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Preface

This volume contains the papers presented at the 13th International Symposium on
Algorithms and Complexity (CIAC 2023), which was held on June 13–16, 2023, in
Larnaca, Cyprus. This event follows the tradition of the biannual CIAC symposium.

The purpose of CIAC is to bring together researchers from computer science and
mathematics to present and discuss original research on algorithms and complexity. It is
intended to cover all important areas of the field, including but not limited to algorithm
design and analysis, sequential, parallel and distributed algorithms, data structures, com-
putational and structural complexity, lower bounds and limitations of algorithms, ran-
domized and approximation algorithms, parameterized algorithms and parameterized
complexity classes, smoothed analysis of algorithms, alternatives to the worst-case anal-
ysis of algorithms (e.g., algorithms with predictions), on-line computation and compet-
itive analysis, streaming algorithms, quantum algorithms and complexity, algorithms in
algebra, geometry, number theory and combinatorics, computational geometry, algo-
rithmic game theory and mechanism design, algorithmic economics (including auctions
and contests), computational learning theory, computational biology and bioinformat-
ics, algorithmic issues in communication networks, algorithms for discrete optimization
(including convex optimization) and algorithm engineering.

49 submissions to CIAC 2023 were received. Each submission was reviewed by at
least three Program Committee members. The Program Committee decided to accept
25 papers. The program of CIAC 2023 featured three invited talks by three outstanding
researchers in the general field of algorithms and complexity: Friedhelm Meyer auf der
Heide, Pino Persiano and Paul Spirakis. We are very grateful to Friedhelm, Pino and
Paul for joining us in Larnaca and for their invited talks.

The Program Committee of CIAC 2023 awarded a Best Paper Award jointly and
equally to the excellent papers “On One-Sided Testing Affine Subspaces,” by Nader
Bshouty, and “Approximating Power Node-Deletion Problems,” by Toshihiro Fujito,
Kento Mukae and Junya Tsuzuki. These papers received highest scores in the reviewing
process. We would like to warmly congratulate their authors for receiving the award.
We are extremely thankful to Springer for its generous financial support that made this
award possible.

Our sincere thanks go to all authorswho submitted their researchwork toCIAC2023.
Wewould like to thank all ProgramCommitteemembers, and also the external reviewers
who assisted them, for their timely commitment and their thorough reviewing job. We
are indebted to Easy Conferences Ltd., and particularly to Petros Stratis and Christos
Therapontos, for their meticulous work in organizing CIAC 2023. The designers and the
administrators of the Easy Chair conference system, which assisted tremendously the
Program Committee in its work, deserve special thanks.We are honored that CIAC 2023
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is embraced under the auspices of the European Association for Theoretical Computer
Science (EATCS).

June 2023 Marios Mavronicolas
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Selected Combinatorial Problems
Through the Prism of Random
Intersection Graphs Models

Paul G. Spirakis1,2(B) , Sotiris Nikoletseas2,3 ,
and Christoforos Raptopoulos3

1 Department of Computer Science, University of Liverpool, Liverpool, UK
p.spirakis@liverpool.ac.uk

2 Computer Technology Institute, Patras, Greece
nikole@ceid.upatras.gr

3 Computer Engineering and Informatics Department, University of Patras,
Patras, Greece

raptopox@ceid.upatras.gr

1 Introduction and Motivation

We discuss a simple, yet general family of models, namely Random Intersection
Graphs (RIGs), initially introduced by Karoński et al. [4] and Singer-Cohen
[10]. In such models there is a universe M of labels and each one of n vertices
selects a random subset of M. Two vertices are connected if and only if their
corresponding subsets of labels intersect. A formal definition is given below:

Definition 1 (Random Intersection Graph - Gn,m,p [4,10]). Consider a
universe M = {1, 2, . . . ,m} of labels and a set of n vertices V . Assign indepen-
dently to each vertex v ∈ V a subset Sv of M, choosing each element i ∈ M
independently with probability p and draw an edge between two vertices v �= u if
and only if Sv ∩Su �= ∅. The resulting graph is an instance Gn,m,p of the random
intersection graphs model.

In this model we also denote by Li the set of vertices that have chosen label
i ∈ M . Given a random instance Gn,m,p of the random intersection graphs model,
we will refer to {Li, i ∈ M} as its label representation, and the corresponding
matrix R with columns the incidence vectors of label sets assigned to vertices
is called the representation matrix. Furthermore, we refer to the bipartite graph
with vertex set V ∪ M and edge set {(v, i) : i ∈ Sv} = {(v, i) : v ∈ Li} as the
bipartite random graph Bn,m,p associated to Gn,m,p. Notice that the associated
bipartite graph is uniquely defined by the label representation.

It follows from the definition of the model that the (unconditioned) probabil-
ity that a specific edge exists is 1 − (1 − p2)m. Therefore, if mp2 goes to infinity
with n, then this probability goes to 1. We can thus restrict the range of the
parameters to the “interesting” range of values mp2 = O(1) (i.e. the range of
values for which the unconditioned probability that an edge exists does not go
c© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
M. Mavronicolas (Ed.): CIAC 2023, LNCS 13898, pp. 1–4, 2023.
https://doi.org/10.1007/978-3-031-30448-4_28
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2 P. G. Spirakis et al.

to 1). Furthermore, as is usual in the literature, we will assume that the number
of labels is some power of the number of vertices, i.e. m = nα, for some α > 0.

It is worth mentioning that the edges in Gn,m,p are not independent. For
example, there is a strictly positive dependence between the existence of two
edges that share an endpoint (i.e. Pr(∃{u, v}|∃{u,w}) > Pr(∃{u, v})). This
dependence is stronger the smaller the number of labels M includes, while it
seems to fade away as the number of labels increases. In fact, by using a cou-
pling technique, the authors in [3] proved the equivalence (measured in terms of
total variation distance) of uniform random intersection graphs and Erdős-Rényi
random graphs, when m = nα, α > 6. This bound on the number of labels was
improved in [5], where it was proved that the total variation distance between
the two models tends to 0 when m = nα, α > 4. Furthermore, [9] proved the
equivalence of sharp threshold functions among the two models for α ≥ 3. Sim-
ilarity of the two models has been proved even for smaller values of α (e.g. for
any α > 1) in the form of various translation results (see e.g. Theorem 1 in
[8]), suggesting that some algorithmic ideas developed for Erdős-Rényi random
graphs also work for random intersection graphs (and also weighted random
intersection graphs). These results suggest that random intersection graphs are
quite general and that known techniques for random graphs can be used in the
analysis of random intersection graphs with a large number of labels.

Motivation. Random intersection graphs may model several real-life applica-
tions quite accurately. In fact, there are practical situations where each commu-
nication agent (e.g. a wireless node) gets access only to some ports (statistically)
out of a possible set of communication ports. When another agent also selects a
communication port, then a communication link is implicitly established and this
gives rise to communication graphs that look like random intersection graphs.
RIG modeling is useful in the efficient blind selection of few encryption keys for
secure communications over radio channels ( [1]), as well as in k-Secret shar-
ing between swarm mobile devices (see [2]). Furthermore, random intersection
graphs are relevant to and capture quite nicely social networking. Indeed, a social
network is a structure made of nodes tied by one or more specific types of interde-
pendency, such as values, visions, financial exchange, friends, conflicts, web links
etc. Other applications may include oblivious resource sharing in a distributed
setting, interactions of mobile agents traversing the web, social networking etc.
Even epidemiological phenomena (like spread of disease between individuals with
common characteristics in a population) tend to be more accurately captured
by this “proximity-sensitive” family of random graphs.

From an average case analysis algorithmic perspective, the number of labels
m may be viewed as a parameter controlling the clique cover size of input graphs.
It is worth noting that some combinatorial problems that are considered to
be hard when the input is drawn from the Erdős-Rényi random graphs model
are easily solved when the input is drawn from the random intersection graphs
model and the representation matrix R is explicitly provided as part of the
input (rather than just giving the constructed graph instance as input). One
such example is the problem of finding a maximum clique in Gn,m,p, in the
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dense case m = nα, α < 1. Furthermore, there are combinatorial optimization
problems that can be naturally described as graph theoretical problems in gen-
eralizations of the aforementioned model of random intersection graphs. In this
talk, we discuss some structural and algorithmic results regarding random inter-
section graphs and we present an interesting connection between the problem of
discrepancy in random set systems and the problem of Max Cut in weighted
random intersection graphs.

2 Maximum Cliques in Random Intersection Graphs

We discuss the Single Label Clique Theorem (SLCT) from [6], which states that
when the number of labels is less than the number of vertices, any large enough
clique in a random instance of Gn,m,p is formed by a single label. This statement
may seem obvious when p is small, but it is hard to imagine that it still holds

for all “interesting” values for p. Indeed, when p = o
(√

1
nm

)
, it can be proved

that Gn,m,p almost surely has no cycle of size k ≥ 3 whose edges are formed by
k distinct labels (alternatively, the intersection graph produced by reversing the
roles of labels and vertices is a tree). On the other hand, for larger p a random
instance of Gn,m,p is far from perfect1 and thus the proof of the SLCT is based on
a careful contradiction argument regarding the non-existence of large multi-label
cliques.

3 Maximum Cut and Discrepancy in Random Set
Systems

A natural weighted version of the random intersection graphs model was intro-
duced in [7], where to each edge {u, v} we assign weight equal to the number of
common labels chosen by u and v, namely |Su ∩ Sv|. In particular, the weight
matrix of a random instance of the weighted random intersection graphs model
Gn,m,p is equal to RTR, where the columns of R are the incidence vectors of
label sets assigned to vertices; we denote the corresponding random instance by
G(V,E,RTR).

We initially present some results from [7] regarding the concentration of
the weight of a maximum cut of G(V,E,RTR) around its expected value, and
then show that, when the number of labels is much smaller than the number
of vertices (in particular, m = nα, α < 1), a random partition of the vertices
achieves asymptotically optimal cut weight with high probability. Furthermore,
in the case n = m and constant average degree (i.e. p = Θ(1)

n ), we show that
with high probability, a majority type randomized algorithm outputs a cut with
weight that is larger than the weight of a random cut by a multiplicative constant
strictly larger than 1.
1 A perfect graph is a graph in which the chromatic number of every induced subgraph

equals the size of the largest clique of that subgraph. Consequently, the clique number
of a perfect graph is equal to its chromatic number.
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Finally, we present a connection between the computational problem of find-
ing a (weighted) maximum cut in G(V,E,RTR) and the problem of finding
a 2-coloring that achieves minimum discrepancy for a set system Σ with inci-
dence matrix R (i.e. minimum imbalance over all sets in Σ). This connection
was exploited in [7] by proposing a (weak) bipartization algorithm for the case
m = n, p = Θ(1)

n that, when it terminates, its output can be used to find a
2-coloring with minimum discrepancy in a set system with incidence matrix R.
In fact, with high probability, the latter 2-coloring corresponds to a bipartition
with maximum cut-weight in G(V,E,RTR).
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Abstract. In this paper, we survey recent results regarding the Gath-
ering problem in the research area of distributed computing by mobile
robots. We assume a simple, standard model of robots: they are point-
shaped, live in a d- dimensional Euclidean space, are disoriented (do not
agree on common directions or orientations), and have limited visibil-
ity (can only observe other robots up to a constant distance). The goal
of Gathering is to gather all robots at a single, not predefined point.
Our focus lies on unifying and extending existing work on gathering in
the above model. For this, we derive core properties of protocols that
guarantee Gathering and prove runtime bounds that improve upon
previous work. This paper surveys results presented in [2,3,11] in which
such core properties are derived in two different time models: a discrete,
round-based time model and a continuous time model.

Keywords: mobile robots · gathering · continuous · discrete · runtime

1 Introduction

Model and Scenario. We consider a scenario where a swarm of n robots is
distributed in a Euclidean space Rd of dimension d ≥ 1. Each robot on its own has
only very limited capabilities. Most crucially, the robots have a limited visibility,
i.e., they can observe other robots only up to a constant distance. Throughout
this work, we normalize this distance to 1. Moreover, each robot has its own local
coordinate system, and the robots are disoriented, i.e., they do not agree on any
direction and orientation of their local coordinate systems. The disorientation
is even variable, meaning that the local orientation of the coordinate system
of a fixed robot might change from time to time. Furthermore, the robots are
oblivious (no persistent memory) and silent (no communication capability). We
consider two models for time: time can either be discrete (the robots operate in
rounds) or continuous (the movement of each robot is defined for each real point
in time by a velocity vector). When time is discrete, we consider the robots to be

This work was partially supported by the German Research Foundation (DFG) under
the project number ME 872/14-1.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Mavronicolas (Ed.): CIAC 2023, LNCS 13898, pp. 5–16, 2023.
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fully synchronized, i.e., all robots simultaneously start a new round (observe the
environment, compute a target point, and move there). More details about the
time models will be given in Sect. 2. All these robot features are in the literature
denoted as the OBLOT model [8].

Typical tasks for such robot swarms are formation problems, where the robots
have to move such that their positions form a predefined pattern. The patterns
point and Uniform Circle have evolved into the most important benchmark
patterns in the literature. This stems from their high symmetry: it is well known
that the patterns Point and Uniform circle are the only patterns that might be
formed from any initial configuration of the robots as it is only possible to form
patterns that have the same or a higher symmetry as the initial configuration
(see [13] for a precise definition of symmetries in this context).

The Gathering Problem. In this work, we focus on the pattern point,
which is in the literature commonly denoted as the Gathering problem. The
Gathering problem is trivial if the robots have unlimited visibility (robots can
observe all other robots) and operate fully synchronized. In case the robots oper-
ate in rounds, the robots can, for example, all move to the center of the smallest
enclosing circle of all robots’ positions and reach that position within one round
[4]. If the robots are less synchronized and disoriented, the Gathering problem
is generally impossible to solve, even if the robots have unlimited visibility [12].

Considering robots with limited visibility living in the Euclidean plane that
operate in fully synchronized rounds, the Go-To-The-Center protocol (GtC
protocol), in which robots move toward the center of the smallest enclosing circle
of all visible robots solves the Gathering problem [1]. Later on, a time bound of
O

(
n + Δ2

)
rounds has been proven, where Δ denotes the Euclidean diameter of

the initial swarm [6]. The protocol has been generalized to the three-dimensional
case with the same time bound in [2]. In this work, we focus on the class of λ-
contracting protocols, which allows solving Gathering within Θ(Δ2) rounds
[3]. Notably, also the GtC protocol is λ-contracting.

Also, in the continuous time model, Gathering can be solved by disoriented
robots with limited visibility. In [9], e.g., the Move-On-Bisector (MoB) pro-
tocol has been introduced in which robots that are located on the convex hull
of all visible neighbors move with a speed of 1 along the angle bisector of vec-
tors pointing to their neighbors of the convex hull. The MoB protocol gathers
in time O(n) [5]. Moreover, the protocol gathers in time O (OPT · log n), where
OPT denotes the optimal time a protocol with unlimited visibility needs. Hence,
the price of locality, i.e., the additional time caused by the limited visibility, is
at most a factor of log n in the continuous time model. In Sect. 3, we describe
a class of continuous protocols, the contracting protocols. They perform gath-
ering in time O (n · Delta). Among others, MoB and a continuous version of
Go-To-The-Center are contracting.

Scope and Outline. We survey recent general results about the Gathering
problem of disoriented robots with limited visibility in the OBLOT model, both
for the round based and the continuous time model. For both time models,
we introduce classes of protocols that solve the Gathering problem efficiently.
The classes encapsulate the core properties of efficient Gathering protocols.
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Most importantly, the classes of protocols can be applied to robots that live in
a Euclidean space of arbitrary dimension d. We start in Sect. 2 with a general
notion of robot formation protocols for the discrete and continuous time model.
The notion serves as a basis to define the concrete classes of protocols afterward.
Section 3 introduces continuous contracting protocols. For d = 2 and d = 3, the
protocols have been introduced an analyzed in [2,11]. The case d > 3 has not
been published yet but can be obtained by generalizing the proof technique
derived in [2]. The discrete class of protocols denoted as λ-contracting protocols
is the topic of Sect. 4. The class of protocols and their analysis have been recently
published in [3]. We conclude the paper with open problems in Sect. 5.

2 Robot Formation Protocols

We consider a swarm of n robots r0, . . . , rn−1. The robots start their protocol
at time t = 0. When time is discrete, we consider time steps t ∈ N0. Otherwise,
time is continuous, and we consider all points in time t ∈ R≥0. The position of a
robot ri at time t is denoted by pi(t) in a global coordinate system (not known
to the robots). We collectively call the set of all robots’ positions at time t the
configuration. The initial configuration, i.e., the configuration at time t = 0, is
assumed to be connected. More formally, at time t = 0, the initial Unit Ball
Graph of the robots’ positions is connected. In the Unit Ball Graph at time
t, the vertices represent the robots, and two robots are connected via an edge
if their distance is at most 1. Next, we describe continuous and discrete robot
formation protocols, i.e., a formal way to describe the robots’ behavior in two
different time models: the continuous time model and the discrete, round-based,
LCM model.

Continuous Protocols. At every point in time, each robot computes a target
point and a speed between 0 and 1 and moves with the given speed towards this
point. More formally, we obtain the following notion of continuous protocols.

Definition 1. A continuous robot formation protocol P defines for each robot
ri and each t ∈ R≥0 a target point targetPi (t) and a speed sP

i (t) ∈ [0, 1] describ-
ing the robots current movement direction and speed. Together, both define the
velocity vector vP

i (t) =
sPi (t)

‖targetPi (t)−pi(t)‖2

(
targetPi (t) − pi(t)

)
.

Often, we describe only the velocity vectors; however, typical protocols are
designed such that each robot computes a target point and moves with a certain
speed toward it. The function pi : R≥0 → R

d is the trajectory of ri. The tra-
jectories are continuous but not necessarily differentiable. Occasionally, robots
can change their direction and speed non-continuously (e.g., when a new robot
becomes visible), leading to a non-differentiable trajectory. Typical protocols
have right-differentiable trajectories. This way, we can interpret the velocity
vectors as the (right) derivative of the trajectories, i.e., vP

i : R≥0 → R
d = ṗi.

Discrete Protocols. When time is discrete, robots operate in LCM cycles
consisting of the operations Look, Compute, and Move. During Look, each
robot takes a snapshot of all visible robots in its local coordinate system; it
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computes a target point based on the snapshot during Compute and finally
moves there within the Move operation. We assume a rigid movement, i.e., the
robots always reach their target points. The LCM cycles are also denoted as
rounds. The timing of the cycles is fully synchronous (Fsync), i.e., each robot
is active in every round, and all robots observe their environment and move
simultaneously. Analogously to continuous robot formation protocols, we define
discrete robot formation protocols, a convenient way to describe the properties
of protocols.

Definition 2. A discrete robot formation protocol P defines for each robot ri
and each t ∈ N a target point targetPi (t) such that pi(t + 1) = targetPi (t).

3 Continuous Time Gathering

This section presents the class of contracting protocols for the continuous time
model. The class itself is introduced in Sect. 3.1. Afterward, we present time
bounds for contracting protocols in Sect. 3.2. We conclude the section with an
exemplary contracting protocol in Sect. 3.3.

3.1 Contracting Protocols

The main idea of Gathering protocols that consider robots with limited vis-
ibility is always to let robots move toward the inside of the swarm. Thereby,
the global convex hull of all robots’ positions gets smaller and smaller until the
robots finally gather at a single point. In the continuous time model, we observe
that such a simple and elegant criterion is sufficient to define efficient protocols
to solve Gathering. More precisely, we define the class of contracting protocols
based on [10,11]. Intuitively, a robot formation protocol is contracting if robots
located on the vertices of the global convex hull enclosing all robots’ positions
move with a speed of 1 inside the closed global convex hull. See Fig. 1 for a
visualization.

We denote the global convex hull of all robots’ positions at time t by CH(t).
Then, the following Definition 3 characterizes contracting protocols precisely.

Fig. 1. A visualization of a (globally) contracting protocol. Robots that are located on
the vertices of the global convex hull (marked by solid lines) move with a speed of 1
inside the closed convex hull (the velocity vectors are marked by arrows).
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Definition 3. A continuous robot formation protocol is called (globally) con-
tracting if for every point in time t and every robot ri whose position is a vertex
of CH(t), it holds that targetPi (t) ∈ CH(t) and sP

i (t) = 1.

Observe that Definition 3 refers to the global convex hull of all robots’ posi-
tions. However, due to the limited visibility, robots compute their target points
based on their (local) neighborhood. Nevertheless, typical target points such as
the center of the smallest enclosing circle of a robot’s neighborhood [1] lie inside
the global convex hull and thus fulfill – at first sight – the criterion of being con-
tracting. Still, the movements of the robots might disconnect the swarm. Con-
sider, for instance, the case that a protocol divides the configuration into two
connected components. The robots of the connected components might gather
at two different points. Afterward, the robots are not aware that robots occupy
a second position and remain in their current location. As a result, the protocol
is not contracting since the robots do not move anymore, although they have not
yet gathered at a single point. With this observation, we see that maintaining
connectivity is an essential property of local protocols and define the following
class of locally contracting protocols. The definition uses CHi(t) to describe the
convex hull of all robots’ positions visible by ri at time t.

Definition 4. A continuous robot formation protocol is called locally contract-
ing if, for every point in time t,

1. the configuration is connected,
2. for every robot ri whose position is a vertex of CHi(t), targetPi (t) ∈ CHi(t)

and sP
i (t) = 1.

Informally speaking, a locally contracting protocol must maintain the
swarm’s connectivity, and robots located on vertices of their local closed con-
vex hull move with a speed of 1 inside. Since local convex hulls are completely
contained in the global convex hull, every locally contracting protocol is also
(globally) contracting.

Lemma 1. Every locally contracting protocol is globally contracting.

3.2 Results

For d = 2, contracting protocols have been analyzed in [11]. The authors prove
that every contracting protocol gathers the robots in time O (n · Δ), where Δ
represents the Euclidean diameter, i.e., the maximum distance of two robots, of
the initial configuration. The analysis observes that the length of the boundary
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of the convex hull of all robots’ positions is monotonically decreasing at a rate of
Ω(1/n). Moreover, there is the Go-To-The-Left protocol that needs a time of
Ω(n ·Δ) to gather the robots when the robots are initially located on the vertices
of a regular polygon with side length 1 (Theorem 1). The protocol assumes that
the robots have a common understanding of left and right, and every robot
moves with a speed of 1 towards its left neighbor. Thereby, every robot traces
out a logarithmic spiral, and the robots finally gather at the center of the regular
polygon. For an illustration, see Fig. 2.

Theorem 1. There is a contracting protocol that gathers a connected swarm of
n disoriented robots located in R

2 with a viewing range of 1 in time Ω (n · Δ),
where Δ denotes the Euclidean diameter of the initial configuration.

Contracting protocols have been analyzed for d = 3 in [2]. The analysis idea is
to project the original three-dimensional configuration onto a two-dimensional
projection plane and to analyze the behavior of the robots in the projection.
Note that the plane has to be chosen carefully; otherwise, some robots might
not move in the projection (in case their velocity vectors are orthogonal to the
plane). Hence, the analysis aims to find a plane where all robots move sufficiently
fast. The authors of [2] prove an upper time bound of O

(
n3/2 · Δ

)
. The lower

bound of Ω (n · Δ) from the two-dimensional case still holds.
A rigorous generalization of the three-dimensional analysis, i.e., not only

projecting once but d − 1 times, allows us to derive a time bound for arbitrary
d. Every projection has to be chosen carefully and causes the velocity vectors
of most robots to decrease. Hence, the time-bound (obtained by this analysis
technique) depends on the dimension. Precisely, the time bound is stated as in
the following theorem.

Theorem 2. Every contracting protocol gathers a connected swarm of n disori-
ented robots located in R

d with a viewing range of 1 in time O(nlog(d) ·Δ), where
Δ denotes the Euclidean diameter of the initial configuration.

Notably, for d = 2, there is a contracting protocol known that has a signif-
icantly faster runtime. The Move-On-Bisector (MoB) protocol gathers the
robots in time O(n). In the following, we introduce a different contracting pro-
tocol.
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Fig. 2. A visualization of the Go-To-The-Left protocol. Initially, the robots are
located on a regular 10-gon (the black dots). Then, all robots move with a speed of
1 towards their left neighbor. As a result, the robots move along logarithmic spirals
toward the center of the polygon.

3.3 An Exemplary Contracting Protocol

Next, a continuous version of the Go-To-The-Center (GtC) protocol [1] will
be considered a concrete example of a contracting protocol. The two-dimensional
version of this protocol was adapted for the continuous-time model by [11]. In
the discrete-time version of the GtC protocol, connectivity is maintained with
the help of limit circles, i.e., robots sometimes do not move towards the center
of the smallest enclosing circle of their neighborhood but stop earlier. Compared
to the discrete-time version, no additional measures have to be taken to preserve
connectivity in the continuous-time model, as it can be shown that this happens
naturally. The protocol is summarized in Algorithm 1.

Algorithm 1. Continuous d-GtC
1: Ri(t) := {positions of robots visible from ri, including ri at time t}
2: Si(t) := smallest enclosing hypersphere of Ri(t)
3: ci(t) := center of Si(t)
4: Move towards ci(t) with speed 1, or stay on ci(t) if ri is already positioned on it.

With the same arguments as in [11], it can be seen that d-GtC maintains the
connectivity of the swarm. As the center of the smallest enclosing hypersphere
is a convex combination of the points it encloses [7], it follows that d-GtC is
locally contracting.

Theorem 3. The continuous d-GtC protocol is locally contracting and there-
fore gathers a connected swarm of n disoriented robots located in R

d with a
viewing range of 1 in time O

(
nlog(d) · Δ

)
.
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4 Discrete Time Gathering

The following section summarizes results recently published in [3]. In Sect. 3, we
have seen the class of contracting protocols for the continuous time model. A
protocol is contracting if robots that are located on the vertices of the global
convex hull (enclosing all robots’ positions) move with a speed of 1 inside the
global closed convex hull. The criterion itself is simple, elegant, and easy to
verify. When thinking about a class of protocols in a round-based time model,
the first idea would be to transfer the class of continuous contracting protocols
to the discrete setting. A first attempt would be to demand that robots that
are located on the vertices of the global convex hull move a certain distance
inside the global closed convex hull per round. Unfortunately, in the discrete-time
model, the target points of the robots have to be chosen much more carefully as
otherwise the required time to solve Gathering gets very high, or the robots do
not gather at all. Consider for instance the Go-To-The-Left protocol (Sect. 3.2
and Fig. 2). The robots are located on the vertices of a regular polygon with a
side length of 1. In the continuous variant, the robots move with a speed of 1
towards their left neighbor. Thereby, the robots move along logarithmic spirals
towards the center of the regular polygon (Fig. 2). A discretization might be to
demand that robots move to the positions of their left neighbor. This, however,
does not work as the robots would move directly to the position of their left
neighbor such that the resulting configuration is still the same regular polygon
in the next round; the only difference is that each robot has moved one position
to the left.

Moreover, the robots must also move a certain minimal distance to obtain
reasonable time bounds. We consider again that the robots are located on the
vertices of a regular polygon with side length 1. Given this configuration, e.g.,
the GtC protocol moves robots always to the midpoint between their two vis-
ible neighbors. Intuitively, also moving (by a constant factor) smaller distances
lead to Gathering in asymptotically the same time (cf. Fig. 3). However, the
required time increases as soon as the distance is significantly smaller.

With these two observations, we have emphasized that the target points must
be chosen carefully in the sense that the target points must lie sufficiently far
inside the local convex hulls of the individual robots. In the following section, we
formally define what sufficiently far means. More precisely, we define the class of
λ-contracting protocols – a class of protocols that solves Gathering efficiently.
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Fig. 3. Started on the vertices of a regular polygon, the robots have to move a certain
minimal distance inside to guarantee a reasonable runtime.

4.1 λ-Contracting Protocols

Similar to locally contracting (continuous) protocols, we demand that any dis-
crete protocol to solve Gathering must be connectivity preserving, i.e., it always
maintains the connectivity of the swarm. Next, we precisely define the meaning
of sufficiently far inside of local convex hulls, leading to a characterization of
valid target points.

Definition 5. Let Q be a convex polytope with diameter diam and λ a constant
with λ ∈ (0, 1]. A point p ∈ Q is called to be λ-centered if it is the midpoint of a
line segment completely contained in Q and has a length of λ · diam.

Fig. 4. A visualization of λ-centered points for the values of λ = 4/7 (left) and λ = 4/11
(right).

Two examples of λ-centered points are depicted in Fig. 4. Observe that mov-
ing to λ-centered points while maintaining connectivity does not necessarily
enforce a final gathering of the protocols. Consider, for instance, two robots.
A protocol that demands the two robots to move halfway towards the mid-
point between themselves would compute 1/4-centered target points. However,
the robots would only converge towards the same position. The robots must be
guaranteed to eventually compute the same target point to obtain a final gath-
ering. In the following, we denote by Ni(t) the set of all visible robots (including
itself) of ri at time t. Moreover, Δi(t) is the Euclidean diameter of the robots
in Ni(t). We demand that two robots with the same view eventually compute
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the same target point by requiring that there is a constant c < 1, such that
Ni(t) = Nj(t) and that Δi(t) = Δj(t) ≤ c implies that the robots compute the
same target point. Protocols that have this property are called collapsing. Being
collapsing is reasonable since λ-centered points are always inside local convex
hulls. Hence, the robots’ local diameters are monotonically decreasing in case
no further robot enters their neighborhood. Hence, demanding a threshold to
enforce moving to the same point is necessary to ensure a final gathering. The
combination of connectivity preserving, collapsing, and λ-centered points leads
to the notion of λ-contracting protocols.

Definition 6. A connectivity preserving and collapsing discrete robot formation
protocol P is called λ-contracting if targetPi (t) is a λ-centered point of CHi(t)
for every robot ri and every t ∈ N0.

4.2 Results

The following theorem summarizes the main result about λ-contracting proto-
cols. Notably, the obtained time bound is (in contrast to continuous contracting
protocols) independent of the number of robots n and the dimension of the
Euclidean space d.

Theorem 4. Every λ-contracting protocol gathers a connected swarm of n dis-
oriented robots located in R

d with a viewing range of 1 in the OBLOT model in
O(Δ2) rounds.

Theorem 4 raises the question of a lower bound for λ-contracting protocols:
is the time bound of O(Δ2) rounds tight? The answer turns out to be positive.
Moreover, we can state a lower bound for an even larger class of natural protocols.
Every protocol in which robots compute target points inside their neighborhood’s
local convex hulls requires Ω(Δ2) rounds to gather all robots.

Theorem 5. For every protocol for disoriented robots with a viewing range of
1 in the OBLOT model that computes the target point of a robot always inside
of the local convex hull of all visible robots, there exists an initial configuration
where the protocol requires Ω(Δ2) rounds to gather all robots.

4.3 An Exemplary λ-Contracting Protocol

In Sect. 3.3, we have introduced the continuous variant of the GtC protocol as
an example of continuous contracting protocols. Now, we introduce the discrete
variant (for d = 2 originally introduced in [1] and for d = 3 in [2]). The core idea
is the same as in the continuous variant: robots move towards the center of the
smallest hypersphere enclosing their neighborhood. However, such a movement
might cause a robot to get disconnected from the swarm. To overcome this,
robots only move that far towards their target point such that the distance
toward their neighbor always is at most one. The behavior is formally described
in Sect. 4.3.
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Algorithm 2. d-GtC (view of robot ri)
1: Ci(t) := smallest enclosing hypersphere of Ni(t)
2: ci(t) :=center of Ci(t)
3: ∀rj ∈ Ni(t) : mj := midpoint between ri and rj
4: Dj : hypersphere with radius 1

2
centered at mj

5: seg := line segment pi(t), ci(t)
6: A :=

⋂
rj∈Ni(t)

Dj ∩ seg

7: x := point in A closest to ci(t)
8: targetGtC

i (t) := x

That the d-GtC protocol is connectivity preserving follows directly from its
definition. With rigorous analysis, it can be proven that the resulting target
point is

√
2/16-contracting, and we obtain the following theorem.

Theorem 6. The d-GtC protocol is
√
2/16-contracting and therefore gathers a

connected swarm of n disoriented robots located in R
d with a viewing range of 1

in Θ
(
Δ2

)
rounds.

5 Outlook

The class of (continuous) contracting protocols gathers in time O
(
nlog(d) · Δ

)
,

while a lower bound of Ω(n ·Δ) is known. Further research could investigate the
gap between the upper and the lower time-bound. We believe the real answer
is a time bound of Θ (n · Δ) for every dimension d. Intuitively, the dependence
on the dimension d is an artifact from the analysis (d − 2 projections), and
the important parameters in the runtime are solely the number of robots and
the diameter Δ. Furthermore, the two-dimensional contracting protocol MoB
gathers in time O(n) which is in many cases severely faster than the bound of
O (n · Δ) [5]. Consequently, a further research question is: what are the properties
of continuous robot formation protocols that gather in time O(n)? Is even a
bound of O(Δ) achievable? Our research about λ-contracting protocols hints
that a dependence only on the diameter might be achievable since the class of λ-
contracting protocols solves Gathering in Θ

(
Δ2

)
rounds. Also, open questions

remain regarding λ-contracting protocols and Gathering of disoriented robots
with limited visibility in general. The following major open question remains
unanswered: is it possible to solve Gathering of disoriented robots with limited
visibility in the OBLOT model in O (Δ) rounds? We could get closer to the
answer: If there is such a protocol, it must often compute target points outside
of the convex hulls of robots’ neighborhoods.
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Abstract. In this invited lecture, I survey the recent results on the com-
plexity of Oblivious RAMs and of related cryptographic data structures
and highlight the proof techniques employed.

In recent years, there has been significant work in studying data structures that
provide privacy for the operations that are executed. These primitives aim to
guarantee that observable access patterns to physical memory do not reveal
substantial information about the queries and updates executed on the data
structure.

The concept of an Oblivious RAMs (ORAMs) has been introduced by Gol-
dreich and Ostrovsky [6]. An ORAM can be viewed an a secure implementation
of the simplest data structure: an array (or a RAM) whose entries can be read
and over-written. The typical setting is that of a client that has limited memory
and outsources the storage of the array to a remote server and accesses the data
stored in the array over a network. Clearly, to protect the confidentiality of the
data, each entry can be encrypted before the upload and decrypted once it is
downloaded. Still, the server sees the access pattern and from this deduce the
type of algorithm that is being executed which in turn can reveal the interest
of the client. An ORAM is a protocol between the client and server that hides
the access pattern. The obliviousness guarantee of an Oblivious RAM requires
that no adversary that picks two challenge sequences of operations of the same
length and observes the access pattern incurred by the execution of one of the
sequences still cannot determine which of the two sequences gave rise to the
access pattern observed.

In recent years, ORAMs have been studied extensively to try and determine
the optimal overhead (see [3,6,7,9,11] and references therein) that was reduced
from O(log3 n) to O(log n), for a RAM with n entries. Indeed, for b-bit entries
on a server with memory cell (word) size of ω = Θ(b) bits, the best known
construction obtains logarithmic overhead O(b/ω · log n) [1] and requires only
constant client memory.

Is this the best we can do?
The first logarithmic lower bounds were proven by Goldreich and Ostro-

vsky [6] of the form Ω((b/ω) ·(log n/ log c)) where the client has storage of c bits.
Boyle and Naor [2] pointed out that these lower bounds assumed the so-called
balls-and-bins model with a non-encoding assumption on the underlying blocks.
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Larsen and Nielsen [10] were the first to prove lower bounds for the general case;
i.e., without making any encoding assumption. They proved that a RAM of n
entries each of b bits implemented by a server with a memory consisting of ω-bit
words and a client with c bits of local memory requires Ω((b/ω) · log(nb/c)).
This bound becomes increasingly weak as ω grows and Komargodski and Lin [8]
proved a lower bound of Ω(log(nb/c)/ log(ω/b)) for the case ω > b.

In the hope of obtaining faster RAM that would still offer an adequate level
of security, researchers have looked at weaker but still meaningful notions of
security. In this talk we will overview three attempts and show that indeed any
meaningful notion of security for RAMs seems to be as hard as Obliviousness.

Differentially Private RAMs. In various practical applications, including
the field of privacy-preserving data analysis, the notion of Differential Privacy [5]
is considered to offer an adequate level of protection. Differentially Private RAMs
(DPRAMs) aim to provide privacy for individual operations, but may reveal
information about a sequence consisting of many operations. In more detail,
if an adversary receives two candidate equal-length operational sequences that
differ in one operation and the access pattern incurred by the execution of one
of the two sequences, the adversary should not be able to guess the identity of
the executed sequence with too high probability. Unfortunately, DPRAMs incur
in the same overhead as ORAM. Specifically, the Ω(b/ω · log nb/c) lower bound
for DPRAMs by Persiano and Yeo [15] showed that this is impossible when
b = Ω(ω) and, recently, this has been extended to Ω(log(nb/c)/ log(ω/b)) which
is significant for the case ω > b by [16].

Leaky RAMs. A second approach allows the RAM to leak some partial infor-
mation about the sequence of operations. Currently, all known leaky RAMs with
constant overhead reveal if two operations are performed on the same key or not.
We denote this as global key−equality pattern. The result of [12] gives strong evi-
dence that the leakage of the global key-equality pattern is inherent for any leaky
RAM construction with O(1) efficiency. In particular, they consider the slightly
smaller leakage of decoupled key-equality pattern where leakage of key-equality
between update and query operations is decoupled and the adversary only learns
whether two operations of the same type are performed on the same key or not.
They show that any leaky RAM with at most decoupled key-equality pattern
leakage incurs Ω(b/w · log n) overhead.

Snapshot Adversaries. In some applications the server executing the access is
not trusted but it could be temporarily compromised by an external adversary.
Very recently, Du, Genkin and Grubbs [4] presented an ORAM construction
with O(log �) overhead protecting against a snapshot adversary that observes the
transcript of � consecutive operations from a single breach. For small values of �,
this outperforms standard ORAMs. However, if one allows to have 3 breaches,
it has been recently proved [14] that we go back to Ω(b/w · log(nb/c)) overhead.

Open Problem. The following question is thus still open. Is there a meaningful
notion of security for which RAMs require a sub-logarithmic, or maybe even
constant, overhead?
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Also, it would be interesting to look at different data structures. The research
reported in [16] has a general framework to prove lower bounds for more sophis-
ticated data structures.

Acknowledgments. Most of the work discussed in this invited lecture is co-authored
with Sarvar Patel and Kevin Yeo.
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Abstract. The (extended) Binary Value Principle (eBVP, the equation∑n
i=1 xi2

i−1 = −k for k > 0 and in the presence of x2
i = xi) has received

a lot of attention recently, several lower bounds have been proved for it
[1,2,10]. It has been shown [2] that the probabilistically verifiable Ideal
Proof System (IPS) [8] together with eBVP polynomially simulates a
similar semialgebraic proof system. In this paper we consider Polynomial
Calculus with the algebraic version of Tseitin’s extension rule (Ext-PC).
Contrary to IPS, this is a Cook–Reckhow proof system. We show that in
this context eBVP still allows to simulate similar semialgebraic systems.
We also prove that it allows to simulate the Square Root Rule [6] in
a sharp contrast to the result of [1] that shows an exponential lower
bound on the size of Ext-PC derivations of BVP from its square. On the
other hand, we demonstrate that eBVP probably does not help in proving
exponential lower bounds for Boolean formulas: we show that an Ext-PC
(even with the Square Root Rule) derivation of any unsatisfiable Boolean
formula in CNF from eBVP must be of exponential size.

Keywords: Proof complexity · Polynomial Calculus · Extension Rule

1 Introduction

Tseitin’s extension rule [12] is a powerful concept that turns even very weak
propositional proof systems into strong ones: it allows to introduce new vari-
ables for arbitrary formulas (it is enough to do this for the disjunction and the
negation). In particular, it turns Resolution (a rather weak system for which
superpolynomial lower bounds are known since [12]) into the powerful Extended
Frege system [5] (a strong system for which we do not even know good enough
candidates for superpolynomial lower bounds).

Surprisingly, in the context of algebraic proof systems an exponential lower
bound for a system that uses Tseitin’s rule was proved recently [1]. This system,
Extended Polynomial Calculus (or Ext-PC), combines the algebraic version of
the extension rule (so that we can introduce new variables for polynomials) with
the Polynomial Calculus (PC) [4] system. While it has more power because it
allows to talk about polynomials over any algebraically closed field (or, in the
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Boolean setting, even just over a ring, such as Z), the exponential lower bound
has been proved for a system of polynomial equations that does not correspond
to any Boolean formula (in particular, a formula in conjunctive normal form, as
in Resolution). This system, called “the Binary Value Principle”, is the equation∑n

i=1 xi2i−1 + 1 = 0 along with the “Boolean axioms” x2
i − xi = 0 for every

variable xi. It has also been used for proving other exponential lower bounds
[2,10] and (as the Extended Binary Value Principle, eBVP) for demonstrating
a polynomial simulation of polynomial inequalities by polynomial equations [2]
for generalized proof systems that require polynomial identity testing for the
verification (the algebraic system is the Ideal Proof System, IPS, of [8]). Note
that polynomial inequalities are considered to be much more powerful than poly-
nomial equations: for example, no exponential size lower bound is known even
for the simplest proof system LS (motivated by the optimization procedure by
László Lovász and Alexander Schrijver, see [7,11]).

Our Results. In this paper, we consider three questions about Ext-PC and eBVP,
and prove three results:

1. How powerful is Ext-PC? We prove (Theorem 2) that together with eBVP
it polynomially simulates a similar system that uses inequalities (namely,
Ext-LS+,∗ that is LS with extension variables, squares, and multiplication).
This brings the result of [2] down to conventional proof systems from proof
systems that use polynomial identity testing for proof verification. It is inter-
esting how far we can weaken the proof systems to keep such simulation
(formulas? bounded-depth formulas? sums of monomials?).

2. Grigoriev and Hirsch [6] introduced the square root rule that allows to con-
clude f = 0 from f2 = 0. It would be needed for the implicational complete-
ness of PC in the non-Boolean case. It is not needed at all in the Boolean
context, however, it could shorten the proofs. It is impossible to simulate
it polynomially in Ext-PC ( [1] proves an exponential bit-size-of-coefficients
lower bound on derivations of

∑
xi2i−1+1 = 0 from (

∑
xi2i−1+1)2 = 0) and

PC ( [9] proves a linear degree lower bound on derivations of
∑

xi+1 = 0 from
(
∑

xi + 1)2 = 0). We prove (Theorem 3) that eBVP allows one to simulate
polynomially the square root rule in the case of Ext-PC.

3. Is it possible to use lower bounds for eBVP for proving lower bounds for for-
mulas in conjunctive normal form? One could imagine deriving the translation
of an unsatisfiable formula in conjunctive normal form (using the extension
variables) from eBVP and concluding a lower bound for a formula in CNF.
We prove an exponential lower bound (Corollary 2) on the size of derivations
of such formulas from eBVP, showing an obstacle to this approach.

Our Methods. The divisibility method suggested in [1,2] allows to prove lower
bounds on the size of algebraic proofs by analysing the scalars appearing in them.
The simplest application of this method substitutes the input variables by the
binary representations of all possible integers, and shows that the constant in
the final contradiction in the proof over the integers divides all of them (if the
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system allows it). In this paper we further develop this method: we prove lower
bounds for the derivation of a translation of an unsatisfiable formula in CNF
(and not just a contradiction), so there is no single constant at the end. We
show an exponential lower bound over the integers by counting the primes that
divide the multiplicative constants in the derivation of every clause and Boolean
equation. The lower bound for rationals follows using the translation of [1].

In order to show polynomial simulations we use the general approach sug-
gested in [2]: to use bit arithmetic for proving facts about (semi)algebraic proofs.
However, IPS [8] considered in that paper uses polynomial identity testing for
proof verification, and thus allows to switch between the circuit representations
of polynomials at no cost. Our setting is different: we need to simulate everything
using the extension rule. Therefore, in order to simulate inequalities we derive
gradually the facts that the values produced by bit arithmetic equal the val-
ues of polynomials in the original proof, and that these values are nonnegative.
We also need to define the circuit representation, in particular for the extension
variables, to reason about Ext-LS+,∗ proofs. A somewhat similar approach works
for the simulation of the square root rule; however, we need to derive that all
individual bits of the zero are zeroes, and then take the square root.

2 Preliminaries

In this paper we work with polynomials over integers or rationals. We define
the size of a polynomial roughly as the total length of the bit representation of
its coefficients. Formally, let f be an arbitrary integer or rational polynomial in
variables {x1, . . . , xn}.

– If f ∈ Z[x1, . . . , xn] then Size(f) =
∑

(�log |ai|� + 1), where ai are the coef-
ficients of f .

– If f ∈ Q[x1, . . . , xn] then Size(f) =
∑

(�log |ai|�+�log |bi|�+1), where ai ∈ Z,
bi ∈ N and ai

bi
are the coefficients of f .

We also use algebraic circuits. Formally, an algebraic circuit is a dag whose
vertices (gates) compute binary operations (addition and multiplication), thus
gates have in-degree two; the inputs (or variables) and constants (nodes comput-
ing integers or rationals) are nodes of in-degree zero. Every gate of an algebraic
circuit computes a polynomial in the input variables in a natural way; we some-
times identify a gate with the circuit consisting of all the nodes on which the
gate depends (thus this gate is the output gate of such circuit).

The size of the circuit is the number of its gates plus the sum of the bit sizes
of all constants. We will also be interested in the syntactic length of an algebraic
circuit, defined for circuits over Z: it is roughly a trivial upper bound on the
number of bits of an integer computed by the circuit. The definition essentially
follows [2], augmenting it with the multiplication.
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Definition 1 (syntactic length of algebraic circuit). Consider the gates
of an algebraic circuit G1, . . . , Gk in topological order. We define the syntactic
length inductively:

– If Gi is an integer constant, then the syntactic length of Gi is �log(|Gi|)�.
– If Gi = Gj + Gk, the syntactic length of Gj is t, and the syntactic length of

Gk is s, then the syntactic length of Gi equals max(s, t) + 1.
– If Gi = Gj · Gk, the syntactic length of Gj is t, and the syntactic length of

Gk is s, then the syntactic length of Gi equals s + t + 3.

Note 1. 1. In the latter case the actual number of bits would be s + t; we state
s+ t+3 because this is how it is computed in our implementation of the integer
multiplication in Sect. 4—however, it does not change much asymptotically, the
resulting length changes at most polynomially.

2. Note that the circuit size cannot exceed its syntactic length.

2.1 Algebraic Proof Systems

In what follows, R denotes Q or Z.

Definition 2 (Polynomial Calculus [4]). Let Γ = {p1, ..., pm} ⊂ R[x1, ..., xn]
be a set of polynomials in variables {x1, . . . , xn} over R such that the system of
equations p1 = 0, . . . , pm = 0 has no solution. A Polynomial Calculus (PCR)
refutation of Γ is a sequence of polynomials r1, . . . , rs where rs = const �= 0
and for every l in {1, . . . , s}, either rl ∈ Γ or rl is obtained through one of the
following derivation rules for j, k < l:

– rl = αrj + βrk, where α, β ∈ R,
– rl = xirk.

The size of the refutation is
∑s

l=1 Size(rl), and its degree is maxl deg(rl).

Note 2. 1. In this paper we consider Q or Z as R in PCR above or Ext-PCR

below. For both of these rings, we consider the Boolean case, where axioms
x2

i −xi = 0 are present for every variable xi, and for this case our proof systems
are complete.

2. Note that in the case R = Q one can assume rs = 1, while in the case
R = Z an arbitrary nonzero constant is needed to maintain the completeness.

Tseitin’s extension rule allows to introduce new variables for arbitrary formu-
las. We use an algebraic version of this rule that allows to denote any polynomial
by a new variable [1].

Definition 3 (Extended Polynomial Calculus, Ext-PC). Let Γ = {p1, . . . ,
pm} ⊂ R[x1, . . . , xn] be a set of polynomials in variables {x1, . . . , xn} over R such
that the system of equations p1 = 0, . . . , pm = 0 has no solution. An Ext-PCR

refutation of Γ is a Polynomial Calculus refutation of a set Γ ′ = {p1, . . . , pm,
y1−q1(x1, . . . , xn), y2−q2(x1, . . . , xn, y1), . . . , ym−qm(x1, . . . , xn, y1, . . . , ym−1)}
where qi ∈ R[x̄, y1, . . . , yi−1] are arbitrary polynomials.
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We omit R from the notation of PCR or Ext-PCR when it is clear from the
context. The size of the Ext-PC refutation is equal to the size of the Polynomial
Calculus refutation of Γ ′.

The square root rule [6] allows to conclude that f = 0 from f2 = 0. We can
consider it in the context of both PC and Ext-PC.

Definition 4 (PC
√
, Ext-PC

√
). The proofs in PC

√
, Ext-PC

√
follow Defini-

tions 2, 3 but allow one more derivation rule in terms of Definition 2:

– derive rl, if r2l = rk

(derive a polynomial if its square has been already derived).

Note 3. As both Q and Z are domains, if r2 = 0 for some r ∈ R[x̄], then r = 0.

The extended Binary Value Principle (eBVP) says that that the (nonnegative)
integer value of a binary vector cannot be negative. To use this fact in the proof,
we need to specify that such a polynomial can be replaced by 1 (in particular,
if eBVP is present without a multiplier, it produces the contradiction 1 = 0).

Definition 5 (Ext-PC+eBVP). Ext-PC+eBVP uses exactly the same derivation
rules as Ext-PC and one more rule:

– derive rl = g if for some polynomials g, f1, . . . , ft and integer constant M > 0
we have derived the polynomial rk = g · (M + f1 + 2f2 + . . . + 2t−1ft) along
with polynomials rk1 = f2

1 − f1, . . . , rkt
= f2

t − ft, where k, k1, . . . , kt < l.

Note 4. We can define Ext-PC
√

+ eBVP the same way.

2.2 A Semialgebraic Proof System

We will consider the following proof system that can be viewed as a generalization
of the LS proof system [11] by the algebraic extension rule. Note that we could
move the introduction of new variables to the beginning of the proof as we did
in the definition of Ext-PC, however, it does not matter.

Definition 6 (Ext-LS+,∗). Let Γ = {p1, . . . , pk} ⊂ R[x1, . . . , xn] be a set of
polynomials in variables {x1, . . . , xn} over R such that the system of equations
p1 ≥ 0, . . . , pk ≥ 0 has no solution. An Ext-LS+,∗ refutation of Γ is a sequence
of polynomial inequalities r1 ≥ 0, . . . , rm ≥ 0 where rm = −M (M > 0 is an
integer constant) and each inequality rl is obtained through one of the following
inference rules:

– rl = pj for some i, or rl = xi, or rl = 1−xi, or rl = x2
i −xi, or rl = xi −x2

i .
– rl = ri ·rj or rl = ri +rj for i, j < l. (Note that we can infer 1 as xi+(1−xi),

thus we can multiply by any positive constant.)
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– If variable y did not occur in polynomials r1, . . . , rl−1, then we can derive a
pair of polynomials rl = y−f , rl+1 = f −y, where f is one of the basic opera-
tions (addition, multiplication, identity) applied to variables not including y,
and constants.

– rk = z2 for any variable z, including the input variables xi or the newly
introduced variables.

Note that the newly introduced variables are not necessarily Boolean. The size of
the refutation is

∑m
l=1 Size(rl). The degree of the refutation is maxl deg(rl).

Note 5. 1. Once again, in the case R = Q we could assume M = 1, while we
need an arbitrary positive constant for R = Z in order to maintain completeness.

2. Note that while the definition of Ext-LS+,∗ is written in a slightly different
manner compared to Ext-PC, it is not difficult to see that Ext-LS+,∗ polynomially
simulates Ext-PC (in particular, conversion of equations to inequalities and of
ideal inference to cone inference can be done similarly to [2, Sect. 4.1.1 of the
Technical Report version]).

3 Circuit and Equational Representations

We will represent the polynomials of the Ext-LS+,∗ derivation as circuits in the
input variables. To do this, we define circuit representations of axioms and exten-
sion variables.

Definition 7 (Circuit representation: axioms). For an axiom f ≥ 0, we
consider a natural circuit representation of the polynomial f ∈ Z[x]: Zf,1 =
x1, . . . , Zf,n = xn, Zf,n+1 = hf,1(Zf,r1 , Zf,t1), . . . , Zf,n+s = hf,s(Zf,rs

, Zf,ts),
where ri, ti < n + i and hf,i is one of the basic operations (addition, multiplica-
tion) or a constant. We denote the resulting circuit by Zf (where Zf,n+s is the
output gate).

Definition 8 (Circuit representation: extension variables). Given a
sequence of extension variables y1, . . . , yk introduced in some derivation by
axioms yj = gj(x, y1, . . . , yj−1) (where 1 < j ≤ k), we can define their val-
ues by algebraic circuits computed in a natural way (the axioms are substituted
into each other): define the sequence of circuits Y1(x), . . . , Yk(x) by

– Y1(x) = g1(x),
– for each 1 < j ≤ k, Yj(x) = gj(x, Y1(x), . . . , Yj−1(x)).

We call Yi the circuit representation of the extension variable yi.

With the circuit representation of the extension variables and axioms, we can
define the circuit representation of an Ext-LS+,∗ proof.

Definition 9 (Circuit representation: Ext-LS+,∗ refutation). Given an
Ext-LS+,∗ refutation p1 ≥ 0, . . . ,−M = pm ≥ 0 of a system in variables xi, we
construct the circuit representation P1, . . . , Pm of its polynomials inductively:
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– If pl is an axiom, Pl is the circuit representation of this axiom.
– If pl = xi, or pl = 1 − xi, then Pl is the simple circuit computing pl.
– If pl = z2 for a variable z, then Pl = Q · Q, where Q is the circuit represen-

tation of z (note that typically, z is an extension variable).
– If pl is obtained using a binary operation ◦ (addition or multiplication) from

pi and pj, we put Pl = Pi ◦ Pj.
– If pl introduces a new variable, or it is the Boolean axiom x2

i −xi (or xi −x2
i ),

we put Pl = 0.

Note that the axioms and the extension variables appear in Pi’s as subcircuits,
and that the inputs of Pi’s correspond to the original variables of the system.

Definition 10 (Equational representation). Any algebraic circuit can be
represented by equations (one equation per gate). More precisely, if we have
gates G1, . . . , Gm in topological order, then we can consider variables γ1, . . . , γm

with the corresponding set of polynomial equations:

– If Gi = xi or 1 − xi for some input variable, then corresponding polynomial
equation for the γi would be γi = xj or γi = 1 − xi.

– If Gi = Gk ◦ G�, then the corresponding polynomial equation for the γi would
be γi = γk ◦ γ�.

We refer to this set of equations as the equational representation.

The following lemma is used in the simulation of Ext-LS+,∗. The proof is a
simple induction, see full version.

Lemma 1. Accordingly to Definitions 9 and 10, consider the circuit and equa-
tional representations of an Ext-LS+,∗ proof p1 ≥ 0, . . . , pt ≥ 0. Consider any
gate Pi corresponding to the equational representation with the output variable
πi. Then there is a polynomial-size (in the size of the original proof) Ext-PC
derivation of πi = pi using only the Boolean axioms and the definitions of exten-
sion variables of the Ext-LS+,∗ proof. The new extension variables needed in the
Ext-PC derivation are those appearing in the equational representation.

To simulate the square root derivation rule we need to consider a circuit rep-
resentation of an arbitrary polynomial in extension variables, since a derivation
in Ext-PC

√
, unlike derivations in Ext-LS+,∗, does not correspond to an algebraic

circuit (algebraic circuits do not use square root gates).

Definition 11 (Circuit representation: polynomials). Consider a poly-
nomial g ∈ Z[x, y], where x are the input variables and y are the variables
introduced by the extension rule. Definition 8 defines the circuit representation
Y1, . . . , Ym for the variables y1, . . . , ym. Then we can consider any natural cir-
cuit G′

1, . . . , G
′
t computing the polynomial g given variables x1, . . . , xn, variables

y1, . . . , ym, and the constants. Substituting the subcircuits Y1, . . . , Ym in place of
the inputs y1, . . . , ym of G′

i’s, we get the circuit representation G1, . . . , Gl of g.
The syntactic length of the polynomial g is defined as the syntactic length of

the circuit G1, . . . , Gl.
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The following Lemma is proved similarly to Lemma 1, see the full version.

Lemma 2. Consider any polynomial g in the extension variables y1, . . . , yk and
the original Boolean variables x1, . . . , xn, and consider the circuit representation
G1, . . . , Gl of this polynomial g from Definition 11.

Then, if we consider an equational representation π1, . . . , πl of the circuit
G1, . . . , Gl, then there is a polynomial-size (in the size of g) Ext-PC derivation
of the equation g = πl.

4 Explicit BIT Definition and Basic Lemmas

In our Ext-PC simulations in Sect. 5, we argue about individual bits of the values
of the polynomials appearing in the Ext-LS+,∗ proof. In this section we construct
the circuits corresponding to these bits and prove auxilary statements about our
constructions. We basically follow [2] (Theorem 6.1 in the Technical Report
version), however, there are important differences:

1. In the case of Ext-PC proofs, the circuits are used in the meta-language
only. In the actual derivation, the bits are represented by extension vari-
ables defined through other extension variables, etc. (essentially computing
the circuit value).

2. Contrary to [2], we cannot magically switch between different representations
of polynomials, every step of the derivation has to be done syntactically.

The integers are represented in two’s complement form (see the definition of
VAL below). We use the following notation:

BITi(F ): if F (x) is a circuit in the variables x, then BITi(F ) is a new variable
defined through other extension variables (and x) that computes the i-th bit
of the integer computed by F as a function of the input variables x, where
the variables x range over 0–1 values. The integer is represented in the two’s
complement form, that is, its highest bit is the sign bit.

SIGN(F ) is used to denote this sign bit.
BIT(F ): a collection of new variables that compute the bit vector of F . Note

that BIT(F ) also includes SIGN(F ).
VAL(z): the evaluation polynomial that converts bit encoding of an integer z in

two’s complement representation to its integer value. Given z0, . . . , zk−1,

VAL(z) =
k−2∑

i=0

2i · zi − 2k−1 · zk−1.

We construct the representation of BITi(F ) by induction on the size of F .

Proof Strategy for the Simulation. Our plan for the simulation of Ext-LS+,∗ in
Sect. 5.1 is as follows:
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– Given an Ext-LS+,∗ refutation p1(x, y) ≥ 0, . . . , pm(x, y) ≥ 0, where pm =
−M and M ∈ N, we will consider the circuit representation P1, . . . , Pm of
polynomials p1, . . . , pm in order to speak about BIT(Pi), and will introduce
more extension variables according to the corresponding equational represen-
tation of Pi’s.

– We will show by induction that we can derive the following statements in
Ext-PC:
1. VAL(BIT(Pi)) = pi.
2. SIGN(Pi) = 0.

Then given the fact that VAL(BIT(Pm)) = pm = −M , where M ∈ N, and
SIGN(Pi) = 0, we can apply eBVP to derive a contradiction in Ext-PC.

Before we accomplish this, we need to define BIT (using the definitions for basic
arithmetic operation) and prove several useful lemmas about what can we derive
in Ext-PC (basic facts about the values, the signs, etc.). These will be also useful
for the simulation of the square root rule in Sect. 5.2.

Basic Arithmetic Operations. Circuit constructions of the basic operations that
we will need for the BIT definition essentially follows the scheme of [2]. It consists
of school-type carry-save addition ADD producing a (k+2)-bit integer from two
(k + 1)-bit integers (including the sign bit), the absolute value ABS producing
a (k + 2)-bit integer from a (k + 1)-bit integer, and school-type multiplication
“in shifts”, PROD, producing a (k + r + 2)-bit integer from a (k + 1)-bit and an
(r + 1)-bit integers. See Section A.2 for details.

Definition of BIT. Following [2] we define the bit representation of the val-
ues of polynomials computed by algebraic circuits. In doing this, we construct
another circuit. We identify its nodes with new variables that will appear in our
Ext-PC + eBVP proof, and the defining equation for these variables are exactly
the operations computed by the gates of the new circuit. Note that the inputs
of this circuit are the same as the inputs of the original circuit.

Definition 12 (BIT).
Let G1 = f1(x), G2 = f2(x,G1), . . . , Gm = fm(x,G1, . . . , Gm−1) be a topo-

logical order of the gates of an algebraic circuit over variables x.
For each Gr we define BITi(Gr) to be a new extension variable with the

corresponding polynomial equation so that BITi(Gr) computes the i-th bit of Gr:

Case 1: Gr = xj for an input xj. Then, BIT0(Gr) := xj, BIT1(Gr) := 0 (in
this case there are just two bits).
Case 2: Gr = α, for α ∈ Z. Then, BITi(Gr) is defined to be the i-th bit of α
in two’s complement notation.
Case 3: Gr = Gk + Gl. Then BIT(Gr) := ADD(BIT(Gk),BIT(Gl)), and
BITi(yr) is defined to be the i-th bit of BIT(yr).
Case 4: Gr = Gk · Gl. Then BIT(Gr) := PROD(BIT(Gk),BIT(Gl)), and
BITi(Gr) is defined to be the i-th bit of BIT(Gr).

Recall that in Cases 3, 4 the shorter number is padded to match the length of
the longer number by copying the sign bit before applying ADD or PROD.
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The Binary Value Lemma. Similarly to [2], one can show that Ext-PC has short
derivations of the fact that the BIT(G) circuit that we constructed computes
the same binary value as the original circuit G. Moreover, it can be compactly
proved in Ext-PC for the equational representation of BIT(G).

Lemma 3 (binary value lemma). Let y1 = f1(x), y2 = f2(x, y1), . . . , ym =
fm(x, y1, . . . , ym−1) be the equational representation of the algebraic circuit
G1(x) = f1(x), . . . , Gm = fm(x,G1(x), . . . , Gm−1(x)) over the variables x =
{x1, . . . , xn}, and let t be the syntactic length of G1, . . . , Gm. Then, there is
an Ext-PC proof (using only the Boolean axioms and the equations of the BIT
encoding) of yi = VAL(BIT(Gi)) of size poly(t) for each 1 ≤ i ≤ m.

Useful Lemmas About the BIT Value. In this section we provide technical lem-
mas about individual bits in the bit representation.

Lemma 4. For any vector of variables r0, . . . , rk−1, rk, there is a poly(k)-size
Ext-PC + eBVP derivation of r0 = . . . = rk = 0 from r20 − r0 = 0, . . . , r2k − rk =
0 and r0 + 2r1 + . . . + 2k−1rk−1 − 2krk = 0.

Proof. Multiply the last equation by rk and replace r2k by rk. We get (r0 +2r1 +
. . . + 2k−1rk−1 − 2k)rk = 0, which has (the negation of) an instance of eBVP in
the parentheses (for r′

i = 1 − ri). It remains to apply the eBVP rule to prove
that rk = 0. After that we get

r0 + 2r1 + . . . + 2k−1rk−1 = 0.

Again, multiply this by rk−1 and replace r2k−1 by rk−1. We get (r0 + 2r1 + . . . +
2k−2rk−2 + 2k−1)rk−1 = 0 with an instance of eBVP inside. After applying the
eBVP rule we get that rk−1 = 0. We can continue in the same way for rk−2, . . . , r0
getting r0 = . . . = rk = 0. 
�
Lemma 5 (monotonicity of addition and multiplication). For any two
bit vectors r0, . . . , rk−1, rk and r′

0, . . . , r
′
k−1, r

′
k, there is a poly(k)-size Ext-PC

derivation of SIGN(PROD(r, r′)) = 0 and SIGN(ADD(r, r′)) = 0 from

r20 − r0 = 0, . . . , r2k−1 − rk−1 = 0, r2k − rk = 0; rk = 0;

r′
0
2 − r′

0 = 0, . . . , r′
k−1

2 − r′
k−1 = 0, r′

k
2 − r′

k = 0; r′
k = 0.

Proof. See [2] (Lemma 6.7 in the Technical Report version), as the derivation
presented in that paper is literally in Ext-PC. 
�
Lemma 6. 1. For any vector of variables r0, . . . , rk−1, rk, there is a poly(k)-size
Ext-PC derivation of SIGN(PROD(r, r)) = 0 from r20−r0 = 0, . . . , r2k−1−rk−1 =
0, r2k − rk = 0.

2. If additionally PROD(r, r) = 0 is given, there is a poly(k)-size Ext-PC
derivation of r0 = 0, . . . , rk = 0.
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Proof (Sketch). The equation SIGN(PROD(r, r)) = 0 is derived straightfor-
wardly from the definition of PROD.

For the second part, we consider the definition of PROD and show that the
bits of BIT(A) are equal to 0 one by one, starting from the least significant bit,
full proof is given in the full version. 
�

5 Polynomial Simulations

1. Ext-PCZ + eBVP polynomially simulates Ext-LS+,∗,Z. To show it, we gradually
apply Lemma 3 to the circuit representation of the Ext-LS+,∗,Z derivation.

Theorem 1 (derivation theorem). Suppose we have a system of polynomial
equations f1 = 0, . . . , fk = 0, and that there is an Ext-LS+,∗,Z refutation p1 ≥
0, . . . , pm ≥ 0 of the corresponding system f1 ≥ 0, f1 ≤ 0, . . . , fk ≥ 0, fk ≤ 0.

Consider its circuit representation according to Sect. 3. Denote the syntactic
length of the circuit P1, . . . , Pm as t. Then, in terms of Sect. 3 there are poly(t)-
size Ext-PCZ + eBVP derivations of the facts

1. p1 = VAL(BIT(P1)), . . . , pm = VAL(BIT(Pm)).
2. Each sign bit in BIT(Pi) equals 0 (written in the form of polynomial equation

si = 0 where si is a variable, corresponding to the sign bit of BIT(Pi)).

The axioms used in these derivations are the boolean axioms, the axioms defining
extension variables, and (for the second statement) the input axioms.

Proof (Sketch). The first part of the theorem is an application of Lemmas 3, 1.
For the second part, we prove by induction that each sign bit in BIT(Pi)

equals 0. We apply Lemma 6 to prove that the sign bit of a square equals 0,
and Lemma 4 proves that the sign bit of the encoding of any axiom is 0. This
proves the induction base, and Lemma 5 allows to derive the nonnegativity of
all next BIT(Pi)’s by the monotonicity of addition and multiplication. See the
full version for the full proof. 
�
Definition 13 (Syntactic size of a refutation). The syntactic size of an
Ext-LS+,∗,Z refutation is the syntactic size of a corresponding circuit representa-
tion from Sect. 3.

Theorem 2. Consider a system of polynomial equations f1 = 0, . . . , fk = 0.
Suppose there is an Ext-LS+,∗,Z refutation for the system f1 ≥ 0, f1 ≤ 0, . . . , fk ≥
0, fk ≤ 0 of syntactic size S. Then there is an Ext-PCZ + eBVP refutation for
the system f1 = 0, . . . , fk = 0 of size at most poly(S).

Proof (Sketch). Consider an Ext-LS+,∗ refutation p1 ≥ 0, . . . ,−M = pk ≥ 0 of
the system f1 ≥ 0, f1 ≤ 0, . . . , fk ≥ 0, fk ≤ 0. From Theorem 1(1) we know that
there is a polynomial-size derivation of the equation −M = pk = VAL(BIT(Pk)).
From Theorem 1(2) we know that the sign bit of BIT(Pk) equals 0. These two
facts together give us an instance of eBVP. See the full version for the details.
�
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2. Ext-PCZ + eBVP polynomially simulates Ext-PC
√
Z

+ eBVP. Our strategy for
the simulation of the square root rule is as follows.

– Suppose we want to derive g = 0 from g2 = 0, for some polynomial g.
– We consider the bit representation BIT(G2) of g2.
– Lemma 3 together with Lemma 2 provide a polynomial-size derivation of

VAL(BIT(G2)) = g2, thus we have VAL(BIT(G2)) = 0.
– From this, Lemma 4 provides a polynomial-size proof of BIT(G2) = 0. Here

we make use of eBVP.
– Now Lemma 6 provides a polynomial-size proof of BIT(G) = 0.
– From this we can derive that g = VAL(BIT(G)) = 0.

In the full version we apply this strategy and hence get the following theorem.

Theorem 3. Consider a system of polynomial equations f1 = 0, . . . , fk = 0. If
there is an Ext-PC

√
Z

+eBVP refutation for this system, then there is an Ext-PCZ+
eBVP refutation for the system f1 = 0, . . . , fk = 0 that is at most polynomially
longer wrt syntactic size than the initial refutation.

6 eBVP Cannot be Used to Prove CNF Lower Bounds

Exponential lower bounds on the size of refutations of eBVP have been demon-
strated for several proof systems including Ext-PC

√
[1]. However, they have a

caveat: eBVP is not a translation of a Boolean formula in CNF. Is it still possible
to use these bounds to prove an exponential lower bound for a formula in CNF?
For example, one could provide a polynomial-size Ext-PC

√
derivation of a trans-

lation of an unsatisfiable Boolean formula in CNF from eBVP: together with the
lower bound for eBVP, this would prove a bound for a formula in CNF. One
could even introduce extension variables in order to describe such a formula.

In this section we show that this is not possible: any Ext-PC
√

derivation of
an unsatisfiable CNF from eBVPn should have exponential size in n. We start
with proving a lower bound over the integers. Then we extend this result to the
rationals. The proof can be viewed as a generalization of the lower bound in [1];
however, the lower bound is proved not for the derivation of M = 0, but for the
derivation of an arbitrary unsatisfiable CNF, possibly in the extension variables.

Formally, the derivation of an unsatisfiable formula in CNF from eBVPn in
Ext-PC

√
Z

starts with the equation
∑n

i=1 xi2i−1 + M = 0, the Boolean equations
x2

i −xi = 0, and the definitions of extension variables as axioms, and applies the
rules of Polynomial Calculus and the square root rule until it reaches polynomial
equations C1 ·p1 = 0, . . . , Cm ·pm = 0 and C ′

1 ·(y2
1−y1) = 0, . . . , C ′

v ·(y2
v −yv) = 0,

where each Ci or C ′
j is a nonzero integer constant and each pi is the translation

of a Boolean clause of the unsatisfiable CNF of the form

pi = yj1 · · · yjk · ¬y�1 · · · ¬y�r

for some extension variables yt’s and the “dual” extension variables ¬yt = 1−yt.
Since we work over the integers, we cannot assume that all Ci’s and C ′

j ’s equal
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1 (we cannot divide), though if we derive polynomials multiplied by nonzero
constants, it may still help in proving a lower bound for a CNF.

We start with formally defining how a substitution into the input variables
changes polynomials that use extension variables:

Definition 14. Suppose that that extension variables y1, . . . , ym in an Ext-PC
√
Z

derivation are introduced as y1 = q1(x1, . . . , xn), y2 = q2(x1, . . . , xn, y1), . . . ,
ym = qm(x1, . . . , xn, y1, . . . , ym−1). Then for any variable yi and any vector of
bit values {b1, . . . , bn} ∈ {0, 1}n, we define substitution yi|x1=b1,...,xn=bn :

– y1|x1=b1,...,xn=bn := q1(b1, . . . , bn).
– For i > 1 we define

yi|x1=b1,...,xn=bn := qi(b1, . . . , bn, y1|x1=b1,...,xn=bn , . . . , yi−1|x1=b1,...,xn=bn).

For any polynomial f(x1, . . . , xn, y1, . . . , ym) ∈ Z[x, y] we define f |x1=b1,...,xn=bn

in the following way:
f |x1=b1,...,xn=bn = f(b1, . . . , bn, y1|x1=b1,...,xn=bn , . . . , ym|x1=b1,...,xn=bn).

Before proving our bound, we observe a property of Boolean substitutions:

Lemma 7. Consider an instance of eBVP: M+x1+2x2+. . .+2n−1xn. Consider
any prime number p < 2n and the binary representation b1, . . . , bk of any number
0 ≤ t < 2n such that t ≡ −M (mod p). Given an Ext-PC

√
Z

derivation of the
polynomial equation f = 0 from M + x1 + 2x2 + . . . + 2n−1xn and the Boolean
axioms x2

i − xi = 0, the number f |x1=b1,...,xn=bn is divisible by p.

Proof. After the substitution, the axioms (including definitions of new variables)
are divisible by p. The statement follows by easy induction, see the full version.

Corollary 1. Consider an instance of eBVP of the form M + x1 + 2x2 + . . . +
2n−1xn, any prime number p < 2n and the binary representation b1, . . . , bk of any
number 0 ≤ t < 2n such that t ≡ −M (mod p). Suppose we introduced extension
variable yi for which we have an Ext-PC

√
Z

derivation of the polynomial equation
C ′ ·(y2

i −yi) = 0 from M +x1+2x2+ . . .+2n−1xn. Then, either the number C ′ is
divisible by p, or yi|x1=b1,...,xn=bn ≡ 1 (mod p), or yi|x1=b1,...,xn=bn ≡ 0 (mod p).

Now we are ready to prove an exponential lower bound over the integers:

Theorem 4. Given an Ext-PC
√
Z

derivation of an unsatisfiable CNF from M +
x1 + . . .+2n−1xn = 0 and the Boolean axioms, at least one of the following three
conditions holds:

– The number of clauses in this CNF is at least 2n/3.
– We have derived a polynomial equation C ′ · (y2

j − yj) = 0 and the constant C ′

is divisible by at least Ω(2n/3) different prime numbers.
– There is a clause C · yj1 · · · yjk · ¬y�1 · · · ¬y�r such that the constant C is

divisible by at least Ω(2n/3) different prime numbers.
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Proof. Let Y be the set of variables occurring in our CNF.
Consider the set P of all prime numbers from {1, 2, . . . , 2n−1}. Now consider

any prime number p ∈ P. As in Lemma 7, we can take an arbitrary t ∈ Z, 0 ≤
t < 2n, such that t ≡ −M (mod p). Consider the binary representation b1, . . . , bn

of this integer t. Corollary 1 says that for every yi ∈ Y we have derived that
C ′

i · (y2
i −yi) = 0 and either C ′

i is divisible by p, or yi|x1=b1,...,xn=bn ≡ 1 (mod p),
or yi|x1=b1,...,xn=bn ≡ 0 (mod p). We fix now this particular equation for yi in
what follows.

Now suppose that for every yi ∈ Y, the constant C ′
i from equation C ′

i · (y2
i −

yi) = 0 is not divisible by p. Then we know that every number yi|x1=b1,...,xn=bn

is 0/1 modulo p. Thus every number ¬yi|x1=b1,...,xn=bn is also 0/1 modulo p and

yi|x1=b1,...,xn=bn ≡ 1 − ¬yi|x1=b1,...,xn=bn (mod p).

Then, since our CNF is unsatisfiable, we know that there is a clause C ·yj1 · · · yjk ·
¬y�1 · · · ¬y�r , such that

(yj1 · · · yjk · ¬y�1 · · · ¬y�r )|x1=b1,...,xn=bn ≡ 1 (mod p).

On the other hand, from Lemma 7 we know that

C · (yj1 · · · yjk · ¬y�1 · · · ¬y�r )|x1=b1,...,xn=bn ≡ 0 (mod p).

Therefore, C is divisible by p.
Summarizing everything, we get that for every prime p ∈ P either we have

derived a Boolean equation C ′ · (y2 − y) where C ′ is divisible by p, or there is a
clause C · yj1 · · · yjk · ¬y�1 · · · ¬y�r where the constant C is divisible by p.

If the number of clauses in our CNF is at least 2n/3, the first condition of
the theorem holds. Suppose we have derived an unsatisfiable CNF with less then
2n/3 clauses. Then we have less than 2n/3 different variables in our CNF since
it is unsatisfiable, and we have derived less than 2n/3 equations of the form
C ′

i · (y2
i − yi) and less than 2n/3 clauses of the form C · (yj1 · · · yjk · ¬y�1 · · · ¬y�r ).

We showed that for any prime p ∈ P there is either an equation C ′
i · (y2

i − yi)
such that C ′

i is divisible by p or a clause C · (yj1 · · · yjk · ¬y�1 · · · ¬y�r ) such that
C is divisible by p. So, since the total number of those equations is less then
2n/3+1, there is a constant C (maybe C = C ′

i) from one of those equations that
is divisible by at least |P|

2n/3+1 prime numbers.
We know that the size of the set P is at least C ′′ ·2n/n by the Prime Number

Theorem for some constant C ′′. Thus the constant C should be divisible by at
least C ′′ · 2n

2n/3+1·n prime numbers, which is sufficient to satisfy the second or the
third condition of the theorem. 
�
Corollary 2. Any Ext-PC

√
Z

derivation of an unsatisfiable CNF in n variables
from eBVPn requires size Ω(2n/3).

Proof. If the number of clauses in this CNF is less than 2n/3, then by Theorem 4
there is a constant C in our derivation divisible by at least Ω

(
2n/3

)
different

prime numbers, hence C has Ω(2n/3) bits. 
�
A similar lower bound over the rationals is proved by translating derivations

over rationals into derivations over integers (see the full version).
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7 Further Research

A long-standing open question in semialgebraic proof complexity is to prove
a superpolynomial lower bound for a rather weak proof system (called LS after
Lovász and Schrijver), even for its most basic version [11] (degree two, no squares
axioms (f2 ≥ 0), no extension variables, multiplication by x, 1 − x and nonneg-
ative constants only). Recently lower bounds on very strong proof systems have
been proved for systems of polynomial equations (based on eBVP) that do not
come from Boolean formulas. Does this generalization help to prove superpoly-
nomial lower bounds for polynomial inequalities, for example, for LS?

We have shown a polynomial simulation of Ext-LS+,∗ proofs in Ext-PC aug-
mented by the eBVP rule, which was already known for stronger systems IPS
vs CPS [2]. How can we weaken the basic system so that the statement remains
true? For example, following [3] we can simulate binary arithmetic in logarithmic
depth (by formulas), which, unfortunately, gives only log2n depth proofs. Is it
possible to do better?
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Abstract. In this paper, we study a type of incremental optimiza-
tion variant of the Maximum Independent Set problem (MaxIS),
called Bounded-Deletion Maximum Independent Set problem (BD-
MaxIS): Given an unweighted graph G = (V,E), an initial feasible solu-
tion (i.e., an independent set) S0 ⊆ V , and a non-negative integer k, the
objective of BD-MaxIS is to find an independent set S ⊆ V such that
|S0 \ S| ≤ k and |S| is maximized. The original MaxIS is generally NP-
hard, but, it can be solved in polynomial time for perfect graphs (and
therefore, comparability, co-comparability, bipartite, chordal, and inter-
val graphs). In this paper, we show that BD-MaxIS is NP-hard even if the
input is restricted to bipartite graphs, and hence to comparability graphs.
On the other hand, fortunately, BD-MaxIS on co-comparability, interval,
convex bipartite, and chordal graphs can be solved in polynomial time.
Finally, we study the computational complexity on very similar variants
of the Minimum Vertex Cover and the Maximum Clique problems
for graph subclasses.

1 Introduction

Background. Motivated by the practice-oriented research on the railroad block-
ing problem, the following general framework of incremental optimization prob-
lems with initial solutions was introduced [20]: Let P be an optimization problem
with a starting feasible solution S0, and let F be the set of all feasible solutions
for P . For a new feasible solution S ∈ F , the increment from S0 to S is the
amount of change given by a function f(S, S0) : F × F → R, which we refer to
as the increment function. Suppose that k is a given bound on the total amount
of change permitted. We call S an incremental solution if it satisfies the inequal-
ity f(S, S0) ≤ k. The goal is to find an incremental solution S∗ that results in
the maximum improvement in the objective function value.
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Fig. 1. Given a graph G, an initial solution {v1, v4, v5}, and k = 2 as input (left), an
optimal solution is {v1, v6, v7, v8}.

In this paper we study a type of incremental optimization of the Maximum
Independent Set problem (MaxIS for short). The original MaxIS is one of
the most important and most investigated combinatorial optimization problems
in theoretical computer science. The input of MaxIS is an unweighted graph
G = (V,E), where V and E are the sets of vertices and edges in G, respectively.
An independent set of G is a subset S ⊆ V of vertices such that for every
pair u, v ∈ S, the edge {u, v} is not in E. The goal of MaxIS is to find an
independent set of maximum cardinality. The problem MaxIS is a well-studied
algorithmic problem, and actually it is one of the Karp’s 21 fundamental NP-hard
problems [14]. Furthermore, it is well known that MaxIS remains NP-hard even
for substantial restricted graph classes such as cubic planar graphs [6], triangle-
free graphs [19], and graphs with large girth [17]. Fortunately, however, it is also
known that the problem can be solved in polynomial time if the input graph
is restricted to, for example, graphs with constant treewidth [5] (and therefore,
outerplanar, series-parallel, cactus graphs, and so on), perfect graphs [12] (and
therefore, chordal [7], comparability [10], co-comparability, bipartite graphs, and
so on), circular-arc graphs [8], and many other graph classes.

Our Problem and Contributions. Throughout this paper, we let S0 and S
denote an initial solution (i.e., an initial independent set) and a solution obtained
by our algorithm. We define the increment function as f(S, S0) = |S0\S|, the
number of vertices in S0 but not in S, which is the number of deleted vertices
from the initial solution S0. The obtained solution S must satisfy the inequality
|S0\S| ≤ k. That is, the number of vertices deleted from the initial solution S0

is bounded by the given bound k. The function f can be seen as a “change-
constraint” function. Now, we can define our problem as follows:

Bounded-Deletion Maximum Independent Set (BD-MaxIS)
Input: An unweighted graph G = (V,E), an initial feasible solution

(i.e., an independent set) S0 ⊆ V , and a non-negative integer k.
Goal: The goal is to find an independent set S ⊆ V such that |S0\S| ≤

k and |S| is maximized.

See Fig. 1 for an example. If a graph G of eight vertices, an initial solution
{v1, v4, v5}, and k = 2 are given as input, then {v1, v6, v7, v8} is an optimal
solution, which is obtained by deleting two vertices {v4, v5} and adding three
vertices {v6, v7, v8}. If k = 1, then the initial solution {v1, v4, v5} is optimal
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Fig. 2. Computational complexity of BD-MaxIS on graph classes. For example, “perfect
→ comparability” means that the perfect graph class is a superclass of the compara-
bility graph class.

since one vertex-deletion does not make it possible to insert two or more new
independent vertices.

One sees that BD-MaxIS is generally NP-hard since if k ≥ |S0|, then we
can completely change the solution, and thus BD-MaxIS includes the classical
MaxIS as a special case (or simply, MaxIS is the case where S0 is empty and
k = 0). Hence, our work focuses on the computational complexity of BD-MaxIS
on polynomial-time solvable graph classes such as perfect, comparability, co-
comparability, bipartite, chordal graphs, and so on.

Our main results are summarized in the following list and Fig. 2:

(1) BD-MaxIS is NP-hard even if the input is restricted to bipartite graphs.
Since every bipartite graph is comparability and perfect, BD-MaxIS on com-
parability graphs, or perfect graphs is also NP-hard.

(2) BD-MaxIS can be solved in O(k|V |2) time for co-comparability graphs. If
the input graph is an interval graph, then there is an O(k|V | + |E|)-time
algorithm for BD-MaxIS.

(3) BD-MaxIS can be solved in O(k|E|) time for convex bipartite graphs.
(4) BD-MaxIS can be solved in O(k2(|V | + |E|)2) time for chordal graphs.

Other well-known graph classes including trapezoid, co-bipartite, permutation,
and bipartite permutation are also polynomial-time solvable from the results (2),
(3), and (4).

2 Preliminaries

Notation. Let G = (V,E) be a simple (without multiple edge or self-loop
edge), unweighted, and undirected graph, where V and E are sets of vertices
and edges, respectively. We sometimes denote by V (G) and E(G) the vertex
and the edge sets of G, respectively. Unless otherwise described, n and m denote
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the cardinality of V and the cardinality of E, respectively, for G = (V,E). An
edge between vertices u and v is denoted by {u, v}, and in this case vertices u
and v are said to be adjacent. The graph G denotes the complement graph of G,
i.e., G = (V,E), where {u, v} ∈ E if and only if {u, v} �∈ E. Let S ⊆ V be a set
of vertices of G. Then, the cardinality of S is denoted by |S| and the subgraph
of G induced by S is denoted by G[S]. The set N(u) = {v ∈ V | {u, v} ∈ E} is
called the neighborhood of the vertex u ∈ V in G.

Graph subclasses. A k-coloring of the vertices of a graph G = (V,E) is a
mapping col : V → {1, . . . , k} such that col(u) �= col(v) whenever {u, v} is an
edge in G. The chromatic number of G, denoted by χ(G), is the least number
k such that G admits a k-coloring. A clique in a graph G is a subset S ⊆ V of
vertices such that every two vertices in S are adjacent. The clique number of
G, denoted by ω(G), is the number of vertices in a maximum clique of G. An
independent set in a graph is a set of vertices no two of which are adjacent. The
independence number of G, denoted by α(G), is the size of a largest independent
set in G.

A graph G is called perfect if χ(H) = ω(H) for every induced subgraph H
of G. A graph is called chordal if every cycle of length at least four contains a
chord, which is an edge that is not part of the cycle but connects two vertices
of the cycle. A graph G is called bipartite if its chromatic number is at most
two. Consider a bipartite graph G with the vertex set V ∪ W and its 2-coloring
col, where V and W are the disjoint sets of vertices such that col(V ) = 1 and
col(W ) = 2. The bipartite graph G is convex if the vertices in W can be ordered
in such a way that, for each v ∈ V , the neighborhood N(v) of v are consecutive
in W . The ordering of the vertices in W is said to be convex, and G is said to
be convex with respect to W . A graph G is called co-bipartite if its complement
graph G is bipartite. A graph is called comparability if there exists a partial order
<σ on its vertices such that two vertices u and v are adjacent in the graph if and
only if u <σ v or v <σ u. A graph G is called co-comparability if its complement
graph G is a comparability graph. A graph is called permutation if it can be
represented by a permutation π : {1, . . . , n} → {1, . . . , n} in such a way that two
vertices i < j are adjacent if and only if π(i) > π(j). A graph is called bipartite
permutation if it is both bipartite and permutation.

3 NP-Hardness of BD-MaxIS on Bipartite Graphs

Given an unweighted graph G, the goal of the Maximum Clique problem
(MaxClique) is to find a clique Q ⊆ V of maximum cardinality [14]. Let q-Clique
be the decision version of MaxClique, i.e., given a graph G and an integer q,
q-Clique is to determine if there is a clique of size q in G:

Theorem 1. BD-MaxIS is NP-hard even if the input is restricted to bipartite
graphs.

Proof. We show that the NP-complete problem q-Clique is polynomial-time
reducible to BD-MaxIS on bipartite graphs. Suppose that the input of q-Clique
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is G0 = (V 0, E0), where V 0 = {v0
1 , . . . , v

0
n} of n vertices and E0 = {e01, . . . , e

0
m}

of m edges. Then, we construct the following bipartite graph G = (Vv ∪ Ve, E)
of BD-MaxIS by subdividing every edge in E0 to two edges:

Vv = {v1, v2, . . . , vn},

Ve = {e1, e2, . . . , em}, and

E = {{vi, es}, {vj , es} | e0s = {v0
i , v0

j } ∈ E0}.

That is, the constructed graph G is so-called an incidence graph of G0, and thus
G must be bipartite. Then, we set an initial solution S0 = Vv and an integer
k = q. This completes the reduction. One sees that each edge in E connects
a vertex in Vv with a vertex in Ve. Therefore, S0 = Vv must be a (feasible)
independent set. The reduction can be clearly executed in polynomial time.

For the above construction of G, we show that G contains an independent
set S such that |S0\S| ≤ k and |S| ≥ |V | − k + k(k − 1)/2 if and only if G0

contains a clique Q0 such that |Q0| ≥ q.

(1) Suppose that G0 contains a clique Q0 of size q, and Q0 = {v0
1 , . . . , v

0
q},

without loss of generality. Then, let R = {v1, . . . , vq} be the subset of the
corresponding q vertices in the initial independent set Vv. Since there must
be an edge between every pair of v0

i and v0
j in Q0 of G0, we can find a set,

say, A, of q(q − 1)/2 isolated vertices in Ve by deleting all the vertices in R
corresponding to Q0. Let S = (S0\R) ∪ A. One can see that (i) S0\S = R,
and thus |S0\S| = q = k, and (ii) S\S0 = A and |S\S0| = q(q − 1)/2 =
k(k − 1)/2. Namely, |S| = |V | − k + k(k − 1)/2.

(2) Suppose that the size of a maximum clique in G0 is at most q − 1. Let R =
{v1, . . . , vq} be an arbitrary subset of q vertices in the initial independent set
Vv. Then, we consider the corresponding set R0 = {v0

1 , . . . , v
0
q} of q vertices

in G0 of q-Clique and the subgraph G[R0] induced by R0 in G0. Since the
size of the maximum clique in G is at most q − 1, G[R0] contains at most
q(q−1)/2−1 edges. It follows that we can only obtain the new independent
set of at most q(q −1)/2−1 = k(k−1)/2−1 vertices by deleting any subset
of q = k vertices from Vv, i.e., the size of any independent set is at most
|V | − k + k(k − 1)/2 − 1. This completes the proof. 	


Since comparability graphs and perfect graphs are superclasses of bipartite
graphs [11], we obtain the following corollary:

Corollary 1. BD-MaxIS is NP-hard even if the input is restricted to compara-
bility graphs, or perfect graphs.

4 Polynomial-Time Solvable Graph Subclasses
of BD-MaxIS

4.1 Co-comparability Graphs

In this section, for BD-MaxIS on co-comparability graphs, we design a
polynomial-time algorithm, while BD-MaxIS on perfect graphs is NP-hard as
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Fig. 3. Umbrella-free vertex ordering. For example, consider three vertices v3, v7, and
v8. Since there is an edge between v3 and v8, there is an edge {v7, v8}.

shown in the previous section. Before the detailed description of our algorithm
ALG CoC, we give the vertex ordering characterization of co-comparability graphs.

Vertex ordering characterization. A vertex ordering of G = (V,E) is a
bijection σ : V ↔ {1, 2, . . . , n}, i.e., for v ∈ V , σ(v) denotes the unique position
of v in σ, σ(u) �= σ(v) for u �= v. For two vertices u and v, we write that u <σ v
if and only if σ(u) < σ(v). For two vertices u, v ∈ V , we say that u is left (resp.,
right) to v in σ if u <σ v (resp., v <σ u). A vertex ordering characterization is
an ordering on the vertices of a graph that satisfies certain properties. If every
G ∈ G has a total ordering of its vertices that satisfies some property, then we
say that the graph class G has a vertex ordering characterization on the property,
which is often used to design polynomial-time algorithms. The co-comparability
graph has the following vertex ordering characterization:

Proposition 1 ([15]). A graph G = (V,E) is a co-comparability graph if and
only if there exists a vertex ordering σ of its vertices such that for every triple of
vertices u, v, and w such that if u <σ v <σ w and {u,w} ∈ E, then {u, v} ∈ E
or {v, w} ∈ E (or both).

The vertex ordering σ that satisfies the above proposition is called an
umbrella-free ordering since σ does not contain an umbrella, which is a triple
of vertices u <σ u <σ w with {u,w} ∈ E but {u, v}, {v, w} �∈ E. For example,
see Fig. 3. McConnell and Spinrad presented an algorithm to compute such a
vertex ordering in O(n + m) time [16].

Algorithm. Our algorithm ALG CoC for BD-MaxIS on co-comparability graphs is
based on a dynamic programming along the vertex ordering of co-comparability
graphs. Given a co-comparability graph G = (V,E), we first compute an
umbrella-free vertex ordering σ of V in O(n + m) time. Suppose that the
ordering σ is v1 <σ v2 <σ · · · <σ vn. In order to make the description of
our algorithm easier, we add an isolated dummy vertex v0 so that v0 <σ v1
into the leftmost position (i.e., the 0th position). Let Vi..j = {vi, vi+1, . . . , vj}
be the set of the j − 1 + 1 consecutive vertices, vi through vj . Also, let
NL(vi) = N(vi) ∩ V0..(i−1) = {vj ∈ V0..(i−1) | {vi, vj} ∈ E} is called the left
neighborhood of vi. Let δi be the subscript of the leftmost vertex in NL(vi). If
NL(vi) = ∅, then δi = i. Let NL(vi) = {vj ∈ Vδi..(i−1) | {vj , vi} �∈ E}. See Fig. 3
again. For example, NL(v11) = {v3, v7, v8, v9, v10}, NL(v11) = {v4, v5, v6}, and
δ11 = 3.
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Now, consider the following two values pick and j: The former value pick ∈
{0, 1} indicates whether vi is picked into a (partial) solution S or not. The latter
value j ∈ {0, 1, . . . , k} indicates the number of deleted vertices from the initial
solution S0 in order to construct S. For the ith vertex vi, we define IS(i, pick, j)
to be the value of a maximum independent set in the induced subgraph G[V1..i]
satisfying the following: (i) If pick = 1, then a partial solution S for G[V1..i]
includes the ith vertex vi; otherwise, S does not include vi. (ii) The number
|(V1..i ∩ S0)\S| of deleted vertices so far is exactly j.

Let #S(i1, i2) be the number of vertices in S0 ∩ Vi1..i2 , i.e., the number of
vertices in {vi1 , . . . , vi2} which are picked into the initial solution S0. Initially
we set IS(0, pick, j) = 0 for pick = 0, 1, and j = 0, 1, . . . k. The recursive for-
mula of our DP-based algorithm ALG CoC is divided into the following two cases,
(Case 1) vi is not in the initial solution S0, i.e., vi �∈ S0, and (Case 2) vi is in
S0, i.e., vi ∈ S0.

(Case 1) Suppose that vi �∈ S0. The recursive formula is defined as follows:

IS(i, pick, j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max {IS(i − 1, 0, j), IS(i − 1, 1, j)}
if pick = 0;

1 + max
{

max
v�∈NL(vi)

{
IS(�, 1, j − #S(� + 1, i − 1))

}
,

IS(δi, 0, j − #S(δi + 1, i − 1))
}

if pick = 1and δi �= i;
1 + max {IS(i − 1, 0, j), IS(i − 1, 1, j)}

if pick = 1and δi = i.

(1) Consider the case where vi is not picked into the solution S. Then, the
number |(V1..i ∩ S0)\S| of deleted vertices at vi is equal to the number
|(V1..(i−1) ∩ S0)\S| at vi−1. Furthermore, one sees that the value of the
maximum independent set in the induced subgraph G[V1..i] is equal to the
value of a maximum independent set in the induced subgraph G[V1..(i−1)].

(2) Suppose that vi is picked into the solution S. Then, the value of the maxi-
mum independent set in G[V1..i] increases by one. One sees that all the left
neighborhood of vi cannot be picked into S, but v� ∈ NL(vi) can be possibly
picked into S since v� is not adjacent to vi. (i) If all the vertices v� ∈ NL(vi)
are not picked into S, then IS(i, 1, j) (now pick = 1) is equal to the value
of a maximum independent set in the induced subgraph G[V1..δi

] which is
stored into IS(δi, 0, j−#S(δi, i−1)) since all the vertices of S∩Vδi,i−1 must
not be included in the solution S. (ii) For ease of exposition, take a look at
five vertices v3, v4, v5, v6, and v11 in Fig. 3. If v11 is in S, then v3 is not in S.
Suppose that v4 and v6 in NL(v11) is picked into S and v5 is not in S. Since
v5 is not in S, IS(5, 0, j) can be obtained from max{IS(4, 0, j), IS(4, 1, j)}
if v5 is in the initial solution S0, and from max{IS(4, 0, j−1), IS(4, 1, j−1)}
if v5 is not in S0. That is, if v5 is not in S, then the current information of
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v5 can be obtained from the information of the left vertex v4. Therefore, it is
enough to verify the information of v� ∈ NL(vi) only when v� is picked into
S. This is the main reason why our DP-based algorithm works in polynomial
time if the vertex ordering characterization is umbrella-free.

(3) Suppose that vi is picked into the solution S, and NL(vi) = ∅. Then,
IS(i, pick, j) can be computed from the two values IS(i − 1, 0, j) and
IS(i − 1, 1, j) of the left vertex vi−1.

(Case 2) Suppose that vi ∈ S0. One sees that “vi is not picked” means that vi

must be deleted from the initial solution S0. The recursive formula is almost
the same as the formula in (Case 1), but, the number of deleted vertices is
different if vi is not picked into the solution S:

IS(i, pick, j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max {IS(i − 1, 0, j − 1), IS(i − 1, 1, j − 1)}
if pick = 0;

1 + max
{

max
v�∈NL(vi)

{
IS(�, 1, j − #S(� + 1, i − 1))

}
,

IS(δi, 0, j − #S(δi + 1, i − 1))
}

if pick = 1and δi �= i;
1 + max {IS(i − 1, 0, j), IS(i − 1, 1, j)}

if pick = 1and δi = i.

Our algorithm ALG CoC computes the value of IS(i, pick, j) and stores it into
a three-dimensional table IS of size (n+1)× 2× (k +1) = O(kn). Then, finally,
ALG CoC returns max0≤j≤k {IS(n, 0, j), IS(n, 1, j)}.

Theorem 2. Given an n-vertex co-comparability graph G and a non-negative
integer k, BD-MaxIS can be solved in O(kn2) time.

Proof. Given the co-comparability graph G, we can obtain its umbrella-free
ordering in O(n2) time by using the method proposed in [16]. Clearly, each table
entry takes O(n) time to compute. Since the table size is O(kn), the running
time of ALG CoC is O(kn2). 	


4.2 Interval Graphs

Since every interval graph is co-comparability, BD-MaxIS on interval graphs can
be solved in O(kn2) time by ALG CoC. Fortunately, however, we can provide
a faster algorithm ALG Int if the following vertex ordering characterization of
interval graphs, known as an interval ordering, is given:

Proposition 2 ([18]). A graph G = (V,E) is an interval graph if and only if
there exists an ordering σ of its vertices such that for every triple of vertices u,
v, and w such that if u <σ v <σ w and {u,w} ∈ E, then {u, v} ∈ E.

Theorem 3. Suppose that we are given the interval ordering of an n-vertex
interval graph G and a non-negative integer k as input. Then, BD-MaxIS can be
solved in O(kn) time. (The proof will appear in the full version of this paper).
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Since the interval ordering of interval graphs with n vertices and m edges
can be obtained in O(n + m) [3], we obtain the following corollary:

Corollary 2. Given an interval graph with n vertices and m edges, and a non-
negative integer k, BD-MaxIS can be solved in O(kn + m) time.

4.3 Convex Bipartite Graphs

As shown in Sect. 3, BD-MaxIS on bipartite graphs is NP-hard. One of the famous
subclasses of bipartite graphs is the convex bipartite graph class. In this section
we show that BD-MaxIS on convex bipartite graphs can be solved in polynomial-
time. Here, we give our notation and additional terminology.

Let G = (V,W,E) be a convex bipartite graph with respect to W . Sup-
pose that V and W have n1 and n2 vertices, V = {v1, v2, . . . , vn1} and
W = {w1, w2, . . . , wn2}, where the convex vertex ordering σ is w1 <σ w2 <σ

· · · <σ wn2 . The vertex ordering of vertices in V is given later. See Fig. 4. For
example, the neighborhood N(v3) = {w3, w4, w5, w6, w7} of v3 contains five con-
secutive vertices. Let w�

i and wr
i be the leftmost and the rightmost vertices in

N(vi) of vi, respectively. Assume that n1 vertices in V = {v1, . . . , vn1} are sorted
such that wr

1 <σ · · · <σ wr
n1

holds by the vertex ordering σ, with ties broken
arbitrarily. The ordering can be computed in O(n1 log n1). For the convex bipar-
tite graph in Fig. 4, wr

1 = wr
2 = w5, wr

3 = w7, wr
4 = w9, and wr

5 = w10. As for the
ith vertex vi, e�

v(i) = {vi, w
�
i} and er

v(i) = {vi, w
r
i } are called the leftmost and

the rightmost edges of vi, respectively. The other edges are called middle edges
of vi. If vi is incident to one edge only, then the edge is also regarded as the right-
most edge. Now we define a mapping rightv : E → {0, 1} such that if an edge e
is the rightmost edge, then rightv(e) = 1; otherwise, rightv(e) = 0. Similarly, let
v�

i and vr
i be the leftmost and the rightmost vertices in N(wi) of wi, respectively.

As for the ith vertex wi, e�
w(i) = {v�

i , wi} and er
w(i) = {vr

i , wi} are called the
leftmost and the rightmost edges of wi, respectively. The other edges are called
middle edges of wi. If wi is incident to one edge only, then the edge is regarded
as the leftmost edge. Again, we define a mapping leftw : E → {0, 1} such that if
an edge e is the leftmost edge, then leftw(e) = 1; otherwise, leftw(e) = 0. Take
a look at w5 in Fig. 4. One sees that the neighborhood N(w5) of w5 is v1, v2, v3,
and v4. Then, for example, rightv({v1, w5}) = 1 and rightv({v2, w5}) = 1, but,
rightv({v3, w5}) = 0. Also, leftw({v1, w5}) = 1.

Algorithm. Our algorithm ALG CB for BD-MaxIS on convex bipartite graphs
with respect to W follows the convex ordering of W , roughly from the left-
most edge to the rightmost edge. More precisely, ALG CB uses the edge order-
ing σe such that {w1, v11} <σe

{w1, v12} <σe
. . . <σe

{w1, v1|N(w1)|} <σe

{w2, v21} <σe
. . . <σe

{w2, v2|N(w2)|} <σe
· · · <σe

{wn2 , vn2|N(wn2 )|}, where
N(wi) = {vi1 , . . . , vi|N(wi)|

} and vi1 <σ · · · <σ vi|N(wi)|
for 1 ≤ i ≤ n2. That

is, the leftmost |N(w1)| edges of the edge ordering are incident to w1, the next
|N(w2)| edges are incident to w2, and so on.

Let [picki, pickiq
] ∈ {[0, 0], [0, 1], [1, 0]} be a status of the edge {wi, viq

} such
that if picki = 1 (resp., picki = 0), then wi is picked (resp, not picked) into
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Fig. 4. Convex bipartite

the solution S and if pickiq
= 1 (resp., pickiq

= 0), then viq
is picked (resp, not

picked) into the solution S for 1 ≤ i ≤ n2 and 1 ≤ q ≤ |N(wi)|. For the ith vertex
wi, we define IS([i, iq], [picki, pickiq

], j) to be the value of a maximum indepen-
dent set in the induced subgraph G[{w1, . . . , wi} ∪ N(w1) ∪ . . . ∪ N(wi−1) ∪
{vi1 , . . . , viq

}] satisfying that the number of deleted vertices is exactly j, where
[picki, pickiq

] is [0, 0], [0, 1], or [1, 0].
In order to make the description of our algorithm easier, we add two dummy

vertices v0 and w0 into the leftmost positions in V and W , respectively. Initially
we set IS([0, 0], [0, 0], j) = IS([0, 0], [0, 1], j) = IS([0, 0], [1, 0], j) = 0 for j =
0, 1, . . . , k.

Consider a vertex vi and its neighbor vertices in N(vi). If vi is in S, then
any vertex in N(vi) cannot be picked into S. Conversely, if at least one vertex
in N(vi) is in S, then vi cannot be picked into S. See Fig. 4 again. Consider
six vertices W1..6 = {w1, w2, w3, w4, w5, w6} and their four neighbor vertices
V1..4 = {v1, v2, v3, v4}, and also 13 edges between W1..6 and V1..4. If every vertex
in W1..6 is fixed to be picked or not into S, then the status v1 ∈ S or v1 �∈ S,
and v2 ∈ S or v2 �∈ S can be fixed since {v1, w5} and {v2, w5} are the rightmost
edges and w5 <σ w6. On the other hand, for example, the status v3 ∈ S or
v3 �∈ S cannot be fixed since it depends on whether w7 is picked or not into S.
Therefore, roughly speaking, as for vertices in W , (i) if wi is picked into S, then
the size of S increases by one; on the other hand, as for vertices in V , (ii) if
any neighbor vertex in N(vi)\{wr

i } are not picked into S, then the size of S is
incremented when wr

i ∈ S is determined.
The recursive formula of our DP-based algorithm ALG CB is divided into the

following three cases, (Case 1) wi, viq
�∈ S0, (Case 2) wi �∈ S0 but viq

∈ S0, and
(Case 3) wi ∈ S0 but viq

�∈ S0. Furthermore, each of the three cases (Case 1),
(Case 2), and (Case 3) has four sub-cases (rightv({wi, viq

}), leftw({wi, viq
})) =

(0, 0), (0, 1), (1, 0), and (1, 1). Note that if an edge {i, iq} �∈ E, then we set
IS([i, iq], [picki, pickiq

], j) = 0 in the right-hand side of the recursive formula.
Here we show only (Case 1) since (Case 2) and (Case 3) are very similar to
(Case 1); (Case 2) and (Case 3) will appear in the full version of this paper.

(Case 1) wi, viq
�∈ S0.

(i) Suppose that rightv({wi, viq
}) = 0 and leftw({wi, viq

}) = 0.
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IS([i, iq], [picki, pickiq
], j)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max {IS([i, iq−1], [0, 0], j), IS([i, iq−1], [0, 1], j),
IS([i − 1, iq], [0, 0], j), IS([i − 1, iq], [1, 0], j)}

if picki = 0and pickiq
= 0

max {IS([i, iq−1], [1, 0], j), IS([i − 1, iq], [0, 0], j),
IS([i − 1, iq], [1, 0], j)}

if picki = 1and pickiq
= 0

max {IS([i, iq−1], [0, 0], j), IS([i, iq−1], [0, 1], j),
IS([i − 1, iq], [0, 1], j)}

if picki = 0and pickiq
= 1

(ii) Suppose that rightv({wi, viq
}) = 1 and leftw({wi, viq

}) = 0.

IS([i, iq], [picki, pickiq
], j)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max {IS([i, iq−1], [0, 0], j), IS([i, iq−1], [0, 1], j),
IS([i − 1, iq], [0, 0], j), IS([i − 1, iq], [1, 0], j)}

if picki = 0and pickiq
= 0

max {IS([i, iq−1], [1, 0], j), IS([i − 1, iq], [0, 0], j),
IS([i − 1, iq], [1, 0], j)}

if picki = 1and pickiq
= 0

1 + max {IS([i, iq−1], [0, 0], j), IS([i, iq−1], [0, 1], j),
IS([i − 1, iq], [0, 1], j)}

if picki = 0and pickiq
= 1

(iii) Suppose that rightv({wi, viq
}) = 0 and leftw({wi, viq

}) = 1.

IS([i, iq], [picki, pickiq
], j)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max {IS([i − 1, iq], [0, 0], j), IS([i − 1, iq], [1, 0], j)}
if picki = 0and pickiq

= 0

1 + max {IS([i − 1, iq], [0, 0], j), IS([i − 1, iq], [1, 0], j)}
if picki = 1and pickiq

= 0

IS([i − 1, iq], [0, 1], j)
if picki = 0and pickiq

= 1
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(iv) Suppose that rightv({wi, viq
}) = 1 and leftw({wi, viq

}) = 1.

IS([i, iq], [picki, pickiq
], j)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max {IS([i − 1, iq], [0, 0], j), IS([i − 1, iq], [1, 0], j)}
if picki = 0and pickiq

= 0

1 + max {IS([i − 1, iq], [0, 0], j), IS([i − 1, iq], [1, 0], j)}
if picki = 1and pickiq

= 0

1 + IS([i − 1, iq], [0, 1], j)
if picki = 0and pickiq

= 1

Theorem 4. Given an m-edge convex bipartite graph G and a non-negative
integer k, BD-MaxIS can be solved in O(km) time.

Proof. Our algorithm ALG CB computes the value of IS([i, iq], [picki, pickiq
], j)

and stores it into a two-dimensional table IS of size (m+1)×3×(k+1) = O(km).
Then, finally, ALG CB returns

max
0≤j≤k

{
IS([n2, n1], [0, 0], j), IS([n2, n1], [0, 1], j), IS([n2, n1], [1, 0], j)

}
.

Since each table entry takes O(1) time to compute, the running time of ALG CB
is O(km). 	


4.4 Chordal Graphs

The class of chordal graphs is one of the important subclasses of perfect graphs.
Indeed, chordal graphs have attracted interest in graph theory since several
combinatorial optimization problems that are intractable turn to be tractable
on chordal graphs. In this section we provide a polynomial-time algorithm for
BD-MaxIS on chordal graphs, which is again based on a dynamic programming
for the clique tree representation of chordal graphs.

Clique Tree. Let QG be the set of all maximal cliques in a graph G, and let
Qv ⊆ QG be the set of all maximal cliques that contain a vertex v ∈ V (G). It is
known [4,9] that G is chordal if and only if there exists a tree T = (QG, E(T ))
such that each node1 of T corresponds to a maximal clique in QG and T has
the induced subtree property, i.e., the subtree T [Qv] induced by Qv is connected
for every vertex v ∈ V (G). Such a tree is called a clique tree of G, and it can be
constructed in linear time [1]. Given a chordal graph G = (V,E), we construct a
clique tree T and then a rooted clique tree T (Qr) of G by selecting an arbitrary
node in T as a root Qr. For the rooted clique tree T (Qr) of G and a node Qi in
T (Qr), T (Qi) represents the subtree rooted at Qi. See Fig. 5, where the left is
a chordal graph G of 11 vertices, and the right is its rooted clique tree T (Qr).

1 We will refer to a node in a tree in order to distinguish it from a vertex in a graph.
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Fig. 5. (Left) Chordal graph G, and (Right) its rooted clique tree Tr with a root
G[{v1, v2, v3, v4, v5}]

Let V (Qi) and V (T (Qi)) be the set of vertices in the node Qi and the union of
vertices in all nodes of the subtree T (Qi) rooted at Qi, respectively.

In this paper, we consider a weak clique tree representation of a chordal
graph [13]. Each node of the original clique tree must be a maximal clique,
but each node of the weak clique tree is just a clique. It is known [13] that
every chordal graph G = (V,E) has a weak clique tree T such that T is a
binary tree with O(n) nodes and the sum of all cardinalities of its nodes is
O(n + m). Furthermore, every weak clique tree of a chordal graph is still a
tree decomposition, i.e., satisfies the induced subtree property. Therefore, the
dynamic programming using the weak clique tree works well.

Algorithm. Given a chordal graph G = (V,E), we first compute a rooted weak
clique tree T (Qr) of G in O(n+m) time. For the sake of notational convenience,
let T = T (Qr), Ti = T (Qi), and let VT = {Q1, Q2, . . . , Q|VT |} be the set of
nodes in T . Suppose that Qi�

and Qir
in VT respectively are the left and the

right children of Qi, if exist. Recall that V (Ti) (= V (T (Qi))) is the union of
vertices in all nodes in the subtree Ti rooted at Qi, and V (T ) = V (G).

Let STi
be an independent set in the subtree induced by V (Ti), i.e., STr

is
an independent set S of G. For a node Qi in T , Si ⊆ V (Qi), and ji ∈ {0, . . . , k},
we define IS(i, Si, ji) to be the maximum size of the independent set STi

in Ti

satisfying that STi
∩ V (Qi) = Si and the number |S0\STi

| of deleted vertices
from Ti is exactly ji. A high level description of the recursive formula used by
our algorithm ALG Cho is very similar to the formula given in [2], although we
have to count the number of deleted vertices |S0\STi

|: The algorithm ALG Cho
computes the values of IS(i, Si, ji) for all nodes Qi in T . This can be done in a
typical bottom-up manner in the weak clique tree. Then, finally, ALG Cho returns
a maximum independent set satisfying the deletion constraint at the root node
Qr. Each table value IS(i, Si, ji) is computed after the table values of the two
children are obtained. Note that each node Qi in T is a clique, and thus we can
pick at most one vertex from Qi. It follows that for every node Qi, the number
of possible choices as Si is at most |V (Qi)| + 1 including Si = ∅. Further details
are omitted here, but, we can obtain the following theorem:

Theorem 5. Given an n-vertex chordal graph G and a non-negative integer k,
BD-MaxIS can be solved in O(k2(n + m)2) time.
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5 Concluding Remarks

The Minimum Vertex Cover problem is also known as one of the Karp’s 21
fundamental NP-hard problems [14]. We can similarly define a bounded-deletion
variant of the Minimum Vertex Cover problem:

Bounded-Deletion Minimum Vertex Cover (BD-MinVS)
Input: An unweighted graph G = (V,E), an initial feasible solution

(i.e., a vertex cover) S0 ⊆ V , and a non-negative integer k.
Goal: The goal is to find a vertex cover S ⊆ V such that |S0\S| ≤ k

and |S| is minimized.

Although details are omitted here, we can show the following results by a similar
polynomial-time reduction in the proof of Theorem 1:

Corollary 3. BD-MinVS is NP-hard even if the input is restricted to bipartite
graphs, comparability graphs, or perfect graphs.

