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Abstract. We study the task of obliviously compressing a vector com-
prised of n ciphertexts of size ξ bits each, where at most t of the cor-
responding plaintexts are non-zero. This problem commonly features in
applications involving encrypted outsourced storages, such as searchable
encryption or oblivious message retrieval. We present two new algorithms
with provable worst-case guarantees, solving this problem by using only
homomorphic additions and multiplications by constants. Both of our
new constructions improve upon the state of the art asymptotically and
concretely.

Our first construction, based on sparse polynomials, is perfectly cor-
rect and the first to achieve an asymptotically optimal compression rate
by compressing the input vector into O(tξ) bits. Compression can be per-
formed homomorphically by performing O(n log n) homomorphic addi-
tions and multiplications by constants. The main drawback of this con-
struction is a decoding complexity of Ω(

√
n).

Our second construction is based on a novel variant of invertible
bloom lookup tables and is correct with probability 1 − 2−κ. It has a
slightly worse compression rate compared to our first construction as it
compresses the input vector into O(ξκt/ log t) bits, where κ ≥ log t.
In exchange, both compression and decompression of this construc-
tion are highly efficient. The compression complexity is dominated by
O(nκ/ log t) homomorphic additions and multiplications by constants.
The decompression complexity is dominated by O(κt/ log t) decryption
operations and equally many inversions of a pseudorandom permutation.

1 Introduction

It is well known that in general encrypted data cannot be compressed. In this
work, we study the task of compressing encrypted data, when a small amount

N. Fleischhacker—Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy - EXC 2092 CASA -
390781972.
K. G. Larsen—Supported by Independent Research Fund Denmark (DFF) Sapere Aude
Research Leader grant No. 9064-00068B.

c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14004, pp. 551–577, 2023.
https://doi.org/10.1007/978-3-031-30545-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30545-0_19&domain=pdf
http://orcid.org/0000-0002-2770-5444
http://orcid.org/0000-0001-8841-5929
http://orcid.org/0000-0002-7325-5261
https://doi.org/10.1007/978-3-031-30545-0_19


552 N. Fleischhacker et al.

of knowledge about the structure of the underlying plaintexts is known. More
concretely, we consider encryptions of vectors m = (m1, . . . , mn) where at most
t distinct coordinates in m are non-zero. In the context of outsourced storage
applications the task of compressing such vectors appears naturally.

In searchable encryption [3,26], we have a client Charlie, who holds a vector
(m1, . . . , mn) of data elements and wants to store it remotely on server Sally. To
hide the contents of the data elements, Charlie encrypts the data vector under a
secret key only she knows before sending it to Sally. Later on, Charlie may want
to search through the vector and retrieve all elements that match some secret
keyword. A series of recent works [1,6–8,18,27] have shown how to construct
searchable encryption schemes from fully homomorphic encryption [12,22] with
reasonable concrete efficiency. Conceptually, these approaches are comprised of
two major steps. First Charlie sends a short keyword-dependent hint to the
server, who uses it to obliviously transform the vector of ciphertexts (c1, . . . , cn)
into a new vector c̃ = (c̃1, . . . , c̃n), where for i ∈ {1, . . . , n} the ciphertext c̃i

is either an encryption of the original message mi in ci or zero, depending on
whether mi was matching the keyword of Charlie or not. In the second step, the
server obliviously compresses the vector c̃ under the assumption that no more
than t ciphertexts were matching the keyword and sends it back to Charlie.
If the assumption about the sparsity of the vector c̃ was correct, then Charlie
successfully decodes the vector and obtains the desired result. If the assumption
was not correct, then Charlie may not be able to retrieve the output.

The best compression algorithm used in this context is due to Choi et al. [8],
which compresses c̃ into a bit string of length Ω(tξ(κ + log n)), where ξ is the
length of one ciphertext entry. Under the assumption that the plaintext messages
are of a specific form1, the authors show that Charlie can correctly decode the
vector with probability 1 − 2−κ. Both compressing and decoding are computa-
tionally concretely efficient.

In the oblivious message retrieval setting, recently introduced by Liu and
Tromer [19], we have a server Sally, who keeps a public bulletin board, and mul-
tiple clients Charlie, Chucky, and Chris. Each of the clients can post encrypted
messages for any of the other clients on the bulletin board, but would like to
hide who is the recipient of which message. At some point, for example, Chucky
may want to retrieve all messages that are intended for him. Naively, he could
simply download all contents from Sally’s bulletin board, but this would incur a
large bandwidth overhead that is linear in the total number of messages stored
by Sally. Instead, the idea behind oblivious message retrieval is to let Chucky
generate a short identity-dependent hint that can be used by Sally to oblivi-
ously generate a short message that contains all relevant encrypted messages
for Chucky. Conceptually, the construction of Liu and Tromer follows the exact
same blueprint as the searchable encryption scheme outlined above. First Sally
obliviously filters her vector with the hint provided by Chucky and then she

1 This assumption can be removed at the cost of doubling the size of the compressed
vector and additionally assuming that one is not only given c̃, but also some auxiliary
vector ĉ as the output of the first step of their protocol.
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obliviously compresses the filtered vector under the assumption that not too
many messages are addressed to Chucky.

From an efficiency perspective, the solution of Liu and Tromer is rather
expensive. To compress, Sally performs Ω(tn + κt log t) homomorphic additions
and Ω(tn) homomorphic multiplications by constants, where κ is the correct-
ness error defined as in the searchable encryption example. Sally’s message to
Chucky is Ω(ξt + ξκt log t) bits long. To decode the result from Sally’s message,
Chucky needs to perform gaussian elimination on a matrix of size O(t) × O(t),
which incurs a computational overhead of Ω(t3). The authors provide heuristic
optimizations of their constructions that improve their performance significantly,
but unfortunately these come without asymptotic bounds or provable correctness
guarantees.

Taking a step back and looking at the two applications described above
from a more abstract point of view, one can recognize that both follow a very
similar blueprint. In the first step, both apply some vastly different techniques
to convert a vector of ciphertexts into a sparse vector containing only the desired
entries. In the second step, both works solve the identical problem. They both
need to compress a sparse homomorphically encrypted vector with nothing but
the knowledge of how many entries are non-zero, and in particular without any
knowledge about which entries are zero and which ones are not. How to compress
such a sparse encrypted vector is the topic of this work.

1.1 Our Contribution

We present two new algorithms, one based on polynomials and one based on algo-
rithmic hashing, for compressing sparse encrypted vectors, which both improve
upon the prior state of the art in terms of compression rate. Our algorithms
only rely on homomorphic additions and homomorphic multiplications by con-
stants. Both of our constructions have provable worst-case bounds for all their
parameters.

Compressing via Polynomials. Our first construction (Sect. 4) is perfectly correct
and is based on the concept of sparse polynomial interpolation. Its compression
rate has an asymptotically optimal dependence on t, as the compressed vector is
merely O(ξ · t) bits large. During compression one needs to perform O(n log n)
homomorphic additions and equally many homomorphic multiplications by con-
stants. The main bottleneck of this solution is the decompression complexity of
Õ(t · √

n), which depends on the length n of the original vector. Although the
compression rate is much better than that of previous works, such as those Choi
et al. [8] and that of Liu and Tromer [19], this construction suffers from a slower
decompression time.

