mμ and σ′

TEQ its corresponding (or, updated) signature.
VerifyTEQ(pkTEQ,M, τ, σTEQ): On input of a public key pkTEQ, a representative

M ∈ (G∗
i)

�, tag τ ∈ {0, 1}∗ and a signature σTEQ it deterministically outputs
a bit b ∈ {0, 1}.

VKeyTEQ(skTEQ, pkTEQ): On input secret key skTEQ and a public key pkTEQ, it
deterministically checks if it is a valid key pair and outputs a bit b ∈ {0, 1}.

Definition 12 (EUF-CMA). For scheme TBEQ and adversary A we define
the following experiment:

EUF-CMAA,TBEQ(λ,)

Q := ∅
(skTEQ, pkTEQ) ← KeyGen(λ, �)

(M∗, σ∗
TEQ, τ∗) ← AO1(skTEQ,·,·)(pkTEQ)

return Verify(pkTEQ, M∗, τ∗, σ∗
TEQ) = 1 ∧

([M∗], τ∗) �= ([M], τ) ∀(M, τ) ∈ Q

O1(sk,M, τ)

σ ← Sign(sk, M, τ)

Q := Q ∪{(M, τ)}
return σ

A TBEQ is EUF-CMA, secure if for all PPT adversaries A, their advantage
defined as AdvTBEQ(A) = Pr[EUF-CMAA,TBEQ(λ,) = 1] is negligible.

738 L. Hanzlik

3 Non-interactive Blind Signatures (NIBS)

We will now discuss the syntax and security of non-interactive blind signatures
NIBS. The signer uses the recipient’s public key pkR to generate a presignature
psig. To do so, the signer first creates a signing keypair (sk, pk) using the KeyGen
algorithm. The idea is for the recipient’s public key to be a key for a scheme that
is independent of NIBS. However, to model the security definition, we need to
introduce a key generation algorithm RKeyGen that outputs a keypair (skR, pkR).

To issue a presignature, the signer uses the Issue algorithm that takes as input
the secret key sk, the recipient’s public key pkR, and a nonce. The nonce allows
the signer to issue multiple signatures for the same public key. We made the nonce
an explicit parameter to model what we call nonce blindness that captures the
unlinkability of NIBS issued to the same public key. After receiving a presignature
the user can execute the Obtain algorithm and compute the final signature or
output ⊥ in case the presignature is invalid (e.g., issued for a different public
key or nonce). We provide the syntax more formally in Definition 13.

Definition 13 (Non-interactive Blind Signature). A non-interactive blind
signature NIBS scheme consists of the following PPT algorithms.

KeyGen(λ): On input security parameter λ, outputs a key pair (sk, pk).
RKeyGen(λ): On input security parameter λ, outputs a key pair (skR, pkR).
Issue(sk, pkR, nonce): On input a secret key sk, user public key pkR and nonce

nonce ∈ N , outputs a pre-signature psig.
Obtain(skR, pk, psig, nonce): On input a user secret key skR, signer’s public key

pk, pre-signature psig and nonce nonce ∈ N , outputs a message-signature pair
(m, sig) or ⊥.

Verify(pk, (m, sig)): On input a public key pk, a message-signature pair (m, σ)
deterministically outputs a bit b ∈ {0, 1}.

Similar to standard blind signatures, one can define NIBS with respect to a com-
mon reference string. In such a case, we would define a crsNIBS ←$Setup(λ) setup
algorithm, where crsNIBS becomes an implicit input to all other algorithms.

Definition 14 (Correctness). A NIBS scheme is called correct if for all secu-
rity parameters λ, (sk, pk) ← KeyGen(λ), (skR, pkR) ← RKeyGen(λ), nonce:

Pr
[

Verify(pk,Obtain(skR, pk, Issue(sk, pkR, nonce), nonce)) = 1
]

= 1.

We model unforgeability using a standard one-more definition. The adversary
is allowed to make any number k of signing queries but, in the end, must return
at least 	 = k + 1 valid message-signature pairs for unique messages. The main
difference in our definition is that we allow the adversary to specify the recipient’s
public key and the nonce. We discuss one-more unforgeability more formally in
Definition 15.

Definition 15 (One-More Unforgeability). For scheme NIBS and adver-
sary A we define the following experiment:

Non-interactive Blind Signatures for Random Messages 739

OM-UNFA,NIBS(λ)

(sk, pk) ← KeyGen(λ)

((m1, sig1), . . . , (m�, sig�)) ← AO1(sk,·,·)(pk)

return mi �= mj for 1 ≤ i < j ≤ � ∧
Verify(pk,mi, sigi) = 1 for 1 ≤ i ≤ � ∧
k < �

O1(sk, pkR, nonce)

if k not initialized then

k := 0

psig ← Issue(sk, pkR, nonce)

k := k + 1

return psig

A NIBS scheme is one-more unforgeable, if for all PPT adversaries A, their
advantage defined as AdvOM-UNF

A,NIBS = Pr[OM-UNFA,NIBS(λ) = 1] is negligible.

We will now discuss the blindness properties of our non-interactive blind
signatures. On a high level, we want presignatures and signatures to be unlink-
able for the signer, independent of which public keys and nonces were used. We
introduce two security definitions, recipient blindness and nonce blindness, which
capture this intuition formally. We will also use the notion of full blindness to
define a non-interactive blind signature scheme that is recipient and nonce blind.

In the case of nonce blindness, we consider the scenario of a malicious signer
trying to distinguish who was the original recipient of a signature it sees. To do
so formally, we create an experiment where the adversary is given two unique
public keys and issues two presignatures (psig0 and psig1) for potentially differ-
ent nonces and a public key that it can choose maliciously. We will also consider
a variant called the honest key model, where the adversary must additionally
return the secret signing key that matches the returned public key. In the exper-
iment, the challenger finalizes both presignatures and gives the finalized signa-
tures (sigb, sig1−b) to the adversary. The order of the signatures provided to the
adversary depends on a bit b, which the adversary must guess. If the Obtain
algorithm outputs ⊥ for one of the presignatures, the challenger sends (⊥,⊥) to
omit simple distinguishing attacks. The experiment is defined more formally in
Fig. 1 and recipient blindness in Definition 23.

Recipient blindness considers only single signatures issued to a particular
public key. To create more signatures for the same public key, we introduced the
explicit parameter nonce. We will now look at a scenario where the signer issues
several presignatures to the same public key under different nonces and later
wants to link the presignatures to the final signatures. We formalize it with the
notion of nonce blindness. We create an experiment similar to the above one. The
adversary is given one public key and issues two presignatures for two unique
nonces. Again, the challenger finalizes both presignatures and gives signatures
(sigb, sig1−b) to the adversary. The adversary must guess bit b. The experiment
is defined more formally in Fig. 1 and nonce blindness in Definition 24

Finally, we define full blindness as the combination of both definitions. In
other words, if a scheme is recipient and nonce blind, then it is fully blind.
The intuition behind that follows from a hybrid argument. Recipient blindness
ensures that signatures issued to different public keys are unlinkable, indepen-
dent of the nonce used. On the other hand, nonce blindness ensures that multiple
signatures for the same public key are unlinkable.

740 L. Hanzlik

RBndA,NIBS(λ)

(skR0 , pkR0
) ← RKeyGen(λ)

(skR1 , pkR1
) ← RKeyGen(λ)

(psig0, nonce0, psig1, nonce1, pk) ← A(pkR0
, pkR1

)

(m0, sig0) ← Obtain(skR0 , pk, psig0, nonce0)

(m1, sig1) ← Obtain(skR1 , pk, psig1, nonce1)

if sig0 = ⊥ or sig1 = ⊥ then

(m0, sig0) := ⊥; (m1, sig1) := ⊥
b ←$ {0, 1}
b̂ ← A((mb, sigb), (m1−b, sig1−b))

return b = b̂

NBndA,NIBS(λ)

(skR, pkR) ← RKeyGen(λ)

(psig0, nonce0, psig1, nonce1, pk) ← A(pkR)

(m0, sig0) ← Obtain(skR, pk, psig0, nonce0)

(m1, sig1) ← Obtain(skR, pk, psig1, nonce1)

if sig0 = ⊥ or sig1 = ⊥ then

(m0, sig0) := ⊥; (m1, sig1) := ⊥
b ←$ {0, 1}
b̂ ← A((mb, sigb), (m1−b, sig1−b))

return b = b̂

Fig. 1. Blindness Experiments for Non-interactive Blind Signatures

Definition 16 (Recipient Blindness). A NIBS scheme is recipeint blind, if
for all PPT adversaries A, their advantage is negligible:

AdvRBnd
A,NIBS = |Pr[RBndA,NIBS(λ) = 1] − 1/2|.

Definition 17 (Nonce Blindness). A NIBS scheme is nonce blind, if for all
PPT adversaries A, their advantage is negligible:

AdvNBnd
A,NIBS = |Pr[NBndA,NIBS(λ) = 1] − 1/2|.

Definition 18 (Full Blindness). A NIBS scheme is fully blind if it is recipient
and nonce blind.

In both cases, we define blindness in a way that the adversary returns just
the public key pk. The definitions do not assume any particular structure of the
public key. Moreover, they allow the adversary to choose the public key so that
a corresponding secret key sk might not even exist. We call this notion malicious
key model. We will define a weaker version of blindness, where we will require
the adversary to output sk additionally. This notion is called honest key model
and is known for the case of standard blind signatures. Below we will define it
more formally.

Definition 19 (Honest Key Model). A NIBS scheme is recipient blind in the
honest key model, respectively nonce blind in the honest key model if the adver-
sary outputs (psig0, nonce0, psig1, nonce1, sk, pk) ← A(pkR0

, pkR1
) in experiment

RBndA,NIBS, respectively outputs (psig0, nonce0, psig1, nonce1, sk, pk) in experi-
ment NBndA,NIBS

Remark 1. Any honest key can be transformed into a malicious key blind non-
interactive blind signature using a zero-knowledge proof of knowledge of the
secret key sk. In this transformation, the pubic key pk′ for the malicious key

Non-interactive Blind Signatures for Random Messages 741

blind scheme is composed of the old public key pk and the proof of possession
of the secret key sk in the form of a proof of knowledge. The security reduction
follows by extracting the secret key from the adversary’s proof of possession and
running the reduction for honest key blindness.

4 Tagged NIBS

Partially blind signatures [2] allow the signer and recipient to agree on some
common information that is included as part of the signed message. The signer
knows that the user cannot change this information. At the same time, the
recipient is assured that blindness holds with respect to this information. Since
both parties agree on the message, partially blind signatures are, in some sense,
interactive by definition.

We will show how to adapt the partially blind notion to the non-interactive
case. The common information will be only chosen by the signer, which might
limit the application compared to partially blind signatures. However, we show
that this is enough for protocols that require some kind of freshness nonce to
be included in the signature. To distinguish that in case of NIBS only the signer
chooses the common information, we will call our primitive tagged NIBS. The
main changes in the syntax in comparison to standard NIBS are that the Issue,
Obtain, and Verify take an additional input in the form of the tag τ .

Definition 20 (Tagged Non-interactive Blind Signature). A tagged non-
interactive blind signature scheme TNIBS consists of the following PPT algo-
rithms.

KeyGen(λ): On input security parameter λ, outputs a key pair (sk, pk).
RKeyGen(λ): On input security parameter λ, outputs a key pair (skR, pkR).
Issue(sk, pkR, nonce, τ): On input a secret key sk, user public key pkR, nonce

nonce ∈ N , and tag τ ∈ T , outputs a pre-signature psig.
Obtain(skR, pk, psig, nonce, τ): On input a user secret key skR, signer’s public key

pk, pre-signature psig , nonce nonce ∈ N and tag τ ∈ T , outputs the tuple
(m, τ, sig) or ⊥.

Verify(pk, (m, τ, sig)): On input a public key pk, a message m, tag τ ∈ T and
signature σ deterministically outputs a bit b ∈ {0, 1}.

Definition 21 (Correctness). A TNIBS scheme on is called correct if for
all security parameters λ, (sk, pk) ← KeyGen(λ), (skR, pkR) ← RKeyGen(λ),
nonce ∈ N , τ ∈ T :

Pr
[

Verify(pk,Obtain(skR, pk, Issue(sk, pkR, nonce, τ), nonce, τ)) = 1
]

= 1.

To define one-more unforgeability for our tagged NIBS we need to change
the signing oracle. We now allow the adversary to query it with the recipient’s
public key pkR, a nonce nonce, and a tag τ . We say that an adversary succeeded
in breaking unforgeability if it returns at least 	 = kτ + 1 valid signatures on
unique messages and only queried the signing oracle kτ times for a given tag τ .
More details are given in Definition 22.

742 L. Hanzlik

Definition 22 (One-More Unforgeability). For scheme tagged TNIBS and
adversary A we define the following experiment:

OM-UNFA,TNIBS(λ)

(sk, pk) ← KeyGen(λ)

(τ, (m1, sig1), . . . , (m�, sig�)) ← AO1(sk,·,·,·)(pk)

return mi �= mj for 1 ≤ i < j ≤ � ∧
Verify(pk, (mi, τ, sigi)) = 1 for 1 ≤ i ≤ � ∧
kτ < �

O1(sk, pkR, nonce, τ)

if kτ not initialized then

kτ := 0

psig ← Issue(sk, pkR, nonce, τ)

kτ := kτ + 1

return psig

A TNIBS scheme is one-more unforgeable, if for all PPT adversaries A, their
advantage defined as AdvOM-UNF

A,TNIBS = Pr[OM-UNFA,TNIBS(λ) = 1] is negligible.

We will now move our attention to the blindness definitions of tagged non-
interactive blind signatures. As we already mentioned, blindness can only hold
with respect to the same tag. Since the tag is chosen by the signer and cannot
be changed, it is additional information that can be used to distinguish if two
signatures were signed under the same tag or not. The experiments for the
blindness definitions are defined formally in Fig. 2.

RBndA,TNIBS(λ)

(skR0 , pkR0
) ← RKeyGen(λ)

(skR1 , pkR1
) ← RKeyGen(λ)

(psig0, nonce0, psig1, nonce1, pk, τ) ← A(pkR0
, pkR1

)

(m0, sig0) ← Obtain(skR0 , pk, psig0, nonce0, τ)

(m1, sig1) ← Obtain(skR1 , pk, psig1, nonce1, τ)

if sig0 = ⊥ or sig1 = ⊥ then

(m0, sig0) := ⊥; (m1, sig1) := ⊥
b ←$ {0, 1}
b̂ ← A((mb, sigb), (m1−b, sig1−b))

return b = b̂

NBndA,TNIBS(λ)

(skR, pkR) ← RKeyGen(λ)

(psig0, nonce0, psig1, nonce1, pk, τ) ← A(pkR)

(m0, sig0) ← Obtain(skR, pk, psig0, nonce0, τ)

(m1, sig1) ← Obtain(skR, pk, psig1, nonce1, τ)

if sig0 = ⊥ or sig1 = ⊥ then

(m0, sig0) := ⊥; (m1, sig1) := ⊥
b ←$ {0, 1}
b̂ ← A((mb, sigb), (m1−b, sig1−b))

return b = b̂

Fig. 2. Blindness Experiments for Tagged Non-interactive Blind Signatures

Definition 23 (Recipient Blindness). A TNIBS scheme is recipeint blind,
if for all PPT adversaries A, their advantage is negligible:

AdvRBnd
A,TNIBS = |Pr[RBndA,TNIBS(λ) = 1] − 1/2|.

Non-interactive Blind Signatures for Random Messages 743

Definition 24 (Nonce Blindness). A TNIBS scheme is nonce blind, if for
all PPT adversaries A, their advantage is negligible:

AdvNBnd
A,TNIBS = |Pr[NBndA,TNIBS(λ) = 1] − 1/2|.

Definition 25 (Full Blindness). A TNIBS scheme is fully blind if it is recip-
ient and nonce blind.

5 SPS-EQ Construction of NIBS

In this section, we present an efficient construction of non-interactive blind sig-
natures from signatures on equivalence classes. The main advantage of our solu-
tion is that it admits recipients’ public keys of the form used by many discrete
logarithm schemes. The idea of the construction is as follows. The signer uses
a signature on equivalence classes to create a presignature psig on the vector
(pkR = gskR1 ,H(nonce)), where H is a hash function modeled as a random oracle.
The recipient knowing the secret key skR can change the presignatures represen-
tation to a SPS-EQ signature on the vector (g1,H(nonce)sk

−1
R) which is returned

as the final signature sig. In the end, a valid blind signature is SPS-EQ on a vector
of messages where the first element is g1 and the second element is H(nonce)sk

−1
R .

Full blindness of the construction relies on the fact that the value H(nonce)sk
−1
R

is indistinguishable from a random element under the inverse decisional Diffie-
Hellman assumption. One more unforgeability follows directly from the unforge-
ability of SPS-EQ. The construction is presented in detail in Scheme 1. Note that
the scheme is only blind in the honest key model since we rely on the perfect
adaptation of signatures, i.e., to prove security, the reduction will use the SPS-EQ
signing key to resign messages. We could use the DMWI proof system and its
extraction property, which, based on Remark 1, would allow us to transform the
scheme into one secure in the malicious key model. We opted to present it this
way because of two reasons. Firstly, it simplifies the presentation and shows the
essence of our construction. Secondly, we want an efficient scheme, and using
a proof system for NP languages would be impractical. We will later show in
the discussion section that for the SPS-EQ from [24], proof of knowledge of the
signing key can be done via 	 proofs of knowledge of discrete logarithms in G2.
Note that in our scheme 	 = 2, which shows that our instantiation can be easily
transformed into the malicious key model.

Security

Theorem 1 (One-more Unforgeability). Scheme 1 is one-more unforge-
able in the random oracle model assuming the SPS-EQ scheme is existentially
unforgeable under adaptively chosen-message attacks.

Proof (Sketch). The proof follows by a straightforward reduction to the secu-
rity of the SPS-EQ. The reduction uses the provided signing oracle to generate

744 L. Hanzlik

KeyGen(λ): generate SPS-EQ keypair (pkEQ, skEQ) ← KeyGenEQ(λ, 2) and set
(sk, pk) := (skEQ, pkEQ).

RKeyGen(λ): choose x ←$Z
∗
p. Set skR := x and pkR := gx

1 .

Issue(sk, pkR, nonce): generate SPS-EQ signature psig ← SignEQ(sk, (pkR,H(nonce))).

Obtain(skR, pk, psig, nonce): output ⊥ if VerifyEQ(pk, (pkR,H(nonce)), psig) = 0,

otherwise adapt presignature sig ← ChgRepEQ((pkR,H(nonce)), psig, sk−1
R , pk) output

message-signature pair (m = H(nonce)sk
−1
R , sig).

