
Dynamic Coloring on Restricted Graph
Classes

Sriram Bhyravarapu1(B), Swati Kumari2, and I. Vinod Reddy2(B)

1 The Institute of Mathematical Sciences, HBNI, Chennai, India
sriramb@imsc.res.in

2 Department of Electrical Engineering and Computer Science,
IIT Bhilai, Raipur, India

{swatik,vinod}@iitbhilai.ac.in

Abstract. A proper k-coloring of a graph is an assignment of colors
from the set {1, 2, . . . , k} to the vertices of the graph such that no two
adjacent vertices receive the same color. Given a graph G = (V, E), the
Dynamic Coloring problem asks to find a proper k-coloring of G such
that for every vertex v ∈ V (G) of degree at least two, there exists at least
two distinct colors appearing in the neighborhood of v. The minimum
integer k such that there is a dynamic coloring of G using k colors is
called the dynamic chromatic number of G and is denoted by χd(G).

The problem is NP-complete in general, but solvable in polynomial
time on several restricted families of graphs. In this paper, we study the
problem on restricted classes of graphs. We show that the problem can
be solved in polynomial time on chordal graphs and biconvex bipartite
graphs. On the other hand, we show that it is NP-complete on star-convex
bipartite graphs, comb-convex bipartite graphs and perfect elimination
bipartite graphs. Next, we initiate the study on Dynamic Coloring
from the parameterized complexity perspective. First, we show that the
problem is fixed-parameter tractable when parameterized by neighbor-
hood diversity or twin-cover. Then, we show that the problem is fixed-
parameter tractable when parameterized by the combined parameters
clique-width and the number of colors.

Keywords: proper coloring · fixed-parameter tractable · dynamic
coloring · neighborhood diversity · twin-cover · bipartite graphs

1 Introduction

A vertex coloring (or proper coloring) of a graph G is an assignment of colors
to the vertices of the graph such that no two adjacent vertices are assigned the
same color. The minimum number of colors required for a proper coloring of G
is called the chromatic number of G denoted by χ(G). Given a graph G = (V,E)
and an integer k ∈ N, a proper k-coloring f : V (G) → [k] is called a dynamic
coloring, if for every vertex v ∈ V (G) of degree at least 2, there are at least two
distinct colors appearing in the neighborhood of v, i.e., |f(N(v))| ≥ 2, where the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Mavronicolas (Ed.): CIAC 2023, LNCS 13898, pp. 112–126, 2023.
https://doi.org/10.1007/978-3-031-30448-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30448-4_9&domain=pdf
https://doi.org/10.1007/978-3-031-30448-4_9


Dynamic Coloring on Restricted Graph Classes 113

set N(v) denotes the neighbors of v in G. The smallest integer k such that there
is a dynamic coloring of G using k colors is called the dynamic chromatic number
of G and is denoted by χd(G). Note that for any graph G, χd(G) ≥ χ(G).

Dynamic coloring was introduced by Montgomery [14] and it is NP-complete
on general graphs [13]. The problem has been studied on various restricted graph
classes. For example, polynomial time algorithms are obtained for trees [14] and
graphs with bounded tree-width [13] while it is NP-hard even for planar bipar-
tite graphs with maximum degree at most three and arbitrarily high girth [16].
Finding upper bounds of χd(G) for planar graphs have been studied in several
papers. It was shown in [3] that χd(G) ≤ 5 if G is a planar graph. Later in [10] it
was shown that if G is a connected planar graph with G �= C5, then χd(G) ≤ 4.
Dynamic coloring of graphs has been studied extensively by several authors, see
for instance [1,3,8,14,16].

In this paper, we study the decision version of the Dynamic Coloring
problem, which is stated as follows.

Dynamic Coloring
Input: A graph G = (V,E) and a positive integer k.
Question: Does G have a dynamic coloring using at most k colors?

In the first part of this paper, we study the computational complexity of
Dynamic Coloring on restricted families of graphs. We show that the prob-
lem can be solved in polynomial time on chordal graphs. As the problem is
NP-complete on bipartite graphs [13], we study its complexity on sub-classes
of bipartite graphs and close the gap between classes of graphs that are NP-
complete and P time solvable. It is known that χd(G) is unbounded [8] when G
is a bipartite graph. We show that χd(G) ≤ 4, when G is a biconvex bipartite
graph and give a polynomial time algorithm by exploiting its structural prop-
erties. We also show that the problem is NP-complete on several sub-classes of
bipartite graphs, a hierarchy of which is illustrated in Fig. 1.

In the second part of this paper, we study Dynamic Coloring from the
viewpoint of parameterized complexity [4,5]. In parameterized complexity, each
problem instance is associated with an integer, say k, called parameter. A param-
eterized problem is said to be fixed-parameter tractable (FPT) with respect to
a parameter k if it can be solved in time f(k)nO(1), where n is the input size
and f is a computable function only depending on the parameter k.

