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Preface

The 42nd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Eurocrypt 2023, was held in Lyon, France between April
23–27 under the auspices of the International Association for Cryptologic Research. The
conference had a record number of 415 submissions, out of which 109 were accepted.

Preparation for the academic aspects of the conference started in earnest well over a
year ago, with the selection of a program committee, consisting of 79 regular members
and six area chairs. The area chairs played an important part in enabling a high-quality
reviewprocess; their rolewas expanded considerably from last year and, for the first time,
properly formalized. Each area chair was in charge of moderating the discussions of the
papers assigned under their area, guiding PCmembers and reviewers to consensus where
possible, and helping us in making final decisions. We created six areas and assigned
the following area chairs: Ran Canetti for Theoretical Foundations; Rosario Gennaro
for Public Key Primitives with Advanced Functionalities; Tibor Jager for Classic Public
Key Cryptography; Marc Joye for Secure and Efficient Implementation, Cryptographic
Engineering, andReal-WorldCryptography;GregorLeander for SymmetricCryptology;
and finally Arpita Patra for Multi-party Computation and Zero-Knowledge.

Prior to the submission deadline, PC members were introduced to the reviewing
process; for this purpose we created a slide deck that explained what we expected from
everyone involved in the process and how PC members could use the reviewing system
(HotCRP) used by us. An important aspect of the reviewing process is the reviewing
form, which we modified based on the Crypto’22 form as designed by Yevgeniy Dodis
and Tom Shrimpton. As is customary for IACR general conferences, the reviewing
process was two-sided anonymous.

Out of the 415 submissions, four were desk rejected due to violations of the Call
for Papers (non-anonymous submission or significant deviations from the submission
format). For the remaining submissions, the review process proceeded in two stages. In
the first stage, every paper was reviewed by at least three reviewers. For 109 papers a
clear, negative consensus emerged and an early reject decision was reached and commu-
nicated to the authors on the 8th of December 2022. This initial phase of early rejections
allowed the program committee to concentrate on the delicate task of selecting a program
amongst the more promising submissions, while simultaneously offering the authors of
the rejected papers the opportunity to take advantage of the early, full feedback to improve
their work for a future occasion.

The remaining 302 papers progressed to an interactive discussion phase, which was
open for two weeks (ending slightly before the Christmas break). During this period, the
authors had access to their reviews (apart from some PC only fields) and were asked to
address questions and requests for clarifications explicitly formulated in the reviews. It
gave authors and reviewers the opportunity to communicate directly (yet anonymously)
with each other during several rounds of interaction. For some papers, the multiple
rounds helped in clarifying both the reviewers’ questions and the authors’ responses.
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For a smaller subset of papers, a second interactive discussion phase took place in the
beginning of January allowing authors to respond to new, relevant insights by the PC.
Eventually, 109 papers were selected for the program.

The best paper award was granted to the paper “An Efficient Key Recovery Attack
on SIDH” by Wouter Castryck and Thomas Decru for presenting the first efficient key
recovery attack against the Supersingular Isogeny Diffie-Hellman (SIDH) problem. Two
further, related papers were invited to the Journal of Cryptology: “Breaking SIDH in
Polynomial Time” by Damien Robert and “A Direct Key Recovery Attack on SIDH”
by Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope and Benjamin
Wesolowski.

Accepted papers written exclusively by researchers who were within four years
of PhD graduation at the time of submission were eligible for the Early Career Best
Paper Award. There were a number of strong candidates and the paper “Worst-Case
Subexponential Attacks on PRGs of Constant Degree or Constant Locality” by Akın
Ünal was awarded this honor.

The program further included two invited talks: Guy Rothblum opened the pro-
gram with his talk on “Indistinguishable Predictions and Multi-group Fair Learning”
(an extended abstract of his talk appears in these proceedings) and later during the con-
ference Vadim Lyubashevsky gave a talk on “Lattice Cryptography: What Happened
and What’s Next”.

First and foremost, we would like to thank Kevin McCurley and Kay McKelly for
their tireless efforts in the background, making the whole process so much smoother for
us to run. Thanks also to our previous co-chairs Orr Dunkelman, Stefan Dziembowski,
Yevgeniy Dodis, Thomas Shrimpton, Shweta Agrawal and Dongdai Lin for sharing the
lessons they learned and allowing us to build on their foundations. We thank Guy and
Vadim for accepting to give two excellent invited talks. Of course, no program can be
selected without submissions, so we thank both the authors of accepted papers, as well
as those whose papers did not make it (we sincerely hope that, notwithstanding the dis-
appointing outcome, you found the reviews and interaction constructive). The reviewing
was led by our PC members, who often engaged expert subreviewers to write high-
quality, insightful reviews and engage directly in the discussions, and we are grateful to
both our PC members and the subreviewers. As the IACR’s general conferences grow
from year to year, a very special thank you to our area chairs, our job would frankly
not have been possible without Ran, Rosario, Tibor, Marc, Gregor, and Arpita’s tireless
efforts leading the individual papers’ discussions. And, last but not least, we would like
to thank the general chairs: Damien Stehlé, Alain Passelègue, and BenjaminWesolowski
who worked very hard to make this conference happen.

April 2023 Carmit Hazay
Martijn Stam
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Abstract. Prediction algorithms assign numbers to individuals that are
popularly understood as individual “probabilities”—what is the probabil-
ity that an applicant will repay a loan? Automated predictions increas-
ingly form the basis for life-altering decisions, and this raises a host of
concerns. Concerns about the fairness of the resulting predictions are
particularly alarming: for example, the predictor might perform poorly
on a protected minority group. We survey recent developments in for-
malizing and addressing such concerns.

Inspired by the theory of computational indistinguishability, the
recently proposed notion of Outcome Indistinguishability (OI) [Dwork
et al., STOC 2021] requires that the predicted distribution of outcomes
cannot be distinguished from the real-world distribution. Outcome Indis-
tinguishability is a strong requirement for obtaining meaningful predic-
tions. Happily, it can be obtained: techniques from the algorithmic fair-
ness literature [Hebert-Johnson et al., ICML 2018] yield algorithms for
learning OI predictors from real-world outcome data.

Returning to the motivation of addressing fairness concerns, Outcome
Indistinguishability can be used to provide robust and general guarantees
for protected demographic groups [Rothblum and Yona, ICML 2021].
This gives algorithms that can learn a single predictor that “performs
well” for every group in a given rich collection G of overlapping sub-
groups. Performance is measured using a loss function, which can be
quite general and can itself incorporate fairness concerns.

1 Introduction

Machine learning tools are used to make and inform increasingly consequen-
tial decisions about individuals. Examples range from medical risk prediction

This extended abstract overviews the recent developments and contributions in [14,41],
and borrows liberally from those works. The research described in this extended
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to hiring decisions and criminal justice. Automated risk prediction comes with
benefits, but it also raises substantial societal concerns. First and foremost, how
meaningful are the predictions? Another prominent concern is that these algo-
rithms might discriminate against protected and/or disadvantaged groups. In
particular, a learned predictor might perform differently on a protected sub-
group compared to the general population.

In a sequence of recent works we tackle these concerns with novel tools and
perspectives. Our approach is inspired by the cryptographic and complexity-
theoretic literature on indistinguishability, as well as the burgeoning literature
on algorithmic fairness. This manuscript aims to highlight these developments,
focusing on the following contributions:

Outcome Indistinguishability: a new framework for meaningful predictions. Pre-
diction algorithms “score” individuals, mapping them to numbers in [0, 1] that are
popularly understood as “probabilities” or “likelihoods” of observable events: the
probability of 5-year survival, the chance that the loan will be repaid on sched-
ule, the likelihood that the student will graduate within four years. What do
these numbers actually mean? How can we judge a predicted probability when
the event (e.g. 5-year survival) is non-repeatable? The question of “individual
probabilities” has been studied for decades across many disciplines without clear
resolution (see Dawid [9]).

In recent work with Dwork et al. [14] we propose Outcome Indistinguishability
(OI): a novel framework for guaranteeing meaningful predictions. In a nutshell,
the predictions should be indistinguishable, given real-world outcomes, from the
true probabilities governing reality. We show that Outcome Indistinguishabil-
ity is feasible: building on a connection to the notion of multi-calibration [30],
we construct algorithms for learning OI predictors from outcome data. These
contributions are described in Sect. 2.

Multi-group fair learning. The literature on (supervised) learning and loss mini-
mization takes a different approach to predicting outcomes. Given an i.i.d. train-
ing set of labeled data, the goal is learning a predictor p that performs well on
the underlying distribution. Performance is measured using a loss function, such
as the squared loss or various other measures. In agnostic learning [35], the loss
incurred by the predictor p should be competitive with the best predictor in
a benchmark class H. These approaches have enjoyed tremendous success, but
they does not resolve basic questions about the meaningfulness of predictions.
Given a predictor that achieves a certain loss, how should we judge its perfor-
mance? Both at an aggregate level, over the entire population (what level of loss
is “good”?), at the level of protected subgroups, and at the level of individual
predictions. Indeed, it has been demonstrated that standard machine learning
tools, when applied to standard data sets, produce predictors whose performance
on protected demographic groups is quite poor [4].

Motivated by these concerns, in work with Yona [41] we study multi-group
agnostic learning. For a rich collection G of (potentially) overlapping groups,
our goal is to learn a single predictor p, such that the loss experienced by every
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group g ∈ G (when classified by p) is not much larger than the loss of the best
predictor for that group in the class H. This should hold for all groups in G
simultaneously. To capture a wide variety of settings, we aim to be quite general
in our treatment of different loss functions. In particular, the loss function itself
can also incorporate fairness concerns. We show that this ambitious objective
is obtainable! Multi-group fair predictors can be learned for a rich class of loss
functions. The learning procedure itself is constructed via a reduction to Out-
come Indistinguishability, demonstrating the power and the flexibility of the OI
framework. We detail these contributions in Sect. 3.

Further related work and recent developments. We discussed further related work
in Sect. 2.3 and before Sect. 3.1. We conclude in Sect. 4 with a brief discussion
of more recent developments that build on the contributions described in this
extended abstract.

2 Outcome Indistinguishability

The recently-proposed notion of Outcome Indistinguishability (OI) [14] proposes
and studies novel criteria for significant predictions. The outputs of a prediction
algorithm are viewed as defining a generative model for observational outcomes.
Ideally, the outcomes from this generative model should “look like” the outcomes
produced by Nature (the real world). A predictor satisfying outcome indistin-
guishability provides a generative model that cannot be efficiently refuted on the
basis of the real-life observations produced by Nature. In this sense, the probabili-
ties defined by any OI predictor provide a meaningful model of the “probabilities”
assigned by Nature: even granted full access to the predictive model and histor-
ical outcomes from Nature, no analyst can invalidate the model’s predictions.
This provides a computational/cryptographic perspective on the deeper discus-
sion of what we should demand of prediction algorithms–a subject of intense
study in the statistics community for over 30 years (see, e.g., the forecasting
work in [8,19,20,42,43])—and how they should be used. For example, the study
of Outcome Indistinguishability has led to lower bound results that provide sci-
entific teeth to the political argument that, if risk prediction instruments are to
be used by the courts (as they often are in the United States), then at the very
least auditors should be given oracle access to the algorithms.

Basic notation. We focus on the fundamental setting of predicting a binary out-
come, but note that the OI framework has been extended to deal with more
general outcomes [15]. Individuals are represented by a collection of covariates
from a discrete domain X , for example, the set of d-bit strings (there might be
collisions, or it may be the case that each individual has a unique representa-
tion). We model Nature as a joint distribution, denoted D∗, over individuals and
outcomes, where y∗

x ∈ {0, 1} represents Nature’s choice of outcome for individual
x ∈ X. We use x ∼ DX to denote a sample from Nature’s marginal distribu-
tion over individuals and denote by p∗

x ∈ [0, 1] the conditional probability that
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Nature assigns to the outcome y∗
x, conditioned on x. We emphasize, however,

that Nature may choose p∗
x ∈ {0, 1} to be deterministic; our definitions and

constructions are agnostic as to this point.
A predictor is a function p̃ : X → [0, 1] that maps an individual x ∈ X

to an estimate p̃x of the conditional probability of y∗
x = 1. For a predictor

p̃ : X → [0, 1], we denote by (x, ỹx) ∼ D(p̃) the random process of drawing
an individual-outcome pair, where x ∼ DX is sampled from Nature’s distribu-
tion over individuals, and then the outcome ỹx ∼ Ber(p̃x) is sampled from the
Bernoulli distribution with parameter p̃x.

Outcome Indistinguishability. Imagine that Nature selects p∗
x = 1 for half of the

mass of x ∼ DX and p∗
x = 0 for the remainder. If the two sets of individuals

are easy to identify then we can potentially recover a close approximation to
p∗. Suppose, however, that the sets are computationally indistinguishable, in the
sense that given x ∼ DX , no efficient observer can guess if p∗

x = 1 or p∗
x = 0 with

probability significantly better than 1/2. In this case, producing the estimates
p̃x = 1/2 for every individual x ∈ X captures the best computationally feasi-
ble understanding of Nature: given limited computational power, the outcomes
produced by Nature may faithfully be modeled as a random. In particular, if
Nature were to change the outcome generation probabilities from p∗ to p̃ we, as
computationally bounded observers, will not notice. In other words, predictors
satisfying OI give rise to models of Nature that cannot be falsified based only
on observational data.

Definition 1 (Outcome Indistinguishability). Fix Nature’s distribution
D∗. For a class of distinguishers A and ε > 0, a predictor p̃ : X → [0, 1] satisfies
(A, ε)-outcome indistinguishability (OI) if for every A ∈ A,

∣
∣
∣
∣

Pr
(x,y∗

x)∼D∗
[ A(x, y∗

x; p̃) = 1 ] − Pr
(x,ỹx)∼D(p̃)

[ A(x, ỹx; p̃) = 1 ]
∣
∣
∣
∣
≤ ε.

The above definition is purposefully vague about the distinguisher’s access
to the predictor p̃: we anchor a hierarchy of OI variants around different levels
of access to p̃. The definition of Outcome Indistinguishability can be extended
in many other ways, for example to distinguishers receive multiple samples from
each distribution (this will be used in Lemma 11 below), and to the case of
non-Boolean outcomes [15].

In the extreme, when we think of A as the set of all polynomial-time distin-
guishers, outcome indistinguishability sets a demanding standard for predictors
that model Nature. Given an OI predictor p̃, even the most skeptical scientist—
who, for example, does not believe that Nature can be captured by a simple
computational model—cannot refute the model’s predictions through observa-
tion alone. This framing gives a cryptographic or computational perspective on
the scientific method, by considering p̃ as expressing a hypothesis that cannot
be falsified through observational investigation.
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The OI hierarchy. In the most basic variant of the definition, the distinguisher
does not get direct access to the predicted probabilities, only to the outcomes
(drawn by p∗ or by p̃). A predictor p̃ satisfies this most basic notion of OI if for
all A ∈ A, the probability that A accepts the sample (x, yx) is (nearly) the same
for Nature’s distribution and the predictor’s distribution. The requirement can
be strengthened by also giving the distinguisher direct access the predictor p̃
itself: either access to the predicted probability p̃x of the sample at hand, oracle
access, or even access to the code. We emphasize, however, that the distinguisher
never gets access to p∗: Nature’s true probabilities are unknowable.

These differing levels of access to the predictor produce a hierarchy of defi-
nitions, which we illustrate through an example. Imagine a medical board that
wishes to audit the output of a program p̃ used to estimate the chances of
five-year survival of patients under a given course of treatment. We can view
the medical board as a distinguisher A ∈ A. To perform the audit, the board
receives historical files of patients and their five-year predicted (i.e., drawn from
D(p̃)) or actual (drawn from D∗) outcomes. The requirement is that these two
cases be indistinguishable to the board.

1. To start, the board is only given samples, and must distinguish Nature’s
samples (x, y∗

x) ∼ D∗ from those sampled according to the predicted distri-
bution (x, ỹx) ∼ D(p̃). The board gets no direct access to predictions p̃x of
the program; we call this variant no-access-OI.

2. Naturally, the board may ask to see the predictions p̃x for each sampled
individual. In this extension—sample-access-OI—the board must distinguish
samples of the form (x, y∗

x, p̃x) and (x, ỹx, p̃x), again for (x, y∗
x) ∼ D∗ and

(x, ỹx) ∼ D(p̃).
3. Oracle-access-OI allows the board to make queries to the program p̃ on arbi-

trary individuals, perhaps to examine how the algorithm behaves on related
(but unsampled) patients.

4. Finally, in code-access-OI, the board is allowed to examine not only the pre-
dictions from p̃ but also the actual code, i.e., the full implementation details
of the program computing p̃.

2.1 Feasibility and Learnability of OI Predictors

Do efficient OI predictors always exist? In particular, can we bound the complex-
ity of OI predictors, independently of the complexity of Nature’s distribution?
The picture here is subtle, and Outcome Indistinguishability differs qualitatively
from prior notions of indistinguishability.

Beyond he question of existence, it is also important to understand whether
it is possible to learn OI predictors from outcome data (we focus on the natural
setting where outcomes are all we can hope to observe). A learning algorithm
receives outcome data drawn from D∗, with the goal of learning a predictor p̃
that satisfies OI w.r.t a given class A of distinguishers. Happily, OI predictors
can be learned from outcome data at all levels of the hierarchy, with logarithmic
sample complexity in the size of the family of distinguishers.
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The first two level of the OI hierarchy. Dwork et al. [14] show that no-access-OI
and sample-access-OI are closely related to the notions of multi-accuracy and
multi-calibration [30], respectively, studied in the algorithmic fairness literature.
Very loosely, for a collection C of subpopulations of individuals, (C, α)-multi-
calibration asks that a predictor p̃ be calibrated (up to α error) not just overall,
but also when we restrict our attention to subpopulations S ⊆ X for every
set S ∈ C. Here, calibration over S means that if we restrict our attention to
individuals x ∈ S for which p̃x = v, then the fraction individuals with positive
outcomes (i.e., x ∈ S such that y∗

x = 1) is roughly v. Loosely, by equivalent we
mean that each notion can enforce the other, for closely related classes C and A.
Importantly, the relation between the class of distinguishers and collection of
subpopulations preserves most natural measures of complexity; in other words,
if we take A to be a class of efficient distinguishers, then evaluating set mem-
bership for the populations in C will be efficient (and vice versa). No-access-OI
is similarly equivalent to the weaker notion of multi-accuracy, which requires
accurate expectations for each S ∈ C, rather than calibration.

Leveraging feasibility results for the fairness notions from [30], we can obtain
efficient predictors satisfying no-access-OI or sample-access-OI, by reduction to
multi-accuracy and multi-calibration. Informally, for each of these levels, we can
obtain OI predictors whose complexity scales linearly in the complexity of A
and inverse polynomially in the desired distinguishing advantage ε. The result
is quite generic; for concreteness, we state the theorem using circuit size as the
complexity measure.

Theorem 2 (Informal [14]). Let A be a class of distinguishers implemented
by size-s circuits. For any D∗ and ε > 0, there exists a predictor p̃ : X → [0, 1]
satisfying (A, ε)-sample-access-OI (similarly, no-access-OI) implemented by a
circuit of size O(s/ε2).

OI predictors can be learned using only a bounded number of observed out-
comes (x, y∗

x) ∼ D∗. The learning algorithm, which leverages algorithms for
learning multicalibrated predictors, has sample complexity that is logarithmic
in the size of the distinguisher class A. The runtime for learning is linear in
the size of A and polynomial in (1/ε). Alternatively, the task of learning an OI
predictor can be reduced to an agnostic learning task on a hypothesis class that
is related to A. See [14,30] for further details.

The top two layers of the OI hierarchy. There is a general-purpose algorithm for
constructing OI predictors, even when the distinguishers are allowed arbitrary
access to the predictor in question. This shows the existence and learnability of
oracle-access-OI and code-access-OI predictors. This construction of [14] extends
the learning algorithm for multi-calibration of [30] to the more general setting
of OI. When we allow such powerful distinguishers, the learned predictor p̃ is
quantitatively less efficient than in the weaker notions of OI. For the overivew
in this manuscript we state the bound informally, assuming the distinguishers
are implemented by circuits with oracle gates (see [14] for a full and formal
treatment). As an example, if we let A be the set of oracle-circuits of some fixed
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polynomial size (in the dimension d of individual’s representations), and allow
arbitrary oracle queries, then p̃ will be of size dO(1/ε2).

Theorem 3 (Informal [14]). Let A be a class of oracle-circuit distinguishers
implemented by size-s circuits that make at most q oracle calls to the predictor in
question. For any D∗ and ε > 0, there exists a predictor p̃ : X → [0, 1] satisfying
(A, ε)-oracle-access-OI implemented by a (non-oracle) circuit of size s · qO(1/ε2).

We omit a discussion of the complexity of learning oracle-access-OI, as well as
the results (and definitional subtleties) of code-access-OI. We refer the interested
reader to [14]. We remark that for code-access-OI, the complexity may scale
doubly exponentially in poly(1/ε).

Hardness via Fine-Grained Complexity. Dwork et al. [14] established a con-
nection between the fine-grained complexity of well-studied problems and the
complexity of achieving oracle-access-OI. Under the assumption that the (ran-
domized) complexity of counting k-cliques in n-vertex graphs is nΩ(k), the con-
struction of Theorem 3 is optimal up to polynomial factors. Specifically, they
rule out (under this assumption) the possibility that the complexity of a oracle-
access-OI predictor can be a fixed polynomial in the complexity of the distin-
guishers in A and in the distinguishing advantage ε. Their hardness result holds
for constant distinguishing advantage ε and for an efficiently-sampleable distri-
bution D∗. This hardness results are in stark contrast to the state of affairs for
sample-access-OI (see Theorem 2). Concretely, in the parameters of the upper
bound, the result based on the hardness of clique-counting rules out any pre-
dictor p̃ satisfying oracle-access-OI of (uniform) size significantly smaller than
dΩ(1/ε).

Theorem 4 (Informal [14]). For k ∈ N, assume there exist α > 0 s.t. there is
no o(nα·k)-time randomized algorithm for counting k-cliques. Then, there exist:
X ⊆ {0, 1}d2

, an efficiently-sampleable distribution D∗, and a class A of dis-
tinguishers that run in time Õ(d3) and make Õ(d) oracle queries to p̃, s.t. for
ε = 1

100k , no predictor p̃ that runs in time (dα·k · log−ω(1)(d)) can satisfy (A, ε)-
oracle-access-OI.

This lower bound is robust to the computational model: assuming that clique-
counting requires nΩ(k)-sized circuits implies a similar lower bound on the circuit
size of oracle-access-OI predictors. The complexity of clique counting has been
widely studied and related to other problems in the fine-grained and parameter-
ized complexity literatures, see the discussion in [14]. We note that, under the
plausible assumption that the fine-grained complexity of known clique counting
algorithms is tight, this result shows that obtaining oracle-access-OI is as hard,
up to sub-polynomial factors, as computing p∗. We emphasize that this is the
case even though the running time of the distinguishers can be arbitrarily small
compared to the running time of p∗.

Dwork et al. also show that, under the (milder) assumption that BPP �=
PSPACE, there exists a polynomial collection of distinguishers and a distribution
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D∗, for which no polynomial-time predictor p̃ can be OI. The distinction from
the fine-grained result (beyond the difference in the assumptions) is that here
D∗ is not efficiently sampleable, and the distinguishing advantage for which OI
is hard is much smaller.

2.2 Broader Context and Discussion

We highlight a few possible interpretations and insights that stem from the
technical results described above. The ability to construct predictors that satisfy
outcome indistinguishability can be viewed both positively and negatively. On
one hand, the feasibility results demonstrate the possibility of learning generative
models of observed phenomena that withstand very powerful scrutiny, even given
the complete description of the model. On the other hand, OI does not guarantee
statistical closeness to Nature (it need not be the case that p∗ ≈ p̃). Thus, the
feasibility results demonstrate the ability to learn an incorrect model that cannot
be refuted by efficient inspection. In this sense, attempting to recover the “true”
model of Nature based on real-world observations is futile: no efficient analyst
can falsify the outcomes of the model defined by p̃, agnostic to the “true” laws
of Nature.

The most surprising (and potentially-disturbing) aspect of our results may be
the complexity of achieving oracle-access-OI and code-access-OI. In particular,
for these levels, we show strong evidence that there exist p∗ and A that do not
admit efficient OI predictors p̃, even when A is a class of efficient distinguishers!
That is, there are choices of Nature that cannot be modeled simply, even if all we
care about is passing simple tests. This stands in stark contrast to the existing
literature on indistinguishability in cryptography, where the complexity of the
indistinguishable object is usually smaller than the distinguishers’ complexity,
and in complexity theory, where the object is polynomial in the distinguishers’
complexity.

Lessons for auditing predictors. The increased distinguishing power of oracle
access to the predictor in oracle-access-OI may have bearing on ongoing soci-
etal debates regarding appropriate usage of algorithms when making high-stakes
judgments about individuals, e.g. in the context of the criminal justice system.
Much of the discussion revolves around the idea of auditing the predictions,
for accuracy and fairness. The separation between oracle-access-OI and sample-
access-OI provides a rigorous foundation for the argument that auditors should
at the very least have query access to the prediction algorithms they are auditing:
given a fixed computational bound, the auditors with oracle-access may perform
significantly stronger tests than those who only receive sample access.

The representation is central. The representation of individuals is of central
importance to the OI framework. If the representation space X contains little
information that is relevant to the prediction task at hand, then p∗ itself will
not be very informative, and neither will a predictor p̃ that is OI. It is also
important to note that a fixed representation of features may be informative
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for the general population, but lacking in pertinent information for a protected
demographic group. In any setting where automated prediction is considered for
deployment, the representation or feature space must be carefully considered.

The OI framework can be extended, allowing for the representation of individ-
uals to be augmented throughout time. Given such an enriched representation,
and an enriched class of distinguishers (which take advantage of the new rep-
resentation), the predictor p̃ can be updated to obtain an improved predictor
that fools the new class of distinguishers. A potential argument can be used to
show that each such update moves p̃ meaningfully towards the “true” individual
probabilities, and thus this representation-augmentation process cannot happen
too many times. See [14] and see also the work of [21].

2.3 Further Related Work

The framing of outcome indistinguishability draws directly from the notion of
computational indistinguishability, studied extensively in the literature on cryp-
tography, pseudorandomness, and complexity theory (see, e.g., [22–24,45] and
references therein).

Outcome Indistinguishability is related to the extensive literature on online
forecast testing. The latter literature focuses on an online setting where there
are two players, Nature and the Algorithm. Nature controls the data generating
process (e.g., the weather patterns), while the Algorithm tries to assess, on each
Day t − 1, the probability of an event on Day t (e.g., will it rain tomorrow?).
In the early 1980s,s, [8] proposed that, at the very least, forecasts should be
calibrated. Later works considered more stringent requirements. A signal result
in the forecasting literature, due to Sandroni [42], applies to a more general
notion of tests. A test tries to assess whether an algorithm’s predictions are
“reasonably accurate” with respect to the actual observations. It is required to
satisfy a strong completeness property: no matter what Nature’s true proba-
bilities are, the test should accept them w.h.p. (indeed, calibration tests have
this property). Sandroni’s powerful result [42], shows, non-constructively1, how
to generate probability forecasts that fool any such complete test. The compu-
tational complexity of forecasting was studied by Fortnow and Vohra [18] and
by Chung, Lui and Pass [6]. See [14] for a full comparison between the forecast
testing literature and the new notion of Outcome Indistinguishability.

Algorithmic fairness. Tests are also implicit in the literature on algorithmic
fairness, where they are sometimes referred to as auditors. One line of work,
the evidence-based fairness framework—initially studied in [13,30,36]—relates
directly to outcome indistinguishability and centers around tests that Nature
always passes. Broadly, the framework takes the perspective that, first and
foremost, predictors should reflect the “evidence” at hand—typically specified
through historical outcome data—as well as the statistical and computational
resources allow.

1 The result leverages Fan’s minimax theorem.



12 G. N. Rothblum

Central to evidence-based fairness is the notion of multi-calibration [30],
which was also studied in the context of rankings in [13]. [32] provide algorithms
for achieving an extension of multi-calibration that ensures calibration of higher
moments of a scoring function, and show how it can be used to provide credible
prediction intervals. [44] study multi-calibration from a sample-complexity per-
spective. In a similar vein, [46] study a notion of individualized calibration and
show it can be obtained by randomized forecasters.

Evidence-based fairness is part of a more general paradigm for defining fair-
ness notions, sometimes referred to as “multi-group” notions, which has received
considerable interest in recent years [1,13,30,32–34,36,39,44]. This approach to
fairness aims to strengthen the guarantees of notoriously-weak group fairness
notions, while maintaining their practical appeal. For instance, [33,34,39] give
notions of multi-group fairness based on parity notions studied in [11,29]. [1]
extend this idea to the online setting. Other approaches to fairness adopt a differ-
ent perspective, and intentionally audit for properties that Nature does not nec-
essarily pass. Notable examples are group-based notions of parity [29,33,34,40].

3 Multi-PAC Learning

As discussed in the introduction, one prominent concern about predictors
obtained via machine learning is that they might discriminate against protected
groups. With fairness in mind, the loss minimization paradigm raises a funda-
mental concern: since the predictor’s loss is measured over the entire underlying
distribution, it might not reflect the predictor’s performance on sub-populations
such as protected demographic groups. Indeed, it has been demonstrated that
standard machine learning tools, when applied to standard data sets, produce
predictors whose performance on protected demographic groups is quite poor [4].

Motivated by these concerns, in work with Yona [41] (and building on earlier
work by Blum and Lykouris [1]) we study multi-group agnostic learning. For a
rich collection G of (potentially) overlapping groups, the goal is to learn a single
predictor p, such that the loss experienced by every group g ∈ G (when classified
by p) is not much larger than the loss of the best predictor for that group in the
class H. We emphasize that this should hold for all groups in G simultaneously.
The study of this question also differs from much of the agnostic learning liter-
ature in considering quite general loss functions. In particular, the loss function
itself may incorporate fairness considerations (see [41]). The question we ask is:
for which loss functions is multi-group agnostic learning possible?

To see how this objective is different from the standard agnostic PAC learning
setting, consider the simple example in which H is the class of hyperplanes and
we have two subgroups S, T ⊆ X . Suppose that the data is generated such that
every group g has a hyperplane hg that has very low error on it (but that these
are different, so e.g. hT has large loss on S and vice versa). This means that
there is no classifier h ∈ H that perfectly labels the data. If S is small compared
to T , then the agnostic learning objective could be satisfied by hT , the optimal
classifier for T . For multi-group agnostic PAC, the fact that there is some other
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classifier in H that perfectly labels S serves to disqualify hT (more generally, it
could be the case that no h ∈ H will be multi-PAC). This also highlights that
the multi-group objective becomes challenging when the groups in question are
intersecting (if the groups are disjoint, we can combine the optimal classifiers for
each group [12]).

Multi-group PAC learning via OI. [41] construct a “multi-PAC” agnostic learning
algorithm for any loss function that satisfies: (i) a uniform convergence property:
it should be possible to estimate the loss of a predictor (or a whole class) from
data sampled i.i.d. from the underlying distribution, and (ii) f -proper: mean-
ing that there should be a rule f for transforming Bayes-optimal predictions
(the probabilities p∗) into loss-minimizing predictions. Under these two assump-
tions, there is an algorithm that, for any specified finite collection G and finite
hypothesis class H, learns a multi-group agnostic predictor from labeled data.
The sample complexity is logarithmic in the sizes of G and H. The algorithm is
derived by a reduction to outcome indistinguishability (OI), drawing a new con-
nection between OI and loss minimization, and demonstrating the power and
the flexibility of the OI framework.

Related work. Blum and Lykouris [1] studied this question in an online setting
with sequential predictions. Our focus is on the batch setting. They showed
that (for every collection of groups and every benchmark hypothesis class) it
is possible to achieve competitive loss for all groups, so long as the loss func-
tion is decomposable: the loss experienced by each group is an average of losses
experienced by its members. On the other hand, they showed a loss function
(the average of false negative and false positive rates), for which the objective is
infeasible even in the batch setting.

See Sect. 2.3 for a discussion of related work in the algorithmic fairness litera-
ture. We briefly discuss the relationship to multi-group fair learning. Many works
in the algorithmic fairness literature aim to ensure parity or balance between
demographic groups, e.g. similar rates of positive predictions or similar false
positive or false negative rates [29,40]. As discussed above, other works consider
accuracy guarantees, such as calibration [7] for protected groups. Protections at
the level of a single group might be too weak [11], and recent works have studied
extending these notions to the setting of multiple overlapping groups [30,33].

3.1 Loss Functions

A loss function L is a mapping from a distribution D and a predictor p to [0, 1].
We use LD(p) to denote the loss of p w.r.t. a distribution D. For a sample
S = {(xi, yi)}m

i=1 we use LS(p) to denote the empirical loss, calculated as LD̂(p),
where D̂ is the empirical distribution defined by the sample S. This setup is
extremely general, and assumes nothing about the loss (except that it is bounded
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and can’t depend on what happens outside D). In machine learning it is common
to consider more structured losses, in which LD(p) is the expected loss of p on
a random example drawn according to D. We refer to such structured losses as
decomposable losses.

Definition 5 (Decomposable losses). A loss function L is decomposable if
there exists a function � : X × Y × [0, 1] → [0, 1] such that for every distribution
D and predictor p, LD(p) = E(x,y)∼D[�(x, y, p(x))].

For example, for binary classifiers a standard decomposable loss is the 0–1 loss,
in which �(x, y, p(x)) = 1[p(x) �= y]. For predictors, an example of a standard
decomposable loss is the squared loss, in which �(x, y, p(x)) = (p(x) − y)2.

Beyond decomposable losses. While decomposable losses are standard and com-
mon, there are many loss functions of interest that don’t have this form – espe-
cially in the literature on algorithmic fairness. For this reason, we focus on a
general notion of loss functions in our exploration of multi-group agnostic PAC
learning. Two prominent examples of such losses are:

– Calibration. [5,30,40,44] As discussed above, a predictor is calibrated if for
every value v ∈ [0, 1], conditioned on p(x) = v, the true expectation of the
label is close to v. This is a fundamental requirement in forecasting [7,19].
This loss is not decomposable because it is a global function of the predictions,
not a property of the prediction for a single x ∈ X .

– One-sided error rates [1,2,5,29,33]: The false positive rate (similarly, false
negative rate) measures the probability of a random example being labeled as
p(x) = 1, conditioned on the true label being y = 0. This isn’t a decomposable
loss because the exact contribution of a single misclassification depends on
the frequency of the negative labels, which is a global property.

See [41] for further examples and discussion. In this manuscript we focus
on loss functions with two additional properties: uniform convergence and f -
properness.

Uniform Convergence. We begin by recalling uniform convergence for hypotheses
classes:

Definition 6 (Uniform Convergence for hypotheses classes). We say that
a hypothesis class H has the uniform convergence property (w.r.t. a domain X×Y
and a loss function L) if there exists a function mUC

H : (0, 1)2 → N such that
for every ε, δ ∈ (0, 1) and for every probability distribution D over X × Y , if S
is a sample of m ≥ mUC

H (ε, δ) examples drawn i.i.d. according to D, then, with
probability of at least 1 − δ, ∀h ∈ H : |LS(h) − LD(h)| ≤ ε.

In our context, we are interested in uniform convergence as a property of the
loss function. A loss L has uniform convergence (w.r.t finite classes) with sample
complexity mUC

L : (0, 1)2 × N → N if every finite class H has the uniform con-
vergence property w.r.t L with sample complexity mUC

H (ε, δ) ≤ mUC
L (ε, δ, |H|).
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Specifically, we will be interested in losses that have the uniform convergence
property with sample complexity that depends polynomially on 1/ε, 1/δ and
log |H|. This gives rise to the following definition:

Definition 7 (Uniform convergence for loss functions). A loss L has
the uniform convergence property (w.r.t finite classes) with sample complexity
mUC

L : (0, 1)2 × N → N if there exists a polynomial f : R3 → N such that for
every ε, δ ∈ (0, 1) and k ∈ N,

mUC
L (ε, δ, k) � max

H: |H|=k
mUC

H (ε, δ) ≤ f(1/ε, 1/δ, log(k))

The uniform convergence property is satisfied by any decomposable loss func-
tion. This follows by a combination of Heoffding’s bound (for a single h) and a
union bound to get a simultaneous guarantee for every h ∈ H. For calibration,
uniform convergence follows as a special case of the bounds in [44]. However,
the loss that takes a convex combination of the false positive and the false neg-
ative rates does not satisfy uniform convergence. See [1,41]) for further details,
examples and discussion.

f-proper loss functions. Recall that proper losses (or proper scoring functions)
are losses that are minimized by the Bayes optimal predictor p∗, i.e. conditional
expectation predictor x �→ ED[y|x] [3]. The f -proper condition is a relaxation:
it says that for every distribution, a minimizer can be obtained as some local
transformation of this predictor (i.e. that does not depend on the rest of the
distribution).

Definition 8 (f-proper). For a function f : X × [0, 1] → [0, 1], we say
that a loss L is f -proper if for every distribution D on X × Y , the classi-
fier hD given by hD(x) = f(x, p∗(x) = ED[y|x]) minimizes the loss w.r.t D:
hD ∈ argminh LD(h).

The L2 loss is a well-known example of a proper loss function (f simply
outputs its second argument). The 0–1 loss is another well-known example, where
the loss is minimized by f(x, z) = 1 [z ≥ 0.5].

3.2 Multigroup PAC Learnability via OI

The objective of agnostic PAC learning is outputting a predictor p that satisfies
LD(p) � LD(H). Multigroup (agnostic) PAC learning [41] asks for a predictor
that satisfies the above, but simultaneously for every group g in a collection
G: LDg

(p) � LDg
(H), where Dg denotes the restriction of D to samples from

g. Moreover, a learning algorithm should be able to find such a solution in
sample complexity that is inverse-polynomial in the parameters in question and
polylogarithmic in the sizes of H and G.
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Definition 9 (Multi-PAC learnability). A loss L is multi-PAC learnable with
sample complexity mgPAC

L : (0, 1)3 × N
2 → N if there exists a learning algorithm

with the following property: For every ε, δ, γ ∈ (0, 1), for every finite hypothesis
class H, for every finite collection of subgroups G ⊆ 2X and for every distribution
D overX×Y , when running the learning algorithmonm ≥ mgPAC

L (ε, δ, γ, |H| , |G|)
i.i.d. examples generated by D, the algorithm returns p such that, with probability at
least 1− δ (over the choice of the m training examples and the coins of the learning
algorithm) g ∈ Gγ , LDg

(p) ≤ LDg
(H) + ε, where Gγ ⊆ G is the subset of groups

whose mass under D is at least γ: Gγ = {g ∈ G : PrD[x ∈ g] ≥ γ}.
Additionally, the sample complexity mgPAC

L should be polynomial in (1/ε), in
(1/δ), in (1/γ), in (log(|H|)), and in log(|G|)).

When G consists of intersecting groups, it is not immediately clear that this
objective is remotely feasible: it might not be satisfied by any predictor p : X →
[0, 1]! For a simple (but contrived) example, let h0, h1 denote the all-zeroes and
all-ones predictors, and consider a loss L that specifies that LDS

(h0) = 0 and
LDT

(h1) = 0 (and for any other classifier p, the loss of every distribution is
always 1). Then the multi-group objective w.r.t G = {S, T} requires that we
label the intersection S ∩ T as both 1 and 0, which is impossible. See [1,41] for
further discussion and natural examples of infeasible loss functions.

Rothblum and Yona [41] show that multi-PAC predictors exist and can be
learned for every loss function satistfying the uniform uniform convergence and
f -proper conditions.

Theorem 10 (Multi-PAC Learning [41]). If L is f-proper (Definition 8)
and has the uniform convergence property (Definition 7), then L is multi-group
learnable (Definition 9).

The Theorem is proved by a reduction to Outcome Indistinguishability. For a
loss function L satisfying the theorem conditions, for and group g and hypothesis
h, [41] show how to construct a sample-access-OI distinguisher AL,g,h s.t. if a
predictor p̃ is OI w.r.t the distringuisher, then applying f to p̃ gives a predictor
whose loss is competitive with h (f is the post-processing function for which L
is a proper loss function). This is the crux of the proof of the reduction, and a
powerful demonstration of the power of the Outcome Indistinguishability frame-
work. With this reduction in place, multi-PAC learning can be performed using
any OI learning algorithm (e.g. the algorithm of Theorem 2): i.e., by learning
a predictor p̃ that is OI w.r.t. the class of distinguishers (AL,g,h)g∈G,h∈H. The
predictor h̃(x) = f(x, p̃(x)) will be competitive with H for all groups g ∈ G
simultaneously. The heart of the argument is in constructing the distinguishers:

Lemma 11 (Loss Minimization via OI [41]). Let L be an f-proper loss
function that has the uniform convergence property. For a predictor p̃, define the
hypothesis h̃(x) = f(x, p̃(x)).

Let D be a distribution, g ⊆ X a subgroup s.t. DX [g] ≥ γ, h : X → [0, 1] a
hypothesis, and α ∈ [0, 1] a desired error parameter. There exists a multi-sample
sample-access-OI distinguisher AL,g,h s.t. if p̃ is ({AL,g,h}, Θ(α))-sample-access-
OI then:
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LDg
(h̃) ≤ LDg

(h) + α.

The distinguisher AL,g,h operates on k = Õ((mUC
L (Θ(α), Θ(α), 1))/γ) samples

(where mUC
L is the sample complexity for uniform convergence). Its complexity

is polynomial in k, in the complexity of determining group membership in g, and
in the complexity of the classifier h.

Proof. We want to guarantee that the loss of the hypothesis h̃(x) = f(x, p̃(x)) is
competitive with the loss of h, where both losses are measured on the distribution
Dg over members of the group g. We begin by observing that this is true when
the labels are drawn by p̃(x) (as in the distribution D̃). We will use OI (with
an appropriately constructed distinguisher) to ensure that it is also true for the
“real” distribution Dg.

In more detail, since L is an f -proper loss function, we have:

LD̃g
(h̃) ≤ LD̃g

(h),

because in D̃ the labels are indeed generated by p̃, i.e. p̃(x) = ED̃[y|x]. By
uniform convergence, this will remain true—up to an additive Θ(α) slack—even
if we consider the empirical loss over a (sufficiently large) i.i.d. sample from
D̃g. We now define the distinguisher AL,g,h, which takes as input k samples
{(xi, yi, p̃i)} and checks whether, for the samples where xi ∈ g, it is true that
the loss obtained by predicting f(xi, p̃i) for each xi is competitive with the loss
obtained by h on those samples (up to an additive factor of Θ(α)). By the above
discussion, when the outcomes yi are drawn by Ber(p̃i), and assuming that there
are sufficiently many samples in g to guarantee uniform convergence for the loss
L, the distinguisher will accept with high probability.

Now, if p̃ is OI w.r.t. the distinguisher Ak
g,h,α, then the distinguisher should

accept with similar probabilities whether the labeled examples are drawn by D̃
or by D (where in both cases the predictions are by p̃i). I.e., AL,g,h should also
accept w.h.p. when the examples are drawn by D. By uniform convergence, this
can only happen if the predictor h̃ is competitive with the hypothesis h w.r.t.
the distribution Dg: exactly the guarantee we wanted from h̃!

The above reduction, together with the OI learning algorithm of Theorem 2,
gives the multi-group agnostic learning algorithm of Theorem 10. The sample
complexity of the learning algorithm is governed by the sample complexity of
OI learning, which is logarithmic in the number of distinguishers. The reduction
includes |G| · |H| multi-sample distinguishers. The OI learning algorithm can be
modified to handle multi-sample distinguishers, or we can further reduce (a class
of) multi-sample distinguishers to (a class of) single-sample distinguishers using
a hybrid argument. This all results in sample complexity that is logarithmic in
|G| and in |H|. We note that we need G and H to be finite because the known
OI learning algorithm works for finite collections of distinguishers.
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Even more general losses. Rothblum and Yona [41] separate the questions of
multi-group feasibility: i.e. does a multi-group predictor always exist for a given
loss function, from the question of learnability. They show a loose characteriza-
tion of the loss functions for which multi-PAC learning is feasible, and use the
connection to OI to construct a learning algorithm for any such loss function
that also satisfies uniform convergence.

4 Recent Developments

Several recent works have refined, developed and extended the Outcome Indis-
tinguishability and multi-calibration frameworks. The literature has been grow-
ing rapidly—we briefly mention some notable examples. Gupta et al. [28] con-
sider real-valued predictions and the meaningfulness of the predictor’s confidence
intervals and moments. As noted above, the study was extended to large out-
come spaces in [15], see also [27]. Dwork et al. [16] show connections between
the literature on multi-calibration and Outcome Indistinguishability, regularity
in graph theory and the leakage simulation lemma in cryptography.

An emerging and exciting body of work shows that multi-calibration and Out-
come Indistinguishability open the door to machine learning that is quite flexible
and robust. An omni-predictor, as proposed and studied by Gopalan et al. [26],
is a single predictor that can be trained once and then adapted to different loss
functions. They show that multi-calibration for a collection of sets implies omni-
prediction w.r.t. a hypothesis class that is directly related to the collection of sets,
and a broad range of loss functions. A similar statement holds for OI, because
of the equivalence between OI and multicalibration. We view this as further
demonstration of the power and flexibility of the multi-calibration and Outcome
Indistinguishability frameworks. Subsequent works (e.g. [25]) sharpen this con-
nection, and use it in the context of optimization under fairness constraints [31].
At a very high level, these results leverage properties of OI (or multicalibration)
that are similar in spirit to the “loss minimization to OI” reduction of Lemma
11. There are differences in the types of loss functions that are considered, but
the main difference is on the conceptual level: the focus in omni-prediction is
on training a predictor that can later be used to handle many loss functions,
whereas [41] only use the reduction in the context of a fixed loss function.

Several other works leverage multi-calibration or OI to achieve robustness
or adaptability to changes that might be encountered after training. The work
of Kim et al. [37] on universal adaptability shows this in the context of propen-
sity scoring in statistical analysis, where the goal is adapting an analysis to a
new target population. Diana et al. [10] show a result of this flavor for down-
stream post-processing of predictions, whereas Kim and Perdomo [38] consider
a prediction setting where individuals might exhibit performative behavior.

Finally, Outcome Indistinguishability aims to obtain predictions that cannot
be refuted based on real-world outcome data. The real world itself, however,
does not treat all demographic groups similarly. In recent work with Dwork and
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Reingold [17], we consider corrective transformations τ that aim to map proba-
bilities p∗ in the real world to a better world τ(p∗). We study the goal of learning
a predictor that is indistinguishable from the better world, and characterize the
transformations for which this goal is achievable.
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erally from those works. We are indebted to our co-authors and collaborators Cynthia
Dwork, Michael Kim, Omer Reingold and Gal Yona for many wonderful and illumi-
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Abstract. In this work, we will give new attacks on the pseudorandom-
ness of algebraic pseudorandom number generators (PRGs) of polyno-
mial stretch. Our algorithms apply to a broad class of PRGs and are
in the case of general local PRGs faster than currently known attacks.
At the same time, in contrast to most algebraic attacks, subexponential
time and space bounds will be proven for our attacks without making any
assumptions of the PRGs or assuming any further conjectures. There-
fore, we yield in this text the first subexponential distinguishing attacks
on PRGs from constant-degree polynomials and close current gaps in the
subexponential cryptoanalysis of lightweight PRGs.

Concretely, against PRGs F : Zn
q → Z

m
q that are computed by polyno-

mials of degree d over a field Zq and have a stretch of m = n1+e we give

an attack with space and time complexities nO(n
1− e

d−1 ) and noticeable
advantage 1 − O(n1− e

d−1 /q). If q lies in O(n1− e
d−1 ), we give a second

attack with the same space and time complexities whose advantage is

at least q−O(n
1− e

d−1 ). If F is of constant locality d and q is constant,
we construct a third attack that has a space and time complexity of

exp(O(n
1− e′

(q−1)d−1 )) and noticeable advantage 1 − O(n
− e′

(q−1)d−1 ) for
every constant e′ < e.

1 Introduction

A pseudorandom number generator (PRG) is a deterministic algorithm F :
{0, 1}n → {0, 1}m that stretches a given string of bits i.e. m > n. We expect
a PRG to expand a uniformly drawn string to a longer string of bits that suf-
ficiently simulates randomness. More formally, for a PRG F its output – when
evaluated on a short uniformly random string – should be for a certain class of
computational models indistinguishable from a longer uniformly random string,
even if the algorithm F is publicly known.

PRGs are an important tool in the toolbox of cryptography besides one-way
functions [1,27], pseudorandom permutations and pseudorandom functions. Fur-
ther, in complexity theory, the existence of PRGs implies the derandomization
of certain complexity classes [38]. For example, it is known that the existence of
c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14004, pp. 25–54, 2023.
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so-called high-end PRGs implies that P equals BPP [29]. Additionally, PRGs
have the real world task of simulating cryptographic pseudorandomness in deter-
ministic software applications.

Of particular interest are PRGs that can be efficiently evaluated. Very promi-
nent examples are local PRGs [26]. Each output bit of a local PRG depends on
only a constant number of input bits. Besides their simplicity, local PRGs are
an important building block in advanced cryptographic constructions, e.g. two-
party protocols for computing circuits with constant overhead [30] or indistin-
guishability obfuscation [31,32]. Assuming additionally the pseudorandomness of
arithmetic PRGs F : Zn

q → Z
m
q where each output value is computed by a poly-

nomial of constant degree over Zq leads to arithmetization of such primitives,
like e.g. arithmetic two-party protocols [5].

Since PRGs play such a crucial role in cryptography, cryptoanalysis of PRGs
is of general importance. In particular, local PRGs F : {0, 1}n → {0, 1}m of
poly-stretch, i.e. m ≥ n1+e for some constant e > 0, have been the subject of
various attacks, and it could be shown that such PRGs can be distinguished by
subexponential-size1 circuits, or even poly-size circuits if e > 0.5 [3,4,11,18,39,
41].

PRGs of constant degree, i.e. PRGs that can be computed by polynomi-
als of constant degree over some finite field, can be seen as a generalization of
local PRGs. However, constant-degree PRGs have received much less attention
in cryptoanalytic literature than local PRGs. While there is a huge collection
of algebraic attacks on refuting and inverting constant-degree PRGs like F4/F5
and the XL-algorithms [12,16,17,23,24,36,44], we do not know of any attacks
whose time-complexity for poly-stretch constant-degree PRGs is guaranteed to
be subexponential even in the worst case. We intend to close this gap by introduc-
ing a new algebraic attack that is provably subexponential against poly-stretch
PRGs of constant degree.

1.1 Contribution

In this text, we will introduce new algebraic attacks on PRGs and prove upper
bounds for their complexities and lower bounds for their advantage in the worst
case. Let F : Zn

q → Z
m
q with m ≥ n1+e. Then, we give the following attacks on

the pseudorandomness of F :

– If F is of degree d over Zq, we have an attack with subexponential space

and time complexities nO(n
1− e

d−1 ). The advantage of this attack is 1 −
O(n1− e

d−1 /q), which is noticeable if q is large enough.
– If q should be small (e.g. q ∈ O(n1− e

d−1 )), then we give a second attack in
the above case with the same space and time complexities for which we can
guarantee a subexponentially small advantage of q−O(n

1− e
d−1 ).

1 The notion of subexponentiality is ambiguous in literature. Here, we denote by subex-
ponential a function that is contained in

⋃
c<1 2

O(nc).
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– If q is constant and F is of locality d, we give for each constant e′ ∈ [0, e) a

third attack with subexponential space and time complexities 2O(n
1− e′

(q−1)d−1 ).
For this attack, we will prove a noticeable advantage of 1 − O(n− e′

(q−1)d−1 ).

To the best of our knowledge, we give the first distinguishing algorithms on
constant-degree PRGs that are provably subexponential in the worst case for
sufficiently large moduli. Additionally, our second and third attack algorithms
are faster than the attacks of Bogdanov & Qiao [11]. Hence, these attacks give
new baselines for the cryptoanalysis of local PRGs.

1.2 Technical Overview

We want to motivate and explain here the ideas behind our new attacks. Let q
be a prime, Zq be the finite field of size q and F : Zn

q → Z
m
q be a PRG of degree

d. I.e., the i-th output value of F is computed by a polynomial fi ∈ Zq[X] :=
Zq[X1, . . . , Xn] of total degree ≤ d. Now, assume we would know a non-zero
polynomial h ∈ Zq[Y ] := Zq[Y1, . . . , Ym] that vanishes on the image of F i.e.

h(F (x)) = 0 (1)

for all x ∈ kn. Let D be the total degree of h. Since h is not the zero polynomial,
we have according to the famous Schwartz-Zippel lemma [40]

Pr
y←Zm

q

[h(y) = 0] ≤ D

q
. (2)

I.e., while h will always be zero on the image of F , the probability that h vanishes
on a random point can be controlled by D/q. If D is sublinear and q is sufficiently
large, q ≥ n for example, h gives us a strong indicator for distinguishing image
points of F from random points of Zm

q . In fact, by using h we can distinguish
the distribution (F (x))x←Zn

q
from (y)y←Zm

q
with advantage at least 1 − D

q .
However, the following two questions remain:

1. For which degrees D can we guarantee the existence of a non-zero polynomial
h of degree D that vanishes on the image of F?

2. Even if we know that such a polynomial h must exist, how can we algorith-
mically compute it?

Finding Algebraic Relations. The set of polynomials h that vanish on each F (x)
has a specific algebraic structure. To explore this structure, we consider the
following morphism of Zq-algebras:

φ : Zq[Y1, . . . , Ym] −→ Zq[X1, . . . , Xn] (3)
g(Y1, . . . , Ym) �−→ g(f1(X), . . . , fm(X)). (4)

φ maps polynomials in Zq[Y ] to polynomials in Zq[X] by substituting each vari-
able Yi by the polynomial fi(X). Denote by kerφ the kernel of φ, i.e.

kerφ = {g ∈ Zq[Y ] | φ(g) = 0} . (5)
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If g lies in kerφ, we have φ(g) = g(f1(X), . . . , fm(X)) = 0. In particular, we
have for each x ∈ Z

n
q then

g(f1(x), . . . , fm(x)) = φ(g)(x1, . . . , xm) = 0. (6)

This means, the kernel of φ contains polynomials h that are of interest for us.
Therefore, we can restate our questions as follows:

1. For what D can we guarantee the existence of a non-zero element of kerφ?
2. How can we compute all elements of kerφ up to degree D?

To answer the first question, we define the following Zq-vector spaces for � ∈ N:

Zq[X]≤� := {g ∈ Zq[X] | deg g ≤ �} , (7)

Zq[Y ]≤� := {g ∈ Zq[Y ] | deg g ≤ �} . (8)

The vector spaces Zq[X]≤� and Zq[Y ]≤� contain all elements of Zq[X] resp.
Zq[Y ] of total degree ≤ �. They are spanned by all monomials in the X-resp.
Y -variables of degree ≤ �. Therefore, we have

dimZq
Zq[X]≤� =

(
n + �

�

)
and dimZq

Zq[Y ]≤� =
(

m + �

�

)
. (9)

Now, we want to restrict φ on Zq[Y ]≤�. Remember that F is a PRG of degree
d, i.e., each fi is a polynomial of degree d. It is easy to see that φ stretches
the degree of each polynomial by at most a factor of d. I.e., we have for each
g ∈ Zq[Y ]

deg φ(g) = deg g(f1(X), . . . , fm(X)) ≤ d · deg g. (10)

So, by restricting φ on Zq[Y ]≤�, we get a linear map

φ� : Zq[Y ]≤� −→ Zq[X]≤d·� (11)

for each �. For linear maps, it is quite easy to guarantee the existence of non-
trivial kernel elements. In fact, by dimension formulas, we have

dimZq
kerφ� ≥dimZq

(Zq[Y ]≤�) − dimZq
(Zq[X]≤d·�) (12)

=
(

m + �

�

)
−

(
n + d · �

d · �

)
. (13)

Therefore, it suffices to find the smallest D s.t.(
m + D

D

)
>

(
n + d · D

d · D

)
. (14)

As we already stated, we are interested here in PRGs of poly-stretch, so let
e > 0 be constant s.t. m ≥ n1+e. We claim that inequality Eq. (14) holds for
D ∈ Ω(n1− e

d−1 ). To see this, note that we have(
m + D

D

)
>

(
n + d · D

d · D

)
(15)
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⇐⇒ (m + D) · · · (m + 1)
D · · · 1 >

(n + dD) · · · (n + 1)
(dD) · · · 1 (16)

⇐⇒ (m + D) · · · (m + 1) · (dD) · · · (D + 1) > (n + dD) · · · (n + 1). (17)

To show Eq. (17), we lower bound the LHS terms (dD) · · · (D + 1) > D(d−1)D

and (m+D) · · · (m+1) > mD. Further, for the simplicity of this exposition, we
approximate (n + dD) · · · (n + 1) by ndD. We then get roughly

(m + D) · · · (m + 1) · (dD) · · · (D + 1) (18)

>mD · D(d−1)D (19)

≥n(1+e)D · n(1− e
d−1 )·(d−1)D (20)

=n(1+e)D+(d−1−e)D (21)

=ndD ≈ (n + dD) · · · (n + 1). (22)

This shows that the degree D ∈ Ω(n1− e
d−1 ) is a plausible bound for non-trivial

elements in kerφ. In Sect. 3, we will show that we can choose any D ≥ c ·n1− e
d−1

for a constant c ∈ (2, 4] that depends on d.
The above considerations also give us a straight-forward algorithm for com-

puting a non-zero element h ∈ kerφ: For each � = 1, . . . , D, we compute a matrix
representation of the linear map

φ� : Zq[Y ]≤� −→ Zq[X]≤d·�. (23)

By using Gaussian elimination, we can then check if this matrix has a non-trivial
kernel vector. Such a non-trivial kernel vector corresponds to a non-trivial kernel
element h ∈ kerφ of degree �. By our observations above, we know that for
� = D = c · n1− e

d−1 , this algorithm must eventually find a non-zero polynomial.
The space and time complexities of this algorithm is in each step dominated

by computing the Gaussian elimination of a matrix of shape M� × N� where
M� =

(
m+�

�

) ∈ O(n(1+e)�) and N� =
(
n+d�

d�

) ∈ O(nd�). Therefore, we need to

store MD ·ND ∈ nO(n
1− e

d−1 ) field elements and perform D·MD ·N2
D ∈ nO(n

1− e
d−1 )

arithmetic operations in Zq.

Evaluating h on a point y ∈ Z
m
q costs D · MD ∈ nO(n

1− e
d−1 ) field operations.

The advantage of using h in distinguishing a random point from an image point
of F is at least 1 − D/q. Hence, for q ∈ ω(n1− e

d−1 ) and m ≥ n1+e, we have
an attack algorithm with noticeable advantage, which is subexponential in the
worst case.

We give a detailed description of the algorithms sketched here and formal
proofs for their correctness in Sect. 3 and Sect. 4.

Handling Small Moduli. Note, that we cannot guarantee any advantage of the
above algorithm if q ≤ D = cn1− e

d−1 . In fact, it may be that the above algorithm
will retrieve the kernel element h(Y ) = Y q

1 −Y1 ∈ kerφ in this case, which is not
helpful since the polynomial Y q

1 − Y1 vanishes on each point y ∈ Z
m
q .
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We can prevent the appearance of trivial polynomials in the kernel of φ as
follows: instead of Zq[X] and Zq[Y ] we consider the rings

Rq[X] :=Zq[X]/(Xq
1 − X1, . . . , X

q
n − Xn) (24)

Rq[Y ] :=Zq[Y ]/(Y q
1 − Y1, . . . , Y

q
m − Ym). (25)

On these rings, we have a morphism

φq : Rq[Y ] −→ Rq[X] (26)
g(Y1, . . . , Ym) �−→ g(f1(X), . . . , fm(X)) (27)

that again maps each variable Yi to the polynomial fi. The non-zero elements
of kerφq are now exactly the polynomials h that vanish on the image of F , but
not everywhere on Z

m
q . If we restrict φq to Rq[Y ]≤� we get again a linear map

φ�
q : Rq[Y ]≤� −→ Rq[X]≤d�, (28)

and it can be shown again that we have for D ≥ c · n1− e
d−1 for some constant c

dimZq
Rq[Y ]≤D > dimZq

Rq[X]≤dD. (29)

Therefore, kerφq must contain a non-zero element h of sublinear degree D that
is not contained in the ideal (Y q

1 − Y1, . . . , Y
q
m − Ym). For such an element,

it can be shown that its probability to not vanish on a random point can be
subexponentially bounded, even if D > q. I.e.

Pr
y←Zm

q

[h(y) 
= 0] ≥ q−D. (30)

This gives us an algorithm of subexponential complexity with a subexponentially
small advantage in distinguishing between random points and images of the PRG
F .

In a multi-challenge setting, where the adversary can query multiple values
y1, . . . , yQ that either are all uniformly and independently random or are all
values in the image of F , the above attack can be amplified to have a noticeable
advantage for a subexponential number Q ∈ qΩ(n

1− e
d−1 ) of challenges.

Local PRGs of Constant Moduli. While the advantage of the above attack may
be much higher in practice (since the probability that h vanishes on a random
point may be higher than q−D), from a theoretical point of view the postulated
subexponential advantage is not satisfying.

Fortunately, in the case where the modulus q is constant and F is of constant
locality, we can use a little trick to noticeably boost the advantage of our attack.
For simplicity, we will assume here that q is 2, however the following approach
works for each constant modulus:

Let F : Zn
2 → Z

m
2 be of locality d. This means, the i-th bit of the output of

F is computed by a function fi : Zn
2 → Z2 that only depends on d of its inputs.

Choose a prime number p ∈ [n, 2n] and note that – due to the locality of F – for
each fi we can find a polynomial f ′

i ∈ Zp[X] of degree d that coincides2 with fi on
2 Note, that in the case q > 2, the degree of the polynomials f ′

i that coincide with fi
on the set {0, . . . , q − 1}n will be (q − 1)d instead of d.



Worst-Case Subexponential Attacks on PRGs of Constant Degree 31

{0, 1}n, i.e., we have f ′
i(x) = fi(x) for each x ∈ {0, 1}n. So, instead of attacking

the pseudorandomness of F , we can focus on the pseudorandomness of the map
F ′ : Zn

p → Z
m
p of degree d that consists of the polynomials f ′

1, . . . , f
′
m. However,

distinguishing a random point y ← Z
m
p from F ′(x) = F (x), for x ← {0, 1}n,

is obviously simple, since the latter will always lie in {0, 1}m. To come up for
that, we set m′ := m

3 log p and draw a uniformly random matrix A ← Z
m′×m
p .

According to the Leftover Hash Lemma, the distributions

(A,Ay)y←{0,1}m and (A, y′)y′←Zm′
p

(31)

are statistically very close. Therefore, if F : Zn
2 → Z

m
2 is pseudorandom, then the

map G : Zn
p → Z

m′
p of degree d that maps x to A·F ′(x) must be, too. However, we

can apply our first attack against G. Since m ≥ n1+e, we have m′ ≥ n1+e′
for any

constant e′ < e and therefore an attack of time and space complexity 2O(n
1− e′

d−1 )

and noticeable advantage 1−O(n1− e′
d−1 )/p ≥ 1−O(n− e′

d−1 ). Going back to F , we
get an algorithm of subexponential complexity that has a noticeable advantage
in distinguishing images of F from random bit strings y ← {0, 1}m. We detail
this attack in Sect. 5.

1.3 Related Work

We try to give here a short survey of the current cryptoanalytic literature on
PRGs.

Linear Tests and Low-Degree Correlation. A linear test for a PRG F : Zn
q → Z

m
q

is a degree-1 polynomial L ∈ Zq[Y ] that has a noticeable advantage∣∣∣∣ Pr
x←Zn

q

[L(F (x)) = 0] − Pr
y←Zm

q

[L(y) = 0]
∣∣∣∣ (32)

in distinguishing random points from image points of F . While linear tests form
a very simple class of attacks against PRGs, it can be shown that they are a good
sanity check in the case of local PRGs: a local random PRG that is secure against
linear tests also fools other classes of distinguishers like e.g. AC0, l-wise tests
and degree-2 threshold functions [2, Proposition 4.10]. Mossel et al. [37] shows
that there exist PRGs of constant locality s.t. each linear test only has negligible
advantage against those PRGs, even if the PRG is of polynomial stretch m =
n1+e. Their construction is based on the famous tri-sum-and predicate

X1X2 + X3 + X4 + X5 (33)

that gets applied on random subsets of the input to compute the output bits of
the PRG.

If we allow the degree of L to be greater than 1, we get a polynomial test
of higher degree. Viola [43] showed that for each constant d a PRG can be con-
structed that cannot be distinguished by degree-d tests with noticeable advan-
tage (his constructions allows non-constant values for d, however such d reduce
the stretch of the PRG substantially).
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Groebner Basis-Based Attacks. A huge class of attacks against PRGs of constant
degree constitute of algebraic attacks [12,16,17,23,24,36,44]. These attacks aim
to invert the potential image of a PRG by computing a Groebner basis or some-
thing similar in the case of XL-algorithms.

These algorithms work well in practice, and it has been suspected that they
give subexponential attack algorithms against PRGs of polynomial stretch [9].
However, computing a Groebner basis can be a task of double exponential com-
plexity in the worst case, and therefore those algorithms do not give us provable
subexponential attacks.

In the full version [45] of this text, we will give a deeper comparison of our
algorithms with Groebner basis-based algorithms, draw new insights for Groeb-
ner basis-based algorithms and construct a Macaulay matrix-based algorithm
that is provable subexponential in the worst case when distinguishing the images
of poly-stretch PRGs.

Random Local Functions. A random local function is a PRG F : {0, 1}n →
{0, 1}m where each output bit is computed by a fixed predicate P : {0, 1}d →
{0, 1} that is applied on a random subset of bits of the input string. The notion of
random local functions has been put forth by Goldreich [26] and was the subject
of a great body of cryptoanalytic literature. For exhaustive surveys and studies
on the security of random local functions, we refer the reader to the works of
Applebaum [2] and Couteau et al. [18]. We will only review here some attacks
on random local functions, which we think are the most relevant for the context
of this work:

1. It is known that F can be inverted in polynomial time and with high probabil-
ity if m ∈ Ω(log(n) ·n �2d/3�

2 ) [2]. First note, that F can be efficiently inverted
by linearization of the corresponding polynomial equation system if it is of
stretch m ∈ Ω(ndeg P ), where degP denotes the degree of P as a polynomial
over Z2.
This means, the degree of P must be greater than d/3 if we want to avoid
the above attack for m ≥ n

d
3 . However, if degP ≥ d/3, then P is correlated

with the sum of c ≤ d − d
3 of its variables [41]. I.e., P can be written as

P (Z1, . . . , Zd) = Z1 + . . . + Zc + N(Z1, . . . , Zd) (34)

where N is a biased predicate i.e. Prz←{0,1}d [N(z) = 0] 
= 1
2 . When solving

the system F (x) = y, one can see the N predicates as dependent noise added
to linear equations. This constrained noisy linear equation system can be
solved efficiently if m ∈ Ω(nc/2) [15,25].

2. There is a subexponential inversion attack [2,11] on F (x) that utilizes approx-
imations of the correct inverse and has a runtime complexity of 2O(n1− e

2d ) (if
m ≥ n1+e). The idea is to assign random bits to the first (1 − 2n− e

2d ) bits of
an approximate solution. By iterating over all possible x′ ∈ {0, 1}n with the
given prefix, one will find an approximation that coincides with x on at least
( 12 +n− e

2d )n of its bits with probability at least 1
2 . This approximation can now

be used to find efficiently and with high probability the correct solution x.
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Note, that the time complexity 2O(n1− e
2d ) of this algorithm is worse than the

time complexity 2O(n
1− e′

d−1 ), for any constant e′ < e, of the algorithm we
sketched against d-local PRGs of stretch n1+e.

3. Couteau et al. [18] constructed a guess-and-determine-style attack on PRGs
F : {0, 1}n → {0, 1}n1+e

of constant locality. Their attack guesses – in an
intelligent way – a portion of the bits of x and tries to extract a linear equation
system from the system F (x) = y for the unguessed input bits. If the predicate
P for F is of the form

P (X1, . . . , Xr) = X1X2 + X3 + . . . + Xr, (35)

they can prove that their attack will succeed in distinguishing random points
from images of F and has a time complexity of 2O(n1−e). Note, that r does
not need to be constant.
They even generalize their attack to work with general predicates

P (X1, . . . , Xr) = M(X1, . . . , Xd) + Xd+1 + . . . + Xr, (36)

for any predicate M : {0, 1}d → {0, 1} and get an attack algorithm of time
complexity 2O(n

1− e
d−1 ). However, to prove a high success probability of the

generalization of their attack they need to assume a special conjecture that
depends on M .

4. While there are a lot of efficient attacks against local PRGs of sufficient
stretch, it is known that algebraic attacks against d-local PRGs of stretch
n1+e will have a time complexity of at least nO(n

1−32 e
d−2 ) in the worst case [2,

Theorem 5.5]. This means, up to some constants in the exponent, the time
complexities we achieve with our attacks are optimal for algebraic attacks.

Attacks Based on Sum-of-Squares. Sum-of-Squares attacks are a special class of
SDP-based attacks. These attacks were discovered recently and used to refute
several candidate light-weight PRGs of polynomial stretch for indistinguishabil-
ity obfuscation schemes [7,8]. While these attacks are efficient, they need to make
special assumptions about the PRGs they attack, which limits the generality of
those attacks. We will list below some PRGs for which a sum-of-squares attack
can successfully distinguish PRG images from random points:

1. Let F : {0, 1}nb → {0, 1}m be two block-local, i.e., the input is partitioned
into n blocks of size b and each output depends on two blocks. If m ∈ Ω(22b ·
log2(n) · n) is big enough, then there is an efficient attack on F [7].

2. Let c > 0 be a constant and let Y be a distribution over R s.t. we have
Pry←Y [y /∈ [a, a + c]] ≥ 1

10 for each a ∈ R. Let F : {0, 1}n → R
m be a

PRG of degree d over the reals s.t. the polynomials in F have at most s
monomials. If m ∈ Ω(log2(n) · s · n�d/2�) is big enough and if we assume a
special assumption for the polynomials f1, . . . , fm, there is an efficient attack
that can successfully distinguish images of F from points y ← Y m [7].
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3. Let t ∈ poly(n) and let Q be a distribution of quadratic polynomials in R[X]
with some special properties. If m ∈ log(n)Ω(1) · n is big enough, there is an
efficient algorithm that can extract with high probability the input x from
(F, F (x)) where we sample x ← [−t, t]n and F ← Qm [8].

1.4 Organization of this Text

In Sect. 2, we will introduce some algebraic and cryptographic preliminaries. In
Sect. 3, we will give an algorithm that finds non-trivial polynomials that vanish
on the images of PRGs F : Zn

q → Z
m
q of constant degree d and prove that one can

find such polynomials of sublinear degree if F is of polynomial stretch m = n1+e.
In Sect. 4, we will give a distinguishing attack on F of time and space complexity
nO(n

1− e
d−1 ) and prove that it has an advantage of at least 1 − O(n1− e

d−1 /q). In
Sect. 5, we will investigate the case of small constant moduli q. For simplicity,
we will only treat the representative case q = 2, however all results shown for
q = 2 can be generalized for any small or constant prime q. We will show in
this section, that one can find a polynomial of sublinear degree that vanishes
on the image of F , but does not vanish everywhere on Z

m
q . This leads to a

second attack on degree-d PRGs F : Zn
q → Z

m
q of complexity nO(n

1− e
d−1 ) and

subexponential advantage q−O(n
1− e

d−1 ). Additionally, we will in this section give
an attack on d-local PRGs F : Zn

q → Z
m
q that has a time and space complexity

of 2O(n
1− e′

(q−1)d−1 ) and noticeable advantage O(n− e′
(q−1)d−1 ) for every constant

e′ < e. In Sect. 6, we will derive some insights for the design of PRGs that shall
be secure against subexponential adversaries.

In the full version of this text [45], we will give an exhaustive compari-
son between our algorithms and Groebner basis-based algorithms, derive some
insights for Groebner basis-based algorithms, give a new attack algorithm against
PRGs of constant degree and polynomial stretch, which is also Groebner basis- or
rather Macaulay matrix-based, and prove that it is subexponential in the worst
case. Additionally, we will formally prove some claims that were only sketched
and give some algebraic background.

2 Preliminaries

2.1 Notation

Denote by N = {1, 2, 3, . . .} the set of natural numbers and by N0 = N∪ {0} the
set of natural numbers plus zero.

For the rest of this text, by k we will always denote a field and by k[X1, . . . , Xn]
resp. k[Y1, . . . , Ym] the corresponding polynomial ring, for n,m ∈ N. Since the
numbers of X and Y variables will always be n resp. m, by abuse of notation, we
will write k[X] resp. k[Y ] instead of k[X1, . . . , Xn] resp. k[Y1, . . . , Ym].

Let f ∈ k[X]. When we speak of f ’s degree we always mean its total degree
that is the minimum number d ∈ N0 s.t. f can be written as a k-linear combi-
nation of monomials that are the product of ≤ d variables.
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If S is a finite set, we denote by x ← S the fact that the random variable x
is drawn uniformly and independently at random from S.

For a number q ∈ N, we define the finite ring Zq := Z/qZ.
We will denote by n the security parameter in this text. The parameter

m = m(n) will in most cases be dependent on n. For this to be consistent, we
assume in those cases that m is time-constructible.

We call a function ε : N → [0, 1] negligible, if we have limn→∞ ε(n) · nd = for
each d ∈ N. By poly(n) :=

{
f : N → N | ∃c, d ∈ N : f(n) ≤ nd + c

}
we denote

the set self-maps of the natural numbers that are upper-bounded by constant-
degree polynomials.

Given two discrete distributions X and Y, we define their statistical distance
as Δ(X ,Y) := 1

2

∑
x |X (x) − Y(x)|.

Given two vector spaces V,W over the same field, we denote by V ⊕W their
direct sum.

2.2 Mathematical Preliminaries

We will introduce now some basic facts and notions for the polynomial ring k[X]:

Remark 1. Let n ∈ N. Let k be any field and consider the polynomial ring
k[X] = k[X1, . . . , Xn]. The ring k[X] is graded and can be written as

k[X] =
∞⊕

�=0

k[X]� (37)

where k[X]� is the finite-dimensional k-vector space generated by all monomials
of total degree = �, i.e.

k[X]� = spank {Xa1
1 · · · Xan

n | a1, . . . , an ∈ N0, a1 + . . . + an = �} . (38)

By k[X]≤� we denote the space generated by all monomials of degree ≤ �, i.e.

k[X]≤� :=
�⊕

i=0

k[X]i. (39)

The dimensions of k[X]� and k[X]≤� are given by

dimk k[X]� =
(

n + � − 1
�

)
and dimk k[X]≤� =

(
n + �

�

)
. (40)

Sometimes, we will use the notion Xα1 ,Xα2 , . . . to denote monomials

X
a1,1
1 · · · Xa1,n

n ,X
a2,1
1 · · · Xa2,n

n , . . . . (41)

In those cases, the α1, α2, . . . ∈ N
n
0 are multi-indices given by

αi = (ai,1, . . . , ai,n). (42)
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In the case of k = Zq for a small prime q, it might be necessary to include
the field equations Xq

1 − X1, . . . , X
q
n − Xn when considering k[X]. In this text,

we will only treat the case q = 2, which is representative for all cases of constant
moduli q:

Remark 2. Let k = Z2 and denote by I ⊂ Z2[X] the ideal generated by the field
equations of Z2, i.e.

I := (X2
1 − X1, . . . , X

2
n − Xn). (43)

The ring Z2[X]/I is not graded any more, since I is not a homogenous ideal.
However, it is still filtrated where the filtration steps are given by the vector
spaces

Z2[X]≤�/(I ∩ Z2[X]≤�). (44)

A basis for Z2[X]≤�/(I ∩Z2[X]≤�) is given by the set of all monomials of degree
≤ � where each variable occurs at most once. Therefore, we have for � ≤ n

dimZ2(Z2[X]≤�/(I ∩ Z2[X]≤�)) =
�∑

i=0

(
n

i

)
. (45)

In particular, we have for � ≤ n

�∑
i=0

(
n

i

)
= dimZ2(Z2[X]≤�/(I ∩ Z2[X]≤�)) ≤ dimZ2(Z2[X]≤�) =

(
n + �

�

)
.

(46)

Definition 1 (Dual Morphisms). Let k be any field and k[X] =
k[X1, . . . , Xn]. Let f1, . . . , fm ∈ k[X] and k[Y ] = k[Y1, . . . , Ym]. The function

F : kn −→ km (47)
x −→ (f1(x), . . . , fm(x)) (48)

gives us a geometrical map that is continuous in the Zariski topology. It has a
dual morphism of k-algebras

φ : k[Y ] −→ k[X] (49)
Yi −→ fi(X) (50)

that maps each polynomial h ∈ k[Y ] to a polynomial h(f1(X), . . . , fm(X)) in
k[X] by substituting each appearance of Yi in h by fi for each i ∈ [m].

Definition 2 (Algebraic Independence). In the situation of Definition 1,
we call f1, . . . , fm algebraically independent if φ is injective.

If φ is not injective, we call a non-zero element h ∈ kerφ of its kernel an
algebraic relation of the elements f1, . . . , fm.
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When working with polynomials over k = Zq for q sufficiently large, the
Schwartz-Zippel Lemma is a helpful tool to lower bound the probability that a
fixed polynomial vanishes on a random point of Zm

q .

Lemma 1 (Schwartz-Zippel [40]). Let q ∈ N be a prime and let m, d ∈ N.
Let h ∈ k[Y ] be a polynomial of degree d. Then, we can bound the probability of
h vanishing on a random point of Zm

q by

Pr
y←Zm

q

[h(y) = 0] ≤ d/q. (51)

2.3 Cryptographic Preliminaries

In this subsection, we will introduce the notion of pseudorandom number gen-
erators, and define a simple security game for them.

Definition 3 (Pseudorandom Number Generators). Let m : N → N be
a time-constructible function and let k be any field. A pseudorandom num-
ber generator (PRG) is a family of functions F = (Fn)n∈N s.t. each Fn is a
deterministic function

Fn : kn −→ km. (52)

We call m the stretch of the PRG. If there is a constant e > 0 s.t. m ≥ n1+e,
we say that (Fn)n∈N is a poly-stretch PRG.

Remark 3. If F = (Fn)n∈N is a PRG, we will, by abuse of notation, just write

F : kn → km. (53)

For a given n, we will further write F when we actually mean Fn.
The adversaries in this text are always given a description of Fn (which we

will simply denote by F ) that allows the adversary to efficiently evaluate Fn

on points of kn. We assume that this description of Fn always contains binary
representations of the numbers n,m and a description of the field k that allows
the adversary to perform arithmetic operations over k. Additionally, if F is of
locality or degree d ∈ N (in the sense of Definition 4), we expect the description
of F to contain a binary representation of d.

Definition 4 (Locality and Degree of PRGs). Let F = (Fn)n be a PRG of
stretch m over k. Let d ∈ N. For n ∈ N and i ∈ [m], we denote by fn,i : kn → k
the function of the i-th output of Fn. I.e., fn,1, . . . fn,m are uniquely determined
by

F (x) = (fn,1(x), . . . , fn,m(x)) (54)

for all x ∈ kn.
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1. We say that F is d-local if each of its output values depends on only d input
values. I.e. for each n ∈ N and i ∈ [m] there is a function g : kd → k and
indices l1, . . . , ld ∈ [n] s.t. we have for each x ∈ kn

fn,i(x1, . . . , xn) = g(xl1 , . . . , xld).

2. We say that F is of degree d if each fn,i can be computed by a polynomial of
degree d. I.e., for each n ∈ N and i ∈ [m] the function fn,i : kn → k coincides
with a polynomial in k[X] of degree ≤ d. In this case, by abuse of notation,
we will directly interpret fn,i as an element of k[X]≤d.

For a given n, we will simply write f1, . . . , fm instead of fn,1, . . . , fn,m to
denote the partial functions of F . We will usually say in those cases that F is
made up of or consists of f1, . . . , fm.

Definition 5 (Security Game for PRGs). Let k be finite now and let F :
kn → km be a PRG. We describe here a non-interactive security game between
a probabilistic challenger C and a (potentially probabilistic) adversary A. The
game is parametrized by n and proceeds in the following steps:

1. C draws a bit b ← {0, 1}. If b = 0, it samples a preimage x ← kn uniformly
at random, computes F (x) and sends (F, F (x)) to A. If b = 1, it samples
y ← km and sends (F, y) to A.

2. A receives (F, y∗) for some y∗ ∈ km and must decide which bit b has been
drawn by C. It makes some computations on its own without interacting with
C and finally sends a bit b′ to C.

A wins an instance of this game iff b = b′ holds at the end. We define A’s
advantage against F by

advF (A) := 2Pr[A wins] − 1 = Pr
x←kn

[A(F, F (x)) = 0] + Pr
y←km

[A(F, y) = 1] − 1

(55)

where we take the probability over the randomness of A and C.
We define A’s space complexity to be the number of bits and elements of k it

stores simultaneously in step 2, and we define its time complexity by the number
of bit-operations and arithmetical operations over k it performs in step 2.

Definition 6. We say that an algorithm is subexponential if there is a con-
stant e ∈ [0, 1) s.t. its time and space complexities lie in 2O(ne).

Lemma 2 (Leftover Hash Lemma (Matrix Version) [21]). Let q ∈ N be
a prime and let m,m′ ∈ N be natural numbers.

If we draw A1, A2 ← Z
m×m′
q , y1 ← {0, 1}m, y2 ← Z

m′
q , we have

Δ((A1, A1y1), (A2, y2)) ≤ 1
2

√
2m′·log q−m. (56)
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3 Finding Algebraic Relations

In this section, we introduce an algorithm B1 that – given a set of polynomials –
finds an algebraic relation among these polynomials. Further, we will prove upper
bounds for the degree of this relation and for the complexity of the algorithm.

Now, let n,m, d ∈ N and let k be any field in this section. Let F : kn → km be
a polynomial mapping of degree ≤ d that is given by polynomials f1, . . . , fm ∈
k[X] of degree ≤ d.

Denote by φ : k[Y ] → k[X] the dual morphism to F . Note, that φ expands
the degrees of its inputs by a factor of at most d, i.e., we have for each � ∈ N0

φ(k[Y ]≤�) ⊆ k[X]≤d·�. (57)

Let kerφ = {h ∈ k[Y ] | φ(h) = 0} be the kernel of φ. Our aim is to compute a
non-trivial element of kerφ.

We will propose a straight-forward approach for this task: For � = 1, 2, . . .,
the algorithm B1 will compute a monomial basis for k[Y ]≤� and check – by linear
algebra – if the vector space k[Y ]� ∩ kerφ is non-trivial. If k[Y ]� ∩ kerφ contains
a non-trivial element eventually, B1 will output it and terminate. Formally, B1
is given by:

Algorithm 1. The algorithm B1 gets as input numbers n,m, d ∈ N, a descrip-
tion of k and a description of a polynomial map F : kn → km. It has to output
a non-zero element of kerφ.

B1 sets an iteration variable � := 1 and proceeds in the following steps:

1. B1 computes N :=
(
n+d�

d�

)
and M :=

(
m+�

�

)
2. B1 computes a finite list (Y a1

1 · · · Y am
m | a1, . . . , am ∈ N0, a1 + . . . + am ≤ �) =

(Y α1 , . . . , Y αM ) of all monomials in k[Y ] of degree ≤ �.
3. B1 applies φ to each Y αi and computes a second list (φ(Y α1), . . . , φ(Y αM ))

of polynomials in k[X] of degree ≤ d�.
4. Let Xβ1 , . . . , XβN be the set of all monomials in k[X] of degree ≤ d�. Then,

Xβ1 , . . . , XβN is a basis of k[X]≤d� and for each φ(Y αi) there is a unique
column-vector wi = (wi,1, . . . , wi,N ) ∈ kN s.t.

φ(Y αi) =
N∑

j=1

wi,j · Xβj . (58)

B1 computes for each Yαi
the corresponding vector wi and writes down the

matrix

W� :=
(
w1| . . . |wM

) ∈ kN×M . (59)

5. B1 uses Gaussian elimination to compute a basis for the vector space

K� :=
{
r ∈ kM | W� · r = 0

}
. (60)

6. If K� is the trivial null-space, B1 increases � by one and goes back to step 2.
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7. Otherwise, B1 chooses an arbitrary non-zero vector r ∈ K�, computes the
polynomial

h := r1 · Y α1 + . . . + rM · Y αM ∈ k[Y ] (61)

of total degree ≤ � and outputs it.

We will show the following properties for B1:
Lemma 3. Let n,m, d ∈ N s.t. m > n. Let F : kn → km be a polynomial map
of degree ≤ d. Let y ∈ km. We have the following:

1. On input n,m, d and F , B1 will always terminate after a finite number of
steps and output a polynomial h.

2. The polynomial h outputted by B1 will always lie in kerφ and be non-zero.

Proof. 1. Note that m > n. The first claim of the lemma is equivalent to stating
that m elements of k[X] must be algebraically dependent and φ : k[Y ] →
k[X] cannot be injective. This is a well-known fact in algebra and is easy to
prove, however writing down a formally correct proof will make the notions of
transcendency bases and function fields necessary. A proof of this statement
can be found in the full version [45] of this text.

2. Assume that B1 stops after D iterations and outputs h. Then, h is a polyno-
mial in k[Y ] of degree D and can be written as

h := r1 · Y α1 + . . . + rM · Y αM ∈ k[Y ] (62)

where M =
(
m+D

D

)
and r is a non-zero kernel element of RD. I.e., we have

M∑
i=1

ri · wi = 0. (63)

Since the entries of wi are exactly the coefficients of φ(Y αi), we have

φ(h) = φ

(
M∑
i=1

ri · Y αi

)
=

M∑
i=1

ri · φ (Y αi) = 0. (64)

Ergo, h ∈ kerφ.

Lemma 4. Assume that B1 terminates after D iterations. Then, its space com-
plexity can be bounded by O(NM) and its time complexity can be bounded by
O(DN2M) for N =

(
n+d·D

d·D
)

and M =
(
m+D

D

)
.

Proof. In each iteration step, B1 computes a matrix of shape at most N ×
M over k. Therefore, the number of bits and elements of k it needs to store
simultaneously can be bounded by O(NM).

We can bound the time complexity of each iteration step from above by the
time complexity of the D-th iteration step. In this step, B1 performs Gaussian
elimination on an N × M -matrix which needs O(N2M) arithmetical operations
over k. Therefore, the number of bit-operations and arithmetical operations B1
needs to do in each step can be bounded by O(N2M), and B1’s total time
complexity can be bounded by O(DN2M).
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Note, that B1 starts at � = 1 and increases � by one subsequently. Since B1
terminates only if it finds a non-trivial element in k[Y ]� ∩ kerφ, this means that
the number D of iterations B1 has to perform is exactly the lowest total degree
of non-zero elements of kerφ.

Lemma 5. B1 terminates after D iterations iff D = min{deg h |h ∈ kerφ,
h 
= 0}.

3.1 Bounding D for Poly-stretch PRGs

We have seen in the last subsection that the time and space complexity of B1
is substantially influenced by D. Since D is the minimal degree of a non-trivial
element of kerφ, our aim in this subsection is to bound the degree of algebraic
relations for all sets of polynomials f1, . . . , fm of degree ≤ d.

Since we are interested in the case of poly-stretch PRGs, we introduce an
additional constant e > 0 and assume that m is always larger than n1+e.

Let φ� be the restriction of φ on k[Y ]≤�. Then, each φ� is a linear map of
type k[Y ]≤� → k[X]≤d·�. We can guarantee that φ� has a non-trivial kernel, if
the dimension of k[Y ]≤� exceeds the dimension of k[X]≤d·�. Now, the dimensions
of k[Y ]≤� and k[X]≤d·� are given by

dimk(k[Y ]≤�) =
(

m + �

�

)
and dimk(k[X]≤d·�) =

(
n + d · �

d · �

)
. (65)

Therefore, we get for algorithm B1:
Lemma 6. Let D be the number of iterations of B1. Then, we have

D ≤ min
{

� ∈ N |
(

m + �

�

)
>

(
n + d · �

d · �

)}
. (66)

Inequality Eq. (66) gives us a tool to compute a worst-case bound for B1’s
complexity for each possible case of polynomials f1, . . . , fm. In the next lemma,
we will show that we can bound D by O(n1− e

d−1 ). While n1− e
d−1 is non-constant

for e < d−1, it implies that we can bound the complexity of B1 subexponentially
by nO(n

1− e
d−1 ).

Lemma 7 (Main Inequalities). Let d ∈ N, d ≥ 2 and e ∈ (0, d − 1]. Let
m : N → N be a function with m(n) ≥ n1+e and set c = 2

d
d−1 . Then, we have

for all integers n ≥ (2dc)
d−1

e

(
m(n) + L(n)

L(n)

)
>

(
n + dL(n)

dL(n)

)
(67)

where L(n) =
⌈
cn1− e

d−1
⌉
.

Proof. In the proof, by abuse of notation, we write m = m(n) and L = L(n).
We first prove the inequality dL ≤ n. In fact, we have

dL = d
⌈
cn1− e

d−1
⌉ ≤ d(c · n1− e

d−1 + 1) = dc · n1− e
d−1 + d. (68)
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Since n ≥ (2dc)
d−1

e , d must be smaller than n/2. For dc · n1− e
d−1 , we have the

equivalent inequalities

dc · n1− e
d−1 ≤ 1

2
n ⇐⇒ dc ≤ 1

2
n

e
d−1 (69)

⇐⇒ 2dc ≤ n
e

d−1 (70)

⇐⇒ (2dc)
d−1

e ≤ n (71)

where the last inequality is exactly the requirement in our lemma for n. There-
fore, we get

dL ≤ dcn1− e
d−1 + d ≤ n

2
+

n

2
= n. (72)

Now, for the claimed inequality of the lemma, we have the following chain of
equivalent inequalities(

m + L

L

)
>

(
n + dL

dL

)
(73)

⇐⇒ (m + L) · · · (m + 1)
L!

>
(n + dL) · · · (n + 1)

(dL)!
(74)

⇐⇒ (m + L) · · · (m + 1) · (dL) · · · (L + 1) > (n + dL) · · · (n + 1). (75)

Note, that we have for all n the inequalities

(m + L) · · · (m + 1) > mL, (76)

(dL) · · · (L + 1) > L(d−1)L. (77)

For the right-hand side, we have

(n + dL) · · · (n + 1) ≤ (n + dL)dL ≤ (2n)dL = ndL · 2dL. (78)

By using the inequalities Eqs. (76) to (78), we see that Eq. (75) is implied by
the inequality

mL · L(d−1)L ≥ ndL · 2dL. (79)

By reducing Eq. (79) to the L-th root, we get the equivalent inequality

m · L(d−1) ≥ nd · 2d. (80)

Now, it is easy to show that this inequality holds:

m · L(d−1) ≥ n1+e · (
c · n1− e

d−1
)(d−1)

= n1+e+(d−1)−e · cd−1 = nd · 2d. (81)

This completes the proof.

Lemmas 3 to 7 now implies the following theorem:

Theorem 1. Let d ∈ N, e > 0 be constants and m ≥ n1+e. Let f1, . . . , fm ∈
k[X] be polynomials of degree ≤ d.

Then, B1 in Algorithm 1 outputs a non-trivial element of kerφ of degree
O(n1− e

d−1 ). Its space and time complexities lie in nO(n
1− e

d−1 ).
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4 Attacks on Constant-Degree PRGs over Large Moduli

In this section, we will focus on the case k = Zq for a prime q that is sufficiently
high (e.g. q ∈ Ω(n)). We claim that in this case B1 from Algorithm 1 gives us a
subexponential attack on each PRG of constant degree over Zq and poly-stretch.
In this section, we will prove:

Theorem 2. Let d ∈ N, e > 0 be constants. Let m ≥ n1+e and let F : Zn
q → Z

m
q

be a PRG of degree d over Zq.
Then, there is an attack algorithm A1 whose time and space complexities are

bounded from above by nO(n
1− e

d−1 ). Further, there exists a constant c > 0 s.t.
A1’s advantage in the security game Definition 5 is lower bounded by

advF (A1) ≥ 1 − c · n1− e
d−1 /q. (82)

The attack A1 on F is defined as follows:

Algorithm 2. A1 receives as input a description of F that includes the numbers
n,m, q, d ∈ N and an element y∗ ∈ Z

m
q . The goal of A1 is to output 0, if y∗ lies

in the image of F , and 1, otherwise.
A1 proceeds in two simple steps:

1. A1 executes the algorithm B1 from Algorithm 1 on the input n,m, d, q, F and
receives a non-zero polynomial h ∈ Zq[Y ] as output.

2. A1 outputs 0 if h(y∗) = 0. Otherwise, A1 outputs 1.

The bound on the time and space complexities of A1 follows now from Theorem
1. The advantage of A1 can be bounded as follows:

If b = 0 in the security game of Definition 5, then the challenger C samples
x ← Z

n
q and gives the pseudorandom image y∗ = F (x) to A1. The polynomial h

outputted by B1(F ) lies in the kernel of φ, i.e., we have the equality h(F (X)) = 0
of polynomials in Zq[X]. In particular, we have h(F (x)) = 0 for each x ∈ Z

n
q .

Therefore, A1 always outputs 0 if b = 0.
If b = 1 in the security game in Definition 5, then the challenger C samples

a uniformly random y ← Z
m
q and gives y∗ = y to A1. Since h is non-zero and of

degree O(n1− e
d−1 ), the probability that h vanishes on y can be bounded by

Pr
y←Zn

q

[h(y) = 0] ≤ O(n1− e
d−1 )/q (83)

according to Lemma 1. Therefore, A1 will output 1 in this case with probability
at least 1 − O(n1− e

d−1 )/q.
For the overall advantage of A1, we get

advF (A1) = Pr
x←Zn

q

[A1(F, Fn(x)) = 0] + Pr
y←Zm

q

[A1(F, y) = 1] − 1 (84)

≥1 + 1 − O(n1− e
d−1 )/q − 1 = 1 − O(n1− e

d−1 )/q. (85)
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Remark 4. Algorithm A1 proceeds in two steps: in its first step, it uses B1 to
compute an algebraic relation h of F , and in its second step, it uses h to decide
if the given image y∗ ∈ Z

m
q is truly random.

However, since the PRG F is fixed and publicly known, the attack A1 can
be interpreted as an attack with preprocessing: In a first phase, the so-called
preprocessing or offline phase, A1 uses B1 to compute an algebraic relation h of
F of degree D (without seeing the value y∗ ∈ Z

m
q ).

In a second phase, the so-called online phase, A1 receives y∗ ∈ Z
m
q and only

needs to evaluate h on y∗.
If m ≥ n1+e, then the degree of h is bounded by D ≤ cn1− e

d−1 for some
constant c. The evaluation of h requires (D + 1) · (

m+D
D

)
arithmetic operations

over Zq which will be much less than the time B1 needs (since B1 needs to reduce
a matrix of shape

(
m+D

D

) × (
n+d·D

d·D
)
).

Therefore, from a practical point of view, it makes more sense to interpret
A1 as an attack with preprocessing, where we invest a big one-time cost to
find a relation h of F in the preprocessing phase, and then a smaller, but still
subexponential, cost of (D + 1) · (

m+D
D

)
to decide challenges of F .

5 Attacks on Binary PRGs

We want to focus on the case q = 2 in this section. Note, that Theorem 2 does
not give us a meaningful attack for small values of q like 2. In fact, if we were
to use naively algorithm B1 from Algorithm 1 on m polynomials over Z2, B1
may return a field equation Y 2

i − Yi for some i ∈ [m]. This field equation will
not help us in distinguishing pseudo-random images from random images, since
it will vanish on each y ∈ Z

m
2 .

To avoid trivial relations over Z2, we will present here a modified version of
B1 – that we will call B2 – that will always find a non-trivial algebraic relation
of polynomials over Z2. For this sake, we set by abuse of notation

R2[X] := Z2[X1, . . . , Xn]/(X2
1 − X1, . . . , X

2
n − Xn), (86)

R2[Y ] := Z2[Y1, . . . , Ym]/(Y 2
1 − Y1, . . . , Y

2
m − Ym). (87)

As explained in Remark 2, the rings R2[X] and R2[Y ] are filtrated. For � ∈ N,
we have

R2[X]≤� = Z2[X]≤�/
(
Z2[X]≤� ∩ (X2

1 − X1, . . . , X
2
n − Xn)

)
, (88)

R2[Y ]≤� = Z2[Y ]≤�/
(
Z2[Y ]≤� ∩ (Y 2

1 − Y1, . . . , Y
2
m − Ym)

)
. (89)

Now let F be a PRG of degree d over Z2 and let f1, . . . , fm ∈ Z2[X] be
the polynomials that make up F . Without loss of generality, we can assume that
f1, . . . , fm are reduced modulo the field equations X2

1 −X1, . . . , X
2
n −Xn. There-

fore, by abuse of notation, we interpret f1, . . . , fm as elements of R2[X]. Now,
the dual map φ : Z2[Y ] → Z2[X] descends well-defined to a ring homomorphism

φ2 : R2[Y ] −→ R2[X] (90)
Yi �−→ fi(X). (91)
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For the kernel of φ2, we have

kerφ2 = (kerφ + (Y 2
1 − Y1, . . . , Y

2
m − Ym))/(Y 2

1 − Y1, . . . , Y
2
m − Ym). (92)

I.e., kerφ2 contains all algebraic relations of kerφ modulo the trivial ones from
the field equations of Z2. In particular, a non-zero element of kerφ2 is now
guaranteed to not vanish everywhere on Z

m
2 .

To find a non-zero element of kerφ2, the algorithm B2 will proceed similarly
as B1: For increasing � = 1, . . . ,m, the algorithm B2 computes a basis of the
Z2-vector space kerφ2 ∩ R2[Y ]≤�. If kerφ2 ∩ R2[Y ]≤� is non-zero, B2 returns a
non-zero element of it and terminates. Otherwise, B2 increments � and repeats
these computations. Formally, B2 is given by:

Algorithm 3. The algorithm B2 gets as input numbers n,m, d ∈ N, and a
description of a polynomial map F : Zn

2 → Z
m
2 . It has to output a non-zero

element of kerφ2.
For � = 1, . . . , m, B2 does the following:

1. B2 computes N := dimZ2

(
R2[X]≤d�

)
=

∑min(d�,n)
i=0

(
n
i

)
and M := dimZ2

(
R2[Y ]≤�

)
=

∑�
i=0

(
m
i

)
.

2. B2 computes a finite list
(
Y a1
1 · · · Y am

m | a1, . . . , am ∈ {0, 1}, a1 + . . . +
am ≤ �

)
= (Y α1 , . . . , Y αM ) of all monomials in R2[Y ] of degree ≤ �.

3. B2 applies φ2 to each Y αi and computes a second list (φ2(Y α1), . . . , φ2(Y αM ))
of polynomials in R2[X] of degree ≤ d�.

4. Let Xβ1 , . . . , XβN be the set of all monomials in R2[X] of degree ≤ d�
where each variable appears at most once. For each φ2(Y αi) let wi =
(wi,1, . . . , wi,N ) ∈ Z

N
2 be the unique column-vector s.t.

φ2(Y αi) =
N∑

j=1

wi,j · Xβj . (93)

These vectors give us the matrix

W� :=
(
w1| . . . |wM

) ∈ Z
N×M
2 . (94)

5. B2 uses Gaussian elimination over Z2 to compute the kernel of W�

K� :=
{
r ∈ Z

M
2 | W� · r = 0

}
. (95)

6. If K� is the trivial null-space, B2 increases � by one. If � ≤ m, B2 goes back
to step 1. Otherwise, if � = m + 1, B2 has exhausted the whole vector space
R2[Y ] = R2[Y ]≤m. In this case, B2 aborts, since now φ2 must be injective.

7. If K� is not the null-space, B2 chooses an arbitrary non-zero vector r ∈ K�,
computes the polynomial

h := r1 · Y α1 + . . . + rM · Y αM ∈ R2[Y ] (96)

of total degree ≤ � and outputs it.
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We have for B2 similar time and space bounds as for B1:
Lemma 8. Assume that B2 terminates after D iterations. Then, its space com-
plexity can be bounded by O(NM) and its time complexity can be bounded by
O(DN2M) for N =

∑min(dD,n)
i=0

(
n
i

)
and M =

∑D
i=0

(
m
i

)
.

Similarly, as in Sect. 3, one can show that B2 will return an algebraic relation of
minimal degree, if such a relation exists:

Lemma 9. Let n,m, d ∈ N. Let f1, . . . , fm ∈ R2[X] be polynomials of degree
≤ d. Assume that the corresponding morphism

φ2 : R2[Y ] −→ R2[X] (97)
Yi �−→ fi (98)

is not injective and set D := min {deg h | h ∈ kerφ2, h 
= 0}. Then, B2 termi-
nates after D iterations and outputs a non-zero element of kerφ2 of degree D.

Now, let e > 0 and d ∈ N be constants and assume m ≥ n1+e. The inequality
in Lemma 7 has a pendant that states that for almost all n we have

L∑
i=0

(
m

i

)
>

dL∑
i=0

(
n

i

)
(99)

where L =
⌈
c · n1− e

d−1
⌉
. We give a formal proof of this inequality in the full

version [45] of this text. However, its proof is very similar to the proof of Lemma
7. It follows that B2’s complexity is subexponential for m ≥ n1+e polynomials
f1, . . . , fm:

Theorem 3. Let d ∈ N, e > 0 be constants and m ≥ n1+e. Let f1, . . . , fm ∈
R2[X] be polynomials of degree ≤ d.

Then, B2 in Algorithm 3 outputs a non-trivial element of kerφ2 of degree
O(n1− e

d−1 ). Its space and time complexities lie in nO(n
1− e

d−1 ).

5.1 Binary PRGs of Constant Degree

B2 gives rise to the following attacker A2 on degree-d PRGs over Z2:

Algorithm 4. The algorithm A2 receives as input a description of a PRG F :
Z

n
2 → Z

m
2 of degree d, which includes the numbers n,m, d ∈ N, and an element

y∗ ∈ Z
m
2 . The goal of A2 is to output 0, if y∗ lies in the image of F , and 1,

otherwise.
A2 proceeds in two simple steps:

1. A2 executes B2 from Algorithm 3 on the input n,m, d, F and receives a non-
zero polynomial h ∈ R2[Y ] as output.

2. A2 outputs 0 if h(y∗) = 0. Otherwise, A2 outputs 1.



Worst-Case Subexponential Attacks on PRGs of Constant Degree 47

It is clear that A2’s space and time complexities are comparable to the space
and time complexities of B2. However, since the degree D of h will be much
higher than the cardinality of Z2, we cannot apply the Schwartz-Zippel Lemma
any more. Since h is not zero in R2[Y ], we can only guarantee that h vanishes
on at most 2m − 2m−D points of Zm

2 (we show this in the full version [45]). This
gives us the following theorem:

Theorem 4. Let d ∈ N, e > 0 be constants. Let F : Zn
2 → Z

m
2 be a PRG of

degree d and stretch m ≥ n1+e.
Then, there is an attack algorithm A2 whose time and space complexities are

bounded from above by nO(n
1− e

d−1 ). Further, there exists a constant c > 0 s.t.
A2’s advantage in the security game in Definition 5 against F is lower bounded
by

advF (A2) ≥ 2−cn
1− e

d−1
. (100)

Theorem 4 is unsatisfying, since A2’s advantage can only be guaranteed to
be at least subexponential. One solution for this problem is to look at a multi-
challenge security game for the PRG F where the adversary receives Q challenges
y∗
1 , . . . , y

∗
Q ∈ Z

m
2 and has to guess if all y∗

1 , . . . , y
∗
Q have been drawn uniformly

and independently at random from Z
m
2 or if all y∗

1 , . . . , y
∗
Q lie in the image of F .

If the number of challenges is Q ∈ 2Ω(n
1− e

d−1 ), then the advantage of A2 can
be amplified to a positive constant. We give here an informal theorem for this
observation and flesh out the details in the full version [45] of this text:

Theorem 5 (Multi-challenge Attack (Informal)). Let d ∈ N, e > 0 be
constants and let F : Zn

2 → Z
m
2 be a PRG of degree d and poly-stretch m ≥ n1+e.

Then, there is an attack algorithm whose time and space complexities are
bounded from above by nO(n

1− e
d−1 ) and whose advantage in breaking the pseudo-

randomness of F when given Q ∈ 2Ω(n
1− e

d−1 ) challenges is a constant greater
than zero.

5.2 Binary PRGs of Constant Locality

Now, let F : Z
n
2 → Z

m
2 be a poly-stretch PRG of constant locality d ∈ N,

i.e., each output bit of F is determined by at most d input bits. In case of a
PRG of constant locality we can perform a subexponential attack (for a single
challenge value) where we can guarantee a much better advantage than for A2
in Theorem 4.

Theorem 6. Let d ∈ N and e > 0 be constants. Let F : Zn
2 → Z

m
2 be a PRG of

locality d with poly-stretch m ≥ n1+e.
There is an attack A3 on F and a constant c > 0 s.t. A3’s space and time

complexities are bounded by 2O(n
1− e′

d−1 ) for each constant e′ ∈ (0, e) and whose
advantage in the security game of Definition 5 is at least

advF (A3) ≥ 1 − cn− e′
d−1 . (101)
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The idea of A3 is to convert F to a PRG G : Zn
q → Z

m′
q of degree d over Zq

with stretch m′ = �m/(3 log(q))� for a prime q ≥ n.
Let f1, . . . , fm ∈ R2[X] be the polynomials that make up F . Since each fi

is d-local, there are polynomials f ′
1, . . . , f

′
m ∈ Zq[X] of degree ≤ d that coincide

with f1, . . . , fm on {0, 1}n. In fact, for i ∈ [m], let j1, . . . , jd ∈ [n] and ui :
{0, 1}d → {0, 1} s.t. for all x ∈ {0, 1}n

fi(x) = ui(xj1 , . . . , xjd
). (102)

Then, the polynomial f ′
i ∈ Zq[X] is given by

f ′
i(X) :=

∑
z∈{0,1}d

ui(z) · (1 − z1 − Xj1 + 2z1Xj1) · · · (1 − zd − Xjd
+ 2zdXjd

).

(103)

However, the image of the f ′
1, . . . , f

′
m does not look random over Zq, since it is

contained in {0, 1}m (if the input is chosen from {0, 1}n). To compensate for
that, we use the Leftover Hash Lemma. Let F ′ = (f ′

1, . . . , f
′
m) : Zn

q → Z
m
q be the

collection of all f ′
i . A3 samples now a random matrix A = (ai,j)i,j ← Z

m′×m
q

and defines a PRG G : Zn
q → Z

m′
q by

G(X) := A · F ′(X). (104)

I.e., if G consists of the polynomials g1, . . . , gm′ , each gi is given by

gi =
m∑

j=1

ai,j · f ′
j . (105)

Now, G is a degree-d PRG over Zq. According to Lemma 2, the image of G

will look random (relative to Z
m′
q ) if the image of F looks random (relative to

{0, 1}m). Finally, A3 can use A1 from Theorem 2 to break the pseudorandomness
of G (and break therefore the pseudorandomness of F ).

We will now formally define how A3 proceeds:

Algorithm 5. Let F : Zn
2 → Z

m
2 be a PRG of locality d consisting of polyno-

mials f1, . . . , fm ∈ R2[X]. The algorithm A3 receives as input a description of
F , which includes the numbers n,m, d ∈ N, and an element y∗ ∈ Z

m
2 . The goal

of A3 is to output 0, if y∗ lies in the image of F , and 1, otherwise.
A3 proceeds in the following steps:

1. A3 searches for a prime number q ∈ {n, n+1, . . . , 2n}. Because of Bertrand’s
postulate we know that such a prime must exist.

2. A3 sets m′ := �m/ (3 log q)�
3. A3 computes polynomials f ′

1, . . . , f
′
m ∈ Zq[X] that coincide with f1, . . . , fm

on {0, 1}n.
4. A3 draws a random matrix A ← Z

m′×m
q and sets

G(X) := A · F ′(X). (106)

Now, G : Zn
q → Z

m′
q is a polynomial map of degree d.
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5. A3 interprets y∗ as a binary vector in {0, 1}m ⊆ Z
m
q and computes

y′∗ := A · y∗ ∈ Z
m
q . (107)

6. A3 runs algorithm A1 on (G, y′∗) and returns the output of A1.

Now, let e′, e′′ be constants s.t. 0 < e′ < e′′ < e and assume that A3 found the
prime number q. Since q ≤ 2n, we have m′ ≥ m

3 log q − 1 ≥ n1+e

3 log(n)+3 − 1. The
term on the right-hand side becomes greater than n1+e′′

for n big enough. Ergo,
we have m′ ≥ n1+e′′

for almost all n. It is easy to see that the time and space
complexities of A3 are dominated by the complexities of A1, which are upper-

bounded by nO(n
1− e′′

d−1 ). For n large enough, A3 will therefore have complexities

upper-bounded by 2O(n
1− e′

d−1 )

To bound the advantage of A3, we first distinguish two cases:

1. If y∗ = F (x) for some x ∈ Z
n
2 , then y′∗ will be of the form

y′∗ = Ay∗ = AF ′(x) = G(x). (108)

In those cases, A1 will always output zero.
2. If y∗ is a random element of {0, 1}m, then Lemma 2 states that the statistical

distance of the distributions

(A, y′∗) and (A, r) (109)

for r ← Z
m′
q is less than 1

2

√
2m′ log(q)−m ≤ 1

2q−m′
. Therefore, the probability

that A1 outputs 1 in this case can be lower bounded by

1 − O(n1− e′
d−1 )

q
− 1

2
q−m′ ≥ 1 − O(n1− e′

d−1 )
n

− 1
2
n−m′

(110)

≥ 1 − O(n− e′
d−1 ). (111)

Now, we can bound the advantage of A3 in the security-game of Definition 5 as
follows:

advF (A3) ≥ Pr
y←{0,1}m

[A3(F, y) = 1] + Pr
x←{0,1}n

[A3(F, F (x)) = 0] − 1 (112)

≥1 − O(n− e′
d−1 ) + 1 − 1 ≥ 1 − O(n− e′

d−1 ). (113)

6 Avoiding Subexponential Attacks

Finally, we want to discuss three counter-measures in the design of PRGs that
help to avoid the attacks presented in this paper:
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Rational Functions. In case of a large modulus q ≥ n, the algorithm A1 in
Theorem 2 gives a subexponential attack on constant-degree PRGs with non-
negligible advantage.

To avoid A1, one can consider PRGs F : Zn
q → Z

m
q that incorporate ratio-

nal functions of constant degree i.e. where each output value is computed by
fi(X) := g1(X)

h1(X) + . . . + g�(X)
h�(X) for polynomials g1, . . . , g�, h1, . . . , h� ∈ Zq[X] of

constant degree d. The functions f1, . . . , fm are still algebraically dependent,
since m > n. However, we cannot bound the degree of the relation outputted
by B1, since the set

{
f
g | f, g ∈ Zq[X]≤d, g 
= 0

}
is not contained in a finite-

dimensional vector space any more.
We conjecture that if � grows polynomially with n, then this kind of PRGs

could even be resistant against Groebner basis-based attacks like F4/F5 and XL,
since these algorithms need to multiply the equality fi(X) = yi with h1 · · · h� to
get a polynomial equality of non-constant degree d · �.

As a concrete challenge, we propose a PRG – parametrized by n – where q
is the smallest prime in [2n, 2n+1], � equals n, each gi is one and each hi is a
random sum of two variables of X1, . . . , Xn. For m ∈ Ω(n2), there is a trivial
attack on this PRG. However, for smaller m, let’s say m = n1.9, we don’t know
a subexponential attack on this PRG with provably non-trivial advantage.

Non-constant Locality. In the case of binary poly-stretch PRGs of constant
degree, we gave two attacks A2 and A3. For A2, we can only guarantee a subex-
ponentially small advantage. However, this is only a pessimistic lower-bound and
does not exclude that A2 may perform much better in praxis.

A3 is guaranteed to have a high advantage, however it can only be applied
on binary PRGs of constant locality. This means, that all PRG candidates in
NC0 with poly-stretch are susceptible to subexponential attacks.

To avoid subexponential attacks for binary PRGs, the only option seems to
be to design PRGs of non-constant locality.

Small Non-constant Modulus. The attack A1 needs that the modulus, over which
the PRG is evaluated, is large enough, while the attack A3 needs that the mod-
ulus is constant (since otherwise the PRG constructed by A3 will not have
constant degree).

One can try to avoid both attacks by setting q to a number between both
extremes (for example q = Θ(

√
n) for e < 0.5). For such moduli q, neither A1 nor

A3 can be applied and the attack A2 must be used. If B2 uses the appropriate
field equations Y q

i − Yi, it will find a non-trivial algebraic relation of sublinear
degree, however it is hard to show in such cases that this relation will not vanish
on a non-negligible portion of Zm

q , since the Schwartz-Zippel Lemma cannot be
applied.
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Abstract. In this work, we initiate a study of K-NIKE protocols in
the fine-grained setting, in which there is a polynomial gap between the
running time of the honest parties and that of the adversary. Our goal
is to show the possibility, or impossibility, of basing such protocols on
weaker assumptions than those of K-NIKE for K ≥ 3. Our contribution
is threefold.

– We show that random oracles can be used to obtain fine-grained K-
NIKE protocols for every constant K. In particular, we show how
to generalize Merkle’s two-party protocol to K parties in such a way
that the honest parties ask n queries each, while the adversary needs
nK/(K−1) queries to the random oracle to find the key.

– We then improve the security by further using algebraic structures,
while avoiding pairings. In particular, we show that there is a 4-party
NIKE in Shoup’s generic group model with a quadratic gap between
the number of queries by the honest parties vs. that of the adversary.

– Finally, we show a limitation of using purely algebraic methods
for obtaining 3-NIKE. In particular, we show that any n-query 3-
NIKE protocol in Maurer’s generic group model can be broken by
a O(n2)-query attacker. Maurer’s GGM is more limited compared
with Shoup’s both for the parties and the adversary, as there are
no explicit labels for the group elements. Despite being more lim-
ited, this model still captures the Diffie Hellman protocol. Prior to
our work, it was open to break 3-NIKE protocols in Maurer’s model
with any polynomial number of queries.
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1 Introduction

Non-interactive key exchange (NIKE), introduced in the seminal work of Diffie
and Hellman [DH76], is a primitive of fundamental interest in cryptography. It
allows a group of parties P1, . . . ,Pk to simultaneously publish a single message
each, such that any party can recover (without further interaction) a common
group key using their secret randomness and the common messages (mi)i∈[k],
in a way that the key remains hidden to any external observer who only gets
to see (mi)i∈[k]. NIKE is an intriguing cryptographic object: although the first
construction of a 2-party NIKE was given in one of the very first papers on public
key cryptography, constructing NIKE for more parties is a notoriously hard
problem. Even in the two party setting, NIKE is known only from a restricted
set of assumptions, such as the Diffie-Hellman assumption [DH76], the LWE
assumption with super-polynomial modulus-to-noise ratio [GKRS22], and from
assumptions related to the hardness of factoring [FHKP13]. In the three-party
setting, constructing NIKE was a major open problem until the breakthrough
result of Joux [Jou00] from the bilinear Diffie-Hellman assumption over pairing
groups, which introduced what remains to date the only known construction of 3-
party NIKE under a standard assumption. Furthermore, all known constructions
of K-party NIKE for K > 3 require much heavier cryptographic machinery, such
as indistinguishability obfuscation [BZ14]. Hence, as of today, K-party NIKE
with K > 3 belongs to the world of “obfustopia” primitives (alongside with
primitives such as witness encryption or functional encryption), in spite of being
seemingly a much simpler primitive than obfuscation.

Fine-Grained Cryptography. Traditional cryptography requires hardness of
cryptographic primitives to hold against arbitrary polynomial-time adversaries.
In contrast, fine-grained cryptography aims to study the feasibility of crypto-
graphic primitives when the adversarial power is restricted, for example, to some
fixed polynomial bound. While the study of fine-grained cryptography can be
traced back to the seminal paper of Merkle [Mer74,Mer78] who constructed a
2-party NIKE from idealized hash functions with security against subquadratic-
time adversaries, this primitive has recently spurred a renewed interest, lead-
ing to a collection of constructions [BGI08,BHK+11,DVV16,BRSV17,BRSV18,
CG18,LLW19,EWT21,DH21,WP22] and lower bounds [BM09,BC22] for fine-
grained cryptographic primitives.

A core motivation underlying the research on fine-grained cryptography is
the hope that by relaxing the security to hold against less powerful adversaries,
it might be possible to base the existence of fine-grained primitives on assump-
tions which are weaker than those known to imply their full-fledged counterpart.
For some types of restrictions, this has been a fruitful endeavor so far; for exam-
ple, when restricting the adversary to be of constant depth (in the complexity
classes AC0), this has led to the construction of many standard cryptographic
primitives (one-way functions, pseudorandom generators, pseudorandom func-
tions, public key encryption), with unconditional security [DVV16]. For adver-
saries of logarithmic depth (in the class NC1), this resulted in the construction
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of most traditional cryptographic primitives under worst-case hardness assump-
tions [DVV16,CG18,EWT21,WP22].

Perhaps more interestingly, some results have been achieved when restricting
only the running time of the adversary to be bounded by some fixed poly-
nomial in the runtime of the honest parties (the degree of the polynomial is
typically called the security gap of the scheme). The work of [BGI08], build-
ing upon [Mer78], showed that exponentially-secure one-way functions imply
key exchange and public key encryption with near-quadratic security gap. More
recently, the work of [BC22] showed that some strong forms of average-case hard-
ness implies one-way functions with near-quadratic security gap. At the other
end of the hardness spectrum, the work of [BJK+18] showed the existence of
“quadratically efficient” witness encryption from the LWE assumption. In each
of these examples, the fine-grained primitive is built from an assumption which
seems to be of a weaker nature compared to the full-fledged version.

1.1 Our Contribution

In this work, we investigate multiparty non-interactive key-exchange in the set-
ting of fine-grained security. We focus on the setting where the adversarial run-
time is restricted to be bounded by a polynomial in the honest parties’ runtime.
Our main motivation is to understand the possibility of basing fine-grained mul-
tiparty NIKE on assumptions outside of the Obfustopia realm, and ideally on
some of the traditional assumptions known to imply 2-party NIKE, such as the
Diffie-Hellman assumption.

Below, we always denote by n the runtime of the honest participants, and
write K-NIKE for K-party NIKE. Our main results are threefold:

1. In the random oracle model, we prove the existence of a fine-grained 3-NIKE
protocol with security against o(n1.5)-time adversaries. Our result generalizes
to K-NIKE with security against o(n1+1/(K−1))-time adversaries. While this
result is a relatively natural generalization of the seminal protocol of Merkle,
to the best of our knowledge, it has never been found before.

2. We demonstrate that larger security gaps can be achieved by additionally
relying on algebraic structure: in Shoup’s generic group model [Sho97], we
prove the existence of a 4-NIKE with security against o(n2)-time adversaries.
Our result generalizes to 2K-NIKE with security against o(n2)-time adver-
saries in the generic (K −1)-linear group model. In particular, this also yields
a 6-NIKE with near-quadratic hardness in the generic bilinear group model.

3. We complement our positive result by proving a limitation on the fine-
grained security of K-NIKE with K > 2 over generic groups. In particular,
we prove that for K > 2 any K-NIKE protocol in Maurer’s generic group
model [Mau05] can be broken using O(n2) queries.1 Our result extends to the
setting of K-NIKE with imperfect correctness. An important point is that,
even though our impossibility result only applies to the MGGM, the Diffie-
Hellman protocol for 2-NIKE can be stated in the MGGM. Moreover, while it

1 Our proof is for K = 3 which will directly imply the negative result for any K ≥ 3.
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is indeed true that negative results in the MGGM are generally weaker than
those in the SGGM and should be interpreted cautiously [Zha22,DHH+21],
our result is a natural first step towards proving a stronger negative result for
a basic question of whether 3-NIKE can be based merely on simple algebraic
assumptions without pairing.

Discussion. In our third contribution, we prove our lower bound in Maurer’s
generic group model, whereas our positive result holds in Shoup’s generic group
model, which is more flexible: this leaves a gap between our positive and negative
results. We refer to [Zha22] for an in-depth discussion on the differences between
these two models. We view as an interesting question the goal of closing the gap
between our positive and negative results, either by building a 4-NIKE protocol
with quadratic security in Maurer’s generic group model, or by extending our
impossibility result to Shoup’s generic group model.

1.2 Technical Overview: Building NIKE in the ROM and GGM

We start by covering our positive results. Our starting point is the classical
2-party NIKE of Merkle in the random oracle model, which works as follows:
let H : [n2] �→ {0, 1}λ (for security parameter λ) be an injective random oracle.
Alice and Bob sample (a1, · · · , an) $← [n2]n and (b1, · · · , bn) $← [n2]n respectively,
and exchange the hashes of these values: Alice sends (H(a1), · · · ,H(an)), and
Bob sends (H(b1), · · · ,H(bn)). By the birthday paradox, with some constant
probability, there will be a collision ai = bj . Since H is injective, every hash
collision corresponds to an input collision. Alice and Bob can identify (say) the
first such collision, and set key ← ai = bj to be their shared key. To find the
shared key, any adversary must essentially query the random oracle on Ω(n2)
positions, hence the protocol has fine-grained security with near-quadratic gap.
More generally, any n2−ε-query adversary has probability n−ε of querying the
shared key; this probability can be reduced to negligible by letting Alice and Bob
send n · log n hashes instead, and identifying �(n) = ω(log n) collisions, defining
the key as the XOR of the � keys.

Fine-Grained Multiparty NIKE in the ROM. In this work, we show that
the above protocol can be directly generalized to the K-party setting, if we set the
domain size of the random oracle to n1+1/(K−1): this guarantees that K random
n · log n-sized tuples will have �(n) K-collision with some constant probability.
The security analysis essentially unchanged, and shows that n1+1/(K−1)−ε-query
adversaries have negligible probability of finding the final key. Correctness is
slightly more technical, as it requires proving that the number of K-collisions
among K random n · log n-sized tuples is at least �(n) with overwhelming prob-
ability. It follows from a sequence of concentration bounds: we identify some s1
such that with overwhelming probability, the number of collisions among the
hashes of the first two parties is at least s1 (s1 can be computed by a straight-
forward Chernoff bound). Then, we identify s2 such that with overwhelming
probability, for any fixed set of s1 values, there will be at least s2 collisions
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between this set and the third party’s hashes. We proceed this way, using a
sequence of K Chernoff bounds to identify s1 > s2 > · · · > sK−1 = �(n) such
that the number of K-collisions is at least sK−1 with overwhelming probability.
From here, correctness follows immediately from the injectivity of the oracle.
Even though security against n1+1/(K−1)−ε-query adversaries gets worse as K
grows, for every constant K, it still shows a polynomial gap between the honest
parties’ running time and that of the adversary.

Fine-Grained 4-NIKE from Idealized 2-NIKE. The above protocol
achieves K-NIKE, at the cost of strongly restricting the adversarial runtime:
even for K = 3, the protocol only withstands o(n1.5)-time adversaries. However,
since we only used a random oracle (i.e. an idealized hash function), one could
reasonably hope that a better gap can be achieved if we start from stronger
‘public key’ primitives. As a starting point, we describe a construction of a 4-
party NIKE starting from an idealized 2-NIKE oracle. While this construction
does not directly yield a candidate classical instantiation (unlike ROM-based
construction, which yield heuristic instantiation using a hash function), it cap-
tures the core intuition of our next construction, while abstracting out some of
the technicalities. Concretely, we consider the following idealized 2-NIKE oracle
with two procedures:

– Msg : [N ] �→ {0, 1}∗ is an injective random oracle over the domain [N ].
– Key : [N ] × {0, 1}∗ �→ {0, 1}λ, on input an element r of the domain [N ], and

a bit-string s, it checks whether s = Msg(r′) for some r′. If there is such an
r′, it returns h(r0, r1), where (r0, r1) is a lexicographic ordering of (r, r′) and
h is a random function from [N ] × [N ] �→ {0, 1}λ.

Relative to (Msg,Key), it is straightforward to see that there exists an ideally-
secure 2-NIKE scheme as follows: Alice and Bob broadcast mA = Msg(rA)
and mB = Msg(rB) respectively, and obtain a shared key key = h(rA, rB) =
Key(rA,mB) = Key(rB,mA). Furthermore, interestingly there also exists a 4-
NIKE relative to (Msg,Key) over domain [N ] = [n2], with quadratic hardness
gap (improving upon the collision-based approach of our construction of K-
NIKE in the ROM) as follows. Fix four parties (P1,P2,P3,P4). At a high level,
the protocol proceeds by (1) letting (P1,P2) agree on a common randomness r12
with associated message m12 = Msg(r12) by looking for a randomness collision,
(2) letting (P3,P4) agree on (r34,m34) via the same collision-finding procedure,
and (3) letting (P1,P2) and (P3,P4) play the roles of Alice and Bob respectively
and derive a shared key using the Key oracle. More precisely:

1. Each party Pi samples n random elements (r(i)1 , · · · , r(i)n ) $← [n2] and broad-
casts (m(i)

1 , · · · ,m
(i)
n ) = (Msg(r(i)1 ), · · · ,Msg(r(i)n )).

2. With some constant probability, there exists two positions j0, j1 such that
r(1)j0

= r(2)j1
, leading to a hash collision. P1 and P2 identify this collision; let

r12 denote the collision, and m12 denote the corresponding message.
3. Similarly, P3 and P4 identify a collision r34 with message m34 among their

vectors of messages.
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4. P1 and P2 output Key(r12,m34), and P3 and P4 output Key(r34,m12).

Correctness follows easily by inspection. For security, any adversary that man-
ages to find the common key key with non-negligible advantage must have queried
Key on either (r34,m12) or (r12,m34). Without loss of generality, we can assume
that the adversary always queries message with its first input to Key: therefore,
the adversary must have queried either r12 or r34 to Msg. By the same analysis
as for Merkle puzzles, an O(n2−ε)-query adversary can find such a query with
probability at most n−ε. As before, one can reduce the adversary’s advantage to
negligible by generating �(n) = ω(log n) collisions per pair of party instead, and
defining the shared keys to be the XOR of the �(n) outputs of Key.

Fine-Grained 4-NIKE in the SGGM. With the above template in mind,
a natural idea is to replace the idealized oracle (Msg,Key) by a Diffie-Hellman
key exchange, to get a 4-party NIKE over Diffie-Hellman groups with quadratic
security gap. Unfortunately, this does not work! To see the issue, let us fix a cyclic
group G of size n2, with a generator g. Replacing (Msg,Key) by a Diffie-Hellman
key exchange, we get the following (1st try) protocol:

1. Each party Pi samples n random elements (r(i)1 , · · · , r(i)n ) $← [n2] and broad-
casts (m(i)

1 , · · · ,m
(i)
n ) = (gr

(i)
1 , · · · , gr

(i)
n ).

2. With some constant probability, there exists two positions j0, j1 such that
r(1)j0

= r(2)j1
, leading to a collision between the group elements. P0 and P1

identify this collision; let r12 denote the collision, and m12 denote the corre-
sponding message.

3. Similarly, P3 and P4 identify a collision r34 with message m34 among their
vectors of messages.

4. P1 and P2 output key ← (m34)r12 , and P3 and P4 output key ← (m12)r34 .

The above protocol, however, turns out to be completely broken! The adversary
can compute the discrete logarithm (in base g) of any group element in time√

n2 = n, using a standard generic algorithm (e.g. Shank’s baby-step giant-step
algorithm [Sha71], or Pollard’s rho algorithm [Pol75]). Hence, the adversary can
recover r12 = dlogg(m12) in time n and recompute the shared key.

Above, the issue is that our 4-NIKE from an idealized 2-NIKE crucially
relied on its optimal security: it must be secure over a size-n2 domain, when
the honest parties can run in time n. However, over cryptographic groups, one
can always get a quadratic speedup over naive brute-force. Fortunately, there
is a way around. Our key idea is the following: we increase the group size to
|G| = n4, so that generic discrete logarithm now takes Ω(n2)-time. Doing so,
we strongly reduced the probability that the honest parties can find a collision
among length-n vectors of group elements. To get around this issue, we make
two important observations:

1. Although there will not be any full collision, we can guarantee that there will
be a prefix-collision with some constant probability: a pair of group elements
whose exponent share the same first half.
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2. Assume that two parties identified a group element gx such that (a) one
of the parties knows x, and (b) the other party knows the first half of the
bits of x. Then the second party can recover x entirely in time O(n): there
are only ≈ n2 possible exponents x consistent with the prefix known to the
party. Furthermore, known generic discrete logarithm algorithms actually run
in time square root of the search space when the exponent search space is an
interval. Therefore, the party can recover x using, e.g., Pollard’s rho algorithm
in O(n) time.

At a high level, our protocol combines (1) a Merkle-style 2-NIKE to identify
a prefix-collision (hence using the ROM) and (2) a generic discrete logarithm
computation running in time

√
T for solving discrete logarithms with exponents

in an interval of size T . Concretely, let H : [n] �→ {0, 1}∗ be an injective random
oracle, and let G be a cyclic group of prime order p with p ≈ n4 (we assume
that the order is exactly n4 below to simplify the description). Then, our actual
protocol proceeds as follows.

1. P1 samples n exponents (r1, · · · , rn) $← [n4]n. For each i ≤ n, write ri =
ai+n2·bi with (ai, bi) ∈ [n2]×[n2]. P0 broadcasts (s1, · · · , sn) ← (gr1 , · · · , grn)
and (H(a1), · · · ,H(an)).

2. P2 samples n values (a′
1, · · · , a′

n) $← [n2]n and broadcasts (H(a′
1), · · · ,H(a′

n)).
This lets P1 and P2 identify a collision ai = a′

j with a constant probability.
3. P2 computes gn2·bi = si/ga′

j . Note that bi ∈ [n2]. Hence, P2 recovers bi (and
therefore ri = a′

j + bi · n2) in time O(n) by computing the discrete logarithm
of gn2·bi in base gn2

using e.g. Pollard’s algorithm [Pol75]2. At this stage, P1

and P2 agree on a common pair (r, s) ← (ri, si) (and i, si are public).
4. P3 and P4 do similarly, and agree on (r′, s′) where s′ is publicly known.
5. P1 and P2 output (s′)r, while P3 and P4 output mr′

.

Correctness follows easily by inspection. In the body of the paper, we prove
security in Shoup’s generic group model (SGGM) together with the injective
random oracle model. Using the random oracle, however, is merely for the ease
of presentation, as the SGGM implies the existence of an injective random oracle,
hence we get a 4-party NIKE with quadratic security gap in the SGGM.

Above, there is nothing specific to the 4-party setting: given a generic group
G equipped with a (K − 1)-linear map e, K parties can agree on a common
key by each broadcasting a random group element gi = gri , and outputting
key = e((gj)j �=i)ri . Then, the above construction allows pairs of parties to agree
on a common input (ri, gi) to this K-NIKE with a group of size |G| = n4 using
O(n) communication in a single round of interaction. Therefore, this yields a 2K-
NIKE with quadratic security gap in the generic (K − 1)-linear group model.
In particular, we can obtain a 6-NIKE with quadratic security in the generic
bilinear group model.
2 The seminal paper of Pollard describes two algorithms for solving discrete loga-

rithms. The second, lesser known algorithm, usually called Pollard’s kangaroo algo-
rithm, solves discrete logarithms with exponents over intervals [u, v] in time

√
v − u.
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1.3 Technical Overview: Breaking 3-NIKE in Maurer’s GGM

We also prove a limitation of how much algebraic structure, without pairing,
can help building K-NIKE protocols for K > 2. In particular, we prove that in
Maurer’s generic group model (MGGM), where the access to the group is further
limited through an oracle who does all the calculations, one cannot achieve
more than quadratic gap between the honest parties and the adversary’s query
complexity. Recall that in MGGM, each party P has an array ArrP that does
the following operations: (1) ArrP stores group elements from G, starting with
1 written at the beginning, (2) it adds them (Add operation) when P asks ArrP
to do so, and stores the result at the end of the array, and (3) it can provide
zero-tests (Zero operation) for all the stored group elements. We actually need
to work with a generalization of this model in which parties can exchange group
elements directly through their oracles (as group elements do not have an explicit
representation). See Definition 14 for details. Finally, when it comes to key-
agreement in MGGM, without loss of generality, we ask the parties to agree on
a group element written in their oracle (see Remark 16.)

Here we highlight the key ideas in our attack on any 3-NIKE protocol Π in the
MGGM. Our proof can be best explained in two steps: (1) Breaking Π, assuming
that the honest parties do not ask any Zero queries. (2) Breaking Π, even if
parties ask Zero queries by reducing this task to the case of protocols without
Zero queries. Below, we explain both of these steps and their corresponding ideas.

Structure of the Key. For simplicity suppose A,B,C, as part of Π, agree on
a key key with probability 1. Let us focus on A and analyze the structure of
the group element keyA that it produces as its key (see Definition 14). This
key is a function of Alice’s randomness rA, the transcript tran and the group
elements that Alice receives from Bob (qB = (qB,1, · · · , qB,γ)) and Charlie (qC =
(qC,1, · · · , qC,γ)). Since Alice’s algorithm is in the MGGM, the key key will,
therefore, be a linear function of the components of qB, qC with coefficients aB, aC
that can arbitrarily depend on Alice’s randomness rA and transcript tran (see
Lemma 17). In particular, keyA = aB · qB + aC · qC, where · is inner product.

Breaking 3-NIKEs without zero tests: randomness switching lemma.
Suppose E starts by re-sampling Charlie’s randomness into r′

C conditioned on
the message mC. This change will lead to a different set of group elements q′

C =
(q′

C,1, · · · , q′
C,γ) broadcast by C, and hence Alice’s key will change as well into

key′
A = aB · qB + aC · q′

C. However, a crucial point is that the component aB · qB

in this linear function stays the same. This important point is directly enabled
by the fact that there are three parties involved, and we would not have this
property in the 2-NIKE setting. Now, our attack will directly take advantage of
this common part aB ·qB in Alice’s key when Charlie switches its randomness to
r′
C. In particular, suppose KeyA(r′

A, r′
C) be Alice’s key when Alice and Charlie use

random seeds r′
A, r′

C (that are compatible with the text messages sent by Alice
and Bob), and Bob’s randomness is fixed to its true randomness rB. Further
using the same observation above about switching the randomness of a party,
we show that when both Alice and Charlie resample their random seeds r′

A, r′
C,
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conditioned on the shared text messages (ignoring the group elements that are
encoded), the common parts in Alice’s key across these new “executions” of the
protocol will cancel out each other and we obtain the following invariant,

KeyA(rA, rC) = KeyA(rA, r′
C) + KeyA(r′

A, rC) − KeyA(r′
A, r′

C),

which is formalized in Lemma 19 as the randomness switching lemma. Finally,
the eavesdropper attacker can directly use the above equality to use re-sampled
keys r′

A, r′
B (which she obtains using inverse sampling) to obtain all three fake

keys on the right hand side, using which it can obtain the true key.

Breaking 3-NIKEs with zero tests: learning useful linear tests. We
now describe the extra ideas needed to handle zero tests done by the parties.
Firstly, we can assume without loss of generality that all zero tests by A,B,C
are asked after they receive the text messages and the group elements (through
their oracles). In particular, parties’ randomness will directly determine their
messages and the group elements they send. Eve, has direct access only to the
text messages sent by the parties, because the group elements are encoded. How-
ever, Eve can also perform zero-test queries over the (vector of) group elements
q = (qA, qB, qC). Eve’s goal here is to learn any useful zero-test query over q
such that the answer to the zero-test queries by A,B,C will follow. In particular,
we say that a set of linear constraints LinCon (containing both linear equalities
and inequalities) over q are (1 − ε)-useful if the following two properties hold.

1. Pure restrictions. We say that LinCon is pure if all of its constraints are over
an individual party. Namely, for each constraint c in LinCon, there is a party
P ∈ {A,B,C} such that c is a constraint over qP.

2. Covering heavy zero tests. We say that (LinCon, tran) covers ε-heavy zero-tests,
if for every zero test query f (over the variables q = (qA, qB, qC)) whose answer
is not implied by the equalities in LinCon (f is not trivially positive or negative
using the equalities in LinCon), the probability of answering positively is at
most ε over the randomness of the parties.

We first explain how we find useful sets of linear constraints. We then explain
why finding them can be used for a successful attack by reduction to the setting
of protocols with no zero tests.
Finding a useful set. Finding a useful set is rather straight forward. Eve will
iteratively pick any pure zero test query (i.e., only dealing with one party’s
shared group elements) over q that is both ε-heavy to hold (positively) and that
it is not in the span of the equalities already in LinCon. Since the dimension of
the linear constraints over LinCon is limited by 3γ (i.e., the total number of group
elements shared by the parties) this process will stop in about 3γ/ε steps. The
proof is similar to the proof of efficiency of the heavy-learner of [BMG07,BM17].
Using a useful set. If a set LinCon is useful, then by the first (pure restrictions)
property, it imposes a product distribution over the randomness of A,B,C. There-
fore, one can define an imaginary protocol with respect to the fixed text messages
tran and LinCon, in which A,B,C will pick their random seeds conditioned on
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(tran, LinCon) and run their key extraction algorithms to agree on a key. Further-
more, by the second (light tests) property, assuming ε is sufficiently small, with
high probability all of the zero-test queries of A,B,C will be answered merely
by LinCon, or that they will be answered negatively. Therefore, all such queries
could be removed from the protocol, and we will be back to a protocol without
any zero tests. This means that we are back to the simpler case of no zero tests,
which was resolved already.

To see why the zero test queries can be compiled out of the protocol (condi-
tioned on (tran, LinCon)), in the following for simplicity suppose Alice asks only
one zero-test query. By the first (pure restrictions) property, one can fix this
zero-test query without any further restriction on the distribution of the ran-
dom seeds of Bob or Charlie. Therefore, all we need to show is that the answer
to this (non-trivial) zero-test query will be negative with probability 1 − ε. This
would be the case if we had learned all the ε-heavy linear constraints that deal
with the variables in both of qB, qC, while our set LinCon only contains heavy
constraints that are pure. However, interestingly, one more application of the
purity property shows that what we have learned in LinCon is already enough.
In particular, we prove that, because of the independence of the distributions
of rB, rC conditioned on (tran, LinCon), the existence of any unlearned ε-heavy
zero-test (not spanned by the equalities in LinCon) over qB, qC will automatically
imply the existence of an unlearned pure ε-heavy linear restriction on either of
qB, qC. But such heavy restrictions are already learned by Eve!

2 Preliminaries

Definition 1 (K-Party Non-interactive Key-Exchange (K-NIKE)).
For a security parameter λ, and a set of K parties {P1, · · · ,PK}, a K-party
non-interactive key-exchange protocol for key space KS consists of a pair of
algorithms (Msg,Key) defined as follows:

• Msg(1λ, i, ri) → mi: The message generation algorithm takes as input the
security parameter λ, an index i ∈ [K] indicating the party Pi, and a ran-
domness ri ∈ {0, 1}λ, and outputs the corresponding message mi ∈ {0, 1}λ. It
is assumed that in the time of generating the messages, each party generates
its message with the algorithm Msg and broadcasts it.

• Key(i, ri, tran) → keyi: The key generation algorithm takes as input the index
i ∈ [K] indicating the party Pi, Pi’s randomness ri and the transcript tran :=
(mj)j∈[K] consisting of all the broadcasted messages from the time of message
generation, and outputs a (shared) key keyi ∈ {0, 1}m.

A K-NIKE protocol satisfies the following properties:

– Correctness: We say the scheme has completeness error δ(λ), if for all secu-
rity parameters λ ∈ N, all indices i, j ∈ [K], and all choices of randomnesses
ri and rj,

Pr
r1,...,rK

[Key(i, ri, tran) = Key(j, rj , tran)] ≥ 1 − δ(λ),
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where tran = (m1, . . . ,mK) for mi ← Msg(1λ, i, ri). We simply say the scheme
is complete, if it has completeness error δ(λ) ≤ negl(λ). We say the scheme
has perfect completeness if δ(λ) = 0.

– Security: For all security parameters λ ∈ N, and all efficient adversaries A,
we define the advantage of A as follows:

AdvA(λ) :=
∣
∣
∣
∣
Pr [key1 = keyA] − 1

|KS|
∣
∣
∣
∣

where keyA ← A(1λ, tran) and key1 ← Key(1, r1, tran), in which tran :=
(mi)i∈[K] for mi ← Msg(1λ, i, ri) for all i ∈ [K]. A K-NIKE protocol is secure
if AdvA(λ) ≤ negl(n).

Note that randomnesses, messages, and keys can be viewed as vectors in the
above definition. We can also define a fine-grained variant of K-NIKE as follows.

Definition 2 ((t, ε)-Secure K-NIKE). For functions t = t(·), ε = ε(·) a (fine-
grained) (t, ε)-secure K-NIKE has the same syntax as the subroutines Msg,Key
in Definition 1, with the following additional conditions on its correctness and
security properties. There is a function n = n(λ), such that:

– Correctness: All parties (i.e., both Msg,Key algorithms) run in time Õ(n).
– Security: We only limit ourselves to adversaries who run in time t(n), and

for all such adversary their advantage shall be at most ε(n).

In other words, after changing the security parameter to n, honest parties run in
quasi-linear time, while the adversary needs time t to gain advantage ε. When the
protocol is in an idealized model, we use the number of queries by the algorithms
to the oracle as the measure of their running time.

Definition 3 (Shoup’s Generic Group Model (SGGM)). Let p ∈ Z be a
positive integer. For such fixed p, in Shoup’s Generic Group Model (SGGM) all
parties have access to an oracle with the following queries.

– enc query. Suppose S is a label space of size |S| ≥ p, and let enc be a random
injective function from Zp to S.

– Add query. If z = c1 · x + c2 · y, then Add(c1, c2, enc(x), enc(y)) = enc(z).

In this paper, for simplicity of presentation, we denote enc(x) by gx, even when
we are in the generic group model and gx is not an actual exponentiation.

Random Oracle Model. Recall that in the Random Oracle Model ROM, all
parties have access to a function H randomly sampled from the set H of all
functions f : N → M, and the input/output spaces N ,M are chosen differently
in different contexts. These variants can simulate each other, but when it comes
to fine-grained efficiency and security properties, the choice of random oracle
can be more important. In this model, we primarily count the number of oracle
queries as the substitute for “running time.”
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Lemma 4 (Chernoff Bound). Let X = Σn
i=1Xi, where Xi = 1 with proba-

bility pi and Xi = 0 with probability 1 − pi, and all Xi are independent. Let
μ = E[X] = Σn

i=1pi. Then

1. Upper Tail: Pr[X ≥ (1 + δ)μ] ≤ e− δ2
2+δ μ for all δ > 0;

2. Lower Tail: Pr[X ≤ (1 − δ)μ] ≤ e−μ δ2
2 for all 0 < δ < 1.

3 3-NIKE in the Random Oracle Model

In this section, we construct a 3-party non-interactive key-exchange protocol
in the random oracle model with non-trivial fine-grain security by generalizing
Merkle Puzzles [Mer74]. To give a high-level idea of how the protocol works, we
start with a similar idea of the classical 2-party NIKE of Merkle in random oracle
model. Namely, for a security parameter λ and a given random oracle H, each of
the three parties samples a set of secret values ri of size λ2�(λ), computes H (ri),
which is the output of the random oracle on each value of the set, and broadcasts
it. It can be shown that with high probability, there will be a set of collisions
of size at least �(λ). Then, without any further interaction, the parties pick the
first lexicographic �(λ) collisions, or any other natural way of pre-agreeing on
which subset to pick, and compute the shared key similar to the 2-party NIKE
protocol of Merkle.

Construction 5 (3-NIKE ROM-Based Protocol). For a security param-
eter λ, let H : [λ3] → {0, 1}λ be a random oracle, and �(λ) = log2(λ) a minimal
intersection size parameter. The 3-NIKE protocol between parties {P1,P2,P3}
would be as follows:

– Msg(1λ, i, ri) → mi : For each party Pi, on input the security parameter λ and
Pi’s randomnesses ri, which is viewed as a set ri ⊂ [λ3] of size λ2 · log(λ), the
message generation algorithm proceeds as follows:
1. View ri as {rij}j∈λ2·log(λ), and compute H (ri) := {H (rij)}j∈λ2·log(λ).
2. Output and broadcast the set of messages as mi := H (ri).

– Key(i, ri, tran) → keyi : On input an index i ∈ [3], the party Pi’s randomnesses
ri, and the transcript tran := (mj)j∈[3]/{i}, the key generation algorithm pro-
ceeds as follow:
1. Invoke the message generation algorithm to obtain mi ← Msg(1λ, i, ri). If

| ∩j∈[3] mj | < �(λ), the algorithm outputs 0 and aborts.
2. Let c1, · · · , c�(λ) be the first �(λ) lexicographic common outputs of

∩j∈[3]mj.
3. All parties P1,P2,P3 are able to find the common inputs s1, · · · , s�(λ) ∈

∩j∈[3]rj such that H(si) = ci.
4. The shared (output) key will be keyi :=

⊕�(λ)
i=1 si.

In this section, we prove the following theorem.

Theorem 6. Construction 5 is a (t, ε) 3-NIKE, where t = n1.5, ε = negl(n).
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Proof. Let n = λ2. The proofs of correctness and security are as follows.

Correctness. Due to n = λ2, it holds that the algorithms running in Õ(n).
We have three sets m1, m2, and m3 of size λ2 log(λ) chosen randomly from

the set [λ3]. It is easy to see that since we are in the random oracle model, if the
Key algorithm does not abort, all three parties will receive the same key with
probability 1. Therefore, for �(λ) = log2(λ), in order to show that the parties
will successfully obtain one shared key with high probability after running the
algorithms properly, it suffices to show that the probability of the Key algorithm
aborts is negligible. More formally, we want to show

Pr
[| ∩j∈[3] mj | ≤ �(λ)

]

= Pr[|m1 ∩ m2 ∩ m3| ≤ �(λ)] ≤ negl(λ).

In order to prove this, we adopt the ideas used in [BGI08] in a similar con-
text/goal (about amplifying security in a two-party key agreement) and use a
chain of Chernoff bounds. We know

Pr[|m1 ∩ m2 ∩ m3| ≤ �(λ)] ≤ 1 − Pr[|m1 ∩ m2 ∩ m3| > �(λ)] (1)

As a first step, it is easy to see that for every choice of s ∈ [λ2 log(λ)], we have

Pr[|m1 ∩ m2 ∩ m3| > �(λ)] ≥ Pr[|m1 ∩ m2 ∩ m3| > �(λ) ∧ |m1 ∩ m2| ≥ s]

= Pr[|m1 ∩ m2 ∩ m3| > �(λ) | |m1 ∩ m2| ≥ s] · Pr[|m1 ∩ m2| ≥ s]. (2)

Now we can analyze Pr[|m1 ∩ m2| ≥ s] for some s ∈ [λ2 log(λ)], using a Chernoff
bound similar to [BGI08]. Then viewing m1 ∩ m2 as a set, we can use the same
idea for analyzing Pr[|m1 ∩ m2 ∩ m3| > �(λ) | |m1 ∩ m2| ≥ s]. Let

m1 = {a1, · · · , aλ2 log(λ)},m2 = {b1, · · · , bλ2 log(λ)},m3 = {c1, · · · , cλ2 log(λ)}.

Now for analyzing the second probability in Eq. 2 (i.e. Pr[|m1 ∩m2| ≥ s],) let Xi

be the event that bi ∈ m1 (i.e. bi ∈ m1 ∩ m2.) Therefore,

μ := E

⎡

⎣

λ2 log(λ)
∑

i=1

Xi

⎤

⎦ =
λ2 log(λ)

λ3
· λ2 log(λ) = λ · log2(λ).

Based on the way the event Xi is defined, we can view |m1∩m2| as
∑λ2 log(λ)

i=1 Xi,

Pr [|m1 ∩ m2| ≥ s] = 1 − Pr[
λ2 log(λ)

∑

i=1

Xi < s].

By lower tail of Chernoff bound in Lemma 4,

Pr

⎡

⎣

λ2 log(λ)
∑

i=1

Xi < (1 − δ)λ log2(λ)

⎤

⎦ ≤ e− δ2
2 λ log2(λ).
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This concludes that

Pr [|m1 ∩ m2| ≥ s] ≥ 1 − e− δ2
2 λ log2(λ). (3)

For analyzing the first probability in Eq. 2, we first simplify the probability as
follows. Let m := m1 ∩ m2,

Pr[|m1 ∩ m2 ∩ m3| > �(λ) | |m1 ∩ m2| ≥ s] = Pr[|m ∩ m3| > �(λ) | |m| ≥ s]
≥ Pr[|m ∩ m3| > �(λ) | |m| = s]. (4)

Now, using a similar approach as before, we can find a lower bound for the
complement of the above probability which will give us an upper bound for the
first part of Eq. 2. Namely,

1 − Pr[|m1 ∩ m2 ∩ m3| > �(λ) | |m1 ∩ m2| = s] = 1 − Pr[|m ∩ m3| > �(λ) | |m| = s]

Now, letting m = {m1, . . . , ms} and Yi be the event that ci ∈ m (i.e. ci ∈ m∩m3),
we will have

μ′ := E

⎡

⎣

λ2 log(λ)
∑

i=1

Yi

⎤

⎦ =
s

λ3
(λ2 log(λ)).

Using another Chernoff bound from Lemma 4,

Pr

⎡

⎣

λ2 log(λ)
∑

i=1

Yi ≤ (1 − δ′)
s

λ3
(λ2 log(λ))

⎤

⎦ ≤ e− δ′2
2

s log(λ)
λ ,

which results in

1 − Pr[|m ∩ m3| > �(λ) | |m| = s] ≤ e− δ′2
2

s log(λ)
λ . (5)

Using the above in Eq. 4 give us

Pr[|m1 ∩ m2 ∩ m3| > �(λ) | |m1 ∩ m2| ≥ s] ≥ 1 − e− δ′2
2

s log(λ)
λ . (6)

Set δ = δ′ = 1
2 and s = λ

2 log2(λ). Using Eqs. 3 and 6 in Eq. 2, we get

Pr[|m1 ∩ m2 ∩ m3| > �(λ)] ≥ (1 − e− λ
8 log2(λ))(1 − e− log3(λ)

16 )

≥ 1 − 2e− log3(λ)
16 = 1 − negl(λ).

which concludes the proof.

Security. We need to show that adversaries who ask o(λ3) queries have negl(λ)
advantage of finding the shared key based on the transcript. In particular, we
want to show that, any such adversary A will likely not query at least one of
intersection points used by the key generation algorithm to compute the key.

Let k = λ3/3 be the number of queries that the adversary A makes to the
oracle, and assume w.l.o.g. that A does not repeat queries. Denote adversary’s
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i’th query by qi and let Xij be the event that H(qi) = cj for some j ∈ [�(λ)]. For
any i ≤ λ3/3 and any qi /∈ {q1, · · · , qi−1}, H(qi) is distributed uniformly within
the set {0, 1}λ \ {H(q1), · · · H(qi−1)} from the view of A prior to qi. Hence, for
all i, j, Pr[Xij = 1] ≤ 1

2λ−k
, and letting k′ = 2λ − k and Xi =

∑�(λ)
j=1 Xij , for

all i ≤ k, Pr[Xi = 1] ≤ �(λ)
k′ regardless of other Xi’s. Let p = �(λ)

k′ , and assume
Xi’s are independent and Pr[Xi = 1] = p. By using the upper tail of a Chernoff
bound from Lemma 4 and letting μ := E

[
∑k

i=1 Xi

]

= kp, we have,

Pr

[
k∑

i=1

Xi ≥ �(λ)

]

= Pr

[
k∑

i=1

Xi ≥ k′

k
· (k · �(λ)

k′ )

]

= Pr

[
k∑

i=1

Xi ≥ k′

k
· μ

]

where for large enough λ, the probability that A queries the oracle for all the
common inputs (i.e. finding the shared key) will be bounded by:

Pr

[
k∑

i=1

Xi ≥ �(λ)

]

≤ e−Ω(�(λ)) = negl(λ)

where the last equality comes from �(λ) = log2(λ). In the event that A did not
query some si to the oracle, A’s output is wrong with probability 1

2 since from
its point of view, the value of

⊕�(λ)
i=1 si is 0 or 1 with equal probability. In other

words, letting Y be the event that
∑k

i=1 Xi ≥ �(λ),

AdvA(λ) :=
∣
∣
∣
∣
Pr

[

key1 = keyA
] − 1

2

∣
∣
∣
∣

=
∣
∣
∣
∣
Pr

[

key1 = keyA | Y]

+ Pr
[

key1 = keyA | ¬Y
] − 1

2

∣
∣
∣
∣

≤ e−Ω(�(λ)) +
1
2

− 1
2

= negl(λ).

Therefore, for any d < 3, an O(λd)-bounded adversary cannot make more than
λ3

3 queries for large enough λ.
All in all, for any d < 3, any O(λd)-bounded adversary A, when the probability
is taken over the possibilities for the random function, A can guess the key only
with negligible advantage.

Remark 7. Construction 5 can be generalized into a k-NIKE with Ω(λk/(k−1))
security. The protocol will be similar to the above 3-NIKE protocol with a few
changes. It will use a random oracle H : [λk] → {0, 1}λ, and the randomness
of each party should be from the set [λk] and of size õ(λk−1). The rest of the
construction and the proofs will be similar with minor changes (e.g. there is a
need for more applications of Chernoff bounds.)

Remark 8. We believe that with a similar approach to the one in [BGI08], one
should be able to extend this result to getting a 3-NIKE similar to our Construc-
tion 5 from an “almost 1-1 OWF” instead of using a random oracle. We leave
such studies for future work.
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4 4-NIKE in Shoup’s Generic Group Model

In this section, we construct a 4-NIKE protocol with quadratic security in
Shoup’s generic group model. As explained in the introduction, our construc-
tion can be interpreted as first constructing a 4-NIKE using an ideal 2-NIKE
oracle, and then “substituting” the 2-NIKE ideal oracle with Shoup’s GGM.

In this section, we introduce a candidate 4-NIKE protocol in the Shoup’s
Generic Group Model. To give a high-level intuition of the protocol, the idea
of finding a shared key between four parties {P1,P2,P3,P4} is as follows. All
parties, similar to the previous section, will choose a secret set of random values
and broadcast some message as its corresponding public values (the broadcast
messages might differ for each party), such that after the interaction, P1 and
P2 will be able to identify a single secret value where its corresponding public
message has already been broadcast, and the same will hold for P3 and P4. From
there, and without any further interaction, (P1,P2) will act as a single party, and
so as (P3,P4). Therefore, one can simply run a 2-party NIKE between these two
parties and without the need of an interaction.

Before going into details of the protocol, we should note that we use the fact
that we can view x ∈ [λ4] as (x1, x2) ∈ [λ2] × [λ2] for two isomorphic groups of
size θ(λ4) and θ(λ2) × θ(λ2) throughout our construction and proofs.

Construction 9. For a security parameter λ, let H : [λ2] → {0, 1}λ be a ran-
dom oracle, G be a generic group (in the sense of Shoup) of size θ(λ4) whose
encodings are denoted by the “generator” g. Let �(λ) = log2(λ) be the minimal
intersection size parameter. The NIKE protocol between parties {P1,P2,P3,P4}
is as follows:

• Msg(1λ, i, ri) → mi: For each party Pi, on input the security parameter λ and
Pi’s randomnesses ri, which is a random set ri ⊂ [λ4] of size λ · �(λ), the
message generation algorithm proceeds as follows:
1. View ri as {rij}j∈[λ·�(λ)], and for j ∈ [λ · �(λ)], view each element as

rij := (r(1)ij , r(2)ij ) ⊂ [λ2]× [λ2], where r(1)ij and r(2)ij are the first and second
half of the value rij, respectively.

2. Compute H(r(1)i ) :=
(

H(r(1)ij )
)

j∈[λ·�(λ)]
, and gri := (grij )j∈[λ·�(λ)].

3. Output and broadcast the messages as mi =
(

H(r(1)i ), gri

)

for i ∈ {1, 3},
and mi = H(r(1)i ) for i ∈ {2, 4}.

• Key(i, ri, tran) → keyi: On input an index i ∈ [4], the party Pi’s randomnesses
ri, and the transcript tran := (mj)j∈[4]/{i}, the key generation algorithm pro-
ceeds as follows:
1. Invoke the message generation and obtain mi ← Msg(1λ, i, ri), and parse

ml =
(

H(r(1)l ), grl

)

or ml = H(r(1)l ) based on whether l = 1, 3 or l = 2, 4.

2. If either |H(r(1)1 ) ∩ H(r(1)2 )| = 0 or |H(r(1)3 ) ∩ H(r(1)4 )| = 0, the algorithm
outputs 0 and aborts.

3. Let c be the first lexicographic common output of the H(r(1)1 ) ∩ H(r(1)2 ),
and c′ be the first lexicographic common output of H(r(1)3 ) ∩ H(r(1)4 ).
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4. Parties P1 and P2 are able to find the common input s ∈ r(1)1 ∩ r(1)2 such
that H(s) = c. And similarly, P3 and P4 are able to find the common
input s′ ∈ r(1)3 ∩ r(1)4 such that H(s′) = c′ (there is no need of further
interaction between the parties.)

5. Note that s is the first half of the corresponding element in r1∩r2. Having
gr1 from party P1’s message, party P2 is able to find the other half of the
corresponding element in the set r1 from s with a baby-step giant-step
(BSGS) or Pollard’s rho algorithm. Similarly, having gr3 from party P3’s
message, party P4 is able to find the second half of the corresponding
element in the set r3 from s′.

6. Now, P1 and P2 have a common randomness in the set r1, and P3 and
P4 have a common randomness in r3. Let the common randomness of P1

and P2 be ŝ ⊂ r1, and the common randomness of P3 and P4 be ŝ′ ⊂ r3.
7. View P1 and P2 as one party P12 = (P1,P2) with the randomness r12 := ŝ

and their associated message m12 := gr12 = gŝ. Similarly, view P3 and
P4 as one party P34 = (P3,P4) with the randomness r34 := ŝ′ and their
associated message m34 := gr34 = gŝ′

. P12 and P34 can reach shared keys
without any further interactions by a Diffie-Hellman Key-Exchange.

8. The shared (output) key will be keyi = mr12
34 = mr34

12 := gŝŝ′
.

Theorem 10. For any generic adversary A against the 4-party NIKE of Con-
struction 9, which places q queries in total to either H or to the group operations
(as in Shoup’s GGM), the probability that A outputs the right key is

O(q2/λ4 + q/λ2 + polylog(λ)/λ).

Before we proceed with the proof, we make two observations. First, we focus on
bounding the probability that A finds the key, while K-NIKE requires that A
cannot distinguish the key from random. However, given the shared key, all four
parties can use the standard Goldreich-Levin theorem to extract a hardcore bit
of the key, such that guessing this shared bit is as hard as finding the initial
shared key. Hence, Theorem 10 actually implies the security of this modified 4-
NIKE protocol. Second, both the construction and the adversary are allowed to
query H and the generic group. However, Shoup’s generic group model implies
in particular the existence of an injective random oracle. Therefore, Theorem 10
further implies the existence of a quadratically secure 4-NIKE protocol in the
‘bare’ generic group model of Shoup.

4.1 Correctness

Let us first clarify why the protocol works correctly with a single round of inter-
action. Based on Theorem 10, after a single round of interaction (i.e. invoking
the message generation algorithm once for every party,) all parties will have the
following values:
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– m1 =
(

H
(

r(1)1

)

, gr1
)

and m2 = H
(

r(1)2

)

for parties P1 and P2.

– m3 =
(

H
(

r(1)3

)

, gr3
)

and m4 = H
(

r(1)4

)

for parties P3 and P4.

Therefore, with the help of the baby-step giant-step or Pollard’s rho algorithm,
P2 and P4 can find ŝ ⊂ r1 and ŝ′ ⊂ r3, having gr1 and gr3 respectively.

Since H(s) ⊂ H
(

r(1)1

)

and H(s′) ⊂ H
(

r(1)3

)

were public from the interaction
phase (where s and s′ are the first half of ŝ and ŝ′ resp.,) then all parties can find
the corresponding values gŝ and gŝ′

from gr1 and gr3 respectively. From there,
it is easy to see that P12 and P34 (i.e. all parties,) can find the shared key gŝŝ′

from in steps 7 and 8 of the key generation algorithm.
Now to argue the correctness of the protocol, note that the Msg algorithm has

2 ·λ�(λ) computations, and the Key algorithm has constant number of computa-
tions along with running the Msg and BSGS algorithms. Therefore, the running
time of both algorithms are of Õ(λ). Moreover, the Key algorithm aborts and
outputs 0 only if either |H(r(1)1 ) ∩ H(r(1)2 )| = 0 or |H(r(1)3 ) ∩ H(r(1)4 )| = 0, which
by birthday paradox (and similar to [BGI08, Theorem 1]’s proof,) only happens
with negl(λ) probability.

In order to prove the correctness of the scheme, we need to show that with
overwhelming probability, all parties will find the same key. By correctness of
the BSGS algorithm, it will follow from the construction that P1 and P2, as well
as P3 and P4, will have the same and correct shared secret key. By correctness
of the Diffie-Hellman key-exchange protocol, it follows that P12 and P34 (i.e. all
the four parties) will agree on the same key. �

4.2 Security Analysis

We prove that a generic adversary A making q queries (either to the injective
random oracle or to the group) is able to output the shared key with probability
at most O(q2/λ4 + q/λ2 + polylog(λ)/λ). We start by analyzing the following
simpler game G:

1. The adversary is given access to a generic group G of order p ≈ λ4, and to
an injective random oracle H. It can ask q queries in total to either of them.

2. The game samples (g, ga, gb) $← G
3 and sends it to the adversary. Let us write

a = a0||a1 and b = b0||b1, where the ai, bi are 2 log(λ)-bit long. The game also
computes (ha, hb) ← (H(a0),H(b0)) and sends it to A.

3. The adversary outputs a group element gc at the end of the game.

At the end of the game, we say that A wins if either of the two following condi-
tions is fulfilled:

1. c = a · b, or
2. the list L of all queries of A to H contains either a0 or b0.

Claim 11. Pr[A wins in game G] ≤ q2/λ4 + 2q/λ4 + 2q/λ2.
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Proof. The proof follows closely to the blueprint of Shoup’s proof [Sho97] that
the advantage of any q-query adversary against the CDH problem is at most
(q2+2q)/|G|. Recall that the generic oracle works as follows: an encoding function
enc : Zp �→ S is defined, where S is a set of bit-string. A sees group elements
as encodings of integers: we identify ga, gb with enc(a), enc(b). Then, A can ask
addition queries, which on input (enc(x), enc(y)) and a sign + or −, outputs
enc(x ± y). This more “limited” variant of SGGM is equivalent to Definition 3.

Consider the following variant of the game described above. We simulate all
accesses to the generic group exactly as in Shoup’s proof: we maintain a list
of linear bivariate polynomials (F1, · · · , Fk) ∈ Zp[X,Y ] (initialized with k = 3,
F1 = 1, F2 = X, and F3 = Y ), and a list of distinct values (enc1, · · · , enck) in
S (initialized with three random distinct elements of S). For any addition query
(i, j), we set Fk+1 ← Fi ± Fj . If Fk+1 matches a polynomial Ft already in the
list, let enck+1 ← enct, otherwise we set it to a uniformly random element in S.

Furthermore, we also simulate all queries to H as follows: we initially sample
(ha, hb) uniformly at random from {0, 1}λ. We maintain a list L of queries. Each
time A queries i, we search if a tuple (i, h) exists in L; if it does not, we sample
h uniformly at random from {0, 1}λ, return h, and add (i, h) to L.

At the end of the game, we sample (x, y) $← Z
2
p and check if (1) Fi(x, y) =

Fj(x, y) for some i �= y, or (2) Fi(x, y) = xy for some i, or (3) writing x = x0||x1

and y = y0||y1, the list L contains a pair (x0, h) or a pair (y0, h). By the Schwartz-
Zippel lemma, the probability for a random (x, y) that (1) or (2) is satisfied is at
most q2/λ4 + 2q/λ4 = O(q2/λ4). Furthermore, the probability to hit any entry
of the L (whose size is at most q) with x0 or y0 (which are uniform over [λ2])
is at most 2q/λ2. Overall, the probability that either (1), (2), or (3) holds is at
most q2/λ4 + 2q/λ4 + 2q/λ2.

Furthermore, as in [Sho97], we observe that this simulated game differs from
the real game exactly when (1), (2), or (3) happens, and that the adversary wins
in the real game exactly when this happens: otherwise, the real and simulated
game are perfectly indistinguishable. Therefore, the probability that A wins in
the real game is at most q2/λ4 + 2q/λ4 + 2q/λ2; this concludes the proof.

The rest of the proof proceeds by reducing the existence of an adversary
against Construction 9 to the existence of an adversary in the game G. Let A be
a q-query adversary against Construction 9. The reduction proceeds as follow: it
receives a challenge (enc(a), enc(b), ha, hb) from the game G. Then, it samples a
random looking transcript of Construction 9, using Õ(λ) queries to the group and
to H to generate all group elements and hashes of prefixes, with the following
difference: it replaces the lexicographically first collision in the message of P1

by enc(a), and sets ha to be the corresponding prefix hash. It also replaces the
corresponding hash collision by ha in the message of P2. It does the same with
(enc(b), hb) with P3 and P4.

Observe that this simulated transcript is statistically indistinguishable from
an honestly generated transcript of Construction 9: the simulation fails only
when the transcript does not contain any hash collision between P1 and P2 or
between P3 and P4. But the probability of not having a collision between λ ·�(λ)-
sized tuples of random elements from [λ2] is negligible by a straightforward
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Chernoff bound, similar to the proof of Claim 6. Furthermore, by construction,
the corresponding shared key for the simulated transcript is exactly enc(ab).

Therefore, if there exists a q-query adversary against Construction 9 which
finds the shared key with probability ε, then there exists a (q + Õ(λ))-query
adversary against game G which wins the game with probability at least ε −
negl(λ). This concludes the proof. �

5 Impossibility Results

5.1 Defining 3-NIKE in Maurer’s Generic Group Model

We first define the model and the problems. Then, we present our results.

Notation. We use bold font to represent random variables.

Definition 12 (Maurer’s Generic Group Model (MGGM)). Let p ∈ Z

be a positive integer. Let ArrP be an array for party P initialized to null at all
indices except index 1 where it is initialized to be 1. Also, e is the last index of
Arr that is not null (so, initially e = 1). Parties have access to group elements
only through the following operations.

– Add query: The party P submits query Add(i1, i2, c1, c2) where i1, i2 ∈ [e]
and c1, c2 ∈ Zp. Then, the value c1.ArrP[i1] + c2.ArrP[i2] will be written at
ArrP[e + 1] and e will be updated to e + 1.

– Equal query: The party P submits query Equal(i1, i2) where i1, i2 ∈ [e]. The
party receives 1 if ArrP[i1] = ArrP[i2] and 0 otherwise.
The following two queries are optional, as they can be obtained from the above
(see Remark 13) but we define them as they sometimes help with a better
presentation of algorithms in this model.

– Write query: The party P submits query Write(x) for a group element x ∈ Zq

and then x is written to Arr[e + 1] followed by increasing e by one.
– Zero query: The party P submits query Zero(c1, . . . , ce) where c1, · · · , ce ∈ Zp.

The party receives 1 if
∑

i∈[e] ciArrP[i] = 0 and 0 otherwise. When ArrP[1] = 1,
this query can zero-test a general affine function over ArrP[2], . . . ,ArrP[e].

Remark 13 (Comparing queries and the default model). Note that the Equal
queries can be simulated using a single call to an Zero query. Hence, Zero queries
are as powerful. Conversely, an Zero query can be simulated using e queries to the
Add followed by a single query to Equal that compares the result with a prepared
encoding of zero. By default, we only allow Add,Zero queries, but sometimes we
state the availability of Write queries for a clearer presentation.

Definition 14 (3-NIKE in MGGM). In this model, there are three parties
Alice A, Bob B, and Charlie C. All parties receive a security parameter λ, and
prime number p and a private randomness as inputs. Let their internal random-
ness be rA, rB, and rC respectively. Each of the parties has access to a private
MGGM oracle, but all parties’ groups are defined over the same Zp. After making
queries to the oracle, party P for all P ∈ {A,B,C} will simultaneously perform
the following actions:
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– P sends a string mP to the other parties. Define transcript tran as tran =
(mA,mB,mC). No-message protocols are a special case where ∀P,mP = ∅.

– P submits query copy(γ). Upon such a query, the last γ indices of P’s array
will be copied to the end of the other parties’ arrays, for some publicly known
value γ ≤ poly(λ) that is fixed in the protocol and is the same for all three
parties. Parties submit this operation at the same time, however, it will be
processed first for A, second for B and last for C. Let the vector of group
elements that P sends to others be qP = (qP,1, · · · , qP,γ). Additionally, let
qrA,rB,rC

= (qA, qB, qC) in which if we run party P with internal randomness
rP, they will copy qP.

Without loss of generality (by Lemma 17), the parties in the steps above only use
Write queries to their oracle, as they will know the content of their arrays fully.

In the second step, based on their private randomness rP, transcript tran,
and their updated private oracles continue to interact with their MGGM oracles
and will write a group element keyP to their local MGGM oracle.3 Moreover, we
ask that all the parties are efficient (so, they submit at most poly(λ) queries to
the oracle). We enforce this by asking all parties to make a copy query with a
fixed publicly known parameter γ ≤ poly(λ) in their first step, and then (after
receiving the exchanged messages) ask exactly α Add queries, β Zero queries for
publicly known and fixed values of α, β,≤ poly(λ).

Completeness: We say that parties agree on a key with probability 1−δ (where
δ is called completeness error) if Pr[keyA = keyB = keyC] ≥ 1 − δ, where the
probability is over the randomness of the parties. We say that the protocol has
perfect completeness if δ = 0.

Soundness: We say that Eve E breaks the protocol with advantage ρ, if she
finds the key with probability at least than 1/p + ρ in the following game. E will
get the transcript tran and has access to a private oracle ArrE that gets as input
the result of the copy operations of the all three parties. Namely, E’s MGGM
oracle will contain 1 followed by 3γ group elements that are communicated by
the parties in a canonical order. The scheme is secure if the advantage of any
poly(λ)-time E is at most negl(λ).

Remark 15. The Diffie-Hellman protocol is a 2-party protocol that can be stated
in the MGGM with perfect completeness, no (text) messages (in addition to the
exchanged group elements), no zero-test queries are asked (β = 0) and only one
group element is sent by each party (γ = 1).

Remark 16 (Why agreeing on group element in the oracle?). Here we further
justify why the key in 3-NIKE protocols in MGGM are written in the ArrP oracle,

3 This writing could be due to a direct write operation or deriving the group element
from other array elements (in which case the parties do not actually have direct
access to the group element itself). However, note that if the group elements are
eventually encoded, a la Shoup’s model, the encoding of the group element will be
accessible to the parties.
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while the oracle’s content is not directly accessible to the parties. Firstly, note
that MGGM is an idealized model with an oracle Arr which will be eventually
substituted with actual encodings (like Shoup’s model). Therefore, if an MGGM
protocol leads party to an agreement on the same group element x written in
their oracles, this will imply an actual agreement when the oracle is substituted
with actual encodings. Furthermore, if we ask the parties to agree on a string (as
the key) in the MGGM, then (1) without loss of generality we can convert the
protocol to agreeing on a key key ∈ Zp, one can always bootstrap even a binary
key from {0, 1} to a key from {0, 1}λ, and then round it to a secure key in Zp,
and then (2) the parties can write the secure key key ∈ Zp in their corresponding
oracle without losing any security, in which case they end up agreeing on a secure
key as defined in Definition 14.

5.2 Breaking 3-NIKE in the MGGM Without Zero-Test Queries

Lemma 17 (Group Elements’ Structure in MGGM). Consider a party
P who interacts with an MGGM oracle. Suppose P receives an input input and
when it starts to interact with its oracle, there are already γ values written in
ArrP (i.e., e = γ at the beginning).4 For a fixed k > γ, suppose the algorithm P
has just written (directly or through an Add query) in ArrP[k] (i.e., e has become
k), while we have the answer to all of its previous Aff queries encoded in a
vector vec. Then, for any such fixed choices of input, k, vec, there are constants
f1, . . . , fγ ∈ Zp, such that

ArrP[k] =
∑

i∈[γ]

fi · ArrP[i].

In particular, if no Aff queries are asked, then for any fixed input, k, the value of
ArrP[k] is a linear function of the γ group elements that are written in its oracle
at the beginning.

Proof. This observation is used in previous papers (e.g., [FKL17]). In particular,
the proof follows by a straightforward induction over k.

Definition 18 (Compatibility in MGGM). For any S = {s1, · · · , sn} ⊆
{rP,mP, qP}P∈{A,B,C} in a 3-NIKE problem, we say they are compatible if there
are internal randomness rA, rB, and rC, using which if we run the protocol, then
all si ∈ S appears in the protocol. For example we say qA, mA, and mB are
compatible if there exists rA, rB, and rC using which if we run the protocol we
have qA = qA, mA = mA, and mB = mB.

Lemma 19 (Randomness Switching). Consider a 3-NIKE protocol with no
equality queries. Then for any tran ← trans, rA, r′

A ← rA|tran, rB ← rB|tran,
and rC, r′

C ← rC|tran following holds:

KeyB(rB, tran, qrA,rB,rC) + KeyB(rB, tran, qr′
A,rB,r′

C
)

= KeyB(rB, tran, qrA,rB,r′
C
) + KeyB(rB, tran, qr′

A,rB,rC
)

(7)

4 One special case is that ArrP[1] = 1, but this is not necessary in this Lemma 17.
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Additionally, with probability 1 − 4δ over the randomness of tran ← trans,
rA, r′

A ← rA|tran, rB ← rB|tran, and rC, r′
C ← rC|tran, following holds:

KeyA(rA, tran, qrA,rB,rC
) + KeyA(r′

A, tran, qr′
A,rB,r′

C
)

= KeyC(r′
C, tran, qrA,rB,r′

C
) + KeyA(r′

A, tran, qr′
A,rB,rC

)
(8)

Proof. By Lemma 17, the final key of Bob is of the following form:

keyB = KeyB(rB, tran, qrA,rB,rC)

= fB,B(rB, tran) +
∑d

i=1 fB,A,i(rB, tran)qA,i +
∑d

i=1 fB,C,i(rB, tran)qC,i

Therefore we have:

KeyB(rB, tran, qrA,rB,rC
) + KeyB(rB, tran, qr′

A,rB,r′
C
)

= (fB,B(rB, tran) +
d∑

i=1

fB,A,i(rB, tran)qA,i +
d∑

i=1

fB,C,i(rB, tran)qC,i)

+ (fB,B(rB, tran) +
d∑

i=1

fB,A,i(rB, tran)q′
A,i +

d∑

i=1

fB,C,i(rB, tran)q′
C,i)

+ (fB,B(rB, tran) +
d∑

i=1

fB,A,i(rB, tran)q′
A,i +

d∑

i=1

fB,C,i(rB, tran)qC,i)

+ (fB,B(rB, tran) +
d∑

i=1

fB,A,i(rB, tran)qA,i +
d∑

i=1

fB,C,i(rB, tran)q′
C,i)

= KeyB(rB, tran, qr′
A,rB,rC) + KeyB(rB, tran, qrA,rB,r′

C
)

This proves Eq. 7.
We say event ErA,rB,rC holds if Alice, Bob and Charlie when executed using

randomness rA, rB, and rC, agree on a key. namely:

KeyA(rA, tran, qrA,rB,rC
) = KeyB(rB, tran, qrA,rB,rC

) = KeyC(rC, tran, qrA,rB,rC
)

Note that by reverse sampling, the marginal distribution of (rA, rB, rC, tran) is
the same as the marginal distribution of (r′

A, r′
B, r′

C, tran′), where (rA, rB, rC) ←
(rA, rB, rC), tran is the transcript when we run the protocol with rA, rB, rC,
tran′ ← trans, and (r′

A, r′
B, r′

C) ← (rA|tran′, rB|tran′, rC|tran′). Thus any rA, rB,
and rC where tran ← trans, rA ← rA|tran, rB ← rB|tran, and rC ← rC|tran, agree
on a key with probability 1−δ. Let E∗ = ErA,rB,rC ∧Er′

A,rB,rC ∧ErA,rB,r′
C
∧Er′

A,rB,r′
C
,

then by a union bound over the complements of the events on the right hand
side of the equation, we have:

Pr
tran←trans,rA,r′

A←rA|tran,rB←rB|tran,rC,r′
C←rC|tran

[E∗] ≥ 1 − 4δ (9)

We finally use Eq. 9 to conclude the proof of Eq. 8 by switching the corre-
sponding keys in Eq. 7.
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Theorem 20 (Breaking 3-NIKE protocols without zero-test queries).
Suppose Π is a 3-NIKE protocol in the MGGM with no Equal or Zero queries

(i.e., β = 0) and completeness error δ. Then, there is an adversary Eve who,
given the transcript tran and oracle access to the 3γ broadcast group elements
finds Alice’s key with probability 1−4δ by asking O(α) queries to its Add oracle.

Proof. Note that in a 3-NIKE in MGGM, by sampling rP, {qP,mP} will also be
sampled, and mP only depends on rP; namely, we can sample a randomness rP
such that (rP,mP) is compatible without any query to the MGGM operators.
Thus in Lemma 19, given a transcript tran, we can sample any rP with out any
additional queries to the oracle.

Now to break the original protocol where Alice, Bob, and Charlie’s respec-
tive internal randomness are rA, rB, and rC, and their respective set of copied
group elements and messages are (qA,mA), (qB,mB), and (qC,mC), consider the
following attack:

Eve samples a new Alice r′
A ← (rA|tran) and a new Charlie r′

C ← (rC|tran),
and computes their respective vector of copied group elements q′

A, and q′
C by

running their algorithms. Then Eve finds keyA as follows:

keyE = KeyE(r′
A, r′

C, qA, qB, qC, q′
A, q′

C, tran)

= KeyC(r′
C, tran, qrA,rB,r′

C
) + KeyA(r′

A, tran, qr′
A,rB,rC

) − KeyA(r′
A, tran, qr′

A,rB,r′
C
)

First note that Eve needs only O(α) queries to calculate the above formula.
To prove that this is the actual key, first note that by reverse sampling the
distribution of (rA, rB, rC) ← (rA, rB, rC) is the same as the distribution of
(rA, rB, rC) ← (rA|tran, rB|tran, rC|tran) where tran ← trans. Thus we can w.l.o.g.
assume that first the transcript was sampled and then Alice, Bob, and Charlie
were sampled conditioned on the transcript. Now by Lemma 19, the following
holds with probability at least 1 − 4δ:

keyE = KeyA(rA, tran, qrA,rB,rC
)

So Eve finds the key with probability 1 − 4δ with O(α) queries.

5.3 Breaking 3-NIKE in the MGGM with Zero-Test Queries

Theorem 21 (Breaking 3-NIKE protocols with equality queries). Sup-
pose Π is a 3-NIKE protocol in the MGGM with parameters α, β, γ ≤ poly(λ)
and completeness error δ (see Definition 14). Then, there is an adversary who,
given the transcript tran and oracle access to the 3γ broadcast group elements
finds Alice’s key with probability 1 − 4δ − δ′ by asking poly(λ) queries to its
MGGM oracle. In particular, E will ask an expected number of O(γβ/δ′) Zero
queries and O(α) Add queries.

Corollary: quadratic attack in MGGM. If honest parities ask n parties to
their oracle and agree on a key with probability ≥ 0.99, then we have α, β, γ ≤ n.
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In this case, E can choose δ′ = 0.01, and so it can find Alice’s key with probability
at least 0.95 by asking O(n2) queries in total.

In the rest of this subsection, we prove Theorem 21.
Before presenting the attack, we go over some relevant definitions.

Definition 22 (Notation and notions for the attack). In the following,
let fix γ to be known, and let Affγ = Z

γ+1
p . We interpret each f = (a0, . . . , aγ) ∈

Affγ as an affine function from Z
γ to Z that maps x = (x1, . . . , xγ) ∈ Z

γ
p to

f(x) = a0 +
∑

i∈[γ]ai
xi. Using any such f , we can obtain two linear constraints:

an equality f(x) = 0 and an inequality f(x) �= 0. We represent the former
constraint using (f, eql) and the latter as (f, nql). We call LinCon a set of linear
constraints if LinCon contains elements that are of the form (f, c) where f ∈
Affγ , c ∈ {eql, nql}. We say x satisfies the linear constraint (f, c), if f(x) = 0 for
c = eql and f(x) �= 0 for c = nql. We say that x satisfies a set LinCon of linear
constraints, if x satisfies all of the linear constraints in LinCon. For any party,
let LinEqP = {f | (f, eql) ∈ LinConP} be the set of linear equality constraints for
party P. For two sets LinEqB, LinEqC ⊆ Affγ interpreted as affine constraints over
two different set of variables, we define their combination LinEqB,C ⊂ Z2γ+1 as
the set of all vectors (a0, aB,1, . . . , aB,γ , aC,1, . . . , aC,γ), such that either

(a0, aB,1, . . . , aB,γ)LinEqB ∧ (aC,1, . . . , aC,γ) = (0, . . . , 0)

or
(a0, aC,1, . . . , aC,γ) ∈ LinEqC ∧ (aB,1, . . . , aB,γ) = (0, . . . , 0).

For a party P, a message mP (sent by that party), and set of linear constraints
LinCon, we define RP = RP(LinCon,mP) to be the set of random seeds for party P
that are compatible with LinCon and mP; namely, r ∈ RP if by using r, P outputs
the message mP and group elements x = (x1, . . . , xγ) (to be sent to other parties)
such that x satisfies LinCon. For any distribution D over Z

γ
p , we call f ∈ Affγ

(interpreted as an equality constraint) ε-heavy for D, if Prx←D[f(x) = 0] ≥ ε.
We say that f is ε-heavy for party P conditioned on (LinCon,mP), if f is ε-
heavy for the uniform D that is obtained by sampling r ← RP(LinCon,mP), and
obtaining the γ shared group elements generated by party P from r; namely, if
we sample a random seed for the party P conditioned on its message mP and the
linear constraints in LinCon over its produced group elements x = (x1, . . . , xγ)
(to be sent to other parties), then x will satisfy f (as an equality) with probability
at least ε. For any set of vectors V of the same dimension, Span(V ) refers to
their span using coefficients in Zp.

Construction 23 (Attack on protocols with zero tests). The adversary
E attacks 3-NIKE protocols with zero test queries as follows.

– Inputs to E: The adversary has access to tran = (mA,mB,mC) and has oracle
access to an array that contains 1 + 3γ group elements: the first one being 1
followed by the 3γ group elements that are broadcast by A,B,C. The adversary
is also given an input parameter ε ∈ (0, 1).
The attack has two phases, a learning phase followed by a sample phase.
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– Learning phase: Originally let three sets of linear constraints LinConP,P ∈
{A,B,C} to be empty sets, and define RP be the corresponding set of random
seeds for the party P that is compatible with mP and the linear constraints
LinConP (see Definition 22).
Recall LinEqP = {f | (f, eql) ∈ LinConP}. Then, as long as there is any party
P ∈ {A,B,C} and any f ∈ Affγ such that (1) f �∈ Span(LinEqP), and (2)
f (as a linear equality) is ε-heavy for party P conditioned on (mP, LinConP),
then pick (the first lexicographic such) f and ask the corresponding Zero query
from ArrE over the group elements shared by P to find out whether f(qP) = 0
or not. If f(qP) = 0, then add (f, eql) to LinConP, and add (f, nql) to LinConP
otherwise. Proceed to the next phase when no ε-heavy remains.

– Sampling phase: For the 3-NIKE protocol (A′,B′,C′) defined below (in
which no affine queries are asked) use the attack of Theorem 20 to find a key
keyA′ for A′ and output that key. For the fixed values of (LinConP,mP),P ∈
{A,B,C}, A′,B′,C′, work as follows.
1. Party P ∈ {A′,B′,C′} uniformly will pick rP ∈ R(mP, LinConP). Then,

P will send the corresponding message mP and group elements qP =
(qP,1, · · · , qP,γ) that are uniquely produced using rP. Note that the mes-
sages of the parties will remain the same as the one fixed in the previous
phase (e.g., mA′ = mA), but their broadcast group elements might change.
We explain the next step only for A′; algorithms for B′,C′ are similar.

2. Party A′ will run the same algorithm as A using rA′ , but when it comes
to any Zero query t, P′ will not ask it from its oracle and instead
will do the following. By Lemma 17, any Zero query t by A′ is equiv-
alent to asking a query t′ = (t0, tB′,1, . . . , tB′,γ , tC′,1, . . . , tC′,γ) ∈ Z2γ+1

over the 2γ group elements qB′ , qC′ that are copied to the array of A′

by parties B′,C′. Informally speaking, t′ will be answered 1 if and only
if this can be concluded from the equality constraints for B,C. More
formally, let LinEqB,C ⊂ Z2γ+1 be the combination of LinEqB, LinEqC
as in Definition 22, and answer the Zero query t′ by 1 if and only if
t′ ∈ Span(LinEqB,C). If t′ ∈ Span(LinEqB,C), we call t′ a trivial query.
After emulating A, A′ will output the key keyA′ that A would output.

Lemma 24 (Efficiency). The expected number of zero-test queries asked by E
in Construction 23 is ≤ 3γ/ε.

Proof. We prove that the expected number of the queries that E asks for each
party P ∈ {A,B,C} is at most γ/ε. Then, the lemma follows from the linearity
of expectation. Now for a party P let f1, f2, · · · be the sequence of the queries
that E asks, and if a query is not asked we let it be ⊥. Let pi = Pr[fi �= ⊥]. Let
t be a random variable of the number of the zero-test queries that E ask over
qP, then E[t] =

∑
pi. Additionally define ZT to be the set of all zero-tests that

pass over qP. Note that ZT is a random variable determined by the randomness
of Alice. Moreover, define random variables Si = Span(fj | fj ∈ ZT for j ≤ i)
di = dim(Si). Note that as dim(ZT) ≤ γ, di ≤ γ for all i. Now we claim that

E[di] − E[di−1] ≥ pi · ε. (10)
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Since di is either di−1 or di−1 + 1, we have E[di] − E[di−1] = E[di − di−1] =
Pr[di = di−1 + 1]. By the definition, if fi �= ⊥, then fi /∈ Si−1, thus we have:

Pr[di = di−1 + 1] = Ef1,...,fi−1 Pr[fi �= ⊥ ∧ fi ∈ ZT | f1, . . . , fi−1]

= Pr[fi �= ⊥ | f1, . . . , fi−1] · Pr[fi ∈ ZT | f1, . . . , fi−1, fi �= ⊥].

By the definition it holds that Pr[fi ∈ ZT | f1, . . . , fi−1, fi �= ⊥] ≥ ε, and so

Pr[di = di−1 + 1] ≥ ε · Ef1,...,fi−1 Pr[fi �= ⊥ | f1, . . . , fi−1] = ε · pi.

So we have proved the claim of Eq. 10. Note that the total number of linear
constraints over γ variables is pγ+1. Thus using Eq. 10 we have:

pγ+1
∑

i=q

E[di] ≥
pγ+1
∑

i=1

E[di−1] +
pγ+1
∑

i=0

pi.ε.

→ γ ≥ E[dpγ+1 ] ≥
pγ+1
∑

i=0

pi.ε.

→ γ/ε ≥ E[dpγ+1 ] ≥
pγ+1
∑

i=0

pi = E[t].

This concludes the proof.

We will prove the following technical lemma, which will be useful for proving
the success probability of the adversary of Construction 23.

Lemma 25 (Heaviness of pure vs. impure constraints). Suppose we have

1. D1 and D2 are two distributions over Z
γ
p .

2. D1,2 is the distribution over Z
2γ
p that is obtained by independently sampling

x = (x1, · · · , xγ) ← D1, y = (y1, · · · , yγ) ← D2 and outputting the vector
(x, y) of dimension 2γ.

3. LinEq1, LinEq2 are subsets of Affγ = Z
γ+1
p .

4. If P ∈ {1, 2} and f ∈ Affγ is ε-heavy for DP, then f ∈ Span(LinEqP).

Then, for every f ∈ Aff2γ that is ε-heavy for D1,2, it holds that f ∈
Span(LinEq1,2), where LinEq1,2 is the combination of LinEq1, LinEq2 as in Defi-
nition 22.

Proof. Let f = (a0, a1,1, · · · , a1,γ , a2,1, · · · , a2,γ) be ε-heavy for D1,2. For j ∈ [p]
define ε1,j , and ε2,j as follows:

Pr
x←D1

[
γ

∑

i=1

a1,ixi + j = 0 mod p

]

= ε1,j ,

Pr
y←D2

[
γ

∑

i=1

a2t,ixi + a0 − j = 0 mod p

]

= ε2,j .
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Therefore, we have

p
∑

j=1

ε1,j .ε2,j = Pr[f(x, y) = 0] ≥ ε.

Because
∑

j ε1,j =
∑

j ε2,j = 1, there are j1, j2 ∈ [p] such that ε1,j1 , ε2,j2 ≥ ε, and
so f1 = (j1, a1,1, · · · , a1,γ) is ε-heavy for D1 and f2 = (a0 − j2, a2,1, · · · , a2,γ) is
ε-heavy for D2. Therefore, by Item 4, f1 ∈ Span(LinEq1) and f2 ∈ Span(LinEq2),
which means ε1,j1 = ε2,j2 = 1. Furthermore,

∑p
j=1 ε1,j · ε2,j is 1 if j1 = j2

and is 0 otherwise. Since
∑p

j=1 ε1,j .ε2,j ≥ ε, then j1 = j2. This means that
f ∈ Span(LinEq1,2).

For the next two lemmas, let LinCon = (LinConP)P∈{A,B,C} be the set of linear
constraints discovered by E at the end of the learning phase in Construction 23.

Lemma 26 (Independence of random seeds). For every fixed tran, LinCon
at the end of learning phase, the following two distributions are the same:

– The joint distribution over the randomness of A,B,C conditioned on being
compatible with tran, LinCon.

– Independently sampling randomness of each party P conditioned on being com-
patible with (mP, LinConP) (and putting them together).

Proof. The proof is similar to the observation that parties’ randomness in inter-
active protocols, conditioned on the transcript, is always a product distribution.

If (rA, rB, rC) is compatible with tran, LinCon, then clearly rP is compatible
with mP, LinConP for all P ∈ {A,B,C} as well. The more interesting observation
is the reverse: if rP is compatible with mP, LinConP for all P ∈ {A,B,C}, then
(rA, rB, rC) is compatible with tran, LinCon. That is because, these local compat-
ibilities will guarantee that the protocol will proceed consistently as a whole.

Lemma 27 (Statistical closeness of two protocols). For every tran, LinCon
at the end of learning phase, sample rA, rB, rC, while rP,P ∈ {A,B,C} is sampled
(only) conditioned on being compatible with mP, LinConP. Then, do as follows.

1. Run the protocol Π (with zero-test queries) using the random seeds rA, rB, rC
and output the keys that the parties generate (keyA, keyB, keyC).

