Roman Wyrzykowski
Jack Dongarra

Ewa Deelman

Konrad Karczewski (Eds.)

Parallel Processing
and Applied Mathematics

14th International Conference, PPAM 2022
Gdansk, Poland, September 11-14, 2022
Revised Selected Papers, Part I

LNCS 13827

@ Springer

Lecture Notes in Computer Science 13827

Founding Editors

Gerhard Goos
Juris Hartmanis

Editorial Board Members

Elisa Bertino, Purdue University, West Lafayette, IN, USA

Wen Gao, Peking University, Beijing, China

Bernhard Steffen®, TU Dortmund University, Dortmund, Germany
Moti Yung®, Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series counts many renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
and workshop proceedings and postproceedings. LNCS commenced publication in 1973.

Roman Wyrzykowski - Jack Dongarra -
Ewa Deelman - Konrad Karczewski
Editors

Parallel Processing
and Applied Mathematics

14th International Conference, PPAM 2022
Gdansk, Poland, September 11-14, 2022
Revised Selected Papers, Part 11

@ Springer

Editors

Roman Wyrzykowski

Czestochowa University of Technology
Czestochowa, Poland

Ewa Deelman
University of Southern California
Marina del Rey, CA, USA

Jack Dongarra
University of Tennessee
Knoxville, TN, USA

Konrad Karczewski
Czestochowa University of Technology
Czestochowa, Poland

ISSN 0302-9743

Lecture Notes in Computer Science
ISBN 978-3-031-30444-6 ISBN 978-3-031-30445-3 (eBook)
https://doi.org/10.1007/978-3-031-30445-3

ISSN 1611-3349 (electronic)

© The Editor(s) (if applicable) and The Author(s), under exclusive license

to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-30445-3

Preface

This volume comprises the proceedings of the 14th International Conference on Parallel
Processing and Applied Mathematics — PPAM 2022, which was held in Gdarsk, Poland,
September 11-14, 2022. It was organized by the Department of Computer Science of the
Czestochowa University of Technology together with the Gdansk University of Tech-
nology, under the patronage of the Committee of Informatics of the Polish Academy
of Sciences, in technical cooperation with the Poznan Supercomputing and Network-
ing Center. Scheduled initially for the year 2021, the fourteenth edition of PPAM was
postponed to 2022 because of the COVID-19 pandemic. PPAM 2022 was primarily an
in-person event. However, the organizers also made provision for authors and delegates
to present, attend, and interact online.

PPAM is a biennial conference. Thirteen previous events have been held in different
places in Poland since 1994, when the first conference took place in Czgstochowa. The
proceedings of the last ten conferences have been published by Springer in the Lecture
Notes in Computer Science series (Nateczow, 2001, vol. 2328; Czgstochowa, 2003, vol.
3019; Poznan, 2005, vol. 3911; Gdansk, 2007, vol. 4967; Wroctaw, 2009, vols. 6067 and
6068; Torun, 2011, vols. 7203 and 7204; Warsaw, 2013, vols. 8384 and 8385; Krakéw,
2015, vols. 9573 and 9574; Lublin, 2017, vols. 10777 and 10778; Biatystok, 2019, vols.
12043 and 12044.

The PPAM conferences have become an international forum for exchanging ideas
between researchers involved in parallel and distributed computing, including theory
and applications, as well as applied and computational mathematics. The focus of PPAM
2022 was on models, algorithms, and software tools that facilitate efficient and conve-
nient utilization of modern parallel and distributed computing architectures, as well as on
large-scale applications, including artificial intelligence and machine learning problems.
Special attention was given to the future of computing beyond Moore’s Law.

This meeting gathered about 170 participants from 25 countries, including about
130 in-person participants. One hundred thirty-two articles were submitted for review.
Each paper secured at least three single-blind reviews from program committee mem-
bers. A thorough peer-reviewing process that included discussion and agreement among
reviewers whenever necessary resulted in the acceptance of 76 contributed papers for
publication in the conference proceedings. For regular conference tracks, 33 papers were
selected from 62 submissions, giving an acceptance rate of about 53%.

The regular tracks covered such important fields of parallel/distributed/cloud
computing and applied mathematics as:

— Numerical algorithms and parallel scientific computing

— GPU computing

— Parallel non-numerical algorithms

— Performance analysis and prediction in HPC (high performance computing) systems
— Scheduling for parallel computing

— Environments and frameworks for parallel/cloud computing

vi

Preface

Applications of parallel and distributed computing
Soft computing with applications

The keynote talks were presented by:

Anima Anandkumar from the California Institute of Technology and Nvidia (USA)
Hartwig Anzt from the Karlsruhe Institute of Technology (Germany) and University
of Tennessee (USA)

Ivona Brandic from the Vienna University of Technology (Austria)

Umit V. Catalyiirek from Georgia Institute of Technology (USA)

Jack Dongarra from the University of Tennessee and ORNL (USA)

Torsten Hoefler from ETH Zurich (Switzerland)

Georg Hager from the University of Erlangen-Nuremberg (Germany)

Simon Knowles from Graphcore (UK)

Satoshi Matsuoka from the Tokyo Institute of Technology (Japan)

Michat Mrozek from Intel (Poland)

Simon McIntosh-Smith from the University of Bristol (UK)

Manish Parashar from Rutgers University (USA)

Voica Radescu from IBM (Germany)

Enrique S. Quintana-Orti from the Universitat Politécnica de Valéncia (Spain)
John Shalf from the Lawrence Berkeley National Laboratory (USA)

Michela Taufer from the University of Tennessee (USA)

Christian Terboven from RWTH Aachen (Germany)

Manuel Ujaldon from the University of Malaga Nvidia

Important and integral parts of the PPAM 2022 conference were the workshops:

The 9th Workshop on Language-Based Parallel Programming (WLPP 2022) orga-
nized by Ami Marowka from the Bar-Ilan University (Israel).

The 6th Workshop on Models, Algorithms and Methodologies for Hybrid Parallelism
in New HPC Systems (MAMHYP 2022) organized by Marco Lapegna, Giulliano
Laccetti and Valeria Mele from the University of Naples Federico II (Italy), Raffaele
Montella from the University of Naples “Parthenope” (Italy), and Sokol Kosta from
Aalborg University Copenhagen (Denmark).

The First Workshop on Quantum Computing and Communication organized by
Krzysztof Kurowski, Cezary Mazurek, and Piotr Rydlichowski from the Poznaf
Supercomputing and Networking Center (Poland)

The First Workshop on Applications of Machine Learning and Artificial Intelligence
in High Performance Computing organized by Sergio Iserte from the Universitat
Jaume I (Spain) and Krzysztof Rojek from the Czgstochowa University of Technology
(Poland).

The 9th Workshop on Scheduling for Parallel Computing organized by Maciej
Drozdowski from the Poznan University of Technology (Poland).

The 4th Workshop on Applied High Performance Numerical Algorithms for PDEs
organized by Piotr Krzyzanowski and Leszek Marcinkowski from Warsaw University
(Poland), Talal Rahman from Bergen University College (Norway), and Jan Valdman
from the University of South Bohemia (Czech Republic).

Preface vii

— The 5th Minisymposium on HPC Applications in Physical Sciences organized by
Grzegorz Kamieniarz and Michat Antkowiak from Adam Mickiewicz University in
Poznan (Poland).

— The 8th Minisymposium on High Performance Computing Interval Methods orga-
nized by Bartlomiej J. Kubica from the Warsaw University of Technology (Poland).

— The 7th Workshop on Complex Collective Systems organized by Jarostaw Was from
the AGH University of Science and Technology (Poland), Tomasz Gwizdalta from
the University of £.6dz (Poland) and Krzysztof Matecki from the West Pomeranian
University of Technology (Poland).

The PPAM 2022 meeting began with four tutorials:

— Introduction to Programming Graphcore IPU, by Graphcore (Pawel Gepner team).

— Fundamentals of Deep Learning using the Nvidia Deep Learning Institute infrastruc-
ture, by Manuel Ujaldon from the University of Malaga (Spain) and Nvidia.

— Quantum Computing, by IBM, and Poznan Supercomputing and Networking Center
(Poland).

— LUMI European Pre-Exascale Supercomputer Hands-on, by Maciej Szpindler and
Marek Magry$ from the Academic Computer Centre Cyfronet AGH (Poland).

The PPAM Best Paper Award is given upon recommendation of the PPAM Chairs
and Program Committee in recognition of the research paper quality, originality, and
significance of the work in high performance computing. For the main track, the PPAM
2022 winners were:

— Rafael Ravedutti Lucio Machado, Jan Eitzinger, Harald Kostler and Gerhard Wellein
from the University of Erlangen-Nuremberg and Erlangen Regional Computing
Center, who submitted the paper “MD-Bench: A generic proxy-app toolbox for
state-of-the-art molecular dynamics algorithms”.

— Anna Sasak-Okon from the Maria Curie-Sktodowska University and Marek Tudruj
from the Polish Academy of Sciences and Polish-Japanese Academy of Information
Technology, who presented the paper “RDBMS speculative support improvement by
the use of the query hypergraph representation”.

For workshops, the PPAM 2022 winners were Yu-Hsiang Tsai, Natalie Beams, and
Hartwig Anzt from the Karlsruhe Institute of Technology and the University of Ten-
nessee, who submitted the paper “Mixed Precision Algebraic Multigrid on GPUs”. To
stimulate potential authors’ interest in submitting high-quality articles to the PPAM
conference, one author of each winning paper will receive a significant reduction in the
conference fee for the next PPAM.

New Topic at PPAM 2022: First Workshop on Applications of Machine Learning
and Artificial Intelligence in High Performance Computing

Machine learning and artificial intelligence methods have become pervasive in recent
years due to numerous algorithmic advances and the accessibility of computational
power. In high performance computing, these methods have been used to replace,
accelerate, or enhance existing solvers.

Research topics of this workshop focused on: (i) disruptive uses of HPC technologies
in the field of Al (artificial intelligence), ML (machine learning), and DL (deep learning);

viii Preface

(ii) integration of predictive models to improve the performance of scientific applica-
tions in terms of execution time and/or simulation accuracy; (iii) workflow of applying
AI/ML/DL to scientific applications in HPC infrastructures; (iv) characterization and
study of how to use HPC techniques with AI/ML/DL; (v) HPC tools and infrastructure
to improve the usability of AI/ML/DL for scientific applications; (vi) optimized HPC
systems design and setup for efficient AI/ML/DL.

These topics were covered at a session that consisted of five presentations:

— adaptation of Al-accelerated CFD simulations to the IPU platform (by P.
Rosciszewski, A. Krzywaniak, S. Iserte, K. Rojek, and P. Gepner)

— performance analysis of convolution algorithms for deep learning on edge processors
(by P. Alonso-Jorda, H. Martinez, E. S. Quintana-Orti, and C. Ramirez)

— machine learning-based online scheduling in distributed computing (by V. Toporkov,
D. Yemelyanov, and A. Bulkhak)

— high performance computing queue time prediction using clustering and regression
(by S. Hutchison, D. Andresen, M. Neilsen, W. Hsu, and B. Parsons)

— acceptance rates of invertible neural networks on electron spectra from near-critical
laser-plasmas: a comparison (by T. Miethlinger, N. Hoffmann, and T. Kluge).

New Topic at PPAM 2022: First Workshop on Quantum Computing and Communi-
cation

The dedicated workshop focused on two relevant quantum technology areas: quan-
tum computation and communication. The main goal of this event was to bring together
scientists and practitioners experimenting with different software and hardware in the
existing Noisy Intermediate-Scale Quantum (NISQ) era. This workshop was also an
excellent opportunity to catch up on taking advantage of quantum computing, par-
ticularly Adiabatic Quantum Computing, and communication technologies from the-
oretical and practical angles. There are many exciting research topics today, from the
design of quantum algorithms, experiments on early access quantum devices, and per-
formance analysis of classical-quantum approaches to early experiences with quantum
communication applications and distributed quantum testbeds.

Therefore, the workshop consisted of nine presentations on various exciting topics
delivered during two sessions:

— An analysis of the potential of quantum computing by examining problems involved
with determining the worst-case execution time of a restricted set of programs (by
Gabriella Bettonte, Stephane Louise, and Renaud Sirdey)

— A study of LDPC decoding using quantum annealing (by Aditya Das Sarma, Utso
Majumder, Vishnu Vaidya, M Girish Chandra, Anil Kumar, and Sayantan Pramanik)

— An overview of ongoing Quantum Key Distribution (QKD) communication tech-
nology in operational networks within commercial network operators and national
research and education networks in Europe (by Piotr Rydlichowski)

— Anew QUBO-based algorithm for the scheduling of heterogeneous tasks on unrelated
parallel machines problem solved using quantum annealing (by F. Orts, A. M. Puertas,
E. M. Garzon, and G. Ortega)

— An approach to studying specific aspects of quantum entanglement contained in the
bipartite pure quantum states (by Roman Gielerak and Marek Sawerwain)

Preface ix

— A study of a set of early experiments with a photonic quantum simulator for solving
the job shop scheduling problem (by Mateusz Slysz, Krzysztof Kurowski, and Jan
Weglarz)

— A proposal for solving the traveling salesman problem with a hybrid quantum-
classical feedforward neural network (by Justyna Zawalska, and Katarzyna Rycerz)

— An analysis of the Eisert-Wilkens-Lewenstein scheme of quantum extension for
selected games on the example of Prisoners Dilemma (by Piotr Kotara, Tomasz
Zawadzki, and Katarzyna Rycerz)

— A new approach to generative quantum machine learning and description of a proof-
of-principle experiment (by Karol Bartkiewicz, Patrycja Tulewicz, Jan Roik, and
Karel Lemr).

The organizers are indebted to PPAM 2022’s sponsors, whose support was vital to
the conference’s success. The main sponsors were the Intel Corporation and Graphcore;
the others were Hewlett Packard Enterprise, Koma Nord, and Inspur. We thank all the
International Program Committee members and additional reviewers for their diligent
work in refereeing the submitted papers. Finally, we thank all of the local organizers from
the Czegstochowa University of Technology and the Gdarisk University of Technology,
who helped us to run the event very smoothly. We are especially indebted to Lukasz
Kuczynski, Marcin WoZniak, Tomasz Chmiel, Piotr Dzierzak, Anna WoZniak, and Ewa
Szymczyk from the Czgstochowa University of Technology; and to Pawel Czarnul and
Mariusz Matuszek from the Gdarisk University of Technology.

We hope that this volume will be useful to you. We would like everyone who reads
it to feel invited to the next conference, PPAM 2024, which will be held on September
8-11, 2024.

January 2023 Roman Wyrzykowski
Jack Dongarra

Ewa Deelman

Konrad Karczewski

Organization

Program Committee

Jan Weglarz (Honorary Chair) Poznan University of Technology, Poland

Roman Wyrzykowski (Chair of Czestochowa University of Technology, Poland
Program Committee)

Ewa Deelman (Vice-chair of
Program Committee)

Konrad Karczewski (Vice-chair Czgstochowa University of Technology, Poland
for Publication)

Marco Lapegna (Vice-chair for University of Naples Federico II, Italy

University of Southern California, USA

Tutorials)
Robert Adamski
Francisco Almeida
Pedro Alonso
Alexander Antonov
Hartwig Anzt

Peter Arbenz
Cevdet Aykanat
Marc Baboulin
David A. Bader
Michael Bader
Bartosz Balis
Piotr Bata
Krzysztof Bana$

Jorge G. Barbosa
Olivier Beaumont
Wtodzimierz Bielecki

Paolo Bientinesi
Jacek Btazewicz
Pascal Bouvry
Jerzy Brzeziniski
Marian Bubak

Intel Corporation, Poland

Universidad de La Laguna, Spain

Universidad Politécnica de Valencia, Spain

Moscov State University, Russian Federation

Karlsruhe Institute of Technology, Germany, and
University of Tennessee, USA

ETH Zurich, Switzerland

Bilkent University, Turkey

University of Paris-Sud, France

New Jersey Institute of Technology, USA

TU Munchen, Germany

Institute of Computer Science AGH, Poland

ICM, Warsaw University, Poland

AGH University of Science and Technology,
Poland

Universidade de Porto, Portugal

Inria Bordeaux, France

West Pomeranian University of Technology,
Poland

Umea University, Sweden

Poznan University of Technology, Poland

University of Luxembourg, Luxembourg

Poznan University of Technology, Poland

AGH Krakéw, Poland, and University of
Amsterdam, The Netherlands

xii Organization

Tadeusz Burczynski
Christopher Carothers
Jesus Carretero
Andrea Clematis
Pawet Czarnul
Zbigniew Czech
Davor Davidovic
Jack Dongarra
Maciej Drozdowski
Mariusz Flasifiski
Tomas Fryza

Lin Gan

Jose Daniel Garcia
Pawel Gepner
Shamsollah Ghanbari

Domingo Gimenez
Jacek Gondzio
Andrzej Goscinski
Georg Hager

José R. Herrero
Ladislav Hluchy
Sasha Hunold
Roman Iakymchuk
Aleksandar Ilic
Krzysztof Jurczuk
Grzegorz Kamieniarz
Eleni Karatza
Jacek Kitowski
Joanna Kotodziej

Jozef Korbicz
Tomas Kozubek
Dieter Kranzlmueller

Henryk Krawczyk
Carola Kruse

Piotr Krzyzanowski
Krzysztof Kurowski
Jan Kwiatkowski
Giulliano Laccetti

Polish Academy of Sciences, Warsaw

Rensselaer Polytechnic Institute, USA

Universidad Carlos III de Madrid, Spain

IMATI-CNR, Italy

Gdansk University of Technology, Poland

Silesia University of Technology, Poland

Ruder Boskovic Institute, Croatia

University of Tennessee and ORNL, USA

Poznan University of Technology, Poland

Jagiellonian University, Poland

Brno University of Technology, Czech Republic

Tsinghua University and National
Supercomputing Center in Wuxi, China

Universidad Carlos III de Madrid, Spain

Graphcore, Poland

Iranian Distributed Computing and Systems
Society, Iran

University of Murcia, Spain

University of Edinburgh, UK

Deakin University, Australia

University of Erlangen-Nuremberg, Germany

Universitat Politecnica de Catalunya, Spain

Slovak Academy of Sciences, Slovakia

Vienna University of Technology, Austria

Umea University, Sweden

Technical University of Lisbon, Portugal

Biatystok University of Technology, Poland

Adam Mickiewicz University, Poland

Aristotle University of Thessaloniki, Greece

Institute of Computer Science, AGH, Poland

NASK and Cracow University of Technology,
Poland

University of Zielona Géra, Poland

Technical University of Ostrava, Czech Republic

Ludwig-Maximillian University and Leibniz
Supercomputing Centre, Germany

Gdansk University of Technology, Poland

CERFACS, France

University of Warsaw, Poland

PSNC, Poland

Wroctaw University of Technology, Poland

University of Naples Federico II, Italy

Alexey Lastovetsky
Joao Lourenco

Tze Meng Low
Hatem Ltaief

Piotr Luszczek
Maciej Malawski

Allen D. Malony
Victor E. Malyshkin

Tomas Margalef
Svetozar Margenov
Ami Marowka
Norbert Meyer
Tosif Meyerov

Marek Michalewicz
Carl Ch. K. Mikkelsen
Ricardo Morla

Daichi Mukunoki
Jarek Nabrzyski

Koji Nakano
Raymond Namyst
Edoardo Di Napoli
Gabriel Oksa

Tomasz Olas

Ariel Oleksiak
Marcin Paprzycki
Dana Petcu

Loic Pottier

Radu Prodan

Enrique S. Quintana-Ort{
Thomas Rauber
Lubomir Riha
Krzysztof Rojek
Witold Rudnicki
Leszek Rutkowski
Krzysztof Rzadca
Robert Schaefer
Stanislav Sedukhin
Franciszek Seredyriski

Organization xiii

University College Dublin, Ireland

University Nova of Lisbon, Portugal

Carnegie Mellon University, USA

KAUST, Saudi Arabia

University of Tennessee, USA

Sano Center for Computational Medicine and
Institute of Computer Science AGH, Poland

University of Oregon, USA

Siberian Branch, Russian Academy of Sciences,
Russia

Universitat Autonoma de Barcelona, Spain

Bulgarian Academy of Sciences, Sofia

Bar-Ilan University, Israel

PSNC, Poland

Lobachevsky State University of Nizhni
Novgorod, Russian Federation

ICM, Warsaw University, Poland

Umea University, Sweden

INESC Porto, Portugal

Riken Center for Computational Science, Japan

University of Notre Dame, USA

Hiroshima University, Japan

University of Bordeaux and Inria, France

Forschungszentrum Juelich, Germany

Slovak Academy of Sciences, Slovakia

Czestochowa University of Technology, Poland

PSNC, Poland

IBS PAN and SWPS University, Poland

West University of Timisoara, Romania

University of Southern California, USA

University of Innsbruck, Austria

Universitat Politecnica de Valencia, Spain

University of Bayreuth, Germany

Technical University of Ostrava, Czech Republic

Czgstochowa University of Technology, Poland

University of Biatystok, Poland

Czgstochowa University of Technology, Poland

Warsaw University, Poland

Institute of Computer Science, AGH, Poland

University of Aizu, Japan

Cardinal Stefan Wyszyniski University in Warsaw,
Poland

Xiv Organization

Sebastiano F. Schifano
Jurij Silc

Renata Stota

Masha Sosonkina
Leonel Sousa
Vladimir Stegailov

Przemystaw Stpiczynski
Robert Strzodka

Lukasz Szustak
Boleslaw Szymanski
Domenico Talia

Andrei Tchernykh
Christian Terboven
Parimala Thulasiraman
Sivan Toledo

Victor Toporkov

Roman Trobec
Giuseppe Trunfio
Denis Trystram
Marek Tudruj

Bora Ucar

Marian Vajtersic
Vladimir Voevodin
Bogdan Wiszniewski
Andrzej Wyszogrodzki

Ramin Yahyapour
Krzysztof Zielinski
Julius Zilinskas
Jarostaw Zola

Steering Committee

Jack Dongarra
Leszek Rutkowski
Boleslaw Szymanski

University of Ferrara, Italy

Jozef Stefan Institute, Slovenia

Institute of Computer Science, AGH, Poland

Old Dominion University, USA

Technical University of Lisbon, Portugal

Joint Institute for High Temperatures of RAS and
MIPT/HSE, Russian Federation

Maria Curie-Sktodowska University, Poland

University of Heidelberg, Germany

Czestochowa University of Technology, Poland

Rensselaer Polytechnic Institute, USA

University of Calabria, Italy

CICESE Research Center, Mexico

RWTH Aachen, Germany

University of Manitoba, Canada

Tel-Aviv University, Israel

National Research University “MPEI”, Russian
Federation

Jozef Stefan Institute, Slovenia

University of Sassari, Italy

Grenoble Institute of Technology, France

Polish Academy of Sciences and Polish-Japanese
Academy of Information Technologies, Poland

Ecole Normale Supérieure de Lyon, France

Salzburg University, Austria

Moscow State University, Russian Federation

Gdansk University of Technology, Poland

Institute of Meteorology and Water Management,
Poland

University of Gottingen/GWDG, Germany

Institute of Computer Science, AGH, Poland

Vilnius University, Lithuania

University of Buffalo, USA

University of Tennessee and ORNL, USA
Czgstochowa University of Technology, Poland
Rensselaer Polytechnic Institute, USA

Contents — Part I1

9th Workshop on Language-Based Parallel Programming
(WLPP 2022)

Kokkos-Based Implementation of MPCD on Heterogeneous Nodes 3
Rene Halver, Christoph Junghans, and Godehard Sutmann

Comparison of Load Balancing Schemes for Asynchronous Many-Task
RUNUMES . ..o e 14
Lukas Reitz, Kai Hardenbicker, and Claudia Fohry

New Insights on the Revised Definition of the Performance Portability
MEIIIC . o e ettt ettt 27
Ami Marowka

