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Abstract. A popular approach to program scalable irregular applica-
tions is Asynchronous Many-Task (AMT) Programming. Here, programs
define tasks according to task models such as dynamic independent
tasks (DIT) or nested fork-join (NFJ). We consider cluster AMTs, in
which a runtime system maps the tasks to worker threads in multiple
processes.

Thereby, dynamic load balancing can be achieved via work-stealing
or work-sharing. A well-performing work-stealing variant is the life-
line scheme. While previous implementations are restricted to single-
worker processes, a recent hybrid extension combines the scheme with
intra-process work-sharing between multiple workers. The hybrid scheme
comes at the price of a higher complexity.

This paper investigates whether this complexity is indispensable by
contrasting the scheme with a pure work-stealing extension of the lifeline
scheme introduced in the paper. In an experimental comparison based
on independent DIT and NFJ implementations and three benchmarks,
the pure work-stealing scheme is on a par or even outperforms the hybrid
one by up to 3.8%.

Keywords: Work Stealing · Work Sharing · Runtime Systems ·
Asynchronous Many-Tasking · Task-based Parallel Programming

1 Introduction

Asynchronous Many-Task (AMT) programming, as exemplified by Cilk [2],
OpenMP tasks [14], and HPX [7], is a popular approach to tackle irregular-
ity in parallel applications. AMT programs partition the computation into units
called tasks, and a runtime system (briefly called AMT, as well) maps the tasks
to lower-level resources called workers. We consider cluster AMTs, for which the
workers correspond to threads of multiple processes that may run on different
nodes.

AMTs can be classified by their model of task cooperation [6]. In particular,
dynamic tasks are allowed to spawn child tasks to which their parent task may
pass parameters. We consider two subclasses:
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1. Dynamic Independent Tasks (DIT) do not communicate, but yield a task
result. The final result is calculated from the task results by reduction, e.g.,
by integer summation. Examples for DIT runtimes include GLB [27] and
Blaze-Tasks [15].

2. Nested Fork-Join (NFJ) programs begin the computation with one root task.
Then each task returns its result to its parent, and the root task yields the
final result. Examples for NFJ runtimes include Cilk and Satin [12].

Many AMTs deploy dynamic load balancing, which may be accomplished via
work stealing or work sharing. In work stealing, idle workers (thieves) take tasks
from other workers (victims), whereas in work sharing, busy workers give tasks
to others.

A well-performing work stealing variant is Lifeline-based Global Load Balanc-
ing, briefly called the lifeline scheme [22]. It was first implemented in the Global
Load Balancing (GLB) library of the parallel programming language X10 [3] and
later ported to Java [17]. Unfortunately, these implementations allow only one
worker per process.

A recent hybrid scheme overcomes this limitation by combining the lifeline
scheme for work stealing between the processes with work sharing among mul-
tiple workers within a process. This scheme has been implemented in Java GLB
variants for DIT and NFJ, which we denote by DIThybrid [5] and NFJhybrid [21],
respectively.

While the hybrid scheme overcomes the single-worker limitation, its hybrid
design has the drawback of a higher complexity. This led us to our research
question: Is the complexity of the hybrid scheme indispensable for an efficient
extension of the lifeline scheme to multiple workers per process?

To answer the question, we extended the lifeline scheme so that it solely relies
on work stealing, but still has multiple workers per process. Our new scheme,
which we call lifeline-pure, is essentially identical to the lifeline scheme, except
that threads instead of processes take over the role of workers. In particular,
each worker (thread) within a process maintains its own task queue. When a
worker runs empty, it tries to steal tasks from a random worker, which is any
thread in the same or in a different process. As will be discussed later, preferring
local over global victims may increase the efficiency. Nevertheless, even without
such locality optimization in place, we were able to show that the lifeline-pure
scheme is on a par or even outperforms the more complicated hybrid scheme by
up to 3.8%.

We conducted our experiments with up to 1280 workers and three bench-
marks. Two implementations of the lifeline-pure scheme were used. Both are
based on Java GLB, and are called DITpure and NFJpure, respectively. To
strengthen our results, the DIT and NFJ implementations were developed inde-
pendently by the second and first authors of this paper, respectively.

