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Abstract. In [5] we have proposed a numerical scheme for solving a
macroscopic model of crowd dynamics. We apply it here to simulate a
room evacuation, for velocity fields derived from the p–Poisson equa-
tion. We analyze the stability parameters and the influence of p on the
dynamics.
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1 Introduction

In [5] we have considered the following model for pedestrians’ movement: if
Ω ⊂ R

2 is the available environment,
−→
V (x) ∈ R

2 is the velocity of an individual
at x, and ρ(t, x) ∈ R is the density of the pedestrians at time t and point x ∈ Ω,
the dynamics of ρ is governed by:

∂tρ + div
(
ρ

−→
V

)
− κΔρ = 0 in R

+ × Ω . (1)

This is a regularization (κ > 0) of the continuity equation proposed originally
in this context by Hughes [7,8]

∂tρ + div
(
ρ

−→
V

)
= 0 , in R

+ × Ω . (2)

The diffusion term that we add in (1) models a natural random spread of the
pedestrians, independently of the direction

−→
V they are given.

We consider here that Ω is a room that the pedestrians exit. Consequently,
Ω is a bounded domain, the boundary ∂Ω of Ω is a union of disjoint parts: the
walls Γw, the exits Γ , and the corners Γc. The set of corners is finite; Γw and Γ
are regular and possess at each point an exterior normal vector −→ν (x).

The model requires to be supplied with a velocity field
−→
V which defines the

evacuation direction. In any nontrivial case it should of course depend on x, and
most likely also on ρ(x). This latter dependency appears in the original [7,8] and
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related works, see e.g. [9,13]. It makes however our problem nonlinear. It is also
possible to make

−→
V depend on other, nonlocal quantities, as the mean value of

ρ in some neighborhood of x. We neglect them here – as the nonlocal behaviour
is present in our model (1) by the diffusion term. The basic requirement for

−→
V

so as to get a model of evacuation are the following boundary conditions:

−→
V · −→ν = 0 on Γw, (3)
−→
V · −→ν > 0 on Γ. (4)

Also, we assume a homogeneous Neumann boundary condition on ρ

∇ρ · −→ν = 0 on Γw ∪ Γ (5)

and the initial condition
ρ(0, x) = ρ0(x) ≥ 0. (6)

This will ensure the evacuation process (see [5, Lemma 1]).
We are interested here in presenting numerical simulations for the evacuation

process, based on (1). We chose a geometry of Ω including obstacles inside the
evacuated space and use the numerical scheme of [5]. We have considered there
velocity fields

−→
V such that

div
−→
V ≥ 0 on Ω. (7)

and have shown that the L2-norm of the exact solution decreases under the
above assumption. The semi–implicit scheme of [5] was shown to be stable and
preserving this monotonicity property under a CFL type condition.

We show in the present paper an explicit formula for this CFL condition
when (5) is assumed and we show examples of stable and unstable evolution,
depending on the choice of parameters. We also discuss concrete choices of

−→
V .

We investigate
−→
V which were not, as far as we know, considered in this context,

and which seem to be a very natural choice for the modelled phenomenon. We
show that the pointwise assumption (7) is only relevant for special

−→
V , which do

not depend, or depend very weakly, on ρ. For
−→
V clearly dependent on ρ, the

L2-norm of the numerical solution ρh is decreasing only after an initial period
of time. This does not contradict the scheme stability, but shows that a new
analysis of these monotonicty and stability properties is needed.

The plan of this paper is as follows. Section 2 recalls the semi–implicit numer-
ical scheme proposed in [5]. We discuss the choice of

−→
V and its computation in

Sect. 3. We show in Sect. 4 the obtained simulations and discuss the choice of
the time step for particular

−→
V . We show the first confirmations of the so called

Braess paradox. i.e. a heuristic observation that obstacles to the movement may
facilitate it, and on the contrary, lack of obstacles may slow the movement down.
We illustrate this Braess paradox for evacuation, leaving a more systematic study
of the role of the obstacles for the future (see Sect. 5).
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2 Numerical Scheme

In all what follows, we assume the geometry of Ω as in the Introduction and
(3)–(4). We assume also that

−→
V may depend of x and ρ, we note

−→
V =

−→
V (ρ).