There may be many parameterizations for Dynamic Coloring. The most
natural parameter to consider is the “solution size”, which in this case is the
number of colors. As the problem is NP-complete [13] even when the number of
colors is three, we do not expect to have an FPT algorithm with solution size as
the parameter. There are parameters which are selected based on the structure
of the graph, called “structural parameterizations”. For instance, vertex cover,
tree-width, neighborhood diversity, etc. The hierarchy of a few structural graph
parameters is illustrated in Fig. 2.

We study the parameterized complexity of Dynamic Coloring with respect
to several structural graph parameters. Tree-width is one of the most used



114 S. Bhyravarapu et al.

Fig. 1. Hierarchy showing the relationship between sub-classes of bipartite graphs. The
graph classes considered in this paper are indicated by ∗.

structural parameters when dealing with NP-hard graph problems. Li et al.
in [16] showed that Dynamic Coloring is FPT when parameterized by tree-
width, following its formulation in monadic second order logic. One disadvantage
with tree-width is that it is unbounded for dense graphs (e.g., cluster graphs).
In this paper, we consider the parameters twin-cover and neighborhood diver-
sity, which also include dense graphs. We show that Dynamic Coloring is
fixed-parameter tractable when parameterized by twin-cover or neighborhood
diversity.

Next, we consider the graph parameter clique-width, which is suitable when
dealing with hard graph problems on dense graphs. Clique-width is a generaliza-
tion of the parameters twin-cover and neighborhood diversity, in the sense that
graphs of bounded neighborhood diversity or graphs of bounded twin-cover also
have bounded clique-width. We show that Dynamic Coloring is FPT when
parameterized by the combined parameters clique-width and the number of col-
ors. Hence studying the parameterized complexity of Dynamic Coloring with
respect to the above mentioned parameters reduces the gap between tractability
and intractability. We summarize our contribution below.

1. In Sect. 3, we show that Dynamic Coloring can be solved in polynomial
time on chordal graphs.

2. In Sect. 4, we show that Dynamic Coloring is polynomial time solvable
on bipartite permutation graphs, a sub-class of biconvex graphs. We extend
this algorithm to design a polynomial time algorithm for biconvex graphs, in
Sect. 5.

3. In Sect. 6, we show NP-completeness results on star-convex bipartite graphs,
comb-convex bipartite graphs and perfect elimination bipartite graphs



Dynamic Coloring on Restricted Graph Classes 115

Fig. 2. Hasse diagram of a few structural graph parameters. An edge from a parameter
k1 to a parameter k2 means that there is a function f such that for all graphs G, we
have k1(G) ≤ f(k2(G)). The parameters considered in this paper are indicated by ∗.

strengthening the NP-completeness result of Dynamic Coloring on bipar-
tite graphs.

4. In Sects. 7 and 8, we show that Dynamic Coloring is FPT when param-
eterized by neighborhood diversity, twin-cover or the combined parameters
clique-width and the number of colors.

2 Preliminaries

For k ∈ N, we use [k] to denote the set {1, 2, . . . , k}. All graphs we consider in
this paper are undirected, connected, finite and simple. For a graph G = (V,E),
we denote the vertex set and edge set of G by V (G) and E(G) respectively. We
use n to denote the number of vertices and m to denote the number of edges of
a graph. An edge between vertices x and y is denoted as xy for simplicity. For
a subset X ⊆ V (G), the graph G[X] denotes the subgraph of G induced by the
vertices of X.

For a vertex set X ⊆ V (G), we denote by G \ X, the graph obtained from
G by deleting all vertices of X and their incident edges. For a vertex v ∈ V (G),
by N(v), we denote the set {u ∈ V (G) | vu ∈ E(G)} and we use N [v] to
denote the set N(v) ∪ {v}. The neighborhood of a vertex set S ⊆ V (G) is
N(S) = (∪v∈V (G)N(v))\S. A graph is bipartite if its vertex set can be partitioned
into two disjoint sets such that no two vertices in the same set are adjacent. We
say a vertex v of degree at least two to have satisfied dynamic coloring property
if there exist at least two vertices in the neighborhood of v that are colored
distinctly.

Due to space constraints, the proofs of the Theorems marked (�) are pre-
sented in the full version of the paper.



116 S. Bhyravarapu et al.

3 Chordal Graphs

A vertex v of a graph G is called a simplicial vertex if the subgraph of G induced
by the vertex set {v}∪N(v) is a complete graph. A perfect elimination ordering
is a vertex ordering v1, . . . , vn of V (G) such that each vi is simplicial in G[i],
the subgraph induced by the vertices {v1, . . . , vi}. A graph G is chordal if and
only if it has a perfect elimination ordering. Given a graph, a perfect elimination
ordering of G can be done in polynomial time [15]. In this section, we show
Dynamic Coloring is polynomial time solvable on chordal graphs.

Theorem 1. Let G be a chordal graph with at least two edges, then

χd(G) =

{
3 if ω(G) = 2
ω(G) if ω(G) ≥ 3

where ω(G) is the size of a largest clique of G.

Proof. Let G = (V,E) be a chordal graph. Hence G is Ck-free, for k ≥ 4. If
ω(G) = 2, then G is Ck-free for k ≥ 3. That is, G is a tree, hence from [14] we
know χd(G) = 3. We now deal with the case when ω(G) ≥ 3.