Compressing via Hashing. Our second construction (Sect. 5) is a randomized
hashing based solution, which is correct with probability 1 − 2−κ, where the
probability is taken over the random coins of the compression algorithm. We
develop a novel data structure that is heavily inspired by the invertible bloom
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lookup tables of Goodrich and Mitzenmacher [14], but can be applied efficiently
to encrypted data. Both compression and decompression are highly efficient. Dur-
ing compression one needs to perform O(nκ/ log t) homomorphic additions and
multiplications by constants, where κ ≥ log t. During decompression the main
costs come from O(κt/ log t) many decryptions and equally many evaluations
of a pseudorandom permutation. In contrast to our polynomial based solution,
however, the compressed vector is O(ξκt/ log t) bits large. Nevertheless, this con-
struction outperforms all prior works in terms of compression rate, while having
either superior or comparable compression and decompression complexities.

1.2 Strawman Approach

When the sparse vector is encrypted using a fully homomorphic encryption
scheme, conceptually simple solutions to the compression problem exist. For
instance, Sally could just homomorphically sort all entries in the vector and
then only send back the t largest entries. Such solutions, however, require her
to perform multiplications of encrypted values. This is problematic for multi-
ple reasons. Multiplications of encrypted values are much more computationally
expensive than homomorphic additions or multiplications by constants. Since
Sally may potentially store a very large database, we would like to minimize her
computational overhead. Furthermore, if the data is encrypted using a somewhat
homomorphic encryption scheme, then the multiplicative depth of the circuit
that can be executed on the vector by Sally is bounded. Ideally, we would like
the compression step to be concretely efficient and not require the use of any
multiplications of encrypted values. For these reasons, we only focus on com-
pression algorithms that require homomorphic additions and multiplications by
constants in this work.

1.3 Additional Related Works

In addition to what has already been discussed above, there are several other
works that are related to ours. Johnson, Wagner, and Ramchandran [16] showed
that, assuming messages from a source with bounded entropy, it is possible
to compress one-time pad encryptions without knowledge of the encryption key
through a clever application of Slepian-Wolf coding [24]. Their result only applied
to linear stream ciphers but was later extended to block ciphers using certain
chaining modes by Klinc et al. [17]. These result do not apply to our setting,
where we focus on compressing vectors encrypted using more complex homo-
morphic public-key encryption schemes.

In the context of fully homomorphic encryption, multiple works [4,20,25]
have studied the question of how to optimize the encryption rate, i.e., the size of
the ciphertext relative to the size of the plaintext, by packing multiple plaintexts
into one ciphertext. These results are related, but do not allow for obliviously
“removing” irrelevant encryptions of zero.
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Another line of works [5,11,13] studies the compressed sensing problem,
where the task is to design a matrix A such that it is possible to recover, pos-
sibly high-dimensional, but sparse vectors x from a vector of measurements Ax
of small dimension. In general these works aim to recover an approximation of x
even when given somewhat noisy measurements. In our case, we are interested in
the simpler problem of exact recovery of a sparse vector. Our construction based
on polynomials can be seen as a matrix-vector multiplication. Looking ahead,
our matrix A will be a carefully chosen Vandermonde matrix that allows for
very efficient matrix vector multiplication. The server will multiply this public
matrix with the encrypted vector and send back the result that can be decoded
by the client. Our second construction, based on hashing, does not fall into this
category of algorithms.

2 Preliminaries

Notation. Given a possibly randomized function f : X → Y , we will sometimes
abuse notation and write f(x) := (f(x1), . . . , f(xn)) for x ∈ Xn. For a set X,
we write x ← X to denote the process of sampling a uniformly random element
x ∈ X. For a vector v ∈ Xn, we write vi to denote its i-th component. For a
matrix M ∈ Xn×m, we write M [i, j] to denote the cell in the i-th row and j-th
column. We write [n] to denote the set {1, . . . , n}. For a set Xn, we define the
scissor operator ✄(Xn) := {(x1, . . . , xn) ∈ Xn | xi �= xj ∀i, j ∈ [n]} to denote
the subset of Xn consisting only of those vectors with unique entries.

Definition 1 (Sparse Vector Representation). Let Fq be a field and let
a ∈ F

n
q be a vector. The sparse representation of a is the set sparse(a) := {(i, ai) |

ai �= 0}.

2.1 Homomorphic Encryption

Informally, a homomorphic encryption scheme allows for computing an encryp-
tion of f(m), when only given the description of f and an encryption of message
vector m. Throughout the paper, we assume that functions are represented as
circuits composed of addition and multiplication gates.

Definition 2. A homomorphic encryption scheme E is defined by a tuple of
PPT algorithms (Gen,Enc,Eval,Dec) that work as follows:

Gen(1λ): The key generation algorithm takes the security parameter 1λ as input
and returns a secret key sk and public key pk. The public key implicitly defines
a message space M and ciphertext space C. We denote the set of all public
keys as P.

Enc(pk,m): The encryption algorithm takes the public key pk and message m ∈
M as input and returns a ciphertext c ∈ C.

Eval(pk, f, c): The evaluation algorithm takes the public key pk, a function f :
Mn → Mm, and a vector c ∈ Cn of ciphertexts as input and returns a new
vector of ciphertexts c̃ ∈ Cm.
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Dec(sk, c): The deterministic decryption algorithm takes the secret key sk and
ciphertext c ∈ C as input and returns a message m ∈ M ∪ {⊥}.
Throughout the paper we assume that the ciphertext size is fixed and does not

increase through the use of the homomorphic evaluation algorithm. We extend
the definition of Enc and Dec to vectors and matrices of messages and ciphertexts
respectively, by applying them componentwise, i.e., for any matrix M ∈ Mn×m,
we have Enc(pk,M) = C with C ∈ Cn×m and C[i, j] = Enc(pk,M [i, j]) and
equivalently Dec(sk,C) = M ′ with M ′ ∈ Mn×m and M ′[i, j] = Dec(sk, C[i, j]).
Let E be an additively homomorphic encryption scheme with message space
M = Fq for some prime power q. And let f : F2

q → Fq, f(a, b) := a + b and let
gα : Fq → Fq, g(a) := α · a for any constant α ∈ Fq. For notational convenience
we write Eval(pk, f, (c1, c2)ᵀ) as c1 � c2 and Eval(pk, gα, c) as α � c with pk
being inferrable from context. For the sake of simplicity we restrict ourselves to
homomorphic encryption schemes with unique secret keys, i.e. for a given pk,
there exists at most one sk, such that (sk, pk) ← Gen(1λ). We write Gen−1(pk)
to denote the – not efficiently computable – unique secret key.

Later on in the paper, it will be convenient for us to talk about ciphertexts
that may not be fresh encryptions, but still allow for some homomorphic oper-
ations to be performed on them.

Definition 3 (Z-Validity). Let (Gen,Enc,Eval,Dec) be a homomorphic
encryption scheme, let Z be a class of circuits, and let pk be a public key. A
vector c of ciphertexts is Z-valid for pk, iff for all functions f ∈ Z it holds that
⊥ /∈ Dec(Gen−1(pk), c) and Dec(Gen−1(pk),Eval(pk, f, c) = f(Dec(sk, c)). We
denote by vld(Z, pk) the set of ciphertext vectors Z-valid for pk.

2.2 Polynomial Kung Fu

Let f(x) =
∑d

i=0 ai · xi ∈ Fq[x] be a polynomial with coefficients from a finite
field Fq. The degree of f is defined as the largest exponent in any monomial
with a non-zero coefficient. We say that f is s-sparse, if the number of non-zero
monomials is at most s or more formally if |{ai | ai �= 0 ∧ i ∈ [n]}| ≤ s. It is
well-known that any polynomial of degree at most d can be interpolated from
d+1 evaluation points. In this work, we will make use of the less well-known fact
that sparse polynomials can be interpolated from a number of evaluation points
that is linear in the polynomial’s sparsity. The first algorithms for interpolating
sparse univariate and multivariate polynomials were presented by Prony [21] and
Ben-Or and Tiwari [2] respectively. We will make use of the following result by
Huang and Gao [15] for sparse interpolation of univariate polynomials over finite
fields:

Theorem 4 ([15]). Let f ∈ Fq[x] be an s-sparse univariate polynomial of degree
at most d with coefficients from a finite field Fq. Let ω ∈ Fq be a primitive
2(s + 1)-th root of unity. There exists an algorithm Interpolate that takes eval-
uations f(ω0), . . . , f(ω2s+1) as input and returns the coefficients of f in sparse
representation in time Õ(s · √

d).
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The algorithm of Huang and Gao relies on a subroutine for finding discrete
logarithms. Using Shank’s algorithm [23] for this step, we obtain the computa-
tional complexity stated in the above theorem with deterministic performance
guarantees.

