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Abstract. The Edge Computing paradigm promises to transfer
decision-making processes based on artificial intelligence algorithms to
the edge of the network without the need to query servers far from
the data collection point. Hyperspectral image classification is one of
the application fields that can benefit most from the close relationship
between Edge Computing and Artificial Intelligence. It consists of a
framework of techniques and methodologies for collecting and process-
ing images related to objects or scenes on the Earth’s surface, employing
cameras or other sensors mounted on Unmanned Aerial Vehicles. How-
ever, the computing performance of the edge devices is not comparable
with those of high-end servers, so specific approaches are required to
consider the influence of the computing environment on the algorithm
development methodology. In the present work, we propose a hybrid
technique to make the Hyperspectral Image classification through Convo-
lutional Neural Network affordable on low-power and high-performance
sensor devices. We first use the Principal Component Analysis to filter
insignificant wavelengths to reduce the dataset dimension; then, we use a
process acceleration strategy to improve the performance by introducing
a GPU-based form of parallelism.

Keywords: Hyperspectral classification · Edge Computing · Principal
Component Analysis · GPU computing

1 Introduction

Edge computing refers to the enabling technologies to process data at the net-
work’s edge near the data source before being sent to the cloud data center.
For some authors, edge computing is interchangeable with fog computing [1],
although it focuses more on the devices at the edge, whereas fog comput-
ing focuses more on the whole network infrastructure. This type of computing
paradigm has several advantages over traditional cloud computing, e.g., as the

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 127–138, 2023.
https://doi.org/10.1007/978-3-031-30445-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_11&domain=pdf
http://orcid.org/0000-0001-7912-2083
http://orcid.org/0000-0001-9953-1319
http://orcid.org/0000-0002-2640-157X
https://doi.org/10.1007/978-3-031-30445-3_11


128 G. De Lucia et al.

results of [15] show, energy savings can reach up to 40%. There are various
metrics to consider in Edge computing, including energy and transmission rate,
especially for big data [3,13]. In addition to the network signal strength [11],
data size and available bandwidth will also influence the transmission energy
overhead [27]. For this reason, as shown in [17], new High-Performance Edge
devices mount GPUs capable of performing complex calculations by finding a
trade-off between performance and power consumption.

One stimulating application field for Edge computing is Remote Sensing
(RS). RS is the science of acquiring, processing, and interpreting images and
related data from aircraft and satellites that record the interaction between
matter and electromagnetic energy [30]. In recent years, deep learning techniques
have revolutionized how RS images are processed and classified. In particular,
standard optical, RGB, and IR (infrared) images have benefited from deep convo-
lutional neural networks (CNNs) for classification, object detection, or semantic
segmentation tasks [6,25,33].

A promising RS technology focuses on hyperspectral images (HSIs), allowing
simultaneous radiance capture at different wavelengths, and generating vari-
ous spectral bands. HSI data have an exceptionally high range and resolution
in the spectral dimension. In particular, the branch of Hyperspectral Imaging
deals with collecting and processing information on the nature of materials by
analyzing their reflectance in a part of the electromagnetic spectrum [12]. Hyper-
spectral imaging aims to obtain a spectral vector for each pixel of an image to
find objects, detect processes, or identify and classify materials [8,10].

Some classifiers preprocess the HSI to reduce the image depth to three spec-
tral bands (RGB) through Principal Component Analysis (PCA) or other strate-
gies [23,31] and only use a 2D CNN architecture to perform the classification.
However, this approach may result in the loss of some hyperspectral properties.
For this reason, we propose to use PCA to reduce the length of the HSI spec-
tral dimension while maintaining the multidimensional nature of the data. This
strategy allows adoption of more accurate and faster classification tools than the
above methods.