Verify(pk, (m, sig)): output VerifyEQ(pk, (g1,m), sig).

Scheme 1: SPS-EQ Construction of NIBS

presignatures for the adversary’s A queries. Finally, the adversary outputs 	
valid message-signature pairs for the NIBS scheme, simultaneously making only
qs signing queries. Without loss of generality, we can assume that 	 = qs + 1
(otherwise, the reduction omits the additional message-signature pairs). Note
that since all 	 pairs are signatures under unique messages, it follows that they
also belong to separate equivalence classes due to the notion of canonical rep-
resentative. Thus, the adversary returned SPS-EQ message-signature pair for 	
different classes, while the reduction only queries the SPS-EQ signing oracle 	−1
times. However, because of the hiding property, the reduction cannot guess the
class for which it did not query the SPS-EQ signing oracle, i.e., the forgery. So
the only way to win the unforgeability experiment is for the reduction to choose
one message-signature pair at random. With probability 1/	, this guess will be
correct, and the pair will be a valid forgery against the SPS-EQ scheme. The
complete proof can be found in the full version of the paper.

Theorem 2 (Recipient Blindness). Scheme 1 is recipient blind (in the hon-
est key model) in the random oracle model assuming the inverse decision Diffe-
Hellman assumption holds in G1 and that the SPS-EQ scheme perfectly adapts
signatures under a malicious signer.

Proof (Sketch). The idea behind the proof is to make the challenged messages
m0,m1 and corresponding signatures sig0, sig1 independent of the public keys
pkR0

, pkR1
. We achieve this by making indistinguishable changes to how the

recipient blindness experiment generates them. Firstly, the reduction program
the random oracle H so that for all queried nonces nonce the reductions know
rnonce, such that H(nonce) = grnonce

1 . It replaces the public key of one of the
recipients with gα

1 , where (gα
1 , gβ

1) is an instance of the inverse decisional Diffie-
Hellman problem. Thanks to the programming of the oracle, the reduction can
compute the messages as (g1, (g

β
1)rnonce), without knowing the recipient’s secret

key. The reduction uses the known SPS-EQ signing key and perfect adaptation

Non-interactive Blind Signatures for Random Messages 745

of signatures to resign the presignature. If (gα
1 , gβ

1) is an inverse decisional Diffie-
Hellman tuple, then the reductions simulation is perfect. This way, the reduction
can change the messages signed by the challenged signatures sig0, sig1 to be
independent of the public keys pkR0

, pkR1
. Thus, the best an adversary can do

is to guess the bit b in the experiment. The complete proof can be found in the
full version of the paper.

Theorem 3 (Nonce Blindness). Scheme 1 is nonce blind (in the honest key
model) in the random oracle model assuming the strong decision Diffe-Hellman
assumption holds in G1 and that the SPS-EQ scheme perfectly adapts signatures
under a malicious signer.

Proof (Sketch). The proof follows a blueprint similar to the above one. The
main difference is that now given a strong decisional Diffie-Hellman instance
(gα

1 , gβ
1 , gβ−1

1 , gγ
1), we set the recipient’s public key to gβ−1

1 . The reduction pro-
grams the oracle H similarly but tries to guess the query H(nonce0) to program
it to gα

1 . The programming allows the reduction to compute the message m0 as
(g1, g

γ
1). Note that if γ = α · β, the simulation is perfect, and the reduction can

use an adversary noticing that m0 is computed incorrectly to solve the strong
decisional Diffie-Hellman problem. The reduction can make message m0 and sig-
nature sig0 independent of nonce0. It can use the same strategy to make m1 and
sig1 independent of nonce1. Finally, the adversary is given only messages and
signatures independent of nonce0, nonce1. The best it can do is guess the bit b̄.
The complete proof can be found in the full version of the paper.

5.1 Tagged NIBS from TBEQ

Scheme 1 can be easily transformed into a TNIBS. The only change is to replace
the standard structure-preserving signature scheme with the tagged version
TBEQ. For completeness, we present Scheme 2.

Security

All proofs follow the same strategy as the corresponding ones for Scheme 1. The
complete proofs can be found in the full version of the paper.

Theorem 4 (One-more Unforgeability). Scheme 2 is one-more unforgeable
in the random oracle model assuming the TBEQ scheme is existentially unforge-
able under adaptively chosen-message attacks.

Theorem 5 (Recipient Blindness). Scheme 2 is recipient blind (in the hon-
est key model) in the random oracle model assuming the inverse decision Diffe-
Hellman assumption holds in G1 and that the SPS-EQ scheme perfectly adapts
signatures under a malicious signer.

Theorem 6 (Nonce Blindness). Scheme 2 is nonce blind (in the honest key
model) in the random oracle model assuming the strong decision Diffe-Hellman
assumption holds in G1 and that the SPS-EQ scheme perfectly adapts signatures
under a malicious signer.

746 L. Hanzlik

KeyGen(λ): generate TBEQ keypair (pkTEQ, skTEQ) ← KeyGenTEQ(λ, 2) and set
(sk, pk) := (skTEQ, pkTEQ).

RKeyGen(λ): choose x ←$Z
∗
p. Set skR := x and pkR := gx

1 .

Issue(sk, pkR, nonce, τ): return presignature psig ← SignTEQ(sk, (pkR,H(nonce)), τ).

Obtain(skR, pk, psig, nonce, τ): output ⊥ if VerifyTEQ(pk, (pkR,H(nonce)), τ, psig) = 0,

otherwise adapt pre-signature sig ← ChgRepTEQ((pkR,H(nonce)), psig, sk−1
R , pk)

output message-signature pair (m = H(nonce)x−1
, sig).

Verify(pk, (m, sig)): output VerifyTEQ(pk, (g1,m), τ, sig).

Scheme 2: TBEQ Construction of TNIBS

5.2 Discussion

Instantiating NIBS and TNIBS. We already mentioned at the beginning of this
section that depending on how the SPS-EQ scheme is instantiated in our con-
struction, we can end up with schemes with different properties. An efficient
instantiation follows if we use the SPS-EQ scheme from [24]. The used equiva-
lence class signature requires type 3 pairings groups. Barreto, Lynn, and Scott
[8] introduced the BLS family of pairing-friendly groups that can be used in
this case. We instantiate it with the popular BLS12-381 parameters [11]. In this
setting the groups are defines as G1 = E(Fq), G2 = E′(Fq2) and GT = Fq12 for a
381-bit prime q. Consequently, the recipient’s public key and the message space
are in G1. The blind signature comprises two elements in G1 and one in G2. The
signer’s public key is two group elements in G2. Assuming we use the BLS12-381
groups, this constitutes a signature size of 1527-bits, where the message is an
element of G1 and size 382-bit.

Recipient Public Key. With the above instantiation, the recipient’s public key
space is set to G1, where G1 is a standard elliptic curve. Thus, preexisting public
keys for other schemes can be used as the recipient’s public key. In particular, we
can use public keys for the ECDSA, Schnorr signature scheme, ephemeral keys
for the Diffie-Hellman protocol, and keys for the El-Gamal encryption scheme
defined over the group G1 in our instantiation.

Composing the above schemes with NIBS does not seem to introduce security
issues. Still, it will require providing proof for a composed primitive. We leave
the formal proofs for future work. However, we can reduce the security of those
schemes to the strong decisional Diffie-Hellman assumption, allowing the security
of NIBS to hold independent of the use of the secret key in the other scheme.

Interestingly, we cannot use a BLS signature scheme public key. Recall that
for BLS (for type-3 pairings), the public key gx

1 is in G1, then signatures are
in G2 and of the form HG2(m)x. The message in our construction for such a

Non-interactive Blind Signatures for Random Messages 747

public key would be m = H(nonce)x−1
. A malicious signer could then compute

e(m,HG2(m)x), for some known BLS signature of the recipient under m, and
compare it with e(H(nonce),H(m)). How the BLS signature scheme uses the
recipient’s secret key breaks the blindness properties of NIBS. The intuition is
that the assumption used in unforgeability proof of BLS signatures cannot hold
simultaneously with the strong decisional Diffie-Hellman assumption.

6 Generic Construction

In the previous section, we presented one NIBS and one TNIBS scheme that can
efficiently be instantiated using signatures on equivalence classes and its variant.
An interesting observation we make here is that the resulting random message
in both of those schemes is H(m)sk

−1
. Blindness then follows from the inverse

and strong decisional Diffie-Hellman assumptions. However, looking at it more
closely, we notice that this is actually a valid evaluation of a pseudo-random
function with key sk. Note that PRFsk(m) := H(m)sk

−1
is a known construction.

This observation is key to why blindness holds for those schemes. Even though
the signer is choosing the input to the function, its evaluation is indistinguishable
from random. Let us use this intuition to derive a generic construction.

The main problem is ensuring that given a presignature on the input to
the function, the recipient will evaluate it correctly and preserve the signer’s
signature. In Schemes 1 and 2, this was possible because the relation defined
by the equivalence class signatures worked well with the PRF. We can achieve
something similar using non-interactive proofs and a verifiable random function
VRF. Unfortunately, we will require proofs for NP languages. Additionally, we
will use a trapdoor witness that will allow us to simulate this proof, i.e., we
will allow for a trapdoor witness that we will be able to use in the proof by
programming the random oracle Hcrs. Alternatively, instead of using a trapdoor
witness to simulate proofs, we can use a DMWI proof system with a trusted
setup. Thus, this allows us to rely on the common reference string instead of the
random oracle model. The idea of the scheme is as follows. The presignature is
a standard digital signature psig on the recipients VRF public key pkVRF and the
nonce. To obtain a valid signature, the recipient first evaluates the VRF on input
nonce to receive message m. Later the recipient creates proof that it knows a
signature psig under a key pkVRF and nonce nonce and that m is the result of the
VRF’s evaluation. The actual non-interactive blind signature is then this proof.
More details are given in Scheme 3.

Remark 2 (Generic TNIBS). We can easily transform Scheme 3 to a tagged
version. To make it work, the signer must include the tag τ as the message in
the presignature, i.e., we replace psig ← SIG.Sign(sk, (nonce, pkR)) with psig ←
SIG.Sign(sk, (nonce, pkR, τ)) and modify relation R accordingly. In the generic
TNIBS version, the tag τ is part of the statement x.

748 L. Hanzlik

Let VRF = (Gen,Eval,P,V) be a verifiable random function, DMWI = (Setup,
Prove,Verify,Extract) be a dual-mode witness indistinguishable proof system for the
language LR and SIG = (KeyGen, Sign,Verify) be a standard digital signature scheme.
Moreover, let Hcrs be a random oracle that, on inputs from {0, 1}∗, outputs elements
from the space of reference strings for the DMWI system. Finally, let us define the
following relation R:

((m, pk), (nonce, psig, pkR, πVRF, r)) ∈ R ⇐⇒
Hcrs(1) = DMWI.Setup(λ, binding; r) ∨
VRF.V(pkR, πVRF, nonce,m) = 1 ∧
SIG.Verify(pk, (pkR, nonce), psig) = 1

KeyGen(λ): generate keypair (sk, pk) ← SIG.KeyGen(λ).

RKeyGen(λ): generate keypair (skR, pkR) ← VRF.Gen(λ).

Issue(sk, pkR, nonce): create presignature psig ← SIG.Sign(sk, (nonce, pkR)).

Obtain(skR, pk, psig, nonce): output ⊥ if SIG.Verify(pk, (nonce, pkR)), psig) = 0, other-
wise compute m ← VRF.Eval(skR, nonce), compute πVRF ← VRF.P(skR, nonce), set
statement x = (m, pk) and witness w = (nonce, psig, pkR, πVRF, ·). Compute blind
signature sig ← DMWI.Prove(Hcrs(0), x, w). Output message-signature pair (m, sig).

Verify(pk, (m, sig)): Set statement x = (m, pk) and output DMWI.Verify(Hcrs(0), x, sig).

Scheme 3: Generic Construction of NIBS

Security

Theorem 7 (One-more Unforgeability). Scheme 3 is one-more unforgeable
in the random oracle model assuming the signature scheme SIG is existentially
unforgeable under adaptively chosen-message attacks, the dual-mode proof system
DMWI is mode indistinguishable and extractable in binding mode, and the VRF
meets the uniqueness property.

Proof (Sketch). The proof works as follows. We first program the random oracle
Hcrs in a way that we can extract the witness used by the adversary, i.e., we
set Hcrs(0) to output a string in binding mode. Additionally, we program the
oracle so the adversary cannot use the trapdoor witness for Hcrs(1), i.e., we set
Hcrs(1) to output a string in hiding mode. Now a reduction can extract 	 valid
digital signatures for the SIG scheme while at the same time only querying 	 − 1
time. Moreover, the adversary can easily identify the (pk∗, nonce∗, psig∗) which
is valid SIG.Verify(pk, (pk∗, nonce∗), psig∗) = 1 while at the same time was not
queried to the signing oracle of the signature scheme SIG. It is possible thanks
to the uniqueness property of the VRF and the fact that the adversary must
output distinct messages. Thus, (pk∗, nonce∗, psig∗) is a valid forgery for the SIG

Non-interactive Blind Signatures for Random Messages 749

unforgeability experiment. The complete proof can be found in the full version
of the paper.

Theorem 8 (Recipient Blindness). Scheme 3 is recipient blind in the ran-
dom oracle model assuming DMWI is mode indistinguishable and perfect witness
indistinguishable in the hiding mode, and the VRF is indistinguishable.

Proof (Sketch). The proof works as follows. The reduction programs the random
oracle Hcrs in a way that it can simulate the DMWI proof using the trapdoor
witness (·, ·, ·, ·, r), where Hcrs(1) = crs and (crs, ·) ← Setup(λ, binding; r). Now
the reduction does not need the VRF to generate signatures. Thus, we can replace
the messages m0,m1 with random values. Since we do not query for proofs of
correct evaluation, this follows from the indistinguishability of the VRF. The
complete proof can be found in the full version of the paper.

Theorem 9 (Nonce Blindness). Scheme 3 is nonce blind in the random ora-
cle model assuming DMWI is mode indistinguishable and perfect witness indis-
tinguishable in the hiding mode, and the VRF is indistinguishable.

Proof (Sketch). The proof sketch follows the same strategy as above. The com-
plete proof can be found in the full version of the paper.

7 Conclusions

In this paper, we looked at blind signatures from a practical perspective. We
noticed that in many use cases, the distribution of the signed message does not
have to be chosen by the recipient. In other words, the application will work
even if the message is random but eventually known. By formalizing this idea,
we introduced the notion of non-interactive blind signatures for random mes-
sages. The key property is that no online interaction between the signer and
the recipient is required. It allows us to use blind signature in new applica-
tions, including distributing e-coins similarly to cryptocurrency airdropping. We
also showed two constructions. One is efficient and admits preexisting public
keys from other schemes. The other scheme generically captures the concept of
NIBS and is constructed from well-known primitives. We also show how to date
non-interactive signatures by introducing the notion of tagged NIBS. We also
proposed open problems.

References

1. Abazi, V.: The European union whistleblower directive: a ‘Game Changer’ for
whistleblowing protection? Ind. Law J. 49(4), 640–656 (2020). https://doi.org/10.
1093/indlaw/dwaa023

2. Abe, M., Fujisaki, E.: How to date blind signatures. In: Kim, K., Matsumoto,
T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 244–251. Springer, Heidelberg
(1996). https://doi.org/10.1007/BFb0034851

https://doi.org/10.1093/indlaw/dwaa023
https://doi.org/10.1093/indlaw/dwaa023
https://doi.org/10.1007/BFb0034851

750 L. Hanzlik

3. Agrawal, S., Kirshanova, E., Stehlé, D., Yadav, A.: Practical, round-optimal lattice-
based blind signatures. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.)
ACM CCS 2022, pp. 39–53. ACM Press (2022). https://doi.org/10.1145/3548606.
3560650

4. Au, M.H., Susilo, W., Mu, Y.: Practical compact E-cash. In: Pieprzyk, J., Gho-
dosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 431–445. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-73458-1 31

5. Backes, M., Hanzlik, L., Schneider-Bensch, J.: Membership privacy for fully
dynamic group signatures. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.)
ACM CCS 2019, pp. 2181–2198. ACM Press (2019). https://doi.org/10.1145/
3319535.3354257

6. Baldimtsi, F., Lysyanskaya, A.: Anonymous credentials light. In: Sadeghi, A.R.,
Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 1087–1098. ACM Press (2013).
https://doi.org/10.1145/2508859.2516687

7. Bao, F., Deng, R.H., Zhu, H.F.: Variations of Diffie-Hellman problem. In: Qing, S.,
Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 301–312. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-39927-8 28

8. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed
embedding degrees. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS,
vol. 2576, pp. 257–267. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36413-7 19

9. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006). https://doi.org/10.1007/11693383 22

10. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the Gap-Diffie-Hellman-Group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36288-6 3

11. Bowe, S.: BLS12-381: New zk-SNARK elliptic curve construction (2017). https://
electriccoin.co/blog/new-snark-curve/

12. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact E-cash. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639 18

13. Camenisch, J., Neven, G., shelat: Simulatable adaptive oblivious transfer. In: Naor,
M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-72540-4 33

14. Canard, S., Gaud, M., Traoré, J.: Defeating malicious servers in a blind sig-
natures based voting system. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006.
LNCS, vol. 4107, pp. 148–153. Springer, Heidelberg (2006). https://doi.org/10.
1007/11889663 11

15. Chairattana-Apirom, R., Hanzlik, L., Loss, J., Lysyanskaya, A., Wagner, B.: PI-
Cut-Choo and friends: compact blind signatures via parallel instance cut-and-
choose and more. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part III.
LNCS, vol. 13509, pp. 3–31. Springer, Heidelberg (2022). https://doi.org/10.1007/
978-3-031-15982-4 1

16. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203. Springer, Boston
(1983). https://doi.org/10.1007/978-1-4757-0602-4 18

17. Davidson, A., Goldberg, I., Sullivan, N., Tankersley, G., Valsorda, F.: Privacy pass:
bypassing internet challenges anonymously. PoPETs 2018(3), 164–180 (2018).
https://doi.org/10.1515/popets-2018-0026

https://doi.org/10.1145/3548606.3560650
https://doi.org/10.1145/3548606.3560650
https://doi.org/10.1007/978-3-540-73458-1_31
https://doi.org/10.1145/3319535.3354257
https://doi.org/10.1145/3319535.3354257
https://doi.org/10.1145/2508859.2516687
https://doi.org/10.1007/978-3-540-39927-8_28
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://electriccoin.co/blog/new-snark-curve/
https://electriccoin.co/blog/new-snark-curve/
https://doi.org/10.1007/11426639_18
https://doi.org/10.1007/978-3-540-72540-4_33
https://doi.org/10.1007/11889663_11
https://doi.org/10.1007/11889663_11
https://doi.org/10.1007/978-3-031-15982-4_1
https://doi.org/10.1007/978-3-031-15982-4_1
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1515/popets-2018-0026