2. Run the protocol Π ′ (without zero-test queries) using the random seeds
rA, rB, rC and output the keys that parties generate (keyA′ , keyB′ , keyC′).

Then, for every fixed tran, LinCon at the end of learning phase, with probability
at least 1 − 3β · ε over the randomness of sampling the random seeds, it holds
that keyP = keyP′ for all P ∈ {A,B,C} (simultaneously).

Proof. For the same set of tran, LinCon and random seeds rA, rB, rC the two pro-
tocols Π,Π ′ produce the same keys for the same parties if all the non-trivial
zero-test queries are answered negatively.

We now prove that this is indeed the case, by proving that the two games
will proceed the same with probability 1 − 3β · ε.
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We define 3β + 1 games Π = Π0, . . . , Π3β = Π ′ as follows. Let us imagine
running A first, then B, and then C. This means that we have a total order on
the 3β queries asked by them. In Πi, the first i zero-test queries are answered
similarly to Π ′ (i.e., using canonical answers) and the rest of them are answered
similarly to how Π does answer them.

Let Ei be the event, defined in both Πi and Πi−1, that the answer to the ith
query is not trivially yes, but it is indeed answered to be yes if asked from the
real oracle (as if we are in Πi−1). Note that the probability of Ei is the same
in both Πi and Πi−1, and Ei happening is the only way that these experiments
differ. All we have to do is to show that the probability of Ei is at most ε.

Suppose Pr[Ei] > ε, and for simplicity suppose ith query is asked by A. Then,
due to the independence of the random rA, rB, rC, there is a way to fix rA to r0A,
such that Pr[Ei | r0A] > 0. Fixing r0A will fix the coefficients of the ith zero test.
This means that there will be an affine test over the group elements shared by
B,C that is zero with probability > ε. By Lemma 25, it means that for either of
P ∈ {B,C}, there is an affine test over the group elements shared by P that is ε
heavy, while it is not learned by E, which is a contradiction.

Finally, we prove Theorem 21 using the lemmas above.

Proof (of Theorem 21). The efficiency of the attacker of Construction 23 follows
directly from Lemma 24. So, in the rest of the proof we focus on the success
probability of the adversary in guessing Alice’s key.

Let rA, rB, rC be the randomness of the parties, tran be the transcript, and
LinCon = (LinConP)P∈{A,B,C} be the result of the learning phase. Define δtran,LinCon

to be the completeness error only conditioned on (tran, LinCon). Then, we have
Etran,LinCon[δtran,LinCon] = δ. We claim that for every fixed (tran, LinCon), the adver-
sary finds Alice’s true key with probability at least 1−4(3βε+δtran,LinCon)−3βε.
Below, we prove this. By Lemma 26, sampling rA, rB, rC jointly conditioned on
(tran, LinCon) (which itself is equivalent to sampling everything according to the
real protocol Π) is equivalent to sampling rP independently only conditioned on
(mP, LinConP) for all P ∈ {A,B,C}. By Lemma 27, if we use the randomness
rA, rB, rC to run protocols Π or Π ′, with probability at least 1 − 3βε, the same
set of keys will be produced.

Therefore, conditioned on (tran, LinCon), the protocol Π ′ (which is defined
based on tran, LinCon) has completeness error at most 3βε + δtran,LinCon. This
means that the attacker of Construction 23 will find Alice’s key in Π ′ with
probability at least 1−4(3βε+δtran,LinCon). By another application of Lemma 27,
this means that the same attacker is finding the true key of Alice (in Π) with
probability at least 1 − 4(3βε + δtran,LinCon) − 3βε.

Putting things together, E finds Alice’s true key with probability at least

Etran,LinCon[1− 15βε − 4δtran,LinCon] = 1− 15βε − 4Etran,LinCon[δtran,LinCon] = 1− 15βε − 4δ.

By choosing 15βε = δ′, the probability of not finding Alice’s key will be at most
4δ + δ′, while the expected number of its queries during the learning phase will
be 3γ/ε = 45γ · β/δ′.



84 A. Afshar et al.

References

[BC22] Brzuska, C., Couteau, G.: On building fine-grained one-way functions from
strong average-case hardness. In: Dunkelman, O., Dziembowski, S. (eds.)
EUROCRYPT 2022, Part II. LNCS, vol. 13276, pp. 584–613. Springer,
Heidelberg (2022). https://doi.org/10.1007/978-3-031-07085-3 20

[BGI08] Biham, E., Goren, Y.J., Ishai, Y.: Basing weak public-key cryptography
on strong one-way functions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol.
4948, pp. 55–72. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-78524-8 4

[BHK+11] Brassard, G., Høyer, P., Kalach, K., Kaplan, M., Laplante, S., Salvail, L.:
Merkle puzzles in a quantum world. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 391–410. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-22792-9 22

[BJK+18] Brakerski, Z., Jain, A., Komargodski, I., Passelègue, A., Wichs, D.: Non-
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Abstract. The goal of the bounded storage model (BSM) is to construct
unconditionally secure cryptographic protocols, by only restricting the
storage capacity of the adversary, but otherwise giving it unbounded com-
putational power. Here, we consider a streaming variant of the BSM, where
honest parties can stream huge amounts of data to each other so as to over-
whelm the adversary’s storage, even while their own storage capacity is
significantly smaller than that of the adversary. Prior works showed sev-
eral impressive results in this model, including key agreement and obliv-
ious transfer, but only as long as adversary’s storage m = O(n2) is at
most quadratically larger than the honest user storage n. Moreover, the
work of Dziembowski and Maurer (DM) also gave a seemingly matching
lower bound, showing that key agreement in the BSM is impossible when
m > n2.

In this work, we observe that the DM lower bound only applies to a sig-
nificantly more restricted version of the BSM, and does not apply to the
streaming variant. Surprisingly, we show that it is possible to construct key
agreement and oblivious transfer protocols in the streaming BSM, where
the adversary’s storage can be significantly larger, and even exponential
m = 2O(n). The only price of accommodating larger values of m is that
the round and communication complexities of our protocols grow accord-
ingly, and we provide lower bounds to show that an increase in rounds and
communication is necessary.

As an added benefit of our work, we also show that our oblivious trans-
fer (OT) protocol in the BSM satisfies a simulation-based notion of secu-
rity. In contrast, even for the restricted case of m = O(n2), prior solutions
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only satisfied a weaker indistinguishability based definition. As an appli-
cation of our OT protocol, we get general multiparty computation (MPC)
in the BSM that allows for up to exponentially large gaps between m and
n, while also achieving simulation-based security.

1 Introduction

It is well known that Alice and Bob cannot agree on a shared secret by com-
municating over public (authentic) channel, when the eavesdropper Eve has
unbounded computational resources. Thus, traditional cryptography assumes
that Eve is “resource bounded”, and most commonly, bounds her run time. Many
key agreement schemes have been constructed in this setting, starting with the
seminal work of Diffie and Hellman [8], under various computational hardness
assumptions. Of course, the dream of cryptography is to construct uncondi-
tionally secure protocols, without relying on any unproven assumptions, but
unfortunately, this is currently beyond our reach, as it easily implies P �= NP .

In contrast, the Bounded Storage Model (BSM), introduced in the pioneering
work of Maurer [29], only assumes that Eve has bounded space rather than
time. A long series of works [1,4,5,9–11,15,17,19,21,26,28,35,36,39] showed
that it is possible to construct many kinds of unconditionally secure crypto-
graphic schemes in this model, including key agreement and oblivious transfer
over a public channel, provided that Eve’s storage is not too large.

It turns out that there are several related-but-different variants of the BSM.
In this work, we focus on a natural variant, which we refer to as the “streaming
BSM”. We first discuss this model, which will be the default throughout the
paper. We will compare the streaming BSM model to other variants from the
literature further below.

“Streaming” BSM. In this model, parties can generate and send huge amounts of
data to each other, but only have limited local memory. The model is parametrized
by two parameters: the honest parties’ space capacity n, and the attacker’s space
capacity m, where m � n. We assume parties operate in the streaming model:
they generate/receive communication one bit at a time, while only maintaining
a small local memory throughout. The total communication k can be huge, say
k � m � n, and can occur over multiple back-and-forth rounds.

For example, Alice can stream a huge random string X of length k to Bob by
sampling it one bit at a time; both Alice and Bob can store some small subset
of n physical locations of X, or they can store the parity of X computed in a
streaming manner, but neither of them can remember all of X. The attacker Eve
is also streaming, just like Alice and Bob, but has much larger memory capacity
m � n. We call the resulting model the (n,m)-BSM, and it will be the default
throughout the paper; sometimes, we will explicitly refer to it as the “streaming
BSM” to disambiguate from other variants.

Prior Results. As with computational cryptography, in the BSM we can con-
sider a symmetric-key setting, where honest parties can share a short secret key
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that can be used to encrypt arbitrarily many messages over time, or a public-
key setting, where no shared key is available. In both cases the parties can freely
communicate over a public channel, and the goal is to achieve unconditional,
information-theoretic (IT) security, without making any additional computational
assumptions.

In the symmetric-key setting, a series of beautiful papers [1,11,15,17,26,28,
29,35,36,39] showed that it is possible to achieve arbitrarily large gaps between
the space of the attacker and that of the honest parties, up to exponential: m =
2O(n). (Of course, the price of allowing large values of m is that the ciphertext
size has to grow proportionally, to ensure that we eventually overwhelm the
adversary’s storage capacity to overcome the Shannon lower bound. Therefore,
if we want to limit ourselves to schemes with polynomial ciphertext size, then
m is limited to some arbitrarily large polynomial.)

Amazingly, it is even possible to construct unconditionally secure public-key
schemes in the BSM, and prior works [4,5,9,10,19,21] constructed BSM schemes
for key agreement (KA) and oblivious transfer (OT), which is then complete for
all multi-party computation (MPC) [23,25]. However, all of the prior works in the
public-key setting allowed at most a quadratic gap between the adversarial and
the honest users storage: m = O(n2). In fact, the work of Dziembowski and Mau-
rer [16] seemed to suggest that this limitation is inherent, by showing there is no
KA protocol in the BSM when m > n2. Since OT directly implies KA, the same
lower bound also extends to OT. So it may have appeared that the question of
designing public-key cryptographic primitives in the BSM had been settled.

Our Question and Main Result. However, as we observe in this work, and discuss
in Sect. 1.1, the lower bound of [16] was only shown in a restricted version of the
BSM model, and does not apply to the more general “streaming” BSM. Most sig-
nificantly, the authors critically assumed that there is at most one “long” commu-
nication round in the key agreement protocol, where the length k of the streamed
message overwhelms the storage capacity m of the attacker. While this restriction
was satisfied by many prior work in the BSM (see Sect. 1.1), this opens the possi-
bility that it might be possible to break the quadratic barrier of [16] when parties
use the full streaming power of the BSM, including the ability to stream several
“long” messages to each other. This is the main question of this work:

Main Question: Do there exist unconditionally secure key agreement (KA)
and oblivious transfer (OT) protocols in the streaming (n,m)-BSM, when m is

allowed to be much larger than n2?

We answer this question in the affirmative, and show that we can allow arbi-
trarily large gaps between m and n, up to exponential m = 2O(n). Surprisingly,
this shows that unlike time-bounded public-key cryptography,—where we must
rely on additional computational assumptions,—space-bounded public-key cryp-
tography can be proven unconditionally, while supporting arbitrary gaps between
the powers of honest parties and the attacker. The price of allowing large val-
ues of m is that the round and communication complexities of the protocols
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grow correspondingly and we also provide a lower bound to show that this is
inherent. In particular, this means that if we want limit ourselves to protocols
with polynomial (round/communication) efficiency, then m is limited to be some
arbitrarily large polynomial.

Before describing our results in detail, we start by describing the different
variants of the BSM, to understand the gap that we crucially exploit between
the model used in the lower bound of [16] and the model for our upper bounds.

1.1 Modeling Gap: Breaking the Quadratic Barrier

Many of the prior works in the BSM, including the original work of [29] and
the lower bound of Dziembowski and Maurer [16], considered a more restricted
model, that we refer to as the “traditional BSM” to disambiguate from the
“streaming BSM”. In particular, they consider a variant where a single long
random string X is broadcast by a third party, and the honest users can store
a small subset of n physical locations of X (chosen non-adaptively). The adver-
sary can store arbitrary information about X, as long as the amount of infor-
mation is bounded by m bits. After this occurs, the adversary’s storage becomes
unbounded, and the honest parties can run some additional protocol, whose
overall space and communication complexity is bounded by n. Protocols in the
traditional BSM readily translate into the streaming BSM, by having one of the
users stream X as the first message of the protocol.1

Compared to the streaming BSM, the traditional BSM can be seen as impos-
ing additional restrictions on the honest parties Alice and Bob, and giving more
power to the space-bounded attacker Eve, as follows:

(a) Restricting Number of “Long” Rounds. We make a distinction between
“long” rounds, in which one of the parties streams a long message consisting
of more than m bits of data, versus “short” rounds, consisting of fewer than
m bits of data. Note that Eve can store the entire message in a short round.
The traditional BSM allows only a single “long” round—the very first round
of the protocol.

(b) Uniformly Random “Long Rounds”. The traditional BSM requires that a
“long” round should simply stream a uniformly random string X. When
true, such X is called a randomizer string [29], and can also come externally
(e.g., from nature) rather than being sampled by the parties.

(c) Local Computability for Alice/Bob. In the streaming BSM, when a party
Alice streams a long string X to an honest party Bob, then Bob is allowed
to arbitrarily process all of X in a streaming manner, as long as not using
more than n bits of space. The traditional BSM demands a stricter property
of n-Local Computability (LC) [39]: The honest parties can only access at

1 This holds generically in the case of KA. In the case of OT, where the participants
can be malicious, it may not be generically safe to allow one of the parties to chose
X instead of having it sampled by a trusted third party. However, it was safe to do
so for all the protocols in the literature.
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most n (a-prior non-adaptively chosen) physical locations of each string X
sent during a “long” round. 2

(d) Unlimited Short-term Memory for Eve. In the streaming BSM, the adversary
Eve is streaming and only has m bits of memory throughout the execution
of the protocol. In the traditional BSM, we only require that Eve stores at
most m bits immediately after observing each “long” round, but we allow
her to use unlimited short-term memory to process the round, and do not
restrict her memory during “short” rounds.

Clearly, enforcing any of the restrictions (a)–(d) makes any upper bound
stronger, and hence all protocols in the traditional BSM model also apply to the
streaming BSM. Indeed, most previous constructions in the traditional BSM sat-
isfied all of these additional properties. For example, the symmetric-key results
of [1,15,28,39] satisfied all of (a)–(d), as did the public-key results for key agree-
ment and oblivious transfer of [4,5,10]. However, there were exceptions, pointing
to the fact that these restrictions were not all seen as crucial. For example, the
work of [9] required two “long” rounds, and therefore did not satisfy (a). More-
over, if one wanted to use OT as a sub-protocol in general MPC, then this would
require running many sequential copies, meaning that even if the OT protocol
satisfied (a), the resulting MPC would not.

More recently, the ground-breaking work of Raz et al. [17,26,35,36] (pre-
sented in terms of time-space tradeoffs for learning parity), constructed elegant
symmetric-key encryption schemes in the streaming BSM that crucially do not
satisfy (b)–(d); see Sect. 1.4. The work of [19], then lifted the techniques of Raz
et al. [17,26,35,36] to build key agreement, oblivious transfer and bit commit-
ment protocols in the streaming BSM, without satisfying (b)–(d). Nevertheless,
the protocols of [19] have some advantages over prior works in the traditional
BSM, such as smaller number of communication rounds, and perfect correctness.

Overall, looking at the literature, it appears that many works implicitly
viewed the streaming BSM as the real conceptual goal, but ended up satisfying
additional properties (a)–(d) that they incorporated into their formal model.
This view seems to be shared by the more recent works of [17,19,26,35,36] that
did not satisfy the additional properties, but still continued to refer to their
model as the BSM, without carefully distinguishing between the variants. We
continue in this vein, and view the streaming BSM as the main notion to strive
for, while achieving the additional restrictions (a)–(d) can be seen as a nice
bonus, but is not essential.

Moving to the lower bound of Dziembowski and Maurer [16], it turns out
it critically used restriction (a), namely that there is only a single long round
having large communication. Hence, to overcome the quadratic barrier imposed
by [16], our protocols must use multiple long rounds.

Interestingly, we will be able to do so while still satisfying the additional
restrictions (b)–(d). In particular, our protocols contains many long rounds, each
of which involves generating a long uniformly random string X, while the honest
2 For example, if local computability is demanded, parties cannot compute the parity

of all the bits of X.
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parties store some small set of at most n physical locations of X. The adversary
is only restricted to storing at most m bits of information about each X sent in
a long round, but gets unlimited memory otherwise (i.e. during the short rounds
and for computing the functions that compresses each X into m bits). However,
we will mostly view these additional features as secondary, and focus most of our
discussion on the fully unrestricted streaming BSM. If follow-up works manage
to get further improvements by also dropping the restrictions (b)-(d), much like
the works of [17,19,26,35,36], this would be “fair game” and satisfy the main
goal from our point of view.

To sum up, even though many prior works already departed from the tradi-
tional BSM and considered the streaming BSM as the main model, when it comes
to public-key schemes, all prior works in the BSM were stuck at the quadratic
gap between honest and adversarial storage. On the other hand, the quadratic
lower bound of [16] does not extend to the streaming BSM, which opens the
door for our results.

1.2 Our Results

As our main positive results, we design protocols for key agreement (KA), obliv-
ious transfer (OT) and general multiparty computation (MPC) in the (n,m)-
BSM, supporting up to an exponential gap between the honest user and adver-
sary storage: m = 2O(n). This qualitatively matches the positive results in the
space-bounded symmetric-key setting, albeit in (substantially) more rounds. In
fact, we also show that large number of long rounds (and also overall large com-
munication complexity) is essential when m � n2, by non-trivially extending
the lower bound of [16] to general BSM protocols. Details follow.

Key Agreement in BSM. Recall, the goal of a KA protocol is for Alice and Bob
agree on a �-bit key while talking over an authenticated-but-public channel. In
Sect. 5, we show the following result in the (n,m)-BSM:

Theorem 1 (informal). For any m,λ, there exists some nmin = O(log m+λ)
such that for all n ≥ nmin there is an unconditionally secure key agreement
protocol in the (n,m)-BSM that outputs an Ω(n)-bit key and achieves security
2−Ω(λ). Furthermore:

– The number of rounds is ˜O(�m/n2� · λ).
– The communication complexity is ˜O(m�m/n2� · λ).

Note that, although the adversary’s storage bound m can even be exponentially
larger than n, this comes at the cost of increasing the number of rounds and bits
of communication. If we want the overall protocol to be polynomially efficient,
then we must restrict m to be some arbitrarily large polynomial.
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Oblivious Transfer and Beyond. As our second main result, we build an OT-
protocol in (n,m)-BSM, achieving nearly the same parameters as our KA pro-
tocol from Theorem 1. Recall, in an OT protocol, sender Alice has two �-bit
messages (msg0,msg1), and receiver Bob has a single choice bit c ∈ {0, 1}. At
the end of the protocol, Alice should learn nothing, while Bob should learn msgc,
and get no information about msg1−c. When ported to (n,m)-BSM, (1) honest
Alice and Bob should use space at most n, (2) the privacy of choice bit c should
hold even against malicious Alice with storage m, and (3) the privacy of m1−c

should hold even against malicious Bob with storage m.
In our work we will achieve receiver privacy guarantee (2) even against

unbounded space sender, so we only rely on the BSM for sender privacy (3).
Moreover, our protocol satisfies simulation-based security, with an efficient sim-
ulator. This means that our simulator only uses the attacker as a black-box and
is efficient relative to the corresponding attacker. In contrast, prior OT works in
the BSM [4,9,10,19] all satisfied a weaker indistinguishability-based variant of
sender-privacy, which roughly corresponds to inefficient simulation. The prob-
lem of having an efficient simulator was explicitly stated as an interesting and
challenging open problem in [10]. Our result, formally proven in Sect. 6, is sum-
marized below:

Theorem 2 (informal). For any m,λ, there exists some nmin = O(log m+λ)
such that for all n ≥ nmin there is an unconditionally secure OT protocol with
efficient simulator in the (n,m)-BSM with message size Ω(n) and security (and
correctness) errors 2−Ω(λ). Furthermore:

– The number of rounds is ˜O(�m/n2� · poly(λ)).
– The communication complexity is ˜O(m · �m/n2� · poly(λ)).
– Receiver security holds even against a malicious sender with unbounded space.

To generalize our result to general MPC, recall that OT is information-
theoretically complete for general MPC [23,25]. In Sect. 6.4, we observe that
this result also extends to the (n,m)-BSM, provided we allow the honest par-
ties’ storage n, round complexity R, and communication complexity C to also
polynomially-depend on the circuit size of the corresponding MPC functionality.
Note that these parameters are completely independent of the adversary’s stor-
age bound m, which can still be arbitrarily (up to exponentially) larger than n.
A similar observation that OT implies MPC in the BSM was already made in
[10] and expanded on in [27], albeit in the setting where both the OT and the
MPC only satisfy inefficient simulation.

We emphasize that the efficient simulation of our OT protocol is critical to
achieve efficient simulation of the resulting MPC. If we apply our MPC to the
special case of the zero-knowledge (ZK) functionality, we get the first ZK protocol
in (n,m)-BSM with an efficient simulator and arbitrary gap between m and n. In
contrast, if we only had indistinguishability-based OT, we would get ZK with an
inefficient simulator (which is equivalent to witness indistinguishability), which is
insufficient/uninteresting in many situations when the witness is unique. Indeed
the prior works of [2,37] constructed (non-interactive) witness indistinguishable
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proofs in the BSM, and explicitly left zero-knowledge as an open problem, which
we resolve here in the interactive setting.

Round and Communication Lower Bound. As we already mentioned, circum-
venting the lower bound [16] requires more than one long round. Also, any pro-
tocol in the (n,m)-BSM clearly requires more than m bits of communication.
However, our protocols in Theorems 1 and 2 are noticeably less efficient: they
use Ω(m/n2) rounds and Ω(m2/n2) communication. This begs the question of
whether large round and communication complexities of our protocols are inher-
ent. In particular, when m � n2, should the number of rounds R grow with m
and should the communication C be super-linear in m?

Unfortunately, we show that the answer is affirmative (see Theorem 22).
Specifically, we show that any KA and OT protocols must satisfy R ≥
Ω((m/n2)1/2) and C ≥ Ω(m · (m/n2)1/2). While leaving a non-trivial gap with
our upper bounds R = ˜O(m/n2) and C = ˜O(m2/n2) when m � n2, it still
shows that the number of rounds grows with m, and the communication must
be super-linear in m. It is an interesting open question to close this quantitative
gap between our lower and upper bounds.

Our basic lower bound above only holds for BSM protocols where the attacker
Eve is allowed unlimited short-term memory, and is only subject to keeping
an m-bit state in between rounds (i.e., condition (d)). However, we also non-
trivially extend our lower bound to show that it can even handle fully streaming
adversaries that are restricted to m-bits of memory throughout the protocol
execution, at the cost of a weaker quantitative bound: R ≥ Ω((m/n2)1/3), C ≥
Ω(m ·(m/n2)1/3). It is also an interesting open question to close the quantitative
gap between this bound and the previous one.

1.3 Our Techniques

Bit-Entropy Lemma. As a crucial tool in our KA and OT constructions, we rely
on a new technical lemma for min-entropy (Lemma 12). On a high level, the
lemma says that if a long string X ∈ {0, 1}k has high min-entropy (e.g., because
it was chosen uniformly at random and the adversary could only remember
m � k bits of information about it, in which case X denotes the conditional
distribution), then many individual bits X[i] of X must have non-trivial min-
entropy. Specifically, if H∞(X) ≥ δ · k, we show that

∑

i∈[k] H∞(X[i]) ≥ ρ · k,
where we (optimally) relate ρ to δ. For example, when δ = Ω(1), then ρ = Ω(1).
The technical lemma relates to conceptually similar lemmas in [3,33,39], showing
that random subsets of bits in X have a high entropy rates. It also relates to
quasi chain-rules for min-entropy [14,38]. However, to our knowledge, the single-
bit version does not appear to follow easily from the prior results.

Key Agreement Protocol. The high-level idea for our KA protocol from Sect. 5.2 is
surprisingly simple. For readers familiar with prior work on the bounded storage
model, our protocol builds on a core template, introduced in [5] and further used
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in [4,9,10], which we adapt and extend to the interactive setting. The protocol
consists of many rounds i, where Alice streams a (k = 2m)-bit random string X
to Bob and remembers a single random location in the string X[a]. Similarly, as
Bob receives the string X, he remembers a single random location X[b]. At the
end of each round, Alice and Bob exchange their choice of locations a, b with
each other; if a = b, they set X[a] = X[b] as their shared key and terminate, else
they erase all of their memory so far and go to the next round. Their storage only
consists of a single index and is therefore n = O(log m). The probability of Alice
and Bob agreeing in any round is 1/(2m) and therefore after O(m) rounds they
are likely to terminate. In the round i∗ where they agree, the attacker can only
remember m out of 2m bits of arbitrary information about the string X that
was sent, and the choice of what information to remember is made before seeing
Alice’s and Bob’s locations a, b. Therefore, the agreed upon location X[a] = X[b]
in that round has some constant amount of entropy from Eve’s point of view.

The simple template above only outputs a 1-bit shared key, only guaran-
tees that it has some low but non-trivial entropy from the point of view of the
attacker (but does not guarantee that it is uniformly random), has a constant
correctness error and and requires O(m) rounds. However, it is easy to address
these deficiencies. First, Alice/Bob can store O(n/ log m) random locations (not
just 1), which means they improve their odds of agreement in a given round
from 1/m to roughly O(n2/m), to get round complexity O(m/n2) and com-
munication complexity O(m2/n2), respectively. Second, we can amplify security
(and correctness) to ensure that the agreed upon key is 2−λ-statistically close to
uniform, while simultaneously making the key longer (say, λ bits), by repeating
the above O(λ) times, and applying a randomness extractor to the O(λ) agreed
upon bit locations. Finally, once the symmetric-key is O(λ) bits long, we amplify
it to be Ω(n) bits, by adding an additional round, and using any of the optimal
symmetric-key BSM protocols (e.g., [39]).

One crucial difference with the template of [5] and any single round in our
interactive protocol is that, in our case, Alice and Bob agree on bits in a given
round with very small probability O(n2/m) � 1, as opposed to almost always
agreeing in [5]. Our analysis is consequently significantly different, and builds on
our bit-entropy lemma.

We also notice that, while our protocol takes many rounds (which we show
to be inherent) and therefore does not satisfy restriction (a), it does satisfy the
additional restrictions (b)–(d): each long string is truly random, Alice and Bob
are “locally computable”, and security holds even if Eve has an unrestricted
amount of short-term local memory, as long as she can only remember at most
m bits of information after seeing each string X.

Oblivious Transfer Protocol. In an OT protocol, sender Alice has two messages
(msg0,msg1), and receiver Bob has a single choice bit c ∈ {0, 1}. At the end
of the protocol, Alice should learn nothing, while Bob learns msgc, and gets no
information about msg1−c.
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Our oblivious transfer crucially relies on a tool called interactive hashing
[10,31]. This tool was also used to construct OT in the BSM by prior works
[4,9,10] achieving a quadratic gap between the honest and adversarial storage.
However, our protocol uses it in a substantially different way. In an interactive
hashing protocol, a sender Bob has a random input b ∈ [k], and at the end of
the protocol, Alice can narrow down Bob’s input to one of two possible choices
b0, b1 such that b ∈ {b0, b1}, but Alice does not learn which of them it is; both
options are equally likely. On the other hand, Bob cannot simultaneously control
both of the values b0, b1 that Alice ends up with, and in particular he cannot
cause both of them to land in some sparse subset B ⊆ [k]. Such interactive
hashing protocols can be performed with 4 rounds of interactions and polylog(k)
time/space. The security properties hold information-theoretically, even if the
parties have unbounded computation and memory.

We now describe a simplified version of our OT protocol, which roughly
corresponds to the case where honest users have n = O(log m) storage. We first
rely on a component sub-protocol, which one can think of as an (imperfect) form
of Rabin OT [34]: Alice outputs some bit r, and Bob either also outputs r or
⊥, but Alice does not learn which of these occurred. We set the length of “long
rounds” to k = O(m log(m)):

– Alice and Bob choose random indices a, b ← [k] respectively. Alice samples a
random string X ← {0, 1}k and sends it to Bob. Alice stores X[a] and Bob
stores X[b].

– Alice and Bob run interactive hashing where Bob uses his index b. Alice learns
that it is one of b0, b1.

– Alice checks if a ∈ {b0, b1}, and if not, then the parties go back to the begin-
ning and try again. Else Alice sends a to Bob and outputs r = X[a]. Bob
checks if a = b and if so he outputs r = X[b] else he outputs ⊥.

The interactive hashing security ensures that even if Alice is malicious, she does
not learn whether Bob outputs ⊥ or r. On the other hand, even if Bob is malicious
and has storage m, there is only a small O(k/ log k) set of bad indices B ⊆ [k] that
he “knows” (have very small entropy given his state). The interactive hashing
ensures that it’s unlikely that both b0, b1 are in B, and Alice selects one of them
at random (the one that matches her a). Therefore, in the execution where Alice
accepts, with probability ≈ 1/2, Alice’s index satisfies a �∈ B and therefore Bob
does not know r = X[a].

To go from the above sub-protocol to full OT, we employ a variant of the
trick of [7] to go from Rabin OT to the more standard 1-out-of-2 OT. The
parties run the above sub-protocol for t = 3λ iterations, where Alice outputs
bits (r1, . . . , rt) ∈ {0, 1}t and Bob outputs (r′

1, . . . , r
′
t) ∈ {0, 1,⊥}t such that

r′
i ∈ {ri,⊥} and roughly 1/2 of them are ⊥, but Alice does not know which. Bob

selects two disjoint subsets I0, I1 ⊆ [t] of size λ each at random, subject to Ic only
containing values i for which r′

i �= ⊥. Alice applies an extractor on the values
rI0 , rI1 and uses the outputs to one-time-pad her messages msg0,msg1. This
allows Bob to recover msgc. It’s easy to see that the sets I0, I1 look identically
distributed to Alice and so she does not learn Bob’s choice bit c. On the other
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hand, since Bob only knows roughly t
2 = 3λ

2 of the values ri, at least one of
rI0 , rI1 must contain roughly λ

2 values that Bob does not know, and hence the
corresponding extracted string will blind the message.

Note that in our scheme, security against an adversarial Bob (receiver) relies
on him having bounded storage m, but security against an adversarial Alice
(sender) does not impose any restrictions on her storage. The overall protocol
requires ˜O(m · λ) rounds to terminate and ˜O(m2λ) communication. Our full
protocol generalizes the above to settings where honest users have larger storage
n to get ˜O(�m/n2�·λ) rounds and ˜O(m·�m/n2�·λ) communication. This requires
additional technical ideas to perform interactive hashing on sets of indices rather
than just a single index; see Sect. 6.

One issue with the above idea, and indeed all prior constructions of OT in
the BSM [4,9,10,19], is that it only satisfies a weak form of indistinguishability-
based security, which is equivalent to security with an inefficient simulator. In
particular, to simulate an adversarial Bob, we need to figure out his choice bit c,
which requires figuring out which locations X[a] he “knows” and which he does
not. This can be done inefficiently (and non-black-box) by looking at Bob’s state
after processing X and figuring out the conditional entropy of each bit of X given
the state; but there seems to be no hope to make this process efficient. We show
how to overcome this via an efficient rewinding-based simulation strategy. The
simulator forks off many copies of the interactive hashing protocol and figures
out which indices show up as one of Alice’s outputs with high frequency. We
show that this serves as a good proxy for the indices that Bob knows – since
he only knows X[a] for very few locations a, he has to “play” such locations
with high frequency if he wants to have a good chance of Alice selecting them.
Therefore, by using the efficiently computable set of high-frequency indices as
a proxy for the inefficiently computable set of indices that Bob knows, we can
efficiently extract Bob’s choice bit c.

Lower Bound. We prove a lower-bound for KA and, since OT directly gives
KA, this also implies an identical lower bound for OT. Let us first recall the
main intuition of the DM lower bound [16]. Let m > n be the storage size of the
adversary, and suppose the first message of the protocol is some large message M ,
potentially of size |M | � m much larger than the adversary’s storage. In the real
protocol, the honest parties Alice and Bob respectively compute states sA and
sB after processing M . DM shows that there exists some compact information
s∗

E of size m, which (1) is publicly-computable given M , and (2) decorrelates
the states sA and sB of Alice and Bob in the following sense: conditioned on
s∗

E , the users’ states sA and sB only share a low amount of mutual information,
bounded by n2/m. Therefore, if m = O(n2) is sufficiently large, the information
shared between Alice and Bob conditioned on the adversary’s view becomes too
small (much less than 1 bit) for them to agree on a shared random key.

One obstacle towards extending DM to the interactive setting is that, even
if the mutual information created in each round is very small O(n2/m), with
sufficiently many rounds it can add up. Indeed, this is exactly what our upper
bound exploits, and why one can allow large gaps between m and n with a large
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numbers of rounds! For our lower bound on rounds and communication, we want
to show that this is essentially the best that one can do. There are two main
obstacles. Firstly, the DM approach only works if Alice and Bob do not share
any mutual information in the first place. This is true at the beginning of the
protocol, which results in a candidate adversarial strategy for the first round of
the protocol. But it is not clear whether it extends to any intermediate round
within the protocol execution, where Alice and Bob managed to already get
some, albeit small, amount of mutual information.3 Moreover, a naive attempt
would be to have Eve compute an appropriate s∗

E for every round, but then Eve
would need to store all of these values throughout the duration of the protocol,
thus blowing up her storage.

Instead, we approach the DM core idea from a different angle, by thinking of
it as a round reduction step that allows us to convert an R round protocol into
an R − 1 round protocol, with only a small loss in correctness and security. In
particular, instead of having Alice send the long message M to Bob in the first
round, we remove the first round entirely, and have Bob do the following: (1)
sample M as Alice would, (2) (inefficiently) sample s∗

E given M as the adversary
in DM, and (3) sample his state sB conditioned on s∗

E ; (4) use it to compute
the next message M ′, and (5) send (s∗

E ,M ′) as the new message to Alice. Alice
then: (6) samples sA conditioned on s∗

E ; and (7) processes M ′ using sA, as she
would have done originally. Note that Alice and Bob are now inefficient, with
unlimited short-term memory to process each round, but only keep short n-bit
states between rounds, similar to feature (d) of Eve.4

We claim that the round reduction step preserves correctness and security up
to some small loss. This holds because the original states sA, sB had small mutual
information conditioned on s∗

E , which implies that they are statistically close to
independent. Therefore, the new way of sampling sA, sB truly independently
conditioned on s∗

E only introduces a small statistical error. On the other hand,
any attack Eve can perform on the new protocol by observing both of the values
(s∗

E ,M ′) sent by Bob at the same time, she could have also performed originally
by computing s∗

E from Alice’s original message M , storing s∗
E locally in her m-bit

state (here we crucially rely on it being small), and then performing the same
computation on the values (s∗

E ,M ′), once Bob sends M ′.
By performing the round-reduction steps iteratively, we eventually get a

0-round key agreement protocol, which leads to a contradiction. However,
each time we perform the round-reduction step we incur some statistical error
√

n2/m. The square-root comes from using Pinsker’s inequality to convert from
mutual information to statistical distance. Therefore, we only end up with a

3 Indeed, it is not true in general that their mutual information can only increase
by a small amount in each round; once Alice and Bob share even a small amount
of mutual information (e.g., they share a short extractor seed, perhaps even only
with small probability), they may be able to leverage it to derive much more mutual
information in just one additional round (e.g., send a long message and extract).

4 Note that allowing Alice and Bob to be stronger makes the resulting lower bound
stronger as well.
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secure protocol at the end, if the original protocol has R = O(
√

m/n2) rounds,
which gives our lower bound on rounds R ≥ Ω(

√

m/n2). Note that this also
gives a lower bound on communication C since C ≥ R. However, we can get a
stronger lower bound of C ≥ Ω(m · √m/n2) by showing how to remove “small”
rounds (i.e., having communication smaller than m) for free, without any loss in
correctness/security. We refer to Sect. 7.2 for more details.

As mentioned previously, this lower bound only rules out protocols secure
against strong attackers Eve who have access to unbounded short-term memory
to process each round, while storing m bits between rounds. We further adapt
the techniques above to handle fully streaming adversaries, that are restricted
to m bits of memory throughout the protocol. The main observation is that the
only step in the round reduction procedure that requires Eve to have unbounded
short-term memory is sampling s∗

E given M . We first observe that this step can
be performed in a streaming manner using small local memory, as long as Alice
and Bob are streaming algorithms with small local memory. However, even if
the latter was the case in the initial protocol, once we start removing rounds,
we required Alice and Bob to have large local memory to run Eve’s attack. This
turns into a recursive analysis, where the memory that Alice and Bob need to
run the protocol after removing R rounds, depends on the memory Eve needs
to attack on the protocol after removing R − 1 rounds, which depends on the
memory Alice and Bob need to run the protocol after removing R − 1 rounds
etc. By carefully analyzing this recursion, we show that Eve’s short-term memory
can be bounded to only be a factor of R larger than the previous bound we had
on her long-term memory, which yields our new quantitatively weaker bounds
of R ≥ Ω((m/n2)1/3) and C ≥ Ω(m · (m/n2)1/3) for the fully streaming model.
We refer to Sect. 7.4 for more details.

1.4 Related Work

We already extensively mentioned the prior work on the symmetric-key BSM
[1,15,17,26,28,29,35,36,39] and the public-key BSM models [4,5,9,10,19,21].
In particular, the work of [17,26,35,36] constructed “reusable” n-bit-key
symmetric-key encryption schemes, capable of encrypting exponentially many b-
bit messages, where an individual ciphertext is “only” O(mb/n) bits long.5 When
b � n, this is a huge saving compared to the prior symmetric-key schemes in
the BSM, where each individual ciphertext had size greater than m, irrespective
of message length. Interestingly, these works did not satisfy restrictions (b)-(d),
critically using full features of the streaming BSM.

In the context of proof systems, [2,37] constructed non-interactive witness
indistinguishable proofs secure against memory-bounded streaming verifiers,
allowing arbitrary gap between the values n and m. In contrast, the proofs sys-
tems constructed in this work are full zero-knowledge, with efficient simulation,

5 This is optimal, as otherwise Eve is capable of storing more than n/b ciphertexts in
its memory, allowing the parties to encrypt more than b ·n/b = n bits of information
using an n-bit key, contradicting Shannon lower bound.
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but use many rounds of interaction. In a related vein, a very recent work of [20]
considered the notion of “disappearing cryptography” in the (streaming) BSM.
Here, a component of the scheme (e.g., a ciphertext, signature, proof or program)
is streamed bit by bit. The space-bounded receiver can get the functionality of the
system once, after which the object “disappears” for subsequent use.

The work of [30] designed novel “timestamping” schemes in the (traditional)
BSM. Here space-bounded sender and receiver have access to a long randomizer
string X: the sender will timestamp a given document D at time t, and the
receiver will prepare to verify D (which is yet unknown). The sender can then
prove the timestamping of D to the receiver at a much later time, and the
receiver is guaranteed that the sender is unable to timestamp a “very different”
(i.e., high-entropy) document D′.

Finally, we mention the seminal works of [32,33] in the context of design-
ing pseudorandom generators fooling space-bounded distinguishers. Unlike the
BSM setting, the memory n of the generator must be necessarily higher than
the memory m of the distinguisher, and the works of [32,33] come very close
to this bound, unconditionally. In a similar vein, the work of [24] constructs
deterministic randomness extractors for space-bounded sources of randomness.

2 Preliminaries

Notation. When X is a distribution, or a random variable following this dis-
tribution, we let x ← X denote the process of sampling x according to the
distribution X. If X is a set, we let x ← X denote sampling x uniformly at
random from X. We use the notation [k] = {1, . . . , k}. If x ∈ {0, 1}k and i ∈ [k]
then we let x[i] denote the i’th bit of x. If s ⊆ [k], we let x[s] denote the list of
values x[i] for i ∈ s.

Statistical Distance. Let X,Y be random variables with supports SX , SY , respec-
tively. We define their statistical difference as

SD(X,Y ) =
1
2

∑

u∈SX∪SY

|Pr[X = u] − Pr[Y = u]| .

We write X ≈ε Y to denote SD(X,Y ) ≤ ε.

Predictability and Entropy. The predictability of a random variable X is
Pred(X) def= maxx Pr[X = x]. The min-entropy of a random variable X is
H∞(X) = − log(Pred(X)). Following Dodis et al. [12], we define the condi-
tional predictability of X given Y as Pred(X|Y ) def= Ey←Y [Pred(X|Y = y)]
and the (average) conditional min-entropy of X given Y as: H∞(X|Y ) =
− log (Pred(X|Y )) . Note that Pred(X|Y ) is the success probability of the opti-
mal strategy for guessing X given Y .

Lemma 3 ([12]). For any random variables X,Y,Z where Y is supported over
a set of size T we have H∞(X|Y,Z) ≤ H∞(X|Z) − log T .
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Lemma 4 ([12]). For any random variables X,Y ,for every ε > 0 we have

Pr
y←Y

[H∞(X|Y = y) ≥ H∞(X|Y ) − log(1/ε)] ≥ 1 − ε.

Lemma 5. If X and Y are independent conditioned on Z then H∞(X|Y ) ≥
H∞(X|Y,Z) ≥ H∞(X|Z).

Lemma 6. If X and Y are independent conditioned on Z then H∞(X,Y |Z) ≥
H∞(X|Z) + H∞(Y |Z).

Shannon Entropy. The Shannon entropy of a random variable X is H(X) def=
Ex←X [− log(Pr[X = x])]. The conditional Shannon entropy of X given Y is
H(X|Y ) def= Ey←Y H(X|Y = y) = E(x,y)←(X,Y )[− log(Pr[X = x|Y = y])].

For 0 ≤ p ≤ 1 we define the binary entropy function h(p) def= H(Bp), where Bp

is a Bernoulli variable that outputs 1 with probability p and 0 with probability
1 − p.

Lemma 7. For any random variables X,Y , we have: H∞(X|Y ) ≤ H(X|Y ).

Extractors. We review the notion of randomness extractors and known param-
eters.

Definition 8 ((Strong, Average-Case) Seeded Extractor [33]). We say
that an efficient function Ext : {0, 1}n ×{0, 1}d → {0, 1}� is an (α, ε)-extractor
if for all random variables (X,Z) such that X is supported over {0, 1}n and
H∞(X|Z) ≥ α we have SD((Z, S,Ext(X;S)) , (Z, S, U�)) ≤ ε where S,U� are
uniformly random and independent bit-strings of length d, � respectively.

Theorem 9 ( [22]). There exist an (α, ε)-extractor Ext : {0, 1}n × {0, 1}d →
{0, 1}� as long as α ≥ � + 2 log(1/ε). Furthermore, such an extractor can be
computed in O(n) time and space.

Definition 10 (BSM Extractor [39]). We say that an efficient function
BSMExt : {0, 1}k × {0, 1}d → {0, 1}� is an (n,m, ε)-BSM extractor if:

– Given seed ∈ {0, 1}d initially stored in memory, it is possible to compute
BSMExt(x; seed) given streaming access to x ∈ {0, 1}k using at most n bits
of total memory. Moreover, it can be done while only accessing at most n
locations (chosen non-adaptively) in the string x.

– BSMExt is an (α, ε)-extractor (Definition 8) for α = k − m.

Note that a BSM Extractor gives a simple one-round protocol (n,m)-BSM
protocol where Alice and Bob start with a uniformly random shared key key0
of some small size d and derive a new shared key key1 ∈ {0, 1}� of a larger size
� > d. Alice just streams a random x ∈ {0, 1}k to Bob and both parties compute
key1 = BSMExt(x; key0). Security holds since the adversary can only store m-bits
of information about x so it has α ≥ k − m bits of entropy conditioned on the
adversary’s view, and key0 acts as a random seed which is a-prior unknown to
the adversary. Therefore key1 = BSMExt(x; key0) is ε-close to uniform given the
adversary’s view of the protocol.
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Theorem 11 ([39]). For any m ≥ �,λ, there is a (n,m, ε)-BSM extractor
BSMExt : {0, 1}k × {0, 1}d → {0, 1}� with n = O(� + λ + log m), ε = 2−Ω(λ),
k = O(m + λ log(λ)), d = O(log m + λ).

3 Bit-Entropy Lemma

We prove a new lemma showing that if X has sufficiently high min-entropy, then
many individual bits X[i] have sufficiently high min-entropy as well.

For q ∈ [0, 1], we define h−1
+ (q) to be the unique value p such that .5 ≤ p ≤ 1

and h(p) = q, where h is the binary entropy function defined above.

Lemma 12. Assume X,Y are random variables, where X is distributed over
{0, 1}k. Let X[i] denote the i’th bit of X. If H∞(X|Y ) ≥ δk the following 3
statements hold:

1.
∑

i Pred(X[i] | Y ) ≤ h−1
+ (δ)k.

2.
∑

i H∞(X[i] | Y ) ≥ − log(h−1
+ (δ))k.

3. If I is uniformly random over [k] and independent of X,Y then
H∞(X[I] | Y, I) ≥ − log(h−1

+ (δ)).

Proof. We have:

δk ≤ H∞(X|Y ) ≤ H(X|Y ) =
∑

i∈[k]

H(X[i] | X[1], ..., X[i − 1], Y ) ≤
∑

i∈[k]

H(X[i] | Y ).

Therefore
δ ≤ E

i←[k],Y ←y
H(X[i] | Y = y).

Since h−1
+ is a decreasing and concave function, this means:

h−1
+ (δ) ≥ h−1

+

(

E
i←{0,1}k,y←Y

H(X[i] | Y = y)
)

≥ E
i←[k],y←Y

h−1
+ (H(X[i] | Y = y))

≥ E
i←[k],y←Y

( max
b∈{0,1}

Pr[X[i] = b | Y = y])

≥ E
i←[k]

Pred(X[i]|Y ).

This proves the first part of the theorem. Also the third part of the theo-
rem follows since H∞(X[I] | Y, I) = − log(Ei←I Pred(X[I] | Y, I = i)) =
− log(Ei←[k] Pred(X[i] | Y )). The second part follows since (− log) is a decreas-
ing and convex function so

− log(h−1
+ (δ)) ≤ − log

(

E
i←[k]

Pred(X[i] | Y )
)

≤ E
i←[k]

− log(Pred(X[i] | Y ))

≤ E
i←[k]

H∞(X[i] | Y ) ��
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Remark 13. To the best of our knowledge, the “bit-prediction” lemma above
is new, as it talks about individual bit prediction; as opposed to “subkey-
predcition” lemma studied in prior BSM literature [3,33,39], which talked about
simultaneously predicting a large subset of bits. It also does not appear to follow
directly from quasi chain-rules for min-entropy [14,38] that have a large loss
in parameters that does not appear to give any non-trivial bounds in the bit
setting. We also remark that our parameters are tight, as can be seen by tak-
ing X to be the uniform distribution over a hamming ball of radius pk, where
p = 1 − h−1

+ (δ) ≤ 1/2. The volume of this ball is roughly 2h(p)k = 2δk, so
H∞(X) = δk. Yet, each bit of X can be predicted with probability at least
1 − p = h−1

+ (δ).

Lemma 14. For any 0 < ε ≤ 1 there is a δ = Ω(ε2) such that − log(h−1
+ (1 −

δ)) = (1 − ε).

Proof. Given ε we can solve:

− log(h−1
+ (1 − δ)) = 1 − ε

⇒ h−1
+ (1 − δ) = 2ε/2

⇒ 1 − δ = h(2ε/2) = h(1/2 + Θ(ε)) = 1 − Θ(ε2).

where we rely on the bound 2ε = (1+Θ(ε)) and h(1/2+Θ(ε)) = 1−Θ(ε2) (e.g.
[6, Theorem 2.2]). ��

4 Bounded Storage Model

A (n,m)-bounded storage model (BSM) protocol, is parametrized by a bound n
on the memory of the honest parties, and a bound m > n on the memory of the
adversary. Communication between parties occurs in rounds where one party
sends data to another party. Honest parties send and receive data in a streaming
manner, by generating/reading the stream one bit at a time, while only using n
bits of memory overall. The adversary is also a streaming algorithm with m bits
of memory.

For all our constructions, we will satisfy additional properties, corresponding
to properties (b)–(d) discussed in the introduction. The protocol consists of two
types of rounds: “short rounds” are of size is < n, and can be fully generated,
sent, and processed by the honest parties using only n bits of memory, without
needing to be streamed one bit at a time, while “long rounds” are of size > m.6

Our protocols satisfy the following additional properties:

6 We will allow ourselves to split up the protocol into rounds arbitrarily, and may have
two (or more) adjacent rounds where the same party A talks to party B.
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– Uniformly Random “Long Rounds”. Each long round consists of a uniformly
random string x generated by some party A and sent to party B.

– Local Computability for Honest Parties. In each long round, the honest parties
only read a small set of < n locations of x and use these to update their state,
while using only n bits of memory in total. Furthermore, the set of locations
accessed is chosen non-adaptively at the beginning of the round, before seeing
any bits of x.

– Unlimited Short-term Memory for Adversary. The adversary can generate and
read the entire long round of communication at once, and can use unlimited
amounts of short-term memory during this process, but can only store a
compressed m-bit state immediately after the end of each long round. There
are no restrictions on the adversary’s memory during/after short rounds.

5 Key Agreement

5.1 Definition

A key agreement protocol in the (n,m)-BSM with security ε is a protocol between
two honest users Alice and Bob with memory bound n. At the end of the protocol
Alice and Bob outputs values keyA, keyB ∈ {0, 1}� respectively. For correctness,
we require that when the protocol is executed honestly then Pr[keyA = keyB ] =
1. For security, we consider a passive BSM adversary Eve with memory bound
m. Let viewEve denote Eve’s final state at the end of the protocol execution. We
require that

(viewEve, keyA) ≈ε (viewEve, key
∗)

where key∗ ← {0, 1}� is chosen uniformly at random and independently of the
protocol execution.

5.2 Construction

Theorem 15. For any m ≥ �, λ there is some nmin = O(λ + � + log m) such
that for all n > nmin there is a key agreement protocol in the (n,m)-BSM that
outputs an �-bit key and has security ε = 2−Ω(λ). The round complexity of the
protocol is O(�(m/n2)�·λ ·polylog(m)) and the communication complexity O(m ·
�(m/n2)� · λ · polylog(m + λ)).

Proof. We present the key agreement protocol between Alice and Bob. We refer
to the full version [13] for a proof.

Construction. Given m,λ, � we define additional parameters as follows.

– Let k = 2m.
– Let d1 = O(λ + log m) and n1 = O(λ + log m + �) and k′ = O(m + λ log(λ))

be some values such that there is a (n1,m, ε = 2−Ω(λ))-BSM extractor
BSMExt : {0, 1}k′ × {0, 1}d1 → {0, 1}� per Theorem 11.
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– Let t = O(λ+log m) and d0 = O(t), n0 = O(t) be some value such that there
is a (t/10, ε = 2−Ω(λ))-extractor Ext : {0, 1}t × {0, 1}d0 → {0, 1}d1 that can
be computed using n0 space per Theorem 9.

– Define nmin = max(n0, n1, 2t + �log k� + 1) = O(λ + log m + �).
– For any n ≥ nmin, define ñ = �(n − t)/(�log k� + 1)� = Ω(n/ log m).

The protocol works as follows.

1. Set i := 0. Repeat the following until i = t:
(a) Alice and Bob select uniformly random subsets sA, sB ⊆ [k] of size |sA| =

|sB | = ñ respectively.
Alice streams a uniformly random string x ← {0, 1}k to Bob.
Alice stores x[sA] while Bob stores x[sB ].

(b) Bob sends sB to Alice.
(c) If sA ∩ sB �= ∅ then Alice selects a random index j ← sA ∩ sB and sends

j to Bob.
Both Alice and Bob set ri = x[j] and increment i := i + 1.

Else if sA ∩ sB = ∅ then Alice simply sends j = ⊥ to Bob.
2. Alice and Bob set r := (r1, . . . , rt).

Alice sends a random seed0 ← {0, 1}d0 to Bob and both of them compute
seed1 = Ext(r; seed0).

3. Alice streams a uniformly random string x ← {0, 1}k′
to Bob and both parties

compute key = BSMExt(x; seed1).

��

6 Oblivious Transfer and Multiparty Computation

6.1 Definition of Oblivious Transfer

We define oblivious transfer (OT) in the BSM via a real/ideal framework. In the
ideal model the sender (Alice) gives two messages (msg0,msg1) ∈ ({0, 1}�)2 to an
ideal functionality FOT and the receiver (Bob) gives a bit c ∈ {0, 1}. The ideal
functionality FOT gives msgc to the receiver and gives nothing to the sender.

A protocol Π realizes FOT in the (n,m)-BSM with security ε if:

– Π can be executed by honest parties with n-bit memory.
– There exists an efficient black-box simulator SimA that runs in time

poly(n,m, λ = log(1/ε)) with black-box (rewinding) access to the adver-
sary A, such that for any (inefficient) BSM-adversary A with m-bit state
corrupting either the sender or the receiver and for any choice of inputs
Z = (msg0,msg1, c) from the environment, we have

REALA,Π,Z ≈ε IDEALSimA,FOT ,Z

where we define the distributions:
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REALA,Π,Z : denotes the real execution of Π with the adversary A taking on
the role of either the sender or the receiver while the honest party uses the
input specified by Z; the output of the distribution consists of the output of
A together with the inputs/outputs of the honest party.

IDEALSimA,FOT ,Z : denotes the ideal execution of FOT with an ideal-adversary
SimA taking on the same role as A, while the honest party uses the input
specified by Z; the output of the distribution consists of the output of SimA

together with the inputs/outputs of the honest party.

We further say that the protocol is secure against an unbounded-memory
sender (resp. receiver) if we can drop the requirement on the storage of A when
it corrupts the sender (resp. receiver).

We say that the protocol is only secure with inefficient simulation, if we drop
the requirement on the efficiency of the simulator. Our default notion will be
efficient simulation.

On Efficient Simulation. Note that we require efficient simulation even though
the adversary may be computationally unbounded. This may seem strange at
first, but is natural and is analogous to (e.g.,) requiring an efficient simulator
for statistical Zero Knowledge proofs [18] or for information-theoretically secure
MPC protocols. In particular, the definition is agnostic to whether or not the
adversary is efficient, but ensures that the adversary cannot learn anything in
the real world that it could not also learn with only polynomially more compu-
tational power in the ideal world. The need for an efficient simulator is crucial
when leveraging OT to construct other more complex functionalities, as we will
do in Sect. 6.4. For example, we can use our OT in the BSM to construct zero-
knowledge (ZK) proofs in the BSM. If the OT simulator were inefficient, the
resulting ZK proof would only be inefficiently simulatable (equivalently, would
only be witness indistinguishable), which is completely meaningless in many sce-
narios where the witness is unique; the prover may as well just send the witness
in the clear.

On the other hand, our simulator does not have bounded storage and can use
more memory than the adversary. This naturally corresponds to the idea that
having some a-priori (polynomial) bound on storage is only assumed to be a
limitation in the real world, and is a useful limitation in helping us build secure
protocols, but is not a fundamental restriction that we need to also preserve for
the ideal-world adversary interacting with the ideal functionality.

6.2 Interactive Hashing

Basic Interactive Hashing. In an interactive hashing protocol a sender Bob has
an input u ∈ [k]. The goal of the protocol is for Alice to narrow down Bob’s input
to one of two possible choices u0, u1 such that u = ub for one of b = 0 or b = 1,
but Alice does not learn which. In particular, even if Alice acts maliciously, when
Bob chooses his input u ← [k] at random, then both choices of b appear equally
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likely from Alice’s point of view. On the other hand, although Bob can choose
an arbitrary input u and ensures u = ub for some b ∈ {0, 1}, he cannot control
the “other” value u1−b too much. In particular, even if Bob is malicious during
the protocol, for any sufficiently sparse subset B ⊆ [k], it is highly unlikely that
both of u0, u1 are contained in B.

Definition 16. An interactive hashing protocol is a protocol between a public-
coin randomized Alice (receiver) and a deterministic Bob (sender). Alice has no
input and Bob has some input u ∈ [k]. At the end of the protocol, we denote
the transcript (h, v), consisting of all the random messages h sent by Alice and
all the responses v sent by Bob. We can think of h as defining a hash function
that maps Bob’s input u to his set of responses v = h(u). The protocol has the
following properties:

– 2-to-1 Hash: Every possible choice of Alice’s messages results in a hash func-
tion h which is 2-to-1, meaning that for every v in the image of h has exactly
two pre-images: |h−1(v)| = 2.

– (α, β)-Security: For any set B ⊆ [k] of size |B| ≤ β · k, if Alice follows the
protocol honestly and Bob acts arbitrarily resulting in some transcript (h, v)
such that {u0, u1} = h−1(v) then Pr[{u0, u1} ⊆ B] ≤ α.

Note: the 2-to-1 hash property ensures that, if Bob chooses u ← [k] uniformly
at random and acts honestly during the protocol, then even if Alice acts mali-
ciously resulting in some transcript (h, v) at the end of the protocol, if we define
{u0, u1} = h−1(v) such that u = ub, Alice cannot distinguish between b and
1 − b.

We have constructions of interactive hashing (with security against arbitrary
Alice and Bob, without any bound on their memory):

Theorem 17 ( [10,31]). There is an 4-round interactive hashing protocol with
(α, β)-security for any β < 1 with α = O(β log k). Furthermore, the execution of
the protocol and the computation of h−1 can be done in polylogk time and space.

Definition of Set Interactive Hashing. Here, we extend the notion of interactive
hashing to the case where the sender Bob has an entire set of inputs sB ⊆ [k].
Alice has her own set of inputs sA ⊆ [k]. The goal of the protocol is to ensure
that when there is a value in the intersection sA ∩ sB then there is a good
chance that Alice will accept and output some value u ∈ SA, in which case it
then holds with probability 1/2, that u ∈ SB and Bob accepts and outputs it,
while with probability 1/2 Bob rejects. Alice should not learn which of these
two cases occur, even if she acts maliciously. On the other hand, even if Bob is
malicious, he cannot have too much control over the value that Alice outputs:
for any sufficiently sparse set B ⊆ [k], he cannot ensure that the value u that
Alice outputs (conditioned on her accepting) is in the set B with probability
much higher than 1/2.

Definition 18. In a set interactive hashing protocol, Alice and Bob have sets
sA, sB ⊆ [k] of size |sA| = |sB | = n. At the end of the protocol, Alice either rejects
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by sending a special ⊥ message to Bob, or she accepts and sends some u ∈ SA

to Bob. If Alice sends ⊥, then Bob always rejects and outputs ⊥. Otherwise,
Bob can either accept, in which case he outputs the same u as Alice and it must
hold that u ∈ SB, or he rejects. The protocol has (α, β)-security if it satisfies the
following properties:

– Correctness: If Alice and Bob both execute the protocol honestly using random
subsets sA, sB ⊆ [k] of size |sA| = |sB | = n then:

Pr[Alice accepts] ≥ Ω(min(n2/k, 1)) , Pr[Bob accepts | Alice accepts] =
1
2
.

Furthermore whenever Alice accepts with some value u, then it must be the
case that u ∈ SA and if Bob also accepts then it must be the case that u ∈
SA ∩ SB.

– Security for Honest Bob: If Bob follows the protocol honestly using a random
subset sB ⊆ [k] of size |sB | = n and Alice follows the protocol arbitrarily, then,
even condition on any arbitrary protocol transcript in which Alice accepts (i.e.,
does not send ⊥ to Bob as the last message) we have:

Pr[Bob accepts] =
1
2
.

– (α, β)-Security for honest Alice: Let B ⊆ [k] be a set of size |B| ≤ β · k. If
Alice follows the protocol honestly using a random subset sA ⊆ [k] of size
|sA| = n and Bob follows the protocol arbitrarily, then

Pr[Alice outputs u ∈ B | Alice accepts] ≤ 1
2

+ α.

6.3 OT Construction

Theorem 19. For any m ≥ �, λ there is some nmin = Ω(log m + � + λ) such
that for all n ≥ nmin there is an oblivious transfer protocol in the (n,m)-BSM
with �-bit messages and security ε = 2−Ω(λ). The protocol is secure with efficient
simulation, and it achieves security against an unbounded-memory sender. The
round complexity is O(�m/n2� ·poly(λ, log m)) and the communication complex-
ity O(m · �m/n2� · poly(λ, log(m))).

Proof. We describe the OT protocol between sender Alice and receiver Bob, and
refer to the full version [13] for a proof.

Construction. Given m,λ, � we define additional parameters as follows:

– Let d1 = O(λ+log m) and n1 = O(λ+log m+�) and k′ = O(m+�+λ log(λ))
be some values such that there is a (n1,m + �, ε = 2−Ω(λ))-BSM extractor
BSMExt : {0, 1}k′ × {0, 1}d1 → {0, 1}� per Theorem 11.

– Let t = O(λ+log m) and d0 = O(t), n0 = O(t) be some value such that there
is a (t/40, ε = 2−Ω(λ))-extractor Ext : {0, 1}t × {0, 1}d0 → {0, 1}d1 that can
be computed using n0 space per Theorem 9.
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– Set k = (m + λ) log3(m + λ).
– Set α = 1

20 and let β = 1/O(log k) be such that (α, β)-security for interactive
set hashing holds.

– Set δ = Ω(β2) = 1/O(log2 k)) be such that − log(h−1
+ (1 − δ)) = (1 − β/2) by

Lemma 14.
This ensures that δk ≥ Ω((m + λ) log(m + λ)).

– Let g(k) = poly log k be a parameter associated with set interactive hashing,
such that an execution of the set interactive hashing protocol with parameters
n, k can be done in n · g(k) time and space(see the full version [13] for more
details). Assume g(k) ≥ �log k + 1�.

– Define nmin = max(2n0, 2n1, 3t + g(k)) = O(λ + log m + �).
– For any n ≥ nmin, define ñ = �(n − 2t)/g(k)� = Ω(n/polylog(m + λ)).
– Let p = Ω(min(ñ2/k, 1)) be the correctness probability of Alice accepting

during an honest execution of the set interactive hashing protocol with param-
eters ñ, k, per Definition 18.
Set Rmax = 2t/p = O(t · �k/ñ2�) = O(�m/n2� · poly(λ, log m).

The protocol works as follows.

Bob has a choice bit c ∈ {0, 1} and Alice has two messages msg0,msg1 ∈ {0, 1}�.

1. Alice and Bob initiate vectors rA ∈ {0, 1}t, rB ∈ {0, 1,⊥}t respectively. They
set i := 0.
Repeat the following until i = t:
(a) Alice and Bob select uniformly random subsets sA, sB ⊆ [k] of size |sA| =

|sB | = ñ respectively.
Alice streams a uniformly random string x ← {0, 1}k to Bob.
Alice stores x[sA], and Bob stores x[sB ].

(b) Alice and Bob perform set interactive hashing, with Bob’s input being
sB .

– If Alice rejects, then both parties move to the next iteration.
– Else, if Alice accepts with some value u ∈ sA, then she sets rA[i] =

x[u].
• If Bob also accepts then it must be the case that u ∈ sB and he

sets rB [i] = x[u].
• Else, Bob sets rB [i] = ⊥.

Both parties increment i := i + 1.
If the number of iterations reaches Rmax before i = t, the parties abort.

2. Bob sets I := {i ∈ [t] : rB [i] �= ⊥}. If |I| < 2·t
5 then Bob aborts. Else he

chooses two sets I0, I1 of size |I0| = |I1| = 2·t
5 by sub-selecting Ic ⊆ I and

I1−c ⊆ [t] \ Ic uniformly at random.
Bob sends I0, I1 to Alice.

3. Alice checks that |I0| = |I1| = 2·t
5 and I0 ∩ I1 = ∅ and aborts otherwise.

She chooses an extractor seed seed ← {0, 1}d0 and sends seed to Bob.
Alice computes seed0 = Ext(rA[I0]; seed), seed1 = Ext(rA[I1]; seed).
Bob computes seedc = Ext(rB [Ic]; seed).
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4. Alice streams a uniformly random string x ← {0, 1}k′
to Bob.

Alice computes key0 = BSMExt(x; seed0), key1 = BSMExt(x; seed1).
Bob computes keyc = BSMExt(x; seedc).

5. Alice sends to Bob:

ct0 = key0 ⊕ msg0, ct1 = key1 ⊕ msg1

and Bob outputs msg = ctc ⊕ keyc.

��

6.4 Multiparty Computation from OT

It is known that one can use the oblivious transfer (OT) ideal functionality as a
black box to achieve general multi-party computation in the OT-hybrid model
[23,25]. By plugging in our construction of OT in the BSM, one therefore gets
general multiparty computation in the BSM with efficient simulation. A similar
observation that OT implies MPC in the BSM was already made in [10] and
expanded on in [27], albeit in the setting where both the OT and the MPC only
satisfy inefficient simulation.

We provide some additional details. Assume we want to perform a multiparty
computation of some circuit C with N parties and security parameter λ.

– Honest user storage: If we start with an OT protocol in the (n,m)-BSM
and use it to construct MPC, the honest users need to keep in memory all
of the intermediate state of the external MPC protocol in the OT-hybrid
model. The size of this state is some poly(|C|, N, λ) completely independent
of n,m. Therefore the resulting protocol will be in the (n′,m)-BSM model
with n′ = n + poly(|C|, N, λ), which can still be arbitrarily smaller than the
adversarial storage m.

– Adversary storage: We note that the MPC protocol only executes copies of
the OT protocol sequentially. When the “outer” simulator of the overall MPC
needs to simulate each OT execution, it can spawn of a fresh copy of an
“inner” OT simulator. Although the outer simulator may need to store some
additional state related to the outer MPC execution, this is completely unre-
lated to the inner OT. Therefore, the OT protocol only needs to achieve
security against an OT adversary with the same storage bound m as the
overall MPC adversary.

Summarizing we get the following theorem as a corollary of our OT protocol
(Theorem 19) and the works of [23,25].

Theorem 20. For any m,λ and any N -party ideal functionality F having cir-
cuit size |F|, there is some nmin = O(log m) + poly(|F|, N, λ) such that for all
n ≥ nmin there is a secure MPC protocol in the (n,m)-BSM with ε = 2−Ω(λ)

security against an adversary that can maliciously corrupt any number of par-
ties. The round complexity is O(�m/n2�·poly(|F|, N, λ)) and the communication
complexity O(m · �m/n2� · poly(|F|, N, λ)).
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7 Lower Bounds on Rounds and Communication

In this section, we prove that achieving large memory gaps between adversaries
and honest parties in the bounded storage model inherently requires large round
complexity and communication. In Sect. 7.1, we introduce the specific BSM we
use for our lower bound. In Sect. 7.2, we prove a lower bound on round com-
plexity and communication in this model. Looking ahead, one drawback of
this lower bound is that it only rules out protocols secure against somewhat
strong, non-streaming adversaries. In Sect. 7.3, we introduce another variant of
the BSM where adversaries are streaming, and prove an associated lower bound
in Sect. 7.4.

7.1 Model for the Lower Bound: The Unbounded Processing Model

As mentioned in the introduction, our lower bound holds in a stronger model
than the variant of streaming BSM we use for our positive results in Sect. 4.
The main conceptual difference is that both the honest parties are only bound
by their storage used between the rounds, but could compute its contents using
unbounded temporary memory. We describe that model, and introduce notation
in more details below. We develop in more details the relation with previously
discussed notions of BSM in Remark 21.

A (n,m)-bounded storage model protocol Π in the unbounded processing
model, is parametrized by a bound n on the storage of honest parties and a
bound m on the storage of the adversary. In the case of two parties, Alice and
Bob send (potentially large) messages to each other at every round. Every round
i consists of one party, say Alice, sending a message to the other, say Bob, as
follows: she computes

(s(i)A ,M (i)) ← send
(i)
A (s(i−1)

A )

and Bob computes
s
(i)
B ← receive

(i)
B (s(i−1)

B ,M (i)),

and vice-versa if Bob sends the message in round i. s
(i)
A and s

(i)
B denote the local

states kept by Alice and Bob respectively after round i, and M (i) denotes the
message sent at round i. By convention their starting states are s

(0)
A = s

(0)
B = ∅.

We require the states sA and sB to be of bounded size, namely |s(i)A |, |s(i)B | ≤ n
for all i. There are however no restrictions on the complexity of the functions
send

(i)
A , receive

(i)
B in rounds i where Alice sends a message, or send(i)B , receive

(i)
A in

rounds i where Bob sends a message. We’ll assume for convenience of notation
that parties speak turn by turn, namely Alice sends messages in odd rounds and
Bob sends messages in even rounds, or vice-versa.

Adversaries Adv in this model are similarly modeled as functions Adv(i) :
(s(i−1)

E ,M (i))(i) �→ s
(i)
E , where there are no restrictions on the complexity of

Adv(i), up to the state s
(i)
E having size at most m for all i.
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We will respectively denote by C and R some upper bounds on the total
communication and the number of rounds of Π, which hold over all possible
executions of Π. In the case of key agreement, this is without loss of generality
up to a constant loss in either security (having both parties abort and output
0) or correctness (having both parties abort and output a random value), using
Markov’s inequality.

We will furthermore suppose that the length of the message sent in any fixed
round i is fixed by the protocol, and in particular does not depend on its internal
randomness. We discuss how to relax this requirement in the full version [13]

We now define key agreement (with 1-bit output) in this model. A key agree-
ment protocol Π in the (n,m)-BSM is a protocol with two parties, Alice and
Bob, which results in a single-bit final state s

(R)
A , s

(R)
B ∈ {0, 1}. We require the

following properties:

– δ-correctness: We have

Pr[s(R)
A = s

(R)
B ] ≥ 1/2 + δ.

for some constant δ ≤ 1/2.
– (m, ε)-Security: No adversary Adv with memory m (with the specifications

above) can guess Alice’s output s
(R)
A at the end of the protocol:

∀Adv,Pr[s(R)
E = s

(R)
A ] ≤ 1/2 + ε,

for constant ε ≤ 1/2.
– We furthermore require δ − ε = Θ(1).

The last requirement enforces that adversaries have strictly smaller probability
of guessing the output of the honest parties than the other honest party.

Remark 21 (Comparison with previously discussed models). As mentioned
before, this defines a more expressive model than the one in Sect. 4, as honest
users for the definition above are stronger than in Sect. 4. The main differences
are (1) there are no restrictions on the computational power of the honest users
to compute their states kept between the rounds of the protocol, who can in
particular use arbitrary large temporary memory, (2) they are neither bound to
send uniformly random “long” messages, nor restricted to have local access to
it. In the terminology we used in the introduction, the lower bound holds for
honest users without restrictions (b), (c), but with the same capability (d) as
Eve. All these capabilities make the resulting lower bound stronger.

However, we only consider strong adversaries with unlimited short-term
memory (restriction (d) in the introduction). This does make our lower bound
weaker than ideal, and leaves open the possibility of a tighter lower bound for
more restricted classes of “streaming” adversaries. Looking ahead, in Sect. 7.3
and 7.4, we adapt this model and the subsequent lower bound to restrict adver-
saries to be streaming, albeit at the cost of slightly worse quantitative bounds.

To sum up, in this new model, the honest users have the same capabilities
as the adversary, up to a smaller storage between rounds.
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In terms of key agreement, we relax correctness and security to only be
constants, as long as honest users have some non-trivial advantage in agreeing
on the output bit compared to an adversary; this again makes our lower bound
stronger.

7.2 Lower Bound in the Unbounded Processing Model

Theorem 22. Let Π be a key agreement protocol in the unbounded processing
model (Sect. 7.1), with honest storage n, satisfying δ-correctness and (m, ε) secu-
rity, where δ − ε = Ω(1). Suppose furthermore that for any execution of Π, the
total communication between Alice and Bob is at most , and consists of at most
R rounds. Then ,≥ Ω

(

m3/2

n

)

, and R ≥ Ω
(√

m
n

)

.

Remark 23. (Lower Bound for OT). Because any OT protocol directly induces
a key agreement protocol with identical round complexity and communication,
the theorem directly extends to an identical lower bound for OT.

We refer to the full version [13] for a proof.

7.3 Model for a Lower Bound Against Streaming Adversaries

In the unbounded processing model for our lower bounds of Sects. 7.1 and 7.2,
the only restriction, both for the honest parties and the adversary, is that their
maintained state between rounds of communications has bounded size. In partic-
ular, they all can process messages from the protocol using potentially unbounded
temporary memory, so long as they compress it to some limited amount of stor-
age afterwards.

One natural setting left open, however, is the case where the adversary has
bounded storage throughout the entire attack and only streaming access to mes-
sages sent. This makes the adversary weaker than in the model of Sect. 7.1, and
it is not clear whether the subsequent lower bound extends. In this section, along
with Sect. 7.3, we extend the lower bound of Sects. 7.1 and 7.2 to such adver-
saries, albeit at the cost of slightly worse parameters. Another difference is that
while Sects. 7.1 and 7.2 also rule out protocols with unbounded processing honest
parties, the model of this section and the subsequent lower bound in Sect. 7.3
only rule out streaming honest parties.

We first describe our model, that we call the streaming model with CRS.
Honest parties send and receive messages in a streaming manner, using some
bounded memory n, without any other restriction on the messages sent nor
on the receiving algorithm. We will also consider adversaries which are similarly
treating messages sent between the parties in a streaming manner using bounded
memory m > n.

For comparison with Sect. 4, honest users are still more powerful, as having
general streaming access to messages (as opposed to local access), and are not
required to send uniformly random messages. In other words, honest parties
neither have restriction (b) nor (c), but are still required now to be treating
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messages in a streaming manner. The adversary, however, is weakened to only
have streaming access to the messages of the protocol, similar to honest users.
Doing so makes the resulting lower bound stronger.

Compared with our previous lower bound (Sects. 7.1 and 7.2), both the honest
parties and the adversary are weaker, as they are now both streaming, as opposed
to having unbounded preprocessing. As a result, the resulting lower bounds are
technically incomparable. Still, we believe that restricting ourselves to protocols
where honest parties use bounded memory during the whole execution of the
protocol is an extremely natural setting for protocols in the bounded storage
model.

Optionally, we will consider a streaming model in the common reference
string model, where a common reference string is available prior to protocol
execution. The CRS is used to (independently) derive starting states for the
parties of the protocol. We consider these processes (namely, the CRS generation
and the user state generation) to be performed by a trusted party, which can
potentially run in memory larger than n. Honest parties do not require knowledge
of the CRS to execute the remainder protocol, but adversaries do have access
to the CRS to mount attacks. For simplicity, we will only consider CRS that
directly fit in the adversary’s memory.

We define key agreement (with one-bit output) in a very similar way as in
Sect. 7.1: we refer to that section for our notion of δ-correctness and (m, ε)-
security. We further consider security against non-uniform attacks where adver-
saries obtain some non-uniform advice that can be generated using unbounded
memory.

7.4 Lower Bound Against Streaming Adversaries

Theorem 24. Let Π be a key agreement protocol in the streaming model
(Sect. 7.3) with honest storage n, satisfying δ-correctness and (m, ε) security
against non-uniform attacks, where δ − ε = Ω(1). Suppose furthermore that
for any execution of Π, the total communication between Alice and Bob is at
most C and consists of at most R rounds. Then C ≥ Ω

(

m · (

m
n2

)1/3
)

, and

R ≥ Ω
(

(

m
n2

)1/3
)

.

Remark 25 (Lower Bound for OT). Because any OT protocol directly induces
a key agreement protocol with identical round complexity and communication,
the theorem directly extends to an identical lower bound for OT.
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Abstract. QROM (quantum random oracle model), introduced by
Boneh et al. (Asiacrypt 2011), captures all generic algorithms. However,
it fails to describe non-uniform quantum algorithms with preprocessing
power, which receives a piece of bounded classical or quantum advice.

As non-uniform algorithms are largely believed to be the right model
for attackers, starting from the work by Nayebi, Aaronson, Belovs, and
Trevisan (QIC 2015), a line of works investigates non-uniform security
in the random oracle model. Chung, Guo, Liu, and Qian (FOCS 2020)
provide a framework and establish non-uniform security for many cryp-
tographic applications. Although they achieve nearly optimal bounds for
many applications with classical advice, their bounds for quantum advice
are far from tight.

In this work, we continue the study on quantum advice in the QROM.
We provide a new idea that generalizes the previous multi-instance
framework, which we believe is more quantum-friendly and should be
the quantum analog of multi-instance games. To this end, we match the
bounds with quantum advice to those with classical advice by Chung
et al., showing quantum advice is almost as good/bad as classical advice
for many natural security games in the QROM.

Finally, we show that for some contrived games in the QROM, quan-
tum advice can be exponentially better than classical advice for some
parameter regimes. To our best knowledge, it provides an evidence of a
general separation between quantum and classical advice relative to an
unstructured oracle.

1 Introduction

Many practical cryptographic constructions are analyzed in idealized models, for
example, the random oracle model which treats an underlying hash function as
a uniformly random oracle (ROM) [BR93]. On a high level, the random oracle
model captures all algorithms that use the underlying hash function in a generic
(black-box) way; often, the best attacks are generic. Whereas the random oracle
methodology guides the actual security of practical constructions, it fails to
describe non-uniform security: that is, an algorithm consists of two parts, the
offline and the online part; the offline part can take forever, and at the end of
the day, it produces a piece of bounded advice for its online part; the online part
given the advice, tries to attack cryptographic constructions efficiently.
c© International Association for Cryptologic Research 2023
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Non-uniform algorithms are largely believed to be the right model for attack-
ers and usually show advantages over uniform algorithms [Unr07,CDGS18,
CDG18]. The famous non-uniform example is Hellman’s algorithm [Hel80] for
inverting permutations or functions. When a permutation of range and domain
size N is given, Hellman’s algorithm can invert any image (with certainty) with
roughly advice size

√
N and running time

√
N . In contrast, uniform algorithms

require running time N to achieve constant success probability. Another more
straightforward example is collision resistance. When non-uniform algorithms
are presented, no single fixed hash function is collision-resistant as an algorithm
can hardcode a pair of collisions in its advice.

Non-uniform security in idealized models has been studied extensively in
the literature. Let us take the two most simple yet fundamental security games
as examples: one search game and one decision game. The first one is one-way
function inversion (or OWFs) as mentioned above. The goal is to invert a random
image of the random oracle. The study was initialized by Yao [Yao90] and later
improved by a line of works [DTT10,Unr07,DGK17,CDGS18]. They show that
any T -query algorithm with arbitrary S-bit advice, can win this game with
probability at most Õ(ST/N), assuming the random oracle has equal domain
and range size. The other example is pseudorandom generators (or PRG). The
task is to distinguish between a random image H(x) (x is uniformly at random
and H is the hash function) or a random element y in its range. Since it is a
decision game, some techniques for OWFs may not apply to PRGs, which we
will see later. Its non-uniform security is O(1/2 + T/N +

√
ST/N) by Coretti

et al. [CDGS18], and later improved by Garvin et al. [GGKL21].
The quantum setting is very similar to the classical one, except an algorithm

can query the random oracle in superposition. Boneh et al. [BDF+11] justify the
ability to make superposition queries since a quantum computer can always learn
the description of a hash function and compute it coherently. Besides, advice can
be either a sequence of bits or qubits. We should carefully distinguish between
the two different models. Indeed, we believe non-uniform quantum algorithms
with quantum advice are important to understand and should be considered the
“right” attacker model when full-scale quantum computers are widely viable and
quantum memory is affordable.

Nayebi, Aaronson, Belovs, and Trevisan [NABT14] initiated the study of
quantum non-uniform security with classical advice of OWFs and PRGs. Hhan,
Xagawa and Yamakawa [HXY19], Chung, Liao and Qian [CLQ19] extended the
study to quantum advice. Most recently, Chung, Guo, Liu and Qian [CGLQ20]
improved the bounds for both examples. For OWFs, their bounds are almost
optimal in terms of query complexity for both classical and quantum advice.
They show that to invert a random image with at least constant probability,
advice size S and the number of queries T should satisfy ST + T 2 ≥ Ω̃(N).
However, a gap between classical and quantum advice appears when we choose
security parameters for practical hash functions against non-uniform attacks.
In practice, we ensure that an adversary with bounded resources (for example,
S = T = 2128) only has probability smaller than 2−128. The bounds in [CGLQ20]
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suggest that for OWF, the security parameter needs to be n = 384 (and N =
2384) for classical advice and n = 640 for quantum advice, leaving a big gap
between two types of advice. Even worse, when it comes to PRGs, the security
parameters are n = 640 for classical advice v.s. n = 3200 for quantum advice;
not to mention a large gap between their query complexity, unlike OWFs.

As understanding quantum advice is beneficial to both practical cryptog-
raphy efficiency and may inspire general computation theory (such as, QMA
v.s. QCMA [AK07,Aar21] and BQP/poly v.s. BQP/qpoly [Aar05]), we raise the
following natural question:

Can quantum advice outperform classical advice in the QROM?

In this work, we provide a new technique for analyzing quantum advice in the
QROM and show that for many games, the non-uniform security with quantum
advice matches the best-known security with classical advice, including OWFs
and PRGs. It gives strong evidence that for many cryptographic games in the
QROM, quantum advice provides no or little advantage over classical one.

So far, we have seen no advantage of quantum advice in the QROM for
common cryptographic games. We then ask the second question:

Is there any (contrived) game in the QROM, in which quantum advice is
“exponentially better” than classical advice?

We give an affirmative answer to this question, for some parameters of S, T . We
show that when algorithms can not make online queries (i.e., T = 0), there is an
exponential separation between quantum and classical advice for certain games.
This result is inspired by the recent work by Yamakawa and Zhandry [YZ22] on
verifiable quantum advantages in the QROM. We elaborate on both results now.

1.1 Our Results

Our first result is to give a quantum analog of “multi-instance games” via “alter-
nating measurement games” (introduced in Sect. 5) and develop a new technique
for analyzing non-uniform bounds with quantum advice. Our techniques do not
need to rewind a non-uniform quantum algorithm and completely avoid the
rewinding issues/difficulties in the prior work [CGLQ20].

To show the power of our technique, we incorporate it into three important
applications: OWFs, PRGs, and salted cryptography. Note that our result below
is a non-exhaustive list of applications. With little effort, we can show improved
non-uniform security with quantum advice of Merkle-Damgård [GLLZ21], Yao’s
box [CGLQ20] and other games.

One-Way Functions. In this application, a random oracle is interpreted as a
one-way function. A (non-uniform) algorithm needs to win the OWF security
game with the random oracle as a OWF. Formally, let H : [N ] → [M ] be a
random oracle.
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1. A challenger samples a uniformly random input x ∈ [N ] and sends y = H(x)
to the algorithm.

2. The algorithm returns x′ and it wins if and only if H(x′) = y.

When both advice and queries are classical, the best lower bound is Õ(ST/α)
by [CDGS18], where α = min{N,M} and N , M are the domain and range size
of the random oracle. In other words, no algorithm with S bits of advice and T
classical queries can win with probability more than Õ(ST/α). There is a gap
between this lower bound and the upper bound ≈ T/α + (S2T/α2)1/3 provided
by Hellman’s algorithm1. Later, Corrigan-Gibbs and Kogan [CGK19] study the
possible improvement on the lower bound and conclude that any improvement
will lead to improved results in circuit lower bounds. Thus, Õ(ST/α) is the best
one can hope for in light of the barrier.

Chung et al. [CGLQ20] show that if S bits of classical advice and T quantum
queries are given, the maximum winning probability is bounded by Õ

(
ST+T 2

α

)
.

They further argue that this bound is almost optimal. Intuitively, one can think
of this as T 2/α comes from a brute-force Grover’s algorithm [Gro96], without
using any advice, and ST/α comes from classical advice and hits the classical
barrier by [CGK19].

For quantum advice and quantum queries, they show the maximum success

probability is Õ
(

ST+T 2

α

)1/3

. As mentioned early, although the bound is optimal
regarding query complexity, the exponent seems non-tight. Thus, they ask the
following question:

... Can this loss (of the exponent) be avoided, or is there any speed up in
terms of S and T for sub-constant success probability?.

Our first result gives a positive answer to the above question and proves that
the loss on exponent can be avoided.

Theorem 1. Let H be a random oracle [N ] → [M ] and α = min{N,M}. One-
way function games in the QROM have security O

(
ST+T 2

α

)
against non-uniform

quantum algorithms with S-qubits of advice and T quantum queries.

The theorem guides security parameter choices of hash functions to be secure
against non-uniform attacks. The security parameter n should be 384 to have
security 2−128 against non-uniform quantum attacks with S = T = 2128. Another
direct implication of our theorem is that, when quantum advice S = O(

√
α),

quantum advice is useless for speeding up function inversion. To put it in another
way, Grover’s algorithm can not be sped up and only has probability T 2/α to
succeed even with quantum advice of size O(

√
α), relative to a random oracle.

We list a comparison of best-known bounds and our result below (Table 1).

1 Hellman’s algorithm on functions does not behave as well as on permutations. Upper
and lower bounds meet at ST/α only when we consider permutations.
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Table 1. Non-uniform security for OWFs with T queries and S bits (qubits) of advice,
where α = min{N, M} and N , M are the domain and range size of the random oracle.
Our bound is a “big-O” instead of “big-Õ” as we also remove the dependence on logN
and logM .

Classical Advice in [CGLQ20] Quantum Advice in [CGLQ20] Quantum Advice in This Work

Õ
(

ST+T2

α

)
Õ

(
ST+T2

α

)1/3

O
(

ST+T2

α

)

Pseudorandom Generators. Another important application we will focus on is
pseudorandom generators. One fundamental difference from one-way functions
is its being a decision game. We will later see that publicly verifiable games such
as one-way functions are easy to deal with in the previous work [CGLQ20]. For
games that can not be publicly verified, such as decision games, [CGLQ20] often
gives worse bounds.

In this game, an algorithm tries to distinguish between an image of a random
input, and a uniformly random element in the range. Let H : [N ] → [M ] be a
random oracle.

– A challenger samples a uniformly random bit b. If b = 0, it samples a uniformly
random x ∈ [N ] and outputs y = H(x); otherwise, it samples a uniform
y ∈ [M ] and outputs y.

– The algorithm is given y and returns b′. It wins if and only if b′ = b.

Our new technique demonstrates the following theorem about PRGs.

Theorem 2. Let H be a random oracle [N ] → [M ]. PRG games in the QROM

have security 1/2 +O
(

T 2

N

)1/2

+O
(

ST
N

)1/3 against non-uniform quantum algo-
rithms with S-qubits of advice and T quantum queries.

“Salting Defeats Preprocessing”. Finally, instead of proving more concrete non-
uniform bounds like Merkle-Damgård [GLLZ21], we demonstrate that the
generic mechanism “salting” helps prevent quantum preprocessing attacks even
with quantum advice. Maybe the most illustrating example is collision-resistant
hash functions. As mentioned before, no single fixed hash function can be col-
lision resistant against non-uniform attacks. A typical solution is to add “salt”
to the hash function. A salt is a piece of random data that will be fed into a
hash function as an additional input. To attack a salted collision resistant hash
function, an adversary gets a salt s and is required to come out with two input
m �= m′ such that the hash evaluation on (s,m) equals that of (s,m′). Intu-
itively, since salt s is chosen uniformly at random from a large space, advice is
not long enough to include collisions for every possible salt. Thus, salting is a
mechanism that compiles a game into another game, by adding a random extra
input s and restricting the execution of the game always under oracle access to
H(s, ·) (Table 2).
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Table 2. Non-uniform security of PRGs with T queries and S bits (qubits) of advice.
Our bound also improves the previous result on classical advice by reducing the expo-
nent on T 2/N from 1/3 to 1/2; we note that the improvement on the exponent only
follows from a simple observation and can also be applied to the previous work as well.

Classical Advice in [CGLQ20] Quantum Advice in [CGLQ20] Quantum Advice in This Work
1
2
+ Õ

(
ST+T2

N

)1/3
1
2
+ Õ

(
S5T+S4T2

N

)1/19
1
2
+ O

(
T2

N

)1/2

+ O
(

ST
N

)1/3

Chung et al. [CLMP13], and Coretti et al. [CDGS18] formally proved the non-
uniform security of salted collision-resistant hash in the classical ROM. Chung
et al. [CGLQ20] extended the statement in the quantum setting. For quantum
advice, their result roughly says that if an underlying game G is publicly verifi-
able or a decision game, then the salted version of G is secure against non-uniform
attacks.

Our third results improve the prior ones in two different aspects. First, our
theorem works not only for publicly verifiable or decision games, but for any
types of games (see our definition of games Definition 2). Second, our theorem
is tighter and provides a more pictorial statement for “salting defeats prepro-
cessing”, elaborated below. Our bounds match those with classical advice in
[CGLQ20].

Theorem 3 (Informal, Theorem 10). For any game G in the QROM, let
ν(T ) be its uniform security in the QROM. Let GS be the salted game with salt
space [K]. Then GS has security δ(S, T ) against non-uniform quantum adver-
saries with T queries and S-qubits of advice,

1. δ(S, T ) ≤ 4ν(T ) + O(ST/K);
2. If GS is a decision game, then δ(S, T ) ≤ ν(T ) + O(ST/K)1/3.

That is to say, the non-uniform security of GS and uniform security of G
only differs by a term of O(ST/K) or O(ST/K)1/3 depending on the type of
the game. When the game G is a search game, GS has non-uniform security
4ν(T ) + O(ST/K). We can choose S to ensure ST/K ≤ ν(T ) so that the non-
uniform security of GS is in the same order of G’s security ν(T ). For decision
games, we choose S such that (ST/K)1/3 is extremely small.

In [CGLQ20], they show that for publicly verifiable games, δ := δ(S, T ) sat-
isfies δ ≤ Õ

(
ν(T/δ) + ST

Kδ

)
whereas ours works for any games and δ(S, T ) ≤

4ν(T ) + O(ST/K). For decision games, ours also significantly improves prior
results (see Table 3 and Theorem 7.6 in [CGLQ20] for a comparison). The depen-
dence in their theorems on uniform security ν is much more complicated and
yields loose bounds. Most notably, for decision games, when the salt size K → ∞,
the bound in [CGLQ20] does not rule out the speed up from having S-qubits of
advice (corresponding to the term ν′(S2T/ε8)); whereas our bound gives ν(T )
— exactly the security in the uniform case, completely ruling out the influence
of quantum advice.
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Table 3. Salting “defeats” preprocessing.

Quantum Advice in [CGLQ20] Quantum Advice in This Work
Any Games δ ≤ Õ (ν(T/δ) + ST/(Kδ)) δ ≤ 4ν(T ) + O(ST/K)

Decision Games δ ≤ 1/2 + ε δ ≤ ν(T ) + O(ST/K)1/3

where ε ≤ Õ
(
ν′(S2T/ε8) +

√
S5T/(Kε17)

)

and ν′(T ) := ν(T ) − 1/2

Separation of Quantum and Classical Advice in the QROM. So far, we have seen
many examples that quantum advice is as good/bad as classical advice. Below,
we show that it is not always the case in the QROM: there exists a game in the
QROM such that quantum advice is exponentially better than classical advice.

Theorem 4 (Separation of Quantum and Classical Advice in the
QROM). Let H be a random oracle [2poly(n)] → {0, 1}. There exists a game G
in the QROM such that,

– G has security 2−Ω(n) against non-uniform adversaries with S-bits of clas-
sical advice and making no queries, for S = 2nc

/n and some constant
0 < c < 1;

– There is a non-uniform adversary with S-qubits of quantum advice and mak-
ing no queries, that achieves winning probability 1 − negl(n), for S = Õ(n).

Although the bound only works in the parameter regime T = 0, to our best
knowledge, it is the first example of an exponential separation between quantum
and classical advice in the QROM (or for inputs without structures).

Remark 1. For the parameter regime T = 0, the above separation can be alterna-
tively viewed as an exponential separation of quantum/classical one-way com-
munication complexity for some relation R ⊆ X × Y × Z. In the context of
one-way communication complexity, there are two players, Alice and Bob. Alice
gets an input x ∈ X and Bob gets an input y ∈ Y; Alice sends one (classical or
quantum) message to Bob and Bob tries to output z ∈ Z such that (x, y, z) ∈ R.
Our result in Theorem 4 is a separation of quantum/classical one-way commu-
nication complexity when X = {0, 1}2poly(n)

, Y = {0, 1}n, Z = {0, 1}n×poly(n);
when the message is allow to be quantum, Õ(n) qubits are sufficient; on the
other hand, the classical communication complexity is Ω(2nc

/n).
Exponential separation of quantum/classical one-way communication com-

plexity is already known, starting from the work by [BYJK04] (later by [Gav08])
based on the so-called hidden matching problem. We believe the hidden match-
ing problem can be also turned into a separation of quantum/classical advice in
the parameter regime T = 0, in the QROM. However, [BYJK04] only proved
average-case hardness against deterministic classical Bob. Therefore, we pick the
recent result by Zhandry and Yamakawa for simplicity of presentation.
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1.2 Organization

The rest of the paper is organized as follows. Section 2 and Sect. 3 recall the
notations and backgrounds on quantum computing, random oracles models, non-
uniform security and bit-fixing models. Section 4 introduces decomposition of
advice with respect to a game, which helps the proof of our main theorem.
Section 5 proves the main theorem whereas Sect. 6 applies the main theorem to
various applications. Finally in Sect. 7, we give the separation of quantum and
classical advice.

2 Preliminaries

We assume readers are familiar with the basics of quantum information and
computation. All backgrounds on quantum information can be found in [NC10].

2.1 Quantum Random Oracle Model

In the quantum random oracle model, a hash function is modeled as a random
classical function H. The function H is sampled at the beginning of any secu-
rity game and then gets fixed. Oracle access to H is defined by a unitary UH :
|x, y〉 → |x, y + H(x)〉. A quantum oracle algorithm with oracle access to H is
then denoted by a sequence of unitary U1, UH , U2, UH , · · · , UT , UH , UT+1

followed by a computational basis measurement, where Ui is a local unitary
operating on the algorithm’s internal register. The number of queries, in this
case, is T—the number of UH calls.

2.2 Other Useful Lemmas

We use the lemmas in this section to prove bounds in the alternating measure-
ment games (Sect. 5). Readers can safely skip and return to this section for
(Sect. 5).

We omit the proof for the following lemmas and refer readers to the appendix
for more the proofs.

Lemma 1. Let N be a positive integer and p1, · · · , pN ∈ R
≥0. Let c1, · · · , cN

be a distribution over [N ]. Assume
∑

i∈[N ] cipi > 0. Define Sk for every integer
k ≥ 1:

Sk =

∑
i∈[N ] cip

k
i

∑
i∈[N ] cip

k−1
i

.

Then {Sk}k≥1 is monotonically non-decreasing.

Lemma 2 (Jensen’s inequality). Let N, g be two positive integers and
p1, · · · , pN ∈ R

≥0. Let c1, · · · , cN be a distribution over [N ]. Assume∑
i∈[N ] cipi > 0. If the following holds

∑
i∈[N ] cip

g
i ≤ δg, then

∑
i∈[N ] cipi ≤ δ.
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3 (S, T ) Quantum Algorithms and Games in the QROM

In this work, we consider non-uniform algorithms against games in the QROM.
We start by defining (S, T ) non-uniform quantum algorithms with either S clas-
sical bits of advice or S qubits of advice. The definitions below more or less
follow definitions in [CGLQ20] but are adapted for our setting.

Definition 1 ((S, T ) Non-uniform Quantum Algorithms in the
QROM). A (S, T ) non-uniform quantum algorithm with classical advice in
the QROM is modeled by a collection {sH}H:[N ]→[M ] and {Uinp}inp: for every
function H, sH is a piece of S-bit advice and UH

inp is a unitary that calls the
oracle H at most T times.

A (S, T ) non-uniform quantum algorithm with quantum advice in the
QROM is modeled by a collection {|σH〉}H and {Uinp}inp: for every function
H, |σH〉 is a piece of S-qubit advice and UH

inp is a unitary that calls the oracle H
at most T times.

Similarly, we denote a uniform quantum algorithm by a collection of uni-
taries {Uinp}inp: it is a non-uniform quantum algorithm satisfying |σH〉 = |0S〉
for all H.

When the algorithm is working with oracle access to H, its initial state is
|sH〉 |0L〉 or |σH〉 |0L〉, respectively. On input inp, it applies UH

inp on the initial
state and measures its internal register in the computational basis.

Since we are working in the idealized model, we require neither L nor the
size of the unitary Uinp to be polynomially bounded. In the rest of the work, we
will focus on non-uniform algorithms with quantum advice as our new reduction
works for both cases. Therefore, ‘non-uniform algorithms’ denotes ‘non-uniform
algorithms with quantum advice’.

Remark 2. We can assume quantum advice is a pure state. Due to convexity,
the optimal non-uniform algorithm can always have advice as a pure state. If
the advice is a mixed state and achieves a winning probability p, there always
exists a pure state that achieves a winning probability at least p.

Next, we define games in the QROM.

Definition 2 (Games in the QROM). A game G in the QROM is specified
by two classical algorithms SampH and VerifyH :

– SampH(r): it is a deterministic algorithm that takes uniformly random coins
r ∈ R as input, and outputs a challenge ch.

– VerifyH(r, ans): it is a deterministic algorithm that takes the same random
coins for generating a challenge and an alleged answer ans, and outputs b
indicating whether the game is won (b = 0 for winning).

Let TSamp be the number of queries made by Samp and TVerify be the number of
queries made by Verify.

For a fixed H and a quantum algorithm A, the game GH
A is executed as

follows:
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– A challenger C samples ch ← SampH(r) using uniformly random coins r.
– A (uniform or non-uniform) quantum algorithm A has oracle access to H,

takes ch as input and outputs ans. We call A an online adversary/algorithm.
– b ← VerifyH(r, ans) is the game’s outcome.

Remark 3. In the above definition, a quantum algorithm makes at most T oracle
queries to H. However, in some particular games, the algorithm can not get
access to H. One famous example is Yao’s box, in which an adversary is given a
challenge input x and the goal is to output H(x). The adversary can query H on
any input except x (otherwise, the game is trivial). The definition Definition 2
does not capture this case. Nonetheless, we will stick with the current definition.
For the special case when an algorithm has access to a different oracle H ′, the
technique in this work extends as well. This extension requires a similar definition
of games (Definition 3.3) in [CGLQ20].

Let us warm up by having a close look at the following examples.

Example 1. The first example is function inversion (or OWFs) GOWF. r = x ∈
[N ] is a uniformly random pre-image and ch := H(x). The goal is to find a
pre-image of ch. The verification procedure takes r = x and ans = x′, it outputs
0 (winning) if and only if x′ is a pre-image of H(x).

The other example GPRG is to distinguish images of PRG from a uniformly
random element. In this example, r consists of (b, x, y) where b is a single bit,
x is a uniformly random pre-image in [N ] and y is a uniformly random element
in [M ]. The challenge ch is H(x) if b = 0, otherwise ch = y. The goal is to
distinguish whether an image of a random input or a random element in the
range is given. The verification procedure takes r = (b, x, y) and ans = b′, it
outputs 0 if and only if b = b′.

Definition 3. We say a game G has δ(S, T ) := δ maximum winning probabil-
ity (or has security δ, for cryptographic games) against all (S, T ) non-uniform
quantum adversaries with classical or quantum advice if

max
A

Pr
H

[
GH

A = 1
] ≤ δ,

where max is taken over all (S, T ) non-uniform quantum adversaries A with
classical or quantum advice, respectively.

3.1 Quantum Bit-Fixing Model

Here we recall a different model called the quantum bit-fixing model. In the
following sections, we will relate winning probability of a game G against (S, T )
non-uniform quantum algorithms with that in the quantum bit-fixing model
(BF-QROM). Since the previous quantum non-uniform bounds require analyzing
the quantum bit-fixing model, winning probabilities in the bit-fixing model are
already known for many games, and our improved bounds only need a new
reduction. The following definitions are adapted from [GLLZ21].
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Definition 4 (Games in the P -BF-QROM). It is similar to games in the
standard QROM, except now H has a different distribution.

– Before a game starts, a quantum algorithm f (having no input) with at most
P queries to an oracle is picked and fixed by an adversary.

– Rejection Sampling Stage: A random oracle H is picked uniformly at
random, then conditioned on fH outputs 0. In other words, the distribution
of H is defined by a rejection sampling:
1. H ← {f : [N ] → [M ]}.
2. Run fH and obtain a binary outcome b together with a quantum state τ2.
3. Restart from step 1 if b �= 0.

– Online Stage: The game is then executed with oracle access to H, and an
algorithm B gets τ .

A (P, T ) algorithm in the P -BF-QROM consists of f for sampling the dis-
tribution and B for playing the game, with f making at most P queries and B
making at most T queries. We also call B an online algorithm/adversary.

We will also consider the following classical analog P -BF-ROM only when
showing a separation between classical and quantum advice in Sect. 7.

Definition 5 (Games in the P -BF-ROM). It is similar to the above Defi-
nition 4, except both f and B can only make classical queries.

Definition 6. We say a game G has ν(P, T ) := ν maximum winning probability
(or is ν-secure, for cryptographic games) in the P -BF-QROM if

max
f,B

Pr
H

[
fH = 0 ∧ GH

B = 1
] ≤ ν,

where max is taken over all (P, T ) quantum adversaries (f,B) with f making at
most P queries and B making at most T queries.

We know the following two lemmas from [CGLQ20,GLLZ21].

Lemma 3 (Function Inversion in the P -BF-QROM). The OWF game has
ν(P, T ) = (P + T 2)/min{N,M} in the P -BF-QROM.

See the proof for Lemma 5.2 in [CGLQ20] and Lemma 10 in [GLLZ21].

Lemma 4 (PRGs in the P -BF-QROM). The game PRG has ν(P, T ) =
1/2 +

√
(P + T 2)/N in the P -BF-QROM.

See the proof for Lemma 5.13 in [CGLQ20].

2 In [GLLZ21], they do not need quantum or classical memory τ shared between f
and A. However, this is essential in our proof. Nonetheless, all security proofs in the
P -BR-QROM work in the stronger setting (with τ shared between stages).
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4 Games, POVMs and Decomposition of Advice

In this section, we will formalize an quantum algorithm’s winning probability
against a game in terms of POVMs and its corresponding eigenvectors.

For any game G and algorithm A, let V H
r be a projection that operates on

the register of A. V H
r project a quantum state into a subspace spanned by basis

states |ans〉 |z〉 where VerifyH(r, ans) = 1 and z be any aux input (depending on
the size of A’s working register). As an example, for function inversion problem
and r = x, V H

r is defined as
∑

x′:H(x′)=H(x),z |x′, z〉 〈x′, z|.
Then for any non-uniform quantum algorithm A = ({|σH〉}H , {Uinp}inp), by

definition, its probability εA for winning the game G with oracle access to H
can be then written as:

εA,H =
1

|R|
∑

r∈R

∥∥
∥V H

r UH
SampH(r) |σH〉 |0L〉

∥∥
∥
2

.

We define the following projections PH
r :=

(
UH
SampH(r)

)†
V H

r UH
SampH(r)

. Let

PH be a POVM: PH := 1
|R|

∑
r∈R PH

r . We can equivalently write εA,H in terms
of this POVM: εA,H = 〈σH , 0L|PH |σH , 0L〉. This is due to:

εA,H =
1

|R|
∑

r∈R

∥
∥∥V H

r UH
SampH(r) |σH〉 |0L〉

∥
∥∥
2

=
1

|R|
∑

r∈R
〈σH | 〈0L|PH

r |σH〉 |0L〉

=〈σH , 0L|PH |σH , 0L〉.

Since PH is a Hermitian matrix and 0 � PH � I, let {|φH,j〉}j be the set of
eigenbasis for PH with eigenvalues {pH,j}j between 0 and 1. We can decompose
|σH〉 |0L〉 under the eigenbasis:

|σH〉 |0L〉 =
∑

i

αH,i |φH,i〉 .

Therefore, εA,H can be written in terms of αH,i and pH,i: εA,H =
∑

i |αH,i|2 ·pH,i.
This is because:

εA,H = 〈σH , 0L|PH |σH , 0L〉 =
∑

i

|αH,i|2 · pH,i.

With all the above discussions, we conclude our lemma below.

Lemma 5. Let G be a game and A = ({|σH〉}H , {Uinp}inp) be any non-uniform
quantum algorithm. Let PH be the corresponding POVMs for function H. Let
{|φH,j〉}j be the set of eigenbasis for PH with eigenvalues {pH,j}j.
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For each H, write |σH〉 |0L〉 as
∑

i αH,i |φH,i〉. Let εA be the winning proba-
bility of A, when H is drawn uniformly at random. Then

εA = EH

[
∑

i

|αH,i|2 · pH,i

]

=
1

NM

∑

H

∑

i

|αH,i|2 · pH,i.

5 Non-uniform Lower Bounds via Alternating
Measurements

In this section, we prove the following theorem:

Theorem 5. Let G be any game with TSamp, TVerify being the number of queries
made by Samp and Verify. For any S, T , let P = S(T + TVerify + TSamp).

If G has security ν(P, T ) in the P -BF-QROM, then it has security (maximum
winning probability) δ(S, T ) ≤ 2 · ν(P, T ) against (S, T ) non-uniform quantum
algorithms with quantum advice.

It also has security

δ(S, T ) ≤ min
γ>0

{ν(P/γ, T ) + γ}

against (S, T ) non-uniform quantum algorithms with quantum advice.

As a special case of the second result, when G is a decision game and is ν(P, T ) =
1
2 + ν′(P, T ) secure in the P -BF-QROM, then it has security

1/2 + min
γ>0

{ν′(P/γ, T ) + γ}

against (S, T ) non-uniform quantum algorithms with quantum advice.

The section is organized as follows: in the first subsection, we introduce a
new multi-instance game, via the so-called alternating measurement games, the
idea of alternating measurement was used in witness preserving amplification of
QMA ([MW05]); in the next subsection, we elaborate on behaviors of any non-
uniform quantum algorithm in the alternating measurement game; then we show
that upper bounds (of success probabilities) in the bit-fixing model give rise to
the probability of uniform quantum algorithms in the alternating measurement
game; finally in the last subsection, we give the proof for our main theorem.

5.1 Multi-instance via Alternating Measurements

For a game G and a quantum non-uniform algorithm A = ({|σH〉}H , {Uinp}inp),
we start by recalling the following notations as in Sect. 4: PH

r , PH , {|φH,j〉}j and
{pH,i}j . Let A be the register that A operates on. The following controlled
projection (as defined in [Zha20]) will be used heavily in this section.
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Definition 7 (Controlled Projection). The controlled projection for a game
G and a quantum algorithm A is the following: for every H, the controlled pro-
jection is the measurement CPH = (CPH

0 ,CPH
1 ):

CPH
0 =

∑

r∈R
|r〉〈r|R ⊗ PH

r and CPH
1 =

∑

r∈R
|r〉 〈r|R ⊗ (IA − PH

r ).

Here CPH operates on registers RA where R are registers storing random coins
and A are A’s working registers.

Similarly, we define the following projection IsUniform = (|1R〉 〈1R| ⊗
IA, (IR − |1R〉 〈1R|) ⊗ IA) over the same register as CPH where |1R〉 is a uni-
form superposition over R: i.e., |1R〉 = 1

|R|
∑

r |r〉. We denote |1R〉 〈1R|⊗ IA by
IsUniform0 and (I − |1R〉 〈1R| ⊗ IA) by IsUniform1.

Now, We are ready to describe the new game via alternating measurements:

Definition 8 (Multi-instances via Alternating Measurments). Fix a
game G and an integer k ≥ 1. A uniformly random H is sampled at the begin-
ning. For a (potentially non-uniform) quantum algorithm A, the multi-instance
game G⊗k is defined and executed as follows:

– A challenger C initializes a new register |1R〉R and controls A’s register A.
– It repeats the following procedures k times, for i = 1, · · · , k:

• If the current stage i is odd, C applies CPH on RA and obtains a mea-
surement outcome bi.

• If the current stage i is even, C applies IsUniform on RA and obtains a
measurement outcome bi.

– The game is won if and only if b1 = b2 = · · · = bk = 0.

With this alternating measurement game, we describe the following theorem
that relates the winning probability of a (non-uniform) A in the game G and
that of A in the corresponding alternating measurement game G⊗k.

Theorem 6. Let G be a game and A = ({|σH〉}H , {Uinp}inp) be any non-uniform
quantum algorithm for G. Let PH be the corresponding POVMs for function H.
Let {|φH,j〉}j be the set of eigenbasis for PH with eigenvalues {pH,j}j.

For each H, write |σH〉 |0L〉 as
∑

i αH,i |φH,i〉. Let ε⊗k
A be the winning prob-

ability of A in the alternating measurement game G⊗k, when H is drawn uni-
formly at random. Then

ε⊗k
A =

1
NM

∑

H

∑

i

|αH,i|2 · pk
H,i.

We leave the explanation of the theorem to the appendix (the proof of
Lemma 11) since it is similar to the analysis of QMA amplification [MW05]
and quantum traitor tracing [Zha20]. We do not considered the proof as our
main contribution. Nonetheless, we believe that the proof inspires our analysis
for ε⊗k

A , which together with the new multi-instance reduction is considered the
main contribution of this work.
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By Lemma 2, we can easily conclude that any upper bound on A’s success
probability in G⊗k yields an upper bound on its winning probability in G. The
proof of the following lemma easily follows from Lemma 2.

Lemma 6. Fix a game G and an integer k ≥ 1. Let εA be the success probability
of (uniform or non-uniform) A in G and ε⊗k

A be that of A in the alternating

measurement game G⊗k. Then εA ≤ (
ε⊗k
A

)1/k
.

Thereby, to bound εA, it is enough to bound ε⊗k
A for some appropriate positive

integer k.

5.2 Advantages of Uniform Algorithms in Alternating Measurement
Games

In this section, we relate success probabilities of uniform quantum algorithms
in alternating measurements with probabilities in the corresponding bit-fixing
model. We will show the following theorem:

Theorem 7. Let G be a game in the QROM and A be any uniform quantum
algorithm for G making T oracle queries. Let ν(P, T ) be the security of G in the
P -BF-QROM. For every k > 0, every P ≥ k (T + TSamp + TVerify),

ε⊗k
A ≤ ν(P, T )k.

Recall that TSamp, TVerify are the numbers of queries made by Samp and Verify,
respectively.

To bound ε⊗k
A for any uniform quantum algorithm, it is sufficient to bound

the following conditional probability: ε
(t)
A for t = 1, · · · , k.

Definition 9 (Conditional Probability for the t-th Outcome). ε
(t)
A is the

conditional probability Pr[bt = 0 |b<t = 0], where b<t and bt are the first t
outcomes produced by the game G⊗k with A, when H is picked uniformly at
random.

Next, we characterize the conditional probability in terms of eigenvalues
{pH,j}j and amplitudes under the corresponding eigenbasis {|φH,j〉}j .

Lemma 7. Let G be a game and A = ({Uinp}inp) be any uniform quantum algo-
rithm for G. Let PH be the corresponding POVMs for function H. Let {|φH,j〉}j

be the set of eigenbasis for PH with eigenvalues {pH,j}j.
For each H, write the starting state |0S〉 |0L〉 as

∑
i αH,i |φH,i〉. Let ε

(t)
A for

1 ≤ t ≤ k be the conditional probability defined in Definition 9. Then

ε
(t)
A =

∑
H,i |αH,i|2 · pt

H,i∑
H,i |αH,i|2 · pt−1

H,i

.

Proof. By definition, ε
(t)
A = Pr[bt = 0 |b<t = 0] = Pr[bt = 0]/Pr[bt−1 = 0].

Since Pr[bk = 0] =
∑

H,i |αH,i|2 · pk
H,i, we conclude the lemma. ��
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In order to bound ε⊗k
A , it is enough to bound ε

(t)
A for every 1 ≤ t ≤ k and

ε⊗k
A =

∏
1≤t≤k ε

(t)
A . Indeed, with Lemma 1, we have the following straightforward

corollary.

Corollary 1. For every game G and uniform quantum algorithm A, {ε(t)}t≥1

is monotonically non-decreasing. Therefore, ε⊗k
A ≤

(
ε
(k∗)
A

)k

for any k∗ ≥ k. In

particular, ε⊗k
A ≤ (

εk
A

)k.

Proof. The proof is direct by setting {ci}, {pi} in the statement of Lemma 1 as{|αH,i|2 · pt
H,i/N

M
}

and {pH,i}. ��

Finally, we show a connection between ε
(k)
A and ν(P, T ) of the game G in the

P -BF-QROM for P ≥ k (T + TSamp + TVerify).

Lemma 8. For every game G and uniform quantum T -query algorithm A,
every odd k > 0, every P ≥ (k − 1) (T + TSamp + TVerify),

εk
A ≤ ν(P, T ).

As a direct corollary by the monotonicity of ε
(t)
A , for even k > 0, every

P ≥ k(T + TSamp + TVerify),

εk
A ≤ ε

(k+1)
A ≤ ν(P, T ).

Together with Corollary 1, we conclude the main theorem (Theorem 7) in
this subsection.

Proof for Lemma 8. We only need to prove the lemma for odd k (or even (k−1)).
Recall in Definition 4, we need to specify a P -query quantum algorithm f

and a T -query algorithm B to describe an algorithm in the P -BF-QROM. The
game is executed if and only if fH outputs 0. We define f,B as follows (Fig. 1).

Fig. 1. Turn A into an algorithm in the P -BF-QROM.
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First, we show that (f,B) is a (P, T ) algorithm in the P -BR-QROM. It is easy
to see that B makes at most T queries as A makes at most that many queries.
The number of queries made by f is equal to that made in the alternating
measurement game:

– In odd rounds, one needs to apply CPH , which takes 2(T + TSamp) + TVerify

queries; here 2(T + TSamp) is for both UH
SampH(r)

and its inverse
(
UH
SampH(r)

)†

and TVerify is for applying the projection V H
r (recall the definitions in Sect. 4).

– In even rounds, no queries are needed.

Thus, when (k − 1) is even, the total number of queries is at most (k − 1)(T +
TSamp + TVerify).

Next we prove that (f,B) succeeds with probability ε
(k)
A . Thus by the defini-

tion of ν(P, T ), ε
(k)
A is at most ν(P, T ), concluding the lemma.

For a fixed hash function H and even (k − 1) (or equivalently, odd k), con-
ditioned on fH outputting 0, the leftover state τRA is (by Lemma 11):

τRA ∝
∑

i

αip
(k−1)/2
i |v0

i 〉RA = |1R〉R ⊗
∑

i

αip
(k−1)/2
i |φi〉A .

Here we ignore H for subscripts or superscripts.
Therefore, τ [A] = c

∑
i αip

(k−1)/2
i |φi〉A where c is a normalization factor

such that 1/c2 =
∑

i |αi|2pk−1
i . The winning probability of B for this fixed H is

Er

[∣∣∣V H
r UH

SampH(r)τ [A]
∣∣∣
2
]
= c2

∑

i

|αi|2p(k−1)
i 〈φi|PH |φi〉

= c2
∑

i

|αi|2pk
i ,

By taking the weighted sum of the winning probability for each H, the win-
ning probability of B is

∑
H,i |αH,i|2pk

H,i
∑

H,i |αH,i|2pk−1
H,i

= ε
(k)
A .

Finally, since G is ν(P, T ) secure in the P -BF-QROM, ε
(k)
A ≤ ν(P, T ) for every

T query quantum algorithm A and P ≥ (k − 1)(T + TSamp + TVerify). ��
Lastly, we prove Theorem 7.

Proof for Theorem 7. It follows easily by combining Corollary 1 and Lemma 8.
��

5.3 Proof of Main Theorem

In this section, we prove our main theorem, Theorem 5.
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We start by proving the first part of the theorem.

Proof for the First Part. Let G be any game. For any S, T , let k = S and
P = k(T + TSamp + TVerify) = S(T + TSamp + TVerify). G is ν(P, T ) secure in the
P -BF-QROM.

By Theorem 7, for any uniform T -query quantum algorithm and k = S,
its winning probability in the alternating measurement game G⊗k is at most
ν(P, T )k.

Therefore, for any (S, T ) non-uniform quantum algorithm A, its success prob-
ability ε⊗k

A is at most 2Sν(P, T )k = (2ν(P, T ))S . This is because for any non-
uniform algorithm of winning probability p with advice being an S-bit advice
|σH〉, we can turn it into a uniform quantum algorithm with winning probability
at least 2−Sp as follows ( [Aar05]):

As the uniform algorithm does not know |σH〉, it samples an S-qubit maximally
mixed state and runs the non-uniform algorithm on the maximally mixed
state.

Since an S-qubit maximally mixed state can be written as 1/2S |σH〉 〈σH |+(1−
1/2S)σ′, the uniform algorithm has success probability at least p/2S .

Finally, due to Lemma 6, any non-uniform algorithm A is at most 2ν(P, T )
secure in G for P = S(T + TSamp + TVerify). ��

The proof for the second part is similar but more laborious. Since we are
dealing with decision games, we need to carefully deal with the factor 2−S in the
previous proof.

Proof for the Second Part. The theorem trivially holds when γ ≥ 1. We prove it
for γ ∈ (0, 1].

Let G be a decision game. For any P, T , G is ν(P, T ) secure in the P -BF-
QROM.

Similarly by Theorem 7, for any uniform T -query quantum algorithm and k,
its security in the alternating measurement game G⊗k is at most ν(P, T )k where
P = k(T +TSamp+TVerify). Thus, for any (S, T ) non-uniform quantum algorithm
A, ε⊗k

A is at most 2Sν(P, T )k.
Since for any γ ∈ (0, 1], 2 ≤ (1 + γ)1/γ . By setting k = S/γ, we have:

ε⊗k
A ≤ 2Sν(P, T )k ≤ ((1 + γ)ν(P, T ))k ≤

(
1
2
+ ν′(P, T ) + γ

)k

.

The last inequality follows the union bound and ν(P, T ) = 1/2 + ν′(P, T ).
Since the above inequality holds for all γ ∈ (0, 1], we conclude the second

part of our theorem, following Lemma 6. ��

6 Applications

We show several applications of our main theorem (Theorem 5) in this section.
We first apply our theorem to OWF and PRG games and achieve improved
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lower bounds for both games. The former ones are publicly verifiable, and the
latter games are decision games and thus not publicly verifiable. The applica-
tions for both types of games show our main theorem is general and achieve
pretty good bounds for almost all kinds of security games in the QROM against
quantum/classical advice, as long as we can analyze their security in the P -BF-
QROM.

Finally, we show that “salting defeats preprocessing” in the QROM, which
extends the classical theorem by Coretti et al. [CDGS18] and improved the result
by Guo et al. [CGLQ20].

OWF. Recall the definition of GOWF in Example 1. It is shown that
GOWF has the following security in the in the P -BF-QROM, ν(P, T ) =
O

(
(P + T 2)/min{N,M}), where N and M are the sizes of the domain and

range of the random oracle, by Lemma 1.5 in [CGLQ20].
By our main theorem Theorem 5, we have the following theorem.

Theorem 8. GOWF has security δ(S, T ) = O
(

ST+T 2

min{N,M}
)

against (S, T ) non-
uniform quantum adversaries, even with quantum advice.

The above theorem improves the bound for quantum advice, which was shown

to be Õ
(

ST+T 2

min{N,M}
)1/3

in [CGLQ20].

PRG. Recall GPRG is defined in Example 1. GPRG has security ν(P, T ) = 1/2 +

O
(

P+T 2

N

)1/2

where N is the size of the domain, by Lemma 1.6 in [CGLQ20].
Again by our main theorem Theorem 5, we have the following theorem.

Theorem 9. GPRG has security δ(S, T ) = 1/2+O
(

T 2

N

)1/2

+O
(

ST
N

)1/3 against
(S, T ) non-uniform quantum adversaries, even with quantum advice.

This improves the previous result on GPRG with quantum advice [CGLQ20],

which was 1/2 + Õ
(

S5T+S4T 2

N

)1/19

.

6.1 Salting Defeats Quantum Advice

We start by defining the cryptographic mechanism called “salting”.

Definition 10 (Salted Games in the QROM). Let G be a game in the
QROM as defined in Definition 2, with respect to a random oracle H : [N ] →
[M ]. It consists of two deterministic algorithms SampH and VerifyH and both
algorithms make TSamp (or TVerify) queries, respectively.

A salted game GS with salt space [K] is defined as the following: GS consists
of two deterministic algorithms SampS and VerifyS:

– SampH
S : on input s, r, it returns (s,SampHs(r)). Here Hs denotes oracle access

to the oracle H(s, ·).
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– VerifyH
S : on input s, r, ans, it returns VerifyHs(r, ans).

In other words, for a fixed H : [K] × [N ] → [M ] and a quantum algorithm
A, the game GH

S,A is executed as follows:

– A challenger C samples a uniformly random salt s ← [K] and ch ←
SampHs(r) using uniformly random coins r.

– A (uniform or non-uniform) quantum algorithm A has oracle access to H,
takes (s, ch) as input and outputs ans.

– b ← VerifyHs(r, ans) is the outcome of the game.

Lemma 9 (Salted Games in the P -BF-QROM, Lemma 7.2 in
[CGLQ20]).

Let G be a game in the QROM, with security ν(T ) against T -query quantum
adversaries. Then for any P ,

– G has security ν(P, T ) ≤ 2ν(T ) + O(P/K) in the P -BF-QROM;
– G has security ν(P, T ) ≤ ν(T ) + O(

√
P/K) in the P -BF-QROM.

The second bullet point is better than the first one, when G is a decision game.

Proof. The proof is subsumed by the proof for Lemma 7.2 [CGLQ20]. Although
Lemma 7.2 shows the multi-instance security of GS , its P -BF-QROM security
is an intermediate step. ��

Combining with Theorem 5, we have the following results about salting in
the QROM.

Theorem 10. For any game G (as defined in Definition 2) in the QROM, let
ν(T ) be its security in the QROM. Let GS be the salted game with salt space [K].
Then GS has security δ(S, T ) against (S, T ) non-uniform quantum adversaries
with quantum advice,

– δ(S, T ) ≤ 4ν(T ) + O(S(T + TSamp + TVerify)/K);
– If GS is a decision game, then δ(S, T ) ≤ ν(T ) + O(S(T + TSamp + TVerify)/

K)1/3.

Proof. We only show the second bullet point. The first one is similar and more
straightforward.

By Theorem 5, δ(S, T ) ≤ minγ>0 {γ + ν(P/γ, T )} where P = S(T +TVerify +
TSamp). Since ν(P/γ, T ) ≤ ν(T ) + O(

√
P/(Kγ)) by Lemma 9, δ(S, T ) takes its

minimum when γ = O(P/K)1/3. Our second result follows. ��

7 Advantages of Quantum Advice in the QROM

This section demonstrates a game in which non-uniform quantum algorithms
with quantum advice have an exponential advantage over those with classical
advice for some parameter regime S, T . Although the advantage only applies to
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some S, T ranges3, we believe it is the first step toward understanding a game
in which quantum advice has an exponential advantage over classical advice for
a wider range of S, T .

The game is based on the recent work by Yamakawa and Zhandry [YZ22].
We start by explaining and recalling the basic ideas in their work.

Definition 11 ([YZ22], YZ Functions). Let n be a positive integer, Σ be an
exponentially (in n) sized alphabet and C ⊆ Σn be an error correcting code over
Σ. Let H : [n]×Σ → {0, 1} be a random oracle. The following function is called
a YZ function with respect to C and Σ:

fH
C : C → {0, 1}n

fH
C (c1, c2, · · · , cn) = H(1, c1)||H(2, c2)|| · · · ||H(n, cn)

We will consider the following game, which we call GYZ. The game is to invert
a uniformly random image with respect to the YZ function. More formally,

Definition 12 (Inverting YZ Functions). The game GYZ is specified by two
classical algorithms:

– SampH(r): it samples a uniformly random image y = r ∈ {0, 1}n;
– VerifyH(r, ans): it checks whether ans is a code in C and fH

C (ans) = r.

The queries made by each algorithm satisfy TSamp = 0 and TVerify = n.

Their idea is that, if we want to find a pre-image in Σn of any y ∈ {0, 1}n, it
is easy: simply inverting each H(i, yi). Nevertheless, to find a pre-image in C,
this entry-by-entry brute-force no longer works. In their work, Yamakawa and
Zhandry show that for some appropriate C, the above function is classically
one-way and quantumly easy to invert.

Theorem 11 (Theorem 6.1, Lemma 6.3 and 6.9 in [YZ22]). There exists
some appropriate C, such that

– The game GYZ has security 2−Ω(n) against 2nc

-query classical adversaries for
some constant 0 < c < 1;

– There is a Õ(n)-query quantum algorithm that wins the game GYZ with prob-
ability 1 − negl(n). Here Õ hides a polylog factor.

Moreover, we observe that the quantum algorithm makes non-adaptive
queries and the queries are independent of the challenge. Upon a challenge y
is received, the quantum algorithm does post-processing on the quantum queries
without making further queries4.

We show our separation result below.

Theorem 12 (Separation of classical and quantum advice in the
QROM. There exists some appropriate C (the same in [YZ22]) such that,
3 Specifically, we require T = 0, i.e., no online query.
4 For more details, please refer to Fig 1. in [YZ22].
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– GYZ has security 2−Ω(n) against (S, T = 0) non-uniform adversaries with
classical advice, for S = 2nc

/n and some constant 0 < c < 1;
– There is an (S, T = 0) non-uniform adversary with quantum advice that

achieves success probability 1 − negl(n), for S = Õ(n).

We refer readers to a detailed proof in the appendix.
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A Proofs for the Useful Lemmas

Lemma 10. Let N be a positive integer and p1, · · · , pN ∈ R
≥0. Let α1, · · · , αN

be a distribution over [N ]: i.e., αi ∈ [0, 1] and
∑

i∈[N ] αi = 1.
Assume μ :=

∑
i∈[N ] αipi > 0. Let β1, · · · , βN be another distribution over

[N ]: βi := αipi/μ. The following holds:
∑

i∈[N ]

βipi ≥
∑

i∈[N ]

αipi.

Proof. Let X be a random variable that takes value pi w.p. αi. It is easy to see
that E[X] =

∑
i αipi and E[X2] =

∑
i αip

2
i .

Since we assume μ = E[X] > 0, we rewrite the inequality as follows:

∑

i

αip
2
i ≥

(
∑

i

αipi

)2

.

The lemma holds by observing that L.H.S. is E[X2], R.H.S. is E[X]2 and the
fact that Var[X] := E[X2] − E[X]2 ≥ 0. ��

Proof for Lemma 1. We fix any integer k ≥ 1. Let αi = cip
k−1
i /(

∑
i cip

k−1
i ). It

it easy to see that Sk =
∑

i αipi.
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Let βi = αipi/μ where μ =
∑

i αipi. We have

βi = αipi/μ

=
cip

k
i∑

i cip
k−1
i · μ

=
cip

k
i∑

i cip
k−1
i · (∑

i cipk
i /(

∑
i cip

k−1
i )

)

=
cip

k
i∑

i cipk
i

.

Therefore, Sk+1 =
∑

i βipi. By Lemma 10, Sk+1 =
∑

i βipi ≥ ∑
i αipi = Sk. ��

B Characterization of Alternating Measurements
and Proof of Theorem 6

Fixing a function H, the intial internal register A of A is |σH〉 |0L〉 =∑
i αH,i |φH,i〉. Let us define the following states |v0

H,i〉 , |v1
H,i〉 , |w0

H,i〉 , |w1
H,i〉 (for

convenience, we ignore H in the subscripts in the analysis below). We will also
ignore H for other notations like PH

r , |φH,i〉 , pH,i as our analysis does not depend
on H and the final conclusion follows by taking expectation over uniformly ran-
dom functions H. Instead, we are using Pr := PH

r , |φi〉 := |φH,i〉 , pi := pH,i in
the analysis.

1. |w0
i 〉 = 1√

pi|R|
∑

r |r〉 Pr |φi〉.

It is easy to verify that it has norm 1:

〈w0
i |w0

i 〉 = 1
pi|R|

∑

r

〈φi|Pr|φi〉 = 1
pi|R|〈φi|(

∑

r

Pr)|φi〉 = pi|R|
pi|R| = 1.

CPH
0 |w0

i 〉 = |w0
i 〉 and CPH

1 |w0
i 〉 = 0.

After seeing the definition of |v0
i 〉 and |v1

i 〉 below, we also observe that |w0
i 〉 =√

pi |v0
i 〉 + √

1 − pi |v1
i 〉.

2. |w1
i 〉 = 1√

(1−pi)|R|
∑

r |r〉 (IA − Pr) |φi〉.

Similarly, it has norm 1, CPH
1 |w1

i 〉 = |w1
i 〉 and CPH

0 |w1
i 〉 = 0.

3. |v0
i 〉 = |1〉R |φi〉 = √

pi |w0
i 〉 + √

1 − pi |w1
i 〉.

By the description of the game G⊗k (Definition 8), the overall register RA at
the beginning of the game can be written as

∑
i αi |v0

i 〉 (which we will prove
below).

The state has norm 1, IsUniform0 |v0
i 〉 = |v0

i 〉 and IsUniform1 |v0
i 〉 = 0.

4. |v1
i 〉 = √

1 − pi |w0
i 〉 − √

pi |w1
i 〉.

We will not use the property of |v1
i 〉 in the proof and we thus omit all the

details here.
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Lemma 11. For any fixed H, for any non-negative integer k, the leftover state
over RA conditioned on all outcomes in the first k rounds being 0s is in propor-
tion to:

∑

i

αip
k/2
i

{
|v0

i 〉 if k is even,

|w0
i 〉 if k is odd.

The probability of all outcomes being 0s is
∑

i |αi|2pk
i .

The proof follows the proof of Claim 6.3 in [Zha20]. We reprove this claim for
completeness.

Proof. This lemma holds for k = 0, when no measurement is applied. This is the
state is

∑

i

αi |v0
i 〉 =

∑

i

αi |1R〉R |φi〉A = |1R〉R |σH , 0L〉A .

We now prove by induction. Assume the lemma holds up to some even k. We
prove it holds for odd k + 1.

The leftover state after the first k rounds is c
∑

i αip
k/2
i |v0

i 〉 for some normal-
ization c. Note that |v0

i 〉 = √
pi |w0

i 〉 + √
1 − pi |w1

i 〉. The state can be rewritten
as

c
∑

i

αip
k/2
i

(√
pi |w0

i 〉 +
√

1 − pi |w1
i 〉

)
.

In the (k + 1)-th round, the challenger measures the state under CPH . Note
that CPH

0 |w0
i 〉 = |w0

i 〉 and CPH
0 |w1

i 〉 = 0. Thus, conditioned on the (k + 1)-th
outcome being 0, the state is in proportion to

∑
i αip

(k+1)/2
i |w0

i 〉. We complete
the induction for k being even.

For odd k, the analysis is almost identical, by observing |w0
i 〉 =

√
pi |v0

i 〉 +√
1 − pi |v1

i 〉 and also following from the fact that IsUniform0 |v0
i 〉 = |v0

i 〉 and
IsUniform1 |v0

i 〉 = 0.

Finally, the probability can be bounded by looking at the un-normalized
states above. ��

Theorem 6 follows from summing over all functions H and Lemma 11.

C Classical Version of Our Main Theorem

The following theorem is a classical version of our main theorem (Theorem 5),
improved from Theorem 1 in [GLLZ21].

Theorem 13. Let G be any game with TSamp, TVerify being the number of queries
made by Samp and Verify. For any S, T , let P = S(T + TVerify + TSamp).

If G has security ν(P, T ) in the P -BF-ROM, then it has security δ(S, T ) ≤
2 · ν(P, T ) against (S, T ) non-uniform classical algorithms with classical advice.
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In Theorem 1 in [GLLZ21], P = (S + log γ−1)(T + TVerify + TSamp) and there
is an extra additive term γ for δ(S, T ).

Theorem 14 (Theorem 1 in [GLLZ21]). Let G be any game with TSamp, TVerify

being the number of queries made by Samp and Verify. For any S, T, γ > 0, let
P = (S + log γ−1)(T + TVerify + TSamp).

If G has security ν(P, T ) in the P -BF-ROM, then it has security δ(S, T ) ≤
2 · ν(P, T ) + γ against (S, T ) non-uniform classical algorithms with classical
advice.

D Proof for the Separation Result

Proof. We first show the second bullet point. Let the quantum algorithm in
Theorem 11 be B. In the non-uniform quantum adversary, quantum advice is
the non-adaptive queries made by B and the online stage is the post-processing
by B. It is straightforward that the non-uniform algorithm achieves the same
probability as B, which is 1− negl(n). Since each query has O(log n) qubits and
B makes Õ(n) queries, the total size of the quantum advice is still Õ(n).

Next, we show the first bullet point. In the first bullet point of this theorem,
we do not distinguish between non-uniform quantum adversaries with classical
advice and non-uniform classical adversaries. The reason is that the online algo-
rithm does not make any query, i.e., T = 0. These two types of algorithms are
equivalent when T = 0.

Thus, we consider success probabilities of non-uniform classical adversaries.
By a classical analog of our main theorem Theorem 5 (Theorem 13), we only
need to show its success probability in the P -BF-ROM (Definition 5) where
P = S(T + TSamp + TVerify) = STVerify = 2nc

.
Assume a random oracle is lazily sampled. In other words, an outcome of the

random oracle on x is sampled only if the outcome is queried by an algorithm;
otherwise, the outcome is marked as “not sampled”. Conditioned on any P -query
f outputs 0, the random oracle is only fixed on P positions and the rest of its
outputs are still not sampled. The error correcting code C used in [YZ22] satisfies
a property called (ζ, �, L) list recoverability:

– For any subset Si ⊆ Σ such that |Si| ≤ � for every i ∈ [n], we have

|Good| = |{(x1, · · · , xn) ∈ C : |{i ∈ [n] : xi ∈ Si}| ≥ (1 − ζ)n}| ≤ L.

In other words, the total number of codewords in C with hamming distance
to S1×S2×· · ·×Sn smaller than ζn is bounded by L. Here hamming distance
to S1 × S2 × · · · × Sn is defined as the number of coordinates i whose xi is
not in the corresponding Si.
We call this set of codewords Good.

– P = 2nc

< �, ζ = Ω(1) and L = 2nc′
for some 0 < c′ < 1.

In GYZ, when a challenge y is sampled uniformly at random from {0, 1}n,
there are two cases:
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– Case 1: there exists a codeword c in Good, such that y = fH
C (c). This case

happens with probability at most |Good|/2n ≤ L/2n.
– Case 2: complement of Case 1. In this case, an adversary wins only if it

outputs a codeword that is not in Good.
For every codeword c = (x1, x2, · · · , xn) �∈ Good, there are at least ζn coordi-
nates whose random oracle outputs (i.e., H(i, xi)) have not been sampled yet
in the lazily sampled random oracle. For any c �∈ Good, Pr[fH

C (c) = y] ≤ 2−ζn.
Therefore, regardless of the algorithm’s output, the success probability is at
most 2−ζn.

The overall winning probability is bounded by L/2n + 2−ζn = 2−Ω(n). We
conclude the first bullet point of the theorem.

��
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Abstract. Commitments are fundamental in cryptography. In the classical world,
commitments are equivalent to the existence of one-way functions. It is also
known that the most desired form of commitments in terms of their round com-
plexity, i.e., non-interactive commitments, cannot be built from one-way func-
tions in a black-box way [Mahmoody-Pass, Crypto’12]. However, if one allows
the parties to use quantum computation and communication, it is known that non-
interactive commitments (to classical bits) are in fact possible [Koshiba-Odaira,
Arxiv’11 and Bitansky-Brakerski, TCC’21].

We revisit the assumptions behind non-interactive commitments in a quan-
tum world and study whether they can be achieved using quantum computation
and classical communication based on a black-box use of one-way functions. We
prove that doing so is impossible unless the Polynomial Compatibility Conjec-
ture [Austrin et al. Crypto’22] is false. We further extend our impossibility to
protocols with quantum decommitments. This complements the positive result of
Bitansky and Brakerski [TCC’21], as they only required a classical decommit-
ment message. Because non-interactive commitments can be based on injective
one-way functions, assuming the Polynomial Compatibility Conjecture, we also
obtain a black-box separation between one-way functions and injective one-way
functions (e.g., one-way permutations) even when the construction and the secu-
rity reductions are allowed to be quantum. This improves the separation of Cao
and Xue [Theoretical Computer Science’21] in which they only allowed the secu-
rity reduction to be quantum.

At a technical level, we prove that sampling oracles at random from “suf-
ficiently large” sets (of oracles) will make them one-way against polynomial
quantum-query adversaries who also get arbitrary polynomial-size quantum
advice about the oracle. This gives a natural generalization of the recent results
of Hhan et al. [Asiacrypt’19] and Chung et al. [FOCS’20].
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1 Introduction

Commitment schemes are one of the most basic building blocks in the foundations of
cryptography with a variety of applications. In a non-interactive commitment scheme, a
sender Senwho holds a (say single bit) message b sends a commitmentmessage com to a
receiver Rec in such a way that the com acts as a secure vault hiding b; this is formalized
as follows. (1) The hiding property requires that com does not reveal anything about b to
a computationally bounded receiver. (2) The binding property requires that after sending
com, the sender is essentially bound to at most one b ∈ {0, 1} and cannot change its
mind afterwards. (3) The completeness of the scheme requires that the sender shall be
able to convincingly reveal b using a decommitment message dec that functions like a
password to the vault holding b.

In the classical setting, interactive commitments can be based on the minimal
assumption that one-way functions exist [IL89,Nao90,HILL99]. However, when one
wants to obtain the more desirable non-interactive variant, cryptographic primitives
such as injective one-way functions [Yao82,GL89] and most public-key assumptions
[LS19] have been shown to be sufficient. These constructions are black-box [IR89,
RTV04,BBF13], in the sense that (1) they use the assumed primitive (e.g., in this
case, one-way functions) as an oracle in their implementation, and (2) their security
is proved by a reduction that treats the imagined adversary (breaking the construction)
as an oracle as well. Moreover, it is known that OWFs cannot be used in a black-box
way to obtain any of the primitives that are known to imply non-interactive commit-
ments [MM11,IR89] or the non-interactive commitment itself [MP12].

Commitments in the Quantum Setting. With the rise of quantum computation in
computer science and cryptography, questions that were previously considered to
be well-understood in the classical setting are being revisited. In the quantum set-
ting, we allow Sen,Rec to both run in quantum polynomial time, while the com-
mitted bit b is still classical. By default, the commitment and decommitment mes-
sages would also be quantum messages (but we would prefer them to be classical
too, if possible). It has been shown [May97,LC97] that similarly to the classical set-
ting, some form of computational intractability is necessary for commitments in the
quantum setting, and (even interactive) commitments with statistical (hiding and bind-
ing) security cannot be achieved if adversaries are allowed to be quantum. When it
comes to the assumptions behind commitments in the quantum setting, a sequence of
works [DMS00,CLS01,KO09,LQWY14,Yan20] led to the perhaps surprising result
that black-box constructions of non-interactive commitments (for classical messages)
with various forms of binding properties that are meaningful in the quantum setting
could in fact be constructed from (post-quantum) one-way functions [KO11,BB21] in
the quantum setting.

The QCCC Model: Quantum Computation and Classical Communication. The full
advantage of quantum cryptography will rely on using both quantum computation as
well as quantum communication. However, the internet is currently a classical commu-
nication medium, so it is much more desirable to design protocols that stick to classical
communication as much as possible, even if they rely on local quantum computation
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(and hardness assumptions). In fact, the recent active line of work on classically ver-
ifying quantum power [Mah18,CCY20,ACGH20,BKVV20,Zha21,Bar21] also falls
into this quantum-computation and classical-communication (QCCC) model. Thus, we
revisit constructing non-interactive commitments from OWFs in the quantum setting as
well and ask the following question.

Can we construct non-interactive commitments from (post-quantum) one-way
functions using quantum computation and (only) classical communication?

In fact, one can study a relaxed version of the question above by limiting only one
of the commitment or decommitment messages to be quantum. The OWF-based con-
structions of [KO11,BB21] and the candidate OWF-based construction of [YWLQ15]
all used quantum messages. Among them, the work of [BB21] managed to make
the decommitment message classical (while using a quantum commitment). Hence,
their work suggests that perhaps using quantum commitment messages is the key to
getting non-interactive commitments from OWFs. Therefore, a natural related ques-
tion is whether one can obtain non-interactive commitments from OWFs in the quan-
tum setting while limiting the commitment message to be classical and allowing the
decommitment to be quantum. Note that commitment messages are stored for a longer
time between the two phases of the commitment scheme, decommitment messages are
revealed at the very end. Therefore, if only one of these messages is going to be quan-
tum, it is perhaps preferred that the decommitment message is the quantum one.

Quantum Binding vs. Classical Binding. We note that while hiding remains reason-
ably straightforward to define against quantum polynomial-time adversaries, binding is
a subtle property and could be defined in different ways. In fact, for statistically hiding
commitments, it is impossible to achieve the same strong notions of binding, similar to
the classical variant, in which the commitment message essentially binds the committed
bit to be at most one value [May97,LC97,BB21]. As a result, in the statistically-hiding
setting, we usually settle down for the weaker notion of “sum binding”, in which the
probability pb of opening successfully to b satisfies p0 + p1 ≤ 1 + negl(κ), where
κ is the security parameter. For this setting, [Unr16a] proposed the alternative notion
of “collapse-binding”. By only requiring computational hiding, [BB21] showed that a
very close notion to the classical form of binding is in fact possible if one allows the
receiver to only make a (partial) measurement right after the commitment message is
sent. Our main question above is meaningful with respect to all these variants of bind-
ing. Therefore, as we will clarify, it is not crucial for the reader to follow these subtle
differences, as our (negative) results can be stated with a weaker notion of binding in
which the adversary has to successfully decommit into both values of 0, 1.

1.1 Our Results

At a high level, we answer our main question above negatively with respect to quantum
black-box constructions [HY20], unless a recent conjecture about low-degree and low-
influence polynomials is false [ACC+22]. The work of [ACC+22] showed that assum-
ing this conjecture, one can break perfectly complete QCCC key-agreement protocols
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(with classical communication) in the Quantum Random Oracle Model [BDF+11] by
asking only a polynomial number of queries to the oracle. As a result, they obtained
black-box separations for perfectly complete key agreements in the QCCC model from
OWFs. We first explain this conjecture and then will state our results based on it.

The Polynomial Compatibility Conjecture (PCC). Suppose f =
∑

S⊆[N ] αS
∏

i∈S xi

is a polynomial over Boolean variables xi ∈ {±1}, i ∈ [N ] and real coefficients
αS ∈ R,S ⊆ [N ]. The degree of f is maxαS �=0 |S| and ‖f‖2 = Ex←{±1}N [f(x)2].
The influence of xi on f is Infi(f) =

∑
i∈S α2

S , and for a distribution F over such
polynomials, we let Infi(F) = Ef←F[Infi(f)] be the expected influence. The PCC (for
the group Z2) states that for sufficiently small δ(d) = 1/poly(d), if F,G are distri-
butions over polynomials of degree d over variables x1, . . . , xN ∈ {±1}, ‖·‖2-norm
equal to 1, and expected influences Infi(F), Infi(G) ≤ δ(d) for all i ∈ [N ], there
exist f ∈ supp(F), g ∈ supp(G) and x ∈ {±1}N such that f(x) · g(x) �= 0. The
work of [ACC+22] gave some evidence for the validity of the PCC by proving a weaker
statement than the PCC in which the influences are exponentially exp(−d) small.1

We prove the following conditional black-box separation for non-interactive com-
mitments in the quantum setting. Our result holds even for a “weak” variant of binding
that is necessary for all the proposed forms of binding in the quantum setting. In par-
ticular, we say that a malicious sender breaks the weak binding if it can come up with
a commitment message com and a pair of decommitment messages (dec0, dec1) such
that using decb allows the sender to successfully decommit com to b.

Theorem 1.1 (Black-box separation of QCCC commitments from OWFs). Assum-
ing the Polynomial Compatibility Conjecture, there is no black-box construction of non-
interactive commitments from (post-quantum) one-way functions in the QCCC model.
Moreover, this holds even if the decommitment message is allowed to be quantum.

Theorem 1.1 complements the positive result of [BB21], in which they show that
there is a commitment scheme with a quantum commitment and a classical decommit-
ment based on post-quantum OWFs. In other words, our work (conditionally) shows
that one cannot trade a quantum commitment message with a quantum decommitment
message and still use post-quantum OWFs when constructing non-interactive commit-
ments from OWFs in a black-box way.

Corollary: Separating Injective OWFs from OWFs in the Quantum Setting. Injective
one-way functions (e.g., one-way permutations) with classical input/outputs imply non-
interactive commitments in a black-box way [GL89]. Therefore, Theorem 1.1 also
implies the corollary that assuming the PCC, black-box construction of injective one-
way functions from general one-way functions does not exist, even if the construction
is allowed to use quantum computation. The work of [CX21] proved such a separation
only when the security reduction is quantum, but our result extends to fully quantum
constructions (assuming the PCC).

1 The PCC bears some similarities to a conjecture by Aaronson and Ambianis [AA09] that also
deals with polynomials with a low degree and low influence and which is also proved for
exponentially small influences. See [ACC+22] for more discussions and comparisons.
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Corollary: Separating NICs from Pseudorandom States. The recent works of [AQY22,
MY22] suggest that as opposed to the classical setting, OWFs might not be neces-
sary for non-interactive commitments in the quantum setting: they could be constructed
from “pseudorandom states” [BS20], which are weaker than OWFs [Kre21]. The work
of [JLS18] showed that “pseudorandom states” (PRSs) can be based on OWFs in a
black-box way. Therefore, as a corollary of our result, we obtain the separation between
NICs and PRSs in the CCQD model (i.e., the model in which the commitment message
is classical, but the decommitment is allowed to be quantum). We point out that the
construction in [MY22] requires quantum commitment messages (but classical decom-
mitment messages), and the construction in [AQY22] is interactive.

We will explain the key ideas behind the proof of Theorem 1.1 in Sect. 1.2. Before
doing so we highlight one key technical tool that we develop along with the proof of
Theorem 1.2 and believe to be of independent interest.

When are Randomized Oracles Quantum One-Way? It is known that if Hn denotes
the set of all functions from {0, 1}n to {0, 1}n, then a random oracles f ← Hn is one
way against polynomial-time adversaries who even get arbitrary polynomial-size advice
about the random oracle [IR89,GT00]. This classical result holds even if the adversary
can ask quantum superposition queries to the (random permutation) oracle [NABT15],
and even if the auxiliary information about the random oracle is quantum [HXY19,
CGLQ20]. We revisit this phenomenon in a more general setting and ask the following
question. What happens if the oracle f : {0, 1}n �→ {0, 1}n is not completely random,
yet it is sampled at random from a “large” set of oracles F ⊆ Hn. We give a concrete
bound on how large F needs to be to make a random f ← F one-way against efficient
non-uniform quantum adversaries that also receive quantum auxiliary advice about f .

Theorem 1.2 (One-wayness of oracles under quantum auxiliary input). Suppose
Hn denotes the set of all functions from {0, 1}n to {0, 1}n, and that

|F| ≥ 2− 2n

nω(1) · |Hn|
for a set of functions F . Then a randomly selected f ← F will be one-way against
quantum adversaries who ask poly(n) quantum queries to f and receive at most
poly(n) bits of quantum advice about f .

See Sect. 3 for a more quantitative and general statement.
At a very high level, we use Theorem 1.2 to prove Theorem 1.1 by picking F to

model a large set of oracles that can be used by a cheating receiver, while the advice
about each oracle is a pair of decommitments to b = 0, 1. The security reduction of
the supposedly black-box construction of non-interactive commitments from one-way
functions would then lead to an adversary who inverts f ← F using poly(n) number
of queries and poly(n) bits of advice, which is a contradiction due to Theorem 1.2.

1.2 Technical Overview

In this section, we explain some of the key ideas behind the proofs of Theorems 1.1
and 1.2 and the links between these two results. Our starting point for proving
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Theorem 1.1 is the black-box separation of non-interactive commitments from one-way
functions in the classical setting [MP12]. We first sketch the argument for the classical
case and then explain the challenges that arise in the quantum setting.

Recap of the Proof for the Classical Setting. An approach for proving a black-box
separation between primitives Q and OWFs is as follows. We show that the primitive
Q can be broken relative to a random oracle h by asking only a polynomial number of
queries.2 However, when we want to separate commitments from OWFs (even in the
classical setting), we cannot simply use random oracles as mentioned above. The reason
is that the random oracle can indeed be used to obtain injective one-way functions
(with high probability), which in turn do imply non-interactive commitments. That is
why, in [MP12], the oracle h used for the separation is chosen from a more subtle
distribution: h is chosen either at random, or from a “partially fixed” random oracle.
The key idea is to show that at least one of these two oracle distributions leads to
breaking the commitment scheme while one-way functions exist relative to both oracle
distributions. In particular, each randomized oracle corresponds to one of the parties of
the commitment scheme to be the cheater.

– Cheating receiver Rec∗ relative to a random oracle. Let h be a (fully) random oracle
h : {0, 1}n �→ {0, 1}n, where n = κ is the security parameter. Suppose Sen is
committing to a random b ∈ {0, 1} and sends message com to the receiver. Then, let
Rec∗(com) be a cheating receiver who tries to learn the oracle answer to any query
x ∈ {0, 1}n such that x has been asked by Sen with probability at least ε, for a
parameter ε = 1/poly(κ). Such queries were called “ε-heavy” in [BM09], and it
was shown that regardless of com, there are (on average) at most d/ε of them if d
is the number of oracle queries by Sen. Suppose the partial oracle L contains all the
query-answer pairs learned by Rec∗. If Rec∗ could now guess the random committed
bit b (information-theoretically) with probability 1/2 + 1/poly(κ), it means Rec∗

has succeeded in its attack in the random oracle model. In this case, we would be
done with the separation; the reason is that the security reduction S of the black-box
construction shall now be able to use Rec∗ and invert the random oracle h with non-
negligible probability, which is in fact impossible because the combined algorithm
SRec∗

is still asking polynomially many queries to h
– Cheating sender Sen∗ relative to a non-random oracle. Now, suppose the above

attack by Rec∗ does not succeed. In this case, we show that one can construct a
cheating sender strategy Sen∗ along with a fixed triple (com, dec0, dec1) and a dis-
tribution h over the oracles with the following.

• com is a commitment message and decb is a decommitment message for b.
• h is a distribution over oracles that are random everywhere except on a poly(n)-
size subset of the input domain {0, 1}n.

• The honest receiver accepts both (com, decb), b ∈ {0, 1} relative to all h ← h.
If one can demonstrate the existence of the above triple (com, dec0, dec1,h), it again
implies that black-box construction of Sen,Rec from one-way functions are impos-
sible: the security reduction S shall again be able to use Sen∗ and invert the partially
fixed random oracle h ← h, but that is again impossible because the oracle h is only
partially fixed, and partially fixed random oracles are also one-way.

2 E.g., one can re-interpret the proofs of [IR89,BM09] to fall into this framework.
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The reason that such (com, dec0, dec1,h) exists is as follows. Since we assumed that
Rec∗ had failed in its own attack above, conditioned on (com,L), both bits b = 0, 1
are equally likely to be the truly committed bit. Therefore, if we further condition
on b = 0 or b = 1, no 3ε-heavy queries would exist outside L (because both of the
events b = 0, 1 have probability about 1/2). Now, if we sample the view of the Sen
twice, one conditioned on b = 0 and one conditioned on b = 1, two things happen:
(1) we obtain decommitments two dec0, dec1 for b = 0, 1, and (2) we obtain partial
functions h0, h1 that denote (only) the queries asked by Senwhile committing to 0, 1
to generate com and dec0, dec1. Due to the lack of heavy queries in both of these
sampling processes, the partial oracles h0, h1 will be disjoint with (high) probability
1− O(dε), and so they can be combined into a single partial oracle h0,1 = h0 ∪ h1.
Together with the partial oracle L, hfixed = h0,1 ∪ L will shape the fixed part of the
random oracles h that is useful for the cheating sender.

New Challenges in the Quantum Setting. When we move to the setting in which the
honest parties are quantum, several steps of the argument above will break down. We
go over these issues one by one and explain the ideas for resolving them.

1. Quantum analogue of learning heavy queries. Since Sen∗ can ask quantum queries
to its oracle h (that is supposedly a random oracle), it no longer makes sense to use
the classical ε-heavy query learners. However, the recent work of [ACC+22] showed
how to extend this technique (by relying on ideas inspired by Zhandry’s compressed
oracle technique [Zha19]) to the quantum setting as follows. The receiver shall con-
sider the sender’s computation and the oracle all in a purified3 way, while the oracle’s
answers are represented in the Fourier basis. This way, any query x that has at least
ε chance of having a nonzero answer in the Fourier conditioned on the commitment
message com, will be considered quantum ε-heavy. The intuition is that being zero
in the Fourier basis is (almost) the same as not being read by anyone, and hence
remaining uniform. Note that the heavy queries are classical. It can also be shown,
just like in the classical setting, that the total number of quantum heavy queries is
O(d/ε) where d is the number of quantum queries by the sender.

2. Quantum analogue of partially fixed oracles. In the classical setting, we could fix the
partial oracle hfixed = h0,1 ∪ L that is consistent with two fixed openings dec0, dec1
as well as the learned and pick the rest of the oracle at random. However, in the
quantum setting, it is no longer well-defined to refer to the “oracle queries asked by
the sender” (i.e., h0,1) as a partial oracle. That is because we cannot “record” the
sender’s queries, due to the quantum nature of its algorithm.

Below we explain how to resolve this challenge. It turns out that resolving this
challenge is even harder to resolve for protocols with quantum decommitments, so we
will first go over the easier case of protocols in the QCCC model, before discussing the
classical commitment quantum decommitment (CCQD) case.

3 In the context of quantum information theory, purifying a quantum process means delaying all
intermediate measurements to the end at the cost of introducing additional qubits. So that the
whole computation remains a pure state until the final measurement.
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Finding Compatible Oracles. Suppose after the sender runs out of learning quantum
ε-heavy queries, |φ0〉, |φ1〉 are the marginal quantum states of the sender and the oracle
for the two cases of b = 0, 1, the same commitment string com, and the set of fixed
oracle answers in L. First, we show that if the Polynomial Compatibility Conjecture
(PCC) of [ACC+22] holds, then there is at least one oracle h (in the computational
basis) that is consistent with both quantum states |φ0〉, |φ1〉. To do this, first, assume
that the decommitment messages are classical. This means one can find two ensembles
H0,H1 of quantum states for the oracle registers such that (1) Hb denotes quantum
states for the oracle compatible with committing to b, and (2) H0,H1 can be uniquely
modeled using distributions F0,F1 over degree-d polynomials (where d is the number
of oracle queries of the sender) of influence at most 3ε, and (3) the oracles compatible
with decommitting to b are the non-zero points of the polynomials sampled from Fb.
Therefore, by the PCC, there are indeed samples f0 ← F0, f1 ← F1, and an oracle h
such that fb(h) �= 0 for both b ∈ {0, 1}. This means that the oracle h is compatible with
two decommitments dec0, dec1 into both b = 0, 1 with respect to the same commitment
com.

Boosting to Many Compatible Oracles. Having only one compatible oracle h that
allows opening com successfully into both b ∈ {0, 1} using dec0, dec1 is not enough
for proving the black-box separation, as h might be easy to invert. In particular, we
need to show that such compatible oracle h can be found while it is also one-way. Our
first idea for achieving this goal is that since the two polynomials f0, f1 have degree d,
their (non-zero) product also has a degree at most 2d. Therefore, we can use a variant
of the Schwartz-Zippel lemma to conclude that at least 2−2d fraction of all oracles h
will satisfy f0(h)f1(h) �= 0. When the group defining the oracle is not Zn

2 , we can
no longer apply the Schwartz-Zippel lemma, as the two functions f0(h)f1(h) will not
be low-degree polynomials, yet we derive a similar result using a generalization of the
Schwartz-Zippel lemma known as the Donoho-Stark support-size uncertainty principle
[DS89].

So far, we have shown that in the case of classical communication (including clas-
sical decommitments), the PCC implies that there is a large set of oracles F such that
every h ← F is compatible with the commitment com followed by both decommit-
ments dec0, dec1 into 0, 1. It remains to show that a random sample h ← F is hard to
invert by poly(n)-query quantum adversaries. This idea is implicit in [HXY19] (about
the one-wayness of random oracles under quantum queries and classical auxiliary infor-
mation) and generalizes to the case of sampling an oracle from a large set of oracles as
well. However, this approach does not work when we want to attack protocols with
quantum decommitment messages, as that requires working with quantum auxiliary
information.

For classical decommitments, we rely on the fact that we can sample decommit-
ments to 0, 1 and create an oracle (distribution) that is consistent with both. When
decommitment messages are quantum, we can no longer measure the sender’s regis-
ters to create cheating strategies, because the decommitment messages are quantum
and need to be kept as such. Therefore, we need to modify the approach above. Let Fb

be the set of oracles (in the computational basis) that are compatible with an opening
into b. Since measuring (or not measuring) the sender’s own registers (that will be used
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to produce the decommitment message) will not change the set Fb, we first pretend that
such measurement is happening to define two ensembles of oracles and use the PCC
again to argue that the set F = F0 ∩F1 contains at least an ≈ 1/dΘ(n·d) fraction of the
oracles that map {0, 1}n to {0, 1}n.

To finish the proof, we need to prove two things: (1) for each h ∈ F , there exist
a pair of quantum decommitments (dec0, dec1) that successfully decommit into 0, 1
with respect to commitment message com, and (2) picking a random oracle h ← F
will lead to h that is hard to invert by polynomial-query adversaries. Item (1) is rather
straightforward, due to the fact that f ∈ F0 (resp. f ∈ F1) are already defined to be
the set of oracles that are compatible with at least one decommitments to 0 (resp. 1)
with respect to com. However, Item (2) is now more challenging to prove when the
decommitments are quantum messages. That is because, the security reduction S, now
has access to f ∈ F as well as a pair of “advice” (dec0, dec1) which can be seen as a
piece of quantum auxiliary information about f , and so we would need to prove the one-
wayness of the oracle f ← F against adversaries with quantum auxiliary information
about f . Below, we focus on explaining the ideas for proving this specific one-wayness
as an independent problem of its own.

Functions Sampled from Large Sets are One-Way for Adversaries with Quantum Advice.
As explained above, Theorem 1.1 reduces to Theorem 1.2, which states that any suffi-
ciently large subset F of all oracles Hn = {h | h : {0, 1}n �→ {0, 1}n}, a randomly
selected function h ← Hn is “one-way” against any adversary who asks poly(n) quan-
tum queries and gets poly(n) bits of quantum advice about f . At a high level, we prove
this result through a reduction to carefully chosen results from [CGLQ20].

Below we first recall the results in [CGLQ20], which can be used to prove the hard-
ness of completely random oracles against quantum adversaries with quantum advice,
and then show how their approach can be adapted to our case, in which a function is
sampled from a large set (rather than all) of functions.

– Non-uniform one-wayness of fully random functions [CGLQ20]. Here we describe
the approach of [CGLQ20] for proving non-uniform hardness of fully random func-
tions. We then describe how the components of the proof of [CGLQ20] can be
adapted for our setting. Let h : {0, 1}n �→ {0, 1}n be a function. Consider a classical
adversary A who receives S bit classical advice α = α(h) about h and can ask T
queries to h and manages to invert h with probability ≥ ε, i.e.,

Pr
A,h,x

[Ah(α, h(x)) ∈ h−1(h(x))] ≥ ε,

where the probability is over the randomness of A and the random choices of the
completely random h and x. Now, consider a different attacking algorithm B that
can ask k · T queries to h, but it does not receive any advice. However, the job of
B is harder, as it needs to solve a multi-instance version of the inversion problem
as follows: B is asked to invert k challenges h(x1), . . . , h(xk). For each of these k
challenges, the chance of inverting them is O

(
kT
2n

)
by a lazy-evaluation argument.

Interestingly, as it is shown in [CGLQ20], and one can show that for the k-instance
version, the success probability of any such algorithm B will decrease exponentially
in k,
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Pr
B,h,x1,...,xk

[Bh(h(x1), . . . , h(xk)) inverts h(x1), . . . , h(xk)] ≤ O

(
kT

2n

)k

. (1)

Now, we relate the success probability of A to that of B for bounding ε. First, using
A we construct a new algorithm B′ with S-bit classical advice and kT queries to h.
B′ simply uses the single copy of advice given to A and runs A to invert each h(xi)
independently for all i ∈ [k]. To analyze the success probability of B′, we use the
following argument. By an averaging argument, with probability at least ε/2 over
the choice of h, A can invert them successfully with probability ε/2. Denote the set
of such “good” functions by G. Then, we have

Pr
B′,x1,...,xk

[B′h(α, h(x1), . . . , h(xk)) inverts h(x1), . . . , h(xk) | h ∈ G] ≥
(ε

2

)k

.

Now, let B use B′ and simply guess the advice α and use B′; we have,

O

(
kT

2n

)k

≥ Pr[B guesses α correctly] · Pr
h
[h ∈ G] (2)

· Pr
B,x1,...,xk

[Bh(h(x1), . . . , h(xk)) inverts h(x1), . . . , h(xk) | h ∈ G]
(3)

≥ 2−S ·
(ε

2

)k+1

≥ 2−S ·
(ε

2

)k

. (4)

By choosing k large enough k = Õ(S) we obtain the desired bound of ε =
Õ(ST/2n) between the adversary’s number of queries, advice length, and its (small)
chance of success. The main magic in the above argument is to leverage the expo-
nential drop in success probability of the multi-instance game as shown in Eq. (1)
and to absorb the loss caused by guessing the advice.
Even though the above sketch was for the case of classical advice, in which guess-
ing the advice is rather easy to analyze, as it was shown in [CGLQ20], a similar
argument can be used for “guessing” quantum advice as well and use the above
blueprint for proving one-wayness of a truly random function against adversaries
with quantum queries and quantum advice.

– Non-uniform one-wayness of functions sampled from large sets. We now explain
how the outline above can be adapted to the setting where we work with an oracle
h that is sampled from a large enough sets of oracles F , instead of picking h com-
pletely at random. To achieve our results, we have a simple but extremely useful
observation as follows. Let’s start by assuming an algorithm A can invert f(x) with
probability ε, when f ← F and x ∈ {0, 1}n are chosen uniformly at random. Using
a similar averaging argument as the one above, we can still obtain a set of functions
G ⊆ F such that |G| ≥ ε/2 · |F| such that A has success probability ε/2 conditioned
on h ∈ G. Going forward, the calculations in Eq. (2) break down. In particular, we
previously had Pr[h ∈ G] ≥ ε/2, while we know have Pr[h ∈ G] ≥ ρ · ε/2, where
ρ is the fraction of |F| in the set of all functions.
Our key observation is that, although ρ is very small, we prove that it is not too small.
Therefore, the loss in the calculation of Eq. (2) can be compensated by picking k
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even larger than before. In particular, recall that increasing k can bound the success
probability of adversary to be exponentially small in k. Therefore, by picking k
large enough in a careful way, we can recover an argument similar to the case of “all
oracles” as outlined above.

1.3 Further Related Work

Here we discuss further related works that were not mentioned above already.

Quantum Black-Box Separations. Hosoyamada and Yamakawa [HY20] initiated quan-
tum black-box separations by formalizing quantum black-box constructions (for prim-
itives with non-interactive security games) and ruling out the possibility of basing
collision-resistant hash functions on one-way functions. Subsequently, [CX21] ruled
out classical black-box constructions of post-quantum one-way permutations from post-
quantum OWFs. The work of [ACC+22] ruled out quantum black-box constructions
of perfectly complete key agreements from OWFs in the QCCC model. The work of
[DLS22] ruled out quantum black-box reductions for proving the Fiat-Shamir heuristic,
even in the presence of quantum shared entanglements.

Other Assumptions than OWFs. The recent work of [BCQ22] showed that sampling
statistically-far computationally-indistinguishable pairs of (mixed) quantum states, as a
primitive, is a minimal assumption for many quantum primitives such as commitments,
oblivious transfer, and secure multiparty computation.

In the classical setting, [BOV03] showed how to derandomize Naor’s 2-message
commitment scheme that is based on OWFs and obtain a scheme that is non-interactive
at the cost of introducing extra (derandomization-related) assumptions [NW94].

Post-quantum Security. Our focus here is on commitments in which parties are quan-
tum. Another line of work studies the post-quantum security of classical constructions
[Unr12,Unr16a,Unr16b]. Another exciting recent line of work studies constructing
stronger cryptographic primitives (such as oblivious transfer) from the minimal assump-
tion that post-quantum OWFs exist [CDMS04,BCKM21,GLSV21].

2 Preliminaries

Notation. By κ we denote the security parameter. We use bold letters (e.g., f ) to denote
random variables and distributions. We use calligraphic letters (e.g., X ) to denote sets.
We use YX to denote the set of all functions from X to Y .

Throughout this work, we use the standard bra-ket notation (e.g., |ψ〉) for quantum
objects. For the basics of quantum computation, we refer readers to [NC10].

2.1 Quantum Computation

An oracle-aided quantum algorithm A(·) is a quantum algorithm with superposition
query access to oracles. For any d ≥ 0, an oracle quantum algorithm that makes d
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queries to oracles can be specified by a sequence of unitaries U0, . . . , Ud, where the
queries are executed between each unitary. Throughout this work, for any oracle h :
X → Y , we additionally define the range of the oracle Y to be an additive abelian
group. In particular, by Oh we denote the query operator that maps the state |x, y〉 to
|x, y + h(x)〉, where the addition is associated with the corresponding abelian group.
The algorithm also has access to the inverse of the query operator O†

h.
In the quantum random oracle model (QROM for short) [BDF+11], a random func-

tion h : {0, 1}∗ �→ {0, 1}κ is sampled in the beginning. Every party in the protocol
(including honest parties and adversaries) has quantum access to h. If an algorithm in
the QROM asks at most d queries to the oracle, we call it a d-query algorithm.

Zhandry [Zha19] showed that the purified random oracle is perfectly indistinguish-
able from the (standard) quantum random oracle. Since the sampling of the oracle com-
mutes with the operators of the algorithm accessing the oracle, it can be deferred to the
end. Here, we consider a more general setting. Consider an algorithm A with classical
input that accesses quantum random oracle and outputs classical transcripts (classi-
cal leakage) during its computation (e.g., during an interactive protocol). Inspired by
Zhandry’s work, we consider the purified view of such algorithms in the QROM. By
the deferred measurement principle [NC10], all measurements of A can be replaced by
unitaries if we introduce additional qubits for recording those measurement outcomes.
After this modification, roughly speaking, by the purified view of A we mean the quan-
tum state obtained by executing A from scratch in a coherent way, in which the sam-
pling of the oracle and intermediate measurements are deferred. The formal definition
follows.

Definition 2.1 (Purified view of algorithms with classical leakage in the QROM).
Let A be an algorithm with quantum access to a random oracle h : X → Y that
takes as classical input b chosen randomly from some set B with probability pb, and
(possibly) outputs classical transcripts c (perhaps produced in several steps) during its
computation. Suppose A consists of a sequence of unitaries and query operators (but no
measurements). For ease of notation, we represent A as a sequence V1, . . . , Vn, where
n is the size of A and each Vi is either a unitary operator or a query operator4. Let
B be the input register, W be the workspace register, C be the transcript register, and
H be the oracle register consisting of Hx for all x ∈ X while the content of each Hx

stores h(x). The purified view of A, denoted by |ψn〉, is defined as

|ψn〉 := VnVn−1 . . . V1|ψ0〉,

where

|ψ0〉 := 1
√

|Y||X |

∑

b∈B,h∈YX

√
pb|b〉B |0〉W |h〉H |0〉C .

Purified View of the Sender in Commitments. We now apply Definition 2.1 to senders
in commitments as follows. Let A be the sender’s algorithm; the register B stores the
input bit b ∈ {0, 1}, the register C stores the classical commitment message com, and

4 Since A takes b as input, each Vi is defined to be a controlled-unitary with the control bit b.
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part of the register W stores the classical (resp. quantum) decommitment message in
the QCCC (resp. CCQD) model.

In a seminal work [Zha19], Zhandry observes that any d-query algorithm in the
QROM has a sparse Fourier representation. In this work, we closely follow the
rephrased version based on [ACC+22] for our use.

Definition 2.2 (Non-zero queries in Fourier basis). Let Y be a finite abelian group
and Ŷ be the dual group. For any ĥ ∈ ŶX , we define the size of ĥ to be

|ĥ| := |{x : x ∈ X , ĥ(x) �= 0̂}|.
Definition 2.3 (The computational and the Fourier basis). Let Y be a finite abelian
group with cardinality M . Let {|y〉}y∈Y be an orthonormal basis of C

M . We refer to
this basis as the computational basis. Let Ŷ be the dual group which is known to be
isomorphic to Y . Recall that a member ŷ ∈ Ŷ is a character function (i.e., a function
from Y to the multiplicative group of non-zero complex numbers). The Fourier basis
{|ŷ〉}ŷ∈Ŷ of xcvmkM is defined as

|ŷ〉 = 1√
M

∑

y

ŷ(y)∗|y〉 and |y〉 = 1√
M

∑

y

ŷ(y)|ŷ〉.

Lemma 2.4 (Sparse representation [Zha19], rephrased). For any d-query algorithm
A with classical leakage in the QROM with the oracle h : X → Y , the purified view of
A can be written as a (normalized) quantum state in the form of

|ψ〉 =
∑

w,c,ĥ:|ĥ|≤d

αw,c,ĥ|w〉W |ĥ〉H |c〉C ,

where W,H , and C, in order, denote the workspace of A, the oracle register, and the
register recording the classical leakage.

When Y is a product of groups, i.e., Y = Yk
◦ for some integer k ≥ 1 and abelian

group Y◦, then we immediately have the following corollary.

Corollary 2.5. For any d-query algorithm A with classical leakage in the QROM with
the oracle h : X → Yk

◦ , the purified view of A can be written as a normalized quantum
state in the form of

|ψ〉 =
∑

w,c,ĥ◦:|ĥ◦|≤dk

αw,c,ĥ◦ |w〉W |ĥ◦〉H |c〉C ,

where ĥ◦ ∈ ŶX
◦ and W,H and C, in order, denotes the workspace of A, the oracle

register, and the register recording the classical leakage.

Definition 2.6 (Oracle support). For any quantum state |φ〉 = ∑
w,ĥ αw,ĥ|w〉W |ĥ〉H

defined on an arbitrary register W and the oracle register H , define the oracle support
in the Fourier basis of |φ〉 as

ŝuppH(|φ〉) := {ĥ | ∃w : αw,ĥ �= 0}.
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Let ĥH
max(|ψ〉) denote the function ĥ ∈ ŝupp(|φ〉) that has the largest size |ĥ| (if such

function is not unique, by default we pick the lexicographically first one). The definition
extends naturally when the register W does not exist.

Definition 2.7 (Quantum ε-heavy queries [ACC+22]). For any x ∈ X , define the
projector

Πx :=
∑

ŷ∈Ŷ\{0̂}
|ŷ〉〈ŷ|Hx

.

Given a quantum state |φ〉 over registers W and H , the quantum heaviness of any
x ∈ X is defined as

w(x) := ‖Πx|φ〉‖2
,

i.e., the quantum heaviness of x is the probability of obtaining a non-0̂ outcome while
measuring Hx in the Fourier basis. We call x a quantum ε-heavy query if w(x) ≥ ε.

2.2 Polynomial Compatibility Conjecture

In this section, we formally describe the Polynomial Compatibility Conjecture (PCC)
of [ACC+22]. There are two equivalent formulations of this conjecture; one is based on
low-degree polynomials, and the other is based on quantum states.

To keep the notation clean in this subsection, we identify X with [N ].

The Polynomial Formulation. Recall that for any f : YN → C, it can be written in
terms of its Fourier transform

f(x) =
∑

χ∈ŶN

f̂(χ)
N∏

i=1

χi(xi),

where x = x1|| . . . ||xN . The degree of a character χ ∈ ŶN is deg(χ) = |{i ∈ [N ] |
χi �= 0̂}|, and the degree of f is deg(f) = max{deg(χ) | f̂(χ) �= 0}. The �2-norm of
a function f is defined as ‖f‖2 :=

√
Ex←YN |f(x)|2. We say that f is normalized if

‖f‖2 = 1. The influence of variable i on f is Infi(f) =
∑

χ∈ŶN

χi �=0̂

|f̂(χ)|2.

Conjecture 2.8. (Polynomial Compatibility). There exists a finite abelian group Y and
a function δ(d) = 1/poly(d) such that the following holds for all d,N . Let F and G
be two distributions of functions from YN to C

5 such that the following holds for all
f ∈ supp(F) and g ∈ supp(G).

– Unit �2 norm: f and g have �2-norm 1.
– d-degrees: deg(f) ≤ d and deg(g) ≤ d.
– δ-influences on average: For all i ∈ [N ], we have Ef←F[Infi(f)] ≤ δ and

Eg←G[Infi(g)] ≤ δ, where δ = δ(d).

Then, there is an f ∈ supp(F), g ∈ supp(G), and x ∈ YN such that f(x) · g(x) �= 0.

5 As shown in [ACC+22], regardless of the image being R or C, the conjectures are equivalent
up to a constant factor in δ. For convenience, we use the version with C.
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Here we describe an equivalence between quantum states and polynomials. In
Sect. 4, we first use the formulation of quantum states. After proving that the states
possess certain properties, we will convert the states into polynomials by Lemma 2.12,
which enables us to apply Conjecture 2.8. For completeness, we provide relevant defi-
nitions below; we refer readers to Sects. 4 and 5 in [ACC+22] for more details.

Definition 2.9 ((Y, δ, d,N)-state). Let H be a register over the Hilbert space C
YX

,
where |X | = N . A quantum state |ψ〉 over registers W and H is a (Y, δ, d,N)-state if
it satisfies the following two conditions:

– d-sparsity: |ĥH
max(|ψ〉)| ≤ d. In other words, for any measurement of the registers

H in the Fourier basis, the oracle support in the Fourier basis (as defined in Defini-
tion 2.6) is at most d (note that this is regardless of the basis in which we measure
the register W ).

– δ-lightness: For every x ∈ X , it holds that w(x) ≤ δ.

Definition 2.10 (State polynomial). For a (normalized) quantum state |ψ〉 over the
register H , the state polynomial of |ψ〉 is the function fψ : YN → C defined by

fψ(h) = |Y|N/2 · 〈ψ|h〉 =
∑

χ∈ŶN

〈ψ|χ〉
N∏

i=1

χi(hi). (5)

Note that ‖fψ‖2 = 1.

Definition 2.11 (State polynomial distribution). For a (normalized) quantum state
|ψ〉 over registers W,H , the state polynomial distribution of |ψ〉 is the distribution Fψ

over (normalized) functions f which is sampled by measuring W in the computational
basis and then taking the (normalized) state polynomial corresponding to the residual
collapsed state over the register H . Explicitly, if |ψ〉WH =

∑
w,ĥ αwĥ|w〉W |ĥ〉H , then

the support set of Fψ consists of the state polynomial fΨw
of the normalized state

|ψw〉 :=
∑

ĥ αwĥ|ĥ〉H/
∥
∥
∥
∑

ĥ αwĥ|ĥ〉H

∥
∥
∥ for each w. The probability of each fΨw

is

defined to be
∥
∥
∥
∑

ĥ αwĥ|ĥ〉H

∥
∥
∥

2

.

Lemma 2.12. Let Fψ be the state polynomial distribution of an arbitrary (Y, δ, d,N)-
state |ψ〉. Then the following folds.

1. Unit �2 norm: f has �2-norm 1 for every f : YN → C in the support set of Fψ .
2. d-degrees: deg(f) ≤ d for every f : YN → C in the support set of Fψ .
3. δ-influences on average: For all i ∈ [N ], we have Ef←Fψ

[Infi(f)] ≤ δ.

2.3 The Donoho-Stark Uncertainty Principle

We now explain the Donoho-Stark support-size uncertainty principle [DS89]. For our
purpose, we use the following rephrased version from [WW21]. Informally, the uncer-
tainty principle states that one cannot simultaneously obtain high-precision informa-
tion of a state in the computational and Fourier basis. Consider the purified oracle as
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a motivating example. The oracle register in the Fourier basis starts with the all-zero
state, while it is uniformly random in the computational basis. This phenomenon can
be interpreted as the following: the algorithm knows the oracle with perfect precision
in the Fourier basis while having absolutely no precision in the computational basis.
Lemma 2.13 below provides a trade-off between the achievable precision in the com-
putational and Fourier bases in terms of the size of supports.

Lemma 2.13 (Theorem 3.1 in [WW21]). LetY be a finite abelian group. If f : Y → C

is a non-zero function and f̂ : Ŷ → C denotes its Fourier transform, then

| supp(f)| · | supp(f̂)| ≥ |Y|.

Corollary 2.14. Given f0, f1 : YX → C such that deg(f0),deg(f1) ≤ d, we have

| supp(f0) ∩ supp(f1)| ≥ |Y||X |

O (d|X |2d|Y|2d)
.

Proof. Let f := f0 · f1. It’s easy to see that x ∈ supp(f) if and only if x ∈ supp(f0)∩
supp(f1). Since the degree of each f0 and f1 is at most d, their Fourier expansion can
be written as

fb(x) =
∑

χ∈ŶN :deg(χ)≤d

f̂b(χ)
N∏

i=1

χi(xi)

where b ∈ {0, 1}.
Therefore, in the Fourier expansion of f , the characters with non-zero coefficients

are of degree at most 2d. Then the size of supp(f̂) is at most the number of characters
of degree at most 2d. Namely,

| supp(f̂)| ≤
2d∑

i=0

(|X |
i

)

(|Y| − 1)i ≤ (2d + 1) · (|X ||Y|)2d
.

Together with Lemma 2.13, this finishes the proof. ��

2.4 Non-interactive Commitments

Below we define non-interactive commitments.

Models. By QCCC we refer to the quantum-computation classical-communication
model in which all the communications (including the commitment and decommit-
ment messages) are classical. By CCQDwe refer to the classical-commitment quantum-
decommitment model, which is only defined for commitment schemes.

We now define non-interactive commitments with an extremely weak notion of
binding. To break the weak binding, the adversary needs to prepare two decommitments
for both b = 0, 1 such that both will be accepted if used during the decommitment.
Using this notion makes our negative result stronger.
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Definition 2.15 (Non-interactive weakly-binding commitments in CCQD model).
A non-interactive commitment in the CCQD model consists of two quantum algorithms
Sen,Rec. On input b ∈ {0, 1}, the sender Sen(b, 1κ) starts with poly(κ) zero registers,
poly(κ) qubits of advice, and produces classical commitment message com and quan-
tum decommitment message dec. The receiver (who also has poly(κ) zero registers)
receives (com, b, dec) and either accepts or rejects.

– Completeness. Pr[Rec(com, b, dec) = 1 | b ← {0, 1}, (com, dec) ← Sen(b)] = 1.
– Hiding. We say Rec∗ breaks hiding with advantage ε, if by picking b ← {0, 1} at
random, Rec∗(com) can correctly guess b with probability (1 + ε)/2. We call Sen
hiding, if for every poly(κ)-size quantum circuit Rec∗ the advantage of Rec∗ is at
most negl(κ).

– Weak binding. We say (com, dec0, dec1) breaks the weak binding, if

Pr[Rec(com, b, decb) = 1] = 1 for both b ∈ {0, 1}.

We say that Rec has weak binding, if for all sequence {(comκ, dec0,κ, dec1,κ)κ}
where comκ, dec0,κ, dec1,κ are of lengths at most poly(κ), for all but finitely many
κ, (comκ, dec0,κ, dec1,κ) does not break the weak binding of Rec.

When the decommitment messages in a CCQD scheme are also classical, we say
the resulting scheme is in the QCCC (quantum-computation classical-communication)
model.

Note that in the definition above, we are implicitly working with poly-size (non-
uniform) adversaries in our notion of weak binding. That is because a non-uniform
adversary might simply know the best way to open into both cases of 0, 1 without
computational limitations. Having said that, even if we further weaken the security and
ask for a uniform polynomial-time adversaries, it will not make a difference for a black-
box separation (of an assumption behind non-interactive commitments). The reason is
that the definition of black-box constructions (see below) requires the security reduction
to work whenever it is given any oracle adversary regardless of its complexity.

Definition 2.16. A quantum black-box construction of weakly-binding non-interactive
commitments from (length preserving) one-way functions is a pair of uniform QPT
oracle-aided quantum algorithms (G,S) as follows.

– For every abelian group Y and every f : Yκ �→ Yκ, the oracle-aided quantum algo-
rithm Gf = (Gf

S , Gf
R) implements a quantum commitment scheme (both for the

sender and receiver).
– For every abelian group Y , for every f : Yκ �→ Yκ, and any oracle adversary
A = (Ah,Ab) who breaks the hiding or the weak binding of Gf , the algorithm
Sf,A inverts f with a non-negligible probability. In particular, S consists of two
algorithms S = (Sh, Sb), and there is a function δ = poly(ε/κ) such that: (1) if
Ah ε-breaks the hiding of Gf

S , then Sf,Ah

h inverts f with probability δ = poly(ε/κ),
and (2) if Ab = (comκ, dec0,κ, dec1,κ) breaks the weak binding of Gf

R, then Sf,Ab

b

inverts f with probability δ = poly(1/κ).
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Remark 2.17. First, restricting the OWFs to have the same input and output spaces is
without loss of generality. Because according to the definition of black-box reduction,
the construction of the commitment scheme should work for any OWF. Hence, toward
a contradiction, it’s sufficient to show that the commitment scheme is impossible to be
constructed from some specific OWF in a black-box way.

Next, we note that in the quantum setting, the quantum oracle access to a classical
function depends on the underlying abelian group. By default, we assume Y = Z2 and
f : {0, 1}κ �→ {0, 1}κ simply uses Z

κ
2 as the group used for writing the answers in the

registers (by adding them in Z
κ
2 ). However, when we say a black-box construction from

OWFs exists, it means that there is a version of the construction for any abelian group
G (of constant size) instead of Z2, in which case the one-way function would look like
f : Gκ �→ Gκ. Moreover, there are finite groups of any order, so assuming the input and
output spaces of the OWFs have group structure is also without loss of generality.

3 Non-uniform Hardness of Inverting Large Sets of Oracles

In this section, we analyze a variant of the standard random functions inversion game
in which the function is uniformly chosen from a specific set of functions instead of the
set of all functions. In particular, we formalize and prove Theorem 1.2 in this section.

We consider the adversaries which are given classical or quantum advice and have
quantum query access to the oracle. Arguments implicit in [HXY19] can be used for
obtaining similar results but only for classical advice. Our proof, however, uses defini-
tions and technical tools from [CGLQ20], and even in the case of classical advice we
can obtain sharper bounds (than those obtained by arguments implicit in [HXY19]).

3.1 Oracle Puzzles with Advice

Definition 3.1 (Oracle algorithm with advice). An (S, T )-oracle-algorithm A = (A1,
A2) with (oracle-dependent) advice consists of two procedures:

– |α〉 ← A1(f), which is an arbitrary function of the oracle f , and outputs an S-qubit
quantum state |α〉;

– |ans〉 ← Af
2 (|α〉, ch), which is a computationally unbounded algorithm that takes

advice |α〉, a challenge ch, makes at most T quantum queries to f , and outputs an
answer |ans〉, which we measure in the computational basis to obtain a classical
answer ans if needed.

Furthermore, we distinguish the following cases:

– If the output of A1 is classical, we call it a quantum algorithm with classical advice
or an (S, T )-algorithm in the AI-QOM (auxiliary input quantum oracle model);

– If the output of A1 is quantum, we call it a quantum algorithm with quantum advice
or an (S, T )-algorithm in the QAI-QOM (quantum auxiliary input quantum oracle
model);

– If S = 0, we call it a quantum algorithm without advice, or an algorithm in the
QOM (quantum oracle model).
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In the following interactive setting, the two terms “algorithm” and “adversary” will be
used interchangeably.

Definition 3.2 (Oracle puzzle). An oracle puzzle G = (Chal, f) is specified by a chal-
lenger Chal = (Samp,Ver) and a distribution f over oracles. In the beginning, an
oracle is sampled f ← f and

– ch ← Sampf (r) is a deterministic classical algorithm that takes randomness r as
input and outputs a classical challenge ch.

– Verf (r, ans) is a deterministic classical algorithm that takes as the input ans and
outputs a decision b indicating whether the puzzle is won by the adversary.

For every algorithm with advice, i.e., A = (A1,A2), we define

Af
win := Verf

(
r,Af

2 (A1(f),Sampf (r))
)

to be the binary variable indicating whether A wins the oracle puzzle.
We define the security loss in the AI-QOM, QAI-QOM of an oracle puzzle G =

(Chal, f) to be
δ = δ(S, T ) := sup

A
Pr

f←f ,r,A
[Af

win = 1],

where A in the probability denotes the randomness of the (quantum) algorithm, and
supremum is taken over all (S, T )-adversaries A in the AI-QOM/QAI-QOM respec-
tively. We say an oracle puzzle G is (1 − δ)-secure if its security loss is at most δ.

In particular, we focus on a class of oracle puzzles in which the adversary can verify
the answer by itself.

Definition 3.3 (Publicly-verifiable security game). We call an oracle puzzle to be

publicly-verifiablewith verification time TVer, ifVer
f (r.·) = Ṽer

f
(ch, ·) for some deter-

ministic classical algorithm Ṽer
f
where ch is determined by r and TVer is the upper

bound on the number of f queries for computing Ṽer
f
(ch, ·).

3.2 Multi-instance Oracle Puzzles

Definition 3.4 (Multi-instance oracle puzzle). For any oracle puzzle G = (Chal, f)
and any positive integer k ≥ 1, we define the multi-instance oracle puzzle G⊗k =
(Chal⊗k, f), where Chal⊗k is given as follows

– For i ∈ [k], do:
1. Sample fresh randomness ri;
2. Compute chi ← Chal.Sampf (ri) and send it to the adversary;
3. Give the adversary oracle access to f until the adversary submits a quantum

state |ansi〉;
4. Let {P0, P1} be a projective measurement where P1 defines all ans’s such that

Ver(r, ans) = 1 and P0 = I − P1. Measure |ansi〉 in {P0, P1} to get the quan-
tum state |ans′i〉 and store the result in bi ∈ {0, 1};
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5. Send |ans′i〉 back to the adversary;
– Output b1 ∧ b2 ∧ · · · ∧ bk;

Definition 3.5 (Multi-instance adversary). A (k, S, T )-adversary with advice for a
multi-instance oracle puzzle G⊗k = (Chal⊗k, f) consists of A = (A1,A2), where the
interaction between A2(|α〉) and Chal⊗k is defined as follows:

– |α〉 ← A1(f), which is an arbitrary (unbounded) function of f and outputs an S-
qubit quantum state |α〉 for A2;

– For each i ∈ [k],
1. A2 is given a challenge chi and the oracle access to f from Chal⊗k;
2. A2 makes at most T queries to f and prepares |ansi〉;
3. A2 sends |ansi〉 to Chal⊗k and gets |ans′i〉 back;

– Finally, Chal⊗k outputs a bit b.

In particular, if S = 0, we also call it a (k, T )-adversary (without advice), or a (k, T )-
algorithm in the QOM. In the rest of the section, we sometimes use such notation when
it is clear from the context.

For any A which is a (k, S, T )-adversary with advice, we define A⊗k,f
win to be the

binary variable indicating whether A wins the multi-instance oracle puzzle.
We say a multi-instance oracle puzzle G⊗k is (1− δ)-secure6 in the QOM if for any

(k, T )-adversary A (without advice),

Pr
f,A,Chal⊗k

[A⊗k,f
win = 1] ≤ δk = δ(k, T )k,

where A in the probability denotes the randomness of the algorithm, Chal⊗k in the
probability denotes the randomness of the challenger.

3.3 Function-Inversion Oracle Puzzles

Definition 3.6 (Function inversion oracle puzzle). The oracle puzzleGInvSet,N,M,R =
(Chal, f) parameterized by integers R,N,M ≥ 0 is defined as follows:

– f is a uniform distribution over F ⊆ [M ][N ] such that |F| is at least MN−R.
– Sampf chooses x from [N ] uniformly at random, and outputs ch = f(x).
– Verf (x, x′) outputs 1 if f(x) = f(x′).

Notice that GInvSet,N,M,R is publicly-verifiable with TVer = 1. When R = 0, as a
special case, the oracle puzzle corresponds to the standard random functions inversion
game denoted by GInvAll,N,M .

In particular, [CGLQ20] prove the security of multi-instance oracle puzzle
G⊗k

InvAll,N,M against (k, T )-adversaries in the quantum random oracle model (QROM).
The formal statements are presented as follows.

6 Actually, the security loss here is at most δk instead of δ. We follow this convention for ease
of the presentation.
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Lemma 3.7 (Lemma 5.2 in [CGLQ20]). G⊗k
InvAll,N,M is (1 − δ(k, T ))-secure7 in the

QROM, where

δ(k, T ) = O

(
kT + T 2

min{N,M}
)

.

3.4 Proof of One-Wayness Under Quantum Advice

The following lemma reduces the multi-instance oracle puzzle G⊗k against a (k, T )-
adversary (without advice) to the (single-instance) oracle puzzle G against an (S, T )-
adversary (with quantum advice).

Lemma 3.8 (Corollary 4.14 in [CGLQ20]). There exists a universal constant c > 0
such that the following holds. Given a publicly-verifiable oracle puzzle G with verifica-
tion time TVer. Given an (S, T )-adversary A (with quantum advice) for G with winning
probability δ, there exists a (k, T ′)-adversary A′ (without advice) for the multi-instance
oracle puzzle G⊗k with winning probability at least δ′ ≥ 2−�S · (δ/4)k+1 for any
positive integer k ≥ 1, where T ′ = 2�(T + TVer) and � = c · log(k + 1)/δ.

Fact 3.9 (Fact 4.15 in [CGLQ20]). Given any real C ≥ 0,D ≥ 2. If k0 = C+D+14
and k = 2k0 log k0, then we have k ≥ C log(k + 1) + D.

Now, we are ready to prove the function inversion oracle puzzle GInvSet,N,M,R is
secure against an (S, T )-adversary in the QAI-QOM.

Theorem 3.10. For any integer R ≥ 0, the oracle puzzle GInvSet,N,M,R is (1 −
δ(S, T ))-secure in the QAI-QOM, where

δ(S, T ) = Õ

(

3

√
(S + R logM) · T + T 2

min{N,M}

)

.

In particulate, if S(κ) = poly(κ), T (κ) = poly(κ), R(κ) = poly(κ), N = 2Θ(κ), and
M = 2Θ(κ), the security loss δ(κ) will be negligible in κ.

Proof. Suppose there exists an (S, T )-adversary A for GInvSet,N,M,R = (Chal, f) with
winning probability δ = δ(S, T ). Then, by Lemma 3.8, there exists a (k, T ′)-adversary
A′ for G⊗k

InvSet,N,M,R with winning probability at least δ′ ≥ 2−�S · (δ/4)k+1 for any
k ≥ 1, where T ′ = 2�(T + TVer) and � = c · log(k + 1)/δ.

Here, we construct an adversary A′′ for G⊗k
InvAll,N,M by using A′ as a black box.