Let v1, . . . , vn be a perfect elimination ordering (PEO) of G. That is, each
vi is simplicial in G[i]. Let f : V (G) → [ω(G)] be a coloring of G defined as
follows: assign f(v1) = 1 and f(v2) = 2. For each vi, where i ≥ 3, let Di =
N(vi) ∩ {v1, . . . , vi−1} be the neighbors of vi in G[i] and Ti be the set of colors
used to color the vertices of Di. Then,

f(vi) =

{
min{[ω(G)] \ {f(vj), f(vk)}} if Di = {vj} and Dj = {vk}, where k < j < i

min{[ω(G)] \ Ti} otherwise

Clearly, f is a proper coloring as each vi is greedily assigned a color (min-
imum) not appearing in Ti. Next, we show that f is dynamic coloring. For a
vertex vi, if |Di| ≥ 2 then |Ti| ≥ 2 (i.e., |f(N(vi))| ≥ 2). If |Di| = 1, and let
Di = {vj}, then vi has only one neighbor vj in G[i].

If vi has no neighbor in the set {vi+1, . . . , vn} then the degree of vi in G
is one. Suppose, vi has a neighbor in the set {vi+1, . . . , vn}. Let vp be the first
neighbor (according to PEO) of vi in the set {vi+1, . . . , vn}. If |Dp| = 1, then
by case 1, f(vp) �= f(vj), f(vp) �= f(vi) and f(vi) �= f(vj), hence vi has at least
two neighbors with distinct colors. Else if |Dp| = 2, then Dp = {vj , vi}, again
by case 2, the three vertices vj , vi and vp are colored with three distinct colors.
Hence vi has at two neighbors with distinct colors. Note that |Dp| cannot be
greater than 2 because of the choice of p.

It is easy to see that χd(G) ≥ ω(G) as we need at least ω(G) colors to
properly color the largest clique of G. Since any vertex vi has � = |Di| many
neighbors in G[i], at least one of the colors 1, 2, · · · , �+1 is not used in Ti. Hence
our algorithm finds a coloring of G with at most max

i
{|Ti| + 1} colors, which is

at most ω(G).
Hence χd(G) = ω(G). The time required for the above coloring procedure is

O(n2). 
�



Dynamic Coloring on Restricted Graph Classes 117

4 Bipartite Permutation Graphs

In this section, we show that Dynamic Coloring is polynomial time solvable
on bipartite permutation graphs. We start the section with some basic definitions
and notations that are needed to describe the algorithm.

Definition 1. (Chain Graph [6]). A bipartite graph G = (A ∪ B) is called a
chain graph if for every two vertices u1, u2 ∈ A we have either N(u1) ⊆ N(u2)
or N(u2) ⊆ N(u1).

That is, there is an ordering of the vertices of A, say u1, u2, . . . u|A|, such that
N(ui) ⊆ N(ui+1), 1 ≤ i < |A|. As a consequence, we can also find an ordering
of the vertices of B, say v1, v2, . . . v|B|, such that N(vi) ⊆ N(vi+1), 1 ≤ i < |B|.

We can see that each part of a chain graph can be linearly ordered under the
inclusion of their neighborhoods. We say a vertex ordering σ of A is increasing
if x <σ y implies N(x) ⊆ N(y), and decreasing if x <σ y implies N(y) ⊆ N(x).

Definition 2. (Multi-chain Ordering [2,6]). Given a connected graph G =
(V,E), we arbitrarily choose a vertex as v0 ∈ V (G) and construct distance layers
L0, L1, . . . , Lp from v0. The layer Li, where i ∈ [p], represents the set of vertices
that are at a distance i from v0 and p is the largest integer such that Lp �= ∅.

We say that these layers form a multi-chain ordering of G if for every two
consecutive layers Li and Li+1, where i ∈ {0, 1, . . . , p − 1}, we have that G[Li ∪
Li+1] forms a chain graph.

We say a graph G admits multi-chain ordering if there exists a vertex v0 ∈
V (G) such that the distance layers form a multi-chain ordering. An illustration
of a multi-chain ordering of a graph is given in Fig. 3. It is known [6] that all
connected permutation graphs and interval graphs admit multi-chain ordering.
We first observe the following on multi-chain ordering.

Observation 2. If a graph G admits a multi-chain ordering with p + 1 layers,
then there exists a vertex v in Li, i ∈ [p], such that N(v) ⊇ Li+1.

Definition 3. (Bipartite Permutation Graph [2]). A connected graph G =
(V,E) is bipartite permutation if and only if V (G) can be partitioned into q + 1
disjoint independent sets L0, L1, . . . , Lq (in this order) in such a way that

1. Any two vertices in non-consecutive sets are non-adjacent.
2. Any two consecutive sets Li−1 and Li induce a chain graph, denoted by Gi.
3. For each i ∈ {1, 2, . . . , q − 1}, there is an ordering of vertices of the set Li

such that it is non-increasing in Gi and non-decreasing in Gi+1. For the set
L0 (resp. Lq), there is a non-decreasing (resp. non increasing) ordering of
vertices of L0 (resp. Lq) in G1 (resp. Gq).