Definition 1. We say that ρ : (0, T ) × Ω → R solves the model (1), (5) (in the
weak sense) if, for any t ∈ (0, T ), ρ(t) ∈ H1(Ω), ρ ≥ 0 and for any η ∈ H1(Ω),
any t ∈ (0, T )
∫

Ω

∂tρ(t) η +
∫

Γ

ρ(t) η
−→
V (ρ(t))·−→ν −

∫

Ω

ρ(t)
−→
V (ρ(t))·∇η + κ

∫

Ω

∇ρ(t)·∇η = 0.

(8)
We have written

∫
Ω

f(t) for
∫

Ω
f(t, x) dx.

One can verify by classical methods that under additional assumptions on
−→
V ,

the solution ρ exists and, with the initial condition (6), is unique. We omit here
the mathematical analysis of the model; of course many mathematical properties
of ρ depend on the choice of

−→
V that we do not want to impose at this point. We

state however an important monotonicty property and its relation to
−→
V .

Definition 2. The functions m : R+ → R defined by

m(t) = M(ρ(t)) =
∫

Ω

ρ(t, x) dx. (9)

shall be called the total mass function. The function s : R+ → R defined by

s(t) = S(ρ(t)) =
∫

Ω

ρ(t, x)2 dx (10)

shall be called the L2–stability function for the equation (8) with ρ(0) = ρ0.

Lemma 1. Let
−→
V satisfy (3)–(4). Let ρ be the solution to (1) with (5) and

(6). The total mass function (9) is decreasing. The L2–stability function (10) is
decreasing in the neighborhood of t0 if and only if t0 is such that

∫

Ω

ρ2 div
−→
V + 2κ

∫

Ω

|∇ρ |2 +
∫

Γ

ρ2
−→
V · −→ν ≥ 0. (11)

This condition is in particular fulfilled for
−→
V satisfying (7).

Proof. By posing η = 1, we obtain the first statement from (3)–(4). By posing
η = ρ, again from (3)-(4) and the identity

2
∫

Ω

ρ
−→
V (ρ) · ∇ρ = −

∫

Ω

ρ2 div
−→
V (ρ) +

∫

Γ

ρ2
−→
V (ρ) · −→ν

we obtain:

1
2

d

dt

∫

Ω

ρ2 = −1
2

∫

Ω

ρ2 div
−→
V (ρ) − κ

∫

Ω

|∇ρ |2 +
∫

Γ

ρ2
−→
V (ρ) · −→ν .

�	
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We define now the finite element spaces Vh ⊂ H1(Ω), where h is, as usual,
the mesh parameter, and look for the approximate solutions in Vh. Let Ωh ⊂ Ω
be the triangulated, shape regular domain, with the mesh size parameter h. Let
(·, ·) denote the L2 product on Ωh.

Definition 3 (cf. Def. 2 of [5]). We define the sequence {ρn
h}∞

n=0 ⊂ Vh to be
the approximate FEM solution of (8) if ρn

h satisfies the following semi–implicit
first order scheme for any test function ηh ∈ Vh:

∫

Ωh

(
ρn+1

h − ρn
h

Δt

)
ηh −

∫

Ωh

ρn+1
h

−→
V (ρn) · ∇ηh + κ

∫

Ωh

∇ρn+1
h · ∇ηh +

+
∫

Γh

ρn
h

−→
V (ρn) · −→ν ηh = 0. (12)

We say that the scheme is stable from n0 if for any n ≥ n0:

(ρn+1
h , ρn+1

h ) ≤ (ρn
h, ρn

h).