Non-interactive Blind Signatures for Random Messages 751

18. Fischlin, M.: Round-optimal composable blind signatures in the common reference
string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77.
Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 4

19. Fischlin, M., Schröder, D.: Security of blind signatures under aborts. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 297–316. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00468-1 17

20. Fischlin, M., Schröder, D.: On the impossibility of three-move blind signature
schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 197–215.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 10

21. Frankel, Y., Tsiounis, Y., Yung, M.: Fair off-line E-cash made easy. In: Ohta,
K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 257–270. Springer,
Heidelberg (1998). https://doi.org/10.1007/3-540-49649-1 21

22. Fuchsbauer, G., Hanser, C., Kamath, C., Slamanig, D.: Practical round-optimal
blind signatures in the standard model from weaker assumptions. In: Zikas, V., De
Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 391–408. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-44618-9 21

23. Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signatures
in the standard model. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9216, pp. 233–253. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48000-7 12

24. Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures on
equivalence classes and constant-size anonymous credentials. J. Cryptol. 32(2),
498–546 (2018). https://doi.org/10.1007/s00145-018-9281-4

25. Garg, S., Gupta, D.: Efficient round optimal blind signatures. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 477–495. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 27

26. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

27. Hanser, C., Slamanig, D.: Structure-preserving signatures on equivalence classes
and their application to anonymous credentials. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8873, pp. 491–511. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45611-8 26

28. Hanzlik, L., Slamanig, D.: With a little help from my friends: constructing practical
anonymous credentials. In: Vigna, G., Shi, E. (eds.) ACM CCS 2021, pp. 2004–
2023. ACM Press (2021). https://doi.org/10.1145/3460120.3484582

29. Hauck, E., Kiltz, E., Loss, J.: A modular treatment of blind signatures from iden-
tification schemes. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol.
11478, p. 375. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-
4 12

30. Hauck, E., Kiltz, E., Loss, J., Nguyen, N.K.: Lattice-based blind signatures, revis-
ited. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp.
500–529. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1 18

31. Heilman, E., Alshenibr, L., Baldimtsi, F., Scafuro, A., Goldberg, S.: TumbleBit:
an untrusted bitcoin-compatible anonymous payment hub. In: NDSS 2017. The
Internet Society (2017)

32. Hendrickson, S., Iyengar, J., Pauly, T., Valdez, S., Wood, C.A.: Rate-limited token
issuance protocol. Internet-Draft draft-privacypass-rate-limit-tokens-03, IETF Sec-
retariat (2022)

https://doi.org/10.1007/11818175_4
https://doi.org/10.1007/978-3-642-00468-1_17
https://doi.org/10.1007/978-3-642-13190-5_10
https://doi.org/10.1007/3-540-49649-1_21
https://doi.org/10.1007/978-3-319-44618-9_21
https://doi.org/10.1007/978-3-662-48000-7_12
https://doi.org/10.1007/978-3-662-48000-7_12
https://doi.org/10.1007/s00145-018-9281-4
https://doi.org/10.1007/978-3-642-55220-5_27
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-662-45611-8_26
https://doi.org/10.1145/3460120.3484582
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-56880-1_18

752 L. Hanzlik

33. Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In: Kaliski,
B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg
(1997). https://doi.org/10.1007/BFb0052233

34. Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Round-optimal blind
signatures in the plain model from classical and quantum standard assumptions. In:
Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp.
404–434. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5 15

35. Lysyanskaya, A.: Security analysis of RSA-BSSA. Cryptology ePrint Archive,
Report 2022/895 (2022). https://eprint.iacr.org/2022/895

36. Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: 40th
FOCS, pp. 120–130. IEEE Computer Society Press (1999). https://doi.org/10.
1109/SFFCS.1999.814584

37. Miyazaki, S., Sakurai, K.: A more efficient untraceable e-cash system with partially
blind signatures based on the discrete logarithm problem. In: Hirchfeld, R. (ed.)
FC 1998. LNCS, vol. 1465, pp. 296–308. Springer, Heidelberg (1998). https://doi.
org/10.1007/BFb0055490

38. Pass, R.: Limits of provable security from standard assumptions. In: Fortnow, L.,
Vadhan, S.P. (eds.) 43rd ACM STOC, pp. 109–118. ACM Press (2011). https://
doi.org/10.1145/1993636.1993652

39. Pfitzmann, B.P., Sadeghi, A.-R.: Anonymous fingerprinting with direct non-
repudiation. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 401–
414. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 31

40. Pointcheval, D., Stern, J.: Provably secure blind signature schemes. In: Kim, K.,
Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 252–265. Springer,
Heidelberg (1996). https://doi.org/10.1007/BFb0034852

41. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signa-
tures. J. Cryptol. 13(3), 361–396 (2000). https://doi.org/10.1007/s001450010003

42. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

43. Wahby, R.S., Boneh, D., Jeffrey, C., Poon, J.: An airdrop that preserves recipient
privacy. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 444–
463. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4 24

https://doi.org/10.1007/BFb0052233
https://doi.org/10.1007/978-3-030-77870-5_15
https://eprint.iacr.org/2022/895
https://doi.org/10.1109/SFFCS.1999.814584
https://doi.org/10.1109/SFFCS.1999.814584
https://doi.org/10.1007/BFb0055490
https://doi.org/10.1007/BFb0055490
https://doi.org/10.1145/1993636.1993652
https://doi.org/10.1145/1993636.1993652
https://doi.org/10.1007/3-540-44448-3_31
https://doi.org/10.1007/BFb0034852
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/978-3-030-51280-4_24

Rai-Choo! Evolving Blind Signatures
to the Next Level

Lucjan Hanzlik1, Julian Loss1 , and Benedikt Wagner1,2(B)

1 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
{hanzlik,loss,benedikt.wagner}@cispa.de
2 Saarland University, Saarbrücken, Germany

Abstract. Blind signatures are a fundamental tool for privacy-
preserving applications. Known constructions of concurrently secure
blind signature schemes either are prohibitively inefficient or rely on non-
standard assumptions, even in the random oracle model. A recent line of
work (ASIACRYPT ‘21, CRYPTO ‘22) initiated the study of concretely
efficient schemes based on well-understood assumptions in the random
oracle model. However, these schemes still have several major drawbacks:
1) The signer is required to keep state; 2) The computation grows linearly
with the number of signing interactions, making the schemes impractical;
3) The schemes require at least five moves of interaction.

In this paper, we introduce a blind signature scheme that eliminates
all of the above drawbacks at the same time. Namely, we show a round-
optimal, concretely efficient, concurrently secure, and stateless blind sig-
nature scheme in which communication and computation are indepen-
dent of the number of signing interactions. Our construction also natu-
rally generalizes to the partially blind signature setting.

Our scheme is based on the CDH assumption in the asymmetric pair-
ing setting and can be instantiated using a standard BLS curve. We
obtain signature and communication sizes of 9 KB and 36 KB, respec-
tively. To further improve the efficiency of our scheme, we show how to
obtain a scheme with better amortized communication efficiency. Our
approach batches the issuing of signatures for multiple messages.

Keywords: Blind Signatures · Standard Assumptions · Random
Oracle Model · Cut-and-Choose · Computation Complexity · Round
Complexity

1 Introduction

Blind signatures, introduced by David Chaum in 1982 [15] are an interactive
type of signature scheme with special privacy features. Informally, in a blind
signature scheme, a Signer, holding a secret key sk, and a User, holding a cor-
responding public key pk and a message m, engage in a two-party protocol. At
the end of the interaction, the user obtains a signature on m that can be ver-
ified using pk. Blindness ensures that the Signer learns no information about
c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14008, pp. 753–783, 2023.
https://doi.org/10.1007/978-3-031-30589-4_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30589-4_26&domain=pdf
http://orcid.org/0000-0002-7979-3810
http://orcid.org/0000-0002-4620-7264
https://doi.org/10.1007/978-3-031-30589-4_26

754 L. Hanzlik et al.

m. On the other hand, unforgeabillity guarantees that the User cannot obtain
valid signatures without interacting with the Signer. These properties make blind
signatures a useful building block for privacy-sensitive applications, e.g. e-cash
[15,36], anonymous credentials [10,11], e-voting [25], and blockchain-based sys-
tems [29].

Unfortunately, even in the random oracle model, existing constructions of
blind signatures either rely on non-standard assumptions [5,7,19], or have
parameters (e.g. communication and signature sizes) that grow linearly in the
number of concurrent signing interactions [27,33,39]. Very recently, Chairattana-
Apirom et al. [13] gave the first blind signature schemes from standard assump-
tions in the random oracle model that are simultaneously size and communica-
tion efficient. Even so, their schemes cannot be considered practical. For one,
they require many rounds of interaction, which may be problematic if network
conditions are poor. Second, they still require computation that grows linearly
in the number of signatures that the server has already issued. This can become
a heavy burden as the number of signatures grows large, say 230. In this work,
we propose a novel construction of a blind signature scheme that overcomes all
of these limitations. Concretely, our scheme has the following properties:

– Our scheme can be instantiated from the (co)-CDH assumption in type-3
pairings in the random oracle model (to get a proof from plain CDH, we can
easily use type-2 or type-1 pairings).

– It has compact signatures and communication complexity.
– Signing and verifying are computationally efficient and require only a few

hundred hash and group operations per signature; we provide a prototypical
implementation to demonstrate practicality.

– Our scheme is round-optimal, i.e., it requires only a single message from both
the signer and the user.

1.1 Background and Limitations of Existing Constructions

A long line of work [1,2,27,28,39] has explored constructions of blind signa-
tures from witness indistinguishable linear identification schemes such as the
Okamoto-Schnorr and Okamoto-Guillou-Quisquater schemes [34]. The resulting
blind signature schemes are secure under well-understood assumptions, such as
RSA, factoring, or discrete logarithm. On the downside, some these schemes
admit an efficient attack [6,40,43] if the number of (concurrent) singing interac-
tions ever exceeds a polylogarithmic bound.

Inspired by an early work by Pointcheval [38], Katz, Loss, and Rosen-
berg [33] recently introduced a boosting transform that turns linear blind signa-
ture schemes into fully secure ones (i.e., admitting a polynomial number of con-
current signing interactions). Applying their transform, one obtains schemes that
rely on well-studied assumptions and have short signatures. Unfortunately, the
resulting communication and computational complexity renders them impracti-
cal. This is because in the Nth interaction between Signer and User, the com-
munication and computation depend linearly on N . To ameliorate some of these

Rai-Choo! 755

drawbacks, Chairattana-Apirom et al. [13] introduced a more compact version
of Katz et al.’s generic transform in which the communication only depends
logarithmically on N . Their work also presents two more optimized blind sig-
nature schemes which do not follow from their transform generically. We focus
here on their BLS-based [7,8] construction (called ‘PI-Cut-Choo’) which can be
instantiated from CDH.

We briefly highlight the remaining drawbacks of PI-Cut-Choo. The idea of
the boosting transform fundamentally relies on a 1-of-N cut-and-choose where
N , the number of signing interactions, grows over time. This requires to execute
N copies of the base scheme and has the following implications:

– The Signer is stateful, as it has to keep track of the current value of N .
– The computation grows linearly in N for both the Signer and the User. To

issue N ≈ 230 signatures, this would require prohibitive computational effort
(roughly

∑230

i=1 i ≈ 259 operations).
– Issuing a signature requires five moves of interaction between Signer and

User which is a far cry from the theoretical one-round limit achieved by some
schemes [7].

Thus, even though PI-Cut-Choo significantly improves over prior schemes, it can
still not be considered useful for practical deployment.

1.2 Our Contribution

In this work, we eliminate all of the aforementioned drawbacks.

Our Scheme. We construct a practical blind signature scheme using a new vari-
ant of the cut-and-choose technique, that is polynomially secure and does not
require the signer to keep a state. This eliminates the dependency on a counter N
as in [13,33] entirely, thereby also significantly reducing the computational com-
plexity, see Table 1. Additionally, in contrast to schemes in [13,33], our scheme
is round-optimal. Our scheme is statistically blind against malicious signers. We
show one-more unforgeability based on the (co)-CDH assumption in asymmet-
ric pairing groups. One-more unforgeability holds for any (a priori unbounded)
polynomial number of signing interactions. We obtain several parameter settings
for our scheme. This leads to a trade-off between signature and communication
size, see Table 2. For example, we can instantiate parameters to obtain 9 KB
signature size and 36 KB communication complexity. To demonstrate that our
scheme is computationally efficient, we implemented a prototype over the BLS12-
381 curve. Our experiments show that signing takes less than 0.2 s, see Table 2.

Partial Blindness and Batching. We show that our scheme naturally generalizes
to the setting of partially blind signatures. Additionally, we show how we can
batch multiple signing interactions to improve communication complexity (see
also Table 2), and provide the first formal model and analysis for that. Batching
has been used in many other contexts as well, e.g. in oblivious transfer [9,30].

756 L. Hanzlik et al.

Table 1. Comparison of number of moves, communication and computation for the line
of work [13,33] and our work in the Nth signing interaction. The security parameter
is denoted by λ. Communication is given in bits, and computation is given by treating
pairings, group and field operations, and hash evaluations as one unit.

Boosting [33] Compact Boosting [13] Our Work

Moves 7 7 5 2

Communication Θ(λN) Θ(λ logN) Θ(λ logN + λ2) Θ(λ2)

Computation Θ(N) Θ(N logN) Θ(λN) Θ(λ)

Table 2. Efficiency of different parameter settings of our scheme. Sizes and times
are given in kilobytes and milliseconds, respectively. Communication is amortized per
message. Details can be found in Sect. 5.

|pk| |σ| Communication with batch size L Running Time
L = 1 L = 4 L = 16 L = 256 Sign Verify

(I) 0.14 13.98 33.20 16.98 12.92 11.65 163 54
(II) 0.14 9.41 36.21 20.11 16.08 14.82 169 36
(III) 0.14 5.71 72.79 43.97 36.77 34.52 333 22

We believe that batching blind signatures has a lot of natural use-cases. As
an example, consider an e-cash scenario. Here, parties withdraw coins from a
bank by getting blind signature for a random message. Later, the coin can be
deposited by presenting the message-signature pair. Blindness ensures that the
process of withdrawal is not linkable to the process of depositing. This approach
is also used to do enhance the anonymity in electronic payment systems [29]. We
remark that it is crucial that all issued coins are of equal amount to guarantee
a large anonymity set. Therefore, any user that wants to retrieve more than
one coin has to interact with the bank multiple times to get multiple coins (i.e.
signatures). Using batch blind signatures, these interactions can all happen in
parallel, leading to improved communication and computational efficiency, as
well as reduced overhead to initiate interactions.

Remark on Assumptions. In our construction, we use the asymmetric type-3
pairing setting, as standard in practical pairing-based schemes. This also means
that we need to use the standard variant of CDH in this setting, sometimes called
co-CDH [14]. We emphasize that this variant is even needed to prove unforge-
ability of standard BLS signatures in the asymmetric type-3 setting [8]. On the
other hand, it is straight-forward to instantiate our scheme in the symmetric
pairing setting, or the asymmetric type-2 pairing setting based on plain CDH.
We refer to Sect. 5 for more details.

Rai-Choo! 757

1.3 Technical Overview

We give an intuitive overview of our techniques. For full formal details, we refer
to the main body.

Boosting and PI-Cut-Choo. We start this overview by recalling the boosting
transform [33] and its parallel instance variant [13]. Let BS be a blind signature
scheme which is secure against an adversary that queries the signer for a small
number of signatures (we will give a suitable definition of “small” below). The
boosting transform results in a new scheme which is secure for any number of
signing interactions between signer and adversary. In the Nth signing interaction,
the User and the Signer behave as follows.

1. The user commits to its message m using randomness ϕj , j ∈ [N], thereby
obtaining N commitments μj . It also samples random coins ρj , j ∈ [N]
for the user algorithm of BS. Then, it commits to each pair (μj , ρj) using a
random oracle, and sends the resulting commitments ,j to the Signer.

2. Signer and User run the underlying scheme BS N times in parallel. We refer
to these N parallel runs as sessions. More precisely, the Signer uses its secret
key sk, and the User uses the public key pk, μi as the message, and ρj as the
random coins in the jth session, for j ∈ [N].

3. Before the final messages sj , j ∈ [N] are sent from the Signer to the User,
the Signer selects a random session J ∈ [N]. The user now has to open all
the commitments ,j for j ∈ [N]\{J} by sending (μj , ρj). The Signer can now
verify that the User behaved honestly for all but the Jth session. In case the
User behaved dishonestly in one session, the Signer aborts.

4. The Signer completes the Jth session by sending the final message sJ . Finally,
the User derives a signature σJ from that session as in BS, and outputs
σ = (σJ , ϕJ) as its final signature.

Katz, Loss, and Rosenberg [33] show that the above scheme is secure for polyno-
mially many signing interactions, given that the underlying scheme BS is secure
for logarithmically many signing interactions. In more detail, they provide a
reduction that simulates a signer oracle for the new scheme, given a logarithmic
number of queries to the signer oracle for BS. Their reduction distinguishes the
following cases for the Nth signing interaction.

1. If the adversary (i.e. the User) is dishonest in at least two sessions, then the
adversary is caught. Hence, no response has to be provided and no secret key
is needed.

2. If the adversary is honest in all sessions, the reduction can extract all (μj , ρj)
by inspecting random oracle queries. Using a special property of the under-
lying scheme BS, this allows the reduction to simulate the response, e.g. by
programming the random oracle.

3. If the adversary is dishonest in exactly one session j∗, then either J �= j∗ and
the reduction works as in the previous case, or J = j∗, and the reduction has
to use the signer oracle of BS to provide the response sJ . In this case, we say
that there is a successful cheat.

758 L. Hanzlik et al.

It is clear that the probability of a successful cheat is at most 1/N in the Nth
signing interaction. Therefore, the expected number of successful cheats over
q signing interactions is at most

∑q+1
N=2 1/N ≤ O(log q). Using an appropriate

concentration bound, it therefore can be argued that the underlying signer oracle
for BS is called logarithmically many times.