In this paper, we will present an HSI classifier1 that exploits the computa-
tional power of the GPU on High-Performance Edge Devices. For the develop-
ment, we used a PyTorch-based deep learning toolbox for classifying hyperspec-
tral data called DeepHyperX [4]. We focused on three-dimensional convolutional
networks (3D CNNs). Indeed, since we can interpret HSIs as volumes, we can
classify them with the aid of 3D CNNs using three-dimensional convolutions [20].
Instead of producing 2D feature maps, these 3D CNNs create 3D feature maps
suitable for spectral pattern recognition and seem theoretically more relevant
for HSI classification. This approach slightly improves classification performance
compared to 2D+1D models [19]. In [9], the author showed that 3D CNNs for
the classification of hyperspectral images performed better than their 2D coun-
terparts. Indeed, compared to spectral CNNs or 2D+1D counterparts, 3D CNNs
combine spatial and spectral pattern recognition strategies in one filter, requiring
fewer parameters and layers.

1 Source code: https://github.com/gigernau/PCAHyperspectralClassifier.

https://github.com/gigernau/PCAHyperspectralClassifier
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Many architectures in the literature handle 3D convolutional neural networks
for hyperspectral data [7,9,16,18,21,22]. The authors of [5] compare several
variants, pointing out their ability to recognize more complex 3D reflectance
patterns, such as spectral signatures and absorption differences between bands.

With this work, we want to show how High-Performance Edge Computing
can enable onboard classification with a limited energetic impact, eventually
improving the transmission stage towards the ground station. The idea is to
preprocess raw data using a GPU-parallel PCA to reduce the spectral dimension
of the HSI while retaining the information content. Then, a properly chosen
GPU-accelerated 3D CNN classifier [20] can process the hyperspectral-reduced
data in a shorter time while maintaining high accuracy.

2 HSI Pipeline

HSIs have a data structure similar to RGB images, consisting of the superposition
of three wavelengths, one for each primary color: red, green, and blue. Even if
the visible spectrum has a broader range of wavelengths, RGB images appear
to the human eye in almost any color, thanks to the tristimulus mechanism.
In hyperspectral cameras, images have higher information content. HSI cameras
allow the simultaneous capture of radiance at different wavelength bands of
the electromagnetic spectrum, providing informative spectral details for each
material. An HSI has spatial pixels corresponding to geographical locations,
each with a spectral depth of several wavelength bands depending on the specific
sensor. Thus, an HSI is a volume graphically representable with a so-called cube
of hyperspectral data (Fig. 1).

If we cut the cube perpendicularly to the spectral bands, we obtain a plane
appearing as an image whose pixels represent the reflectance at a specific wave-
length λ. Therefore, the pixel’s intensity, with a value usually normalized between
0 and 1, measures the surface efficiency of the sampled material in radiative
reflection at λ.

Fig. 1. Graphical representation of a hyperspectral data cube.
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Two main methods of reducing datasets are PCA and Multidimensional Scal-
ing (MDS). We preferred to focus on using PCA, which operates on the spec-
tral dimension, rather than MDS. The output of the HSI classification produces
labels for each pixel, so we have to preserve the spatial details, while MDS focuses
mainly on reducing the spatial dimensions.

Thanks to PCA, we can reduce the spectral dimension by projecting the vec-
tor corresponding to each spatial point onto the first principal components only,
where the variance of the data and the information content are most relevant.
We can define the first principal component as the direction that maximizes the
variance of the projected data. The i-th principal component is the direction
orthogonal to the first i− 1 principal components that maximize the variance of
the projected data [28]. The main steps of PCA are [32]:

– Dataset normalization.
– Calculating covariance matrix for the features in the dataset.
– Calculating eigenvalues and eigenvectors for the covariance matrix.
– Ordering eigenvalues and corresponding eigenvectors.
– Selection of k eigenvalues and creation of the eigenvectors matrix.

The eigenvector associated with the largest eigenvalue indicates the direction in
which the data have the greatest variance.