Remark 1. The above definition is consistent with that of the semi–implicit
scheme in [5, Def. 2], if we put

A0(ϕ)(ρ, η) = −
∫

Ωh

ρ
−→
V (ϕ) · ∇η + κ

∫

Ωh

∇ρ · ∇η, (13)

B(ϕ)ρ = −1
2
ρ

−→
V (ϕ) · −→ν , (14)

and, for an arbitrary α > 0,

A1(ϕ)(ρ, η) =
1
2α

∫

Γ

[B(ϕ)ρ − αρ] [B(ϕ)η − αη] , (15)

A2(ϕ)(ρ, η) =
1
2α

∫

Γ

[B(ϕ)ρ + αρ] [B(ϕ)η + αη] . (16)

The notion of stability is also consistent with [5]. It is strong. A future study
should include a weaker notion of stability, where the L2 norm of the numerical
solution is bounded.

Theorem 1. [5] (CFL condition for stability). Let α > 0 be an arbitrary
constant and let’s define A1 as in (14)–(15). The semi–implicit scheme (12) is
stable under (11) and the abstract CFL condition

ΔtA1(ρh)(uh, uh) ≤ (uh, uh) ∀ρh, uh ∈ Vh. (17)

Proof. The proof is identical as in [5, Proof of Theorem 2], where the nonlinear
case has already been considered. We have assumed there (7) to infer (11). �	
In view of (14)–(15), we give below a more explicit form of the (CFL) condition.



A Model for Crowd Evacuation Dynamics 347

Remark 2. If ρ solves the model (1), (5), the CFL condition (17) writes as

Δt

∫

Γ

u2
h

(−→
V (ρh) · −→ν − 2α

)2

8α

∫

Ωh

u2
h

≤ 1. (18)

Note that κ does not appear in (18) explicitely. Instead, it has a crucial role in
(11) in the case when div

−→
V , or

∫
Ω

ρ2 div
−→
V (ρ), is not positive.

This form of CFL condition allows to find an optimal α. If we assume that
|−→V | is bounded on Ω, we obtain 2αopt = maxΓ |−→V |. With these assumptions,
(18) is satisfied if

1
4
Δt

(
2max

Γ
|−→V | − min

Γ
|−→V |

) ∫
Γ

u2
h∫

Ωh
u2

h

≤ C0 max
Γ

|−→V | Δt

h
≤ 1. (19)

Indeed, the last term on the lhs is of order oh 1/h; it depends also on the mesh and
on the degree of the elements. For a uniform mesh and P2 elements that we use in
the sequel, 1/C0,u = 6(1 +

√
2) ≈ 14.5, see e.g. [11], where the authors propose

to multiply C0,u by 10 so as to stay clearly away from the unstable region. In
most simulations, we increase this constant even more. However, max |−→V | may
be difficult to estimate if it is not granted by construction.

3 Velocity

The velocity field
−→
V is a crucial element of the model. Apart from satisfying

(3)–(4), it should reproduce the direction that the individual at x will follow so
as to reach the exit. From the modelling point of view, V should be dependent on
the space variable x, and on the density ρ(x). From the analytical and numerical
point of view, the important properties of

−→
V are (7) and (18).

A frequent simplification, that we also admit here, is to take

−→
V =

−→
V

(
ρ(x)

)
= v

(
ρ(x)

) −→
W (x), (20)

where
−→
W : Ω → R

2 is a vector field giving the direction to follow at x, and
v : R → R is a non-increasing function giving the scalar value of the veloc-
ity, responsible for a slow down when the density is bigger. So as to make v

meaningful,
−→
W is often normalized: |−→W (x)| = 1.

The most natural choice for
−→
W seems to be the vector field − ∇ Φ(x), where

Φ is the distance to the exit. It is well known (see e.g. [2,4,13] and related works)
that Φ is given by the so–called eikonal equation:

Φ ∈ W 1,p(Ω) ∩ C(Ω̄) : |∇ Φ(x)| = 1 for x ∈ Ω, Φ(ξ) = 0 for ξ ∈ Γ ,
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The eikonal equation is highly nonlinear. Many approximations of the distance
function are used in applications (see [2]); a few however approximate its gradi-
ent. Among them, the most interesting one may be the solution of the p–Poisson
problem. If

Δpu = div
(|∇u|p−2 ∇u

)
,

we solve ⎧
⎨
⎩

−ΔpΨp(x) = 1 in Ω
∇Ψp · −→ν = 0 on Γw

Ψp = 0 on Γ ,
(21)

The result of [4] is that

Ψp converges to Φ strongly in W 1,m(Ω) as p → ∞, for all m ≥ 1.