The remainder of the paper is organized as follows. Section 2 provides further
details on the load balancing schemes and task models. Then, Sect. 3 discusses
the design and implementation of DITpure and NFJpure. Experimental results
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are presented and discussed in Sect. 4. The paper finishes with related work and
conclusions in Sects. 5 and 6, respectively.

2 Background

2.1 Lifeline Scheme

The lifeline scheme [22] deploys cooperative work stealing, i.e., thieves ask their
victims for tasks, and victims respond by sending tasks or a reject message.
When a worker runs out of tasks, it first attempts to steal from up to w random
victims. If all random steal attempts fail, it informs z so-called lifeline buddies,
which are neighbored workers in a connected graph, called the lifeline graph.
The lifeline buddies record all lifeline steal attempts and possibly answer them
later.

Each worker maintains an own local task queue. It takes out tasks for pro-
cessing and inserts child tasks at one end, and extracts loot for thieves at the
other. The workers communicate in work stealing by calling a function on the
remote worker, where it is executed by an additional thread. For example, to
answer a successful random steal request, the victim calls a function on the thief
and passes the tasks as a parameter. The function inserts the tasks into the
thief’s local task queue, which is synchronized for this purpose.

Listing 1.1 depicts pseudocode for the main loop of each worker. Workers
process tasks in chunks of k tasks (line 3), after which they respond to recorded
steal requests (line 4). When a worker runs out of tasks, it first tries to steal from
random victims (line 6). If all random steal attempts fail, the worker notifies its
lifeline buddies and enters an idle state (line 8), from which it can be restarted
if a lifeline buddy delivers tasks later.

1 do {
2 do {
3 processUpToKTasks ( ) ;
4 answerStea lRequests ( ) ;
5 } whi l e ( t a sk sAva i l ab l e ( ) ) ;
6 attemptRandomSteals ( ) ;
7 } whi l e ( t a sk sAva i l ab l e ( ) ) ;
8 informBuddiesAndBecomeIdle ( ) ;

Listing 1.1. Main loop of Lifeline-based Global Load Balancing

2.2 Hybrid Scheme

As mentioned in Sect. 1, the hybrid scheme [5] couples the lifeline scheme for work
stealing between the processes with work sharing among the workers within a
process. It uses two shared queues, which are synchronized to allow accesses from
multiple threads:
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– an intra queue for intra-process work sharing, and
– an inter queue chiefly for inter-process work stealing.

Listing 1.2 depicts pseudocode for the main loop of each worker. A process
begins with a single worker. After its own spawn, each worker repeatedly tries
to spawn additional workers and gives them some tasks (line 4), until some
desired maximum number of workers is reached. Then, if one of the shared queues
is empty, the worker puts any surplus tasks there (lines 6–11). Afterwards, it
processes up to k tasks, and repeats the previous steps as long as it has tasks.
When a worker runs out of tasks, it first attempts to take all tasks from the
intra queue (lines 14–16), or otherwise from the inter queue (lines 17–19). If
both shared queues are empty, the worker shuts down (end of code) and has to
be spawned again later.

1 do {
2 do {
3 i f ( numWorkers < numMaxWorkers ) {
4 attemptToSpawnAdditionalWorker ( ) ;
5 }
6 i f ( intraQueueEmpty ) {
7 shareTasksToIntraQueue ( ) ;
8 }
9 i f ( interQueueEmpty ) {

10 shareTasksToInterQueue ( ) ;
11 }
12 processUpToKTasks ( ) ;
13 } whi l e ( t a sk sAva i l ab l e ( ) ) ;
14 i f ( ! intraQueueEmpty ) {
15 takeTasksFromIntraQueue ( ) ;
16 }
17 i f ( ! t a sk sAva i l ab l e ( ) && ! interQueueEmpty ) {
18 takeTasksFromInterQueue ( ) ;
19 }
20 } whi l e ( t a sk sAva i l ab l e ( ) ) ;

Listing 1.2. Main loop of Lifeline-based Global Load Balancing

2.3 Nested Fork-Join and Dynamic Independent Tasks

As already noted, the NFJ and DIT task models deploy dynamic tasks. We
assume that the tasks are free of side effects.