In general, dimensionality reduction inevitably results in a loss of informa-
tion, leading to less accurate data classification. However, PCA minimizes this
information loss. Moreover, available parallel implementations on SIMD architec-
tures can exploit GPU acceleration using a SIMT execution model [29]. Indeed,
optimized versions of GPU-parallel cuBLAS-based PCA are up to 12 times faster
than the CPU-optimised BLAS versions [2]. Our high-performance PCA cuBLAS
implementation uses the Gram-Schmidt orthogonalization, as described in [2].
Therefore, we will perform PCA on the dataset before the classification phase
to speed up the process without sacrificing prediction accuracy.

For HSI classification through Deep Learning, many authors use CNNs [5].
In general, classifiers built with CNNs usually have the following layers:

– Convolutional layers: filters extract the features of the images analyzed.
– Pooling layers: reduce the dimension of the feature maps by downsampling,

and increase the level of abstraction.
– Fully Connected layers: work as traditional feed-forward neural networks,

in which all neurons connect to all neurons from the previous layer.
– Output layer: a fully connected layer using softmax as a trigger function to

obtain the selected input’s probabilities for a specific class.

In a fully connected layer, an activation function computes the weighted sum
of neurons of the previous layer and consequently activates neurons on the cur-
rent layer. In particular, the Rectified Linear Units (ReLU) function has excellent
performance on deep networks; therefore, many authors currently prefer it.

We will use a 3D-CNN, where the filters used in the convolutional layers
are three-dimensional and move along the three directions to calculate feature
representations (Fig. 2).
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Fig. 2. Example of three-dimensional convolution.

Hence, the pipeline of our classifier (Fig. 3) takes hyperspectral data as input,
then performs a GPU-parallel PCA by executing the code in CUDA. Next, the
reduced dataset becomes the input for the inference via the appropriately trained
3D-CNN network model. The output is an RGB image in which each pixel has
a color representing the class of the corresponding material.

Fig. 3. Pipeline of the HSI classifier with PCA preprocessing.

3 Experiments

We developed a hyperspectral image classifier trained on two datasets to test
our approach. There are few public datasets [14] acquired using hyperspectral
sensors. In particular, for this work, we used:

– Indian Pines (IP): collected by the AVIRIS sensor on a NASA flight over
northwestern Indiana in 1992, with a ground pixel resolution of 17 m. The
acquired data consist of 145 × 145 pixels with 220 spectral bands, but after
removing the water absorption bands (104 − −108, 150 − −163, and 220),
they result in 200 bands. The ground truth has 16 classes, not all of which
are mutually exclusive.

– Pavia University (PU): detected by the ROSIS sensor on a DLR flight in
2002 over Pavia, Italy, with a ground pixel resolution of 1.3 m. After removing
samples without information, the dataset consists of 610 × 340 pixels, with
103 spectral bands. The ground truth differentiates 9 classes.
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We used double precision for both datasets to present coherent results during
our tests, even if the original formats differed.

We experimented on two different platforms:

– PC with a 2.60 GHz Intel Core i7-9750H CPU, 16 GB RAM, Nvidia GeForce
RTX 2060 GPU, and running Ubuntu Linux;

– Nvidia Jetson Nano developer kit.

We exploited the GPUs on both platforms to accelerate each step of the clas-
sification pipeline. To test our code in the High-Performance Edge Computing
environment, we used the Jetson Nano activating both 5W and 10W modalities
and reporting their impact on the inference time and the energy absorption.

Firstly, we selected the best 3D-CNN model in inference time and prediction
accuracy for both datasets on the Jetson Nano. This step is essential to identi-
fying the most promising model for the Edge computing environment. Then, we
tested the overall classification performance in prediction accuracy and inference
time by changing the selected number of components in the PCA preprocess-
ing. We used a customized parallel version of the PCA developed in CUDA
using the cuBLAS library for this task. We also compared the execution time of
the PCA preprocessing using our CUDA version and the scikit-learn module of
Python. Finally, we evaluated the energy consumption using both Jetson Nano
modalities.

4 Results

Firstly, we present in Table 1 the execution times of a few 3D-CNN models from
the literature (He et al. [16], Li et al. [21], Hamida et al. [7]), implemented in
DeepHyperX and executed on Jetson Nano. We did not include Lee et al. [18],
Luo et al., [22] and Chen et al. [9] because they are not competitive in inference
execution times (more than 5 min in 10 W modality).

