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Abstract For the rational use of wood in the manufacture of new types of wooden 
structures, strengthening of nodes and interfaces, it is currently advisable to use new 
materials and technical solutions using polymer compositions. Of the greatest interest 
are structural elements and manufacturing technologies of wooden structures using 
modern composite polymer materials with the inclusion of carbon nanotubes (CNTs) 
in their composition, which leads to increased strength and rigidity, reduced material 
consumption and mounting weight of structures, reduces the effect of anisotropy of 
properties and defects of wood on the bearing capacity. 

Modification is carried out using a polymer composition based on dimethacrylic 
polyester with a nanostructured filler. In order to establish the mechanical properties 
of wood, experimental tests were carried out with a polymer composition without 
filler and with a nanostructured filler. The increase in strength properties during the 
modification of wood was 23.55%, and with the addition of carbon nanotubes— 
37.15%. Experimental studies have proved the promising possibility of using a 
polymer composition to modify wood in order to increase its strength properties. 

Keywords Stretching · Testing · Polymer composition ·Modification ·
Microstructure · Nanotubes 

1 Introduction 

Wood as a structural material is used in many industries and engineering. The combi-
nation of high physical and mechanical characteristics and low specific gravity of 
wood in comparison with metal and reinforced concrete determines its high demand 
in construction [1–3].
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Coniferous and deciduous wood consists of a different set of anatomical elements, 
for which their ordered fibrous structure is common. The mechanical function in 
coniferous wood is performed by tracheids, which are located mainly vertically in 
the growing tree and make up 90% of the volume of wood. The location of wood 
fibers along the axis of the tree causes a sharp difference in the mechanical properties 
of wood along and across the trunk. The elastic modulus of pine for the direction 
along the fibers is almost 40 times greater than across, and the compressive strength 
is 10 times, and the tensile strength is 20–30 times [4, 5]. 

One of the ways to increase the physical and mechanical properties of wood 
is its modification. Modification of wood should be considered as a process of 
directed change of physico-mechanical, thermophysical, tribotechnical, biochem-
ical properties of wood in relation to the operating conditions of products made of it 
[6–8]. 

Thermochemical modification is based on the impregnation of wood with 
synthetic monomers and oligomers, followed by polymerization and curing by a ther-
mocatalytic method [9–12]. The technological process of saturation of wood with a 
modifying composition is similar to impregnation with antiseptics and flame retar-
dants, carried out according to the vacuum-pressure or vacuum-pressure-vacuum 
method at a temperature of 20–30 °C. The amount of the absorbed impregnation 
composition is assumed to be equal to 30–80% of the mass of the original wood. 
The compositions of monomers and oligomers (phenol alcohols, furan-, acetate, 
methyl methacrylate, styrene methylmethacrylate, styrene vinyl acetate, polyester 
resins, styrene polyester resins, etc.) and polycondensation resins (phenol–formalde-
hyde, epoxy, furan, urea–formaldehyde, etc.) are used as modifiers, the conditional 
viscosity of which according to the viscometer VZ-4 should be 11–14 c at a temper-
ature of 20 °C [13–16]. The viability of the modifier should ensure a complete tech-
nological cycle of wood impregnation. The composition can be cured by radiation 
and thermocatalytic method [17–19]. 

The purpose of the study is to study the tensile strength properties of wood 
impregnated with a polymer composition. 

2 Methods 

The impregnation composition for wood modification is a polymer composition 
based on dimethacrylic polyester with a nanostructured filler. The main components 
that make up the polymer composition are: liquid resin, dry hardener (0.25 mass 
parts), surfactant (OP–10) in an amount (0.5 mass parts), carbon nanotubes (CNTs 
of the Taunit-M series) (0.5 mass parts). Mixing of the components was carried out 
using a PE-8300 top-drive agitator equipped with a built-in control unit. 

The modification was carried out in the following order: 

1. Drying of workpieces to a humidity of 5–7% for 2 h at (110 + 5) °C in a standard 
drying cabinet (SHS-100-01) at atmospheric pressure.
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2. Checking the moisture content of each workpiece with a wood moisture meter 
(Testo-616). If the tests are not breaded immediately after drying, then they should 
be stored for no more than 3 days in a tightly closed container, for example, in a 
desiccator) at a temperature of (18–25) °C and humidity control. 