Another tool we will use is the Fast Fourier Transform, (re-)discovered by
Cooley and Tukey [9] which allows for evaluating a degree d polynomial given as
a list of coefficients at � ≤ d evaluation points simultaneously in time O(d log d).
More precisely, for a fixed set of evaluation points (ω0, . . . , ω�), one can represent
the circuit taking the polynomial coefficients (a0, . . . , ad) as input and returning
(f(ω0), . . . , f(ω�)) as a series of O(log d) alternating layers of O(d) addition or
multiplication by constants gates respectively.

Theorem 5 [Fast Fourier Transform]. Let d, � ∈ N with d ≥ �. Let f =
∑d

i=0 ai · xi ∈ Fq[x] be a polynomial of degree at most d with coefficients from a
finite field Fq. Let ω ∈ Fq be a primitive �-th root of unity. There exists an arith-
metic circuit FFT comprised of a series of O(log d) alternating layers of O(d)
addition or multiplication by constants gates respectively that takes (a0, . . . , ad)
as well as (ω0, . . . , ω�) as input and returns (f(ω0), . . . , f(ω�)).

2.3 Invertible Bloom Lookup Tables

An invertible Bloom lookup table (IBLT) is a data structure first introduced by
Goodrich and Mitzenmacher [14] that supports three operations called Insert,
Peel, and List. The insertion operations adds elements to the data structure, the
deletion operations removes them2 and the list operation recovers all currently
present elements with high probability, if not too many elements are present.

The data structure consists of two γ × 8t matrices C, the count matrix and
V the valueSum matrix. It further requires t-wise independent hash functions
hi : {0, 1}∗ → [8t] for i ∈ [γ]. Initially all values are set to 0. To insert an element
x into the data structure, we locate the cells Ci,hi(x) and Vi,hi(x) for i ∈ [γ]
and add 1 to each counter and x to each valueSum. To remove an element, we
perform the inverse operations. To list all elements currently present in (C, V ),
we repeatedly perform a peeling operation until (C, V ) is empty. The peeling
operation finds a cell with counter 1, adds that corresponding valueSum value
to the output list and deletes the element from (C, V ). The only way the list
operation may fail is if (C, V ) is not empty, but the peeling operation cannot
find any cell with counter 1. It has been shown by Goodrich and Mitzenmacher
that this probability decreases exponentially in γ log t. We formally describe the
algorithms in Fig. 1.

Theorem 6 ([14]). Let h1, . . . , hγ be t-wise independent hash functions, then
for any X = {x1, . . . , xt} it holds that

Pr
[
B := Insert((02)γ×8t,X) : List(B) �= X

] ≤ O(2−(γ−2) log t),

2 For the present discussion, we assume that only previously inserted elements are
deleted.
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Insert(B, X)

V := 0γ×8t

C := 0γ×8t

foreach (i, x) ∈ [γ] × X do

j := hi(x)

V [i, j] := V [i, j] + md

C [i, j] := C [i, j] + 1

return (C ,V )

List((C ,V ))

S := ∅
while ∃ (i∗, j∗) ∈ [γ] × [8t]. C [i∗, j∗] = 1 do

m := M ′[i∗, j∗]

S := S ∪ {m}
(C ,V ) := Peel((C ,V ), m)

return S

Peel((C ,V ), m)

foreach i ∈ [γ]

j := hi(m)

V ′[i, j] := V ′[i, j] − m

C [i, j] := C [i, j] − 1

return (C ,V )

Fig. 1. An invertible Bloom lookup table

where the probability is taken over the random choices of h1, . . . , hγ .

Remark 1. The construction of an IBLT can be modified to store tuples of values,
by maintaining multiple valueSum matrices, one for each component. As long as
one of the components remains unique among all inserted values, it is sufficient
to use this component as input to the has functions, without affecting Theorem
6. We will make use of this in our construction in Sect. 5.

3 Ciphertext Compression

In this section we formally define the concept of a ciphertext compression scheme
(Compress,Decompress). Intuitively, the compression algorithm takes the public
encryption key pk as well as a vector of ciphertexts c from some family Fpk of
ciphertext vectors as input and returns some compressed representation thereof.
The decompression algorithm gets the compressed representation as well as the
secret decryption key as input and should return the decryption of c.

Definition 7 (Ciphertext Compression Scheme). Let E = (Gen,Enc,
Eval,Dec) be a homomorphic public key encryption scheme with ciphertext size
ξ = ξ(λ). Let P be the public key space of E. For each pk ∈ P let Fpk be a
set of ciphertext vectors. A δ-compressing, (1 − ε)-correct ciphertext compres-
sion scheme for the family F := {Fpk | pk ∈ P} is a pair of PPT algorithms
(Compress,Decompress), such that for any (sk, pk) ← Gen(1λ) and any c ∈ Fpk

the output length of Compress(pk, c) is at most δξ|c| and it holds that

Pr[Decompress(sk,Compress(pk, c)) = sparse(Dec(sk, c))] = 1 − ε(λ),
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where the probability is taken over the random coins of the compression and
decompression algorithms.

Remark 2. Note, that a ciphertext compression scheme gives no guarantee what-
soever in the case where c /∈ Fpk.

4 Compression via Sparse Polynomials

In this section we present our first construction, which is based on the idea of
interpolating sparse polynomials. Given the right building blocks, the construc-
tion is conceptually very simple. We simply view the sparse encrypted vector
(c1, . . . , cn) as the coefficient representation of sparse polynomial. Using the Fast
Fourier Transform, we homomorphically evaluate this polynomial efficiently at
some sufficient number of points. These encrypted evaluations will constitute
the compression of the vector. To obtain the original vector during decompres-
sion, we simply decrypt the evaluation points and interpolate the corresponding
sparse polynomial.

Definition 8 (Fast Fourier Functions). The class of fast fourier functions
is the set of functions Z�

FFT = {f �
x | x ∈ F

�
q} with

f �
x : Fn

q → F
�
q, fx(a) := FFT(a,x).

Definition 9. (Z2(t+1)
FFT -Valid Low Hamming Weight Ciphertext Vec-

tors). Let E = (Gen,Enc,Eval,Dec) be a homomorphic public key encryption
scheme. For any pk ∈ P, let

FFFT
t,pk :=

{
c ∈ vld(Z2(t+1)

FFT , pk) | hw(Dec(Gen−1(pk), c)) < t
}
.

We then define the family of Z2(t+1)
FFT -valid ciphertext vectors with low hamming

weight as FFFT
t := {FFFT

t,pk | pk ∈ P}.

Compress(pk, c)

c̃ ← Eval
(
pk,FFT(·, (ω0, . . . , ω2t+1)), c

)

return c̃

Decompress(sk, c̃)

m ← Dec(sk, c̃)

S ← Interpolate(m)

return S

Fig. 2. A ciphertext compression scheme for FFFT
t based on sparse polynomials.