Observation 3. If c is any dynamic coloring of a bipartite permutation graph
that uses exactly three colors then at most two colors are used in any layer Li,
i.e., |c(Li)| ≤ 2.



118 S. Bhyravarapu et al.

Fig. 3. An illustration of a multi-chain ordering of a graph. The ordering of the vertices
in L2 is σ2 = v3, v4, v5. In the chain graph G[L1 ∪ L2] we have that N(v3) ⊇ N(v4) ⊇
N(v5) and in G[L2 ∪ L3] we have that N(v3) ⊆ N(v4) ⊆ N(v5).

Proof. Suppose there exists a layer Li such that |c(Li)| = 3. From Observation
2, there is a vertex v ∈ Li−1 such that N(v) ⊇ Li. Since v is adjacent to all
vertices in Li and |c(Li)| = 3, there exists a color assigned to a vertex in Li that
is same as c(v). This is a contradiction to the fact that c is a proper coloring
and thus a dynamic coloring. 
�

We now show a polynomial time algorithm to decide if the dynamic chromatic
number of a bipartite permutation graph is three.

Lemma 1. Given a bipartite permutation graph G, there is a polynomial algo-
rithm to decide if χd(G) = 3.

Proof. Let G = (V,E) be a bipartite permutation graph and L0, L1, . . . , Lp be
the distance layers in a multi-chain ordering of G constructed from an arbitrarily
chosen vertex v0 ∈ V (G), according to Definition 3. If χd(G) = 3, then from
Observation 3, we have that in any dynamic coloring c : V (G) → {c1, c2, c3} of
G, at most two colors are used for assigning colors in any layer Li of G. This
leaves us with the following cases: either |c(Li)| = 1 or |c(Li)| = 2. At each layer
Li, 0 ≤ i ≤ p, we maintain all possible colorings of Li in the following manner.

If Li uses exactly one color, then we have three possible ways of coloring
Li. That is, we have three colorings where each coloring of Li represents all its
vertices being assigned the same color (one of the three colors).

If Li uses exactly two colors, say c1 and c2, then we guess four vertices: the
first and the last vertices in the ordering σi of Li that are assigned the colors c1
and c2. Using this guess, we extend the coloring to the remaining vertices of Li

as follows. Let xi
1 and yi

1 (resp. xi
2 and yi

2) be the first and the last vertices in σi

which are colored with c1 (resp. c2). Let w ∈ Li \{xi
1, y

i
1, x

i
2, y

i
2}. From the above

description, we have that either xi
1 < w < yi

1 or xi
2 < w < yi

2. If xi
1 < w < yi

1

then we color w with c1 else we color it with c2.
Let c : V (G) → {c1, c2, c3} be a dynamic coloring of G. Let c(Li) = {c1, c2}

and {xi
1, y

i
1, x

i
2, y

i
2} be the first and the last vertices in σi that are assigned the



Dynamic Coloring on Restricted Graph Classes 119

colors c1 and c2. Then the coloring obtained by applying the above extension
procedure, on each layer Li, on vertices {xi

1, y
i
1, x

i
2, y

i
2} is also a dynamic coloring

of G. Hence it is enough to know the first and the last vertices in the ordering
σi of Li that are assigned the colors c1 and c2.

The number of colorings for a pair of colors c1 and c2 is at most |Li|4. Since
there are three such pairs, the total number of colorings arising out of Li is at
most 3|Li|4. Using these local colorings at the levels, we check for the existence
of a dynamic coloring of G using a dynamic programming routine.

Let Ci be the set of colorings of Li obtained from the above description. We
call a triplet coloring (ci−1, ci, ci+1), where ci−1 ∈ Ci−1, ci ∈ Ci and ci+1 ∈ Ci+1,
as a feasible coloring (or simply feasible) for Li, where 1 ≤ i ≤ p − 1, if every
vertex of Li admits dynamic coloring property when the colorings ci−1, ci, and
ci+1 are assigned to Li−1, Li and Li+1 respectively. Similarly, we call a pair
(c0, c1) (resp. (cp−1, cp)) as feasible for the layer L0 (resp. Lp). Let Ti denote the
set of all feasible colorings corresponding to the layer Li.

We now use a dynamic programming approach to check if there exists a
dynamic coloring of G using three colors. We have an entry d[i, fi] for each
feasible coloring fi at layer Li that defines the existence of a coloring in G[L0 ∪
L1∪· · ·∪Li+1] such that all vertices in L0∪L1∪· · ·∪Li satisfy dynamic coloring
property given the feasible coloring fi at Li.