3. The blanks are placed in a container for impregnation, fixed with a plate from 
floating the blanks and filled with an impregnating compound 5 cm above the 
plate. The container is transferred to a mobile unit for vacuum infusion MVS-20 
(−01). Slowly, preventing rapid foaming of the impregnating composition from 
the air available in the blanks, the air is pumped out to a residual pressure of minus 
(0.8–0.9) atm. The blanks are kept under vacuum until there is no visible release 
of even the smallest air bubbles in the layer of the impregnation composition 
above the blanks, then the vacuum is discharged (Fig. 1a). 

4. To achieve the effect of modification for full volume impregnation, it is recom-
mended to carry out additional exposure (soaking) already impregnated billets 
in the impregnation composition for up to 15 days. 

5. Visually control the degree of filling with the composition of the workpiece. At the 
end of impregnation, the workpiece should sink in the impregnation composition, 
and not float. The completeness of the impregnation of the workpiece is controlled 
visually by a cross-section. 

6. The samples are wrapped in aluminum foil and placed at atmospheric pressure 
in a drying cabinet with forced internal ventilation. The curing temperature is 
(95–105) °C. The holding time is determined by the type of wood, it is selected 
for the dimensions of the workpiece and is usually at least 1 h (Fig. 1b).

a) b) 

Fig. 1 Technology of wood modification: a vacuuming of samples; b polymerization of samples 
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The research was carried out on a RM-50 M bursting machine. The bursting 
machine with a pulsator is equipped with an electrohydraulic automated control 
system for the loading process based on a computer, which provides static and 
dynamic tensile tests of metal and alloy samples, concrete samples, wood and 
polymer materials in manual and semi-automatic modes. Loading of standard 
samples was carried out uniformly with a constant speed of movement of the loading 
head of the machine—4 mm/min [20–23]. 

Tensile tests were performed on standard samples (Fig. 2). 
15 samples were tested—3 series of samples of 5 pieces each. 1 series—samples 

without modification, 2 series—images with modification by polymer composite 
and 3 series with modification by polymer composition with nanostructured filler. 
According to the test results, statistical processing of experimental data was carried 
out. 

In order to clarify and confirm the mechanical properties of wood modified with 
polymer composites, optical and scanning microscopy of samples was performed 
[24–26].

a) b) 

Fig. 2 Tensile testing of modified wood samples: a a sample during testing in a bursting machine; 
b samples after destruction 
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3 Results and Discussions 

Optical microscopy was performed on a Raztek MRX9-D digital optical microscope 
(Russia), which allows visual observation of the microstructure of opaque objects 
(see Fig. 3). The results of optical microscopy, presented in Fig. 4, illustrate the 
distribution of the polymer composition in the micropores of wood. 

Figure 4b shows that the tracheids of wood, when modified with a polymer compo-
sition, are systematically filled with it. The introduction of carbon nanotubes into the 
composition contributes to an even deeper filling of the tracheids (Fig. 4c). Eventu-
ally, wood turns into a composite with a more ordered structure at the cellular level, 
the anisotropy of properties decreases [27–30].

a) b) 

Fig. 3 Microscopy of wood samples: a along the fibers; b across the fibers 

a) b) c) 

Fig. 4 Results of microscopy of wood samples across fibers: a sample without modification; 
b sample with modification of polymer composition; c a sample with a modified polymer 
composition with a carbon nanotube filler 
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The microstructure of wood was determined using scanning electron microscopy 
on a Quanta 200 3D microscope. At the molecular level, this method is the most 
suitable for determining the structure of wood [31–33]. The results of this study 
contribute to a better understanding of changes in the microstructure of wood when 
modifying the mechanism of changes in the strength properties of wood (Fig. 5 and 
6). 