Similarly, we can consider a deletion-bounded variant of the classical and
famous NP-hard MaxClique [14]:

Bounded-Deletion Maximum Clique (BD-MaxClique)
Input: An unweighted graph G = (V,E), an initial feasible solution

(i.e., a clique) S0 ⊆ V , and a non-negative integer k.
Goal: The goal is to find a clique set S ⊆ V such that |S0\S| ≤ k and

|S| is maximized.

Every independent set S in the complement graph G of a graph G forms a clique
induced by S in G. Therefore, we can show the following:

Corollary 4. BD-MaxClique is NP-hard even if the input is restricted to co-
bipartite graphs, co-comparability graphs, or perfect graphs.

Future work is to show the tractability/intractability of BD-MaxClique on
graph classes, such as chordal graphs, interval graphs, and permutation graphs.
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Abstract. This paper presents fault-tolerant asynchronous Stochastic
Gradient Decent (SGD) algorithms. SGD is widely used for approximat-
ing the minimum of a cost function Q, a core part of optimization and
learning algorithms. Our algorithms are designed for the cluster-based
model, which combines message-passing and shared-memory communi-
cation layers. Processes may fail by crashing, and the algorithm inside
each cluster is wait-free, using only reads and writes.

For a strongly convex Q, our algorithm can withstand partitions of
the system. It provides convergence rate that is the maximal distributed
acceleration over the optimal convergence rate of sequential SGD.

For arbitrary smooth functions, the convergence rate has an additional
term that depends on the maximal difference between the parameters at
the same iteration. (This holds under standard assumptions on Q). In
this case, the algorithm obtains the same convergence rate as sequential
SGD, up to a logarithmic factor. This is achieved by using, at each iter-
ation, a multidimensional approximate agreement algorithm, tailored for
the cluster-based model.

The general algorithm communicates with nonfaulty processes belong-
ing to clusters that include a majority of all processes. We prove that
this condition is necessary when optimizing some non-convex functions.

Keywords: Cluster-based model · Distributed learning ·
Asynchronous computing · Multi-dimensional approximate agreement ·
Stochastic gradient descent

1 Introduction

An optimization problem attempts to minimize the value of a cost function
Q : R

d → R, that is, find x∗ ∈ arg minx∈Rd Q(x). Among their many uses,
optimization problems play a key role in machine and deep learning [19], often
using stochastic gradient descent (SGD). SGD [29] repeatedly applies the update
rule xt+1 = xt − ηtG(xt, zt), in each iteration t. The arguments for this rule are
the learning parameter xt, the learning rate ηt, and a random sample zt from data
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distribution D; G(xt, zt) computes the stochastic gradient of xt and zt, which
is an unbiased estimator of the true gradient ∇Q(xt). Intuitively, the gradient
points to the direction of the steepest slope at that point, and its opposite
direction gives the biggest (local) decrease in function value. When the function
Q is strongly convex, xt will converge to the unique minimum of Q [9]; otherwise,
it will converge to a point with zero gradient [16].

In learning applications, SGD is applied to a function Q of high dimension
d, using many stochastic gradients [11]. The convergence of the basic SGD algo-
rithm can be improved by mini-batch SGD, which computes b stochastic gradi-
ents using b samples, drawn uniformly at random from D. The average of these
b gradients has variance that is a factor of b smaller than σ2, the variance of a
single stochastic gradient, implying a linear reduction in the number of iterations
for convergence. Since gradients are computed independently, (mini-batch) SGD
is a prime target for large-scale distributed and parallel computing. Mini-batch
SGD provides a baseline for measuring performance in the distributed setting.

In an iteration of a typical distributed SGD algorithm, a worker performs
some local computation and then, all computed values are aggregated to col-
lectively compute parameters for the next iteration [8]. This can be done in a
centralized manner, where a parameter server aggregates all the computation
done by the workers (e.g., [2–4,14,22,28]), or in a decentralized manner, where
each worker holds a copy of the parameters (e.g., [13,20,21,23,24]). A straight-
forward, synchronized implementation of (mini-batch) SGD requires locks or
barriers to ensure that workers proceed in lock-step, thereby harming the per-
formance.

Fig. 1. Cluster-based model

This paper considers completely
decentralized and asynchronous SGD in
a cluster-based model [27] that combines
both shared memory and message pass-
ing (Fig. 1): processes are partitioned to
disjoint clusters, each sharing a memory
space, accessed with reads and writes;
additionally, all processes can communi-
cate by message passing. Processes may fail by crashing, that is, stopping to take
steps. This model is interesting from a practical point-of-view, as it captures sev-
eral system architectures, for example high-performance computing systems [7].

Our first main contribution shows that when the function Q is strongly con-
vex, a simple asynchronous algorithm that collects nb messages in each itera-
tion, matches the convergence rate of a sequential mini-batch SGD algorithm
(for strongly-convex functions) with batch size nb [1,9]. Our analysis of this
algorithm is relatively simple, and leverages the strong convexity of Q to prove
convergence, despite the fact that each process holds a local copy of the learning
parameters. Specifically, we prove (Theorem 1) that if Q is a smooth strongly-
convex function, then the convergence rate of the algorithm after T iterations
with parameter nb is O(1/nbT ). Progress is ensured as long as nb is not larger
than the number of non-failed processes.
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The algorithm for strongly-convex functions does not rely on communication
within clusters and it applies to general message-passing systems. Even more
importantly, because nb is arbitrary and does not depend on the number of
possible failures f , the algorithm works even if the system partitions. Roughly,
since Q is strongly convex, it has a single minimum, and thus, all processes will
independently converge to this minimum.

Our second main contribution (Theorem 4) shows that in general, when Q
is not strongly convex, any SGD algorithm requires that the set of non-failed
processes represents a majority of the processes, when a process represents all
the processes in its cluster. In the special case where communication is only
through message passing, this reduces to requiring n > 2f .

Our third main contribution is a general SGD algorithm, under the same
assumption that the set of non-failed processes represents a majority of the
processes. It has a weaker convergence guarantee, relative to the baseline, with an
additional term Δ, depending on the difference between the learning parameters
of the different processes during the algorithm execution. We show that if Q is
a smooth function, then the convergence rate of the algorithm after T iterations
with parameter nb ≤ n − f is O

(
1/

√
nbT + TΔ

)
. The first term matches the

convergence rate achieved in standard analysis for non-convex objectives [16].
Unlike the strongly convex case, where the difference between the learning

parameters is intrinsically bounded, here we bound Δ using multidimensional
approximate agreement (MDAA) [25]. In MDAA, processes start with inputs in
R

d, and the outputs of nonfaulty processes should be “close together” and in the
convex hull of their inputs. We use a shared-memory adaptation of [15] to bound
the difference between the values sent from the same cluster. (Shared memory
replaces the assumption of non-split communication patterns used in [15]). By
ensuring every pair of processes communicate with a representative process (not
necessarily the same process) from at least one common cluster, we ensure good
contraction at each iteration. MDAA encapsulates the use of the shared memory
at each cluster, as well as the fault-tolerance required from the algorithm. This
algorithm is interesting by itself, beyond its application in distributed learning.

Each MDAA iteration contains several communication rounds, where each
process sends a message and receives responses representing n−f processes. We
prove that our general SGD algorithm can match the convergence rate of the
sequential algorithm, up to a logarithmic blowup in the number of communication
rounds. Specifically (Theorem 2), for a smooth function Q, the convergence rate
of the algorithm after R communication rounds is Õ

(
1/

√
nbR

)
.

In our algorithms, each process serves as both a computation and a commu-
nication thread, executing the computation and sending its result to the other
processes. Within the cluster, the algorithm is wait-free and uses only reads and
writes to the cluster’s shared memory; no locks or barriers are used. Since pro-
cesses operate in an independent manner, the algorithms achieve a speedup in
the total number of processes and not the number of clusters. Our algorithms
also improve the resilience relative to a pure message passing model, since a
process can represent its cluster [5].
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Related Work. We only discuss the most relevant papers from the vast litera-
ture on distributed SGD algorithms; a more extensive survey appears in [6].

Elastic consistency [26] is a framework that assumes that the difference
between the parameter used to compute the stochastic gradient by a process
and the actual global parameter is bounded. SGD converges under this assump-
tion, for both convex and non-convex objective functions. They prove that sev-
eral popular frameworks obey the above assumption. One example is in shared-
memory [4,28], where processes access the same learning parameter stored in
memory and update it, one coordinate at a time, using fetch&add. Another
example is with message-passing [2,22], where the parameter server may receive
stale gradients, i.e., gradients computed using old parameters from previous iter-
ations. Both cases assume bounded asynchrony, with a maximum delay τ on the
staleness of gradients.

Our algorithms are completely asynchronous, and do not assume any bound
on the difference between the iterations different processes are in at any point in
the execution. Like many classical distributed algorithms that proceed in asyn-
chronous rounds, our algorithms ignore stale messages from earlier rounds. The
only SGD algorithms (to our knowledge) that proceed in a similar manner [13,14]
handle malicious failures, where processes may behave arbitrarily bad, and do
not bound the convergence rate as a function of the number of processes. While
the algorithms in [13,14] could also tolerate crash failures, they are not optimized
for this case and do not achieve a speedup in the number of workers.

Some decentralized algorithms, e.g., [23,24], assume the communication is
dictated by a graph. We consider systems with a full communication graph,
where all processes may send messages to each other.

Approximate agreement was originally defined over the reals [12]. Multidi-
mensional approximate agreement was defined for asynchronous systems with
malicious failures [25], requiring that the outputs of nonfaulty processes’ are
close together and in the convex-hull of their inputs. They prove that the opti-
mal fault-tolerance for this problem is n > f(d + 2), for inputs in R

d. The lower
bound can be circumvented by using averaging agreement [13], which allows to
prove the convergence of the average of the outputs of nonfaulty nodes.

2 Preliminaries

2.1 Model of Computation

There are n processes, 1, . . . , n, which are partitioned into m ≤ n disjoint clusters,
P1, ..., Pm. Formally, Pi ⊆ {1, . . . , n}, Pi ∩ Pj = ∅ for every 1 ≤ i < j ≤
m, and

⋃m
i=1 Pi = {1, . . . , n}. Given a process i, cluster(i) is its cluster, i.e.,

cluster(i) = Pj such that i ∈ Pj . Processes may crash and stop taking steps. A
process is nonfaulty if it never stops taking steps. For simplicity, a process keeps
taking (empty) steps even after it completes the algorithm. A shared memory is
associated with each cluster, and it is accessed with read and write operations,
only by the processes in the cluster. In addition, each process can send messages
to each other process, using an asynchronous, reliable communication link. This
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means that messages between nonfaulty processes are eventually delivered, but
there is no upper bound on the delivery time. Figure 1 shows n = 6 processes
organized in m = 3 clusters: P1 = {1, 2}, P2 = {3} and P3 = {4, 5, 6}. The
maximal number of processes that can crash is denoted f , 1 ≤ f ≤ n.

A process i represents all the processes in cluster(i). Let f∗ be the maximal
integer such that any set P ⊆ [n] of size n − f∗ represents a majority of the
processes, i.e., |∪i∈P cluster(i)|≥ �n/2 + 1. Intuitively, this is the exact number
of failures a system can withstand without partitioning, i.e., the situation where
two disjoint sets of processes run without communication. In the special case of a
pure message-passing system (with singleton clusters) requiring f ≤ f∗ amounts
to f < n/2. Note that f∗ ≥ �(n − 1)/2, and we have:

Lemma 1 ([5]). If f ≤ f∗, then any two sets P,Q ⊆ [n], each representing
n − f processes, must include a process from the same cluster.

We assume a weak adversary that does not observe the local state of the pro-
cesses, and is oblivious to their local coin flips when scheduling the processes.

2.2 Stochastic Gradient Descent

The Euclidean norm of a vector x = (x1, ..., xd) ∈ R
d is ‖x‖2 �

√∑d
i=1|xi|2;

we use the standard notation, ‖x‖22 � (‖x‖2)2 =
∑d

i=1|xi|2. The variance of a

random vector x is V[x] � E

[
‖x − E[x]‖22

]
.

Each process can access the same data distribution D, and loss function
�(x, z), which takes a learning parameter x ∈ R

d and a data point z ∈ D. Given
a learning parameter x ∈ R

d, the cost function Q is: Q(x) � Ez∼D[�(x, z)]. A
distributed Stochastic Gradient Descent (SGD) algorithm collectively minimizes
the cost function Q, i.e., it finds x∗ ∈ arg minx∈Rd Q(x).

The cost function is differentiable and smooth, i.e., for a constant L ∈ R
+,

∀x,y ∈ R
d, ‖∇Q(x) − ∇Q(y)‖2 ≤ L‖x − y‖2, where ∇Q(x) ∈ R

d is the gra-
dient of Q at x. The gradient at x ∈ R

d can be estimated by the stochastic
gradient G(x, z) = ∇�(x, z) ∈ R

d, calculated at a data point z that is drawn
uniformly at random from D. The stochastic gradient is an unbiased estima-
tor of the true gradient Ez∼D[G(x, z)] = ∇Q(x). In addition, the estimations
have bounded variance, i.e., there is a non-negative constant σ ∈ R such that
Vz∼D[G(x, z)] = Ez∼D

[
‖G(x, z) − ∇Q(x)‖22

]
≤ σ2. These are standard assump-

tions in SGD analysis [9,10,16].
At the end of the algorithm, each nonfaulty process i outputs an estimate

of the learning parameter, xi ∈ R
d. We require the algorithm to externally

converge with expected error ε > 0 (simply called to converge in the optimization
literature). The convergence requirement expresses the quality of the solution
relative to a minimal one. It varies according to the assumptions on the cost
function, whether it is strongly-convex (Sect. 3) or not (Sect. 4).
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The algorithm internally converge with expected error δ > 0, if for every pair
of nonfaulty processes i and j:

E

[∥
∥xi − xj

∥
∥2

2

]
≤ δ (1)

3 Strongly-Convex Cost Functions

We start by presenting the algorithm when the function Q is strongly convex.
Formally, Q is μ-strongly convex, for μ > 0, if for every x,y ∈ R

d, Q(y) ≥
Q(x)+〈∇Q(x),y−x〉+ μ

2 ‖y − x‖22. A strongly convex cost function has a single
minimum, denoted x∗. In this case, an algorithm externally converges if for
every nonfaulty process i, E

[∥
∥xi − x∗∥∥2

2

]
≤ ε. Following standard analysis [9],

the convergence rate of vanilla SGD in this case is O(1/T ) after T iterations.
That is, E

[
‖xT − x∗‖22

]
≤ C/T for a constant C depending on μ, L, σ and

‖x1 − x∗‖22. This implies that E

[
‖xT − x∗‖22

]
≤ ε after T = O

(
ε−1

)
iterations.

Using a minibatch of size b gives a linear speedup in convergence rate to O(1/bT ).
This will serve as the baseline for the external convergence rate.

Algorithm 1. Cluster-based SGD, for strongly-
convex function: code for process i

Global input: initial point x1

1: xi
1 ← x1

2: for t = 1 . . . T do
3: draw uniformly at random z ∈ D
4: gi

t ← G
(
xi

t, z
)

5: yi
t ← xi

t − ηtg
i
t

6: broadcast
〈
t,yi

t

〉
to all processes

7: wait to receive nb messages of the form 〈t, −〉
8: xi

t+1 ← avg(received learning parameters)

9: output xi
T+1

Algorithm 1 works in iter-
ations, corresponding to those
of sequential SGD. A pro-
cess starts an iteration t with
a local learning parameter,
and computes a new one for
the next iteration. First, the
process computes a stochas-
tic gradient using its current
learning parameter, performs
a local SGD step, and sends
the updated learning param-
eter to all the other pro-
cesses. After receiving learn-
ing parameters from iteration t from nb processes, the process averages all the
parameters. In the last iteration, each process outputs the learning parameter it
has computed. The algorithm ignores stale gradients from previous iterations,
i.e., gradients computed using the learning parameter of a previous round.

The value of nb can be arbitrary; we only assume that nb ≤ n − f , to ensure
progress. As we show, the larger nb is, the better the convergence of the algorithm
is. The learning parameter for the first iteration of all processes is x1 ∈ R

d. The
learning rate for iteration t is ηt, and for each t, it is the same for all processes;
the learning rate is decreasing, i.e., ηt = O(1/t) for every iteration t.

Let Vt, t ≥ 1, be the set of processes that compute learning parameters
for iteration t + 1 in Line 8. We can prove that the average of b stochastic
gradients, each computed using different learning parameters, has variance of at
most σ2/b. Since Line 8 in Algorithm 1 averages the received parameters and
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the weak adversary cannot determine the learning parameters that arrive at each
process, this implies that for any iteration t ≥ 1 and set of processes S ⊆ Vt,
V

[
1

|S|
∑

i∈S gi
t

]
≤ σ2

|S| .
The next theorem shows that for strongly-convex functions our algorithm

achieves the same convergence rate (both internal and external) as the sequential
baseline. Intuitively, as there is a single minimum, all processes will converge
to this point independently. Hence, despite different processes holding different
learning parameters, the expected gradients will point in the same direction.
This allows us to obtain terms similar to the ones in the classical strongly-
convex analysis [9], and achieve the same convergence rate. For the full proof
and additional details, see [6].

Theorem 1. Let Q be an L-smooth and μ-strongly convex function with a single
minimum x∗, then for decreasing learning rate ηt = β

γ+t ≤ 1
L for some constants

β > 1
μ and γ > 0,

max
i,jinVT

E

[∥
∥
∥xi

T+1 − xj
T+1

∥
∥
∥
2

2

]
≤ 4η2σ2

(ημ − 1)(γ + T + 1)nb
(Internal convergence)

max
iinVT

E

[∥
∥xi

T+1 − x∗∥∥2

2

]
≤ (γ + 1)‖x1 − x∗‖22

(γ + T + 1)nb
+

η2σ2

(ημ − 1)(γ + T + 1)nb

(External convergence)

Neglecting dependencies on ‖x1 − x∗‖22, μ, L and σ, this means that Algorithm 1
converges externally in O

(
ε−1/nb

)
iterations, and internally in O

(
δ−1/nb

)
iter-

ations; that is, the rates are the same. Since each iteration takes a single com-
munication round, we get the same upper bound on the number of rounds.

4 Non-Convex Cost Functions

In the general case, where the function Q is non-convex, the algorithm has to
converge to a point with zero gradient; that is, for every nonfaulty process i:

E

[∥
∥∇Q(xi)

∥
∥2

2

]
≤ ε (2)

We assume that Q is lower bounded by Q∗, i.e., for every x ∈ R
d, Q(x) ≥ Q∗ [9].

When the function Q is not strongly convex, processes that obtain disjoint
estimations at an iteration may compute diverging learning parameters. For this
reason, we need to ensure that processes communicate with intersecting sets
of clusters. To further expedite the contraction rate, and reduce the distance
between the learning parameters, we end each iteration with multidimensional
approximate agreement (MDAA). The input to MDAA is the local learning
parameter, and its output serves as the learning parameter for the next iter-
ation.

Formally, in multidimensional approximate agreement [25], each process i
starts with input xi ∈ R

d and outputs a value yi ∈ R
d, such that:
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Convexity: The outputs are in the convex hull of the inputs, that is, they are
a convex combination of the outputs.

q-Contraction: The outputs are contracted by a factor of q relative to the
inputs, that is, for every pair of nonfaulty processes i, j, ‖yi − yj‖22 ≤
q diam(x1, . . .xn), where the squared Euclidean diameter of a set A ⊆ R

d

is diam(A) � maxx,y∈A‖x − y‖22.

Standard approximate agreement [12,25] requires ε-agreement, that is, the dis-
tance between outputs is at most ε. We only require contraction relative to the
diameter of the inputs, rather than a predefined maximal distance.

Algorithm 2. Cluster-based SGD: code for process i

Global input: initial point x1 and random iteration τ
1: xi

1 ← x1

2: for t = 1 . . . T do
3: draw uniformly at random z ∈ D
4: broadcast

〈
t, G

(
xi

t, z
)〉

to all processes
5: wait to receive nb messages of the form 〈t, −〉
6: gi

t ← avg(received stochastic gradients)
7: yi

t ← xi
t − ηtg

i
t

8: xi
t+1 ← MDAAt(y

i
t, q)

9: output xi
τ

Algorithm 2 deals
with non-convex func-
tions. One difference
from Algorithm 1 is in
Line 8, calling MDAA
with contraction param-
eter q. Another differ-
ence is that processes
send the stochastic gra-
dients they computed,
average the received
gradients to a mini-
batch stochastic gradi-
ent and then use it to perform a local SGD step. Every process outputs the
learning parameter of the same iteration τ ∈ [T ], which is drawn uniformly
at random; this is a typical practice in SGD algorithms for non-convex objec-
tive functions [9,16]. The convergence rate of (vanilla) minibatch SGD with
batch size b is O

(
1/

√
bT

)
, i.e., E

[
‖∇Q(xτ )‖22

]
≤ C/

√
bT , for constant C which

depends on L, σ and (Q(x1) − Q∗). This implies that E

[
‖∇Q(xτ )‖22

]
≤ ε after

T = O(ε−2/
√

b) iterations. As in the strongly-convex case, this will serve as our
baseline. The algorithm is similar to those in [13], but they use aggregation rules
which are resilient against malicious failures, and averaging agreement, while we
rely on the convexity property ensured by MDAA.

The parameter nb ∈ [n] determines how many messages a process waits for
in every iteration; to ensure progress, we require that nb ≤ n − f , as in the
strongly-convex case. Furthermore, we assume that f ≤ f∗ to guarantee the
convergence of the MDAA algorithm. Section 5 presents a cluster-based MDAA
algorithm, with O

(
log q−1

)
communication rounds. Let Vt, t ≥ 1, be the set of

processes that compute learning parameters for iteration t+1 (Line 8). Similarly
to the strongly-convex case, we have the next lemma (see [6]):

Lemma 2. For every iteration t ≥ 1 and process i ∈ Vt, V
[
gi

t

]
≤ σ2/nb.

The proof for external convergence uses the effective gradient [14], which
is defined as the difference between two consecutive iterations parameters. We
bound the difference between the effective gradient and the true gradient in each
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iteration, depending on the diameter of the learning parameters in the same
iteration. This allows to prove convergence, as the effective change between two
consecutive iterations is close enough to the true gradient. The next lemma
shows that external convergence depends on the maximal distance between the
learning parameters at the different processes, and uses a fixed learning rate of
η =

√
nb/T . Note that the first two terms are the classical error rates in the

non-convex case [9]. (All proofs for this section appear in [6]).

Lemma 3. Let Q be an L-smooth cost function. Then for T ≥ 16L2nb, constant
learning rate η =

√
nb√
T

and any process i ∈ VT ,

E

[∥∥
∥∇Q(xi

τ )
∥∥
∥
2

2

]
≤ 4(Q(x1) − Q∗)√

nbT
+

4σ2L√
nbT

+

(
8T

nb
+ 8L2

)
max
t∈[T ]

max
i,j∈Vt−1

E

[∥∥
∥xi

t − xj
t

∥∥
∥
2

2

]

Lemma 3 shows that external convergence depends on internal convergence.
(Recall from Sect. 3, that in the special case where the function is strongly con-
vex, both external and internal convergence are achieved naturally.) The proof
of this lemma only uses the convexity property of MDAA and gives motivation
for adding the contraction property to ensure this term will be sufficiently small.

Internal Convergence. The next lemma bounds the diameter of the learning
parameters of iteration t + 1 relative to the diameter of the previous iteration t.
It is proved by first bounding the diameter after each process performs a local
SGD step, and then using the contraction property of MDAA.

Lemma 4. For every iteration t ≥ 1,

max
i,j∈Vt

E

[∥
∥
∥xi

t+1 − xj
t+1

∥
∥
∥
2

2

]
≤ q

(
2 + 2L2η2

t

)
max

i,j∈Vt−1
E

[∥
∥
∥xi

t − xj
t

∥
∥
∥
2

2

]
+ q

4σ2η2
t

nb

When q
(
2 + 2L2η2

t

)
< 1 we get contraction relative to the previous iteration,

with an additive term. Assuming that ηt ≤ 1
L , yields that 2+2L2η2

t ≤ 4. Hence,
for any q < 1

4 this term is smaller than 1. Since the additive term also depends on
q, we can use it to control its magnitude. The next lemma bounds the distance
between the learning parameters at each iteration, using a constant learning rate
η and contraction parameter q ≈ η.

Lemma 5. Consider Algorithm 2 with constant learning rate η ≤ min
{

1
2 , 1

L

}

and q = η
4 . Then for every iteration t ≥ 1,

max
i,j∈Vt

E

[∥
∥xi

t+1 − xi
t+1

∥
∥2

2

]
≤ 2σ2η3

nb

Lemma 5 implies that setting η = O
(

3
√

nbδ/σ2
)

yields internal convergence.

Using the same learning rate as in Lemma 3, η =
√

nb/T , we get that

maxi,j∈Vτ−1 E

[∥
∥xi

τ − xj
τ

∥
∥2

2

]
= O

(
n
1/2
b T−3/2

)
. This yields internal convergence

in O
(
n
1/3
b δ−2/3

)
iterations.
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External Convergence. Finally, by bounding the distance of the learning
parameters at each iteration, we prove that Algorithm 2, using an MDAA algo-
rithm with O(log T ) communication rounds, has convergence rate that matches
the sequential SGD algorithm, up to a logarithmic factor in the number of
rounds. In a nutshell, the proof of the theorem uses the bound on the distance
between the learning parameters from Lemma 5 in Lemma 3 (See [6]).

Theorem 2. Let Q be an L-smooth cost function. Consider Algorithm 2 with
T ≥ max

{
16L2nb, 4nb

}
, constant learning rate η =

√
nb√
T

and q = η
4 . Then, after

R = O(T log T ) communication rounds for some constant C and every process
i ∈ VT

E

[∥
∥∇Q(xi

τ )
∥
∥2

2

]
≤ C(Q(x1) − Q∗) log R√

nbR
+

5Cσ2 L log R√
nbR

+
4Cσ2 log R√

nbR

Theorem 2 shows that Algorithm 2 converge externally in Õ
(
ε−2/nb

)
commu-

nication rounds, and by Lemma 3, internally in Õ
(
nb

1/3δ−2/3
)

communication
rounds. In both cases, dependencies on (Q(x1) − Q∗), L and σ are neglected. In
the non-convex case, internal convergence is faster than external convergence.

5 Cluster-Based MDAA

Algorithm 3. Cluster-based MDAA: code for
process i in cluster c

MDAA(x, q):
1: xi

1 ← x
2: for r = 1 . . . R = 	log23/24 q
 do

3: yi
r ← SMMDAAr(x

i
r, 1/6)

� Shared-memory algorithm inside cluster c
4: broadcast 〈r,yi

r〉 to all processes
5: wait to receive messages of the form 〈r, −〉
6: representing n − f processes
7: Rcv ← set of received values
8: xi

r+1 ← MidExtremes(Rcv)

9: output xi
R+1

Algorithm 3 solves MDAA
in the cluster-based model.
The algorithm leverages inter-
cluster communication to
increase the number of fail-
ures that can be tolerated,
and only requires read and
write operations. The algo-
rithm works in rounds, each
starting with shared-memory
MDAA (SMMDAA) within
each cluster (Line 3). This
algorithm satisfies the two
properties defined above (con-
vexity and contraction), among the inputs of each cluster separately. The pro-
cesses of each cluster communicate in this algorithm using only the common
shared memory. (See [6] for full details and proof). This algorithm allows pro-
cesses to wait to receive messages representing a majority of the processes at
each round, rather than waiting for a majority of the processes, which is the
usual practice in crash-tolerant message-passing algorithms. This guarantees
that every pair of processes receive a value from a common cluster. Any two val-
ues sent from the same cluster have smaller diameter, compared to the diameter
of all the process values, since they are the output of the inter-cluster SMMDAA
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algorithm. After collecting sufficiently many messages, the process computes the
next round value using the MidExtremes rule [15], which returns the average of
the two values that realize the maximum Euclidean distance among all received
vectors. Formally, for X ⊆ R

d

MidExtremes(X) = (a + b)/2, where (a,b) = arg max
(a,b)∈X2

‖a − b‖2.

Note that at each round the value is a convex combination of the previous
rounds’ values, hence, this algorithm satisfies the convexity property. In each
round of our MDAA algorithm, the diameter of the values is reduced by a fixed
contraction rate relative to the diameter of the values in the previous round.
Let xr be the set of round-r outputs, the round-r contraction rate is an upper
bound ρr ≥ diam(xr+1)/diam(xr). We consider algorithms with a uniform upper
bound ρ < 1 on the contraction rate of all rounds. Contraction rate ρ ensures
q-contraction within �logρ q� ≈ log2(1/q) rounds (assuming q, ρ < 1).

We assume that f ≤ f∗, which by Lemma 1 implies that two sets of processes,
each representing n − f processes, must include a process from the same cluster
(not necessarily the same process). This is optimal, since even one-dimensional
approximate agreement cannot be solved when f > f∗ [5].

We explain our cluster-based MDAA algorithm in the one-dimensional case;
the full proof [6] covers the multidimensional case. Intuitively, rather than
requiring that collected sets intersect, it suffices to assume that they con-
tain “close enough” values. When d = 1, MidExtremes returns the MidPoint,
i.e., for a set X ⊆ R, MP(X) = (min(X) + max(X))/2. We also have that
diam(X) = max(X) − min(X) for X ⊆ R. Let A,B ⊆ U ⊆ R, A and B stand
for values collected in the same round by two different processes (Line 7), and
U is all the possible round values. For any pair of values a ∈ A and b ∈ B, we
have MP(A) ≤ (a + max(U))/2 and MP(B) ≥ (min(U) + b)/2, which implies:

MP(A) − MP(B) ≤ 1
2

(max(U) − min(U))
︸ ︷︷ ︸

diam(U)

+
1
2
(a − b) (3)

When A and B intersect, the second term in (3) zeros out, which gives
contraction rate of 1/2 when any two sets of collected values intersect. (In the
general d-dimensional case, MidExtremes has contraction rate of 7/8 under this
assumption [15]). The assumption that any two collected sets of size n − f must
intersect is not guaranteed when only assuming f ≤ f∗. Instead, we can use
an SMMDAA algorithm with contraction parameter of 1/2. Assuming there are
values a ∈ A and b ∈ B such that a−b ≤ diam(U)/2, by (3), |MP(A) − MP(B)| ≤
3/4 diam(U), leading to a slightly worse contraction rate of 3/4.

The full proof of the algorithm relates the SMMDAA contraction parameter
qsm and the global contraction rate ρ of the outer algorithm in the general d-
dimensional case, which is ρ ≤ 11/12 + qsm/4. Using qsm = 1/6, we get an
MDAA algorithm with contraction rate 23/24.

Theorem 3. Algorithm 3 satisfies q-contraction within �log23/24 q� communi-
cation rounds.
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6 Impossibility of Asynchronous SGD with System
Partitions

A non-convex function Q may have several stationary points, i.e., x ∈ R
d such

that ∇Q(x) = 0. A stationary point can be either global or local minimum or
maximum, or a saddle point, which is not a local extremum of the function.
Although SGD converges to a stationary point (see (2)), it may happen that
starting from the same initial point, SGD converges to different stationary points
in different random executions. If these stationary points are γ apart, for a large
enough γ, and the probability of reaching them is large enough, then we can prove
that no distributed SGD implementation, satisfying both internal and external
convergence, can tolerate partitioning. (Recall that in our model, the system is
partitioned if f > f∗, and the correct processes may represent a minority of the
processes.) Intuitively, this is because each partition can converge individually
to points that are γ apart from each other, violating internal convergence.

Definition 1, below, formalizes the phenomenon where the SGD algorithm
converge γ apart in two different random executions with probability at least p.

Let Aseq(Q,T,x0) be a sequential SGD algorithm optimizing the function Q
for T iterations starting from x0. Let xseq be a random variable, corresponding
to the output of the sequential algorithm. For β ∈ R and point x ∈ R

d, let
Eseq(β,x) be the event that ‖xseq − x‖2 ≤ β. For a set of points S ⊆ R

d,
Eseq(β, S) denotes the event that for some x ∈ S, ‖xseq − x‖2 ≤ β, i.e.,
Eseq(β, S) =

⋃
x∈S Eseq(β,x). Note that for a stationary point x, using smooth-

ness ‖∇Q(xseq)‖22 ≤ L2‖xseq − x‖22. This implies that if the algorithm converges
near a stationary point, then this point has small squared gradient. We denote
the event that SGD converges to a point in a set of stationary points S using
the event Eseq(β, S), for some small β.

Definition 1. Function Q is (γ,p)-split for γ > 0 and p ∈ (0, 1), if there are
two sets of points S1, S2 ⊆ R

d where minx1∈S1,x2∈S2‖x1 − x2‖2 ≥ d and for
some α, β > 0 such that (d − α − β) ≥ γ, P[Eseq(α, S1)]P[Eseq(β, S2)] ≥ p.

We also need a slightly more formal model of distributed computation. A
configuration C consists of the local state of each process, pending messages
that were not received yet and the shared memory state of each cluster. An
event is either a delivery of some message by process i or some operation on
its cluster shared memory. A step consists of some local computation, possibly
a coin flip, and a single event. By applying an event preformed by process i to
configuration C, we obtain a new configuration with a new local state for process
i, possibly removing or adding messages from the pending messages buffer and
the updated shared memory state of i’s cluster.

Given a configuration C, for every process there is a fixed probability for every
step it can take from C. An execution tree T is a directed weighted tree where
each node is a configuration and the edges are all the possible steps that can be
taken from this configuration. The weight on each edge is exactly the probability
for the step to be taken from the parent configuration. The root of the execution
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tree is an initial configuration. Any path in the execution tree, beginning from
the root, defines a legal execution. The probability over the execution tree for
an execution to occur is the product of weights along the path that defines the
execution. Given an infinite execution tree T and an execution α in T , a process
i crashes in α if it stops taking steps from some point in α. P (α) is the set of
all non-crashed processes in α.

Let A be an algorithm in the cluster-based model and let T be an execution
tree of algorithm A. Let xi(T ) ∈ R

d be a random variable, corresponding to the
output of process i from algorithm A over execution tree T . If i crashed then
this value is ⊥. For a set of processes P , let E(β,x, T , P ) be the event that for
some process i ∈ P , such that xi(T ) �= ⊥,

∥
∥xi(T ) − x

∥
∥
2

≤ β. For a set of points
S, let E(β, S, T , P ) =

⋃
x∈S E(β,x, T , P ).

To ensure the distributed algorithm implements an SGD algorithm, we
require it to preserve the same convergence distribution as the sequential algo-
rithm, as explained next.

We say that A preserves the convergence distribution over an execution tree
T , if for any β > 0, set of points S and set of processes P , P[E(β, S, T , P )] ≥
P[Eseq(β, S)]. We say that A distributively implements Aseq(Q,T,x0) over an
execution tree T if it converge externally (2) and internally (1) over the outputs{
xi(T )

}n

i=1
, and it preserves the convergence distribution over T .

The proof of the next theorem adapts the impossibility proofs of [5,18] to
probabilistic algorithms by using probabilistic indistinguishability [17] (see [6]).
The result is proved for a weak adversary, which cannot observe the local coin
flips, shared memory states and the messages sent during the execution.

Theorem 4. If a function Q is (γ,p)-split with p > δ
2γ2 and γ >

√
δ/2, then

no algorithm A distributively implements Aseq(Q,T,x0) over all execution trees
T that contain an execution α such that |∪i∈P (α)cluster(i)|≤ �n/2.

7 Summary

We present crash-tolerant asynchronous SGD algorithms for the cluster-based
model. For strongly convex functions, our algorithm obtains maximal speedup
of the convergence rate over the sequential algorithm, and tolerates any number
of failures. For other functions, we employ multidimensional approximate agree-
ment to bring parameters close together in each iteration. This algorithm requires
that the set of non-failed processes represents a majority of the processes. We
prove that this condition is necessary for optimizing certain functions.

Our results assume processes fail only by crashing, which is an adequate
model for several computing systems. Moreover, concentrating on crash fail-
ures allows to obtain good bounds on the convergence rate, as well as optimal
bounds on the ratio of faulty processes. This also leads to simpler and more mod-
ular proofs. We believe that the cluster-based model with crash failures offers a
blueprint for optimization algorithms for high-performance computing systems.
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These architectures include many multi-processor computers, each running mul-
tiple threads that share a memory space, which are connected by a network.

Future work could explore the use of specific properties of objective functions,
beyond strong convexity, to improve the algorithms. Another direction is to have
more cooperative inter-cluster computation, e.g., using fetch&add.
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Abstract. Given a plane graph it is known how to compute the union
of non-crossing shortest paths. These algorithms do not allow neither to
list each single shortest path nor to compute length of shortest paths.
Given the union of non-crossing shortest paths, we introduce the concept
of shortcuts that allows us to establish whether a path is a shortest path
by checking local properties on faces of the graph. By using shortcuts we
can compute the length of each shortest path, given their union, in total
linear time, and we can list each shortest path p in O(max{�, � log log k

�
}),

where � is the number of edges in p and k the number of shortest paths.

Keywords: shortest paths · undirected planar graphs · non-crossing
paths

1 Introduction

The problem of finding non-crossing shortest paths in a plane graph (i.e., a
planar graph with a fixed planar embedding) has its primary applications in
VLSI layout [6,14,15], where two paths are non-crossing if they do not cross
each other in the chosen embedding. Thanks to Reif [19], it also appears as
a basic step in the computation of maximum flow in a planar network and
related problems [1,5]. The non-crossing shortest path (NCSP) problem can be
formalized as follows: given an undirected plane graph G with non-negative edge
lengths and k terminal pairs that lie on a specified face boundary, w.l.o.g, the
external face boundary, find k non-crossing shortest paths in G, each connecting
a terminal pair. It is assumed that terminal pairs appear in the infinite face so
that non-crossing paths exist; this property can be easily verified in linear time.

We deal with a problem strictly linked to the NCSP problem. Our input is
an undirected plane graph U composed by the union of k non-crossing shortest
paths in a plane graph G whose extremal vertices lie on the same face of G.
Thus U arises from the union of paths p1, . . . , pk, where, for each i ∈ [k], pi is a
shortest path from xi to yi in G, xi and yi are on the infinite face f∞ of G, pi and
pj are non-crossing for every i, j ∈ [k]. We stress that we know U but we ignore
the pi’s; indeed, algorithms solving the NCSP problem in [3,4,20] compute the
union of the non-crossing shortest paths without listing every single path.
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We show how to compute the lengths of the pi’s shortest paths in linear time,
i.e., in time proportional to the number of edges/vertices in U . In this way we
prove that if there exists an algorithm solving the NCSP problem, then we can
compute the lengths of shortest non-crossing paths in the same time complexity.
We also explain an efficient way to list each path.

Our problem was already discussed in the geometrical case [16,18] under
Euclidean distances, but not in a weighted plane graph which has a more general
structure.

State of the Art. Takahashi et al. [20] proposed an algorithm able to compute
k non-crossing shortest paths that requires O(n log n) time, where n is the size
of G. In the same article it is also analyzed the case where the terminal pairs
lie on two different face boundaries, and this case is reduced to the previous one
within the same computational complexity. The complexity of their solution can
be reduced to O(n log k) by plugging in the linear time algorithm by Henzinger et
al. [11] for computing a shortest path tree in a planar graph. In the unweighted
case, by using the result of Eisenstat and Klein [8], Balzotti and Franciosa showed
that k non-crossing shortest paths can be found in O(n) time [4].

Our problem is a special case of computing distances between vertices lying
on the same face of a plane undirected graph. This problem can be solved in
O(n log n) by Klein’s algorithm [13], that has been recently improved [7] to
O(n log |f |), where f is the face of G where terminal pairs lie.

The algorithm proposed in [20] first computes the union of the k shortest
paths, which is claimed to be a forest. The second step relies on the data structure
due to Gabow and Tarjan [10] for efficiently solving least common ancestor
(LCA) queries in a forest, in order to obtain distances between the terminal
pairs in O(n) time.

Actually, the union of the k shortest paths may in general contain cycles. An
instance is shown in Fig. 1, in which the unique set of three shortest paths forms
a cycle, hence the distances between terminal pairs cannot always be computed
by solving LCA queries in a forest. This limitation was noted first in [9,18].

Fig. 1. In this example the union of shortest paths from xi to yi, for i = 1, 2, 3, contains
a cycle (the union is highlighted with bold edges).
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Ericksonn and Nayyeri [9] generalized the work in [20] to the case in which
the k terminal pairs lie on h face boundaries. They proved that k non-crossing
paths, if they exists, can be found in 2O(h2)n log k time. The authors also stated
that the union of non-crossing shortest paths can always be covered with two
(possibly non edge-disjoint) forests so that each path is contained in at least
one forest. They do not describe how to obtain such a decomposition. This is
in contrast with the example in Fig. 2, where we report the union of 15 non-
crossing shortest paths that cannot be covered with two forests so that each
path is contained in at least one forest (it can be easily proved by enumeration).
Recently, Balzotti [2] proved that the union of non-crossing shortest paths can
always be covered with four (possibly not edge-disjoint) forests so that each
path is contained in at least one forest, and he also showed that four forests are
necessary for some instances. We stress that the theoretical result in [2] does
not provide a linear time algorithm for computing the covering forests, thus it
does not allow to compute path lengths in linear time exploiting lower common
ancestors computation [10] as claimed in [20].

Fig. 2. Union of 15 non-crossing shortest paths that cannot be decomposed into two
forests so that each path is contained in at least one forest (parallel adjacent segments
represent overlapping paths).

Our Contribution. In this article we exploit the novel concept of shortcuts, that
are portions of the boundary of a face that allow us to modify a path without
increasing (and possibly decreasing) its length. We show that it is possible to
establish whether a path is a shortest path by looking at the presence of short-
cuts. Hence while being a shortest path is a global property, we can verify it
locally by checking a single face at a time for the presence of shortcuts adjacent
to the path, ignoring the rest of the graph. Notice that this is only possible when
the input graph is the union of non-crossing shortest paths, not for general plane
graphs. Without this property, finding one distance is as difficult as finding a
shortest path on U ; where we recall that U is the graph arising from the union
of all non-crossing shortest paths.

Shortcuts allow us to compute the lengths of non-crossing shortest paths in
total linear time. Thus we extend the result in [20] also in the case in which U
contains cycles. Our novel simple technique does not require the result by Gabow
and Tarjan [10]. Moreover, we also propose an algorithm for listing the sequence
of edges in a shortest path p joining a terminal pair in O(max{�, � log log(k

� )}),
where � is the number of edges in p.
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In this way we prove that if there exists an algorithm able to compute the
union of non-crossing shortest paths whose extremal vertices lie on the same face
of a plane undirected graph, then we can compute the lengths of these paths in
the same time complexity.

The algorithm we propose can be easily implemented and it does not require
sophisticated data structures. We follow the same approach of Polishchuck and
Mitchell [18], that was inspired by Papadopoulou’s work [16]. They solve the
problem of finding k non-crossing shortest paths in a polygon with n vertices,
where distances are defined according to the Euclidean metric.

Structure. The article is organized as follows: in Sect. 2 we give preliminary
definitions and notations that will be used in the whole article. In Sect. 3 we
deal with shortcuts and in Sect. 4 we use shortcuts in algorithm ImplicitPaths
for describing an implicit representation of non-crossing shortest paths. This
representation is used to compute distances between terminal pairs in linear time,
and, in Sect. 5, it is also used to list the non-crossing shortest paths. Finally, in
Sect. 6 conclusions are given and we mention some open problems.

2 Preliminaries

General definitions and notations are given. Then we deal with paths, non-
crossing paths, and we define a partial order on terminal pairs, the genealogy
tree. All graphs in this article are undirected.

2.1 Definitions and Notations

Let G = (V (G), E(G)) be a plane graph, i.e., a planar graph with a fixed planar
embedding. We denote by FG the set of faces and by f∞

G its infinite face. When
no confusions arise we use the term face to denote both the border cycle and the
finite region bounded by the border cycle, and the infinite face is simply denoted
by f∞.

We use standard union and intersection operators on graphs.

Definition 1. Given two graphs G = (V (G), E(G)) and H = (V (H), E(H)),
we define the following operations and relations:

– G ∪ H = (V (G) ∪ V (H), E(G) ∪ E(H));
– G ∩ H = (V (G) ∩ V (H), E(G) ∩ E(H));
– H ⊆ G ⇐⇒ V (H) ⊆ V (G) ∧ E(H) ⊆ E(G);
– G \ H = (V (G), E(G) \ E(H)).

Given a graph G = (V (G), E(G)), an edge e and a vertex v we write, for
short, e ∈ G in place of e ∈ E(G) and v ∈ G in place of v ∈ V (G). An ab path
is a path whose extremal vertices are a and b.

We use round brackets to denote ordered sets. For example, {a, b, c} =
{c, a, b} and (a, b, c) 	= (c, a, b). Moreover, for every r ∈ N we denote by [r]
the set {1, . . . , r}.
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Let ω : E(G) → R
+ be a weight function on edges. The weight function is

extended to a subgraph H of G so that ω(H) =
∑

e∈E(H) ω(e).
We assume that the input of our problem is a plane undirected graph U =⋃

i∈[k] pi, where pi is a shortest xiyi path in a plane graph G, and the terminal
pairs {(xi, yi)}i∈[k] lie on the infinite face f∞ of G. We stress that we work with
a fixed embedding of U . W.l.o.g. we assume that U is connected, otherwise it
suffices to work on each connected component.

For a (possibly not simple) cycle C, we define the region bounded by C the
maximal subgraph of U whose infinite face has C as boundary. If R is a subgraph
of U , then we denote by ∂R the infinite face of R. Moreover, we define R̊ = R\∂R.

Let γi be the path in f∞ that goes clockwise from xi to yi, for i ∈ [k]. We
assume also that pairs {(xi, yi)}i∈[k] are well-formed, i.e., for all j, � ∈ [k] either
γj ⊆ γ� or γj ⊇ γ� or γj and γ� share no edges. We note that if terminal pairs
are well-formed, then there exists a set of pairwise non-crossing shortest xiyi

paths. The reverse is not true if some paths are subpaths of the infinite face of
G; this case is not interesting in the applications and has never been studied in
literature, where the terminal pairs are always assumed to be well-formed. The
well-formed property can be easily verified in linear time, since it corresponds
to checking that a string of parentheses is balanced, and it can be done by a
sequential scan of the string. We also assume that the terminal pairs are distinct,
i.e., there does not exist any pair i, j ∈ [k] such that {xi, yi} = {xj , yj}.

Given i ∈ [k], we denote by i-path an xiyi path. It is always useful to see
each i-path as oriented from xi to yi, for i ∈ [k], even if the path is undirected.
For an i-path p, we define Leftp as the left portion of U with respect to p, i.e.,
the finite region bounded by the cycle formed by p and γi; similarly, we define
Rightp as the right portion of U with respect to p, i.e., the finite region bounded
by the cycle formed by p and f∞ \ γi.

For an i-path p and a j-path q, we say that q is to the right of p if q ⊆ Rightp,
similarly, we say that q is to the left of p if q ⊆ Leftp. Given R ⊆ U and an
i-path p ⊆ R, for some i ∈ [k], we say that p is the leftmost i-path in R if p is
to the left of q for each i-path q ⊆ R. Similarly, we say that p is the rightmost
i-path in R if p is to the right of q for each i-path q ⊆ R.

2.2 Paths and Non-crossing Paths

Given an ab path p and a bc path q, we define p ◦ q as the (possibly not simple)
path obtained by the concatenation of p and q. Given a simple path p and two
vertices u, v of p, we denote by p[u, v] the subpath of p with extremal vertices u
and v.

Now we introduce the operator �, explained in Fig. 3, that allows us to
replace a subpath in a path.

Definition 2. Let p be a simple ab path, let u, v ∈ V (p) such that a, u, v, b
appear in this order in p and let q be a uv path. We denote by p� q the (possibly
not simple) path p[a, u] ◦ q ◦ p[v, b].
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Fig. 3. Illustrating operator �.

We say that two paths in a plane graph G are non-crossing if the curves
they describe in the graph embedding do not cross each other; a combinatorial
definition of non-crossing paths can be based on the Heffter-Edmonds-Ringel
rotation principle [17]. We stress that this property depends on the embedding
of the graph. Non-crossing paths may share vertices and/or edges. We also define
a class of paths that will be used later.

Definition 3. Two paths p and q are single-touch if p ∩ q is a (possibly empty)
path.

Examples of non-crossing paths and single-touch paths are given in Fig. 4.

Fig. 4. Paths in (a) and (b) are crossing, while paths in (c), (d), (e) are non-crossing.
Moreover, paths in (a), (c) and (d) are not single-touch, while paths in (b) and (e) are
single-touch.

Our algorithm builds a set of single-touch paths even if the shortest pi’s paths
in G composing the input graph U =

⋃
i∈[k] pi are not pairwise single-touch.

This may happen if there are more shortest paths in G joining the same pair
of vertices. Uniqueness of shortest paths can be easily ensured by introducing
small perturbations in the weight function of G. We wish to point out that
the technique we describe in this article does not rely on perturbation, but we
break ties by choosing rightmost or leftmost paths. This implies that our results
can also be used in the unweighted case, as done in [4]. Note that the single-
touch property does not depend on the embedding, and if the terminal-pairs are
well-formed, then it implies the non-crossing property. This is explained in the
following remark, and, for this reason, we can say that the solution found by our
algorithm holds for any feasible planar embedding of the graph.

Remark 1. If {πi}i∈[k] is a set of simple single-touch paths, where πi is an i-
path, for i ∈ [k], then {πi}i∈[k] is a set of pairwise non-crossing paths for all the
embeddings of U such that the terminal pairs {(xi, yi)}i∈[k] are well-formed.
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2.3 Genealogy Tree

Given a well-formed set of pairs {(xi, yi)}i∈[k], we define here a partial ordering as
in [20] that represents the inclusion relation between γi’s. This relation intuitively
corresponds to an adjacency relation between non-crossing shortest paths joining
each pair.

Choose an arbitrary i∗ such that there are neither xj nor yj , with j 	= i∗,
walking on f∞ from xi∗ to yi∗ (either clockwise or counterclockwise), and let e∗

be an arbitrary edge on that walk. For each j ∈ [k], we can assume that e∗ 	∈ γj ,
indeed if it is not true, then it suffices to switch xj and yj . We say that i  j if
γi ⊆ γj . We define the genealogy tree Tg of a set of well formed terminal pairs
as the transitive reduction of poset ([k],).

Figure 5 shows an example of well-formed terminal pairs, and the correspond-
ing genealogy tree for i∗ = 1. From now on, in all figures we draw f∞ by a solid
light grey line.

Fig. 5. On the left a set of well-formed terminal pairs. If we choose i∗ = 1, then we
obtain the genealogy tree on the right.

3 Shortcuts

Now we introduce shortcuts, that are the main tool of algorithm ImplicitPaths
introduced in Sect. 4, and the most important theoretical novelty of this article.

Roughly speaking, a shortcut appears if there exists a face f adjacent to a
path p so that we can modify p going around f without increasing its length.
We show that we can decide whether a path is a shortest path by looking at
the existence of shortcuts: in this way, we can check a global property of a path
p—i.e., being a shortest path—by checking a local property—i.e., the presence of
shortcuts in faces adjacent to p. This result is not true for general plane graphs,
but it only holds when the input graph is the union of shortest paths joining well-
formed terminal pairs on the same face. Shortcuts are the main tool of algorithm
ImplicitPaths described in Sect. 4, and the most important theoretical novelty
of this article.
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Now we can formally define shortcuts, which are clarified in Fig. 6. The main
application of shortcuts is stated in Theorem 1.

Definition 4. Given a path p and a face f containing two vertices u, v ∈ p,
we say that a uv subpath q of ∂f not contained in p is a shortcut for p if
ω(p � q) ≤ ω(p).

Fig. 6. All edges have unit weight. On the left, highlighted in orange, there is a shortcut
for p contained in ∂f . In the middle there are two shortcuts for p both contained in
∂f . On the right there are no shortcuts for p. (Color figure online)

Theorem 1. Let λ be an i-path, for some i ∈ [k]. If there are no shortcuts for
λ, then λ is a shortest i-path.

Proof. If λ = pi then the thesis holds. Thus let us assume by contradiction that
ω(pi) < ω(λ) and λ has no shortcuts.

Let a, b ∈ V (λ) ∩ V (pi) be two vertices such that pi[a, b] and λ[b, a] share no
edges (such a and b exist because pi 	= λ and they are both i-path). Let C be
the simple cycle pi[a, b] ◦ λ[b, a], and let R be the region bounded by C. If R is
a face of U , then pi[a, b] is a shortcut for λ, absurdum. Hence we assume that
there exist edges in R̊, see Fig. 7 on the left.

Either R ⊆ Leftpi
or R ⊆ Rightpi

. W.l.o.g., we assume that R ⊆ Leftpi
.

Being U =
⋃

j∈[k] pj , for every edge e ∈ R̊ there exists at least one path q ∈ P

such that e ∈ q, where P =
⋃

i∈[k]{pi}. Moreover, the extremal vertices of q are
in γi because paths in P are non-crossing and R ⊆ Leftpi

.
Now we show by construction that there exist a path p ∈ P and a face f

such that f ⊆ R, ∂f intersects λ on vertices and ∂f \ λ ⊆ p; thus ∂f \ λ is a
shortcut for λ because p is a shortest path.

For all q ∈ P such that q ⊆ Leftpi
we assume that Leftq ⊆ Leftpi

(if it is not
true, then it suffices to switch the extremal vertices of q).

For each q ⊆ Leftpi
, let Fq = {f ∈ F | ∂f ⊆ R ∩ Leftq}, where F is the set

of the faces of U . To complete the proof, we have to find a path p such that
|Fp| = 1, indeed, the unique face f in Fp satisfies ∂f \ λ ⊆ p, and thus ∂f \ λ is
a shortcut for λ.

Now, let e1 ∈ R̊ and let q1 ∈ P be such that e1 ∈ q1. Being e1 ∈ R̊, then
|Fq1 | < |Fpi

| and |Fq1 | > 0 because e1 ∈ q1, see Fig. 7 on the right. If |Fq1 | = 1,
the proof is completed, otherwise we choose e2 ∈ R̊ ∩ L̊eftq1 and q2 ∈ P such
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that e2 ∈ q2. It holds that |Fq2 | < |Fq1 | and |Fq2 | > 0 because e2 ∈ q2. By
repeating this reasoning, and being U =

⋃
j∈[k] pj , we find a path p such that

|Fp| = 1. ��

Fig. 7. Paths and regions used in Theorem 1’s proof. Path λ is in green, pi in red, q1 in
blue and region R is highlighted in grey. It holds that |Fq1 | = 4. (Color figure online)

Given a path p, we say that a path q is a right shortcut for p if q is a
shortcut for p and q ⊆ Rightp. The following corollary can be proved by the
same approach of Theorem 1 and is more useful for our purposes.

Corollary 1. Let λ be an i-path, for some i ∈ [k]. If there are no right shortcuts
for λ, then there does not exist any path λ′ ⊆ Rightλ satisfying ω(λ′) ≤ ω(λ).

4 Computing Lengths in Linear Time

In Theorem 2 we show that the distances between terminal pairs can be com-
puted in O(|E(U)|) time by knowing U . This is the main result of this article.
To achieve it, we introduce algorithm ImplicitPaths, that gives us an implicit
representation of non-crossing shortest paths used in the proof of Theorem 2.
The implicit representation is described in Remark 3.

The main idea behind algorithm ImplicitPaths is the following. We build a
set of shortest i-paths {λi}i∈[k], by finding λi at iteration i, where the terminal
pairs are numbered according to a postorder visit of Tg. In particular, at iteration
i we find the rightmost shortest i-path in Ui =

⋂
j∈[i−1] Rightλj

in the following
way: first we set λi as the leftmost i-path in Ui, then we update λi by moving
right through right shortcuts (the order in which shortcuts are chosen is not
relevant). When λi has no more right shortcuts, then it is the rightmost shortest
i-path in Ui by Corollary 1. For the first iteration, we define U1 as U .

Lemma 1. Let {λi}i∈[k] be the set of paths given by algorithm ImplicitPaths.
Then

1.(1) λi is the rightmost shortest i-path in Ui, for i ∈ [k];
1.(2) {λi}i∈[k] is a set of single-touch paths.
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Algorithm ImplicitPaths:
Input: an undirected plane graph U composed by the union of k non-crossing

shortest paths in a plane graph G each one joining a terminal pair on
the infinite face of G

Output: an implicit representation of a set of paths {λ1, . . . , λk}, where λi is a
shortest i-path, for i ∈ [k]

1 Compute Tg and renumber the terminal pairs according to a postorder visit of
Tg;

2 for i = 1, . . . , k do
3 Let λi be the leftmost i-path in Ui;
4 while there exists a right shortcut τ for λi in Ui do
5 λi := λi � τ ;

Proof. We proceed by induction to prove the first statement. Trivially λ1 is the
rightmost shortest 1-path in U1 = U because of Corollary 1. Let us assume that
λj is the rightmost shortest j-path in Uj , for j ∈ [i − 1], we have to prove that
λi is the rightmost shortest i-path in Ui.

In Line 3, we initialize λi as the leftmost i-path in Ui. By induction and the
postorder visit, at this step, there does not exist in Ui any i-path p to the left of
λi shorter than λi. Otherwise λi would cross a path λj , for some j < i, implying
that λj is not a shortest j-path. We conclude by the while cycle in Line 4 and
Corollary 1.

Statement 1.(2) follows from 1.(1); indeed, if λi and λj are not single-touch,
for some i, j ∈ [k], then 1.(1) is denied either for λi or for λj . ��

Given i ∈ [k] we define Ci as the set of children of i in the genealogy tree,
moreover, we say that λj is a child of λi if j ∈ Ci.

Before stating our main result, we introduce a trivial consequence of non-
crossing property and Jordan’s Curve Theorem [12], indeed, every i-path π sat-
isfies that π ◦ γi is a closed curve.

Remark 2. Let {πi}i∈[k] be a set of non-crossing i-paths. Let i, j, � ∈ [k]. If πi,
πj and π� share a common edge, then at least two among {i, j, �} are a couple
of ancestor/descendant in the genealogy tree.

Theorem 2. Given an undirected plane graph U composed by the union of k
non-crossing shortest paths in a plane graph G each one joining a terminal pair
on the infinite face of G, we can compute the length of each shortest path in
O(|E(U)|) total time.

Proof. We show that during the execution of algorithm ImplicitPaths we can
also compute the length of λi, for all i ∈ [k], in linear total time. If we also prove
that algorithm ImplicitPaths can be executed in linear time, then the thesis
follows from Lemma 1.
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We define, for all i ∈ [k], λi,0 as λi after Line 3, i.e., the leftmost i-path in
Ui =

⋂
j∈[i−1] Rightλj

. We have to show that all the λi,0’s and all the shortcuts
required in Line 4 can be computed in total linear time.

Let’s start dealing with the shortcuts. We do a linear preprocessing that
visits clockwise every face. Let f be a face of U : after this preprocessing, the
lengths of the clockwise path and of the counterclockwise path in ∂f joining any
given pair of vertices in f can both be computed in constant time. Now, if the
intersection between ∂f and λi, for some i ∈ [k], is contained in λj , for some
j ∈ Ci, then we know that there are no right shortcuts in f for λi, otherwise
they would be right shortcuts for λj . Thus we ask for a right shortcut in f for
λi if and only if λi visits at least one edge in ∂f that is not contained in its
children or λi ∩ ∂f is contained in an least two children of λi (consequently at
least one more edge of ∂f is visited). We can check this last case in constant
time by verifying whether the vertex v joining two children belongs to exactly
one face in Ui or not; this check can be made in constant time because of the
embedding by looking whether the degree of v in Ui is 2 or not. If v belongs to
exactly one face f , then, by above, we check for a shortcut in f .

In this way, during the execution of algorithm ImplicitPaths we ask for a
shortcut in f at most O(|E(f)|) times thank also to Remark 2. This implies that
finding all the shortcuts requires total linear time.

Now we prove that all the λi,0’s can be computed in total linear time. We
stress that all the λi’s and all the λi,0’s are represented as list, in this way we
can join two paths in constant time. We recall that λi,0 is the leftmost i-path in
Ui =

⋂
j∈[i−1] Rightλj

, Ci is the set of children of i, and γi is the clockwise path
on the infinite face of G from xi to yi. Let Yi =

⋃
j∈Ci

λj and let fi be the infinite
face of Yi ∪ γi. We observe that, by its definition, λi,0 is the counterclockwise
i-path on fi. Clearly, if all the λj ’s, for j ∈ Ci, are vertex disjoint, then λj is
contained in fi, for all j ∈ Ci. If the λj ’s are not vertex disjoint, then some edges
of Yi are not in fi, and by construction, they are not in f�, for all i  �. Thus
we can see the sequence of the fi’s as an updating graph for which if an edge is
deleted at iteration i, then it does not appear again in f� for all i  �. Hence,
thanks to Remark 2, every edge appears at most two times in this construction.
Consequently, all the λi,0’s can be computed in total linear time because also to
their list representation.

We have proved that algorithm ImplicitPaths requires linear time. We use
the same argument to compute paths’ lengths. Let i ∈ [k] and j ∈ Ci. At iteration
i we know ω(λj), and we compute ω(λi,0 ∩ λj) by subtracting from ω(λj) the
length of edges of λj that are not in λi,0. In this way we can compute the lengths
of λi,0 for all i ∈ [k] in total linear time because every edge is considered at most
two times thanks to Remark 2. Being the shortcuts computable in linear time,
the thesis follows. ��

By following Theorem 2’s proof we obtain the following implicit representa-
tion of the λi’s.

Remark 3. Paths λi’s computed by algorithm ImplicitPaths are implicitly rep-
resented as follows: λi = q1 ◦λj1 [a1, b1]◦ q2 ◦λj2 [a2, b2]◦ . . .◦ qr ◦λjr

[ar, br]◦ qr+1
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where {j1, j2, . . . , jr} ⊆ Ci, q1, q2, . . . , qr+1 are path in U such that E(q� ∩ λz) =
∅ for all � ∈ [r + 1] and z ∈ Ci. Note that the q�’s can be empty.

Now we explain the implicit representation of the λi’s. If i is a leaf of the
genealogy tree, then λi is given explicitly. Otherwise we give explicitly edges
that do not belong to the children of λi, that is the qi’s paths, and we give
the intersection path between λi and one of its child by specifying the extremal
vertices of this intersection. This representation requires linear space thanks to
Remark 2.

5 Listing Paths

We study the problem of listing the edges in λi, for some i ∈ [k], after the
execution of algorithm ImplicitPaths. We want to underline the importance
of the single-touch property. In Fig. 8, in (a) four shortest paths are drawn (the
graph is unit-weighted), we observe that the single-touch property is clearly not
satisfied. A single-touch version of the previous four paths is drawn in (b); it can
be obtained by algorithm ImplicitPaths. It is clear that the problem of listing
the edges in a path in this second case is easier. We stress that in the general
case the union of a set of single-touch paths can form cycles, see Fig. 1 for an
example.

Fig. 8. (a) the union of shortest i-paths, for i ∈ [4], in unit-weighted graph, each dif-
ferent path has different style, (b) the union of {λi}i∈[4], the output paths of algorithm
ImplicitPaths.

Theorem 3. After O(n) time preprocessing, each shortest path λi, for i ∈ [k],
can be listed in O(max{�i, �i log log( k

�i
)}) time, where �i is the number of edges

of λi.

Proof. For any i ∈ [k], we denote by
−→
λi the oriented version of λi from xi to yi.

During the execution of algorithm ImplicitPaths, we introduce a function Mark
that marks an arc d with i if and only if the d is used for the first time in the
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execution of algorithm ImplicitPaths at iteration i. It means that Mark(d) = i

if and only if d belongs to
−→
λi and d does not belong to

−→
λj , for all j  i and

j 	= i. This function can be executed within the same time bound of algorithm
ImplicitPaths. Now we explain how to find arcs in

−→
λi .

Let us assume that (d1, . . . , d�i
) is the ordered sequence of arcs in

−→
λi . Let

v = head[dj−1], and let us assume that deg(v) = r in the graph
⋃

j∈[k] λj . We
claim that if we know dj−1, then we find dj in O(log log r) time. First we order the
outgoing arcs in v in clockwise order starting in dj−1, thus let Outv = (g1, . . . , gr)
be this ordered set (this order is given by the embedding of the input plane
graph). We observe that all arcs in Outv that are in Leftλi

are in
−→
λw for some

w ≤ i, thus Mark(d) ≤ i for all d ∈ Outv ∩Leftλi
. Similarly, all arcs in Outv that

are Rightλi
are in

−→
λz for some z ≥ i, thus Mark(d) ≥ i for all d ∈ Outv ∩Rightλi

.
Using this observation, we have to find the unique l ∈ [r] such that Mark(gl) ≤ i
and Mark(gl+1) > i. This can be done in O(log log r) by using a van Emde Boas
tree [21].

Being the
−→
λi ’s pairwise single-touch, then

∑
v∈V (λi)

deg(v) ≤ 2k, where the

equality holds if and only if every
−→
λj , for j 	= i, intersects on vertices

−→
λi exactly

two times, that is the maximum allowed by the single-touch property.
Finally, if 2k ≤ �i, then we list

−→
λi in O(�i) because the searches of the correct

arcs do not require more than O(k) time, otherwise we note that

∑

j=1,...,�
a1+...+a�≤2k

log log aj ≤ � log log
(

2k

�

)

,

so the time complexity follows. ��

6 Conclusions

In this article we extend the result of Takahashi et al. [20] by computing
the lengths of non-crossing shortest paths in undirected plane graphs also in
the general case when the union of shortest paths is not a forest. Moreover,
we provide an algorithm for listing the sequence of edges of each path in
O(max{�, � log log(k

� )}), where � is the number of edges in the shortest path.
We also introduced shortcuts on non-crossing shortest paths in plane graphs.

They are a useful tool of interest itself.
All results of this article can be easily applied in a geometric setting, where

it is asked to search for paths in polygons instead of plane graphs. The same
results can be extended to the case of terminal pairs lying on two distinct faces,
by the same argument shown in [20].

We left open the problem of listing a shortest path in time proportional to
its length and finding the union of non-crossing shortest paths joining k terminal
pairs lying on the same face of a plane graph in o(n log k) time.
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Abstract. We study the problem of computing the vitality of edges and
vertices with respect to the st-max flow in undirected planar graphs,
where the vitality of an edge/vertex is the st-max flow decrease when
the edge/vertex is removed from the graph. This allows us to establish
the vulnerability of the graph with respect to the st-max flow.

We give efficient algorithms to compute an additive guaranteed
approximation of the vitality of edges and vertices in planar undirected
graphs. We show that in the general case high vitality values are well
approximated in time close to the time currently required to compute
st-max flow O(n log log n). We also give improved, and sometimes opti-
mal, results in the case of integer capacities. All our algorithms work in
O(n) space.

Keywords: planar graphs · undirected graphs · max flow · vitality ·
vulnerability

1 Introduction

Max flow problems have been intensively studied in the last 60 years, we refer
to [1,2] for a comprehensive bibliography. Currently, the best known algorithms
for general graphs [20,26] compute the max flow between two vertices in O(mn)
time, where m is the number of edges and n is the number of vertices.

Italiano et al. [19] presented an algorithm for max flow that solves the prob-
lem in O(n log log n) time for undirected planar graphs. For directed st-planar
graphs (i.e., graphs allowing a planar embedding with s and t on the same face)
finding a max flow was reduced by Hassin [16] to the single source shortest path
(SSSP) problem, that can be solved in O(n) time by the algorithm in [17]. For
the planar directed case, Borradaile and Klein [12] presented an O(n log n) time
algorithm. In the special case of directed planar unweighted graphs, an O(n)
time algorithm was proposed by Eisenstat and Klein [13].

The effect of edges deletion on the max flow value has been studied since
1963, only a few years after the seminal paper by Ford and Fulkerson [14] in 1956.
Wollmer [30] presented a method for determining the most vital edge (i.e., the
edge whose deletion causes the largest decrease of the max flow value) in a railway
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network. A more general problem was studied in [28], where an enumerative
approach is proposed for finding the k edges whose simultaneous removal causes
the largest decrease in max flow. Wood [31] showed that this problem is NP-hard
in the strong sense, while its approximability has been studied in [4,27].

In this paper we deal with the computation of vitality of edges and vertices
with respect to the value of an st-max flow in an undirected planar graph G,
denoted by MFG or MF if no confusion arises, where s and t are two fixed
vertices. The vitality of an edge e (resp., of a vertex v) measures the st-max
flow decrease observed after the removal of edge e (resp., all edges incident on
v) from the graph.

A reasonable measure of the overall vulnerability of a network can be the
number of edges/vertices with high vitality. So, if all edges and vertices have
small vitality, then the graph is robust. We stress that verifying the robust-
ness/vulnerability of the graph by using previous algorithms requires to com-
pute the exact vitality of all edges and/or vertices. We refer to [3,24,25] for
surveys on several kind of robustness and vulnerability problems discussed by
an algorithmic point of view.

A survey on vitality with respect to the max flow problems can be found
in [5]. In the same paper, it is shown that for st-planar graphs (both directed
or undirected) the vitality of all edges and all vertices can be found in optimal
O(n) time. Ausiello et al. [6] proposed a recursive algorithm that computes the
vitality of all edges in an undirected unweighted planar graph in O(n log n) time.

Formally, the st-max flow vitality of a set x ∈ (V (G)\{s, t})∪E(G), denoted
by vit(x), is equal to MFG − MFG−x, where G − x is the graph obtained from
G by removing set x.

The vitality has not been studied directly in [19,23], but their dynamic algo-
rithm leads to the following result.

Theorem 1 ([19,23]). Let G be a planar graph with positive edge capacities.
Then it is possible to compute the vitality of h single edges or the vitality of a
set of h edges in O(min{ hn

log n + n log log n, hn2/3 log8/3 n + n log n}).

Our Contribution. We propose fast algorithms for computing an additive guar-
anteed approximation of the vitality of all edges and vertices whose capacity
is less than an arbitrary threshold c. Later, we explain that these results can
be used to obtain a useful approximation of vitality for general distribution of
capacities and in the case of power-law distribution. We stress that in real world
applications we are usually interested in finding edges and or vertices with high
vitality, i.e., edges or vertices whose removal involves relevant decrease on the
max flow value.

Our main results are summarized in the following two theorems. For a graph
G, we denote by E(G) and V (G) its set of edges and vertices, respectively. Let
c : E(G) → R

+ be the edge capacity function, we define the capacity c(v) of
a vertex v as the sum of the capacities of all edges incident on v. Moreover,
for every x ∈ E(G) ∪ V (G) we denote by vit(x) its vitality with respect to the
st-max flow. We show that we can compute a value vitδ(x) in (vit(x)− δ, vit(x)]
for any δ > 0.
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Theorem 2. Let G be a planar graph with positive edge capacities. Then for any
c, δ > 0, we can compute a value vitδ(e) ∈ (vit(e) − δ, vit(e)] for all e ∈ E(G)
satisfying c(e) ≤ c, in O( c

δ n + n log log n) time.

Theorem 3. Let G be a planar graph with positive edge capacities. Then for any
c, δ > 0, we can compute a value vitδ(v) ∈ (vit(v) − δ, vit(v)] for all v ∈ V (G)
satisfying c(v) ≤ c, in O( c

δ n + n log n) time.

All our algorithms work in O(n) space. To explain the result stated in The-
orem 2, we note that in the general case the capacities are not bounded by any
function of n. Despite this in many cases we can assume c/δ constant, imply-
ing that the time complexity of Theorem 2 is equal to the best current time
bound for computing the st-max flow. The following remark is crucial, where
cmax = maxe∈E(G) c(e).

Remark 1. [Bounding capacities]. We can bound all edge capacities higher than
MF to MF, obtaining a new bounded edge capacity function. This change has no
impact on the st-max flow value or the vitality of any edge/vertex. Thus w.l.o.g.,
we can assume that cmax ≤ MF.

By using Remark 1 we can explain why c/δ can be assumed constant, we
study separately the case of general distribution of capacities and the case of
power-law distribution.

• General distribution (after bounding capacities as in Remark 1). If we set c =
cmax and δ = c/k, for some constant k, then we obtain the capacities with an
additive error less than MF/k, because of Remark 1. In many applications this
error is acceptable even for small values of k, e.g., k = 10, 50, 100. In this way
we obtain small percentage error of vitality for edges with high vitality—edges
whose vitality is comparable with MF—while edges with small vitality—edges
whose vitality is smaller than MF/k—are badly approximated. We stress that
we are usually interested in high capacity edges, and that with these choices
the time complexity is O(n log log n), that is the time currently required for
the computation of the st-max flow.

• Power-law distribution (after bounding capacities as in Remark 1). The pre-
vious method cannot be applied to power-law distribution because most of
the edges have capacity lower than MF/k, even for high value of k. Thus we
have to separate edges with high capacity and edges with low capacity. Let
c = cmax

� for some constant � and let Hc = {e ∈ E(G) | c(e) > c}. By power-
law distribution, |Hc| is small even for high values of �, and thus we compute
the exact vitality of edges in Hc by Theorem 1. For edges with capacity less
than c, we set δ = c/k, for some constant k. By Remark 1 we compute the
vitality of these edges with an additive error less than MF

k� . Again, the over-
all time complexity is equal or close to the time currently required for the
computation of the st-max flow.

The result in Theorem 2 is useful even in the case in which c = MF and
vitδ(e) = 0 for all e ∈ E(G). This implies that all edges have vitality in [0, δ],
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where δ is the acceptable error in Theorem 2. Thus we certify that all edges in
the network have low vitality, so the network is robust.

To apply the same arguments to vertex vitality we need some observations.
If G’s vertices have maximum degree d, then, after bounding capacities as in
Remark 1, we have maxv∈V (G) c(v) ≤ dMF. Otherwise, we note that a real-
world planar graph is expected to have few vertices with high degree (it is also
implied by Euler’s formula for planar graphs). The exact vitality of these vertices
can be computed by Theorem 1 or by the following result.

Theorem 4. Let G be a planar graph with positive edge capacities. Then for
any S ⊆ V (G), we can compute vit(v) for all v ∈ S in O(|S|n + n log log n)
time.

If we denote by ES =
∑

v∈S deg(v), where deg(v) is the degree of vertex v,
then the result in Theorem 4 is more efficient than the result given in Theorem 1
if either |S| < log n and ES > |S| log n or |S| ≥ log n and ES > |S|n1/3

log8/3 .

Small Integer Case. In the case of integer capacity values that do not exceed a
small constant, or in the more general case in which capacity values are integers
with bounded sum we also prove the following corollaries by using the results
in [9,10,22].

Corollary 1. Let G be a planar graph with integer edge capacity and let L be
the sum of all the edge capacities. Then

– for any H ⊆ E(G)∪V (G), we can compute vit(x) for all x ∈ H, in O(|H|n+
L) time,

– for any c ∈ N, we can compute vit(e) for all e ∈ E(G) satisfying c(e) ≤ c, in
O(cn + L) time.

Corollary 2. Let G be a planar graph with unit edge capacity. Let n>d be the
number of vertices whose degree is greater than d. We can compute the vitality
of all edges in O(n) time and the vitality of all vertices in O(min{n3/2, n(n>d +
d + log n)}) time.

Corollary 3. Let G be a planar graph with unit edge capacity where only a
constant number of vertices have degree greater than a fixed constant d. Then we
can compute the vitality of all vertices in O(n) time.

Our Approach. We adopt Itai and Shiloach’s approach [18], that first computes
a modified version D of a dual graph of G, then reduces the computation of
the max flow to the computation of non-crossing shortest paths between pairs
of vertices of the infinite face of D. We first study the effect on D of an edge
or a vertex removal in G, showing that computing the vitality of an edge or a
vertex can be reduced to computing some distances in D (see Proposition 2 and
Proposition 3).

Then we determine required distances by solving SSSP instances. To decrease
the cost we use a divide-and-conquer strategy: we slice D in regions delimited



86 L. Balzotti and P. G. Franciosa

by some of the non-crossing shortest paths computed above. We choose non-
crossing shortest paths with similar lengths, so that we compute an additive
guaranteed approximation of each distance by looking into a single region instead
of examining the whole graph D (see Lemma 2).

Finally we have all the machinery to compute an approximation of required
distances of Proposition 2 and Proposition 3 and obtain edge and vertex vitali-
ties.

Structure of the Paper. In Sect. 2 we report main results about how to compute
max flow in planar graphs; we focus on the approach in [18] on which our algo-
rithms are based. In Sect. 3 we show preliminary results that allow us to compute
edge and vertex vitality. In Sect. 4 we explain our divide-and-conquer strategy.
In Sect. 5 we state our main result about edge vitality and in Sect. 6 conclusions
and open problems are given.

Vertex vitality and corollaries about small integer capacities are explained in
the full version of the paper [8].

2 Max Flow in Planar Graphs

In this section we report some well-known results concerning max flow, focusing
on planar graphs.

Given a connected undirected graph G = (V (G), E(G)) with n vertices,
we denote an edge e = {i, j} ∈ E(G) by the shorthand notation ij, and we
define distG(u, v) as the length of a shortest path in G joining vertices u and
v. Moreover, for two sets of vertices S, T ⊆ V (G), we define distG(S, T ) =
minu∈S,v∈T distG(u, v). We write for short v ∈ G and e ∈ G in place of v ∈ V (G)
and e ∈ E(G), respectively. We say that a path p is an ab path if its extremal
vertices are a and b.

Let s, t ∈ G, s �= t, be two fixed vertices. A feasible flow in G assigns to
each edge e = ij ∈ G two real values xij ∈ [0, c(e)] and xji ∈ [0, c(e)] such
that:

∑
j:ij∈E(G) xij =

∑
j:ij∈E(G) xji, for each i ∈ V (G) \ {s, t}. The flow from

s to t under a feasible flow assignment x is defined as F (x) =
∑

j:sj∈E(G) xsj −
∑

j:sj∈E(G) xjs. The maximum flow from s to t, denoted by MF, is the maximum
value of F (x) over all feasible flow assignments x.

An st-cut is a partition of V (G) into two subsets S and T such that s ∈ S
and t ∈ T . The capacity of an st-cut is the sum of the capacities of the edges
ij ∈ E(G) such that |S ∩ {i, j}| = 1 and |T ∩ {i, j}| = 1. The well known
Min-Cut Max-Flow theorem [14] states that the maximum flow from s to t is
equal to the capacity of a minimum st-cut for any weighted graph G.

We denote by G − e the graph G after the removal of edge e. Similarly, we
denote by G−v the graph G after the removal of vertex v and all edges adjacent
to v.

Definition 1. The vitality vit(e) (resp., vit(v)) of an edge e (resp., vertex v)
with respect to the maximum flow from s to t, according to the general concept
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of vitality in [21], is defined as the difference between the maximum flow in G
and the maximum flow in G − e (resp., G − v).

We deal with planar undirected graphs. A plane graph is a planar graph with
a fixed embedding. The dual of a plane undirected graph G is an undirected
planar multigraph G∗ whose vertices correspond to faces of G and such that for
each edge e in G there is an edge e∗ = {u∗, v∗} in G∗, where u∗ and v∗ are
the vertices in G∗ that correspond to faces f and g adjacent to e in G. Length
w(e∗) of e∗ equals the capacity of e, moreover, for a subgraph H of G∗ we define
w(H) =

∑
e∈H w(e).

We fix a planar embedding of the graph, and we work on the dual graph G∗

defined by this embedding. A vertex v in G generates a face in G∗ denoted by
f∗

v . We choose in G∗ a vertex v∗
s in f∗

s and a vertex v∗
t in f∗

t . A cycle in the
dual graph G∗ that separates vertex v∗

s from vertex v∗
t is called an st-separating

cycle. Moreover, we choose a shortest path π in G∗ from v∗
s to v∗

t .

Proposition 1 ([18,29]). A (minimum) st-cut in G corresponds to a (shortest)
cycle in G∗ that separates vertex v∗

s from vertex v∗
t .

2.1 Itai and Shiloach’s Approach/decomposition

According to the approach by Itai and Shiloach in [18] used to find a min-cut
by searching for minimum st-separating cycles, graph G∗ is “cut” along the fixed
shortest path π from v∗

s to v∗
t , obtaining graph DG, in which each vertex v∗

i

in π is split into two vertices xi and yi; when no confusion arises we omit the
subscript G. In Fig. 1 there is a plane graph G in black continuous lines and in
Fig. 2 on the right graph D. Now we explain the construction of the latter.

Let us assume that π = {v∗
1 , v

∗
2 , . . . , v

∗
k}, with v∗

1 = v∗
s and v∗

k = v∗
t . For

convenience, let πx be the duplicate of π in D whose vertices are {x1, . . . , xk}
and let πy be the duplicate of π in D whose vertices are {y1, . . . , yk}. For any
i ∈ [k], where [k] = {1, . . . , k}, edges in G∗ incident on each v∗

i from below π
are moved to yi and edges incident on v∗

i from above π are moved to xi. Edges
incident on v∗

s and v∗
t are considered above or below π on the basis of two dummy

edges: the first joining v∗
s to a dummy vertex α inside face f∗

s and the second
joining v∗

t to a dummy vertex β inside face f∗
t . In Fig. 1 there is a graph G in

black continuous line, G∗ in red dashed lines and shortest path π from v∗
1 to v∗

k.
In Fig. 2, on the left there are the graph G and G∗ of Fig. 1 where path π is
doubled.

For each e∗ ∈ π, we denote by e∗
x the copy of e∗ in πx and e∗

y the copy of e∗

in πy. Note that each v ∈ V (G) \ {s, t} generates a face fD
v in D. There are not

faces fD
s and fD

t because the dummy vertices α and β are inside faces f∗
s and

f∗
t , respectively. Both faces f∗

s and f∗
t “correspond” in D to the leftmost x1y1

path and to the rightmost xkyk path, respectively. Since we are not interested in
removing vertices s and t, then faces fD

s and fD
t are not needed in D. In Fig. 2,

on the right there is graph D built on G in Fig. 1.
If e∗ �∈ π, then we denote the corresponding edge in D by eD. Similarly, if

v∗
i �∈ π (that is, i > k), then we denote the corresponding vertex in D by vD

i .
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Fig. 1. Graph G in black continuous line, G∗ in red dashed lines, shortest path π from
v∗

s (v∗
1) to v∗

t (v∗
k) in green, α and β are dummy vertices. (Color figure online)

Fig. 2. On the left green path π is doubled into paths πx and πy, and edges incident
on x1, y1, x4, y4 in G∗ are moved according to the dummy vertices α and β in Fig. 1.
On the right graph D. (Color figure online)

3 Preliminary Results

In this section we show preliminary but crucial results (Proposition 2 and Propo-
sition 3) that allow us to compute edge and vertex vitality. In Subsect. 3.1 we
show the effects in G∗ and D of removing an edge or a vertex from G and in
Subsect. 3.2 we state the two main propositions about edge and vertex vitality.

3.1 Effects on G∗ and D of Deleting an Edge or a Vertex of G

We observe that removing an edge e from G corresponds to contracting endpoints
of e∗ into one vertex in G∗. With respect to D, if e∗ �∈ π, then the removal of
e corresponds to the contraction into one vertex of endpoints of eD. If e∗ ∈ π,
then both copies of e∗ have to be contracted. In Fig. 3 we show the effects of
removing edge eg from graph G in Fig. 1.

Let v be a vertex of V (G). Removing v corresponds to contracting vertices of
face f∗

v in G∗ into a single vertex. In D, if f∗
v and π have no common vertices, then

all vertices of fD
v are contracted into one. Otherwise f∗

v intersects π on vertices⋃
i∈I{v∗

i } for some non empty set I ⊆ [k]. Then all vertices of fD
v are contracted

into one vertex, all vertices of
⋃

i∈I{xi} not belonging to fD
v are contracted into
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another vertex and all vertices of
⋃

i∈I{yi} not belonging to fD
v are contracted

into a third vertex. For convenience, we define qx
fD

v
= (

⋃
i∈Iv

{xi}) \ V (fD
v ) and

qy
fD

v
= (

⋃
i∈Iv

{yi})\V (fD
v ). To better understand these definitions, see Fig. 4. In

Fig. 5 it is shown what happens when we remove vertex g of graph G in Fig. 1.

Fig. 3. Starting from graph G in Fig. 1, we show on the left graph G−eg and (G−eg)∗,
and graph DG−eg on the right.

Fig. 4. A face fD
v , for some v ∈ V (G), and sets qx

fD
v

and qy

fD
v

. Removing v from G

corresponds in D to contracting vertices of fD
v , qx

fD
v

and qy

fD
v

in three distinct vertices.

3.2 Vitality vs. Distances in D

The main results of this subsection are Proposition 2 and Proposition 3. The first
proposition shows which distances in D are needed to obtain edge vitality and in
the latter proposition we do the same for vertex vitality. In Subsect. 3.1 we have
proved that removing an edge or a vertex from G corresponds to contracting in
single vertices some sets of vertices of D. The main result of Proposition 2 and
Proposition 3 is that we can consider these vertices individually.

Let e be an edge of G. The removal of e from G corresponds to the contraction
of endpoints of e∗ into one vertex in G∗. Thus if an st-separating cycle γ of G∗

contains e∗, then the removal of e from G reduces the length of γ by w(e∗). Thus
e has strictly positive vitality if and only if there exists an st-separating cycle γ
in G∗ whose length is strictly less than MF+w(e∗) and e∗ ∈ γ. This is the main
idea to compute the vitality of all edges. Now we have to translate it to D.
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Fig. 5. Starting from graph G in Fig. 1, we show on the left graph G − g and (G − g)∗,
and graph DG−g on the right.

We observe that capacities of edges in G become lengths (or weights) in D.
For this reason, we define w(eD) = c(e), for all edges e ∈ G satisfying e∗ �∈ π
and w(eD

x ) = w(eD
y ) = c(e) for all edges e ∈ G satisfying e∗ ∈ π.

For i ∈ [k], we define di = distD(xi, yi). We observe that MF = mini∈[k] di.
For a subset S of V (D) and any i ∈ [k] we define di(S) = min{di,distD(xi, S)+
distD(yi, S)}. We observe that di(S) represents the distance in D from xi to yi

if all vertices of S are contracted into one.
Itai and Shiloach [18] consider only shortest st-separating cycles that cross

π exactly once, that correspond in D to paths from xi to yi, for some i ∈ [k]. In
our approach, to compute edge vitality, we contract vertices of an edge of G∗.
Despite this we can still consider only st-separating cycles that cross π exactly
once as explained in the following lemma, whose proof is omitted due to page
limit.

Lemma 1. Let e∗ be an edge of G∗ and let γ be a simple st-separating cycle
such that crosses π exactly once and e∗ ∈ γ. After contracting vertices of e∗ into
one vertex, then γ becomes the union of two simple cycles and exactly one of
them, called γ′, is an st-separating cycle that crosses π exactly once. It holds
that vit(e) = MF − w(γ′).

For every x ∈ V (G) ∪ E(G) we define MFx as the max flow in graph G − x.
By definition, vit(x) = MF − MFx and, trivially, x has strictly positive vitality
if and only if MFx < MF.

Proposition 2. For every edge e of G, if e∗ �∈ π, then MFe = mini∈[k]{di(eD)}.
If e∗ ∈ π, then MFe = mini∈[k]

{
min{di(eD

x ), di(eD
y )}}

.

Proof. Let e be an edge of G. If vit(e) = 0, then MFe = MF and the thesis
trivially holds. Hence let us assume vit(e) > 0, then Lemma 1 there exists an st-
separating cycle in G∗ that crosses π exactly once satisfying w(γ) < MF+w(e∗)
and e∗ ∈ γ. If e∗ �∈ π, then e corresponds in D to edge eD, thus the thesis
holds. If e∗ ∈ π, then we note that every path in D containing both eD

x and eD
y

corresponds in G∗ to an st-separating cycle that passes through e∗ twice, thus
its length is equal or greater than MF+2c(e). Thus we consider only paths that
contain eD

x or eD
y but not both. The thesis follows. 
�
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Note that if f∗
v and π have some common vertices, then one among qx

fD
v

and
qy
fD

v
could be empty. For this reason, we set di(∅) = +∞, for all i ∈ [k]. The

proof of the following proposition is similar to Proposition 2’s proof and it is
reported in the full version of the paper.

Proposition 3. For every vertex v of G, if f∗
v and π have no common vertices,

then MFv = mini∈[k]{di(f)}, where f = fD
v , otherwise

MFv = min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

mini∈[k]{di(f)},
mini∈[k]{di(qx

f )},

mini∈[k]{di(q
y
f )},

distD(f, qx
f ),

distD(f, qy
f )

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (1)

4 Slicing Graph D Preserving Approximated Distances

In this section we explain our divide-and-conquer strategy. We slice graph D
along shortest xiyi’s paths. If these paths have lengths that differ at most δ,
then we have a δ additive approximation of distances required in Proposition 2
and Proposition 3 by looking into a single slice instead of the whole graph D.
This result is stated in Lemma 2. These slices can share boundary vertices and
edges, implying that their dimension might be O(n2). In Lemma 3 we compute
an implicit representation of these slices in linear time.

From now on, we mainly work on graph D, thus we omit the superscript
D unless we refer to G or G∗. To work in D we need a shortest xiyi path and
its length, for all i ∈ [k]. In the following theorem we show time complexities
for obtaining elements in D. We say that two paths are single-touch if their
intersection is still a path.

Given two graphs A = (V (A), E(A)) and B = (V (B), E(B)) we define A ∪
B = (V (A) ∪ V (B), E(A) ∪ E(B)) and A ∩ B = (V (A) ∩ V (B), E(A) ∩ E(B)).

Theorem 5 ([11,15,19]). If G is a positive edge-weighted planar graph,

– we can compute U =
⋃

i∈[k] pi and w(pi) for all i ∈ [k], where pi is a shortest
xiyi path in D and {pi}i∈[k] is a set of pairwise non-crossing single-touch
paths, in O(n log log n) time—see [19] for computing U and [7] for computing
w(pi)’s,

– for every I ⊆ [k], we can compute
⋃

i∈I pi in O(n) time—see [15] by noting
that U is a forest and the paths can be found by using nearest common ancestor
queries.

From now on, for each i ∈ [k] we fix a shortest xiyi path pi, and we assume
that {pi}i∈[k] is a set of pairwise single-touch non-crossing shortest paths. Let
U =

⋃
i∈[k] pi, see Fig. 6(a).

Given an ab path p and a bc path q, we define p ◦ q as the (possibly not
simple) ac path obtained by the union of p and q. Each pi’s splits D into two
parts as shown in the following definition and in Fig. 6(b).
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Definition 2. For every i ∈ [k], we define Lefti as the subgraph of D bounded
by the cycle πy[y1, yi] ◦ pi ◦ πx[xi, x1] ◦ l, where l is the leftmost x1y1 path in D.
Similarly, we define Righti as the subgraph of D bounded by the cycle πy[yi, yk]◦
r ◦ πx[xk, xi] ◦ pi, where r is the rightmost xkyk path in D.

Fig. 6. In (a) the graph U in bold and in (b) subgraphs Lefti and Righti are highlighted.
In (b) subgraph Ωi,j , for some i < j.

Based on Definition 2, for every i, j ∈ [k], with i < j, we define Ωi,j =
Righti ∩ Leftj , see Fig. 6(c). We classify (xi, yi)’s pairs according to the difference
between di and MF. Each class contains pairs for which this difference is about
r times δ; where δ > 0 is an arbitrarily fixed value.

For every r ∈ N, we define Lr = (�r
1, . . . , �

r
zr
) as the ordered list of indices in

[k] such that dj ∈ [MF+ δr,MF+ δ(r + 1)), for all j ∈ Lr, and �r
j < �r

j+1 for all
j ∈ [zr − 1]. It is possible that Lr = ∅ for some r > 0 (it holds that L0 �= ∅). If
no confusion arises, we omit the superscript r; thus we write �i in place of �r

i .
The following lemma is the key of our slicing strategy. In particular, Lemma 2

can be applied for computing distances required in Proposition 2 and Proposi-
tion 3, since the vertex set of a face or an edge of D is always contained in a
slice. An application is in Fig. 8.

Lemma 2. Let r > 0 and let Lr = (�1, �2, . . . , �z). Let S be a set of vertices of
D with S ⊆ Ω�i,�i+1 for some i ∈ [z − 1]. Then

min
�∈Lr

d�(S) > min{d�i
(S), d�i+1(S)} − δ.

Moreover, if S ⊆ Left�1 (resp., S ⊆ Right�z
) then min�∈Lr

d�(S) > d�1(S) − δ
(resp., min�∈Lr

d�(S) > d�z
(S) − δ).

Proof. We need the following crucial claim.

a) Let i < j ∈ Lr. Let L be a set of vertices in Lefti and let R be set of vertices
in Rightj . Then di(L) < dj(L) + δ and dj(R) < di(R) + δ.

Proof of a): we prove that di(L) < dj(L) + δ. By symmetry, it also proves that
dj(R) < di(R) + δ. Let us assume by contradiction that di(L) ≥ dj(L) + δ.

Let α (resp., ε, μ, ν) be a path from xi (resp., yi, xj , yj) to zα (resp., zε, zμ,
zν) whose length is d(xi, L) (resp. d(yi, L), d(xj , L), d(yj , L)), see Fig. 7 on the
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left. Being xj , yj ∈ Righti and L ⊆ Lefti, then μ and ν cross pi. Let v be the
vertex that appears first in pi ∩ μ starting from xj on μ and let u be the vertex
that appears first in pi ∩ ν starting from yj on ν. An example of these paths is
in Fig. 7 on the left. Let ζ = pi[yi, u], θ = pi[u, v], β = pi[xi, v], κ = μ[xj , v],
ι = ν[yj , u], η = ν[u, zν ] and γ = μ[v, zμ], see Fig. 7 on the right.

Now w(β)+w(γ) ≥ w(α), otherwise α would not be a shortest path from xi to
L. Similarly w(ζ)+w(η) ≥ w(ε). Moreover, being w(ζ)+w(θ)+w(β) = di, then
w(θ) ≤ di−w(α)+w(γ)−w(ε)+w(η). Being di(L) ≥ dj(L)+δ, then w(α)+w(ε) ≥
w(μ) + w(ν) + δ, this implies w(α) + w(ε) ≥ w(κ) + w(γ) + w(ι) + w(η) + δ.

It holds that w(θ)+w(κ)+w(ι) ≤ di − w(α)+w(γ)− w(ε) +w(η)+w(α) +
w(ε)− w(γ)− w(η)− δ = di − δ < dj because i, j ∈ Lr imply |di − dj | < δ. Thus
κ◦θ◦ι is a path from xj to yj strictly shorter than dj , absurdum. End Proof of a).

Being S ⊆ Right�j
for all j < i and S ⊆ Left�j′ for all j′ > i + 1, then the

first part of the thesis follows from a). The second part follows also from a) by
observing that if S ⊆ Left�1 , then S ⊆ Left�i

for all i ∈ Lr. 
�

Fig. 7. Example of paths and subpaths used in the proof of a).

Fig. 8. By Lemma 2, it holds that min�∈Lr d�(S) ≥ min{d�3(S), d�4(S)} − δ.

To compute distances in D we have to solve some SSSP instances in some
Ωi,j ’s subsets. These subsets can share boundary edges, thus the sum of their
edges might be O(n2). We note that, by the single-touch property, if an edge e
belongs to Ωi,j and Ωj,� for some i < j < � ∈ [k], then e ∈ pj .

To overcome this problem we introduce subsets Ω̃i,j in the following way:
for any i < j ∈ [k], if pi ∩ pj is a non-empty path q, then we define Ω̃i,j as
Ωi,j in which we replace path q by an edge with the same length; note that the
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single-touch property implies that all vertices in q but its extremal have degree
two. Otherwise, we define Ω̃i,j = Ωi,j . Note that distances between vertices in
Ω̃i,j are the same as in Ωi,j . It the following lemma we show how to compute
some Ω̃i,j ’s in O(n) time.

Lemma 3. Let A = (a1, a2, . . . , az) be any increasing sequence of indices of [k].
It holds that

∑
i∈[z−1] |E(Ω̃ai,ai+1)| = O(n). Moreover, given U , we can compute

Ω̃ai,ai+1 , for all i ∈ [z − 1], in O(n) total time.

Proof. For convenience, we denote by Ωi the set Ωai,ai+1 , for all i ∈ [z − 1]. We
note that if e ∈ Ωi ∩ Ωi+1, then e ∈ pi+1. Thus, if e belongs to more than two
Ωi’s, then e belongs to exactly two Ω̃’s because it is contracted in all other Ωi’s
by definition of the Ω̃i’s. Thus

∑
i∈[z−1] |E(Ω̃i)| = O(n) +O(z) = O(n) because

z ≤ k ≤ n.
To obtain all Ω̃i’s, we compute Uz =

⋃
a∈A pa in O(n) time by Theorem 5.

Then we preprocess all trees in Uz in O(n) time by using Gabow and Tarjan’s
result [15] in order to obtain the intersection path pai

∩pai+1 via lowest common
ancestor queries, and its length in O(1) time with a similar approach. Finally,
we build Ω̃i in O(|E(Ω̃i)|), for all i ∈ [z−1], with a BFS visit of Ωi that excludes
vertices of pai

∩ pai+1 . 
�

5 Computing Edge Vitality

Now we can give our main result about edge vitality stated in Theorem 2. We
need the following preliminary lemma that is an easy consequence of Lemma 2
and Lemma 3, it’s proof is in the full version of the paper.

Lemma 4. Let r ∈N, given U , we can compute a value αr(e)∈ [mini∈Lr
{di(e)},

mini∈Lr
{di(e)} + δ) for all e ∈ E(D) in O(n) time.

Theorem 2 Let G be a planar graph with positive edge capacities. Then for any
c, δ > 0, we can compute a value vitδ(e) ∈ (vit(e) − δ, vit(e)] for all e ∈ E(G) i
c(e) ≤ c, in O( c

δ n + n log log n) time.

Proof. We compute U in O(n log log n) time by Theorem 5. If di > MF + c(e),
then di(eD) > MF, so we are only interested in computing (approximate) val-
ues of di(eD) for all i ∈ [k] satisfying di < MF + c. By Lemma 4, for each
r ∈ {0, 1, . . . , � c

δ �}, we compute αr(eD) ∈ [mini∈Lr
di(eD), mini∈Lr

di(eD) + δ),
for all eD ∈ E(D), in O(n) time. Then, for each eD ∈ E(D), we com-
pute α(eD) = minr∈{0,1,..., c

δ } αr(eD); it holds that α(eD) ∈ [mini∈[k]{di(eD)},
mini∈[k]{di(eD)} + δ). Then, by Proposition 2, for each e ∈ E(G) satisfying
c(e) ≤ c, we compute a value vitδ(e) ∈ (vit(e) − δ, vit(e)] in O(1) time. 
�
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6 Conclusions and Open Problems

We proposed algorithms for computing an additive guaranteed approximation
of the vitality of all edges or vertices with bounded capacity with respect to the
max flow from s to t in undirected planar graphs. These results are relevant
for determining the vulnerability of real world networks, under various capacity
distributions.

It is still open the problem of computing the exact vitality of all edges of
an undirected planar graph within the same time bound as computing the max
flow value, as is already known for the st-planar case.
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Abstract. Execution graphs of parallel loop programs exhibit a nested,
repeating structure. We show how such graphs that are the result of
nested repetition can be represented by succinct parametric structures.
This parametric graph template representation allows us to reason about
the execution graph of a parallel program at a cost that only depends on
the program size. We develop structurally-parametric polynomial-time
algorithm variants of maximum flows. When the graph models a parallel
loop program, the maximum flow provides a bound on the data move-
ment during an execution of the program. By reasoning about the struc-
ture of the repeating subgraphs, we avoid explicit construction of the
instantiation (e.g., the execution graph), potentially saving an exponen-
tial amount of memory and computation. Hence, our approach enables
graph-based dataflow analysis in previously intractable settings.
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1 Introduction

Parallel program analysis approaches to optimize data movement and program
transformation commonly rely on graph algorithms [8,24,25,29]. These problems

Fig. 1. Illustration of the parametric graph template G with templates T0 =
{a, b, c, d, e, f, g, i}, T1 = {b}, T2 = {c, d, e}, T3 = {e}; parameters P0 = 1, P1 = 2, P2 =
2, P3 = 3; and h = 2.
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concern an execution graph, where vertices model computation and edges model
data movement. Maximum flows provide an algorithmic measure of the overall
data movement. Such execution graphs contain highly repetitive substructures.
Other application areas also face repeating graph structures, for example, com-
putational biology [19] and network topology [6,23,30].

The naive approach is to directly work on the graphs and apply classic algo-
rithms. However, this is prohibitively slow. For example, execution graphs can
have billions of vertices or have a parametric size. Another approach is to design
domain-specific representations and solutions [17,31]. Having a more general-
purpose framework would allow sharing progress across domains.

We observe that many application-relevant graphs follow a model of nested
repetition, where a small template graph is repeated a parametric number of
times [5]. In this work, we propose a representation of such hierarchically repeat-
ing graphs, which we call parametric graph templates, and provide algorithms
for extensions to the classical graph problem of maximum s-t flow.

The main challenge lies in avoiding the naive solution of materializing the full
graph (which we call instantiation) and using a classic algorithm, which would
negate any time savings. Instead, we carefully study the structural relation-
ship between the template and the potentially exponentially larger instantiated
graph. We discover and exploit symmetries in the instantiation process. This
allows us to answer graph problems with a runtime that only depends on the
size of the succinct representation, enabling asymptotic time and space savings
compared to a naive approach that explicitly performs the nested repetition.

1.1 Parametric Graph Templates

Next, we introduce our model and give some examples. Our goal is to represent
graphs with a hierarchically repeating structure, where the number of repeti-
tions depends on some parameters. This will allows us to represent parallel loop
programs and their executions. A parametric graph template with k parameters
G = (G, T ,P) contains a (potentially weighted) and directed template graph
G = (V,E) with n vertices V , m edges E and edge weights w : E �→ R, a list
of templates T = T0, T2, . . . , Tk−1, each with ∅ �= Ti ⊆ V , and a list of positive
integer parameters P = P0, . . . , Pk−1 (see Fig. 1a). The templates follow a nested
structure, meaning that for every pair of templates they are either disjoint or
one of them is strictly contained in the other one (for all i �= j, Ti ∩ Tj = ∅ or
Ti ⊂ Tj or Tj ⊂ Ti). In particular, the templates form a laminar set family [7].

We assume that there is a root template T0 = V . Hence, the subset relation
on the templates induces a template tree (see Fig. 1b). We denote its height by
h. If a template T is contained in another template T ′ (i.e., T ⊂ T ′), then T is
a descendant of T ′ (and T ′ is an ancestor of T ). A template T is a parent of T ′

(and T ′ is a child of T ) if T ′ is the direct descendant of T .
To create an instantiation of a parametric graph template G, repeatedly

rewrite it as follows (see Fig. 1c). As long as there is more than one template,
pick a leaf template Ti. For each vertex v in Ti create Pi copies v1, . . . , vPi

called
instances of v, replacing v in V . The set of vertices with the same subscript are
called an instance of Ti. For each edge e = (u, v) with both endpoints in Ti, create
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Pi instances e1 = (u1, v1), . . . , ePi
= (uPi

, vPi
), replacing e in E. For each edge

e = (u, v) with one endpoint u in Ti, create Pi instances e1 = (u1, v), . . . , ePi
=

(uPi
, v), replacing e in E. Proceed symmetrically for each edge e = (u, v) with

one endpoint v in Ti. Then, remove the template Ti and its parameter Pi.
In Sect. 3 we will represent nested parallel loop programs as parametric graph

templates. In such a representation, cuts and flows correspond to data movement
in a parallel execution.

1.2 Related Work

Graph Grammars. [4,10,14,15,27] describe a (possibly infinite) language of
graphs compactly with a set of construction rules. There is a wide variety of such
ways of constructing a graph, differing in expressive power. A classic problem
for graph grammars is to decide whether a graph can be constructed from a
given grammar (parsing). In contrast to graph grammars, we are not primarily
concerned with expressing an infinite set of graphs, but instead with a succinct
representation of a graph and algorithmic aspects of solving graph problems
efficiently on this succinct representation.

Hierarchical Graphs. [13] model graphs where edges expand to other, possibly
hierarchical graphs. They are a variant of context-free hyperedge replacement
grammars that incorporate a notion of hierarchy. The authors consider graph
transformations (i.e., replacing subgraphs within other subgraphs). However,
their method does not include parametric replication. This makes it unsuitable
for modeling variably-sized execution graphs.

Nested Graphs. [28] allow “hypernodes” to represent other nested graphs. The
authors focus on the case where a node represents a fixed nested graph. This
precludes nested graphs from effectively representing graphs of a parametric size.

Edge-Weight Parametric Problems. Several graph problems have been gen-
eralized to the edge-weight parametric case, where edge weights are functions
of one or several parameters µi. This includes maximum s-t flow/minimum s-t
cut [3,18,20], (global) minimum cut [2,21] and shortest paths [16,22]. The solu-
tion is then a piecewise characterization of the solution space. Usually, only linear
(or otherwise heavily restricted) dependency of the edge weights on the parame-
ters have been solved. For edge-weight parametric minimum s-t cuts, the problem
can be solved in polynomial time when each edge e has weight min(c(e), µ) for
constants c(e) and a single parameter µ [3]. Granot, McCormick, Queyranne,
and Tardella explore other tractability conditions [20].

1.3 Problem Statement

We approach parametric graph templates from an algorithmic perspective. The
goal is to solve classical graph problems for fixed parameters, but in time that is
strongly polynomial in the size of the parametric graph template. We focus on
the classic problem of maximum s-t flow, which has an interpretation in terms of
data movement for program-derived graphs and operations research [1]. For an
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execution graph, a maximum s-t flow corresponds to a upper bound on the data
movement between vertices s and t when they are placed on different processors.

An s-t flow f assigns every edge e a nonnegative real flow f(e) ≤ w(e). The
sum

∑
e=(u,v) f(e) −

∑
e=(v,w) f(e) is the net flow of the vertex v. A flow has to

have net flow 0 for all vertices except s and t. The value of the flow is the net
flow of the source. A maximum flow is a flow of maximum value.

The maximum s-t flow problem has a natural generalization to parametric
graph templates when s and t are vertices in the root template: Instantiate the
graph and compute a maximum flow between the only instance of s and the
only instance of t. There are multiple possibilities for how to interpret the case
when s and t have multiple instances. One interpretation is as a multiple-source
and multiple-target flow problem, where all instances of s are treated as sources
and all instances of t as sinks. We call this a maximum all-s-t flow. Another
interpretation considers the maximum flow between a fixed instance of s and a
fixed instance of t. We call this a maximum single-s-t flow.

1.4 Our Results

We show how to efficiently represent a class of parallel loop programs as para-
metric graph templates and how properties of data movement in the parallel
loop programs relates to cuts and flows in the parametric graph templates.

Then, we demonstrate that maximum s-t flow can be solved asymptotically
faster than instantiating the parametric graph template. In particular, it is pos-
sible to obtain a runtime that is similar to the runtime on the template graph.

For maximum all-s-t flow, our algorithms match the runtime of a maximum
s-t algorithm such as Orlin’s O(mn) time algorithm [26]. We solve this problem
using a technique called Edge Reweighting. It observes that scaling the edge
weights in the graph template solves the problem. For maximum single-s-t flow
and minimum cuts, there is an overhead proportional to the height h of the
template tree. In addition to Edge Reweighting, we use a technique called Partial
Instantiation. We observe that a carefully chosen part of the instantiated graph
can give sufficient information to extrapolate the result to the rest of the graph.
How this part is chosen depends on the problem.

2 Preliminaries

We proceed to introduce definitions, notation, and assumptions that we use
throughout this work.

Template a Vertex Belongs to. If a vertex v is in a template Ti and v is in
no other template that is a descendant of Ti, then v belongs to Ti. We denote
the unique template that v belongs to by T (v).

Template an Edge Belongs to. If both endpoints of an edge belong to a
template Ti, then this edge belongs to template Ti. We denote the number of
vertices and edges that belong to a template Ti by ni and mi, respectively.
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Cross-Template Edges. An edge (u, v) where u and v belong to different
templates is cross-template.

No Jumping. We assume there are no edges that ‘jump’ layers in the template
hierarchy. Specifically, if (u, v) is a cross-template edge, then T (u) is a parent
or child of T (v). This rule ensures that a path in the graph corresponds to a
walk in the template tree. It comes without loss of generality for cut and flow
problems, as an edge that jumps layers can be split into multiple edges (all of
weight ∞ except the edge connected to the vertex that belongs to the deeper
template in the template tree). For graphs that model programs, this assumption
corresponds to disallowing jumps to arbitrary program locations.

Boundary Vertices. Consider a vertex u and v where T (v) is a parent of T (u).
If there is an edge from u to v or from v to u in the template graph, then v is a
boundary vertex of T (u).

Template Graph of a Template. The subgraph of the template graph G
induced by a template Ti is called the template graph of Ti.

Instance Tree. We extend the nomenclature of templates to instances. The
template hierarchy can be transferred onto the instances, where an instance I
is a descendant of an instance I ′ if the template T that instantiated I is a
descendant of the template T ′ that instantiated I ′. Similarly, we extend the
notions of ancestor, parent, and child to the instances, creating an instance tree.
Two instances that have the same parent instance are siblings. If a vertex v is
contained in an instance I, but it is not contained in any other descendant of I,
the vertex v belongs to the instance I. If bi is an instance of a boundary vertex
b of a template T , then bi is a boundary vertex of the instance that bi belongs
to. The instance of the root template is the root instance. For a vertex v in the
instantiation, we write T (v) for the template of the instance that v belongs to.

Isomorphism. Two parametric graph templates G1 and G2 are isomorphic if
they instantiate isomorphic graphs. Two isomorphic G1 and G2 can have different
parameters, templates, and their template graphs need not be isomorphic.

Cycles. Acyclic graphs are easier to handle for many algorithmic problems. In
parametric graph templates, we consider two different notions of what consti-
tutes a cycle. The simplest notion of cycles comes from considering cycles in the
template graph. If it does not contain any cycles, then the instantiation does
neither (and vice versa). A path p1, . . . pk in the template graph that contains
three vertices pi, pj , pk with i < j < k and T (i) = T (k) but T (i) �= T (j) is a
template-cycle. We say a parametric graph template is template-acyclic if it does
not contain a template-cycle. This notion is incomparable to the notion of acyclic
parametric graph templates. There are acyclic parametric graph templates that
are not template-acyclic (consider a path whose nodes alternate between belong-
ing to some template and its child). Note that a template-acyclic graph can have
cycles (consider a cycle whose vertices belong to the same template).
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3 Templates of Parallel Loop Programs

We show that a broad class of parallel programs can be modeled as parametric
graph templates, such that the parametric graph template corresponds to the
source code of the program and an instantiation of the parametric graph template
corresponds to an execution of the program. This allows us to analyze properties
of the execution of a program by considering a parametric graph template of a
size comparable to the source of the program.

The parametric graph templates we consider can model nested loop pro-
grams, for example Projective Nested Loops [12] and Simple Overlap Access
Programs [24]. The program receives a set of multi-dimensional input arrays
A1, . . . , Ak. The goal is to output a multi-dimensional array B. The program
can use several multi-dimensional temporary arrays C1, . . . Ck′ . For any array
D, its size in the i-th dimension is sizei(D).

Roughly speaking, we allow any composition of elementary operations and
parallel nested loops where the loop bounds only depend on the sizes of the
input arrays. We allow parallel reduction to aggregate the results of a loop. We
do not allow data-dependent control flow, but we allow the locations of memory
accesses to be data-dependent. Examples of algorithms that can be represented
this way include matrix multiplication, convolution, and cross-correlation.

We call the resulting parametric graph templates parallel loop graph tem-
plates. Next, we describe their syntax. Then, we describe a semantic for these
parametric graph templates. Finally, we relate the data movement of the parallel
loop programs with their templates’ instantiations.

3.1 Syntax

The vertices of the template graph are annotated with types corresponding to
their function in the program. Each template graph contains the input memory
vertices A1, . . . , Ak, the output memory vertex B, and the temporary memory
vertices C1, . . . , Ck′ . The memory vertices can have arbitrary in-degree and out-
degree and belong to the root template. Other vertices have out-degree 1, except
if stated otherwise. The outgoing edge is called the output edge. To disambiguate
the inputs to a vertex, the incoming edges are numbered consecutively. We refer
to inputs in this input order. We consider the following control flow constructs.
These are boundary vertices.

Parfor. A Parfor (parallel for loop) vertex has no input edge. Its output edge
leads to a vertex in a child template.

Reduce(Op), where Op is an associative and commutative operator. Has a
single input edge from a vertex in a child template. The output edge leads to a
non-memory vertex.

Copy. A Copy vertex v has arbitrary outdegree. For each of its output edges
(v, u), the template T (u) is not a parent of T (v) and u is not a memory vertex.