Inferential Statistical Analysis of Performance Portability 39
Ami Marowka

NPDP Benchmark Suite for Loop Tiling Effectiveness Evaluation 51
Marek Palkowski and Wlodzimierz Bielecki

Parallel Vectorized Implementations of Compensated Summation
AlLOTItNMS . .o 63
Beata Dmitruk and Przemystaw Stpiczyriski

6th Workshop on Models, Algorithms and Methodologies for Hybrid
Parallelism in New HPC Systems (MAMHYP 2022)

Malleability Techniques for HPC Systems 77
Jesus Carretero, David Exposito, Alberto Cascajo, and Raffaele Montella

Algorithm and Software Overhead: A Theoretical Approach
to Performance Portability i 89
Valeria Mele and Giuliano Laccetti

Benchmarking a High Performance Computing Heterogeneous Cluster 101
Luisa Carracciuolo, Davide Bottalico, Davide Michelino,
Gianluca Sabella, and Bernardino Spisso

Xvi Contents — Part IT

A Generative Adversarial Network Approach for Noise and Artifacts

Reduction in MRI Head and Neck Imagingot 115
Salvatore Cuomo, Francesco Fato, Lorenzo Ugga, Gaia Spadarella,
Reanto Cuocolo, Fabio Giampaolo, and Francesco Piccialli

A GPU Accelerated Hyperspectral 3D Convolutional Neural Network

Classification at the Edge with Principal Component Analysis

Preprocessingttt 127
Gianluca De Lucia, Marco Lapegna, and Diego Romano

Parallel gEUD Models for Accelerated IMRT Planning on Modern HPC

Platforms 139
Juan José Moreno, Janusz Miroforidis, Ignacy Kaliszewski,
and Gracia Ester Martin Garzon

First Workshop on Quantum Computing and Communication

On Quantum-Assisted LDPC Decoding Augmented with Classical

POSE-PrOCEesSING . ..o vttt e 153
Aditya Das Sarma, Utso Majumder, Vishnu Vaidya, M Girish Chandra,
A Anil Kumar, and Sayantan Pramanik

Quantum Annealing to Solve the Unrelated Parallel Machine Scheduling
Problem 165
Francisco Orts, Antonio M. Puertas, Ester M. Garzon, and Gloria Ortega

Early Experiences with a Photonic Quantum Simulator for Solving Job
Shop Scheduling Problem 177
Mateusz Slysz, Krzysztof Kurowski, and Jan Weglarz

Some Remarks on Super-Gram Operators for General Bipartite Quantum
SHAES . ottt 187
Roman Gielerak and Marek Sawerwain

Solving the Traveling Salesman Problem with a Hybrid Quantum-Classical
Feedforward Neural Network, 199
Justyna Zawalska and Katarzyna Rycerz

Software Aided Analysis of EWL Based Quantum Games 209
Piotr Kotara, Tomasz Zawadzki, and Katarzyna Rycerz

Contents — Part IT

First Workshop on Applications of Machine Learning and Artificial
Intelligence in High Performance Computing (WAML 2022)

Adaptation of Al-Accelerated CFD Simulations to the IPU Platform

Pawet Rosciszewski, Adam Krzywaniak, Sergio Iserte, Krzysztof Rojek,
and Pawet Gepner

Performance Analysis of Convolution Algorithms for Deep Learning

on Edge Processorsiiiii

Pedro Alonso-Jordd, Héctor Martinez, Enrique S. Quintana-Orti,
and Cristian Ramirez

Machine Learning-Based Online Scheduling in Distributed Computing

Victor Toporkov, Dmitry Yemelyanov, and Artem Bulkhak

High Performance Computing Queue Time Prediction Using Clustering

and Regressionttt

Scott Hutchison, Daniel Andresen, Mitchell Neilsen, William Hsu,
and Benjamin Parsons

Acceptance Rates of Invertible Neural Networks on Electron Spectra

from Near-Critical Laser-Plasmas: A Comparison

Thomas Miethlinger, Nico Hoffmann, and Thomas Kluge

4th Workshop on Applied High Performance Numerical Algorithms
for PDEs

MATLAB Implementation of Hp Finite Elements on Rectangles Using

Hierarchical Basis Functions

Alexej Moskovka and Jan Valdman

Adaptive Parallel Average Schwarz Preconditioner for Crouzeix-Raviart

Finite Volume Method i

Leszek Marcinkowski and Talal Rahman

Parareal Method for Anisotropic Diffusion Denoising

Xiujie Shan and Martin B. van Gijzen

Comparison of Block Preconditioners for the Stokes Problem

with Discontinuous Viscosity and Friction

Piotr Krzyzanowski

On Minimization of Nonlinear Energies Using FEM in MATLAB

Alexej Moskovka, Jan Valdman, and Marta Vohnoutovd

xXvii

Xviil Contents — Part IT

A Model for Crowd Evacuation Dynamics: 2D Numerical Simulations 343
Maria Gokieli

5th Minisymposium on HPC Applications in Physical Sciences

Parallel Identification of Unique Sequences in Nuclear Structure
Calculations it 357
Daniel Langr and Tomds Dytrych

Experimental and Computer Study of Molecular Dynamics of a New

Pyridazine Derivative oot 370
Sebastian Wotoszczuk, Aneta WoZniak-Braszak, Andrzej Olejniczak,
and Michat Banaszak

Description of Magnetic Nanomolecules by the Extended Multi-orbital
Hubbard Model: Perturbative vs Numerical Approach 382
Romuald Lemariski and Michat Antkowiak

Structural and Electronic Properties of Small-Diameter Carbon

NanoTubes: A DFT Study e 392
Bartosz Brzostowski, Artur P. Durajski, Konrad M. Gruszka,
and Jacek Wojtkiewicz

8th Minisymposium on High Performance Computing Interval
Methods

Need for Techniques Intermediate Between Interval and Probabilistic Ones 405
Olga Kosheleva and Vladik Kreinovich

A Cross-Platform Benchmark for Interval Computation Libraries 415
Xuan Tang, Zachary Ferguson, Teseo Schneider, Denis Zorin,
Shoaib Kamil, and Daniele Panozzo

Testing Interval Arithmetic Libraries, Including Their IEEE-1788
COMPUANCE . . . oottt 428
Nathalie Revol, Luis Benet, Luca Ferranti, and Sergei Zhilin

A Survey of Interval Algorithms for Solving Multicriteria Analysis
Problems 441
Barttomiej Jacek Kubica

Contents — Part 11
7th Workshop on Complex Collective Systems

Social Fragmentation Transitions in Large-Scale Parameter Sweep

Simulations of Adaptive Social Networkscoiiiia..

Hiroki Sayama

Parking Search in Urban Street Networks: Taming Down the Complexity

of the Search-Time Problem via a Coarse-Graining Approach

Léo Bulckaen, Nilankur Dutta, and Alexandre Nicolas

A Multi-agent Cellular Automata Model of Lane Changing Behaviour

Considering the Aggressiveness and the Autonomy

Krzysztof Matecki, Piotr Wrobel, and Patryk Gorka

Comparison of the Use of UWB and BLE as Positioning Methods

in Data-Driven Modeling of Pedestrian Dynamics

Dariusz Patka, Robert Lubas, Giuseppe Vizzari, and Jarostaw Was

An Insight into the State-of-the-Art Vehicular Fog Computing

with an Opportunistic Flavour

Krzysztof Ostrowski and Krzysztof Matecki

Author Index e

Xix

Contents — Part I

Numerical Algorithms and Parallel Scientific Computing

How Accurate Does Newton HavetoBe?
Carl Christian Kjelgaard Mikkelsen, Lorién Lopez-Villellas,
and Pablo Garcia-Risueiio

General Framework for Deriving Reproducible Krylov Subspace
Algorithms: BICGStab Casec..uuiiiiiiiiiiinnn
Roman lakymchuk, Stef Graillat, and José 1. Aliaga

A Generalized Parallel Prefix Sums Algorithm for Arbitrary Size Arrays
Andrzej Sikorski, Izajasz Wrosz, and Michat Lewandowski

Infinite-Precision Inner Product and Sparse Matrix-Vector Multiplication
Using Ozaki Scheme with Dot2 on Manycore Processors
Daichi Mukunoki, Katsuhisa Ozaki, Takeshi Ogita,
and Toshiyuki Imamura

Advanced Stochastic Approaches for Applied Computing in Environmental
MoOdelingot
Venelin Todorov, Ivan Dimov, Maria Ganzha, and Marcin Paprzycki

Parallel Non-numerical Algorithms

Parallel Suffix Sorting for Large String Analytics
Zhihui Du, Sen Zhang, and David A. Bader

Parallel Extremely Randomized Decision Forests on Graphics Processors
for Text Classificationeeuueeeuennnnns
Julio Cesar Batista Pires and Wellington Santos Martins

RDBMS Speculative Support Improvement by the Use of the Query

Hypergraph Representation cooiiiiiiiiiineeeenn..
Anna Sasak-Okorni and Marek Tudruj

GPU Computing

Mixed Precision Algebraic Multigridon GPUs
Yu-Hsiang Mike Tsai, Natalie Beams, and Hartwig Anzt

...... 3

xxii Contents — Part I

Compact In-Memory Representation of Decision Trees
in GPU-Accelerated Evolutionary Induction 126
Krzysztof Jurczuk, Marcin Czajkowski, and Marek Kretowski

Neural Nets with a Newton Conjugate Gradient Method on Multiple GPUs 139
Severin Reiz, Tobias Neckel, and Hans-Joachim Bungartz

Performance Analysis and Prediction in HPC Systems

Exploring Techniques for the Analysis of Spontaneous Asynchronicity
in MPI-Parallel Applicationsc.ooiiiiiiinneetiine i 155
Ayesha Afzal, Georg Hager, Gerhard Wellein, and Stefano Markidis

Cost and Performance Analysis of MPI-Based SaaS on the Private Cloud
Infrastructure 171
Oleg Bystrov, Arnas Kaceniauskas, and Ruslan Pacevi¢

Building a Fine-Grained Analytical Performance Model for Complex

Scientific SImulations 183
Jelle van Dijk, Gabor Zavodszky, Ana-Lucia Varbanescu,
Andy D. Pimentel, and Alfons Hoekstra

Evaluation of Machine Learning Techniques for Predicting Run Times
of Scientific Workflow Jobs 197
Bartosz Balis and Michal Grabowski

Smart Clustering of HPC Applications Using Similar Job Detection
MethOdS ...t 209
Denis Shaikhislamov and Vadim Voevodin

Scheduling for Parallel Computing

Distributed Work Stealing in a Task-Based Dataflow Runtime 225
Joseph John, Josh Milthorpe, and Peter Strazdins

Task Scheduler for Heterogeneous Data Centres Based on Deep
Reinforcement Learning ...ttt i 237
Jaime Fomperosa, Mario Ibariez, Esteban Stafford, and Jose Luis Bosque

Shisha: Online Scheduling of CNN Pipelines on Heterogeneous

ATCRITECTUIRS . . . ottt 249
Pirah Noor Soomro, Mustafa Abduljabbar, Jeronimo Castrillon,
and Miquel Pericas

Contents — Part I

Proactive Task Offloading for Load Balancing in Iterative Applications

Minh Thanh Chung, Josef Weidendorfer, Karl Fiirlinger,
and Dieter Kranzlmiiller

Environments and Frameworks for Parallel/Cloud Computing

Language Agnostic Approach for Unification of Implementation Variants

for Different Computing Devices

Anshu Dubey and Tom Klosterman

High Performance Dataframes from Parallel Processing Patterns

Niranda Perera, Supun Kamburugamuve, Chathura Widanage,
Vibhatha Abeykoon, Ahmet Uyar, Kaiying Shan, Hasara Maithree,
Damitha Lenadora, Thejaka Amila Kanewala, and Geoffrey Fox

Global Access to Legacy Data-Sets in Multi-cloud Applications

with Onedata

Michat Orzechowski, Michat Wrzeszcz, Bartosz Kryza, Lukasz Dutka,
Renata G. Stota, and Jacek Kitowski

Applications of Parallel and Distributed Computing

MD-Bench: A Generic Proxy-App Toolbox for State-of-the-Art Molecular

Dynamics Algorithms

Rafael Ravedutti Lucio Machado, Jan Eitzinger, Harald Kostler,
and Gerhard Wellein

Breaking Down the Parallel Performance of GROMACS,

a High-Performance Molecular Dynamics Software

Mdns I. Andersson, Natarajan Arul Murugan, Artur Podobas,
and Stefano Markidis

GPU-Based Molecular Dynamics of Turbulent Liquid Flows with OpenMM . ..

Daniil Pavlov, Daniil Kolotinskii, and Viadimir Stegailov

A Novel Parallel Approach for Modeling the Dynamics of Aerodynamically

Interacting Particles in Turbulent Flows oo,

Ahmad Ababaei, Antoine Michel, and Bogdan Rosa

Reliable Energy Measurement on Heterogeneous Systems—on—Chip

Based Environmentst e

Alberto Cabrera, Pavel Nichita, Sergio Afonso, Francisco Almeida,
and Vicente Blanco

346

XXiv Contents — Part I

Distributed Objective Function Evaluation for Optimization of Radiation
Therapy Treatment Planst 383
Felix Liu, Mans I. Andersson, Albin Fredriksson, and Stefano Markidis

Soft Computing with Applications

GPU4SNN: GPU-Based Acceleration for Spiking Neural Network
SIMUIAIONS . ..ottt e e 399
Nitin Satpute, Anna Hambitzer, Saeed Aljaberi, and Najwa Aaraj

Ant System Inspired Heuristic Optimization of UAVs Deployment
for k-Coverage Problemt 414
Krzysztof Trojanowski, Artur Mikitiuk, and Jakub Grzeszczak

Dataset Related Experimental Investigation of Chess Position Evaluation
Using a Deep Neural Networkt 429
Dawid Wieczerzak and Pawet Czarnul

Using Al-based Edge Processing in Monitoring the Pedestrian Crossing 441
Ltukasz Karbowiak and Mariusz Kubanek

Special Session on Parallel EVD/SVD and its Application in Matrix
Computations

Automatic Code Selection for the Dense Symmetric Generalized
Eigenvalue Problem Using ATMathCoreLib 453
Masato Kobayashi, Shuhei Kudo, Takeo Hoshi, and Yusaku Yamamoto

On Relative Accuracy of the One-Sided Block-Jacobi SVD Algorithm 464
Gabriel OksSa and Martin Becka

Author Index 477

9th Workshop on Language-Based
Parallel Programming (WLPP 2022)

®

Check for
updates

Kokkos-Based Implementation of MPCD
on Heterogeneous Nodes

Rene Halver!®, Christoph Junghans®®, and Godehard Sutmann®-3®)

b Jiilich Supercomputing Centre, Institute for Advanced Simulation,
Forschungszentrum Jiilich, 52425 Jiilich, Germany
{r.halver,g.sutmann}@fz-juelich.de
2 Los Alamos National Laboratory, CCS-7, 87545 Los Alamos, NM, USA
junghans@lanl.gov
3 ICAMS, Ruhr-University Bochum, 44801 Bochum, Germany

Abstract. The Kokkos based library Cabana, which has been devel-
oped in the Co-design Center for Particle Applications (CoPA), is used
for the implementation of Multi-Particle Collision Dynamics (MPCD),
a particle-based description of hydrodynamic interactions. It allows a
performance portable implementation, which has been used to study the
interplay between CPU and GPU usage on a multi-node system. As a
result, we see most advantages in a homogeneous GPU usage, but we
also discuss the extent to heterogeneous applications, using both CPU
and GPU concurrently.

Keywords: Kokkos - Multi-particle collision dynamics -
GPU-computing - particle simulations * performance portability

1 Introduction

The recent development of high-end parallel architectures shows a clear trend
to a heterogeneity of compute components, pointing towards a dominance of
General Purpose Graphics Processing Units (GPU) as accelerator components,
compared to the Central Processing Units (CPU). According to the Top 500
list [4], more than 25% of the machines have GPU support while the overall per-
formance share is more than 40%, i.e., heterogeneous cluster architectures have a
large impact for high compute performance. Often these nodes consist of only a
few multicore CPUs, while supporting 2—6 GPUs. In many applications one can
observe a trend that the most powerful component of the nodes, i.e. the GPUs,
is addressed, while the CPUs are used as administrating or data management
components. A reason might be the additional overhead in writing/maintaining
two different code versions for each architecture, as usually a CPU code cannot
simply run on a GPU or vice versa.

With the advent of performance portable programming models, such as
Kokkos [6] or Raja [16] it has become possible to use the same code base for
different architectures, most prominently including CPUs or GPUs. It might

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 3-13, 2023.
https://doi.org/10.1007/978-3-031-30445-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_1&domain=pdf
http://orcid.org/0000-0002-4895-3762
http://orcid.org/0000-0003-0925-1458
http://orcid.org/0000-0002-9004-604X
https://doi.org/10.1007/978-3-031-30445-3_1

4 R. Halver et al.

be tempting to use the full capacity of a compute-node concurrently, i.e. not
wasting compute resources because of the disparate character of the architec-
ture and programming model. In this case one encounters both different perfor-
mance characteristics of components and possibly a non-negligible data transfer
between components. This discrepancy might be targeted by load balancing
strategies which would need to take into account hardware and software specific
characteristics to achieve an overall performance gain.

In the present paper we consider a stochastic particle based method for the
simulation of hydrodynamic phenomena, i.e. the Multi-Particle Collision Dynam-
ics (MPCD) [8] algorithm and its implementation with Cabana [2,14,17], a
Kokkos based library. We first introduce the underlying MPCD method and
then describe the Cabana library. We then present some benchmark results and
finally draw conclusions from our findings and give some outlook for further
research.

2 Multi-Particle Collision Dynamics

MPCD is a particle-based description for hydrodynamic interactions in an incom-
pressible fluid. The method is based on a stochastic collision scheme in which
particles, that describe the simulated fluid are rotated in velocity space while con-
serving linear momentum and energy (variants exist which also conserve angular
momentum [8]). The method proceeds by sorting particles into a regular mesh
with grid cells of size of a characteristic length scale. In order to transport
momentum and energy across the system, the mesh is randomly shifted in each
time step, changing the local environment of each particle stochastically. For
each particle in a cell its relative velocity with respect to the center-of-mass
(com) velocity of the cell is computed. This velocity is split into a parallel and
perpendicular component with respect to a randomly oriented axis in the cell.
Consequently, the perpendicular component is rotated around that axis by a
fixed angle, which determines together with the particle mass and density, the
time step and the cell length the diffusion and viscosity of the fluid under consid-
eration. This procedure can be shown to mimic hydrodynamic behaviour and, in
a limiting case, enters into the Navier Stokes equations [8]. Using this procedure
the conservation of linear momentum and energy is guaranteed and can also
be coupled to embedded particles, simulated by other methods, e.g. molecular
dynamics, thereby coupling particle dynamics to a hydrodynamic medium [8,12].

From an algorithmic point of view, three main parts can be identified, i.e. (i)
the local identification of particles in the underlying cell structure and the com-
putation of com velocities of cells; (ii) the computation of the relative velocities
of particles with respect to the com velocity of a cell; (iii) rotation of perpen-
dicular velocity component of particles around a random axis. These parts will
be discussed separately in Sect. 3 in more detail in the context of the Cabana
implementation.

Kokkos-Based Implementation of MPCD on Heterogeneous Nodes 5

| 1
| 1
I |
[@
| Pey 0%l ol
I o (Y'Y I |
[e® @ .l :
\71 \77 7\7777 -___l
R
| I . I) 1
Q0 1| 1| &
e e ®l¢g @TT "
| | [X |]
I | | | |
I | | | |
Lo oo _Jd____1L____

Fig. 1. Nlustration of the shifted collision cell grid (black, dashed) in comparison to
the static logical cell grid (black, solid). The grey cells mark the periodic images of the
shifted grid. (Color figure online)

3 Implementation with Cabana

The aim of the implementation was to write a code, that is performance portable
between clusters consisting of CPU and clusters with GPU nodes, which often
consist of one or two CPUs and a number of GPUs ranging from two to six.
Maintaining two or more codebases for all targeted architectures increases the
overhead time of, e.g., design or maintenance time, and calls for solutions which
allow a unified approach for various architectures.

For this reason performance portable programming models are attractive
for reducing time spent with porting codes to various architectures. One of the
more popular programming models in this regard is Kokkos [6], which provides
an abstraction layer for data structures, called Views, while providing differ-
ent ErecutionSpaces which can either be on the host (usually the CPU) or on
devices, i.e. GPUs or other accelerator cards, e.g. Intel KNLs. Kokkos uses differ-
ent backends to provide this performance portability, e.g. CUDA for the use of
NVIDIA GPUs or ROCm for the use of AMD GPUs. Furthermore, OpenMP or
PThread backends can be used among others to utilise multicore architectures
of CPUs.

Within the Exascale Computing Project (ECP) [5] funded by the Department
of Energy (DoE) in the USA, the Co-Design Center for Particle Applications
(CoPA) [3] developed a performance portable library, based on Kokkos, with
the main focus of supporting the development of particle and grid based codes
on HPC systems. Cabana not only provides data structures based on Kokkos
Views but also provides routines in order to facilitate data transfer between dif-
ferent processes in a distributed-memory environment, based on MPI.

Since the MPCD method is a mixture of a particle and a grid based method (due
to the requirement to sort the particles into cells), the implementation of the
MPCD code using Cabana was considered reasonable. In the rest of the section
the main points of the implementation will be presented.

6 R. Halver et al.

3.1 Collection of Particles in Cells

Before the com velocity for a cell can be calculated, it is necessary to identify
the particles that reside in each collision cell. One technique to achieve this
is the linked-cell list. Accordingly, all particles are checked and flagged with a
cell identifier to which they belong to. In addition, a (linked) list of particles
belonging to the cell is created. Listing 1.1 shows how such a list is created in
Cabana. The use of Cabana simplifies the creation of such a linked cell list, as
Cabana deals with the issues of creating a linked cell list in a multithreaded
environment, as described e.g. in [11] or [15].

Listing 1.1. Creation of the linked cell list of the shifted collision cell grid
// boundaries of spacial domains
double gridMin[3], gridMax[3];
for (int 4 = 0; d < 3; ++d)

{
gridMin[d] = domBorders(2xd) - (double)haloWidth
* cellSize(d) + offset(d);
gridMax [d] = domBorders (2*xd+1) + (double)haloWidth
* cellSize(d) + offset(d);
}

// creating the linked cell list
// v = list of particle positions
// cellSize = size of linked cells (3d)
Cabana::LinkedCellList<DeviceType>

linkedList(r, cellSize, gridMin, gridMax);
// permute the particle AoSod to correspond to the cells
Cabana::permute(linkedList, particles);

3.2 Communication of Required Information

As described in Sect. 2, it is necessary to compute the com velocity, i.e. the veloc-
ity in a zero momentum frame with regard to the local collision cell [7], in order
to calculate the collisions within each mesh cell, which requires all velocities and
masses of particles that reside within the given collision cell. The underlying par-
allel algorithm is based on a domain decomposition, where compute resources
administrate geometrical spatial regions which are connected. Since the underly-
ing mesh is shifted in each time step cells might be split among several domains.
To compute a unique value for the com velocity, one can either collect all par-
ticles together with their properties on a local domain or one can compute the
partial com velocities on each local domain and then reduce this value among
those processes which share the given cell.

The first of these methods has the advantage that since all particles are col-
lected on a single domain, the computation of the com velocity and the following
rotation of velocities can be executed without the need of additional communica-
tion steps in between. The disadvantage is that it requires the communication of
particle data in each time step, since the collision cell mesh needs to be shifted in

Kokkos-Based Implementation of MPCD on Heterogeneous Nodes 7

each time step to avoid artefacts in the computation of the hydrodynamic inter-
actions. Listing 1.2 shows the necessary steps to prepare the particle migration
between domains. Shown here is a way to try to avoid unnecessary branching
while determining the target processes for particles. This is done by masking the
target processes with a base-3 number, where each ’'bit’ indicates either a shift
down(0) or up (1) or residing in the domain’s boundary concerning that Carte-
sian direction. As an example a base-3 number of (201)3 would be assigned to a
particle leaving the local domain in positive x-direction and negative y-direction,
while stay in the same z-region, as the local domain. This way to determine tar-
get processes should improve execution on GPU, with the tertiary operator being
removed, in case that true is cast to integer one and false to integer zero.