For NFJ, Listing 1.3 depicts pseudocode of a naive recursive Fibonacci pro-
gram. The code is invoked on worker 0 by calling fib(n). The spawn keyword in
line 5 generates a child task and passes n-1. The child task calculates fib(n-1)
recursively. Afterwards, the result is assigned to variable a of the parent task. The
sync keyword pauses the execution of the parent task until all child tasks have
returned their results. Thus, the structure of the computation can be regarded
as a task tree, in which the root task returns the final result.
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1 f i b (n) {
2 i f (n < 2) {
3 re turn 1 ;
4 }
5 a = spawn f i b (n−1);
6 b = f i b (n−2);
7 sync ;
8 re turn a + b ;
9 }

Listing 1.3. Nested fork-join: naive recursive Fibonacci

Work stealing in NFJhybrid is implemented with the work-first policy: When
a worker spawns a child task, it puts a description of the parent task into the task
queue and branches into the child. The description is called a continuation and
represents the remaining computation of this task. For instance, the continuation
that is generated in line 5 of Listing 1.3 denotes the code in lines 6 to 9 enhanced
by the value of n and the knowledge that a will be provided by the child task.
The continuation may be processed by the worker itself after having finished the
child, or be stolen away. In NFJhybrid, a thief always takes a single task (steal-
one).

Thus, any work stealing scheme for NFJ must keep track of the parent-
child relations and incorporate child results into their parent. We denote these
activities as the fork-join protocol. The fork-join protocol of NFJhybrid [21] was
adapted from [8] and passes the result of a child task directly to the parent
task if the parent is still in the local queue when the child returns. Otherwise,
the worker saves the child result in a data structure that is shared between all
workers of the process. Saved results are eventually collected as follows: When
a task has to wait for its child tasks in a sync, this task is sent back to its
previous victim. Child results may already reside there, if the child has finished.
Otherwise, they are eventually inserted. Since the parent task may have been
stolen multiple times, child results may exist on further victims, and the result
collection continues there. In contrast to [8], where tasks are returned to their last
thief after incorporating all child results, we process them at their first victim.

Unlike NFJ tasks, DIT tasks only cooperate through parameter passing from
parents to children. Task results are accumulated into worker results, by com-
bining them with a commutative and associative binary operator (e.g., integer
summation). Later, each process combines its local worker results to a process
result, and finally the process results are combined to the final result.

Listing 1.4 depicts pseudocode of a naive recursive Fibonacci program in
DIT. The code is invoked on worker 0 by calling fib(n). Like before, the spawn
keyword in line 5 generates a task. Method incrementResult() adds 1 to the
worker result, since fib(0) = fib(1) = 1. After global termination of all tasks,
worker 0 initiates the calculation of the process and final results. Afterwards,
the final result may be queried from the system.

Work stealing in DIThybrid is implemented with the help-first policy: When
a worker encounters a spawn, it puts the child task into the local task queue
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1 f i b (n) {
2 i f (n < 2) {
3 incrementResult ( ) ;
4 } e l s e {
5 spawn f i b (n−1);
6 f i b (n−2);
7 }
8 }

Listing 1.4. Dynamic independent tasks: naive recursive Fibonacci

and continues to execute the parent task. In DIThybrid, thieves steal half of the
available tasks of a victim (steal-half ).

3 Design and Implementation of Lifeline-Pure Scheme

The lifeline-pure scheme extends the lifeline scheme with support for multi-
worker processes. As noted in Sect. 1, the scheme is essentially identical to the
lifeline scheme, except that the workers correspond to threads. Each worker
maintains an own local task queue and participates in the work stealing indepen-
dently of other workers. Also, the lifeline graph and the random victim selection
operate at the granularity of workers.

Unlike in NFJhybrid, we decided to perform all activities of the fork-join
protocol separately for each worker within a process in order to reduce contention
on the shared data structures. For DIT, as in the hybrid scheme, we first combine
the worker results within each process, and then perform a global reduction.

A modification of the lifeline scheme refers to the realization of the commu-
nication between a pair of workers. Whereas workers directly communicate with
each other in the lifeline scheme, they use a so-called coordinator in the lifeline-
pure scheme. The coordinator handles all communication, i.e., a worker that is
going to send a message to another worker calls a function of its coordinator.
The coordinator then sends a message to the remote worker’s coordinator. The
remote coordinator then forwards the message to the target worker. Global and
local worker ids are translated into each other in an obvious way. Figure 1 shows
the communication paths, where several workers, denoted as W, communicate
with each other through their coordinators, denoted as C@.