When A′′ receives the challenge f(x), it simply runs A′f (f(x)) and outputs whatever
A′f (f(x)) outputs. The winning probability of A′′, denoted by δ′′, is at least

δ′′ ≥ Pr[f ∈ supp(f)] · Pr[A′f (f(x)) wins | f ∈ supp(f)]

≥ M−R · δ′ ≥ 2−�S−R log M · (δ/4)k+1,

where supp(f) denotes the support of f .

7 Recall that by our convention, the security loss is at most δ(k, T )k.
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By the definition of multi-instance security of G⊗k
InvAll,N,M , for all k ≥ 1 we have

δ(k, T ′)k ≥ δ′′ ≥ 2−�S−R log M · (δ/4)k+1 ≥ 2−�S−R log M · (δ0/4) · (δ/4)k,

where 1/N ≤ δ0 ≤ δ is the winning probability of an adversary that outputs a random
answer without advice or making any query.

Pick k0 = c
δ S + R logM + log(1/δ0) + 16 and k = 2k0 log k0. By Fact 3.9, let

C = c
δ S and D = log(1/δ0) + 2 + R logM , we have k ≥ C log(k + 1) + D =

c log(k + 1)S/δ + log(1/δ0) + 2 + R logM .
Therefore, we have

δ(k, T ′)k ≥ 2−�S−R log M · (δ0/4) · (δ/4)k
= 2−c·log(k+1)S/δ · 2− log(1/δ0)−2−R log M · (δ/4)k
≥ (δ/8)k

or equivalently
δ ≤ 8δ(k, T ′),

where k = Õ(S/δ + R logM) and T ′ = Õ(T + TVer)/δ.
By Lemma 3.7, it holds that

δ ≤ 8δ(k, T ′) = Õ

(
(S

δ + R logM) · T
δ + T 2

δ2

min{N,M}

)

which leads to

δ = Õ

(

3

√
(S + R logM) · T + T 2

min{N,M}

)

.

��

4 Quantum Black-Box Separation from One-Way Functions

In this section, assuming Conjecture 2.8 is true, we show that there is no black-box
construction of non-interactive commitments (with perfect completeness) from OWFs
in the CCQD model. We emphasize that all known constructions of NICs that we are
aware of have perfect completeness. The following theorem formalizes, and in fact
generalizes, Theorem 1.1. In particular, Theorem 1.1 stated the result for the QCCC
model (in which both messages are classical), while Theorem 4.1 allows the model to
be CCQD, which lets the decommitment message to be quantum.

Theorem 4.1 (Black-box separation of CCQD commitments from OWFs). Assum-
ing Conjecture 2.8, there is no quantum black-box construction of non-interactive com-
mitments in the CCQD model from one-way functions.
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We need the following notion characterizing the cardinality of sets of functions.

Definition 4.2 (α-flat distributions). For α ∈ [0, 1], a distribution f over functions
from X to Y is called an α-flat distribution if the size of the support is at least an α
fraction of YX , i.e., | supp(f)|/|YX | ≥ α, and f is uniform over its support set.

Next, we introduce a useful lemma from [ACC+22] that will help us argue about
the efficiency of our attacks.

Lemma 4.3 (Efficiently learning quantum-heavy queries [ACC+22]).) Let A be an
algorithm that asks at most d quantum queries to the random oracle h : X → Y and
outputs a classical message com. For any 0 < ε < 1, there exists a deterministic learn-
ing algorithm that learns a list L of (classical) query-answer pairs from the random
oracle (i.e., a partial function), such that the following two conditions hold.

1. Efficiency of the learner: E [|L|] ≤ d/ε, where the expectation is over the random-
ness of the oracle and the algorithm A.

2. Learning quantum heavy queries: When the learner stops and learns a list L, there
is no x /∈ QL that is quantum ε-heavy in the purified view of A conditioned on
knowing L and com, where QL denotes the domain of L.
The rest of the section is dedicated to proving Theorem 4.1. For readability and sim-

plicity of the presentation, we first assume the abelian group associated with the random
oracle to be Z

κ
2 and Conjecture 2.8 holds for Z2. For the general case in which Conjec-

ture 2.8 holds for some abelian group Y◦, we instead pick the OWFs in Definition 2.16
as f : Yκ

◦ �→ Yκ
◦ . The following analysis still holds by replacing Z2 with Y◦.

We will use the following lemma as the key to our proof of Theorem 4.1.

Lemma 4.4. If Conjecture 2.8 is true, then for any quantum-black-box implementation
of non-interactive commitments from oracle f : {0, 1}κ �→ {0, 1}κ in which the sender
asks d quantum oracle queries, there are cheating strategies Sen∗,Rec∗ such that at
least one of the following holds.

1. Rec∗ asks d oracle queries such that: if the f is a random oracle, then Rec∗ has
a non-negligible distinguishing advantage in breaking the hiding property of the
commitment scheme.

2. There is a 2− poly(κ)-flat distribution f over the oracles such for all f ← f , there
exists (an auxiliary information) (com, dec0, dec1) such that com is classical and
dec0, dec1 are quantum messages and (com, dec0, dec1) breaks the weak binding of
the scheme relative to f .8

Proof. Suppose (Sen,Rec) is a quantum-black-box implementation of non-interactive
commitment from one-way functions in the CCQD model.

Construction 4.5 (The cheating receiver Rec∗ with parameter ε). Let d be the num-
ber of oracle queries asked by the sender. Given the commitment com which commits
to a random bit b ∈ {0, 1}, the description of the cheating receiver Rec∗ is as follows:

8 One can think of (com, dec0, dec1) as a cheating sender Sen∗.
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1. LetA in Lemma 4.3 be Sen in which the sender commits to a random bit b. The output
of A will be the commitment com. The cheating receiver Rec∗ runs the learning
algorithm in Lemma 4.3 over A with the parameter ε = 1

10δ(dκ) , where δ(·) is the
function defined in Conjecture 2.8 for Y = Z2.

2. The cheating receiver Rec∗ outputs the more likely input bit b ∈ {0, 1} according
to the purified view (i.e., conditioned on com and the learned classical queries L of
the oracle) as its own output bit.

If the conditional distribution of input bit b has already been noticeably biased after
the learning algorithm, then Rec∗ would have a decent chance of breaking the hiding.
Let E be the event that the distinguishing advantage

1
2

|Pr [b = 0 | com,L] − Pr [b = 1 | com,L]|

is non-negligible holds. Then we either have Pr[E ] > 1/κ or Pr[E ] ≥ 1 − 1/κ. If
the former holds, it implies that Rec∗ has a non-negligible distinguishing advantage
and thus the proof is done. Therefore, we assume that we are in the latter case. By
Lemma 4.3 and an averaging argument, the number of queries asked by Rec∗ satisfies

E[|L| | E ] ≤ E[|L|]
Pr[E ] ≤ 1.01d

ε

for sufficiently large κ. Then by Markov’s inequality, we have

Pr
[

|L| ≥ κ2 · 1.01d
ε

| E
]

≤ 1
κ2

.

Putting things together, we conclude that with probability at least 1 − O
(
1/κ2

)
, all of

the following events hold:

– Rec∗ is efficient: Rec∗ asks at most 1.01κ2d/ε = poly(d, κ) queries.
– No quantum ε-heavy query left: for all x �∈ QL, w(x) < ε where w(·) is defined in

Definition 2.7.
– b = 0, 1 are almost as likely: |Pr[b = 0 | com,L]−Pr[b = 1 | com,L]| = negl(κ).

Let G denote the event that all the above three events hold.
Next, assuming that Rec∗ fails, we describe the cheating sender Sen∗ as follows.

Construction 4.6 (The cheating sender and the flat distribution). Now, we describe
the cheating sender’s strategy Sen∗ and a corresponding α-flat distribution f .

1. The cheating sender Sen∗ samples (com,L) according to the first step of the cheat-
ing receiver Rec∗ in Construction 4.5.
Before proceeding to the next step, we introduce some notations. Consider the puri-
fied view |Φcom,L〉 of the honest sender of the commitment conditioned on the (clas-
sical) commitment message com and the list L. Let |Φ0,com,L〉 and |Φ1,com,L〉 be the
purified views further conditioned on b being 0 and 1. That is,

|Φcom,L〉 =
√

Pr[b = 0 | com,L]|Φ0,com,L〉 +
√

Pr[b = 1 | com,L]|Φ1,com,L〉.



168 K.-M. Chung et al.

Let X ′ := X \ QL and N ′ := |X ′| = |X | − |L|. Let H ′ be the oracle register
corresponding to X ′. Note that conditioning on the list L, the content of the ora-
cle registers corresponding to QL is fixed. So they are not entangled with H ′. By
abusing notation, for b ∈ {0, 1}, we also denote by |Φb,com,L〉 the state obtained
by discarding the registers corresponding to QL. Let F0 be the state polynomial
distribution of |Φ0,com,L〉. Define F1 similarly.

2. Find f0 ∈ supp(F0), f1 ∈ supp(F1) such that f0 · f1 is not constant zero. If no
such functions exist, then abort.
Let F ′ be the set of all h′ ∈ YX ′

such that (f0 · f1)(h) �= 0, i.e.,

F ′ := {h′ ∈ YX ′ | (f0 · f1)(h) �= 0}.

The α-flat distribution f will be uniform over the set F ⊆ YX which contains all
functions in F ′ combined with L, i.e.,

F := {h ∈ YX | ∃h′ ∈ F ′ : h = h′ ∪ L}.
3. The cheating sender Sen∗ sends com as the commitment and uses the oracle-

dependent quantum advice decb to decommit com into b ∈ {0, 1}.
Suppose G occurs in the rest of the proof. Before using Lemma 2.12 to relate quan-

tum states with polynomials, we first show that the purified views satisfy certain prop-
erties. First, by Corollary 2.5, the purified views satisfy

|ĥH′
max(|Φb,com,L〉)| ≤ d · κ

for b ∈ {0, 1}, where the degree is defined over Z2. Next, notice that after the first step,
none of the conditional probability of each input is greater than 2/3 for sufficiently
large κ. That is, both probabilities Pr[b = 0 | com,L] and Pr[b = 1 | com,L] are
between 1/3 and 2/3. Therefore, given that the purified view |Φcom,L〉 has no quantum
ε-heavy query in X ′, we can conclude that both |Φ0,,,L〉 and |Φ1,,,L〉 have no quantum
3ε-heavy query in X ′. By our choice of ε, we have 3ε ≤ δ(dκ). Consequently, we
have both |Φ0,,,L〉 and |Φ1,,,L〉 are (Z2, δ(dκ), dκ,N ′)-states. By Lemma 2.12, every
f : Z

N ′
2 → C in the support set of F0 satisfies the following properties.

1. Unit �2 norm: f has �2-norm 1.
2. dκ-degrees: deg(f) ≤ dκ.
3. δ-influences on average: For all i ∈ [N ′], we have Ef←F0 [Infi(f)] ≤ δ(dκ).

The same conditions hold for F1 as well. Assuming Conjecture 2.8 holds for Y = Z2,
there must exist f0 ∈ supp(F0) and f1 ∈ supp(F1) such that f0 · f1 �≡ 0.

Finally, we show that the cardinality of F is large. By Corollary 2.14, it holds that
the size of F ′ satisfies |F ′|

|YX ′ | ≥ 1
O (dκ|X ′|2dκ|Y|2dκ)

.

Furthermore, note that the size of the sub-domain QL fixed by L satisfies |L| ≤
100d/ε = poly(κ, d). Therefore, it holds that

|F|
|YX | =

|F ′|
|YX | ≥ |Y|−|L| · 1

O (dκ|X ′|2dκ|Y|2dκ)
= 2− poly(κ,d) = 2− poly(κ),

which means the uniform distribution over F is a 2− poly(κ)-flat distribution. ��
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Finally, we use Lemma 4.4 to prove Theorem 4.1.

Proof of Theorem 4.1. Suppose there exists a black-box construction (G,S) of non-
interactive commitments from OWF f : {0, 1}κ �→ {0, 1}κ (as in Definition 2.16). By
Lemma 4.4, at least one of the following holds.

1. Let f be a random oracle. There exist Rec∗ and Sf,Rec∗
h such that Sf,Rec∗

h breaks the
one-wayness of f by asking poly(κ) queries to f . However, then one can combine
the algorithms S and Rec∗ as a single algorithm that inverts a random oracle f
with non-negligible probability by asking poly(κ) queries to it. This contradicts the
known optimality of Grover search [BBBV97].

2. There exist Sen∗ and Sf,Sen∗
b such that Sf,Sen∗

b breaks the one-wayness of f , where
f has a 2−R(κ)-flat distribution with respect to Sen∗, where R(κ) = poly(κ). In
detail, for each query asked to Sen∗, it outputs polynomially many classical bits
as the commitment and polynomially many qubits as for the two decommitment.
By assumption, Sf,Sen∗

b asks only a polynomial number of queries to both f and
Sen∗, but the answer by Sen∗ is already fixed and so not worth asking them more
than once. The answers that Sen∗ provides could be interpreted as polynomial-size
quantum advice about the oracle f that is passed down to the security reduction S.
Putting things together, we conclude that Sf,Sen∗

b is an algorithm that inverts f with
non-negligible probability by asking S(κ) = poly(κ) number of queries and having
T (κ) = poly(κ) many bits of quantum advice about f . However, this contradicts
the one-wayness of f as proven in Theorem 3.10.

��
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Abstract. We obtain a black-box construction of non-interactive CCA
commitments against non-uniform adversaries. This makes black-box use
of an appropriate base commitment scheme for small tag spaces, vari-
ants of sub-exponential hinting PRG (Koppula and Waters, Crypto 2019)
and variants of keyless sub-exponentially collision-resistant hash func-
tion with security against non-uniform adversaries (Bitansky, Kalai and
Paneth, STOC 2018 and Bitansky and Lin, TCC 2018).

All prior works on non-interactive non-malleable or CCA commit-
ments without setup first construct a “base” scheme for a relatively small
identity/tag space, and then build a tag amplification compiler to obtain
commitments for an exponential-sized space of identities. Prior black-
box constructions either add multiple rounds of interaction (Goyal, Lee,
Ostrovsky and Visconti, FOCS 2012) or only achieve security against
uniform adversaries (Garg, Khurana, Lu and Waters, Eurocrypt 2021).

Our key technical contribution is a novel tag amplification compiler for
CCA commitments that replaces the non-interactive proof of consistency
required in prior work. Our construction satisfies the strongest known
definition of non-malleability, i.e., CCA2 (chosen commitment attack)
security. In addition to only making black-box use of the base scheme,
our construction replaces sub-exponential NIWIs with sub-exponential
hinting PRGs, which can be obtained based on assumptions such as
(sub-exponential) CDH or LWE.

1 Introduction

Non-malleable commitments [18] and their stronger counterparts CCA commit-
ments [12] are core cryptographic primitives that provide security in the presence
of “man in the middle” attacks. They ensure that a man-in-the-middle adver-
sary, that simultaneously participates in two or more protocol sessions, cannot
use information obtained in one session to breach security in another. They also
enable secure multi-party computation, coin flipping and auctions.

This work builds non-interactive CCA commitments, which involve just a sin-
gle commit message from the committer. We focus on the (standard) notion of
security against non-uniform adversaries, which necessitates that these commit-
ments be perfectly binding and computationally hiding. For these commitments,
c© International Association for Cryptologic Research 2023
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the perfect binding requirement is that for any commitment string c generated
maliciously with potentially an arbitrary amount of preprocessing, there do not
exist two openings to messages m and m′ such that m �= m′. The (computa-
tional) hiding property requires that for every pair of equal-length messages m
and m′, the distributions of commitments com(m) and com(m′) are computa-
tionally indistinguishable.

The notion of CCA security for commitments is defined analogously to
encryption schemes, except that the adversary is given access to a decommitment
oracle. However, unlike the case of encryption, non-interactive commitments
without setup do not allow for efficient decommitment given a trapdoor/secret
key. In more detail, the hiding game is strengthened significantly to give the
adversary oracle access to an inefficient decommitment/value function CCA.Val
where on input a string c, CCA.Val(tag, c) will return m if CCA.Com(tag,m; r) →
c for some r. The adversary must first specify a challenge tag tag∗, along with
messages m∗

0,m
∗
1. It is then allowed oracle access to CCA.Val(tag, ·) for every

tag �= tag∗, and can make an arbitrary (polynomial) number of queries before
and after obtaining the challenge commitment.1

This CCA-based definition is the strongest known definition of non-
malleability. In the non-interactive setting, the often-used definition of (con-
current) non-malleability with respect to commitment is a special case of this
definition where the adversay is only allowed to make parallel oracle queries once
it obtains the challenge commitment.

Prior Work on Non-malleable Commitments. There have been several results [4,
14,15,18,21–25,30,32,34–38,40–42,44] that gradually reduced the round com-
plexity and the cryptographic assumptions required to achieve non-malleable
commitments. In the non-interactive setting, Pandey, Pass and Vaikun-
tanathan [38] first obtained non-malleable commitments from a strong non-
falsifiable assumption. A lower bound due to Pass [39] demonstrated the dif-
ficulty of obtaining a non-interactive construction from standard assumptions.

Nevertheless, recent works of Lin, Pass and Soni [36], Bitansky and Lin [8],
Kalai and Khurana [29], Garg et al. [19] and Khurana [31] made progress towards
improving these assumptions. These works proceed in two steps: the first step
builds a “base” scheme supporting a small (typically, constant-sized) tag space
and the second step converts commitments supporting a small tag space to
commitments that support a much larger tag space.

Base Constructions. Three recent works [8,29,36] build non-interactive base
schemes: non-malleable commitments for a tag space of size c log log κ for a spe-
cific constant c > 0, based on various hardness assumptions. Specifically, Lin,
Pass and Soni [36] assume a sub-exponential variant of the hardness of time-
lock puzzles, and Bitansky and Lin [8] rely on sub-exponentially hard injective
1 The assumption that the commitment takes input a tag is without loss of generality

when the tag space is exponential. As is standard with non-malleable commitments,
tags can be generically removed by setting the tag as the verification key of a signa-
ture scheme, and signing the commitment string using the signing key.
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one-way functions that admit hardness amplification beyond negligible. Finally,
Kalai and Khurana [29] assume classically sub-exponentially hard but quantum
easy non-interactive commitments (which can be based, e.g., on sub-exponential
hardness of DDH), and sub-exponentially quantum hard non-interactive com-
mitments (which can be based, e.g., on sub-exponential hardness of LWE).

Tag Amplification. The second step, as discussed above, builds a tag amplfi-
ciation compiler that increases the tag space exponentially. Starting with non-
malleable commitments for a tag space of size c log log κ for a specific constant
c > 0 (or sometimes even smaller), multiple applications of this compiler yield
commitments for a tag space of size 2κ.

This step, which is also the focus of the current work, typically involves
encoding a single tag from a larger space into many tags from a smaller space,
and then committing to a given message several times, once w.r.t. each small
tag. In addition, an implicit/explict proof of consistency of these commitments
is provided, and this proof is required to hide the committed message. Such a
proof becomes challenging to implement in the non-interactive setting without
setup.

Nevertheless, tag amplification was obtained in [36] against uniform man-in-
the-middle adversaries based on sub-exponential non-interactive witness indis-
tinguishable (NIWI) proofs and keyless collision resistant hash functions against
uniform adversaries. It was also obtained in [8] against non-uniform man-in-
the-middle adversaries based on sub-exponential non-interactive witness indis-
tinguishable (NIWI) proofs and keyless collision resistant hash functions with
a form of collision resistance even against non-uniform adversaries. Somewhat
orthogonally, [31] obtained tag amplification from sub-exponential indistin-
guishability obfuscation and sub-exponential one-way functions, while avoiding
the need for keyless collision resistant hashing.

Black-Box Tag Amplification. Recently, [19] developed the first tag amplifica-
tion technique that only made black-box use of the base commitment. That work
additionally assumed (black-box access to) hinting PRGs and keyless collision
resistant hash functions against uniform adversaries. Hinting PRGs themselves
admit constructions from the CDH and LWE assumptions. Besides being black-
box , this was the first solution that did not rely on non-interactive witness
indistinguishable (NIWI) proofs, which so far are only known based on the hard-
ness of the decisional linear problem over bilinear maps [26], or derandomization
assumptions and trapdoor permutations [5], or indistinguishability obfuscation
and one-way functions [9]. However, GKLW only obtain security against uniform
adversaries.

But non-uniform security is often necessary when using non-malleable com-
mitments within a bigger protocol. For instance, round efficient secure multi-
party computation protocols in the plain model [1,2,6,10,13,27] against mali-
cious adversaries usually include a step where participants commit to their inputs
via a non-malleable/CCA commitment, in addition to providing a proof that
the CCA commitment is consistent with other messages sent in the protocol.
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In low-interaction settings such as those of super-polynomial secure MPC in
two or three [3] messages, these proofs of consistency are often simulated non-
uniformly, which ends up necessitating the use of non-malleable commitments
with security against non-uniform adversaries.

Our work addresses the following natural gap in our understanding of non-
interactive non-malleable/CCA commitments.

Is it possible to obtain black-box non-interactive CCA commitments against
non-uniform adversaries?

Our Results. This work provides a black-box approach to achieving non-
interactive CCA commitments with security against non-uniform adversaries,
by relying on keyless hash functions that satisfy collision-resistance against non-
uniform adversaries, and by overcoming seemingly fundamental limitations from
the prior work of [19]. In addition, our tag amplification technique achieves prov-
able security without the need for NIWIs as in prior work [8], and by instead
relying on a sub-exponentially secure variant of hinting PRGs, which can them-
selves be obtained from (sub-exponential) CDH or LWE just like their counter-
parts in [33].

2 Overview of Techniques

We now give an overview of our amplification technique, where the goal is to
amplify a scheme for O(N) tags to a scheme for 2N tags, with computational
cost that grows polynomially with N and the security parameter κ. This process
can be applied iteratively c + 1 times to a base NM commitment scheme that
handles tags of size lg lg · · · lg

︸ ︷︷ ︸

c times

(κ) for some constant c and results in a scheme

that handles tags of size 2κ.

Templates for Tag Amplification. To perform tag amplification, we will build on
a tag encoding scheme that was first suggested by [18]. They suggest a method
of breaking a large tag T j (say, in [2N ]) into N small tags tj1, t

j
2, . . . t

j
N , each in

2N , such that for two different large tags T 1 �= T 2, there exists at least one
index i such that t2i �∈ {t11, t

1
2, . . . t

1
N}. This is achieved by setting tji = i||T j [i],

where T j [i] denotes the ith bit of T j .
Given this tag amplification technique, we start by describing a template

for non-interactive tag amplification suggested in [32,36]. A CCA commit-
ment scheme for tags in 2N will generate a commitment to a message m as
CCA.Com(1κ, tag,m; r) → com. The string com is generated by first applying
the DDN encoding to tag to obtain N tags t1, . . . tN . Next, these (smaller)
tags are used to generate commitments to m in the smaller tag scheme as
ci = Small.Com(1κ, (ti),msg = m; ri) for i ∈ [N ]. The intuition for security
is as follows: recall that the DDN encoding ensures that for two different large
tags T 1 �= T 2, there exists at least one index i such that t2i �∈ {t11, t12, . . . t1N}. This
(roughly) implies that the commitment generated by an adversary w.r.t. tag t2i
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is independent of the challenge commitment string, as we desire. However, the
commitments w.r.t. other tags t2j could potentially depend on the challenge com-
mitment, which is undesirable. To get around this issue, the templates in [32,36]2
suggest that the committer attach a type of zero knowledge (ZK) proof that all
commitments are to the same message m using the random coins as a witness.
In the setting of non-interactive amplification, the ZK proof will need to be
non-interactive. For technical reasons, it is in fact required to be ZK against
adversaries running in time T , where T is the time required to brute-force break
the underlying CCA scheme for small tags.

Since non-interactive ZK proofs do not exist without trusted setup, the tech-
niques in [8,29,32,36] rely on weaker variants of ZK such as NIWIs, and [8,32,36]
combine NIWIs with a trapdoor statement that an (inefficient) ZK simulator uses
to simulate the ZK proof. At the same time, for soundness, we require that an
adversary cannot use the trapdoor statement to cheat. This is challenging when
the trapdoor statement is fixed independently of the statement being proven,
because a non-uniform adversary can always hardwire the trapdoor and use this
to provide convincing proofs of false statements.

Given this barrier, [36] restricted themselves to achieving tag amplifica-
tion against uniform adversaries, based on (sub-exponential) NIWIs and keyless
collision-resistant hash functions against uniform adversaries. Subsequently [8]
developed a technique to obtain tag amplification against non-uniform adver-
saries, based on NIWIs and assuming the existence of keyless collision-resistant
hash functions that satisfy some form of security against non-uniform adver-
saries. Very roughly, they assume that no adversary with non-uniform advice of
size S can find more than poly(S) collisions3.

More recently, [19] developed a method for performing non-interactive tag
amplification without NIWIs, and while only making black-box use of the under-
lying base commitment. However, the resulting scheme is secure only against
uniform adversaries. On the other hand, the goal of this work is to achieve
a black-box construction that avoids NIWIs and achieves security against non-
uniform adversaries, under a similar keyless assumption as [8]. To highlight the
bottlenecks in the non-uniform setting, we give a brief overview of the technique
of [19].

Black-Box Tag Amplification. To begin, we note that the tag amplification tech-
nique sketched above is not black-box in the base commitment due to the use
of variants of ZK. Recall that ZK is used to ensure consistency of adversar-
ial commitments generated w.r.t. different small tags. In the CCA setting, this
allows using a CCA decommitment oracle that opens a commitment under any

2 These are the non-interactive versions of templates previously suggested in [18,34,
44].

3 Technically, they rely on a more general notion of incompressible problems, which is
a collection of efficiently recognizable and sufficiently dense sets, one for each security
parameter, for which no adversary with non-uniform description of polynomial size
in S can find more than K(S) elements in the set.
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one of the adversary’s small tags, without the adversary noticing which one was
opened. In other words, ZK is used to establish a system where the adversary
cannot submit a commitment such that its opening will be different under ora-
cle functions that open different commitments, which turns out to be crucial to
achieving CCA security.

In [19], this system is established by means of a hinting PRG [33]. At a high
level, the construction in [19] sets things up so that the CCA oracle that opens
a commitment under one of the adversary’s small tags will recover a candidate
PRG seed s. This seed deterministically generates (a significant part of) the ran-
domness used to create commitments with respect to all the adversary’s small
tags. The oracle uses this property to check for consistency by re-evaluating
the underlying small-tag commitments, and checking them against the origi-
nal. These checks intuitively serve as a substitute for ZK proofs, however they
differ from ZK in that the checking algorithm sometimes allows partially mal-
formed commitments to be opened to valid values. While creating such partially
malformed commitments is actually easy for the adversary, the adversary is still
unable to distinguish between oracles that open different small tag commitments.

The work [19] converts CCA commitments with 4N tags to CCA commit-
ments with 2N tags, assuming hinting PRGs and statistically equivocal commit-
ments without setup, that satisfy binding against uniform adversaries. A hint-
ing PRG satisfies the following property: for a uniformly random short seed s,
expand PRG(s) = z0z1z2 . . . zn. Then compute matrix x by sampling uniformly
random v1v2 . . . vn, and setting for all i ∈ [n], Msi,i = zi and M1−si,i = vi. The
requirement is that z0,M generated using a uniformly random seed must be
indistinguishable from a uniform random string.

Here, we actually note that prior works [19,33] can be made to work based
on a hinting PRG that actually satisfies a weaker property: namely, that z0,M
obtained as described above should be indistinguishable from u,M where u is
generated uniformly at random and M is generated as described above. Looking
ahead, we will define a variant of a hinting PRG and will rely on the fact that
this weaker property can be used instead.

Hinting PRGs were built based on CDH, LWE [33], as well as more efficient
versions based on the φ-hiding and DBDHI assumptions [20]. The required equiv-
ocal commitments can be obtained from keyless collision resistant hash functions
against uniform adversaries, based on the blueprint of [17] and [28], and more
recently [7], in the keyless hash setting.

The [19] Technique. We now provide a brief overview of the [19] technique, since
their construction will serve as a starting point for our work.

Let (Small.Com,Small.Val,Small.Recover) be a CCA commitment for 4N tags.
Then [19] assume tags take identities of the form (i, β, γ) ∈ [N ] × {0, 1} × {0, 1}
and that the Small.Com algorithm requires randomness of length �(κ). Their
transformation produces three algorithms, (CCA.Com,CCA.Val,CCA.Recover).
The CCA.Com algorithm on input a tag tag from the large tag space, an input
message, and uniform randomness, first samples a seed s of size n for a hint-
ing PRG. It uses the first co-ordinate z0 (of the output of the hinting PRG on
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input s), as a one-time pad to mask the message m, resulting in string c. Next,
it generates n equivocal commitments {σi}i∈[n], one to each bit of s. We will
let yi denote the opening of the ith equivocal commitment (this includes the
ith bit si of s). Finally, it ‘signals’ each of the bits of s by generating commit-
ments {cx,i,b}x∈[N ],i∈[n],b∈{0,1} using the small tag scheme. For every i ∈ [n], the
commitments {cx,i,0}x∈[N ] and {cx,i,1}x∈[N ] are generated as follows:

1. If si = 0
(a) cx,i,0 = Small.Com(1κ, (x, tagx, 0),msg = yi; rx,i)
(b) cx,i,1 = Small.Com(1κ, (x, tagx, 1),msg = yi; r̃x,i)

2. If si = 1
(a) cx,i,0 = Small.Com(1κ, (x, tagx, 0),msg = yi; r̃x,i)
(b) cx,i,1 = Small.Com(1κ, (x, tagx, 1),msg = yi; rx,i)

where all the r̃x,i values are uniformly random, whereas rx,i values corre-
spond to the output of the hinting PRG on seed s. The output of CCA.Com
is tag, c, {σi}i∈[n], {cx,i,b}x∈[N ],i∈[n],b∈{0,1}.

On an oracle query of the form CCA.Val(tag, com), we must return the
message committed in the string com, if one exists. To do this, we parse
com = tag, c, {σi}i∈[n], {cx,i,b}x∈[N ],i∈[n],b∈{0,1}, and then recover the values com-
mitted under small tags (1, tag1, 0) and (1, tag1, 1), which also helps recover the
seed s of the hinting PRG. Next, we check that for every i ∈ [n], the recovered
values correspond to openings of the respective σi. We also compute hinting
PRG(s), and use the resulting randomness to check that for all x ∈ [N ], the
commitments that were supposed to use the outcome of the PRG were correctly
constructed. If any of these checks fail, we know that the commitment string
com cannot be a well-formed commitment to any message. Therefore, if any of
the checks fail, the oracle outputs ⊥. These checks are inspired by [33], and
intuitively, ensure that it is computationally infeasible for an adversary to query
the oracle on commitment strings that lead to different outcomes depending on
which small tag was used. If all these checks pass, the CCA.Val algorithm uses c
to recover and output m.

To prove that the resulting scheme is CCA secure against uniform adversaries,
note that the set {(x, tagx)}x∈[N ] is nothing but the DDN encoding of the tag
tag. This means that for our particular method of generating the commitments
cx,i,b described above, for each of the adversary’s oracle queries, there will be an
index x′ ∈ [N ] such that the tags (x′, tagx′ , 0) and (x′, tagx′ , 1) used to generate
{cx′,i,b}i∈[n],b∈{0,1} in that query will differ from all small tags used to generate
the challenge commitment.

The first step towards proving security of the resulting commitment will be
to define an alternative CCA.ValAlt algorithm, that instead of recovering the
values committed under tags (1, tag1, 0) and (1, tag1, 1), recovers values com-
mitted under (x′, tagx′ , 0) and (x′, tagx′ , 1). The goal is to ensure that it is
computationally infeasible for an adversary to query the oracle on commitment
strings for which CCA.Val and CCA.ValAlt lead to different outcomes. In more
detail, because of the checks performed by the valuation algorithms, it is pos-
sible to argue that any adversary that distinguishes CCA.Val from CCA.ValAlt
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must query the oracle with a commitment string that has following property:
For some i ∈ [n], x ∈ [N ], cx,i,0 and cx,i,1 are small tag commitments to openings
of the equivocal commitment to some bit b and 1 − b respectively. One can then
brute-force extract these openings from cx,i,0 and cx,i,1 to contradict the binding
property of the commitment against uniform sub-exponential adversaries.

This first step already becomes a bottleneck in the non-uniform setting: in
general, an adversary with bounded polynomial advice can always sample an
equivocal (non-interactive) commitment string together with an opening to 0
and another opening to 1.

The Problem in the Non-uniform Case. As discussed above, the proof/
construction in [19] falls apart in the very first step when considering a non-uniform
adversary. In fact, such an adversary can attack the [19] scheme by non-uniformly
sampling equivocal commitments {σ̃i}i∈[n] together with randomness {ỹ0,i}i∈[n]

and {ỹ1,i}i∈[n] that can be used to open these commitments to both 0 and 1 respec-
tively. Next, it can set the components {c̃x,i,b}x∈[N ],i∈[n],b∈{0,1} as small-tag com-
mitments to both types of openings. This allows the attacker to explicitly break
CCA2 security, as we describe next.

Let x′ ∈ [N ] be an index such that the tags (x′, tagx′ , 0) and (x′, tagx′ , 1)
used to generate {cx′,i,b}i∈[n],b∈{0,1} in that query differ from all small tags
used to generate the challenge commitment. On one hand, CCA2 security of
the small-tag scheme will ensure that seed recovered from small-tag commit-
ments (x′, t̃agx′ , 0) and (x′, t̃agx′ , 1) are independent of the seed in the challenge
commitment. On the other hand, the actual committed value, which is defined
via the seed recovered from (1, t̃ag1, 0), (1, t̃ag1, 1) will exactly match the value
in the challenge commitment, allowing this adversary to break CCA2 security.
The equivocation described above would allow the adversary to ensure that all
the hinting PRG checks pass, despite the use of different types of seeds in small
tags (1, t̃ag1, 0), (1, t̃ag1, 1) versus (x′, t̃agx′ , 0), (x′, t̃agx′ , 1).

Towards a Solution. Now, one could hope to rely on some form of non-uniform
security of keyless hash functions [7,8]. Prior works [7,8] have formulated and
used the assumption that there exist keyless hash functions where any adversary
with non-uniform advice of size S can only find poly(S) collisions. Inspired by
a technique in [8], we could hope to define a “bad” CCA2 query as one that
contains openings to both a zero and a one for the equivocal commitment. Next,
we could hope to limit the number of “bad” CCA2 queries that a non-uniform
adversary will make to its decommitment oracle. As long as this set of “bad”
queries is bounded and is just a function of the adversary’s non-uniform advice,
our challenger could also hope to non-uniformly obtain answers to such queries
and use these instead of running the CCA.Val or CCA.ValAlt function.

Unfortunately, in the [19] protocol, even given just bounded (polynomial)
non-uniform advice, an adversary will be able to equivocate all of its commit-
ments and generate an unbounded number of bad queries. Moreover, because
the hinting PRG is not injective, each bad query could have multiple possible
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openings to different seeds. This indicates that the [19] protocol needs to be
fundamentally modified to enable security against non-uniform attacks.

Our Approach. We begin by understanding how the [19] protocol can possibly
be modified to disallow the attack described above.

– As described above, we want to force the adversary to “use up” bits of non-
uniform advice for each new bad query that it makes. This will hopefully
help limit the number of unique bad queries, and our reduction could then
non-uniformly obtain answers to each of these queries.

– To allow the reduction to non-uniformly answer bad queries, we will aim to
pair every possible bad query with a unique seed value that can be used to
answer this bad query in place of running the CCA.Val or CCA.ValAlt function.

Limiting Bad Seeds Instead of Bad Queries. The first bullet aims to limit the
number of bad queries. While we will not be able to achieve this, we will achieve
a slightly weaker property that will nevertheless suffice for our proof idea to
go through. In more detail, we will tie every CCA2 query, and in particular the
equivocal commitment part of every CCA2 query to an auxiliary input parameter.
That is, in addition to message and randomness, each equivocal commitment will
obtain as input an auxiliary parameter. There will be no hiding requirement on
the auxiliary parameter; it will only serve to strengthen the binding property of
the equivocal commitment. We will require that there exists a fixed polynomial
K(·) such that any adversary with non-uniform advice of size S is unable to
output K(S) different pairs of auxiliary parameters and commitment strings,
with valid openings for each pair to both a zero and a one. We will rely on
keyless collision-resistant hash functions against non-uniform adversaries to build
modified equivocal commitments with this guarantee. While this does not limit
the number of bad queries that an adversary can make, it does limit the number
of unique auxiliary input parameters that an adversary can use to generate CCA2
queries where it is able to open the equivocal commitments to both a zero and
a one.

The goal of the second bullet is to allow a reduction to answer all bad queries
by pairing every such query with a unique seed that can be used to non-uniformly
answer this query in place of running the CCA.Val or CCA.ValAlt function. To get
this idea to work, we must assign a “right” candidate seed to each bad query. As
discussed above, in the [19] protocol, any adversary that can find two openings
for the equivocal commitments could submit a bad query where multiple possible
seed values match the output of the HPRG. To prevent this, we will explicitly
force the HPRG to be injective. In more detail, we add what we call an “injective
extension” to the HPRG. This is an additional algorithm ExtEval(s) → rext that
is an injective function on the HPRG seed s. The HPRG security requirement is
also slightly modified to ensure that an adversary will not be able to distinguish
the PRG output z from uniform given the hint matrix M (described above) and
additionally given rext.

Now the CCA2 commitment will additionally consist of the value rext =
ExtEval(s), and CCA.Val/CCA.ValAlt will reject if for a recovered candidate seed
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s′, ExtEval(s′) �= rext. As a result, there will be at most a single seed s that will
be “compatible” with any commitment string.

Going back to the construction of our CCA2 commitment, we will compute
the modified equivocal commitments with auxiliary parameter set to rext, where
recall that rext = ExtEval(s). At this point, we will be able to assign (at most) one
unique ‘s’ to each auxiliary parameter. Moreover, by the (strengthened) binding
property of equivocal commitments, any non-uniform attacker will be able to
equivocate on at most a small number of auxiliary parameter values.

Analyzing Security. To prove CCA2 security of the resulting construction, we will
proceed as follows. In the first hybrid (Game 1), we will switch to a challenger
that depending on the adversary’s non-uniform advice, stores a “cheat-sheet”
consisting of all ‘bad’ rext that the adversary can query on (with more than a
certain inverse-polynomial probability), together with their inverses s under the
injective algorithm ExtEval(·). Our challenger will (1) rely on the cheat-sheet to
answer any adversarial queries for which rext lies on the cheat-sheet, and (2) use
CCA.Val to decrypt only those queries for which rext lies outside the cheat-sheet.

In the second hybrid (Game 2), the challenger will behave similarly as the
previous hybrid, except using CCA.ValAlt to decrypt queries for which rext lies
outside the cheat-sheet. By the strong binding property of the equivocal com-
mitment, the adversary is guaranteed to not equivocate on these queries (except
with low probability). Therefore by the argument outlined in the proof of the [19]
technique, the outputs of CCA.Val and CCA.ValAlt will be indistinguishable on
these queries. The rest of the proof will follow similarly to [19]. There is one
major hurdle in realizing this outline, as we discuss next.

Modifying the CCA.Val Algorithm. The first hybrid (Game 1) described above
will actually not be indistinguishable from the output of the actual CCA2 game.
This is because a non-uniform adversary may generate equivocation queries for
which rext lies on the cheat-sheet and has an inverse (a hinting PRG seed), but
the CCA.Val algorithm run by the CCA2 challenger may not be able to find this
seed. To deal with this issue, we will change the CCA.Val algorithm so that it
performs a brute-force search through all possible seeds to find the one (if any)
that matches rext.

At first it appears that the rest of the proof should be easy once this is
done. It should be possible to rely on security of the (1) auxiliary-input equiv-
ocal commitments and (2) hinting PRGs with injective extension, to show that
the (updated) CCA2 game is indistinguishable from the first hybrid. However,
while this is true, proving it turns out to be fairly tricky. To prove indistin-
guishability, we must design an efficient reduction B that has oracle access to an
adversary A which distinguishes between the CCA2 game and the first hybrid.
This reduction B should be able to use such an adversary to break security of
equivocal commitments, by generating many more equivocal openings than its
(non-uniform) advice would allow it to. The adversary A is a CCA2 adversary,
which means it makes multiple (a-priori unbounded) calls to a CCA.Val oracle,
and B must find a way to answer these queries. But recall that the oracle needs
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to perform a brute-force search through all possible seeds to find the one (if any)
that matches rext – simulating this process will make B inefficient. As such, B
will need to maintain its own cheat-sheet to answer CCA.Val queries. Even with
such a cheat-sheet, the proof is not straightforward: the set of most common
equivocal queries in the CCA2 game may in general be different from the set of
most common queries when B answers from its cheat-sheet.

Intermediate Cheat-Sheets. To make the proof go through, we will rely on a
sequence of carefully defined intermediate cheat-sheets (that we will call lists
from this point on). These will be defined inductively, and in the base case L(0)

will be empty. Let Q = Q(κ) denote the total number of oracle calls that the
attacker makes. For j ∈ [1, Q], the jth intermediate list, denoted by L(j) will
contain the rext values and corresponding seeds for A’s most common equivocal
queries in its first j oracle calls. Note that this does not suffice to fully define
L(j), since we also need to determine how the first j − 1 oracle calls of A will
be answered: in the definition of L(j), the first j oracle calls will be answered
using the CCA.ValAlt algorithm with access to the list L(j−1). The final list L
used by CCA.ValAlt in Game 1 will correspond exactly to L = L(Q). We show
the following inductively for every j: when the first j − 1 CCA.Val queries are
answered using list L(j−1), then it is possible to add new common equivocal
queries and update the list to L(j). This will eventually allow us to switch to the
first hybrid described above, which uses CCA.ValAlt (plus the final list L(Q)).

We point the reader to our full version for a more detailed overview of this
part of the proof. There we also discuss why for technical reasons, we require
as building blocks for our equivocal commitment, keyless hash functions with
specific parameters. In more detail, we require that an adversary with S(κ) bits
of advice cannot produce more than S(κ) · p(κ) pairs of “distinct collisions” for
some a-priori fixed polynomial p(·), where “distinct collisions” means that no
entry in any pair of collisions matches an entry in another pair. The assumption
is described formally and analyzed in Sect. 4.1.

Completing the Analysis. After switching to CCA.ValAlt (plus the cheat-sheet),
the next hybrid will sample equivocal commitments {σi}i∈[n], for the challenge
commitment, together with randomness {y0,i}i∈[n] and {y1,i}i∈[n] that can be
used to equivocally open these commitments to 0 and 1 respectively. Next,
inspired by [33] the components {c∗

x,i,b}x∈[N ],i∈[n],b∈{0,1} are modified in the chal-
lenge commitment to “drown” out information about s via noise, while relying on
CCA2 security of the underlying small tag scheme to run the CCA.ValAlt func-
tion and recover values committed under (x′, tagx′ , 0) and (x′, tagx′ , 1). This step
crucially makes use of the fact that the tags (x′, tagx′ , 0) and (x′, tagx′ , 1) dif-
fer from all small tags used to generate the challenge commitment. Finally, we
rely on the security of the hinting PRG to switch to using uniform randomness
everywhere.

Hinting PRGs with Injective Extension. We now describe how to achieve hinting
PRGs with injective extension by modifying the constructions in [33]. Recall that
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we require hinting PRGs with injective extensions that satisfy a different security
property than prior work: namely, for a uniformly random short seed s, expand
PRG(s) = z0z1z2 . . . zn and compute the injective output rext. Then compute
matrix M by sampling uniformly random v1v2 . . . vn, and setting for all i ∈ [n],
Msi,i = zi and M1−si,i = vi. The requirement is that z0 generated using a
uniformly random seed must be indistinguishable from uniform, even given M
and given the output rext of the injective extension.

We build hinting PRGs with an injective extension by modularly combining
the constructions in [33] with any leakage-resilient injective one-way function
(LRIOWF). To enable this, we note that hinting PRG constructions in [33] from
CDH and LWE have a “lossy” property, where PRG parameters can be generated
in lossy mode in such a way that the output of the hinting PRG is simulatable
given just a small amount of advice. We call the resulting abstraction a lossy
hinting function. To achieve injectivity, we rely on a leakage resilient injective
one-way function (LRIOWF) applied to the seed s of the lossy hinting function4.
Finally, we generate the ‘mask’ z0 of the hinting PRG as the Goldreich-Levin
hardcore bits of the LRIOWF. To prove that z0 is pseudorandom even in the
presence of rext and M , we will switch the lossy hinting function to lossy mode.
In this mode the hinting function will only leak a few bits about the inverse
s of the LRIOWF. We will then invoke the Goldreich-Levin theorem to argue
that distinguishing the mask from uniform will require inverting the LRIOWF
given just a few bits of leakage on s, which is impossible by assumption on the
LRIOWF. This completes an overview of our techniques.

Comparison with Prior Work. We conclude with a comparison of our techniques
against prior work that relies on keyless collision-resistant hash functions against
non-uniform adversaries. While [7] relies on this assumption to obtain 3-message
zero-knowledge via substantially different techniques, [8] applies this to a set-
ting that is much closer to our work, that is, to achieving non-interactive non-
malleable commitments. In more detail, [8] use keyless hash functions against
non-uniform adversaries to build a special type of 1-message zero-knowledge for
NP with a weak soundness guarantee against non-uniform provers. They achieve
this by building on the usual template for 1-message ZK, where a prover proves
(via a NIWI) that either x ∈ L or that the prover knows a trapdoor. The
trapdoor, roughly, corresponds to a collision in a keyless hash function; and is
derived as a function of the statement x. This ensures that a prover that can
(non-uniformly) find a fixed set of non-uniform collisions will only be able to
provide convincing proofs for a fixed set of statements. In their construction of
non-malleable commitments, the use of NIWIs to prove a statement of the form
“x ∈ L or the prover knows a trapdoor” results in non-black-box use of the
underlying base scheme.

Unlike [8], we do not construct any variant of non-interactive ZK (or rely
on assumptions like NIWI that imply non-interactive ZK). We develop a new

4 For example, any sub-exponentially secure injective one-way function will suffice for
our purposes.
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template to directly achieve tag amplification for non-malleable commitments
against non-uniform adversaries, without reliance on NIWIs. Our methodology
to “tie” together the set of collisions an adversary can find with the number of
commitments that an adversary can cheat on is entirely different from that of [8].

3 Background

3.1 Non-uniform Security

We say that a cryptographic game is T(·)-non-uniform secure if for any Tur-
ing Machine in poly(T(κ)) time with poly(κ) non-uniform advice only has only
negligible advantage in said game. We will refer to poly(·)-non-uniform secure
schemes as achieving ‘plain’ non-uniform security.

In addition, we will say a cryptographic scheme is subexponentially secure
against non-uniform adversaries if there exists some constant c > 0 such that the
scheme is 2nc

-non-uniform secure. When the constant c is explicitly required, we
will say c-subexponentially secure.

3.2 CCA Commitments

We present our definition of CCA secure commitments [12], which is derived from
[19] with modifications made for defining security against non-uniform attackers.
Intuitively, these are tagged commitments where a commitment to message m
under tag tag and randomness r is created as CCA.Com(tag,m; r) → com. The
scheme will be statistically binding, i.e., for all tag0, tag1, r0, r1 and m0 �= m1

we have that CCA.Com(tag0,m0; r0) �= CCA.Com(tag1,m1; r1).
The hiding property is a strengthened CCA2-style definition where an

attacker outputs a challenge tag tag∗ along with messages m0,m1 and receives a
challenge commitment com∗ to either m0 or m1. The attacker’s job is to guess the
message that was committed to with oracle access to an (inefficient) value func-
tion CCA.Val where CCA.Val(com) will return m if CCA.Com(tag,m; r) → com
for some r. The attacker is allowed oracle access to CCA.Val(·) for any tag �= tag∗.
In the non-interactive setting, the traditional notion of non-malleability (as seen
in [8,29], etc.) is simply a restriction of the CCA game where the adversary is
only allowed to simultaneously submit a single set of decommitment queries. The
proof of this is immediate and can be found in [11].

We mention two distinct features of our definition. First, we explicitly denote
the running time of the CCA.Val algorithm despite the fact that it is not poly-
nomial time. Explicitly specifying the runtime of the CCA.Val oracle will help
us in complexity leveraging when performing tag amplification. We will call the
commitment scheme to be 2κv

-efficient, i.e. can run in time (polynomially in)
2κv

where v ≥ 1 and the security of the scheme is considered for subexponential
adversaries. This additional specification was not required in [19].

Second, (as in [19]) we require a recover from randomness property, which
allows one to open the commitment given all the randomness used to gen-
erate said commitment. This can be achieved generically with no additional
assumptions.
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Remark 3.1. We note that by considering non-uniform attackers our definition
actually becomes simpler than that of [19] where they considered security against
a stronger than uniform adversary, which they labeled as e-computationally
enabled security. Such an adversary can run any Turing Program that runs
in time poly(2κe

) and obtain it’s output as a non-uniform advice. This notion
helped them perform complexity leveraging and obtain a uniformly secure non-
malleable commitment scheme. Since we consider security against non-uniform
adversaries, which are allowed to obtain non-uniform advice that may take an
arbitrary amount of time to compute, our presentation is simpler.

Definition. A CCA secure commitment is parameterized by a tag space of size
N = N(κ) where tags are in [1, N ] for message space M = {0, 1}w(κ) where w(·)
is a polynomial function (for simplicity in notation we often skip the dependence
on κ). It consists of three algorithms:

CCA.Com(1κ, tag,m; r) → com is a randomized PPT algorithm that takes as
input the security parameter κ, a tag tag ∈ [N ], a message m ∈ {0, 1}w

and outputs a commitment com, including the tag com.tag. We denote the
random coins explicitly as r.

CCA.Val(com) → m ∪ ⊥ is a deterministic inefficient algorithm that takes in
a commitment com and outputs either a message m ∈ {0, 1}w or a reject
symbol ⊥.

CCA.Recover(com, r) → m is a deterministic algorithm which takes a commit-
ment com and the randomness r used to generate com and outputs the under-
lying message m.

We now define the correctness, efficiency properties, as well as the security
properties of perfect binding and message hiding.

Correctness

Definition 3.2. We say that our CCA secure commitment scheme is perfectly
correct if the following holds. ∀m ∈ {0, 1}w, tag ∈ [N ] and r we have that

CCA.Val(CCA.Com(1κ, tag,m; r)) = m.

Efficiency

Definition 3.3. We say that our CCA secure commitment scheme is T(·)-
efficient, if CCA.Com,CCA.Recover run in time poly(|m|, κ), while CCA.Val runs
in time poly(|m|,T(κ))).5

5 In order for the scheme to be secure, the runtime of the CCA.Val oracle should be
bigger than the runtime of the subexponential adversary. We will imagine runtime
of the CCA.Val oracle to be 2κv

where v > 1.
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Security

Binding

Definition 3.4. We say that our CCA secure commitment is perfectly binding
if ∀c,∀m0,m1 ∈ {0, 1}w s.t. m0 �= m1 and CCA.Val(c) ∈ {m1,⊥}, there does not
exist r such that

CCA.Recover(c, r) = m0

Moreover, for any c such that CCA.Val(c) = m1 �= ⊥, then there exists r such
that CCA.Recover(c, r) = m1.

Weak Binding

Definition 3.5. We say that our CCA secure commitment is perfectly binding
if ∀c,∀m0,m1 ∈ {0, 1}w s.t. m0 �= m1 and CCA.Val(c) ∈ {m1,⊥}, there does not
exist r such that

CCA.Recover(c, r) = m0

CCA Hiding. We also define a CCA message hiding game between a challenger
and an attacker. The game is parameterized by a security parameter κ.

1. The attacker sends a “challenge tag” tag∗ ∈ [N ].
2. The attacker makes a polynomial number of repeated commitment queries

com. If com.tag = tag∗ the challenger responds with ⊥. Otherwise it responds
as

CCA.Val(com).

3. The attacker sends two messages m0,m1 ∈ {0, 1}w.
4. The challenger flips a coin b ∈ {0, 1} and sends com∗ = CCA.Com(tag∗,mb; r)

for randomly chosen r.
5. The attacker again makes a polynomial number of repeated queries of com-

mitment com. If com.tag = tag∗ the challenger responds with ⊥. Otherwise
it responds as

CCA.Val(com).

6. The attacker finally outputs a guess b′.

We define the attacker’s advantage in the game to be Pr[b′ = b] − 1
2 where the

probability is over all the attacker and challenger’s coins.

Definition 3.6. A CCA secure commitment scheme scheme given by algorithms
(CCA.Com, CCA.Val, CCA.Recover) is said to be T(·)-CCA secure if for any T(·)-
non-uniform adversary A there exists a negligible function negl(·) such that the
attacker’s advantage in the game is negl(κ).

We also define another notion of security which we call “same tag” computa-
tion enabled secure for a weaker class of adversaries who only submit challenge
queries that all have the same tag.
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Definition 3.7. A CCA secure commitment scheme scheme given by algorithms
(CCA.Com, CCA.Val, CCA.Recover) is said to be “same tag” T(·)-CCA secure
if for any T(·)-non-uniform adversary A which generates queries such that all
commitment queries submitted by A are on the same tag, there exists a negligible
function negl(·) such that the attacker’s advantage in the game is negl(κ).

Recovery from Randomness

Definition 3.8. We say that our CCA secure commitment scheme can be recov-
ered from randomness if the following holds. For all m ∈ {0, 1}w, tag ∈ [N ], and
r we have that

CCA.Recover(CCA.Com(1κ, tag,m; r), r) = m.

4 Setupless Equivocal Commitments Against
Non-uniform Adversaries

Equivocal commitments are commitments introduced by DiCrescenzo et al. [16]
that have two computationally indistinguishable modes of setup. In the normal
mode the setup outputs public parameters such that the commitment is statis-
tically binding. In the alternate mode, the setup outputs public parameters and
a trapdoor which can output commitments that open to both 0 and 1.

A setupless equivocal commitment sceme doesn’t have a trusted setup algo-
rithm. Instead we have an inefficient equivocation algorithm that can output
commitments to both 0 and 1. The security of the scheme is guaranteed for
adversaries that run in less than the equivocation time. A setupless equivocal
commitment scheme, secure against uniform adversaries can be constructed from
any setupless statistical hiding, computationally binding commitment scheme
[19]. These can be built using a strong extractor and a keyless collision resistant
hash function ( [7,17,28]). But for non-uniform adversaries, it is easy to hard-
wire collisions for the setupless collision resistant hash function and hence break
binding security of the scheme.

In order to achieve non-uniform security, Bitansky et al. [7], suggested a
multi-collision resistance assumption that essentially claims that hardwiring col-
lisions is the best that an adversary can do. Informally, the K strong multi-
collision resistant property states that any non-uniform adversary with advice
advice can not output more than K(|advice|) many collisions (assume that K
blows up the length). This assumption was used by Bitansky et al. [7] to cre-
ate statistically hiding commitments with a special binding against non-uniform
adversaries.

We introduce a modified notion called “Setupless Equivocal Commitment
with Auxiliary Input” that builds on these prior work, assumptions and takes in
an auxiliary input aux ∈ {0, 1}∗ additionally and commits to a bit b and aux. The
inefficient equivocation algorithm can take in any aux and output a commitment
that can be open to both 0 and 1. We hide b (aux can not be hidden) while
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guaranteeing computational binding against non-uniform adversaries. We show
that a similar construction showed by [7] using multi-collision resistant hash
functions and a strong extractor also gives this notion.

4.1 Distinct Strong Keyless Multi-collision Resistance

The definition from [7,8] states that a non-uniform attacker with advice string
advice cannot output more than K(κ, |advice|) collisions (one can think of K as
a polynomial that grows the advice length, [8] say this could, for instance, be a
quadratic polynomial). We further weaken the definition so that the adversary
is required to output all distinct elements in its pairs of collisions, i.e. letting
X =

(

X
(0)
1 ,X

(1)
1 , . . . , X

(0)
K ,X

(1)
K

)

, we require that there do not exist any i, j ∈
[K]2, b, c ∈ {0, 1}2 such that X

(b)
i = X

(c)
j . We call this modified notion distinct

strong multi-collision resistance. Formally,

Definition 4.1 ((T,K)-Distinct Strong Multi-collision Resistance). Let
T = T(·) and K = K(·, ·) be functions of the security parameter κ. A keyless hash
function H : {0, 1}∗ → {0, 1}κ is (T,K) distinct strong multi-collision resistant if
there is a negligible function negl such that for every polynomial size non-uniform
adversary A that runs in time poly(T) and is given advice advice of length
poly(κ), for every security parameter κ, for T = T(κ) and K = K(κ, |advice|),

Pr

⎡

⎢

⎢

⎢

⎣

(

X
(0)
1 ,X

(1)
1 , . . . , X

(0)
K ,X

(1)
K

)

← A(1κ)
:

∀(i, b) �= (j, c) ∈ [K] × {0, 1},

X
(b)
i �= X

(c)
j ,

∀i ∈ [K],H.Hash(1κ,X
(i)
0 ) =

H.Hash(1κ,X
(i)
1 )

⎤

⎥

⎥

⎥

⎦

≤ negl(κ).

While this is not part of our definition, for applications we will require that
the number of collisions remain linear in the size of advice, i.e., there is a fixed
polynomial p(·) such that K(κ, |advice|) ≤ p(κ) · |advice|. In our full version, we
show that our assumption, namely (T,K)-distinct strong multi-collision resis-
tance holds in the auxiliary-input random oracle model [43] with p(κ) as small
as 1, i.e. K(κ, |advice|) ≤ |advice|.

4.2 Setupless Equivocal Commitment with Auxillary Input

An auxiliary input equivocal commitment scheme AuxEquiv without setup con-
sists of the algorithms:

AuxEquiv.Com(1κ, aux, b) → (c, d) is a randomized PPT algorithm that takes
in a bit b ∈ {0, 1}, some auxiliary information aux ∈ {0, 1}∗ and security
parameter κ ∈ N and outputs a commitment c, decommitment string d.

AuxEquiv.Decom(aux, c, d) → {0, 1,⊥} is a deterministic polytime algorithm that
takes in the commitment c along with the auxiliary information aux and it’s
opening d and reveals the bit that it was committed to or ⊥ to indicate failure.
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AuxEquiv.Equivocate(1κ, aux) → (c, d0, d1) is an (inefficient) randomized algo-
rithm that takes in the security parameter and some auxiliary information
aux and outputs a commitment string c and decommitment strings to both 0
and 1.

Definition 4.2. Correctness - We say an equivocal commitment scheme is per-
fectly correct if for all b ∈ {0, 1}, aux ∈ {0, 1}∗,

Pr

⎡

⎣

(c, d) ← AuxEquiv.Com(1κ, aux, b)
b′ ← AuxEquiv.Decom(aux, c, d)

b′ = b

⎤

⎦ = 1

Definition 4.3. Efficiency - We say an equivocal commitment scheme is effi-
cient if AuxEquiv.Com and AuxEquiv.Decom run in poly(κ, |aux|) time, and
AuxEquiv.Equivocate runs in time poly(2κ, |aux|).

We now define the binding and equivocal properties.

Definition 4.4. An equivocal commitment without setup scheme is said to be
(T(·),K(·)) binding secure if for any non-uniform adversary A running in time
poly(T(κ)) for some polynomial and given an advice advice(κ) (for simplicity,
denoted as advice) of length poly(κ) and a setting of K = K(|advice|, κ), there
exists a negligible function negl(·) such that,

Pr

⎡
⎢⎢⎢⎣

(
(aux(1), c(1), d

(1)
0 , d

(1)
1 ), . . . ,

(aux(K), c(K), d
(K)
0 , d

(K)
1 )

)
← A(1κ)

:

∀i ∈ [K],

Decom(aux(i), c(i), d
(i)
0 ) = 0,

Decom(aux(i), c(i), d
(i)
1 ) = 1

∀i �= j ∈ [K], aux(i) �= aux(j)

⎤
⎥⎥⎥⎦ ≤ negl(κ).

Definition 4.5. We say that a scheme is equivocal if for all b ∈ {0, 1}, aux ∈
{0, 1}∗ the statistical difference between the following two distributions is negli-
gible in κ.

– D0 = (aux, c, d) where AuxEquiv.Com(1κ, aux, b) → (c, d).
– D1 = (aux, c, db) where AuxEquiv.Equivocate(1κ, aux) → (c, d0, d1).

4.3 Construction

We construct auxiliary-input equivocal commitments assuming a keyless hash
function that is distinct strong multi-collision resistant and a strong extractor.
This is based on constructions introduced and presented in [7,17,28]. Let the
keyless hash function be H : {0, 1}∗ → {0, 1}κ. A (κ, negl(κ)) strong extractor
SExt (see full version for detailed preliminaries) that takes a seed of κ bits and
an input of 3κ bits and outputs a single bit, SExt : {0, 1}κ × {0, 1}3κ → {0, 1}.
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AuxEquiv.Com(1κ, aux, b) → (c, d).
Sample a seed g ← {0, 1}κ. Choose v ← {0, 1}3κ. Compute w = b⊕SExt(g, v).
Compute h = H.Hash(1κ, (aux, v)). Compute c = (g, w, h) and d = v.

AuxEquiv.Decom(aux, c, d) → {0, 1,⊥}
Parse c as (g, w, h). Check if h = H.Hash(1κ, (aux, d)), output ⊥ if fails. Out-
put w ⊕ SExt(g, d).

AuxEquiv.Equivocate(1κ, aux) → (c, d0, d1)
Sample a seed g ← {0, 1}κ for a SExt. Sample w ← {0, 1}. Sample t

R←−
{0, 1}3κ.
Define Vt = {v : H.Hash(1κ, (aux, v)) = H.Hash(1κ, (aux, t))}. Partition Vt =
V0

t ∪ V1
t where Vi

t = {v : v ∈ Vt ∧ SExt(g, v) = i}, output ⊥ if either V0
t or V1

t

are ∅.
Sample v0

R←− Vw
t , v1

R←− Vw⊕1
t . Output ⊥ if no such v0 or v1 exist. h ←

H.Hash(1κ, (aux, t)). Output ((g, w, h), v0, v1).

We defer the analysis of this construction and a proof of the following lemma to
the full version.

Lemma 4.6. If H(·) is a (T(·),K(·, ·)) distinct strong multi-collision resistant
keyless hash function against non-uniform adversaries and SExt is a (k, ε) =
(κ, negl(κ)) Strong Seeded extractor, then the construction above is a correct and
efficient equivocal commitment scheme (Definition 4.3), and is (T(·),K(·, ·))-
binding secure (Definition 4.4).

4.4 Amplification

Lemma 4.7. If there exists a (T(·),K(·, ·))-binding equivocal commitment
scheme, then for any polynomial p(·), there exists a (T(·),K(·, ·))/p(κ))-binding
equivocal commitment scheme.

Proof. Let Small.AuxEquiv.Com,Small.AuxEquiv.Decom,Small.AuxEquiv.Equivo−
cate be a (T(·),K(·))-binding equivocal commitment scheme. Consider a
p(·)−parallel repetition of Small.AuxEquiv

AuxEquiv.Com(1κ, aux, b) → (c, d).
For i ∈ [p(κ)], run (ci, di) ← Small.AuxEquiv.Com(1κ, (aux, i), b). Output (c =
{ci}, d = {di})

AuxEquiv.Decom(aux, c, d) → {0, 1,⊥}
If ∃b ∈ {0, 1} : ∀i ∈ [p(κ)], AuxEquiv.Decom((aux, i), ci, di) = b, output b.
Otherwise output ⊥.

AuxEquiv.Equivocate(1κ, aux) → (c, d0, d1)
For i ∈ [p(κ)], run (ci, d0,i, d1,i) ← Small.AuxEquiv.Equivocate(1κ, (aux, i)).
Output (c = {ci}, d0 = {d0,i}, d1 = {d1,i})

We defer the analysis of this construction to the full version. ��
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Corollary 4.8. Suppose there exists a (T(·),K(·, ·)) distinct strong collision
resistant hash function satisfying Definition 4.1, for some K(κ, |advice|) =
|advice| · p(κ) for some p ∈ poly(κ). Then for every polynomial poly(·), there
exists a (T(·), |advice|

poly(κ) )-binding equivocal commitment scheme.

Proof. Fix the polynomial p(·) and the distinct strong collision resistant hash
function that is guaranteed by the assumption. By lemma 4.6, there exists a cor-
rect and efficienct equivocal commitment that is (T(·), p(κ) · |advice|)-binding.
Fix any polynomial poly(κ). Then by invoking lemma 4.7 on the polynomial
poly(κ) · p(κ), we have that there exists a (T(·), |advice|

poly(κ) )-binding equivocal com-
mitment scheme. ��

5 Hinting PRGs with Injective Extension

A hinting pseudorandom generator as introduced by Koppula and Waters [33] is
a pseudorandom generator with an enhanced security property. In this security
game blocks that are output from the PRG are interspersed with random blocks
where the placement is according to the seed of the PRG.

In this section we introduce a variant of Hinting PRGS that we call Hinting
PRGs with injective extension. Our variant follows along the lines of the original,
but with two critical modifications. The first is that we slightly relax the security
game. On a seed s of length n bits, the hinting PRG outputs length n+1 blocks
each consisting of � bits. Informally, our security guarantee is that the adversary
cannot distinguish between the following two distributions, each consisting of
(2n + 1) blocks. In both distributions, all blocks but the first are generated
identically: these output as a 2×n matrix where for all i ∈ [n] the (si, i)th entry
is set according to the (i+1)th block of the PRG evaluation, while the (1−si, i)th

entry is a uniformly random string. In the first distribution, the first �-bit block
is set as the first block of the PRG evaluation, and in the second distribution,
the first �-bit block is set uniformly at random.

This relaxed security definition differs from the original security definition
in which the second distribution consists of all random blocks. It is fairly easy
to observe that our relaxed notion also suffices for performing the CCA trans-
formation of [33] and will also suffice for our purposes. The primary reason for
relaxing the security definition, is that it makes it easier to realize our second
modification.

We additionally define an injective extension for the hinting PRG, where
we require that the Hinting PRG evaluation algorithm additionally outputs a
separate block that is injective with respect to the seed. To ensure injectivity
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we will define an algorithm that checks the Hinting PRG public parameters and
outputs 0 if the public parameters were sampled so that the extended block might
not be an injective function of the seed. That is there could be two seeds that
output the same extended block. If the check function outputs 1, the extended
block will be an injective function of the seed. The hinting PRG scheme consists
of the following algorithms,

Setup(1κ, 1�): The setup algorithm takes as input the security parameter κ, and
length parameter �, and outputs public parameters pp and input length n =
n(κ, �)

Eval (pp, s ∈ {0, 1}n, i ∈ [n] ∪ {0}): The evaluation algorithm takes as input the
public parameters pp, an n bit string s, an index i ∈ [n] ∪ {0} and outputs
an � bit string y.

ExtEval (pp, s ∈ {0, 1}n): The extended evaluation algorithm takes as input the
public parameters pp, an n bit string s and outputs a string of length m =
m(κ, �).

CheckParams (pp, n): The algorithm takes as input the public parameters pp, the
seed input length n and checks them to see if the function sampled is injective
or not. It outputs {0, 1} accordingly.

Definition 5.1. A hinting PRG scheme is said to be non-uniform T (·)-secure
if for any polynomial �(·) and any adversary A running in time poly(T (κ)) and
poly(κ) advice, there exists a negligible function negl(·) such that the following
holds:
∣∣∣∣∣∣∣∣
Pr

⎡
⎢⎢⎣

β ← A
(
pp,

(
rβ
0 , rext,{

ri,b

}
i∈[n],b∈{0,1}

)) :

(pp, n) ← Setup(1κ, 1�(κ)), s ← {0, 1}n,
r00 = Eval(pp, s, 0), r10 ← {0, 1}�,
rext = ExtEval(pp, s), β ← {0, 1},

ri,si = Eval(pp, s, i), ri,si
← {0, 1}� ∀ i ∈ [n]

⎤
⎥⎥⎦ − 1

2

∣∣∣∣∣∣∣∣
≤ negl(κ).

Definition 5.2. A hinting PRG scheme is said to be extended injectively if for
any security parameter κ ∈ N, any polynomial �(·) and any pp ∈ {0, 1}∗ the
following holds,

Pr
[ ∃s1 �= s2 ∈ {0, 1}n,
ExtEval(pp, s1) = ExtEval(pp, s2)

:
n ∈ N

CheckParams(pp, n) = 1

]

= 0.

Definition 5.3. A hinting PRG scheme is setup such that it outputs injective
parameters if for any security parameter κ ∈ N, any polynomial �(·) the following
holds,

Pr
[

CheckParams(pp, n) = 0 : (pp, n) ← Setup(1κ, 1�(κ))
]

= 0.

Definition 5.4. A hinting PRG scheme is succinct if the length of the seed n,
public parameters and injective extension are independent of the block length
parameter �.
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Theorem 5.5. If there exists an injective sub-exponentially secure one way
function, either of the three assumptions - DDH, CDH or LWE - are sub-
exponentially secure, and there exists a sub-exponentially secure pseudorandom
generator, then there exists a hinting PRG scheme that can be extended injec-
tively, outputs injective parameters, is succinct and for some constant δ ∈ (0, 1),
satisfies non-uniform 2κδ

-security.

We defer the construction and its analysis to the full version.

6 Tag Amplification

We discuss how to amplify a non-uniform subexponentially secure CCA scheme
for N ′ = 4N tags to a scheme with 2N tags. We will perform the amplifica-
tion using non uniform subexponentially secure primitives AuxEquiv (Sect. 4),
extended hinting PRG (Sect. 5). The amplification algorithm runs in time poly-
nomial in N and the runtime of the primitives involved, thus N should always
stay polynomial in the security parameter for the amplification to be an efficient
algorithm.

Let the hinting PRG scheme (Setup,Eval,ExtEval,CheckParams) be a suc-
cinct T = 2κγ

secure for some constant γ ∈ (0, 1). Let AuxEquiv be
T = 2κδ

-binding secure and statistically hiding where δ ∈ (0, 1). Let
(Small.Com,Small.Val,Small.Recover) be a 2κc

-subexponentially secure, weak
binding, 2κv

-efficient CCA commitment scheme for N ′(κ) = N ′ = 4N tags
where c < 1 and v ≥ 1 for message length u(κ)6. We will assume tags take
identities of the form (i, β,Γ) ∈ [N ] × {0, 1} × {0, 1} and that the Small.Com
algorithm take in random coins of length �(κ).

Let m be the message input to the commitment algorithm and length be
denoted by |m|. Let n′ = n′(κ) be the length of the seed plus public parame-
ters plus injective extension of the hinting PRG scheme when invoked on security
parameter κ′′ = κ

v
δγ . Since the scheme is succinct, n′ is a function of only κ′′ (and

hence κ) and not the block length, which we will specify later. By Lemma 4.7,
we will use a (2κδ

, |advice|
2·n′ )-binding secure commitment scheme AuxEquiv, and

let |y| refer to the length of the decommitment strings of said scheme. Finally,
we run Small.Com on messages of size |y|, and let � be the size of random-
ness used by Small.Com on said input size. We set the block size of our hinting
PRG scheme to be the maximum of |m|, N ·�. For ease of notation we assume that
HPRG.Eval(pp, s, 0) ∈ {0, 1}|m| and ∀i ∈ [n], HPRG.Eval(pp, s, i) ∈ {0, 1}�·N , i.e.
we ignore any extra bits output by the HPRG.Eval algorithm. Let Θ(κṽ) denote
the length of the seed n in relation to the security parameter.

Our transformation will produce three algorithms, (CCA.Com,CCA.Val,

CCA.Recover) which we prove non-uniform 2κc

-subexponentially secure and 2κv′
-

efficient where v′ = v·ṽ
δ·γ . The construction will call AuxEquiv on security param-

6 Recall from Definition 3.3 that a 2κv

-efficient scheme with v ≥ 1 implies that the
runtime of Small.Val is polynomial in 2κv

.
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eter κ′ = κ
v
δ , HPRG on security parameter κ′′ = κ

v
δ·γ and Small on security

parameter κ.
The different parameters will help us perform complexity leveraging. For

simplicity, we assume that the message space of Small, u(κ) is equal to the length
of the decommitment string of the equivocal commitment called on κ′. We will
ensure this property is satisfied in Sect. 7 when we recursively amplify the tags.
The CCA.Val procedure in our transformation will be an inefficient algorithm
that brute forces through each hinting PRG seed and run in time 2n where
n = Θ(κ′′ṽ). Thus our transformation will increase the runtime of CCA.Val from
Small.Val that runs in time 2κv

to 2κv′
.

Additionally, we will also present a fourth non-uniform algorithm CCA.ValAlt,
which is only used in the proof and depends on the non-uniform advice it gets.
In our proof we will first change how we answer an adversary’s decommitment
queries by using CCA.ValAlt to answer instead of CCA.Val. Since the queries
made to the CCA.Val oracles differ in at least one position from tag∗, CCA.ValAlt
will crucially rely on the security of Small.Com at this position by making calls
to Small.Val to help in decommitment.

CCA.ValAlt(tag∗, com,L) → m ∪ ⊥ is a deterministic inefficient algorithm
that takes in tag∗, a commitment com and a non-uniform advice list L and
outputs either a message m ∈ {0, 1}w or a reject symbol ⊥. It will be used solely
as an instrument in proving the scheme secure and not exported as part of the
interface. Figures 1, 2 and 3 describe algorithms that are exposed and repeated
in the construction and proof.

CCA.FindSeed(aux)

Inputs: String aux = (HPRG.pp, aux′) Output: s̃ ∈ {0, 1}n ∪ ⊥
– Parse aux as (HPRG.pp, aux′)
– Iterate through all s̃ ∈ {0, 1}n

• If aux′ = HPRG.ExtEval(HPRG.pp, s̃), return s.
– Return ⊥

Fig. 1. Routine CCA.FindSeed

We now describe our transformation.

Transformation Amplify(Small = (Small.Com,Small.Val,Small.Recover),
HPRG,AuxEquiv, w(κ), v′) → NM = (CCA.Com,CCA.Val,CCA.Recover) :

CCA.Com(1κ, tag,m ∈ {0, 1}w(κ); r) → com

1. Compute κ′ = κ
v
δ . Compute κ′′ = κ′ 1

γ .7

7 The variables δ and γ are known from the security guarantees of AuxEquiv,HPRG
respectively.
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CCA.Check(s̃, , )

Inputs: Seed candidate s̃ = s̃1, s̃2, . . . , s̃n

Commitment ,=
(
tag, aux, c, (σi, (cx,i,0, cx,i,1)x∈[N ])i∈[n])

)

Output: {0, 1}
– For i ∈ [n]

1. Compute (r1,i, r2,i, . . . , rN,i) = HPRG.Eval(HPRG.pp, s̃, i)
2. For x ∈ [N ]

(a) Let ỹi = Small.Recover(cx,i,s̃i , rx,i). If ỹi = ⊥, output 0
(b) If cx,i,s̃i �= Small.Com(1κ, (x, tagx, s̃i), ỹi; rx,i), output 0.
(c) If s̃i �= AuxEquiv.Decom(aux, σi, ỹi), output 0.

– Parse aux as (HPRG.pp, aux′).
– If HPRG.CheckParams(HPRG.pp, n) = 0, output 0.
– If aux′ �= HPRG.ExtEval(HPRG.pp, s) output 0.
– If all the above checks have passed, output 1.

Fig. 2. Routine CCA.Check

CCA.FindAlt(x′, , , L)

Inputs: Index x′ ∈ [N ]

Commitment ,=
(
tag, aux, c, (σi, (cx,i,0, cx,i,1)x∈[N ])i∈[n])

)

Polynomial Size Non-Uniform Advice List L
Output: s̃ ∈ {0, 1}n

– If for some s̃ ∈ {0, 1}n, (, .aux, s̃) ∈ L, where s̃ is the seed recorded
from the advice. Output s̃.

– Else if , .aux is not recorded in L,
• For each i ∈ [n]

1. Let ỹi = Small.Val(cx′,i,0)
2. Set z̃i = AuxEquiv.Decom(aux, σi, ỹi). If z̃i = ⊥, set s̃i =

1. Else, set s̃i = z̃i.
• Output s̃ = s̃1, s̃2, . . . , s̃n.

Fig. 3. Routine CCA.FindAlt

2. Sample (HPRG.pp, n) ← HPRG.Setup(1κ′′
, 1max(|m|,N ·�)).

3. Sample s = s1 . . . sn
R←− {0, 1}n as the seed of the extended hinting PRG.

4. Set aux = (HPRG.pp,HPRG.ExtEval(HPRG.pp, s)).
5. For all i ∈ [n] run AuxEquiv.Com(1κ′

, aux, si) → (σi, yi).
6. Let for x ∈ [N ], i ∈ [n], rx,i, r̃x,i ∈ {0, 1}� be defined as follows:
7. For i ∈ [n]

(a) Compute (r1,i, r2,i, . . . , rN,i) = HPRG.Eval(HPRG.pp, s, i)
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(b) Sample (r̃1,i, r̃2,i, . . . , r̃N,i)
R←− {0, 1}N ·�

8. Compute c = m ⊕ HPRG.Eval(HPRG.pp, s, 0)
9. For i ∈ [n], x ∈ [N ]

(a) If si = 0
i. cx,i,0 = Small.Com(1κ, (x, tagx, 0),msg = yi; rx,i)
ii. cx,i,1 = Small.Com(1κ, (x, tagx, 1),msg = yi; r̃x,i)

(b) If si = 1
i. cx,i,0 = Small.Com(1κ, (x, tagx, 0),msg = yi; r̃x,i)
ii. cx,i,1 = Small.Com(1κ, (x, tagx, 1),msg = yi; rx,i)

10. Output com =
(

tag, aux, c, (σi, (cx,i,0, cx,i,1)x∈[N ])i∈[n])
)

as the commit-
ment. All of the randomness is used as the decommitment string.

CCA.Val(com) → m ∪ ⊥
1. Set s̃ = CCA.FindSeed(com.aux).
2. If CCA.Check(s̃, com) = 0 output ⊥.
3. Output c ⊕ HPRG.Eval(HPRG.pp, s̃, 0).

CCA.ValAlt(tag∗, com,L) → m ∪ ⊥
1. If com.tag = tag∗, output ⊥.
2. Let x∗ be the smallest index where the bits of tag∗, com.tag differ.
3. Set s̃ = CCA.FindAlt(x∗, com,L).
4. If CCA.Check(s̃, com) = 0 output ⊥.
5. Output c ⊕ HPRG.Eval(HPRG.pp, s̃, 0).

CCA.Recover(com, r) → m ∪ ⊥
1. From r, parse the seed s of the Hinting PRG.
2. If CCA.Check(s, com) = 0, output ⊥.
3. From com, parse the commitment component c and the public parameter

HPRG.pp.
4. Output c ⊕ HPRG.Eval(HPRG.pp, s, 0).

7 Compilation of Transformations

We show how to combine our transformations Amplify and OneToMany to prove
that if we start with a base scheme that is secure against non-uniform “same
tag” adversaries (see Definition 3.7) for 32 · ilog(q, κ) tags where the notation
ilog(q, κ) denotes lg lg · · · lg

︸ ︷︷ ︸

q times

(κ)8 and q is some constant, then using our described

transformations, we can construct a scheme that is secure against non-uniform
adversaries (see Definition 3.6) for 16 · 2κ tags.

Our sequence of transformations is very similar to [19], where we start with a
base scheme BaseCCA that satisfies property Definition 3.8. We then remove the
same tag restriction on the adversary by using the transformation OneToMany
(described in the full version) and then amplify the tag space by using the
transformation Amplify in Sect. 6 q + 1 times. The two main deviations from the
formal treatment of [19] is due to our proof technique, i.e. we need to keep track
8 The notation ilog(0, κ) is defined as κ.
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of the message and efficiency of the val oracle when we perform the sequence of
transformations.

We remind the reader that the order of the sequence of transformations
is important as to perform Amplify and OneToMany we need the commitment
scheme to be recoverable from randomness. Additionally, OneToMany does com-
putation that is polynomial in the number of tags for the input scheme. Thus, we
must remove the “same tag” restriction from our adversary before amplifying our
tags with Amplify. Based on the sequence of transformations we have discussed,
our tag space will amplify as follows. At the end of OneToMany, we will end up
with 16 · ilog(q, κ) sized tag space. And after q + 1 applications of Amplify, we
will end up with 16 · 2κ sized tag space. One application of Amplify converts a
4N tag space scheme to a 2N tag space scheme. Thus on input a 4 · 4 · ilog(q, κ)
tag space, one gets a 24·ilog(q,κ) = 16 · ilog(q − 1, κ) tag space.

Additionally, when using the schemes in a sequence of transformations we
need to keep track of the message spaces we chose in our output scheme. For
instance, to perform the transformation Amplify and OneToMany, the construc-
tions output committment σ to each seed bit of the hinting PRG. The base
scheme here takes in the decommitment string of σ as input. Thus the length of
the base scheme being transformed should be able to support messages of this
length for the transformation to be correct. Let the length of the decommitment
string be denoted by a polynomial function DecomLen(·) that takes as input the
security parameter κ9. Thus for the transformations Amplify and OneToMany,
u (input message length of the base scheme) should be equal to DecomLen(κ′)
where κ′ is the security parameter input to the equivocal commitment. In our
transformations κ′ is set as κ

v
δ where there exists a constant δ such that the setu-

pless equivocal commitment scheme is 2κδ

-hiding secure and the base scheme is
2κv

-efficient10.
Our formal transformation is below. We start with a base commitment scheme

BaseCCA and output the scheme (AmplifiedCCAq+1.Com,AmplifiedCCAq+1.Val).
We list a few assumptions on our transformation -

– Let there exist variables δ, γ, ṽ such that δ ∈ (0, 1) and the setupless equivocal
commitment scheme is 2κδ

-hiding secure, γ ∈ (0, 1) and the hinting PRG with
injective extension is 2κγ

-secure and the dependence of seed on the security
parameter be such that seed length n = Θ(κṽ).

– We start with a base scheme that is 2κ-efficient and secure against non-
uniform “same tag” 2κc

-subexponentially secure adversaries for tag space
32ilog(q, κ) tags for any constant q.
If the base scheme runs in time some constant poly(2κa

) where a ∈ (0, 1) then
the scheme is 2κ-efficient. Otherwise, on input security parameter κ, we can

9 The length of the decommitment string can depend on aux, but since aux is also called
with a polynomial function in κ based on the hinting PRG construction, we simplify
the notation. In our specific construction for AuxEquiv in Sect. 4, the decommitment
string length doesn’t depend on aux.

10 Recall from Definition 3.3 that a 2κv

-efficient scheme with v ≥ 1 implies that the
runtime of Small.Val is polynomial in 2κv

.
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run the scheme with parameters κ
1
a to get a 2κ-efficent scheme that is still

2κc

sub-exponentially secure with c ∈ (0, 1) for some constant c. Thus we can
wlog claim that we start with a 2κ-efficient scheme. This will help simplify
notation.

– Let the base scheme support messages of length u = AuxEquiv.DecomLen(κ
1
δ )

and the final scheme support messages of length w.

Recall that the transformations OneToMany (see full version) and Amplify
(Sect. 6) take in the following parameters - a scheme to be transformed, hinting
PRG with injective extension HPRG, setupless equivocal commitment scheme
AuxEquiv, the length of the messages supported by the output scheme and an
efficiency parameter v such that the output scheme is 2κv

-efficient.

CompiledAmplify(BaseCCA =
(BaseCCA.Com,BaseCCA.Val, u),HPRG,AuxEquiv, w)
1. AmplifiedCCA0 ←

OneToMany(BaseCCA,HPRG,AuxEquiv,AuxEquiv.DecomLen(κ
v0
δ ), v0)

where v0 = ṽ
δ·γ .

2. For i ∈ [q],
(a) AmplifiedCCAi ← Amplify(AmplifiedCCAi−1,HPRG,

AuxEquiv,AuxEquiv.DecomLen(κ
vi
δ ), vi) where vi =

(

ṽ
δ·γ

)i+1

.

3. AmplifiedCCAq+1 ← Amplify(AmplifiedCCAq,HPRG,AuxEquiv, w, vq+1)

where vq+1 =
(

ṽ
δ·γ

)q+2

.

4. Output (AmplifiedCCAq+1.Com,AmplifiedCCAq+1.Val)

Below we analyze CompiledAmplify by stating theorems on correctness, efficiency
and security.

Theorem 7.1. For every κ ∈ N, any constant q, any polynomial w,
let BaseCCA = (BaseCCA.Com, BaseCCA.Val, u) be a perfectly correct
CCA commitment scheme for message space {0, 1}u by Definition 3.2 with
tag space 32 · ilog(q, κ). Let AuxEquiv = (AuxEquiv.Com, AuxEquiv.Decom,
AuxEquiv.Equivocate) be a perfectly correct equivocal commitment scheme by Def-
inition 4.2. Let there exist a constant δ such that u = AuxEquiv.DecomLen(κ

1
δ ).

Then, we have that the scheme CompiledAmplify(BaseCCA, HPRG,
AuxEquiv, w) is a perfectly correct CCA commitment scheme for 16 · 2κ tags.

Theorem 7.2. For every κ ∈ N, any constant q, any polynomial w, let
BaseCCA = (BaseCCA.Com, BaseCCA.Val, u) be an 2κ-efficient CCA commit-
ment scheme by Definition 3.3 with tag space 32 · ilog(q, κ). Let AuxEquiv =
(Equiv.Com, Equiv.Decom, Equiv.Equivocate) be an efficient equivocal com-
mitment scheme by Definition 4.3. Let there exist constants δ, γ, ṽ such
that setupless equivocal commitment scheme is 2κδ

-hiding secure and u =
AuxEquiv.DecomLen(κ

1
δ ); γ ∈ (0, 1) and the hinting PRG with injective exten-

sion is 2κγ

-secure; the dependence of seed on the security parameter be such that
n = Θ(κṽ).
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Then, CompiledAmplify(BaseCCA,HPRG,AuxEquiv, w) is an 2κv
q+1-efficient

CCA commitment scheme for 16 · 2κ tags where vq+1 =
(

ṽ
δ·γ

)q+2

.

Theorem 7.3. For every κ ∈ N, any constant q, any polynomial w, let
BaseCCA = (BaseCCA.Com, BaseCCA.Val, u) be a CCA commitment scheme
that is hiding against non-uniform “same tag” 2κc

-subexponential adver-
saries according to Definition 3.7 for tag space 32 · ilog(q, κ). HPRG =
(HPRG.Setup,HPRG.Eval) be a hinting PRG scheme with injective extension
that is T = 2κγ

secure by Definition 5.1 for γ ∈ (0, 1). AuxEquiv =
(AuxEquiv.Com,AuxEquiv.Decom,AuxEquiv.Equivocate) be an equivocal commit-
ment without setup scheme that is T = 2κδ

binding secure Definition 4.4
and statistically hiding for some constant δ ∈ (0, 1). Let u be equal to
AuxEquiv.DecomLen(κ

1
δ ).

Then, CompiledAmplify(BaseCCA,HPRG,AuxEquiv, w) is a CCA commit-
ment scheme that is hiding against non-uniform 2κc

-subexponential adversaries
according to Definition 3.6 for tag space 16 · 2κ.

We import the following theorems about instantiating base schemes, from
prior work.

Theorem 7.4. [29]. For every constant c > 0, there exist correct, polynomially
efficient, binding (3.4), same-tag CCA secure commitments with randomness
recovery satisfying Definition 3.7 against non-uniform adversaries, with tag space
(c lg lg lg κ), message space u = poly(κ) that make black-box use of subexponential
quantum hard non-interactive commitments and subexponential classically hard
non-interactive commitments in BQP, both with randomness recovery.

Theorem 7.5. [36]. For every constant c > 0, there exist correct, polynomi-
ally efficient, weak binding (3.5), same-tag CCA secure commitments with ran-
domness recovery satisfying same-tag CCA security according to Definition 3.7
against non-uniform adversaries, with tag space (c lg lg lg κ), that make black-box
use of subexponential time-lock puzzles [36].

We remark that while [29,36] prove that their constructions satisfy non-
malleability with respect to commitment, their proof techniques also extend to
exhibit same-tag CCA security against non-uniform adversaries. In a nutshell,
both these works rely on two simultaneous axes of hardness to build their base
schemes. As a consequence of this in the same-tag setting, for any pair of tags
(tag, t̃ag) corresponding to the challenge query and CCA oracle queries of the
adversary respectively, there is an oracle that inverts all commitments generated
under ˜tag but where commitments under tag remain secure in the presence of
this oracle. In both these works [29,36], we note that while the specific oracle is
only used to invert parallel queries of the adversary (thereby obtaining many-
many non-malleability), the oracle is actually capable of inverting (unbounded)
polynomially many adaptive queries, thereby also achieving same-tag CCA secu-
rity. In [36], this oracle over-extracts, therefore achieving the weaker property
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of same-tag CCA security with weak binding. The [29] scheme does not suf-
fer from over-extraction and achieves the stronger notion of (standard) binding.
The [29] scheme can be observed to satisfy randomness recovery by relying on
the recovery algorithm of the underlying commitments. The [36] scheme outputs
a commitment to a bit b as

f(s; r), r′, 〈s, r′〉 ⊕ b

which satisfies randomness recovery given all the randomness used to commit.
Combining this theorem with Theorem 7.3, we obtain the following

corollaries.

Corollary 7.6. There exists a perfectly correct, polynomially efficient, binding
(Definition 3.4) and CCA secure commitment satisfying Definition 3.6 against
non-uniform adversaries, with tag space 2κ for security parameter κ, that makes
black-box use of subexponential quantum hard one-way functions, subexponential
classically hard one-way functions in BQP, subexponential hinting PRGs and
subexponential keyless collision-resistant hash functions.

Corollary 7.7. There exists a perfectly correct, polynomially efficient, binding
(Definition 3.4) and CCA secure commitment satisfying Definition 3.6 against
non-uniform adversaries, with tag space 2κ for security parameter κ, that makes
black-box use of subexponential time-lock puzzles as used in [36], subexponential
hinting PRGs and subexponential keyless collision-resistant hash functions.

Finally, we point out that while all our formal theorems discuss CCA security,
our transformations also apply as is to the case of amplifying parallel CCA
security (equivalently, concurrent non-malleability w.r.t. commitment). That is,
given a base scheme that is only same-tag parallel CCA secure (or non-malleable
w.r.t. commitment) for small tags, our transformations yield a scheme for all tags
that is parallel CCA secure (or concurrent non-malleable w.r.t. commitment) for
tags in 2κ, without the same tag restriction.
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Abstract. Indistinguishability Obfuscation (iO) is a highly versatile
primitive implying a myriad advanced cryptographic applications. Up
until recently, the state of feasibility of iO was unclear, which changed
with works (Jain-Lin-Sahai STOC 2021, Jain-Lin-Sahai Eurocrypt 2022)
showing that iO can be finally based upon well-studied hardness assump-
tions. Unfortunately, one of these assumptions is broken in quantum
polynomial time. Luckily, the line work of Brakerski et al. Eurocrypt
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presence of leakages. At the same time, effective cryptanalysis of this line
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It is important to identify the simplest possible conjectures that yield
post-quantum iO and can be understood through known cryptanalytic
tools. In that spirit, and in light of the cryptanalysis of Hopkins et al.,
recently Devadas et al. gave an elegant construction of iO from a fully-
specified and simple-to-state assumption along with a thorough initial
cryptanalysis.

Our work gives a polynomial-time distinguisher on their “final assump-
tion” for their scheme. Our algorithm is extremely simple to describe: Solve
a carefully designed linear system arising out of the assumption. The argu-
ment of correctness of our algorithm, however, is nontrivial.
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1 Introduction

Indistinguishability obfuscation (iO) for programs computable in polynomial-
time [11] makes a program as unintelligble as possible while preserving the func-
tionality. Mathematically, iO(P ) is indistinguishable to iO(P ′) for any function-
ally equivalent programs P, P ′ of the same size. iO’s importance is evident in its
central position as a powerful and versatile primitive for building a wide variety of
modern cryptographic tools (see e.g., [6,15,21,22,25,38,46,55]). Up until recently,
the feasibility of iO from well-established assumptions was not known. In recent
works, Jain, Lin, and Sahai [44,45] constructed iO from three well-studied assump-
tion: Decisional Linear assumption (DLIN) over bilinear maps [8], Learning Par-
ity with Noise over general fields [42], and Pseudorandom Generators in NC0 [37].
DLIN over bilinear maps, however, is an assumption broken in quantum polyno-
mial time.

In an effort to construct iO from conjectured post-quantum secure assump-
tions, specifically lattice-based ones, an exciting line of works [18,33,56] con-
struct iO based on new circular security type assumptions of LWE in the pres-
ence of structured leakages of their errors. Typically there is a lot of room in
how you can instantiate leakages that imply iO, and at the moment we do not
have a stable understanding of what constitutes an acceptable leakage. In fact,
very recently [40] showed that instantiations of several assumptions of Gay-Pass
and Wee-Wichs can be broken in classical polynomial time.

Ideally we would like to construct post-quantum iO based solely on well-
studied post-quantum assumptions such as LWE/LPN. Unfortunately, however,
our understanding of conjectures implying post-quantum iO is severely limited,
and our confidence in them is much lower than those in classical constructions
(LPN, DLIN and PRGs). Therefore, it is important that we strive to identify
assumptions that are:

– Simple-to-state, and yet imply iO,
– Can be reasoned about with cryptanalytic study.

We believe that this symbiotic relationship between constructions and construc-
tive cryptanalysis could further understanding of how to securely instantiate
assumptions. To be clear, we do not endorse an unchecked break and repair cycle,
but a cycle that identifies new conceptual pathways. In this spirit, following the
cryptanalysis of [40], the work of Devadas et al. [29] recently gave an elegant
construction from a fully-specified and simple-to-state assumption implying iO.
We emphasize that their construction has all parameters fully-specified. This is
unlike the previous assumption of [56] which was very general, and required that
for some implementation choices such as PRF scheme involved, the resulting
assumption is secure. The same is true with the assumption of [33], where the
circuit implementations of functions involved were not fully specified.

Moreover, Devadas et al. back their instantiation with a thorough (initial)
cryptanalysis.

Lessons from Our Work. A major open area is constructing post-quantum iO.
The most promising approach currently being explored is formulating simple
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variations of LWE with certain leakage that are sufficient. The recent work
of [40] shows the importance of fully specifying the assumption and cryptanal-
ysis (indeed, the attack of [40] exploits freedom in specification). Incorporating
these insights, the [29] assumption is fully specified, relatively simple, avoids [40]
attacks, Furthermore, the authors of [29] performed cryptanalysis using existing
techniques. The purpose of our work is to identify and understand weaknesses
in the approach of [29] so that these may be overcome in future work.

On a very high level, the intuition of [29] was that tensored polynomial
systems derived from LWE not only bypasses the previous two attacks (as far
as we know, the parameters are set so that sum-of-squares attacks of [12] do not
apply, and at the same time, the specifications are set so that the attacks of [40]
do not apply). Our main result shows a new way to get around the apparent
difficulties introduced by tensoring. Therefore, we view our result contributing
a new insight that will be useful in designing better assumptions.

A key aspect in which our attacks differs from previous attacks [12,40] on the
new “LWE+Leakage” assumptions [3,18,33,43,56] is that all previous attacks
apply to part of the leakage that is obtained over integer/small-valued domains
such as the error or the polynomial evaluations. On the other hand, our attack
applies to the leakage that is given out over the prime fields (the leakage on the
secret in the LWE sample). This points to a new vulnerability in designing such
assumptions towards the grand goal of achieving iO.

Our Technical Contribution. In this work, we give a polynomial-time distin-
guisher and recovery algorithm on the “final assumption” of [29] (stated on page
7; also formulated as Conjecture 2 on page 25) with parameters as suggested (page
23, Sect. 4.3). Our attack is algorithmically simple to describe: solve a carefully
designed linear system of equations. Our analysis, on the other hand, requires a
significant amount of care. In particular, the techniques we present and introduce
in our analysis are of general interest to the studying the usage of tensor products
in cryptographic constructions. We contribute the following general ideas.

1. We first show that Kilian randomization on highly tensored matrices does
not kill the tensor structure. Consider positive integers m � w and consider
the equation [

U1 ⊗ I‖I ⊗ U2

]
= Y

where I denotes a m × m square identity matrix, the matrices U1,U2 are
unknown and of shape m × w, and Y, of shape m2 × 2mw, is given as input
to the algorithm. Suppose Y ←− [

A1 ⊗ I‖I ⊗ A2

] · R for some tall random
matrices A1,A2 ∈ Z

m×w
q and some Kilian matrix R ∈ Z

2mw×2mw
q , all of

which are unknown to the algorithm. Right-multiplication by the matrix R
seemingly mixes up the columns of matrices A1⊗I and I⊗A2, preventing the
recovery of A1 and A2. By considering column spans, however, we observe
that Colspan(A1 ⊗ I) and Colspan(I⊗A2) have significant non-overlap (lin-
early independent columns) and right multiplication by an invertible matrix
preserves this non-overlap. We will show that this non-overlap enables a lin-
ear independence argument, involving a small number of carefully chosen
linearly independent vectors, that shows that we can recover A1 and A2 up
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to a unique representation. More precisely, we show how to recover a normal
form of Ai, given by Ui = Ai · A−1

i,T , where Ai,T ∈ Z
w×w
q denotes the top

w × w block of Ai for i ∈ {1, 2} (these inverses exist with high probability).
2. Consider a random matrix P with M rows and N columns. We conjecture

that, with overwhelming probability over the choice of a random matrix P, for
any set of vectors {v1, . . . ,vT } of linearly independent vectors, where T � M
and T ≤ N , the set of vectors {P ·v1, . . . ,P ·vT } is linearly independent. We
demonstrate how to use the conjecture to prove the uniqueness of solutions
and compute the rank of relevant matrices as we shortly explain.
The parameter settings relevant to the DQVWW construction consider matri-
ces P that are only slightly dimension shrinking and for which the conjecture
is applicable (M is still sufficiently large with respect to the sets of vectors we
consider). In this setting, we cannot use matrices P with a very small number
of rows M because we require certain expansion properties for iO.

3. Using the conjecture, we can show that left-multiplication by a random matrix
P fails to destroy the tensor structure present if it is insufficiently dimension
shrinking. For example, we show that we can still recover the matrices A1,A2

above up to a unique representation from the equation,

P · [U1 ⊗ I‖I ⊗ U2

]
= Y

where P ∈ Z
m3/2×m2

q is a known matrix, and where the matrix Y is gener-
ated as Y ←− P · [A1 ⊗ I‖I ⊗ A2

] · R, differing from the above generation
process only by the left-multiplication by P. Our main observation here is
that the linear independence of the same small set of linearly independent
vectors identified above will be preserved by P, enabling the same argument
to show the recovery of a unique representation for A1 and A2.
While many previous linear-algebraic cryptanalytic works present attacks
from a matrix point of view, we show that considering column spans instead
allows us to better analyze the tensor structure especially in the presence of
the structure destroying matrix P and the randomizing matrix R.

4. Finally, we give a technique for proving the uniqueness of solutions to X
(when such uniqueness exists) in the equation

AX + BY = C

where A,B,C are known coefficient matrices such that the column span of
A has a sufficient amount of non-overlap with the column span of B, and
X and Y are unknown matrices. By considering the homogeneous version of
the above equation, in which C = 0 and which corresponds to taking the
difference of two solutions for the inhomogeneous version, and by identifying
how many columns in A do not overlap with Colspan(B), we can isolate an
equation of the form A′X = 0 for some matrix A′. This allows us to use
standard rank arguments that depend on the shape of A′ to show that the
only solution to X in the homogeneous equation is 0, which implies that there
is a unique solution to X in the inhomogeneous equation. Here, the conjecture
above also extends our technique to the setting of proving the uniqueness of
solutions to X (when such uniqueness exists) in equations of the form
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PAX + PBY = C.

In particular, if we can compute the size of the overlap of Colspan(A) and
Colspan(B), then the conjecture allows us to compute the size of the overlap
of Colspan(PA) and Colspan(PB).

Related Works. There is a huge body of other works [1,2,5,7,10,13,19,20,23,24,
26–28,30,32,35,39,41,43,47,48,50,53] that construct iO candidates from plau-
sible post-quantum assumptions (some of which are subject to prior crypt-
analysis). This list includes constructions based on candidate multi-linear
maps [31,32,34], from noisy linear functional encryption [1,2] and affine deter-
minant programs [13]. Similarly, cryptanalysis was performed to better under-
stand these assumptions [9,12,17,19,23,24,26,39–41,51,53,54]. Our work does
not consider these lines of constructions.

Organization of the Paper. The technical overview is nearly complete in of itself.
Due to space constraints we place the proof of uniqueness for recovering V1 in
the Supplementary Materials in Sect. 4.1. We also place the extension to the
T -sum case in the Supplementary Materials in Sect. 4.2. Basic linear algebraic
facts and proofs about the tensor structure are found in the Supplementary
Materials in Sect. 4.4 and Sect. 4.5 (resp.). A full version can be found as a
separate supplementary file.

2 Technical Overview

We start by reviewing the construction idea of [29]. The work is built upon
[56], which was a follow up of [18]. The works [29,56] construct iO by con-
structing a non-trivial obfuscation xiO. The works of [4,14,16,49] showed that,
under a subexponential security loss, an xiO scheme can be generically lifted
to a construction of an indistinguishability obfuscation scheme further assum-
ing LWE. Recall that in an xiO scheme, the goal is to obfuscate circuits
C : {0, 1}n → {0, 1}m, where the size of the obfuscation must be marginally bet-
ter than the size of the truth-table for C i.e. bounded by 2ε·n poly(λ, |C|) for some
constant ε < 1, whereas the running time could be as large as 2n poly(λ, |C|).
The Overall Approach of [29,56]. The main starting observation of the works
[29,56] is the following. Consider a function f : {0, 1}� → {0, 1}M×K where
M · K = 2n · m (the size of the truth table for C). We intend the function f
to take as input the bit description of a circuit C, and output its truth table.
Now consider ciphertexts encrypting bits of the circuit C, encrypted using the
dual GSW variant of homomorphic encryption scheme [36] {CTi = ASi + Ei +
CiG}i∈[�] where A ∈ Z

M×w
q and Si ∈ Z

w×M log q
q and G is the gadget matrix

defined by [52] and w � M,K. Then the idea is that, one can homomorphically
evaluate on these ciphertexts to compute an encoding:

CTf = ASf + Ef + Mf

⌈q

2

⌉
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where Sf ∈ Z
w×K
q and Mf is a matrix of dimension M×K, that arranges outputs

of f(C) in a matrix form, and Ef is a matrix with �2 norm much smaller than q.
This is a ciphertext that has an opening that is much shorter in size than M ·K.
The opening is simply Sf which is of the size w · K log q � M · K.

Thus, a first candidate could be one in which the obfuscator gives out
{CTi}i∈[�] along with Sf . Unfortunately, this is easily attackable, because this
let’s one learn Ef , which lies in a linear subspace which is some function of the
circuit C. Thus given Ef one can test if the ciphertexts encrypt C0 or C1.

Relying on Fresh LWE Samples with Large Error. To address this issue, [18,56]
observed that access to fresh LWE samples D = AR+F where R ∈ Z

w×K
q and

F ∈ χM×K
flood from some distribution χflood can drown out Ef . Then, one can give

out Sf + R (in addition to D, {CTi}) which lets one learn Ef + F + Mf
 q
2�.

In fact, this system can be proven secure under LWE. Unfortunately, now the
problem is that D is too big! We don’t obtain any compression if we give such
a matrix out. To address this issue, [56] suggested pseudorandomly generating
LWE samples, motivating a source of new hardness assumptions in [56] as well
as the paper under consideration in our work [29].

Pseudorandomly Sampling LWE. To obtain compression, [56] suggested that
we come up with a way where one uses a small set of encryptions (encrypting
say a PRF key) {CT′

i = AS′
i + E′

i + kiG}i∈[�′] and then using this compute a
larger number of LWE samples of the same kind as D. The work showed that by
homomorphically evaluating PRF and relying on packing techniques, one could
generate a larger sample of the required form D = AR′ +F′. Now one could give
out Sf +R′ and this could effectively replace the role of a fresh LWE sample D.
Unfortunately, this assumption is heuristic in nature, and is contingent on the
exact specification of the circuit implementation of the PRF used. The work of
[40] pointed out that for every PRF, if the circuit implementation is not chosen
carefully, the assumption could be attacked.

Simplifying Assumption. The main contribution of [29] is a significantly simpler
scheme that involves computation of a fully specified structured constant-degree
polynomials rather than a PRF. The purpose is to identify the simplest possible
assumption that suffices to build iO, and can be reasoned with respect to broad
classes of cryptanalysis algorithms. In order to generate “LWE” type samples,
the work of [29] gives out d LWE matrices for some constant d ∈ N:

Bi = AiSi + Ei mod q,

for i ∈ [d] where Ai ← Z
m×w
q and Si ← Z

w×k
q and Ei ← χm×k. Here w � m � k

The point of this is that now one can compute B′ = B1 ⊗ . . . ⊗ Bd given
these matrices resulting in a matrix of much larger dimension. This matrix can
be expressed as:

B1 ⊗ . . . ⊗ Bd = A′ · S′ + E′,
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where,

A′ =(A1 ⊗ Im ⊗ . . . Im‖Im ⊗ A2 ⊗ . . . Im‖ . . . ‖Im ⊗ Im ⊗ . . .Ad),

S′ =

⎛

⎜
⎜
⎜
⎝

S1 ⊗ B2 ⊗ B3 ⊗ . . .Bd−1 ⊗ Bd

E1 ⊗ S2 ⊗ B3 ⊗ . . .Bd−1 ⊗ Bd

...
E1 ⊗ E2 ⊗ E3 ⊗ . . .Ed−1 ⊗ Sd

⎞

⎟
⎟
⎟
⎠

,

E′ =E1 ⊗ . . . ⊗ Ed.

At this point it is tempting to use B′ to instantiate the template above.
Indeed the dimension of S′ is much smaller than the dimension of B′. Unfor-
tunately, this can be attacked using the sum-of-squares algorithm. The sample
E′ + Mf
 q

2� + Ef does not hide Ef . E′ consists of all degree d monomials of
E1, . . . ,Ed, and if ‖Ef‖2 � ‖E′‖2, using ideas similar to [12] we can recover {Ei}
uniquely with high probability in polynomial time. For ruling out such attacks,
we require that for any system of polynomials of degree d over n variables, the
number of equations be less than nd/2, whereas in this case we are giving out nd

equations.
Thus, [29] suggested multiplying B′ by matrices P and P′ (which are both a

part of some crs) with integer Gaussian entries to compute B∗ = PB′P′ where
P ∈ Z

M×md

and P′ ∈ Z
kd×K . This yields B∗ = A∗ ·S∗ +E∗ where S∗ = S′ ·P′

and E∗ = P(E1 ⊗ . . .⊗Ed)P′. We can now use E∗ as the smudging polynomial.
The dimension M and K are set so that M · K � (m · k)d/2 to resist sum-of-
squares attacks and at the same time also give the compression needed to give
rise to iO.

While this is the main idea, there are several additional ideas that are needed
to turn the intuition above into a scheme. Observe that in B∗ = PA′S′P′ +E∗,
A′ and S′ are highly structured. Instead of releasing matrices A

∗
= PA′ in

the clear, one gives out Kilian randomized version of A
∗
, which we denote by

A∗ with the same column span as that of PA′. Still, several issues remain: For
example, the construction is in the CRS model, and the assumption is associated
with a CRS. We now describe the assumption below and then give a sketch of
our attack.

Succinct LWE Sampling Assumption. The assumption on a broad level roughly
says that for some constant d ∈ N:

({AiSi + Ei}i∈[d],A∗, Q̄, Q̄(E1, . . . ,Ed) + Z0, aux0) ≈c

({AiSi + Ei}i∈[d],A∗, Q̄, Q̄(E1, . . . ,Ed) + Z1, aux1)

where Q̄ is a fully specified degree-d polynomial map over the integers chosen
at random from some distribution which we will specify below. For b ∈ {0, 1},
Zb is a distribution that needs to be smudged and auxb is auxiliary information
about the distribution. On a very high level, the assumption has a structure
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that is reminiscent of the assumptions made by [3,43]. However, there are dif-
ferences in what set of polynomials that Q̄ can be supported and the auxiliary
information. As described above, the polynomial map that [29] considers is of
the form: Q̄(E1, . . . ,Ed) = P(E1 ⊗ . . .Ed)P′ where the polynomial first com-
putes multilinear degree d monomials by computing E1 ⊗ . . . ⊗ Ed and then
multiplies it on both sides by matrices P,P′ of appropriately chosen dimensions
where the entries are chosen from a discrete Gaussian distribution. Our attacks
do not apply to the assumptions made in [3,43], which are structurally similar
on a very high level. The reason for this is that our attack uses the structure of
the polynomial Q̄ in a crucial way. Our results, in fact, suggest that there are
distributions of polynomials Q̄, such that Q̄(E1, . . . ,Ed) may be secure to release
(from the point of view of SoS, linearizations and other attacks) but together
with the LWE samples, might end up being invertible. This conclusion suggests
that these types of assumptions of LWE sampling with polynomial leakage on
the errors need to be thoroughly investigated.

We now describe the assumption in full specification below.

2.1 The DQVWW Assumption Implying iO
We now describe the assumption of [29] implying iO. The assumption appears
as the “final assumption” on page 7 as well as Conjecture 2 in [29]. We empha-
size unlike previous works in this line, the assumption of [29] is fully-specified,
meaning all parameters/implementations are fully specified.

We first set some parameters that will be used to define the conjecture.

– d ≥ 3 is a constant integer.
– w is a security/dimension parameter,
– m,n, k,M,N,W are other dimension parameters which are polynomials in

w.
– In their candidate, M = md−1/2 and K = md+1/2, m ≥ w3 and m3 ≤ k ≤

m2d−7/6 and W = O(dwmd−1).
– q is a prime, χ, χ̄, χflood are LWE error distributions with different parameters.

We note that there is a bound of q ≤ 2O(m) for LWE security to hold, a point
which we expound on in Remark 1.

The assumption is regarding indistinguishability of two distributions Db for
b ∈ {0, 1}. We describe both the distributions below.

Distribution Db.

– For i ∈ [d], sample Ai ← Z
m×w
q , Si ← Z

w×k
q , Ei ← χm×k. Set Bi = Ai ·Si +

Ei. Visually, the Ai’s are tall, the Si’s are wide, and the Bi’s and the Ei’s
are wide.

– Sample P ← χM×md

and P′ ← χkd×K . Visually, P is a wide matrix and P′

is a tall matrix.
– Set Ā∗ = P ·

(
A1 ⊗ I⊗(d−1)

m ‖Im ⊗ A2 ⊗ I⊗(d−2)
m ‖ . . . ‖I⊗(d−1)

m ⊗ Ad

)
∈

ZM×dwmd−1

q . Visually, Ā∗ is a tall matrix.
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– Set S̄∗ =

⎛

⎜
⎜
⎜
⎝

S1 ⊗ B2 ⊗ B3 ⊗ . . . ⊗ Bd−1 ⊗ Bd

E1 ⊗ S2 ⊗ B3 ⊗ . . . ⊗ Bd−1 ⊗ Bd

...
E1 ⊗ E2 ⊗ E3 ⊗ . . . ⊗ Ed−1 ⊗ Sd

⎞

⎟
⎟
⎟
⎠

· P′ ∈ Z
dwmd−1×K
q Visually,

S̄∗ is a wide matrix.
– (Killian Randomization) Find random full rank matrices A∗ ∈ Z

M×W
q ,S∗ ∈

Z
W×K
q such that A∗ · S∗ = Ā∗ · S̄∗. Visually, A∗ is a tall matrix and S∗ is a

wide matrix.
– Observe that if one sets B∗ = P · (B1 ⊗ . . .⊗Bd) ·P′ and E∗ = P · (E1 ⊗ . . .⊗

Ed) · P′, then it holds that B∗ − A∗S∗ = E∗. Set seed = {Bi}i∈[d],A∗,S∗.
– Set B̂ = A∗S0 + F, where S0 ← Z

W×K
q and F ← χM×K

flood .
– Set C = A∗R + E − bG, where R ← Z

W×M log q
q and E ← χ̄M×M log q.

Output of Db consists of the following tuple:

Δb = (P,P′,A∗, {Bi}i∈[d], B̂,C,E∗ + EG−1(B̂) − bF)

We note that E∗ +EG−1(B̂)−bF let’s one derive A∗ ·(S∗ +RG−1(B̂)−bS0).
This is because B∗ + CG−1(B̂) = A∗(S∗ + RG−1(B̂)−bS0)+E∗ + EG−1(B̂)−
bF.
The Assumption of [29]. For the distribution D0,D1 defined above, D0 is
computationally indistinguishable to D1.

Remark 1. For simplicity, consider the LWE error distribution χ to be uniform
over [0, B − 1]. In general, the security of LWE itself requires that B/q ≥ 2−w

where w is the security parameter (It’s also the length of the secret, observe
that each matrix Si is of dimension w × k and every column, say si,j ∈ Z

w
q

of Si defines a fresh LWE sample given by Aisi,j + ei,j , where ei,j ∈ Z
k
q is

the jth column of Ei). Moreover, we know that the total entropy in a LWE
matrix is upper bounded by wk log q + mk log B and this total entropy must be
upper bounded by the entropy in a truly random matrix of dimension m × k,
so we have mk log q ≥ wk log q + mk log B. Substituting the constraint on the
noise-to-modulus ratio into the entropy bound gives us that m ≥ log q, so q ≤
2O(m) so that LWE security holds. An analogous constraint holds on Gaussian
distributions with respect to the width.

2.2 Overview of the Attack

We begin by describing a recovery algorithm for the error term E1 in the case
that b = 0. To break the assumption, the algorithm is given a tuple

(P,P′,A∗, {Bi}i∈[d], B̂,C,E∗ + EG−1(B̂) − bF)

for some b ∈ {0, 1}, and the algorithm needs to identify the value of b ∈ {0, 1}.
We show that in the case of b = 0, we can construct an algorithm A that recovers
the matrices A1, . . . ,Ad up to a unique representation, and then recovers the
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secret S1 up to a unique representation. If we recover A1 and S1 up to a unique
representation, then we can recover E1 from B1. The same attack can then
iteratively recover Ei for all i ∈ [d]. This recovery algorithm for the case that
b = 0 heuristically gives rise to a distinguisher which we explain in Sect. 3.1.

A Unique Representation. Observe that if one was to naively solve for Ai,Si,
there could be many solutions simultaneously satisfying all the constraints. In
particular, there are many possible values of Ui,Vi that satisfy Bi = Ui ·Vi+Ei

where Ui ∈ Z
m×w
q , Vi ∈ Z

w×k
q and A∗ = P

[
U1 ⊗ I⊗(d−1)‖ · · · ‖I⊗(d−1) ⊗ Ud

]
T

for a matrix T ∈ Z
dwmd−1×W
q . This large solution space, for example, contains

all solutions of the form Ui = AiR and Vi = R−1Si for any invertible matrix
R ∈ Z

w×w
q . Any such choice of Ui and Vi also gives rise to a solution of A∗S∗ =

Ū∗V̄∗ where

Ū∗ = P
[
U1 ⊗ I⊗(d−1)‖ · · · ‖I⊗(d−1) ⊗ Ud

]

V̄∗ =

⎡

⎢
⎢
⎢
⎣

V1 ⊗ B2 ⊗ B3 ⊗ . . . ⊗ Bd−1 ⊗ Bd

E1 ⊗ V2 ⊗ B3 ⊗ . . . ⊗ Bd−1 ⊗ Bd

...
E1 ⊗ E2 ⊗ E3 ⊗ . . . ⊗ Ed−1 ⊗ Vd

⎤

⎥
⎥
⎥
⎦

· P′.

In order to make a unique search possible, we observe that for any LWE sample,

Bi = Ai · Si + Ei

for a planted Ai ∈ Z
m×w
q , Si ∈ Z

w×k
q and Ei ← χm×k, with high probability,

can be uniquely written as:

Bi = Ui · Vi + Ei

where we insist that Ui is uniquely structured, namely in its Hermite normal

form (reduced echelon form). That is, we set Ui =
[
Iw

Ãi

]
, by setting the top w×w

submatrix of Ui to be identity. The purported solution value of Ui is supposed
to be Ai · A−1

i,T where A−1
i,T is the top w × w submatrix of Ai. Similarly, the

intended solution for Vi is supposed to be Ai,T · Si. Note that if this happens,
then we still have the desired relation:

Ai · Si = Ui · Vi

Our Algorithm. We now state our recovery algorithm that recovers E1 in two
simple steps:

Main Recovery Algorithm A

Input: (P,P′,A∗, {Bi}i∈[d], B̂,C,E∗ + EG−1(B̂).
Output: V1,E1.
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1. Recover U1, . . . ,Ud: Solve the affine system of equations defined by

P ·
[
U1 ⊗ I⊗(d−1)

m ‖Im ⊗ U2 ⊗ I⊗(d−2)
m ‖ · · · ‖I⊗(d−1)

m ⊗ Ud

]
= A∗ · M

(1)

where Ui =
[
Iw

Ãi

]
, for i ∈ [d], and the variables are given by the entries

of Ã1, . . . , Ãd ∈ Z
(m−w)×w
q and the entries of M ∈ Z

W×dwmd−1

q . Even
more precisely, every entry of the matrix

P ·
[
U1 ⊗ I⊗(d−1)

m ‖Im ⊗ U2 ⊗ I⊗(d−2)
m ‖ · · · ‖I⊗(d−1)

m ⊗ Ud

]
− A∗ · M

defines an equation in the above described variables, where the coeffi-
cients are given by the entries of A∗ and P. We will show there is a
unique solution for {Ãi}i∈[d], namely the fact that there is only one pos-
sible solution for all the entries of {Ãi}i∈[d] regardless of the solution
found for the entries of M.

2. Recover V1: Having recovered the unique matrices {Ãi}i∈[d], our algo-
rithm now aims to recover V1 such that U1 · V1 = A1 · S1. To do this,
our algorithm computes

Y = A∗ · (S∗ + R · G−1(B̂))

by subtracting off the error E∗+E ·G−1(B̂) from B∗+C ·G−1(B). Then
it computes, via standard linear algebra, a full rank annihilator matrix
Q ∈ Z

K×(K−M log q)
q such that G−1(B̂) · Q = 0, obtaining the equation,

A∗ · S∗ · Q = Y · Q.

Finally, it solves the linear system of equations defined by

P
[
U1 ⊗ I⊗(d−1)

m ‖ · · · ‖I⊗(d−1)
m ⊗ Ud

] [V1 ⊗ B′
2

Z

]
P′ · Q = Y · Q (2)

where B′
2 = B2 ⊗ . . . ⊗ Bd and where the variables are the entries of

V1 and Z and the coefficients are given by the entries of P, P′, Q, Y,
Ui, for i ∈ [d], and B′

2. We will show that V1 has a unique solution,
namely the fact that there is only one possible solution for the entries
of V1 regardless of the solution found for the entries of Z. Finally, E1 is
now recovered by computing B1 − U1 · V1.

Observe that in each of the two steps above, our algorithm sets up a simple,
explicit affine (linear in Step 2) system of equations. Correctness of the algorithm
is entirely determined by showing, for Step 1, the uniqueness of the solution
to {Ãi}i∈[d], and showing, for Step 2, the uniqueness of the solution to V1.
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This analysis is intricate and benefits from being viewed in a specific lens as we
shortly explain.

Remark 2. We will place basic linear algebra facts and linear algebraic state-
ments about the tensor structure used in the DQVWW construction in a
shaded box. This is done to minimize the number of distractions the reader
encounters. A reference to the corresponding statement in the Appendix
will be included. A compendium of these facts and their proofs is found in
Appendix 4.4 and Appendix 4.5.

2.3 The Importance of Column Spans

To show uniqueness in Step 1, we will analyze column spans instead of analyzing
matrix equations. There are two reasons for analyzing the column spans: First,
reasoning about column spans allows us to disregard the matrix M in Eq. 1 by
taking advantage of the fact that the column span of A∗ ·M is contained in the
column span of A∗, a fact which we will recall shortly.

Our second, and principal, reason for analyzing column spans is that it allows
us to continue to see the tensor structure even after left-multiplication by the
matrix P. If P were not present, then we observe that a straightforward linear
independence argument, which uses the tensor structure of the matrix in the
LHS of the below equation, shows that there is a unique choice of {Ãi}i∈[d] that
satisfies the equation

[
U1 ⊗ I⊗(d−1)

m ‖Im ⊗ U2 ⊗ I⊗(d−2)
m ‖ · · · ‖I⊗(d−1)

m ⊗ Ud

]
= A∗ · M.

We will explicitly analyze this case without P later in this overview as a simple
example to build intuition. Under a reasonable conjecture about random matri-
ces being injective on subspaces of small dimension, we can directly extend this
linear independence argument for the simple example to the general case when
we have left-multiplication by P. This extension reveals that left-multiplication
by P does not sufficiently destroy, nor scramble, the tensor structure of the LHS
above. Yet, this observation is completely hidden from view when considering
the matrix view

P ·
[
U1 ⊗ I⊗(d−1)

m ‖Im ⊗ U2 ⊗ I⊗(d−2)
m ‖ · · · ‖I⊗(d−1)

m ⊗ Ud

]

Since P, in general, is not decomposable into a tensor product, directly analyzing
the matrix product makes the tensor structure appear to be completely lost!

From a column span view, however, this tensor structure is still very much
accessible. Extending the above mentioned linear independence argument to the
general case, in which P is present, turns out to exactly require analyzing the
column span Colspan

(
P
[
U1 ⊗ I⊗(d−1)

m ‖ · · · ‖I⊗(d−1)
m ⊗ Ud

])
. A more detailed

overview is given below.
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Framework for Column Spans. To analyze the column span of the following
matrix [

U1 ⊗ I⊗(d−1)
m ‖Im ⊗ U2 ⊗ I⊗(d−2)

m ‖ · · · ‖I⊗(d−1)
m ⊗ Ud

]
.

where the matrices Ui ∈ Z
m×w
q are of the stipulated form (with a top w × w

identity block, so of full column rank w), it is useful to make the following
extension of each Ui to a full basis for Z

m
q . The column span of this matrix

is some subspace of the vector space over Z
m
q ⊗ · · · ⊗ Z

m
q︸ ︷︷ ︸

d times

. Considering Z
m
q as a

vector space, we consider the following bases for Z
m
q . For i ∈ [d], let Bi be a

basis for Z
m
q obtained by extending the set of column vectors in Ui =

[
Iw

Ãi

]
to

the following full rank, lower-triangular matrix

Bi �
[
Iw 0w×(m−w)

Ãi Im−w

]
∈ Z

m×m
q ,

and let (e(i)1 , . . . , e(i)m ) denote the columns of Bi (the basis vectors).

2.4 Correctness of Step 1

We aim to build simple intuition about the correctness of our algorithm in this
overview and leave the full details to the main technical content. Our overview
first shows the existence of one solution to {Ui}i∈[d] in Eq. 1, namely a solution
to Ui is the Hermite normal form of Ai ∈ Z

m×w
q , which has full column rank

with overwhelming probability by property of random matrices. Then we explain
why this is the only solution with overwhelming probability.

(Step 1) Existence of a Structured Solution : First, there exists at least
one solution to {Ui}i∈[d] and M in Eq. 1 in which for all i ∈ [d], we have Ui ←
Ai ·A−1

i,T , where we recall that Ai,T ∈ Z
w×w
q is defined to be the top w×w block

of Ai. Put equivalently, a solution to Ui is the Hermite normal form of Ai. To
see why, for i ∈ [d], define the invertible matrix Ni = I⊗(i−1)

m ⊗ A−1
i,T ⊗ I⊗(d−i)

m

and use the following two linear algebraic facts.

Lemma 1. For any matrices M1,M2, there exists a matrix N such that
M1 · N = M2 if and only if Colspan(M2) ⊆ Colspan(M1).

Corollary 1. For any matrices M1,M2 and for any invertible matrices
N1,N2 of the appropriate dimensions, we have that

Colspan
([
M1‖M2

])
= Colspan

([
M1N1‖M2N2

])
.

These statements and their proofs can be found in Appendix 4.4, under
Lemma 12 and Corollary 6.
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By Corollary 1 we have,

Colspan
(
P ·

[
A1 ⊗ I⊗(d−1)

m ‖ · · · ‖I⊗(d−1)
m ⊗ Ad

])

= Colspan
(
P ·

[(
A1 ⊗ I⊗(d−1)

m

)
· N1‖ · · · ‖

(
I⊗(d−1)
m ⊗ Ad

)
· Nd

])

= Colspan
(
P ·

[
A1 · A−1

1,T ⊗ I⊗(d−1)
m ‖ · · · ‖I⊗(d−1)

m ⊗ Ad · A−1
d,T

])
.

By definition of the scheme,

A∗ = P ·
[
A1 ⊗ I⊗(d−1)

m ‖ · · · ‖I⊗(d−1)
m ⊗ Ad

]
· K

for some matrix K ∈ Z
dwmd−1×W
q that preserves the column span of

P ·
[
A1 ⊗ I⊗(d−1)

m ‖ · · · ‖I⊗(d−1)
m ⊗ Ad

]
.

Since the column span is preserved by K,

Colspan(A∗) = Colspan
(
P ·

[
A1 · A−1

1,T ⊗ I⊗(d−1)
m ‖ · · · ‖I⊗(d−1)

m ⊗ Ad · A−1
d,T

])

which implies, by Lemma 1, that there exists some matrix M that satisfies Eq. 1
when we consider Ui ← Ai · A−1

i,T for all i ∈ [d].

(Step 1) Uniqueness When P is Absent: To build intuition for the full
uniqueness argument, we present it in the simpler setting in which P is entirely
absent from the scheme in the DQVWW assumption. Let us also consider the
simple case when d = 2. In this toy case, there is no matrix P used to generate
A∗, so for this simple case we instead consider when the algorithm is given a
matrix of the form T∗ =

[
A1 ⊗ Im‖Im ⊗ A2

]
K for some column span preserving

Kilian matrix K. We show the following claim.

Lemma 2 (Simple case without P). For matrices U1 =
[
Iw

Ã1

]
,U2 =

[
Iw

Ã2

]
,U′

1 =
[
Iw

Ã′
1

]
,U′

2 =
[
Iw

Ã′
2

]
∈ Z

m×w
q , if

Colspan
([
U1 ⊗ Im‖Im ⊗ U2

])
= Colspan

([
U′

1 ⊗ Im‖Im ⊗ U′
2

])
. (3)

then Ãi = Ã′
i for i ∈ [2] so that U1 = U′

1 and U2 = U′
2.

Before we show how to prove Lemma 2, let us show that Lemma 2 implies
uniqueness. In particular, we now explain why it is reasonable to require in the
statement of Lemma 2 that the column spans are equal.

Recall that the algorithm finds a solution to {Ãi}i∈[2] and M in Eq. 1 which
is of the following form in the simplified setting:

[
U1 ⊗ Im‖Im ⊗ U2

]
= T∗ · M.

Then, by Lemma 1, any solution to {Ãi}i∈[2] satisfies the set containment
Colspan

([
U1 ⊗ Im‖Im ⊗ U2

]) ⊆ Colspan(
[
A1 ⊗ Im‖Im ⊗ A2

]
).
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Corollary 2 With overwhelming probability over the choice of random Ai ∈
Z

m×w
q , for i ∈ [d], if

Colspan
([

U1 ⊗ I⊗(d−1)
m ‖ · · · ‖I⊗(d−1)

m ⊗ Ud

])

⊆ Colspan
([

A1 ⊗ I⊗(d−1)
m ‖ · · · ‖I⊗(d−1)

m ⊗ Ad

])

then

Colspan
([

U1 ⊗ I⊗(d−1)
m ‖ · · · ‖I⊗(d−1)

m ⊗ Ud

])

= Colspan
([

A1 ⊗ I⊗(d−1)
m ‖ · · · ‖I⊗(d−1)

m ⊗ Ad

])

The proof sketch can be found in Supp. Materials Sect. 4.5 under Corol-
lary 11.

By Corollary 2, with overwhelming probability over the choice A1,A2, set
containment in this setting actually implies set equality :

Colspan
([
U1 ⊗ Im‖Im ⊗ U2

])
= Colspan(

[
A1 ⊗ Im‖Im ⊗ A2

]
).

Therefore, any solution found for the simplified version of Eq. 1 satisfies the
above set equality, and our new Lemma 2 implies that there is only one such
choice of {Ãi}i∈[2] that satisfies this equality.

Proof (Proof of Lemma 2). Proving this fact is done by a linear independence
argument enabled by the structure of matrices Ui and by the tensor construction.

We now give a direct argument for uniqueness by showing that U1 = U′
1

column-by-column. To show, for example, that the first column v = e(1)1 of

U1 =
[
Iw

Ã1

]
is equal to the first column of v′ of

[
Iw

Ã′
1

]
, we perform the following

steps.

– We observe that v′ can expressed in the basis B1 in a special linear combina-
tion: v′ = e(1)1 +

∑
j∈{w+1,...,m} α′

je
(1)
j for some coefficients α′

j .

– We consider the vector v′ ⊗ e(2)m which is in both the LHS and RHS of Eq. 3.
Because it is in both column spans, this vector can be written as

v′ ⊗ e(2)m =
∑

i≤w or j≤w

λi,j · e(1)i ⊗ e(2)j .

On the other hand, substituting for v′ and rearranging gives

0 = (λ1,m − 1) · e(1)1 ⊗ e(2)m −
∑

j∈{w+1,...,m}
α′

j · e(1)j ⊗ e(2)m

+
∑

i≤w or j≤w

λi,j · e(1)i ⊗ e(2)j . (4)
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– B1 ⊗ B2 = {e(1)i ⊗ e(2)j }i,j∈[m] is a basis for Z
m
q ⊗ Z

m
q . Therefore, the vectors

in each of the terms above are linearly independent. This implies that for
j ∈ {w + 1, . . . ,m}, α′

j = 0, and λ1,m = 1, and for all other values of i, j we
have λi,j = 0.

The same outline of steps can be repeated column-by-column.

While this argument suffices to handle the case when P is absent, when P is
present we exploit the following observation. In the argument above for the case
of d = 2, we needed the linear independence of m2 − (m − w)2 + (m − w) + 1
many vectors (given by each of the terms in Eq. 4, although note that the first
term will vary depending on which of the w columns we are considering) which
is a much smaller set of vectors than the total size of the basis for Z

m
q ⊗ Z

m
q ,

which is m2. For the argument to continue to hold when P is present, P only
needs to preserve the linear independence of this small set of vectors. A formal
statement and proof of this uniqueness is found in Theorem 2.

(Step 1) Uniqueness in the General Case : Having seen the uniqueness
argument in the simple case above without P, we now address the general case
where P is present.

In the general case, we introduce a single, reasonable conjecture about P
being rank preserving on low-dimensional subspaces. Namely, we conjecture that
with overwhelming probability over the choice of P whose entries are sampled
from χ where P has M rows, for T � M , and for any set of T linearly indepen-
dent vectors {vi}i∈[T ], the set {P · vi}i∈[T ] remains linearly independent. This
conjecture enables us to firstly show that all solutions satisfy a column span set
equality and secondly enable the same linear independence argument that shows
that this set equality implies unique solutions.

We first note that the application of Lemma 1 on Eq. 1, which we now restate,

P ·
[
U1 ⊗ I⊗(d−1)

m ‖Im ⊗ U2 ⊗ I⊗(d−2)
m ‖ · · · ‖I⊗(d−1)

m ⊗ Ud

]
= A∗ · M

shows that any solution to {Ui}i∈[d] in Eq. 1, satisfies the set containment

Colspan
(
P
[
U1 ⊗ I⊗(d−1)

m ‖ · · · ‖I⊗(d−1)
m ⊗ Ud

])
⊆ Colspan (A∗) . (5)

To extend the uniqueness argument from above, we desire to show that any
solution to {Ui}i∈[d] in Eq. 1 in fact satisfies the set equality :

Colspan
(
P
[
U1 ⊗ I⊗(d−1)

m ‖ · · · ‖I⊗(d−1)
m ⊗ Ud

])
= Colspan(A∗). (6)
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To see that the set containment implies set equality, we first observe that Corol-
lary 2 gives us

rk
([

A1 ⊗ I⊗(d−1)
m ‖ · · · ‖I⊗(d−1)

m ⊗ Ad

])

= rk
([

U1 ⊗ I⊗(d−1)
m ‖ · · · ‖I⊗(d−1)

m ⊗ Ud

])
.

Then we use the assumption that P preserves the rank of low-dimensional sub-
spaces. This assumption implies firstly that

rk
(
P
[
U1 ⊗ I⊗(d−1)

m ‖ · · · ‖I⊗(d−1)
m ⊗ Ud

])

= rk
([

U1 ⊗ I⊗(d−1)
m ‖ · · · ‖I⊗(d−1)

m ⊗ Ud

])

and, recalling that A∗ = P ·
[
A1 ⊗ I⊗(d−1)

m ‖ · · · ‖I⊗(d−1)
m ⊗ Ad

]
· K for some

column span preserving matrix K, the assumption implies secondly that

rk (A∗) = rk
([

A1 ⊗ I⊗(d−1)
m ‖ · · · ‖I⊗(d−1)

m ⊗ Ad

])

Then we apply the following linear algebraic fact,

Lemma 3. For any matrices M,N with finitely many rows and columns
such that Colspan(M) ⊆ Colspan(N), if rk(M) = rk(N), then
Colspan(M) = Colspan(N).

The proof can be found in Appendix 4.4 under Lemma 13.

To see that any solution {Ui}i∈[d] that satisfies the set containment in Eq. 5,
also satisfies the set equality found in Eq. 6. A formal statement of the conjecture
on P and is given in Sect. 3.2.

Now that we’ve established this set equality, we return to our previous linear
independence argument.

Lemma 4 (Simple case with P). For matrices U1 =
[
Iw

Ã1

]
,U2 =

[
Iw

Ã2

]
,

U′
1 =

[
Iw

Ã′
1

]
,U′

2 =
[
Iw

Ã′
2

]
∈ Z

m×w
q , if

Colspan
(
P · [U1 ⊗ Im‖Im ⊗ U2

])
= Colspan

(
P · [U′

1 ⊗ Im‖Im ⊗ U′
2

])
. (7)

then Ãi = Ã′
i for i ∈ [2] so that U1 = U′

1 and U2 = U′
2.

We leave the formal proof to the technical section and instead take the oppor-
tunity to demonstrate how the conjecture naturally extends the proof above
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(proof of Lemma 2) to this setting in which P is present. To show, for exam-

ple, that the first column v = e(1)1 of U1 =
[
Iw

Ã1

]
is equal to the first col-

umn of v′ of
[
Iw

Ã′
1

]
, we perform the almost identical steps as done before. We

observe that v′ can expressed in the basis B1 in a special linear combination:
v′ = e(1)1 +

∑
j∈{w+1,...,m} α′

je
(1)
j for some coefficients α′

j . Then, using the set

equality we showed above, we see that the vector P · (v′ ⊗ e(2)m ), is in both
Colspan

(
P ·

[
U1 ⊗ I⊗(d−1)

m ‖ · · · ‖I⊗(d−1)
m ⊗ Ud

])
and in Colspan(A∗) where A∗

was generated in a process that left-multiplied by P. Therefore, it can also be
expressed as

P · v′ ⊗ e(2)m = P ·
(
e(1)1 ⊗ e(2)m

)
+

∑

j∈{w+1,...,m}
α′

j · P ·
(
e(1)j ⊗ e(2)m

)

or as
P ·

(
v′ ⊗ e(2)m

)
=

∑

i≤w or j≤w

λi,j · P ·
(
e(1)i ⊗ e(2)j

)
.

Taking the difference gives us the equation,

0 = (λ1,m − 1) · P ·
(
e(1)1 ⊗ e(2)m

)
−

∑

j∈{w+1,...,m}
α′

j · P ·
(
e(1)j ⊗ e(2)m

)

+
∑

i≤w or j≤w

λi,j · P ·
(
e(1)i ⊗ e(2)j

)
.

For us to finish arguing that all the coefficients α′
j = 0, for j ∈ {w + 1, . . . ,m},

we need the linearly independence of the following set of vectors
{
P ·

(
e
(1)
1 ⊗ e(2)

m

)}
∪

{
P ·

(
e
(1)
j ⊗ e(2)

m

)}
j∈{w+1,...,m}

∪
{
P ·

(
e
(1)
i ⊗ e

(2)
j

)}
i≤w or j≤w

.

The proposed conjecture above that P preserves the linear independence of this
small number of vectors directly addresses this.

2.5 Correctness of Step 2

In Step 2, we assume that the algorithm has already recovered the unique solu-
tion for {Ãi}i∈[d] (therefore, it has also recovered a unique solution for {Ui}i∈[d])
in Step 1. We claim that in Step 2 of the algorithm above, there exists a unique
solution for V1 in Eq. 2, which is restated below:

P
[
U1 ⊗ I⊗(d−1)

m ‖ · · · ‖I⊗(d−1)
m ⊗ Ud

] [V1 ⊗ B′
2

Z

]
P′ · Q = Y · Q.

To show uniqueness in Step 2, we consider the homogeneous version (when the
RHS is 0) of Eq. 2:

P
[
U1 ⊗ I⊗(d−1)

m ‖ · · · ‖I⊗(d−1)
m ⊗ Ud

] [V1 ⊗ B′
2

Z

]
P′ · Q = 0.
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Any solution for V1 and Z in the homogeneous version is exactly the difference of
two solutions for V1 and Z in the inhomogeneous version. Therefore, by showing
that the only solution for V1 in the homogeneous system is the zero matrix, we
show that there is a unique solution for inhomogeneous version.

Intuitively, one sees that uniqueness is possible by observing that in the block
V1⊗B′

2 is linear in the entries of V1 and there are only wk unknowns but many
equations (as many as the number of entries in V1 ⊗B′

2). On the other hand, in
terms of uniqueness, one should be concerned about the unknown matrix Z in
Eq. 2. However, we show how to isolate a linear equation in only V1 (removing Z)
thereby revealing that V1 must have a unique solution with high probability. The
proof of uniqueness then proceeds by a rank argument. We present an overview
of this proof in three steps: firstly, we show that there always exists a solution,
secondly we give a simple observation for when P is not present, and finally we
give the high level argument for when P is present.

(Step 2) Existence of a Solution : By definition of the scheme, A∗ · S∗ =
Ā∗ · S̄∗ where,

Ā∗ = P(A1 ⊗ I ⊗ . . . ⊗ I| . . . |I ⊗ I ⊗ . . . ⊗ Ad),

S̄∗ =

⎛

⎜
⎜
⎜
⎝

S1 ⊗ B2 ⊗ B3 ⊗ . . .Bd−1 ⊗ Bd

E1 ⊗ S2 ⊗ B3 ⊗ . . .Bd−1 ⊗ Bd

...
E1 ⊗ E2 ⊗ E3 ⊗ . . .Ed−1 ⊗ Sd

⎞

⎟
⎟
⎟
⎠

· P′

Thus, due to the properties of tensor products A∗ · S∗ = L1 · L2, where,

L1 = P(A1 · A−1
1,T ⊗ I ⊗ . . . ⊗ I| . . . |I ⊗ I ⊗ . . . ⊗ Ad · A−1

d,T ),

L2 =

⎛

⎜
⎜
⎜
⎝

A1,T · S1 ⊗ B2 ⊗ B3 ⊗ . . .Bd−1 ⊗ Bd

E1 ⊗ A2,TS2 ⊗ B3 ⊗ . . .Bd−1 ⊗ Bd

...
E1 ⊗ E2 ⊗ E3 ⊗ . . .Ed−1 ⊗ Ad,TSd

⎞

⎟
⎟
⎟
⎠

· P′

Therefore, there is a solution to Eq. 2 where V1 = A1,T · S1.

(Step 2) Uniqueness When P is Absent: Uniqueness is argued by consid-
ering the homogeneous version of Eq. 2 (obtained by taking the difference of two
candidate solutions) and arguing that the only solution is the zero solution (the
difference is zero, so the two solutions are equal). Consider the homogeneous
equation when P is absent:

[
U1 ⊗ I⊗(d−1)

m ‖ · · · ‖I⊗(d−1)
m ⊗ Ud

] [V′
1 ⊗ B′

2

Z′

]
P′ · Q = 0 (8)

where the entries of V′
1,Z

′ are the unknowns. In this case, it easy to see that
V′

1 = 0 since we can remove Z′ by left multiplying both sides of Eq. 8 by the
matrix

U⊥ �
[
Im ⊗ U⊥

2 ⊗ · · ·U⊥
d

]
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where U⊥
i ∈ Z

(m−w)×m
q are full rank annihilators of Ui, that is U⊥

i Ui = 0.
Moreover, observe that if Ui are the Hermite normal forms of Ai, then U⊥

i

also annihilates Ai. Left multiplying both sides of Eq. 8 by U⊥ and expanding
B′

2 = B2 ⊗ · · · ⊗ Bd where Bi = AiSi + Ei gives:
(
U1 · V′

1 ⊗ U⊥
2 · E2 ⊗ · · · ⊗ U⊥

d · Ed

) · P′ · Q = 0. (9)

This equation implies that V′
1 = 0 with high probability. Observe that the

error terms Ei, the matrix P′, and the matrix Q are independently produced.
Moreover, with high probability over the choice of error terms Ei, we have
U⊥

i · Ei �= 0. If V′
1 is non-zero then U1 · V′

1 �= 0, since U1 has full column
rank, which would imply that the LHS of Eq. 9 is non-zero, a contradiction.
Therefore, V′

1 = 0 with high probability and we have uniqueness for a solution
to V1 when P is absent.

(Step 2) Uniqueness When P is Present: Now we consider the homogeneous
equation with P:

P ·
[
U1 ⊗ I⊗(d−1)

m ‖ · · · ‖I⊗(d−1)
m ⊗ Ud

] [V′
1 ⊗ B′

2

Z′

]
P′ · Q = 0 (10)

where V′
1 and Z′ are the unknowns. Here, from the matrix point of view the

tensor structure is destroyed by the action of P, for example consider P · (U1 ⊗
I⊗(d−1)
m ), obstructing us from using the simple argument for uniqueness above.

An argument using column spans is also inhibited because the matrix of interest[
V′

1 ⊗ B′
2

Z′

]
is left-multiplied by the matrix

P
[
U1 ⊗ I⊗(d−1)

m ‖ · · · ‖I⊗(d−1)
m ⊗ Ud

]
.

The key insight from the simple argument above is that it allowed us to isolate
V′

1 in a simple homogeneous equation where Z′ is absent. Therefore, we aim to
again isolate V′

1 in a simple homogeneous equation to prove uniqueness in this
general setting, we first expand Eq. 10:

P ·
[
U1 ⊗ I⊗(d−1)

m

]
(V′

1 ⊗ B′
2) · P′ · Q

+ P ·
[
Im ⊗ U2 ⊗ I⊗(d−2)

m ‖ · · · ‖I⊗(d−1)
m ⊗ Ud

]
Z′ · P′ · Q = 0

Applying theprinciple ofwishful thinking, if the columns ofP·
[
U1 ⊗ I⊗(d−1)

m

]
were

linearly independent from those of P ·
[
Im ⊗ U2 ⊗ I⊗(d−2)

m ‖ · · · ‖I⊗(d−1)
m ⊗ Ud

]

then the first term alone must satisfy P ·
[
U1 ⊗ I⊗(d−1)

m

]
(V′

1 ⊗ B′
2) · P′ · Q = 0,

thereby isolating V′
1 in a new homogeneous equation without the presence of Z′.

This independence, however, is false. The two column spans certainly overlap.
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To make this approach work, a simple modification suffices: we can take a
submatrix of P ·

[
U1 ⊗ I⊗(d−1)

m

]
and remove from consideration all the columns

of P ·
[
U1 ⊗ I⊗(d−1)

m

]
contained in

Colspan
(
P ·

[
Im ⊗ U2 ⊗ I⊗(d−2)

m ‖ · · · ‖I⊗(d−1)
m ⊗ Ud

])
.

Moreover, we can compute the exact rank of this submatrix combinatorially
as w(m − w)d−1. Leaving the exact details to the main technical body, this
observation leads us to an equation of the form

X1 · (V′
1 ⊗ B′

2) · P′ · Q = 0.

for some matrix X1 that has a nullspace of dimension O(w2md−2). On the other
hand, we will observe that when V′

1 �= 0, V′
1 ⊗ B′

2 has rank at least O(md−1).
Therefore, it must be the case that V′

1 = 0 if m = ω(w2) and we observe that
the initial work of [29] sets m ≥ w3. In a nutshell, the significant amount of
non-overlap of the column span of P ·

[
U1 ⊗ I⊗(d−1)

m

]
with the column span

Colspan
(
P ·

[
Im ⊗ U2 ⊗ I⊗(d−2)

m ‖ · · · ‖I⊗(d−1)
m ⊗ Ud

])
is still enough to argue

uniqueness of V1. The full details of this uniqueness claim can be found in
Sect. 4.1.

3 Our Attack

Theorem 1. Under Conjecture 1, there exists a polynomial time probabilistic
algorithm that recovers {Ei}i∈[d] for i ∈ [d] when given an input from D0.

Proof. We construct an algorithm A that takes an input

Δ0 = (P,P′,A∗, {Bi}i∈[d], B̂,C,E∗ + E · G−1(B̂)),

and outputs {Ei}i∈[d]. In a nutshell, the algorithm will be able to compute
matrices V1 ∈ Z

m×w
q and U1 ∈ Z

w×k
q such that B1 ∈ Z

m×k
q such that B1 =

U1 · V1 + E1 ∈ Z
m×k
q such that E1 ∈ Z

m×k
q has a small norm. Our attack

recovers all the errors Ei for i ∈ [d], giving a full recovery algorithm.
As described in the overview, there are only two steps where each step only

uses Gaussian Elimination on polynomial sized systems of equations.
Algorithm for Recovery of E1

Input: (P,P′,A∗, {Bi}i∈[d], B̂,C,E∗ + EG−1(B̂).
Output: {Ãi}i∈[d],V1,E1.
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1. Recover U1, . . . ,Ud: Solve the affine system of equations defined by

P ·
[
U1 ⊗ I⊗(d−1)

m ‖Im ⊗ U2 ⊗ I⊗(d−2)
m ‖ · · · ‖I⊗(d−1)

m ⊗ Ud

]
= A∗ · M

where Ui =
[
Iw

Ãi

]
, for i ∈ [d], and the variables are given by the entries

of Ã1, . . . , Ãd ∈ Z
(m−w)×w
q and the entries of M ∈ Z

W×dwmd−1

q and the
coefficients are given by the entries of A∗ and P. We discuss this step in
detail in Sect. 3.2.

2. Recover V1: Having recovered the unique matrices {Ãi}i∈[d], our algo-
rithm now aims to recover V1 such that U1 · V1 = A1 · S1. To do this,
our algorithm computes

Y = A∗ · (S∗ + R · G−1(B̂))

by subtracting off the error E∗+E ·G−1(B̂) from B∗+C ·G−1(B). Then
it computes, via standard linear algebra, a full rank annihilator matrix
Q ∈ Z

K×(K−M log q)
q such that G−1(B̂) · Q = 0, obtaining the equation,

A∗ · S∗ · Q = Y · Q.

Finally, it solves the linear system of equations defined by

P
[
U1 ⊗ I⊗(d−1)

m ‖ · · · ‖I⊗(d−1)
m ⊗ Ud

] [V1 ⊗ B′
2

Z

]
P′ · Q = Y · Q

where B′
2 = B2 ⊗ . . . ⊗Bd and where the variables are the entries of V1

and Z and the coefficients are given by the entries of P, P′, Q, Y, Ui, for
i ∈ [d], and B′

2. Finally, E1 is now recovered by computing B1 −U1 ·V1.
We discuss this step in Sect. 4.1.

The above two steps details the main step of the algorithm. Having recovered
U1,V1, we can now recover E1 from B1. We now describe how to extend the
same recovery algorithm to E2, . . . ,Ed. First consider the case of recovering E2.

Extension to E2: The algorithm described above allows us to learn recover
V1 and E1 where B1 −U1V1 = E1. The idea is that we can repeat this process
to learn E2, . . . ,Ed. Note that in the equation

P(U1 ⊗ I⊗(d−1)
m ‖ · · · ‖I⊗(d−1)

m ⊗ Ud) ·
[
V1 ⊗ B(2,...,d)

Z

]
P′Q = YQ,
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once V1 is known, we can begin exploiting the structure of a candidate solution
to Z. In particular, there exists a solution for Z which is of the form:

Z̄ =

⎛

⎜
⎝

E1 ⊗ A2,T · S2 ⊗ B3 ⊗ . . . ⊗ Bd−1 ⊗ Bd

...
E1 ⊗ E2 ⊗ E3 ⊗ . . . ⊗ Ed−1 ⊗ Ad,TSd

⎞

⎟
⎠ · P′.

This form allows us to solve for V2,Z2, once we have V1,E1, by setting up the
system of affine equations given by:

P(U1 ⊗ I⊗(d−1)
m ‖ · · · ‖I⊗(d−1)

m ⊗ Ud) ·
⎡

⎣
V1 ⊗ B(2,...,d)

E1 ⊗ V2 ⊗ B3 ⊗ . . . ⊗ Bd−1 ⊗ Bd

Z2

⎤

⎦P′Q

= YQ

for which we know a candidate solution for V2 is A2,TS2. Here the unknowns
are the entries of V2,Z2 and the coefficients are given by all the other matrices’
entries. We solve for V2 as the equation is now linear in V2. Proving that this
solution is unique will use the exact same ideas as above, except on a smaller
system of equations which are affine instead of linear. We will continue this way
for all remaining indices i ∈ [d]. We prove this uniqueness formally for the case
of i = 1 in Sect. 4.1 and remark here that uniqueness in the other cases follow
similarly.

Remark 3. Theorem 1 shows a full recovery attack for the case that the input is
from D0 and can be extended via a heuristic argument to a distinguisher between
D0 and D1 which we discuss in Sect. 3.1.

3.1 Distinguishing D0 from D1

To come up with a distinguisher which takes an instance from Db for some
b ∈ {0, 1}, we follow the following approach:

– We use the algorithm described in Theorem 1 to learn E1, . . . ,Ed. As a
remark, we note that equations solved for in the algorithm can be set up
regardless of whether b = 0 or b = 1. What we show is that the recovery will
succeed with high probability when b = 0.

– Once we have E1, . . . ,Ed we can compute E∗ = P · (E1 ⊗· · ·⊗Ed) ·P′. Then,
we can use the error leakage from the assumption E∗ + E · G−1(B̂) to learn
E · G−1(B̂). We simply check that this is annihilated by multiplying by Q.
This will succeed in the case that b = 0.

– In the case when b = 1, the check will not pass because of the presence of a
random error matrix F, namely the leakage term is given by E∗+E·G−1(B̂)−
F and even if we solve for E∗ and attempt to annihilate the remaining terms,
the term E·G−1(B̂)−F cannot be annihilated because heuristically a random
matrix F is unlikely to lie in the row span of G−1(B̂) (note that G−1(B̂) is a
wide matrix with a large right nullspace) .
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3.2 Recovery of Unique Ãi’s

Our first objective is to recover the matrices A1, . . . ,Ad up to a unique repre-

sentation U1 =
[
Iw

Ã1

]
, . . . ,Ud =

[
Iw

Ãd

]
. The intuition for the below section is

provided in detail in Sect. 2.4.

Useful Claims and Conjectures

Conjecture 1 (Linear independence preservation under P). Let m,w, d, k,K,
M, q, χ be parameters defined previously. If v1, . . . ,vT are arbitrary linearly
independent vectors in Z

⊗d
q , where T = md − (m − w)d + d · m then with proba-

bility 1−q−Ω(w2m) over the choice of P ← χM×md

, we have that P·v1, . . . ,P·vT

are linearly independent.

Remark 4 (Limit on Modulus Size). Naively using exponential modulus-to-noise
ratios does not break the conjecture because the hardness of LWE puts a limit on
this ratio. As a concrete attempt to break the conjecture, let us focus on the prob-
ability of sampling the zero-matrix, P ←− 0, given by B−md·M = B−m2d−(1/2)

.
The zero-matrix is not injective on any non-trivial subspace so to attempt to
break the conjecture, we can set the modulus q such that the probability of
sampling the zero-matrix is larger than q−Ω(w2m). For this attempt to be suc-
ceed, we require the relation B−m2d−(1/2) ≥ q−Ω(w2m) which implies that setting
q ≥ BΩ(m2d−3/2/w2) ≥ 2Ω(m2d−3/2/w2) (since B ≥ 2) is enough to refute the con-
jecture. Since d ≥ 3 and m ≥ w3, this setting of modulus q is much too large
for LWE security to hold as security requires q ≤ 2O(m). In other words, in this
setting, the distribution χ is not an LWE-friendly error distribution and is not
an admissible choice of χ allowed in the original assumptions (see Sect. 2.1 and
Remark 1).

Remark 5. If P is a uniformly random matrix over Z
M×md

q , a straightforward
counting argument suffices to prove the above conjecture. If P is random, then
Pv1, . . . ,PvT are jointly distributed as random vectors over Z

M
q provided T �

M . For random vectors, the probability that they are linearly independent is at
least 1 − O(T · qT−1

qM ) = 1 − O(q−M/2) when T � M .

Now we use the conjecture and express it in a notation useful to our proofs.

Corollary 3 (Linear independence preservation under P, Useful
Notation). Let m,w, d, k,K,M, q, χ be parameters defined previously. Let e(i)j

denote the jth column of the matrix Bi, which was defined in Sect. 2.3 so that
for i ∈ [d], the set {e(i)1 , e(i)2 , . . . , e(i)m } is a basis for Z

m
q . Then define

B �
{
e(1)i1

⊗ · · · ⊗ e(d)id
: i1, . . . , id ∈ [m] ∧ ∃j ∈ [d], ij ≤ w,

}

∪
d⋃

k=1

{
e(1)m ⊗ · · · ⊗ e(k−1)

m ⊗ e(k)� ⊗ e(k+1)
m ⊗ · · · ⊗ e(d)m : � ∈ [m]

}
.
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Assuming Conjecture 1 and P is sampled from χM×md

, with probability 1 −
q−Ω(w2m), the vectors in the set BP � {P · v : v ∈ B} are linearly independent.

Proof. Set v1, . . . ,vT to the vectors in B.

We now show that under Conjecture 1, for a random choice of P from χ,
with overwhelming probability there is no choice of matrices {Ãi}i∈[d] for which
P does not preserve the linear independence of the set B.

Lemma 5. Let P ← χM×md

and for i ∈ [d], let Ãi ∈ Z
(m−w)×w
q . Assuming

Conjecture 1,

Pr
P

[
∃{Ãi}i∈[d] s.t. BP not linearly independent

]
= q−Ω(w2m) = negl(w)

Proof. By Corollary 3, the probability over choice of P that P preserves the
linear independence of B defined with respect to a fixed set of {Ãi}i∈[d] is 1 −
q−Ω(w2m). Taking a union bound over all possible values of {Ãi}i∈[d], for which
there are qdw(m−w) many, we have

Pr
P

[∃{Ãi}i∈[d] s.t. BP not linearly independent] = q−Ω(w2 m)+dw(m−w) = q−Ω(w2m).

Lemma 6. For i ∈ [d], let Li � I⊗(i−1)
m ⊗

[
Iw

Ãi

]
⊗ I⊗(d−i)

m and let Ã �
[
L1‖L2‖ · · · ‖Ld

]
. Under Conjecture 1, with overwhelming probability over the

choice of P ← χM×md

, we have that the following holds for any set of matrices
{Ãi}i∈[d].

∀i ∈ [d],dim (P · Li) = wmd−1

dim
(
Colspan

([
P · L1‖P · L2‖ . . . ‖P · Ld

]))
= m

d − (m − w)
d

= dwm
d−1 − O

(
w

2
m

d−2
)

dim
(
Colspan(P · L1) ∩ Colspan

([
P · L2‖ . . . ‖P · Ld

]))
= wmd−1−w(m−w)d−1

Proof. The proof can be found in the Supplementary Materials (under
Lemma 18).

Main Theorem for the Recovery of Ãi’s. The following theorem immedi-
ately gives rise to our recovery algorithm.

Theorem 2 (Unique solutions for Ãi). Let M,m,w, k, d, q, χ be parameters
as defined previously. Sample P ← χM×md

. Then with probability 1 − negl(m),
over the choice of P we have that for any choice of Ãi ∈ Z

(m−w)×w
q for i ∈ [d]

and Ã′
i, we have the following where we define

Ã �
[[

Iw

Ã1

]
⊗ I⊗(d−1)

m ‖Im ⊗
[
Iw

Ã2

]
⊗ I⊗(d−2)

m ‖ · · · ‖I⊗(d−1)
m ⊗

[
Iw

Ãd

]]

Ã′ �
[[

Iw

Ã′
1

]
⊗ I⊗(d−1)

m ‖Im ⊗
[
Iw

Ã′
2

]
⊗ I⊗(d−2)

m ‖ · · · ‖I⊗(d−1)
m ⊗

[
Iw

Ã′
d

]]
.
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1. If,Colspan
(
PÃ′

)
⊆ Colspan

(
PÃ

)
, thenColspan

(
PÃ′

)
= Colspan

(
PÃ

)
.

2. Furthermore, if Colspan
(
PÃ′

)
= Colspan

(
PÃ

)
for all i ∈ [d], then Ãi =

Ã′
i.

Proof. The proof of the first claim was fully addressed in Sect. 2.4 in (Step 1)
Uniqueness in the general case.

We now address the second claim. The proof proceeds column-by-column of[
Iw

Ã′
i

]
for i ∈ [d] and shows that each column of

[
Iw

Ãi

]
is equal to its corresponding

column in
[
Iw

Ãi

]
. We’ll show that the first column of

[
Iw

Ã′
1

]
, say d(1)

1 , is equal to

the first column of
[
Iw

Ã1

]
.

First, for every i ∈ [d] extend the columns of
[
Iw

Ãi

]
to a basis for Z

m
q given

by the columns of the matrix Bi below:

Bi �
[
Iw 0w×(m−w)

Ãi Im−w

]
∈ Z

m×m
q .

Let e(i)j denote the jth column in Bi and observe that for all the jth columns
of Bi for j ∈ [w + 1,m] are all elementary vectors. That is, for i ∈ [d] and for
j ∈ {w + 1, . . . , d}, e(i)j = ej where ej is the jth elementary vector. Now we aim

to show that d(1)
1 = e(1)1 .

Take a carefully chosen column of PÃ′, namely
P ·

(
d(1)
1 ⊗ e(2)m ⊗ · · · ⊗ e(d)m

)
∈ Colspan

(
PÃ′

)
= Colspan

(
PÃ

)
. Therefore,

we can write an equation:

P ·
(
d(1)
1 ⊗ e(2)m ⊗ · · · ⊗ e(d)m

)
(*)

=
∑

i1,i2,...,id∈[m]∃j∈[d] s.t. ij∈[w]

λi1,...,id · P · (e(1)i1
⊗ · · · ⊗ e(d)id

)

Now observe that, d(1)
1 has a special form. Namely, the first column d(1)

1 must
be of the form d(1)

1 = e(1)1 +
∑

w<j≤m α
(1)
j e(1)j for some coefficients α

(1)
j ∈ Zq,

j ∈ {w + 1, . . . , m}. If we show that α
(1)
j = 0 for all j ∈ {w + 1, . . . ,m}, then

d(1)
1 = e(1)1 and e(1)1 is the first column of

[
Iw

Ã1

]
.
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Substituting for d(1)
1 , we have

P ·
(
d(1)
1 ⊗ e(2)m ⊗ · · · ⊗ e(d)m

)
(**)

= P ·
⎛

⎝

⎛

⎝e(1)1 +
∑

j>w

α
(1)
j e(1)j

⎞

⎠⊗ e(2)m ⊗ · · · e(d)m

⎞

⎠

= P ·
(
e(1)1 ⊗ e(2)m ⊗ · · · e(d)m

)
+
∑

j>w

α
(1)
j P ·

(
e(1)j ⊗ e(2)m ⊗ · · · e(d)m

)

Taking the difference of equation (*) and (**), we see that we have

0 = (λ1,m,m,...,m − 1) · P · (e(1)1 ⊗ e(2)m ⊗ · · · e(d)m )

+
∑

i1∈{w+1,...,m}
α
(1)
j · P · (e(1)i1

⊗ e(2)m ⊗ · · · ⊗ e(d)m )

+
∑

i1,i2,...,id∈[m]∃j∈[d] s.t. ij∈[w]

λi1,...,id · P · (e(1)i1
⊗ · · · ⊗ e(d)id

)

Now observe that every vector in this linear combination is linearly independent
by Lemma 5 which states that

BP =
{
P ·

(
e
(1)
i1

⊗ · · · ⊗ e
(d)
id

)
: i1, . . . , id ∈ [m] ∧ ∃j ∈ [d], ij ≤ w,

}

∪
d⋃

k=1

{
P ·

(
e
(1)
m ⊗ · · · e(k−1)

m ⊗ e
(k)
� ⊗ e

(k+1)
m ⊗ · · · ⊗ e

(d)
m

)
: � ∈ {w + 1, . . . , m}

}

is a linearly independent set of vectors. Therefore, λ1,m,m,...,m = 1 and α
(1)
j = 0

for all j ∈ {w + 1, . . . , d}. Therefore, d(1)
1 = e(1)1 . To show that the �th column

of
[
Iw

Ã′
i

]
, denoted d(i)

� , is the �th column of
[
Iw

Ãi

]
, denoted e(i)� , apply the same

argument on the vector P ·
(
e⊗(i−1)

m ⊗ d(i)
� ⊗ e⊗(d−i)

m

)
.
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Abstract. In the setting of subversion, an adversary tampers with the
machines of the honest parties thus leaking the honest parties’ secrets
through the protocol transcript. The work of Mironov and Stephens-
Davidowitz (EUROCRYPT’15 ) introduced the idea of reverse firewalls
(RF) to protect against tampering of honest parties’ machines. All known
constructions in the RF framework rely on the malleability of the under-
lying operations in order for the RF to rerandomize/sanitize the tran-
script. RFs are thus limited to protocols that offer some structure, and
hence based on public-key operations. In this work, we initiate the study
of efficient Multiparty Computation (MPC) protocols in the presence of
tampering. In this regard,

– We construct the first Oblivious Transfer (OT) extension protocol
in the RF setting. We obtain poly(κ) maliciously-secure OTs using
O(κ) public key operations and O(1) inexpensive symmetric key
operations, where κ is the security parameter.

– We construct the first Zero-knowledge protocol in the RF setting
where each multiplication gate can be proven using O(1) symmetric
key operations. We achieve this using our OT extension protocol and
by extending the ZK protocol of Quicksilver (Yang, Sarkar, Weng
and Wang, CCS’21 ) to the RF setting.

– Along the way, we introduce new ideas for malleable interactive
proofs that could be of independent interest. We define a notion of
full malleability for Sigma protocols that unlike prior notions allow
modifying the instance as well, in addition to the transcript. We
construct new protocols that satisfy this notion, construct RFs for
such protocols and use them in constructing our OT extension.

The key idea of our work is to demonstrate that correlated randomness
may be obtained in an RF-friendly way without having to rerandom-
ize the entire transcript. This enables us to avoid expensive public-key
operations that grow with the circuit-size.
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1 Introduction

Protocols in cryptography are proven secure under standard definitions where
the assumption is that the honest parties trust their machines to implement
their computation. This assumption breaks down in the real world, where even
honest parties’ computations are performed on untrusted machines. The secu-
rity guarantees of these protocols fall short of protecting against attacks that
take advantage of the implementation details instead of merely treating the algo-
rithm as a black-box. Such attacks are indeed realistic, both because users are
compelled to use third-party hardware due to lack of expertise, software man-
dated due to standardization, or even because of intentional tampering due to
subversion. The threat of a powerful adversary modifying the implementation so
that the subverted algorithm remains indistinguishable from the specification in
black-box interface, while leaking secrets is not overkill. Snowden revelations [2]
show that one of the potential mechanisms for large scale mass surveillance is
subversion of cryptographic standards and tampering of hardware.

Reverse Firewalls. The framework of cryptographic reverse firewalls was intro-
duced by Mironov and Stephens-Davidowitz [32] for designing protocols secure
against adversaries that can corrupt the machines of honest parties in order to
compromise their security. In such a setting, all parties are equipped with their
own reverse firewall (RF), which sits between the party and the external world
and sanitizes the parties’ incoming and outgoing messages. The parties do not
trust the RF, the RF cannot create security and the hope is for the RF to pre-
serve security in the face of subversion. Roughly, the security properties desired
from an RF are: (i) exfiltration-resistance: the firewall prevents the machine from
leaking any information to the outside world regardless of how the user’s machine
behaves. (ii) security preservation: the protocol with the firewall is secure even
when honest parties’ machines are tampered.

The work of [32] provides a construction of a two-party passively secure
computation protocol with a reverse firewall in addition to introducing the RF
framework. Feasibility of RF for multi-party computation (MPC) was shown
in [10] who constructed RFs for MPC protocols in the malicious setting. The
recent work of [11] constructs MPC protocols with RF in the presence of adaptive
corruptions. We discuss other works in the RF framework and related models
for subversion resistance in Sect. 1.3.

Motivation. We begin by observing that both existing works that construct RFs
for maliciously-secure MPC protocols [10,11] follow roughly the same template
– that of the GMW compiler [26]. Both constructions are essentially compilers:
they take a semi-honest secure MPC protocol and run GMW-like steps in the
reverse firewall setting to yield a secure MPC protocol with reverse firewalls.
In the process, they design secure protocols for the underlying primitives (like
augmented coin-tossing and zero knowledge) in the GMW compiler, construct
reverse firewalls for each of the primitives, and finally, show that the compiled
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MPC protocol is secure in the presence of tampering of honest parties. This
renders the resulting protocols inefficient for practical purposes.

The current techniques for constructing the RFs crucially make use of mal-
leability. This is because, the constructions rely on the ability of the RF to ran-
domize/maul messages to prevent exfiltration. In order to not break correctness,
such mauling has to be on messages that are malleable and therefore requires the
underlying primitives to be homomorphic. Indeed, the RFs for Sigma protocols
of [24] rely on malleability of Sigma protocol, and message and key homomor-
phism of Pedersen commitment. The RF of [10] relies on controlled malleable
non-interactive zero-knowledge proofs (NIZK) [14], and the constructions of [11]
need primitives like homomorphic commitment scheme, homomorphic public-
key encryption and homomorphic Sigma protocols for NP (which are secure
against adaptive corruption) [9]. These randomization techniques for construct-
ing the RF necessitates the MPC protocol to use homomorphic primitives based
on expensive public-key operations. In particular, the GMW approach of [10,11]
require number of public-key operations that is proportional to the size of the
circuit being computed by the protocol. However, progress in MPC has resulted
in several efficient protocols [22,28,37] based on Oblivious Transfer (OT) exten-
sion [7,16,27,29,34,40] that only rely on cheap symmetric key operations and
few public key operations. A recent line of works [3,38] presented interactive ZK
protocols for circuits in the vector OLE (Oblivious Linear Evaluation) model
[5,16,40]. Now that we know feasibility of RF for MPC via generic compilers,
can we construct RFs for efficient MPC protocols like those based on OT exten-
sion? All known techniques to construct RFs rely on some form of malleabil-
ity/homomorphism of the underlying protocol so that the RF can randomize
the messages. It is unclear how such randomization would work when the pro-
tocol messages are unstructured. Modifying the protocol to be homomorphic so
as to be RF friendly defeats the purpose of protocols like OT extension where
the goal is to minimize the number of public key operations. This motivates us
to ask the following question:

Can we construct an MPC protocol in the reverse firewall setting where the
number of public key operations is independent of the size of the circuit being

computed?

We answer the above question in the affirmative by constructing such pro-
tocols for specific functions like OT extension and Zero-Knowledge (ZK). Con-
structing reverse firewalls for such protocols requires new techniques since the
transcript resulting from symmetric key operations are unstructured and do not
render themselves well to randomization.

1.1 Our Contributions

We initiate the study of efficient MPC protocols in the RF setting. Towards this
end, we make the following contributions.
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– We construct a variant of the KOS OT extension protocol [29] together with
an RF in the random oracle FRO model. Our protocol constructs m = poly(κ)
correlated OT (cOT)1 using only O(κ) public key operations. All prior con-
structions of maliciously secure OT [10,11] require poly(κ) public key opera-
tions per OT due to their reliance on the GMW compiler and expensive ZK
proofs. See Sects. 2.1 and 2.2 for an overview of our cOT functionality FcOT

(in Fig. 1) and cOT extension protocol respectively.
– We construct a new base (random) OT protocol, which we use for our OT

extension. In constructing the base OT protocol and RF (an overview of these
ideas in Sect. 2.3), we employ new ideas for malleable interactive proofs.

– We define a notion of full malleability for Sigma protocols that unlike prior
notions allow randomizing the instance as well. We construct RFs for Sigma
protocols and for OR composition that sanitize both the instance and the
transcript. We show that ZK protocol resulting from the standard compilation
of a Sigma protocol is fully malleable and construct an RF for it. These
results could be of independent interest. We provide an overview of these
ideas in Sect. 2.4.

Each base OT protocol require 35 exponentiations. For � ≤ κ base OTs in
the OT extension, the cost of computing 35� exponentiations gets amortized by
generating poly(κ) extended cOTs. As a result each extended cOT communicates
κ bits and computes roughly 4 symmetric key operations. Our correlated OT
extension protocol in the firewall setting is captured in Theorem 1.

Theorem 1. (Informal) Assume there exists an additively homomorphic com-
mitment scheme Com, a collision resistant hash function H, a pseudorandom
generator PRG, and that the Discrete Log assumption holds. We obtain a corre-
lated OT extension protocol πcOT with reverse firewalls that implements FcOT in
FRO-model when the honest parties’ machines can be tampered and the adversary
can maliciously corrupt either the sender or the receiver.

We then show application of our cOT extension protocol in constructing
efficient Zero-knowledge protocols. We build upon the recent interactive ZK
protocol of Quicksilver [38] to obtain the first efficient ZK protocol for all of
NP in the RF setting. We capture our contribution by the following theorem.

Theorem 2. (Informal) Assuming H is a collision resistant hash function and
Com is an additively homomorphic commitment scheme, πQS implements the
Zero-knowledge FZK functionality in the FcOT model for NP in the presence of
reverse firewalls where the honest parties’ machines can be tampered and the
adversary can maliciously corrupt either the prover or the verifier. Our con-
struction requires (n + t) invocations to FcOT, where n is the number of input
wires and t is the number of multiplication gates in the NP verification circuit
for the statement.
1 Our cOT protocol allows the receiver to learn c bits of sender’s secret with probability

2−c. We capture this leakage in the ideal functionality FcOT, and show that this
weakened functionality suffices for constructing OT-based RF friendly ZK protocol.
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In πQS, proving each multiplication gate requires one cOT, as in the original
Quicksilver protocol. Instantiating FcOT with our πcOT results in a proof size
of (n + t)κ bits. In comparison, the original Quicksilver implements FcOT using
Silent-OT extension protocol [40] yielding a proof size of (n+ t) bits. We provide
an overview of our Quicksilver variant and its RF in Sect. 2.5.

Key Idea. The central idea of our work is to generate correlated data (cOTs
in our case) between two parties to compute a circuit. We show how these cor-
related data can be generated from symmetric key operations and in an RF-
friendly way. Previously, all RF-friendly techniques were for protocols relying
on public-key primitives and the RF exploits the natural “structure”. Our work
shows that there is no inherent barrier for constructing RFs for protocols that
rely on symmetric-key primitives. Concretely, we only need cheap symmetric key
operations, and the number of public key operations (e.g. the base OTs) are inde-
pendent of the size of the circuit to be computed. Looking ahead, this correlation
allows the parties to verify a protocol transcript (e.g. the RF-compatible Quick-
silver) efficiently. This verification can be performed using an inexpensive (solely
based on symmetric key operations) consistency check. In contrast, if we were to
use ZK proofs (GMW paradigm) for verification, RF-compatibility requires ZK
to be controlled-malleable which are algebraic and inherently require public key
operations. We believe our ideas to deal with unstructured data opens up a new
paradigm for constructing more efficient RF-compatible protocols, especially as
a stepping stone towards MPC protocols based on silent OT extension.

1.2 Future Work

Our RF-friendly OT extension protocol can be used in a straightforward way
to achieve an efficient semi-honest secure MPC using the GMW protocol. This
protocol requires the parties to sample randomness for input sharing and eval-
uation phases. Rest of the GMW protocol is deterministic and hence would be
exfiltration resistant when the parties are tampered or are semi-honest. Our
RF compatible extended OTs can be used in the evaluation of multiplication
gates. However, constructing a maliciously-secure MPC protocol in the GMW
paradigm will require much more work. One of the reasons being the requirement
of a controlled-malleable ZK protocol to ensure security against malicious adver-
saries in the RF setting. However, we do not know of an efficient RF-friendly
instantiation, where the number of public-key operations are sub-linear in the
size of the verification circuit. For other OT-based MPC protocols that rely on
garbled circuits (GC), lifting our OT extension protocol to give a full-fledged RF-
friendly and efficient MPC protocol seems to be more challenging. Even with our
efficient OT extension protocol, one of the main bottlenecks is that we will need
a re-randomizable GC, for which currently no efficient (in terms of public-key
operations) constructions are known.

A natural extension of our work is to construct Silent OT extension family of
protocols [5,16,40] in the RF setting. Current techniques in Silent OT extension
paradigm require the receiver to compute LPN samples and use them in the



244 S. Chakraborty et al.

underlying bootstrapping protocol. In the RF setting, this is a non-trivial task
since the LPN samples might be leaky due to bad randomness. It is not obvious
how to sanitize them without relying on expensive public key operations or
generic zero-knowledge. Our work shows that our correlated OTs suffice for
designated-verifier ZK protocols. We believe that similar ideas could be useful in
other designated-verifier settings, like silent-OT and authenticated garbling [39].

1.3 Related Work

Reverse Firewalls. The work of [32] constructs RFs for a variant of the Naor-
Pinkas OT protocol [33]. Their construction only provides passive security,
whereas we are in the malicious setting. The work of [15] constructs an OT
protocol from graded rings, incurring poly(κ) public key operations for each OT.
While these works show feasibility, we focus on constructing OT extension pro-
tocols in the RF setting with malicious security, while retaining the advantage
of OT extension – create poly(κ) OTs with symmetric key operations start-
ing from κ base OTs. The other approaches via generic MPC compilers [10,11]
incur poly(κ) public key operations for each OT instance. In their original paper,
Mironov and Stephens-Davidowitz [32] show how to construct reverse firewalls
for oblivious transfer (OT) and two-party computation with semi-honest secu-
rity. Follow-up research showed how to construct reverse firewalls for a plethora
of cryptographic primitives and protocols including: secure message transmission
and key agreement [15,21], signature schemes [1], interactive proof systems [24],
and maliciously secure MPC for both the case of static [10] and adaptive [11]
corruptions. The recent work of [13] also introduced the notion of Universally
Composable Subversion-Resilient security. Extending our results in their model
is an interesting direction for future work.

As already mentioned in the introduction, all the above constructions use the
ability of the RF to maul (in a controlled way) the transcript of the protocols
to prevent exfiltration, which in turn required the underlying building blocks
to be (controlled) homomorphic. Hence, the number of public key operations
depends on the size of the circuit (representing the function) to be computed
securely. This is in sharp contrast to our OT and (interactive) ZK protocols
where the resulting protocols after RF sanitization performs a number of public
key operations that are independent of the size of the circuit being computed.

Remark. Since our focus is on efficient MPC protocols and RFs, the RF-friendly
protocols we construct are based on symmetric-key primitives like hash functions
and Pseudorandom generators (PRGs). While backdooring of such primitives is
also of concern in the subversion setting, we argue that it is an issue orthogonal
to the issue of tampering of implementations that we consider in this work. We
also note that both prior works that construct RFs for MPC protocols [10,11]
are generic compilers and therefore also implicitly assume that all the primitives
used by the underlying MPC protocol are backdoorless. We provide a more
detailed discussion comparing tampering of implementations and backdooring
of primitives in the full version [12]. We prove security of our protocols in the
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Random Oracle (RO) model, and it is known how to immunize backdoored
primitives like PRGs in the RO model [20]. Once the RO is instantiated with
a hash function like SHA-256, the assumption presumes that SHA-256 is itself
not backdoored. The works of [19,23] show how to immunize backdoored ROs
and backdoored hash functions. Combining these immunization techniques with
RFs to construct end-to-end solutions that address subversion is an interesting
direction for future work. Countering both tampering of implementation and
subversion of primitives simultaneously is important but not in the scope of
the current work. We also refer to the full version [12] for more related works
on other forms of subversion resilience based on watch-dog, self-guarding and
tackling backdooring of primitives.

2 Technical Overview

In this section,wediscuss state-of-the-art protocols, somehurdles in adapting them
to the RF setting and outline our techniques to overcome them. Our protocols are
shown secure in the RF setting by relying on the recent result of [11], which showed
that 1) if an MPC protocol satisfies simulation-based security, and 2) the firewall
is functionality maintaining and provides exfiltration resistance, then the firewall
preserves security of the protocol in the presence of functionality maintaining tam-
pering. Theorem 3 in Sect. 3.1 formally summarizes the result. For every protocol
we prove that it satisfies simulation-based security and their respective firewall pro-
vides exfiltration resistance. Combining Theorem 3 with simulation security and
exfiltration resistance provides us the desired security guarantee.

2.1 Correlated OT with Leakage Functionality

We initiate our overview discussion with the correlated OT functionality FcOT in
Fig. 1 (taken from [29]). It allows some leakage to a corrupt receiver. The receiver
has a choice bit vector b ∈ {0, 1}�. The functionality samples s ←R {0, 1}κ,
M ←R {0, 1}�×κ and sets Qj = Mj ⊕ (s � bj) for j ∈ [�]. The functionality sets
Q = {Qj}j∈[j∈[�]] and returns M to the receiver and the (s,Q) to the sender.
The functionality allows the receiver to guess c bits of s and the receiver gets
caught with 1 − 2−c probability. We show that this weaker functionality suffices
for the ZK protocol of Quicksilver [38].

2.2 Correlated Oblivious Transfer Extension in the RF Setting

We use the KOS [29] OT extension to implement the FcOT functionality. We
recall the KOS protocol as follows:

Recalling KOS OT Extension: In the KOS OT extension, the sender SExt and
receiver RExt generate m (= poly(κ)) OTs using κ invocations to the random OT
functionality, i.e. FrOT

2 (Fig. 5), (implemented by base OTs) and symmetric key
2 Each invocation of FrOT returns (a0, a1) to the sender and (b, ab) to the receiver where

a0, a1 ←R {0, 1}κ and b ←R {0, 1} are randomly sampled by the functionality.
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Functionality FcOT

Upon receiving (Initiate, sid, �) from sender S and receiving (Initiate, sid, �) from
receiver R, the functionality FcOT interacts as follows:

– Sample b = (b1, . . . , b�) where bj ∈ {0, 1} for j ∈ [�].

– If S is corrupted receive s ∈ {0, 1}κ from the sender. Sample Q ←R {0, 1}�×κ. Set
Mj = Qj ⊕ (s � bj) for j ∈ [�].

– If R is corrupted then receive M ∈ {0, 1}�×κ from the receiver, sample s ←R {0, 1}κ

and set Qj = Mj ⊕ (s � bj) for j ∈ [�].

– When a corrupt R guesses c bits of s by invoking (Guess, sid, {i}I∈[c], {s′
i}i∈[c]):

FrOT aborts if s′
i �= si for any i ∈ [c]; otherwise all the guesses are correct and FrOT

sends (Undetected, sid) to A.

– If both parties are honest, then sample s ←R {0, 1}κ, M ←R {0, 1}�×κ and set
Qj = Mj ⊕ (s � bj) for j ∈ [�].

Denote Q = {Qj}j∈[�] and M = {Mj}j∈[�]. Send (sent, sid,M,b) to R and
(sent, sid, (s,Q)) to S and store (sen, sid, �, (b,M,Q)) in memory. Ignore future mes-
sages with the same sid.
If a corrupt sender (resp. receiver) sends ⊥ to the FcOT then FcOT delivers the output
of the corrupt sender (resp. receiver) to the corrupt sender (resp. receiver) and aborts.

Fig. 1. Ideal functionality FcOT for Correlated Oblivious Transfer with leakage

operations. In the base OTs, the sender SExt plays the role of a receiver, and the
receiver RExt plays the role of a sender. The ith invocation of FrOT functionality
returns random strings (ki,0, ki,1) ←R {0, 1}κ to the sender and (si, ki,si

) to the
receiver where si ←R {0, 1}. The input of RExt is bit string r ∈ {0, 1}m for m
correlated extended-OTs. The receiver also samples κ random bits τ ←R {0, 1}κ

and sets r′ = (r||τ) ∈ {0, 1}m+κ. This is done to prevent leakage of input choice
bits during the consistency checks. The receiver computes the choice bit matrix
R ∈ {0, 1}(m+κ)×κ where the jth row of R denoted as Rj is computed as follows:

Rj = (r′
j , . . . , r

′
j) for j ∈ [m + κ].

RExt computes a matrix M ∈ {0, 1}(m+κ)×κ such that the ith column of M
denoted as Mi is computed as follows:

Mi = PRG(ki,0) for i ∈ [κ],

where PRG : {0, 1}κ → {0, 1}m+κ. RExt sends a mapping D from his choice bits
r′ ∈ {0, 1}m to the (ki,0,ki,1) values. The ith column of D is denoted as Di and
is computed as follows:

Di = PRG(ki,0) ⊕ PRG(ki,1) ⊕ Ri for i ∈ [κ].
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Upon obtaining this mapping D and the base-OT output, the sender com-
putes his mapping as Q where the ith column of Q is denoted as follows:

Qi =
(
si � Di

) ⊕ PRG(ki,si
) for i ∈ [κ],

The jth row of Q denoted as Qj satisfies the following relation:

Qj = Mj ⊕ (s � Rj) = Mj ⊕ (s � rj) for j ∈ [m].

In addition to the above, the sender performs consistency checks [18]. A
corrupt receiver can leak bits of s if the rows of R are not monochrome, i.e.
∃j ∈ [m] s.t. Rj is neither 0κ nor 1κ. Such an attack can be launched by the
corrupt receiver if D is malformed. To detect such malicious behaviour, the
sender performs a consistency check on matrix D. In the original KOS paper,
the protocol consists of an interactive check phase. The receiver and sender
perform a coin-tossing protocol to generate m + κ fields elements χ ←R F

m+κ

using a random oracle FRO, where F = O(2μ) and μ is the statistical security
parameter. The receiver computes u and v as part of the consistency check on
D:

u =
⊕

j∈(m+κ)

(χj · Mj),v =
⊕

j∈(m+κ)

(χj · Rj)

The receiver sends (u,v) to the sender as the response of the consistency
checks. The sender computes w as follows:

w =
⊕

j∈(m+κ)

(χj · Qj).

The sender aborts if w 	= u ⊕ s · v. The consistency checks ensure that the
receiver learns only c bits of s with probability 2−c probability. We follow the
same approach. Once the consistency checks pass, the receiver sets {rj ,Mj} as
the output of the jth cOT for j ∈ [m]. The sender sets (s,Qj) as the output of
the jth cOT.

Obstacles in RF Setting and Key Insights. The above protocol fails to provide
exfiltration resistance in the RF setting. We highlight the problems and outline
solution ideas.

– Implementing FcOT: There is no protocol πrOT in MPC literature that
implements FrOT functionality while providing ER for tampered honest par-
ties. In order to provide ER, the firewall needs to rerandomize the OT protocol
transcript such that the receiver’s choice bit gets randomized and the sender’s
messages are rerandomized. The state-of-the-art OT protocols of [8,35] are in
the setup string model where the setup string can be tampered. Moreover, a
firewall cannot rerandomize the first message of the receiver to rerandomize
the receiver’s choice bit since the tampered receiver would then be unable to
decrypt the sanitized OT transcript. Meanwhile, the protocols of [6,7,30] are
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in the random oracle model where the messages in the OT transcript con-
sists of random oracle outputs. It is unclear how a firewall could rerandomize
such transcripts since it would require computing the preimage of the random
oracle output. To address this issue, we build a new base OT protocol πrOT

which implements FrOT functionality and provides exfiltration resistance for
tampered parties. Overview of the base OT protocol is discussed in Sect. 2.3.

– Rerandomizing D Matrix: A malicious receiver could send a “signal” such
that a tampered sender behaves differently thereby leaking one bit of the hon-
est (tampered) sender’s input. For instance, a malicious receiver can choose
its choice bits r in a way such that D lies in a particular distribution (e.g.
the first column of D is all 0s). A tampered sender aborts upon receiving
this malformed D matrix while an honest sender does not. This leaks one bit
of the sender’s input violating exfiltration resistance. We address this issue
by using a technique such that the r vector is randomly chosen as part of
the protocol. The receiver and the sender perform an augmented coin-tossing
protocol where the receiver obtains random coins coin and the sender obtains
a commitment to the coin as ccoin. The receiver generates the first column of
D, denoted as D1, by invoking the random oracle FRO on coin. The receiver
is required to compute the choice bit vector(and the padding bits) r′ = r||τ
from D1 and the outputs of the base OTs as follows:

r′ = D1 ⊕ PRG(k1,0) ⊕ PRG(k1,1)

This rerandomizes the r′ vector, and as a result the D matrix cannot be used
to exfiltrate by choosing a tampered choice bit vector r (or τ). The receiver
is required to decommit to ccoin when it sends D to the sender. The sender
verifies the opening and also verifies that the first column of D is generated
by invoking the random oracle FRO on coin as FRO(0, coin)3.

– Consistency Checks: A malicious receiver can still send a badly constructed
D (rows of the computed R are not monochrome) which might trigger a tam-
pered sender. Upon obtaining D the tampered sender can abort thus leaking
one bit of its input. In contrast, an honest sender does not abort until the end
of the consistency checks. This behaviour could exfiltrate secrets of a tam-
pered sender to a malicious receiver. We observe that if a malicious receiver
sends a malformed D and the consistency check is performed correctly then
a tampered sender aborts, similar to an honest sender, since the tampering
is functionality maintaining. However, the sender should obtain D and the
receiver’s response for the consistency check in the same round. In such a
case, an honest sender also aborts if D is malformed as this is detected in
the consistency check. A tampered sender also aborts and now this prevents
exfiltration even if D contains hidden triggers since the abort is due to the
checks failing. The behaviour of the tampered sender is statistically indis-
tinguishable from an honest sender: they only differ when the checks fail to
detect inconsistency which occurs with probability 1

|F| . This observation leads

3 The FRO functionality is parametrized by 0 so that we can reuse the same function-
ality later for a different input/output pair by changing the parameter to 1.
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us to a modified protocol such that it provides ER for a tampered sender.
After computing the base OTs, the corrupt receiver commits to the hash
of D using an additively homomorphic commitment scheme as cD. Addi-
tive homomorphism allows rerandomization of the commitment by the fire-
wall. The parties then generate the coins seed for the consistency check using
an RF-compatible augmented coin-tossing protocol. The randomness for the
consistency checks are derived from FRO(1, seed), where FRO is the random
oracle. Finally, the receiver sends D, the decommitment of cD to H(D) and
the response to the consistency checks. The sender verifies the decommitment
and the response to the consistency check.
The hash function and cD forces a corrupt receiver to succinctly commit to
D and allows it to decommit to D along with the response to the consistency
check. The consistency check forces a tampered sender to abort if D is mal-
formed in a way oblivious to any hidden triggers. This provides exfiltration
resistance for the sender. The commitment cD is rerandomized by the firewall.
seed is rerandomized by the firewall to ŝeed = seed+ s̃eed. To incorporate s̃eed

into cseed the firewall computes ĉseed = cseed · Com(seed; δ̃seed) and sends ĉseed
to receiver on behalf of sender. The firewall also sends ĉR = seedR + s̃eed to
the sender on behalf of the receiver. When sender opens cseed to (seedS; δseed)
the firewall sends (seedS + s̃eed, δseed + δ̃seed) to the receiver. This ensures that
both parties obtain the coins as ŝeed. We also assume that the commitments
are additively homomorphic so that they can be rerandomized by the firewall.
The only way to tamper D matrix and not get caught is when the receiver
guesses κ bits of s to pass the consistency checks. However, the checks ensure
that such an event occurs with 2−κ probability.

The protocol with the three changes gives us a correlated OT (with leakage)
extension protocol πcOT. The protocol is presented in Fig. 3 and the firewall in
Fig. 4. Our correlated OT with leakage is weaker than correlated OT of [38]
since it allows a corrupt receiver to compute c bits of sender’s secret key s with
probability 2−c. However, as we show in Sect. 2.5, this suffices for Quicksilver
[38]. Next, we build our base OT protocol πrOT which implements FrOT.

2.3 Base Oblivious Transfer Protocols in the RF Setting

As discussed above, the state-of-the-art OT protocols [7,8,30,35] fail to give πrOT

in the presence of functionality maintaining tampering. The OT protocol of [32]
provides only passive security in the RF setting and no guarantees against active
corruption of the receiver. We construct πrOT by building upon the classical OT
protocol of [4] in the plain model. For the sake of completeness, we first recall
the protocol.

Protocol of [4]. The sender samples a field element q and computes group element
Q = gq and sends Q to the receiver. The receiver has a choice bit b and it samples
two public keys (pk0, pk1) such that pkb = gsk for secret key sk and Q = pk0 ·pk1.



250 S. Chakraborty et al.

The receiver sends pk0 to the sender. The sender samples r0, r1 ←R Zq, and
computes R0 = gr0 and R1 = gr1 . The sender sets the output as k0 = H(pkr0

0 )
and k1 = H(pkr1

1 ) where H is the Goldreich-Levin hash function or a random
oracle. The sender sends (R0, R1) to the receiver. The receiver outputs kb =
H(Rsk

b ).

Modifications for Simulation-Based Security. The protocol of [4] only provides
semantic security. The receiver’s choice bit is perfectly hidden in the first message
pk0 and the sender’s messages are (k0, k1) not extractable. We make the following
changes in order to allow for simulation based security:

– Sender Input Extraction: To extract the sender’s input, we modify the
protocol so that the sender proves knowledge of q such that Q = gq through
an interactive protocol zero knowledge proof of knowledge (ZKPOK) with
the receiver as the verifier. The simulator extracts q from the ZKPOK and
sets the secret keys as sk0 ←R Zq and sk1 = q − sk0. The knowledge of the
two secret keys enables the simulator to extract the corrupt sender’s outputs
(k0, k1). The ZK property of the proof ensures that q is hidden from a corrupt
receiver.

– Receiver Input Extraction: To extract the receiver’s input, we modify
the protocol so that the receiver proves knowledge of sk for the statement
((pk0, pk1, G, Zq) : ∃sk ∈ Zq, b ∈ {0, 1} s.t. (pk0 = gsk ∨ pk1 = gsk)) using
a Witness indistinguishability proof of knowledge (WIPOK). The simulator
extracts (sk, b) from the WI proof. Meanwhile, the simulator against a corrupt
sender is able to simulate the proof by setting pk0 = gsk and b = 0 by relying
on the WI property. We also set k0 = pkr0

0 and k1 = pkr1
1 for efficiency pur-

poses and remove the Goldreich-Levin hash function. The WI proof ensures
that if the proof accepts then the receiver has full knowledge of (sk, b). Using
the knowledge of sk, we reduce a corrupt receiver breaking semantic security
of the OT scheme to an adversary breaking DDH.