Listing 1.2. Particle based communication with Cabana

Kokkos::parallel_for (
Kokkos::RangePolicy<ExecutionSpace>(0, nParticles),
KOKKOS_LAMBDA (const size_t i)

{
int dims = 1, index = 0;
// compute the direction of the neighbour the particle
// mneeds to be moved to and use dims to compute a
// base 3 mask:
// (zyz)_3 with 0 (left), 1 (remains), 2 (right)
// r = list of particle positions
for (int 4 = 2; d >= 0; --d)
{
index += dims *
(1 - ((r(i,d) < domBorders(2*d))?71:0) +
((r(i,d) >= domBorders (2%*d+1))?71:0));
dims *= 3;
}
// tag the particle with the target neighbour rank
export_ranks (i) = neigs(index);
1)

Kokkos::fence ();

// create particles distribution object and

// migrate particles to targets

Cabana::Distributor<DeviceType> dist(mpiCart,
export_ranks, neighbours);

Cabana::migrate(dist, particles);

In contrast, the second method allows the use of a stable, halo-based commu-
nication scheme, where particles are not necessarily communicated in each time
step, but only when leaving a halo region around the local domain, allowing the
distributed computation of partial com velocities, that are reduced with a static
communication scheme. The result is then sent back to the domains sharing the
same cell. Listing 1.3 shows the required function calls to Cabana to do the halo
exchange. This work, related to mesh administration, is implemented in Cajita,

8 R. Halver et al.

which is part of Cabana. In addition, it provides methods for particle-grid inter-
actions, e.g. interpolation of particle properties to a grid, which is, however, not
used in this work. Furthermore, Cajita provides a domain-based load balancing
based on a tensor decomposition scheme, provided by the ALL library [9].

Listing 1.3. Grid based halo communication with Cabana
// create the halo communication object based
// on the Cajita grid
auto arrHalo = Cajita::createHalo(*arrNode,
Cajita::NodeHaloPattern<3>());

// [...] computation of com wvelocities
// bring the data to the halo cells
arrHalo->gather (ExecutionSpace (), *arrNode);
// collect the data from the halo cells
arrHalo->scatter (ExecutionSpace (),

Cajita::ScatterReduce::Sum(), *arrNode);

For the implementation of the two different communication schemes two dif-
ferent kinds of communication in Cabana were used. For the former method, the
particle-based one, Cabana provides a Distributor class, which allows the trans-
fer of particle data between processes. This requires that particles are tagged
with the target process, so that the Distributor object can generate a communi-
cation topology for this specific transfer. As a consequence this object needs to
be recreated in every time step, since the communication pattern in each time
step changes due the random shift of the collision cell grid and particle move-
ments across domain borders.

For the second communication pattern, reducing the partial results and redis-
tributing them, a halo-based communication on a grid is used. For this purpose,
two different grids are combined, i.e. a logical collision grid which is used for
communication and a linked-cell list, which sorts the particles into the shifted
collision cell grid. Since the number and size of mesh cells in each grid is iden-
tical, both grids can be perfectly matched onto each other. The particles are
sorted into the linked-cell list (Sect. 3.1) from where the com momentum of each
cell is computed. For collision cells, overlapping with domain borders (Fig. 1),
a halo-based communication reduces the partial results on the process which
administrates the logical cell. This process redistributes the reduced sum back
to each participating neighbour, where the rotations of velocities are computed
for residing particles. Since the number of cells is usually far smaller than the
number of particles, this leads to (i) a static communication scheme (for each
iteration step the same operations on the same amount of data) and (ii) a reduced
and constant amount of data that needs to be communicated.

During the development, it became apparent that the second communication
scheme leads to a better performance due to the reduced amount of transferred
data and the strongly reduced necessity to recreate communication patterns, due
to the stable communication scheme of the halo exchange (this needs to be done

Kokkos-Based Implementation of MPCD on Heterogeneous Nodes 9

only once in the beginning or after possible load balancing steps, after which
the communication pattern is static). In addition, the transfer of particles can
be reduced to cases, where particles left the halo region surrounding the local
domain, instead of being required in every time step.

3.3 Rotation of Velocities

To simplify the computation of the velocity rotation, the linked cell list men-
tioned in Sect. 3.1 is used to sort particles into the correct cell of the collision cell
grid. Using the com velocity, gathered by one of the two previously described
methods, the linked-cell list provides the particles which belong to the given cell
and their velocity vector rotated.

Listing 1.4. Using the linked cell list from listing 1.1 to compute the com velocity

// Kokkos parallel_for iterates over
// all cells on local domain

// vem = Kokkos::View containg the center
// of mass wvelocites for each

/7 collistion cell

// v = Cabana::slice containing

// particle velocities

// m = Cabana::slice containing

// particles masses

Kokkos::parallel_for (Kokkos::RangePolicy<ExecutionSpace>
(0, linkedList.totalBins()),
KOKKOS_LAMBDA(const size_t i)
{
int ix, iy, iz;
// computing the cartesian coordinates of the cell
linkedList.ijkBinIndex (i, ix, iy, iz);
int binOff = linkedList.binOffset(ix, iy, iz);
// compute com velocity
for (int 4 = 0; d < 4; ++d)
vem(ix,iy,iz,d) = 0.0;
// computing com momentum and sum of mass
for (int n = 0; n < linkedList.binSize(ix,iy,iz); ++n)
{
for (int d = 0; d < 3; ++d)
vem(ix,iy,iz,d) += v(binOff + n, d) *
m(bin0ff + n);
vem (ix,iy,iz,3) += m(binOff + n);
}
b
Kokkos::fence ();

10 R. Halver et al.

10*

10.‘3

runtime

10?
10!
0
10 32 64 128 256 512
system size system size system size
(a) CPU (Fortran) (b) GPU (C++) (c) F90 (s) and C++ (OMP)
10° [—e—or P
- = o
fw 10?
§ 10*
10"
10!
Ct AN
0 1
10 32 64 128 32 64 128 10 32 64
system size system size system size
(d) F90 (s) and C++ (serial) (e) F90 (CPU) C++ (GPU) (f) CPU+GPU/GPU (C++)

Fig. 2. Performance comparison between existing Fortran implementation and new
Cabana implementation using multiple nodes.

4 Benchmarks and Discussion

For the benchmark runs simple fluid systems were used, i.e. a pure MPCD fluid
in 3d periodic boundary conditions. Each cubic collision cell has an edge length of
one length unit, while containing (N.) = 10 particles on average. Each system in
the benchmarks is cubic with side length L (the edge length L given as the system
size in the following graphs, i.e. Fig. 2), from where the total number of particles
in a system is computed as N = L3 (N,.). To check the performance of the newly
implemented code, it was compared to an existing Fortran implementation of
the MPCD algorithm [12,18].

The benchmarks were performed on the Juwels booster module [13] at Jiilich
Supercomputing Centre, consisting of GPU nodes with four NVIDIA A100 cards
and two AMD EPYC 7402 processors, with 24 cores each. To maintain compa-
rability of the benchmarks the pure CPU runs were also performed on these
nodes. Since the GPU nodes are much more powerful in their computing capa-
bilities, we performed the benchmarks for the GPU runs on node numbers from
one to 16, doubling the node count each time. For the CPU, expecting longer
runtimes we chose to compare single node runs with runs on four nodes, while
also restricting the system size to a maximum edge length of 128 while for the
GPU runs we performed the benchmarks to a maximum edge length of 512. The
edge length directly influences the number of particles in the simulation, since

Kokkos-Based Implementation of MPCD on Heterogeneous Nodes 11
Table 1. Tables of runtimes for the different implementations. Empty cells indicate

combinations of node numbers and system sizes, for which additional measurements
did not show additional information. All runtimes presented are given in seconds.

(a) Runtimes for GPU C++ variant, using 4 GPUs on each node.

size | 1 node | 2 nodes | 4 nodes | 8 nodes 16 nodes
32| 52.96| 59.47| 53.36
64| 75.55| 86.48| T78.77
128 | 162.88 | 130.27| 107.29| 92.11
256 | 652.25| 335.12| 211.51| 182.18 144.60
512 | 5897.44 | 2774.35 | 1429.14 | 648.252 327.49

(b) Runtimes for CPU variants, Fortran (F90) and the C++ based

variants, i.e. OpenMP-based (OMP) or serial, i.e. no hybrid

parallelization, using one or four nodes (N). OMP uses 8 MPI ranks with
6 threads each on a node, the Fortran and serial version 48 MPI ranks per
node. Only system sizes up to edge length 128 are presented due to the

longer runtimes.

size |[F90 1 N |F90 4 N | OMP 1 N| OMP 4 N | serial 1 N serial 4 N
32 5.36 2.75 42.62 16.37 38.33 15.06
64| 49.59 11.20 284.73 78.79 221.38 69.06

128 | 819.06 | 132.06 | 2268.80 555.42 1967.42 474.67

there are about [3 collision cells in the system, with [being the edge length of
the system, each collision cell containing ten particles on average.

As backends for Kokkos were the AMD and Ampere70 used, since these
corresponded best to the available hardware. No further optimization on the
basis of compiler flags was attempted yet due to time constraints, but these tests
will be performed in the future. Table 1 and Fig. 2 show results for four different
benchmarks: (i) C++/Kokkos implementation with GPU variant (Table la and
Fig.2b); (ii) C++/Kokkos variant with OpenMP (Table 1b and Fig.2c); (iii)
C++/Kokkos variant with serial backend and (iv) the previous implementation
of the MPCD algorithm in Fortran (Table 1b and Fig.2a) for comparison with
the new implementation.

The original Fortran code shows a quite good scaling behaviour for all studied
cases (edge lengths L € [32,512]), as can be seen in Fig. 2a. In comparison to that
the scaling behaviour of the GPU variant of the C++ implementation shows for
the smaller system sizes a super-linear scaling behaviour, before reaching linear
behaviour at system sizes 256 and 512, indicating that smaller sizes not fully
utilise the GPU (Fig. 2b).

When comparing the performance of the Fortran implementation (Fig.2a)
and the CPU based variants of the C++ version, i.e. OpenMP based or serial, it
can be seen that Fortran achieves much better results (Figs. 2c, 2d). An expla-

12 R. Halver et al.

nation for this behaviour still needs to be analysed in more depth. But first
results point towards a different level of optimization (which is not the main
focus of this article). In contrast, the GPU variant is able to outperform the
Fortran implementation given sufficiently large system sizes, as can be seen in
Fig. 2e, comparing the benchmark results on a single node, respectively. Here
only the results for system sizes 32 and 64 are shown, since the measurement
strongly hint that for larger system sizes the gap between hybrid execution and
pure GPU execution will only widen.

Furthermore, it was tested on a single node if the combination of GPU and
CPU could result in a better performance than only GPU computations. Due to
the obtained performance of the CPU-based C++ variants, the results indicate
at this stage no performance gain for hybrid execution (Fig. 2f). In case of a per-
formance improvement of the CPU-based variants, this result might change for
smaller system sizes. Note that for small systems load balancing GPU and CPU
ranks can improve the overall performance for hybrid execution significantly, but
not sufficiently in order to outperform either pure CPU or GPU. This does not
lead to a recommendation of a hybrid execution model at this stage.

5 Conclusion and Outlook

Considering the benchmark results of the new implementation of the MPCD
code the following conclusions can be drawn:

(i) It is possible to implement a scalable MPCD algorithm with Cabana, that
for large enough systems is faster on GPUs than the existing Fortran imple-
mentation. The CPU variant of the Cabana implementation needs to be
improved upon to bring the performance closer to the one of the Fortran
code.

(ii) Load balancing between CPU and GPU can support hybrid execution, but
was not found to increase performance beyond the one of pure CPU or
GPU usage.

(iii) The porting effort from a pure CPU variant to a multi-architecture variant
was significantly decreased by using Cabana, which offers an architecture
independent development and code implementation which provides a uni-
fied and transparent view for the programmer. Porting effort is therefore
dramatically reduced by maintaining performance (which was not the focus
here, but which is demonstrated for other use cases [1,6,10]).

(iv) The implementation of the MPCD algorithm allows further investigation of
coupled simulations of MPCD fluids with embedded Molecular Dynamics
(MD) systems, e.g. polymer chains. For this, an implementation based on
a unified formulation of MD and MPCD, as described, e.g., in [8,12], is
required. Since the ratio of MD- to MPCD particles is often small, this
could profit from a hybrid implementation and execution model, which
invites to further investigations, including execution models for modular
supercomputing.

Kokkos-Based Implementation of MPCD on Heterogeneous Nodes 13

References

10.

11.

12.

13.

14.

15.

16.
17.

18.

Artigues, V., Kormann, K., Rampp, M., Reuter, K.: Evaluation of performance
portability frameworks for the implementation of a particle-in-cell code. Concurr.
Comput. Pract. Exp. 32(11), 5640 (2020). https://doi.org/10.1002/cpe.5640
Cabana. https://github.com/ECP-copa/Cabana

Co-Design Center for Particle Applications. https://www.exascaleproject.org/
research-project /particle-based-applications/

Dongarra, J., Luszczek, P.: TOP500, pp. 2055-2057. Springer, US, Boston, MA
(2011). https://doi.org/10.1007/978-0-387-09766-4_157

Exascale Computing Project. https://www.exascaleproject.org/

Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: Enabling manycore perfor-
mance portability through polymorphic memory access patterns. J. Parallel Dis-
trib. Comput. 74(12), 3202-3216 (2014). https://doi.org/10.1016/j.jpdc.2014.07.
003

Goldstein, H., Poole, C., Safko, J.: Classical Mechanics. Addison Wesley, San Fran-
cisco (2002)

Gompper, G., Ihle, T., Kroll, D.M., Winkler, R.G.: Multi-Particle Collision Dynam-
ics: A Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of
Complex Fluids. In: Advanced Computer Simulation Approaches for Soft Matter
Sciences III, pp. 1-87. Springer, Berlin Heidelberg (2008). https://doi.org/10.1007/
978-3-540-87706-6_1

Halver, R., Schulz, S., Sutmann, G.: ALL - A loadbalancing library, C++/Fortran
library. https://gitlab.version.fz-juelich.de/SLMS /loadbalancing/- /releases
Halver, R., Meinke, J.H., Sutmann, G.: Kokkos implementation of an Ewald
coulomb solver and analysis of performance portability. J. Parallel Distrib. Com-
put. 138, 48-54 (2020). https://doi.org/10.1016/j.jpdc.2019.12.003

Halver, R., Sutmann, G.: Multi-threaded construction of neighbour lists for particle
systems in OpenMP. In: Parallel Processing and Applied Mathematics 11th Inter-
national Conference, PPAM 2015, Krakow, Poland, 6-9 September 2015. Revised
Selected Papers, Part II. 11th International Conference on Parallel Processing and
Applied Mathematics, Krakow (Poland), 6 Sep 2015-9 Sep 2015 (2015). https://
juser.fz-juelich.de/record /279249

Huang, C., Winkler, R., Sutmann, G., Gompper, G.: Semidilute polymer solutions
at equilibrium and under shear flow. Macromolecules 43, 10107-10116 (2010)
Juwels. https://www.fz-juelich.de/ias/jsc/EN /Expertise/Supercomputers/
JUWELS/JUWELS node.html

Mniszewski, S.M., et al.: Enabling particle applications for exascale computing
platforms. Int. J. High Perform. Comput. Appl. 35(6), 572-597 (2021). https://
doi.org/10.1177/10943420211022829

Ohno, K., Nitta, T., Nakai, H.: SPH-based fluid simulation on GPU using verlet
list and subdivided cell-linked list. In: 2017 Fifth International Symposium on
Computing and Networking (CANDAR), pp. 132-138 (2017). https://doi.org/10.
1109/CANDAR.2017.104

RAJA Performance Portability Layer. https://github.com/LLNL/RAJA

Slattery, S., et al.: Cabana: a performance portable library for particle-based sim-
ulations. J. Open Source Softw. 7(72), 4115 (2022). https://doi.org/10.21105/joss.
04115

Sutmann, G.: MP2C (2022). https://fz-juelich.de/en/ias/jsc/about-us/structure/
simulation-and-data-labs/sdl-molecular-systems/mp2c

https://doi.org/10.1002/cpe.5640
https://github.com/ECP-copa/Cabana
https://www.exascaleproject.org/research-project/particle-based-applications/
https://www.exascaleproject.org/research-project/particle-based-applications/
https://doi.org/10.1007/978-0-387-09766-4_157
https://www.exascaleproject.org/
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1007/978-3-540-87706-6_1
https://doi.org/10.1007/978-3-540-87706-6_1
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing/-/releases
https://doi.org/10.1016/j.jpdc.2019.12.003
https://juser.fz-juelich.de/record/279249
https://juser.fz-juelich.de/record/279249
https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUWELS/JUWELS_node.html
https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUWELS/JUWELS_node.html
https://doi.org/10.1177/10943420211022829
https://doi.org/10.1177/10943420211022829
https://doi.org/10.1109/CANDAR.2017.104
https://doi.org/10.1109/CANDAR.2017.104
https://github.com/LLNL/RAJA
https://doi.org/10.21105/joss.04115
https://doi.org/10.21105/joss.04115
https://fz-juelich.de/en/ias/jsc/about-us/structure/simulation-and-data-labs/sdl-molecular-systems/mp2c
https://fz-juelich.de/en/ias/jsc/about-us/structure/simulation-and-data-labs/sdl-molecular-systems/mp2c

q

Check for
updates

Comparison of Load Balancing Schemes
for Asynchronous Many-Task Runtimes

Lukas Reitz(®™), Kai Hardenbicker, and Claudia Fohry

Research Group Programming Languages/Methodologies, University of Kassel,
Kassel, Germany
{lukas.reitz,fohry}Quni-kassel.de

Abstract. A popular approach to program scalable irregular applica-
tions is Asynchronous Many-Task (AMT) Programming. Here, programs
define tasks according to task models such as dynamic independent
tasks (DIT) or nested fork-join (NFJ). We consider cluster AMTs, in
which a runtime system maps the tasks to worker threads in multiple
processes.

Thereby, dynamic load balancing can be achieved via work-stealing
or work-sharing. A well-performing work-stealing variant is the life-
line scheme. While previous implementations are restricted to single-
worker processes, a recent hybrid extension combines the scheme with
intra-process work-sharing between multiple workers. The hybrid scheme
comes at the price of a higher complexity.

This paper investigates whether this complexity is indispensable by
contrasting the scheme with a pure work-stealing extension of the lifeline
scheme introduced in the paper. In an experimental comparison based
on independent DIT and NFJ implementations and three benchmarks,
the pure work-stealing scheme is on a par or even outperforms the hybrid
one by up to 3.8%.

Keywords: Work Stealing - Work Sharing + Runtime Systems -
Asynchronous Many-Tasking - Task-based Parallel Programming

1 Introduction

Asynchronous Many-Task (AMT) programming, as exemplified by Cilk [2],
OpenMP tasks [14], and HPX [7], is a popular approach to tackle irregular-
ity in parallel applications. AMT programs partition the computation into units
called tasks, and a runtime system (briefly called AMT, as well) maps the tasks
to lower-level resources called workers. We consider cluster AMTs, for which the
workers correspond to threads of multiple processes that may run on different
nodes.

AMTSs can be classified by their model of task cooperation [6]. In particular,
dynamic tasks are allowed to spawn child tasks to which their parent task may
pass parameters. We consider two subclasses:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 14-26, 2023.
https://doi.org/10.1007,/978-3-031-30445-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_2&domain=pdf
https://doi.org/10.1007/978-3-031-30445-3_2

Comparison of Load Balancing Schemes for AMT Runtimes 15

1. Dynamic Independent Tasks (DIT) do not communicate, but yield a task
result. The final result is calculated from the task results by reduction, e.g.,
by integer summation. Examples for DIT runtimes include GLB [27] and
Blaze-Tasks [15].

2. Nested Fork-Join (NFJ) programs begin the computation with one root task.
Then each task returns its result to its parent, and the root task yields the
final result. Examples for NFJ runtimes include Cilk and Satin [12].

Many AMTs deploy dynamic load balancing, which may be accomplished via
work stealing or work sharing. In work stealing, idle workers (thieves) take tasks
from other workers (victims), whereas in work sharing, busy workers give tasks
to others.

A well-performing work stealing variant is Lifeline-based Global Load Balanc-
ing, briefly called the lifeline scheme [22]. It was first implemented in the Global
Load Balancing (GLB) library of the parallel programming language X10 [3] and
later ported to Java [17]. Unfortunately, these implementations allow only one
worker per process.

A recent hybrid scheme overcomes this limitation by combining the lifeline
scheme for work stealing between the processes with work sharing among mul-
tiple workers within a process. This scheme has been implemented in Java GLB
variants for DIT and NFJ, which we denote by DIT},ypriq [5] and NFJ 64 [21],
respectively.

While the hybrid scheme overcomes the single-worker limitation, its hybrid
design has the drawback of a higher complexity. This led us to our research
question: Is the complexity of the hybrid scheme indispensable for an efficient
extension of the lifeline scheme to multiple workers per process?

To answer the question, we extended the lifeline scheme so that it solely relies
on work stealing, but still has multiple workers per process. Our new scheme,
which we call lifeline-pure, is essentially identical to the lifeline scheme, except
that threads instead of processes take over the role of workers. In particular,
each worker (thread) within a process maintains its own task queue. When a
worker runs empty, it tries to steal tasks from a random worker, which is any
thread in the same or in a different process. As will be discussed later, preferring
local over global victims may increase the efficiency. Nevertheless, even without
such locality optimization in place, we were able to show that the lifeline-pure
scheme is on a par or even outperforms the more complicated hybrid scheme by
up to 3.8%.

We conducted our experiments with up to 1280 workers and three bench-
marks. Two implementations of the lifeline-pure scheme were used. Both are
based on Java GLB, and are called DIT,,,. and NFJ,,,., respectively. To
strengthen our results, the DIT and NFJ implementations were developed inde-
pendently by the second and first authors of this paper, respectively.

The remainder of the paper is organized as follows. Section 2 provides further
details on the load balancing schemes and task models. Then, Sect. 3 discusses
the design and implementation of DIT,,,. and NFJ,,,.. Experimental results

16 L. Reitz et al.

are presented and discussed in Sect. 4. The paper finishes with related work and
conclusions in Sects. 5 and 6, respectively.

2 Background

2.1 Lifeline Scheme

The lifeline scheme [22] deploys cooperative work stealing, i.e., thieves ask their
victims for tasks, and victims respond by sending tasks or a reject message.
When a worker runs out of tasks, it first attempts to steal from up to w random
victims. If all random steal attempts fail, it informs z so-called lifeline buddies,
which are neighbored workers in a connected graph, called the lifeline graph.
The lifeline buddies record all lifeline steal attempts and possibly answer them
later.

Each worker maintains an own local task queue. It takes out tasks for pro-
cessing and inserts child tasks at one end, and extracts loot for thieves at the
other. The workers communicate in work stealing by calling a function on the
remote worker, where it is executed by an additional thread. For example, to
answer a successful random steal request, the victim calls a function on the thief
and passes the tasks as a parameter. The function inserts the tasks into the
thief’s local task queue, which is synchronized for this purpose.