We consider the following memory constructs, which are boundary vertices.
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‘→’. A (pass-through) → vertex has in-degree and out-degree 1. At most one
of the two neighbors can be a memory vertex.

Read. A Read vertex has a first input edge from a memory vertex or a → vertex
and one or more other input edges from a non-memory vertex. Its output edge
leads to a non-memory vertex.

Write. A Write vertex has two or more input edges from non-memory vertices.
Its output edge leads to a memory or → vertex.

We consider the following types of operator vertices. They cannot be con-
nected to memory vertices and are not boundary vertices.

(Op), for Op ∈ {+,−, ∗,÷}, which has in-degree 2.

[c], for any representable constant c.

3.2 Semantics

A well-formed program has an acyclic template graph. For a well-formed pro-
gram, a serial execution is any topological order of the instantiation of the para-
metric graph template. Each d-dimensional input array Ai initially contains some
current value Ai[j1]....[jd] at each position (j1, . . . , jd), where the d-th dimension
of Ai has size sized(Ai). All other arrays contains 0 at each of their positions.
The arrays do not alias each other.

The semantics of a serial execution is given by applying the following rules
to each vertex in the serial execution. Before evaluating the rules, contract all
edges which have at least one → vertex neighbor (these exist to transfer values
from inside the template hierarchy to the memory vertices in the root template).

Parfor. A Parfor vertex with k children outputs one value of the permutation
of {0, . . . , k − 1} to each child in an injective way.

Copy. Given input x, Copy outputs x to all its children.

Reduce(Op), for Op ∈ {+, ∗}. Given the inputs x1, . . . , xk, Reduce(Op) out-
puts the result of applying Op repeatedly in an arbitrary order to the inputs.

Read. Given inputs Ai, j1, . . . , jd, if Ai has dimension d and for all jk ∈
{j1, . . . , jd} we have 0 ≤ jk < sizek(Ai), a Read vertex outputs the current
value of Ai[j1]....[jd]. Otherwise, the result of the serial execution is undefined.

Write. Given inputs x, j1, . . . , jd, a Write vertex outputs x. This has the side
effect of updating the current value of the array into which the output edge leads:
Say it leads to Ai. Then, if Ai has dimension d and for all jk ∈ {j1, . . . , jd} we
have 0 ≤ jk < sizek(Ai), the current value of Ai[j1]....[jd] becomes x. Otherwise,
the result of the serial execution is undefined.

(Op), for Op ∈ {+,−, ∗,÷}. Given x, y, outputs x Op y.

[c] outputs the constant c.
In a serial execution, we say that two reads or writes u, v are totally ordered

if there is a path from u to v or from v to u in the instantiation. A data race
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occurs if there are two writes W1,W2 with the same right input (i.e., index) that
connect to the same memory vertex and W1 and W2 are not totally ordered. The
output of a well-formed program is well-defined if none of its serial executions
has an undefined result or contains a data race.

3.3 Applications of Flows and Cuts

To model dataflow in the parallel loop programs, we set the weight of the Parfor
edges to 0 and the weight of the other edges to 1. Loop indices can be recomputed
and thus do not cause data movement. The parallel loop graph template encodes
all the data movement in its edges. However, it cannot resolve the aliasing of
array locations. Hence, the weight of the edges going across a partition of the
vertices provides an upperbound on the data movement:

Observation 1. Consider a partition (V0, . . . , Vp) of the vertices in an instan-
tiation of a parallel loop graph template. The value total weight of the edges
with endpoints in different partitions is an upper bound on the data movement
incurred when the partitions are allocated to distinct processors.

Note that in our formulation of parallel loop graph templates, vertices corre-
sponding to arrays are placed on a single processor. Thus, to model the distri-
bution of an array across multiple processors, a vertex must be created for each
processor that holds its subarray (this subarray can be discontiguous though).

Since a maximum s-t flow equals the value of a minimum s-t cut, the maxflow
provides a partition of the loop program with small data movement:

Observation 2. If a parallel loop graph template has a maximum all-s-t flow
of value x, then there is a partition of the parallel loop program which incurs at
most x data movement and in which all instances of s are executed on a different
processor as all instances of t.

We can get a similar statement for maximum single-s-t flows.

4 Template Maximum Flows

Next, we turn to the first algorithmic question on parametric graph templates.
Our goal here is to solve the maximum s-t flows problem on a parametric graph
template without explicitly instantiating it. Instead, the goal is to get a run-
time that is polynomial in the size of the graph template. Our algorithms use a
series of observations on the structure of maximum flows in parametric graphs
which allow us to produce transformed parametric graph templates, on which
the answer can be efficiently computed.

We will approach the problem by considering the case where s and t are in
the root template first. Then, we show how to reduce both the maximum all-s-t
flow and the maximum single-s-t flow problem to an instance of this simpler
problem. Throughout, we assume that all vertices are reachable from s and can
reach t, as otherwise they cannot carry flow.
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In the template-acyclic case, the maximum single-s-t flow is trivially zero
except when s and t are in the same instance of the least common ancestor of
T (s) and T (t) in the template tree. Therefore, in the acyclic case it makes sense
to restrict our attention to this case where the flow is not trivially zero. In the
case where there are template-cycles, it matters which instances of s and t are
picked. These can be identified by numbering the instances they belong to.

4.1 Edge-Reweighting

An efficient way to solve a problem on parametric graph templates is to show
how it relates to a problem on the template graph with scaled weights. The idea
is that an edge that intersects template Ti can be used Pi times and can therefore
be used to carry Pi times the amount of flow. We will see that this observation
holds as long as s and t are in the root template or if we consider the maximum
all-s-t flow problem. We call this approach Edge-Reweighting.

Algorithm: Edge-Reweighting. Transform the parametric graph template
G = (G, T ,P) with edge weights w into a graph G′ with edge weights w′. The
reweighted graph G′ has the same vertex and edge set as the template graph
G, but the weights are scaled as follows: Multiply the weight of an edge in the
template graph by the product of the parameters of the templates that contain at
least one endpoint of the edge. That is, let I(e) be the index set of all templates
that contain at least one of the endpoints of e. Then, the weight of w′(e) is
w(e)

∏
i∈I(e) Pi. To implement this in linear time O(m), precompute in a pre-

order traversal of the template tree for each template the product of all the
ancestors’ parameters.

4.2 Source and Sink Belong to the Root Template

Our goal is to show that when the source s and sink t belong to the root template,
then a maximum s-t flow in the reweighted graph equals the value of a maximum
all-s-t flow. If s and t belong to the root template (which is instantiated once),
then a maximum single-s-t flow equals a maximum all-s-t flow and we call it a
maximum s-t flow for short.

The linear programming dual of a maximum s-t flow is a minimum s-t
cut [11]. We will use strong duality [9] in our proof, which means that it suffices
to identify an s-t flow and a minimum s-t cut of equal value to prove that they
are optimal. We argue that Edge Reweighting preserves the value of the dual
minimum all-s-t cut. Hence, it also preserves the maximum all-s-t flow value.

The following shows us how to construct an s-t cut C ′ in the transformed
graph G′ from an s-t cut C in G of the same value. Together with the other
(easier) direction of the proof, this shows that the transformed graph G′ has the
same maximum s-t flow.

Lemma 1. In a parametric graph template G = (G, T ,P), if s and t are in the
root template, there is a minimum s-t cut of the instantiation of G where every
instance of every vertex is on the same side of the cut.
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Lemma 2. If a parametric graph template G has a minimum s-t cut of value
µ and s and t are in the root template, then the graph G′ constructed by edge
reweighting has a minimum s-t cut of value µ.

The proofs of Lemma 1 and Lemma 2 are omitted due to space constraints.

4.3 Instance Merging

We show how to merge all instances of a vertex v in a parametric graph template
by transforming it into parametric graph template of almost the same size (the
overhead is an additive O(nh)). We will use this technique to reduce the general
case for maximum all-s-t flow to the case where s and t are in the root.

The idea is that merging all instances of a vertex s is akin to moving the
vertex from the template T (s) it belongs to into the root template (so that it
belongs to the root template). The no jumping rule only allows edges to go from
parent templates to children templates (or vice versa), we need to introduce
dummy edges and dummy vertices along the way. The dummy edges have ∞
weight. An original edge (u, s) will be transformed into a path u, d1, . . . , dk, s for
dummies d1, . . . , dk (symmetrically for an edge (s, u)).

Algorithm: Instance-Merging. Given a parametric graph template G and a
vertex s, repeat the following until s is in the root template:

1. For any cross-template edge (u, s), introduce a dummy vertex d in the tem-
plate T (s) that s belongs to. Replace the edge (u, s) by two edges e1 = (u, d)
and e2 = (d, s). The weight of the edge e1 is the same as the weight of the
edge e, but the weight of the edge e2 is set to ∞. Proceed symmetrically for
any cross-template edge (s, u).

2. Move the vertex s from the template T (s) to the parent of the template T (s)
(i.e., remove s from the set T (s)).

4.4 Maximum All-s-t Flow

To solve maximum all s-t Flow, all we would need to do is use Instance Merging
on s and then on t to ensure that they are both in the root template. Then, we
could use the edge reweighing Lemma 2. This approach would cost O(nm+n2h)
time. We can avoid this overhead by observing that edge reweighting works
directly for maximum all-s-t Flow (even when s and t are not in the root tem-
plate).

Lemma 3. Edge reweighting of a parametric graph template G produces a re-
weighted graph G′ where the value of the maximum s-t flow of G′ equals the value
of the maximum all-s-t flow of G.

Proof. Instance Merge s and then t in G to produce a parametric graph template
G′. By definition, all instances of s (and t respectively) must be on the same
side of a minimum all-s-t cut, this parametric graph template G′ has the same
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minimum all-s-t cut value as the original parametric graph template G. Edge
reweighting G′ gives us a graph Ĝ. From Lemma 2 we know that a minimum s-t
cut of Ĝ corresponds to the minimum all-s-t cut of G′ (which puts all instances
of the same vertex on the same side of the cut).

An ∞-weight edge never crosses a minimum s-t cut and therefore such
dummy edges (introduced by the instance merging) from Ĝ can be contracted,
yielding a graph G′. This graph G′ is the same graph that we get from edge
reweighting the original parametric graph template G.

Now, the results follows:

Theorem 1. Computing a maximum all-s-t flow in parametric graph template
takes O(mn) time.

4.5 Partial Instantiation

The technique of partial instantiation revolves around instantiating only part of
the parametric graph template, depending on the problem at hand. The goal is
to choose the partial instantiation such that the remaining problem is solvable by
using the symmetry of the problem (e.g., using edge-reweighting). Partial instan-
tiation can be seen as an example of the more general technique of retemplating.
The intuition of retemplating is that in certain cases, it suffices to change the
representation of the parametric graph template into another isomorphic para-
metric graph template to significantly simplify the problem at hand.

Next, show how to move a single vertex s from deep in the template tree to
the root, without changing the instantiated graph. This solves the maximum s-t
problems when s (or t) belongs to a template that is deep in the template tree
(See Sect. 4.6). We call this technique Upwards Partial Instantiation from s. For
simplicity, let us start with the special case of template-acyclic graphs.

In a template-acyclic parametric graph template, once a path goes from an
instance of a template Ti to its parent, it never enters another instance of Ti

again. This property implies that, when considering the reachable subgraph from
a vertex that is an instance of s, we can simply “merge” T (s) and all the tem-
plates that are ancestors of the template T (s) in the template tree. Formally,
this corresponds to deleting T (s) and all the templates that are ancestors of T (s)
(except the root) from the parametric graph templates’ list of templates.

If the parametric graph template has template-cycles, our goal remains to
transform the parametric graph template into an equivalent graph where a par-
ticular instance of a vertex s is in the root template.

Algorithm: Partial Instantiation. Repeat the following until all templates
from T (s) to the root have parameter 1:

1. Consider the topmost template T that contains s and has parameter greater
than 1. Let Ps be the number of instances of the template T .

2. Instantiate the template T twice. Create a new parametric graph template
that has the two instances as templates, where the first template has param-
eter 1 and the second template has parameter Ps − 1. The vertices in the
second template are relabeled (s is in the one with parameter 1).
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Now, merge T (s) and all the templates that are ancestors of T (s), leaving s in
the root template.

Because this process performs the same rewriting of the parametric graph
template as instantiation, just in a different order and stopping early, this process
creates an isomorphic parametric graph template. Every iteration adds at most
n vertices and m edges and there are at most h iterations. We conclude that:

Observation 3. Upwards Partial Instantiation from s produces an isomorphic
parametric graph template with at most h additional templates and O(nh) ver-
tices and O(mh) edges in the template graph.

4.6 Maximum Single-s-t Flow

We give a partial instantiation and edge reweighting approach to maximum
single-s-t flow. For there to be a flow through some instance, it must lie along an
s-t path. Hence, we can use Upwards Partial Instantiation twice to ensure that
s and t lie in the root template. Then, we use Edge Reweighting.

Algorithm: Single-s-t Flow. We solve maximum single-s-t flow as follows:

1. Perform upwards partial instantiation from s.
2. Perform upwards partial instantiation from t.
3. Construct an edge-reweighted graph G′.
4. Run a maximum s-t flow algorithm on the partially instantiated and

reweighted graph G′.

Theorem 2. Computing a maximum single-s-t flow in parametric graph tem-
plate takes O(mnh) time.

5 Allowing Edges Between Sibling Templates

So far, we have disallowed any edges between instances of the same template.
This limits the types of graphs which have a small template graph. For example,
a path of length n requires a template graph with n nodes. We can extend the
model by allowing an instance to have edges to another instance of the same
template. These edges can, for example, more efficiently model sequential chains
(paths), convolutional networks, and grids. We call these edges sibling edges
(because they connect siblings). A sibling edge (u,v) of template Ti connects (in
the template graph of Ti) a vertex u that belongs to template Ti to a vertex v that
also belongs to Ti. Every sibling edge e = (u, v) of template Ti is associated with
a bijective (and computable) sibling function fe : {0, . . . , Pi−1} → {0, . . . , Pi−1}
which tells us that if the head of edge e is in instance j of the template Ti, then
the tail of edge e is in instance f(j) of the template Ti.

Note that in the model with sibling edges, a path of length n can be repre-
sented with two nodes instead of n nodes and a 1-dimensional cross-correlation
of two n-dimensional signal can be represented with 2 nodes.

The structural Lemma 1 for edge reweighting still holds with sibling edges.
Hence, the results on maximum all-s-t flow and maximum single-s-t flow hold
analogously in the presence of sibling edges within the same bounds Theorems 1
and 2.
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Fig. 2. Graph Templates and their expanded/instiantiated counterparts. An edge e
labelled with ±Δ indicates a sibling edge e with sibling function fe(x) = x + Δ

6 Conclusion

In this work, we explored the notion of structural parameterization in graphs.
We show how graph templates correspond to the computation graphs of parallel
programs. Our model leads to a O(mn) time algorithm for a template version
of maximum s-t flow (and hence minimum s-t cuts). These flows provide upper
bounds on the data movement of partitions of certain parallel loop programs.

Other interesting problems would include partitions into multiple parts and
subgraph isomorphism. Moreover, future work could explore lower bounds for
parametric graph template algorithms.
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Abstract. A proper k-coloring of a graph is an assignment of colors
from the set {1, 2, . . . , k} to the vertices of the graph such that no two
adjacent vertices receive the same color. Given a graph G = (V, E), the
Dynamic Coloring problem asks to find a proper k-coloring of G such
that for every vertex v ∈ V (G) of degree at least two, there exists at least
two distinct colors appearing in the neighborhood of v. The minimum
integer k such that there is a dynamic coloring of G using k colors is
called the dynamic chromatic number of G and is denoted by χd(G).

The problem is NP-complete in general, but solvable in polynomial
time on several restricted families of graphs. In this paper, we study the
problem on restricted classes of graphs. We show that the problem can
be solved in polynomial time on chordal graphs and biconvex bipartite
graphs. On the other hand, we show that it is NP-complete on star-convex
bipartite graphs, comb-convex bipartite graphs and perfect elimination
bipartite graphs. Next, we initiate the study on Dynamic Coloring
from the parameterized complexity perspective. First, we show that the
problem is fixed-parameter tractable when parameterized by neighbor-
hood diversity or twin-cover. Then, we show that the problem is fixed-
parameter tractable when parameterized by the combined parameters
clique-width and the number of colors.

Keywords: proper coloring · fixed-parameter tractable · dynamic
coloring · neighborhood diversity · twin-cover · bipartite graphs

1 Introduction

A vertex coloring (or proper coloring) of a graph G is an assignment of colors
to the vertices of the graph such that no two adjacent vertices are assigned the
same color. The minimum number of colors required for a proper coloring of G
is called the chromatic number of G denoted by χ(G). Given a graph G = (V,E)
and an integer k ∈ N, a proper k-coloring f : V (G) → [k] is called a dynamic
coloring, if for every vertex v ∈ V (G) of degree at least 2, there are at least two
distinct colors appearing in the neighborhood of v, i.e., |f(N(v))| ≥ 2, where the
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set N(v) denotes the neighbors of v in G. The smallest integer k such that there
is a dynamic coloring of G using k colors is called the dynamic chromatic number
of G and is denoted by χd(G). Note that for any graph G, χd(G) ≥ χ(G).

Dynamic coloring was introduced by Montgomery [14] and it is NP-complete
on general graphs [13]. The problem has been studied on various restricted graph
classes. For example, polynomial time algorithms are obtained for trees [14] and
graphs with bounded tree-width [13] while it is NP-hard even for planar bipar-
tite graphs with maximum degree at most three and arbitrarily high girth [16].
Finding upper bounds of χd(G) for planar graphs have been studied in several
papers. It was shown in [3] that χd(G) ≤ 5 if G is a planar graph. Later in [10] it
was shown that if G is a connected planar graph with G �= C5, then χd(G) ≤ 4.
Dynamic coloring of graphs has been studied extensively by several authors, see
for instance [1,3,8,14,16].

In this paper, we study the decision version of the Dynamic Coloring
problem, which is stated as follows.

Dynamic Coloring
Input: A graph G = (V,E) and a positive integer k.
Question: Does G have a dynamic coloring using at most k colors?

In the first part of this paper, we study the computational complexity of
Dynamic Coloring on restricted families of graphs. We show that the prob-
lem can be solved in polynomial time on chordal graphs. As the problem is
NP-complete on bipartite graphs [13], we study its complexity on sub-classes
of bipartite graphs and close the gap between classes of graphs that are NP-
complete and P time solvable. It is known that χd(G) is unbounded [8] when G
is a bipartite graph. We show that χd(G) ≤ 4, when G is a biconvex bipartite
graph and give a polynomial time algorithm by exploiting its structural prop-
erties. We also show that the problem is NP-complete on several sub-classes of
bipartite graphs, a hierarchy of which is illustrated in Fig. 1.

In the second part of this paper, we study Dynamic Coloring from the
viewpoint of parameterized complexity [4,5]. In parameterized complexity, each
problem instance is associated with an integer, say k, called parameter. A param-
eterized problem is said to be fixed-parameter tractable (FPT) with respect to
a parameter k if it can be solved in time f(k)nO(1), where n is the input size
and f is a computable function only depending on the parameter k.

There may be many parameterizations for Dynamic Coloring. The most
natural parameter to consider is the “solution size”, which in this case is the
number of colors. As the problem is NP-complete [13] even when the number of
colors is three, we do not expect to have an FPT algorithm with solution size as
the parameter. There are parameters which are selected based on the structure
of the graph, called “structural parameterizations”. For instance, vertex cover,
tree-width, neighborhood diversity, etc. The hierarchy of a few structural graph
parameters is illustrated in Fig. 2.

We study the parameterized complexity of Dynamic Coloring with respect
to several structural graph parameters. Tree-width is one of the most used
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Fig. 1. Hierarchy showing the relationship between sub-classes of bipartite graphs. The
graph classes considered in this paper are indicated by ∗.

structural parameters when dealing with NP-hard graph problems. Li et al.
in [16] showed that Dynamic Coloring is FPT when parameterized by tree-
width, following its formulation in monadic second order logic. One disadvantage
with tree-width is that it is unbounded for dense graphs (e.g., cluster graphs).
In this paper, we consider the parameters twin-cover and neighborhood diver-
sity, which also include dense graphs. We show that Dynamic Coloring is
fixed-parameter tractable when parameterized by twin-cover or neighborhood
diversity.

Next, we consider the graph parameter clique-width, which is suitable when
dealing with hard graph problems on dense graphs. Clique-width is a generaliza-
tion of the parameters twin-cover and neighborhood diversity, in the sense that
graphs of bounded neighborhood diversity or graphs of bounded twin-cover also
have bounded clique-width. We show that Dynamic Coloring is FPT when
parameterized by the combined parameters clique-width and the number of col-
ors. Hence studying the parameterized complexity of Dynamic Coloring with
respect to the above mentioned parameters reduces the gap between tractability
and intractability. We summarize our contribution below.

1. In Sect. 3, we show that Dynamic Coloring can be solved in polynomial
time on chordal graphs.

2. In Sect. 4, we show that Dynamic Coloring is polynomial time solvable
on bipartite permutation graphs, a sub-class of biconvex graphs. We extend
this algorithm to design a polynomial time algorithm for biconvex graphs, in
Sect. 5.

3. In Sect. 6, we show NP-completeness results on star-convex bipartite graphs,
comb-convex bipartite graphs and perfect elimination bipartite graphs
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Fig. 2. Hasse diagram of a few structural graph parameters. An edge from a parameter
k1 to a parameter k2 means that there is a function f such that for all graphs G, we
have k1(G) ≤ f(k2(G)). The parameters considered in this paper are indicated by ∗.

strengthening the NP-completeness result of Dynamic Coloring on bipar-
tite graphs.

4. In Sects. 7 and 8, we show that Dynamic Coloring is FPT when param-
eterized by neighborhood diversity, twin-cover or the combined parameters
clique-width and the number of colors.

2 Preliminaries

For k ∈ N, we use [k] to denote the set {1, 2, . . . , k}. All graphs we consider in
this paper are undirected, connected, finite and simple. For a graph G = (V,E),
we denote the vertex set and edge set of G by V (G) and E(G) respectively. We
use n to denote the number of vertices and m to denote the number of edges of
a graph. An edge between vertices x and y is denoted as xy for simplicity. For
a subset X ⊆ V (G), the graph G[X] denotes the subgraph of G induced by the
vertices of X.

For a vertex set X ⊆ V (G), we denote by G \ X, the graph obtained from
G by deleting all vertices of X and their incident edges. For a vertex v ∈ V (G),
by N(v), we denote the set {u ∈ V (G) | vu ∈ E(G)} and we use N [v] to
denote the set N(v) ∪ {v}. The neighborhood of a vertex set S ⊆ V (G) is
N(S) = (∪v∈V (G)N(v))\S. A graph is bipartite if its vertex set can be partitioned
into two disjoint sets such that no two vertices in the same set are adjacent. We
say a vertex v of degree at least two to have satisfied dynamic coloring property
if there exist at least two vertices in the neighborhood of v that are colored
distinctly.

Due to space constraints, the proofs of the Theorems marked (�) are pre-
sented in the full version of the paper.
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3 Chordal Graphs

A vertex v of a graph G is called a simplicial vertex if the subgraph of G induced
by the vertex set {v}∪N(v) is a complete graph. A perfect elimination ordering
is a vertex ordering v1, . . . , vn of V (G) such that each vi is simplicial in G[i],
the subgraph induced by the vertices {v1, . . . , vi}. A graph G is chordal if and
only if it has a perfect elimination ordering. Given a graph, a perfect elimination
ordering of G can be done in polynomial time [15]. In this section, we show
Dynamic Coloring is polynomial time solvable on chordal graphs.

Theorem 1. Let G be a chordal graph with at least two edges, then

χd(G) =

{
3 if ω(G) = 2
ω(G) if ω(G) ≥ 3

where ω(G) is the size of a largest clique of G.

Proof. Let G = (V,E) be a chordal graph. Hence G is Ck-free, for k ≥ 4. If
ω(G) = 2, then G is Ck-free for k ≥ 3. That is, G is a tree, hence from [14] we
know χd(G) = 3. We now deal with the case when ω(G) ≥ 3.

Let v1, . . . , vn be a perfect elimination ordering (PEO) of G. That is, each
vi is simplicial in G[i]. Let f : V (G) → [ω(G)] be a coloring of G defined as
follows: assign f(v1) = 1 and f(v2) = 2. For each vi, where i ≥ 3, let Di =
N(vi) ∩ {v1, . . . , vi−1} be the neighbors of vi in G[i] and Ti be the set of colors
used to color the vertices of Di. Then,

f(vi) =

{
min{[ω(G)] \ {f(vj), f(vk)}} if Di = {vj} and Dj = {vk}, where k < j < i

min{[ω(G)] \ Ti} otherwise

Clearly, f is a proper coloring as each vi is greedily assigned a color (min-
imum) not appearing in Ti. Next, we show that f is dynamic coloring. For a
vertex vi, if |Di| ≥ 2 then |Ti| ≥ 2 (i.e., |f(N(vi))| ≥ 2). If |Di| = 1, and let
Di = {vj}, then vi has only one neighbor vj in G[i].

If vi has no neighbor in the set {vi+1, . . . , vn} then the degree of vi in G
is one. Suppose, vi has a neighbor in the set {vi+1, . . . , vn}. Let vp be the first
neighbor (according to PEO) of vi in the set {vi+1, . . . , vn}. If |Dp| = 1, then
by case 1, f(vp) �= f(vj), f(vp) �= f(vi) and f(vi) �= f(vj), hence vi has at least
two neighbors with distinct colors. Else if |Dp| = 2, then Dp = {vj , vi}, again
by case 2, the three vertices vj , vi and vp are colored with three distinct colors.
Hence vi has at two neighbors with distinct colors. Note that |Dp| cannot be
greater than 2 because of the choice of p.

It is easy to see that χd(G) ≥ ω(G) as we need at least ω(G) colors to
properly color the largest clique of G. Since any vertex vi has � = |Di| many
neighbors in G[i], at least one of the colors 1, 2, · · · , �+1 is not used in Ti. Hence
our algorithm finds a coloring of G with at most max

i
{|Ti| + 1} colors, which is

at most ω(G).
Hence χd(G) = ω(G). The time required for the above coloring procedure is

O(n2). 
�
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4 Bipartite Permutation Graphs

In this section, we show that Dynamic Coloring is polynomial time solvable
on bipartite permutation graphs. We start the section with some basic definitions
and notations that are needed to describe the algorithm.

Definition 1. (Chain Graph [6]). A bipartite graph G = (A ∪ B) is called a
chain graph if for every two vertices u1, u2 ∈ A we have either N(u1) ⊆ N(u2)
or N(u2) ⊆ N(u1).

That is, there is an ordering of the vertices of A, say u1, u2, . . . u|A|, such that
N(ui) ⊆ N(ui+1), 1 ≤ i < |A|. As a consequence, we can also find an ordering
of the vertices of B, say v1, v2, . . . v|B|, such that N(vi) ⊆ N(vi+1), 1 ≤ i < |B|.

We can see that each part of a chain graph can be linearly ordered under the
inclusion of their neighborhoods. We say a vertex ordering σ of A is increasing
if x <σ y implies N(x) ⊆ N(y), and decreasing if x <σ y implies N(y) ⊆ N(x).

Definition 2. (Multi-chain Ordering [2,6]). Given a connected graph G =
(V,E), we arbitrarily choose a vertex as v0 ∈ V (G) and construct distance layers
L0, L1, . . . , Lp from v0. The layer Li, where i ∈ [p], represents the set of vertices
that are at a distance i from v0 and p is the largest integer such that Lp �= ∅.

We say that these layers form a multi-chain ordering of G if for every two
consecutive layers Li and Li+1, where i ∈ {0, 1, . . . , p − 1}, we have that G[Li ∪
Li+1] forms a chain graph.

We say a graph G admits multi-chain ordering if there exists a vertex v0 ∈
V (G) such that the distance layers form a multi-chain ordering. An illustration
of a multi-chain ordering of a graph is given in Fig. 3. It is known [6] that all
connected permutation graphs and interval graphs admit multi-chain ordering.
We first observe the following on multi-chain ordering.

Observation 2. If a graph G admits a multi-chain ordering with p + 1 layers,
then there exists a vertex v in Li, i ∈ [p], such that N(v) ⊇ Li+1.

Definition 3. (Bipartite Permutation Graph [2]). A connected graph G =
(V,E) is bipartite permutation if and only if V (G) can be partitioned into q + 1
disjoint independent sets L0, L1, . . . , Lq (in this order) in such a way that

1. Any two vertices in non-consecutive sets are non-adjacent.
2. Any two consecutive sets Li−1 and Li induce a chain graph, denoted by Gi.
3. For each i ∈ {1, 2, . . . , q − 1}, there is an ordering of vertices of the set Li

such that it is non-increasing in Gi and non-decreasing in Gi+1. For the set
L0 (resp. Lq), there is a non-decreasing (resp. non increasing) ordering of
vertices of L0 (resp. Lq) in G1 (resp. Gq).

Observation 3. If c is any dynamic coloring of a bipartite permutation graph
that uses exactly three colors then at most two colors are used in any layer Li,
i.e., |c(Li)| ≤ 2.
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Fig. 3. An illustration of a multi-chain ordering of a graph. The ordering of the vertices
in L2 is σ2 = v3, v4, v5. In the chain graph G[L1 ∪ L2] we have that N(v3) ⊇ N(v4) ⊇
N(v5) and in G[L2 ∪ L3] we have that N(v3) ⊆ N(v4) ⊆ N(v5).

Proof. Suppose there exists a layer Li such that |c(Li)| = 3. From Observation
2, there is a vertex v ∈ Li−1 such that N(v) ⊇ Li. Since v is adjacent to all
vertices in Li and |c(Li)| = 3, there exists a color assigned to a vertex in Li that
is same as c(v). This is a contradiction to the fact that c is a proper coloring
and thus a dynamic coloring. 
�

We now show a polynomial time algorithm to decide if the dynamic chromatic
number of a bipartite permutation graph is three.

Lemma 1. Given a bipartite permutation graph G, there is a polynomial algo-
rithm to decide if χd(G) = 3.

Proof. Let G = (V,E) be a bipartite permutation graph and L0, L1, . . . , Lp be
the distance layers in a multi-chain ordering of G constructed from an arbitrarily
chosen vertex v0 ∈ V (G), according to Definition 3. If χd(G) = 3, then from
Observation 3, we have that in any dynamic coloring c : V (G) → {c1, c2, c3} of
G, at most two colors are used for assigning colors in any layer Li of G. This
leaves us with the following cases: either |c(Li)| = 1 or |c(Li)| = 2. At each layer
Li, 0 ≤ i ≤ p, we maintain all possible colorings of Li in the following manner.

If Li uses exactly one color, then we have three possible ways of coloring
Li. That is, we have three colorings where each coloring of Li represents all its
vertices being assigned the same color (one of the three colors).

If Li uses exactly two colors, say c1 and c2, then we guess four vertices: the
first and the last vertices in the ordering σi of Li that are assigned the colors c1
and c2. Using this guess, we extend the coloring to the remaining vertices of Li

as follows. Let xi
1 and yi

1 (resp. xi
2 and yi

2) be the first and the last vertices in σi

which are colored with c1 (resp. c2). Let w ∈ Li \{xi
1, y

i
1, x

i
2, y

i
2}. From the above

description, we have that either xi
1 < w < yi

1 or xi
2 < w < yi

2. If xi
1 < w < yi

1

then we color w with c1 else we color it with c2.
Let c : V (G) → {c1, c2, c3} be a dynamic coloring of G. Let c(Li) = {c1, c2}

and {xi
1, y

i
1, x

i
2, y

i
2} be the first and the last vertices in σi that are assigned the
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colors c1 and c2. Then the coloring obtained by applying the above extension
procedure, on each layer Li, on vertices {xi

1, y
i
1, x

i
2, y

i
2} is also a dynamic coloring

of G. Hence it is enough to know the first and the last vertices in the ordering
σi of Li that are assigned the colors c1 and c2.

The number of colorings for a pair of colors c1 and c2 is at most |Li|4. Since
there are three such pairs, the total number of colorings arising out of Li is at
most 3|Li|4. Using these local colorings at the levels, we check for the existence
of a dynamic coloring of G using a dynamic programming routine.

Let Ci be the set of colorings of Li obtained from the above description. We
call a triplet coloring (ci−1, ci, ci+1), where ci−1 ∈ Ci−1, ci ∈ Ci and ci+1 ∈ Ci+1,
as a feasible coloring (or simply feasible) for Li, where 1 ≤ i ≤ p − 1, if every
vertex of Li admits dynamic coloring property when the colorings ci−1, ci, and
ci+1 are assigned to Li−1, Li and Li+1 respectively. Similarly, we call a pair
(c0, c1) (resp. (cp−1, cp)) as feasible for the layer L0 (resp. Lp). Let Ti denote the
set of all feasible colorings corresponding to the layer Li.

We now use a dynamic programming approach to check if there exists a
dynamic coloring of G using three colors. We have an entry d[i, fi] for each
feasible coloring fi at layer Li that defines the existence of a coloring in G[L0 ∪
L1∪· · ·∪Li+1] such that all vertices in L0∪L1∪· · ·∪Li satisfy dynamic coloring
property given the feasible coloring fi at Li.

Let fi = (ci−1, ci, ci+1). We set the entry d[i, fi] = true if fi is feasible
and there exists a feasible coloring fi−1 = (x, ci−1, ci) at Li−1 such that d[i −
1, fi−1] = true. Otherwise, we set d[i, fi] = false. We initialize d[0, f ] = true, for
each feasible coloring f = (c0, c1) of L0 if the vertex v0 ∈ L0 satisfies dynamic
coloring when the colorings c0 and c1 are assigned to the layers L0 and L1

respectively. Otherwise, we initialize d[0, f ] = false. If there exists an entry
d[p, fp], for some feasible coloring fp of Lp, such that d[p, fp] = true, we decide
that there exists a dynamic coloring of G using three colors. If d[p, fp] = false for
every feasible coloring fp of Lp, then we decide that G does not have a dynamic
coloring using three colors.

The correctness of the algorithm follows from the description of the algo-
rithm. We now compute the running time of the algorithm which includes guess-
ing the colorings at each layer and applying the dynamic programming routine.
Computing the colorings for all the layers takes O(p · |Li|4) ≤ O(n5) time. The
number of feasible colorings is at most |Li−1|4 ·|Li+1|4 ·|Li+1|4 ≤ n12. Computing
if a coloring is feasible coloring can be done in O(n2) time. All the entries d[i, ·]
pertaining a layer can be computed in O(n14) time. Since i ≤ p ≤ n, the total
time taken is O(n15). 
�
Theorem 4. Dynamic Coloring can be solved in polynomial time on bipartite
permutation graphs.

Proof. Let G = (V,E) be a connected bipartite permutation graph. Since bipar-
tite permutation graphs are a sub-class of biconvex graphs, it follows from
Lemma 2 that χd(G) ≤ 4. It is easy to see that (i) χd(G) = 1 if and only if
G = K1, and (ii) χd(G) = 2 if and only if G = K2. If G does not belong to
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any of the above cases, then χd(G) ∈ {3, 4}. We check whether χd(G) = 3 using
Lemma 1. If χd(G) �= 3, we decide that χd(G) = 4. 
�

5 Biconvex Graphs

Definition 4 (Biconvex Graph). An ordering σ of X in a bipartite graph B =
(X,Y,E) has the adjacency property if for every vertex y ∈ Y , the neighborhood
N(y) consists of vertices that are consecutive (an interval) in the ordering σ
of X. A bipartite graph (X,Y,E) is biconvex if there are orderings of X (with
respect to Y ) and Y (with respect to X) that fulfills the adjacency property.

Theorem 5. Dynamic Coloring can be solved in polynomial time on biconvex
graphs.

Towards showing Theorem 5, we first show that the dynamic chromatic num-
ber of a biconvex graph is at most 4.

Lemma 2. If G is a biconvex graph then χd(G) ≤ 4.

Proof. Let G = (X,Y,E) be a biconvex graph. We assume that G has at least
five vertices, otherwise, trivially χd(G) ≤ 4.

We use the property that G is biconvex. Let σ = x1, x2, . . . , xp be an enu-
meration of vertices of X and π = y1, y2, . . . , yq be an enumeration of vertices
of Y . For each i ∈ [p], color xi with 1 if i is odd, else color it with 2. For each
j ∈ [q], color yj with 3 if i is odd, else color it with 4. Consider any vertex xi ∈ X
with degree at least two. As G is convex over Y , the vertices adjacent to xi are
consecutive with respect to the ordering π. That is, if yj is a neighbor of xi,
then at least one of yj+1 or yj−1 is a neighbor of xi. Hence the neighborhood of
xi contains a vertex of color 3 and a vertex of color 4. Similarly, we can show
that the neighborhood of every vertex yj ∈ Y contains a vertex of color 1 and a
vertex of color 2. Hence, the above coloring is a dynamic coloring of G. 
�

We now proceed to the proof of Theorem 5 which is similar to the proof
of bipartite permutation graphs in Theorem 4. Hence, we give a short proof
highlighting the key differences.

Proof. (Short Proof of Theorem 5). Let G be a biconvex graph. We know that
χd(G) ≤ 4, from Lemma 2. Similar to the proof of bipartite permutation graphs,
it is sufficient to check whether χd(G) ∈ {3, 4}. Since all connected biconvex
graphs admit multi-chain ordering [6], it is possible to extend our algorithm in
Theorem 4 to biconvex graphs.

The difference between bipartite permutation graphs and biconvex graphs is
that the latter has two vertex orderings in a multi-chain ordering, say σi,1 and
σi,2, for each layer Li, one corresponding to Li−1 and the other corresponding
to Li+1. For each of the two orderings, we guess the first and last vertices in
the respective ordering that are assigned colors based on how many colors are
seen in each layer. However, we need to ensure that the guesses obtained in
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the orderings should complement each other in the sense that a vertex v ∈ Li

cannot be assigned the color c1 in one ordering and the color c2 in the other
ordering. The rest of the algorithm is similar to Theorem 4. The number of
colorings at each layer is at most |Li|8. The number of feasible colorings is at
most |Li−1|8 · |Li|8 · |Li+1|8 ≤ n24. Considering the number of entries in the
dynamic programing table, the total time taken is O(n27). 
�

6 Hardness Results on Sub-classes of Bipartite Graphs

Theorem 6 (�). Dynamic Coloring is NP-complete on perfect elimination
bipartite graphs, star-convex bipartite graphs and comb-convex graphs.

7 Parameterization by Neighborhood Diversity

The graph parameter neighborhood diversity was introduced by Lampis [11],
and it is a generalization of the parameter vertex cover. In this section, we show
that Dynamic Coloring is fixed-parameter tractable parameterized by neigh-
borhood diversity. Our main idea is to reduce our problem to the integer linear
programming problem that is fixed-parameter tractable when parameterized by
the number of variables.

Definition 5. (Neighborhood Diversity [11]). Let G = (V,E) be a graph.
Two vertices u, v ∈ V (G) are said to have the same type if and only if N(u) \
{v} = N(v)\{u}. A graph G has neighborhood diversity at most t, if there exists
a partition of V (G) into at most t sets V1, V2, . . . , Vt such that all the vertices in
each set have the same type.

Observe that each Vi either forms a clique or an independent set in G, for all
i ∈ [t]. We call the set Vi as a clique type (resp. independent type) if G[Vi] is a
clique (resp. independent set). If |Vi| = 1, then we consider Vi as an independent
type. For each i, j ∈ [t], i �= j, it is the case that either every vertex in Vi is
adjacent to every vertex in Vj or no vertex in Vi is adjacent to any vertex in Vj .

For each A ⊆ {1, 2, · · · , t}, we denote a subset type of G by TA = {Vi : i ∈ A}.
We denote the set of types neighboring the type Vi in G by adj(Vi). That is,
Vj ∈ adj(Vi), if every vertex in Vi is adjacent to every vertex in Vj . Given a
proper coloring f : V (G) → [k], we say Vi admits dynamic coloring with respect
to f if for all v ∈ Vi, |f(N(v))| ≥ 2.

Given a graph G = (V,E), there exists an algorithm that runs in polynomial
time [11] and finds a minimum sized neighborhood partition of V (G). So, we
assume that the types V1, V2, . . . , Vt are given as input. If t = 1, then G is a
complete graph and the problem can be solved easily. Hence, we assume t ≥ 2.

Observation 7. If there exists a proper coloring of G and Vi is a clique type,
then Vi admits dynamic coloring.
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Proof. Recall that each clique type has at least two vertices. Let Vi be a clique
type. Since t ≥ 2 and G is connected, there exists a type Vj ∈ adj(Vi) such that
every vertex in Vi is part of a triangle (with two vertices from Vi and a vertex
from Vj) that uses three distinct colors in any proper coloring. Thus each vertex
in Vi has at least two differently colored neighbors which implies that Vi admits
dynamic coloring. 
�

We now present the main theorem of the section.

Theorem 8. Dynamic Coloring can be solved in O(q2.5q+o(q)n) time, where
q = 2t and t is the neighborhood diversity of G.

We use Integer Linear Programming (ILP) to show that Dynamic Color-
ing is FPT when parameterized by neighborhood diversity. The following result
shows that ILP is FPT when parameterized by the number of variables.

Theorem 9. ([7,9,12]). An ILP feasibility instance of size n can be solved in
O(q2.5q+o(q)n) time and nO(1) space, where q is the number of variables.

The crux of the proof is to distribute the colors across the type sets in a
dynamic coloring of G (if one exists). Instead of looking at the list of colors
featuring in the types of TA in a dynamic coloring, where A ⊆ [t], we are only
interested in the number of colors that appear exclusively in each of the types
of TA in the coloring.

We now define variables and constraints for ILP. For each subset A ⊆ [t], we
have a variable nA that denotes the number of colors used exclusively in all the
types of TA and not used in any of the types {V1, V2, . . . , Vt} \ TA. For example,
if A = {4, 6} (i.e., TA = {V4, V6}) and nA = 3, then there are three colors say
c1, c2, c3 (the exact values of which will be decided later) where each of the colors
is used in both V4 and V6. Moreover, the colors c1, c2, c3 are not assigned to any
of the vertices in types {V1, V2, . . . , Vt} \ {V4, V6}. Notice that the number of
variables is at most 2t. With this, we proceed to describe the constraints of ILP.

(C0) Consider only those subsets types TA such that there do not exist types
Vi, Vj ∈ TA such that Vi ∈ adj(Vj).
We only consider those subset types TA which do not have a pair of adja-
cent types. This constraint ensures that, if two types Vi and Vj are adjacent
then the set of colors used in Vi is disjoint from the set of colors used in
Vj .

(C1) The sum of all the variables is at most k. That is
∑
A

nA ≤ k.

This constraint ensures that the number of colors used in any coloring is
at most k.

(C2) For each clique type Vi, 1 ≤ i ≤ t, the sum of the variables nA for which
Vi ∈ TA is equal to the number of vertices in Vi. That is

∑
A:Vi∈TA

nA = |Vi|.
This constraint ensures that the number of colors used for coloring a clique
type Vi in any coloring is equal to |Vi|.
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(C3) For each independent type Vi, 1 ≤ i ≤ t, the sum of the variables nA for
which Vi ∈ TA is at most the minimum of k and |Vi|. That is,

∑
A:Vi∈TA

nA ≤
min{k, |Vi|}. Also the sum of variables nA for which Vi ∈ TA is at least
one. That is,

∑
A:Vi∈TA

nA ≥ 1.

This constraint ensures that, in any coloring the number of colors used for
coloring an independent type Vi is (i) at most the minimum of k and |Vi|,
and (ii) at least one.

(C4) For each independent type Vi, 1 ≤ i ≤ t, if the degree of every vertex
in Vi is at least two then the sum of variables nA for which there exists
Vj ∈ adj(Vi) ∩ TA is at least 2. That is,

∑
A:∃Vj∈adj(Vi)∩TA

nA ≥ 2.

This constraint ensures that the number of colors used in the neighborhood
of any vertex (with degree at least two) in an independent type is at least
two.

(C5) For each A ⊆ [t], nA ≥ 0.
The number of colors used exclusively in all the types in TA is at least 0.

We use Theorem 9 to obtain a feasible assignment for ILP, if one exists. We
claim the following: there is a feasible assignment of ILP if and only if there is
a dynamic coloring of G using at most k colors.

Feasibility Implies Colorability: Using a feasible assignment of variable val-
ues returned by ILP, we construct a dynamic coloring f : V (G) → [k] that assigns
colors greedily to the vertices of G, a pseudo-code is presented as Algorithm 1.

We now show that f is a dynamic coloring of G. To show this, we need to
show that (a) every vertex is colored, (b) f is a proper coloring and (c) every
vertex with degree at least two has two distinctly colored neighbors. Every vertex
is assigned a color in Algorithm 1. The constraint (C0) ensures that no color is
used in both Vi and Vj if they are adjacent. The constraint (C2) ensures that
no two vertices in a clique type are assigned the same color. Hence f is a proper
coloring of G.

We now show that for each vertex v with degree at least two, |f(N(v))| ≥ 2.
Since f is a proper coloring, from Observation 7, we have that each clique type
Vi admits dynamic coloring. Consider an independent type Vj . Since the graph is
connected, we have that |adj(Vj)| ≥ 1. If there exists a clique type V� ∈ adj(Vj)
then each vertex v in Vj has |f(N(v))| ≥ 2. This is because the size of a clique
type V� is at least two and f is a proper coloring. Otherwise, if all the types in
adj(Vj) are independent types, then there exists at least two distinctly colored
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vertices in the neighborhood of every vertex in Vj due to constraint (C4). Thus
f is a dynamic coloring of G.

Algorithm 1: A dynamic coloring from a feasible assignment of ILP.
Input: TA and nA, for each A ⊆ [t]
Output: A dynamic coloring of G

1 C(TA) = ∅, for each A ⊆ [t] � C(TA): set of colors associated to TA

2 c = 0 � c: color counter
3 for each A ⊆ [t] do
4 C(TA) = {c + 1, c + 2, . . . , c + nA}
5 c = c + nA

6 C(Vi) = ∅, for each i ∈ [t] � C(Vi): set of colors associated to Vi

7 for each i ∈ [t] do
8 C(Vi) =

⋃
A:Vi∈TA

C(TA)

9 for each i ∈ [t] do
10 if Vi is a clique type then
11 Color the vertices of Vi from C(Vi) such that each vertex is

assigned a distinct color

12 else
13 Color the vertices of Vi from C(Vi) such that each color of C(Vi) is

used at least once

14 return (Coloring of G)

Colorability Implies Feasibility: Given a dynamic coloring f : V (G) → [k]
of G, we find a feasible assignment to the ILP. For each A ⊆ [t], we set nA to
be the number of colors that are assigned exclusively to each of the types in TA,
that is

nA = |
⋂

Vi∈TA

f(Vi) −
⋃

Vi /∈TA

f(Vi)|.

We now show that such an assignment satisfies the constraints (C0)-(C5). As
f is a proper coloring, no two adjacent types share the same color. Hence the
constraint (C0) is satisfied.

Each color c ∈ [k] is uniquely associated with a type TA, where c is used in
all the types of TA and not used in any of the types {V1, V2, . . . , Vt} \ TA. The
color c is therefore contributed to the variable nA and not contributed to any
other variable nA′ where A �= A′. Hence we get that the sum of variables is at
most k. Hence the constraints (C1) and (C5).

Every vertex in a clique type Vi is assigned a distinct color in f and hence
the sum of variables nA such that Vi ∈ TA is equal to |Vi|. Hence the constraint
(C2) is satisfied.

Consider an independent type Vj . Clearly |f(Vj)| ≤ min{k, |Vj |}. Hence the
constraint (C3) is satisfied. For each vertex v ∈ Vj of degree at least two, we
have that |f(N(v))| ≥ 2. That is there are two distinct colors in the neighboring
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types of Vj . Since these colors contribute to some variables, the constraint (C4)
is satisfied.

Running Time: The running time of the algorithm is proportional to the time
needed to (i) reduce dynamic coloring problem to the ILP problem, and (ii) find
a feasible solution to the created ILP instance. The constraint (C0) considers
the subset types from the 2t subset types such that no two types in a subset
type are adjacent. This can be done in O(2tt2) time. The constraints (C1) and
(C5) can be constructed in O(2t) time. The constraints (C2) and (C3) can be
constructed in O(t2t) time. The constraint (C4) can be constructed in O(t2t)
time. Finding a feasible assignment of ILP using Theorem 9 takes O(q2.5q+o(q)n)
time, where q = 2t. The latter part dominates the former and hence the overall
running time is O(q2.5q+o(q)n) time, where q = 2t.

This completes the proof of Theorem 8.

8 Parameterizations by Twin-Cover and Clique-Width

Theorem 10 (�). Dynamic Coloring can be solved in O(q2.5q+o(q)n) time,
where q = 2t+2t and t is the size of the twin-cover of G.

Theorem 11 (�). Dynamic Coloring can be solved in O(3O(wk)poly(n)) time
where w is the clique-width of the graph G and k is the number of colors.

9 Conclusion

In this paper, we study Dynamic Coloring on various restricted graph classes
and from the viewpoint of parameterized complexity. We presented polynomial
time algorithms for chordal graphs and biconvex graphs. We have strengthened
the NP-completeness result for bipartite graphs by showing that the problem
remains NP-complete for star-convex bipartite graphs, comb-convex bipartite
graphs and perfect elimination bipartite graphs. We show that the problem is
FPT when parameterized by neighborhood diversity, twin-cover or the combined
parameters clique-width and the number of colors.

We conclude the paper with the following list of open problems.

1. What is the parameterized complexity of Dynamic Coloring parameterized
by (a) distance to cluster, and (b) distance to co-cluster?

2. What is the complexity of Dynamic Coloring for (a) convex bipartite
graphs, and (b) permutation graphs?

3. Will our results hold for a generalized version of the problem called r-
Dynamic Coloring [14], where every vertex v of degree at least one, is
adjacent to at least min{r, d} many colors, where d is the degree of v?.
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ments. The first author and the third author acknowledges SERB-DST for supporting
this research via grants PDF/2021/003452 and SRG/2020/001162 respectively.
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Abstract. A subset of vertices in a vertex-colored graph is called trop-
ical if vertices of each color present in the subset. This paper is dedi-
cated to the enumeration of all minimal tropical connected sets in vari-
ous classes of graphs. We show that all minimal tropical connected sets
can be enumerated in O(1.7142n) time on n-vertex interval graph which
improves previous O(1.8613n) upper bound obtained by Kratsch et al.
Moreover, for chordal and general class of graphs we present algorithms
with running times in O(1.937n) and O(1.999958n), respectively. The last
two algorithms answer question implicitly asked in the paper [Kratsch et
al. SOFSEM 2017]: «Is the number of tropical sets significantly smaller
than the trivial upper bound 2n?».

Keywords: tropical sets · enumeration algorithms · graph motif ·
chordal graphs · beating brute-force

1 Introduction

Efficient enumeration of objects with special properties is an important problem
in computer science. There are many problems in graph theory in which the
answer is a list of subsets of vertices that have a certain property or the cardi-
nality of this set. Most often one is looking for the inclusion minimal/maximal
induced subgraphs with additional attributes. The most classical result is that
all maximal independent sets can be enumerated in O∗(3

n
3 ) time [32], moreover,

the running time is tight since there are graphs that have 3
n
3 maximal indepen-

dent sets [32]. It is also known that all minimal dominating sets can be listed
in O(1.7159n) time [21]. If the input graph is restricted to a special type of
graphs like trees, chordal, and interval graphs faster algorithms were designed.
For example, in chordal graphs, all minimal dominating sets can be enumerated
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in O(1.5048n) time [24], in trees in O(1.4656n) time [28] and in interval graphs
in O∗(3

n
3 ) time [11] (O∗() suppress polynomial factors in the same way as O

suppress constant factors).
Listing all potential candidates might be essential in some applications and

the enumeration algorithms perform exactly this task. Such algorithms some-
times are key ingredients of very efficient algorithms for certain problems. For
example, Lawler’s O∗((1+3

1
3 )n) algorithm [30] for a chromatic number is based

on the fact that all maximal independent sets can be enumerated within O∗(3
n
3 )

running time. The same fact is also used in the fastest known algorithm for
4-coloring by Fomin, Gaspers, and Saurabh [18]. Construction of efficient enu-
meration algorithms also often leads to new combinatorial upper bounds on the
number of objects with special properties.

In the paper, we consider a problem of enumeration of subsets in vertex-
colored graphs. More precisely, we are interested in enumeration of tropical sub-
sets with additional properties. A set of vertices is called tropical if vertices of
each color are presented in the set. There are papers dedicated to the study of
various variants of tropical sets. For example tropical dominating sets were stud-
ied in [16], tropical matchings in [10], tropical paths in [9], tropical vertex-disjoint
cycles in [31]. However, it seems that tropical connected sets attract the greatest
attention [7,8,17,27]. Most probably that can be explained by close connection
of connected tropical sets with a Graph Motif problem that was motivated
by applications in biological network analysis [29] and later found applications
in social networks [2] and in the context of mass spectrometry [5].

Angles d’Auriac et al. [17] proved that finding a minimum tropical connected
set is NP-complete even on trees of height three as well as on split and interval
graphs. An exact exponential-time algorithm for Minimum Tropical Con-
nected Set was presented by Chapelle et al. [8]. In the case of a general input
graph, they provide a O(1.5359n) algorithm while in the case of trees they give
a O(1.2721n) algorithm. Later focus was shifted to enumeration of all minimal
tropical connected sets and Kratsch et al. [27] presented algorithms tailored to
special types of input graphs. So for split graphs they constructed a O(1.6402n)
algorithm, for interval graphs O(1.8613n) time algorithm, for co-bipartite graphs
and block graphs a O∗(3

n
3 ) algorithm was presented. Moreover, in the same

paper, several lower bounds on the maximum number of minimal tropical con-
nected sets were given: for co-bipartite, interval, and block graphs the lower
bound was 3

n
3 , for split graphs it was 1.4766n and for chordal graphs it was

1.4916n. No algorithm was presented for the case of a general input graph or for
the case when the input graph is known to be chordal. We present a quote from
the paper by Kratsch et al. [27]: “Interestingly, the best known upper bound for
the maximum number of minimal tropical connected sets in an arbitrary graph
and even for chordal graphs is the trivial one which is 2n”. The main goal of our
paper is to answer this implicit question and present the first non-trivial upper
bounds on the maximum number of minimal connected tropical sets in chordal
and general graphs. We note that these types of questions, i.e. whether there
is an algorithm faster than naive brute-force search play a tremendous role in
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computer science, especially in areas like fine-grained complexity, parameterized
algorithm, and exact exponential algorithms. For many problems, it is easy to
come up with algorithms significantly faster than brute-force search. However,
for some problems, even a tiny improvement over brute-force search is a highly
non-trivial task [1,3,4,13–15,19,20,33]. Moreover, there are a lot of important
problems for which we do not know algorithms faster than simple brute-force
search. For example, Set Cover problem, Satisfiability, and Orthogonal Vectors.
Moreover, it is conjectured that it is impossible to construct such algorithms:
Orthogonal Vector Conjecture [35], Set Cover Conjecture [12], Strong Exponen-
tial Time Hypothesis [12].

As a result of our research, we present an algorithm that enumerates all
minimal tropical connected sets in O(1.999958n) time in general graphs and an
algorithm that performs the same task on chordal graphs in O(1.937n) time.
Moreover, we present an algorithm for interval graphs that runs in O(1.7142n)
time, which improves the previous asymptotic upper bounds of O(1.8613n).

2 Preliminaries

We consider finite undirected graphs without loops or multiple edges. For graph
G, V (G) is the set of vertices of G, E(G) is a set of edges of G and n = |V (G)| if
not stated otherwise. N(v) is the set of neighbours of vertex v ∈ V (G). N [v] =
N(v) ∪ {v} is the set of neighbours of vertex v including itself. For a set of
vertices X ⊆ V (G), NG[X] = ∪v∈XNG[v] and NG(X) = NG[X] \ X. For a
subset X ⊆ V (G) of vertices, G[X] denotes the subgraph of G induced by X.
A clique is a subset of vertices D ⊆ V (G) such that G[D] is a complete graph.
Chordal graph is a graph without induced cycles of length bigger than 3. Chordal
graphs admit many equivalent definitions, more details can be found here [26].
Interval graphs is a subclass of chordal graphs in which each vertex can be
assigned an interval on a line such that two vertices have a common edge if
and only if the corresponding intervals overlap [6]. c : V (G) → N is a coloring
function (not necessary proper), which assigns to each vertex a certain color.
Let c(X) = {c(v) : v ∈ X} be a set of different colors assigned to vertices of
X ⊆ V (G). Let C = c(V (G)) be a set of all colors of graph G. We assume that
C = {1, 2, . . . , C}. A tropical set of graph G is a subset of vertices X ⊆ V (G)
such that c(X) = c(V (G)). A tropical connected set of graph G is a subset of
vertices X ⊆ V (G) such that X is tropical and G[X] is a connected subgraph.
Let γ = |C|

n . A rainbow set is a tropical set of the smallest size |C|, i.e. a set
that contains each color exactly once. A subset of vertices X ⊆ V (G) is called
minimal tropical connected set if there is no Y � X such that Y is tropical and
G[Y ] is a connected subgraph.

Let n, �, C, n1, n2, . . . nC be positive integers such that n1+n2+ · · ·+nC = n.
We denote by Pn1,n2,...,nC

n,�,C the number of tuples (a1, a2, . . . , aC) ∈ Z
C
>0 such that

a1 + a2 + · · · + aC = � and 1 ≤ ai ≤ ni for each 1 ≤ i ≤ C. Let Pn,�,C =
maxn1,...,nC

Pn1,n2,...,nC

n,�,C .
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We assume that G is connected. Since otherwise, we can simply run our
algorithms on each connected component of G separately and output a union of
the obtained results. In our algorithms we use upper bounds on the number of
tropical, rainbow sets and binomial coefficients given in the lemmas below. Due
to the space constraints, proofs of lemmas marked by (�) are omitted.

Lemma 1. [22] For any positive integer n and 0 ≤ α ≤ 1 we have
(

n
αn

)
≤

2H(α)n, where H(·) is the binary entropy function i.e. H(x) = −x log2(x)− (1−
x) log2(1 − x).

Lemma 2 (�). Let G be a colored graph with n vertices and a number of used
colors is γn then:

1. the number of all rainbow sets is at most ( 1γ )
γn;

2. the number of tropical sets is at most (2
1
γ − 1)γn.

Moreover, all rainbow and tropical sets can be listed almost within the same
running time i.e. within O∗(( 1γ )

γn) and O∗((2
1
γ − 1)γn) running time.

Lemma 3 (�). If n1, n2, . . . , nk are positive integer numbers such that n1 +
n2 + · · · + nk = n then n1n2 . . . nk ≤ 3

n
3 .

Lemma 4 (�). For any positive integers n, �, C we have: (i) Pn,�,C ≤ ( n
C )C ; (ii)

Pn,�,C ≤
(

�−1
C−1

)
.

Lemma 5 (�). Let (G, c) be a colored graph and S ⊆ V (G). There is a polyno-
mial time algorithm that tests whether S is a Minimal Tropical Connected
Set.

3 General Graphs

In this section we present an algorithm that enumerates all inclusion-minimal
tropical connected sets. The running time of the algorithm is O(1.999958n).
Hence, the number of Minimal Tropical Connected Sets is at most O(1.999958n).
These results answers an implicit question from [27], where trivial upper bound
2n was given. In order to present the algorithm with mentioned running time we
construct two auxiliary algorithms for the problem. The first one is given in the
lemma below.

Lemma 6. Let G be a vertex-colored graph with n vertices colored with C = γn
colors. There is an algorithm that enumerates all Minimal Tropical Con-
nected Sets in O∗((21/γ − 1)γn) time.

Proof. From Lemma 2, it follows that the number of all tropical sets is at most
((21/γ −1)γn). It is straightforward to enumerate all of them within this running
time. What is left is to delete all sets that are not minimal tropical connected.
However, by Lemma 5 we can run such test for each candidate in polynomial
time. Hence in O∗((21/γ −1)γn) time we can list all Minimal Tropical Connected
Sets. ��
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Before we proceed to the second auxiliary algorithm we state the following
definition and theorem from [34].

Definition 1. [34] For a given subset of vertices T we call a superset S of T
T -connecting if S induces a connected graph. Moreover, we call S a minimal
T -connecting if no strict subset of S is T -connecting.

Theorem 1. [34] For an n vertex graph G = (V,E) and a terminal set T ⊆ V

where |T | ≤ n
3 there are at most

(
n−|T |
|T |−2

)
·3(n−|T |)/3 minimal T -connecting vertex

sets and they can be enumerated in time O∗(
(
n−|T |
|T |−2

)
· 3(n−|T |)/3).

Lemma 7 (�). For an n vertex graph G = (V,E) and a terminal set T ⊆
V there are at most 2n−|T | minimal T -connecting vertex sets and they can be
enumerated in time O∗(2n−|T |).

Equipped with the previous theorem and lemma, we are ready to prove the
following result.

Lemma 8. Let (G, c) be a graph with n vertices colored in C = γn colors and
γ ≤ 1

3 . There is an algorithm that enumerates all Minimal Tropical Con-
nected Sets in time

max{ max
α:γ≤α≤1−2γ

2H( γ
α )·αn · min{2H( γ

1−α )·(1−α)n · 3 1−α
3 n, 2(1−α)n},

max
α:1−2γ≤α≤1

2H( γ
α ) · 2(1−α)n}

up to a polynomial factor.

Proof. Recall that our graph contains vertices of C = γn different colors and the
number of vertices colored in the i-th color is exactly ni, i.e. n1+n2+· · ·+nC = n.
Let Vi = {v1

i , . . . , vni
i } be a set of all vertices of the i-th color.

We know that any tropical set must contain a rainbow set. With each minimal
tropical connected set X we associate a rainbow set RX constructed in the
following way: for each i ∈ {1, 2, 3, . . . , C} we put vj

i in RX if vj
i ∈ X and for

each p < j we have that vp
i 	∈ X. We note that X\RX is an inclusion-minimal set

that connects vertices from RX , otherwise X is not minimal tropical connected
set.

Now we are ready to describe the algorithm. In the first step we list
all potential candidates for the role of RX . So, basically, we consider many
branchings and each branch defines a corresponding RX . So in branch with
RX = {vj1

1 , vj2
2 , . . . , vjC

C } we assume that RX is part of a minimal tropical con-
nected set, while vertices vpi

i with pi < ji are not, hence in this branch these
vertices can be simply deleted from the graph. At this point at each branch we
already decided about � = j1 + j2 + · · · + jC vertices whether they belong to a
minimal tropical connected set or not. There are n − j1 − j2 − · · · − jC vertices
that are left, let us call the set of these vertices W . Now it is enough to list
all inclusion-minimal sets Y ′ ⊆ W such that RX ∪ Y ′ is connected and discard
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those sets that are not minimal tropical connected sets. Check whether a set is a
minimal tropical connected set can be done in a polynomial time by Lemma 5.
Moreover, by Theorem 1 and Lemma 7 we can list all Y ′ that connect RX in time
min {O∗(

( |W |
|C|−2

)
· 3 |W |

3 ),O∗(2|W |)} if |W | ≥ 2C or in time O∗(2|W |) otherwise.
Denote by

f(w, c) =

{
min (

(
w

c−2

)
· 3w

3 , 2w), if w ≥ 2c
2w, otherwise

So the running time of the algorithm up to a polynomial factor is equal to:
∑

1≤j1≤n1
...

1≤jC≤nC

f(n − (j1 + j2 + · · · + jC), C).

Recall that Pn,�,C = maxn1,n2,...,nC
Pn1,n2,...,nC

n,�,C and Pn1,n2,...,nC

n,�,C is the num-
ber of tuples (a1, . . . , aC) such that a1 + a2 + · · · + aC = � and 1 ≤ ai ≤
ni. So, the running time can be rewritten (up to a polynomial factor) as∑

C≤�≤n P�,C · f(n − �, C). By Lemma 4 we know that Pn,�,C ≤
(

�−1
C−1

)
≤

(
�
C

)

So, the running time up to the polynomial factor is bounded by
maxC≤�≤n

(
�
C

)
· f(n − �, C). Since γ ≤ 1

3 we know that C ≤ n − 2C. So we
can split interval [C, n] into two intervals [C, n − 2C] and [n − 2C, n]. So, it is
obvious that:

max
C≤�≤n

(
�

C

)
· f(n − �, C) =

max
{

max
C≤�≤n−2C

(
�

C

)
· f(n − �, C), max

n−2C≤�≤n

(
�

C

)
· f(n − �, C)

}
=

max
{

max
C≤�≤n−2C

(
�

C

)
· min

{(
n − �

C − 2

)
· 3n−�

3 , 2n−�

}
, max
n−2C≤�≤n

(
�

C

)
· 2n−�

}
.

Let � = αn, recall that C = γn. Note that
(

w
c−2

)
≤ w2

(
w
c

)
for any w, c and

(
n

βn

)
≤ 2H(β)n for arbitrary 0 ≤ β ≤ 1. Keeping the above said in mind, the

running time up to the polynomial factor is bounded by:

max{ max
α:γ≤α≤1−2γ

2H( γ
α )·αn · min{2H( γ

1−α )·(1−α)n · 3 1−α
3 n, 2(1−α)n},

max
α:1−2γ≤α≤1

2H( γ
α ) · 2(1−α)n}

So, we obtain the desired result. ��

Now, we have all tools to show the main result of this section.

Theorem 2. Let G be a colored graph with n vertices. There is an algorithm that
enumerates all Minimal Tropical Connected Sets in time O(1.999958n).
Hence, the number of all Minimal Tropical Connected Sets in a graph on
n vertices is at most O(1.999958n).
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Proof. In order to construct an algorithm with desired running time, we carefully
choose the right algorithm from algorithms presented in Lemmas 6 and 8. Note
that (21/γ − 1)γ is decreasing function for γ ∈ [0, 1], see Fig. 2. So it is more
reasonable to use the algorithm from Lemma 6 when γ is large enough, i.e.
input graph G has a sufficiently large number of colors. In contrary, if we plot
the function

max{ max
α:γ≤α≤1−2γ

2H( γ
α )·αn · min{2H( γ

1−α )·(1−α)n · 3 1−α
3 n, 2(1−α)n},

max
α:1−2γ≤α≤1

2H( γ
α )·αn · 2(1−α)n},

we see that the function is non-decreasing for γ ∈ [0, 0.1], Fig. 2, so the second
algorithm shows its best performance when the number of different colors is
small.

So if the number of different colors in graph G is bigger than 0.08369n we run
the first algorithm, i.e. if γ ≥ 0.08369 then we run the algorithm with running
time O∗((21/γ − 1)γn) ≤ O(1.999958n). Otherwise, we run the second algorithm
with running time

max{ max
α:γ≤α≤1−2γ

2H( γ
α )·αn · min{2H( γ

1−α )·(1−α)n · 3 1−α
3 n, 2(1−α)n},

max
α:1−2γ≤α≤1

2H( γ
α )·αn · 2(1−α)n} ≤ O∗(1.999958n).

So, in any case we get the desired running time. ��

4 Chordal Graphs

The objective of this section is to present an algorithm that enumerates all Min-
imal Tropical Connected Sets in chordal graphs within O(1.937n) running
time which is smaller than in the case of arbitrary graphs. As a consequence we
get that the number of all Minimal Tropical Connected Sets in any col-
ored chordal graph is at most O(1.937n). We note that this answers an implicit
question from [27] where even for chordal graphs, the trivial 2n bound was the
only given bound on the number of minimal tropical connected sets. In order
to achieve this improvement compared to the case of general input graph we
replace algorithm described in Lemma 2 with a more efficient one. Instead of
enumerating T -connecting sets we will be interested in enumerating connected
dominating sets in special chordal subgraphs.

Before we proceed we recall some properties of chordal graphs and tree-
decomposition.

A tree decomposition of a graph G is a pair ({Xi | i ∈ I}, T = (I, F )) with
{Xi | i ∈ I} a collection of subsets of V (G), called bags, and T = (I, F ) a tree,
such that

1. For every v ∈ V (G), there exists i ∈ I with v ∈ Xi.
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2. For every {v, w} ∈ E, there exists i ∈ I with v, w ∈ Xi

3. For every i, j, k ∈ I, if j is contained in a path from i to k in T , then Xi∩Xk ⊆
Xj .

The following lemma is folklore and easily follows from lemma 7.1 in [12].

Lemma 9. [12] Let T = (T, {Xt}t∈V (T )) be a tree decomposition of non-
complete graph G and let u, v, w be nodes in tree T with bags Bu, Bv, Bw such
that shortest path from u to w in tree T goes through vertex v. If x ∈ Bu, y ∈ Bw

then there is no path from x to y in graph G \ Bv (note the statement trivially
holds if x or y belongs to Bv).

The following lemma is well known [25].

Lemma 10. [25] Let G be a chordal graph then there exists a tree decompo-
sition of G in which all bags are cliques. Moreover, such decomposition can be
constructed in polynomial time.

Now we are ready to present relevant results about connected dominating
sets.

Definition 2. For a connected graph G a subset of vertices X ⊆ V (G) is called
connected dominating set, if X induces a connected subgraph and N [X] = V (G).

Theorem 3. [23] Any chordal graph with n vertices has no more than 1.4736n

minimal connected dominating sets. And all of them can be enumerated within
O(1.4736n) running time.

Before we proceed with the algorithm we prove several auxiliary lemmas.

Lemma 11. Let X be a vertex subset in graph G. Let S be a minimal set that
connects X, i.e. is an inclusion-minimal subset of V (G) such that the induced
subgraph G[S ∪ X] is connected. If S ∪ X is a dominating set then there is a
minimal connected dominating subset M ⊆ V (G) such that S ⊆ M ⊆ S ∪ X.

Proof. We know that S ∪ X is connected and a dominating set. So it must
contain some minimal connected dominating set. Let us call this set M ′. If
S ⊆ M ′ then we are done and can take M = M ′. If this is not the case, consider
S′ = M ′ \ X. Since M ′ ⊆ (S ∪ X) and S 	⊆ M ′ we have that S′

� S. M ′ is
connected and dominating so M ′ ∪ X is also connected. Since S′ ∪ X = M ′ ∪ X
we have that S is not an inclusion-minimal subset of V (G) such that G[S ∪ X]
is connected. So we get a contradiction. Hence, S must be a subset of M ′. And
we can take M = M ′. ��

Definition 3. Let G be a chordal graph. For a subset of vertices X ⊆ V (G) we
call an X-restriction a chordal graph GX obtained in the following way:

1. Take the tree decomposition T of G where each bag is a clique, one that is
described in Lemma 10
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Fig. 1. The left part of figure shows graph G, set X = {c, g, j} colored red and sub-
graph GX that consist of orange and red vertices. The right part of figure shows tree-
decomposition T of graph G, and an inclusion-minimal subtree TX with all bags con-
taining vertices from X.

2. Find inclusion-minimal subtree TX ⊆ T such that TX includes all nodes whose
bags contain vertices from X

3. GX is a graph, obtained by removing all vertices in G that are not contained
in bags of TX .

Note that GX is a chordal graph (as an induced subgraph of a chordal graph)
and TX is a tree-decomposition of GX . Illustration of this definition is presented
in Fig. 1.

Lemma 12. Let G be a chordal graph and X ⊆ V (G), then all minimal con-
nected subgraphs of G containing X must be subgraphs of a restriction GX .

Proof. Let T be the tree decomposition of G (with corresponding tree T ) con-
structed by the algorithm from Lemma 10 and TX be a subtree in the decompo-
sition that we used to construct an X-restriction graph GX . Assume that there is
a connected minimal subgraph H such that X ⊆ V (H) and V (H) 	⊆ V (GX). It
can happen only if there are x, y ∈ X such that there exists an vertex inclusion-
minimal path p in V (H) that connects x, y and has vertices outside GX . Let
us consider the shortest such path p and let z be a vertex on it that does not
belong to GX . Consider the shortest path pT = v1, v2, . . . , vq in T from the
subtree TX to the subtree Tz induced by bags containing z. Since, z 	∈ GX we
have TX ∩ Tz = ∅. Hence, there is only one such path as otherwise T is not a
tree. We note that v1 ∈ TX . Consider a subset of vertices S′ from V (G) that
forms a bag of vertices for node v1. S′ is a separator and any path going from
a vertex in GX to z must pass through one of the vertices in S′. So it means
that path p = x, . . . , z, . . . y must contain vertices u1, u2 ∈ S′ on the subpaths
from x to z and from z to y. However, u1, u2 ∈ S′ and S′ is a clique as a bag of
a node in a tree-decomposition for a chordal graph. So it means that the path
p can be shorten as instead of going from u1 to z and from z to u2 we can go
straight-ahead from u1 to u2. This leads to a desired contradiction. ��

Lemma 13. Let G be a chordal graph, X ⊆ V (G), GX be an X-restriction of
G. If Y is connected in GX and X ⊆ Y then Y is a dominating set in GX .
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Proof. It is enough to show that each bag of tree TX contains a vertex from Y .
Indeed, any vertex v ∈ V (GX) belongs to some bag B in the tree TX . Since all
bags in TX are cliques, v is dominated by any vertex from bag B. So if Y ∩B 	= ∅
then the vertex v is dominated by Y .

Let us assume that there is a node t in TX with a bag set B that does not
contain any vertex from Y . Consider a graph GX \ B. If in this graph some
vertices of the set X become disconnected we get a contradiction since Y was
connecting all vertices from X and Y ∩ B = ∅. So X is connected by Y in
GX \ B. However, in this case TX is not an inclusion-minimal subtree with the
required property as some connected component of TX \{t} will contain all bags
with vertices from the set Y (this follows from Lemma 9). It is not possible that
vertices x1, x2 ∈ X belong to bags from different components of TX \ t since the
path that connects x1, x2 in G[Y ] must go through some vertex from bag B and
this contradict the fact that B ∩ Y = ∅. ��
Lemma 14. Let G be a chordal graph with n vertices colored in C = γn colors.
There is an algorithm that enumerates all Minimal Tropical Connected
Sets within maxα:γ≤α≤1 min{( 1γ )γn, 2H( γ

α )·αn} · 1.4736(1−α+γ)n running time.

Proof. First of all the algorithm in Lemma 10 constructs a tree-decomposition of
graph G in which each bag is a clique. As in the case of general graph we list all
potential candidates for the role of the rainbow set RX . Recall that as before for
each tropical set X we associated a rainbow set RX . The RX was constructed
in the following way: for each i ∈ {1, 2, 3, . . . , C} we put vj

i in RX if vj
i ∈ X and

for each p < j we have that vp
i 	∈ X. Note that if RX is a chosen rainbow set

in the minimal tropical connected set then vertices vp
i such that p < j can be

deleted from G. Denote by G′ the obtained graph after such deletion.
After this, for the fixed rainbow set RX , the algorithm constructs an RX -

restriction G′
RX

. On the next step the algorithm enumerates all minimal con-
nected dominating sets of the graph G′

RX
. Let D be a minimal connected dom-

inating set of G′
RX

. If D ∪ RX is a minimal tropical connected set we output
D ∪ RX (we can test it by Lemma 5).

Let us prove that we output all Minimal Tropical Connected Sets. If Y
is Minimal Tropical Connected Set then it contains the associated rainbow
subset X ′ (here it might be the case that Y = X ′, but it does not contradict
anything). Recall that at some point we generate X ′ as a rainbow set in our
algorithm. Since Y is minimal then S′ = Y \ X ′ is a minimal set that connects
vertices X ′ (as otherwise there will be a tropical connected set that is a subset
of Y ). Note that any minimal set that connects X ′ lies inside G′

X′ by Lemma 12.
For the graph G′

X′ and sets S′,X ′ conditions of the Lemma 11 are true (take
G′

X′ as G, S′ as S and X ′ as X). Indeed, S′ is a minimal set connecting X ′,
S′ ∪ X ′ is connected and that is why by Lemma 13 is a dominating set in G′

X′ .
Hence, at some point our algorithm considers minimal connected dominating set
M ′ of G′

X′ such that S′ ⊆ M ′ ⊆ S′ ∪ X ′ = Y and outputs M ′ ∪ X ′ which is
exactly Y .

It is left to prove the upper bound on the running time. Construction of the
required tree-decomposition of the chordal graph takes polynomial time as well
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as vertex deletion and construction of RX -restriction for fixed RX and G′. So
most of the time is consumed by the enumeration of all the rainbow sets and
the enumeration of all the connected dominating sets in graph G′

RX
for fixed

rainbow set RX . So, as in the case with general graphs, the overall running time
up to polynomial factor is:

∑

1≤j1≤n1
...

1≤jC≤nC

1.4736n−(j1+j2+···+jC)+C =
∑

�:C≤�≤n

Pn,�,C · 1.4736n−�+C ≤

n · max
�:C≤�≤n

Pn,�,C · 1.4736n−�+C .

By Lemma 4 we know that Pn,�,C ≤ min{( n
C )C ,

(
�−1
C−1

)
} ≤ min{( n

C )C ,
(

�
C

)
}.

Making the substitution C = γn and � = αn we have that the running time is
at most:

max
α:γ≤α≤1

{
min{( 1

γ
)γn, 2H( γ

α )·αn} · 1.4736(1−α+γ)n

}
.

��

Now we have all ingredients to prove the main result of this section.

Theorem 4. All Minimal Tropical Connected Sets in a chordal graph on
n vertices can be enumerated within O(1.937n) running time. Hence, the maxi-
mum number of Minimal Tropical Connected Sets is at most O(1.937n).

Proof. Our algorithm for chordal graphs as well as the algorithm for the gen-
eral case combines two algorithms and chooses between them depending on the
number of colors in the input graph. However, instead of the algorithm from
Lemma 8 we use the algorithm from Lemma 14. We recall that the running
time of the algorithm from Lemma 6 is decreasing so it is more suitable for
the case when the number of colors C = γn is large. In contrary, the function
maxα:γ≤α≤1 min{( 1γ )γn, 2H( γ

α )·αn}·1.4736(1−α+γ)n is increasing for γ ∈ [0, 1
3 ], see

Fig. 2, so the algorithm from Lemma 14 is preferable for small γ. So if γ ≤ 0.3019
then we run the algorithm from Lemma 14 and the running time will be bounded
by O(1.937n). If γ > 0.3019 then we run the algorithm from Lemma 6 and again
the running time will be bounded by O(1.937n). ��

5 Interval Graphs

The main result of this section improves the previous known upper bound on
the maximum number of minimal tropical connected sets in an interval graph
on n vertices. Kratsch et al. [27] showed that the number is at most O(1.8613n).
Our upper bound is O(1.7142n). Specifically, we prove the following:

Theorem 5. There is an algorithm with running time O(1.7142n) that enumer-
ates all minimal tropical connected sets in a given interval graph on n vertices.
Hence, the number of minimal tropical connected sets in any interval graph is at
most O(1.7142n).
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Fig. 2. The dependence of exponent on γ for the algorithms from Lemmas 6, 8, 14

In order to prove the theorem we use the following

Lemma 15. Given an interval graph G of order n and a subset of vertices
U ⊆ V (G) such that |U | = n′ we can list all minimal sets Z that connects U in
time O∗(3

n−n′
3 ) (i.e. inclusion-minimal sets Z ⊆ V (G) \ U such that G[Z ∪ U ]

is a connected graph).

Proof. As our graph is interval we can in polynomial time construct a interval
model such that each vertex has a corresponding interval on a line and:

– two vertices share an edge if and only if corresponding intervals intersect;
– no two intervals share endpoints.

Let us construct such model and fix it. Note that if G[U ] is a connected subgraph
then the only set Z that satisfies the conditions is ∅. Denote by U1, U2, . . . , Uq

connected components of G[U ]. We enumerate them from left to right i.e. U1 is
the leftmost connected component in the interval model and Uq is the rightmost
connected component. Denote by �(Ui), r(Ui) the leftmost and the rightmost
point of the connected component Ui on the fixed line model of G.

We must add a few vertices/intervals that join connected components
U1, . . . , Uq. Hence, we must add some vertex whose corresponding interval starts
to the left of r(U1) and ends to the right of r(U1) as otherwise the connected
component U1 will stay isolated from the other connected components. For a
connected subgraph W denote by Nr(W ) vertices whose intervals start before
r(W ) and end to the right of it. For any minimal U -connecting set Z we have
|Z ∩ Nr(U1)| ≥ 1. On the other hand |Z ∩ Nr(U1)| < 2, otherwise there are
v1, v2 ∈ Z ∩ Nr(U1). If r(v1) is to the left of r(v2) then (Z \ v1) connects all
components U1, . . . , Uq as Z was doing so. If r(v1) is to the right of r(v2) then
(Z \ v2) connects all components U1, . . . , Uq. In any case, this contradicts to the
fact that Z is inclusion-minimal. So it must be the case that |Z ∩ Nr(U1)| = 1.

Based on the above proved facts we suggest the following algorithm:

1. Branch on |Nr(U1)| possibilities to select a vertex from Nr(U1) that belongs
to Z and discard from the graph the rest of vertices from Nr(U1). Assume
that we pick vertex v′ at this step.
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2. Run the whole algorithm recursively on the new graph (G \ Nr(U1)) ∪ {v′}
and with a new subset (that needs to be connected) U ∪ {v′}.

The correctness of the presented algorithm follows from the above observa-
tions. Since in the recurrence call each time we create i branchings and decrease
n by i, we have that the running time of the algorithm is at most O∗(3

n−n′
3 ) (as

the maximum of i
1
i is achieved when i = 3 in the set of natural numbers). ��

Now we have all needed tools to present proof of Theorem 5:

Proof. (Proof of Theorem 5). As before we assume that our graph contains ver-
tices of C = γn different colors and the number of vertices colored in the i-th
color is exactly ni, i.e. n1 + n2 + · · · + nC = n. Let Vi = {v1

i , . . . , vni
i } be a set

of all vertices of the i-th color.
We know that any tropical set must contain a rainbow set. With each Minimal

Tropical Connected Set X we associate a rainbow set RX constructed as before
(for each i ∈ {1, 2, 3, . . . , C} we put vj

i in RX if vj
i ∈ X and for each p < j

we have that vj
i 	∈ X). We note that X \ RX is an inclusion-minimal set that

connects vertices from RX , otherwise X is not minimal tropical connected set.
Now we are ready to describe the algorithm. In the first step we list all

potential candidates for the role of RX . So, basically, we consider many branch-
ings and each branch defines a corresponding RX . So in branch in which
RX = {vj1

1 , vj2
2 , . . . , vjC

C } we assume that RX is part of a minimal tropical con-
nected set, while vertices vpi

i with pi < ji are not, hence in this branch these
vertices can be simply deleted from the graph. At this point at each branch we
already decided about � = j1 + j2 + · · · + jC vertices whether they belong to a
minimal tropical connected set or not. There are n − j1 − j2 − · · · − jC vertices
that are left, let us call the set of these vertices W . Now it is enough to list
all inclusion-minimal sets Y ′ ⊆ W such that RX ∪ Y ′ is connected and discard
those sets that are not minimal tropical connected sets. Check whether a set is
a minimal tropical connected set can be done in a polynomial time by Lemma 5
and by Lemma 15 we can list all Y ′ that connect RX in time O∗(3

|W |
3 ). So the

running time of the algorithm up to a polynomial factor is bounded by:
∑

1≤j1≤n1
...

1≤jC≤nC

3
n−(j1+j2+···+jC )

3 ≤
∑

C≤�≤n

Pn,�,C · 3n−�
3 .

Taking into account inequalities from Lemma 4 we have that the running time
of our algorithm is at most poly(n) · max�[min{2�, 3

n
3 } · 3n−�

3 ]. The maximum
of previous expression is achieved when 2� = 3

n
3 (since 2�3

n−�
3 is an increasing

function of � when n is fixed and 3
n
3 3

n−�
3 is decreasing). So in the worst case

we have � = n
3 · log2 3 and the running time of our algorithm is bounded by

O∗(31/3·n·(2− 1
3 · log 3

log 2 )) = O(1.7142n). ��
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Abstract. Dynamic network flows, sometimes called flows over time,
extend the notion of network flows to include a transit time for each
edge. While Ford and Fulkerson showed that certain dynamic flow prob-
lems can be solved via a reduction to static flows, many advanced models
considering congestion and time-dependent networks result in NP-hard
problems. To increase understanding of these advanced dynamic flow set-
tings we study the structural and computational complexity of the canon-
ical extensions that have time-dependent capacities or time-dependent
transit times.

If the considered time interval is finite, we show that already a sin-
gle edge changing capacity or transit time once makes the dynamic flow
problem weakly NP-hard. In case of infinite considered time, one change
in transit time or two changes in capacity make the problem weakly
NP-hard. For just one capacity change, we conjecture that the problem
can be solved in polynomial time. Additionally, we show the structural
property that dynamic cuts and flows can become exponentially complex
in the above settings where the problem is NP-hard. We further show
that, despite the duality between cuts and flows, their complexities can
be exponentially far apart.

1 Introduction

Network flows are a well established way to model transportation of goods or
data through systems representable as graphs. Dynamic flows (sometimes called
flows over time) include the temporal component by considering the time to
traverse an edge. They were introduced by Ford and Fulkerson [3], who showed
that maximum dynamic flows in static networks can be found using temporally
repeated flows, which send flow over paths of a static maximum flow as long as
possible.

Since capacities in real-world networks tend to be more dynamic, several
generalizations have been considered in the literature. One category here is con-
gestion modeling networks, where transit times of edges can depend on the flow
routed over them [6,7]. Other generalizations model changes in the network inde-
pendently from the routed flow [4,9,11]. This makes it possible to model known
physical changes to the network and allows for situations, where we have esti-
mates of the overall congestion over time that is caused by external entities that
are not part of the given flow problem. There are also efforts to include different
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objectives for the flow, e.g., for evacuation scenarios, it is beneficial for a flow
to maximize arrival for all times, not just at the end of the considered time
interval [2].

Most problems modeling congestion via flow-dependent transit times are NP-
hard. If the transit time depends on the current load of the edge, the flow prob-
lems become strongly NP-hard and no ε approximation exists unless P = NP [6].
If the transit time of an edge instead only depends on its inflow rate while flow
that entered the edge earlier is ignored the flow problems are also strongly NP-
hard [7]. When allowing to store flow at vertices, pseudo-polynomial algorithms
are possible if there are time-dependent capacities [4] and if there additionally
are time-dependent transit times [9,11]. In the above mentioned evacuation sce-
nario, one aims at finding the so-called earliest arrival flow (EAF). It is also
NP-hard in the sense that it is hard to find the average arrival time of such a
flow [2]. Moreover, all known algorithms to find EAFs have worst case exponen-
tial output size for all known encodings [2].

In this paper, we study natural generalizations of dynamic flows that have
received little attention so far, allowing time-dependent capacities or time-
dependent transit times. We prove that finding dynamic flows with time-
dependent capacities or time-dependent transit times is weakly NP-hard, even
if the graph is acyclic and only a single edge experiences a capacity change at a
single point in time. This shows that a single change in capacity already increases
the complexity of the – otherwise polynomially solvable – dynamic flow problem.
It also implies that the dynamic flow problem with time-dependent capacities
is not FTP in the number of capacity changes. The above results hold in the
setting where the considered time interval is finite. If we instead consider infinite
time, the results remain the same for time-dependent transit times. For time-
dependent capacities, two capacity changes make the problem weakly NP-hard.
We conjecture that it can be solved in polynomial when there is only one change.

Beyond these results on the computational complexity, we provide several
structural insights. For static flows, one is usually not only interested in the flow
value but wants to output a maximum flow or a minimum cut. The concept
of flows translates more or less directly to the dynamic setting [3], we need to
consider time-dependent flows and cuts if we have time-dependent capacities
or transit times. In this case, instead of having just one flow value per edge,
the flow is a function over time. Similarly, in a dynamic cut, the assignment of
vertices to one of two partitions changes over time. The cut–flow duality, stating
that the capacity of the minimum cut is the same as the value of the maximum
flow also holds in this and many related settings [5,8,11]. Note that the output
complexity can potentially be large if the flow on an edge or the partition of a
vertex in a cut changes often. For dynamic flows on static graphs (no changes in
capacities or transit times) vertices start in the target vertices’ partition and at
some point change to the source partition, but never the other way [10], which
shows that cuts have linear complexity in this setting.

In case of time-dependent capacities or transit times, we show that flow and
cut complexity are sometimes required to be exponential. Specifically, for all
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cases where we show weak NP-hardness, we also give instances for which every
maximum flow and minimum cut have exponential complexity. Thus, even a
single edge changing capacity or transit time once can jump the output com-
plexity from linear to exponential. Moreover, we give examples where the flow
complexity is exponential while there exists a cut of low complexity and vice
versa.

We note that the scenario of time-dependent capacities has been claimed
to be strongly NP-complete [9] before. However, we suspect the proof to be
flawed as one can see that this scenario can be solved in pseudo-polynomial
time. Moreover, the above mentioned results on the solution complexity make it
unclear whether the problem is actually in NP.

Due to space constraints, many proofs are shortened or omitted here, they
can be found in the full version of the paper [1].

2 Preliminaries

We consider dynamic networks G = (V,E) with directed edges and designated
source and target vertices s, t ∈ V . Edges e = (v, w) ∈ E have a time-dependent
non negative capacity ue : [0, T ] → R

+
0 , specifying how much flow can enter e

via v at each time. We allow ue to be non-continuous but only for finitely many
points in time. In addition, each edge e = (v, w) also has a non negative transit
time τe ∈ R

+, denoting how much time flow takes to move from v to w when
traversing e. Note that the capacity is defined on [0, T ], i.e., time is considered
from 0 up to a time horizon T .

Let f be a collection of measurable functions fe : [0, T − τe] → R, one for
each edge e ∈ E, assigning every edge a flow value depending on the time. The
restriction to the interval [0, T − τe] has the interpretation that no flow may be
sent before time 0 and no flow should arrive after time T in a valid flow. To
simplify notation, we allow time values beyond [0, T − τe] and implicitly assume
fe(Θ) = 0 for Θ /∈ [0, T − τe]. We call f a dynamic flow if it satisfies the capacity
constraints fe(Θ) ≤ ue(Θ) for all e ∈ E and Θ ∈ [0, T − τe], and strong flow
conservation, which we define in the following.

The excess flow exf (v,Θ) of a vertex v at time Θ is the difference between
flow sent to v and the flow sent from v up to time Θ, i.e.,

exf (v,Θ) :=
∫ Θ

0

∑
e=(u,v)∈E

fe(ζ − τe) −
∑

e=(v,u)∈E

fe(ζ) dζ.

We have strong flow conservation if exf (v,Θ) = 0 for all v ∈ V \{s, t} and
Θ ∈ [0, T ].

The value of f is defined as the excess of the target vertex at the time horizon
|f | := exf (t, T ) = − exf (s, T ). The maximum dynamic flow problem with time-
dependent capacities is to find a flow of maximum value. We refer to its input
as dynamic flow network.

A cut-flow duality similar to the one of the static maximum flow problem
holds for the maximum dynamic flow problem with the following cut definition.
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A dynamic cut or cut over time is a partition of the vertices (S, V \ S) for
each point in time, where the source vertex s always belongs to S while the
target t never belongs to S. Formally, each vertex v ∈ V has a boolean function
Sv : [0, T ] → {0, 1} assigning v to S at time Θ if Sv(Θ) = 1. As for the flow, we
extend Sv beyond [0, T ] and set Sv(Θ) = 1 for Θ > T for all v ∈ V (including
t). The capacity cap(S) of a dynamic cut S is the maximum flow that could be
sent on edges from S to V \ S during the considered time interval [0, T ], i.e.,

cap(S) =
∫ T

0

∑
(v,w)∈E
Sv(Θ)=1

Sw(Θ+τe)=0

u(v,w)(Θ) dΘ.

An edge (v, w) contributes to the cut S at time Θ if it contributes to the above
sum, so Sv(Θ) = 1 ∧ Sw(Θ + τe) = 0. Note that this is similar to the static case,
but in the dynamic variant the delay of the transit time needs to be considered.
Thus, for the edge e = (v, w) we consider v at time Θ and w at time Θ + τe.
Moreover, setting Sv(Θ) = 1 for all vertices v if Θ > T makes sure that no point
in time beyond the time horizon contributes to cap(S).

Theorem 1 (Min-Cut Max-Flow Theorem [8,11]). For a maximum flow
over time f and a minimum cut over time S it holds |f | = cap(S).

Proof. The theorem by Philpott [8, Theorem 1] is more general than the setting
considered here. They in particular allow for time-dependent storage capacities
of vertices. We obtain the here stated theorem by simply setting them to constant
zero. The theorem by Tjandra [11, Theorem 3.4] is even more general and thus
also covers the setting with time-dependent transit times. ��

Though the general definition allows the capacity functions to be arbitrary,
for our constructions it suffices to use piecewise constant capacities. We note
that in this case, there always exists a maximum flow that is also piecewise
constant, assigning flow values to a set of intervals of non-zero measure. The
property that the intervals have non-zero measure lets us consider an individual
point Θ in time and talk about the contribution of an edge to a cut or flow at
time Θ, as Θ is guaranteed to be part of a non-empty interval with the same
cut or flow. For the remainder of this paper, we assume that all flows have the
above property.

We define the following additional useful notation. We use S(Θ) := {v ∈ V |
Sv(Θ) = 1} and S̄(Θ) := {v ∈ V | Sv(Θ) = 0} to denote the cut at time Θ.
Moreover, a vertex v changes its partition at time Θ if Sv(Θ−ε) �= Sv(Θ+ε) for
every sufficiently small ε > 0. We denote a change from S to S̄ with Sv

Θ−→ S̄v

and a change in the other direction from S̄ to S with S̄v
Θ−→ Sv. We denote the

number of partition changes of a vertex v in a cut S with chv(S). Moreover the
total number of changes in S is the complexity of the cut S. For a flow f , we
define changes on edges as well as the complexity of f analogously.
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In the above definition of the maximum dynamic flow problem we allow
time-dependent capacities but assume constant transit times. Most of our results
translate to the complementary scenario where transit times are time-dependent
while capacities are constant. In this setting τe(Θ) denotes how much time flow
takes to traverse e, if it enters at time Θ. Similarly to the above definition, we
allow τe to be non-continuous for finitely many points in time.

Additionally we look at the scenarios where infinite time (Θ ∈ (−∞,∞)) is
considered instead of only considering times in [0, T ]. This removes structural
effects caused by the boundaries of the considered time interval. Intuitively,
because we are working with piecewise constant functions with finitely many
incontinuities, there exists a point in time Θ that is sufficiently late that all
effects of capacity changes no longer play a role. From that time on, one can
assume the maximum flow and minimum cut to be constant. The same holds
true for a sufficiently early point in time. Thus, to compare flow values it suffices
to look at a finite interval I. Formally, f is a maximum dynamic flow with infinite
considered time if it is constant outside of I and maximum on I, such that for
any larger interval J ⊃ I there exists a large enough interval K ⊃ J so that a
maximum flow with considered time interval K can be f during J . Minimum
cuts with infinite considered time are defined analogously. Such maximum flows
and minimum cuts always exist as temporally repeated flows provide optimal
solutions to dynamic flows and we only allow finitely many changes to capacity
or traversal time.

We will need the set of all integers up to k and denote it [k] := {i ∈ N
+|i ≤ k}.

3 Computational Complexity

In this section we study the computational complexity of the dynamic flow prob-
lem with time-dependent capacities or transit times. We consider finite and infi-
nite time. For all cases except for a single capacity change with infinite considered
time, we prove NP-hardness.

We start by showing hardness in the setting where we have time-dependent
capacities with only one edge changing capacity once. Our construction directly
translates to the setting of infinite considered time with one edge changing capac-
ity twice. For the case of time-dependent transit times we prove hardness for one
change even in the infinite considered time setting. This also implies hardness
for one change when we have a finite time horizon.

We reduce from the partition problem, which is defined as follows. Given a
set of positive integers S = {b1, . . . , bk} with

∑k
i=1 bi = 2L, is there a subset

S′ ⊂ S such that
∑

a∈S′ a = L?

Theorem 2. The dynamic flow problem with time-dependent capacities is
weakly NP-hard, even for acyclic graphs with only one capacity change.

Proof. Given an instance of the partition problem, we construct G = (V,E) as
shown in Fig. 1 and show that a solution to partition is equivalent to a flow of
value 1 in G.
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Every bi ∈ S corresponds to a vertex xi which can be reached by xi−1 with
one edge of transit time bi and one bypass edge of transit time zero. The last
of these vertices xk is connected to the target t with an edge only allowing flow
to pass during [L + 1, L + 2], where the lower border is ensured by the capacity
change of (xk, t) and the upper border is given by the time horizon T = L + 3.
The source s is connected to x0 with an edge of low capacity 1

L+1 , so that the
single flow unit that can enter this edge in [0, T − 2] can pass (xk, t) during one
time unit.

Since a solution to the partition problem is equivalent to a path of transit
time L through the xi, we additionally provide paths of transit time 0, 1, . . . , L−1
bypassing the bi edges via the yi so that a solution for partition exists, if and
only if flow of value 1 can reach t. To provide the bypass paths, we set � ∈ N0

so that L = 2�+1 + r, r ∈ N0, r < 2�+1 and define vertices yi, i ∈ N0, i ≤ �. They
create a path of transit time L − 1 where the edges’ transit times are powers of
two and one edge of transit time r and all edges can be bypassed by an edge
with transit time zero. This allows all integer transit times smaller than L − 1.
All edges except for (s, x0) have unit capacity when they are active.

Given a solution S′ to the partition problem, we can route flow leaving s
during [0, 1] through the xi along the non zero transit time edges if and only if
the corresponding bi is in S′. Flow leaving s in [1, L + 1] can trivially reach xk

during [L + 1, L + 2] using the bypass paths, providing a maximum flow of 1.
Only one unit of flow can reach x0 until L + 2, considering the time horizon

T = L + 3 and the transit time of (xk, t), the flow can have value at most 1.
Given a flow that sends one unit of flow to t, we can see that the flow has to
route all flow that can pass (s, x0) during [0, L + 1] to t. Due to the integrality
of transit times, the flow leaving s during [0, 1] has to take exactly time L to
traverse from x0 to xk. The bypass paths via y0 are too short for this. As such,
this time is the sum of edge transit times taken from the partition instance and
zeroes from bypass edges, and there exists a solution S′ to the partition problem
that consists of the elements corresponding to the non zero transit time edges
taken by this flow. ��

s
x0 x1 x2 xk

t

b1 b2

0 0

1 1

0 Θ=L+1−−−−−→ 1

20 21

0 0y0 y1 y2 y�

2� 0r 0

1
L+1

Fig. 1. Graph constructed for the reduction of the partition problem to dynamic flow
with time-dependent capacities. Flow leaving s at time zero can only reach t if it takes
exactly time L to traverse from x0 to xk, such choosing a partition. Black numbers
are transit times, blue numbers indicate capacity, all unspecified capacities are 1, time
horizon is T = L + 3. (Color figure online)
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Corollary 1. The dynamic flow problem with time-dependent capacities and
infinite considered time is weakly NP-hard, even for acyclic graphs with only two
capacity changes.

Proof. In the proof of Theorem 2, we restricted the flow on the edge from xk

to t to have non-zero capacity only at time [L + 1, L + 2]. For Theorem 2, we
achieved the lower bound with one capacity change and the upper bound with
the time horizon. Here, we can use the same construction but use a second
capacity change for the upper bound. ��

For the case of time-dependent transit times, we use a similar reduction. We
start with the case of infinite considered time.

Theorem 3. The dynamic flow problem with infinite considered time and time-
dependent transit times is weakly NP-hard, even for acyclic graphs with only one
transit time change.

To translate this result to the case of a finite time horizon, note that we
can use the above construction and choose the time horizon sufficiently large to
obtain the following corollary.

Corollary 2. The dynamic flow problem with time-dependent transit times is
weakly NP-hard, even for acyclic graphs with only one transit time change.

This leaves one remaining case: infinite considered time and a single capacity
change. For this case, we can show that there always exists a minimum dynamic
cut, where each vertex changes partition at most once and all partition changes
are of the same direction. Furthermore, for given partitions before and after the
changes, a linear program can be used to find the optimal transition as long as
no vertex changes partition more than once and all partition changes are of the
same direction. This motivates the following conjecture.

Conjecture 1. The minimum cut problem in a dynamic flow network with only a
single change in capacity and infinite considered time can be solved in polynomial
time.

4 The Complexity of Maximum Flows and Minimum
Cuts

We first construct a dynamic flow network such that all maximum flows and
minimum cuts have exponential complexity. Afterwards, we show that there are
also instances that require exponentially complex flows but allow for cuts of
linear size and vice versa. These results are initially proven for a single change
in capacity and are then shown to also hold in the setting with time dependent
transit times, likewise with only one change in transit time required.
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4.1 Exponentially Complex Flows and Cuts

We initially focus on the complexity of cuts and only later show that it transfers
to flows. Before we start the construction, note that the example in Fig. 2 shows
how the partition change of two vertices a and b can force a single vertex v to
change its partition back and forth. This type of enforced partition change of v
is at the core of our construction.

a bv

Θ = 0

a bv

Θ = 1

a bv

Θ = 2

a bv a bv

Fig. 2. Example where a changes from S̄ (red) to S (blue) at time 1 and b changes
from S to S̄ at time 2. Only edges from S to S̄ contribute to the cut (bold edges).
Assuming v starts in S̄ and u(a,v) < u(v,b) as well as τ(a,v) = τ(v,b) = 0, v has to change
to S at time 1 and back to S̄ at time 2 in a minimum cut (top row). The bottom row
illustrates the alternative (more expensive) behavior of v. (Color figure online)

More specifically, we first give a structure with which we can force vertices to
mimic the partition changes of other vertices, potentially with fixed time delay.

The mimicking gadget links two non terminal vertices a, b ∈ V \{s, t} using
edges (a, b), (b, t) ∈ E with capacities u(a,b) = α, u(b,t) = β. The following lemma
shows what properties α and β need to have such that the mimicking gadget
does its name credit, i.e., that b mimics a with delay τ(a,b). A visualization of
the mimicking gadget is shown in Fig. 3.

a b t

α β α >
∑

w:(b,w)∈E u(b,w)

β >
∑

w:(w,b)∈E\(a,b) u(w,b)

Fig. 3. Gadget linking the partitions of two vertices a and b, so that b mimics a with
a delay of τ(a,b); α, β are capacities.

Lemma 1. Let G be a graph that contains the mimicking gadget as a sub-graph,
such that

α >
∑

w|(b,w)∈E

u(b,w) and β >
∑

w|(w,b)∈E\(a,b)

u(w,b).
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Then, Sb(Θ) = Sa(Θ−τ(a,b)) for every minimum cut S and times Θ ∈ (τ(a,b), T −
τ(b,t)).

Proof. We first show a ∈ S(Θ − τ(a,b)) =⇒ b ∈ S(Θ). With the partition of
a fixed, we look at possible contribution to S of edges incident to b at time
Θ. For b ∈ S̄(Θ) the contribution is at least α, because Θ ∈ (τ(a,b), T − τ(b,t))
ensures that (a, b) can contribute to S. For b ∈ S(Θ) the contribution is at most∑

w|(b,w)∈E u(b,w) < α. Because S is a minimum cut, we obtain b ∈ S(Θ). The
other direction a ∈ S̄(Θ − τ(a,b)) =⇒ b ∈ S̄(Θ) holds for similar reasons. For
b ∈ S(Θ) the contribution is at least β. For b ∈ S̄(Θ) the contribution is at most∑

w|(w,b)∈E u(w,b) < β. ��
Note that Lemma 1 does not restrict the edges incident to a. Thus, we can

use it rather flexibly to transfer partition changes from one vertex to another.
To enforce exponentially many partition changes, we next give a gadget that

can double the number of partition changes of one vertex. To this end, we assume
that, for every integer i ∈ [k], we already have access to vertices ai with period
pi := 2i, i.e., ai changes partition every pi units of time. Note that a1 is the ver-
tex with the most changes. With this, we construct the so-called binary counting
gadget that produces a vertex v with period p0 = 1, which results in it having
twice as many changes as a1. Roughly speaking, the binary counting gadget,
shown in Fig. 5, consists of the above mentioned vertices ai together with addi-
tional vertices bi such that bi mimics ai. Between the ai and bi lies the central
vertex v with edges from the vertices ai and edges to the bi. Carefully cho-
sen capacities and synchronization between the ai and bi results in v changing
partition every step.

To iterate this process using v as vertex for the binary counting gadget of the
next level, we need to ensure functionality with the additionally attached edges
of the mimicking gadget.

The binary counting gadget Hk shown in Fig. 5 is formally defined as follows.
It contains the above mentioned vertices ai, bi for i ∈ [k] and the vertex v.
Additionally, it contains the source s and target t. On this vertex set, we have
five types of edges. All of them have transit time 1 unless explicitly specified
otherwise. The first two types are the edges (ai, bi) and (bi, t) for i ∈ [k], which
form a mimicking gadget. We set τ(ai,bi) = pi + 1 which makes bi mimic the
changes of ai with delay pi + 1. Moreover, we set u(ai,bi) = αi := 2i−1 + 2ε and
u(bi,t) = βi := 2i−1 + ε. We will see that these αi and βi satisfy the requirements
of the mimicking gadget in Lemma 1. The third and fourth types of edges are
(ai, v) and (v, bi) for i ∈ [k] with capacities u(ai,v) = u(v,bi) = 2i−1. These
edges have the purpose to force the partition changes of v, similar to the simple
example in Fig. 2. Finally, we have the edge (s, v) with capacity u(s,v) = 1−ε. It
has the purpose to fix the initial partition of v and introduce some asymmetry
to ensure functionality even if additional edges are attached to v.

Our plan is to prove that the binary counting gadget Hk works as desired by
induction over k. We start by defining the desired properties that will serve as
induction hypothesis.
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Definition 1. Let G be a graph. We say that Hk is a valid binary counting
gadget in G if Hk is a subgraph of G and every minimum cut S has the following
properties.

– For i ∈ [k − 1], the vertex ai has period pi. It changes its partition 2k−i times
starting with a change from S to S̄ at time 0 and ending with a change at
time 2k − 2i.

– For i = k, ak changes from S to S̄ at time 0 and additionally back to S at
time 2k.

Note that in a valid binary counting gadget the ai and v form a binary
counter from 0 to 2k − 1 when regarding S̄ as zero and S as 1, with v being the
least significant bit (shifted back two time steps); see Fig. 4.

Θ:

a1
a2
a3
a4

0 2 4 6 8 10 12 14 16

v

18

Fig. 4. Visualization of the partition change patterns of a valid binary counting gadget
H4. In blue sections the vertex is in S and in red sections it is in S̄. (Color figure online)

vs t

a1

a2

a3

b1

b2

b3

1 1

2 2

4 4

1 − ε

s
0−→ t

t
2−→ s

s
4−→ t...

s
3−→ t

t
5−→ s

s
7−→ t...

s
5−→ t

t
9−→ s...

s
9−→ t

t
17−−→ s...

s
0−→ t

t
4−→ s...

s
0−→ t

t
8−→ s...

Fig. 5. Intuitive visualization of the binary counting gadget allowing to double the
number of partition changes of a single vertex, ensuring 2k changes of vertex v assuming
that vertices ai, i < k are changing partition chai = 2k−i times each, with chak = 2
and correct timing. The shown black numbers are capacities. For improved readability
mimicking gadgets are omitted and the partition changes of the ai, bi are denoted in
blue by their terminal, i.e. s for S and t for S̄.
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Lemma 2. Let G be a graph containing the valid binary counting gadget Hk

such that the central vertex v has no additional incoming edges, the sum of the
capacities of additional outgoing edges of v is less than 1 − ε, and no additional
edges are incident to the bi. Then, for every minimum cut S, the central vertex
v has period p0 = 1 and changes 2k times, starting with a change from S to S̄
at time 2 and ending with a change at time 2k + 1.

Proof (Proof sketch). The edge (s, v) sets the default partition of v to S. Beyond
that, v is influenced by the edges from ai and to bi. Mimicking gadgets ensure
that the bi change partitions with the same frequency as the ai with appropriate
delay and in opposite directions. The changes of the bi-side from S to S̄ induce
changes of v from S to S̄, while changes on the ai-side from S̄ to S induce
changes of v back to S. Moreover, the exponentially increasing capacities make
sure that later changes essentially supersede earlier ones. We additionally need
to ensure that we have some slack for adding additional outgoing edges to v. ��

Note that Lemma 2 provides the first part towards the induction step of
constructing a valid Hk+1 from a valid Hk. In the following, we show how to
scale periods of the ai such that ai from Hk can serve as the ai+1 from Hk+1

and v can serve as the new a1. Afterwards, it remains to show two things. First,
additional edges to actually build Hk+1 from Hk can be introduced without
losing validity. And secondly, we need the initial step of the induction, i.e., the
existence of a valid H1 even in the presence of only one capacity change.

We say that a minimum dynamic cut S remains optimal under scaling and
translation of time if S is a minimum cut on graph G = (V,E) with transit times
τe, capacities ue(Θ) and time interval [0, T ] if and only if Ŝ with Ŝv(r ·Θ+T0) :=
Sv(Θ) ∀Θ ∈ [0, T ] is a minimum cut on Ĝ = (V,E) with transit times τ̂e := r ·τe,
capacities ûe(r · Θ + T0) := ue(Θ) and time interval [T0, r · T + T0] for any
r ∈ R

+, T0 ∈ R.

Lemma 3. Any dynamic cut remains optimal under scaling and translation of
time. It also remains optimal under scaling of capacities.

With this, we can combine binary counting gadgets of different sizes to create
a large binary counting gadget H� while only requiring a single capacity change.

Lemma 4. For every � ∈ N
+, there exists a polynomially sized, acyclic dynamic

flow network with only one capacity change that contains a valid binary counting
gadget H�.

Proof (Proof sketch). To create the necessary change patterns for the ai of H�,
we chain binary counting gadgets of increasing size, beginning with H2 up to
H�, together, as shown in Fig. 6. The coarse idea is to ensure the behavior of all
ak,i by having them mimic the central vertex vk−i of the correct smaller binary
counting gadget. We use Lemma 3 to scale and shift the various counting gad-
gets as necessary. We note that ensuring that all requirements of the mimicking
gadget (Lemma 1) and the counting gadget (Lemma 2) remain true in the whole
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Fig. 6. Construction linking binary counting gadgets to ensure chv� = 2� partition
changes at v� in a minimum cut; purple edges represent mimicking gadgets, numbers
are capacities. (Color figure online)

construction is rather technical but possible. The more interesting part of the
proof is starting the construction, i.e., the base case of the induction.

For the base case, we need to ensure that there is one vertex v0 that changes
twice, first from S to S̄ and later to S̄ to S, based on just one capacity change.
We achieve this as illustrated in Fig. 7. The edge (v0, t) changes capacity from 1
to 3 at time Θ = 2 and has transit time T −3. Note that v0 starts in S as (s, v0)
has capacity 2 and (v0, t) starts with capacity 1. The partition change S

2−→ S̄
directly follows from the capacity change of (v0, t) at time Θ = 2 increasing the
potential contribution of v0 ∈ S(2). The other partition change S̄

3−→ S is a result
of the approaching time horizon T , which reduces the potential contribution of
v0 ∈ S(3) to zero. ��

Fig. 7. Construction of Hstart, providing the partition changes of v0 needed for G� with
one capacity change, numbers are capacities, τ(v0,t) = T − 3.

To be able to use the complexity of minimum cuts to show complexity of
maximum flows, we need the following lemma.



154 T. Bläsius et al.

Lemma 5. Every edge contributing to the capacity of some minimum cut has
to be saturated by every maximum flow during the time where it contributes to a
cut. Moreover, every edge e = (v, w) with v ∈ S̄(Θ) and w ∈ S(Θ + τe) for some
minimum cut S may not route flow at time Θ for any maximum flow.

To obtain the following theorem, it only remains to observe that the structure
of the minimum cut in the construction of Lemma 4 also implies exponentially
complex maximum flows, using Lemma 5. Further note that discretization of
time is possible.

Theorem 4. There exist dynamic flow networks with only one capacity change
where every minimum cut and maximum flow has exponential complexity. This
even holds for acyclic networks and discrete time.

Note that the construction from Lemma 4 requires a specific time horizon
T . In the case of infinite considered time, two capacity changes suffice to obtain
the same result.

Corollary 3. Theorem 4 also holds for infinite considered time with two capac-
ity changes.

Note that if Conjecture 1 holds, two capacity changes are necessary in this
setting.

As mentioned in the introduction, the above complexity results transfer to the
setting where we have time-dependent transit times instead of time-dependent
capacities. The result of Corollary 3 can even be strengthened to only require a
single transit time change.

Corollary 4. Theorem 4 also holds in the setting of static capacities and time-
dependent transit times with a single change, with finite time horizon and with
infinite considered time.