Modifications in RF Setting. The above protocol fails to provide exfiltration
resistance. We highlight some problems and suggest solutions.

– Rerandomizing OT parameter Q: A malicious sender can malform Q
and use it as a trigger for a tampered receiver. To address this issue, we
generate Q using coin tossing where the receiver sends T = Com(QR) and
the sender sends a share QS. The receiver later decommits to QR and both
parties set Q = QR ·QS as the parameter. A firewall can sanitize this: sample
q̃ ←R Zq, t̃ ←R {0, 1}∗ and sanitize the commitment as T̂ = T · Com(gq̃; t̃)
and sanitize QS as Q̂S = QS · gq̃ such that the new parameter is Q̂ = Q · gq̃

where q̃ ←R Zq. The firewall also invokes the firewall of the ZK protocol with
instance rerandomizer q̃ since the receiver produces a ZK proof for (QS, G, Zq)
and the firewall sanitizes it to a proof of (QS ·gq̃, G, Zq). More discussion about
the ZK firewall can be found in Sect. 2.4. This transformation provides ER
to both parties corresponding to the OT parameters and the ZK proof.
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– Rerandomizing Receiver’s choice bit and public keys: The fire-
wall needs to rerandomize the receiver’s choice bit and the public keys to
implement FrOT functionality and prevent exfiltration through the public
keys. To enable this, we have the sender commit to a pad p ←R Zq using
an additively homomorphic commitment as cS = Com(p; dS). When the
sender receives (pk0, pk1) the sender decommits to p and the receiver sets
the new public keys as pk′

0 = pk0 · gp and pk′
1 = pk1 · g−p. These new pub-

lic keys maintain the invariant that pk′
0 · pk′

1 = Q. The firewall sanitizes
the public keys by changing p to p̂ = p + p̃. The commitment is modified
to ĉS = cS · Com(p̃; d̃S). Upon receiving the decommitment (p, dS) the fire-
wall modifies it to (p̂, dS + d̃S). Upon receiving the public keys (pk0, pk1)
the firewall changes it to (pk0 · gp̃, pk1 · g ˜−p). This allows both parties to
get sanitized public keys (p̂k0, p̂k1) = (pk0 · gp+p̃, pk1 · g−p−p̃). It is ensured
that p̂k0 · p̂k1 = Q̂ thus preventing any exfiltration through the public keys.
Next, we rerandomize the choice bit of the receiver where the sender sends
a random bit ρ in the last message of the OT protocol. The receiver’s new
choice bit is set to s = b ⊕ ρ where b was initially chosen by the receiver
by sampling sk ←R Zq and setting pkb = gsk. The firewall sanitises ρ to
ρ̂ = ρ ⊕ ρ̃ and it permutes the order of pk0 and pk1 if ρ̃ = 1. The fire-
wall also modifies the commitment cseed accordingly so that the order of the
sanitised public keys are consistent for both parties. Finally, these changes
are also reflected in the WIPOK proof performed by the receiver as the
prover. Recall that the receiver proves knowledge of witness for the state-
ment ((pk0, pk1, G, Zq) : ∃w ∈ Zq, b ∈ {0, 1} s.t. (pk0 = gw ∨pk1 = gw)) using
a WIPOK. The firewall sanitizes the proof such that it is consistent with the
sanitized public keys and the order of the keys. In particular, if ρ̃ = 0 the new
statement is ((pk0 · gp̃, pk1 · g−p̃, G, Zq) : ∃w ∈ Zq, b ∈ {0, 1} s.t. (pk0 · gp̃ =
gw ∨pk1 ·g−p̃ = gw)). If ρ̃ = 1 the new statement is ((pk0 ·gp̃, pk1 ·g−p̃, G, Zq) :
∃w ∈ Zq, b ∈ {0, 1} s.t. (pk0 · gp̃ = gw ∨ pk1 · g−p̃ = gw)). This is performed
by constructing malleable Interactive WIPOKs in the RF setting where the
instance is also sanitized. The firewall for the OT protocol invokes the WI
RF with input ((p̃,−p̃), ρ̃). Detailed discussion about WI is in Sect. 2.4.

– Rerandomizing sender’s messages: Finally the sender’s pads (R0, R1) for
the OT protocol needs to be rerandomized to implement FrOT functionality.
The receiver commits to (v0, v1) ←R Zq and sends the commitments along-
with the public keys. Upon receiving (R0, R1), the receiver opens to (v0, v1)
and considers the sender’s random pads as (R0 ·gv0 , R1 ·gv1). The sender sets
the new randomness as (r0+v0, r1+v1). The firewall sanitizes the commitment
and the interaction such that the random pads are (R0 ·gv0 ·gṽ0 , R1 ·gv1 ·gṽ1)
and the sender’s randomness are (r0 +v0 + ṽ0, r1 +v1 + ṽ1). This ensures that
the tampered sender’s pads are indistinguishable from an honestly generated
sender random pads.
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We obtain our base OT protocol implementing FrOT in Figs. 6 and 7 by
carefully putting together the above ideas. While this overview is for � = 1
for simplicity, the final protocol implements FrOT for general �. The protocol
and the firewall are presented in Sect. 5. Each OT instance communicates 13
group elements + 15 field elements + 1 bit, and performs 35 exponentiations. In
comparison, previous maliciously secure OT protocols [10,11] rely on the GMW
compiler, and compute poly(κ) exponentiations and communicate poly(κ) bits.

2.4 Malleable Interactive Protocols in the RF Setting

We consider a class of interactive protocols based on Sigma protocols. For the
sake of concreteness, consider the classical Sigma protocol for proving knowledge
of a discrete logarithm [36]. The statement consists of the description of a cyclic
group G of prime order q, a generator g and an instance x = gw, for w ∈ Zq.
The prover’s first message is a random group element a = gα. For a verifier’s
challenge c ∈ Zq, the prover’s response is z = a+wc. The transcript τ = (a, c, z)
is accepting if gz = axc. We need to rerandomize the transcript without breaking
the completeness condition, and without knowing the witness. In addition, since
we use these interactive protocols in constructing our OT protocol, the instance
x could also potentially be subliminal and therefore, we need to randomize the
instance as well, to generate a randomized transcript (x̂, τ̂). In order to build
RFs for the ZK protocol obtained by compiling a Sigma protocol, we need to
sanitize additional messages. Here, we rely on the key and message homomor-
phism of the Pedersen commitment scheme to randomize the commitment key,
the commitment, and the message inside the commitment. Finally, we construct
an RF for the OR composition that not only randomizes each instance in the
compound statement, but the entire statement (by permuting the clauses). This
is necessary since we use the OR protocol as a building block in a larger protocol
where the statement itself could be tampered and needs to be sanitized.

We emphasize that our RFs randomize not just the transcript (a, c, z), but
also the instance x, as opposed to the RF constructions in [24] where the san-
itized transcript still verifies for the same instance x. In our setting, crucially,
the instance could also potentially be subliminal and therefore, needs to be ran-
domized to prevent exfiltration. Our notion of fully malleable Sigma protocol is
stronger than the malleability considered in [24].

2.5 Efficient Zero-Knowledge in the RF Setting

The recent works of [3,38] present interactive ZK protocols for circuits in the
vector OLE model [5,40]. We focus on the work of Quicksilver [38] for binary
circuits. In this setting, the vector OLE over binary field is modeled by the FcOT

functionality. In Quicksilver, the parties run an interactive preprocessing phase
which depends only on the security parameter. The parties obtain correlated
randomness through this phase. In the online phase the prover obtains the NP
verification circuit C and the witness wire assignment w. The verifier obtains the
circuit C. The parties locally expand their correlated randomness. The prover



Reverse Firewalls for Oblivious Transfer Extension 253

obtains M ∈ {0, 1}�×κ and a random b ∈ {0, 1}�, the verifier obtains K ∈
{0, 1}�×κ and a random Δ ∈ {0, 1}κ such that the following holds for i ∈ [�],
where K = {Ki}i∈[�], M = {Mi}i∈[�], b = {bi}i∈[�]:

Ki = Mi ⊕ bi � Δ

Assume that the number of input wires to the circuit is n, the number of multipli-
cation gates is t and � = n+ t. The prover commits to the n+ t wire assignments
for the input wires and multiplication gates by sending the mapping di = wi ⊕bi

to the verifier. Addition gates are free due to additive homomorphism and can
be verified locally. The verifier updates Ki as follows for i ∈ [n + t]:

Ki = Ki ⊕ di � Δ = (Mi ⊕ bi � Δ) ⊕ (wi ⊕ bi) � Δ = Mi ⊕ wi � Δ.

The prover P proves that the committed values wi corresponding to the mul-
tiplication gates are correct by executing a batched verification phase with the
verifier V. For each multiplication gate (α, β, γ) with input wires α and β and
output wire γ, the prover P has (wα,Mα), (wβ ,Mβ), (wγ ,Mγ) and the verifier
V holds Kα,Kβ ,Kγ ,Δ such that the following four equations should hold:

wγ = wα · wβ and Mi = Ki ⊕ wi � Δ for i ∈ {α, β, γ}.

This can be verified by the verifier by performing the following check where
prover sends Ai,0 and Ai,1:

known to V
︷ ︸︸ ︷
Bi = Kα · Kβ ⊕ Kγ · Δ

?=

known to P
︷ ︸︸ ︷
Mα · Mβ + (wβ · Mα ⊕ wα · Mβ ⊕ Mγ) ·

known to V
︷︸︸︷
Δ

= Ai,0 ⊕ Ai,1 · Δ

A corrupt prover passes the check even if wγ 	= wα · wβ if it correctly guesses
Δ, which occurs with 2−κ probability. This covers the case for one gate. To
check t multiplication gates in a batch the verifier sends a challenge χ. The
prover and verifier also generates a random linear relationship B∗ = A∗

0 ⊕A∗
1 ·Δ

to mask the prover’s inputs. This is performed using additional κ cOTs. The
prover computes (U, V ) as described below. The prover sends (U, V ) and the
verifier locally computes W .

U =
⊕

i∈[n+t]

Ai,0 ⊕ A∗
0 , V =

⊕

i∈[n+t]

Ai,1 ⊕ A∗
1 , W =

⊕

i∈[n+t]

Bi ⊕ B∗

The verifier outputs accept if (W == U ⊕V ·Δ) and rejects the proof if the equa-
tion fails to satisfy. A corrupt prover successfully cheats in the batch verification
with probability 2−κ by guessing Δ. Meanwhile, the ZK simulator simulates
the proof by passing the check, given the knowledge of (K,Δ) from FcOT. The
simulator computes W , samples V ←R {0, 1}κ and sets U = W ⊕ V · Δ.
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Modifications in RF Setting. In order to achieve ER in the firewall setting, we
make the following changes to the above protocol.

– Preprocessing Phase: The above protocol provides ER for the preprocess-
ing phase if we implement FcOT with πcOT with parameter � = n + t + κ.
However, the parties need to know the number of extended correlated OTs
(i.e. n + t + κ) in πcOT during the preprocessing phase and perform commu-
nication proportional to it.

– Batch Verification: The mappings d maybe malformed and can be used
to leak w. Similarly, the challenge χ maybe malformed and can be used by
a malicious verifier to trigger a tampered prover. We address these issues by
following an approach similar to the consistency check in πcOT. The prover
commits to hash of d as cd. Upon receiving the commitment, the parties
participate in an interactive coin tossing protocol to generate the challenge
χ. Upon receiving the challenge, the prover decommits d and computes the
response to the batch verification (following the original Quicksilver protocol).
The verifier checks the decommitment to d and performs the verifier algorithm
of the original quicksilver protocol. The soundness argument of the check is
preserved if the hash is collision resistant, cd is instantiated using a binding
commitment scheme and the coin-tossing returns a random χ in the presence
of functionality maintaining tamperings. The coin-tossing subprotocol is same
as the coin tossing protocol in πcOT. The firewall construction is also the same
and this ensures ER for the coin-tossing. We refer to the Consistency Checks
Sect. 2.2 for the discussion on the coin-tossing. Given that Δ is random and
the challenge is sanitized by the firewall, a corrupt prover gets caught if
d vector is malformed such that the underlying w = b ⊕ d is invalid, i.e.
C(w) = 0. The complete protocol πQS cna be found in Sect. 7.

The original quicksilver paper achieves communication complexity of 1 bit per
multiplication gate. We incur a cost of κ(1 + o(1)) < 2κ bits per multiplication
gate. The number of public key operations is O(κ). The prover and verifier
can run our protocol to verify a batch of m different circuits (C1, C2, . . . , Cm)
with parameters (�1, �2, . . . , �m) where �i denotes the number of input wires
and multiplication gates in Ci. In such a case the parties invoke FcOT with
parameter L = Σi∈[m]�i. The number of public key operations for the base OTs
gets amortized over m runs of the ZK protocol.

3 Preliminaries

Notations: We denote by a ← D a uniform sampling of an element a from a
distribution D. The set of elements {1, . . . , n} is represented by [n]. We denote
the computational security parameter by κ and statistical security parameter
by μ respectively. Let Zq denote the field of order q, where q = p−1

2 and p are
primes. Let G be the multiplicative group corresponding to Z

∗
p with generator

g, where CDH assumption holds. We denote a field of size O(2μ) as F. For a bit
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b ∈ {0, 1}, we denote 1−b by b̄. We denote a matrix by M and let Mi refer to the
ith column and Mj to the jth row of M respectively. Given a field element x ∈ F

and a bit vector a = (a1, a2, . . . , aκ) we write component-wise multiplication as
x · a = (a1 · x, a2 · x, . . . , aκ · x). Given two vectors a,b ∈ {0, 1}n, we denote
component-wise multiplication by a � b = (a1 · b1, . . . , an · bn).

Commitment Schemes: We define a non-interactive commitment scheme Com
as a tuple of two algorithms (Gen, Com) such that it satisfies the properties of
computational binding, computational hiding. Additionally, we require Com to
be additively homomorphic over the message space M and randomness space
R, which are written additively, such that for all m,m′ ∈ M, r, r′ ∈ R we
have: Com(pp,m; r) · Com(pp,m′; r′) = Com(pp,m + m′; r + r′), where pp are
the public parameters generated by Gen. For our protocols we require additively
homomorphic commitments over Zq and G message spaces. We use Pedersen and
Elgamal commitments respectively for this purpose. More details can be found
in the full version [12].

3.1 Cryptographic Reverse Firewalls

In this section we recall the basic definitions of reverse firewalls following [10,11,
32]. We focus on the setting of two parties.

Notation. Let Π denote a �-round two-party protocol, for some arbitrary poly-
nomial �(·) in the security parameter κ. For a party P and reverse firewall RF
we define RF ◦ P as the “composed” party in which the incoming and outgoing
messages of A are “sanitized” by RF. The firewall RF is a stateful algorithm that
is only allowed to see the public parameters of the system, and does not get to
see the inputs and outputs of the party P . We denote the tampered implemen-
tation of a party P by P . We write ΠRF◦P (resp. ΠP ) to represent the protocol
Π in which the role of a party P is replaced by the composed party RF◦P (resp.
the tampered implementation P ). We now define the properties that a reverse
firewall must satisfy.

Definition 1 (Functionality maintaining). For any reverse firewall RF and
a party P , let RF1 ◦ P = RF ◦ P , and RFk ◦ P = RF ◦ · · · ◦ RF︸ ︷︷ ︸

k times

◦P . For a protocol

Π that satisfies some functionality requirements F , we say that a reverse firewall
RF maintains functionality F for a party P in protocol Π if ΠRFk◦P also satisfies
F , for any polynomially bounded k ≥ 1.

Definition 2 (Security preservation). A reverse firewall weakly preserves
security S for party P in protocol Π if protocol Π satisfies S, and for any
polynomial-time algorithm P such that ΠP satisfies F , the protocol ΠRF◦P sat-
isfies S. (i.e., the firewall can guarantee security even when an adversary has
tampered with P , provided that the tampered implementation does not break the
functionality of the protocol).
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A reverse firewall strongly preserves security S for party P in protocol Π
if protocol Π satisfies S, and for any polynomial-time algorithm P , the proto-
col ΠRF◦P satisfies S. (i.e., the firewall can guarantee security even when an
adversary has tampered with party P .)

We now define exfiltration resistance, which intuitively asks the adversary to
distinguish between a tampered implementation P of party P from an honest
implementation (via the reverse firewall). This prevents, for e.g., for a tampered
implementation P to leak the secrets of P .

Definition 3 (Exfiltration resistance). A reverse firewall is weak exfiltra-
tion resistant for party P1 against party P2 in protocol Π satisfying functionality
F if no PPT adversary AER with output circuits P1 and P2 such that ΠP1

and
ΠP2

satisfies F has non-negligible advantage in the game LEAK(Π,P1, P2,RF, κ)
(see Fig. 2). If P2 is empty, then we simply say that the firewall is weak exfil-
tration resistant.

A reverse firewall is strongly exfiltration resistant for party P1 against party
P2 in protocol Π if no PPT adversary AER has non-negligible advantage in the
game LEAK(Π,P1, P2,RF, κ). If P2 is empty, then we simply say that the firewall
is strongly exfiltration resistant.

LEAK(Π, P1, P2,RF, κ)

(P1, P2, I) ← AER(1κ)

b
$←− {0, 1};

If b = 1, P ∗
1 ← RF1 ◦ P1

Else, P ∗
1 ← RF1 ◦ P1.

τ∗ ← ΠP ∗
1 ,{P2→P2}(I).

b∗ ← AER(τ∗, {stP2
}).

Output (b = b∗).

Fig. 2. LEAK(Π,P1, P2,RF, κ) is the exfiltration-resistance security game for a
reverse firewall RF1 for party P1 in the protocol Π against party P2 with input
I. Here, AER is the adversary, stP2

denote the state of party P2 after the run
of the protocol, and τ∗ denote the transcript of the protocol ΠP ∗

1 ,{P2→P2} with
input I.

We recall the transparency property [11] that intuitively, requires that the behav-
ior of RF ◦P is identical to the behavior of P if P is the honest implementation.
Throughout the paper we refer to weak exfiltration resistance as exfiltration
resistance. We will also use the following result established in [11]. It basically
states that exfiltration resistance implies security preservation for protocols sat-
isfying simulation-based definition of security.

Theorem 3 ([11] Exfiltration resistance implies Security preservation).
Let Π denote a two-party protocol running between P1 and P2 that securely
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computes some function f with abort in presence of malicious adversaries in
the simulation-based setting. Assume w.l.o.g, that P1 is honest (i.e., not mali-
ciously corrupted). Then if the reverse firewall RF1 is functionality-maintaining,
(strongly/weakly) exfiltration resistant for P1 against P2, and transparent, then
for all PPT adversaries A and all PPT tempering P1 provided by A, the fire-
wall RF1 (strongly/weakly) preserve security of the party P1 in the protocol Π
according to Definition 2.

4 Correlated OT Extension in the Firewall Setting

We describe our revised cOT extension protocol in Fig. 3 and the corresponding
firewall can be found in Fig. 4. High level overview can be found in Sect. 2.2. We
show security of our protocol by proving Theorem 4 in the full version [12].

Theorem 4. Assuming πrOT implements FrOT functionality, Com is a binding
and hiding commitment scheme, PRG is a pseudorandom generator and H is
a collision resistant hash function, then πcOT implements FcOT functionality
against active corruption of parties in the FRO model.

We show that our protocol provides weak exfiltration resistance against tam-
pering of honest parties by proving Theorem 5 as follows.

Theorem 5. Assuming Com is an additively homomorphic, binding and hiding
commitment scheme, and RFrOT-R provides weak exfiltration resistance for the
receiver (of base OT) in πrOT then RFcOT-S (Fig. 4) provides weak exfiltration
resistance for a tampered sender of πcOT. Similarly if RFrOT-S provides weak
exfiltration resistance for the sender (of base OT) in πrOT then RFcOT-R (Fig. 4)
provides weak exfiltration resistance for a tampered receiver in πcOT.

Proof. We argue weak exfiltration resistance for each phase as follows:

– The RFrOT transcript provides ER to the sender and receiver due to ER of
RFcOT-R and RFcOT-S respectively.

– In the OT extension phase, the ĉcoin and ĉD provides ER due to homomor-
phism and hiding property of the commitment scheme.

– In the consistency check phase if a receiver passes the consistency check the
random oracle FRO(sid, 0, coin), PRG(k1,0) and PRG(k1,1) ensures that the
first column of D is randomly distributed and as a result r′ is random. Both
parties generate the sanitized r′ as follows:

r′ = FRO(sid, 0, coinR + coinS + c̃oin) ⊕ PRG(k1,0) ⊕ PRG(k1,1),

where k1,0 and k1,1 are outputs from the sanitized base OT protocols. ĉseed
provides ER due to homomorphism and hiding property of the commitment
scheme. The consistency check ensures that a malformed D is detected. For
example if the ith column of D is malformed such that Ri 	= r then the
check detects and the honest and tampered party aborts when si == 1.
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– Private Inputs: R and S do not possess any private inputs.

– Primitives: Pseudorandom Generators PRG : {0, 1}κ → {0, 1}m+κ, H :
{0, 1}(m+κ)×κ → {0, 1}κ is a Collision Resistant Hash function and Com :
{0, 1}κ → {0, 1}κ is a string commitment scheme. FRO is a random oracle function-
ality such that FRO : {0, 1}κ × {0} → {0, 1}m+κ and FRO : {0, 1}κ × {1} → F

m+κ.

– Subprotocols: Subprotocol πrOT computes � instance of random OT.

Seed OT Phase:

1. S and R participate in πrOT protocol (implementing the FrOT functionality) as
receiver and sender respectively.

2. R receives (k0,k1) as output where kα = {ki,α}i∈[κ] and ki,α ∈ {0, 1}κ for α ∈
{0, 1}, i ∈ [κ].

3. S receives s ∈ {0, 1}κ and k′ where k′ = {k′
i}i∈[κ] and k′

i = ki,si for i ∈ [κ].

OT Extension Phase:

1. R and S perform a coin tossing protocol as follows:
– R samples coinR ←R {0, 1}κ and sends ccoin = Com(coinR; δcoin) to S.
– S obtains ccoin and samples coinS ←R {0, 1}κ and sends coinS to R.
– R computes coin = coinR ⊕ coinS.

2. R forms three (m + κ) × κ matrices M, R and D in the following way:
– Sets Mi = PRG(ki,0) for i ∈ [κ].
– Sets D1 = FRO(sid, 0, coin). Computes r′ = D1 ⊕ M1 ⊕ PRG(k1,1).
– Parses r′ = r||τ where r ∈ {0, 1}m and τ ∈ {0, 1}κ.
– Sets Rj = (r′

j , . . . , r
′
j) for j ∈ [m + κ]. Clearly, Ri = r′ for i ∈ [κ].

– Set Di = Mi ⊕ PRG(ki,1) ⊕ Ri for i ∈ [κ].
R sets D = {Di}i∈[κ]. R commits to D as cD = Com(H(D); δD) using randomness
d and sends cD to S.

Consistency Check Phase:

1. S and R performs a coin tossing protocol as follows:
– S samples seedS ←R {0, 1}κ and sends cseed = Com(seedS; δseed) to R.
– R obtains cseed and samples seedR ←R {0, 1}κ and sends seedR to S.
– S opens cseed by sending (seedS, δseed) to R and sets seed = seedS + seedR.

2. R aborts if cseed �= Com(seedS; δseed). Else R computes challenge from the output of
the coin tossing protocol, as χ = {χ1, . . . , χm+κ} = FRO(sid, 1, seedS + seedR).

3. R computes u =
⊕

j∈(m+κ)(χj ·Mj) and v =
⊕

j∈(m+κ)(χj ·Rj). R sends (D, δD,

u, v) to S as the response. R also decommits ccoin to coinR by sending (coinR, δcoin).
4. On receiving D, S aborts if cD �= Com(H(D); δD) or ccoin �= Com(coinR; δcoin) or

D1 �= FRO(sid, 0, coinR ⊕ coinS). S forms (m + κ) × κ bit-matrix Q with the ith
column of Q set as Qi =

(
si � Di

) ⊕ PRG(k′
i). Clearly, (i) Qi =

(
Mi ⊕ (si �Ri)

)

and (ii) Qj =
(
Mj ⊕ (s � Rj)

)
=

(
Mj ⊕ (s � rj)

)
.

5. S constructs χ = FRO(sid, 1, seed) and computes w =
⊕

j∈(m+κ)(χj ·Qj). S aborts
if w �= u ⊕ s · v.

Output Phase:
S sets (s, {Qj}j∈[m]) as the output. R sets (r, {Mj}j∈[m]) as the output.

Fig. 3. Correlated OT Extension πcOT in the RF setting
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Com is an additively homomorphic commitment where Com(m1; r1) · Com(m2; r2) =
Com(m1 + m2; r1 + r2).

Seed OT Phase:
RFcOT-S (resp. RFcOT-R) invokes the firewall RFrOT-R (resp. RFrOT-S) of base-OT receiver
(resp. sender) for sanitising the cOT-extension sender’s (resp. receiver’s) πrOT messages.
OT Extension Phase:

1. The firewall sanitizes the coin-tossing protocol as follows:
– Upon receiving ccoin from R the firewall samples ĉcoin = ccoin · Com(c̃oin; δ̃coin)

where c̃oin ←R {0, 1}∗ and δ̃coin ←R {0, 1}∗. The firewall sends ĉcoin to the
sender.

– Upon receiving coinS from the sender, the firewall sends ĉoinS = coinS + c̃oin
to the receiver.

2. Upon receiving cD from receiver, the firewall computes ĉD = cD · Com(0; δ̃D)

where δ̃D ←R {0, 1}∗. The firewall sends ĉD to the receiver.

Consistency Check Phase:

1. The firewall sanitizes the coin tossing protocol messages as follows:
– When S sends cseed, the firewall samples s̃eed and computes the sanitized com-

mitment as ĉseed = cseed · Com(s̃eed; δ̃seed) where δ̃seed ←R {0, 1}∗. the firewall
sends ĉseed to the receiver R.

– When R sends seedR, the firewall sends s̃eedR = seedR + s̃eed to the sender S.

– When S sends (seedS, δseed), the firewall sends (ŝeedS, δ̂seed) = (seedS +

s̃eed, δseed + δ̃seed) to the receiver R.

2. When R sends (D, δD, u, v), the firewall computes δ̂D = δD+δ̃D and sends (D, δ̂D,

u, v) to S. When R sends (coinR, δcoin), the firewall sends (coinR + c̃oin, δcoin + δ̃coin)
to the sender.

Fig. 4. Sender’s (resp. Receiver’s) Firewall RFcOT-S (resp. RFcOT-R) in πcOT

When si == 0 the check fails to detect it and the adversary is able to leak
the ith bit of s. The honest sender does not abort following the protocol and
the tampered sender also doesn’t abort since it is functionality maintaining
w.r.t FcOT which enables adversary to guess c bits of s. �

By composing Theorems 3, 5 and 4 we show that the firewalls RFcOT-R and
RFcOT-S (Fig. 4) preserves the security of the underlying protocol πcOT and that
proves Theorem 1.

5 Implementing FrOT in the Firewall Setting

In this section we implement FrOT (Fig. 5) for base OT protocol. Our protocol
πrOT can be found in the full version [12]. Detailed overview can be found in Sec.
2.3. We show simulation based security of πrOT by proving Theorem 6 in the full
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version [12]. We implement the ZK protocol in Fig. 9 and WI protocol in Fig. 10
in Sect. 6.

Functionality FrOT

Upon receiving (Initiate, sid, �) from sender S and a receiver R, the functionality FrOT

interacts as follows:

– If S is corrupted receive (a0,a1) ∈ {0, 1}�×κ from the sender. Else, sample
ai,0, ai,1 ←R {0, 1}κ for i ∈ [�] and set (a0,a1) = {ai,0, ai,1}i∈[�].

– If R is corrupted then receive b ∈ {0, 1}� and a′ ∈ {0, 1}�×κ from the receiver, and
set ai,bi = a′

i for i ∈ [�]. Else, sample b ←R {0, 1}�.
– Denote b = {bi}i∈[�]. Set a′ = {a′

i}i∈[�] where a′
i = ai,bi for i ∈ [�].

Send (sent, sid, (b, a′)) to R and (sent, sid, (a0,a1)) to S and store (sen, sid, �, (b,a0,a1))
in memory. Ignore future messages with the same sid.

Fig. 5. The ideal functionality FrOT for Oblivious Transfer with random inputs

Theorem 6. Assuming ComG and Comq be computationally binding and hid-
ing commitment schemes where they are rerandomizable and additively homo-
morphic for message spaces over G and Zq elements respectively, πDL

ZK implement
FZK functionality for the Discrete Log relation RDL, πOR

WI be a protocol for Wit-
ness Indistinguishability with proof of knowledge for the relation ROR and DDH
assumption holds in group G, then πrOT implements FrOT against active corrup-
tion of parties.

We provide the reverse firewall RFrOT for protocol πrOT in the full version
[12]. We show that the firewall maintains functionality and provides ER for a
tampered sender against a receiver and also provides ER for a tampered receiver
against a sender by proving Theorem 7.

Theorem 7. Assuming ComG and Comq be computationally binding and hiding
commitment schemes where they are rerandomizable and additively homomorphic
for message spaces over G and Zq elements respectively, RFZK and RFWI provides
weak exfiltration resistance for the tampered parties in πDL

ZK and πOR
WI respectively,

then the above firewall RFrOT provides weak exfiltration resistance for a tampered
sender against a receiver, and for a tampered receiver against a sender.

Cost. The protocol πrOT implements FrOT by producing � random OT instances.
Each random OT instance communicates 13 group elements + 15 field elements
+ 1 bit, and performs 35 exponentiations.

6 Fully Malleable Sigma Protocols

We denote a Sigma protocol by Σ = (P,V), where P1 and P2 are algorithms
that compute, respectively, the prover’s first message a, and the prover’s last
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ComG and Comq are commitments for group elements and field elements respec-
tively. πDL

ZK is a ZK proof for the statement (x, G, Zq) corresponding to relation
RDL = (∃w ∈ Zq : x = gw). πOR

WI is a WI proof for the statement (x0, x1, G, Zq)
corresponding to relation ROR = (∃w ∈ Zq, b ∈ {0, 1} : x0 = gw ∨ x1 = gw).

1. Receiver’s Coin-tossing for Parameters: The receiver samples QR ←R G and
sends T = ComG(QR; t) to the sender.

2. Sender’s Coin-tossing for Parameters and Receiver’s Public Key: The
sender samples q ←R Zq and computes QS = gq. For i ∈ [�] the sender performs
the following:

– The sender samples pi ←R Zq to rerandomize the receiver public key.
– The sender computes cSi = Comq(pi; d

S
i ).

The sender sends (QS,C
S) to the receiver, where CS = {cSi }i∈[�].

3. Sender’s Zero-Knowledge Proof for Parameters: The sender and the receiver
run πDL

ZK protocol where sender is the prover for the statement (QS, G, Zq) corre-
sponding to witness q.

4. Receiver’s generates Public Keys and Performs Coin-tossing for
Sender’s OT message: The receiver computes Q = QR ·QS. The receiver samples
random choice bits b ←R {0, 1}�. For i ∈ [�] the receiver performs the following:

– The receiver samples ski ←R Zq and computes pki,b = gski .

– The receiver computes pki,b = Q
pki,b

.

– The receiver samples shares for sender’s OT randomness vi,0, vi,1 ←R Zq.
– The receiver commits to the shares as cRi,0 = Comq(vi,0; d

R
i,0) and cRi,1 =

Comq(vi,1; d
R
i,1).

The receiver decommits to T by sending (QR, t). The receiver also sends the com-
mitments - (CR

0 ,CR
1) where CR

0 = {cRi,0}i∈[�] and CR
1 = {cRi,1}i∈[�] and the public

keys {pki,0}i∈[�].
5. Receiver’s WI Proof for Secret Keys: For i ∈ [�], the receiver and the

sender parallely run πOR
WI protocol where receiver is the prover for the statement

{pki,0, pki,1, G, Zq}i∈[�] corresponding to witness {ski, bi}i∈[�].
6. Sender generates OT message, Rerandomizes and Permutes Receiver’s

Public Keys: The sender aborts if T �= ComG(QR; t) else it sets Q = QS ·QR. The
sender samples random choice bit permutation ρ ←R {0, 1}�. For i ∈ [�] the sender
performs the following:

– The sender computes pki,1 = Q
pki,0

.

– The sender samples ri,0, ri,1 ←R Zq.
– The sender computes Ri,0 = gri,0 and Ri,1 = gri,1 .

The sender sends (ρ, {Ri,0, Ri,1, pi, d
S
i }i∈[�]) to the receiver.

7. Receiver Rerandomizes Sender’s OT message and Computes Output:
The receiver sets the random choice bit string as s = b⊕ρ. For i ∈ [�], the receiver
performs the following:

– The receiver aborts if cSi �= Comq(pi; d
S
i ).

– The receiver sets pi,0 = pi and pi,1 = −pi.
– The receiver updates ski = ski + pi,bi and computes k′

i = (Ri,si · gvi,si )ski .
The receiver outputs (s,k′) where k′ = {k′

i}i∈[�]. The receiver decommits (CR
0 ,CR

1)
by sending {vi,0, d

R
i,0, vi,1, d

R
i,1}i∈[�] to sender.

Fig. 6. Protocol πrOT implementing FrOT
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8. Sender Computes Rerandomized Output: For i ∈ [�] the sender computes
the following:

– For β ∈ {0, 1} : The sender aborts if cRi,β �= Comq(vi,β ; dR
i,β).

– Sets pi,0 = pi and pi,1 = −pi.
– The sender computes ki,0 and ki,1 based on ρi by considering the following

two cases:
• If (ρi == 0): the sender computes the output messages ki,0 = (pki,0 ·

gpi,0)ri,0+vi,0 and ki,1 = (pki,1 · gpi,1)ri,1+vi,1 .
• If (ρi == 1): the sender computes the output messages ki,0 = (pki,1 ·

gpi,1)ri,0+vi,0 and ki,1 = (pki,0 · gpi,0)ri,1+vi,1 .

More generally, the sender computes ki,0 = (pki,ρi
· gpi,ρi )ri,0+vi,0 and ki,1 =

(pki,ρi
· gpi,ρi )ri,1+vi,1 .

The sender sets (k0,k1) = {ki,0, ki,1}i∈[�] as the output.

Fig. 7. Protocol πrOT implementing FrOT

message (response) z. Moreover we require the Sigma protocol to be “unique
response”, i.e., it is infeasible to find two distinct valid responses for a given
first message and fixed challenge. Let A be the space of all possible prover’s first
messages; membership in A can be tested efficiently, so the V always outputs ⊥
when a 	∈ A. Also, let C denote the challenge space of the verifier.

6.1 Malleability

The work of [24] defines the notion of malleability. A Sigma protocol is malleable
if the prover’s first message a can be randomized into â that is distributed
identically to the first message of an honest prover. In addition, for any challenge
c, given the coins used to randomize a and any response z yielding an accepting
transcript τ = (a, c, z), a balanced response ẑ can be computed such that (â, c, ẑ)
is also an accepting transcript. In our constructions, we need a stronger notion of
malleability: we will need to randomize the instance in addition to the transcript.
We demonstrate that the sigma protocol for discrete log is malleable in Fig. 8.

Prover(x = gw, w) Verifier

a = gα

δ ←R Zq, ρ ←R Zq, γ ←R Zq

(x,a)−−−−−−−−−−→ x̂ = x · gδ, â = a · gγ · x−ρ (x̂,â)−−−−−−−−−−→
c ←R Zq

ĉ←−−−−−−−−−− ĉ = c + ρ
c←−−−−−−−−−−

z = α + ĉw
z−−−−−−−−−−→ ẑ = z + γ + cδ

ẑ−−−−−−−−−−→
gẑ ?

= â x̂c

Fig. 8. Fully Malleable Sigma protocol for discrete log
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We now formally define our notion of fully malleable Sigma protocols.

Definition 4 (Fully Malleable Sigma protocol). Let Σ = (P1,P2,V) be a
Sigma protocol for a relation R. Σ is said to be fully malleable if there exists a
tuple of polynomial-time algorithms (Maul,MaulCh,Bal) specified as follows:

(i) Maul is a probabilistic algorithm that takes as input an instance x, a ∈ A
(recall that A is set of all possible prover’s first messages), instance random-
izer δ and outputs an instance x̂, and â ∈ A and state σ ∈ {0, 1}∗;

(ii) MaulCh is a probabilistic algorithm that takes as input a challenge c and a
randomizer ρ and returns a modified challenge ĉ.

(iii) Bal is a deterministic algorithm that takes as input x, z, the state σ output
by Maul, a challenge c and returns a balanced response ẑ.

The following properties need to be satisfied.

– Uniformity. For all (x,w) ∈ R, and for all a ∈ A, x̂ is a uniformly dis-
tributed instance in L, and the distribution of â is identical to that of P1(x̂, ŵ),
where (x̂, â, σ) ←R Maul(x, a, δ) such that (x̂, ŵ) ∈ R. Moreover, for all c ∈ C
(recall that C denotes the challenge space) and uniformly random ρ ←R Zq,
ĉ is uniformly distributed in C, where ĉ ←R MaulCh(c; ρ)

– Malleability. For all x ∈ L, for all ρ ←R Zq and for all τ = (a, ĉ, z) such
that V(x, (a, ĉ, z)) = 1, where ĉ ←R MaulCh(c; ρ), the following holds:

Pr[V(x̂, (â, c, ẑ)) = 1 : (x̂, â, σ) ← Maul(x, a, δ); ẑ = Bal(x, z, σ, c)] = 1,

where the probability is over the randomness of Maul and MaulCh.

Lemma 1. The Sigma protocol for Discrete Log is fully malleable as per Defi-
nition 4. The construction is shown in Fig. 8.

Proof. We instantiate Maul, MaulCh and Bal algorithms for knowledge of discrete
logarithm, where γ ←R Zq:

Maul(x, a, ρ, δ) = (x · gδ, a · gγ · x−ρ, (γ, δ)) MaulCh(c, ρ) = c + ρ

Bal(x, z, (γ, δ), c) = z + γ + cδ

– Uniformity: For all (x,w), x = gw, for all α ∈ Zq, the distribution of â =
a · gγ · x−ρ = gα · gγ · g−ρw over the choice of γ ←R Zq is identical to the
distribution of a = gα over the choice of α ∈ Zq. Moreover, for all uniformly
random ρ ←R Zq, the value ĉ = c+ρ is uniformly distributed in the challenge
space.

– Malleability: For all x ∈ L, for all ρ ∈ Zq, and for all τ = (a, ĉ, z) such that
gz = ax−ĉ, where ĉ = c + ρ, the following holds:

âx̂−c = agγx−ρx̂−c = agγx−c−ρg−δc = agγx−ĉg−δc = gzgγg−δc = gẑ

�
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We note that Maul and Bal easily generalize to the unifying Sigma protocol
for proving knowledge of preimage of a homomorphism [31]. This generalization
gives an RF for the unifying Sigma protocol, even though we only need the
protocol for knowledge of discrete logarithm in our applications.

In general, Sigma protocols are not full-fledged zero knowledge or zero-
knowledge proof of knowledge (ZKPoK) protocols. However, standard techniques
[25] allow to compile a Sigma protocol into a zero knowledge protocol. We recall
the ZKPoK protocol πDL

ZK for the discrete logarithm problem in the full version
[12] and we provide an RF for it in Fig. 9 and prove Theorem 8.

Theorem 8. Let Σ be a fully malleable unique-response Sigma protocol for R as
in Definition 4. The RF RFZK in Fig. 9 is functionality-maintaining, weakly ZK
preserving and weak exfiltration resistant for the ZK protocol πDL

ZK of discrete log.

Prover(x = gw, w) RFZK(δ) Verifier

(u,v)−−−−−−−−−→
t1 ←R Zq, t2 ←R Zq

û = ut1 , v̂ = vt2
(û,̂v)−−−−−−−−−→

̂β←−−−−−−−−−− ρ, ζ ←R Zq β̂ = βt−1
1 · uρ · vζ β←−−−−−−−−−−

(x,a)−−−−−−−−−−→
γ ←R Zq

(x̂, â, σ) = Maul(x, a, δ)
(x̂,â)−−−−−−−−−−→
(c,d)←−−−−−−−−−−

ĉ = MaulCh(c; ρ) = c + ρ, d̂ = d · t2 · t−1
1 + ζ

(ĉ, ̂d)←−−−−−−−−−−
z,k−−−−−−−−−−−→

ẑ = Bal(x, z, σ, c)

k̂ = k · t2 · t−1
1

ẑ,̂k−−−−−−−−−−−→
v̂

?
= û

̂k

gẑ ?
= â x̂c

Fig. 9. Reverse Firewall RFZK for ZK compiled Sigma protocol

6.2 RF for OR Transform Sigma Protocol

OR Transform. Given x0, x1, a prover wishes to prove to a verifier that either
x0 ∈ L0 or x1 ∈ L1 without revealing which one is true. The OR relation is
given by: ROR = {((x0, x1), w) : (x0, w) ∈ R0 ∨ (x1, w) ∈ R1}.

Let Σ0 = ((P0
1,P

0
2),V

0) (resp. Σ1 = ((P1
1,P

1
2),V

1)) be a Sigma protocol for
language L0 (resp. L1). Let Sim0 (resp. Sim1) be the HVZK simulator for Σ0

(resp. Σ1). A Sigma protocol πOR
WI for the relation ROR was constructed in [17].

We describe the protocol πOR
WI in Fig. 10. πOR

WI satisfies perfect special HVZK and
perfect WI.
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RF for OR Protocol. In order to construct an RF for the OR transform, we need
to maul the prover’s first message in such a way that the verifier’s challenge can
be balanced in addition to the prover’s last message. We note that [24] considers
an RF for the OR composition, however that definition and construction does
not suffice for our application since we need to randomize the instance as well.
We present the WI protocol for OR composition the full version [12]. We show
the RF for the OR composition in Fig. 10 and demonstrate that it provides ER
by proving Theorem 9.

Prover((x0, x1), w) Reverse Firewall((δ0, δ1), ψ ∈ {0, 1}) Verifier
(x0,x1,a0,a1)−−−−−−−−−−−→

ρ0, ρ1 ←R Zq

(x̂0, â0, σ0) ←R Σ0 · Maul0(x0, a0, ρ0, δ0)
(x̂1, â1, σ1) ←R Σ1 · Maul1(x1, a1, ρ1, δ1)

(x̂ψ,x̂1−ψ,â0,â1)−−−−−−−−−−−−−→
c←−−−−−−−

ρ = ρ0 + ρ1

ĉ = c − ρ
ĉ←−−−−−−−

(z0,z1,c0,c1)−−−−−−−−−−→
ĉ0 = Σ0 · MaulCh0(c0; ρ0) = c0 + ρ0

ĉ1 = Σ1 · MaulCh1(c1; ρ1) = c1 + ρ1

ẑ0 = Σ0 · Bal0(z0, σ0, ĉ0)
ẑ1 = Σ1 · Bal1(z1, σ1, ĉ1)

(ẑψ,ẑ1−ψ,ĉψ,ĉ1−ψ)−−−−−−−−−−−−−−−→
c

?
= ĉ0 + ĉ1

Σ0 · V0(x̂0, (â0, ĉ0, ẑ0))
?
= 1

Σ1 · V1(x̂1, (â1, ĉ1, ẑ1))
?
= 1

Fig. 10. RFWI: RF for the OR composition of Sigma protocols, where (xb, w) ∈
Rb for b ∈ {0, 1}. The bit ψ is an additional input to RFWI provided by a RF of
an higher-level protocol (in our case the RF of our base OT protocol)

Theorem 9. Let Σ0 and Σ1 be fully malleable unique-response Sigma protocols
for R0 and R1 respectively. The RF RFWI in Fig. 10 preserves completeness, is
weakly HVZK/WI preserving and weak exfiltration resistant for πOR

WI .

7 Quicksilver with Reverse Firewall

We present a variant of Quicksilver [38] in the firewall setting, πQS, in the full
version [12]. It is in the FcOT model and provides efficient interactive ZK for
binary circuits. For a circuit with number of input wires n and the number of
multiplication gate t, the proof size is (n+t) bits in the FcOT model. Instantiating
FcOT with πcOT the concrete proof size of πQS is (n+t)κ+O(κ2) bits. The number
of public key operations is O(κ) and is independent of t. Detailed overview can
be found in Sect. 2.5. Security of πQS is summarized in Theorem 10. More details
can be found in the full version [12].
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Theorem 10. Assuming H is a collision resistant hash function and Com is a
computationally hiding and binding commitment scheme then πQS implements
FZK functionality in the FcOT model.

Proof Sketch. A corrupt prover breaks soundness of the protocol if it 1) breaks
binding of cd, or 2) finds a collision in H, or 3) breaks hiding of cseed, or it
passes the batch verification phase for a circuit C such that ∀w, C(w) = 0.
Breaking binding of cd or finding a collision in H allows the prover to open
the commitment to a different d′ after obtaining the challenge χ and hence
passing the batch verification. Breaking hiding of cseed allows the prover to fix
the challenge to a particular value for which it passes the challenge. Finally,
assuming the above attacks fail the prover can still pass the batch verification
checks if it correctly guesses the entire Δκ of the V. The functionality FcOT

allows the prover to leak c bits of 2−c bits. However, it successfully guesses the
entire Δ ∈ {0, 1}κ with 2−κ probability. Zero knowledge of the protocol follows
from the security for a receiver in πcOT. The pads (A∗

0, A
∗
1) perfectly hides the

inputs of the prover and the ZK simulator simulates the proof given corrupt
verifier’s input Δ to FcOT.

Com is an additively homomorphic commitment scheme. RFcOT-R and RFcOT-S provides
exfiltration resistance for a tampered receiver and a tampered sender in πcOT.

Preprocessing phase:
The firewall for the prover invokes the firewall RFcOT-R (resp. RFcOT-S) to sanitize the
transcript of πcOT for the prover (resp. verifier).
Online phase:
Now the circuit and witness are known by the parties.

4. Input Wire Mapping: This step only includes local computation.
5. Gate Computation: Upon receiving cd from the prover the firewall computes ĉd =

cd · Com(0; δ̃d) by sampling δ̃d ←R {0, 1}κ. The firewall sends ĉd to the verifier.
6. Batch Verification Challenge: The steps of the coin tossing protocol are sanitised

as follows:
– Upon receiving cseed from verifier the firewall computes ĉseed = cseed ·

Com(s̃eed; δ̃seed) by sampling s̃eed ←R {0, 1}κ and δ̃seed ←R {0, 1}∗. The firewall
sends ĉseed to the P.

– Upon receiving seedP from the prover the firewall sends ŝeedP = seedP ⊕ s̃eed
to the V.

– Upon receiving (seedV, δseed) from the verifier, the firewall sends (seedV ⊕
ŝeed, δseed ⊕ δ̂seed) to the prover.

7. Batch Verification Response: Upon receiving (d, δd, U, V ) from the prover, the

firewall sends (d, δd ⊕ δ̃d, U, V ) to the verifier as the response.
8. Batch Verification: This step only includes local computation.

Fig. 11. Reverse Firewalls RFQS-P (resp. RFQS-V) providing exfiltration resistance
for a tampered prover (resp. verifier) in πQS
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The Firewall Construction. We provide the firewalls in Fig. 11. Assuming FcOT is
implemented by πcOT in πQS, the firewall RFcOT-S for the sender in πcOT provides
ER to the prover in the preprocessing phase of πQS. Similarly, the firewall RFcOT-R

for the receiver in πcOT provides ER to the verifier in the preprocessing phase.
The coin χ is rerandomized by the firewall to prevent any exfiltration through
the coin-tossing. Similarly, the commitments are also rerandomized to prevent
exfiltration. Theorem 11 summarizes the RF security.

Theorem 11. Let πcOT implement FcOT in πQS. Assuming Com is an additively
homomorphic, binding and hiding commitment scheme, RFcOT-R provides weak
exfiltration resistance for a tampered receiver in πrOT and RFcOT-S provides weak
exfiltration resistance for a tampered sender of πcOT then RFQS-P provides weak
exfiltration resistance for the prover in πQS and RFQS-V provides weak exfiltration
resistance for the verifier in πQS respectively.

By composing Theorems 3, 10 and 11 we show that the firewalls RFQS-V

and RFQS-P (Fig. 11) preserves the security of the underlying protocol πQS thus
proving Theorem 2.

Optimizations. Our protocol admits batching: the prover and verifier can run
our protocol to verify m different circuits (C1, C2, . . . , Cm) with parameters
(�1, �2, . . . , �m) where �i denotes the number of input wires and multiplication
gates in Ci. The parties invoke FcOT with parameter � = Σi∈[m]�i, the com-
bined witness w consists of the individual witnesses (w1,w2, . . . ,wm) and cir-
cuit C(w) = 1 when ∀i ∈ [m], Ci(wi) = 1. In this batched setting, the number
of public key operations for the base OTs gets amortized over m runs of the ZK
protocol.
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Abstract. The computational overhead of a cryptographic task is the
asymptotic ratio between the computational cost of securely realizing
the task and that of realizing the task with no security at all.

Ishai, Kushilevitz, Ostrovsky, and Sahai (STOC 2008) showed that
secure two-party computation of Boolean circuits can be realized with
constant computational overhead, independent of the desired level of
security, assuming the existence of an oblivious transfer (OT) protocol
and a local pseudorandom generator (PRG). However, this only applies
to the case of semi-honest parties. A central open question in the area is
the possibility of a similar result for malicious parties. This question is
open even for the simpler task of securely realizing many instances of a
constant-size function, such as OT of bits.

We settle the question in the affirmative for the case of OT, assuming:
(1) a standard OT protocol, (2) a slightly stronger “correlation-robust”
variant of a local PRG, and (3) a standard sparse variant of the Learning
Parity with Noise (LPN) assumption. An optimized version of our con-
struction requires fewer than 100 bit operations per party per bit-OT.
For 128-bit security, this improves over the best previous protocols by
1–2 orders of magnitude.

We achieve this by constructing a constant-overhead pseudorandom
correlation generator (PCG) for the bit-OT correlation. Such a PCG gen-
erates N pseudorandom instances of bit-OT by locally expanding short,
correlated seeds. As a result, we get an end-to-end protocol for generating
N pseudorandom instances of bit-OT with o(N) communication, O(N)
computation, and security that scales sub-exponentially with N .

Finally, we present applications of our main result to realizing other
secure computation tasks with constant computational overhead. These
include protocols for general circuits with a relaxed notion of security
against malicious parties, protocols for realizing N instances of natu-
ral constant-size functions, and reducing the main open question to a
potentially simpler question about fault-tolerant computation.
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1 Introduction

A dream goal in cryptography is obtaining security “for free,” without any slow-
down. How close can we get to this goal in the context of secure computation?

A theoretical study of this question was initiated in the work of Ishai, Kushile-
vitz, Ostrovsky, and Sahai [52] (IKOS). For secure two-party computation of
Boolean circuits, they showed that it is possible to achieve constant computa-
tional overhead under plausible cryptographic assumptions. Concretely, there is
a multiplicative constant c, independent of the desired security level, such that
every sufficiently big Boolean circuit of size N can be securely evaluated by two
parties which are implemented by Boolean circuits of size cN .1 This means that
the amortized slowdown factor can be independent of the security level.2

The IKOS protocol combines a technique of Beaver [19] with a local PRG
[10,46,62], namely a pseudorandom generator G : {0, 1}κ → {0, 1}n(κ) that has
polynomial stretch (n = Ω(κd) for some d > 1) and such that every output bit of
G depends on a constant number of input bits. While the existence of such local
PRGs was considered quite speculative at the time, it is now widely accepted as
a standard cryptographic assumption.

A major limitation of the IKOS protocol is that its security is restricted to
the case of semi-honest parties. The possibility of a similar result for malicious
parties was the main question left open by [52]. In spite of significant progress
on this and related problems, including constant-overhead protocols for arith-
metic circuits over large fields [8,24], a solution to the above main question is
still elusive; see [36,55] for a survey of related work. The question is open even
for simpler tasks, such as computing N instances of a nontrivial constant-size
function. To make things worse, strong cryptographic primitives such as indis-
tinguishability obfuscation do not seem helpful. In fact, even entirely heuristic
solutions are not currently known. Our work is motivated by the goal of solving
useful special cases of this central open question.

The Overhead of Oblivious Transfer. A common framework toward secure
computation, including the protocol of IKOS, follows a two-phase approach: first
run an input-independent preprocessing protocol for secure distributed genera-
tion of useful correlated secret randomness, and then consume these correlations
within an online protocol that performs a secure computation on the inputs [18].
An important example is the random oblivious transfer (OT) correlation,3 in

1 Here the default security requirement is that any poly(N)-time adversary can only
obtain a negl(N) advantage. Alternatively, using a separate security parameter λ,
the cN bound holds when N is sufficiently (but polynomially) larger than λ.

2 See Sect. 2.1 for more details on our specific cost model. Briefly, functions and proto-
cols are implemented as bounded fan-in Boolean circuits, and the computational cost
is the number of gates. For concrete computational costs, we allow any bit operation
over two-bit inputs.

3 In this work, OT refers by default to bit-OT, namely oblivious transfer of pairs of
bits. However, as discussed below (cf. Sect. 5), our results apply to most other natural
flavors of OT.
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which Alice and Bob receive (s0, s1) and (b, sb) respectively, where s0, s1, b are
random bits. Given 2N independent instances of this OT correlation, Alice and
Bob can evaluate any Boolean circuit with N gates (excluding “free” XOR and
NOT gates) on their inputs, with perfect semi-honest security, by each sending 2
bits and performing a small constant number of bit operations per gate [47,48].
Indeed, IKOS protocol obtains constant-overhead general secure two-party com-
putation precisely by achieving this goal for generation of random bit-OTs.

Generating random bit-OTs with malicious security, however, is much more
challenging. In particular, the IKOS protocol is not secure in this setting4 The
best known solutions incur polylogarithmic computational overhead [36,41]. A
natural approach for improvement would be to follow the “GMW-paradigm” [48],
applying zero-knowledge proofs to enforce honest behavior in the IKOS proto-
col. However, the existence of such proofs with constant computational over-
head for the satisfiability of Boolean circuits is also wide open: even there, the
best known solutions have polylogarithmic overhead [41]. A number of works
developed special-purpose cut-and-choose techniques for protecting efficient OT
extension protocols against malicious parties with a very low overhead [15,56,65].
However, these techniques are inherently tied to string-OTs whose length is pro-
portional to a security parameter, and seem to require (at least) a polylogarith-
mic computational overhead when adapted to the case of bit-OT. Part of the
challenge of protecting “traditional” OT generation protocols against malicious
adversaries is that the underlying semi-honest protocols require Ω(N) commu-
nication for generating N OT correlation instances, which must somehow be
checked or verified.

Pseudorandom Correlation Generators. A recent alternative approach to
OT generation is via the tool of pseudorandom correlation generators (PCG),
put forth in [25,28,30]. The PCG approach enables fast generation of short cor-
related seeds, of length o(N), that can be locally expanded without interaction
to N instances of OT (or other) correlations. Unlike the traditional protocols
from above, the structure of PCG-based protocols directly gives rise to secure
computation of N pseudorandom OT correlations with sublinear o(N) communi-
cation cost. This is an appealing feature, not only as a concrete efficiency benefit
(indeed, communication costs often form the practical efficiency bottleneck), but
also as a promising starting point for obtaining malicious security with low over-
head. Indeed, since the local expansion from short PCG seed to long OT output
is deterministic, it suffices to ensure that the short seeds be generated correctly,
reducing the malicious-security problem to an instance of sublinear size.

However, existing PCG constructions do not yet suffice for our goal. While
the communication cost of PCG-based protocols is sublinear in N , the required
computation costs are quite high. In existing constructions [26–28,40,69], even
just the amortized cost of generating each final bit-OT correlation (corresponding
to simply 2 output bits per party) requires generating security-parameter many
pseudorandom bits, and then hashing them down.

4 See the full version for an explicit attack.
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1.1 Our Results

We present new constructions of pseudorandom correlation generators for N
instances of the bit-OT correlation, which not only have sublinear communica-
tion in N but also achieve constant computational overhead. As a direct conse-
quence, we obtain the first constant-overhead protocol for realizing N instances
of bit-OT with security against malicious parties. As we further discuss below,
this result extends beyond OT to other natural secure computation tasks.

Theorem 1 (Constant-overhead PCG for OT, informal). Suppose that
the following assumptions hold:

– There is a local PRG with an additional “correlation robustness” property;
– There are sparse generating matrices of codes for which Learning Parity with

Noise is hard.

Then, there is a pseudorandom correlation generator for the bit-OT correlation,
with polynomial stretch, where the local expansion function PCG.Expand has con-
stant computational overhead.

In fact, we present two variants of this main result: one based on a primal-
LPN assumption, which has better amortized cost but a small (sub-quadratic)
stretch, and one based on dual-LPN that can achieve an arbitrary polynomial
stretch at the cost of a slightly increased (constant) overhead.

By applying a general-purpose secure computation protocol to distribute the
PCG seed generation, we obtain the following corollary.

Corollary 2 (Constant-overhead malicious OT, informal). Assuming the
existence of a standard OT protocol along with the assumptions of Theorem 1,
there exists a two-party protocol for realizing N instances of bit-OT with security
against malicious parties and a constant computational overhead.

About the Assumptions. Our protocols require three types of assumptions:
(1) the (necessary) existence of standard OT; (2) a slight strengthening of local
PRGs that we refer to as correlation robustness; and (3) a “sparse” form of the
Learning Parity with Noise (LPN) assumption.

As discussed above, local PRGs (more concretely, PRGs with constant local-
ity and polynomial stretch) were already used in the IKOS protocol [52]. A
well-known candidate is Goldreich’s PRG [46], where significant study has gone
toward proving resilience against classes of attacks for particular choices of out-
put predicates Pi [4,5,7,12,20,30,38,39,61,63]. Correlation robustness of a PRG
G : {0, 1}κ → {0, 1}N requires that for any choice of offsets Δ1, . . . ,ΔN ∈
{0, 1}κ, the output (P1(x ⊕ Δ1), . . . , PN (x ⊕ ΔN )) ∈ {0, 1}N appears pseudo-
random for random x. For a local PRG, this corresponds to fixed xor-shifts of
the corresponding output local predicates. In the full version we investigate the
potential correlation robustness of the Goldreich local PRG construction, demon-
strating that “good” properties of PRG output predicates Pi are preserved under
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fixed xor-shift. In turn, we conclude that the same classes of attacks can be ruled
out for correlation robustness of the PRG as well as for standard pseudorandom-
ness.

“Sparse” LPN, first put forth by Alekhnovich [2], corresponds to a form of
LPN whose code generator matrix (i.e., coefficients of noisy linear equations) has
constant row sparsity. The assumption states that the mapping (�s,�e) �→ G ·�s+�e
is a PRG, where �s is a short uniform seed of length n, G ∈ {0, 1}N×n is a
suitably chosen sparse matrix and �e is a noise vector of weight t � N . In such
a scenario we can have polynomial stretch (i.e., both n, t are at most N1−ε for
some ε > 0) but the stretch is fairly limited.

We also consider the dual variant of LPN directly, where the seed is viewed
as a length M error vector �e and the mapping sends �e �→ H · �e for a suitably
chosen H ∈ {0, 1}N×M with M > N . By choosing H to have a repeat-accumulate
structure, we get desirable efficiency properties (analogous to the efficiency the
sparsity of G earns us in the primal case) while allowing for arbitrary polynomial
stretch.

To evaluate the plausibility of our LPN-assumptions we follow the linear
tests-framework, which was implicit in [29,40] and made explicit in [26]. Briefly,
this means that we need to verify that the distance of a code related to the
matrix is not too small.

Concrete Amortized Cost. We estimate that, when producing a sufficiently
large number N of OTs, our construction based on primal-LPN can have a
concrete, amortized cost of 243 bit operations per party, per OT, while achieving
sublinear communication complexity. This figure is based on using a PRG with
locality 9, which asymptotically is believed to be secure with stretch as large as
κ2.49, and a primal-LPN matrix with row sparsity of d = 18. For the dual LPN
variant, we can rely on a PRG with locality 5, achieving amortized costs of 91
bit operations per party.

In comparison, with 128 bits of security against malicious parties, the amor-
tized cost of all previous protocols is bigger by 1–2 orders of magnitude, even
when using a best-possible implementation of the underlying primitives (e.g.,
using a local PRG for generating pseudorandom bits). This applies both to pro-
tocols with linear communication [15,50,56,65] and to PCG-based protocols with
sublinear communication [26–28,40,69].

Counting bit operations does not reflect true performance on standard archi-
tectures, and in particular does not take into account additional costs such as
memory access. However, the extra costs can be amortized by performing many
identical computations in parallel. We leave a more thorough investigation of
concrete efficiency and further optimizations to future work.

Beyond Oblivious Transfer. While our main result only refers to the specific
task of securely realizing N instances of OT, the ubiquity of OT in cryptography
makes it relevant to many applications. Even in the strict context of secure com-
putation with constant computational overhead, our results have broader impli-
cations to other useful secure computation tasks. We summarize them below.
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– General protocols with relaxed security. Given our constant-overhead real-
ization of (malicious-secure) OT, one can securely compute every Boolean
circuit with constant computational overhead by settling for security up to
additive attacks [43]. In this relaxed security model, the malicious party can
(blindly) choose a subset of the circuit wires to toggle, independently of the
honest party’s input. While devastating in some applications, such as zero-
knowledge proofs, additive attacks can be tolerable in others. This may be
the case, for example, when computing functions with long inputs and short
outputs, and when the main concern is about the amount of information that
a malicious party can learn.

– Leveraging perfect security. Consider the case of realizing N instances of a
“constant-size” functionality f . If f has perfect security against malicious
parties in the OT-hybrid model, namely using ideal calls to a bit-OT oracle,
then our main result implies a constant-overhead protocol in the plain model.
While the question of characterizing such f is still open, positive examples
include other flavors of OT [34,54], simple noisy channels such as a BSC
channel and, more surprisingly, a broad class of functionalities that includes
constant-size instances of the millionaire’s problem and many others [3].

– Reducing security to fault-tolerance. Finally, given our constant-overhead real-
ization of the OT-hybrid model, settling the general open question reduces to
settling it in this model. This, in turn, reduces to a constant-overhead con-
struction of Boolean AMD circuits — randomized circuits that are resilient
to additive attacks [43]. The best known construction of such circuits has
polylogarithmic overhead [44].

1.2 Technical Overview

At a high-level, our approach follows the construction of PCGs for random bit-
OT via subfield vector oblivious linear evaluation (sVOLE) [25,28]. We first
recall their approach, and then explain how to achieve constant overhead.

PCGs for sVOLE from LPN [25,28]. Recall that an sVOLE instance is of
the form (�b, �z0), (x, �z1), where x ∈ {0, 1}κ,�b ∈ {0, 1}N , �z0 ∈ ({0, 1}κ)N , �z1 ∈
({0, 1}κ)N such that x ·�b = �z0 ⊕�z1, where x ·�b := (b1 ·x, . . . , bN ·x) ∈ ({0, 1}κ)N .
(Note that typically x is considered as element x ∈ F2κ , which is where the name
subfield VOLE comes from. Here, however, it will be more convenient to think
of x as a bitstring x ∈ {0, 1}κ, since this will later be input to a local PRG.)

The first ingredient of the PCG construction is a pseudorandom generator
from the learning parity with noise assumption. Let n,N ∈ N with n < N .
The primal learning parity with noise assumption states that, relative to some
code generator C returning matrices in {0, 1}N×n and noise distribution D over
{0, 1}N , (G,G · �s ⊕ �e)

c≈ (G,�b), where G ← C, �s
$← {0, 1}n, �e ← D and �b

$←
{0, 1}N . Here, we consider noise distributions D that return t-sparse vectors, i.e.,
vectors containing at most t non-zero entries.

The second ingredient is a (known-index) function secret sharing (FSS)
scheme to generate a succinct secret sharing of x ·�e, where x ∈ {0, 1}κ as above,
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and �e is a t-sparse noise vector. Roughly, a function secret sharing scheme con-
sists of a tuple of algorithms (Setup,FullEval), such that Setup(1λ, v̂) (where v̂
is the succinct representation of the vector �v = x · �e) returns a tuple of succinct
(i.e., polynonomial in the size of v̂) keys (K0,K1) and FullEval(σ,Kσ) returns a
vector �yσ ∈ ({0, 1}κ)N such that �y0 ⊕ �y1 = �v. The security requirement states,
essentially, that even given �yb for either b = 0 or b = 1, one cannot derive any
information about �v.

Function secret sharing schemes for so-called t-sparse point functions are
known to exist from one-way functions [31,45]. Further, as observed in [27,66]
for the purpose of constructing PCGs for sVOLE a so-called known-index FSS
scheme is sufficient, where one party learns the positions of the non-zero entries.
Known-index FSS for point functions are implied by simpler constructions of
puncturable pseudorandom functions [23,33,58].

Now, given these two ingredients, the PCG construction for sVOLE can be
obtained as follows:

– Sample x
$← {0, 1}κ as input for P1.

– Sample �s
$← {0, 1}n, �e

$← D and give �s, as well as a succinct description of �e

to P0, who can then compute �b := G · �s ⊕ �e.
– Generate a succinct secret sharing of x ·�b as follows:

1. Generate additive secret shares �r0, �r1 such that �r0⊕�r1 = x·�s ∈ ({0, 1}κ)n.
2. Generate function secret shares (K0,K1) ← Setup(1λ, v̂), where �v := x ·�e.

By the correctness of the FSS and linearity of the code, it now holds

x ·�b = x · (G · �s ⊕ �e) = G · (�r0 ⊕ �r1) ⊕ Eval(0,K0) ⊕ Eval(1,K1) = �z0 ⊕ �z1,

where �zσ := G · �rσ + FullEval(σ,Kσ) for σ ∈ {0, 1}.

From sVOLE to bit-OT. The transformation from sVOLE to bit-OT follows
the strategy of [50]. Namely, an instance of N -dimensional sVOLE can be consid-
ered as N instances of correlated string-OT with offset x as follows. The vector �b
corresponds to the choice vector of the “receiver” P0. Further, for each entry bi,
the receiver obtains z0,i = z1,i ⊕ bi · x, i.e., either the bit-string z1,i ∈ {0, 1}κ or
the bit-string z1,i ⊕ x ∈ {0, 1}κ held by the “sender” P1. These correlations can
be removed by applying a correlation-robust hash function H : {0, 1}κ → {0, 1}.
Roughly, a correlation-robust hash function has the property that applied to
values related by an (adversarially chosen) Δ, the outputs are indistinguish-
able from the output on uncorrelated values. With this, the j-th bit OT can be
obtained as (

bj ,H(z0,j)
)
,
(
H(z0,j),H(z0,j ⊕ x)

)
.

Choosing κ, n, t such that κ · n + t · log N ∈ N1−ε for some ε > 0, the above
PCG construction allows to obtain N bit-OTs with communication o(N). On the
negative side, it does not achieve constant computational-overhead. The most
crucial reason for this is that the sVOLE instance itself introduces an overly large
overhead: for each bit-OT, the above transformation requires one to hash κ-bits,
introducing a factor κ-overhead (even if all other building blocks are assumed
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to be constant time). Note that in the above construction it is essential that κ
is large, since otherwise a corrupt receiver could guess x and thereby violate the
security of the OT.

Towards PCGs for bit-OT with Constant Overhead. The central idea
of this work is to replace the correlation-robust hash function H by a local
pseudorandom generator G. More precisely, recall that a local PRG is of the
form

G(x) = P1(π1(x))‖ . . . ‖PN (πN (x)),

where each πi projects x to an 	-sized subset of its coordinates, and Pi : {0, 1}� →
{0, 1} is a predicate.

Given a local PRG with constant locality 	, we can obtain N bit-OTs from
an sVOLE instance x ·�b = �z0 ⊕ �z1 as

(bj , Pj(πj(z0,j))) , (Pj(πj(z1,j)), Pj(πj(z1,j ⊕ x))) .

In other words, in the j-th bit-OT instance, we replace H by Pj ◦ πj . Now,
it can be shown that if the PRG G additionally satisfies a form of correlation
robustness5, then replacing the correlation-robust hash function by a local PRG
preserves correctness and security of the PCG for bit-OT.

This observation does not yet suffice to achieve constant overhead, since the
starting point is still an instance of sVOLE with vectors in ({0, 1}κ)N . Observe
though that the parties actually do not need to generate �z0, �z1 ∈ ({0, 1}κ)N ,
such that �z0 ⊕ �z1 = x ·�b. Instead, it suffices to generate �v0, �v1 ∈ ({0, 1}�)N , such
that

πj(x) · bj = v0,j ⊕ v1,j

for all j ∈ [N ], where 	 ∈ N is constant. The above generation of bit-OTs can
then be simplified as

(
bj , Pj(v0,j)

)
,
(
Pj(vj,1), Pj(vj,1 ⊕ πj(x))

)
,

where equality holds since the projection functions are linear. We will refer to this
correlation as projected-payload sVOLE in the following. It remains to discuss
how to generate a projected payload sVOLE PCG with constant overhead.

Projected Payload sVOLE via Primal LPN. Recall that we need to gen-
erate compressed secret sharings of x ·�b = G · (x · �s) + x · �e. Towards constant
overhead, we first replace G by a sparse matrix, for which each row only con-
tains a constant number d of non-zero entries. By an Alekhnovich variant of the
LPN assumption [2], the resulting �b is still computationally hard to distinguish
from random (given a suitable choice of parameters). This allows P0 to compute
�b = G · �s + �e with constant overhead O(d · N + t · log N).

5 Namely, we require {Pj(Δj ⊕ πj(x))}j∈N is indistinguishable from random, where
Δ1, . . . , ΔN are pseudorandom with seed known to the adversary.
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Again, we generate secret shares �r0, �r1 such that �r0 ⊕ �r1 = x · s ∈ ({0, 1}κ)n.
If κ · n < N , these shares have size < N as required. For expansion, note that
for each j ∈ [N ] it is sufficient to compute

πj(x) · Gj · �s = Gj · (πj(x) · �s) = G · (Πj(�r0) ⊕ Πj(�r1)),

where Gj is the j-th row of G, and Πj : ({0, 1}κ)N → ({0, 1}�)N is obtained by
applying πj componentwise. Overall, expansion requires d · N operations.

Finally, recall that by above considerations it is left to generate secret shares
�v0, �v1 ∈ ({0, 1}�)N such that v0,j ⊕ v1,j = πj(x) · ej .

We can do this with constant overhead by relying on LPN with regular
noise, i.e., where �e is split into N/t intervals, each containing exactly one non-
zero noise coordinate. For the corresponding class {πj(x) · ej}j∈[N ], one can
achieve a known-index FSS with constant overhead by using the puncturable
PRF construction of [23,33,58] together with an observation in [25], which allows
to remove a factor-λ overhead. This only requires a length-doubling PRG, which
can be instantiated with constant overhead using the same PRG with constant
locality as before.

Projected-Payload sVOLE via Dual LPN. The above construction suffices
for constant-overhead OT, although the PCG is limited to subquadratic stretch.
We can obtain arbitrary polynomial stretch by generating �b via dual LPN, i.e.,
as �b = H · �e, where H ∈ {0, 1}N×M , �e ∈ {0, 1}M (where M = d · N). To
achieve constant locality, we choose H such that H = B · A, where A is an
accumulator matrix (i.e., an all-one lower-triangular matrix) and B has only a
constant number d of non-zero entries in each column. The security is based
on a “repeat-accumulate” variant of LPN, which is analogous to the expand-
accumulate LPN assumption that appeared recently [26].

In this case, for �b = H · �e, the goal is now to generate compressed secret
shares of (b1 · π1(x), b2 · π2(x), . . . , bN · πN (x)). Fortunately for us, we know how
to share �a := A · �e in a compressed manner: �a is a multi-interval noise vector,
and so we can share it using function secret-sharing for multi-interval functions.
More precisely, by a t-multi-interval noise vector we mean a vector in which
there are at most t coordinates i ≥ 2 for which the i-th coordinate differs from
the (i − 1)-st. However, as �b = B · �a, we need to work a bit harder.

Fortunately, recall that each row of B only has d nonzero entries, and d is
a constant. Let Sj ⊆ [M ] be such that bj =

⊕
i∈Sj

ai. To get shares of bjπj(x),
it suffices to secret share ai · πj(x) for exactly these d choices of i ∈ Sj . We
thereby get secret shares �v0, �v1 ∈ ({0, 1}�)M . In particular, to obtain an additive
secret-sharing of bj ·πj(x) for j ∈ [N ], each party σ ∈ {0, 1} just needs to locally
compute

⊕
i∈Sj

vσ
i . That is,

⊕
i∈Sj

v0
i ⊕ ⊕

i∈Sj
v1

i = bj · πj(x).
To distribute the shares �v0, �v1, we introduce an FSS variant called projected-

payload distributed comparison function, which optimizes for the fact that,
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at each index j, only the projection πj(x) is multiplied with the bits ai of
the interval vector for i ∈ Sj . This is contrasted with a standard distributed
comparison function, where the whole of the κ-bit x is multiplied for every ai.

We show how to build projected-payload DCF with constant overhead, by
carefully combining a standard (known-index) DCF with a DPF. In a nutshell,
we use a DPF and DCF which both correspond to a truncated binary tree,
with N/κ leaves instead of N . The DCF is set to give out shares of the full
payload x for indices i such that i/κ� < α′, where α′ = α/κ�, and shares of
0 otherwise. Note that this already allows the parties to obtain shares of the
projected evaluations ai · πi(x), for all i ∈ [N ] except those whose prefix is α′.
To correct for the indices with prefix α′, we give out an 	κ-bit correction word,
which is masked using the missing expanded output of the DPF, and allows the
party who knows α to correct its outputs to the right value.

2 Preliminaries

2.1 Computational Model and Cost Measure

Computational Cost. Similarly to prior works [9,13,22,36,37,42,52,55,64],
we assume that functions and protocols are implemented using Boolean circuits
with bounded fan-in gates. Computational cost is then measured by the circuit
size, namely the number of gates. Note that this cost measure is robust to the
exact fan-in or the type of gates used, which can only change the cost by a
constant multiplicative factor. This should be contrasted with counting atomic
operations in more liberal computational models, such as arithmetic circuits
or RAM programs, which are more sensitive to model variations such as the
underlying ring or the allowable word size. See [67] for discussion.

Concrete Cost. When we refer to concrete computational costs, we count the
number of bit operations by considering the size of a circuit over the full binary
basis, namely where a gate can compute any mapping from two bits to one bit.
For instance, the concrete computational cost of the predicate P5 =: (x1 ∧ x2) ⊕
x3 ⊕x4 ⊕x5 is 4. This is a standard concrete cost measure in complexity theory.

Setup. When considering the computational cost of cryptographic tasks, we
allow a one-time PPT setup that given a security parameter 1λ and a task
description, outputs a circuit implementation for the task. For instance, for the
task of generating N instances of random bit-OT, the task description is 1N

and the implementation includes circuits computing the next-message functions
of the protocol. Since the setup cost is amortized away, we do not consider its
complexity except for requiring it to run in polynomial time. The setup will
typically need to generate constant-degree bipartite expander graphs in which
one side is polynomially bigger than the other. A recent PPT construction of
such graphs with negligible failure probability was given in [11]. Alternatively,
the failure probability can be eliminated assuming the conjectured existence of
explicit unbalanced expanders or similar combinatorial objects; see, e.g., [8,52]
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for discussion. Under this assumption, the setup required by our protocols can
be implemented in deterministic polynomial time.

Computational Overhead. We will be interested in minimizing the amortized
computational cost of a task of size N (e.g., N instances of random bit-OT),
when N tends to infinity. Here we allow N = N(λ) to be an arbitrarily big
polynomial in the security parameter, effectively ignoring lower order additive
terms that may depend polynomially on λ and sublinearly on N .6 We say that
the implementation has computational overhead (at most) c = c(λ) if there is
a polynomial N = N(λ) such that ratio between the implementation cost and
N(λ) is at most c(λ) for all sufficiently large λ. We say that the implementation
has constant computational overhead if c(λ) = O(1).

As discussed in [52], a cleaner alternative is to use N both as a size parameter
and a security parameter, similarly to textbook definitions of basic cryptographic
primitives. (Here security means that every poly(N)-size adversary only has a
negl(N) advantage.) The separation between the two parameters serves to sim-
plify the presentation and give a better sense of concrete efficiency.

Cost of Pseudorandomness. Sometimes, it will be convenient to refer to the
amortized cost of outputting n pseudorandom bits from a PRG seed. We write
this as Cprg(n).

Note that using local PRGs, we have Cprg(n) = O(n), where the best con-
crete candidate (using the P5 predicate described above) has cost Cprg(n) = 4n.
To analyze efficiency on modern CPUs, it can be useful to measure this cost
separately due to the prevalence of built-in hardware support for AES. However,
note that for large values of n, a “bitsliced” implementation of a local PRG (eval-
uating many PRG copies in parallel using bitwise AND and XOR operations)
may have better performance, at the expense of using a much bigger seed.

2.2 Correlation Robust Local PRGs

In this section we recall local pseudorandom generators and introduce the notion
of correlation-robustness in the context of local PRGs.

Definition 3 (Pseudorandom Generator). Let κ = κ(λ), N = N(λ) ∈ N.
We say a family of functions G = {Gλ : {0, 1}κ(λ) → {0, 1}N(λ)}λ∈N is a pseu-
dorandom generator (PRG), if for all polynomial-time non-uniform adversaries
A, there exists a negligible function negl : N → R≥0 such that for all λ ∈ N :

∣
∣
∣Pr[A(1λ, Gλ(x)) = 1 | x ← {0, 1}κ] − Pr[A(1λ, u) = 1 | u ← {0, 1}N ]

∣
∣
∣ ≤ negl(λ).

6 This should be contrasted with a more fine-grained measure of overhead consid-
ered in [17,22,36], which requires exponential security in λ (rather than super-
polynomial), measures the overhead with respect to N +λ, and requires the overhead
to apply to all choices of N and λ (e.g., even when N = λ).
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Definition 4 (Subset projection). Let κ, 	 ∈ N with κ > 	. We say a mapping
π : {0, 1}κ → {0, 1}� is a subset projection (or simply projection), if there exists
a size-	 set S ⊂ {1, . . . , κ} such that π(x) = (xi)i∈S for all x ∈ {0, 1}κ.

Definition 5 (Local family of functions). Let κ = κ(λ), N = N(λ), 	 =
	(λ) ∈ N with 	 � κ (e.g., 	 = O(log κ) or 	 = O(1)). We say a family of func-
tions G = {Gλ : {0, 1}κ(λ) → {0, 1}N(λ)}λ∈N is 	-local if there exists families of
subset projections π1, . . . , πN(λ) : {0, 1}κ → {0, 1}�(λ) and families of predicates
P1, . . . , PN(λ) : {0, 1}�(λ) → {0, 1}, such that for every λ ∈ N,

G(x) = P1(π1(x))‖ . . . ‖PN(λ)(πN(λ)(x))

for all x ∈ {0, 1}κ(λ). We say G has constant locality if 	 ∈ O(1).

Definition 6 (Δ-shift). Let κ,N, 	 ∈ N with 	 < κ and let G : {0, 1}κ →
{0, 1}N be a 	-local function with subset projections π1, . . . , πN : {0, 1}κ → {0, 1}�

and predicates P1, . . . , PN : {0, 1}� → {0, 1}. For Δ = (Δ1, . . . ,ΔN ) ∈ {0, 1}N ,
we define the Δ-shift of G as

GΔ(x) = P1(π1(x) ⊕ Δ1)‖ . . . ‖PN (πN (x) ⊕ ΔN )

for all x ∈ {0, 1}κ.

Definition 7 (Correlation-robust local PRG). Let κ = κ(λ), N =
N(λ), 	 = 	(λ) ∈ N. Let G = {Gλ : {0, 1}κ(λ) → {0, 1}N(λ)}λ∈N be a family
of local functions with 	-locality.

We say that G is a correlation-robust 	-local PRG, if for all polynomial-time
non-uniform adversaries A, there exists a negligible function negl : N → R≥0

such that for all λ ∈ N

∣
∣
∣
∣
∣
∣
Pr

⎡

⎣A2(st, y) = 1

∣
∣
∣
∣
∣
∣

(Δ, st) ← A1(1λ)
x

$← {0, 1}κ(λ)

y = GΔ
λ (x)

⎤

⎦ − Pr
[
A2(st, y) = 1

∣
∣
∣
∣
(Δ, st) ← A1(1λ)
y

$← {0, 1}N(λ)

]
∣
∣
∣
∣
∣
∣

≤ negl(λ),

where Δ ∈ {0, 1}N(λ) and GΔ
λ is the Δ-shift of Gλ, as defined in Def. 6.

Note that this definition implies the standard definition of pseudorandomness
since the adversary can choose Δ = 0. Further, note that for our constructions
it is actually sufficient to rely on a weaker distributional version of correlation-
robustness, where the adversary does not have control over Δ. For simplicity we
will rely on the stronger version in the body of the paper. For a formal definition
of distributional correlation-robustness, we refer to the full version.

2.3 Pseudorandom Correlation Generators

We recall the notion of pseudorandom correlation generator (PCG) from [28].
At a high level, a PCG for some target ideal correlation takes as input a pair of
short, correlated seeds and outputs long correlated pseudorandom strings, where
the expansion procedure is deterministic and can be applied locally.
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Definition 8 (Correlation Generator). A PPT algorithm C is called a cor-
relation generator, if C on input 1λ outputs a pair of strings in {0, 1}�0·N ×
{0, 1}�1·N for 	0, 	1, N ∈ poly(λ).

The correlation we consider in this paper is the bit-OT correlation, where 	0 =
	1 = 2, and C outputs N uniformly random tuples of the form ((b, sb), (s0, s1))
(where b, s0, s1 ∈ {0, 1}).

The security definition of PCGs requires the target correlation to satisfy a
technical requirement, which roughly says that it is possible to efficiently sample
from the conditional distribution of R0 given R1 = r1 and vice versa. It is easy
to see that this is true for the bit-OT correlation.

Definition 9 (Reverse-sampleable Correlation Generator). Let C be a
correlation generator. We say C is reverse sampleable if there exists a PPT
algorithm RSample such that for σ ∈ {0, 1} the correlation obtained via:

{(R′
0, R

′
1) |(R0, R1)

$← C(1λ), R′
σ := Rσ, R′

1−σ
$← RSample(σ,Rσ)}

is computationally indistinguishable from C(1λ).

The following definition of pseudorandom correlation generators is taken
almost verbatim from [28]; it generalizes an earlier definition of pseudorandom
VOLE generator in [25].

Definition 10 (Pseudorandom Correlation Generator (PCG) [28]). Let
C be a reverse-sampleable correlation generator. A PCG for C is a pair of algo-
rithms (PCG.Gen,PCG.Expand) with the following syntax:

– PCG.Gen(1λ) is a PPT algorithm that given a security parameter λ, outputs
a pair of seeds (k0, k1);

– PCG.Expand(σ, kσ) is a polynomial-time algorithm that given party index σ ∈
{0, 1} and a seed kσ, outputs a bit string Rσ ∈ {0, 1}�σ .

The algorithms (PCG.Gen,PCG.Expand) should satisfy the following:

– Correctness. The correlation obtained via:

{(R0, R1) |(k0, k1) $← PCG.Gen(1λ), (Rσ ← PCG.Expand(σ, kσ))σ=0,1}

is computationally indistinguishable from C(1λ).
– Security. For any σ ∈ {0, 1}, the following two distributions are computa-

tionally indistinguishable:

{(k1−σ, Rσ) | (k0, k1)
$← PCG.Gen(1λ),Rσ ← PCG.Expand(σ, kσ)} and

{(k1−σ, Rσ) | (k0, k1)
$← PCG.Gen(1λ),R1−σ ← PCG.Expand(σ, k1−σ),

Rσ
$← RSample(σ,R1−σ)}

where RSample is the reverse sampling algorithm for correlation C.
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2.4 Learning Parity with Noise

We define the LPN assumption over a ring R with number of samples N w.r.t.
a code generation algorithm C and a noise distribution D. In the following we
state a primal and a dual version of the LPN assumption. Note that we consider
LPN and dual-LPN in the bounded sample regime, which is commonly referred to
as the syndrome decoding assumption in the code-based cryptography literature.

Definition 11 (Primal LPN). Let D(R) = {Dn,N (R)}n,N∈N denote a family
of distributions over a ring R, such that for any n,N ∈ N, Im(Dn,N (R)) ⊆ RN .
Let C be a probabilistic code generation algorithm such that C(N,n,R) outputs a
matrix G ∈ RN×n. For dimension n = n(λ), number of samples (or block length)
N = N(λ), and ring R = R(λ), the (primal) (D,C,R)-LPN(n,N) assumption
states that

{(G,�b) | G $← C(N,n,R), �e $← Dn,N (R), �s $← Rn,�b ← G · �s + �e}
c≈ {(G,�b) | G $← C(N,n,R),�b $← RN}

Definition 12 (Dual LPN). Let D(R) = {DN,M (R)}n,N∈N denote a family of
efficiently sampleable distributions over a ring R, such that for any N,M ∈ N,
Im(DN,M (R)) ⊆ RM . Let C be a probabilistic code generation algorithm such
that C(N,M,R) outputs a matrix H ∈ RN×M . For dimension M = M(λ), num-
ber of samples N = N(λ), and ring R = R(λ), the (dual) (D,C,R)-LPN(N,M)
assumption states that

{(H,�b) | H $← C(N,M,R), �e $← DN,M (R),�b ← H · �e}
c≈ {(H,�b) | H $← C(N,M,R),�b $← RN}.

If C(N,n,R) always outputs the same matrix G ∈ RN×n (in the primal case) or
H ∈ RN×M (in the dual case), we simplify the notation to (D,G,R)-LPN(n,N)
(in the primal case) or (D,H,R)-LPN(N,M) (in the dual case).

Remark 13 (LPN with regular noise). In this work, for the noise distribution we
will use RegN

t ({0, 1}) which outputs a concatenation of t random unit vectors
from {0, 1}N/t. This variant of choosing regular noise was introduced in [16], has
been further analysed in [25,49], and has found applications in the PCG line of
work as it significantly improves efficiency [25,27,28]. While building on regular
noise does not seem to affect security of dual LPN in the parameter regimes
considered in the line of work on PCGs, it requires a more careful parameter
instantiation for primal LPN. For more details we refer to the full version.

LPN-Friendliness. In order to develop more efficient protocols, we will con-
sider code generation algorithms that output matrices with useful structure. To
determine when the primal/dual-LPN assumption plausibly holds, we follow the
recently proposed heuristic of resilience to linear tests. As discussed in detail
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in [26],7 essentially all attacks on the LPN problem for our range of parameters
involve choosing a nonzero attack vector �u ∈ {0, 1}N \ {�0} and then computing
the dot product �u� ·�b, where either �b

$← {0, 1}N , or �b = G · �s + �e in the primal
case or �b = H · �e in the dual case. The hope is to detect a noticeable bias in
the bit �u� · �b, as in the case �b is uniform the bit �u� · �b is perfectly unbiased.
Concretely, for a vector �v ∈ {0, 1}N and a distribution D with Im(D) ⊆ {0, 1}N

we define the bias of �v with respect to D as

bias�v(D) =
∣
∣
∣
∣E�x∼D[�v� · �x] − 1

2

∣
∣
∣
∣ .

Concretely, for a vector �v ∈ {0, 1}N of weight D we have bias�v(RegN
t ) ≤ (1 −

2(D/t)/(N/t))t < e−2tD/N .
For the primal case, to rule out the existence of a good linear test it suffices

to show that the code generated by G has good dual distance. More concretely,
letting HW(�u) denote the number of nonzero entries the vector (its weight) it
should be that any nonzero vector �u satisfying �u� · G = �0� has HW(�u) ≥ D
(say). To see this, note that if �u� · G �= �0� then �u� · (G · �s) will be perfectly
unbiased (since �s

$← {0, 1}n), so �u� · �b will be perfectly unbiased. Otherwise
�u� ·�b = �u� · �e whose bias will not be too large assuming both HW(�u) ≥ D and
HW(�e) ≥ t. In particular, once Dt > λN ln(2)/2 the bias will be at most 2−λ.

The dual case is similar: we would like that there is no light vector of the form
�u� ·H for �u ∈ {0, 1}N \{�0}, as if all such vectors �u satisfy HW(�u� ·H) ≥ D then
the bias of �u� · H · �e will be at most e−2Dt/M , so we can take Dt > λM ln(2)/2
to guarantee bias at most 2−λ.

2.5 (Known Index) Function Secret Sharing

We use several types of function secret sharing for different function classes,
including point functions and interval functions. We relax the standard defini-
tion [32] by allowing some additional leakage given to one of the parties. The
leakage will be the point/interval positions to party P0. As observed in [27,66],
in the context of PCGs for OT and VOLE, allowing this leakage can give rise
to more efficient instantiations without hurting security (since P0 already knows
the LPN noise values anyway).

FSS with per-party leakage. Following the syntax of [32], we consider a function
family to be defined by a pair F = (PF , EF ), where PF is an infinite collection
of function descriptions f̂ (containing the input domain Df and output domain
Rf ), and EF : PF ×{0, 1}∗ → {0, 1}∗ is a polynomial-time algorithm defining the
function described by f̂ . More concretely, each f̂ ∈ PF describes a corresponding
function f : Df → Rf defined by f(x) = EF (f̂ , x). In the following, we will
typically have Df = [N ] (where [N ] = {1, . . . , N}), and Rf = G for some
group G.
7 We refer the interested reader to this work for more details.



286 E. Boyle et al.

Note that as a difference to the original definition, we include FullEval in
the full definition for the following reason. While Eval implies the existence of
FullEval (and vice versa), considering the two independently can give rise to
more efficient implementations. If only considering FullEval for evaluation, we
will sometimes write FSS = (Setup,FullEval).

Definition 14 (FSS Syntax). A (2-party) function secret sharing scheme
(FSS) is a pair of algorithms (Setup,Eval,FullEval) with the following syntax:

– Setup(1λ, f̂) is a PPT algorithm, which on input of the security parameter 1λ)
and the description of a function f̂ ∈ {0, 1}∗ outputs a tuple of keys (K0,K1).

– Eval(σ,Kσ, x) is a polynomial-time algorithm, which on input of the party
index σ ∈ {0, 1}, key Kσ, and input x ∈ [N ], outputs a group element yσ ∈ G.

– FullEval(σ,Kσ) is a polynomial-time algorithm, which on input of the party
index σ ∈ {0, 1} and key Kσ, outputs a vector (�yσ) ∈ G

N .

Definition 15 (FSS Security). Let F = (PF , EF ) be a function family and
Leak0, Leak1 : {0, 1}∗ → {0, 1}∗ be the respective leakage functions. A secure FSS
for F with leakage Leak is a pair (Setup,Eval,FullEval) as in Definition 14, sat-
isfying the following:

– Correctness: For all f̂ ∈ PF describing f : [N ] → G, and every x ∈ [N ], if
(K0,K1) ← Setup(1λ, f̂), then

Pr[Eval(0,K0, x) + Eval(1,K1, x) = f(x)] = 1 and

Pr[FullEval(0,K0) + FullEval(1,K1) = {f(x)}x∈[N ]] = 1

– Secrecy: For each σ ∈ {0, 1}, there exists a PPT algorithm Sim such that for
every sequence f̂1, f̂2, . . . of polynomial-size function descriptions from PF ,
the outputs of the following experiments Real and Ideal are computationally
indistinguishable:

• Real(1λ) : Sample (K0,K1) ← Setup(1λ, f̂λ) and output Kσ.
• Ideal(1λ) : Output Sim(1λ, Leakσ(f̂λ)).

In the following, when referring to an FSS, we always assume the FSS to
satisfy correctness and secrecy.

Remark 16 (Pseudorandomness of the output shares). In [31] it was shown that
for any sufficiently rich function class (including point functions and interval
functions considered below), secrecy implies pseudorandomness of the output
shares.

Remark 17 (Succinctness). Note that the running time of the Setup algorithm
(and therefore the key sizes) are only allowed to depend polynomially on the
size of the description f̂ of f . We will refer to the computational cost of Setup
as CFSS.Setup.

In the following, we define the computational overhead of an FSS.
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Definition 18 (FSS Cost). For an FSS = (Setup,Eval,FullEval) we define
the cost functions C0

FSS, C
1
FSS as the circuit sizes (over the full binary basis) of

FullEval(0, ·) and FullEval(1, ·), respectively. If Cσ
FSS(λ) = c ·N +poly(λ) for some

constant c ∈ O(1), for σ ∈ {0, 1}, we say that FSS has constant overhead.

Multi-point and multi-interval functions. In the following we give the definition
of regular multi-point functions and projected-payload multi-interval function.
For more definitions we refer to the full version.

Definition 19 (Regular multi-point function). Let t ∈ N, N ∈ N, α1, . . . ,
αt ∈ [N/t], G be an additive group and β1, . . . , βt ∈ G. The regular multi-point
function defined by �α = (α1, . . . , αt) and �β = (β1, . . . , βt) is then

f
�β
�α : [N ] → G, f

�β
�α (x) :=

{
βi if x = αi + N

t · (i − 1)
0 else

.

Definition 20 (Projected-payload multi-interval function). Let N ∈ N

be the domain size, κ, 	 ∈ N, G = {0, 1}κ be the group of κ-length bit-strings and
πi : {0, 1}κ → {0, 1}� for i ∈ [N ] projection functions. Let further α1, . . . , αt ∈
[N ] be pairwise different and β ∈ {0, 1}κ. Then, we define the projected-payload
interval function specified by �α = (α1, . . . , αt), β and �π := (π1, . . . , πN ) as

fβ,�π
<�α (x) =

{
πx(β) if |{i ∈ [t] : αi < x}| ≡ 1 (mod 2)
0� else

.

Known-Index FSS. In known-index FSS for point functions, introduced in [66],
the index α is allowed to be leaked to party P0. As observed in [27,66], a punc-
turable PRF suffices to instantiate known-index FSS for point-functions. Simi-
larly, a t-puncturable PRF suffices to instantiate known-index FSS for t-point
functions. In [26], it was further observed that allowing to leak the index can also
give efficiency improvements for interval FSS, through known-index interval FSS
(in their work, this is referred to as relaxed distributed comparison function).

In the full version we give the formal definitions of these flavors of FSS,
present constructions and analyze their circuit complexity. For known-index DPF
and known-index interval FSS, the constructions are based on prior works, while
for projected-payload FSS, we devise a new construction.

3 Constant-Overhead PCG for OT from Primal LPN

In this section give a PCG for OT with constant overhead in Fig. 1. An inherent
limitation to this approach is that primal LPN is limited to subquadratic stretch.

First, following Alekhnovich [2], we will consider a primal code generation
procedure that outputs matrices G that are very sparse. In particular, G will
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be sampled uniformly at random subject to the constraint that every row has
exactly d 1’s. Alekhnovich already conjectured this is hard when d = 3 if N, t =
O(n), where the noise is sampled to have weight t. Polynomial-time attacks exist
with N = Ω(nd/2) [6,21]: one hopes for there to be two rows of G which agree

(which occurs with probability (N
2 )

(n
d)

). This is the same as saying the dual distance

of G is 2.
However, as discussed in Sect. 2.4 when the dual distance D is larger we

obtain security against linear tests: the security is at most 2−λ when Dt ≥
(ln 2)λN/2. In general, for any γ > 0 it is feasible to have a d-sparse matrix
G ∈ {0, 1}N×n with dual distance D = Ωd(nγ) and N = n

1−γ
2 d+γ . In particular

we can choose γ = 9/10 to get D = Θd(n9/10) and N = n
d+18
20 , so if we wish to

have Nλ = O(tD) to guarantee exponentially small in λ security against linear
tests we may choose t = Θd(λn

d
18+d ).

We must also be careful in light of the attack by Arora and Ge [14], which
is effective when N = Ω(n2). For this reason, we will ensure N = o(n2).

In what follows (and in the rest of the paper), we assume the existence of
an explicitly generated matrix G with sparsity d = O(1) for which the pri-
mal (RegN

t ({0, 1}),G, {0, 1})-LPN(n,N) holds with n, t ≤ N1−γ for some γ > 0.
Alternatively, we conjecture that the randomized expander generation algorithm
from [11] can be used to efficiently generate such G with negligible failure prob-
ability.

We show security of the PCG in the theorem below, and then analyze its
overhead.

Theorem 21. Let N = N(λ), n = n(λ), t = t(λ), κ = κ(λ) ∈ N and let 	, d ∈ N

be constant and C a primal code generation algorithm with constant sparsity d
(i.e., generating code matrices, where each row has at most d non-zero entries).
If the (primal) (RegN

t (F2),C,F2)-LPN(n,N)-assumption holds, if G : {0, 1}κ →
{0, 1}N is a correlation-robust 	-local PRG, and if FSS = (Setup,FullEval) is a
known-index regular t-point FSS, then the PCG as defined in Fig. 1 is a PCG
for generating N instances of the bit-OT correlation.

The proof is provided in the full version.

Lemma 22. The PCG.Gen algorithm in Fig. 1 has circuit size O(κ · n +
CFSS.Setup). Furthermore, if Cσ

FSS(λ) is the cost of FSS.FullEval(σ, ·) and CP is
an upper bound on the cost of evaluating one predicate in the local PRG G, then
the PCG.Expand(σ, ·) phase has circuit size

	dN + Cσ
FSS(λ) + (1 − σ)dN + (1 + σ)(CP + 1)N.

So, if FSS has constant overhead then PCG.Expand has constant overhead.

Proof. For key generation, generating the secret shares �r0, �r1 requires O(n · κ)
operations. The remainder of the setup is dominated by FSS.Setup, giving O(κ ·
n + CFSS.Setup(λ)).

For expansion, the cost derivation is as follows.
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Construction PCGprimal
OT

Parameters:

– Security parameter λ ∈ N, matrix parameters N = N(λ), n = n(λ) ∈ N

with N > n, constant matrix sparsity parameter d ∈ N, noise weight
t = t(λ) ∈ N, local PRG input length κ = κ(λ) ∈ N, constant locality
� ∈ N.

– A primal sparse code generation algorithm C returning matrices in

{0, 1}N×n with d non-zero entries per row and a public matrix G
$←

C(N, n,F2) sampled according to C.
– A constant-overhead known-index regular t-point FSS FSS =

(Setup,FullEval) over domain [N ] and range {0, 1}�.
– A correlation-robust �-local PRG G : {0, 1}κ → {0, 1}N with G(x) =

P1(π1(x))‖ . . . ‖PN (πN (x)) for all x ∈ {0, 1}κ.

Correlation: Outputs N tuples ((b, w), (w0, w1)), where b, w0, w1 are random
bits and w = wb.
Gen:

– Pick a local PRG seed x
$← {0, 1}κ at random.

– Pick an LPN seed �s
$← {0, 1}n at random.

– Generate a random additive secret sharing of �r := (s1 ·x, s2 ·x, . . . , sN ·x),

i.e., choose �r1
$← ({0, 1}κ)n and set �r1 := �r0 ⊕ �r.

– Choose regular noise positions �α
$← [N/t]t at random.

– Set βi := παi+
N
t

·(i−1)(x) ∈ {0, 1}� for each i ∈ [t] and set �β := (β1, . . . , βt).

– Set (K0, K1) ← FSS.Setup(1λ, �α, �β).
– Set k0 := (�s, �r0, �α, K0) and k1 := (x,�r1, K1) and output (k0, k1).

Expand: On input (σ, kσ):

1. If σ = 0, parse k0 as (�s, �r0, �α, K0) and proceed as follows:
– Let �μ ∈ {0, 1}N be the regular noise vector defined by �α, i.e.,

μj =

{

1 if j = αi + N
t

· (i − 1)

0 else
.

– Set �b := G · �s ⊕ �μ ∈ {0, 1}N .
– Set �y0 := G · �r0 ∈ ({0, 1}κ)N . //Note that we only need the � entries

πj(�y
0
j ) ∈ {0, 1}� to continue. Towards constant overhead this step

can therefore be computed in N · d · � ∈ O(N) operations (by only
computing relevant parts of the matrix-vector product).

– Compute �v0 ← FSS.FullEval(0, K0) ∈ ({0, 1}�)N .
– For each j ∈ [N ], compute wj := Pj(πj(y

0
j ) ⊕ v0

j ) ∈ {0, 1}.
– Output {(bj , wj)}j∈[N ].

2. If σ = 1, parse k1 as (�x, �r1, K1) and proceed as follows:
– Set �y1 := G · �r1 ∈ ({0, 1}κ)N .
– Compute �v1 ← FSS.FullEval(1, K1) ∈ ({0, 1}�)N .
– For j ∈ [N ], b ∈ {0, 1}, compute wj,b := Pj(πj(y

1
j ) ⊕ �v1

j ⊕ b · πj(�x)).
– Output {(wj,0, wj,1)}j∈[N ].

Fig. 1. Constant-overhead PCG for N instances of random bit-OT.
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– Computing each entry of �b (for σ = 0) can be done with d XORs, for a total
of dN gates.

– Since one only has to compute the 	-bit projections πj of �y0, �y1 (as explained
in the protocol description), these cost at most 	dN XOR gates.

– Computing �vσ costs Cσ
FSS(λ) · N gates.

– Each wj/ wj,0, wj,1 can be computed with CP + 1 gates, resulting in either
(CP + 1)N (for σ = 0) or 2(CP + 1)N (σ = 1) for the last step.

We can instantiate the FSS construction with the naive “square-root” con-
struction of known-index DPF from the full version. This gives Cσ

FSS(λ) ≤
Cprg(	)+(1−σ)2	. With regular noise, the setup cost of the FSS is O(tλ

√
N/t) =

O(λ
√

Nt). For the PCG to be sublinear, we therefore get the constraint that
κn + λ

√
Nt = o(N)

Based on the above analysis, we now obtain our main result on maliciously
secure bit-OT, by replacing PCG.Gen with a secure 2-PC protocol.

Corollary 23. Suppose OT exists. Suppose the (RegN
t (F2),C,F2)-LPN(n,N)-

assumption holds for some n, t,N and matrix G with constant sparsity d, and
suppose there exists a correlation-robust 	-local PRG for constant 	 that stretches
N1−ε to N bits for some ε ∈ (0, 1), where 19ε/20 ≥ 20

d+18 and 0.9 · (19ε/20) +
9ε/10 > 1. Then, there exists a protocol for securely computing N instances of
random bit-OT with malicious security, o(N) communication and an average,
amortized per-party computation of 	(d + 1) + d

2 + Cprg(	) + 3
2 (CP + 1) Boolean

gates per OT.

Proof. Assuming OT and using standard 2-PC protocols like [54], there is a poly-
nomial p such that for all λ and circuits C, there is a malicious 2-PC protocol
that securely computes C with computation complexity O(|C|) · p(λ). Based on
Lemma 22 and plugging in the square-root FSS construction, we obtain a proto-
col that securely computes the PCG.Gen algorithm from Fig. 1 with complexity
(κn + λ

√
Nt) · p(λ). Following [28, Theorem 19], by running the 2-PC protocol

and then locally evaluating PCG.Expand, the resulting protocol securely realizes
the functionality for N instances of random bit-OT.

We show how to choose parameters such that the complexity of the 2-PC
phase is sublinear in N for sufficiently large N . This means the p(λ) overhead
of 2-PC amortizes and the total computational cost is dominated by the expand
phase. With κ = N1−ε, we set n = N19ε/20 and t = N9ε/10. Further, we obtain
complexities of κn = N1−ε/20 and λ

√
Nt = λN

1
2+

9
20 ε. These are both sublinear

in N . Regarding security of primal-LPN, note that by assumption we have n ≥
N20/(d+18), which is enough to give dual distance D = Θ(n9/10). We also have
tn9/10 = Ω(Nλ) for large enough N by assumption, giving exponential security
in λ.

Finally, to compute the computational complexity of PCG.Expand, we plug
in the cost of the square-root FSS construction to the formula from Lemma 22,
and average the result over the two parties σ = 0 and σ = 1. This is possible as
random bit-OT is symmetric, so the parties can run two instances of the protocol
of size N/2, reversing the roles of sender and receiver.
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Concrete Complexity. We now estimate the constant overhead of our con-
struction, at least asymptotically as N grows large. We need to choose the LPN
degree d and 	-local correlation robust PRG, which determines the predicate
cost CP and the PRG seed size κ = N1−ε bits. We also need to instanti-
ate the PRG used in the FSS scheme, for which we use a 5-local PRG, giv-
ing Cprg(	) = CP5	 = 4	 (unlike the other PRG, this one only needs to have
constant stretch, since it can be used iteratively). Using the XOR4 ⊕ MAJ5
predicate in our PCG, we have 	 = 9, CP = 17 and a plausible stretch of
κ2.49, giving ε = 1 − 1/2.49. This satisfies 19ε/20 > 20

d+18 for d = 18, and
furthermore that 0.9 · (19ε/20) + 9ε/10 > 1. Note further that 19ε/20 > 0.5,
so n = N19ε/20 = ω(

√
N), ruling out the Arora-Ge attack [14]. Furthermore

t = N9ε/10 = o(n), which is necessary for building on LPN with regular noise.
Overall, we get a cost of 243 gates per party.

Remark 24. (Iterative constant overhead). If the FSS scheme supports single
evaluation Eval with constant cost c ∈ O(1), the above construction yields a PCG
with iterative constant overhead, i.e., where a single bit-OT can be computed
at constant cost. This property in fact already holds of the square-root FSS
construction when instantiated with a local PRG.

Remark 25. (Building on LPN with standard noise). To build on LPN with the
more standard Bernoulli noise, one has to replace the t-regular FSS by a more
general multi-point FSS. Known-index multi-point FSS with constant overhead
can be obtained generically from single-point FSS with constant overhead via
batch codes. For details we refer to [25].

4 Constant-Overhead PCG for OT from Dual LPN

In this section we provide a PCG for OT with constant computational overhead
based on a dual-LPN assumption. This will allow us to achieve an arbitrary
polynomial stretch. All proofs in this section are provided in the full version.

Repeat-Accumulate (RA) Codes. We consider the following dual code
generation procedure, which essentially outputs generator matrices for repeat-
accumulate (RA) codes.

Definition 26. Let d,N ∈ N with d ≥ 3 and let M = dN . A repeat-accumulate
(RA) matrix H is a matrix of the form H = BA, where B ∈ {0, 1}N×M

has exactly d nonzero entries per row and 1 nonzero entry per column and
A ∈ {0, 1}M×M is an accumulator matrix which has 1’s on and below the main
diagonal.

The code {�u� · BA : �u ∈ {0, 1}N} is well-studied in coding theory (it is
called a repeat-accumulate (RA) code). In particular, for fixed γ > 0 it is known
that they achieve minimum distance D = M1−2/d−γ with good probability over
a random choice of B. This means that if �e

$← RegM
t ({0, 1}), recalling that the

bias of the dot-product between a vector of weight D and �e is at most e−2tD/M

we will require t ≥ ln 2 · λ · M2/d+γ .
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Unfortunately, the failure probability is not negligible (an inspection of the
proof of [60, Theorem 1] shows that it is roughly of the order M−γd/2). Thus, as
before we will assume access to a explicitly generated RA matrix H = BA and
assume that the dual (RegM

t ({0, 1}),H, {0, 1}-LPN(N, dN) holds with respect to
it.8

Theorem 27. Let N = N(λ), t = t(λ), κ = κ(λ) ∈ N, let 	, d ∈ N be constants,
let M = dN and let H = BA be an N ×M repeat-accumulate matrix. If the dual
(RegM

t ({0, 1}),H, {0, 1})-LPN(N,M)-assumption holds, if G : {0, 1}κ → {0, 1}N

is a correlation-robust 	-local PRG, and if FSS is a known-index projected-payload
t-interval FSS, then the PCG as defined in Fig. 2 is a constant-overhead PCG
for generating N instances of the bit-OT correlation.

Lemma 28. The PCG.Gen algorithm in Fig. 2 has circuit size O(t log(N/t) +
CFSS.Setup(λ)). Furthermore, if Cσ

FSS(λ) is the cost of FSS.FullEval(σ, ·) and CP

is an upper bound on the cost of evaluating one predicate in the local PRG G,
then the PCG.Expand(σ, ·) phase has circuit size

Cσ
FSS(λ) + (1 − σ)(2Nd − 1) + (d	 + CP )N + σ((d + 1)	 + CP )N .

Corollary 29. Suppose OT exists. Suppose the (RegM
t (F2),H,F2)-LPN(N,M)-

assumption holds for some RA matrix H with M = dN for constant integer
d, and suppose there exists a correlation-robust 	-local PRG for constant 	 that
stretches N1−ε to N bits for some ε > 0. Then, there exists a protocol for
securely computing N instances of random bit-OT with malicious security, o(N)
communication and an average, amortized per-party computation of

3
2
d	 + d +

5	

2
+

3
2
CP + Cprg(2	) +

1
κ

Cprg(2λ + κ) + 3

Boolean gates per OT. In particular, if Cprg(k) = O(k) for integer k, then the
amortized per-party computation is constant.

Concrete Complexity. Choose d = 3. Now we choose the P5 predicate for
the local PRG so that 	 = 5 and CP = 4. Further we use a constant stretch
PRG for the FSS satisfying Cprg(	) = 4	. Asymptotically we then compute 91
bit operations per output, beating the primal construction. Furthermore, note
with this value of d we are stretching roughly N2/3 bits to N bits (we can
choose t = M2/3+ε). For general d we can get stretch (dN)2/d+ε bits to N bits,
yielding arbitrary polynomial stretch (although the complexity per OT output
does increase commensurately).

5 Beyond Oblivious Transfer

In this section we discuss applications of our main result to constant-overhead
implementations of other secure computation tasks. For simplicity, we refer here
8 Instead of RA codes we could have used a code of Tillich and Zémor [68]; however

the effect on the computational complexity is essentially nil.
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Construction PCGdual
OT

Parameters:

– Security parameter λ ∈ N, matrix parameters M = M(λ), N = N(λ) ∈ N

with M = dN for constant matrix sparsity parameter d ∈ N, noise weight
t = t(λ) ∈ N, local PRG input length κ = κ(λ) ∈ N, constant locality
� ∈ N.

– An RA matrix H = BA ∈ {0, 1}N×M for which the dual
(RegM

t ({0, 1}),H, {0, 1})-LPN(N, dN) holds. Let Sj for j ∈ [N ] denote
the support of the j-th row of B (each of which has size d) and for i ∈ [M ]
let τ(i) ∈ [N ] denote the nonzero coordinate of the i-th column of B.
//Note that Sj = {i ∈ [M ] : τ(i) = j} = τ−1(j).

– A constant overhead regular known-index projected-payload t-interval
FSS FSS = (Setup,Eval) over domain [M ] with output bit length κ and
projected output length �.

– A correlation-robust �-local PRG G : {0, 1}κ → {0, 1}N with G(x) =
P1(π1(x))‖ . . . ‖PN (πN (x)) for all x ∈ {0, 1}κ.

Correlation: Outputs N tuples ((b, w), (w0, w1)), where b, w0, w1 are
random bits and w = wb.

Gen:

– Pick a local PRG seed x
$← {0, 1}κ at random.

– Choose regular noise positions �α
$← [M/t]t at random.

– Set β := x ∈ {0, 1}κ.

– Denote �ψ = (πτ(1), . . . , πτ(M)).

– Set (K0, K1) ← FSS.Setup(1λ, (�α, β, �ψ)).
– Set k0 := (�α, K0) and k1 := (x, K1) and output (k0, k1).

Expand: On input (σ, kσ):

1. If σ = 0, parse k0 as (�α, K0) and proceed as follows:
– Let �a ∈ {0, 1}M be the regular interval noise vector defined by �α, i.e.,

ai is equal to the parity of |{ι ∈ [t] : αι + (M/t) · (ι − 1) ≤ i}|.
– Compute �b := B · �a.
– Compute �v0 ← FSS.FullEval(0, K0) ∈ ({0, 1}�)M .

– For j ∈ [N ] compute wj := Pj

(
⊕

i∈Sj
v0

i

)

.

– Output {(bj , wj)}j∈[N ].
2. If σ = 1, parse k1 as (x, K1) and proceed as follows:

– Compute �v1 ← FSS.FullEval(1, K1) ∈ ({0, 1}�)M .

– For j ∈ [N ], b ∈ {0, 1} compute wj,b := Pj

((
⊕

i∈Sj
v1

i

)

⊕ b · πj(x)
)

.

– Output {(wj,0, wj,1)}j∈[N ].

Fig. 2. Constant-overhead PCG for N instances of random bit-OT.
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only to the two-party case, though most of the results in this section apply also
to MPC with a constant number of parties with the same asymptotic cost. We
will also refer to security against malicious parties by default.

One of the main open questions about the asymptotic complexity of cryp-
tography is the possibility of securely computing Boolean circuits with constant
computational overhead. While in the semi-honest model such a result can be
based on local PRGs [52], extending this to the malicious model was posed as
an open question.9 The overhead of the best known protocols grows polyloga-
rithmically with the security parameter and the circuit size [41].

Our main result allows us to make progress on this question, by obtaining
partial positive results and reducing the general question to simpler questions.

5.1 General Protocols with Relaxed Security

Our main result gives the first constant-overhead implementation of (malicious
bit-) OT. However, extending this to general functionalities is challenging. While
it is well-known that OT is complete for secure computation [54,59], the best
known protocols for Boolean circuits in the OT-hybrid model have polylogarith-
mic overhead [41,44]. In contrast, in the semi-honest OT-hybrid model, a simple
“textbook” protocol [47,48], commonly referred to as the (semi-honest) GMW
protocol, achieves perfect security with a small constant overhead.

A key observation from [43] is that this textbook protocol actually achieves
a nontrivial notion of security even against malicious parties: it is secure up to
additive attacks. For Boolean circuits, this means that the adversary’s attack
capability is limited to choosing a subset of the circuit wires that are toggled.
This is formalized by modifying the ideal functionality to take from the adver-
sary an additional input bit for each wire, specifying whether to insert a NOT
gate into the middle of the wire. Combining this with a standard composition
theorem [35,47], we get the following application of our main result.

Theorem 30 (Constant overhead with additive attacks). Suppose there
exists a constant-overhead OT protocol with security against malicious parties.
Then there exists a constant-overhead protocol for Boolean circuits with security
up to additive attacks.

Additive attacks can render security meaningless for some applications. For
instance, capturing a zero-knowledge proof as a secure computation of the verifi-
cation predicate, a malicious prover can make the verifier accept a false statement
by simply toggling the final decision bit.

In some other cases, however, security up to additive attacks is still mean-
ingful. Consider a secure computation task that has long inputs and a short
output, such as applying a complex search query to a big database or a

9 In fact, the question is open even in the simpler special case of zero-knowledge
functionalities. A solution for this special case would imply a solution for the general
case by applying the GMW compiler [48] to a constant-overhead protocol with semi-
honest security.
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data-mining algorithm to the union of two databases. In such cases, it is often hard
to reason about the security features of an ideal-model implementation, except for
the syntactic guarantee that a malicious party can only learn a small amount of
information about the honest party’s input. The same kind of guarantee is given by
a protocol with security up to additive attacks. In contrast, applying the constant-
overhead semi-honest protocol from [52] to such a functionality may allow a mali-
cious party to learn the entire input of the honest party.

5.2 Leveraging Perfect Security

Consider the case of evaluating N instances of a constant-size f on different
sets of inputs. If f admits a perfectly secure protocol in the OT-hybrid model,
then the protocol necessarily uses a fixed number of bit operations, independent
of any security parameter. Combining N instances of such a protocol with the
constant-overhead OT from this work, we get a constant-overhead protocol for
evaluating N instances of f .

Theorem 31 (Constant overhead from perfect security). Let f be a
constant-size functionality that can be computed with perfect security in the OT-
hybrid model. Then, a constant-overhead OT protocol with security against mali-
cious parties implies a constant-overhead protocol for computing N instances of
f .

The existence of perfectly secure protocols in the OT-hybrid model is still
quite far from understood. There are negative results for functionalities with
big inputs (assuming that the protocol’s running time must be polynomial in
the input length), as well as for constant-size two-sided functionalities delivering
outputs to both parties [51]. The general case of constant-size one-sided func-
tionalities is still open, but positive results for natural functionalities appear in
the literature.

Early examples include other flavors of OT, including 1-out-of-k bit-OT, its
extension to string-OT (of any fixed length) [34], and instances of “Rabin-OT”
that correspond to erasure channels with a rational erasure probability [54].

Perfectly secure protocols for a much broader class of one-sided functionalities
were recently obtained in [3]. This class includes natural functionalities such as
small instances of the millionaire’s problem, as well as almost all Boolean one-
sided functionalities where the party receiving the output has a smaller input
domain than the other party.

Realizing a BSC. An even simpler corollary of Theorem 31 is a constant-
overhead protocol for securely realizing N instances of a binary symmetric chan-
nel (BSC). The feasibility and complexity of securely realizing BSC and other
channels was studied in several previous works [1,53,57].

Corollary 32 (Constant-overhead BSC). Suppose there exists a constant-
overhead OT protocol with security against malicious parties. Then there exists a
constant-overhead protocol for realizing N instances of the BSC0.25 functionality,
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which takes a bit b from the sender and delivers b⊕e to the receiver, where e = 1
with probability 0.25 and e = 0 otherwise.

Proof. By Theorem 31, it suffices to show that BSC0.25 perfectly reduces to
OT. Consider a deterministic functionality f that takes bits b, eS

1 , eS
2 from the

sender and bits eR
1 , eR

2 from the receiver, and delivers b⊕ ((eS
1 ⊕ eR

1 )∧ (eS
2 ⊕ eR

2 ))
to the receiver. Let Cf be a Boolean circuit computing f in the natural way.
By the above mentioned theorem of [43], there is a perfectly secure protocol
for Cf in the OT-hybrid model with security up to additive attacks. We argue
that applying this protocol with randomly chosen inputs eS

1 , eS
2 , eR

1 , eR
2 yields a

perfectly secure protocol for BSC0.25 in the OT-hybrid model. Indeed, letting
e = (eS

1 ⊕ eR
1 ) ∧ (eS

2 ⊕ eR
2 ), it is not hard to see that a single malicious party

cannot bias nor learn any information about e by toggling wire values of Cf .
Furthermore, toggling b or the output can be trivially simulated in the ideal
model.

5.3 Reducing the Main Open Question to Simpler Questions

Finally, while we leave open the existence of constant-overhead protocols for
general Boolean circuits, our result for OT allows us to reduce this question to
a question about a special kind of fault-tolerant circuits.

An Algebraic Manipulation Detection (AMD) circuit [43] for f is a random-
ized circuit Ĉ that computes f while resisting additive attacks in the following
sense: the effect of every additive attack on the wires of Ĉ can be simulated
by an ideal additive attack on the inputs and outputs of f . As before, in the
Boolean case an additive attack can toggle an arbitrary subset of the wires. More
formally:

Definition 33 (Boolean AMD circuit). Let C : {0, 1}n → {0, 1}k be
a (deterministic or randomized) Boolean circuit. We say that a randomized
Boolean circuit Ĉ : {0, 1}n → {0, 1}k is an ε-secure AMD implementation of
C if the following holds:

– Completeness. For all x ∈ {0, 1}n, Ĉ(x) ≡ C(x).
– Security against additive attacks. For any additive attack A, toggling a subset

of the wires of Ĉ, there exist distributions Δin over {0, 1}n and Δout over
{0, 1}k such that for every x ∈ {0, 1}n it holds that

SD
(
C̃(x), C(x ⊕ Δin) ⊕ Δout

)
≤ ε,

where C̃ ← A(Ĉ) and SD denotes statistical distance.

Boolean AMD circuits are motivated by the goal of obtaining efficient secure
computation protocols in the OT-hybrid model. Indeed, applying the semi-
honest GMW protocol [47,48] to the AMD circuit Ĉ, with a suitable encoding to
protect the input and output, yields a secure protocol for C [43,44]. Combined
with a constant-overhead OT protocol, this reduces an affirmative answer to the
main open question to the design of constant-overhead AMD circuits.
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Theorem 34 (Cf. [44], Claim 18). Suppose that every Boolean circuit C

admits a 2−λ-secure AMD implementation Ĉ of size O(|C|) + poly(λ) · |C|0.9.
Then, a constant-overhead OT protocol implies a constant-overhead protocol for
general Boolean circuits.

The main result of [44] is a construction of AMD circuits with polylogarith-
mic overhead (in |C|, λ). Whether this can be improved was left open, but the
question was further reduced to the design of two kinds of simple protocols in
the honest-majority setting: a protocol that only provides semi-honest security
(with a constant fraction of corrupted parties) and a protocol that only guar-
antees the correctness of the output. This should be contrasted to the approach
from [41,54], which reduces the question to the design of honest-majority pro-
tocols with security against malicious parties.

Acknowledgements. E. Boyle supported by AFOSR Award FA9550-21-1-0046, ERC
Project HSS (852952), and a Google Research Award. G. Couteau supported by
the ANR SCENE. N. Gilboa supported by ISF grant 2951/20, ERC grant 876110,
and a grant by the BGU Cyber Center. Y. Ishai supported by ERC Project
NTSC (742754), BSF grant 2018393, and ISF grant 2774/20. L. Kohl is funded by
NWO Gravitation project QSC. N. Resch supported in part by ERC H2020 grant
No.74079 (ALGSTRONGCRYPTO). P. Scholl is supported by the Danish Indepen-
dent Research Council under project number 0165-00107B (C3PO) and an Aarhus
University Research Foundation starting grant.

References

1. Agarwal, P., Narayanan, V., Pathak, S., Prabhakaran, M., Prabhakaran, V.M.,
Rehan, M.A.: Secure non-interactive reduction and spectral analysis of correla-
tions. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology - EURO-
CRYPT 2022–41st Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Trondheim, Norway, May 30 - June 3, 2022,
Proceedings, Part III. Lecture Notes in Computer Science, vol. 13277, pp. 797–827.
Springer (2022). https://doi.org/10.1007/978-3-031-07082-2 28

2. Alekhnovich, M.: More on average case vs approximation complexity. In: 44th
Symposium on Foundations of Computer Science (FOCS 2003), 11–14 October
2003, Cambridge, MA, USA, Proceedings, pp. 298–307. IEEE Computer Society
(2003). https://doi.org/10.1109/SFCS.2003.1238204

3. Alon, B., Paskin-Cherniavsky, A.: On perfectly secure 2PC in the OT-hybrid
model. Theor. Comput. Sci. 891, 166–188 (2021). https://doi.org/10.1016/j.tcs.
2021.08.035

4. Applebaum, B.: Pseudorandom generators with long stretch and low locality from
random local one-way functions. In: 44th ACM STOC (May 2012)

5. Applebaum, B.: The cryptographic hardness of random local functions - survey.
Cryptology ePrint Archive, Report 2015/165 (2015). https://eprint.iacr.org/2015/
165

6. Applebaum, B.: Cryptographic hardness of random local functions. Comput. com-
plex. 25(3), 667–722 (2016)

https://doi.org/10.1007/978-3-031-07082-2_28
https://doi.org/10.1109/SFCS.2003.1238204
https://doi.org/10.1016/j.tcs.2021.08.035
https://doi.org/10.1016/j.tcs.2021.08.035
https://eprint.iacr.org/2015/165
https://eprint.iacr.org/2015/165


298 E. Boyle et al.

7. Applebaum, B., Bogdanov, A., Rosen, A.: A dichotomy for local small-bias gener-
ators. Journal of Cryptology (3) (Jul 2016)

8. Applebaum, B., Damg̊ard, I., Ishai, Y., Nielsen, M., Zichron, L.: Secure arithmetic
computation with constant computational overhead. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 223–254. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63688-7 8

9. Applebaum, B., Haramaty, N., Ishai, Y., Kushilevitz, E., Vaikuntanathan, V.: Low-
complexity cryptographic hash functions. In: ITCS 2017 (Jan 2017)

10. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. In: 45th FOCS
(Oct 2004)

11. Applebaum, B., Kachlon, E.: Sampling graphs without forbidden subgraphs and
unbalanced expanders with negligible error. In: Zuckerman, D. (ed.) 60th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore,
Maryland, USA, November 9–12, 2019, pp. 171–179. IEEE Computer Society
(2019). https://doi.org/10.1109/FOCS.2019.00020

12. Applebaum, B., Lovett, S.: Algebraic attacks against random local functions and
their countermeasures. In: 48th ACM STOC (Jun 2016)

13. Applebaum, B., Moses, Y.: Locally computable uowhf with linear shrinkage. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 486–
502. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 29

14. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto,
L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 403–415.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22006-7 34

15. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious trans-
fer extensions. J. Cryptol. 30(3), 805–858 (2016). https://doi.org/10.1007/s00145-
016-9236-6

16. Augot, D., Finiasz, M., Sendrier, N.: A fast provably secure cryptographic hash
function. Cryptology ePrint Archive, Report 2003/230 (2003). https://eprint.iacr.
org/2003/230

17. Baron, J., Ishai, Y., Ostrovsky, R.: On linear-size pseudorandom generators and
hardcore functions. Theor. Comput. Sci. 554, 50–63 (2014). https://doi.org/10.
1016/j.tcs.2014.06.013

18. Beaver, D.: Foundations of secure interactive computing. In: Feigenbaum, J. (ed.)
CRYPTO 1991. LNCS, vol. 576, pp. 377–391. Springer, Heidelberg (1992). https://
doi.org/10.1007/3-540-46766-1 31

19. Beaver, D.: Correlated pseudorandomness and the complexity of private computa-
tions. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory
of Computing, pp. 479–488 (1996)

20. Bogdanov, A., Qiao, Y.: On the security of Goldreich’s one-way function. In: Dinur,
I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX/RANDOM -2009. LNCS, vol.
5687, pp. 392–405. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-03685-9 30

21. Bogdanov, A., Sabin, M., Vasudevan, P.N.: Xor codes and sparse learning parity
with noise. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 986–1004. SIAM (2019)

https://doi.org/10.1007/978-3-319-63688-7_8
https://doi.org/10.1109/FOCS.2019.00020
https://doi.org/10.1007/978-3-642-38348-9_29
https://doi.org/10.1007/978-3-642-22006-7_34
https://doi.org/10.1007/s00145-016-9236-6
https://doi.org/10.1007/s00145-016-9236-6
https://eprint.iacr.org/2003/230
https://eprint.iacr.org/2003/230
https://doi.org/10.1016/j.tcs.2014.06.013
https://doi.org/10.1016/j.tcs.2014.06.013
https://doi.org/10.1007/3-540-46766-1_31
https://doi.org/10.1007/3-540-46766-1_31
https://doi.org/10.1007/978-3-642-03685-9_30
https://doi.org/10.1007/978-3-642-03685-9_30


Oblivious Transfer with Constant Computational Overhead 299

22. Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Quasi-optimal SNARGs via linear multi-
prover interactive proofs. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10822, pp. 222–255. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78372-7 8

23. Boneh, D., Waters, B.: Constrained Pseudorandom Functions and Their Appli-
cations. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp.
280–300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-
0 15

24. Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen, S.K.:
Linear-time zero-knowledge proofs for arithmetic circuit satisfiability. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 336–365. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 12

25. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: ACM
CCS 2018 (Oct 2018)

26. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Resch, N., Scholl, P.: Cor-
related pseudorandomness from expand-accumulate codes. In: Advances in Cryp-
tology - CRYPTO 2022 (2022). https://eprint.iacr.org/2022/1014

27. Boyle, E., et al.: Efficient two-round OT extension and silent non-interactive secure
computation. In: ACM CCS 2019 (Nov 2019)

28. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudo-
random correlation generators: silent OT extension and more. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 489–518. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 16

29. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Correlated pseu-
dorandom functions from variable-density LPN. In: 61st FOCS (Nov 2020)

30. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Orrù, M.: Homomorphic secret shar-
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Abstract. The notion of Endemic Oblivious Transfer (EOT) was intro-
duced by Masny and Rindal (CCS’19). EOT offers a weaker security
guarantee than the conventional random OT; namely, the malicious par-
ties can fix their outputs arbitrarily. The authors presented a 1-round
UC-secure EOT protocol under a tailor-made and non-standard assump-
tion, Choose-and-Open DDH, in the RO model.

In this work, we systematically study EOT in the UC/GUC frame-
work. We present a new 1-round UC-secure EOT construction in the
RO model under the DDH assumption. Under the GUC framework, we
propose the first 1-round EOT construction under the CDH assumption
in the Global Restricted Observable RO (GroRO) model proposed by
Canetti et al. (CCS’14). We also provide an impossibility result, show-
ing there exist no 1-round GUC-secure EOT protocols in the Global
Restricted Programmable RO (GrpRO) model proposed by Camenisch
et al. (Eurocrypt’18). Subsequently, we provide the first round-optimal
(2-round) EOT protocol with adaptive security under the DDH assump-
tion in the GrpRO model. Finally, we investigate the relations between
EOT and other cryptographic primitives.

As side products, we present the first 2-round GUC-secure commit-
ment in the GroRO model as well as a separation between the GroRO
and the GrpRO models, which may be of independent interest.

1 Introduction

The security of a cryptographic protocol is typically analyzed under the simula-
tion paradigm [27], where the “formal specification” of the security requirements
is modeled as an ideal process, and a real-world protocol is said to securely realize
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the specification if it “emulates” the ideal process. In the past decades, many vari-
ants were proposed: Initially, protocol security was considered in the standalone
setting, in the sense that the challenged protocol is executed in isolation. Later,
Universal Composibility (UC) [6] was introduced to analyze protocol security in
arbitrary execution environments; in particular, multiple protocol sessions may
be executed concurrently in an adversarially coordinated way. Note that proto-
cols in the UC framework must be subroutine respecting, in the sense that all the
underlying subroutines are only created for the challenged protocol instance and
cannot be directly accessed by any other protocols or even the other instances
of the same protocol. To address this drawback, Canetti et al. [7] proposed the
Generalized Universal Composibility (GUC) framework.

Endemic Oblivious Transfer. The notion of Endemic Oblivious Transfer
(EOT) was introduced by Masny and Rindal [34] as a weaker version of Ran-
dom OT (ROT). In an EOT protocol, the sender has no input, and the receiver
inputs a choice bit b ∈ {0, 1}; at the end of EOT, the sender outputs two random
elements (m0,m1), and the receiver outputs mb. Although EOT looks similar to
the conventional ROT, EOT offers a weaker security guarantee—the malicious
sender can fix its output (m0,m1) arbitrarily, and the malicious receiver can fix
its output mb arbitrarily. The first 1-round1 (a.k.a. non-interactive) EOT/ROT
protocol was proposed by Bellare and Micali [1]. It achieves standalone secu-
rity against semi-honest adversaries under the DDH assumption in the Com-
mon Reference String (CRS) model. As shown in [25], this scheme can also
be transformed to achieve malicious security using the Groth-Sahai proof [28].
Later, Garg et al. proposed several 1-round UC-secure EOT protocols under the
well-understood assumptions, (e.g., Decisional Diffie-Hellman (DDH), Quadratic
Residuosity (QR) and Learning With Errors (LWE)), in the CRS model [23].
Recently, Masny and Rindal [34] demonstrated a generic construction for 1-round
EOT by using any non-interactive key exchange scheme in the Random Oracle
(RO) model; however, their generic construction only achieves standalone secu-
rity. Masny and Rindal [34,35] then provided a 1-round UC-secure EOT proto-
col but under a tailor-made computational assumption called “Choose-and-Open
DDH (CODDH)”, in the RO model. We remark that, different from the DDH,
the CODDH is a new assumption, and its hardness is yet to be further studied.

(Global) Random Oracles. Random oracle (RO) model [2] is a popular ide-
alized setup model that has been widely used to justify the security of effi-
cient cryptographic protocols. In spite of its known inability to provide provable
guarantees when RO is instantiated with a real-world hash function [8], RO is
still a promising setup since it is generally accepted that security analysis in
the RO model does provide strong evidences to the resilience of the protocol in

1 In this work, we consider the simultaneous communication model with a rushing
adversary, where both parties can send messages to each other within the same
round. The rushing adversary can delay sending messages on behalf of corrupted
parties in a given round until the messages sent by all the uncorrupted parties in
that round have been received. Note that this is different from the simultaneous
messaging requirement in [30], which deals with a non-rushing adversary.



Endemic Oblivious Transfer via Random Oracles, Revisited 305

question in the presence of practical attacks [9]. In fact, RO model draws increas-
ing attention along with recent advancement of the blockchain technology.

Local RO Model vs. Global RO Models. The “local” RO model is often used
in the UC framework where the simulator is allowed to simulate it in
the ideal world, and it grants the simulator two advantages: (i) observ-
ability: the simulator can see what values the parties query the RO on;
(ii) programability: the simulator can program RO query responses as
long as they “look” indistinguishable from the real ones. In the GUC
framework [7], a “global” RO is external to the simulator; to facilitate
simulation, some “extra power” needs to be granted to the simulator.
In the literature, two main strengthened variants of the global RO model were
proposed: global RO with restricted observability (GroRO) model proposed by
Canetti et al. [9] and global RO with restricted programmability (GrpRO) model
proposed by Camenisch et al. [5]. Here, the restricted observability and pro-
grammability stand for the “extra power” that the simulator has but the adver-
sary does not have.

1.1 Problem Statement

Constructing EOT in (Global) RO Models. As mentioned above, it is
known that one can build a 1-round UC-secure EOT protocol under the well-
known assumptions in the local CRS model [23]; however, in the local RO model,
the recent construction by Masny and Rindal [34,35] was based on a non-
standard assumption i.e., the CODDH assumption. A natural question to ask
is: can we construct a 1-round UC-secure EOT protocol under well-understood
assumptions (e.g., DDH assumption) in the local RO model?

Compared to local setups (e.g., local CRS and local RO), global setups are
more practical in real life applications. However, very little research work has
been done for constructing EOT protocols under a global setup. Our main goal
here is to construct a 1-round EOT protocol using global setups. We emphasize
that local setups are helpful for us to construct a provably secure 1-round EOT
protocol. For example, in the local CRS model, both parties can utilize the shared
string, i.e., the CRS, to generate the correlated information for the remaining
protocol execution. In other words, the CRS can be viewed as an extra round of
communication messages during the protocol execution. Intuitively, the security
analysis can go through: the simulator is allowed to generate the CRS along with
the trapdoor; then the trapdoor information will help the simulator to complete
the simulation. In the local RO model, the situation is similar: in the protocol
execution, the protocol players may query the RO at certain predefined points to
obtain corresponding responses; in a very fuzzy way, it also can be viewed as an
extra round of communication messages. In the security analysis, the simulator is
allowed to program the RO on those predefined points; this gives the simulator
advantages over the adversary which will help the simulator to complete the
simulation.

The situation is very different when we use a global setup for constructing
1-round EOT protocols. First, we remark that, as already proven in [7], it is
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impossible to construct a non-trivial two-party computation protocols (including
EOT) using a global CRS. To bypass this impossibility, Canetti et al. proposed
the Augmented CRS (ACRS) model [7]; however, known technique of building
non-trivial two-party computation protocols in the ACRS model requires coin-
flipping [7,18], which increases round complexity. The good news is that it might
be possible to construct a 1-round EOT protocol using a global RO model; note
that, different global RO models (e.g., the GroRO [9] and the GrpRO [5]) have
been introduced for constructing non-trivial two-party computation protocols.
We must remark that, technical difficulty remains. Typically, a global RO is
instantiated with a predefined hash function. It seems that the aforementioned
design and analysis ideas using local ROs still work: both parties may still be
able to utilize the shared hash function on some predefined points to generate
the corresponding responses for the remaining protocol execution; unfortunately,
it is not true. Below, we provide our elaboration: (1) in the GroRO model, the
simulator is not allowed to program the global RO and thus cannot obtain the
“trapdoor” of the corresponding responses; as a result, it is unclear how we
will be able to complete the security analysis; (2) in the GrpRO model, the
simulator is only allowed to program the unqueried points, and the simulator
may not be able to program the global RO on those predefined points since
the environment may have already queried them before the protocol execution.
Given the technical difficulty, we ask the following major research question:

In the GUC framework, does there exist a 1-round EOT protocol under
well-understood assumptions in the GroRO/GrpRO model?

For completeness, we also construct new 1-round UC-secure EOT protocols
in the local RO model.

Understanding the Complexity of EOT. In addition to the concrete proto-
col constructions, we are also interested in understanding the complexity, includ-
ing the power and the limits, of the cryptographic task of EOT. More precisely,
what are the relations between EOT and other well-known secure computation
tasks? For example, is EOT fundamentally different from ROT or (1-out-of-2)
OT? In [34], Masny and Rindal have already initialized the investigation of this
interesting problem: They proposed a new OT notion called Uniform OT (UOT)
which also looks similar to the conventional ROT, except that it offers a strong
security guarantee that no adversary can bias the distribution of the ROT out-
puts. They showed that it is possible to build UOT based on an EOT and a
coin-tossing protocol; however, it is unclear if the coin-tossing protocol can be
built from an EOT protocol. We thus ask the following question:

What is the relation between the EOT and other cryptographic primitives
(such as coin-tossing and UOT etc.)?

Understanding the Complexity of Global RO Models. Finally, let us go
back to the global setups we used in this work. Recall that, the GroRO and the
GrpRO models provide different aspects of “extra power” to the simulator. Are
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these two different global RO models, essentially equivalent? Or one is strictly
stronger than the other? It raises our last question:

What is the relation between the GroRO model and the GrpRO model?

Our goal is to provide a comprehensive and thorough investigation of con-
structing EOT via ROs. From a practical point of view, if the above questions
could be answered, we would see highly efficient constructions for EOT. From a
theoretical point of view, if (some of) the above questions could be answered, we
would have a better understanding of the relation between EOT and many secure
computation tasks; we could also have a better understanding of the power and
limits of different global RO models.

1.2 Our Results

In this work, we investigate the above problems. Our results can be summarized
as follows.

Constructing EOT via (Global) ROs. Table 1 depicts a selection of our new
constructions.

Table 1. Comparison with state-of-the-art round-optimal EOT protocols under com-
putational assumptions that related to the cyclic groups.

Protocol #Round Security Computational
Assumption

Setup
Assumption

Garg et al. [23,24]a 1 UC+Static DDH CRS

Masny and Rindal [34,35] 1 UC+Static CODDH b RO

Canetti et al. [11] 1 UC+Adaptive DDH GrpRO+CRS

ΠEOT-RO(Sect. 3) 1 UC+Static DDH RO

ΠEOT-GroRO(Sect. 5.1)c 1 GUC+Static CDH GroRO

ΠEOT-GrpRO(Sect. 5.2)d 2 GUC+Adaptive DDH GrpRO
a Garg et al’s constructions can be instantiated from different assumptions (e.g., DDH,
LWE and QR); but in this table, we focus on constructions using (cyclic) group based
assumptions.
b Here, CODDH refers to the “Choose-and-Open DDH” assumption which is not known
to be reducible to the DDH assumption.
c Although protocol ΠEOT-GroRO uses a weaker computational assumption and a less
idealized setup than protocol ΠEOT-RO does, the former is less efficient than the latter.
d This construction is round-optimal due to Theorem 5, below.

Next, we provide the technical overview for our EOT protocol constructions
in the (global) RO models. We first show how to construct a 1-round UC-secure
EOT protocol under DDH assumption in the RO model against static adver-
saries. After that, we turn to the global RO models and show how to construct
a 1-round GUC-secure EOT protocol under CDH assumption in the GroRO
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model. Note that, the situation in the GrpRO model is complicated: We find
that there exists no 1-round GUC-secure EOT protocols in the GrpRO model
even with static security, and we give a round-optimal (2-round) EOT protocol
under DDH assumption against adaptive adversaries.
New Technique: 1-round UC-secure EOT Protocol in the RO Model. Wepresent
a new technique that enables the first UC-secure 1-round EOT protocol in the RO
model under the DDH assumption (cf. Sect. 3). The basic scheme achieves static
security. Intuitively, our technique is as follows. We start with the two-round stan-
dalone ROT/EOT protocol in the RO model proposed in [13]. In the 1st round, the
sender sends h := gs to the receiver; in the 2nd round, the receiver uses sender’s
message to compute B := grhb and sends B back, where b ∈ {0, 1} is the choice
bit; finally, the sender outputs m0 := Hash(Bs) and m1 := Hash((B

h )s), where
Hash is a predefined hash function and it is modeled as a RO; the receiver outputs
mb := Hash(hr). Although this protocol is simple and efficient, it cannot achieve
UC security [26,33].

Our technique is presented as follows. The dependence of the sender’s mes-
sage in [13] can be eliminated such that the receiver’s message can be produced
simultaneously in the same round. The idea is to let the receiver produce the com-
mitment key h instead of waiting it from the sender. How to generate a random
group element and be oblivious to its discrete logarithm? This can be achieved
by setting h := Hash(seed), where seed is some randomly sampled string. Similar
technique can be found in [11]. Now the 1-round (non-interactive) version of [13]
roughly works as follows. The sender sends z := gs to the receiver; meanwhile,
the receiver picks h := Hash(seed) and computes B := grhb, and then it sends
(seed, B) to the sender; finally, the sender computes h := Hash(seed) and outputs
m0 := Hash(Bs) and m1 := Hash((B

h )s); the receiver outputs mb := Hash(zr).
Further, to make the protocol UC-secure, certain extractability is needed: (i)

when the sender is malicious, the simulator should be able to extract the sender’s
private randomness s, so the simulator can compute both m0 and m1; (ii) when
the receiver is malicious, the simulator should be able to extract the receiver’s
choice bit. In order to extract the sender’s s, we let the sender additionally
generate a RO-based straight-line extractable NIZK argument [22,32,38]. In
order to extract the receiver’s choice bit b, we let the receiver computes the
ElGamal encryption of b instead of the Pedersen commitment. We then let the
receiver additionally generate a NIZK argument to ensure the correctness of the
ElGamal encryption. Note that, we do not need the straight-line extractability
here, since the simulator can program the RO to obtain logg h and thus be able
to decrypt the ElGamal ciphertext to extract b.
1-round GUC-secure EOT Protocol in the GroRO Model. Turning to the GUC
setting, we propose the first 1-round EOT construction under the CDH assump-
tion in the GroRO model (cf. Sect. 5.1). Compared to our UC-secure construc-
tion, this one requires weaker a computational assumption.

Recall that, in our UC-secure EOT protocol, we let the sender send z := gs

together with a straight-line extractable NIZK argument. The straight-line
extractable NIZK argument gives the simulator the ability to extract s. However,
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Pass showed that it is impossible to construct NIZK arguments in observable
RO model [38], let alone NIZK arguments with straight-line extractability. The
good news is that straight-line extractable NIWH argument is sufficient for our
purpose, and it exists in the GroRO model [38]. Therefore, we let the sender gen-
erate a straight-line extractable NIWH argument of s such that z = gs instead.
Next, to extract the receiver’s choice bit, our UC-secure construction utilizes
the programmability of RO; however, GroRO does not offer programability, so a
different approach shall be taken. In particular, we let the receiver compute a
Pedersen commitment to the choice bit B := grhb, and generate a straight-line
extractable NIWH argument of (r, b) such that B = grhb. Analogously to the
sender side, the straight-line extractable NIWH argument gives the simulator
extractability.

Understanding the Power/Limits of Different Global ROs. Here we dis-
cuss the feasibility result and impossible result in the GrpRO model. In addition
to that, we also reveal a separation between the GroRO and the GrpRO model.
A Separation Between the GroRO Model and the GrpRO Model. To show this
separation, we first give a new impossibility result, showing that there exists
no 1-round GUC-secure EOT protocol in the GrpRO model even with static
security (cf. Sect. 5.2). By combining this negative result in the GrpRO model
and the aforementioned positive result in the GroRO model, we demonstrate a
separation between the GroRO model and the GrpRO model. More precisely,
let GroRO,GrpRO be the functionalities of the GroRO and the GrpRO model, we
present the relation of these global RO models in Fig. 1.

GrpRO GroRO

?

Fig. 1. The relation between the GroRO model and the GrpRO model. Here, “A � B”

denotes that A does not imply B. In addition, “A
?→ B” denotes that whether A implies

B remains unknown.

New Impossibility Results in the GrpRO Model. Here we will present more
details about the aforementioned impossibility result in the GrpRO model. The
impossibility is proven by contradiction (cf. Sect. 5.2). Suppose that there exists
such a 1-round GUC-secure EOT protocol in the GrpRO model. Let us first
consider the case where the receiver is corrupted, and the simulator needs to
extract the choice bit of the receiver from its message. Recall that, the GrpRO
only grants the simulator the restricted programmability: the simulator can pro-
gram the unqueried points without being detected. More importantly, unlike
local RO, the simulator cannot program a global RO on the fly, as it cannot
see which point is queried at this moment. Thus, the simulator needs to find a
way to enforce the corrupt receiver to query the simulator’s programmed points.
However, in a one simultaneous round protocol, the messages between parties
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have no dependency. Hence the simulator cannot enforce the corrupt receiver
to produce its message on the programmed points, and has no advantages. If
the simulator still succeeds to extract the corrupted receiver’s choice bit, then
we have the following attack. The adversary corrupts the sender, and instructs
the sender to run the simulator algorithm above to extract the choice bit from
the message sent by the receiver/simulator. However, the simulator has no idea
about the real choice bit, thus with 1/2 probability the simulation would fail.
New Feasibility: Round-Optimal GUC-secure EOT Protocol in the GrpRO Model.
To complete the picture, we also give a round-optimal (2-round) EOT proto-
col with adaptive security under the DDH assumption in the GrpRO model (cf.
Sect. 5.2). Here, we do not consider simultaneous messaging in the same round.
Our intuition comes from the UC-secure EOT protocol in the CRS+GrpRO
model proposed by Canetti et al. [11]. In their protocol, the CRS consists of two
group elements g, h ∈ G, and the simulator knows logg h. The sender computes
z := grhs, while the receiver generates (G,H) := Hash(seed) and computes two
Pedersen commitments to the choice bit using two sets of the parameter, i.e.,
(g,G) and (h,H), and the same randomness.

To eliminate the CRS, we let the sender generate the first set of the parameter
(g, h) := Hash(seed1) where seed1 is an uniformly sampled string. At the same
time, the sender computes z := grhs using random r, s ← Zq and sends seed, z
to the receiver in the first round. In the second round, the receiver first checks
if seed1 is a programmed point. If not, the receiver generates the second set
of the parameter (G,H) := Hash(seed2) where seed2 is an uniformly sampled
string. Then the receiver can compute two Pedersen commitments to the choice
bit, i.e., (B1, B2) := (gxGb, hxHb) using random x ← Zq. Finally, we let the
receiver send (seed2, B1, B2) to the sender. How to make the protocol simulatable
in the GrpRO model? We show the simulation strategy as follows: when the
receiver is malicious (and the sender is honest), the simulator can extract the
receiver’s choice bit b by programming the GrpRO (the simulator always succeeds
to program the GrpRO since seed1 is sampled by the honest sender itself) and
knowing α such that h = gα; when the sender is malicious (and the receiver
is honest), the simulator can compute both m0 and m1 by programming the
GrpRO (the simulator always succeeds to program the GrpRO since seed2 is
sampled by the honest receiver itself) such that (g, h,G,H) is a DDH tuple.
Understanding the Relation Between EOT and Other Cryptographic
Primitives. Here we discuss the complexity of EOT. Our results can be sum-
marized as follows.
EOT Implies UOT and Commitment. In [34], the authors showed that UOT
implies EOT. But the work on the opposite direction is incomplete. Let FEOT,
FUOT and FCoin be the ideal functionalities of EOT, UOT and coin-tossing pro-
tocol, respectively. They showed that a UOT protocol can be constructed in the
{FEOT,FCoin}-hybrid world with unconditional security, and they constructed
FCoin via only FUOT. However, it remains unclear whether FCoin can be con-
structed via only FEOT; therefore, it is still an open question on whether EOT
implies UOT? We present the relations that they claimed in Fig. 2(a).
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Recall that, Brzuska et al. proved that bit commitment can be constructed via
1-out-of-2 OT with unconditional security [3]. What about EOT? Nevertheless,
surprisingly, we show that bit commitment can be constructed via a weaker
primitive, i.e., EOT with unconditional security (cf. Sect. 4.1).

Our key observation is that the receiver’s message can be viewed as the com-
mitment to the choice bit b, and the locally computed message mb together with
b can be viewed as the opening. Typically, a commitment protocol requires both
hiding and binding properties. The hiding property holds since the malicious
receiver in the EOT cannot learn m1−b, even if it can influence the distribution
of mb. The binding property holds since the malicious sender in the EOT can-
not know which message is received by the receiver, even if it can influence the
distributions of both m0 and m1.

FEOT FUOT

FCoin

(a) The relations claimed in [34]

FEOT FUOT

FCoinFCom

(b) The relations in this
work.

Fig. 2. The relations between EOT and other primitives. “A → B” denotes that A
implies B. “A ��� B” denotes that A can be transformed into B.

Since it is well-known how to construct FCoin via only FCom, where FCom is
the commitment functionality, we show that EOT implies UOT and completes
the relation between EOT and UOT (cf. Sect. 4.2). We present the relations that
explored in this work in Fig. 2(b).

Furthermore, as a side product, we present the first 2-round GUC-secure
commitment in the GroRO model (cf. Sect. 5.1), which may be of independent
interest. The previous state-of-the-art protocols need 3 rounds [36,42]. Note that
this result does not contradict Zhou et al.’s impossibility result [42], as their work
did not consider simultaneous communication model.

1.3 Related Work

In this work, we mainly focus on the EOT (and OT) protocols in the different
variants of RO models, i.e. the local RO model, the GroRO model and the
GrpRO model. The EOT (and OT) results in the CRS model can be found in
the full version of this paper [41].

In terms of the local RO model, Chou and Orlandi proposed a 3-round OT
protocol called “the simplest OT protocol” [13]. This protocol and the protocol
in [29] have been found to suffer from a number of issues [4,26,33] and are not
UC-secure. In the following, Masny and Rindal showed how to construct EOT
protocols from the key exchange schemes in the local RO model [34]. In par-
ticular, they provided a 1-round UC-secure construction under a non-standard
assumption, i.e., Choose-and-Open DDH (CODDH) assumption [34,35].
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Regarding the GroRO model, Canetti et al. proposed a 2-round OT pro-
tocol under DDH assumption [9], but their protocol is only one-sided GUC-
simulatable. Later, fully GUC-secure OT protocols in the GroRO model are
proposed [16,19]. Their protocols only need CDH assumption but require no
less than 5 rounds of communication. To achieve round-optimal, Canetti et al.
proposed a 2-round GUC-secure OT protocol in the GroRO model [11], but their
protocol requires a stronger assumption, i.e., DDH assumption.

As for the GrpRO model, Canetti et al. proposed an adaptive-secure 1-round
EOT protocol in the GrpRO+CRS hybrid model [11], but their protocol is only
UC-secure since their simulator must know the trapdoor of the CRS.

2 Preliminaries

2.1 Notations

We denote by λ ∈ N the security parameter. We say that a function negl : N → N

is negligible if for every positive polynomial poly(·) and all sufficiently large
λ, it holds that negl(λ) < 1

poly(λ) . We use the abbreviation PPT to denote
probabilistic polynomial-time. For an NP relation R, we denote by L its associate
language, i.e. L = {x | ∃w s.t. (x,w) ∈ R}. We denote by y := Alg(x; r) the event
where the algorithm Alg on input x and randomness r, outputs y. We denote by
y ← Alg(x) the event where Alg selects a randomness r and sets y := Alg(x; r).
We denote by y ← S the process for sampling y uniformly at random from the
set S. Let q be a λ-bit prime, and p = 2q + 1 also be a prime. Let G be a
subgroup of order q of Z

∗
p with the generator g.

2.2 Universal Composability

We formalize and analyze the security of our protocols in the Canetti’s Universal
Composability (UC) framework [6] and Canetti et al ’s Generalized UC (GUC)
framework [7]. The main difference between the UC and the GUC framework
is that the environment Z cannot have direct access to the setups in the UC
framework, whereas Z is “unconstrained” and can access the setups directly in
the GUC framework. The local setups in the UC framework are often modeled
as ideal functionalities, whereas the global setups in the GUC framework are
often modeled as the shared functionalities which are completely analogous to
ideal functionalities, except that they may interact with more than one protocol
sessions. For that reason, the simulator in the UC framework can simulate the
local setups and have the full control over it; whereas, the simulator in the GUC
framework has no control over the global setups. We refer interesting readers to
see more details in [6,7].
Adversarial Model. In this work, we consider both static corruption (where
the adversary corrupts the parties at the beginning of the protocol) and adap-
tive corruption (where the adversary corrupts the parties at any time). We also
consider rushing adversaries, who may delay sending messages on behalf of cor-
rupted parties in a given round until the messages sent by all the uncorrupted
parties in that round have been received [30].



Endemic Oblivious Transfer via Random Oracles, Revisited 313

Secure Communication Model. Many UC-secure protocols assume the par-
ties are interconnected with secure or authenticated channels [7,10]. The secure
channel and authenticated channel can be modeled as ideal functionalities FSC

and FAuth respectively [6]. In this work, most of our protocols are designed in the
simultaneous communication channel with rushing adversaries, which is differ-
ent from that [30] deals with non-rushing adversaries. For this reason, we often
assume the synchronous channel which can be modeled as FSyn [6]. Note that,
intuitively, FSyn can be viewed an authenticated communication network with
storage, which proceeds in a round-based fashion [6,31]. For readability, we will
mention which secure communication channel is used in the context and omit it
in the protocol description.

2.3 Ideal Functionalities

In this section, we provide ideal functionalities that will be used in UC/GUC
security analysis.
OT, UOT and EOT. We start with the Oblivious Transfer (OT). In a OT
protocol, there is a sender S holding two private input m0,m1 ∈ {0, 1}λ and a
receiver R holding a choice bit b ∈ {0, 1}. At the end of the honest execution of
the OT protocol, the receiver R will compute mb. At the same time, the sender
should learn nothing about b while the receiver should learn nothing about m1−b.
We present the OT functionality FOT in Fig. 3.

It interacts with two parties S, R and an adversary S.

Transfer. Upon receiving (Send, sid, S, R, m0, m1) from the sender S, do:

– Record (sid, S, R, m0, m1), and send (Send, sid, S, R) to R and the adversary S.
– Ignore any subsequent Send commands.

Choose. Upon receiving (Receive, sid, S, R, b) from R where b ∈ {0, 1}, do:

– Record (sid, S, R, b), and send (Receive, sid, S, R) to the sender S and the adversary S.
– Ignore any subsequent Receive commands.

Process. When both (sid, S, R, m0, m1) and (sid, S, R, b) are recorded, do:

– Send (Proceed?, sid, S, R) to the adversary S.
– Upon receiving (Proceed, sid, S) from the adversary S, output (Received, sid, S, R) to

the sender S; Upon receiving (No, sid, S) from the adversary S, output (Abort, sid, S)
to the sender S. Upon receiving (Proceed, sid, R) from the adversary S, output
(Received, sid, S, R, mb) to R; Upon receiving (No, sid, R) from the adversary S, output
(Abort, sid, R) to R.

Functionality FOT

Fig. 3. The Ideal Functionality FOT for Oblivious Transfer

In [34], Masny and Rindal proposed two notions that called Uniform OT
(UOT) and Endemic OT (EOT). Both of them are similar to OT, except that
the senders have no inputs. The main difference between the UOT and the
EOT is that they provide different levels of security guarantees. We describe
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the UOT first. The UOT functionality samples two uniformly random strings
m0,m1, and outputs m0,m1 to the (potentially malicious) sender and mb to
the (potentially malicious) receiver. The UOT gives a strong security guarantee
that any malicious party cannot influence the distribution of the OT messages.
Formally, we put the UOT functionality FUOT in Fig. 4.

It interacts with two parties S, R and an adversary S.

Transfer. Upon receiving (Send, sid, S, R) from S, do:

– Sample m0, m1←{0, 1}λ, record (sid, S, R, m0, m1), and send (Send, sid, S, R) to R and
the adversary S.

– Ignore any subsequent Send commands.

Choose. Upon receiving (Receive, sid, S, R, b) from R where b ∈ {0, 1}, do:

– Record (sid, S, R, b), and send (Receive, sid, S, R) to the sender S and the adversary S.
– Ignore any subsequent Receive commands.

Process. When both (sid, S, R, m0, m1) and (sid, S, R, b) are recorded, do:

– Send (Proceed?, sid, S, R) to the adversary S.
– Upon receiving (Proceed, sid, S) from the adversary S, output (Received, sid, S, R,

m0, m1) to the sender S; Upon receiving (No, sid, S) from the adversary S, output
(Abort, sid, S) to the sender S. Upon receiving (Proceed, sid, R) from the adversary S,
output (Received, sid, S, R, mb) to R; Upon receiving (No, sid, R) from the adversary S,
output (Abort, sid, R) to R.

Functionality FUOT

Fig. 4. The Ideal Functionality FUOT for Uniform Oblivious Transfer

Now let us turn to EOT. Compared to UOT, the EOT functionality gives a
weak security guarantee: no matter whether the sender or the receiver is mali-
cious, the malicious party can always determine the distribution of the OT
messages. Roughly speaking, if both sender and receiver are honest, the EOT
functionality acts as the UOT functionality. If the sender is malicious and the
receiver is honest, the EOT functionality lets the adversary determine the mes-
sage strings m0,m1, and it returns the adversarial chosen mb to the honest
receiver after receiving b. If the receiver is malicious and the sender is honest,
the EOT functionality lets the adversary determine the message string mb, and it
returns the adversarial chosen mb and an uniformly sampled m1−b to the honest
sender. If both sender and receiver are malicious, the EOT functionality simply
aborts. Formally, we put the EOT functionality FEOT in Fig. 5.
Random Oracles. Here we introduce two well-known global RO models:
Global Restricted Programmable Random Oracle (GrpRO) model proposed by
Camenisch et al. [5] and Global Restricted Observable Random Oracle (GroRO)
model proposed by Canetti et al. [9]. We omit the formal description of the
well-known local RO functionality FRO.
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It interacts with two parties S, R and an adversary S.

Transfer/Choose. Upon receiving (Send, sid, S, R) from the sender S or
(Receive, sid, S, R, b) from the receiver R, do the same as FUOT that depicted in Figure 4.

Process. When both (sid, S, R, m0, m1) and (sid, S, R, b) are recorded, do:

– If both the sender S and the receiver R are honest, output (Received, sid, S, R, m0,
m1) to the sender S, (Received, sid, S, R, mb) to R and (Received, sid, S, R) to the
adversary S.

– Else if the sender S is corrupted and the receiver R is honest, send (Proceed?, sid, R)
to the adversary S. Upon receiving (Proceed, sid, R, m∗

0 , m∗
1) from the adversary S, set

m0 := m∗
0 , m1 := m∗

1 , and output (Received, sid, S, R, m0, m1) to the sender S,
(Received, sid, S, R, mb) to R; Upon receiving (No, sid, R) from the adversary S, output
(Abort, sid, R) to R.

– Else if the sender S is honest and the receiver R is corrupted, send (Proceed?, sid, S)
to the adversary S. Upon receiving (Proceed, sid, S, m∗

b ) from the adversary S, set
mb := m∗

b , and output (Received, sid, S, R, m0, m1) to the sender S, (Received, sid,
S, R, mb) to R; Upon receiving (No, sid, S) from the adversary S, output
(Abort, sid, S) to the sender S.

– Else if both the sender S and the receiver R are corrupted, halt.

Functionality FEOT

Fig. 5. The Ideal Functionality FEOT for Endemic Oblivious Transfer

The GrpRO Model. Compared to FRO, the GrpRO is modeled as a shared func-
tionality GrpRO which may interact with more than one protocol sessions. The
GrpRO answers to the queries in the same way as FRO: Upon receiving (Query, sid,
x) from any party, GrpRO first checks whether the query (sid, x) has been queried
before. If not, GrpRO selects a random value of pre-specified length v ← {0, 1}�out(λ),
answers with the value v and records the tuple (sid, x, v); otherwise, the pre-
viously chosen value v is returned again, even if the earlier query was made
by another party. The simulator is only granted the restricted programmabil-
ity: both the adversary and the simulator are allowed to program the unqueried
points of the random oracle, but only the simulator can program it without being
detected. More precisely, as depicted in Fig. 6, upon receiving (Program, sid, x, v)
from the simulator/adversary, GrpRO first checks whether (sid, x) has been queried
before. If not, GrpRO stores (sid, x, v) in the query-answer lists. Any honest
party can check whether a point has been programmed or not by sending the
(IsProgramed, sid, x) to GrpRO. Thus, in the real world, the programmed points
can always be detected. However, in the ideal world, the simulator S can escape the
detection since it can return (IsProgramed, sid, 0) when the adversary invokes
(IsProgramed, sid, x) to verify whether a point x has been programmed or not.
The GroRO Model. The GroRO is also modeled as a share functionality GroRO,
and it answers to the queries in the same way as FRO. The simulator is only
granted the restricted observability: some of the queries can be marked as “illegit-
imate” and potentially disclosed to the simulator. As depicted in Fig. 7, the GroRO

interacts with a list of ideal functionalities F̄ = {F1, . . . ,Fn}, where F1, . . . ,Fn

are the ideal functionalities for protocols. For any query (sid′, x) from any party
P = (pid, sid) where sid′ is the content of the SID field, if sid′ �= sid, then this
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It interacts with a set of parties P = {P1, . . . , Pn} and an adversary S. It is parameterized
by the output length �out(λ). It maintains two initially empty lists List,Prog.

Query. Upon receiving (Query, sid′, x) from a party Pi ∈ P where Pi = (pid, sid), or the
adversary S:

– Check if ∃ v ∈ {0, 1}�out(λ) such that (sid, x, v) ∈ List. If not, select v ← {0, 1}�out(λ)

and record the tuple (sid′, x, v) in List.
– Return (QueryConfirm, sid′, v) to the requestor.

Program. Upon receiving (Program, sid, x, v) with v ∈ {0, 1}�out(λ) from the adversary S:

– Check if ∃ v′ ∈ {0, 1}�out(λ) s.t. (sid, x, v′) ∈ List and v �= v′. If so, ignore this input.
– Set List := List ∪ {(sid, x, v)} and Prog := Prog ∪ {(sid, x)}.
– Return (ProgramConfirm, sid) to S.

IsProgramed. Upon receiving (IsProgramed, sid′, x) from a party Pi ∈ P where Pi =
(pid, sid), or the adversary S:

– If the input was given by Pi = (pid, sid) and sid �= sid′, ignore this input.
– If (sid′, x) ∈ Prog, set b := 1; otherwise, set b := 0.
– Return (IsProgramed, sid′, b) to the requester.

Share Functionality GrpRO

Fig. 6. The Global Restricted Programmable Random Oracle Model GroRO

query is considered “illegitimate”. After that, GroRO adds the tuple (sid′, x, v)
to the list of illegitimate queries for SID sid′, which we denote as Qsid′ . The
illegitimate queries Qsid′ may be disclosed to an instance of ideal functionality
F ∈ F̄ whose SID is the one of the illegitimate queries, and the ideal functionality
instance F may leak the illegitimate queries Qsid′ to the simulator.

It interacts with a set of parties P = {P1, . . . , Pn} and an adversary S. It is parameter-
ized by the output length �out(λ) and a list of ideal functionalities F̄ := {F1, . . . , Fn}. It
maintains an initially empty list List.

Query. Upon receiving (Query, sid′, x) from a party Pi ∈ P where Pi = (pid, sid), or the
adversary S, do the same as GroRO depicted in Figure 6, except when sid �= sid′, add the
tuple (sid′, x, v) to the (initially empty) list of illegitimate queries for SID sid′, which we
denote by Qsid′ .

Observe. Upon receiving a request from an instance of an ideal functionality Fi ∈ F̄ with

SID sid′, return the list of illegitimate queries Qsid′ for SID sid′ to this instance Fi.

Share Functionality GroRO

Fig. 7. The Global Restricted Observable Random Oracle Model GroRO

2.4 Building Blocks

In this work, we use the followings as the main building blocks: the Pedersen
commitment [39], the ElGamal encryption [20], the Sigma-protocols [15], and
the (straight-line extractable) NIZK/NIWH arguments in the RO model [38].
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We also use the well-known CDH and DDH assumption [17]. Due to the space
limit, here we do not provide the formal descriptions of the building blocks above,
and we refer interesting readers to see them in the full version of this paper [41].

3 UC-Secure Endemic OT via Random Oracles

In this section, we provide a new 1-round UC-secure EOT protocol under stan-
dard assumptions in the RO model.

We start with the two-round standalone EOT protocol in [13]: in the first
round, the sender sends h := gs using s←Zq; in the second round, the receiver
uses sender’s message to compute B := grhb based on its choice bit b and
its secret randomness r←Zq; finally, the sender computes and outputs m0 :=
FRO(Bs) and m1 := FRO((B

h )s) while the receiver outputs mb := FRO(hr). Here
we use to notation y := FRO(x) to describe the process for querying x to the
random oracle FRO and obtaining the output y, which aligns with the notation
in [11]. Our goals are: (i) reduce the round complexity of this protocol to one
simultaneous round; (ii) add new mechanisms to make this protocol UC-secure.

In order to reduce the round complexity, we let the receiver generate h by
invoking the RO on a randomly sampled string seed. In this way, the receiver can
compute its message without the sender’s message, thus only one simultaneous
round is needed. This technique can be found in [11]. We then discuss how
to provide UC security. The UC-secure EOT protocol requires extractability : (i)
when the sender is malicious, the simulator should be able to extract the sender’s
secret randomness, so the simulator can compute both m0 and m1; (ii) when the
receiver is malicious, the simulator should be able to extract the receiver’s choice
bit b. In order to extract the sender’s secret randomness s, we let the sender
additionally generate a straight-line extractable NIZK argument [22,32,38] of s
such that z = gs. The straight-line extractability relies on the observability of the
RO model. In this way, the simulator can extract the malicious sender’s secret
randomness. In order to extract the receiver’s choice bit b, we let the receiver
generate an ElGamal encryption of bit b instead of a Pedersen commitment to
bit b, i.e., the receiver computes (u, v) := (hr, hbgr) using r←Zq. We also let
the receiver generate a NIZK argument of (b, r) such that (u, v) = (hr, hbgr) to
ensure that (u, v) is an ElGamal encryption of a bit b. In this way, the simulator
knows logg h by making use of the programmability of the RO model, and thus
is able to extract b from (u, v).

Let g be the generator of G. Let FRO1 : {0, 1}∗ → G and FRO2 : {0, 1}∗ →
{0, 1}λ be random oracles. Let RENC := {((g, h, u, v), (r, b)) | (b = 0 ∧ (u, v) =
(hr, gr)) ∨ (b = 1 ∧ (u, v) = (hr, grh))} and RDL := {((g, z), s) | z = gs}.
We denote by ΠsleNIZK the straight-line extractable NIZK argument in the FRO3-
hybrid world. We denote by ΠNIZK the NIZK argument in the FRO4-hybrid world.
We note that, the domain and range of FRO3 and FRO4 depend on the concrete
instantiations of the protocols, for that reason, we do not write them explicitly.
Here we assume the synchronous channel FSyn is available to the protocol players.
Protocol Description. We present our protocol ΠEOT-RO in Fig. 8; note that,
in Fig. 8, we only cover the case where both sender and receiver are honest.
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Fig. 8. 1-round EOT protocol ΠEOT-RO in the {FRO, FSyn}-hybrid world, where FRO =
{FROi}i∈[4]. Let g be the generator of G. Let FRO1 : {0, 1}∗ → G and FRO2 : {0, 1}∗ →
{0, 1}λ. Let RENC := {((g, h, u, v), (r, b)) | (b = 0 ∧ (u, v) = (hr, gr)) ∨ (b = 1 ∧ (u, v) =
(hr, grh))} and RDL := {((g, z), s) | z = gs}.

When sender (resp. receiver) is statically corrupted and receiver (resp. sender)
is honest, after sending its message to FSyn and waiting for a long time, the hon-
est receiver (resp. sender) will query FSyn to obtain the other party’s message.
If FSyn replies the desired message, the honest party will compute and output
the local message according to Fig. 8; otherwise, the honest party simply aborts.
The security of the protocol has been stated in Theorem1.

Theorem 1. Assume theDDHassumption holds in groupG. LetFRO1 : {0, 1}∗ →
G and FRO2 : {0, 1}∗ → {0, 1}λ be the random oracles. Let ΠNIZK be an NIZK
argument in the FRO3-hybrid world. Let ΠsleNIZK be a straight-line extractable NIZK
argument in the FRO4-hybrid world. The protocol ΠEOT-RO depicted in Fig. 8 UC-
realizes the functionality FEOT depicted in Fig. 5 in the {FRO,FSyn}-hybrid world
against static malicious corruption, where FRO = {FROi}i∈[4].

Proof. We leave the formal proof in the full version of this paper [41].

Instantiation. We instantiate ΠsleNIZK for relation RDL with the Schnorr’s proto-
col [40] and the randomized Fischlin transform [32] which improves the efficiency
and applicability of Fischlin transform [22]. We instantiate ΠNIZK for relation
RENC with the following techniques: we first employ the OR-composition [14] to
the Chaum-Pedersen protocols [12] to prove either (g, h, v, u) is a DDH tuple
(which means b = 0) or (g, h, v

h , u) is a DDH tuple (which means b = 1), we then
apply the the Fiat-Shamir transform [21] to remove the interaction.

Efficiency. Here we compare the efficiency in the amortized setting where the
sender and the receiver can reuse some elements for multiple instances of the
EOT protocol (in this protocol, the sender can reuse s, πDL while the receiver
can reuse the string seed). The amortized setting is also used in [11] for effi-
ciency comparison. By taking the parameters (that achieves 128-bit security)
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from [32], our protocol requires 18 exponentiations w.r.t. computation and 10
group/field elements w.r.t. communication; while the state-of-the-art 1-round
UC-secure RO-based protocol in [34] requires 4 exponentiations w.r.t. compu-
tation and 2 group elements w.r.t. communication. Note that, our protocol is
based on a standard assumption; whereas the protocol in [34] is based on a
non-standard assumption.

4 The Relations Between Endemic OT and Other
Primitives

In this section, we first show how to construct a bit commitment protocol via
EOT with unconditional security. Subsequently, we complete the picture of OT
relations in [34], showing that UOT can be constructed via EOT with uncondi-
tional security.

4.1 From Endemic OT to Commitment

Recall that, Brzuska et al. proved that bit commitment can be constructed via
1-out-of-2 OT with unconditional security [3]. As remarked in [34], there is a
separation between the EOT and OT in the standalone setting: there are no
1-round OT protocols while there are 1-round EOT protocols. Although there
is such a separation, we show a surprising fact: bit commitment can also be
constructed via a weaker primitive, i.e., EOT, with unconditional security.

We observe that the receiver’s message can be viewed as the commitment to
the receiver’s choice bit b, and the locally computed message mb together with
b can be viewed as the opening. Typically, a commitment protocol requires two
properties: hiding and binding. The hiding property comes from the fact: even
if the malicious EOT receiver can influence the distribution of mb, it cannot
learn the other message m1−b. The binding property comes from the fact: even
if the malicious EOT sender can influence the distributions of both m0 and m1,
it cannot tell which one is received by the receiver. Furthermore, if we use a UC-
secure EOT protocol as the building block, the resulting commitment protocol
is also UC-secure. Note that, we only assume authenticated channel FAuth is
available to the protocol players, and we omit the formal description of the
well-known commitment functionality FCom.
Protocol Description. We present our protocol ΠCom in Fig. 9; note that, in Fig. 9
we only cover the case that both committer and receiver are honest. The remain-
ing cases can be found in the full version of this paper [41]. The security of the
protocol has been stated in Theorem2.

Theorem 2. The protocol ΠCom depicted in Fig. 9 UC-realizes the functionality
FCom with unconditional security in the {FEOT,FAuth}-hybrid world against static
malicious corruption.

Proof. We leave the formal proof in the full version of this paper [41].
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Fig. 9. Bit Commitment Protocol ΠCom in the {FEOT, FAuth}-Hybrid World

4.2 From Endemic OT to Uniform OT

In [34], the Masny and Rindal showed how to construct UOT with unconditional
security in the {FEOT,FCoin,FAuth}-hybrid world, where FCoin is the well-known
coin-tossing functionality and we omit the formal description here. We recall
the protocol construction in [34] in Fig. 10. However, they only showed how to
construct the coin-tossing protocol via UOT. Therefore, whether EOT implies
UOT remains an open question.

Fig. 10. UOT Protocol ΠUOT in the {FEOT, FCoin, FAuth}-Hybrid World from [34]

Lemma 1 ([34]). The protocol ΠUOT depicted in Fig. 10 UC-realizes FUOT

depicted in Fig. 4 with unconditional security in the {FEOT,FCoin,FAuth}-hybrid
world against static malicious corruption.

In this section, we provide a positive answer to this unsolved question. Our
solution is as follows: we have already showed that EOT implies commitment
in Sect. 4.1, and the coin-tossing protocol can be easily constructed via only
commitment; putting things together, we show that EOT implies UOT. Note
that, we only assume FAuth is available to the protocol players, and we omit the
formal description of the well-known coin-tossing functionality FCoin.
Protocol Description. We present our protocol ΠCoin in Fig. 11; note that, in
Fig. 11 we only cover the case that both two players are honest. The remaining
cases can be found in the full version of this paper [41]. The security of the
protocol has been stated in Theorem3.
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Player 2Player 1

m1 Receipt

m2

Decommit m1

Output m := m1 ⊕ m2 Output m := m1 ⊕ m2

FCom

Fig. 11. Coin-Tossing Protocol ΠCoin in the {FCom, FAuth}-Hybrid World

Theorem 3. The protocol ΠCoin depicted in Fig. 11 UC-realizes the functionality
FCoin with unconditional security in the {FCom,FAuth}-hybrid world against static
malicious corruption.

Proof. We leave the formal proof in the full version of this paper [41].

Formally, we prove that EOT implies UOT through Corollary 1. The security
proof of Corollary 1 directly comes from Lemma 1, Theorem 2 and Theorem 3,
and thus we omit the trivial proof here.

Corollary 1. The protocol ΠUOT depicted in Fig. 10 UC-realizes FUOT depicted
in Fig. 4 with unconditional security in the {FEOT,FAuth}-hybrid world against
static malicious corruption.

5 GUC-Secure Endemic OT via Global Random Oracles

In this section, we turn to global RO models to seek a stronger variant of UC secu-
rity, i.e., GUC security. As for the GroRO model, we construct the first 1-round
GUC-secure EOT protocol under CDH assumption against static adversaries.
Basing on that, we propose the first 2-round GUC-secure commitment protocol
in the GroRO model.

Regarding the GrpRO model, we prove that there exists no 1-round GUC-
secure EOT protocol in the GrpRO model even with static security. By com-
bining this negative result in the GrpRO model and the positive result in the
GroRO model, we reveal a separation between these two models. Furthermore,
we construct the first 2-round (round-optimal) GUC-secure EOT protocol under
DDH assumption in the GrpRO model against adaptive adversaries.
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5.1 Feasibility Results in the GroRO Model

Our EOT Protocol. We start with our UC-secure EOT protocol ΠEOT-RO

depicted in Fig. 8. Recall that, we let the sender send z := gs using s ← Zq,
together with a straight-line extractable NIZK argument of s such that z = gs

in ΠEOT-RO. The straight-line extractable NIZK argument gives the simulator
chance of extracting the sender’s secret randomness. However, Pass showed that
it is impossible to construct NIZK arguments in observable RO model [38], let
alone NIZK arguments with straight-line extractability. The good news is that we
find that straight-line extractable NIWH argument is sufficient for our purpose,
and it is possible in the GroRO model [38]. Therefore, we let the sender generate
a straight-line extractable NIWH argument of s such that z = gs. Now let
us consider the receiver. In order to extract the receiver’s choice bit, we make
full use of the programmability of random oracles in ΠEOT-RO. Since GroRO does
not permit anyone to program the random oracle, we need to take a different
strategy: we let the receiver generate h by invoking the GroRO on a randomly
sampled string seed, compute a Pedersen commitment to the choice bit B := grhb

using r ← Zq, and generate a straight-line extractable NIWH argument of (r, b)
such that B = grhb. Analogously to the sender side, the simulator can extract
the malicious receiver’s choice bit b.

Fig. 12. 1-round EOT protocol ΠEOT-GroRO in the {GroRO, FSyn}-hybrid world, where
GroRO = {GroROi}i∈[4]. Let g be the generator of G. Let GroRO1 : {0, 1}∗ → G and
GroRO2 : {0, 1}∗ → {0, 1}λ. Let RCom := {((g, h, B), (r, b)) | B = grhb} and RDL :=
{((g, z), s) | z = gs}.

Let g be the generator of G. Let GroRO1 : {0, 1}∗ → G and GroRO2 : {0, 1}∗ →
{0, 1}λ. Let RCom := {((g, h,B), (r, b)) | B = grhb} and RDL := {((g, z), s) | z =
gs}. We denote by ΠS

sleNIWH the straight-line extractable NIWH argument in the
GroRO3-hybrid world which is used for generating the proof by sender. We denote
by ΠR

sleNIWH the straight-line extractable NIWH argument in the GroRO4-hybrid
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world which is used for generating the proof by receiver. We assume synchronous
channel FSyn is available to the protocol players..
Protocol Description. We present our protocol ΠEOT-GroRO in Fig. 12; note that,
in Fig. 12 we only cover the case that both sender and receiver are honest. The
remaining cases can be found in the full version of this paper [41]. The security
of the protocol has been stated in Theorem 4.

Before giving the theorem, we have to give the transferable EOT functionality
FtEOT in Fig. 13. The main difference with the traditional EOT functionality is
that in FtEOT, the simulator can request the list of illegitimate queries, which
fits the GroRO model.

Theorem 4. Assume the CDH assumption holds in group G. Let GroRO1 :
{0, 1}λ → G and GroRO2 : G → {0, 1}λ be the random oracles. Let ΠS

sleNIWH be a
straight-line extractable NIWH argument in the GroRO3-hybrid world. Let ΠR

sleNIWH

be a straight-line extractable NIWH argument in the GroRO4-hybrid world. The
protocol ΠEOT-GroRO depicted in Fig. 12 GUC-realizes the functionality FtEOT

depicted in Fig. 13 in the {GroRO,FSyn}-hybrid world against static malicious cor-
ruption, where GroRO = {GroROi}i∈[4].

Proof. We leave the formal proof in the full version of this paper [41].

The functionality interacts with two parties S, R and an adversary S.
Transfer/Choose/Process. Same as FEOT depicted in Figure 5.

Observe. When asked by the adversary S, obtain from GroRO the list of illegitimate queries

Qsid that pertain to SID sid, and send Qsid to the adversary S.

Functionality FtEOT

Fig. 13. The Transferable Ideal Functionality FtEOT for Endemic Oblivious Transfer

Instantiation. We instantiate ΠS
sleNIZK for relation RDL with the Schnorr’s proto-

col and the randomized Fischlin transform as in Sect. 3. Note that, although we
use the same instantiation as in Sect. 3, we only obtain a straight-line extractable
NIWH argument, since here we use a observable RO model [38]. We instantiate
ΠR

sleNIWH for relation RCom with the Okamoto’s protocol [37] and the randomized
Fischlin transform.

Efficiency. We consider the efficiency of our GUC-secure protocol ΠEOT-GroRO in
the amortized setting here, just like we did in Sect. 3. By taking the parameter
(that achieves 128-bit security) in [32], our GUC-secure protocol ΠEOT-GroRO

requires 53 exponentiations w.r.t. computation and 41 group/field elements w.r.t.
communication; while the state-of-the-art 2-round GroRO-based OT protocol
in [11] requires 5 exponentiations w.r.t. computation and 2 group elements +
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2λ bits string w.r.t. communication. Note that, our protocol only requires CDH
assumption, whereas the protocol proposed in [11] requires the DDH assumption,
which is stronger.

Our Commitment Protocol. Recall that, we construct a commitment proto-
col ΠCom depicted in Fig. 9 in the {FEOT,FAuth}-hybrid world with unconditional
security (cf. Sect. 4.1). It is easy to see that if we replace FEOT with FtEOT and
call the resulting protocol ΠtCom, then the protocol ΠtCom will GUC-realize FtCom

in the {FtEOT,FAuth}-hybrid world with unconditional security, where FtCom is
the transferable commitment functionality introduced in [9] and here we omit
the formal description of FtCom. Formally, we have the following corollary, and
its security proof is analogously to the proof of Theorem2.

Corollary 2. The protocol ΠtCom GUC-realizes the functionality FtCom with
unconditional security in the {FtEOT,FAuth}-hybrid world against static mali-
cious corruption.

Instantiation. We instantiate FtEOT with our 1-round GUC-secure EOT protocol
depicted in Fig. 12. Then we immediate obtain a 2-round GUC-secure commit-
ment protocol ΠtCom in the GroRO model; note that, the first round messages
are communicated over the synchronous channel FSyn and the second round
message is communicated over the authenticated channel FAuth. The security is
guaranteed by Theorem4 and Corollary 2.

Comparison. Our commitment protocol is the first 2-round GUC-secure commit-
ment in the GroRO model, while the previous state-of-the-art protocols achieve
3 rounds [36,42]. Note that, Zhou et al. proved that it is impossible to construct
2-round GUC-secure commitment protocol in the GroRO model even with static
security [42]; but they do not assume FSyn is available for protocol players. Our
2-round commitment protocol contains a simultaneous round, so we do not con-
tradict their impossibility result. We also note that, our protocol and protocols
in [36,42] are all 3-move static-secure protocols, but ours is the only one whose
first two moves can be executed in one simultaneous round; hence, ours is the
only one that can achieve 2-round.

5.2 Impossibility and Feasibility Results in the GrpRO Model

Our Impossibility Result. Here we show that there exists no 1-round GUC-
secure EOT protocol against static adversaries in the GrpRO model.

We prove this impossibility by contradiction. Suppose that there exists such
a 1-round GUC-secure EOT protocol. Let us first consider the case where the
receiver is corrupted, and the simulator needs to extract the choice bit of the
receiver from its message. Recall that, the GrpRO only grants the simulator the
restricted programmability: although the simulator can program the unqueried
points without being detected, the simulator is external to the GrpRO and it can
not know in real time what queries other parties are sending to GrpRO. Thus, the
simulator needs to program the points in advance and find a way to enforce the
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corrupt receiver to generate its message on the simulator’s programmed points.
In that way, the simulator can have the chance of extracting the choice bit
of the receiver. However, in a one simultaneous round protocol, the messages
between parties have no dependency. Hence the simulator cannot enforce the
corrupt receiver to produce its message on the programmed points, and has no
advantages over the real world adversary. If the simulator still succeeds to extract
the corrupted receiver’s choice bit, then distinctions will be revealed when the
adversary performs the following attacks. The adversary corrupts the sender, and
instructs the sender to run the simulator algorithm above to extract the choice bit
from the message sent by the receiver/simulator. However, the receiver/simulator
has no idea about the real choice bit, thus with high probability the simulation
would fail. Formally, we prove this impossibility through Theorem5.

Theorem 5. There exists no terminating 1-round protocol Π that GUC-realizes
FEOT depicted in Fig. 5 with static security in the {GrpRO,FSyn}-hybrid world.

Proof. We leave the formal proof in the full version of this paper [41].

By combining this negative result in the GrpRO model and the positive result
in the GroRO model depicted in Sect. 5.1, we demonstrate a separation between
the GroRO and the GrpRO model.

Our EOT Protocol. Theorem 5 rules out the possibility of 1-round GUC-secure
EOT protocols in the {GrpRO,FSyn}-hybrid world. It makes us wonder if we do
not let the sender and the receiver send their messages simultaneously but in a
specific order, can we construct a 2-move (also 2-round) GUC-secure protocol?

We start with the UC-secure EOT protocol in the CRS+GrpRO hybrid
model proposed by Canetti et al. [11]. Their CRS consists of two group ele-
ments g, h ∈ G, and the simulator knows logg h. They let the receiver gen-
erate parameter G,H by invoking the RO on a randomly sampled string
seed, and compute two instances of Pedersen commitment to the choice bit
(B1, B2) := (gxGb, hxHb) using two sets of different parameters (g,G), (h,H)
and the same randomness x ← Zq. As for the sender, they let the sender
compute z := grhs using randomness r, s ← Zq. Finally, the sender outputs
m0 := GrpRO(Br

1B
s
2) and m1 := GrpRO((B1

G )r(B2
H )s) while the receiver outputs

mb := GrpRO(zx).
Our goals are: (i) remove the CRS setup of this protocol; (ii) make this

protocol GUC-secure in the GrpRO model. To achieve the former goal, we let
the sender generate g, h by invoking random oracle on a randomly sampled string
seed1. Then the sender computes z := grhs using r, s ← Zq, and sends seed1, z to
the receiver. On the other hand, we let the receiver generate G,H by invoking
GrpRO on another randomly sampled string seed2, computes two instances of
Pedersen commitment to the choice bit (B1, B2) := (gxGb, hxHb) using the
same randomness x ← Zq. The local computation is the same as Canetti et al ’s
protocol. In order to show that our modified protocol achieves the latter goal,
we show the simulation strategy as follows: when the receiver is malicious, the
simulator can extract the receiver’s choice bit b by programming the GrpRO and
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knowing α such that h = gα. Then the simulator can extract b by the following
strategy: if B2 = Bα

1 , it sets b := 0; else if B2
H = (B1

G )α, it sets b := 1; else, it sets
b := ⊥. Note that, when B1, B2 are not correctly constructed (i.e., the simulator
sets b := ⊥), the malicious receiver cannot compute either m0 or m1. When the
sender is malicious, the simulator can compute both m0 and m1 by programming
the GrpRO such that (g, h,G,H) is a DDH tuple, i.e., G = gt,H = ht. In this
way, the simulator can compute m0 := GrpRO(zx) and m1 := GrpRO(zx−t).

Fig. 14. 2-round EOT protocol ΠEOT-GrpRO in the {GrpRO, FAuth}-hybrid world, where
GrpRO = {GrpRO1, GrpRO2}. Let GrpRO1 : {0, 1}∗ → G × G and GrpRO2 : {0, 1}∗ → {0, 1}λ.

Let GrpRO1 : {0, 1}∗ → G × G and GrpRO2 : {0, 1}∗ → {0, 1}λ. Here we assume
authenticated channels FAuth are available.
Protocol Description. We present our protocol ΠEOT-GrpRO in Fig. 14; note that,
in Fig. 14 we only cover the case that both sender and receiver are honest. The
remaining cases can be found in the full version of this paper [41]. The security
of the protocol has been stated in Theorem 6.

Theorem 6. Assume the DDH assumption holds in group G. Let GrpRO1 :
{0, 1}λ → G × G and GrpRO2 : G → {0, 1}λ be the random oracles. The protocol
ΠEOT-GrpRO depicted in Fig. 14 GUC-realizes the functionality FEOT depicted in
Fig. 5 in the {GrpRO,FAuth}-hybrid world against adaptive malicious corruption,
where GrpRO = {GrpRO1,GrpRO2}.
Proof. We leave the formal proof in the full version of this paper [41].

Efficiency. We consider the efficiency of our protocol ΠEOT-GrpRO in the amor-
tized setting here, just like we did in Sect. 3. Our protocol requires 5 exponen-
tiations w.r.t. computation and 2 group elements w.r.t. communication; while
the state-of-the-art 2-round GrpRO-based OT protocol in [11] requires the same
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computation and extra 2λ bits string w.r.t. communication compared to our
protocol. We emphasize that our protocol achieves GUC security; whereas the
protocol proposed in [11] achieves only UC security.
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Abstract. GGM tree is widely used in the design of correlated oblivi-
ous transfer (COT), subfield vector oblivious linear evaluation (sVOLE),
distributed point function (DPF), and distributed comparison function
(DCF). Often, the cost associated with GGM tree dominates the compu-
tation and communication of these protocols. In this paper, we propose
a suite of optimizations that can reduce this cost by half.

– Halving the cost of COT and sVOLE. Our COT protocol intro-
duces extra correlation to each level of a GGM tree used by the
state-of-the-art COT protocol. As a result, it reduces both the num-
ber of AES calls and the communication by half. Extending this idea
to sVOLE, we are able to achieve similar improvement with either
halved computation or halved communication.

– Halving the cost of DPF and DCF. We propose improved two-
party protocols for the distributed generation of DPF/DCF keys.
Our tree structures behind these protocols lead to more efficient
full-domain evaluation and halve the communication and the round
complexity of the state-of-the-art DPF/DCF protocols.

All protocols are provably secure in the random-permutation model and
can be accelerated based on fixed-key AES-NI. We also improve the state-
of-the-art schemes of puncturable pseudorandom function (PPRF), DPF,
and DCF, which are of independent interest in dealer-available scenarios.

1 Introduction

The construction of Goldreich-Goldwasser-Micali (GGM) tree [26] yields a pseu-
dorandom function (PRF) family from any length-doubling pseudorandom gen-
erator (PRG). In this construction, a PRF key serves as a root and is expanded
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Table 1. Improvements of our protocols in the random-permutation model.
Computation is measured as the number of fixed-key AES calls. In sVOLE, communi-
cation varies as per two field sizes |F| and |K|. In DCF protocol, communication varies
as per the range size |R| of comparison functions.

Protocol Computation Communication # Rounds

COT (§4.1) 2× 2× −
sVOLE (§4.1) 2× 1 ∼ 2× −
sVOLE (§4.2) 1.33× 2× −
DPF (§5.2) 1.33× 3× 2×
DCF (§5.3) 1.6× 2 ∼ 3× 2×

into a full binary tree, where each non-leaf node defines two child nodes from
its PRG output. The PRF output for an input bit-string is defined as the leaf
node labeled by this bit-string. GGM tree has been adapted widely for various
cryptographic applications, especially in recent years.

A recent appealing application of GGM tree is to build efficient pseudoran-
dom correlation generators (PCGs) [8,10,12,42,43,46], e.g., correlated oblivious
transfer (COT), subfield vector oblivious linear evaluation (sVOLE), etc. In this
context, a GGM tree essentially serves as a puncturable pseudorandom function
(PPRF). PCGs serve as essential building blocks for secure multi-party com-
putation (MPC) (e.g., [27,33]), zero-knowledge proofs (e.g., [2,21,43]), private
set intersection (e.g., [23,40]), etc. Another related application of GGM tree is
to build function secret sharing (FSS). In an FSS scheme, a dealer produces
two keys, each defining an additive secret sharing of the full-domain evaluation
result of some function f without revealing the parameters of f . FSS is very
useful even for a simple f , and the dealer can be emulated using an MPC proto-
col. A distributed point function (DPF) [25] is an FSS scheme for the family of
point functions f•

α,β(x) that output β if x = α and 0 otherwise. DPF has found
various applications, including RAM-based secure computation [22], two-server
PIR [13,25], private heavy hitters [6], oblivious linear evaluation (OLE) [12],
etc. One important variation of DPF is distributed comparison function (DCF),
which is an FSS scheme for the family of comparison functions f<

α,β(x) that out-
put β if x < α and 0 otherwise. DCF has been applied to design mixed-mode
MPC [7,14], secure machine-learning inference [30], etc.

In all applications above, the cost associated with GGM tree can often be
significant. For example, in the most recent silent OT protocol [18], distribut-
ing GGM-tree-related correlations takes more than 70% of the computation and
essentially all communication. Similar bottlenecks have also been observed in
DPF. For example, in the DPF-based secure RAM computation [22], local expan-
sion of DPF keys takes a majority of the time as well.