Here FFT(·, (ω0, . . . , ω2t+1)) refers to the circuit of the function f(ω0,...,ω2t+1) from

Definition 8, i.e., the FFT circuit with the hardcoded second input (ω0, . . . , ω2t+1).
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Theorem 10. Let E = (Gen,Enc,Eval,Dec) be an additively homomorphic
encryption scheme with message space M = Fq with ciphertext size ξ = ξ(λ). Let
n, t ∈ N be integers such that n < q and let ω ∈ Fq be a 2(t+1)-th primitive root
of unity. Then (Compress,Decompress) from Fig. 2 is a 2(t + 1)/n-compressing
perfectly correct ciphertext compression scheme for family FFFT

t .

Proof. Let c be an arbitrary, but fixed Z2(t+1)
FFT -valid ciphertext vector and let S

be an arbitrary vector in sparse representation. Due to the validity condition on
c we know that

Pr

⎡

⎢
⎣

c̃ ← Eval
(
pk,FFT

(·, (ω0, . . . , ω2t+1)
)
, c
)

m ← Dec(sk, c̃)
S = Interpolate(m)

⎤

⎥
⎦

= Pr

⎡

⎢
⎣

m ← Dec(sk, c)

m′ ← FFT
(
m, (ω0, . . . , ω2t+1)

)

S = Interpolate(m′)

⎤

⎥
⎦ .

Furthermore, the Z2(t+1)
FFT -validity of c tells us that Dec(sk, c) is a vector of ham-

ming weight at most t or, when viewed as a polynomial in coefficient represen-
tation, a t-sparse polynomial of degree at most n. From Theorem 4 it follows
this sparse polynomial can be correctly interpolated from its 2(t+1) evaluations
produced by FFT(Dec(sk, c), (ω0, . . . , ω2t+1)) and therefore

Interpolate(FFT(Dec(sk, c), (ω0, . . . , ω2t+1))) = sparse(Dec(sk, c)).

The output of Compress is a vector of 2(t + 1) ciphertexts of size ξ and thus the
scheme is 2(t + 1)/n compressing.

5 Compression via IBLTs

In this section we present our second construction, which is on a variant of invert-
ible Bloom lookup tables. Given a vector of ciphertexts c the idea is to homomor-
phically insert the corresponding non-zero plaintexts into an (encrypted) IBLT.
The encrypted IBLT would then constitute the compression of the vector.

This approach encounters two problems: First, the insertion operation of an
IBLT requires hashing the value to choose the cells to insert it in, which we
cannot do because we do not have access to the plaintext. Second, since we do
not know which of the ciphertexts correspond to a non-zero it is unclear how to
only insert those.

The first problem can be solved using Remark 1 by actually storing pairs
(d,md). Since the index d is both publically known and unique, we can rely on
only hashing d to derive the positions to insert the values.

The second problem is a bit trickier to solve. To build some intuition, we can
first consider an easier compression problem where in addition to c we are given
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an additional vector of ciphertexts h containing “zero hints”. I.e., hd decrypts
to 0 if ci decrypts to 0 and hd decrypts to 1, if cd decrypts to anything else.

The IBLT then gets initialized as three matrices, a count matrix C and two
valueSum matrices M and D with each cell containing an encryption of zero. To
insert the content of ciphertext cd into the IBLT, we can then for i ∈ [γ] compute
j := hi(d) and insert the value by setting C[i, j] := C � hd, M [i, j] := M � cd,
and D[i, j] := D � (d � hd).

Note that for any ciphertext corresponding to zero, this results in zero being
added to all entries, which is equivalent to not inserting the value at all. Decom-
pressing then involves decrypting all three matrices and using the List algorithm
to extract pairs (d,md) giving us a sparse representation of the plaintext vector
corresponding to c. By the correctness guarantee of an IBLT, this works as long
as not too many ciphertexts decrypt to a non-zero value.

However, actually getting such “zero hint” ciphertexts may not be feasible in
all scenarios, especially if the encryption scheme is only additively homomorphic.
This means we need to somehow simulate having a count matrix without these
zero hints.

The trick that we use is to choose a vector of random values k that we
will use to “recognize” cells that only contain a single message. We will still
initialize two matrices M and K but inserting into the IBLT is now done by
setting M [i, j] := M � cd, and K[i, j] := K � (kd � cd). Note now, that after
decryption, for any cell (i, j) that only contains a single value md, we have that
M [i, j] = md and K[i, j] = kd · md. By checking if K[i, j]/M [i, j] corresponds
to one of the values in k, we can thus recognize which cells contain only a single
value and which index it corresponds to, allowing us to peel the message from the
IBLT. In section we prove in a helpful lemma in Sect. 5.2 we prove that we can
bound the probability that this recognition procedure produces false positives.

There still remains the problem that simply using a random vector k and stor-
ing it, which would require O(n) storage and O(n) computation to recognize the
entries. To solve this issue we introduce the concept of wunderbar pseudorandom
vectors in Sect. 5.1, which allows us to store a compact O(λ) representation of a
pseudorandom vector k and recognition of vector entries in time O(polylog(n)).

5.1 Wunderbar Pseudorandom Vectors

The concept of a pseudorandom vector is conceptually similar to that of pseu-
dorandom sets introduced in [10], except that we do not require puncturability.
The idea is that it allows us to sample a short description of a long vector, which
is indistinguishable from a random vector with unique entries. Importantly, we
require that there exists an efficient algorithm that can recover the position of a
given entry in the vector in time independent of the vector length. Naively one
can always find the position in linear time in the vector length. This is, however,
not good enough for our application, which is why we require the pseudorandom
vector to be “wunderbar”. In particular, we want the description length of the
vector to be in O(λ) and getting individual entries as well as index recovery
should be possible in O(polylog(n)).



562 N. Fleischhacker et al.

Definition 11. A pseudorandom vector with index recovery for an efficiently
sampleable universe K = K(λ) consists of a triple of ppt algorithms (Sample,
Entry, Index) such that

Sample(1λ, n): The sampling algorithm takes as input the security parameter λ
and the vector length n in unary and outputs the description of a pseudoran-
dom vector s.

Entry(s, i): The deterministic retrieving algorithm takes as input a description s
and an index i ∈ [n] and outputs a value ki ∈ K.

Index(s, k): The deterministic index recovery algorithm takes as input a descrip-
tion s and a value k and outputs either an index i ∈ [n] or ⊥.

A pseudorandom vector with index recovery is correct, if for all vector lengths
n = poly(λ) and all seeds s ← Gen(1λ, 1n) it holds that:

1. For all indices i ∈ [n] it holds that Index(s,Entry(s, i)) = i.
2. For all all k∗ �∈ {Entry(s, i) | i ∈ [n]} it holds that Index(s, k∗) = ⊥.

The pseudorandom vector is wunderbar if the description of a vector has length
O(λ) and the runtime of Entry and Index is O(polylog(n)). A pseudorandom
vector is secure, if for all n = poly(λ) and all ppt algorithms A
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎢
⎢
⎣

s ← Sample(1λ, 1n),

k :=

⎛

⎜
⎝

Entry(s, 1)
...

Entry(s, n)

⎞

⎟
⎠

: A(k)

⎤

⎥
⎥
⎥
⎥
⎦

− Pr[k ← ✄(Kn) : A(k)]

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ negl(λ)

Remark 3. For ease of notation we define two algorithms DummySample and
DummyIndex that represent a dummy version of a pseudorandom vector with
index recovery. I.e., DummySample(1λ, n) simply samples k ← ✄(Kn) and
DummyIndex(k, k) performs an exhaustive search and returns i iff ki = k and ⊥
if none of them match. Using this notation, the above security definition can be
rewritten as
∣
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Pr

⎡

⎢
⎢
⎢
⎢
⎣

s ← Sample(1λ, 1n),

k :=

⎛

⎜
⎝

Entry(s, 1)
...