Note that the construction of Theorem 4 causes every minimum cut and every
maximum flow to have exponential complexity. In the following we show that
exponentially many changes in cut or flow can occur independently. Specifically,
we provide constructions that require exponentially complex flows but allow for
cuts of low complexity and vice versa.

4.2 Complex Flows and Simple Cuts (and Vice Versa)

All above constructions require all minimum cuts and all maximum flows to have
exponential complexity. Here, we show that flows and cuts can be independent
in the sense that their required complexity can be exponentially far apart (in
both directions).

Theorem 5. There exist acyclic dynamic flow networks with only one capacity
change where every maximum flow has exponential complexity, while there exists
a minimum cut of constant complexity. The same is true for static capacities
and time-dependent transit times.
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Proof. Figure 8 shows a graph with these properties. This is achieved by only
allowing flow to enter v0 during [0, 1], but it has to leave vk during [0, 2k] due to
the reduced capacity of (vk, t) for a time horizon T ≥ 2k. Apart from vk all vi

are connected to the next vi+1 with a pair of edges, with transit times 2k−i−1

and zero, all these edges have capacity 1. So all 2k paths of different transit
time through the vi have to be used to route flow for a maximum flow. Every
second of those paths has an even transit time, so flow has to traverse the edge
with transit time zero between vk−1 and vk every second integer time interval,
which results in exponentially many changes in flow over that edge. However
assigning all vi to S̄ for all time is a minimum cut without partition changes.
This generalizes to time-dependent transit times, as we can block the edge (s, v0)
at time Θ = 1 by increasing its transit time to T at that time. ��

Fig. 8. Example of a graph where any maximum flow contains exponentially many
changes, but there is a minimum cut with no changes, black numbers are transit times,
blue numbers are capacities, unspecified capacities are 1. (Color figure online)

Theorem 6. There exist acyclic dynamic flow networks with only one capacity
change where every minimum cut has exponential complexity, while there exists
a maximum flow of linear complexity. The same is true for static capacities and
time-dependent transit times.
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Abstract. We study the query complexity of one-sided ε-testing the
class of Boolean functions f : Fn → {0, 1} that describe affine subspaces
and Boolean functions that describe axis-parallel affine subspaces, where
F is any finite field. We give a polynomial-time ε-testers that ask Õ(1/ε)
queries. This improves the query complexity Õ(|F|/ε) in [11].

We then show that any one-sided ε-tester with proximity parameter
ε < 1/|F|d for the class of Boolean functions that describe (n − d)-
dimensional affine subspaces and Boolean functions that describe axis-
parallel (n−d)-dimensional affine subspaces must make at least Ω(1/ε+
|F|d−1 log n) and Ω(1/ε + |F|d−1n) queries, respectively. This improves
the lower bound Ω(log n/ log log n) that is proved in [11] for F = GF(2).
We also give testers for those classes with query complexity that almost
match the lower bounds. (See the definitions of the classes in the intro-
duction and many other results in Figs. 1 and 2).

1 Introduction

Property testing of Boolean function was first considered in the seminal works
of Blum, Luby, and Rubinfeld [1] and Rubinfeld and Sudan [15] and has recently
become a very active research area. See, for example, the works referenced in
the surveys and books [8,10,13,14].

Let F be a finite field. A Boolean function f : Fn → {0, 1} describes a
(n − d)-dimensional affine subspace if f−1(1) ⊆ Fn is a (n − d)-dimensional
affine subspace. We denote the class of all such functions by d-AS. The class
AS = ∪kk-AS and (≤ d)-AS = ∪k≤dk-AS. A Boolean function f : Fn → {0, 1}
describes an axis-parallel (n − d)-dimensional affine subspace if f−1(1) ⊆ Fn

is an axis parallel (n − d)-dimensional affine subspace, i.e., there are d entries
1 ≤ i1 < i2 < · · · < id ≤ n and constants λi ∈ F , i ∈ [d], such that f−1(1) =
{a ∈ Fn|ai1 = λ1, . . . , aid = λd}. We denote the class of all such functions by
d-APAS. In the same way, we define the class APAS and (≤ d)-APAS. If
in the above definitions, instead of “affine subspace” we have “linear subspace”,
then we get the classes d-LS, LS, (≤ d)-LS, d-APLS, APLS and (≤ d)-APLS.
Those classes are studied in [9,11,12].

A related classes of Boolean functions f : {0, 1}n → {0, 1} that are studied
in the literature, [2,4–7,9,11,12], are d-Monomial (conjunction of d negated
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Boolean variables)1, Monomial (conjunction of negated Boolean variables),
(≤ d)-Monomial (conjunction of at most d negated Boolean variables), d-Term
(conjunction of d literals2), Term (conjunction of literals), (≤ d)-Term (con-
junction of at most d literals). Those are equivalent to the two family of classes
APLS (for Monomial) and APAS (for Term) over the binary field GF(2).

In property testing a class C of Boolean functions, a tester for C is a random-
ized algorithm T that has access to a Boolean function f via a black-box oracle
that returns f(x) when a point x is queried. Given a proximity parameter, ε, if
f ∈ C, the tester T accepts with probability at least 2/3, and if f is ε-far from
C (i.e., for every g ∈ C, Prx[f(x) �= g(x)] > ε) then it rejects with probability at
least 2/3. We say that T is a one-sided tester if it always accepts when f ∈ C;
otherwise, it is called a two-sided tester.

Testing the classes d-AS, AS and (≤ d)-AS correspond to testing functions
that describe (n − d′)-dimensional affine subspaces where, in the class d-AS, d′

is known (to the tester) and equal to d, in the class AS, d′ is unknown, and in
the class (≤ d)-AS, d is an upper bound on d′. The same applies to the other
classes.

Testers for the above classes were studied in [2,4,6,7,9,11,12]. In [12], Parnas
et al. gave two-sided testers for the above classes that make O(1/ε) queries. See
also [2,9]. The one-sided testers were studied by Goldreich and Ron in [11]. They
gave a polynomial-time one-sided testers for the classes AS, APAS, LS, (≤ d)-
LS, APLS and (≤ d)-APLS that make Õ(|F|/ε) queries3. In this paper, we
give a polynomial-time4 testers for these classes that make Õ(1/ε) queries.

For the classes d-AS and d-APAS, Goldreich and Ron gave the lower bound
Ω(1/ε+log n/ log log n) for the query complexity of any tester when F = GF(2)
and ε ≤ 2−d. In this paper, we give the lower bounds Ω(1/ε + |F|d−1n) and
Ω(1/ε + |F|d−1 log n), respectively, for the proximity parameter ε < 1/|F|d. We
also give testers for those classes with query complexity that almost match the
lower bounds.

See other results in Figs. 1 and 2.

2 Overview of the Testers and the Lower Bounds

2.1 The Algorithm for Functions that Describe Linear Subspace

In this section, we give the one-sided testers for LS and (≤ d)-LS.
First, we briefly outline the stages and then give more details.

1 In the literature, this class is defined as conjunction of d (non-negated) variables.
Testability of f for this class is equivalent to testability of f(x+1n) of d-Monomial
as defined in this paper. The same applies to the classes (≤ d)-Monomial and
Monomial.

2 A literal is a variable or its negation.
3 They also gave a tester for (≤ d)-AS∪{z(x)} and (≤ d)-APAS∪{z(x)} with the

same query complexity where z(x) is the zero function.
4 Goldreich and Ron algorithm and our algorithm run in time linear in the number of

queries.
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Class Lower Bound Upper Bound ε

AS Ω(1/ε) Õ(1/ε) < 1
2

0 0 > 1
2

(≤ d)-AS Ω(1/ε + |F|d−1n) Õ(1/ε) + Õ(|F|d)n † < 1
|F|d

Ω(1/ε) Õ(1/ε) + O(1/(ε − 1/|F|d)) > 1
|F|d

0 0 > 1
2

d-AS Ω(1/ε + |F|d−1n) Õ(1/ε) + Õ(|F|d)n † < 1
|F|d

Ω(1/ε + n) Õ(1/ε) + Õ(|F|d)n † < 1 − 1
|F|d

Ω(1) O(1/(ε − 1 + |F|−d)) > 1 − 1
|F|d

0 0 > 1 − 1
|F|d +

†

APAS Ω(1/ε) Õ(1/ε) > 1
2

0 0 > 1
2

(≤ d)-APAS Ω(1/ε + |F|d−1 logn) Õ(1/ε) + |F|d+o(d) logn < 1
|F|d

Ω(1/ε) Õ(1/ε) + O(1/(ε − 1/|F|d)) > 1
|F|d

0 0 > 1
2

d-APAS Ω(1/ε + |F|d−1 logn) O(1/ε) + |F|d+o(d) logn < 1
|F|d

Ω (L)‡ O(1/ε) + |F|d+o(d) logn < 1 − 1
|F|d

Ω(1) O(1/(ε − 1 + |F|−d)) > 1 − 1
|F|d

0 0 > 1 − 1
|F|d +

LS Ω(1/ε) Õ(1/ε) < 1
2

0 0 > 1
2

(≤ d)-LS Ω(1/ε) Õ(1/ε) < 1
2

0 0 > 1
2

d-LS Ω(1/ε + n) Õ(1/ε) + O(|F|dn) < 1 − 1
|F|d

Ω(1) O(1/(ε − 1 + |F|−d)) > 1 − 1
|F|d

0 0 > 1 − 1
|F|d +

APLS Ω(1/ε) Õ(1/ε) > 1
2

0 0 > 1
2

(≤ d)-APLS Ω(1/ε) Õ(1/ε) > 1
2

0 0 > 1
2

d-APLS Ω (L)‡ O (L)‡ < 1
|F| − 1

|F|d
Ω(1) O(1/(ε − |F|−1 + |F|−d) + logn) > 1

|F| − 1
|F|d

Ω(1) O(1/(ε − 1 + |F|−d)) > 1 − 1
|F|d

0 0 > 1 − 1
|F|d +

Fig. 1. A table of the lower bounds and upper bounds achieved in this paper. Any
upper bound (resp. lower bound) for the proximity parameter ε is also an upper bound
for ε′ ≥ ε (resp. ε′ ≤ ε). † Those testers are exponential time testers. |F|−d+ means

|F|−d + o(|F|−d). See the full paper.‡ Here L = 1
ε

+ min
(

log(1/ε)
log |F| , d

)
· log n

d
.
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Class Lower Bound Upper Bound ε

Term Ω(1/ε) Õ(1/ε) < 1
2

0 0 > 1
2

(≤ d)-Term Ω(1/ε + 2d logn) Õ(1/ε) + 2d+o(d) logn < 1
2d

Ω(1/ε) Õ(1/ε) + O(1/(ε − 1/2d)) > 1
2d

0 0 > 1
2

d-Term Ω(1/ε + 2d logn) O(1/ε) + 2d+o(d) logn < 1
2d

O(1/ε) + 2d+o(d) logn < 1 − 1
2d

Ω(1) O(1/(ε − 1 + 2−d)) > 1 − 1
2d

0 0 > 1 − 1
2d +

‡

Monomial Ω(1/ε) Õ(1/ε) < 1
2

0 0 > 1
2

(≤ d)-Monom. Ω(1/ε) Õ(1/ε) < 1
2

Ω(1/ε) O(1/ε) + Õ(22d) < 1
2

0 0 > 1
2

d-Monomial Ω (L)† O (L) < 1
2

− 1
2d

Ω(1) O(1/(ε − 1/2 + 2−d) + logn) > 1
2

− 1
2d

Ω(1) O(1/(ε − 1 + 2−d)) > 1 − 1
2d

0 0 > 1 − 1
2d +

Fig. 2. A table of the lower bounds and upper bounds achieved in this paper for Term
and Monomial. † L = 1

ε
+ min (log(1/ε), d) · log n

d
. ‡ 2−d+ means 2−d + o(2−d).

High-Level Description of the Tester: We first give a tester for the class
d-WSLS5 (Well-Structured Linear Space6), a subclass of LS that contains func-
tions f that satisfy f−1(1) = {(a, b)|a ∈ Fn−d, b = φ(a)} for some linear function
φ : Fn−d → Fd. In other words, the class of functions f where the generator
matrix7 of f−1(1) is of rank n − d and has full rank in the first n − d columns.
The tester for d-WSLS is built of three sub-testers that test the following three
properties P1 − P3 of f .

– P1(d): For every a ∈ Fn−d, there is at most one b ∈ Fd such that f(a, b) = 1.
– P2(d): For every a ∈ Fn−d, there is at least one b ∈ Fd such that f(a, b) = 1.
– P3(d): There is a linear function φ : Fn−d → Fd such that if f(a, b) = 1 then

b = φ(a).

Obviously, f ∈ d-WSLS if and only if it satisfies the above three properties. We
also show that if a function f is ε-far from d-WSLS, then it is Ω(ε)-far from
one of the above three properties.

In the second stage, we test LS. Note here that in the above tester, we assume
that the tester knows d. Here, the tester does not know d, so it first assumes
that d = 0. This stage is an iterative one that is rooted in the observation that if
5 d is known to the tester.
6 In coding theory for f ∈ d-WSLS, f−1(1) is called systematic code.
7 The generator matrix of a linear subspace L ⊆ Fn, is a matrix with a minimum

number of rows where the span of its rows is L.
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f ∈ d∗-LS, then for every d ≤ d∗, we can find a non-singular matrix M such that
if d < d∗, then fd(x) = f(xM) satisfies properties P1(d) and P2(d) but not P3(d)
and if d = d∗ then fd ∈ d-WSLS. The tester runs the tester of d-WSLS on fd.
In this case, either fd satisfies P3(d), in which case it is in d-WSLS, and then the
tester accepts8, or, it is far from property P3(d), in which case the tester receives
a ∈ Fn−d such that no b ∈ Fd satisfies f(a, b) = 1. Then we show how to use
M and a to construct a matrix M ′ such that fd+1 = f(xM ′) satisfies properties
P1(d + 1) and P2(d + 1) but not P3(d + 1) if d + 1 < d∗ and fd+1 ∈ d∗-WSLS if
d+1 = d∗. The tester then moves to the next iteration. The tester accepts if the
tester of d-WSLS accepts or d = D := (2+ log(1/ε)/ log |F|). In the latter case,
fd (and therefore f) is ε-close to the zero function9, and therefore it is ε-close
to LS.

If f is ε-far from LS, then it is ε-far from every d-WSLS. So, with high
probability, in one of the iterations, fd is either Ω(ε)-far from10 P1(d) or P3(d)
and the tester rejects.

A Detailed Description of the Tester: We now give a detailed outline of
the stages.

For testing LS we have two main stages. The first is composed of the following
three substages that test whether the function describes a well-structured (n−d)-
dimensional subspace. A function describes a well-structured (n−d)-dimensional
subspace if f−1(1) = {(a, φ(a))|a ∈ Fn−d}, where φ : Fn−d → Fd is a linear
function. Then, in the second stage, we show how to test whether a function
describes a linear subspace using the first three substages.

In the first substage, we give a tester that tests whether f is a function
that describes a well-structured (n − d)-dimensional injective relation (property
P1(d)). That is, it satisfies: For every a ∈ Fn−d, there is at most one b ∈
Fd such that f(a, b) = 1. The class of such functions is denoted by d-R. We
show that if f is ε-far from d-R, then there are α, β < 1 such that αβ =
O(ε/ log(1/ε)) and Pra∈Fn−d [Prb∈Fd [f(a, b) = 1] ≥ β] ≥ α. Then with a proper
double search, the tester, with high probability, can find a, b(1) �= b(2) such that
f(a, b(1)) �= f(a, b(2)) and rejects. If f ∈ d-R, then no such a, b(1) �= b(2) can be
found. Therefore, this is a one-sided tester. The query complexity of this stage
is Õ(log2(1/ε)/ε) = Õ(1/ε).

In the second substage, we give a tester that tests whether f describes a
well-structured (n− d)-dimensional bijection (properties P1(d) and P2(d)). That
is: For every a ∈ Fn−d, there is exactly one b ∈ Fd such that f(a, b) = 1. The
class of such functions is denoted by d-F. The tester for d-F first runs the above
tester for d-R with proximity parameter ε/2 and rejects if it rejects. So, we may
assume that f is ε/2-close to d-R. Define the function Rf : Fn−d → Fd ∪ {⊥}
8 It is easy to show that if fd(x) = f(xM) is ε-close to d∗-LS if and only if f(x) is

ε-close to d∗-LS.
9 If d = D, then by property P1(d), it follows that f is ε-close to the zero function.

10 If in every iteration fd is not ε-far from P1(d) and P3(d), then it gets to iteration D,
and therefore f is ε-close to LS. A contradiction.
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where Rf (a) is equal to the first b ∈ Fd (in some total order) that satisfies
f(a, b) = 1 and ⊥ if no such b exists. We show that if f is ε/2-close to d-R
and ε-far from d-F then11 Pr[Rf (a) =⊥] ≥ ε|F|d/2. See details in Sect. 3. Since
computing Rf (a) takes |F|d queries, the query complexity of testing whether
Pr[Rf (a) =⊥] ≥ ε|F|d/2 is O(1/ε). This is also a one-sided tester because when
f ∈ d-F, Pr[Rf (a) =⊥] = 0. The query complexity of this stage is Õ(1/ε).

In the third substage, we give a tester that tests whether a function f
describes a well-structured (n−d)-dimensional linear subspace (properties P1(d),
P2(d) and P3(d)). The class of such functions is denoted by d-WSLS. First,
the tester runs the tester for d-F with proximity parameter ε/2 and rejects if
it rejects. Now define a function Ff : Fn−d → Fd where Ff (a) = Rf (a) if
RF (a) �=⊥ and f(a, b) = 0d otherwise. We show that if f is ε-far from d-WSLS
and ε/2-close to d-F, then Ff is (|F|dε/2)-far from linear functions. See details
in Sect. 3. The tester then uses the testers in [1,15] to test if Ff is (|F|dε/2)-far
from linear functions. Since computing Ff (a) takes |F|d queries and the testers
in [1,15] make O(2/(ε|F|d) queries, the query complexity of this test is O(1/ε).
Since the testers in [1,15] are one-sided, this tester is also one-sided. The query
complexity of this tester is Õ(1/ε).

Now, in the second stage, we give a tester that tests whether f describes a
linear subspace. Recall that the class of such functions is denoted by LS. The
tester at the (d + 1)-th iteration uses a non-singular n × n matrix M such that
fd(x) := f(xM) satisfies

1. If f is ε-far from LS then fd is ε-far from LS.
2. If f ∈ LS then fd ∈ LS.
3. If f ∈ LS then f−1

d (1) = {(a, φ(a))|a ∈ L} for some linear subspace L ⊆ Fn−d

and linear function φ : Fn−d → Fd (satisfies properties P1(d) and P3(d). It
satisfies property P2(d) if and only if L = Fn−d).

Items 1 and 2 are true for any non-singular matrix M . At the (d+1)-th iteration,
the tester runs the tester that tests whether fd ∈ d-WSLA with proximity
parameter ε/2 and accepts if it accepts. We show that if fd ∈ LS and the tester
rejects, then it is because some a′ ∈ Fn−d has no b ∈ Fd, such that fd(a′, b) = 1
(property P2(d) is not true - i.e., L �= Fn−d). In that case, the tester does not
reject and uses the point a′ ∈ Fn−d and M to construct a new non-singular
matrix M ′ such that fd+1 = f(xM ′) satisfies the above items 1–3. Items 1 and
2 hold for fd+1 because M ′ is non-singular. For item 3, we will have, if f ∈ LS,
then f−1

d+1(1) = {(a, φ′(a))|a ∈ L′} for some linear subspace L′ ⊆ Fn−d−1 and a
linear function φ′ : Fn−d−1 → Fd+1. The tester then continues to the (d + 2)-th
iteration if d < (2 + log(1/ε)/ log |F|); otherwise, it accepts.

If f ∈ LS, then at each iteration, the tester either accepts or moves to the
next iteration. Also, when d = (2+log(1/ε)/ log |F|), the tester accepts. So, this
tester is one-sided.
11 if |F|dε > 2, the tester accepts. This is because any function in d-R is |F|n−d/|F|n ≤

1/|F|d ≤ ε/2 close to any function in d-F. Therefore, if f is ε/2-close to d-R, and
|F|dε > 2 then it is ε-close to d-F.
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On the other hand, if f is ε-far from LS, then it is ε-far from the function
h that satisfies h−1(1) = {0n} (which is in LS). Therefore,12, Pr[f �= 0] ≥ ε/2.
Now since for d = 2+log(1/ε)/ log |F|, every function g in d-R satisfies Pr[g(x) =
1] ≤ |F|−d ≤ ε/4, the tester of d-WSLA, with high probability, rejects when it
calls the tester of d-R.

Therefore, this tester is one-sided, and its query complexity is Õ(1/ε). This
completes the description of the tester of the class LS.

The above tester also works for testing the class (≤ k)-LS. The only change
is that the tester rejects if d > k.

2.2 Comparison with Goldreich and Ron Algorithm

Our method and the method of Goldreich and Ron [11] are rooted in different
characterization of (n − d)-dimensional subspaces. Our method is based on the
existence of a change of basis for the subspace f−1(1) that makes it “well-
structured”, then moving from linear space of dimension n − i to dimension
n − i − 1. In contrast, the method in [11] is based on the existence of a basis for
the d-dimensional subspace orthogonal to f−1(1) and moving from subspace of
dimension i to dimension i+1. Both are iterative, but construct and test different
subspaces. Our approach improves the query complexity of testing from Õ(|F|/ε)
(in [11]) to Õ(1/ε).

The issue with [11] is that it is centered on the function gH,V , where H is
the tested space and V is the basis of the linear subspace that complements
H. The value of gH,V (x) identifies the unique coset in which x resides and ⊥
otherwise. That is, gH,V (x) = u if x+uV ∈ H and ⊥ if such value does not exist
or is not unique. In the ith iteration, evaluating gH,V requires |F|i queries where
i = dim(V ). Also, for the test, their algorithm needs to reach iteration i such
that |F|i ≥ 1/ε. Now, if ε is slightly smaller than 1/|F|i, their algorithm enters
iteration i + 1 and makes at least |F|/ε queries. This is the source of the extra
factor of |F| in the query complexity of [11], and it seems that the approach
they use cannot get around it.

2.3 The Algorithm for Functions that Describe Affine Subspace

Our tester that tests whether a function describes an affine subspace, AS, is
built on the reduction of Goldreich and Ron’s [11] that reduces one-sided testing
AS to one-sided testing LS and then the above two main stages for testing LS.
For completeness, we present Goldreich and Ron’s reduction.

They show that testing whether a function f(x) describes an affine subspace
(resp. axis-parallel affine subspace) can be randomly reduced to testing whether
h(x) = f(x + a) describes a linear subspace (resp. axis-parallel linear subspace)
where a ∈ f−1(1). This follows from the fact that if f−1(1) = u + L for some

12 This is true since Pr[f �= 0] ≥ Pr[f �= h] − Pr[h �= 0] ≥ ε − 1/|F|n. Now we may
assume that ε ≥ 2/|F|n because, otherwise, we can query f in all the points using
O(|F|n) = O(1/ε) queries.
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linear subspace L ⊆ Fn, then for any a ∈ f−1(1), f−1(1) = a+L and, therefore,
h−1(1) = L.

Thus, in the reduction, the tester accepts if f is evaluated to 0 on uniformly
at random O(1/ε) points13. Otherwise, let a be a point such that f(a) = 1. Then
run the tester for functions that describe linear subspaces to test f(x + a).

See more details in [11] Sect. 4.

2.4 The Algorithm for Functions that Describe Axis-Parallel Affine
Subspace

The class of functions that describe axis-parallel affine subspace and the class
of functions that describe axis-parallel linear subspace are denoted by APAS
and APLS, respectively. Then d-APAS, d-APLS, (≤ d)-APAS, and (≤ d)-
APLS are defined similarly to those in the previous subsection. When the field
is F = GF(2), those classes are equivalent to Term, Monomial, d-Term, d-
Monomial, (≤ d)-Term, and (≤ d)-Monomial, respectively.

We first give an overview of the testers for APAS and APLS. As in the pre-
vious section, the reduction of Goldreich and Ron reduces the problem of testing
whether the function describes an axis-parallel affine subspace (APAS) to test-
ing whether the function describes an axis-parallel linear subspace (APLS).

The tester for testing whether the function describes an axis-parallel linear
subspace, first runs the tester for LS with proximity parameter ε/100 and rejects
if it rejects. Then it draws uniformly at random x, y, z ∈ f−1(1) and tests if
f(wx,y +z) = 1 where for every i ∈ [n], wx,y

i = 0 if xi = yi = 0 and wx,y
i ∈ {0, 1}

drawn uniformly at random, otherwise. If f(wx,y+z) = 1, then the tester accepts;
otherwise, it rejects.

We show that if f ∈ APLS, then with probability 1, f(wx,y + z) = 1. This
fact is obvious. We also show that if f is ε-far from APLS and ε/100-close to
LS, then with constant probability f(wx,y + z) �= 1. Obviously, this tester is
one-sided and makes Õ(1/ε) queries.

We provide some intuition for why this is true. Let f be ε-far from APLS
and ε/100-close to LS. If f−1(1) is very close to a linear subspace L, then, for
a uniformly random x, y, z ∈ f−1(1), with high probability, x, y, z are in L.
Since f−1(1) is ε-far from APLS, it follows that L is also Ω(ε)-far from APLS.
Assuming x, y ∈ L, with high probability, wx,y is not in L. This is due to the
fact that, if L ∈ LS\APLS, then one of the entries in the points in L is a non-
zero linear combination of the other entries; therefore this entry is uniformly
at random in wx,y. So, whp, wx,y �∈ L, but not necessarily (whp) not in f−1(1)
because wx,y is not a uniformly random point. To add some randomness to wx,y,
we add a random z to wx,y. Then, if x, y, z ∈ L, whp, wx,y + z is not L. Because
z is almost random uniform in L and wx,y is not in L, whp, wx,y + z is an
almost random uniform point in some coset outside L. Then again, since f−1(1)

13 If f is ε-far from AS, then it is ε-far from the function h(x) that satisfies h−1(1) =
{0n}. Therefore, whp, some point a satisfies f(a) = 1. This is not true for (≤ d)-AS
because h �∈ (≤ d)-AS.
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is very close to L, it follows that, whp, wx,y + z �∈ f−1(1). This implies that,
whp, f(wx,y + z) �= 1. For more details, refer to the full paper.

Now for testing the class (≤ d)-APLS, we prove that if f is (ε/100)-close to
APLS and (ε/100)-close to (≤ d)-LS, then it is ε-close to (≤ d)-APLS. So we
run the tester for APLS and (≤ d)-LS, with proximity parameter ε/100, and
accept if both accept.

2.5 Lower Bound for Testing Classes with Fixed/Bounded
Dimension

For the class of Boolean functions that describe (n−d)-dimensional affine/linear
subspaces (d-AS and d-LS) and Boolean functions that describe axis-parallel
(n − d)-dimensional affine/linear subspaces (d-APAS and d-APLS), we give
lower bounds that depend on n, the number of variables. See Figs. 1 and 2 and
the proofs in Sect. 6.

Here we will give the technique used to prove the lower bound for the class
d-APLS. For this class, we give the lower bound

Ω

(
1
ε

+ min
(

log(1/ε)
log |F| , d

)
· log

n

d

)

for the query complexity.
First, the lower bound Ω(1/ε) follows from [3]. Then any tester for the above

classes can distinguish between functions in the class d-APLS and d′-APLS
for d′ = min(log(1/ε)/ log |F|, d) − 1. This is because the distance between any
function in d′-APLS and a function in d-APLS is at least ε. Since the tester is
one-sided, using Yao’s principle, we show that there is a deterministic algorithm
that can distinguish between all the functions in d-APLS and a subclass C ⊆ d′-
APLS of size |C| ≥ (2/3)|d′-APLS|. We then show that for any f ∈ C, this
algorithm asks queries that eliminate all possible entries in the points of f−1(1)
that are not identically zero, except for at most d entries. Therefore, with d more
queries, we get an exact learning algorithm for C. Thus, the number of queries
of the tester must be at least the information-theoretic lower bound for learning
C minus d, which is log |C| − d. This gives the lower bound.

3 Definitions and Preliminary Results

Let F be a finite field of q = |F| elements, and B(F) be the set of all Boolean
functions f : Fn → {0, 1}. We say that f ∈ B(F) describes a well-structured
(n−d)-dimensional injective relation if for every a ∈ Fn−d, there is at most one
element b ∈ Fd such that14 f(a, b) = 1. The class of such functions is denoted
by d-R. Here F0 = {()}, so every Boolean function describes a well-structured
n-dimensional injective relation. That is 0-R= B(F).

14 By f(a, b), we mean the following: If a = (a1, . . . , an−d) and b = (b1, . . . , bd), then
f(a, b) = f(a1, . . . , an−d, b1, . . . , bd).
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For a class C ⊆ B(F) and functions f, g ∈ B(F) we define dist(f, g) =
Pr[f(x) �= g(x)] and dist(f, C) = minh∈C dist(f, h). For any f ∈ B(F) define
the function Rf : Fn−d → Fd ∪ {⊥}, ⊥�∈ Fd, where Rf (a) is equal to the
minimum b ∈ Fd (in some total order over Fd) that satisfies f(a, b) = 1 and
Rf (a) =⊥ if no such b exists. If d = 0, we have Rf : Fn → {(),⊥}, where
Rf (a) = () if f(a) = 1 and Rf (a) =⊥ if f(a) = 0. For any f ∈ B(F) define
fR ∈ B(F) as fR(a, b) = 1 if b = Rf (a) and fR(a, b) = 0 otherwise.

In the full paper we show

Lemma 1. Let q = |F| and r = max(0, d log q − log(2/ε)). If f is ε-far from
d-R then there is �0, r + 1 ≤ �0 ≤ d log q such that for

α =
εqd

2�0+1 min(d log q − 1, log(1/ε))
, β =

2�0−1

qd

we have Pra∈Fn−d [Prb∈Fd [f(a, b) �= fR(a, b)] ≥ β] ≥ α.
In particular, αβ ≥ ε/(4 log(1/ε)).

We say that f ∈ B(F) describes a well-structured (n − d)-dimensional bijec-
tion, if for every a ∈ Fn−d, there is exactly one b ∈ Fd such that f(a, b) = 1. This
class is denoted by d-F. In particular, f ∈ 0-F if it is the constant 1 function.

We define Ff : Fn−d → Fd where Ff (a) = Rf (a) if Rf (a) �=⊥ and Ff (a) =
0d otherwise. Define fF ∈ B(F) as fF(a, b) = 1 if b = Ff (a) and fF(a, b) = 0
otherwise.

In the full paper we prove

Lemma 2. If f is ε/2-close to d-R and ε-far from d-F, then Pr[Rf (a) =⊥] ≥
εqd/2.

We say that L ⊆ Fn is a well-structured (n − d)-dimensional linear subspace
if there is a linear function φ : Fn−d → Fd such that L = {(a, φ(a)) | a ∈ Fn−d}.

We say that f ∈ B(F) describes a well-structured (n − d)-dimensional lin-
ear subspace if f−1(1) is a well-structured (n − d)-dimensional linear subspace.
We denote by d-WSLS the class of Boolean functions that describes a well-
structured (n − d)-dimensional linear subspace. Consider the class Linear of
linear functions Λ : Fn−d → Fd. In the full paper, we prove

Lemma 3. If f is ε-far from d-WSLS and ε/2-close to d-F, then Ff is (qdε/2)-
far from Linear.

In the full paper we prove.

Lemma 4. For any function f ∈ B(F) and any nonsinglar n×n-matrix M we
have

1. If f ∈ LS and h(x) = f(xM), then h ∈ LS and dim(h−1(1)) = dim(f−1(1))
2. dist(f(x),LS) = dist(f(xM),LS) (Fig. 3).
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Test-d-R(f, ε)
Input: Oracle that accesses a Boolean function f : Fn → {0, 1}.
Output: Either “Accept” or “Reject”

1. For � = max(1, d log q − log(1/ε)) to d log q

2. Let α(�) = εqd

2�+1 min(d log q−1,log(1/ε))
, β(�) = 2�−1

qd

3. Draw uniformly at random r = 10/α(�) assignments a(1), . . . , a(r) ∈ Fn−d

Draw uniformly at random s = 10/β(�) assignments b(1), . . . , b(s) ∈ Fd

If there is a(i) and two b(j1) �= b(j2) such that
f(a(i), b(j1)) = f(a(i), b(j2)) = 1 then Reject

4. Accept.

Fig. 3. A tester for d-R.

4 Three Testers

In this section, we give testers for d-R, d-F and d-WSLS.
The proof of the following is in the full paper.

Lemma 5. There is a polynomial-time one-sided tester for d-R that makes

O(min(log(1/ε), d log q)2/ε) = O(log2(1/ε)/ε) = Õ(1/ε).

queries.

Test-d-F(f, ε)
Input: Oracle that accesses a Boolean function f : Fn → {0, 1}.
Output: Either “Accept” or “Reject” with v =“empty” or v ∈ Fn−d s.t. Rf (v) =⊥

1. If Test-d-R(f, ε/2) =Reject then Reject; Return v = “empty”.
2. For i = 1 to �10/(qdε)�
3. Draw uniformly at random a ∈ Fn−d

4. If Rf (a) =⊥ then Reject: Return v = a
5. Accept

Fig. 4. A Tester for d-F.

We now give a tester for d-F. See Fig. 4. Notice that when the tester rejects,
it also returns v ∈ {“empty”} ∪Fd. We will use this in the next section. So, we
can ignore that for this section. In the full paper we prove.
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Lemma 6. There is a polynomial-time one-sided tester for d-F that makes
Õ(1/ε) queries.

Test-d-WSLS(f, ε)
Input: Oracle that accesses a Boolean function f : Fn → {0, 1}.
Output: Either “Accept” or “Reject” with v =“empty” or v ∈ Fn−d s.t. Rf (v) =⊥
Test-Linear(F, ε) tests whether F : Fn−d → Fd is linear or ε-far from linear

1. If Test-d-F(f, ε/2) =Reject then Reject; Return v (that Test-d-F returns).
2. If Test-Linear(Ff , qdε/2) =Reject then

If for some query a that Test-Linear asks Rf (a) =⊥ then Reject; Return v = a
Otherwise, Reject; Return v =“empty”.

3. Accept

Fig. 5. A Tester for d-WSLS.

Lemma 7. There is a polynomial-time one-sided tester for d-WSLS that makes
Õ(1/ε) queries.

5 A Tester for AS

Test-LS(f, ε)
Input: Oracle that accesses a Boolean function f : Fn → {0, 1}.
Output: Either “Accept” or “Reject”.

1. If f(0n) = 0 then Reject.
2. k ← 0;N = In;
3. While k ≤ m := log(1/ε)/ log(q) + 2 do
4. v ← Test-k-WSLS(f(xN), ε, δ = 1 − 1/(10m)); If Accept, then Accept.
5. If Reject and v =“empty” then Reject.
6. If Reject and v �=“empty” (Rfk (v) =⊥) then
7. Find a non-singular (n − k) × (n − k) matrix M s.t. v = en−kM

N ← N · diag(M, Ik).
k ← k + 1

8. Accept

Fig. 6. A Tester for LS.

Consider the tester in Fig. 6. In the full paper, we prove.

Theorem 1. There are polynomial-time one-sided testers for AS and LS that
make Õ(1/ε) queries.

Theorem 2. There is a polynomial-time one-sided tester for (≤ d)-LS that
makes Õ(1/ε) queries.
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6 Lower Bounds

In this section, we give the lower bound for d-APLS. The other lower bounds
are in the full paper.

Theorem 3. Any one-sided tester for d-APLS and d-APAS with proximity
parameter ε ≤ q−1 − q−d must make at least

Ω

(
1
ε

+ min
(

log(1/ε)
log |F| , d

)
· log

n

d

)

queries.

In particular,

Corollary 1. Any one-sided tester for d-Monomial and d-Term with proxim-
ity parameter ε ≤ 1/2 − 2−d must make at least

Ω

(
1
ε

+ min (log(1/ε), d) · log
n

d

)

queries.

The following is an information-theoretic lower bound.

Lemma 8. Any deterministic algorithm that exactly learns15 a class C of
Boolean functions f : Fn → {0, 1} must ask at least log |C| black-box queries.

The following lemma is proved in the full paper.

Lemma 9. Let d′ < d. Then dist(d-AS, d′-AS) = dist(d-APLS, d′-APLS) =
q−d′ − q−d.

We are now ready to prove Theorem 3.

Proof. The lower bound Ω(1/ε) follows from [3].
Let T be a tester for d-APLS (resp. d-APAS) with proximity parame-

ter ε ≤ 1 − q−d, which makes Q queries. Consider the class d′-APLS where
d′ = min(
log(1/(ε+ q−d))/ log q)�, d−1). Then, by Lemma 9, dist(d-APLS, d′-
APLS) = q−d′ − q−d ≥ ε (resp. dist(d-APAS, d′-APLS) ≥ ε). Therefore

1. If f ∈ d-APLS then T (f) =Accept.
2. If f ∈ d′-APLS then with probability at least 2/3, T (f) = Reject.

Using Yao’s principle16, there is a deterministic algorithm A that has query
complexity Q (as T ) and a class C ⊆ d′-APLS such that |C| ≥ (2/3)|d′-APLS|
and
15 For f ∈ C and access to a black-box to f , the algorithm returns a function equivalent

to f .
16 For a random uniform g ∈ d′-APLS, we have Es[Eg[T (g)]] = Eg[Es[T (g)]] ≥ 2/3

where s is the random seed of T . Then there is s0 such that Eg[T (g)] ≥ 2/3.
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1. If f ∈ d-APLS then A(f) = Accept.
2. If f ∈ C then A(f) = Reject.

We will show in the following how to change A to an exact learning algorithm
for C that makes Q + d queries, and then, by Lemma 8, the query complexity
of T is at least17

log |C| − d ≥ log
(

2
3
|d′-APLS|

)
− d = log

(
2
3

(
n

d′

))
− d

= Ω

(
min

(
log(1/ε)
log |F| , d

)
· log

n

d

)
.

It remains to show how to change A to an exact learning algorithm for C that
makes Q + d queries. To this end, consider the following algorithm (ei is the
point that contains 1 in the i-th coordinate and zero elsewhere)

1. Given access to a black-box for f ∈ C.
2. Let X = [n].
3. Run A and for every query b that A asks such that f(b) = 1, define X ←

X\{i|bi = 1}.
4. For every i ∈ X if f(ei) = 1 then remove i from X.
5. Return the function h that satisfies h−1(1) = {a ∈ Fn|(∀i ∈ X)ai = 0}.

Now, suppose f−1(1) = {a ∈ Fn|ai1 = · · · = aid′ = 0}. We now show

Claim. After step 3, we have |X| ≤ d and {i1, . . . , id′} ⊆ X.

Proof. If, on the contrary, some j ∈ [d′], ij �∈ X, there is b such that bij = 1 and
f(b) = 1. Then b ∈ f−1(1) and therefore bij = 0. A contradiction.

Suppose, on the contrary, X contains more than d elements. Let
id′+1, . . . , id ∈ X be distinct and distinct from i1, . . . , id′ . Consider the func-
tion g such that g−1(1) = {a ∈ Fb|ai1 = · · · = aid = 0}. Since A accepts
g ∈ d-APLS and rejects f ∈ C, there must be a query b that A makes such
that g(b) �= f(b). Since g−1(1) ⊂ f−1(1), we have b ∈ f−1(1)\h−1(1), and then
for some j > d′, we have bij = 1 and f(b) = 1. Therefore, ij �∈ X after step 3. A
contradiction. This finishes the proof of the claim. ��
By the above claim, step 5 makes at most d queries; therefore, the query com-
plexity of the learning algorithm is Q + d. If, after step 3, i ∈ {i1, . . . , id′},
then f(ei) = 0, and then i is not removed from X after step 4. If after step 3,
i �∈ {i1, . . . , id′} and i ∈ X, then the query ei satisfies f(ei) = 1, and then i is
removed from X after step 4. So, after step 4, we have X = {i1, . . . , id′} and
hence h = f . ��
17 Here, we assume that d 	 n. For large d, we can replace step 4 in the learn-

ing algorithm that makes at most d queries with the algorithm in [16] that makes
d′ log(d/d′)−O(d′) queries. This changes log |C|−d to log |C|−d′ log(d/d′)−O(d′),
and we get the lower bound for any d.
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Abstract. We study computer systems with transactions executed on
a set of shared objects. Transactions arrive continually subjects to con-
strains that are framed as an adversarial model and impose limits on the
average rate of transaction generation and the number of objects that
transactions use. We show that no deterministic distributed scheduler in
the queue-free model of transaction autonomy can provide stability for
any positive rate of transaction generation. Let a system consist of m
shared objects and an adversary be constrained such that each transac-
tion may access at most k shared objects. We prove that no scheduler
can be stable if a generation rate is greater than max

{
2

k+1
, 2

�√
2m�

}
. We

develop a centralized scheduler that is stable if a transaction generation
rate is at most max

{
1
4k

, 1
4�√

m�
}
. We design a distributed scheduler in

the queue-based model of transaction autonomy, in which a transaction
is assigned to an individual processor, that guarantees stability if the
rate of transaction generation is less than max

{
1
6k

, 1
6�√

m�
}
. For each

of the schedulers we give upper bounds on the queue size and transac-
tion latency in the range of rates of transaction generation for which the
scheduler is stable.

Keywords: Transactional memory · shared object · dynamic
transaction generation · adversarial model · stability · latency

1 Introduction

Threads that execute concurrently need to synchronize access to shared objects
to avoid conflicts. Traditional low-level thread synchronization mechanisms such
as locks and barriers are prone to deadlock and priority inversion, among mul-
tiple vulnerabilities. The concept of transactional memory has emerged as a
high-level abstraction of the functionality of multiprocessor systems, see Her-
lihy and Moss [17] and Shavit and Touitou [21]. The idea is to designate blocks
of program code as ‘transactions’ to be executed atomically. Transactions are
executed speculatively, in the sense that if a transaction aborts due to synchro-
nization conflicts or failures, then the transaction’s execution is rolled back to be
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restarted later. A transaction commits if there are no conflicts or failures, and
its effects become visible to all processes. If multiple transactions concurrently
attempt to access the same object, then this creates a conflict for access and
could trigger aborting some of the involved transactions. The synchronization
conflict between the transactions is handled by contention managers, also known
as schedulers, see Hendler and Suissa-Peleg [16] and Spear et al. [22]. Schedulers
determine an execution schedule for transactions striving to avoid conflicts for
access to shared objects.

The adversarial models of generating transactions that we use are inspired
by the adversarial queueing theory, which has been applied to study stability of
routing algorithms with packets injected continually. Routing of packets in com-
munication networks is constrained by properties of networks, like their topology
and capacities of links or channels. In the case of transactional memory, execut-
ing multiple transactions concurrently is constrained by the requirement that a
transaction needs to have an exclusive access to each object it wants to interact
with in order to be executed succesfully.

A computer system includes a fixed set of shared objects. Transactions are
spawned continually. The system is synchronous in that an execution of an algo-
rithm scheduling transactions is structured into rounds. It takes one round to
execute a transaction successfully. Multiple transactions can be invoked concur-
rently, but a transaction requires exclusive access to each object that it needs
to interact with in order to be executed successfully. If multiple transactions
accessing the same object are invoked at a round then all of them are aborted.
The arrival of threads with transactions is governed by an adversarial model with
parameters bounding the average generation rate and the number of transactions
that can be generated at one round. Processed transactions may be additionally
constrained by imposing an upper bound on the number of objects a transaction
needs to access.

The task for such a computer system is to eventually execute each generated
transaction, while striving to minimize the number of pending transactions at
any round and the time a pending transaction spends waiting for execution. Once
a transaction is generated, it may need to wait to be invoked. It is a scheduling
algorithm that manages the timings of invocations of pending transactions. We
consider both centralized and distributed schedulers.

There are two models of generating transactions which specify the autonomy
of individual transactions. In the queue-free case, for each transaction there is a
corresponding autonomous processor responsible for its execution. A distributed
scheduler in the queue-free model is executed by the processors that attempt to
invoke transactions on shared objects. In the queue-based model, there is a fixed
set of processors, and each thread with a transaction is assigned to a processor.
A distributed scheduler in the queue-based model is executed by the processors
that communicate through the shared objects by performing transactions on
them. A centralized scheduler is not affected by constraints on autonomy of each
transaction, since all pending transactions are managed en masse. The schedulers
we consider are deterministic, in that they do not resort to randomization.
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Table 1. A summary of the ranges of rates of transaction generation for which deter-
ministic schedulers are stable. The used notations are as follows: m is the number of
shared objects, k is the maximum number of shared objects accessed by a transaction,
and ρ is the rate of transaction generation. Upper bounds limit transaction generation
rates for which stability is achievable. Lower bounds limit transaction generation rates
for which stability is not possible. A lower bound for centralized schedulers holds a
priori for distributed queue-based schedulers.

Scheduler Lower bound Upper bound

distributed queue-free stability impossible

centralized ρ > max
{

2
k+1

, 2

�√
2m�

}
ρ ≤ max

{
1
4k

, 1
4�√

m�
}

distributed queue-based ρ < max
{

1
6k

, 1
6�√

m�
}

The Contributions. We show first that no deterministic distributed scheduler
in the queue-free model of transaction autonomy can provide stability for any
positive rate of transaction generation. Let a computer system consist of m
shared objects and the adversary be constrained such that each transaction
needs to access at most k of the shared objects. We show that no scheduler can
be stable if a generation rate is greater than max

{
2

k+1 , 2
�√

2m�
}
. We develop a

centralized scheduler that is stable if the transaction generate rate is at most
max

{
1
4k , 1

4�√
m�

}
. We design a distributed scheduler, in the queue-based model

of transaction autonomy in which a transaction is assigned to an individual
processor, that guarantees stability if the rate of transaction generation is less
than max

{
1
6k , 1

6�√
m�

}
. For each of the two schedulers we develop, we give upper

bounds on the queue size and transaction latency in the range of rates of trans-
action generation for which the scheduler is stable. Table 1 gives a summary of
the ranges of rates of transaction generation for which deterministic schedulers
are stable.

Related Work. Scheduling transactions has been studied for both shared mem-
ory multi-core and distributed systems. Most of the previous work on schedul-
ing transactions considered an offline case where all transactions are known at
the outset. Some previous work considered online scheduling where a batch of
transactions arrives one by one and the performance of an online scheduler is
compared to a scheduler processing the batch offline. No previous work known to
the authors of this paper addressed dynamic transaction arrivals with potentially
infinitely many transactions to be scheduled in a never-ending execution.

Attiya et al. [4] and Sharma and Busch [19,20] considered transaction
scheduling in distributed systems with provable performance bounds on com-
munication cost. Transaction scheduling in a distributed system with the goal
of minimizing execution time was first considered by Zhang et al. [25]. Busch
et al. [8] considered minimizing both the execution time and communication
cost simultaneously. They showed that it is impossible to simultaneously min-
imize execution time and communication cost for all the scheduling problem
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instances in arbitrary graphs even in the offline setting. Specifically, Busch et
al. [8] demonstrated a tradeoff between minimizing execution time and commu-
nication cost and provided offline algorithms that separately optimizw execution
time and communication cost. Busch et al. [9] considered transaction schedul-
ing tailored to specific popular topologies and provided offline algorithms that
minimize simultaneously execution time and communication cost. Distributed
directory protocols have been designed by Herlihy and Sun [18], Sharma and
Busch [19], and Zhang et al. [25], with the goal to optimize communication cost
in scheduling transactions. Zhang and Ravindran [23] provided a distributed
dependency-aware model for scheduling transactions in a distributed system
that manages dependencies between conflicting and uncommitted transactions
such that they can commit safely. This model has the inherent tradeoff between
concurrency and communication cost. Zhang and Ravindran [24] provided cache-
coherence protocols for distributed transactional memory based on a distributed
queuing protocol. Attiya et al. [3] and Attiya and Milani [5] studied competitive
performance of schedulers compared to the clairvoyant one. Busch et al. [10]
studied online algorithms to schedule transactions for distributed transactional
memory systems where transactions residing at nodes of a communication graph
operate on shared, mobile objects.

Adversarial queuing is a methodology to capture stability of processing
incoming tasks without any statistical assumptions about task generation. It
provides a framework to develop worst-case bounds on performance of determin-
istic distributed algorithms in a dynamic setting. This approach to study routing
algorithms in store-and-forward networks was proposed by Borodin et al. [7], and
continued by Andrews et al. [2]. Adversarial queuing has been applied to other
dynamic tasks in communication networks. Bender et al. [6] considered broad-
casting in multiple-access channels with queue-free stations in the framework of
adversarial queuing. Chlebus et al. [13] proposed to investigate deterministic dis-
tributed broadcast in multiple access channels performed by stations with queues
in the adversarial setting. This direction was continued by Chlebus et al. [12]
who studied the maximum throughput in such a setting. Anantharamu et al. [1]
considered packet latency of deterministic broadcast algorithms with injection
rates less than 1. Chlebus et al. [11] studied adversarial routing in multiple-
access channels subject to energy constraints. Garncarek et al. [14] investigated
adversarial stability of memoryless packet scheduling policies in multiple access
channels. Garncarek et al. [15] studied adversarial communication through chan-
nels with collisions between communicating agents represented as graphs.

2 Technical Preliminaries

A distributed system consists of processors and a fixed set of m shared objects.
The system executes an algorithm. An execution of the algorithm is synchronous
in that it is partitioned into time steps, which we call rounds. Intuitively, the exe-
cuted algorithm spawns threads and each thread generates and executes transac-
tions. To simplify the model of transaction generation and scheduling, we assign
transactions directly to processors and disregard threads entirely.
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We consider two frameworks of generating transactions. In the queue-based
model, we assume a fixed number of processors in the system, each with a unique
name. Each new transaction is generated at a specific round and assigned to
one such a processor. All the transactions at a processor pending at a round
make its queue at the round. In a queue-free model of transaction autonomy,
each new transaction generated at a round is associated with an anonymous
virtual processor that exists only for the purpose to execute this transaction and
disappears after the transaction’s successful execution.

The type of a transaction is the set of objects it may need to access during
execution. To determine the type of a transaction, it suffices to read it to list
all the mentioned objects. The number of objects in a transaction’s type is the
weight of this transaction and also of the type. If the types of two transactions
share an object, then we say that this creates a conflict for access to this object,
and that the transactions involved in a conflict for access to an object collide
at this object. A set of transactions with the property that no two different
transactions in the set collide at some shared object is called conflict free.

Scheduling Transactions. Transactions are managed by a scheduler. This is an
algorithm that determines for each round which pending transactions are invoked
at this round. A transaction invoked at a round that gets executed successfully
is no longer pending, while an aborted transaction stays pending at the next
round. Scheduling transactions is constrained by whether this is a queue-free or
queue-based model. In the queue-free model, transactions are managed en-masse
and only conflicts for access to objects determine feasibility of concurrently per-
forming a set of transactions. This means that if a pending transaction invoked
at a round is not involved in conflict with any object it needs to access, for any
of the transactions invoked at this round concurrently, then this transaction is
executed successfully. In particular, if a set of transactions is conflict-free then
all the transactions in this set can be executed together at one round. We assume
conservatively that if a pending transaction invoked at a round is involved in con-
flict with some other transaction invoked concurrently, for an object they need
to access, then all such transactions get aborted at this round and stay pend-
ing at the next round. The queue-based model is more restricted, in that the
queue-free model’s constraints on concurrent execution of transactions do apply,
but additionally, for each processor, at most one transaction in this processor’s
queue can be performed at a round.

A centralized scheduler is an sequential algorithm that knows all the transac-
tions pending at a round and receives instantaneous feedback from each object
about committing to an invoked transaction or aborting it. Such a scheduler can
invoke concurrently any set of pending transactions at a round in the queue-free
model, but at most one transaction in the queue of a processor in the queue-based
model.

A distributed scheduler is a distributed algorithm executed by all the involved
processors. The processors communicate among themselves through shared
objects. These are the processors that determine the distributed system in the
queue-based case, and anonymous processors in queue-free case, one dedicated
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processor per each transaction. If a processor invokes a transaction at a round,
it receives an instantaneous feedback from each object of the type of the trans-
action about committing to an invoked transaction or aborting it.

Adversaries Generate Transactions. We consider a setting in which new transac-
tions arrive continually to the system. The process of generating transactions is
represented quantitatively by adversarial models. We study two types of adver-
saries corresponding to the queue-free and queue-based models. In the queue-free
model, a transaction generated at a round contributes a unit to the congestion at
the round at each object the transaction includes in its type. This is the queue-
free adversary. In the queue-based model, a transaction generated at a round
at a processor contributes a unit to the congestion at the round at each object
the transaction includes in its type and also to the processor the transaction is
generated at. This is the queue-based adversary.

Quantitative restrictions imposed on adversaries are expressed in terms of
bounds on congestion. A queue-free adversary generates transactions with gen-
eration rate ρ and burstiness component b if, in each contiguous time interval τ
of length t and for each shared object, the amount of congestion created for the
object at all the rounds in τ together is at most ρt+ b. A queue-based adversary
generates transactions with generation rate ρ and burstiness component b if, in
each contiguous time interval τ of length t and for each shared object and for
each processor, the amount of congestion created for the object at all the rounds
in τ together is at most ρt + b and the amount of congestion created for the
processor at all the rounds in τ together is at most ρt + b. For these adversarial
models, we assume that ρ > 0 is a real number and b > 0 is an integer. Given
the parameters ρ and b, such an adversary is said to be of type (ρ, b). The bursti-
ness of an adversary is the maximum number of transactions the adversary can
generate in one round.

Performance of Scheduling. A scheduler is stable, against a given type of adver-
sary, if the number of pending transactions stays bounded in the course of any
execution in which transactions are generated by the adversary of this type. For
an object and a round number r, at most r transactions that contributed to
congestion at this object can get executed in the first r rounds. It follows that
no scheduler can be stable if its injection rate is greater than 1. In view of this,
we consider only adversaries of types (ρ, b) in which 0 < ρ ≤ 1. A transaction’s
delay is the number of rounds between its generation and successful execution.
The latency of a scheduler in an execution is the maximum delay of a transaction
generated in the execution.

Proposition 1. No deterministic distributed scheduler for a system with one
shared object can be stable against a queue-free adversary of type (ρ, 2), for any
constant ρ > 0.

In view of Proposition 1, we will consider a centralized deterministic scheduler
for the queue-free model.
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3 A Lower Bound

We show that no scheduler can handle dynamic transactions if a generation rate
is sufficiently high with respect to the number of shared objects m and an upper
bound k on the weight of a transaction. If a and b are integers where a ≤ b then
let [a, b] denote the set of integers {a, a + 1, . . . , b}.

Lemma 1. For an integer n > 0, there is a family of sets A1, A2, . . . , An+1,
each a subset of [1, n(n+1)

2 ], such that every set Ai has n elements, any two sets
Ai and Aj, for i �= j, share an element, and each element of [1, n(n+1)

2 ] belongs
to exactly two sets Ai and Aj, for i �= j.

We give a lower bound on generation rate to keep scheduling stable.

Theorem 1. A queue-free adversary of type (ρ, b) generating transactions for a
system of m objects such that each transaction is of weight at most k can make a
scheduling algorithm unstable if injection rate ρ satisfies ρ > max

{
2

k+1 , 2
�√

2m�
}
.

Proof. Let the m objects be denoted as o1, o2, . . . , om. Suppose first that k(k+1)
2≤ m. The transactions to be generated will use only the objects o1, o2, . . . , os,

where s = k(k+1)
2 . Let us take the family of sets A1, A2, . . . , Ak+1 as in Lemma 1,

in which n is set to k. We will use a fixed set of transactions T1, T2, . . . , Tk+1

defined such that transaction Ti uses object oj if and only if j ∈ Ai. In particu-
lar, each transaction uses k objects. The adversary generates these transactions
listed in order L0, L1, L2, . . ., where Li−1 is the ith transaction generated and Li

is a transaction identical to T1+i mod (k+1). Consider a round r + 1. Let i be the
highest index of a transaction Li generated by round r. Then in round r + 1 the
adversary generates transactions that make a maximal prefix of the sequence
Li+1, Li+2, . . . such that the total number of transactions generated by round
r+1 satisfies the constraints on objects’ congestion of type (ρ, b). The adversary
may generate no transaction at a round and it may generate multiple transac-
tion at a round. For example, the adversary generates exactly the transactions
L0, . . . , Lb−1 simultaneously in the first round.

By Lemma 1, at most one transaction can be executed at a round. The k +1
transactions T1, T2, . . . , Tk+1 require k + 1 rounds to have each one executed,
one transaction per round. Discounting for the burstiness of generation, which is
possible due to the burstiness component b in the type (ρ, b), these transactions
can be generated with a frequency of at most one new transaction generated per
round if the execution is to stay stable.

The group of transactions T1, . . . , Tk+1 together contribute 2 to the conges-
tion of each used object, by Lemma 1. If an execution is stable then the inequality
ρ(k + 1) ≤ 2 holds. This gives a bound ρ ≤ 2

k+1 on the generation rate of an
adversary if the execution is stable. In case ρ > 2

k+1 , the adversary can generate
at least one transaction at every round, and for each round r it can generate
two transactions at some round after r. Such an execution is unstable, because
at most one transaction among T1, . . . , Tk+1 can be executed in one round.
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Next, consider the case k(k+1)
2 > m. Let n be the greatest positive integer

such that n(n+1)
2 ≤ m. We use a similar reasoning as in the case k(k+1)

2 ≤ m, with
the family of sets A1, A2, . . . , An+1 as in Lemma 1. In particular, we use a set of
transactions T1, T2, . . . , Tn+1 defined such that transaction Ti uses an object oj if
and only if j ∈ Ai. The rules of generating new transactions by the adversary are
similar. We obtain the inequality ρ ≤ 2

n+1 by the same argument. The inequality
n(n+1)

2 ≤ m implies n+1 = � 1
2 (1+

√
1 + 8m)�, by algebra. We have the estimates

2
n+1 = 2

� 1
2 (1+

√
1+8m)� ≤ 2

�√
2m� . If ρ > 2

�√
2m� then also ρ > 2

n+1 . It follows that

if the adversary is of a type (ρ, b) such that ρ > 2
�√

2m� , then this adversary
generating transactions at full power can generate at least one transaction at
every round, and for each round r it can generate two transactions at some
round after r. This makes the queue of transactions grow unbounded.

4 A Centralized Scheduler

We present a scheduling algorithm that processes all transactions pending at
a round. The algorithm is centralized in that it is aware of all the pending
transactions while selecting the ones to be executed at a round. Throughout this
Section we assume the queue-free model of autonomy of individual transactions,
and the corresponding queue-free adversarial model of transaction generation.

The centralized scheduler identifies a conflict-free set of transactions pending
execution that is maximal with respect to inclusion among all pending transac-
tions. This is accomplished by first ordering all pending transaction on the time
of generation and then processing them greedily one by one in this order. The
word ‘greedily’ in this context means passing over a transaction only when its
type includes an object that belongs to the type of a transaction already selected
for execution at the current round.

The algorithm is called Centralized-Scheduler, its pseudocode is given
in Fig. 1. The variable Pending denotes a list of all pending transactions. At the
beginning of a round, all newly generated transactions are appended to the tail
of this list. The list is processed in the order from head to tail, which prioritizes
transactions on their arrival time, such that those generated earlier get processed
before these generated later. The transactions already selected for execution are
stored in the set Execute. If a transaction in Pending is processed, it is checked
for conflicts with transactions already placed in the set Execute. If a processed
transaction does not collide with any transaction already in Execute then it is
removed from Pending and added to Execute, and otherwise it is passed over.
After the whole list Pending have been scanned, all the transactions in Execute
get executed concurrently. No invoked transaction is aborted in the resulting
execution, because conflicts of transactions are avoided by the process to add
transactions to the set Execute.

To assess the efficiency of executing transactions, let us partition an execution
of the algorithm Centralized-Scheduler into contiguous milestone intervals
of rounds, denoted I1, I2, I3, . . . , such that the length of each interval equals
4b · min{k, �√m	} rounds.
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Algorithm Centralized-Scheduler

initialize Pending ← an empty list
for each round do

append all transactions generated in the previous round at the tail of list Pending
initialize Execute ← an empty set
if Pending is nonempty then

repeat

(a) entry ← first unprocessed list item on Pending, starting from head to-
wards tail

(b) if entry is conflict-free with all the transactions in Execute then

remove entry from Pending and add it to set Execute
until entry points at the tail of list Pending

execute all the transactions in Execute

Fig. 1. A pseudocode of the algorithm scheduling all pending transactions en masse.
Transactions pending execution are stored in a list Pending in the order of generation,
with the oldest at the head. The set Execute includes transactions to execute at a
round. It is selected in a greedy manner, prioritizing older transactions over newer and
avoiding conflicts for access to shared objects.

The following invariant holds for all milestone intervals of an execution.

Lemma 2. If a generation rate satisfies ρ ≤ max
{

1
4k , 1

4�√
m�

}
, then there are

at most 2bm pending transactions at the first round of a milestone interval, and
all these transactions get executed by the end of the interval.

Algorithm Centralized-Scheduler is stable and has bounded transaction
latency for suitably low transaction generation rates.

Theorem 2. If algorithm Centralized-Scheduler is executed against an
adversary of type (ρ, b), such that each generated transaction accesses at most k
objects out of m shared objects available and transaction-generation rate ρ sat-
isfies ρ ≤ max

{
1
4k , 1

4�√
m�

}
, then the number of pending transactions at a round

is at most 4bm and transaction latency is at most 8b · min{k, �√m	}.
Proof. To estimate the number of transactions pending at a round, let this round
belong to a milestone interval Ik. The number of old transactions at any round
of milestone interval Ik is at most 2mb, by the centralized milestone invariant
formulated as Lemma 2. During the interval Ik, at most 2mb new transactions
can be generated. So 2mb + 2mb = 4mb is an upper bound on the number of
pending transactions at the round.

To estimate transaction latency, we use the property that a transaction gen-
erated in a milestone interval gets executed by the end of the next interval, again
by the centralized milestone invariant formulated as Lemma 2. This means that
transaction latency is at most twice the length of a milestone interval, which is
2 · 4b · min{k, �√m	} = 8b · min{k, �√m	}.



Stable Scheduling in Transactional Memory 181

5 A Distributed Scheduler

We now consider distributed scheduling. Let a distributed system consist of
n processors. The processors communicate among themselves through some m
shared objects by invoking transactions and receiving instantaneous feedback
from each involved object. Every transaction type includes at most k objects.

Each generated transaction is assigned to a specific processor and resides in
its local queue while pending execution. This means we consider the queue-based
model of autonomy of individual transactions, and the corresponding queue-
based adversarial model of transaction generation.

We employ a specific communication mechanism between a pair of proces-
sors. One of the processors, say s, is a sender and the other processor, say r,
is a receiver. The two processors s and r communicate through a designated
object o. Communication occurs at a given round. All the processors are aware
that this particular round is a round of communication from s to r. Each of the
participants s and r may invoke a transaction involving object o at the round,
while at the same time all the remaining processors pause and do not invoke any
transactions at this round.

Assume first that both s and r have pending transactions that access object o.
At a round of communication, the recipient processor r invokes a transaction tr
that uses object o. If the sender processor s wants to convey bit 1 then s also
invokes a transaction ts that uses object o. In this case, both transactions tr
and ts get aborted, so that the processor r receives the respective feedback from
the system and interprets it as receiving 1. If the sender processor s wants to
convey bit 0 then s does not invoke any transactions using object o at this
round. In this case, transaction tr gets executed successfully, so that r receives
the respective feedback from the system and interprets it as receiving 0. This is
how one bit can be transmitted successfully from a sender s to a recipient r.

That was an example of a perfect cooperation between a sender and receiver,
but alternative scenarios are possible as well. Suppose that the sender s has
a pending transaction using object o and wants to communicate with r but
the recipient r either does not want to communicate or does not have a pending
transaction using object o. What occurs is that s invokes a suitable transaction ts
which gets executed but r does not receive any information. Alternatively, sup-
pose that the receiver r has a pending transaction using object o and wants to
communicate while the sender s either does not want to communicate or does
not have a pending transaction using object o. What occurs is that the receiver r
invokes a suitable transaction tr which gets executed, which the receiver r inter-
prets as receiving the bit 0.

That communication mechanism can be extended to transmit the whole type
of any transaction in the following way. The type identifies a subset of all m
objects. Having a fixed ordering of the objects, the type can be represented as a
sequence of m bits, in which 1 at position i represents that the ith object belongs
to the type, and 0 represents that the ith object does not belong. A processor s
can transmit a transaction type to recipient r by transmitting m bits representing
the type in m successive rounds while using some designated object o. We say
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that by this operation processor s sends the transaction type to processor r via
object o. This operation works as desired assuming each of the processors has at
least m transactions involving object o. If at least one of these processors either
does not have m transactions involving object o or does not want to participate,
then either no bits are transmitted, or the receiver r possibly receives a sequence
of 0s only, which it interprets as no type of transaction successfully transmitted.

Pending transactions at a processor are grouped by their types. All pending
transactions of the same type at a processor make a block of transactions of this
type. The weight of a block is defined to be the weight of its type. If there are
sufficiently many transactions in a block then the block and the type are said
to be large. A boundary number defining sizes to be large is denoted by L and
equals L = (n − 1)2n2m2. If the number of transactions of some type in a queue
at a processor is at least kL but less than (k +1)L, for a positive integer k, then
we treat these transactions as contributing k large blocks.

An execution of the scheduling algorithm is partitioned into epochs, and
each consecutive epoch consists of three phases, labeled Phase 1, Phase 2, and
Phase 3. Each phase is executed the same number of L = (n − 1)2n2m2 rounds.
The algorithm is called Distributed-Scheduler and its pseudocode is given
in Fig. 2.

In the beginning of Phase 1, each processor v that has a large block of trans-
actions of some type, selects one such a block, and this type then is active at
the processor in the epoch. A processor that starts Phase 1 with an active type
is called active in this phase. Processors store large blocks in the order of gen-
eration of their last-added transaction. Each processor chooses as active a large
block that comes first in this order. The purpose of Phase 1 is to spread the
information of active types of all the active processors as widely as possible.
Each active processor uses transactions of its active type for communication.
Such communication involves executing transactions, so a block of transactions
of a given type may gradually get smaller. Once a type of a large block becomes
active in the beginning of Phase 1, it stays considered as active for the durations
of an epoch, even if the number of transactions in the block becomes less than L.
Phase 1 assigns segments of (n − 1)n2m2 rounds for each pair of processors s
and r and each object o to spend with s acting as sender to r acting as receiver
with communication performed via object o.

Phase 2 is spent on executing transactions in some active blocks selected such
that they do not create conflicts for access to shared objects. In the beginning of
Phase 2, each processor computes a selection of active large blocks of transactions
to execute in Phase 2 among those learned in Phase 1. This common selection is
computed greedily as follows. The active types learned in Phase 1 are ordered by
the owners’ names. There is a working set of active types selected for execution,
which is initialized empty. The active types are considered one by one. If a
processed active type can be added to the working set without creating a conflict
for access to an object, then the type is added to the set, and otherwise it is
passed over. This computation is performed locally by each active processor at
the beginning of the first round of Phase 2 and each active processor obtains the
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Algorithm Distributed-Scheduler

Phase 1 : sharing information about large active blocks during L rounds
repeat n − 1 times

for each sender processor s and recipient processor r and object o do

in a segment of rounds assigned for this selection of s, r, and o:
if v is active and this is a round when s = v then

act as sender to transmit all relevant information to r via object o
elseif v is active and this is a round when r = v then

act as recipient to receive information from s via object o
Phase 2 : executing large blocks of transactions during L rounds

if v is active then

select active blocks for execution among those learned in Phase 1
if v is active and its active block got selected then

for each among L consecutive rounds do
if there is a transaction of the active type in the queue then

invoke such a transaction
Phase 3 : executing remaining transactions by solo processors in L rounds

for L consecutive rounds
if this is a round among L/n ones assigned to v then

if the queue is nonempty then invoke a transaction

Fig. 2. A pseudocode of an epoch for a processor v. Pending transactions are dispersed
among the processors. Number L = (n − 1)2n2m2 is the duration of each phase. In
Phase 1, processors s and r use transactions from their active large blocks to implement
communication. A sender processor s transmits the active type for each processor it
knows about. In Phase 2, large active blocks are selected for execution in a greedy
manner, with blocks ordered by the processors’ names. In Phase 3, each processor gets
assigned a unique exclusive contiguous segment of L/n rounds, in which to execute up
to L/n transactions from its queue in a first-in first-out manner.

same output. The rounds of Phase 2 are spent on executing the transactions of
the active blocks selected for execution. An active processor whose active large
block has been selected executes pending transactions in its selected active block
as long as some transactions from the block are still available in the queue or
Phase 2 is over, whichever happens earlier.

Phase 3 is spent by each processor executing solo its pending transactions,
those that have never been included in large blocks. Each processor is assigned
a unique exclusive contiguous segment of L/n = (n − 1)2nm2 rounds to execute
such transactions. Transactions are performed in the order of their adding to the
queue, with those waiting longest executed before those generated later.

Let P =
∑k

i=1

(
m
i

)
be the number of possible different transaction types in

a system of m shared objects such that a type includes at most k objects.
We will use the estimate P ≤ 2H( k

m )m, for k ≤ m
2 , where H(x) is the binary

entropy function H(x) = x lg x + (1 − x) lg(1 − x) for 0 < x < 1.
An execution of algorithm Distributed-Scheduler is partitioned into con-

tiguous milestone intervals denoted I1, I2, . . .. Each milestone interval consists
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of 2bnP · min{k, �√m	} epochs. Alternatively, a milestone interval consists of
6bnLP ·min{k, �√m	} rounds, after translating the lengths of epochs into rounds.

The following Lemma 3 gives and invariant that holds for all milestone inter-
vals of an execution of algorithm Distributed-Scheduler.

Lemma 3. For a generation rate ρ < max
{

1
6k , 1

6�√
m�

}
, and assuming the bulk

of the system is sufficiently large with respect to ρ, there are at most bn5m3P
pending transactions at a first round of every milestone interval, and all these
transactions get executed by the end of the interval.

Algorithm Distributed-Scheduler is stable and has bounded transaction
latency for suitably low transaction generation rates.

Theorem 3. If algorithm Distributed-Scheduler is executed against an
adversary of type (ρ, b), such that each generated transaction accesses at most
k ≤ m

2 objects out of m shared objects available, and the generation rate ρ sat-
isfies ρ < max

{
1
6k , 1

6�√
m�

}
, and the bulk of the system is sufficiently large with

respect to ρ, then the number of pending transactions at a round is at most
2bn5m3 2H( k

m )m and latency is at most 12bn5m2 2H( k
m )m min{k, �√m	}.

Proof. To estimate the number of transactions pending at a round, let this round
belong to a milestone interval Ik. The number of old transactions at any round
of the interval Ik is at most bn5m3P , by the distributed milestone invariant for-
mulated as Lemma 3. During the interval Ik, at most bn5m3P new transactions
can be generated, again by Lemma 3, because they will become old when the
next interval begins. So 2bn5m3P ≤ 2bn5m3 2H( k

m )m is an upper bound on the
number of pending transactions at any round, since P =

∑k
i=1

(
m
i

) ≤ 2H( k
m )m,

for k ≤ m
2 .

To estimate the transaction latency, we use the property that a transaction
generated in an interval gets executed by the end of the next interval, again
by the distributed milestone invariant formulated as Lemma 3. This means
that transaction latency is at most twice the length of an interval, which is
2 · 6bnLP min{k, �√m	}, where L = (n − 1)2n2m2. We obtain that the latency
is at most 12bn5m2 2H( k

m )m min{k, �√m	}.

6 Conclusion

We propose to study transactional memory systems with continual generation of
transactions. The critical measure of quality of such systems is stability under-
stood as having the number of pending transactions bounded from above at all
times, for a given generation rate. Transactions are modeled as sets of accesses
to shared objects, and it is assumed that conflicting transactions cannot be
executed concurrently. We identify a lower bound on generation rate that makes
stability impossible and also develop centralized and distributed optimal schedul-
ing algorithms that handle generation rates asymptotically equal to the lower
bound.
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The quality of schedulers, on a range of generation rates that guarantee sta-
bility, is further assessed by the queue size and latency. The centralized scheduler
has these bounds polynomial in the parameters of the system and the adversary’s
type, but the distributed scheduler has the bounds exponential. It is an open
question if it is possible to develop distributed scheduling with polynomial queues
and latency for the region of generation rates for which stability is feasible.
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2 Université Clermont-Auvergne, CNRS, Mines de Saint-Étienne,
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Abstract. We study the algorithmic complexity of partitioning the ver-
tex set of a given (di)graph into a small number of paths. The Path
Partition problem (PP) has been studied extensively, as it includes
Hamiltonian Path as a special case. The natural variants where the
paths are required to be either induced (Induced Path Partition, IPP)
or shortest (Shortest Path Partition, SPP), have received much less
attention. Both problems are known to be NP-complete on undirected
graphs; we strengthen this by showing that they remain so even on pla-
nar bipartite directed acyclic graphs (DAGs), and that SPP remains
NP-hard on undirected bipartite graphs. When parameterized by the
natural parameter “number of paths”, both problems are shown to be
W[1]-hard on DAGs. We also show that SPP is in XP both for DAGs and
undirected graphs for the same parameter (IPP is known to be NP-hard
on undirected graphs, even for two paths). On the positive side, we show
that for undirected graphs, both problems are in FPT, parameterized
by neighborhood diversity. When considering the dual parameterization
(graph order minus number of paths), all three variants, IPP, SPP and
PP, are shown to be in FPT for undirected graphs.

Keywords: Path Partitions · NP-hardness · Parameterized
Complexity · Neighborhood Diversity · Vertex Cover Parameterization

1 Introduction

Graph partitioning and graph covering problems are among the most studied
problems in graph theory and algorithms. There are several types of graph
partitioning and covering problems including covering the vertex set by stars
(Dominating Set), covering the vertex set by cliques (Clique Covering),
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partitioning the vertex set by independent sets (Coloring), and covering the
vertex set by paths or cycles [22]. In recent years, partitioning and covering
problems by paths have received considerable attention in the literature because
of their connections with well-known graph-theoretic theorems and conjectures
like the Gallai-Milgram theorem and Berge’s path partition conjecture. Also,
these studies are motivated by applications in diverse areas such as code opti-
mization [1], machine learning/AI [32], transportation networks [33], parallel
computing [26], and program testing [25]. There are several types of paths that
can be considered: unrestricted paths, induced paths, shortest paths, or directed
paths (in a directed graph). A path P is an induced path in G if the subgraph
induced by the vertices of P is a path. An induced path is also called a chordless
path; isometric path and geodesic are other names for shortest path. Various
questions related to the complexity of these path problems, even in standard
graph classes, remained open for a long time (even though they have uses in
various fields), a good motivation for this project.

In this paper, we mainly study the problem of partitioning the vertex set
of a graph (undirected or directed) into the minimum number of disjoint paths,
focussing on three problems, Path Partition (PP), Induced Path Partition
(IPP) and Shortest Path Partition (SPP)—formal definitions are given in
Sect. 2. A path partition (pp) of a graph G is a partitioning of the vertex set
into unrestricted paths. The path partition number of G is the smallest size of
a pp of G. Similar definitions apply to ipp and spp. PP is studied extensively
under the names of Path Cover and also Hamiltonian Completion on many
graph classes [4,6,16]. We give a wide range of results in this paper including
complexity (NP- or W[1]-hardness) and algorithms (polynomial time or FPT); see
Table 1. The types of graphs we consider are general directed, directed acyclic
(DAG), general undirected and bipartite undirected graphs. We also consider
some structural parameters like neighborhood diversity and vertex cover number.

The three problems considered are all NP-hard. PP can be seen as an exten-
sion of Hamiltonian Path and is thus NP-hard, even for one path. IPP is
NP-hard, even for two paths [20]. Recently, SPP was proved to be NP-hard [23].
On trees, the three problems are equivalent, and are solvable in polynomial time.
For a detailed survey on these types of problems (both partitioning and cover-
ing versions), see [22]. The covering version of SPP (where the paths need not
necessarily be disjoint) was recently studied, see [8] for an XP algorithm, [2] for
NP-hardness on chordal graphs and approximation algorithms for chordal graphs
and other classes, and [32] for a log n-factor approximation algorithm.

The versions of these problems where covering is not required (and the end-
points of the solution paths are prescribed in the input) are studied as Disjoint
Paths (DP) [27], Disjoint Induced Paths (DIP) and Disjoint Shortest
Paths (DSP) [21]. DP in particular has been extensively studied, due to its con-
nections to the Graph Minor theorem [27]. Robertson and Seymour showed that
DP is in FPT, parameterized by the number of paths [27], contrasting (D)PP.
Recently, DSP was shown to have an XP algorithm and to be W[1]-hard when
parameterized by the number of paths [21], solving a 40-year-old open problem.
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Table 1. Summary of known results concerning path partitioning problems. The abbre-
viations c. and h. refer to completeness and hardness, respectively. In parentheses, we
put further input specifications, with UG referring to undirected graphs. Our results
are highlighted in bold face.

parameter PP SPP IPP

none (UG) NP-c. [15] NP-c. [23] NP-c. [20]

none (bipartite UG) NP-c. [18,20] NP-c. open

solution size k (UG) paraNP-h. [15] in XP paraNP-h. [20]

solution size k (DAG) polynomial
[3, Problem 26-2]

NP-c.
W[1]-h.
in XP

NP-c.
W[1]-h.

neighborhood diversity (UG) FPT [14] FPT FPT

dual n − k (UG) FPT FPT FPT

Our Contribution. Table 1 summarizes known results about the three prob-
lems, with our results are highlighted in bold. We fill in most of the hiterto open
questions concerning variations of PP, SPP and IPP, e.g., we show that SPP
has a poly-time algorithm for a fixed number of paths (in undirected, DAGs, and
planar-directed graphs). This is surprising as both PP and IPP are NP-hard for
k = 1 and for k = 2, respectively, see [20]. Many of our results concern our
problems restricted to DAGs. Notice that PP has a polynomial time algorithm
when restricted to DAGs (using Maximum Matching), but the complexity for
IPP and SPP was open for such inputs. We show that IPP and SPP are NP-
hard even when restricted to planar DAGs whose underlying graph is bipartite.
We strengthen this result using a similar construction as in the classic proof
of DP being W[1]-hard on DAGs by Slivkins [29], to show that IPP and SPP
are W[1]-hard on DAGs. The complexity of these problems has not been stud-
ied when parameterized by structural parameters. We show that IPP and SPP
both belong to FPT when parameterized by standard structural parameters like
vertex cover and neighborhood diversity using ILP-techniques. Moreover, when
considering the dual parameterization (graph order minus number of paths), all
three variants, IPP, SPP and PP, are shown to be in FPT for undirected graphs.

It is interesting to note the differences in the complexities of the three prob-
lems on different input classes. For example, SPP can be solved in XP-time
on undirected graphs, while this is not possible for the other two problems. For
DAGs, PP is polynomial-time solvable, but the other two problems are NP-hard.
In a way, IPP can be seen as an intermediate problem between PP and SPP.
Thus it is not too surprising that, when the complexity of the three problems
differs, IPP sometimes behaves like PP, and sometimes, like SPP.

The following combinatorial properties are helpful to connect the problems:
(1) Every shortest path is also an induced path. (2) Every induced path of length
at most two is also a shortest path. (3) In bipartite graphs, an induced path of
length three is a shortest path. (4) If G = (V,E) is a subgraph of H and p is a
shortest path in H with only vertices of V , then p is also a shortest path in G.
Proofs of statements marked with (∗) are omitted due to space constraints; [10].
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2 Definitions

We are using standard terminology concerning graphs, classical and parame-
terized complexity and we will not iterate this standard terminology here. In
particular, a path P can be described by a sequence of non-repeated vertices
such that there is an edge between vertices that are neighbors in this sequence.
Sometimes, it is convenient to consider P as a set of vertices. We are next defin-
ing the problems considered in this paper. All problems can be considered on
undirected or directed graphs, or also on directed acyclic graphs (DAG). We will
specify this by prefixing U, D, or DAG to our problem name abbreviations.

Disjoint Paths (DP for short)
Input: A graph G, pairs of terminal vertices {(s1, t1), . . . , (sk, tk)}
Problem: Are there pairwise vertex-disjoint paths P1, . . . , Pk such that, for

1 ≤ i ≤ k, the end-points of Pi are si and ti?

A path P is an induced path in G if the induced graph G[P ] is a path; here,
P is considered as a vertex set. Analogously to DP, we can define the problem
Disjoint Induced Paths or DIP for short. A shortest path is a path with end-
points u, v that is shortest among all paths from u to v. The greatest length of
any shortest path in a graph G is also known as its diameter, written as diam(G).
Hence, we can define the problem Disjoint Shortest Paths or DSP for short.

Remark 2.1 (∗). The problems DIP and DP are equivalent when the inputs
are undirected graphs or DAGs, but not for general directed graphs.

Next, we define the corresponding partition problems. The induced and non-
induced versions do no longer coincide as seen above for the set of DP problems.
We say that a sub-graph G′ of G = (V,E) spans G if its vertex set is V .

Path Partition (PP for short)
Input: A graph G, a non-negative integer k

Problem: Are there pairwise vertex-disjoint paths P1, . . . , Pk′ , with k′ ≤ k,
such that, together, these paths span G ?

Asking for shortest or induced paths in the partition similarly gives the prob-
lems Shortest Path Partition, or SPP, and Induced Path Partition, or
IPP, respectively. Contrasting Remark 2.1, the complexities of DAGPP and
DAGIPP differ drastically, see Table 1. As also sketched in [12], these prob-
lems are tightly linked to Hamiltonian Completion, asking to add at most k
(directed) edges to a (di)graph to guarantee the existence of a Hamiltonian path.

Omitting the vertex-disjointness condition, we arrive at covers instead:

Path Cover (PC for short)
Input: A graph G, a non-negative integer k

Problem: Are there paths P1, . . . , Pk′ , with k′ ≤ k, such that, together,
these paths span G ?
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Similarly, we can define the problems Shortest Path Cover (SPC) and
Induced Path Cover (IPC).

The neighborhood diversity [19] of a graph G (or just nd(G)) is the number
of equivalency classes of the following equivalence: two vertices u, v ∈ V are
equivalent (we also say that they have the same type) if they have the same
neighborhoods except for possibly themselves, i.e., if N(v) \ {u} = N(u) \ {v}.
The equivalence classes are all cliques, possibly of size one, but one class that
collects all isolated vertices.

3 NP-Hardness Results

A well-known result related to PC in DAGs is Dilworth’s theorem: the minimal
size of PC equals the maximal cardinality of an anti-chain [7]. Fulkerson [13]
gave a constructive proof of this theorem. Hence, the PC problem in DAGs can
be reduced to a maximum matching problem in a bipartite graph. Even PP can
be solved in polynomial time by reducing it to a matching problem in a bipartite
graph [3, Problem 26-2]. We show that DAGSPP, DAGSPC, DAGIPP and
DAGIPC are NP-hard even when restricted to planar bipartite DAGs.

Theorem 3.1. DAGSPP is NP-hard even when the inputs are restricted to
planar bipartite DAGs of maximum degree 3.

Proof (sketch). Our reduction is adapted from [24,30]. We reduce from the Pla-
nar 3-Dimensional Matching problem, or Planar 3-DM, which is NP-
complete (see [9]), even when each element occurs in either two or three triples.
A 3-DM instance consists of three disjoint sets X,Y,Z of equal cardinality p
and a set T of triples from X ×Y ×Z. Let q = |T |. The question is if there are p
triples which contain all elements of X, Y and Z. We associate a bipartite graph
with this instance. We assume that the four sets T , X, Y and Z are pairwise
disjoint. We also assume that each element of X ∪ Y ∪ Z belongs to at most
three triples. We have a vertex for each element in X,Y,Z and each triple in T .
There is an edge connecting triples to elements if and only if the element belongs
to the triple. This graph G is bipartite with vertex bipartition of T,X ∪ Y ∪ Z,
and has maximum degree 3. We say the instance is planar if G is planar. Given
an instance of Planar 3-DM, G = (T,X ∪ Y ∪ Z,E), and a planar embedding
of it, we build an instance G′ = (V ′, E′) of DAGSPP.

Construction: We replace each vi = (x, y, z) ∈ T , where x ∈ X, y ∈ Y , z ∈ Z,
with a gadget H(vi) that consists of 9 vertices named lijk where 1 ≤ j, k ≤ 3 and
with edges as shown in Fig. 1; if the planar embedding has x, y, z in clockwise
order seen as neighbors of vi, then we add the arcs (li12, x), (li22, z) and (li32, y),
otherwise, we add the arcs (li12, x), (li22, y) and (li32, z).

We observe the following two properties of G′.

Claim 3.2 (∗). G′ is a planar DAG with maximum degree 3 in which every
shortest/induced path is of length at most 3, and the underlying undirected graph
of G′ is bipartite.
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x y z

li11 li12

li13

li21li22

li23

li31li32

li33

Fig. 1. The vertex gadget as defined in the proof of Theorem 3.1

x y z

li11 li12

li13

li21 li22

li23

li31 li32

li33

x y z

li11 li12

li13

li21 li22

li23

li31 li32

li33

(1) (2)

Fig. 2. Two different vertex partitions of a H(vi) gadget into 3-vertex paths, corre-
sponding to different triple selections in the construction of Theorem 3.1.

Claim 3.3 (∗). The Planar 3-DM instance has a solution if and only if G′

can be partitioned into p + 3q shortest paths.

The intuition behind the proof of Claim 3.3 is that each shortest or induced
path in a solution must contain exactly three vertices, and each gadget H(vi) is
partitioned into P3-paths in one of the two ways shown in Fig. 2. ��
The proof above can also be adapted to DAGSPC, DAGIPP and DAGIPC.

Corollary 3.4. DAGSPC, DAGIPP, and DAGIPC are NP-hard even when
restricted to planar bipartite DAGs of maximum degree 3.

Next, we prove that SPP is NP-hard even when the input graph is restricted
to bipartite 5-degenerate graphs with diameter at most 4. To prove this, we
reduce from 4-SPP on bipartite graphs to SPP on bipartite graphs. 4-SPP
asks, given G = (V,E), if there exists a partition P of V such that each set
in P induces a shortest path of length 3 in G. First, we show that 4-SPP is NP-
hard on bipartite graphs (Lemma 3.6) by a reduction from 4-IPP (also known
as Induced P4-Partition) on bipartite graphs. 4-IPP asks if there exists a
partition P of V such that each set in P induces a path of length 3 in G.

Lemma 3.5. [24] 4-IPP is NP-hard for bipartite graphs of maximum degree 3.

Lemma 3.6 (∗). 4-SPP is NP-hard for bipartite graphs of maximum degree 3.
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Theorem 3.7. SPP is NP-hard, even for bipartite 5-degenerate graphs with
diameter 4.

Proof. To prove this claim, we use Lemma 3.6. Given an instance of 4-SPP, say,
G = (V,E), with bipartition V = A∪B and |V | = 4k, as the number of vertices
must be divisible by 4, we create an instance G′ = (V ′, E′) of SPP.

Construction: We add 10 new vertices to G, getting

V ′ = V ∪ {x1, x2, x3, x4, x5, y1, y2, y3, y4, y5} .
We add edges from x2 and x4 to all vertices of B∪{y2, y4}. Also, add edges from
y2 and y4 to all vertices of A, add further edges to form paths x1x2x3x4x5 and
y1y2y3y4y5. The remaining edges all stem from G. This describes E′ of G′.

We have the following observations, due to the construction of G′.

Claim 3.8 (∗). G′ = (V ′, E′) is bipartite and 5-degenerate.

We can make the claimed bipartition explicit by writing V ′ = A′ ∪B′, where
A′ = A ∪ {x2, x4, y1, y3, y5} and B′ = B ∪ {x1, x3, x5, y2, y4}.

Claim 3.9 (∗). Any shortest path of G′, except for x1x2x3x4x5, x1x2y2x4x5,
x1x2y4x4x5 and y1y2y3y4y5, y1y2x2y4y5, y1y2x4y4y5, contains at most four ver-
tices. Hence, G′ has a diameter at most 4.

The arguments leading to the previous claim also give raise to the following one.

Claim 3.10. The only two shortest paths in G′ that have five vertices and that
can simultaneously exist in a path partition are x1x2x3x4x5 and y1y2y3y4y5. ♦

Notice that Claim 3.8 and Claim 3.9 together guarantee the additional prop-
erties of the constructed graph G′ that have been claimed in Theorem 3.7.

Claim 3.11 (∗). Let u, v ∈ V have distance d < 3 in G. Then, they also have
distance d in G′. Hence, if p is a shortest path on at most three vertices in G,
then p is also a shortest path in G′.

Now, we claim that G is a Yes-instance of 4-SPP if and only if G′ has a
shortest path partitioning of cardinality k′ = k + 2, where |V | = 4k. For the
forward direction, let D be any solution of 4-SPP for G, containing k shortest
paths. To construct a solution D′ of SPP for the instance (G′, k′), we just need
to add the two paths x1x2x3x4x5 and y1y2y3y4y5 to D. By Claim 3.11, every
path p ∈ D is in fact a shortest path in G′. Hence, D′ is a set of shortest paths
with cardinality k′ = k + 2 that covers all vertices of G′.

For the backward direction, assume G′ has a solution D′, where |D′| = k′ =
k + 2. As |V ′| = 4k + 10 by construction, we know by Claim 3.9 that D′ con-
tains k paths of length three and two paths of length four. By Claim 3.10,
{x1x2x3x4x5, y1y2y3y4y5} ⊆ D′ and the rest of the paths of D′ are of length three
and consists of vertices from V only. Let D = D′ \ {x1x2x3x4x5, y1y2y3y4y5}.
As the k paths of D are each of length three also in G (by Table 1) and as they
cover V completely, D provides a solution to the 4-SPP instance G. ��
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The reduction above can also be used for proving the following result. (A graph
is d-degenerate if every induced subgraph has a vertex of degree at most d).

Corollary 3.12. SPC is NP-hard, even for bipartite 5-degenerate graphs with
diameter 4.

4 W[1]-Hardness Results

The natural or standard parameterization of a parameterized problem stem-
ming from an optimization problem is its solution size. We will study this type
of parameterization in this section for path partitioning problems. More tech-
nically speaking, we are parameterizing these problems by an upper bound on
the number of paths in the partitioning. Unfortunately, our results show that
for none of the variations that we consider, we can expect FPT-results.

Theorem 4.1. SPP (parameterized by solution size) is W[1]-hard on DAGs.

The following reduction is non-trivially adapted from [28].

Proof. We define a parameterized reduction from Clique to SPP on DAGs
(both parameterized by solution size). Let (G, k) be an instance of Clique,
where k ∈ N and G = (V,E). We construct an equivalent instance (G′, k′) of the
SPP problem, where G′ is a DAG and k′ = k·(k−1)

2 + 3k. Let V = [n].

Overview of the Construction: We create an array of k×n identical gadgets
for the construction, with each gadget representing a vertex in the original graph.
We can visualize this array as having k rows and n columns. If the SPP instance
(G′, k′) is a Yes-instance, then we show that each row has a so-called selector in
the solution. Here, a selector is a path that traverses all but one gadget in a row,
hence skipping exactly one of the gadgets. The vertices in G corresponding to the
skipped gadgets form a clique of size k in G. To ensure that all selected vertices
form a clique in G, we have so-called verifiers in SPP. Verifiers are the paths
that are used for each pair of rows to ensure that the vertices corresponding to
the selected gadgets in these rows are adjacent in G. This way, we also do not
have to check separately that the selected vertices are distinct.

Construction Details: The array of gadgets is drawn with row numbers
increasing downward and column numbers increasing to the right. Arcs between
columns go down and arcs within the same row go to the right. To each row i,
with i ∈ [k], we add a start terminal, an arc (si, s′

i), and an end terminal, an
arc (t′i, ti). Next, add arcs starting from si, s

′
i to tl and t′l, with l > i. Also, for

each row, we have k − i column start terminals, arcs (si,j , s′
i,j) with i < j, and

i − 1 column end terminals, arcs (tj,i, t′j,i) with j ∈ [i − 1]. Also, add arcs from
vertices si,j and s′

i,j to all vertices t′j,p with p < j if j > i, and to tl, t′l if l ≥ i.

Gadgets are denoted by Gi,u, i ∈ [k], corresponding to u ∈ V . Each gadget Gi,u

consists of k − 1 arcs (ai,ur , bi,ur ), with r ∈ [k] \ {i}. To each row i ∈ [k], we also
add dummy gadgets Gi,0 and Gi,n+1. Gi,0 consists of two arcs, (ai,01 , ai,02 ) and
(bi,01 , bi,02 ), also add arcs from bi,01 and bi,02 to tm, t′m and tm,h where m < h and i ≤
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h. Gi,n+1 consists of a directed Pk+2 and an arc (bi,n+1
1 , bi,n+1

2 ) ; the Pk+2-vertices
are named ai,n+1

j , with j ∈ [k+2], where ai,n+1
k+2 has out-degree zero. We can speak

of T i,u := {ai,ur | r ∈ [k] \ {i}} ∪ {ai,01 , ai,02 , ai,n+1
j | j ∈ [k + 2]} as being on the

top level, while the vertices Bi,u := {bi,ur | r ∈ [k]\{i}}∪{bi,01 , bi,02 , bi,n+1
1 , bi,n+1

2 }
form the bottom level of gadget Gi,u.

Due to the natural ordering of the wires within a gadget, we can also speak of
the first vertex on the top level of a gadget or that last vertex on the bottom level
of a gadget. On both levels, the vertices are connected following their natural
wire ordering. More technically speaking, this means that within gadget Gi,u,
with u ∈ V , there is an arc from the first vertex of the upper level to the second
vertex of the upper level, from the second vertex of the upper level to the third
vertex of the upper level etc., up to an arc from the penultimate vertex of the
upper level to the last vertex of the upper level. Moreover, there is an arc from
the last vertex of the upper level of Gi,u−1 to the first vertex of the upper level
of Gi,u and from the last vertex of the upper level of Gi,u to the first vertex
of the upper level of Gi,u+1. Analogously, the vertices of the lower level of the
gadgets are connected. These notions are illustrated in Fig. 3. In the figure, we
omit the superscripts (ar, br) = (ai,ur , bi,ur ), where r ∈ [k − i].

a1 a2 ai−1

si,i+1

ai+1 ak

si,k

b1

t1,i

b2

t2,i

bi−1

ti−1,i

bi+1 bk

Fig. 3. Gadget Gi,u, 0 < u ≤ n, i ∈ [k]

a1 aj ak

b1 bj

bk

Gi,u

a1 ai ak

b1 bi bk

Gj,v

Fig. 4. Gi,u connected to Gj,v, i < j

A selector is a path that starts at si, enters its row at the top level, and exits
it at the bottom level, ending at ti and skipping exactly one gadget Gi,u, with
i ∈ [k] and u ∈ V . In order to implement this, we add the arcs (s′

i, a
i,0
1 ) and

(bi,n+1
2 , t′i) for row i, as well as skipping arcs that allow to skip a gadget Gi,u for

u ∈ V . These connect the top level of the last wire of Gi,u−1 to the bottom level
of the first wire of Gi,u+1.
A verifier is a path that routes through one of the wires of the skipped gadget
and connects column terminals si,j to ti,j . In order to implement this, we add
the arcs (s′

i,j , a
i,u
j ) and (bi,ui , t′i,j) to every gadget in rows i and j. To connect the

gadget in row i and j, for every edge uv in G, we add an arc between the wires
(bi,uj , aj,vi ) for each i < j, see Fig. 4.
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si s′
i

a1 a2 a1 ak a1 ak a1 ak a1 ak+2

b1 b2 b1 bk b1 bk b1 bk b1 b2

t′i ti

Gi,0 Gi,1 Gi,2 Gi,3 Gi,n+1

Fig. 5. The ith row (only the first two skipping arcs are shown), the dashed line indi-
cates arcs from si, s

′
i to ai,n+1

j , with j ∈ [k + 2]

To force the start and end vertices of paths in the spp of G′ of size k′, we add
the following arcs, called shortest paths enforcers. For every row i, from all the
vertices of gadget Gj,u, where j < i and 0 ≤ u ≤ n, from every vertex sl and s′

l

of a start terminal and from every vertex sl,m, s′
l,m of a column start terminal,

where l ≤ i and l < m, add arcs to ai,n+1
j , with j ∈ [k + 2] (Fig. 5).

We are now going to show a number of properties of our construction.
Observe that G′ is a DAG because all arcs either go from left to right or from
top to bottom. Next, using Claim 4.2 and Claim 4.3, we can deduce that, if G′

has an spp of size k′, then the start vertex of each path in the solution is fixed.

Claim 4.2 (∗). G′ has k′ − k vertices with in-degree zero and out-degree zero.

Hence, we know k′ − k start and end vertices of the solution are fixed. The next
claim shows that each row i has one more start vertex of some path, hence fixing
all the starting vertex of all the paths in the solution.

Claim 4.3 (∗). If a solution P of the created SPP instance G′ is of size k′ then,
for each row i ∈ [k], there is a path in P starting from v ∈ T i,u which covers at
least the vertex ai,n+1

1 .

Hence, if G′ has an spp of size k′, then the paths in the solution must start
at: for i ∈ [k], si, bi,01 , v, v ∈ T i,u and si,j , with i < j. Next, we will show
observations about these paths’ ending vertices.

Claim 4.4 (∗). If G′ has an spp of size k′, then a path (in this SPP solution)
starting at si has to end at ti, with i ∈ [k].

With arguments along similar lines, we can show:

Claim 4.5. If G′ has an spp of size k′, then any path in this partition starting
at si,j has to end at ti,j , i < j.

Claim 4.6. If G′ has an spp of size k′, then any path in this partition starting
at v ∈ T i,u has to end at ai,n+1

i , i ∈ [k].
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Also, if G′ has an spp of size k′, then for each row i, with i ∈ [k], any path
starting at si has to skip exactly one gadget and end at ti. If we do not skip any
gadget, si,j cannot be connected to ti,j , j > i. Once we skip a gadget, we are at
the bottom level of the row and hence we cannot skip again. To conclude if G
has a shortest path partition of size k′ (then in the solution) the path starting
at si has to end at ti and this path has to skip exactly one gadget. Through this
skipped gadget, si,j is connected to ti,j . The bottom of the row is covered by a
path starting from bi,0 and the top of the row is covered by a path starting at
v ∈ T i,u after the skipped gadget and ending at ai,n+1

k+2 .
Finally, we have the following claim about G′ that follows by construction.

Claim 4.7. There exists a path between si,j and ti,j through two gadgets Gi,u

and Gj,v where i > j if and only if there is an edge uv in the graph G.

Claim 4.8 (∗). G has a k-clique iff G′ has a shortest path partition of size k′.

As the construction is polynomial-time, W[1]-hardness follows. ��

5 XP Algorithms

We now present our XP algorithms to prove the following result. We note that
the result for USPP also follows from [8] (with a different proof).

Proposition 5.1. USPP and DAGSPP are in XP.

For our XP algorithms, the following combinatorial result is crucial.

Lemma 5.2 (∗). Let G = (V,E) be a directed graph. Then, V can be partitioned
into k vertex-disjoint shortest paths if and only if there are k vertex-disjoint paths
between some si and ti, for 1 ≤ i ≤ k, such that

∑k
i=1 d(si, ti) = |V | − k. A

similar characterization is true for the undirected case.

This lemma allows us to prove Proposition 5.1 by cycling through all possible
X := {(s1, t1), . . . , (sk, tk)}, resulting in an instance of DP. Now, either apply
[11, Theorem 3] for DAGs or [17,27] for undirected graphs to get the XP-result.
Notice that these algorithmic results rule out paraNP-hardness results.

6 Neighborhood Diversity Parameterization

One of the standard structural parameters studied within parameterized com-
plexity is the vertex cover number . As graphs with bounded vertex cover number
are highly restricted, less restrictive parameters that generalize vertex cover are
interesting, as neighborhood diversity is, introduced by Lampis [19].

Crucial to our FPT-results is the following interesting combinatorial fact.

Proposition 6.1 (∗). If G is connected, then diam(G) ≤ nd(G).
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Similar arguments show that the number of neighborhood diversity equiva-
lence classes that a shortest path P intersects equals its number of vertices if P
contains at least four vertices. In shortest paths on two or three vertices, how-
ever, their endpoints might have the same type. Now, call two shortest paths Pi

and Pj (viewed as sets of vertices) equivalent, denoted by Pi ≡ Pj , in a graph G
with d = nd(G) if |Pi ∩Cl| = |Pj ∩Cl| for all l with 1 ≤ l ≤ d, where C1, . . . , Cd

denote the nd-equivalence classes. Any two equivalent shortest paths have the
same length. Proposition 6.1 and our discussions imply that there are O(2nd(G))
many equivalence classes of shortest paths (+).

Theorem 6.2. USPP is FPT when parameterized by neighborhood diversity.

Proof. As we can solve SPP separately on each connected component, we can
assume in the following that the input graph is connected.

Given that the neighborhood diversity of a graph G = (V,E) is bounded by
an integer d, then there exists a partition of V into d nd-classes C1, . . . , Cd. Hence,
each Ci for i ∈ [d] either induces a clique or an independent set. Such a partition
can be found in linear time with a fast modular decomposition algorithm [31].

Compute the set of all shortest path equivalence classes; this can be repre-
sented by a set P of shortest paths, in which any two shortest paths are not
equivalent. By (+), we know that |P| ∈ O(2nd(G)). Construct and solve the fol-
lowing Integer Linear Program (ILP), with variables zp ≥ 0 corresponding to
p ∈ P. Each p ∈ P is characterized by a vector (p1, . . . , pd) with pj = |Cj ∩ p|.

minimize
∑

p∈P
zp

subject to
∑

p∈P
zp · pj = |Cj | for all j ∈ [d]

The variable zp encodes how many shortest paths equivalent to p are taken in
the solution. Hence, the objective function expresses minimizing the number of
shortest paths used in the partition. The constraints ensure the path partitioning.

Claim 6.3 (∗). There exists a spp of G with k shortest paths if and only if the
objective function attains the value k in the ILP described above.

Notice that the number of variables of the ILP is exactly |P|, which is O(2d),
as observed above. Now, we apply [5, Theorem 6.5] to prove our FPT claim. ��

The arguments leading to Proposition 6.1 and the subsequent discussions are
all proofs by contradiction that show shortcuts in shortest paths that are ‘too
long’. This also works for induced paths instead of shortest paths, leading to:

Proposition 6.4. The length of a longest induced path in a graph G is upper-
bounded by the neighborhood diversity nd(G).

Theorem 6.5. UIPP is FPT when parameterized by neighborhood diversity.
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By using results of Lampis [19], we can immediately infer the following.

Corollary 6.6. USPP, UIPP are FPT, parameterized by vertex cover number.

We have a similar result for UPP, either by a more general approach in [14],
or based on a direct reasoning. It is open if one can get a polynomial-size kernel.

Proposition 6.7 (∗). UPP is FPT when parameterized by vertex cover number,
as it possesses a single-exponential size kernel.

We can also obtain a direct FPT algorithm with running time O∗ (
vc(G)! · 2vc(G)

)
.

7 Duals and Distance to Triviality

Given a typical graph problem that is (as a standard) parameterized by solution
size k, it takes as input a graph G of order n and k, then its dual parameter
is kd = n − k. This applies in particular to our problems UPP, UIPP and
USPP. As these problems always have as a trivial solution the number n of
vertices (i.e., n trivial paths), we can also interpret this dual parameterization
as a parameterization led by the idea of distance from triviality. Moreover, all our
problems can be algorithmically solved for each connected component separately,
so that we can assume, w.l.o.g., that we are dealing with connected graphs.
Namely, if (G, k) with G = (V,E) is a graph and C � V describes a connected
component, then we can solve (G[C], k′) and (G−C, k−k′) independently for all
1 ≤ k′ < k. We now prove that our problems, with dual parameterizations, are
in FPT by providing a kernelization algorithm. The following claims are crucial.

Lemma 7.1 (∗). Let G be a graph of order n. If G has a matching that covers
2k vertices, then (G,n − k) is a Yes-instance of UPP, UIPP and USPP.

The preceding lemma has the following interesting consequence.

Corollary 7.2 (∗). If G = (V,E) is a graph that possesses some X ⊆ V with
|X| ≥ 2k such that deg(v) ≥ 2k for every v ∈ X, then G has a matching of
size k and hence (G,n − k) is a Yes-instance of UPP, UIPP and USPP.

This consequence, as well as the following combinatorial observation, has no
direct bearing on our algorithmic result, but may be of independent interest.

Lemma 7.3 (∗). If G is a connected graph with diam(G) > k, then (G,n − k)
is a Yes-Instance of UPP, UIPP and USPP.

Our combinatorial thoughts, along with Corollary 6.6 and Proposition 6.7,
allow us to show the following algorithmic result, the main result of this section.

Theorem 7.4 (∗). UPP, UIPP and USPP can be solved in FPT time with
dual parameterization.



200 H. Fernau et al.

8 Conclusion

We have explored the algorithmic complexity of the three problems PP, IPP and
SPP, and as witnessed by Table 1, our results show some interesting algorithmic
differences between these three problems.

Many interesting questions remain to be investigated. For example, what is
the parameterized complexity of SPP on undirected graphs, parameterized by
the number of paths? Is it W[1]-hard, like for DAGs? This was asked in [8], and
our W[1]-hardness result for DAGs can be seen as a first step towards an answer.

We have seen that PP, IPP and SPP admit FPT algorithms when parame-
terized by neighborhood diversity. Can we obtain such algorithms for other (e.g.,
more general) parameters (as was done for PP and modular-width in [14])?

Moreover, in the light of our FPT algorithms for the dual parameterizations
of PP, IPP and SPP, we can ask whether they admit a polynomial kernel.
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Abstract. SPQR-trees model the decomposition of a graph into tri-
connected components. In this paper, we study the problem of dynami-
cally maintaining an SPQR-tree while expanding vertices into arbitrary
biconnected graphs. This allows us to efficiently merge two SPQR-trees
by identifying the edges incident to two vertices with each other. We do
this working along an axiomatic definition lifting the SPQR-tree to a
stand-alone data structure that can be modified independently from the
graph it might have been derived from. Making changes to this struc-
ture, we can now observe how the graph represented by the SPQR-tree
changes, instead of having to reason which updates to the SPQR-tree
are necessary after a change to the represented graph.

Using efficient expansions and merges allows us to improve the run-
time of the Synchronized Planarity algorithm by Bläsius et al. [2]
from O(m2) to O(m · Δ), where Δ is the maximum pipe degree. This
also reduces the time for solving several constrained planarity problems,
e.g. for Clustered Planarity from O((n+d)2) to O(n+d ·Δ), where
d is the total number of crossings between cluster borders and edges and
Δ is the maximum number of edge crossings on a single cluster border.

Keywords: SPQR-Tree · Dynamic Algorithm · Cluster Planarity

1 Introduction

The SPQR-tree is a data structure that represents the decomposition of a graph
at its separation pairs, that is the pairs of vertices whose removal disconnects
the graph. The components obtained by this decomposition are called skeletons.
SPQR-trees form a central component of many graph visualization techniques
and are used for, e.g., planarity testing and variations thereof [6,11] and for
computing embeddings and layouts [10,13]. Initially, SPQR-trees were devised
by Di Battista and Tamassia for incremental planarity testing [6]. Their use was
quickly expanded to other on-line problems [5] and to the fully-dynamic setting,
that is allowing insertion and deletion of vertices and edges in O(

√
n) time [7],

where n is the number of vertices in the graph.
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In this paper, we consider an incremental setting where we allow a single oper-
ation that expands a vertex v into an arbitrary biconnected graph Gν . The app-
roach of Eppstein et al. [7] allows this in O((deg(v)+|Gν |)·√n) time by only rep-
resenting parts of triconnected components.1 We improve this to O(deg(v)+|Gν |)
using an algorithm that is much simpler and explicitly yields full triconnected
components, which will become important for our applications later. In addition,
our approach also allows to efficiently merge two SPQR-trees as follows. Given
two biconnected graphs G1, G2 containing vertices v1, v2, respectively, together
with a bijection between their incident edges, we construct a new graph G by
replacing v1 with G2−v2 in G1, identifying edges using the given bijection. Given
the SPQR-trees of G1 and G2, we show that the SPQR-tree of G can be found
in O(deg(v1)) time. More specifically, we present a data structure that supports
the following operations: InsertGraphSPQR expands a single vertex in time linear
in the size of the expanded subgraph, MergeSPQR merges two SPQR-trees in time
linear in the degree of the replaced vertices, IsPlanar indicates whether the
currently represented graph is planar in constant time, and Rotation yields one
of the two possible planar rotations of a vertex in a triconnected skeleton in con-
stant time. Furthermore, our data structure can be adapted to yield consistent
planar embeddings for all triconnected skeletons and to test for the existence of
three distinct paths between two arbitrary vertices with an additional factor of
α(n) for all operations, where α is the inverse Ackermann function.

The main idea of our approach is that the subtree of the SPQR-tree affected
by expanding a vertex v has size linear in the degree of v, but may contain
arbitrarily large skeletons. In a “non-normalized” version of an SPQR-tree, the
affected cycle (‘S’) skeletons can easily be split to have a constant size, while
we develop a custom splitting operation to limit the size of triconnected ‘R’
skeletons. This limits the size of the affected structure to be linear in the degree
of v and allows us to perform the expansion efficiently.

In addition to the description of this data structure, the technical contribu-
tion of this paper is twofold: First, we develop an axiomatic definition of the
decomposition at separation pairs, putting the SPQR-tree as “mechanical” data
structure into focus instead of relying on and working along a given graph struc-
ture. As a result, we can deduce the represented graph from the data structure
instead of computing the data structure from the graph. This allows us to make
more or less arbitrary changes to the data structure (respecting its consistency
criteria) and observe how the graph changes, instead of having to reason which
changes to the graph require which updates to the data structure.

Second, we explain how our data structure can be used to improve the run-
time of the algorithm by Bläsius et al. [2] for solving Synchronized Planarity
from O(m2) to O(m·Δ), where Δ is the maximum pipe degree (i.e. the maximum
degree of a vertex with synchronization constraints that enforce its rotation to
be the same as that of another vertex). Synchronized Planarity can be used

1 Unfortunately, the recent improvements by Holm and Rotenberg are not applicable
here, as they maintain triconnectivity in an only incremental setting [12], while
maintaining only planarity information in the fully-dynamic setting [11].
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to model and solve a vast class of different kinds of constrained planarity. Among
them is the notorious Clustered Planarity, whose complexity was open for
30 years before Fulek and Tóth gave an algorithm with runtime O((n + d)8) in
2019 [9], where d is the total number of crossings between cluster borders and
edges. Shortly thereafter, Bläsius et al. [2] gave a solution in O((n + d)2) time.
We improve this to O(n + d · Δ), where Δ is the maximum number of edge
crossings on a single cluster border.

This work is structured as follows. After preliminaries in Sect. 2, we describe
the skeleton decomposition and show how it relates to the SPQR-tree in Sect. 3.
Section 4 extends this data structure by the capability of splitting triconnected
components. In Sect. 5, we use this to ensure the affected part of the SPQR-tree is
small when we replace a vertex with a new graph. Section 6 shows how we reduce
the runtime for solving Synchronized and Clustered Planarity. Omitted
proofs and more details on Synchronized and Clustered Planarity can be
found in the full version [8].

2 Preliminaries

In the context of this work, G = (V,E) is a (usually biconnected and loop-free)
multi-graph with n vertices V and m (possibly parallel) edges E. For a vertex
v, we denote its open neighborhood (excluding v itself) by N(v). For a bijection
or matching φ we call φ(x) the partner of an element x. We use A ·∪B to denote
the union of two disjoint sets A,B. A separating k-set is a set of k vertices
whose removal increases the number of connected components. Separating 1-
sets are called cutvertices, while separating 2-sets are called separation pairs. A
connected graph is biconnected if it does not have a cutvertex. A biconnected
graph is triconnected if it does not have a separation pair. Maximal biconnected
subgraphs are called blocks. Each separation pair divides the graph into bridges,
the maximal subgraphs which cannot be disconnected by removing or splitting
the vertices of the separation pair. A bond is a graph that consists solely of
two pole vertices connected by multiple parallel edges, a polygon is a simple
cycle, while a rigid is any simple triconnected graph. A wheel is a cycle with an
additional central vertex connected to all other vertices.

Finally, the expansion that is central to this work is formally defined as
follows. Let Gα, Gβ be two graphs where Gα contains a vertex u and Gβ contains
|N(u)| marked vertices, together with a bijection φ between the neighbors of u
and the marked vertices in Gβ . With Gα[u →φ Gβ ] we denote the graph that is
obtained from the disjoint union of Gα, Gβ by identifying each neighbor x of u
with its respective marked vertex φ(x) in Gβ and removing u, i.e. the graph Gα

where the vertex u was expanded into Gβ ; see Fig. 3 for an example.