1.1 Our Contribution

We propose a suite of half-trees as tailored alternatives for several GGM-tree-
based protocols, leading to halved computation/communication/round complex-
ity (Table 1, detailed complexity is compared in the sections). Our constructions
work in the random-permutation model (RPM) [4,41], which can be efficiently
instantiated via, e.g., fixed-key AES-NI.
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Correlated GGM Trees for Half-Cost COT and sVOLE. We introduce
correlated GGM (cGGM), a tree structure leading to both improved computation
and communication in COT. It has an invariant that all same-level nodes sum up
to the same global offset. We keep this invariant by setting a left child as the hash
of its parent and the associated right child as the parent minus the left child. By
plugging this tree into the state-of-the-art COT protocols [18,46], we can prove
the security of the whole protocol in the random-permutation model by carefully
choosing the hash function. Compared to the optimized GGM tree [28], this tree
reduces the number of random-permutation calls and the communication by half.

Using cGGM tree, we can realize sVOLE for any large field and its subfield.
This protocol reduces the computation of the prior protocols [10,43] by 2× using
a field-based random permutation. However, it only halves the communication
when the subfield size is significantly smaller than the field size. Then, we modify
our cGGM tree to obtain a pseudorandom correlated GGM (pcGGM) tree, which
is similar to a cGGM tree but has pseudorandom leaves. In contrast, pcGGM tree
leads to a 2× saving in communication and a 1.33× saving in computation.

Halved communication and round complexity in distributed key gen-
eration of DPF and DCF. We introduce another binary tree structure, which
adapts our pcGGM tree into a secretly shared form. This tree leads to a new DPF
scheme with an improved distributed key generation protocol. This DPF proto-
col reduces the computation, communication, and round complexity of the prior
work roughly by 1.33×, 3×, and 2×, respectively. When the range of point func-
tions is a general ring, this shared tree allows simpler secure computation than
the prior works in terms of the last correction word.

We also use an extended version of this shared pcGGM tree to design a new
DCF scheme also with an improved distributed key generation protocol. The tree
expansion in our DCF is much simpler than the prior work [7], where each parent
node has to quadruple in length to produce additional correction words. In our
extended shared pcGGM tree, this expansion factor in length is two or three,
and the resulting additional correction words are more 2PC-friendly. When used
in our DCF protocol with typical parameters, this extended tree leads to about
1.6×, 2 ∼ 3×, and 2× savings in terms of computation, communication, and
round complexity in contrast to the prior work.

1.2 Concurrent Work

Recently, Boyle et al. [9] propose two unpredictable punctured functions (UPFs)
that can be converted to PPRF with additional 0.5N RO calls for N -sized
domain. Their first UPF construction needs N RO calls and is provably secure
while the second UPF construction needs N RP calls but relies on an ad-hoc
conjecture. For m-sized sVOLE tuples, the sVOLE extension protocols based
on their proposal either needs 1.5m RO calls, or needs m RP calls plus 0.5m
RO calls. They also propose an sVOLE extension protocol that is based on a
stronger variation of UPF and requires m RO calls in total.

In contrast, our protocol is secure in the random-permutation model without
any conjecture. Our COT protocol, as a special case of sVOLE protocol, only
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Table 2. Comparison with the concurrent work. “RO/ROM” (resp.,
“RP/RPM”) is for random oracle (resp., permutation) and the model. P0 is the sender
with a global key, and P1 is the receiver. Assume weight-t regular LPN noises in sVOLE
extension with output length m, field F, and extension field K. Computation is mea-
sured by the amount of symmetric-key operations, and there is also LPN-related com-
putation in practice. Communication is measured by assuming P0 and P1 have access
to random precomputed tuples: (i) [9]: t log m

t
COTs (+ t sVOLEs, for general sVOLE

extension), (ii) our COT extension: t log m
t

COTs, (iii) our first sVOLE extension:
t(log m

t
+1) sVOLEs, and (iv) our second sVOLE extension: t log m

t
COTs + t sVOLEs.

Assump. Corr. Computation Communication (bits)

P0 → P1 P1 → P0

ROM sVOLE m RO calls

[9] Ad-hoca sVOLE m RP calls+ 0.5m RO calls
2t(log m

t
− 1)λ

+3t log |K|
t log |F|

COT m RP calls t(log m
t

− 1)λ + λ −

This work RPM sVOLE m RP calls
t(log m

t
− 1) log |K|

+λ
t(log m

t
+ 1) log |F|

sVOLE 1.5m RP calls
t(log m

t
− 2)λ

+3t log |K| + λ
t log |F|

a Security relies on the conjecture that the punctured result of the RPM-based UPF is unpredictable.

This UPF uses GGM-style tree expansion G(x) := H0(x) ‖ H1(x) for H0(x) := H(x) ⊕ x and H1(x) :=

H(x) + x mod 2λ.

requires m RP calls and can reduce communication by half; our two sVOLE
protocols need m or 1.5m RP calls with different levels of communication reduc-
tion. More importantly, we also demonstrate how the idea can be applied to
DPF/DCF protocols as well.

In Table 2, we compare the cost of sVOLE extension in the two works. The
sVOLE extension in both works can be easily turned into the extension of ran-
dom OTs via the standard transformation [3,10,34]. If we regard one (length-
preserving) RO call as two RP calls according to the XOR-based construction
of [5], our work also beats the concurrent one in terms of concrete efficiency.

2 Preliminaries

2.1 Notation

Let λ denote the computational security parameter. n = n(λ) means that n ∈ N

is polynomial in λ. Let negl(·) denote an unspecified negligible function and
log(·) denote the logarithm in base 2. Let x ← S denote sampling x uniformly
at random from a finite set S. Let [a, b) := {a, . . . , b− 1} and [a, b] := {a, . . . , b}.
Let G (resp., R) denote finite group (resp., ring). We use bold lowercase letters
(e.g., a) for vectors. For i ≥ 0, let a(i) denote the i-th entry of vector a. Let
unitG(n, α, β) ∈ G

n denote the vector whose α-th entry is β and others are 0.
For some field F and irreducible polynomial f(X) ∈ F[X], let K = F[X]/f(X)
denote an extension field. For some n ∈ N, we interchangeably use F2n , Fn

2 , and
{0, 1}n, where ⊕ is for bitwise-XOR. For some bit-string x ∈ {0, 1}n, let lsb(x)
denote its least significant bit (LSB), hb(x) denote its high n − 1 bits, and xi
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denote its i-th bit such that x1 is the most significant one. We use ‖ for bit-
string concatenation and ◦ for function composition. Let ConvertG : {0, 1}∗ → G

denote a function that maps random strings to pseudorandom G elements (see
Appendix F.1 of the full version [29] for its implementation).

Binary Trees. In an n-level tree, let Xj
i denote the j-th node on its i-level for

i ∈ [1, n] and j ∈ [0, 2i). We can write the superscript j into i-bit decomposition,
i.e., Xj1...ji

i := Xj
i . When a node Xj

i ∈ {0, 1}n, we can decompose it into a seed
sj

i := hb(Xj
i ) ∈ {0, 1}n−1 and a control bit tji := lsb(Xj

i ) ∈ {0, 1} such that
Xj

i = (sj
i ‖ tji ). We usually omit the superscript j if it is the i-bit prefix of a path

α ∈ {0, 1}n of particular interest in a given context. For completeness, let X0

denote the root. For some i ∈ [1, n] and b ∈ {0, 1}, let Kb
i denote the sum of the

2i−1 b-side (i.e., left or right) nodes on the i-th level.

Secret Sharings. For some additive Abelian group G and x ∈ G, we use 〈x〉A
to mean that x is additively shared between two parties and call it a secret
for short. For some secret 〈x〉A for x ∈ G and party b ∈ {0, 1}, let 〈x〉Ab ∈ G

denote the secret share of the party b such that x = 〈x〉A0 + 〈x〉A1 . We abbreviate
〈x〉A to 〈x〉 and 〈x〉Ab to 〈x〉b if G = {0, 1}n. For some secret 〈x〉 for x ∈ {0, 1}n

and efficiently computable (possibly non-linear) Boolean circuit H : {0, 1}n →
{0, 1}∗, let H(〈x〉) denote such a linear evaluation that returns a secret 〈y〉 with
share 〈y〉b := H(〈x〉b) for each b ∈ {0, 1}.

2.2 Security Model and Functionalities

We use the universal composability (UC) framework [15] to prove security in
the presence of a semi-honest, static adversary. We say that a protocol Π UC-
realizes an ideal functionality F if for any probabilistic polynomial-time (PPT)
adversary A, there exists a PPT adversary (simulator) S such that for any PPT
environment Z with arbitrary auxiliary input z, the output distribution of Z
in the real-world execution where the parties interact with A and execute Π
is computationally indistinguishable from the output distribution of Z in the
ideal-world execution where the parties interact with S and F.

Our protocols use the functionality FsVOLE (Fig. 1) of subfield vector oblivious
linear evaluation. If K = F2λ and F = F2, FsVOLE degenerates to the COT
functionality FCOT in [46]. If K = F, FsVOLE serves as the VOLE functionality in
[8,40,42]. We omit the session IDs and sub-session IDs in the functionalities for
simplicity. By convention, we can write sVOLE tuples as two-party information-
theoretic message authentication codes (IT-MACs) [20,38]. Let Δb ∈ K denote
the global key of one party Pb. Pb authenticates a value x ∈ F of the other party
P1−b by sampling a uniform one-time key Kb[x] ← K and giving to P1−b the
MAC M1−b[x] := Kb[x] + x · Δb ∈ K. If identity b ∈ {0, 1} is clear in a given
context, we write Δ, K[x], and M[x] for Δb, Kb[x], and M1−b[x], respectively.

2.3 Circular Correlation Robustness

Circular correlation robustness (CCR) [17,28] is the security notion first intro-
duced for the circuit garbling with Free-XOR optimization [37], where there
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Functionality FsVOLE

Parameters: Field F and its extension field K.

Initialize: Upon receiving (init) from P0 and P1, sample Δ ← K if P0 is honest;
otherwise, receive Δ ∈ K from the adversary. Store Δ and send it to P0. Ignore
all subsequent (init) commands.

Extend: This functionality allows polynomially many (extend) commands. Upon
receiving (extend, m) from P0 and P1:

1. If P0 is honest, sample v ← K
m; otherwise, receive v ∈ K

m from the adversary.
2. If P1 is honest, sample u ← F

m, and compute w := v+u ·Δ ∈ K
m; otherwise,

receive (u,w) ∈ F
m ×K

m from the adversary, and recompute v := w−u ·Δ ∈
K

m.
3. Send v to P0 and (u,w) to P1.

Global-key queries: If P1 is corrupted, upon receiving (guess, Δ′), where Δ′ ∈ K,
from the adversary, send (success) to the adversary if Δ = Δ′; send (fail) to the
adversary otherwise.

Fig. 1. Functionality for subfield VOLE.

exists a global key Δ offsetting the inputs and outputs of some function H. [28]
showed that a CCR function H can be constructed from a fixed-key block cipher
(e.g., AES) modeled as random permutation and a linear orthomorphism1. In
this construction, it takes one block-cipher call to invoke a CCR function.

Definition 1 (Circular Correlation Robustness, [28]). Let H : {0, 1}λ →
{0, 1}λ, χ be a distribution on {0, 1}λ, and Occr

H,Δ(x, b) := H(x ⊕ Δ) ⊕ b · Δ be
an oracle for x,Δ ∈ {0, 1}λ and b ∈ {0, 1}. H is (t, q, ρ, ε)-CCR if, for any
distinguisher D running in time at most t and making at most q queries to
Occr

H,Δ(·, ·), and any χ with min-entropy at least ρ, it holds that
∣
∣
∣
∣

Pr
Δ←χ

[DOccr
H,Δ(·,·)(1λ) = 1

] − Pr
f←Fλ+1,λ

[

Df(·,·)(1λ) = 1
]
∣
∣
∣
∣
≤ ε,

where D cannot query both (x, 0) and (x, 1) for any x ∈ {0, 1}λ.

In this work, D can only make CCR queries with restricted forms, which are
reminiscent of those in the Half-Gate garbling scheme [47]. We defer the formal
definition of these restricted queries to Appendix A of the full version [29].

1 A mapping σ : G → G for an additive Abelian group G is a linear orthomorphism
if (i) σ is a permutation, (ii) σ(x + y) = σ(x) + σ(y) for any x, y ∈ G, and (iii)
σ′(x) := σ(x) − x is also a permutation. [28] presents two efficient instantiations of
σ (with well-defined efficient σ−1, σ′, and σ′−1): (i) if G is a field, σ(x) := c · x for
some c �= 0, 1 ∈ G, and (ii) if G = {0, 1}n, σ(x) = σ(xL ‖ xR) := (xL ⊕ xR) ‖ xL

where xL and xR are the left and right halves of x. .
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2.4 Function Secret Sharing

A function secret sharing (FSS) is a secret sharing scheme where a dealer dis-
tributes the shares of a function f to multiple parties, and each party can use
its share to locally compute the share of f(x) for any public x in the domain of
f . In this work, we focus on two-party FSS schemes.

Definition 2 (Function Secret Sharing, [7,13]). For a family FX ,G of func-
tions with domain X and range G, where G is an Abelian group, a two-party
FSS scheme with key space K0 × K1 has the following syntax:

– (k0, k1) ← Gen(1λ, f̂). On input 1λ and the description f̂ ∈ {0, 1}∗ of a
function f ∈ FX ,G, output a key pair (k0, k1) ∈ K0 × K1.

– fb(x) ← Eval(b, kb, x). On input the party identifier b ∈ {0, 1}, the party’s key
kb ∈ Kb, and a point x ∈ X , output the share fb(x) ∈ G.

A two-party FSS scheme (Gen,Eval) is secure for the function family FX ,G

with leakage Leak : {0, 1}∗ → {0, 1}∗ if the following properties hold.

– Correctness. For any function f ∈ FX ,G with description f̂ , and any x ∈ X ,

Pr
[

(k0, k1) ← Gen(1λ, f̂) :
∑

b∈{0,1} Eval(b, kb, x) = f(x)
]

= 1.

– Security. There exists a PPT simulator Sim such that, for any function
f ∈ FX ,G with the description f̂ , any b ∈ {0, 1}, and any PPT adversary A,

∣
∣
∣Pr

[

(k0, k1) ← Gen(1λ, f̂) : A(1λ, kb) = 1
]

− Pr
[

kb ← Sim(1λ, b, Leak(f̂)) : A(1λ, kb) = 1
]∣
∣
∣ ≤ negl(λ).

By default, the leakage Leak(f̂) only involves the domain and the range of f .
The following two special FSS schemes have been proposed in [7,13].

Distributed Point Functions (DPFs). A two-party distributed point function
(DPF.Gen,DPF.Eval) with domain X and range G is a two-party FSS scheme for
the function family FX ,G = {f•

α,β}α∈X ,β∈G where f•
α,β is a point function such

that f•
α,β(α) = β, and f•

α,β(x) = 0 for x = α ∈ X .

Distributed Comparison Functions (DCFs). A two-party distributed com-
parison function (DCF.Gen,DCF.Eval) with domain X and range G is a two-party
FSS scheme for the function family FX ,G = {f<

α,β}α∈X ,β∈G where f<
α,β is a com-

parison function such that f<
α,β(x) = β if x < α ∈ X , and f<

α,β(x) = 0 otherwise.

3 Technical Overview

3.1 Improved COT/sVOLE from Correlated GGM Trees

Since COT/sVOLE can be constructed from its “single-point” version using an
appropriate LPN assumption, we focus on single-point COT/sVOLE, where the
vector u in a COT/sVOLE tuple w = v + u · Δ has exactly one non-zero entry.



Half-Tree: Halving the Cost of Tree Expansion in COT and DPF 337

Correlated OT from Correlated GGM. The core idea behind our single-
point COT protocol is that, instead of using a GGM tree with pseudorandom
nodes as the state-of-the-art works, our protocol uses a correlated GGM (cGGM)
tree where the sum of all same-level nodes equals a global offset Δ. This invariant
can be maintained by using a generalized Davies-Meyer construction with a hash
function H: every parent x has left child H(x) and right child x − H(x). cGGM
tree leads to two improvements: (i) no additional hash computation is needed for
every right child so that the computation is halved, and (ii) if the global offset
Δ (i.e., the difference between two first-level nodes) is set up by precomputed
random COT tuples, the single-point COT protocol sends only λ bits per level,
in contrast to 2λ bits from a standard OT per level in the state-of-the-art works.

To explain our second improvement in detail, we first recall the prior con-
struction from the perspective of GGM tree. In this construction, the sender
holds an n-level GGM tree, whose 2n leaves in F2λ forms a vector v ∈ F

2n

2λ . The
receiver with a punctured point α = α1 . . . αn ∈ {0, 1}n uses, for each i ∈ [1, n],
a standard OT to select the XOR of all αi-side nodes on the i-th level. From
these n XORs, the receiver recovers the n off-path GGM-tree nodes just leaving
the path α and use these n nodes to recover all leaves except the α-th one, corre-
sponding to a vector w ∈ F

2n

2λ with the punctured entry w(α). The sender samples
Δ ← F2λ , defines its output as (Δ,v), and sends ψ := Δ ⊕ (⊕j∈[0,2n)v(j)) ∈ F2λ

to the receiver. The receiver patches w(α) := ψ ⊕ (⊕j �=αw(j)) and defines its
output as (u,w) for u = unitF2(2

n, α, 1). The computation is dominated by the
full GGM-tree expansion while the communication is from n parallel standard
OTs, which need n precomputed COT tuples via the standard technique [3,34].

In contrast, our cGGM-tree single-point COT, where the global offset in a
cGGM tree coincides with the global key in the n precomputed COT tuples,
can directly use these tuples. For each level i ∈ [1, n], let M[ri] = K[ri] ⊕ ri · Δ
be such a tuple where the sender has (Δ,K[ri]) ∈ F2λ × F2λ and the receiver
has (ri,M[ri]) ∈ F2 × F2λ , and Kb

i ∈ F2λ be the XOR of all b-side nodes for
b ∈ {0, 1}. To select Kαi

i as in the prior construction, the receiver sends αi ⊕ ri

to the sender, receives back ci := K0
i ⊕ K[ri] ⊕ (αi ⊕ ri) · Δ, and computes

ci ⊕ M[ri] = K0
i ⊕ K[ri] ⊕ (αi ⊕ ri) · Δ ⊕ M[ri] = K0

i ⊕ αi · Δ = Kαi
i ,

where the last equality holds since the cGGM tree uses Δ as global offset. For
each level, the sender sends λ bits to the receiver, only a half of the 2λ bits in a
standard OT. When the point α is random, the message αi ⊕ ri can be avoided
as well. The single-point COT outputs are defined as in the prior construction,
except that the receiver locally patches w(α) := ⊕j �=αw(j).

The security against the semi-honest sender is straightforward. However, a
subtle issue arises in proving the security against the semi-honest receiver. Note
that the environment Z can observe the global key Δ from the honest sender’s
output and use it to distinguish the two worlds. Let {X

α1...αi−1αi

i }i∈[1,n] be the
cGGM-tree off-path nodes recovered by the receiver. In the real world, these
off-path nodes satisfy the consistency with Δ: for j ∈ [2, n], X

α1...αj−1αj

j equals
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H
(

Δ ⊕ ⊕

i∈[1,j−1] X
α1...αi−1αi

i

)

⊕ αj ·
(

Δ ⊕ ⊕

i∈[1,j−1] X
α1...αi−1αi

i

)

. (1)

However, this consistency does not hold in the ideal world where {ci}i∈[1,n] sent
by the simulator are sampled at random so that the n off-path nodes will be
independently uniform in the ideal world. Thus, Z can trivially distinguish the
two worlds by using the known Δ to check (1). Our security proof addresses this
issue by carefully constructing H from a random permutation, allowing global-
key queries in the single-point COT functionality, and programming the random
permutation and its inverse to keep the consistency. The intuition is that, to
distinguish the two worlds, Z must query the random permutation or its inverse
with Δ-related transcripts. Thus, the simulator can observe these queries and
extract every potential Δ from them. Using global-key queries, the simulator
checks whether an extracted Δ matches that in the single-point COT function-
ality or not. If so, it immediately programs the two permutation oracles using
this Δ so that they are consistent with the simulated {ci}i∈[1,n]. Similar proof
technique in the random-oracle model have been used in TinyOT [32,38].

Subfield VOLE from Correlated GGM. We further propose a cGGM-based
blueprint of single-point sVOLE for field F and its exponentially large extension
K. In this blueprint, we construct an n-level cGGM tree from a hash function
H : K → K so that all nodes are in K, and extend the spirit of our single-point
COT. The spirit is that the equality w(α) = v(α) ⊕ Δ at the punctured point α
automatically holds by embedding Δ into a cGGM tree. For single-point sVOLE,
we want to likewise keep w(α) = v(α) + β · Δ for some β ∈ F

∗ and Δ ∈ K at
the punctured point α. However, we cannot use β · Δ, which is unknown to the
sender, as the cGGM-tree global offset. Instead, we can define this offset as the
sender’s additive share of β ·Δ so that the receiver can correct the automatically
preserved result at the point α by using its additive share of β · Δ.

In detail, the two parties use a random sVOLE tuple M[β] = K[β] + β · Δ
for the β · Δ term, where the sender has (Δ,K[β]) ∈ K×K and the receiver has
(β,M[β]) ∈ F

∗ × K. The sender uses K[β] as the global offset of its cGGM tree,
and the receiver selects, for each level i, the sum of all αi-side nodes. For the i-th
level, let Kb

i ∈ K be the sum of all b-side nodes for b ∈ {0, 1}, and let the two
parties have access to a special sVOLE tuple2 M[ri] = K[ri]+ ri ·K[β], where the
sender has K[ri] ∈ K and the receiver has (ri,M[ri]) ∈ F2 ×K. The sender sends
ci := K[ri] + K0

i ∈ K to the receiver, who defines αi := ri and can compute

(−1)ri · (−M[ri] + ci) = (−1)αi · (K0
i − αi · K[β]) = Kαi

i ,

where the last equality holds due to the cGGM invariant. The n selected sums
allow the receiver to recover, in a top-down manner, the n off-nodes with respect
to α and the 2n cGGM leaves except the α-th one. The sender defines v ∈ K

2n

from its 2n cGGM-tree leaves, while the receiver defines w ∈ K
2n

from the α-
exclusive 2n − 1 leaves and the locally patched punctured leaf w(α) := M[β] −
2 The special sVOLE tuples for selecting n sums can be obtained from n precomputed

random sVOLE tuples by the receiver sending n · log |F| bits.
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∑

j �=α w(j) = M[β] − (
∑

j �=α w(j) + v(α)) + v(α) = v(α) + β · Δ. If the sender
defines its output as (Δ,v) and the receiver defines its output as (u,w) for
u := unitF(2n, α, β), the two parties share a single-point sVOLE correlation.

Our cGGM-based single-point sVOLE protocol also has the issue in proving
the security against the semi-honest receiver as the environment Z sees Δ from
the honest sender’s output. Z can compute the cGGM offset K[β] = M[β]−β ·Δ
and, to distinguish the two worlds, check if the consistency (1) holds for K[β] or
not. As in our cGGM-based single-point COT, our simulator addresses this issue
by extracting every possible K[β] and the associated Δ = β−1 · (M[β] − K[β]),
querying the single-point sVOLE functionality with Δ, and programming the
random permutation and its inverse if the global-key query succeeds.

Subfield VOLE from Pseudorandom Correlated GGM. There is another
single-point sVOLE blueprint [10,43] basing its security on the pseudorandom-
ness of GGM-tree nodes: for some path α ∈ {0, 1}n, the n off-path nodes and the
α-th leaf are pseudorandom. Our cGGM tree cannot be used in this blueprint
since its same-level nodes are correlated under the global offset. However, we
observe that a cGGM tree can be modified into a pseudorandom cGGM (pcGGM)
tree with the required pseudorandomness.

In an n-level pcGGM tree, we preserve the cGGM invariant for the F2λ nodes
on the first n − 1 levels, i.e., using a hash function H′ : F2λ → F2λ and Davies-
Meyer construction to keep that all same-level nodes are XORed to a global
offset Δ ∈ F2λ . Nevertheless, we break the last-level correlation in the pcGGM
tree: every parent x ∈ F2λ on the (i − 1)-th level has left child H′(x) and right
child H′(x ⊕ 1). In sVOLE protocols for K = F2λ , the pcGGM leaves will be
further converted by the function ConvertK : F2λ → K.

Our core observation for arguing the pseudorandomness of the n + 1 pcGGM
nodes is that the inputs of the hash function H′ are of CCR forms. More specif-
ically, a global Δ ∈ F2λ offsets the two first-level nodes of the pcGGM tree and
induces the first n − 1 off-path nodes {X

α1...αi−1αi

i }i∈[1,n−1] according to (1) for
H′. Meanwhile, the last off-path node X

α1...αn−1αn
n ∈ F2λ and the α-th pcGGM

leaf Xn ∈ F2λ come from two hash calls of the following form: for b ∈ {0, 1},

Xα1...αn−1b
n = H′

(

Δ ⊕ (
⊕

i∈[1,n−1] X
α1...αi−1αi

i ) ⊕ b
)

.

Intuitively, we can use a CCR hash function H′ to argue the pseudorandomness
of the n off-path nodes and the α-th leaf, which is sufficient for the single-point
sVOLE blueprint. The challenge in this security reduction is to show that the CCR
queries to H′ are legal (i.e., no (x, 0) and (x, 1) for the same x) with overwhelming
probability. We address this challenge by resorting to the observation that these
inputs are restricted so that they are well-structured and are not arbitrarily chosen
by the corrupted receiver (the only case where we need the pseudorandomness).
Such restricted inputs are reminiscent of the “naturally derived keys” [28,47] in
the Half-Gate garbling scheme so that we can bound the probability similarly. We
defer the details to Appendix A of the full version [29]. Note that even if one uses
ConvertK to map the leaves intoK, the pseudorandomness of these nodes still holds
due to the pseudorandomness of ConvertK.
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By plugging our pcGGM tree into the prior single-point sVOLE blueprint, we
obtain a more efficient protocol. The improvement owes to the cGGM invariant
in its first n − 1 levels. In terms of communication, the receiver can use n − 1
precomputed random COTs to select the XORs on these levels and recover the
first n − 1 levels of the sender’s pcGGM tree; in contrast, the prior protocols
use a standard OT per level due to the two pseudorandom XORs. For the last
level in our protocol, the two parties also need a standard OT due to the broken
correlation of the two sums. Given the random-permutation-based CCR hash
functions in [28], our pcGGM-based single-point sVOLE protocol is secure in
the random-permutation model. In particular, this protocol can implement the
single-point sVOLE functionality without global-key queries since Δ ∈ F2λ is
only used in the pcGGM tree and is not included in the sender’s output.

3.2 DPF/DCF from Shared Pseudorandom Correlated GGM Trees

DPF Sheme and Protocol. Using a pcGGM-like trick, we present a new DPF
scheme, followed by a more efficient distributed protocol. Recall that, in the
prior DPF scheme [13], there are two parties sharing an n-level GGM-style tree
where the n nodes on some path α ∈ {0, 1}n are pseudorandom with LSB one,
and others are zero. Then, the two-party shares of the α-th leaf mask the DPF
payload β ∈ G. Our core observation is that we need the pseudorandom α-th
leaf to hide β, but the internal pseudorandom on-path nodes are not mandatory.
Instead, the two parties can share an n-level pcGGM-style tree (say, spcGGM
tree) where (i) the root X0 and the first n − 1 on-path nodes equal a global
offset Δ ∈ F2λ with lsb(Δ) = 1, (ii) the last on-path node (i.e., the α-th leaf)
is pseudorandom with LSB one, and (iii) other nodes are zero. As in the prior
scheme, the per-party share of this tree is compressed as a key including an XOR
share of the root and n + 1 public pseudorandom correction words.

We explain our construction of these correction words in detail. To keep the
invariant (i), the spcGGM tree uses a correction procedure different from the
prior one. For each level i ∈ [1, n − 1] with a public correction word CWi ∈ F2λ ,
and b ∈ {0, 1}, the b-side secret child of the (i − 1)-th on-path secret node
〈Xi−1〉 = 〈si−1 ‖ ti−1〉 is defined as follows:

〈Xα1...αi−1b
i 〉 := H′(〈Xi−1〉) ⊕ b · 〈Xi−1〉 ⊕ 〈ti−1〉 · CWi.

Solving this linear equation for the public CWi under the constraint (i), we have

CWi = H′(〈Xi−1〉0) ⊕ H′(〈Xi−1〉1) ⊕ αi · Δ.

As for (ii), we use a public correction word CWn = (HCW, LCW0, LCW1) ∈
F2λ−1 × F2 × F2 to follow the same last-level correction as the prior work. For
b ∈ {0, 1}, define a function H′

b(·) := H′(· ⊕ b) and the b-side secret child of the
(n − 1)-th on-path secret node 〈Xn−1〉 = 〈sn−1 ‖ tn−1〉 as follows:

〈Xα1...αn−1b
n 〉 := H′

b(〈Xn−1〉) ⊕ 〈tn−1〉 · (HCW ‖ LCWb).
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Solving this linear equation for the public CWn under the constraint (i) and (iii),

HCW = hb
(

H′
αn

(〈Xn−1〉0) ⊕ H′
αn

(〈Xn−1〉1)
)

,

∀b ∈ {0, 1} : LCWb = lsb
(

H′
b(〈Xn−1〉0) ⊕ H′

b(〈Xn−1〉1)
)

⊕ αn ⊕ b.
(2)

Note that the n off-path secret nodes {〈Xα1...αi−1αi

i 〉}i∈[1,n] are zero secrets
according to the above correction procedures. As a result, the two parties hold
identical shares of these n off-path nodes and their subtrees, given that the share
of a subtree is fully determined by the share of its root (i.e., an off-path node) and
the public correction words. This implies the constraint (iii). Finally, the (n+1)-
th public correction word is defined from the secret α-th leaf 〈Xn〉 = 〈sn ‖ tn〉
and the function ConvertG : F2λ−1 → G as follows:

CWn+1 = (〈tn〉0 − 〈tn〉1) ·
(

ConvertG(〈sn〉1) − ConvertG(〈sn〉0) + β
)

∈ G,

where the DPF payload β is masked by the XOR shares of the α-th leaf.
The DPF security primarily follows from that the first n correction words

are of CCR forms, i.e., for i ∈ [0, n − 1], 〈Xi〉0 ⊕ 〈Xi〉1 = Xi = Δ according to
the XOR secret sharing scheme and the invariant (i). The Δ-circular correlation
in CW1, . . . ,CWn−1 is obvious for either corrupted party. In CWn, the honest
party’s H′ inputs also differ from the corrupted party’s H′ inputs by Δ. Intu-
itively, these n correction words use CCR responses as one-time pads, and the
underlying CCR queries are as structured as those in the original pcGGM tree.
By using a CCR H′ and upper bounding the probability of illegal CCR queries,
we can prove the pseudorandomness of the first n correction words and the high
λ − 1 bits (i.e., sn) of the α-th leaf. The pseudorandom sn = 〈sn〉0 ⊕ 〈sn〉1 and
ConvertG ensure the pseudorandom CWn+1 for either corrupted party.

Our DPF scheme enables a more efficient distributed key generation protocol
due to the construction of the first n − 1 correction words. The insight is that
the two parties, who share 〈α〉 and 〈β〉A, can use their precomputed COT tuples
to set up a secret 〈Δ〉 with lsb(Δ) = 1 and share {〈αi · Δ〉}i∈[1,n] in two rounds,
and use the black-box evaluation technique in [22] to locally share each secret
H′(〈Xi−1〉). This technique relies on the invariant (iii) so that, for each i ∈ [1, n],
summing the shares of the 2i nodes on the i-th level returns the share of the
i-th level on-path node. Given the two-party shares of 〈αi · Δ〉 and H′(〈Xi−1〉),
the secure computation of each CWi only needs one round for revealing 〈CWi〉,
leading to n − 1 rounds for the first n − 1 correction words in total. In contrast,
the prior protocol [22] uses (2) for each correction word, and the i-th level HCW
depends on αi and should be computed level-by-level. Thus, it securely computes
the first n − 1 correction words in 2(n − 1) rounds: for each level, one round is
to share 〈CWi〉 from standard OTs, and another round is to reveal this secret.

We remark that our CWn+1 construction uses 〈tn〉0 − 〈tn〉1 to replace the
(−1)〈tn〉1 term in the prior construction. The correctness is unaffected due to
the non-zero LSB (i.e., tn) of the α-th leaf. However, when G is a ring, our
CWn+1 allows the two parties to locally share 〈tn〉0 − 〈tn〉1 on the ring via the
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black-box evaluation technique [22]. Thus, the secure computation of CWn+1

uses only one secure multiplication of two locally shared ring operands.

DCF Scheme and Protocol. We further show that our spcGGM tree can be
extended to realize more efficient DCF scheme and its distributed protocol. Note
that comparison function f<

α,β(x) can be written as the sum of point function
f•

α,−αn·β(x) and a prefix function Vα,β(x), which returns αh+1 · β ∈ G such that
α1 . . . αh = x1 . . . xh is the longest common prefix of α and x (for completeness,
αn+1 := αn). We have shown how to realize the DPF scheme for point function
f•

α,−αn·β(x) from spcGGM tree. Then, we want to compute Vα,β(x) by reusing
the prefix information with respect to α and x when traversing the spcGGM
tree to evaluate the point function. Following the GGM-style DCF scheme [7],
we do this by introducing more nodes to the spcGGM tree and an additional
correction procedure to ensure that the sum of the introduced nodes along the
path x equals Vα,β(x). However, our extended spcGGM tree can use less nodes
and simpler correction words to compute Vα,β(x).

To give more details, we first recall how [7] works. It extends a shared GGM
tree by replacing its length-doubling PRG with a length-quadrupling PRG so
that each secret parent spawns two more secret children in F2λ . For each level
i ∈ [1, n], let 〈v0

i 〉 and 〈v1i 〉 denote such two secret children of the (i − 1)-th
on-path secret parent 〈Xi−1〉 = 〈si−1 ‖ ti−1〉, and the two parties correct their
additive shares for Vα,β(x) via the public correction word VCWi:

Vi−1 :=
∑

b∈{0,1}(−1)1−b ·
(

ConvertG(〈vαi−1
i−1 〉b) − ConvertG(〈vαi−1

i−1 〉b)
)

∈ G,

VCWi := (−1)〈ti−1〉1 ·
(

(ConvertG(〈vαi
i 〉1) − ConvertG(〈vαi

i 〉0))

− Vi−1 + (αi − αi−1) · β
)

∈ G. (V0 := 0 ∈ G, α0 = 0)

The DCF key per party includes its DPF key for f•
α,−αn·β(x) and {VCWi}i∈[1,n].

The DCF security also requires the pseudorandomness of the n VCWi’s.
In contrast, our DCF scheme shows that it is overkill to introduce two more

secret children to each secret parent for the DCF security. For each i ∈ [1, n],
one additional secret child 〈vi〉 = 〈v0i 〉 = 〈v1i 〉 of the secret parent 〈Xi−1〉 suffices,
and the pseudorandomness of VCWi relies on a random vi = 〈vi〉0 ⊕ 〈vi〉1 ∈ F2λ

as ConvertG maps random strings to pseudorandom G elements. We can argue
the pseudorandomness of vi based on the CCR induced by Xi−1 = Δ, if we use
vi := H′(〈Xi−1〉0 ⊕ 2) ⊕ H′(〈Xi−1〉1 ⊕ 2). Collecting all H′ inputs for the DPF
part and vi’s, we find that these inputs are as structured as those in the original
pcGGM tree. The DCF security can follow from a similar hybrid argument.

Our DCF protocol is extended from our DPF protocol with the additional
secure computation of {VCWi}i∈[1,n]. Compared with the prior work, our DCF
protocol achieves better efficiency due to not only its optimized DPF part but
also the structure of each VCWi. This structure makes the ConvertG difference
term independent of αi. This independence allows the two parties to locally share
the ConvertG difference via the black-box evaluation technique [22], in contrast
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to the technique plus OT-based 2PC in the prior protocol. Since there is only
one more secret child for each secret parent, the local computation for sharing
this difference is halved as well. We can also replace the (−1)〈ti−1〉1 term in
the prior VCWi construction by a linear term 〈ti−1〉0 − 〈ti−1〉1, which can be
locally shared via the same black-box evaluation technique if G is a ring. As
a result, except the 2PC for sharing {〈αi · β〉A}i∈[1,n], the secure computation
of {VCWi}i∈[1,n] requires n secure multiplications of two shared ring elements.
These secure multiplications can run in parallel with that for CWn+1.

In our DCF protocol, each 〈αi · β〉A is secretly shared by carefully reusing
the two precomputed COT tuples, which were used to share 〈αi · Δ〉, to run a
COT-based multiplication between the XOR shared αi and the additively shared
β on the ring. This multiplication generalizes the binary case [1,28] for an XOR
shared bit and an XOR shared string by using the well-known arithmetic XOR
on the ring: 〈αi〉0 ⊕ 〈αi〉1 = 〈αi〉0 + 〈αi〉1 − 2 · 〈αi〉0 · 〈αi〉1.

Functionality FspsVOLE

Parameters: Field F and its extension field K.

Initialize: Upon receiving (init) from P0 and P1, sample Δ ← K if P0 is honest;
otherwise, receive Δ ∈ K from the adversary. Store Δ and send it to P0. Ignore
all subsequent (init) commands.

Extend: This functionality allows polynomially many (extend) commands. Upon
receiving (extend, N) from P0 and P1:

1. If P0 is honest, sample v ← K
N ; otherwise, receive v ∈ K

N from the adversary.
2. If P1 is honest, sample u ← F

N with exactly one nonzero entry, and compute
w := v+u ·Δ ∈ K

N ; otherwise, receive (u,w) ∈ F
N ×K

N from the adversary,
where u has at most one nonzero entry, and recompute v := w−u · Δ ∈ K

N .
3. Send v to P0 and (u,w) to P1.

Global-key queries: If P1 is corrupted, upon receiving (guess, Δ′), where Δ′ ∈ K,
from the adversary, send (success) to the adversary if Δ = Δ′; send (fail) to the
adversary otherwise.

Fig. 2. Functionality for single-point subfield VOLE.

4 Subfield VOLE Extension

Our sVOLE extension follows the blueprint of [10,42,43,46], which uses LPN to
locally convert t single-point sVOLE (spsVOLE) tuples output by functionality
FspsVOLE (Fig. 2) into an sVOLE tuple. We focus on the efficient spsVOLE pro-
tocol that UC-realizes FspsVOLE. Note that the spsVOLE protocol dominates the
computation and contributes all communication in sVOLE extension.

FspsVOLE is parameterized by a field F and its extension K, and covers the
single-point COT functionality FspCOT if F = F2 and K = F2λ . This functionality
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is the same as that in [43], except that FspsVOLE will not abort for an incorrect
global-key query. Allowing for global-key queries has been considered in [32,38]
and does not weaken the effective security. In the spsVOLE protocol based on
pseudorandom correlated GGM, such global-key queries can be removed.

In essence, our spsVOLE protocols work as the PCG protocol [10–12,18] of
spsVOLE correlation, although we do not divide the correlation generation into
two explicit PCG phases. In Appendix E.1 of the full version [29], we show how
to modify one of our spsVOLE protocols to define such two phases, in order to
satisfy the “silent property” that a long spsVOLE tuple can be stored as two
sublinearly short correlated seeds.

4.1 Single-Point COT and sVOLE from Correlated GGM

In Fig. 3, we present the two evaluation algorithms for our correlated GGM tree,
which is defined by two first-level nodes (k,Δ−k) ∈ K

2. For every non-leaf node
x ∈ K, its left child is defined as H(x) ∈ K while its right child is defined as
x − H(x) ∈ K. The following claim is straightforward from an induction.

Parameters: Tree depth n ∈ N. Field K with |K| ≥ 2λ. Hash function H : K → K.

cGGM.FullEval(Δ, k): Given (Δ, k) ∈ K
2,

1: X0
1 := k ∈ K, X1

1 := Δ − k ∈ K.
2: for i ∈ [2, n], j ∈ [0, 2i−1) do
3: X2j

i := H(Xj
i−1) ∈ K, X2j+1

i := Xj
i−1 − X2j

i ∈ K.

4: v := (X0
n, . . . , X2n−1

n ) ∈ K
2n

.
5: for i ∈ [1, n] do K0

i :=
∑

j∈[0,2i−1) X2j
i ∈ K.

6: return (v, {K0
i }i∈[1,n])

cGGM.PuncFullEval(α, {Kαi
i }i∈[1,n]): Given (α, {Kαi

i }i∈[1,n]) ∈ {0, 1}n × K
n,

1: Xα1
1 := Kα1

1 ∈ K.
2: for i ∈ [2, n] do
3: for j ∈ [0, 2i−1), j �= α1 . . . αi−1 do
4: X2j

i := H(Xj
i−1) ∈ K, X2j+1

i := Xj
i−1 − X2j

i ∈ K.

5: X
α1...αi−1αi

i := Kαi
i − ∑

j∈[0,2i−1),j �=α1...αi−1
X2j+αi

i ∈ K.

6: Xα
n := − ∑

j∈[0,2n),j �=α Xj
n ∈ K, w := (X0

n, . . . , X2n−1
n ) ∈ K

2n

.
7: return w

Fig. 3. Two full-evaluation algorithms for correlated GGM tree.

Claim (Leveled correlation). For any two first-level nodes (k,Δ − k) ∈ K
2 and

any i ∈ [1, n], the offset Δ ∈ K equals the sum of all nodes on the i-th level of
the correlated GGM tree expanded from (k,Δ − k) as per cGGM.FullEval.
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Corollary 1. For any α ∈ [0, 2n), any (k,Δ − k) ∈ K
2, and

(v, {K0
i }i∈[1,n]) := cGGM.FullEval(Δ, k),

w := cGGM.PuncFullEval(α, {Kαi
i }i∈[1,n]),

where Kαi
i := αi · Δ + (−1)αi · K0

i for i ∈ [1, n], we have w(α) − v(α) = −Δ.

Proof. Claim 4.1 and the definition of cGGM.FullEval imply that Kαi
i ∈ K in this

corollary defines the sum of all αi-side nodes on the i-th level of the correlated
GGM tree. Then, it follows from the definition of cGGM.PuncFullEval that v(j) =
w(j) for any j = α ∈ [0, 2n). Using Claim 4.1 for the last level, we have w(α) −
v(α) = −∑

j∈[0,2n),j �=α w(j) − v(α) = −∑

j∈[0,2n),j �=α v(j) − v(α) = −Δ.

Single-Point COT. Figure 4 describes our single-point COT protocol ΠspCOT

that runs in the FCOT-hybrid model and uses the cGGM expansion in Fig. 3.

The same Δin correlated GGM trees. Note that FspCOT produces single-
point COT tuples with the same global key Δ ∈ F2λ in a number of Extend exe-
cutions. To realize FspCOT, our protocol ΠspCOT proceeds as sketched in Sect. 3.1
but uses the same Δ for the cGGM trees of these executions, each of which sam-
ples a fresh k ← F2λ for cGGM.FullEval(Δ, k). A merit of using the same Δ in
several tree instances is that ΠspCOT only invokes one FCOT instance, and the
amortized cost per precomputed COT tuple can be small.

Protocol ΠspCOT

Parameters: Field F2 and its extension field F2λ .

Initialize: This procedure is executed only once.

1. P0 and P1 send (init) to FCOT, which returns Δ ∈ F2λ to P0. P0 outputs Δ.

Extend: This procedure can be executed many times. P0 and P1 input N = 2n

and use cGGM (c.f. Figure 3) for n and F2λ .

2. P0 and P1 send (extend, n) to FCOT, which returns (K[r1], . . . ,K[rn]) ∈ F
n
2λ to

P0 and ((r1, . . . , rn), (M[r1], . . . ,M[rn])) ∈ F
n
2 × F

n
2λ to P1 such that M[ri] =

K[ri] ⊕ ri · Δ for i ∈ [1, n].
3. P0 samples c1 ← F2λ and sets k := K[r1] ⊕ c1,

(v, {K0
i }i∈[1,n]) := cGGM.FullEval(Δ, k),

and ci := K[ri] ⊕ K0
i for i ∈ [2, n]. P0 sends (c1, . . . , cn) to P1.

4. P1 sets α = α1 . . . αn := r1 . . . rn ∈ [0, N), Kαi
i := M[ri]⊕ ci for i ∈ [1, n], and

u := unitF2(N, α, 1), w := cGGM.PuncFullEval(α, {Kαi
i }i∈[1,n]).

5. P0 outputs v and P1 outputs (u,w).

Fig. 4. cGGM-based single-point COT protocol in the FCOT-hybrid model.
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Security. We prove Theorem 1 by following the sketched intuition in Sect. 3.1
and defer the proof to Appendix B.1 of the full version [29]. Our proof consid-
ers polynomially many concurrent Extend executions (strictly speaking, sub-
sessions with unique sub-session IDs) that uses the one-time initialized Δ.

Theorem 1. Given random permutation π : F2λ → F2λ , efficiently computable
linear orthomorphism σ : F2λ → F2λ with efficiently computable σ−1, σ′(x) :=
σ(x) ⊕ x, and σ′−1 (Footnote 1), and hash function H(x) := π(σ(x)) ⊕ σ(x),
protocol ΠspCOT (Fig. 4) UC-realizes functionality FspCOT (Fig. 2) against any
semi-honest adversary in the FCOT-hybrid model and the RPM.

Communication Optimization. For t concurrent Extend executions (e.g.,
in COT extension), the random c1’s in these executions can be compressed via a
PRF F : F2λ ×{0, 1}∗ → F2λ . Concretely, P0 samples a PRF key kprf ← F2λ after
receiving its COT outputs in all executions and sends this key to P1. For each
execution with sub-session ID ssid, the two parties locally defines the element
c1 := F (kprf, ssid). This PRF key is only used for the t concurrent executions.
The security of this optimization follows from the PRF security and the fact
that, in the concurrent executions, the COT messages chosen by the corrupted
receiver cannot depend on the PRF key to be sampled by the honest sender.

Complexity Analysis. Consider the complexity per execution when the PRF-
based optimization is used in t concurrent Extend executions. ΠspCOT needs n
precomputed COT tuples. P0 sends (n − 1) · λ + λ

t bits, and P1 sends nothing.
The computation per party comes from the tree expansion with N RP calls.

In the FCOT-hybrid model, the prior single-point COT protocol [46] consumes
n precomputed COT tuples. However, P0 sends 2n · λ bits. Each party performs
about N length-doubling PRG calls, which in turn result in 2N RP calls. We
can see that our protocol halves both the computation and communication in
the prior work. When looking at the whole protocol, the improvement is still
huge. For example, the micro benchmark in Silver [18] reported that 70% of the
time is spent on GGM-tree-related computation, and thus our protocol will lead
to at least 50% of end-to-end computational improvement in COT.

Single-Point sVOLE. We can also realize single-point sVOLE from our cGGM
tree by using the high-level idea sketched in Sect. 3.1. This protocol extends
ΠspCOT by using a cGGM tree whose nodes are in a general exponentially large
extension field K. The tree expansion therein uses a hash function constructed
from a random permutation and a linear orthomorphism over K. We defer the
detailed protocol and its security proof to Appendix B.2 of the full version [29].

4.2 Single-Point sVOLE from Pseudorandom Correlated GGM

We can adapt our correlated GGM tree for a pseudorandom correlated one with
the property that the leaf node at some punctured position α is pseudorandom.
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This pseudorandom correlated GGM tree pcGGM is defined in Fig. 5, where the
first n − 1 levels preserve the correlation in Claim 4.1 but all last-level nodes
are processed by HS to break this correlation. The keyed hash function HS uses
some key S ∈ F2λ , which can be sampled by the receiver in single-point sVOLE
and, for simplicity, is assumed to have been sent to the sender before protocol
execution. The implementation of HS is given in Theorem 2. In fact, this pcGGM
tree yields PPRF, which is proved in Appendix C of the full version [29].

The pseudorandomness only at the cost of the last-level correlation allows us
to follow the single-point sVOLE blueprint in [10,43] but also take advantage of
the correlation in the first n − 1 levels. The protocol is presented in Fig. 6. In
this protocol, the sender P0 only sends λ bits to the receiver P1 for each of the
first n − 1 levels, given a precomputed COT tuple. For the last level, the two
parties use a COT tuple and the standard technique [3,34] to emulate the string
OT as in the prior protocols. To amortize the cost per precomputed COT tuple,
the pcGGM trees in many Extend executions also use the same Δ set by FCOT.

Security. The security against the semi-honest P0 resorts to the one-time pad s
from FsVOLE. Meanwhile, the security against the semi-honest P1 relies on that (i)

Parameters: Tree depth n ∈ N. Field K. Keyed hash function HS : F2λ → F2λ .
Function ConvertK : F2λ → K.

pcGGM.FullEval(Δ, k): Given (Δ, k) ∈ F
2
2λ ,

1: X0
1 := k ∈ F2λ , X1

1 := Δ ⊕ k ∈ F2λ .
2: for i ∈ [2, n − 1], j ∈ [0, 2i−1) do
3: X2j

i := HS(Xj
i−1) ∈ F2λ , X2j+1

i := Xj
i−1 ⊕ X2j

i ∈ F2λ .

4: for j ∈ [0, 2n−1), b ∈ {0, 1} do X2j+b
n := ConvertK(HS(Xj

n−1 ⊕ b)) ∈ K.

5: v := (X0
n, . . . , X2n−1

n ) ∈ K
2n

.
6: for i ∈ [1, n − 1] do K0

i := ⊕j∈[0,2i−1)X
2j
i ∈ F2λ .

7: (K0
n, K1

n) := (
∑

j∈[0,2n−1) X2j
n ,

∑
j∈[0,2n−1) X2j+1

n ) ∈ K
2.

8: return (v, {K0
i }i∈[1,n−1], (K

0
n, K1

n))

pcGGM.PuncFullEval(α, {Kαi
i }i∈[1,n], γ): Given (α, {Kαi

i }i, γ) ∈ {0, 1}n ×K
n ×K,

1: Xα1
1 := Kα1

1 ∈ F2λ .
2: for i ∈ [2, n − 1] do
3: for j ∈ [0, 2i−1), j �= α1 . . . αi−1 do
4: X2j

i := HS(Xj
i−1) ∈ F2λ , X2j+1

i := Xj
i−1 ⊕ X2j

i ∈ F2λ .

5: X
α1...αi−1αi

i := Kαi
i ⊕ (⊕j∈[0,2i−1),j �=α1...αi−1

X2j+αi
i ) ∈ F2λ .

6: for j ∈ [0, 2n−1), j �= α1 . . . αn−1, b ∈ {0, 1} do
7: X2j+b

n := ConvertK(HS(Xj
n−1 ⊕ b)) ∈ K.

8: X
α1...αn−1αn
n := Kαn

n − ∑
j∈[0,2n−1),j �=α1...αn−1

X2j+αn
n ∈ K.

9: Xα
n := γ − ∑

j∈[0,2n),j �=α Xj
n ∈ K, w := (X0

n, . . . , X2n−1
n ) ∈ K

2n

.
10: return w

Fig. 5. Two full-evaluation algorithms for pseudorandom correlated GGM tree.
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the pcGGM tree with a CCR structure has n pseudorandom off-path nodes and
the punctured leaf, giving pseudorandom c1, . . . , cn−1 and (crn

n , ψ), and (ii) the
mask of the unselected message crn

n in the emulated last-level OT is computed
by applying ConvertK to a CCR response, which is for a legal CCR query with
overwhelming probability due to the uniform μ. The proof of Theorem 2 can be
found in Appendix B.3 of the full version [29], where we consider polynomially
many concurrent Extend executions, which use the one-time initialized Δ.

Theorem 2. Given CCR function H : F2λ → F2λ , function ConvertK : F2λ →
K, and keyed hash function HS(x) := H(S ⊕ x) with some key S ← F2λ , pro-
tocol ΠspsVOLE−pcGGM (Fig. 6) UC-realizes functionality FspsVOLE (Fig. 2) with-
out global-key queries against any semi-honest adversary in the (FCOT,FsVOLE)-
hybrid model.

Communication Optimization. ΠspsVOLE−pcGGM can be optimized as follows:

– The two random (c1, μ) to be sent by the sender in ΠspsVOLE−pcGGM can be
compressed via the PRF technique for ΠspCOT. In t concurrent Extend exe-
cutions, all such random messages can also be compressed in batch.

– The optimization for a large field F in ΠspsVOLE−cGGM also applies.
– If F = F2, ΠspsVOLE−pcGGM degenerates to single-point COT and can do away

with FsVOLE so that the receiver need not send a difference d ∈ F. Instead,
the sender locally samples Γ ∈ K and masks this value with the sum of all
last-level nodes in a pcGGM tree. This optimization has been used in [10].

Complexity Analysis. Consider the complexity per execution when the PRF-
based optimization is used in t concurrent Extend executions. ΠspsVOLE−pcGGM

uses n precomputed COT tuples and one precomputed sVOLE tuple. P0 sends
(n − 2) · λ + 3 · log |K| + λ

t bits, and P1 sends log |F| bits. The computation is
dominated by the tree expansion with 1.5N RP calls for each party. Compared
with the prior works [10,43], our protocol roughly halve the communication, and
the reduction in computation is 25%. This computation cost includes no PRG
call in ConvertK, which can be implemented from cheap modulo operations for
the field size |K| considered in many sVOLE applications, e.g., [40,43–45].
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Protocol ΠspsVOLE−pcGGM

Parameters: Field F and its extension field K.

Initialize: This procedure is executed only once.

1. P0 and P1 send (init) to FCOT, which returns Δ ∈ F2λ to P0.
2. P0 and P1 send (init) to FsVOLE, which returns Γ ∈ K to P0. P0 outputs Γ .

Extend: This procedure can be executed many times. P0 and P1 input N = 2n

and use pcGGM (c.f. Figure 5) for n, K, keyed hash function HS : F2λ → F2λ , and
function ConvertK : F2λ → K.

3. P0 and P1 send (extend, n) to FCOT, which returns (K[r1], . . . ,K[rn]) ∈ F
n
2λ to

P0 and ((r1, . . . , rn), (M[r1], . . . ,M[rn])) ∈ F
n
2 × F

n
2λ to P1 such that M[ri] =

K[ri] ⊕ ri · Δ for i ∈ [1, n].
4. P0 and P1 send (extend, 1) to FsVOLE, which returns K[s] ∈ K to P0 and

(s,M[s]) ∈ F × K to P1 such that M[s] = K[s] + s · Γ .
5. P1 samples β ← F

∗, sets M[β] := M[s], and sends d := s − β ∈ F to P0.
P0 sets K[β] := K[s] + d · Γ such that M[β] = K[β] + β · Γ .

6. P0 samples (c1, μ) ← F
2
2λ and sets k := K[r1] ⊕ c1,

(v, {K0
i }i∈[1,n−1], (K

0
n, K1

n)) := pcGGM.FullEval(Δ, k),

ci := K[ri] ⊕ K0
i for i ∈ [2, n − 1], cb

n := ConvertK(HS(μ ⊕K[rn] ⊕ b · Δ)) + Kb
n

for b ∈ {0, 1}, and ψ := K0
n + K1

n − K[β].
P0 sends (c1, . . . , cn−1, μ, c0n, c1n, ψ) to P1.

7. P1 sets α = α1 . . . αn := r1 . . . rn ∈ [0, N), Kαi
i := M[ri] ⊕ ci for i ∈ [1, n − 1],

Kαn
n := crn

n − ConvertK(HS(μ ⊕ M[rn])), and

u := unitF(N, α, β), w := pcGGM.PuncFullEval(α, {Kαi
i }i∈[1,n], ψ + M[β]).

8. P0 outputs v and P1 outputs (u,w).

Fig. 6. pcGGM-based single-point sVOLE protocol in the (FCOT, FsVOLE)-hybrid model.

5 DPF and DCF Correlation Generation

We model DPF/DCF correlation generation in functionality FFSS (Fig. 7), which
includes distributed key generation and local full-domain evaluation. By putting
both procedures in the same functionality, we are able to model FSS as an ideal
functionality and avoid caveats in the proof. FFSS focuses on N = 2n for n ∈ N,
and we can define a similar functionality for a general N ∈ N. Using padding,
our protocols for FFSS also works in this general case.
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Functionality FFSS

Parameters: Ring R. FSS ∈ {DPF,DCF} with domain [0, N), where domain size
N = 2n for n ∈ N, and range R.

Gen: This functionality allows polynomially many (gen) commands. Upon receiv-
ing (gen, 〈α〉b, 〈β〉Ab ) from Pb for each b ∈ {0, 1}, where (〈α〉b, 〈β〉Ab ) ∈ [0, N) × R:

1. Set α := 〈α〉0 ⊕ 〈α〉1 ∈ [0, N), β := 〈β〉A0 + 〈β〉A1 ∈ R, and r ∈ RN such that
– If FSS = DPF, r(j) = 0 for j ∈ [0, N), j �= α, and r(α) = β.
– If FSS = DCF, r(j) = 0 for j ∈ [0, N), j ≥ α, and r(j) = β otherwise.

2. If both parties are honest, sample 〈r〉A0 , 〈r〉A1 ← RN such that 〈r〉A0 + 〈r〉A1 = r;
otherwise (i.e., Pb is corrupted), receive 〈r〉Ab ∈ RN from the adversary and
recompute 〈r〉A1−b := r − 〈r〉Ab ∈ RN .

3. Send 〈r〉A0 to P0 and 〈r〉A1 to P1.

Fig. 7. Functionality for DPF/DCF correlation generation.

One can view FFSS as an alternative to the FSS key generation functionality
that outputs each FSS key in the key pair to the designated party, who locally
uses its key to evaluate its shares of the evaluation results at several points. We
note that the full-domain evaluation included in FFSS does not complicate its
implementation in contrast to the known protocols [7,22] of the FSS key gener-
ation functionality. The reason is that, using the black-box evaluation technique
[22], these protocols also perform full-domain evaluation. If FSS correlations are
generated for immediate use without long-term storage (e.g., [22]), FFSS can be
a drop-in replacement of the FSS key generation functionality. However, we also
show in Appendix E.2 of the full version [29] that our protocols for FFSS can be
adapted to realize this key generation functionality.

5.1 DPF and DCF Schemes

Note that DPF/DCF scheme may be used in not only distributed settings (e.g.,
[22]) but also the scenarios where a trusted dealer is available (e.g., two-server
PIR [13,25]). It would be better for us to present the two schemes alone.

We present in Fig. 8 (resp., Fig. 9) our DPF (resp., DCF) scheme, which is
implicitly constructed from a shared pseudorandom correlated GGM tree. For
simplicity of exposition, we slightly abuse the function ConvertG : {0, 1}∗ → G so
that it can map random strings of either λ or λ− 1 bits to pseudorandom group
elements in G. Our DCF scheme makes non-black-box use of our DPF scheme.

Note that our DPF and DCF schemes use a keyed hash function HS . When
there is a trusted dealer, the key S can be uniformly sampled by the dealer. In
our DPF and DCF protocols in the upcoming sections, it can be jointly sampled
by two parties using one-time public coin-tossing. This hash key can be reused
across polynomially many FSS key pairs.
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Complexity Analysis. Consider the group G (e.g., in [7,13,14,22,25]) with the
PRG-free implementation of ConvertG (c.f. Appendix F.1 of the full version [29]).

Our DPF scheme has a full-domain evaluation that takes 1.5N RP calls,
in contrast to the 2N RP calls in the state-of-the-art construction of [13]. Its
key generation algorithm uses about 2n + 2 RP calls while this figure is about
4n in the prior work. In our scheme, the key size is n · λ + (λ + 1) + log |G|
bits, and the evaluation algorithm takes about n RP calls, both remaining the
same complexity as those in the prior work. In our DCF scheme, the full-domain
evaluation requires 2.5N RP calls, in contrast to 4N RP calls in the state-of-the-
art construction [7]. Its key generation needs about 4n + 2 RP calls, in contrast
to 8n RP calls in the prior work. The key size is n · λ + (λ + 1) + (n + 1) · log |G|
bits, and the evaluation requires about 2n RP calls, without any improvement.

Parameters: Domain size N = 2n for n ∈ N. Group G. Keyed hash function
HS : F2λ → F2λ . Function ConvertG : {0, 1}∗ → G.

DPF.Gen(1λ, (α, β, n,G)):

1: Parse α = α1 . . . αn ∈ {0, 1}n and β ∈ G.
2: Sample Δ ← {0, 1}λ such that lsb(Δ) = 1.
3: Sample 〈s0 ‖ t0〉0, 〈s0 ‖ t0〉1 ← {0, 1}λ such that 〈s0 ‖ t0〉0 ⊕ 〈s0 ‖ t0〉1 = Δ.
4: for i ∈ [1, n − 1] do
5: CWi := HS(〈si−1 ‖ ti−1〉0) ⊕ HS(〈si−1 ‖ ti−1〉1) ⊕ αi · Δ
6: 〈si ‖ ti〉0 := HS(〈si−1 ‖ ti−1〉0) ⊕ αi · 〈si−1 ‖ ti−1〉0 ⊕ 〈ti−1〉0 · CWi

7: 〈si ‖ ti〉1 := HS(〈si−1 ‖ ti−1〉1) ⊕ αi · 〈si−1 ‖ ti−1〉1 ⊕ 〈ti−1〉1 · CWi

8: 〈highσ ‖ lowσ〉0 := HS(〈sn−1 ‖ tn−1〉0 ⊕ σ) for σ ∈ {0, 1}
9: 〈highσ ‖ lowσ〉1 := HS(〈sn−1 ‖ tn−1〉1 ⊕ σ) for σ ∈ {0, 1}

10: HCW := 〈highαn〉0 ⊕ 〈highαn〉1
11: LCW0 := 〈low0〉0 ⊕ 〈low0〉1 ⊕ αn, LCW1 := 〈low1〉0 ⊕ 〈low1〉1 ⊕ αn

12: CWn := (HCW ‖ LCW0 ‖ LCW1)
13: 〈sn ‖ tn〉0 := 〈highαn ‖ lowαn〉0 ⊕ 〈tn−1〉0 · (HCW ‖ LCWαn)
14: 〈sn ‖ tn〉1 := 〈highαn ‖ lowαn〉1 ⊕ 〈tn−1〉1 · (HCW ‖ LCWαn)
15: CWn+1 := (〈tn〉0 − 〈tn〉1) · (ConvertG(〈sn〉1) − ConvertG(〈sn〉0) + β)
16: kb := (〈s0 ‖ t0〉b, {CWi}i∈[1,n+1]) for b ∈ {0, 1}
17: return (k0, k1)

DPF.Eval(b, kb, x):

1: Parse kb = (〈s00 ‖ t00〉b, {CWi}i∈[1,n+1]), CWn = (HCW ‖ LCW0 ‖ LCW1), and
x = x1 . . . xn ∈ {0, 1}n.

2: for i ∈ [1, n − 1] do
3: 〈sx1...xi

i ‖ tx1...xi
i 〉b := HS(〈sx1...xi−1

i−1 ‖ t
x1...xi−1
i−1 〉b)

⊕ xi · 〈sx1...xi−1
i−1 ‖ t

x1...xi−1
i−1 〉b ⊕ 〈tx1...xi−1

i−1 〉b · CWi

4: 〈high ‖ low〉b := HS(〈sx1...xn−1
n−1 ‖ t

x1...xn−1
n−1 〉b ⊕ xn)

5: 〈sx
n ‖ tx

n〉b := 〈high ‖ low〉b ⊕ 〈tx1...xn−1
n−1 〉b · (HCW ‖ LCWxn)

6: return yb := (−1)b · (ConvertG(〈sx
n〉b) + 〈tx

n〉b · CWn+1)

Fig. 8. Our DPF scheme with domain [0, N) and range G.
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Security. We prove the following theorems in Appendix D.2 and Appendix D.3
of the full version [29]. These theorems turn to the intuition that CW1, . . . ,CWn

are masked by pseudorandom CCR outputs (as the root and the first n − 1
on-path shared nodes are Δ), and CWn+1,VCW1, . . . ,VCWn are masked by some
pseudorandom ConvertG terms taking (pseudo)random CCR outputs as input.

Parameters: Domain size N = 2n for n ∈ N. Group G. Keyed hash function
HS : F2λ → F2λ . Function ConvertG : {0, 1}∗ → G.

DCF.Gen(1λ, (α, β, n,G)):

1: Parse α = α1 . . . αn ∈ {0, 1}n and β ∈ G. Let α0 := 0.
2: Run (k′

0, k
′
1) ← DPF.Gen(1λ, (α, −αn ·β, n,G)) and store its internal variables.

3: for i ∈ [1, n] do
4: 〈vi〉0 := HS(〈si−1 ‖ ti−1〉0 ⊕ 2)
5: 〈vi〉1 := HS(〈si−1 ‖ ti−1〉1 ⊕ 2)
6: VCWi := (〈ti−1〉0 − 〈ti−1〉1)

· (ConvertG(〈vi〉1) − ConvertG(〈vi〉0) + (αi − αi−1) · β)

7: kb := (k′
b, {VCWi}i∈[1,n]) for b ∈ {0, 1}

8: return (k0, k1)

DCF.Eval(b, kb, x):

1: Parse kb = (k′
b, {VCWi}i∈[1,n]). Let V 0

b := 0 ∈ G.
2: Run y′

b := DPF.Eval(b, k′
b, x) and store its internal variables.

3: for i ∈ [1, n] do
4: 〈vx1...xi−1

i 〉b := HS(〈sx1...xi−1
i−1 ‖ t

x1...xi−1
i−1 〉b ⊕ 2)

5: V i
b := V i−1

b + (−1)b · (ConvertG(〈vx1...xi−1
i 〉b) + 〈tx1...xi−1

i−1 〉b · VCWi)

6: return yb := y′
b + V n

b

Fig. 9. Our DCF scheme with domain [0, N) and range G.

Theorem 3. Given CCR function H : F2λ → F2λ , function ConvertG : F2λ−1 →
G, and keyed hash function HS(x) := H(S ⊕ x) with some key S ← F2λ , Fig. 8
gives a DPF scheme with domain [0, N) and range G.

Theorem 4. Given CCR function H : F2λ → F2λ , function ConvertG : F2� → G

with � ∈ {λ − 1, λ}, and keyed hash function HS(x) := H(S ⊕ x) with some key
S ← F2λ , Fig. 9 gives a DCF scheme with domain [0, N) and range G.

5.2 DPF Correlation Generation

We define a leveled evaluation algorithm DPF.NextLevel such that, on input a
level index i ∈ [1, n], all nodes on the (i − 1)-th level of the share of a shared
pseudorandom correlated GGM tree, and the public correction word CWi for the
i-th level, outputs all nodes one the i-th level.
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Protocol ΠDPF

Parameters: Domain size N = 2n for n ∈ N. Ring R. Keyed hash function
HS : F2λ → F2λ . Function ConvertR : {0, 1}∗ → R. Let H′ := hb ◦ HS .

DPF Gen: This procedure can be executed many times. For each b ∈ {0, 1}, Pb

inputs (〈α〉b, 〈β〉Ab ) ∈ [0, N) × R and proceeds as follows:

1. The two parties run sub-protocol ΠPREP (Figure 11), which, for each b ∈ {0, 1},
returns 〈Δ〉b and {(Kb[〈αi〉1−b],Mb[〈αi〉b])}i∈[1,n] to Pb such that lsb(〈Δ〉0 ⊕
〈Δ〉1) = 1, and Mb[〈αi〉b] = K1−b[〈αi〉b] ⊕ 〈αi〉b · 〈Δ〉1−b for i ∈ [1, n].

2. The two parties send (sample, λ) to FRand, which returns W ∈ {0, 1}λ to them.
3. Pb computes 〈s00 ‖ t00〉b := 〈Δ〉b ⊕ W . For i ∈ [1, n − 1], Pb sends to P1−b

〈CWi〉b := (⊕j∈[0,2i−1)HS(〈sj
i−1 ‖ tj

i−1〉b))

⊕ 〈αi〉b · 〈Δ〉b ⊕ Kb[〈αi〉1−b] ⊕ Mb[〈αi〉b],

receives 〈CWi〉1−b from P1−b, and computes CWi := 〈CWi〉b ⊕ 〈CWi〉1−b and

{〈sj
i ‖ tj

i 〉b}j∈[0,2i) := DPF.NextLevel(i, {〈sj
i−1 ‖ tj

i−1〉b}j∈[0,2i−1),CWi).

4. Pb samples μb ← {0, 1}λ, computes

〈Xhighσ ‖Xlowσ〉b := ⊕j∈[0,2n−1)HS(〈sj
n−1 ‖ tj

n−1〉b ⊕ σ) for σ ∈ {0, 1},

db := H′(μb ⊕ Kb[〈αn〉1−b]) ⊕ H′(μb ⊕ Kb[〈αn〉1−b] ⊕ 〈Δ〉b) ⊕ 〈Xhigh0 ⊕ Xhigh1〉b,

sends (μb, db) to P1−b, and receives (μ1−b, d1−b) from P1−b. Then, Pb computes

〈HCW〉b := 〈Xhigh〈αn〉b〉b ⊕ H′(μb ⊕ Kb[〈αn〉1−b])

⊕ H′(μ1−b ⊕ Mb[〈αn〉b]) ⊕ 〈αn〉b · d1−b,

〈LCW0〉b := 〈Xlow0〉b ⊕ 〈αn〉b ⊕ b, 〈LCW1〉b := 〈Xlow1〉b ⊕ 〈αn〉b,

sends 〈CWn〉b := (〈HCW〉b ‖ 〈LCW0〉b ‖ 〈LCW1〉b) to P1−b, receives 〈CWn〉1−b

from P1−b, and computes CWn := 〈CWn〉b ⊕ 〈CWn〉1−b and

{〈sj
n ‖ tj

n〉b}j∈[0,N) := DPF.NextLevel(n, {〈sj
n−1 ‖ tj

n−1〉b}j∈[0,2n−1),CWn).

5. (Binary field R = F2� , without FOLE)
Pb computes 〈CWn+1〉Ab := (

∑
j∈[0,N) ConvertR(〈sj

n〉b)) + 〈β〉Ab .

(General ring R, using FOLE)
The two parties run sub-protocol ΠMULT (Figure 12), which, for each b ∈ {0, 1},
takes as input

〈A〉Ab := (−1)b · ∑
j∈[0,N)〈tj

n〉b ∈ R,

〈B〉Ab := (−1)1−b · ∑
j∈[0,N) ConvertR(〈sj

n〉b) + 〈β〉Ab ∈ R,

and returns 〈CWn+1〉Ab to Pb.
In either case, Pb sends 〈CWn+1〉Ab to P1−b, receives 〈CWn+1〉A1−b from P1−b,
and computes CWn+1 := 〈CWn+1〉Ab + 〈CWn+1〉A1−b.

6. Pb computes kb := (〈Δ〉b⊕W, {CWi}i∈[1,n+1]) and 〈r(j)〉Ab := DPF.Eval(b, kb, j)
for j ∈ [0, N), and outputs 〈r〉Ab ∈ RN .

Fig. 10. DPF correlation generation in the (FCOT, FRand, FOLE)-hybrid model.
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In Fig. 10, we present our DPF correlation generation protocol ΠDPF. This
protocol operates in the (FCOT,FRand,FOLE)-hybrid model. FRand is the standard
coin-tossing functionality that outputs a uniform string to both parties. FOLE

is the functionality for oblivious linear evaluation (OLE) on ring R, where P0

(resp., P1) is given random (x0, z0) ∈ RN ×RN (resp., (x1, z1) ∈ RN ×RN ) such
that z0 + z1 equals the component-wise multiplication x0 �x1. We refer readers
to Appendix F.2 and Appendix F.3 of the full version [29] for the definitions
and instantiations of FRand and FOLE. If β is a bit-string, ΠDPF never uses FOLE.

ΠDPF requires FRand for the following reason. Note that ΠDPF uses the same
global offset Δ as the roots of polynomially many shared trees, each of which
defines a fresh DPF correlation. So, the two shares of this identical root should
be “re-randomized” to avoid the identical per-party shares of the defined corre-
lations. The two parties do this re-randomization by calling FRand for a public
randomness W and XORing this value to their shares of Δ, respectively.

Protocol ΠPREP

Initialize: This procedure is executed only once for each b ∈ {0, 1}. The two
parties send (init) to Fb

COT with identifier b, which returns Δ′
b ∈ {0, 1}λ to Pb.

Pb sends lsb(Δ′
b) to P1−b, receives lsb(Δ′

1−b) from P1−b, and sets 〈Δ〉b := Δ′
b ⊕

(0λ−1 ‖ (lsb(Δ′
1−b) ⊕ b)) such that lsb(〈Δ〉0 ⊕ 〈Δ〉1) = 1.

For each b ∈ {0, 1}: Pb inputs 〈α〉b ∈ {0, 1}n and proceeds as follows.

1-1. The two parties send (extend, n) to Fb
COT with identifier b, which returns

kb ∈ F
n
2λ to Pb and (r1−b,m1−b) ∈ F

n
2 × F

n
2λ to P1−b such that m1−b =

kb ⊕ r1−b · Δ′
b.

1-2. Pb sets gb := 〈α〉b ⊕ rb, sends gb to P1−b, and receives g1−b from P1−b. For
i ∈ [1, n], Pb sets

Kb[〈αi〉1−b] := k
(i)
b ⊕ g

(i)
1−b · 〈Δ〉b,

Mb[〈αi〉b] := m
(i)
b ⊕ r

(i)
b · (0λ−1 ‖ (lsb(Δ′

b) ⊕ (1 − b))).

1-3. Pb outputs 〈Δ〉b and {(Kb[〈αi〉1−b],Mb[〈αi〉b])}i∈[1,n].

Fig. 11. Preprocessing sub-protocol for DPF/DCF correlation generation.

Protocol ΠMULT

For each b ∈ {0, 1}: Pb inputs (〈A〉Ab , 〈B〉Ab ) ∈ R2 and proceeds as follows.

1. The two parties send (extend, 2) to FOLE, which, for each b ∈ {0, 1}, returns
(xb, zb) ∈ R2 × R2 to Pb such that z0 + z1 = x0 · x1.

2. Pb computes (γb, ζb) := (〈A〉Ab , 〈B〉Ab ) + (x
(b)
b ,x

(1−b)
b ), sends (γb, ζb) to P1−b,

and receives (γ1−b, ζ1−b) from P1−b.

3. Pb outputs 〈A · B〉Ab := 〈A〉Ab · 〈B〉Ab + 〈A〉Ab · ζ1−b − x
(1−b)
b · γ1−b + z

(0)
b + z

(1)
b .

Fig. 12. OLE-based multiplication sub-protocol.
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In ΠDPF, the key S of the keyed hash function HS can be produced by one
FRand invocation before protocol execution, and we omit this setup for simplicity.

Security. We prove Theorem 5 in Appendix D.4 of the full version [29]. This
proof will consider polynomially many concurrent Gen executions that uses the
one-time initialized Δ. Intuitively, the security primarily follows from the COT-
based secure computation of correction words, where the COT tuples are related
to the global offset Δ so that the transcripts are masked by CCR responses. In
particular, the intermediate transcript db is masked by a CCR response coming
from a legal CCR query with overwhelming probability due to the uniform μb.

Theorem 5. Given CCR function H : F2λ → F2λ , function ConvertR : F2λ−1 →
R, and keyed hash function HS(x) := H(S ⊕x) with some key S ← F2λ , protocol
ΠDPF (Fig. 10) UC-realizes functionality FDPF (Fig. 7) against any semi-honest
adversary in the (FCOT,FRand,FOLE)-hybrid model. If R = F2� for � ∈ N, protocol
ΠDPF never invokes FOLE.

Table 3. The efficiency of distributed correlation generation for our DPF scheme. All
numbers are in milliseconds (ms).

n = 20 n = 22 n = 24 n = 26 n = 28

R = F2127 LAN 50 120 397 1501 5920

WAN 2752 3020 3492 4786 9355

R = F2 LAN 29 30 34 52 120

WAN 2930 3132 3337 3554 3823

Communication Optimization. ΠDPF has the following two optimizations:

– For t concurrent Gen executions (e.g., in its applications to RAM-based
computation [22], FSS-based MPC [7], and OLE extension [12], etc.), each Pb

can compress all μb’s in these executions via a PRF F : F2λ × {0, 1}∗ → F2λ

with a fresh key kprf,b ← F2λ sampled after receiving its COT outputs (from
both Fb

COT and F1−b
COT) in all executions. For each execution with sub-session

ID ssid, the two parties define μb := F (kprf,b, ssid).
– All invocations of FRand can be compressed via another independent PRF key

sampled after the one-time initialization of Fb
COT and F1−b

COT so that the root
of each Pb’s tree is (pseudo)random.

– Another method to save the communication for random μb’s is to replace
HS by a hash function that meets “CCR for naturally derived keys” [28,47],
which can also be implemented in one RP call. Note that μb is introduced to
prevent the replay attack, which results from the manipulation of COT out-
puts, against the hashing mask in db. The alternative hash function addresses
this attack by adding non-repeating tweaks.
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Complexity Analysis (Binary Field). Consider the complexity per execu-
tion when the first PRF-based optimization is used in t concurrent Gen execu-
tions. The cost is symmetric. ΠDPF uses n COT tuples per party and one FRand

call. Each party sends (n + 1) + (n + 1) · λ + λ
t + log |R| bits. The computation

per party is dominated by the tree expansion in n DPF.NextLevel calls, or 1.5N
RP calls. ΠDPF runs in n + 3 rounds (without counting the one-time setup).

In contrast, the binary-field protocol [22] can be implemented from GMW-
style 2PC and n string OTs each with (λ − 1)-bit payloads. One can cast these
string OTs into n precomputed COT tuples according to [3,34]. Using these
tuples, each party sends n + n · (3λ − 1) + log |R| bits, and the computation per
party is dominated by the 2N RP calls in GGM tree expansion. This protocol
can proceed in 2n + 2 rounds: one for sending n masked choice bits, two for
sharing and revealing each of the first n correction words, and one for revealing
the (n+1)-th correction word. Our savings in computation, communication, and
round complexity are about 25%, 66.6%, and 50%, respectively.

We implement ΠPREP and ΠDPF in C++, and perform benchmarks on a pair of
Amazon EC2 R5.xlarge instances. We take binary fields R = F2127 and R = F2

under computational security parameter λ ≈ 128. The reported time include
both distributed key generation and full-domain evaluation. We set 1Gbps band-
width with no latency as our LAN setting, and 20Mbps bandwidth with 100ms
latency as our WAN setting. The results are shown in Table 3. We can see that
our protocol is practically efficient, especially for two-server PIR. Although all
numbers are reported based on one thread, performing one correlation genera-
tion for 228 127-bit values takes about 6 s, which is about 30% to 40% faster
than the performance from a prior implementation in the same threads [22].

Complexity Analysis (General Ring). The two parties additionally need two
precomputed OLE tuples for the secure multiplication. Overall, each party sends
(n + 1) + (n + 1) · λ + λ

t + 3 · log |R| bits, and the protocol runs in n + 4 rounds.
In contrast, the binary-field protocol [22] can be adapted for the general-ring

CWn+1 in the DPF scheme [13]. Securely computing this CWn+1 consumes two
OLE tuples and needs the level-by-level 2PC, which leads to two additional bits
in each OT payload per level, to share the last-level control bit 〈tn〉1. Each party
sends at most n + n · (3λ + 3) + 3 · log |R| bits, and the protocol runs in 2n + 3
rounds. The improvement is the same as the binary-field case.

5.3 DCF Correlation Generation

Our DCF protocol ΠDCF in Fig. 13 extends ΠDPF by also computing n value
correction words and defining the evaluation result as per our DCF scheme. If
β is a bit-string, the two parties can compute n value correction words without
using precomputed OLE tuples. Otherwise, for a general ring element β, these
correction words are obtained from OLE-based secure multiplication.
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Security. We prove Theorem 6 in Appendix D.5 of the full version [29], where
polynomially many concurrent Gen executions are considered. The security is
also based on the COT- and OLE-based secure computation of the n additional
correction words of our DCF scheme. Note that the intermediate yi

b’s are pseu-
dorandom due the masking CCR responses, which are for the legal CCR queries
with overwhelming probability in the presence of uniform xi

b’s.

Theorem 6. Given CCR function H : F2λ → F2λ , function ConvertR : F2� → R
for � ∈ {λ − 1, λ}, and keyed hash function HS(x) := H(S ⊕ x) with some key
S ← F2λ , protocol ΠDCF (Fig. 13) UC-realizes functionality FDCF (Fig. 7) against
any semi-honest adversary in the (FCOT,FRand,FOLE)-hybrid model. If R = F2�

for � ∈ N, protocol ΠDCF never invokes FOLE.

Protocol ΠDCF

Parameters: Domain size N = 2n for n ∈ N. Ring R. Keyed hash function
HS : F2λ → F2λ . Function ConvertR : {0, 1}∗ → R. Let H∗ := ConvertR ◦ HS .

DCF Gen: This procedure can be executed many times. For each b ∈ {0, 1}, Pb

inputs (〈α〉b, 〈β〉Ab ) ∈ [0, N)×R and proceeds as in ΠDPF (Figure 8), with the same
Step 1, 2 and the following modifications to the subsequent steps:

3. Along with 〈CWi〉b for i ∈ [1, n − 1], Pb samples xi
b ← {0, 1}λ, computes

yi
b := H∗(xi

b ⊕ Kb[〈αi〉1−b]) − H∗(xi
b ⊕ Kb[〈αi〉1−b] ⊕ 〈Δ〉b) + 〈β〉Ab − 2 · 〈αi〉b · 〈β〉Ab ,

sends (xi
b, y

i
b) to P1−b, receive (xi

1−b, y
i
1−b) from P1−b, and computes

〈αi · β〉Ab := 〈αi〉b · 〈β〉Ab − H∗(xi
b ⊕ Kb[〈αi〉1−b]) + H∗(xi

1−b ⊕ Mb[〈αi〉b]) + 〈αi〉b · yi
1−b.

4. Along with 〈CWn〉b, Pb repeats Step 3 for i = n and computes 〈αn · β〉Ab .
5. For i ∈ [1, n] and j ∈ [0, 2i−1), Pb computes 〈vj

i 〉b := HS(〈sj
i−1 ‖ tj

i−1〉b ⊕ 2)
and 〈α0 · β〉Ab := 0. Pb computes 〈CWn+1〉Ab by using 〈αn · β〉Ab instead of 〈β〉Ab ,
and:
(Binary field R = F2� , without FOLE) For i ∈ [1, n] in parallel:
Pb computes 〈VCWi〉Ab := (

∑
j∈[0,2i−1) ConvertR(〈vj

i 〉b)) + 〈αi · β〉Ab − 〈αi−1 · β〉Ab .

(General ring R, using FOLE) For i ∈ [1, n] in parallel:
The two parties run sub-protocol ΠMULT (Figure 12), which, for each b ∈ {0, 1},
takes as input

〈Ai〉Ab := (−1)b · ∑
j∈[0,2i−1)〈tj

i−1〉b ∈ R,

〈Bi〉Ab := (−1)1−b · ∑
j∈[0,2i−1) ConvertR(〈vj

i 〉b) + 〈αi · β〉Ab − 〈αi−1 · β〉Ab ∈ R,

and returns 〈VCWi〉Ab to Pb.
In either case, along with 〈CWn+1〉Ab , Pb sends 〈VCWi〉Ab to P1−b, receives
〈VCWi〉A1−b from P1−b, and computes VCWi := 〈VCWi〉Ab + 〈VCWi〉A1−b.

6. Pb computes kb := (〈Δ〉b ⊕ W, {CWi}i∈[1,n+1], {VCWi}i∈[1,n]) and 〈r(j)〉Ab :=
DCF.Eval(b, kb, j) for j ∈ [0, N), and outputs 〈r〉Ab ∈ RN .

Fig. 13. DCF correlation generation in the (FCOT, FRand, FOLE)-hybrid model.
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Communication Optimization. The optimizations in Sect. 5.2 also applies
to the DCF protocol ΠDCF. Moreover, the random elements {xi

b}i∈[1,n] in ΠDCF

can also be compressed using the same technique for the random μb’s.

Complexity Analysis (Binary Field). Consider the complexity per execu-
tion when the first PRF-based optimization is used in t concurrent Gen execu-
tions. The cost is symmetric. ΠDCF consumes n COT tuples per party and one
FRand call. Each party sends (n+1)+ (n+1) ·λ+ λ

t +(2n+1) · log |R| bits, and
the computation per party comes from the 2.5N RP calls in the tree expansion.
ΠDCF has round complexity n + 3, the same as ΠDPF in the binary-field case.

In contrast, the state-of-the-art protocol of [7] requires n string OTs to run
GMW-style 2PC. The string OTs consume n precomputed COT tuples and
have payloads of (λ − 1) + 2 · log |R| bits. Using n COT tuples, each party sends
n + n · (3λ − 1 + 5 · log |R|) + log |R| bits, and the computation per party is
dominated by the 4N RP calls in GGM tree expansion in 2n + 2 rounds. Our
savings in computation and round complexity are 37.5% and 50%, respectively.
For a typical ring R with size |R| ≈ 2λ, the communication reduction is about
62.5%. When R is sufficiently small, this reduction can be 66.6%.

Complexity Analysis (General Ring). ΠDCF also works for general R at
the cost of additionally using 2n+2 precomputed OLE tuples. This general-ring
version proceeds in n + 4 rounds, and the overall outgoing communication per
party is (n + 1) + (n + 1) · λ + λ

t + (4n + 3) · log |R| bits.
In contrast, the OT-based protocol [7] can run in 2n + 3 rounds. Each party

sends at most n + n · (3λ + 3 + 4 · log |R|) + (3n + 3) · log |R| bits and uses
2n + 2 OLE tuples. Our savings in communication and round complexity are
about 50% ∼ 66.6% and 50%, respectively, for typical ring size |R| ≤ 2λ.
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Abstract. We present a new template for building oblivious transfer
from quantum information that we call the “fixed basis” framework. Our
framework departs from prior work (e.g., Crepeau and Kilian, FOCS’88)
by fixing the correct choice of measurement basis used by each player,
except for some hidden trap qubits that are intentionally measured in
a conjugate basis. We instantiate this template in the quantum random
oracle model (QROM) to obtain simple protocols that implement, with
security against malicious adversaries:

– Non-interactive random-input bit OT in a model where parties share
EPR pairs a priori.

– Two-round random-input bit OT without setup, obtained by show-
ing that the protocol above remains secure even if the (potentially
malicious) OT receiver sets up the EPR pairs.

– Three-round chosen-input string OT from BB84 states without
entanglement or setup. This improves upon natural variations of
the CK88 template that require at least five rounds.

Along the way, we develop technical tools that may be of independent
interest. We prove that natural functions like XOR enable seedless ran-
domness extraction from certain quantum sources of entropy. We also
use idealized (i.e. extractable and equivocal) bit commitments, which we
obtain by proving security of simple and efficient constructions in the
QROM.

1 Introduction

Stephen Wiesner’s celebrated paper [61] that kickstarted the field of quantum
cryptography suggested a way to use quantum information in order to achieve
a means for transmitting two messages either but not both of which may be
received. Later, it was shown that this powerful primitive – named oblivious
transfer (OT) [29,54] – serves as the foundation for secure computation [32,43],
which is a central goal of modern crytography.

Wiesner’s original proposal only required uni-directional communication,
from the sender to the receiver. However, it was not proven secure, and succesful
attacks on the proposal (given the ability for the receiver to perform multi-qubit
measurements) where even discussed in the paper. Later, [20] suggested a way
c© International Association for Cryptologic Research 2023
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to use both interaction and bit commitments (which for example can be instan-
tiated using cryptographic hash functions) to obtain a secure protocol. In this
work, we investigate how much interaction is really required to obtain oblivious
transfer from quantum information (and hash functions). In particular, we ask

Can a sender non-interactively transmit two bits to a receiver
such that the receiver will be able to recover one but not both of the bits?

In a setting where the sender and receiver share prior EPR pairs, we obtain a
positive answer to this question (for random receiver bit). We prove (malicious,
simulation-based) security of our protocol in the quantum random oracle model.

Specifically, we consider a setup where the sender and receiver each begin with
halves of EPR pairs, which are maximally entangled two-qubit states |00〉+|11〉√

2
.

These are the simplest type of entangled quantum states, and are likely to be a
common shared setup in quantum networks (see e.g. [56] and references therein).
They have also attracted much interest as a quantum analogue of the clas-
sical common reference string (CRS) model [19,26,44,49]. They have already
been shown to be useful for many two-party tasks such as quantum communica-
tion via teleportation [10], entanglement-assisted quantum error correction [14],
and even cryptographic tasks like key distribution [27] and non-interactive zero-
knowledge [19,49].

Non-interactive Bit OT in the EPR Setup Model. We show that once Alice
and Bob share a certain (fixed) number of EPR pairs between them, they can
realize a one-shot1 bit OT protocol, securely implementing an ideal functionality
that takes two bits m0,m1 from Alice and delivers mb for a uniformly random
b ← {0, 1} to Bob. We provide an unconditionally secure protocol in the QROM,
and view this as a first step towards protocols that rely on concrete properties
of hash functions together with entanglement setup.

Furthermore, our result helps understand the power of entanglement as a
cryptographic resource. Indeed, non-interactive oblivious transfer is impossible
to achieve classically, under any computational assumption, even in the common
reference string and/or random oracle model. Thus, the only viable one-message
solution is to assume the parties already start with so-called OT correlations,
where the sender gets random bits x0, x1 from a trusted dealer, and the receiver
gets xb for a random bit b. On the other hand, our result shows that OT can be
achieved in a one-shot manner just given shared EPR pairs.

We note that an “OT correlations setup” is fundementally different than
an EPR pair setup. First of all, OT correlations are specific to OT, while, as
desribed above, shared EPR pairs are already known to be broadly useful, and
have been widely studied independent of OT. Moreover, an OT correlations
setup requires private (hidden) randomness, while generating EPR pairs is a

1 We use the terms”one-shot”, ”one-message”, and ”non-interactive” interchangably
in this work, all referring to a protocol between two parties Alice and Bob that
consists only of a single message from Alice to Bob.
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deterministic process. In particular, any (even semi-honest) dealer that sets up
OT correlations can learn the parties’ private inputs by observing the resulting
transcript of communication, while this is not necesarily true of an EPR setup by
monogamy of entanglement. Furthermore, as we describe next, our OT protocol
remains secure even if a potentially malicious receiver dishonestly sets up the
entanglement.

Two-Message Bit OT without Setup. The notion of two-message oblivious trans-
fer has been extensively studied in the classical setting [2,25,35,51,53] and is of
particular theoretical and practical interest. We show that the above protocol
remains secure even if the receiver were the one performing the EPR pair setup
(as opposed to a trusted dealer / network administrator). That is, we consider a
two-message protocol where the receiver first sets up EPR pairs and sends one
half of every pair to the sender, following which the sender sends a message to
the receiver as before. We show that this protocol also realizes the same bit OT
functionality with random receiver choice bit.

This results in the first two-message maliciously-secure variant of OT, with-
out setup, that does not (necessarily) make use of public-key cryptography. How-
ever, we remark that we still only obtain the random receiver input functionality
in this setting, and leave a construction of two-message chosen-input string OT
without public-key cryptography as an intriguing open problem.

Another Perspective: OT Correlations from Entanglement via 1-out-of-2 Dele-
tion. It is well-known that shared halves of EPR pairs can be used to generate
shared randomness by having each player measure their halves of EPR pairs in
a common basis. But can they also be used to generate OT correlations, where
one of the players (say Bob) outputs a random pair of bits, while the other (say
Alice) learns only one of these (depending on a hidden choice bit), and cannot
guess the other bit.2

At first, it may seem like the following basic property of EPR pairs gives a
candidate solution that requires no communication: if Alice and Bob measure
their halves in the same basis (say, both computational, hereafter referred to as
the + basis), then they will obtain the same random bit r, while if Alice and Bob
measure their halves in conjugate bases (say, Alice in the + basis and Bob in
the Hadamard basis, hereafter referred to as the × basis), then they will obtain
random and independent bits rA, rB . Indeed, if Alice and Bob share two EPR
pairs, they could agree that Alice measures both of her halves in either the +
basis or the × basis depending on whether her choice bit is 0 or 1, while Bob
always measures his first half in the + basis and his second half in the × basis.
Thus, Bob obtains (r0, r1), and, depending on her choice b, Alice obtains rb,
while deleting information about r1−b by measuring the corresponding register
in a conjugate basis.

Of course, there is nothing preventing Alice from simply measuring her first
half in the + basis and her second half in the × basis, obtaining both r0, r1
2 While this framing of the problem is different from the previous page, the two turn

out to be equivalent thanks to OT reversal and reorientation methods [36].
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and rendering this initial candidate completely insecure. However, what if Alice
could prove to Bob that she indeed measured both qubits in the same basis,
without revealing to Bob which basis she chose? Then, Bob would be convinced
that one of his bits is independent of Alice’s view, while the privacy of Alice’s
choice b would remain intact. We rely on the Random Oracle to implement a
cut-and-choose based proof that helps us obtain maliciously secure bit OT.

We emphasize that this problem is also interesting in the plain model under
computational assumptions. We leave this as an open problem for future work,
and discuss it (together other open problems) in Sect. 1.1.

Other Technical Contributions. We make additional technical contributions
along the way, that may be of independent interest.

– Seedless Extraction from Quantum Sources of Entropy. Randomness
extraction has been a crucial component in all quantum OT protocols, and
seeded randomness extraction from the quantum sources of entropy that arise
in such protocols has been extensively studied (see e.g. [13,55]). In our non-
interactive and two-message settings, it becomes necessary to extract entropy
without relying on the existence of a random seed. As such, we prove the
security of seedless randomness extractors in this context, which may be of
independent interest. In particular, we show that either the XOR function or
a random oracle (for better rate) can be used in place of the seeded universal
hashing used in prior works. The XOR extractor has been used in subsequent
work [9] as a crucial tool in building cryptosystems with certified deletion.

– Extractable and Equivocal Commitments in the QROM. We abstract
out a notion of (non-interactive) extractable and equivocal bit commitments
in the QROM, that we make use of in our OT protocols. We provide a simple
construction based on prior work [3,24,63].

– Three-Message String OT without Entanglement or Setup. We show
that our fixed basis framework makes it possible to eliminate the need for both
entanglement and setup with just three messages. The resulting protocol real-
izes string OT with no entanglement, and only requires one quantum message
containing BB84 states followed by two classical messages. Furthermore, it
allows both the sender and the receiver to choose their inputs to the OT (as
opposed to sampling a random input to one of the parties).
On the other hand, we find that using prior templates [20] necessitates a
multi-stage protocol where players have to first exchange basis information
in order to establish two channels, resulting in protocols that require at least
an extra round of interaction.

– Concrete Parameter Estimates. We also estimate the number of EPR
pairs/BB84 states required for each of our protocols, and derive concrete
security losses incurred by our protocols. This is discussed in the full version
[1], where we also provide a table of our estimates. We expect that future
work will be able to further study and optimize the concrete efficiency of
quantum OT in the QROM, and our work provides a useful starting point.
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1.1 Open Problems and Directions for Future Research

Our new frameworks for oblivious transfer raise several fundamental questions
of both theoretical and practical interest.

Strengthening Functionality. It would be interesting to obtain non-interactive
or two-message variants of non-trivial quantum OT realizing stronger function-
ality than we obtain in this work3. Our work leaves open the following natural
questions.

– Does there exist two-message non-trivial quantum chosen-input bit OT, that
allows both parties to choose inputs?

– Does there exist one- or two-message non-trivial quantum chosen-sender-
input string OT, with chosen sender strings and random receiver choice bit?
Such a string OT may be sufficient to construct non-interactive secure com-
putation (NISC) [37] with chosen sender input and random receiver input.

– Does there exist two-message non-trivial quantum OT without entanglement?
– Can our quantum OT protocols serve as building blocks for other non-

interactive functionalities, e.g., by relying on techniques in [31] for one-way
secure computation, or [12] for obfuscation?

Strengthening Security. While analyses in this work are restricted to the QROM,
our frameworks are of conceptual interest even beyond this specific model. In
particular, one could ask the following question.

– Does there exist non-interactive OT with shared EPR pair setup from any
concrete computational hardness assumption?

One possible direction towards achieving this would be to instantiate our tem-
plate with post-quantum extractable and equivocal commitments in the CRS
model, and then attempt to instantiate the Fiat-Shamir paradigm in this set-
ting based on a concrete hash function (e.g. [15,16,41] and numerous followups).
Going further, one could even try to instantiate our templates from weak com-
putational hardness including one-way functions (or even pseudorandom states).
We imagine that such an OT would find useful applications even beyond MPC,
given how two-message classical OT [2,51] has been shown to imply a variety
of useful protocols including two-message proof systems, non-malleable commit-
ments, and beyond [5–7,39,40,42,52].

Finally, we note that any cryptographic protocol in a broader context typi-
cally requires the protocol to satisfy strong composability properties. It would be
useful to develop a formal model for UC security with a (global) quantum ran-
dom oracle, and prove UC security for our OT protocols in this model. Another
question is whether one can achieve composably (UC) secure protocols with
minimal interaction by building on our frameworks in the CRS model.

3 Here non-trivial quantum OT means OT based on assumptions (such as symmetric-
key cryptography) or ideal models that are not known to imply classical OT.
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Practical Considerations. Our concrete quantum resource requirements and
security bounds are computed assuming no transmission errors. On the other
hand, actual quantum systems, even those that do not rely on entanglement, are
often prone to errors. One approach to reconcile these differences is to employ
techniques to first improve fidelity, e.g. of our EPR pair setup via entanglement
purification; and then execute our protocol on the resulting states. Another nat-
ural approach (following e.g., [11]) could involve directly building error-resilient
versions of our protocols that tolerate low fidelity and/or coherence. Another
question is whether our games can be improved to reduce resource consumption
and security loss, both in the idealized/error-free and error-prone models.

1.2 Related Work

Wiesner [61] suggested the first template for quantum OT, but his work did not
contain a security proof (and even discussed some potential attacks). Crepeau
and Kilian [20] made progress by demonstrating an approach for basing oblivious
transfer on properties of quantum information plus a secure”bit commitment”
scheme. This led to interest in building bit commitment from quantum informa-
tion. Unfortunately, it was eventually shown by Mayers, Lo, and Chau [46,47]
that bit commitment (and thus oblivious transfer) is impossible to build by rely-
ing solely on the properties of quantum information.

This is indeed a strong negative result, and rules out the possibility of bas-
ing secure computation on quantum information alone. However, it was still
apparent to researchers that quantum information must offer some advantage
in building secure computation systems. One could interpret the Mayers, Lo,
Chau impossibility result as indicating that in order to hone in and understand
this advantage, it will be necessary to make additional physical, computational,
or modeling assumptions beyond the correctness of quantum mechanics. Indeed,
much research has been performed in order to tease out the answer to this ques-
tion, with three lines of work being particularly prominent and relevant4.

– Quantum OT from bit commitment. Although unconditionally-secure
bit commitment cannot be constructed using quantum information, [20]’s
protocol is still meaningful and points to a fundamental difference between
the quantum and classical setting, where bit commitment is not known to
imply OT. A long line of work has been devoted to understanding the security
of [20]’s proposal: e.g. [11,13,21,48,57,62].

– Quantum OT in the bounded storage model. One can also impose
physical assumptions in order to recover quantum OT with unconditional
security. [22] introduced the quantum bounded-storage model, and [60] intro-
duced the more general quantum noisy-storage model, and showed how to con-
struct unconditionally-secure quantum OT in these idealized models. There
has also been much followup work focused on implementation and efficiency
[28,30,38,59].

4 Another line of work studies (unconditional) oblivious transfer with imperfect secu-
rity [17,18,45], which we view as largely orthogonal to our work.
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– Quantum OT from ”minicrypt” assumptions. While [20]’s proposal for
obtaining OT from bit commitments suggests that public-key cryptography
is not required for building OT in a quantum world, a recent line of work
has been interested in identifying the weakest concrete assumptions required
for quantum OT, with [8,34] showing that the existence of one-way functions
suffices and [4,50] showing that the existence of pseudo-random quantum
states suffices.

Our work initiates the explicit study of quantum oblivious transfer in
the quantum random oracle model, a natural model in which to study
unconditionally-secure quantum oblivious transfer. Any protocol proven secure
in the idealized random oracle model immediately gives rise to a natural ”real-
world” protocol where the oracle is replaced by a cryptographic hash function,
such as SHA-256. As long as there continue to exist candidate hash functions
with good security against quantum attackers, our protocols remain useful and
relevant. On the other hand, the bounded storage model assumes an upper bound
on the adversary’s quantum storage while noisy storage model assumes that any
qubit placed in quantum memory undergoes a certain amount of noise. The quan-
tum communication complexity of these protocols increases with the bounds on
storage/noise. It is clear that advances in quantum storage and computing tech-
nology will steadily degrade the security and increase the cost of such protocols,
whereas protocols in the QROM do not suffer from these drawbacks.

2 Technical Overview

Notation. We will consider the following types of OT protocols.

– FOT[k]: the chosen-input string OT functionality takes as input a bit b from
the receiver and two strings m0,m1 ∈ {0, 1}k from the sender. It delivers mb

to the receiver.
– FR−ROT[1]: the random-receiver-input bit OT functionality takes as input �

from the receiver and two bits m0,m1 ∈ {0, 1} from the sender. It samples
b ← {0, 1} and delivers (b,mb) to the receiver.

– FS−ROT[k]: the random-sender-input string OT functionality takes as input �
from the sender and (b,m) from the receiver for b ∈ {0, 1},m ∈ {0, 1}k. It set
mb = m, samples m1−b ← {0, 1}k and delivers (m0,m1) to the sender.

2.1 Non-Interactive OT in the Shared EPR Pair Model

As discussed in the introduction, there is a skeleton candidate OT protocol that
requires no communication in the shared EPR model that we describe in Fig. 1.

The next step is for Alice to prove that she measured both her qubits in the
same basis, without revealing what basis she chose. While it is unclear how Alice
could directly prove this, we could hope to rely on the cut-and-choose paradigm
to check that she measured “most” out of a set of pairs of qubits in the same
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Fig. 1. An (insecure) skeleton OT candidate.

basis. Indeed, a cut-and-choose strategy implementing a type of “measurement
check” protocol has appeared in the original quantum OT proposal of [20] and
many followups. Inspired by these works, we develop such a strategy for our
protocol as follows.

Non-interactive Measurement Check. To achieve security, we first modify the
protocol so that Alice and Bob use 2n EPR pairs, where Alice has one half of
every pair and Bob has the other half.

Alice samples a set of n bases θ1, . . . , θn ← {+,×}n. For each i ∈ [n], she
must measure the ith pair of qubits (each qubit corresponding to a half of an
EPR pair) in basis θi, obtaining measurement outcomes (ri,0, ri,1). Then, she
must commit to her bases and outcomes , (θ1, r1,0, r1,1), . . . , , (θn, rn,0, rn,1). Once
committed, she must open commitments corresponding to a randomly chosen
(by Bob) T ⊂ [n] of size k, revealing {θi, ri,0, ri,1}i∈T . Given these openings, for
every i ∈ T , Bob will measure his halves of EPR pairs in bases (θi, θi) to obtain
(r′

i,0, r
′
i,1). Bob aborts if his outcomes (r′

i,0, r
′
i,1) do not match Alice’s claimed

outcomes (ri,0, ri,1) for any i ∈ T . If outcomes on all i ∈ T match, we will say
that Bob accepts the measurement check.

Now, suppose Alice passes Bob’s check with noticeable probability. Because
she did not know the check subset T at the time of committing to her mea-
surement outcomes, we can conjecture that for “most” i ∈ [n] \ T , Alice also
correctly committed to results of measuring her qubits in bases (θi, θi). More-
over we can conjecture that the act of committing and passing Bob’s check
removed from Alice’s view information about at least one out of (ri,0, ri,1) for
most i ∈ [n]\T . We build on techniques for analyzing quantum “cut-and-choose”
protocols [13,21] to prove that this is the case.

In fact, we obtain a non-interactive instantiation of such a measurement-
check by leveraging the random oracle to perform the Fiat-Shamir transform.
That is, Alice applies a hash function, modeled as a random oracle, to her set
of commitments in order to derive the “check set” T of size k. Then, she can
compute openings to the commitments in the set T , and finally send all of her
n commitments together with k openings in a single message to Bob. Finally,
the unopened positions will be used to derive two strings (t0, t1) of n − k bits
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each, with the guarantee that – as long as Alice passes Bob’s check – there
exists b such that Alice only has partial information about the string t1−b. We
point out that to realize OT, it is not enough for Alice to only have partial
information about t1−b, we must in fact ensure that she obtains no information
about t1−b. We achieve this by developing techniques for seedless randomness
extraction in this setting, which we discuss later in this overview. The resulting
protocol is described in Fig. 2.5 Security against (malicious) Bob is relatively
straightforward in this setting, and essentially reduces to proving that Alice’s
input bit b remains hidden; this follows due to the hiding of the commitment.

Fig. 2. Non-interactive OT in the shared EPR pair model. Extract is an (unspecified)
seedless hash function used for randomness extraction.

To formally prove security against malicious Alice, we build on several
recently developed quantum random oracle techniques [23,24,63] as well as tech-
niques for analyzing “quantum cut-and-choose” protocols [13,21]. In particular,
we require the random oracle based commitments to be extractable, and then
take inspiration from [13] to argue that Bob’s state on registers {Bi,0,Bi,1}i∈T

is in some sense close to a state described by the information {θi, ri,0, ri,1}i∈T in

5 Our actual protocol involves an additional step that allows Alice to program any
input mb of her choice, but we suppress this detail in this overview.
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Alice’s unopened commitments. In more detail, we define a projector Π on reg-
isters {Bi,0,Bi,1}i∈T spanned by all states in the {θi}i∈T basis that are “close”
in Hamming distance to the collection of bits {ri,0, ri,1}i∈T . Since these bits are
unopened, defining this projector requires us to run the extractor of the com-
mitment scheme to obtain {ri,0, ri,1}i∈T . We show that, conditioned on Bob not
aborting, his left-over state on registers {Bi,0,Bi,1}i∈T must be negligibly close
to the image of Π.

To do so, at a high level, we apply the measure-and-reprogram technique
from [23,24], which roughly shows that in this setting, it suffices to consider an
interactive version of the protocol, where all the commitments are output by
Alice before T is chosen uniformly at random. At this point, it becomes possible
to argue by standard Hoeffding inequalities that Bob’s registers must be close
to the image of Π (conditioned on Bob not aborting).

Finally, recall that Bob is measuring each Bi,0 in the standard basis and each
Bi,1 in the Hadamard basis (whereas before measurement, as we just determined,
most pairs Bi,0,Bi,1 were in the image of Π, i.e., “close” to basis states in the
same basis). Thus, intuitively, honest Bob’s measurements must produce at least
some entropy (from Alice’s perspective) when performed on any state in Π.
Converting this entropy into uniform randomness, as is required by the definition
of OT security, turns out to be non-trivial even given prior work on randomness
extraction. In the next section, we discuss hurdles and new methods for extracting
uniform randomness from this entropy.

New Techniques for Randomness Extraction. Note that the arguments above
have not yet established a fully secure OT correlation. In particular, Alice may
have some information about t1−b, whereas OT security would require one of
Bob’s strings to be completely uniform and independent of Alice’s view.

This situation also arises in prior work on quantum OT, and is usually solved
via seeded randomness extraction. Using this approach, a seed s would be sam-
pled by Bob, and the final OT strings would be defined as m0 = Extract(s, t0) and
m1 = Extract(s, t1), where Extract is a universal hash function. Indeed, quantum
privacy amplication [55] states that even given s, Extract(s, t1−b) is uniformly
random from Alice’s perspective as long as t1−b has sufficient (quantum) min-
entropy conditioned on Alice’s state.

Unfortunately, this approach would require Bob to transmit the seed s to
Alice for Alice to obtain her output mb = Extract(s, tb), making the protocol no
longer non-interactive.6 Instead, we develop techniques for seedless extraction
that work in our setting, allowing us to make the full description of the hash
function used to derive the final strings public at the beginning of the protocol.

We provide two instantiations of seedless randomness extraction that work in
a setting where the entropy source comes from measuring a state supported on a
small superposition of basis vectors in the conjugate basis. More concretely, given

6 One idea would be to sample the seed s as part of the output of the random oracle.
However, this does not ensure that s is uniformly random. For example Alice could
bias certain bits of s by choosing her commitments in a certain way.
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a state on two registers A,B, where the state on B is supported on standard basis
vectors with small Hamming weight, consider measuring B in the Hadamard
basis to produce x. For what unseeded hash functions Extract does Extract(x)
look uniformly random, even given the state on register A?

– XOR extractor. First, we observe that one can obtain a single bit of uniform
randomness by XORing all of the bits of x together, as long as the super-
position on register B only contains vectors with relative Hamming weight
< 1/2. This can be used to obtain bit OT, where the OT messages m0,m1

consist of a single bit. In fact, by adjusting the parameters of the quantum
cut-and-choose, the XOR extractor could be used bit-by-bit to extract any
number of λ bits. However, this setting would require a number of EPR pairs
that grows with λ3, resulting in a very inefficient protocol.

– RO extractor. To obtain a more efficient method of extracting λ bits, we
turn to the random oracle model, which has proven to be a useful seedless
extractor in the classical setting. Since an adversarial Alice in our protocol
has some control over the state on registers A,B, arguing that RO(x) looks
uniformly random from her perspective requires some notion of adaptive re-
programming in the QROM. While some adaptive re-programming theorems
have been shown before (e.g. [33,58]), they have all only considered x sam-
pled from a classical probability distribution. This is for good reason, since
counterexamples in the quantum setting exist, even when x has high min-
entropy given the state on register A.7 In this work, we show that in the
special case of x being sampled via measurement in a conjugate basis, one
can argue that RO(x) can be replaced with a uniformly random r, without
detection by the adversary. Our proof relies on the superposition oracle of
[63] and builds on proof techniques in [33]. We leverage our RO extractor to
obtain non-interactive λ-bit string OT with a number of EPR pairs that only
grows linearly in λ.

Differences from the CK88 Template. As mentioned earlier, the original quantum
OT proposal [20] and its followups also incorporate a commit-challenge-response
measurement-check protocol to enforce honest behavior. However, we point out
one key difference in our approach that enables us to completely get rid of
interaction. In CK88, parties measure their set of qubits8 using a uniformly
random set of basis choices. Then, in order to set up the two channels required
for OT, they need to exchange their basis choices with each other (after the
measurement check commitments have been prepared and sent). This requires
multiple rounds of interaction. In our setting, it is crucial that one of the parties
measures (or prepares) qubits in a fixed set of bases known to the other party,

7 For example, consider an adversary that, via a single superposition query to the
random oracle, sets register B to be a superposition over all x such that the first bit
of RO(x) is 0. Then, measuring B in the computational basis will result in an x with
high min-entropy, but where RO(x) is distinguishable from a uniformly random r.

8 Technically, one party prepares and the other measures BB84 states.
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removing the need for a two-way exchange of basis information. In the case of
Fig. 2, this party is Bob. Hereafter, we refer to the CK88 template as the random
basis framework, and our template as the fixed basis framework.

Non-interactive OT Reversal. So far, our techniques have shown that, given
shared EPR pairs, Alice can send a single message to Bob that results in the
following correlations: Alice outputs a bit b and string mb, while Bob outputs
m0,m1, thus implementing the FS−ROT functionality with Bob as the “sender”.

However, an arguably more natural functionality would treat Alice as the
sender, with some chosen inputs m0,m1, and Bob as the receiver, who can recover
b,mb from Alice’s message. In fact, for the case that m0,m1 are single bits, a
“reversed” version of the protocol can already be used to acheive this due to the
non-interactive OT reversal of [36]. Let (b, rb) and (r0, r1) be Alice and Bob’s
output from our protocol, where Alice has chosen b uniformly at random. Then
Alice can define �0 = m0 ⊕ rb, �1 = m1 ⊕ rb ⊕ b and send (�0, �1) along with
her message to Bob. Bob can then use r0 to recover mc from �c for his “choice
bit” c = r0 ⊕ r1. Moreover, since in our protocol the bits r0, r1 can be sampled
uniformly at random by the functionality, this implies that c is a uniformly
random choice bit, unknown to Alice, but unable to be tampered with by Bob.
This results in a protocol that satisfies the FR−ROT[1] functionality, and we have
referred to it as our one-shot bit OT protocol in the introduction.

2.2 Two-Message OT Without Trusted Setup

Next, say that we don’t want to assume a trusted EPR pair setup. In particular,
what if we allow Bob to set up the EPR pairs? In this case, a malicious Bob may
send any state of his choice to Alice. However, observe that in Fig. 2, Alice’s bit
b is masked by her random choices of θi. These choices remain hidden from Bob
due to the hiding of the commitment scheme, plus the fact that they are only
used to measure Alice’s registers. Regardless of the state that a malicious Bob
may send, he will not be able to detect which basis Alice measures her registers
in, and thus will not learn any information about b. As a result, we obtain a two-
message quantum OT protocol in the QROM. As we show in the full version
[1], this protocol satisfies the FS−ROT OT ideal functionality that allows Alice
to choose her inputs (b,m), and sends Bob random (m0,m1) s.t. mb = m.

Moreover, adding another reorientation message at the end from Bob to
Alice – where Bob uses m0,m1 as keys to encode his chosen inputs – results in a
three-round chosen input string OT protocol realizing the FOT[k] functionality.
However, as we will see in the next section, with three messages, we can remove
the need for entanglement while still realizing FOT[k].

Finally, in the case that m0,m1 are bits, we can apply the same non-
interactive [36] reversal described above to the two-round protocol, resulting in
a two-round secure realization of the FR−ROT[1] ideal functionality. This results
in our two-round bit OT protocol as referenced in the introduction.
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2.3 Three-Message Chosen-Input OT

We now develop a three-message protocol that realizes the chosen-input string
OT functionality FOT, which takes two strings m0,m1 from the sender and a
bit b from the receiver, and delivers mb to the receiver. This protocol will not
require entanglement, but still uses the fixed basis framework, just like the one
discussed in Sect. 2.1.

Recall that in the EPR-based protocol, Bob would obtain (r0, r1) by measur-
ing his halves of two EPR pairs in basis (+,×), while Alice would obtain (r0, r′

1)
or (r′

0, r1) respectively by measuring her halves in basis (+,+) or (×,×), where
(r′

0, r
′
1) are uniform and independent of (r0, r1).

Our first observation is that a similar effect is achieved by having Bob send
BB84 states polarized in a fixed basis instead of sending EPR pairs. That is, Bob
samples uniform (r0, r1) and sends to Alice the states |r0〉+, |r1〉×. Alice would
obtain (r0, r′

1) or (r′
0, r1) respectively by measuring these states in basis (+,+)

or (×,×) respectively, where (r′
0, r

′
1) are uniform and independent of (r0, r1).

The skeleton protocol is sketched in Fig. 3.

Fig. 3. Another (insecure) skeleton OT candidate.

As before, though, there is nothing preventing Alice from retrieving both
(r0, r1) by measuring the states she obtains in basis (+,×). Thus, as before, we
need a measurement check to ensure that Alice measures “most” out of a set
of pairs of qubits in the same basis. But implementing such a check with BB84
states turns out to be more involved than in the EPR pair protocol.

Non-interactive Measurement Check Without Entanglement. Towards building
a measurement check, we first modify the skeleton protocol so that Bob sends 2n
BB84 qubits {|ri,0〉+, |ri,1〉×}i∈[n] on registers {Ai,b}i∈[n],b∈{0,1} to Alice (instead
of just two qubits). Now Alice is required to sample a set of n bases θ1, . . . , θn ←
{+,×}n. For each i ∈ [n], she must measure the ith pair of qubits in basis θi,
obtaining measurement outcomes (r′

i,0, r
′
i,1). Then, she will commit to her bases

and outcomes , (θ1, r′
1,0, r

′
1,1), . . . , , (θn, r′

n,0, r
′
n,1). Once committed, she will open

commitments corresponding to a randomly chosen (by Bob) T ⊂ [n] of size k,
revealing {θi, r

′
i,0, r

′
i,1}i∈T .
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But Bob cannot check these openings the same way as in the EPR-based
protocol. Recall that in the EPR protocol, for every i ∈ T , Bob would measure
his halves of EPR pairs in bases (θi, θi) to obtain (ri,0, ri,1), and compare the
results against Alice’s response. On the other hand, once Bob has sent registers
{Ai,b}i∈[n],b∈{0,1} containing {|ri,0〉+, |ri,1〉×}i∈[n] to Alice, there is no way for
him to recover the result of measuring any pair (Ai,0,Ai,1) in basis (θi, θi).

To fix this, we modify the protocol to allow for a (randomly chosen and
hidden) set U of “trap” positions. For all i ∈ U , Bob outputs registers (Ai,0,Ai,1)
containing |ri,0〉ϑi

, |ri,1〉ϑi
, that is, both qubits are polarized in the same basis

ϑi ← {+,×}. All other qubits are sampled the same way as before, i.e. as
|ri,0〉+, |ri,1〉×. Alice commits to her measurement outcomes {θi, r

′
i,0, r

′
i,1}i∈[n],

and then reveals commitment openings {θi, r
′
i,0, r

′
i,1}i∈T for a randomly chosen

subset of size T , as before. But Bob can now check Alice on all positions i in the
intersection T ∩ U where ϑi = θi. Specifically, Bob aborts if for any i ∈ T ∩ U ,
ϑi = θi but (r′

i,0, r
′
i,1) 	= (ri,0, ri,1). Otherwise, Alice and Bob will use the set

[n] \ T \ U to generate their OT outputs. The resulting protocol is sketched in
Fig. 4. Crucially, we make use of a third round in order to allow Bob to transmit
his choice of U to Alice, so that they can both agree on the set [n] \ T \ U .

Again, we must argue that any Alice that passes Bob’s check with noticeable
probability loses information about one out of ri,0 and ri,1 for “most” i ∈ [n]\T \
U . Because she did not know the check subset T or Bob’s trap subset U at the
time of committing to her measurement outcomes, we can again conjecture that
for “most” i ∈ [n]\T , Alice also correctly committed to results of measuring her
qubits in bases (θi, θi). Moreover we can conjecture that the act of committing
and passing Bob’s check removed from Alice’s view information about at least
one out of (ri,0, ri,1) for most i ∈ [n] \T . This requires carefully formulating and
analyzing a quantum sampling strategy that is somewhat more involved than the
one in Sect. 2.1. Furthermore, as in Sect. 2.1, we make the measurement check
non-interactive by relying on the Fiat-Shamir transform.

2.4 Extractable and Equivocal Commitments

To achieve simulation-based security, our constructions rely on commitments
that satisfy extractability and equivocality. We model these as classical non-
interactive bit commitments that, informally, satisfy the following properties.

– Equivocality: This property ensures that the commitment scheme admits an
efficient simulator, let’s say SEqu, that can sample commitment strings that
are indistinguishable from commitment strings generated honestly and later,
during the opening phase, provide valid openings for either 0 or 1.

– Extractability: This property ensures that the commitment scheme admits
an efficient extractor, let’s say SExt, that, given access to the committer who
outputs a commitment string, can output the committed bit.

The need for these two additional properties is not new to our work. Indeed,
[21] showed that bit commitment schemes satisfying extraction and equivoca-
tion suffice to instantiate the original [11,20] QOT template. [21] called their
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Fig. 4. Three-message chosen-input OT without entanglement. Extract is an (unspeci-
fied) function used for randomness extraction. Since Bob is sending the final message,
we may use a seeded function here.

commitments dual-mode commitments, and provided a construction based on
the quantum hardness of the learning with errors (QLWE) assumption. In two
recent works [8,34], constructions of such commitment schemes were achieved by
relying on just post-quantum one-way functions (and quantum communication).

We show that the most common construction of random-oracle based com-
mitments – where a commitment to bit b is H(b||r) for uniform r – satisfies both
extractability and equivocality in the QROM. Our proof of extractability applies
the techniques of [24,63] for on-the-fly simulation with extraction, and our proof
of equivocality relies on a one-way-to-hiding lemma from [3].
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3 Seedless Extraction from Quantum Sources

In this section, we consider the problem of seedless randomness extraction from
a quantum source of entropy. The source of entropy we are interested in comes
from applying a Hadamard basis measurement to a state that is in a “small”
superposition of computational basis vectors. More concretely, consider an arbi-
trarily entangled system on registers A,X , where X is in a small superposition
of computational basis vectors. Then, we want to specify an extractor E such
that, if x is obtained by measuring register X in the Hadamard basis, then E(x)
looks uniformly random, even given the “side information” on register A. Note
that seeded randomness extraction in this setting has been well-studied (e.g.
[13,21,55]).

3.1 The XOR Extractor

First, we observe that if E just XORs all the bits of x together, then the resulting
bit E(x) is perfectly uniform, as long as the original state on X is only supported
on vectors with relative Hamming weight < 1/2.

Theorem 1. Let X be an n-qubit register, and consider any state |γ〉A,X that
can be written as

|γ〉 =
∑

u:HW(u)<n/2

|ψu〉A ⊗ |u〉X .

Let ρA,P be the mixed state that results from measuring X in the Hadamard basis
to produce x, and writing

⊕
i∈[n] xi into the single qubit register P. Then

ρA,P = TrX (|γ〉〈γ|) ⊗
(

1
2
|0〉〈0|+1

2
|1〉〈1|

)
.

Proof. First, write the state on (A,X ,P) that results from applying Hadamard
to X and writing the parity, denoted by p(x) :=

⊕
i∈[n] xi, to P:

1
2n/2

∑

x∈{0,1}n

⎛

⎝
∑

u:HW(u)<n/2

(−1)u·x|ψu〉
⎞

⎠ |x〉|p(x)〉.
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Then we have that

ρA,P =
1

2n

∑

x:p(x)=0

(
∑

u1,u2

(−1)(u1⊕u2)·x|ψu1〉〈ψu2 |
)

⊗ |0〉〈0|

+
1

2n

∑

x:p(x)=1

(
∑

u1,u2

(−1)(u1⊕u2)·x|ψu1〉〈ψu2 |
)

⊗ |1〉〈1|

=
1

2n

∑

u1,u2

|ψu1〉〈ψu2 |⊗
⎛

⎝
∑

x:p(x)=0

(−1)(u1⊕u2)·x|0〉〈0|+
∑

x:p(x)=1

(−1)(u1⊕u2)·x|1〉〈1|
⎞

⎠

=
1

2n

∑

u1,u2

2n/2δu1=u2 |ψu1〉〈ψu2 |⊗ (|0〉〈0|+|1〉〈1|)

=
1

2

∑

u:HW<n/2

|ψu〉〈ψu|⊗ (|0〉〈0|+|1〉〈1|)

= TrX (|γ〉〈γ|) ⊗
(

1

2
|0〉〈0|+1

2
|1〉〈1|

)
,

where the 3rd equality is due to the following claim, plus the observation that
u1 ⊕ u2 	= 1n for any u1, u2 such that HW(u1),HW(u2) < n/2.

Claim 2. For any u ∈ {0, 1}n such that u /∈ {0n, 1n}, it holds that
∑

x:p(x)=0

(−1)u·x =
∑

x:p(x)=1

(−1)u·x = 0.

Proof. For any such u /∈ {0n, 1n}, define S0 = {i : ui = 0} and S1 = {i : ui = 1}.
Then, for any y0 ∈ {0, 1}|S0| and y1 ∈ {0, 1}|S1|, define xy0,y1 ∈ {0, 1}n to be the
n-bit string that is equal to y0 when restricted to indices in S0 and equal to y1
when restricted to indices in S1. Then,

∑

x:p(x)=0

(−1)u·x =
∑

y1∈{0,1}|S1|

∑

y0∈{0,1}|S0|:p(xy0,y1 )=0

(−1)u·xy0,y1

=
∑

y1∈{0,1}|S1|

2|S0|−1(−1)1
|S1|·y1 = 2|S0|−1

∑

y1∈{0,1}|S1|

(−1)p(y1) = 0,

and the same sequence of equalities can be seen to hold for x : p(x) = 1. �
This completes the proof of the theorem. �

3.2 The Random Oracle Extractor

Next, our goal is to extract multiple bits of randomness from x. To do this, we
model E as a random oracle. We derive a bound on the advantage any adversary
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has in distinguishing E(x) from a uniformly random string, based on the number
of qubits k in the register X , the number of vectors C in the superposition on
register X , and the number of queries q made to the random oracle. In fact, to be
as general as possible, we consider a random oracle with input length n, and allow
n−k of the bits of the input to the random oracle to be (adaptively) determined
by the adversary, while the remaining k bits are sampled by measuring a k-qubit
register X .

Theorem 3. Let H : {0, 1}n → {0, 1}m be a uniformly random function, and
let q, C, k be integers. Consider a two-stage oracle algorithm (AH

1 , AH
2 ) that com-

bined makes at most q queries to H. Suppose that AH
1 outputs classical strings

(T, {xi}i∈T ), and let |γ〉A,X be its left-over quantum state,9 where T ⊂ [n] is a
set of size n − k, each xi ∈ {0, 1}, A is a register of arbitary size, and X is a
register of k qubits. Suppose further that with probability 1 over the sampling of
H and the execution of A1, there exists a set L ⊂ {0, 1}k of size at most C such
that |γ〉 may be written as follows:

|γ〉 =
∑

u∈L

|ψu〉A ⊗ |u〉X .

Now consider the following two games.

– REAL:
• AH

1 outputs T, {xi}i∈T , |γ〉A,X .
• X is measured in the Hadamard basis to produce a k-bit string which

is parsed as {xi}i∈T , and a left-over state |γ′〉A on register A. Define
x = (x1, . . . , xn).

• AH
2 is given T, {xi}i∈T , |γ′〉A,H(x), and outputs a bit.

– IDEAL:
• AH

1 outputs T, {xi}i∈T , |γ〉A,X .
• r ← {0, 1}m.
• AH

2 is given T, {xi}i∈T ,TrX (|γ〉〈γ|), r, and outputs a bit.

Then,

|Pr[REAL = 1] − Pr[IDEAL = 1]| ≤ 2
√

qC + 2q
√

C

2k/2
<

4qC

2k/2
.

The proof of this theorem appears in the full version [1].

4 The Fixed Basis Framework: OT from Entanglement

We define (non-interactive) commitments in the quantum random oracle model,
and use them to build protocols for OT from shared EPR pairs.

9 That is, consider sampling H, running a purified AH
1 , measuring at the end to obtain

(T, {xi}i∈T ), and then defining |γ〉 to be the left-over state on A’s remaining registers.
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Commitments in the Random Oracle Model. A non-interactive commitment
scheme with partial opening in the quantum random oracle model consists of
classical oracle algorithms (Com,Open,Rec) with the following syntax.

– ComH(1λ, {mi}i∈[n]): On input the security parameter λ and n messages
{mi ∈ {0, 1}k}i∈[n], output n commitments {,i }i∈[n] and a state st.

– OpenH(st, T ): On input a state st and a set T ⊆ [n], output messages {mi}i∈T

and openings {ui}i∈T .
– RecH({,i }i∈[n], T, {mi, ui}i∈T ): on input n commitments {,i }i∈[n], a set T ,

and a set of message opening pairs {mi, ui}i∈T , output {mi}i∈T or ⊥.

The commitment scheme is parameterized by n = n(λ) which is the number of
messages to be committed in parallel, and k = k(λ), the length of each message.

In the full version [1], we define correctness, hiding, extractability and equivo-
cality for these commitments. We prove that a natural construction which essen-
tially commits to a bit b as H(b||r) for r ← {0, 1}λ, , satisfies extractability and
equivocality in the QROM. The extractability definition guarantees the existence
of a simulator SimExt = (SimExt.RO,SimExt.Ext) where SimExt.RO responds to
the adversary’s random oracle queries and SimExt.Sim extracts from the com-
mitment strings output by the adversary.

Theorem 4. Instantiate Protocol 5 with the correct, hiding, and extractable
non-interactive commitment scheme above. Then the following hold.

– When instantiated with the XOR extractor, there exist constants A,B such
that Protocol 5 securely realizes FS−ROT[1].

– When instantiated with the ROM extractor, there exist constants A,B such
that Protocol 5 securely realizes FS−ROT[λ].

Furthermore, letting λ be the security parameter, q be an upper bound on
the total number of random oracle queries made by the adversary, and using the
commitment scheme above with security parameter λ, = 4λ, the following hold.

– When instantiatied with the XOR extractor and constants A = 50, B = 100,
Protocol 5 securely realizes FS−ROT[1] with μR∗-security against a malicious
receiver and μS∗-security against a malicious sender, where

μR∗ =

(
8q3/2

2λ
+

3600λq

22λ
+

148(450λ + q + 1)3 + 1

24λ

)
, μS∗ =

(
85λ1/2q

22λ

)
.

This requires a total of 2(A + B)λ = 300λ EPR pairs.
– When instantiated with the ROM extractor and constants A = 1050, B =

2160, Protocol 5 securely realizes FS−ROT[λ] with μR∗-security against a mali-
cious receiver and μS∗-security against a malicious sender, where

μR∗ =

(
8q3/2 + 4λ

2λ
+

77040λq

22λ
+

148(9630λ + q + 1)3 + 1

24λ

)
, μS∗ =

(
197λ1/2q

22λ

)
.

This requires a total of 2(A + B)λ = 6420λ EPR pairs.



382 A. Agarwal et al.

Protocol 5

Ingredients and parameters.

– Security parameter λ, and constants A, B. Let n = (A + B)λ and k = Aλ.

– A non-interactive extractable commitment scheme (Com,Open,Rec), where
commitments to 3 bits have size � := �(λ).

– A random oracle HFS : {0, 1}n� → {0, 1}�log (n
k)�.

– An extractor E with domain {0, 1}n−k which is either
• The XOR function, so E(r1, . . . , rn−k) =

⊕
i∈[n−k] ri.

• A random oracle HExt : {0, 1}n−k → {0, 1}λ.

Setup. 2n EPR pairs on registers {Ri,b, Si,b}i∈[n],b∈{0,1}, where the receiver has
register R := {Ri,b}i∈[n],b∈{0,1} and the sender has register S := {Si,b}i∈[n],b∈{0,1}.
Protocol.

– Receiver message. R, on input b ∈ {0, 1}, m ∈ {0, 1}λ, does the following.
• Measurement. Sample θ1θ2 . . . θn ← {+, ×}n and for i ∈ [n], measure

registers Ri,0,, Ri,1 in basis θi to obtain ri,0, ri,1.
• Measurement check.

∗ Compute
(
, , {ci}i∈[n]

) ← Com
({(ri,0, ri,1, θi)}i∈[n]

)
.

∗ Compute T = HFS(c1‖ . . . ‖cn), parse T as a subset of [n] of size k.
∗ Compute {(ri,0, ri,1, θi), ui}i∈[T ] ← Open(, T ).

• Reorientation. Let T = [n] \ T , and for all i ∈ T , set di = b ⊕ θi

(interpreting + as 0, × as 1).
• Sampling. Set xb = E

({ri,θi}i∈T

) ⊕ m, and sample x1−b ← {0, 1}λ.
• Message. Send to S

(x0, x1), {ci}i∈[n], T, {ri,0, ri,1, θi, ui}i∈[T ], {di}i∈T .

– Sender computation. S does the following.
• Check Receiver Message. Abort if any of the following fails.

∗ Check that T = HFS(c1‖ . . . ‖cn).
∗ Check that Rec({ci}i∈T , {(ri,0, ri,1, θi), ui}i∈T ) �= ⊥.
∗ For every i ∈ T , measure the registers Si,0, Si,1 in basis θi to obtain

r′
i,0, r

′
i,1, and check that ri,0 = r′

i,0 and ri,1 = r′
i,1.

• Output. For all i ∈ T , measure the register Si,0 in basis + and the
register Si,1 in basis × to obtain r′

i,0, r
′
i,1. Output

m0 := x0 ⊕ E
({r′

i,di
}i∈T

)
, m1 := x1 ⊕ E

({r′
i,di⊕1}i∈T

)
.

Fig. 5. Non-interactive random-sender-input OT in the shared EPR pair model.

Then, applying non-interactive bit OT reversal [36] to the protocol that real-
izes FS−ROT[1] immediately gives the following corollary.

Corollary 1. Given a setup of 300λ shared EPR pairs, there exists a one-
message protocol in the QROM that O

(
q3/2

2λ

)
-securely realizes FR−ROT[1].
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Proof (of Theorem 4) Let HC be the random oracle used by the commitment
scheme. We treat HC and HFS (and HExt in the case of the random oracle
randomness extractor) as separate oracles that the honest parties and adversaries
query, which is without loss of generality. We prove security below.

Sender security. First, we show security against a malicious receiver R∗. We will
use on-the-fly simulation, introduced in [63] as a method of guaranteeing effi-
cient simulation of the oracle independent of the number of queries. We will also
use the extractor SimExt = (SimExt.RO,SimExt.Sim) guaranteed by the commit-
ment scheme. We describe the simulator for our OT protocol against a malicious
receiver below.

Sim[R∗]:

– Prepare 2n EPR pairs on registers R and S.
– Initialize R∗ with the state on register R. Answer any HFS (and HExt) queries

using an efficient on-the-fly random oracle simulator. Answer HC queries
using SimExt.RO.

– Obtain (x0, x1), {ci}i∈[n], T, {(ri,0, ri,1, θi), ui}i∈T , {di}i∈T from R∗ and run

{(r∗
i,0, r

∗
i,1, θ

∗
i )}i∈[n] ← SimExt.Ext({ci}i∈[n]).

– Run the “check receiver message” bullet of the honest sender strategy, except
that {r∗

i,0, r
∗
i,1}i∈T are used in place of {ri,0, ri,1}i∈T for the third check. If

any check fails, send abort to the ideal functionality, output R∗’s state, and
continue to answering the distinguisher’s oracle queries.

– Let b := maj{θ∗
i ⊕ di}i∈T . For all i ∈ T , measure the register Si,b⊕di

in basis
+ if b⊕di = 0 or basis × if b⊕di = 1 to obtain r′

i. Let mb := xb ⊕E({r′
i}i∈T ).

– Send (b,mb) to the ideal functionality, output R∗’s state, and continue to
answering the distinguisher’s queries.

– Answer the distinguisher’s HFS (and HExt) queries with the efficient on-the-
fly random oracle simulator and HC queries with SimExt.RO.

Now, given a distinguisher D such that R∗ and D make at most q queries
combined to HFS and HC (and HExt), we consider the following hybrids. The
distributions Π[R∗,D,�] and Π̃FS−ROT

[Sim[R∗],D,�] are formally defined in the
full version [1] to be the real and simulated executions of the protocol, respec-
tively.

– Hyb0: The result of the real interaction between R∗ and S. This is a distribu-
tion over {0, 1} described by Π[R∗,D,�].

– Hyb1: This is identical to Hyb0, except that all HC queries of R∗ and
D are answered via the SimExt.RO interface, and {(r∗

i,0, r
∗
i,1, θ

∗
i )} ←

Sim.Ext({ci}i∈[n]) is run after R∗ outputs its message. The values
{r∗

i,0, r
∗
i,1}i∈T are used in place of {ri,0, ri,1}i∈T for the third sender check.

– Hyb2: The result of Sim[R∗] interacting in Π̃FS−ROT[1] (or Π̃FS−ROT[λ]). This
is a distribution over {0, 1} described by Π̃FS−ROT[1] [Sim[R∗],D,�] (or
Π̃FS−ROT[λ] [Sim[R∗],D,�]).
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The proof of security against a malicious R∗ follows by combining the two claims
below, Claim 5 and Claim 6.

Claim 5.

|Pr[Hyb0 = 1] − Pr[Hyb1 = 1]| ≤ 24(A + B)λq

22λ
+

148(q + 3(A + B)λ + 1)3 + 1
24λ

.

Proof. This follows by a direct reduction to extractability of the commitment
scheme, since the only difference is whether or not we simulate the adversary’s
access to HC and use the extracted values {r∗

i,0, r
∗
i,1}i∈T in place of the opened

values {ri,0, ri,1}i∈T . �
Claim 6. For any q ≥ 4, when E is the XOR extractor and A = 50, B = 100,
or when E is the ROM extractor and A = 1050, B = 2160,

|Pr[Hyb1 = 1] − Pr[Hyb2 = 1]| ≤ 8q3/2

2λ
.

Proof. First, note that the only difference between these hybrids is that in Hyb2,
the m1−b received by D as part of the sender’s output is sampled uniformly at
random (by the ideal functionality), where b is defined as maj{θ∗

i ⊕di}i∈T . Now,
we introduce some notation.

– Let c := (c1, . . . , cn) be the classical commitments.
– Write the classical extracted values {(r∗

i,0, r
∗
i,1, θ

∗
i )}i∈[n] as matrices

R∗ :=
[
r∗
1,0 . . . r∗

n,0

r∗
1,1 . . . r∗

n,1

]
,θ∗ :=

[
θ∗
1 . . . θ∗

n

]
.

– Given any R,θ ∈ {0, 1}2×n, define |Rθ 〉 as a state on n two-qubit registers,
where register i contains the vector |Ri,0,Ri,1〉 prepared in the (θi,θi)-basis.

– Given R,R∗ ∈ {0, 1}2×n and a subset T ⊂ [n], define RT to be the columns
of R indexed by T , and define Δ (RT ,R∗

T ) as the fraction of columns i ∈ T
such that (Ri,0,Ri,1) 	= (R∗

i,0,R
∗
i,1). For T ⊂ [n], let T := [n] \ T .

– Given R∗,θ∗ ∈ {0, 1}2×n, T ⊆ [n], and δ ∈ (0, 1), define

ΠR∗,θ∗,T,δ :=
∑

R:RT =R∗
T ,Δ(RT ,R∗

T
)≥δ

|Rθ∗〉〈Rθ∗ |.

Intuitively, this is a projection onto “bad” states as defined by R∗,θ∗, T, δ,
i.e., states that agree with R∗ on all registers T but are at least δ-“far” from
R∗ on registers T .

Define the following projection, which has hard-coded the description of HFS :

Πδ
bad :=

∑

c,R∗,θ∗
|c〉〈c|C⊗|R∗,θ∗〉〈R∗,θ∗|Z⊗Π

R∗,θ∗,HF S(c),δ
S ,
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where C is the register holding the classical commitments, Z is the register
holding the output of SimExt.Ext, and S is the register holding the sender’s
halves of EPR pairs. Intuitively, this is a projection onto “bad” states defined
by the values R∗,θ∗, and where the check set T is computed by HFS(c).

We will now prove the following sub-claim, which essentially states that the
global state of the system after the malicious receiver outputs their message only
has negligible overlap with the “bad” subspace defined above.

SubClaim 7. Let τ :=
∑

H,c,R∗,θ∗ p(H,c,R∗,θ∗) τ (H,c,R∗,θ∗), where

τ (H,c,R∗,θ∗) = |c〉〈c|C⊗|R∗,θ∗〉〈R∗,θ∗|Z⊗ρ
(H,c,R∗,θ∗)
S,X

be the entire state of the system, including the sender’s halves of EPR pairs and
the receiver’s entire state in Hyb1 (equivalently also Hyb2) at the point in the
experiment right after R∗ outputs its message and SimExt.Ext is run. Here, each
p(H,c,R∗,θ∗) is the probability that the random oracle HFS is initialized to the
function H and the registers C,Z hold the classical strings c,R∗,θ∗. We also
define S to be the register holding the sender’s halves of EPR pairs, and X to be
the register holding the remaining state of the system, which includes the rest of
the receiver’s classical message and its private state. Then,

– If A = 50, B = 100, then Tr(Π0.25
bad τ) ≤ 64q3

22λ .

– If A = 1050, B = 2160, then Tr(Π0.054
bad τ) ≤ 64q3

22λ .

Proof. Define AdvHF S

R∗ to be the oracle machine that runs Hyb1 until R∗ outputs
c (and the rest of its message), then runs SimExt.Ext to obtain |R∗,θ∗〉〈R∗,θ∗|,
and then outputs the remaining state ρS,X . Consider running the measure-and-
reprogram simulator Sim[AdvR∗ ] [23,24] (described formally in the full version
[1]) which simulates HFS queries, measures and outputs c, then receives a uni-
formly random subset T ⊂ [n] of size k, and then continues to run AdvR∗ until
it outputs |R∗,θ∗〉〈R∗,θ∗|⊗ρS,X . Letting

Πδ
bad[T ] :=

∑

c,R∗,θ∗
|c〉〈c|C⊗|R∗,θ∗〉〈R∗,θ∗|Z⊗ΠR∗,θ∗,T,δ

S ,

for T ⊂ [n], the measure-and-reprogram theorem [23,24] (also full version [1])
gives

Tr
(
Πδ

badτ
)

≤ (2q + 1)2 E

⎡

⎣Tr
(
Πδ

bad[T ]σ
)

:
(c, st) ← Sim[AdvR∗ ]

T ← Sn,k

(R∗,θ∗, ρS,X ) ← Sim[AdvR∗ ](T, st)

⎤

⎦ ,

where

σ = |c〉〈c|C⊗|R∗,θ∗〉〈R∗,θ∗|Z⊗ρS,X ,
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and Sn,k is the set of all subsets of [n] of size k. Crucially, because Sim[AdvR∗ ]
is defined to just run AdvR∗ and answer their oracle queries to HFS , it does not
touch the sender’s registers S after initializing them with halves of EPR pairs.

Now, recall that the last thing that AdvR∗ does in Hyb1 is run SimExt.Ext
on c to obtain (R∗,θ∗). Consider instead running SimExt.Ext on c immediately
after Sim[AdvR∗ ] outputs c. In the full version [1], we show that , has a 8

2λ,/2 -
commuting simulator, which means that each time we commute the SimExt.Ext
query past a SimExt.RO query, the overall state of the system changes by at most

8
2λ,/2 in trace distance. Thus, plugging in λ, = 4λ,

Tr
(
Πδ

badτ
)

≤ (2q + 1)2

⎛

⎜⎜⎝E

⎡

⎢⎢⎣Tr
(
Πδ

bad[T ]σ
)

:

(c, st) ← Sim[AdvR∗ ]
(R∗,θ∗) ← SimExt.Ext(c)

T ← Sn,k

ρS,X ← Sim[AdvR∗ ](T, st)

⎤

⎥⎥⎦ +
8q

22λ

⎞

⎟⎟⎠

:= (2q + 1)2ε +
8q(2q + 1)2

22λ
,

where
σ = |c〉〈c|B⊗|R∗,θ∗〉〈R∗,θ∗|Z⊗ρS,X ,

and where we denote the expectation inside the parantheses by ε.
Now, since the S register is not touched by Sim[AdvR∗ ] at any point after

(R∗,θ∗) are output, we can imagine measuring the S registers in the θ∗-basis
even before T is sampled. Thus, ε is at most the probabilty that the following
procedure outputs 1, where R∗ represents the matrix output by SimExt, and R
represents the matrix obtained by measuring register S in the θ∗-basis.

– Let R,R∗ ∈ {0, 1}2×n be two matrices.
– Sample a uniformly random subset T ⊂ [n] of size k.
– Output 1 if and only if (Ri,0,Ri,1) = (R∗

i,0,R
∗
i,1) for all i ∈ T , and

(Ri,0,Ri,1) 	= (R∗
i,0,R

∗
i,1) for at least δ fraction of i ∈ T .

In the full version [1], we bound this probability by 2 exp(−2(1 − k/n)2δ2k),
using standard Hoeffding inequalities.

– For δ = 0.25, this probability is bounded by

2 exp(−2(0.25)2(1 − A/(A + B))2A) < 2−2λ,

for A = 50, B = 100.
– For δ = 0.054, this probability is bounded by

2 exp(−2(0.054)2(1 − A/(A + B))2A) < 2−2λ,

for A = 1050, B = 2160.
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Summarizing, we have that in either case,

Tr
(
Πδ

badτ
) ≤ (2q + 1)2 + 8q(2q + 1)2

22λ
≤ 64q3

22λ
,

for q ≥ 4.
�

By the calculations above, and by Gentle Measurement (full version [1]),
the τ defined in SubClaim 7 is within 8q3/2

2λ trace distance of a state τgood in
the image of I − Π0.25

bad if A = 50, B = 100 and in the image of I − Π0.054
bad if

A = 1050, B = 2160.
For readability, we note that

I − Πδ
bad =

∑

c,R∗,θ∗
|c〉〈c|C⊗|R∗,θ∗〉〈R∗,θ∗|Z⊗

(
I − ΠR∗,θ∗,HF S(c),δ

)

S
,

where for any T ,

I − ΠR∗,θ∗,T,δ =
∑

R:(RT 
=R∗
T )∨(Δ(RT ,R∗

T
)<δ)

|Rθ∗〉〈Rθ∗ |.

Finally, we show the following two sub-claims to complete the proof of Claim 6.

SubClaim 8. If E is the XOR extractor, then conditioned on τ being in the
image of I − Π0.25

bad , it holds that

Pr[Hyb1 = 1] = Pr[Hyb2 = 1].

Proof. It suffices to analyze the state τ conditioned on the register that contains
T being equal to HFS(c) (otherwise the honest sender/simulator will abort).

If τ is in I− Π0.25
bad , it must be the case that the register S is in the image of

I−ΠR∗,θ∗,T,0.25, where R∗,θ∗ were output by SimExt.Ext. Recall that the sender
aborts if the positions measured in T are not equal to R∗

T . Thus, we can condition
on the sender not aborting, which, by the definition of I − ΠR∗,θ∗,T,0.25 implies
that register ST is supported on vectors |(RT )

θ∗〉 such that Δ(RT ,R∗
T
) < 0.25.

To obtain m1−b, the sender measures register Si,di⊕b⊕1 in basis di ⊕ b ⊕ 1
for each i ∈ T to obtain a string r′ ∈ {0, 1}n−k. Then, m1−b is set to E(r′).
Since b is defined as maj{θ∗

i ⊕di}i∈T in Hyb2, at least (n−k)/2 of the bits r′
i are

obtained by measuring in 1⊕θ∗
i . Let M ⊂ T be this set of size at least (n−k)/2,

and define r∗ ∈ {0, 1}n such that r∗
i = R∗

i,di⊕b⊕1 . We know from above that the
register SM is supported on vectors |(rM )θ∗〉 for rM such that Δ(rM , r∗

M ) < 0.5.
Thus, recalling that each of these states is measured in the basis 1 ⊕ θ∗

i , we can
appeal to Theorem 1 (with an appropriate change of basis) to show that m1−b

is perfectly uniformly random from R∗’s perspective, completing the proof. �
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SubClaim 9. If E is the ROM extractor and B ≥ 326, q ≥ 4, then conditioned
on τ being in the image of I − Π0.054

bad , it holds that

|Pr[Hyb1 = 1] = Pr[Hyb2 = 1]| ≤ 4q

2λ
.

Proof. This follows the same argument as the above sub-claim, until we see that
there are (n − k)/2 qubits of S that are measured in basis 1 ⊕ θ∗

M , and that
the state on these qubits is supported on vectors |(rM )θ∗〉 for rM such that
Δ(rM , r∗

M ) < 0.108. We can then apply Theorem 3 with random oracle input
size n−k, register X size (n−k)/2, and |L| ≤ 2hb(0.108)(n−k)/2. Note that, when
applying this theorem, we are fixing any outcome of the (n − k)/2 bits of the
random oracle input that are measured in θ∗, and setting register X to contain
the (n − k)/2 registers that are measured in basis 1 ⊕ θ∗. This gives a bound of
4q2hb(0.108)(n−k)/2

2(n−k)/4 = 4q

2(n−k)( 1
4 − 1

2 hb(0.108))
= 4q

2Bλ( 1
4 − 1

2 hb(0.108))
≤ 4q

2λ for B ≥ 326. �

This completes the proof of Claim 6. �

Receiver Security. Next, we show security against a malicious sender S∗. During
the proof, we will use an efficient quantum random oracle “wrapper” algorithm
W [(x, z)] that provides an interface between any quantum random oracle sim-
ulator, such as the on-the-fly simulator, and the machine querying the random
oracle. The wrapper will implement a controlled query to the actual random
oracle simulator, controlled on the input X register not being equal to x. Then,
it will implement a controlled query to a unitary that maps |x, y〉 → |x, y ⊕ z〉,
controlled on the input X register being equal to x. The effect of this wrapper
is that the oracle presented to the machine is the oracle H simulated by the
simulator, but with H(x) reprogrammed to z.

Sim[S∗] :

– Query the ideal functionality with ⊥ and obtain m0,m1.
– Sample T as a uniformly random subset of [n] of size k, sample di ← {0, 1}

for each i ∈ T , and sample θi ← {+,×} for each i ∈ T .
– For each i ∈ [n], sample ri,0, ri,1 ← {0, 1} and prepare BB84 states

|ψi,0〉, |ψi,1〉 as follows.
• If i ∈ T , set |ψi,0〉 = |ri,0〉θi

, |ψi,1〉 = |ri,1〉θi
.

• If i ∈ T , set |ψi,0〉 = |ri,0〉+, |ψi,1〉 = |ri,1〉×.
– For each i ∈ T , let ei := (ri,0, ri,1, θi) and for each i ∈ T , let ei := (0, 0, 0).

Compute (st, {ci}i∈[n]) ← Com({ei}i∈[n]) and {ui}i∈T ← Open(st, T ).
– Set x0 := E({ri,di

}i∈T ) ⊕ m0 and x1 := E({ri,di⊕1}i∈T ) ⊕ m1 (where if E is
the ROM extractor, this is accomplished via classical queries to an on-the-fly
random oracle simulator for HExt).

– Run S∗ on input (x0, x1), {ci}i∈[n], T, {ri,0, ri,1, θi, ui}i∈T , {di}i∈T ,
{|ψi,b〉}i∈[n],b∈{0,1}. Answer HC queries using the on-the-fly random oracle
simulator, answer HFS queries using the on-the-fly random oracle simulator
wrapped with W [{ci}i∈[n], T ], and if E is the ROM extractor, answer HExt
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queries using the on-the-fly random oracle simulator. Output S∗’s final state
and continue to answering the distinguisher’s random oracle queries.

Now, given a receiver input b ∈ {0, 1}, and distinguisher D such that S∗ and
D make a total of at most q queries combined to HFS and HC (and HExt),
consider the following sequence of hybrids.

– Hyb0: The result of the real interaction between R(b) and S∗. This is a distri-
bution over {0, 1} desrcibed by Π[S∗,D, b].

– Hyb1: This is the same as the previous hybrid except that T is sampled
uniformly at random as in the simulator, and HFS queries are answered with
the wrapper W [({ci}i∈[n], T )].

– Hyb2: This is the same as the previous hybrid except that the messages
{(ri,0, ri,1, θi)}i∈T are replaced with (0, 0, 0) inside the commitent.

– Hyb3: The result of Sim[S∗] interacting in Π̃FS−ROT[1] (or Π̃FS−ROT[λ]]).
This is a distribution over {0, 1} described by Π̃FS−ROT[1] [Sim[S∗],D, b] (or
Π̃FS−ROT[λ] [Sim[S∗],D, b]).

Security against a malicious S∗ follows by observing that Hyb0 and Hyb1 are
identically distributed, since HFS is a random oracle and T is uniformly random
in Hyb1, and the following claims.

Claim 10. |Pr[Hyb1 = 1] − Pr[Hyb2 = 1]| ≤ 4q
√

3(A+B)λ

22λ .

This follows from hiding of the commitments (appropriately parameterized).

Claim 11. Pr[Hyb2 = 1] = Pr[Hyb3 = 1].

Proof. First, note that one difference in how the hybrids are specified is that
in Hyb2, the receiver samples x1−b uniformly at random, while in Hyb3, x1−b is
set to E({ri,di⊕b⊕1}i∈T ) ⊕ m1−b. However, since m1−b is sampled uniformly at
random by the functionality, this is an equivalent distribution.

Thus, the only difference between these these hybrids is the basis in which
the states on registers {Si,di⊕b⊕1}i∈T are prepared (which are the registers
{Si,θi⊕1}i∈T in Hyb2). Indeed, note that in Hyb2, the state on register Si,di⊕bi⊕1

is prepared by having the receiver measure their corresponding half of an EPR
pair (register Ri,di⊕bi⊕1) in basis θi = di⊕b, while in Hyb3, this state is prepared
by sampling a uniformly random bit and encoding it in the basis di ⊕ bi ⊕ 1.
However, these sampling procedures both produce a maximally mixed state on
register Si,di⊕b⊕1, and thus these hybrids are equivalent. �
This completes the proof. In the full version [1], we also analyze a two-round
variant without setup where the receiver sets up entanglement. In addition, we
formally describe our 3 round chosen-input OT without entanglement or setup,
as well as optimizations of the CK template to minimize round complexity.
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Abstract. We construct a single-server pre-processing Private Informa-
tion Retrieval (PIR) scheme with optimal bandwidth and server compu-
tation (up to poly-logarithmic factors), assuming hardness of the Learn-

ing With Errors (LWE) problem. Our scheme achieves amortized ˜Oλ(
√

n)

server and client computation and ˜Oλ(1) bandwidth per query, completes

in a single roundtrip, and requires ˜Oλ(
√

n) client storage. In particular,
we achieve a significant reduction in bandwidth over the state-of-the-
art scheme by Corrigan-Gibbs, Henzinger, and Kogan (Eurocrypt’22):

their scheme requires as much as ˜Oλ(
√

n) bandwidth per query, with
comparable computational and storage overhead as ours.

1 Introduction

Imagine that a server holds a large public database DB indexed by 0, 1, . . . , n−1,
e.g., the repository of DNS entries or a collection of webpages. A client
wants to fetch the i-th entry of the database. Although the database is pub-
lic, the client wants to hide which entry it is interested in. Chor, Goldreich,
Kushilevitz, and Sudan [21,22] first formulated this problem as Private Infor-
mation Retrieval (PIR), and since then, a long line of works have focused
on constructing efficient PIR schemes [4,10,11,15,18–20,23–26,28,30,32,35,37–
39,42,43,45,46,49,50,53].

The good news is that PIR schemes with poly-logarithmic bandwidth are well-
known [10,11,15,19,20,28,32,37,38,43,45,49,50,53], either in the single-server
or multi-server settings. The bad news is that in the classical PIR setting without
pre-processing, all known schemes suffer from prohibitive server computation
overhead: the server(s) must (in aggregate) perform computation that is linear
in the database size n to answer each query. Intuitively, if there is an entry that
the server does not look at, it leaks information that the client is not interested
in that entry. Beimel, Ishai, and Malkin [7] formalized this intuition into an
elegant lower bound, showing that any PIR scheme without pre-processing must
incur Ω(n) server computation per query.

Recognizing this inherent limitation, Beimel et al. [7] introduce a new model
for PIR that allows pre-processing, and they were the first to show that the
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linear-computation lower bound can be circumvented with the help of pre-
processing. Subsequently, a line of works further explored PIR in the prepro-
cessing model [23,24,52,54], culminating in the recent works by Corrigan-Gibbs,
Henzinger, and Kogan [23] and by Shi et al. [54]. Corrigan-Gibbs, Henzinger,
and Kogan [23] proved that in the single-server and pre-processing setting, we
can construct a PIR scheme with amortized ˜Oλ(

√
n) server and client compu-

tation per query, while requiring ˜Oλ(
√

n) client storage. Here, we use ˜Oλ(·) to
hide poly (λ, log n) factors, where λ is the security parameter. Corrigan-Gibbs et
al. [23] also showed that their scheme achieves optimality up to poly log factors
in terms of server computation, assuming ˜O(

√
n) client storage. Unfortunately,

their scheme suffers from ˜Oλ(
√

n) bandwidth overhead which is significantly
worse than classical PIR schemes without pre-processing. On the other hand,
Shi et al. [54] showed that in a setting with two non-colluding servers, we can
construct a PIR scheme that incurs only ˜Oλ(1) online bandwidth and ˜Oλ(

√
n)

server and client computation per query, while requiring ˜Oλ(
√

n) client storage.
Both of these schemes support unbounded number of queries after a one-time
pre-processing, and the cost of the pre-processing is amortized to each query.

While the two schemes [23,54] achieve similar server and client computa-
tion overhead, Shi et al. [54] has the advantage that it achieves ˜Oλ(1) online
bandwidth—although unfortunately, this is achieved at the price of requiring
two non-colluding servers. Notably, Shi et al.’s scheme is known to be optimal
up to poly log factors even in the two-server setting, in terms of bandwidth and
server computation, assuming that the client can only download roughly

√
n

amount of data during the offline pre-processing phase [24].
Given the state of the art, we ask whether we can achieve the best of both

worlds. Specifically, we ask the following natural question—the same open ques-
tion was also raised by Corrigan-Gibbs et al. in their recent work [23]:

Can we construct a single-server pre-processing PIR scheme that achieves
(near) optimality in both server computation and bandwidth?

1.1 Our Contributions

We provide an affirmative answer to the aforementioned question by proving the
following theorem:

Theorem 1.1. Assume that the Learning With Errors (LWE) assumption
holds. Then, there exists a single-server pre-processing PIR scheme that achieves
amortized ˜Oλ(1) bandwidth, ˜Oλ(

√
n) server and client computation per query,

and requires ˜Oλ(
√

n) client storage.

More specifically, in our scheme, there is a one-time pre-processing phase
with the same overheads in all dimensions as Corrigan-Gibbs [23] (up to poly log
factors). During the offline pre-processing, the client and the server engage
in ˜Oλ(

√
n) communication, the server performs ˜Oλ(n) computation, and the
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Table 1. Comparison of single-server PIR schemes. Q is the batch size for
batch PIR, m is the number of clients, n is the database size, and ε ∈ (0, 1) is some
suitable constant. “BW” means bandwidth per query. “CRA” means the composite
residuosity assumption, φ-hiding is a number-theoretic assumption described in [15],
“OLDC” means oblivious locally decodable codes, and “VBB” means virtual-blackbox
obfuscation.

Scheme Assumpt. Adaptive BW Per-query time Extra space

Client Server Client Server

Standard CRA or

� ˜O(1) ˜O(1) 0 0[15,19,32] φ-hiding

or LWE

O(n)

Batch PIR same
˜O(1) ˜O(1) O( n

Q
) 0 0

[4,38] as above
✕

[13,17] OLDC � nε nε nε O(1) mn

[13] OLDC, VBB � nε nε nε 0 n

[24] LWE � ˜Oλ(
√

n) ˜Oλ(
√

n) ˜Oλ(n) ˜Oλ(
√

n) 0

[23] LWE � ˜Oλ(
√

n) ˜Oλ(
√

n) ˜Oλ(
√

n) ˜Oλ(
√

n) 0

Ours LWE � ˜Oλ(1) ˜Oλ(
√

n) ˜Oλ(
√

n) ˜Oλ(
√

n) 0

client performs ˜Oλ(
√

n) computation. In Theorem 1.1 above, the cost of the
pre-processing is amortized to the subsequent queries. After the one-time pre-
processing, we can support an unbounded number of queries, and for each
query, we incur the same costs as stated in Theorem 1.1, in the worst case.
Our actual construction makes use of two cryptographic primitives: fully homo-
morphic encryption (FHE) [31,33] and privately programmable pseudorandom
functions [10,41,51], both of which have known instantiations assuming LWE.

Near Optimality. Our scheme is optimal up to poly log factors in terms of server
computation and bandwidth, in light of the lower bounds proven in recent
works [23,24]. Specifically, Corrigan-Gibbs and Kogan [24] showed that for any
pre-processing PIR scheme where the server stores only the original database, it
must be that C ·T ≥ Ω(n) where C is the bandwidth incurred during the offline
pre-processing and T is the online server time per query. The recent work of
Corrigan-Gibbs, Henzinger, and Kogan [23] proved that for any pre-processing
PIR scheme that supports unbounded number of dynamic queries and assuming
the server stores only the original database, it must be that S · T ≥ Ω(n) where
S is client’s storage and T is the online server time per query.

Although in the main body we focus on the special case where the parameters
S and T are balanced, in Appendix B of the online full version [56], we discuss
how to achieve a smooth tradeoff between S and T . In particular, for any function
f(n) ∈ [logcn, n/logcn] for some suitable positive constant c, we give a scheme
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that requires only ˜Oλ(f(n)) client space, and achieves ˜Oλ(n/f(n)) online server
and client time per query, and ˜Oλ(1) bandwidth per query. Therefore, we achieve
near optimality for every choice of client space.

Comparison with Prior Schemes. Table 1 compares our scheme against vari-
ous prior works. We focus on schemes in the single-server setting, and for
pre-processing PIR schemes, we amortize the pre-processing overhead over an
unbounded number of subsequent queries. Among these schemes, batch PIR
schemes [4,37,38] must have a large batch size of Q to achieve the stated amor-
tized performance, and fail in the scenario when the queries are generated adap-
tively and arrive one by one. We discuss additional related work in Sect. 1.2.

1.2 Additional Related Work

We now review some additional related work. Besides being first to define PIR
with pre-processing, Beimel et al. [7] additionally showed how to construct a
preprocessing PIR with polylogarithmic online bandwidth assuming polyloga-
rithmically many non-colluding servers, and poly (n) server storage. Unlike our
work as well as the recent works by Corrigan-Gibbs et al. [23,24], the scheme by
Beimel et al. [7] employs a public pre-processing, where the pre-processing results
in no client-side secret state. In fact, in their scheme [7], the server pre-processes
the database, resulting in a poly (n)-sized encoding of the database which is then
stored by the server. The very recent work of Persiano and Yeo [52] proved that
for any PIR scheme with public pre-processing, it must be that T ·R ≥ Ω(nlog n)
where T is the server computation per query and R is size of the additional state
computed by the public pre-processing. In comparison, our work considers a pri-
vate pre-processing model, i.e., at the end of the pre-processing, the client stores
some secret state not seen by the server. This model matches well with a “sub-
scription model” in practice. For example, every client that needs private DNS
service can subscribe with the provider, and during subscription, they perform
the one-time pre-processing.

Besides the single-server PIR scheme from FHE mentioned in Table 1, the
work of Corrigan-Gibbs and Kogan [24] also propose another scheme assuming
only linearly homomorphic encryption, which requires O(n2/3) bandwidth and
client computation and O(n) server computation per query, as well as O(n2/3)
client storage. Further, the work of Corrigan-Gibbs, Henzinger, and Kogan [23]
additionally suggests a single-server PIR scheme assuming only linearly homo-
morphic encryption, incurring O(

√
n) bandwidth and client computation, and

O(n3/4) server computation per query, requiring O(n3/4) client storage.
Hamlin et al. [36] suggested a related notion called private anonymous data

access (PANDA). PANDA is a form of preprocessing PIR which requires an
additional third-party trusted setup besides the client and the servers; and more-
over, the server storage and time grow w.r.t. the number of corrupt clients. In
applications (e.g., private DNS) that involve a potentially unbounded number
of mutually distrustful clients, PANDA schemes would be unsuitable.
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A line of works have explored the concrete efficiency of PIR schemes [4,34,42,
47,48,50]. In particular, the work of Angel et al. [4] relies on batching to amor-
tize the linear server computation over a batch of queries. Kogan and Corrigan-
Gibbs [42] gives a practical instantiation of the two-server pre-processing PIR
scheme described in their earlier work [24], with a new trick that removes the
k-fold parallel repetition. For their private blocklist application, it turns out that
the database is somewhat small, and therefore, they are willing to incur Θ(n)
client-side computation per online query, in exchange for logarithmic bandwidth.
The work of Patel et al. [50] explores how to rely on a stateful client to improve
the concrete performance of PIR schemes. Our work focuses on the asymptot-
ical overhead, and we leave it to future work to consider concretely efficient
instantiations that preserve our asymptotical performance.

Some works have considered achieving sublinear server time by relaxing the
security definition to differential privacy. Toledo et al. [55] improved the server
time to sublinear with this relaxation, assuming a large number of servers are
available. Albab et al. [3] also considered the differential privacy notion, and
they can achieve sublinear amortized server computation in a batched setting.

Independent Work. Subsequent to our work, Lazaretti and Papamanthou [44]
proposed a similar construction. The main difference in their construction is
that they claim to rely only on privately puncturable PRFs and we rely on pri-
vately programmable PRFs. However, inside their scheme, they are effectively
using rejection sampling to construct a programmable PRF from a puncturable
PRF—earlier work has pointed out that this approach will only work if the pri-
vately puncturable PRF satisfies rerandomizability [16]. Therefore, for Lazaretti
and Papamanthou’s scheme [44] to work, they need to rely on a rerandomizable
privately puncturable PRF like what Canetti and Chen [16] suggested. Addi-
tionally, their privacy proof (in their Eprint version dated 2022-06-23) appears
slightly incomplete but likely fixable. In particular, in the inductive argument in
their privacy proof in their Section B.1, they argue that the sk part of the client’s
table is indistinguishable from randomly sampled secret keys (for the hard punc-
turing key). To prove the PIR scheme secure, they actually need to show that
the client’s table is indistinguishable form randomly sampled keys, not just for
the sk part, but actually for the pair (msk, sk). This is because the server’s view
actually depends on the msks in the client’s table. While it is outside the scope
of our paper to complete their proof, we think changing the security definition of
their pseudorandom sets to include the msk, and reproving their pseudorandom
sets secure under this new definition should lend to fixing this issue.

2 Technical Roadmap

2.1 Starting Point: Optimal 2-Server Scheme by Shi et al.

An Inefficient Toy Scheme. Our starting point is the nearly optimal 2-server
scheme by Shi et al. [54], and we will explore how to coalesce the two servers
into one. To understand their scheme, it helps to start out with the following toy
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scheme which is a slight variant of the strawman schemes described in recent
works [24,54]. Henceforth, we use the notations Right and Left to denote two
non-colluding servers. Let Dn be some distribution from which we can sample
random sets of expected size

√
n—at this moment, the reader need not care what

exactly the distribution Dn is.

Inefficient Toy 2-Server Scheme: Single-Copy Version

Offline preprocessing. (DB[k] denotes the k-th bit of the database)

– Client samples
√

n sets S1, S2, . . . , S√
n ⊆ {0, 1, . . . , n − 1} from the dis-

tribution Dn.
– Client sends the resulting sets S1, . . . , S√

n to Left. For each set j ∈ [
√

n],
Left responds with the parity bit pj := ⊕k∈Sj

DB[k] of indices in the set.
– Client stores the hint table T := {Tj := (Sj , pj)}j∈[

√
n].

Online query for index x ∈ {0, 1, . . . , n − 1}.
– Query: (Client ⇔ Right)

1. Find an entry Tj := (Sj , pj) in its hint table T such that x ∈ Sj . Let
S∗ := Sj if found, else let S∗ be a fresh random set containing x.

2. Send the set S := ReSamp(S∗, x) to Right, where ReSamp(S∗, x)
outputs a set almost identical to S∗, except that the coins used to
determine x’s membership are re-tossed.

3. Upon obtaining a response p := ⊕k∈SDB[k] from Right, output the
candidate answer β′ := pj ⊕ p or β′ := 0 if no such Tj was found
earlier.

4. Client obtains the true answer β := DB[x]—the full scheme will
repeat this single-copy scheme k = ω(log λ) times, and β is com-
puted as a majority vote among the k candidate answers, which is
guaranteed to be correct except with negligible probability.

– Refresh (Client ⇔ Left)
1. Client samples a random set S′ and sends S′ to Left.
2. Left responds with p′ := ⊕k∈S′DB[k]. Let p̃ = p′ ⊕ β if x /∈ S′, else

let p̃ = p′. If a table entry Tj containing x was found and consumed
earlier, Client replaces Tj with (S′ ∪ {x}, p̃).

In this 2-server toy scheme, during the offline phase, the client samples
√

n
sets each of expected size

√
n from some distribution Dn. It downloads the par-

ities of all these sets from the Left server. It stores all these sets as well as the
parity of each set in a local hint table. During the online phase, to query an index
x ∈ {0, 1, . . . , n−1}, the client looks up its hint table and finds a set S∗ that con-
tains x, whose parity is pj . It then resamples the coins that determine whether x
is in the set or not. It sends the resampled set to the Right server, which returns
the client the parity p′. The client computes β′ = p′⊕pj as the candidate answer.
If we choose the distribution Dn carefully, then, with significant probability,
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the ReSamp(x) will remove the element x from the set, without adding or
removing any other element. In this case, the candidate answer β′ would be
correct. If we can ensure that each single copy has 2/3 correctness probability,
then we can amplify the correctness probability to 1 − negl(λ) through parallel
repetition using ω(log λ) copies and majority voting. Finally, once we consume a
hint from the table, we need to replenish it. To achieve this, the client samples a
random set S′, and obtains its parity p′ from the Left server. The client replaces
the consumed entry with the set S′ ∪ {x} and its parity which can be computed
knowing p′ and β = DB[x].

Privacy. Privacy w.r.t. the Left server is easy to see. Basically, the Left server
sees

√
n random sets sampled from Dn during the offline phase, and during each

online query, it sees an additional random set also sampled from Dn. Privacy
w.r.t. the Right server can be proven using an inductive argument. Initially,
the client’s hint table consists of

√
n random sets sampled independently from

Dn. Suppose that at the end of the i-th query the client’s hint table satisfies
the above distribution. Then, during the i-th query that requests some index
x ∈ {0, 1, . . . , n − 1}, if some hint (Sj , pj) is matched, i.e., Sj 	 x, then, the
distribution of Sj is the same as sampling from Dn subject to containing x.
Therefore, the set sent to the Right server, i.e., ReSamp(Sj) has the same
distribution as sampling at random from Dn. Further, notice that the client
replaces the consumed entry with another set sampled at random subject to
containing x. Thus, at the end of the i-th query, the client’s hint table still has√

n independent and identically distributed (i.i.d.) sets sampled from Dn.

Inefficiency of the Toy Scheme. In the toy scheme, both the server and the client
perform roughly

√
n computation per query. However, the online bandwidth to

each of the two servers is roughly
√

n, and the client storage is O(n).

Compressing the Bandwidth and Client Storage. Pseudorandom Sets
with Private ReSamp. Shi et al. [54] suggested an idea to improve the effi-
ciency of the toy scheme in the two-server setting. To achieve this, they intro-
duce a cryptographic object called a pseudorandom set (PRSet), allowing us to
succinctly represent a pseudorandom set of size roughly

√
n with a short key of

poly (λ) bits. In this way, the client can store a key in place of each set, and send
a key to the server in place of the full description of a set. Their PRSet scheme
must support the following operations:

– sk ← Gen(1λ, n): samples a key sk that generates a pseudorandom set emu-
lating the distribution Dn;

– S ← Set(sk): given a key sk, enumerate the set S;
– Member(sk, x): test if an element x ∈ {0, 1, . . . , n − 1} is in Set(sk);



402 M. Zhou et al.

– sk′ ← ReSamp(sk, x): given a key sk, generates a related key sk′ that effec-
tively resamples the coins that are used to determine whether x is in the set
or not, while preserving all other coins1;

Designing such a PRSet scheme turns out to be non-trivial, since we need to
satisfy the following properties simultaneously.

– Privacy of ReSamp. The resampled key output by ReSamp(sk, x) must
hide the point x that is being resampled.

– Efficient membership test and set enumeration. The membership test algo-
rithm Member(sk, x) must complete in ˜Oλ(1) running time and the set enu-
meration algorithm Set(sk) must complete in ˜Oλ(

√
n) time.

Shi et al. [54] show how to rely on a privately puncturable pseudorandom
function [9,14,16] to construct a PRSet scheme that supports a private ReSamp
operation. Further, to satisfy efficient membership test and efficient set enumer-
ation simultaneously, they carefully crafted a distribution Dn that the PRSet
scheme emulates. Notably, whether two elements are in the set may not be inde-
pendent in the distribution Dn. Such weak dependence between elements brings
additional possibilities of errors. In particular, ReSamp(sk, x) may accidentally
remove other elements besides x. If ReSamp(sk, x) either fails to remove x or
ends up removing additional elements besides x, the resulting PIR scheme would
be incorrect. Shi et al. [54] made sure that the probability of such error is small,
such that each single copy of the PIR scheme still has 2/3 correctness.

Optimal 2-Server PIR Scheme. With such a PRSet scheme, we can easily mod-
ify the aforementioned toy scheme to compress the client storage and band-
width [54]. Specifically, during the offline phase, the client sends

√
n PRSet keys

to the Left server. The Left server uses the set enumeration algorithm Set to
enumerate the sets and sends the client their parity bits. The client now stores
a hint table where each entry is of the form (ski, pi), where ski is a PRSet key
that can be used to generate a set of size roughly

√
n, and pi is the parity bit

as before. During an online query for x ∈ {0, 1, . . . , n − 1}, the client finds an
sk∗ in its hint table such that Member(sk∗, x) = 1, and sends the outcome of
ReSamp(sk∗, x) to the Right server. If such a key is not found, the client simply
samples a random sk′ ← Gen(1λ, n) and sends it to the server. The client com-
putes the candidate answer the same way as before. What is most interesting
is how to perform the refresh operation to replenish the consumed key. This is
achieved in the following manner:

– Sample sk′ ← Gen(1λ, n) subject to Member(sk′, x) = 1, and send the
outcome of ReSamp(sk′, x) to the Left server.

– The Left server enumerates the set using the Set algorithm and sends the
client the parity bit p′. The client replaces the consumed entry with (sk′, p′⊕β)
where β = DB[x] is the true answer to the current query.

1 Shi et al. [54] referred to ReSamp as Punct since the operation is implemented by
calling the puncturing operation of the underlying privately puncturable PRF.
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2.2 Highlights of Our Construction and Proof Techniques

Corrigan-Gibbs and Kogan [24] proposed an FHE-based technique to compile a
two-server pre-processing PIR scheme into a single-server scheme, and the tech-
nique was further extended by Corrigan-Gibbs, Henzinger, and Kogan [23]—this
technique is remotely related to techniques for converting multi-prover proof sys-
tems into single-prover proof systems [1,8,27,29,40]. The idea is to get rid of the
Left server and redirect the queries originally destined for the Left server instead
to the Right server, but now encrypted under a fully homomorphic encryption
(FHE) scheme. The server now evaluates the answers to the query through homo-
morphic evaluation. Unfortunately, this compilation technique is incompatible
with Shi et al. [54]. The technicality arises from the fact that FHE evaluation
relies on circuit as the computation model, whereas the sublinear server compu-
tation time of Shi et al. [54] relies on the RAM model (since dynamic memory
accesses are needed). Recall that every time the server receives a pseudorandom
set key, it needs to expand the key to a set of size ˜O(

√
n), and retrieve the parity

of the database bits at precisely these indices. On a RAM, this computation costs
˜O(

√
n), but now that the key is encrypted under FHE, using a circuit to homo-

morphically evaluate this computation would require an Ω(n)-sized circuit—this
defeats our goal of having sublinear server time.

Fortunately, the following critical observation, first made by Corrigan-Gibbs
et al. [23], saves the day.

Observation. Although homomorphically evaluating the parity of a single set
takes a linear-sized circuit, we can batch-evaluate the parity bits of Θ(

√
n) sets

in a circuit of size ˜O(n), leveraging oblivious sort. With batch evaluation, the
amortized cost per set is only ˜O(

√
n).

Idea 1: Batched Refresh Operations. The above batching idea allows us to com-
pile the offline phase of Shi et al. [54] without suffering from the RAM-to-circuit
conversion blowup (ignoring poly-logarithmic factors). However, the online phase
is problematic, since Shi et al. requires that the client talks to the Left server to
perform a refresh operation every time it makes a query.

Our first idea is inspired by Corrigan-Gibbs et al. [23]. Instead of performing
refreshes individually, we can group them into Q =

√
n-sized batches. We first

consider a bounded scheme that supports only Q =
√

n queries—in this way, we
can hope to front-load all Q refresh operations upfront during the pre-processing
phase. It is easy to get an unbounded scheme given a bounded scheme. We can
simply rerun the offline setup every Q queries, and amortize the cost of the
periodic setup over each query—in fact, it is also not hard to deamortize the
periodic setup and spread the work across time.

In summary, through batching the refresh operations, we can hope to achieve
˜Oλ(

√
n) amortized server computation per refresh operation.

Idea 2: A Pseudorandom Set Scheme Supporting Add and ReSamp. If we
front-load all Q refresh operations upfront during the offline pre-processing,
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a new technicality arises. Recall that during a query for x ∈ {0, 1, . . . , n−1}, we
must replenish the consumed entry with a set sampled subject to containing the
queried element x. During the offline pre-processing, however, we do not have
foreknowledge of x. Therefore, we can only hope to sample (pseudo-)random sets
(represented by keys) during the offline pre-processing, and add the element x
to the set during the online phase.

This means that we need a new PRSet that supports not only ReSamp, but
also an Add operation. Specifically, given a PRSet key sk, the client should be
able to call sk′ ← Add(sk, x) and then call rsk ← ReSamp(sk′, y), and send the
resulting rsk to the server. For privacy, the resulting rsk must hide both x and
y. To construct such a PRSet scheme, we need a cryptographic primitive called
privately programmable pseudorandom functions [10,41,51], which is stronger
than the privately puncturable pseudorandom functions employed by Shi et al.

New Proof Techniques. For the optimal two-server scheme of Shi et al. [54], they
have a relatively simple privacy proof. In comparison, our privacy proof is much
more involved, and we need new techniques to make the privacy proof work.

At a high level, the challenges in the privacy proof arise due to the way the
probability analysis is interwined with the cryptography.

Our main new idea in the privacy proof is to introduce a lazy sampling
technique2 that provides an alternative way to view how the client generates
the key to send to the server—called the “frontend” in our proof. In particular,
during the scheme, the client scans through its primary table and checks if each
key contains the current query x. Whenever such a check is made and the answer
is no, it creates a constraint on the entry, i.e., the entry should not contain x.
Whenever an entry is matched during a query x, a constraint is created that the
entry should contain x. If the entry was previously promoted from the backup
table, these constraints can also be modified accordingly. Thus, we can imagine
that the client maintains a set of constraints in this way, and defer the actual
sampling of the key to send to the server to the very last moment, subject to the
set of constraints that have been maintained on the matching entry. With this
lazy sampling view, we can decouple the frontend (i.e., how the client interacts
with the server) from the backend (i.e., how the client maintains its local primary
table), and switch their distributions one by one in the subsequent hybrids. In
our actual proof later, the frontend and the backend diverge at some point when
we switch to the lazy sampling view, and eventually, after switching both the
backend and the frontend, they would converge again, i.e., the distribution of
the key sent to the server matches the distribution of the matched entry (after
some post-processing) again. At this moment, we can undo the lazy sampling
view, and continue to complete the proof.

Another technicality in our proof arises from the fact that the form of the
standard security definition of privately puncturable PRF is not in a convenient
form we can easily use in our proof. For this reason, we introduce a key technical

2 Our lazy sampling is remotely reminiscient of the delayed sampling technique of
Bartusek and Khurana [5].
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lemma (Sect. 6.2) that is closer to the form we want. We repeatedly apply this
key technical lemma when making the switches between our hybrid experiments.

To help the reader understand the technicalities of our privacy proof and our
new ideas, we give an informal proof roadmap in Sect. 6.1.

3 Preliminaries

3.1 Privately Programmable Pseudorandom Functions

Intuitively, a privately programmable pseudorandom function [10,41,51] is a
pseudorandom function (PRF) with one extra capability: it allows one to create
a programmed key that forces the PRF’s outcomes in at most L distinct input
points {xi} to be a set of pre-determined values {vi}. For security, we want
to guarantee the privacy of the programmed inputs. Specifically, if the set of
output values {vi} are randomly chosen, then the programmed key should not
leak more information about the set of input points programmed. Further, the
programmed key should not leak the original PRF’s evaluation outcomes at the
programmed inputs prior to the programming.

Syntax. Let X denote the input domain and let V denote the output range,
whose sizes may depend on the security parameter λ. A programmable pseu-
dorandom function is a tuple (Gen, Eval, Prog, PEval) of efficient, possibly
randomized algorithms with the following syntax:

– Gen(1λ, L): given the security parameter λ and an upper bound, L, on the
number of programmable inputs, output a master secret key msk.

– Eval(msk, x): given the master secret key msk and an input x ∈ X , output
the evaluation result v ∈ V on the input x.

– Prog(msk, P = {(xi, vi)}): given the master secret key msk and a set P
containing up to L pairs (xi, vi) ∈ X × V, where all xi’s must be distinct,
output a programmed key skP .

– PEval(skP , x): given a programmed key skP and an input x ∈ X , output the
evaluation outcome, v ∈ V, over the input x.

Correctness of Programming. A programmable function satisfies correctness if
for all λ, L = poly (λ) ∈ N, all sets of up to L pairs P := {(xi, vi)} ⊆ X × V
(with distinct xis), we have the following:

1. For every i ∈ [|P |],

Pr
[

PEval(skP , xi) �= vi
msk ← Gen(1λ, L)

skP ← Prog(msk, P )

]

≤ negl(λ), and

2. For any x′ not in P , we have

Pr
[

PEval(skP , x′) �= Eval(msk, x′) msk ← Gen(1λ, L)
skP ← Prog(msk, P )

]

≤ negl(λ).

We note that Peikert and Shiehian [51] did not define the second correctness
condition above, but their proof shows that the second condition also holds.
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RealPPRFA(1λ, L):

P := {(xi, vi)}i∈[L′] ← A(1λ, L)

// require: L′ ≤ L

msk ← Gen(1λ, L)

skP ← Prog(msk, P )

skP → A
repeat

x ← A
Eval(msk, x) → A

until A halts

IdealPPRFA,Sim(1λ, L):

P := {(xi, vi)}i∈[L′] ← A(1λ, L)

// require: L′ ≤ L

skP ← Sim(1λ, P, L)

skP → A
repeat

x ← A
If x /∈ {xi}i∈[L′] then PEval(skP , x) → A
Else v

$←V, v → A
until A halts

Fig. 1. The real and ideal experiments for simulation security.

RealPPRFPrivA(1λ, L):

{xi}i∈[L′] ← A(1λ, L)

// require: L′ ≤ L

{vi}i∈[L′]
$←V

P := {(xi, vi)}i∈[L′]

msk ← Gen(1λ, L), sk ← Prog(msk, P )

sk → A

IdealPPRFPrivA,Sim(1λ, L):

{xi}i∈[L′] ← A(1λ, L)

// require: L′ ≤ L

sk ← Sim(1λ, L)

sk → A

Fig. 2. The real and ideal experiments for private programmability.

Security Definitions

Definition 3.1 (Simulation security). A programmable function is simula-
tion secure, if there is a probabilistic polynomial-time (PPT) simulator Sim such
that for any PPT adversary A and any polynomial L(λ),

{

RealPPRFA(1λ, L)
}

λ∈N

c≈ {

IdealPPRFA,Sim(1λ, L)
}

λ∈N
,

where RealPPRF and IdealPPRF are the respective views of A in the executions
of Fig. 1 and “

c≈” denotes computational indistinguishability.

Definition 3.2 (Private programmability). A programmable function is
privately programmable, if there is a PPT simulator Sim such that for any PPT
adversary A and any polynomial L(λ),

{

RealPPRFPrivA(1λ, L)
}

λ∈N

c≈ {

IdealPPRFPrivA,Sim(1λ, L)
}

λ∈N
,

where RealPPRFPriv and IdealPPRFPriv are the respective views of A in the
executions of Fig. 2.
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Last but not the least, we define an additional security property, i.e., the ordi-
nary pseudorandomness notion for the PRF. We prove that pseudorandomness
is implied by private programmability—however, defining this notion explicitly
will facilitate our proofs later.

Definition 3.3 (Pseudorandomness). We say that a programmable pseu-
dorandom function satisfies pseudorandomness iff for every probabilistic
polynomial-time adversary A, there exists a negligible function negl(·) such that
the following holds:
∣

∣

∣Pr[msk ← Gen(1λ, L) : AEval(msk,·) = 1] − Pr[rf $←RF : Arf(·) = 1]
∣

∣

∣ ≤ negl(λ),

where RF denotes the family of random functions that map the input domain
X to the output range V.

Fact 1. Suppose that a programmable PRF scheme satisfies private programma-
bility, then it also satisfies pseudorandomness.

Proof. Let q be the maximum number of queries made by the pseudorandomness
adversary A. We consider a sequence of hybrids H0,H1, . . . ,Hq. In Hj where
j ∈ {0, 1, . . . , q}, for the first j distinct queries made by A, return to A truly
random answers, and for the remaining queries, return the outcomes of the PRF
evaluation. If A makes any repeat query, it always gets the same answer as
before.

It suffices to show that no probabilistic polynomial-time A can distinguish
Hi and Hi+1 for any i ∈ {0, 1, . . . , q − 1}. To show this, consider an intermediate
hybrid H′

i. In H′
i, the first i distinct queries are answered with true randomness,

and the remaining queries are answered using a simulated key generated by
sk ← Sim(1λ, L).

We first show that Hi+1 is computationally indistinguishable from H′
i. Sup-

pose that there is an efficient adversary A that can distinguish H′
i and Hi+1.

We can construct an efficient reduction B that breaks the private programma-
bility of the underlying PRF. B answers the first i distinct queries from A using
true randomness. When A submits the (i+1)-th distinct query xi+1, B submits
{xi+1} to its own challenger. It gets back from its challenger sk. For all remain-
ing queries xj for j ∈ [i + 1, q], it returns PEval(sk, xj) to answer to A. If B is
playing RealPPRFPriv, then A’s view is statistically indistinguishable from Hi+1

(where the negligible statistical failure comes from the “correctness of program-
ming” failure probability), else if B is playing IdealPPRFPriv, then A’s view is
identically distributed as H′

i.
Next, we show that H′

i is computationally indistinguishable from Hi. Con-
sider H′′

i in which all but the first i queries are answered using a key sk generated
as follows: msk ← Gen(1λ, L), sk ← Prog(msk, ∅). Hi is statistically indistin-
guishable from H′′

i due to the correctness of the programmable PRF. H′′
i is com-

putationally indistinguishable from H′
i through a straightforward reduction to

the private programmability of the PRF.
Summarizing the above, Hi is computationally indistinguishable from Hi+1

and this suffices for proving the claim.
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Construction. In our syntax and security definitions above, we want the pro-
grammable PRF to support programming at most L inputs. By contrast, Peikert
and Shiehian [51] gave a construction of privately programmable PRFs where
the Prog function must program exactly L inputs. Similarly, in their security
definitions, the admissible adversary A is required to satisfy L′ = L (as opposed
to L′ ≤ L in our case).

Given a privately programmable PRF construction that programs exactly L
inputs, we now show how to construct a new scheme that allows programming
up to L inputs. In our PIR construction later, we want the PRF’s input domain
to contain all strings of length up to some parameter � ∈ N. We use the notation
{0, 1}≤� to denote all strings of length up to �.

Let PRF′ := (Gen′,Eval′,Prog′,PEval′) denote a privately programmable
PRF whose input domain is X ′ = {0, 1}≤�+1, i.e., all strings of length up to
� + 1, and whose output range is V, supporting programming exactly L inputs.
We now construct a privately programmable PRF scheme denoted PRF whose
input domain is X = {0, 1}≤�, i.e., all strings of length up to �, and whose output
range is V, i.e., the same as that of PRF′.

– Gen(1λ, L): let msk ← Gen′(1λ, L), and output msk;
– Eval(msk, x): output Eval′(msk, x||0);
– Prog(msk, P = {(xi, vi)}i∈[L′]):

• choose L − L′ distinct strings of length at most � + 1 that end with 1,
denoted x′

1, . . . , x
′
L−L′ ;

• for j ∈ [L − L′], choose vj
$←V at random;

• call sk ← Prog′(msk, {(xi||0, vi)}i∈[L′] ∪ {(x′
j , vj)}j∈[L−L′]), and output

sk.
– PEval(sk, x): let v ← PEval(sk, x||0) and output v.

Claim 1. Suppose that the underlying programmable PRF′ that maps {0, 1}�+1

to V satisfies correctness, simulation security, and private programmability.
Then, the above PRF which maps {0, 1}� to V also satisfies correctness, sim-
ulation security, and private programmability.

We defer the proof of the above claim to Appendix E.1 of the online full ver-
sion [56].

We can use Peikert and Shiehian [51]’s scheme (based on LWE) as our the
underlying privately puncturable PRF to instantiate Claim1. The schem by
Boyle et al. [12] is not suitable for our application, since their evaluation time
is quasilinear in the input domain size which would lead to super-linear server
computation.

3.2 Single-Server Private Information Retrieval

We define a single-server private information retrieval (PIR) scheme in the pre-
processing setting. In a single-server PIR scheme, we have two stateful machines
called the client and the server. The scheme consists of two phases:
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– Offline setup. The offline setup phase is run only once upfront. The client
receives nothing as input, and the server receives a database DB ∈ {0, 1}n as
input. The client sends a single message to the server, and the server responds
with a single message.

– Online queries. This phase can be repeated multiple times. Upon receiving
an index x ∈ {0, 1, . . . , n − 1}, the client sends a single message to the server,
and the server responds with a single message. The client performs some
computation and outputs an answer β ∈ {0, 1}.

Correctness. Given a database DB ∈ {0, 1}n, where the bits are indexed
0, 1, . . . , n − 1, the correct answer for a query x ∈ {0, 1, . . . , n − 1} is the x-
th bit of DB.

For correctness, we require that for any q, n, that are polynomially bounded in
λ, there is a negligible function negl(·), such that for any database DB ∈ {0, 1}n,
for any sequence of queries x1, x2, . . . , xq ∈ {0, 1, ..., n − 1}, an honest execution
of the PIR scheme with DB and queries x1, x2, . . . , xq, returns all correct answers
with probability 1 − negl(λ).

Privacy. We say that a single-server PIR scheme satisfies privacy, iff there exists
a probabilistic polynomial-time simulator Sim, such that for any probabilistic
polynomial-time adversary A acting as the server, A’s views in the following
two experiments are computationally indistinguishable:

– Real: an honest client interacts with A who acts as the server and may arbi-
trarily deviate from the prescribed protocol. In every online step t, A may
adaptively choose the next query xt ∈ {0, 1, . . . , n− 1} for the client, and the
client is invoked with xt;

– Ideal: the simulated client Sim interacts with A who acts as the server. In
every online A may adaptively choose the next query xt ∈ {0, 1, . . . , n − 1},
and Sim is invoked without receiving xt.

3.3 The Distribution Dn

For convenience, we often write x ∈ {0, 1, . . . , n − 1} as a binary string, i.e.,
x ∈ {0, 1}logn.

Our pseudorandom set emulates the same distribution Dn that was defined
earlier in Shi et al. [54]. Specifically, to define the distribution Dn, imagine that
we have a random oracle RO(·) : {0, 1}∗ → {0, 1} that is sampled at random
upfront—our actual PRSet scheme later will replace the RO with a PRF so our
construction does not need an RO. Henceforth, let B := �2log log n�. An element
x ∈ {0, 1}logn is in the set iff for every i ∈ [ logn

2 +B], RO
(

(0B ||x)[i :]
)

returns 1—
in other words, if hashing every sufficiently long suffix of the string 0B ||x using
the random oracle RO gives back 1. Throughout the paper, we write log = log2,
and assume that log n is an even integer— this is without loss of generality since
we can always round it up to an even number incurring only constant blowup.
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Efficient Membership Test and Set Enumeration. One important observation
about the distribution Dn is that the decisions regarding whether two elements
x and y are in the set or not can be weakly dependent—as Shi et al. [54] pointed
out, this property is important for simultaneously ensuring efficient membership
test and efficient set enumeration. Clearly, to test if an element x ∈ {0, 1}logn is
in the set or not, we only need to make logn

2 + B calls to the RO.
Enumerating all elements in the set can be accomplished by making roughly√

n · poly log n calls to RO with at least 1 − o(1) probability. Let � ≥ 1
2 log n + 1,

and let Z� be the set of all strings z of length exactly �, such that using RO to
“hash” all suffixes of z of length at least 1

2 log n+1, outputs 1. To enumerate the
set generated by RO, we can start with Z 1

2 logn+1 which takes at most 2
1
2 logn+1

calls to generate. Then, for each � := 1
2 log n + 2 to log n, we will generate Z�

from Z�−1. This can be accomplished by enumerating all elements z′ ∈ Z�−1, and
checking whether RO(0||z′) = 1 and RO(1||z′) = 1. Finally, for every element
z ∈ Zlogn, we check if it is the case that for every j ∈ [B], 0j ||z hashes to 1. If
so, the element z is in the set.
Useful Properties of Dn. We will need to use the following useful facts about
the distribution Dn all of which were proven by Shi et al. [54].