Unfortunately, the above transform yields impractical parameter sizes for the
resulting signature scheme, which results from a relatively loose reduction to BS.
To overcome these issues, recent work introduced a parallel instance version of
the boosting transform (hereafter PI-Cut-Choo) [13]. The primary goal of this
version is to work for key-only secure schemes BS, i.e. such that the reduction
can simulate signing queries in the transformed scheme entirely without access-
ing the signing oracle of BS. First, N is scaled by some constant, such that the
expected number of successful cheats is less than 11. Thus, in expectation, the
reduction does not need access to a signer oracle for BS. To ensure that this is
true with overwhelming probability, the entire boosting transform is repeated
with K = Θ(λ) instances in parallel. These instances use independent public
keys pk1, . . . , pkK and independent random coins2. This implies that with over-
whelming probability, there will be an instance i∗ ∈ [K], such that there is no
successful cheat in instance i∗ over the entire runtime of the reduction. The
reduction can now guess i∗ and embed the target public key of BS in pki∗ . If the
guess was correct, the reduction to key-only security of BS goes through.

The above discussion highlights the importance of growing the parameter
N as a function of the number of signing interactions over time. In summary,
it allows to bound the expected number of successful cheats, which is the cen-
tral idea of prior work [13,33]. Thus, keeping N fixed presents several technical
challenges that we discuss in the next paragraph.

Strawman One: Fixed Cut-and-Choose. We are now ready to describe our central
ideas to avoid a growing cut-and-choose parameter N . As explained above, the
key idea of PI-Cut-Choo is to ensure that for one of the parallel instances i∗, the
adversary never cheats in any of its interactions with the signer. This argument
fails if we set N to be constant, e.g. N = 2. However, by keeping the number
of parallel instances K the same, we can still argue that with overwhelming
probability in each signing interaction, there is a non-cheating instance i∗. We
highlight the reversed role of quantifiers: The non-cheating instance i∗ could now
be different for every signing interaction. Unfortunately, the reduction approach
presented in PI-Cut-Choo only allows to embed the target public key of the
underlying scheme BS in a fixed key among the keys pk1, . . . , pkK corresponding
to the K parallel instances. Once this key is fixed, the reduction fails if ever
there is a successful cheat with respect to this instance.

1 This assumes an upper known bound on the number of signing interactions, which
is a minor limitation. Alternatively, one could instead increase N as N2 to achieve
an expected constant number of successful cheats.

2 In PI-Cut-Choo, this parallel repetition comes almost for free due to a lot of opti-
mizations that we do not cover in this overview.

Rai-Choo! 759

Strawman Two: Dynamic Key Structure (Naively). The above discussion shows
that we have to support a dynamic embedding of the target public key into one of
the keys pk1, . . . , pkK . The first (naive) idea would be to use a fresh set of public
keys pk1, . . . , pkK and secret keys sk1, . . . , skK in each interaction. Observe that
in PI-Cut-Choo, the base scheme BS is a two-move scheme, in which the first
message c (challenge) sent from user to signer does not depend on the public
key. Thus, our reduction for the resulting scheme can identify the non-cheating
instance i∗ after seeing the commitments ,i,j and the challenges ci,j . Using this
observation, we could let the Signer send the (fresh) public keys pk1, . . . , pkK that
will be used in the current signing interaction after receiving commitments and
challenges. This way, the reduction knows in which key pki∗ to embed the target
public key in each signing interaction. To do so, the reduction first identifies
the non-cheating instance i∗, and then samples (pki, ski) for i �= i∗ honestly,
while setting pki∗ to (a rerandomization of) the target public key. Finally, the
reduction can use ski to simulate all instances except i∗, while using random
oracle programming in instance i∗.

We can use random-self reducibility of the underlying signature scheme to
ensure blindness of this construction. Namely, the User re-randomizes the keys
and signatures it receives from the user. (Otherwise, it would be trivial to link
signatures to signing interactions). The final signature then contains the reran-
domized set of keys and signatures. Fortunately, the BLS scheme [7], which serves
as the basis of PI-Cut-Choo, has such a property.

However, the above scheme is insecure. Since a fresh set of keys pk1, . . . , pkK

is used in every interaction, there is nothing tying signatures to the Signer’s
actual public and secret key. In particular, there is no way from preventing the
adversary from (trivially) creating a forgery containing a set of keys of its own
choice. In the security proof, the reduction can not extract a forgery for BS with
respect to the target public key in this scenario.

Our Solution: PI-Cut-Choo evolves to Rai-Choo. To overcome the remaining
issues of the above strawman approach, we fix one public key pk and one secret
key sk for our scheme. Instead of using independent public keys pk1, . . . , pkK for
each interaction, we instead use a sharing

(pk1, sk1), . . . , (pkK , skK) such that
∑

i

ski = sk and
∏

i

pki = pk.

By setting pk to be the target public key of the underlying scheme BS and
carefully working out the details, our reduction is now able to extract a forgery
as required. It remains to sketch why the simulation of the signing oracle is still
possible with this new structure of the pk1, . . . , pkK . Note that the reduction
can define the pk1, . . . , pkK in a way that allows it to know all but one ski.
Concretely, after identifying the non-cheating instance i∗ in an interaction with
the adversary, the reduction first samples (pki, ski) for all i ∈ [K]\{i∗}, and then
sets pki∗ := pk · ∏i�=i∗ pk

−1
i . This is identically distributed to the real sharing.

In summary, we have successfully transformed a key-only secure scheme BS
into a fully secure one, while using a constant cut-and-choose parameter N . We

760 L. Hanzlik et al.

can further optimize the scheme using many minor tricks, some of them similar
to [13]. In the process we also manage to reduce the number of moves to two,
which is optimal. This is because in our new scheme, we can make the cut-and-
choose step completely non-interactive using a random oracle, and the signer
does not need to send N anymore, as it is fixed.

1.4 More on Related Work

We discuss related work in more detail.
There are several impossibility results about the construction of blind signa-

tures in the standard model [4,18,37]. Fischlin and Schröder showed that statis-
tically blind three-move schemes can not be constructed from non-interactive
assumptions under certain conditions [18]. Pass showed that unique round-
optimal blind signatures can not be based on a class of interactive assump-
tions [37]. Baldimtsi and Lysyanskaya showed that schemes with a unique secret
key and a specific structure can not be proven secure, even under interactive
assumptions [4].

In terms of unforgeability, one distinguishes concurrent and sequential secu-
rity. For sequential security, the adversary has to finish one interaction with the
signer before initiating the following interaction. In contrast, concurrent security
allows the adversary to interact with the signer in an arbitrarily interleaved way.
In practice, restricting communication with the signer to sequential access opens
a door for denial of service attacks. Therefore, concurrent security is the widely
accepted notion.

One can build blind signatures generically from standard signatures and
secure two-party computation (2PC), as shown by Juels, Luby and Ostro-
vsky [31]. Unfortunately, this construction only achieves sequential security. Con-
trary to that, Fischlin [17] gave a (round-optimal) generic construction that is
secure even in the universal composability framework [12]. However, it turns out
that instantiating these generic constructions efficiently is highly non-trivial.
For example, instantiating Fischlin’s construction requires to prove statements
in zero-knowledge about a combination of commitment and signature scheme.
If we instantiate the signature scheme efficiently in the random oracle model,
we end up treating the random oracle as a circuit. This leads to unclear impli-
cations in terms of security. Additionally, schemes based on Fischlin’s construc-
tion inherently require strong decisional assumptions due to the use of zero-
knowledge proofs and encryption. The recent work by Katsumata and del Pino
[16] makes significant progress in this direction. By carefully choosing building
blocks and slightly tweaking the construction, they give an instantiation of Fis-
chlin’s paradigm in the lattice setting. However, the communication complexity
of their protocol is still far from being practical.

In addition to the generic constructions mentioned above, there are direct
constructions of blind signatures. While some constructions make use of com-
plexity leveraging [22,23], others are proven secure under non-standard q-type
or interactive assumptions [19,23,24,35]. Notably, there are efficient and round-
optimal schemes based on the full-domain-hash paradigm [3,5,7]. For example,

Rai-Choo! 761

Boldyreva [7] introduces a blinded version of the BLS signature scheme [8]. To
prove security, one relies on the non-standard one-more variant of the underlying
assumption (e.g. one-more CDH for BLS).

In addition to the works in the standard and random oracle model mentioned
before, there are also constructions [21,32,42] that are proven secure in more
idealized models, such as the algebraic or generic group model [20,41]. While it
leads to efficient schemes, we want to avoid using such a model, as it is non-
standard.

2 Preliminaries

We denote the security parameter by λ ∈ N, and assume that all algorithms get
1λ implicitly as input. Let S be a finite set and D be a distribution. We write
x←$ S to indicate that x is sampled uniformly at random from S. We write
x ← D if x is sampled according to D. Let A be a (probabilistic) algorithm. We
write y ← A(x), if y is output from A on input x with uniformly sampled random
coins. To make these random coins ρ explicit, we write y = A(x; ρ) The notation
y ∈ A(x) means that y is a possible output of A(x). As always, an algorithm
is said to be PPT if its running time T(A) is bounded by a polynomial in its
input size. A function f : N → R+ is negligible in its input λ, if f ∈ λ−ω(1).
Let G be a security game. We write G ⇒ b to indicate that G outputs b. The
first K natural numbers are denoted by [K] := {1, . . . , K}. Next, we define the
cryptographic primitive of interest and the computational assumption that we
use.

Definition 1 (Blind Signature Scheme). A blind signature scheme is a
quadruple of PPT algorithms BS = (Gen,S,U,Ver) with the following syntax:

– Gen(1λ) → (pk, sk) takes as input the security parameter 1λ and outputs a
pair of keys (pk, sk). We assume that the public key pk defines a message
space M = Mpk implicitly.

– S and U are interactive algorithms, where S takes as input a secret key sk
and U takes as input a key pk and a message m ∈ M. After the execution, U
returns a signature σ and we write (⊥, σ) ← 〈S(sk),U(pk,m)〉.

– Ver(pk,m, σ) → b is deterministic and takes as input public key pk, message
m ∈ M, and a signature σ, and returns b ∈ {0, 1}.

We require that BS is complete in the following sense. For all (pk, sk) ∈ Gen(1λ)
and all m ∈ Mpk it holds that

Pr [Ver(pk,m, σ) = 1 | (⊥, σ) ← 〈S(sk),U(pk,m)〉] = 1.

Definition 2 (One-More Unforgeability). Let BS = (Gen,S,U,Ver) be a
blind signature scheme and � : N → N. For an algorithm A, we consider the
following game �-OMUFA

BS(λ):

1. Sample keys (pk, sk) ← Gen(1λ).

762 L. Hanzlik et al.

2. Let O be an interactive oracle simulating S(sk). Run

((m1, σ1), . . . , (mk, σk)) ← AO(pk),

where A can query O in an arbitrarily interleaved way and complete at most
� = �(λ) of the interactions with O.

3. Output 1 if and only if all mi, i ∈ [k] are distinct, A completed at most k − 1
interactions with O and for each i ∈ [k] it holds that Ver(pk,mi, σi) = 1.

We say that BS is �-one-more unforgeable (�-OMUF), if for every PPT algorithm
A the following advantage is negligible:

Adv�-OMUF
A,BS (λ) := Pr

[
�-OMUFA

BS(λ) ⇒ 1
]
.

We say that BS is one-more unforgeable (OMUF), if it is �-OMUF for all poly-
nomial �.

Definition 3 (Blindness). Consider a blind signature scheme BS = (Gen,S,U,
Ver). For an algorithm A and bit b ∈ {0, 1}, consider the following game
BLINDA

b,BS(λ):

1. Run (pk,m0,m1, St) ← A(1λ).
2. Let O0 be an interactive oracle simulating U(pk,mb) and O1 be an interactive

oracle simulating U(pk,m1−b). Run A on input St with arbitrary interleaved
one-time access to each of these oracles, i.e. St′ ← AO0,O1(St).

3. Let σb, σ1−b be the local outputs of O0,O1, respectively. If σ0 = ⊥ or
σ1 = ⊥, then run b′ ← A(St′,⊥,⊥). Else, obtain a bit b′ from A on
input σ0, σ1, i.e. run b′ ← A(St′, σ0, σ1).

4. Output b′.

We say that BS satisfies malicious signer blindness, if for every PPT algorithm
A the following advantage is negligible:

AdvblindA,BS(λ) :=
∣
∣
∣Pr

[
BLINDA

0,BS(λ) ⇒ 1
]

− Pr
[
BLINDA

1,BS(λ) ⇒ 1
]∣
∣
∣ .

We make use of the natural variant of the CDH assumption in the asymmetric
pairing setting [14].

Definition 4 (CDHAssumption). Let PGGen(1λ) be a bilinear group genera-
tion algorithm that outputs cyclic groups G1,G2 of prime order p with generators
g1 ∈ G1, g2 ∈ G2, and a non-degenerate3 pairing e : G1 × G2 → GT into some
target group GT . We say that the CDH assumption holds relative to PGGen, if
for all PPT algorithms A, the following advantage is negligible:

AdvCDH
A,PGGen(λ) := Pr

⎡

⎣z = xy

∣
∣
∣
∣
∣
∣

(G1,G2, g1, g2, p, e) ← PGGen(1λ),
x, y ←$Zp, X1 := gx

1 , X2 := gx
2 , Y := gy

1

gz
1 ← A(G1,G2, g1, g2, p, e,X1, Y,X2)

⎤

⎦

3 Non-degenerate means that e(g1, g2) is a generator of the group GT .

Rai-Choo! 763

3 Our Blind Signature Scheme

In this section, we present our blind signature scheme.

3.1 Construction

Let PGGen(1λ) be a bilinear group generation algorithm that outputs cyclic
groups G1,G2 of prime order p with generators g1 ∈ G1, g2 ∈ G2, and a non-
degenerate pairing e : G1×G2 → GT into some target group GT . We assume that
these system parameters are known to all algorithms. Note that their correctness
can be verified efficiently. Our scheme BSR = (Gen,S,U,Ver) is parameterized
by integers K = K(λ), N(λ) ∈ N. These do not depend on the number of
previous interactions. We only need that N−K is negligible in λ. Our scheme
does not require the signer to hold a state. The scheme makes use of random
oracles Hr,Hμ : {0, 1}∗ → {0, 1}λ

,Hα : {0, 1}∗ → Zp,Hcc : {0, 1}∗ → [N]K , and
H : {0, 1}∗ → G1.

Key Rerandomization. Our scheme makes use of an algorithm ReRa, that takes
as input tuples (pki, hi)i∈[K] and an element σ̄ ∈ G1, where pki = (pki,1, pki,2) ∈
G1 × G2, and hi ∈ G1 for all i ∈ [K]. The algorithm is as follows:

1. Choose r1, . . . , rK−1 ←$Zp and set rK := −∑K−1
i=1 ri.

2. For all i ∈ [K], set pk′
i :=

(
pk′

i,1, pk
′
i,2

)
:=

(
pki,1 · gri

1 , pki,2 · gri
2

)
.

3. Set σ̄′ := σ̄ · ∏K
i=1 hri

i and return ((pk′
i)i∈[K], σ̄

′).

It is easy to see that
∏

i∈K pki,j =
∏

i∈K pk′
i,j for both j ∈ {1, 2}. Further, if we

assume that the inputs satisfy e (σ̄, g2) =
∏K

i=1 e
(
hi, pki,2

)
and e

(
pki,1, g2

)
=

e
(
g1, pki,2

)
for all i ∈ [K], then the outputs satisfy e (σ̄′, g) =

∏K
i=1 e

(
hi, pk

′
i,2

)

and e
(
pk′

i,1, g2
)
= e

(
g1, pk

′
i,2

)
for all i ∈ [K]. Additionally, the output does

not reveal anything about the input, except what is already revealed by these
properties. We will make this more formal in Lemma 1 when we analyze the
blindness property of our scheme.

Key Generation. To generate keys algorithm Gen(1λ) does the following:

1. Sample sk←$Zp, set pk1 := gsk1 and pk2 := gsk2 .
2. Return public key pk = (pk1, pk2) and secret key sk.

Signature Issuing. The algorithms S,U and their interaction are formally given
in Figs. 1 and 2.

Verification. The resulting signature σ := ((pki, ϕi)K−1
i=1), ϕK , σ̄) for a message

m is verified by algorithm Ver(pk,m, σ) as follows:

1. Write pki = (pki,1, pki,2) for each i ∈ [K − 1].
2. Compute pkK,1 := pk1 · ∏K−1

i=1 pk−1
i,1 and pkK,2 := pk2 · ∏K−1

i=1 pk−1
i,2 .

764 L. Hanzlik et al.

3. If there is an i ∈ [K] with e
(
pki,1, g2

) �= e
(
g1, pki,2

)
, return 0.

4. For each instance i ∈ [K], compute μi := Hμ(m, ϕi).
5. Return 1 if and only if

e (σ̄, g2) =
K∏

i=1

e
(
H(μi), pki,2

)
.

3.2 Security Analysis

Completeness of the scheme follows by inspection. We show blindness and one-
more unforgeability. Before we give the proof of blindness, we first show a lemma
that is needed. Intuitively, it states that algorithm ReRa perfectly rerandomizes
the key shares.

Lemma 1. For any pk1 ∈ G1 and pki,1 ∈ G1, i ∈ [K] such that
∏K

i=1 pki,1 = pk,
the following distributions D1 and D2 are identical:

D1 :=
{

(
pk1, (pki,1)i∈[K], (pk

′
i,1)i∈[K]

)
∣
∣
∣
∣
r1, . . . , rK−1 ←$Zp, rK := −∑K−1

i=1 ri

∀i ∈ [K] : pk′
i,1 := pki,1 · gri

1

}

D2 :=
{

(
pk1, (pki,1)i∈[K], (pk

′
i,1)i∈[K]

)
∣
∣
∣
∣
∀i ∈ [K] : pk′

i,1 ←$G

pk′
K,1 := pk1 · ∏K−1

i=1 pk′−1
i,1

}

We give a formal proof of the lemma in our full version [26].

Theorem 1. Let Hr,Hμ : {0, 1}∗ → {0, 1}λ and Hα : {0, 1}∗ → Zp be random
oracles. Then BSR satisfies malicious signer blindness.

Concretely, for any algorithm A that makes at most QHr , QHμ
, QHα

queries
to Hr,Hμ,Hα respectively, we have

AdvblindA,BS(λ) ≤ KNQHμ

2λ−2
+

KQHr

2λ−2
+

KQHα

2λ−2
.