3 Skeleton Decompositions

A skeleton structure S = (G, origV, origE, twinE) that represents a graph GS =
(V,E) consists of a set G of disjoint skeleton graphs together with three total,
surjective mappings twinE, origE, and origV that satisfy the following conditions:



Maintaining Triconnected Components Under Node Expansion 205

– Each skeleton Gμ = (Vμ, Ereal
μ ·∪ Evirt

μ ) in G is a multi-graph where each edge
is either in Ereal

μ and thus called real or in Evirt
μ and thus called virtual.

– Bijection twinE : Evirt → Evirt matches all virtual edges Evirt =
⋃

μ Evirt
μ

such that twinE(e) �= e and twinE2 = id.
– Surjection origV :

⋃
μ Vμ → V maps all skeleton vertices to graph vertices.

– Bijection origE :
⋃

μ Ereal
μ → E maps all real edges to the graph edge set E.

Note that each vertex and each edge of each skeleton is in the domain of exactly
one of the three mappings. As the mappings are surjective, V and E are exactly
the images of origV and origE. For each vertex v ∈ GS , the skeletons that contain
an allocation vertex v′ with origV(v′) = v are called the allocation skeletons
of v. Furthermore, let TS be the graph where each node μ corresponds to a
skeleton Gμ of G. Two nodes of TS are adjacent if their skeletons contain a pair
of virtual edges matched with each other. We call a skeleton structure a skeleton
decomposition if it satisfies the following conditions:

1 (bicon) Each skeleton is biconnected.
2 (tree) Graph TS is simple, loop-free, connected and acyclic, i.e., a tree.
3 (orig-inj) For each skeleton Gμ, the restriction origV |Vμ

is injective.
4 (orig-real) For each real edge uv, the endpoints of origE(uv) are origV(u)

and origV(v).
5 (orig-virt) Let uv and u′v′ be two virtual edges with uv = twinE(u′v′). For

their respective skeletons Gμ and G′
μ (where μ and μ′ are adjacent in TS), it

is origV(Vμ) ∩ origV(Vμ′) = origV({u, v}) = origV({u′, v′}).
6 (subgraph) The allocation skeletons of any vertex of GS form a connected

subgraph of TS .

Figure 1 shows an example of S, GS , and TS . We call a skeleton decomposition
with only one skeleton Gμ trivial. In this case, Gμ is isomorphic to GS , and origE
and origV are actually bijections between the edges and vertices of both graphs.

To model the decomposition into triconnected components, we define the oper-
ations SplitSeparationPair and its converse, JoinSeparationPair, on a skele-
ton decomposition S = (G, origV, origE, twinE). For SplitSeparationPair, let
u, v be a separation pair of skeleton Gμ and let (A,B) be a non-trivial bipartition of
the bridges between u and v.2 Applying SplitSeparationPair(S, (u, v), (A,B))
yields skeleton decomposition S ′ = (G′, origV′, origE′, twinE′) as follows. In G′, we
replace Gμ by two skeletons Gα, Gβ , where Gα is obtained from Gμ[A] by adding
a new virtual edge eα between u and v. The same respectively applies to Gβ with
Gμ[B] and eβ . We set twinE′(eα) = eβ and twinE′(eβ) = eα. Note that origV
maps the endpoints of eα and eβ to the same vertices. All other skeletons and their
mappings remain unchanged.

2 Note that a bridge might consist out of a single edge between u and v and that each
bridge includes the vertices u and v.
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Fig. 1. Different views on the skeleton decomposition S. (a) The graph GS with a
vertex u marked in blue. (b) The skeletons of G. Virtual edges are drawn in gray with
their matching twinE being shown in orange. The allocation vertices of u are marked
in blue. (c) The tree TS . The allocation skeletons of u are marked in blue. (d) The
embedding tree of vertex u as described in Sect. 6. P-nodes are shown as white disks,
Q-nodes are shown as large rectangles. The leaves of the embedding tree correspond
to the edges incident to u.

For JoinSeparationPair, consider virtual edges eα, eβ with twinE(eα) = eβ

and let Gβ �= Gα be their respective skeletons. Applying JoinSeparationPair
(S, eα) yields a skeleton decomposition S ′ = (G′, origV′, origE′, twinE′) as fol-
lows. In G′, we merge Gα with Gβ to form a new skeleton Gμ by identifying the
endpoints of eα and eβ that map to the same vertex of GS . Additionally, we
remove eα and eβ . All other skeletons and their mappings remain unchanged.

The main feature of both operations is that they leave the graph represented
by the skeleton decomposition unaffected while splitting a node or contracting
and edge in TS , which can be verified by checking the individual conditions.

Lemma 1 (∗). Applying SplitSeparationPair or JoinSeparationPair on a
skeleton decomposition S yields a skeleton decomposition S ′ with an unchanged
represented graph GS′ = GS .

Note that this gives us a second way of finding the represented graph by
exhaustively joining all skeletons until there is only one left, the unique triv-
ial skeleton decomposition. A key point about the skeleton decomposition and
especially the operation SplitSeparationPair is that they model the decom-
position of a graph at separation pairs. This decomposition was formalized as
SPQR-tree by Di Battista and Tamassia [5,6] and is unique for a given graph [10].
Angelini et al. [1] describe a decomposition tree that is conceptually equivalent
to our skeleton decomposition. They also present an alternative definition for
the SPQR-tree as a decomposition tree satisfying further properties. We adopt
this definition as follows, not requiring planarity of triconnected components and
allowing virtual edges and real edges to appear within one skeleton (i.e., having
leaf Q-nodes merged into their parents).

Definition 1. A skeleton decomposition S where any skeleton in G is either a
polygon, a bond, or triconnected (“rigid”), and two skeletons adjacent in TS are
never both polygons or both bonds, is the unique SPQR-tree of GS .

The main difference between the well-known ideas behind decomposition
trees and our skeleton decomposition is that the latter allow an axiomatic access
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to the decomposition at separation pairs. For the skeleton decomposition, we
employ a purely functional, “mechanical” data structure instead of relying on
and working along a given graph structure. In our case, the represented graph
is deduced from the data structure (i.e. SPQR-tree) instead of computing the
data structure from the graph.

4 Extended Skeleton Decompositions

Note that most skeletons, especially polygons and bonds, can easily be decom-
posed into smaller parts. The only exception to this are triconnected skeletons
which cannot be split further using the operations we defined up to now. This
is a problem when modifying a vertex that occurs in triconnected skeletons that
may be much bigger than the direct neighborhood of the vertex. To fix this, we
define a further set of operations which allow us to isolate vertices out of arbi-
trary triconnected components by replacing them with a (“virtual”) placeholder
vertex. This placeholder then points to a smaller component that contains the
actual vertex, see Fig. 2. Modification of the edges incident to the placeholder is
disallowed, which is why we call them “occupied”.

Formally, the structures needed to keep track of the components split in this
way in an extended skeleton decomposition S = (G, origV, origE, twinE, twinV)
are defined as follows. Skeletons now have the form Gμ = (Vμ ·∪ V virt

μ , Ereal
μ ·∪

Evirt
μ ·∪ Eocc

μ ). Bijection twinV : V virt → V virt matches all virtual vertices
V virt =

⋃
μ V virt

μ , such that twinV(v) �= v, twinV2 = id. The edges incident to
virtual vertices are contained in Eocc

μ and thus considered occupied ; see Fig. 2b.
Similar to the virtual edges matched by twinE, any two virtual vertices matched
by twinV induce an edge between their skeletons in TS . Condition 2 (tree) also
equally applies to those edges induced by twinV, which in particular ensures
that there are no parallel twinE and twinV tree edges in TS . Similarly, the con-
nected subgraphs of condition 6 (subgraph) can also contain tree edges induced
by twinV. All other conditions remain unchanged, but we add two further con-
ditions to ensure that twinV is consistent:

7 (stars) For each vα, vβ with twinV(vα) = vβ , it is deg(vα) = deg(vβ). All
edges incident to vα and vβ are occupied and have distinct endpoints (except
for vα and vβ). Each occupied edge is adjacent to exactly one virtual vertex.

8 (orig-stars) Let vα and vβ again be two virtual vertices matched with each
other by twinV. For their respective skeletons Gα and Gβ (where α and β are
adjacent in TS), it is origV(Vα)∩origV(Vβ) = origV(N(vα)) = origV(N(vβ)).

Both conditions together yield a bijection γvαvβ
between the neighbors of vα

and vβ , as origV is injective when restricted to a single skeleton (condition
3 (orig-inj)) and deg(vα) = deg(vβ). Operations SplitSeparationPair and
JoinSeparationPair can also be applied to an extended skeleton decompo-
sition, yielding an extended skeleton decomposition without modifying twinV.
To ensure that conditions 7 (stars) and 8 (orig-stars) remain unaffected by both
operations, SplitSeparationPair can only be applied to non-virtual vertices.
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Fig. 2. (a) A triconnected skeleton Gμ with a highlighted vertex v incident to two
gray virtual edges. (b) The result of applying IsolateVertex to isolate v out of the
skeleton. The red occupied edges in the old skeleton Gα form a star with center vα,
while the red occupied edges in Gβ connect all neighbors of v to form a star with center
vβ �= v. The centers vα and vβ are virtual and matched with each other. Neighbor u of
v was split into vertices uα and uβ . (Color figure online)

The operations IsolateVertex and Integrate now allow us to isolate
vertices out of triconnected components and integrate them back in, respec-
tively. For IsolateVertex, let v be a non-virtual vertex of skeleton Gμ, such
that v has no incident occupied edges. Applying IsolateVertex(S, v) on an
extended skeleton decomposition S yields an extended skeleton decomposi-
tion S ′ = (G′, origV′, origE′, twinE′, twinV′) as follows. Each neighbor u of v
is split into two non-adjacent vertices uα and uβ , where uβ is incident to
all edges connecting u with v, while uα keeps all other edges of u. We set
origV′(uα) = origV′(uβ) = origV(u). This creates an independent, star-shaped
component with center v, which we move to skeleton Gβ , while we rename skele-
ton Gμ to Gα. We connect all uα to a single new virtual vertex vα ∈ V virt

α using
occupied edges, and all uβ to a single new virtual vertex vβ ∈ V virt

β using occu-
pied edges; see Fig. 2. Finally, we set twinV′(vα) = vβ , twinV′(vβ) = vα, and
add Gβ to G′. All other mappings and skeletons remain unchanged.

For Integrate, consider two virtual vertices vα, vβ with twinV(vα) = vβ

and the bijection γvαvβ
between the neighbors of vα and vβ . An applica-

tion of Integrate(S, (vα, vβ)) yields an extended skeleton decomposition S ′ =
(G′, origV′, origE′, twinE′, twinV′) as follows. We merge both skeletons into a
skeleton Gμ (also replacing both in G′) by identifying the neighbors of vα and
vβ according to γvαvβ

. Furthermore, we remove vα and vβ together with their
incident occupied edges. All other mappings and skeletons remain unchanged.

Lemma 2 (∗). Applying IsolateVertex or Integrate on an extended skele-
ton decomposition S = (G, origV, origE, twinE, twinV) yields an extended skele-
ton decomposition S ′ = (G′, origV′, origE′, twinE′, twinV′) with GS′ = GS .

Furthermore, as Integrate is the converse of IsolateVertex and has no
preconditions, any changes made by IsolateVertex can be undone at any time
to obtain a (non-extended) skeleton decomposition, and thus possibly the SPQR-
tree of the represented graph.
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Fig. 3. Expanding a skeleton vertex v into a graph Gν in the SPQR-tree of Fig. 4b.
(a) The single allocation skeleton Gμ of u with the single allocation vertex v of u from
Fig. 4b. The neighbors of v are marked in orange. (b) The inserted graph Gν with
orange marked vertices. Note that the graph is biconnected when all marked vertices
are collapsed into a single vertex. (c) The result of applying InsertGraph(S, u, Gν , φ)
followed by an application of Integrate on the generated virtual vertices v and v′.

5 Node Expansion in Extended Skeleton Decompositions

We now introduce the dynamic operation that changes the represented graph by
expanding a single vertex u into an arbitrary connected graph Gν . This is done by
identifying |N(u)| marked vertices in Gν with the neighbors of u via a bijection φ
and then removing u and its incident edges. We use the “occupied stars” from the
previous section to model the identification of these vertices, allowing us to defer
the actual insertion to an application of Integrate. We need to ensure that the
inserted graph makes the same “guarantees” to the surrounding graph in terms
of connectivity as the vertex it replaces, that is all neighbors of u (i.e. all marked
vertices in Gν) need to be pairwise connected via paths in Gν not using any other
neighbor of u (i.e. any other marked vertex). Without this requirement, a single
vertex could e.g. also be split into two non-adjacent halves, which could break
a triconnected component apart. Thus, we require Gν to be biconnected when
all marked vertices are collapsed into a single vertex. Note that this also ensures
that the old graph can be restored by contracting the vertices of the inserted
graph. For the sake of simplicity, we require vertex u from the represented graph
to have a single allocation vertex v ∈ Gμ with origV−1(u) = {v} so that we only
need to change a single allocation skeleton Gμ in the skeleton decomposition. As
we will make clear later on, this condition can be satisfied easily.

Formally, let u ∈ GS be a vertex that only has a single allocation vertex
v ∈ Gμ (and thus only a single allocation skeleton Gμ). Let Gν be an arbi-
trary, new graph containing |N(u)| marked vertices, together with a bijection φ
between the marked vertices in Gν and the neighbors of v in Gμ. We require
Gν to be biconnected when all marked vertices are collapsed into a single node.
Operation InsertGraph(S, u,Gν , φ) yields an extended skeleton decomposition
S ′ = (G′, origV′, origE′, twinE′, twinV′) as follows, see also Fig. 3. We interpret
Gν as skeleton and add it to G′. For each marked vertex x in Gν , we set
origV′(x) = origV(φ(x)). For all other vertices and edges in Gν , we set origV′

and origE′ to point to new vertices and edges forming a copy of Gν in GS′ . We
connect every marked vertex in Gν to a new virtual vertex v′ ∈ Gν using occu-
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pied edges. We also convert v to a virtual vertex, converting its incident edges
to occupied edges while removing parallel edges. Finally, we set twinV′(v) = v′

and twinV′(v′) = v.

Lemma 3 (∗). Applying InsertGraph(S, u,Gν , φ) on an extended skeleton
decomposition S yields an extended skeleton decomposition S ′ with GS′ isomor-
phic to GS [u →φ Gν ].

On its own, this operation is not of much use though, as graph vertices only
rarely have a single allocation skeleton. Furthermore, our goal is to dynam-
ically maintain SPQR-trees, while this operation on its own will in most
cases not yield an SPQR-tree. To fix this, we introduce the full procedure
InsertGraphSPQR(S, u,Gν , φ) that can be applied to any graph vertex u and
that, given an SPQR-tree S, yields the SPQR-tree of GS [u →φ Gν ]. It consists
of three preparations steps, the insertion of Gν , and two further clean-up steps:

1. We apply SplitSeparationPair to each polygon allocation skeleton of u
with more than three vertices, using the neighbors of the allocation vertex of
u as separation pair.

2. For each rigid allocation skeleton of u, we move the contained allocation
vertex v of u to its own skeleton by applying IsolateVertex(S, v).

3. We exhaustively apply JoinSeparationPair to any pair of allocation skele-
tons of u that are adjacent in TS . Due to condition 6 (subgraph), this yields a
single component Gμ that is the sole allocation skeleton of u with the single
allocation vertex v of u. Furthermore, the size of Gμ is linear in deg(u).

4. We apply InsertGraph to insert Gν as skeleton, followed by an application
of Integrate to the virtual vertices {v, v′} introduced by the insertion, thus
integrating Gν into Gμ.

5. We apply SplitSeparationPair to all separation pairs in Gμ that do not
involve a virtual vertex. These pairs can be found in linear time, e.g. by
temporarily duplicating all virtual vertices and their incident edges and then
computing the SPQR-tree.3

6. Finally, we exhaustively apply Integrate and also apply JoinSeparationPair
to any two adjacent polygons and to any two adjacent bonds to obtain the
SPQR-tree of the updated graph.

The basic idea behind the correctness of this procedure is that splitting the
newly inserted component according to its SPQR-tree in step 5 yields bicon-
nected components that are each either a polygon, a bond, or “almost” tricon-
nected. The latter (and only those) might still contain virtual vertices and all
their remaining separation pairs, which were not split in step 5, contain one
of these virtual vertices. This, together with the fact that there still may be
pairs of adjacent skeletons where both are polygons or both are bonds, prevents
the instance from being an SPQR-tree. Both issues are resolved in step 6: The
adjacent skeletons are obviously fixed by the JoinSeparationPair applications.
To show that the virtual vertices are removed by the Integrate applications,
making the remaining components triconnected, we need the following lemma.
3 The wheels replacing virtual vertices in the proof of Theorem 2 also ensure this.
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Fig. 4. The preprocessing steps of InsertGraphSPQR being applied to the SPQR-tree of
Fig. 1b. (a) The state after step 2, after all allocation skeletons of u have been split.
(b) The state after step 3, after all allocation skeletons of u have been merged into a
single one.

Lemma 4. Let Gα be a triconnected skeleton containing a virtual vertex vα

matched with a virtual vertex vβ of a biconnected skeleton Gβ. Furthermore,
let P ⊆

(
V (Gβ)

2

)
be the set of all separation pairs in Gβ. An application of

Integrate(S, (vα, vβ)) yields a biconnected skeleton Gμ with separation pairs
P ′ = {{u, v} ∈ P | vβ /∈ {u, v}}.

Proof. We partition the vertices of Gμ into sets A,B, and N depending on
whether the vertex stems from Gα, Gβ , or both, respectively. The set N thus
contains the neighbors of vα, which were identified with the neighbors of vβ . We
will show by contradiction that Gμ contains no separation pairs except for those
in P ′. Thus, consider a separation pair u, v ∈ Gμ not in P ′. First, consider the
case where u, v ∈ A ∪ N . Observe that removing u, v in this case leaves B con-
nected. Thus, we can contract all vertices of B into a single vertex, reobtain Gα

and see that u, v is a separation pair in Gα. This contradicts the precondition
that Gα is triconnected. Now consider the case where u, v ∈ B ∪N . Analogously
to above, we find that u, v is a separation pair in Gβ that does not contain
vβ , a contradiction to {u, v} /∈ P ′. Finally, consider the remaining case where,
without loss of generality, u ∈ A, v ∈ B. Since {u, v} is a separation pair, u has
two neighbors x, y that lie in different connected components of Gμ −{u, v} and
therefore also in different components of (Gμ − {u, v}) − B which is isomorphic
to Gα − {u, vα}. This again contradicts Gα being triconnected. 
�

Theorem 1. Applying InsertGraphSPQR(S, u,Gν , φ) to an SPQR-tree S yields
an SPQR-tree S ′ in O(|Gν |) time with GS′ isomorphic to GS [u →φ Gν ].

Proof. As all applied operations leave the extended skeleton decomposi-
tion valid, the final extended skeleton decomposition S ′ is also valid. The
purpose of the preprocessing steps 1 to 3 is to ensure that the precon-
ditions of InsertGraph are satisfied and the affected component is not
too large. All rigids split in step 2 remain structurally unmodified in
the sense that edges only changed their type, but the graph and espe-
cially its triconnectedness remains unchanged. Step 4 performs the actual
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insertion and yields the desired represented graph according to Lemma 3.
It thus remains to show that the clean-up steps turn the obtained extended
skeleton decomposition into an SPQR-tree. Applying Integrate exhaustively
in step 6 ensures that the extended skeleton decomposition is equivalent to
a non-extended one. Recall that a non-extended skeleton decomposition is
an SPQR-tree if all skeletons are either polygons, bonds or triconnected and
two adjacent skeletons are never both polygons or both bonds (Definition 1).
Step 6 ensures that the second half holds, as joining two polygons (or two
bonds) with JoinSeparationPair yields a bigger polygon (or bond, respec-
tively). Before step 6, all skeletons that are not an allocation skeleton of u
are still unmodified and thus already have a suitable structure, i.e., they are
either polygons, bonds or triconnected. Furthermore, the allocation skeletons of
u not containing virtual vertices also have a suitable structure, as their splits
were made according to the SPQR-tree in step 5. It remains to show that the
remaining skeletons, that is those resulting from the Integrate applications in
step 6, are triconnected. Note that in these skeletons, step 5 ensures that every
separation pair consists of at least one virtual vertex, as otherwise the computed
SPQR-tree would have split the skeleton further. Further note that, for each
of these virtual vertices, the matched partner vertex is part of a structurally
unmodified triconnected skeleton that was split in step 2. Lemma 4 shows that
applying Integrate does not introduce new separation pairs while removing two
virtual vertices if one of the two sides is triconnected. We can thus exhaustively
apply Integrate and thereby remove all virtual vertices and thus also all sep-
aration pairs, obtaining triconnected components. This shows that the criteria
for being an SPQR-tree are satisfied and, as InsertGraph expanded u to Gν in
the represented graph, we now have the unique SPQR-tree of GS [u →φ Gν ].

All operations we used can be performed in time linear in the degree of the
vertices they are applied on. For the bipartition of bridges input to SplitSepa-
rationPair, it is sufficient to describe each bridge via its edges incident to the
separation pair instead of explicitly enumerating all vertices in the bridge. Thus,
the applications of SplitSeparationPair and IsolateVertex in steps 1 and 2
touch every edge incident to u at most once and thus take O(deg(u)) time.
Furthermore, they yield skeletons that have a size linear in the degree of their
respective allocation vertex of u. As the subtree of u’s allocation skeletons has
size at most deg(u), the JoinSeparationPair applications of step 3 also take at
most O(deg(u)) time. It follows that the resulting single allocation skeleton of u
has size O(deg(u)). The applications of InsertGraph and Integrate in step 4
take time linear in the number of identified neighbors, which is O(deg(u)). Gen-
erating the SPQR-tree of the inserted graph in step 5 (where all virtual vertices
where replaced by wheels) can be done in time linear in the size of the inserted
graph [10], that is O(|Gν |). Applying SplitSeparationPair according to all
separation pairs identified by this SPQR-tree can also be done in O(|Gν |) time
in total. Note that there are at most deg(u) edges between the skeletons that
existed before step 4 and those that were created or modified in steps 4 and 5,
and these are the only edges that might now connect two polygons or two bonds.
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As these tree edges have one endpoint in the single allocation skeleton of u, the
applications of Integrate and JoinSeparationPair in step 6 run in O(deg(u))
time in total. Furthermore, they remove all pairs of adjacent polygons and all
pairs of adjacent bonds. This shows that all steps take O(deg(u)) time, except
for step 5, which takes O(|Gν |) time. As the inserted graph contains at least one
vertex for each neighbor of u, the total runtime is in O(|Gν |). 
�

Corollary 1. Let S1,S2 be two SPQR-trees together with vertices u1 ∈ GS1 ,
u2 ∈ GS2 , and let φ be a bijection between the edges incident to u1 and the
edges incident to u2. Operation MergeSPQR(S1,S2, u1, u2, φ) yields the SPQR-tree
of the graph GS1 [u1 →φ GS2 − u2], i.e. the union of both graphs where the edges
incident to u1, u2 were identified according to φ and u1, u2 removed, in time
O(deg(u1)) = O(deg(u2)).

Proof. Operation MergeSPQR works similar to the more general InsertGraphSPQR,
although the running time is better because we already know the SPQR-tree for
the graph being inserted. We apply steps 1 to 3 to ensure that both u1 and u2

have sole allocation vertices v1 and v2, respectively. To properly handle parallel
edges, we subdivide all edges incident to u1, u2 (and thus also the corresponding
real edges incident to v1, v2) and then identify the subdivision vertices of each
pair of edges matched by φ. By deleting vertices v1 and v2 and suppressing
the subdivision vertices (that is, removing them and identifying each pair of
incident edges) we obtain a skeleton Gμ that has size O(deg(u1)) = O(deg(u2)).
Finally, we apply steps 5 and 6 to Gμ to obtain the final SPQR-tree. Again,
as the partner vertex of every virtual vertex in the allocation skeletons of u is
part of a triconnected skeleton, applying Integrate exhaustively in step 6 yields
triconnected skeletons. As previously discussed, the preprocessing and clean-up
steps run in time linear in degree of the affected vertices, thus the overall runtime
is O(deg(u1)) = O(deg(u2)) in this case. 
�

5.1 Maintaining Planarity and Vertex Rotations

Note that expanding a vertex of a planar graph using another planar graph
using InsertGraphSPQR (or merging two SPQR-trees of planar graphs using
Corollary 1) might actually yield a non-planar graph. This is, e.g., because the
rigids of both graphs might require incompatible orders for the neighbors of the
replaced vertex. The aim of this section is to efficiently detect this case, that
is a planar graph turning non-planar. To check a general graph for planarity, it
suffices to check the rigids in its SPQR-tree for planarity and each rigid allows
exactly two planar embeddings, where one is the reverse of the other [6]. Thus,
if a graph becomes non-planar through an application of InsertGraphSPQR, this
will be noticeable from the triconnected allocation skeletons of the replaced ver-
tex. To be able to immediately report if the instance became non-planar, we
need to maintain a rotation, that is a cyclic order of all incident edges, for each
vertex in any triconnected skeleton. Note that we do not track the direction of
the orders, that is we only store the order up to reversal. As discussed later, the
exact orders can also be maintained with a slight overhead.
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Theorem 2. SPQR-trees support the following operations:

– InsertGraphSPQR(S, u,Gν , φ): expansion of a single vertex u in time O(|Gν |),
– MergeSPQR(S1,S2, u1, u2, φ): merging of two SPQR-trees in time O(deg(u1)),
– IsPlanar: queries whether the represented graph is planar in time O(1), and
– Rotation(u): queries for one of the two possible rotations of vertices u in

planar triconnected skeletons in time O(1).

Proof. Note that the flag IsPlanar together with the Rotation information can
be computed in linear time when creating a new SPQR-tree and that expanding
a vertex or merging two SPQR-trees cannot turn a non-planar graph planar. We
make the following changes to the operations InsertGraphSPQR and MergeSPQR to
maintain the new information. After a triconnected component is split in step 2
we now introduce further structure to ensure that the embedding is maintained
on both sides. The occupied edges generated around the split-off vertex v (and
those around its copy v′) are subdivided and connected cyclically according
to Rotation(v). Instead of “stars”, we thus now generate occupied “wheels” that
encode the edge ordering in the embedding of the triconnected component. When
generating the SPQR-tree of the modified subgraph in step 5, we also generate
a planar embedding for all its triconnected skeletons. If no planar embedding
can be found for at least one skeleton, we report that the resulting instance is
non-planar by setting IsPlanar to false. Otherwise, after performing all splits
indicated by the SPQR-tree, we assign Rotation by generating embeddings for
all new rigids. Note that for all skeletons with virtual vertices, the generated
embedding will be compatible with the one of the neighboring triconnected com-
ponent, that is, the rotation of each virtual vertex will line up with that of its
matched partner vertex, thanks to the inserted wheel. Finally, before applying
Integrate in step 6, we contract each occupied wheel into a single vertex to re-
obtain occupied stars. The creation and contraction of wheels adds an overhead
that is at most linear in the degree of the expanded vertex and the generation
of embeddings for the rigids can be done in time linear in the size of the rigid.
Thus, this does not affect the asymptotic runtime of both operations. 
�

Corollary 2 (∗). The data structure from Theorem 2 can be adapted to also
provide the exact rotations with matching direction for every vertex in a rigid.
Furthermore, it can support queries whether two vertices v1, v2 are connected
by at least 3 different vertex-disjoint paths via 3Paths(v1, v2) in O((deg(v1) +
deg(v2)) · α(n)) time. These adaptions change the runtime of InsertGraphSPQR
to O(deg(u) · α(n) + |Gν |), that of MergeSPQR to O(deg(u1) · α(n)), and that of
Rotation(u) to O(α(n)).

6 Application to Synchronized Planarity

We show how extended skeleton decompositions and their dynamic operation
InsertGraphSPQR can be used to improve the runtime of the algorithm for solv-
ing Synchronized Planarity by Bläsius et al. [2] from O(m2) to O(m · Δ),
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where Δ is the maximum pipe degree. The algorithm spends a major part of
its runtime on computing so-called embedding trees, which describe all possi-
ble rotations of a single vertex in a planar graph and are used to communicate
embedding restrictions between vertices with synchronized rotation. Once the
embedding trees are available, the at most O(m) executed operations run in time
linear in the degree of the pipe/vertex they are applied on, that is in O(Δ) [2].
Thus, being able to generate these embedding trees efficiently by maintaining the
SPQR-trees they are derived from is our main contribution towards the speedup
of the Synchronized Planarity algorithm. See the full version [8] for more
details on the problems Synchronized and Clustered Planarity. There,
we also give a short overview over the operations Bläsius et al. [2] use for solving
Synchronized Planarity, which we improve in the proof of Theorem 3.

An embedding tree Tv for a vertex v of a biconnected graph G describes the
possible cyclic orderings or rotations of the edges incident to v in all planar
embeddings of G [4]. The leaves of Tv are the edges incident to v, while its inner
nodes are partitioned into two categories: Q-nodes define an up-to-reversal fixed
rotation of their incident tree edges, while P-nodes allow arbitrary rotation; see
Fig. 1d. To generate the embedding tree we use the observation about the rela-
tionship of SPQR-trees and embedding trees described by Bläsius and Rutter [3,
Section 2.5]: there is a bijection between the P- and Q-nodes in the embedding
tree of v and the bond and triconnected allocation skeletons of v in the SPQR-
tree of G, respectively. Note that the detailed constructions for the following
statements are given in the respective proofs the full version [8].

Lemma 5 (∗). Let S be an SPQR-tree with a planar represented graph GS . The
embedding tree for a vertex v ∈ GS can be found in time O(deg(v)).

This can now be used to reduce the runtime of solving Synchronized Pla-
narity by generating an SPQR-tree upfront, maintaining it throughout all
applied operations, and deriving any needed embedding tree from the SPQR-
tree.

Theorem 3 (∗). Synchronized Planarity can be solved in time in O(m·Δ),
where m is the number of edges and Δ is the maximum degree of a pipe.

Proof (Sketch). See the full version [8] for more background on the Synchro-
nized Planarity operations modified in the following. Operation PropagatePQ
expands a vertex into a tree corresponding to the embedding tree of its part-
ner vertex with synchronized rotation. This expansion can also be done in the
SPQR-tree without a runtime overhead, while some care needs to be taken when
expanding cut-vertices, as different parts of the tree need to be expanded in dif-
ferent blocks. Operation EncapsulateAndJoin generates a new bipartite com-
ponent linear in size to the pipe it removes. Thus, the SPQR-tree for this new
component can be computed without a runtime overhead. All other operations
do not affect the SPQR-tree and once embedding trees are available, of the at
most O(m) applied operations, each takes O(Δ) time [2]. 
�
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Corollary 3 (∗). Clustered Planarity can be solved in time in O(n+d·Δ),
where d is the total number of crossings between cluster borders and edges and
Δ is the maximum number of edge crossings on a single cluster border.
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Abstract. In the Power Vertex Cover (PVC) problem introduced
in [1] as a generalization of the well-known Vertex Cover, we are
allowed to specify costs for covering edges in a graph individually.
Namely, two weights, w(u, v) and w(v, u), are associated with each
“edge” {u, v} ∈ E of an input graph G = (V, E), and to cover an edge
{u, v}, it is required to assign “power” p ∈ R

V on vertices of G s.t. either
p(u) ≥ w(u, v) or p(v) ≥ w(v, u). The objective is to minimize the total
power assigned on V ,

∑
v∈V p(v), while covering all the edges of G by p.

The node-deletion problem for a graph property π is the problem
of computing a vertex subset C ⊆ V of minimum weight, given a
graph G = (V, E), s.t. the graph satisfies π when all the vertices in C
are removed from G. In this paper we consider node-deletion problems
extended with the “covering-by-power” condition as in PVC, and present
a unified approach for effectively approximating them. The node-deletion
problems considered are Partial Vertex Cover (PartVC), Bounded
Degree Deletion (BDD), and Feedback Vertex Set (FVS), each
corresponding to graph properties π = “the graph has at most |E| − k
edges”, π = “vertex degree of v is no larger than b(v)”, and π = “the
graph is acyclic”, respectively. After reducing these problems to the Sub-
modular Set Cover (SSC) problem, we conduct an extended analysis
of the approximability of these problems in the new setting of power
covering by applying some of the existing techniques for approximating
SSC. It will be shown that 1) PPartVC can be approximated within
a factor of 2, 2) PBDD for b ∈ Z

V
+ within max{2, 1 + bmax}, where

bmax = maxv∈V b(v), or within 2+ log bmax (for bmax ≥ 1) by a combina-
tion of the greedy SSC algorithm and the local ratio method extended
for power node-deletion problems, and 3) PFVS within 2, resulting in
each of these bounds matching the best one known for the correspond-
ing original problem.

Keywords: power cover · vertex cover · node-deletion problems ·
submodular set cover

1 Introduction

The Vertex Cover (VC) problem is one of the most well-known NP-hard
graph problems. Given as an input is an undirected graph G = (V,E), and it
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is required to compute a minimum vertex subset C ⊆ V s.t. every edge of G is
“covered” by some vertex in C. In the “weighted” version, the vertices of G are
associated with weights w ∈ R

V , and subject to minimize is the sum of weights
of vertices in a vertex cover. The decision version is one of Karp’s NP-complete
problems [25], and various generalizations have been introduced and subjected
for further study, e.g., [12,20,22] just to mention a few. In such a basic model
as Vertex Cover, no distinction is made among the edges e ∈ δ(v) ⊆ E all
incident to one vertex v ∈ V as far as covering e by v is concerned (Note: δ(v)
is the set of edges incident to v); that is, only one of two is possible, whether v
covers all in δ(v) (by having v in C) or none (by not having v in C). In a more
realistic setting though, the edges in δ(v) may have different characteristics so
that some are harder to cover from v than others. Power Vertex Cover
(PVC) introduced in [1], is such a model reflecting more refined conditions:
here, each edge {u, v} is a priori associated with a weight w({u, v}), and it
can be covered “from u” if and only if u ∈ V has enough power p(u), that
is, p(u) ≥ w({u, v}), and can be “from v” if and only if v ∈ V has enough
power p(v) of at least w({u, v}). Furthermore, it could be the case that covering
{u, v} from u is costlier than doing so from v, or vice versa. To deal with such
a more general case, (u, v) and (v, u) for {u, v} ∈ E are distinguished so that it
costs w(u, v) to cover {u, v} from u while it costs w(v, u) when covering from v.
Power Vertex Cover is such a problem of computing a “power assignment”
p : V → R minimizing

∑
v∈V p(v), given G = (V,E) and w(u, v), w(v, u) for

each {u, v} ∈ E, such that every edge in G is covered by p; that is, either
p(u) ≥ w(u, v) or p(v) ≥ w(v, u) holds for all {u, v} ∈ E. It is easy to see that
PVC generalizes vertex weighted VC since the latter is a special case of PVC
where w(u, v) = “weight of u” for all {u, v} ∈ δ(u).

Consider, for instance, setting up surveillance cameras at intersections within
a certain district for detecting anomaly throughout all the streets running in
the district. In a simplest model we just want to locate a minimum number of
intersections for camera installation such that every road segment {u, v} between
intersections u and v can be “covered” by at least one camera, set up at one
of its end-intersections u and v, and this is the minimum VC problem. In a
more realistic model, we use the minimum “weight” VC problem where a vertex
weight represents the cost for installing such a camera being able to monitor
“all” the road segments incident to the vertex. However, road segments usually
have different characteristics such as length, width, darkness, straightness, etc.;
accordingly, the camera capability required for monitoring them differs from one
road segment to another. Thus, while a vertex weight in the minimum weight
VC model must represent the cost of a camera capable of monitoring the most
demanding road segment among the incident ones so that it can cover “all”
the incident road segments at once, a more flexible way of camera installation
becomes possible in the power VC model, where the use of low-performance but
less expensive cameras covering only some of incident road segments is allowed.
It is thus more reasonable and realistic to model the problem by “power” VC
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representing the cost of a camera good enough for monitoring a road segment
by the “edge” weight.

Angel et al. showed that PVC is approximable within 2 in general and it
becomes polynomially solvable when graphs are bipartite [1]. As for the param-
eterized complexity of PVC, the following algorithms were presented in [2];
O∗(1.325P )-time algorithm parameterized by the total value P of power, and
O∗(kk)-time algorithm parameterized by the number of vertices k that receive
positive power, whereas no nO(t)-time algorithm was shown to exist, unless the
ETH is false, when parameterized by the graph’s treewidth t.

The node-deletion problem for a graph property π (denoted ND(π)) is a typ-
ical graph optimization problem; that is, given a node-weighted graph G, find a
vertex set of the minimum weight sum whose deletion (along with all the incident
edges) from G leaves a subgraph satisfying the property π. A graph property π
is hereditary if every subgraph of a graph satisfying π also satisfies π. A number
of well-studied graph properties are hereditary such as independent set, planar,
bipartite, acyclic, degree-constrained, circular-arc, circle graph, chordal, compa-
rability, permutation, perfect. Naturally, many well known graph problems fall
into this class of problems when desired graph properties are specified appropri-
ately. Lewis and Yannakakis proved, however, that ND(π) is NP-hard whenever
π is nontrivial and hereditary on induced subgraphs [30], using Vertex Cover
as a “core” problem in the class of node-deletion problems.

In this paper we consider extending some of the node-deletion problems other
than Vertex Cover adopting the “covering-by-power” condition and present
a unified approach for effectively approximating them. The node-deletion prob-
lems considered are Partial Vertex Cover (PartVC), Bounded Degree
Deletion (BDD), and Feedback Vertex Set (FVS). Partial Vertex
Cover is ND(π) for π = “the graph has at most |E| − k edges”, where k can
range from 0 to |E|, and it is required to cover only a specified number k of
edges (instead of all) in a given graph. Bounded Degree Deletion with
degree bound of b ∈ Z

V
+ (or b-BDD for short) is ND(π) such that π = “vertex

degree of v is no larger than b(v)”. It should be noted that VC is a special case of
BDD coinciding with 0-BDD. Feedback Vertex Set (FVS) corresponds to
ND(π) for π = “the graph is acyclic”, and all of these are basic graph optimiza-
tion problems. We call the power cover extension of these problems as Power
Partial Vertex Cover (PPartVC), Power Bounded Degree Deletion
(PBDD), and Power Feedback Vertex Set (PFVS), respectively, and as
Power Node-Deletion for π (PND(π)) in a generic term.

Let us introduce the set
←→
E of directed edges derived from E s.t.

←→
E =

{(u, v), (v, u) | {u, v} ∈ E}, to distinguish edge weights w(u, v) from w(v, u) in
PND(π), and let w now denote a weight function defined on

←→
E . Formally, given

in PND(π) is an undirected graph G = (V,E) with edge weights w :
←→
E → R,

and it is required to compute a power assignment p ∈ R
V minimizing

∑
v∈V p(v)

s.t. G − E(p) = (V,E − E(p)) satisfies π, where E(p) is the set of edges covered
by p, i.e., E(p) = {{u, v} ∈ E | either w(u, v) ≤ p(u) or w(v, u) ≤ p(v)}. What
we do first is to reduce PND(π) to Submodular Set Cover (SSC) and we
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call obtained instances of SSC as the SSC formulations of PND(π). By applying
some of the existing techniques for approximating SSC we conduct an extended
analysis of the approximability of these problems in the new setting of power
covering. After observing the factor 2 approximation of Power Vertex Cover
as a starter when the current approach is applied, it will be shown that PND(π)
can be approximated as good as ND(π) is known to be for those π’s designated
above. More specifically, it will be shown that 1) PPartVC can be approximated
within a factor of 2, 2) PBDD for b ∈ Z

V
+ within max{2, 1 + bmax}, where where

bmax = maxv∈V b(v), and 3) PFVS within 2. It will be additionally shown that
the approximation bound for PBDD can be further reduced to 2 + log bmax (for
bmax ≥ 1) by a combination of the greedy SSC algorithm and the local ratio
technique extended for power node-deletion problems.

1.1 Known Results on VC, PartVC, BDD, and FVS

It has been long known that Vertex Cover (VC) can be approximated within
a factor of 2 (achievable by a simple maximal matching heuristic [21] for the
unweighted case), and a better approximation has been a subject of extensive
research over the years. Yet the best constant bound has remained the same at
2 while the best known algorithm can accomplish only slightly better, within a
factor of 2 − Θ

(
1/

√
log |V |

)
[24]. On the other hand, Vertex Cover, known

to be APX-complete, cannot be approximated within 2 − ε for any ε > 0 [29] if
the unique games conjecture [26] holds, and it is currently known impossible to
approximate it in polynomial time within

√
2−ε for any ε > 0 unless P=NP [13,

27,28]. In Partial Vertex Cover (PartVC) it is required to cover only a
specified number k of edges (instead of all) in a given graph. This “truncated”
version of VC was shown to remain approximable with a factor of 2, the best
constant bound known for VC, in [8,16]. The time complexity of these algorithms
was later improved to O

(
|E||V | log |V | log |V |2

|E|
)

[23], and then to O(|V |2) [5].
Bounded Degree Deletion (BDD) has an application in computational

biology [14] as well as in the area of property testing [33], whereas its “dual
problem” of finding maximum s-plexes [35] has applications in social network
analysis [4,32]. For b-BDD with b ∈ Z+, where the degree bound is uniformly
equal to b ∈ Z+ over all the vertices, the approximation bound of (b+2) implied
by the hitting set formulation was first improved to max{2, b + 1} by the local
ratio method [17], and then to max{2, b/2+1} [19]. Okun and Barak considered
general b-BDD where b ∈ Z

V
+ is an arbitrary function, and obtained an approx-

imation bound of 2 + log bmax by combination of the local ratio method and
the greedy multicovering method [34]. More recently, b-BDD has been exten-
sively studied for its parameterized complexity. It has been shown that, when
parameterized by the size k of the deletion set, the problem is W [2]-hard for
unbounded b and FPT for each fixed b ≥ 0 [14], whereas, when parameterized
by treewidth t, it is FPT with parameters k and t, and W [2]-hard with only
parameter t [7]. A linear vertex kernel of b-BDD has been developed by general-
izing the Nemhauser-Trotter theorem for Vertex Cover to b-BDD [11,14,37].
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Besides, 2-BDD has been recently highlighted under the name of Co-Path/Cycle
Packing [10,11,15], mostly from the viewpoint of parameterized complexity, due
to its important applications in bioinformatics.

Feedback Vertex Set (FVS), being the problem of hitting all the cycles
existent in a given graph, is another fundamental problem in graph theory, and
the decision version is one of Karp’s NP-complete problems [25]. It is easy to
see that FVS generalizes VC and inherits not only the NP-hardness but also the
approximation hardness from it. While it was shown approximable within 2 [3,6]
matching the best constant factor for VC, much of the interest has shifted more
recently to the parameterized complexity and we now have enormous amount
of results on parameterization of FVS. In fact it was even stated in [9] that the
number of parameterized algorithms for FVS published then in the literature
exceeds the number of parameterized algorithms for any other single problem.

1.2 Notation and Definitions

For any graph G let V (G) and E(G) denote the vertex set and the edge set of
G, respectively. For an edge subset X ⊆ E of G = (V,E) the subgraph of which
edge set limited to X is denoted by G[X] = (V,X) and the one obtained by
deleting all the edges in X from G by G − X. The set of edges incident to some
vertex in X is denoted by δ(X) and δ(u) means δ({u}). The degree of a vertex
u in G is denoted by d(u) = |δ(u)|. The set of neighboring vertices of u, i.e.,
{v ∈ V | {u, v} ∈ E}, is denoted by Γ (u).

2 Power Node-Deletion and Submodular Set Cover

Let N be a finite set and f : 2N → R a real valued function defined on the
subsets of N . The set-function f is called submodular if the following inequality
holds for any two subsets X and Y of N :

f(X ∩ Y ) + f(X ∪ Y ) ≤ f(X) + f(Y ).

The formal framework of the Submodular Set Cover (SSC) problem is
described as follows. A problem instance consists of a finite set N , a nonnegative
cost cj associated with each element j ∈ N , and a nondecreasing submodular
function f : 2N → Z+ (for simplicity f is assumed to be nonnegative integer
valued). The problem is then that of finding a spanning set of minimum cost,
that is,

(SSC) min
S⊆N

⎧
⎨

⎩

∑

j∈S

cj

∣
∣
∣
∣
∣
∣
f(S) = f(N)

⎫
⎬

⎭
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Algorithm 1. Primal-dual algorithm PD for SSC
Initialize S = ∅, y = 0, l = 0
while S is not a solution of SSC (i.e., f(S) < f(N)) do

l ← l + 1

jl ← arg min
j∈N−S

{
wj − ∑

X:j �∈X,X �=S fX(j)yX

fS(j)

(

=
wj − ∑

1≤k≤l−1 fSk(j)ySk

fS(j)

)}

� Increase yS until the dual constraint corresponding to j becomes tight for some
j �∈ S

yS ← wjl − ∑
X:jl �∈X,X �=S fX(jl)yX

fS(jl)

(

=
wjl − ∑

1≤k≤l−1 fSk(jl)ySk

fS(jl)

)

Add jl into S (and let Sl ← S)

for k = l downto 1 do
if S − {jk} is a solution of SSC then remove jk from S

Output S

A primal-dual heuristic based on the following IP formulation of SSC is
known effective among others for a certain type of SSC:

min
∑

j∈N

wjxj

subject to:
(IP)

∑

j∈N−S

fS(j)xj ≥ fS(N − S) S ⊆ N

xj ∈ {0, 1} j ∈ N

and the dual of its linear relaxation:

max
∑

S⊆N

fS(N − S)yS

subject to:
(D)

∑

S:j �∈S

fS(j)yS ≤ wj j ∈ N

yS ≥ 0 S ⊆ N

where fS is the contraction of f onto N − S for any S ⊆ N , that is the function
defined on 2N−S s.t. fS(X) = f(X ∪ S) − f(S).

Definition 1. We say that X ⊆ N is a minimal solution for a SSC instance
(N, f, c) iff

– f(X) = f(N), i.e., X is a solution for (N, f, c), and
– f(X − {x}) < f(N), ∀x ∈ X.

The resulting primal-dual algorithm called PD is given in Algorithm 1, and its
performance can be estimated by the following combinatorial bound:
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Theorem 1 ([18]). The algorithm PD computes a SSC solution for (N, f, c)

approximating within a factor of max
{∑

j∈X fS({j})
fS(N − S)

}

, where max is taken

over any S ⊆ N and any minimal solution X for (N − S, fS).

2.1 Submodular Set Cover Formulation

Let us consider reducing PND(π) to SSC, starting with a simple observation.
Let Wu = {w(u, v) | {u, v} ∈ δ(u)} be the set of weights of edges “out-going”
from a vertex u. Then, we may assume w.l.o.g. that p(u) ∈ Wu ∪ {0} for any
solution p ∈ R

V of PND(π) since an assignment of any other value to p(u) yields
some redundancies. This observation allows us to consider power covering of a
graph to be the problem of covering edges by the weighted edge subsets of the
following form: Define δw(u, v) ⊆ δ(u) for {u, v} ∈ δ(u) to be the set of edges
{u, x} incident to u of which (u, x)-weight w(u, x) is no larger than w(u, v), i.e.,

δw(u, v) = {{u, x} ∈ δ(u) | w(u, x) ≤ w(u, v)}.

Extending the edge weight function w ∈ R
←→
E to the edge “subset” weight func-

tion, the weight w(δw(u, v)) of δw(u, v) is set equal to w(u, v).

Proposition 1. For G = (V,E) and w :
←→
E → R let N = {δw(u, v) | (u, v) ∈←→

E } and c(δw(u, v)) = w(δw(u, v)) = w(u, v), ∀(u, v) ∈ ←→
E . Suppose we have a

nondecreasing submodular function f : 2N → Z s.t.

G − ⋃
S = (V,E − ⋃

S) satisfies π if and only if f(S) = f(N).

for any G and S ⊆ N , where
⋃

S denotes
⋃

x∈S x =
⋃

δw(u,v)∈S δw(u, v) for
S ⊆ N . Then, PND(π) on an instance of (G,w) is equivalent to SSC on an
instance of (N, f, c). �
We say that (N, f, c) thus obtained from a PND(π) instance of (G,w) is a SSC
formulation of PND(π). Throughout the paper, N and c will be set as in Propo-
sition 1 from (G,w) regardless of π, whereas f needs to be suitably chosen
depending on specifics of π.

Let us consider a SSC formulation (N, f, c) of PND(π) and applying Theo-
rem 1 to it. To do so, we introduce the following “consistency condition” for a
submodular system (N, f):

Definition 2. For G = (V,E), N = {δw(u, v) | (u, v) ∈ ←→
E }, S ⊆ N, and X ⊆

N − S, let X\S denote the set {x \ ⋃
S | x ∈ X} and f\S be f defined on

G−⋃
S = (V,E−⋃

S) by the same formulation. We say that a SSC formulation
(N, f, c) of PND(π) is consistent if fS(X) = f\S(X\S) for any S ⊆ N and
X ⊆ N − S.

Corollary 1 (of Theorem 1). If (N, f, c) is a consistent SSC formulation of

PND(π), PND(π) can be approximated within a factor of max
{∑

j∈X f(j)
f(N)

}

by

PD, where max is taken over any graph G and any minimal solution X ⊆ N in
(N, f).
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Proof. Due to Theorem 1 we can say that the algorithm PD approximates

PND(π) within a factor of max
{∑

j∈X fS(j)
fS(N − S)

}

, where max is taken over any

graph G, any S ⊆ N and any minimal solution X in (N − S, fS). Since (N, f)
here is consistent, the SSC system (N−S, fS) coincides with the SSC formulation
((N − S)\S , f\S) of G − ⋃

S = (V,E − ⋃
S). Hence,

∑
j∈X fS(j)

fS(N − S)
=

∑
j\⋃

S∈X\S
f\S(j \ ⋃

S)

f\S((N − S)\S)

and max
{∑

j∈X fS(j)
fS(N − S)

}

can be upper bounded by max
{∑

j∈X f(j)
f(N)

}

by tak-

ing the latter max over any graph G and any minimal solution X for (N, f).
�

The minimality of a solution often plays a crucial role in the analysis of the
performance of PD, and the next is an easy but useful observation for minimal
solutions; any two members of N cannot together belong to any minimal solution
if both are subsets of δ(v) for some v ∈ V .

Observation 1. Suppose {u, v} and {u, v′} are two distinct edges in δ(u).
Then, δw(u, v) �∈ X or δw(u, v′) �∈ X if X is a minimal solution for (N, f)
(since either δw(u, v) ⊆ δw(u, v′) or δw(u, v′) ⊆ δw(u, v)).

It follows from Observation 1 that a minimal solution X contains at most one
subset of δ(u) for each u ∈ V .

3 Power (Partial) Vertex Cover

Let us start with the most basic problem of power node-deletion, Power Ver-
tex Cover (PVC). Angel et al. designed a 2-approximation algorithm for it
using the matching techniques [1]. We will show here that the same approxima-
tion bound follows from the current approach by simply setting f(S) = |⋃ S|
for S ⊆ N . Since f is clearly a nondecreasing submodular function and
f(S) = f(N) = |E| iff G − ⋃

S has no edge in it, (N, f, c) is a SSC formu-
lation of PVC. Moreover, since

fS(X) = f(X ∪ S) − f(S) =
∣
∣
∣
⋃

(X ∪ S)
∣
∣
∣ −

∣
∣
∣
⋃

S
∣
∣
∣ =

∣
∣
∣
⋃

X −
⋃

S
∣
∣
∣

for X ⊆ N − S, fS coincides with f on G − ⋃
S.

Theorem 2. PVC can be approximated within 2 by PD.

Proof. Since f is consistent, it suffices to show, due to Corollary 1, that
∑

x∈X

|x| ≤ 2 · f(N) = 2 · |E|

for any minimal solution X for G = (V,E). Since any edge of E can belong to
at most two members of X if X is minimal (see Observation 1), every edge of E
can be counted at most twice in

∑
x∈X |x|. �
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Consider next the partial vertex cover problem, in which a minimum weight
set of vertices covering k edges is sought for some specified integer k. We define f :
N → Z for PPartVC s.t. f(S) = min {|⋃ S| , k}. Then, f is clearly nondecreasing
and submodular. Besides,

fS(X) = min
{∣

∣
∣
⋃

(X ∪ S)
∣
∣
∣ , k

}
− min

{∣
∣
∣
⋃

S
∣
∣
∣ , k

}

=

{
0 if |⋃ S| ≥ k

min {|⋃ X − ⋃
S| , k − |⋃ S|} otherwise

for X ⊆ N − S. So, f is consistent and the problem reduces to SSC on (N, f).

Lemma 1. Let N = {δw(u, v) | (u, v) ∈ ←→
E }, and f(S) = min {|⋃ S| , k} for

S ⊆ N . Then,
∑

x∈X f({x}) ≤ 2 · f(N) for any minimal solution X ⊆ N for
SSC (N, f,w).

Proof. Since
⋃

N = E, f(N) = k. Suppose there exists x′ ∈ X with |x′| ≥ k.
Then, minimal X can contain no other element, and

∑
x∈X f(x) = min{|x′|, k} =

k ≤ 2k.
Assuming that |X| ≥ 2 and f({x}) = min{|x|, k} = |x|, ∀x ∈ X, let x \ X

denote x − ⋃
(X − x), that is, the set of edges covered only by x. Since X is a

minimal solution, X −x is not a solution for all x ∈ X, and hence, |⋃(X − x)| =
|⋃ X| − |x \ X| < k, ∀x ∈ X. Summing over all x’s in X,
∑

x∈X

(∣
∣
∣
⋃

X
∣
∣
∣ − |x \ X|

)
= |X|

∣
∣
∣
⋃

X
∣
∣
∣ −

∑

x∈X

|x \ X|

= |X|
(

∣
∣
∣
⋃

X
∣
∣
∣ −

∑

x∈X

|x \ X|
)

+ (|X| − 1)
∑

x∈X

|x \ X|

< k|X|
Multiplying both sides of the inequality by 2/|X|, we have

2k > 2

(
∣
∣
∣
⋃

X
∣
∣
∣ −

∑

x∈X

|x \ X|
)

+
2(|X| − 1)

|X|
∑

x∈X

|x \ X|

≥ 2

(
∣
∣
∣
⋃

X
∣
∣
∣ −

∑

x∈X

|x \ X|
)

+
∑

x∈X

|x \ X|

since |X| ≥ 2. Observe that x \ X and x′ \ X are disjoint for x, x′ ∈ X if
x �= x′, and that

⋃
x∈X(x \ X) is the set of edges covered only once by X while⋃

X − ⋃
x∈X(x \ X) is the set of those covered twice by X. Thus,

∑

x∈X

f({x}) =
∑

x∈X

|x| = 2

(
∣
∣
∣
⋃

X
∣
∣
∣ −

∑

x∈X

|x \ X|
)

+
∑

x∈X

|x \ X|,

and it follows that
∑

x∈X f({x}) ≤ 2k. �
It is immediate that

Theorem 3. PPartVC can be approximated within 2 by PD.
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4 Power Bounded Degree Deletion

For b-PBDD with π = “the degree of vertex v is bounded by b(v)”, let us define
f : 2N → Z+ s.t.

f(S) =
∑

v∈V

min {d(v;S), d(v) .− b(v)}

where
d(x;S) =

∣
∣
∣δ(x) ∩

⋃
S

∣
∣
∣

is the vertex degree of x ∈ V in G[
⋃

S] = (V,
⋃

S), and x .− y = max{x − y, 0}.
Easily, every vertex degree is ≤ b(v) in G − ⋃

S = (V,E − ⋃
S) if and only

if every vertex degree of v ∈ V in G[
⋃

S] = (V,
⋃

S) is ≥ d(v) .− b(v), which in
turn holds if and only if

f(S) =
∑

v∈V

(d(v) .− b(v)) = f(N).

To show that minS⊆N

{∑
s∈S w(s)

∣
∣ f(S) = f(N)

}
is actually an instance of

SSC for N and f thus defined, it remains to prove that f is a nondecreasing
submodular function on 2N .

Lemma 2. The set function f : 2N → Z+ is nondecreasing and submodular.

Proof. It suffices to show that d(x;S) at any fixed vertex x ∈ V , when seen as a
function on 2N , is nondecreasing and submodular. Clearly, d(x;S) is nondecreas-
ing at any x. To verify submodularity of d(x;S), the following characterization
of submodularity is helpful:

Proposition 2 (Lovász [31]). Let g be a set-function defined on all subsets of
N . Then g is submodular if and only if the derived set-functions

ga(X) = g(X ∪ {a}) − g(X) (X ⊆ N − {a})

are monotone decreasing for all a ∈ N . �
Letting a = δw(y, z) for any (y, z) ∈ ←→

E and S ⊆ T ⊆ N − {a}, consider
fa(S) and fa(T ) for f = d(x; ∗). The values of fa(S) and fa(T ) are increments
of the f -value when a is added to S and T , respectively; we may write

fa(S) = d(x;S ∪ {δw(y, z)}) − d(x;S)

=
∣
∣
∣δ(x) ∩

(⋃
S ∪ δw(y, z)

)∣
∣
∣ −

∣
∣
∣δ(x) ∩

⋃
S

∣
∣
∣

=
∣
∣
∣δw(y, z) ∩

(
δ(x) −

⋃
S

)∣
∣
∣

and
fa(T ) =

∣
∣
∣δw(y, z) ∩

(
δ(x) −

⋃
T

)∣
∣
∣

Since S ⊆ T ,
⋃

S ⊆ ⋃
T , and hence, fa(S) ≥ fa(T ) for all a ∈ N . This shows

that d(x; ∗) is submodular at any x ∈ V .
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Proposition 3 (see, e.g., [31]). Let g and h be submodular set-functions s.t.
g − h is nondecreasing (or nonincreasing). Then, min{g, h} is also submodular.

�
It follows that min{d(x; ∗), d(x) .− b(x)} is submodular since d(x; ∗) is nonde-
creasing, and so is d(x; ∗) − (d(x) .− b(x)).

Finally, f(S) =
∑

v∈V min {d(v;S), d(v) .− b(v)}, the sum of submodular
min{d(x; ∗), d(x) .−b(x)}’s, is submodular since the sum of submodular functions
is submodular. �

Therefore,

Proposition 4. b-PBDD on (G = (V,E), w) can be reduced to SSC on
(N, f : 2N → Z+, c), where N = {δw(u, v) | (u, v) ∈ ←→

E }, c(δw(u, v)) =
w(u, v), ∀(u, v) ∈ ←→

E , and f(S) =
∑

v∈V min{d(v;S), d(v) .− b(v)}, ∀S ⊆ N .
�

To apply Corollary 1 to b-PBDD we need the following lemma:

Lemma 3. Let N = {δw(u, v) | (u, v) ∈ ←→
E }, and define f : 2N → Z+ s.t.

f(S) =
∑

v∈V min{d(v;S), d(v) .− b(v)} for S ⊆ N . If bmax ≥ 1,

∑

x∈X

f({x}) ≤ (bmax + 1) f(N)

for any minimal solution X ⊆ N for the SSC instance (N, f, c).

Proof. Omitted due to space constraints. �
Once this key lemma is proven, it is straightforward to obtain the approximation
bound of PD for b-PBDD:

Theorem 4. b-PBDD can be approximated within max{2, bmax + 1} by PD.

Proof. To apply Corollary 1 to b-PBDD, we need to verify that f defined as
above is consistent (of which proof is omitted). The approximation bound guar-
anteed by Corollary 1 refers to the ratio of

∑
j∈X fS({j}) and fS(N − S), and

(N − S, fS , c′) is a SSC instance corresponding to the b-PBDD instance on the
subgraph G − ⋃

S of G. This ratio is no larger than (bmax + 1) on an arbitrary
graph according to Lemma 3 as long as bmax ≥ 1. Besides, it can be verified, by
the essentially same analysis as for PVC, that this ratio is no larger than 2 when
bmax = 0. Hence, the approximation bound of PD for b-PBDD is as claimed. �

4.1 Combination of Greedy and Local Ratio

It is well-known that the greedy algorithm as given in Algorithm 2 is quite
effective for approximating SSC.
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Algorithm 2. Greedy algorithm Greedy for SSC
Initialize S = ∅
while S is not a solution of SSC (i.e., f(S) < f(N)) do

Add arg min
j∈N−S

{
c(j)

f(S ∪ {j}) − f(S)

}

to S

Output S

Theorem 5 (Wolsey [36]). When f is integer-valued with f(∅) = 0, the algo-

rithm Greedy approximates SSC (N, f,w) within a factor of H

(

max
j∈N

f({j})
)

,

where H(k) =
k∑

i=1

1
i

for a positive integer k.

The local ratio method is another standard technique for approximating
general ND(π). For a graph G = (V,E) and a vertex u ∈ V , let Su denote
the subgraph u-star of G centered at u; that is, Su = (V (Su), E(Su)) =
({u} ∪ Γ (u), {{u, v} | v ∈ Γ (u)}). If d(u) = |Γ (u)| > b(u) then Su is a forbidden
subgraph for π = “degree of every vertex v is bounded by b(v)”. Consider the
edge weight function w′ on

←→
E for such a forbidden graph Su, corresponding to

the assignment of

p(v) =

⎧
⎪⎨

⎪⎩

ε(d(u) − b(u)) if v = u,
ε if v ∈ Γ (u),
0 otherwise,

s.t.

w′(e) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε(d(u) − b(u)) if e = (u, v) ∈ ←→
E (Su),

ε if e = (v, u) ∈ ←→
E (Su),

min{ε, w(v, x)} if e = (v, x) �∈ ←→
E (Su), v ∈ Γ (u),

0 otherwise.

(1)

where a positive constant ε is taken as large as possible without w′(e) exceeding
w(e) at any e ∈ ←→

E .
Following the approach of Okun and Barak [34], we apply the local ratio

approximation to forbidden u-stars Su, as long as there remains such Su with
relatively large d(u) − b(u). When such Su’s are exhausted, we switch to the
greedy method Greedy and complete our approximation. The point at which we
switch from the local ratio approximation to the greedy one is where d(u)/b(u) =
1 + 1/ log b(u). In the first half where d(u)/b(u) > 1 + 1/ log b(u) at some u-star
Su, we apply the local ratio algorithm to Su. Then, in the second half where
d(v)/b(u) ≤ 1 + 1/ log b(u) at every vertex v, we initiate running Greedy. While
all the details are omitted here due to space constraints, the resulting algorithm
Comb as given in Algorithm 3 can be shown to deliver improved approximation:

Theorem 6. b-PBDD can be approximated by Comb within 2 + log bmax when
bmax > 1, and within 7/3 when bmax = 1.
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Algorithm 3. Combined algorithm Comb for b-PBDD
Input: (G = (V, E), w)

Initialize: F = ∅
while ∃u ∈ V s.t. (d(u)/b(u) > 1 + 1/ log b(u) with b(u) ≥ 2) or (d(u) > 3 with
b(u) = 1) or (d(u) > 0 with b(u) = 0) do

ε ← min
{⋃

v∈Γ (u){w(u, v), w(v, u)}
}

Define w′ according to eq. (1)

F ′ ← {(u, v) ∈ ←→
E | w′(u, v) = w(u, v)}

w ← w − w′

F ← F ∪ F ′

E ← E − F ′

while ∃u ∈ V with d(u) > b(u) do
Run Greedy

5 Power Feedback Vertex Set

Letting again N = {δw(u, v) | (u, v) ∈ ←→
E } for (G = (V,E), w), we now turn

to PFVS, that is PND(π) with π = “the graph is acyclic”. Let M(G) = (E, r)
be the cycle matroid of G = (V,E) and Md(G) = (E, rd) be the dual matroid
of M(G), where r : 2E → Z+ and rd : 2E → Z+ are the rank functions of
M(G) and Md(G), respectively.

Proposition 5. Define f : 2N → Z+ s.t. f(S) = rd(
⋃

S), ∀S ⊆ N . Then,
PFVS on (G = (V,E), w) can be formulated by SSC (N, f, c), where c(δw(u, v)) =
w(u, v),∀(u, v) ∈ ←→

E .

Proof. Since rd is nondecreasing and submodular, so is f . The set
⋃

S of edges
covered by S is spanning in the dual matroid Md(G) iff f(S) = rd(

⋃
S) =

rd(E) = f(N), and
⋃

S is spanning in Md(G) iff E − ⋃
S is independent in

M(G), the cycle matroid of G, that is, the graph G − ⋃
S = (V,E − ⋃

S)
is acyclic. Therefore, (N, f, c) is a SSC formulation of PFVS on (G,w) when
c(δw(u, v)) = w(u, v), ∀(u, v) ∈ ←→

E . �
Lemma 4. Let f(S) = rd(

⋃
S) for S ⊆ N . Then,

∑

x∈X

f({x}) =
∑

δw(u,v)∈X

rd(δw(u, v)) ≤ 2 · f(N) = rd(
⋃

N) = rd(E)

for any minimal solution X ⊆ N for the SSC instance (N, f, c).

Proof. Omitted due to space constraints. �
Theorem 7. PFVS can be approximated within 2 by PD.

Proof. To apply Corollary 1 to PFVS, we need to verify that f defined as above
is consistent (of which proof is omitted). It follows from Corollary 1 and Lemma 4
that PFVS can be approximated within 2 by PD. �
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Abstract. Count-Min sketch is a hashing-based data structure to rep-
resent a dynamically changing associative array of counters. We analyse
the counting version of Count-Min under a stronger update rule known
as conservative update, assuming the uniform distribution of input keys.
We show that the accuracy of conservative update strategy undergoes a
phase transition, depending on the number of distinct keys in the input
as a fraction of the size of the Count-Min array. We prove that below
the threshold, the relative error is asymptotically o(1) (as opposed to
the regular Count-Min strategy), whereas above the threshold, the rela-
tive error is Θ(1). The threshold corresponds to the peelability threshold
of random k-uniform hypergraphs. We demonstrate that even for small
number of keys, peelability of the underlying hypergraph is a crucial
property to ensure the o(1) error. To our knowledge, this relationship
has not been observed previously. Finally, we provide experimental data
on the behavior of the average error for Zipf’s distribution compared
with the uniform one.

1 Introduction

Count-Min sketch is a hash-based data structure to represent a dynamically chang-
ing associative array a of counters in an approximate way. The array a can be seen
as a mapping from some set K of keys to N, where K is drawn from a (large) uni-
verse U . The goal is to support point queries about the (approximate) current value
of a(p) for a key p. Count-Min is especially suitable for the streaming framework,
when counters associated to keys are updated dynamically. That is, updates are
(key,value) pairs (p, �) with the meaning that a(p) is updated to a(p) + �.

Count-Min sketch was proposed in [13], see e.g. [11] for a survey. A similar
data structure was introduced earlier in [10] named Spectral Bloom filter, itself
closely related to Counting Bloom filters [20]. The difference between Count-
Min sketch and Spectral Bloom filter is marginal: while a Count-Min sketch
requires hash functions to have disjoint codomains (rows of Count-Min matrix),
a Spectral Bloom filter has all hash functions mapping to the same array. This
difference is the same as between partitioned [2] and regular Bloom filters. In
this paper, we will deal with the Spectral Bloom filter version but will keep the
term Count-Min sketch as more common in the literature.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Count-Min sketch supports negative update values � provided that at each
moment, each counter a(p) remains non-negative (so-called strict turnstile model
[27]). When updates are positive, the Count-Min update algorithm can be mod-
ified to a stronger version leading to smaller errors in queries. This modification,
introduced in [18] as conservative update, is mentioned in [11], without any for-
mal analysis given in those papers. This variant is also discussed in [10] under
the name minimal increase, where it is claimed that it decreases the probability
of a positive error by a factor of the number of hash functions, but no proof is
given. We discuss this claim in the concluding part of this paper.

The case of positive updates is widespread in practice. In particular, a very
common instance is counting where all update values are 1. This task occurs
in different scenarios in network traffic monitoring, as well as other applications
related to data stream mining [18]. In bioinformatics, we may want to maintain,
on the fly, multiplicities of fixed-length words occurring in a big sequence dataset
[3,29,33]. We refer to [16] for more examples of applications.

While it is easily seen that the error in conservative update can only be
smaller than in Count-Min, obtaining more precise bounds is a challenging prob-
lem. Count-Min guarantees, with high probability, that the additive error can be
bounded by ε‖a‖1 for any ε, where ‖a‖1 is the L1-norm of a [13]. In the count-
ing setting, ‖a‖1 is the length of the input stream which can be very large, and
therefore this bound provides a weak guarantee in practice, unless the distribu-
tion of keys is very skewed and queries are made on frequent keys (heavy hitters)
[8,12,27]. It is therefore an important practical question to analyse the improve-
ment provided by the conservative update strategy compared to the original
Count-Min sketch.

To our knowledge, the first attempt towards this goal was made in [7], under
assumption that all

(
n
k

)
counter combinations are equally likely at each step (n

size of the Count-Min array, k number of hash functions) which amounts to
assuming uniform distribution on

(
n
k

)
input keys, each hashed to a distinct com-

bination of counters. Thus, the number of distinct keys in the input is assumed
to be much larger than the sketch size n. It was observed that the behavior of
this model with uniformly distributed keys has important implications to non-
uniformly distributed input. Another approach to bounding the error proposed
in [16] is based on a simulation of spectral Bloom filters by a hierarchy of ordinary
Bloom filters. However, the bounds provided are not explicit but are expressed
via a recursive relation based on false positive rates of involved Bloom filters.
Recent works [5,6] propose formulas for computing error bounds depending on
key probabilities assumed independent but not necessarily uniform, in particular
leading to an improved precision bounds for detecting heavy hitters.

In this paper, we provide a probabilistic analysis of the conservative update
scheme for counting under the assumption of uniform distribution of keys in
the input. Our main result is a demonstration that the error in count estimates
undergoes a phase transition when the number of distinct keys grows relative to
the size of the Count-Min array. We show that the phase transition threshold
corresponds to the peelability threshold for random k-uniform hypergraphs. For
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the subcritical regime, when the number of distinct keys is below the threshold,
we show that the relative error for a randomly chosen key tends to 0 asymptoti-
cally, with high probability. This contrasts with the regular Count-Min algorithm
producing a relative error shown to be at least 1 with constant probability.

For the supercritical regime, we show that the average relative error is lower-
bounded by a constant (depending on the number of distinct keys), with high
probability. We prove this result for k = 2 and conjecture that it holds for
arbitrary k as well. We provide computer simulations showing the growth of the
expected relative error after the threshold, with a distribution showing a peculiar
multi-modal shape. In particular, keys with small (or zero) error still occur after
the threshold, but their fraction quickly decreases when the number of distinct
keys grows.

After defining Count-Min sketch and conservative update strategy in Sect. 2
and introducing hash hypergraphs in Sect. 3, we formulate the conservative
update algorithm (or regular Count-Min, for that matter) in terms of a hyper-
graph augmented with counters associated to vertices. In Sect. 4, we state our
main results and illustrate them with a series of computer simulations. In Sect. 5
we outline the proof of our main result for the subcritical regime and provide a
proof for the supercritical regime.

In addition, in Sect. 6, we study a specific family of 2-regular k-hypergraphs
that are sparse but not peelable. For such graphs we show that while the relative
error of every key is 1 with the regular Count-Min strategy, it is 1/k + o(1) for
conservative update. While this result is mainly of theoretical interest, it illus-
trates that the peelability property is crucial for the error to be asymptotically
vanishing. Finally, in Sect. 7, we turn to non-uniform distributions and provide
a brief experimental analysis of the behavior of the average error for Zipf’s dis-
tribution compared with the uniform one. Missing full proofs and additional
experimental data can be found in [22].

2 Count-Min and Conservative Update

We consider a (counting version of) Count-Min sketch to be an array A of size
n of counters initially set to 0, together with hash functions h1, . . . , hk mapping
keys from a given universe to [1..n]. To count key occurrences in a stream of
keys, regular Count-Min proceeds as follows. To process a key p, each of the
counters A[hi(p)], 1 ≤ i ≤ k, is incremented by 1. Querying the occurrence
number a(p) of a key p returns the estimate âCM (p) = min1≤i≤k{A[hi(p)]}. It
is easily seen that âCM (p) ≥ a(p). A bound on the overestimate of a(p) is given
by the following result adapted from [13].

Theorem 1 ([13]). For ε > 0, δ > 0, consider a Count-Min sketch with k =
�ln(1δ )� and size n = k e

ε . Then âCM (p) − a(p) ≤ εN with probability at least
1 − δ, where N is the size of the input stream.

While Theorem 1 is useful in some situations, it has a limited utility as it bounds
the error with respect to the stream size which can be very large.
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Conservative update strengthens Count-Min by increasing only the smallest
counters among A[hi(p)]. Formally, for 1 ≤ i ≤ k, A[hi(p)] is incremented by
1 if and only if A[hi(p)] = min1≤j≤k{A[hj(p)]} and is left unchanged other-
wise. The estimate of a(p), denoted âCU (p), is computed as before: âCU (p) =
min1≤i≤k{A[hi(p)]}. It can be seen that âCU (p) ≥ a(p) still holds, and that
âCU (p) ≤ âCM (p). The latter follows from the observation that on the same
input, an entry of counter array A under conservative update can never get
larger than the same entry under Count-Min.

3 Hash Hypergraphs and CU Process

With a counter array A[1..n] and hash functions h1, ..., hk we associate a k-
uniform hash hypergraph H = (V,E) with vertex-set V = {1, ..., n} and edge-set
E = {{h1(p), ..., hk(p)}} for all distinct keys p. Let Hk

n,m be the set of k-uniform
hypergraphs with n vertices and m edges. We assume that the hash hypergraph
is a uniformly random Erdős-Rényi hypergraph in Hk

n,m, which we denote by
Hk

n,m, where m is the number of distinct keys in the input (for k = 2, we use the
notation Gn,m = H2

n,m). Even if this property is not granted by hash functions
used in practice, it is a reasonable and commonly used hypothesis to conduct
the analysis of sketch algorithms.

Below we show that the behavior of a sketching scheme depends on the
properties of the associated hash hypergraph. It is well-known that depending
on the m/n ratio, many properties of Erdős-Rényi (hyper)graphs follow a phase
transition phenomenon [21]. For example, the emergence of a giant component,
of size O(n), occurs with high probability (hereafter, w.h.p.) at the threshold
m
n = 1

k(k−1) [26].
Particularly relevant to us is the peelability property. Let H = (V,E) be a

hypergraph. The peeling process on H is as follows. We define H0 = H, and
iteratively for i ≥ 0, we define Vi to be the set of leaves (vertices of degree 1)
or isolated vertices in Hi, Ei to be the set of edges of Hi incident to vertices in
Vi, and Hi+1 to be the hypergraph obtained from Hi by deleting the vertices
of Vi and the edges of Ei. A vertex in Vi is said to have peeling level i. The
process stabilizes from some step I, and the hypergraph HI is called the core of
H, which is the largest induced sub-hypergraph whose vertices all have degree
at least 2. If HI is empty, then H is called peelable.

It is known [30] that peelability undergoes a phase transition. For k ≥ 3, there
exists a positive constant λk such that, for λ < λk, the random hypergraph Hk

n,λn

is w.h.p. peelable as n → ∞, while for λ > λk, the core of Hk
n,λn has w.h.p. a size

concentrated around αn for some α > 0 that depends on λ. The first peelability
thresholds are λ3 ≈ 0.818, λ4 ≈ 0.772, etc., λ3 being the largest.

For k = 2, for λ < 1/2, w.h.p. a proportion 1 − o(1) of vertices are in trees
of size O(1), (and a proportion o(1) of the vertices are in the core), while for
λ > 1/2, the core size is w.h.p. concentrated around αn for α > 0 that depends
on λ [32].
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We note that properties of hash hypergraphs determine the behavior of some
other hash-based data structures, such as Cuckoo hash tables [31] and Cuckoo
filters [19], Minimal Perfect Hash Functions and Static Functions [28], Invert-
ible Bloom filters [24], and others. We refer to [34] for an extended study of
relationships between properties of hash hypergraphs and some of those data
structures. In particular, peelability is directly relevant to certain constructions
of Minimal Perfect Hash Functions as well as to good functioning of Invertible
Bloom filters. However, its relation to Count-Min sketches is less direct and has
not been observed earlier.

The connection to hash hypergraphs allows us to reformulate the Count-Min
algorithm with conservative updates as a process, which we call CU-process, on
a random hypergraph Hk

n,m, where n,m, k correspond to counter array length,
number of distinct keys, and number of hash functions, respectively. Let H =
(V,E) be a hypergraph. To each vertex v we associate a counter cv initially set to
0. At each step t ≥ 1, a CU-process on H chooses an edge e = {v1, . . . , vk} ∈ E
in H, and increments by 1 those cvi

which verify cvi
= min1≤j≤k cvj

. For t ≥ 0
and v ∈ V , cv(t) will denote the value of the counter cv after t steps, and oe(t)
the number of times edge e ∈ E has been drawn in the first t steps. The counter
ce(t) of an edge e = {v1, . . . , vk} is defined as ce(t) = min1≤i≤k cvi

(t). Clearly,
for each t and each e, oe(t) ≤ ce(t). The relative error of e at time t is defined as
Re(t) = ce(t)−oe(t)

oe(t)
. The following lemma can be easily proved by induction on t.

Lemma 1. Let H = (V,E) be a hypergraph on which a CU-process is run. At
every step t, for each vertex v, there is at least one edge e incident to v such
that ce(t) = cv(t).

Observe that, when H is a graph (k = 2), Lemma 1 is equivalent to the property
that vertex counters cannot have a strict local maximum, i.e., at every step t,
each vertex v has at least one neighbour u such that cu(t) ≥ cv(t).

4 Phase Transition of the Relative Error

4.1 Main Results

Let H = (V,E) be a hypergraph, |V | = n, |E| = m. Let N ≥ 1. We consider two
closely related models of input to perform the CU-process. In the N -uniform
model, the CU process is performed on a random sequence of keys (edges in E)
of length N ·m, each key being drawn independently and uniformly in E. In the
N -balanced model, the CU-process is performed on a random sequence of length
N · m, such that each e ∈ E occurs exactly N times, and the order of keys is
random. In other words, the input sequence of keys is a random permutation
of the multiset made of N copies of each key of E. Clearly, both models are
very close, since the number of occurrences of any key in the N -uniform model
is concentrated around N (with Gaussian fluctuations of order

√
N) as N gets

large. For both models, we use the notation c
(N)
v = cv(Nm) for the resulting

counter of v ∈ V , o
(N)
e = oe(Nm) for the resulting number of occurrences of
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e ∈ E, c
(N)
e = ce(Nm) for the resulting counter of e ∈ E, and R

(N)
e = Re(Nm) =

(c(N)
e −o

(N)
e )/o

(N)
e for the resulting relative error of e. In the N -balanced model,

since each key e ∈ E occurs N times, we have R
(N)
e = (c(N)

e − N)/N .
Our main result is the following.

Theorem 2 (subcritical regime). Let k ≥ 2, and let λ < λk, where λ2 = 1/2,
and for k ≥ 3, λk is the peelability threshold as defined in Sect. 3. Consider a CU-
process on a random hypergraph Hk

n,λn under either N -uniform or N -balanced

model, and consider the relative error R
(N)
e of a random edge in Hk

n,λn. Then

R
(N)
e = o(1) w.h.p., as both n and N grow1.

Note that with the regular Count-Min algorithm (see Sect. 2), in the N -
balanced model, the counter value of a node v is c̃

(N)
v = N · deg(v), and the

relative error R̃
(N)
e of an edge e = (v1, . . . , vk) is always (whatever N ≥ 1) equal

to min(deg(v1), . . . ,deg(vk)) − 1, and is thus always a non-negative integer. For
fixed k ≥ 2 and λ > 0, and for a random edge e in Hk

n,λn, the probability that all
k vertices belonging to e have at least one incident edge apart from e converges
to a positive constant c(λ, k) = (1 − e−kλ)k. Therefore, R̃e is a nonnegative
integer whose probability to be non-zero converges to c(λ, k). Thus, Theorem 2
ensures that, for λ < λk, conservative updates lead to a drastic decrease of the
error, from Θ(1) to o(1).

For a given hypergraph H = (V,E) with m edges, we define errN (H) =
1
m

∑
e∈E R

(N)
e the average error over the edges of H. Formally, Theorem 2

does not imply that errN (H) is o(1), as it might possibly happen that a
small fraction of edges have very large errors, yielding errN (H) larger than
o(1). However, we believe that this is not the case. From the previous remark,
it follows that the error of an edge e = (v1, . . . , vk) is upper-bounded by
min(deg(v1), . . . ,deg(vk)) − 1. Since the expected maximal degree in Hk

n,λn

grows very slowly with n, one can expect that any set of o(n) edges should have
a contribution o(1) w.h.p.. This is also supported by experiments given in the
next section.

Based on Theorem 2 and the above discussion, we propound that a phase
transition occurs for the average error, in the sense that it is o(1) in the subcritical
regime λ < λk, and Θ(1) in the supercritical regime λ > λk, w.h.p.. Regarding
the supercritical regime, we are able to show that this indeed holds for k = 2 in
the N -balanced model.

Theorem 3 (supercritical regime, case k = 2). Let λ > 1/2. Then there
exists a positive constant f(λ) such that, in the N -balanced model, errN (Gn,λn) ≥
f(λ) w.h.p., as n grows2.

1 Formally, for any ε > 0, there exists M such that P(R
(N)
e ≤ ε) ≥ 1 − ε if n ≥ M and

N ≥ M .
2 Formally, for any ε > 0, there exists M such that P(errN (Gn,m) ≥ f(λ)) ≥ 1 − ε if

N ≥ 1 and n ≥ M .
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Our proof of Theorem 3 extends to k ≥ 3 for λ > λ̃k, where λ̃k is the threshold
beyond which the giant component of Hk

n,λn has w.h.p. more edges than vertices.

The analysis given in [4] ensures that λ̃k exists and is explicitly computable,
λ̃3 ≈ 0.94, λ̃4 ≈ 0.98. We believe however that the peelability threshold λk

constitutes the right critical value in Theorem 3 for k ≥ 3 as well, which is
supported by simulations presented below. Proving this would require a different
kind of argument than we use in our proof though.

4.2 Simulations

Here we provide several experimental results illustrating the phase transition
stated in Theorems 2 and 3. Figure 1 shows plots for the average relative error
errN (Hk

n,m) as a function of λ = m/n, for k ∈ {2, 3, 4} for regular Count-Min and
the conservative update strategies. Experiments were run for n = 1, 000 with the
N -uniform model (each edge drawn independently with probability 1/m) and
N = 50, 000 (number of steps N · |E|). For each λ, an average is taken over 15
random graphs.

Fig. 1. Average relative error as a function of λ = m/n for regular Count-Min (orange)
and conservative update (blue), for k ∈ {2, 3, 4}. Vertical line shows the peelability
threshold. (Color figure online)

The phase transitions are clearly seen to correspond to the critical threshold
0.5 for k = 2, and, for k ∈ {3, 4}, to the peelability thresholds λ3 ≈ 0.818,
λ4 ≈ 0.772. Observe that the transition looks sharper for k ≥ 3, which may
be explained by the fact that the core size undergoes a discontinuous phase
transition for k ≥ 3, as shown in [30] (e.g. for k = 3, the fraction of vertices in
the core jumps from 0 to about 0.13).

For the supercritical regime, we experimentally studied the empirical distri-
bution of individual relative errors, which turns out to have an interesting multi-
modal shape for intermediate values of λ. Typical distributions for k ∈ {2, 3}
are illustrated in Fig. 2 where each point corresponds to an edge, and the edges
are randomly ordered along the x-axis. Each plot corresponds to an individual
random graph.

When λ grows beyond the peelability threshold, a fraction of edges with small
errors still remains but vanishes quickly: these include edges incident to at least
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one leaf (these have error 0) and peelable edges (these have error o(1)), as follows
from our proof of Theorem 2. For intermediate values of λ, the distribution
presents several modes: besides the main mode (largest concentration on plots of
Fig. 2), we observe a few other concentration values which are typically integers.
While this phenomenon is still to be analysed, we explain it by the presence
of certain structural graph motifs that involve disparities in node degrees. Note
that the fraction of values concentrated around the main mode is dominant:
for example, for k = 3, λ = 3 (Fig. 2d), about 90% of values correspond to the
main mode (≈ 3.22). Finally, when λ becomes larger, these “secondary modes”
disappear, and the distribution becomes concentrated around a single value.
More data about concentration is given in the full version [22].

Fig. 2. Distribution of relative errors of individual edges shown in a random order
along x-axis.
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Our analysis suggests that a positive average error in the supercritical regime
is due to a large core — a non-peelable subgraph with Θ(n) nodes — which
exists in this regime. To test this claim (for k = 3), we simulated the CU-process
on sparse random non-peelable 3-hypergraphs, namely 2-regular 3-hypergraphs
with 2n edges and 3n vertices (n parameter). These are sparsest possible non-
peelable 3-hypergraphs, with degree 2 of each vertex. In a separate experiment,
we observed that the average error for such graphs is concentrated around a
constant value of ≈ 0.217. While these graphs fall to the subcritical regime
(λ = 2/3 < λ3 ≈ 0.818), they still generate an average error bounded away
from 0. Along with our results of Sect. 6, this supports that peelability is crucial
for the error to be o(1), and the presence of large non-peelable subgraphs results
in a Θ(1) error.

5 Proofs of the Main Results

5.1 Sketch of Proof of Theorem 2

Here we only provide main steps to show Theorem 2, the full proof is given in
[22]. Theorem 2 relies on properties of random hypergraphs.

Case k = 2 corresponds to Erdős-Rényi random graphs Gn,λn [17] which have
been extensively studied [21]. In particular, it is well known that when λ < 1/2
and n gets large, Gn,λn is, w.h.p., a union of small connected components most of
which are constant-size trees. That is, a random edge in Gn,λn is, w.h.p., in a tree
of size O(1). Thus, the proof amounts to showing that, for a fixed tree T and an
edge e ∈ T , we have w.h.p. R

(N)
e = o(1) (as N gets large), both in the N -uniform

and in the N -balanced model (performed on T alone). Let m be the number of
edges in T . We first give a proof for the N -uniform model. Since o

(N)
e follows

a Bin(Nm, 1/m) distribution, we have w.h.p. o
(N)
e /N = 1 + o(1). Hence, it is

enough to prove that, for each vertex v ∈ T , we have w.h.p. c
(N)
v /N = 1 + o(1).

The proof is done by induction on the peeling level i of v. If i = 0, then v

is a leaf. Letting e be its incident edge, we have c
(N)
v = o

(N)
e , hence w.h.p.

c
(N)
v /N = 1+o(1). To let the induction work for i ≥ 1, we actually have to carry

a stronger property. Namely, we show that for each v ∈ T , there exist absolute
positive constants av, bv such that, for any N ≥ 1 and x > 0, we have

P

(
maxt∈[0..Nm]|cv(t) − t/m| ≥ x

√
N

)
≤ av exp(−bvx2). (1)

The proof of (1) for v at level 0 follows from the fact that, for each e ∈ T (in
particular, the one incident to v), o

(N)
e follows a Bin(Nm, 1/m) distribution,

so that one can apply Hoeffding’s inequality combined with Doob’s maximal
martingale inequality. This yields (1) for v at level 0, where av = 2 and bv = 2/m.
For v at level i ≥ 1, we have the property that there is an edge e incident to v
such that all the other neighbors v1, . . . , vh of v (i.e., the neighbors not incident
to e) have level smaller than i, and thus satisfy (1) by induction. We then have
to check that cv(t) stays close to t/m for t ∈ [0..Nm] (in the sense of (1)).
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For the lower bound part, we use the fact that cv(t) ≥ oe(t), and that oe(t)
stays close to t/m. For the upper bound part we use the following argument.
Letting dv(t) = max(cv1(t), . . . , cvh

(t)), we can show that if cv(t0) ≥ dv(t0) + M
at some time t0, then there exists t′ ≤ t0 such that |oe(t′) − t′/m| ≥ M/4 or
|dv(t′) − t′/m| ≥ M/4 (the crucial point to establish this property, specific to
the CU-process, is that in the regime where cv(t) > dv(t), any step where cv(t)
increases occurs when picking e). Since oe(t) and dv(t) stay close to t/m (for dv(t)
we use induction on i, and the union bound), this property ensures that cv(t) is
unlikely to exceed t/m. Given the lower bound part, cv(t) hence stays close to
t/m (in the sense of (1)). Estimate (1) then guarantees that, in the N -uniform
model, we have |c(N)

v /N − 1| ≤ N−1/3 with probability exponentially close to 1.
The same holds in the N -balanced model, by noting that the N -balanced model
is the N -uniform model conditioned on the event that each edge is chosen N
times, which occurs with a probability of order N−m/2 (thus, any event that is
almost sure with exponential rate in the N -uniform model is also almost sure
with exponential rate in the N -balanced model).

The proof for k ≥ 3 is analogous but requires some more ingredients. An
additional difficulty is that, for λ < λk, a random edge e in Hk

n,λn may be in
the giant component (if λ ∈ ( 1

k(k−1) , λk)). However, we rely on the fact that the
peeling level of e is O(1) w.h.p., and prove that for a vertex v of bounded level,
we have c

(N)
v /N = 1 + o(1) w.h.p. as N → ∞, where the o(1) term does not

depend on the size of the giant component.

5.2 Proof of Theorem 3

The excess of a hypergraph H is exc(H) = |E| − |V |.
Lemma 2. Let H = (V,E) be a k-uniform hypergraph. Then, for the N -balanced
model, we have

∑
e∈E R

(N)
e ≥ 1

k exc(H).

Proof. During the CU process, each time an edge is drawn, the counter of at
least one of its extremities is increased by 1. Hence

∑
v∈V c

(N)
v ≥ N |E|. Hence,

with the notation R
(N)
v := c

(N)
v /N − 1, we have

∑
v∈V R

(N)
v ≥ exc(H). Now,

by Lemma 1, for each v ∈ V , there exists an edge ev incident to v such that
c
(N)
ev = c

(N)
v (if several incident edges have this property, an arbitrary one is

chosen). Hence,
∑

v∈V R
(N)
ev ≥ exc(H). Note that, in this sum, every edge occurs

at most k times (since it has k extremities), thus
∑

e∈E R
(N)
e ≥ 1

k exc(H). �
For k = 2 and λ > 1/2, it is known [32, Theorem 6] that there is an explicit

constant f̃(λ) > 0 such that the excess of the giant component G′ = (V ′, E′)
of Gn,λn is concentrated around f̃(λ)n, with fluctuations of order

√
n. Thus,

exc(G′) ≥ 1
2 f̃(λ)n w.h.p. as n → ∞. Hence, by Lemma 2, w.h.p. as n → ∞ (and

for any N ≥ 1), we have

errN (Gn,λn) ≥ 1
λn

∑

e∈E′
R(N)

e ≥ 1
2λn

exc(G′) ≥ 1
4λ

f̃(λ) =: f(λ),

which implies Theorem 3.
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6 Analysis for Some Non-peelable Hypergraphs

Analysing the asymptotic behaviour of the relative error of the CU-process on
arbitrary hypergraphs seems to be a challenging task, even if we restrict our-
selves to N -uniform and N -balanced models, as we do in this paper. Based on
simulations, we expect that, for a fixed connected k-hypergraph H = (V,E),
and for v ∈ V , we have c

(N)
v /N = Cv + o(1) w.h.p. as N → ∞, for an explicit

constant Cv ∈ [1,deg(v)]. Since the number of increments at each step lies in
[1..k], constants Cv must verify 1 ≤ 1

|E|
∑

v∈V Cv ≤ k, where 1
|E|

∑
v∈V Cv can

be seen as the average number of increments at a step. If H is peelable, then
Theorem 2 implies that this concentration holds, with Cv = 1. We expect that,
if no vertex of H is peelable, and if H is “sufficiently homogeneous”, then the
constants Cv should be all equal to the same constant C > 1, and thus the
relative error R

(N)
e of every edge is concentrated around C − 1 > 0 w.h.p. as

N → ∞. This, in particular, is supported by an experiment reported at the end
of Sect. 4.2.

In this Section, we show that this is the case for a family of regular hyper-
graphs which are very sparse (O(

√|V |) edges) but have a high order (an edge
contains O(

√|V |) vertices). The dual of a hypergraph H is the hypergraph H ′

where the roles of vertices and edges are interchanged: the vertices of H ′ are
the edges of H, and the edges of H ′ are the vertices of H so that an edge of
H ′ corresponding to a vertex v of H contains those vertices that correspond to
edges incident to v in H.

Here we consider the hypergraph K ′
n dual to the complete graph Kn. It is

a (n − 1)-uniform hypergraph with n edges and
(
n
2

)
vertices, all of degree 2,

therefore no vertex is peelable. For a fixed n ≥ 3, we consider a CU-process on
K ′

n, in the N -balanced model. Note that with regular Count-Min, the relative
error of every edge is 1, since all vertices have degree 2 and c

(N)
v = 2N for every

vertex v of K ′
n. We prove that with conservative updates, the relative error is

reduced to a smaller constant 1/(n − 1). The proof is omitted and can be found
in [23].

Theorem 4. For any fixed n ≥ 2, in the N -uniform model (resp. in the N -
balanced model), the counter of each vertex v ∈ K ′

n satisfies c
(N)
v /N = n/(n −

1)+ o(1) w.h.p. as N → ∞. Hence, the relative error R
(N)
e of each edge e in K ′

n

satisfies R
(N)
e = 1/(n − 1) + o(1) w.h.p. as N → ∞.

7 Non-uniform Distributions

An interesting and natural question is whether the phase transition phenomenon
holds for non-uniform distributions as well. This question is of practical impor-
tance, as in many practical situations keys are not distributed uniformly. In
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particular, Zipfian distributions often occur in various applications and are a
common test case for Count-Min sketches [6,7,9,14,16]. We mention a recent
learning-based variant of CountMin [25] (learning heavy hitters) and its study
under a Zipfian distribution [1,15].

In Zipf’s distributions, key probabilities in descending order are proportional
to 1/iβ , where i is the rank of the key and β ≥ 0 is the skewness parameter.
Note that for β = 0, Zipf’s distribution reduces to the uniform one. It is therefore
a natural question whether the phase transition occurs for Zipf’s distributions
with β > 0.

One may hypothesize that the answer to the question should be positive, as
under Zipf’s distribution, frequent keys tend to have no error, as it has been
observed in earlier papers [5–7]. On the other hand, keys of the tail of the dis-
tribution have fairly similar frequencies, and therefore might show the same
behavior as for the uniform case.

However, this hypothesis does not hold. Figure 3 shows the behavior of the
average error for Zipf’s distributions with β ∈ {0.2, 0.5, 0.7, 0.9} vs. the uniform
distribution (β = 0). The average error is defined here as the average error of all

keys weighted by their frequencies3, i.e. errN (H) = 1
mN

∑
e∈E o

(N)
e

c(N)
e −o(N)

e

o
(N)
e

=
1

mN

∑
e∈E(c(N)

e − o
(N)
e ). In other words, errN (H) is the expected error of a ran-

domly drawn key from the entire input stream of length mN (taking into account
multiplicities).

Fig. 3. Average error as a function of λ = m/n, for Zipf’s distributions with β ∈
{0.0, 0.2, 0.5, 0.7, 0.9}. Plots obtained for n = 1000, k = 3, N = 50, 000.

3 This definition is natural for non-uniform distributions, as the error for a frequent
key should have a larger contribution. Note that it is consistent with the definition of
Sect. 4.1 in the N -balanced case, and in the N -uniform case it presents a negligible
difference when N gets large.
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We observe that the phase transition behavior disappears for β > 0. It turns
out that even in the subcritical regime, frequent elements, while having no error
themselves, heavily affect the error of certain rare elements, which raises the
resulting average error. This phenomenon is analysed in more detail in our follow-
up paper [23]. In the supercritical regime (λ > 1 in Fig. 3) the opposite happens:
the uniform distribution shows the largest average error. This is because an
increasingly large fraction of the keys (those in the core of the associated hyper-
graph) contribute to the error, while for skewed distributions, frequent keys tend
to have no error, and thus the larger β (with frequent keys becoming more pre-
dominant) the smaller the average error. Note that this is in accordance with
the observation of [7] that the estimates for the uniform distribution majorate
the estimates of infrequent keys for skewed distributions.

8 Concluding Remarks

We presented an analysis of conservative update strategy for Count-Min sketch
under the assumption of uniform distribution of keys in the input stream. Our
results show that the behaviour of the sketch heavily depends on the properties
of the underlying hash hypergraph. Assuming that hash functions are fully inde-
pendent, the error produced by the sketch follows two different regimes depend-
ing on the density of the underlying hypergraph, that is the number of distinct
keys relative to the size of the sketch. When this ratio is below the threshold,
the conservative update strategy produces a o(1) relative error when the input
stream and the number of distinct keys both grow, while the regular Count-Min
produces a positive constant error. This gap formally demonstrates that conser-
vative update achieves a substantial improvement over regular Count-Min.

We showed that the above-mentioned threshold corresponds to the peelability
threshold for k-uniform random hypergraphs. One practical implication of this
is that the best memory usage is obtained with three hash functions, since λ3 is
maximum among all λk, and therefore k = 3 leads to the minimum number of
counters needed to deal with a given number of distinct keys.

In [10] it is claimed, without proof, that the rate of positive errors of con-
servative update is k times smaller than that of regular Count-Min. This claim
does not appear to be true. Note that Count-Min does not err on a key rep-
resented in the sketch if and only if the corresponding edge of the hypergraph
includes a leaf (vertex of degree 1), while the conservative update can return an
exact answer even for an edge without leaves. However, this latter event depends
on the relative frequencies of keys and therefore on the specific distribution of
keys and the input length. On the other hand, our experiments with uniformly
distributed keys show that this event is relatively rare, and the rate of positive
error for Count-Min and conservative update are essentially the same.

One important assumption of our analysis is the uniform distribution of keys
in the input. We presented an experimental evidence that for skewed distribu-
tions, in particular for Zipf’s distribution, the phase transition disappears when
the skewness parameter grows. Therefore, the uniform distribution presents the
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smallest error in the subcritical regime. The situation is the opposite in the
supercritical regime when the number of distinct keys is large compared to the
number of counters: here the uniform distribution presents the largest average
error. As mentioned earlier, for Zipf’s distribution, frequent keys have essentially
no error, whereas in the supercritical regime, low frequency keys have all similar
overestimates. This reveals another type of phase transition in error approxima-
tion for Zipf’s distribution, occurring between frequent and infrequent elements,
having direct application to accurate detection of heavy hitters in streams. We
refer to our follow-up work [23] for further insights regarding this issue.

Acknowledgments. We thank Djamal Belazzougui who first pointed out to us the
conservative update strategy.
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Abstract. Let E = {e1, . . . , en} be a set of C-oriented disjoint segments
in the plane, where C is a given finite set of orientations that spans the
plane, and let s and t be two points. We seek a minimum-link C-oriented
tour of E, that is, a polygonal path π from s to t that visits the segments
of E in order, such that, the orientations of its edges are in C and their
number is minimum. We present an algorithm for computing such a tour
in O(|C|2 ·n2) time. This problem already captures most of the difficulties
occurring in the study of the more general problem, in which E is a set
of not-necessarily-disjoint C-oriented polygons.

1 Introduction

We consider the problem in which we are given a sequence of regions, R =
(R1, R2, . . . , Rn), where each Ri is a subset of an underlying geometric domain,
and our goal is to compute a tour (a path or a cycle) within the domain that
visits the regions R in the given order and is optimal in some prescribed sense.
Optimality might be based on the Euclidean length of the tour, the number of
turns in a polygonal tour (or, equivalently, the number of links (edges) in the
tour), a weighted cost function, etc. There are also variants of the problem in
which it is important to specify exactly what constraints there are on the ordered
visitation of the regions, particularly if the regions are not disjoint. The problem
arises naturally and is also motivated by applications in curve simplification
(e.g., [6]), vehicle routing (e.g., the traveling salesperson problem (TSP); see
[8]), search and exploration (e.g., [3]), computing structures on imprecise points
[7], task sequencing in robotics (see [1,2]), etc.

In this paper we focus on the version of the problem in which the regions Ri

are disjoint C-oriented line segments (with orientations/slopes from a finite set
C) in the plane, the tour is required to be polygonal and C-oriented, and the
optimality criterion is to minimize the number of links (equivalently, the number
of turns, or vertices in the polygonal tour). We briefly mention generalizations
(deferred to the full paper), including the case in which the regions Ri are more
general than disjoint line segments.
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More formally, let C be a finite set of orientations, which can be thought of
as points on a unit circle centered at the origin. We assume that (i) C spans the
plane, i.e., for any two points p, q in the plane, there exists a two-link (directed)
path from p to q (or a one-link path), such that the orientation of the edges
in the path belong to C, and (ii) for any orientation ci ∈ C, the orientation
ci is also in C, where ci is the opposite orientation of ci. The requirement for
paths to be C-oriented arises in some settings (mechanical constraints) but also
has advantages in lower/upper bounding of the turn angles, in comparison with
polygonal paths having general links, which may form arbitrarily sharp turns.

We focus on the following problem: Minimum-link C-oriented tour of a
sequence of C-oriented segments: Let E = {e1, . . . , en} be a set of C-oriented
disjoint segments, that is, if we think of e ∈ E as a directed segment, by arbi-
trarily picking one of the two possible directions, then e’s orientation belongs
to C. Let s and t be two points that do not belong to any of the segments in
E. A tour of E is a polygonal path π that begins at s and ends at t with the
following property: There exists a sequence of points p1, . . . , pn on π, such that,
pi precedes pi+1, for 1 ≤ i ≤ n − 1, and pi ∈ ei, for 1 ≤ i ≤ n. A tour is C-
oriented, if the orientation of each of its edges belongs to C. We wish to compute
a C-oriented minimum-link tour of E, that is, a C-oriented tour consisting of a
minimum number of links (i.e., edges).

Our main contribution is an efficient algorithm to compute a minimum-link
C-oriented tour of a sequence of n disjoint C-oriented line segments, in time
O(|C|2 · n2). (The algorithm becomes O(n) in the special case of |C| = 4, e.g.,
axis-oriented paths).

Related Work

In the touring polygons problem (TPP), one seeks a tour that is shortest in
Euclidean length that visits a sequence of polygons; such a tour is found in
polynomial time if the polygons are convex and is NP-hard in general (and has
an FPTAS) [3]. Minimization of the link length of a tour visiting a sequence
of (possibly overlapping) disks is studied in [6], where the motivation for this
“ordered stabbing” problem was curve and map simplification (see also [10]). In
contrast with our problem specification, in [6] the path edges are allowed to be
of arbitrary orientation, not required to be C-oriented. This assumption leads
to particular efficiency, as one can use an extension of linear-time line stabbing
methods (see Egyed and Wenger [4]) to execute a greedy algorithm efficiently.
Computing a minimum-link C-oriented path from start to goal among obstacles
has been studied as well, without requiring visitation of a sequence of regions;
see [9,11].

2 Preliminaries

Notation. For any 1 ≤ i ≤ n, let l(ei) be the number of links in a minimum-
link path that begins at s and ends at a point on ei. We only consider C-
oriented paths to ei that visit the segments e1, . . . , ei, as defined above. We refer
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to the number of links in such a path as its length. We distinguish between
paths to ei both by their length and by the orientation of their last link. Let
I(ei, cj) (I+(ei, cj)) be the set of maximal intervals on ei formed by all paths of
length l(ei) (l(ei) + 1) from s to ei, whose last link has orientation cj . We set
I(ei) =

⋃
c∈C I(ei, c) and I+(ei) =

⋃
c∈C I+(ei, c).

For an orientation cj ∈ C, let cj+1 and cj−1 be the orientations in C that
immediately succeed cj and precede cj in clockwise order, respectively. We denote
by φ(cj , ck) the set of orientations in C between cj and ck (in clockwise order
from cj), not including cj and ck. Finally, we denote the ray emanating from p
in orientation cj by Ray(p, cj) and the line through p parallel to a segment of
orientation cj by Line(p, cj).

Let a be an interval on ei that belongs to one of the sets I(ei) or I+(ei).
Then a has a length la (which is either l(ei) or l(ei) + 1) and an orientation
ca ∈ C associated with it. We denote the endpoints of a by a1 and a2, where a1

is to the left of a2, when approaching a through a path corresponding to a (i.e.,
a path starting at s and ending at a point in a, which is of length la and whose
last link is of orientation ca). Next, we use a to define two regions of the plane,
namely, PT (a) and ψ(a, cj).

Let PT (a) denote the semi-slab consisting of all points that can be reached
by extending the last link of a path corresponding to a. We refer to such a path
as a path that passes through a and continues in the same orientation at which it
reached a (i.e., ca). Thus, the region PT (a) is the semi-slab bounded by the rays
Ray(a1, ca), Ray(a2, ca) and the interval a (see, e.g., the red region in Fig. 1).
Similarly, let ψ(a, cj) be the region of all points that can be reached by a path
that passes through a and then, not necessarily immediately, turns and continues
in orientation cj . Thus, ψ(a, cj) =

⋃
q∈PT (a) Ray(q, cj), for example if cj = ca,

then ψ(a, cj) is the slab defined by the lines Line(a1, ca) and Line(a2, ca) (for
additional examples see Fig. 8).

Finally, for an interval b ∈ I+(ei), we set δ(b) = {a ∈ I(ei)|a ⊆ b}.
We now show that the sets I(ei) and I+(ei) are sufficient, in the sense that

there exists a minimum-link tour of E whose portion from s to ei corresponds to
an interval in I(ei) ∪ I+(ei). Assume this is false, and let π be a minimum-link
tour of E, such that its portion πi from s to ei does not correspond to an interval
in I(ei) ∪ I+(ei). Then, the length of πi (denoted |πi|) is at least l(ei) + 2. Let p
be the point on ei where πi ends, and denote the portion of π from p to t by πi.
Then |π| ≥ l(ei) + 2 + |πi|, if π makes a turn at p, or |π| = l(ei) + 2 + |πi| − 1,
otherwise. Consider any path π′

i from s to ei that corresponds to an interval in
I(ei) and let p′ be the point on ei where π′

i ends. Then, the tour obtained by π′
i,

the edge p′p and πi is a tour of E of length at most l(ei) + 1 + |πi| ≤ |π|. We
have thus shown that

Claim 1. There exists a minimum-link tour of E whose portion from s to ei
corresponds to an interval in I(ei) ∪ I+(ei), for 1 ≤ i ≤ n.

Finally, since our assumptions on the set of orientations C imply that there
exists a two-link path from p to q, for any pair of points p, q in the plane, we
have
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Claim 2. l(ei−1) ≤ l(ei) ≤ l(ei−1) + 2, for 1 ≤ i ≤ n (where l(e0) = 0).

3 The Main Algorithm

In this section, we present an algorithm for computing a minimum-link tour of E.
The algorithm consists of two stages. In the first stage, it considers the segments
of E, one at a time, beginning with e1, and, at the current segment ei, it computes
the sets I(ei) and I+(ei) from the sets I(ei−1) and I+(ei−1), associated with the
previous segment. In the second stage, it constructs a minimum-link tour of E,
beginning from its last link, by consulting the sets I(·) and I+(·) computed in
the first stage.

We begin with several definitions that will assist us in the description of the
algorithm. Given a set I of intervals on ei, where each interval a ∈ I is associated
with some fixed length (link distance) la = l and an orientation ca, and cj ∈ C,
we define the sets of intervals +0-intervals, +1-intervals, +2-intervals on ei+1

with respect to I and cj (the definition of the first set does not depend on cj).
The +0-intervals on ei+1 consist of the intervals on ei+1 formed by passing

through the intervals of I, without making any turns. It is constructed by com-
puting the interval b = PT (a) ∩ ei+1, for each a ∈ I, and including it in the set,
setting lb = l and cb = ca, if it is not empty.

The +1-intervals on ei+1 associated with orientation cj consist of the inter-
vals on ei+1 formed by passing through the intervals of I and then making a turn
in orientation cj . It is constructed by computing the interval b = ψ(a, cj)∩ ei+1,
for each a ∈ I, and including it in the set, setting lb = l + 1 and cb = cj .

The +2-intervals on ei+1 associated with orientation cj consist of the inter-
vals on ei+1 formed by passing through the intervals of I and then making two
turns, where the first is in any orientation c �= ca and the second is in orientation
cj ; see Lemma 3.

We construct it as follows. First, we check if there is an interval a ∈ I such
that ca /∈ {cj−1, cj , cj+1}. If there is such an interval, we include the interval b =
ei+1, setting lb = l + 2 and cb = cj , and stop; see Lemma 4. Otherwise, for each
a ∈ I, we include the intervals b+ = ψ(a, ca+1)∩ei+1 and b− = ψ(a, ca−1)∩ei+1,
provided that they are not empty, and set lb+ = lb− = l + 2 and cb+ = cb− = cj ;
see paragraph following Lemma 4.

3.1 Stage I

We are now ready to describe the first stage of the algorithm. It is convenient to
treat the points s and t as segments e0 and en+1, respectively. We set l(e0) = 0
and, for each cj ∈ C, we insert the interval a = e0, after setting la = 0 and
ca = cj , into I(e0, cj). Similarly, for each cj ∈ C, we insert the interval a = e0,
after setting la = 1 and ca = cj , into I+(e0, cj).

We iterate over the segments e1, . . . , en+1, where in the i’th iteration, 1 ≤ i ≤
n + 1, we compute l(ei) and the pair of sets I(ei) and I+(ei). Assume we have
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already processed the segments e0, . . . , ei, for some 0 ≤ i ≤ n. We describe the
next iteration, in which we compute l(ei+1) and the sets I(ei+1) and I+(ei+1).

For each cj ∈ C, we compute the +0-intervals on ei+1 with respect to I(ei, cj)
and store them in I(ei+1, cj). If at least one of the sets I(ei+1, cj) is non-empty,
we set l(ei+1) = l(ei) (otherwise l(ei+1) > l(ei)). Next, for each cj ∈ C, we
compute the +0-intervals on ei+1 with respect to I+(ei, cj) and the +1-intervals
on ei+1 with respect to I(ei)\I(ei, cj) (and cj). We store these intervals (if exist)
either in I+(ei+1, cj), if l(ei+1) = l(ei), or in I(ei+1, cj), if l(ei+1) > l(ei). If
we performed the latter option, then we set l(ei+1) = l(ei) + 1. Finally, if we
performed one of the two options, then we repeatedly merge overlapping intervals
in the set (either I+(ei+1, cj) or I(ei+1, cj)), until there are no such intervals.

If l(ei+1) > l(ei), then, for each cj ∈ C, we compute the +2-intervals on ei+1

with respect to I(ei) and the +1-intervals on ei+1 with respect I+(ei)\I+(ei, cj).
We store these intervals (if exist) either in I+(ei+1, cj), if l(ei+1) = l(ei) + 1, or
in I(ei+1, cj), otherwise (i.e., we still have not fixed l(ei+1)). If we performed the
latter option, then we set l(ei+1) = l(ei) + 2, and, as above, if we performed one
of the two options, then we repeatedly merge overlapping intervals in the set,
until there are no such intervals.

Finally, if l(ei+1) = l(ei)+2, then, for each cj ∈ C, we set I+(ei+1, cj) = ei+1;
see Claim 5.

3.2 Stage II

In this stage we use the information collected in the first stage to construct a
minimum-link tour π of E.

We construct π incrementally beginning at t and ending at s. That is, in the
first iteration we add the portion of π from t to en, in the second iteration we
add the portion from en to en−1, etc. Assume that we have already constructed
the portion of π from t to ei, where this portion ends at point p of interval a on
ei. In the full version of this paper [5], we describe how to compute the portion
from ei to ei−1, which begins at the point p of interval a and ends at a point p′

of interval b on ei−1 (where b ∈ I(ei−1) ∪ I+(ei−1)) and consists of la − lb + 1
links. Before continuing to the next iteration, we set p = p′ and a = b.

After adding the last portion, which ends at s, we remove all the redundant
vertices from π, i.e., vertices at which π does not make a turn.

4 Analysis

In this section, we prove the correctness of our two-stage algorithm and bound
its running time, via a sequence of lemmas and claims.

Lemma 1. For any interval a ∈ I(ei) and for any cj ∈ C\{ca}, there exists an
interval b ∈ I+(ei, cj) such that a ⊆ b, for 1 ≤ i ≤ n.
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Proof. Let p ∈ a, then there is a path πi of length l(ei) that begins at s, ends at
p, and whose last link is of orientation ca. By making a turn at p in orientation
cj (without extending πi), we obtain a path π′

i of length l(ei)+1, whose last link
is of orientation cj . Therefore, there is an interval b ∈ I+(ei, cj) such that p ∈ b,
and since (by construction) there are no overlapping intervals in I+(ei, cj), we
conclude that a ⊆ b.