Let fi = (ci−1, ci, ci+1). We set the entry d[i, fi] = true if fi is feasible
and there exists a feasible coloring fi−1 = (x, ci−1, ci) at Li−1 such that d[i −
1, fi−1] = true. Otherwise, we set d[i, fi] = false. We initialize d[0, f ] = true, for
each feasible coloring f = (c0, c1) of L0 if the vertex v0 ∈ L0 satisfies dynamic
coloring when the colorings c0 and c1 are assigned to the layers L0 and L1

respectively. Otherwise, we initialize d[0, f ] = false. If there exists an entry
d[p, fp], for some feasible coloring fp of Lp, such that d[p, fp] = true, we decide
that there exists a dynamic coloring of G using three colors. If d[p, fp] = false for
every feasible coloring fp of Lp, then we decide that G does not have a dynamic
coloring using three colors.

The correctness of the algorithm follows from the description of the algo-
rithm. We now compute the running time of the algorithm which includes guess-
ing the colorings at each layer and applying the dynamic programming routine.
Computing the colorings for all the layers takes O(p · |Li|4) ≤ O(n5) time. The
number of feasible colorings is at most |Li−1|4 ·|Li+1|4 ·|Li+1|4 ≤ n12. Computing
if a coloring is feasible coloring can be done in O(n2) time. All the entries d[i, ·]
pertaining a layer can be computed in O(n14) time. Since i ≤ p ≤ n, the total
time taken is O(n15). 
�
Theorem 4. Dynamic Coloring can be solved in polynomial time on bipartite
permutation graphs.

Proof. Let G = (V,E) be a connected bipartite permutation graph. Since bipar-
tite permutation graphs are a sub-class of biconvex graphs, it follows from
Lemma 2 that χd(G) ≤ 4. It is easy to see that (i) χd(G) = 1 if and only if
G = K1, and (ii) χd(G) = 2 if and only if G = K2. If G does not belong to



120 S. Bhyravarapu et al.

any of the above cases, then χd(G) ∈ {3, 4}. We check whether χd(G) = 3 using
Lemma 1. If χd(G) �= 3, we decide that χd(G) = 4. 
�

5 Biconvex Graphs

Definition 4 (Biconvex Graph). An ordering σ of X in a bipartite graph B =
(X,Y,E) has the adjacency property if for every vertex y ∈ Y , the neighborhood
N(y) consists of vertices that are consecutive (an interval) in the ordering σ
of X. A bipartite graph (X,Y,E) is biconvex if there are orderings of X (with
respect to Y ) and Y (with respect to X) that fulfills the adjacency property.

Theorem 5. Dynamic Coloring can be solved in polynomial time on biconvex
graphs.

Towards showing Theorem 5, we first show that the dynamic chromatic num-
ber of a biconvex graph is at most 4.

Lemma 2. If G is a biconvex graph then χd(G) ≤ 4.

Proof. Let G = (X,Y,E) be a biconvex graph. We assume that G has at least
five vertices, otherwise, trivially χd(G) ≤ 4.

We use the property that G is biconvex. Let σ = x1, x2, . . . , xp be an enu-
meration of vertices of X and π = y1, y2, . . . , yq be an enumeration of vertices
of Y . For each i ∈ [p], color xi with 1 if i is odd, else color it with 2. For each
j ∈ [q], color yj with 3 if i is odd, else color it with 4. Consider any vertex xi ∈ X
with degree at least two. As G is convex over Y , the vertices adjacent to xi are
consecutive with respect to the ordering π. That is, if yj is a neighbor of xi,
then at least one of yj+1 or yj−1 is a neighbor of xi. Hence the neighborhood of
xi contains a vertex of color 3 and a vertex of color 4. Similarly, we can show
that the neighborhood of every vertex yj ∈ Y contains a vertex of color 1 and a
vertex of color 2. Hence, the above coloring is a dynamic coloring of G. 
�

We now proceed to the proof of Theorem 5 which is similar to the proof
of bipartite permutation graphs in Theorem 4. Hence, we give a short proof
highlighting the key differences.

Proof. (Short Proof of Theorem 5). Let G be a biconvex graph. We know that
χd(G) ≤ 4, from Lemma 2. Similar to the proof of bipartite permutation graphs,
it is sufficient to check whether χd(G) ∈ {3, 4}. Since all connected biconvex
graphs admit multi-chain ordering [6], it is possible to extend our algorithm in
Theorem 4 to biconvex graphs.

The difference between bipartite permutation graphs and biconvex graphs is
that the latter has two vertex orderings in a multi-chain ordering, say σi,1 and
σi,2, for each layer Li, one corresponding to Li−1 and the other corresponding
to Li+1. For each of the two orderings, we guess the first and last vertices in
the respective ordering that are assigned colors based on how many colors are
seen in each layer. However, we need to ensure that the guesses obtained in



Dynamic Coloring on Restricted Graph Classes 121

the orderings should complement each other in the sense that a vertex v ∈ Li

cannot be assigned the color c1 in one ordering and the color c2 in the other
ordering. The rest of the algorithm is similar to Theorem 4. The number of
colorings at each layer is at most |Li|8. The number of feasible colorings is at
most |Li−1|8 · |Li|8 · |Li+1|8 ≤ n24. Considering the number of entries in the
dynamic programing table, the total time taken is O(n27). 
�

6 Hardness Results on Sub-classes of Bipartite Graphs

Theorem 6 (�). Dynamic Coloring is NP-complete on perfect elimination
bipartite graphs, star-convex bipartite graphs and comb-convex graphs.