Entry(s, n)

⎞

⎟
⎠

: A(k)

⎤

⎥
⎥
⎥
⎥
⎦

− Pr[k ← DummySample(1λ, n) : A(k)]
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∣
∣
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∣

≤negl(λ)

Wunderbar Pseudorandom Vectors from Pseudorandom Permuations.
Let Fpm be a field such that m · log p� ≥ λ. We construct wunderbar pseudo-
random vectors over a subset K ⊆ Fpm from an arbitrary family of pseudo-
random permutations over F

λ
2 . To do so we need an efficiently computable and
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efficiently invertible injective function binToField mapping from F
λ
2 to Fpm . The

exact function is irrelevant, but for concreteness, we specify it in the following. Let
{0, 1} : [q] → F

�log q�
2 denote the function that maps an integer to its canonical

binary representation and let proj : F�log q�
2 → [q] be its inverse. Then we specify

binToField : Fλ
2 → Fpm binToField((b1, . . . , bλ)) :=

m−1∑

i=0

cix
i

where

ci :=
min{�λ

m�,λ−i�λ
m�}∑

j=1

2j−1bi� λ
m �+j .

We further specify the inverse function as

fieldToBin : Fpm → F
λ
2 ∪ {⊥}

fieldToBin(
m−1∑

i=0

cix
i) :=

{
⊥ if ∃ci. ci ≥ 2min{� λ

m �,λ−i� λ
m �}

(b1, . . . , bλ) otherwise

where
bi := bin

(
c�i/�λ/m��

)
i−�i/�λ/m��·�λ/m�.

Sample(1λ, 1n)

s ← F
λ
2

return (s, n)

Entry((s, n), i)

b := bin(i)

b′ := PRP(s, b)

return binToField(b′)

Index((s, n), k)

b′ := fieldToBin(k)

if b′ 	= ⊥
b := PRP−1(s, b′)

if proj(b) ∈ [n]

return proj(b)

return ⊥

Fig. 3. A wunderbar pseudorandom vector for K ⊆ Fpm constructed from a family of
pseudorandom permuations over F

λ
2 .

Theorem 12. Let PRP be a secure family of pseudorandom permuations over
some F

λ
2 . Then (Sample,Entry, Index) as described in Fig. 3 is a secure wunder-

bar pseudorandom vector with index recovery for universe K = {binToField(b) |
b ∈ F

λ
2}.



564 N. Fleischhacker et al.

Proof. We need to establish that the construction is correct, wunderbar, and
secure. It is simple to see that the construction is correct:

Index((s, n),Entry((s, n), i))
=Index((s, n), binToField(PRP(s, bin(i)))) (Def. of Entry)

=proj(PRP−1(s, fieldToBin(binToField(PRP(s, bin(i)))))) (Def. of Index)

=proj(PRP−1(s,PRP(s, bin(i))))
=proj(bin(i))
=i.

Similarly, it is easy to see that the construction is wunderbar: the description
consists of s ∈ F

λ
2 and n = poly(λ) ≤ λc for some constant c. Therefore, it has

size at most λ + c · log λ ∈ O(λ). The runtime of Entry is in fact independent
of n and thus trivially in O(polylog(n)) and the only computation in Index that
depends on n, is the membership check proj(b) ∈ [n] which can be performed in
time O(log n) ⊂ O(polylog(n)).

It remains to show that the construction is secure. Let n = n(λ) = poly(λ)
and let A be an arbitrary PPT algorithm, such that We construct an adversary
B against the pseudorandomness of as follows. B takes as input the security
parameter λ and is given access to an oracle. For each i ∈ [n], query bin(i)
to the oracle, receiving back b′

i and compute ki := binToField(b′
i). Invoke A(k)

and output whatever A outputs. Clearly, B is also PPT, needing a runtime
overhead of just n oracle queries over simply running A. We now consider two
cases: if, on the one hand, the oracle is PRP(s, ·), then for all i ∈ [n] ki =
binToField(PRP(s, bin(i))) = Entry((s, n), i). I.e., we have

Pr[s ← F
λ
2 : BPRP(s,·) = 1]

= Pr[s ← Sample(1λ, 1n),k := (Entry(s, 1), . . . ,Entry(s, n))ᵀ) : A(k)].
(1)

If, on the other hand, the oracle is a truly random permutation g, then for all
i ∈ [n] it holds that ki = binToField(g(bin(i))) and therefore

Pr[g ← Π(Fλ
2 ) : Bg(·) = 1]

= Pr[g ← Π(Fλ
2 );∀i ∈ [n]. ki = binToField(g(bin(i))) : A(k)] (2)

= Pr[(b′
1, . . . , b

′
n) ← ✄

(
(Fλ

2 )n
)
;k = (binToField(b′

i))i∈[n] : A(k)] (3)
= Pr[k ← ✄(Kn) : A(k)]. (4)

Here, Eq. 3 holds because g is a uniformly chosen random permutation and
therefore the values g(bin(i)) are uniformly distributed conditioned on not being
duplicates and Eq. 4 holds because binToField is an injective function into K.
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Combining Eq. 1 and Eq. 4 we get
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⎢
⎢
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⎢
⎣

s ← Sample(1λ, 1n),

k :=

⎛

⎜
⎝

Entry(s, 1)
...

Entry(s, n)

⎞

⎟
⎠

: A(k)

⎤

⎥
⎥
⎥
⎥
⎦

− Pr[k ← ✄(Kn) : A(k)]

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=
∣
∣
∣Pr[s ← F

λ
2 : BPRP(s,·) = 1] − Pr[g ← {f : Fλ

2 → F
λ
2} : Bg(·) = 1]

∣
∣
∣

≤negl(λ)

where the last inequality follows from the fact that PRP is pseudorandom. ��

5.2 A Helpful Lemma

We prove a helpful lemma which allows to bound the probability of false positives
when attempting to detect cells with only a single entry in the IBLT. Recall,
that we have two matrices M and K, where the cells of M contain sums of
messages md and the cells of K contain sums of kd · md for a random vector
k. We check for cells containing only a single message, i.e. cells that can be
peeled, by checking whether K[i, j]/M [i, j] corresponds to one of the values in
k. A false positive could occur, if for some set of at least two non-zero messages
corresponding to indices I ⊆ [n] it happens to hold that

kj =
∑

i∈I kimi
∑

i∈I mi

for some j ∈ [n]. The lemma states that we can bound the probability of this
occuring by choosing the entries of k from a large enough space.