Lemma 2. For any 1 ≤ i ≤ n − 1 and cj ∈ C, if there is an interval a ∈
I(ei, cj) ∪ I+(ei, cj) such that PT (a) ∩ ei+1 �= ∅, then, for any interval b ∈
I(ei, cj) ∪ I+(ei, cj), we have that PT (b) ∩ ei+1 = ∅.
Proof. If there exist intervals a ∈ I(ei, cj) ∪ I+(ei, cj) and b ∈ I(ei, cj) ∪
I+(ei, cj), such that ei+1 intersects both PT (a) and PT (b), then ei+1 must
intersect ei (see Fig. 1)—contradiction.

The following claim bounds the number of intervals with associated length
and orientation l(ei) + 1 and cj , respectively, that are ‘created’ on ei+1.

Claim 3. At most max {|I(ei, cj)|, |I+(ei, cj)|} + 2 intervals with associated
length and orientation l(ei)+1 and cj, respectively, are ‘created’ on ei+1, during
the execution of the algorithm.

Proof. There are two ways to reach a point on ei+1 with a path of length l(ei)+1
whose last link is of orientation cj . The first is by passing through one of the
intervals in I(ei)\I(ei, cj) and then making a turn in orientation cj . The second is
by passing through one of the intervals in I+(ei, cj), without making any turn.
That is, the intervals on ei+1 with associated length l(ei) + 1 and associated
orientation cj are determined by the intervals in I+(ei, cj) ∪ (I(ei)\I(ei, cj)).

Consider an interval b ∈ I+(ei, cj) (e.g., the blue interval in Fig. 2), and let
c ∈ C be the orientation of ei when directed from b1 to b2. We divide δ(b)\I(ei, cj)
into four subsets as follows: A = {a ∈ δ(b) | ca ∈ φ(cj , c) ∪ {c}}, B = {a ∈ δ(b) |
ca ∈ φ(c, cj)}, C = {a ∈ δ(b) | ca ∈ φ(cj , c)}, and D = {a ∈ δ(b) | ca ∈
φ(c, cj) ∪ {c}}. We denote by Rb∪A the region of all points that can be reached
by a path that passes through b, or passes through a ∈ A and then makes a
turn in orientation cj (i.e., Rb∪A = PT (b) ∪ ⋃

a∈A ψ(a, cj)). We compute the
boundary of Rb∪A from PT (b), by adding the regions ψ(a, cj), one at a time, for
each interval a ∈ A.

Let ψ(a, cj), for some a ∈ A, be the region that is added in the first step
(see the red interval in Fig. 2). Since (a1, a2) ⊆ (b1, b2) and ca ∈ φ(cj , c) ∪
{c}, Ray(a2, ca) and Ray(b2, cj) intersect at a point pa (see Fig. 2). By passing
through a and then turning before reaching Ray(b2, cj) (i.e., at one of the points
belonging to PT (a) ∩ PT (b)), we cannot reach any point that is not already
in PT (b). However, by turning after crossing Ray(b2, cj), we can reach points
that are in the area bounded by Ray(pa, cj) and Ray(pa, ca) (the shaded area
in Fig. 2). Thus, the region Rb∪A at the end of the first step, is bounded by
Ray(b1, cj), (b1, b2), (b2, pa) and Ray(pa, ca), as can be seen in Fig. 2. Notice the
semi-infinite convex 2-chain that we obtain at the end of the first step, namely,
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the chain consisting of (b2, pa) followed by Ray(pa, ca). It is easy to see that
the region Rb∪A at the end of the last step, is bounded by Ray(b1, cj), (b1, b2),
and a semi-infinite convex chain, denoted lA, consisting of at most |A| + 1 edges
(see red chain in Fig. 3c). Finally, if A = ∅, then Rb∪A = PT (b) and we set
lA = Ray(b2, cj).

Next, we set Rb∪D = PT (b) ∪ ⋃
a∈D ψ(a, cj), and compute the convex chain

lD, which, together with Ray(b2, cj) and (b1, b2), defines the boundary of Rb∪D.
Once again, if D = ∅, we set lD = ray(b1, cj).

Finally, we compute in a similar manner the convex chains lB , which defines
(together with Ray(b1, cj)) the boundary of Rb∪B = PT (b) ∪ ⋃

a∈B ψ(a, cj) (see
purple chain in Fig. 3b), and lC , which defines (together with Ray(b2, cj)) the
boundary of Rb∪C = PT (b) ∪ ⋃

a∈C ψ(a, cj).
We now set R = Rb∪A ∪ Rb∪B ∪ Rb∪C ∪ Rb∪D, then R is the region of all

points that can be reached by a path that passes through b, or passes through
a ∈ δ(b)\I(ei, cj) and then makes a turn in orientation cj . Therefore, R ∩ ei+1

gives us the intervals on ei+1 with length l(ei) + 1 and orientation cj , which are
created by passing through an interval in {b} ∪ δ(b)\I(ei, cj).

In order to find these intervals, we identify the boundary of R in each of the
following four cases:

– Case A: B = ∅ and C = ∅ (as illustrated in Fig. 3a)
In this case, R = Rb∪A ∪ Rb∪D, since Rb∪B = Rb∪C = PT (b) and PT (b) ⊆
Rb∪A, Rb∪D, and R’s boundary is composed of lA, lD and b.

– Case B: B �= ∅ and C = ∅ (as illustrated in Fig. 3b)
In this case, the boundary of R is composed of lB and lD, since Rb∪A ⊆ Rb∪B.

– Case C: B = ∅ and C �= ∅ (as illustrated in Fig. 3c)
In this case, the boundary of R is composed of lA and lC , since Rb∪D ⊆ Rb∪C .

– Case D: B �= ∅ and C �= ∅ (as illustrated in Fig. 3d)
in this case, R = Rb∪B ∪ Rb∪C , and its boundary is the convex chain l that
is obtained from the chains lB and lC , see Fig. 3d.
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Fig. 3. The boundary of R.

We now examine how ei+1 can intersect R, in each of these cases. First,
if ei+1 does not intersect the boundary of R, then either R ∩ ei+1 = ei+1 or
R ∩ ei+1 = ∅. In the former case, one interval is formed on ei+1, which contains
both its endpoints, and in the latter case, no interval is formed on ei+1. Next,
assume that ei+1 intersects the boundary of R. We distinguish between the case
where there is an interval h ∈ I(ei, cj) such that PT (h) ∩ ei+1 �= ∅, and the case
where there is no such interval.

There is an interval h ∈ I(ei, cj) such that PT (h) ∩ ei+1 �= ∅.
Then, by Lemma 2, PT (b) ∩ ei+1 = ∅.

If Case A: Clearly, ei+1 cannot intersect both lA and lD, since this would imply
PT (b) ∩ ei+1 �= ∅ (see Fig. 5a). Therefore, ei+1 intersects exactly one of these
chains, either at a single point or at two points. If ei+1 intersects the chain at
a single point q, then a single interval is formed on ei+1, whose endpoints are
q and the endpoint of ei+1 that lies in R (see the edge e1i+1 in Fig. 4a). If ei+1

intersects the chain at two points, p and p′, then two intervals are formed on ei+1.
The endpoints of these intervals are p and p′ on one side and the corresponding
endpoints of ei+1 on the other side (see the edge e2i+1 in Fig. 4a).

If Case B: Unlike Case A, the fact that PT (b)∩ ei+1 = ∅ does not prevent ei+1

from intersecting both lB and lD. However, ei+1 can intersect these chains in at
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most two points (in total), and as in Case A at most two intervals are formed
on ei+1, where each of them contains an endpoint of ei+1 (see Fig. 5b).

If Case C: Since Cases B and C are symmetric, at most two intervals are formed
on ei+1, each of which contains an endpoint of ei+1.

If Case D: If ei+1 intersects l at a single point q, then a single interval is formed
on ei+1, whose endpoints are q and the endpoint of ei+1 that lies in R. If ei+1

intersects l at two points p and p′, then R∩ei+1 consist of all the points on ei+1,
except for those in the interior of (p, p′). Therefore, two intervals are formed
on ei+1, and their endpoints are p and p′ on one side and the corresponding
endpoints of ei+1 on the other side (see Fig. 4b)

Fig. 4. ei+1 intersects R’s boundary either at a single point q or at two points p and
p′.

We have shown that by passing through an interval in {b}∪ δ(b)\I(ei, cj), at
most two intervals (with associated length l(ei)+1 and orientation cj) are formed
on ei+1. Moreover, each of these intervals contains an endpoint of ei+1. Therefore,
the total number of such intervals that are formed on ei+1, by passing through
an interval in

⋃
b∈I+(ei,cj)

{b} ∪ δ(b)\I(ei, cj) is at most two. (For each endpoint
p of ei+1, we retain only the longest interval with p as one of its endpoints.)

Finally, observe that by passing through an interval in I(ei, cj) and turning
backwards in orientation cj , at most one interval is formed on ei+1, which does
not necessarily contain an endpoint of ei+1.

We conclude that at most |I(ei, cj)| + 2 intervals (with associated length
l(ei)+1 and orientation cj) are formed on ei+1 during the execution of the algo-
rithm (in the case that there is an interval h ∈ I(ei, cj) such that PT (h)∩ei+1 �=
∅). We have used the equality

⋃
b∈I+(ei,cj)

{b}∪δ(b) = I+(ei, cj)∪I(ei)\I(ei, cj),
which follows from Lemma 1.

We now proceed to the complementary case.
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For Any Interval h ∈ I(ei, cj), PT (h) ∩ ei+1 = ∅. We defer the details of
this case (which are similar to those of the previous case) to the full version of
this paper [5]. These details lead to the conclusion that at most |I+(ei, cj)| + 2
intervals (with associated length l(ei)+1 and orientation cj) are formed on ei+1

during the execution of the algorithm in this case.

Fig. 5. Cases A and B, where there is no such interval h.

Since only one of the two cases holds (i.e., either there is such an interval h
or there is not), we conclude that at most max {|I(ei, cj)| + 2, |I+(ei, cj)| + 2}
= max {|I(ei, cj)|, |I+(ei, cj)|} + 2 intervals with associated length l(ei) + 1 and
orientation cj are formed on ei+1 during the execution of the algorithm. This
completes the proof of Claim 3.

Lemma 3. For any interval a ∈ I(ei) and orientation cj ∈ C, we do not need
to compute the interval on ei+1 with associated length and orientation l(ei) + 2
and cj, respectively, which is formed by passing through a and then making two
turns, where the first is in orientation ca.

Proof. By Claim 2, l(ei) ≤ l(ei+1) ≤ l(ei)+2. So, the intervals on ei+1 of length
l(ei) + 2 are only relevant if l(ei+1) > l(ei) (Claim 1). Assume therefore that
l(ei+1) > l(ei), and let a ∈ I(ei) (e.g., the red interval in Fig. 6). Let π be a
tour of E that passes through a at a point pi, makes a turn in orientation ca
at point p, and makes another turn in orientation cj at point p′, such that πi+1

(the portion of π from s to ei+1) corresponds to an interval of length l(ei) + 2.
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We distinguish between two cases. If pp′ ∩ ei = ∅ (i.e., the second turn is
before π crosses ei again), as shown in Fig. 6a, then pp′ does not intersect ei+1,
since this would imply l(ei) = l(ei+1). Therefore, π reaches ei+1 only after the
turn at p′, and the tour π′ which is obtained from π by deleting the link pp′ (see
Fig. 6b), is a tour of E of length |π|−1, hence π is not a minimum-link tour of E.
Since our goal is to find a minimum-link tour of E, we do not need to compute
the interval on ei+1 formed by paths such as π satisfying the condition above.

Fig. 6. Proof of Lemma 3. The case where the second turn is before π crosses ei again.

If pp′ ∩ ei �= ∅ (i.e., the second turn is not before π crosses ei again), let T
denote the region of all points that can be reached by such paths, i.e., paths
such as π satisfying the condition above (see the orange region in Fig. 7a). Then
T ∩ ei+1 is the interval on ei+1 with associated length l(ei) + 2 and orientation
cj , formed by these paths. But, by Lemma 1, there exists b ∈ I+(ei, ca) such
that a ⊆ b (see the blue interval in Fig. 7b), and clearly T ⊆ ψ(b, cj), implying
T ∩ ei+1 ⊆ ψ(b, cj)∩ ei+1. The latter interval, i.e., ψ(b, cj)∩ ei+1 is computed by
our algorithm, so we do not need to compute T ∩ ei+1.

Lemma 4. For any interval a ∈ I(ei), any point p ∈ R
2, and any orientation

cj /∈ {ca, ca+1, ca−1}, p can be reached by a path that passes through a and then
makes a turn in some orientation c �= ca and another turn in orientation cj.

Proof. Consider any interval a ∈ I(ei). Recall that ψ(a, ca+1) (ψ(a, ca−1))
denotes the region of all the points that can be reached by a path that passes
through a and then makes a turn in orientation ca+1 (ca−1) (see Fig. 8). It is easy
to see that ψ(a, c) ⊆ ψ(a, ca+1) for any c ∈ φ(ca, ca) and ψ(a, c) ⊆ ψ(a, ca−1)
for any c ∈ φ(ca, ca). Therefore, Δa = ψ(a, ca+1) ∪ ψ(a, ca−1) is the region of all
the points that can be reached by a path that passes through a and then makes
a turn in some orientation c �= ca (see Fig. 8c).
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Fig. 7. Proof of Lemma 3. The case where the second turn is not before π crosses ei
again.

Consider any point p ∈ R
2 and any orientation cj /∈ {ca, ca+1, ca−1}. If

p ∈ Δa, then p can be reached by a path that passes through a and then
makes a turn in some orientation c �= ca. By making an additional turn at p in
orientation cj (without extending the path), we obtain a path that reaches p as
required.

If p ∈ Δa = R
2\Δa, then Ray(p, cj) ∩ Δa �= ∅, since cj /∈ {ca−1, ca, ca+1} (as

shown in Fig. 9). Let p′ be any point on Ray(p, cj) ∩ Δa, then p′ can be reached
by a path that passes through a and then makes a turn in some orientation
c �= ca, and by extending this path by adding the link p′p, we obtain a path that
reaches p as required.

Consider the region Δa = ψ(a, ca+1) ∪ ψ(a, ca−1) defined in the proof of
Lemma 4. Then, as mentioned in the proof of Lemma 4, Δa is the region of all
the points that can be reached by a path that passes through a and then makes
a turn in some orientation c �= ca. In addition, we notice that by extending such
a path by adding a link in orientation cj , for cj ∈ {ca, ca+1, ca−1}, we cannot
leave Δa (see Fig. 10), since for any point q ∈ Δa, Ray(q, cj) ⊆ Δa.

The following claim bounds the number of intervals with associated length
and orientation l(ei) + 2 and cj , respectively, that are ‘created’ on ei+1.

Claim 4. At most |I+(ei, cj)|+2 intervals with associated length and orientation
l(ei) + 2 and cj, respectively, are ‘created’ on ei+1, during the execution of the
algorithm.

Proof. The proof can be found in the full version of this paper [5]. Here, we only
observe that there are two ways to reach a point on ei+1 with a path of length
l(ei) + 2 whose last link is of orientation cj . The first is by passing through one
of the intervals a ∈ I(ei) and then making two turns, where the first one is
in orientation c �= ca and the second one is in orientation cj (see Lemma 3).
The second way is by passing through one of the intervals in I+(ei)\I+(ei, cj),
and then making a turn in orientation cj . That is, the intervals on ei+1 with
associated length l(ei) + 2 and associated orientation cj are determined by the
intervals in I(ei) ∪ (I+(ei)\I+(ei, cj)).
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Fig. 8. All the points that can be reached by a path that passes through a and then
makes a turn in some orientation c �= ca.

The following claim bounds the number of intervals with associated length
and orientation l(ei) + 3 and cj , respectively, that are ‘created’ on ei+1.

Claim 5. For any q ∈ ei+1 and for any cj ∈ C, there exists a path of length
l(ei) + 3 from s to q, whose last link has orientation cj, for 1 ≤ i ≤ n − 1.

Proof. Consider any path π from s to ei that corresponds to an interval in I(ei),
and let p be the point on ei where π ends. Since C spans the plane, there exists
a two-link path from p to q, and by making a turn at q in orientation cj (without
extending the path), we obtain a three-link path πp,q from p to q whose last link
has orientation cj . So, the path obtained by concatenating the paths π and πp,q

is as desired.

Claim 6. For any 0 ≤ i ≤ n+1 and cj ∈ C, |I(ei, cj)| ≤ 2i+1 and |I+(ei, cj)| ≤
2i + 1.

Proof. The proof is by induction on i. For i = 0, the claim is clearly true;
|I(e0, cj)| = |I+(e0, cj)| = 1.

Assume now that the claim is true for i, 0 ≤ i ≤ n, that is, for any cj ∈ C, we
have |I(ei, cj)| ≤ 2i + 1 and |I+(ei, cj)| ≤ 2i + 1. We show below that it remains
true for i + 1.

Recall that l(ei) ≤ l(ei+1) ≤ l(ei) + 2 (Claim 2). We show that the claim
remains true in each of the resulting three cases.

– Case A: l(ei+1) = l(ei). In this case I(ei+1, cj) stores the +0-intervals on
ei+1 with respect to I(ei, cj). Since, each interval a ∈ I(ei, cj) ‘creates’ at
most one +0-interval on ei+1, we get that |I(ei+1, cj)| ≤ |I(ei, cj)| ≤ 2i + 1.
Recall that I+(ei+1, cj) is the set of maximal intervals on ei+1 formed by all
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Fig. 9. Lemma 4. If p ∈ Δa, then
Ray(p, cj) ∩ Δa �= ∅.

Fig. 10. For any q ∈ Δa, Ray(q, cj) ∩
Δa = ∅, for cj ∈ {ca, ca+1, ca−1}.

paths of length l(ei+1) + 1 = l(ei) + 1, whose last link has orientation cj .
By Claim 3, |I+(ei+1, cj)| ≤ max{|I(ei, cj)|, |I+(ei, cj)|} + 2, and therefore
|I+(ei+1, cj)| ≤ max{2i + 1, 2i + 1} + 2 = 2(i + 1) + 1.

– Case B: l(ei+1) = l(ei)+1. In this case, I(ei+1, cj) is the set of maximal inter-
vals on ei+1 formed by all paths of length l(ei+1) = l(ei) + 1, whose last link
has orientation cj . By Claim 3, |I(ei+1, cj)| ≤ max{|I(ei, cj)|, |I+(ei, cj)|}+2,
so, |I(ei+1, cj)| ≤ max{2i + 1, 2i + 1} + 2 = 2(i + 1) + 1.
Now, I+(ei+1, cj) is the set of maximal intervals on ei+1 formed by all paths
of length l(ei+1)+1 = l(ei)+2, whose last link has orientation cj . By Claim 4,
|I+(ei+1, cj)| ≤ |I+(ei, cj)| + 2, and therefore |I+(ei+1, cj)| ≤ 2i + 1 + 2 =
2(i + 1) + 1.

– Case C: l(ei+1) = l(ei) + 2. In this case, I(ei+1, cj) is the set of maximal
intervals on ei+1 formed by all paths of length l(ei+1) = l(ei) + 2, whose last
link has orientation cj . Thus, by Claim 4, |I(ei+1, cj)| ≤ |I+(ei, cj)| + 2 ≤
2(i+1)+1. Moreover, in this case, I+(ei+1, cj) = {ei+1}, so |I+(ei+1, cj)| = 1.

Running Time. We bound the running time of each of the two stages of
our algorithm. Consider the i’th iteration of the main loop of Stage I. We
need O(|I(ei, cj)| + |I+(ei, cj)|) time to compute the +0-intervals on ei+1,
O(|I(ei)\I(ei, cj)| + |I+(ei)\I+(ei, cj)|) time to compute the +1-intervals, and
O(|I(ei)|) time to compute the +2-intervals. Since we perform this calculation for
each cj ∈ C, the running time of the i’th iteration is O(|C| · {|I(ei)|+ |I+(ei)|}).
By Claim 6 we conclude that |I(ei)| = O(|C| · (2i + 1)) and |I+(ei)| =
O(|C| · (2i + 1)), for 1 ≤ i ≤ n + 1. Therefore, the running time of Stage I
is

∑n+1
i=1 O(|C| · |C| · (2i + 1)) = O(|C|2 · n2).

In stage 2, we run the algorithm (described in the full version of this paper [5])
for each i from n + 1 to 1. The running time of the algorithm is O(|I(ei−1)| +
|I+(ei−1)|), and by Claim 6 we get O(|C| · i). Therefore, the running time of
Stage II is

∑n+1
i=1 O(|C| · i) = O(|C| · n2).
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Thus, the overall running time of the algorithm is O(|C|2 ·n2), as summarized:

Theorem 1. Given a set E of n disjoint C-oriented segments in the plane and
points s and t that do not belong to any of the segments in E, one can compute
a minimum-link C-oriented tour of E in O(|C|2 · n2) time.

5 Extensions

In the case that |C| = 4 (e.g., axis-parallel paths and segments), the specializa-
tion of our analysis shows a constant upper bound on the number of intervals on
each segment; this results in overall time O(n). Also, our analysis only required
that consecutive segments in E do not intersect each other; they can otherwise
intersect. In ongoing and future work we consider more general polygonal regions,
possibly overlapping arbitrarily. We also consider query versions of the problem
in which we build data structures (shortest path maps) that allow link distance
queries on subsequences of the input set of regions, between query points in the
plane. Future work might examine problems in 3D.
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Abstract. A dominating set S of graph G is called an r-grouped domi-
nating set if S can be partitioned into S1, S2, . . . , Sk such that the size of
each unit Si is r and the subgraph of G induced by Si is connected. The
concept of r-grouped dominating sets generalizes several well-studied
variants of dominating sets with requirements for connected component
sizes, such as the ordinary dominating sets (r = 1), paired dominating
sets (r = 2), and connected dominating sets (r is arbitrary and k = 1). In
this paper, we investigate the computational complexity of r-Grouped
Dominating Set, which is the problem of deciding whether a given
graph has an r-grouped dominating set with at most k units. For gen-
eral r, r-Grouped Dominating Set is hard to solve in various senses
because the hardness of the connected dominating set is inherited. We
thus focus on the case in which r is a constant or a parameter, but
we see that r-Grouped Dominating Set for every fixed r > 0 is still
hard to solve. From the observations about the hardness, we consider
the parameterized complexity concerning well-studied graph structural
parameters. We first see that r-Grouped Dominating Set is fixed-
parameter tractable for r and treewidth, which is derived from the fact
that the condition of r-grouped domination for a constant r can be rep-
resented as monadic second-order logic (MSO2). This fixed-parameter
tractability is good news, but the running time is not practical. We then
design an O∗(min{(2τ(r+1))τ , (2τ)2τ})-time algorithm for general r ≥ 2,
where τ is the twin cover number, which is a parameter between vertex
cover number and clique-width. For paired dominating set and trio domi-
nating set, i.e., r ∈ {2, 3}, we can speed up the algorithm, whose running
time becomes O∗((r + 1)τ ). We further argue the relationship between
FPT results and graph parameters, which draws the parameterized com-
plexity landscape of r-Grouped Dominating Set.
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1 Introduction

1.1 Definition and Motivation

Given an undirected graph G = (V,E), a vertex set S ⊆ V is called a dominating
set if every vertex in V is either in S or adjacent to a vertex in S. The dominating
set problem is the problem of finding a dominating set with the minimum car-
dinality. Since the definition of dominating set, i.e., covering all the vertices via
edges, is natural, many practical and theoretical problems are modeled as domi-
nating set problems with additional requirements; many variants of dominating
set are considered and investigated. Such variants somewhat generalize or extend
the ordinary dominating set based on theoretical or applicational motivations.
In this paper, we focus on variants that require the dominating set to satisfy
specific connectivity and size constraints. One example considering connectivity
is the connected dominating set. A dominating set is called a connected domi-
nating set if the subgraph induced by a dominating set is connected. Another
example is the paired dominating set. A paired dominating set is a dominating
set of a graph such that the subgraph induced by it admits a perfect matching.

This paper introduces the r-grouped dominating set, which generalizes the
connected dominating set, the paired dominating set, and some other variants.
A dominating set S is called an r-grouped dominating set if S can be partitioned
into {S1, S2, . . . , Sk} such that each Si is a set of r vertices and G[Si] is con-
nected. We call each Si a unit. The r-grouped dominating set generalizes both
the connecting dominating set and the paired dominating set in the following
sense: a connecting dominating set with r vertices is equivalent to an r-grouped
dominating set of one unit, and a paired dominating set with k pairs is equivalent
to a 2-grouped dominating set with k units.

This paper investigates the parameterized complexity of deciding whether a
given graph has an r-grouped dominating set with k units. The parameters that
we focus on are so-called graph structural parameters, such as vertex cover num-
ber and twin-cover number. The results obtained in this paper are summarized
in Our Contribution (Sect. 1.3).

1.2 Related Work

An enormous number of papers study the dominating set problem, including the
ones strongly related to the r-grouped dominating set.

The dominating set problem is one of the most important graph optimization
problems. Due to its NP-hardness, its tractability is finely studied from several
aspects, such as approximation, solvable graph classes, fast exact exponential-
time solvability, and parameterized complexity. Concerning the parameterized
complexity, the dominating set problem is W[2]-complete for solution size k; it
is unlikely to be fixed-parameter tractable [12]. On the other hand, since the
dominating set can be expressed in MSO1, it is FPT when parametrized by
clique-width or treewidth (see, e.g., [23]).
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The connected dominating set is a well-studied variant of dominating set.
This problem arises in communication and computer networks such as mobile ad
hoc networks. It is also W[2]-hard when parameterized by the solution size [12].
Furthermore, the connected dominating set also can be expressed in MSO1; it
is FPT when parametrized by clique-width and treewidth as in the ordinary
dominating set problem. Furthermore, single exponential-time algorithms for
connected dominating set parameterized by treewidth can be obtained by the
Cut & Count technique [13] or the rank-based approach [2].

The notion of the paired dominating set is introduced in [21,22] by Haynes
and Slater as a model of dominating sets with pairwise backup. It is NP-hard
on split graphs, bipartite graphs [8], graphs of maximum degree 3 [6], and pla-
nar graphs of maximum degree 5 [29], whereas it can be solved in polynomial
time on strongly-chordal graphs [7], distance-hereditary graphs [26], and AT-free
graphs [29]. There are several graph classes (e.g., strongly orderable graphs [28])
where the paired dominating set problem is tractable, whereas the ordinary
dominating set problem remains NP-hard. For other results about the paired
dominating set, see a survey [14].

1.3 Our Contributions

This paper provides a unified view of the parameterized complexity of dominat-
ing set problem variants with connectivity and size constraints.

As mentioned above, an r-grouped dominating set of G with 1 unit is equiva-
lent to a connected dominating set with size r, which implies that some hardness
results of r-Grouped Dominating Set for general r are inherited directly from
Connected Dominating Set. From these, we mainly consider the case where
r is a constant or a parameter.

Unfortunately, r-Grouped Dominating Set for r = 1, 2 is also hard to
solve again because 1-Grouped Dominating Set and 2-Grouped Dominat-
ing Set are respectively the ordinary dominating set problem and the paired
dominating set problem. Thus, it is worth considering whether a larger but
constant r enlarges, restricts, or leaves unchanged the graph classes for which
similar hardness results hold. A way to classify or characterize graphs of certain
classes is to focus on graph-structural parameters. By observing that the con-
dition of r-grouped dominating set can be represented as monadic second-order
logic (MSO2), we can see that r-Grouped Dominating Set is fixed-parameter
tractable for r and treewidth. Recall that the condition of the connected dom-
inating set can be represented as monadic second-order logic (MSO1), which
implies that there might exist a gap between r = 1 and 2, or between k = 1
and k > 1. Although this FPT result is good news, the running time is not
practical. From these, we focus on less generalized graph structural parameters,
vertex cover number ν or twin cover number τ as a parameter, and design single
exponential fixed-parameter algorithms for r-Grouped Dominating Set.

Our algorithm is based on dynamic programming on nested partitions of a
vertex cover, and its running time is O∗(min{(2ν(r + 1))ν , (2ν)2ν}) for general
r ≥ 2. For paired dominating set and trio dominating set, i.e., r ∈ {2, 3}, we can
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tailor the algorithm to run in O∗((r + 1)ν) time by observing that the nested
partitions of a vertex cover degenerate in some sense.

We then turn our attention to a more general parameter, the twin cover num-
ber. We show that, given a twin cover, r-Grouped Dominating Set admits an
optimal solution in which twin-edges do not contribute to the connectivity of r-
units. This observation implies that these edges can be removed from the graph,
and thus we can focus on the resultant graph of bounded vertex cover number.
Hence, we can conclude that our algorithms still work when the parameter ν in
the running time is replaced with twin cover number τ .

We further argue the relationship between FPT results and graph parame-
ters. The perspective is summarized in Fig. 1, which draws the parameterized
complexity landscape of r-Grouped Dominating Set. We omit the proofs of
some of the results, which can be found in the full version of this paper [20].

Fig. 1. The complexity of r-Grouped Dominating Set with respect to structural
graph parameters. An edge between two parameters indicates that there is a function
in the one above that lower-bounds the one below (e.g., treewidth ≤ pathwidth).

2 Preliminaries

Let G = (V,E) be an undirected graph. For a vertex subset V ′ ⊆ V , the subgraph
induced by V ′ is denoted by G[V ′]. Let us denote by N(v) and N [v] the open
neighborhood and the closed neighborhood of v, respectively. The degree of a
vertex v is defined by d(v) = |N(v)|, and Δ denotes the maximum degree of G.

A vertex set S is a vertex cover of G if for every edge {u, v} ∈ E, at least
one of u, v is in S. The vertex cover number ν of G is defined by the size of
a minimum vertex cover of G. A minimum vertex cover of G can be found in
O∗(1.2738ν) time [5].1

1 The O∗ notation suppresses the polynomial factors of the input size.
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Two vertices u and v are (true) twins if N [u] = N [v]. An edge {u, v} ∈ E
is a twin edge if u and v are true twins. A vertex set S is a twin cover if for
every edge {u, v} ∈ E, either {u, v} is a twin edge, or at least one of u, v is in S.
The size τ of a minimum twin cover of G is called the twin cover number of G.
A minimum twin cover of G can be found in the same running time as vertex
cover, i.e., O∗(1.2738τ ) [16].

2.1 r-Grouped Dominating Set

An r-grouped dominating set with k units in G is a family D = {D1, . . . , Dk} of
subsets of V such that Di’s are mutually disjoint, |Di| = r, G[Di] is connected
for 1 ≤ i ≤ k, and

⋃
D∈D D is a dominating set of G. For simplicity, let

⋃ D
denote

⋃
D∈D D. We say that D is a minimum r-grouped dominating set if it is

an r-grouped dominating set with the minimum number of units.

r-Grouped Dominating Set
Input: A graph G and positive integers r and k.

Question: Is there an r-grouped dominating set with at most k units in G?

3 Basic Results

In this section, we see some preliminary results without proof (see the full version
for the proofs). We first see that r-Grouped Dominating Set is W[2]-hard
but XP when parameterized by k+r. Furthermore, it is NP-hard even on planar
bipartite graphs of maximum degree 3.

Theorem 3.1. For every fixed r ≥ 1, r-Grouped Dominating Set is W[2]-
hard when parameterized by k even on split graphs or bipartite graphs.

Theorem 3.2. For every fixed k ≥ 1, r-Grouped Dominating Set is W[2]-
hard when parameterized by r even on split graphs or bipartite graphs.

Theorems 3.1 and 3.2 imply that r-Grouped Dominating Set is unlikely
to be FPT when parameterized by k or r. On the other hand, we can show that
the problem is XP when parameterized by k + r.

Theorem 3.3. r-Grouped Dominating Set can be solved in O∗(ΔO(kr2))
time.

Corollary 3.4. r-Grouped Dominating Set belongs to XP when parameter-
ized by k + r.

Tripathi et al. [29] showed that Paired Dominating Set (equivalently, 2-
Grouped Dominating Set) is NP-complete for planar graphs with maximum
degree 5. We obtain a more potent and broader result, that is, r-Grouped Dom-
inating Set is NP-hard even on planar bipartite graphs of maximum degree 3
for every fixed r ≥ 1.
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Theorem 3.5. For every fixed r ≥ 1, r-Grouped Dominating Set is NP-
complete on planar bipartite graphs of maximum degree 3.

Corollary 3.6. For every fixed r ≥ 1, r-Grouped Dominating Set cannot
be solved in 2o(n+m) time on bipartite graphs unless ETH fails.

4 Fast Algorithms Parameterized by Vertex Cover
Number and by Twin Cover Number

In this section, we present FPT algorithms for r-Grouped Dominating Set
parameterized by vertex cover number ν. Our algorithm is based on dynamic
programming on nested partitions of a vertex cover, and its running time is
O∗((2ν(r + 1))ν) for general r ≥ 2. For the cases of r ∈ {2, 3}, we can tailor the
algorithm to run in O∗((r + 1)ν) time by focusing on the fact that the nested
partitions of a vertex cover degenerate in some sense.

We then turn our attention to a more general parameter twin cover number.
We show that, given a twin cover, r-Grouped Dominating Set admits an
optimal solution in which twin-edges do not contribute to the connectivity of
r-units. This implies that these edges can be removed from the graph, and thus
we can focus on the resultant graph of bounded vertex cover number. Hence, we
can conclude that our algorithms still work when the parameter ν in the running
time is replaced with twin cover number τ .

Theorem 4.1. For graphs of twin cover number τ , r-Grouped Dominating
Set can be solved in O∗((2τ(r + 1))τ ) time. For the cases of r ∈ {2, 3}, it can
be solved in O∗((r + 1)τ ) time.

With a simple observation, Theorem 4.1 implies that r-Grouped Dominat-
ing Set parameterized solely by τ is fixed-parameter tractable.

Corollary 4.2. For graphs of twin cover number τ , r-Grouped Dominating
Set can be solved in O∗((2τ)2τ ) time.

Proof. If r < 2τ − 1, then the problem can be solved in O∗((2τ)2τ ) time by
Theorem 4.1. Assume that r ≥ 2τ − 1. Let C be a connected component of the
input graph. If |V (C)| < r, then we have a trivial no-instance. Otherwise, we
construct a connected dominating set D of C with size exactly r, which works
as a unit dominating C. We initialize D with a non-empty twin cover of size at
most τ . Note that such a set can be found in O∗(1.2738τ ) time: if C is a complete
graph, then we pick an arbitrary vertex v ∈ V (C) and set D = {v}; otherwise,
just find a minimum twin cover. Since C is connected, D is a dominating set of
C. If C[D] is not connected, we update D with a new element v adjacent to at
least two connected components of C[D]. Since |D| ≤ τ at the beginning, we can
repeat this update at most τ − 1 times, and after that C[D] becomes connected
and |D| ≤ 2τ − 1 ≤ r. We finally add r − |D| vertices arbitrarily and obtain a
desired set. ��
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Fig. 2. Partitioning a vertex cover into three parts.

In the next subsection, we first present an algorithm for 2-Grouped Domi-
nating Set parameterized by vertex cover number, which gives a basic scheme
of our dynamic programming based algorithms. We then see how we extend the
idea to 3-Grouped Dominating Set. As explained above, these algorithms
are based on dynamic programming (DP), and they compute certain function
values on partitions of a vertex cover. Unfortunately, it is not obvious how to
extend the strategy to general r. Instead, we consider nested partitions of a ver-
tex cover for DP tables, which makes the running time a little slower though. In
the last subsection, we see how a vertex cover can be replaced with a twin cover
in the same running time in terms of order.

4.1 Algorithms Parameterized by Vertex Cover Number

Algorithm for 2-Grouped Dominating Set. We first present an algorithm
for the simplest case r = 2, i.e., the paired dominating set. Let G = (V,E) be
a graph and J be a vertex cover of G. Then, I = V \ J is an independent set.
The basic scheme of our algorithm follows the algorithm for the dominating set
problem by Liedloff [25], which focuses on a partition of a given vertex cover
J . For a minimum dominating set D, the vertex cover J is partitioned into
three parts: J ∩ D; (J \ D) ∩ N(J ∩ D), that is, the vertices in J \ D that are
dominated by J ∩D; and J \N [J ∩D], that is, the remaining vertices. Note that
the remaining vertices in J \ N [J ∩ D] are dominated by I ∩ D. Once J ∩ D is
fixed, a minimum I ∩ D is found by solving the set cover problem that reflects
the condition that J \ N [J ∩ D] must be dominated by I ∩ D. The algorithm
computes a minimum dominating set by solving set cover problems defined by
all candidates of J ∩ D.

To adjust the algorithm to 2-Grouped Dominating Set, we need to handle
the condition that a dominating set contains a perfect matching.

For each subset JD ⊆ J , we find a subset ID ⊆ I (if any exists) of the
minimum size such that JD ∪ ID can form a 2-grouped dominating set. Let X
and Y be disjoint subsets of J , and let I = {v1, v2, . . . , v|I|} (see Fig. 2). For
j = 0, . . . , |I|, we define an auxiliary table A[X,Y, j] as the minimum size of
I ′ ⊆ {v1, v2, . . . , vj} that satisfies the following conditions.

1. Y ⊆ N(I ′),
2. I ′ ∪ X has a partition D(2) = {D

(2)
1 ,D

(2)
2 , . . . , D

(2)
p } with p ≤ k such that for

all i = 1, . . . , p, |D(2)
i | = 2 and G[D(2)

i ] is connected.
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We set A[X,Y, j] = ∞ if no I ′ ⊆ {v1, v2, . . . , vj} satisfies the conditions. We can
easily compute A[X,Y, 0] ∈ {0,∞} as A[X,Y, 0] = 0 if and only if G[X] has a
perfect matching and Y = ∅. Now the following recurrence formula computes A:

A[X,Y, j + 1] = min
{

A[X,Y, j], min
u∈N(vj+1)∩X

A[X \ {u}, Y \ N(vj+1), j] + 1
}

.

The recurrence finds the best way under the condition that we can use vertices
from v1, v2, . . . , vj , vj+1 in a dominating set: not using vj+1, or pairing vj+1 with
u ∈ N(vj+1) ∩ X. We can compute all entries of A in O∗(3|J|) time in a DP
manner as there are only 3|J| ways for choosing disjoint subsets X and Y of J .

Now we compute the minimum number of units in a 2-grouped dominating set
of G (if any exists) by looking up some appropriate table entries of A. Let D be a
2-grouped dominating set of G with JD = J∩⋃ D and ID = I∩⋃D. Since

⋃ D is
a dominating set with no isolated vertex in G[

⋃ D], JD dominates all vertices in
I. Let JY = J\N [JD]. Then the definition of A implies that A[JD, JY , |I|] = |ID|.
Conversely, if X ⊆ J dominates I, Y = J \ N [X], and A[X,Y, |I|] �= ∞, then
there is a 2-grouped dominating set with (|X| + A[X,Y, |I|])/2 units. Therefore,
the minimum number of units in a 2-grouped dominating set of G is min{(|X|+
A[X,J \ N [X], |I|])/2 | X ⊆ J and I ⊆ N(X)}, which can be computed in
O∗(2|J|) time given the table A. Thus the total running time is O∗(3|J|).

Algorithm for 3-Grouped Dominating Set. Next, we consider the case
r = 3, i.e., the trio dominating set. Let G = (V,E) be a graph, J be a vertex
cover of G, and I = V \J . The basic idea is the same as the case r = 2 except that
we partition the vertex cover into four parts in the DP, and thus the recurrence
formula for A is different. In the DP, the vertex cover J is partitioned into four
parts depending on the partial solution corresponding to each table entry.

For each subset JD ⊆ J , we find a subset ID ⊆ I (if any exists) of the
minimum size such that JD ∪ ID can form a 3-grouped dominating set. Let X,
F , and Y be disjoint subsets of J , and let I = {v1, v2, . . . , v|I|}. Intuitively,
the set F represents partial units that will later be completed to full units. For
j = 0, . . . , |I|, we define A[X,F, Y, j] as the minimum size of I ′ ⊆ {v1, v2, . . . , vj}
that satisfies the following conditions:

1. Y ⊆ N(I ′),
2. I ′ can be partitioned into two parts I ′

2, I
′
3 satisfying the following conditions:

– I ′
2 ∪ F has a partition D(2) = {D

(2)
1 ,D

(2)
2 , . . . , D

(2)
p } with p ≤ k such that

for all i = 1, . . . , p, |D(2)
i | = 2 and G[D(2)

i ] is connected.
– I ′

3 ∪X has a partition D(3) = {D
(3)
1 ,D

(3)
2 , . . . , D

(3)
q } with q ≤ k such that

for all i = 1, . . . , q, |D(3)
i | = 3 and G[D(3)

i ] is connected.

We set A[X,F, Y, j] = ∞ if no I ′ ⊆ {v1, v2, . . . , vj} satisfies the conditions. We
can easily compute A[X,F, Y, 0] ∈ {0,∞} as A[X,F, Y, 0] = 0 if and only if
F = Y = ∅ and G[X] admits a partition into connected graphs of 3-vertices.
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Fig. 3. How vj+1 is used. (The white vertices belong to a dominating set.)

The last condition can be checked in O(2|J| · |J |3) time for all X ⊆ J by recur-
sively considering all possible ways for removing three vertices from X; that is,
A[X, ∅, ∅, 0] = min{x,y,z}∈(X

3 ) A[X \ {x, y, z}, ∅, ∅, 0] if |X| ≥ 3. The following
recurrence formula holds: A[X,F, Y, j + 1] = min{f1, f2, f3, f4}, where

f1 = A[X,F, Y, j],
f2 = min

α,β∈X,|E(G[{α,β,vj+1}])|≥2
A[X \ {α, β}, F, Y \ {N({α, β, vj+1})}, j] + 1,

f3 = min
α∈X∩N(vj+1)

A[X \ {α}, F ∪ {α}, Y \ N(vj+1), j] + 1,

f4 = min
β∈F∩N(vj+1)

A[X,F \ {β}, Y \ N({β, vj+1}), j] + 1.

The four options f1, f2, f3, and f4 assume different ways of the role of vj+1 and
compute the optimal value under the assumptions (see Fig. 3). Concretely, f1 is
the case when vj+1 does not belong to the solution, and f2 is the case when vj+1

belongs to the solution together with two vertices in J in a connected way. In
f3, vj+1 forms a triple in the solution with a vertex in F and a vertex in Ij . In
f4, vj+1 currently forms a pair in J and will form a triple with a vertex in I \ Ij .
We can compute all entries of A in O∗(4|J|) time.

Similarly to the previous case of r = 2, we can compute the minimum number
of units in a 3-grouped dominating set as min{(|X| + A[X, ∅, J \ N [X], |I|])/3 |
X ⊆ J and I ⊆ N(X)}. Given the table A, this can be done in O∗(2|J|) time.
Thus the total running time of the algorithm is O∗(4|J|).

Algorithm for r-Grouped Dominating Set. We now present our algorithm
for general r ≥ 4. Let G = (V,E) be a graph, J be a vertex cover of G, and
I = V \ J . Our algorithm is still based on a similar framework to the previous
cases, though connected components of general r can be built up from smaller



272 T. Hanaka et al.

Fig. 4. A nested partition of a vertex cover.

fragments of connected components; this yields an essential difference that wors-
ens the running time. In the DP, J is partitioned into r + 1 parts depending on
the partial solution corresponding to each table entry, and then some of the parts
in the partition are further partitioned into smaller subsets. In other words, each
table entry corresponds to a nested partition of the vertex cover.

As in the previous algorithms, for each subset JD ⊆ J , we find a subset
ID ⊆ I (if any exists) of the minimum size such that JD ∪ ID can form an r-
grouped dominating set. Let X, F (r−1), . . . , F (3), F (2), Y be disjoint subsets of
J , and let I = {v1, v2, . . . , v|I|}. For i = 2, . . . , r − 1, let F (i) be a partition of
F (i), where F (i) = {F

(i)
1 , F

(i)
2 , . . . , F

(i)

|F(i)|}. The number of such nested partitions

(X,F (r−1), . . . ,F (2), Y ) is at most (r + 1)|J||J ||J|. For j = 0, . . . , |I|, we define
A[X,F (r−1), . . . ,F (2), Y, j] as the minimum size of I ′ ⊆ {v1, v2, . . . , vj} that
satisfies the following conditions:

1. Y ⊆ N(I ′),
2. I ′ can be partitioned into r − 1 parts I ′

2, I
′
3, . . . , I

′
r satisfying the following

conditions:
– for i = 2, . . . , r−1, I ′

i ∪F (i) has a partition D(i) = {D
(i)
1 ,D

(i)
2 , . . . , D

(i)

|F(i)|}
such that for all p = 1, . . . , |F (i)|, D

(i)
p includes at least one vertex of I ′

and is a superset of F
(i)
p , and |D(i)

p | = i and G[D(i)
p ] is connected.

– I ′
r ∪ X has a partition D(r) = {D

(r)
1 ,D

(r)
2 , . . . , D

(r)
q } such that for all

i = 1, . . . , q, |D(r)
i | = r and G[D(r)

i ] is connected.

We set A[X,F (r−1), . . . ,F (2), Y, j] = ∞ if no I ′ ⊆ {v1, v2, . . . , vj} satisfies the
conditions. We can compute A[X,F (r−1), . . . ,F (2), Y, 0], which is 0 or ∞, as it
is 0 if and only if F (r−1) = · · · = F (2) = Y = ∅ and G[X] admits a partition into
connected graphs of r vertices. The last condition can be checked in O(|J ||J|)
time for all X ⊆ J by checking all possible partitions of J .

Assume that all entries of A with j ≤ c for some c are computed. Since the
degree of vc+1 is at most |J |, the number of possible ways of how vc+1 extends
a partial solution is at most 2|J|. Thus from each table entry of A with j = c,
we obtain at most 2|J| candidates of the table entries with j = c + 1. Thus, we
can compute all entries of A in O∗(2|J|(r + 1)|J||J ||J|) time.
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Given A, we can compute the minimum number of units in an r-grouped
dominating set as min{(|X| + A[X, ∅, . . . , ∅, J \ N [X], |I|])/r | X ⊆ J and I ⊆
N(X)}. Again this takes only O∗(2|J|) time. Thus the total running time of the
algorithm is O∗(2|J|(r + 1)|J||J ||J|) = O∗((2ν(r + 1))ν).

4.2 Algorithms Parameterized by Twin Cover Number

In this subsection, we show that the algorithms presented above still work when
the parameter ν in the running time is replaced with twin cover number τ .
To show this, we prove the following lemma. It says that twin-edges do not
contribute to the connectivity of units for some minimum r-grouped dominating
sets and can be removed from the graph. As a result, the vertex cover number
can be replaced with the twin cover number.

Lemma 4.3. Let G be a graph and K be a twin cover of G. If G has an r-
grouped dominating set, then there exists a minimum r-grouped dominating set
such that every unit has at least one vertex in K.

Proof. Let G = (V,E) be a graph, and K be a twin cover of G. Suppose
that a minimum r-grouped dominating set D exists and one of its units D =
{v1, v2, . . . , vr} has no vertex in K. Since K is a twin cover, N [v1] = · · · = N [vr]
holds. Let KD = K ∩N(v1). Then, there is at least one vertex x in KD such that
x /∈ ⋃ D. Suppose to the contrary that there is no such x, and thus all vertices in
KD belong to

⋃ D. This implies that no vertex is dominated only by D and that
D itself is dominated by some vertices in KD. Thus, D \ {D} is an r-grouped
dominating set. This contradicts the minimality of D. Let D′ = D \ {v1} ∪ {x},
then D′ = D \ {D} ∪ {D′} is also a minimum r-grouped dominating set of G
(see Fig. 5). By repeating this process, we can obtain a minimum r-grouped
dominating set such that every unit has at least one vertex in K. ��

Fig. 5. An example for exchange. White vertices belong to a dominating set.

5 Beyond Vertex Cover and Twin Cover

In this section, we further explore the parameterized complexity of r-Grouped
Dominating Set with respect to structural graph parameters that generalize
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vertex cover number and twin cover number. We show that if we do not try to
optimize the running time of algorithms, then we can use known algorithmic
meta-theorems that automatically give fixed-parameter algorithms parameter-
ized by certain graph parameters.

For the sake of brevity, we define only the parameters for which we need their
definitions. For example, we do not need the definition of treewidth for applying
the meta-theorem described below. On the other hand, to contrast the results
here with the ones in the previous sections, it is important to see the picture
of the relationships between the parameters. See Fig. 1 for the hierarchy of the
graph parameters we deal with.

Roughly speaking, the algorithmic meta-theorems we use here say that if a
problem can be expressed in a certain logic (e.g., FO, MSO1, or MSO2), then the
problem is fixed-parameter tractable parameterized by a certain graph parame-
ter (e.g., twin-width, treewidth, or clique-width). Such theorems are extremely
powerful and used widely for designing fixed-parameter algorithms [23]. On the
other hand, the generality of the meta-theorems unfortunately comes with very
high dependency on the parameters [15]. When our target parameter is ver-
tex cover number, the situation is slightly better, but still a double-exponential
22

Ω(ν)
lower bound of the parameter dependency is known under ETH [24]. This

implies that our “slightly superexponential” 2O(τ log τ) algorithm in Sect. 4 can-
not be obtained by applications of known meta-theorems.

In the rest of this section, we first introduce FO, MSO1, and MSO2 on graphs.
We then observe that the problem can be expressed in FO when r and k are
part of the parameter and in MSO2 when r is part of the parameter. These
observations combined with known meta-theorems immediately imply that r-
Grouped Dominating Set is fixed-parameter tractable when

– parameterized by r + k on nowhere dense graph classes;
– parameterized by r+k+twin-width if a contraction sequence of the minimum

width is given as part of the input; and
– parameterized by r+treewidth.

We then consider the parameter k+treewidth and show that this case is
intractable. More strongly, we show that r-Grouped Dominating Set is W[1]-
hard when the parameter is k+ treedepth + feedback vertex set number.

We finally consider the parameter modular-width, a generalization of twin
cover number, and show that r-Grouped Dominating Set parameterized by
modular-width is fixed-parameter tractable.

5.1 Results Based on Algorithmic Meta-theorems and Related
Results

The first-order logic on graphs (FO) allows variables representing vertices of
the graph under consideration. The atomic formulas are the equality x = y of
variables and the adjacency E(x, y) meaning that {x, y} ∈ E. The FO formulas
are defined recursively from atomic formulas with the usual Boolean connectives
(¬, ∧, ∨, ⇒, ⇔), and quantification of variables (∀, ∃). We also use the existential
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quantifier with a dot (∃̇) to quantify distinct objects. For example, ∃̇a, b : φ means
∃a, b : (a �= b) ∧ φ. We write G |= φ if G satisfies (or models) φ. Given a graph G
and an FO formula φ, FO Model Checking asks whether G |= φ.

It is straightforward to express the property of having an r-grouped domi-
nating set of k units with an FO formula whose length depends only on r + k:

φr,k = ∃̇v1, v2, . . . , vrk :

dominating(v1, . . . , vrk) ∧
∧

0≤i≤k−1

connected(vir+1, . . . , vir+r),

where dominating(· · ·) is a subformula expressing that the rk vertices form a
dominating set and connected(· · ·) is the one expressing that the r vertices
induce a connected subgraph. This implies that r-Grouped Dominating Set
parameterized by r+k is fixed-parameter tractable on graph classes on which FO
Model Checking parameterized by the formula length |φ| is fixed-parameter
tractable. Such graph classes include nowhere dense graph classes [18] and graphs
of bounded twin-width (given with so called contraction sequences) [3].

Corollary 5.1. r-Grouped Dominating Set parameterized by r + k is fixed-
parameter tractable on nowhere dense graph classes.

Corollary 5.2. r-Grouped Dominating Set parameterized by r + k+ twin-
width is fixed-parameter tractable if a contraction sequence of the minimum width
is given as part of the input.

The monadic second-order logic on graphs (MSO1) is an extension of FO that
additionally allows variables representing vertex sets and the inclusion predicate
X(x) meaning that x ∈ X. MSO2 is a further extension of MSO1 that also allows
edge variables, edge-set variables, and an atomic formula I(e, x) representing the
edge-vertex incidence relation. Given a graph G and an MSO1 (MSO2, resp.)
formula φ(X) with a free set variable X, MSO1 (MSO2, resp.) Optimization
asks to find a minimum set S such that G |= φ(S).

It is not difficult to express the property of a vertex set being the union
of r-units of a r-grouped dominating set with an MSO2 formula whose length
depending only on r:2

ψr(X) = dominating(X) ∧
(∃F ⊆ E : span(F,X) ∧ (∀C ⊆ X : cc(F,C) ⇒ sizer(C))) ,

where dominating(X) is a subformula expressing that X is a dominating set,
span(F,X) is the one expressing that X is the set of all endpoints of the edges
in F , cc(F,C) expresses that C is the vertex set of a connected component
of the subgraph induced by F , and sizer(C) means that C contains exactly
r elements. Since MSO2 Optimization parameterized by treewidth is fixed-
parameter tractable [1,4,9], we have the following result.
2 Note that there is no equivalent MSO1 formula of length depending only on r. This

is because G |= ψ2(V ) expresses the property of having a perfect matching, for which
an MSO1 formula does not exist (see e.g., [10]).
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Corollary 5.3. r-Grouped Dominating Set parameterized by r+ treewidth
is fixed-parameter tractable.

Now the natural question regarding treewidth and r-Grouped Dominat-
ing Set would be the complexity parameterized by k+ treewidth. Unfortu-
nately, this case is W[1]-hard even if treewidth is replaced with a possibly much
larger parameter pathwidth + feedback vertex set number and the graphs are
restricted to be planar. Furthermore, if the planarity is not required, we can
replace pathwidth in the parameter with treedepth.

Theorem 5.4. r-Grouped Dominating Set parameterized by k+ pathwidth
+ feedback vertex set number is W[1]-hard on planar graphs.

It is known that on general (not necessarily planar) graphs, Equitable Con-
nected Partition parameterized by k+treedepth + feedback vertex set num-
ber is W[1]-hard [17]. Since adding pendants to all vertices increases treedepth
by at most 1 (see e.g., [27]), the same reduction shows the following hardness.

Theorem 5.5. r-Grouped Dominating Set parameterized by k+treedepth
+ feedback vertex set number is W[1]-hard.

As a parameter between twin-cover number and clique-width, modular-width
is well studied. It is known that the modular-width of a graph and a recursive
partition certificating it can be computed in linear time [11,19]. We can show
the following theorem.

Theorem 5.6. r-Grouped Dominating Set parameterized by modular-width
is fixed-parameter tractable.
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Abstract. Broadcasting is an information dissemination primitive
where a message is passed from one node (called originator) to all other
nodes in the network. With the increasing interest in interconnection
networks, an extensive amount of research was dedicated to broadcast-
ing. Two main research goals of this area are finding inexpensive network
structures that maintain efficient broadcasting and finding the broadcast
time for well-known and widely used network topologies.

In the scope of this paper, we will mainly focus on determining the
broadcast time and the optimal broadcasting scheme for graphs. Deter-
mination of the broadcast time of a node x in an arbitrary network G
is known to be NP-hard. Polynomial time solutions are known only for
a few classes of networks. There also exist various heuristic and approx-
imation algorithms for different network topologies. In this paper, we
will consider networks that can be represented as split graphs. We will
present a polynomial time 2-approximation algorithm for the broadcast
time problem and will introduce an algorithm for generating optimal or
near-optimal broadcast schemes in split graphs.

Keywords: Interconnection networks · Information dissemination ·
Broadcasting · Approximation algorithms

1 Introduction

Broadcasting is one of the most important information dissemination processes in
an interconnected network. Over the last four decades, a large number of research
work has been published concerning broadcasting in networks under different
models. These models can have different numbers of originators, numbers of
receivers at each time unit, distances of each call, numbers of destinations, and
other characteristics of the network such as the knowledge of the neighborhood
available to each node. In the context of this paper, we are going to focus on
the classical model of broadcasting. The network is modeled as an undirected
connected graph G = (V,E), where V (G) and E(G) denote the vertex set and
the edge set of G, respectively. The classical model follows the below-mentioned
basic assumptions.
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(1) The broadcasting process is split into discrete time units.
(2) The only vertex that has the message at the first time unit is called origi-

nator.
(3) In each time unit, an informed vertex (sender) can call at most one of its

uninformed neighbors (receiver).
(4) During each unit, all calls are performed in parallel.
(5) The process halts as soon as all the vertices in the graph are informed.

We can represent each call in this process as an ordered pair of two vertices
(u, v), where u is the sender and v is the receiver. The broadcast scheme is the
order of calls made by each vertex during a broadcasting process and can be
represented as a sequence (C1, C2, ..., Ct), where Ci is the set of calls performed
in time unit i. An informed vertex v is idle in time unit t if v does not make any
call in time t. Given that every vertex, other than the originator, can be informed
by exactly one vertex, the broadcast scheme forms a directed spanning tree
(broadcast tree) rooted at the originator. We are also free to omit the direction
of each call in the broadcast tree.

Definition 1. The broadcast time of a vertex v in a given graph G is the
minimum number of time units required to broadcast in G if v is the originator
and is denoted by b(v,G). The broadcast time of a given graph G, is the maximum
broadcast time from any originator in G, formally b(G) = maxv∈V (G){b(v,G)}.

A broadcast scheme for an originator v that uses b(v,G) time units is called
an optimal broadcast scheme. Obviously, by the assumption (3), the number
of informed vertices after each time unit can at most be doubled. Meaning, in
general, the number of informed vertices after time unit i is upper bounded by
2i. Therefore, it is easy to see that b(v,G) ≥ �log n�, where n is the number of
vertices in G, which implies that b(G) ≥ �log n�.

The general broadcast time decision problem is formally defined as follows.
Given a graph G = (V,E) with a specified set of vertices V0 ⊆ V and a positive
integer k, is there a sequence V0, E1, V1, E2, V2, . . . , Ek, Vk where Vi ⊆ V , Ei ⊆
E(1 ≤ i ≤ k), for every (u, v) ∈ Ei, u ∈ Vi−1, v ∈ Vi, v /∈ Vi−1, and Vk = V . Here
k is the total broadcast time, Vi is the set of informed vertices at round i, and
Ei is the set of edges used at round i. It is obvious that when | V0 |= 1 then this
problem becomes our broadcast problem of determining b(v,G) for an arbitrary
vertex v in an arbitrary graph G.

Generally, the broadcast time decision problem in an arbitrary graph is NP-
complete [12,29]. Moreover, the broadcast time problem was proved to be NP-
complete even for some specific graph classes, such as 3-regular planar graphs
[24]. There is a very limited number of graph families, for which an exact algo-
rithm with polynomial time complexity is known for the broadcast time problem.
Exact linear time algorithms are available for the broadcast time problem in trees
[27,29], in connected graphs with only one cycle (unicyclic graphs) [17,18], in
necklace graphs (chain of rings) [15], in fully connected trees [13], and in Harary-
like graphs [5,6]. For a more detailed introduction to broadcasting, we refer the
reader to [11,16,19,20].
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A split graph is a graph in which the vertices can be partitioned into a clique
and an independent set [23]. Split graphs were first studied in [9] and indepen-
dently introduced in [31]. An edge of a graph is a chord of a cycle if it joins two
nodes of the cycle but is not itself in the cycle. A graph is chordal if and only if
every cycle of length greater than three has a chord. Split graphs are a subclass
of chordal graphs and are exactly those chordal graphs whose complement is
also chordal [14]. Therefore, all problems which are polynomial-time solvable for
chordal graphs are also solvable for split graphs [12,14]. Chordal graphs play a
central role in techniques for exploiting sparsity in large semidefinite optimiza-
tion problems [33] and in related convex optimization problems involving sparse
positive semidefinite matrices. Chordal graph properties are also fundamental to
several classical results in combinatorial optimization, linear algebra, statistics,
signal processing, machine learning, and nonlinear optimization [32,34].

In [3], authors showed that in the limit as n goes to infinity, the fraction
of n-vertex chordal graphs that are split approaches one. Less formally, they
showed that almost all chordal graphs are split graphs, thus making split graphs
an important area of research. Moreover, split graphs are widely used as an
interconnection network topology. Networks that have an important group of
tightly coupled nodes (or in other words the core of the network), and a num-
ber of independent nodes that are only connected to the network core. In terms
of social networks, split graphs correspond to the variety of interpersonal and
intergroup relations [1]. The interaction between the cliques (socially strong and
trusty groups) and the independent sets (fragmented and non-connected groups
of people) is naturally represented as a split graph. Different optimization prob-
lems were studied in split graphs due to their many important characteristics
[2,4,7,8,25]. Given all of the above, it is interesting to study the problem of
broadcasting on split graphs.

[21] is one of the first works in literature that study the minimum broadcast
time problem in split graphs. In the paper, the authors prove that it is NP-
complete to decide whether the broadcast time from multiple originators in split
graphs (and in chordal graphs) is equal to 2. In the same paper, the authors
also show that the minimum broadcast time problem from a single originator
in chordal graphs is NP-complete. Later, in [30], the minimum broadcast and
multicast time problems are considered for a subclass of split graphs where the
degree of all vertices in the independent set is one. The authors introduce a
polynomial time exact algorithm for that subclass of split graphs.

The rest of this paper is organized as follows. In Sect. 2 we introduce a poly-
nomial time approximation algorithm for the broadcast time problem in split
graphs that guarantees a 2 approximation ratio. Further, in Sect. 3, we analyze
some important aspects of an optimal broadcast scheme and present an exact
algorithm scheme. Lastly, Sect. 4 concludes the paper.
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2 An Approximation Algorithm for Broadcasting in Split
Graphs

Consider a split graph G = (V,E) such that the vertex set can be partitioned
into a clique K on n vertices and an independent set I on m vertices. Note
that split graphs may have more than one partitioning into a clique and an
independent set. Clearly, we can assume that the clique K is a maximal (and
also maximum) clique, otherwise, we could change the partitioning by adding
some vertices from I to K to make it maximal. Given a connected split graph
G, a clique K, an independent set I, and an arbitrary originator v ∈ V (G), we
are going two consider two cases: v ∈ K or v ∈ I.

Let t be a positive integer. A t-star-matching of graph G is a collection of
mutually vertex disjoint subgraphs K1,i (stars) of G with 1 ≤ i ≤ t [22]. A perfect
t-star-matching of a graph G is a t-star-matching that covers every vertex of the
graph G. A proper t-star-matching of a split graph G is a perfect t-star-matching
such that any vertex v ∈ K is a center of a star.

First, let us consider a broadcasting problem with multiple originators. We
are given a split graph G = (V,E) with a partitioning of a maximum clique K
and an independent set I, and a set of informed vertices (originators) S such
that S = K. The goal of the problem is to find the minimum broadcast time
b(K,G) needed to inform all the vertices in the independent set. It is easy to see
that in this case of multiple originators, any broadcast scheme forms a directed
spanning forest (instead of a tree), where each tree in the forest is rooted at one
of the originators. Moreover, as broadcasting in split graphs has only one level,
the broadcast scheme will form a set of stars, where the center of each star is one
of the originators. In other words, a broadcasting scheme with broadcast time b
induces a proper b-star-matching for the given split graph G. Hence, if we find
the minimum positive integer t, for which there exists a proper t-star-matching,
we can claim that b(K,G) = t.

2.1 Finding a Proper Star-Matching with Minimum Maxdegree

In order to find the minimum positive integer t, for which there exists a proper
t-star-matching, we will consider the following decision problem.

Problem 1. Proper star-matching problem
Instance: (G,K, I, t), where G = (V,E) is a split graph, K is a clique in G, I
is an independent set in G, and t is a natural number.
Output: “Yes” if G contains a proper t-star-matching for; “No” otherwise.

Next, we will reduce an instance of the above-defined problem to an instance
of a maximum flow problem [10,28].

Problem 2. Maximum flow
Instance: (G, s, q, μ), where G = (V,E) is a flow graph, s is the source vertex,
q is the sink vertex, and μ is a natural number.
Output: “Yes” if the maximum flow for graph G from s to q is greater than or
equal to μ; “No” otherwise.
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The reduction consists of the steps described in Algorithm 1, and an example
of the reduction is presented in Fig. 1.

Algorithm 1. Reduction Algorithm
Input A split graph G, a clique K, an independent set I
Output An instance of the maximum flow problem

1: procedure MaxFlowReduction
2: Create a copy G′ of the graph G
3: Remove all edges between a pair of vertices u and v, where u, v ∈ K
4: Assign direction from u to v to each edge (u, v), where u ∈ K, v ∈ I
5: Assign capacity 1 to each edge (u, v), where u ∈ K, v ∈ I
6: Add a source vertex s and connect it by an outgoing edge to every vertex in K.

Assign a capacity t to those edges
7: Add a sink vertex q and connect it by an ingoing edge to every vertex in I.

Assign a capacity 1 to those edges
8: return (G′, s, q, |I|)
9: end procedure

Proposition 1. There exists a proper t-star-matching for the graph G if and
only if the maximum flow in the graph G′ is equal to m, where m is the cardinality
of the independent set I.

Proof. It is easy to see that when there exists a proper t-star-matching, the same
edges can be used in graph G′ to achieve flow with value m. And similarly, if
the maximum flow is equal to m, the paths used to construct the flow can be
used to find a proper star-matching for the graph G. Since each vertex in K has
an incoming edge capacity of t, it will result in a proper t-star-matching for the
graph G. �	

Thus, we can find the minimum integer t for which there exists a proper t-
star-matching. The procedure MaxFlowReduction (Algorithm 1) can be imple-
mented with complexity O(n)+O(m) = O(|V |). The time to find the maximum
flow in a graph highly depends on the selected algorithm. One of the best algo-
rithms for maximum flow has a complexity of O(|E||V |) [26]. Thus, considering
the binary search time, the overall time complexity of this algorithm would be
O(|E||V | log |I|).

2.2 Broadcasting from a Vertex in the Clique

Algorithm 2 shows the steps of the broadcasting algorithm from an originator
in the clique. Clearly, after the algorithm halts, all vertices of the graph G are
informed as the clique is informed in step 1 (line 2), and the independent set is
informed in step 3 (line 4).

Let bAlg(v,G) be the broadcast time generated by Algorithm 2. It is easy
to see that it has two components: the broadcast time of the clique K and
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Fig. 1. Example of a reduction in Algorithm 1. Subfigure (a) shows the graph G before
the reduction and subfigure (b) shows the graph G′ after the reduction.

Algorithm 2. Approximation Algorithm
Input A split graph G, a clique K, an independent set I, and an originator v ∈ K
Output A broadcast scheme with time bAlg(v, G) for the graph G and the origi-

nator v

1: procedure BroadcastingFromClique
2: Broadcast in the clique K starting from the vertex v
3: Find a proper t-star-matching M with minimum t
4: Use the edges of M to broadcast from K to I
5: end procedure

the broadcast time in G with the vertices of K as originators. Hence, we can
claim that bAlg(v,G) = b(Kn) + b(K,G) = �log n� + t, where n = |K|. Recall
that for any graph G, b(v,G) ≥ �log |V (G)|�. As in our case n ≤ |V (G)|, then
b(v,G) ≥ �log n�. Moreover, it is trivial that the broadcast time from a single
originator in the clique cannot be less than the broadcast time where all the
vertices in the clique are originators. Hence, b(v,G) ≥ b(K,G) = t. From the
two lower bounds of the minimum broadcast time described above, it follows
that:

b(v,G) ≥ �log n�
2

+
t

2
(1)

Thus,
bAlg(v,G)
b(v,G)

≤ �log n� + t
�logn�+t

2

= 2 (2)

We can see that the broadcast time generated by Algorithm 2 is guaranteed
to be at most twice as big as the optimal broadcast time.

As steps 2 and 4 of Algorithm 2 have known broadcast times, they have
O(1) time complexity. Thus, the proposed algorithm has a complexity of
O(|E||V | log |I|), making it a polynomial time 2-approximation algorithm for
the broadcast time problem in split graphs from an originator in the clique.
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2.3 Broadcasting from a Vertex in the Independent Set

Algorithm 3 shows the steps of the broadcasting algorithm from an originator in
the independent set. Clearly, after the algorithm halts, all vertices of the graph
G are informed as the clique is informed in step 1 (line 2), and the independent
set is informed in step 3 (line 4).

Let bAlg(v,G) be the broadcast time generated by Algorithm 3. It is easy
to see that it has three components: the time to send the message from v to u,
the broadcast time of the clique K with u as the originator, and the broadcast
time in G′ with the vertices of K as originators. Hence, we can claim that
bAlg(v,G) = 1 + b(u,Kn) + b(K,G′) where n = |K|.

bAlg(v,G) = 1 + b(u,Kn) + b(K,G′) = 1 +
⌈
log n

⌉
+ t (3)

Algorithm 3. Approximation Algorithm
Input A split graph G, a clique K, an independent set I, and an originator v ∈ I
Output A broadcast scheme with time bAlg(v, G) for the graph G and the origi-

nator v

1: procedure BroadcastingFromIndependentSet
2: Pass the message to an arbitrary neighbor u ∈ K of v
3: Complete broadcasting in the clique K
4: From a graph G′ from G by removing the vertex v
5: Find a proper t-star-matching M with minimum t for the split graph G′

6: Use the edges of M to broadcast from K to I
7: end procedure

Recall that for any graph G, b(v,G) ≥ �log |V (G)|�. In our case n = |K|
and m = |I|, then b(v,G) ≥ �log(n + m)� ≥ �log n�. Moreover, it is trivial that
the broadcast time from a single originator in the independent set is greater
by at least one than the broadcast time where all the vertices in the clique
are originators and the rest of the independent set should be informed. Hence,
b(v,G) ≥ 1 + b(K,G′) = 1 + t. From the two lower bounds of the minimum
broadcast time described above, it follows that:

b(v,G) ≥ �log n� + t + 1
2

(4)

Thus,
bAlg(v,G)
b(v,G)

≤ �log n� + t + 1
�logn�+t+1

2

= 2 (5)

Similar to Algorithm 2, Algorithm 3 has a complexity of O(|E||V | log |I|),
making it a polynomial time 2-approximation algorithm for the broadcast time
problem in split graphs from an originator in the independent set.
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2.4 Tightness of Approximation

In this section, we will prove that the approximation ratio of 2 is tight for
the approximation algorithms introduced above (Algorithm 2 and 3). For that,
we will construct an infinite subfamily of split graphs for which 2 is a tight
approximation ratio when the originator is in the clique or in the independent
set.

Claim. For every positive integer 0 < ε < 1, there exists a split graph instance
G and an originator v for which bAlg(v,G) > (2− ε) · b(v,G), where bAlg(v,G) is
the broadcast time returned by Algorithm 2 or Algorithm 3 (depending on the
originator) and b(v,G) is the minimum broadcast time.

Proof. Let G be a split graph with a clique partition K and an independent set
partition I, such that n = |K| = 2t +1 and m = |I| = t for some positive integer
t. Assume vertex v1 ∈ K is adjacent to every vertex wi ∈ I, 1 ≤ i ≤ m, and
there exist no more edges between the clique and the independent set (Fig. 2).
We will analyze the broadcast time in 2 cases: v1 is the originator in the clique
and w1 is the originator in the independent set.

Consider the following broadcast scheme S1 for originator v1.

(1) Place a call from v1 to v2 in the first time unit.
(2) In the next t time units

(a) v1 informs its neighbors in I,
(b) vertices in K \ {v1} finish broadcasting in the clique with v2 as the origi-

nator.

Clearly, the broadcast scheme S1 will have a broadcast time of b(S1) = t+1 =
�log n� = b(v1, G), which is the trivial lower bound. Whereas, Algorithm 2 will
return a broadcast time bAlg(v,G) = �log n� + m = 2t + 1. Hence, after simple
calculations, we can show that for every 0 < ε < 1, bAlg(v,G) > (2 − ε) · b(v,G)

when t >
1 − ε

ε
.

Next, consider the broadcast scheme S2 for originator w1.

(1) Place a call from w1 to v1 in the first time unit.
(2) Place a call from v1 to v2 in the second time unit.
(3) In the next t time units

(a) v1 informs its uninformed neighbors in I,
(b) vertices in K\{v1} finish broadcasting in the clique with v2 as the origi-

nator.

The broadcast scheme S2 will have a broadcast time of b(S1) = t + 2 = 1 +
�log n� = b(w1, G), which is again the trivial lower bound. Whereas, Algorithm
3 will return a broadcast time bAlg(v,G) = �log n�+(m−1)+1 = 2t+1. Hence,
after simple calculations, we can show that for every 0 < ε < 1, bAlg(v,G) >

(2 − ε) · b(v,G) when t >
3 − 2ε

ε
. �	
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Fig. 2. Example of a split graph with tight approximation ratio.

3 Analysis of an Optimal Broadcast Scheme

In this section, we will be focusing on the decision version of the broadcast time
problem.

Problem 3. Broadcast time problem
Instance: (G, v, t), where G = (V,E) is a graph, v ∈ V is the originator, and t
is a natural number.
Output: “Yes” if b(v,G) ≤ t; “No” otherwise.

Lemma 1. Let G be a split graph, K be a clique in G, I be an independent set
in G, and q be a vertex in K. There exists an optimal broadcast scheme S for
the graph G starting from the originator q, such that every vertex u ∈ I has no
uninformed neighbors after the time unit when u gets informed.

Proof. In other words, Lemma 1 claims that there exists an optimal broadcast
scheme where no calls are placed from a vertex in the independent set to a
vertex in the clique. Let OPT be an optimal broadcast scheme. If OPT does
not contain any calls placed from the independent set to the clique then the
lemma is proved. Assume in scheme OPT , a vertex u ∈ I is informed by v ∈ K
in time unit i and in time units i ≤ t1 ≤ t2... ≤ tk u informs its uninformed
neighbors w1, w2, ..., wk ∈ K, respectively. Then we construct a new broadcast
scheme S, where in time unit i, v informs w1 as they are both in the clique
and in the rest of the broadcasting process v continues as in OPT . Whereas, in
time unit tj , vertex wj passes the message to wj+1, where 1 ≤ j ≤ k − 1 and,
in time unit tk, vertex u is informed by its neighbor wp. This transformation is
visualized in Fig. 3, where subfigure (a) shows the order of calls in scheme OPT
and subfigure (b) shows the order of calls in scheme S. This shuffle will not affect
the broadcast time, as after time unit tk we will have the same set of vertices
informed. Moreover, at each time unit t1, .., tk, we will have the same number
of informed vertices, and informed vertices will be able to proceed following the
broadcast scheme OPT . The same transformation can be applied to any other
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Fig. 3. Example of a transformation discussed in Lemma 1.

situation where a call is placed from the independent set to the clique. Hence,
the created broadcast scheme S will have a broadcast time equal to that of OPT ,
thus becoming an optimal broadcast scheme that satisfies the conditions of the
lemma. �	

From Lemma 1 it is clear that any calls placed from a vertex v ∈ K to its
neighbors in K should be performed before calls towards its neighbors in I.

Lemma 2. Let G be a split graph, K be a clique in G, I be an independent
set in G, and q be a vertex in K. There exists an optimal broadcast scheme S
satisfying the conditions of Lemma 1, such that no vertex v ∈ K informs a vertex
u ∈ K after a vertex w ∈ I.

Proof. In other words, vertices in the clique start placing calls to their neighbors
in the independent set only when they have already informed vertices in the
clique. Let ((u, v), (u,w)) be a pair of calls (pair of directed edges), such that
u,w ∈ K and v ∈ I. We say that ((u, v), (u,w)) is a bad pair of calls in a
broadcast scheme S, if the call (u, v) was placed before the call (u,w). Let S be
an optimal broadcast scheme satisfying the conditions of Lemma 1. It is clear
that if S contains no bad pair of calls then it satisfies Lemma 2. Otherwise, if
the scheme S contains some bad pairs of calls, we will do the following.

(1) Select an arbitrary bad pair of calls ((u, v), (u,w)), where (u, v) was placed
in time unit t1, and (u,w) was placed in time unit t2 > t1.

(2) Swap the order of the call in the pair: use the edge (u,w) in time unit t1
and the edge (u, v) in time unit t2.

(3) Leave the rest of the calls unchanged (even if it causes idling).

After the above modification, the scheme S will finish broadcasting in the same
amount of time because by Lemma 1, the vertex v does not place any calls after
being informed. Moreover, the above transformation will reduce the number of
bad pairs of calls in scheme S by at least 1. Hence, after a finite number of steps,
scheme S will have optimal broadcast time containing no bad pairs of calls, thus,
proving the lemma. �	
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Let M be a proper t-star-matching induced by an optimal broadcast scheme
S satisfying the conditions of Lemma 2 (as well as Lemma 1), and let Ni and
di, 1 ≤ i ≤ n be the set and the number of vertices covered by vi ∈ K in M ,
respectively. The following corollary follows from Lemma 2.

Corollary 1. In the broadcast scheme S, a vertex vi ∈ K, starts placing calls
to vertices in Ni in time unit b(S) − di + 1. Additionally, the calls can be placed
in arbitrary order without affecting the broadcast time.

Now we will analyze the broadcast time (B(S)) achieved by the broadcast
scheme S. It is obvious that if no calls are placed from a vertex in the clique
to the independent set then, theoretically, by the time the broadcasting is over
2B(S) vertices could be informed in the clique (informed vertices are doubled
every time unit). Now assume that a vertex u spends the last p time units of
the broadcasting process placing calls to the vertices of the independent set I.
Since these p time units could be used to inform 2p − 1 vertices in the clique,
then the overall number of vertices that will, theoretically, be informed in the
clique would be at most 2B(S) − 2p + 1. According to Corollary 1, each vertex
vi ∈ K spends di time unit broadcasting to I, and hence, after B(S) time units,
the number of informed vertices in the clique will be upper bounded by the
following number.

2B(S) − 2d1 + 1 − 2d2 + 1 − ... − 2dn + 1 = 2B(S) −
n∑

i=1

2di + n (6)

As the scheme S is a valid broadcast scheme and informs all the vertices in
the graph within B(S) time units, the following inequality is obvious.

2B(S) −
n∑

i=1

2di + n ≥ n (7)

2B(S) ≥
n∑

i=1

2di (8)

For a given proper t-star-matching M , let cost of M , denoted by C(M), be
C(M) =

∑n
i=1 2di , where di is the degree of vertex vi ∈ K in the subgraph

induced by M . Let M∗ be a proper t-star-matching that minimizes the cost
C(M∗). We define the following decision problem for the star-matching with
minimum cost.

Problem 4. Minimum cost star-matching
Instance: (G, c), where G = (V,E) is a split graph, and c is a natural number.
Output: “Yes” if there exists a proper star-matching M∗ of G such that
C(M∗) ≤ c; “No” otherwise.

The following corollary obviously follows from the Inequality 8.
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Corollary 2. The broadcast time of a split graph G from an originator v ∈ K
is lower bounded by b(v,G) ≥ log C(M∗). Moreover, there exists an optimal
broadcast scheme S, such that the star-matching induced by S is exactly equal to
M∗.

Hence, the problem of finding the minimum broadcast time of a given split
graph can be solved if the minimum cost star-matching problem is solved. Based
on everything discussed previously, the following exact algorithm for the mini-
mum broadcast time problem could be derived.

Algorithm 4. Exact Algorithm
Input A split graph G, a clique K, an independent set I, an originator v ∈ K,

and a natural number t
Output “Yes” if b(v, G) ≤ t; “No” otherwise.

1: procedure SplitGraphBroadcast
2: Find a proper t-star-matching M with minimum cost C(M)
3: if 2t ≤ C(M) then
4: return “No”
5: end if
6: d ← []
7: d[i] ← degree of vi ∈ K in M
8: Sort the degree array d in a non-increasing fashion
9: Broadcast in the clique prioritizing the vertices based on their order in d

10: if a vertex vi ∈ K is not informed in time unit t − di + 1 then
11: return “No”
12: else
13: Use the edges of vi in M in arbitrary order starting from time unit t−di +1
14: end if
15: return “Yes”
16: end procedure

Algorithm 4 follows the claims made previously in this section. The only
exception is the conditional operation (if) on line 10. The statement checks if
all the vertices that need to start placing calls towards the independent set are
informed before their determined time unit. If this is not the case then the
broadcasting cannot terminate within the given amount of time.

To sum up, Algorithm 4 gives a strategy that can generate an exact algo-
rithm if the proper star-matching with minimum cost can be found. However,
for any selected matching strategy the algorithm will produce a heuristic, the
performance of which will only depend on the cost of the selected matching. For
instance, if we used the same proper star-matching with min maxdegree that
was used in the approximation algorithm introduced earlier, it would generate
a valid heuristic. Clearly, it is possible to have many idle vertices in the approx-
imation algorithm that we discussed earlier, depending on the structure of the
graph instance. Thus, the heuristic will, obviously, generate broadcast times not
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worse than those of the 2-approximation algorithm, as it will have the same
behavior without any vertex idling. However, we were unable to provide a better
approximation ratio for that algorithm.

3.1 Split Graphs Achieving the Lower Bound of the Broadcast
Time

As we mentioned earlier in this paper, the broadcast time is lower bounded by
�log |V |�. So for a split graph G, with clique partition |K| = n and independent
set partition |I| = m, the broadcast time is lower bounded by �log(n + m)�.

Assume that for a given graph G and an originator v ∈ K, b(v,G) = �log(n+
m)�. Let M be a proper t-star-matching induced by an optimal broadcast scheme
for G, and let di, 1 ≤ i ≤ n be the number of vertices covered by vi ∈ K in M .
For any vertex vi, d(vi) denotes the number of vertices in I adjacent to vi, or
more formally, d(vi) = N(vi) ∩ I, where N(vi) is the open neighborhood of vi.
Note that 0 ≤ di ≤ d(vi) for any i. From the Inequality 8, we can claim that
b(v,G) = �log(n + m)� if

2�log(n+m)� ≥
n∑

i=1

2d(vi) or 2�log(n+m)� ≥
n∑

i=1

2di (9)

Thus, any split graph satisfying the above-mentioned inequality will have a
broadcast time equal to the lower bound of �log(n+m)�. For instance, let n = 2m

and let each vertex in the clique have at most 1 neighbor in the independent set
(d(vi) ≤ 2, for any 1 ≤ i ≤ n). In that case, we can see that 2�log(n+m)� = 2m+1

and
∑n

i=1 2d(vi) ≤ 2 · n = 2m+1. Hence, Inequality 9 holds for these graphs, and
we can claim that they have broadcast time of �log(n + m)�.

4 Conclusion and Future Work

In this paper, we presented approximation algorithms for the minimum broadcast
time problem in split graphs that guarantee an approximation ratio of 2, both
for an originator in the clique or in the independent set. Moreover, we showed
that our calculations for the approximation ratio of these algorithms are tight.

We also proved several important characteristics of an optimal broadcast
scheme, which helped to design a scheme for generating optimal broadcasting
algorithms or heuristics for split graphs. For a large infinite subfamily of split
graphs, we proved that the minimum broadcast time is equal to the lower bound
of �log n�. For the future, it is interesting to try calculating an approximation
ratio for the heuristic that is generated by the introduced scheme, when using
the proper star-matching with minimum maxdegree. Additionally, we defined a
new problem for finding a minimum cost star-matching of a given split graph.
We showed that solving the minimum cost star-matching problem would finally
close the minimum broadcast time problem in split graphs. This would be the
first non-tree-like graph class with a polynomial-time algorithm for the minimum
broadcast time problem.
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Abstract. In the (Vertex) k-Way Cut problem, input is an undi-
rected graph G, an integer s, and the goal is to find a subset S of edges
(vertices) of size at most s, such that G − S has at least k connected
components. Downey et al. [Electr. Notes Theor. Comput. Sci. 2003]
showed that k-Way Cut is W[1]-hard parameterized by k. However,
Kawarabayashi and Thorup [FOCS 2011] showed that the problem is
fixed-parameter tractable (FPT) in general graphs with respect to the

parameter s and provided a O(ss
O(s)

n2) time algorithm, where n denotes
the number of vertices in G. The best-known algorithm for this problem
runs in time sO(s)nO(1) given by Lokshtanov et al. [ACM Tran. of Algo.
2021]. On the other hand, Vertex k-Way Cut is W[1]-hard with respect
to either of the parameters, k or s or k + s. These algorithmic results
motivate us to look at the problems on special classes of graphs.

In this paper, we consider the (Vertex) k-Way Cut problem on
subclasses of chordal graphs and obtain the following results.

– We first give a sub-exponential FPT algorithm for k-Way Cut run-
ning in time 2O(

√
s log s)nO(1) on chordal graphs.

– It is “known” that Vertex k-Way Cut is W[1]-hard on chordal
graphs, in fact on split graphs, parameterized by k + s. We comple-
ment this hardness result by designing polynomial-time algorithms
for Vertex k-Way Cut on interval graphs, circular-arc graphs and
permutation graphs.

Keywords: chordal graphs · FPT · interval graphs · circular-arc
graphs · permutation graphs

1 Introduction

Graph partitioning problems have been extensively studied because of their
applications in VLSI design, parallel supercomputing, image processing, and
clustering [1]. In this paper, we consider one of the classical graph partition-
ing problems, namely, the (Vertex) k-Way Cut problem. In this problem the
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objective is to partition the graph into k components by deleting as few (vertices)
edges as possible. Formally, the problems we study are defined as follows.

k -Way Cut

Input: A graph G = (V,E) and two integers s and k.
Parameter: s
Question: Does there exist a set S ⊆ E of size at most s, such that

G − S has at least k connected components?

Vertex k -Way Cut

Input: A graph G = (V,E) and two integers s and k.
Parameter: s
Question: Does there exist a set S ⊆ V of size at most s, such that

G − S has at least k connected components?

These problems are decision versions of natural generalization of the Global
Min Cut problem, which seeks to delete a set of edges of minimum cardinality
such that the graph gets partitioned into two parts (k = 2). In other words,
the graph becomes disconnected. We first give a brief account of the history of
known results on the problem to set the context of our study.

Algorithmic History of the Problem. There is a rich algorithmic study
of (Vertex) k-Way Cut problem. In 1996, Goldschmidt and Hochbaum
[6] showed that the k -Way Cut problem is NP-hard for arbitrary k, but
polynomial-time solvable when k is fixed and gave a O(n(1/2−o(1))k2

) time algo-
rithm, where n is the number of vertices in the graph. Later, Karger and Stein
[10] gave an edge contraction based randomized algorithm with running time
Õ(n(2k−1)). The notation Õ hides the poly-logarithimic factor in the running
time. Recently, Li [13] obtained an improved randomized algorithm with running
time Õ(n(1.981+o(1))k). To date, the best known deterministic exact algorithm is
given by Chekuri et al. [2] which runs in O(mn(2k−3)) time.

In terms of approximation algorithms, several approximation algorithms are
known for the k -Way Cut problem with approximation factor (2 − o(1)), that
run in time polynomial in n and k [17]. Recently, Manurangsi [15] proved that
the approximation factor cannot be improved to (2 − ε) for every ε > 0, assum-
ing small set expansion hypothesis. Lately, this problem has received signifi-
cant attention from the perspective of parameterized approximation as well.
Gupta et al. [8] gave the first FPT approximation algorithm for the problem
with approximation factor 1.9997 which runs in time 2O(k6)nO(1). The same
set of authors [9] also gave an (1 + ε)-approximation algorithm with running
time (k/ε)O(k)nk+O(1), and an approximation algorithm with a factor 1.81 run-
ning in time 2O(k2)nO(1). Later, Kawarabayashi and Lin [11] gave a (5/3 + ε)-
approximation algorithm for the problem with running time 2O(k2 log k)nO(1).
Recently, Lokshtanov et al. [14] designed (1 + ε)-approximation algorithm for
every ε > 0, running in time (k/ε)O(k)nO(1) improving upon the previous result.
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Table 1. Complexity of the problems for different parameterizations

Problems Parameter(s)

k s k + s

Vertex k -Way Cut W[1]-hard [5] W[1]-hard [16] W[1]-hard [16]

k -Way Cut W[1]-hard [5] FPT [12] FPT [4]

From the parameterized perspective, Downey et al. [5] proved that the k -Way
Cut and Vertex k -Way Cut problems are W[1]-hard when parameterized
by k. On the other hand, when parameterized by the cut size s, it is known
that finding a Vertex k -Way Cut of size s is also W[1]-hard [16]; however
finding a k -Way Cut of size s is FPT [12]. Kawarabayashi and Thorup [12]
gave a O(ssO(s) ·n2) time FPT algorithm for the k -Way Cut problem. Recently,
Lokshtanov et al. [4] designed a faster algorithm with running time sO(s)nO(1).
These tractable and intractable results (see Table 1) are a starting point of our
work. That is, we address the following question: What is the complexity of
(Vertex) k-Way Cut problem on well-known graph classes?

Our Results. In this paper we obtain a a sub-exponential-FPT algorithm
for k-Way Cut running in time 2O(

√
s log s)nO(1) on chordal graphs (Sect. 3)

and polynomial-time algorithms for Vertex k-Way Cut on interval graphs,
circular-arc graphs, and permutation graphs (Sect. 4).

2 Preliminaries

All graphs considered in this paper are finite, simple, and undirected. We use
the standard notation and terminology that can be found in the book of graph
theory [18]. We use [n] to denote the set of first n positive integers {1, 2, 3, . . . , n}.
For a graph G, we denote the set of vertices of the graph by V (G) and the set
of edges of the graph by E(G). We denote |V (G)| and |E(G)| by n and m
respectively, where the graph is clear from context. We abbreviate an edge (u, v)
as uv sometimes. For a set S ⊆ V (G), the subgraph of G induced by S is denoted
by G[S] and it is defined as the subgraph of G with vertex set S and edge set
{(u, v) ∈ E(G) : u, v ∈ S} and the subgraph obtained after deleting S (and
the edges incident to the vertices in S) is denoted by G − S. For v ∈ V (G), we
will use G − v to denote G − {v} for ease of notation. All vertices adjacent to a
vertex v are called neighbours of v and the set of all such vertices is called the
open neighbourhood of v, denoted by NG(v). For a set of vertices S ⊆ V (G), we
define NG(S) = (∪v∈SN(v)\S). We define the closed neighbourhood of a vertex
v in the graph G to be NG[v] := NG(v) ∪ {v} and closed neighbourhood of a
set of vertices S ⊆ V (G) to be NG[S] := NG(S) ∪ S. We drop the subscript G
when the graph is clear from the context. For C ⊆ V (G), if G[C] is connected
and N(C) = ∅, then we say that G[C] is a connected component of G. For both
the problems k -Way Cut and Vertex k -Way Cut, in the given instance, we
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assume that k > 1, otherwise the input itself is an optimal solution with zero
cut size. A partition of G in to k components is a partition of V (G) into k sets
V1, . . . , Vk such that each G[Vi] is a connected. We say a partition is non-trivial
when k > 1.

Definition 1. A tree-decomposition of a connected graph G is a pair (T, β),
where T is a tree and and β : V (T ) → V (G) such that

–
⋃

x∈V (T ) β(x) = V (G), we call β(x) as the bag of x,
– for every edge (u, v) ∈ E(G), there exists x ∈ V (T ) such that {u, v} ⊆ β(x),

and
– for every vertex v ∈ V (G), the subgraph of T induced by the set β−1(v) :=

{x : v ∈ β(x)} is connected.

Chordal Graphs: A graph G is a chordal graph if every cycle in G of length at
least 4 has a chord i.e., an edge joining two non-consecutive vertices of the cycle.
A clique-tree of G is a tree-decomposition of G where every bag is a maximal
clique. We further insist that every bag of the clique-tree is distinct. There are
several ways to obtain a clique-tree decomposition of G; one way is by using
perfect elimination ordering (PEO) of G [3]. The following lemma shows that
the class of chordal graphs is exactly the class of graphs that have a clique-tree.

Lemma 1 ([7]). A connected graph G is a chordal graph if and only if G has a
clique-tree.

Let F be a non-empty family of sets. A graph G is called an intersection
graph for F if there is a one-to-one correspondence between F and G where two
sets in F have nonempty intersection if and only if their corresponding vertices
in G are adjacent. We call F an intersection model of G and we use G(F )
to denote the intersection graph for F . If F is a family of intervals on a real
line, then G(F ) is called an interval graph for F . A proper interval graph is
an interval graph that has an intersection model in which no interval properly
contains another. If F is a family of arcs on a circle in the plane, then G(F )
is called an circular-arc graph for F . If F is a family of line segments in the
plane whose endpoints lie on two parallel lines, then the intersection graph of F
is called the permutation graph for F .

3 Sub-exponential FPT Algorithm on Chordal Graphs

Chordal graphs belong to the class of perfect graphs that contains several other
graph classes such as split graphs, interval graphs, threshold graphs, and block
graphs. A graph G is a chordal graph if every cycle in G of length at least
4 has a chord i.e., an edge joining two non-consecutive vertices of the cycle.
Chordal graphs are also characterized as the intersection graph of sub-trees of
a tree. Every chordal graph has a tree-decomposition where every bag induces
a clique. In this section, we obtain a sub-exponential FPT algorithm for the
k -Way Cut problem in chordal graphs parameterized by s, the number of cut
edges. We first give a characterization of the k -Way Cut on a clique in Lemma
3. Later, we use this characterization to design our algorithm.
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Lemma 2. Let K be a clique and s be an integer. Then we can not partition the
clique into more than one component by deleting s edges if one of the following
conditions holds.

(i) |K| > (s + 1),
(ii) |K| > (2

√
s+1), and size of every component in the partition is at most

√
s.

Proof. (i) If |K| > (s+1), the size of min-cut of K is at least s+1 and hence we
cannot partition K by deleting s edges. (ii) In the second condition, the size of
every component in the partition is at most

√
s and hence every vertex v in any

component must be disconnected from at least 2
√

s + 2 − √
s =

√
s + 2 vertices

that are in other components. Thus the total number of edges that needs to
be deleted is at least (2

√
s + 2)(

√
s + 2)/2 > s. Hence the clique can not be

partitioned by deleting s edges. �	
Lemma 3. Let K be a clique and s be an integer such that (2

√
s + 1) < |K| <

(s + 2), then any non-trivial partition of K obtained by deleting at most s edges,
has a component of size at least (|K| − √

s).

Proof. Let K be a clique such that (2
√

s + 1) < |K| < (s + 2) and we have to
partition the clique into k components by deleting at most s edges. Let γ be the
size of the largest component in the partition.

|E(K)| = |E(Largest component)| + |E(other components)| + |cut edges|

=⇒
(|K|

2

)

≤
(

γ

2

)

+
(|K| − γ

2

)

+ |cut edges|

=⇒
(|K|

2

)

≤
(

γ

2

)

+
(|K| − γ

2

)

+ s

=⇒ |K|(|K| − 1) ≤ γ(γ − 1) + (|K| − γ)(|K| − γ − 1) + 2s

=⇒ 0 ≤ γ2 − γ|K| + s

Therefore, either γ ≤ |K|−
√

|K|2−4s

2 , or γ ≥ |K|+
√

|K|2−4s

2 holds. If the first

inequality holds, then it implies γ ≤ |K|−
√

|K|2+√
4s

2 (by using the inequality√
a − √

b ≤ √
a − b for 0 < b ≤ a). It follows that γ ≤ √

s. However, Lemma
2 implies that if γ ≤ √

s and |K| > 2
√

s+1, then there is no non-trivial partition
of K. Thus in this case, K has no non-trivial partition. If the second inequality

holds, then γ ≥ |K|+
√

|K|2−4s

2 , which implies that γ ≥ (|K|−√
s). Hence any non-

trivial partition of K, obtained by deleting at most s edges, has a component of
size at least (|K| − √

s). �	
Lemma 4. There are 2O(

√
s log s) many possible choices for any non-trivial par-

tition of a clique K obtained by deleting at most s edges.

Proof. We have the following three cases depending on the size of K.

Case 1. |K| ≥ (s + 2).
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In this case, no non-trivial partition exists by Lemma 2.

Case 2. |K| ≤ (2
√

s + 1).
In this case, there are k2

√
s+1 ways of partitioning the clique into k compo-

nents. Since k ≤ (s + 1), k2
√

s+1 ≤ 2O(
√

s log s).

Case 3. (2
√

s + 1) < |K| < (s + 2).
From Lemma 3, in a partition of K into k components, there exists a component
with at least (|K| −√

s) many vertices. So, we guess (|K| −√
s) many vertices in

a component. Now, the rest
√

s vertices are partitioned into k components. The
total number of choices for such a partition of K is bounded by

( |K|
|K|−√

s

) ·k
√

s ·k.

Since both k and |K| are bounded by (s+1), we have |K|
√

s ·k
√

s ·k ≤ 2O(
√

s log s).
�	

Now we prove the following theorem.

Theorem 1. k-Way Cut problem on a chordal graph with n vertices can be
solved in time 2O(

√
s log s)nO(1).

To prove Theorem 1, we design a dynamic-programming algorithm for the
k -Way Cut problem on chordal graphs, which exploits its clique-tree decom-
position. Let G be a chordal graph and τ = (T, {Kt}t∈V (t)) be its clique-tree
decomposition.

Let T be a clique-tree of G rooted at some node r. For a node t of T , Kt

is the set of vertices contained in t and let Vt be the set of all vertices of the
sub-tree of T rooted at t. The parent node of t is denoted by parent(t). We follow
a bottom-up dynamic-programming approach on T to design our algorithm.

For a set of vertices U , we use P(U) to denote a partition {A1, A2, . . . , Ak}
of U where each Ai is a set in the partition. Given the partitions of two sets
U1, U2 ⊆ V (G), say P(U1) = {A1, A2, . . . , Ak} and P(U2) = {B1, B2, . . . , Bk}, we
call these partitions mutually compatible, if for each vertex u in U1∩U2, u ∈ Ai if
and only if u ∈ Bi for some i ∈ [k]. We denote the mutually compatible operation
by ⊥. For any node t, a partition P(Kt) and an integer w where 0 ≤ w ≤ (k−1),
a feasible solution for (t, P(Kt), w) is a k-way cut in G[Vt] with the following
properties: (P(Vt) is the partition induced on Vt by the above k-way cut).

• P(Kt) ⊥ P(Vt),
• Exactly w components in P(Vt) contain no vertex from Kt, that is, these w

components are completely contained inside G[Vt\Kt].

Next, we define the dynamic-programming table whose entry is denoted by
M [t; P(Kt), w] for a node t and integer w, 0 ≤ w ≤ k. The entry M [t; P(Kt), w]
stores the size of the smallest such feasible solution. From Lemma 4, the number
of sub-problems (or number of entries that we have to compute) for each node
in the tree is bounded by 2O(

√
s log s) as each node is a clique. Below we give a

recurrence relation to compute M [t; P(Kt), w] for each tuple (t, P(Kt), w). The
case where t is a leaf, corresponds to the base case of the recurrence, whereas
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the values of M [t; ., .] for a non-leaf node t depends on the value of M [t′, .] for
each child t′ of node t (which have already been computed). By applying the
formula in a bottom-up manner on T , we compute M(r; P(Kr), k − 1) for the
root node r. Note that the value of M(r; P(Kr), k − 1) is exactly the size of
an optimal solution for our problem, because in any optimal solution there are
exactly k−1 components that are completely contained in G−Kr. Here without
loss of generality, we can assume that Kr contains exactly one vertex of G. For
a partition P(U) of U , we define CUT(P(U)) as the set of edges whose endpoints
belong to different sets in the partition. Now, we describe the recursive formulas
to compute the value of M [t; ., .], for each node t.

Leaf Node. Let t be a leaf node. Then for each partition P(Kt), we define

M [t; P(Kt), w] =

{
|CUT(P(Kt))| if w = 0,

+∞ otherwise.

Non-leaf Node. Let t be a non-leaf node. Assume that the node t has � children
t1, . . . , t�. For a pair of distinct vertices u, v in Kt, let Child Pair(t;u, v) denote
the number of children of t containing both the vertices u and v. For a partition
P(Kt), let Child(P(Kt)) denote the sum of the number of occurrences (with
repetitions) of the edges from CUT(P(Kt)) in all the children nodes of t, that is,
Child(P(Kt)) =

∑
(u,v)∈CUT(P(Kt))

Child Pair(t;u, v). Let ψ(P(Kt)) denote the
number of sets in P(Kt) that have no common vertex with the parent node of t.
Therefore, the recurrence relation for computing M(t; ., .) for t is as follows:

M [t; P(Kt), w] = |CUT(P(Kt))| − Child(P(Kt))

+ min
∀(P(Kti

),wi):

P(Kti
)⊥P(Kt)

w=
∑

i

(wi+ψ(P(Kti
)))

�∑

i=1

M [ti; P(Kti
), wi].

Next, we prove the correctness of the above recurrence relation.

Correctness. Let R denote the value of the right side expression above. To
prove the recurrence relation, first we show M [t; P(Kt), w] ≤ R and then
M [t; P(Kt), w] ≥ R. Let t be a node in T having � children t1, t2, . . . , t�. Any
set of � compatible partitions, one for each child of t together with P(Kt)
leads to a feasible solution for (t, P(Kt), w) if w =

∑
i(wi + ψ(P(Kti

))). Now
for each child node ti of t and for any pair of vertices u, v in Kt, if the ver-
tices u and v are in different sets in each of the partitions P(Kt) and P(Kti

),
then the (to be deleted) edge (u, v) is counted twice, once in CUT(P(Kt)) and
once in M [ti; P(Kti

), wi]. Now if the edge (u, v) is present in c many children

of t, then in the entry
�∑

i=1

M [ti; P(Kti
), wi] this edge gets counted c times.

To avoid over-counting of the edge (u, v) in M [ti; ., .], we must consider the
edge (u, v) exactly once and for this purpose we use Child(P(Kt)) in the
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recurrence relation. Considering this over counting, the set of edges corre-
sponding to M [t1; P(Kt1), w1],M [t2; P(Kt2), w2], . . . ,M [t�; P(Kt�

), w�] with size
�∑

i=1

M [ti; P(Kti
), wi] − Child(P(Kt)), together with the edges corresponding to

CUT(P(Kt)) gives us a feasible solution for (t, P(Kt), w). Hence, M [t; P(Kt), w] ≤
|CUT(P(Kt))| − Child(P(Kt)) +

�∑

i=1

M [ti; P(Kti
), wi], where P(Kt) ⊥ P(Kti

) for

each i ∈ [�] and w =
∑

i(wi + ψ(P(Kti
)).

Next, we show that M [t; P(Kt), w] ≥ R. Let Y be a set of cut edges corre-
sponding to the entry M [t; P(Kt), w]. Let Y ′ ⊆ Y be the set of edges that are not
present in Kt. So Y \Y ′ determines the partition in Kt. Let Y ′ = Y1 ∪ . . . ∪ Y�,
where each Yi is the set of edges for G[V (ti)]. Let X1 ∪ . . . ∪ X� ⊆ (Y \Y ′),
where Xi = (Y \Y ′) ∩ E(K(ti)). Now it is easy to see that Yi ∪ Xi is a feasi-
ble solution for (ti, P(Kti

), wi), where P(Kt) ⊥ P(Kti
) for each i ∈ [�] and w =∑

i(wi + ψ(P(Kti
)). Since Y \Y ′ determines the partition only in Kt, |Y \Y ′| =

|CUT(P(Kt))|. Thus, we get M [t; P(Kt), w] − |CUT(P(Kt))| + Child(P(Kt)) ≥
�∑

i=1

M [ti; P(Kti
), wi]. Hence the correctness of the recurrence relation follows.

Time Complexity. There are O(n) many nodes in the clique tree of the given
graph G. The number of entries M [.; ., .] for any node can be upper bounded by
k2O(

√
s log s) (from Lemma 4). To compute one such entry, we look at the entries

with the compatible partitions in the children nodes. Now, we describe how we
compute M [t; P(Kt), w] in a node for a fixed partition P(Kt) and a fixed integer
w ≤ k. We apply an incremental procedure to find this. Consider an ordering
t1 ≺ t2 ≺ . . . ≺ t� of child nodes of t. In the dynamic-programming, we store
the entries M [ti; P(Kti

), wi] for each P(Kti
) ⊥ P(Kt) and wi ≤ k. For each ti, we

compute the entries Di(z) for 0 ≤ z ≤ k, where Di(z) = min
z

{M [ti; P(Kti
), w∗] :

P(Kti
) ⊥ P(Kt), z = w∗ + ψ(P(Kti

), w∗ ≤ k}. Next we create a set of entries
for D, defined by D(1, 2, . . . , i; z) = min

z=z1+z2
{D(1, 2, . . . , i − 1; z1) + Di(z2)}, for

i ∈ [�]. D(1; z) = D1(z),∀z (the base case). It takes O(�k3) time to com-
pute all the entries of the table D. Now using the entries of the table D, we
compute M [t; P(Kt), w], i.e. M [t; P(Kt), z] = |CUT(P(Kt))| − Child(P(Kt)) +
D(1, 2, . . . , �; z).

Since there are 2O(
√

s log s) many partitions of each node t, computing all
DP table entries at each node takes 2O(

√
s log s)O(�k3) time. Because �, k ≤ n,

and there are O(n) many nodes in the clique tree, the total running time is
upper-bounded by 2O(

√
s log s)nO(1).

4 Polynomial Time Algorithmic Results

In this section, we obtain polynomial-time algorithms for the optimization ver-
sion of the Vertex k -Way Cut on interval graphs, circular-arc graphs, and
permutation graphs.
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4.1 Interval Graphs

Here, we design a dynamic-programming algorithm for the optimization version
of the Vertex k -Way Cut on interval graphs. Let G be an interval graph
with vertex set V (G) = {v1, v2, . . . , vn}. Since G is an interval graph, there
exists a corresponding geometric intersection representation of G, where each
vertex vi ∈ V (G) is associated with an interval Ii = (�(Ii), r(Ii)) in the real line,
where �(Ii) and r(Ii) denote left and right endpoints, respectively in Ii. Two
vertices vi and vj are adjacent in G if and only if their corresponding intervals Ii

and Ij intersect with each other. Without loss of generality we can assume that
along with the graph, we are also given the corresponding underlying intervals
on the real line. We use I to denote the set {Ii : vi ∈ V } of intervals and P
to denote the set of all endpoints of these intervals, i.e., P = ∪I∈I{�(I), r(I)}.
In the remaining section, we use vi and Ii interchangeably. For a pair of points
a and b on the real line with a ≤ b (we say a ≤ b when x-coordinate of a is
not greater than x-coordinate of b), we define Ia,b to denote the intervals which
are properly contained in [a, b], formally Ia,b = {I ∈ I : a ≤ �(I) ≤ r(I) ≤ b}.
Let I�b be the set of intervals whose left endpoints are greater than b and
I<b be the set of intervals whose left endpoint is strictly less than b, formally
I�b = {I ∈ I : �(I) ≥ b} and I<b = {I ∈ I : �(I) < b}.

We now define a table for dynamic-programming algorithm. For every tuple
(i, x, y), where 1 ≤ i ≤ k and x, y ∈ P with x < y, any cut where G[Ix,y] is the
i-th component with respect to the cut in G[I<y] is a feasible cut for the tuple
(i, x, y) and T [i;x, y] stores the minimum size among all such feasible cuts for
the tuple (i, x, y). Notice that any two connected components do not intersect.
Hence we can order the components from left to right. In particular, for a pair
of components Cj and Cj′ , we say Cj ≺ Cj′ if for any pair of intervals I ∈ Cj

and I ′ ∈ Cj′ the condition r(I) < �(I ′) holds. In the base case, we compute the
values for T [1;x, y] for each possible pair x, y in P where x < y. T [1;x, y] stores
the number of intervals in G[I<y] that have either left endpoint strictly less than
x or right endpoint strictly greater than y, formally T [1;x, y] = |I<y| − |Ix,y|.

In the next lemma, we give a recursive formula for computing the values
T [i;x, y] for i > 1.

Lemma 5. For every integer i and every pair of points x, y in P where 2 ≤ i ≤ k
and x < y, the following holds:

T [i;x, y] = min
x′,y′∈P
x′<y′<x

{T [i − 1;x′, y′] + |I<y ∩ I�y′ | − |Ix,y|}.

Proof. We prove the recurrence relation by showing inequalities in both direc-
tions. In one direction, let (C1, C2, . . . , Ci) be a feasible cut corresponding to the
entry T [i;x, y]. Here Ci = G[Ix,y]. Let x′ and y′ be the left endpoint and right
endpoint of the component Ci−1, so Ci−1 ⊆ G[Ix′,y′ ]. Clearly, x′ < y′ < x < y.
Now the intervals of the set (I<y ∩ I�y′)\Ix,y are part of cut vertices corre-
sponding to the entry T [i;x, y]. Here we can get a set of (i − 1) components
C1, C2, . . . , Ci−1 in the graph G[I<y′ ] with Ci−1 = G[Ix′,y′ ] and cut of size at
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most T [i;x, y] − (|I<y ∩ I>y′ | − |Ix,y|). Therefore, by the definition of T [i;x, y],
T [i − 1;x′, y′] ≤ T [i;x, y] − (|I<y ∩ I>y′ | − |Ix,y|).

In the other direction, let (C ′
1, C

′
2, . . . , C

′
i−1) be a feasible cut corresponding

to the entry T [i− 1;x′, y′], where x′ < y′ < x < y and Ci−1 = G[Ix′,y′ ]. Now the
component induced by Ix,y together with C ′

1, C
′
2, . . . , C

′
i−1 produces a feasible

cut for T [i;x, y]. Therefore, the cut corresponding to T [i−1;x′, y′] together with
(I<y ∩ I�y′)\Ix,y gives a cut with the components C ′

1, . . . , C
′
i−1, C

′
i = G[Ix,y].

Hence, T [i − 1;x′, y′] + |I<y ∩ I�y′ | − |Ix,y| ≥ T [i;x, y]. This completes the proof
of the lemma. �	

With the insight of Lemma 5, we can now state the following theorem.

Theorem 2. Vertex k-Way Cut in interval graphs with n vertices can be
solved in O(kn4) time.

Proof. Let G be a given graph with I as an interval representation where P
denotes the set of endpoints of all the intervals. In the pre-processing step, we
do the following: (i) for every point p ∈ P , we construct I<p and I�p, (ii) for
every pair of points p, q in P , we compute |Ip,q| and |I<p ∩ I�q|. It will take
O(n2) time to perform both these pre-processing steps. Now in the recurrence
formula, to obtain T [i;x, y], we use the already computed values T [i;x′, y′] for
each possible pair x′, y′ ∈ P with x′ < y′ < x < y. Computing any entry takes
O(n2) time. Since i ranges from 1 to k, we can compute all the values T [i;x, y]
in O(kn4) time. Notice that the entry T [k; ., .] with minimum value gives us the
size of a minimum vertex k-way cut in G. Hence, the theorem holds. �	

4.2 Proper Interval Graphs

In this subsection, we design a dynamic-programming algorithm for the optimiza-
tion version of the Vertex k -Way Cut on proper interval graphs. In proper
interval graphs, each vertex is associated with an interval in the real line such
that no interval is completely contained in another interval. We use the nota-
tions I, Ii, �(Ii), r(Ii) and P with the same definitions as used in the previous
subsection. Let I be the set of all intervals with ordering I1 < I2 < . . . < In

according to their left endpoints. Observe that for proper interval graphs, the
ordering of intervals with respect to their left endpoints is same as with respect
to their right endpoints. More explicitly, for any two intervals Ii and Ij where
�(Ii) < �(Ij), r(Ii) must be less than r(Ij). Let Ii = {I1, I2, . . . , Ii} and G[Ii]
denotes the subgraph of G induced by Ii. Also for an interval Ii, I�

i denotes the
interval in I which has leftmost left endpoint among all the intervals containing
�(Ii), formally, I�

i = Ic, where c = min{j; Ij ∈ I, �(Ij) < �(i) < r(Ij)}.
We now define a table for dynamic-programming algorithm. For every pair

(i, t), where 1 ≤ i ≤ n and 1 ≤ t ≤ k, we define two entries. T [∈; i, t] and
T [/∈; i, t]. For every tuple (∈, i, t), any cut where the interval Ii lies in one of
the t components with respect to the cut in G[Ii] is a feasible cut for the tuple
(∈, i, t) and T [∈; i, t] stores the minimum size among all such feasible cuts for
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the tuple (∈, i, t). For every tuple (/∈, i, t), any cut where the interval Ii does
not lie in any of the t components with respect to the cut in G[Ii] is a feasible
cut for the tuple (/∈, i, t) and T [/∈; i, t] stores the minimum size among all such
feasible cuts for the tuple (/∈, i, t). Similar to interval graphs, here also we order
the components from left to right. In particular, for a pair of components Cj

and Cj′ , we say Cj ≺ Cj′ if for any pair of intervals I ∈ Cj and I ′ ∈ Cj′ the
condition r(I) < �(I ′) holds.

In the base case, the values T [∈; i, 1] = 0 and T [/∈; i, 1] = 1, for i ∈ [n].
In the next two lemmas, we give recursive formulas for computing the values

T [∈; i, t] and T [/∈; i, t], for i ∈ [n], 1 < t ≤ k.