Listing 1.1 depicts pseudocode for the main loop of each worker. Workers
process tasks in chunks of k tasks (line 3), after which they respond to recorded
steal requests (line 4). When a worker runs out of tasks, it first tries to steal from
random victims (line 6). If all random steal attempts fail, the worker notifies its
lifeline buddies and enters an idle state (line 8), from which it can be restarted
if a lifeline buddy delivers tasks later.

do {
do {
processUpToKTasks ();
answerStealRequests ();
} while (tasksAvailable());
attemptRandomSteals () ;
} while (tasksAvailable ());
informBuddiesAndBecomeldle ();

Listing 1.1. Main loop of Lifeline-based Global Load Balancing

0~ O T W

2.2 Hybrid Scheme

As mentioned in Sect. 1, the hybrid scheme [5] couples the lifeline scheme for work
stealing between the processes with work sharing among the workers within a
process. It uses two shared queues, which are synchronized to allow accesses from
multiple threads:

Comparison of Load Balancing Schemes for AMT Runtimes 17

— an intra queue for intra-process work sharing, and
— an inter queue chiefly for inter-process work stealing.

Listing 1.2 depicts pseudocode for the main loop of each worker. A process
begins with a single worker. After its own spawn, each worker repeatedly tries
to spawn additional workers and gives them some tasks (line 4), until some
desired maximum number of workers is reached. Then, if one of the shared queues
is empty, the worker puts any surplus tasks there (lines 6-11). Afterwards, it
processes up to k tasks, and repeats the previous steps as long as it has tasks.
When a worker runs out of tasks, it first attempts to take all tasks from the
intra queue (lines 14-16), or otherwise from the inter queue (lines 17-19). If
both shared queues are empty, the worker shuts down (end of code) and has to
be spawned again later.

1 do {

2 do {

3 if (numWorkers < numMaxWorkers) {

4 attemptToSpawnAdditionalWorker ();
5

6 if (intraQueueEmpty) {

7 shareTasksTolntraQueue ();

8

9 if (interQueueEmpty) {

10 shareTasksTolnterQueue ();

11

12 processUpToKTasks ();

13 } while (tasksAvailable());

14 if (!intraQueueEmpty) {

15 takeTasksFromIntraQueue ();

16

17 if (!tasksAvailable() && !interQueueEmpty) {
18 takeTasksFromInterQueue ();

—_
©

}
20 } while (tasksAvailable());
Listing 1.2. Main loop of Lifeline-based Global Load Balancing

2.3 Nested Fork-Join and Dynamic Independent Tasks

As already noted, the NFJ and DIT task models deploy dynamic tasks. We
assume that the tasks are free of side effects.

For NFJ, Listing 1.3 depicts pseudocode of a naive recursive Fibonacci pro-
gram. The code is invoked on worker 0 by calling £ib(n). The spawn keyword in
line 5 generates a child task and passes n-1. The child task calculates fib(n-1)
recursively. Afterwards, the result is assigned to variable a of the parent task. The
sync keyword pauses the execution of the parent task until all child tasks have
returned their results. Thus, the structure of the computation can be regarded
as a task tree, in which the root task returns the final result.

18 L. Reitz et al.

1 fib(n) {

2 if (n < 2) {

3 return 1;

4 }

5 a = spawn fib(n—1);
6 b = fib(n—-2);

7 sync;

8 return a + b;

9 }

Listing 1.3. Nested fork-join: naive recursive Fibonacci

Work stealing in NFJp,p,i4 is implemented with the work-first policy: When
a worker spawns a child task, it puts a description of the parent task into the task
queue and branches into the child. The description is called a continuation and
represents the remaining computation of this task. For instance, the continuation
that is generated in line 5 of Listing 1.3 denotes the code in lines 6 to 9 enhanced
by the value of n and the knowledge that a will be provided by the child task.
The continuation may be processed by the worker itself after having finished the
child, or be stolen away. In NFJpyprid, & thief always takes a single task (steal-
one).

Thus, any work stealing scheme for NFJ must keep track of the parent-
child relations and incorporate child results into their parent. We denote these
activities as the fork-join protocol. The fork-join protocol of NFJpypriq [21] was
adapted from [8] and passes the result of a child task directly to the parent
task if the parent is still in the local queue when the child returns. Otherwise,
the worker saves the child result in a data structure that is shared between all
workers of the process. Saved results are eventually collected as follows: When
a task has to wait for its child tasks in a sync, this task is sent back to its
previous victim. Child results may already reside there, if the child has finished.
Otherwise, they are eventually inserted. Since the parent task may have been
stolen multiple times, child results may exist on further victims, and the result
collection continues there. In contrast to [8], where tasks are returned to their last
thief after incorporating all child results, we process them at their first victim.

Unlike NFJ tasks, DIT tasks only cooperate through parameter passing from
parents to children. Task results are accumulated into worker results, by com-
bining them with a commutative and associative binary operator (e.g., integer
summation). Later, each process combines its local worker results to a process
result, and finally the process results are combined to the final result.

Listing 1.4 depicts pseudocode of a naive recursive Fibonacci program in
DIT. The code is invoked on worker 0 by calling fib(n). Like before, the spawn
keyword in line 5 generates a task. Method incrementResult() adds 1 to the
worker result, since £ib(0) = £ib(1) = 1. After global termination of all tasks,
worker 0 initiates the calculation of the process and final results. Afterwards,
the final result may be queried from the system.

Work stealing in DIT}y4riq is implemented with the help-first policy: When
a worker encounters a spawn, it puts the child task into the local task queue

Comparison of Load Balancing Schemes for AMT Runtimes 19
fib(n) {
if (n < 2) {
incrementResult ();
1 else {
spawn fib(n—1);
fib (n—2);

0~ O T W

}

Listing 1.4. Dynamic independent tasks: naive recursive Fibonacci

and continues to execute the parent task. In DIT}, 44, thieves steal half of the
available tasks of a victim (steal-half).

3 Design and Implementation of Lifeline-Pure Scheme

The lifeline-pure scheme extends the lifeline scheme with support for multi-
worker processes. As noted in Sect. 1, the scheme is essentially identical to the
lifeline scheme, except that the workers correspond to threads. Each worker
maintains an own local task queue and participates in the work stealing indepen-
dently of other workers. Also, the lifeline graph and the random victim selection
operate at the granularity of workers.

Unlike in NFJpypriq, we decided to perform all activities of the fork-join
protocol separately for each worker within a process in order to reduce contention
on the shared data structures. For DIT, as in the hybrid scheme, we first combine
the worker results within each process, and then perform a global reduction.

A modification of the lifeline scheme refers to the realization of the commu-
nication between a pair of workers. Whereas workers directly communicate with
each other in the lifeline scheme, they use a so-called coordinator in the lifeline-
pure scheme. The coordinator handles all communication, i.e., a worker that is
going to send a message to another worker calls a function of its coordinator.
The coordinator then sends a message to the remote worker’s coordinator. The
remote coordinator then forwards the message to the target worker. Global and
local worker ids are translated into each other in an obvious way. Figure 1 shows
the communication paths, where several workers, denoted as W, communicate
with each other through their coordinators, denoted as CQ.

Obviously it would be profitable to prefer local over global victims, since
process internal stealing has lower communication costs. As of yet, the lifeline-
pure scheme does not incorporate such locality optimizations, but the scheme
could be easily extended accordingly.

All implementations are based on the “APGAS for Java” library [23], which
is a Partitioned Global Address Space (PGAS) platform. We used a modified
version of it, which is available in a public git repository [16].

In our implementations, the coordinator is a Java class. Messages between
workers of the same process do not get serialized and passed through the network,
but are executed in one or more separate threads of Java’s fork-join pool.

20

4

L. Reitz et al.

Experimental Evaluation

This section compares the running times of the lifeline-pure and hybrid DIT and
NFJ variants, respectively.

e 6od | -

Fig. 1. Communication paths between workers (W) through the coordinator (C) in the
lifeline-pure scheme

All experiments were conducted with Java version 17.0.2. We run our pro-

grams on the Goethe cluster of the University of Frankfurt [25], where we used
a partition of homogeneous Infiniband-connected nodes. Each node is equipped
with two 20-core Intel Xeon Skylake Gold 6148 CPUs and 192 GB of main mem-
ory. We used up to 32 nodes, with one process per node and one worker per core,
resulting in a total of 1280 workers. We report averages over 15 runs.

We used three benchmarks:

Fib (for NFJ): The naive Fibonacci benchmark was presented in Sect. 2. It
computes fib(n).

UTS: The Unbalanced Tree Search benchmark dynamically generates a
highly-irregular tree and counts its nodes [13]. Users provide a tree depth d,
a branching factor b, an initial seed s of a pseudorandom generator, and a
probability distribution that determines the tree shape (binomial or geomet-
ric).

Syn: The synthetic benchmark counts the nodes of a perfect w-ary tree [19].
Users provide a desired running time 7¢,)., a number m specifies the number of
tree nodes per worker, and a task duration variance v as percentage. Each task
repeatedly calculates the 5th Fibonacci number recursively until it reaches its
task duration. An execution with GLB then takes time T = T¢.i. + €, where ¢
is the additional time taken by the runtime system, called the runtime system
overhead. In the case of DIT, € is caused by the load balancing scheme. In
the case of NFJ, € is caused by the load balancing scheme and the fork-join
protocol.

In all benchmarks, task results are long values and the reduction operator is
sum.

Comparison of Load Balancing Schemes for AMT Runtimes 21

In preliminary experiments, we found that a so-called sequential cut-off
reduced the execution times of the NFJ GLB variants significantly: The sequen-
tial cut-off ¢ defines a remaining depth (e.g., fib(n) calls with n < ¢), where
the spawn statement causes workers to jump into the given function instead of
spawning a child task. We implemented a sequential cut-off for Fib and UTSQ.
Syn did not require one, because the task granularity can be controlled by its
benchmark parameters.

Table 1. Benchmark parameters

Benchmark | Parameters
Fib n =67
c=30
UuTs d=19
b=4
c=6
geometric tree shape
Syn Teale = 100s
m = 10°
v=20%
10000 10000
DITwybria —a- - NFJywybria —a- -
. | DITpue —— " NFJpure —+—
g E
o 1000 F o 1000
Q Q
Q Q
wn wn
k| k|
GEJ 100 g 100 £ 1
[2
10 L L L L 10 L L L L
40 80 160 320 640 1280 40 80 160 320 640 1280
‘Workers ‘Workers

Fig. 2. Strong scaling performance of UTS

For DIT, we used existing implementations of the benchmarks [19]. For NFJ,
we slightly improved an existing implementation of Fib [21], and implemented
UTS and Syn from scratch.

The used benchmark parameters are shown in Table 1. Recall that both the
lifeline-pure and the hybrid scheme process tasks in chunks of k tasks (see
Sect. 2). In preliminary experiments, we tried different chunk sizes for each

22 L. Reitz et al.

benchmark and found that the following values for k yield the lowest execu-
tion times: k = 511 (for UTS in DIT), k = 16 (for UTS in NFJ), k = 10 (for Fib
in NFJ), and k =1 (for Syn).

Figures 2 and 3 show execution times for UTS and Fib. They employ strong
scaling to convey an impression of the magnitudes. For each run, we doubled the
number of nodes, and thus the number of workers. The measured execution times
decrease approximately linearly. Speedups over the execution with one worker
are between 1103 and 1243 for 1280 workers.

The strong scaling results for DIT show a bigger difference between the hybrid
and the lifeline-pure scheme than those for NFJQ. For DIT, the gap between the
two schemes is clearly visible. For NFJ, the gap between the schemes is small
and barely visible. This is likely due to the fact, that the used load balancing
scheme impacts all the communication in DIT (except the final reduction), but
only part of the communication in NFJ (not the fork-join protocol).

10000
NFJnybria —a- -
i NFJpure ——
el
g
5
Q
®
= 1000 £
()
E
H
100 L L L L

40 80 160 320 640 1280
‘Workers

Fig. 3. Strong scaling performance of Fib

101.6 108

101.5 | DIThybria —a- - i NFJhybria —a- - L
w 1014 | DPITpure —— . 07 b NFJpue —— ,
T 1013 Y E /
o o | ,
(2 A (2 S B - - - —
101.1 105 F
] = I\
=1 101 o /
g 2104 T -
§ 100.9 ‘ § e
E w0s | 7~ g,
103 |
100.7 &~
1006 1 1 1 1 102 1 1 1 1
40 80 160 320 640 1280 40 80 160 320 640 1280
‘Workers ‘Workers

Fig. 4. Weak scaling performance of Syn

Figure 4 shows execution times measured with Syn. We employ weak scaling
by keeping T¢.1. constant for all runs. We calculate the overhead as the difference

Comparison of Load Balancing Schemes for AMT Runtimes 23

between the measured execution time and T¢ ... Since Teac = 100s for all runs,
an execution time of 101s means, that the runtime system overhead is 1%.
Overheads increase slowly with the number of workers.

For DIT, the overhead is 1.54 % for 1280 workers and the hybrid scheme, and
1.41 % for the lifeline-pure scheme. For NFJ, the overhead is higher than in DIT,
since it includes the cost of the fork-join protocol. Because the hybrid and the
lifeline-pure scheme both use the same fork-join protocol, we can still compare
the overhead. The highest overhead difference between both schemes is about
3.8 % for 1280 workers, where the hybrid scheme has an overhead of about 7.5 %,
and the lifeline-pure scheme has an overhead of about 3.7 %.

5 Related Work

AMT, also called task-based parallel programming, goes back until at least the
invention of Cilk in the 1990s [2]. Over the years, a variety of AMT programming
environments have been proposed, and, especially on shared-memory machines,
already found their way into programming practice (e.g., OpenMP tasks [14]).

From a user perspective, major differences between the AMT environments
can be seen in their target architectures and task models [6,10,24]. The latter
comprise DIT and NFJ, but also several types of dataflow-based, side effect-
based, and actor-based coordination. The runtime systems differ in whether they
support dynamic load balancing and dynamic task generation, and if they do so,
in whether they realize it with work stealing or work sharing.

Work stealing became popular with Cilk [2], but several authors see work
sharing on a par or prefer it [4,9]. Both work stealing and work sharing can be
implemented in a coordinated way, in which queues are shared between workers,
or in a cooperative way, in which they are private. The performance is about the
same [1,17]. The work stealing variants also differ in their realization of victim
selection and termination detection. Reitz [21] compared different strategies for
choosing the number of tasks to be stolen. He used the same NFJp ;4 scheme
as we did in this paper.

While the lifeline scheme has traditionally been restricted to single-worker
processes, other work stealing variants permit multiple workers. For instance,
they combine shared- and distributed-memory work stealing into a two-level
algorithm [20], or combine the process-internal load balancing of Java’s fork-join
pool with the lifeline scheme for inter-process work stealing [18].

These two-level algorithms prefer local over global steals to save communi-
cation costs, as do DITypri¢ and NFJ 5. The idea of incorporating locality
optimization into work stealing was also applied to hierachical architectures,
e.g., [11]. Its usage may further improve the efficiency of our DIT,,. and
NFJ,,. schemes.

As mentioned in Sect. 2.3, the fork-join protocol of our NFJ GLB variants
was adapted from Kestor et al. [8] where tasks are returned to their last thief
after incorporating all child results instead of to their first victim. Similar to the
coordinators in the lifeline-pure scheme, they deploy a coordinator per process
who communicate with each other by calling functions on remote coordinators.

24 L. Reitz et al.

The first GLB variant for X10 that allows multiple workers per process was
presented by Yamashita and Kamada [26]. It was later improved by some tuning
mechanism and re-implemented as DIT}y 454 in Java [5]. We did not employ the
tuning mechanism, since it is irrelevant for our benchmarks.

6 Conclusions

This paper has shown that the lifeline scheme can be efficiently extended to
multi-worker processes, without introducing the complexity of a hybrid scheme.
Our extension, called lifeline-pure, solely relies on work stealing. We implemented
it for DIT and NFJ.

Then we performed an experimental comparison between the lifeline-pure
and hybrid schemes for DIT and NFJ, respectively. The experiments were run
with three benchmarks and up to 1280 workers on a supercomputer. Even though
the lifeline-pure scheme does not use any locality optimizations, we observed it
to be on a par or even slightly outperform the hybrid scheme. Interestingly, our
results were similar for DIT and NFJ, despite significant differences such as help-
first vs. work-first, steal-half vs. steal-one, and the fact that the implementations
have been developed independently by different people.

This similarity indicates that our findings may be of a more general nature.
In particular, it would be interesting to compare other work stealing variants
than the lifeline scheme with hybrid counterparts. Future research should also
incorporate locality optimization into the lifeline-pure scheme and quantify the
additional performance gain. Moreover, the experiments may be extended to
larger benchmarks and other task models.

References

1. Acar, U.A., Charguéraud, A., Rainey, M.: Scheduling parallel programs by work
stealing with private deques. SIGPLAN Notices 48(8), 219228 (2013). https://
doi.org/10.1145/2442516.2442538

2. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. J. ACM 46(5), 720-748 (1999). https://doi.org/10.1145/324133.324234

3. Charles, P., et al.: X10: An object-oriented approach to non-uniform cluster
computing. SIGPLAN Notices 40(10), 519-538 (2005). https://doi.org/10.1145/
1103845.1094852

4. Dinan, J., Olivier, S., Sabin, G., Prins, J., Sadayappan, P., Tseng, C.W.: Dynamic
load balancing of unbalanced computations using message passing. In: Proceedings
of International Parallel and Distributed Processing Symposium (IPDPS), pp. 1-8.
IEEE (2007). https://doi.org/10.1109/IPDPS.2007.370581

5. Finnerty, P., Kamada, T., Ohta, C.: Self-adjusting task granularity for global load
balancer library on clusters of many-core processors. In: Proceedings of Interna-
tional Workshop on Programming Models and Applications for Multicores and
Manycores (PMAM), ACM (2020). https://doi.org/10.1145/3380536.3380539

6. Fohry, C.: An overview of task-based parallel programming models. In: Tutorial at
European Network on High-performance Embedded Architecture and Compilation
Conference (HIPEAC) (2019)

https://doi.org/10.1145/2442516.2442538
https://doi.org/10.1145/2442516.2442538
https://doi.org/10.1145/324133.324234
https://doi.org/10.1145/1103845.1094852
https://doi.org/10.1145/1103845.1094852
https://doi.org/10.1109/IPDPS.2007.370581
https://doi.org/10.1145/3380536.3380539

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

Comparison of Load Balancing Schemes for AMT Runtimes 25

Kaiser, H., Heller, T., Adelstein-Lelbach, B., Serio, A., Fey, D.: HPX: a task based
programming model in a global address space. In: Proceedings of International
Conference on Partitioned Global Address Space Programming Models (PGAS),
pp. 1-11. ACM (2014). https://doi.org/10.1145/2676870.2676883

Kestor, G., Krishnamoorthy, S., Ma, W.: Localized fault recovery for nested fork-
join programs. In: Proceedings International Symposium on Parallel and Dis-
tributed Processing (IPDPS), pp. 397-408. IEEE (2017). https://doi.org/10.1109/
ipdps.2017.75

Klinkenberg, J., Samfass, P., Bader, M., Terboven, C., Miiller, M.: CHAMELEON:
reactive load balancing for hybrid MPI+openMP task-parallel applications. J. Par-
allel Distri. Comput. 138 (2019). https://doi.org/10.1016/j.jpdc.2019.12.005
Kulkarni, A., Lumsdaine, A.: A comparative study of asynchronous many-tasking
runtimes: Cilk, Charm++, ParalleX and AM++. CoRR abs/1904.00518 (2019).
http://arxiv.org/abs/1904.00518

Min, S.J., Iancu, C., Yelick, K.: Hierarchical work stealing on manycore clusters. In:
Proceedings of the International Conference on Partitioned Global Address Space
Programming Models (PGAS), ACM (2011)

Nieuwpoort, R.V.V., Wrzesiniska, G., Jacobs, C.J.H., Bal, H.E.: Satin: a high-level
and efficient grid programming model. Trans. Program. Lang. Syst. (TOPLAS)
32(3), 1-40 (2010). https://doi.org/10.1145/1709093.1709096

Olivier, S., et al.: UTS: an unbalanced tree search benchmark. In: Almasi, G.,
Cagcaval, C., Wu, P. (eds.) LCPC 2006. LNCS, vol. 4382, pp. 235-250. Springer,
Heidelberg (2007). https://doi.org/10.1007,/978-3-540-72521-3 18

OpenMP Architecture Review Board: OpenMP application programming interface
(version 5.2). openmp.org (2021)

Pirkelbauer, P., Wilson, A., Peterson, C., Dechev, D.: Blaze-tasks: a framework for
computing parallel reductions over tasks. Trans. Architect. Code Optim. (TACO)
15(4) (2019). https://doi.org/10.1145 /3293448

Posner, J.: Plm-apgas. https://github.com/posnerj/PLM-APGAS

Posner, J., Fohry, C.: Cooperation vs. coordination for lifeline-based global load
balancing in APGAS. In: Proceedings of SIGPLAN Workshop on X10, pp. 13-17.
ACM (2016). https://doi.org/10.1145/2931028.2931029

Posner, J., Fohry, C.: Hybrid work stealing of locality-flexible and cancelable tasks
for the APGAS library. J. Supercomput. 74(4), 1435-1448 (2018). https://doi.org/
10.1007/s11227-018-2234-8

Posner, J., Reitz, L., Fohry, C.: Task-level resilience: checkpointing vs. supervision.
Int. J. Netw. Comput. (IJNC) 12(1), 47-72 (2022). https://doi.org/10.15803/ijnc.
12.1 47

Ravichandran, K., Lee, S., Pande, S.: Work stealing for multi-core HPC clusters. In:
Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011. LNCS, vol. 6852, pp.
205-217. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23400-
2 20

Reitz, L.: Load balancing policies for nested fork-join. In: Proceedings of Inter-
national Conference on Cluster Computing (CLUSTER), Extended Abstract, pp.
817-818. IEEE (2021). https://doi.org/10.1109/Cluster48925.2021.00075
Saraswat, V.A., Kambadur, P., Kodali, S., Grove, D., Krishnamoorthy, S.: Lifeline-
based global load balancing. In: Proceedings of SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming (PPoPP), pp. 201-212. ACM (2011).
https://doi.org/10.1145/1941553.1941582

https://doi.org/10.1145/2676870.2676883
https://doi.org/10.1109/ipdps.2017.75
https://doi.org/10.1109/ipdps.2017.75
https://doi.org/10.1016/j.jpdc.2019.12.005
http://arxiv.org/abs/1904.00518
https://doi.org/10.1145/1709093.1709096
https://doi.org/10.1007/978-3-540-72521-3_18
https://doi.org/10.1145/3293448
https://github.com/posnerj/PLM-APGAS
https://doi.org/10.1145/2931028.2931029
https://doi.org/10.1007/s11227-018-2234-8
https://doi.org/10.1007/s11227-018-2234-8
https://doi.org/10.15803/ijnc.12.1_47
https://doi.org/10.15803/ijnc.12.1_47
https://doi.org/10.1007/978-3-642-23400-2_20
https://doi.org/10.1007/978-3-642-23400-2_20
https://doi.org/10.1109/Cluster48925.2021.00075
https://doi.org/10.1145/1941553.1941582

26

23.

24.

25.
26.

27.

L. Reitz et al.

Tardieu, O.: The APGAS library: resilient parallel and distributed programming
in java 8. In: Proceedings of SIGPLAN Workshop on X10, pp. 25-26. ACM (2015).
https://doi.org/10.1145/2771774.2771780

Thoman, P., et al.: A taxonomy of task-based parallel programming technologies for
high-performance computing. J. Supercomput. 74(4), 1422-1434 (2018). https://
doi.org/10.1007/s11227-018-2238-4

TOP500.0rg: Goethe-hlr. https://www.top500.org/system /179588

Yamashita, K., Kamada, T.: Introducing a multithread and multistage mechanism
for the global load balancing library of X10. J. Inf. Process. 24(2), 416-424 (2016).
https://doi.org/10.2197 /ipsjjip.24.416

Zhang, W., et al.: GLB: lifeline-based global load balancing library in X10. In:
Proceedings of Workshop on Parallel Programming for Analytics Applications
(PPAA), pp. 31-40. ACM (2014). https://doi.org/10.1145/2567634.2567639

https://doi.org/10.1145/2771774.2771780
https://doi.org/10.1007/s11227-018-2238-4
https://doi.org/10.1007/s11227-018-2238-4
https://www.top500.org/system/179588
https://doi.org/10.2197/ipsjjip.24.416
https://doi.org/10.1145/2567634.2567639

®

Check for
updates

New Insights on the Revised Definition
of the Performance Portability Metric

Ami Marowka(®
Parallel Research Lab, TelAviv-Yafo, Israel
amimar2@yahoo.com

Abstract. The rise in the demand for new performance portability
frameworks for heterogeneous computing systems has brought with it a
number of proposals of workable metrics for evaluating the performance
portability of applications.