Lemma 13. Let K ⊆ Fq, (m1, . . . , mn) ∈ F
n
q and I ⊆ [n] be arbitrary such that∑

i∈I mi �= 0 and there exist i, i′ ∈ I with 0 �∈ {mi,mi′}. It holds that

Pr
[

k ← Kn : ∃j ∈ [n]. kj =
∑

i∈I kimi
∑

i∈I mi

]

≤ n

|K|
Proof. Using a union bound we have

Pr
[

k ← Kn : ∃j ∈ [n]. kj =
∑

i∈I kimi
∑

i∈I mi

]

≤
∑

j∈[n]

Pr
[

k ← Kn : kj =
∑

i∈I kimi
∑

i∈I mi

]

.
(5)
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It thus remains to bound the above probability for individual j. Let j ∈ [n] be
arbitrary but fixed and let ξ = 1 if j ∈ I and ξ = 0 otherwise. It then holds that

Pr
[

k ← Kn : kj =
∑

i∈I kimi
∑

i∈I mi

]

= Pr
[
k ← Kn : kj ·

∑

i∈I

mi =
∑

i∈I

kimi

]

= Pr
[
k ← Kn : kj · (

∑

i∈I

mi − ξmj

)
=
∑

i∈I

kimi − kjξmj

]

= Pr
[
k ← Kn : kj ·

∑

i∈I\{j}
mi =

∑

i∈I\{j}
kimi

]

We now consider two cases. If
∑

i∈I\{j} = 0, let j′ ∈ I \ {j} be an index, such
that mj′ �= 0. Note that such an index always exists by the condition on I. We
then have

Pr
[
k ← Kn : kj ·

=0
︷ ︸︸ ︷∑

i∈I\{j}
mi =

∑

i∈I\{j}
kimi

]

= Pr
[
k ← Kn : 0 =

∑

i∈I\{j}
kimi

]

= Pr
[

k ← Kn : kj′ =

∑
i∈I\{j,j′} kimi

−mj′

]

where (−mj′)−1 is always defined by the condition that mj′ �= 0. Since the right
hand side of the equality is independent of kj′ , the probability that the equality
holds is at most 1/|K| for any choice of ki, i �= j′. Thus, in this case

Pr
[

k ← Kn : kj =
∑

i∈I kimi
∑

i∈I mi

]

≤ 1
|K| . (6)

In the other case, i.e., if
∑

i∈I\{j} �= 0, (
∑

i∈I\{j})
−1 is well defined and we have

Pr
[
k ← Kn : kj ·

∑

i∈I\{j}
mi =

∑

i∈I\{j}
kimi

]
= Pr

[

k ← Kn : kj =

∑
i∈I\{j} kimi
∑

i∈I\{j} mi

]

.

Here again, the right hand side of the equality is independent of kj . Thus, the
probability that the equality holds is at most 1/|K| for any choice of ki, i �= j
and also in this case it holds that

Pr
[

k ← Kn : kj =
∑

i∈I kimi
∑

i∈I mi

]

≤ 1
|K| (7)

Finally, combining Eq. 5 with Eq. 6 and Eq. 7, we get

Pr
[

k ← Kn : ∃j ∈ [n]. kj =
∑

i∈I kimi
∑

i∈I mi

]

≤ n

|K| ��
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By observing that the statistical distance betweem Kn and ✄(Kn)) is at most
n2/|K| due to the birthday bound, we obtain the following corollary.

Corollary 14. Let K ⊆ Fq, (m1, . . . , mn) ∈ F
n
q and I ⊆ [n] be arbitrary such

that
∑

i∈I mi �= 0 and there exist i, i′ ∈ I with 0 �∈ {mi,mi′}. It holds that

Pr
[

k ← ✄(Kn) : ∃j ∈ [n]. kj =
∑

i∈I kimi
∑

i∈I mi

]

≤ n2 + n

|K|

5.3 Construction of Ciphertext-Compression from IBLTs

Populating the IBLT involves homomorphically evaluating an inner product
between the encrypted vector and a plain vector. Therefore, the compression
scheme can only work for ciphertext vectors that allow the evaluation of inner
product functions defined in the following.

Definition 15 (Inner Product Functions). The class of inner product func-
tions is the set of functions Zip = {fa | a ∈ F

n
q } with

fa : Fn
q → Fq, fa(x) := 〈a,x〉.

The family of ciphertext vectors the construction is applicable to is then
exactly those ciphertext vectors with low hamming weight and allow the evalu-
ation of inner product functions. We define this family as follows.

Definition 16. (Zip-Valid Low Hamming Weight Ciphertext Vectors).
Let E = (Gen,Enc,Eval,Dec) be a homomorphic public key encryption scheme.
For any pk ∈ P, let

F ip
t,pk :=

{
c ∈ vld(Zip, pk) | hw(Dec(Gen−1(pk), c)) < t

}
.

We then define the family of Zip-valid ciphertext vectors with low hamming
weight as F ip

t := {Ft,pk | pk ∈ P}.

Theorem 17. Let E = (Gen,Enc,Eval,Dec) be an additively homomorphic
encryption scheme with message space M = Fq for some prime power q with
ciphertext size ξ = ξ(λ). Let λ, κ, t, n ∈ N be integers and let γ := � κ

log t� + 2.
Let PRF be a family of pseudorandom functions PRF : [γ] × [2λ] → [8t]
and let (Sample,Entry, Index) be a wunderbar pseudorandom vector with index
recovery for a universe K = K(λ) ⊆ Fq with |K| ≥ 2κ(8tγ)(n3 + n2).
Then (Compress,Decompress) from Fig. 4 is a (O(λ) + 16tγξ)/(nξ)-compressing
(1 − O(2−κ) − negl(λ))-correct ciphertext compression scheme for family F ip

t .

Proof. The output of the compression algorithm consists of a s1, s2 and 16tγ
ciphertexts. Since the pseudorandom vector is wunderbar, it holds that |s1| =
O(λ) and s2 is chosen as a λ-bit string. Therefore, it is easy to see that the scheme
is (O(λ)+16tγξ)/(nξ)-compressing. It remains to prove that it is correct. To do
so we define a series of six hybrid schemes in Figs. 5 through 9.
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Compress(pk, c)

s1 ← Sample(1λ, n)

s2 ← {0, 1}λ

M := Enc(pk, 0)γ×8t

K := Enc(pk, 0)γ×8t

foreach (i, d) ∈ [γ] × [n] do

j := PRF(s2, (i, d))

M [i, j] := M [i, j] � cd

k := Entry(s1, d)

K [i, j] := K [i, j] � (k � cd)

return (s1, s2,M ,K)

Decompress(sk, (s1, s2,M ,K))

S := ∅
M ′ := Dec(sk,M )

K ′ := Dec(sk,K)

D′ := Initialize()

while ∃ (i∗, j∗) ∈ [γ] × [8t]. D′[i∗, j∗] 	= ⊥ do

(d, k, m) := (D′[i∗, j∗],K ′[i∗, j∗],M ′[i∗, j∗])

S := S ∪ {(d, m)}
Update(d, k, m)

return S

Initialize()

D′ := ⊥γ×8t

foreach (i, j) ∈ [γ] × [8t] do

if M ′[i, j] 	= 0

D′[i, j] := Index
(
s1,

K ′[i,j]
M ′[i,j]

)

return D′

Update(d, k, m)

foreach i ∈ [γ] do

j := PRF(s2, (i, d))

M ′[i, j] := M ′[i, j] − m

K ′[i, j] := K ′[i, j] − k

if M ′[i, j] 	= 0

D′[i, j] := Index
(
s1,

K ′[i,j]
M ′[i,j]

)

else

D′[i, j] := ⊥

Fig. 4. A ciphertext compression scheme based on invertible bloom lookup tables and
wunder pseudorandom vectors.