7 Parameterization by Neighborhood Diversity

The graph parameter neighborhood diversity was introduced by Lampis [11],
and it is a generalization of the parameter vertex cover. In this section, we show
that Dynamic Coloring is fixed-parameter tractable parameterized by neigh-
borhood diversity. Our main idea is to reduce our problem to the integer linear
programming problem that is fixed-parameter tractable when parameterized by
the number of variables.

Definition 5. (Neighborhood Diversity [11]). Let G = (V,E) be a graph.
Two vertices u, v ∈ V (G) are said to have the same type if and only if N(u) \
{v} = N(v)\{u}. A graph G has neighborhood diversity at most t, if there exists
a partition of V (G) into at most t sets V1, V2, . . . , Vt such that all the vertices in
each set have the same type.

Observe that each Vi either forms a clique or an independent set in G, for all
i ∈ [t]. We call the set Vi as a clique type (resp. independent type) if G[Vi] is a
clique (resp. independent set). If |Vi| = 1, then we consider Vi as an independent
type. For each i, j ∈ [t], i �= j, it is the case that either every vertex in Vi is
adjacent to every vertex in Vj or no vertex in Vi is adjacent to any vertex in Vj .

For each A ⊆ {1, 2, · · · , t}, we denote a subset type of G by TA = {Vi : i ∈ A}.
We denote the set of types neighboring the type Vi in G by adj(Vi). That is,
Vj ∈ adj(Vi), if every vertex in Vi is adjacent to every vertex in Vj . Given a
proper coloring f : V (G) → [k], we say Vi admits dynamic coloring with respect
to f if for all v ∈ Vi, |f(N(v))| ≥ 2.

Given a graph G = (V,E), there exists an algorithm that runs in polynomial
time [11] and finds a minimum sized neighborhood partition of V (G). So, we
assume that the types V1, V2, . . . , Vt are given as input. If t = 1, then G is a
complete graph and the problem can be solved easily. Hence, we assume t ≥ 2.

Observation 7. If there exists a proper coloring of G and Vi is a clique type,
then Vi admits dynamic coloring.



122 S. Bhyravarapu et al.

Proof. Recall that each clique type has at least two vertices. Let Vi be a clique
type. Since t ≥ 2 and G is connected, there exists a type Vj ∈ adj(Vi) such that
every vertex in Vi is part of a triangle (with two vertices from Vi and a vertex
from Vj) that uses three distinct colors in any proper coloring. Thus each vertex
in Vi has at least two differently colored neighbors which implies that Vi admits
dynamic coloring. 
�

We now present the main theorem of the section.

Theorem 8. Dynamic Coloring can be solved in O(q2.5q+o(q)n) time, where
q = 2t and t is the neighborhood diversity of G.

We use Integer Linear Programming (ILP) to show that Dynamic Color-
ing is FPT when parameterized by neighborhood diversity. The following result
shows that ILP is FPT when parameterized by the number of variables.

Theorem 9. ([7,9,12]). An ILP feasibility instance of size n can be solved in
O(q2.5q+o(q)n) time and nO(1) space, where q is the number of variables.

The crux of the proof is to distribute the colors across the type sets in a
dynamic coloring of G (if one exists). Instead of looking at the list of colors
featuring in the types of TA in a dynamic coloring, where A ⊆ [t], we are only
interested in the number of colors that appear exclusively in each of the types
of TA in the coloring.

We now define variables and constraints for ILP. For each subset A ⊆ [t], we
have a variable nA that denotes the number of colors used exclusively in all the
types of TA and not used in any of the types {V1, V2, . . . , Vt} \ TA. For example,
if A = {4, 6} (i.e., TA = {V4, V6}) and nA = 3, then there are three colors say
c1, c2, c3 (the exact values of which will be decided later) where each of the colors
is used in both V4 and V6. Moreover, the colors c1, c2, c3 are not assigned to any
of the vertices in types {V1, V2, . . . , Vt} \ {V4, V6}. Notice that the number of
variables is at most 2t. With this, we proceed to describe the constraints of ILP.

(C0) Consider only those subsets types TA such that there do not exist types
Vi, Vj ∈ TA such that Vi ∈ adj(Vj).
We only consider those subset types TA which do not have a pair of adja-
cent types. This constraint ensures that, if two types Vi and Vj are adjacent
then the set of colors used in Vi is disjoint from the set of colors used in
Vj .

(C1) The sum of all the variables is at most k. That is
∑
A

nA ≤ k.

This constraint ensures that the number of colors used in any coloring is
at most k.

(C2) For each clique type Vi, 1 ≤ i ≤ t, the sum of the variables nA for which
Vi ∈ TA is equal to the number of vertices in Vi. That is

∑
A:Vi∈TA

nA = |Vi|.
This constraint ensures that the number of colors used for coloring a clique
type Vi in any coloring is equal to |Vi|.