This article compares the revised definition and criteria of the P
metric and the P metric that was derived from it and improves it. The
comparison is based on a detailed analysis of nine properties and recent
studies of the performance portability of various applications.

Keywords: Performance Portability + Performance Efficiency -
Metrics

1 Introduction

Heterogeneous computing is ubiquitous, from supercomputers to core proces-
sors in every smartphone. The paradigm shift to heterogeneous computing has
brought back to the mainstream of scientific computing R&D the problem of
performance portability.

One of the major unresolved issues of the performance portability problem is
the lack of a definition and a workable metric that the research community will
accept as a de facto standard [1]. In 2016, three researchers from Intel, Penny-
cook, Sewall, and Lee proposed an innovative metric to assess the performance
portability of an application among a set of architectures [2,3]. The innovation
of the proposed metric stemmed from the clear methodology adopted by the
researchers. They defined the criteria that the definition and the metric of per-
formance portability should satisfy and then turned to formulating the metric,
which they denoted by the symbol P. The uniqueness of the P metric is that
it is based on the performance efficiencies that a given application achieves on
top of a given set of architectures.

Since the P metric was proposed, many in the HPC community have studied
it and used it in their research. As often happens with innovative ideas, over
time, the limitations and shortcomings of the new P metric were discovered
[4-10]. Some critics argue that there are significant flaws in its definition, that
is difficult to understand the theory behind it, and that it is inconvenient to
use. Others have argued that the metric is not intuitive and that its results are
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 27-38, 2023.
https://doi.org/10.1007/978-3-031-30445-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_3&domain=pdf
http://orcid.org/0000-0003-0914-2024
https://doi.org/10.1007/978-3-031-30445-3_3

28 A. Marowka

not reasonable. Along with the criticism hurled against the metric, various ways
were proposed to overcome its stumbling blocks, such as rephrasing it to fit the
criteria and proposing alternative metrics. Needless to say, all the criticisms and
proposed solutions have one goal, to achieve a better performance portability
metric.

Recently, the designers of the P metric responded to the criticism in a
detailed article [11]. In an extensive part of the article the authors presented
a mathematical analysis of the key principles that guided them in developing
the P metric. In the rest of the article, they clarified how, in their opinion,
the products of the metric should be interpreted and how to use it correctly
and updated the criteria to something that they believe a good performance
portability metric should satisfy.

Now that the basic principles that guided the designers of the P metric have
been well clarified, the limitations of the metric can be discussed in a better and
more informed way. For example, in their early article [2,3] the designers of the
P metric referred the readers to Smith’s article [12] on which they relied but
without elaborating. On the other hand, the article provided a clearer impres-
sion of the authors’ reliance on Smith’s article as their source of inspiration.
Therefore, the P metric can now be examined in the light of Smith’s article.

This article compares and analyzes in detail the differences between the P
metric and the proposed P metric [4,5]. The P metric was designed to solve
the problems and shortcomings that have arisen with regard to the P metric in
many studies that have used it during the five years since it was first published.

To that end, this article makes the following contributions:

— Examining whether the P and P metrics meet the requirements of consis-
tency, linearity and lossless information.

— Presenting the core of Smith’s article and examining its relevance to the P
metric.

— Showing the weighting relationship that exists between the harmonic mean
and the arithmetic mean and proving it mathematically.

2 Definition of the P and P Metrics

This section presents the original and revised criteria and definition of the P
metric and explains the reasons that motivate a rephrasing of the P metric
denoted P. The criteria and definition of the P metric as proposed and presented
in [5] are then presented.

The original set of criteria for the P metric defines it to be:

1. measured specific to a set of platforms of interest H

independent of the absolute performance across H

3. zero if a platform in H is unsupported, and approach zero as the performance
of platforms in H approach zero

4. increased if performance increases on any platform in H

5. directly proportional to the sum of scores across H

N

New Insights on the Performance Portability Metric 29

After it was proved that the P metric is not directly proportional to the
sum of scores across H, Pennycook and Sewall [11] admitted that they made a
mistake but chose to exclude only criterion (5) from the definition and to leave
the rest of the P metric definition intact.

The P metric is defined as the harmonic mean of an application’s perfor-
mance efficiency observed across a set of platforms. If the application fails on any
measured platform(s), it defines the performance portability to be 0. Formally,
for a given set of platforms H, the performance portability P of an application
a solving problem p is:

— L ifjissu '
pported Vi € H
q:(mp’ H) — ZieH ei((lz,p) (1)
0 otherwise

where e;(a,p) is the performance efficiency of application a solving problem
p on platform 3.

The following discussion addresses the three main aspects that appear in the
original criteria and the definition of the P metric and that motivated us to
propose the revised metric, P:

First, it has been proved that the harmonic mean does not satisfy criterion
(5), or in other words, that the P metric is not directly proportional to the
sum of scores across the given set of platforms H. As a result, it is argued that
the P metric is inconsistent and cannot be considered comparable, as we have
shown in [5]; Sect. 3 further elaborates on this matter. Therefore, we proposed
to replace the harmonic mean by the arithmetic mean because the arithmetic
mean is directly proportional to the sum of scores across the set of platforms
H, as was proved in [5]. Pennycook and Sewall admitted that they had made a
mistake but chose to exclude only criterion (5) from the definition and to leave
the rest of the P metric definition intact. We admit that we do not understand
the rationale of this act [11].

Second, we claim that criterion (3) is a constraint imposed on the designers
of the P metric because the harmonic mean is not applicable when one of its
components is zero. Reference [5] shows a sample of observations from previous
studies on performance portability that demonstrate the practical implications
of this constraint for performance portability scores.

For example, it does not make sense to determine that an application’s per-
formance portability on H is 0% just because there is, at present, no implemen-
tation of the application for one or more platforms in H. Therefore, we have
suggested that such cases be defined as not applicable, thus avoiding unrealistic
and biased results. It is important to emphasize that the arithmetic mean, unlike
the harmonic mean, does not suffer from this limitation, i.e., the arithmetic mean
is applicable when one of its components is zero.

Although the P metric can include platforms that are not supported by the
application, the decision was made here not to include them in the calculations
so as not to distort the resulting score. Notwithstanding, and after some thought,

30 A. Marowka

we accept the recommendation of Pennycook and Sewall not to include a non-
numerical value in the metric definition and therefore the decision was made to
refine the definition of the P metric to contain only platforms that are supported
by the application.

Third, the emergence of heterogeneous computing has rekindled research
into performance portability. For this arises the desire to evaluate the perfor-
mance portability of an application in the heterogeneous environment of plat-
forms like CPUs and GPUs.

The performance portability studies of recent years explicitly show that the
performance efficiencies of CPUs are significantly lower, on average, than the per-
formance efficiencies of GPUs. For example, Pennycook, Sewall, and Lee studied
the performance portability of GPU-STREAM 2.0 [3] and reported that the per-
formance efficiency of GPUs could be twice that of CPUs. They explicitly stated
that “The P measurements across CPUs are notably lower than the equivalent
measurements across GPUs, and this is reflected in the measurements across the
union of both subsets.”

Therefore, the P metric was redefined to consider only platforms from the
same architecture class. In the authors’ opinion, the performance portability of
each class should be calculated individually. In addition, it is highly desirable to
present the overall calculation for a heterogeneous system.

The next step is to present the criteria and definition of the P metric. Given
a set of supported platforms S C H, the set of criteria of the P metric defines
it to be:

1. measured specific to a set of platforms of interest S
2. independent of the absolute performance across S
3. zero if none of the platforms is supported
4. increasing or decreasing if performance increases

or decreases on any platform in S
5. directly proportional to the sum of scores across S

The P metric is defined as the arithmetic mean of an application’s per-
formance efficiency observed across a set of platforms from the same architec-
ture class. Formally, for a given supported set of platforms S C H from the
same architecture class, the performance portability of a case-study application
a solving problem p is:

_ Ziesei(aﬁ”) f S 0
P(a,p, S, H) = 151 it 15] >
0 otherwise

(2)

where S := {i € H|e;(a,p) > 0} and e;(a,p) is the performance efficiency of
case-study application a solving problem p on platform 1.

3 Proportionality

One of the desirable properties of a good single-number performance portability
metric, based on summarizing a set of observations, is direct proportionality. In

New Insights on the Performance Portability Metric 31

70
60

20
—=— A —=— AppA
N —e— AppB —e— AppB
0123 456780910111213141516171819202122232425 27554 5 6 7 8 6 1011121014 1516171819202122235425 00 1 2 3 4 5 6 7 6 81011121314 15161716 192021222324 25
Adding Platforms to H Over Time Adding Platforms to H Over Time Adding Platforms to H Over Time

21200 [

PPbar Metric Scores
PP Metric Scores

00 |-

Cumulative Performance Efficiencies

Fig. 1. Comparison of the Performance Portability of two applications according to
the P (right) and P (center) metrics over time. (Left) The cumulative performance
efficiencies of the two applications over time.

other words, its score should be directly proportional to the sum of the scores of
the observations it represents. Consequently, if the sum of the observation scores
change by a certain ratio then the score of the metric should change by the same
ratio. This property makes the metric naturally attractive to users.

We believe that this motivated the designers of the P metric to include this
property in the criteria of the P metric definition [3]. Once it had been proved
that the P metric, which is based on the harmonic mean, does not satisfy this
criterion [5] , Pennycook and Sewall admitted that it was a mistake to include
it in the definition and decided to exclude it henceforth, but without providing
further explanation [11]. In authors’ opinion, this approach is wrong. Following
is an explanation and a demonstration that support this belief.

First of all, it is important to emphasize that removing the direct propor-
tionality criterion from the definition of the P metric in itself does not solve
anything because, even after the criterion is removed, the P metric remains not
directly proportional to the sum of scores of the observations it represents.

Let us clarify that our proposal to reformulate the P metric, which is based
on the harmonic mean, to the P metric, which is based on the arithmetic mean,
stemmed primarily from the desire not to remove the direct proportionality
criterion because we believe that it is essential to the definition of the metric.
Recall that we have proven that the P metric is directly proportional [5].

The P and P metrics are single number-metrics and are therefore lossy met-
rics by definition. Therefore, it is essential to avoid losing additional information
unnecessarily. Removing the direct proportionality criterion from the P met-
ric definition means losing additional vital information. In fact, the relationship
between the P metric and the observations it represents has become looser.
Moreover, the P metric without this criterion cannot be considered comparable
and its consistency is significantly impaired. In [5] we presented a simple example
of this claim. We will present it in a more graphic and tangible way.

Figure 1l shows a comparison of the performance portability of two appli-
cations based on the P and P metrics as platforms are added to the set of
platforms H over time. The Excel file that generated the graphs in Fig.1 can
be downloaded from [18]. Figure 1(left) shows how the cumulative scores of two
applications change over time. The scores shown were taken from real applica-

32 A. Marowka

tions reported in various studies [15-17]. The cumulative scores of application a
are larger than the cumulative scores of application b over time.

Figures 1(center) and 1(right) show the scoring behavior of the P and P
metrics respectively. According to the P metric, the performance portability of
application a is greater than that of application b over time. On the other hand,
according to the P metric, the performance portability of application a is incon-
sistent and is alternately changing compared to the performance portability of
application b over time. Sometimes its performance portability is greater than
the performance portability of application b, and sometimes the opposite is true.
The fact that the cumulative score of application a is always greater than that
of application b does not affect the zigzag behavior of the P metric. The direct
proportionality property of the P metric makes it possible to predict that as
long as the cumulative score of application a is greater than that of application b,
it is guaranteed that the performance portability of application a will be greater
than the performance portability of application b. The induced inconsistency of
the P metric makes it difficult to compare and predict the performance porta-
bility of different applications over time. It does not reflect the real performance
portability relationship of the two applications over time and poorly represents
their cumulative performance efficiency behavior over time.

4 Smith’s Article

The main source of inspiration for the development of the criteria and defi-
nition of the P metric was Smith’s article [12]. Hence, it was expected that
Pennycook and Sewall would discuss Smith’s article at length in their articles
[3,11]. In practice, they only referred the readers to Smith’s article and noted
that, “The harmonic mean has been previously demonstrated by researchers as
a superior way to aggregate multiple performance numbers and, unlike the geo-
metric and arithmetic means, satisfies criteria (5) and (5)”. This section presents
what Smith’s article is about, examines the relevance of Smith’s article to the
criteria and definition of the P metric, and presents the reference of Hennessy
and Patterson to Smith’s article [13].

Smith studied the ways of reducing benchmark performance results to a single
number that maintains the accuracy of the original benchmark. For this purpose,
Smith used a hypothetical example of a benchmark that includes two programs
running on three computers. The first rows of Table 1 shows the running times of
each program on each computer and the total times measured on each computer.
From the total time it can be deduced that computer 3 is almost three times as
fast as computer 2 and that computer 2 is nine times faster than computer 1.

Next, Smith chose to express the performance in rates (mflop/s). To that end,
he assumed that each program operates at 100 mflop. The calculated results are
presented in the last rows of Table1, including the arithmetic, harmonic, and
geometric means of the rates for each computer. From these results Smith con-
cluded that only the harmonic mean preserves the relative performance between
the computers as calculated in Table 1 - in other words, that computer 3 is three
times faster than computer 2 and that computer 2 is nine times faster than
computer 1.

New Insights on the Performance Portability Metric 33

Based on these findings Smith formulated two properties:

Property 1. A single-number performance measure for a set of benchmarks

expressed in units of time should be directly proportional to the total
(weighted) time consumed by the benchmarks.

Property 2. A single-number performance measure for benchmarks

expressed as a rate should be inversely proportional to the total (weighted)
time consumed by the benchmarks.

The above discussion constitutes the core of Smith’s article.
Now, the reader’s attention is directed to three observations related to the

properties that Smith formulated and the criteria and definition of the P metric:

1.

Smith proved nothing. He used only one hypothetical example and deduced
from it two properties that would have been desirable to include in practical
and realistic benchmarks.

Smith was looking at how to summarize rates (mflop/s). In contrast, the P
metric deals with summarizing performance efficiencies that are fractions (or
ratios) and are unitless.

Smith emphasized in both properties that the single-number performance
measure must be directly or inversely proportional to the total time. In other
words, Smith required the existence of a criterion (5) that Pennycook and
Sewall chose to exclude from the criteria of the P metric.

Due to lack of space, we do not present Hennessy and Patterson’s criticism

to Smith’s paper.

Table 1. Reprint from Smith’s Article [12]

Benchmark mflop | Computer 1 | Computer 2 | Computer 3
Program 1 (seconds) 100 |1 10 20
Program 2 (seconds) 100 | 1000 100 20
Total Time (seconds) 1001 110 40
Program 1 (mflop/s) 100.0 10.0 5.0
Program 2 (mflop/s) 1 1.0 5.0
Arithmetic Mean (mflop/s) 50.1 5.5 5.0
Geometric Mean (mflop/s) 3.2 3.2 5.0
Harmonic Mean (mflop/s) .2 1.8 5.0

5 The Principles

In their responding article [11], Pennycook and Sewall presented the underlying
principles from which they derived the criteria and definition of the P met-
ric. Throughout the mathematical development of their ideas, they discovered a

34 A. Marowka

weighting relationship between the P and P metrics. In other words, they dis-
covered a weighting relationship between the arithmetic and harmonic means.

They showed that the achieved aggregate throughput as normalized against
the peak aggregate throughput of a set of platforms is equal to the harmonic
mean of the performance efficiencies when work is weighted accordingly to the
peak throughput of each platform, and is equal to the arithmetic mean of the per-
formance efficiencies when work is weighted accordingly to the achieved through-
put of each platform.

These principles are mathematically correct but are not backed by a clear
model as we showed in Sect.4. Moreover, these principles are only correct for
the architectural efficiency approach based on throughputs. They are not correct
for the popular application efficiency approach based on runtimes [2,8,16,17].
We will demonstrate this by an example. After the discussion, an explanation is
given of why, after all, use of the P metric is preferable.

First, it should come as no surprise that there is a weighting relationship
between the arithmetic and harmonic means. After all, the harmonic mean is
the reciprocal of the arithmetic mean of the reciprocals.

Let E = (a1/p1,a2/p2, ..., an/pn) be a set of performance efficiencies based
on application efficiency of runtimes; A = (a1 + ... + a,) the sum of the total
achieved runtimes; P = (p; + ... + p,) the sum of the total peak runtimes;
WA = (a1 /A, ...,a,/A) the set of the weights of the achieved runtimes and WP
= (p1/P,...,pn/P) the set of the weights of the peak runtimes.

The next step is to prove that the weighted arithmetic mean (WAM) of a
set E' of performance efficiencies, weighted by peak runtime, is equivalent to the
weighted harmonic mean (WHM) of the set E, weighted with achieved runtime:

WAM(E, WP) = WHM (E, WA) (3)
The proof:
ay Gnp, p1 a1 Pn Qn
WAM(E, WP) = w —+ . twp,— == —+ .+ = —
() P P o TP P p
7a1+...+an7é7 1
B P P B4 4B
B 1 B 1
R R e
1
=———— = WHM(E, WA)

way Wan
E, + ...+ ol

Let us demonstrate this relation by an example. Let E be the following
performance efficiency set based on achieved and peak runtimes:

(20/50,80,/100, 200/300, 40,/200, 80/200)
Therefore, the total achieved runtime A is:

(20 + 80 + 200 + 40 + 80) = 420

New Insights on the Performance Portability Metric 35

The total peak runtime P is:
(50 + 100 + 300 + 200 + 200) = 850

Thus, the overall performance efficiency is: 420/850 = 0.49411.

The weights of the achieved runtimes WA are:
(20/420, 80,/420,200/420,40/420, 80/420)
The weights of the peak runtimes WP are:
(50/850, 100/850, 300/850, 200/850, 200/850)
Now, WAM and WHM can be calculated:

WAM(E,WP) = 20/50 * 50/850 + 80,/100 % 100,850

+200,/300 % 300,/850 + 40,200 * 200/850

+ 80,200 * 200/850

= 42/85 = 0.49411 (4)
WHM(E,WA) = 1/((20/420)/(20/50) + (80/420)/(80/100)

+ (200,/420)/(200/300) + (40,/420)/(40,/200)

+ (80/420)/(80/200))

= 42/85 = 0.49411 (5)

From (4) and (5), it is evident that the same result is obtained whether the
weighted harmonic mean or the weighted arithmetic mean used. Therefore, either
the weighted arithmetic mean or the weighted harmonic mean can be used to
find the average of a given set of performance efficiencies if appropriate weights
can be properly applied. However, we prefer to use the unweighted arithmetic
mean because neither the weighted arithmetic mean nor the weighted harmonic
mean is directly proportional to the sum of the scores of its observations. The
next step is to calculate the scores of the unweighted arithmetic and harmonic
means while using the performance efficiencies of the current example:

AM(20/50, 80/100, 200,300, 40,200, 80/200)
= 37/75 = 0.49333

HM (20,50, 80/100, 200,/300, 40,200, 80/200)
=20/51 = 0.39215

Without a doubt, the unweighted arithmetic mean obtained a similar result of
0.49333, which is a negligible difference compared to the result obtained by the
WAM and the WHM and far better than the unweighted harmonic mean score. It
is worth noting that the relationship between the harmonic mean and arithmetic
mean, known as HM-AM inequality, states that HM < AM.

36 A. Marowka

Table 2. Reprint From [11] and [8], P vs. P.

P vs. P(Per Problem) Prh |P | P

1 2 3 4 5

P P PP P PP P PP
ep 0.90/0.91/0.840.85|0.85|0.86|0.82|0.830.83]0.83|19.02|0.85 | 0.86
cg 0.72/0.80/0.76 | 0.80]0.910.92]0.97|0.971.00 | 1.00 | 23.70 | 0.86 | 0.89
sp 1.00{1.00|1.00{1.001.00|1.001.00|1.00 0.00|0.00|0 0.00 | 1.00
bt 0.9810.98/0.910.93|1.00|1.00|0.00|0.000.00|0.00|5.78 |0.00 0.97
stencil | 0.62]0.78 1 0.85]0.90|0.94|0.95|1.00 | 1.00 | 1.00 | 1.00 | 28.69 | 0.85 | 0.93
lIbm 0.8710.8810.990.99|0.00 | 0.00|0.00|0.00|0.00|0.00|11.02|0.00 0.94
mri-q | 0.95/0.96|1.00{0.99|0.000.00|0.000.00 0.00 0.00|3.73 |0.00|0.98

6 Lossy Metrics

Single-number metrics, such as the P and P metrics, cannot accurately char-
acterize performance portability. On the other hand, practitioners find them
attractive, simple to use and intuitive. This section shows, using an example,
that the P metric by definition loses more information than the P metric.

Pennycook and Sewall refer in their article to the work of Daniel and Panetta
[8], in which they presented their Pp metric. The Pp metric calculates the
variability average of the performance efficiencies of a number of input sizes of
a given application on top of a given set of architectures. Pennycook and Sewall
claimed that Daniel and Panetta compared the scores of the P metric with the
scores of the Pp metric, but did so separately for each problem size. They argued
that the P metric summarizes the individual P scores for different problem sizes
because calculating the harmonic mean of several harmonic means is equivalent
to calculating a harmonic mean using all the data.

Table 2 was taken from the article of Pennycook and Sewall that contained
data collected from the article of Daniel and Panetta. It shows the scores of each
problem size separately and the total scores. In this study, the scores of the P
metric have been added to the original table for comparison. Out of seven total
scores, according to the P metric, four are zero. In contrast, the P metric does
not lose any information. How do the Pennycook and Sewall explain this? They
claim that “This should not be surprising: both averaging over average values
and extending an average to more dimensions of a data set should be expected
to destroy more information”. Does information destruction always occur in
such cases? Clearly not, as the ® metric shows. Data destruction is inherent to
the criteria and definition of the P metric.

7 Properties of a Good Metric

Throughout the article the ® and P metrics have been compared according
the Pennycook and Sewall’s articles, our articles and dozens of other studies
published in the literature in the last five years.

New Insights on the Performance Portability Metric 37

Table 3. Properties of A Good Performance Portability Metric

Properties of Good Performance Portability Metric

Measurable | Objective | Comparable | Linearity | Consistency | Intuitiveness | Ease-of-use | Lossless | Familiar
Yes Yes Yes Yes Yes Yes Yes Yes Yes
Yes Yes Partly No No No Partly No No

eIl

Now, it is time for a summary. This paper has presented to the reader the
criteria and definition of each metric and the revised versions. The key aspects
that motivated us to offer a revised metric have been presented, as well as studies
that encountered problems using the P metric. The discussions have shown that
a measure that is inconsistent is not comparable over time and how important
it is that a single-number metric be directly proportional. The core of Smith’s
article and its relevance to the P metric have also been presented, and the
weighting relationship between the harmonic and arithmetic means has been
demonstrated. It has been explained that single-number metrics lose informa-
tion by definition and how important it is not to lose additional information.
Examples have been given illustrating that the P metric loses additional infor-
mation by definition, whereas the P metric preserves information. Beyond all
these criteria, a good metric should be objective, easy to use, intuitive, and
familiar to users. Table3 summarizes the comparison using all the properties
that make a metric a good one.

8 Conclusions

The top 500 list of the most powerful supercomputers in the world is considered
a success story. Despite its criticisms and shortcomings, the HPC community has
accepted it as the de facto ranking system for supercomputers in the last three
decades. Why? Because it is based on a simple metric that is easy to measure
and intuitive.