Claim 18. For any Zip-valid vector of ciphertexts it holds that

Pr[Decompress(sk,Compress(pk, c)) = sparse(Dec(sk, c))]
= Pr[Decompress1(Compress1(Dec(sk, c))) = sparse(Dec(sk, c))]

Proof. Following Definition 15 we denote by fa the inner product function fa :
F

n
q → Fq, fa(x) := 〈a,x〉. Further, we denote

vi,j :=

⎛

⎜
⎝

δj,PRF(s2,(i,1))

...
δj,PRF(s2,(i,n))

⎞

⎟
⎠ wi,j :=

⎛

⎜
⎝

Entry(s1, 1) · δj,PRF(s2,(i,1))

...
Entry(s1, n) · δj,PRF(s2,(i,n))

⎞

⎟
⎠

Now, let M0,K0,M
′
0,K

′
0 and M1,K1,M

′
1,K

′
1 denote the relevant matrices

in the actual scheme and hybrid 1 respectively. We note, that since c is Zip-valid,
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Compress1(m)

s1 ← Sample(1λ, n)

s2 ← {0, 1}λ

M := 0γ×8t

K := 0γ×8t

foreach (i, d) ∈ [γ] × [n] do

j := PRF(s2, (i, d))

M [i, j] := M [i, j] + md

k := Entry(s1, d)

K [i, j] := K [i, j] + (k · md)

return (s1, s2,M ,K)

Decompress1((s1, s2,M ,K))

S := ∅
M ′ := M

K ′ := K

D′ := Initialize()

while ∃ (i∗, j∗) ∈ [γ] × [8t]. D′[i∗, j∗] 	= ⊥ do

(d, k, m) := (D′[i∗, j∗],K ′[i∗, j∗],M ′[i∗, j∗])

S := S ∪ {(d, m)}
Update(d, k, m)

return S

Fig. 5. The first hybrid scheme works exactly as the actual ciphertext compression
scheme, except that it operates on plaintext messages instead of encrypted messages.
I.e., ciphertexts are now decrypted before compression instead of between compression
and decompression.

it holds for all (i, j) ∈ [γ] × [8t] that

M ′
0[i, j] =Dec(sk,M 0[i, j]) (Definition 3)

=Dec(sk,�
d∈{[n]|PRF(s2,(i,d))=j}

cd)

=Dec(Eval(pk, fv i,j , c))

=fv i,j (Dec(sk, c))

=
∑

d∈{[n]|PRF(s2,(i,d))=j}
Dec(sk, cd) = M ′

1[i, j]

as well as

K ′
0[i, j] =Dec(sk,K0[i, j]) (Definition 3)

=Dec(sk,�
d∈{[n]|PRF(s2,(i,d))=j}

cd · Entry(s1, d))

=Dec(Eval(pk, fw i,j
, c))

=fw i,j
(Dec(sk, c))

=
∑

d∈{[n]|PRF(s2,(i,d))=j}
Dec(sk, cd) · Entry(s1, d)) = K ′

1[i, j]

Since the computation on M ′,K′ is otherwise identical between the two hybrids,
the claim immediately follows. ��
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Compress2(m)

k ← DummySample(1λ, n)

s2 ← {0, 1}λ

M := 0γ×8t

K := 0γ×8t

foreach (i, d) ∈ [γ] × [n] do

j := PRF(s2, (i, d))

M [i, j] := M [i, j] + md

k := kd

K [i, j] := K [i, j] + (k · md)

return (k, s2,M ,K)

Decompress2((k, s2,M ,K))

S := ∅
M ′ := M

K ′ := K

D′ := Initialize2()

while ∃ (i∗, j∗) ∈ [γ] × [8t]. D′[i∗, j∗] 	= ⊥ do

(d, k, m) := (D′[i∗, j∗],K ′[i∗, j∗],M ′[i∗, j∗])

S := S ∪ {(d, m)}
Update2(d, k, m)

return S

Initialize2()

D′ := ⊥γ×8t

foreach (i, j) ∈ [γ] × [8t] do

if M ′[i, j] 	= 0

D′[i, j] := DummyIndex
(
k, K ′[i,j]

M ′[i,j]

)

return D′

Update2(d, k, m)

foreach i ∈ [γ] do

j := PRF(s2, (i, d))

M ′[i, j] := M ′[i, j] − m

K ′[i, j] := K ′[i, j] − k

if M ′[i, j] 	= 0

D′[i, j] := DummyIndex
(
k, K ′[i,j]

M ′[i,j]

)

else

D′[i, j] := ⊥

Fig. 6. The second hybrid scheme works exactly as the first hybrid scheme, except that
instead of using the wunder pseudorandom vector it uses the dummy sampler and the

dummy index recovery to work with a uniformly random vector k Kn..

Claim 19. If (Sample,Entry, Index) is a secure pseudorandom vector, it holds
for any key pair (sk, pk) and any vector c that
∣
∣
∣
∣
∣

Pr[Decompress1(Compress1(Dec(sk, c))) = sparse(Dec(sk, c))]
−Pr[Decompress2(Compress2(Dec(sk, c))) = sparse(Dec(sk, c))]

∣
∣
∣
∣
∣
≤ negl(λ).

Proof. We construct an attacker A against security of the pseudorandom vec-
tor as follows. On input k, A executes Decompress2(Compress2(Dec(sk, c))),
except that it uses its input k instead of sampling a fresh one. If k was cho-
sen using k ← DummySample(1λ, n), this is identical to a regular execution of
Decompress2(Compress2(Dec(sk, c))). If on the other hand k was chosen by sam-
pling s2 ← Sample(1λ, n) and setting k := (Entry(s, 1), . . . ,Entry(s, n))ᵀ, this is
identical to a regular execution of Decompress1(Compress1(Dec(sk, c))). There-
fore, by the security of the pseudorandom vector
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Compress3(m)

k ← DummySample(1λ, n)

s2 ← {0, 1}λ

M := 0γ×8t

K := 0γ×8t

C := 0γ×8t

foreach (i, d) ∈ [γ] × [n] do

j := PRF(s2, (i, d))

M [i, j] := M [i, j] + md

k := kd

K [i, j] := K [i, j] + (k · md)

if md 	= 0 do

C [i, j] := C [i, j] + 1

return (k, s2,M ,K ,C)

Decompress3((k, s2,M ,K ,C))

S := ∅
M ′ := M

K ′ := K

D′ := Initialize2()

while ∃ (i∗, j∗) ∈ [γ] × [8t]. C [i∗, j∗] = 1 do

(d, k, m) := (D′[i∗, j∗],K ′[i∗, j∗],M ′[i∗, j∗])

S := S ∪ {(d, m)}
Update3(d, k, m)

return S

Update3(d, k, m)

foreach i ∈ [γ] do

j := PRF(s2, (i, d))

M ′[i, j] := M ′[i, j] − m

K ′[i, j] := K ′[i, j] − k

C [i, j] := C [i, j] − 1

if M ′[i, j] 	= 0

D′[i, j] := DummyIndex
(
k, K ′[i,j]

M ′[i,j]

)

else

D′[i, j] := ⊥

Fig. 7. The third hybrid scheme works exactly as the second hybrid scheme, except
that it maintains a matrix counting how many non-zero messages are mapped to each
individual cell and deciding which messages to peel based on these exact counts instead
of relying on the matrix K .

negl(λ) ≥

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎣s ← Sample(1λ, n),k :=

⎛

⎜
⎝

(Entry(s, 1)
...

Entry(s, n)

⎞

⎟
⎠ : A(k)

⎤

⎥
⎦

− Pr[k ← DummySample(1λ, n) : A(k)]

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

Pr[Decompress1(sk,Compress1(pk, c)) = sparse(Dec(sk, c))]
− Pr[Decompress2(Compress2(Dec(sk, c))) = sparse(Dec(sk, c))]

∣
∣
∣
∣
∣

��
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Claim 20. It holds that
∣
∣
∣
∣
∣

Pr[Decompress2(Compress2(Dec(sk, c))) = sparse(Dec(sk, c))]
− Pr[Decompress3(Compress3(Dec(sk, c))) = sparse(Dec(sk, c))]

∣
∣
∣
∣
∣
≤ 2−κ.

Proof. We first note two things

1. Whenever a correct element (m, d) is peeled, the resulting matrices (C′,M ′,
K′,D) are identical to the scenario where md = Dec(sk, cd) = 0 and all other
mesages are unchanged.