Dynamic Coloring on Restricted Graph Classes 123

(C3) For each independent type Vi, 1 ≤ i ≤ t, the sum of the variables nA for
which Vi ∈ TA is at most the minimum of k and |Vi|. That is,

∑
A:Vi∈TA

nA ≤
min{k, |Vi|}. Also the sum of variables nA for which Vi ∈ TA is at least
one. That is,

∑
A:Vi∈TA

nA ≥ 1.

This constraint ensures that, in any coloring the number of colors used for
coloring an independent type Vi is (i) at most the minimum of k and |Vi|,
and (ii) at least one.

(C4) For each independent type Vi, 1 ≤ i ≤ t, if the degree of every vertex
in Vi is at least two then the sum of variables nA for which there exists
Vj ∈ adj(Vi) ∩ TA is at least 2. That is,

∑
A:∃Vj∈adj(Vi)∩TA

nA ≥ 2.

This constraint ensures that the number of colors used in the neighborhood
of any vertex (with degree at least two) in an independent type is at least
two.

(C5) For each A ⊆ [t], nA ≥ 0.
The number of colors used exclusively in all the types in TA is at least 0.

We use Theorem 9 to obtain a feasible assignment for ILP, if one exists. We
claim the following: there is a feasible assignment of ILP if and only if there is
a dynamic coloring of G using at most k colors.

Feasibility Implies Colorability: Using a feasible assignment of variable val-
ues returned by ILP, we construct a dynamic coloring f : V (G) → [k] that assigns
colors greedily to the vertices of G, a pseudo-code is presented as Algorithm 1.

We now show that f is a dynamic coloring of G. To show this, we need to
show that (a) every vertex is colored, (b) f is a proper coloring and (c) every
vertex with degree at least two has two distinctly colored neighbors. Every vertex
is assigned a color in Algorithm 1. The constraint (C0) ensures that no color is
used in both Vi and Vj if they are adjacent. The constraint (C2) ensures that
no two vertices in a clique type are assigned the same color. Hence f is a proper
coloring of G.

We now show that for each vertex v with degree at least two, |f(N(v))| ≥ 2.
Since f is a proper coloring, from Observation 7, we have that each clique type
Vi admits dynamic coloring. Consider an independent type Vj . Since the graph is
connected, we have that |adj(Vj)| ≥ 1. If there exists a clique type V� ∈ adj(Vj)
then each vertex v in Vj has |f(N(v))| ≥ 2. This is because the size of a clique
type V� is at least two and f is a proper coloring. Otherwise, if all the types in
adj(Vj) are independent types, then there exists at least two distinctly colored



124 S. Bhyravarapu et al.

vertices in the neighborhood of every vertex in Vj due to constraint (C4). Thus
f is a dynamic coloring of G.

Algorithm 1: A dynamic coloring from a feasible assignment of ILP.
Input: TA and nA, for each A ⊆ [t]
Output: A dynamic coloring of G

1 C(TA) = ∅, for each A ⊆ [t] � C(TA): set of colors associated to TA

2 c = 0 � c: color counter
3 for each A ⊆ [t] do
4 C(TA) = {c + 1, c + 2, . . . , c + nA}
5 c = c + nA

6 C(Vi) = ∅, for each i ∈ [t] � C(Vi): set of colors associated to Vi

7 for each i ∈ [t] do
8 C(Vi) =

⋃
A:Vi∈TA

C(TA)

9 for each i ∈ [t] do
10 if Vi is a clique type then
11 Color the vertices of Vi from C(Vi) such that each vertex is

assigned a distinct color

12 else
13 Color the vertices of Vi from C(Vi) such that each color of C(Vi) is

used at least once

14 return (Coloring of G)

Colorability Implies Feasibility: Given a dynamic coloring f : V (G) → [k]
of G, we find a feasible assignment to the ILP. For each A ⊆ [t], we set nA to
be the number of colors that are assigned exclusively to each of the types in TA,
that is

nA = |
⋂

Vi∈TA

f(Vi) −
⋃

Vi /∈TA

f(Vi)|.

We now show that such an assignment satisfies the constraints (C0)-(C5). As
f is a proper coloring, no two adjacent types share the same color. Hence the
constraint (C0) is satisfied.

Each color c ∈ [k] is uniquely associated with a type TA, where c is used in
all the types of TA and not used in any of the types {V1, V2, . . . , Vt} \ TA. The
color c is therefore contributed to the variable nA and not contributed to any
other variable nA′ where A �= A′. Hence we get that the sum of variables is at
most k. Hence the constraints (C1) and (C5).

Every vertex in a clique type Vi is assigned a distinct color in f and hence
the sum of variables nA such that Vi ∈ TA is equal to |Vi|. Hence the constraint
(C2) is satisfied.

Consider an independent type Vj . Clearly |f(Vj)| ≤ min{k, |Vj |}. Hence the
constraint (C3) is satisfied. For each vertex v ∈ Vj of degree at least two, we
have that |f(N(v))| ≥ 2. That is there are two distinct colors in the neighboring



Dynamic Coloring on Restricted Graph Classes 125

types of Vj . Since these colors contribute to some variables, the constraint (C4)
is satisfied.