This paper has shown that the P metric is not only intuitive, simple, easy to
use and familiar, but also consistent and does not lose information. The authors
call upon the HPC community to use the metric, criticize it if necessary, and
suggest ways to improve it or to propose a better metric.

References

1. DOE Centers of Excellence Performance Portability Meeting, Glendale, AZ, Post-
meeting Report, 19-21 April 2016

2. Pennycook, S.J., Sewall, J.D., Lee, V.W.: A metric for performance portability,
arXiv preprint arXiv:1611.07409 (2016)

3. Pennycook, S.J., Sewall, J.D., Lee, V.W.: Implications of a metric for performance
portability, Future Generation Computer Systems, Aug 2017. https://doi.org/10.
1016/j.future.2017.08.007

http://arxiv.org/abs/1611.07409
https://doi.org/10.1016/j.future.2017.08.007
https://doi.org/10.1016/j.future.2017.08.007

38

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

A. Marowka

Marowka, A.: Toward a better performance portability metric. In: Proceeding of
29th Euromicro International Conference on Parallel, Distributed and Network-
based Processing (PDP 2021), Valladolid, Spain, 10-12 March 2021

Marowka, A.: Reformulation of the performance portability metric. Softw. Pract.
Experience 52(1), 154-171 (2022)

. Dreuning, H., Heirman, R., Varbanescu, A.L.: A beginner’s guide to estimating and

improving performance portability. In: Yokota, R., Weiland, M., Shalf, J., Alam,
S. (eds.) ISC High Performance 2018. LNCS, vol. 11203, pp. 724-742. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-02465-9_52

Siklosi, B., Reguly, 1.Z., Mudalige, G.R.: Heterogeneous CPU GPU execution of
stencil applications. In: 2018 IEEE/ACM International Workshop on Performance,
Portability and Productivity in HPC (P3HPC), pp. 71-80 (2018)

Daniel, D.F., Panetta, J.: On applying performance portability metrics. In: 2019
IEEE/ACM International Workshop on Performance, Portability and Productivity
in HPC (P3HPC), pp. 50-59 (2019)

Sedova, A., Eblen, J.D., Budiardja, R., Tharrington, A., Smith, J.C.: High-
performance molecular dynamics simulation for biological and materials sciences:
challenges of performance portability. In: 2018 IEEE/ACM International Work-
shop on Performance, Portability and Productivity in HPC (P3HPC), pp. 1-13
(2018)

Bertoni, C., Kwack, J., Applencourt, T., Ghadar, Y., Homerding, B., Knight, C.,
Videau, B., Zheng, H., Morozov, V., Parker, S.: Performance portability evaluation
of Opencl benchmarks across intel and Nvidia platforms. In: IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), vol. 2020,
pp. 330-339 (2020)

Pennycook, S.J., Sewall, J.D.: Revisiting a metric for performance portability. In:
2021 International Workshop on Performance, Portability and Productivity in HPC
(P3HPC), pp. 1-9 (2021)

Smith, J.E.: Characterizing computer performance with a single number. Commun.
ACM 31(10), 1202-1206 (1988). https://doi.org/10.1145/63039.63043

Hennessy, J.L., Patterson, D.A.: Computer Architecture; A Quantitative App-
roach. Morgan Kaufmann Publishers Inc., Burlington (1990)

Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun ACM. 52(4), 65-76 (2009)
Deakin, T., Price, J., Martineau, M., McIntosh-Smith, S.: GPU-STREAM v2.0:
benchmarking the achievable memory bandwidth of many-core processors across
diverse parallel programming models. In: Taufer, M., Mohr, B., Kunkel, J.M. (eds.)
ISC High Performance 2016. LNCS, vol. 9945, pp. 489-507. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46079-6_34

Deakin, T., et al.: Performance portability across diverse computer architectures.
In: 2019 IEEE/ACM International Workshop on Performance, Portability and Pro-
ductivity in HPC (P3HPC), Denver, CO, USA, pp. 1-13 (2019)

Deakin, T.J., Poenaru, A., Lin, T., Mcintosh-Smith, S.N.: Tracking performance
portability on the yellow brick road to exascale. In: Proceedings of the Performance
Portability and Productivity Workshop P3HPC: Supercomputing 2020 Institute of
Electrical and Electronics Engineers (IEEE) (2020). (Accepted/In press)

Zigzag graph. https://www.dropbox.com/scl/fi/xfsvlf7pbbrx3{6isrybq/zigzag-
graph.xlsx?dl=0&rlkey=u9vah2sjduvr3ckb9o8wt2et4

https://doi.org/10.1007/978-3-030-02465-9_52
https://doi.org/10.1145/63039.63043
https://doi.org/10.1007/978-3-319-46079-6_34
https://www.dropbox.com/scl/fi/xfsvlf7pbbrx3f6isrybq/zigzag-graph.xlsx?dl=0&rlkey=u9vah2sjduvr3ckb9o8wt2et4
https://www.dropbox.com/scl/fi/xfsvlf7pbbrx3f6isrybq/zigzag-graph.xlsx?dl=0&rlkey=u9vah2sjduvr3ckb9o8wt2et4

®

Check for
updates

Inferential Statistical Analysis
of Performance Portability

Ami Marowka(®)
Parallel Research Lab, Haifa, Israel
amimar2@yahoo.com

Abstract. The assessment of the performance portability of hybrid pro-
gramming models is based on many unverifiable observations. Drawing
from the assessment by knowledgeable analysts, subjective conclusions
from unverifiable data are incomplete without descriptive and inferential
statistical analysis.

In this article, a knowledgeable analyst’s assessment of the performance
portability of OpenACC, OpenMP, Kokkos and Raja, on CPU and GPU
architectures is confronted with inferential statistical analysis of two types
of hypothesis tests while carefully examining the effect of outliers.

Keywords: Performance Portability - Performance Efficiency -
Metrics

1 Introduction

One of the challenging problems of contemporary high-performance program-
ming is to allow advanced scientific applications to be performance portable.
To enable porting high-performance applications between diverse and heteroge-
neous computing architectures while sustaining their performance efficiency and
without the need to rewrite the code.

New performance portability frameworks such as Kokkos [1] and Raja [2]
alongside mature hybrid programming models such as OpenMP [3] and Ope-
nACC [4] are the leading software development tools available to the high-
performance community today for the development of performance portable
scientific applications.

Recently, a formal definition and associated metric have been proposed to
quantitatively assess the degree of the performance portability of these perfor-
mance portability frameworks [7]. Dozens of case studies of various applications,
mini-applications, kernels, and scientific benchmarks of different characteristics
are required to assess the performance portability of such development environ-
ments. In addition, these case studies should be examined on many types of plat-
form architectures and backend compilers. This task cannot be accomplished by
one research group. Therefore, the only way to complete such complex research
is to use the professional scientific literature and collect publications of studies
that reported on performance portability experiments.
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 39-50, 2023.
https://doi.org/10.1007/978-3-031-30445-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_4&domain=pdf
http://orcid.org/0000-0003-0914-2024
https://doi.org/10.1007/978-3-031-30445-3_4

40 A. Marowka

The present innovative metrics for evaluating performance portability are
based on calculating the performance efficiencies average of the case studies cho-
sen in the research [5-7]. The score obtained from this calculation is the perfor-
mance portability of the application or the performance portability framework
under assessment. The following question arises: how can one determine and clas-
sify the range of score values that provide acceptable performance portability
and those that do not?

Moreover, when it comes to a research experiment based on hundreds of
case studies, it is expected that some of the observations obtained will present
extreme values, outliers, that are not typical of the vast majority of the data col-
lected in the experiment. These observations require re-examination to ascertain
whether the results can be reproduced or whether they are measurement errors
and accordingly decide whether to remove these observations from the experi-
ment. Here, a second question arises: how should one proceed if the observations
are based on studies that have been published in the scientific literature? In such
cases, it is impossible to ascertain whether the results originate from measure-
ment errors or not. The scientific publications do not contain the information
needed to reproduce the experiment in most cases. Even when this information
exists, setting up the same testbed is almost unattainable.

It turns out that there are no objective criteria to determine whether an appli-
cation or performance portability framework has sufficient performance porta-
bility or not. Such assessment is subjective and is determined in practice by
an analyst with the subject-area knowledge needed to establish a sound and
plausible assessment that determines how to handle outliers. However, a knowl-
edgeable analyst’s assessment may not be sufficient. It needs to be confronted
with the help of objective statistical analysis that will examine the assessment
with and without outliers [21]. Such statistical analysis can discover additional
insights that may strengthen the assessment or allow the analysts to consider
refining their initial assessment in accordance with the statistical findings. Iden-
tifying outliers cannot be done using statistical rules because it depends on
subject area knowledge and how observations are collected. However, there are
techniques, plots, and statistical tests that can help to identify potential outliers
[15-18].

In this article, we confront an analyst’s assessment of a recently published
paper with a statistical analysis of the case study results provided in the research
[7]. The research studied the performance portability of OpenACC, OpenMP,
Kokkos, and Raja using various applications, mini-applications, and kernels that
were tested on different CPU and GPU architectures. Specifically, this article
makes the following contributions.

— First, we present a detailed descriptive statistical analysis of OpenACC obser-
vations, including Shapiro-Wilk normality tests and Q-Q plots.

— We confront the analyst’s performance portability assessment of OpenACC
against two nonparametric hypothesis tests, while carefully examining the
effect of outliers.

Inferential Statistical Analysis of Performance Portability 41

— We present an inferential statistical analysis of OpenACC using two statistical
hypothesis tests: Wilcoxon signed-rank test and the bootstrapping method.

— We apply the above inferential statistical analysis to OpenMP, Kokkos, and
Raja and discuss the obtained findings.

For convenience, throughout the article, we will call the group of 141 Ope-
nACC observations that include outliers and the subgroup of 109 observations
without outliers groups A and B, respectively.

To perform the descriptive and inferential statistical tests mentioned in this
study, we used several statistical tools. Some are proprietary software packages,
and others are online statistic calculators available for free: Minitab [8], Stat 101
[9], Statistic Kingdom [10], Real Statistics [11], GraphPad [12], R language [13]
and Microsoft Excel [14].

The raw data of the statistical tests presented in this article can be viewed
and downloaded at the following link [20].

2 OpenACC Performance Portability

Recently, a new metric for assessing the performance portability of high-level
parallel programming models was proposed [7]. In this research, we used the
new metric for evaluating the performance portability of OpenACC, OpenMP,
Kokkos, and RAJA based on 324 case studies in various application domains,
CPU and GPU architectures, and high-performance compilers.

In this section, we present the definition of the proposed metric and the
results of the performance portability of OpenACC obtained using this metric.
We also explain how we treated the outliers and the assumptions that guided
us to determine which observations would be marked as outliers. Later in this
article, we use OpenACC'’s observations collected in this research for our in-depth
statistical analysis.

The new metric definition was formulated as follows.

Definition: Performance Portability of a Model
The arithmetic mean of the performance efficiencies, which are the achieved
performance values of a given portable model as a fraction of the performance
values of a non-portable architecture-specific model, obtained from collections of
case studies carried out on platforms of the same class of pairs (application,
problem,).

Formally, the performance portability metric P, of a high-level portable
parallel programming model M executing a set of case studies T, where each
t € T corresponds to application a solving problem b on platform c is:

__ _meia, b c
Py = Lier i@, |T() (1)

where ¢;(a, b, ¢) is the performance efficiency of application a solving problem b
on platform c.

42 A. Marowka

The performance efficiency used in this evaluation is the achieved perfor-
mance of a given portable model M as a fraction of the performance of a
non-portable architecture-specific parallel programing model. For example, Ope-
nACC is a portable programming model, whereas CUDA is a non-portable archi-
tecture specific programming model. Therefore, assuming that performance val-
ues are given in gigaflop/s, the performance efficiency of each case study 7 in
this evaluation is:

OpenACC Per formance

ACD) b7 =
ei(a;b,) CUDA Per formance

(2)

Table 1. Performance Portability of OpenACC on GPUs.

Performance Portability

Exc. outliers Inc. outliers # of outliers
Model Case Py |std. |max | min | Case Py |std. dev. max |min | < 50% - | > 100%
Studies dev. Studies 50% | 100%

GPU
OpenACC[109 |81% 13% |100% |51% 141 |77%28% |200% 3% |23 109 |9

Table 1 shows the calculated performance portability scores of OpenACC as
obtained by the proposed new metric P,; on the GPUs, without outliers less
than 50% and greater than 100%, alongside the calculated performance porta-
bility scores that include outliers. In addition, the table presents statistics such
as the minimum and maximum values of the calculated performance efficiencies,
the standard deviation, and the number of outliers less than 50%, greater than
100%, and in the range 50%-100%. It can be observed that the total number of
case studies used in this evaluation is 141, while 32 of them were marked as out-
liers (23%). Moreover, the calculated performance portability without outliers is
81% and with outliers is 77%.

The following question arises: what is the rationale behind our decision that
observations whose scores are less than 50% and greater than 100% will be clas-
sified as outliers? To answer this question, let us use the previous example where
OpenACC is the performance portability framework being tested, and CUDA is
the reference non-portable programming model. If the performance efficiency of a
given case study shows a score greater than 100%, it means that the performance
of the implementation developed by OpenACC is better than the implementation
developed by CUDA. This is in contrast to what is expected from the implemen-
tation that was developed using non-portable and architecture-specific program-
ming models such as CUDA. Therefore, this almost certainly indicates that the
optimization of the implementation developed by CUDA requires improvement.

Inferential Statistical Analysis of Performance Portability 43

This is what motivated us to classify case studies showing scores greater than
100% as outliers. On the other hand, if a given case study shows a score of less
than 50%, it means that the performance of the implementation developed using
OpenACC is less than half the performance of the implementation developed
using CUDA. In the subjective opinion of the authors, it should be classified as
an outlier. Other analysts could determine threshold values less or greater than
50%. In the following sections, we will confront and analyze this decision using
statistical tools.

Performance Efficiency of OpenACC on GPUs

32

Mean w/o outliers = 81
Mean /w outliers = 77

Frequency
10 15 20 25 30 35

Performance Efficiency

Fig. 1. Histogram of Performance Efficiencies of OpenACC on GPUs. The dark bars
represent potential outliers.

Table 2. Statistics Summary of the Case Study Observations.

Groups | Descriptive Statistics

Mean | Std. Error | Median | Std. Dev. | Kurtosis | Skewness | Range | Min. | Max. | Count
A 7 2.41 78 28 3.5 0.6 197 3 200 | 141
B 81 1.25 81 13 —0.9 —0.2 49 51 100 109

3 OpenACC’s Observation Statistics

In this section, we present the summary statistics of OpenACC’s observations
that we are analyzing. Figurel shows the histogram of 141 observations rep-
resenting the performance efficiencies of 141 OpenACC case studies of various
applications on different GPU platforms as studied and reported in [7]. Table 2
presents the descriptive statistics of the distribution of observations.

44 A. Marowka

The bars in the histogram that are highlighted in a dark color represent
potential outliers marked by the analysts of the study. Recall, these outliers are
the performance efficiencies that yield scores greater than 100% and less than
50%. It can also be discerned by examining the histogram, that calculating the
mean without outliers yields a score of 81% (for 109 observations) compared to
a score of 77% (for 141 observations) including the outliers.

Table 2 shows additional descriptive statistics of groups A and B. The most
notable statistic is the standard deviation, which is double in the case where
the outliers are considered. This indicates a wider dispersion of observations
compared to the case where the outliers are not considered. This is seen visually
from looking at the histogram. The skewness and kurtosis characteristics describe
the distribution shape. Skewness measures the lack of symmetry, while kurtosis
measures whether the distribution is heavy-tailed (has outliers) or light-tailed
relative to a normal distribution. When outliers are considered, the skewness
and the kurtosis of 0.6 and 3.5, respectively, indicate an asymmetrical and right-
positive shape with long heavy tails. On the other hand, when the outliers are
removed, skewness and kurtosis are -0.2 and -0.9, respectively, indicating an
almost symmetrical shape with short thin tails.

Usually, a quantile-quantile plot (Q-Q Plot) alongside a statistic test of nor-
mality is used for determining whether observations are normally distributed.
Figure2 presents the Q-Q plots with and without outliers, respectively, while
the Shapiro-Wilk test was chosen as the normality test [19]. The Shapiro-Wilk
test rejects the Hy hypothesis for the two groups, and hence the observations
are not normally distributed.

The p-values that were calculated by the Shapiro-Wilk test are 1.297e-7 and
0.00095 for groups A and B, respectively. Since the p-values are less than the
significance level («) of 0.05 it can be concluded that the difference between the
distribution of the observations and the normal distribution is big enough to
be statistically significant. In the next section we elaborate further about the
concept of hypothesis tests, P-values and the significance level («).

The Shapiro-Wilk test uses the Kolmogorov-Smirnov effect size to measure
the deviation from the normal. The observed effect sizes of groups A and B were
0.1552 and 0.09838, respectively, indicating that the magnitude of the difference
between the distribution of the observations and the normal distribution is large
for group A and small for group B.

Now, let’s look at the Q-Q plots shown in Fig. 2. To visually assess whether
the points representing the observations follow a normal distribution, we check
that the points follow a straight line.

By looking at the Q-Q plot in Fig. 2 (left), it can be observed that the straight
distribution fit line covers only some of the points, while the points at the ends
move away from the line. These points are suspected to be outliers. On the other
hand, it can be observed from the Q-Q plot in Fig.2 (right) that the straight
distribution fit line covers most of the points. These findings are consistent with
the results obtained using the Shapiro-Wilk test.

Inferential Statistical Analysis of Performance Portability 45

n
o
=}

.

o
o
.
o
o

o
o

Performance Efficiency
S
o
Performance Efficiency

o
o

o
.

-2 -1 0 1 2 -2 -1 0 1 2
Theoretical Quantiles Theoretical Quantiles

Fig. 2. Q-Q Plots of the 141 tested observations including outliers (left) and 109 tested
observations without outliers (right).

Figure 3 shows beeswarm-boxplots. A beeswarm-boxplot, is a graph that is a
combination of a beeswarm plot on top of a boxplot. A boxplot, also known as a
box and whisker diagram, is a graph that shows how the observations are spread
out in a different perspective compared with histograms and Q-Q plots. A box-
plot displays the distribution of observations based on a five number summary
(“minimum?”, first quartile (Q1), median, third quartile (Q3), and “maximum”).
It also shows potential outliers and their values.

Figure 3 (left) shows the beeswarm-boxplot of the 141 observations includ-
ing the outliers. The numbers 65 and 94 represent the first and third quartiles,
respectively. The line that crosses the box represents the median (78). The box
represents the interquartile range (IQR), the range from the 25th to 75th per-
centile (IQR = Q3-Q1 = 29). The “maximum” and “minimum” values (135 and
25, respectively), also known as Tukey fences, are 1.5 times the interquartile
range from the quartiles. The observations below and above the Tukey fences
are outliers (3, 8, 13,17, 20, 149, 166, 180, and 200).

Hence, according to the statistical analysis there are nine outliers compared
to the thirty-two outliers acknowledged by the analyst. Figure 3 (right) shows the
beeswarm-boxplot of 109 observations, of which the analysts determined none
were outliers. It can be noted that according to our statistical analysis, none of
the observations are below or above the Tukey fences, 51 and 100, respectively,
and therefore none of them are outliers.

Beeswarm plots are designed to show the underlying distribution of the obser-
vations in a way that avoids overlapping. They provide a better visualization of
the distribution of the observations and thus allows new conclusions and insights
to be drawn.

For example, statistical analysis of the beeswarm-boxplot in Fig.3 (left)
shows that there are a few extreme outliers above the 100% upper threshold
as determined by the analysts. That is, there are a very small number of case
studies whose implementations in OpenACC yield a better performance than
their implementations in CUDA. This finding is consistent with the analysts’
determination that the observations showing performance efficiency scores of
greater than 100% are outliers.

46 A. Marowka

(=3 (=3
o ° o 100
N e g
o o2
2
=a
° ° .
o S b+
o o ° o
> 2 > oo
e e o
% 135 % 35
o o — 1
& 58 e
.
S]
=] sovsgdaiifiosse: 8 eosseose
c 194 c we
£ : £e
ek 78 - "
5 o s~ L
E . 65 E B3
o 2 .: o
oge (=30 b
¥ 8
n— 25
H 3
H
°
o ° 3 —_— 51
OpenACC on GPUs OpenACC on GPUs

Fig. 3. Beeswarm boxplots of the 141 observations including the outliers (left) and 109
observations without outliers(right).

On the other hand, most outliers marked by the analysts are in the range
between the “minimum” Tukey fence (25%) and the lower threshold value set
by the analysts (50%). This finding allows analysts to re-examine whether their
early determination that set the lower threshold to 50% is appropriate and to
consider changing it to a lower threshold value.

4 Hypothesis Testing

Hypothesis testing is a statistical analysis that uses a sample of observations to
assess two conflicting hypotheses about the properties of a population: the null
hypothesis (Hy) and the alternative hypothesis (H;). When the null hypothesis is
rejected, the results are statistically significant, meaning that there is a difference
between the population value and the null hypothesis value.

Statistical hypothesis tests use several parameters to determine whether to
reject the null hypothesis and give an estimated range of values that is likely to
include an unknown population moment. The parameters used in this article are
p-value, significance level, and 95% confidence interval. The significance level («)
is the probability threshold value of rejecting a true null hypothesis. The p-value
represents the probability of the observation distribution and to what extent it
contradicts the null hypothesis. When the p-value is less than or equal to the
significance level, the null hypothesis is rejected. A confidence interval represents
a range of values that an estimation is expected to fall within a certain percentage
of the time. For example, a 95% confidence interval of [50 60| indicates 95%
confidence that the population mean falls within this range.

In this section, we test our case studies using two nonparametric tests (1-
sample Wilcoxon and nonparametric bootstrap).

Inferential Statistical Analysis of Performance Portability 47

4.1 One-sample Wilcoxon Signed-Rank Test

The one-sample Wilcoxon signed-rank test is a powerful nonparametric test since
the ranking of the observations is considered as well as the signs, thus giving more
accurate results. The assumptions for the one-sample Wilcoxon test are similar
to those of the paired test, but it adds an assumption that the distribution of
the observations is symmetric around the median, or at least not very skewed.
The Wilcoxon test can be applied on our case studies because the skewness of
the distribution of the observations is approximately symmetric (0.58).

The one-sample Wilcoxon signed-rank test has the following hypotheses (two-
sided test):

— Ho:m=mno
— Hy:n#mno

where 7 is the population median and 7y is the hypothesized value of the
median in the population. In our test 79 = 80.

We analyze the outcome of the one-sample Wilcoxon signed-rank test we
performed for groups A and B.

Wilcoxon signed-rank test - Group A
V = 4290.5, p-value = 0.2835

H;: true median is not equal to 80
95 percent confidence interval: 73 82
sample estimates: median 78

Wilcoxon signed rank test - Group B
V = 3206.5, p-value = 0.2427

H;: true median is not equal to 80
95 percent confidence interval: 79 84
sample estimates: median 82

For group A, the null hypothesis states that the median equals 80. As the
p-value is approximately 0.28, greater than the significance level of 0.05, we
cannot reject the null hypothesis. We do not have enough evidence to conclude
that the median is different from 80. The 95% confidence interval estimates
that the actual population median is likely to be between 73 and 82. The 95%
confidence interval includes the hypothesized value of 80, which is why we can
be 95% confident that the population median is between 73 and 82. Therefore,
we cannot conclude that the population mean is different from 80.

The one-sample Wilcoxon signed-rank test for group B yields a similar out-
come except that the 95% confidence interval is narrower [79 84]. The hypothet-
ical value of 80 falls within this range and indicates that our hypothesis is closer
to the population median.

48

A. Marowka

Bootstrap Distribution

— mean

1500

- = 95% Cl lower
~ = 95% Cl upper

1000
!