This means in particular that |∇Ψp| → 1 as p → ∞, a property which is very
important. Thus, for bigger p, by taking

−→
W = −∇Ψp, and

−→
V as in (20), we have

a velocity field satisfying (3)–(4), |−→W | ≈ 1 and close to the vector field resulting
from the eikonal equation. The CFL condition (19) is then also easier to satisfy
and to check.

For p = 2, (21) is the linear Poisson equation. This case is of particular
interest, because if we take

−→
V = − ∇ Ψ2 in (1), the condition (7) is satisfied

directly. This
−→
V , even if not a perfect choice from the modelling point of view,

satisfies all our assumptions, and thus helps to determine constants in the CFL
condition.

4 Simulations

4.1 Settings

In the simulations, we have considered a symmetric, nearly rectangular room of
dimension 1 × 1.5, with two identical exits. We have placed obstacles in front of
the exits, as in the figures below. The code has been coded and executed with
the FreeFem++ software [6]. We used P2 elements. The mesh is shape regular,
with h of order of 0.02. The maximal step size is Δt = 0.01. The initial density
ρ0 is constant. We have used the vector field (20) in two variants: with

−→
W = −∇Ψp

or −→
W (x) =

Ψp(x)
|Ψp(x)| , (22)

where Ψp solves (21) for p ∈ {2, 3, 4, 5} (we have also used rational values close
to those). We shall clearly note in each experiment if

−→
W is normalized or not.

The p–Poisson equation (21) has been solved numerically by two methods:

1. the Newton method, see e.g. [12, Ch. 9],
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2. the fixed–point (Picard) iterations: take u0 solving Δu0 = −1 and

div
(
|∇ui−1|p−2 ∇ui− 1

2

)
= −1

for i = 1, 2, . . ., with the boundary conditions as in (21). Additionally, we use
a damping proposed in [1, (3.7), γ = 0.5], i.e. ui = γui− 1

2
+ (1 − γ)ui−1. The

equations were solved by FEM on the same grid.

The two approaches gave essentially the same results, the Newton method being,
as expected, much faster. The unexpected behaviour was the nonconvergence
of both methods for p bigger than 5. This value could be even slightly lower
depending on the geometry and on the method, but we were unable to get it
significantly higher, and this, apparently, independently of the mesh refinement.
This effect was indeed reported in [1] as for the fixed–point method.

The scalar velocity function has a piecewise linear form:

v(ρ) = min
(

vmax,max
(

1 − ρ

ρmax
, 0

))
, (23)

or a piecewise constant form:

v(ρ) =
vmax

2
if ρ ≤ ρmax; v(ρ) = 0 otherwise, (24)

or a constant form
v(ρ) =

vmax

2
. (25)

We take vmax = 1 and ρmax = 8.

4.2 Linear Model, P = 2

At first, we perform our simulations with p = 2. Here,
−→
W is not normalized:−→

W = −∇Ψ2 and v is constant as in (25). Thus,
−→
V satisfies the condition (7),

and thus, the assumptions of 1.
We use five time steps Δt between 0.001 and 0.01 and draw in Fig. 1, the

functions defined in Definition 2. (Note the log scale for t). The total mass
function is decreasing only for Δt ≤ 0.002; the same is true for the stability
function. It is clear, by Lemma 1, that these are the only cases where the scheme
is stable.