Running Time: The running time of the algorithm is proportional to the time
needed to (i) reduce dynamic coloring problem to the ILP problem, and (ii) find
a feasible solution to the created ILP instance. The constraint (C0) considers
the subset types from the 2t subset types such that no two types in a subset
type are adjacent. This can be done in O(2tt2) time. The constraints (C1) and
(C5) can be constructed in O(2t) time. The constraints (C2) and (C3) can be
constructed in O(t2t) time. The constraint (C4) can be constructed in O(t2t)
time. Finding a feasible assignment of ILP using Theorem 9 takes O(q2.5q+o(q)n)
time, where q = 2t. The latter part dominates the former and hence the overall
running time is O(q2.5q+o(q)n) time, where q = 2t.

This completes the proof of Theorem 8.

8 Parameterizations by Twin-Cover and Clique-Width

Theorem 10 (�). Dynamic Coloring can be solved in O(q2.5q+o(q)n) time,
where q = 2t+2t and t is the size of the twin-cover of G.

Theorem 11 (�). Dynamic Coloring can be solved in O(3O(wk)poly(n)) time
where w is the clique-width of the graph G and k is the number of colors.

9 Conclusion

In this paper, we study Dynamic Coloring on various restricted graph classes
and from the viewpoint of parameterized complexity. We presented polynomial
time algorithms for chordal graphs and biconvex graphs. We have strengthened
the NP-completeness result for bipartite graphs by showing that the problem
remains NP-complete for star-convex bipartite graphs, comb-convex bipartite
graphs and perfect elimination bipartite graphs. We show that the problem is
FPT when parameterized by neighborhood diversity, twin-cover or the combined
parameters clique-width and the number of colors.

We conclude the paper with the following list of open problems.

1. What is the parameterized complexity of Dynamic Coloring parameterized
by (a) distance to cluster, and (b) distance to co-cluster?

2. What is the complexity of Dynamic Coloring for (a) convex bipartite
graphs, and (b) permutation graphs?

3. Will our results hold for a generalized version of the problem called r-
Dynamic Coloring [14], where every vertex v of degree at least one, is
adjacent to at least min{r, d} many colors, where d is the degree of v?.

Acknowledgments. We would like to thank anonymous referees for their helpful com-
ments. The first author and the third author acknowledges SERB-DST for supporting
this research via grants PDF/2021/003452 and SRG/2020/001162 respectively.



126 S. Bhyravarapu et al.

References

1. Alishahi, M.: Dynamic chromatic number of regular graphs. Discret. Appl. Math.
160(15), 2098–2103 (2012)

2. Brandstädt, A., Lozin, V.V.: On the linear structure and clique-width of bipartite
permutation graphs. Ars Comb. 67, 273–281 (2003)

3. Chen, Y., Fan, S., Lai, H.-J., Song, H., Sun, L.: On dynamic coloring for planar
graphs and graphs of higher genus. Discret. Appl. Math. 160(7–8), 1064–1071
(2012)

4. Cygan, M., et al.: Parameterized Algorithms, vol. 4. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21275-3

5. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity, vol. 4.
Springer, Cham (2013). https://doi.org/10.1007/978-1-4471-5559-1

6. Enright, J.A., Stewart, L., Tardos, G.: On list coloring and list homomorphism of
permutation and interval graphs. SIAM J. Discret. Math. 28(4), 1675–1685 (2014)

7. Frank, A., Tardos, É.: An application of simultaneous diophantine approximation
in combinatorial optimization. Combinatorica 7(1), 49–65 (1987)

8. Jahanbekam, S., Kim, J., Suil, O., West, D.B.: On r-dynamic coloring of graphs.
Discrete Appl. Math. 206, 65–72 (2016)

9. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12(3), 415–440 (1987)

10. Kim, S.J., Lee, S.J., Park, W.J.: Dynamic coloring and list dynamic coloring of
planar graphs. Discrete Appl. Math. 161(13), 2207–2212 (2013)

11. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica
64(1), 19–37 (2012)

12. Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper.
Res. 8(4), 538–548 (1983)

13. Li, X., Yao, X., Zhou, W., Broersma, H.: Complexity of conditional colorability of
graphs. Appl. Math. Lett. 22(3), 320–324 (2009)

14. Montgomery, B.: Dynamic Coloring of Graphs. West Virginia University, Morgan-
town (2001)

15. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination
on graphs. SIAM J. Comput. 5(2), 266–283 (1976)

16. Saqaeeyan, S., Mollaahamdi, E.: Dynamic chromatic number of bipartite graphs.
Sci. Ann. Comput. Sci. 26(2), 249 (2016)

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4471-5559-1

	Dynamic Coloring on Restricted Graph Classes
	1 Introduction
	2 Preliminaries
	3 Chordal Graphs
	4 Bipartite Permutation Graphs
	5 Biconvex Graphs
	6 Hardness Results on Sub-classes of Bipartite Graphs
	7 Parameterization by Neighborhood Diversity
	8 Parameterizations by Twin-Cover and Clique-Width
	9 Conclusion
	References