Frequency

500
!

o
N

76

o 4

70

75

80

Sampling distribution of the means

1500

Frequency
1000

500

!

Bootstrap Distribution

!

— mean

= = 95%Cllower
~ = 95% Cl upper

81

80

T
82

Sampling distribution of the means

86

Fig. 4. Bootstrap histograms of Group A (left) and Group B (right).

Table 3. Statistical Analysis of OpenACC, OpenMP, Kokkos and RAJA.

Performance Portability

Knowledgeable Analyst (without outliers) ‘ Statistics Analysis (with outliers)

Model Case Num. |%Py | Normal 95% CI ‘ Skewness | Kurtosis | P s | Normal 95% CI ‘ Skewness | Kurtosis

Studies | Outliers| Distribution Distribution
CPU
OpenACC | 8 5 71 | Yes [60..80] | S Nt 105 | Yes [84..123] | S Nt
OpenMP |25 4 88 | No [81..93] | As Lht 97 | No [86..119] | As Nt
Kokkos 27 12 85 | No [76..90] | As Lht 92 | No [77..113] | As Lht
Raja 9 4 82 | Yes [75..92] | S Nt 109 | Yes [73..162] | S Nt
GPU
OpenACC | 141 32 81 | No [78..83] | S Stt 76 | No [72..81] | As Lht
OpenMP |83 21 83 | No [79..86] | S Nt 77 | No [71..82] |S Nt
Kokkos 20 6 86 | Yes [78..91] | S Nt 85 | Yes [74..95] |S Nt
Raja 11 5 85 | Yes [72..94] | S Nt 80 | No [61..93] |S Nt

S: Symmetrical; As: Asymmetrical; Stt: Short thin tails; Lht: Long Heavy tails;
Nt: Normal tails; 95% CI: 95% Confidence Interval

4.2 Nonparametric Bootstrap

Bootstrapping is a technique that resamples a sample of observations with
replacement, to create many simulated samples without making assumptions
about the sample distribution. Each of the simulated samples has its own statis-
tics, such as the mean. The histogram of the distribution of these means is called
the sampling distribution of the means. By using this technique, it is possible to
calculate a variety of sample statistics, such as the median, mean, and standard
deviation. This article focuses on calculating the mean and the 95% confidence
interval.

Figure4 (left) shows the bootstrap distribution of the means and the 95%
confidence interval for the 141 observations. The bootstrap distribution was gen-
erated by re-sampling the observations from Fig.1 10,000 times and then cal-
culating each sample’s mean. The sampling distribution of the means is the
histogram shown in Fig.4 (left). It can be observed that the calculated mean
of the bootstrap distribution yields a score of 76, similar to the mean of the
observations in Fig. 1. The confidence interval of the bootstrap distribution is

Inferential Statistical Analysis of Performance Portability 49

[72 81], which means that we can be 95% confident that the population mean
falls within this range. It can also be noticed that the sampling distribution of
the histogram in Fig. 4 (left) approximates a normal distribution even though the
underlying distribution of the observations is skewed. This is a direct outcome of
the Central Limit Theorem. Figure4 (right) shows the sampling distribution of
the means and the 95% confidence interval for the 109 observations. It approxi-
mates a normal distribution around the mean (81) while the confidence interval
of the bootstrap distribution is narrower [79 84]. This means that we can be 95%
confident that the population mean falls within this range, and we know that
our hypothesis is closer to the population mean.

5 OpenMP, Kokkos, and Raja

The statistical analysis described in detail for the case of OpenACC on GPUs
was also applied to OpenMP, Kokkos, and Raja on GPUs and CPUs, based
on the case studies of the research in [7]. Table3 shows the results obtained.
Each row in the table refers to one of the performance portability frameworks
and indicates the number of case studies considered, the performance portability
score obtained, the number of outliers detected, whether the distribution of the
observations is normal or not as obtained by the Shapiro-Wilk test, the 95%
confidence interval, and a literary assessment of the skewness and kurtosis values
obtained.

An analysis of the data in Table3 reveals the following. As the number of
observations increases, the number of outliers increases. The distribution of the
observations tends to be non-normal, and the 95% confidence intervals tend to
be narrower, thus the statistical reliability is better. In contrast, the smaller the
number of observations, the wider the 95% confidence interval, and the abil-
ity to draw a reliable statistical assessment decreases. The conclusion is that the
accuracy of the calculation of the performance portability score of a given perfor-
mance portability framework increases as the number of observations increases.
This finding makes sense and is not surprising, but now it also has the support
of statistical tests.

6 Conclusions

Descriptive and inferential statistical analysis using powerful statistical hypoth-
esis tests constitute complementary tools for the performance portability eval-
uation of an analyst. They are used to conduct an overall reliable assessment
of the capability of a given performance portability framework to generate per-
formance portable applications. Confrontation of an analyst’s assessment with
statistical analysis is necessary when performance portability assessment is based
on unverifiable and unreproducible case studies.

In this article, we presented the method for performing a comprehensive
statistical analysis for OpenACC on GPUs when many case studies are available.
On one hand, we showed how statistical analysis strengthens the evaluation of

50

A. Marowka

an analyst, and on the other hand, we showed how statistical analysis allows an
analyst to refine his initial conclusions. Finally, we presented statistical analysis
for OpenMP, Kokkos and Raja on CPUs and GPUs, and for samples of a small
number of case studies.

References

1.

16.

17.

18.

19.
20.

21.

Carter Edwards, H., Trott, C.R., Sundrland, D.: Kokkos: enabling manycore per-
formance portability through polymorphic memory access patterns. J. Parallel Dis-
trib. Comput. (2014)

Hornung, R.D., Keasler, J.A.: The RAJA Portability Layer: Overview and Status.
LLNL-TR-661403 (2014)

OpenMP. OpenMP 4.5 Specifications. http://www.openmp.org/specifications/.
Accessed 11 Feb 2017

OpenACC: Directive-Based Parallel Programming Model for Accelerators (2018).
http://www.openacc.org

Marowka, A.: Toward a better performance portability metric. In: Proceeding of
29th Euromicro International Conference on Parallel, Distributed and Network-
based Processing (PDP 2021), Valladolid, Spain, 10-12 March 2021

Marowka, A.: Reformulation of the performance portability metric. Softw. Pract.
Exp. 52(1), 154-171 (2022)

Marowka, A.: On the Performance Portability of OpenACC, OpenMP, Kokkos and
RAJA. In: ACM Proceeding of HPCAsia 2022, pp. 103-114, January 2022
Minitab. https://www.minitab.com/en-us/

. Stat101. http://www.statistics101.net/statistics101web_000003.htm
10.
11.
12.
13.
14.
15.

Statistic Kingdom. https://www.statskingdom.com/

Real Statistic. https://www.real-statistics.com/

GraphPAD. https://www.graphpad.com/

R language. https://www.r-project.org/

Excel. https://www.microsoft.com/en-us/microsoft-365/excel

Cumming, J., Finch, S.: Inference by eye: confidence intervals and how to read
pictures of data. Am. Psychol. 170-180 (2005)

DeWinter, J., Dodou, D.: Five-Point Likert Items: t test versus Mann-Whitney-
Wilcoxon, pp. 1-16. Practical Assessment, Research and Evaluation (2010)
Freedman, D., Pisani, R., Purves, R.: Statistics, 3rd edn. W.W. Norton and Com-
pany, New York (1998)

Goldstein, H., Healy, M.J.: The graphical presentation of means. J. R. Statist. Soc.
170-180 (1995)

Shapiro-Wilk test. https://en.wikipedia.org/wiki/Shapiro%E2%80%93Wilk _test
Raw Statistic. https://www.dropbox.com/s/q84gh1jdg3xz8ip/0-statistics-merged.
pdf?dl=0

Torsten, H., Roberto, B.: Scientific benchmarking of parallel computing systems:
Twelve ways to tell the masses when reporting performance results. In: Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis (SC 2015) (Austin, Texas). ACM, New York, Article 73, 12
p- (2015)

http://www.openmp.org/specifications/
http://www.openacc.org
https://www.minitab.com/en-us/
http://www.statistics101.net/statistics101web_000003.htm
https://www.statskingdom.com/
https://www.real-statistics.com/
https://www.graphpad.com/
https://www.r-project.org/
https://www.microsoft.com/en-us/microsoft-365/excel
https://en.wikipedia.org/wiki/Shapiro%E2%80%93Wilk_test
https://www.dropbox.com/s/q84gh1jdg3xz8ip/0-statistics-merged.pdf?dl=0
https://www.dropbox.com/s/q84gh1jdg3xz8ip/0-statistics-merged.pdf?dl=0

®

Check for
updates

NPDP Benchmark Suite for Loop Tiling
Effectiveness Evaluation

Marek Palkowski®) and Wlodzimierz Bielecki

West Pomeranian University of Technology in Szczecin Faculty of Computer Science
and Information Systems, Zolnierska 49, 71210 Szczecin, Poland
{mpalkowski,wbielecki}@wi.zut.edu.pl
http://wuw.wi.zut.edu.pl

Abstract. The paper introduces ten non-serial polyadic dynamic pro-
gramming (NPDP) kernels as a benchmark suite dedicated to effective-
ness evaluation of tiled code generated by means of polyhedral optimiza-
tion compilers. Most of the applications implement bioinformatics algo-
rithms which are challenging and ongoing tasks for automatic loop nest
tiling transformations. The paper describes mathematically examined
kernels and uniformizes them in the form of loop nests presented in the C
language. In an experimental study, we applied the two automatic source-
to-source compilers, TRACO and PluTo, to generate cache-efficient codes
and analysed their performance on three multi-core machines. We dis-
cuss the limitations of well-known tiling approaches and outline future
tiling strategies for the introduced NPDP Benchmark suite.

Keywords: RNA folding - high-performance computing -
computational biology - loop tiling - benchmarks

1 Introduction

A collection of non-serial polyadic dynamic programming (NPDP) benchmarks
is introduced to evaluate the performance of tiled code automatically generated
by means of state-of-the-art optimizing compilers. Tiling is a very important
loop nest transformation allowing for increasing code locality and task grain size
as well as task parallelism. The suite consists of 10 kernels belonging to NPDP
algorithms that in general are difficult for automatic generation of effective par-
allel tiled code. Eight of them present dynamic programming recurrences, which
are ones of the commonly-known approaches in computational biology, to nucleic
acid structure prediction (the folding of an RNA molecule), and sequence align-
ment (determining similar regions between two strings of nucleic acid sequences
or protein sequences). Two kernels implement classic algorithms of computer
science.

The contribution of the paper is i) to expose disadvantages of existing bench-
marks for evaluation of dynamic programming code generated by means of opti-
mizing compilers ii) collect a new benchmark suite to evaluate the effectiveness
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 51-62, 2023.
https://doi.org/10.1007/978-3-031-30445-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_5&domain=pdf
https://doi.org/10.1007/978-3-031-30445-3_5

52 M. Palkowski and W. Bielecki

of compilers optimizing dynamic programming code; iii) optimization of pre-
sented benchmarks by means of the PLUTO and TRACO compilers and the
presentation of evaluation results for those optimized codes.

Each benchmark is specified as a C code with a short description of what
the code is supposed to do. This is sufficient in the context of automated loop
transformations implemented within source-to-source compilers. Presented ker-
nels involve mathematical computations, which are easily implemented as affine
control loop nests [7,8], thus, the iteration space can be represented by the poly-
hedral model for optimizing their locality and parallelism. It provides a powerful
theoretical framework that can analyze regular loop programs with static depen-
dences [14].

Dynamic programming kernels involve opportunities for polyhedral loop
transformations such as tiling for improving code locality via allowing reuse
when the tile fits in local memory. However, NPDP irregular loop dependence
patterns prevent generation of effective tiled code by means of polyhedral opti-
mization techniques [14].

In the suite, we included only such NPDP kernels that expose non-uniform
dependences (the non-uniform dependence is represented with a dependence
vector whose elements are affine expressions, i.e., they are not constants) and
are challenging for state-of-the-art tiling strategies based on affine transformation
framework (ATF) [14,23] and the transitive closure of dependence graphs [9].

In the next section, we describe introduced NPDP kernels. In the experi-
mental study section, we demonstrate applying of two well-known polyhedral
compilers to parallelize and optimize benchmarks. In the relation work section,
we discuss related polyhedral benchmarks. In conclusion, we define future tasks
to optimize the introduced NPDP Benchmark Suite in order to outperform code
generated by means of state-of-the-art compilers.

2 NPDP Kernels

The nussinov kernel implements Nussinov’s algorithm [17] and solves the prob-
lem of RNA folding through computing the maximum number of base pairs
for subsequences, starting with subsequences of length 1 and building upwards,
storing the result of each subsequence in a dynamic programming array.

Let N be an n x n Nussinov matrix and o(, j) be a pairing function. Then
the following recursion N (%, j) is defined over the region 1 < i < j <n as

N(Zvj) = maa:(N(z +1,5— 1) + 0(i7j)7 121]5{"(]\7(2, k) + N(k + 17]))) (1)

and zero elsewhere.

The zuker kernel implements Zuker’s algorithm [25] for RNA folding and
calculates the minimal free energy of the input RNA sequence on recurrence
relations. It defines two energy matrices, W (i, j) and V(i,75), as the total free
energy of a sub-sequence defined with values of 7 and j, and of a sub-sequence
starting with ¢ and ending with j, respectively, if ¢ and j pairs (otherwise V (4, j)
= 00).

NPDP Benchmark Suite 53

The main recursion of Zuker’s algorithm for all 4, j with 1 < i < j < N,
where N is the length of a sequence, is the following.

W(i+ 1,j)
Wi, j—1
Wi,) = min V(; o) (2)

. . L
ig}clgj{W(z,k)JrW(kﬂL)}

Below, we present the computation of matrix V.

et (i, j)
V(iEi+1,j—1)+eS(4,5)
1<i <G <g

2<i’ —itj—j'<d

i<1131<i§_171{W(i +Lk)+W(k+1,57—-1)}
where eH (hairpin loop), eS (stacking) and eL (internal loop) are the structure
elements of energy contributions in Zuker’s algorithm.

The Smith-Waterman algorithm (sw kernel) explores all the possible align-
ments between two sequences and as a result it returns the optimal local align-
ment guarantying the maximal sensitivity [21].

It constructs a scoring matrix H, which is used to keep track of the degree
of similarity between the cells a; and b; of two sequences to be aligned, where
1 <1< N,1<j< M. The size of the scoring matrix is (N+1)*(M+1). Matrix
H is first initialized with Hy o = Ho j = H;o = 0 for all 7 and j.

Each element H; ; of matrix H is calculated as follows.

Hi_1;-1+ s(a;,bj)
max_(Hl-_kJ- — Wk)

H; j = max tsker I W) (4)
lrgggj(ij—k — Wk)

0

where s(a;,b;) is a similarity score of elements a;, b; that constitute the two
sequences, and Wy, is a penalty of a gap that has length k.

The benchmark sw3d finds local alignment for three sequences [21]. Multiple
sequence alignments are computationally difficult to produce (much harder than
that of pairwise alignment) and most formulations of the problem lead to NP-
complete combinatorial optimization problems.

Scoring matrix H is similarly constructed to align cells a;, bj, and ¢; of three
sequences, where 1 < ¢ < N,1 < j < M,1 <1 < P. The size of the scoring
matrix is (N+1)*(M+1)*(P+1). Matrix H is first initialized with Hpo,0 =
H;po0 = Hojo0 = Hopo; = 0 for all 4, j, and I. Each element H; ;, is calculated
as follows.

54 M. Palkowski and W. Bielecki

Hivvjori-1+ s(ai,by) + 5(bj, 1) +s(ai7cz)
Hi i xrn+ (b,

(
Hi— j — 77b
1gk§1ni?ﬁ(i,j>(kj—k,t T s(ai, bj) — Wy)

Hi_ 1 i_
1gkgln?ﬁ(i,l)(ik -k + s(ai, c) — Wy)

max (Hi—k,jJ — 2% W)

H; ;= max

1<k<i

max (H; i_p1 — 2% W,

1§k<j(ij—k,l k)
max (H; i1 — 2% W,

1§k<l(i,5,0—k k)
0.

Multiple entries of matrix H are much more complicated by data depen-
dences, whereby each cell entry depends on the values of seven entries. The
filling stage requires one more loop for I. The number of loop nest statements for
q sequences is equal to 29-1. For two and three sequences with the same length
n, computation of one element growths from 3*n? to 7*n? iterations.

The Needleman-Wunsch (nw) algorithm finds global sequence alignment
according to the scheme below [16].

F(i—1,7—1)4o0(a;b;),

F (i, j) = max § 25 (F (= K. J) =2 (R)), (5)
ax (F(i, 5 — k) = v(k)).

where o(a;,b;) is a score of a;,b; (match or mutation), (k) is a gap penalty
score with the length k.

The counting algorithm computes the exact number of nested structures for
a given RNA sequence. It was introduced by Michael S. Waterman and Temple
F. Smith [22]. It populates the matrix C by means of the following recursion.

Cij=0Cii1+ Z Cik—1 " Cry1,j-1, (6)
i<k<@-1)
Sk,S; pair
where [is the minimal number of enclosed positions, and the entry C; ; provides
the exact number of admissible structures for the sub-sequence from position
i to j. The upper right corner C , presents the overall number of admissible
structures for the sequences.
The John S. McCaskill kernel (mccaskill) computes the partition function
= > pexp(—E(P)/RT) over all possible nested structures P that can be
formed by a given RNA sequence S with E(P) as energy of structure P, gas
constant R, and temperature T' [12].
Each base pair of a structure contributes a fixed energy term Ej, indepen-
dent of its context in a Nussinov-like energy scoring scheme. Given this, two

NPDP Benchmark Suite 55

dynamic programming tables ¢ and @, are populated. Q);; provides the parti-
tion function for a subsequence from position ¢ to j, while the array Qy, stores
the partition function of the subsequences which form a base pair or 0 if base
pairing is not possible. Q and Q' are populated as follows.

Qij=Qij+ . Qir1-QF, (7)

i<k<(j—1)

if S, 8; can form
Qi)gz — Q2+17]71 . eXp(_Eb;D/RT) base pair . (8)
7 0 otherwise

The mea kernel predicts the structure with the maximum expected accuracy
for a given RNA sequence using the algorithm introduced by Zhi J. Lu et al.,
2009 [11] applying the sequence’s base pair and unpaired probabilities. The kernel
consists of six NPDP program loops (Q, QBP, PB, PU, PUU, M) and follows a
Nussinov-like recursion using the probabilities derived from John S. McCaskill’s
algorithm.

The computation of PB is the sum of the Boltzmann probabilities of all the
structures that contain the base pair [6]. PB covers both the case when (i, j) is
an external base pair and that when (4, j) is directly enclosed by an outer base
pair (p, q). The PB recursions are used to compute the probabilities of individual
base pairs P according to the formula below.

Qui1- QY - Qjt1n piv exp(—Epp/RT) - Qpi1,i-1 - Q% - Qji1,4-1
Qin + Z P’ bp

p<t,j<q P,q

bp _
Py =

9)

Analogously to base pair probabilities, we can also compute the probability
when a given subsequence Si...Sj of an RNA sequence is not involved in any
intramolecular base pair. We call this kernel as PU and use the scheme below.

pu = Qui-1 1 Qjin 3 pto . SP(—Eyp/RT) - Qpirim1 -1~ Qjrig1

nj T P,q b
7 @ p<ig<a ra

(10)
The following formula is used to populate the probability P* when a given
sequence position S; is not paired. We call it PUU and apply the formula below.

Pr=1-Y"PF->"P" (11)
k<i 1<j
Finally, the MEA structure prediction uses the following recursion to fill a
dynamic programming table M. The overall score of M; ; and the subsequence
S;..8; is hold in M, for a sequence of length n. v is a constant base pair
weighting. We call this kernel MEA.

56 M. Palkowski and W. Bielecki

M; ;-1 + P} S; unpaired
maxX;<k<(j—1) (Mi,szl + Mk+1,j71 + - Plgg) Sy, paired with Sj
(12)
In the optimal (polygon) triangulation problem (the triang kernel), we are
given a convex polygon and a weight function defined on triangles formed by
sides and chords [5]. The problem is to find a triangulation that minimizes the
sum of the weights of the triangles in the triangulation.
Let cost w(i, j, k) denotes the length of the perimeter of Av,vv, = |v;v;| +
|vjvk| + |vkv;|. Then minimal cost polygon triangulation is calculated as follows.

Mi’j = Imax {

. 0 j<i+2
clilli] = masx (cli][K] + (K] [j] + w(i, g, k) otherwise. (13)

The knuth kernel is the optimal binary search tree (OBST) [10], the case
when the tree cannot be modified after it has been constructed. Knuth’s OBST
algorithm populates matrix C and is represented with the following recurrence

C’L,J
min _ (Cip+Crj +Wij)

1<i<k<j<n

Ci,j = min (14)

where W (3, j) is the sum of the probabilities that each of the items ¢ through j
will be accessed.

The source codes of all considered benchmarks are available in the sub-
directory input on the website https://github.com/markpal/NPDP_Bench.

Table 1 presents characteristics of the presented NPDP C kernels. For each
kernel, it describes the number of nested loops, the number of arrays, the number
of relations representing loop dependences, and memory capacity. The data pre-
sented in the last two columns are discussed in the experimental study section.

3 Related Work

The commonly known benchmark suite for polyhedral optimizers is PolyBench
introduced by Louis-Noel Pouchet in 2011 [19]. PolyBench is a collection of
30 numerical computations containing static control parts. The kernels are
extracted from problems in various application domains (linear algebra compu-
tations, image processing, physics simulation, dynamic programming, statistics,
etc.). PolyBench is dedicated to evaluate code performance generated by means
of techniques based on affine transformations. In previous versions, Polybench
includes the dynamic programming kernel dynprog. However, this implemen-
tation uses a temporary three-dimensional array to avoid non-uniform depen-
dences. In current version 4.2, the kernel is removed. Instead of it, the Nussinov
kernel is added.

https://github.com/markpal/NPDP_Bench

NPDP Benchmark Suite 57

Table 1. Characteristics of the NPDP kernels.

Kernel | No. of No. of | No. of Memory TRACO | PluTo
nested loops | arrays | dep. relations exact R+ | limits

counting | 3 1 14 N2 yes rork

knuth |3 2 10 2*N? yes *

mcc 3 3 26 2*N?4+N yes HoAAK

mea 4 6 104 4*N?+N no

nussinov | 3 2 24 N24N yes *

nw 3 6 22 3*N?+3*N | yes *

swW 3 6 22 3*N243*N | yes *

sw3d 4 6 98 3*N?3+3*N | no

triang |3 1 22 N2 yes *

zuker |4 4 104 4*N? no ok

* _ unitled innermost loop nest, ** - unitiled one before innermost loop nest
*** _ untiled outermost loop nest, **¥** _ serial tiled code

The Livermoore loops [13] measure numerical computation to benchmark
supercomputers. It was proposed by Francis H. McMahon from scientific source
code run on computers at the Lawrence Livermore National Laboratory. The
suite consist of 24 loops representing different mathematical kernels, and some
of them can be presented within the polyhedral model.

The polyhedral compilers are practiced to generate optimized codes for the
NAS benchmark suite (NPB) [15] derived from computational fluid dynamics.
It is a branch of fluid mechanics that uses numerical analysis and algorithms
to solve and analyse problems that involve fluid flows. The NAS parallel bench-
marks suite in version 3.3 consists of eleven kernels targeting performance eval-
uation of highly parallel supercomputers.

The UTDSP Benchmark Suite [26] was created in 1992 at the University of
Toronto to evaluate the quality of code generated by a high-level language (such
as C) compiler targeting a programmable digital signal processor (DSP). This
evaluation was used to drive the development of specific compiler optimizations
to improve the quality of generated code and to modify the architecture of the
target processor to simplify compiler’s task. The code is provided in multiple
styles, versions with arrays are represented as polyhedral loop nests.