Table 1. Execution times on Jetson Nano and classification accuracy of some models
from DeepHyperX on IP and PU datasets

Indian Pines Pavia University

Inference Time Inference Time

Model 10 W 5 W Accuracy 10 W 5 W Accuracy

He et al. 01:05 01:24 95.35% 04:19 06:10 96.14%

Li et al. 00:23 00:27 97.08% 00:56 01:20 97.72%

Hamida et al. 00:24 00:29 85.72% 01:07 01:40 97.59%

The best results in terms of accuracy and execution time for both datasets
and power modalities are those of Li et al. All the subsequent reasonings and
tests will suppose the adoption of this promising model, considering our context
of on-board processing of remote sensing data.
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(a) Indian Pines (b) Pavia University

Fig. 4. Accuracy and execution time of inference using our pipeline with several num-
bers K of Principal Components.

By applying the PCA, if we decrease the number of Principal Components
K used for the 3D-CNN, classification accuracy and execution time decrease
simultaneously (Fig. 4). The curve steepness of the execution time is greater than
that of the accuracy. Hence, we do not need to sacrifice significant accuracy to
reduce the execution time.

Moreover, the dispersion area of multiple testing increases when using fewer
Principal Components. This result means that excessive reduction of the input
components during the CNN training implies a less reliable prediction. Indeed,
prediction accuracy strictly depends on the model and the training set. We used
a random approach to sample the training set when repeating the tests, so we
trained with different random samples each time. Consequently, an increasing
accuracy dispersion means that the training samples’ choice becomes highly
relevant. Hence, the excessive reduction in the number of principal components
directly impacts the training quality of the neural network.

Following these observations, we think a good trade-off between accuracy and
execution time is K = 50 for IP (Fig. 4a), thus reducing the dimension of the
initial dataset by 75%. However, if we need to reduce the execution time further,
we could choose K = 10 while keeping a 95% prediction accuracy and a 95%
dimensional reduction. The numbers change for PU (Fig. 4b) since the hyper-
spectral bands are fewer. To maintain at least a 97% accuracy, we can choose
an optimal K = 10, obtaining an approximate 90% reduction in the dataset
dimension. On the other hand, we can choose K = 5 for an approximate 95%
dimensional reduction and a 95% accuracy. We will use the K values mentioned
above to control the prediction accuracy in the following testing.

Visual comparisons between ground truth and prediction for PU (Fig. 5)
and IP (Fig. 6) datasets show that the results of our pipeline represent reliable
classifications, as confirmed by the diagonal of the confusion matrices in Fig. 5c
and Fig. 6c.

Regarding power consumption, we tested our pipeline on the Jetson Nano
using both energy modalities: 10 W (Table 2) and 5 W (Table 3). We can notice
that the advantage of using our pipeline with PCA preprocessing for the PU
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(a) Prediction (b) Training set (c) Confusion matrix

Fig. 5. Pavia University prediction with 95% accuracy (a), the training set with 70%
samples from ground truth (class Undefined in black) (b), and relative confusion
matrix (c).

(a) Prediction (b) Training set

(c) Confusion matrix

Fig. 6. Indian Pines prediction with 95% accuracy (a), the training set with 70% sam-
ples from ground truth (class Undefined in black) (b), and relative confusion matrix (c).

dataset is evident, as it halves energy consumption and markedly reduces the
execution time. There is a slight improvement for the IP dataset when using
the 10W modality. Instead, with 5W , we only see an improvement in energy
consumption when reducing the accuracy to 95%. This limitation is due to the
HSI shape, which is spatially small but spectrally big in IP, and therefore the
GPU-parallel PCA weights more on total time and energy consumption. To bet-
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Table 2. Comparison of energy consumption and execution times on Jetson Nano
(10 W modality) for Li et al. model without and with PCA preprocessing