The micrographs shown in Figs. 5 and 6 can be interpreted as follows: with 
the introduction of a polymer composition into the wood, the pores between the 
strands of the tracheids are filled. The introduction of nanotubes into the composition 
contributes to a more complete filling of all the pores present in the cells of wood. 
As a result of polymerization, the density of wood increases [34–38]. Before the 
start of the tests, the samples were weighed and their density was determined. The 
average density value for wood samples without modification was 482 kg/m3, and 
the polymer composition with nanostructured filler was 646 kg/m3. Thus, the density 
of wood during its polymerization increases by an average of 34%. The introduction

a) b) c) 

Fig. 5 Examination of samples along fibers by scanning microscopy: a sample without modifi-
cation; b sample with modification by polymer composition; c a sample with a modified polymer 
composition with a carbon nanotube filler 

a) b) c) 

Fig. 6 Examination of samples across fibers by scanning microscopy: a sample without modifi-
cation; b sample with modification by polymer composition; c a sample with a modified polymer 
composition with a carbon nanotube filler 
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Fig.7 Diagram of “Load-strain” for tensile wood samples: a samples without modification; 
b samples with modified polymer composition; c samples modified with a polymer composition 
with a nanostructured filler 

of nanotubes into the polymer composition practically does not increase the density 
of wood. 

Figure 7a shows the results of mechanical tensile tests of standard wood 
samples without polymerization, Fig. 7b—wood samples with a modified polymer 
composition, Fig. 7c—wood samples with a modified polymer composition with a 
nanostructured filler. 

The compressive and tensile strength of the samples was determined by the 
formula: 

σw = Pmax 

a · b (1) 

where Pmax—is the maximum load, kN; a · b—re the cross-sectional dimensions of 
the working part of the sample, mm. 

According to the test results, statistical processing of experimental data was 
carried out. 

The lowest strength value was determined by the formula: 

Rs = x − σ (2) 

where x—is the average strength value; σ —is the standard deviation. 
The accuracy index of the obtained average value is determined by the formula:
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Table 1 Comparative data on the mechanical properties of a polymer composition and a 
composition with a nanostructured filler 

Type of test samples Indicators 

Without modification With modification by 
polymer composition 

With modification by 
polymer composition 
with nanostructured 
filler 

Destructive load Pmax,kN 
Accuracy index P,% 

8.64 
+3.84 

10.68 
+1.39 

11.85 
+2.36 

Voltage σ,MPa 
Strength gain,% 

43.23 
− 

53.41 
23.55 

59.29 
37.15 

ξ = σx /x (3) 

where σx—is the average error of the average value. 
To summarize the test results obtained, Table 1 has been compiled. 

4 Conclusions 

Thus, based on the results of studies of the tensile strength of wood with a modified 
polymer composition with a carbon nanotube filler, the following conclusions can 
be drawn: 

1. Modification of wood with polymer composites has great prospects and can 
significantly increase the efficiency of the use of structural solutions of wooden 
structures. 

2. At the stage of destruction of samples, the stress level in wood is equal to 
23–24% of the temporary tensile strength along the fibers for wood modified 
with composite, and 37–38%—with the addition of carbon nanotube filler to the 
composite. The limiting state occurs at the moment of rupture of stretched fibers 
or by weakening in the form of various defects of the stretched zone. 

3. As a composite, it is recommended to use the so-called impregnating composi-
tion, which is a polymer composition based on dimethacrylic polyester with a 
nanostructured filler. The main components that make up the polymer composi-
tion are: liquid resin, dry hardener (0.25 mass parts), surfactant (OP–10) in an 
amount (0.5 mass parts), carbon nanotubes (CNTs of the Taunit-M series) (0.5 
mass parts). 

4. At the cellular level, the tracheids of wood, when modified with a polymer compo-
sition, are systematically filled with it. The introduction of carbon nanotubes into 
the composition contributes to an even deeper filling of the tracheids. A composite 
with an ordered structure is formed at the cellular level, which ultimately leads 
to a decrease in the anisotropy of mechanical properties.
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5. This study substantiates the theoretical possibility of using polymer compos-
ites with CNTs for thermochemical modification of wood, which gives a strong 
impetus to the development of composite building structures and their further 
promising implementation. 
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