Proof. We set BS := BSR and let A be an adversary against the blindness of
BS. Our proof is presented as a sequence of games Gi,b for i ∈ [8] and b ∈ {0, 1}.
We set G0,b := BLINDA

b,BS(λ). Then, our goal is bound the distinguishing
advantage

AdvblindA,BS(λ) = |Pr [G0,0 ⇒ 1] − Pr [G0,1 ⇒ 1]| .
To do that, we will change our game to end up at a game G8,b for which we have

Pr [G8,0 ⇒ 1] = Pr [G8,1 ⇒ 1].

Game G0,b: Game G0,b is defined as G0,b := BLINDA
b,BS(λ). We recall this

game to fix some notation. First, A outputs a public key pk and two messages

Rai-Choo! 765

S(sk) U(pk,m)

for i ∈ [K − 1] : for (i, j) ∈ [K] × [N] :

ski ←$Zp ϕi,j ←$ {0, 1}λ, μi,j := Hμ(m, ϕi,j)

skK := sk −
K−1∑

i=1

ski γi,j ←$ {0, 1}λ, αi,j := Hα(γi,j)

for i ∈ [K] : ri,j := (μi,j , γi,j), ,i,j := Hr(ri,j)

pki,1 = gski
1 ci,j := H(μi,j) · g

αi,j

1

pki,2 = gski
2 , := (,1,1 , . . . , ,K,N)

pki := (pki,1, pki,2) c := (c1,1, . . . , cK,N)

J := Hcc(, , c)

if Check(open) = 0 : open open :=

(
J,

(
(ri,j)j �=Ji

, ci,Ji , ,i,Ji

)

i∈[K]

)

abort

for i ∈ [K] : si := cski
i,Ji

s̄ :=
K∏

i=1

si
(pki)

K−1
i=1 , s̄ pkK,1 := pk1 ·

K−1∏

i=1

pk−1
i,1

pkK,2 := pk2 ·
K−1∏

i=1

pk−1
i,2

pkK := (pkK,1, pkK,2)

for i ∈ [K] :

if e
(
pki,1, g2

)
�= e

(
g1, pki,2

)
: abort

if e (s̄, g2) �=
K∏

i=1

e
(
ci,Ji , pki,2

)
: abort

σ̄ := s̄ ·
K∏

i=1

pk
−αi,Ji
i,1

((pk′
i)i, σ̄

′) ← ReRa((pki,H(μi,Ji))i, σ̄)

return σ := ((pk′
i, ϕi,Ji)

K−1
i=1 , ϕK,JK , σ̄′)

Fig. 1. Signature issuing protocol of the blind signature scheme BSR, where algorithm
Check is defined in Fig. 2.

766 L. Hanzlik et al.

Alg Check

(
open =

(
J,

(
(ri,j)j �=Ji

, ci,Ji , ,i,Ji

)

i∈[K]

))

01 for i ∈ [K] :
02 for j ∈ [N] \ {Ji} :
03 parse ri,j = (μi,j , γi,j) ∈ {0, 1}λ × {0, 1}λ

04 αi,j := Hα(γi,j), ci,j := H(μi,j) · g
αi,j

1 , ,i,j := Hr(ri,j)
05 , := (,1,1 , . . . , ,K,N), c := (c1,1, . . . , cK,N)
06 if J �= Hcc(, , c) : return 0
07 return 1

Fig. 2. The algorithm Check used in the signature issuing protocol of blind signature
scheme BSR.

m0,m1. Second, A is run with access to two interactive oracles O0 and O1.
These simulate U(pk,mb) and U(pk,m1−b), respectively. To distinguish variables
used in the two oracles, we use superscripts L and R. That is, variables with
superscript L (resp. R) are part of the interaction between A and O0 (resp.
O1). For example, JL := Hcc(,L , cL) denotes the cut-and-choose vector that
O0 computes, and openR denotes the first message that O1 sends to A. For
descriptions with variables without a superscript, the reader should understand
them as applying to both oracles.
Game G1,b: This game is as G0,b, but we let the game abort on a certain event.
Namely, the game aborts if A ever makes a query of the form Hμ(·, ϕi,j) for
some i ∈ [K] and j ∈ [N] \ {Ji}. Note that for these values (i, j), A obtains no
information about ϕi,j throughout the entire game. Thus, the probability that
a query is of this form is at most 1/2λ. A union bound over all such (i, j), the
two oracles, and the random oracle queries leads to

|Pr [G0,b ⇒ 1] − Pr [G1,b ⇒ 1]| ≤ KNQHμ

2λ−1
.

Game G2,b: This game is as G1,b, but with another abort event. Concretely,
the game aborts if A ever makes a query Hr(ri,Ji

), or a query Hα(γi,Ji
) for some

i ∈ [K]. Note that ri,Ji
has the form ri,Ji

= (μi,Ji
, γi,Ji

), where γi,Ji
is sampled

uniformly at random from {0, 1}λ. Further, A obtains no information about γi,Ji

throughout the entire game. Therefore, taking a union bound over all instances
i ∈ [K], the two user oracles, and the random oracle queries for both random
oracles Hr and Hα, we get

|Pr [G1,b ⇒ 1] − Pr [G2,b ⇒ 1]| ≤ KQHr

2λ−1
+

KQHα

2λ−1
.

Game G3,b: In this game, we change how the final signatures are computed.
Specifically, suppose that the user oracle does not abort due to the con-
dition e (s̄, g2) �= ∏K

i=1 e
(
ci,Ji

, pki,2

)
and does not abort due to condition

e
(
pki,1, g2

) �= e
(
g1, pki,2

)
for any i ∈ [K]. Then, in previous games, the user ora-

cle first computed σ̄, and then executed ((pk′
i)i, σ̄

′) ← ReRa((pki,H(μi,Ji
))i, σ̄).

Rai-Choo! 767

The value σ̄′ is part of the final signature. In game G3,b, we instead let
the user oracle run a brute-force search to compute the unique σ̄′′ such that
e (σ̄′′, g2) =

∏K
i=1 e

(
H(μi,Ji

), pk′
i,2

)
. Then, we include σ̄′′ in the final signature

instead of σ̄′. We claim that this does not change the view of A. To see this, first
note that we did not change any verification or abort condition of the user ora-
cles. Therefore, we can first consider the case where one of the user oracles locally
outputs ⊥. In this case, A gets ⊥,⊥ as its final input in both G2,b and G3,b.
It remains to analyze the case where both user oracles do not abort. We claim
that σ̄′ and σ̄′′ are the same. To see this, assume e (s̄, g2) =

∏K
i=1 e

(
ci,Ji

, pki,2

)
,

and multiply both sides by
∏K

i=1 e
(
pk

−αi,Ji
i,1 , g2

)
. We obtain

e (s̄, g2) ·
K∏

i=1

e
(
pk

−αi,Ji
i,1 , g2

)
=

K∏

i=1

e
(
ci,Ji

, pki,2

) ·
K∏

i=1

e
(
pk

−αi,Ji
i,1 , g2

)

=⇒ e

(

s̄ ·
K∏

i=1

pk
−αi,Ji
i,1 , g2

)

=
K∏

i=1

e
(
ci,Ji

, pki,2

) · e
(
g

−αi,Ji
1 , pki,2

)

=⇒ e (σ̄, g2) =
K∏

i=1

e
(
H(μi,Ji

), pki,2

)
,

where we used e
(
pki,1, g2

)
= e

(
g1, pki,2

)
for all i ∈ [K] on the right-hand side.

Using the definition of algorithm ReRa, it is easy to see that this implies

e (σ̄′, g2) =
K∏

i=1

e
(
H(μi,Ji

), pk′
i,2

)
.

By definition, σ̄′′ satisfies the same equation. As their is a unique solution to
this equation for given pk′

i,2 and μi,Ji
, i ∈ [K], we see that σ̄′ = σ̄′′. We have

Pr [G2,b ⇒ 1] = Pr [G3,b ⇒ 1].

Game G4,b: We make another change to the computation of the final sig-
natures. Again, suppose that the user oracle does not abort. In this game
G4,b, we no longer run algorithm ReRa in this case. Instead, we compute the
pk′

i = (pk′
i,1, pk

′
i,2) as a fresh sharing via

sk′
i ←$Zp, pk′

i,1 := gski
1 , pk′

i,2 := gski
2 for i ∈ [K − 1],

pk′
K,1 := pk1 ·

K−1∏

i=1

pk′−1
i,1 , pk′

K,2 := pk2 ·
K−1∏

i=1

pk′−1
i,2 .

Note that the other output σ̄′ of algorithm ReRa is no longer needed due to the
previous change. To analyze this change, we first argue that the pk′

i,2 are uniquely
determined by the pk′

i,1. Namely, if the user oracle does not abort, we know that
e
(
pki,1, g2

)
= e

(
g1, pki,2

)
for all i ∈ [K], and e (pk1, g2) = e (g1, pk2). It is easy to

768 L. Hanzlik et al.

see that property is preserved by algorithm ReRa, i.e. e
(
pk′

i,1, g2
)
= e

(
g1, pk

′
i,2

)

for all i ∈ [K]. One can verify that our new definiton of the pk′
i,1, pk

′
i,2 also

satisfies this. It remains to analyze the distribution of the pk′
i,1. By Lemma 1

the distribution of the pk′
i,1 stays the same. This implies that

Pr [G3,b ⇒ 1] = Pr [G4,b ⇒ 1].

Game G5,b: In game G5,b, we first sample random vectors ĴL ←$ [N]K and
ĴR ←$ [N]K . Then, we let the game abort, if later we do not have ĴL = JL and
ĴR = JR. As the view of A is independent of ĴL, ĴR until a potential abort, we
have

Pr [G5,b ⇒ 1] =
1

N2K
· Pr [G4,b ⇒ 1].

Game G6,b: In game G6,b, we change how the values μi,j for i ∈ [K] and
j ∈ [N] \ {Ĵi} are computed. Recall that before, they were computed as μi,j =
Hμ(m, ϕi,j). In G6,b, we sample μi,j ←$ {0, 1}λ for i ∈ [K] and j ∈ [N] \ {Ĵi}
instead. We highlight that the game still samples the values ϕi,j to determine
when it has to abort according to G1,b. Due to the changes introduced in G1,b

and G5,b, we can assume that Ĵ = J and A never queries Hμ(m, ϕi,j), and
therefore this change does not influence the view of A. We have

Pr [G5,b ⇒ 1] = Pr [G6,b ⇒ 1].

Game G7,b: In game G7,b, we change how the values αi,Ĵi
and ,i,Ĵi

are computed
for all i ∈ [K]. Concretely, in this game, αi,Ĵi

is sampled uniformly at random as
αi,Ĵi

←$Zp. Further, ,i,Ĵi
←$ {0, 1}λ is sampled uniformly at random. Assuming

that the game does not abort, we argue that the view of A does not change.
This follows directly from the changes in G5,b and G2,b. Namely, we can assume
that Ĵ = J and that A never makes a query Hr(ri,Ĵi

). We have

Pr [G6,b ⇒ 1] = Pr [G7,b ⇒ 1].

Game G8,b: In game G8,b, we change how the values ci,Ĵi
for i ∈ [K] are

computed. First, recall that in the previous games, these are computed as
ci,Ĵi

= H(μi,Ĵi
) · g

αi,Ĵi
1 . Now, we sample it at random using ci,Ĵi

←$G1. We
argue indistinguishability as follows. Due to the change introduced in G5,b, we
can assume that Ĵ = J. Then, we know that in this case αi,Ĵi

is only used to
define ci,Ĵi

and nowhere else. In particular, it is not used to derive the final
signatures from the interaction, due to the change introduced in G3,b, and it is
not used to define ,i,Ĵi

due to the change in G7,b. As αi,Ĵi
is sampled uniformly

at random due to the change in G7,b, we know that ci,Ĵi
is distributed uniformly

at random in G7,b. This shows that

Pr [G7,b ⇒ 1] = Pr [G8,b ⇒ 1].

Rai-Choo! 769

Finally, it can be observed that the view of A does not depend on the bit
b anymore. This is because the messages m0,m1 are not used in the user ora-
cles. Instead, the user oracles use random μi,j , independent of the messages,
for all opened sessions j �= Ji, and the final signatures σ0, σ1 that A gets are
computed using brute-force independent of the interactions, assuming that both
interactions accept. This shows that

Pr [G8,0 ⇒ 1] = Pr [G8,1 ⇒ 1].

To conclude, we upper bound AdvblindA,BS(λ) = |Pr [G0,0 ⇒ 1] − Pr [G0,1 ⇒ 1]| by

|Pr [G4,0 ⇒ 1] − Pr [G4,1 ⇒ 1]| + 2
(

KNQHμ

2λ−1
+

KQHr

2λ−1
+

KQHα

2λ−1

)

= N2K |Pr [G5,0 ⇒ 1] − Pr [G5,1 ⇒ 1]| + KNQHμ

2λ−2
+

KQHr

2λ−2
+

KQHα

2λ−2

= N2K |Pr [G8,0 ⇒ 1] − Pr [G8,1 ⇒ 1]| + KNQHμ

2λ−2
+

KQHr

2λ−2
+

KQHα

2λ−2

=
KNQHμ

2λ−2
+

KQHr

2λ−2
+

KQHα

2λ−2
.

�
Theorem 2. Let Hr,Hμ : {0, 1}∗ → {0, 1}λ, and Hcc : {0, 1}∗ → [N]K , and H :
{0, 1}∗ → G be random oracles. If CDH assumption holds relative to PGGen,
then BSR is one-more unforgeable.

Concretely, for any polynomial � and any PPT algorithm A that makes at
most QHcc

, QHr , QHμ
, QH queries to Hcc,Hr,Hμ,H respectively, there is a PPT

algorithm B with T(B) ≈ T(A) and

Adv�-OMUF
A,BSR

(λ) ≤
Q2

Hμ
+ Q2

Hr
+ QHrQHcc

+ QHQHμ

2λ
+

�

NK

+ 4� · AdvCDH
B,PGGen(λ).

Proof. We set BS := BSR and let A be an adversary against the one-more
unforgeability of BS. We show the statement by presenting a sequence of games.
Before we go into detail, we explain the overall strategy of the proof. In our final
step, we give a reduction that breaks the CDH assumption. This reduction works
similar to the reduction for the BLS signature scheme [8]. Namely, it embeds one
part of the CDH instance in the public key, and one part in some of the random
oracle queries for oracle H. In the first part of our proof, we prepare simulation
of the signer oracle without using the secret key. Here, the strategy is to extract
the users randomness using the cut-and-choose technique. With overwhelming
probability, in a fixed interaction, we can extract the randomness for one of the
K instances, say instance i∗. Then, we compute the public key shares pki in a
way that allows us to know all corresponding secret keys except ski∗ . For instance

770 L. Hanzlik et al.

i∗, we can simulate the signing oracle by programming random oracle H. In the
second part of our proof, we prepare the extraction of the CDH solution from the
forgery that A returns. Here, it is essential that the scheme uses random oracle
Hμ to compute commitments μi,j . This allows us to embed the part of the CDH
input in H in a consistent way. We will now proceed more formally.
Game G0: Game G0 is the real one-more unforgeability game, i.e. G0 :=
�-OMUFA

BS. Let us recall this game. First, the game samples (pk, sk) ← Gen(1λ).
Then, A is executed on input pk, and gets concurrent access to signer oracle O,
simulating S(sk). Additionally, A gets access to random oracles H,Hμ,Hr,Hcc.
These are simulated by the game in the standard lazy way. Finally, A outputs
pairs (m1, σ1), . . . , (mk, σk). Denote the number of completed interactions (i.e.
interactions in which O sent s̄ to A) by �. If all mi are distinct, all σi are valid sig-
natures for mi with respect to pk, and k > �, the game outputs 1. By definition,
we have

Adv�-OMUF
A,BS (λ) = Pr [G0 ⇒ 1].

Game G1: Game G1 is as G0, but it aborts if a collision for one of the random
oracles Hr,Hμ occurs. More precisely, let ∗ ∈ {r, μ} and consider a query H∗(x)
for which the hash value is not yet defined. The game samples H∗(x) as in game
G0. Then, the game aborts if there is another x′ �= x such that H∗(x′) is already
defined and H∗(x) = H∗(x′). As the outputs of H∗ are sampled uniformly from
{0, 1}λ, we can use a union bound over all pairs of queries and get

|Pr [G0 ⇒ 1] − Pr [G1 ⇒ 1]| ≤
Q2

Hμ

2λ
+

Q2
Hr

2λ
.

Game G2: Game G2 is as game G1, but we introduce a bad event and let the
game abort if this bad event occurs. Concretely, consider any fixed query to oracle
Hcc of the form Hcc(, , c) = J for ,= (,1,1 , . . . , ,K,N) and c = (c1,1, . . . , cK,N).
For such queries and all (i, j) ∈ [K] × [N], the game now tries to extract values
r̄i,j such that ,i,j = Hr (̄ri,j). To do that, it searches through the random oracle
queries for random oracle Hr. For those (i, j) for which such a value can not be
extracted, we write r̄i,j = ⊥. Due to the change introduced in G1, there can
be at most one extracted value for each (i, j). The game now aborts, if in such
a query, there is some (i, j) ∈ [K] × [N] such that r̄i,j = ⊥, but later oracle
Hr is queried and returns ,i,j . Clearly, for a fixed pair of queries to Hcc and Hr,
respectively, this bad event can only with probability 1/2λ. By a union bound
we get

|Pr [G1 ⇒ 1] − Pr [G2 ⇒ 1]| ≤ QHrQHcc

2λ
.

Before we continue, we summarize what we established so far and introduce some
terminology. For that, we fix an interaction between A and the signer oracle O.
Consider the first message

open =
(

J,
(
(ri,j)j �=Ji

, ci,Ji
, ,i,Ji

)

i∈[K]

)

Rai-Choo! 771

that is sent by A. Recall that after receiving this message, algorithm Check uses
open to compute values ,= (,1,1 , . . . , ,K,N) and c = (c1,1, . . . , cK,N). Then, it
also checks if J = Hcc(, , c). Also, consider the values r̄i,j related to the query
Hcc(, , c), as defined in G2. Assuming Check outputs 1 (i.e. J = Hcc(, , c)), we
make two observations for any instance i ∈ [K].

1. If for some j ∈ [N] we have r̄i,j = ⊥, then j = Ji. This is due to the bad
event introduced in G2.

2. If for some j ∈ [N] we have r̄i,j = (μ, γ) �= ⊥ but ci,j �= H(μ) · gα
1 for

α := Hα(γ), then Ji = j. This is because we ruled out collisions for Hr in
G1. Namely, as there are no collisions, we know that r̄i,j = ri,j for all j �= Ji.
Therefore, ci,j = H(μ) · gα

1 by definition of Check.