Obviously it would be profitable to prefer local over global victims, since
process internal stealing has lower communication costs. As of yet, the lifeline-
pure scheme does not incorporate such locality optimizations, but the scheme
could be easily extended accordingly.

All implementations are based on the “APGAS for Java” library [23], which
is a Partitioned Global Address Space (PGAS) platform. We used a modified
version of it, which is available in a public git repository [16].

In our implementations, the coordinator is a Java class. Messages between
workers of the same process do not get serialized and passed through the network,
but are executed in one or more separate threads of Java’s fork-join pool.
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4 Experimental Evaluation

This section compares the running times of the lifeline-pure and hybrid DIT and
NFJ variants, respectively.

Fig. 1. Communication paths between workers (W) through the coordinator (C) in the
lifeline-pure scheme

All experiments were conducted with Java version 17.0.2. We run our pro-
grams on the Goethe cluster of the University of Frankfurt [25], where we used
a partition of homogeneous Infiniband-connected nodes. Each node is equipped
with two 20-core Intel Xeon Skylake Gold 6148 CPUs and 192GB of main mem-
ory. We used up to 32 nodes, with one process per node and one worker per core,
resulting in a total of 1280 workers. We report averages over 15 runs.

We used three benchmarks:

– Fib (for NFJ): The naive Fibonacci benchmark was presented in Sect. 2. It
computes fib(n).

– UTS: The Unbalanced Tree Search benchmark dynamically generates a
highly-irregular tree and counts its nodes [13]. Users provide a tree depth d,
a branching factor b, an initial seed s of a pseudorandom generator, and a
probability distribution that determines the tree shape (binomial or geomet-
ric).

– Syn: The synthetic benchmark counts the nodes of a perfect w-ary tree [19].
Users provide a desired running time Tcalc, a number m specifies the number of
tree nodes per worker, and a task duration variance v as percentage. Each task
repeatedly calculates the 5th Fibonacci number recursively until it reaches its
task duration. An execution with GLB then takes time T = Tcalc+ ε, where ε
is the additional time taken by the runtime system, called the runtime system
overhead. In the case of DIT, ε is caused by the load balancing scheme. In
the case of NFJ, ε is caused by the load balancing scheme and the fork-join
protocol.

In all benchmarks, task results are long values and the reduction operator is
sum.
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In preliminary experiments, we found that a so-called sequential cut-off
reduced the execution times of the NFJ GLB variants significantly: The sequen-
tial cut-off c defines a remaining depth (e.g., fib(n) calls with n ≤ c), where
the spawn statement causes workers to jump into the given function instead of
spawning a child task. We implemented a sequential cut-off for Fib and UTS@.
Syn did not require one, because the task granularity can be controlled by its
benchmark parameters.

Table 1. Benchmark parameters

Benchmark Parameters

Fib n = 67

c = 30

UTS d = 19

b = 4

c = 6

geometric tree shape
Syn Tcalc = 100 s

m = 106

v = 20%

Fig. 2. Strong scaling performance of UTS

For DIT, we used existing implementations of the benchmarks [19]. For NFJ,
we slightly improved an existing implementation of Fib [21], and implemented
UTS and Syn from scratch.

The used benchmark parameters are shown in Table 1. Recall that both the
lifeline-pure and the hybrid scheme process tasks in chunks of k tasks (see
Sect. 2). In preliminary experiments, we tried different chunk sizes for each
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benchmark and found that the following values for k yield the lowest execu-
tion times: k = 511 (for UTS in DIT), k = 16 (for UTS in NFJ), k = 10 (for Fib
in NFJ), and k = 1 (for Syn).

Figures 2 and 3 show execution times for UTS and Fib. They employ strong
scaling to convey an impression of the magnitudes. For each run, we doubled the
number of nodes, and thus the number of workers. The measured execution times
decrease approximately linearly. Speedups over the execution with one worker
are between 1103 and 1243 for 1280 workers.

The strong scaling results for DIT show a bigger difference between the hybrid
and the lifeline-pure scheme than those for NFJ@. For DIT, the gap between the
two schemes is clearly visible. For NFJ, the gap between the schemes is small
and barely visible. This is likely due to the fact, that the used load balancing
scheme impacts all the communication in DIT (except the final reduction), but
only part of the communication in NFJ (not the fork-join protocol).