Fact 2. For any fixed x ∈ {0, 1, . . . , n− 1}, Pr
S

$←Dn

[x ∈ S] = 1√
n·2B . Moreover,

E
S

$←Dn

[|S|] ≤
√

n
log2n

.

Henceforth, let D+x
n be the following distribution: sample S

$←Dn subject to
x ∈ S. Given x, y ∈ {0, 1}logn, we say that x and y are related, if they share a
common suffix of length at least 1

2 log n + 1. Given a set S ⊆ {0, 1, . . . , n − 1},
let Nrelated(S, x) be the number of elements in S that are related to x.

Fact 3 (Number of related elements in sampled set). Fix an arbitrary
element x ∈ {0, 1, . . . , n − 1}. Then,

E
S

$←D+x
n

[Nrelated(S, x)] ≤ 1
logn

Fact 4 (Coverage probability). Let m ≥ 6
√

n · log3n. For any fixed x ∈
{0, 1, . . . , n − 1}, Pr

S1,...,Sm
$←Dm

n

[x /∈ ∪i∈[m]Si] ≤ 1/n.

Henceforth, let EnumTime(RO) denote the number of RO calls made by the
aforementioned set enumeration algorithm to enumerate the set generated by
RO.

Fact 5 (Efficient set enumeration). Suppose that n ≥ 4. For any fixed x ∈
{0, 1, . . . , n − 1},

Pr
RO

$←D+x
n

[

EnumTime(RO) > 6
√

n log5 n
] ≤ 1/ log n
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4 Privately Programmable Pseudorandom Set

4.1 Definition

In our Privately Programmable Pseudorandom Set (PRSet) scheme, we can sam-
ple a key sk that defines a pseudorandom set. We can support two operations
on the key: we can call Add(sk, x) to force x to be added to the set, we can
also call ReSamp(sk, x) to cause the decision whether x is in the set or not
to be resampled. The key output by a ReSamp operation is said to be final,
i.e., we cannot perform any more operations on it. By contrast, keys output by
either Gen or Add are said to be intermediate, i.e., we can still perform more
operations on them. Henceforth, we use the notation rsk to denote a final key
and sk to denote an intermediate key. Jumping ahead, later in our PIR scheme,
the client always sends to the server a final key during an online query; however,
the client locally stores a set of intermediate keys.

– sk ← Gen(1λ, n): given the security parameter 1λ and the universe size n,
samples a secret key sk;

– S ← Set(rsk): a deterministic algorithm that outputs a set S given a final
secret key rsk;

– b ← Member(sk, x): given an intermediate secret key sk and an element
x ∈ {0, 1, . . . , n − 1}, output a bit indicating whether x ∈ Set(sk);

– sk+x ← Add(sk, x): given an intermediate secret key sk and an element x ∈
{0, 1, . . . , n − 1}, output a secret key sk+x such that x ∈ Set(sk+x);

– rsk−x ← ReSamp(sk, x): given an intermediate secret key sk and an element
x ∈ {0, 1, . . . , n − 1}, output a final key rsk−x that “resamples” the decision
whether x is in the set or not.

We note that a PRSet scheme is parametrized by a family of distributions Dn.
The pseudorandom set generated by the PRSet scheme should emulate the dis-
tribution Dn—we will define this more formally shortly.

Jumping ahead, later in our application, for each PRSet key sampled using
Gen, we perform at most one Add operation on the key before we perform
ReSamp and obtain a final key.

Efficiency Requirements. Our PRSet scheme samples pseudorandom sets of size
roughly

√
n. We want an efficient set enumeration algorithm Set(rsk) that takes

time roughly
√

n (rather than linear in n). Additionally, we want that the mem-
bership test Member(sk, x) to complete in polylogarithmic time.

Remark 4.1. We do not give security definitions to our PRSet. Jumping ahead,
the privacy proof of our PIR scheme actually opens up the PRSet scheme and
relies on the properties of the underlying PRF directly. Nonetheless, abstracting
out the PRSet helps to make the description of our PIR scheme conceptually
cleaner.
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4.2 Construction

We now present our PRSet construction. As mentioned, we assume that for each
key sampled through Gen, at most one Add operation can be performed on the
key before we call ReSamp which produces a final key.
Intuition for Our PRSet. In our pseudorandom set, we simply replace the RO
with a PRF function, such that its description can be compressed using a short
key.

Our pseudorandom set supports two additional operations:

– The Add(sk, x) operation modifies the secret key sk such that the element
x ∈ {0, 1}logn is forced to be in the set. In our construction, this is done in
the most näıve way: simply attach the element x to the secret key. This will
be fine in our PIR construction since the intermediate key generated by Add
is stored only on the client side and never sent to the server. Therefore, we
do not need the resulting key to hide the point x that is added.

– The ReSamp(sk, x) operation takes in an intermediate key that is either the
output of Gen or the output of a previous Add operation, and it resamples
the decision whether the element x ∈ {0, 1}logn is in the set or not. In our
PIR scheme later, this resampled key will be sent to the server during online
queries. Therefore, we want the resulting key to hide not only the element x
that is being resampled, but also the element x′ that was added earlier should
the input key sk be the result of a previous Add( , x′) operation.
In our construction, this is accomplished in the following way. First, we sample
at random the answers {vi}i∈[ logn

2 +B]—we want to force the PRF’s evaluation
at points {(0B ||x)[i :]}i∈[ logn

2 +B] to be the values {vi}i∈[ logn
2 +B]. Next, if the

input key sk is the result of a previous Add( , x′) operation, for any point
(0B ||x′)[i :] where i ∈ [ logn

2 + B], if (0B ||x′)[i :] �= (0B ||x)[i :], then we want
to force the PRF’s evaluation on (0B ||x′)[i :] to be 1. Finally, we call the
underlying PRF’s Prog function, to force the aforementioned outcomes on
all the relevant points. Clearly, the total number of constraints to be forced
is at most L = 2( logn

2 + B).

Detailed Construction. We describe our PRSet construction below.
PRSet Scheme

Parameters: B := �2log log n�, L = 2( logn
2 + B).

– sk ← Gen(1λ, n): call msk ← PRF.Gen(1λ, L), and output sk :=
(msk,⊥).

– S ← Set(rsk): Same as the set enumeration algorithm in Sect. 3.3, except
that the calls to RO(·) are now replaced with calls to PRF.PEval(rsk, ·).

– b ← Member(sk, x):
1. Parse sk := (msk′, x′). Write x ∈ {0, 1}logn as a binary string and let

z := 0B ||x. If x′ �= ⊥, write x′ ∈ {0, 1}logn as a binary string and let
z′ := 0B ||x′.
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2. Output 1 if for every i ∈ [ logn
2 + B], the following holds: either

PRF.Eval(msk′, z[i :]) = 1 or (x′ �= ⊥ and z[i :] = z′[i :]). Else,
output 0.

– sk+x ← Add(sk, x): parse sk := (msk′,⊥), and output sk+x := (msk′, x).
– rsk−x ← ReSamp(sk, x):

1. Parse sk := (msk′, x′), and write x ∈ {0, 1}logn as a binary string
and let z := 0B ||x.

2. Sample uniformly random v
$←{0, 1} logn

2 +B, and let P := {(z[i :
], v[i])}i∈[ logn

2 +B].
3. If x′ �= ⊥, do the following. Write x′ ∈ {0, 1}logn as a binary string,

and let z′ := 0B ||x′. For i ∈ [ logn
2 + B], if z′[i :] �= z[i :], add the

constraint (z′[i :], 1) to the set P .
4. Compute rsk−x ← PRF.Prog(msk′, P ), and output rsk−x.

Additional Helpful Notations. In our PIR scheme later, we will only need to call
set enumeration for final keys rsk. Therefore, our algorithm description above
defines Set(rsk) only for final keys. However, in our proofs and narratives, it
helps to define the set associated with an intermediate key sk as well—however,
in this case we need not worry about the running time of Set(sk). This is defined
in the most natural manner:

– If sk = (msk,⊥) is the direct output of Gen(1λ, n), then Set(sk) is defined just
like in Sect. 3.3 except that calls to RO(·) are replaced with PRF.Eval(msk, ·);

– If sk = (msk, x) is the output of an earlier Add operation, then Set(sk) is
defined just like in Sect. 3.3 except that calls to RO(·) are replaced with the
following outcomes: 1) we force the outcomes to be 1 at the input points
{(0B ||x)[i :]}i∈[ logn

2 +B]; and 2) for all other inputs, we call PRF.Eval(msk, ·)
to obtain the outcome.

Performance Bounds. Gen(1λ, n) takes poly (λ, log n) time. Due to Fact 5,
Set(rsk) takes

√
n · poly log (λ, n) time with 1 − 1/log n probability.

Member(sk, x) takes poly (λ, log n) time. Add(sk, x) takes constant time.
ReSamp(sk, x) takes poly (λ, log n) time.

Circuit for Set Enumeration. Later in our PIR scheme, during the offline phase,
the server needs to perform set enumeration under fully homomorphic encryp-
tion. Therefore, we need to describe how to perform set enumeration in circuit.
We will describe a circuit construction of size at most

√
n · poly (λ, log n) which

obtains as input a final key rsk, and outputs a set S = {(x1, b1), (x2, b2), . . . }
of size at most 2

√
nlog2n with distinct x’s, and a bit bSucc indicating success.

We want to ensure that if bSucc = True, then the set generated is correct in the
following sense:

– for every (x, 1) ∈ S, x is in the correct set defined by PRF.PEval(rsk, ·); and
– for every element x in the set defined by PRF.PEval(rsk, ·), the pair (x, 1)

appears in S.
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Our circuit construction emulates the set enumeration algorithm of Sect. 3.3.
Our circuit construction works as follows—henceforth we use the term “hash”

to mean the computing outcome of PRF.PEval(rsk, ·):
Circuit for set enumeration CSetEnum

1. Let bSucc = True.
2. For every x ∈ {0, 1} 1

2 logn+1, let bx = PRF.PEval(rsk, x). Output an
array containing {(x, bx)}

x∈{0,1} 1
2 logn+1 .

3. Obliviously sort above array such that entries with bx = 1 are moved to
the front. Truncate the array at length 2

√
nlog2n elements, and if the

truncation removes any string that hash to 1, set bSucc = False. Let
Z 1

2 logn+1 be the resulting truncated array, where each entry is of the
form (x, bx).

4. For � = 1
2 log n + 2 to log n, do the following:

– For each (x, bx) ∈ Z�−1, if bx = 1,
write down (0||x,PRF.PEval(rsk, 0||x)) and (1||x, PRF.PEval(rsk,
1||x)); else write down (0||x, 0) and (1||x, 0).

– Oblivious sort the resulting array such that all entries marked with
1 move to the front. Truncate the resulting array at length exactly
2
√

nlog2n. If the truncation removes any string that hash to 1, set
bSucc = False. Let Z� denote the resulting array where each entry is
of the form (x, bx).

5. For every (x, bx) ∈ Zlogn, check if it is the case that for every j ∈ [B],
PRF.PEval(rsk, 0j ||x) = 1. If so, write down (x, bx), else, write down
(x, 0). Output the resulting array as well as bSucc.

Fact 6. Using the AKS sorting network [2] or the bitonic sorting network [6] to
realize the oblivious sort, the above algorithm can be implemented with a circuit
of size

√
n · poly (λ, logn).

Proof. The proof is straightforward given the fact that the AKS sorting circuit
has size O(n′log n′) for sorting n′ elements, and the bitonic sorting network has
size O(n′log2n′). Also, note that each PEval(rsk, ·) consumes poly (λ, log n) gates
to implement.

For correctness, we will imagine that the above algorithm is run where
PRF.PEval(rsk, ·) is replaced with calls to a random oracle RO— we denote
the resulting algorithm as CSetEnumRO. Note that we do not care about the
computational model when stating the correctness probability.

Fact 7. Suppose that n ≥ 4. For any x ∈ {0, 1, . . . , n − 1},

Pr
RO

$←D+x
n

[

CSetEnumROoutputs bSucc = True
]

≥ 1 − 1/ log n,
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Moreover,

Pr
RO

$←Dn

[

CSetEnumROoutputs bSucc = True
]

≥ 1 − 1/ log n

Proof. CSetEnumRO is a direct implementation of the set enumeration algorithm
in Sect. 3.3 except that we truncate each Z� to size exactly 2

√
n log2n. Shi et

al. [54] proved that no matter whether RO is sampled from D+x
n or Dn, with

1−1/log n probability, the following good event holds: for all � ∈ [ logn
2 +1, log n],

|Z�| ≤ 2
√

nlog 2n—see the proof of Lemma 6.4 in their paper. The algorithm
outputs bSucc = 1 as long as the above good event holds.

5 PIR Scheme

We now describe a PIR scheme that supports a bounded number of queries
denoted Q. Given this scheme, we can compile it to a scheme that supports
unbounded number of queries by performing the offline setup phase every Q
queries, and amortizing this cost over the Q queries.

Intuition. In the offline setup phase, the client chooses ˜O(Q) keys each of which
defines a pseudorandom set of size roughly

√
n. It encrypts these keys under

a fully homomorphic encryption (FHE) scheme, and sends the encrypted keys
to the server. Through homomorphic evaluation, the server enumerates the sets
and computes the encrypted parity (i.e., an encryption of ⊕x∈SDB[x]) for each of
these sets S, and returns the encrypted parities to the client. The client decrypts
the parities, and stores each set’s key as well as its parity. These sets are divided
into two parts: the last Q entries are called the backup sets or entries, and the
remaining are called the primary sets or entries. The primary entries are used
for answering queries, whereas the backup entries are later promoted to become
primary entries as they get consumed. Henceforth, we also use the terms primary
table and backup table to refer to the tables that store all primary entries and
backup entries, respectively.

In the online phase, whenever the client wants to make a query for the
database’s value at index x ∈ {0, 1, . . . , n − 1}, it finds the first primary set
(ski, pi) such that Set(ski) contains the query x. It then resamples the decision
whether x is in the set or not, and obtains a programmed key. It sends this
programmed key to the server, which calls the set enumeration algorithm to
enumerate the set S generated by the key. The server then returns the parity p
of the set S to the client. The client computes pi ⊕ p as the candidate answer to
the query. Since the resampling operation removes the element x from the set
with high probability, the candidate answer is correct with high probability. The
correctness probability can be further boosted by repeating the same scheme k
times and taking the majority vote among the k copies.
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Detailed Construction. We describe the detailed construction below.

PIR Scheme for Q =
√

n queries

Run k = ω(log λ) parallel copies of the single-copy scheme described
below.

Offline phase:

– Client: // let lenT := 6
√

n · log3n
• fsk ← FHE.Gen(1λ);
• For i ∈ [k · (lenT + Q)] where k = ω(log λ), ski ← PRSet.Gen(1λ, n),

ski ← FHE.Enc(fsk, ski);
• Send (sk1, . . . , skk·(lenT+Q)) to the server.

– Server:
• For i ∈ [k · (lenT + Q)], (Si, bSucci) ← FHE.Eval(CSetEnum, ski);
• {pi}i∈[k·(lenT+Q)] ←

FHE.Eval(CBatchParity, S1, . . . , Sk·(lenT+Q)), where the CBatchParity

circuit is described below. Send {pi, bSucci}i∈[k·(lenT+Q)] to the client.
– Client:

• for i ∈ [k · (lenT + Q)], pi ← FHE.Dec(fsk, pi); bSucci ←
FHE.Dec(fsk, bSucci);

• choose a subset I ⊆ [k · (lenT+Q)] of size exactly lenT+Q such that
for any i ∈ I, bSucci = True—if not enough such entries are found,
simply abort. Copy {(ski, pi)}i∈I to a table.

We call the last Q entries of the above table the backup table, henceforth
renamed to T ∗ := {(sk∗

i , p
∗
i )}i∈[Q]. We call the remaining lenT entries the

primary table, henceforth renamed to T := {(ski, pi)}i∈[lenT].

Online query for index x ∈ {0, . . . , n − 1}:
– Client:

• Sample sk ← PRSet.Gen(1λ, n) subject to PRSet.Member(sk, x) =
1 and append the entry (sk, 0) to the table T of primary sets;

• Find the first entry (ski, pi) in T such that PRSet.Member(ski, x) =
1;

• Compute rsk ← PRSet.ReSamp(ski, x) and send rsk to the server.
– Server: Compute S ← PRSet.Set(rsk), and return the parity bit p of the

set S to the client. If the set enumeration algorithm has not completed
even after making 6

√
nlog5n calls to the underlying PRF’s PEval(rsk, ·)

function, then return p = 0 to the client.
– Client: let β′ := p⊕pi be the candidate answer of the current copy, and

remove the last entry of T .
Recall that there are k parallel instances, and let β be the majority vote
among the candidate answers of all k copies. Now, let (sk∗

j , p
∗
j ) denote

the next available backup set and perform the following:
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• let sk′ ← PRSet.Add(sk∗
j , x); let p′ := p∗

j ⊕β if Member(sk∗
j , x) = 0,

else let p′ := p∗
j ;

• let Tj := (sk′, p′), and mark the backup entry (sk∗
j , p

∗
j ) as unavailable.

The Circuit CBatchParity. The circuit CBatchParity takes S1, S2, . . . , Sk·(lenT+Q)

as input, where for j ∈ [k · (lenT + Q)], Sj contains exactly 2
√

nlog2n entries
of the form (x, bx)—specifically, bx = True implies that x is the j-th set and
bx = False implies x is not in the j-th set3. The circuit outputs k · (lenT + Q)
parity bits p1, . . . , pk·(lenT+Q) of each of the k · (lenT + Q) sets.

The circuit can be constructed as follows using oblivious sort:

1. Let DB ∈ {0, 1}n be the server’s database, let D := ((0,DB[0]), (1,DB[1]),
. . . , (n − 1,DB[n − 1])).

2. For j ∈ [k · (lenT + Q)], let Xj = {(x, bx, j)}x∈Sj

3. Obliviously sort the array Y := D||X1|| . . . ||Xk·(lenT+Q), such that each entry
of the form (x,DB[x]) is followed by all tuples of the form (x, bx, j). Hence-
forth, we call a tuple of the form (x, bx, j) a consumer.

4. In a linear scan, all consumers receive the DB[x] they are requesting. At this
moment, each consumer entry is updated to (x, bx, j,DB[x]).

5. Use a circuit that mirrors the oblivious sort circuit in Step 3, and reverse-
routes the DB[x] values back to the position where it came from. As a result,
each consumer entry of the form (x, bx, j) ∈ Y receives DB[x].

6. At this moment, we have an array of the form X′
1|| . . . ||X′

k·(lenT+Q), where
each X′

j contains exactly 2
√

nlog2n entries of the form (x, bx, j,DB[x]). In a
linear scan, we can compute for each j ∈ [k · (lenT + Q)], the parity bit

pj = ⊕(x,bx,j,DB[x])∈X′
j
(bx · DB[x])

It is not hard to see that if we instantiate the oblivious sort using either
AKS [2] or bitonic sort [6], and given lenT = 6

√
nlog3n and Q =

√
n, the above

circuit has size O(n · poly log n).

Performance Bounds. We now analyze the performance bounds of our Q-
bounded PIR construction. We may plug in k = log1.1n since any super-
logarithmic function will work. In the analysis below, the k parameter is absorbed
in the poly log n term, so it does not show up explicitly.

– Offline phase. During the offline phase, the client’s computation and band-
width are upper bounded by

√
n · poly (λ, log n). The server’s computation is

upper bounded by n · poly (λ, log n).
– Online phase. The bandwidth is poly (λ, log n). The client’s computation is√

n · poly (λ, log n). The server’s computation is also
√

n · poly (λ, log n).

3 This input format is inherited from the output format of the circuit CSetEnum.
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Supporting Unbounded Number of Queries and Deamortization. To extend the
scheme from Q-bounded to supporting an unbounded number of queries, we
just need to rerun the offline phase every Q =

√
n queries. For the scheme with

unbounded queries, the amortized bandwidth per query is poly (λ, log n), the
amortized client and server computation per query is

√
n · poly (λ, log n).

This periodic offline setup can be deamortized very easily. Specially, upfront,
we perform the offline setup for 2Q queries. During the i-th window of Q queries,
we perform the offline setup for the (i + 2)-th window of Q queries, and so on.
This way, when the (i + 2)-th window of Q queries starts, the corresponding
offline setup will be ready. With deamortization, there is a factor of 2 blowup
in storage. There is no additional blowup in terms of amortized computational
cost.

6 Privacy Proof

Recall that privacy for a single-server PIR scheme was defined earlier in Sect. 3.2.
We now prove that our PIR scheme in Sect. 5, when instantiated with the PRSet
scheme in Sect. 4.2, satisfies privacy, as stated in the following theorem.

Theorem 6.1 (Privacy of our PIR scheme). Suppose that the FHE scheme
employed satisfies semantic security, and that the underlying programmable PRF
scheme satisfies correctness, private programmability, and simulation security.

Then, the PIR scheme in Sect. 5, when instantiated with the PRSet scheme
in Sect. 4.2, satisfies privacy.

In the remainder of this section, we will prove the above theorem.

6.1 Proof Roadmap

A key insight in our privacy proof is to rely on a lazy sampling technique to
decompose the backend and the frontend of a complicated randomized experi-
ment, where the backend refers to the primary table stored by the client, and
the frontend refers to the message the clients sends to the server during each
query. Below, we explain the proof intuition, and the formal proofs can be found
in Sect. 6.2 and Appendix C.3 of the online full version [56].

We start from the real-world experiment, where the client interacts with
the server like in the real-world scheme. First, in Hyb1, we replace the FHE
ciphertexts the client sends to the server in the offline phase with encryptions
of 0. Therefore, henceforth we will not be worried about these FHE ciphertexts,
and we will focus on what happens in the online phase. In our full proof in
Appendix C.3 of the online full version [56], the key is how to get from Hyb2 to
Hyb6, which are described below.

If we can get to Hyb6, the rest of the proof can be completed in a similar
manner as Shi et al. [54]’s proof. Therefore, the key is how to get from Hyb2 to
Hyb6. To accomplish this, we introduce a lazy sampling idea to “decouple” the
backend and the frontend in our proof.
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Table 2. Hyb2 and Hyb6.

Hybrid Backend Frontend

promoted key during query y during query x

Hyb2 msk ← Gen, sk := (msk, y) – find sk := (msk, y) in T s.t.
msk contains x after adding y if
y �= ⊥
– program msk s.t. suffixes(x)
are resampled and if y �= ⊥,
suffixes(y)\suffixes(x) forced to 1

Hyb6 msk ← Gen s.t. y ∈ Set(msk) – find msk in T s.t.
x ∈ Set(msk),

– program msk s.t. suffixes(x)
are resampled

Hyb3: Introduce Lazy Sampling. We define a hybrid experiment Hyb3 that is an
equivalent rewrite of Hyb2 by lazy sampling in the following sense.

1. Backend: maintain constraints on each entry in T that defines the a-posteriori
distribution. Let I = {i1, i2, . . . , iq} be the indices of the entries that are
matched during each of the q ≤ Q queries so far. The client maintains the
a-posteriori distribution of each entry of the primary table T conditioned on
the local observation I.
To maintain the a-posteriori distribution, the client maintains a set of con-
straints of the form 〈−x〉, 〈+x〉, 〈+y : −x〉, or 〈+y : +x〉 on each entry. A
negative constraint of the form 〈−x〉 means that this entry was not promoted
from the backup table, and we have checked that x is not in the set gener-
ated by the key, during some query for x. A negative constraint of the form
〈+y : −x〉 means that this entry was promoted from the backup table during
a query for y, and we have checked that after forcing y to be in the set, x
is not in the set generated by the key. The positive constraints 〈+x〉 and
〈+y : +x〉 are similarly defined but requiring x to be in the set.
During an online query for some x, the client sequentially scans through
the current entries of T . For each entry j, it samples from the a-posteriori
distribution to decide if j should be the match. Depending on the decision,
it adds either a negative or positive constraint to the current entry.

2. Frontend: lazy sampling from the a-posteriori distribution. Whenever the
client is about to send a key to the server, it performs lazy sampling of the
key based on the a-posteriori distribution on the entry that the client has
maintained. More specifically, there are two cases depending on whether the
matched entry comes from the backup table or not : 1) it samples a key from
the correct a-posteriori distribution, calls ReSamp and sends the resulting
key to the server; 2) it samples a key from the correct a-posteriori distribu-
tion, calls both Add and ReSamp, and then sends the resulting key to the
server.
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In our proof, we show that except with negligible probability, the constraints
maintained on any entry can be satisfied with inverse polynomial probability for
a randomly sampled key.
Hyb4: Switch the Backend. Next, in Hyb4, we change the backend to be like
in Hyb6, and the client uses the resulting table T to decide which entries are
matched during each query, and just like in Hyb3, the client maintains a set of
constraints on each entry of the table, such that the frontend can perform lazy
sampling according to the a-posteriori distribution when interacting with the
server. Note that this change technically affects the distribution of the matched
entries during each query, and thus affects the distribution of the server’s view.
Fortunately, using the security of the privately programmable PRF, we can prove
that even when we make this change on the backend, the server’s view remains
computationally indistinguishable4.
Hyb4 to Hyb6: Switch the Frontend. Next, from Hyb4 to Hyb6, we change the
way the frontend performs the lazy sampling from the method of Hyb3 to the
method of Hyb6. To complete this proof, we do it in two steps using Hyb5 as a
stepping stone. In Hyb4, after lazy sampling a key according to the maintained
constraints, we program suffixes(x) to be random values and if y �= ⊥, we program
suffixes(y)\suffixes(x) to be 1. In Hyb5, we remove all the programming and
replace it with rejection sampling of simulated keys. In Hyb6, we introduce back
the part of the programming, and we program only suffixes(x) to be random
values, while the part suffixes(y)\suffixes(x) being forced to be 1 is achieved
through rejection sampling. To show that Hyb4 and Hyb5 are computationally
indistinguishable and that Hyb5 and Hyb6 are computationally indistinguishable,
we need to make use of the security property of the privately programmable
PRF. Some technicalities arise in this proof, since the security definitions of the
privately programmable PRF are not in a form that we can use conveniently
here. Therefore, as a key stepping stone, we introduce a key technical lemma
(see Sect. 6.2), that will help us prove the transitions between Hyb4 and Hyb5,
and between Hyb5 and Hyb6 more easily. Further, this key technical lemma can
be proven using the security definitions of the privately programmable PRF.
Hyb6: Convergence of Backend and Frontend. One important observation is that
in Hybb, the frontend and the entry found in the table during each query have
the same distribution (modular some post-processing). Therefore, in this step,
the backend and the frontend converge again, and this is why we can undo the
lazy sampling at this point, and Hyb6 can be equivalently viewed as in Table 2.

6.2 Technical Lemma for Privately Programmable PRF

We shall consider a programmable PRF whose output range is binary, i.e., {0, 1}.
Henceforth, we use the notation predX(msk) to denote an event that looks at
the outputs of PRF.Eval(msk, ·) at all inputs in X, and outputs either 0 or 1.

4 Note that we need NOT prove that the joint distribution of the backend and the fron-
tend are computationally indistinguishable, we only need to prove that the frontend,
i.e., server’s view is computationally indistinguishable.
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We say that predX(·) is an admissible event, iff 1) for a randomly sampled msk ←
Gen(1λ, L), it returns 1 with probability at least 1/p(λ) for some polynomial
function p(·); and 2) pred is polynomial-time checkable.

Lemma 6.2 (Strong privacy of programmable PRF). Let PRF be a pro-
grammable PRF with a binary output range, and suppose that L = O(logλ). Sup-
pose that PRF satisfies private programmability and simulation security. Then,
there exists a probabilistic polynomial-time simulator Sim such that the follow-
ing two experiments are computationally indistinguishable to any probabilistic
polynomial-time adversary.

– RealPPRFStrong(1λ):
• X,X ′, {vx}x∈X′ , predX∪X′ ← A(1λ, L) s.t. |X| + |X ′| ≤ L, X ∩ X ′ = ∅,

and predX∪X′
(·) is admissible;

• for x ∈ X, let vx
$←V; let P := {(x, vx)}x∈X∪X′ ;

• sample msk ← Gen(1λ, L) subject to predX∪X′
(msk) = 1, and let sk ←

Prog(msk, P );
• sk → A;

– IdealPPRFStrong(1λ):
• X,X ′, {vx}x∈X′ , predX∪X′ ← A(1λ, L) s.t. |X| + |X ′| ≤ L, X ∩ X ′ = ∅,

and predX∪X′
(·) is admissible;

• sample sk ← Sim(1λ, L) subject to the constraint that for any x ∈ X ′,
PEval(sk, x) = vx;

• sk → A.

In the real experiment RealPPRFStrong, we sample a random key subject
to some admissible predicate on X and X ′, and then program X to be ran-
dom and program X ′ to be values of the adversary A’s choice (e.g., all 1s).
The lemma states that the real experiment RealPPRFStrong is computationally
indistinguishable from an ideal experiment IdealPPRFStrong where we simply
sample a random simulated key subject to the set of points X ′ evaluating to the
choices specified by A. Note that in IdealPPRFStrong, we do not perform any
programming at all, and replace it with rejection sampling that checks if the set
of points in X ′ evaluate to the choices specified by A.

The intuition is the following. In the real experiment, we sample an msk
subject to some predicate pred. The observation is that it does not matter what
predicate pred we check, since we eventually reprogram the points in X ∪ X ′,
and recall that we require the predicate pred to only look at the PRF’s outcomes
on X ∪ X ′. Effectively, the reprogramming cancels the effect of the sampling
subject to a predicate pred that looks at only X ∪X ′. In fact, the distribution of
the final programmed key is indistinguishable from the ideal experiment, where
we simply sample a simulated key that evaluates to adversary-specified values
on the set X ′.
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Deferred Materials

We defer the full privacy proof, the correctness proof of our PIR scheme, how
to tune the tradeoff between client storage and the online computation, as well
as additional preliminaries to the appendices of the online full version [56].
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Abstract. Existing Oblivious RAM protocols do not support the stor-
age of data items of variable size in a non-trivial way. While the study
of ORAM for items of variable size is of interest in and of itself, it is also
motivated by the need for more performant and more secure Searchable
Symmetric Encryption (SSE) schemes.

In this article, we introduce the notion of weighted ORAM, which sup-
ports the storage of blocks of different sizes. We introduce a framework to
build efficient weighted ORAM schemes, based on an underlying standard
ORAMsatisfying a certain suitability criterion.This criterion is fulfilled by
various Tree ORAM schemes, including Simple ORAM and Path ORAM.
We deduce several instantiations of weighted ORAM, with very little over-
head compared to standard ORAM. As a direct application, we obtain effi-
cient SSE constructions with attractive security properties.

1 Introduction

When sensitive data is stored in an untrusted environment, encryption is not
enough. The pattern of memory accesses to encrypted data can reveal a great
deal about its contents. In some settings, observing the pattern of memory
accesses can allow a honest-but-curious host server to fully reconstruct the con-
tents of an encrypted database [14]; in others, measuring cache misses can enable
an attacker to recover secret key material [32]. Untrusted environments where
an adversary may be able to observe memory accesses, partially or completely,
arise in many common scenarios. These include private information stored in an
external cloud service, trusted enclaves running on an untrusted computer, or
even public clouds where memory caches are shared across multiple tenants. In
all these settings, security requires to hide not only the contents of each data
item, but also which item is accessed.

Oblivious RAM (ORAM) protocols provide a powerful tool to fully hide
memory access patterns. The notion of ORAM was introduced by Goldreich
and Ostrovsky [12], motivated by a scenario where a processor accesses untrusted
memory. The processor operates in a RAM model of computation: it wishes to
access memory words at arbitrary addresses. Naturally, memory words have a
fixed size. In line with its historical motivation, ORAM is normally viewed as
storing items of fixed size.
c© International Association for Cryptologic Research 2023
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However, in many potential applications of ORAM, it is natural to consider
items of variable size. Suppose for instance that a client wishes to store private
files on an external cloud storage service. Different files may have different sizes;
it may also be the case that the size of a file varies with time. This motivates
the idea of ORAM for variable-size items.

Of course, it is possible to generically emulate the storage of variable-size
files using a memory allocation scheme for fixed-size items. In our case, using an
ORAM for items of fixed size B, the most natural approach is to split each file
into chunks of size B. Each chunk is then stored as a separate data item (called a
block) within the ORAM, on the server side. To retrieve a file, the client simply
queries all chunks corresponding to the desired file.

This simple variable-size-to-fixed-size reduction is not always satisfactory. A
first issue relates to padding. Before files can be split into chunks of size B, they
must be padded to a multiple of the block size B. If many files are much smaller
than the block size, padding becomes expensive. Both motivating applications
given below show examples where padding would be prohibitive.

To reduce the cost of padding, it may be tempting to reduce the block size B.
However, this increases the ORAM overhead (i.e. the ratio between the commu-
nication cost of the ORAM scheme, and the cost of an insecure exchange), since
it scales with the number of blocks. For example, an ORAM storing N blocks of
size 1 typically has an overhead in polylog N ; whereas with N/B blocks of size B,
the overhead becomes polylog(N/B). In later applications such as length-hiding
ORAM, or zeroSSE in Sect. 6.2, B can be very large, which makes the difference
significant. In theory, larger block sizes are also preferable: for instance, Path
ORAM achieves optimal O(log n) overhead if the block size is Ω(λ2) bits, but
its overhead is O(log2 n) if the block size is Θ(λ) bits (where λ is the security
parameter).

In practice, setting the block size to be very small, say a single memory
word of 128 bits, has a deeper impact that is easy to overlook, but much more
impactful in practice that the asymptotic difference above. Modern computers
can only fetch memory from disk at the granularity level of a page, typically
4kB. This is enforced at all levels: by the operating system, in caches, and at
the physical disk layer (both for HDDs and SSDs). When fetching many 128-bit
words at random locations in the ORAM scheme, the server actually fetches the
entire page for each. In each of those pages, only a fraction 1/256 of the data in
the page is actually useful (128 bits out of 4kB). This results in very poor I/O
efficiency, which correlates directly with disk throughput [4]. The issue is easy
to overlook because it is not reflected in the simple Random-Access Machine
model of computation that is used to compute asymptotics, where all memory
accesses have unit cost. But it has a very large impact in practice. This is well-
known in SSE literature, where an entire branch of the area studies memory
efficiency [2,4,23,24]. In ORAM literature, the PHANTOM implementation of
Path ORAM uses blocks of size one page, likely for the same reason [21]. Reading
many tiny items at random memory locations is extremely inefficient, losing a
factor up to B in throughput (when the bottleneck in throughput does not come
from bandwidth limitations).
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If one thinks of storing entire documents in the context of a private online
storage service, having many documents much smaller than the page size is
rather unlikely. But in other applications, it is quite realistic. A case in point is
the use of ORAM for Searchable Symmetric Encryption (SSE).
Motivating Application 1: Searchable Symmetric Encryption (SSE).
The goal of SSE is to enable a client to outsource the storage of an encrypted
database to an untrusted server, while being able to securely search the data.
At minimum, the client is able to issue search queries asking for all entries
that match a given keyword. To realize this functionality, for efficiency reasons,
virtually all modern SSE constructions rely a reverse index. The reverse index
records, for each keyword, the list of identifiers of entries that match the keyword.

The majority of SSE solutions accept to leak the search pattern and access
pattern of the client: that is, they leak to the server the repetition of queries, and
the identifiers of documents matched by the queries. This allows those construc-
tions to trade off privacy for efficiency and scalability. Nevertheless, revealing
access patterns to the server can be quite damaging, and has led to a number of
attacks [7,14]. Those attacks have in turn motivated SSE approaches that rely
on ORAM [11,18].

The most natural way to avoid leaking the search pattern is to store the
reverse index in an ORAM. In that scenario, the “files” to be stored on an
ORAM are actually the list of matches for a given keyword in an SSE scheme.
For some databases, there may be many keywords that uniquely identify a file,
or that match only a few files. In other words, there may be many lists much
smaller than the block size B of the ORAM.

In practice, this is actually a major roadblock. As argued earlier, it is desirable
to have a relatively large ORAM block size, at least one memory page. On the
other hand, the identifier of an entry can be set to 64 bits, or even less. This
means that a single ORAM block is 512 times larger than the minimal list size. If,
say, many keywords match less than 10 entries in the database, padding those
lists to the block size blows up their storage by a factor more than 50. More
generally, if we set p to be the page size, measured in number of identifiers per
page, then padding means that server storage grows at least in O(pN), where
N is the size of the plaintext reverse index; whereas we would like to achieve
linear storage O(N). Of course, with p = 512 as earlier, the practical difference
is quite large.

Addressing that problem is not an easy task. In SSE literature, avoiding the
cost of padding to the page size has been the focus of several recent works [4,24].
Those works have motivated the creation of weighted memory allocation schemes,
that can accommodate items of variable size, including weighted cuckoo hash-
ing [4], and weighted two-choice allocation [24]. However, there is no weighted
ORAM. This means that in order to use ORAM with SSE, current options are
either to choose a block size much smaller than the page size, or to suffer a
prohibitive padding overhead for some data distributions—both of which are
undesirable.
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Motivating Application 2: Length-Hiding ORAM. Let us go back to the
scenario where a client wishes to store private files of various sizes on a honest-
but-curious cloud server. As noted earlier, the simplest way to hide access pat-
terns is to store the files in an ORAM. Each file is split into chunks of size B,
and each chunk is stored in a separate ORAM block. In order to fetch a file, the
client queries all chunks of the file to the ORAM. When a file is queried, the
only information leaked to the server is the number of chunks of the file.

In some settings, even that much information may be too much information.
For instance, the number of chunks of a file might be enough information to
uniquely identify the file [7]. In that case, repeated accesses to the file are leaked
to the server. This reveals the access pattern of the client to the files, defeating
the purpose of ORAM. More subtly, the length of answers to certain types of
database queries can be enough to infer the contents of encrypted data [13].
Traffic analysis attacks are another example of using length information to infer
sensitive data [10]. Attacks based on length information can be particularly
insidious, because traditional encryption does not attempt to hide length.

If leaking the lengths of the files is judged to be too damaging, the client
may wish to use additional mechanisms to protect their privacy. Going back
to our running example about private file storage, the simplest and most secure
protection is to mandate that, whenever a file is accessed, the client should query
as many chunks as the size of the largest file. In that case, only the number of
chunks of the largest file is leaked to the server—or an upper bound on that
number.

Let N be the total size of the files to be stored on the remote server. Let B be
the ORAM block size, and let U be an upper bound on the size of the largest file
(all quantities are counted in number of memory words). The overhead of ORAM
constructions typically scales in Polylog(n), where n is the number of blocks
stored in the ORAM. Setting aside padding issues for a moment, with block size
B, we have n = N/B. In order to minimize the overhead, it would be attractive
the simply set B = U . But here again, we would run into padding issues: most
files might be much smaller than the largest file. The optimal solution would be
a weighted ORAM able to accommodate files of arbitrary size up to U , with an
overhead Polylog(N/U), or optimally, log(N/U).

1.1 Our Contributions

The discussion so far leads to the following question: can we devise a weighted
ORAM—that is, an ORAM that natively accommodates items of variable size?
Beside the motivating applications given in the introduction, the existence of
weighted ORAM may be viewed as a natural question: it fits within a long line of
work on weighted allocation mechanisms, both within and outside cryptography,
such as [2–4,24,28,29].

We will answer the previous question in the affirmative, and build a weighted
ORAM. Our construction naturally handles not only items of different sizes, but
items whose size varies with time, without the need for padding. To state the
result precisely, let us introduce some notation. In the remainder, an atomic item
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stored within the ORAM is called a block. Let B denote an upper bound on the
block size. Unlike traditional ORAMs, blocks can take any size in [1, B]. We will
sometimes call the size of a block its weight. Let wi ∈ [1, B] denote the weight of
the i-th block. Let m be the total number of blocks. Let N be an upper bound on
the total weight

∑
i≤m wi. We want to build and ORAM that can accommodate

any vector w = (wi)i≤m of weights, as long as the following two conditions are
fulfilled.

Condition 1. Every block wi has weight at most B;
Condition 2. The total weight

∑
wi is at most N .

For ease of exposition, we will assume that the number of blocks m is fixed, but
our constructions can be easily adapted to a variable number of blocks, so long
as the previous two conditions continue to hold. The parameters of our ORAM
constructions will depend only on B and N ; crucially, they do not depend on
the distribution of the weight vector w.

The interface of our weighted ORAMs is identical to standard ORAM: to
retrieve a block, the client queries an identifier of the block (e.g. a virtual memory
address). When writing a block, the client also inputs new data for the block.
This data need not be of the same size as the data originally associated to the
block identifier. The client can freely change the size of a block with every access,
so long as Conditions 1 and 2 are respected.

As our main contribution, we build a weighted ORAM in the sense given
above. In fact, we show a significantly stronger result. Many standard Tree-
based ORAM algorithms admit a natural extension to handle blocks of variable
size: at setup, the ORAM is dimensioned as if to accommodate N/B blocks
of size B, but instead receives an arbitrary number of blocks of variable size
bounded by B, with total size N . These blocks are read and written through the
ORAM in essentially the same way as in the original, fixed-block size ORAM,
except for minor alterations to reflect the fact that blocks do not have the same
size.

The main obstacle with that approach is technical. While Path ORAM is one
of the most attractive solutions for practical Tree ORAM [27], its correctness
proof is notoriously difficult–prompting the introduction of Simple ORAM as a
less efficient variant that allows for a simpler correctness proof [9]. Our main
result is to show that the natural weighted extensions of several existing Tree-
ORAM schemes, including Path ORAM and Simple ORAM, are in fact correct.
For that purpose, we introduce a general framework: we prove that as long as
a Tree ORAM fulfills a certain structural property, its weighted extension pre-
serves correctness. The centerpiece of the proof is a Schur-convexity argument,
which ultimately reduces the correctness of the weighted extension to that of
the original ORAM. (An overview of the proof argument is given in Sect. 4.4,
before the formal proof.) Practical experiments show that our weighted ORAM
construction behaves in line with the previous analysis.

As an application of weighted ORAM, we build two SSE schemes, ZeroSSE
and BlockSSE. Unlike most of SSE literature, both constructions completely hide
access patterns. To our knowledge, ZeroSSE is the only construction that leaks
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neither the access pattern nor the size of retrieved objects, with full correctness.
(The only other construction that we are aware of, in [18], pays the price of
having a non-negligible correctness failure probability.) BlockSSE hides access
pattern, but not the size of retrieved objects. To our knowledge, it is the only
ORAM-based SSE with worst-case server storage O(N), rather than O(BN),
where B is the ORAM block size.

Our main result builds on Tree ORAMs, because of their higher practical
efficiency compared to hierarchical ORAMs. This makes tree-based construc-
tion currently more attractive for applications such as SSE. Nevertheless, it is
worth remarking that the position map of a weighted Tree-based ORAM, as we
have built, has blocks of fixed size. Hence, it can be stored using any standard
ORAM scheme, not necessarily tree-based. In particular, from a more theoretical
perspective, the position map can be stored using an optimal ORAM with loga-
rithmic overhead, following the groundbreaking result of Asharov et al. [1]. This
results in a weighted ORAM with logarithmic overhead. The case of building
weighted hierarchical ORAM schemes is discussed in the full version.

As another direct application of our construction, setting the block size B of
our weighted ORAM to be equal to an upper-bound bound U on the size of the
largest item to be stored in the ORAM, we immediately obtain an ORAM with
communication overhead O(log2(N/U)). If we use an optimal standard ORAM
for the position map, as indicated above, we obtain a length-hiding ORAM with
communication overhead log(N/U). This overhead is optimal, since such a goal
includes as a special case the setting where all blocks have size U , and is thus
subject to known ORAM lower bounds [12,19] for an ORAM storing N/U blocks.

1.2 Related Work

While there is a rich literature on ORAM, surprisingly little of it deals with
objects of variable size. To the best of our knowledge, only two articles mention
this subdomain of ORAM.

In [26], Roche et al. present the first ORAM that stores objects of variable
size. Their goal is to build a remote data structure that satisfies the security
requirements of ORAM, and in addition allows for secure deletion of items and
history independence. In other words, in the case of a total leakage of the struc-
ture (such an event is referred to as a catastrophic attack):

– Items that have been deleted by the client can never be recovered through
leaked data.

– The internal structure does not reveal information about which elements were
last accessed.

The data structure is built on top of a weighted ORAM. However, their con-
struction for such an ORAM is limited: obliviousness and correctness (i.e. the
client-side stash overflows with negligible probability) can be proven only if the
size of the blocks follow a geometric probability distribution. In comparison,
although we assume that block sizes are bounded by B, we do not need to
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assume anything on the distribution of block sizes. In more detail, there are two
limitations to the assumptions of [26]. First, many common distributions are not
upper-bounded by a geometric distribution, for instance Zipf distributions. Sec-
ond and more fundamentally, the ORAM user has no reason in general to pick
item sizes independently, or to pick them from the same distribution. The con-
struction of [26] was designed with a specific use case in mind; its applicability
beyond that use case is limited.

Another construction of ORAM for objects of variable size may be found
in [20]. Their construction is also based on Tree ORAMs. The idea is to allow
block size to be equal to a multiple of some value s (padding up to a multiple if
needed), and to store all “splinters” of size s of a block along the same path from
root to leaf. This construction has the strong requirement of a trusted proxy that
shuffles blocks during certain operations. Moreover, the construction is flawed
(see the full version for further information).

1.3 Organization of the Paper

In Sect. 3 we recall the definitions of ORAM, SSE, and Schur convexity, a tool
we will use in our proof. Section 4 is where we state our generic criterion for
converting a standard ORAM into one that supports objects of variable size and
prove our main result. Concrete examples of known ORAM schemes that we can
turn into weighted ORAM are shown in Sect. 5. We discuss applications to the
field of SSE in Sect. 6.

2 General Preliminaries

Throughout this work, memory size will be counted as a number of memory
words. It is assumed that a memory word is large enough to store any address
in memory. In practical applications, one may think of 64-bit or 128-bit words.
Algorithms will be considered in the RAM model, where accessing an arbitrary
memory word costs O(1) operations.

The security parameter is denoted by λ. A quantity is said to be negligible,
denoted negl(λ), if it is O(λ−c) for every constant c. A probability is said to be
overwhelming if it is 1−negl(λ). It is always assumed that the number of blocks
N stored in the ORAM satisfies N ≥ λ, so that any quantity negl(N) is also
negl(λ).

When an algorithm A with input x is probabilistic, we may sometimes explic-
itly write the random coins used by A as an input of A, separated by a semicolon,
as in A(x; r).

2.1 Majorization and Schur Convexity

Given a vector v in R
m, we denote by v↓ ∈ R

m the vector with the same
components, sorted in decreasing order.
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Definition 1 (Majorization order). Let v, w be two vectors in R
m such that∑m

i=1 vi =
∑m

i=1 wi. The vector w is said to majorize v, written v ≺ w, if:

∀k ∈ [1,m],
k∑

i=1

v↓
i ≤

k∑

i=1

w↓
i .

Definition 2 (Schur convexity). Let f : R
m �→ R. The map f is said to be

Schur-convex if it is non-decreasing for the majorization order. That is, for any
two vectors v, w with

∑m
i=1 vi =

∑m
i=1 wi,

v ≺ w ⇒ f(v) ≤ f(w).

Definition 3 (Convexity). Let f : R
m �→ R. The map f is said to be convex

if for any two vectors v, w in R
m, and any α in [0, 1] ⊂ R, it holds that:

f(αv + (1 − α)w) ≤ αf(v) + (1 − α)f(w).

Definition 4 (Symmetry). Let f : R
m �→ R. The map f is said to be symmet-

ric if for any vector v ∈ R
m, and any permutation matrix P over m elements,

f(v) = f(Pv).

The link between convexity and Schur convexity is visible in the next lemma.

Lemma 1. Let f : R
m �→ R. If f is symmetric and convex, then it is Schur-

convex.

We refer the reader to [22] for a detailed presentation of the theory of
majorization, including a proof of Lemma1.

3 ORAM Preliminaries

3.1 Weighted Oblivious RAM

A weighted ORAM, also written wORAM, is a pair of client-server protocols
(Setup, Access), defined as follows.

– Setup(N,B,D) takes as input a number of blocks N , a block size B, and
a set D of pairs of the form (ai, datai), where the ai’s are pairwise distinct
addresses, and datai is arbitrary data of size at least 1 and at most B memory
words. Setup outputs an initial client state and initial server state.

– Access(op, a, data) takes as input an operation op ∈ {read,write}, an address
a, and some data data of size at least 1 and at most B. If op = read, Access
outputs the data last written to address a. If op = write, Access replaces the
data written at address a by data. Access may also update the client and
server states.
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We say that Setup(N,B,D) is legal if the total amount of data in D (i.e.
the sum of the sizes of the datai ’s) is at most NB. Likewise, we say that
Access(op, a, data) is legal if address a was defined during setup, and in the
case that op = write, if the total amount of data contained in the database
after replacing the data at address a by data remains of size at most NB. On
the other hand, it is not required that the size of data matches the size of the
data previously written at a, as long as data is of size at most B, and the total
amount of data remains at most NB.

Definition 5 (Correctness). A wORAM scheme is said to be correct if, given
a legal setup and any sequence of legal access operations, a read access at address
a outputs the data last written at address a, except with negligible probability.

Definition 6 (Security). A wORAM scheme is secure if, given any two
legal sequences of operations (Setup(N,B,D), Access(op1, a1, data1 ), . . . , Access
(opk, ak, datak )) and (Setup(N,B,D′), Access(op′

1, a
′
1, data

′
1 ), . . . , Access(op′

k,
a′
k, data

′
k )) of the same length, the views of the server arising from each sequence

are computationally indistinguishable.

A few remarks are in order. First, although we have defined Setup and Access
as general client-server protocols, it is common in ORAM to ask that the server
performs behaves like a memory allowing only read and write accesses. That is,
the client only ever asks the server to read or write specific data at a specific
address: and the server performs no computation if its own. Although this is not
required in the previous definition, the wORAM schemes in this work are in that
model.

Second, it is assumed that the contents of all memory locations on the server
are encrypted using IND-CCA encryption, with a key known only to the client.
Whenever the client accesses a memory location, they can reencrypt the data
at that location, so that the server cannot learn the contents of any memory
location, or whether it was changed during the access. As a result, the only way
the server can infer information is by observing which locations the client queries
in server memory. That is why the security definition of wORAM (following that
of ORAM) focuses only on memory locations.

Finally, note that a standard ORAM scheme is the special case of a wORAM
where all addresses store data of the same size B.

3.2 Tree ORAM

We build wORAM by altering standard ORAM schemes following the Tree
ORAM paradigm. In this section, we provide a high-level algorithmic view of
that paradigm. That view is purposefully designed to accommodate several exist-
ing Tree ORAM schemes. It will also lay the groundwork for the construction of
wORAM in the next section.

Existing Tree ORAM schemes are standard ORAMs, designed to store items
of fixed size. In a Tree ORAM, to store N items of size B, the server creates



Weighted Oblivious RAM, with Applications to SSE 435

a full binary tree with N leaves. (From now on, we assume N is a power of 2,
increasing to the next power of 2 if necessary.) Throughout the article, the root
of the tree is viewed as being at the top, and leaves as being at the bottom of
the tree. Given a leaf l of the tree, the path from the root to the leaf l is denoted
by P(l).

Each node of the tree, also called a bucket, can store up to Z data blocks of
size B. Nodes are always padded to be of size ZB before being stored (encrypted)
on the server.

In addition to the tree, the server may also store a stash, which may contain
additional data blocks that could not fit in the tree. In the remainder, we view the
stash as a special node directly above the root. This is relevant in two situations.
First, there may be cases where a node is full (i.e it contains Z items), and where
additional items need to be pushed to the parent node; if this happens at the root
level, overflowing items are pushed to the stash. Second, whenever we consider
the path P(l) from some leaf l to the root in the tree, we implicitly (and slightly
abusively) also consider the stash to be part of the path. The stash is always
padded to some upper bound RB, before being stored (encrypted) on the server.

To each item with address a is associated a leaf of the tree pos(a). The array
mapping each address a to the corresponding leaf pos(a) is called a position map.
For now, we will assume the position map is stored by the client. By design, Tree
ORAMs maintain the following invariant at all times: the item at address a is
stored in one of the nodes on the path P(pos(a)) from the root to leaf posa
(including the stash, as noted earlier).

During setup, each item with address a is stored in the leaf pos(a); or if it
is full, in the lowest parent of pos(a) that is not yet full. To access item a, the
client retrieves pos(a) from the position map, then reads the path P(pos(a)) on
the server. Thanks to the invariant, that path contains the item a. Item a is then
assigned a new uniformly random leaf. Finally, a special eviction procedure is
called, which re-inserts item a somewhere on the path to its newly assigned leaf,
and may also move other items.

Pseudo-code for the Evict procedure is given in Algorithm1, with additional
parameters Z (the number of blocks per bucket, specified by the Tree ORAM
scheme; to reflect the fact that Z is an internal parameter of the ORAM construc-
tion, and not part of its interface, it is written between brackets), and random
coins r. It makes use of the following subroutines:

– ReadBucket(bucket retrieves a set of pairs (ai, datai) from the tree node
bucket .

– RemoveBlock(bucket , a removes the item with address a from the tree node
bucket .

– ChooseEvictionPath outputs a path for eviction, which differs depending on
the specific Tree ORAM scheme.

Pseudo-code for the Access procedure is given in Algorithm2, with addi-
tional parameters Z (the number of blocks per bucket, specified by the Tree
ORAM scheme), and random coins r. It makes use of the following subroutines:
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Algorithm 1. Access algorithm of a Tree-ORAM.
Access[Z; r](op, a, newdata):

1: leaf ← pos[a]
2: pos[a] ← uniformly random leaf
3: for bucket in P(leaf ) do
4: if (a, data) ∈ ReadBucket(bucket) then
5: RemoveBlock(bucket , a)

6: if op = write then
7: data = newdata
8: stash ← stash ∪ {(a, data)}
9: path ← ChooseEvictionPath(leaf )

10: Evict[Z; r](path)
11: return data

– SizeX returns the number of items |X| in X.
– ChooseNextBlock(stash, bucket , path) pops an item from the stash, to be

stored in the bucket, or outputs ⊥.
– WriteBucket(bucket ,X,Z) writes the items in X to the node bucket , padding

the node to size Z if needed.

Algorithm 2. Generic eviction algorithm.
Evict[Z; r](path):

1: Move all blocks in path to the stash
2: for bucket in path do
3: X ← ∅

4: while Size(X) < Z do
5: block ← ChooseNextBlock(stash, bucket , path)
6: if block = ⊥ then
7: break
8: else
9: X ← X ∪ {block}

10: WriteBucket(bucket , X, Z)

11: return

We will discuss in Sect. 5 how several existing Tree ORAM schemes are cap-
tured by the above paradigm.

Correctness of Tree ORAM. Since Tree ORAM is a special case of ORAM,
the correctness definition remains the same (Definition 5). However, because of
the specificities of Tree ORAM, it can be reformulated in a more convenient
manner. That is, the only correctness failure that can occur in a Tree ORAM
scheme is that the stash overflows. (The reader familiar with Tree ORAM may
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object that some Tree ORAM schemes do not use a stash; that case will be
handled in Sect. 5).

Recall that the stash is always padded to size RB, i.e. it can store up to R
items. Hence, correctness amounts to the following statement: at the outcome of
any sequence of legal accesses (Setup, Access1, . . . , Accessk), it holds that

Pr[Size(stash) > R] = negl(λ).

3.3 ∞-ORAM

Consider a Tree ORAM instantiation ORAMZ ← Setup[Z](N, B, D), with
bucket capacity Z. If s is a sequence of accesses, we call st(ORAMZ [s]) the
stash usage, that is, the number of items in the stash at the outcome of the
accesses.

In Path ORAM and many Tree ORAM schemes derived from it, the proof
of correctness follows similar steps:

– Consider an infinite ORAM structure ORAM∞, which is the same protocol,
except buckets have infinite capacity.

– Define a post-processing algorithm GZ that moves items in the tree produced
by running ORAM∞ (arranging in particular that each tree node contains
at most Z items). Denote the stash usage of the post-processed ∞-ORAM by
stZ(ORAM∞[s]).

– Prove that st(ORAMZ [s]) = stZ(ORAM∞[s]) when using the same random
coins on both sides.

– Prove that Pr[stZ(ORAM∞[s]) > R] = negl(N).

The last two points imply that Pr[st(ORAMZ [s]) > R] = negl(N), i.e. the
original ORAM scheme is correct. We say that such a protocol admits a proof
via infinite ORAM.

4 Generic Construction of wORAM from Tree ORAM

4.1 Transformation Overview

Our goal is to give a generic way to transform an existing standard tree ORAM
design into one that handles objects of variable size with no added cost. To
achieve this, we modify the protocols used to interact with the ORAM so that
when an object is added to a bucket, it is allowed to “spill out” of it, as long as
the size of this spilling out is small. For the correctness proof to hold, we increase
the bucket size from Z to Z + 1 (and Z = 5). (Practical experiments in Sect. 4.5
suggest that this increase can be heuristically dispensed with.)
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4.2 Translation Function

We define a general transform TransVar that takes as input a standard
Tree ORAM scheme ORAMZ = (Setup, Access) following the framework of
Sect. 3.2, and outputs a wORAM scheme TransVar(ORAMZ) = ORAM∗Z =
(Setup∗, Access∗).

Let us first consider the setup. We say that the starting scheme ORAMZ has
a regular setup if its setup procedure is equivalent to creating an empty tree
with all items in the stash, then doing repeated evictions towards every leaf in
the tree from left to right. Here, by “equivalent” we mean that the output of this
process and the output of the normal setup process are identically distributed.
In our main theorem, we will require that the starting Tree ORAM ORAMZ

has a regular setup. Although that notion of regularity is unusual, it has the
benefit that the behavior of the setup process can be deduced from that of the
eviction process. For our purpose, this means it will be enough to explain how
to transform the eviction process to handle blocks of variable size.

ORAM∗Z is defined in the following way, making only minimal modifications
to ORAMZ to handle items of variable size.

– Setup∗(N,B,D) initializes a tree with N leaves, whose nodes can hold data of
size (Z +1)B bits each, and a stash of the same size RB bits as the standard
instance ORAMZ . It initializes a position map where each address a in D is
mapped to a uniformly random leaf. Finally, it performs a regular setup: that
is, all items in D are placed in the stash, and the Evict∗ procedure is called
on the path from the root to each leaf, from left to right.

– Access∗ is identical to Access, except that it calls the modified subroutine
Evict∗.

– Evict∗ is identical to Evict, except that it calls the modified subroutines
Size∗ and WriteBucket∗.

– Size∗(X) returns the sum of the sizes of all items in X divided by B, instead
of the number of items in X.

– WriteBucket∗(bucket ,X ,Z ) still writes the items in X to node bucket , the
only difference is that it pads the bucket to size Z + 1 instead of Z.

4.3 Suitable Tree ORAM Schemes

For a Tree ORAM scheme to be suitable to build wORAM from, it must satisfy
certain conditions. This section serves to define those conditions.

Given a sequence of accesses s, some fixed random coins r used during those
accesses, and a subset S of nodes in an ∞-ORAM scheme ORAM∗, define the
usage of S, written uS(ORAM∗∞[s; r]), to be the total number of items assigned
to the nodes in S. For a wORAM scheme, the usage of S is defined to be the
total size of the items assigned to nodes in S, divided by the block size B.

As discussed in Sect. 3.2, a correctness failure for a Tree ORAM scheme
ORAM occurs if and only if, at the outcome of a series of accesses s with random
coins r, the stash receives strictly more than R elements. Using the notation
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from Sect. 3.3, this translates to st(ORAMZ [s; r]) > R. We say that a subset S
of nodes witnesses the failure if, in the corresponding ∞-ORAM scheme ORAM∗

when performing the same sequence of accesses using the same random coins (viz.
the choices of fresh uniformly random leaves for the position of any accessed item
remain the same), uS(ORAM∗∞

L [s]) > |S| · Z + R, where L = �log(N)� is the
tree height. Intuitively, since the nodes in S can store at most |S| · Z items, it
is clear that more than R items must be reassigned to the stash in the original
ORAM: that is why we say that S witnesses the failure.

Definition 7 (F ⇒ W,W ⇒ F). We say that ORAM satisfies the F ⇒ W
property (read: “failure implies witness”) with respect to a set S of subset
of nodes, iff for all access sequences s and all choices of random coins r,
st(ORAMZ [s; r]) > R implies ∃S ∈ S , uS(ORAM∗∞

L [s]) > |S| · Z + R. We
say that ORAM satisfies the W ⇒ F (read: “witness implies failure”) property if
the converse is true.

Moreover, we say that ORAM satisfies the F ⇒ W (resp. W ⇒ F) property
with union bound if the scheme also satisfies that

∑
S∈S Pr[uS(ORAM∗∞

L [s]) >
|S| ·Z +R] = negl(λ). Informally, this means the statement “the probability that
a failure witness exists is negligible” can be proved via a union bound over all
possible witnesses S ∈ S .

The definitions remain the same for a wORAM scheme. In particular, for a
wORAM scheme ORAM∗, a subset S witnesses a failure if uS(ORAM∗∞

L [s]) >
|S| · Z + R (and not |S| · (Z + 1) + R, even though, looking forward to our
construction of wORAM, we will use buckets of size (Z + 1)B).

Definition 8 (Suitable Tree ORAM). We say that a Tree ORAM scheme is
suitable if it satisfies the following conditions.

1. It admits a proof via infinite ORAM. That is, for all access sequence s and
random coins r, st(ORAMZ [s; r]) > R iff stZ(ORAM∞[s; r]) > R.

2. ORAM satisfies the W ⇒ F property with respect to some set S , with union
bound.

3. TransVar(ORAM) satisfies the F ⇒ W property with respect to the same S .
4. ORAM allows free evictions. That is, if the client is allowed to trigger evic-

tions on uniformly random leaves at will during a sequence of accesses, cor-
rectness still holds.

Requiring all those properties may seem demanding, but they naturally hold
for several existing Tree ORAM schemes, including Path ORAM and Simple
ORAM. This will be shown in more detail in Sect. 5. Intuitively, this is because
many schemes admit a proof via infinite ORAM, either explicitly (in the case
of Path ORAM), or trivially (in the case of Simple ORAM, where the ORAM
and its infinite variant are identical up to correctness failures). Similarly, the
F ⇒ W property is either already known, or trivial; and the free eviction
property is immediate. The only property that requires some care is to show
that TransVar(ORAM) satisfies the F ⇒ W property. However, it is much more
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tractable than trying to analyze the correctness of a wORAM scheme directly
(even without having to contend with variable size blocks, the correctness anal-
ysis of Tree ORAM schemes such as Path ORAM is notoriously complex).

4.4 Main Result

Theorem 1 (Main Theorem). Let ORAM be any suitable Tree ORAM
scheme. If ORAM is a correct ORAM scheme, then TransVar(ORAM) is a cor-
rect wORAM scheme.

Before diving into the proof proper, we sketch the underlying approach.
Because of the F ⇒ W and W ⇒ F properties required by the suitability assump-
tion, showing the wORAM scheme is correct essentially amounts to showing that
no set S ∈ S witnesses a failure. We wish to analyze the function that maps
the sizes of items to the usage of S (i.e. the sum of sizes of all items in S).
Ultimately, we want to show that the probability that the usage of S exceeds
|S| · Z + R is negligible, regardless of item sizes.

The proof strategy is to upper-bound the previous probability by a Schur-
convex function, and show that this function is negligible. The idea behind this
strategy is that if a function of item sizes is Schur-convex, then in order to upper
bound the function for all possible vectors of item sizes, it is enough to upper-
bound it for a set of maximal vectors for the majorization order. Luckily, due to
the requirement that item sizes are of size at most B, and that the sum of items
sizes are at most NB, a single weight vector majorizes all others, namely the
vector (B, . . . , B, 0, . . . , 0). Hence, it is enough to upper-bound the function for
that specific vector. But this is actually quite easy, because this weight vector
essentially amounts to having all items be of the same size, which reduces to the
correctness of the original (unweighted) ORAM instance.

Thus, the core of the proof is to find a suitable Schur-convex function. This
is done via a first-moment argument (Lemma 2), which allows us to work with
expectancies instead of probabilities. Expectancies are much better behaved with
respect to convexity (due to the linearity of expectation). Eventually, we massage
the upper bound into a suitable Schur-convex function (in the proof, this is the
map w �→ E[Xs,L,S(w)]), and show it is convex essentially by showing that it is
structured as a composition of convex maps. Using Lemma 1, we deduce that it
is Schur-convex.

Proof. First, we show a simple self-contained technical lemma.

Lemma 2. Let X be an integral random variable defined over [0, t] ⊂ N
+, with

t ∈ Poly(λ). Then Pr[X > R] = negl(λ) if and only if E(max(0,X − R)) =
negl(λ).

Proof. First, recall that the expectation of a positive integral variable Y can be
written as:

E(Y ) =
∑

i≥0

Pr[X > i].
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As a corollary, for any integral variable Y satisfying 0 ≤ Y ≤ t:

Pr[Y > 0] ≤ E(Y ) ≤ t Pr[Y > 0]. (1)

Observe that the event X > R is equivalent to max(0,X − R) > 0. Using
that observation, and applying (1) to the variable max(0,X − R), we get:

Pr[X > R] ≤ E(max(0,X − R)) ≤ t Pr[X > R].

Since t ∈ Poly(λ), we are done. �

Let ORAM be a suitable and correct Tree ORAM scheme. Let ORAM∗ ←
TransVar(ORAM). Let s be a legal sequence of accesses for ORAM∗. We need to
show that Pr[st(ORAM∗[s]) > R] = negl(λ).

Since ORAM satisfies the F ⇒ W property with respect to some set S , it
suffices to show that the probability that there exists S ∈ S witnessing the
failure is negligible, i.e. Pr[∃S ∈ S , uS(ORAM∗∞

L [s]) > |S| · (Z + 1) + R] is
negligible.

Let us fix S ∈ S . We want to show that Pr[uS(ORAM∗∞
L [s]) > |S| · (Z +

1)+R] is negligible. (This is not enough to imply that the probability that there
exists such an S is negligible, since S may have superpolynomial cardinality;
we will come back to this point later.) A crucial observation is that in ORAM∗∞

L ,
the sizes of data items plays no role. In particular, given an access sequence s
and associated random coins r, the location of each item in the tree is entirely
determined independently of the size of the data items.

Given an access sequence s with m items in total, and a size allo-
cation vector w = (wi)i≤m ∈ [0, 1]m, define s(w) to be the access
sequence s, modified such that at the outcome of the sequence the i-th
item has size wi. Let Π be the set of permutation matrices of size m. Let
Xs,L,S(w) = maxP∈Π(max(0, uS(ORAM∗∞

L [s(Pw)]) − (|S| · Z + R))). By
Lemma 2, E[Xs,L,S(w)] is an upper bound on Pr[uS(ORAM∗∞

L [s]) > |S| · (Z +
1) + R], so it is enough to show that E[Xs,L,S(w)] is negligible. This will follow
from the next lemma. While the lemma is not difficult to prove, we view it as
the core of the argument.

Lemma 3. Let s be a legal sequence of accesses, and let S ∈ S . Then the map
f : w �→ E[Xs,L,S(w)] is Schur-convex.

Proof. First, we show that Xs,L,S is convex when the random coins used in the
ORAM construction are fixed. Until further notice, we assume that all random
coins are fixed. Only w varies. Let λ ∈ [0, 1], and let v, w be two size allocation
vectors. We begin by observing that the map g : w �→ uS(ORAM∗∞

L [s(Pw)] is
linear. This is because, as already noted, whether an item is stored in a node from
S or not is independent of the weight of the items. As a consequence, g(w) is equal
to the sum of the weights of items stored in S, i.e. it is a fixed linear combination
of wi’s (with binary coefficients). Since g is linear, it is trivially convex.

Now we observe that for any constant C, the map h : x �→ max(0, x − C) is
increasing and convex. Since the composition of an increasing convex function
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with a convex function is convex, we deduce that the map h ◦ g is convex. Since
Xs,L,S(w) = maxP∈Π h ◦ g(Pw), it is a maximum of convex maps, so it is also
convex.

On the other hand, Xs,L,S(w) is symmetric by construction, since it takes
the maximum over all permutations of w. By Lemma 1, since Xs,L,S(w) is both
symmetric and convex, it is Schur-convex.

It remains to show that Schur convexity still holds when considering the
expectation of Xs,L,S(w). (From now on, we no longer assume that random
coins are fixed.) However, it is easy to see that if a probabilistic map is Schur-
convex for every fixed choice of random coins (sometimes called stochastical
Schur-convexity), then its expectation is also Schur-convex [22]. We conclude
that w �→ E[Xs,L,S(w)] is Schur-convex. �

Corollary 1. Let s be a legal sequence of accesses with weight vector w, and let
S ∈ S . E[Xs,L,S(w)] is negligible.

Proof. For an access sequence to be legal, its weight vector w must satisfy that
wi ≤ B for all i, and

∑
wi ≤ NB. Observe that all such vectors are majorized by

the vector v = (B, . . . , B, 0, . . . , 0) containing N initial B’s. Since E[Xs,L,S(w)]
is Schur-convex, it follows that E[Xs,L,S(w)] ≤ E[Xs,L,S(v)]: in order to upper
bound E[Xs,L,S(w)], it suffices to focus on the weight vector v. (This is the point
of using a Schur-convexity argument.)

But in the case of the vector v, all items are of the same size B, or of size 0.1

In that case, ORAM∗ behaves exactly like ORAM, except that accesses to items
of size 0 translate to evictions without any prior item access. In particular, The
usage of S is the same for ORAM∗ and ORAM. Since we assume that ORAM has
the free eviction property, it remains correct when allowing eviction queries by
the client. Since it is also assumed to be correct and to satisfy W ⇒ F, it follows
that the usage of S cannot exceed |S| · Z + R except with negligible probability,
hence the same holds for ORAM∗, and we are done.

So far, we have shown that the probability that any given S witnesses a
failure in ORAM∗ is negligible. To conclude the proof, it remains to show that
the probability that there exists an S ∈ S witnessing a failure is negligible. This
does not follow immediately from the previous statement, because |S | may be
superpolynomial. However, looking at the proof of Lemma2, we see that when
switching from expectation to probability and back, we only lose a factor t. In
our case, the stash size is a random variable bounded by NB, so we have that
for every S,

Pr[uS(ORAM∗∞
L [s(v)]) > |S| · Z + R] ≤ NB Pr[uS(ORAM∞

L [s]) > |S| · Z + R].
1 The reader may observe that items of size 0 are not technically legal per the ear-

lier definition of wORAM, which asks that items are of size at least 1; however,
TransVar(ORAM) remains well-defined even for items of size 0, so nothing stops us
from using them within the proof—the reason we forbade items of size 0 is that they
would allow for an unbounded number of items, which would require a position map
of unbounded size, but this is irrelevant for the current line of reasoning.



Weighted Oblivious RAM, with Applications to SSE 443

Since ORAM is assumed to satisfy W ⇒ F with union bound, and NB ∈ poly(λ),
we know that the sum of the latter quantity over all S ∈ S is negligible, hence
ORAM∗ inherits the same union bound property. It follows that the probability
that there exists a failure witness S for ORAM∗ is negligible. Since ORAM∗

satisfies the F ⇒ W property, we conclude that ORAM∗ is correct.

4.5 Experimental Results

To test empirically the correctness of our weighted ORAM, we implemented a
Path ORAM structure and performed simulated accesses. We did two experi-
ments: one with N object of the same size (which simulates the standard case)
and one with objects of variable sizes (the sizes are uniformly random, but sum
to N). Our results are presented as graphs in Fig. 1.

We took inspiration from the experiment in Sect. 7 of [27]. The experiment
went as follows:

– We generated ORAM structures for N objects, with N = 2L and L ∈
{10, 11, . . . , 22}. The bucket size is Z ∈ {3, 4}

– We chose the maximum block size to be B = 512.
– For the standard ORAM simulation, all blocks were of size B. For the variable

ORAM simulation, blocks were taken uniformly at random in [B], with the
total sum of the sizes being N · B. The number m of blocks generated is
roughly 2 · N .

– We start with the Path ORAM loaded randomly with the objects at its
leaves, and perform between 10 · m and 50 · m accesses in the order
{1, 2, . . . ,m, 1, 2, . . .}.

Figure 1 suggests that objects of variable size are even less prone to stash
overflows than the standard case. Path ORAM seems to be much more resilient,
and able to handle different sets of objects than what the correctness proof
shows.

Regarding bucket size, we make an observation similar to that of [27]: even
though the correctness of the ORAM was proved for Z +1 = 6, the construction
appears resilient enough to work correctly even when Z + 1 = 4. In [27], the
empirical results suggest that Path ORAM can be used when Z is as low as 4.
Thus we have reasons to believe that our method does not lead to a blowup in
the server storage.

5 Application to Existing Tree ORAMs

In this section we present several concrete constructions: a weighted Simple
ORAM, based on Chung and Pass’s Simple ORAM [9], and a weighted Path
ORAM, based on the seminal work by Shi et al. [27]. The construction for
Path-ORAM can be easily adapted to build a weighted Random-Index ORAM
from the one presented in [16], as the block-holding structure is virtually the
same. We also sketch the application to Circuit ORAM [30] and OPRAM [8].
By Theorem 1, in each case, it suffices to show that the scheme is suitable. The
weighted variant is then obtained by applying TransVar.
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Fig. 1. Experimental results when Z ∈ {3, 4}
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5.1 Weighted Simple ORAM [9]

Let SimpleOram = (SimpleOram.Setup, SimpleOram.Access) In the original
paper, each bucket has a capacity of Z = O(log(N)) and the ORAM overflows iff
there is a bucket with more than Z items: there is no stash. From the perspective
of the Tree ORAM framework from Sect. 3.2, a stash does exist, however, it is
required that it is empty at the outcome of any (legal) sequence of accesses. That
is, we set the stash bound R to 0.

In SimpleOram:

– The ChooseEvictionPath(leaf ) method is implemented by choosing a path
uniformly at random (the leaf argument is ignored).

– The ChooseNextBlock(stash, bucket , path) method is implemented by return-
ing the first item among items whose position is such that its meet with the
current path is exactly bucket . (In other words, all items are stored as low
as possible along the eviction path.) The correctness of SimpleOram relies
on the fact that all such items will fit in the current bucket; items are never
pushed somewhere else in case a bucket is full.

We want to show that SimpleOram is suitable. Define S to be the set con-
taining the singleton {bucket} for each tree node bucket . The fact that the cor-
rectness of SimpleOram is equivalent to the fact that no element of S witnesses
a failure is immediate, since the correctness of SimpleOram requires precisely
that no node overflows. Hence, SimpleOram satisfies W ⇒ F (and F ⇒ W) with
respect to S . The fact that TransVar(SimpleOram) satisfies F ⇒ W is immedi-
ate for the same reason. SimpleOram also satisfies the union bound requirement,
because its analysis in [9] relies on just such a union bound. The fact that it
supports free evictions is also follows directly the analysis in [9] (additional evic-
tions translate to more success chances in the dart game argument at the center
of the analysis). We conclude that SimpleOram is suitable.

Theorem 2. TransVar(SimpleOram) is a correct wORAM scheme.

5.2 Weighted Path ORAM [27]

Let ORAMZ
L ← PathOram.Setup(N,Z) be an instance of Path ORAM. In

PathOram, the bucket capacity Z is a small constant (the scheme is proven cor-
rect for Z = 5, we shall use this value). The stash capacity R is a O(log(N)).

In PathOram:

– The ChooseEvictionPath(leaf ) method is implemented by returning P(leaf ).
– The ChooseNextBlock(stash, bucket , path) method is implemented by return-

ing an item from the buffer such that the its associated position is below
bucket , and the meet between the position of the item and path is lowest
among the items in buffer . (In other words, the scheme tries to store each
item as low as possible along the eviction path.)

Theorem 3. TransVar(PathOram) is a correct wORAM scheme.
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Proof. Define S to be the set of all subtrees of the ORAM tree, where a subtree
is a subset of nodes closed for the parent relation (i.e. if the set contains a node,
it also contains its parent). The analysis of [27] proves that PathOram satisfies
both F ⇒ W and W ⇒ F with respect to S , via a union bound. The fact that
PathOram supports free evictions also follows from the analysis. In the remainder,
we focus on showing that PathOram∗ ← TransVar(PathOram) satisfies F ⇒ W.

For that purpose, we follow a similar approach to the initial part of the
analysis in [27]. Let us define a post-processing algorithm GZ , which is applied
to ORAM∗∞

L after a sequence of accesses. This is an virtual algorithm used only
to analyze stash usage, so we can allow it to do things that are not possible
within the normal wORAM framework. In particular, we let GZ “split” any
object of size w in two objects of sizes w1 and w2 such that w1 +w2 = w, storing
the two chunks at distinct locations. GZ repeats the following process, as long
as there are overfull buckets (i.e. whose size is strictly more than Z—to avoid
cluttering the notation, all sizes are implicitly divided by the block size B):

1. Select a bucket that has load of more than Z. Let’s say that this bucket is at
level h on some path P to the root. Remove blocks from the bucket (splitting
one if needed) so that it ends up having a load of exactly Z.

2. Find the highest level i ≤ h such that the bucket at level i on the path P has
a load < Z. If such a bucket exists, store as many blocks as possible there
until the load is Z (making a split if needed). Keep going upwards, any blocks
that remain are stored in the stash.

First, let us prove that the stash usage (i.e. the cumulated size of the objects
in the stash) of the post processed ∞-ORAM is greater than the stash usage of
ORAM∗Z

L :
stZ(ORAM∗∞

L [s]) ≥ st(ORAM∗Z
L [s]). (2)

Start by noticing that the order in which blocks are processed by GZ does
not matter in the end: the blocks are now “continuous” since we can split them,
so the size of the blocks get distributed in the same way towards the same
blocks, regardless of origin. So stZ(ORAM∗∞

L [s]) is unique. We can generalize
the argument from [27]: assume that GZ processes blocks from the bucket β1 at
level l1 on path p1, then blocks from the bucket β2 at level l2 on path p2. We
want to show that the loads in the buckets in p1 ∪ p2 do not change if we let
GZ process β2 before β1 (We can see the stash as being the parent of the root,
i.e. at level −1.) Without loss of generality, we can assume that those buckets
are siblings (i.e. l1 = l2 = l), since only p1 ∩ p2 will be affected by a change in
the order. Assume that the post-processed blocks from β1 are of total size W1,
W2 for those from β2. GZ first distributes a “mass” of size W1 in the buckets
from level l − 1 to −1 in p1 ∩ p2, and then a mass of size W2 in those same
buckets. Before the distribution, let us call Vi the available space in the bucket
at level i ∈ {−1, 0, . . . , l − 1} on path p1 ∩ p2. When distributing a mass W , GZ

performs Algorithm 3 (we assume that V−1 = ∞): The {Vi} are the same after
a successive application of Algorithm 3 on W1 then W2 or after its application
on W2 then W1.
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Algorithm 3. Distribution of mass of blocks
Distribution(W ):

1: i ← l
2: while W > 0 do
3: i ← i − 1
4: if Vi ≥ W then
5: Vi ← Vi − W
6: W ← 0
7: else
8: Vi ← 0
9: W ← W − Vi

Remark 1. We wish to attract the reader’s attention on one point: in what pre-
cedes, we consider for simplicity that blocks are taken in bulk from the buckets,
whereas in what follows it is more convenient to assume that GZ processes them
individually. It doesn’t make a difference for the same reason that the order
doesn’t matter.

We can finally prove Statement (2). Informally, we can see that during the
accesses, ORAM∗Z

L stores blocks in buckets and in the stash in a more lenient
way than GZ , since it allows blocks to “stick out” of the buckets. More precisely,
after the accesses of s in ORAM∗∞

L [s], there exists a way to move blocks from
the buckets they reside in to their final destination from ORAM∗Z

L [s] (in another
bucket or the stash). Since the order in which we post-process blocks from the
buckets does not matter, we can assume that this particular order is accessed by
GZ . If that is the case, after the processing of each block, GZ puts that block in
the bucket where it belongs according to ORAM∗Z

L [s]. However, should a part of
the block (or its entirety) stick out of the bucket (i.e. causes the load to become
≥ Z), this part will be moved to a higher block or the stash. Thus the processing
of each block by GZ causes the stash size to either stay the same or to increase.
Thus at the end of the processing, stZ(ORAM∗∞

L [s]) ≥ st(ORAM∗Z
L [s]).

Second, let us prove that the stash usage stZ(ORAM∗∞
L [s]) in the post-

processed ∞-ORAM is > R if and only if there exists a subtree T in ORAM∗∞
L

such that uT (ORAM∗∞
L [s]) > n(T ) · Z + R:

⇐= :
If there is such a T , the behavior of GZ makes it so that the stash must hold

more than R objects.
=⇒ :
Let us define T to be the maximal subtree that contains all buckets of size

at least Z after the post-processing. If a bucket b is not in T , it has an ancestor
b′ that has a used space of strictly less than Z, so the blocks of b cannot go
to the stash. Thus all blocks in the stash came from buckets in T , and thus
uT (ORAM∗∞

L [s]) > n(T ) · Z + R.
This shows that PathOram is suitable. ��
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5.3 Weighted Oblivious Parallel RAM [8]

Boyle, Chung, and Pass’s protocol [8] is based on Simple ORAM. Their frame-
work present ORAM protocols to parallel algorithms, i.e. with multiple proces-
sors (clients). The TransVar function is not impacted by the fact that there are
several clients: The modifications to the subroutines still capture this case, the
correctness analysis holds. The only new component is the broadcast routine,
where one of the CPUs broadcasts information about a certain block to the oth-
ers CPUs. These messages are bounded by the size of the block. That could lead
to a leakage, however because of the need to index the blocks, which will take
a size of at least log(m) ≥ log(N). Thus, we can lower bound the size of the
messages by O(log(N)): their size will not leak information on the block. This
yields a correct weighted OPRAM.

5.4 Weighted Circuit ORAM [30]

Circuit ORAM is a variant of Path ORAM, where the client only needs local
space to hold one block. To achieve this, the eviction algorithm is slightly differ-
ent and the stash is stored by the server (as the parent of the root node) instead
of locally.

The correctness analysis of this scheme is based on the same principles as
the one for Path ORAM. The function TransVar yields a correct ORAM here
too. To prove this, we only need to show how we can adapt for the fact that
the stash is stored on top of the tree. Figuring out which way to do this is not
obvious since, because of the varying block size, the client cannot simply stream
the content of the stash block by block: it would leak block size information. We
propose a simple fix, which we also use when dealing with Trivial ORAM:

– We allow the client to store an additional space of size B (the maximal size
of a block). This gives the client a local space of at least 2 · B.

– Whenever the client needs to access the stash, the client streams the content
of the stash chunk by chunk, where each chunk is of size B. That way, since a
block must always reside inside at most 2 chunks (see Fig. 2), the client will
read every object at the end of the stash stream.

– When the client wishes to write back a block, it is done locally among two
chunks.

This way, the scheme stays correct and secure even with objects of variable size.
The application of the generic criterion shows that Circuit ORAM is compatible
with blocks of variable size.

6 Searchable Encryption from Weighted ORAM

With Searchable Symmetric Encryption (SSE), a client can delegate the storage
of a database to a honest-but-curious server. The client is then able to perform
searches on the database by issuing Search queries to the server. In the case
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Fig. 2. A block of size < B in 2 chunks

of dynamic SSE, the client may also update the database by issuing Update
queries to the server. The security goal is that the information leaked to the
server during these different operations should be limited, in a sense that will
be defined soon.

Here, we focus on the case of single-keyword search. In that setting, the
client’s database DB consists of a collection of documents, and Search queries ask
to retrieve all documents that contain a given keyword. In modern SSE schemes,
this functionality is realized efficiently by building a reverse index: For each
keyword w, a list of the identifiers of documents matching the keyword, written
DB(w), is maintained on the server side in some encrypted form. Response-
revealing SSE allows the server to learn the list of document identifiers, while
response-hiding SSE does not: they are sent back to the client in encrypted
form. Once having retrieved the desired document identifiers, the client may
perform some additional computation, such as intersecting the results with other
queries, or may fetch the documents on the same or a different server. In the
case of response-revealing SSE, if the same server stores the reverse index and
the documents, the server can immediately send back the documents without
the need of an additional roundtrip, at the cost of possibly leaking additional
information to the server. We note that the documents could be stored in an
ORAM to avoid additional leakage, and that a weighted ORAM would reduce
the performance cost of this approach. However, as in most SSE literature, we
focus on the reverse index.

For efficiency reasons, SSE typically does not seek to have minimum leakage,
but rather to strike a compromise between security and performance by allowing
a controlled amount of leakage. In the security model, the leakage allowed by
the scheme is expressed by a leakage function L = {LSetup,LSearch,LUpdate}.
The security model asks that during a Setup operation (resp. Search, Update)
with input x, the information leaked to the server is included in LSetup(x) (resp.
LSearch(x), LUpdate(x)). More formally, it is required that there must exist a
simulator S such that the view of the server during Setup(x) (resp. Search(x),
Update(x)) should be indistinguishable from S(LSetup(x)) (resp. S(LSearch(x)),
S(LUpdate(x))).
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Response-revealing SSE schemes leak the access pattern: That is, the server
learns the identifiers of all documents matched by a query. In some use cases,
access pattern leakage can be quite damaging, and allow the server to infer a
sizable amount of information about the database [7,14]. Even in the case of
response-hiding SSE, the server can typically learn the query pattern: that is,
the server can learn whenever the client repeats the same query. In many cases,
the server can learn the volume of the answer: that is, the number of documents
matched by the query.

In some use cases, these different types of information leakage can be quite
damaging, as shown by so-called leakage-abuse attacks [7,15]. To thwart those
attacks, recent works have developed various protections: such as volume-hiding
SSE [17,25], and the line of work on leakage suppression [18]. The strongest
form of protection, considered for instance in [11,18,23], involves the use of
ORAM, or specialized variants of ORAM. This raises some questions about how
to optimize the use of ORAM, in order to preserve the high efficiency goal of SSE.
In particular, as discussed e.g. in [11], since reverse indexes contain lists that can
greatly vary in size, it is not obvious how to fit them into a (fixed-block size)
ORAM. Our main point in this section is that weighted construction introduced
here fit this setting perfectly. Concretely, we propose two SSE constructions
based on weighted ORAM: ZeroSSE and BlockSSE. A brief overview is given
Fig. 3. We note that the main point of TWORAM, not reflected in the table, is to
reduce the number of roundtrips in the iterative version of Path ORAM, thanks
to a clever use of garbled circuits. However garbled circuits add a considerable
overhead in practice.

Scheme client storage bandwidth overhead

TWORAM [11] O(1) O(λ log2 N)

ZeroSSE O(W ) O(log(N/U))
ZeroSSE′ O(1) O(log2 W + log(N/U))
BlockSSE O(W ) O(log(N/B))
BlockSSE′ O(1) O(log2 W + log(N/B))

Fig. 3. Overhead of ORAM-based SSE constructions. U is an upper bound on the
longest list size, W ≤ N is the number of keywords, B is the ORAM block size.

6.1 Preliminaries

We follow the standard definition of SSE. A dynamic SSE scheme Σ consists of
four protocols, defined as follows.

– Σ.KeyGen(1λ): Takes as input the security parameter λ. Outputs the master
secret key K.

– Σ.Setup(K, N,DB): Takes as input the client secret key K, an upper bound
on the database size N , and a database DB. Outputs an encrypted database
EDB.
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– Σ.Search(K, w, st;EDB): The client receives as input the secret key K, and
keyword w. The server receives as input the encrypted database EDB. Outputs
updated encrypted database EDB′ for the server.

– Σ.Update(K, (w, e);EDB): The client receives as input the secret key K, and
a pair (w, e) of keyword w and document identifier e. The server receives
as input the encrypted database EDB. Outputs updated encrypted database
EDB′ for the server.

The security model expresses that the view of the server can be simulated by
an efficient simulator, receiving as input only the output of the leakage function.
In more detail, we define two games, SSEReal and SSEIdeal. First, the adversary
chooses a database DB. In SSEReal, the encrypted database EDB is generated
by Setup(K, N,DB), whereas in SSEIdeal, the encrypted database is simulated
by a (stateful) simulator S on input LSetup(DB, N). After receiving EDB, the
adversary can issue search and update queries. In SSEReal, queries are answered
using the real-world protocol. In SSEIdeal, the Search queries (resp. Update,
Setup) on input x are simulated by S on input LSearch(x) (resp. LUpdate(x),
LSetup(x)). Finally, the adversary outputs a bit b.

The scheme is said to be L-secure (i.e. secure with respect to the leakage
function L) if for all PPT adversaries, there exists a PPT simulator such that
the transcripts in the real and ideal world are computationally indistinguishable.

6.2 ZeroSSE

A line of recent work has aimed to hide volume leakage: that is, to hide the
number of identifiers matching a given query [17,25]. Hiding volume leakage
seems sensible when using ORAM technique to hide the query pattern, since
volume leakage reveals information about the repetition of queries. This leads to
the question of building on ORAM that also hides volume. For that purpose, an
upper bound U is assumed on the volume of the longest list (that is, the longest
query answer). As discussed in [11], the first approach one may think of is to
use an ORAM with block size U ; however, this would require padding all lists
to U , which would be prohibitive in many use cases, since the longest list may
be several orders of magnitude larger than the average list size. In the worst
case, the blowup in storage is Ω(U), even before considering ORAM overheads.
Another approach would be to use a smaller block size, at the cost of a larger
ORAM overhead.

The idea of ZeroSSE is simply to use the weighted variant of Path-ORAM,
TransVar(PathOram) with U as the upper bound on block size. Relative to the
previous two approaches, this minimizes both the overhead due to padding,
which is nonexistent since no padding is necessary, and the overhead due to
ORAM, since we use the largest block size possible. In fact, since our main result
is that Path ORAM can handle items of variable size at essentially no overhead,
we contend that this is both the most natural and most efficient solution to build
SSE with minimum leakage.
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We define ZeroSSE in more details as follows. We note that Setup takes as
input additional parameters U , which is an upper bound on the longest list size,
and W , and upper bound on the number of keywords.

– ZeroSSE.Setup(K, N,DB, U): Initializes TransVar(PathOram) with block size
U and number of leaves �N/U�, containing as (variable-size) blocks DB(w)
for each keyword w. The position map, of size O(W ) memory words, is stored
on the client side.

– ZeroSSE.Search(K, w;EDB): The client queries the ORAM for keyword w to
retrieve DB(w).

– ZeroSSE.Update(K, (w, e);EDB): The client queries the ORAM for keyword
w to retrieve DB(w), and simply writes back DB(w) ∪ {e}. (Recall that our
weighted construction allows modifying the size of blocks on the fly.)

ZeroSSE uses the non-iterative variant of Path-ORAM. This is because a
client storage of O(W ), while undesirable in general, is often accepted in forward-
secure SSE [6]. Alternatively, we define ZeroSSE′ to use the fully iterative version
of Path-ORAM, which reduces the client storage to O(1) memory words, at
the cost of additional roundtrips, and an additional O(W log2 W ) bandwidth
overhead.

Theorem 4 (Security of ZeroSSE). Assuming Path-ORAM is a correct and
secure ORAM scheme, ZeroSSE is L-secure with respect to the leakage function
L = {LSetup,LSearch,LUpdate}, with LSetup = {N,U} and LSearch = LUpdate = ∅.

See the full version for a proof of Theorem4.

6.3 BlockSSE

An interesting property of ZeroSSE is that updates are indistinguishable from
searches. In fact, addition and deletion of an arbitrary number of documents
in a list can be performed in a single interaction at no additional cost. How-
ever, this also means that adding a single document to a keyword incurs an
O(U log2 U) bandwidth cost. If cheaper updates for single documents are desir-
able, an alternative solution is to use a smaller blocks size. A smaller block size
(linearly) reduces the cost of updates, while (logarithmically) increasing the cost
of searches. While this is an attractive trade-off in update-heavy use cases, from
a security standpoint, the fact that searches and updates are indistinguishable,
regardless of the number of documents added or deleted during an update, is
lost. BlockSSE also does not support deletions by default, although they can be
added generically at some additional cost, as in [5].

An interesting feature of BlockSSE is that we can choose the block size B such
that the size of a Path-ORAM tree node ZB is one memory page (or an integral
number of memory pages). This optimizes the IO-efficiency of the resulting SSE,
as discussed e.g. in [4].

To reduce the size of the position map, we use the pointer idea introduced in
[31]. Namely, each block belonging to the same list DB(w) contains the position
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of the previous block. This allows the position map, stored on the client, to only
store the position of the last block, resulting in O(W ) storage.

We define BlockSSE in more details as follows. Note that Setup takes as
input additional parameters B, which is the desired block size, and W , and
upper bound on the number of keywords. Update takes as additional parameter
U , which is an upper bound on the longest list size.

– BlockSSE.Setup(K, N,DB, U): Initializes TransVar(PathOram) with block size
B and number of leaves n = �N/B�. For each keyword w, the list DB(w) is
split into �DB(w)/B� chunks of size at most B−�log n�, with no padding. The
i-th chunk for keyword w is inserted into the ORAM at a random position,
together with the position of the (i − 1)-th chunk. The position lw of the last
chunk is stored on the client side.

– BlockSSE.Search(K, w, U ;EDB): The client queries the ORAM at position lw,
retrieves the last chunk DB(w) together with the position of the penultimate
chunk, and iteratively retrieves the position of each previous chunk in the
same manner. Each chunk i is assigned a new position uniformly at random,
updating the position stored together with the next chunk accordingly.

– BlockSSE.Update(K, (w, e);EDB): If lw is not a multiple of B − �log n�, the
client accesses the ORAM at position pw, adds e to the data, replaces pw by
a new uniformly random position, and updates the ORAM according to this
new data and position. If lw is a multiple of B−�log n�, a new block is inserted
at a new uniformly random position, containing as data {e} together with the
position pw of the previous last block. On the client side, pw is updated to
the position of the newly inserted block.

Theorem 5 (Security of BlockSSE). BlockSSE is L-secure with respect to
the leakage function L = {LSetup,LSearch,LUpdate}, with LSetup = {N,B},
LSearch(w) = �|DB(w)|/B�, and LUpdate = ∅.

See the full version for a proof of Theorem5. BlockSSE′ is the same as
BlockSSE, except the iterative variant of Path-ORAM is used.
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Abstract. We propose a new garbled RAM construction called
NanoGRAM,which achieves an amortized cost of ˜O(λ·(W logN+log3 N))
bits per memory access, where λ is the security parameter, W is the block
size, and N is the total number of blocks, and ˜O(·) hides poly log log factors.
For sufficiently large blocks where W = Ω(log2 N), our scheme achieves
˜O(λ · W logN) cost per memory access, where the dependence on N is
optimal (barring poly log log factors), in terms of the evaluator’s runtime.
Our asymptotical performance matches even the interactive state-of-the-
art (modulo poly log log factors), that is, running Circuit ORAM atop gar-
bled circuit, and yet we remove the logarithmic number of interactions nec-
essary in this baseline. Furthermore,we achieve asymptotical improvement
over the recent work of Heath et al. (Eurocrypt ’22). Our scheme adopts
the same assumptions as the mainstream literature on practical garbled
circuits, i.e., circular correlation-robust hashes or a random oracle. We
evaluate the concrete performance of NanoGRAM and compare it with
a couple of baselines that are asymptotically less efficient. We show that
NanoGRAM starts to outperform the naïve linear-scan garbled RAM at a
memory size of N = 29 and starts to outperform the recent construction
of Heath et al. at N = 213.

Finally, as a by product, we also show the existence of a garbled
RAM scheme assuming only one-way functions, with an amortized cost
of ˜O(λ2 · (W logN +log3 N)) per memory access. Again, the dependence
on N is nearly optimal for blocks of size W = Ω(log2 N) bits.

1 Introduction

Garbled circuits, originally proposed by Yao [39,40], is a cryptographic tech-
nique for two parties to perform secure computation over their private data in
two rounds. At a high level, a garbler can garble some computation expressed
as a circuit as well as the inputs. An evaluator who obtains the garbled circuit
and garbled inputs can securely evaluate the function over the inputs, result-
ing in garbled outputs that can only be decoded using the garbler’s secret key.
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The evaluator learns nothing about the garbled inputs or outputs. Subsequently,
numerous works have focused on making garbled circuits increasingly more prac-
tical [1,10,21–26,32,39,40,42]. In practice, however, computations are expressed
in the Random Access Machine (RAM) model which is a mismatch for the circuit
model. Converting RAM programs to circuits in general incur polynomial over-
head in the RAM’s space and time, making it prohibitive in practice especially
when the computation involves big data. To avoid this expensive RAM-to-circuit
conversion overhead, the elegant work of Lu and Ostrovsky [28] suggested a new
abstraction called garbled RAM, which aims to garble a RAM program directly
without converting it to a circuit. From a theoretical perspective, the goal of gar-
bled RAM is to garble a program incurring only poly(λ, logN) overhead where λ
is the security parameter and N denotes the space of the RAM. Throughout the
paper, we often use the metric “amortized cost per memory access” to character-
ize the performance of a garbled RAM scheme, which is the number of bits that
must be communicated per memory access. Since the original work of Lu and
Ostrovsky [28], a line of works [14,17,24,29] have focused on improving garbled
RAM constructions.

With the exception of the most recent work by Heath et al. [24], prior
works on garbled RAM [14,17,29] did not care about the poly factor in the
poly(λ, logN) overhead, let alone concrete performance. Nonetheless, since gar-
bled RAM was originally motivated by the need to speed up garbled random-
access computation on big data, clearly, our dream is to make garbled RAM
practical some day. The very recent work of Heath et al. [24] took a pioneering
step towards this dream: they constructed a garbled RAM scheme that achieves
O(λ·(W log2 N+log4 N)) overhead where W denotes the block size. Specifically,
when the block size W = Ω(log2 N), their scheme achieves O(λ · W · log2 N)
overhead. Their scheme assumes the existence of a circular correlation-robust
hash or a random oracle — the same assumptions as the mainstream practical
garbled circuit literature, including FreeXOR [10,26] and subsequent improve-
ments [25,32,42].

As a baseline of comparison, imagine that we actually allowed interaction. In
this case, the state-of-the-art (for moderately large data) is running the Circuit
ORAM algorithm [37] on top of an efficient garbled circuit implementation. In
this case, the overhead would be O(λ·(W logN+log3 N)), which is a logarithmic
factor smaller than that of Heath et al. [24]. In this paper, we ask the following
natural question:

Can we have a (non-interactive) garbled RAM scheme whose asymptotical
performance is competitive to the interactive state-of-the-art, that is, running
Circuit ORAM on top of garbled circuits?

Our Results and Contributions. We answer the above question affirmatively.
Following the elegant work of Heath et al. [24], we take another significant
step forward towards the dream of making garbled RAM practical. Concretely,
we show a new garbled RAM construction called NanoGRAM, that incurs
˜O
(

λ · (W logN +log3 N)
)

overhead where ˜O(·) hides poly log log factors. In com-
parison with Heath et al. [24], we save almost a logarithmic factor. Our scheme
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Table 1: Comparison with prior works, where Sλ denotes the circuit size of
the PRF that outputs λ bits, and CCR hash is Circular Correlation-Robust

hash. See Appendix G and H of the online full version [30] for details.
Assumption Cost per access Blackbox

Lu and Ostrovsky [28] Circular GCa
˜O(λSλW log2 N) No

Hazay and Lilintal [20] OWF O(λSλ · (W log N + λ log2 N + log3 N) No
Garg et al. [14] OWF ˜O

(

λ2 · (W log4 N + log6 N)
)

Yes
Heath et al. [24] CCR hashes O

(

λ · (W log2 N + log4 N)
)

Yes
OWFb O

(

λ2 · (W log2 N + log4 N)
)

Yes
This work CCR hashes ˜O

(

λ · (W log N + log3 N)
)

Yes
CCR hashesc O

(

λB · (W log N + log3 N)
)

Yes
OWF ˜O

(

λ2 · (W log N + log3 N)
)

Yes
a. Circularly secure garbled circuit, see [17].
b. This is not documented in their paper, but it is a standard method to tweak their scheme.
c. Our practically efficient scheme, where B is the statistical security parameter.

makes the same assumptions as Heath et al. [24] as well as the standard litera-
ture on efficient garbled circuits [10,25,26,32,42], i.e., either assuming circular
correlation-robust hashes or the random oracle model. Further, our garbled RAM
construction is blackbox in the sense that it does not require garbling the circuit
of some cryptographic primitive such as a pseudorandom function (PRF).

Theorem 1 (Garbled RAM from circular correlation-robust hashes).
Assume circular correlation-robust hashes or the random oracle model. There is
a blackbox garbled RAM scheme where each memory access incurs an amortized
cost of ˜O

(

λ · (W logN + log3 N)
)

where λ is the security parameter, W is the
block size, and N is the total number of blocks.

As a direct corollary, if W = Ω(log2 N), then our garbled RAM scheme
achieves ˜O(λ · W · logN) amortized cost per memory access.

Modulo the poly log log factors, we believe that there may be some barri-
ers for further improving our asymptotical results for blackbox garbled RAMs.
First, for block sizes W = Ω(log2 N), our scheme has optimal dependence on N
(barring poly log log factors) due to well-known ORAM lower bounds [18,19,27].
Second, for small block sizes, any further asymptotical improvement would likely
imply a statistically secure ORAM that breaks the O(log2 N) barrier — this is
arguably the biggest open problem in the ORAM line of work, and no progress
has been made for a long time1. Although computationally secure ORAMs [2,31]
are a logarithmic factor more efficient than statistically secure ones, so far we
do not know how to use computationally secure ORAM techniques in black-
box garbled RAMs, i.e., without having to garble the PRF employed by the
ORAM. Third, as mentioned, even when allowing interactions, we do not know
any scheme that performs asymptotically better than the Circuit-ORAM-over-
garbled-circuit baseline.
1 Garbled RAM only needs an ORAM in a relaxed model where we do not charge the

cost of pre-processing, but even in this relaxed model, it remains an open question
how to construct a o(log2 N) statistical ORAM.
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Our work also gives rise to a garbled RAM scheme from OWF but it incurs
an extra λ factor in cost, as stated in the following corollary:

Corollary 1 (Garbled RAM from one-way functions). Assume the exis-
tence of one-way functions. There exists a garbled RAM scheme that achieves
˜O
(

λ2 · (log3 N +W logN)
)

amortized cost per memory access, where ˜O(·) hides
poly log log λ factors.

In particular, for large enough blocks W = Ω(log2 N), the resulting garbled
RAM incurs ˜O

(

λ2 · W logN)
)

amortized cost per memory access.

Compared to Prior Works. Table 1 compares our asymptotical result with prior
garbled RAM works. The ealier works (e.g., [14,17,28]) used ORAM as a black-
box and did not care about how large the poly log is. Both Heath et al. [24] and
our work observe that to optimize the poly log factors, we need to open up the
underlying ORAM, and tailor the ORAM’s design specifically for garbled RAM.
In our paper, a key observation is that the more uncertainty there is regarding
which address will be accessed, the more overhead we need to pay to account for
the uncertainty. Therefore, one of our main techniques is to localize the uncer-
tainty (of which address is accessed) to polylogarithmically sized regions.

Besides those listed in the table, Gentry et al. [17] also propose a garbled
RAM scheme from one-way function and identity-based encryption with poly-
logarithmic cost. Additionally, they also propose a garbled RAM scheme from
one-way function only but the asymptotical cost is N ε for some constant ε ∈
(0, 1). We did not include it in the table because the result is subsumed by
Garg et al. [14]. The table also did not include reusable Garbled RAM [4,5,9]
which are based on indistinguishability-based obfuscation (iO). Known reusable
garbled RAM constructions can compress the total communication but they do
not save the evaluator’s runtime.

Concrete Performance. In additional to our main results, we explore the concrete
performance. In Appendix A of the online full version [30], we suggest several
practical optimizations to our garbled RAM scheme described in Theorem 1.
Our practically efficient scheme eliminates constant and poly log log factors while
introducing a statistical security parameter, as shown in Table 1. We developed a
simulator for our garbled RAM scheme with these suggested optimizations. Our
simulation results show that we break even with the naïve linear scan GRAM
at about N = 29 memory size, and we start to outperform the prior work
EpiGRAM [24] at about N = 213 memory size.

2 Technical Roadmap

2.1 Background

Encodings. We will use the following forms of encodings.
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– Garbling. Suppose we choose some secret key sk = Δ = {0, 1}λ where λ is
the security parameter. Suppose every wire, which carries one bit, is assigned
a label (also called a language) L ∈ {0, 1}λ. The garbling of a bit b ∈ {0, 1}
on this wire, denoted {{b}}, is computed as {{b}} = Δ · b ⊕ L. This encoding
approach was first proposed in the elegant Free XOR work [26]. For a vector
of bits x ∈ {0, 1}k, we use {{x}} to mean the garbling of each bit one by one.

– Sharing. For efficiency purposes, we also adopt another form of encodings
called sharings [24] that support only restricted forms of computation to be
elaborated later. Given a random label (also called a language) L ∈ {0, 1}k,
we can create a sharing �x� of a k bit string x ∈ {0, 1}k, that is, �x� = x ⊕ L.

For the time being, the reader may imagine that all encodings are in the form
of garblings. We will explain how to use sharings to improve the efficiency later.

The Language Translation Problem. In a garbled circuit scheme, every garbled
gate essentially performs some garbled computation over the garbled input wires,
the computation result is encoded using the language of the output wires. Since
the wiring in a circuit is static, the garbler knows the mapping between each
gate’s output and input languages a-priori, and can prepare the garbled truth
table for each gate accordingly.

As prior works observed [14,17,24,28,29], in a garbled RAM scheme, the key
challange is that of a dynamic language translation for a memory read or write.
Take memory read for example, and henceforth, we also refer to each memory
word as a block. Suppose that some garbled block resides at some physical loca-
tion α, and is therefore garbled using a language related to the physical location
α. We want to read the block back, but instead encoded using a global-time-
dependent label. Only in this way, can we successfully feed this garbled block
to the CPU’s garbled next-instruction circuit. One can imagine that the gar-
bler prepares a garbled next-instruction circuit for every time step t, and each
such garbled circuit speaks a language dependent on the time t. The challenge
is that the physical location to read in each time step t is dynamically gener-
ated, and cannot be determined statically at garbling time. This means that we
need to dynamically translate location-dependent encodings to time-dependent
encodings.

Switch: A Minimal Gadget for Dynamic Translation. A garbled switch, proposed
in the elegant work of Heath et al. [24], is a basic building block that performs
dynamic translation between a parent and two children nodes. Suppose that the
parent node receives some garbled data and a garbled direction bit indicating
which of the two children should receive the data. The parent node now wants to
re-encode the data using a language that the corresponding child recognizes, so
the child can receive the data and potentially perform some garbled computation
on it. The security requirement says that the evaluator cannot learn anything
about the encoded data, but it is allowed to learn the direction bit. Imagine
that each node keeps track of some local time which corresponds to the number
of times the node has been invoked. When garbled data arrives at any node,
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the input data should be encoded using a label that depends on the node’s local
time. To garble such a switch, the main challenge comes from the fact that
the parent and the two children have different local clocks. When the parent
routes garbled data to one of the children, it must re-encode the data using
a language that depends on the child’s local time. Unfortunately, the garbler
cannot statically predict the mapping between the parent’s local time and the
destination child’s local time.

Informally, a garbled switch has the following abstraction:

– Garble. The garbler receives an array of input labels denoted InL, and
two stacks of output labels denoted OutL0 and OutL1, respectively. Specif-
ically, InL[τ ] denotes the language of the τ -th invocation of the parent node,
OutL0[τ ] denotes the language of the τ -th invocation of the left child, and
OutL1[τ ] denotes the language of the τ -th invocation of the right child. The
garbler then outputs some garbled circuitry GC and garbled memory Gmem
to be consumed later by the evaluator.

– Switch. The evaluator can consume GC and Gmem to perform garbled switch
operations described below. In every time step τ (of the parent), the parent
receives {{b}} and {{data}} where b ∈ {0, 1} is a direction bit and data denotes
the data to be routed to the b-th child. The evaluator can securely evaluate
the following functionality: pop the next unconsumed label L from the b-th
stack OutLb, re-encode data using the label L, and output the result. We
allow the evaluator to learn the direction bit b, however, it should not learn
anything about the garbled data data.

Heath et al. [24] proposed an elegant idea that leverages two garbled
stacks [24,38,42] to realize a garbled switch. Specifically, the garbler initializes
two garbled stacks with the encoded contents OutL0 and OutL1, respectively.
Whenever a new request arrives at the parent node, the evaluator makes a real
pop from the b-th stack and makes a fake pop from the (1 − b)-th stack. The
result of the real pop is an encoded label that corresponds to the current local
time of the b-th child. The result of the fake pop is simply an encoding of 0.
Observe that both popped values are encoded using labels dependent on the
parent’s local time. Similarly, the input {{data}} is also garbled using a label
dependent on the parent’s local time. This makes it possible for the garbler to
prepare a garbled circuit in advance that re-encodes the input {{data}} using the
popped label instead.

The cost of garbling such a switch is directly related to how many accesses
we must provide. Suppose that each of the two children can be visited at most
m times, and thus the parent can be visited at most 2m times. In this case, the
parent’s switch would need two garbled stacks each of capacity m. Using existing
garbled stack techniques [24,38,42], the cost is Oλ(w · m logm) where w is the
payload length (i.e., the bit width of data), and we use Oλ(·) to hide factors that
depend on the security parameter λ. This directly translates to an amortized
cost of Oλ(w · logm) per switch operation. Note that later on, we will actually
care about minimizing the factors that depend on λ and w; however, for ease of
understanding, we ignore these factors for the time being.
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Why Heath et al. [24] is inefficient. At a very high level, Heath et al. [24] builds
upon this minimal switch gadget that is capable of dynamic translation, and
eventually obtains a full garbled RAM. Their blueprint is to first use garbled
switches to build an access-revealing one-time memory, and then upgrade the
access-revealing one-time memory to a full-fledged garbled RAM through a hier-
archical data structure and recursion techniques. Interestingly, their usage of
the hierarchical data structure and recursion is novel and tailored specifically
for garbled RAM; it makes use of the fact that the data structure performs shuf-
flling and the garbler is aware of the data shuffling pattern ahead of time, since
the garbler is choosing the random coins used in the shuffling.

There are a couple of reasons why the approach of Heath et al. [24] is asymp-
totically and concretely non-optimal. One of the most important reasons is
because their composition of garbled switches in a tree-like fashion is ineffi-
cient. To obtain an access-revealing one-time memory of size n, they need to
garble a tree of switches with n leaves. The root node must provision for up to
n accesses, each of the root’s children must provision for n/2 accesses, . . ., and
each leaf must provision for one access. For simplicity, assume w ≥ log n. The
total cost to garble the tree of switches would therefore be Oλ(w ·n log2 n); which
translates to an amortized cost of Oλ(w · log2 n) for each single request to the
one-time memory. This cost is pre-recursion. After applying the full recursion,
their asymptotical cost2 becomes Oλ(W · log2 N + log4 N).

We wish to reduce the cost by roughly a logarithmic factor, that is, we aim for
˜Oλ(W · logN) pre-recursion cost per memory access where ˜O(·) hides poly log log
factors, rather than their Oλ(W · log2 N) cost.

2.2 Our Approach

As mentioned, with the exception of Heath et al. [24], earlier works on garbled
RAM [14,17,28,29] adopt a two-step compilation approach : 1) compile the RAM
program to an Oblivious RAM whose memory access patterns are safe to reveal
— this approach can rely on off-the-shelf Oblivious RAM algorithms [7,37]; 2)
compile an oblivious RAM to a garbled RAM (where the garbling does not
shield memory accesses). Each step of the compilation incurs a separate poly-
logarithmic overhead, and the two sources of overheads are multiplied. Heath et
al. [24] suggested a second approach where we work at a lower level of abstraction,
and design customized garbled data structures and gadgets and then compose
them into a Garbled RAM scheme.

First Attempt. We adopt the second approach. Since a garbled RAM scheme
must embed some Oblivious RAM (ORAM) scheme in it, a natural attempt is to

2 Throughout the paper, we use capitalized letters N and W to denote the number
of blocks and block size of the final GRAM construction, and we use small letters
n, m, and w to denote the size and payload length of building blocks. The reason for
this distinction is because we need to instantiate multiple instances of these building
blocks with varying parameters in the final scheme.
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take a state-of-the-art statistically secure ORAM3 such as Circuit ORAM [7,37],
and ask how we can garble such a data structure.

We briefly describe the underlying non-recursive tree-based data structure
that underlies Circuit ORAM [7,37]. The full ORAM scheme involves creating
logarithmically many such trees through a standard recursion technique [33,35].
The pre-recursion ORAM tree is a binary tree with n leaf nodes, and each non-
root node is a bucket of some capacity O(1). The root bucket is super-logarithmic
in size for storing overflowing blocks. The main path invariant is that every block
is assigned to a random path (i.e., a path from the root to a random leaf node),
and the choice of this random path is not revealed until the block is next accessed.
To fetch a block, one looks up the path where the block resides through recursion,
and the path can be identified by a leaf node often denoted leaf — we also call leaf
the block’s position identifier. Then, one looks up all buckets on the path from
the root to the leaf node leaf. When a block with the requested logical address
addr is encountered, the block is removed from the corresponding bucket. At this
moment, the block is updated if the current operation is a write operation, and
a new random path is chosen for the block. The block is then added back to the
root bucket tagged with its new position identifier. After every access, we need to
perform some maintenance operation that moves blocks closer to the leaf level,
such that none of the buckets will overflow except with negligible probability. We
may assume that the access patterns of the maintainance operations are a-priori
fixed, e.g., using the reverse lexicographical order eviction idea first suggested
by Gentry et al. [16].

To garble such a tree-based ORAM, a main challenge is that online phase
has dynamic access patterns: every time we request a block, it goes through
a random path in the ORAM tree. To solve this challenge, we can potentially
rely on the garbled switch data structure. Suppose that every node in the tree
has a garbled switch. When a memory access request arrives, it comes with
{{addr, leaf}} where addr is the block’s logical address, and leaf is the block’s
position identifier; further, the request is garbled using a global-time-dependent
label which also coincides with the local time of the root switch. Note that
the cleartext value of leaf may be safely exposed to the evaluator. Recall that
during this access, each bucket on some path will search for a block with the
desired logical address addr, and if so, it returns the block’s payload; else, it
returns 0. We want to make sure that each bucket’s fetch result is encoded
using some global-time-dependent language, and the collection of all O(log n)
languages are denoted L0, . . . , LO(log n). Let {{L0, . . . , LO(log n)}} be an encoding
of these languages under some global-time-dependent label that is recognized by
the root whose local clock coincides with the global clock.

3 Although computationally secure ORAMs can achieve asymptotically better over-
head in cloud outsourcing scenarios, we currently do not know any way to use com-
putationally secure ORAMs in blackbox garbled RAM schemes, without having to
securely evaluate the circuits of cryptographic primitives such as pseudo-random
functions.
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Fig. 1: XOR trick.

Now, imagine that the root receives the information {{addr, leaf,
L0, . . . , LO(log n)}}. It uses b = leaf[0] as the direction bit, and wants to route
the information it has received to the b-th child. To achieve this, it must first
re-encode the pair addr and leaf using a label that is dependent on the local time
of the b-th child — and this can be accomplished by the garbled switch. Imagine
that every node along the path does the same, and each node uses the next bit
in leaf to decide its direction. In this way, each node along the path can receive
a fetch instruction garbled using a language that matches its local time, and
it can look in its own garbled memory whether a block exists with the desired
addr. The fetch result is garbled using the corresponding garbled label which it
received as part of the garbled input (i.e., L0, . . . , LO(log n)). Finally, some gar-
bled CPU circuit can securely aggregate all O(log n) fetched results into a final
result.

This naïve scheme has two sources of inefficiency. First, the root switch must
provision for n accesses, each of the root’s children must provision for n/2±o(n)
accesses with high probability, and so on. Therefore, the total cost of all the
switches is Oλ(w·log2 n) where w denotes the length of the payload being routed.
The second drawback is the fact that the length of the payload w is large, since
we need to route O(log n) labels each of λ bits long.

These two sources of inefficiency each incurs an extra log n factor that we
want to get rid off. Below we discuss how to overcome these two sources of
inefficiency. We shall begin with the second problem, which is a little easier than
the first one.

Passing a Single Label with an XOR Trick. To overcome the second chal-
lenge, we introduce an XOR trick as depicted in Fig. 1. Assume that each node
in the tree has a garbled bucket henceforth denoted GBkt and a garbled switch
denoted GSwitch. A garbled bucket GBkt supports a Read operation: when given
a logical address {{addr}} garbled under an local-time-dependent input label,
it will output the corresponding block’s contents {{val}} if the block is found,
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or output {{0}} if not found. Further, the result is garbled using a local-time-
dependent output label. Suppose that we want the final memory fetch result
to be encoded under some global-time-dependent label K. Henceforth assume
that the root is at level 0 of the tree, and let �max = O(log n) be the leaf
level. As we traverse the path, each non-leaf bucket along the way encodes its
result using labels L0, L1, . . . , L�max−1, respectively (we abuse notations where
L0, L1, . . . are now local-time-dependent). Our idea is to pass an encoding of the
label L�max = K ⊕ L0 ⊕ . . . ⊕ L�max−1 to the leaf node, such that the leaf bucket
will encode its fetch result using the label L�max . This way, all the labels would
XOR to K. This means that when we XOR the garbling of all �max + 1 fetched
results, we obtain a garbling of the fetched result encoded under the label K. To
achieve this, we can have each node in a non-leaf level � pass an encoding of the
residual label R� = K ⊕ L0 ⊕ . . . ⊕ L�−1 to its child, encoded using a language
dependent on the child’s local time. The XOR trick saves us one logarithmic
factor in cost.

Splitting Switches into Poly-logarithmically Sized Ones. To overcome
the first challenge, our idea is to avoid using big switches that must be provi-
sioned with a large number of accesses. Instead, we want to break up the big
switches into poly-logarithmically sized ones. To achieve this, we observe that
we can leverage ideas from the Bucket ORAM algorithm [13].

Background on Bucket ORAM. At a very high level, Bucket ORAM is a tree-
based ORAM but with a hierarchical-style rebuild algorithm.

Let T be the maximum runtime of the RAM program, and let N be its space.
In the Bucket ORAM tree, each bucket has size 2B = O(log(T ·N

δ )) where δ is the
statistical failure probability. Like in any tree-based ORAM scheme [33], a bucket
can store either filler blocks denoted ⊥ or real blocks of the format (addr, leaf, data)
where addr is the block’s logical address, leaf denotes its position identifier, and
data denotes its payload. The read phase of the algorithm is also like any tree-based
ORAM [7,33,34,37]. To read a block,we first recursively look up its position identi-
fier denoted leaf, we then look up the path from the root leading to leaf for the block
requested. The block is removed from the corresponding bucket if found. Besides
the tree data structure, there is also a small stash that can store up to B blocks.
Any memory request must also search in the stash for the desired block. Moreover,
after a block is fetched, it will be added to the stash (possibly with an updated pay-
load string). For the time being, one can imagine that each bucket itself as well as
the stash implement small ORAMs [6,8,11] such that they can look up a block in
poly log log(T ·N

δ ) time.
Interestingly, the maintainance phase of Bucket ORAM actually resembles

a hierarchical ORAM [18,19]. Suppose that n and B are powers of 2. Let root
be at level 0, and let �max = log2

n
B . Each level i is rebuilt every 2i · B steps. In

particular, at the end of some time step t, if t + 1 is a multiple of n, we need
to rebuild levels 0, . . . , �max into level �max and empty all remaining levels. Else,
if we can express t + 1 as j · 2� for some odd integer j, then we need to rebuild
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Fig. 2: Each node at level � has T/(B · 2�) copies of GSwitch+ GBkt, and at
time t, the

⌊

t/(B · 2�)
⌋

-th copy is active. The numbers show which copies of
garbled circuitry correspond to which tree node in the same level.

levels 0, . . . , � − 1 into level �, emptying the levels 0, . . . , � − 1 in the process.
Further, the rebuild process must respect the position identifier each block has
chosen. The Bucket ORAM work [13] shows how to accomplish this rebuild
using a circuit whose size is linear in total number of elements involved in the
rebuilding. For the purpose of this work, the details of the rebuild algorithm is not
too important. Therefore, we give a brief description below and refer the reader
to the Bucket ORAM work [13] for details. At a high level, the Bucket ORAM
work suggested that this rebuild can be accomplished through a sequence of
MergeSplit operations. In each MergeSplit operation, we take a pair of buckets as
inputs and and output a pair of buckets. Each real block in the input buckets will
go into one of the output buckets, and the choice depends on the corresponding
bit in their leaf label. The MergeSplit operation essentially relies on sorting of
objects with 1-bit keys, i.e., compaction [2]. Indeed, if we use a linear-sized
compaction circuit to realize each MergeSplit, the total cost of the rebuild would
be linear. For our paper, it does not matter to our final asymptotics even if we
used bitonic sort to implement the MergeSplit, since this part of the overhead
will not be the dominating factor.

Splitting Switches into Poly-Logarithmically Sized Ones. As shown in Fig. 2, each
node at level � in the tree has T/(2� · B) instances of GBkt and GSwitch. The
instances are indexed from 0, 1, . . . , T/(2� · B) − 1. During time step t ∈ [0 : T ),
the garbled instances indexed

⌊

t/(2� · B)⌋ are active. Whenever a level is rebuilt,
the existing GBkt and GSwitch instances corresponding to all tree nodes in this
level finalize, and new instances are initialized.

Due to the rebuild schedule of Bucket ORAM, we know in advance for each
instance at some parent node, which instances of its children it must communi-
cate with. In other words, the communication graph between the instances are
statically determined.
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There are, however, some subtle challenges we need to resolve for this idea
to work. Observe that half the switches finalize together with their children —
this case is a little easier to handle since the new instances that take over can
start fresh. For the other half, when they finalize, their children do not finalize at
the same time. However, their children’s local clocks have already advanced to
some dynamic value which cannot be predicted in advance. In this case, we need
to implement an explicit hand-over operation such that the new switches can
inherit the necessary states from the switches whose jobs they are taking over.
To achieve this we need the help of garbled data structures supporting dynamic
finalization which we explain below.

Garbled Data Structures with Dynamic Finalization. We adopt a mod-
ular framework to present our scheme which makes it easier to verify its correct-
ness and security. A new abstraction we propose is a garbled data structure with
a dynamic finalization — we believe that our definitions may be of independent
interest in future works on garbled data structures and algorithms.

Consider some data structure that supports some function calls Func1, . . .,
Funcc. Additionally, there is a special function called Finalize which is called at
the end of its life cycle to output some final garbled state — for example, the
final garbled state can be an encoding of all unvisited blocks stored in the data
structure. We assume that except for the Finalize function, the call schedule for
all other functions are fixed a-priori. The Finalize function, however, may be
called at any time t∗ within some a-priori known time bound tmax. No matter
in which local time step t∗ the function Finalize is invoked, the finalized states
it outputs must be garbled under some fixed label (that does not depend on
t∗). To enforce that the evaluator calls Finalize at the right time, the Finalize
call has to take in a garbled signal {{1}} that explicitly authorizes the call. More
specifically, a garbled data structure supporting dynamic finalization has the
following abstraction:

– Garbler. The garbler takes in some initial memory array DB, input and
output labels denoted InL and OutL, and outputs the garbled circuit GC
and initial garbled memory Gmem. Specifically, InL and OutL provide the
following labels:

InL := (I0, . . . , Itmax−1, C0, . . . , Ctmax−1, Ctmax)
OutL := (O0, . . . , Otmax−1, F )

where for τ ∈ [0 : tmax), Iτ and Oτ denote the time-dependent labels used to
encode the input and the output of the τ -th (non-Finalize) operation, respec-
tively; for t∗ ∈ [0 : tmax], Ct∗ is the label used to encode the finalization signal
should Finalize be invoked at time step t∗; and F denotes the label used to
encode the final state st output by Finalize.

– Evaluator.
1. In each local time step τ ∈ [0 : tmax), the evaluator can call garbled

operations {{outp}} ← FuncGCiτ
(Gmem, {{inp}}) where the call schedule iτ ∈



468 A. Park et al.

[c] is fixed a-priori. The inputs and outputs must be garbled under labels
dependent on the local time. The operations may cause updates to the
internal garbled memory.

2. At some dynamic point of time t∗ ∈ [0 : tmax], the evaluator may call
˜st ← FinalizeGC(Gmem,˜1): The evaluator must input a garbled finalization
signal ˜1 (which is garbled under a t∗-dependent label). Intuitively, this
signal forces the evaluator to evaluate Finalize in the intended time step
t∗ and not any other time step. The Finalize algorithm outputs a garbled
final state denoted ˜st, which is garbled under the fixed label F which is
independent of t∗.

Garbled data structures with dynamic finalization are used in multiple places
in our construction. For example,

– Each GBkt instance is visited a dynamic number of times before finalization,
and when finalized, it must output the remaining unvisited elements encoded
under some fixed label. The results will then be passed to the garbled rebuilder
algorithm.

– Each GSwitch instance is also visited a dynamic number of times just like
GBkt. As mentioned earlier, for half of the switches, when they finalize, they
must pass some internal state to the next switch that takes over, such that
the next switch knows the local clocks of the children.

– Finally, some of the building blocks (e.g., garbled stack, access-revealing one-
time memory) we use to construct our GBkt and GSwitch are also garbled
data structures with dynamic finalization.

We formally define the security for such garbled data structures with dynamic
finalization in Sect. 3, and we give efficient instantiations partly relying on a
building block called an expiring vault (see Appendix D.1 of the online full
version [30]).

The need to support dynamic finalization complicates our construction. In
several cases, we cannot use existing building blocks for this reason and have to
construct our own variants. For example, in our construction, each GBkt itself
is a small garbled dictionary capable of translating a memory fetch result from
using a location-based label to using a local-time-dependent label. Since we need
a dynamic finalization capability from the GBkt, we cannot directly use prior
work such as Heath et al. [24]. Similarly, for other seemingly standard building
blocks such as garbled stack, we also have to construct our own variants and
prove them secure.

Additional Optimizations. So far, we have explained our ideas assuming that
all wires are encoded using garbling. To save a factor of λ, we adopt several ideas
suggested by Heath et al. [24]. In particular, we will encode some wires using
sharings rather than garblings. Unlike garblings, sharings are space-preserving
since the sharing of some string has the same length as the original string.
However, sharings can only be involved in restricted computations.
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1. a shared bit can be XORed with another shared bit or a constant value known
at garbling time that is hard-wired in the garbled circuitry or garbled memory,
and the outcome of such an operation is a sharing too, i.e., (�x�, �y�) →
�x ⊕ y�;

2. a shared string may be multipled with a garbled bit whose cleartext value
is known by the evaluator, and the result of the operation is a sharing, i.e.,
({{bE}}, �y�

) → �b · y� where y ∈ {0, 1}k. Throughout the paper, if the evalu-
ator is allowed to know the cleartext of some garbled value {{val}}, we often
write {{valE}} to make this explicit.

The elegant work by Heath et al. [24] described techniques to efficiently
implement the above operations involving shared bits, assuming the existence of
a random oracle. Specifically, the first type of operations require only 1 bit per
XOR gate, the second type of operations require only O(k + λ) bits to garble a
gate that multiply {{bE}} with �y� where k is the bit-width of y.

Later on in our constructions, the data stored in garbled stacks which are
part of the garbled switches will be in the form of sharings; furthermore, the
labels passed long the tree paths will also be in the form of sharings. These
optimizations save us a λ factor in the final costs.

3 Definitions: Garbled Data Structure

Recall that in Sect. 2.1, we defined two types of encodings called sharings and
garblings for garbled circuits. We refer the reader to Appendix B of the online
full version [30] for a more detailed review of garbled circuits. We now proceed
to define garbled data structures.

Our building blocks involve several garbled data structures. An evaluator
can invoke multiple garbled operations of the data structure during its life cycle.
Every garbled data structure has a local time denoted τ ∈ [0 : tmax] where tmax

is the maximum number of operations supported. When the τ -th operation is
called, we say that the garbled data structure is in local time τ . Unless otherwise
stated, our garbled data structures will have the following interface where we
use x̃ to denote an encoding of x which is either a garbling or sharing of x:

– Gmem,GC ← Garble(1λ, sk, params,DB, InL,OutL): the algorithm takes in
the security parameter, some secret key sk ∈ {0, 1}λ, parameters params
(explained shortly), the initial memory array DB, input and output labels
denoted InL and OutL used to encode the garbled inputs and outputs
respectively. It outputs the garbled memory Gmem and some garbled cir-
cuits denoted GC. Here, the parameters params typically contains the word
size often denoted w, the length (often denoted m) of the initial memory
array DB, and the maximum number of operations denoted tmax.

– Gmem′, ˜outp ← FuncGC1 (Gmem, ˜inp),
. . .,
Gmem′, ˜outp ← FuncGCc (Gmem, ˜inp): some functions to be called by the eval-
uator. We assume that the call schedule for the functions Func1, . . . ,Funcc is
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known a-priori, where the call schedule specifies exactly which of these func-
tions will be invoked in each time step τ ∈ [0 : tmax). For the evaluator to
evaluate these functions in a garbled manner, it needs to consume the gar-
bled circuitry GC which we write in the superscript of the procedure. Calling
these garbled operations not only outputs some encoded answer ˜outp, but
also may result in updates to the internal encoded memory denoted Gmem′.
The inputs ˜inp and outputs ˜outp are garbled using labels dependent on the
data structure’s local time.

– ˜st ← FinalizeGC(Gmem,˜1): the Finalize function can be invoked in any time
step t∗ ∈ [0 : tmax], where t∗ also denotes the number of operations invoked
prior to calling Finalize. Unless otherwise noted, exactly when Finalize will be
invoked is unknown at the time of garbling. To successfully invoke Finalize, the
evaluator must input a garbled finalization signal ˜1 (which is garbled under
a t∗-dependent label). Intuitively, this signal forces the evaluator to evaluate
Finalize in the intended time step t∗ and not any other time step. The Finalize
algorithm outputs a garbled final state denoted ˜st, which is garbled under a
fixed label which is independent of t∗.

The input/output labels InL and OutL fed into the Garble algorithm should
contain the following:

InL := (I0, . . . , Itmax−1, C0, . . . , Ctmax−1, Ctmax)
OutL := (O0, . . . , Otmax−1, F )

where for τ ∈ [0 : tmax), Iτ and Oτ denote the time-dependent labels used to
encode the input inp and the output outp in the τ -th time step, respectively;
for t∗ ∈ [0 : tmax], Ct∗ is the label used to encode the finalization signal should
Finalize be invoked at time step t∗; and F denotes the label used to encode the
final state st output by Finalize.

Relationship with Garbled Circuits. Garbled circuits can be viewed as a special
case of our garbled data structure formulation. Specifically, a garbled circuit can
be viewed as a garbled data structure that supports only one operation Func
after garbling. For this reason, we do not give a separate definition for garbled
circuits. Later on, we will rely on garbled circuits as a building block to construct
garbled data structures.

Correctness. Suppose that there is some (insecure) data structure DS support-
ing the operations f1, . . . , fc and fin. We say that a garbled data structure
scheme correctly implements DS iff for any λ ∈ N, any sk ∈ {0, 1}λ, any
params = (m,w, tmax), any DB, any InL and OutL, any 1 ≤ t∗ ≤ tmax, any
sequence of function calls i0, . . . , it∗−1 ∈ [c], any input sequence inp0, . . . , inpt∗−1:
let outp0, . . . , outpt∗−1, st be the correct outcomes when we initialize DS with
DB and then make the calls {fiτ

(inpτ )}τ∈[0:t∗), and fin in sequence, then, the
following must be true with probability 1:

– Gmem,GC ← Garble(1λ, sk, params,DB, InL,OutL);
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– for τ ∈ [0 : t∗): let ˜inpτ be a correct encoding of inpτ using label Iτ , let
Gmem, õutpτ ← FuncGCiτ

(Gmem, ˜inpτ );
– let ˜1 be a correct encoding of the finalization signal 1 under label Ct∗ , let

˜st ← FinalizeGC(Gmem,˜1);
– then, it must be that {õutpτ}τ∈[0:t∗) and ˜st are valid encodings of the correct

outputs {outpτ}τ∈[0:t∗) and st, under the labels {Oτ}τ∈[0:t∗) and F , respec-
tively.

Security. We define the security of garbled data structures below.

Definition 1 (Security of garbled data structures (and garbled cir-
cuits)). We say that a garbled data structure scheme is secure w.r.t. some leak-
age function Leak(·), iff there exists probabilistic polynomial-time (p.p.t.) simu-
lators Sim, such that for for any λ ∈ N, any params = (m,w, tmax), any DB, any
1 ≤ t∗ ≤ tmax, any sequence of function calls i0, . . . , it∗−1 ∈ [c], for any input
sequence inp0, . . . , inpt∗−1, any output labels OutL of appropriate length, for any
subset of inputs S ⊆ {inpτ , 1τ}τ∈[0:t∗) whose encodings are to be simulated, for
any choice of InL[¬S] where InL[¬S] denotes the part of InL used to encode the
set ¬S, the outputs of the real and ideal experiments below are computationally
indistinguishable:

Real Experiment. Input: λ, params, DB, t∗, function calls i0, . . . , it∗−1 ∈ [c],
input sequence inp0, . . . , inpt∗−1, subset of inputs S, subset of input labels
InL[¬S], output labels OutL.

1. Sample sk ← Gen(1λ), and sample the remaining unspecified input labels
InL[S] at random;

2. Let {˜S, ˜¬S} = {˜inpτ , ˜1τ}τ∈[0:t∗) be correctly encoded inputs and finalization
signals using sk and labels InL;

3. Let Gmem, GC ← Garble(1λ, sk, params, DB, InL, OutL);
4. Output Gmem,GC, ˜S.

Ideal Experiment. Input: λ, params, DB, t∗, function calls i0, . . . , it∗−1 ∈ [c],
input sequence inp0, . . . , inpt∗−1, subset of inputs S, subset of input labels
InL[¬S], output labels OutL.

1. Sample sk ← Gen(1λ);
2. Let ˜¬S be correctly encoded inputs in subset ¬S using sk and labels InL[¬S];
3. Run the ideal functionality using the given DB, function calls

fi0 , . . . , fit∗−1 , and input sequence inp0, . . . , inpt∗−1, and finally, run fin. Let
outp0, . . . , outpt∗−1 and st be the results correspondingly;

4. Let {õutpτ}τ∈[0:t∗) and ˜st be correctly encoded outputs and finalized state
using sk and labels OutL;

5. Run the simulator

Sim
(

1λ, params, t∗, {iτ , ˜outpτ}τ∈[0:t∗), ˜st, ˜¬S, Leak({iτ , inpτ}τ∈[0:t∗))
)

and output the result.
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Note that when ¬S = ∅, then the above notion is a direct adaptation of
the standard security definition for garbled circuits to garbled data structures.
Therefore, the above definition can be viewed as a generalization of standard
garbled circuit security. In particular, this generalization allows us to fix the
encodings of a subset of the inputs denoted ¬S, feed these encodings ˜¬S to the
simulator, and have the simulator simulate the the rest of the garbled inputs ˜S,
along with the garbled circuitry GC and garbled memory Gmem. We sometimes
refer to the set of inputs ¬S whose input labels have been fixed as the fixed
set, and the set of inputs S whose input labels are not fixed as the free set. We
make this generalization for convenience later. Jumping ahead, when we write
our garbled algorithms, we often allow garbled input sharing, that is, the same
garbled input wire is fed into two or more garbled components. In this case, we
will need to use the generalized security definition in our proofs.

As mentioned earlier, we have two forms of encodings, garblings and sharings.
Later in our constructions, in fact only garbled wires (as opposed to shared wires)
can be input to multiple garbled components. Therefore, we additionally impose
the following constraints to Definition 1:

– The fixed set ¬S must contain only garbled inputs variables;
– Any shared input must be in the free set S.

Existing constructions of garbled circuits [1,10,25,26,32,39,40,42], including
the techniques needed from Heath et al. [24] naturally satisfy the above gener-
alized notion too.

Encoding Cleartext Outputs. Later in our construction, sometimes we also have
a garbled circuit or garbled data structure output cleartext rather than encoded
outputs. Our above formulation actually also captures cleartext outputs if we use
the encoding scheme described in Appendix B.1 of the online full version [30],
and thus we can adopt this formulation without loss of generality. In particular,
a cleartext output bit can be expressed as either a sharing whose label is 0, or a
garbling whose label ends with a 0 bit. In particular, we will follow the approach
mentioned in prior work [24,42], where we choose Δ at random subject to the
last bit being 1. In this way, as long as the label of a garbling ends with a 0 bit,
the last bit of the encoding will be the cleartext value of the bit.

Performance Metric. In this paper, we measure cost by the size of the garbled
program, in terms of the number of bits. We often use the metric “cost per access”
where we amortize the total cost over the number of memory accesses.

Remark 1. Unless otherwise noted, we assume the above syntax and conventions
for any garbled data structure we define. There is one slight exception, which is
the data structure GSwitch defined in Sect. 4.2 — in fact, this is the critical data
structure for handling the non-determinism of memory accesses. Jumping ahead
a little, GSwitch is initialized with two stacks of output labels denoted OutL0

and OutL1, and every operation, one label is popped from a stack of choice,
and this popped label will be used as the output label.
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Remark 2. Known garbled circuits constructions [1,10,21–26,32,39,40,42] also
satisfy the following notion of simulation — our proofs also make use of this
simulation notion. There exists a simulator Sim′, such that for any output labels
OutL,

GC
c≡ Sim′(1λ, C)

where GC is the honest garbling of the circuit C using randomly generated input
labels as well as OutL, and

c≡ means computational indistinguishability. This
notion says we can simulate the garbled circuitry without knowing the (encoded)
outputs, if we do not have to also simulate the active encoded inputs.

3.1 Notational Conventions

Omitting Gmem and GCwithout risking ambiguity. In the above, we use Gmem to
denote a garbled data structure’s internal encoded memory. Since the external
caller of the data structure need not worry about Gmem, when we write our algo-
rithms, we often omit writing the Gmem term explicitly. Moreover, we also omit
writing the GC in the superscript of the garbled function calls without risking
ambiguity. For example, suppose we use GDataStruct to denote some instance of
a garbled data structure, we often write ˜outp ← GDataStruct.Funci(˜inp), omit-
ting the Gmem as well as the GC-superscript. This means that this function call
is consuming the Gmem and GC of the GDataStruct instance.

Implicit Label Matching Convention. We often rely on an implicit label matching
convention to describe our garbled data structures. For example, if we write the
following statements as part of the evaluator’s algorithm:

GDataStruct0.Func({{x}}) :
{{y}} ← GDataStruct1.Foo({{x}});
{{z}} ← GDataStruct2.Bar({{y}});
output {{z}};

Assuming that GDataStruct1 and GDataStruct2 are not called anywhere else, then
the above implies that

– the input label of the τ -th call to GDataStruct0.Func should match the the
input label of the τ -th call to GDataStruct1.Foo;

– the output label of the τ -th call to GDataStruct1.Foo should match the the
input label of the τ -th call to GDataStruct2.Bar;

– the output label of the τ -th call to GDataStruct0.Func should match the the
output label of the τ -th call to GDataStruct2.Bar;

Unless otherwise noted, the labels for all variables are randomly selected sub-
ject to such implicit matching constraints (which can always be unambiguously
implied by our algorithm description).
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4 Building Blocks for Garbled Memory

4.1 Stack (GStack)

Definition. A garbled stack GStack is initialized with some initial memory
array denoted DB, and it supports Pop operations controlled by a flag denoted
b ∈ {0, 1}. If b = 0, nothing will be popped, and if b = 1 an element will be
popped from the stack. In our application later, it is actually safe to reveal the
control flag b. For GStack, we let params = (m,w, tmax), where m is the number
of entries in the initial DB, w is the bit-width of each entry, and tmax is the
maximum number of Pop operations. It is promised that at most m number of
Pop calls will have the flag b set to 1, i.e., the stack will never deplete. We shall
assume that m is a power of 2, and moreover, m ≥ 16.

– Gmem,GC ← Garble(1λ, sk, params,DB, InL,OutL): takes in the security
parameter λ, the parameters params, the initial stack elements DB containing
m elements each of size w, and the input/output garbling labels denoted InL
and OutL respectively, and outputs some internal garbled memory Gmem
and garbled circuitry GC.

– Gmem′, �res� ← PopGC(Gmem, {{bE}}): depending on the flag b, either pop an
element from the stack or do nothing. Correctness requires that 1) if b = 1,
then the result res = DB[cntτ ] where τ is the current time step, and cntτ
denotes the total number of Pop operations so far (not counting the current
one) where the flag b = 1; and 2) if b = 0, then the result res = 0. Moreover,
it must be that Lbl(�res�) is the τ -th output label contained in OutL.

– {{ucnt}} ← FinalizeGC(Gmem, {{1}}): upon receiving a garbled signal {{1}} indi-
cating that the data structure should be finalized in this time step, output a
garbling of ucnt, the total number of elements popped expressed in a unary
format and prepended with 0s to a length of m. Correctness also requires that
Lbl({{ucnt}}) is the finalization label contained in OutL.

Construction. Although efficient garbled stacks have been proposed in earlier
works [24,38,41,42], we need a variant that supports dynamic finalization. To
support this new feature, we propose a new abstraction called a garbled vault
denoted GVault in Appendix D.1 of the online full version [30]. We use GVault
to construct a new garbled stack with dynamic finalization in Appendix D.2 of
the online full version [30].

4.2 Switch (GSwitch)

A switch is a two-way router. Imagine that the switch receives some message
msg := (leaf, addr, L). The first bit of leaf, that is, leaf[0], is used to determine
whether the message is supposed to be forwarded to its left child or right child.
The switch has a hard-wired array denoted RdL of length tmax, where tmax is the
maximum number of times that the switch can be invoked. The switch wants to
route the transformed message (leaf[1 :], addr, L ⊕ RdL[τ ]) to the child selected
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by leaf[0], where τ is the switch’s local time step, i.e., how many times it has been
invoked before (not including the current invocation). Later on, every node in
the ORAM tree will employ such a switch to pass on information to one of its two
children during an ORAM fetch operation.4 Altogether, this allows us to read
and remove a block along a path from the root to some leaf node. In particular,
each node consumes the next bit in the leaf identifier to determine the routing
direction. The term RdL[τ ] is the local-time-dependent output label used by the
garbled bucket paired with the switch, and we want to xor the incoming label L
with RdL[τ ] before passing it on — see Sect. 2.2 for a more detailed explanation.

When we want to garble a switch, the main challenge is that of label trans-
lation: the input m̃sg = ({{leaf, addr}}τ , �L�τ ) is encoded using a local-time-
dependent label where τ denotes the local time of the switch. The switch needs
to re-encode the transformed message (leaf[1 :], addr, L ⊕RdL[τ ]) under a label
that is dependent on the child’s local time. However, the child’s local time cannot
be predicted at the garble time, since it depends on the actual inputs leaf which
are chosen dynamically online. We adapt an elegant idea proposed by Heath et
al. [24] to solve this problem. Suppose that we are promised that each child will
be invoked at most t′max number of times. We will create two garbled stacks each
containing t′max labels (denoted OutL0 and OutL1, respectively), corresponding
to the languages of the left and right children each time they are invoked. Given
the direction bit b := leaf[0], we securely pop the next label from b-th stack, and
we use this popped label to re-encode the output message to be routed to the
corresponding child. Later in our application, we are actually allowed to leak
the leaf part of the input which is related to the memory access patterns. More
specifically, leaf actually corresponds to a path in the Bucket ORAM tree [13],
and since its choice is random, it is safe to reveal leaf.

Definition. For GSwitch, we define params = (B,w) where 2B is the maximum
number of times Switch can be invoked, and w records the lengths of of the
inputs to Switch, including the lengths of leaf, addr, and L. The lengths of all
other variables will be determined by λ, w, and B. Specifically, RdL contains 2B
entries each of |L| bits long; InL contains 2B entries each of λ(|leaf|+|addr|)+|L|
bits long; for b ∈ {0, 1}, OutLb contains 2B entries each of |InL| bits long; and
FinL contains 2B entries each of 2Bλ bits long if InitL = ∅, else it contains 2B
entries each of 2λ bits long.

For each b ∈ {0, 1}, it is promised that Switch will only be invoked at most
B times with the direction bit leaf[0] = b. Later in our application, in fact, we
guarantee that in expectation, Switch is invoked only B times, and the probability
that there will be 2B or more invocations is negligibly small. A garbled switch
GSwitch consists of the following possibly randomized algorithms:

– Gmem,GC ← Garble(1λ, sk, params,RdL, InL,OutL0,OutL1,FinL): the
Garble algorithm takes in the security parameter 1λ, the secret key sk, param-
eters params a list of labels RdL to be consumed in each time step (by the

4 Using switches of arity-2 is the most efficient with our current techniques.
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associated garbled bucket), the input labels InL, two lists of output labels
OutL0 and OutL1, as well as labels denoted FinL used to encode the output
of Finalize. It outputs the garbled circuits GC and the initial garbled memory
Gmem.
We often write InL := (InitL,ReqL,CtrlL) where the part InitL is con-
sumed by Init, the part ReqL is consumed by Switch, and the part CtrlL is
used to garble the finalization signals for all time steps.

– Gmem′ ← InitGC(Gmem, {{stE}}): this function may be called at most once
upfront before any invocation of Switch. Specifically, if we parse InL :=
(InitL,_,_) where InL was passed to Garble, Init should be invoked if
InitL �= ∅; else it will not be invoked.

– Gmem′, {{leaf′}}, {{addr′}}, �L′� ← SwitchGC(Gmem, {{leafE}}, {{addr}}, �L�): for
correctness, the outputs must satisfy: leaf′ = leaf[1 :], addr′ = addr, L′ =
L ⊕ RdL[τ ] where τ is the current local time step. Moreover, let b = leaf[0],
and let cntb be the number of times Switch has been invoked with direc-
tion bit leaf[0] = b (not counting the current one); then, it must be that
Lbl({{leaf′}}, {{addr′}}, �L′�) is the first |InL| − λ bits of OutLb[cntb] — the
last λ bits are reserved for garbling the finalization signal.

– {{st}} or {{1L, 1R}} ← Finalize(Gmem, {{1}}) :
• If InitL �= ∅, the output should be of the form {{1L, 1R}}, where Lbl({{1L}})

is the last 2λ bits of OutL0[cnt0] and Lbl({{1R}}) is the last 2λ bits of
OutL1[cnt1]. Here, we use the subscripts “L” and “R” are used to differ-
entiate the two 1 bits;

• Else if InitL = ∅ the output should be of the form {{st}}; furthermore, st
is of the form st := (st0, st1), such that for b ∈ {0, 1}, each stb is a bit
vector containing exactly cntb and padded with 0s to a length of exactly
B, where cntb is the total number of times Switch has been invoked a
direction bit leaf[0] = b; and moreover, Lbl({{st}}) = FinL.

Remark 3. (Two types of GSwitches depending on whether InitL = ∅). Later on
in our construction (see also Fig. 2), there will be two types of garbled switches,
those that correspond to empty buckets of the Bucket ORAM (i.e., where
InitL = ∅) and those that correspond to full buckets (i.e., where InitL �= ∅). For
the latter type (InitL �= ∅), when the switch first becomes active, its children
switches have been operating for a while, and this is why we need to call its
Init procedure to synchronize its state with its children. The input to the Init is
passed down from the previous parent of their children, i.e., the garbled switch
whose role it is taking over. The former type (InitL = ∅) need not perform ini-
tialization, since their children switches are fresh when they first become active.
When the latter type (InitL �= ∅) finalizes, its children need to be “rebuilt” as
well; this is why it needs to pass the authenticated finalization signals {{1L, 1R}}
to its children.

Construction. Although Heath et al. [24] describe a garbled switch scheme
for constructing an access-revealing garbled one-time memory, again we need a
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Evaluator

– Init({{stE∅ }}): // called when InitL �= ∅
1. parse {{stE∅ }} :=

{{βb,i}}b∈{0,1},i∈[0:2B);
2. for b ∈ {0, 1}, i ∈ [0 : 2B), call

GStackb.Pop({{βb,i}});
– Switch({{leafE}}, {{addr}}, �L�) :

1. Call {{β0 = leaf[0]}}, {{β1 = 1 − β0}},
{{leaf′ = leaf[1 :]}}, {{addr′ = addr}},
�L′ = L ⊕ RdL[τ ]� ←
GCSwτ ({{leaf}}, {{addr}}, �L�, �RdL[τ ]�);

2. For b ∈ {0, 1},
�Kb, _ � ← GStackb.Pop({{βb}});
// here _ means ignore the last 2λ
bits

3. Output ({{leaf′}}, {{addr′}}, �L′�) ⊕
�K0� ⊕ �K1� ⊕ TrLτ .

– Finalize({{1}}):
1. If InitL �= ∅, call:

• {{1L, 1R}} ← Dec{{1}}(ctτ );
• �_, K′

0� ← GStack0.Pop({{1L}});
• �_, K′

1� ← GStack1.Pop({{1R}});
• {{1′

L}} := {{1}} ⊕ �K′
0� ⊕ TrL′

0,τ ;
• {{1′

R}} := {{1}} ⊕ �K′
1� ⊕ TrL′

1,τ ;
and output {{1′

L, 1′
R}}.

2. Else, call
• {{st0}} ← GStack0.Finalize({{1}}),
• {{st1}} ← GStack1.Finalize({{1}}),
and output {{st0, st1}}.

Garbler

Create two garbled stacks GStack0
and GStack1 as explained in a
separate subroutine;

For each τ ∈ [0 : 2B), create the
sharing �RdL[τ ]�, and garble the
GCSwτ circuit (whose functional-
ity is defined on the left);

For each τ ∈ [0 : 2B),
compute the translation label
TrLτ := Lbl(�K0�τ )⊕Lbl(�K1�τ )⊕
Lbl({{leaf′, addr′}}τ , �L′�τ );

If InitL �= ∅, then, for each
τ ∈ [0 : 2B], create the ciphertext
ctτ = Enc{{1}}τ

({{1L, 1R}}τ ),
and compute TrL′

0,τ :=
Lbl(�K′

0�τ ) ⊕ Lbl({{1}}τ ) and
TrL′

1,τ := Lbl(�K′
1�τ ) ⊕ Lbl({{1}}τ ).

Fig. 3: GSwitch algorithm.

new variant that supports 1) dynamic finalization; and 2) the XOR trick. We
therefore describe a new variant supporting these features. Our construction is
explained in Fig. 3 which calls the following subroutine for creating the garbled
stacks. Note that when InitL �= ∅, we are using the variant of GStack that does
not have a Finalize call (see Appendix D.2 of the online full version [30]).

Subroutine for creating garbled stacks

– Let m = 2B and let w = |OutL0[0]|. Parse InL := (InitL,_,_).
– If InitL �= ∅, then: let tmax = 4B + 1; parse InitL := (InitL0, InitL1),

and let ctrlL $←{0, 1}λ. For b ∈ {0, 1}, let ILb = InitLb||rand()||ctrlL ∈
{0, 1}m·λ+2tmax·λ; let OLb

$← {0, 1}tmax·(w+λ).
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– Else, let tmax = 2B; let ctrlL $←{0, 1}λ, for b ∈ {0, 1}, let ILb = rand()||
ctrlL ∈ {0, 1}2tmax·λ; let OLb = rand()||FinL ∈ {0, 1}tmax·w+m·λ.
// GStack0 and GStack1 share the same finalization signal labels for all
time steps

– For b ∈ {0, 1}: call (GStackb.Gmem,GStackb.GC) ← GStackb.Garble(1λ,
sk, params = (m, w, tmax), DB = OutLb, ILb, OLb).

In Fig. 3, when we write the evaluator’s algorithm, we do not explicitly write
the time step τ , however, keep in mind that the inputs and outputs of Switch
as well as the inputs to Finalize are actually encoded using τ -dependent labels.
When we write the garbler’s algorithm, since the garbler must create some gar-
bled circuitry per time step τ , we explicitly write out the current time step τ in
subscript, e.g., {{var}}τ means the variable garbled under a τ -dependent label.

The cost of GSwitch is dominated by the garbled stacks which take O(logB)
overhead. Thus, the construction in Fig. 3 costs O (B · (λ · w1 + w2) · logB) bits,
where w1 = |leaf| + |addr| and w2 = |L|.

Security Proofs. We defer the security proofs for GSwitch to Appendix D.3 of
the online full version [30].
Leaf Switches (GLeafSwitch) We need a special (but simpler) type of switches
for the leaf level. We defer the detailed description of the leaf switches to
Appendix D.4 of the online full version [30].

5 Non-Recursive Garbled Memory (NRGRAM)

5.1 Definition

A non-recursive garbled memory (NRGRAM) is almost an entire garbled memory,
except that to access each logical addr, one has to provide a position identifier
(both garbled and in cleartext) henceforth denoted {{leafE}}, which specifies a
path in the Bucket ORAM tree that the requested block resides on. More specif-
ically, let params = (n,w, T ) where n denotes the total number of blocks stored
in the NRGRAM, w denotes the bit-width of each block’s payload (not including
metadata fields such as addr and leaf), and T denotes the maximum number of
time steps. The call schedule is fixed a-priori: it must be a sequence of alternat-
ing requests ReadRm, Add, ReadRm, Add, . . ., and in total there are T number
of ReadRm operations and T number of Add operations.

A non-recursive garbled memory (NRGRAM) provides the following interface:

– Gmem,GC ← Garble(1λ, sk, params, InLR, InLA,OutL): upon receiving the
input labels InLR for all the ReadRm calls and the input labels InLA for all
the Add calls, as well as the output labels OutL for the ReadRm calls, output
GC and the initial Gmem;
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– Gmem′, {{rdata}} ← ReadRmGC(Gmem, {{addr, leafE}}): upon receiving
{{addr, leafE}}, output {{rdata}}. If addr exists in the data structure and pro-
vided that {{leafE}} is a correct position identifier garbled under InLR[t] where
t denotes the local time, then rdata should be the value of the block at log-
ical address addr; else if addr is not found, then rdata = ⊥. In either case,
Lbl(rdata) should match OutL[t].

– Gmem′ ← AddGC(Gmem, {{addr, leaf, data}}): upon receiving a garbled block
{{addr, leaf, data}}, add it to the data structure. Henceforth, before addr is
requested again, the block should reside on the path corresponding to leaf.

The local time t of a NRGRAM data structure is the number of times Add
has been invoked (not counting the current invocation we are currently inside
an Add call). Later in our full garbled RAM scheme, in every RAM step, each
NRGRAM’s ReadRM and Add functions will be each invoked once. Therefore,
each NRGRAM’s local time t coincides with the global time t of the garbled
RAM, and each NRGRAM must support T calls which is the same as the RAM’s
maximum runtime. For this reason, we use the letter t to denote the NRGRAM’s
local time, and use T to denote the maximum number of time steps that must
be supported.

Remark 4. We assume the first bit of the data field is used to encode whether
the block is ⊥. Specifically, if the first bit is 0, then the block is treated as ⊥. We
assume that when the honest evaluator calls Add({{addr, leaf, data}}), the first bit
of data is set to 1.

5.2 Data Structures and Labels

Without loss of generality, we may assume the capacity of the non-recursive
ORAM tree n, the bucket capacity B, and the RAM’s runtime T are all powers
of 2. Let root be at level 0, and leaf be at level �max := log2

n
B . We assume

that the RAM program starts at time t = 0, and every time step the clock t
increments by 1. Since in every RAM step, each non-recursive bucket ORAM
is invoked once, the global time t also coincides with the non-recursive ORAM
tree’s local time step.

Additional Building Blocks. To construct our NRGRAM, we need a few additional
building blocks, namely, garbled buckets denoted GBkt, garbled level rebuilder
GRebuild, and garbled stash GStash. Their functionalities are roughly summa-
rized below.

– GStash supports functions Read,Add, and Finalize, and it is parameterized by
the maximum number of operations GStash.m and the word size GStash.w.

– GBkt is parameterized by the number of entries m, the maximum number of
operations tmax, and the bit-width of each entry w. It supports Init({{DB}})
which initializes the bucket with the list DB, Read({{addr}}) which looks up
the entry addr, and Finalize. Similar to GSwitch, we write the input labels as
(InitL,ReqL,CtrlL) for (Init,Read,Finalize) correspondingly, and the out-
put labels of Read and Finalize are written as (RdL,FinL).
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– GRebuild is parameterized by the time t and a corresponding level � ∈ [0, �max]
that depends on t. It takes in the stash the and the levels from 0 to �, and
then it outputs a new stash and new levels from 0 to min(� + 1, �max).

We defer the description of these building blocks to Appendix D.7, D.6,
and C.1 of the online full version [30].

Garbled Circuit Inventory. All of the following garbled circuits are prepared
by the garbler upfront in one shot. Each node at level � in the tree has
T/(2� ·B) instances (i.e., copies) of the following garbled circuitry: 1) GSwitch or
GLeafSwitch, and 2) GBkt. The instances are indexed from 0, 1, . . . , T/(2� ·B)−1.
During the fetch phase of time step t ∈ [0 : T ), the garbled instance indexed
⌊

t/(2� · B)⌋ will be active.
During time step t ∈ [0 : T − 2], if (t + 1) mod n = j · (B · 2�) where

j is an odd integer, then there is some garbled circuitry that rebuilds levels
0, 1, . . . , �. In particular, if � = �max, then the rebuild takes as input garbled
levels 0, 1, . . . , � and outputs new garbled levels 0, 1, . . . , �; else, it takes garbled
levels 0, 1, . . . , � − 1 and outputs new garbled levels 0, 1, . . . , �.

There are in total T/B instances of GStash, indexed by 0, 1, . . . , T/B − 1.
During time step t, the t/B�-th GStash instance is active.

Terminology. We shall use the notation GStasht to denote the the GStash
instance active at time t. We use the notation GSwitchV,t, GLeafSwitchV,t or
GBktV,t to denote the GSwitch, GLeafSwitch, or GBkt instance associated with
tree node V and active at time t. Sometimes we represent a tree node V = (i, j)
which refers to the the j-th tree node in the i-th level. Using this notation, the
same GStash, GSwitch, or GBkt instance may have multiple aliases. Similarly, we
use GRebuildt to denote the GRebulid instance to be invoked at the end of time
step t.

We say that GSwitchV,t is the parent of GSwitchU,t (or GLeafSwitchU,t) if
V is a parent of U in the bucket ORAM tree; in this case, we also say that
GSwitchU,t or GLeafSwitchU,t is a (left or right) child of GSwitchV,t. Note that
these two GSwitch instances must be active at the same time for them to have
a parent/child relationship. We often say that a switch instance GSwitchV,t (or
GLeafSwitchV,t) and a bucket instance GBktV,t are paired with each other — note
that they are active at the same time t and belonging to the same tree node V .

Choosing Labels. For each GStash, GSwitch, GLeafSwitch, and GBkt instance, the
garbler chooses all of the labels (needed by the Garble procedures) at random,
subject to the following constraints:

– GSwitchV,t and its paired GBktV,t share the same address labels (for the
{{addr}} inputs to the Read or Switch procedures) and finalization signal
labels in all time steps. Moreover, GBktV,t.RdL = GSwitchV,t.RdL (or
GBktV,t.RdL = GLeafSwitchV,t = RdL for the leaf level).
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– The call at time t to GSwitchroot,t should adopt the input labels InLR[t] (of
the NRGRAM); further, GStasht, GBktroot,t, and GSwitchroot,t share the same
address labels (for the {{addr}} inputs to the Read or Switch procedure) in all
time steps. Further, the call at time t to GStasht.Add should adopt the input
labels InLA[t] (of the NRGRAM);

– If non-leaf switches GSwitch0 and GSwitch1 are the left and right children of
GSwitch, then, for each τ ∈ [0 : 2B], let

GSwitch.OutL0[τ ] := GSwitch0.ReqL[τ ]||GSwitch0.CtrlL[τ ]
GSwitch.OutL1[τ ] := GSwitch1.ReqL[τ ]||GSwitch1.CtrlL[τ ]

If leaf switches GLeafSwitch0 and GLeafSwitch1 are the left and right children
of GSwitch, and moreover, GBkt0 and GBkt1 are the two buckets associated
with GLeafSwitch0 and GLeafSwitch1, respectively, then, for all τ ∈ [0 : 2B],
let5

GSwitch.OutL0[τ ] := GBkt0.ReqL[τ ]||GLeafSwitch0.InL[τ ]||GBkt0.CtrlL[τ ]
GSwitch.OutL1[τ ] := GBkt1.ReqL[τ ]||GLeafSwitch1.InL[τ ]||GBkt1.CtrlL[τ ]

– If GSwitchV,t and GSwitchV,t+1 are not the same instance and they have
the same children, then, let GSwitchV,t.FinL = GSwitchV,t+1.InitL and let
GSwitchV,t.InitL = ∅ — in this case, our algorithm will not call GSwitchV,t.Init
but will call GSwitchV,t+1.Init.

For each level rebuilder instance denoted GRebuildt, let t be the time step
at the end of which this rebuilder instance GRebuildt is invoked — it must be
that (t + 1) mod n is an odd multiple of 2�. Suppose � �= �max, i.e., the rebuild
takes in levels 0, 1, . . . , � − 1 and rebuilds levels 0, 1, . . . , � — the case where
� = �max is similar. The garbler chooses the input and output labels of GRebuildt

as follows. For i ∈ [0 : �), let GBkt(i,0),t, . . . ,GBkt(i,2
i−1),t be the garbled bucket

instances active in level i at time t, and let GStasht be the garbled stash active at
time t; then, GRebuild.InL = GStasht.FinL||{GBkt(i,j),t.FinL}i∈[0:�),j∈[0:2i). For
i ∈ [0 : �], let GBkt(i,0),t+1, . . . ,GBkt(i,2

i−1),t+1 be the garbled bucket instances
active in level i at time t + 1, and let GStasht+1 be the garbled stash instance
active at time t + 1. Then, GRebuildt.OutL := {GBkt(i,j),t+1.InitL}i∈[0:�],j∈[2i].

5.3 Construction

We describe our NRGRAM construction in Fig. 4, where the relevant data struc-
tures and how to choose the encoding labels were explained earlier in Sect. 5.2. In
the step marked (♦), the same variables {{leaf}}, {{addr}}, �L� are overwritten by
the outcome of the call to GSwitchV,t.Switch({{leaf}}, {{addr}}, �L�); keep in mind
that the output variables do not have the same labels as the input variables,
although the notation is the same.
5 The leaf switches take no {{addr}} nor Finalize, and hence the parent GSwitch outputs

{{addr}} or Finalize only to the children buckets (Fig. 4).
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Evaluator

ReadRm
(

{{addr, leafE}}
)

:

– if t = 0, then for every tree node V , call
GBktV,0.Init({{bkt∅V }});

– _, {{rdatas}} ← GStasht.Read({{addr}});
– �L� := �L∗[t]�;

– For each node V in the tree from the root to leaf,
• If V is not a leaf: let {{leaf}}, {{addr}}, �L� ←

GSwitchV,t.Switch({{leaf}}, {{addr}}, �L�); (♦)

• Else: TrL ← GLeafSwitchV,t.Switch(�L�);
• {{rdata�}} ← GBktV,t.Read({{addr}}) where �

denotes the level of V ;
– Let {{rdata}} := TrL⊕{{rdatas}}⊕

(

⊕�max
�=0 {{rdata�}}

)

and output {{rdata}}.

Add ({{addr, leaf, data}}):

– If t + 1 = T , return; else continue with the fol-
lowing.

– Call GStasht.Add({{addr, leaf, data}});
– If (t + 1) is a multiple of n: invoke the garbled

rebuilding algorithm similar to the case below
marked (�), except that here, we shuffle levels
0, . . . , �max into levels 0, . . . , �max;

– Else if (t + 1) mod n = j · (B · 2�) for some odd
integer j and some integer �: (�)

– Let {{stash}} ← GStasht.Finalize();
– Call RecFinalize(root, {{1∗}}t, �) described

below;
– For each level i ∈ [0 : �), let

{{leveli}} := ∪j∈[0:2i){{bkti,j}} where the
variables {{bkti,j}} are output inside the
RecFinalize call;

– {{leveli}}i∈[0:�] ←
GRebuildt({{stash}}{{leveli}}i∈[0:�−1]);

– For i ∈ [0 : �], parse
{{leveli}} := {{bkt′i,j}}

j∈[0:2i)
; for j ∈ [0 : 2i),

call GBkt(i,j),t+1.Init({{bkt′i,j}});

RecFinalize(V, {{1}}, �)

• {{bktV }} ← GBktV,t.Finalize({{1}});
• If � the leaf level, then return; else let {{st}}

or {{1L, 1R}} ← GSwitchV,t.Finalize({{1}}); if
GSwitchV,t+1 has the same children switches as
GSwitchV,t, call GSwitchV,t+1.Init({{st}});

• Let UL, UR be the children of V , if the level of UL

and UR is at most �, call RecFinalize(UL, {{1L}}, �),
RecFinalize(UR, {{1R}}, �).

Garbler

for every tree node V , let bkt∅V be an array
of 0s of appropriate length, create garbled
state {{bkt∅V }};
for t ∈ [0 : T ), let L∗[t] =

OutL[t] ⊕ GStasht.OutL[t mod B];
create sharings �L∗� := {L∗[t] ⊕
Kt}t∈[0:T ) where Kt should match the
part of GSwitchroot,t.InL that is used for
encoding the input �L� at time t;
call GSwitch.Garble for all GSwitch
instances; call GLeafSwitch.Garble for all
GLeafSwitch instances;
call GBkt.Garble for all GBkt instances;

call GStash.Garble for all GStash instances;

for every t ∈ [0 : T ) such that t + 1

is a multiple of B, create a garbled
finalization signal {{1∗}}t using the label
GSwitchroot,t.CtrlL[B];

call GRebuild.Garble for all GRebuild

instances;

Fig. 4: Non-Recursive Garbled RAM (NRGRAM) construction.



NanoGRAM: Garbled RAM with Oe(logN) Overhead 483

The garbled data structures adopt the following parameters (see the supple-
mentary for the parameters of GStash,GLeafSwitch, and GBkt):

– For each GStash instance, the maximum number of operations GStash.m = B,
and the word size GStash.w = w + log2 n;

– For each GSwitch instance at level � of the tree, let GSwitch.B = B, and the
addr field has bit width log2 n, the leaf field has bit width log2 n − �, the bit
width of the L field has width λ · w;

– Each GLeafSwitch instance is parametrized with the maximum number of
invocations GLeafSwitch.tmax = GLeafSwitch.m = 2B and the element bit-
width GLeafSwitch.w = λ · w;

– Each GBkt instance adopts the parameters GBkt.m = GBkt.tmax = 2B, and
the bit widths of the addr and val fields are log2 n and w, respectively.

We now analyze the asymptotic performance of our NRGRAM scheme. One
can easily verify that the dominating cost is incurred by the GBkt instances. The
total cost of our NRGRAM is

O(1) · T

B
· log n · B · λ · (w · log2 B+ log n · log3 B+ log4 B

)

=O
(

T · log n · λ · (w + log n logB+ log2 B) · log2 B)

Proof of Security. We defer the proof of security for our NRGRAM to Appendix E
of the online full version [30].

6 Final Garbled RAM (GRAM) and Concrete
Performance

Full Garbled RAM Construction. Our final garbled RAM scheme is obtained
by applying the standard recursion technique [33,35] to the NRGRAM. The idea
is to recursively store the position map in a smaller NRGRAM, and then store
the position map of the position map in an even smaller NRGRAM, and do on.
The recursion will stop in logarithmically many iterations as long as the block
size is at least C logN for some appropriate constant C. We defer the detailed
construction and proofs to Appendix F of the online full version [30].

Practical Optimizations and Concrete Performance. In Appendix A.1 of the
online full version [30], we propose several practical optimizations for our garbled
RAM scheme.

We also developed a simulator to evaluate the concrete performance of our
scheme. We defer the detailed explanation of the simulator and our experimen-
tal methology to Appendix A.2 of the online full version [30]. In Fig. 5a, we
compared the performance of NanoGRAM with that of the naïve linear-scan
GRAM as well as EpiGRAM [24], where the word size W = 128 bits. Here, we
use a standard platform-independent performance metric, i.e., the garbled circuit
size amortized to each memory access, that is used in this line of work [24,32].
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Fig. 5: Concrete performance of NanoGRAM. The y-axis is the size of the
garbled RAM program amortized to each memory access.

Given the circuit size, we can estimate the runtime on typical computers using
the results of earlier works [32]. In NanoGRAM, since the parameter B (i.e.,
average load per bucket) has to be at least 64 or 128 to get a reasonable statis-
tical security parameter, the smallest N we used in our experiment is 28. Just
like EpiGRAM, we start to outperform the naïve linear-scan GRAM at about
N = 29. Our concrete performance is on par with EpiGRAM at small choices
of N , but at about N = 213, we start to outperform EpiGRAM, and as shown
in the figure, the improvement is of an asymptotical nature — the larger the N ,
the greater our speedup.

Figure 5b shows the cost breakdown for the NRGRAM for the final data level.
The breakdown suggests that the garbled buckets are the most costly, whereas
the garbled switches closely follow. This plot also shows the motivation for our
optimizations — had we not performed these optimizations, the total garbled
bucket cost would be more than 2× higher than the total garbled switch cost.
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Abstract. In recent years, there has been significant work in studying
data structures that provide privacy for the operations that are exe-
cuted. These primitives aim to guarantee that observable access pat-
terns to physical memory do not reveal substantial information about
the queries and updates executed on the data structure. Multiple recent
works, including Larsen and Nielsen [Crypto’18], Persiano and Yeo
[Eurocrypt’19], Hubáček et al. [TCC’19] and Komargodski and Lin
[Crypto’21], have shown that logarithmic overhead is required to support
even basic RAM (array) operations for various privacy notions including
obliviousness and differential privacy as well as different choices of sizes
for RAM blocks b and memory cells ω.

We continue along this line of work and present the first logarith-
mic lower bounds for differentially private RAMs (DPRAMs) that apply
regardless of the sizes of blocks b and cells ω. This is the first logarithmic
lower bounds for DPRAMs when blocks are significantly smaller than
cells, that is b � ω. Furthermore, we present new logarithmic lower
bounds for differentially private variants of classical data structure prob-
lems including sets, predecessor (successor) and disjoint sets (union-find)
for which sub-logarithmic plaintext constructions are known. All our
lower bounds extend to the multiple non-colluding servers setting.

We also address an unfortunate issue with this rich line of work where
the lower bound techniques are difficult to use and require customization
for each new result. To make the techniques more accessible, we general-
ize our proofs into a framework that reduces proving logarithmic lower
bounds to showing that a specific problem satisfies two simple, mini-
mal conditions. We show our framework is easy-to-use as all the lower
bounds in our paper utilize the framework and hope our framework will
spur more usage of these lower bound techniques.

1 Introduction

In this work, we will study privacy-preserving data structures in the setting where
a client outsources the storage of data to one or more potentially untrusted
servers (such as a cloud provider). Even though the client delegates the storage
to the server, the client may need to perform operations on the outsourced data

The full version of this paper may be found at [39].
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in an efficient manner. In terms of privacy, the client wishes to maintain the
confidentiality of the outsourced data. A straightforward first attempt is for
the client to encrypt all data locally before transferring to the server. While
guaranteeing that the server cannot see the data in plaintext, this technique
does not address the leakage of access patterns that the server observes when the
client performs operations on the outsourced data. For example, the server may
observe the exact memory locations that are retrieved or modified. Therefore, it
is integral to protect the patterns of data access to also maintain privacy for the
actions performed over the outsourced data.

Oblivious RAMs. Oblivious RAMs (ORAMs), introduced by Goldreich and
Ostrovsky [17], are one cryptographic primitive that may be leveraged to hide
access patterns. At a high level, ORAMs can be viewed as a data structure that
enables maintenance of a dynamic array where the client either query or update
any entry. The obliviousness privacy guarantee of ORAMs ensures that any
adversary given two candidate equal-length operational sequences and observes
the access pattern incurred by the execution of one of the sequences still cannot
determine the identity of the executed operational sequence. In recent years,
ORAMs have been studied extensively to try and determine the optimal overhead
(see [5,9,10,14,17–19,25,30,32,40,43] and references therein). For b-bit entries
on machines with memory cell (word) size of ω bits, the best known constructions
obtain logarithmic overhead O((1 + b/ω) · log n) [1]. This ends up being optimal
as it matches the lower bounds of Ω((b/ω) · log n) by Larsen and Nielsen [28] and
Ω(log n/(1+log(ω/b))) by Komargodski and Lin [23] up to logarithmic factors in
b and ω for all choices of b and ω. Due to their strong privacy guarantees, ORAMs
have seen usage in many applications such as multi-party computation [4,15,47]
and secure cloud storage systems [3,42].

Differentially Private RAMs. In various practical applications, the guaran-
tees provided by obliviousness end up being unnecessarily strong. For example,
we can consider the problem of privacy-preserving data analysis where the goal
is to reveal statistics about a data set, but still maintain the privacy of each indi-
vidual. An algorithm is considered differentially private if the probability distri-
bution of the output of the algorithm for two data sets that differ in only one
record will not differ significantly. Therefore, if the adversary observes the disclo-
sure of the algorithm, it may not learn information about whether an individual
was a member of the input data set. Consider the problem of privacy-preserving
data analysis over a data set outsourced to an untrusted server. For any accesses
to the data set, we could use an ORAM to completely hide any subset of records
accessed from the data set. However, this may be stronger privacy than needed
as the differentially private disclosure only provides privacy for individuals.

Instead, we turn to differentially private RAMs (DPRAMs) whose privacy
guarantees align closer to the ones used in privacy-preserving data analysis.
DPRAMs aim to provide privacy for individual operations, but may reveal infor-
mation about a sequence consisting of many operations. In more detail, if an
adversary receives two candidate equal-length operational sequences that differ
in one operation and the access pattern incurred by the execution of one of the
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two sequences, the adversary should not be able to guess the identity of the exe-
cuted sequence with too high probability. Due to the weaker guarantees, there
is hope to obtain sub-logarithmic overhead smaller than ORAMs. For example,
sub-logarithmic constructions have been shown for differentially private Tur-
ing machines, stacks and queues [24] whereas logarithmic overhead is required
for their oblivious counterparts [21,24]. Unfortunately, the Ω(b/ω · log n) lower
bound for DPRAMs by Persiano and Yeo [37] showed that this is impossible
when b = Ω(ω). However, no such lower bound is known when blocks are signif-
icantly smaller than cells, b � ω, leading to the following question that was also
posed as an open problem in [23]:

What is the optimal overhead for differentially private RAMs for the set-
ting when blocks are much smaller than cells, b � ω?

We resolve this by proving a logarithmic lower bound for all choices of b and ω.

Framework for Cell Probe Lower Bounds. Starting from the seminal work
of Larsen and Nielsen [28] that introduced the usage of cell probe techniques
for oblivious RAMs, there has been a significant amount of work for proving
cell probe lower bounds for various data structure problems and privacy guaran-
tees. Previous works have considered lower bounds for different privacy notions
beyond obliviousness and differential privacy including obliviousness without
adversarial knowledge of operational boundaries [20], obliviousness in the mul-
tiple non-colluding server setting [29] and searchable encryption leakage func-
tions [34]. Lower bounds have also been proven for other oblivious data struc-
ture problems beyond RAMs including stacks, queues, deques, heaps and search
trees [21] as well as near-neighbor search [27].

Unfortunately, the lower bounds end up being very technical and customized
to each specific setting. To date, if one wished to prove lower bounds for a specific
data structure with certain privacy guarantees, one would have to understand all
the various techniques and modify them accordingly to obtain the desired lower
bound. Ideally, we would like to encapsulate the re-usable portions of the proofs
into a blackbox framework that enables future users to prove lower bounds by
only modifying parts that need to be customized for the specific data structure
problem and/or privacy notion. This leads us to the following natural question:

Is it possible to generalize the techniques into a framework that enables
easier lower bound proofs for future works?

To address this, we present a framework that reduces proving logarithmic lower
bounds for privacy-preserving data structures to showing that the data structure
problem and privacy notion satisfy two simple (and seemingly minimal) condi-
tions. Furthermore, we show that our framework is widely applicable by proving
logarithmic lower bounds for a whole set of new data structure problems for
which sub-logarithmic upper bounds are known with no privacy guarantees.
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1.1 Our Contributions

We summarize our results below. All our lower bounds are proven in the cell
probe model where overhead refers to the required number of probes into server
memory cells. If one restricts the server to be passive (i.e., may not perform any
computation), then our results become communication lower bounds.

Differentially Private RAMs (DPRAMs). For our first result, we present
new lower bounds for DPRAMs. Informally speaking, a RAM is (ε, δ)-
differentially private if, for any two sequences of operations O1 and O2 that differ
in one operation and for any PPT adversary A, we have that pA

1 ≤ eε · pA
2 + δ,

where pA
η is the probability that A outputs 1 on input the transcript of the RAM

executing sequence Oη. We look at in the setting where blocks are significantly
smaller than the word size, b � ω and show that DPRAMs must still have
logarithmic overhead regardless of the parameter settings for b and ω. In our
work, we will prove the following theorem. Throughout this section, we ignore
O(log log log n) factors to avoid being overburdensome. See Theorem 5 for a more
precise statement.

Theorem 1 (Informal). Any (ε, δ)-DP RAM for n b-bit entries with constant
ε > 0, sufficiently small, constant δ > 0 and client storage of c bits has overhead:

Ω

(
log(nb/c)

1 + log(ω/b)

)
.

To interpret the lower bound, we note that our lower bound is the same as
the one proved in [37] for DPRAMs in the case b = Θ(ω). However, for the
case when b � ω, our lower bound ends up peaking a lot higher. For example,
consider the case where b = Θ(1) and ω = Θ(log n). Then, our lower bound ends
being Ω̃(log n) while the lower bound in [37] becomes trivial at Ω(1). In other
words, our result ends up proving logarithmic lower bounds for all reasonable
choices of block and cell sizes b = logO(1)(n) and ω = logO(1)(n). In such regimes,
our lower bound is tight up to O(log log n) factors with the best known ORAM
constructions [1].

Additionally, we show that we can extend our lower bound to the multiple
server setting improving previous multi-server ORAM lower bounds by Larsen
et al. [29]. These are the first logarithmic lower bounds for DPRAMs in the
multi-server setting (regardless of the choice of b and ω).

General Framework. To make these techniques more accessible, we develop a
framework that abstracts out the necessary properties of a cryptographic data
structure for which logarithmic lower bounds may be obtained. We modularize
the proof such that the lower bound techniques leverage properties of either the
data structure problem or privacy in exactly two points. Then, we identify the
two properties needed to prove logarithmic lower bounds:

1. Large Information Retrieval: For any data structure problem P , one must find
a random sequence of n updates U = (u1, . . . ,un) such that for any consecu-
tive sequence of � updates ua, . . . ,ua+�−1, there exists a set Q of O(�) queries
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whose answers have high entropy with respect to updates ua, . . . ,ua+�−1. If
we let A(U, Q) be the answers of all queries q ∈ Q immediately executed
after U, then we must have that the average contribution to the entropy for
each of the O(�) queries is at least Ω(v) bits:

H(A(U, Q) | u1, . . . ,ua−1,ua+�, . . . ,un)/� = Ω(v).

2. Event Probability Transfer: Consider the setting with k ≥ 1 server(s) where at
most one server is compromised by the adversary. Let Ei(U, q) be any event
that is observable by a PPT adversary that compromises the i-th server when
executing the update sequence U from above and a query q. Furthermore,
suppose that the probability of the event satisfies Pr[Ei(U, q)] ≥ ζ/k for some
constant ζ > 0. Then, the same event must occur with similar probability for
any other query q′:

Pr[Ei(U, q′)] = Ω(Pr[Ei(U, q)]).

The first property requires that the data structure problem is “complex”
enough to enable retrieving updates with queries. For example, this rules out
contrived data structures whose queries may not return any information about
updates. The second property acts as a proxy for leveraging the privacy guar-
antees. For any data structure problem and associated privacy guarantees that
can satisfy the above two properties, we immediately get the following theorem
(see Theorem 3 for a formal statement).

Theorem 2 (Informal). Let P be a data structure problem satisfying the above
two properties with query outputs of b bits. Any data structure DS solving P using
at most client storage of c bits must have overhead:

Ω

(
b

v
· log(nb/c)
1 + log(ω/b)

)
.

As a result, we believe that we have made the lower bound techniques more
accessible as one can reduce the problem of proving logarithmic lower bounds
to simply showing that the data structure problem satisfies the two properties
above. Furthermore, we identify that a key metric is the ratio between the size
of the query output b and the amount of information gained per query v.

New Data Structure Lower Bounds. We show that our framework is widely
applicable by proving logarithmic lower bounds for many data structure prob-
lems where lower bounds are not known with respect to any privacy guarantees.
In our applications, we target data structure problems where o(log n) upper
bounds are known when no privacy guarantees are required. By plugging these
data structure problems into our framework, we obtain Ω̃(log n) lower bounds
showing that the differentially private versions of these data structures inher-
ently require more overhead compared to the non-private versions. In particular,
we prove logarithmic lower bounds for the following data structure problems:
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– Set Membership: In this problem, the data structure maintains a subset S ⊆
[n]. A query for i ∈ [n] returns a bit indicating whether i ∈ S. This is a natural
problem where the output is a single bit and the cell size ω is much larger.
Without privacy, one can solve this problem using a bit vector of length n
and answer queries in constant time. Using our framework, we show that DP
versions would, instead, require Ω(log(n/c)/ log ω) overhead.

– Predecessor and Successor: Predecessor (successor) aim to maintain a subset
S ⊆ U of size at most n. A query for some i ∈ U returns the largest (smallest)
item in S that is no larger (smaller) than the query input i. Without privacy
requirements, one can solve predecessor in O(log log n) overhead using van
Emde Boas trees [45] when |U | = nO(1). When DP guarantees are required,
we show that the overhead must be Ω(log(n/c)/ log(ω/ log n)).

– Disjoint Sets (Union-Find): Finally, we consider the disjoint sets data struc-
ture that maintains a set of sets over n elements. The union operation
takes two elements and joins their corresponding sets. The find operation
takes an element and returns a set representation of the input element.
For any two elements in the same set, the find operation will return the
same set representation. The classical algorithm achieves overhead O(α(n))
where α(n) is the inverse Ackermann function that is essentially constant
in all practical settings. We show that the DP version requires overhead
Ω(log(n/c)/ log(ω/ log n)).

One result of our new framework is that we can prove lower bounds for
natural data structures that do not enable writing of random blocks of data. Most
prior works [20,21,23,27–29,37] considered “key-value” data structures where the
values could be b-bit random blocks to derive enough entropy for lower bounds.
The above data structure problems do not enable storing random b-bit blocks,
but our framework is still able to prove logarithmic lower bounds. Finally, our
framework may handle other privacy guarantees besides differential privacy and
obliviousness. For example, our framework may prove lower bounds for leakage
functions common in searchable encryption extending [34].

Separation Result for Oblivious Stacks (and Queues). Finally, we con-
sider the generality of our framework. For example, one may question whether
there exist data structures that do not satisfy our framework’s two required
properties, but could still have a logarithmic lower bound. We provide evidence
that our framework is quite general and tight by studying stacks and queues,
two data structures that do not satisfy the first condition of large information
retrieval. For oblivious stacks and queues, Jacob, Larsen and Nielsen [21] proved
an Ω(b/ω · log(nb/c)) lower bound. For differentially private stacks and queues,
Komargodski and Shi [24] showed an upper bound of O((1 + b/ω) · log log n).
The correct overhead is unknown for oblivious stacks and queues when b � ω.

We present constructions of oblivious stacks and queues with O(b/ω ·
log(nb/c)) amortized overhead. So, one may obtain sub-logarithmic overhead
when b � ω. If b = O(1) and ω = Θ(log n), then our construction uses O(1)
amortized overhead. Furthermore, our result can obtain even sub-constant amor-
tized times. When b = O(1) and ω = Θ(log2 n), our construction requires
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O(1/ log n) overhead meaning that, on average, only one operation amongst log n
operations require interacting with the server. To our knowledge, this is the first
separation between an online oblivious data structure and ORAMs when b � ω.

Re-framing this result with respect to our framework, it becomes clear that
oblivious stacks and queues should not satisfy the properties of our framework.
Therefore, we believe that if one can prove logarithmic lower bounds for a dif-
ferentially private version of a data structure problem P for all choices of b and
ω, then one should be able to do so using our framework by showing that P
satisfies the two necessary properties.

1.2 Related Works

Balls-and-Bins Lower Bounds. The first logarithmic lower bounds were
proven by Goldreich and Ostrovsky [17] of the form Ω((b/ω)·(log n/ log c)) where
the client has storage of c bits. Boyle and Naor [6] pointed out that these lower
bounds only existed in the balls-and-bins model with a non-encoding assumption
on the underlying blocks. Lower bounds of the form Ω(b/ω · (log n/ log c)) for
DPRAMs were proven in [33]. Cash, Drucker and Hoover [7] proved lower bounds
showing that one-round ORAMs must have Ω(

√
n) overhead or client storage in

the balls-and-bins model. Lower bounds for PIR were proven in similar models
including for public preprocessing [2,38] and private preprocessing [11,12,50].

Cell Probe Lower Bounds. The cell probe model is a computational model
where only probes into memory are charged cost. Everything else such as com-
putation or randomness generation can be done for free. Therefore, proving
cell probe lower bounds is the holy grail as these lower bounds will apply to
any realistic computational model. Although, proving cell probe lower bounds
ends up being difficult for this reason as the highest static lower bounds are
Ω̃(log n) [31] and the highest dynamic lower bounds are Ω̃(log2 n) [26]. For
privacy-preserving data structures, the first cell probe lower bounds were proven
by Larsen and Nielsen [28] for ORAMs. Further works have proven lower bounds
for other oblivious data structures [21] and near-neighbor search [27]. Other
works have also considered various privacy notions including differentially pri-
vate RAMs [37], ORAMs where adversaries do not know the boundaries of oper-
ations [20], ORAMs with multiple servers [29] and searchable encryption [34].

Lower Bound Barriers. Boyle and Naor [6] showed that proving unconditional
lower bounds for offline ORAMs (that is, all operations are provided at one time)
would imply currently unknown circuit lower bounds. Extending this result,
Weiss and Wichs [49] showed that lower bounds for read-only online ORAMs
would result in new lower bounds for either locally decodable codes or circuits.

Constructions. As mentioned early, there has been a long line of work attempt-
ing to construct ORAMs efficiently such as [1,14,17,18,25,32,40,43] as well
as in various settings including statistical security [10], multi-party computa-
tion [15,47], multiple non-colluding servers [19,30] and parallel access [5,9] to
list some examples. Beyond ORAMs, other works have considered construc-
tion oblivious variants of other data structures [22,41,48]. Previous works also
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presented constructions for differentially private RAMs [33,46], search trees [8],
Turing machines, stacks and queues [24].

2 Technical Overview

Reviewing the Information Transfer Tree. We start with the information
transfer tree technique of Pătraşcu and Demaine [35] used first by Larsen and
Nielsen [28] to prove ORAM cell probe lower bounds. Komargodski and Lin [23]
extended the technique to enable proving logarithmic lower bounds for ORAMs
even when blocks are smaller than cells (b < ω). At a high level, the information
transfer tree technique arranges n operations into a tree with arity χ ≥ 2 where
each of the n operations are uniquely assigned to a leaf node based on the
execution order. Each cell read is uniquely assigned to an internal node as the
lowest common ancestor of the leaf nodes associated to the operation performing
the cell read and the last operation to overwrite the read cell. For internal node
v, the totality of information that is read by queries in the right subtree rooted at
v from updates in the left subtree of v exists in the contents of cells in the set of
probes assigned to v. For any subtree rooted at v with � leaf nodes, the number of
assigned probes is maximized at Ω(�) when right subtree reads blocks overwritten
in the left subtree. As the adversary may also compute the information transfer
tree, it must be that each internal node is assigned its maximum. Otherwise,
the adversary can determine that the worst case sequence was not executed.
Summing the worst case across all internal nodes obtains the lower bound.

Unfortunately, the information transfer technique seems to inherently require
a strong privacy condition, like obliviousness, for sequences differing in Ω̃(n)
operations as the worst-case sequences for each internal node differ drastically.
This is incompatible with differential privacy as the privacy guarantees degrade
exponentially in the number of different operations. We note that Patel et al. [34]
investigated weaker leakage guarantees for encrypted search using information
transfer, but still leveraged privacy for sequences differing in Ω̃(n) operations.

Previous Chronogram Approach. To prove lower bounds for differentially
private RAMs, Persiano and Yeo [37] adapted the chronogram (introduced by
Fredman and Saks [16]). The chronogram considers hard sequences of Θ(n)
updates followed by a single query. The n updates are divided into K = Õ(log n)
epochs that decay exponentially by a factor of r ≥ 2. Epochs are numbered in
reverse order, so that the i-th epoch has ri updates. The main idea is as fol-
lows. For any epoch i, the information stored about updates occuring in the i-th
epoch must appear in updates following the i-th epoch. Since we chose epochs
to decay exponentially, the total size of epochs {1, . . . , i − 1} is strictly smaller
than the i-th epoch. As a result, future update operations cannot encode all the
information written in the i-th epoch as long as r is chosen sufficiently large.
Consider the final query to randomly retrieve information from written in the
i-th epoch. If the data structure answers queries correctly, then, intuitively, the
query must directly probe cells last overwritten in the i-th epoch with high prob-
ability. Finally, differential privacy guarantees require that the query probes a
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similar number of cells last overwritten from all K epochs to hide the identity
of the epoch from which information is retrieved. We highlight privacy is only
needed for sequences differing in the final query.

The crux of the above technique is an efficient communication protocol built
using a too-good-to-be-true data structure. In this communication game, Alice
and Bob both receives updates in all but the i-th epoch. Alice also receives the
answers to queries in the i-th epoch that it wishes to encode to Bob. To do this,
Alice and Bob will jointly execute the data structure with Alice helping Bob to fill
in the i-th epoch. For all updates before epoch i, Alice and Bob can individually
execute the updates. Alice will execute the i-th epoch of updates and keep track
of all cell writes. For updates in following epochs, Alice will record any reads to
cells (both locations and contents) last overwritten in epoch i. Finally, Alice will
also execute all queries relevant to the i-th epoch and record all reads to cell last
overwritten in epoch i. The set of all cell locations and contents that are read
during operations following epoch i are encoded to Bob. So, Bob executes the
data structure identically to Alice and retrieves query outputs to the i-th epoch.