2. In the third hybrid scheme only correct elements are peeled.

The first observation follows because a correct peeling removes a message from
the relevant cells by subtracting the corresponding values, which is equivalent to
not adding them in the first place, which is exactly what happens if the message
is zero. The second observation follows because we correctly keep track of the
number of non-zero elements in each cell and only peel those, where a single non-
zero element remains. By these observations, at any point during the execution
of the decompression loop, there exists a vector m′ ∈ F

n
q , such that for all (i, j)

K′[i, j] :=

⎧
⎨

⎩

d if
∑

ι∈Ii
kιmι

∑
ι∈Ii

mι
= kd

⊥ otherwise

where Ii = {ι ∈ [n] | PRF(s1, (i, ι)) = j}.
We denote by Er,i,j the event that before the r-th iteration of the main loop

of Decompress4, it holds that C[i, j] > 1 but K[i, j] �= ⊥. Note that Decompress4
and Decompress3 behave identically unless at least one of Er,i,j for (r, i, j) ∈
[n] × [γ] × [8t] occurs.

Therefore by a union bound and Corollary 14
∣
∣
∣
∣
∣

Pr[Decompress3(sk,Compress3(pk, c)) = sparse(Dec(sk, c))]
− Pr[Decompress4(Compress4(Dec(sk, c))) = sparse(Dec(sk, c))]

∣
∣
∣
∣
∣

≤
∑

(r,i,j)∈[n]×[γ]×[8t]

Pr[Er,i,j ]

≤
∑

(r,i,j)∈[n]×[γ]×[8t]

n2 + n

|K|

=
(8tγ)(n3 + n2)

|K| ≤ (8tγ)(n3 + n2)
2κ · (8tγ)(n3 + n2)

≤ 2−κ

��

Claim 21. It holds that
∣
∣
∣
∣
∣

Pr[Decompress3(Compress3(Dec(sk, c))) = sparse(Dec(sk, c))]
= Pr[Decompress4(Compress4(Dec(sk, c))) = sparse(Dec(sk, c))]

∣
∣
∣
∣
∣
.
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Compress4(m)

k ← DummySample(1λ, n)

s2 ← {0, 1}λ

M := 0γ×8t

K := 0γ×8t

C := 0γ×8t

D := 0γ×8t

foreach (i, d) ∈ [γ] × [n] do

j := PRF(s2, (i, d))

M [i, j] := M [i, j] + md

k := kd

K [i, j] := K [i, j] + (k · md)

if md 	= 0 do

C [i, j] := C [i, j] + 1

D[i, j] := D[i, j] + d

return (k, s2,M ,K ,C ,D)

Decompress4((k, s2,M ,K ,C ,D))

S := ∅
M ′ := M

K ′ := K

D′ := D

while ∃ (i∗, j∗) ∈ [γ] × [8t]. C [i∗, j∗] = 1 do

(d, k, m) := (D′[i∗, j∗],K ′[i∗, j∗],M ′[i∗, j∗])

S := S ∪ {(d, m)}
Update4(d, k, m)

return S

Update4(d, k, m)

foreach i ∈ [γ] do

j := PRF(s2, (i, d))

M ′[i, j] := M ′[i, j] − m

K ′[i, j] := K ′[i, j] − k

C [i, j] := C [i, j] − 1

D′[i, j] := D′[i, j] − d

Fig. 8. The fourth hybrid scheme works exactly as the third hybrid scheme, except
that the matrix D which before contained the indices of the messages if it could be
inferred from the matrix K is now maintained with a sum of the indices of all messages
mapped to the cell. This means that whenever C [i, j] = 1, D[i, j] contains the index
of the single non-zero message mapped to cell (i, j).

Proof. The only difference between the two hybrids could occur, if when peeling
a message from cell (i, j), the content of D[i, j] would differ between the two
hybrids. However, this is not possible, since in hybrid three we have

D[i, j] = DummyIndex(k,
K[i, j]
M [i, j]

)

=DummyIndex(k,
kd · md

md
) = DummyIndex(k, kd) = d

just as in hybrid four. ��
The fifth hybrid is identical to the fourth hybrid except that the now unnec-

cessary matrix K is removed. The following claim trivially follows from the fact
that K is not used in either hybrids.
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Claim 22. It holds that
∣
∣
∣
∣
∣

Pr[Decompress4(Compress4(Dec(sk, c))) = sparse(Dec(sk, c))]
= Pr[Decompress5(Compress5(Dec(sk, c))) = sparse(Dec(sk, c))]

∣
∣
∣
∣
∣
.

Compress
h(·)
6 (m)

M := 0γ×8t

C := 0γ×8t

D := 0γ×8t

foreach (i, d) ∈ [γ] × [n] do

j := h(i, d)

M [i, j] := M [i, j] + md

if md 	= 0 do

C [i, j] := C [i, j] + 1

D[i, j] := D[i, j] + d

return (M ,C ,D)

Decompress
h(·)
6 ((M ,C ,D))

S := ∅
M ′ := M

D′ := D

while ∃ (i∗, j∗) ∈ [γ] × [8t]. C [i∗, j∗] = 1 do

(d, m) := (D′[i∗, j∗],M ′[i∗, j∗])

S := S ∪ {(d, m)}
Update5(d, m)

return S

Update6(d, m)

foreach i ∈ [γ] do

j := h(i, d)

M ′[i, j] := M ′[i, j] − m

C [i, j] := C [i, j] − 1

D′[i, j] := D′[i, j] − d

Fig. 9. The sixth hybrid scheme works exactly as the fifth hybrid scheme, except that
instead of using a pseudorandom function to derive j from (i, d), it uses a truly random
function h given as an oracle.

Claim 23. If PRF is a secure pseudorandom function then it holds that
∣
∣
∣
∣
∣

Pr[Decompress5(Compress5(Dec(sk, c))) = sparse(Dec(sk, c))]

−Pr[Decompress
h(·,·)
6 (Compress

h(·,·)
6 (Dec(sk, c))) = sparse(Dec(sk, c))]

∣
∣
∣
∣
∣

≤negl(λ).

Proof. The only difference between the two hybrids is the use of the func-
tion PRF(s2, ·, ·) in the fifth hybrid and h(·, ·) in the sixth hybrid. Thus, the
claim follows from a straightforward reduction that, given access to an oracle o,
executes Decompress

o(·,·)
6 (Compress

o(·,·)
6 (Dec(sk, c))) and outputs 0 if the result

equals sparse(Dec(sk, c)) and 1 otherwise. ��



How to Compress Encrypted Data 575

Claim 24. It holds for any vector of ciphertexts with hamming weight at most
t that

Pr[Decompress6(Compress6(Dec(sk, c))) = sparse(Dec(sk, c))] ≤ O(2−κ)

Proof. Denote m := Dec(sk, c), S := {(d,m′) | m′ = md} and S 
=0 := {(d,m′) ∈
S | m′ �= 0} = sparse(m). Since c has Hamming weight at most t, we have that
|S 
=0| ≤ t.

Comparing hybrid six with the definition of an IBLT in Fig. 1, and keeping in
mind Remark 1 we can observe, that what Compress6 actually outputs is simply
an IBLT for pairs containing all elements of S 
=0 using hash functions h(i, ·).
Further, Decompress6 is in fact the same as List with Update6 being identical to
Peel. And since |S 
=0| ≤ t and random functions are t-wise independent, it thus
holds by Theorem 6 that

Pr[Decompress6(Compress6(m)) = sparse(m)]

= Pr[List(Insert(B0, S 
=0)) = S 
=0] ≥ 1 − O(2−(γ−2) log t) ≥ 1 − O(2−κ)

��
By combining all of the above claims and using the triangle inequality it

follows that

Pr[Decompress(sk,Compress(pk, c)) = sparse(Dec(sk, c))]

≥1 − O(2−κ) − negl(λ)

as claimed. ��
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