Lemma 6. For every t and i where 2 ≤ t ≤ k and 1 ≤ i < n, the following
holds:

T [/∈; i + 1, t] = 1 + min{T [∈; i, t], T [/∈; i, t]}.

Proof. We prove the given recurrence by showing inequalities in both directions.
In one direction, let (C1, C2, . . . , Ct) be a feasible cut corresponding to the entry
T [/∈; i + 1, t]. We distinguish the following two cases. Case 1: If Ii ∈ Ct, then
(C1, C2, . . . , Ct) is a feasible cut corresponding to the entry T [∈; i, t]. Case
2: If Ii /∈ Ct then (C1, C2, . . . , Ct) is a feasible cut corresponding to the entry
T [/∈; i, t]. In both these cases, the cut size is one less than a cut corresponding
to T [/∈; i + 1, t]. Therefore, T [/∈; i + 1, t] − 1 ≥ min{T [∈; i, t], T [/∈; i, t]}.

In the other direction, let (C ′
1, C

′
2, . . . , C

′
t) be a feasible cut respecting

the tuple (∈, i, t), where X1 is the corresponding set of cut vertices. Now
(C ′

1, C
′
2, . . . , C

′
t) is also a feasible cut for T [/∈; i + 1, t] with X1 ∪ {Ii+1} consid-

ered as the set of cut vertices. Similarly, let (C ′′
1 , C ′′

2 , . . . , C ′′
t ) be a feasible cut

corresponding to the entry T [/∈; i, t], where X2 is a set of cut vertices. Now
(C ′′

1 , C ′′
2 , . . . , C ′′

t ) is also a feasible cut corresponding to the entry T [/∈; i + 1, t]
where X2 ∪ {Ii+1} is a set of cut vertices. Thus, T [/∈; i + 1, t] ≤ 1 + min{T [∈
; i, t], T [/∈; i, t]}. Hence the lemma holds. �	
Lemma 7. Let di be the number of intervals passing through �(Ii) and i′ be the
index corresponding to the interval I�

i . Then for every 2 ≤ t ≤ k the following
holds:

T [∈; i + 1, t] = min{T [∈; i, t], T [/∈; i′, t − 1] + di+1 − 1}.

Proof. We prove the recurrence relation by showing inequalities in both direc-
tions. In one direction, let (C1, C2, . . . , Ct) be a feasible cut corresponding to
the entry T [∈; i + 1, t]. We distinguish the following two cases. If Ii ∈ Ct then
(C1, C2, . . . , (Ct\{Ii+1})) is a feasible cut corresponding to the entry T [∈; i, t].
If Ii /∈ Ct, then (C1, C2, . . . , Ct−1) is a feasible cut corresponding to the
entry T [/∈; i′, t − 1], but in this case the cut size decreases by di+1 − 1. So
T [∈; i + 1, t] ≥ min{T [∈; i, t], T [/∈; i′, t − 1] + di+1 − 1}. In the other direc-
tion, let (C ′

1, C
′
2, . . . , C

′
t) be a feasible cut corresponding to the entry T [∈; i, t],

where X1 is the set of cut vertices. Now (C ′
1, C

′
2, . . . , C

′
t∪{Ii+1}) is also a feasible

cut corresponding to the entry T [∈; i+1, t] with the same cut X1. Similarly, let



304 S. Jana et al.

(C ′′
1 , C ′′

2 , . . . , C ′′
t−1) be a feasible cut corresponding to the entry T [/∈; i′, t − 1],

where X2 is the set of cut vertices. Let Z denote the set of intervals containing
�(Ii+1) except Ii+1. Now (C ′′

1 , C ′′
2 , . . . , C ′′

t−1, Ii+1) is also a feasible cut corre-
sponding to the entry T [∈; i + 1, t] with X2 ∪ Z as a set of cut vertices. Since
|Z| = di+1, then T [∈; i + 1, t] ≤ min{T [∈; i, t], T [/∈; i′, t − 1] + di+1 − 1}. �	

With the insight of Lemma 6 and Lemma 7, we can now state the following
theorem.

Theorem 3. Vertex k-Way Cut in proper interval graph with n vertices can
be solved in O(kn) time assuming that the interval model is given..

Proof. Let G be a given proper interval graph with corresponding set I of n
intervals. Let P denote the set of all endpoints of these intervals. Here we assume
that we are given the set of intervals with the ordering based on left endpoints
as an input. In the pre-processing step, we do the following: compute I�

i and di,
for each interval Ii ∈ I. It will take O(n) time to perform all the pre-processing
steps. Now in the recurrence formula, to obtain T [/∈; i+1, t] and T [∈; i+1, t],
we use O(1) many computations. So computing any entry takes O(1) time. Since
i ranges from 1 to up to n, and t ≤ k, we can compute all the entries of the table
in O(kn) time. Notice that the entry T [.;n, k] with minimum value gives us the
size of a minimum vertex k-way cut in G. Hence, the theorem holds. �	

4.3 Circular-Arc Graphs

A graph G is said to be a circular-arc graph if there exists a corresponding
geometric intersection representation A(G) of G, where each vertex v ∈ G is
associated with an arc on a fixed circle. Two vertices u and v are adjacent in G
if and only if the corresponding arcs intersect each other. It is easy to observe
that this graph class contains interval graphs.

Here we design a polynomial-time algorithm for the optimization version
of Vertex k -Way Cut problem on circular-arc graphs. Let S be an optimal
solution of Vertex k -Way Cut problem on G and C be a component in G\S.
Assume I is the circular-arc representation of C in A(G) and I1 ∈ I be the
arc that has the last endpoint, say u, in the clockwise direction in the circular-
arc representation of G\S. Let I ′ be the set of arcs in A(G) that intersect u,
excluding I1. Since S is a k-way cut it must contain all the vertices corresponding
to the arcs in I ′. Now assume we cut the circle corresponding to the circular-arc
representation of G\S at u and convert the circular-arc to a real line to get an
instance of Vertex k -Way Cut problem on interval graphs. We claim that
S\I ′ is an optimal solution to the Vertex k -Way Cut problem on the interval
graph instance that we construct.

Claim. S\I ′ is a solution to the Vertex k -Way Cut problem on the interval
graph instance G\I ′.
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Proof. Let S′ be an optimal solution on the Vertex k -Way Cut problem on the
interval graph induced by G\I ′. If |S′| = |S\I ′|, we are done. Else, |S′| < |S\I ′|
then S\I ′ is not an optimal solution to the Vertex k -Way Cut problem on the
interval graph instance G\I ′. Observe that G\(S′∪I ′) has at least k components,
and |S′ ∪I ′| = |S′|+ |I ′| < |S|+ |I ′| = |S ∪I ′|. Thus S′ ∪I ′ is an optimal solution
to Vertex k -Way Cut problem on G with size strictly smaller than S which
is a contradiction to our assumption that S is an optimal solution. �	

Now given an instance G for Vertex k -Way Cut problem on circular-arc
graphs we convert it to an instance of interval graph for all the 2n endpoints and
run the algorithm for Vertex k -Way Cut problem, designed in Sect. 4.1, on
each of those interval graphs and store the corresponding S′, I ′. As a solution,
we return the set S′ ∪ I ′ that has minimum size. Since algorithm for interval
graph runs in O(kn4) time (Theorem 2); so we have the following theorem.

Theorem 4. Vertex k-Way Cut in circular-arc graphs with n vertices can be
solved in O(kn5) time.

4.4 Permutation Graphs

This subsection presents a dynamic-programming algorithm for the optimization
version of the Vertex k -Way Cut problem on permutation graphs. Let G be
a permutation graph with vertex set V (G) and edge set E(G). There exists a
corresponding geometric intersection representation for a permutation graph G
similar to interval graphs, where each vertex v in G is associated with a line
segment S(v) with endpoints x(v) and y(v) being on two parallel lines X and
Y , respectively. Without loss of generality, we can assume that both the lines X
and Y are horizontal. Two vertices u and v are adjacent in G if and only if the
segments S(u) and S(v) intersect with each other. Assume that along with the
graph, we have the set of corresponding line segments as an input. Here, we use
S to denote the segments {S(v) : v ∈ V }. Let PX and PY denote the set of all
endpoints of S on the lines X and Y , respectively. Let P = PX ∪ PY .

For a pair of vertices u and v, we write x(u) < x(v) (similarly, y(u) < y(v))
to indicate that x(v) is to the right of x(u) (similarly, y(v) is to the right of
y(u)). If both x(u) < x(v) and y(u) < y(v) hold, then we say S(u) ≺ S(v).
In the rest of this subsection, we interchangeably use v and S(v). For a pair of
points α and β where α ∈ X,β ∈ Y , we denote the set of segments in S whose
one endpoint lies either to the left of α or to the left of β by Sα

β . We use G[α, β]
to denote the subgraph induced by Sα

β in G. Additionally, for any set of four
points, α1, α2 ∈ X and β1, β2 ∈ Y such that α1 < α2 and β1 < β2, we define
Sα1,α2

β1,β2
= {S(v) : α1 ≤ x(v) ≤ α2, β1 ≤ y(v) ≤ β2}. We use G[(α1, α2), (β1, β2)]

to denote the subgraph of G induced by the segments Sα1,α2
β1,β2

.

We now define a table for our dynamic-programming algorithm. For every
tuple (i, p, q, r, s), where p, q ∈ PX with p < q and r, s ∈ PY with r < s, any
cut where G[(p, q), (r, s)] is the i-th component with respect to the cut in G[q, s]
is a feasible cut for the tuple (i, p, q, r, s) and T [i; p, q, r, s] stores the minimum
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size among all such feasible cut for the tuple (i, p, q, r, s). Notice that any two
connected components do not intersect. Hence we can order the components
from left to right. In particular, for a pair of components Cj and Cj′ , we say
Cj ≺ Cj′ if for any pair of line segments u ∈ Cj and v ∈ Cj′ , S(u) ≺ S(v).

For the base case, the value T [1; p, q, r, s] is the number of segments in G[q, s]
whose one endpoint lies either strictly to the left of p or r, or strictly to the right
of q or s, formally T [1; p, q, r, s] = |Sq

s | − |Sp,q
r,s |. In the next lemma, we give a

recursive formula for computing the values T [i; p, q, r, s], for i > 1.

Lemma 8. For every i, 2 < i < k and any set of four points p, q, r, s, where
p, q ∈ PX with p < q and r, s ∈ PY with r < s, the following holds:

T [i; p, q, r, s] = min
p′,q′∈PX & r′,s′∈PY

p′<q′<p, r′<s′<r

{T [i − 1; p′, q′, r′, s′] + |Sq
s | − |Sq′

s′ | − |Sp,q
r,s |}.

Proof. We prove the recurrence by showing inequalities in both directions. In
one direction, let (C1, C2, . . . , Ci) be a feasible cut corresponding to the entry
T [i; p, q, r, s]. Here Ci = G[(p, q), (r, s)]. Let p′, q′, r′, s′ be four points such that
Ci−1 = G[(p′, q′), (r′, s′)], p′, q′ ∈ PX and r′, s′ ∈ PY . Clearly, p′ < q′ < p and
r′ < s′ < r hold. Now, the segments of the set Sq

s\(Sq′
s′ ∪ Sp,q

r,s ) are cut vertices
corresponding to the entry T [i; p, q, r, s]. Here we get a set of (i− 1) components
C1, C2, . . . , Ci−1 in the graph G[q′, s′] with Ci−1 ⊆ G[(p′, q′), (r′, s′)] and cut size
at most T [i; p, q, r, s] − (|Sq

s | − |Sq′
s′ | − |Sp,q

r,s |). Therefore, T [i − 1; p′, q′, r′, s′] ≤
T [i; p, q, r, s] − (|Sq

s | − |Sq′
s′ | − |Sp,q

r,s |).
In the other direction, let (C ′

1, C
′
2, . . . , C

′
i−1) be a feasible cut corresponding

to the entry T [i − 1; p′, q′, r′, s′], where p′ < q′ < p, r′ < s′ < r and Ci−1 =
G[(p′, q′), (r′, s′)]. The component induced by the subgraph G[(p, q), (r, s)]
together with C ′

1, C
′
2, . . . , C

′
i−1 produces a feasible cut for T [i; p, q, r, s]. Now the

cut corresponding to the entry T [i − 1; p′, q′, r′, s′] together with (|Sq
s | − |Sq′

s′ | −
|Sp,q

r,s |) gives a cut that yields the set of components C ′
1, C

′
2, . . . , C

′
i−1, C ′

i =

G[(p, q), (r, s)]. Hence, T [i − 1; p′, q′, r′, s′] + |Sq
s | − |Sq′

s′ | − |Sp,q
r,s | ≥ T [i; p, q, r, s].

This completes the proof of the lemma. �	
With the insight of Lemma 8, we can now state the following theorem.

Theorem 5. Vertex k-Way Cut in permutation graph with n vertices can be
solved in O(kn8) time.

Proof. Let G be a given graph with a set S of n line segments. Recall that we
use PX and PY to denote the set of all endpoints of line segments in X and
Y , respectively. In the pre-processing step, we do the following: (i) we construct
Sα

β , for every pair of points α ∈ PX and β ∈ PY . (ii) we compute |Sα1,α2
β1,β2

| for
each possible set of four points α1, α2 ∈ PX and β1, β2 ∈ PY . It takes O(n5)
time to perform all these pre-processing steps. Now in the recurrence formula, to
obtain T [i; p, q, r, s], we use the already computed values, where p′, q′ ∈ PX and
r′, s′ ∈ PY with p′ < q′ < p and r′ < s′ < r. Computing any entry takes O(n4)
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time. Since i ranges from 1 to k, we can compute all the values T [i; p, q, r, s] in
O(kn8) time. Notice that the entry T [k; ., .] with minimum value gives us the
size of a minimum vertex k-way cut in G. Hence, the theorem holds. �	
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Abstract. We study symmetric tensor decompositions, i.e., decomposi-
tions of the form T =

∑r

i=1 u⊗3
i where T is a symmetric tensor of order

3 and ui ∈ C
n. In order to obtain efficient decomposition algorithms, it

is necessary to require additional properties from the ui. In this paper
we assume that the ui are linearly independent. This implies r ≤ n, i.e.,
the decomposition of T is undercomplete. We will moreover assume that
r = n (we plan to extend this work to the case r < n in a forthcom-
ing paper.) We give a randomized algorithm for the following problem:
given T , an accuracy parameter ε, and an upper bound B on the con-
dition number of the tensor, output vectors u′

i such that ||ui − u′
i|| ≤ ε

(up to permutation and multiplication by phases) with high probability.
The main novel features of our algorithm are:

– We provide the first algorithm for this problem that works in the
computation model of finite arithmetic and requires only poly-
logarithmic (in n, B and 1

ε
) many bits of precision.

– Moreover, this is also the first algorithm that runs in linear time in
the size of the input tensor. It requires O(n3) arithmetic operations
for all accuracy parameters ε = 1

poly(n) .
In order to obtain these results, we rely on a mix of techniques from
algorithm design and algorithm analysis. The algorithm is a modified
version of Jennrich’s algorithm for symmetric tensors. In terms of algo-
rithm design, our main contribution lies in replacing the usual appeal
to resolution of a linear system of equations [5,12] by a matrix trace-
based method. The analysis of the algorithm depends on the following
components:
1. We use the fast and numerically stable diagonalisation algorithm

from [1]. We provide better guarantees for the approximate solution
returned by the diagonalisation algorithm when the input matrix is
diagonalisable.

2. We show strong anti-concentration bounds for certain families of
polynomials when the randomness is sampled uniformly from a dis-
crete grid.
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1 Introduction

Tensor decompositions have generated significant interest in recent years due to
their applications in different fields such as signal processing, computer vision,
chemometrics, neuroscience and others (see [14] for a comprehensive survey on
the applications and available software for this problem). In fact, a number of
learning algorithms for certain models have been developed through the fun-
damental machinery of tensor decompositions. Numerous algorithms have been
devised for solving the tensor decomposition problem with different assumptions
on the input tensor and different efficiency and accuracy bounds [5,8,9,16].

In this paper, we study the algorithmic problem of approximately decompos-
ing an arbitrary symmetric order-3 tensor T ∈ C

n ⊗ C
n ⊗ C

n uniquely (up to
permutation and scaling) into a sum of rank-one tensors. To do this efficiently,
we need to impose certain restrictions on the “independence” of the rank-one
components. More formally, we assume that the rank-one components are of the
form ui ⊗ ui ⊗ ui where the ui’s are linearly independent. We will explore these
restrictions in more detail in Sect. 1.1.

While this problem is well-studied when the underlying model of computation
is exact real arithmetic (even when the input tensor has some noise), not much
work has been done in the setting where the underlying model of computation
is finite precision arithmetic (see Sect. 1.3 for a presentation of this model).
The key difficulties lie in the fact that every arithmetic operation in this model
is done approximately and the stored numbers can also have some adversarial
error (even the input). An iterative algorithm is called numerically stable if
it can be implemented using polylogarithmically many bits in finite precision
arithmetic [1,20]. The central contribution of this paper is a rigorous analysis of
a numerically stable algorithm that runs in linear time in the input size. This
algorithm is inspired by Jennrich’s algorithm and a high level presentation of
the algorithm appears as Algorithm 1 in Sect. 1.6.

The presentation of this paper has been severely shortened to accommodate
the page restrictions. For a full version of this paper, refer to [13].

1.1 Symmetric Tensor Decomposition

Let T ∈ C
n ⊗C

n ⊗C
n be a symmetric tensor of order 3. We recall that such an

object can be viewed as a 3-dimensional array (Tijk)1≤i,j,k≤n that is invariant
under all 6 permutations of the indices i, j, k. This is therefore a 3-dimensional
generalization of the notion of symmetric matrix. In this paper, we study sym-
metric tensor decompositions, i.e., decompositions of the form

T =
r∑

i=1
ui ⊗ ui ⊗ ui (1)

where ui ∈ C
n. The smallest possible value of r is the symmetric tensor rank of

T and it is NP-hard to compute already for order-3 tensors. This was shown by
Shitov [19], and a similar NP-hardness result for ordinary tensors was obtained



310 P. Koiran and S. Saha

much earlier by Håstad [10]. In this paper, we impose an additional linear inde-
pendence condition on the ui. Under this assumption, such a decomposition is
unique if it exists, up to a permutation of the ui’s and scaling by cube roots of
unity [9,15]. There is a traditional distinction between undercomplete decompo-
sitions, where r ≤ n in (1), and overcomplete decompositions, where r > n. In
this paper we consider only undercomplete decompositions because of the linear
independence condition on the ui. Moreover, we will impose the additional con-
dition that r is exactly equal to n, i.e., we focus on complete decompositions. We
say that a tensor is diagonalisable if it satisfies these two conditions. The results
of the present paper will be extended to general undercomplete decomposition
in a forthcoming work by reduction to the complete case.

1.2 Approximate Tensor Decomposition

As explained above, an order-3 symmetric tensor T ∈ C
n ⊗ C

n ⊗ C
n is called

diagonalisable if there exist linearly independent vectors ui ∈ C
n such that

T =
∑n

i=1 u⊗3
i . The objective of the ε-approximation problem for tensor decom-

position is to find linearly independent vectors u′
1, ..., u′

n such that there exists a
permutation π ∈ Sn where ||ωiuπ(i) −u′

i|| ≤ ε with ωi being a cube root of unity.
Here ε is the desired accuracy parameter given as input. Hence the problem is
essentially that of approximating the vectors ui appearing in the decomposition
of T .

1.3 Model of Computation

We are chiefly interested in the finite precision model of arithmetic. Some algo-
rithms are also presented in exact real arithmetic as an intermediate step toward
their derivation in the finite precision model. For the latter model, we use like
[1] the standard floating point axioms from [11].

1.4 Our Results

Recall that an order-3 tensor T ∈ (Cn)⊗3 is called diagonalisable if there exist
linearly independent vectors u1, ..., un ∈ C

n such that T can be decomposed as
in (1).

Definition 1 (Condition number of a diagonalisable symmetric ten-
sor). Let T be a diagonalisable symmetric tensor over C such that T =∑n

i=1 u⊗3
i . Let U ∈ Mn(C) be the matrix with rows u1, . . . , un. We define the

tensor decomposition condition number of T as: κ(T ) = ||U ||2F + ||U−1||2F .
It can be shown that κ(T ) is well defined: for a diagonalisable tensor the condition
number is independent of the choice of U . (Refer to Lemma 6.3 in [13] for a
formal proof.) Note that when U is close to a singular matrix, the corresponding
tensor is poorly conditioned, i.e., has a large condition number. This is not
surprising since our goal is to find a decomposition where the vectors ui are
linearly independent.
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Our main result is a randomized polynomial time algorithm in the finite
precision model which on input a diagonalisable tensor, an estimate B for the
condition number of the tensor and an accuracy parameter ε, returns a forward
approximate solution to the tensor decomposition problem (following the defi-
nition in Sect. 1.2).

In the following, we denote by TMM (n) the number of arithmetic operations
required to multiply two n × n matrices in a numerically stable manner. If ω
denotes the exponent of matrix multiplication, it is known that TMM (n) =
O(nω+η) for all η > 0 (see Sect. 2 in [13] for details).

Theorem 1 (Main Theorem). There is an algorithm which, given a diago-
nalisable tensor T , a desired accuracy parameter ε and some estimate B ≥ κ(T ),
outputs an ε-approximate solution to the tensor decomposition problem for T in

O(n3 + TMM (n) log2 nB

ε
)

arithmetic operations on a floating point machine with

O(log4(nB

ε
) log n)

bits of precision, with probability at least
(

1 − 1
n − 12

n2

)(
1 − 1√

2n
− 1

n

)
.

A simplified version of this algorithm, designed for the exact arithmetic model, is
presented in Sect. 1.6 (Refer to Sect. 6 in [13] for the version compatible with the
finite-precision arithmetic model.) The following are the important conclusions
from the above theorem:

– The number of bits of precision required for this algorithm is polylogarithmic
in n, B and 1

ε .
– The running time as measured by the number of arithmetic operations is

O(n3) for all ε = 1
poly(n) , i.e., it is linear in the size of the input tensor.

This requires the use of fast matrix multiplication. With standard matrix
multiplication, the running time is quasilinear instead of linear (i.e., it is
multiplied by a polylogarithmic factor). The bit complexity of the algorithm
is also quasilinear.

– The algorithm can provide inverse exponential accuracy, i.e., it still runs in
polynomial time even when the desired accuracy parameter is ε = 1

exp (n) .

In order to obtain this result we combine techniques from algorithm design and
algorithm analysis; the main ideas are outlined in Sect. 1.6 and Sect. 1.4.3 in [13].
To the best of our knowledge, this is the first tensor decomposition algorithm
shown to work in polylogarithmic precision. Moreover, this algorithm is also the
first to run in a linear number of arithmetic operations (i.e., prior to this work
no linear time algorithm was known, even in the exact arithmetic model).



312 P. Koiran and S. Saha

1.5 Related Work and Discussion

Our algorithm can be viewed as an optimized version of Jennrich’s algorithm
[9,16,17]. This algorithm, also referred to in the literature as the “simultaneous
diagonalisation algorithm,” was one of the first to give provable guarantees for
tensor decomposition. In fact, if the input tensor satisfies certain genericity con-
ditions this algorithm returns the unique decomposition (up to permutation and
scaling) almost surely. It was shown in [5] that this algorithm runs in polyno-
mial time in the exact arithmetic computational model, i.e., when the model has
the underlying assumption that all the steps of the algorithm can be performed
exactly. Moreover, it is shown in the same paper that the algorithm is robust to
noise in the input.

One may also drop the genericity condition and attempt to decompose an
arbitrary low-rank tensor given as input. For symmetric tensors with constant
rank, such an algorithm can be found in [4]. This algorithm was recently extended
to slightly superconstant rank in [18]. Still other algorithms for symmetric tensor
decomposition can be found in the algebraic literature, see e.g. [3,6]. These two
papers do not provide any complexity analysis for their algorithms.

Condition Numbers: There is no universally accepted definition of a “con-
dition number” in numerical analysis, but a common one, used in [2], is as follows.
Suppose we wish to compute a map f : X → Y . The condition number of f at an
input x is a measure of the variation of the image f(x) when x is perturbed by a
small amount. This requires the choice of appropriate distances on the spaces X
and Y . The condition number is therefore a quantitative measure of the conti-
nuity of f at x. In particular, it is independent of the choice of an algorithm for
computing f . In finite arithmetic, we cannot hope to approximate f(x) with a
low precision algorithm at an input x with a high condition number since we do
not even assume that the input is stored exactly. Moreover, designing algorithms
that work in low precision at well-conditioned inputs is often a challenging task.
For the purpose of this paper we work with the somewhat ad-hoc choice of κ(T )
as our condition number because this parameter controls the numerical preci-
sion needed for our main algorithm, as shown by Theorem 11. In particular, we
have found it more convenient to work with κ(T ) than with a quantity such as
||U ||.||U−1||, commonly used as a condition number in numerical linear algebra.
The results presented in this paper are in stark contrast with those of Beltrán et
al. [2]. That paper analyzes a class of tensor decomposition algorithms related
to Jennrich’s algorithm. Their conclusion is that all these “pencil-based algo-
rithms” are numerically unstable. Indeed, the pencil-based algorithms of [2] are
all deterministic. Beltrán et al. conclude their paper with the following sentence:
“We hope that these observations may (re)invigorate the search for numerically
stable algorithms for computing CPDs.”2 The algorithm presented in this paper
answers their call, at least for the case of complete decomposition of symmetric
1 κ(T ) also appears in the sublinear term for the arithmetic complexity of the algo-

rithm.
2 CPD stands for Canonical Polyadic Decomposition, i.e., decomposition as a sum of
rank-1 tensors.
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tensors. A precise comparison of our results with the numerical instability result
of [2] is delicate because we do not work in the same setting. In particular, they
work with ordinary instead of symmetric tensors; they do not work with the
same condition number; and their result is obtained for undercomplete rather
than complete decompositions. We believe that the main reason why we obtain a
positive result is due to yet another difference, namely, the use of randomization
in step (i) of our algorithm. In the setting of [2] one would have to take two fixed
linear combinations T (a), T (b) of the slices. Essentially, they show that for every
fixed choice of a pair of linear combinations, there are input tensors for which
this choice is bad; whereas we show that for every (well conditioned) input T ,
most choices of a and b are good. We believe that our techniques can also be
applied to decomposition of ordinary tensors. In this paper we have chosen to
focus on symmetric tensors because this setting is somewhat simpler technically.

1.6 The Algorithm

Before giving a high-level presentation of our algorithm, we introduce a few
notations. A symmetric tensor T ∈ C

n ⊗ C
n ⊗ C

n can be cut into n slices
T1, . . . , Tn where Tk = (Tijk)1≤i,j≤n. Each slice is a symmetric matrix of size n.
In the algorithm below we also make use of a “change of basis” operation, which
applies a linear map of the form A ⊗ A ⊗ A to a tensor. Here, A ∈ Mn(C) and
we apply A to the 3 components of the input tensor. In particular, for rank-1
symmetric tensors we have (A ⊗ A ⊗ A).(u ⊗ u ⊗ u) = (AT u)⊗3. We give more
details on this operation at the beginning of Sect. 2. The algorithm proceeds as
follows.
Algorithm 1: Algorithm for tensor decomposition in exact arithmetic
1 Pick vectors a = (a1, ..., an) and b = (b1, ..., bn) at random from a finite set

and compute two random linear combinations T (a) =
∑n

i=1 aiTi and
T (b) =

∑n
i=1 biTi of the slices of T .

2 Diagonalise (T (a))−1T (b) = V DV −1. Let v1, ..., vn be the columns of V .
3 Let u1, ..., un be the rows of V −1.
4 Let T ′ = (V ⊗ V ⊗ V ).T . Let T ′

1, ..., T ′
n be the slices of T ′. Define

αi = Tr(T ′
i ). We will refer to the computation of Tr(T ′

i ) as the trace of
slices after a change of basis (TSCB).

5 Output (α1) 1
3 u1, ..., (αn) 1

3 un.

The above algorithm is a modified version of Jennrich’s algorithm for sym-
metric tensors. In terms of algorithm design, our main contribution lies in step
(iv). Previous versions of Jennrich’s algorithm have appealed instead to the res-
olution of a linear system of equations: see e.g. [5,17] for the case of ordinary
tensors. In the symmetric case, the algebraic algorithm in [12] for decomposition
of a polynomial as a sum of powers of linear forms also appeals to the resolution
of a linear system for essentially the same purpose. Our trace-based version of
step (iv) is more efficient, and this is crucial for the derivation of the complexity
bounds in Theorem 1. Steps (i) and (iv) are indeed the most expensive: they are
responsible for the O(n3) term in the arithmetic complexity of the algorithm.
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Step (ii) (especially the diagonalisation step) is the one that contributes most
significantly to the bound on the number of bits of precision.

2 Slices After a Change of Basis

Given tensors T, T ′ ∈ C
n×n×n, we say that there is a change of basis A ∈ Mn(C)

that takes T to T ′ if T ′ = (A⊗A⊗A).T . This notation was already introduced in
Sect. 1.6. In the present section we give a fast and numerically stable algorithm
for computing the trace of the slices after a change of basis. More formally, given a
tensor T and a matrix V , it computes Tr(S1), ..., T r(Sn) where S1, ..., Sn are the
slices of the tensor S = (V ⊗V ⊗V ).T with small error in O(n3) many arithmetic
operations. Written in standard basis notation, the equality T ′ = (A ⊗ A ⊗ A).T
corresponds to the fact that for all i1, i2, i3 ∈ [n],

T ′
i1i2i3 =

∑

j1,j2,j3∈[n]

Aj1i1Aj2i2Aj3i3Tj1j2j3 . (2)

Note that if T = u⊗3 for some vector u ∈ C
n, then (A ⊗ A ⊗ A).T = (AT u)⊗3.

Norms: We denote by ||x|| the �2 (Hermitian) norm of a vector x ∈ C
n.

For A ∈ Mn(C), we denote by ||A|| its operator norm and by ||A||F its Frobe-
nius norm: ||A||2F =

∑n
i,j=1 |Aij |2. We always have ||A|| ≤ ||A||F . For a given

invertible matrix V , we define κF (V ) = ||V ||2F + ||V −1||2F .

Definition 2 (Tensor Norm). Given a tensor T ∈ (Cn)⊗3, we define the
Frobenius norm ||T ||F of T as ||T ||F =

√∑n
i,j,k=1 |Ti,j,k|2.

Then if T1, ..., Tn are the slices of T , we also have that
∑n

i=1 ||Ti||2F = ||T ||2F .

Algorithm 2: Trace of the slices after a change of basis (TSCB)
Input: An order-3 symmetric tensor T ∈ C

n×n×n, a matrix
V = (vi,j) ∈ C

n×n.
Let T1, ..., Tn be the slices of T .

1 Compute W = V T V on a floating point machine.
2 Compute xm,k = (WTm)k,k on a floating point machine for all m, k ∈ [n].
3 Compute xm =

∑n
k=1 xm,k on a floating point machine for all m ∈ [n] .

4 Compute s̃i =
∑n

m=1 vm,ixm on a floating point machine for all i ∈ [n].
Output s̃1, ..., s̃n

The following is the main theorem of this section.

Theorem 2. Let us assume that a tensor T ∈ (Cn)⊗3 and a matrix V ∈ Mn(C)
are given as input to Algorithm 2. Set S = (V ⊗V ⊗V ).T following the definition
in (2) and let S1, ..., Sn be the slices of S. Then the algorithm returns s̃1, ..., s̃n

such that |s̃i − Tr(Si)| ≤ μCB(n) · u · ||V ||3F ||T ||F where μCB(n) ≤ 14n
3
2 . It

performs TCB(n) = O(n3) operations on a machine with precision u < 1
10n .
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Proof. Let S′ ∈ C
n×n×n be such that S′ = (V ⊗ V ⊗ V ).T . Let S′

1, ..., S′
n be the

slices of S′. We first claim that
∑n

m=1 vm,i

( ∑n
k=1(V T V Tm)k,k

)
= Tr(S′

i). We
know that S′

i = V T DiV where Di =
∑n

m=1 vm,iTm. Using the cyclic property
and the linearity of the trace operator, we get that

Tr(S′
i) = Tr(V T DiV ) = Tr(V T V Di) = Tr(V T V (

n∑

m=1
vm,iTm))

=
n∑

m=1
vm,iTr(V T V Tm) =

n∑

m=1
vm,i

( n∑

k=1

(V T V Tm)k,k

)
.

(3)
From this, we conclude that if Algorithm 2 is run in exact arithmetic, it computes
exactly the trace of the slices S′

i of S′. A proof of the bound on the number of
arithmetic operations required and the correctness analysis of the algorithm in
finite precision arithmetic can be found in Sect. 3 in [13].

3 Diagonalisation Algorithm for Diagonalisable Matrices

In their recent breakthrough result, a numerically stable algorithm for matrix
diagonalisation was given in [1] that runs in nearly matrix multiplication time
in the finite precision arithmetic model. We address two related issues in this
section:

(i) Strengthening the conditioning guarantee from [1] on the similarity V that
approximately diagonalises the input matrix A.

(ii) Relaxing the assumption ||A|| ≤ 1 on the input.

Our contribution regarding (i) appears in Theorem 3 and comes at the expense
of additional assumptions on A: this matrix must be diagonalisable with dis-
tinct eigenvalues. The bounds in that theorem are expressed as a function of
the condition number of the eigenproblem (5), already defined in [1], and of the
Frobenius eigenvector condition number (4). Regarding (ii), we need to slightly
modify the algorithm from [1] in order to scale the input matrix. The main result
of this section is Theorem 3 where we combine (i) and (ii). In particular, the
(routine) error analysis due to the scaling of A is worked out in the proof of
Theorem 3. All the omitted proofs of this section and the corresponding defini-
tions can be found in Sect. 4 in [13]. Note that the diagonalization algorithm
of [1] is responsible for the number of bits of precision needed in our main result
(Theorem 1).
Definition 3 (Eigenpair and eigenproblem). [1] An eigenpair of a matrix
A ∈ C

n×n is a tuple (λ, v) ∈ C × C
n such that Av = λv and ||v||2 = 1. The

eigenproblem is the problem of finding a maximal set of linearly independent
eigenpairs (λi, vi) of a given matrix A. Note that an eigenvalue may appear
more than once if it has geometric multiplicity greater than one. In the case
when A is diagonalizable, the solution consists of exactly n eigenpairs, and if A
has distinct eigenvalues, then the solution is unique, up to the phases of vi.
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Definition 4 (δ-forward approximation for the eigenproblem). Let
(λi, vi) be true eigenpairs for a diagonalizable matrix A. Given an accuracy
parameter δ, the problem is to find pairs (λ′

i, v′
i) such that ||vi − v′

i|| ≤ δ and
|λi − λ′

i| ≤ δ i.e., to find a solution close to the exact solution.

Condition numbers. If A is diagonalizable, we define following [1] its eigen-
vector condition number: κV (A) = infV ||V || · ||V −1||, where the infimum is over
all invertible V such that V −1AV is diagonal. Its minimum eigenvalue gap is
defined as gap(A) := mini�=j |λi(A) − λj(A)|, where λi are the eigenvalues of
A (with multiplicity). Instead of the eigenvector condition number, it is some-
times more convenient to work instead with the Frobenius eigenvector condition
number

κF
V (A) = inf

V
(||V ||2F + ||V −1||2F ) = inf

V
κF (V ), (4)

where the infimum is taken over the same set of invertible matrices. We always
have κF

V (A) ≥ 2κV (A). Following [1], we define the condition number of the
eigenproblem to be:

κeig(A) := κV (A)
gap(A) ∈ [0, ∞]. (5)

Lemma 1. Suppose that A has n distinct eigenvalues λ1, . . . , λn, with v1, . . . , vn

the corresponding eigenvectors. Let W be the matrix with columns v1, . . . , vn; let
u1, . . . , un be the left eigenvectors of A, i.e., the rows of W −1. Then κF

V (A) =
2

∑n
i=1 ||ui|| · ||vi||, and the infimum in (4) is reached for the matrix V obtained

from W by multiplication of each column by
√||ui||/||vi||.

The following lemma states that if a matrix A′ is “close” to a matrix A with
distinct eigenvalues that is “well-conditioned”, then A′ is also “well-conditioned”
with respect to the Frobenius condition number.

Lemma 2. Let A, A′ ∈ Mn(C) be such that A has n distinct eigenvalues and
||A − A′|| ≤ δ where δ < 1

8κeig(A) . Then κF
V (A′) ≤ 6nκV (A) ≤ 3nκF

V (A).

Lemma 3. Let A ∈ Mn(C) be a diagonalisable matrix with distinct eigenvalues
and let A = V DV −1 such that for all i ∈ [n], for each column vi of V ,

∣
∣
∣||vi||−1

∣
∣
∣ ≤

δ. Then κF (V ) ≤ n(1 + δ)2 + (κF
V (A))2

4(1−δ)2 .

The next theorem is the main result of this section. It relies in particular on the
three above lemmas. It states that there exists a numerically stable algorithm for
computing the δ-forward approximation for the eigenproblem of a diagonalisable
matrix A that runs in nearly matrix multiplication time. From an algorithm
design point of view, this contains a simple scaling operation on top of the
forward approximation algorithm from [1] in order to handle matrices with norm
> 1 and the corresponding error analysis can be found in the proof of this
theorem in Sect. 5 in [13]. The following is the most important consequence of
this theorem: Let w1, ..., wn be the forward approximate eigenvectors returned by
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this algorithm on some diagonalisable matrix A. We show that the matrix with
columns wi has nice additional conditioning guarantees. It is especially useful
for small values of δ. In comparison, the bounds on κ(W ) that can obtained
using the corresponding bounds from [1] are the following: If κeig(A) ≤ Keig

and Knorm > max{||A||F , 1}, then κ(W ) <
Cn3.5KeigKnorm

δ for some appropriate
constant C.
Theorem 3. Given a diagonalisable matrix A ∈ Mn(C), a desired accuracy
parameter δ ∈ (0, 1

2 ) and estimates Knorm > max{||A||F , 1} and Keig > κeig(A)
as input, there is an algorithm EIG-FWD that outputs vectors w1, ..., wn ∈ C

n

such that the following properties are satisfied with probability at least 1− 1
n − 12

n2 :

– If v
(0)
1 , ..., v

(0)
n are the true normalized eigenvectors of A, then we have ||v(0)

i −
wi|| < δ up to multiplication by phases.

– Let W be the matrix with columns w1, ..., wn. Then

κ(W ) ≤ κF (W )
2 ≤ 1

2(9n

4 + 81n4(κF
V (A))2).

The algorithm requires O(TMM(n) log2 nKeigKnorm
δ ) arithmetic operations on a

floating point machine with O(log4( nKeigKnorm
δ ) log n) bits of precision.

4 Probability Analysis of Condition Numbers and Gap

The central theme of this section is to deduce anti-concentration inequalities
about certain families of polynomials arising in the analysis of the Algorithm 1 in
Sect. 1.6 in finite-precision arithmetic. There are two families of polynomials: (i)
quadratic polynomials arising from the analysis of the eigenvalue gap of a matrix
and (ii) linear polynomials arising from the analysis of the condition number of a
matrix. We focus on (i) in this section, discussing briefly why these polynomials
are important and prove the respective anti-concentration inequalities for these
polynomials. Compared to [5], an interesting novelty of these inequalities is that
the underlying distribution for the random variables is discrete and that they
are applicable to polynomials from R

n to C. We first study some polynomial
norms and then prove these results. We define the norm of a complex-valued
polynomial following the definition used by Forbes and Shpilka [7] for real-valued
polynomials to construct so-called “robust hitting sets”.
Definition 5 (Norm of a complex-valued polynomial) For an n-variate poly-
nomial f(x) ∈ C[x], we denote ||f ||2 := (

∫
[−1,1]n |f(x)|2dμ(x)) 1

2 where μ(x)
is the uniform probability measure on [−1, 1]n. We also denote ||f ||∞ =
maxv∈[−1,1]n |f(v)|.

The following theorem states that if the l2 norm of a polynomial is not
too small, then on inputs picked uniformly and independently at random from
[−1, 1)n, the value of the polynomial is not too small with high probability. We
follow the presentation of this theorem from [7] and extend it to the case of
complex-valued polynomials.
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Theorem 4 (Carbery-Wright for complex-valued polynomials). There
exists an absolute constant CCW such that if f : R

n −→ C is a polynomial of
degree at most d, then for α > 0, it holds that

Prv∈U [−1,1)n [|f(v)| ≥ α] ≥ 1 − 2CCW d
( α

||f ||2
) 1

d

.

Discussion for the choice of the polynomial associated with gap: Let
T ∈ C

n ⊗ C
n ⊗ C

n be a diagonalisable tensor with bounded condition number
i.e. T = (U ⊗ U ⊗ U).(

∑n
i=1 e⊗3

i ) where eis are the standard basis vectors for
C

n and U ∈ Mn(C) is an invertible matrix such that κ(T ) = κF (U) ≤ B. Let
a, b ∈ C

n and let T (a) =
∑n

i=1 aiTi and T (b) =
∑n

i=1 biTi where T1, ..., Tn are the
slices of T (refer to Definition 1 for a definition of the condition number of a ten-
sor and Sect. 1.6 for a definition of the slices). Notice from Algorithm 1, at step
(ii) of the algorithm we want to diagonalise the matrix (T (a))−1T (b). Our algo-
rithm for complete tensor decomposition in finite-precision arithmetic requires
a numerically stable forward-approximation algorithm for the eigenproblem on
input D := (T (a))−1T (b) (refer to Sect. 3 for a definition). From Theorem 3 in the
same section, this would require computing an upper bound on the eigenvector
condition number of D. If we can show that the eigenvalue gap of D is greater
than some parameter K, then using the fact that κV (D) ≤ κF (U)

2 ≤ B
2 , we can

show that κeig(D) ≤ B
2k .

If u1, ..., un are the rows of U , then the eigenvalues of (T (a))−1T (b) are 〈b,uk〉
〈a,uk〉

for all k ∈ [n]. Following the definition of eigenvalue gap in Sect. 3,

gap((T (a))−1T (b)) = min
k �=l∈[n]

∣
∣
∣

〈b, uk〉
〈a, uk〉 − 〈b, ul〉

〈a, ul〉
∣
∣
∣ = min

k �=l∈[n]

∣
∣
∣

〈b, uk〉〈a, ul〉 − 〈b, ul〉〈a, uk〉
〈a, uk〉〈a, ul〉

∣
∣
∣.

Since by Cauchy-Schwarz inequality, we can already show that |〈a, uk〉〈a, ul〉| ≤
nB
2 for all k 
= l ∈ [n] when a ∈ [−1, 1]n, we just need to show that

the numerator |〈b, uk〉〈a, ul〉 − 〈b, ul〉〈a, uk〉| is bounded below. So we choose
the polynomials P kl(x,y) =

∑
i,j∈[n] pkl

ij xiyj to be the quadratic polynomial
defined for all k, l ∈ [n] by its coefficients pkl

ij = uikujl − uilujk. Notice that
|P kl(a, b)| = |〈b, uk〉〈a, ul〉 − 〈b, ul〉〈a, uk〉|.

The goal of this section is to show that for most choices of a, b ∈ [−1, 1]n,
|P kl(a, b)| > K for some parameter K with high probability. Firstly, we show
that such a result is true when a, b are picked uniformly and independently at
random from [−1, 1]n. Then we will show that it is true even when a, b are picked
uniformly at random from a discrete grid Gη ⊂ [−1, 1]n.
Applying the Carbery-Wright Theorem to P kl: First we give a lower bound
for the l2 norm of the polynomial.

Lemma 4. Let U = (uij) ∈ GLn(C) be such that κF (U) ≤ B. Then, for all
k, l ∈ [n],

∑
i,j∈[n] |uikujl − uilujk|2 ≥ 2

B2 .

Proof. We construct a submatrix U2 ∈ Mn,2(C) with the k-th and l-th columns
of U . Let k = 1 and l = 2 without loss of generality. Since κF (U) ≤ B,
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it follows that for all y ∈ C
n, ||Uy|| ≥ ε||y|| where ε = 1√

B
. Then for all

y ∈ C
2, we have ||U2y|| ≥ ε||y||. This implies that ||U2y||2 ≥ ε2||y||2 and conse-

quently, y∗U∗
2 U2y ≥ ε2y∗y. The minimum singular value σmin of U2 is defined as

σ2
min = miny∈Cn,y �=0

y∗U∗
2 U2y

y∗y . Therefore, σ2
min(U2) ≥ ε2. Since U∗

2 U2 is a Hermi-
tian matrix, σ2

min(U2) = λmin(U∗
2 U2) where λ2

min refers to the smallest eigenvalue.
This gives us that λmin(U∗

2 U2) ≥ ε2. Let a = (a1, ..., an) and b = (b1, ..., bn) be

the columns of U2. Then U∗
2 U2 =

(||a||2 a∗b
b∗a ||b||2

)

. Also, det(U∗
2 U2) ≥ λ2

min(U∗
2 U2),

i.e.,||a||2||b||2 − |a∗b|2 ≥ λ2
min(U∗

2 U2) ≥ ε4. Now from the complex form of
Lagrange’s identity, we know that ||a||2||b||2 − |a∗b|2 = 1

2
∑n

i,j=1 |aibj − ajbi|2.

As a result,
∑n

i,j=1 |aibj − ajbi|2 ≥ 2ε4. Choosing ε = 1√
B

, we finally conclude
that for all k, l ∈ [n],

∑
i,j∈[n] |uikujl − uilujk|2 ≥ 2

B2 .

Theorem 5. Let U = (uij) ∈ GLn(C) be such that κF (U) ≤ B. Let P kl(x,y) =∑
i,j∈[n] pijxiyj where pij = uikujl − uilujk. Then

Prv∈U [−1,1)n [|f(v)| ≥
√

2α

3B
] ≥ 1 − 4CCW α

1
2 .

Proof. Applying Theorem 4 to P kl with d = 2 shows that

Prv∈U [−1,1)n [|f(v)| ≥ α||P kl||2] ≥ 1 − 4CCW α
1
2 . (6)

Now we claim that ||P kl||2 ≥
√
2

3B . Recall that ||P kl||22 =
∫
[−1,1]2n |P kl(x,y)|2d

μ(x,y) where μ(x,y) is the uniform probability distribution on [−1, 1]2n. Let us
define p

(r)
ij and p

(i)
ij as the real and imaginary parts respectively of pij . We can

estimate |P kl||22 as follows:
∫

[−1,1]2n

|
∑

i,j∈[n]

pijxiyj |2dμ(x, y) =

∫

[−1,1]2n

|
( ∑

i,j∈[n]

p
(r)
ij

xiyj

)
+ ι

( ∑

i,j∈[n]

p
(i)
ij

xiyj

)
|2dμ(x, y)

=
( ∑

i,j,k,l∈[n]

p
(r)
ij

p
(r)
kl

(

∫

[−1,1]2n

xiyjxkyldμ(xy))
)
+

( ∑

i,j,k,l∈[n]

p
(i)
ij

p
(i)
kl

(

∫

[−1,1]2n

xiyjxkyldμ(xy)
)

=
∑

i,j,k,l∈[n]

(p(r)
ij

p
(r)
kl

+ p
(i)
ij

p
(i)
kl

)(

∫

[−1,1]n
xixkdμ(x))(

∫

[−1,1]n
yjyldμ(y)).

When i 
= k,
∫
[−1,1]n xixkdμ(x) = (

∫
[−1,1] xidμ(xi))2 = 0. Similarly

∫
[−1,1]n yjyldμ(y) = 0 for j 
= l. This gives us that

||P kl||22 =
∑

i,j∈[n]

(
(p(r)ij )2 + (p(i)ij )2

)
(
∫

[−1,1]n
x2

i dμ(x))(
∫

[−1,1]n
y2

j dμ(y)).

Since
∫
[−1,1]n x2

i dμ(x) = 1
2

∫ 1
−1 x2

i dxi =
∫
[−1,1]n y2

j dμ(y) = 1
2

∫ 1
−1 y2

j dyj = 1
3 ,

we get that ||P kl||22 = 1
9

∑
i,j∈[n] |pij |2. Now, from Lemma 4, it follows that

||P kl||22 ≥ 2
9B2 . Using this in (6), we can conclude the desired result.
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Extending the result when the randomness is obtained uniformly from
a discrete grid: Our next goal is to show a similar probabilistic result for
both families of polynomials (linear and quadratic), but replacing the previous
continuous distribution over [−1, 1)n by a distribution where the inputs are
chosen uniformly and independently at random from a discrete grid. To formalise
this distribution, we describe another equivalent random process of picking an
element at random from [−1, 1)n and rounding it to the nearest point on the
grid. We use the presentation from [7].

Definition 6 (Rounding function). Given η ∈ (0, 1) such that 1
η is an inte-

ger, for any point (a, b) ∈ [−1, 1]2n, we define gη(a, b) to be the point (a′, b′)
such that the i-th element, (a′, b′)i = miη, where miη ≤ (a, b)i < (mi + 1)η.

We also define Gη = {−1, −1 + η, −1 + 2η, ..., 1 − 2η, 1 − η}2n. Note here
that for any point (a, b) ∈ [−1, 1)2n, gη(a, b) ∈ Gη. Also, note that the process
of picking (a, b) uniformly and independently at random from [−1, 1)2n and then
using the rounding function gη on (a, b) is equivalent to the process of picking
an element uniformly and independently at random from Gη.

Theorem 6 (Multivariate Markov’s Theorem). Let f : R
n −→ R be

a homogeneous polynomial of degree r, that for every v ∈ [−1, 1]n satisfies
|f(v)| ≤ 1. Then, for every ||v|| ≤ 1, it holds that ||∇(f)(v)|| ≤ 2r2.

Theorem 7. Let f : R2n −→ C be a homogeneous polynomial of degree at most d.
Let η > 0 be such that 1

η is an integer. Let a, b ∈ [−1, 1)2n and (a′, b′) = gη(a, b).
Then |f(a, b) − f(a′, b′)| ≤ 4η

√
n||f ||∞d2.

Proof. We write f = R(f) + ιI(f) where R(f),I(f) : R
n −→ R. By the

mean value theorem, there exists a point (a0,b0) on the line segment con-
necting (a,b) and (a′,b′), such that |R(f)(a,b) − R(f)(a′,b′)| = ||(a,b) −
(a′,b′)|| · |(R(f))′(a0,b0)| where (R(f))′(a0,b0) is the derivative of R(f) in the
direction (a,b) − (a′,b′) evaluated at a0,b0. From Theorem 6, it follows that
|(R(f))′(a0,b0)| ≤ 2||R(f)||∞d2. Similarly, we also get that |(I(f))′(a0,b0)| ≤
2||I(f)||∞d2. This finally gives us that

|f(a, b) − f(a′
, b′)| = |

(
R(f)(a, b) − R(f)(a′

, b′)
)
+ ι

(
I(f)(a, b) − I(f)(a′

, b′)
)

|

=
√(

R(f)(a, b) − R(f)(a′, b′)
)2

+
(
I(f)(a, b) − I(f)(a′, b′)

)2

≤ ||(a, b) − (a′
, b′)|| ·

√
4||R(f)||2∞d4 + 4||I(f)||2∞d4 ≤ 4η

√
n||f ||∞d

2
.

The last inequality follows from the fact that ||R(f)||∞, ||I(f)||∞ ≤ ||f ||∞.

Theorem 8. Let U = (uij) ∈ GLn(C) be such that κF (U) ≤ B. Let P kl(x,y) =∑
i,j∈[n] pijxiyj where pij = uikujl − uilujk. Let CCW be the absolute constant

guaranteed by Theorem 4. Then

Pr(a,b)∈U Gη
[|P kl(a, b)| ≥

√
2α

3B
− 16ηn

3
2 B] ≥ 1 − 4CCW α

1
2 .
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Corollary 1. Let U = (uij) ∈ GLn(C) be such that κF (U) ≤ B. Let P kl(x,y) =∑
i,j∈[n] pijxiyj where pij = uikujl − uilujk. Let CCW be the absolute constant

guaranteed by Theorem 4. Then

Pr(a,b)∈U Gη
[|P kl(a, b)| ≥ k] ≥ 1 − 4CCW

(3B(k + 16ηBn
3
2 )√

2

) 1
2 ).
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Abstract. In this paper, we investigate the leader election problem in diameter-
two networks. Recently, Chatterjee et al. [DC 2020] studied the leader election in
diameter-two networks. They presented a O(log n)-round deterministic implicit
leader election algorithm which incurs optimal O(n logn) messages, but a draw-
back of their algorithm is that it requires knowledge of n. An important question–
whether it is possible to remove the assumption on the knowledge of n was left
open in their paper. Another interesting open question raised in their paper is
whether explicit leader election can be solved in Õ(n) messages deterministi-
cally. In this paper, we give an affirmative answer to them. Further, we solve
the broadcast problem, another fundamental problem in distributed computing,
deterministically in diameter-two networks with Õ(n) messages and Õ(1) rounds
without the knowledge of n. In fact, we address all the open questions raised by
Chatterjee et al. for the deterministic leader election problem in diameter-two
networks. In particular, our results are:

1. We present a deterministic explicit leader election algorithm which takes
O(logΔ) rounds and O(n logΔ) messages, where n in the number of nodes
and Δ is the maximum degree of the network. The algorithm works without
the knowledge of n. The message bound is tight due to the matching lower
bound, showed Chatterjee et al. [DC 2020].

2. We show that broadcast can be solved deterministically in O(logΔ) rounds
using O(n logΔ) messages. More precisely, a broadcast tree can be com-
puted with the same complexities and the depth of the tree is O(logΔ). This
also doesn’t require the knowledge of n.

To the best of our knowledge, this is the first Õ(n) deterministic result for the
explicit leader election in the diameter-two networks, that too without the knowl-
edge of n.

Keywords: Distributed Algorithm · Leader Election · Message Complexity ·
Diameter-two graphs

1 Introduction

In the four decades since its inception, leader election has remained a well explored and
fundamental problem in distributed networks [20,21,23]. The basic premise of leader
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election is simple: given a group of n nodes, a unique node is elected as a leader (where
n denotes the number of nodes in the network). Depending on the nodes knowledge
of the leader, there are two popular versions. In the first version (known as the implicit
leader election), the non-leader nodes are not required to know the leader’s identity; it is
enough for them to know that they are not the leader. The implicit leader election is quite
well studied in literature [2,16–18,22]. In the other version (known as explicit leader
election), the non-leader nodes are required to learn the leader’s identity. The implicit
version of the leader election is the generalized version of the (explicit) leader election.
Clearly, there is a lower bound of Ω(n) for message complexity in the explicit version
of the problem. In this paper, we study the explicit version of the problem. In particular,
we show an improvement on the existing deterministic solution for the implicit leader
election algorithm presented in [4] and provide an algorithm for turning the implicit
leader election explicit without any additional overhead on messages.

Leader election has been studied extensively with respect to both message and
round complexity in various graph structures like rings [21,30], complete graphs
[1,3,7,11,13,14,28], diameter-two networks [4] etc., as well as in general graphs
[5,6,18,22,24]1. Earlier works were primarily focused on providing deterministic solu-
tions. However, eventually, randomized algorithms were explored to reduce mainly the
message complexity (see [3,6,17,18] and the references there in). Kutten et al. gave
the fundamental lower bound for leader election in general graphs with Ω(m) message
complexity and Ω(D) round complexity [17], where m is the number of edges and
D is the diameter of the graph. This bound is applicable for all graphs with diameters
greater than two, whether the algorithm is deterministic or randomized. For the clique,
recently a tight message lower bound of Ω(n log n) is established by Kutten et al. [19]
for the deterministic algorithms under simultaneous wake-up of the nodes. The same
lower bound was shown earlier by Afek and Gafni (1991) [1], but assumes adversarial
wake-up. Table 1 presents an overview of the results (deterministic). Recently, diameter-
two networks were explored, and the message complexity was settled by providing a
deterministic algorithm with O(n log n) message complexity [4].

Our work is closely related to the work by Chatterjee et al. [4]. In their work, the
authors studied leader election (the implicit version) in diameter-two networks. They
presented a deterministic algorithm with O(n log n) message complexity and O(log n)
round complexity. Crucially, their algorithm requires prior knowledge on the size of the
network, n. In comparison to this, our algorithm elects a leader explicitly without prior
knowledge of n. Our algorithm uses O(n log Δ) messages and finishes in O(log Δ)
rounds, where Δ is the maximum degree of the graph (see, Table 2). In addition to this,
we show how to leverage the edges used during the leader election protocol to create
a broadcast tree for the diameter-two graphs with a message and round complexity
of O(n log Δ) and O(log Δ), respectively. Computing a broadcast tree efficiently is
another fundamental problem in distributed computing. A broadcast tree can be used as
a subroutine to many distributed algorithms which look for message efficiency. Finding
a deterministic Õ(n)-message and Õ(1)-round broadcast algorithm in diameter-two
networks was also left open in [4]. We have addressed it.

1 We interchangeably use the word “graph” and “network” throughout the paper.
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Table 1. Best known deterministic leader election results on networks with different diameters.
Since Δ = Ω(

√
n) in diameter-two graphs, logΔ = O(log n), see the Remark 1 below. So

our upper bound doesn’t violate the message lower bound in [4]. * Attaining O(1) time requires
Ω(n1+Ω(1) ) messages in cliques, whereas achieving O(n logn) messages requires Ω(logn)
rounds; see [1]. ** Ω(1) is a trivial lower bound.

DETERMINISTIC (EXPLICIT) LEADER ELECTION RESULTS

Paper Message Complexity Round Complexity Graph of Diameter

Afek-Gafni [1] O(n logn) O(log n) * D = 1
Kutten et al. [19] Ω(n logn) Ω(1) D = 1
This paper O(n logΔ) O(logΔ) D = 2
Chatterjee et al. [4] Ω(n logn) Ω(1) ** D = 2
Kutten et al. [17] O(m logn) O(D log n) D ≥ 3
Kutten et al. [17] Ω(m) Ω(D) D ≥ 3

Paper Organization: In the rest of this Sect. 1, we state our results. In Sect. 2, we
present our model and definitions. We briefly introduce various related works in Sect. 3.
We present our algorithms for deterministic leader election and broadcast tree formation
in Sect. 4. And finally, we conclude in Sect. 5 with several open problems.

1.1 Our Results

Our work focuses on the deterministic leader election in diameter-two networks without
the knowledge of number of nodes. Apart from this, by leveraging the leader election
protocol, we show that broadcast can be solved deterministically, matching the com-
plexity of the leader election algorithm. Specifically, we have the following results.

1. We present a deterministic explicit leader election algorithm which takes O(log Δ)
rounds and O(n log Δ) messages, where n in the number of nodes and Δ is the
maximum degree of the network. The algorithm works without the knowledge of n.
The message bound is tight due to the matching lower bound, showed by Chatterjee
et al. in [4].

2. We show that broadcast can be solved deterministically in O(log Δ) rounds using
O(n log Δ) messages. More precisely, we show that a broadcast tree, of depth at
most O(log Δ) can be computed with the same complexities.
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2 Model and Definition

Our model is similar to the one in [4]. We consider the distributed network to be an
undirected graph G = (V,E) of n nodes and diameter D = 2. Each node has a unique
ID of size O(log n) bits. The model is a clean network model in the sense that the
nodes are unaware of their neighbors’ IDs initially, also known as KT0 model [25].
The network is synchronous. The nodes communicate via passing messages in a syn-
chronous round. We limit each message to be of size at most O(log n) bits as in the
CONGEST communication model in distributed networks [25]. In each round, nodes
may send messages, receive messages and perform some local computation. The round
complexity of an algorithm is the total number of rounds of communication taken by the
algorithm before termination. The message complexity is the total number of messages
exchanged in the network throughout the execution of the algorithm. Throughout this
paper, we assume that all nodes are awake initially and simultaneously start executing
the algorithm.

We will now formally define the implicit and explicit version of leader election in
our model.

Definition 1 (Implicit Leader Election). Consider an n-node distributed network.
Let each node maintain a state variable that can be set to a value in {⊥
, NONELECTED, ELECTED}, where ⊥ denotes the ‘undecided’ state. Initially,
all nodes set their state to ⊥. In the implicit version of leader election, it requires that
exactly one node has its state variable set to ELECTED and all other nodes are in
state NONELECTED. The unique node whose state is ELECTED is the leader.

Definition 2 (Explicit Leader Election). Consider an n-node distributed network.
Let each node maintain a state variable that can be set to a value in {⊥
, NONELECTED, ELECTED}, where ⊥ denotes the ‘undecided’ state. Initially,
all nodes set their state to ⊥. In the explicit version of leader election, it requires that
exactly one node has its state variable set to ELECTED and all other nodes are in
state NONELECTED. Further, the NONELECTED nodes must know the iden-
tity of the node, whose state is ELECTED, the leader.

3 Related Work

In 1977, the leader election problem was introduced by Le Lann in the ring network
[21]. Since then the problem has been studied extensively in different settings. The
leader election problem has been explored in both implicit and explicit versions over
the years [6,9,15,18,22,24] for a variety of models and settings, and for various graph
topologies such as cliques, cycles, mesh, etc., (see [8–10,16,24,26,27,29] and the ref-
erences therein for more details). In general, the implicit leader election suffices for
most networks.

Both deterministic and randomized solutions exist for leader election. For the ran-
domized case, for complete graphs, Kutten et al. [18] showed that Θ̃(

√
n) is a tight mes-

sage complexity bound for randomized (implicit) leader election. For any graph with
diameter greater than 2, the authors in [18] showed that Ω(D) is a lower bound for the
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Table 2. Comparison of the current paper to the state-of-the-art.

DETERMINISTIC LEADER ELECTION IN DIAMETER-TWO GRAPHS

Paper Message Complexity Round Complexity Type Knowledge of n

Chatterjee et al. [4] O(n log n) O(log n) Implicit YES

This paper O(n logΔ) O(logΔ) Explicit NO

number of rounds for leader election using a randomized algorithm (they also showed a
lower bound for the message complexity, Ω(m)). Recently, Chatterjee et al., [4] showed
a lower bound of Ω(n) for the message complexity of randomized leader election in
diameter-two graphs.

In the deterministic case, it is known that Θ(n log n) is a tight bound on the message
complexity for complete graphs [1,19]. This tight bound also carries over to the general
case as seen from [1,12,14]. In our work, we restrict our model to graphs of diameter-
two. For diameter-two graphs, Chatterjee and colleagues provide a O(log n) round algo-
rithm that uses O(n log n) messages. However, their algorithm requires knowledge of
n, our algorithm provides an algorithm that requires no prior knowledge of n and runs
in O(log n) rounds with O(n log n) message complexity.

4 Deterministic Leader Election in Diameter-Two Networks

We present a deterministic (explicit) leader election algorithm for diameter-two net-
works with n nodes in which the value of n is unknown to nodes in the network. In this
section, we answer several questions raised in [4]. Specifically, we address the follow-
ing: (i) Can explicit leader election be performed in Õ(n) messages in diameter-two
graphs deterministically? (ii) Given the leader election algorithm, can broadcast can
be solved deterministically in diameter-two graphs with Õ(n) message complexity and
O(polylog n) rounds if n is known, and crucially (iii) “Removing the assumption of
the knowledge of n (or showing that it is not possible) for deterministic, implicit leader
election algorithms with Õ(n) message complexity and running in Õ(1) rounds is open
as well”. In this section, we solve the explicit leader election with Õ(n) message com-
plexity, along with that our algorithm solves the explicit leader election without the
knowledge of n; thus addressing the questions (i) and (iii). We further present a solu-
tion for the question (ii) that too without the knowledge of n.

4.1 Algorithm

Our algorithm is inspired from the work done by Chatterjee et al. [4]. They presented
an algorithm for implicit leader election that ran in O(log n) rounds with O(n log n)
message complexity (with the knowledge of n). Our Algorithm 1, achieves somewhat
better result without the knowledge of n and also elects the leader explicitly.



328 M. Kumar et al.

As mentioned earlier (in Sect. 2), each node has a unique ID. For any node v ∈ V ,
let’s denote the degree of v by dv and the ID of v by IDv . The priority Pv, of node
v, is a combination of the degree and ID of the node v such that Pv = 〈dv, IDv〉. The
leader is elected based on the priority, which is decided by the degree of the node. In
the case of a tie, the higher ID gets the higher priority. Essentially, the node with the
highest priority becomes the leader.

Our algorithm runs in two phases of O(log dv) rounds each. In the first O(log dv)
rounds, we eliminate as many invalid candidates as possible. In the second phase, all
candidates except the actual leader are also eliminated, culminating in the election of a
unique leader.

Detailed Description of the Algorithm:

Initially, every node is a “candidate” and has an “active” status. Each node v numbers
its neighbors from 1 to dv arbitrarily, denoted by wv,1, wv,2, . . . , wv,dv

. For the first
i = 1 to log dv rounds, if v is active, then node v sends a message containing Pv to its
neighbors wv,2i−1 , · · · , wv,min{dv,2i−1} . If v encounters a priority higher than its own
from its neighbors (either because a neighbor has a higher priority or has heard of a
node with higher priority) then v becomes “inactive” and “non-candidate”. That is, v
does not send any further messages to its neighbors containing v’s priority. Although, v
may send higher priority message based on the received message’s priority (explained
later). Let Lv denotes the ID of the current highest priority node known to v. At the
beginning of the execution, Lv is simply Pv . If at the end of the first log dv rounds,
Lv = Pv then v declares itself leader temporarily. Further, v waits for log dv rounds.
If at the end of log dv rounds v is still the candidate node (v has not heard from a node
about the higher priority) then v becomes the leader.

There are two major phases to the algorithm. For the first log dv rounds, we elimi-
nate as many invalid candidates (the node which has encountered higher priority node)
as possible, as follows. Nv contains the ID of the neighbor that informed v about the
current highest priority. As mentioned before, Lv contains the current highest priority
known to v. Let χv denote the (possibly empty) set of v’s neighbors from whom v has
received messages in a round during this phase, and P(χv) be the set of Ps sent to v
by the members of χv such that Pu be the highest P in P(χv). If Pu is higher than that
of Lv then v stores the highest priority seen so far in Lv . Further, v informs Nv about
Lv = Pu, i.e., the highest P it has seen so far. This particular step exploits the neigh-
borhood intersection property to ensure that information about higher priority nodes is
disseminated quickly. Then v updates Nv . Finally, v tells every member of χv about Lv ,
i.e., the highest P it has seen so far. If Lv �= Pv then v becomes “inactive” and “non-
candidate”. Notice that an “inactive” and “non-candidate” node v only disseminates the
information of higher priorities it hears, to Nv .

At the end of the first log dv rounds, we begin the final phase of the election. If v
is still the candidate node then v waits for log(dv) rounds. Furthermore, if v does not
receive any higher priority message then v declares itself as the leader and informs its
neighbors. Then each neighbor of v, say u, informs their neighbors about the election
of v via set of Ψu nodes. On the other hand, if there exists a node whose priority is
higher than the priority of v then v gets to know about the leader and informs all the
nodes to whom v has communicated (so far) about the leader’s ID (that is the set Ψv)
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and exits. Hence, All the nodes elect the same leader whose priority is the highest. Our
claim is that given certain properties of the degree (see Lemma 1) we can guarantee
that the second phase of waiting for log Δ rounds eliminates all but a unique candidate,
which then becomes leader.

Now, we would discuss some important lemmas and the correctness of the algo-
rithm. Finally, we conclude the result in Theorem 1.

Lemma 1. Let v be a node whose degree, dv , is the highest among its neighbors and Δ
is the maximum degree of the graph. There does not exist any diameter-two graph with
n nodes (n > 4) such that Δ > d2v .

Proof. For a node v, all nodes are at most 2 hop distance away from v, since the diam-
eter of the graph is 2. Node v has degree dv and its neighbors have degree at most dv ,
by assumption. This gives an upper bound on n, that is, n ≤ dv(dv − 1) + 1, because
each of the dv neighbors can have at most other dv − 1 neighbors (excluding v) each,
and by the distance assumption there are no other nodes in the graph. Also, Δ can be at
most n − 1. Therefore, Δ < n < d2v + 1. Consequently, d2v > Δ. Hence, the lemma. 	

Remark 1. It is clear that there does not exist any diameter-two network whose nodes
are neither connected to v nor its neighbor. Therefore, d2v ≥ n. This implies dv ≥ √

n.
Hence, Δ ≥ √

n.

Lemma 2. Algorithm 1 solves the leader election in O(log Δ) rounds, where Δ is the
maximum degree of the graph.

Proof. A candidate node v becomes the leader if its priority is the highest among its
neighbors (Line 22). From Lemma 1, we know that Δ < d2v . Therefore, the node v with
degree dv waits for log dv rounds, in that time, the node with degree Δ inform about its
priority to v (if any) and v becomes inactive. Otherwise, v consider dv as Δ and inform
all its neighbors about its election. v’s neighbor further conveys the message to all other
nodes in log Δ rounds. Therefore, the round complexity of the algorithm is O(log Δ).
	


For the message complexity analysis we adapt a couple of results from [4], since
our algorithm (Algorithm 1) uses the similar approach to keep a node active. In par-
ticular, we use the Lemma 11 and Lemma 12 from [4], which used ID of the nodes to
take a decision on the “active” or “inactive” nodes whereas our algorithm uses priority
(which depends on degree and ID). Hence, the results also applies to our algorithm. The
following two lemmas are adapted from Lemma 11 and Lemma 12 in [4].

Lemma 3 ([4]). At the end of the round i, there are at most n
2i “active” nodes.
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Algorithm 1. DETERMINISTIC-LEADER-ELECTION: CODE FOR A NODE v

Input: A two diameter connected anonymous network. Each node possess unique ID.
Output: Leader Election.

1: v becomes a “candidate” and “active”.
2: Let Pv = 〈dv, IDv〉 be the priority of v. Priority is determined by degree, the node with the

higher degree (dv) has higher priority. The node’s ID is used to break any ties.
3: Lv ←− Pv � Lv is the current highest priority known to v.
4: Nv ←− Pv � Nv is the neighbor which informed about Lv .
5: v creates an arbitrary assignment of its neighbors based on its degree (from 1 to dv) which

are called wv,1, wv,2, · · · , wv,dv respectively.
6: for rounds i = 1 to log dv do
7: if v is active then
8: v sends a “probe” message containing its priority P to its neighbors

wv,2i−1 , · · · , wv,min{dv,2i−1}.
9: end if

10: Let χv be the possibly empty subset of v′s neighbors from which v received messages
in this round.

11: Let Ψv =
⋃i

1 χv .
12: Let P(χv) be the set of Ps sent to v by the members of χv .
13: Let Pu be the highest P in P(χv).
14: if Pu > Lv then
15: Lv ←− Pu

16: v tells Nv about Lv = Pu, i.e., the highest P it has seen so far.
17: Nv ←− x. � v remembers neighbor who told v about Lv .
18: v becomes “inactive” and “non-candidate”.
19: end if
20: v tells every member of χv about Lv , i.e., the highest P it has seen so far.
21: end for
22: if Lv = Pv then
23: v waits for log(dv) rounds. If at the end of log(dv) rounds, Lv = Pv then v declares

itself as leader and inform all the neighbors as well as exit the protocol.
24: end if
25: if v knows about the leader and v is not the leader then
26: Let Φv be the set of neighbors of v to whom v sent the messages before knowing about

the leader.
27: Let Ψv = Ψv

⋃
Φv .

28: v informs Ψv about the leader’s ID and exit.
29: end if
30: All the nodes elect the same leader whose priority is the highest.

Proof. Consider a node v that is active at the end of round i. This implies that the
if-clause of Line 14 of Algorithm 1 has not so far been satisfied for v, which in turn
implies that Pv > Pwv,j

for 1 ≤ j ≤ 2i − 1, therefore none of wv,1, wv,2, . . . , wv,2i−1
is active after round i. Thus, for every active node at the end of round i, there are at
least 2i − 1 inactive nodes. We call this set of inactive nodes, together with v itself, the
“kingdom” of v after round i i.e.,
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KINGDOMi(v) def= {v} ∪ wv,1, wv,2, . . . , wv,2i−1 and |KINGDOMi(v)| = 2i.

If we can show that these kingdoms are disjoint for two different active nodes, then we
are done.
Proof by contradiction. Suppose not. Suppose there are two active nodes u and v such
that

u �= v and KINGDOMi(u) ∩ KINGDOMi(v) = φ

(after some round i, 1 ≤ i ≤ log n). Let x be such that x ∈ KINGDOMi(u) ∩
KINGDOMi(v). Since an active node obviously cannot belong to the kingdom of
another active node, this x equals neither u nor v, and therefore,

x ∈ {
wv,1, wv,2, . . . , wv,2i−1

} ∩ {
wu,1, wu,2, . . . , wu,2i−1

}
,

that is, both u and v have sent their respective probe-messages to x. Then it is straight-
forward to see that x would not allow u and v to be active at the same time. Case-by-case
analysis can be found in [4]. 	

Lemma 4 ( [4]). In round i, Algorithm 1 transmits at most 3n messages in the for loop
(from Line 6 to Line 21).

Proof. In round i, each active node sends exactly 2i − 1 probe messages, and each
probe-message generates at most two responses (corresponding to Lines16 and 20 of
Algorithm 1). Thus, in round i, each active node contributes to, directly or indirectly, at
most 3 · (2i − 1) messages. The result immediately follows from Lemma 3. 	

Lemma 5. The message complexity of the Algorithm 1 is O(n log Δ).

Proof. Each round transmits at most 3n messages (Lemma 4) and the execution of
the Algorithm 1 (from Line 6 to Line 21) takes place in O(log Δ) rounds (Lemma 2).
Further, leader informs about its election via Ψ edges which are O(n log Δ). Therefore,
the total number of message transmitted throughout the execution are: 3n · O(log Δ) +
O(n log Δ) = O(n log Δ).

Correctness of the Algorithm: In this, we show that all the nodes agree on a leader
and the leader is unique. First, we show that all the nodes agree on a leader. If a node v
is still a candidate node at the end of the first phase, then it must have both i) explored
all its neighbors and ii) never encountered a priority higher than its own. Thus, it can
declare itself leader after waiting log dv rounds. Note that a waiting period of log dv is
enough because from Lemma 1 we know that Δ < d2v . This guarantees that the highest
degree is made leader.

Now, we show that the known leader is unique. If not, then suppose there exist two
nodes u and v such that u agrees on a leader l1 and v agree on a leader l2. From algo-
rithm 1, l1 should have the highest priority in its neighbors and similarly, l2 should have
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the highest priority in its neighbors. Since it is a diameter two graph, therefore, there
should be at least one node common among l1 and l2. Therefore, both the node can’t
have the highest priority among their neighbors, which is a contradiction. Therefore,
we can say all the nodes agree on the unique leader.

From the above discussion, we conclude the following result.

Theorem 1. There exists a deterministic (explicit) leader election algorithm for n-node
anonymous networks with diameter two that sendsO(n log Δ)messages and terminates
in O(log Δ) rounds, where Δ is the maximum degree of the network.

Remark 2. The implicit deterministic leader election algorithm presented in [4] can be
converted to an explicit leader election algorithm in the same way as done in Algo-
rithm 1.

4.2 Broadcast Tree Formation

In Algorithm 1, the nodes agree on the leader explicitly. In this section, we exploit
the edges used during the leader election algorithm (Algorithm 1) and create a broad-
cast tree of height O(log Δ) (Algorithm 2). This also allows to reduce the message
complexity. The process is simple. The leader, say �, initiates the flooding process by
broadcasting its ID to its neighbors, forming the root of the tree T . All of its neighbors
become a part of T . At any point in the algorithm, the leaves of T do the following. Let
v be a leaf in T in some round. In that round, v sends its own ID to the nodes in Ψv (used
in Algorithm 1). Non tree nodes which receive an ID v earlier become a part of T with
v as its parent. If a non-tree node receives multiple messages, then it chooses the higher
ID as its parent. The algorithm ends when all nodes have become a part of T. Note that
since only the leaves send out messages in each round and each node (except the root
node, i.e., leader node) possess only one parent, we avoid the creation of cycles.

Let us now show some important lemmas which support the correctness of the algo-
rithm. In particular, Lemma 7 shows Algorithm 2 forms a tree of height O(log Δ). The
round complexity and message complexity of the Algorithm 2 is shown by Lemma 6
and Lemma 8, respectively. Finally, we conclude with message and round complexity
as well as height of the tree in Theorem 2.

Lemma 6. In O(log Δ) rounds, all nodes are guaranteed to be part of the tree T .

Proof. This is guaranteed from the use of leader election algorithm. Consider the graph
G′ constructed as follows. Let �’s neighbors be its neighbors in G. For every other node
v �= � its neighbors are ψv . Clearly, from Algorithm 1, G′ is connected (as every node
learns of �) and of diameter O(log Δ). Let level i denote all nodes that are at most i
hops away from � in G′. We claim that in i rounds, all nodes in level i would become
a part of the tree T . By using induction, this is clearly true for is i = 1. Assuming it’s
true for i, nodes of i + 1 would become part of the tree next as they are in the Ψv of at
least one node in level i and thus would get an invite. And since the number of levels
can be at most O(log Δ), all nodes become part of T in O(log Δ) rounds. 	

Lemma 7. Algorithm 2 forms a tree of height O(log Δ).
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Algorithm 2. BROADCAST-TREE-FORMATION

Input: A diameter-2 connected network graph G in which each node possess unique ID.
Output: Tree Structure T .
1: First run Algorithm 1 to elect the leader �. Each node also keeps track of its Ψv (created

during the course of the algorithm).
2: � becomes root of T . � then broadcasts its ID as an invite to all its neighbors. And its neigh-

bors become its children in T .
3: while there are nodes outside of T do � Takes O(logΔ) rounds.
4: Each node v ∈ T broadcasts its ID to the nodes in Ψv .
5: if node u /∈ T receives IDs from nodes in tree T then
6: u accept invitation based on the highest priority node, say v, and becomes v’s child

in T .
7: end if
8: end while

Proof. Since in each iteration of the while loop, the height of the tree is extended by
at most 1 (that is by attaching children to the leaves of T ). And since the algorithm
ensures that all nodes have become a part of T in O(log Δ) iterations of the while loop,
the height of T can not be more than O(log Δ). Notice that since each node accepts
only one invite, there can be no creation of a cycle. 	

Remark 3. The diameter of the graph created by Algorithm 2 is O(log Δ).

Lemma 8. Algorithm 2 takes O(n log Δ) messages.

Proof. In Algorithm 1, for every node v communication takes place via Ψv edges in
O(n log Δ) messages (Theorem 1). In Algorithm 2 (from Line 2 to Line 8) communica-
tion also takes place via same edges (Ψv) for two times. Therefore, message complexity
remain unchanged to O(n log Δ). 	


Thus, from the above discussion, we conclude the following result.

Theorem 2. There exists an algorithm which solve the broadcast problem in
O(n log Δ) messages and O(log Δ) rounds which generate a tree of height O(log Δ).

5 Conclusion and Future Work

We studied the leader election problem in diameter-two networks. We settled all the
questions raised by Chatterjee et al. [4] w.r.t. deterministic setting. Various open prob-
lems come to light due to our work. These are as follows:

1. We presented an O(log Δ)-round and O(n log Δ)-message complexity algorithm
for the explicit leader election. An interesting question is to reduce the round com-
plexity to O(1) while keeping the message complexity O(n log n)?

2. Tree formed by broadcast has height O(log Δ). An interesting question rises
whether this is optimal when the message and round complexity remain unchanged
or constant height is possible.
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3. Is it possible to have a randomized algorithm (with high probability) with message
complexity O(n log n) and constant round complexity without the knowledge of n?

4. With or without the knowledge of n, what would be the complexity and lower bound
(in deterministic setting) in the LOCAL model where nodes can communicate with
arbitrary message size in a round?
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Abstract. Given a black box oracle that evaluates a univariate polyno-
mial p(x) of a degree d, we seek its zeros, aka the roots of the equation
p(x) = 0. At FOCS 2016, Louis and Vempala approximated within 1/2b

an absolutely largest zero of such a real-rooted polynomial at the cost
of the evaluation of Newton’s ratio p(x)

p′(x) at O(b log(d)) points x and
then extended this algorithm to approximation of an absolutely largest
eigenvalue of a symmetric matrix at a record Boolean cost. By apply-
ing distinct approach and techniques we obtain much more general
results at the same computational cost. Our use of Cauchy integrals and
randomization is non-trivial and pioneering in this field. Somewhat sur-
prisingly, the Boolean complexity of the accelerated versions of our algo-
rithms in [25,26] reached below the known lower bounds on the Boolean
complexity of polynomial root-finding.

Keywords: Symbolic-numeric computing · Polynomial roots ·
Computer algebra

1 Introduction

1.1 The Classical Problem of Univariate Polynomial Root-Finding

Can be stated as follows: given complex coefficients of a polynomial

p = p(x) :=
d∑

i=0

pix
i := pd

d∏

j=1

(x − xj), pd �= 0, (1)

approximate, within a fixed tolerance ε to output errors, all d complex zeros xj

of p(x), aka roots1 of the equation p(x) = 0, or approximate just the roots that
1 Hereafter we frequently refer to them just as roots or zeros.
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lie in a fixed region (e.g., disc or square) of the complex plane. According to [17],
univariate polynomial root-findings had been the central problem of Mathemat-
ics and Computational Mathematics for about 4,000 years, since Sumerian times
and well into the 19th century. It is still a popular research subject with various
applications to scientific computing [15,16]. Its intensive study in the 1980s and
1990s has culminated at STOC 1995 with a solution in nearly optimal Boolean
time (see [18,19,21], and the bibliography therein).

1.2 Black Box Polynomial Root-Finding: The Problem

The cited root-finders operate with the coefficients of p and do not apply to
the important class of black box polynomials – given with an oracle (black box)
for their evaluation. One can evaluate p at d+ > d points and then interpolate
to it, albeit at the price of destroying sparsity and blowing up precision and
Boolean cost of the computations. These problems are paramount for root-finders
operating with coefficients of p but disappear for black box polynomial root-
finders.

Moreover, one must use at least 2d arithmetic operations (ops) to evaluate a
general polynomial p of (1) given with its d+1 coefficients (see [32, Section “Pan’s
method”] or [12]), whereas O(log(d)) ops are sufficient to evaluate p(x) for a large
and important class of dth degree polynomials, including sparse polynomials,
more generally, the sums of shifted monomials such as p := α(x − a)d + β(x −
b)d+γ(x−c)d for six constants a, b, c, α, β, and γ, and the Mandelbrot polynomial
p(x) = pk(x), where p0 := 1, p1(x) := x, pi+1(x) := xp2i (x) + 1, i = 0, 1, . . . , k,
and d = 2k − 1. Interpolation to such polynomials can dramatically slow down
fast polynomial root-finders in a region that contains a small number of roots.

Instead of the above observations, Louis and Vempala in [3] were motivated
by the following one: black box polynomial root-finders, unlike those operating
with the coefficients, can be readily extended to the highly important classical
problem of approximation of eigenvalues of a matrix as the roots of its char-
acteristic polynomial p(x). Evaluation of its coefficients blows up precision and
Boolean cost of the computations, but black box root-finders avoid this hurdle.

1.3 Black Box Polynomial Root-Finding: The State of the Art

In [14] Louis and Vempala proposed novel high order Newton’s iterations, which
approximate within 1/2b an absolutely largest root of a black box polynomial
of a degree d at NR cost of the evaluation of Newton’s ratio NR(x) := p(x)

p′(x) at
O(b log(d)) points. The root-finder performs with O(log(d)-bit precision and at
overall Boolean time O(b log(d)μ(log(d)) provided that it can access the values
of p(x) supplied by a black box oracle where

μ(s) = O(s log(s) log(log(s))) (2)

bounds the Boolean cost of multiplication of two integers modulo 2s [12].
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By applying their algorithm to the characteristic polynomial p(x) = det(xI−
M) of a d×d symmetric matrix M and combining it with Storjohann’s Las Vegas
randomized algorithm of [31] for computing the determinant of an integer matrix,
Louis and Vempala approximated, within a fixed tolerance ε to output errors,
an absolutely largest eigenvalue of M at a record expected Boolean complexity
O(dω log5(d)b2). Here ω denotes an exponent of feasible or unfeasible matrix
multiplication,2 b := log(||M ||F /ε), || · ||F denotes the Frobenius matrix norm,
and μ(s) = O(s log(s) log(log(s))) (cf. 2).

Extension of [14] to approximation of all d roots of a black box polynomial
p and all d eigenvalues of a d × d matrix or all m ≤ d roots and eigenvalues in
a fixed region of interest on the complex plane (such as a disc or a square) has
remained a natural research challenge with no progress since [14].

1.4 Our Results

Like [14], we focus on estimating NR cost of our polynomial root-finder; it dom-
inates the cost of other ops involved (see Observation 15 and Theorem 18).
Our approach and techniques, however, are novel, have nothing to do with those
of [14], and enable us to solve much more general root-finding and eigenvalue
problems within the same NR and Boolean cost bounds.

Namely, for a black box polynomial p of a degree d, we approximate all its m
roots lying in a fixed square on the complex plane3 at NR cost in O(m3b log(d))
(cf. Corollary 2 and Observation 15). For a constant m this matches the cost
bounds of the root-finder of [14], relaxing its restrictions on the input and output.

For any pair of an integer γ ≥ 1 and a real v ≥ 1 such that m � vγ, we
decrease our NR cost bounds for the approximation of roots and eigenvalues by a
factor of m

vγ – by applying Las Vegas randomization; in that case we allow output
errors with a probability at most 1/γv and verify correctness of the output at a
dominated cost (cf. Corollary 2, Theorem 18, and Remark 3).

We readily extend to our algorithms the bound of O(log(d)) bits of [14] on the
computational precision provided that we can access the values of a polynomial
p(x) approximated by a black box oracle within a relative error 1/dO(1) for x
reasonably isolated from the zeros of p(x). Then, as in [14], we immediately
extend our root-finders to yield Las Vegas expected Boolean time Õ(m2b2dω)
(for b and ω of the previous subsection and for Õ(w) denoting w logO(1)(w), that
is, w up to polylogarithmic factors) for approximation of all m eigenvalues of a
d×d symmetric or unsymmetric matrix M that lie in a fixed disc on the complex
plane isolated from the external eigenvalues. Then again, for a constant m we
match [14] but relax its restrictions on the input and the output.

Our techniques and auxiliary results can be of independent interest. In par-
ticular, we devise fast exclusion/inclusion (e/i) tests, which decide whether a
fixed disc on the complex plane contains any zero of a black box polynomial

2 The current records are about 2.7734 for feasible exponent of MM [4,10], unbeaten
since 1982, and about 2.37 for unfeasible one [2].

3 We count roots with their multiplicities and can readily extend our study to various
other convex domains on the complex plane such as a disc or a polygon.
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p(x). This computational problem is fundamental for polynomial root-finding
and has long been studied, but its known solution algorithms operate with the
coefficients of p(x). Our randomized acceleration of root-finding and application
of Cauchy integrals to e/i test are nontrivial and pioneering in the field.

1.5 Classical Subdivision

Polynomial root-finders, traced back to [5,33], seek all m roots lying in a fixed
suspect square on the complex plane. A subdivision iteration divides every sus-
pect square into four congruent sub-squares and to each of them applies e/i test:
we either discard the square if the test certifies that it contains no roots or call
it also suspect and process it in the next iteration otherwise (see Fig. 1).

Fig. 1. Four roots are marked by asterisks; sub-squares containing them are suspect;
the other sub-squares are discarded.

Observation 1. At every subdivision iteration (i) at most 4m suspect squares
are processed (since any root lies in 1, 2, or 4 suspect squares); (ii) the centers
of these suspect squares approximate all m roots within the half-diameter of the
squares, (iii) which decreases by twice at every iteration.

Corollary 2. Subdivision iterations applied to a square with m roots and side
length Δ approximate these roots within ε = Δ/2b by applying e/i test to at most
4mk suspect squares for k ≤ �log2(Δ

ε

√
2)� = �b + 0.5�.

1.6 Soft Exclusion/Inclusion Tests

To complete classical subdivision root-finding we devise soft e/i tests for a black
box polynomial. They can certify that the minimal disc D(c, ρ) := {x : |x−c| ≤
ρ} covering a fixed square S contains no roots, and then we report exclusion
and discard S, or that a little larger concentric disc D(c, σρ) for a fixed σ > 1
contains a root or roots, and then we report σ-soft inclusion, call the square S
suspect, and subdivide it. Both criteria for exclusion and σ-soft inclusion can hold
simultaneously, but we stop as soon as we verify any of them. The estimate 4mk
of Corollary 2 increases to at most α(σ)mk for α(σ) exceeding 4 but bounded
by a constant for a constant σ.
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1.7 The Known e/i Tests

The known e/i tests operate with the coefficients of an input polynomial, e.g.,
they are stated in terms of the coefficients of the auxiliary polynomials obtained
from p(x) by means of map (4) and recursive root-squaring (Pellet’s theorem),
[3], involve the higher order derivatives p(i)(x), i = 1, 2, . . . , d [5,29], or Newton’s
identities and fast root-squaring algorithms based on convolution [20].

1.8 New Progress

New progress in the design and analysis of subdivision root-finders for a black box
polynomial, based in particular on novel e/i tests, began in 2018 in arXiv preprint
[24]. It contained 139 pages in August 2022, was partly covered in [6–8,13,22,23],
and is extended in this paper and [25,26] to decreasing the complexity bounds
of the pioneering paper [14], while solving more general computational problems
of root-finding for a black box polynomial and approximation of matrix eigen-
values. Furthermore, with randomization, the same new algorithms applied to a
general polynomial given with its coefficients have reached and then even signif-
icantly decreased the Boolean cost complexity estimates of [18,21].4 Moreover,
the algorithms allow highly efficient implementation. According to extensive tests
of 2020 in [6,7], the new root-finders noticeably accelerated the previous best
implementation [9] of subdivision root-finding in regions containing only a small
number of roots, even where root-finders are allowed to operate with coefficients.
In the implementation of 2022 of more advanced variants of these root-finders,
which are still significantly slower than those of [25,26], acceleration became dra-
matic, and even for approximation of all d zeros of a polynomial p given with its
coefficients, the new root-finders became at least competitive with user’s choice
package MPSolve [8], which was dramatically faster than [9] for that task.5

1.9 Cauchy-Based e/i Tests: Outline and an Extension

The power sums of the roots in a complex domain D are given by Cauchy
integrals over its boundary contour C (cf. [1]):

sh = sh(p,D) :=
∑

xj∈D
xh

j =
1

2π
√−1

∫

C

p′(x)
p(x)

xh dx, h = 0, 1, . . . . (3)

4 Up to small poly-logarithmic factors these estimates reach lower bound for approx-
imation of even a single zero of p(x), but as we specify in Sect. 7, the algorithms of
[25,26] greatly accelerate those of [18,21] for approximation of all m = o(d) zeros of
p that lie in a disc reasonably well isolated from the d − m external zeros.

5 The complexity of a subdivision root-finder is proportional to the number of roots in
a region, while MPSolve is about as fast and slow for all roots as for their fixed sub-
set. MPSolve implements Ehrlich-Aberth’s root-finding iterations, which empirically
converge to all d roots very fast right from the start but with no formal support and
so far only under an initialization that operates with the coefficients of p (see [28]).
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In particular s0 is the number #(D) of roots in D, and we can devise certified e/i
tests by approximating s0 or even just 	(s0) within less than 1/2 and rounding
the approximation to the nearest integer. We only deal with discs, where D =
D(c, ρ), and furthermore reduce our study to the case of the unit disc D(0, 1)
based on the univalent map:

x 
→ x − c

ρ
, D(c, ρ) 
→ D(0, 1), and p(x) 
→ t(x) = p

(x − c

ρ

)
. (4)

In this case we approximate the integral s0 with a finite sum s0,q at the qth
roots of unity at NR cost q. Then |s0,q − s0| < 1/2 already for q = O(log(d))
if no roots lie on or near the boundary circle C(0, 1). If |s0,q| > 1/2, however,
then s0 ≥ 1 unless some roots lie near the circle C(0, 1), and in both cases we
certify soft inclusion. Otherwise, exclusion seems to be likely, but is not certified
yet because boundary roots can corrupt approximation of s0 by s0,q. Next we
outline further computations required to complete our e/i test.

Assume that the unit disc D(0, 1) contains at most m roots and apply e/i
tests to 2m + 1 concentric discs, whose boundary circles are pairwise isolated
enough, so that any root can affect e/i test just for a single disc, and hence m
roots can affect at most m out of all 2m + 1 tests. Then majority vote certifies
that the innermost disc contains no roots or that the outermost disc contains a
root. The ratio σ > 1 of the radii of these two discs bounds the softness of the
resulting test, and we readily keep σ below 1.2, say.

NR cost of 2m + 1 applications of an e/i test is 2m + 1 times the cost of a
single test, but in case of larger m we decrease the overall NR cost by applying
our alternative randomized e/i test w times for w � m. Namely, we first apply
our soft e/i test to a disc whose center is fixed (say, at the origin) and whose
radius ρ is sampled at random in a fixed range. Then the output of the test is
correct if no roots lie near the boundary circle, and this occurs with a probability
1 − γ > 0 for γ inversely proportional to the NR cost q of our e/i test. We fix
an integer v ≥ 1, reapply our test for v independent identically distributed (iid)
values ρ of the radius and certify inclusion unless |s0,q| < 1/2 in all of the v
outputs. In the latter case we claim exclusion with an error probability P ≤ γv;
γv decreases exponentially in v, while NR cost increases by a factor of v.

1.10 Organization of the Paper

We devote the next two sections to background. Sections 4 and 5 cover our
deterministic and randomized e/i tests, respectively. In Sect. 6 we extend the
estimates of [14] for the precision of computing and hence for the Boolean cost
of approximation of matrix eigenvalues to our more general case. In Sect. 7 we
outline further progress in [25,26].

2 Definitions and Basic Properties

– NR cost (NR complexity) of a root-finder is the number of points x at which
it evaluates Newton’s ratio NR(x) and Newton’s inverse ratio NIR(x).
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– Define square, disc, circle (circumference), and annulus on the complex plane:
S(c, ρ) := {x : |	(c − x)| ≤ ρ, |(c − x)| ≤ ρ}, D(c, ρ) := {x : |x − c| ≤ ρ},
C(c, ρ) := {x : |x − c| = ρ}, A(c, ρ, ρ′) := {x : ρ ≤ |x − c| ≤ ρ′}.

– Δ(R), X(R), and #(R) are the diameter, root set, and index (root set’s
cardinality) of a region R on the complex plane, respectively.

– A disc D(c, ρ), a circle C(c, ρ), or a square S(c, ρ) is θ-isolated for θ > 1 if
X(D(c, ρ)) = X(D(c, θρ)), X(C(c, ρ)) = X(A(c, ρ/θ, ρ/θ)), or X(S(c, ρ)) =
X(S(c, θρ)), respectively.

– The largest upper bound on such a value θ is said to be the isolation of
the disc D(c, ρ), the circle C(c, ρ), or the square S(c, ρ), respectively, and is
denoted i(D(c, ρ)), i(C(c, ρ)), and i(S(c, ρ)), respectively.

– r1(c, t) = |y1 − c|, . . . , rd(c, t) = |yd − c| in non-increasing order are the d root
radii, that is, the distances from a complex center c to the roots y1 . . . , yd of
a dth degree polynomial t(x). rj(c) := rj(c, p), rj := rj(0) for j = 1, . . . , d.

– Differentiate factorization (1) of p(x) to express NIR(x) as follows:

NIR(x) :=
p′(x)
p(x)

=
d∑

j=1

1
x − xj

. (5)

Definition 3. For p(x) of (1), σ > 1, and integers � and m such that 1 ≤ � ≤
m ≤ d and #(D(0, 1)) ≤ m, a σ-soft �-test, or just �-test for short (1-test
being e/i test), either outputs 1 and stops if it detects that rd−�+1 ≤ σ, that is,
#(D(0, σ)) ≥ �, or outputs 0 and stops if it detects that rd−�+1 > 1, that is,6
#(D(0, 1)) < �. �-testc,ρ, aka �-test for the disc D(c, ρ), is an �-test applied to
the polynomial t(y) of (4).

Observation 4. For a complex c and ρ > 0 it holds that (i) i(S(c, ρ))/
√
2 ≤

i(D(c, ρ)) ≤ i(S(c, ρ
√
2))/

√
2, (ii) i(C(c, ρ)) ≤ i(D(c, ρ)) and if i(D(c, ρ)) ≥

θ2 ≥ 1, then i(C(c, ρθ)) ≥ θ.

3 The Power Sums of the Roots and Cauchy Sums

3.1 The Power Sums of the Roots and Cauchy Sums in the Unit
Disc

For a positive integer q define Cauchy sums by means of discretization of Cauchy
integral (3) in the case where D is the unit disc D(0, 1):

sh,q :=
1
q

q−1∑

g=0

ζ(h+1)g p′(ζg)
p(ζg)

, for h = 0, 1, . . . , q −1 and ζ := exp
(2π

√−1
q

)
(6)

denoting a primitive q-th root of unity.

6 Both bounds rd−�+1 ≤ σ and rd−�+1 > 1 can hold simultaneously, but as soon as an
�-test verifies any of them, it stops without checking if the other bound also holds.
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Remark 1. We call the values sh,q Cauchy sums by following [24]. Schönhage
used these values in [30] for h > 0 to deflate a factor of p, but we only use them
in the case of h = 0, ignored by Schönhage, and only for e/i tests, not considered
in [30]; we know of no application of the Cauchy sums to root-finding between
[30] and [24]. As in [24] we certify inclusion if p(ζg) = 0 for any g, 0 ≤ g < q.

Theorem 5 [6,24]. For a polynomial p(x) of (1) and an integer q ≥ 1 let
∏d

j=1(x
q
j −1) �= 0. Then sh,q =

∑d
j=1

xh
j

1−xq
j

for sh,q of (6) and h = 0, 1, . . . , q−1.

3.2 Approximation Errors and Root-Counting in the Unit Disc

Corollary 6 [6,24,30].7 Let q be a positive integer and let the unit circle C(0, 1)
be θ-isolated for θ > 1. Then |sh,q − sh| ≤ dθh

θq−1 for h = 0, 1, . . . , q − 1.

Algorithm 7. Root-counting in the unit disc at NR cost q = O(logθ(d)).

INPUT: a black box polynomial p of a degree d and θ > 1.
INITIALIZATION: Compute the integer q = �logθ(4d + 2)� > logθ(2d + 1).
COMPUTATIONS: Compute Cauchy sum s0,q and output an integer s̄0 clos-
est to it,8 which is also closest to its real part 	(s0,q).

Observation 8. (i) Algorithm 7 runs at NR cost q = �logθ(4d + 2)�. (ii) It
outputs s̄0 = #(D(0, 1)) if the circle C(0, 1) is θ-isolated for θ > 1. (iii) If the
algorithm outputs s̄0 > 0, then #(D(0, θ)) > 0.

Proof. Corollary 6 immediately implies claim (ii) but also implies that
#(D(0, 1)) > 0 if s̄0 > 0 unless #(A(0, 1/θ, θ)) > 0. In both cases #(D(0, θ)) >
0.

3.3 Extension to Any Disc

Map (4) reduces the computation of Cauchy sum sh,q in any disc D(c, ρ) to the
case of the unit disc D(0, 1) as follows.

Definition 9. For a disc D(c, ρ), polynomials p(x) and t(y) = p(y−c
ρ ), a positive

integer q, and ζ = ζq := exp(2π
√−1
q ), define Cauchy sums

sh,q(p, c, ρ) := sh,q(t, 0, 1) :=
ρh+1

q

q−1∑

g=0

ζ(h+1)g p′(c + ρζg)
p(c + ρζg)

for h = 0, 1, . . . , q−1.

Observation 10. Given a polynomial p(x), a complex c, a positive ρ, a positive
integer q, and the qth roots of unity, evaluation of s0,q(p, c, ρ) can be reduced to
the evaluation of NIR(ζg) for g = 0, 1, . . . , q − 1 at NR cost q and performing
q + 1 divisions, 2q − 1 multiplications, and 2q − 1 additions.
7 [30] proved this corollary directly; [24] and then [6] deduced it from Theorem 5.
8 Given the coefficients of p(x) one can fix q := 2k for k = �log2�logθ(4d + 2)�� and

then evaluate p(x) and p′(x) at all qth roots of unity by applying FFT.
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Observation 11. (4) maps the roots xj of p(x) into the roots yj = xj−c
ρ of t(y),

for j = 1, . . . , d, and preserves the index #(D(c, ρ)) and the isolation i(D(c, ρ)).

Refer to Algorithm 7 applied to the polynomial t(y) of (4) as Algorithm 7c,ρ

and also as Algorithm 7 applied to the disc D(c, ρ) and the circle C(c, ρ); recall
Observation 11 and extend Observation 8 as follows.

Observation 12. (i) Algorithm 7c,ρ runs at NR cost q = �logθ(4d+2)�. (ii) It
outputs s̄0 = #(D(c, ρ)) if the circle C(c, ρ) is θ-isolated for θ > 1. (iii) If the
algorithm outputs s̄0 > 0, then #(D(c, θρ)) > 0.

Remark 2. Algorithm 7 reduces computation of s0,q to evaluation of NIR(ζg)
for g = 0, 1, . . . , q − 1. If v := maxq−1

g=0 |NIR(ζg)| is small for a reasonably large
q, then #(D(0, 1)) = 0 for a large class of polynomials p(x). Indeed, NIR(x) =∑d

j=1
1

x−xj
(see (5)), and this sum vanishes only on an algebraic variety of a

smaller dimension in the space of the zeros x1, . . . , xd of p(x). If v is small,
then all the qth roots of unity lie near that variety, which strongly restricts the
input class of polynomials p where q is large. Extensive experiments in [6,8]
have been performed for both synthetic and real world inputs and q of order
log2(d). In these experiments the unit disc D(0, 1) contained no roots, with no
single exception, unless v exceeded some fixed reasonably small upper bound.9
This empirically supported a very fast heuristic e/i test, even though it fails on
specially concocted polynomials p(x) = xq+1−(q+1)x+w of degree q where |w|
is small. Clearly, the extensive tests of [6,8] have never encountered such inputs;
our next e/i test is a little slower but never fails on any input.

4 Deterministic �-Test Under No Isolation Assumption

Algorithm 7c,ρ is a reliable root-counter unless some roots lie on or near the
circle C(c, ρ). To counter their adverse impact, apply the algorithm to 2m + 1
concentric discs D(c, ρi), i = 0, 1, . . . , 2m, such that the 2m+1 concentric circles
Ci = C(c, ρi), i = 0, 1, . . . , 2m, are sufficiently well isolated pairwise, allowing
a single root to corrupt Algorithm 7c,ρi

for only a single i. Now majority vote
certifies that at least � roots lie in the outermost disc of the family or less than �
roots lie in its innermost disc. This defines a σ-soft �-test for σ > 1 equal to the
ratio of the radii of the latter two discs. Next we specify this recipe. Without
loss of generality (wlog) let c = 0, ρ = 1, and C(c, ρ) = C(0, 1).

Algorithm 13. Deterministic �-test.

INPUT: A black box polynomial p(x) of a degree d and two positive integers
� and m ≥ � such that the unit disc D(0, 1) contains at most m roots.

9 Actually, [6,8] tested the assumption that |sh,q| were small for h = 0, 1, 2, but this
follows if v is small because v ≥ |sh,q| for h = 0, 1, . . . , q − 1.
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INITIALIZATION: Fix

σ > 1, θ = σ
1

4m+1 , q = �logθ(4d + 2)�, ρi =
1

θ2i+1
, i = 0, 1, . . . , 2m. (7)

OUTPUT: 0 if #(D(0, 1/σ)) < � or 1 if #(D(0, 1)) ≥ �.
COMPUTATIONS: Apply Algorithm 70,ρi

for q of (7) and i = 0, 1, . . . , 2m.
Output 1 if among all 2m + 1 output integers s̄0 at least m + 1 integers are
at least �. Otherwise output 0. (We can output 1 already on a single output
s̄0 > 0 if � = 1; we can output 0 already on a single output s̄0 < m if � = m.)

Theorem 14. Algorithm 13 is a σ-soft �-test for σ > 1 of our choice (see (7)).

Proof. Corollary 6 implies that for every i the output s̄0 of Algorithm 70,ρi

is equal to #(D(0, ρi)) unless there is a root in the open annulus Ai :=
A(0, ρi/θ, θρi).

The 2m+1 open annuli Ai, i = 0, 1, . . . , 2m, are disjoint. Hence a single root
cannot lie in two annuli Ai, and so Algorithm 70,ρi

can fail only for a single i
among i = 0, . . . , 2m. Therefore, at least m + 1 outputs of the algorithm are
correct.

To complete the proof, combine this property with the relationships ρ2m =
1/θ4m+1 (cf. (7)), ρ0 = 1/θ < 1, and #(D(0, ρi+1)) ≤ #(D(0, ρi)), which hold
because D(0, ρi+1) ⊆ (D(0, ρi) for i = 0, 1, . . . , 2m − 1.

Observation 15 [Cf. Observation 10]. Algorithm 13 runs at NR cost A =
(2m + 1)q for q = �logθ(4d + 2)� = �(4m + 1) logσ(4d + 2)�, which dominates
the cost of the remaining ops involved, even in the cases of the Mandelbrot and
sparse input polynomials, and which stays in O(m2 log(d)) if σ − 1 exceeds a
positive constant.

5 Randomized Root-Counting and �-Tests

5.1 Solution with a Crude Bound on Error Probability

Next accelerate �-testc,ρ in case of larger integers m by applying randomization
and using fewer calls for Algorithm 7c,ρ at the price of only certifying the output
with a high probability (whp) rather than deterministically. We fix the center c
of a circle C(c, ρ) but choose its radius ρ at random in a small range. Then whp
i(C(c, ρ)) is sufficiently well separated from 1; this excludes the adverse impact
of boundary roots, while a soft �-test accepts a small variation of the radius ρ.
Wlog let c = 0.

Algorithm 16. Basic randomized root-counter.

INPUT: γ ≥ 1 and a d-th degree black box polynomial p(x) having at most m
roots in the disc D(0,

√
2).

INITIALIZATION: Sample a random value w in the range [0.2, 0.4] under
the uniform probability distribution in that range and output ρ = 2w.
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COMPUTATIONS: By applying Algorithm 70,ψ compute the 0-th Cauchy sum
s0,q in the disc D(0, ρ) for p(x) and q = �10mγ log2(4d + 2)�. Output an
integer s̄0 closest to s0,q.

Theorem 17. Algorithm 16, running at NR cost q = �10mγ log2(4d + 2)� for
any fixed γ ≥ 1, outputs s̄0 = #(D(0, ρ)) with a probability at least 1 − 1/γ.

Proof. By assumption, the annulus A(0, 1,
√
2) contains at most m roots. Hence

at most m root radii rj = 2ej , for j = 1, . . . , m′ ≤ m, lie in the range [1,
√
2],

that is, 0 ≤ ej ≤ 0.5 for at most m′ ≤ m integers j. Fix m′ intervals, centered at
ej , for j = 1, . . . , m′, each of a length at most 1/(5m′γ). Then the overall length
of these intervals is at most 1/(5γ). Let U denote the union of these intervals.

Sample a random u in the range [0.2, 0.4] under the uniform probability
distribution in that range and notice that Probability (u ∈ U) ≤ 1/γ.

Hence with a probability at least 1 − 1/γ the circle C(0, w) is θ-isolated for
θ = 2

1
10mγ , in which case Algorithm 16 outputs s̄0 = s0 = #(D(0, w)) by virtue

of claim (ii) of Observation 12.

5.2 Refining the Bound on Error Probability

Next we reapply Algorithm 16 v times, increasing its NR cost v times, but
this will decrease the error probability dramatically – below 1/γv. First readily
reduce the root radius approximation problem to the decision problem of �-test.
Namely, narrow Algorithm 16 to an �-test for a fixed � in the range 1 ≤ � ≤ m,
so that with a probability at least 1− 1/γ this �-test outputs 0 if #(D(0, 1)) < �
and outputs 1 if #(D(0, 20.5)) ≥ �. Moreover, the output 1 is certified by virtue
of claim (iii) of Observation 12 if � = 1; similarly the output 0 is certified if
� = m.

Next extend the �-test by means of applying Algorithm 16 for v iid random
variables w in the range 0.2 ≤ w ≤ 0.4. Call this �-test Algorithm 16v, �.

Specify its output g for � = 1 as follows: let g = 1 if Algorithm 16v, 1 outputs
1 at least once in its v applications; otherwise let g = 0. Likewise, let g = 0
if Algorithm 16v,m outputs 0 at least once in its v applications; otherwise let
g = 1. Recall Theorem 17 and then readily verify the following theorem.

Theorem 18. (i) For two integers 1 ≤ � ≤ m and v ≥ 1 and a real γ ≥ 1,
Algorithm 16v, � runs at NR cost �10mγ log2(4d + 2)�v, which dominates the
cost of the other ops involved, even in the cases of the Mandelbrot and sparse
input polynomials (cf. Observation 10). (ii) The output 1 of Algorithm 16v, 1 and
the output 0 of Algorithm 16v, m are certified. (iii) The output 0 of Algorithm
16v, 1 and the output 1 of Algorithm 16v, m are correct with a probability at
least 1 − 1/γv.

The theorem bounds the cost of �-tests for � = 1 (e/i tests) and � = m, but
[27] extends it to �-tests for any integer � in the range 1 < � < m.
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Theorem 19 [27]. For an integer � such that 1 < � < m ≤ d and real v ≥ 1 and
γ > 1, Algorithms 16v, � runs at NR cost �10mγ log2(4d + 2)�v, and its output
is correct with a probability at least 1 − (4/γ)v/2.

Remark 3. Root-finding with error detection and correction, see more in [27]. A
randomized root-finder can lose some roots, albeit with a low probability, but
we can detect such a loss at the end of root-finding process, simply by observing
that among the m roots in an input disc only m−w tame roots have been closely
approximated,10 while w > 0 wild roots remain at large. Then we can recursively
apply the same or another root-finder until we approximate all m roots.11

6 Precision of Computing in Our Root-Finders

High order Newton’s iterations in [14] involve high order derivatives of p(x),
approximated in [14] with high order divided differences, but we only involve
NIR(x) = p′(x)

p(x) and approximate it with the first order divided difference:

NIRδ(x) :=
1
δ

− p(x − δ)
δ p(x)

=
p(x) − p(x − δ)

p(x)δ
=

p′(y)
p(x)

≈ NIR(x) for δ ≈ 0. (8)

Here y lies in the line segment [x − δ, x] by virtue of Taylor-Lagrange’s formula,
and so y ≈ x for δ ≈ 0. Next we estimate precision of computing that supports
approximation of NIR(x) required in our root-finders. We only need to consider
our e/i tests for θ-isolated discs D(c, ρ) with θ − 1 > 0 of order 1

m . Map (4)
reduces such a test for p(x) to the disc D(0, 1) for the polynomial t(x) = p(x−c

ρ ),
and we only need to certify that the output errors of our e/i tests in Algorithms
13 and 16 are less than 1

2 . We obtain such a certification by performing our
algorithms with a precision of O(log(d)) bits for NR cost q of order m log(d)
provided that a black box oracle evaluates for us the ratio t(x−δ)

t(x) within 1
8δ for

any fixed positive δ = O(1/dO(1)).
Let us specify this certification. Our e/i tests amount to computing the sum

of the q values ρxp′(c+ρx)
p(c+ρx) = x t′(x)

t(x) , for x = ζg and g = 0, 1, . . . , q−1, and dividing

the sum by q. By slightly abusing notation write NIR(x) := t′(x)
t(x) rather than

NIR(x) = p′(x)
p(x) and notice that it is sufficient to compute ζgNIR(ζg) within,

say, 3
8 for every g. In that case the sum of the q error bounds is at most 3q

8
and decreases below 1

2 in division by q if the overall rounding error of those

10 We call a complex point c a tame root for a fixed error tolerance ε if it is covered by
an isolated disc D(c, ε). Given such a disc D(c, ρ), we can readily compute #(D(c, ρ))
by applying Corollary 6.

11 This recipe detects output errors of any root-finder at the very end of computations.
In the case of subdivision root-finders we can detect the loss of a root earlier –
whenever we notice that at a subdivision step the indices of all suspect squares sum
to less than m.



348 V. Y. Pan et al.

summation and division is less than 1
8 , and we readily ensure such a bound for

division by q (cf. [11, Lemma 3.4]).
To bound the precision of computing ζgNIR(ζg), first recall Eq. (5) and

represent xNIR(x) for |x| = 1 within 1
8 by using a precision of O(log(d)) bits.

Theorem 20. Write C := C(c, ρ) and assume that |x| = 1 and the circle C is
θ-isolated for θ > 1. Then |xNIR(x)| ≤ d

1−1/θ = θd
θ−1 .