4.3 p ≥ 2

When p > 2, or if v is not constant, the property (7) is not satisfied anymore. In
Fig. 2, we show experiments with p ∈ {2, 3, 5}. So as to minimize ’side effects’,−→
W is still not normalized:

−→
W = −∇Ψp. The scalar velocity v is piecewise constant

(24). As ρ does not exceed ρmax, our model is still in the linear regime, but (7)
is not granted for p > 2.
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Fig. 1. Here,
−→
V = −0.5∇Φ2. We compare the evolution for different time steps Δt. On

the left, the total mass of pedestrians vs time. On the right, the stability function vs
time. Both in log scale on the time axis. The decreasing curves correspond to Δt = 0.002
and Δt = 0.001, which fit almost perfectly. The light blue — to Δt = 0.0025, the others
to bigger Δt. (Color figure online)

We take Δt = 0.002 for p ∈ {2, 3} and Δt = 0.01 for bigger p, in view of the
fact that |∇ Ψp| is considerably closer to 1 for these p. We observe on one hand,
the stability of the scheme, and on the other, the effect of decreasing the total
evacuation time with increasing p. In particular, for p = 2 the evacuation is very
long. Finally, we verify that the Picard and Newton method applied to (21) give
the same result. We have checked that with increasing p, the error between the
two methods decreases.

4.4 Nonlinear Model, p ≥ 2

We finally simulate the evacuation with a normed velocity field (22) and with v
piecewise constant (24) and piecewise linear (23). Here, Δt = 0.01. The evolution
is visualized in Fig. 3. Some violations of the non–negativity of ρh are observed
when the model becomes nonlinear. The stability functions do not decrease in an
initial period of time, after which they are all perfectly monotone, going down
to zero. This means that (7) is no longer valid, and the weaker condition (11)
becomes valid after this initial time. We postulate that our scheme is still stable,
but within a larger definition of stability, meaning boundedness of the solution’s
L2 norm. This approach should be considered in view of the properties of

−→
V

itself.
We observe, as before, shortening of the evacuation time when p increases,

but the influence of p is attenuated. Surpisingly enough, introducing a piecewise
linear, decreasing velocity (23) does not shorten the evacuation time, and leads
to bigger crowd densities. However, this comparison is still quite heuristic.

The Braess paradox clearly appears in Fig. 4: the upper part of the room, with
more obstacles, evacuates more quickly and has less regions with high densities.
This phenomenon can be observed for both forms of v, but a piecewise linear
velocity (23) makes it clearer.



A Model for Crowd Evacuation Dynamics 351

5,3=t2=t5,0=t

Fig. 2. The first three rows show the evolution of the crowd density with the velocity

field
−→
V = v∇Ψp and p equal to, respectively, 2, 3, 5. We do not normalize the velocity

field here. Δt = 0.002 when p equals 2 or 3, Δt = 0.01 for p = 5. In the fourth row, on
the left, the evolution of the total mass of pedestrians: in yellow for p = 2, in blue/green
for p = 3, in brown p = 5 (4.98 for the Picard method). On the right, the stability
function for each case. (Color figure online)
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t=0,5 t=2 t=3,5

Fig. 3. Evolution with a velocity field
−→
V = v

−→
W where

−→
W is normed according to

(22). Δt = 0.01. First row, the scalar function v is piecewise constant (24) and p = 2.
Second row, the scalar function v is piecewise linear (23) and p = 2. Third row, the
scalar function v is piecewise linear (23) and p = 4. Below, on the left, the evolution of
the total mass of pedestrians, with v piecewise constant and p taking the values 2, 5
(steeper functions) and v piecewise linear and p taking the values 2, 4, 5. On the right,
the stability function for each case. Here, the influence of p on the dynamics is smaller
than in the previous case.

5 Conclusions

We have concentrated here on the role of the velocity field
−→
V for the evacuation

dynamics, in particular when the direction of
−→
V is given by the p–Poisson equa-

tion (21). We have shown that bigger p shorten the evacuation time. We have
also seen the Braess paradox appearing in evacuation.

In this context, a more systematic study of the role of 1) the dependence
of the velocity field on ρ 2) the parameter κ (which may also be dependent
on ρ), and finally 3) the geometry, is to be performed. At this end, we need a
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mathematical study of a weaker condition for stability: (ρn
h, ρn

h) ≤ C. We also
hope to find a numerical method for solving the p–Poisson equation for larger p.
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