There are two key observations to complete the proof. First, the encoding
of cells and locations of all updates following epoch i is too small to encode
everything about epoch i. Therefore, the information needed to retrieve a query
must be encoded in cells last overwritten in the i-th epoch. Since queries output
b bits, one can use an averaging argument to show that Ω(b/ω) cells must be
probed by random queries to retrieve b bits of information from the i-th epoch.

A New Chronogram Approach for Small Blocks. Unfortunately, the above
approach suffers from an b/ω factor that seems inherent in the specific commu-
nication protocol. When b < ω, there is nothing ruling out the data structure
from storing the answers for Θ(ω/b) queries in a single cell.

Our paper introduces a more efficient communication protocol than the one
in [37] to handle these settings. If our goal is to prove logarithmic lower bounds,
then we must show that random queries must probe Ω(1) cell last overwritten
in epoch i regardless of the choices of b and ω. This is impossible if we rely
on trying to encode the contents of cells probed by a query since cell sizes ω
are larger than the output of the query b. Instead, we make the observation
that the outputs of queries are actually smaller than contents of cells. In other
words, it is more efficient for Alice to simply encode the answers to queries
instead of encoding the contents of even a single cell probed by a query. However,
Alice cannot simply encode the answers of all queries to Bob as this would not
enable deriving any meaningful lower bound on query time. So, we also need
another method to further compress Alice’s encoding. The second idea is for
Alice to identify queries that do not need to be encoded at all. For example,
consider a query that does not probe any cell last overwritten by the i-th epoch.
These queries may be executed correctly by Bob for free without any additional
information from Alice. However, the frequency of these free queries is unclear.
If no free queries exist, we would obtain a trivial encoding of simply sending
all the query’s outputs. In fact, a contrived data structure could simply force
every query retrieving updates from the i-th epoch to simply probe a cell last
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overwritten in the i-th epoch to guarantee that there are no free queries at all.
By increasing the update overhead by a single probe, each update in the i-th
epoch can write to one additional cell that will be read by the corresponding
subsequent query ensuring no free queries.

Taking a closer look, the above approach by a contrived data structure only
succeeds because the epoch structure is fixed ahead of time. Instead, we consider
a randomized epoch structure that cannot be leveraged by the data structure.
To do this, we pick a random number of updates from {n/2, . . . , n} followed
by a single query. The structure of K = Õ(log n) epochs is built over the final
n/2 updates. Consider any data structure that probes at most K/100 cells dur-
ing queries. As the epochs are randomly placed, we can show that if the data
structure can answer a query regarding a block written in the i-th epoch then it
will have to probe a cell last overwritten in the i-th epoch with some constant
probability, of approximately 1/100. In other words, we just showed that around
(99/100)-fraction of queries that retrieve information from the i-th epoch end
up being free queries in Alice’s encoding. As a result, we obtain a very efficient
communication protocol that allows us to prove that queries must probe Ω(1)
cells from all K epochs.

We note that the lower bound in [37] also used randomized epoch structures,
but did so to remove log log n factors from the lower bound. Their work would
still obtain an Ω(log n/ log log n) lower bound without random epochs. In our
work, we leverage random query locations in a vastly different way to prove the
existence of many free queries. Without this, we cannot prove anything more
than a trivial Ω(1) lower bound.

Comparison with [36]. We note that Pătraşcu and Tarniţă [36] also studied
the setting of proving chronogram lower bounds when blocks were smaller than
memory cells. However, they only considered data structures without any privacy
requirements. Instead, they had to leverage properties of the underlying data
structure problems. One can view our work as an extension of [36] where we
prove chronogram lower bounds for easier data structure problems, but heavily
rely on the privacy requirements of the data structure. In fact, all problems
studied in our paper are known to have sub-logarithmic upper bounds without
privacy requirements. As a result, we had to develop new techniques (especially
in the efficient communication protocol) to be able to utilize differential privacy
to prove lower bounds for these easier data structure problems.

3 Lower Bound Model

We prove our lower bounds in a variant of the cell probe model that were intro-
duced by Larsen and Nielsen [28]. At a high level, the cell probe model only
charges data structures for probes into memory cells. All other operations are
free of charge (such as computation and randomness generation). To enable
lower bounds for cryptographic data structures, we use the cell probe model
that adapts the setting to multiple parties representing the client and k ≥ 1
server(s). We assume that the client has at most c bits of storage. Each server’s
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storage consists of memory cells (words) of ω bits. In this variant of the cell
probe model, the only operation that is charged cost is to probe a cell in any
of the server’s memory. In our model, all accesses into client memory are free of
charge. Additionally, we assume there exists an arbitrarily long, but finite, ran-
dom string R that is available to both parties without any cost to access. One
can view R as a random oracle, so our lower bounds apply even if one assumes
random oracles exists.

In our work, we will consider dynamic data structure problems. By dynamic,
we refer to the fact that the data structure enables operations that allow its users
to update the information stored by the data structure. Furthermore, dynamic
data structures are allowed to update its memory representation during each
operation. We present a formal definition of dynamic data structures below:

Definition 1 (Dynamic Data Structure Problem). A dynamic data struc-
ture consists of the tuple (Uu, Uq) where Uu is the universe of update operations
and Uq is the universe of query operations. The error probability is at most α
if for every sequence of updates u1, . . . , un ∈ (Uu)n and every query q ∈ Uq, the
probability that the query q(u1, . . . , un) produces the wrong answer is at most α.

Next, we consider the view of the adversarial server(s) in this model. In par-
ticular, each of the k ≥ 1 servers will receive a transcript consisting of everything
that each server observes while processing operations that are executed by the
client. For any sequence of operations O ∈ (Uu ∪Uq)|O|, we denote by Vi(O) the
view of the i-th server when processing the operational sequence O. The tran-
script Vi(O) will consist of the contents of all memory cells stored on the i-th
server as well as sequences of probes to cells that occur for each of the operations
in the sequence O. We note that Vi(O) also contains information denoting the
boundaries of when each operation starts and ends1. If the adversary compro-
mises the i-th server, the adversary will receive Vi(O). We use TDS(O) to denote
the entire transcript seen by the adversary for all compromised servers. Note that
our definition assumes that the adversarial server(s) are honest-but-curious. As
we are proving lower bounds, assuming that the adversary is weaker makes our
result stronger as our lower bounds immediately also apply to more stronger
adversaries such as those that are malicious.

Using the above definition, one can now formulate privacy notions for data
structures. For example, obliviousness guarantees that any efficient adversary
A should not be able to distinguish between Vi(O1) and Vi(O2) for any two
equal-length sequences O1 and O2. In our work, we will consider two weaker
notions: differential privacy and privacy with respect to leakage functions. As
our framework does not make assumptions on any specific privacy notion, we
delay formal definitions of these notions until Sect. 5.

1 We note that Hubáček et al. [20] proved a logarithmic lower bound for ORAMs even
when the adversary does not learn operational boundaries. We leave it as future
work to adapt their techniques to work with our proof.



498 G. Persiano and K. Yeo

4 Framework for Lower Bounds

In this section, we present a formal framework for proving lower bounds. In
particular, we will only assume certain properties of the data structure problem
(that we will describe later) and then we show that for any problems that sat-
isfy these properties, one can immediately utilize our framework to prove lower
bounds. Later, we will show that one can utilize our framework for many settings
with different privacy guarantees and/or data structure functionalities.

Consider a data structure problem P = (Uu, Uq). For any sequence of U of
update operations and for any query operation q ∈ Uq, we denote by A(U, q)
the correct answer to q when it is executed following the update operations in
U. We abuse notation and, for a sequence Q = (q1, . . . , q�) of queries, we denote
by A(U,Q) the sequence of the correct answers for queries qi ∈ Q obtained by
executing each query directly after the update sequence U . We re-iterate that
this set consists of all the correct answers and not the answers returned by a
potentially randomized data structure with non-zero error probabilities. We will
abuse notation and use A(U, Q) for distribution U over update sequences to
denote the distribution over the sequences of correct answers with respect to a
update sequence distributed according U. When U and Q are clear from context,
we will drop the arguments and simply use A.

We are now ready to formally define the required properties.

Definition 2 (Large Information Retrieval). We say that a data structure
problem P has the Large Information Retrieval property with parameter v if there
exists a distribution U = (u1, . . . ,un) over sequences of n update operations such
that for any subsequence (ua, . . . ,ua+�−1) of � ≥ √

n update operations, there
exists a sequence Q of length � ≤ |Q| ≤ c · �, for some constant c ≥ 1, such that

H(A(U, Q) | u1, . . . ,ua−1,ua+�, . . . ,un) ≥ � · v.

Definition 3 (Event Probability Transfer). Consider a data structure DS
for the problem P . For any update sequence U and query q, let E(U, q) be some
event that can be checked whether to have occurred by a PPT adversary such
that Pr[E(U, q)] ≥ ζ for some constant ζ > 0. We say that P has the Event
Probability Transfer if for every DS and for any two queries q and q′, it must
be that

Pr[E(U, q′)] = Ω(Pr[E(U, q)])

where the probability is over the internal randomness of DS.

Next, we present the main theorem of our framework.

Theorem 3. Consider a data structure problem P that allows update and
query operations such that query outputs are b bits and b = nO(1).2 Let DS
be any data structure for P with expected update and query overhead tu and tq

2 For most natural problems, the output size is b = O(log n). For generality, we picked
the largest upper bound as possible for b without affecting our lower bound.
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respectively, client storage c and error probability α ≤ v/(b log2 n) in the cell
probe model with ω ≥ 1 cell size. If P enjoys the Large Information Retrieval
property with parameter v and Event Probability Transfer property then

tu + tq = Ω

(
v

b
· log(nv/c)
1 + log((ω + log log n)/b)

)
.

We dedicate the remainder of this section to proving this theorem. Later, we
will show how to apply our framework to prove lower bounds in various settings.

Discussion about b and v. In the above theorem, b is the number of bits
to describe the output of each query. On the other hand, v is the amount of
information that is retrieved about the random updates with each query. In
general, we know that v ≤ b as we cannot learn more information that the query
output’s size. Prior works have made the assumption that b = v such as for array
maintenance. By generalizing this, we illuminate the importance of this ratio for
lower bounds in cryptographic data structures. In later sections when we prove
lower bounds for specific problems, we will convert natural problems to artificial
variants with the goal of maximizing the ratio v/b to prove higher lower bounds.

We point out that this b/v factor is distinctly different from the b/ω factor
that appears in prior lower bounds. The b/v factor characterizes the average
information retrieved per bit in the query output. In contrast, the b/ω factor
characterizes the number (or fraction) of cells needed to represent the answer of
a single query. For the case when cell size is larger than the query output ω > b,
our lower bound is better than the previous one of Ω(b/ω log(nb/c)) [37] as it
only loses 1/(1 + log((ω + log log n)/b) factor.

Comparison with [23]. We note that our lower bound is slightly lower than
the one proved by Komargodski and Lin [23]. They proved a lower bound of
the form Ω(log(nb/c)/ log(ω/b)) but, to our knowledge, may be only applied
to strong oblivious guarantees. On the other hand, we prove a lower bound of
the form Ω(log(nb/c)/ log((ω + log log n)/b)), but it is applicable to a wider
range of possibly weaker privacy guarantees and data structure functionalities.
We note the gap is very small and only exists in very restricted settings. When
ω = Ω(log log n), both lower bounds are asymptotically identical. Furthermore,
if b = Ω(ω), we can use the original Ω(b/ω · log(nb/c)) lower bounds such as [28].
Therefore, a gap between the lower bounds exists only when ω = o(log log n)
and b = o(ω). It is not hard to see that the gap is at most O(log log log n).

Discussion about Error Probability. We note that one can obtain a slightly
stronger theorem for constant error probability α if one is willing to make addi-
tional assumptions about the data structure DS. In particular, if one assumes
that v = Θ(b), then one can prove lower bounds that hold also for data structures
that err with constant probability. For convenience and the ability to handle gen-
eral data structures, we consider weaker error probabilities of O(1/ log2 n). This
is still much larger than the negligible error required for cryptographic primitives.

Weaker Large Information Retrieval. In our definitions, we assumed that
every subsequence of at least

√
n updates enabled a query sequence whose out-

puts had high entropy. A weaker definition would have sufficed for our lower
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bound where only a certain fraction of the subsequences admit this property
(such as if a random subsequence satisfied this property with constant prob-
ability). However, we chose the stronger definition as it was sufficient for all
applications of our lower bound framework and enabled simpler proofs.

4.1 An Efficient Communication Protocol

In this section, we show that a data structure for any problem P with error
probability at most α emits a public coin one-way communication protocol for
the problem where Alice wishes to efficiently encode the correct answers for all
queries in a query set to Bob. In particular, this protocol efficiently encodes the
output of queries even if the query output of b bits is significantly smaller than
the cell size ω. We describe the problem below:

Communication Problem. Let U = (u1, . . . , um) be a sequence of update
operations. In the communication problem, Alice and Bob will receive the same
sub-sequence of update operations U ′ = (u1, . . . , ua−1, ua+�, . . . , um) where the
consecutive � operations ua, . . . , ua+�−1 are omitted, along with a set of queries
Q and a random string R. Additionally, Alice will receive sequence A(U,Q);
that is, the set of correct answers for all q ∈ Q where each query is executed
immediately after U . The goal of Alice will be to encode A(U,Q) to Bob. In
particular, Alice’s encoding will have to account for the fact that Bob is missing
� update operations while ensuring Bob receives the correct answers.

Random Variables. Next, we denote some additional random variables that
will be used to bound the total communication of our protocol. In particular,
these variables will measure the number of probes by future updates and queries
into the group of updates that are missing in Bob’s input.

– X≥a+�
u denotes the number of probes perform by the update operations

(ua+�, . . . , um) into a cell last overwritten by an update in the missing group
(ua, . . . , ua+�−1).

– XQ denotes the number of probes performed by all queries q ∈ Q into a cell
last overwritten by an update in the missing group (ua, . . . , ua+�−1).

– T≥a+�
u denotes the total number of probes performed by all update operations

starting from and including ua+�.

Lemma 1. If there exists a data structure DS for problem P that has error
probability 0 < α < 1, then there is a public coin one-way communication protocol
solving the above problem using expected communication at most

E

[
X≥a+�

u

] (
ω + log

tu(m − a − � + 1)

E[X≥a+�
u ]

)
+E

[
XQ

] ·
(

b + log
1

E[XQ]

)
+α · |Q| ·

(
b + log

1

α

)
.

Proof. We start by presenting our communication protocol below followed an
analysis of correctness and the encoding length.

Alice’s Encoding. We describe the procedure used by Alice to encode the
correct answers A(U,Q). Recall that Alice and Bob share the update sequence
U ′ as well as public randomness R. The encoding consists of five phases.
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1. Alice reconstructs the missing � update operations ua, . . . , ua+�−1 by trying
all possible update operations until finding the sequence that matches the
answers in the set A(U,Q).

2. Alice runs the data structure, using shared random string R, and executes
all the update operations (u1, . . . , ua−1). That is, Alice executes all updates
until the ones missing from Bob’s input.

3. Alice executes the missing update operations (ua, . . . , ua+�−1) that are not
part of Bob’s input. At the end of this phase, Alice appends the c bits found
in client memory after the last update operation ua+�−1.

4. Alice executes all updates in the remaining update operations known to both
parties (ua+�, . . . , um) using the shared random string R.
In this phase, Alice keeps a list of all the special probes of this phase. A probe
is special if it is a probe to a cell last overwritten by an update in the missing
group. For this purpose, the probes of this phase are indexed with the integers
0, 1, 2 and so forth. At the end of this phase, Alice appends an encoding of
the set of indices of the special probes along with the ordered sequence of all
the cell contents read by these probes.

5. Alice executes each query q from the query set Q. All queries are executed
starting from the state of the data structure at the end of update um (that is,
after the last update operation). In this phase, Alice keeps two lists: a list of
the non-free queries that include a probe to a cell last overwritten in epoch i
and a list of the wrong queries for which the data structure returns the wrong
answer. At the end of this phase, Alice appends an encoding of the subset of
queries that are either non-free or wrong along with the ordered sequence of
the correct answers of the non-free and wrong queries.

Bob’s Decoding. We describe Bob’s decoding algorithm to recover the cor-
rect answers in A(U,Q). Recall that Bob receives the subsequence of update
operations U ′ = (u1, . . . , ua−1, ua+�−1, . . . , am) and the random string R.

1. Bob executes the updates u1, . . . , ua−1 using the shared random string R.
2. Bob skips the missing updates ua, . . . , ua+�−1 and reads the content of the

client memory at the end of update ua+�−1 found in the encoding. Bob keeps
the server memory in the state at the end of update operation ua−1.

3. Bob executes the remaining updates ua+�, . . . , am using the shared random
string R. Before performing a probe as requested by the data structure, Bob
checks if the probe is in the list of the special probes as found in the encoding.
If the probe is special, Bob uses the cell contents found in the encoding.
Otherwise, Bob performs the probe using the current snapshot of the server
memory.

4. Bob takes a snapshot of the server and client memory at the end of update
um and uses it as a starting state for all the queries q ∈ Q. For each query
q, Bob first checks whether the query is non-free or wrong. If so, the answer
of the query is read from the encoding. Otherwise, the answer of the query is
obtained by executing the data structure’s query algorithm.
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Correctness. As Alice and Bob share the same random string R and updates
outside of the missing group ua, . . . , ua+�−1, their executions of the data struc-
ture are identical up to update operation ua−1. For all updates ua+� and after-
wards, every probe to a cell last overwritten by an update in the missing group
ua, . . . , ua+�−1 (thus, the cell contents are unknown to Bob) are encoded by
Alice. Therefore, all cells overwritten in update operation ua+� and after are
correct and identical to Alice’s execution. Finally, for the |Q| queries, we note
that Bob can get the correct answer whenever the query is correct and does
not probe any cell last overwritten by the missing group. As Alice encodes the
answer for all queries not satisfying the above two conditions, Bob will always
retrieve the correct answers for every query q ∈ Q.

Expected Length of the Encoding. We now bound the expected length of
the encoding produced by Alice in each phase.

1. Alice does not produce any encoding in phase 1 and phase 2.
2. In phase 3, Alice encodes client memory for a total of c bits.
3. Phase 4 contributes the encoding of the subset of special probes along with

contents of the cells probed by a special probe. In other words, a subset
of X≥a+�

u probes of the set of total probes performed during the updates
ua+�, . . . , um after the missing group along with ω bits for each of the X≥a+�

u
probes. Therefore, phase 3 contributes at most:

E

[
log

(
T≥a+�

u

X≥a+�
u

)
+ ω · X≥a+�

u

]

≤ E

[
X≥a+�

u log
T≥a+�

u

X≥a+�
u

]
+ ω · E

[
X≥a+�

u

] (
by log

(
n

k

)
≤ k log(n/k)

)

≤ E

[
X≥a+�

u

]
log

E[T≥a+�
u ]

E[X≥a+�
u ]

+ ω · E
[
X≥a+�

u

]
(by concavity)

≤ E

[
X≥a+�

u

] (
ω + log

tu(m − a − � + 1)

E[X≥a+�
u ]

)
.

(
by E[T≥a+�

u ] ≤ tu(m − a − �)
)

4. Phase 5 contributes the encoding of the set of non-free and wrong queries.
If the data structure has probability of error 0 ≤ α < 1, then the expected
number of wrong queries is α · |Q| queries and b bits are added to the encoding
for each wrong query. Similarly, for the non-free queries, the encoding of a
subset of size P i

Q of a set of size �i followed by b · P i
Q bits. Therefore, phase 4

contributes at most the following expected number of bits to the encoding.

E

[
log

(
|Q|

α · |Q|

)]
+ αb|Q| + E

[
log

(
|Q|
XQ

)]
+ b · E [XQ]

≤ α|Q|(b + log 1/α) + E

[
XQ · log

|Q|
XQ

]
+ b · E [XQ]

≤ α|Q|(b + log 1/α) + E [XQ] ·
(

b + log
|Q|

E[XQ]

)
.

This completes the proof of our public coin one-way communication protocol. 	
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4.2 The Hard Distribution

We now describe the distribution of updates and queries that we will use to
prove our lower bound. We then show how to organize the updates into epochs
so to utilize the protocol of the previous section. At a high level, by looking at
the components of the communication cost of Lemma 1, we notice that the first
component is due to the reconstruction of the necessary information for future
updates occurring after the missing updates. The second component takes into
account the amount of information for queries that were embedded during the
missing update operations. Note that the first component depends only on the
update time while the second component depends only on the query time. We
organize our updates into epochs so that the two components are balanced and
we can obtain a lower bound on the sum of query and update times.

Our hard distribution will make use of the random update sequence U =
(u1, . . . ,un) that we will assume exists for the data structure problem P . We
define our hard distribution denoted by U as follows:

1. Pick m uniformly at random from {n/2 + 1, n/2 + 1, . . . , n}.
2. Output sequence of operations U = (u1, . . . ,um).

In other words, we are picking a random prefix of length between n/2 and n
from the random update sequence U. For any query q, we denote by Q(q) the
distribution over the sequences Q(q) = (U, q) obtained by selecting U according
to U . Additionally, we will consider Q(Q) with respect to a set of queries Q. In
this case, Q(Q) consists of a random update sequence drawn from U as well as a
uniformly random query drawn from Q. Our final hard distribution will be Q(q)
for some query q.

Definition of Epochs. Let U = (u1, . . . , um) be a sequence of operations in
the support of U . Define r to be the multiplicative decay between each future
epoch. We will choose a correct value of r later, but we will ensure that r ≥ 2.
We partition the operations of U into epochs of exponentially increasing sizes
�1 := r, �2 := r2, . . . with epochs starting from um and growing backward to
u1. That is, epoch 1 consists of operations um, um−1, . . . , um−r+1, epoch 2 of
operations um−r, . . . , um−r−r2+1 and so on. We define si :=

∑i
j=1 �j to be the

number of the operations in epochs 1, . . . , i. Another way to view si is that it
is the total number of operations that occur after epoch i + 1. We will denote
Ui to be the set of all updates in epoch i. We will also denote U−i to be the set
of all updates except for those that are updated in the i-th epoch. The index of
the starting update operation of the i-th epoch will be denoted by pi.

We say that an epoch is large if �i ≥ max{8c/v,
√

n} and we denote by
K the number of large epochs. Note that the number of large epochs is K =
Θ(logr(m/�i)) = Θ(logr(nv/c)).

The organization of updates into epochs formalizes the intuition provided in
the previous section. For any large epoch i with �i updates, we note that the
number of update operations following it is at most 2�i/r. In other words, the
future updates are a little bit smaller than the total number of updates within
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the i-th epoch. So, we can balance the two components of the communication
cost in the one-way protocol from the prior section to prove our lower bound.

Important Notions of Information. Finally, we will introduce two more
variables that will aim to capture the notion of information that will be utilized
throughout our work. In particular, these will look very similar to the communi-
cation cost of the one-way protocol from the prior section. However, they will be
used specifically with respect to our epoch organization. We denote X≥pi−1

u to be
the number of probes performed by updates occurring after the i-th epoch (that
is, in epochs i − 1, . . . , 0) that access a cell last overwritten in the i-th epoch.
We denote Xi

Q to be the number of probes performed by all queries q ∈ Q to
cells last overwritten in the i-th epoch. We denote Xi

q to the number of probes
performed by a single query q ∈ Q to cells last overwritten in the i-th epoch.

We denote by Z(i, Q) the quantity defined as follows:

Z(i, Q) = min
{
|Q| · v,E

[
X≥pi−1

u

]
(ω + log log n) + b · E

[
Xi

Q

]}
.

This captures the total amount of information needed to answer all queries
q ∈ Q. Note, this matches the communication cost of our one-way communication
protocol in Lemma 1 by plugging in the i-th epoch as the missing group of
updates. We use the minimum as we know the information transferred is at
most |Q| · v bits as v bits are learned on average from each |Q| queries. For a
single query q ∈ Q, we can similarly define Z(i, q):

Z(i, q) = min

{
v,

E[X≥pi−1
u ] (ω + log log n)

|Q| + b · E
[
Xi

q

]}
.

We use minimum as the average information in a single query is v bits. We will
utilize Z(i, Q) and Z(i, q) later as the events that can be viewed by an adversary.

4.3 Bounding Query and Update Times

Finally, we will finish the proof of Theorem 3 in this section. In particular, we will
leverage the epoch organization as well as our one-way communication protocol
to prove lower bounds on the query and update times. To do this, we start by
showing that the cost of the one-way communication protocol can be directly
related to the entropy of the correct answers of the query set.

Lemma 2. Consider a data structure DS with error probability α ≤ v/(b log2 n)
for a data structure problem P that satisfies the Large Information Retrieval
property. Then for every large epoch i such that E[Xpi−1

u ] = O(tu�i/(rK)), there
exists a sequence Qi of at least �i queries such that

Z(i, Qi) = Ω(�i · v).

Proof. We remind the reader that a large epoch i consists of �i ≥ √
n update

operations. Therefore, if we consider a sequence U of n updates and the sub-
sequence of the �i updates of the i-th epoch then, by the Large Information
Retrieval property, there exists a sequence Qi of queries such that
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H(A(U, Qi) | U−i) ≥ �iv,

where U−i is the sequence of updates obtained from U by removing the updates
of epoch i. Since Qi has at least �i queries, it suffices to focus on the second
argument of the minimum of the definition of Z(i).

Next, we utilize query set Qi in the context of the one-way communication
protocol of Lemma 1, where Alice and Bob receive the updates U−i. By Shan-
non’s source coding theorem, the expected length of Alice’s encoding of A(U, Q)
must be at least the entropy of A(U, Q) conditioned on the shared information
U−i and R. Moreover, observe that R is chosen independently from U and Q
and thus the expected length of the encoding must be at least

H(A(U, Q), | U−i,R) = H(A(U, Q) | U−i) ≥ �iv.

In other words, the expected communication cost must be Ω(�i · v).
Recall that we use pi to denote the position of the first operation of the i-

th epoch and si−1 is the number of update operations in epochs 1, 2, . . . , i − 1.
Furthermore, we use Xi

Qi
to denote the number of probes by queries q ∈ Qi into

cells last overwritten by updates Ui in the i-th epoch. Therefore, by Lemma 1,

c+E

[
X

≥pi−1
u

] (
ω + log

tusi−1

E[X
≥pi−1
u ]

)
+E

[
X

i
Qi

] (
b + log

|Qi|
E[Xi

Qi
]

)
+α · |Qi| ·

(
b + log

1

α

)
≥ �iv.

Note, that α ≤ v/(b log2 n), so we get that the last addend is at most
|Qi|v/ log2 n · (1 + log(bn/v)). As b = nO(1) and |Qi| = O(�i), we get that this
is at most �iv · O(1/ log n) ≤ �iv/8 for sufficiently large n. For a large epoch, we
also have c ≤ �iv/8. Therefore,

E
[
X≥pi−1

u

] (
ω + log

tusi−1

E[X≥pi−1
u ]

)
+ E

[
Xi

Qi

](
b + log

|Qi|
E[Xi

Q]

)
≥ 3

4
· �iv.

Consider two cases. If E
[
Xi

Q

]
≤ |Qi|/16, then log |Qi|

E[Xi
Qi

]
≤ 4. Therefore,

E
[
X≥pi−1

u

] (
ω + log

tusi−1

E[X≥pi−1
u ]

)
+ b · E

[
Xi

Qi

]
≥ 1

2
· �iv

as |Qi| ≥ �i. Finally, we use the fact that E[Xpi−1
u ] = O(tu�i/(rK)) and plug it

into the above to obtain the following inequality:

E
[
X≥pi−1

u

]
(ω + log log n) + b · E

[
Xi

Qi

]
= Ω(�iv)

where we used the fact that si−1/�i ≤ 2/r and K = O(log n) by our epoch
construction. This completes the proof for the case of E

[
Xi

Qi

]
≤ |Qi|/16. For

the other case when E
[
Xi

Qi

]
≥ |Qi|/16, we can see that the result is trivially

obtained by plugging the value into Z(i) since |Qi| ≥ �i. 	
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The lemma above tells us that, for every large epoch, there exists one set of
queries with a large value of Z. The set of “expensive” queries depends on the
epoch and different epochs might have different bad queries. Conversely, a query
q might be “expensive” for one epoch but not for the others. Next, we show that
the Adversarially Observable Event implies that there exists one query that is
“expensive” for all epochs.

Using the Adversarially Observable Event. As we shall see later, this prop-
erty is guaranteed by the security notions (differential privacy, obliviousness)
that we will consider for the specific data structure problems for which we will
derive lower bounds. We note that quantity Z(i, q) only depends on the data
structure probes and thus it can be efficiently computed by an adversary even
without knowing the executed query q. Therefore, by the Adversarially Observ-
able Event property, its value should not “vary too much” with q.

To formalize this, we define the event Ei
q to be a binary random variable that

checks whether Z(i, q) is above a certain threshold. In particular, we denote

Ei
q = 1 ⇐⇒ X≥pi−1

u

|Q| (ω + log log n) + b · Xi
q ≥ βv

for some constant β > 0 that we will choose later. Note, the above formula is
the second argument of Z(i, q). We will also use Ei

Q as a binary random variable
with respect to the second argument of Z(i, Q) as follows:

Ei
Q = 1 ⇐⇒ X≥pi−1

u (ω + log log n) + b · Xi
Q ≥ |Q|βv

We show that there exists a single query q such that Pr[Ei
q = 1] ≥ p for some

constant probability p > 0 for all large epochs i. We prove this next:

Lemma 3. Consider a data structure DS for a data structure problem P satis-
fying the Large Information Retrieval and the Event Probability Transfer prop-
erties. Then, there exists a query q and a constant 0 < p ≤ 1 such that for all
large epochs i where E[Xpi−1

u ] = O(tu�i/(rK)), Pr[Ei
q = 1] ≥ p.

Proof. By Lemma 2, we know that for each large epoch i, it must be that the
following holds for some constant 0 < γ < 1:

Z(i, Q) = min
{
�i · v,E

[
X≥pi−1

u

]
(ω + log log n) + b · E

[
Xi

Q

]}
≥ γ · |Q| · v

as |Q| = O(�i). We set the value β from the definition of the events Ei
Q and Ei

q

equal to β := γ/2. For each large epoch i where E[Xpi−1
u ] = O(tu�i/(rK)), we will

show there exists some query qi ∈ Q such that Pr[Ei
qi = 1] > p′ for some constant

positive probability p′. Suppose this is false and Pr[∃q ∈ Q,Ei
q = 1] = o(1). Then,

we get that with probability at least 1 − o(1), the following is true:

∑
q∈Q

Z(i, q) =
∑
q∈Q

X≥pi−1
u

|Q| (ω + log log n) + b · Xi
q ≤ γ/2 · |Q| · v
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where we can always use the second argument of Z(i, q) by our assumption that
Ei

q �= 1. Let pi
q = Pr[∃q ∈ Q,Ei

q = 1]. Next, we bound the expectation of Z(i, Q):

E[Z(i, Q)] ≤ (1 − pi
q)

∑
q∈Q

(
X≥pi−1

u

|Q| (ω + log log n) + b · Xi
q

)
+ pi

q · (|Q| · v)

≤ γ/2 · |Q| · v + o(|Q|v) < γ · |Q| · v.

To understand this inequality, we consider the two cases. We can always bound
the value of Z(i, Q) by |Q| · v as we do when ∃q ∈ Q such that Ei

q = 1. For the
other case, note that Z(i, q) < v so we can replace it with the second argument of
Z(i, q) and apply linearity of expectation. Note that the last derived inequality
contradicts with the first inequality from Lemma2. Therefore, for some proba-
bility p′ > 0, for each large epoch i such that E[Xpi−1

u ] = O(tu�i/(rK)), there
exists qi ∈ Q and Pr[Ei

qi = 1] > p′.
Since the value of Ei

q can be efficiently computed, the Event Probability
Transfer property gives that there exists a query q such that Pr[Ei

q = 1] = p for
some constant p > 0 and for all large epochs i. 	


The above lemma shows that there must exist one “expensive” query q for
which Z(i, q) is large for all large epochs i for which the expected value of Xpi−1

u

is not too large. We next show that these extra conditions holds for all large
epochs. In particular, we show that the average number of probes to cells last
overwritten in each of the �i update operations is at most O(tu/r).

Lemma 4.
∑

i E[X≥pi−1
u ]/�i = O(tu/r) over all large epochs i.

Proof. We start by identifying which probes contribute to X≥pi−1
u for all large

epochs i. Let us consider a probe occurring as part of the β-th update operation
and denote by γ the index of the operation that last overwrote the same cell.
We index operations according to the time they were performed so that updates
occurring in epoch 1 have the largest index. In other words, update operations are
numbered from left to right and we remind the reader that epochs are numbered
from right to left. Therefore we have β > γ and we let x denote the epoch
satisfying the inequality sx−1 ≤ β − γ < sx. Note that this x is unique as si

grows as i grows. We break down the analysis into two different cases.

Case I: i < x. The probe does not contribute to X≥pi−1
u for i < x regardless

of the location of the query operation. First, suppose that the query operation
occurs immediately after the β-th operation; that is, the β-th update operation
is part of epoch 1. Since β−γ ≥ sx−1, the γ-th operation takes place after epoch
x − 1 has finished and, since i < x, this implies that epoch i begins after the
γ-th update has been performed. If instead the query operation does not occur
immediately following the β-th operation then i-th epoch will begin even later
and thus it is still after the γ-th update operation has been performed.

Case II: i ≥ x. First of all observe that epoch i− 1 must start between γ and β
and thus there at most β −γ < sx good positions. Moreover, observe that epoch
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i−1 cannot start before β −si−1 +1, for otherwise operation β would take place
before operation 1 which is clearly a contradiction. We thus have at most si−1

good positions. Therefore the probability that a probe performed as part of the
β-th update contributes to X≥pi−1

u is at most 2/n · min{si−1, sx}.

Now a probe associated with x contributes to X≥pi−1
u , for randomly chosen

epoch i, for at most 2/(nK) · min{si−1, sx}, for i ≥ x. By summing over all
i ≥ x, we can bound the contribution of one probe to a random epoch by∑

i≥x
2min{si−1,sx}

n
1
K ≤ 4�i

rnK . As we have at most n · tu probes, we conclude that∑
i E[X≥pi−1

u ]/�i ≤ 4tu/r. 	


Finally, we are ready to prove our main theorem.

Proof of Theorem 3. We start from Lemma2. For every large epoch i such that
E[X≥pi−1

u ] = O(tu�i/(rK)), we have Pr[Z(i, q) = Ω(v)] ≥ p for some constant
p > 0 for every query q. In other words, we know that by linearity of expectation:

E[X≥pi−1
u ]
|Q| (ω + log log n) + b · E

[
Xi

q

]
= Ω(v).

First, we do the easier task of bounding E[Xi
q]. Note that the expected query

time is
∑

i E[Xi
q] ≤ tq where we only iterate over all large epochs i. Consider

the experiment of picking a random epoch i. Then, know that E[Xi
q] ≤ tq/K

where K is the number of large epochs. By Markov’s inequality, we know that
Pri[E[Xi

q] ≤ 100tq/K] ≥ 99/100.
By Lemma 4, we know that

∑
i E[X≥pi−1

u ]/�i ≤ γtu/r for some constant
γ > 0 over all large epochs i. Again, we can show that for a random index i, that
Pri[E[X≥pi−1

u ] ≤ 100γ�itu/(rK)] ≥ 99/100 as there are K large epochs. Then,

Pr
i

[
E[X≥pi−1

u ] ≤ 100γ�itu
rK

∧ E[Xi
q] ≤ 100tq

K

]
≥ 98/100.

We pick any such i satisfying the above two inequalities for the rest of the proof.
By plugging the above bounds into the inequality and using |Q| = Θ(�i),

tu
rK

(
ω + log

si−1

�i
rK

)
+

tq
K

b = Ω(v).

By using the fact that si−1/�i ≤ 2/r and K = O(log n) as r ≥ 2, we obtain

tu
rK

(ω + log log n) +
tq
K

b = Ω(v).

Finally by substituting r = 2 + (ω + log log n)/b and K = Θ(logr(nv/c)),

tu + tq = Ω
(v

b
· K

)
= Ω

(
v

b
· log(nv/c)
1 + log((ω + log log n)/b)

)

that completes our proof. 	
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4.4 Extension to Multiple Non-colluding Servers

In this section, we show that our framework may also be extended to the multiple
non-colluding server setting. We assume there are k servers and the PPT adver-
sary has compromised exactly one server. Our lower bound immediately applies
to settings where the adversary compromises multiple (or even all) servers. First,
we define the equivalent of the Event Probability Transfer property for k servers.

Definition 4 (k-Event Probability Transfer). For any update sequence U
and query q, let Ei(U, q) be some event that can be checked whether to have
occurred by a PPT adversary that compromised the i-th server. Suppose that
Pr[Ei(U, q)] ≥ ζ/k for some constant ζ > 0. Then, we say that a data structure
enjoys the k-Event Probability Transfer property if for any query q′, it holds that

Pr[Ei(U, q′)] = Ω(Pr[Ei(U, q)])

where the probability is over the internal randomness of the data structure.

We present our theorem below and defer the proof to the full version that
adapts some ideas from [29] for our proof technique.

Theorem 4. Consider a data structure problem P that allows update and
query operations such that query outputs are b bits and b = nO(1). Consider a
data structure DS that implements problem P over k servers with expected update
and query overhead tu and tq respectively, client storage c and error probability
α ≤ v/(b log2 n) in the cell probe model with ω ≥ 1 cell size. If P enjoys the Large
Information Retrieval property and the Event Probability Transfer property then

tu + tq = Ω

(
v

b
· log(nv/c)
1 + log((ω + log log n)/b)

)
.

The above lower bound holds even for k = nO(1) servers. In particular, the
above can be used to show lower bound that even if a PPT adversary compro-
mises only one of k = nO(1) servers under certain privacy properties. See Sect. 5.1
for some further discussion.

5 Lower Bounds

In this section, we show that our framework may be used to derive a whole new
set of logarithmic lower bounds for differentially private (and, thus, oblivious)
versions of data structure problems.

We start by applying our framework to prove our main result of logarithmic
lower bounds for DP RAMs in the setting of b � ω. To show that our framework
may handle various privacy guarantees, we show that we can extend the search-
able encryption lower bounds in [34] for the setting of b � ω. We also consider a
suite of classical data structures where o(log n) overhead is known without any
privacy guarantees. Through our framework, we show that these data structures
require logarithmic overhead as soon as privacy requirements are enforced. All
missing proofs are deferred to the full version.
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5.1 Differentially Private RAMs

As the first application of our framework, we will prove logarithmic lower bounds
for differentially private (DP) RAMs. As a reminder, a prior lower bound of
Ω(b/ω · log(nb/c)) was proved in [37]. However, this does not preclude sub-
logarithmic overhead when b � ω. For example, if b = O(1) and ω = Θ(log n),
the above lower bound becomes trivial at Ω(1). In this section, we show that
this lower bound remains logarithmic even in the case when b � ω.

We start by defining (ε, δ, 1, k)-DP for k-server data structures for which the
view of an adversary that corrupts 1 of the k servers is (ε, δ)-DP, following the
definition in [37] where neighboring sequences of operations are those that differ
in exactly one operation. As a note, this definition uses computational differential
privacy with respect to efficient adversaries.

Definition 5. A data structure DS is (ε, δ, 1, k)-DP (differentially private) if for
any pair of operational sequences O1 and O2 that differ in at most one operation
and any PPT adversary A that compromises one of the k servers,

Pr[A(TDS(O1)) = 1] ≤ eε Pr[A(TDS(O2) = 1] + δ

where TDS(O) is the transcript seen by the adversary across all compromised
servers when the operational sequence O is executed by DS.

We show that our lower bound framework enables proving logarithmic lower
bound for DP RAMs as follows. See the proof in the full version.

Theorem 5. Any (ε, δ, 1, k)-DP data structure DS that solves the dynamic array
maintenance problem for n b-bit entries with constant ε > 0 and δ < β/k, for
a sufficiently small constant β > 0, expected update and query time tu and tq,
client storage c and error probability α ≤ 1/ log2 n in the cell probe model with
ω ≥ 1 cell size must satisfy the following:

tu + tq = Ω

(
log(nb/c)

1 + log((ω + log log n)/b)

)
.

Discussion about k and δ. We note that for the setting of k ≥ 2 servers
and one compromised server, we can only prove non-trivial lower bounds when
δ < 1/k. To see this, note that there is a trivial algorithm that picks one of the
random k servers and performs a plaintext data structure. An adversary will
only see anything with probability at most 1/k. Therefore, this is a (0, 1/k)-DP
data structure. Our lower bound shows that anything with stronger security
parameters results in the identical lower bound as the single-server model. As
an extreme example, if k = nO(1) and δ = negl(n), our lower bound still holds.

5.2 Set Membership

Next, we move onto proving lower bounds for other data structures. In general,
previous lower bounds have focused on “key-value” types of data structures.
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For example, RAMs are essentially arrays with keys from [n] and b-bit values.
Prior lower bounds relied upon the fact that the b-bit value is truly random.

We show that our lower bound framework can also used to prove lower bounds
for data structures without associated values. For the first such problem, we will
consider the simple dynamic set data structure that maintains a subset S ⊆ [n]
that enables the following two operations:

1. add(i): Adds item i ∈ U into subset S.
2. query(i): Returns 1 if i ∈ S and 0 otherwise.

Note that the set problem is a natural problem where the query output size is
only a single bit that will most likely be much smaller than the word size ω.

In the non-oblivious setting, it is clear that the dynamic set problem over
the universe [n] can be solved with O(1) time using a bit vector of length n.
Using our framework, we will show that the dynamic set membership problem
with differential privacy requires logarithmic overhead. The proof may be found
in the full version.

Theorem 6. Any (ε, δ, 1, k)-DP data structure DS that solves the dynamic set
problem over [n] with constant ε > 0 and δ < β/k for a sufficiently small constant
β > 0, expected update and query time tu and tq, client storage c and error
probability α ≤ 1/ log2 n in the cell probe model with ω ≥ 1 cell size must satisfy:

tu + tq = Ω

(
log(n/c)

1 + log(ω + log log n)

)
.

5.3 Predecessor and Successor

We consider another classic data structure for which sub-logarithmic overhead
constructions are known without any privacy requirements. In this section, we
will prove lower bounds for the predecessor and successor problem. The prede-
cessor data structure stores subset S ⊆ U of size at most n with the following:

– add(i): Adds item i ∈ U into subset S.
– query(i): Returns the value max{s ∈ S : s ≤ i}. That is, the largest value

that is not strictly larger than the value of i.

In the non-oblivious setting, there exists dynamic predecessor and successor
data structures with overhead O(log log |U |) using van Emde Boas trees [45]. For
standard settings of |U | = nO(1), this becomes O(log log n). With differentially
privacy, the overhead must be logarithmic. See the proof in the full version.

Theorem 7. Any (ε, δ, 1, k)-DP data structure DS that solves the dynamic pre-
decessor (successor) problem over universe U storing at most n items with con-
stant ε > 0 and δ < β/k for a sufficiently small constant β > 0, expected update
and query time tu and tq, client storage c and error probability α ≤ 1/ log2 n in
the cell probe model with ω ≥ 1 cell size must satisfy the following:

tu + tq = Ω

(
log(n log(|U |/n)/c)

1 + log((ω + log log n)/ log(|U |/n))

)
.
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5.4 Disjoint Sets (Union-Find)

Another classic data structure that has very efficient (sub-logarithmic) overhead
is the disjoint sets (union-find) data structure. At a high level, the disjoint sets
data structure must maintain n items that may be arranged into disjoint sets.
Initially, the n items are assumed to be in n individual different sets. Afterwards,
the following operations may be performed:

– union(a, b): Given a, b ∈ [n], merge the two sets containing a and b.
– find(a): Given an item a ∈ [n], return the identity of the set containing a.

For correctness, it is required that if two items a, b ∈ [n] are in the same set,
then find(a) should be equal to find(b). Also, if a and b are not in the same
set, then find(a) should be different from find(b). We will assume that set
representations are integers from the set [nO(1)] as done by classic constructions.
Thus, the query output size is O(log n) bits.

There are classic constructions [44] that require only O(α(n)) overhead where
α(n) is the inverse Ackermann function. In all reasonable settings, α(n) is prac-
tically constant. If we enforce differentially privacy, we leverage our framework
to prove a logarithmic lower bound. See the proof in the full version.

Theorem 8. Any (ε, δ, 1, k)-DP data structure DS that solves the dynamic dis-
joint set problem over at most n items with constant ε > 0 and δ < β/k for
a sufficiently small constant β > 0, expected update and query time tu and tq,
client storage c and error probability α = O(1/ log2 n) in the cell probe model
with ω ≥ 1 cell size must satisfy the following:

tu + tq = Ω

(
log(n/c)

1 + log(ω/ log n)

)
.

5.5 Searchable Encryption (Encrypted Multi-maps)

Finally, we show that our framework can also be used to prove logarithmic lower
bounds for other privacy notions beyond differential privacy and obliviousness. In
this section, we consider lower bounds for data structures that provide guarantees
on upper bounds on leakage functions. We note this is a standard approach to
proving privacy for searchable encryption schemes [13].

Patel et al. [34] proved lower bounds for encrypted multi-maps that guarantee
leakage at most the decoupled key-equality leakage pattern LDecKeyEq. This leakage
reveals whether two queries (or two updates) operations occur for the same key.
However, this leakage does not reveal whether a query and an update operation
occur on the same key. In particular, they showed such data structures must have
overhead Ω(b/ω · log(nb/c)) for multi-maps that can store values of b bits. Once
again, there remains the possibility that sub-logarithmic overhead is possible
when b � ω. Using our framework, we show that logarithmic overhead is still
required. We refer to (L, ε, 1, k)-secure as a data structure with leakage at most
L, adversarial advantage at most ε for a PPT adversary that compromises one
of k servers. Formal definitions and the proof may be found in the full version.
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Theorem 9. Any (LDecKeyEq, β/k, 1, k)-secure data structure DS that solves the
dynamic multi-map problem for n b-bit entries for a sufficiently small constant
β > 0, expected update and query time tu and tq, client storage c and error
probability α ≤ 1/ log2 n in the cell probe model with ω ≥ 1 cell size must satisfy:

tu + tq = Ω

(
log(nb/c)

1 + log((ω + log log n)/b)

)
.

LDecKeyEq Lower Bounds. Similar to differential privacy, we can prove a generic
result for LDecKeyEq leakage with respect to the Event Transfer Probability prop-
erty. See the full version for more details. As a result, we can prove lower bounds
for LDecKeyEq-secure versions for sets, predecessor and union-find. We omit fur-
ther details as they follow as straightforward applications of our framework.

6 Constructions for Oblivious Stacks and Queues

We show that it is possible to construct an oblivious stack (queue) with sub-
logarithmic overhead. by showing one can speed up oblivious stacks (queues) by a
multiplicative b/ω factor. This gives a separation result showing that, when b �
ω, oblivious stacks (queues) are inherently faster than ORAMs. Our construction
will match the Ω(b/ω · log(nb/c)) lower bound in [21].

Construction. We now describe our oblivious stack construction. It can be
modified in a straightforward manner to also obtain oblivious queues or deques.
Our construction of an oblivious stack of at most n elements of size b with a
server with word size w will make black-box use of any ORAM Π with blocks
of length b′ = ω. The ORAM will store at most N = O(n · (b/ω)) blocks each
containing L := ω/b stack elements. We can now consider two settings depending
on the values of b and ω. When b < ω, L > 1 signifies that each ORAM block
stores multiple stack elements. For b ≥ ω, L ≤ 1 signifies that a stack element is
spread over one or more ORAM blocks. Assuming one-way functions, there exist
ORAMs with O(log(Nb′/c)) = O(log(nb/c)) query overhead and O(c) client
storage when the block size is equal to the word size [1].

At a high level, the client will store an integer counter C describing the total
number of blocks currently stored in the stack to keep track of the location of
the stack top. For the case when b ≥ ω, we can directly use the above ORAM as
an oblivious stack and each stack operation will involve b/ω ORAM operations.
The value of C keeps a pointer to where these operation must occur.

Let us now focus on the case when b < ω and each ORAM block thus contains
L = ω/b stack blocks. The idea is to break up stack operations into groups of L
operations. To locally handle the L operations of a group, we make sure that, at
the start of a group of operations, the client local memory contains the L elements
at the top of the stack. As it is easily seen, this is all the information needed
to perform a group of L operations and at the end of a group, the local client
memory holds at most 2L stack elements (this happens if all L operations are
push operations). The client thus performs the write of at most 2L stack elements
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back to the ORAM. Since each ORAM block contains L = ω/b blocks, this can
be accomplished by 3 ORAM write operations, as 2L stack elements could spread
over 3 ORAM blocks. Not to break obliviousness, the client performs 3 writes
even if the stack elements found in client memory at the end of a group happen
to belong to fewer ORAM blocks. Following this and to prepare for the next
group, the client reads the top L elements of the stack from the ORAM and
this can be accomplished by reading 2 ORAM blocks. A formal description and
proof may be found in the full version.

Theorem 10. Assuming one-way functions, the above construction is an obliv-
ious stack for block size b ≥ 1 and word size ω ≥ 1 with client storage
c = O(ω + log n) bits, server storage O(n · b) bits and amortized overhead
O(b/ω · log(nb/c)).

7 Conclusions

In this work, we present logarithmic lower bounds for differentially private data
structures for all parameter settings of block sizes b and cell sizes ω. This
improves upon the prior lower bounds proved in [37] for the setting of b � ω and
answers an open question posed in [23]. Our lower bounds apply for differentially
private RAMs, sets, predecessor and disjoint sets (union-find).

Additionally, we present a framework that can be re-used for different data
structure problems and privacy guarantees. To try and make our techniques
more accessible, we identify two simple, minimal conditions that are required
to prove lower bounds in our framework. We reduce proving logarithmic lower
bounds to showing that a specific data structure problem and privacy guarantee
satisfy the two conditions of our framework. We hope our framework will make
it easier to prove lower bounds without unnecessarily customizing techniques.
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and conclusions or recommendations expressed in this material are solely those of the
authors.
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Abstract. In this paper, we study (batch) private information retrieval
with private preprocessing. Private information retrieval (PIR) is the
problem where one or more servers hold a database of n bits and a client
wishes to retrieve the i-th bit in the database from the server(s). In PIR
with private preprocessing (also known as offline-online PIR), the client
is able to compute a private r-bit hint in an offline stage that may be
leveraged to perform retrievals accessing at most t entries. For privacy,
the client wishes to hide index i from an adversary that has compromised
some of the servers. In the batch PIR setting, the client performs queries
to retrieve the contents of multiple entries simultaneously.

We present a tight characterization for the trade-offs between hint size
r and number of accessed entries t during queries. For any PIR scheme
that enables clients to perform batch retrievals of k entries, we prove a
lower bound of tr = Ω(nk) when r ≥ k. When r < k, we prove that
t = Ω(n). Our lower bounds hold when the scheme errs with probability
at most 1/15 and against PPT adversaries that only compromise one
out of � servers for any � = O(1). Our work also closes the multiplicative
logarithmic gap for the single query setting (k = 1) as our lower bound
matches known constructions. Our lower bounds hold in the model where
each database entry is stored without modification but each entry may
be replicated arbitrarily.

Finally, we show connections between PIR and the online matrix-
vector (OMV) conjecture from fine-grained complexity. We present bar-
riers for proving lower bounds for two-server PIR schemes in general
computational models as they would immediately imply the OMV con-
jecture.

1 Introduction

Private information retrieval (also known as PIR) is a powerful cryptographic
primitive that enables privacy-preserving retrieval of entries from a database
held by one or more servers where a subset of the servers may be untrusted and
colluding. For a database with n entries uniquely indexed by integers from [n],
PIR enables a client to retrieve the i-th entry of the database without revealing

The full version of this paper may be found at [71].
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the query index i to the subset of colluding adversarial servers. The primitive of
PIR was first introduced by Chor, Kushilevitz, Goldreich and Sudan [20] in the
multi-server information-theoretic setting where the adversary compromises a
strict subset of the servers with many follow-up work in this area (see [4,7,9,19,
31,32,70] and references therein). Kushilevitz and Ostrovsky [51] first studied
PIR in the single-server setting against computationally bounded adversaries.
Many further works have also studied single-server PIR including [2,3,5,8,16,
28,34,35,52,58,59] to list some examples.

PIR is an important cryptographic tool due to its endless implications to
real-world settings. PIR has been used as a critical component in the design
of many practical privacy-preserving applications such as advertising [38,66],
communication [6,57], friend discovery [11], media consumption [40] and publish-
subscribe systems [18] to list some examples.

Despite the potential applicability of PIR, the computational overhead of
PIR remains a significant bottleneck that hinders wide spread usage of PIR in
large-scale real-world settings. Beimel, Ishai and Malkin [10] proved that linear
server computation is always required even in the multi-server setting where only
a strict subset of servers is compromised.

In an attempt to surpass this barrier, many prior works have considered
variants of PIR that have successfully overcome the linear server computation
obstacle. We present two of these successful variants in PIR with preprocessing
and batch PIR below.
PIR with Preprocessing. Beimel, Ishai and Malkin [10] introduced the notion
of PIR with preprocessing where the server may compute a public r-bit hint in
an offline, preprocessing stage. During query time, the server will aim to lever-
age the hint to answer PIR queries with sub-linear computational time t. We
will denote this the public preprocessing setting as the hint is made available to
the adversary’s view. For this model, Beimel, Ishai and Malkin [10] presented
constructions that had O(n1/2+ε) server time during queries but required polyno-
mial nO(1) sized hints. On the other hand, Beimel, Ishai and Malkin [10] proved
a tr = Ω(n) lower bound that was further improved to tr = Ω(n log n) in [64].
This model has also been studied under the name of public-key doubly-efficient
PIR [15]. There remains a large gap between the best upper and lower bounds for
sub-linear server time t = o(n) as the best upper bounds still require tr = nO(1).

As an analog, one can also consider the private preprocessing setting (also
known as offline-online PIR) where the r-bit private client hint H is computed
and stored by the client hidden from the adversary’s view. This model has been
studied in many works including [14,15,17,27,41,60,67]. Corrigan-Gibbs and
Kogan [24] presented an upper bound of tr = O(n). For example, this means
that one can obtain sub-linear server time such as t = Õ(

√
n) using a Õ(

√
n)-bit

hint. The same work also proves a lower bound of tr = Ω̃(n). We note that there
remains a multiplicative logarithmic gap between known constructions and lower
bounds leading to the following question:

What is the optimal trade-off between hint size and server computation
for PIR with private preprocessing?
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Batch PIR. Another approach to obtain sub-linear server computation for PIR
is to consider batch queries. In this setting, the client knows a batch of k entries
that it wishes to retrieve ahead of time. The goal is to obtain amortized sub-
linear server time across all k queries to beat the naive approach of executing k
independent queries that results in t = O(nk). Batch PIR has been studied in a
large number of works including [5,6,10,39,43,47,56,62]. Excitingly, it has been
shown that one can execute batch PIR queries with minimal overhead compared
to single-query PIR. Ishai, Kushilevitz, Ostrovsky and Sahai [47] showed the
existence of a batch PIR that uses total server time t = Õ(n) when retrieving k
entries simultaneously. Therefore, the amortized time per query is Õ(n/k) that
is sub-linear for sufficiently large k.
Combining Batching and Preprocessing. An intriguing idea to further
improve the computational overhead of PIR would be to combine the techniques
from batching and private preprocessing. First, we can take a look at what seems
possible. As stated earlier, one can perform batch PIR queries with almost no
overhead compared to single-query PIR. The dream would be to obtain the
same result when performing batch queries for state-of-the-art PIR with private
preprocessing schemes. In more detail, this dream construction would enable
performing batch queries to k entries while maintaining the trade-off tr = Õ(n)
that results in amortized sub-linear query time Õ(n/(rk)) when using r-bit hints.

On the other hand, we can consider the efficiency achieved by straightfor-
ward approaches. The simplest construction is to execute k queries in parallel
by storing k hints and performing k query algorithms resulting in tr = Õ(nk2).
Another option is to perform k queries in sequence using a construction that
enables multiple queries for a single preprocessing stage (such as the two-server
schemes in [24,67]). This results in tr = Õ(nk) but requires k rounds of client-
server interaction. There remains a gap between the potential dream construc-
tion and the straightforward approaches. This leads to the following interesting
question:

What is the optimal efficiency achievable by PIR schemes
that utilize both batch queries and private prepocessing?

In this work, we address this question by providing a tight characterization of
the trade-offs between the hint size and online server query time. We show that
the dream construction is not possible and known approaches already achieve
the optimal trade-off.

1.1 Our Contributions

In this paper, we will prove a tight characterization of the trade-offs between
the hint size and the number of accessed (probed) entries during query time
for PIR schemes that aim to combine batching and offline private preprocessing
techniques. Note that any lower bound on number of probed entries is also a lower
bound on server query time. We will present a lower bound that encompasses a
wide range of constructions and matches the overhead of prior works.
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Lower Bound. As our main result, we will prove a trade-off between the size
of the private hint, r, computed in the offline preprocessing stage and the num-
ber of entries accessed (probed) by the server during online query execution, t,
that also acts as a lower bound on the server time during queries. For a scheme
that enables batches of k queries, we will show that tr = Ω(nk). To enable
wider applicability of our result, we prove our lower bound for constructions
with potentially multiple rounds of interaction during queries, non-zero error
probabilities and/or inefficient preprocessing algorithms. Additionally, we con-
sider weak PPT adversaries that only compromise one server. The following
lower bounds are proven where the server(s) store the database is an unencoded
manner, but may arbitrarily replicate entries (see Sect. 2.2 for more details).

Theorem 1 (Informal). For any � = O(1) and any k-query, �-server batch
PIR with private preprocessing scheme that errs with probability at most 1/15
and is secure against a PPT adversary that compromises one server, it must be
that tr = Ω(nk) when k ≤ r ≤ n/400. If r < k, it must be that t = Ω(n).

The condition that k ≤ r ≤ n/400 is necessary to rule out trivial edge cases.
There is a trivial setting where the entire database is stored in the hint using
r = n. This would require t = 0 server time to retrieve any entries circumventing
our lower bound. We avoid this edge case by enforcing that r ≤ n/400. The choice
of n/400 was for convenience and one may re-do our proofs to prove the same
result for r ≤ n/c for constant c ≤ 400. In the case that r < k, one can ignore the
hint and execute a k-query batch PIR in Õ(n) time matching our lower bound.

As our lower bound is for multiple servers, it immediately applies to the single
server setting. Additionally, our result also applies to more powerful adversaries
that compromise multiple (or all) servers or use infinite computational power.

We note that our lower bound immediately applies to the single-query setting
where k = 1. As an immediate corollary, we get that:

Theorem 2 (Informal). For any � = O(1) and any �-server, single-query PIR
with private preprocessing scheme that errs with probability at most 1/15 and is
secure against a PPT adversary that compromises one server, it must be that
tr = Ω(n) when r ≤ n/400.

This improves upon the previous known single query lower bounds [24] by
multiplicative logarithmic factors closing the gap for single-query setting (for
example, see Appendix A of [64] for a concrete matching instantiation). Our
batch lower bound also improves upon the batch lower bounds from a concurrent
work [22] by multiplicative logarithmic factors.

Finally, we note that our lower bounds may be directly applied to PIR with
public preprocessing. The server may arbitrary store a r-bit hint encoding of the
database. Then, our work proves a tr = Ω(n) lower bound. However, we note
that better lower bounds of tr = Ω(n log n) were proven in [64].
Upper Bound. In terms of constructions, we note that our lower bound
has already shown that one of the straightforward approaches of performing
k sequential queries is already optimal (up to logarithmic factors). However,
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this construction requires k rounds of interaction between the client and the
server. To obtain a single-round optimal construction, one can use the pipelined
queries property of prior works [24,49,67] where each client query is independent
of server responses and the client can issue multiple queries simultaneously. We
refer readers to the full version for a more detailed description.

For completeness, we show that there also exists a blackbox reduction from
single-query to batch PIR with private preprocessing without requiring the
pipelined query property. Our reduction maintains a single round, but increases
the overhead by additional logarithmic factors (unlike the pipelined query app-
roach described above).

Theorem 3 (Informal). Assuming the existence of a single-query, �-server
PIR with private preprocessing with tr = f(n), there exists a k-query batch,
�-server PIR with private preprocessing scheme with a single-round query such
that tr = Õ(k · f(n)).

Barriers to General Lower Bounds. Finally, we also study PIR lower bounds
in general computational models without any restrictions on database storage.
To do this, we present connections between PIR and the online matrix-vector
OMV conjecture [45] from fine-grained complexity. We show a barrier to proving
lower bounds for PIR schemes in general models. If one is able to prove a slightly
weaker variant of our standard PIR model lower bounds in general models, it
would immediately imply the online matrix-vector OMV conjecture.

Theorem 4 (Informal). For any constant ε > 0, suppose there exists no
single-query, two-server PIR with private preprocessing with tr = O(n1−ε).
Then, the online matrix-vector OMV conjecture is true.

1.2 Technical Overview

Lower Bound. As our main result, we will lower bound the product of the
private client hint size and the number of probed entries during query time.
The core idea starts from considering any batch PIR with private preprocessing
scheme that probes a sub-linear number of entries in the database. For simplicity,
we will focus on the single-server setting with an information-theoretic adversary.
Consider any scheme Π that only probes at most half the database (that is,
t ≤ n/2). For a database D ∈ {0, 1}n, consider a batch query q ⊆ [n] to a random
subset of k entries and the subset of entries that are probed when executing q,
denoted by P . Note that the adversary sees the set of probed entries P . In
the information-theoretic setting, it must be that the probed set P must be
independent of the query q. As a result, we should expect that only half of the
k random entries in q will also be probed (i.e., |P ∩ q| ≤ k/2). We show similar
ideas still hold in the multi-server setting against PPT adversaries.

The above statement ends up providing a powerful way to compress the
database. By probing and knowing the contents of at most t entries, the execution
of query q will enable learning the contents of approximately k/2 entries for free.
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In other words, we are able to design a compression algorithm for database D
using Π whose compression performance directly relates to the query time of Π.
As the query time t decreases, the rate of compression of our above algorithm
increases. If we take D to be a uniformly random n-bit string, we can immediately
get lower bounds on query time t and the hint size r as our algorithm should
not be able to compress D beyond the information-theoretic minimum.

Finally, we note that there is a technical obstacle in designing the compression
algorithm as described. The above description showed that one can compress
using a single query to get the contents of k/2 entries for free. To get a strong
compression rate, we need that each query recovers Θ(k) new entries for free.
In other words, these discovered-for-free entries must not have been probed or
queried by previous queries used by the compression algorithm. To overcome this
obstacle, we show that picking uniformly random queries will enable discovery
of Θ(k) new entries that were not previously probed or queried. As a result, it
suffices for the compression algorithm to try a set of random queries to find the
necessary query sequence that enables strong compression.
Comparison with [24] and [22] . We highlight the improvements in our proof
techniques compared to the single-query lower bound in [24] and batch lower
bound in [22] that enable logarithmically higher lower bounds. Our lower bound
works directly with (batch) PIR whereas the prior works [22,24] uses abstractions
through Yao’s box problem. Therefore, we are able to prove stronger properties
about (batch) PIR itself without worrying whether these properties also apply
to the abstracted problem. Prior works [22,24] focus on Yao’s box problem with-
out utilizing any privacy properties of PIR. In particular, there is a mismatch
between the requirements of Yao’s box problem and the guarantees from PIR
protocols. In the former, the querier is forbidden from directly probing boxes
that are queried. For the latter, it is possible that all queried entries are probed
directly but the probability must be small (see Lemma 3). Both prior works first
prove lower bounds on Yao’s box problem with some error probability and trans-
late it to PIR later which results in losing logarithmic factors. In contrast, our
work combines error probability directly with privacy properties of PIR enabling
us to prove stronger lower bounds for (batch) PIR with private preprocessing.

Secondly, our paper proves stronger aggregate properties for multiple batch
PIR queries. We show that there exists a set of multiple batch PIR queries
such that at least k/5 probes performed by each query were not probed by any
other batch PIR query in the set. As a result, we avoid unnecessarily encoding
batch PIR queries that do not provide a significant number of free entries in our
compression algorithms (see Step 5(b)ii in Fig. 2). In contrast, [22] only proves
properties of probed entries overlapping with queried entries for a single query in
the multi-box extension of Yao’s box problem (roughly corresponding to a single
batch PIR query). Afterwards, the compression algorithm of [22] uses a greedy
approach by adding the multi-box queries that probe the most new entries.
Unlike our proof, this does not guarantee that queries with a small number of
free entries are not encoded.
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Upper Bound. For our single-round construction, we will leverage batch codes
(introduced by Ishai, Kushilevitz, Ostrovsky and Sahai [47]) and any single-
query PIR with private preprocessing scheme. At a high level, our construction
uses batch codes to split up the database D into m buckets and perform a single-
query PIR to each of the m buckets. We note this is a standard technique done
in the past (see [5,6,47] as some examples). Batch codes guarantee that for any
batch query q = {i1, . . . , ik} ⊆ [n], each of the ij-th entries may be found in one
of the m buckets. We will execute m parallel instances of single-query PIR with
private preprocessing scheme for each of the m buckets where each instance uses
(r/m)-bit hints. As the queries are done in parallel, we note our query algorithm
uses a single-round of interaction. By plugging in a state-of-the-art batch code
construction and single-query PIR with private preprocessing scheme, we obtain
a single-round construction such that tr = Õ(n) matching our lower bound.
Connection to Online Matrix-Vector Conjecture. Finally, we show bar-
riers to proving lower bounds in general models of computation. To do this,
we present a reduction from the online matrix-vector OMV conjecture [45] to
PIR with private preprocessing. To do this, we start from the simple two-server,
information-theoretic PIR with O(

√
n) communication [20] where the database

is represented as a
√

n × √
n matrix M . During query time, the client uploads

vectors a, b ∈ {0, 1}
√

n to each server respectively and the servers respond with
matrix-vector multiplications Ma and Mb. We show that if there exists an effi-
cient algorithm for solving OMV, each server can use the same algorithm to also
provide answers for PIR with similar overhead. As a result, similar lower bounds
that we have already proven for PIR with private preprocessing in general com-
putational models would immediately imply that the OMV conjecture is true.
In other words, this is a barrier as the OMV conjecture is a well-studied open
problem and a core conjecture in fine-grained complexity.

1.3 Related Works

Private Information Retrieval. PIR is a heavily studied cryptographic prim-
itive first introduced by Chor, Kushilevitz, Goldreich and Sudan [20] in the
multi-server setting where it is assumed only a strict subset of servers are com-
promised and colluding. Many follow-up works have worked on improving the
communication efficiency of multi-server PIR in the information-theoretic set-
ting including [4,7,9,32,70]. The most communication-efficient scheme is by Dvir
and Gopi [31] using matching vector codes [30]. Similar work has been done for
computationally-secure multi-server PIR [12,19,36] where the most efficient con-
structions utilize function secret sharing techniques [13]. Single-server PIR was
introduced by Kushilevitz and Ostrovsky [51] with many follow-up works includ-
ing [8,16,28,35,52,59] aiming to improve efficiency or utilize different assump-
tions. Recent work has focused on optimizing the concrete efficiency of single-
server schemes using lattice-based homomorphic encryption [2,3,5,34,58].
PIR with Preprocessing. PIR with public preprocessing was first introduced
by Beimel, Ishai and Malkin [10] where the hint is public and studied in sev-
eral follow-up works [15,64]. The PIR with private preprocessing model has
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been studied in many works and under many different names including doubly-
efficient PIR [14,15,17], private stateful information retrieval [60], private anony-
mous data access [41] and offline-online PIR [24,67]. For private preprocessing,
Corrigan-Gibbs and Kogan [24] presented a construction with optimal trade-offs
tr = Õ(n) that was later extended to handle blocklist lookups efficiently [49].
Shi, Aqeel, Chandrasekaran and Maggs [67] presented logarithmic communica-
tion two-server schemes with optimal trade-offs. Further follow-up works have
aimed to improve the efficiency in various dimensions [25,44].
Batch PIR. Several prior works have studied batch PIR to obtain efficient
constructions using matrix multiplication [10,56], batch codes [42,47,62], the
φ-hiding assumption [39] and list-decoding algorithms [43]. Recent works have
considered practical constructions that utilize probabilistic batch codes [5,6] with
error rates that are experimentally analyzed. These works obtain asymptotically
optimal batch code parameters, but err on a subset of potential batch queries.
PIR Lower Bounds. Lower bounds for PIR have been studied for a variety of
different complexity measures. Beimel, Ishai and Malkin [10] showed that server
computation must be linear without any preprocessing even in the multi-server
setting. Prior works have proven communication lower bounds for PIR [37,69].

In the public preprocessing setting, Beimel, Ishai and Malkin [10] showed that
tr = Ω(n) that was improved to tr = Ω(n log n) by Persiano and Yeo [64]. This
is the highest lower bound possible for PIR with public preprocessing without
implying higher lower bounds for branching programs (see [10,15]). For the pri-
vate preprocessing model, Corrigan-Gibbs and Kogan [24] proved a lower bound
tr = Ω̃(n) for a single query.
Compression Proofs. In our proof, we will use the incompressibility technique
that has been used widely in the past. These were also used in prior PIR lower
bounds [64]. To list some examples outside of PIR, incompressibility has been
used in the studies of generic cryptographic constructions [33], one-way func-
tions and PRGs [26], proofs of space [1], random oracles [21,29,68], the discrete
logarithm problem [23] and oblivious data structures [46,48,50,54,61,63,65].

2 Definitions

2.1 Batch PIR with Private Preprocessing

We start by defining batch PIR with private preprocessing (also known as batch
offline-online PIR). We present our formal definition:

Definition 1 (Batch PIR with Private Preprocessing). A k-query batch
PIR with private preprocessing scheme Π is a triplet of efficient algorithms Π =
(Π.Preprocess,Π.Encode,Π.Query) such that

1. H ← Π.Preprocess(RH ;D) : The preprocessing algorithm is executed by the
client and the server(s). The client receives the coin tosses RH as input and
the server(s) receives the database D as input to compute a preprocessed r-bit
hint H. The hint H is privately stored by the client.
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2. E ← Π.Encode(D): The encoding algorithm is executed by each server. Each
server receives the database D and computes an encoding of the database E.

3. res ← Π.Query(q,H,R;E): The query algorithm is jointly executed by the
client and the server(s). The client receives as input the batch query of k
entries q = {i1, . . . , ik} ⊆ [n], the hint H and coin tosses R while the server(s)
receives the encoded database E as input. Once the query algorithm is com-
plete, the client receives res, the algorithm’s attempted response to query q.

In the above definition, the query algorithm may be interactive and use multi-
ple client-server roundtrips. We will prove our lower bound for query algorithms
with unbounded round complexity to encompass more constructions. For our
upper bounds, we will focus on single-round schemes for better efficiency.

Definition 2 (Standard PIR Model with Replications). A k-query batch
PIR with private preprocessing scheme Π = (Π.Preprocess,Π.Encode,Π.Query)
is in the standard PIR model if it satisfies Definition 1 and Π.Encode may repli-
cate entries arbitraily and store a permutation of the replicated entries.

Constructions in the above model ensure that the server stores each database
entry without encoding. Additionally, the server can replicate entries arbitrarily
and store a permutation of the copies thereafter. We will use the standard PIR
model with replications for our lower bound (see Sect. 2.2 for more details).

Next, we will define the correctness of constructions. We define a query as
correct if the query algorithm returns the correct contents for all k queried
entries. If the contents of any of the k queried entries is incorrect, the answer is
deemed incorrect. The error probability is defined as follows:

Definition 3 (Correctness). A batch PIR with private preprocessing scheme
Π errs with probability at most ε if, for every database D ∈ {0, 1}n and query
q ⊆ [n], it holds that

Pr
RH ,R

[Π.Query(q,H,R;E) �= (Di)i∈q | H] ≤ ε

where E ← Π.Encode(D) and H ← Π.Preprocess(RH ;D).

We move on to formally defining the security of batch PIR with private
preprocessing schemes. We consider adversaries A that compromise 1 ≤ �A ≤ �
out of the � total servers. When a server is compromised, the adversary A sees the
request sent to the server as well as operations performed by the server. For the
i-th server, we denote the adversary’s view by transcript Ti. We define security
using the game in Fig. 1. We denote pη

A(D) as the probability that the adversary
A outputs 1 in the game IndGameη

A(D) that is taken over the randomness of
coin tosses RH and R as well as any internal randomness of the adversary A.
Using this we define security as:

Definition 4 ((δ, �A, �)-Security). A �-server batch PIR with private prepro-
cessing scheme is computationally (δ, �A, �)-secure if for all probabilistically poly-
nomial time (PPT) adversaries A that compromise at most �A servers and all
sufficiently large databases D, the following holds:

|p0A − p1A| ≤ δ(|D|).
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IndGameη
A(D):

1. The challenger C runs E ← Π.Encode(D).
2. The adversary (q0, q1, S) ← A(D, E) on input the database D and encoded

database E outputs two batch queries q0 and q1 as well as subset S ⊆ [�]
of the �A servers to compromise as the challenge.

3. The challenger C executes H ← Π.Preprocess(RH ;D) to obtain hint H
using random coin tosses RH and records transcripts T p

1 , . . . , T p
� .

4. The challenger C executes Π.Query(qη, H, R;E) using random coin tosses
R and records transcripts T1, . . . , T�.

5. The challenger C sends transcripts for all compromised servers, {T p
i , Ti}i∈S ,

to the adversary A.
6. The adversary A({T p

i , Ti}i∈S) outputs a bit b.

Fig. 1. Security game for PIR with private preprocessing.

The above may be modified to consider statistical security by considering all
computationally unbounded adversaries A. We note that the private preprocess-
ing is reflected by the fact that the adversary A does not receive the hint H
as input and only the server’s view of the interaction during the preprocessing
phase. In contrast, the adversary would receive the hint H as input in the public
preprocessing setting (see the definitions in [10,64]).

Finally, we define the efficiency of batch PIR with private preprocessing
schemes. We will consider worst-case notions for all costs as follows:

Definition 5 ((r, t)-Efficiency). A batch PIR with private preprocessing
scheme is (r, t)-efficient if the following two properties hold:

1. For all databases D ∈ {0, 1}n and coin tosses RH , the hint H produced by
Π.Preprocess(RH ;D) is at most r bits.

2. For all databases D ∈ {0, 1}n, queries q ⊆ [n], random coin tosses RH

and R, the running time of Π.Query(q,H,R;E) is at most t where H ←
Π.Preprocess(RH ;D) and E ← Π.Encode(D).

2.2 Lower Bound Model

Standard PIR Model with Replications. The standard PIR model has been
used to prove PIR lower bounds in prior works [10,24,64]. In the standard PIR
model, the database is stored by the server(s) without any encoding. In our work,
we will consider an extension where the server(s) may store an encoding of the
database that consists of replicating various entries. We will refer to this exten-
sion as the standard PIR model with replications. For example, the database may
permute the database a polynomial number of times and store a permutation
thereafter. This covers replications of databases over multiple servers and the
usage of systematic batch codes (see Sect. 4).
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In our model, the client is able to store a r-bit hint that is computed in
an preprocessing stage before the query. When measuring query time, the only
cost is the number of entries that are probed or accessed. All other operations
during query time can be performed free of charge including computation, access-
ing and generating randomness and accessing the hint. We only measure costs
using server operations. So, our model enables clients to do all operations free of
charge. We also note that our model does not account for the computational time
needed to compute the hint. Therefore, our model applies to constructions even
if their preprocessing algorithm is very computationally expensive. In terms of
adversaries, we will only consider PPT adversaries that compromise one server.
As we consider weak adversaries, our lower bound immediately implies to more
powerful adversaries that may compromise multiple servers or use unbounded
computational resources.

To our knowledge, the above model captures the most efficient constructions
in many different categories. For example, the standard PIR model with replica-
tions is utilized by the most concretely efficient computational single-server PIR
constructions using leveled FHE [2,3,5,58], two-server PIR constructions using
function secret sharing [12,13], batch PIR [5,6,10,39,43,47,56,62] and all PIR
with private preprocessing schemes [22,24,67]. Therefore, proving lower bounds
in this model is important to understand the limitations of current techniques.
Barriers to General Models. We note that more expressive models are cur-
rently unable to prove high lower bounds for PIR. For example, we could consider
the cell probe model that enables arbitrary encoding. Unfortunately, the highest
lower bounds in the cell probe model peak at Ω̃(log2 n) [53] that are too low to
prove meaningful lower bounds for PIR currently. We also note there are several
barriers to proving similar lower bounds as ours with arbitrary server encoding.
For example, such lower bounds would be one way to rule out the existence of
some variants of program obfuscation. The constructions of Boyle, Ishai, Pass
and Wootters [15] utilize server encoding and obfuscation to obtain sub-linear
query time without any client storage and, thus, would beat our lower bound.
In Sect. 5, we show that lower bounds in general models would also imply the
online matrix-vector conjecture that is a core pillar of fine-grained complexity.

3 Lower Bound

In this section, we prove our lower bound for batch PIR with private preprocess-
ing that characterizes the trade-offs between hint size and online query time for
the server(s). We will prove the following theorem:

Theorem 5. Let Π be a k-batch, �-server PIR with private preprocessing
scheme in the standard PIR model with replications that uses r-bit hints and
probes at most t entries during online query time for any � = O(1). Further-
more, suppose Π is computationally (δ, 1, �)-secure for δ ≤ 1/(25�) and Π errs
with probability at most ε ≤ 1/15. If k ≤ r ≤ n/400, then tr = Ω(nk). Otherwise
when r < k, then t = Ω(n).
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In our proof, we will assume that k ≤ r ≤ n/400. For the case when r <
k, we will arbitrarily pad the hint until r = k. Even with this padding, note
that the lower bound of tr = Ω(nk) immediately implies a lower bound of
t = Ω(n). We note our lower bound applies for protocols with any number
of round-trips. Additionally, we note that the choice of δ ≤ 1/(25�) and ε ≤
1/15 was for convenience. One can re-do our proofs for different constants. Our
assumption of δ ≤ (1/25�) being a constant is to improve our lower bound
as it also applies to standard settings of negligible advantage for adversaries.
Also, our results directly imply lower bounds against stronger adversaries that
may compromise more than one server. Finally, we note that the assumption
r ≤ n/400 is necessary to rule out the trivial case where the entire database
is stored in the hint and online queries do not need to probe any entries (i.e.,
t = 0). One can also re-do our proofs to also encompass larger choices of r ≤ n/c
for smaller constant 1 < c < 400.

To prove our main result, we will actually prove a variant of the theorem.
Here, we will assume that the number of queries in each batch is larger than some
constant and no larger than n/10. We formalize this in the following theorem:

Theorem 6. Let Π be a k-batch, �-server PIR with private preprocessing
scheme in the standard PIR model with replications that uses r-bit hints and
probes at most t entries during online query time where � = O(1) and kc ≤
k ≤ n/10 for some constant kc. Furthermore, suppose Π is computationally
(δ, 1, �)-secure for δ ≤ 1/(25�) and Π errs with probability at most ε ≤ 1/15. If
k ≤ r ≤ n/400, then tr = Ω(nk). Otherwise when r < k, then t = Ω(n).

It turns out this immediately implies our main theorem for any k ≥ 1. In
particular, we show that Theorem6 immediately implies Theorem 5.

Proof of Theorem 5. To prove this, we show a reduction that any protocol Π
for any k ≥ 1 can be converted into a protocol Π ′ where kc ≤ k′ ≤ n/10
without any asymptotic overhead. Suppose there exists Π that beats Theorem 5.
If kc ≤ k ≤ n/10, we are already done.

If k < kc, we can construct Π ′ for k′ = kc from Π by executing O(kc/k)
queries in parallel. This means storing O(kc/k) hints and running the query
algorithm O(kc/k) times for each hint. As a result, t′ = t · O(kc/k) and r′ =
r ·O(kc/k). As k ≥ 1 and kc = O(1), we know that O(kc/k) = O(1) and get that
t′r′ = O(tr) with no additional asymptotic overhead to contradict Theorem6.

When n/10 < k ≤ n, we construct Π ′ for k′ = n/10 from Π by arbitrarily
padding queried entries that will be ignored. Then, execute a single query using
Π. Note, this results in t′r′ = O(tr) with no additional asymptotic overhead as
k = Θ(k′) to contradict Theorem 6. 
�

Proof Overview. The rest of this section will be devoted to prove Theorem 6.
Our proof of Theorem 6 will proceed in three steps:

1. First, we will characterize the relationship between queried and probed
entries. Our goal is to show that not all queried entries can also be probed
by leveraging the privacy requirements of PIR (Sect. 3.1).
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2. Secondly, we show that random coin tosses and random batch queries allow
for great compression by enabling to determine the contents of entries without
ever requiring to probe the entry directly (Sect. 3.2).

3. Finally, we present an impossible compression scheme leveraging the above
two facts that contradicts Shannon’s source coding theorem to complete the
proof (Sect. 3.3).

Additional Notation. For convenience, we will introduce additional notation
that will be used throughout our proof. We will denote the set of entries probed
by the set Π.Probes(q,D,H,R) ⊆ [n] for a batch query q, database D, hint
H and coin tosses R. That is, i ∈ Π.Probes(q,D,H,R) if and only if the i-th
entry of D is probed by at least one of the � servers. Secondly, we will use H
to represent a hint that is randomly generated by the preprocessing stage. That
is, H ← Π.Preprocess(D,RH) where RH are uniformly random coin tosses. We
will frequently write probabilities of the form PrH,R[i ∈ Π.Probes(q,D,H,R)]
that denotes whether the i-th entry is probed on any of the � servers over the
probabilities of randomly generated hints and coin tosses. In particular, this will
be shorthand for the formal probability statement:

Pr
H,R

[i ∈ Π.Probes(q,D,H,R)] = Pr
RH ,R

[i ∈ Π.Probes(q,D,H,R) | H]

where H ← Π.Preprocess(RH ;D). Additionally, we will use similar shorthand
when analyzing error probabilities:

Pr
H,R

[Π.Query(q,H,R;D) �= (Di)i∈q] = Pr
RH ,R

[Π.Query(q,H,R;D) �= (Di)i∈q | H]

where H ← Π.Preprocess(RH ;D). In general, we will use H to represent a hint
generated by providing random coin tosses RH to Π.Preprocess(RH ;D).

3.1 Characterizing Queried and Probed Entries

The main goal in this section is to characterize the set of probed entries and
their relationship with the batch of k queried entries. At a high level, consider
any Π that does not probe every entry in the database. For simplicity, suppose
that Π probes only half the entries. Is it possible that the set of probed entries
can be heavily correlated with the original set of k queries? For example, is it
possible that Π can probe the entries corresponding to all k queries without
being detected by an adversary? We resolve these questions here by providing a
formal characterization between queried and probed entries.

To do this we start by making the following assumption:

t ≤ n/(100�). (1)

This is without loss of generality as otherwise our proof will already be complete
as t > n/(100�) immediately implies tr = Ω(nk) since r ≥ k and � is constant.

Consider the t probed entries across all � servers. For any of the n entries in
the database, we will consider the i-th entry to be probed if the entry is probed
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by at least one of the � servers. Therefore, we know that at most n/(100�)
unique entries are probed for each online query. Intuitively, there should be a
large fraction of the n entries that are probed only with 1/(100�) probability.
We formalize this for a fixed k-batch query as follows:

Lemma 1. Let D ∈ {0, 1}n be any database. Fix k-batch query {1, . . . , k} ⊆ [n].
Then, there exists a subset S ⊆ [n] such that |S| ≥ n/2 and for all i ∈ S, then

Pr
H,R

[i ∈ Π.Probes({1, . . . , k},D,H,R)] ≤ 1
50�

.

Proof. Towards a contradiction, suppose that this is false. That means, there
exists strictly more than n/2 entries that are probed with probability at least
1/(50�). Then, we get that

t = EH,R[|Π.Probes({1, . . . , k},D,H,R)|] >
n

2
· 1
50�

=
n

100�
.

This is a contradiction as we had assumed t ≤ n/(100�) in Eq. 1. 
�

Next, we construct a polynomial time adversary A to distinguish queries to
{1, . . . , k} and any other batch query. More formally, we construct a family of
adversaries Ai,q, for all i ∈ [n] and q ⊆ [n] below.

Adversary Ai,q:

– Challenge Phase Ai,q(D):
1. Return ({1, . . . , k}, q, {x}) for uniformly random x from [�].

– Output Phase Ai,q(T p
x , Tx):

1. Retrieve Π.Probes from Tx specifying all entries probed on the
compromised server.

2. Return 1 if and only if i ∈ Π.Probes.

In other words, Ai,q is defined such that it compromises one of the � servers
uniformly at random, picks challenge queries q and {1, . . . , k} and returns 1 if
and only if the i-th entry is probed. We prove the following lemma using Ai,q.

Lemma 2. Suppose that Π is computationally (δ, 1, �)-secure. Fix any k-batch
query q ⊆ [n] and database D ∈ {0, 1}n. Let S ⊆ [n] be as stated in Lemma1
and suppose index i ∈ S. If δ ≤ 1/(25�), then

Pr
H,R

[i ∈ Π.Probes(q,D,H,R)] ≤ 1
25

.

Proof. Towards a contradiction, suppose that the statement is false. Consider
adversary Ai,q. For query {1, . . . , k}, we know that Ai,q outputs 1 with probabil-
ity at most 1/(50�) by Lemma 1 as i ∈ S. On the other hand, consider the probed
entries on any query q. We know the probability that i is probed on at least one
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of the � servers is strictly larger than 1/25. As Ai,q compromises one server at
random, we know that Ai,q observes that the i-th entry is probed with proba-
bility strictly greater than 1/(25�). Therefore, Ai,q outputs 1 with probability
strictly greater than 1/(25�). This contradicts the fact that any computational
adversary has distinguishing advantage at most δ ≤ 1/(25�) as the advantage is
strictly greater than 1/(25�) − 1/(50�) = 1/(25�) to derive our contradiction. 
�

Finally, we use the above lemma to prove our main characterization of probed
entries in relation to the set of entries that are queried. In particular, we will
prove an upper bound on the number of queried entries that are also probed.

Lemma 3. Fix any database D ∈ {0, 1}n and any k-batch query q ⊆ [n]. Let
S ⊆ [n] be as defined in Lemma1. Then,

Pr
H,R

[∣∣q ∩ S ∩ Π.Probes(q,D,H,R)
∣∣ ≤ |q ∩ S|

5

]
≥ 4

5
.

Proof. Let q = {i1, . . . , ik} be the query to k indices i1, . . . , ik. By Lemma2,

Pr
H,R

[ij ∈ Π.Probes(q,D,H,R)] ≤ 1
25

whenever ij ∈ S. Let Xj = 1 if and only if ij ∈ S ∩ Π.Probes(q,D,H,R) and
0 otherwise. Note that EH,R[Xj | ij ∈ S] ≤ 1/25. If we let X be the total
number of queried entries of S that are also probed, that is X = |q ∩ S ∩
Π.Probes(q,D,H,R)|, then we know that EH,R[X] ≤ |q ∩ S|/25 by linearity of
expectation as X = X1 + . . . + Xj . By Markov’s inequality, we get that

Pr
H,R

[∣∣q ∩ S ∩ Π.Probes(q,D,H,R)
∣∣ ≥ |q ∩ S|

5

]

= Pr
H,R

[
X ≥ |q ∩ S|

5

]
= Pr

H,R

[
X ≥ 5 · |q ∩ S|

25

]
≤ 1

5

since EH,R[X] ≤ |q ∩ S|/25 to complete the proof. 
�

The above lemma formally shows that at most (1/5)-fraction of queried
entries that appear in S will also be probed with high probability.
Discussion about Model. For our lower bound, we design an adversary that
must detect whether the i-th entry of the database is probed. This is possible in
the standard PIR model with replications as the adversary knows the relationship
between each probed entry and its original index in the database. If the database
is encoded arbitrarily, this adversarial strategy is no longer possible. This is the
main challenge in extending our result to general models.

3.2 Discovering Good Batch Queries

In this section, we will prove results about finding batch queries that will
enable good compression of the database. At a high level, these good batch
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queries q = {i1, . . . , ik} ⊆ [n] are ones that enable computing a large frac-
tion of queried entries, Dij , without probing the ij-th entry directly. That is,
ij /∈ Π.Probes(q,D,H,R) for the used hint H and coin tosses R.

To formalize the above, we will aim to identify good sets for various entities.
We start by defining the notion of goodness for sets of queries and randomness.
We start by saying that a triplet of a k-batch query q ⊆ [n], hint H and coin
tosses R are good if and only if the following two properties hold:

1. (Correctness.) Π.Query(q,H,R;D) = (Di)i∈q.
2. (Discovery.) |q ∩ Π.Probes(q,D,H,R)| ≤ 4k/5.

We denote a triplet being good by Eq(q,H,R) = 1 if the above two condi-
tions holds for the given triplet (q,H,R). Otherwise, we say Eq(q,H,R) = 0.
Note, that the first property ensures correctness of retrieving the contents of all
queried entries. The second property enables discovery. That is, at least k/5 of
the queried entries are not probed directly during query execution.

Next, we move onto pairs of hints H and coin tosses R. In particular, we
are interested in finding pairs (H,R) that enable the above properties for most
queries. For this, we will focus on the query set Q that consists of all k-batch
queries that aim to retrieve k distinct entries. We will denote q as the random
variable that draws a query uniformly at random from Q. We say that pair of
hint and coin toss H and R are good if and only if the following condition holds:

Pr
q
[Eq(q,H,R) = 1] ≥ 1

30
.

We denote a pair H and R to be good by ER(H,R) = 1 and ER(H,R) = 0 for
when it is not good. In other words, we say that a hint H and coin tosses R are
good if and only if (1/30)-th of the queries q ∈ Q exists such that q returns the
correct answer and at most (4/5)-th of queried entries are probed when using the
fixed hint H and coin toss R. In the next lemma, we show that a large fraction
of pairs (H,R) are good and satisfy the above property.

Lemma 4. Fix any database D. Then, we get that

Pr
H,R

[ER(H,R) = 1] ≥ 1
50

.

Proof. Throughout the proof, we will denote q as being drawn uniformly from
the query set Q. As Π errs with probability at most ε ≤ 1/15, we know that

Pr
q,H,R

[Π.Query(q,H,R;D) �= (Di)i∈q] = ε ≤ 1
15

.

By Lemma 3, we know that

Pr
q,H,R

[
|q ∩ S ∩ Π.Probes(q,D,H,R)| ≤ |q ∩ S|

5

]
≥ 4

5
.
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We can bound the intersection size of q and S as follows. Let X be the number
of indices in q \ S. As we know that q is chosen as a random k subset of [n]
and |S| ≥ n/2, we get that E[X] ≤ k/2. By Markov’s inequality, we know that
Pr[X ≥ 3k/4] = Pr[X ≥ 3/2 · k/2] ≤ 2/3. Therefore, we get that

Pr
q

[
|q ∩ S| ≥ k

4

]
= 1 − Pr

q

[
X ≥ 3k

4

]
≥ 1

3
.

Then, we can see that if |q ∩ S| ≥ k/4 and |q ∩ S ∩ Π.Probes(q,D,H,R)| ≤
|q ∩ S|/5, this immediately implies that |q ∩ Π.Probes(q,D,H,R)| ≤ |q \ S| +
|q ∩ S|/5 ≤ 3k/4 + k/20 = 4k/5. Therefore, we get that

Pr
q,H,R

[
|q ∩ Π.Probes(q,D,H,R)| ≤ 4k

5

]

≥ Pr
q,H,R

[
|q ∩ S| ≥ k

4
∧ |q ∩ Π.Probes(q,D,H,R)| ≤ |q ∩ S|

5

]

≥ Pr
q,H,R

[
|q ∩ S| ≥ k

4

]
− Pr

q,H,R

[
|q ∩ Π.Probes(q,D,H,R)| >

|q ∩ S|
5

]

=
1
3

− 1
5
=

2
15

.

Then, we get that

Pr
q,H,R

[E
q
(q,R,H) = 1]

≥ Pr
q,H,R

[
|q ∩ Π.Probes(q, D,H,R)| ≤ 4k

5

]
− Pr

q,H,R
[Π.Query(q,H,R;D) 	= (Di)i∈q]

≥ 1

15
.

Towards a contradiction, suppose that PrH,R[E(H,R) = 1] < 1/50. This con-
tradicts the prior inequality as we get that:

Pr
q,H,R

[Eq(q,H,R) = 1]

≤
∑

x∈{0,1}
Pr
H,R

[EH(H,R) = x] Pr
q,H,R

[Eq(q,H,R) = 1 | EH(H,R) = x]

<
1
50

+
(
49
50

· Pr
q,H,R

[Eq(q,H,R) = 1 | EH(H,R) = 0]
)

<
1
50

+
49
50

· 1
30

<
1
15

.

As a result, we know that PrH,R[E(H,R) = 1] ≥ 1/50. 
�

Next, we will consider the intersection of a random query with an arbitrary
subset X of at most n/100 entries. In particular, we expect that if we pick a
random k-batch query from Q, then approximately (1/100)-th fraction of the
chosen queries would also appear in X. Later, we will use X to model previously
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probed and queried entries. In other words, we are aiming to show that a random
query will not query too many entries that have been previously probed or
queried. We formalize this in the following lemma:

Lemma 5. For any subset X ⊂ [n] such that |X| ≤ n/100,

Pr
q

[
|q ∩ X| >

k

10

]
≤ 1

60

where q is drawn uniformly at random from Q.

Proof. Note that we can model the choice of q as picking a random subset of
size k from [n]. For any fixed X ⊂ [n], we can see that

Pr[|q ∩ X| > k/10] ≤
(
n/100
k/10

)
·
(

n
9k/10

)
(
n
k

) ≤
(

en
10k

)k/10 ·
(
10n
9k

)9k/10

(
n
k

)k

≤
(

e

10
·
(
10
9

)9
)k/10

≤ 1
60

where we use Stirling’s approximation of binomial coefficients (a/b)b ≤
(
a
b

)
≤

(ea/b)b and assuming that k is a sufficiently large constant 
�

3.3 An Impossible Encoding

Next, we use the characterization of probe probabilities from the prior two sec-
tions to construct an impossible compression for databases drawn from our hard
distribution that we define below:

Hard Distribution. Our hard distribution for databases, that we denote
by D, will be a uniformly random n-bit string. In other words, each of
the n entries will be a uniformly random bit.

At a high level, our compression algorithm will leverage Π to efficiently
recover as many queried entries without needing to probe the corresponding
physical entry. We are able to do this by leveraging the formal characterization
of Lemma 3 that shows that only a constant fraction of queried entries will also
be probed with reasonably high probability. Then, we will leverage Lemmata 4
and 5 to find these good queries amongst random queries. In more detail, the
compression algorithm will perform in rounds. In each round, the goal is to find
a good k-batch query amongst a set of random k-batch queries such that a large
portion of the contents of queried entries are unknown and will not be probed.
Before going into more detail, we start by formalizing the model for presenting
our compression scheme.
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One-Way Communication Protocols. To formally prove our lower bound,
we will consider a one-way communication protocol between parties Alice (the
encoder) and Bob (the decoder). Alice will receive the input database. The goal
of Alice is to send a single message to Bob that will enable Bob to always
successfully decode the input database. Additionally, Alice and Bob will also
receive the same shared randomness as input that will be used to help encode
and decode the input database. In particular, the shared randomness will consist
of the random coin tosses Rshared needed to execute Π and will be independent
of the input database D.

Next, we prove a lemma that shows that the length of Alice’s encoding cannot
be much smaller than the minimum number of random bits stored in a database
drawn from the hard distribution. We will consider prefix-free encodings where
one possible message is not a prefix of another possible message.

Lemma 6. For any one-way communication protocol where Alice’s encodings
are prefix-free and Bob is always able to decode the database D, it must be that

E[|Enc(D)|] ≥ n

where the randomness is over the hard distribution of databases D, the shared
random coin tosses Rshared and internal randomness of Alice’s encoding algo-
rithm.

Proof. To prove this lemma, we will utilize Shannon’s source coding theorem
that states the expected length of any prefix-free encoding scheme must be at
least the entropy of the input conditioned on any shared inputs. In other words,

E[|Enc(D)|] ≥ H(D | Rshared) = H(D) = n.

The first equality is from the fact Rshared are random coin tosses independent
of D. The second equality uses that D is a uniformly random n-bit string. 
�

Discussion about Errors. In Lemma 6, we require that the encoding enables per-
fect decoding. However, this does not mean that we only prove lower bounds for
schemes with zero error probability. In fact, we will utilize constructions that
may err with probability as high ε ≤ 1/15 to build a perfect encoding scheme.
To do this, our encoding will only rely on the PIR scheme for correct queries.
Encoding and Decoding Algorithms. We now formally present the encoding
and decoding algorithms for our one-way communication protocol. Note that
there are no computational bounds on the encoding and decoding algorithms. In
particular, we will only care that Alice’s encoding length is short in expectation
and Bob is always able to decode the database.

First, we will formally describe the shared randomness Rshared. In particular,
Rshared will be broken into two parts. The first part will consist of random coin
tosses R to execute a query. The second part will consist of uniformly random
queries chosen from the query set Q. In particular, the second part will look
of the form (q1, . . . ,qs) where s = 20n/(t + k/10). In other words, there will
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Alice’s Encoding: Alice receives database D and randomness Rshared =
(R, q1, . . . , qs) where s = 20n/(t + k/10).

1. Set H ← Π.Preprocess(RH ;D) using random coin tosses RH .
2. Set A ← ∅ to keep track of probed and queried entries.
3. Set P to be an empty string recording probed entries.
4. Set S ← ∅ to keep track of indices of successful query sets.
5. For i = 1, . . . , s:

(a) If |S| ≥ s/2000:
i. Terminate loop.

(b) Check if qi satisfies the following properties:
i. (Correctness.) Π.Query(qi, H, R;D) = (Dx)x∈qi .
ii. (Overlap with Known Entries.) |qi ∩ A| ≤ k/10.
iii. (Overlap with Probes.) |qi ∩ Π.Probes(qi, D, H, R)| ≤ 4k/5.

(c) If qi does satisfies the above:
i. Set U ← Π.Probes(qi, D, H, R) \ A to be all probed entries that were

not previously probed or queried in the order they were first probed.
ii. If |U | < t, add entries in [n] \ U to U in increasing index order until U

contains t entries.
iii. Set S ← S ∪ {i}.
iv. Set P ← (P, (Du)u∈U ). That is, all entries in U in the order they were

first probed followed by added entries in increasing order.
v. Set A ← A ∪ U .
vi. Add the smallest k/10 indexed entries in qi \ A to A.

6. If |S| < s/2000, return the encoding (0, D) as a 0-bit followed by a trivial n-bit
encoding of D.

7. Set Enc ← (1, H, S, P ) to be a 1-bit, the hint H using r bits and set S of
successful query indices and P from the above loop. Note S requires log

(
s

s/2000

)

bits and P requires ts/2 bits to encode.
8. Set Enc ← (Enc, {Dx}x∈[n]\A). That is, the contents of all entries with indices in

[n]\A in increasing index order. Note, each of the s/2000 successful queries adds
exactly t+k/10 entries into A. So, the size of A at the end is s/2000·(t+k/10) =
n/100 and this step requires 99n/100 bits.

9. Return Enc.

Fig. 2. Description of Alice’s encoding algorithm.
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Bob’s Decoding: Bob receives Alice’s encoding and randomness Rshared =
(R, q1, . . . , qs) where s = 20n/(t + k/10).

1. If the encoding starts with a 0-bit, decode D trivially and return D.
2. Decode H using the next r bits.
3. Decode S ⊆ [s] using the next log

(
s

s/2000

)
bits.

4. Decode P using the next st/2 bits.
5. Set B to be the decoded database.
6. Set A ← ∅ to keep track of all indices that have been either probed or queried.
7. For i ∈ S in increasing order:

(a) Execute Π.Query(qi, H, R;D). Even though Bob does not know the database
entirely, Bob can complete this execution using Alice’s encoding in the fol-
lowing way:

(b) If Bob attempts to probe an entry x /∈ A:
i. Bob will use the next bit of P to decode Dx.
ii. Set B[x] ← Dx.
iii. Set A ← A ∪ {x}.

(c) If Bob attempts to probe an entry x ∈ A:
i. Use B[x] as the contents of the entry.

(d) Set B[x] to be the answer given by Π.Query(qi, H, R;D) for x ∈ qi.
(e) If Bob probes less than a < t entries outside of A, Bob uses the next t − a

bits in P to decode the smallest t − a indexed entries outside of A. Then,
Bob adds their contents into B and their indices in A.

(f) Add the smallest k/10 indexed entries in qi \ A to A.
8. Decode {Dx}x∈[n]\A. Set B[x] ← Dx for all x ∈ [n] \ A.
9. Return B.

Fig. 3. Description of Bob’s decoding algorithm.

be s random batch queries from Q. Note that all of this shared randomness is
independent of the database D.

Next, we describe Alice’s encoding algorithm. The main goal of Alice is to
compress the database D using Π. Alice will go through the random queries
qi with the goal of finding a query in the set that enables extracting entries in
D without ever probing them. To do this, Alice aims to find queries that are
correct with the caveat that the queried entries should not have been previously
discovered and they will not be probed by the query itself when using random
coin tosses RH and R. When Alice finds such a good query that enables a high
discovery rate, Alice will encode the identity of these queries and all necessary
probed entries to let Bob simulate the queries as well. To do this, Alice will only
encode contents of entries that were not previously discovered. Once Alice is
able to find enough queries to encode at least n/100 of the entries in D, Alice
will complete the encoding by sending the remaining undiscovered entries in D
trivially. Alice’s encoding algorithm is provided in Fig. 2.

Next, we describe Bob’s decoding algorithm. The goal of Bob is to simulate
queries identically to Alice. To do this, Bob keeps track of all entries whose
contents have been discovered. For each query encoded by Alice, Bob will aim
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to execute the query without knowing the input database D. To do this, Bob
performs probes one at a time. For any entries whose contents are known to
Bob, Bob can simply use their contents and continue executing. For any probed
entry that is unknown to Bob, Bob will use Alice’s encoding to determine the
contents. As we ensure Alice and Bob use the same hint H coin tosses R, it can
be guaranteed that Alice and Bob execute queries identically. After executing all
queries, Bob will simply decode all remaining unknown entries using the trivial
encoding sent by Alice. Bob’s decoding algorithm is provided in Fig. 3.
Correctness. To see that the one-way communication protocol always enables
Bob to decode the database, we will show that Alice and Bob simulate queries in
the exact same way. In particular, Bob will only execute queries qi that satisfy
the conditions that are checked by Alice. For each of these queries, Bob will
execute them identically to Alice as they use the same hint H and coin tosses
R and any entries that are not known to Bob will be encoded by Alice. As a
result, Alice and Bob will execute all of these queries identically. Furthermore,
Alice and Bob will maintain identical sets A throughout the execution of their
entire algorithms and Bob will be able to get the contents of all entries in A.
Finally, as all entries outside of A are encoded trivially, we get that Bob is able
to decode the database successfully.
Prefix-Free Encoding. Note any encoding starting with a 0-bit cannot be a
prefix of an encoding starting with a 1-bit and vice versa. Therefore, it suffices to
show the set of 0-bit encodings and 1-bit encodings are prefix-free independently.
All encodings starting with a 0-bit are the same length of 1 + n and, thus,
prefix-free. Similarly, all encodings prefixed with a 1-bit are the same length of
1 + r + log

(
s

s/2000

)
+ st/2000 + 99n/100 bits and, also, prefix-free.

Encoding Length. Next, we analyze the length of Alice’s encoding in bits.
Our goal is to prove an upper bound on the expected encoding length. We break
this down into two cases. The first case is when Alice’s encoding starts with
a 0-bit. In this case, Alice’s encoding uses 1 + n bits. Next, we upper bound
the probability that Alice’s encoding starts with a 0-bit. This only occurs when
|S| < s/2000. Consider any set of random queries q1, . . . ,qs. For each single
query qi, we note that the probability that qi satisfies the conditions of Step 5b
of Alice’s algorithm is at least

Pr
qi

[Eq(qi,H,R) = 1] − Pr
qi

[|qi ∩ A| > k/10].

If we assume that the input RH and R satisfy property that ER(H,R) = 1
where H = Π.Preprocess(D,RH), then we get that qi satisfies the conditions of
Step 5b of Alice’s algorithm with probability at least

Pr
qi

[Eq(qi,H,R) = 1 | ER(H,R) = 1] − Pr
qi

[|qi ∩ A| > k/10] ≥ 1
30

− 1
60

=
1
60

by using Lemma 5 and the definition of ER(H,R) = 1. Therefore, the probability
that qi satisfies the conditions of Step 5b is at least 1/60. Then, we know that
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E[|S|] ≥ s/60. Denote the probability of less than s/2000 queries succeeding by
f , then

f = Pr
[
|S| <

s

2000
| ER(H,R) = 1

]

= Pr
[
|S| <

(
1 − 97

100

)
· s

60
| ER(H,R) = 1

]
≤ e

− (97)2 s

(100)2602 <
4
5

using Chernoff’s bound, s ≥ 1000 and the fact that the failure of each query
set is an independent event. We get that s ≥ 1000 by our assumptions that
t ≤ n/(100�) ≤ n/100 as � ≥ 1 and k ≤ n/10 implying that t + k/10 ≤ n/50.
Therefore, Alice’s encoding starts with a 0-bit with probability at most

Pr
H,R

[ER(H,R) = 0] + Pr
H,R

[ER(H,R) = 1] · Pr[|S| < s/2000 | ER(H,R) = 1]

≤ 49
50

+
1
50

· f < 1

where we use Lemma 4 to bound PrH,R[ER(H,R) = 0] ≤ 49/50.
Next, we will analyze the case when Alice’s encoding starts with a 1-bit.

First, we show that it is always guaranteed that the condition |A| = n/100 will
be true once Alice reaches the end of the encoding algorithm. Note that each
successful query increases A by t + k/10 entries. Furthermore, Alice executes
exactly s/2000 = n/(100(t + k/10)) queries. So, |A| = s(t + k/10)/2 = n/100.

All successful queries encode t probed entries. Encoding the indices of suc-
cessful queries requires log

(
s

s/2000

)
. Then, the encoding length is at most

1 + r + log

(
s

s/2000

)

+
st

2000
+ (n − |A|) ≤ 1 + r +

s log(2000e)

2000
+

st

2000
+ (n − |A|)

≤ 1 + r +
n

100
· t + log(2000e)

t + k/10
+

99n

100

using the fact that
(
a
b

)
≤ (ea/b)b. Then, we get that Alice’s expected encoding

length is at most

1 + fn + (1 − f) ·
(

r +
n

100
· t + log(2000e)

t + k/10
+

99n
100

)
.

Completing the Proof. Finally, we complete the proof by combining the above
analysis of Alice’s expected encoding length combined with Lemma 6.

Proof of Theorem 6. By Lemma6, we know that Alice’s expected encoding
length must be at least n bits. Therefore, we get the inequality

1 + fn + (1 − f) ·
(

r +
n

100
· t + log(2000e)

t + k/10
+

99n
100

)
≥ n

⇐⇒ (1 − f) ·
(

r +
n

100
· t + log(2000e)

t + k/10
+

99n
100

)
≥ (1 − f)n − 1
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⇐⇒ r +
n

100
· t + log(2000e)

t + k/10
≥ n

100
− O(1)

⇐⇒ r(t + k/10) ≥ nk

2000
− O(t + k)

⇐⇒ rt ≥ nk

2000
− O(t + k) − rk

10

where we will assume that k ≥ 20 log(2000e) and use the fact that 1/(1 − f) =
O(1) as f < 4/5. We use that r ≤ n/400 to see that rk/10 ≤ nk/4000 and get

(r + Θ(1))(t + Θ(1)) ≥ nk

4000
where we also use that r ≥ k ≥ kc for some sufficiently large but constant kc.
We assume that n is sufficiently large to get that tr = Ω(nk). 
�

4 Upper Bound

In this section, we present upper bounds for batch PIR with private preprocessing.
As a reminder, we recall two ways to obtain optimal constructions matching our
lower bound. First, one can execute k queries in sequence with any known single-
query scheme [24,67] that uses k-rounds. Another option is to use pipelined queries
approach utilizing a specific property of previous constructions [24,49,67] where
client queries do not depend on server responses. In other words, clients may issue
k queries simultaneously (see the full version for more details). In this section, we
show that one can construct blackbox reductions from single-query to batch PIR
without assuming any other properties of the single-query scheme.

4.1 Blackbox Single-Query to Batch Reduction

In the rest of this section, we will present constructions with single-round query
algorithms. Our schemes will make blackbox usages of batch codes and single-
query PIR with private preprocessing schemes. We note our described construc-
tions make standard usage of batch codes for enabling batch PIR (see [5,6,47] for
example) from any single-query PIR protocol. Our main adaptation is replacing
the single-query PIR protocol with any single-query PIR with private preprocess-
ing protocol.
Batch Codes. Batch codes are a primitive first introduced by Ishai, Kushilevitz,
Ostrovsky and Sahai [47] that studies the problem of distributing a database of
n bits into m buckets. The goal of the distribution is to enable any user to
retrieve any batch of k entries by only querying at most t bits from each of the
m buckets. Typically, the goal of batch codes is to minimize the total size of the
encoding denoted by N .

There are several variants of batch codes that have been studied in the past.
For our construction, we will focus on systematic batch codes that handle non-
multiset queries. Systematic batch codes require that each symbol of the code-
word to be an entry in the original database. Note, this ensures that our construc-
tion uses the same conditions as our lower model. Some batch codes handle the
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more difficult setting of multiset queries where the same entry may be retrieved
multiple times. For our protocol, we only require handling queries that retrieve k
distinct entries. It is straightforward to handle batch PIR queries with duplicate
entries using only non-multiset queries.

Additionally, we will only use systematic batch codes with t = 1. This means
that only a single symbol in each bucket will be accessed. In other words, the
decoding algorithm A is trivial as it will simply read one of the k desired entries
from each of the m buckets. These codes have been referred to as replication-
based batch codes [47] or combinatorial batch codes [62] in the past. Further-
more, we will assume that the decoding algorithm can obtain correct buckets
and entries within the bucket without needing the database. This is a feature
that is used for most usages of batch codes for batch PIR (such as [5,6,47]).

Definition 6 ([62]). A (n,N, k,m, 1) combinatorial batch code C is a set system
(X,B) where X is a set of n elements, B = (B1, . . . , Bm) is a collection of m
subsets of X and a decoding algorithm CA such that:

1. N =
∑

i∈[m] |Bi|. That is, the total length of all m subsets is at most N

(where the length of each bucket is independent of x).
2. For each subset {x1, . . . , xk} ⊆ X, CA({x1, . . . , xk}) = ((i1, j1), . . . , (ik, jk))

such that xa is the ja-the entry of Bia for all a ∈ [k] and all of (i1, . . . , ik)
are distinct.

Protocol. We will formally present our single-round protocol in this section.
At a high level, we will assume the existence of a (n,N, k,m, 1) combinatorial
batch code C that can handle non-multiset queries. Additionally, we will assume
the existence of a single-query PIR with private preprocessing scheme that uses
r-bit hints and t online query time. We will use both C and Π in a blackbox
manner to construct our protocol.

Our protocol will first apply the batch code C to split up the database D ∈
{0, 1}n into m buckets to get C(D) = (B1, . . . , Bm) where each bucket contains
a subset of entries from D, Bj ⊆ D, since C is systematic. By the guarantees
of batch codes, we know that for every subset {i1, . . . , ik} ⊆ [n], there exists a
subset {j1, . . . , jk} ⊆ [m] such that Dix ∈ Bjx for all x ∈ [k]. Next, instantiate
m parallel instances of Π on each of the m buckets, B1, . . . , Bm, using hint
lengths of r/m bits for all m instances. During query time for batch query
{i1, . . . , ik} ⊆ [n], use the batch code to identify the subset {j1, . . . , jk} ⊆ [m]
such that Dix ∈ Bjx for all x ∈ [k]. For each of these k buckets, perform a query
to retrieve Dix . For the remaining m − k buckets, retrieve any arbitrary entry.
For the formal construction and proof, we refer readers to the full version.

Theorem 7. Let C be a systematic (n,N, k,m, 1) batch code and Π be a single-
query PIR with private preprocessing scheme that is (δ, �A, �)-secure with error
probability ε and uses r-bit hints and online query time t(n, r). Then, there exists
a k-query batch PIR with private preprocessing scheme that is (mδ, �A, �)-secure
with error probability kε. If this construction uses r′-bit hints, then

t′(n, r′) = O(t(N1, r
′/m) + . . . + t(Nm, r′/m))
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where Ni is the number of bits in the i-th bucket of the encoding by C.

Relation to Lower Bound Model. Note that our lower bound model assumes
that there is no encoding of the database beyond arbitrary replication. As sys-
tematic batch codes only require replication, the construction is compatible with
our lower bound model.
Instantiations. Next, we pick different options for batch codes C and single-
query PIR with private preprocessing Π to instantiate our construction. In this
case, we do not require the feature that a single preprocessing stage handles
multiple queries. As a result, we can use either any of the constructions in [24,67]
to get the following constructions from batch codes.

Theorem 8. Assuming the existence of a systematic (n,N, k,m, 1) batch code
and a single-query PIR with private preprocessing scheme that is (δ, 1, �)-secure
where δ is negligible and � ∈ {1, 2} such that tr = Õ(n) and is correct except with
negligible probability, then there exists a single-round, k-query batch PIR with
private preprocessing that is (δ, 1, �)-secure where δ is negligible and � ∈ {1, 2},
uses r-bit hints and online query time t such that tr = Õ(N ·m) and returns the
correct answer except with negligible probability.

For instantiating batch codes, many prior works (see [5,6,42,47,62] and ref-
erences therein) have studied batch codes that may be used with PIR. For our
purposes, we can use the (n,O(n log n), k, O(k), 1) batch code presented by Ishai,
Kushilevitz, Ostrovsky and Sahai [47] that is built from unbalanced expanders.
Using this batch code, we get the a construction with tr = Õ(nk) that matches
our lower bound (up to logarithmic factors).
Non-explicit vs Explicit Batch Codes. As a caveat, the above used batch
code is non-explicit. One can plug-in other explicit batch codes or explicit con-
structions of unbalanced expanders into the Ishai, Kushilevitz, Ostrovsky and
Sahai [47] batch code to obtain an explicit batch PIR with private preprocessing.
However, these explicit constructions will result in worse parameters.

5 Barriers for General Lower Bounds

In the prior sections, we prove all our lower bounds in the standard PIR model
as done in prior works (such as [10,24,64]). Recall that in the standard PIR
model, the database of n entries must be stored without any modification. A
more ambitious goal would be to prove lower bounds without restrictions on the
underlying PIR algorithms. For example, a natural goal is to extend the above
lower bounds to the case where the PIR algorithm may encode and store the
database of n entries arbitrarily but using only a bounded amount of preprocess-
ing time such as polynomial nO(1) time. We denote this the general PIR model
where the PIR construction may store the database of n entries in any encoded
manner. During query time, we denote the online time as the total amount of
online computation performed by the server to process client queries. See the
full version for more details on the general PIR model.
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We will study connections between PIR and the online matrix-vector OMV
conjecture from fine-grained complexity. We show barriers for proving lower
bounds in general models as we show that such lower bounds would immediately
imply the OMV conjecture that is a well-studied open problem in the theoretical
computer science community and a core pillar of fine-grained complexity.

5.1 Online Matrix-Vector OMV Conjecture

At a high level, the OMV problem receives a single matrix n × n matrix M
as input that may be preprocessed in polynomial time. Afterwards, n vectors
v1, . . . , vn will be given in an online fashion such that the multiplication fo Mvi

must be output before receiving the next vector in the stream. We formally
define the online matrix-vector problem below:

Definition 7 (Online Matrix-Vector Multiplication). The online matrix-
vector multiplication problem OMV takes as input a matrix M ∈ {0, 1}n×n and a
stream of vectors v1, . . . , vn ∈ {0, 1}n. The goal is to output Mvi over F2 before
seeing any input vectors vi+1, . . . , vn.

As matrix-vector multiplication is a fundamental problem in algorithms, the
problem has been well-studied. A trivial algorithm would be to perform no pre-
processing and simply answer each Mvi naively requiring O(n3) total time. To
date, the best known algorithm requires total time n3/2Ω(

√
log n) by Larsen and

Williams [55]. However, this algorithm specifically requires using properties of
the Boolean semiring. To our knowledge, there remains no better algorithm for
OMV over any field including F2. Due to lack of progress, it has been conjec-
tured [45] that there is no algorithm for solving the OMV problem in truly
sub-cubic O(n3−ε) time. We formally present the OMV conjecture below:

Definition 8 (Online Matrix-Vector Conjecture [45]). For any constant
ε > 0, there does not exist any algorithm with total online query time O(n3−ε)
that can solve the online matrix-vector multiplication problem with error proba-
bility at most 1/3 even with nO(1) preprocessing time of the matrix M .

The online matrix-vector OMV conjecture is a very important conjecture in
the area of fine-grained complexity that aim to quantify hardness within P along
with other important conjectures such as the strong exponential time hypothesis
(SETH), the 3SUM conjecture and the all-pairs shortest path (APSP) problem.
The OMV conjecture has been used to prove the tight conditional lower bounds
for several dynamic data structure problems including reachability and single-
source shortest paths in directed graphs [45].
Boolean Semiring vs. F2. The standard definition of OMV is defined over the
Boolean semiring where addition and multiplication are replaced by Boolean
OR and AND operations (see [45,55] for example). In our work, we focus on
the matrix-vector multiplication over F2. However, we note that the Boolean
semiring variant of OMV is not easier than the F2 version of OMV. In the full
version, we present a reduction showing that any algorithm solving OMV over
F2 may be used to solve OMV over the Boolean semiring for completeness.
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5.2 Barriers for General PIR Lower Bounds

We start by showing that we can construct efficient PIR constructions using
efficient algorithms for online matrix-vector multiplication OMV. The result of
this reduction is a barrier to proving lower bounds for PIR in more general
bounds. In particular, we show that if one were able to prove lower bounds of
tr = Ω(n) from Sect. 3 without the restrictions of the standard PIR model, this
would immediately imply that the online matrix-vector conjecture is true.

We present a reduction from OMV that enables constructing efficient two-
server PIR with public preprocessing schemes. Note that we had only focused on
private preprocessing schemes. The main difference is that public preprocessing
enables the adversary to view the execution and output of the preprocessing
algorithm. We highlight that any lower bound for PIR with private preprocessing
immediately implies the identical lower bound for public preprocessing. See the
full version for formal definitions.

Theorem 9. If an online matrix-vector multiplication algorithm running in
total time t(n) with p(n) preprocessing time and error probability at most ε(n),
then there exists a single-round, perfectly-secure, two-server PIR with public pre-
processing with O(p(n)) preprocessing time, O(t(

√
n)/

√
n) amortized online time

over
√

n queries, O(
√

n) communication and error probability at most ε(n).

Proof. For this reduction, we start from a slight adaptation of the O(
√

n) com-
munication two-server PIR scheme [20]. We arrange the database of n entries
into a

√
n × √

n matrix M . Suppose that we wish to query for an entry (i, j) in
the i-th row and j-th column of M . The client will generate a uniformly random
vector a ∈ {0, 1}

√
n where each entry is either 0 or 1 with probability 1/2. Next,

the client will compute b = a ⊕ 1j that flips the bit in the j-th entry of a. The
vector a is sent to the first server and the vector b is sent to the second server.
Afterwards, each server will compute the matrix-vector multiplication a′ = Ma
and b′ = Mb over F2. Note that a′[i] ⊕ b′[i] = M [i][j] and, thus, the client can
retrieve the desired entry. For privacy, note that each vector a and b are identical
to uniformly random vectors meaning the scheme is perfectly-secure.

Now, suppose that we have an algorithm A for the OMV problem with total
time t(n) over n queries and preprocessing time p(n). We instantiate A with the√

n×√
n matrix M representing the n entries of the database in each of the two

servers requiring 2p(n) preprocessing time. When responding to queries, each
server will utilize A to compute the matrix-vector multiplication. Therefore, the
total time to answer

√
n queries is 2 · t(

√
n) and, thus, the amortized time is

O(t(
√

n)/
√

n). Note, the client is unable to retrieve the desired entry only when
at least one of the responses from the server is not correct. By parallel repetition
and taking the majority answer, we can drive down the error probability to be
at most ε(n) without affecting the overall overhead except by constant factors.
Finally, the query algorithm requires a single round completing the proof. 
�

Next, we present the corollary of the above theorem showing that lower
bounds for PIR with private preprocessing would immediately prove that the
OMV conjecture is true. See the full version for the proof.
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Corollary 1. For any constant ε > 0, suppose there does not exist any two-
server computationally-secure PIR with private preprocessing scheme in the gen-
eral model that uses nO(1) preprocessing time, r-bit hints, amortized online time
t over

√
n queries and error probability at most 1/3 such that tr = O(n1−ε).

Then, the online matrix-vector OMV conjecture is true.

We note that the above was presented to focus on PIR with private pre-
processing. One can generalize the above theorem in several ways. First, the
above corollary still holds even if we only considered PIR with public prepro-
cessing time with truly sub-linear t = O(n1−ε) time. Secondly, the result still
holds even if the lower bound applied only to perfectly-secure two-server PIR
schemes. Finally, the result also holds for any k-server scheme where k ≥ 2.
Discussion about Public Preprocessing. Prior works have also proven lower
bounds for public preprocessing including [10,64]. All these lower bounds are also
proven in the standard PIR model. The results in this section also show that
proving lower bounds for PIR with public preprocessing in more general models
would immediately imply that the OMV conjecture is true.

6 Conclusions and Open Problems

In this paper, we present a tight characterization of the trade-offs between the
hint size and online query time for batch PIR with private preprocessing. In
particular, we present a tr = Ω(nk) lower bound when retrieving k entries.
On the other hand, we show the existence of a tr = Õ(nk) single-round query
construction. In other words, our results show that one can only reap the benefits
of the techniques from one of batch PIR or PIR with private preprocessing.
When ignoring private preprocessing (i.e. r < k), we can apply known batch PIR
techniques and get that t = Θ̃(n). For optimal PIR with private preprocessing
schemes with tr = Θ̃(n) and r ≥ k, one cannot beat the efficiency of the naive
approach of performing k queries sequentially to get tr = Θ̃(nk). Additionally,
we show the same efficiency may be achieved with a single-round query algorithm
using batch codes. We leave the following high-level open question:

What techniques may be combined with private preprocessing
to further improve the efficiency of PIR?

In this work, we ruled out using batch PIR techniques to further speed up PIR
with private preprocessing. One way to improve PIR efficiency may be use more
complex encodings of databases beyond replication.
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Abstract. We study the task of obliviously compressing a vector com-
prised of n ciphertexts of size ξ bits each, where at most t of the cor-
responding plaintexts are non-zero. This problem commonly features in
applications involving encrypted outsourced storages, such as searchable
encryption or oblivious message retrieval. We present two new algorithms
with provable worst-case guarantees, solving this problem by using only
homomorphic additions and multiplications by constants. Both of our
new constructions improve upon the state of the art asymptotically and
concretely.

Our first construction, based on sparse polynomials, is perfectly cor-
rect and the first to achieve an asymptotically optimal compression rate
by compressing the input vector into O(tξ) bits. Compression can be per-
formed homomorphically by performing O(n log n) homomorphic addi-
tions and multiplications by constants. The main drawback of this con-
struction is a decoding complexity of Ω(

√
n).

Our second construction is based on a novel variant of invertible
bloom lookup tables and is correct with probability 1 − 2−κ. It has a
slightly worse compression rate compared to our first construction as it
compresses the input vector into O(ξκt/ log t) bits, where κ ≥ log t.
In exchange, both compression and decompression of this construc-
tion are highly efficient. The compression complexity is dominated by
O(nκ/ log t) homomorphic additions and multiplications by constants.
The decompression complexity is dominated by O(κt/ log t) decryption
operations and equally many inversions of a pseudorandom permutation.

1 Introduction

It is well known that in general encrypted data cannot be compressed. In this
work, we study the task of compressing encrypted data, when a small amount

N. Fleischhacker—Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy - EXC 2092 CASA -
390781972.
K. G. Larsen—Supported by Independent Research Fund Denmark (DFF) Sapere Aude
Research Leader grant No. 9064-00068B.

c© International Association for Cryptologic Research 2023
C. Hazay and M. Stam (Eds.): EUROCRYPT 2023, LNCS 14004, pp. 551–577, 2023.
https://doi.org/10.1007/978-3-031-30545-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30545-0_19&domain=pdf
http://orcid.org/0000-0002-2770-5444
http://orcid.org/0000-0001-8841-5929
http://orcid.org/0000-0002-7325-5261
https://doi.org/10.1007/978-3-031-30545-0_19


552 N. Fleischhacker et al.

of knowledge about the structure of the underlying plaintexts is known. More
concretely, we consider encryptions of vectors m = (m1, . . . , mn) where at most
t distinct coordinates in m are non-zero. In the context of outsourced storage
applications the task of compressing such vectors appears naturally.

In searchable encryption [3,26], we have a client Charlie, who holds a vector
(m1, . . . , mn) of data elements and wants to store it remotely on server Sally. To
hide the contents of the data elements, Charlie encrypts the data vector under a
secret key only she knows before sending it to Sally. Later on, Charlie may want
to search through the vector and retrieve all elements that match some secret
keyword. A series of recent works [1,6–8,18,27] have shown how to construct
searchable encryption schemes from fully homomorphic encryption [12,22] with
reasonable concrete efficiency. Conceptually, these approaches are comprised of
two major steps. First Charlie sends a short keyword-dependent hint to the
server, who uses it to obliviously transform the vector of ciphertexts (c1, . . . , cn)
into a new vector c̃ = (c̃1, . . . , c̃n), where for i ∈ {1, . . . , n} the ciphertext c̃i

is either an encryption of the original message mi in ci or zero, depending on
whether mi was matching the keyword of Charlie or not. In the second step, the
server obliviously compresses the vector c̃ under the assumption that no more
than t ciphertexts were matching the keyword and sends it back to Charlie.
If the assumption about the sparsity of the vector c̃ was correct, then Charlie
successfully decodes the vector and obtains the desired result. If the assumption
was not correct, then Charlie may not be able to retrieve the output.

The best compression algorithm used in this context is due to Choi et al. [8],
which compresses c̃ into a bit string of length Ω(tξ(κ + log n)), where ξ is the
length of one ciphertext entry. Under the assumption that the plaintext messages
are of a specific form1, the authors show that Charlie can correctly decode the
vector with probability 1 − 2−κ. Both compressing and decoding are computa-
tionally concretely efficient.

In the oblivious message retrieval setting, recently introduced by Liu and
Tromer [19], we have a server Sally, who keeps a public bulletin board, and mul-
tiple clients Charlie, Chucky, and Chris. Each of the clients can post encrypted
messages for any of the other clients on the bulletin board, but would like to
hide who is the recipient of which message. At some point, for example, Chucky
may want to retrieve all messages that are intended for him. Naively, he could
simply download all contents from Sally’s bulletin board, but this would incur a
large bandwidth overhead that is linear in the total number of messages stored
by Sally. Instead, the idea behind oblivious message retrieval is to let Chucky
generate a short identity-dependent hint that can be used by Sally to oblivi-
ously generate a short message that contains all relevant encrypted messages
for Chucky. Conceptually, the construction of Liu and Tromer follows the exact
same blueprint as the searchable encryption scheme outlined above. First Sally
obliviously filters her vector with the hint provided by Chucky and then she

1 This assumption can be removed at the cost of doubling the size of the compressed
vector and additionally assuming that one is not only given c̃, but also some auxiliary
vector ĉ as the output of the first step of their protocol.
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obliviously compresses the filtered vector under the assumption that not too
many messages are addressed to Chucky.

From an efficiency perspective, the solution of Liu and Tromer is rather
expensive. To compress, Sally performs Ω(tn + κt log t) homomorphic additions
and Ω(tn) homomorphic multiplications by constants, where κ is the correct-
ness error defined as in the searchable encryption example. Sally’s message to
Chucky is Ω(ξt + ξκt log t) bits long. To decode the result from Sally’s message,
Chucky needs to perform gaussian elimination on a matrix of size O(t) × O(t),
which incurs a computational overhead of Ω(t3). The authors provide heuristic
optimizations of their constructions that improve their performance significantly,
but unfortunately these come without asymptotic bounds or provable correctness
guarantees.

Taking a step back and looking at the two applications described above
from a more abstract point of view, one can recognize that both follow a very
similar blueprint. In the first step, both apply some vastly different techniques
to convert a vector of ciphertexts into a sparse vector containing only the desired
entries. In the second step, both works solve the identical problem. They both
need to compress a sparse homomorphically encrypted vector with nothing but
the knowledge of how many entries are non-zero, and in particular without any
knowledge about which entries are zero and which ones are not. How to compress
such a sparse encrypted vector is the topic of this work.

1.1 Our Contribution

We present two new algorithms, one based on polynomials and one based on algo-
rithmic hashing, for compressing sparse encrypted vectors, which both improve
upon the prior state of the art in terms of compression rate. Our algorithms
only rely on homomorphic additions and homomorphic multiplications by con-
stants. Both of our constructions have provable worst-case bounds for all their
parameters.

Compressing via Polynomials. Our first construction (Sect. 4) is perfectly correct
and is based on the concept of sparse polynomial interpolation. Its compression
rate has an asymptotically optimal dependence on t, as the compressed vector is
merely O(ξ · t) bits large. During compression one needs to perform O(n log n)
homomorphic additions and equally many homomorphic multiplications by con-
stants. The main bottleneck of this solution is the decompression complexity of
Õ(t · √

n), which depends on the length n of the original vector. Although the
compression rate is much better than that of previous works, such as those Choi
et al. [8] and that of Liu and Tromer [19], this construction suffers from a slower
decompression time.

Compressing via Hashing. Our second construction (Sect. 5) is a randomized
hashing based solution, which is correct with probability 1 − 2−κ, where the
probability is taken over the random coins of the compression algorithm. We
develop a novel data structure that is heavily inspired by the invertible bloom
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lookup tables of Goodrich and Mitzenmacher [14], but can be applied efficiently
to encrypted data. Both compression and decompression are highly efficient. Dur-
ing compression one needs to perform O(nκ/ log t) homomorphic additions and
multiplications by constants, where κ ≥ log t. During decompression the main
costs come from O(κt/ log t) many decryptions and equally many evaluations
of a pseudorandom permutation. In contrast to our polynomial based solution,
however, the compressed vector is O(ξκt/ log t) bits large. Nevertheless, this con-
struction outperforms all prior works in terms of compression rate, while having
either superior or comparable compression and decompression complexities.

1.2 Strawman Approach

When the sparse vector is encrypted using a fully homomorphic encryption
scheme, conceptually simple solutions to the compression problem exist. For
instance, Sally could just homomorphically sort all entries in the vector and
then only send back the t largest entries. Such solutions, however, require her
to perform multiplications of encrypted values. This is problematic for multi-
ple reasons. Multiplications of encrypted values are much more computationally
expensive than homomorphic additions or multiplications by constants. Since
Sally may potentially store a very large database, we would like to minimize her
computational overhead. Furthermore, if the data is encrypted using a somewhat
homomorphic encryption scheme, then the multiplicative depth of the circuit
that can be executed on the vector by Sally is bounded. Ideally, we would like
the compression step to be concretely efficient and not require the use of any
multiplications of encrypted values. For these reasons, we only focus on com-
pression algorithms that require homomorphic additions and multiplications by
constants in this work.

1.3 Additional Related Works

In addition to what has already been discussed above, there are several other
works that are related to ours. Johnson, Wagner, and Ramchandran [16] showed
that, assuming messages from a source with bounded entropy, it is possible
to compress one-time pad encryptions without knowledge of the encryption key
through a clever application of Slepian-Wolf coding [24]. Their result only applied
to linear stream ciphers but was later extended to block ciphers using certain
chaining modes by Klinc et al. [17]. These result do not apply to our setting,
where we focus on compressing vectors encrypted using more complex homo-
morphic public-key encryption schemes.

In the context of fully homomorphic encryption, multiple works [4,20,25]
have studied the question of how to optimize the encryption rate, i.e., the size of
the ciphertext relative to the size of the plaintext, by packing multiple plaintexts
into one ciphertext. These results are related, but do not allow for obliviously
“removing” irrelevant encryptions of zero.
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Another line of works [5,11,13] studies the compressed sensing problem,
where the task is to design a matrix A such that it is possible to recover, pos-
sibly high-dimensional, but sparse vectors x from a vector of measurements Ax
of small dimension. In general these works aim to recover an approximation of x
even when given somewhat noisy measurements. In our case, we are interested in
the simpler problem of exact recovery of a sparse vector. Our construction based
on polynomials can be seen as a matrix-vector multiplication. Looking ahead,
our matrix A will be a carefully chosen Vandermonde matrix that allows for
very efficient matrix vector multiplication. The server will multiply this public
matrix with the encrypted vector and send back the result that can be decoded
by the client. Our second construction, based on hashing, does not fall into this
category of algorithms.

2 Preliminaries

Notation. Given a possibly randomized function f : X → Y , we will sometimes
abuse notation and write f(x) := (f(x1), . . . , f(xn)) for x ∈ Xn. For a set X,
we write x ← X to denote the process of sampling a uniformly random element
x ∈ X. For a vector v ∈ Xn, we write vi to denote its i-th component. For a
matrix M ∈ Xn×m, we write M [i, j] to denote the cell in the i-th row and j-th
column. We write [n] to denote the set {1, . . . , n}. For a set Xn, we define the
scissor operator ✄(Xn) := {(x1, . . . , xn) ∈ Xn | xi �= xj ∀i, j ∈ [n]} to denote
the subset of Xn consisting only of those vectors with unique entries.

Definition 1 (Sparse Vector Representation). Let Fq be a field and let
a ∈ F

n
q be a vector. The sparse representation of a is the set sparse(a) := {(i, ai) |

ai �= 0}.

2.1 Homomorphic Encryption

Informally, a homomorphic encryption scheme allows for computing an encryp-
tion of f(m), when only given the description of f and an encryption of message
vector m. Throughout the paper, we assume that functions are represented as
circuits composed of addition and multiplication gates.

Definition 2. A homomorphic encryption scheme E is defined by a tuple of
PPT algorithms (Gen,Enc,Eval,Dec) that work as follows:

Gen(1λ): The key generation algorithm takes the security parameter 1λ as input
and returns a secret key sk and public key pk. The public key implicitly defines
a message space M and ciphertext space C. We denote the set of all public
keys as P.

Enc(pk,m): The encryption algorithm takes the public key pk and message m ∈
M as input and returns a ciphertext c ∈ C.

Eval(pk, f, c): The evaluation algorithm takes the public key pk, a function f :
Mn → Mm, and a vector c ∈ Cn of ciphertexts as input and returns a new
vector of ciphertexts c̃ ∈ Cm.
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Dec(sk, c): The deterministic decryption algorithm takes the secret key sk and
ciphertext c ∈ C as input and returns a message m ∈ M ∪ {⊥}.
Throughout the paper we assume that the ciphertext size is fixed and does not

increase through the use of the homomorphic evaluation algorithm. We extend
the definition of Enc and Dec to vectors and matrices of messages and ciphertexts
respectively, by applying them componentwise, i.e., for any matrix M ∈ Mn×m,
we have Enc(pk,M) = C with C ∈ Cn×m and C[i, j] = Enc(pk,M [i, j]) and
equivalently Dec(sk,C) = M ′ with M ′ ∈ Mn×m and M ′[i, j] = Dec(sk, C[i, j]).
Let E be an additively homomorphic encryption scheme with message space
M = Fq for some prime power q. And let f : F2

q → Fq, f(a, b) := a + b and let
gα : Fq → Fq, g(a) := α · a for any constant α ∈ Fq. For notational convenience
we write Eval(pk, f, (c1, c2)ᵀ) as c1 � c2 and Eval(pk, gα, c) as α � c with pk
being inferrable from context. For the sake of simplicity we restrict ourselves to
homomorphic encryption schemes with unique secret keys, i.e. for a given pk,
there exists at most one sk, such that (sk, pk) ← Gen(1λ). We write Gen−1(pk)
to denote the – not efficiently computable – unique secret key.

Later on in the paper, it will be convenient for us to talk about ciphertexts
that may not be fresh encryptions, but still allow for some homomorphic oper-
ations to be performed on them.

Definition 3 (Z-Validity). Let (Gen,Enc,Eval,Dec) be a homomorphic
encryption scheme, let Z be a class of circuits, and let pk be a public key. A
vector c of ciphertexts is Z-valid for pk, iff for all functions f ∈ Z it holds that
⊥ /∈ Dec(Gen−1(pk), c) and Dec(Gen−1(pk),Eval(pk, f, c) = f(Dec(sk, c)). We
denote by vld(Z, pk) the set of ciphertext vectors Z-valid for pk.

2.2 Polynomial Kung Fu

Let f(x) =
∑d

i=0 ai · xi ∈ Fq[x] be a polynomial with coefficients from a finite
field Fq. The degree of f is defined as the largest exponent in any monomial
with a non-zero coefficient. We say that f is s-sparse, if the number of non-zero
monomials is at most s or more formally if |{ai | ai �= 0 ∧ i ∈ [n]}| ≤ s. It is
well-known that any polynomial of degree at most d can be interpolated from
d+1 evaluation points. In this work, we will make use of the less well-known fact
that sparse polynomials can be interpolated from a number of evaluation points
that is linear in the polynomial’s sparsity. The first algorithms for interpolating
sparse univariate and multivariate polynomials were presented by Prony [21] and
Ben-Or and Tiwari [2] respectively. We will make use of the following result by
Huang and Gao [15] for sparse interpolation of univariate polynomials over finite
fields:

Theorem 4 ([15]). Let f ∈ Fq[x] be an s-sparse univariate polynomial of degree
at most d with coefficients from a finite field Fq. Let ω ∈ Fq be a primitive
2(s + 1)-th root of unity. There exists an algorithm Interpolate that takes eval-
uations f(ω0), . . . , f(ω2s+1) as input and returns the coefficients of f in sparse
representation in time Õ(s · √

d).
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The algorithm of Huang and Gao relies on a subroutine for finding discrete
logarithms. Using Shank’s algorithm [23] for this step, we obtain the computa-
tional complexity stated in the above theorem with deterministic performance
guarantees.

Another tool we will use is the Fast Fourier Transform, (re-)discovered by
Cooley and Tukey [9] which allows for evaluating a degree d polynomial given as
a list of coefficients at � ≤ d evaluation points simultaneously in time O(d log d).
More precisely, for a fixed set of evaluation points (ω0, . . . , ω�), one can represent
the circuit taking the polynomial coefficients (a0, . . . , ad) as input and returning
(f(ω0), . . . , f(ω�)) as a series of O(log d) alternating layers of O(d) addition or
multiplication by constants gates respectively.

Theorem 5 [Fast Fourier Transform]. Let d, � ∈ N with d ≥ �. Let f =
∑d

i=0 ai · xi ∈ Fq[x] be a polynomial of degree at most d with coefficients from a
finite field Fq. Let ω ∈ Fq be a primitive �-th root of unity. There exists an arith-
metic circuit FFT comprised of a series of O(log d) alternating layers of O(d)
addition or multiplication by constants gates respectively that takes (a0, . . . , ad)
as well as (ω0, . . . , ω�) as input and returns (f(ω0), . . . , f(ω�)).

2.3 Invertible Bloom Lookup Tables

An invertible Bloom lookup table (IBLT) is a data structure first introduced by
Goodrich and Mitzenmacher [14] that supports three operations called Insert,
Peel, and List. The insertion operations adds elements to the data structure, the
deletion operations removes them2 and the list operation recovers all currently
present elements with high probability, if not too many elements are present.

The data structure consists of two γ × 8t matrices C, the count matrix and
V the valueSum matrix. It further requires t-wise independent hash functions
hi : {0, 1}∗ → [8t] for i ∈ [γ]. Initially all values are set to 0. To insert an element
x into the data structure, we locate the cells Ci,hi(x) and Vi,hi(x) for i ∈ [γ]
and add 1 to each counter and x to each valueSum. To remove an element, we
perform the inverse operations. To list all elements currently present in (C, V ),
we repeatedly perform a peeling operation until (C, V ) is empty. The peeling
operation finds a cell with counter 1, adds that corresponding valueSum value
to the output list and deletes the element from (C, V ). The only way the list
operation may fail is if (C, V ) is not empty, but the peeling operation cannot
find any cell with counter 1. It has been shown by Goodrich and Mitzenmacher
that this probability decreases exponentially in γ log t. We formally describe the
algorithms in Fig. 1.

Theorem 6 ([14]). Let h1, . . . , hγ be t-wise independent hash functions, then
for any X = {x1, . . . , xt} it holds that

Pr
[
B := Insert((02)γ×8t,X) : List(B) �= X

] ≤ O(2−(γ−2) log t),

2 For the present discussion, we assume that only previously inserted elements are
deleted.
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Insert(B, X)

V := 0γ×8t

C := 0γ×8t

foreach (i, x) ∈ [γ] × X do

j := hi(x)

V [i, j] := V [i, j] + md

C [i, j] := C [i, j] + 1

return (C ,V )

List((C ,V ))

S := ∅
while ∃ (i∗, j∗) ∈ [γ] × [8t]. C [i∗, j∗] = 1 do

m := M ′[i∗, j∗]

S := S ∪ {m}
(C ,V ) := Peel((C ,V ), m)

return S

Peel((C ,V ), m)

foreach i ∈ [γ]

j := hi(m)

V ′[i, j] := V ′[i, j] − m

C [i, j] := C [i, j] − 1

return (C ,V )

Fig. 1. An invertible Bloom lookup table

where the probability is taken over the random choices of h1, . . . , hγ .

Remark 1. The construction of an IBLT can be modified to store tuples of values,
by maintaining multiple valueSum matrices, one for each component. As long as
one of the components remains unique among all inserted values, it is sufficient
to use this component as input to the has functions, without affecting Theorem
6. We will make use of this in our construction in Sect. 5.

3 Ciphertext Compression

In this section we formally define the concept of a ciphertext compression scheme
(Compress,Decompress). Intuitively, the compression algorithm takes the public
encryption key pk as well as a vector of ciphertexts c from some family Fpk of
ciphertext vectors as input and returns some compressed representation thereof.
The decompression algorithm gets the compressed representation as well as the
secret decryption key as input and should return the decryption of c.

Definition 7 (Ciphertext Compression Scheme). Let E = (Gen,Enc,
Eval,Dec) be a homomorphic public key encryption scheme with ciphertext size
ξ = ξ(λ). Let P be the public key space of E. For each pk ∈ P let Fpk be a
set of ciphertext vectors. A δ-compressing, (1 − ε)-correct ciphertext compres-
sion scheme for the family F := {Fpk | pk ∈ P} is a pair of PPT algorithms
(Compress,Decompress), such that for any (sk, pk) ← Gen(1λ) and any c ∈ Fpk

the output length of Compress(pk, c) is at most δξ|c| and it holds that

Pr[Decompress(sk,Compress(pk, c)) = sparse(Dec(sk, c))] = 1 − ε(λ),
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where the probability is taken over the random coins of the compression and
decompression algorithms.

Remark 2. Note, that a ciphertext compression scheme gives no guarantee what-
soever in the case where c /∈ Fpk.

4 Compression via Sparse Polynomials

In this section we present our first construction, which is based on the idea of
interpolating sparse polynomials. Given the right building blocks, the construc-
tion is conceptually very simple. We simply view the sparse encrypted vector
(c1, . . . , cn) as the coefficient representation of sparse polynomial. Using the Fast
Fourier Transform, we homomorphically evaluate this polynomial efficiently at
some sufficient number of points. These encrypted evaluations will constitute
the compression of the vector. To obtain the original vector during decompres-
sion, we simply decrypt the evaluation points and interpolate the corresponding
sparse polynomial.

Definition 8 (Fast Fourier Functions). The class of fast fourier functions
is the set of functions Z�

FFT = {f �
x | x ∈ F

�
q} with

f �
x : Fn

q → F
�
q, fx(a) := FFT(a,x).

Definition 9. (Z2(t+1)
FFT -Valid Low Hamming Weight Ciphertext Vec-

tors). Let E = (Gen,Enc,Eval,Dec) be a homomorphic public key encryption
scheme. For any pk ∈ P, let

FFFT
t,pk :=

{
c ∈ vld(Z2(t+1)

FFT , pk) | hw(Dec(Gen−1(pk), c)) < t
}
.

We then define the family of Z2(t+1)
FFT -valid ciphertext vectors with low hamming

weight as FFFT
t := {FFFT

t,pk | pk ∈ P}.

Compress(pk, c)

c̃ ← Eval
(
pk,FFT(·, (ω0, . . . , ω2t+1)), c

)

return c̃

Decompress(sk, c̃)

m ← Dec(sk, c̃)

S ← Interpolate(m)

return S

Fig. 2. A ciphertext compression scheme for FFFT
t based on sparse polynomials.

Here FFT(·, (ω0, . . . , ω2t+1)) refers to the circuit of the function f(ω0,...,ω2t+1) from

Definition 8, i.e., the FFT circuit with the hardcoded second input (ω0, . . . , ω2t+1).
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Theorem 10. Let E = (Gen,Enc,Eval,Dec) be an additively homomorphic
encryption scheme with message space M = Fq with ciphertext size ξ = ξ(λ). Let
n, t ∈ N be integers such that n < q and let ω ∈ Fq be a 2(t+1)-th primitive root
of unity. Then (Compress,Decompress) from Fig. 2 is a 2(t + 1)/n-compressing
perfectly correct ciphertext compression scheme for family FFFT

t .

Proof. Let c be an arbitrary, but fixed Z2(t+1)
FFT -valid ciphertext vector and let S

be an arbitrary vector in sparse representation. Due to the validity condition on
c we know that

Pr

⎡

⎢
⎣

c̃ ← Eval
(
pk,FFT

(·, (ω0, . . . , ω2t+1)
)
, c
)

m ← Dec(sk, c̃)
S = Interpolate(m)

⎤

⎥
⎦

= Pr

⎡

⎢
⎣

m ← Dec(sk, c)

m′ ← FFT
(
m, (ω0, . . . , ω2t+1)

)

S = Interpolate(m′)

⎤

⎥
⎦ .

Furthermore, the Z2(t+1)
FFT -validity of c tells us that Dec(sk, c) is a vector of ham-

ming weight at most t or, when viewed as a polynomial in coefficient represen-
tation, a t-sparse polynomial of degree at most n. From Theorem 4 it follows
this sparse polynomial can be correctly interpolated from its 2(t+1) evaluations
produced by FFT(Dec(sk, c), (ω0, . . . , ω2t+1)) and therefore

Interpolate(FFT(Dec(sk, c), (ω0, . . . , ω2t+1))) = sparse(Dec(sk, c)).

The output of Compress is a vector of 2(t + 1) ciphertexts of size ξ and thus the
scheme is 2(t + 1)/n compressing.

5 Compression via IBLTs

In this section we present our second construction, which is on a variant of invert-
ible Bloom lookup tables. Given a vector of ciphertexts c the idea is to homomor-
phically insert the corresponding non-zero plaintexts into an (encrypted) IBLT.
The encrypted IBLT would then constitute the compression of the vector.

This approach encounters two problems: First, the insertion operation of an
IBLT requires hashing the value to choose the cells to insert it in, which we
cannot do because we do not have access to the plaintext. Second, since we do
not know which of the ciphertexts correspond to a non-zero it is unclear how to
only insert those.

The first problem can be solved using Remark 1 by actually storing pairs
(d,md). Since the index d is both publically known and unique, we can rely on
only hashing d to derive the positions to insert the values.

The second problem is a bit trickier to solve. To build some intuition, we can
first consider an easier compression problem where in addition to c we are given
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an additional vector of ciphertexts h containing “zero hints”. I.e., hd decrypts
to 0 if ci decrypts to 0 and hd decrypts to 1, if cd decrypts to anything else.

The IBLT then gets initialized as three matrices, a count matrix C and two
valueSum matrices M and D with each cell containing an encryption of zero. To
insert the content of ciphertext cd into the IBLT, we can then for i ∈ [γ] compute
j := hi(d) and insert the value by setting C[i, j] := C � hd, M [i, j] := M � cd,
and D[i, j] := D � (d � hd).

Note that for any ciphertext corresponding to zero, this results in zero being
added to all entries, which is equivalent to not inserting the value at all. Decom-
pressing then involves decrypting all three matrices and using the List algorithm
to extract pairs (d,md) giving us a sparse representation of the plaintext vector
corresponding to c. By the correctness guarantee of an IBLT, this works as long
as not too many ciphertexts decrypt to a non-zero value.

However, actually getting such “zero hint” ciphertexts may not be feasible in
all scenarios, especially if the encryption scheme is only additively homomorphic.
This means we need to somehow simulate having a count matrix without these
zero hints.

The trick that we use is to choose a vector of random values k that we
will use to “recognize” cells that only contain a single message. We will still
initialize two matrices M and K but inserting into the IBLT is now done by
setting M [i, j] := M � cd, and K[i, j] := K � (kd � cd). Note now, that after
decryption, for any cell (i, j) that only contains a single value md, we have that
M [i, j] = md and K[i, j] = kd · md. By checking if K[i, j]/M [i, j] corresponds
to one of the values in k, we can thus recognize which cells contain only a single
value and which index it corresponds to, allowing us to peel the message from the
IBLT. In section we prove in a helpful lemma in Sect. 5.2 we prove that we can
bound the probability that this recognition procedure produces false positives.

There still remains the problem that simply using a random vector k and stor-
ing it, which would require O(n) storage and O(n) computation to recognize the
entries. To solve this issue we introduce the concept of wunderbar pseudorandom
vectors in Sect. 5.1, which allows us to store a compact O(λ) representation of a
pseudorandom vector k and recognition of vector entries in time O(polylog(n)).

5.1 Wunderbar Pseudorandom Vectors

The concept of a pseudorandom vector is conceptually similar to that of pseu-
dorandom sets introduced in [10], except that we do not require puncturability.
The idea is that it allows us to sample a short description of a long vector, which
is indistinguishable from a random vector with unique entries. Importantly, we
require that there exists an efficient algorithm that can recover the position of a
given entry in the vector in time independent of the vector length. Naively one
can always find the position in linear time in the vector length. This is, however,
not good enough for our application, which is why we require the pseudorandom
vector to be “wunderbar”. In particular, we want the description length of the
vector to be in O(λ) and getting individual entries as well as index recovery
should be possible in O(polylog(n)).
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Definition 11. A pseudorandom vector with index recovery for an efficiently
sampleable universe K = K(λ) consists of a triple of ppt algorithms (Sample,
Entry, Index) such that

Sample(1λ, n): The sampling algorithm takes as input the security parameter λ
and the vector length n in unary and outputs the description of a pseudoran-
dom vector s.

Entry(s, i): The deterministic retrieving algorithm takes as input a description s
and an index i ∈ [n] and outputs a value ki ∈ K.

Index(s, k): The deterministic index recovery algorithm takes as input a descrip-
tion s and a value k and outputs either an index i ∈ [n] or ⊥.

A pseudorandom vector with index recovery is correct, if for all vector lengths
n = poly(λ) and all seeds s ← Gen(1λ, 1n) it holds that:

1. For all indices i ∈ [n] it holds that Index(s,Entry(s, i)) = i.
2. For all all k∗ �∈ {Entry(s, i) | i ∈ [n]} it holds that Index(s, k∗) = ⊥.

The pseudorandom vector is wunderbar if the description of a vector has length
O(λ) and the runtime of Entry and Index is O(polylog(n)). A pseudorandom
vector is secure, if for all n = poly(λ) and all ppt algorithms A
∣
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Pr

⎡

⎢
⎢
⎢
⎢
⎣

s ← Sample(1λ, 1n),

k :=

⎛

⎜
⎝

Entry(s, 1)
...

Entry(s, n)

⎞

⎟
⎠

: A(k)

⎤

⎥
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⎥
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⎦

− Pr[k ← ✄(Kn) : A(k)]
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Remark 3. For ease of notation we define two algorithms DummySample and
DummyIndex that represent a dummy version of a pseudorandom vector with
index recovery. I.e., DummySample(1λ, n) simply samples k ← ✄(Kn) and
DummyIndex(k, k) performs an exhaustive search and returns i iff ki = k and ⊥
if none of them match. Using this notation, the above security definition can be
rewritten as
∣
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s ← Sample(1λ, 1n),

k :=

⎛

⎜
⎝

Entry(s, 1)
...

Entry(s, n)

⎞

⎟
⎠

: A(k)

⎤

⎥
⎥
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⎥
⎦

− Pr[k ← DummySample(1λ, n) : A(k)]
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Wunderbar Pseudorandom Vectors from Pseudorandom Permuations.
Let Fpm be a field such that m · log p� ≥ λ. We construct wunderbar pseudo-
random vectors over a subset K ⊆ Fpm from an arbitrary family of pseudo-
random permutations over F

λ
2 . To do so we need an efficiently computable and
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efficiently invertible injective function binToField mapping from F
λ
2 to Fpm . The

exact function is irrelevant, but for concreteness, we specify it in the following. Let
{0, 1} : [q] → F

�log q�
2 denote the function that maps an integer to its canonical

binary representation and let proj : F�log q�
2 → [q] be its inverse. Then we specify

binToField : Fλ
2 → Fpm binToField((b1, . . . , bλ)) :=

m−1∑

i=0

cix
i

where

ci :=
min{�λ

m�,λ−i�λ
m�}∑

j=1

2j−1bi� λ
m �+j .

We further specify the inverse function as

fieldToBin : Fpm → F
λ
2 ∪ {⊥}

fieldToBin(
m−1∑

i=0

cix
i) :=

{
⊥ if ∃ci. ci ≥ 2min{� λ

m �,λ−i� λ
m �}

(b1, . . . , bλ) otherwise

where
bi := bin

(
c�i/�λ/m��

)
i−�i/�λ/m��·�λ/m�.

Sample(1λ, 1n)

s ← F
λ
2

return (s, n)

Entry((s, n), i)

b := bin(i)

b′ := PRP(s, b)

return binToField(b′)

Index((s, n), k)

b′ := fieldToBin(k)

if b′ 	= ⊥
b := PRP−1(s, b′)

if proj(b) ∈ [n]

return proj(b)

return ⊥

Fig. 3. A wunderbar pseudorandom vector for K ⊆ Fpm constructed from a family of
pseudorandom permuations over F

λ
2 .

Theorem 12. Let PRP be a secure family of pseudorandom permuations over
some F

λ
2 . Then (Sample,Entry, Index) as described in Fig. 3 is a secure wunder-

bar pseudorandom vector with index recovery for universe K = {binToField(b) |
b ∈ F

λ
2}.
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Proof. We need to establish that the construction is correct, wunderbar, and
secure. It is simple to see that the construction is correct:

Index((s, n),Entry((s, n), i))
=Index((s, n), binToField(PRP(s, bin(i)))) (Def. of Entry)

=proj(PRP−1(s, fieldToBin(binToField(PRP(s, bin(i)))))) (Def. of Index)

=proj(PRP−1(s,PRP(s, bin(i))))
=proj(bin(i))
=i.

Similarly, it is easy to see that the construction is wunderbar: the description
consists of s ∈ F

λ
2 and n = poly(λ) ≤ λc for some constant c. Therefore, it has

size at most λ + c · log λ ∈ O(λ). The runtime of Entry is in fact independent
of n and thus trivially in O(polylog(n)) and the only computation in Index that
depends on n, is the membership check proj(b) ∈ [n] which can be performed in
time O(log n) ⊂ O(polylog(n)).

It remains to show that the construction is secure. Let n = n(λ) = poly(λ)
and let A be an arbitrary PPT algorithm, such that We construct an adversary
B against the pseudorandomness of as follows. B takes as input the security
parameter λ and is given access to an oracle. For each i ∈ [n], query bin(i)
to the oracle, receiving back b′

i and compute ki := binToField(b′
i). Invoke A(k)

and output whatever A outputs. Clearly, B is also PPT, needing a runtime
overhead of just n oracle queries over simply running A. We now consider two
cases: if, on the one hand, the oracle is PRP(s, ·), then for all i ∈ [n] ki =
binToField(PRP(s, bin(i))) = Entry((s, n), i). I.e., we have

Pr[s ← F
λ
2 : BPRP(s,·) = 1]

= Pr[s ← Sample(1λ, 1n),k := (Entry(s, 1), . . . ,Entry(s, n))ᵀ) : A(k)].
(1)

If, on the other hand, the oracle is a truly random permutation g, then for all
i ∈ [n] it holds that ki = binToField(g(bin(i))) and therefore

Pr[g ← Π(Fλ
2 ) : Bg(·) = 1]

= Pr[g ← Π(Fλ
2 );∀i ∈ [n]. ki = binToField(g(bin(i))) : A(k)] (2)

= Pr[(b′
1, . . . , b

′
n) ← ✄

(
(Fλ

2 )n
)
;k = (binToField(b′

i))i∈[n] : A(k)] (3)
= Pr[k ← ✄(Kn) : A(k)]. (4)

Here, Eq. 3 holds because g is a uniformly chosen random permutation and
therefore the values g(bin(i)) are uniformly distributed conditioned on not being
duplicates and Eq. 4 holds because binToField is an injective function into K.
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Combining Eq. 1 and Eq. 4 we get
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎢
⎢
⎣

s ← Sample(1λ, 1n),

k :=

⎛

⎜
⎝

Entry(s, 1)
...

Entry(s, n)

⎞

⎟
⎠

: A(k)

⎤

⎥
⎥
⎥
⎥
⎦

− Pr[k ← ✄(Kn) : A(k)]

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=
∣
∣
∣Pr[s ← F

λ
2 : BPRP(s,·) = 1] − Pr[g ← {f : Fλ

2 → F
λ
2} : Bg(·) = 1]

∣
∣
∣

≤negl(λ)

where the last inequality follows from the fact that PRP is pseudorandom. ��

5.2 A Helpful Lemma

We prove a helpful lemma which allows to bound the probability of false positives
when attempting to detect cells with only a single entry in the IBLT. Recall,
that we have two matrices M and K, where the cells of M contain sums of
messages md and the cells of K contain sums of kd · md for a random vector
k. We check for cells containing only a single message, i.e. cells that can be
peeled, by checking whether K[i, j]/M [i, j] corresponds to one of the values in
k. A false positive could occur, if for some set of at least two non-zero messages
corresponding to indices I ⊆ [n] it happens to hold that

kj =
∑

i∈I kimi
∑

i∈I mi

for some j ∈ [n]. The lemma states that we can bound the probability of this
occuring by choosing the entries of k from a large enough space.

Lemma 13. Let K ⊆ Fq, (m1, . . . , mn) ∈ F
n
q and I ⊆ [n] be arbitrary such that∑

i∈I mi �= 0 and there exist i, i′ ∈ I with 0 �∈ {mi,mi′}. It holds that

Pr
[

k ← Kn : ∃j ∈ [n]. kj =
∑

i∈I kimi
∑

i∈I mi

]

≤ n

|K|
Proof. Using a union bound we have

Pr
[

k ← Kn : ∃j ∈ [n]. kj =
∑

i∈I kimi
∑

i∈I mi

]

≤
∑

j∈[n]

Pr
[

k ← Kn : kj =
∑

i∈I kimi
∑

i∈I mi

]

.
(5)
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It thus remains to bound the above probability for individual j. Let j ∈ [n] be
arbitrary but fixed and let ξ = 1 if j ∈ I and ξ = 0 otherwise. It then holds that

Pr
[

k ← Kn : kj =
∑

i∈I kimi
∑

i∈I mi

]

= Pr
[
k ← Kn : kj ·

∑

i∈I

mi =
∑

i∈I

kimi

]

= Pr
[
k ← Kn : kj · (

∑

i∈I

mi − ξmj

)
=
∑

i∈I

kimi − kjξmj

]

= Pr
[
k ← Kn : kj ·

∑

i∈I\{j}
mi =

∑

i∈I\{j}
kimi

]

We now consider two cases. If
∑

i∈I\{j} = 0, let j′ ∈ I \ {j} be an index, such
that mj′ �= 0. Note that such an index always exists by the condition on I. We
then have

Pr
[
k ← Kn : kj ·

=0
︷ ︸︸ ︷∑

i∈I\{j}
mi =

∑

i∈I\{j}
kimi

]

= Pr
[
k ← Kn : 0 =

∑

i∈I\{j}
kimi

]

= Pr
[

k ← Kn : kj′ =

∑
i∈I\{j,j′} kimi

−mj′

]

where (−mj′)−1 is always defined by the condition that mj′ �= 0. Since the right
hand side of the equality is independent of kj′ , the probability that the equality
holds is at most 1/|K| for any choice of ki, i �= j′. Thus, in this case

Pr
[

k ← Kn : kj =
∑

i∈I kimi
∑

i∈I mi

]

≤ 1
|K| . (6)

In the other case, i.e., if
∑

i∈I\{j} �= 0, (
∑

i∈I\{j})
−1 is well defined and we have

Pr
[
k ← Kn : kj ·

∑

i∈I\{j}
mi =

∑

i∈I\{j}
kimi

]
= Pr

[

k ← Kn : kj =

∑
i∈I\{j} kimi
∑

i∈I\{j} mi

]

.

Here again, the right hand side of the equality is independent of kj . Thus, the
probability that the equality holds is at most 1/|K| for any choice of ki, i �= j
and also in this case it holds that

Pr
[

k ← Kn : kj =
∑

i∈I kimi
∑

i∈I mi

]

≤ 1
|K| (7)

Finally, combining Eq. 5 with Eq. 6 and Eq. 7, we get

Pr
[

k ← Kn : ∃j ∈ [n]. kj =
∑

i∈I kimi
∑

i∈I mi

]

≤ n

|K| ��
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By observing that the statistical distance betweem Kn and ✄(Kn)) is at most
n2/|K| due to the birthday bound, we obtain the following corollary.

Corollary 14. Let K ⊆ Fq, (m1, . . . , mn) ∈ F
n
q and I ⊆ [n] be arbitrary such

that
∑

i∈I mi �= 0 and there exist i, i′ ∈ I with 0 �∈ {mi,mi′}. It holds that

Pr
[

k ← ✄(Kn) : ∃j ∈ [n]. kj =
∑

i∈I kimi
∑

i∈I mi

]

≤ n2 + n

|K|

5.3 Construction of Ciphertext-Compression from IBLTs

Populating the IBLT involves homomorphically evaluating an inner product
between the encrypted vector and a plain vector. Therefore, the compression
scheme can only work for ciphertext vectors that allow the evaluation of inner
product functions defined in the following.

Definition 15 (Inner Product Functions). The class of inner product func-
tions is the set of functions Zip = {fa | a ∈ F

n
q } with

fa : Fn
q → Fq, fa(x) := 〈a,x〉.

The family of ciphertext vectors the construction is applicable to is then
exactly those ciphertext vectors with low hamming weight and allow the evalu-
ation of inner product functions. We define this family as follows.

Definition 16. (Zip-Valid Low Hamming Weight Ciphertext Vectors).
Let E = (Gen,Enc,Eval,Dec) be a homomorphic public key encryption scheme.
For any pk ∈ P, let

F ip
t,pk :=

{
c ∈ vld(Zip, pk) | hw(Dec(Gen−1(pk), c)) < t

}
.

We then define the family of Zip-valid ciphertext vectors with low hamming
weight as F ip

t := {Ft,pk | pk ∈ P}.

Theorem 17. Let E = (Gen,Enc,Eval,Dec) be an additively homomorphic
encryption scheme with message space M = Fq for some prime power q with
ciphertext size ξ = ξ(λ). Let λ, κ, t, n ∈ N be integers and let γ := � κ

log t� + 2.
Let PRF be a family of pseudorandom functions PRF : [γ] × [2λ] → [8t]
and let (Sample,Entry, Index) be a wunderbar pseudorandom vector with index
recovery for a universe K = K(λ) ⊆ Fq with |K| ≥ 2κ(8tγ)(n3 + n2).
Then (Compress,Decompress) from Fig. 4 is a (O(λ) + 16tγξ)/(nξ)-compressing
(1 − O(2−κ) − negl(λ))-correct ciphertext compression scheme for family F ip

t .

Proof. The output of the compression algorithm consists of a s1, s2 and 16tγ
ciphertexts. Since the pseudorandom vector is wunderbar, it holds that |s1| =
O(λ) and s2 is chosen as a λ-bit string. Therefore, it is easy to see that the scheme
is (O(λ)+16tγξ)/(nξ)-compressing. It remains to prove that it is correct. To do
so we define a series of six hybrid schemes in Figs. 5 through 9.



568 N. Fleischhacker et al.

Compress(pk, c)

s1 ← Sample(1λ, n)

s2 ← {0, 1}λ

M := Enc(pk, 0)γ×8t

K := Enc(pk, 0)γ×8t

foreach (i, d) ∈ [γ] × [n] do

j := PRF(s2, (i, d))

M [i, j] := M [i, j] � cd

k := Entry(s1, d)

K [i, j] := K [i, j] � (k � cd)

return (s1, s2,M ,K)

Decompress(sk, (s1, s2,M ,K))

S := ∅
M ′ := Dec(sk,M )

K ′ := Dec(sk,K)

D′ := Initialize()

while ∃ (i∗, j∗) ∈ [γ] × [8t]. D′[i∗, j∗] 	= ⊥ do

(d, k, m) := (D′[i∗, j∗],K ′[i∗, j∗],M ′[i∗, j∗])

S := S ∪ {(d, m)}
Update(d, k, m)

return S

Initialize()

D′ := ⊥γ×8t

foreach (i, j) ∈ [γ] × [8t] do

if M ′[i, j] 	= 0

D′[i, j] := Index
(
s1,

K ′[i,j]
M ′[i,j]

)

return D′

Update(d, k, m)

foreach i ∈ [γ] do

j := PRF(s2, (i, d))

M ′[i, j] := M ′[i, j] − m

K ′[i, j] := K ′[i, j] − k

if M ′[i, j] 	= 0

D′[i, j] := Index
(
s1,

K ′[i,j]
M ′[i,j]

)

else

D′[i, j] := ⊥

Fig. 4. A ciphertext compression scheme based on invertible bloom lookup tables and
wunder pseudorandom vectors.

Claim 18. For any Zip-valid vector of ciphertexts it holds that

Pr[Decompress(sk,Compress(pk, c)) = sparse(Dec(sk, c))]
= Pr[Decompress1(Compress1(Dec(sk, c))) = sparse(Dec(sk, c))]

Proof. Following Definition 15 we denote by fa the inner product function fa :
F

n
q → Fq, fa(x) := 〈a,x〉. Further, we denote

vi,j :=

⎛

⎜
⎝

δj,PRF(s2,(i,1))

...
δj,PRF(s2,(i,n))

⎞

⎟
⎠ wi,j :=

⎛

⎜
⎝

Entry(s1, 1) · δj,PRF(s2,(i,1))

...
Entry(s1, n) · δj,PRF(s2,(i,n))

⎞

⎟
⎠

Now, let M0,K0,M
′
0,K

′
0 and M1,K1,M

′
1,K

′
1 denote the relevant matrices

in the actual scheme and hybrid 1 respectively. We note, that since c is Zip-valid,
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Compress1(m)

s1 ← Sample(1λ, n)

s2 ← {0, 1}λ

M := 0γ×8t

K := 0γ×8t

foreach (i, d) ∈ [γ] × [n] do

j := PRF(s2, (i, d))

M [i, j] := M [i, j] + md

k := Entry(s1, d)

K [i, j] := K [i, j] + (k · md)

return (s1, s2,M ,K)

Decompress1((s1, s2,M ,K))

S := ∅
M ′ := M

K ′ := K

D′ := Initialize()

while ∃ (i∗, j∗) ∈ [γ] × [8t]. D′[i∗, j∗] 	= ⊥ do

(d, k, m) := (D′[i∗, j∗],K ′[i∗, j∗],M ′[i∗, j∗])

S := S ∪ {(d, m)}
Update(d, k, m)

return S

Fig. 5. The first hybrid scheme works exactly as the actual ciphertext compression
scheme, except that it operates on plaintext messages instead of encrypted messages.
I.e., ciphertexts are now decrypted before compression instead of between compression
and decompression.

it holds for all (i, j) ∈ [γ] × [8t] that

M ′
0[i, j] =Dec(sk,M 0[i, j]) (Definition 3)

=Dec(sk,�
d∈{[n]|PRF(s2,(i,d))=j}

cd)

=Dec(Eval(pk, fv i,j , c))

=fv i,j (Dec(sk, c))

=
∑

d∈{[n]|PRF(s2,(i,d))=j}
Dec(sk, cd) = M ′

1[i, j]

as well as

K ′
0[i, j] =Dec(sk,K0[i, j]) (Definition 3)

=Dec(sk,�
d∈{[n]|PRF(s2,(i,d))=j}

cd · Entry(s1, d))

=Dec(Eval(pk, fw i,j
, c))

=fw i,j
(Dec(sk, c))

=
∑

d∈{[n]|PRF(s2,(i,d))=j}
Dec(sk, cd) · Entry(s1, d)) = K ′

1[i, j]

Since the computation on M ′,K′ is otherwise identical between the two hybrids,
the claim immediately follows. ��
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Compress2(m)

k ← DummySample(1λ, n)

s2 ← {0, 1}λ

M := 0γ×8t

K := 0γ×8t

foreach (i, d) ∈ [γ] × [n] do

j := PRF(s2, (i, d))

M [i, j] := M [i, j] + md

k := kd

K [i, j] := K [i, j] + (k · md)

return (k, s2,M ,K)

Decompress2((k, s2,M ,K))

S := ∅
M ′ := M

K ′ := K

D′ := Initialize2()

while ∃ (i∗, j∗) ∈ [γ] × [8t]. D′[i∗, j∗] 	= ⊥ do

(d, k, m) := (D′[i∗, j∗],K ′[i∗, j∗],M ′[i∗, j∗])

S := S ∪ {(d, m)}
Update2(d, k, m)

return S

Initialize2()

D′ := ⊥γ×8t

foreach (i, j) ∈ [γ] × [8t] do

if M ′[i, j] 	= 0

D′[i, j] := DummyIndex
(
k, K ′[i,j]

M ′[i,j]

)

return D′

Update2(d, k, m)

foreach i ∈ [γ] do

j := PRF(s2, (i, d))

M ′[i, j] := M ′[i, j] − m

K ′[i, j] := K ′[i, j] − k

if M ′[i, j] 	= 0

D′[i, j] := DummyIndex
(
k, K ′[i,j]

M ′[i,j]

)

else

D′[i, j] := ⊥

Fig. 6. The second hybrid scheme works exactly as the first hybrid scheme, except that
instead of using the wunder pseudorandom vector it uses the dummy sampler and the

dummy index recovery to work with a uniformly random vector k Kn..

Claim 19. If (Sample,Entry, Index) is a secure pseudorandom vector, it holds
for any key pair (sk, pk) and any vector c that
∣
∣
∣
∣
∣

Pr[Decompress1(Compress1(Dec(sk, c))) = sparse(Dec(sk, c))]
−Pr[Decompress2(Compress2(Dec(sk, c))) = sparse(Dec(sk, c))]

∣
∣
∣
∣
∣
≤ negl(λ).

Proof. We construct an attacker A against security of the pseudorandom vec-
tor as follows. On input k, A executes Decompress2(Compress2(Dec(sk, c))),
except that it uses its input k instead of sampling a fresh one. If k was cho-
sen using k ← DummySample(1λ, n), this is identical to a regular execution of
Decompress2(Compress2(Dec(sk, c))). If on the other hand k was chosen by sam-
pling s2 ← Sample(1λ, n) and setting k := (Entry(s, 1), . . . ,Entry(s, n))ᵀ, this is
identical to a regular execution of Decompress1(Compress1(Dec(sk, c))). There-
fore, by the security of the pseudorandom vector
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Compress3(m)

k ← DummySample(1λ, n)

s2 ← {0, 1}λ

M := 0γ×8t

K := 0γ×8t

C := 0γ×8t

foreach (i, d) ∈ [γ] × [n] do

j := PRF(s2, (i, d))

M [i, j] := M [i, j] + md

k := kd

K [i, j] := K [i, j] + (k · md)

if md 	= 0 do

C [i, j] := C [i, j] + 1

return (k, s2,M ,K ,C)

Decompress3((k, s2,M ,K ,C))

S := ∅
M ′ := M

K ′ := K

D′ := Initialize2()

while ∃ (i∗, j∗) ∈ [γ] × [8t]. C [i∗, j∗] = 1 do

(d, k, m) := (D′[i∗, j∗],K ′[i∗, j∗],M ′[i∗, j∗])

S := S ∪ {(d, m)}
Update3(d, k, m)

return S

Update3(d, k, m)

foreach i ∈ [γ] do

j := PRF(s2, (i, d))

M ′[i, j] := M ′[i, j] − m

K ′[i, j] := K ′[i, j] − k

C [i, j] := C [i, j] − 1

if M ′[i, j] 	= 0

D′[i, j] := DummyIndex
(
k, K ′[i,j]

M ′[i,j]

)

else

D′[i, j] := ⊥

Fig. 7. The third hybrid scheme works exactly as the second hybrid scheme, except
that it maintains a matrix counting how many non-zero messages are mapped to each
individual cell and deciding which messages to peel based on these exact counts instead
of relying on the matrix K .

negl(λ) ≥

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎣s ← Sample(1λ, n),k :=

⎛

⎜
⎝

(Entry(s, 1)
...

Entry(s, n)

⎞

⎟
⎠ : A(k)

⎤

⎥
⎦

− Pr[k ← DummySample(1λ, n) : A(k)]

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

Pr[Decompress1(sk,Compress1(pk, c)) = sparse(Dec(sk, c))]
− Pr[Decompress2(Compress2(Dec(sk, c))) = sparse(Dec(sk, c))]

∣
∣
∣
∣
∣

��
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Claim 20. It holds that
∣
∣
∣
∣
∣

Pr[Decompress2(Compress2(Dec(sk, c))) = sparse(Dec(sk, c))]
− Pr[Decompress3(Compress3(Dec(sk, c))) = sparse(Dec(sk, c))]

∣
∣
∣
∣
∣
≤ 2−κ.

Proof. We first note two things

1. Whenever a correct element (m, d) is peeled, the resulting matrices (C′,M ′,
K′,D) are identical to the scenario where md = Dec(sk, cd) = 0 and all other
mesages are unchanged.

2. In the third hybrid scheme only correct elements are peeled.

The first observation follows because a correct peeling removes a message from
the relevant cells by subtracting the corresponding values, which is equivalent to
not adding them in the first place, which is exactly what happens if the message
is zero. The second observation follows because we correctly keep track of the
number of non-zero elements in each cell and only peel those, where a single non-
zero element remains. By these observations, at any point during the execution
of the decompression loop, there exists a vector m′ ∈ F

n
q , such that for all (i, j)

K′[i, j] :=

⎧
⎨

⎩

d if
∑

ι∈Ii
kιmι

∑
ι∈Ii

mι
= kd

⊥ otherwise

where Ii = {ι ∈ [n] | PRF(s1, (i, ι)) = j}.
We denote by Er,i,j the event that before the r-th iteration of the main loop

of Decompress4, it holds that C[i, j] > 1 but K[i, j] �= ⊥. Note that Decompress4
and Decompress3 behave identically unless at least one of Er,i,j for (r, i, j) ∈
[n] × [γ] × [8t] occurs.

Therefore by a union bound and Corollary 14
∣
∣
∣
∣
∣

Pr[Decompress3(sk,Compress3(pk, c)) = sparse(Dec(sk, c))]
− Pr[Decompress4(Compress4(Dec(sk, c))) = sparse(Dec(sk, c))]

∣
∣
∣
∣
∣

≤
∑

(r,i,j)∈[n]×[γ]×[8t]

Pr[Er,i,j ]

≤
∑

(r,i,j)∈[n]×[γ]×[8t]

n2 + n

|K|

=
(8tγ)(n3 + n2)

|K| ≤ (8tγ)(n3 + n2)
2κ · (8tγ)(n3 + n2)

≤ 2−κ

��

Claim 21. It holds that
∣
∣
∣
∣
∣

Pr[Decompress3(Compress3(Dec(sk, c))) = sparse(Dec(sk, c))]
= Pr[Decompress4(Compress4(Dec(sk, c))) = sparse(Dec(sk, c))]

∣
∣
∣
∣
∣
.
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Compress4(m)

k ← DummySample(1λ, n)

s2 ← {0, 1}λ

M := 0γ×8t

K := 0γ×8t

C := 0γ×8t

D := 0γ×8t

foreach (i, d) ∈ [γ] × [n] do

j := PRF(s2, (i, d))

M [i, j] := M [i, j] + md

k := kd

K [i, j] := K [i, j] + (k · md)

if md 	= 0 do

C [i, j] := C [i, j] + 1

D[i, j] := D[i, j] + d

return (k, s2,M ,K ,C ,D)

Decompress4((k, s2,M ,K ,C ,D))

S := ∅
M ′ := M

K ′ := K

D′ := D

while ∃ (i∗, j∗) ∈ [γ] × [8t]. C [i∗, j∗] = 1 do

(d, k, m) := (D′[i∗, j∗],K ′[i∗, j∗],M ′[i∗, j∗])

S := S ∪ {(d, m)}
Update4(d, k, m)

return S

Update4(d, k, m)

foreach i ∈ [γ] do

j := PRF(s2, (i, d))

M ′[i, j] := M ′[i, j] − m

K ′[i, j] := K ′[i, j] − k

C [i, j] := C [i, j] − 1

D′[i, j] := D′[i, j] − d

Fig. 8. The fourth hybrid scheme works exactly as the third hybrid scheme, except
that the matrix D which before contained the indices of the messages if it could be
inferred from the matrix K is now maintained with a sum of the indices of all messages
mapped to the cell. This means that whenever C [i, j] = 1, D[i, j] contains the index
of the single non-zero message mapped to cell (i, j).

Proof. The only difference between the two hybrids could occur, if when peeling
a message from cell (i, j), the content of D[i, j] would differ between the two
hybrids. However, this is not possible, since in hybrid three we have

D[i, j] = DummyIndex(k,
K[i, j]
M [i, j]

)

=DummyIndex(k,
kd · md

md
) = DummyIndex(k, kd) = d

just as in hybrid four. ��
The fifth hybrid is identical to the fourth hybrid except that the now unnec-

cessary matrix K is removed. The following claim trivially follows from the fact
that K is not used in either hybrids.
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Claim 22. It holds that
∣
∣
∣
∣
∣

Pr[Decompress4(Compress4(Dec(sk, c))) = sparse(Dec(sk, c))]
= Pr[Decompress5(Compress5(Dec(sk, c))) = sparse(Dec(sk, c))]

∣
∣
∣
∣
∣
.

Compress
h(·)
6 (m)

M := 0γ×8t

C := 0γ×8t

D := 0γ×8t

foreach (i, d) ∈ [γ] × [n] do

j := h(i, d)

M [i, j] := M [i, j] + md

if md 	= 0 do

C [i, j] := C [i, j] + 1

D[i, j] := D[i, j] + d

return (M ,C ,D)

Decompress
h(·)
6 ((M ,C ,D))

S := ∅
M ′ := M

D′ := D

while ∃ (i∗, j∗) ∈ [γ] × [8t]. C [i∗, j∗] = 1 do

(d, m) := (D′[i∗, j∗],M ′[i∗, j∗])

S := S ∪ {(d, m)}
Update5(d, m)

return S

Update6(d, m)

foreach i ∈ [γ] do

j := h(i, d)

M ′[i, j] := M ′[i, j] − m

C [i, j] := C [i, j] − 1

D′[i, j] := D′[i, j] − d

Fig. 9. The sixth hybrid scheme works exactly as the fifth hybrid scheme, except that
instead of using a pseudorandom function to derive j from (i, d), it uses a truly random
function h given as an oracle.

Claim 23. If PRF is a secure pseudorandom function then it holds that
∣
∣
∣
∣
∣

Pr[Decompress5(Compress5(Dec(sk, c))) = sparse(Dec(sk, c))]

−Pr[Decompress
h(·,·)
6 (Compress

h(·,·)
6 (Dec(sk, c))) = sparse(Dec(sk, c))]

∣
∣
∣
∣
∣

≤negl(λ).

Proof. The only difference between the two hybrids is the use of the func-
tion PRF(s2, ·, ·) in the fifth hybrid and h(·, ·) in the sixth hybrid. Thus, the
claim follows from a straightforward reduction that, given access to an oracle o,
executes Decompress

o(·,·)
6 (Compress

o(·,·)
6 (Dec(sk, c))) and outputs 0 if the result

equals sparse(Dec(sk, c)) and 1 otherwise. ��
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Claim 24. It holds for any vector of ciphertexts with hamming weight at most
t that

Pr[Decompress6(Compress6(Dec(sk, c))) = sparse(Dec(sk, c))] ≤ O(2−κ)

Proof. Denote m := Dec(sk, c), S := {(d,m′) | m′ = md} and S 
=0 := {(d,m′) ∈
S | m′ �= 0} = sparse(m). Since c has Hamming weight at most t, we have that
|S 
=0| ≤ t.

Comparing hybrid six with the definition of an IBLT in Fig. 1, and keeping in
mind Remark 1 we can observe, that what Compress6 actually outputs is simply
an IBLT for pairs containing all elements of S 
=0 using hash functions h(i, ·).
Further, Decompress6 is in fact the same as List with Update6 being identical to
Peel. And since |S 
=0| ≤ t and random functions are t-wise independent, it thus
holds by Theorem 6 that

Pr[Decompress6(Compress6(m)) = sparse(m)]

= Pr[List(Insert(B0, S 
=0)) = S 
=0] ≥ 1 − O(2−(γ−2) log t) ≥ 1 − O(2−κ)

��
By combining all of the above claims and using the triangle inequality it

follows that

Pr[Decompress(sk,Compress(pk, c)) = sparse(Dec(sk, c))]

≥1 − O(2−κ) − negl(λ)

as claimed. ��
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Abstract. We introduce the notion of public key encryption with secure
key leasing (PKE-SKL). Our notion supports the leasing of decryption
keys so that a leased key achieves the decryption functionality but comes
with the guarantee that if the quantum decryption key returned by a
user passes a validity test, then the user has lost the ability to decrypt.
Our notion is similar in spirit to the notion of secure software leasing
(SSL) introduced by Ananth and La Placa (Eurocrypt 2021) but cap-
tures significantly more general adversarial strategies. (In more detail,
our adversary is not restricted to use an honest evaluation algorithm to
run pirated software.) Our results can be summarized as follows:
1. Definitions: We introduce the definition of PKE with secure key

leasing and formalize a security notion that we call indistinguisha-
bility against key leasing attacks (IND-KLA security). We also define
a one-wayness notion for PKE-SKL that we call OW-KLA security
and show that an OW-KLA secure PKE-SKL scheme can be lifted
to an IND-KLA secure one by using the (quantum) Goldreich-Levin
lemma.

2. Constructing IND-KLA PKE with Secure Key Leasing: We provide
a construction of OW-KLA secure PKE-SKL (which implies IND-
KLA secure PKE-SKL as discussed above) by leveraging a PKE
scheme that satisfies a new security notion that we call consistent or
inconsistent security against key leasing attacks (CoIC-KLA secu-
rity). We then construct a CoIC-KLA secure PKE scheme using
1-key Ciphertext-Policy Functional Encryption (CPFE) that in turn
can be based on any IND-CPA secure PKE scheme.

3. Identity Based Encryption, Attribute Based Encryption and Func-
tional Encryption with Secure Key Leasing: We provide definitions
of secure key leasing in the context of advanced encryption schemes
such as identity based encryption (IBE), attribute-based encryption
(ABE) and functional encryption (FE). Then we provide construc-
tions by combining the above PKE-SKL with standard IBE, ABE
and FE schemes.
Notably, our definitions allow the adversary to request distinguish-
ing keys in the security game, namely, keys that distinguish the
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challenge bit by simply decrypting the challenge ciphertext, as long
as it returns them (and they pass the validity test) before it sees
the challenge ciphertext. All our constructions satisfy this stronger
definition, albeit with the restriction that only a bounded number
of such keys is allowed to the adversary in the IBE and ABE (but
not FE) security games.

Prior to our work, the notion of single decryptor encryption (SDE) has
been studied in the context of PKE (Georgiou and Zhandry, Eprint
2020) and FE (Kitigawa and Nishimaki, Asiacrypt 2022) but all their
constructions rely on strong assumptions including indistinguishability
obfuscation. In contrast, our constructions do not require any additional
assumptions, showing that PKE/IBE/ABE/FE can be upgraded to sup-
port secure key leasing for free.

1 Introduction

Recent years have seen amazing advances in cryptography by leveraging the
power of quantum computation. Several novel primitives such as perfectly secure
key agreement [11], quantum money [35], quantum copy protection [1], one shot
signatures [5] and such others, which are not known to exist in the classical world,
can be constructed in the quantum setting, significantly advancing cryptographic
capabilities.

In this work, we continue to study harnessing quantum powers to protect
against software piracy. The quantum no-cloning principle intuitively suggests
applicability to anti-piracy, an approach which was first investigated in the semi-
nal work of Aaronson [1], who introduced the notion of quantum copy protection.
At a high level, quantum copy protection prevents users from copying software
in the sense that it guarantees that when an adversary is given a copy protected
circuit for computing some function f , it cannot create two (possibly entan-
gled) quantum states, both of which can compute f . While interesting in its
own right for preventing software piracy, quantum copy protection (for some
class of circuits) also has the amazing application of public-key quantum money
[2]. Perhaps unsurprisingly, constructions of quantum copy protection schemes
from standard cryptographic assumptions have remained largely elusive. This
motivates the study of primitives weaker than quantum copy protection, which
nevertheless offer meaningful guarantees for anti-piracy.

Secure software leasing (SSL), introduced by Ananth and La Placa [9], is such
a primitive, which while being weaker than quantum copy-protection, is never-
theless still meaningful for software anti-piracy. Intuitively, this notion allows
to encode software into a version which may be leased or rented out, for some
specific term at some given cost. Once the lease expires, the lessee returns the
software and the lessor can run an efficient procedure to verify its validity. If the
software passes the test, we have the guarantee that the lessee is no longer able
to run the software (using the honest evaluation algorithm).

In this work, we explore the possibility of equipping public key encryption
(PKE) with a key leasing capability. The benefits of such a capability are indis-
putable – in the real world, decryption keys of users often need to be revoked,
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for instance, when a user leaves an organization. In the classical setting, nothing
prevents the user from maintaining a copy of her decryption key and misusing
its power. Revocation mechanisms have been designed to prevent such attacks,
but these are often cumbersome in practice. Typically, such a mechanism entails
the revoked key being included in a Certificate Revocation List (CRL) or Certifi-
cate Revocation Trees (CRT), or some database which is publicly available, so
that other users are warned against its usage. However, the challenges of effec-
tive certificate revocation are well acknowledged in public key infrastructure –
please see [12] for a detailed discussion. If the decryption keys of a PKE could be
encoded as quantum states and allow for verifiable leasing, this would constitute
a natural and well-fitting solution to the challenge of key revocation.

1.1 Prior Work

In this section, we discuss prior work related to public key encryption (PKE) and
public key functional encryption (PKFE), where decryption keys are encoded
into quantum states to benefit from uncloneability. For a broader discussion on
prior work related to quantum copy protection and secure software leasing, we
refer the reader to Sect. 1.4.

Georgiou and Zhandry [20] introduced the notion of single decryptor encryp-
tion (SDE), where the decryption keys are unclonable quantum objects. They
showed how to use one-shot signatures together with extractable witness encryp-
tion with quantum auxiliary information to achieve public key SDE. Subse-
quently, Coladangelo, Liu, Liu, and Zhandry [17] achieved SDE assuming iO
and extractable witness encryption or assuming subexponential iO, subexpo-
nential OWF, LWE and a strong monogamy property (which was subsequently
shown to be true [19]). Very recently, Kitagawa and Nishimaki [27] introduced
the notion of single-decryptor functional encryption (SDFE), where each func-
tional decryption key is copy protected and provided collusion-resistant single
decryptor PKFE for P/poly from the subexponential hardness of iO and LWE.

It is well-known [3,9] that copy protection is a stronger notion than SSL1

– intuitively, if an adversary can generate two copies of a program, then it can
return one of them while keeping the other for later use. Thus, constructions
of single decryptor encryption [17,20,27] imply our notion of PKE with secure
key leasing from their respective assumptions, which all include at least the
assumption of iO (see Appendix A of the full version for the detail). Additionally,
in the context of public key FE, the only prior work by Kitagawa and Nishimaki
[27] considers the restricted single-key setting where an adversary is given a
single decryption key that can be used to detect the challenge bit. In contrast,
we consider the more powerful multi-key setting, which makes our definition of
FE-SKL incomparable to the SDFE considered by [27]. For the primitives of
IBE and ABE, there has been no prior work achieving any notion of key leasing
to the best of our knowledge. We also note that Aaronson et al. [3] studied

1 The informed reader may observe that this implication may not always be true due
to some subtleties, but we ignore these for the purpose of the overview.
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the notion of “copy-detection”, which is a weaker form of copy protection, for
any “watermarkable” functionalities based on iO and OWF. In particular, by
instantiating the construction with the watermarkable PKE of [22], they obtain
PKE with copy-detection from iO + PKE.

Overall, all previous works that imply PKE-SKL are designed to achieve the
stronger goal of copy protection (or the incomparable goal of copy detection)
and rely at least on the strong assumption of iO. In this work, our goal is to
achieve the weaker goal of PKE-SKL from standard assumptions.

1.2 Our Results

In this work, we initiate the study of public key encryption with secure key
leasing. Our results can be summarized as follows:

1. Definitions: We introduce the definition of PKE with secure key leasing
(PKE-SKL) to formalize the arguably natural requirement that decryption
keys of a PKE scheme is encoded into a leased version so that the leased
key continues to achieve the decryption functionality but now comes with
an additional “returnability” guarantee. In more detail, the security of PKE-
SKL requires that if the quantum decryption key returned by a user passes a
validity test, then the user has lost the ability to decrypt. To capture this intu-
ition, we formalize a security notion that we call indistinguishability against
key leasing attacks (IND-KLA security). We also define a one-wayness notion
for PKE-SKL that we call OW-KLA security and show that an OW-KLA
secure PKE-SKL scheme can be lifted to an IND-KLA secure one by using
the (quantum) Goldreich-Levin lemma.

2. Constructing IND-KLA PKE with Secure Key Leasing: We provide a con-
struction of OW-KLA secure PKE-SKL (which imples IND-KLA PKE-SKL
as discussed above) by leveraging a PKE scheme that satisfies a new secu-
rity notion that we call consistent or inconsistent security against key leasing
attacks (CoIC-KLA security). We then construct a CoIC-KLA secure PKE
scheme using 1-key Ciphertext-Policy Functional Encryption (CPFE) that in
turn can be based on any IND-CPA secure PKE scheme.