If one of these two events occur for some i, we say that there is a successful cheat
in instance i. Note that the game can efficiently check if there is a successful cheat
in an instance once it received open. Also note that the values r̄i,j are fixed in the
moment A queries Hcc(, , c) for the first time. In particular, they are fixed before
A obtains any information about the uniformly random J = Hcc(, , c). Therefore,
using the two observations above, the probability of a successful cheat in instance
i is at most 1/N . Further, as the components of J are sampled independently,
the probability that there is a successful cheat in all K instances (in this fixed
interaction) is at most 1/NK .
Game G3: In game G3, we introduce another abort. Namely, the game aborts, if
in some interaction between A and the signer oracle O, there is a successful cheat
in every instance i ∈ [K], and that interaction is completed. By the discussion
above, we have

|Pr [G2 ⇒ 1] − Pr [G3 ⇒ 1]| ≤ �

NK
.

Game G4: In game G4, we change the way the signer oracle computes the
shares ski. Recall that before, these were computed as

ski ←$Zp for i ∈ [K − 1], skK := sk −
K−1∑

i=1

ski.

Then, the corresponding public key shares were computed as pki = (gski
1 , gski

2)
for all i ∈ [K]. In game G4, the game instead defines the ski after it received the
first message open from A in the following way. If Check outputs 0 or there is a
successful cheat in every instance, the game behaves as before (i.e. it aborts the
interaction, or the entire execution). Otherwise, let i∗ ∈ [K] be the first instance
in which there is no successful cheat. Then, the game computes

ski ←$Zp for i ∈ [K] \ {i∗}, ski∗ := sk −
∑

i∈[K]\{i∗}
ski.

The game defines pki for all i ∈ [K] as before. It is clear that this change is only
conceptual, as a uniformly random additive sharing of sk is computed in both
G3 and G4. Therefore, we have

Pr [G3 ⇒ 1] = Pr [G4 ⇒ 1].

772 L. Hanzlik et al.

Game G5: In game G5, we introduce an abort related to the random oracles
H and Hμ. Namely, the game aborts if the following occurs. The adversary A
first queries H(μ) for some μ ∈ {0, 1}∗, and after that a hash value Hμ(x) is
defined for some x ∈ {0, 1}∗, and we have Hμ(x) = μ. Clearly, once μ is fixed,
the probability that a previously undefined hash value Hμ(x) is equal to μ is at
most 1/2λ. Therefore, we can use a union bound over the random oracle queries
and get

|Pr [G4 ⇒ 1] − Pr [G5 ⇒ 1]| ≤ QHQHμ

2λ
.

Game G6: In this game, we introduce a purely conceptual change. To do that,
we introduce maps b[·] and b̂[·]. Then, on a query Hμ(m, ϕ) for which the hash
value is not yet defined, the game samples bit b̂[m] ∈ {0, 1} from a Bernoulli
distribution, such that the probability that b̂[m] = 1 is 1/(� + 1). Additionally,
on a query H(μ) for which the hash value is not yet defined, the game first
searches for a previous query (mμ, ϕ) to Hμ such that Hμ(mμ, ϕ) = μ. Then, it
sets b[μ] := b̂[mμ]. If no such query can be found, it sets b[μ] := 0. Note that due
to the change in G1, the game can find at most one such query and mμ is well
defined. The view of A does not change, and we have

Pr [G5 ⇒ 1] = Pr [G6 ⇒ 1].

Game G7: In this game, we introduce an initially empty set L and an abort
related to it. In each interaction between A and the signer oracle O, the game
simulates the oracle as in G6. Additionally, if the game has to provide the final
message (pki)

K−1
i=1 , s̄, then we know that Check output 1 and the game did not

abort. Therefore, there is at least one instance i∗ ∈ [K] such that A did not
cheat successfully in instance i∗. Fix the first such instance. This means that
the game could extract r̄i∗,Ji∗ = (μ, γ) before (see the discussion after G2). In
game G7, the game tries to extract mμ as defined in G6 from μ using Hμ, and
inserts (μ,mμ) into set L if it could extract. Also, the game aborts if b[μ] = 1.
Otherwise, it computes and sends (pki)

K−1
i=1 , s̄ as before. We highlight that the

size of L is at most the number of completed interactions �.
Next, consider the final output (m1, σ1), . . . , (mk, σk) of A, write σr =

((pkr,i, ϕr,i)K−1
i=1), ϕr,K , σ̄r), and set μr,i := Hμ(mr, ϕr,i) for all r ∈ [k], i ∈ [K].

If A is successful, we know that k > �. Therefore, by the pigeonhole principle,
there is at least one (r̃, ĩ) ∈ [k]× [K] such that (μr̃,̃i,mr̃) /∈ L. Game G7 finds the
first such μr̃,̃i, sets μ∗ := μr̃,̃i and aborts if b[μ∗] = 0. Note that we can assume
that b[μ∗] is defined, as verification of A’s output involves computing H(μ∗). For
the sake of analysis, G7 also appends further entries of the form (μ,mμ) to L
such that |L| = � and all entries in L ∪ {μ∗} have distinct components mμ. It
queries H(μ) for all (μ,mμ) ∈ L. Then, it aborts if for some (μ,mμ) ∈ L it holds
that b[μ] = 1.

To analyze the change we introduced, note that G6 and G7 only differ if
b[μ∗] = 0 or b[μ] = 1 for some (μ,mμ) ∈ L. This is because if the game could
not extract mμ in some interaction, then due to the changes in G5 and G6, we

Rai-Choo! 773

know that b[μ] = 0. The view of A is independent of these bits until a potential
abort occurs. This implies that

Pr [G7 ⇒ 1] = Pr [G6 ⇒ 1] · Pr [b[μ∗] = 1 ∧ ∀(μ,mμ) ∈ L : b[μ] = 0].

By definition of the bits b[·], and the change in G5, we can rewrite the latter
term in the product as

Pr
[
b̂[mr̃] = 1 ∧ ∀(μ,mμ) ∈ L : b̂[mμ] = 0

]
=

1
� + 1

(

1 − 1
� + 1

)�

=
1
�

(

1 − 1
� + 1

)�+1

≥ 1
4�

,

where we used the fact (1 − 1/x)x ≥ 1/4 for all x ≥ 2, and that all bits b̂[·] are
independent. Thus, we have

Pr [G7 ⇒ 1] ≥ 1
4�

· Pr [G6 ⇒ 1].

Game G8: In this game, we change how random oracle H is simulated. Namely,
in the beginning of the game, the game samples Y ←$G1 and initiates a map
t[·]. Then, on a query H(μ) for which the hash value is not yet defined, the
game first determines bit b[μ] as before. Then, it samples t[μ]←$Zp and sets
H(μ) := Y b[μ] · g

t[μ]
1 . Clearly, all hash values are still uniformly random and

independent. Therefore, we have

Pr [G7 ⇒ 1] = Pr [G8 ⇒ 1].

Game G9: In this game, we change how the signing oracle computes public keys
(pki)i and the values si, i ∈ [K] used to compute the final message (pki)

K−1
i=1 , s̄.

Consider an interaction between A and the signer oracle and recall the definition
of the instance i∗ as in game G4. This is the first instance for which there is no
successful cheat in this interaction, i.e. r̄i∗,Ji∗ = (μ, γ) �= ⊥ could be extracted
and ci∗,Ji∗ = H(μ) · gα

1 for α := Hα(γ). In G9, the public keys pki = (pki,1, pki,2)
are computed via

pki,1 = gski
1 for i ∈ [K] \ {i∗}, pki∗,1 := pk1 ·

∏

i∈[K]\{i∗}
pk−1

i,1 ,

pki,2 = gski
2 for i ∈ [K] \ {i∗}, pki∗,2 := pk2 ·

∏

i∈[K]\{i∗}
pk−1

i,2 .

Further, due to the aborts introduced in previous games, we know that the
game only has to send (pki)

K−1
i=1 , s̄ if i∗ is defined and b[μ] = 0, where μ is as

above. In this case, game G8 would compute

si∗ = cski∗
i∗,Ji∗ = H(μ)ski∗ · gα·ski∗

1 =
(
Y b[μ] · g

t[μ]
1

)ski∗
· pkα

i∗,1 = pk
α+t[μ]
i∗,1 .

774 L. Hanzlik et al.

Game G9 computes si∗ directly as pk
α+t[μ]
i∗,1 , and all other si, i �= i∗ as before

using ski. Both changes are only conceptual and allow the game to provide the
signer oracle without using the secret key sk at all. We have

Pr [G8 ⇒ 1] = Pr [G9 ⇒ 1].

Finally, we give a reduction B against the CDH assumption that is successful if
G9 outputs 1. We argue that

Pr [G9 ⇒ 1] ≤ AdvCDH
B,PGGen(λ).

The reduction B is as follows.

– Reduction B gets as input g1, g2, e, p, X1, Y ∈ G1, and X2 ∈ G2. It sets
pk1 := X1, pk2 := X2 and uses Y as explained in G8.

– Reduction B simulates G9 for A. Note that it can do that efficiently, as sk is
not needed.

– When A terminates with its final output (m1, σ1), . . . , (mk, σk), the reduction
B writes σr = ((pkr,i, ϕr,i)K−1

i=1), ϕr,K , σ̄r), pkr,i = (pkr,i,1, pkr,i,2), sets μr,i :=
Hμ(mr, ϕr,i) for all r ∈ [k], i ∈ [K] and pkr,K,1 := pk1 · ∏K−1

i=1 pk−1
r,i,1 and

pkr,K,2 := pk2 · ∏K−1
i=1 pk−1

r,i,2 for all r ∈ [k]. It performs all checks as in G9.
If G9 outputs 1, we know that B defined μ∗ := μr̃,̃i as G9 does. Then, B
outputs

Z := σ̄r̃ ·
K∏

i=1

pk
−t[μr̃,i]
r̃,i,1 .

It is clear that B perfectly simulates G9 and the running time of B is dominated
by the running time of A. Thus, it remains to argue that if G9 outputs 1, the Z
is a valid CDH solution. To this end, assume that G9 outputs 1. It is sufficient
to show that e (Y,X2) = e (Z, g2).

First, note that due to the abort that we introduced in G5, we know that
for all i ∈ [K], the query Hμ(mr̃, ϕr̃,i) was made before bit b[μr̃,i] was defined.
Therefore, due to the change in G6, we obtain for all i ∈ [K]

b[μr̃,i] = b̂[mr̃] = b[μr̃,r̃] = b[μ∗] = 1.

Second, we know that we have
∏K

i=1 pkr̃,i,2 = X2, and by definition of the veri-
fication algorithm we have

e (σ̄r̃, g2) =
K∏

i=1

e
(
H(μr,i), pkr̃,i,2

)
=

K∏

i=1

e
(
Y · gt[μr̃,i], pkr̃,i,2

)

=
K∏

i=1

e
(
Y, pkr̃,i,2

) · e
(
pk

t[μr̃,i]
r̃,i,1 , g2

)
= e (Y,X2) · e

(
K∏

i=1

pk
t[μr̃,i]
r̃,i,1 , g2

)

.

Rai-Choo! 775

In the third equation we used e
(
pkr̃,i,1, g2

)
= e

(
g1, pkr̃,i,2

)
for all i ∈ [K]. This

implies that

e (Z, g2) = e

(

σ̄r̃ ·
K∏

i=1

pk
−t[μr̃,i]
r̃,i,1 , g2

)

= e (Y,X2) .

�

4 Extension: Partial Blindness and Batching

In this section, we present a batching technique for our blind signature scheme,
which leads to a significant efficiency improvement in terms of communication.
At the same time, we show how to make our scheme partially blind. We first give
an informal overview. In the second part of the section, we present the formal
model for batching (partially) blind signatures. Then, we present our scheme
and its analysis.

4.1 Overview

We give an overview of the extensions we present in this section. These cover
partial blindness, and batching to further improve the communication complex-
ity.

Partially Blind Signatures. Recall that a partially blind signature scheme
allows to sign messages with respect to some public information string info,
that the signer knows. This string acts as a form of domain separator. Namely,
one-more unforgeability now guarantees that the user can output at most �
valid message signature pairs with respect to any public information string info,
for which it interacted at most � times with the signer oracle. It turns out
that we can extend our blind signature scheme into a partially blind signature
scheme, by changing the definition of the values ci,j from ci,j = H(μi,j) · gαi,j

1 to
ci,j = H(info, μi,j) · g

αi,j

1 . Intuitively, the cut-and-choose technique now ensures
that the user uses the correct info to compute the ci,j ’s.

Batching. We show how we can batch multiple signing interactions. Namely,
we observe that if we sign multiple messages in one interaction, the (amortized)
communication complexity decreases. Batching has been subject of study for
other primitives, e.g. in oblivious transfer [9,30]. Let us briefly sketch how we
can apply batching to our blind signature scheme. For that, consider one signing
interaction in which a batch m1, . . . ,mL of L messages should be signed. Recall
that in our scheme, cut-and-choose ensured that there is an instance i∗ ∈ [K],
such that the user does not cheat successfully in instance i∗. Then, the purpose
of sending a fresh public key sharing pk1, . . . , pkK was to dynamically embed
the unknown share of the secret key in instance i∗. For this strategy, it is not
relevant that we cover one message per instance. Therefore we can use the same
public key sharing pk1, . . . , pkK , and the same cut-and-choose index for every
instance, leading to our batched scheme.

776 L. Hanzlik et al.

4.2 Model for Batched (Partially) Blind Signatures

In this section, we sketch the definition of batched (partially) blind signatures
and their security. For formal definitions, we refer to the full version [26]. The
reader should observe that batched partially blind signatures imply partially
blind signatures by fixing the batch size L = 1. Further, the partial blindness
can be lifted to standard blindness by fixing a default public information string.
We start with the syntax of batched partially blind signatures. Recall that in
partially blind signatures, the signer gets the public information string info, while
the user gets info and the message m. Here, we generalize the syntax of partially
blind signatures to the setting, where both user and signer get the batch size L
as input, and multiple pairs (infol,ml) are signed. This models that the batch
size is not fixed, but instead it can be chosen dynamically. More precisely, while
the syntax of key generation and verification is as for partially blind signatures,
an interaction between S and U can now be described as

(⊥, (σ1, . . . , σL)) ← 〈S(sk, L, (infol)l∈[L]),U(pk, L, (ml, infol)l∈[L]〉.
Completeness requires that for all l ∈ [L], it holds that Ver(pk, infol,ml, σl) = 1.

In terms of security, we require the same security guarantees, as if we just
run a normal (partially) blind signature scheme L times in parallel. We let the
adversary determine the batch size in each interaction separately. This leads to
a natural definition of batch one-more unforgeability.

As for unforgeability, blindness should give the same guarantees as if we just
run a normal (partially) blind signature scheme L times in parallel. Especially, it
should not be possible to tell if two signatures result from the same interaction
or not. In our security game, we let the malicious signer choose two batches of
(potentially different) sizes L0 and L1. The signer also points to one element for
each batch. Then, the game either swaps these two elements, or not, and the
signer has to distinguish these two cases. Via a hybrid argument, this implies
that the signer does not know which message is signed in which interaction.

4.3 Construction

As for BSR, we let PGGen(1λ) be a bilinear group generation algorithm that
outputs cyclic groups G1,G2 of prime order p with generators g1 ∈ G1, g2 ∈ G2,
and a non-degenerate pairing e : G1 × G2 → GT into some target group GT .
Again, we assume that these system parameters are known to all algorithms
and note that their correctness can be verified efficiently. Our scheme BPBSR =
(Gen,S,U,Ver) is parameterized by integers K = K(λ), N(λ) ∈ N, where we need
that N−K is negligible in λ. We assume that the space I contains bitstrings of
bounded length4. The scheme makes use of random oracles Hr,Hμ : {0, 1}∗ →
{0, 1}λ

,Hα : {0, 1}∗ → Zp,Hcc : {0, 1}∗ → [N]K , and H : {0, 1}∗ → G1.
We verbally describe the signature issuing protocol (S,U) and verification of

scheme BPBSR. Key generation (algorithm Gen) is exactly as in BSR.
4 This is without loss of generality, using a collision-resistant hash function.

Rai-Choo! 777

Signature Issuing. The interactive signature issuing protocol between algorithms
S(sk, L, (infol)l∈[L]) and U(pk, L, (ml, infol)l∈[L]) is given as follows.

1. User U does the following.
(a) Preparation. First, for each instance i ∈ [K] and session j ∈ [N], U

commits to all L messages via

ϕi,j,l ←$ {0, 1}λ
, μi,j,l := Hμ(ml, ϕi,j,l) for all (i, j, l) ∈ [K] × [N] × [L].

(b) Commitments. Next, for each instance i ∈ [K] and session j ∈ [N], U

samples a seed γi,j ←$ {0, 1}λ. It then defines

ri,j := (γi,j , μi,j,1, . . . , μi,j,L) , ,i,j := Hr(ri,j) for all (i, j) ∈ [K] × [N].

Then, U sets , := (,1,1 , . . . , ,K,N).
(c) Challenges. Now, U derives randomness αi,j,l and computes challenges

ci,j,l via αi,j,l := Hα(γi,j , l) and

ci,j,l := H(infol, μi,j,l) · g
αi,j,l

1 for all (i, j, l) ∈ [K] × [N] × [L].

Then, U sets c := (c1,1,1, . . . , cK,N,L).
(d) Cut-and-Choose. Next, U derives a cut-and-choose vector J ∈ [N]K as

J := Hcc(, , c). It then defines an opening

open :=
(

J,
(
(ri,j)j �=Ji

, (ci,Ji,l)l∈[L], ,i,Ji

)

i∈[K]

)

.

Finally, U sends open to S.
2. Signer S does the following.

(a) Key Sharing. First, S samples ski ←$Zp for i ∈ [K−1]. It computes skK :=
sk − ∑K−1

i=1 ski and pki := (pki,1, pki,2) := (gski
1 , gski

2) for all i ∈ [K].
(b) Cut-and-Choose Verification. To verify the opening, S runs algorithm

Check(L, (infol)l∈[L], open) (see Fig. 3). If this algorithm returns 0, S
aborts the interaction.

(c) Responses. For each instance i ∈ [K] and each l ∈ [L], S computes
responses si,l := cski

i,Ji,l
. Then, it aggregates them for each l ∈ [L] by

computing s̄l :=
∏K

i=1 si,l. Finally, S sends (pki)
K−1
i=1 , s̄1, . . . , s̄L to U.