Without PCA With PCA
accuracy
95%

With PCA
accuracy
97%

Secs Joules Secs Joules Secs Joules

Pavia University 80 320.3 42 152.41 52 199.7

IndianPines 39 175.78 28 90.80 39 173.25

Table 3. Comparison of energy consumption and execution times on Jetson Nano (5 W
modality) for Li et al. model without and with PCA preprocessing

Without PCA With
PCA
accuracy
95%

With
PCA
accuracy
97%

Secs Joules Secs Joules Secs Joules

Pavia University 107 354.97 48 166.21 62 204.07

IndianPines 50 148.58 36 102.3 48 186.24

ter understand the energetic performance of our proposed pipeline, we compare
in Table 4 several items. We calculated energy consumption on the RTX 2060 in
joules, multiplying the GPU’s Thermal Design Point (160 W) by the execution
time.

It appears evident that for the overall measuring, the execution on the RTX
is less time-consuming at the cost of more energy absorption. On the other
hand, using both Jetson’s modalities for the PCA implemented with cuBLAS,
we measured a saving of about 95% of energy compared to RTX, but with an
increment of only 55 − 61% in the execution time. This result is fascinating
when considering possible future data processing implementations at the Edge.
Regarding the performance of the PCA from scikit-learn, it does not exploit the
GPU and therefore is non-competitive.

Looking at overall measuring, including 3D-CNN, we report an increase of
about 90% in execution time, saving 70 − 80% in terms of power consumption.
That proportion is not promising as the PCA case, probably due to PyTorch
inefficiencies. However, it is still an interesting option when connection band-
width is critical. If we think of a situation with a poor transfer connection,
processing at the Edge can reduce bandwidth requests. For example, in our case
of HSI classification, the PU dataset consists of 33.2 MB, while the classification
output is an image of 610x340 bytes.
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Table 4. Comparison of energy consumption and execution times on both platforms,
isolating PCA preprocessing contributions. In italic, measures for PCA using scikit-
learn as reference. The totals refer to PCA with cuBLAS plus inference, setting the
accuracy to 95%.

RTX
(160 W)

Jetson
(10 W)

Jetson
(5 W)

PaviaUniversity PCA Cublas Joules 28.8 1.34 1.21

Secs 0.18 0.4 0.42

PCA scikit-
learn

Joules 18.02 23.11

Secs 3.09 5.38 7.64

Total Joules 481.6 152.41 138.59

Secs 3.01 42 48

IndianPines PCA Cublas Joules 43.2 2.49 2.10

Secs 0.27 0.7 0.7

PCA scikit-
learn

Joules 12.12 17.10

Secs 1.48 3.41 5.7

Total Joules 432.0 90.80 102.3

Secs 0.27 28 36

5 Conclusions

This work shows an innovative perspective on the HSI classification problem
contextualized in High-Performance Edge Computing. By adopting the Nvidia
Jetson Nano system-on-chip, which can be attached to remote sensors of various
types, we developed an HSI classifier optimized for the Edge to enable onboard
processing. In such a context, the processing time is focal; therefore, we chose
the most promising 3D-CNN model in prediction accuracy and inference time
using a GPU.

Then, to further speed up the processing, we applied a Principal Component
Analysis to the original dataset to obtain up to a 90% reduction in size without
significantly depleting accuracy.

To exploit the acceleration available on the Jetson Nano and achieve high
performance, we implemented a GPU-parallel version of the PCA in CUDA.
Furthermore, we analyzed the energy absorption on the Jetson Nano to identify
the best energy configuration for our problem. The 10W modality resulted in
the shortest execution time, even if it did not correspond to greater energy
consumption for both considered datasets.

Results are encouraging to further investigate the problem by analyzing
datasets from more recent sensors that are not yet publicly available. More-
over, additional analysis of the two energy modalities in the Jetson Nano on
other applications can result in possibly interesting evidence about Edge energy
consumption. Another improvement could be considering a scenario where the
GPU is remoted and the actual computation executed on low-power devices or
single-board computers, as in [24,26].
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