3. Identity Based Encryption, Attribute Based Encryption and Functional
Encryption with Secure Key Leasing: We provide definitions of secure key
leasing in the context of advanced encryption schemes such as identity based
encryption (IBE), attribute-based encryption (ABE) and functional encryp-
tion (FE). Then we provide constructions by combining the above PKE-SKL
with standard IBE, ABE and FE schemes.
Notably, our definitions allow the adversary to request distinguishing keys in
the security game, namely, keys that distinguish the challenge bit by simply
decrypting the challenge ciphertext. Recall that this was not permitted in
the classical setting to avoid trivializing the security definition. However, in
the quantum setting, we consider a stronger definition where the adversary
can request such keys so long as it returns them (and they pass the validity
test) before it sees the challenge ciphertext. All our constructions satisfy this
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stronger definition, albeit with the restriction that only a bounded number
of such keys be allowed to the adversary in the IBE and ABE (but not FE)
security games. We emphasize that this restriction is a result of our techniques
and could potentially be removed in future work.

We note that, in general, secure software leasing (SSL) only ensures a notion
of security where the adversary is forced to use an honest evaluation algo-
rithm for the software. However, our definition (and hence constructions) of
PKE/ABE/FE SKL do not suffer from this limitation. Our constructions do not
require any additional assumptions, showing that PKE/IBE/ABE/FE can be
upgraded to support secure key leasing for free.

1.3 Technical Overview

We proceed to give a technical overview of this work.

Definition of PKE with Secure Key Leasing. We first introduce the definition
of PKE with secure key leasing (PKE-SKL). A PKE-SKL scheme SKL consists
of four algorithms (KG ,Enc,Dec,Vrfy), where the first three algorithms form a
standard PKE scheme except the following differences on KG .2

– KG outputs a quantum decryption key dk instead of a classical decryption
key.

– KG outputs a (secret) verification key vk, together with a public encryption
key and quantum decryption key.

The verification algorithm Vrfy takes as input a verification key and a quantum
decryption key, and outputs � or ⊥. In addition to decryption correctness, SKL
should satisfy verification correctness that states that Vrfy(vk, dk ) = � holds,
where (ek, dk , vk) ← KG(1λ).

The security of PKE-SKL requires that once a user holding a quantum
decryption key returns the key correctly, the user can no longer use the key
and lose the ability to decrypt. We formalize this as a security notion that we
call indistinguishability against key leasing attacks (IND-KLA security). It is
defined by using the following security game.

1. First, the challenger generates (ek, dk , vk) ← KG(1λ) and sends ek and dk to
an adversary A.

2. A sends two challenge plaintexts (m∗
0,m

∗
1) and a quantum state ˜dk that is sup-

posed to be a correct decryption key. The challenger checks if Vrfy(vk, ˜dk ) = �
holds. If not, A is regarded as invalid and the game ends here. Otherwise, the
game goes to the next step.3

2 In this paper, standard math or sans serif font stands for classical algorithms and
classical variables. The calligraphic font stands for quantum algorithms and the
calligraphic font and/or the bracket notation for (mixed) quantum states.

3 We also consider a slightly stronger definition where the adversary can get access to
a verification oracle many times, and the adversary is regarded as valid if the answer
to at least one query ˜dk is �. In this overview, we focus on the “1-query” security
for simplicity.
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3. The challenger generates ct∗ ← Enc(ek,m∗
coin) and sends it to A, where coin ←

{0, 1}.
4. A outputs coin′.

IND-KLA security guarantees that any QPT A cannot guess coin correctly sig-
nificantly better than random guessing, conditioned on A being valid. In more
detail, for any QPT adversary A that passes the verification with a non-negligible
probability, we have

∣

∣

∣Pr[coin′ = coin | Vrfy(vk, ˜dk ) = �] − 1/2
∣

∣

∣ = negl(λ).

One-Wayness to Indistinguishability. It is natural to define a one-wayness notion
for PKE-SKL, which we call OW-KLA security, by modifying the above defini-
tion so that the adversary is required to recover entire bits of a randomly chosen
message from its ciphertext. Similarly to standard PKE, we can transform a OW-
KLA secure PKE-SKL scheme into an IND-KLA secure one by using (quantum)
Goldreich-Levin lemma [4,17]. Hence, though our goal is to construct an IND-
KLA secure scheme, it suffices to construct an OW-KLA secure one.

Basic Idea for OW-KLA Secure Scheme. Towards realizing a OW-KLA
secure PKE-SKL scheme, we construct an intermediate scheme Basic =
(Basic.KG ,Basic.Enc,Basic.Dec,Basic.Vrfy) using two instances of a standard
PKE scheme, with parallel repetition. Let PKE = (PKE.KG,PKE.Enc,PKE.Dec)
be a standard PKE scheme. Basic.KG generates two key pairs (ek0, dk0) and
(ek1, dk1) using PKE.KG and outputs ek := (ek0, ek1), dk := 1/

√
2(|0〉 |dk0〉 +

|1〉 |dk1〉), and vk := (dk0, dk1). Given m and ek, Basic.Enc generates ct0 ←
PKE.Enc(ek0,m) and ct1 ← PKE.Enc(ek1,m) and outputs ct := (ct0, ct1).
Basic.Dec can decrypt this ciphertext using the decryption keys dk0 and dk1,
respectively, in superposition. Since both decryptions result in the same mes-
sage m, we can decrypt ciphertexts without collapsing dk . Finally, Basic.Vrfy
checks if the input decryption key is an equal-weight superposition of dk0 and
dk1. Concretely, it applies a binary outcome measurement w.r.t. a projection
Πvrfy := 1

2 (|0〉 |dk0〉 + |1〉 |dk1〉) (〈0| 〈dk0| + 〈1| 〈dk1|), and returns � if and only
if the state is projected onto Πvrfy.

Intuitively, if the adversary has returned the correct decryption key, then
it no longer has the capability to decrypt since the decryption key cannot be
cloned. However, this scheme does not satisfy OW-KLA because an adversary
can pass the verification with probability 1/2 simply by measuring the decryption
key and returning the collapsed decryption key. Such an adversary can keep the
decryption capability even after passing verification because the decryption key
collapses to a classical string, which can be easily copied. Nonetheless, it is
reasonable to expect that this attack strategy is optimal because there appears
to be no obvious way to attack with a better advantage. That said, it is unclear
how to turn this intuition into a formal proof assuming only IND-CPA security
of the underlying PKE. To address this gap, we introduce a new security notion
for PKE, that we call consistent or inconsistent security against key leasing
attacks (CoIC-KLA security). Using this, we can prove that the aforementioned
adversarial strategy is optimal and Basic satisfies 1/2-OW-KLA security.
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By being 1/2-OW-KLA secure, we mean that the probability that an adver-
sary can correctly return a decryption key and recover the challenge plaintext
simultaneously is at most 1/2 + negl(λ). Below, we introduce the definition of
CoIC-KLA security and how to prove 1/2-OW-KLA security of Basic using CoIC-
KLA security. Then, we explain how to achieve a full OW-KLA secure scheme
by applying parallel amplification to Basic.

Definition of CoIC-KLA security. CoIC-KLA security is defined by using the
following game.

1. The challenger generates (ek0, dk0) and (ek1, dk1) using PKE.KG, and gener-
ates dk := 1/

√
2(|0〉 |dk0〉+ |1〉 |dk1〉). The challenger sends ek0, ek1, and dk to

an adversary A. In this game, A can access the verification oracle only once,
where the oracle is given a quantum state and returns the outcome of the
projective measurement (Πvrfy, I − Πvrfy).

2. A sends two plaintexts (m∗
0,m

∗
1) to the challenger. The challenger picks ran-

dom bits a, b and generates ct0 = Enc(ek0,ma) and ct1 = Enc(ek1,ma⊕b).
Then, the challenger sends ct0 and ct1 to A.

3. A outputs a bit b′.

Then, CoIC-KLA security requires that any QPT A cannot guess b significantly
better than random guessing. In the above game, if b = 0, ct0 and ct1 are
ciphertexts of the same plaintext m∗

a. On the other hand, if b = 1, ct0 and
ct1 are ciphertexts of the different plaintexts m∗

a and m∗
1⊕a. Thus, we call this

security notion consistent or inconsistent security.

1/2-OW-KLA security of Basic. We explain how to prove 1/2-OW-KLA security
of Basic based on CoIC-KLA security of PKE. The OW-KLA security game for
Basic is as follows.

1. The challenger generates (ek0, dk0) and (ek1, dk1) using PKE.KG, sets ek :=
(ek0, ek1) and dk := 1/

√
2(|0〉 |dk0〉 + |1〉 |dk1〉), and sends ek and dk to an

adversary A.
2. The adversary returns a quantum state ˜dk that is supposed to be a correct

decryption key. The challenger checks if the result of applying Πvrfy defined
above to ˜dk is 1. If not, A is regarded as invalid and the game ends here.
Otherwise, the game goes to the next step.

3. The challenger generates random plaintext m∗ and two ciphertexts ct0 ←
PKE.Enc(ek0,m∗) and ct1 ← PKE.Enc(ek1,m∗), and sends ct := (ct0, ct1) to
A.

4. A outputs m′.

In this game, we say that A wins if (a) ˜dk passes the verification, that is, the
result of applying Πvrfy to ˜dk is 1, and (b) m′ = m∗ holds. A can win this
game with probability at least 1/2 by just measuring 1/

√
2(|0〉 |dk0〉 + |1〉 |dk1〉),

returns collapsed key, and decrypt the challenge ciphertext with the key. As
stated above, we can prove that this is the optimal strategy for A, that is, we
can bound the advantage of A by 1/2+ negl(λ). The proof can be done by using
game sequences. We denote the probability that A wins in Game i as Pr[Si].
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Game 0: This is exactly the above game.
Game 1: We defer the verification of the returned key ˜dk after A outputs m′.

From the deferred measurement principle, we have Pr[S0] = Pr[S1].

Game 2: We change A’s winning condition (b). Concretely, we replace (b) with
(b′) m′ ∈ {m∗, m̃} holds, where m̃ is a random plaintext.

Since we relaxed A’s winning condition, we have Pr[S1] ≤ Pr[S2].

Game 3: We generate ct1 as ct1 ← PKE.Enc(ek1, m̃) instead of ct1 ← PKE.Enc
(ek1,m∗).

The only difference between Game 2 and 3 is that ct0 and ct1 are ciphertexts
of the same plaintext in Game 2, but they are ciphertexts of different plaintexts
in Game 3. Thus, we obtain |Pr[S2] − Pr[S3]| = negl(λ) using CoIC security of
PKE.

We complete the proof by showing that Pr[S3] ≤ 1/2 + negl(λ) holds if PKE
satisfies one-wayness (that is implied by CoIC-KLA security). To show it, we
use the following Fact 1.

Fact 1: Assume PKE satisfies one-wayness. Then, given 1/
√

2(|0〉 |dk0〉+|1〉 |dk1〉),
PKE.Enc(ek0,m∗), and PKE.Enc(ek1, m̃), no adversary can obtain (dk0, m̃) or
(dk1,m∗) with non-negligible probability.

This can be proved by using the fact that even if we measure 1/
√

2(|0〉 |dk0〉 +
|1〉 |dk1〉) in the computational basis before giving it to the adversary, the adver-
sary still has success probability at least ε/2, where ε is the success probability
of the original experiment [13, Lemma 2.1].

Suppose Pr[S3] = 1/2 + 1/poly(λ) for some polynomial poly. This means
that conditioned that m′ ∈ {m∗, m̃}, ˜dk returned by A passes the verification
with probability significantly greater than 1/2. Thus, if we measure ˜dk in the
computational basis, we obtain dk0 with some inverse polynomial probability
and also dk1 with some inverse polynomial probability. (If either one is obtained
with overwhelming probability, ˜dk cannot pass the verification with probability
significantly greater than 1/2.) This means that using A, we can obtain either
one pair of (dk0, m̃) or (dk1,m∗) with inverse polynomial probability, which con-
tradicts Fact 1. Thus, we obtain Pr[S3] ≤ 1/2 + negl(λ).

From the above discussions, we can conclude that if PKE satisfies CoIC-KLA
security, Basic satisfies 1/2-OW-KLA security.

Full OW-KLA Security by Parallel Repetition. To achieve a fully OW-KLA
secure scheme, we apply parallel amplification to Basic in the following way.
When generating a key tuple, we generate λ key tuples (eki, dk i, vki) of Basic
and set ek′ := (eki)i∈[λ, dk ′ := (dk i)i∈[λ], and vk′ := (vki)i∈[λ]. When encrypting
a plaintext m, we divide it into λ pieces m1, · · · ,mλ, and encrypt each mi using
eki. Then decryption and verification are performed naturally by running the
underlying procedures in Basic for every i ∈ [λ]. We can prove the full OW-KLA
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security of this construction using a strategy analogous to that used to achieve
1/2-OW-KLA security of Basic. We remark that it is unclear whether we can
amplify 1/2-OW-KLA security to full OW-KLA security in a black box way and
our security proof relies on the specific structure of our scheme.

Constructing CoIC-KLA Secure PKE Scheme. In the rest of this overview, we
mainly explain how to construct CoIC-KLA secure PKE scheme. We construct
it using 1-key Ciphertext-Policy Functional Encryption (CPFE) that in turn can
be based on any IND-CPA secure PKE scheme.

We first review the definition of 1-key CPFE scheme. A 1-key CPFE scheme
CPFE consists of four algorithms (FE.Setup,FE.KG,FE.Enc,FE.Dec). Given a
security parameter, FE.Setup outputs a master public key mpk and a master
secret key msk. FE.KG takes as input msk and a string x and outputs a decryp-
tion key skx tied to the string x. FE.Enc takes as input mpk and a description of
a circuit C and outputs a ciphertext ct. If we decrypt this ciphertext ct with skx

using FE.Dec, we can obtain C(x). The security of it states that ciphertexts of
two circuits C0 and C1 are computationally indistinguishable for an adversary
who has decryption key skx for x of its choice, as long as C0(x) = C1(x) holds.

Letting CPFE = (FE.Setup,FE.KG,FE.Enc,FE.Dec) be a 1-key CPFE scheme,
we construct a CoIC secure PKE scheme PKE = (PKE.KG,PKE.Enc,PKE.Dec)
as follows. PKE.KG generates (mpk,msk) ← CPFE.Setup(1λ) and a decryption
key skx ← CPFE.KG(msk, x) for random string x, and outputs an encryption key
ek := mpk and the corresponding decryption key dk := skx. Given ek = mpk
and m, PKE.Enc outputs FE.Enc(mpk, C[m]), where C[m] is the constant circuit
that outputs msg on any input. Given dk = skx and ct, PKE.Dec simply outputs
CPFE.Dec(skx, ct). We see that PKE satisfies decryption correctness from that
of CPFE.

Before proving CoIC-KLA security of PKE, we explain a nice tracing prop-
erty of PKE that plays an important role in the proof. It says that if there exists
a decoder that can distinguish PKE.Enc(ek,m∗

0) and PKE.Enc(ek,m∗
1) with prob-

ability 1/2 + 1/poly(λ) for some plaintexts m∗
0,m

∗
1 and polynomial poly, we can

extract the string x tied to the decryption key from the decoder. Concretely, the
following fact holds.

Fact 2: Consider the following experiment. The challenger generates (ek :=
mpk, dk := skx) using PKE.KG and sends them to an adversary A. A out-
puts a decoder D together with m∗

0,m
∗
1 that can predict random bit b from

PKE.Enc(ek,m∗
b) with probability 1/2 + 1/poly(λ) for some polynomial poly.

Then, we can extract x from D with inverse polynomial probability.

In fact, if the decoder D is a classical decoder, we can extract x from D with
a probability close to 1 as follows. Let C̃[b,m0,m1, i] be the circuit that is given x
as an input and outputs mb⊕x[i], where x[i] is the i-th bit of x. Then, suppose we
generate many random (b,FE.Enc(mpk, C̃[b,m∗

0,m
∗
1, i])) and estimate the prob-

ability that the decoder D outputs b given FE.Enc(mpk, C̃[b,m∗
0,m

∗
1, i]) as an

input. By the CPFE’s security, FE.Enc(mpk, C̃[b,m∗
0,m

∗
1, i]) is indistinguishable
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from a correctly generated ciphertext of m∗
b⊕xi

, that is, PKE.Enc(ek,m∗
b⊕xi

) =
FE.Enc(mpk, C[m∗

b⊕xi
]) from the view of A and D who has skx, since

C̃[b,m∗
0,m

∗
1, i](x) = C[m∗

b⊕xi
](x) = m∗

b⊕xi
. Then, the result of the estimation

should be as follows.

– In the case of x[i] = 0, each sample used for the estimation looks
(b,PKE.Enc(ek,mb)) from the view of D. Thus, the result of the estimation
should be greater than 1/2 from the fact that D correctly predicts random
bit b from PKE.Enc(ek,mb) with probability 1/2 + 1/poly(λ).

– In the case of x[i] = 1, each sample used for the estimation looks
(b,PKE.Enc(ek,m1⊕b)) from the view of D. Thus, the result of the estimation
should be smaller than 1/2 since D outputs 1 ⊕ b given PKE.Enc(ek,m1⊕b)
with probability 1/2 + 1/poly(λ).

Therefore, by checking if the result of the estimation is greater than 1/2 or not,
we can extract x[i]. By doing this for every i, we can extract entire bits of x.

The above extraction technique is a direct application of that used by Kita-
gawa and Nishimaki [28] to realize watermarking scheme secure against quantum
adversaries. By using their technique, even if the decoder is a quantum decoder
D that consists of a unitary and an initial quantum state, we can extract x from
D with inverse polynomial probability, as long as D has a high distinguishing
advantage. Roughly speaking, this is done by performing the above estimation
using (approximate) projective implementation proposed by Zhandry [37] that
is based on the technique by Marriott and Watrous [30]. By extending the above
extraction technique, we can obtain the following fact.

Fact 3: Consider the following experiment. The challenger generates (ek0 :=
mpk0, dk0 := skx0) and (ek1 := mpk1, dk1 := skx1) using PKE.KG, and sends
ek0, ek1, and 1/

√
2(|0〉 |dk0〉 + |1〉 |dk1〉) = 1/

√
2(|0〉 |skx0〉 + |1〉 |skx1〉) to an

adversary A. A outputs a quantum decoder D together with (m∗
0,m

∗
1) that

can predict b from PKE.Enc(ek0,ma) and PKE.Enc(ek1,ma⊕b) with probability
1/2+1/poly(λ) for some polynomial poly. Then, we can extract both x0 and
x1 from D with inverse polynomial probability.

We now explain how we can prove CoIC-KLA security of PKE using Fact 3.
To this end, we introduce one more fact.

Fact 4: Given mpk0, mpk1, and 1/
√

2(|0〉 |skx0〉 + |1〉 |skx1〉), where (mpk0, skx0)
and (mpk1, skx1) are generated as in PKE.KG, no adversary can compute both
x0 and x1 with non-negligible probability.

Similarly to Fact 1, we can prove this from the fact that even if we measure
1/

√
2(|0〉 |skx0〉 + |1〉 |skx1〉) in the computational basis before giving it to the

adversary, the adversary still has success probability at least ε/2, where ε is the
success probability of the original experiment [13, Lemma 2.1].

Suppose there exists a QPT adversary A that breaks CoIC-KLA security
of PKE. We consider the following adversary B using A. Given mpk0, mpk1,
and 1/

√
2(|0〉 |skx0〉 + |1〉 |skx1〉), B simulates CoIC-KLA security game for A by
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setting ek0 := mpk0, ek1 := mpk1, and dk := 1/
√

2(|0〉 |skx0〉 + |1〉 |skx1〉) until
A outputs two plaintexts (m∗

0,m
∗
1). When A makes a verification query, B just

returns a random bit. Let U be the unitary that performs the rest of A’s actions
given the challenge ciphertexts. Also, let q be the internal state of A at this
point. Then, from the averaging argument and the fact that B correctly answers
to A’s verification query with probability 1/2, with some inverse polynomial
probability, the quantum decoder D = (U , q) is a decoder that can predict b from
PKE.Enc(ek0,m∗

a) and PKE.Enc(ek1,m∗
a⊕b) with probability 1/2 + 1/poly(λ) for

some polynomial poly. Thus, by using the extractor that is guaranteed to exist
by Fact 3, B can obtain both x0 and x1 with some inverse polynomial probability,
which contradicts Fact 4. This means that PKE satisfies CoIC-KLA security.

Extension to Advanced Encryption Systems with Secure Key Leasing. We also
provide constructions of advanced encryption schemes such as ABE and FE with
secure key leasing. We do not focus on IBE in this paper since IBE is a special
case of ABE and our transformation preserves the underlying function class.4

We construct these schemes by carefully combining standard ABE (resp. FE)
with PKE-SKL in the way that each decryption key of the resulting ABE-SKL
(resp. FE-SKL) scheme includes a decryption key of the underlying PKE-SKL
scheme and a ciphertext of the ABE-SKL (resp. FE-SKL) scheme cannot be
decrypted without the decryption key of the underlying PKE-SKL scheme. By
doing so, our ABE-SKL and FE-SKL take over the secure key leasing security
from the underlying PKE-SKL. Moreover, since PKE-SKL can be based on any
PKE, our ABE-SKL and FE-SKL can be based on any standard ABE and FE,
respectively.

ABE-SKL. Here, we provide an overview of ABE with secure key leasing. Let
us start with the definition of plain ABE (without key leasing). An ABE scheme
ABE consists of four algorithms (ABE.Setup,ABE.KG,ABE.Enc,ABE.Dec) and is
associated with a relation R. Given a security parameter, ABE.Setup outputs a
master public key mpk and a master secret key msk. ABE.KG takes as input msk
and a key attribute y and outputs a user secret key sky tied to the attribute
y. ABE.Enc takes as input mpk, a ciphertext attribute x, and a message msg
and outputs a ciphertext ct. The decryption of the ciphertext is possible only
when R(x, y) = 1. For this reason, we call a user secret key for attribute y
satisfying R(x, y) = 1 a decrypting key (for a ciphertext associated with x).
As for the security, we require that ABE.Enc(x∗,m∗

0) should be computationally
indistinguishable from ABE.Enc(x∗,m∗

1) as long as an adversary is only given
non-decrypting keys for the ciphertext (i.e., user secret keys for y satisfying
R(x∗, y) = 0).

We now define the notion of ABE with secure key leasing (ABE-SKL) by
extending the syntax of ABE. The difference from the above is that the key
4 Although ABE is a special case of FE, we need stronger assumptions for (collusion-

resistant) FE to instantiate them. In addition, the security level of FE-SKL that we
can achieve is different from that of ABE-SKL. Hence, we consider both ABE and
FE.
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generation algorithm is now quantum and it outputs user secret key usk y along
with verification key vk. We also additionally introduce a verification algorithm
that takes vk and a quantum state usk ′ and outputs � if it judges that the
user secret key corresponding to vk is correctly returned and ⊥ otherwise. As
for the security, we require that ABE.Enc(x∗,m0) should be computationally
indistinguishable from ABE.Enc(x∗,m1) if the adversary returns all decrypting
keys before it is given the challenge ciphertext. Here, we say the adversary returns
the key if the adversary provides the challenger with a quantum state that makes
the verification algorithm output �.

For the construction, the basic idea is to use ABE for access control and
PKE-SKL for obtaining security against key leasing attacks. To enable this idea,
we encrypt a message m for an attribute x so that the decryptor recovers PKE-
SKL ciphertext skl.ct = SKL.Enc(skl.ek,m) if it has decrypting key and nothing
otherwise, where skl.ek is an individual encryption key corresponding to the user.
The user is given the corresponding decryption key skl.dk and can recover the
message by decrypting skl.ct. Roughly speaking, the security follows since (1) a
user with a non-decrypting key cannot obtain any information and (2) even a
user with a decrypting key cannot recover the message from skl.ct once it returns
skl.dk due to the security of SKL.

The generation of user individual SKL ciphertext is somewhat non-trivial
since ABE can only encrypt a single message. In order to achieve this, we use
an idea similar to [23,32] that combines encryption with the garbled circuits. In
particular, we garble the encryption circuit of SKL that hardwires a message and
encrypt the labels by ABE. We then provide a secret key of ABE for a user only
for the positions corresponding to skl.ek. This allows a user with decrypting key
to recover the labels corresponding to skl.ek and then run the garbled circuit on
input the labels to recover skl.ct.

Unfortunately, the introduction of the garbled circuits in the construction
poses some limitations on the security of the scheme. In particular, once the
adversary obtains two decrypting user secret keys, the message can be revealed
from the garbled circuit in the ciphertext since the security of garbled circuits is
compromised when labels for two different inputs are revealed. Therefore, we are
only able to prove 1-bounded distinguishing key security,5 where the adversary
can make a single decrypting key query and should return the key before the
challenge ciphertext is given. We note that the adversary can make an arbitrary
number of non-decrypting key queries throughout the game, unlike bounded
collusion ABE [21,26] and only the number of decrypting keys is bounded.

Ideally, we would like to have a scheme without restriction on the num-
ber of decrypting keys. However, we do not know how to achieve it without
strong assumptions like functional encryption or indistinguishability obfusca-
tion. Instead, we achieve intermediate security notion that we call q-bounded

5 When we consider the security game for ABE-SKL, a decrypting key can be used
for distinguishing the challenge bit by decrypting the challenge ciphertext (if it is
not returned). Therefore, we use the term “decrypting key” and “distinguishing key”
interchangeably.
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distinguishing key security without introducing additional assumption, where
the number of decrypting keys is bounded by some pre-determined polynomial.
To do so, we use the same idea as [26], which converts single bounded collusion
ABE into q-bounded collusion ABE. The construction is based on the balls and
bins idea, where we prepare multiple “bins”, each of which consists of multi-
ple instances of 1-bounded distinguishing key secure ABE-SKL 1ABE. The key
generation algorithm chooses a single instance from each bin randomly and gen-
erates a user secret key for each of them. The encryption algorithm secret shares
the message and encrypts them using the instances of the 1ABE so that the same
share is encrypted by the instances in the same bin. By careful choices of the
parameters and analysis, in the security proof, we can argue that there exists
a bin such that 1ABE instances used for generating decrypting keys in that bin
are all distinct. This means that for every 1ABE instance in that bin, only a sin-
gle decrypting key is generated and thus, we can use 1-bounded distinguishing
key security for each of them. While this overall proof strategy is the same as
[26], our proof is a little bit more complex than theirs because the adversary is
allowed to make an unbounded number of (non-decrypting) key queries.

PKFE-SKL. We move to the overview of PKFE-SKL. In this work, we focus
on Key-Policy FE (KPFE) with secure key leasing. We start with the defini-
tion of plain FE (without key leasing). An FE scheme FE consists of four algo-
rithms (FE.Setup,FE.KG,FE.Enc,FE.Dec) and is associated with a function class
F . Given a security parameter, FE.Setup outputs a public key pk and a master
secret key msk. FE.KG takes as input msk and a function f ∈ F and outputs a
functional decryption key skf tied to the function f . FE.Enc takes as input pk
and a plaintext x and outputs a ciphertext ct. The decryption result is f(x).
For security, we require that FE.Enc(pk, x0) should be computationally indistin-
guishable from FE.Enc(pk, x1) as long as an adversary is only given functional
decryption keys for {fi}i such that fi(x0) = fi(x1) for all i.

We define the notion of FE with secure key leasing (FE-SKL) by extending
the syntax of FE like ABE-SKL. The key generation algorithm is now quantum
and it outputs functional decryption key sk f along with verification key vk. We
also introduce a verification algorithm that takes vk and a quantum state sk ′

and outputs � if it judges that the functional decryption key corresponding to
vk is correctly returned and ⊥ otherwise.

In the security game of PKFE-SKL, the adversary can send a distinguishing
key query f such that f(x∗

0) �= f(x∗
1) where (x∗

0, x
∗
1) are the challenge plain-

texts as long as it returns a valid functional decryption key for f . We consider
a security game where the adversary can send unbounded polynomially many
distinguishing and non-distinguishing (that is, f(x∗

0) = f(x∗
1)) key queries and

tries to distinguish FE.Enc(pk, x0) from FE.Enc(pk, x1).
We transform a (classical) PKFE scheme into a PKFE scheme with secure

key leasing by using the power of PKE-SKL. The basic idea is as follows. When
we generate a functional decryption key for function f , we generate a key triple of
PKE-SKL and a functional decryption key of the classical PKFE for a function
W that computes a PKE-SKL ciphertext of f(x). That is, we wrap f(x) by
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PKE-SKL encryption. A decryption key of PKE-SKL is appended to fe.skW ,
which is the functional decryption key for W . Hence, we can decrypt the PKE-
SKL ciphertext and obtain f(x). The PKE-SKL decryption key for f is useless
for another function g since we use different key triples of PKE-SKL for each
function.

More specifically, we generate PKE-SKL keys (skl.ek, skl.sk , skl.vk) and
a PKFE functional decryption key fe.skW ← FE.KG(fe.msk,W [f, skl.ek]),
where function W [f, skl.ek] takes as input x and outputs a PKE-SKL
ciphertext SKL.Enc(skl.ek, f(x)).6 A functional decryption key for f con-
sists of (fe.skW , skl.sk ). A ciphertext of x is a (classical) PKFE ciphertext
FE.Enc(fe.pk, x). If we return skl.sk for f (verified by skl.vk) before we obtain
FE.Enc(fe.pk, x), we cannot obtain f(x) from SKL.Enc(skl.ek, f(x)) by the secu-
rity of PKE-SKL.

We need to prove security against an adversary that obtains a functional
decryption key for f such that f(x∗

0) �= f(x∗
1) where (x∗

0, x
∗
1) is a pair of challenge

plaintexts if the adversary returns the functional decryption key. To handle this
issue, we rely on IND-KLA security and need to embed a challenge ciphertext of
PKE-SKL into a PKFE ciphertext. We use the trapdoor method of FE (a.k.a.
Trojan method) [6,14] for this purpose. We embed an SKFE functional decryp-
tion key and ciphertext in a PKFE functional decryption key and ciphertext,
respectively. We use these SKFE functional decryption key and ciphertext for
the trapdoor mode of PKFE. We gradually change SKFE ciphertexts and keys
so that we can embed a PKE-SKL challenge ciphertext by using the adaptively
single-ciphertext function privacy of SKFE. Once we succeed in embedding a
PKE-SKL challenge ciphertext, we can change a ciphertext of x∗

0 into a cipher-
text of x∗

1 such that f(x∗
0) �= f(x∗

1) as long as the functional decryption key
sk f = (fe.skW , skl.sk ) for f is returned. This is because skl.sk is returned and we
can use IND-KLA security under skl.ek.

1.4 Other Related Work

Quantum Copy Protection. Aaronson [1] introduced the notion of quantum copy
protection and constructed a quantum copy protection scheme for arbitrary
unlearnable Boolean functions relative to a quantum oracle. He also provided
two heuristic copy-protection schemes for point functions in the standard model.
Coladangelo et al. [18] provided a quantum copy-protection scheme for a class of
evasive functions in the QROM. Subsequently, Aaronson et al. [3] constructed a
quantum copy protection scheme for unlearnable functions relative to classical
oracles. By instantiating the oracle with post-quantum candidate obfuscation
schemes, they obtained a heuristic construction of copy protection. Coladangelo
et al. [17] provided a copy-protection scheme for pseudorandom functions in the
plain model assuming iO, OWF and extractable witness encryption, or assum-
ing subexponential iO, subexponential OWF, LWE and a strong “monogamy

6 We ignore the issue of encryption randomness here. In our construction, we use
(puncturable) PRFs to generate encryption randomness.
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property” (which was was proven to be true in a follow-up work [19]). Ananth et
al. [7,8] also constructed copy protection for point functions, which in turn can
be transformed into copy protection for compute-and-compare programs. Sat-
tath and Wyborski [33] studied unclonable decryptors, which are an extension
of SDE. Their unclonable decryptors scheme is secret key encryption and can be
instantiated with iO and OWF, or quantum oracles.

Secure Software Leasing. Secure software leasing (SSL) was introduced by Ananth
and La Placa [9], where they also provided the first SSL scheme supporting a sub-
class of “evasive” functions by relying on the existence of public key quantum
money and the learning with errors assumption. Evasive functions is a class of func-
tions for which it is hard to find an accepting input given only black-box access
to the function. Their construction achieves a strong security notion called infi-
nite term security. They also demonstrate that there exists an unlearnable func-
tion class such that it is impossible to achieve an SSL scheme for that function
class, even in the CRS model. Later, Coladangelo et al. [18] improved the secu-
rity notion achieved by [9] by relying on the QROM, for the same class of eva-
sive functions. Additionally, Kitagawa, Nishimaki and Yamakawa [29] provided
a finite term secure SSL scheme for pseudorandom functions (PRFs) in the CRS
model by assuming the hardness of the LWE problem against polynomial time
quantum adversaries. Additionally, this work achieves classical communication.
Further, Broadbent et al. [16] showed that SSL is achievable for the aforemen-
tioned evasive circuits without any setup or computational assumptions that were
required by previous work, but with finite term security, quantum communication
and correctness based on a distribution. The notion of secure leasing for the pow-
erful primitive of functional encryption was studied by Kitagawa and Nishimaki
[27], who introduced the notion of secret key functional encryption (SKFE) with
secure key leasing and provided a transformation from standard SKFE into SKFE
with secure key leasing without relying on any additional assumptions.

Certified Deletion. Broadbent and Islam [15] introduced the notion of quantum
encryption with certified deletion, where we can generate a (classical) certificate
to ensure that a ciphertext is deleted. They constructed a one-time SKE scheme
with certified deletion without computational assumptions. After that, many
works presented various quantum encryption primitives (PKE, ABE, FE and so
on) with certified deletion [10,24,25,31]. The root of quantum encryption with
certified deletion is revocable quantum time-released encryption by Unruh [34]. It
is an extension of time-released encryption where a sender can revoke quantum
encrypted data before a pre-determined time. If the revocation succeeds, the
receiver cannot obtain the plaintext information.

2 Preliminaries

Notations and Conventions. In this paper, standard math or sans serif font
stands for classical algorithms (e.g., C or Gen) and classical variables (e.g., x or
pk). Calligraphic font stands for quantum algorithms (e.g., Gen) and calligraphic
font and/or the bracket notation for (mixed) quantum states (e.g., q or |ψ〉).
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Let [�] denote the set of integers {1, · · · , �}, λ denote a security parameter,
and y := z denote that y is set, defined, or substituted by z. For a finite set X
and a distribution D, x ← X denotes selecting an element from X uniformly at
random, x ← D denotes sampling an element x according to D. Let y ← A(x)
and y ← A(x ) denote assigning to y the output of a probabilistic or deterministic
algorithm A and a quantum algorithm A on an input x and x , respectively.
When we explicitly show that A uses randomness r, we write y ← A(x; r). PPT
and QPT algorithms stand for probabilistic polynomial-time algorithms and
polynomial-time quantum algorithms, respectively. Let negl denote a negligible
function. For strings x, y ∈ {0, 1}n, x · y denotes

⊕

i∈[n] xiyi where xi and yi

denote the ith bit of x and y, respectively.

Standard Cryptographic Tools. We omit the definitions of standard crypto-
graphic tools including SKE, PKE, ABE, FE, puncturable PRFs, and garbling
schemes. See Sect. 2.1 of the full version for their definitions.

3 Public Key Encryption with Secure Key Leasing

We define PKE-SKL and its security notions and show a relationship between
them.

Definition 3.1 (PKE with Secure Key Leasing). A PKE-SKL scheme SKL
is a tuple of four algorithms (KG ,Enc,Dec,Vrfy). Below, let X be the message
space of SKL.

KG(1λ) → (ek, dk , vk): The key generation algorithm takes a security parameter
1λ, and outputs an encryption key ek, a decryption key dk , and a verification
key vk.

Enc(ek,m) → ct: The encryption algorithm takes an encryption key ek and a
message m ∈ X , and outputs a ciphertext ct.

Dec(dk , ct) → m̃: The decryption algorithm takes a decryption key dk and a
ciphertext ct, and outputs a value m̃.

Vrfy(vk, ˜dk ) → �/⊥: The verification algorithm takes a verification key vk and a
(possibly malformed) decryption key ˜dk , and outputs � or ⊥.

Decryption correctness: For every m ∈ X , we have

Pr
[

Dec(dk , ct) = m

∣

∣

∣

∣

(ek, dk , vk) ← KG(1λ)
ct ← Enc(ek,m)

]

= 1 − negl(λ).

Verification correctness: We have

Pr
[

Vrfy(vk, dk ) = � ∣

∣ (ek, dk , vk) ← KG(1λ)
]

= 1 − negl(λ).

Remark 3.1. We can assume without loss of generality that a decryption key of
a PKE-SKL scheme is reusable, i.e., it can be reused to decrypt (polynomially)
many ciphertexts. In particular, we can asusme that for honestly generated ct
and dk , if we decrypt ct by using dk , the state of the decryption key after the
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decryption is negligibly close to that before the decryption in terms of trace
distance. This is because the output of the decryption is almost deterministic by
decryption correctness, and thus such an operation can be done without almost
disturbing the input state by the gentle measurement lemma [36]. A similar
remark applies to all variants of PKE-SKL (IBE, ABE, and FE with SKL)
defined in this paper.

Remark 3.2. Though we are the first to define PKE with secure key leasing,
SKFE with secure key leasing was already defined by Kitagawa and Nishi-
maki [27]. The above definition is a natural adaptation of their definition with
the important difference that we do not require classical certificate of deletion.

We define two security definitions for PKE-SKL, IND-KLA and OW-KLA
security.

Definition 3.2 (IND-KLA Security). We say that a PKE-SKL scheme SKL
with the message space X is IND-KLA secure, if it satisfies the following require-
ment, formalized from the experiment Expind-klaSKL,A (1λ, coin) between an adversary
A and a challenger C :

1. C runs (ek, dk , vk) ← KG(1λ) and sends ek and dk to A.
2. Throughout the experiment, A can access the following (stateful) verification

oracle OVrfy where V is initialized to be ⊥:
OVrfy(˜dk ): It runs d ← Vrfy(vk, ˜dk ) and returns d. If V = ⊥ and d = �, it

updates V := �.
3. A sends (m∗

0,m
∗
1) ∈ X 2 to C . If V = ⊥, C output 0 as the final output of this

experiment. Otherwise, C generates ct∗ ← Enc(ek,m∗
coin) and sends ct∗ to A.

4. A outputs a guess coin′ for coin. C outputs coin′ as the final output of the
experiment.

For any QPT A, it holds that

Advind-klaSKL,A (λ) :=
∣

∣

∣Pr[Expind-klaSKL,A (1λ, 0) → 1] − Pr[Expind-klaSKL,A (1λ, 1) → 1]
∣

∣

∣ ≤ negl(λ).

We say that SKL is 1-query IND-KLA secure if the above holds for any QPT A
that makes at most one query to OVrfy .

Remark 3.3. When we consider a 1-query adversary, we can assume that its
query is made before receiving the challenge ciphertext ct∗ without loss of gen-
erality. This is because otherwise the experiment always outputs 0.

Remark 3.4. By a standard hybrid argument, one can show that IND-KLA secu-
rity implies multi-challenge IND-KLA security where the adversary is allowed
to request arbitrarily many challenge ciphertexts. Thus, if we have an IND-KLA
secure PKE-SKL scheme for single-bit messages, we can extend the plaintext
length to an arbitrary polynomial by bit-by-bit encryption.
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Definition 3.3 (OW-KLA Security). We say that a PKE-SKL scheme SKL
with the message space X is OW-KLA secure, if it satisfies the following require-
ment, formalized from the experiment Expow-klaSKL,A (1λ) between an adversary A and
a challenger C :

1. C runs (ek, dk , vk) ← KG(1λ) and sends ek and dk to A.
2. Throughout the experiment, A can access the following (stateful) verification

oracle OVrfy where V is initialized to be ⊥:
OVrfy(˜dk ): It runs d ← Vrfy(vk, ˜dk ) and returns d. If V = ⊥ and d = �, it

updates V := �.
3. A sends RequestChallenge to C . If V = ⊥, C outputs 0 as the final output of

this experiment. Otherwise, C chooses m∗ ← X , generates ct∗ ← Enc(ek,m∗)
and sends ct∗ to A.

4. A outputs m. C outputs 1 if m = m∗ and otherwise outputs 0 as the final
output of the experiment.

For any QPT A, it holds that

Advow-klaSKL,A (λ) := Pr[Expow-klaSKL,A (1λ) → 1] ≤ negl(λ).

We say that SKL is 1-query OW-KLA secure if the above holds for any QPT A
that makes at most one query to OVrfy .

We show the following theorem.

Theorem 3.1 If there exists a 1-query OW-KLA secure PKE-SKL scheme,
there exists an IND-KLA secure PKE-SKL scheme.

Thus, it suffices to construct 1-query OW-KLA secure scheme for constructing
IND-KLA secure scheme. The proof is based on quantum Goldreich-Levin lemma
with quantum auxiliar inputs [4,17] and goes through an additional security
notion called one-more unreturnability (OMUR). See Sect. 3.2 of the full version
for the proof.

4 Public Key Encryption with CoIC-KLA Security

We introduce a new security notion called CoIC-KLA security for PKE, and
construct a PKE scheme that satisfies it based on any IND-CPA secure PKE
scheme. Looking ahead, it is used as a building block of our construction of
PKE-SKL in Sec. 5.

4.1 Definition

Definition 4.1 (CoIC-KLA Security). We say that a PKE scheme PKE with
the message space X is CoIC-KLA secure, if it satisfies the following require-
ment, formalized from the experiment Expcoic-klaPKE,A (1λ) between an adversary A and
a challenger C :
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1. C runs (ek0, dk0) ← KG(1λ) and (ek1, dk1) ← KG(1λ), and generates dk :=
1√
2
(|0〉 |dk0〉 + |1〉 |dk1〉). C sends ek0, ek1, and dk to A. A can get access to

the following oracle only once.
O(˜dk ): On input a possibly malformed decryption key ˜dk , it applies a binary-

outcome measurement (I − Πvrfy,Πvrfy), where Πvrfy is the projection to
the right decryption key, i.e.,

Πvrfy :=
(

1√
2

(|0〉 |dk0〉 + |1〉 |dk1〉)
) (

1√
2

(〈0| 〈dk0| + 〈1| 〈dk1|)
)

.

It returns the measurement outcome (indicating whether the state was
projected onto Πvrfy or not).

2. A sends (m∗
0,m

∗
1) ∈ X 2 to C . C generates a, b ← {0, 1} and generates ct∗0 ←

Enc(ek0,m∗
a) and ct∗1 ← Enc(ek1,m∗

a⊕b). C sends ct∗0 and ct∗1 to A.
3. A outputs a guess b′ for b. C outputs 1 if b = b′ and 0 otherwise as the final

output of the experiment.

For any QPT A, it holds that

Advcoic-klaPKE,A (λ) := 2 ·
∣

∣

∣

∣

Pr[Expcoic-klaPKE,A (1λ) → 1] − 1
2

∣

∣

∣

∣

≤ negl(λ).

4.2 Construction

We construct a CoIC-KLA secure PKE PKE = (Gen,Enc,Dec) using a 1-key
CPFE scheme CPFE = (CPFE.Setup,CPFE.KG,CPFE.Enc,CPFE.Dec) as a build-
ing block.

Gen(1λ):
– Generate (MPK,MSK) ← CPFE.Setup(1λ).
– Generate x ← {0, 1}λ and skx ← CPFE.KG(MSK, x).
– Output ek := MPK and dk := skx.

Enc(ek,m):
– Parse ek = MPK.
– Let C[m] be a constant circuit that outputs m on any input. C is padded

so that it has the same size as the circuit C∗ appeared in the security
proof.

– Output ct ← CPFE.Enc(MPK, C[m]).
Dec(dk, ct):

– Parse dk = skx.
– Output m′ ← CPFE.Dec(skx, ct).

The decryption correctness of PKE follows from that of CPFE. We show the
following theorem.

Theorem 4.1. If CPFE is 1-key secure, then PKE is CoIC-KLA secure.
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In the full version, we actually prove that PKE satisfies a security notion
called strong CoIC-KLA security, which implies CoIC-KLA security. See Sect. 4.3
of the full version for the proof.

Since 1-key CPFE exists if IND-CPA secure PKE exists, the above theorem
implies the following theorem.

Theorem 4.2. If there is an IND-CPA secure PKE scheme, then there is a
CoIC-KLA secure PKE scheme.

5 Construction of PKE-SKL

Let cPKE = (cPKE.KG, cPKE.Enc, cPKE.Dec) be a PKE scheme satisfying
CoIC-KLA security with message space {0, 1}� where � = ω(log λ). Then, we
construct a PKE-SKL scheme (SKL.KG ,SKL.Enc,SKL.Dec,SKL.Vrfy) with mes-
sage space {0, 1}λ� as follows.

SKL.KG(1λ):
– Generate (cPKE.eki,b, cPKE.dki,b) ← cPKE.KG(1λ) for i ∈ [λ] and b ∈

{0, 1}.
– Output an encryption key

ek := {cPKE.eki,b}i∈[λ],b∈{0,1},

a decryption key

dk :=
⊗

i∈[λ]

1√
2

(|0〉 |cPKE.dki,0〉 + |1〉 |cPKE.dki,1〉) ,

and a verification key

vk := {cPKE.dki,b}i∈[λ],b∈{0,1}.

SKL.Enc(ek,m):
– Parse ek = {cPKE.eki,b}i∈[λ],b∈{0,1} and m = m1‖ . . . ‖mλ where mi ∈

{0, 1}� for each i ∈ [λ].
– Generate cPKE.cti,b ← cPKE.Enc(cPKE.eki,b,mi) for i ∈ [λ] and b ∈

{0, 1}.
– Output ct := {cPKE.cti,b}i∈[λ],b∈{0,1}.

SKL.Dec(dk , ct):
– Parse dk =

⊗

i∈[λ] dk i and ct = {cPKE.cti,b}i∈[λ],b∈{0,1}.
– Let Udec be a unitary such that for all cPKE.dk′, cPKE.ct′0, and cPKE.ct′1:

|b〉 |cPKE.dk′〉 |cPKE.ct′0, cPKE.ct′1〉 |0〉
Udec−−−→ |b〉 |cPKE.dk′〉 |cPKE.ct′0, cPKE.ct′1〉 |cPKE.Dec(cPKE.dk′, cPKE.ct′b)〉

Note that such a unitary can be computed in quantum polynomial-time
since we assume that cPKE.Dec is a deterministic classical polynomial-
time algorithm.
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– For all i ∈ [λ], generate

Udec (dk i ⊗ |cPKE.cti,0, cPKE.cti,1〉 〈cPKE.cti,0, cPKE.cti,1| ⊗ |0〉 〈0|) U†
dec,

measure the rightmost register, and let m′
i be the measurement outcome.

– Output m′ := m′
1‖ . . . ‖m′

λ.
SKL.Vrfy(vk, ˜dk ):

– Parse vk = {cPKE.dki,b}i∈[λ],b∈{0,1}.
– Apply a binary-outcome measurement (I−Πvk

vrfy,Π
vk
vrfy) on ˜dk where Πvk

vrfy

is the projection onto the right decryption key, i.e.,

Πvk
vrfy :=

⊗

i∈[λ]

(

1√
2

(|0〉 |cPKE.dki,0〉 + |1〉 |cPKE.dki,1〉)
)

(

1√
2

(〈0| 〈cPKE.dki,0| + 〈1| 〈cPKE.dki,1|)
)

.

If the measurement outcome is 1 (indicating that the state was projected
onto Πvk

vrfy), output � and otherwise output ⊥.

The correctness of SKL easily follows from that of cPKE. Below, we show
that SKL is 1-query OW-KLA secure.

Theorem 5.1. If cPKE is CoIC-KLA secure, then SKL is 1-query OW-KLA
secure.

See Sect. 5 of the full version for the proof.
By combining Theorems 3.1, 4.2 and 5.1, we obtain the following theorem.

Theorem 5.2. If there is an IND-CPA secure PKE scheme, then there is an
IND-KLA secure PKE-SKL scheme.

6 Attribute-based Encryption with Secure Key Leasing

6.1 Definitions

The syntax of ABE-SKL and its security are defined as follows.

Definition 6.1 (ABE with Secure Key Leasing). An ABE-SKL scheme
ABE-SKL is a tuple of six algorithms (Setup,KG ,Enc,Dec, Cert ,Vrfy). Below, let
X = {Xλ}λ, Y = {Yλ}λ, and R = {Rλ : Xλ × Yλ → {0, 1}}λ be the ciphertext
space, the key attribute space, and the associated relation of ABE-SKL, respec-
tively.

Setup(1λ) → (pk,msk): The setup algorithm takes a security parameter 1λ, and
outputs a public key pk and master secret key msk.

KG(msk, y) → (usk , vk): The key generation algorithm takes a master secret key
msk and a key attribute y ∈ Y, and outputs a user secret key usk and a
verification key vk.
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Enc(pk, x,m) → ct: The encryption algorithm takes a public key pk, a ciphertext
attribute x ∈ X , and a plaintext m, and outputs a ciphertext ct.

Dec(usk , x, ct) → z: The decryption algorithm takes a user secret key usk , a
ciphertext attribute x, and a ciphertext ct and outputs a value z ∈ {⊥} ∪
{0, 1}�.

Vrfy(vk, usk ′) → �/⊥: The verification algorithm takes a verification key vk and
a quantum state usk ′, and outputs � or ⊥.

Decryption correctness: For every x ∈ X and y ∈ Y satisfying R(x, y) = 1,
we have

Pr

⎡

⎣Dec(usk , x, ct) = m

∣

∣

∣

∣

∣

∣

(pk,msk) ← Setup(1λ)
(usk , vk) ← KG(msk, y)
ct ← Enc(pk, x,m)

⎤

⎦ = 1 − negl(λ).

Verification correctness: For every y ∈ Y, we have

Pr
[

Vrfy(vk, usk ) = �
∣

∣

∣

∣

(pk,msk) ← Setup(1λ)
(usk , vk) ← KG(msk, y)

]

= 1 − negl(λ).

Definition 6.2 (Adaptive/Selective Indistinguishability against Key
Leasing Attacks). We say that an ABE-SKL scheme ABE-SKL for relation
R : X × Y → {0, 1} is secure against adaptive indistinguishability against key
leasing attacks (Ada-IND-KLA), if it satisfies the following requirement, formal-
ized from the experiment Expada-ind-klaA,ABE-SKL(1

λ, coin) between an adversary A and a
challenger:

1. At the beginning, the challenger runs (pk,msk) ← Setup(1λ) and initialize
the list LKG to be an empty set. Throughout the experiment, A can access the
following oracles.
OKG(y): Given y, it finds an entry of the form (y, vk, V ) from LKG . If

there is such an entry, it returns ⊥. Otherwise, it generates (usk , vk) ←
KG(msk, y), sends usk to A, and adds (y, vk,⊥) to LKG .

OVrfy(y, usk ′): Given (y, usk ′), it finds an entry (y, vk, V ) from LKG . (If there
is no such entry, it returns ⊥.) It then runs d := Vrfy(vk, usk ′) and returns
d to A. If V = ⊥, it updates the entry into (y, vk, d).

2. When A sends (x∗,m0,m1) to the challenger, the challenger checks if for any
entry (y, vk, V ) in LKG such that R(x∗, y) = 1, it holds that V = �. If so, the
challenger generates ct∗ ← Enc(pk, x∗,mcoin) and sends ct∗ to A. Otherwise,
the challenger outputs 0.

3. A continues to make queries to OKG(·) and OVrfy(·, ·). However, A is not
allowed to send a key attribute y such that R(x∗, y) = 1 to OKG .

4. A outputs a guess coin′ for coin. The challenger outputs coin′ as the final
output of the experiment.

For any QPT A, it holds that

Advada-lessorPKFE-SKL,A(λ) :=
∣

∣

∣Pr[Expada-lessorABE-SKL,A(1λ, 0) → 1] − Pr[Expada-lessorABE-SKL,A(1λ, 1) → 1]
∣

∣

∣

≤ negl(λ).
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We say that ABE-SKL is secure against selective indistinguishability against key
leasing attacks (Sel-IND-KLA) if the above holds for all QPT adversaries that
declare x∗ at the beginning of the experiment.

Remark 6.1. In Deftinition 6.2, the key generation oracle returns ⊥ if the same
y is queried more than once. To handle the situation where multiple keys for
the same attribute y are generated, we need to manage indices for y such as
(y, 1, vk1, V1), (y, 2, vk2, V2). Although we can reflect the index management in
the definition, it complicates the definition and prevents readers from under-
standing the essential idea.Thus, we use the simplified definition above.

We also consider the following security notion where we introduce additional
restriction that the number of distinguishing keys that are issued (and eventually
returned) before ct∗ is generated is bounded by some predetermined parameter q.
Here, distinguishing key refers to a key that can decrypt the challenge ciphertext
if it is not returned.

Definition 6.3 (Bounded Distinguishing Key Ada-IND-KLA/Sel-IND-
KLA for ABE). For defining bounded distinguishing key Ada-IND-KLA secu-
rity, we consider the same security game as that for Ada-IND-KLA (i.e.,
Expada-ind-klaA,ABE-SKL(1

λ, coin)) except that we change the step 2. in Definition 6.2 with
the following:

2’ When A sends (x∗,m0,m1) to the challenger, the challenger checks if there
are at most q entries (y, vk, V ) in LKG such that R(x∗, y) = 1 and for all these
entries, V = �. If so, the challenger generates ct∗ ← Enc(pk, x∗,mcoin) and
sends ct∗ to A. Otherwise, the challenger outputs 0.

We then define the advantage Advada-ind-klaABE-SKL,A,q(λ) similarly to Advada-ind-klaABE-SKL,A(λ).
We say ABE-SKL is q-bounded distinguishing key Ada-IND-KLA secure if for
any QPT adversary A, Advada-ind-klaABE-SKL,A,q(λ) is negligible. We also define q-bounded
distinguishing key Sel-IND-KLA security analogously by enforcing the adversary
to output its target x∗ at the beginning of the game.

We emphasize that while the number of distinguishing keys that the adver-
sary can obtain in the game is bounded by a fixed polynomial, the number of
non-distinguishing keys (i.e., keys for y with R(x∗, y) = 0) can be unbounded.

6.2 1-Bounded Distinguishing Key Construction

We construct an ABE-SKL scheme 1ABE = (Setup,KG ,Enc,Dec,Vrfy)
for relation R : X × Y → {0, 1} with 1-bounded distinguishing key
Ada-IND-KLA/Sel-IND-KLA security whose message space is {0, 1}� by using
the following building blocks.

– IND-KLA secure PKE-SKL SKL.(KG ,Enc,Dec,Vrfy). Without loss of gener-
ality, we assume that skl.ek ∈ {0, 1}�ek and the randomness space used by
SKL.Enc is {0, 1}�rand for some �ek(λ) and �rand(λ). We also assume that the
message space of SKL is {0, 1}�.

– Adaptively/Selectively secure ABE ABE.(Setup,KG,Enc,Dec) for relation R
with message space {0, 1}λ.
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– A garbling scheme GC = (Grbl,GCEval). Without loss of generality, we assume
that the labels of GC are in {0, 1}λ.

Setup(1λ):
– For i ∈ [�ek] and b ∈ {0, 1}, run (abe.pki,b, abe.mski,b) ← ABE.Setup(1λ).
– Output (pk,msk) := ({abe.pki,b}i∈[�ek],b∈{0,1}, {abe.mski,b}i∈[�ek],b∈{0,1}).

KG(msk, y):
– Generate (skl.ek, skl.dk , skl.vk) ← SKL.KG(1λ).
– Run abe.ski ← ABE.KG(ABE.mski,skl.ek[i], y) for i ∈ [�ek], where skl.ek[i]

denotes the i-th bit of the binary string skl.ek.
– Output usk := ({abe.ski}i∈[�ek], skl.ek, skl.dk ) and vk := skl.vk.

Enc(pk, x,m):
– Choose R ← {0, 1}�rand .
– Construct circuit E[m,R], which is a circuit that takes as input an encryp-

tion key skl.ek of SKL and outputs SKL.Enc(skl.ek,m;R).
– Compute ({labi,b}i∈[�ek],b∈{0,1}, ˜E) ← Grbl(1λ, E[m,R]).
– Run abe.cti,b ← ABE.Enc(abe.pki,b, x, labi,b) for i ∈ [�ek] and b ∈ {0, 1}.
– Output ct := ({abe.cti,b}i∈[�ek],b∈{0,1}, ˜E).

Dec(usk , x, ct):
– Parse usk = ({abe.ski}i∈[�ek], skl.ek, skl.dk ) and
ct= ({abe.cti,b}i∈[�ek],b∈{0,1}, ˜E).

– Compute labi ← ABE.Dec(ABE.ski, x, abe.cti,skl.ek[i]) for i ∈ [�ek].
– Compute skl.ct = GCEval( ˜E, {labi}i∈[�ek]).
– Compute and output m′ ← SKL.Dec(skl.dk , skl.ct).

Vrfy(vk, usk ′):
– Parse vk = skl.vk and usk ′ = ({abe.ski}i∈[�ek], skl.ek

′, skl.dk ′).
– Compute and output SKL.Vrfy(skl.vk, skl.dk ′).

We show that the scheme satisfies decryption correctness. To see this, we first
observe that the decryption algorithm correctly recovers labels of ˜E correspond-
ing to the input skl.ek by the correctness of ABE. Therefore, skl.ct recovered by
the garbled circuit evaluation equals to SKL.Enc(skl.ek,m;R) by the correctness
of GC. Then, the message m is recovered in the last step by the correctness of
SKL. We can also see that the verification correctness follows from that of SKL.

Theorem 6.1. If ABE is adaptively (resp., selectively) secure, GC is secure,
and SKL is IND-KLA secure, then 1ABE above is 1-bounded distinguishing key
Ada-IND-KLA (resp., Sel-IND-KLA) secure.

See Sect. 6.2 of the full version for the proof.

6.3 Q-Bounded Distinguishing Key Construction

By using the technique of [26], we can upgrade 1-bounded distinguishing key
security to Q-bounded distinguishing key security for any polynomial Q = Q(λ).
Then we obtain the following theorem.



Public Key Encryption with Secure Key Leasing 605

Theorem 6.2. If there exists an adaptively (resp., selectively) secure an ABE
scheme for relation R, then for any polynomial Q = Q(λ), there is a Q-bounded
distinguishing key Ada-IND-KLA (resp., Sel-IND-KLA) secure ABE scheme for
relation R.

See Sect. 6.3 of the full version for the proof. We remark that Theorem 6.2
preserves the relation R. Thus, this in particular gives a compiler that upgrades
(selectively or adaptively secure) normal IBE into IBE-SKL.

7 Functional Encryption with Secure Key Leasing

7.1 Definitions

The syntax of FE-SKL is defined as follows.

Definition 7.1 (PKFE with Secure Key Leasing). A PKFE-SKL scheme
PKFE-SKL is a tuple of six algorithms (Setup,KG ,Enc,Dec, Cert ,Vrfy). Below,
let X , Y, and F be the plaintext, output, and function spaces of PKFE-SKL,
respectively.

Setup(1λ) → (pk,msk): The setup algorithm takes a security parameter 1λ, and
outputs a public key pk and master secret key msk.

KG(msk, f) → (fsk , vk): The key generation algorithm takes a master secret key
msk and a function f ∈ F , and outputs a functional decryption key fsk and
a verification key vk.

Enc(pk, x) → ct: The encryption algorithm takes a public key pk and a plaintext
x ∈ X , and outputs a ciphertext ct.

Dec(fsk , ct) → x̃: The decryption algorithm takes a functional decryption key fsk
and a ciphertext ct, and outputs a value x̃.

Vrfy(vk, fsk ′) → �/⊥: The verification algorithm takes a verification key vk and
a quantum state fsk ′, and outputs � or ⊥.

Decryption correctness: For every x ∈ X and f ∈ F , we have

Pr

⎡

⎣Dec(fsk , ct) = f(x)

∣

∣

∣

∣

∣

∣

(pk,msk) ← Setup(1λ)
(fsk , vk) ← KG(msk, f)
ct ← Enc(pk, x)

⎤

⎦ = 1 − negl(λ).

Verification correctness: For every f ∈ F , we have

Pr
[

Vrfy(vk, fsk ) = �
∣

∣

∣

∣

(pk,msk) ← Setup(1λ)
(fsk , vk) ← KG(msk, f)

]

= 1 − negl(λ).

Remark 7.1. Although Kitagawa and Nishimaki [27] require SKFE-SKL to have
classical certificate generation algorithm for deletion, we do not since it is
optional.If there exists a PKE-SKL scheme that has a classical certificate genera-
tion algorithm, our PKFE-SKL scheme also has a classical certificate generation
algorithm.
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Definition 7.2 (Adaptive Indistinguishability against Key Leasing
Attacks). We say that a PKFE-SKL scheme PKFE-SKL for X ,Y, and F is
an adaptively indistinguishable secure against key leasing attacks (Ada-IND-
KLA), if it satisfies the following requirement, formalized from the experiment
Expada-ind-klaA,PKFE-SKL(1

λ, coin) between an adversary A and a challenger:

1. At the beginning, the challenger runs (pk,msk) ← Setup(1λ). Throughout the
experiment, A can access the following oracles.
OKG(f): Given f , it finds an entry (f, vk, V ) from LKG . If there is such an

entry, it returns ⊥. Otherwise, it generates (fsk , vk) ← KG(msk, f), sends
fsk to A, and adds (f, vk,⊥) to LKG .

OVrfy(f, fsk ′): Given (f, fsk ′), it finds an entry (f, vk, V ) from LKG . (If there
is no such entry, it returns ⊥.) It computes d ← Vrfy(vk, fsk ′) and sends
d to A. If V = �, it does not update LKG . Else if V = ⊥, it updates the
entry by setting V := d.

2. When A sends (x∗
0, x

∗
1) to the challenger, the challenger checks if for any

entry (f, vk, V ) in LKG such that f(x∗
0) �= f(x∗

1), it holds that V = �. If so,
the challenger generates ct∗ ← Enc(pk, x∗

coin) and sends ct∗ to A. Otherwise,
the challenger outputs 0. Hereafter, A is not allowed to send a function f
such that f(x∗

0) �= f(x∗
1) to OKG .

3. A outputs a guess coin′ for coin. The challenger outputs coin′ as the final
output of the experiment.

For any QPT A, it holds that

Advada-ind-klaPKFE-SKL,A(λ) :=
∣

∣

∣Pr[Expada-ind-klaPKFE-SKL,A(1λ, 0) → 1] − Pr[Expada-ind-klaPKFE-SKL,A(1λ, 1) → 1]
∣

∣

∣

≤ negl(λ).

Remark 7.2. Definition 7.2 assumes that the adversary does not get more than
one decryption key for the same f for simplification as Remark 6.1.

7.2 Constructions

We describe our PKFE-SKL scheme in this section. We construct a PKFE-SKL
scheme PKFE-SKL = (Setup,KG ,Enc,Dec,Vrfy) by using the following building
blocks.

– IND-KLA secure PKE-SKL SKL = SKL.(KG ,Enc,Dec,Vrfy).
– Adaptively secure PKFE FE = FE.(Setup,KG,Enc,Dec).
– Adaptively single-ciphertext function private SKFE SKFE = SKFE.(Setup,

KG,Enc,Dec).
– Pseudorandom-secure SKE SKE = SKE.(Enc,Dec).
– Puncturable PRF PRF = (PRF.Gen,F,Puncture).

We set �pad := |skfe.ct| − |x| and �ske := |ske.ct|, where |x| is the input length of
PKFE-SKL, |skfe.ct| is the ciphertext length of SKFE, and |ske.ct| is the ciphertext
length of SKE.
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Setup(1λ):
– Generate (fe.pk, fe.msk) ← FE.Setup(1λ).
– Output (pk,msk) := (fe.pk, fe.msk).

KG(msk, f):
– Generate (skl.ek, skl.sk , skl.vk) ← SKL.KG(1λ).
– Choose ske.ct ← {0, 1}�ske .
– Construct a circuit W [f, skl.ek, ske.ct], which is described in Fig. 1.
– Generate fe.skW ← FE.KG(fe.msk,W [f, skl.ek, ske.ct]).
– Output fsk := (fe.skW , skl.sk ) and vk := skl.vk.

Enc(pk, x):
– Choose K ← PRF.Gen(1λ).
– Compute fe.ct ← FE.Enc(fe.pk, (x‖0�pad ,⊥,K)).
– Output ct := fe.ct.

Dec(fsk , ct):
– Parse fsk = (fe.sk, skl.sk ) and ct = fe.ct.
– Compute skl.ct ← FE.Dec(fe.sk, fe.ct).
– Compute and output y ← SKL.Dec(skl.sk , skl.ct).

Vrfy(vk, fsk ′):
– Parse vk = skl.vk and fsk ′ = (fe.sk′, skl.sk ′).
– Compute and output SKL.Vrfy(skl.vk, skl.sk ′).

Fig. 1. The description of W [f, skl.ek, ske.ct]

The decryption correctness of PKFE-SKL follows from the correctness of FE
and the decryption correctness of SKL. The verification correcntess of PKFE-SKL
follows from the verification correcntess of SKL. We prove the security of
PKFE-SKL.

Theorem 7.1. If PKFE is adaptively secure, SKFE is adaptively single-
ciphertext function private, PRF is a secure punctured PRF, and SKE has the
ciphertext pseudorandomness, then PKFE-SKL above is Ada-IND-KLA.
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Theorem 7.2. If PKFE is q-bounded adaptively secure, SKFE is adaptively
single-ciphertext function private, PRF is a secure punctured PRF, and SKE
has the ciphertext pseudorandomness, then PKFE-SKL above is q-bounded Ada-
IND-KLA.

The poofs are given in Sect. 7.3 of the full version.
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Abstract. This work provides both negative and positive results for
publicly verifiable quantum money.

– In the first part, we give a general theorem, showing that a certain
natural class of quantum money schemes from lattices cannot be
secure. We use this theorem to break the recent quantum money
proposal of Khesin, Lu, and Shor ([KLS22]).

– In the second part, we propose a framework for building quan-
tum money and quantum lightning we call invariant money which
abstracts and formalizes some ideas of quantum money from knots
[FGH+12] and its precedent work [LAF+10]. In addition to formal-
izing this framework, we provide concrete hard computational prob-
lems loosely inspired by classical knowledge-of-exponent assump-
tions, whose hardness would imply the security of quantum light-
ning, a strengthening of quantum money where not even the bank
can duplicate banknotes.

– We discuss potential instantiations of our framework, including an
oracle construction using cryptographic group actions and instan-
tiations from rerandomizable functional encryption, isogenies over
elliptic curves, and knots.

1 Introduction

1.1 Motivation

Quantum information promises to revolutionize cryptography. In particular, the
no cloning theorem of quantum mechanics opens the door to quantum cryp-
tography : cryptographic applications that are simply impossible classically. The
progenitor of this field, due to Wiesner [Wie83], is quantum money: quantum
digital currency that cannot be counterfeited due to the laws of physics. Since
Wiesner’s proposal, many applications of quantum information to cryptography
have been proposed, including quantum key distribution (QKD) [BB87], random-
ness expansion [Col09,CY14,BCM+18], quantum copy protection [Aar09,AL21,
ALL+21,CLLZ21], quantum one-time programs [BGS13], and much more.
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Throughout the development of quantum cryptography, quantum money has
remained a central object, at least implicitly. Indeed, the techniques used for quan-
tum money are closely related to those used in other applications. For example, the
first message in the BB84 quantum QKD protocol [BB87] is exactly a banknote
in Wiesner’s scheme. The techniques used by [BCM+18] to prove quantumness
using classical communication have been used to construct quantum money with
classical communication [RS19]. The subspace states used by [AC12] to construct
quantum money were recently used to build quantum copy protection [ALL+21].

The Public Verification Barrier. Wiesner’s scheme is only privately verifiable,
meaning that the mint is needed to verify. This results in numerous weaknesses.
Improper verification opens the scheme to active attacks [Lut10]. Moreover, pri-
vate verification is not scalable, as the mint would be required to participate
in every single transaction. Wiesner’s scheme also requires essentially perfect
quantum storage, since otherwise banknotes in Wiesner’s scheme will quickly
decohere and be lost.

All these problems are readily solved with publicly verifiable quantum money1,
where anyone can verify, despite the mint being the sole entity that can mint notes.
Public verification immediately eliminates active attacks, and solves the scaling
problem since the transacting users can verify the money for themselves. Aaronson
and Christiano [AC12] also explain that public verifiability allows for also correct-
ing any decoherance, so users can keep their banknotes alive indefinitely.

Unfortunately, constructing convincing publicly verifiable quantum money
has become a notoriously hard open question. Firstly, some natural modifica-
tions to Wiesner’s quantum money scheme will not give security under pub-
lic verification [FGH+10]. Aaronson [Aar09], and later Aaronson and Chris-
tiano [AC12] gave publicly verifiable quantum money relative to quantum and
classical oracles, respectively. Such oracle constructions have the advantage
of provable security, but it is often unclear how to instantiate them in the
real world2: in both [Aar09] and [AC12], “candidate” instantiations were pro-
posed, but were later broken [LAF+10,CPDDF+19]. Another candidate by
Zhandry [Zha19] was broken by Roberts [Rob21]. Other candidates have been
proposed [FGH+12,Kan18,KSS21], but they all rely on new, untested assump-
tions that have received little cryptanalysis effort. The one exception, suggested
by [BDS16] and proved by [Zha19], uses indistinguishability obfuscation (iO) to
instantiate Aaronson and Christiano’s scheme [AC12]. Unfortunately, the post-
quantum security of iO remains poorly understood, with all known constructions
of post-quantum iO [GGH15,BGMZ18,BDGM20,WW21] being best labeled as
candidates, lacking justification under widely studied assumptions.

Thus, it remains a major open question to construct publicly verifiable quan-
tum money from standard cryptographic tools. Two such post-quantum tools we
1 Sometimes it is also referred to as public-key quantum money. We may use the two

terms interchangeably.
2 Quantum oracles are quantum circuits accessible only as a black-box unitary. They

are generally considered as strong relativizing tools when used in proofs. Classical
oracles are black-box classical circuits, a much weaker tool.
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will investigate in this work are the two most influential and well-studied: lattices
and isogenies over elliptic curves.

This public verification barrier is inherited by many proposed applica-
tions of quantum cryptography. For example, quantum copy protection for any
function whose outputs can be verified immediately implies a publicly verifi-
able quantum money scheme. As such, all such constructions in the standard
model [ALL+21,CLLZ21] require at a minimum a computational assumption
that implies quantum money.3

Quantum Money Decentralized: Quantum Lightning. An even more ambitious
goal is a publicly verifiable quantum money where the bank/mint itself should
not be capable of duplicating money states. To guarantee unclonability, the
scheme should have a “collision-resistant” flavor: no one can (efficiently) generate
two valid money states with the same serial number. This notion of quantum
money appeared as early in [LAF+10]; the name “quantum lightning” was given
in [Zha19].

Quantum lightning has broader and more exciting applications: as discussed
in [Zha19,Col19,CS20,AGKZ20], it can be leveraged as verifiable min-entropy,
useful building blocks to enhance blockchain/smart contract protocols and more-
over, it could lead to decentralized cryptocurrency without a blockchain.

Quantum money has a provably secure construction from iO, a strong cryp-
tographic hammer but still a widely used assumption. On the other hand, quan-
tum lightning from even relatively standard-looking assumptions remains open.
Some existing constructions [Kan18,KSS21] use strong oracles such as quantum
oracles, with conjectured instantiations that did not go through too much crypt-
analysis. [FGH+12] is another candidate built from conjectures in knot theory.
But a correctness proof and security reduction are not provided in their paper.

Collapsing vs. Non-collapsing. With a close relationship to quantum money,
collapsing functions [Unr16] are a central concept in quantum cryptography. A
collapsing function f says that one should not be able to distinguish a super-
position of pre-images |x1〉+|x2〉···|xk〉√

k
, from a measured pre-image |xi〉, i ∈ [k] for

some image y = f(xi), for all i ∈ [k].
While collapsing functions give rise to secure post-quantum cryptography like

commitment schemes, its precise opposite is necessary for quantum money: if no
verification can distinguish a money state in a superposition of many supports
from its measured state, a simple forgery comes ahead. Hence, investigating the
collapsing/non-collapsing properties of hash functions from lattices and isogenies
will provide a win-win insight into quantum money and post-quantum security
of existing cryptographic primitives.

3 This holds true even for certain weaker versions such as copy detection, also known
as infinite term secure software leasing.
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2 Our Results

In this work, we give both negative and positive results for publicly verifiable
quantum money.

Breaking Quantum Money. Very recent work by Khesin, Lu, and Shor [KLS22]
claims to construct publicly verifiable quantum money from the hardness of
worst-case lattice problems, a standard assumption. Our first contribution is to
identify a fatal flaw in their security proof, and moreover show how to exploit
this flaw to forge unlimited money. After communicating this flaw and attack,
the authors of [KLS22] have retracted their paper.4

More importantly, we show that a general class of natural money schemes
based on lattices cannot be both secure and publicly verifiable. We consider
protocols where the public key is a short wide matrix AT , and a banknote
with serial number u is a superposition of “short” vectors y such that AT ·
y = u mod q. Our attack works whenever AT is uniformly random. We also
generalize this to handle the case where AT is uniform conditioned on having a
few public short vectors in its kernel. This generalization includes the Khesin-
Lu-Shor scheme as a special case. Our result provides a significant barrier to
constructing quantum money from lattices.

Along the way, we prove that the SIS hash function is collapsing [Unr16] for
all moduli, resolving an important open question in the security of post-quantum
hash functions.5

Invariant Money/Lightning. To complement our negative result, we propose a
new framework for building quantum money, based on invariants. Our framework
abstracts some of the ideas behind the candidate quantum money from knots
in [FGH+12] and behind [LAF+10]. Our main contributions here are two-fold:

– We propose a (classical) oracle construction that implements our framework
assuming the existence of a quantum-secure cryptographic group action and
a relatively modest assumption about generic cryptographic group actions.
We then give proposals for instantiating our invariant framework on more
concrete assumptions. The first is based on isogenies over elliptic curves6; the
second is based on rerandomizable functional encryption with certain prop-
erties; finally, we also discuss the quantum money from knots construction
in [FGH+12] with some modifications.

– In order to gain confidence in our proposals, we for the first time formal-
ize abstract properties of the invariant money under which security can be
proved. Concretely, we prove that a certain mixing condition is sufficient
to characterize the states accepted by the verifier, and in particular prove

4 We thank the authors of [KLS22] for patiently answering our numerous questions
about their work, which was instrumental in helping us identify the flaw.

5 Previously, [LZ19] showed that SIS was collapsing for a super-polynomial modulus.
6 The recent attacks [CD22,MM22,Rob22] on SIDH do not apply to the isogeny build-

ing blocks we need. We will elaborate in the full version.
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correctness7. We also propose “knowledge of path” security properties for
abstract invariant structures which would be sufficient to justify security.
These knowledge of path assumptions are analogs of the “knowledge of expo-
nent” assumption on groups proposed by Damgård [Dam92]. Under these
assumptions, we are even able to show that the invariants give quantum light-
ning [LAF+10,Zha19], the aforementioned strengthening of quantum money
that is known to have additional applications.
Note that the knowledge of exponent assumption in groups is quantumly bro-
ken on groups due to the discrete logarithm being easy. However, for many
of our assumptions, which are at least conjectured to be quantum-secure,
the analogous knowledge of path assumption appears plausible, though cer-
tainly more cryptanalysis is needed to gain confidence. The main advantage
of our proposed knowledge of path assumption is that it provides a concrete
cryptographic property that cryptographers can study and analyze with a
well-studied classical analog.

3 Technical Overview

3.1 How to Not Build Quantum Money from Lattices

We first describe a natural attempt to construct quantum money from lattices,
which was folklore but first outlined by Zhandry [Zha19]. The public key will con-
tain a random tall matrix A ∈ Zm×n

q ,m � n. To mint a banknote, first generate
a superposition |ψ〉 = ∑

y αy|y〉 of short vectors y ∈ Zm, such that |y| � q. A
natural |ψ〉 is the discrete-Gaussian-weighted state, where αy ∝

√
e−π|y|2/σ2 for

a width parameter σ. Then compute in superposition and measure the output
of the map y �→ AT · y mod q, obtaining u ∈ Zn

q . The state collapses to:

|ψu〉 ∝
∑

y:AT ·y=u

αy|y〉 .

This will be the money state, and u will be the serial number. This state can
presumably not be copied: if one could construct two copies of |ψu〉, then one
could measure both, obtaining two short vectors y,y′ with the same coset u. As
|ψu〉 is a superposition of many vectors (since m � n), with high probability
y 
= y′. Subtracting gives a short vector y−y′ such that AT ·(y−y′) = 0, solving
the Short Integer Solution (SIS) problem. SIS is presumably hard, and this
hardness can be justified based on the hardness of worst-case lattice problems
such as the approximate Shortest Vector Problem (SVP).

The challenge is: how to verify |ψu〉? Certainly, one can verify that the sup-
port of a state is only short vectors y such that AT · y = u. But this alone is
not enough: one can fool such a verification by any classical y in the support of

7 [FGH+12] did not analyze correctness of their knot-based proposal, nor analyze the
states accepted by their verifier and formalize the property needed for a security
proof. [LAF+10] had informal correctness analysis on their proposal, but also did
not analyze the security property needed.
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|ψu〉. To forge then, an adversary simply measures |ψu〉 to obtain y, and then
copies y as many times as it likes.

To get the scheme to work, then, one needs a verifier that can distinguish
classical y from superpositions. This is a typical challenge in designing publicly
verifiable money schemes. A typical approach is to perform the quantum Fourier
transform (QFT): the QFT of y will result in a uniform string, whereas the QFT
of |ψu〉 will presumably have structure. Indeed, if |ψu〉 is the Gaussian superposi-
tion, following ideas of Regev [Reg05], the QFT of |ψu〉 will be statistically close
to a superposition of samples A · r + e, where r is uniform in Zn

q , and e ∈ Zm
q

is another discrete Gaussian of width q/σ. The goal then is to distinguish such
samples from uniform.

Unfortunately, such distinguishing is likely hard, as this task is the famous
(decisional) Learning with Errors (LWE) problem. LWE is presumably hard,
which can be justified based on the hardness of the same worst-case lattice
problems as with SIS, namely SVP. So either LWE is hard, or the quantum
money scheme is insecure in the first place.

Nevertheless, this leaves open a number of possible strategies for designing
quantum money from lattices, including:

1. What if non-Gaussian |ψ〉 is chosen?
2. What if distinguishing is not done via the QFT but some other quantum

process?
3. What if we somehow make LWE easy?

The first significant barrier beyond the hardness of LWE is due to Liu and
Zhandry [LZ19]. They show that, if the modulus q is super-polynomial, then
the map y �→ AT · y for a random A is collapsing [Unr16]: that is, for any
starting state |ψu〉 of short vectors, distinguishing |ψu〉 from y is infeasible for any
efficient verification process. Collapsing is the preferred notion of post-quantum
security for hash functions, as it is known that collision resistance is often not
sufficient for applications when quantum adversaries are considered.

The result of [LZ19] follows from the hardness of LWE (which is quantumly
equivalent to SIS [Reg05]), albeit with a noise rate super-polynomially smaller
than q/σ which is a stronger assumption than the hardness with rate q/σ. More-
over, their result requires q to be super-polynomially larger than σ. In practice,
one usually wants q to be polynomial, and the result of [LZ19] leaves open the
possibility of building quantum money in such a setting.

What about making LWE easy (while SIS remains hard)? The usual approach
in the lattice literature to making decisional LWE easy is to output a short vector
s in the kernel of AT . If |s| � (q/σ), this allows for distinguishing LWE samples
from uniform, since s · (A · r+ e) = s · e, which will be small relative to q, while
s·x for uniform x will be uniform in Zq. Unfortunately, adding such short vectors
breaks the security proof, since s is a SIS solution, solving SIS is trivially easy by
outputting s. To revive the security, one can try reducing to the 1-SIS problem,
which is to find a short SIS solution that is linearly independent of s. 1-SIS can
be proved hard based on the same worst-case lattice problems as SIS [BF11].
However, in the scheme above, it is not clear if measuring two forgeries and
taking the difference should result in a vector linearly independent of s.
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The Recent Work of [KLS22]. Very recently, Khesin, Lu, and Shor [KLS22]
attempt to provide a quantum money scheme based on lattices. Their scheme
has some similarities to the blueprint discussed above, taking advantage of each
of the strategies 1, 2 and 3. But there are other differences as well: the state |ψ〉
is created as a superposition over a lattice rather than the integers, and the mea-
surement of u is replaced with a move complex general positive operator-value
measurement (POVM). [KLS22] claims to prove security under the hardness of
finding a second short vector in a random lattice when already given a short vec-
tor. This problem is closely related to 1-SIS, and follows also from the hardness
of worst-case lattice problems.

Our Results. First, we show an alternative view of [KLS22] which shows that
it does, indeed, fall in the above framework. That is, there is a way to view
their scheme as starting from |ψ〉 that is a non-Gaussian superposition of short
integer vectors y. The minting process in our alternate view then measures
AT · y, where A is part of the public key, and is chosen to be uniform except
that it is orthogonal to 3 short vectors s0, s1, s2. These vectors play a role in
verification, as they make the QFT non-uniform. Using this alternative view, we
also demonstrate a flaw in the security proof of [KLS22], showing that forged
money states actually do not yield new short vectors in the lattice. See Section
D of the full version for details.

We then go on (Sect. 5) to show an explicit attack against their money
scheme. More generally, we show an attack on a wide class of instantiations
of the above framework. Our attack works in two steps:

– First, we extend the collapsing result of [LZ19] to also handle the case of
polynomial modulus, and in particular, we only need LWE to be hard for
noise rate that is slightly smaller than q/σ. This resolves an important open
by showing that SIS is collapsing for all moduli.
Our proof requires a novel reduction that exploits a more delicate analysis of
the quantum states produced in the proof of [LZ19]. We also extend the result
in a meaningful way to the case where several short kernel vectors s0, s1, . . .
are provided. We show that instead of just using y as a forgery (which can
be distinguished using the short vectors si), a particular superposition over
vectors of the form y +

∑
i cisi can fool any efficient verification. Fooling

verification requires the hardness a certain “k-LWE” problem, which we show
follows from worst-case lattice problems in many settings (see Section E).
This requires us to extend the known results on k-LWE hardness, which may
be of independent interest.

– Then we show how to construct such a superposition efficiently given only
y and the si, in many natural settings. Our settings include as a special
case the setting of [KLS22]. Along the way, we explain how to construct
Gaussian superpositions over lattices, when given a short basis. The algo-
rithm is a coherent version of the classical discrete Gaussian sampling algo-
rithm [GPV08]. In general, it is not possible to take a classical distribution
and run it on a superposition of random coins to get a superposition with
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weights determined by the distribution. This is because the random coins
themselves will be left behind and entangled with the resulting state. We
show how to implement the classical algorithm coherently in a way that does
not leave the random coins behind or any other entangled bits. Such an algo-
rithm was previously folklore (e.g. it was claimed to exist without justification
by [KLS22]), but we take care to actually write out the algorithm.

After communicating this flaw and attack to the authors of [KLS22], they have
retracted their paper.8

3.2 Quantum Money from Walkable Invariants

In the second part of the paper, we describe a general framework for instantiating
publicly verifiable quantum money from invariants satisfying certain conditions.
This framework abstracts the ideas behind the construction of quantum money
from knots [FGH+12] and its precedent [LAF+10].

At a high level, we start from a set X, which is partitioned into many dis-
joint sets O ⊆ X. There is a collection of efficiently computable (and efficiently
invertible) permutations on X, such that for every permutation in the collection
and every O in the partition, the permutation maps elements of O to O. Such
a set of permutations allows one to take an element x ∈ O, and perform a walk
through O. We additionally assume an invariant I : X → Y on X, such that
I is constant on each element O of the partition. In other words, I is invariant
under action by the collection of permutations.

In the case of [FGH+12], X is essentially the set of knot diagrams9, the
permutations are Reidemeister moves, and the invariant is the Alexander poly-
nomial.

An honest quantum money state will essentially be a uniform superposition
over O10. Such a state is constructed by first constructing the uniform superpo-
sition over X, and then measuring the invariant I. Applying a permutation from
the collection will not affect such a state. Thus, verification attempts to test
whether the state is preserved under action by permutations in the collection by
performing an analog of a swap test, and only accepts if the test passes.

In [FGH+12], it is explained why certain attack strategies are likely to
be incapable of duplicating banknotes. However, no security proof is given
under widely believed hard computational assumptions. To make matters
worse, [FGH+12] do not analyze what types of states are accepted by the verifier.
It could be, for example, that duplicating a banknote perfectly is computation-
ally infeasible, but there are fake banknotes that pass verification that can be
duplicated; this is exactly what happens in the lattice-based schemes analyzed
8 We once again want to emphasize that the authors of [KLS22] were exceptionally

helpful and we thank them for their time spent helping us understand their work.
9 Due to certain concerns about security, [FGH+12] actually sets X to contain extra

information beyond a knot diagram.
10 Technically, it is a uniform superposition over the pre-images of some y in the image

of I. If multiple O have the same y, then the superposition will be over all such O.
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above in Sect. 3.1. Given the complexities of their scheme, there have been lim-
ited efforts to understand the security of the scheme. This is problematic, since
there have been many candidates for public key quantum money that were later
found to be insecure.

Generally, a fundamental issue with public key quantum money schemes
is that, while quantum money schemes rely on the no-cloning principle, the
no-cloning theorem is information-theoretic, whereas publicly verifiable quan-
tum money is always information-theoretically clonable. So unclonability cru-
cially relies on the adversary being computationally efficient. Such computa-
tional unclonability is far less understood than traditional computational tasks.
Indeed, while there have been a number of candidate post-quantum hard com-
putational tasks, there are very few quantum money schemes still standing. The
challenge is in understanding if and how quantum information combines with
computational bounds to give computational unclonability.

To overcome this challenge, the security analysis should be broken into two
parts: one part that relies on information-theoretic no-cloning, and another part
that relies on a computational hardness assumption. Of course, the security of
the scheme itself could be such an assumption, so we want to make the assump-
tion have nothing to do with cloning. One way to accomplish this is to have
the assumption have classical inputs and outputs (which we will call “classi-
cally meaningful”), so that it could in principle be falsified by a classical algo-
rithm, which are obviously not subject to quantum unclonability. Separating
out the quantum information from the computational aspects would hopefully
give a clearer understanding of why the scheme should be unclonable, hopefully
allow for higher confidence in security. Moreover, as essentially all widely studied
assumptions are classically meaningful, any attempt to prove security under a
widely studied assumptions would have to follow this blueprint, and indeed the
proof of quantum money from obfuscation [Zha19] is of this form.

Our Results. In this work, we make progress towards justifying invariant-based
quantum money.

– First, we prove that if a random walk induced by the collection of permuta-
tions mixes, then we can completely characterize the states accepted by ver-
ification. The states are exactly the uniform superpositions over O11. Unfor-
tunately, it is unclear if the knot construction actually mixes, and any formal
proof of mixing seems likely to advance knot theory12.

– Second, we provide concrete security properties under which we can prove
security. These properties, while still not well-studied, at least have no obvi-
ous connection to cloning, and are meaningful even classically. Under these

11 Or more generally, if multiple O have the same y, then accepting states are exactly
those that place equal weight on elements of each O, but the weights may be different
across different O.

12 Nevertheless we provide a discussion on the knot money instantiation in the knot
instantiation section of the full version.
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assumptions, we can even prove that the schemes are in fact quantum light-
ning, the aforementioned strengthening of quantum money where not even
the mint can create two banknotes of the same serial number.

Our Hardness Assumptions. We rely on two hardness assumptions in our invari-
ant money scheme for a provably secure: the path-finding assumption and knowl-
edge of path finding assumption.

Informally speaking, the path-finding assumption states that, given some
adversarially sampled x from a set of elements X and given a set of “permuta-
tions” Σ, it is hard for any efficient adversary, given a random z ∈ X, where there
exists some σ ∈ Σ such that σ (x) = z, to find such a σ. One can observe that
it is similar to a “discrete logarithm” style of problem. Even though we cannot
use discrete logarithm due to its quantum insecurity, we have similar hard prob-
lems in certain isogenies over ellitic curves, abstracted as “group action discrete
logarithm” problems [ADMP20].

Our Knowledge of Path Assumptions. The main novel assumption we use is a
“knowledge of path” assumption. This roughly says that if an algorithm outputs
two elements x, z in the same O, then it must “know” a path between them: a
list of permutations from the collection that, when composed, would take x to z.
While such a knowledge of path assumption is undoubtedly a strong assumption,
it seems plausible in a number of relevant contexts (e.g. elliptic curve isogenies
that have no known non-trivial attacks or “generic” group actions).

Formalizing the knowledge of path assumption is non-trivial. The obvious
classical way to define knowledge of path is to say that for any adversary, there
is an extractor that can compute the path between x and z. Importantly, the
extractor must be given the same random coins as the adversary, so that it
can compute x and z for itself and moreover know what random choices the
adversary made that lead to x, z. Essentially, by also giving the random coins,
we would be effectively making the adversary deterministic, which is crucial for
the extractor’s output to be related to the adversary’s output.

Unfortunately, quantumly the above argument does not make much sense,
as quantum algorithms can have randomness without having explicit random
coins. In fact, there are quantum procedures that are inherently probabilistic, in
the sense that the process is efficient, but there is no way to run the process twice
and get the same outcome both times. This is actually crucial to our setting: we
are targeting the stronger quantum lightning, which means that even the mint
cannot create two banknotes with the same serial number. This means that the
minting process is inherently probabilistic. The adversary could, for example,
run the minting process, but with its own minting key. Such an adversary would
then be inherently probabilistic and we absolutely would need a definition that
can handle such adversaries.

Our solution is to exploit the fact that quantum algorithms can always be
implemented reversibly. We then observe that with a classical reversible adver-
sary, an equivalent way to define knowledge assumptions would be to just feed
the entire final state of the adversary (including output) into the extractor.
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By reversibility, this is equivalent to giving the input, coins included, to the extrac-
tor. But this alternate extraction notion actually does make sense quantumly.Thus
our knowledge of path assumption is defined as giving the extractor the entire final
(quantum) state of the reversible adversary, and asking that the extractor can find
a path between x and z. This assumption allows us to bypass the issue of inherently
probabilistic algorithms, and is sufficient for us to prove security.

Instantiations of Invariant Quantum Money and Lightning. After we provide the
characterization of security needed for invariant money, we discuss four candidate
instantiations13:

– We show a construction from structured oracles and generic cryptographic
group actions. Notably, while we do not know how to instantiate these oracles,
we can prove that this construction is secure assuming the existence of a
cryptographic group action and the assumption that the knowledge of path
assumption holds over a generic cryptographic group action.14

– We explain how re-randomizable functional encryption, a type of functional
encryption with special properties that seem reasonable, can be used to build
another candidate quantum lightning. We don’t currently have a provably
secure construction from standard cryptographic assumptions for this special
re-randomizable functional encryption, but we provide a candidate construc-
tion based on some relatively well-studied primitives.

– Elliptic curve isogenies are our final new candidate instantiation. We outline
how, given some assumptions about sampling certain superpositions of elliptic
curves, it may be possible to build quantum lightning from isogeny-based
assumptions.

– Finally, we analyze the construction of quantum money from knots
in [FGH+12] in our framework.

For all these three constructions, we show that their corresponding path-
finding problem between two elements x, z in the same O is relatively straightfor-
ward to study (reducible to reasonably well-founded assumptions). Nevertheless,
we need the knowledge of path assumptions to show that we can extract these
paths from a (unitary) adversary. We believe that one may show a knowledge-
of-path property when replacing some plain model components in the above
candidates with (quantum accessible) classical oracles, thus giving the possibil-
ity for a first quantum lightning scheme relative to only classical oracles and
widely studied assumptions.

4 Preliminaries

In this section we explain some background material needed for our work.
13 Throughout the sections on invariant quantum money framework and construction

in the full verison, we will sometimes interchangeably use “money” or “lightning”.
But in fact the proposed candidates are all candidates for quantum lightning.

14 This seems like a very plausible assumption to us: classically, the knowledge of expo-
nent would almost trivially hold over generic groups.
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For quantum notations, we denote |·〉 as the notation for a pure state and
|·〉〈·| for its density matrix. ρ denotes a general mixed state.

We will go over some fundamental lattice facts and then move to quantum
money definitions. Due to the restriction of space, we leave some additional lat-
tice basics, hardness theorems and necessary quantum background (in particular
related to lattices) to Appendix preliminaries section of the full version.

4.1 Lattice Basics

We say a distribution D is (B, δ)-bounded if the probability that D outputs a
value larger than B is less than δ. We extend this to distributions that output
vectors in an entry-by-entry way. Given a set of vectors B = {b1, ...,bn}, we
define the norm of B, denoted ||B||, as the length of the longest vector in B, so
||B|| = maxi ||bi||. For any lattice Λ, we define the minimum distance (or first
successive minimum) λ1 (Λ) as the length of the shortest nonzero lattice vector
in Λ.

We next define discrete Gaussians formally. Since we later use their lemmas,
our definition is loosely based on that of [BLP+13].

Definition 1. For any σ > 0, the n-dimensional Gaussian function ρσ : Rn →
[0, 1] is defined as

ρr (x) = e−π x2

σ2

We define the discrete Gaussian function with parameter σ at point p ∈ Rn,
which we usually denote DΨσ

or just Ψσ when the context is clear, as the func-
tion over all of the integers y ∈ Zn such that the probability mass of any y is
proportional to

e−π
(p−y)2

σ2 .

We can also define more complicated discrete Gaussians over lattices. In this
case, let Σ be a matrix in Rn×n. The discrete Gaussian over a lattice Λ with
center p and “skew” parameter Σ is the function over all lattice points in Λ
such that the probability mass of any y is proportional to

e−π(p−y)T (ΣΣT)−1
(p−y),

very similar to as before. We usually denote this type of discrete Gaussian as
ΨΛ,Σ,p or DΨΛ,Σ,p

, where we sometimes substitute σ for Σ when Σ = σ · In,
where In is the n×n identity matrix. We also sometimes omit parameters when
they are obvious (e.g. 0) in context.

We will explain how to efficiently sample discrete Gaussians quantumly in
B.3 of the full version.
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4.2 General LWE Definition

In this section we define basic LWE with an eye towards eventually defining k-
LWE. We note that, while equivalent to the standard definitions, our definitions
here are presented a little bit differently than usual in lattice cryptography. This
is so that we can keep the notation more consistent with the typical quantum
money and quantum algorithms presentation styles. We first provide a properly
parameterized definition of the LWE problem [Reg05].

Definition 2 Learning with Errors (LWE) Problem: Let n, m, and q be
integers, let DA and Dr be distributions over Zn

q , and let D¯ be a distribution
over Zm

q . Let A ∈ Zm×n
q be a matrix where each row is sampled from DA, let

r ∈ Zn
q be a vector sampled from Dr, and let e ∈ Zm

q be a vector sampled from
D¯. Finally, let t ∈ Zm

q be a uniformly random vector.
The (n,m, q,DA,Dr,D¯)-LWE problem is defined to be distinguishing

between the following distributions:

(A,A · r + e) and (A, t) .

4.3 Quantum Money and Quantum Lightning

Here, we define public key quantum money and quantum lightning. Following
Aaronson and Christiano [AC12], we will only consider so-called “mini-schemes”,
where there is only a single banknote.

Both quantum money and quantum lightning share the same syntax and
correctness requirements. There are two quantum polynomial-time algorithms
Gen,Ver such that:

– Gen(1λ) samples a classical serial number σ and a quantum state |ψ〉.
– Ver(σ, |ψ〉) outputs a bit 0 or 1.

Correctness. We require that there exists a negligible function negl such that
Pr[Ver(Gen(1λ))] ≥ 1 − negl(λ).

Security. Where public key quantum money and quantum lightning differ is
in security. The differences are analogous to the differences between one-way
functions and collision resistance.

Definition 3 (Quantum Money Unforgeability). (Gen,Ver) is secure pub-
lic key quantum money if, for all quantum polynomial-time A, there exists a
negligible negl such that A wins the following game with probability at most negl:

– The challenger runs (σ, |ψ〉) ← Gen(1λ), and gives σ, |ψ〉 to A.
– A produces a potentially entangled joint state ρ1,2 over two quantum registers.

Let ρ1, ρ2 be the states of the two registers. A sends ρ1,2 to the challenger.
– The challenger runs b1 ← Ver(σ, ρ1) and b2 ← Ver(σ, ρ2). A wins if b1 = b2 = 1.
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Definition 4 (Quantum Lightning Unforgeability). (Gen,Ver) is secure
quantum lightning if, for all quantum polynomial-time A, there exists a negligible
negl such that A wins the following game with probability at most negl:

– A, on input 1λ, produces and sends to the challenger σ and ρ1,2, where ρ1,2

is a potentially entangled joint state over two quantum registers.
– The challenger runs b1 ← Ver(σ, ρ1) and b2 ← Ver(σ, ρ2). A wins if b1 = b2 = 1.

The difference between quantum lightning and quantum money is therefore
that in quantum lightning, unclonability holds, even for adversarially constructed
states.

Note that, as with classical collision resistance, quantum lightning does not
exist against non-uniform adversaries. Like in the case of collision resistance,
we can update the syntax and security definition to utilize a common reference
string (crs), which case non-uniform security can hold. For this paper, to keep
the discussion simple, we will largely ignore the issue of non-uniform security.

5 Our General Attack on a Class of Quantum Money

Due to limitation of space, we leave a detailed discussion of the [KLS22] money
scheme and its flaw in of the full version.

Now, we show that a natural class of schemes, including the equivalent view
on [KLS22] demonstrated in the full version, cannot possibly give secure quantum
money schemes, regardless of how the verifier works.

5.1 The General Scheme

Here, we describe a general scheme which captures the alternate view above.
Here, we use somewhat more standard notation from the lattice literature. Here
we give a table describing how the symbols from section C map to this section:

This Section Section C.3

q P

n 1
m d′ = d + 2

A v′ as a column vector
|ψ〉 |φ′〉
u T

W k +
√

m × σ × ω(
√

log(λ)))

Setup. Let q be a super-polynomial, which may or may not be prime. Sample
from some distribution several short vectors s1, . . . , s� ∈ Zm

q for a constant 
,
and assemble them as a matrix S ∈ Zm×�

q . Then generate a random matrix
A ∈ Zm×n

q such that AT · S = 0 mod q.
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Minting. Create some superposition |ψ〉 of vectors in y ∈ Zm
q such that an all

but negligible fraction of the support of |ψ〉 are on vectors with norm W . Let
αy be the amplitude of y in |ψ〉.

Then apply the following map to |ψ〉:
|y〉 → |y,AT · y mod q〉

Finally, measure the second register to obtain u ∈ Zn
q . This is the serial number,

and the note is |ψu〉, whatever remains of the first register, which is a superpo-
sition over short vectors y such that AT · y = u.

Verification. We do not specify verification. Indeed, in the following we will show
that the money scheme is insecure, for any efficient verification scheme.

5.2 Attacking the General Scheme

We now show how to attack the general scheme. Let C be a matrix whose
columns span the space orthogonal to the columns of S. Let |ψ′

u〉 be the state
sampled from |ψu〉 by measuring y �→ CT · y, and letting |ψ′

u〉 be whatever is
left over.

Our attack will consist of two parts:

– Showing that |ψ′
u〉 is indistinguishable from |ψu〉, for any efficient verifica-

tion procedure. We show (Sect. 5.3) that this follows from a certain “k-LWE”
assumption, which depends on the parameters of the scheme (k, n,m, q, etc.).
In Section D of the full version, we justify the assumption in certain general
cases, based on the assumed hardness of worst-case lattice problems. Note
that these lattice problems are essentially (up to small differences in parame-
ters) the same assumptions we would expect are needed to show security for
the money scheme in the first place. As such, if k-LWE does not hold for these
special cases, most likely the quantum money scheme is insecure anyway. Our
cases include the case of [KLS22].

– Showing that |ψ′
u〉 can be cloned. Our attack first measures |ψ′

u〉 to obtain a
single vector y in it’s support. To complete the attack, it remains to construct
|ψ′

u〉 from y; by repeating such a process many times on the same y, we
successfully clone. We show (Sect. 5.4) that in certain general cases how to
perform such a construction. Our cases include the case of [KLS22].

Taken together, our attack shows that not only is [KLS22] insecure, but that
it quite unlikely that any tweak to the scheme will fix it.

5.3 Indistinguishability of |ψ′
u〉

Here, we show that our fake quantum money state |ψ′
u〉 passes verification,

despite being a very different state that |ψu〉. We claim that, from the perspec-
tive of any efficient verification algorithm, |ψ′

u〉 and |ψu〉 are indistinguishable.
This would mean our attack succeeds.
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Toward this end, let C ∈ Zm×(m−�)
q be a matrix whose rows span the space

orthogonal to S: CT · S = 0. Notice that the state |ψ′
u〉 can be equivalently

constructed by applying the partial measurement of CT · y to |ψu〉.
Consider the following problem, which is closely related to “k-LWE” (Defini-

tion 4 in the full version):

Problem 1. Let n,m, q,Σ be functions of the security parameter, and D a dis-
tribution over S. The (n,m, q,Σ, 
,D)-LWE problem is to efficiently distinguish
the following two distributions:

(A,A · r + e) and (A,C · r′ + e) ,

Where r is uniform in Zn
q , r′ is uniform in Zm−�

q , and e is Gaussian of width Σ.
We say the problem is hard if, for all polynomial time quantum algorithms, the
distinguishing advantage is negligible.

In Section D of the full version, we explain that in many parameter settings,
including importantly the setting of [KLS22], that the hardness of Problem 1 is
true (assuming standard lattice assumptions).

With the hardness of Problem 1, we can show the following, which is a
generalization of a result of [LZ19] that showed that the SIS hash function is
collapsing for super-polynomial modulus:

Theorem 1. Consider sampling A,S as above, and consider any efficient algo-
rithm that, given A,S, samples a u and a state |φu〉 with the guarantee that
all the support of |φu〉 is on vectors y such that (1) AT · y = u mod q and (2)
|y|2 ≤ W .

Now suppose |φu〉 is sampled according to this process, and then either (A)
|φu〉 is produced, or (B) |φ′

u〉 is produced, where |φ′
u〉 is the result of applying the

partial measurement of CT · y to the state |φu〉.
Suppose there exists Σ such that q/WΣ = ω(

√
log λ) such that

(n,m, q,Σ, 
,D)-LWE is hard. Then cases (A) and (B) are computationally
indistinguishable.

Note that an interesting consequence of Theorem 1 in the case 
 = 0 is that
it shows that the SIS hash function is collapsing for any modulus, under an
appropriate (plain) LWE distribution. This improves upon [LZ19], who showed
the same but only for super-polynomial modulus. We now give the proof of
Theorem 1:

Proof. For an integer t, let �·�t denote the function that maps a point x ∈ Zq to
the z ∈ {0, �q/t�, �2q/t�, ·, �(t − 1)q/t�} that minimizes |z − x|. Here, |z − x| is
the smallest a such that z = x±a mod q. In other words, �·�t is a course rounding
function that rounds an x ∈ Zq to one of t points that are evenly spread out in Zq.

Let ρ be a mixed quantum state, whose support is guaranteed to be on y
such that (1) AT · y = u mod q and (2) |y|2 ≤ W . For a quantum process M
acting on ρ, let M(ρ) be the mixed state produced by applying Mi to ρ. We will
consider a few types of procedures applied to on quantum states.
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M0: Given A, M0 is just the partial measurement of y �→ CT · y.

M t
1: Given A, to apply this measurement, first sample an LWE sample b =

A · r+ e. Then apply the measurement y �→ �b · y�t. Discard the measurement
outcome, and output the remaining state.

Lemma 1. For any constants t, d, M t
1(ρ) is statistically close to 1

dM t×d
1 (ρ) +(

1 − 1
d

)
ρ

Note that Lemma 1 means that M t
1 can be realized by the mixture of two

measurements: M t×d
1 with probability 1/t2, and the identity with probability(

1 − 1
d

)
. We now give the proof.

Proof. Consider the action of M t
1 on |y〉〈y′|, for a constant t. First, an LWE

sample b = A · r + e is chosen. Then conditioned on this sample, if �b · y�t =
�b · y′�t, the output is |y〉〈y′|. Otherwise the output is 0. Averaging over all b,
we have that

M t
1(|y〉〈y′|) = Pr

b
[�b · y�t = �b · y′�t]

where the probability is over b sampled as b = A · r + e. Recalling that u =
AT · y = AT · y′, we have that:

b · y = r · u + e · y
b · y′ = r · u + e · y′

Now, by our choice of Σ, |e · (y − y′)| < q/t for any constant t, except with
negligible probability. We will therefore assume this is the case, incurring only a
negligible error.

Note that z := r · u is uniform in Zq and independent of e · y, e · y′. So
measuring �b · y�t is identical to measuring the result of rounding e · y, except
that the rounding boundaries are rotated by a random z ∈ Zq. Since the rounding
boundaries are q/t apart, at most a single rounding boundary can be between
e · y and e · y′, where “between” means lying in the shorter of the two intervals
(of length |e · (y − y′)|) resulting by cutting the circle Zq at the points e · y and
e · y′. �b · y�t = �b · y′�t if and only if no rounding boundary is between them.

Since the cyclic shift z is uniform each rounding boundary is uniform. Since
there are t rounding boundaries and no two of them can between e ·y and e ·y′,
we have that, conditioned on e, the probability �b · y�t 
= �b · y′�t is therefore
t
q |e · (y − y′)|. Averaging over all e, we have that, up to negligible error:

M t
1(|y〉〈y′|) =

(

1 − t

q
E
e
[|e · (y − y′)|]

)

|y〉〈y′|

Notice then that M t
1(|y〉〈y′|) = 1

dM t×d
1 (|y〉〈y′|) + (

1 − 1
d

) |y〉〈y′|. By linear-
ity, we therefore prove Lemma 1. ��

Note that the proof of Lemma 1 also demonstrates that M0 and M t
1 commute,

since their action on density matrices is just component-wise multiplication by
a fixed matrix.



628 J. Liu et al.

M t
2: Given A, to apply this measurement, first sample an LWE sample b =

C · r′ + e. Then apply the measurement y �→ �b · y�t. Let pt be the probability
that �x�t = �y�t for uniformly random x, y ∈ Zq. Note that for any constant t,
pt ≤ t−1 + O(q−1).

Lemma 2. For any constant t, M t
2(ρ) is statistically close to M0(M t

1(ρ))+pt(ρ−
M0(ρ)).

Note that unlike Lemma 1, the expression in Lemma 2 does not correspond to a
mixture of measurements applied to ρ. However, we will later see how to combine
Lemma 2 with Lemma 1 to obtain such a mixture.

Proof. The proof proceeds similarly to Lemma 1. We consider the action of M t
2

on |y〉〈y′|, and conclude that

M t
2(|y〉〈y′|) = Pr

b
[�b · y�t = �b · y′�t]

where the probability is over b = C · r′ + e. But now we have that

b · y = r′T · CT y + e · y
b · y′ = r′T · CT y + e · y′

We consider two cases:

– CT · y = CT · y′. This case is essentially identical to the proof of Lemma 1,
and we conclude that Prb[�b · y�t = �b · y′�t] = 1 − t

q Ee[|e · (y − y′)|]. Note
that for such y,y′, we also have

M0(M
t
1(|y〉〈y′|))+pt(|y〉〈y′|−M0(|y〉〈y′|)) = M

t
1(M0(|y〉〈y′|))+pt ×0 = 1− t

q
E
e
[|e·(y−y

′
)|] ,

since M0 is the identity on such |y〉〈y′|. Thus, we have the desired equality
for ρ = |y〉〈y′|.

– CT · y 
= CT · y′. In this case, b · y and b · y′ are independent and uniform
over Zp. Therefore, Prb[�b ·y�t = �b ·y′�t] = pt. Note that for such y,y′, we
also have

M0(M t
1(|y〉〈y′|)) + pt(|y〉〈y′| − M0(|y〉〈y′|)) = 0 + pt|y〉〈y′|,

since M0(|y〉〈y′|) = 0 in this case.

Thus for each |y〉〈y′|, we have the desired equality. By linearity, this thus extends
to all ρ. ��
Combining Lemmas 1 and 2, we obtain:

Corollary 1. For any constants t, d, M t
2(ρ) is statistically close to

1
dM0(M t×d

1 (ρ)) +
(
1 − 1

d − pt

)
M0(ρ) + ptρ.
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For d such that 1 − 1
d − pt ≥ 0, this represents a mixture of measurements

M0 ◦ M t×d
1 ,M0, and the identity.

We are now ready to prove Theorem 1. Suppose there is an algorithm A
that constructs a mixed state ρ, and then can distinguish ρ from M0(ρ) with
(signed) advantage ε. Let d be a positive integer, to be chosen later. Let ρ0 = ρ,
and ρi = M t×d

1 (ρi−1). Note that for any polynomial i, ρi can be efficiently
constructed. Let ε0 = ε, and εi be the (signed) distinguishing advantage of A
when given ρi vs M0(ρi).

Let δi be the (signed) distinguishing advantage of A for M t
2(ρi) and M t

1(ρi).
Write g = 1 − 1

d − pt. Invoking Lemma 1 and Corollary 1 with d, we have that

δi =
1
d
εi+1 + gεi

Now, we note that δi must be negligible, by the assumed hardness of
(n,m, q,Σ, 
,D)-LWE. Solving the recursion gives:

εi(−dg)−i = ε − 1
d

i−1∑

j=0

(−dg)−jδj+1

Next, assume d is chosen so that dg is a constant greater than 1. Define T =∑λ−1
j=0 (dg)−j = dg

dg−1 − 2−O(λ). Consider the adversary A′ for (n,m, q,Σ, 
,D)-
LWE, which does the following:

– On input A,S,b, where b = A ·r+e or b = C ·r′+e, it chooses j ∈ [0, λ−1]
with probability (dg)−j/T

– Then it constructs ρ according to A.
– Next, A′ computes ρj by applying M t×d

1 to ρ for j times.
– Now A′ applies the measurement y �→ �b · y�t to ρj , obtaining ρ′

j .
– A′ runs the distinguisher for A, obtaining a bit b
– A′ outputs b if j is even, 1 − b if j is odd.

Note that if b is A·r+e, then ρ′ = M t
1(ρi), and if b is C·r′+e, then ρ′ = M t

2(ρi).
Therefore, the distinguishing advantage of A′ is:

δ =
1
T

λ−1∑

j=0

(−dg)−jδj+1

Thus, we have that

ελ(−dg)−λ = ε − T

d
δ ,

Noting that ελ must trivially be in [−1/2, 1/2], we have that:

|δ| ≥ d

T

(

|ε| − 1
2
(dg)−λ

)

≥ d

(

1 − 1
dg

)

|ε| − 2−O(λ)

Thus, if A has non-negligible distinguishing advantage, so does A′, breaking the
(n,m, q,Σ, 
,D)-LWE assumption. This completes the proof of Theorem 1. ��
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5.4 Constructing |ψ′
u〉

Here, we explain how to construct |ψ′
u〉, given just the vector y that resulted

from measuring it. We first observe that, since |ψ′
u〉 has support only on vectors

that differ from y by multiples of the columns of S, we can write:

|ψ′
u〉 ∝

∑

t

αy+S·t|y + S · t〉

Where αy is the amplitude of y in |ψ〉. This gives a hint as to how to construct
|ψ′

u〉: create a superposition over short linear combinations of S, and then use
linear algebra to transition to a superposition over y+S · t, weighted according
to α. The problem of course is that α may be arbitrary except for having support
only on short vectors. Therefore, we do not expect to be able to construct |ψ′

u〉
in full generality, and instead focus on special (but natural) cases, which suffice
for our use.

Wide Gaussian Distributed. Suppose the initial state |ψ〉 is the discrete Gaussian
over the integers: |ψ〉 = |ΨZm,Σ,c〉 for some center c and covariance matrix Σ.
Then |ψ′

u〉 is simply
|ΨL+y,Σ,c〉

Here, L is the integer lattice generated by the columns of S, and L + y is the
lattice L shifted by y. We can construct the state |ΨL+y,Σ,c〉 by first constructing
|ΨL,Σ,c−y〉, and then adding y to the superposition. Thus, as long as sT

i · Σ−1 ·
si ≤ 1/ω(

√
log λ) for all i, we can construct the necessary state.

Constant Dimension, Hyper-ellipsoid Bounded. Here, we restrict L to having a
constant number of columns, but greatly generalize the distributions that can
be handled.

A hyper-ellipsoid is specified by a positive definite matrix Σ, which defines
the set EΣ,c = {y : (y − c)T · M · (y − c) ≤ 1}.

Definition 5 (Good Hyper-ellipsoid). A good hyper-ellipsoid for |ψ〉 is an
EΣ,c such that there exists a function η(λ) and polynomials p(λ), q(λ) such that,
if |ψ〉 is measured to get a vector y, then each of the following are true except
with negligible probability:

– y ∈ EΣ,c. In other words, EΣ,c contains essentially all the mass of |ψ〉.
– |αx|2 ≤ η(λ). In other words, η is an approximate upper bound on αx.
– If a random vector x is chosen from EΣ,c∩{y+S ·t : t ∈ Z�}, then with prob-

ability at least 1/p(λ), |αx|2 ≥ η/q(λ). In other words, EΣ,c doesn’t contain
too many points with mass too much lower than η.

Taken together, a good hyper-ellipsoid is one that fits reasonably well around the
|ψ〉. It must contain essentially all the support of |ψ〉, but can over-approximate
it by a polynomial factor.
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Lemma 3. Suppose there is a good hyper-ellipsoid for |ψ〉, and that αy can be
efficiently computed given any vector y. Then there is a polynomial-time algo-
rithm which constructs |ψ′

u〉 from y

Proof. Let EΣ,c be the good hyper-ellipsoid. Let L be the lattice generated by
the columns of S. By assumption, with overwhelming probability if we measure
|ψ〉 to get y, we have y ∈ EΣ,c. Let EΣ′,c′ be the ellipsoid that is the intersection
of EΣ,c and the affine space {y + S · t : t ∈ R�}.

Claim. There is PPT algorithm which, given S, Σ′, computes T = {r1, · · · , r�′}
such that:

– rT
i · (Σ′)−1 · ri ≤ 2 for all i ∈ [
′], and

– EΣ′,c′ ∩ {y + T · t : t ∈ Z�′} = EΣ′,c′ ∩ {y + S · t : t ∈ Z�}.

Proof. Write (Σ′)−1 as (Σ′)−1 = UT ·U. Let S′ = {s′
1 = U ·s1, . . . , s′

� = U ·sn},
and let L′ be the lattice generated by S′. Since 
 is constant, we can find shortest
vectors in L′ in polynomial time. Therefore, compute r′

1, . . . , r
′
� such that r′

i is
the shortest vector in L′ that is linearly independent from {r′

1, . . . , r
′
i−1}. Then

let 
′ be such that |r′
�′ |2 ≤ 2, but |r′

�′+1|2 > 2, or 
′ = 
 if no such 
′ exists.
Finally, let ri = U−1 ·r′

i. Clearly, we have that rT
i · (Σ′)−1 ·ri ≤ 2. It remains

to show that EΣ′,c′ ∩{y+T ·t : t ∈ Z�′} = EΣ′,c′ ∩{y+S ·t : t ∈ Z�}. First, we
notice that the lattice L(T) spanned by T is a sub-lattice of L(S) spanned by
S. So one containment is trivial. Now assume toward contradiction that there is
a x ∈ EΣ′,c′ ∩ {y + S · t : t ∈ Z�} that is not in EΣ′,c′ ∩ {y + T · t : t ∈ Z�′}.
This means x − y is in L(S). We also have that (y − c′)T · (Σ′)−1 · (y − c′) ≤ 1
(since and (x − c′)T · (Σ′)−1 · (x − c′) ≤ 1. By the triangle inequality, we have
therefore that (x − y)T · (Σ′)−1 · (x − y) ≤ 2.

But then we have that U · (x − y) has norm at most 2, lies in L′, and
is linearly independent of {r′

1, . . . , r
′
�′}. This contradicts that r′

�′+1 (which has
norm squared strictly greater than 2) is a shortest vector linearly independent
of {r′

1, . . . , r
′
�′}. This completes the proof of the claim. ��

We now return to proving Lemma 3. Let β = ω(log λ). We construct |ψ′
u〉 in

three steps:

– We first construct a state negligibly close to |ΨL+y,βΣ′,c′〉, as we did in the
Gaussian-distributed case above.

– We then construct the state |E〉, defined as the uniform superposition over
the intersection of L+ y and EΣ′,c′ . |E〉 will be obtained from |ΨL+y,βΣ′,c′〉
via a measurement.

– Construct |ψ′
u〉 from |E〉. This also will be obtained via a measurement.

We now describe the two measurements. We start from the second. Let η, p, q
be the values guaranteed by the goodness of EΣ,c. Define ηx = 1/η if |αx|2 ≤ η,
and otherwise ηx = 1/|αx|2. To obtain |ψ′

u〉 from |E〉, we apply the following
map in superposition and measure the second register:

|x〉 �→ |x〉
(√

ηxαx|0〉 +
√

1 − |ηxαx|2|1〉
)
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Suppose for the moment that ηx = 1/η for all x. Then conditioned on the
measurement outcome being 0, the resulting state is exactly |ψ′

u〉. By the guar-
antee that EΣ,c is good, we have that except with negligible probability over the
choice of y, all but a negligible fraction of the support of |ψ′

u〉 satisfies ηx = 1/η.
Therefore, we will assume (with negligible error) this is the case. The probability
the measurement is 0 (over the choice of y as well) is Ex←EΣ′,c′ [α2

x/η], which,
with probability at least 1/p over the choice of y, is at least 1/q. Thus, the overall
probability of outputting 0 is inverse polynomial, and in this case we produce a
state negligibly close to |ψ′

u〉.
It remains to construct |E〉 from |ΨL+y,βΣ′,c′〉. This follows a very similar

rejection-sampling argument. Let

γx =

{
e−π/β ×

√
eπ(x−c′)T ·(βΣ′)−1·(x−c′) if (x − c′)T · (Σ′)−1 · (x − c′) ≤ 1

0 otherwise

Note that 0 ≤ γx ≤ 1. Now apply to |ΨL+y,βΣ′,c′〉 the map |x〉 �→ |x〉(γx|0〉+√
1 − γ2

x|1〉), and measure the second coordinate. If the measurement outcome is
0, then the resulting state is exactly |E〉. For x ∈ EΣ′,c′ , we have γx ≥ e−π/β ≥
1−o(1). Therefore, the probability the measurement outputs 0 is at least 1−o(1)
times the probability measuring ΨL+y,βΣ′,c′ produces an x ∈ EΣ′,c′ . This latter
probability is O�(β−�/2), where the constant hidden by the big O depends on

. Since 
 is constant and β is polynomial (in fact, sub-polynomial), the overall
probability is polynomial. This completes the construction of |ψ′

u〉 and the proof
of Lemma 3. ��

Applying to [KLS22]: To avoid confusion, we first refer the readers to our alter-
nate view on [KLS22] scheme in section C.3 and then we will see how to apply
our attack onto their scheme in section C.5 of the full version.

6 Invariant Money

From this section on, we discuss our positive results on quantum
money/lightning.

We now describe our framework for instantiating quantum money using
invariants, or more precisely what we call walkable invariants.

Let X,Y be sets, and I : X → Y an efficiently computable function from X
to Y . I will be called the “invariant.” We will additionally assume a collection
of permutations σi : X → X indexed by i ∈ [r] for some integer r, with the
property that the permutations respect the invariant:

I( σi(x) ) = I(x),∀i ∈ [r]

In other words, action by each σi preserves the value of the invariant. We require
that σi is efficiently computable given i. r may be polynomial or may be exponen-
tial. To make the formalism below simpler, we will be implicitly assuming that
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there exists a perfect matching between the σi such that for any matched σi, σi′ ,
we have σi′ = σ−1

i . Moreover, i′ can be found given i. This can be relaxed some-
what to just requiring that σ−1

i can be efficiently computed given i, but requires
a slightly more complicated set of definitions.

Given a point x, the orbit of x, denoted Ox ⊆ X, is the set of all z such
that there exists a non-negative integer k and i1, . . . , ik ∈ [r] such that z =
σik

(σik−1(· · · σi1(x)·)). In other words, Ox is the set of all z “reachable” from x
by applying some sequence of permutations. Note that I(z) = y for any z ∈ Ox.
We will therefore somewhat abuse notation, and define I(Ox) = y. We also let
Py be the set of pre-images of y: Py = {x ∈ X : I(x) = y}.

We will additionally require a couple properties, which will be necessary for
the quantum money scheme to compile:

– Efficient Generation of Superpositions: It is possible to construct the
uniform superposition over X: |X〉 := 1√

|X|
∑

x∈X |x〉.
– Mixing Walks: For an orbit O, with a slight abuse of notation let σO,i be the

(possibly exponentially large) permutation matrix associated with the action
by σi on O. Then let MO = 1

r

∑
i∈[r] σO,i be the component-wise average

of the matrices. Let λ1(O), λ2(O) be the largest two eigenvalues by absolute
value15, counting multiplicities. Note that λ1(O) = 1, with corresponding
eigenvector the all-1’s vector. We need that there is an inverse polynomial
δ such that, for every orbit O, λ2(O) ≤ 1 − δ. This is basically just a way
of saying that a random walk on the orbit using the σi mixes in polynomial
time.

We call such a structure above a walkable invariant.

6.1 Quantum Money from Walkable Invariants

We now describe the basic quantum money scheme.

Minting. To mint a note, first construct the uniform superposition |X〉 over X.
Then apply the invariant I in superposition and measure, obtaining a string y,
and the state collapsing to:

|Py〉 := 1
√|Py|

∑

x∈Py

|x〉

This is the quantum money state, with serial number y.

Verification. To verify a supposed quantum money state |φ〉 with serial number
y, we do the following.

– First check that the support of |φ〉 is contained in Py. This is done by simply
applying the invariant I in superposition, and measuring if the output is y.
If the check fails immediately reject.

15 They are real-valued, since MO is symmetric, owing to the fact that we assumed the
σi are perfectly matched into pairs that are inverses of each other.
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– Then apply the projective measurement given by the projection∑
O⊆Py

|O〉〈O|, where O ranges over the orbits contained in Py, and |O〉 :=
1√
|O|

∑
x∈O |x〉. In other words, project onto states where, for each orbit, the

weights of x in that orbit are all identical; weights between different orbits
are allowed to be different.
We cannot perform this measurement exactly, but we can perform it approxi-
mately using the fact that λ2(O) ≤ 1− δ. This is described in Sect. 6.2 below.
Outside of Sect. 6.2, we will assume for simplicity that the measurement is
provided exactly.
If the projection rejects, reject the quantum money state. Otherwise accept.

It is hopefully clear that honestly-generated money states pass verification.
Certainly their support will be contained in Py, and they apply equal weight to
each element in an orbit (and in fact, equal weight across orbits).

6.2 Approximate Verification

Here, we explain how to approximately perform the verification projection V =∑
O⊆Py

|O〉〈O|, using the fact that λ2(0) ≤ 1 − δ for all O. The algorithm we
provide is an abstraction of the verification procedure of [FGH+12], except that
work presented the algorithm without any analysis. We prove that the algorithm
is statistically close to the projection V , provided the mixing condition λ2(0) ≤
1 − δ is met.

Theorem 2. Assume λ2(0) ≤ 1 − δ for all O, for some inverse-polynomial δ.
Then there is a QPT algorithm Ṽ such that, for any state |ψ〉, if we let |ψ′〉 be
the un-normalized post-measurement state from applying Ṽ to |ψ〉 in the case Ṽ
accepts, then |ψ′〉 is negligibly close to V |ψ〉.

We refer the readers to section E.1 of the full version for the proof due to
restriction on the space.

6.3 Hardness Assumptions

We rely on two hardness assumptions in our inviant money scheme: the path-
finding assumpion and the knowledge of path assumption. Due to space con-
straints, we refer the readers to E.2 for the presentation on our hardness assump-
tions needed.

Informally speaking, the path-finding assumption states that, given some
adversarially sampled x in a set X, it is hard for any efficient adversary, given a
random x′ ∈ X such that there exists some σ such that σ (x) = x′, to find such
a σ.

The knowledge of path assumption can be thought of as a quantum analogue
to the (classical) knowledge of exponent assumption. We define two different
versions of the knowledge of path assumption to account for the fact that some
of our invariants could be invertible.
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6.4 Security

Theorem 3. Assuming the Path-Finding assumption and the Knowledge of
Path Assumption, the scheme above is secure quantum lightning. If the invariant
is invertible, then assuming the Path-Finding assumption, the Knowledge of Path
Assumption for Invertible Invariants, and the Inversion Inverting assumption,
the scheme above is secure quantum lightning.

We refer the readers to E.3 of the full version for the formal statements of
the above assumptions and the proof on the above theorem.
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Abstract. Recently, Aaronson et al. (arXiv:2009.07450) showed that
detecting interference between two orthogonal states is as hard as swap-
ping these states. While their original motivation was from quantum
gravity, we show its applications in quantum cryptography.
1. We construct the first public key encryption scheme from crypto-

graphic non-abelian group actions. Interestingly, the ciphertexts of
our scheme are quantum even if messages are classical. This resolves
an open question posed by Ji et al. (TCC ’19). We construct the
scheme through a new abstraction called swap-trapdoor function
pairs, which may be of independent interest.

2. We give a simple and efficient compiler that converts the flavor of
quantum bit commitments. More precisely, for any prefix X,Y ∈
{computationally, statistically, perfectly}, if the base scheme is X-
hiding and Y-binding, then the resulting scheme is Y-hiding and X-
binding. Our compiler calls the base scheme only once. Previously,
all known compilers call the base schemes polynomially many times
(Crépeau et al., Eurocrypt ’01 and Yan, Asiacrypt ’22). For the
security proof of the conversion, we generalize the result of Aaronson
et al. by considering quantum auxiliary inputs.

1 Introduction

When can we efficiently distinguish a superposition of two orthogonal states
from their probabilistic mix? A folklore answer to this question was that we can
efficiently distinguish them whenever we can efficiently map one of the states to
the other. Recently, Aaronson, Atia and, Susskind [1] gave a complete answer
to the question. They confirmed that the folklore was almost correct but what
actually characterizes the distinguishability is the ability to swap the two states
rather than the ability to map one of the states to the other.1

We explain their result in more detail by using the example of Schrödinger’s
cat following [1]. Let |Alive〉 and |Dead〉 be orthogonal states, which can be
understood as the states of alive and dead cats in Schrödinger’s cat experiment.
1 We remark that the meaning of “swap” here is different from that of the SWAP gate

as explained below.
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Then, the authors showed that one can efficiently swap |Alive〉 and |Dead〉 (i.e.,
there is an efficiently computable unitary U such that U |Dead〉 = |Alive〉 and
U |Alive〉 = |Dead〉) if and only if there is an efficient distinguisher that distin-
guishes |Alive〉+|Dead〉√

2
and |Alive〉−|Dead〉√

2
with certainty. Note that distinguishing

|Alive〉+|Dead〉√
2

and |Alive〉−|Dead〉√
2

is equivalent to distinguishing |Alive〉+|Dead〉√
2

and
the uniform probabilistic mix of |Alive〉 and |Dead〉.2 Moreover, they showed
that the equivalence is robust in the sense that a partial ability to swap |Alive〉
and |Dead〉, i.e., | 〈Dead| U |Alive〉 + 〈Alive| U |Dead〉 | = Γ for some Γ > 0 is
equivalent to distinguishability of |Alive〉+|Dead〉√

2
and |Alive〉−|Dead〉√

2
with advantage

Δ = Γ/2. They gave an interpretation of their result that observing interference
between alive and dead cats is “necromancy-hard”, i.e., at least as hard as bring-
ing a dead cat back to life.

While their original motivation was from quantum gravity, we find their
result interesting from cryptographic perspective. Roughly speaking, the task
of swapping |Alive〉 and |Dead〉 can be thought of as a kind of search prob-
lem where one is given |Alive〉 (resp. |Dead〉) and asked to “search” for |Dead〉
(resp. |Alive〉). On the other hand, the task of distinguishing |Alive〉+|Dead〉√

2
and

|Alive〉−|Dead〉√
2

is apparently a decision problem. From this perspective, we can
view their result as a “search-to-decision” reduction. Search-to-decision reduc-
tions have been playing the central role in cryptography, e.g., the celebrated
Goldreich-Levin theorem [20]. Based on this observation, we tackle the following
two problems in quantum cryptography.3

Public Key Encryption from Non-abelian Group Actions. Brassard and
Yung [8] initiated the study of cryptographic group actions. We say that a group
G acts on a set S by an action � : G × S → S if the following are satisfied:

1. For the identity element e ∈ G and any s ∈ S, we have e � s = s.
2. For any g, h ∈ G and any s ∈ S, we have (gh) � s = g � (h � s).

For a cryptographic purpose, we assume (at least) that the group action is one-
way, i.e., it is hard to find g′ such that g′ � s = g � s given s and g � s. The work
of [8] proposed instantiations of such cryptographic group actions based on the
hardness of discrete logarithm, factoring, or graph isomorphism problems.

Cryptographic group actions are recently gaining a renewed attention from
the perspective of post-quantum cryptography. Ji et al. [25] proposed new instan-
tiations based on general linear group actions on tensors. Alamati et al. [2]

2 The distinguishing advantage is (necessarily) halved. This can be seen by the fol-
lowing equality:

1

2
(|Alive〉 〈Alive| + |Dead〉 〈Dead|)

=
1

2

(( |Alive〉 + |Dead〉
√

2

) ( 〈Alive| + 〈Dead|
√

2

)
+

( |Alive〉 − |Dead〉
√

2

) ( 〈Alive| − 〈Dead|
√

2

))
.

.
3 It may be a priori unclear why these problems are related to [1]. This will become

clearer in the technical overview in Sect. 2.
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proposed isogeny-based instantiations based on earlier works [10,13,32]. Both of
them are believed to be secure against quantum adversaries.

An important difference between the instantiations in [25] and [2] is that the
former considers non-abelian groups whereas the latter considers abelian groups.
Abelian group actions are particularly useful because they give rise to a non-
interactive key exchange protocol similar to Diffie-Hellman key exchange [15].
Namely, suppose that s ∈ S is published as a public parameter, Alice publishes
gA �s as a public key while keeping gA as her secret key, and Bob publishes gB �s
as a public key while keeping gB as his secret key. Then, they can establish a
shared key gA � (gB � s) = gB � (gA � s). On the other hand, an eavesdropper
Eve cannot know the shared key since she cannot know gA or gB by the one-
wayness of the group action.4 This also naturally gives a public key encryption
(PKE) scheme similar to ElGamal encryption [17]. On the other hand, the above
construction does not work if G is a non-abelian group. Indeed, cryptographic
applications given in [25] are limited to Minicrypt primitives [24], i.e., those that
do not imply PKE in a black-box manner. Thus, [25] raised the following open
question:5

Question 1: Can we construct PKE from non-abelian group actions?

Flavor Conversion for Quantum Bit Commitments. Commitments are
one of the most important primitives in cryptography. It enables one to “com-
mit” to a (classical) bit6 in such a way that the committed bit is hidden from
other parties before the committer reveals it, which is called the hiding prop-
erty, and the committer cannot change the committed bit after sending the
commitment, which is called the binding property. One can easily see that it is
impossible for classical commitments to achieve both hiding and binding prop-
erties against unbounded-time adversaries. It is known to be impossible even
with quantum communication [26,28]. Thus, it is a common practice in cryp-
tography to relax either of them to hold only against computationally bounded
adversaries. We say that a commitment scheme is computationally (resp. statis-
tically) binding/hiding, if it holds against (classical or quantum depending on
the context) polynomial-time (resp. unbounded-time) adversaries. Then, there
are the following two flavors of commitments: One is computationally hiding

4 For the actual security proof, we need a stronger assumption than the one-wayness.
This is similar to the necessity of decisional Diffie-Hellman assumption, which is
stronger than the mere hardness of the discrete logarithm problem, for proving secu-
rity of Diffie-Hellman key exchange.

5 The statement of the open problem in [25] is quoted as follows: “Finally, it is an
important open problem to build quantum-secure public-key encryption schemes based
on hard problems about GLAT or its close variations.” Here, GLAT stands for Gen-
eral Linear Action on Tensors, which is their instantiation of non-abelian group
action. Thus, Question 1 is slightly more general than what they actually ask. .

6 We can also consider commitments for multi-bit strings. But we focus on bit com-
mitments in this paper.
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and statistically binding, and the other is computationally binding and statisti-
cally hiding.7 In the following, whenever we require statistical hiding or binding,
the other one should be understood as computational since it is impossible to
statistically achieve both of them as already explained.

In classical cryptography, though commitments of both flavors are known
to be equivalent to the existence of one-way functions [22,23,30], there is no
known direct conversion between them that preserves efficiency or the number
of interactions. Thus, their constructions have been studied separately.

Recently, Yan [35], based on an earlier work by Crépeau, Légaré, and Sal-
vail [14], showed that the situation is completely different for quantum bit
commitments, which rely on quantum communication between the sender and
receiver. First, he showed a round-collapsing theorem, which means that any
interactive quantum bit commitments can be converted into non-interactive ones.
Then he gave a conversion that converts the flavor of any non-interactive quan-
tum bit commitments using the round-collapsing theorem.

Though Yan’s conversion gives a beautiful equivalence theorem, a disadvan-
tage of the conversion is that it does not preserve the efficiency. Specifically, it
calls the base scheme polynomially many times (i.e., Ω(λ2) times for the security
parameter λ). Then, it is natural to ask the following question:

Question 2: Is there an efficiency-preserving flavor conversion for quan-
tum bit commitments?

1.1 Our Results

We answer both questions affirmatively using (a generalization of) the result
of [1].

For Question 1, we construct a PKE scheme with quantum ciphertexts
based on non-abelian group actions. This resolves the open problem posed
by [25].8 Our main construction only supports classical one-bit messages, but we
can convert it into one that supports quantum multi-qubit messages by hybrid
encryption with quantum one-time pad as showin in [9]. Interestingly, cipher-
texts of our scheme are quantum even if messages are classical. We show that
our scheme is IND-CPA secure if the group action satisfies pseudorandomness,
which is a stronger assumption than the one-wayness introduced in [25]. In addi-
tion, we show a “win-win” result similar in spirit to [37]. We show that if the
group action is one-way, then our PKE scheme is IND-CPA secure or we can use
the group action to construct one-shot signatures [3].9 Note that constructing
7 Of course, we can also consider computationally hiding and computationally binding

one, which is weaker than both flavors.
8 The statement of their open problem (quoted in Footnote 5) does not specify if we

are allowed to use quantum ciphertexts. Thus, we claim to resolve the problem even
though we rely on quantum ciphertexts. If they mean post-quantum PKE (which has
classical ciphertexts), this is still open.

9 This is a simplified claim and some subtle issues about uniformness of the adver-
sary and “infinitely-often security” are omitted here. See Lemma 2 for the formal
statement.
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one-shot signatures has been thought to be a very difficult task. The only known
construction is relative to a classical oracle and there is no known construction
in the standard model. Even for its significantly weaker variant called tokenized
signatures [5], the only known construction in the standard model is based on
indistinguishability obfuscation [12]. Given the difficulty of constructing tok-
enized signatures, let alone one-shot signatures, it is reasonable to conjecture
that our PKE scheme is IND-CPA secure if we built it on “natural” one-way
group actions. Our PKE scheme is constructed through an abstraction called
swap-trapdoor function pairs (STFs), which may be of independent interest.

For Question 2, We give a new conversion between the two flavors of quan-
tum commitments. That is, for X,Y ∈ {computationally,statistically,perfectly},
if the base scheme is X-hiding and Y-binding, then the resulting scheme is Y-
hiding and X-binding. Our conversion calls the base scheme only once in superpo-
sition. Specifically, if Qb is the unitary applied by the sender when committing
to b ∈ {0, 1} in the base scheme, the committing procedure of the resulting
scheme consists of a single call to Q0 or Q1 controlled by an additional qubit
(i.e., application of a unitary such that |b〉 |ψ〉 �→ |b〉 (Qb |ψ〉)) and additional
constant number of gates. For the security proof of our conversion, we develop
a generalization of the result of [1] where we consider auxiliary quantum inputs.

We show several applications of our conversion. We remark that our conver-
sion does not give any new feasibility results since similar conversions with worse
efficiency were already known [14,35]. However, our conversion gives schemes
with better efficiency in terms of the number of calls to the building blocks.

2 Technical Overview

We give a technical overview of our results. In the overview, we assume that the
reader has read the informal explanation of the result of [1] at the beginning of
Sect. 1.

2.1 Part I: PKE from Group Actions

Suppose that a (not necessarily abelian) group G acts on a finite set S by a
group action � : G × S → S. Suppose that it is one-way, i.e., it is hard to find g′

such that g′ � s = g � s given s and g � s.10
Our starting point is the observation made in [8] that one-way group actions

give claw-free function pairs as follows. Let s0 and s1 := g � s0 be public param-
eters where s0 ∈ S and g ∈ G are uniformly chosen. Then if we define a function
fb : G → S by fb(h) := h � sb for b ∈ {0, 1}, the pair (f0, f1) is claw-free, i.e., it
is hard to find h0 and h1 such that f0(h0) = f1(h1). This is because if one can
find such h0 and h1, then one can break the one-wayness of the group action by
outputting h−1

1 h0, since f0(h0) = f1(h1) implies (h−1
1 h0) � s0 = s1.

10 We will eventually need pseudorandomness, which is stronger than one-wayness, for
the security proof of our PKE scheme. We defer the introduction of pseudorandom-
ness for readability.
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Unfortunately, claw-free function pairs are not known to imply PKE. The
reason of the difficulty of constructing PKE is that claw-free function pairs do
not have trapdoors. Indeed, it is unclear if there is a trapdoor that enables
us to invert f0 and f1 for the above group-action-based construction. Our first
observation is that the above construction actually has a weak form of a trapdoor:
If we know g as a trapdoor, then we can find h1 such that f0(h0) = f1(h1) from
h0 by simply setting h1 := h0g

−1 and vice versa. Though this trapdoor g does
not give the power to invert f0 or f1, this enables us to break claw-freeness in a
strong sense. We formalize such function pairs as swap-trapdoor function pairs
(STFs).11 For the details of STFs, see Sect. 4.1.

Next, we explain our construction of a PKE scheme with quantum cipher-
texts. Though it is a generic construction based on STFs with certain proper-
ties, we here focus on the group-action-based instantiation for simplicity. (For
the generic construction based on STFs, see Sect. 4.2.) A public key of our PKE
scheme consists of s0 and s1 = g � s0 and a secret key is g. For encrypting a bit
b, the ciphertext is set to be

ct b :=
1√
2

(|0〉 |f−1
0 (y)〉 + (−1)b |1〉 |f−1

1 (y)〉) (1)

for a random y ∈ S.12 Here, |f−1
b′ (y)〉 is the uniform superposition over f−1

b′ (y) :=
{h ∈ G : fb′(h) = y} for b′ ∈ {0, 1}. The above state can be generated by a
standard technique similar to [7,27]. Specifically, we first prepare

1√
2
(|0〉 + (−1)b |1〉) ⊗ 1

√|G|
∑

h∈G

|h〉 ,

compute a group action by h in the second register on s0 or s1 controlled by the
first register to get

1
√

2|G|
( ∑

h∈G

|0〉 |h〉 |h � s0〉 + (−1)b
∑

h∈G

|1〉 |h〉 |h � s1〉
)
,

and measure the third register to get y ∈ S. At this point, the first and second
registers collapse to the state in Eq. (1).13 Decryption can be done as follows.
Given a ciphertext ct b, we apply a unitary |h〉 → |hg〉 on the second register con-
trolled on the first register. Observe that the unitary maps |f−1

1 (y)〉 to |f−1
0 (y)〉.

Then, the resulting state is 1√
2

(|0〉 |f−1
0 (y)〉 + (−1)b |1〉 |f−1

0 (y)〉). Thus, measur-
ing the first register in the Hadamard basis results in message b.

Next, we discuss how to prove security. Our goal is to prove that the scheme
is IND-CPA secure, i.e., ct0 and ct1 are computationally indistinguishable. Here,
we rely on the result of [1]. According to their result, one can distinguish ct0
and ct1 if and only if one can swap |0〉 |f−1

0 (y)〉 and |1〉 |f−1
1 (y)〉. Thus, it suffices

11 The intuition of the name is that one can “swap” h0 and h1 given a trapdoor.
12 Precisely, y is distributed as h � s0 for uniformly random h ∈ G.
13 Note that |f−1

0 (y)| = |f−1
1 (y)| for all y ∈ S.
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to prove the hardness of swapping |0〉 |f−1
0 (y)〉 and |1〉 |f−1

1 (y)〉 with a non-
negligible advantage.14 Unfortunately, we do not know how to prove this solely
assuming the claw-freeness of (f0, f1). Thus, we introduce a new assumption
called conversion hardness, which requires that one cannot find h1 such that
f1(h1) = y given |f−1

0 (y)〉 with a non-negligible probability. Assuming it, the
required hardness of swapping follows straightforwardly since if one can swap
|0〉 |f−1

0 (y)〉 and |1〉 |f−1
1 (y)〉, then one can break the conversion hardness by first

mapping |0〉 |f−1
0 (y)〉 to |1〉 |f−1

1 (y)〉 and then measuring the second register.
The remaining issue is how to prove conversion hardness based on a reason-

able assumption on the group action. We show that pseudorandomness intro-
duced in [25] suffices for this purpose. Pseudorandomness requires the following
two properties:

1. The probability that there exists g ∈ G such that g � s0 = s1 is negligible
where s0, s1 ∈ S are uniformly random.

2. The distribution of (s0, s1 := g � s0) where s0 ∈ S and g ∈ G are uniformly
random is computationally indistinguishable from the uniform distribution
over S2.

Note that we require Item 1 because otherwise Item 2 may unconditionally hold,
in which case there is no useful cryptographic application. We argue that pseudo-
randomness implies conversion hardness as follows. By Item 2, the attack against
the conversion hardness should still succeed with almost the same probability
even if we replace s1 with a uniformly random element of S. However, then there
should exist no solution by Item 1. Thus, the original success probability should
be negligible.

While [25] gave justification of pseudorandomness of their instantiation of
group actions, it is a stronger assumption than one-wayness. Thus, it is more
desirable to get PKE scheme solely from one-wayness. Toward this direction,
we show the following “win-win” result inspired by [37]. If (f0, f1) is claw-free
but not conversion hard, then we can construct a one-shot signatures. Roughly
one-shot signatures are a quantum primitive which enables us to generate a
classical verification key vk along with a quantum signing key sk in such a way
that one can use sk to generate a signature for whichever message of one’s
choice, but cannot generate signatures for different messages simultaneously. For
simplicity, suppose that (f0, f1) is claw-free but its conversion hardness is totally
broken. That is, we assume that we can efficiently find h1 such that f1(h1) = y
given |f−1

0 (y)〉. Our idea is to set |f−1
0 (y)〉 to be the secret key and y to be

the corresponding verification key. For signing to 0, the signer simply measures
|f−1

0 (y)〉 to get h0 ∈ f−1
0 (y) and set h0 to be the signature for the message 0.

For signing to 1, the signer runs the adversary against conversion hardness to
get h1 such that f1(h1) = y and set h1 to be the signature for the message 1.
If one can generate signatures to 0 and 1 simultaneously, we can break claw-
freeness since f0(h0) = f1(h1) = y. Thus, the above one-shot signature is secure
if (f0, f1) is claw-free. In the general case where the conversion hardness is not
14 See Theorem 1 for the precise meaning of the advantage for swapping.
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necessarily completely broken, our idea is to amplify the probability of finding
h1 from |f−1

0 (y)〉 by a parallel repetition. Based on this result, we can see that
if the group action is one-way, then our PKE scheme is IND-CPA secure or we
can construct one-shot signatures.

2.2 Part II: Flavor Conversion for Commitments

Definition of Quantum Bit Commitments. First, we recall the definition
of quantum bit commitments as formalized by Yan [35]. He (based on earlier
works [11,18,36]) showed that any (possibly interactive) quantum bit commit-
ment scheme can be written in the following (non-interactive) canonical form. A
canonical quantum bit commitment scheme is characterized by a pair of unitaries
(Q0, Q1) over two registers C (called the commitment register) and R (called
the reveal register) and works as follows.

Commit phase: For committing to a bit b ∈ {0, 1}, the sender generates the
state Qb |0〉C,R and sends C to the receiver while keeping R on its side.15

Reveal phase: For revealing the committed bit, the sender sends R along with
the committed bit b to the receiver. Then, the receiver applies Q†

b to C and
R and measures both registers. If the measurement outcome is 0 . . . 0, the
receiver accepts and otherwise rejects.

We require a canonical quantum bit commitment scheme to satisfy the fol-
lowing hiding and binding properties. The hiding property is defined analogously
to that of classical commitments. That is, the computational (resp. statistical)
hiding property requires that quantum polynomial-time (resp. unbounded-time)
receiver (possibly with quantum advice) cannot distinguish commitments to 0
and 1 if only given C.

On the other hand, the binding property is formalized in a somewhat different
way from the classical case. The reason is that a canonical quantum commitment
scheme cannot satisfy the binding property in the classical sense. The classical
binding property roughly requires that a malicious sender can open a commit-
ment to either of 0 or 1 except for a negligible probability. On the other hand, in
canonical quantum bit commitment schemes, if the sender generates a uniform
superposition of commitments to 0 and 1, it can open the commitment to 0 and
1 with probability 1/2 for each.16 Thus, we require a weaker binding property
called the honest-binding property, which intuitively requires that it is difficult
to map an honestly generated commitment of 0 to that of 1 without touching
C. More formally, the computational (resp. statistical) honest-binding property
requires that for any polynomial-time computable (resp. unbounded-time com-
putable) unitary U over R and an additional register Z and an auxiliary state
|τ〉Z, we have

15 We write |0〉 to mean |0 . . . 0〉 for simplicity.
16 A recent work by Bitansky and Brakerski [6] showed that a quantum commitment

scheme may satisfy the classical binding property if the receiver performs a measure-
ment in the commit phase. However, such a measurement is not allowed for canonical
quantum bit commitments.
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∥
∥
∥(Q1 |0〉 〈0| Q†

1)C,R(IC ⊗ UR,Z)((Q0 |0〉)C,R |τ〉Z)
∥
∥
∥ = negl(λ).

One may think that honest-binding is too weak because it only considers hon-
estly generated commitments. However, somewhat surprisingly, [35] proved that
it is equivalent to another binding notion called the sum-binding [16].17 The
sum-binding property requires that the sum of probabilities that any (quantum
polynomial-time, in the case of computational binding) malicious sender can
open a commitment to 0 and 1 is at most 1 + negl(λ). In addition, it has been
shown that the honest-binding property is sufficient for cryptographic appli-
cations including zero-knowledge proofs/arguments (of knowledge), oblivious
transfers, and multi-party computation [18,29,34,36]. In this paper, we refer
to honest-binding if we simply write binding.
Our Conversion. We propose an efficiency-preserving flavor conversion for
quantum bit commitments inspired by the result of [1]. Our key observation
is that the swapping ability and distinguishability look somewhat similar to
breaking binding and hiding of quantum commitments, respectively. The corre-
spondence between distinguishability and breaking hiding is easier to see: The
hiding property directly requires that distinguishing commitments to 0 and 1 is
hard. The correspondence between the swapping ability and breaking binding
is less clear, but one can find similarities by recalling the definition of (honest-
)binding for quantum commitments: Roughly, the binding property requires that
it is difficult to map the commitment to 0 to that to 1. Technically, a binding
adversary does not necessarily give the ability to swap commitments to 0 and
1 since it may map the commitment to 1 to an arbitrary state instead of to
the commitment to 0. But ignoring this issue (which we revisit later), breaking
binding property somewhat corresponds to swapping.

However, an important difference between security notions of quantum com-
mitments and the setting of the theorem of [1] is that the former put some
restrictions on registers the adversary can touch: For hiding, the adversary can-
not touch the reveal register R, and for binding, the adversary cannot touch
the commitment register C. To deal with this issue, we make another key obser-
vation that the equivalence between swapping and distinguishing shown in [1]
preserves locality. That is, if the swapping unitary does not touch some qubits
of |Alive〉 or |Dead〉, then the corresponding distinguisher does not touch those
qubits either, and vice versa.

The above observations suggest the following conversion. Let {Q0, Q1} be a
canonical quantum bit commitment scheme. Then, we construct another scheme
{Q′

0, Q
′
1} as follows:

– The roles of commitment and reveal registers are swapped from {Q0, Q1} and
the commitment register is augmented by an additional one-qubit register.
That is, if C and R are the commitment and reveal registers of {Q0, Q1}, then

17 The term “sum-binding” is taken from [33].
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the commitment and reveal registers of {Q′
0, Q

′
1} are defined as C′ := (R,D)

and R′ := C where D is a one-qubit register.
– For b ∈ {0, 1}, the unitary Q′

b is defined as follows:

Q′
b |0〉C,R |0〉D :=

1√
2

(
(Q0 |0〉)C,R |0〉D + (−1)b(Q1 |0〉)C,R |1〉D

)
, (2)

where (C′,R′) is rearranged as (C,R,D).18

One can see that {Q′
0, Q

′
1} is almost as efficient as {Q0, Q1}: For generating,

Q′
b |0〉C,R |0〉D one can first prepare |0〉C,R (|0〉+(−1)b |1〉)D and then apply Q0

or Q1 to (C,R) controlled by D. We prove that the hiding and binding properties
of {Q0, Q1} imply binding and hiding properties of {Q′

0, Q
′
1}, respectively. More-

over, the reduction preserves all three types of computational/statistical/perfect
security. Thus, this gives a conversion between different flavors of quantum bit
commitments.
Security Proof. At an intuitive level, the theorem of [1] with the above “locality-
preserving” observation seems to easily give a reduction from security of {Q′

0, Q
′
1}

to that of {Q0, Q1}: If we can break the hiding property of {Q′
0, Q

′
1}, then we can

distinguish Q′
b |0〉C,R |0〉D without touching R′ = C. Then, their theorem with

the above observation gives a swapping algorithm that swaps (Q0 |0〉C,R) |0〉D
and (Q1 |0〉C,R) |1〉D without touching R′ = C, which clearly breaks the binding
property of {Q0, Q1}. One may expect that the reduction from binding to hiding
works analogously. However, it is not as easy as one would expect due to the
following reasons.

1. An adversary that breaks the binding property is weaker than a “partial”
swapping unitary that swaps Q′

0 |0〉C′,R′ and Q′
1 |0〉C′,R′ needed for [1].

For example, suppose that we have a unitary U such that UQ′
0 |0〉C′,R′ =

Q′
1 |0〉C′,R′ and UQ′

1 |0〉C′,R′ = −Q′
0 |0〉C′,R′ . Clearly, this completely breaks

the binding property of {Q′
0, Q

′
1}. However, this is not sufficient for applying

[1] since | 〈0| Q′
1
†
UQ′

0 |0〉 + 〈0| Q′
0
†
UQ′

1 |0〉 | = 0.
2. For security of quantum bit commitments, we have to consider adversaries

with quantum advice, or at least those with ancilla qubits even for security
against uniform adversaries. However, the theorem of [1] does not consider
any ancilla qubits.

Both issues are already mentioned in [1]. In particular, Item 1 is an essen-
tial issue. They prove the existence of a pair of orthogonal states |Alive〉 and
|Dead〉 such that we can map |Alive〉 to |Dead〉 by an efficient unitary, but
| 〈Dead| U |Alive〉 + 〈Alive| U |Dead〉 | ≈ 0 for all efficient unitaries U [1, Theo-
rem 3]. For Item 2, they (with acknowledgment to Daniel Gottesman) observe
that the conversion from a distinguisher to a swapping unitary works even with
any quantum advice, but the other direction does not work if there are ancilla
qubits [1, Footnote 2].
18 We only present how Q′

b works on |0〉C,R |0〉D for simplicity. Its definition on general
states can be found in Theorem 7.
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One can see that the above issues are actually not relevant to the reduction
from the hiding of {Q′

0, Q
′
1} to the binding of {Q0, Q1}. However, for the reduc-

tion from the binding of {Q′
0, Q

′
1} to the hiding of {Q0, Q1}, both issues are

non-trivial. Below, we show how to resolve those issues.
Solution to Item 1. By the result of [1, Theorem 3] as already explained,
this issue cannot be resolved if we think of Q′

0 |0〉C′,R′ and Q′
1 |0〉C′,R′ as

general orthogonal states. Thus, we look into the actual form of them pre-
sented in Eq. (2). Then, we observe that an adversary against the binding prop-
erty does not touch D since that is part of the commitment register C′ of
{Q′

0, Q
′
1}. Therefore, he cannot cause any interference between (Q0 |0〉)C,R |0〉D

and (Q1 |0〉)C,R |1〉D. Therefore, if it maps

1√
2

(
(Q0 |0〉)C,R |0〉D + (Q1 |0〉)C,R |1〉D

) �→ 1√
2

(
(Q0 |0〉)C,R |0〉D − (Q1 |0〉)C,R |1〉D

)
,

then it should also map
1√
2

(
(Q0 |0〉)C,R |0〉D − (Q1 |0〉)C,R |1〉D

) �→ 1√
2

(
(Q0 |0〉)C,R |0〉D + (Q1 |0〉)C,R |1〉D

)
.

Thus, the ability to map Q′
0 |0〉C′,R′ to Q′

1 |0〉C′,R′ is equivalent to swapping
them for this particular construction when one is not allowed to touch D. A
similar observation extends to the imperfect case as well. Therefore, Item 1 is
not an issue for the security proof of this construction.
Solution to Item 2. To better understand the issue, we review how the con-
version from a swapping unitary to a distinguisher works. For simplicity, we
focus on the perfect case here, i.e., we assume that there is a unitary U such
that U |Dead〉 = |Alive〉 and U |Alive〉 = |Dead〉 for orthogonal states |Alive〉 and
|Dead〉. Then, we can construct a distinguisher A that distinguishes |Alive〉+|Dead〉√

2

and |Alive〉−|Dead〉√
2

as follows: Given a state |η〉, which is either of the above

two states |Alive〉+|Dead〉√
2

or |Alive〉−|Dead〉√
2

, it prepares |0〉+|1〉√
2

in an ancilla qubit,
applies U controlled by the ancilla, and measures the ancilla in Hadamard basis.
An easy calculation shows that the measurement outcome is 1 with probability
1 if |η〉 = |Alive〉+|Dead〉√

2
and 0 with probability 1 if |η〉 = |Alive〉−|Dead〉√

2
.

Then, let us consider what happens if the swapping unitary uses ancilla
qubits. That is, suppose that we have U |Dead〉 |τ〉 = |Alive〉 |τ ′〉 and
U |Alive〉 |τ〉 = |Dead〉 |τ ′〉 for some ancilla states |τ〉 and |τ ′〉. When |τ〉 and
|τ ′〉 are orthogonal, the above distinguisher does not work because there does
not occur interference between states with 0 and 1 in the control qubit. To resolve
this issue, our idea is to “uncompute” the ancilla state. A naive idea to do so is to
apply U†, but then this is meaningless since it just goes back to the original state.
Instead, we prepare a “dummy” register that is initialized to be |Alive〉+|Dead〉√

2
.

Then, we add an application of U† to the ancilla qubits and the dummy reg-
ister controlled by the control qubit. Then, the ancilla qubit goes back to |τ〉
while the state in the dummy register does not change because it is invariant
under the swapping of |Alive〉 and |Dead〉. Then, we can see that this modified
distinguisher distinguishes |Alive〉+|Dead〉√

2
and |Alive〉−|Dead〉√

2
with advantage 1.
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Unfortunately, when the swapping ability is imperfect, the above distin-
guisher does not work. However, we show that the following slight variant of the
above works: Instead of preparing |Alive〉+|Dead〉√

2
, it prepares |Alive〉|0〉+|Dead〉|1〉√

2
.

After the controlled application of U†, it flips the rightmost register (i.e., apply
Pauli X to it). In the perfect case, this variant also works with advantage 1 since
the state in the dummy register becomes |Dead〉|0〉+|Alive〉|1〉√

2
after the application

of the controlled U†, which goes back to the original state |Alive〉|0〉+|Dead〉|1〉√
2

by
the flip. Our calculation shows that this version is robust, i.e., it works even for
the imperfect case.

There are several caveats for the above. First, it requires the distinguisher
to take an additional quantum advice |Alive〉|0〉+|Dead〉|1〉√

2
, which is not necessarily

efficiently generatable in general.19 Second, there occurs a quadratic reduction
loss unlike the original theorem in [1] without ancilla qubits. Nonetheless, they
are not a problem for our purpose.

3 Preliminaries

Notations used throughout the paper and definitions of basic cryptographic prim-
itives are given in the full version.

3.1 Canonical Quantum Bit Commitments

We define canonical quantum bit commitments as defined in [35].

Definition 1 (Canonical quantum bit commitments). A canonical quan-
tum bit commitment scheme is represented by a family {Q0(λ), Q1(λ)}λ∈N of
polynomial-time computable unitaries over two registers C (called the commit-
ment register) and R (called the reveal register). In the rest of the paper, we
often omit λ and simply write Q0 and Q1 to mean Q0(λ) and Q1(λ).

Remark 1. Canonical quantum bit commitments are supposed to be used as
follows. In the commit phase, to commit to a bit b ∈ {0, 1}, the sender generates
a state Qb |0〉C,R and sends C to the receiver while keeping R. In the reveal
phase, the sender sends b and R to the receiver. The receiver projects the state
on (C,R) onto Qb |0〉C,R, and accepts if it succeeds and otherwise rejects.

Definition 2 (Hiding). We say that a canonical quantum bit commit-
ment scheme {Q0, Q1} is computationally (rep. statistically) hiding if
TrR(Q0(|0〉 〈0|)C,RQ†

0) is computationally (resp. statistically) indistinguishable
from TrR(Q1(|0〉 〈0|)C,RQ†

1). We say that it is perfectly hiding if they are iden-
tical states.

19 We remark that they are efficiently generatable in our application where |Alive〉 and
|Dead〉 correspond to commitments to 0 and 1.
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Definition 3 (Binding). We say that a canonical quantum bit commitment
scheme {Q0, Q1} is computationally (rep. statistically) binding if for any
polynomial-time computable (resp. unbounded-time) unitary U over R and an
additional register Z and any polynomial-size state |τ〉Z, it holds that

∥
∥
∥(Q1 |0〉 〈0| Q†

1)C,R(IC ⊗ UR,Z)((Q0 |0〉)C,R |τ〉Z)
∥
∥
∥ = negl(λ).

We say that it is perfectly binding if the LHS is 0 for all unbounded-time unitary
U .

3.2 Equivalence Between Swapping and Distinguishing

The following theorem was proven in [1].

Theorem 1 ([1, Theorem 2]).

1. Let |x〉 , |y〉 be orthogonal n-qubit states. Let U be a polynomial-time com-
putable unitary over n-qubit states and define Γ as

Γ := |〈y| U |x〉 + 〈x| U |y〉| .
Then, there exists a QPT distinguisher A that makes a single black-box access
to controlled-U and distinguishes |ψ〉 := |x〉+|y〉√

2
and |φ〉 := |x〉−|y〉√

2
with advan-

tage Γ
2 . Moreover, if U does not act on some qubits, then A also does not act

on those qubits.
2. Let |ψ〉 , |φ〉 be orthogonal n-qubit states, and suppose that a QPT distinguisher

A distinguishes |ψ〉 and |φ〉 with advantage Δ without using any ancilla qubits.
Then, there exists a polynomial-time computable unitary U over n-qubit states
such that

| 〈y| U |x〉 + 〈x| U |y〉 |
2

= Δ

where |x〉 := |ψ〉+|φ〉√
2

and |y〉 := |ψ〉−|φ〉√
2

. Moreover, if A does not act on some
qubits, then U also does not act on those qubits.

Remark 2 (Descriptions of quantum circuits.). For the reader’s convenience, we
give the concrete descriptions of quantum circuits for the above theorem, which
are presented in [1].

For Item 1, let Ũ := eiθU for θ such that

Re(〈y| Ũ |x〉 + 〈x| Ũ |y〉) = |〈y| U |x〉 + 〈x| U |y〉| .
Then, A is described in Fig. 1.

For Item 2, let VA be a unitary such that

VA |ψ〉 = √
p |1〉 |ψ1〉 +

√
1 − p |0〉 |ψ0〉

VA |φ〉 =
√

1 − p + Δ |0〉 |φ0〉 +
√

p − Δ |1〉 |φ1〉
for some |ψ0〉, |ψ1〉, |φ0〉, and |φ1〉. That is, VA is the unitary part of A. Then,
U is described in Fig. 2.
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Fig. 1. Quantum circuit for A in Item 1 of Theorem 1.

Fig. 2. Quantum circuit for U in Item 2 of Theorem 1.

Remark 3. Though the final requirement in both items (“Moreover,...”) is not
explicitly stated in [1, Theorem 2], it is easy to see from Figs. 1 and 2. This
observation is important for our application to commitments and PKE.

4 Quantum-Ciphertext Public Key Encryption

In Sect. 4.1, we introduce a notion of swap-trapdoor function pairs, which can
be seen as a variant of trapdoor claw-free function pairs [21]. In Sect. 4.2, we
define quantum-ciphertext PKE and construct it based on STFs. In Sect. 4.3, we
construct STFs based on group actions.

4.1 Swap-Trapdoor Function Pairs

We introduce a notion of swap-trapdoor function pairs (STFs). Similarly to trap-
door claw-free function pairs, a STF consists of two functions f0, f1 : X → Y.
We require that there is a trapdoor which enables us to “swap” preimages under
f0 and f1, i.e., given xb, we can find xb⊕1 such that fb⊕1(xb⊕1) = fb(xb). The
formal definition of STFs is given below.

Definition 4 (Swap-trapdoor function pair). A swap-trapdoor function
pair (STF) consists of algorithms (Setup,Eval,Swap).

Setup(1λ) → (pp, td): This is a PPT algorithm that takes the security parameter
1λ as input, and outputs a public parameter pp and a trapdoor td. The public
parameter pp specifies functions f

(pp)
b : X → Y for each b ∈ {0, 1}. We often

omit the dependence on pp and simply write fb when it is clear from the
context.

Eval(pp, b, x) → y: This is a deterministic classical polynomial-time algorithm
that takes a public parameter pp, a bit b ∈ {0, 1}, and an element x ∈ X as
input, and outputs y ∈ Y.
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Swap(td, b, x) → x′: This is a deterministic classical polynomial-time algorithm
that takes a trapdoor td, a bit b ∈ {0, 1}, and an element x ∈ X as input, and
outputs x′ ∈ X .

We require a STF to satisfy the following:
Evaluation Correctness. For any (pp, td) ← Setup(1λ), b ∈ {0, 1}, and x ∈ X ,
we have Eval(pp, b, x) = fb(x).
Swapping Correctness. For any (pp, td) ← Setup(1λ), b ∈ {0, 1}, and x ∈ X ,
if we let x′ ← Swap(td, b, x), then we have fb⊕1(x′) = fb(x) and Swap(td, b ⊕
1, x′) = x. In particular, Swap(td, b, ·) induces an efficiently computable and
invertible one-to-one mapping between f−1

0 (y) and f−1
1 (y) for any y ∈ Y.

Efficient Random Sampling over X . There is a PPT algorithm that samples
an almost uniform element of X (i.e., the distribution of the sample is statisti-
cally close to the uniform distribution).
Efficient Superposition over X . There is a QPT algorithm that generates a
state whose trace distance from |X 〉 = 1√

|X |
∑

x∈X |x〉 is negl(λ).

Remark 4 (A convention on “Efficient random sampling over X ” and “Efficient
superposition over X ” properties). In the rest of this paper, we assume that we
can sample elements from exactly the uniform distribution of X . Similarly, we
assume that we can exactly generate |X 〉 in QPT. They are just for simplifying
the presentations of our results, and all the results hold with the above imperfect
version with additive negligible loss for security or correctness.

We define two security notions for STFs which we call claw-freeness and con-
version hardness. Looking ahead, what we need in our construction of quantum-
ciphertext PKE in Sect. 4.2 is only conversion hardness. However, since there
are interesting relations between them as we show later, we define both of them
here.

Definition 5 (Claw-freeness). We say that a STF (Setup,Eval,Swap) satisfies
claw-freeness if for any non-uniform QPT algorithm A, we have

Pr[f0(x0) = f1(x1) : (pp, td) ← Setup(1λ), (x0, x1) ← A(pp)] = negl(λ).

Definition 6 (Conversion hardness). We say that a STF (Setup,Eval,Swap)
satisfies conversion hardness if for any non-uniform QPT algorithm A, we have

Pr[f1(x1) = y : (pp, td) ← Setup(1λ), x0 ← X , y := f0(x0), x1 ← A(pp, |f−1
0 (y)〉)] = negl(λ)

where we remind that |f−1
0 (y)〉 := 1√

|f−1
0 (y)|

∑
x∈f−1

0 (y) |x〉.

Remark 5 (On asymmetry of f0 and f1). Conversion hardness requires that it is
hard to find x1 such that f1(x1) = y given |f−1

0 (y)〉. We could define it in the
other way, i.e., it is hard to find x0 such that f0(x0) = y given |f−1

1 (y)〉. These
two definitions do not seem to be equivalent. However, it is easy to see that if
there is a STF that satisfies one of them, then it can be modified to satisfy the
other one by just swapping the roles of f0 and f1. In this sense, the choice of the
definition from these two versions is arbitrary.
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We show several lemmas on the relationship between claw-freeness and con-
version hardness.

First, we show that claw-freeness implies conversion hardness if f0 is collapsing.

Lemma 1 (Claw-free and collapsing → Conversion hard). If f0 is col-
lapsing, then claw-freeness implies conversion hardness.

We defer the proof to the full version.
As a special case of Lemma 1, claw-freeness implies conversion hardness when

f0 is injective (in which case f1 is also injective). This is because any injective
function is trivially collapsing.

We remark that a conversion hard STF is not necessarily claw-free, because
a claw can be augmented in STF without hurting the conversion hardness.

Next, we show a “win-win” result inspired from [37]. We roughly show that a
claw-free but non-conversion-hard STF can be used to construct one-shot signa-
tures [3]. Roughly one-shot signatures are a genuinely quantum primitive which
enables us to generate a classical verification key vk along with a quantum sign-
ing key sk in such a way that one can use sk to generate a signature for whichever
message of one’s choice, but cannot generate signatures for different messages
simultaneously. The only known construction of one-shot signatures is relative to
a classical oracle and there is no known construction in the standard model. Even
for its weaker variant called tokenized signatures [5], the only known construction
in the standard model is based on indistinguishability obfuscation [12]. Given
the difficulty of constructing tokenized signatures, let alone one-shot signatures,
it is reasonable to conjecture that natural candidate constructions of STFs sat-
isfy conversion hardness if it satisfies claw-freeness. This is useful because claw-
freeness often follows from weaker assumptions than conversion hardness, which
is indeed the case for the group action-based construction in Sect. 4.3.

Before stating the lemma, we remark some subtlety about the lemma. Actu-
ally, we need to assume a STF that is claw-free but not infinitely-often uniform
conversion hard. Here, “infinitely-often” means that it only requires the security
to hold for infinitely many security parameters rather than all security param-
eters. (See [37, Sect. 4.1] for more explanations about infinitely-often security.)
The “uniform” means that security is required to hold only against uniform
adversaries as opposed to non-uniform ones. Alternatively, we can weaken the
assumption to a STF that is claw-free but not uniform conversion hard if we
weaken the goal to be infinitely-often one-shot signatures. We remark that sim-
ilar limitations also exist for the “win-win” result in [37].

Then, the lemma is given below.

Lemma 2 (Claw-free and non-conversion hard STF → One-shot sig-
natures). Let (Setup,Eval,Swap) be a STF that satisfies claw-freeness. Then,
the following statements hold:

1. If (Setup,Eval,Swap) is not infinitely-often uniform conversion hard, then we
can use it to construct one-shot signatures.

2. If (Setup,Eval,Swap) is not uniform conversion hard, then we can use it to
construct infinitely-often one-shot signatures.
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We defer the proof to the full version since the idea is already explained in
Sect. 2.1.
Instantiations. Our main instantiation of STFs is based on group actions, which
is given in Sect. 4.3.

A lattice-based instantiation is also possible if we relax the requirements to
allow some “noises” similarly to [7]. The noisy version is sufficient for our con-
struction of quantum-ciphertext PKE given in Sect. 4.2. However, since lattice-
based (classical) PKE schemes are already known [19,31], we do not try to
capture lattice-based instantiations in the definition of STFs.

4.2 Quantum-Ciphertext Public Key Encryption

In this section, we define quantum-ciphertext PKE and construct it based on
STFs.
Definition. We define quantum-ciphertext PKE for one-bit messages for sim-
plicity. The multi-bit message version can be defined analogously, and a simple
parallel repetition works to expand the message length. Moreover, we can fur-
ther extend the message space to quantum states by a hybrid encryption with
quantum one-time pad as in [9], i.e., we encrypt a quantum message by a quan-
tum one-time pad, and then encrypt the key of the quantum one-time pad by
quantum PKE for classical messages.

Definition 7 (Quantum-ciphertext public key encryption). A quantum-
ciphertext public key encryption (quantum-ciphertext PKE) scheme (with
single-bit messages) consists of algorithms (KeyGen,Enc,Dec).

KeyGen(1λ) → (pk, sk): This is a PPT algorithm that takes the security param-
eter 1λ as input, and outputs a classical public key pk and a classical secret
key sk.

Enc(pk, b) → ct : This is a QPT algorithm that takes a public key pk and a
message b ∈ {0, 1} as input, and outputs a quantum ciphertext ct .

Dec(sk, ct) → b′/⊥: This is a QPT algorithm that takes a secret key sk and a
ciphertext ct as input, and outputs a message b′ ∈ {0, 1} or ⊥.

It must satisfy correctness as defined below:
Correctness. For any m ∈ {0, 1}, we have

Pr[m′ = m : (pk, sk) ← KeyGen(1λ), ct ← Enc(pk, m), m′ ← Dec(sk, ct)] = 1 − negl(λ).

�
We define IND-CPA security for quantum-ciphertext PKE similarly to that

for classical PKE as follows.

Definition 8 (IND-CPA security). We say that a quantum-ciphertext PKE
scheme (KeyGen,Enc,Dec) is IND-CPA secure if for any non-uniform QPT
adversary A, we have

|Pr [A(pk, ct0) = 1] − Pr [A(pk, ct1) = 1]| = negl(λ),

where (pk, sk) ← KeyGen(1λ), ct0 ← Enc(pk, 0), and ct1 ← Enc(pk, 1).
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Construction. Let (Setup,Eval,Swap) be a STF. We construct a quantum-
ciphertext PKE scheme (KeyGen,Enc,Dec) as follows.

KeyGen(1λ): Generate (pp, td) ← Setup(1λ) and output pk := pp and sk := td.
Enc(pk, b ∈ {0, 1}): Parse pk = pp. Prepare two registers D and X. Generate the

state

1√
2
(|0〉 + (−1)b |1〉)D |X 〉X =

1
√

2|X | (|0〉 + (−1)b |1〉)D
∑

x∈X
|x〉X .

Prepare another register Y, coherently compute f0 or f1 into Y controlled
by D to get

∑

x∈X

1
√

2|X | (|0〉D |x〉X |f0(x)〉Y + (−1)b |1〉D |x〉X |f1(x)〉Y),

and measure Y to get y ∈ Y. At this point, D and X collapse to the following
state:20

1√
2
(|0〉D |f−1

0 (y)〉X + (−1)b |1〉D |f−1
1 (y)〉X).

The above state is set to be ct .21
Dec(sk, ct): Parse sk = td. Let Utd be a unitary over D and X such that22

Utd |0〉D |x〉X = |0〉D |x〉X ,

Utd |1〉D |x〉X = |1〉D |Swap(td, 1, x)〉X .

Apply Utd on the register (D,X) and measure D in the Hadamard basis and
output the measurement outcome b′ ∈ {0, 1}.

Correctness.

Theorem 2. (KeyGen,Enc,Dec) satisfies correctness.

Proof. An honestly generated ciphertext ct is of the form

1√
2
(|0〉D |f−1

0 (y)〉X + (−1)b |1〉D |f−1
1 (y)〉X).

By the definition of Utd and the swapping correctness, it is easy to see that we
have

Utd |0〉D |f−1
0 (y)〉X = |0〉D |f−1

0 (y)〉X ,

Utd |1〉D |f−1
1 (y)〉X = |1〉D |f−1

0 (y)〉X .

20 Note that the swapping correctness implies that |f−1
0 (y)| = |f−1

1 (y)| for any y ∈ Y.
21 Remark that one does not need to include y in the ciphertext.
22 Note that the second operation is possible because Swap(td, 0, Swap(td, 1, x)) = x.
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Thus, applying Utd on ct results in the following state:

1√
2
(|0〉D |f−1

0 (y)〉X + (−1)b |1〉D |f−1
0 (y)〉X) =

1√
2
(|0〉D + (−1)b |1〉D) ⊗ |f−1

0 (y)〉X .

The measurement of D in the Hadamard basis therefore results in b. �

Security.

Theorem 3. If (Setup,Eval,Swap) satisfies conversion hardness, (KeyGen,Enc,
Dec) is IND-CPA secure.

We can prove Theorem 3 by using Item 2 of Theorem 1. We defer the proof
to the full version since the idea is already explained in Sect. 2.1.

4.3 Instantiation from Group Actions

We review basic definitions about cryptographic group actions and their one-
wayness and pseudorandomness following [25]. Then, we construct a STF based
on it.
Basic Definitions.

Definition 9 (Group actions). Let G be a (not necessarily abelian) group, S
be a set, and � : G × S → S be a function where we write g � s to mean �(g, s).
We say that (G,S, �) is a group action if it satisfies the following:

1. For the identity element e ∈ G and any s ∈ S, we have e � s = s.
2. For any g, h ∈ G and any s ∈ S, we have (gh) � s = g � (h � s).

To be useful for cryptography, we have to at least assume that basic opera-
tions about (G,S, �) have efficient algorithms. We require the following efficient
algorithms similarly to [25].

Definition 10 (Group actions with efficient algorithms). We say that a
group action (G,S, �) has efficient algorithms if it satisfies the following:23

Unique representations: Each element of G and S can be represented as a bit
string of length poly(λ) in a unique manner. Thus, we identify these elements
and their representations.

Group operations: There are classical deterministic polynomial-time algo-
rithms that compute gh from g ∈ G and h ∈ G and g−1 from g ∈ G.

Group action: There is a classical deterministic polynomial-time algorithm
that computes g � s from g ∈ G and s ∈ S.

23 Strictly speaking, we have to consider a family {(Gλ, Sλ, �λ)}λ∈N of group actions
parameterized by the security parameter to meaningfully define the efficiency
requirements. We omit the dependence on λ for notational simplicity throughout
the paper.
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Efficient recognizability: There are classical deterministic polynomial-time
algorithms that decide if a given bit string represents an element of G or S,
respectively.

Random sampling: There are PPT algorithms that sample almost uniform
elements of G or S (i.e., the distribution of the sample is statistically close
to the uniform distribution), respectively.

Superposition over G: There is a QPT algorithm that generates a state whose
trace distance from |G〉 is negl(λ).

Remark 6 (A convention on “Random sampling” and “Superposition over G”
properties). In the rest of this paper, we assume that we can sample elements
from exactly uniform distributions of G and S. Similarly, we assume that we
can exactly generate |G〉 in QPT. They are just for simplifying the presentations
of our results, and all the results hold with the above imperfect version with
additive negligible loss for security or correctness.

The above requirements are identical to those in [25] except for the “super-
position over G” property. We remark that all candidate constructions proposed
in [25] satisfy this property as explained later.
Assumptions. We define one-wayness and pseudorandomness following [25].

Definition 11 (One-wayness). We say that a group action (G,S, �) with effi-
cient algorithms is one-way if for any non-uniform QPT adversary A, we have

Pr
[
g′ � s = g � s : s ← S, g ← G, g′ ← A(s, g � s)

]
= negl(λ).

Definition 12 (Pseudorandomness). We say that a group action (G,S, �)
with efficient algorithms is pseudorandom if it satisfies the following:

1. We have

Pr[∃g ∈ G s.t. g � s = t : s, t ← S] = negl(λ).

2. For any non-uniform QPT adversary A, we have

|Pr [1 ← A(s, t) : s ← S, g ← G, t := g � s] − Pr [1 ← A(s, t) : s, t ← S]| = negl(λ).

Remark 7 (On Item 1). We require Item 1 to make Item 2 non-trivial. For exam-
ple, if (G,S, �) is transitive, i.e., for any s, t ∈ S, there is g ∈ G such that
g � s = t, Item 2 trivially holds because the distributions of t = g �s is uniformly
distributed over S for any fixed s and random g ← G.

Remark 8 (Pseudorandom → One-way). We remark that the pseudorandomness
immediately implies the one-wayness as noted in [25].

Instantiations. Ji et al. [25] gave several candidate constructions of one-way
and pseudorandom group actions with efficient algorithms based on general lin-
ear group actions on tensors. We briefly describe one of their candidates below.
Let F be a finite field, and k, d1, d2..., dk be positive integers (which are typically



From the Hardness of Detecting Superpositions to Cryptography 659

set as k = 3 and d1 = d2 = d3). We set G :=
∏k

j=1 GLdj
(F), S :=

⊗k
j=1 F

dj , and
define the group action by the matrix-vector multiplication as

(Mj)j∈[k] � T :=

⎛

⎝
k⊗

j=1

Mj

⎞

⎠ T

for (Mj)j∈[k] ∈ ∏k
j=1 GLdj

(F) and T ∈ ⊗k
j=1 F

dj . See [25] for attempts of
cryptanalysis and justification of the one-wayness and pseudorandomness. We
remark that we introduced an additional requirement of the “superposition over
G” property in Definition 10, but their candidates satisfy this property. In their
candidates, the group G is a direct product of general linear groups over finite
fields (or symmetric groups for one of the candidates), and a uniformly random
matrix over finite fields is invertible with overwhelming probability for appro-
priate parameters.
Construction of STF. We construct a STF based on group actions. Let
(G,S, �) be a group action with efficient algorithms (as defined in Definition 10).
Then, we construct a STF as follows.

Setup(1λ): Generate s0 ← S and g ← G, set s1 := g�s0, and output pp := (s0, s1)
and td := g. For b ∈ {0, 1}, we define fb : G → S by fb(h) := h � sb.

Eval(pp = (s0, s1), b, h): Output fb(h) = h � sb.
Swap(td = g, b, h): If b = 0, output hg−1. If b = 1, output hg.

The evaluation correctness is trivial. The swapping correctness can be seen
as follows: For any h ∈ G, f1(Swap(td, 0, h)) = f1(hg−1) = (hg−1)�s1 = h�s0 =
f0(h). Similarly, for any h ∈ G, f0(Swap(td, 1, h)) = f0(hg) = (hg) � s0 =
h � s1 = f1(h). For any h ∈ G, Swap(td, 1,Swap(td, 0, h)) = Swap(td, 1, hg−1) =
(hg−1)g = h.

The efficient sampling and efficient superposition properties directly follow
from the corresponding properties of the group action.

We prove the following theorem.

Theorem 4. The following hold:

1. If (G,S, �) is one-way, then (Setup,Eval,Swap) is claw-free.
2. If (G,S, �) is pseudorandom, then (Setup,Eval,Swap) is conversion hard.

We defer the proof to the full version because it is easy.
Quantum-Ciphertext PKE from Group Actions. Recall that conversion
hard STFs suffice for constructing IND-CPA secure quantum ciphertext PKE
(Theorem 3). Then, by Lemmata 1 and 2 and Theorem 4, we obtain the following
corollaries.

Corollary 1. If there exists a pseudorandom group action with efficient algo-
rithms, there exists an IND-CPA secure quantum-ciphertext PKE.
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Remark 9 (Lossy encryption). Actually, we can show that the quantum-
ciphertext PKE constructed from a pseudorandom group action is lossy encryp-
tion [4], which is stronger than IND-CPA secure one. We omit the detail since
our focus is on constructing IND-CPA secure schemes.

Corollary 2. If there exists a one-way group action with efficient algorithms
such that f0 is collapsing,24 there exists a uniform IND-CPA secure quantum-
ciphertext PKE scheme.

Corollary 3. If there exists a one-way group action with efficient algorithms,
there exists a uniform IND-CPA secure quantum-ciphertext PKE scheme or
infinitely-often one-shot signatures.25

5 Equivalence Between Swapping and Distinguishing
with Auxiliary States

For our application to conversion for commitments, we need a generalization of
Theorem 1 that considers auxiliary quantum states. While it is straightforward
to generalize Item 2 to such a setting,26 a generalization of Item 1 is non-trivial.
The problems is that the unitary U may not preserve the auxiliary state when it
“swaps” |x〉 and |y〉.27 Intuitively, we overcome this issue by “uncomputing” the
auxiliary state in a certain sense.

Theorem 5 (Generalization of Theorem 1 with auxiliary states)

1. Let |x〉 , |y〉 be orthogonal n-qubit states and |τ〉 be an m-qubit state. Let U be
a polynomial-time computable unitary over (n+m)-qubit states and define Γ
as

Γ :=
∥
∥(〈y| ⊗ I⊗m)U |x〉 |τ〉 + (〈x| ⊗ I⊗m)U |y〉 |τ〉∥∥ .

Then, there exists a non-uniform QPT distinguisher A with advice |τ ′〉 = |τ〉⊗
|x〉|0〉+|y〉|1〉√

2
that distinguishes |ψ〉 = |x〉+|y〉√

2
and |φ〉 = |x〉−|y〉√

2
with advantage

Γ 2

4 . Moreover, if U does not act on some qubits, then A also does not act on
those qubits.

2. Let |ψ〉 , |φ〉 be orthogonal n-qubit states, and suppose that a non-uniform
QPT distinguisher A with an m-qubit advice |τ〉 distinguishes |ψ〉 and
|φ〉 with advantage Δ without using additional ancilla qubits besides |τ〉.

24 We currently have no candidate of such a one-way group action.
25 The uniform IND-CPA security is defined similarly to the IND-CPA security in

Definition 8 except that the adversary is restricted to be uniform QPT.
26 Indeed, such a generalization of Item 2 is already implicitly used in the proof of

Theorem 3.
27 This is also observed in [1, Footnote 2].
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Then, there exists a polynomial-time computable unitary U over (n + m)-
qubit states such that

| 〈y| 〈τ | U |x〉 |τ〉 + 〈x| 〈τ | U |y〉 |τ〉 |
2

= Δ

where |x〉 := |ψ〉+|φ〉√
2

and |y〉 := |ψ〉−|φ〉√
2

. Moreover, if A does not act on some
qubits, then U also does not act on those qubits.

Remark 10. We remark that Item 1 does not preserve the auxiliary state unlike
Item 2. Though this does not capture the intuition that “one can distinguish |ψ〉
and |φ〉 whenever he can swap |x〉 and |y〉”, this is good enough for our purpose.
We also remark that there is a quadratic reduction loss in Item 1. We do not
know if it is tight while both items of Theorem 1 is shown to be tight in [1].

Proof of Theorem 5. Item 2 directly follows from Item 2 of Theorem 1 by con-
sidering |x〉 |τ〉 and |y〉 |τ〉 as |x〉 and |y〉 in Theorem 1. We prove Item 1 below.

Proof of Item 1. Let A and A′ be n-qubit registers, Z be an m-qubit register,
and B be a 1-qubit register. We define a unitary Ũ over (A,Z,A′,B) as follows:

Ũ := XBU†
A′,ZUA,Z (3)

where XB is the Pauli X operator on B and U†
A′,Z means the inverse of UA′,Z,

which works similarly to UA,Z except that it acts on A′ instead of on A.
Then, we prove the following claim.

Claim 6. Let |x〉 , |y〉 , |τ〉, and Γ be as in Item 1 of Theorem 5, Ũ be as defined
in Eq. (3), and |σ〉A′,B be the state over (A′,B) defined as follows:

|σ〉A′,B :=
|x〉A′ |0〉B + |y〉A′ |1〉B√

2
. (4)

Then, it holds that
∣
∣
∣〈y|A 〈τ |Z 〈σ|A′,B Ũ |x〉A |τ〉Z |σ〉A′,B + 〈x|A 〈τ |Z 〈σ|A′,B Ũ |y〉A |τ〉Z |σ〉A′,B

∣
∣
∣ =

Γ 2

2
.

We first finish the proof of Item 1 assuming that Claim 6 is correct. By Item 1
of Theorem 1, Claim 6 implies that there is a QPT distinguisher Ã that distin-
guishes

|ψ̃〉 = (|x〉 + |y〉)A |τ〉Z |σ〉A′,B√
2

and

|φ̃〉 = (|x〉 − |y〉)A |τ〉Z |σ〉A′,B√
2



662 M. Hhan et al.

with advantage Γ 2

4 . Moreover, Ã does not act on qubits on which Ũ does not act.
In particular, Ã does not act on qubits of A and Z on which UA,Z does not act
since Ũ acts on A and Z only through UA,Z and U†

A′,Z. Thus, by considering Ã as
a distinguisher A with advice |τ ′〉 = |τ〉Z |σ〉A′,B that distinguishes |ψ〉 = |x〉+|y〉√

2

and |φ〉 = |x〉−|y〉√
2

, Item 1 is proven. Below, we prove Claim 6.

Proof of Claim 6. For (a, b) ∈ {(x, x), (x, y), (y, x), (y, y)}, we define

|τ ′
ab〉Z := (〈b|A ⊗ IZ)UA,Z |a〉A |τ〉Z .

Then, we have

Γ =
∥
∥
∥|τ ′

xy〉
Z
+ |τ ′

yx〉
Z

∥
∥
∥ (5)

and

UA,Z |x〉A |τ〉Z = |x〉A |τ ′
xx〉Z + |y〉A |τ ′

xy〉
Z
+ |garbagex〉A,Z (6)

UA,Z |y〉A |τ〉Z = |x〉A |τ ′
yx〉

Z
+ |y〉A |τ ′

yy〉
Z
+ |garbagey〉

A,Z
(7)

where |garbagex〉A,Z and |garbagey〉
A,Z

are (not necessarily normalized) states
such that

(〈x|A ⊗ IZ) |garbagex〉A,Z = (〈y|A ⊗ IZ) |garbagex〉A,Z = 0, (8)

(〈x|A ⊗ IZ) |garbagey〉
A,Z

= (〈y|A ⊗ IZ) |garbagey〉
A,Z

= 0. (9)

Then,

〈y|A 〈τ |Z 〈σ|A′,B Ũ |x〉A |τ〉Z |σ〉A′,B

= 〈y|A 〈τ |Z 〈σ|A′,B XBU†
A′,Z(|x〉A |τ ′

xx〉Z + |y〉A |τ ′
xy〉

Z
+ |garbagex〉A,Z) |σ〉A′,B

= 〈τ |Z 〈σ|A′,B XBU†
A′,Z |τ ′

xy〉
Z

|σ〉A′,B
(10)

where the first equality follows from Eq. (6) and the second equality follows from
Eq. (8) and the assumption that |x〉 and |y〉 are orthogonal. By Eqs. (4), (6) and
(7), it holds that

UA′,ZXB |τ〉Z |σ〉A′,B

=UA′,Z
|τ〉Z ((|x〉A′ |1〉B + |y〉A′ |0〉B)√

2

=
1√
2

⎛

⎝

(
|x〉A′ |τ ′

xx〉Z + |y〉A′ |τ ′
xy〉

Z
+ |garbagex〉A′,Z

)
|1〉B

+
(
|x〉A′ |τ ′

yx〉
Z
+ |y〉A′ |τ ′

yy〉
Z
+ |garbagey〉

A′,Z

)
|0〉B

⎞

⎠ .

(11)
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Then, it holds that

〈τ |Z 〈σ|A′,B XBU
†
A′,Z |τ ′

xy〉
Z

|σ〉A′,B

=
1

2

⎛
⎝

(
〈x|A′ 〈τ ′

xx|Z + 〈y|A′ 〈τ ′
xy|

Z
+ 〈garbagex|A′,Z

)
〈1|B

+
(

〈x|A′ 〈τ ′
yx|

Z
+ 〈y|A′ 〈τ ′

yy|
Z
+ 〈garbagey|

A′,Z

)
〈0|B

⎞
⎠ (|x〉A′ |0〉B + |y〉A′ |1〉B

) |τ ′
xy〉

Z

=
1

2
(〈τ ′

xy| + 〈τ ′
yx|)Z |τ ′

xy〉
Z

,

(12)

where the first equality follows from Eqs. (4) and (11) and the second equality
follows from Eqs. (8), (9) and the assumption that |x〉 and |y〉 are orthogonal.

By Eqs. (10) and (12), we have

〈y|A 〈τ |Z 〈σ|A′,B Ũ |x〉A |τ〉Z |σ〉A′,B =
1
2
(〈τ ′

xy| + 〈τ ′
yx|)Z |τ ′

xy〉
Z

. (13)

By a similar calculation, we have

〈x|A 〈τ |Z 〈σ|A′,B Ũ |y〉A |τ〉Z |σ〉A′,B =
1
2
(〈τ ′

xy| + 〈τ ′
yx|)Z |τ ′

yx〉
Z

. (14)

By Eqs. (13) and (14), we have

〈y|A 〈τ |Z 〈σ|A′,B Ũ |x〉A |τ〉Z |σ〉A′,B + 〈x|A 〈τ |Z 〈σ|A′,B Ũ |y〉A |τ〉Z |σ〉A′,B

=
1
2

∥
∥
∥|τ ′

xy〉
Z
+ |τ ′

yx〉
Z

∥
∥
∥
2

.

By combining the above with Eq. (5), we complete the proof of Claim 6. �
This completes the proof of Theorem 5. �

6 Our Conversion for Commitments

In this section, we give a conversion for canonical quantum bit commitments
that converts the flavors of security using Theorem 5.

Theorem 7 (Converting Flavors). Let {Q0, Q1} be a canonical quantum
bit commitment scheme. Let {Q′

0, Q
′
1} be a canonical quantum bit commitment

scheme described as follows:

– The roles of commitment and reveal registers are swapped from {Q0, Q1} and
the commitment register is augmented by an additional one-qubit register.
That is, if C and R are the commitment and reveal registers of {Q0, Q1}, then
the commitment and reveal registers of {Q′

0, Q
′
1} are defined as C′ := (R,D)

and R′ := C where D is a one-qubit register.
– For b ∈ {0, 1}, the unitary Q′

b is defined as follows:

Q′
b := (Q0 ⊗ |0〉 〈0|D + Q1 ⊗ |1〉 〈1|D)

(
IR,C ⊗ Zb

DHD

)

where ZD and HD denote the Pauli Z and the Hadamard operators on D.
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Then, the following hold for X, Y ∈ {computationally,statistically,perfectly}:
1. If {Q0, Q1} is X hiding, then {Q′

0, Q
′
1} is X binding.

2. If {Q0, Q1} is Y binding, then {Q′
0, Q

′
1} is Y hiding.

Note that we have

Q′
b |0〉C′,R′ =

1√
2

(
(Q0 |0〉)C,R |0〉D + (−1)b(Q1 |0〉)C,R |1〉D

)

for b ∈ {0, 1} where (C′,R′) is rearranged as (C,R,D).
We defer the proof of Theorem 7 to the full version since it easily follows from

Theorem 5 as explained in Sect. 2.2.
Applications. We give applications of Theorem7 in the full version.
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