Fig. 3. Strong scaling performance of Fib

Fig. 4. Weak scaling performance of Syn

Figure 4 shows execution times measured with Syn. We employ weak scaling
by keeping Tcalc constant for all runs. We calculate the overhead as the difference
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between the measured execution time and Tcalc. Since Tcalc = 100 s for all runs,
an execution time of 101 s means, that the runtime system overhead is 1%.
Overheads increase slowly with the number of workers.

For DIT, the overhead is 1.54% for 1280 workers and the hybrid scheme, and
1.41% for the lifeline-pure scheme. For NFJ, the overhead is higher than in DIT,
since it includes the cost of the fork-join protocol. Because the hybrid and the
lifeline-pure scheme both use the same fork-join protocol, we can still compare
the overhead. The highest overhead difference between both schemes is about
3.8% for 1280 workers, where the hybrid scheme has an overhead of about 7.5%,
and the lifeline-pure scheme has an overhead of about 3.7%.

5 Related Work

AMT, also called task-based parallel programming, goes back until at least the
invention of Cilk in the 1990s [2]. Over the years, a variety of AMT programming
environments have been proposed, and, especially on shared-memory machines,
already found their way into programming practice (e.g., OpenMP tasks [14]).

From a user perspective, major differences between the AMT environments
can be seen in their target architectures and task models [6,10,24]. The latter
comprise DIT and NFJ, but also several types of dataflow-based, side effect-
based, and actor-based coordination. The runtime systems differ in whether they
support dynamic load balancing and dynamic task generation, and if they do so,
in whether they realize it with work stealing or work sharing.

Work stealing became popular with Cilk [2], but several authors see work
sharing on a par or prefer it [4,9]. Both work stealing and work sharing can be
implemented in a coordinated way, in which queues are shared between workers,
or in a cooperative way, in which they are private. The performance is about the
same [1,17]. The work stealing variants also differ in their realization of victim
selection and termination detection. Reitz [21] compared different strategies for
choosing the number of tasks to be stolen. He used the same NFJhybrid scheme
as we did in this paper.

While the lifeline scheme has traditionally been restricted to single-worker
processes, other work stealing variants permit multiple workers. For instance,
they combine shared- and distributed-memory work stealing into a two-level
algorithm [20], or combine the process-internal load balancing of Java’s fork-join
pool with the lifeline scheme for inter-process work stealing [18].

These two-level algorithms prefer local over global steals to save communi-
cation costs, as do DIThybrid and NFJhybrid. The idea of incorporating locality
optimization into work stealing was also applied to hierachical architectures,
e.g., [11]. Its usage may further improve the efficiency of our DITpure and
NFJpure schemes.

As mentioned in Sect. 2.3, the fork-join protocol of our NFJ GLB variants
was adapted from Kestor et al. [8] where tasks are returned to their last thief
after incorporating all child results instead of to their first victim. Similar to the
coordinators in the lifeline-pure scheme, they deploy a coordinator per process
who communicate with each other by calling functions on remote coordinators.
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The first GLB variant for X10 that allows multiple workers per process was
presented by Yamashita and Kamada [26]. It was later improved by some tuning
mechanism and re-implemented as DIThybrid in Java [5]. We did not employ the
tuning mechanism, since it is irrelevant for our benchmarks.

6 Conclusions

This paper has shown that the lifeline scheme can be efficiently extended to
multi-worker processes, without introducing the complexity of a hybrid scheme.
Our extension, called lifeline-pure, solely relies on work stealing. We implemented
it for DIT and NFJ.

Then we performed an experimental comparison between the lifeline-pure
and hybrid schemes for DIT and NFJ, respectively. The experiments were run
with three benchmarks and up to 1280 workers on a supercomputer. Even though
the lifeline-pure scheme does not use any locality optimizations, we observed it
to be on a par or even slightly outperform the hybrid scheme. Interestingly, our
results were similar for DIT and NFJ, despite significant differences such as help-
first vs. work-first, steal-half vs. steal-one, and the fact that the implementations
have been developed independently by different people.

This similarity indicates that our findings may be of a more general nature.
In particular, it would be interesting to compare other work stealing variants
than the lifeline scheme with hybrid counterparts. Future research should also
incorporate locality optimization into the lifeline-pure scheme and quantify the
additional performance gain. Moreover, the experiments may be extended to
larger benchmarks and other task models.
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