Proof. Equation (5) implies that |NIR(x)| = |∑d
j=1

1
|x−xj

| ≤ ∑d
j=1

1
|x−xj | where

|x − xj | ≥ (1 − 1/θ)ρ for |xj | < 1, while |x − xj | ≥ (θ − 1)ρ for |xj | > 1
since i(C) ≥ θ. Combine these bounds, write m := #(D(c, ρ)), and obtain
|xNIR(x)| ≤ m

1−1/θ + d−m
θ−1 ≤ d

1−1/θ for |x| = 1.

Corollary 21. One can represent xNIR(x) within 1
8 for |x| = 1 by using a

precision of 3 + �log2( d
1−1/θ )� bits, which is in O(log(d)) provided that 1

θ−1 =
dO(1).

Instead of xNIR(x) = xt′(x)
t(x) we actually approximate xt′(y)

t(x) where |y −x| ≤ δ

and t′(y) is equal to the divided difference of (8). Thus we shall increase the
above error bound 1

8 by adding the upper bounds 1
8 on α := |xt′(x)

t(x) − xt′(y)
t(x) | for

|x| = 1 and on the rounding error β of computing x t(x)−t(x−δ)
δt(x) .

In [27] we readily estimate α in terms of d, θ, and δ – simply by adjusting
the first five lines of the proof of [14, Lemma 3.6]). This shows that α < 1

8 for
δ defined with a precision log2(1/|δ|) of order log(d). Then we estimate β by
applying straightforward error analysis and thus arrive at

Corollary 22. Suppose that a black box oracle supplies for us approximations
of a d-th degree polynomial t(x) with any relative error in 1/dO(1) for |x| ≤ 1
and let the unit disc be θ-isolated for t(x) and for 1

θ−1 = dO(1). Then we can
perform e/i test for t(x) on the unit disc by using a precision of O(log(d)) bits.

7 Conclusions

We substantially advance our progress in [25–27]. In particular we estimated and
then greatly decreased the Boolean complexity of our current root-finders, where
we allow to operate with the coefficients of p of (1) and depart from the case of
linear divisors in [11, Thm. 3.9], implicit in [30]:

Theorem 23. Given a positive b, the coefficients of a polynomial t̄(x) :=∑d
i=0 t̄ix

i such that ||t̄||1 =
∑d

i=0 |t̄i| ≤ 1, and q complex points zg, g = 1, . . . , q,
in the unit disc D(0, 1), one can evaluate t̄(zg) for g = 1, . . . , q within an
error bound 1/2b by using O(μ((d log(d) + q)(b + q))) Boolean operations for
μ(s) = O(s log(s) log(s) log(log(s))) (cf. (2)).
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Based on this theorem we estimate the overall Boolean cost of all e/i tests applied
to w = O(m) discs D(cλ, ρλ) at a fixed subdivision step, where p(x) is evaluated
at q equally spaced points at every circle C(cλ, ρλ), for ρλ ≥ 1/2b, |cλ|+ρλ ≤ R,
λ = 1, . . . , w, and a fixed R. We (i) scale the variable x 
→ Rx – to map all
discs D(cj , ρj), j = 1, . . . , m̄, into the unit disc D(0, 1) and then (ii) normalize
p(Rx) 
→ v(x) := ψp(Rx) for a scalar ψ > 0 such that ||v(x)||1 = 1, ψ = O(Rd),
and so Theorem 23 supports the Boolean cost bound O(μ((d log(d)+ q̄)(b+ q̄)))
for the evaluation of v(x) within error bound 1/2b at all m̄ e/i tests of that
subdivision step. This is ensured if |v(x)| · |Δ| ≤ 1/2b for an upper bound Δ =
1/dO(1) on the relative error of the evaluation. In our e/i tests we only need to
evaluate v(x) at the points x of a θλ-isolated circles C(cλ, ρλ) where 1/(θλ −1) =
O(m), and hence ([30, Eqn. (9.4)]) log(1/|v(x)|) = O(d log(m) + log(1/ρλ)); the
bound is sharp up to a constant factor; for m = d and ρλ = 1 it is reached at
x = 1 and the polynomial v(x) = ((x − 1 + 1/m)/(2 − 1/m))d.

Substitute v(x) = ψp(x) and ψ ≤ Rd, recall that minλ ρλ ≥ 1/2b, and obtain

log(1/|p(x)|) = O(d log(m) + bλλ for bλ = log2(R/ρλ) ≤ b.

Hence we can bound the Boolean complexity of our e/i tests at any fixed
subdivision step by applying Theorem 23 with q and b replaced by q̄ = O(qm)
and b̄ = O(d log(m) + b), respectively, and then obtain the Boolean complexity
bounds of a subdivision step consisting of O(m) e/i tests: Õ((qm+d)(qm+d+b))
where Õ(w) equals w logO(1)(w) and q = m2 or q = m for our deterministic or
randomized e/i tests, respectively. Now we bound the overall Boolean cost of all
O(b) subdivision steps:

Corollary 24. Our root-finders can be performed at the overall Boolean cost in
Õ((qm + d)(qm + d + b)b) where q = m2 and q = m in our deterministic and
Las Vegas randomized e/i tests, respectively.

So far we assumed that the input disc D(0, R) is θ-isolated for θ−1 exceeding
a positive constant, but if θ exceeds dh for a reasonably large h, then NIR(x) ≈
f ′(x)
f ′(x) where f(x) is the monic factor of p(x) of degree m sharing with p(x) its
m zeros that lie in D(0, R). Hence we can decrease the above upper bound on
log(1/|p(x)|) to log(1/|f(x)|) = O(m log(m) + b). Then we can ensure relative
precision in 1/dO(1) for computing p(x) if we ensure absolute precision b of order
m log(m) + b + log(d). Hence we can bound the Boolean complexity of our e/i
tests at any fixed subdivision step by applying Theorem 23 with q and b replaced
by q̄ = O(qm) and b̄ = O(m log(m) + b + log(d)), respectively, at the price of
performing root-lifting at NR cost in O(log(d)).12

If the disc D(0, R) is isolated for p(x), then the unit disc D(0, 1) is isolated
for v(x) = p(Rx), and we can ensure its θ- isolation for θ exceeding dh. Hence
we can ensure the latter bounds on log(1/|p(x)| and b if we lift the zeros of the
12 We can also replace d by m in Theorem 23 if we only seek approximation of NIR(x)

for |x| = 1 within 1/dO(1); actually we need such approximations within relative
error 1/dO(1), which implies an absolute error bound 1/dO(1) if 1/NIR(x) = 1/dO(1).
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polynomial v(x) to their hth powers for h = O(log(d)). We can perform lifting at
a dominated NR cost O(log(d)) (e.g., apply root-squaring O(log(log(d))) times);
this increases our bound Φ = 1/2b on R/min ρλ but at most to ΦO(log(d) =
1/2O(b log(d)). We can now replace the factor qm+d+b with qm+m+b log(d) =
Õ(qm + b) in our bound Õ((qm + d)(qm + d + b)b) of Corollary 24, to obtain

Theorem 25. Given the coefficients of a polynomial p(x) of (1) and an isolated
disc D = {x : |x − c| ≤ ρ} on the complex plane for a complex c and positive
ρ, let this disc contain precisely m zeros of p(x). Then one can approximate
all m zeros of p(x) in D within ε = 1/2b > 0 at the overall Boolean cost in
Õ((qm + d)(qm + b)b). Here q = m2 and q = m for our deterministic and Las
Vegas randomized root-finders, respectively.

The algorithms in [25] enable further decrease of the cost bound of Theorem 25
by a factor of b – to Õ((qm + d)(qm + b)). For m = o(d) this is below the lower
bound of [18,21] deduced even for approximation of a single zero of p, although
without assumption of any isolation of its covering disc.13 The algorithms of
[26] support the latter estimates for q decreased to a constant under Las Vegas
randomization in the space of the d zeros of p.
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On the Parameterized Complexity
of the Structure of Lineal Topologies

(Depth-First Spanning Trees) of Finite
Graphs: The Number of Leaves

Emmanuel Sam1(B) , Michael Fellows1,2 , Frances Rosamond1,2 ,
and Petr A. Golovach1

1 Department of Informatics, University of Bergen, Bergen, Norway
{emmanuel.sam,michael.fellows,frances.rosamond,petr.golovach}@uib.no
2 Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia

Abstract. A lineal topology T = (G, r, T ) of a graph G is an r-rooted
depth-first spanning (DFS) tree T of G. Equivalently, this is a spanning
tree of G such that every edge uv of G is either an edge of T or is
between a vertex u and an ancestor v on the unique path in T from
u to r. We consider the parameterized complexity of finding a lineal
topology that satisfies upper or lower bounds on the number of leaves
of T , parameterized by the bound. This immediately yields four natural
parameterized problems: (i) ≤ k leaves, (ii) ≥ k leaves, (iii) ≤ n − k
leaves, and (iv) ≥ n − k leaves, where n = |G|. We show that all four
problems are NP-hard, considered classically. We show that (i) is para-
NP-hard, (ii) is hard for W[1], (iii) is FPT, and (iv) is FPT. Our work is
motivated by possible applications in graph drawing and visualization.

Keywords: DFS tree · Spanning tree · Parameterized complexity

1 Introduction

For every connected undirected graph G = (V,E) with vertex set V (G) and
edge set E(G), there exists a rooted spanning tree T having the property that
for every edge xy ∈ E(G) that is not an edge of T , either x is a descendant of
y with respect to T , or x is an ancestor of y. Such a tree is called a depth-first
spanning tree (or DFS-tree for short), as one may be computed by depth-first
search (DFS), and the edges of G that are not part of T are referred to as back
edges [21]. It has also been called lineal spanning tree [29], trémaux tree [10], and
normal spanning tree, particularly in the case of infinite graphs [12].

The importance of the properties of such trees in the design of efficient algo-
rithms is evident in the great variety of algorithms that employ DFS to solve
graph-theoretic problems, including finding connected and biconnected compo-
nents of undirected graphs [21], bipartite matching [23], planarity testing [22],
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and checking the connectivity of a graph [15]. In the field of parameterized com-
plexity [7,14], DFS has been instrumental in obtaining fixed-parameter tractable
(FPT ) results by way of treedepth [25] and bounded width tree decompositions
of the given graph [1,16].

In the work reported herein, we refer to the triple (G, r, T ), that is, a graph
G together with a choice of root vertex r and a DFS tree T , as a lineal topology
T , or LT for short. This notion of LT corresponds to a point-set topology on the
set of edges E(G) (equipped with a rooted DFS tree T ), where the open sets
are the sets of edges of the subgraphs induced by rooted subtrees with the same
root r as T . The lineal topologies of G may differ in terms of the properties of
T , such as height and number of leaves. Figure 1 shows one way of representing
an LT as a topological graph or drawing in the plane. Given a graph G and a
DFS tree (T, r), an embedding of G in the plane so that every pair of edges that
cross is a pair of back edges having at most one crossing point is an instance of
an LT of G called T-embedding [19]. By definition, there exists a T-embedding
of the graph G with no crossings points among the back edges if and only if G is
a planar graph. This is the basis of Hopcroft and Tarjan’s linear time planarity
testing algorithm [22] and other algorithms for planarity testing, embedding,
and Kuratowski subgraph extraction based on de Fraysseix and Rosenstiehl’s
Left-Right characterization of planarity [8,9].

Fig. 1. A given graph G, and two examples of a lineal topology of G, denoted by T1

and T2. They differ in the height and number of leaves of the DFS tree T . The leaves
are shown as squares. The tree edges are shown in heavy lines, while the back edges
are shown in thin curved lines.

Considering the above-mentioned applications of LT and the interesting out-
comes enabled by the properties of DFS trees, it will be worthwhile to investigate
how their structural properties are related to other properties of graphs, includ-
ing crossing number [20] and bandwidth [3], useful in algorithms for VLSI design
and graph drawing. Then, a complementary study is the complexity of finding
those kinds of lineal topologies. We take the first step in this direction of research
by investigating the complexity of two main classical decision problems, namely
k-Minimum Leafy LT (k-Min-LLT) and k-Maximum Leafy LT (k-Max-
LLT), which correspond to finding an LT with minimum number of leaves, and
an LT with maximum number of leaves respectively.
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Given an undirected graph G, the k-Min-LLT and k-Max-LLT problems
ask whether G has an LT defined by a DFS tree with at most k and at least k
leaves, respectively. One observation that is easy to make is that a Hamiltonian
Path (HP) rooted at one of the end vertices of the path defines LT with one
leaf. Thus, k-Min-LLT is clearly NP-complete because it is a generalization of
the HP problem. To the best of our knowledge, the complexity of k-Max-LLT
has not been previously considered. While there are several results regarding the
complexity of Maximum Leaf Spanning Tree and Minimum Leaf Spanning
Tree in general [2,26–28], for DFS trees, the only available complexity results
are due to Fellows et al. [17]. For a given graph G, they considered the difficulty
of finding a DFS tree that satisfies upper or lower bounds on two parameters,
namely min(G,T ) and max(G,T ), which stand for the minimum length of a root
to leaf path of the DFS tree T , and the maximum length of such a path respec-
tively. They showed that, for a given graph G and an integer k ≥ 0, the following
problems are NP-complete: min(G,T ) ≤ k, min(G,T ) ≥ k, max(G,T ) ≤ k, and
max(G,T ) ≥ k. It was also shown that, unless P = NP , none of these problems
admits a polynomial-time absolute approximation algorithm.

Consequently, an appropriate framework within which to study these sorts
of problems is parameterized complexity (PC) [14], according to which problems
can be analyzed in terms of other parameters apart from the input size. This leads
to algorithms for which we pay an exponential cost in the parameter, thereby
solving the problem efficiently on instances with small values of the parameter.
For the basics of PC necessary to understand this paper, see Sect. 2.

We consider a parameterization of k-Min-LLT and k-Max-LLT, where the
parameter k is the size of the solution (number of leaves), and their so-called
“dual” parameterization, namely Dual Min-LLT (Does G have an LT with at
most n−k leaves? ) and Dual Max-LLT (Does G have an LT with at least n−k
leaves? ), where the parameter k is the number of internal vertices. These four
parameterized problems are formally defined in Sect. 2. We show that while each
parameterized problem and its parametric dual are trivially the same problem
and NP-hard when considered classically, when analyzed in terms of PC, the
tractability outcomes differ, with one being FPT and the other W[1]-hard.

1.1 Our Results

Our first result is the hardness of k-Max-LLT. By a reduction from the Multi-
colored Independent Set (MIS) problem, we show that k-Max-LLT is hard
for W[1] parameterized by k. Furthermore, we show that all four problems, con-
sidered classically, are NP-hard, and we show trivially that k-Min-LLT param-
eterized k is para-NP-hard. Our main contribution is in showing the existence of
an FPT algorithm for Dual Min-LLT and Dual Max-LLT, parameterized by
k, via an application of Courcelle’s theorem [4,6], which relates the expressibility
of a graph property using monadic second-order logic to its tractability in linear
time on graphs with bounded treewidth (or pathwidth). For a formal definition
of this logical language, see Sect. 2.4.
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2 Preliminaries

Unless otherwise specified, a graph G with vertex set V (G) and edge set E(G)
is simple, finite, undirected, and connected. For a graph G, n and m denotes the
number of vertices |V (G)| and the number of edges |E(G)| of G, respectively.
We use uv instead of {u, v} to denote an edge in E(G). For any vertex v ∈ V (G),
the set NG(v) denotes the open neighborhood of v, that is, the set of neighbors
of v in G, and NG[v] = NG(v) ∪ {v} denotes its closed neighborhood in G. We
drop the G in the subscript if the graph is clear from the context. Given any
two graphs G1 = (V1, E1) and G2 = (V2, E2), if V1 ⊆ V2 and E1 ⊆ E2 then G1

is a subgraph of G2, denoted by G1 ⊆ G2. If G1 contains all the edges uv ∈ E2

with u, v ∈ V1, then we say G1 is an induced subgraph of G2, or V1 induces G1

in G2, denoted by G[V1]. If there exists are bijective mapping f : V1 → V2 that
preserves adjacency, that is, uv ∈ E1 if and only of f(u)f(v) ∈ E2, then G1 is
isomorphic to G2 and f is called an isomorphism. If G1 is such that it contains
every vertex of G2, i.e., if V1 = V2 then G1 is a spanning subgraph of G2. Given a
set of vertices X ⊆ V , we express the induced subgraph G[V (G)\X] as G−X. If
X = {x}, we write V (G)\x instead of V (G)\{x} and G − x instead of G − {x}.
For any pair of vertices uv ∈ V (G) in a given graph G, we denote any path
from u to v by P (u, v), and any path of length � by P �. A vertex u is said to
be reachable from a vertex v if there is a path P (u, v). Given a graph G, a set
of vertices S ⊆ V (G) is a connected vertex cover (CVC) of G if the subgraph
G[S] induced by S is connected and S is a vertex cover of G, i.e., for every edge
uv ∈ E(G), either u ∈ S or v ∈ S.

2.1 Lineal Topology

Here, we focus on the definitions of the substructures of lineal topologies that
are relevant to our proofs. We refer the reader to [11] for details about basic tree
terminologies such as root, parent, child, ancestor, etc. In all cases, a DFS tree
is simply denoted by T instead of (T, r) if the root is clear from the context.
For any given lineal topology T = (G, r, T ), we denote the height of T , that is,
the maximum number of edges in any leaf-to-root path of T , by h. A leaf of
T is a vertex that has no descendants but is adjacent to one or more ancestors
with respect to T (see Fig. 1). We denote by Y and X the set of leaves and
internal vertices of T , respectively. Given a set of vertices S ⊆ V (G), such that
the subgraph G[S] induced by S is connected, we denote the DFS tree of G[S]
rooted at x ∈ S by (TS , x). The set E(T ) and E(B) denote the tree edges and
back edges of T respectively. By definition, the set Y is an independent set ; that
is, no pair of vertices uv ∈ Y are adjacent. This is also true for the set of vertices
Ui ⊆ V (T ) at each level i of T . Given a vertex v, the set Pv denotes the vertices
on the uniquely determined path P (v, r) in T .
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2.2 Parameterized Complexity

Now we review some important concepts of parameterized complexity (PC) rel-
evant to the work reported herein. For more details about PC, we refer the
reader to [7,14]. Let Σ be a fixed, finite alphabet. A parameterized problem is
a language P ⊆ Σ∗ × N. For an instance (x, k) ∈ Σ∗ × N, k ∈ N is called the
parameter. A parameterized problem P is classified as fixed-parameter tractable
(FPT) if there exists an algorithm that answers the question “(x, k) ∈ P?” in
time f(k) · poly(|x|), where f is a computable function f : N → N. Let P and P ′

be two parameterized problems. A parameterized reduction from P to P ′ is an
algorithm that, given an instance (x, k) of P , produces an equivalent instance
(x′, k′) of P ′ such that the following conditions hold:

1. (x, k) is a YES-instance of P if and only if (x′, k′) is a YES-instance of P ′.
2. There exist a computable function f : N → N such that k′ ≤ f(k).
3. The reduction can be completed in time f(k) · poly(|x|) for some computable

function f .

The W-hierarchy [13] captures the level of the intractability of hard param-
eterized problems. For the purpose of the discussions in this paper, it is enough
to note that a problem that is hard for W [1] cannot be solved in FPT running
time, unless FPT = W [1]. A parameterized problem that is already NP-hard
for some single fixed parameter value k (such as k = 3 for Graph k-Coloring)
is said to be para-NP-hard.

2.3 Problem Definitions

We formally define the parameterized problems studied in this work as follows:

k-Min-LLT
Input: A connected undirected graph G = (V,E).
Parameter: k
Question: Does G admit an LT with ≤ k leaves?
k-Max-LLT
Input: A connected undirected graph G = (V,E)
Parameter: k
Question: Does G have an LT with ≥ k leaves?
Dual Min-LLT
Input: A connected undirected graph G = (V,E) and positive integer k
Parameter: k
Question: Does G admit an LT with ≤ n − k leaves?
Dual Max-LLT
Input: A connected undirected graph G = (V,E) and positive integer k
Parameter: k
Question: Does G have an LT with ≥ n − k leaves?

Below, we present the definitions of the concepts used in Sect. 3, to show that
Dual Min-LLT and Dual Max-LLT are FPT with respect to k.
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Definition 1 (Treewidth, Pathwidth). A tree decomposition of a given graph
G is a pair (TD, B) where TD is a tree and B is a family of subsets {Bi ⊆ V (G) :
i ∈ V (TD)}, called bags, with each node in TD associated with a bag, satisfying
the following properties: (1)

⋃
i∈V (TD) Bi = V (G), (2) ∀uv∈E(G),∃i ∈ V (TD) :

u ∈ Bi, and v ∈ Bi, and (3) ∀v∈V (G), the set T i
D = {i ∈ V (TD) : v ∈ Bi} gives

rise to a connected subtree of TD.
The width of (TD, B) is max{|Bi| : i ∈ V (TD)} − 1 and the treewidth of

a graph, denoted tw(G), is the minimum width over all tree decompositions of
G. If TD is a path, then (TD, B) is called the path decomposition of G and the
minimum width over all path decompositions of G is its pathwidth, often denoted
by pw(G). For any graph G, it is a fact that tw(G) ≤ pw(G) [25].

2.4 Logic of Graphs

We now introduce the basic definitions and notations of the logic of graphs and
MSO, the logical language with which we specify the properties associated with
Dual Min-LLT and Dual Max-LLT in Sect. 3. For a thorough discussion of
these topics, we refer the reader to [6,24].

Recall that Second-Order Logic (SO) is an extension of First-Order Logic
(FO) that allows quantification over predicates or relations of arbitrary arity.
Monadic Second-Order Logic (MSO) are SO formulas in which only quantifi-
cation over unary relations (i.e., subsets of the domain) is allowed. To express
graph properties using MSO, a graph G = (V,E) can be represented either as
a logical (or relational) structure 
G� whose domain is the vertex set V , with
a binary relation adj on V representing the edges, or as a logical structure �G
whose domain is formed by the disjoint union of V and E, with a binary relation
inc representing the incidence between the vertices and edges of G. There are
two main variants of MSO: MSO1 and MSO2, corresponding to 
G� and �G
respectively.

Definition 2 (MSO1 language). The logical expressions or formulas of this
language are built from the following elements:

1. Small variables u, v, x1, . . . , xk for vertices
2. Big variables X,Y,U1, . . . , Uk for sets of vertices.
3. Predicates adj(u, v) and u ∈ V for adjacency and membership respectively,

and “=” equality testing.
4. The logical connectives ∨,∧,¬,⇒
5. ∀x,∃x for quantification over vertices and ∀U , ∃U for quantification over

vertex sets.

The MSO2 language extends MSO1 with variables denoting edges and subset of
edges, and the predicate inc(x, e) for incidence, and allows quantification over
edges and edge sets.

For clarity, we use ∀x, ∃x instead of ∀x, ∃x, and ∀U , ∃U instead of ∃U ,
and ∀U . Given a graph G belonging to a class of graphs C and a formula Φ
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expressing a graph property in MSO, we denote the statement “Φ is true of
the vertices and the relation of G” by G |= Φ (read as “G models Φ” or “Φ
holds on G”). For a logical language L ∈ {MSO1,MSO2}, we say that a graph
property is L-expressible if there exists a formula (sentence) of L for expressing
it. The theorem below states the consequence of expressing a graph property by
an MSO2 formula.

Lemma 1 (Courcelle’s theorem [4,6]). Assume that φ is a fixed MSO2

formula of length � expressing a graph property. Then for any graph G belonging
to a graph class C with treewidth bounded by a fixed positive integer k, there
is an algorithm that takes G and its tree decomposition as input and decides
whether G |= φ in time O

(
f(�, k) · n

)
, for some computable function f .

By a theorem similar to Lemma 1, every graph property that is MSO1-expressible
can be decided in linear time on graphs of bounded clique-width, a graph com-
plexity measure that is similar to treewidth [5]. It is worth noting that Lemma
1 also holds for MSO1 formulas because every graph property expressible by an
MSO1 formula is also expressible by an MSO2 formula; but the converse is not
true. For example, the existence of a Hamiltonian path can only be expressed
in MSO2 [6]. Therefore, it is stronger to claim that a given property is MSO1-
expressible. In Sect. 3.2, we show that the property of having an LT with at least
n − k leaves or at most n − k leaves is MSO1-expressible.

3 Complexity Analysis

In this section, we consider the four natural parameterized problems defined
above. We first show that k-Max-LLT is hard for W[1] parameterized by k.
The reduction in the proof is polynomial and thus the problem is NP-hard.
Besides, we show trivially that k–Min-LLT is para-NP-hard with respect to k.
This is followed by proofs of hardness for Dual Min-LLT and Dual Max-LLT,
considered classically. Moreover, we show that these two problems are FPT with
respect to k. To this end, we construct MSO1 formulas φk and ϕk to express
the property of having an LT with at most n − k leaves and that of having
an LT with at least n − k leaves. Next, we make use of the following facts on
the height of a lineal topology to show the existence of an FPT algorithm for
the two problems. Given a graph G and an integer k ≥ 0, we show, for Dual
Max-LLT, that if the height of the DFS tree T resulting from any DFS of G
is more than 2k+1 − 2, then T witnesses that the answer is NO, otherwise, G
has a path decomposition of width at most 2k+1 − 1. For Dual Min-LLT, we
trivially show that the answer is YES if the number of internal vertices of T is
at least k, otherwise, G has a path decomposition of width at most k.

3.1 Hardness Results

Theorem 1. k-Max-LLT is W[1]-hard parameterized by k and NP-complete
when considered classically.
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Proof. We reduce from the parameterized Multicolored Independent Set
(MIS) problem parameterized by the number of colors. In the MIS problem, we
are given a graph G = (V,E) and a coloring of V with k colors, and the task
is to determine whether G has a k-colored independent set, that is, a k-sized
independent set containing one vertex from each color class. We trivially assume
that each color class induces a clique for our argumentation. This problem is
W[1]-hard with respect to k [7, chapter 13], which implies that it is unlikely that
it can be solved in time f(k) · poly(n) for any computable function f .

Given a positive integer k, let G be an instance of the MIS problem in which
{V1, . . . , Vk} is a partition of the vertex set V (G) such that, for each i ∈ [1, k], Vi

induces a clique and corresponds to a color class. Now we construct an instance
(G′, k) of the k-Max-LLT problem from G by introducing a set of k universal
vertices U = {u1, u2, . . . , uk}, i.e., every ui ∈ U is adjacent to every vertex in G
and in U\ui. The completed G′ = (V ′, E′) has V ′ = V ∪ U , and E′ = E(G) ∪
{uiv | ui ∈ U, v ∈ V (G′)\ui} (see Fig. 2). The main idea of this construction, as
will be argued below, is to enable a depth-first traversal of G that guarantees
an LT with at least k leaves corresponding to a k-sized independent set in G,
if it exists. It is not hard to see that we can construct (G′, k) from (G, k) in
polynomial time. Lemmas 2 and 3 below show that G′ admits an LT with at
least k leaves if and only if G has a k-colored independent set.

Fig. 2. An example of a reduction from an instance G of MIS, with k-colored indepen-
dent set X = {c, e, j}, to an instance G′ of Max-LLT and a DFS of G′ that yields a
DFS tree T ′ with {c, e, j} as its leaves.

Lemma 2. If a k-colored independent set exists in G, then G′ admits an LT
with at least k leaves.

Proof. Suppose that X = {x1, ..., xk} is a k-colored independent set in G. Since
x1 ∈ V1, . . . , xk ∈ Vk with each color class Vi inducing a clique, any depth-first
traversal of G′ that excludes the vertices in X until all the vertices in V (G′)\X
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have been visited yields an LT with the vertices in X as its leaves. One way
to achieve this is to start from the vertex u1 ∈ U and visit every vertex in the
corresponding color class V1 except x1. Next, choose u2 ∈ U and explore every
vertex in V2 except x2. Repeat this process sequentially for each ui ∈ U and
its corresponding color class Vi until the last vertex uk ∈ U is reached. Now
choose the vertex xk after exploring every vertex in the set Vk\{xk}. See Fig. 2
for an illustration of this process. At this point, every edge incident to xk leads
to a vertex already reached by the DFS because X is an independent set. Thus,
xk becomes a leaf in the resulting DFS tree T ′ of G′. If any vertex xi ∈ X is
adjacent to an already visited vertex v ∈ Vk, we backtrack and choose xi from v.
Otherwise, we backtrack to uk ∈ U , as every vertex in X is reachable from this
vertex by construction. Each of the remaining vertices {x1, . . . , xk−1} reached
by DFS becomes a leaf in T ′ because of the same reason as for xk. ��

Lemma 3. If an LT with at least k leaves in G′ exists, then there is a k-colored
independent set in G.

Proof. If k = 1 then G is obviously a YES-instance. Suppose that k ≥ 2 and
G′ admits an LT in which X = {x1, x2, ..., xk} are the leaves. Observe that X
is an independent set. Then, based on the following claims, we conclude that X
induces a k-colored independent set in G.

Claim 3.1. Each color class Vi in G′ can contain at most one vertex from X.

Proof. The set of leaves X is an independent set and, by construction, each color
class Vi in G′ is a clique. Therefore, there cannot be any LT of G′ with two or
more leaves from the same color class. �

Claim 3.2. None of the vertices in X is from the vertex set U = {u1, . . . , uk}.

Proof. For i ∈ [1, k], if ui is a leaf of T ′, the remaining vertices in V (G′)\ui must
necessarily be internal vertices of T ′ by construction. Since X contains at least
2 vertices, it follows that no vertex in U can be in X. �

Combining Claims 3.1 and 3.2, we conclude that X is a k-colored independent
set in G.

��

Theorem 2. k-Max-LLT is NP-complete.

Proof. k-Max-LLT is clearly in NP. The NP-hardness of the problem follows
from the proof of Theorem 1, because Multicolored Independent Set is
NP-complete [7,20] and the reduction from Multicolored Independent Set
to k-Max-LLT is a polynomial-time reduction.

Theorem 3. k-Min-LLT parameterized by k is para-NP-hard.

Proof. This follows, trivially, from the fact that k-Min-LLT is NP-hard already
for k = 1, because for this case, k-Min-LLT is equivelent to Hamiltonian Path
which is well-known to be NP-complete [20].
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Theorem 4. Dual Min-LLT and Dual Max-LLT, considered classically, are
NP-hard.

Proof. Dual Min-LLT can be restricted to the Hamiltonian Path problem by
allowing only instances in which k = n−1. Similarly, (G,n−k) is a YES-instance
of k-Max-LLT iff (G, k) is a YES-instance of Dual Max-LLT. ��

3.2 MSO Formulations

Recall that a DFS tree T is a tree formed by a set of edges E(T ) with a choice of
a root vertex r, such that every edge not in T connects a pair of vertices that are
related to each other as an ancestor and descendant in T . For any DFS tree T of
a given graph G, the set of vertices Ui at each level i of T is an independent set
of G. Thus, T corresponds to a partition of the vertex set V (G) into a sequence of
independent sets (U0, U1, ..., Uh) with h ∈ N, where the root r is the only member
of U0 and Uh contains the vertex witnessing the height h of T (see Fig. 3a). Based
on this observation, we provide the following definition of a DFS tree with bounded
height, which allows us to express the properties “G has an LT with at least n − k
leaves” and “G has an LT with at most n − k leaves” in MSO1.

Fig. 3. (a) Color classes denoting an LT partition (U0, U1, ..., U6) of a graph G with
n = 13, and a representation of the associated LT of G with height h = 6 and number
of internal vertices |X| = 8. (b) A CVC X ′ of a graph G, and a DFS tree T of G formed
by a DFS tree (TX′ , a) for G[X ′] and the independent set V (G − X ′). The internal
vertices X of T consist of {a, b, c, d, e, f, i, j}. Thus |X| ≤ |X ′|. (c) A CVC X ′ of a
graph G such that G[X ′] does not admit a DFS tree TX′ which extends to a DFS tree
T of G.

Definition 3. Let G be a graph and h a positive integer. A tree-partition of G
of height h is a sequence (U0, . . . , Uh) with U0, . . . , Uh ⊆ V (G) such that:

1. (U0, U1, . . . , Uh) is a partition of V (G).
2. U0 contains only one element r.
3. Every vertex u ∈ Ui has a unique neighbor v ∈ Ui−1 for all i ∈ [1, h].

The tree associated with the tree-partition (U0, . . . , Uh) is the rooted spanning
tree T of G with root r and edge set E(T ) = {uv : uv ∈ E(G), u ∈ Ui, v ∈ Ui−1

for all i ∈ [1, h]}. We say that the tree-partition (U0, . . . , Uh) is an LT-partition
of G if:
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4. For every edge uv of G, u is an ancestor of v in T or v is an ancestor of u
in T .

Lemma 4. For every h ∈ N , a graph G = (V,E) has an LT with height h if
and only if G admits an LT-partition (U0, U1, ..., Uh).

Proof. Let T be the spanning tree of G associated with (U0, U1, ..., Uh). Prop-
erty 4 of Definition 3 ensure that every uv ∈ E\E(T ) is a back edge, and, thus,
for all i ∈ [0, h], Ui is an independent set. This gives us an LT with height h.

Conversely, suppose we have an LT of G defined by a DFS tree T with height
h. Then it is easy to see that the root and the vertices at each level of T constitute
an LT-partition (U0, U1, ..., Uh). ��

Dual Max-LLT. Let G be a graph and k ∈ N. If k = 1 then G is a YES-
instance of Dual Max-LLT if and only if G is a star. Thus, in what follows,
we assume that k ≥ 2 and |G| ≥ 3. Suppose that G admits an LT with at least
n−k leaves, and consider a DFS tree (T, r) witnessing that G is a YES-instance.
We can readily observe that the internal vertices X of (T, r) is a CVC of G, and
the subtree (TX , r) with height h ≤ |X| is a DFS tree of the graph G[X] induced
by X. This is also true for any subtree (TX′ , r), such that X ′ ⊇ X and |X ′| ≤ k
(see Fig. 3b). However, given a graph G = (V,E) and a CVC X of G, G[X] may
not have a DFS tree TX that can be extended to a DFS tree T of G by adding
the vertices in V (G − X) to TX as leaves. An example of such a CVC of a given
graph is shown in Fig. 3c. Using these intuitive ideas, we characterize the graphs
that admit an LT with at least n − k leaves by Lemma 5. See the full version of
this paper for the proof of this lemma.

Lemma 5. A graph G has an LT with at least n − k leaves if and only if it has
a set of vertices X ′ of size at most k satisfying the following properties:

1. X ′ is a connected vertex cover of G.
2. G[X ′] admits an LT partition (U0, ..., Uh) with h ≤ |X ′| such that, for any

vertex y ∈ V (G)\X ′, if y is adjacent to a pair of vertices u, v ∈ X ′, then
either u is the ancestor of v or v is the ancestor of u in the LT formed by
(U0, ..., Uh).

Theorem 5. For all k ∈ N , there exists an MSO1 formula φk such that for
every graph G, it holds that 
G� |= φk iff G is a YES-instance of Dual Max-
LLT.

To prove this, we construct the formula φk as a conjunction of formulas express-
ing the properties in Definition 3 and Lemma 5; see the full version of this paper.

Dual Min-LLT. For k = 1, every graph G is a YES-instance of Dual Min-
LLT. Thus, henceforth, we assume that k ≥ 2 and |G| ≥ 3. Let G be a given
graph that admits an r-rooted LT with at most n − k leaves (i.e., at least k
internal vertices), and consider a DFS tree T of G witnessing this fact. Then
any subtree (TX′ , r) of T , where X ′ = {x1, . . . , xk} is a set of k internal vertices
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and r ∈ X ′ is the same as the root of T , is a DFS tree for the subgraph G[X ′]
induced by X ′; see Fig. 4 for an example. Observe that, every leaf of (TX′ , r) is
adjacent to a vertex in the set W = V (T )\X ′, and each of the subtrees that
extend TX′ to form T is a DFS tree for some maximal connected component of
G − X ′.

Fig. 4. (a) A graph G with a connected subset of vertices X ′ of size 5, and (b) a DFS
tree (TX′ , a) for G[X ′] that extends to an LT of G with internal vertices X ′ ∪ {f, i, j}.
W consists of three maximal connected subgraphs of G shown in different colors.

As a result, we transform the problem of determining whether G admits an
LT with at most n−k leaves to that of deciding whether there exists a subset of
k vertices X ′, such that, the subgraph G[X ′] admits an r-rooted DFS tree TX′

isomorphic to a subtree (T ′, r) of an LT of G witnessing that G is a YES-instance.
To this end, we introduce the following definition.

Definition 4. Let G be a graph and X ′ = {x1, . . . , xk}, a set of k vertices that
induces a connected subgraph of G. We say that a tree-partition (U0, . . . , Uh) of
G[X ′] of height h ≤ k is a partial LT-partition of G or extends to an LT-partition
of G if it satisfies the following property: for every W ′ ⊆ V (G) such that G[W ′]
is a maximal connected subgraph of G − X ′, there exists x′ ∈ X ′ such that any
vertex in x ∈ X ′ with at least one neighbor in W ′ is an ancestor of x′.

In Fig. 4, it is easy to see that the subgraph induced by {k, j, i, l} does not have a
tree-partition that forms a partial LT-partition of G. For a partial LT-partition
of a given subgraph G[X ′] of size k to yield an LT of G with at most n−k leaves,
it is necessary that every leaf of the partial LT is adjacent to at least one vertex
in V (G)\X ′. Based on these intuitive ideas, we characterize the YES-instances
of Dual Min-LLT by Lemma 6; see the full version of this paper for the proof.

Lemma 6. For every k ∈ N , a graph G = (V,E) has an LT with the number
of leaves ≤ n − k if and only if there exists a set of vertices X ′ of size at
least k satisfying the following property: G[X ′] admits a partial LT-partition
(U0, . . . , Uh) of height h ≤ k in which every leaf is adjacent to at least one vertex
in W = V (G)\X ′.
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Now, we use Lemma 6 to obtain Theorem 6; see the full version of this paper
for the proof.

Theorem 6. For all k ∈ N , there exists an MSO1 formula ψk such that for
every graph G, it holds that 
G� |= ψk iff G is a YES-instance of Dual MIN-
LLT.

3.3 FPT Algorithms for DUAL MIN-LLT and DUAL MAX-LLT

In this section, we show the existence of an FPT algorithm for Dual Min-LLT
and Dual Max-LLT using the MSO formulations above, and Lemmas 7 and 8.
For the proofs of these lemmas, see the full version of this paper.

Lemma 7. Given a graph G and a positive integer t, if G admits an LT with
height at most t, then G has a path decomposition of width at most t that can be
computed in linear time.

Lemma 8. Given a graph G and a positive integer k, if G admits an LT of
height at most k, then the length of any path in G is at most 2k+1 − 2.

Theorem 7. Dual Max-LLT parameterized by k ∈ N is in FPT.

Proof. Let G be a graph and k a positive integer. One observation that is easy
to make is that if G is a YES-instance of Dual Max-LLT, then G admits an
LT with height at most k. Thus, Dual Max-LLT can be solved as follows: (1)
Construct a DFS tree T by performing a DFS of G. If the height h of T is more
than 2k+1 − 2, then we know, by Lemma 8 that G does not admit an LT with
h ≤ k. Therefore, return NO and stop. (2) Otherwise, use Lemma 7 to read off
a path decomposition of G of width at most 2k+1 − 1 from T , one bag per leaf.
(3) Applying Courcelle’s theorem with Theorem 5 and this path decomposition,
it follows that checking whether G is a YES-instance is FPT in k. ��

Theorem 8. Dual Min-LLT parameterized by k ∈ N is in FPT.

Proof. The proof follows steps analogous to that of Theorem 7. Construct any
DFS tree T . If T has at most n−k leaves, return YES and stop. Otherwise, we use
Lemma 7, to obtain a path decomposition of G of width at most k from T . With
this, Theorem 6, and Courcelle’s theorem implies that we can derive an FPT
algorithm that runs in time linear in n to check whether G is a YES-instance. ��

4 Conclusion

In this paper, we have shown hardness results for four natural parameterized
problems that have to do with finding an LT (or DFS tree) with a restricted
number of leaves. Our theorem shows that k-Max-LLT is hard for W[1]. This
raises the natural question of where it belongs in the W-hierarchy with respect to
membership. Is it in W[1] and thus W[1]-complete? Is it in W[P]? It seems to be
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AND-compositional, like the Bandwidth problem, as discussed in [18] and we
conjecture that k-Max-LLT cannot be in W[P] for reasons similar to the case
of Bandwidth. We have also shown that Dual Min-LLT and Dual Max-
LLT are FPT parameterized by k. Instead of relying on Courcelle’s theorem to
show the existence of an FPT algorithm for these problems, we believe it should
be possible to construct an algorithm that solves each problem explicitly via
dynamic programming over the path decomposition returned by our algorithm.
An obvious question is whether both problems admit a polynomial kernel.

On the complexity of finding an LT with restricted height h, the only known
results are the NP-hardness results due to Fellows et al. [17] (see Sect. 1). A
consequence of our Theorem 7 is that the problem h ≤ k is FPT with respect to
k. The natural parameterized problem h >= n − k is para-NP-complete since it
is equivalent to Hamiltonian Path when k=1. We plan to investigate the PC
of: (i) h ≤ n − k, and (ii) h ≥ k, which we believe is FPT parameterized by k.
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Abstract. A spanning tree T of a connected, undirected graph G is
an acyclic subgraph having all vertices and a minimal number of edges
of G connecting those vertices. Enumeration of all possible spanning
trees of undirected graphs is a well-studied problem. Solutions exist for
enumeration for both weighted and unweighted graphs. However, these
solutions are either space or time efficient. In this paper, we give an
algorithm for enumerating all spanning trees in a plane 3-tree that is
optimal in both time and space. Our algorithm exploits the structure of
a plane 3-tree for a conceptually simpler alternative to existing general-
purpose algorithms and takes O(n+m+ τ) time and O(n) space, where
the given graph has n vertices, m edges, and τ spanning trees. This is a
substantial improvement in both time and space complexity compared to
the best-known algorithms for general graphs. We also propose a parallel
algorithm for enumerating spanning trees of a plane 3-tree that has O(n+
m+ nτ

p
) time and O(nτ

p
) space complexities for p parallel processors. This

second algorithm is useful when storing the spanning trees is important.

Keywords: Spanning Tree Enumeration · Plane 3-Tree · Time and
Space Complexity

1 Introduction

A spanning tree of a connected undirected graph G is a subgraph that is a
tree spanning all vertices of G. Spanning trees have always been a focus for
researchers when dealing with various graph-related problems due to their wide
range of applications in areas such as computer networks, telecommunications
networks, transportation networks, water supply networks, and electrical grids.

The enumeration of all spanning trees of a graph G is to find all possi-
ble distinct edge combinations which minimally connect all its vertices without
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introducing any cycle. Enumerating all possible spanning trees is often crucial in
electrical circuits, routing networks, and other network analysis and optimiza-
tion applications [3]. For example, the current flow of an electrical network is
associated with the sum of electrical admittances in its spanning trees [1,13].
The main issues with spanning tree enumeration are exponential time complex-
ity, costly storage space requirements, and duplicate tree generation. Various
algorithms with varying degrees of efficiency exist in the literature addressing
these issues [2,5–7,9,10,14]. To the best of our knowledge, however, no solution
exists that is optimal in all these aspects for any complex graph class.

Char’s [2] 1968 algorithm is among the first works on spanning tree enu-
meration. For a graph G with n vertices and m edges, it considers all possible
combinations of n − 1 edges as potential spanning trees and gives unique span-
ning trees as output. The algorithm assigns the vertices of G increasing orders
from 1 to n. It next selects the nth vertex as the root of all spanning trees. Then
the algorithm repeatedly emits sequences of n − 1 numbers as a permutation
of vertex orders, where the ith number in the sequence is the endpoint of an
edge originating from the vertex with order i. Although the algorithm avoids
duplicate tree generation, it involves checking if a sequence forms a spanning
tree or some other cyclic subgraph. If τ ′ and τ respectively denote the numbers
of non-tree and tree sequences of G, the time complexity of the algorithm is
O(m+n+τ +τ ′). The space required by Char’s algorithm is O(nm). This space
overhead is due to a tabular structure listing all adjacent vertices of each vertex.

The algorithm Rakshit et al. proposed in 1981 [14] is quite similar to Char’s
algorithm. The algorithm uses a privileged reduced incidence edge structure
(PRIES). A reduced incidence edge structure (RIES) of graph G is a table with
n − 1 vertices as row headers and column entries representing the edges inci-
dent on the respective vertices. A PRIES is a table derived from a RIES. The
PRIES that the algorithm proposes is effectively the exact structure of [2]. The
difference between the two algorithms lies in how they detect non-tree edge
sequences. While Char’s algorithm repeatedly checks for cycle to prune non-
tree edge sequences, Rakshit’s algorithm does that by repeatedly removing two
“pendant” vertices [4] from a sequence and checking the degrees of remaining
vertices. The time and space complexities of this algorithm are similar to Char’s
algorithm. Both algorithms are superior in time complexity to their contempo-
rary alternative enumeration algorithms [6,7,10] as they avoid duplicate edge
sequences and prune non-tree sequences using the geometric properties of the
input graph.

Gabow and Myers [5] and Matsui [9] improve the time complexity of span-
ning tree enumeration from earlier algorithms by avoiding evaluating candidate
sequences of vertices that cannot form a connected subgraph. Both algorithms
recursively generate spanning trees by growing them from smaller sub-trees and
checking whether adding a new edge on a growing tree will produce a cycle.
Gabow and Myers’ algorithm traverses the input graph G in depth-first-order
from a single pivot vertex that the algorithm considers the root of all spanning
trees of G. As it grows a tree from that root vertex, the algorithm removes
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and restores edges in G in a deterministic order to avoid duplicate tree gener-
ation. The algorithm works for both directed and undirected graphs and takes
O(n + m + mτ) and O(n + m + nτ) times for the former and the latter, respec-
tively. The vertex and edge count multiplier over the number of spanning trees
τ in this algorithm is due to checking all possible extensions to a new edge or
vertex from a single vertex of the tree under construction.

Matsui’s algorithm employs that one can construct a spanning tree T of a
graph G by swapping an edge f of another spanning tree T ′ with an edge g /∈ T ′

such that T
⋃{g} is a cycle (known as a fundamental circuit of G). This property

allows us to relate all spanning trees of G in a parent-child relationship hierarchy
from a single baseline spanning tree where a child spanning tree is the result of
replacing a single edge of its parent with another edge, called the pivot edge.
The algorithm traverses the hierarchical domain of spanning trees by finding
pivot edges using a generic enumeration algorithm proposed by Nagamochi and
Ibaraki [11]. The domain traversal order can vary. However, careful edge ordering
is essential to avoid returning to an ancestor-spanning tree from a descendent.
Discovering pivot edges of a single spanning tree can take O(n) time. That gives
the total time complexity O(n+m+nτ). Both Gabow and Myer [5] and Matsui’s
algorithms only maintain a single spanning tree and a sorted sequence of edges
in memory. Therefore, their space complexity is O(n + m). One can view these
algorithms as optimizations to Read and Tarjan’s generic backtracking-based
algorithm for listing specific types of subgraphs of a graph [15], which provides
O(n + m + mτ) time and O(n + m) space bounds for listing spanning trees.

Onete et al.’s [13] more recent algorithm of spanning tree enumeration
achieves the same time and space bounds as Matsui’s algorithm. However, the
algorithm involves no backtracking. Onete et al. found that all and only non-
singular submatrices with a specific structure of a reduced incidence matrix of a
graph represent spanning trees. Their algorithm utilizes this finding by generat-
ing unique submatrices of that kind and spewing corresponding spanning trees
in the incidence matrix format. Since checking for non-singularity is a linear
process in the number of vertices, the time complexity of their algorithm is also
O(n + m + nτ).

Kapoor and Ramesh [8] and Shioura and Tamura [16] provide two alternative
algorithms to improve the time complexity from O(n+m+nτ) to O(n+m+ τ)
when the individual spanning trees need not be output. Instead, their difference
from a baseline tree as a list of edge exchanges is sufficient. Both algorithms
implicitly traverse the network S(G) formed by all spanning trees of G where the
nodes of S(G) are the spanning trees of G and there is an edge between two nodes
of S(G) if the corresponding trees differ by an edge exchange. Both algorithms
maintain a dynamic, ordered list of edges associated with fundamental cycles of
G to optimize S(G) traversal and avoid duplicate tree generation. Although the
underlying list data structures are different, their maintenance increases both
algorithms’ space complexity to O(nm). Furthermore, recreating the individual
spanning trees from the description of differences sacrifices time optimization.
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All the above algorithms involve checking for cycle formation or tracking
cyclic relations among edges of the graph, which is the chief contributor to their
time or space complexity. Avoiding cycle tracking during spanning tree enumer-
ation of a general graph is challenging. However, alternative approaches that
utilize a graph’s structure to enumerate spanning trees without cycle tracking
can lead to better algorithms for specific graph classes.

In this paper, we consider the problem of enumerating spanning trees of a
plane 3-tree. Plane 3-trees are a class of planar graphs formed from repeated
triangulation of phases of an initial triangle. Formally, a plane 3-tree Gn is a
triangulated plane graph G with n ≥ 3 vertices such that if n > 3 then G has
a vertex x whose deletion gives a plane 3-tree G′ of n − 1 vertices. Figure 2(a)
shows an example of plane 3-tree G10 containing 10 vertices.

Our approach uses the face decomposition structure of a plane 3-tree to order
its vertices, then inductively generates all its spanning trees without duplication
from that vertex order. The algorithm using breadth-first propagation of induc-
tive expansion has O(n + m + τ) time and O(nτ) space complexities. When
space is not an issue, this algorithm has the advantage of being easily paral-
lelizable. Our second algorithm captures the logic of inductive expansion into a
tree alteration scheme like Matsui’s to output all spanning trees using dynamic
programming (DP) in O(n) space and O(n + m + τ) time.

The structure of the rest of the paper is as follows. Section 2 presents prelim-
inaries on various terms and concepts related to graphs, plane 3-trees, and our
algorithms. Section 3 introduces some lemmas and theorems related to properties
of spanning trees of a plane 3-tree. Section 4 presents our first and inductive algo-
rithm for spanning tree enumeration. Section 5 describes and analyzes the DP
algorithm. The paper concludes with a discussion of future research directions.

2 Preliminaries

In this section, we define some terms we will use for the rest of the paper and
present some preliminary findings.

Let G = (V,E) is a connected simple graph with vertex set V and edge set
E. A subgraph of G is a graph G′ = (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E.
G′ is a spanning subgraph of G when V ′ = V . G′ is an induced subgraph of G
when G′ contains all edges of E having both endpoints in V ′. When each edge
(u, v) ∈ E is directional, i.e., (u, v) �= (v, u) then G is a directed graph; otherwise,
G is undirected. In this paper, we only consider undirected graphs. The degree
of a vertex v ∈ G, denoted by degree(v), is the number of edges incident to it.
The neighbors of v are the vertices that share an edge with v. That is, if an edge
(u, v) ∈ E then u and v are neighbors. We also say u and v are adjacent in G.

A tree T = (V,E) is a connected graph with no cycles. T is rooted when
one vertex r ∈ V , called the root, is distinguished from others. A spanning
tree of a graph G is a spanning subgraph that is a tree. We use the term
node and vertex interchangeably to refer to a vertex of a spanning tree. The
unique path between two nodes u,w in T is the sequence of edges of the form



372 M. N. Yanhaona et al.

(u, v1), (v1, v2), · · · , (vi, w) that connects u and w in the tree. We use the nota-
tions ρu,v1,··· ,w or ρu,w interchangeably to denote the path between u and w. The
length of a path is the number of edges in it. Let T be a rooted tree with root r.
The parent u of any node v other than r in T is the immediate predecessor of v
on the path from r to v. Conversely, v is a child of u. A leaf of T is a node with
no children; otherwise, it is an internal node. A sub-tree T ′ of T is an induced
proper subgraph of T that is also a tree. A node w is an ancestor of another
node v in T when the unique path from v to the root r contains w; conversely,
v is a descendent of w. A fundamental cycle of a graph G is a cycle formed by
adding a non-tree edge (u, v) ∈ G on its spanning tree.

A graph G is planar if one can embed it on a plane without any edge crossing.
We call such an embedding a plane embedding of G. A plane graph is a planar
graph with a fixed embedding, where the connected regions of a plane embedding
are its faces. The unbounded region is the outer face, and all others are the inner
faces. The vertices of the outer face are the outer vertices, while the rest are
inner vertices. A plane graph G is a triangulated plane graph when every face
has precisely three vertices.

A plane 3-tree is a triangulated plane graph whose plane embedding is a
repeated triangulation of the faces starting from a single outer triangle. There-
fore, a plane 3-tree Gn is a triangulated plane graph G with n ≥ 3 vertices such
that if n > 3 then G has a vertex x whose deletion gives a plane 3-tree Gn−1 of
n − 1 vertices. We call x the last, or (n − 3)th, dividing vertex of Gn. Note that
degree(x) = 3. We call the three neighbors u, v, w of x, the face vertices of x in
Gn and denote their set by ζx. If n > 4 then the last dividing vertex y of Gn−1

is the (n − 4)th dividing vertex of Gn. Here n − 3 and n − 4 are the dividing
orders of x and y respectively. Our notion of a dividing vertex is similar to that
of a representative vertex described in [12].

Fact 1. One can describe the repeated triangulation-based embedding of a plane
3-tree Gn of n > 3 vertices unambiguously by an ascending sequence of dividing
vertices v1, v2, · · · , vn−3 and their face vertex sets ζv1 , ζv2 , · · · ., ζvn−3 . ��

Note that multiple sequences of dividing vertices exist for a plane 3-tree Gn

when it has multiple degree-3 vertices. However, all such sequences describe the
same plane embedding. For a dividing vertex sequence ds = v1, v2, · · · , vn−3

of a plane 3-tree Gn with n > 3, we use Gim
1 , Gim

2 , · · · , Gim
n−3 to represent the

sequence of intermediate plane-3 trees we get by introducing the dividing vertices
in corresponding order starting from G3 (note that Gim

n−3 = Gn). We use the
notation δ(v, ds) to represent the dividing order of vertex v in ds.

Fact 2. If w is the last dividing vertex among three vertices u, v, w appearing
in any dividing vertex sequence of a plane 3-tree Gn of n ≥ 3 and u and v are
adjacent to w then u and v are also mutually adjacent. ��
We next define some operations on trees that are essential for describing our
algorithms. Edge extension is the operation of adding a new leaf node to a
tree. The reverse operation of edge extension is edge removal which delete a
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leaf and its incident edge. The operation of adding a new vertex of degree 2 in
the edge between two tree nodes is edge subdivision, and the reverse operation
is path contraction which removes a node of degree two and connects its two
neighbors by an edge. Finally, replacing a path of length two in a tree with a
new node connected to all three nodes of the path is root extension, and the
reverse operation is root flattening. Figure 1 illustrates these operations.

Fig. 1. Tree operations

3 On Spanning Trees of a Plane 3-Tree

In this section, we present some properties of the spanning trees of a plane 3-tree
in various lemmas. We omit their proofs due to space shortage. We use these
lemmas in subsequent sections to prove the correctness of our tree enumeration
algorithms.

Lemma 1. Any spanning tree Tn of a plane 3-tree Gn with n > 3 results from
consecutive applications of edge extension, edge subdivision, and root extension
starting from a path of length two connecting the outer vertices of Gn. ��

A corollary of Lemma 1 is as follows.

Corollary 1. Any spanning tree Tn of a plane 3-tree Gn with n > 3 is an edge
extension, edge subdivision, or root extension of a spanning tree of another plane
3-tree Gn−1.

Lemma 1 and its corollary provide a convenient way to generate spanning
trees of larger plane 3-trees from that of smaller plane 3-trees. However, we
need to know when edge extension, edge subdivision, and root extension create
duplicate trees and when they do not. The following lemmas guide us in that
regard. For the sake of notational brevity, we now use Gn−1 to represent Gim

v−4

of the larger plane 3-tree Gn. That is, Gn−1 is the plane 3-tree that results from
removing the last dividing vertex of Gn and its incident edges.
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Lemma 2. If two spanning trees T 1
n−1 and T 2

n−1 of Gn−1 are distinct, then an
edge extension or edge subdivision to them to add a node for the last dividing
vertex v of Gn will always produce two distinct spanning trees T 1

n and T 2
n of Gn.

Lemma 2 is trivially true due to the precondition of distinctness of the span-
ning trees of Gn−1. We now have Lemma 3 (proof omitted).

Lemma 3. If ζv = {x, y, z} is the face vertex set of the last dividing vertex v of
Gn and T 1

n , T 2
n are two spanning trees of Gn constructed through a root extension

from two spanning trees T 1
n−1 and T 2

n−1 of Gn−1 then T 1
n and T 2

n are distinct
if and only if at least one of the three sub-trees rooted under nodes x, y, z are
different in T 1

n−1 and T 2
n−1. ��

Lemma 2 and 3 give us insights on how to inductively generate spanning
trees of a plane 3-tree without duplication from spanning trees of smaller graphs
using a single sequence of dividing vertices. However, edge extension is the only
universal operation we can apply to all smaller sub-trees. Edge subdivision or
root extension is only possible when the structure of the smaller sub-tree permits
it. Note that we worry about this issue despite Lemma 1 showing that any
spanning tree of a plane 3-tree is a result of consecutive applications of these
three operations because there can be multiple sequences of dividing vertices for
a single plane 3-tree. Therefore, using one sequence may allow edge subdivision
or root extension at a specific case, while another does not.

Assume τn−1 = {T 1
n−1, T

2
n−1, · · · , TN

n−1} is the set of all spanning trees of
Gn−1. Consider any arbitrary T i

n−1 that has no pair of nodes from the face
vertex set ζv = {x, y, z} of the last dividing vertex v of Gn connected by an edge
in the tree. We can construct a spanning tree Tn for Gn from T i

n−1 where node
v is adjacent to two nodes corresponding to its face vertices as follows:

1. First, add v by an edge extension.
2. Then connect leaf v with another face vertex node by an edge to form a

fundamental cycle.
3. Then remove any one edge from that cycle other than those incident to v.

To produce a Tn where v shares an edge with all of x, y, z, we can repeat the
above process for the remaining face vertex. One can convince thyself that this
alternative process generates all spanning trees [9,16]. The vital concern here is
that we can generate spanning trees describable using edge subdivisions and root
extensions that we did not generate using those operations in the first place. Let
us call this alternative approach of spanning tree generation cycle breaking. The
following two lemmas (proofs omitted) prove that cycle breaking generates trees
that are replicas of other trees inductively generated using edge subdivision or
root extension following a single dividing vertex sequence.

Lemma 4. Assume τn−1 = {T 1
n−1, T

2
n−1, · · · , TN

n−1} is the set of all spanning
trees of Gn−1 and T i

n−1 ∈ τn−1 has no edge (u, v) such that u, v are two face
vertices of the last dividing vertex x of Gn. If Tn having x adjacent to both u and v
is a spanning tree generated from T i

n−1 using cycle breaking then there is another
tree T j

n−1 ∈ τn−1 that we can convert to Tn applying an edge subdivision. ��
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Lemma 5. Assume τn−1 = {T 1
n−1, T

2
n−1, · · · , TN

n−1} is the set of spanning trees
of Gn−1 and T i

n−1 ∈ τn−1 does not have a pair of edges (x, y), (y, z) where x, y, z
are the face vertices of the last dividing vertex v of Gn. If Tn having (v, x), (v, y)
and (v, z) edges is a spanning tree generated from T i

n−1 using cycle breaking
then there is another tree T j

n−1 ∈ τn−1 that we can convert to Tn applying a root
extension. ��

Lemma 4 and 5 imply that one can add the last vertex of a dividing vertex
sequence ds = v1, v2, · · · , vn−3 of Gn to inductively generate all spanning trees of
Gn from the spanning trees of Gn−1 using only edge extension, edge subdivision,
and root extension regardless of the dividing order of earlier vertices. However,
if Gn has more than one degree 3 vertices, then the last dividing vertex itself
can be different between two d1s = v1

1 , v
1
2 , · · · , v1

n−3 and d2s = v2
1 , v

2
2 , · · · , v2

n−3

describing Gn. Then Gim
n−4 = Gn−1 for the two sequences differ by at least one

pair of vertices. Consequently, their set of spanning trees τ1
n−1 and τ2

n−1 has
no common tree, which may cause us to miss some spanning trees if we only
use one of d1s and d2s for tree enumeration. The following lemma (proof omitted)
eliminates this concern by showing that the ordering differences of vertices among
two dividing vertex sequences of Gn do not impact spanning tree generation.

Lemma 6. Assume that two dividing vertex sequences d1s = v1
1 , v

1
2 , · · · , v1

n−3

and d2s = v2
1 , v

2
2 , · · · , v2

n−3 of a plane 3-tree Gn start diverting at index k. That
is, the sub-sequences d1sub = v1

k, v1
k+1, · · · , v1

n−3 and d2sub = v2
k, v2

k+1, · · · , v2
n−3

are different from their beginning. Assume τk−1 is the set of all spanning trees
of Gim

k−1. Then for each tree T1 ∈ τk−1 and a series of edge extension, edge
subdivision, and root extension to T1 in the order of d1sub forming a spanning
tree Tn; there is another tree T2 ∈ τk−1 such that an alternative sequence of
those operations in the order of d2sub generates the same spanning tree of Gn. ��

4 Inductive Algorithm for Spanning Tree Enumeration

Lemma 1, 2, 3, 4, 5 and 6 give us all the insights we need to generate all spanning
trees of a plane 3-tree inductively from spanning trees of smaller constituent
plane 3-trees. This section presents an inductive algorithm for spanning tree
enumeration that we will use as the blueprint for a better DP algorithm in the
next section.

A General Outline of the Algorithm: We will take a sequence of dividing
vertices, ds, and corresponding face vertex set sequence, fs, of the plane 3-tree
Gn as inputs. We initiate a list with the spanning trees for G3. Then we iterate
over the dividing vertex sequence. In each iteration, we take one dividing vertex,
v, and apply edge extension to all trees in the list, edge subdivision to those trees
where the operation is permitted, and root extension to those trees where the
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Algorithm 1: Inductive Algorithm for Spanning Tree Enumeration
Input: ds, fs - a dividing vertex and face vertex set sequence pair of Gn

Output: τ - the set of all spanning trees of plane 3-tree Gn

{x, y, z} ← fs[0]
τ ← {ρx,y,z, ρy,x,z, ρx,z,y}
for ( i = 0; i < length(ds); i = i + 1 ) do

ν ← ds[i], ζ ← fs[i]
[α, β, γ] ← sortByDividingOrder(ζ)
τ ′ ← ∅
foreach T ∈ τ do

foreach μ ∈ {α, β, γ} do
τ ′ ← τ ′ ⋃{T ∪ {(μ, ν)}}

end
foreach (μ, ω) ∈ T & {μ, ω} ⊂ ζ do

τ ′ ← τ ′ ⋃{(T − {(μ, ω)}) ∪ {(μ, ν), (ν, ω)}}
end
if ρα,β,γ ∈ T then

τ ′ ← τ ′ ⋃(T − ρα,β,γ) ∪ {(ν, α), (ν, β), (ν, γ)}
end

end
τ ← τ ′

end

face vertices of v form a specific path of length two. We store the result of these
operations in a new list that replaces the old list at the end of the iteration.
When the iterative process completes, the list contains all spanning trees of
Gn without duplication. We use root extension with caution due to Lemma 3
showing that some sub-trees under the face vertices of a dividing vertex need to
be different to avoid duplicate spanning tree generation. In that regard, if v is
the dividing vertex under consideration at a particular iteration and x, y, z are
v’s face vertices with δ(x, ds) < δ(y, ds) < δ(z, ds), we apply root extension for v
on a tree only if it has the path ρx,y,z. To use this logic for the three outer face
vertices, we assign them arbitrary but fixed dividing orders −2,−1, and 0.

Algorithm 1 presents a pseudo-code of the spanning tree enumeration process.
The correctness of Algorithm 1 is evident from the various lemmas of Sect. 3.
Hence, we focus on its time and space complexities. For that, we need to under-
stand the cost of generating a dividing vertex sequence and modifying a spanning
tree of the smaller subgraph to produce one for a larger graph/subgraph.

Dividing Vertex Sequence Generation: We can generate a ds, fs pair for a
plane 3-tree Gn by using a graph traversal of Gn starting from any vertex and
populating a pair of stacks. Anytime the graph traversal reaches a vertex v of
degree three, we push v in one stack and its neighbor set to the other. Then
we remove v and its incident edges from the graph and continue the traversal.
The traversal ends when we find a vertex with degree two. Then we generate the
ds, fs pair by popping one element at a time from both stacks and appending
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the elements in the growing list of dividing vertex and face vertex set sequences.
The whole process requires a single traversal of Gn that would take O(n + m)
time where m is the number of edges in Gn and O(n+3n) = O(n) space beyond
the initial storage for the input graph Gn.

Data Structure for Spanning Trees: We can represent the spanning trees
using a simple array of n − 1 vertices where the entry at ith index is the other
endpoint of an edge incident to the vertex with dividing order i − 1. We adopt
the following approach of modifying a spanning tree for Gim

j−1 to form a spanning
tree for Gim

j to ensure that each entry in the array refers to a distinct edge.

1. If we add the new vertex v with δ(v, ds) = j to the spanning tree using an
edge extension from existing vertex x then we enter δ(x, ds) at index (j + 1).

2. If we add v by subdividing the edge (x, y) then we investigate index δ(x, ds)+1
and δ(y, ds)+1 to determine which entry refers to the edge (x, y), replace the
current value with j in that entry, and then write the dividing order of the
other entry at index (j + 1).

3. Finally, if we use root extension to x, y, z to add v in the spanning tree, then
we modify two existing entries using the approach of (2) and add a new entry
for the remaining vertex at index (j + 1).

Note that the above approach works even when one of the face vertices of v
is the first outer face vertex, which has no entry in the array. We now prove the
following theorem of Algorithm 1 and time complexities.

Theorem 1. When replicating a fixed-size array in memory is a constant time
operation, Algorithm 1 enumerates all spanning trees of a plane 3-tree Gn of n
vertices, m edges, and τ spanning trees in O(n + m + τ) time and O(nτ) space.

Proof. Assuming memory replication of a fixed-length array is a constant time
operation, and the storage structure of a spanning tree is as we described above;
generating a new spanning tree T ′ for Gim

i+1 from a spanning tree T of Gim
i is a

constant time operation. Furthermore, evaluating whether an edge subdivision
or root extension is admissible in T also takes a constant time (we can investigate
the three indexes for the face vertices of the current vertex in T to determine their
adjacency). Moreover, the algorithm considers each T exactly once and generates
at least three new trees. Hence, the algorithm’s running time is proportional to
the number of spanning trees generated through the iterative process.

If τi+1 represents the number of spanning trees of Gim
i+1 then τi ≤ τi+1

3 for
all i < n. Thus, the total number of trees the algorithm generates is ≤ τ + τ

3 +
τ
32 + · · · + τ

3n = τ(3n+1−1)
2×3n < 2τ , where τ is the number of spanning trees of Gn.

Thus, the algorithm’s running time is O(τ). After adding the computation time
for generating a dividing vertex and its face vertex set sequences, the overall
time complexity of enumerating the spanning trees of an input plane 3-tree Gn

becomes O(n + m + τ), where m is the number of edges in Gn. The algorithm
only retains the two input sequences and the set of spanning trees of the current
plane 3-tree. Therefore, the space complexity is O(n + nτ) = O(nτ). ��
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Suppose we relax the assumption that memory replication of a fixed-length
array is a constant time operation. If an array copy takes time linear to the num-
ber of elements in the array, then constructing each spanning tree takes O(n)
time. Then the running time of Algorithm 1 becomes O(n + m + nτ), which is
equivalent to the best-known algorithm for spanning tree enumeration in a gen-
eral graph. In the next section, we will use dynamic programming to convert the
inductive tree generation process into a tree alternation process that avoids array
copying and reduces the space required to O(n). However, one should notice that
Algorithm 1 involves no coordination among the elements of the spanning tree
set in each iteration. That makes it perfectly parallelizable. After the genera-
tion of the two input sequences and a few iterations of smaller spanning tree
generation; different parallel processors can independently continue the induc-
tive process from the initial spanning tree set. That gives the time complexity
of O(n + m + nτ

p ) for p-processor parallel version of the algorithm. The space
requirement in individual processors is nτ

p . Thus the following theorem holds.

Theorem 2. Assuming copying a fixed-size array is a linear time operation to
the size of an array, a p-processor parallel version of Algorithm 1 enumerates all
spanning trees of a plane 3-tree Gn of n vertices, m edges, and τ spanning trees
in O(n + m + nτ

p ) time and O(nτ
p ) space. ��

5 DP Algorithm for Spanning Tree Enumeration

Algorithm 1 of the previous section is close to optimal because it involves no
duplicate spanning tree generation and churns out new spanning trees in con-
stant time from other intermediate spanning trees. However, it must keep all the
intermediate spanning trees of the immediately previous step in memory and
involves a tree copying overhead during a new spanning tree generation.

We can eliminate both limitations by converting the inductive tree-generation
process into a recursive tree mutation process. Note that if τ is the set of all
spanning trees of the plane 3-tree Gn, one can view each spanning tree T ∈ τ
as a unique configuration of edge extension, edge subdivision and root extension
operations. Furthermore, for all T ∈ τ , these operations are applied on a path of
length two connecting the outer face vertices in the same order vertices appear
in a dividing vertex sequence. Consequently, we can consider successive trees
added in τ as migration from one configuration to the next. A scheme that can
alter between configurations in constant time, traverse all configurations, and
only emit unique configurations should emulate Algorithm 1. We only need to
maintain a single spanning tree corresponding to the current configuration when
traversing the domain of all spanning tree configurations. We can apply a clever
trick of using the list of edges of the current spanning tree as the representation of
the underlying configuration. In that case, there is no additional space overhead
beyond that of a single spanning tree and two lists for the dividing vertex and
face vertex set sequences. That is the logic of our DP algorithm in this section.
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First, we need an initial configuration for the described scheme to work.
Assume a, b, and c are the outer face vertices with our assigned respective divid-
ing orders −2,−1, and 0. Then the initial configuration has the path ρa,b,c and
for each dividing vertex x in the sequence ds the edge (w, x) such that w ∈ ζx

and δ(w, ds) is the largest for all of x’s face vertices. Figure 2(a) and (b) illustrate
a plane 3-tree and its spanning tree for the initial configuration.

Fig. 2. An example plane 3-tree and its baseline spanning tree

If ζx = {u, v, w}, then alternative configurations for x are to have edge exten-
sion from u or v, subdividing edges (u, v), (v, w) or (u,w), and root extending the
path ρu,v,w. Among them, the admissibility of edge subdivision or root exten-
sion depends on the current configuration for u, v, and w. Let us call moving to
any alternative configuration for x from its default configuration in any tree T a
mutation and number the mutations in the order we specified from zero to five.
Then we can define the following functions.

mutateTree(T, v, ζv, i) =

{
T ′ mutation i can be applied toT for v to create T ′

∅ otherwise

reverseMutation(T ′, v, ζv, i) =

{
T T ′results applying mutation i for v to T

T ′ otherwise

If we use the data structure described in Sect. 4 for the spanning trees, then
both mutateTree and reverseMutation functions should take constant time.
Both require a constant number of index checking and entry updates in the list
of edges sorted by the dividing order of vertices.

To permit configuration changes for the initial path connecting the outer
face vertices, we only need to support an alternative edge extension and an
edge subdivision for the outer vertex with order zero as an exceptional case.
Finally, note that the mutateTree function updates the argument tree T when
the mutation is admissible; otherwise, it leaves T unchanged. Now we can define
our DP algorithm for spanning tree enumeration, as illustrated in Algorithm 2.

Now we prove the following theorem on the correctness and time and space
complexities of Algorithm 2.
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Algorithm 2: DP Algorithm for Spanning Tree Enumeration
Input: ds, fs - a dividing vertex and face vertex set sequence pair of Gn

Output: τ - the set of all spanning trees of plane 3-tree Gn

ζ0 ← fs[0]
[α0, β0, γ0] ← sortByDividingOrder(ζ0)
T ← []
T [0] ← δ(α0, ds), T [1] ← δ(β0, ds)
for ( i = 0; i < length(ds); i = i + 1 ) do

ζ ← fs[i]
[α, β, γ] ← sortByDividingOrder(ζ)
T [i + 2] ← δ(γ, ds)

end
ds ← [γ].append(ds)
fs ← [{α, β}].append(fs)
generateSpanningTrees(ds, fs, 0, T )
Function generateSpanningTrees(ds, fs: List, i: Integer, T : Array) is

if i == length(ds) then
output(T )

else
ν ← ds[i], ζ ← fs[i]
for ( mi = 0; mi ≤ 5; mi = mi + 1 ) do

T ′ ← mutateTree(T, ν, ζ, mi)
if T ′ �= ∅ then

generateSpanningTrees(ds, fs, i + 1, T ′)
T ← reverseMutation(T ′, ν, ζ, mi)

end
generateSpanningTrees(ds, fs, i + 1, T )

end

end

Theorem 3. Algorithm 2 enumerates all spanning trees of a plane 3-tree Gn

with n vertices, m edges, and τ spanning trees without duplication in O(n+m+τ)
time and O(n) space.

Proof. Algorithm 2 first generates a spanning tree of Gn for the initial config-
uration, updates the dividing vertex and face vertex set sequences to include
one outer face vertex, and then invokes the function generateSpanningTrees
that implements the DP algorithm. Therefore, it suffices that we only analyze
function generateSpanningTrees for DP scheme’s accuracy and complexity.

Each time generateSpanningTrees output a spanning tree, it is for a dif-
ferent configuration of mutations of vertices from ds. Hence, the algorithm only
outputs distinct spanning trees of Gn. The function removes mutation in the
reverse order it applies them. Thus, a mutation of any vertex is reversible during
a backtracking step if it was admissible during the recursive unfolding. We only
wonder whether or not generateSpanningTrees includes all possible mutations
of each vertex. The answer lies in the default configuration for dividing vertices.
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Fig. 3. Possible mutations of vertex d from the baseline tree of Fig. 2(b)

Let u be the vertex with dividing order i. Anytime generateSpanningTrees
tries to apply a mutation for u from its default configuration, all vertices v with
δ(v, ds) > δ(u, ds) are attached via an edge extension to their respective face ver-
tex with the highest dividing order. The critical characteristic of edge extension
from a vertex x to y where δ(x, ds) < δ(y, ds) is that it does not preclude any
mutation of x involving vertices with lower dividing orders. Figure 3 illustrates
this fact for vertex d of the plane 3-tree of Fig. 2(a) (Notice that one mutation
for d, i.e., subdividing the edge (a, c) is not admissible from the initial configu-
ration as that requires a mutation of c.). Consequently, admissible mutations for
u depend only on the current configuration of vertices that appeared earlier in
ds. Therefore, applying a mutation or skipping all mutations for u and then pro-
gressing to the next vertex in Algorithm 2 is equivalent to generating all possible
spanning trees of Gim

i from a fixed spanning tree of Gim
i−1 in Algorithm 1. Thus,

Algorithm 2 is behaviorally equivalent to Algorithm 1 and correctly enumerates
all spanning trees of Gn without duplication.

Algorithm 2 only maintains a single spanning tree of Gn and two sequences for
dividing vertices and their face vertex sets. Hence, we can derive from the analysis
of Algorithm 1 that Algorithm 2’s time complexity is O(τ) and space complexity
is O(n). Combining that with the initial cost of generating the dividing vertex
and face vertex set sequences, the overall cost of spanning tree enumeration of
a plane 3-tree Gn using DP is O(n + m + τ) in time and O(n) in space, where
m is the number of edges and τ is the number of spanning trees. ��

6 Conclusions

In this paper, we propose an algorithm for enumerating all spanning trees of a
plane 3-tree Gn of n vertices, m edges, and τ spanning trees in O(n + m + τ)
time and O(n) space. Our algorithm substantially improves both time and space
bounds of the best general-purpose spanning tree enumeration algorithm that
takes O(n + m + nτ) time and O(nm) space for this specific graph class. The
central idea underlying this improvement is identifying a few low-cost exten-
sion/mutation operations that we can inductively use to extend spanning trees
of smaller induced subgraphs of a plane 3-three to that of larger subgraphs.

There are several avenues for future research from our current findings. First,
one can investigate the possibility of a similar spanning tree enumeration tech-
nique for other graph classes, such as regular graphs with small vertex degrees.
Second, one can try to relate our tree extension/mutation operations with edit
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distance computation for pair of spanning trees of a plane 3-tree or prove prop-
erties related to spanning trees. The most exciting future research direction is
to prove that if a set of fundamental operations exist that can express any span-
ning tree of a graph, then all their applicable permutations on a sorted sequence
of that graph’s vertices enumerate all spanning trees. Then our approach to
spanning tree enumeration for plane 3-trees will generalize.
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Abstract. In this paper, we consider the problem of clustering graph
nodes and sparsifying graph edges over distributed graphs, when graph
edges with possibly edge duplicates are observed at physically remote
sites. Although edge duplicates across different sites appear to be ben-
eficial at the first glance, in fact they could make the clustering and
sparsification more complicated since potentially their processing would
need extra computations and communications. We propose the first
communication-optimal algorithms for two well-established communica-
tion models namely the message passing and the blackboard models.
Specifically, given a graph on n nodes with edges observed at s sites,
our algorithms achieve communication costs Õ(ns) and Õ(n + s) (Õ
hides a polylogarithmic factor), which almost match their lower bounds,
Ω(ns) and Ω(n + s), in the message passing and the blackboard models
respectively. The communication costs are asymptotically the same as
those under non-duplication models, under an assumption on edge dis-
tribution. Our algorithms can also guarantee clustering quality nearly
as good as that of centralizing all edges and then applying any stan-
dard clustering algorithm. Moreover, we perform the first investiga-
tion of distributed constructions of graph spanners in the blackboard
model. We provide almost matching communication lower and upper
bounds for both multiplicative and additive spanners. For example, the
communication lower bounds of constructing a (2k − 1)-spanner in the
blackboard with and without duplication models are Ω(s + n1+1/k log s)
and Ω(s + n1+1/k max{1, s−1/2−1/(2k) log s}) respectively, which almost
match the upper bound Õ(s + n1+1/k) for both models.

Keywords: Distributed Graph Clustering · Graph Sparsification ·
Spectral Sparsifiers · Graph Spanners

1 Introduction

Graph clustering is one of the most fundamental tasks in machine learning.
Given a graph consisting of a node set and an edge set, graph clustering
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asks to partition graph nodes into clusters such that nodes within the same
cluster are “densely-connected” by graph edges, while nodes in different clus-
ters are “loosely-connected”. Graph clustering on modern large-scale graphs
imposes high computational and storage requirements, which are too expen-
sive to obtain from a single machine. In contrast, distributed computing clus-
ters and server storage are a popular and cheap way to meet the requirements.
Distributed graph clustering has received considerable research interests, e.g.,
[CSWZ16,SZ19,ZZL+19]. Interestingly, these works show their close relation-
ships with (distributed) graph sparsification.

Graph sparsification is the task of approximating an arbitrary graph by a
sparse graph that has a reduced number of edges while approximately preserv-
ing certain property. It is often useful in the design of efficient approximation
algorithms, since most algorithms run faster on sparse graphs than the origi-
nal graphs. Several notions of graph sparsification have been proposed. Spectral
sparsifiers [ST11] well approximate the spectral property of the original graphs
and can be used to approximately solve linear systems over graph Laplacian,
and to approximate effective resistances, spectral clustering, and random walk
properties [SS11,CSWZ16]. On the other hand, graph spanners are a type of
graph sparsifiers that well approximate shortest-path distances in the original
graph. A subgraph H of an undirected graph G is called a k-spanner of G if
the distance between any pair of vertices in H is no larger than k times of that
in G, and k is called the stretch factor. It is well known that for any n-vertex
graph, there exists a spanner of stretch 2k − 1 and size (the number of edges)
O(n1+1/k) [TZ05]. This is optimal if we believe the Erdos’s girth conjecture
[Erd64]. Many research efforts were then devoted to additive spanners, where
the distance between any vertex pair is no larger by an additive term β instead
of a multiplicative factor. Here the spanner is called a +β-spanner. There have
been different constructions of +2-, +4-, +6-spanners of size O(n3/2), O(n7/5),
and O(n4/3), respectively [BKMP10,Che13]. Spanners have found a wide range
of applications in network routing, synchronizers and broadcasting, distance ora-
cles, and preconditioning of linear systems [TZ05,ABS+20].

In an n-vertex distributed graph G(V,E), each of s sites, Si, holds a subset
of edges Ei ⊆ E on a common vertex set V and their union is E = ∪s

i=1Ei.
We consider two well-established models of communication, the message passing
model and blackboard model, following the above work. In the former, there is a
communication channel between every site and a distinguished coordinator. Each
site can send a message to another site by first sending to the coordinator, who
then forwards the message to the destination. In the latter, sites communicate
with each other through a shared blackboard such as a broadcast channel. The
models can be further considered in two settings: edge sets of different sites
are disjoint (non-duplication models) and they can have non-empty intersection
(duplication models). Here the major objective is to minimize the communication
cost that is usually measured by the total number of bits communicated.

A typical framework of distributed graph clustering is to employ graph spar-
sification tools to significantly reduce the size of edge sets of different sites while
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Fig. 1. An illustrating example for challenges in processing edge duplicates across
sites. For all subfigures, edge weights are one unless stated explicitly and edges are
distributed at two sites: solid edges are in site S1 and dash edges are in S2. (a): a graph
G without edge duplication. The graph G′ in (b) is similar to G but edge e1 (and e2)
appears in both sites S1 and S2 as e11 and e21 (e12 and e22), respectively. (c) shows the
decomposability. Each site Si constructs a spectral sparsifier Hi of its local graph and
their union is a spectral sparsifier of G. However, the decomposability does not work
for G′ as in (d). It is unknown how to process the two “duplicates” of e1 and e2, e.g.,
e11 and e21 with different weights 4 and 1.

keeping structural properties. [CSWZ16] proposed to compute spectral sparsi-
fiers for the graphs at different sites and transmit them to the coordinator. Upon
receiving all sparsifiers, the coordinator takes their union and applies a standard
clustering algorithm, e.g., [NJW01]. However, all the existing methods that fol-
low this framework such as [CSWZ16,ZZL+19] only work in non-duplication
models. The assumption that edge sets of different sites are disjoint is crucial to
get the decomposability of spectral sparsifiers: the union of spectral sparsifiers
of subgraphs at different sites is a spectral sparsifier of the distributed graph.
Unfortunately, the decomposability does not work in duplication models. When
edge sets of different sites have non-empty intersection, it is unclear how to
process edge “duplicates” that are possible to have different edge weights after
sparsification. See Fig. 1 for a concrete example. To the best of our knowledge,
none of the existing algorithms can perform distributed graph clustering in the
more general duplication models with reasonable theoretical guarantees on both
communication cost and clustering quality. Instead of restoring the decompos-
ability and turning to the framework, our algorithms are built based on the
construction of spectral sparsifiers by graph spanners [KX16]. The adaptation of
the algorithm to the duplication models need new algorithmic procedures such
as weighted graph spanners and uniform sampling.

Although distributed constructions of graph spanners have been studied in
message passing and CONGEST models [CHKPY18,FWY20,ZLB21], unfortu-
nately they have not been systematically studied in the blackboard model. The
blackboard model represents distributed systems with a broadcast channel. It
can be viewed as a model for single-hop wireless networks and has received
increasingly growing research [CSWZ16,DOR21,VWW20]. In the second part
of this paper, we also investigate the problem of constructing graph spanners
under the blackboard with both duplication and non-duplication models and
obtain several almost matching communication lower and upper bounds.
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Table 1. Communication complexity of computing graph spanners in the blackboard
model, where n is the number of vertices in the input graph and s is the number of
sites.

Problem Upper Bound Lower Bound

Non-duplication Duplication

(2k − 1)-spanner Õ(s + n1+1/k) Ω(s + n1+1/k max{1, log s

s(1+1/k)/2 }) Ω(s + n1+1/k log s)

+2 or 3-spanner Õ(s + n
√

n + s) Ω(s + n3/2) Ω(s + n3/2 log s)

+k-spanner Õ(s + n
√

n + s) Ω(s + n4/3−o(1)) Ω(s + n4/3−o(1) log s)

Table 2. Communication complexity of computing graph spanners in the message
passing model [FWY20].

Problem Upper Bound Lower Bound

Non-duplication Duplication Non-duplication Duplication

(2k − 1)-spanner Õ(ks1−2/kn1+1/k + snk) Õ(sn1+1/k) Ω(ks1/2−1/(2k)n1+1/k + sn) Ω(sn1+1/k)

+2 or 3-spanner Õ(
√

sn3/2 + sn) Õ(sn3/2) Ω(
√

sn3/2 + sn) Ω(sn3/2)

+k-spanner Õ(
√

s/kn3/2 + snk) Õ(sn3/2) Ω(n4/3−o(1) + sn) Ω(sn4/3−o(1))

Our Contributions. We perform the first investigation of distributed graph
clustering and spectral sparsification under duplication models. We propose
communication-optimal (up to polylogarithmic factor) algorithms with com-
munication cost Õ(ns) and Õ(n + s) in the message passing and blackboard
with duplication models, respectively. Interestingly, the communication costs
are asymptotically the same as the those in the non-duplication models under
an assumption on edge distribution: the probability of an edge residing at each
of the sites is a known value. This is practical when the popularity or degree
of duplication of edges is obtainable. It is guaranteed that the quality of our
clustering results is nearly as good as the simple method of centralizing all edge
sets at different sites and then applying a standard clustering algorithm, e.g.,
[NJW01].

Furthermore, we study distributed constructions of graph spanners in the
blackboard models with and without edge duplication in order to improve our
poor understanding on the communication complexity. Table 1 summarizes our
main findings and Table 2 provides the communication complexity in the mes-
sage passing model [FWY20]. We confirm that the blackboard model is able
to significantly reduce the communication complexity compared to the message
passing model. Unlike the problem of distributed clustering and spectral sparsifi-
cation, edge duplication potentially brings more communications for distributed
spanner construction problem. See detailed discussions in Sect. 4.

Related Work. There have been extensive research on graph clustering in
the distributed setting, e.g., [YX15,CSWZ16,SZ19,ZZL+19]. [YX15] proposed
a divide and conquer method for distributed graph clustering. [CSWZ16] used
spectral sparsifiers in graph clustering for two distributed communication mod-
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els to reduce communication cost. [SZ19] presented a computationally and com-
munication efficient node degree based sampling scheme for distributed graph
clustering. [ZZL+19] studied distributed dynamic graph clustering based on
the monotonicity property of graph sparsification. However, all these meth-
ods assume that there are no edge duplicates across different sites and do
not work in the more general duplication setting. Graph spanners have been
studied in the non-distributed model [TZ05,AB16] and a few distributed mod-
els [CHKPY18,FWY20]. [CHKPY18] studied distributed constructions of pair-
wise spanners that approximate distances only for some pairs of vertices in
the CONGEST model. [FWY20] studied distributed construction of a seri-
als of graph spanners in the message passing with and without duplication
models. But, there exists no prior work considering such construction in the
blackboard model, which has been a widely adopted communication model
[BO15,VWW20,DOR21].

2 Definitions and Notations

A weighted undirected graph G(V,E,W ) consists of a vertex set V , an edge set
E and a weight function W which assigns a weight W (e) to each edge e ∈ E. W
can be omitted from the presentation if it is clear from the context. Throughout
the paper let n = |V | and m = |E| denote the number of vertices and the
number of edges in G respectively, and s be the number of remote sites G is
observed. Let w be the maximum edge weight in G, i.e., w = maxe W (e). We
denote by dG(u, v) the shortest-path distance from u to v in G. A α-spanner
and +β-spanner for G are a subgraph H(V,E′ ⊆ E) of G such that for every
u, v ∈ V , dH(u, v) ≤ α ∗ dG(u, v) and dH(u, v) ≤ dG(u, v) + β, respectively.

3 Distributed Graph Clustering

In this section, we state our distributed graph clustering algorithms in the mes-
sage passing and blackboard with duplication models. We first discuss challenges
introduced by edge duplicates presenting at different sites and then show how
we overcome the challenges.

Definitions. Define the graph Laplacian of a graph G as L = D − A where A is
the adjacency matrix of G and D is the degree matrix, i.e., a diagonal matrix
with the i-th diagonal entry equal to the sum over the i-th row of A. A (1 + ε)-
spectral sparsifier of G, denoted as (1 + ε)-SS(G), is a (possibly re-weighted)
subgraph H of G such that for every x ∈ Rn, the inequality

(1 − ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx

holds. Each edge e in G has resistance R(e) = 1/W (e), and the effective resis-
tance between any two vertices u and v in G, denoted as RG(u, v), is defined as
the potential difference that has to be applied between them in order to drive
one unit of current through the network G.
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Challenges. Distributed graph clustering algorithms designed for non-
duplication models cannot be easily extended to duplication models. We explain
the fact using [CSWZ16] in the message passing model as an example: every
site Si constructs a spectral sparsifier of its local graph Gi(V,Ei) as a synopsis
Hi and then transmits Hi, instead of Gi, to the coordinator. Upon receiving Hi

from all sites, the coordinator takes their union, H = ∪s
i=1Hi as the constructed

structure. The algorithm is based on the decomposability property of spectral
sparsifiers. To see this, for every i ∈ [1, s], by definition of spectral sparsifiers,
we have for every vector x ∈ Rn, (1 − ε)xTLGi

x ≤ xTLHi
x ≤ (1 + ε)xTLGi

x.
Summing all inequalities for i ∈ [1, s], we get that

(1 − ε)
∑

i∈[1,s]

xTLGi
x ≤

∑

i∈[1,s]

xTLHi
x ≤ (1 + ε)

∑

i∈[1,s]

xTLGi
x.

In the non-duplication model, it is easy to check that
∑s

i=1 LGi
= LG by the

definition of Laplacian matrix. Then the above inequality is equivalent to

(1 − ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx, (1)

which concludes that H is a (1+ε)-spectral sparsifier of G. Under the duplication
model, however, it is clear that

∑s
i=1 LGi

�= LG and thus Inequality (1) does
not hold any longer. In other words, the structure H constructed using the same
principle is not a spectral sparsifier of G. See Fig. 1 for an illustrating example.

Proposed Method. Restoring the decomposability of spectral sparsifiers in
the duplication models appears to be quite challenging. We avoid it by asking
every site cooperates to construct a spectral sparsifier of the distributed graph in
the coordinator, who can then get clustering results by any standard clustering
algorithm. A standard method of computing spectral sparsifiers [SS11] is to sam-
ple each edge in the input graph with a probability proportional to its effective
resistance and then include the sampled edges (after appropriate weight rescal-
ing) into the sparsifier. But, when there are duplicated edges across different
sites, an edge (u, v) may get sampled more than once at different sites, thereby
resulting in multiple edges of possibly different weights between u and v, e.g.,
edges e11 and e21 in Fig. 1. It is unclear how to process these edges to guarantee
the resulting structure is always a spectral sparsifier. As in Fig. 1, simply taking
union by summing edge weights does not produce a valid spectral sparsifier.

Instead of using the classic sampling method, we propose to make use of the
fact that spectral sparsifiers can be constructed by graph spanners [KX16] to
compute spectral sparsifiers in the coordinator. The connection between spectral
sparsifiers and graph spanners allows us to convert spectral sparsification to
graph spanner construction and uniform sampling under duplication models. In
the followings, we first introduce the algorithm of [KX16] and then discuss how
to adapt the algorithm in the message-passing and blackboard under duplication
models.

The Algorithm of [KX16]. Given a weighted graph, their algorithm first deter-
mines a set of edges that has small effective resistance through graph span-
ners. Specifically, it constructs a t-bundle log n-spanner J = J1 ∪ J2 ∪ · · · ∪ Jt,
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that is, a sequence of log n-spanners Ji for each graph Gi = G − ∪i−1
j=1Jj with

1 ≤ i ≤ t = O(ε−2 log n). Intuitively, it peels off a spanner Ji from the graph
Gi to get Gi+1 before computing the next spanner Ji+1, i.e., J1 is a spanner of
G, J2 is a spanner of G − J1, etc. The t-bundle spanner guarantees that each
non-spanner edge (edge not in the spanner) has t edge-disjoint paths between
its endpoints in the spanner (and thus in G), serving as a certificate for its small
effective resistance. The algorithm then uniformly samples each non-spanner
edge with a fixed constant probability, e.g., 0.25 and scales the weight of each
sampled edge proportionally, e.g., by 4 to preserve the edge’s expectation. By the
matrix concentration bounds, it is guaranteed that the spanner together with
the sampled non-spanner edges are a moderately sparse spectral sparsifier, in
which the number of edges has been reduced by a constant factor. The desir-
able spectral sparsifier can be obtained by repeating the process until we get a
sufficient sparsity, which happens after logarithmic iterations.

Weighted Graph Spanners. An important building block in [KX16] is the
construction of graph spanners of stretch factor log n, which can be used to con-
struct the t-bundle log n-spanner. Unfortunately, there is no algorithm that can
generate such a spanner under the duplication models. [FWY20] developed an
algorithm for constructing (2k−1)-spanners in unweighted graphs under the mes-
sage passing with duplication model through the implementation of the greedy
algorithm [ADD+93]. But the algorithm does not work in weighted graphs, where
the greedy algorithm would need to process the edges in nondecreasing order of
their weights. This seems to be a notable obstacle in both the message passing
model and the blackboard model.

In this paper, we first propose an algorithm for constructing (4k−2)-spanners
in weighted graphs under the message passing with duplication model. We are
able to overcome the challenge in weighted graphs at the expense of a larger
stretch factor 4k − 2. However, this is sufficient for the construction of log n-
spanners in weighted graphs by setting the parameter k = O(log n).

Specifically, we divide the range of edge weights [1, w] into logarithmic inter-
vals, where the maximum edge weight w is assumed to be polynomial in n1. Then
we process edges in each logarithmic scale [2i−1, 2i), where 1 ≤ i ≤ log2(nw),
as follows. Each site Sj in order decides which of its edge e ∈ Ej of weight in
[2i−1, 2i) to include into the current spanner H. If including the edge e results
in a cycle of at most 2k − 1 edges, then the shortest distance between e’s end-
points in the current spanner is guaranteed to be less than (4k−2)W (e) (see our
proof below). Thus the edge can be discarded. Otherwise, we update the current
spanner H by including e. After completing processing of Ej , Sj forwards the
possibly updated spanner H to the next site. The algorithm is summarized in
Algorithm (Alg.) 1.

Theorem 1. Given a weighted graph and a parameter k > 1, Algorithm 1 con-
structs a (4k − 2)-spanner using communication cost Õ(sn1+1/k) in the message
passing with or without duplication model.
1 This is a common and practical assumption for modern graphs.
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Algorithm 1. Spanner(G, k): (4k − 2)-spanners under duplication models
Input: Graph G(V, E, W ) and a parameter k > 1
Output: Spanner H
1: H ← ∅
2: for i ∈ [1, log2(nw)] do
3: for each site Sj do
4: Wait for H from site Sj−1

5: for each edge e ∈ Ej of weight in [2i−1, 2i) do
6: if (V, H ∪ {e}) does not contain a cycle of ≤ 2k edges then
7: H ← H ∪ {e}
8: end if
9: end for

10: Transmit H to the next site Sj+1

11: end for
12: end for
13: return H;

Proof. We first prove that the stretch factor is 4k − 2. For each edge (u, v) ∈ E,
if (u, v) �∈ H, it must be that including the edge (u, v) would close a cycle of
length ≤ 2k. That is, there exists a path P of ≤ 2k − 1 edges between u and v
in H. Since we process edges in logarithmic scale, the edge weights in P cannot
be larger than 2W (u, v). Thus the path length of P is at most (4k − 2)W (e).
Therefore, the output H is a (4k − 2)-spanner.

We then prove the communication cost. By construction, the output graph H
has girth (the minimum number of edges in a cycle contained in the graph) larger
than 2k. It is well known that a graph with girth larger than 2k have O(n1+1/k)
edges [ADD+93]. Then H always has O(n1+1/k) edges throughout the processing
of each logarithmic interval. Thus the total communication cost is Õ(sn1+1/k).
The algorithm works for both with and without duplication settings, which do
not affect the communication complexity. �	

Algorithm 1 can be extended to the blackboard model with the following
modification: In Line 10, if site Sj does change H by adding some edge(s), it
transmits the updated spanner H to the blackboard, instead of the next site;
otherwise, it sends a special marker of one bit to the blackboard to indicate that
it has completed the processing. The results are summarized in Theorem 2. In
Sect. 4, we will show that the communication cost can be reduced to 2k − 1 in
unweighted graphs.

Theorem 2. The communication complexity of constructing a (4k−2)-spanner
in weighted graphs under the blackboard with or without duplication model is
Õ(s + n1+1/k). In unweighted graph, the stretch factor can be reduced to 2k − 1.

Constructing t-bundle log n-spanner. Recall that a t-bundle log n-spanner
J = J1 ∪J2 ∪· · ·∪Jt, where Ji is a log n-spanner for graph Gi = G−∪i−1

j=1Jj , for
1 ≤ i ≤ t. When i = 1, G1 = G is a distributed graph with each site Sj having
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edge set Ej . We can use Algorithm 1 with k = (2 + log n)/4 to compute a log n-
spanner J1 of G1. For 2 ≤ i ≤ t, Gj = Gj−1 − Jj is again a distributed graph:
each site Sj knows which of its edges Ej was included in J1, J2, · · · , Ji−1 and
those edges are excluded from its edge set Ej − J1 − J2 − · · · − Ji−1. Therefore,
the construction of a t-bundle log n-spanner invokes Algorithm 1 for t times.
Because of t = O(ε−2 log n) and Theorems 1 and 2, the total communication
costs in the message passing and blackboard with duplication models are Õ(sn)
and Õ(s + n), respectively.

Uniform Sampling. After the spanner construction, the algorithm of [KX16]
then uniformly samples each non-spanner edge with a fixed probability, e.g., 0.25
and scales the weight of each sampled edge proportionally, e.g., by 4. We observe
that sampling with a fixed probability is much more friendly to edge duplicates
as compared to sampling with a varied probability used in traditional methods
such as [FHHP11]. For example in Fig. 1, if the duplicates e11 and e21 of e1 are
both sampled (under a fixed probability 0.25), they still have the same weight
4W (e1) and are edge duplicates again in the next iteration. If one of them,
say e11, is not sampled, it is removed from the (local) graph at site S1 and will
not formulate duplicates with e21 at site S2. In contrast, non-uniform sampling
could result in sampled edges of rather different weights, which may not be even
considered as duplicates. However, uniform sampling under duplication models
is still very challenging: if a fixed probability is used for every edge, an edge
with d duplicates across different sites is processed/sampled for d times, each at
one of the d sites, and thus has a higher probability being sampled than another
edge with smaller duplicates. This results in a non-uniform sampling.

To achieve the uniform sampling, we suppose that the probability of an edge
e residing at each of the sites is a known value re. If we set the probability of
random sampling at each site as pe, then the probability that the edge is not
sampled at each site is 1−pe ∗re. It can be derived that the probability that e is
sampled by at least one site is p = 1− (1− pe ∗ re)s. Since the values of re and s
are known, we can tune the value of pe to get the expected sampling probability
p = 0.25. At some site, if e is sampled and added to H, we update its presenting
probability as pe ∗ re, which will be used in the next iteration. Otherwise (if e is
not sampled), it is discarded and will not participate in the next iteration. See
the details in Algorithms 2 and 3.

The main algorithm, Algorithm 3 computes (1 + ε)-spectral sparsifier in

log ρ� iterations of Light-SS, where ρ is a sparsification parameter. The com-
munication cost of Light-SS is composed of the cost for the bundle spanner
construction and the cost for non-spanner edge sampling. If the sampled edges
are transmitted to the coordinator, the communication cost Õ(m) could be pro-
hibitively large. To see this, the number of edges in the output Gi after each
iteration is only reduced by a constant factor because the uniform sampling
removes 3/4 of the non-spanner edges in expectation. To improve the commu-
nication cost, we keep sampled edges in each iteration at local sites and do not
transmit them to the coordinator except for the very last iteration. Then similar
to the input graph G, the output Gi for each iteration i ∈ [1, 
log ρ�−1] are also
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Algorithm 2. Light-SS under duplication models
Input: G(V, E), ε ∈ (0, 1), and probability re for each edge e
Output: H with updated r′

e for each edge e ∈ H
1: G1 ← G; J ← ∅
2: for i ∈ [1, 24 log2 n/ε2] do
3: Ji ← Spanner(Gi, (2 + log n)/4)
4: Gi+1 ← Gi − Ji

5: end for
6: H ← J ; r′

e ← re

7: for each site Si do
8: for each edge e ∈ Ei − J do
9: Sample the edge e with probability pe such that 1 − (1 − pe ∗ re)

s = 0.25; if e
is sampled, adds e to H with a new weight 4W (e) and set r′

e to pe ∗ re

10: end for
11: if it is the last iteration of the for-loop in Line 2 of Alg. 3 then
12: Transmit the sampled edges to the coordinator
13: end if
14: end for
15: return H;

Algorithm 3. (1 + ε)-SS under duplication models
Input: G(V, E), probability re for each edge e, and parameters ε ∈ (0, 1) and ρ > 1
Output: H
1: G0 ← G
2: for i ∈ [1, 	log ρ
] do
3: Gi ← Light-SS(Gi−1, ε/	log ρ
, re)
4: end for
5: H ← G�log ρ� {H is already transmitted to and known by the coordinator}
6: return H;

a distributed graph with possible edge duplication. Edge duplicates come from
two sources: either the edge is included into the bundle spanner, or the edge is
sampled by more than one site. In this way, the communication cost of Light-SS
(except for the last iteration) contains only the cost of constructing the bundle
spanner. In the last iteration, the number of sampled edges must be small Õ(n),
which is also the communication cost of their transmission. Therefore, the com-
munication costs of Algorithm 3 in the message passing and blackboard under
duplication models are Õ(ns) and Õ(n + s), respectively. Putting all together,
our results for distributed spectral sparsification under duplication models are
summarized in Theorem 3 with its formal proof deferred to Appendix.

Theorem 3 (Spectral Sparsification under Duplication Models). For
a distributed graph G and parameters ε ∈ (0, 1) and ρ = O(log n), Algorithm 3
can construct a (1+ ε)-spectral sparsifier for G of expected size Õ(n) using com-
munication cost Õ(ns) and Õ(n+ s) in the message passing and blackboard with
duplication models respectively, with probability at least 1 − n−c for constant c.
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Clustering in the Sparsifier. After obtaining the spectral sparsifier of the
distributed graph, the coordinator applies a standard clustering algorithm such
as [NJW01] in the sparsifier to get the clustering results. We can guarantee a
clustering quality nearly as good as the simple method of centralizing all graph
edges and then performing a clustering algorithm. Before formally stating the
results, we define a few notations.

For every node set S in a graph G, let its volume and conductance be
volG(S) =

∑
u∈S,v∈V W (u, v) and φG(S) = (

∑
u∈S,v∈V −S W (u, v))/volG(S),

respectively. Intuitively, a small value of conductance φ(S) implies that nodes
in S are likely to form a cluster. A collection of subsets A1, · · · , Ak of nodes
is called a (k-way) partition of G if (1) Ai ∩ Aj = ∅ for 1 ≤ i �= j ≤ k;
and (2) ∪k

i=1Ai = V . The k-way expansion constant is defined as ρ(k) =
minpartitionA1,··· ,Ak

maxi∈[1,k] φ(Ai). A lower bound on ΥG(k) = λk+1/ρ(k)
implies that G has exactly k well-defined clusters [PSZ15], where λk+1 is the
k + 1 smallest eigenvalue of the normalized Laplacian matrix. For any two sets
X and Y , their symmetric difference is defined as XΔY = (X − Y ) ∪ (Y − X).

Theorem 4. For a distributed graph G with ΥG(k) = Ω(k3) and an optimal
partition P1, · · · , Pk achieving ρ(k) for some positive integer k, there exists an
algorithm that can output partition A1, · · · , Ak at the coordinator such that for
every i ∈ [1, k], vol(AiΔPi) = O(k3Υ−1vol(Pi)) holds with probability at least
1 − n−c for constant c. The communication costs in the message passing and
blackboard with duplication models are Õ(ns) and Õ(n + s), respectively.

To the best of our knowledge, this is the first algorithm for performing dis-
tributed graph clustering in the message passing and blackboard with edge dupli-
cation models. Remarkably, we can show that the communication costs are opti-
mal, almost matching the communication lower bounds Ω(ns) and Ω(n + s),
respectively. It is interesting to see that the communication costs incurred under
duplication models are asymptotically the same as those under non-duplication
models. In other words, edge duplication does not incur more communications
in the graph clustering task, unlike other problems such as graph spanner con-
struction as we will show in Sect. 4. Although we make an assumption on the
edge distribution probability, we conjecture that when the assumption is relaxed,
i.e., graph edges are presenting at different sites arbitrarily, the communication
upper bounds remain the same in duplication models. We leave the study as an
important future work.

4 Spanner Constructions in the Blackboard Model

In this section, we study distributed constructions of graph spanners in the black-
board models with and without edge duplication. This, unfortunately, has not
been investigated by prior work yet. We prove several interesting communication
upper and lower bounds for typical graph spanners as summarized in Table 1.
Due to limit of space, we cannot enumerate every result in Table 1. Hence, here
we only describe the general (2k − 1)-spanners and move the additive spanners
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to the Appendix. We start with the duplication model, followed by the non-
duplication model. The lower bounds obtained in Theorems 5 and 6 hold in
both weighted and unweighted graphs and the rest results are on unweighted
graphs.

Duplication Model. In Sect. 3, we have provided the communication upper
bound, Õ(s + n1+1/k), of constructing (2k − 1)-spanners in unweighted graphs
in Theorem 2. We now show that the communication lower bound is Ω(s +
n1+1/k log s).

Theorem 5. The communication lower bound of constructing a (2k−1)-spanner
in the blackboard with duplication model is Ω(s + n1+1/k log s).

Proof. To prove this, we target a more general statement that works for every
spanner.

Lemma 1. Suppose there exists an n-vertex graph F of size f(n) such that F
is the only spanner of itself or no proper subgraph F ′ of F is a spanner. Then
the communication complexity of computing a spanner in the blackboard with
duplication model is Ω(s + f(n) log s) bits.

Proof. Our proof is based on the reduction from the Multiparty Set-Disjointness
problem (DISJm,s) to graph spanner computation. In DISJm,s, s players
receive inputs X1,X2, · · · ,Xs ⊆ {1, · · · ,m} and their goal is to determine
whether or not ∩s

i=1Xi = ∅. Now we construct a distributed graph G from
the graph F and an instance of DISJf(n),s as follows. We add edge ej in F to
site i if j �∈ Xi for 1 ≤ j ≤ f(n). If the coordinator outputs F as the spanner,
we report ∩s

i=1Xi = ∅; otherwise we report ∩s
i=1Xi �= ∅. It can be seen that

the coordinator outputs F iff all its edges appear at some site, which is the case
∩s
i=1Xi = ∅. Finally, according to the communication lower bound of DISJm,s

in the blackboard model [BO15], Ω(s + m log s), the communication complexity
of computing a spanner is Ω(s + f(n) log s). �	

For the lower bound of (2k − 1)-spanners, the Erdos’s girth conjecture states
that there exists a family of graphs F of girth 2k+1 and size Ω(n1+1/k) [Erd64].
This implies that there exists only one (2k − 1)-spanner of F , that is F itself.
It is because the deletion of any edge in F would result in that the distance
between the endpoints of the edge becomes at least 2k. Then by Lemma 1, we
get the lower bound Ω(s + n1+1/k log s). �	

Non-Duplication Model. In the non-duplication model, we prove a lower
bound via a reduction from the lower bound for the duplication model.

Theorem 6. The communication complexity of constructing a (2k−1)-spanner
in the blackboard without duplication model is Ω(s + n1+1/k max
{1, s−1/2−1/(2k) log s}).
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Fig. 2. Converting a graph with duplication on s sites and n/
√

s vertices into a graph
without duplication on s sites and n vertices

Proof. We can construct an instance of the (2k − 1)-spanner problem without
duplication on s sites and n vertices from an instance of the (2k − 1)-spanner
problem with duplication on s sites and n/

√
s vertices. Specifically, we construct

a graph G′ with no duplication by replacing each vertex v by a set of vertices Sv

of size
√

s. Since there are at most s copies of an edge (u, v) in the original graph
G across the s sites, we can assign each server’s copy to a distinct edge (u′, v′) ∈
Su × Sv in G′. See Fig. 2 for an illustrating example of the construction. Then
we apply an algorithm for the without duplication model, e.g., the algorithm in
Theorem 2, to get a (2k−1)-spanner H ′ of G′. Finally, the coordinator computes
a (2k − 1)-spanner H of G by including an edge (u, v) in H if there is at least
one edge between Su and Sv in H ′.

To show the constructed H is a (2k − 1)-spanner of G, let us consider an
edge (u, v) ∈ G. By construction, there must be an edge (u′, v′) ∈ Su × Sv in
G′. Because H ′ is a (2k − 1)-spanner of G′, it contains a path P ′ of length at
most (2k − 1) · W (u, v) between u′ and v′. For every edge (x′, y′) in P ′ where
x′ ∈ Sx, y

′ ∈ Sy, we have included an edge (x, y) in H. Therefore, there exists
a path P of length at most (2k − 1) · W (u, v) between u and v in H and thus
H is a (2k − 1)-spanner of G. Since the lower bound in the duplication model
is Ω(s + n1+1/k log s) (Theorem 5), we have that the lower bound for the non-
duplication model is Ω(s+(n/

√
s)1+1/k log s) = Ω(s+n1+1/ks−1/2−1/(2k) log s).

Since representing the result itself needs Ω(n1+1/k), combining this with the
above result get the final lower bound, Ω(s + n1+1/k max{1, s−1/2−1/(2k) log s}).

�	

Discussions. We highlight several interesting observations from our results in
Table 1 and prior results in Table 2.

1. We demonstrate that for graph spanner constructions, the blackboard model
is powerful to significantly reduce the communication complexity compared
to the message passing model. For instance in duplication models, computing
the (2k − 1)-spanners incurs communication cost Õ(sn1+1/k) in the message
passing model but only Õ(s + n1+1/k) in the blackboard model. This is not
necessarily the case for all computing problems. For example, for computing
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the sum of bit vectors modulo two [PVZ16] and estimating large moments
[WZ12], the complexities are the same in both communication models.

2. To trade better communication bounds, spanners constructed in a distributed
manner may include more edges than the smallest number of edges required in
a centralized model. For example in +2-spanners and 3-spanners, the number
of edges in the constructed structure is n

√
n + s, which is slightly larger than

the optimal size n
√

n in a centralized model. It is still open to investigate
how to reduce the communication cost while maintaining an optimal number
of edges in the spanner.

3. For constructing (2k − 1)-spanners, the upper bound Õ(s + n1+1/k) with a
logarithmic factor hidden is very close to the lower bound Ω(s+n1+1/k log s).
There is a small gap between the upper bound Õ(s + n

√
n + s) and lower

bound Ω(s+n3/2 log s) for +2 or 3-spanners. The gap is larger in +k-spanners
(for k > 2) where the lower bound becomes Ω(s + n4/3−o(1) log s). But this
problem also happens in the message passing model. The construction of +k-
spanners often involves more complex operations and might not be easy to
adapt to distributed models.

5 Conclusions and Future Work

In this paper, we propose the first set of algorithms that can perform distributed
graph clustering and spectral sparsification under edge duplication in the two
well-established communication models, the message passing and the blackboard
models. We show the optimality of the achieved communication costs while main-
taining a clustering quality nearly as good as a naive centralized method. We
also perform the first investigation of distributed algorithms for constructing
graph spanners in the blackboard under both duplication and non-duplication
models.

As the future work, we will study how to achieve the optimal communication
complexity for distributed graph clustering while relaxing the assumption made.
Furthermore, most of the existing work concentrate on global clustering but
ignore local clustering which only returns the cluster of a given seed vertex. We
will devise a local clustering method that hopefully enjoys communication cost
not dependent on the size of the input graph and is more communication-efficient
than traditional global graph clustering methods.

Cut sparsifiers are another type of graph sparsifiers and they can approxi-
mately preserve all the graph cut values in the original graph. Although spec-
tral sparsifiers are also cut sparsifiers, the latter might have smaller number of
edges. Because the algorithm of [KX16] can be generalized to cut sparsifiers, it
is promising to adapt the techniques in this work to the new problem. Finally,
it is an intriguing open problem to improve the upper bounds or lower bounds
and close their gap in both duplication and non-duplication models.
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