3. User U does the following.
(a) Key Sharing Verification. First, U recomputes key pkK as pkK := (pkK,1,

pkK,2) for pkK,1 := pk1 ·∏K−1
i=1 pk−1

i,1 and pkK,2 := pk2 ·∏K−1
i=1 pk−1

i,2 . Next,
U checks validity of the pki by checking if

e
(
pki,1, g2

)
= e

(
g1, pki,2

)
for all i ∈ [K].

If any of these equations does not hold, U aborts the interaction.

778 L. Hanzlik et al.

(b) Response Verification. Then, U verifies the responses s̄l by checking

e (s̄l, g2) =
K∏

i=1

e
(
ci,Ji,l, pki,2

)
for all l ∈ [L].

If any of these equations does not hold, U aborts the interaction. Other-
wise, it computes

σ̄l := s̄l ·
K∏

i=1

pk
−αi,Ji,l

i,1 for all l ∈ [L].

(c) Key Rerandomization. Next, U computes rerandomized key sharings via

((pk′
i,l)i, σ̄

′
l) ← ReRa((pki,H(infol, μi,Ji,l))i, σ̄l) for all l ∈ [L].

It then defines signatures

σl := ((pk′
i,l, ϕi,Ji,l)

K−1
i=1 , ϕK,JK ,l, σ̄

′
l) for all l ∈ [L].

(d) Finally, U outputs the signatures σ1, . . . , σL.

Verification. The resulting signature σ := ((pki, ϕi)K−1
i=1), ϕK , σ̄) for a message

m and string info is verified by algorithm Ver(pk, info,m, σ) as follows:

1. Write pki = (pki,1, pki,2) for each i ∈ [K − 1].
2. Compute pkK,1 := pk1 · ∏K−1

i=1 pk−1
i,1 and pkK,2 := pk2 · ∏K−1

i=1 pk−1
i,2 .

3. If there is an i ∈ [K] with e
(
pki,1, g2

) �= e
(
g1, pki,2

)
, return 0.

4. For each instance i ∈ [K], compute μi := Hμ(m, ϕi).
5. Return 1 if and only if

e (σ̄, g2) =
K∏

i=1

e
(
H(info, μi), pki,2

)
.

4.4 Security Analysis

Completeness of the scheme follows by inspection. The proofs and concrete secu-
rity bounds for blindness and one-more unforgeability are almost identical to the
proofs of the corresponding theorems in Sect. 3. Due to space limitation, we post-
pone the formal analysis to the full version [26].

5 Concrete Parameters and Efficiency

In this section, we discuss concrete parameters and efficiency of our scheme.

Rai-Choo! 779

Alg Check

(
L, (infol)l∈[L], open =

(
J,

(
(ri,j)j �=Ji

, (ci,Ji,l)l∈[L], ,i,Ji

)

i∈[K]

))

01 for i ∈ [K] :
02 for j ∈ [N] \ {Ji} :
03 ,i,j := Hr(ri,j)
04 parse ri,j = (γi,j , μi,j,1, . . . , μi,j,L) ∈ ({0, 1}λ)L+1

05 for l ∈ [L] : αi,j,l := Hα(γi,j , l), ci,j,l := H(infol, μi,j,l) · g
αi,j,l

1

06 , := (,1,1 , . . . , ,K,N), c := (c1,1,1, . . . , cK,N,L)
07 if J �= Hcc(, , c) : return 0
08 return 1

Fig. 3. The algorithm Check used in the signature issuing protocol of batched blind
signature scheme BPBSR.

Instantiating Parameters. We instantiate our scheme over the BLS12-381 curve,
using SHA-256 as a hash function. It remains to determine appropriate choices
for parameters K and N . To do that, we first fix some choice of N and a bit
security level κ = 128. Then, we assume a maximum number of � = 230 signing
interactions with the same key. Following the security bound, we can now set
K := �(κ + log �)/logN� + 1. This approach leads to the instantiations

(I) K = 80, N = 4, (II) K = 54, N = 8, (III) K = 33, N = 32.

For these, we compute the sizes of signatures and communication in a Python
script (see the full version [26]). Our results are presented in Table 2.

Implementation. To demonstrate computational practicality, we prototypically
implemented our scheme in C++ using above parameter settings. Our imple-
mentation uses the MCL library5 and can be found at

https://github.com/b-wagn/Raichoo

Although our scheme is highly parallelizable, we did not implement any paral-
lelization. To evaluate the efficiency of our implementation, we determined the
average running time over 100 runs of the signing interaction (i.e. running U1,
then S, then U2), and the verification algorithm. For our tests, we used a Intel
Core i5-7200U processor @2,5GHz with 4 cores and 8 GB of RAM, running
Ubuntu 20.04.4 LTS 64-bit. Our results are presented in Table 2. In general, the
table shows a tradeoff between signature size, communication complexity, and
computational efficiency.

Concrete Bit Security. In contrast to [13], we compute our parameters using
standardized curves and hash functions instead of estimating parameters based
on the security loss. The reason for this is twofold. First, we want our numbers be
consistent with our implementation and therefore have to rely on standardized

5 See https://github.com/herumi/mcl.

https://github.com/b-wagn/Raichoo
https://github.com/herumi/mcl

780 L. Hanzlik et al.

components. Second, the estimations in [13] assume a generic mapping from the
bit security of CDH to the size of an appropriate group. This is not always given.
To discuss the effect of the security loss, we now assume all components are
roughly 128 bit secure. Then, the guaranteed security for our scheme is roughly
128 − log � = 98 bit. This is the same for the PI-Cut-Choo scheme [13], and the
standard BLS signature scheme [8].

References

1. Abe, M.: A secure three-move blind signature scheme for polynomially many signa-
tures. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 136–151.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_9

2. Abe, M., Okamoto, T.: Provably secure partially blind signatures. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 271–286. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44598-6_17

3. Agrawal, S., Kirshanova, E., Stehle, D., Yadav, A.: Can round-optimal lattice-
based blind signatures be practical? Cryptology ePrint Archive, Report 2021/1565
(2021). https://eprint.iacr.org/2021/1565

4. Baldimtsi, F., Lysyanskaya, A.: On the security of one-witness blind signature
schemes. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp.
82–99. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_5

5. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. J. Cryptol.
16(3), 185–215 (2003). https://doi.org/10.1007/s00145-002-0120-1

6. Benhamouda, F., Lepoint, T., Loss, J., Orrù, M., Raykova, M.: On the (in)security
of ROS. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS,
vol. 12696, pp. 33–53. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
77870-5_2

7. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-diffie-hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36288-6_3

8. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45682-1_30

9. Brakerski, Z., Branco, P., Döttling, N., Pu, S.: Batch-OT with optimal rate. In:
Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part II. LNCS, vol.
13276, pp. 157–186. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-
031-07085-3_6

10. Camenisch, J., Groß, T.: Efficient attributes for anonymous credentials. In: Ning,
P., Syverson, P.F., Jha, S. (eds.) ACM CCS 2008, pp. 345–356. ACM Press (2008).
https://doi.org/10.1145/1455770.1455814

11. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6_7

12. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000). https://doi.org/10.1007/s001459910006

https://doi.org/10.1007/3-540-44987-6_9
https://doi.org/10.1007/3-540-44598-6_17
https://eprint.iacr.org/2021/1565
https://doi.org/10.1007/978-3-642-42045-0_5
https://doi.org/10.1007/s00145-002-0120-1
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/978-3-031-07085-3_6
https://doi.org/10.1007/978-3-031-07085-3_6
https://doi.org/10.1145/1455770.1455814
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/s001459910006

Rai-Choo! 781

13. Chairattana-Apirom, R., Hanzlik, L., Loss, J., Lysyanskaya, A., Wagner, B.: PI-
cut-choo and friends: Compact blind signatures via parallel instance cut-and-choose
and more. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part III. LNCS, vol.
13509, pp. 3–31. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-
15982-4_1

14. Chatterjee, S., Hankerson, D., Knapp, E., Menezes, A.: Comparing two pairing-
based aggregate signature schemes. Cryptology ePrint Archive, Report 2009/060
(2009). https://eprint.iacr.org/2009/060

15. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203. Springer, Boston
(1983). https://doi.org/10.1007/978-1-4757-0602-4_18

16. del Pino, R., Katsumata, S.: A new framework for more efficient round-optimal
lattice-based (partially) blind signature via trapdoor sampling. In: Dodis, Y.,
Shrimpton, T. (eds.) CRYPTO 2022, Part II. LNCS, vol. 13508, pp. 306–336.
Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-15979-4_11

17. Fischlin, M.: Round-optimal composable blind signatures in the common reference
string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77.
Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_4

18. Fischlin, M., Schröder, D.: On the impossibility of three-move blind signature
schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 197–215.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_10

19. Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signatures
in the standard model. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9216, pp. 233–253. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48000-7_12

20. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33–62.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_2

21. Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind schnorr signatures and signed ElGa-
mal encryption in the algebraic group model. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12106, pp. 63–95. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45724-2_3

22. Garg, S., Gupta, D.: Efficient round optimal blind signatures. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 477–495. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_27

23. Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round optimal blind sig-
natures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630–648.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_36

24. Ghadafi, E.: Efficient round-optimal blind signatures in the standard model. In:
Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 455–473. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70972-7_26

25. Grontas, P., Pagourtzis, A., Zacharakis, A., Zhang, B.: Towards everlasting privacy
and efficient coercion resistance in remote electronic voting. In: Zohar, A., Eyal, I.,
Teague, V., Clark, J., Bracciali, A., Pintore, F., Sala, M. (eds.) FC 2018. LNCS,
vol. 10958, pp. 210–231. Springer, Heidelberg (2019). https://doi.org/10.1007/978-
3-662-58820-8_15

26. Hanzlik, L., Loss, J., Wagner, B.: Rai-choo! Evolving blind signatures to the next
level. Cryptology ePrint Archive, Report 2022/1350 (2022). https://eprint.iacr.
org/2022/1350

https://doi.org/10.1007/978-3-031-15982-4_1
https://doi.org/10.1007/978-3-031-15982-4_1
https://eprint.iacr.org/2009/060
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-3-031-15979-4_11
https://doi.org/10.1007/11818175_4
https://doi.org/10.1007/978-3-642-13190-5_10
https://doi.org/10.1007/978-3-662-48000-7_12
https://doi.org/10.1007/978-3-662-48000-7_12
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-030-45724-2_3
https://doi.org/10.1007/978-3-030-45724-2_3
https://doi.org/10.1007/978-3-642-55220-5_27
https://doi.org/10.1007/978-3-642-22792-9_36
https://doi.org/10.1007/978-3-319-70972-7_26
https://doi.org/10.1007/978-3-662-58820-8_15
https://doi.org/10.1007/978-3-662-58820-8_15
https://eprint.iacr.org/2022/1350
https://eprint.iacr.org/2022/1350

782 L. Hanzlik et al.

27. Hauck, E., Kiltz, E., Loss, J.: A modular treatment of blind signatures from iden-
tification schemes. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol.
11478, pp. 345–375. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17659-4_12

28. Hauck, E., Kiltz, E., Loss, J., Nguyen, N.K.: Lattice-based blind signatures, revis-
ited. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp.
500–529. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_18

29. Heilman, E., Baldimtsi, F., Goldberg, S.: Blindly signed contracts: anonymous on-
blockchain and off-blockchain bitcoin transactions. In: Clark, J., Meiklejohn, S.,
Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol.
9604, pp. 43–60. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
53357-4_4

30. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_9

31. Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In: Kaliski,
B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg
(1997). https://doi.org/10.1007/BFb0052233

32. Kastner, J., Loss, J., Xu, J.: On pairing-free blind signature schemes in the alge-
braic group model. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022,
Part II. LNCS, vol. 13178, pp. 468–497. Springer, Heidelberg (2022). https://doi.
org/10.1007/978-3-030-97131-1_16

33. Katz, J., Loss, J., Rosenberg, M.: Boosting the security of blind signature schemes.
In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 468–
492. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5_16

34. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp.
31–53. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_3

35. Okamoto, T.: Efficient blind and partially blind signatures without random oracles.
In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99. Springer,
Heidelberg (2006). https://doi.org/10.1007/11681878_5

36. Okamoto, T., Ohta, K.: Universal electronic cash. In: Feigenbaum, J. (ed.)
CRYPTO 1991. LNCS, vol. 576, pp. 324–337. Springer, Heidelberg (1992). https://
doi.org/10.1007/3-540-46766-1_27

37. Pass, R.: Limits of provable security from standard assumptions. In: Fortnow, L.,
Vadhan, S.P. (eds.) 43rd ACM STOC, pp. 109–118. ACM Press (2011). https://
doi.org/10.1145/1993636.1993652

38. Pointcheval, D.: Strengthened security for blind signatures. In: Nyberg, K. (ed.)
EUROCRYPT 1998. LNCS, vol. 1403, pp. 391–405. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0054141

39. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signa-
tures. J. Cryptol. 13(3), 361–396 (2000). https://doi.org/10.1007/s001450010003

40. Schnorr, C.P.: Security of blind discrete log signatures against interactive attacks.
In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229, pp. 1–12.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45600-7_1

41. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0_18

https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-030-56880-1_18
https://doi.org/10.1007/978-3-662-53357-4_4
https://doi.org/10.1007/978-3-662-53357-4_4
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/BFb0052233
https://doi.org/10.1007/978-3-030-97131-1_16
https://doi.org/10.1007/978-3-030-97131-1_16
https://doi.org/10.1007/978-3-030-92068-5_16
https://doi.org/10.1007/3-540-48071-4_3
https://doi.org/10.1007/11681878_5
https://doi.org/10.1007/3-540-46766-1_27
https://doi.org/10.1007/3-540-46766-1_27
https://doi.org/10.1145/1993636.1993652
https://doi.org/10.1145/1993636.1993652
https://doi.org/10.1007/BFb0054141
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/3-540-45600-7_1
https://doi.org/10.1007/3-540-69053-0_18

Rai-Choo! 783

42. Tessaro, S., Zhu, C.: Short pairing-free blind signatures with exponential security.
In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part II. LNCS,
vol. 13276, pp. 782–811. Springer, Heidelberg (2022). https://doi.org/10.1007/978-
3-031-07085-3_27

43. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45708-9_19

https://doi.org/10.1007/978-3-031-07085-3_27
https://doi.org/10.1007/978-3-031-07085-3_27
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/3-540-45708-9_19

Author Index

A
Aguilar-Melchor, Carlos 564
Albrecht, Martin R. 190

B
Banegas, Gustavo 310
Bartusek, James 35
Bennett, Huck 252
Boneh, Dan 507
Bonnetain, Xavier 221
Briaud, Pierre 391

C
Carozza, Eliana 532
Castryck, Wouter 423
Chailloux, André 221
Couteau, Geoffroy 532

D
Das, Dipayan 343
De Feo, Luca 659
Decru, Thomas 423
Dodis, Yevgeniy 157

E
Esser, Andre 360

F
Fouotsa, Tako Boris 282

G
Gama, Nicolas 564
Ganju, Atul 252
Garg, Sanjam 35
Gu, Yanqi 128
Guan, Jiaxin 507

H
Haller, Miro 190
Hanzlik, Lucjan 722, 753

Hesse, Julia 98
Howe, James 564
Huang, Zhengan 67
Hülsing, Andreas 564

J
Jain, Abhishek 35
Jarecki, Stanislaw 98, 128
Joseph, David 564
Jost, Daniel 157
Joux, Antoine 343, 532

K
Kesavan, Balachandar 157
Krämer, Juliane 310
Krawczyk, Hugo 98

L
Lai, Junzuo 67
Lange, Tanja 310
Leroux, Antonin 659
Longa, Patrick 659
Loss, Julian 753

M
Maino, Luciano 448
Marcedone, Antonio 157
Mareková, Lenka 190
Martindale, Chloe 448
Meyer, Michael 310
Moriya, Tomoki 282
Mu, Xin 67

O
Øygarden, Morten 391

P
Pan, Jiaxin 597
Panny, Lorenz 310, 448
Paterson, Kenneth G. 190

© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14008, pp. 785–786, 2023.
https://doi.org/10.1007/978-3-031-30589-4

https://doi.org/10.1007/978-3-031-30589-4

786 Author Index

Peetathawatchai, Pura 252
Petit, Christophe 282
Policharla, Guru-Vamsi 35
Pope, Giacomo 448

R
Reijnders, Krijn 310
Robert, Damien 472
Rösler, Paul 3

S
Santos, Bruno Freitas Dos 128
Schrottenloher, André 221
Shen, Yixin 221
Slamanig, Daniel 3
Sotáková, Jana 310
Stephens-Davidowitz, Noah 252
Striecks, Christoph 3

T
Tessaro, Stefano 628, 691
Trimoska, Monika 310

W
Wagner, Benedikt 597, 753
Weng, Jian 67
Wesolowski, Benjamin 448, 659
Wood, Christopher 98

Y
Yiu, Siu Ming 67
Yue, Dongze 564

Z
Zeng, Gongxian 67
Zhandry, Mark 507
Zhu, Chenzhi 628, 691
Zweydinger, Floyd 360

	 Preface
	 Organization
	 Contents – Part V
	Cryptographic Protocols
	Unique-Path Identity Based Encryption with Applications to Strongly Secure Messaging
	1 Introduction
	1.1 Technical Overview

	2 UPIBE Definition
	3 Bounded-Depth UPIBE from Bounded-Collusion IBE
	4 Unbounded-Depth UPIBE from Bounded-Depth HIBE
	4.1 Relaxing Assumptions: Adaptive UPIBE from Selective HIBE

	5 CCA Secure UPIBE
	5.1 Bounded-Depth UPIBE
	5.2 Unbounded-Depth UPIBE

	6 Key-Updatable KEM from UPIBE
	7 Evaluation
	References

	End-to-End Secure Messaging with Traceability Only for Illegal Content
	1 Introduction
	1.1 Summary of Our Contributions
	1.2 Our Approach
	1.3 Discussion
	1.4 Related Work

	2 Preliminaries
	2.1 Basic Cryptographic Primitives and Assumptions
	2.2 Non-interactive Arguments of Knowledge
	2.3 Groth-Sahai Proofs
	2.4 Cuckoo Hashing

	3 Set Pre-constrained Encryption
	3.1 Overview
	3.2 Definitions
	3.3 Construction

	4 SPC Group Signatures
	4.1 Definitions
	4.2 Generic Construction
	4.3 An Efficient Instantiation

	References

	Asymmetric Group Message Franking: Definitions and Constructions
	1 Introduction
	2 Preliminaries
	3 Asymmetric Group Message Franking
	3.1 AGMF Algorithms
	3.2 Security Notions for AGMF

	4 HPS-Based KEM Supporting Sigma Protocols
	4.1 Definition
	4.2 Construction

	5 Generic Construction of AGMF from HPS-KEM
	References

	Password-Authenticated TLS via OPAQUE and Post-Handshake Authentication*-9pt
	1 Introduction
	2 TLS-OPAQUE Specification
	3 Preliminaries
	4 Secure Channels with Binders
	4.1 TLS 1.3 as UC Secure Channel with Binder

	5 Post-Handshake Authentication
	5.1 Post-Handshake Authentication Model
	5.2 The Exported Authenticators Protocol

	6 Security of TLS-OPAQUE
	6.1 Password-Based Post-Handshake Authentication
	6.2 A UC Version of TLS-OPAQUE

	References

	Randomized Half-Ideal Cipher on Groups with Applications to UC (a)PAKE
	1 Introduction
	2 Preliminaries
	2.1 Single-Round Key Exchange (KE) Scheme
	2.2 Key Encapsulation Mechanism (KEM)

	3 Universally Composable Half-Ideal Cipher
	4 Half-Ideal Cipher Construction: Modified 2-Feistel
	5 Encrypted Key Exchange with Half-Ideal Cipher
	5.1 EKE with Half-Ideal Cipher: The KEM Version

	6 Applications of Half-Ideal Cipher to aPAKE
	References

	End-to-End Encrypted Zoom Meetings: Proving Security and Strengthening Liveness
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 Continuous Multi-Recipient KEM
	2.1 Syntax
	2.2 PKI
	2.3 Security Definition
	2.4 Zoom's Scheme

	3 Leader-Based GCKA with Liveness
	3.1 Syntax
	3.2 Security Definition
	3.3 Zoom's Scheme

	4 Improved Liveness
	4.1 Limitations of Zoom's Protocol
	4.2 Additional Interaction
	4.3 Leveraging Clock Synchronicity

	5 Meeting Stream Security
	6 Conclusions
	References

	Caveat Implementor! Key Recovery Attacks on MEGA
	1 Introduction
	1.1 Contributions
	1.2 Related Work
	1.3 Validation
	1.4 Disclosure

	2 Oracles
	2.1 Notation
	2.2 ECB Encryption Oracle
	2.3 Oracles from Decoding and Decryption Error Reports

	3 Attack Based on Modular Inverse Computation
	3.1 Block-Aligned, Small-Length Version
	3.2 Full-Length Version

	4 Attack Based on Small Subgroups
	4.1 Simplified Version
	4.2 Full Version

	5 Recovering the RSA Private Key
	6 Attacking Unpatched Clients
	7 Discussion and Future Work
	References

	Public-Key Cryptanalysis
	Finding Many Collisions via Reusable Quantum Walks
	1 Introduction
	2 Preliminaries
	2.1 Collision Search
	2.2 Quantum Algorithms
	2.3 Grover's Algorithm

	3 Quantum Walks for Collision Finding
	3.1 Definition and Example
	3.2 Details of the MNRS Framework
	3.3 Vertex-Coin Encoding

	4 A Chained Quantum Walk to Find Many Collisions
	4.1 New Algorithm
	4.2 Complexity Analysis

	5 Quantum Radix Trees and Extractions
	5.1 Logical Level
	5.2 Memory Representation
	5.3 Basic Operations
	5.4 Quantum Memory Allocators
	5.5 Higher-Level Operations for Collision Walks

	6 Searching for Many Collisions, in General
	7 Applications
	7.1 Improvements in Quantum Sieving for Solving the Shortest Vector Problem
	7.2 Solving the Limited Birthday Problem
	7.3 On Multicollision-Finding

	References

	Just How Hard Are Rotations of Zn? Algorithms and Cryptography with the Simplest Lattice
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	2.1 The Continuous and Discrete Gaussian Distributions and the Smoothing Parameter
	2.2 Lattice Problems
	2.3 Primitive Vectors and Vector Counting
	2.4 Probability

	3 How to Sample a Provably Secure Basis
	3.1 A Rotation-Invariant Generating Set to Basis Conversion Algorithm

	4 We Have an Encryption Scheme to Sell You
	4.1 Basic Security
	4.2 A Worst-Case to Average-Case Reduction (of a Sort)
	4.3 Putting Everything Together

	5 Reductions and Provable Algorithms
	5.1 The Main Reduction and Algorithms

	6 Experiments
	6.1 Experiments on Different Procedures for Generating Bases
	6.2 A Threshold Phenomenon
	6.3 Sieving Experiments

	References

	M-SIDH and MD-SIDH: Countering SIDH Attacks by Masking Information
	1 Introduction
	1.1 Outline

	2 The SIDH Protocol and Attacks
	2.1 The SIDH Protocol
	2.2 Cryptanalysis Attempts and Successes

	3 Masked SIDH Variants
	3.1 Masked Torsion Points Variant
	3.2 Masked-Degree Variant
	3.3 On the Effectiveness of the Countermeasures

	4 Security Analysis of the Masked Torsion Points Variant
	4.1 Guessing Enough Exact Torsion Point Information
	4.2 Polynomial Time Attack When E0 Has j-invariant =1728
	4.3 Generalization to Other Starting Curves
	4.4 Generalization Attempt to Unknown Endomorphism Rings

	5 Security Analysis of the Masked Degree Variant
	5.1 Recovering the Degree up to Squares
	5.2 On the Value of t
	5.3 Reduction to the M-SIDH Variant
	5.4 Reduction Impact: Porting M-SIDH Attacks to MD-SIDH

	6 Adaptive Attacks
	6.1 Fouotsa-Petit Adaptive Attack
	6.2 GPST Adaptive Attack

	7 Parameter Selection and Efficiency
	7.1 Choosing the Starting Curve E0
	7.2 Parameter Selection for M-SIDH
	7.3 Parameter Selection for MD-SIDH
	7.4 Preliminary Efficiency Analysis

	8 Conclusion and Perspectives
	A On the claims of ePrint 2022/1667
	B Using B-SIDH primes in M-SIDH
	References

	Disorientation Faults in CSIDH
	1 Introduction
	2 Background
	2.1 CSIDH
	2.2 Algorithmic Aspects

	3 Attack Scenario and Fault Model
	4 Exploiting Orientation Flips
	4.1 Implications of Flipping the Orientation of a Point
	4.2 Faulty Curves and Full-Order Points
	4.3 Missing Torsion: Faulty Curves and Points of Non-full Order
	4.4 Torsion Noise
	4.5 Connecting Curves from the Same Round
	4.6 Connecting the Components Gr,s
	4.7 Revealing the Private Key
	4.8 Complexity of Recovering the Secret a

	5 Case Studies: CSIDH and CTIDH
	5.1 Breaking CSIDH-512
	5.2 Breaking CTIDH-512
	5.3 Other Variants of CSIDH

	6 The pubcrawl Tool
	7 Hashed Version
	8 Exploiting the Twist to Allow Precomputation
	9 Countermeasures
	9.1 Protecting Square Checks Against Fault Attacks
	9.2 Implementation Costs

	References

	On the Hardness of the Finite Field Isomorphism Problem
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 Notations
	2.2 Reminders from Finite Field Theory
	2.3 Lattice Reduction
	2.4 Semantic Attack of an Encryption Scheme

	3 Finite Field Isomorphism Problem
	3.1 Previous Attacks

	4 Proposed Attack on the Decisional FFI Problem
	5 Proposed Semantic Attack on the Fully Homomorphic Encryption Scheme
	6 Proposed Attack on the Computational FFI Problem
	6.1 Lattice Reduction on Trace Lattice

	7 Conclusion
	References

	New Time-Memory Trade-Offs for Subset Sum – Improving ISD in Theory and Practice
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	3 The Generalized BCJ Algorithm
	4 New Subset Sum Trade-Off
	5 Application to Decoding Binary Linear Codes
	5.1 Improved ISD Trade-Offs
	5.2 Asymptotic Behavior of New Trade-Offs'
	5.3 Practical Results and Security Estimates

	A Generalization to Arbitrary Depth d
	References

	A New Algebraic Approach to the Regular Syndrome Decoding Problem and Implications for PCG Constructions
	1 Introduction
	2 Preliminaries
	2.1 Algebraic Background
	2.2 Solving Polynomial Systems

	3 Algebraic Modeling of the RSD Problem
	3.1 Deriving Hilbert Series
	3.2 Estimating the Witness Degree

	4 Hybrid Approach
	4.1 Guessing Error-Free Positions in All Blocks
	4.2 Restricting to f h Blocks
	4.3 Witness Degree for the Hybrid Approach
	4.4 Complexity with XL Wiedemann
	4.5 Rationale and Experimental Verification

	5 Application to Some Parameters
	5.1 Comments on the Results

	6 Asymptotic Analysis
	6.1 Solving at Low Degree
	6.2 Asymptotic Analysis of dreg

	A Proof of Theorems 1 and 2
	A.1 Proof of Theorem 1
	A.2 Proof of Theorem 2

	B Missing Details in Section4
	B.1 Regularity Assumption for Specialized Modeling 1
	B.2 XL Wiedemann Complexity for Modeling 2

	C Experiments
	C.1 Hilbert Series
	C.2 Witness Degree for Plain Systems

	D Proof of Proposition 6
	References

	An Efficient Key Recovery Attack on SIDH
	1 Introduction
	2 Impact and Non-impact on Isogeny-Based Cryptosystems
	3 Concrete Set-Up
	4 Decision via Kani's Reducibility Criterion
	4.1 (2a, 2a)-Subgroups Built from Torsion Point Information
	4.2 Kani's Theorem
	4.3 Decision Strategy

	5 Constructing and Evaluating the Auxiliary Isogeny
	5.1 Construction
	5.2 Evaluation: Case b
	5.3 Evaluation: General Case
	5.4 Away from the Endomorphism 2i

	6 Key Recovery Algorithm: Basic Version
	6.1 Iteration
	6.2 Step Sizes
	6.3 Rephrasing in Terms of Bob's Secret Key
	6.4 Walking Backwards

	7 Speed-Ups
	7.1 Take i as Large as Possible
	7.2 Use a Precomputed Table
	7.3 Extend Bob's Secret Isogeny Where Useful

	8 Computing Chains of (2, 2)-isogenies
	8.1 Gluing Elliptic Curves into a Jacobian
	8.2 Richelot Isogenies
	8.3 Split or Not?

	9 Magma Code
	10 Achieving (heuristic) Polynomial Runtime
	11 Generalizations
	11.1 Arbitrary Torsion
	11.2 Other Starting Curves with a Known Endomorphism Ring
	11.3 Base Curves Whose Endomorphism Ring is Unknown

	References

	A Direct Key Recovery Attack on SIDH
	1 Introduction
	2 The Core of the Attack
	2.1 Isogenies Between Abelian Surfaces
	2.2 The Algorithm
	2.3 Proof of Theorem 1

	3 The Case of Unknown Endomorphism Ring
	3.1 Heuristic Complexity of Algorithm 2
	3.2 Computing the Cofactor Isogeny
	3.3 Computing (,)-isogenies

	4 The Case of Known Endomorphism Ring
	5 Future Work
	References

	Breaking SIDH in Polynomial Time
	1 Introduction
	1.1 Result
	1.2 Outline
	1.3 Context
	1.4 Torsion Points Attacks
	1.5 Complexities of the Different Attacks
	1.6 Thanks

	2 Dimension 8 Attack
	3 Description of the Dimension 2g Attack
	3.1 N-isogenies
	3.2 Isogeny Diamonds
	3.3 Description of the Attack

	4 Dimension 4 Attack
	4.1 Parameter Selection

	5 Dimension 2 Attack
	6 Parameter Tweaks
	6.1 Constructing a Basis of the e-torsion of E
	6.2 Building a Smooth Isogeny on a Supersingular Elliptic Curve E/Fp2
	6.3 Recovering a NAe-isogeny from Its Action on the NA-torsion
	6.4 Recovering a NA2-isogeny from Its Action on the NA-torsion

	7 Open Problem
	References

	Signature Schemes
	A Lower Bound on the Length of Signatures Based on Group Actions and Generic Isogenies
	1 Introduction
	1.1 Our Results
	1.2 Discussion
	1.3 Technical Overview

	2 Preliminaries
	2.1 Group Actions
	2.2 ID Protocols Using a Group Action Oracle

	3 The Lower Bound
	3.1 The Main Theorem
	3.2 Normal Form Protocols
	3.3 The Transcript Graph
	3.4 Respecting Verifiers
	3.5 Guessing Provers
	3.6 Finishing the Proof of Theorem 3.1

	4 Extensions
	4.1 Direct Sampling
	4.2 Black Box Graph Actions
	4.3 A Fully Idealized Graph Action

	References

	Short Signatures from Regular Syndrome Decoding in the Head
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 Syndrome Decoding Problems
	2.2 Honest-Verifier Zero-Knowledge Arguments of Knowledge
	2.3 The MPC-in-the-Head Paradigm

	3 Technical Overview
	3.1 Our Template Zero-Knowledge Proof
	3.2 Concrete Instantiation for Regular Syndrome Decoding
	3.3 Combinatorial Analysis
	3.4 Cryptanalysis of RSD

	4 Zero-Knowledge Proof for Regular Syndrome Decoding
	4.1 Optimizations
	4.2 Security Analysis
	4.3 Communication

	5 A Signature Scheme from Regular Syndrome Decoding
	5.1 Description of the Signature Scheme
	5.2 Parameters Selection Process

	References

	The Return of the SDitH
	1 Introduction
	1.1 Contributions

	2 Preliminaries
	2.1 Basic Cryptographic Definitions and Lemmas
	2.2 Zero-Knowledge Proofs
	2.3 Commitments
	2.4 Additive Secret Sharing and Computing on Shares
	2.5 MPC-in-the-Head Paradigm
	2.6 Syndrome Decoding
	2.7 Syndrome Decoding in the Head

	3 Batch MPCitH on a Hypercube for ZK Proofs
	3.1 High-Level Description
	3.2 Leaf Witness Share Generation
	3.3 Leaf Witness Shares on a Hypercube
	3.4 Main Party Witness Shares
	3.5 Proofs of Security

	4 A Signature Scheme Based on Syndrome Decoding with Hypercube-MPCitH
	5 Performance and Analysis
	5.1 Comparing Code-Based Zero-Knowledge Protocols
	5.2 Parameter Selection
	5.3 Implementation

	References

	Chopsticks: Fork-Free Two-Round Multi-signatures from Non-interactive Assumptions
	1 Introduction
	1.1 Our Contribution
	1.2 Concurrent Work
	1.3 Technical Overview

	2 Preliminaries
	3 Constructions
	3.1 Preparation: Special Commitments
	3.2 Our Construction with Key Aggregation
	3.3 Our Tight Construction

	4 Instantiation
	4.1 Linear Function Family
	4.2 Commitment Scheme
	4.3 Efficiency

	References

	Threshold and Multi-signature Schemes from Linear Hash Functions
	1 Introduction
	1.1 DL-Based Instantiations
	1.2 RSA-Based Instantiation

	2 Preliminaries
	2.1 Notations
	2.2 Basic Algebra

	3 Algebraic One-More Preimage Resistance
	3.1 Linear Hash Functions
	3.2 Algebraic One-More Preimage Resistance

	4 Schemes Based on Linear Hash Functions
	4.1 Multi-signatures
	4.2 Threshold Signatures

	5 Instantiations
	5.1 Instantiations from the Discrete Logarithm Problem
	5.2 Instantiations from the RSA Problem
	5.3 Multi-signatures from RSA
	5.4 Threshold Signatures from RSA

	References

	New Algorithms for the Deuring Correspondence
	1 Introduction
	1.1 Technical Overview

	2 Preliminaries
	2.1 Mathematical Background on the Deuring Correspondence
	2.2 The SQISign Protocol
	2.3 Algorithms from Previous Works

	3 Solving Norm Equations Inside Maximal Orders
	3.1 Special Extremal Order Case: Exploiting the Full Order
	3.2 Norm Equations in Generic Maximal Orders: The Algorithm

	4 A New Algorithm for Ideal to Isogeny Translation
	4.1 Ideal to Isogeny Translation
	4.2 A Detailed Description of the Ideal Translation Algorithm.
	4.3 Handling Special Failure Cases

	5 Parameters and Implementation for SQISign
	5.1 Cost Estimate
	5.2 New Prime Search
	5.3 C Implementation

	6 Cryptanalysis
	6.1 An Attack on SQISign's Zero-Knowledge Assumption
	6.2 Further Analysis on the First Steps of

	7 Open Problems
	References

	Revisiting BBS Signatures
	1 Introduction
	1.1 Technical Overview

	2 Preliminaries
	3 New Proof for (Short) BBS Signatures
	3.1 Description and Implementation Details
	3.2 Security Analysis
	3.3 Proof of Theorem 1
	3.4 Proof of Lemma 1
	3.5 Proof of Lemma 4

	4 Tighter Proofs for BBS in the AGM
	4.1 Proof of Theorem 2

	5 Efficient Proofs of Knowledge for BBS Signatures
	5.1 Proofs of Knowledge for Signatures
	5.2 Protocols

	6 Signatures for Group Elements and Blind Issuance
	References

	Non-interactive Blind Signatures for Random Messages
	1 Introduction
	2 Preliminaries
	2.1 Notation, Bilinear Groups and Assumptions
	2.2 Signature Schemes
	2.3 Dual-Mode Witness Indistinguishable Proofs
	2.4 Verifiable Random Function ch25FOCS:MicRabVad99
	2.5 Structure-Preserving Signatures of Equivalence Classes
	2.6 Tag-Based Equivalence Class Signatures

	3 Non-interactive Blind Signatures (NIBS)
	4 Tagged NIBS
	5 SPS-EQ Construction of NIBS
	5.1 Tagged NIBS from TBEQ
	5.2 Discussion

	6 Generic Construction
	7 Conclusions
	References

	Rai-Choo! Evolving Blind Signatures to the Next Level
	1 Introduction
	1.1 Background and Limitations of Existing Constructions
	1.2 Our Contribution
	1.3 Technical Overview
	1.4 More on Related Work

	2 Preliminaries
	3 Our Blind Signature Scheme
	3.1 Construction
	3.2 Security Analysis

	4 Extension: Partial Blindness and Batching
	4.1 Overview
	4.2 Model for Batched (Partially) Blind Signatures
	4.3 Construction
	4.4 Security Analysis

	5 Concrete Parameters and Efficiency
	References

	Author Index