The LORE loop repository for the evaluation of compilers maintains a large
amount of loop nests in the C language (about 2500 loops) extracted from pop-
ular benchmarks, libraries, and real applications [3]. Those loops cover a vari-
ety of properties that can be tested by optimization compilers to expose their
strengths and weaknesses. The kernels help to evaluate auto-vectorization, tiling,
interchange, unrolling, and other possible transformations implemented within
optimizers. It is worth noting that LORE contains only necessary codes to exe-
cute the kernel loops (not all source programs) to investigate speedup and effi-
ciency of optimization techniques. The authors tested the Intel C++ Compiler

58 M. Palkowski and W. Bielecki

(ICC), GNU C Compiler (GCC), and Clang (frontend of LLVM). Using those
compilers, authors provided the time execution results on an Intel Haswell gener-
ation Xeon E5-1630 v3 with -O3 flag and enabled more aggressive optimization
settings depending on the compiler. However, LORE does not contain NPDP
kernels presented in our benchmark suite. Furthermore, not all LORE loops can
be directly represented within the polyhedral model because they contain, for
example, pointers, typecasting, and arrow operators.

The disadvantage of the benchmark suites discussed above is the absence
of multiple dynamic programming kernels that is hard to be tiled to obtain
the maximal tile dimension, which has crucial impact on target code locality.
This makes it difficult to evaluate the effectiveness of loop tiling approaches
implementing in optimizing compilers for essential real-life applications.

4 Experimental Study

In this section, we present the results of an experimental study with the dis-
cussed benchmark codes generated applying PLuTo and TRACO. All parallel
tiled codes were compiled using the Intel C++ Compiler (icc) and GNU C++
Compiler (g++) with the -O3 flag of optimization.

To carry out experiments, we used three multi-processor machines: an Intel
Xeon Platinum 9242 CPU (2.30 GHz, 96 thrads, 71.5/48/3 MB Cache, compiler
icc 21.3.0), an Intel i7-8700 (3.2 GHz, 4.6 GHz in turbo, 6 cores, 12 threads, 12
MB/1.5 MB/6*32 kB (D and I) Cache, compiler icc 19.0.1), and an AMD Epyc
7542 (2.35 GHz, 32 cores, 64 threads, 128/16/2 MB Cache, compiler g++ 9.3.0).

For all examined codes, the tile size along each axis was chosen as 16. Experi-
mentally we discovered that such a tile size is optimal or near to optimal regard-
ing to target tiled code performance.

Source codes of the benchmarks with generated codes are available at the
open repository github with the following link https://github.com/markpal/
NPDP Bench. Original (sequential and without any modification) input codes
are placed in sub-folder input. Arrays are filled with random data.

For experimental study, we chose two polyhedral compilers PluTo and
TRACO, which are maintained projects with source code repositories, source-to-
source parallelizers and cache efficiency optimizers dedicated to optimize C/C++
program loops.

The state-of-the-art source-to-source PluTo compiler [2] is able to tile all
examined loop nests automatically. For this purpose, it extracts and applies
affine transformations to generate tiled code within the polyhedral model.

TRACO does not find and use any affine function to transform the loop
nest. It is based on the iteration space slicing framework [20], which envisages
applying the transitive closure of a dependence graph to carry out corrections
of original rectangular tiles so that all dependences available in the original loop
nest are preserved under the lexicographic order of target tiles. As a result, the
inter-tile dependence graph does not contain any tile cycle and any technique of

https://github.com/markpal/NPDP_Bench
https://github.com/markpal/NPDP_Bench

NPDP Benchmark Suite 59
Table 2. Times of the original and parallel tiled code execution in seconds.
Kernel | counting | knuth | mcc mea nussinov | nw sW sw3d | triang | zuker
Size 10000 10000 | 10000 | 2500 10000 10000 10000 500 10000 | 2000
XEON Platinum 9242, 96 threads, 2019
Original | 409,91 730,09 | 3043,21 | 6240,48 | 1667,69 |2221,84 | 2357,07 | 291,32 |2562,11 | 436,76
PluTo 15,34 21,075 1299,29 | 185,6 80,44 112,43 114,15 29,63 | 82,11 21,59
TRACO | 17,5 12,55 |1096,88 | 175,6 51,91 69,43 62,15 34,01 62,9 45,99
AMD Epyc 7542, 64 threads, 2019
Original | 354,51 853,09 | 3676,3 | 8296,33 | 4008,76 |4 567,33 | 4 433,91 | 309,87 | 3574,98 | 415,55
PluTo 45,77 37,63 |1005,44 | 356,8 217,69 188,32 |173,37 | 24,28 |180,67 | 30,99
TRACO | 38,12 74,06 |135,01 |483,16 |113,17 |65,22 61,88 27,17 | 314,63 | 63,7
Intel i7-8700, 12 threads, 2017
Original | 339,81 | 744,68 | 2066,33 3826,6 |1507,17 |3452,11 |3389,89 | 240,19 | 2134,83|317,8
PluTo 82,43 145,45 | 854,9 747,76 | 618,66 |687,22 |700,76 91,29 |470,26 |63,8
TRACO | 48,54 77,35 399,16 | 729,73 | 134,15 205,22 218,25 |99,24 297,42 |45,2
Pluto Traco
60
40
20
0
counting knuth mcc mea nussinov nw sw sw3d triang zuker
Pluto Traco
75
50
25
0
counting knuth mcc mea nussinov nw sw sw3d triang zuker
Pluto Traco
20
15
10
5
0
counting knuth mcc mea nussinov nw sw sw3d triang zuker

Fig. 1. Speedups of parallel tiled codes generated by applying TRACO and PluTo for
a) Intel Xeon Platinum 9242, b) AMD Epyc 7542, and c) Intel i7-8700.

loop parallelization can be used [1]. TRACO parallelizes tiled cods by means of
the commonly known wave-fronting technique.

60 M. Palkowski and W. Bielecki

For mea, sw3d, and zuker, the following lengths of randomized sequences
were studied, 2500, 500 and 2000, respectively. The rest of benchmarks were
considered with 10000 size of a problem.

Both compilers accelerate the NPDP benchmarks on all machines. PluTo is
not able to tile the innermost loop nest for nussinov, sw, nw, knuth, and triang.
It is not able also to tile the outermost loop for counting, and the one before the
inner loop nest for zuker, and it does not parallelize the mccaskill kernel. PluTo
fails to generate tiles of the maximal dimension for NPDP codes because the tile
dimensionality is limited to the number of linearly independent solutions to the
space/time partition constraints. The above observations are presented in the
last column of Table 1.

TRACO codes demonstrate lower or comparable speed-up for sw3d and zuker
because for those source codes, it uses not an accurate but approximated transi-
tive closure of dependence graphs. For calculation of transitive closure, TRACO
uses a corresponding function of the ISL library, which it is not able to return
exact transitive closure for those kernels. Calculation of an approximated transi-
tive closure envisages introducing addition dependences (not existing in sourced
code) in the dependence graph that worsens parallel tiled code performance. For
those kernels, TRACO generates complex code due to a complex form of an
approximated transitive closure.

Table 2 presents execution time of the codes in seconds. Figure 1 depicts the
speed-up of the examined generated codes. TRACO code performances are better
or comparable for the both Intel machines, while those of PluTo outperform
TRACO code performances for half of the kernels on AMD Epyc 7542.

Considering the above experimental results, we plan to investigate alternative
tiling strategies [4,14,18,23,24] to achieve potential higher performance for the
benchmarks of the introduced suite without applying any affine function and/or
transitive closure.

5 Conclusion

In this paper, we introduced the NPDP Benchmark Suite as a set of ten non-
serial polyadic dynamic programming kernels dedicated to polyhedral automatic
optimizing compilers implementing loop tiling. It comprises C codes to resolve
real-life problems from computational biology and computer science. Those codes
are to evaluate the performance of parallel tiled code generated automatically
by means of optimizing compilers.

In the experimental study, we applied two source-to-source optimizing com-
pilers, TRACO and PluTo, to generate parallel tiled code and evaluate its speed-
up on three multi-core machines. Obtained results demonstrate some limitations
of techniques implemented in those compilers. PluTo does not expose tiling or
parallelism for each kernel, while TRACO does not produce efficient code for each
complex non-uniform dependence patterns. We may conclude that approaches
implemented in those compilers do not allow us to get the maximal possible
cache efficiency for examined kernels.

NPDP Benchmark Suite 61

In the future, we plan to extend the suite with new NPDP kernels. Using

that suite, we are going to study alternative tiling strategies to outperform code
generated by means of well-known automatic compilers.

References

10.
11.

12.

13.

14.

15.
16.

17.

18.

. Bielecki, W., Palkowski, M.: Tiling of arbitrarily nested loops by means of the

transitive closure of dependence graphs. Int. J. Appl. Math. Comput. Sci. (AMCS)
26(4), 919-939 (2016)

Bondhugula, U., et al.: A practical automatic polyhedral parallelizer and local-
ity optimizer. SIGPLAN Not. 43(6), 101-113 (2008). https://doi.org/10.1145/
1379022.1375595

Chen, Z., et. al.: Lore: a loop repository for the evaluation of compilers. In: 2017
IEEE International Symposium on Workload Characterization (IISWC), pp. 219—
228. IEEE (2017)

Chowdhury, R., et. al.: Autogen. ACM Trans. Parallel Comput. 4(1), 1-30 (2017).
https://doi.org/10.1145/3125632

Cormen, T.H., et al.: Introduction to Algorithms, 3rd edn. The MIT Press, Cam-
bridge (2009)

Freiburg bioinformatics group: freiburg RNA Tools, Teaching RNA algorithms.
https://rna.informatik.uni-freiburg.de/teaching (2022)

Griebl, M.: Automatic parallelization of loop programs for distributed memory
architectures (2004)

Irigoin, F., Triolet, R.: Supernode partitioning. In: Proceedings of the 15th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp.
319-329. POPL 1988, ACM, New York (1988)

Kelly, W., et al.: Transitive closure of infinite graphs and its applications. Int. J.
Parallel Program. 24(6), 579-598 (1996)

Knuth, D.E.: Optimum binary search trees. Acta Informatica 1(1), 14-25 (1971)
Lu, Z.J., Gloor, J.W., Mathews, D.H.: Improved RNA secondary structure pre-
diction by maximizing expected pair accuracy. RNA 15(10), 1805-1813 (2009).
https://doi.org/10.1261/rna.1643609

McCaskill, J.S.: The equilibrium partition function and base pair binding proba-
bilities for RNA secondary structure. Biopolymers 29(6-7), 1105-1119 (1990)
McMahon, F.H.: The livermore fortran kernels: A computer test of the numerical
performance range. Technical Report, UCRL-53745, Lawrence Livermore National
Laboratory, Livermore, California (1986)

Mullapudi, R.T., Bondhugula, U.: Tiling for dynamic scheduling. In: Rajopadhye,
S., Verdoolaege, S. (eds.) Proceedings of the 4th International Workshop on Poly-
hedral Compilation Techniques, Vienna, Austria (2014)

NAS benchmarks suite. http://www.nas.nasa.gov (2013)

Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. In: Molecular Biology, pp.
453-463. Elsevier (1989). https://doi.org/10.1016,/b978-0-12-131200-8.50031-9
Nussinov, R., et al.: Algorithms for loop matchings. STAM J. Appl. Math. 35(1),
68-82 (1978)

Palkowski, M., Bielecki, W.: Tiling nussinov’s RNA folding loop nest with a space-
time approach. BMC Bioinf. 20(1) (2019). https://doi.org/10.1186/s12859-019-
2785-6

https://doi.org/10.1145/1379022.1375595
https://doi.org/10.1145/1379022.1375595
https://doi.org/10.1145/3125632
https://rna.informatik.uni-freiburg.de/teaching
https://doi.org/10.1261/rna.1643609
http://www.nas.nasa.gov
https://doi.org/10.1016/b978-0-12-131200-8.50031-9
https://doi.org/10.1186/s12859-019-2785-6
https://doi.org/10.1186/s12859-019-2785-6

62

19.

20.

21.

22.

23.

24.

25.

26.

M. Palkowski and W. Bielecki

The Polyhedral Benchmark suite (2012). http://www.cse.ohio-state.edu/pouchet/
software/polybench/

Pugh, W., Wonnacott, D.: An exact method for analysis of value-based array data
dependences. In: Banerjee, U., Gelernter, D., Nicolau, A., Padua, D. (eds.) LCPC
1993. LNCS, vol. 768, pp. 546-566. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-57659-2_31

Smith, T., Waterman, M.: Identification of common molecular subsequences. J.
Mol. Biol. 147(1), 195-197 (1981)

Waterman, M., Smith, T.: RNA secondary structure: a complete mathematical
analysis. Math. Biosci. 42(3-4), 257-266 (1978)

Wonnacott, D., Jin, T., Lake, A.: Automatic tiling of “mostly-tileable” loop nests.
In: IMPACT 2015: 5th International Workshop on Polyhedral Compilation Tech-
niques, At Amsterdam, The Netherlands (2015)

Zhao, C., Sahni, S.: Cache and energy efficient algorithms for Nussinov’s RNA
folding. BMC Bioinf. 18(15), 518 (2017)

Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using
thermodynamics and auxiliary information. Nucleic Acids Res. 9(1), 133-148
(1981)

UTDSP benchmark suite. http://www.eecg.toronto.edu/corinna/DSP /infrastruc-
ture/UTDSP.html (2012)

http://www.cse.ohio-state.edu/pouchet/software/polybench/
http://www.cse.ohio-state.edu/pouchet/software/polybench/
https://doi.org/10.1007/3-540-57659-2_31
https://doi.org/10.1007/3-540-57659-2_31
http://www.eecg.toronto.edu/corinna/DSP/infrastructure/UTDSP.html
http://www.eecg.toronto.edu/corinna/DSP/infrastructure/UTDSP.html

®

Check for
updates

Parallel Vectorized Implementations
of Compensated Summation Algorithms

Beata Dmitruk® and Przemystaw Stpiczynski®

Maria Curie-Sklodowska University, Institute of Computer Science,
ul. Akademicka 9, 20-031 Lublin, Poland
{beata.dmitruk,przemyslaw.stpiczynski}@umcs.pl

Abstract. The aim of this paper is to show that Kahan’s and Gill-
Mgller compensated summation algorithms that allow to achieve high
accuracy of summing long sequences of floating-point numbers can be
efficiently vectorized and parallelized. The new implementation uses Intel
AVX-512 intrinsics together with OpenMP constructs in order to utilize
SIMD extension of modern multicore processors. We describe in detail
the vectorization technique and show how to define custom reduction
operators in OpenMP. Numerical experiments performed on a server with
Intel Xeon Gold 6342 processors show that the new implementations of
the compensated summation algorithms achieve much better accuracy
than ordinary summation and their performance is comparable with the
performance of the ordinary summation algorithm optimized automati-
cally. Moreover, the experiments show that the vectorized implementa-
tion of the Gill-Mgller algorithm is faster than the vectorized implemen-
tation of Kahan’s algorithm.

Keywords: Summation - Accuracy * Kahan and Gill-Mgller
algorithms - Vectorization - SIMD intrinsics -+ OpenMP

1 Introduction

Summation of floating point numbers is one of the most common and basic
numerical algorithms. The accuracy and stability of many more complex numer-
ical algorithms depend on the quality of the summation method used. It is clear
that the ordinary summation defined recursively is one of the basic of vari-
ous possible methods. Chapter 4 of the book [7] and [6] provide an overview
of several simple and more complicated methods that achieve better accuracy
than the ordinary method. Further, more sophisticated methods can be found
in [1,3,5,15-17,24]. They can be used if the highest accuracy is desired and the
performance is not so important.

Compensated summation methods rely on ordinary recursive summation sup-
plemented with correction terms calculated in order to diminish rounding errors.
It should be noticed that compensated summation can be profitable when com-
putations are performed at the highest precision supported by underlying hard-
ware [7]. There are two basic methods that apply this approach, namely Kahan’s

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 63-74, 2023.
https://doi.org/10.1007/978-3-031-30445-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_6&domain=pdf
http://orcid.org/0000-0001-9823-2595
http://orcid.org/0000-0001-8661-414X
https://doi.org/10.1007/978-3-031-30445-3_6

64 B. Dmitruk and P. Stpiczynski

compensated summation [13] and the Gill-Mgller method [18]. Although these
summation methods are relatively simple and can be described with single loops,
their optimization by compilers is not possible due to data dependencies in suc-
cessive steps. On the other hand, vectorization and parallelization is crucial to
utilize potential power of modern multicore processors [2,21-23,25].

The paper [19] shows how to vectorize Kahan’s compensated summation
in order to utilize AVX2 and AVX-512 SIMD extension of Intel processors,
while the papers [8,9] discuss how to apply low-level cache optimization tech-
niques together with the assembly language to improve the performance of the
Kahan’s algorithm applied for computing the dot product. The aim of this paper
is to compare the accuracy and performance of serial, vectorized and parallel
implementations of both Kahan’s and Gill-Mgller compensated summation algo-
rithms. We show how to use Intel AVX-512 intrinsics [12] together with OpenMP
[20] constructs in order to utilize SIMD extension of modern multicore proces-
sors. We describe in detail the high-level vectorization technique and explain
how to define custom reduction operators in order to obtain simple high perfor-
mance implementations of the compensated summation methods that achieve
the performance comparable with the ordinary summation algorithm optimized
automatically by the compiler.

2 Compensated Summation Algorithms

Let us consider the summation of n floating point numbers a1, as, ..., a, using
an arithmetic with ¢ mantissa bits using the ordinary algorithm based on the
recursive formula
3:{0 for i =0 1)
¢ si_1+a; fori=1,...,n.

The relative error of the computed value of s,, satisfies [10,26]

en = |Sn _nZiZI ai| S (1 + 2715)7’7,71 —1. (2)
i |adl

Moreover, if n - 27t < 0.1, then e, < 1.06(n — 1)27%. It means that for large n
such a possible relative error may be unacceptable. Therefore in order to improve
the accuracy of the summation one can consider the use of so-called compensated
summation algorithms that use correction terms that estimate (z+y)— fl(z+y)
to reduce rounding errors of add operations [7, Section 4.3].

Algorithm 1 shows Kahan’s compensated summation [4,7,13]. It uses the
correction term e on every step of summation. As soon as each partial sum is
evaluated, the correction is added to the next term before that term is added to
the partial sum. In case of the Gill-Mgller algorithm (see [14,18] and Algorithm 2)
correction terms are accumulated separately by ordinary summation and finally
the global correction is added to the computed sum.

Parallel Vectorized Implementations of Compensated Summation Algorithms 65

Algorithm 1: Kahan Algorithm 2: Gill-Mgller
150 150

2 e«—0 2 p«—0

g fori=1,...,ndo 3 sold — 0

4 temp «— s 4 fori=1,...,ndo

5 y—a;+e 5 s «— sold + a;

6 s+ temp+y 6 p—p+ (a; — (s — sold))
7 e«— (temp—3s)+y 7 sold — s

8 end 8 end

9 return s 9 return s+ p

It can be proven [4,6,7,10,14] respectively, that in case of both compensated
summation algorithms, the computed sums satisfy

8, =Y _ai(l+¢}),le| < 2u+ O(nu®) (Kahan) (3)
1=1
and .
sn=">ai(1+¢e)),le}| < 2u+n’u® (Gill-Moller), (4)
=1

where the unit roundoff u is equal to 2724 or 2753 for IEEE single and double
precision arithmetic, respectively. As long as nu < 1, the constant in (3) is
independent of n. In case of Gill-Mgller (see [7,11,14]) if we assume that nu <
0.1, then the relative error satisfies |} | < 2.1u. It means that if n is not too large,
then s,, computed by Algorithm 1 or 2 is the exact sum of slightly perturbed
input data. Moreover, if all a; > 0, then the relative error of both algorithms is
of the same order as u.

3 Implementation of Parallel Vectorized Algorithms

It is clear that the ordinary summation algorithm (Fig. 1, SumOrd) can be auto-
matically optimized by the compiler to utilize SIMD extensions of modern pro-
cessors. Moreover, it can be easily parallelized using the OpenMP parallel
for construct [20] with the reduction clause (Fig.1, PSumOrd). However, the
optimization of the Kahan and Gill-Mgller algorithms (Fig. 1, SumK and SumGM,
respectively) is not so straightforward because of their main loops with obvious
data dependencies. It should be noticed that in case of the Intel OneAPI com-
piler, one should remember to compile the functions SumK and SumGM using the
option -fprotect-parens which tells the optimizer to honor parentheses when
floating-point expressions are evaluated. Otherwise, the optimizer may reorder
expressions without regard for parentheses if it produces faster executing code
and then the benefits (i.e. the accuracy) of the compensated summation algo-
rithms can be lost.

66 B. Dmitruk and P. Stpiczynski

//ordinary summation (SumOrd) //parallel summmation
double s = 0; // (PSum0rd)
for (int i=0; i<n; i++) double s = 0;
s += alil; #pragma omp parallel for
return s; — reduction(+:s)
<~ schedule (static)
//Gill-Mgller (SumGM) for (int i = 0; i<n; i++)
double s=0, p=0, so0ld=0; s += al[i]l;
for(int i=0;i<n;i++){ return s;
s=sold+al[il;
p=p+((alil-(s-s0ld))); //Kahan summation (SumK)
sold = s; double s=0, e=0;
} for(int i=0;i<n;i++){
return s+p; double temp=s;
double y=alil+e;
//vectorized Gill-Mgller s=temp+y;
//summation (VSumGM) e=(temp-s)+y;
__mb512d vx,vs,vp,vsold,vt; }
vp = _mm512_setzero_pd(); return s;
vs = _mm512_setzero_pd();
vsold = _mm512_setzero_pd(); //vectorized Kahan (VSumK)
for (int k = 0; k<n; k=k+8){ __mb512d vx,vs,ve,vy,vt;
vx=_mm512_load_pd (&al[k]); vs=ve=_mm512_setzero_pd();
vs=_mm512_add_pd(vsold,vx); for (int k=0;k<n;k=k+8){
vt=_mm512_sub_pd(vs,vsold); vt=vs;
vt=_mm512_sub_pd (vx,vt); vx=_mm512_load_pd (&alk]l);
vp=_mm512_add_pd (vp,vt); vy=_mm512_add_pd(vx,ve);
vsold=vs; vs=_mm512_add_pd(vt,vy);
} vt=_mm512_sub_pd (vt,vs);
vs=_mm512_add_pd (vs,vp); ve=_mm512_add_pd (vt ,vy);
// then apply SumGM to vs }
// then apply SumK to vs

Fig. 1. Ordinary summation (SumOrd), parallelized ordinary summation (PSumOrd),
Kahan summation (SumK), Gill-Mgller summation (SumGM), vectorized Kahan summa-
tion (VSumK) and vectorized Gill-Mgller summation (VSumGM)

The general idea that can be applied to develop vectorized versions of sum-
mation is the divide-and-conquer approach. The main loop of the functions SumK
and SumGM can be divided into v separate loops, where v is the length of vec-
tors used in particular SIMD extension. For the sake of simplicity let us assume
that n is a multiple of v. In case of 512-bit Intel Advanced Vector Extensions
(AVX-512) for double precision v = 8 and v = 16 for single precision, respec-
tively. Then the loop number k, k =0, ..., v — 1, will perform summation of the
numbers ag4y, where i = 1,...,n/v. Note that such partial summations can

Parallel Vectorized Implementations of Compensated Summation Algorithms 67

//parallelized and vectorized Kahan summation (PVSumK)
void avkadd(__m512d *vnew,__m512d *vold){
__mb12d vs,ve,vy,vt;
vt = *vold;
Vy = *vnew;

vs = _mmb512_add_pd(vt,vy);
vt = _mm512_sub_pd(vt,vs);
ve = _mmb12_add_pd(vt,vy);
*vnew = _mmb512_add_pd(vs,ve);
}
#pragma omp declare reduction(vkadd:__mb12d:avkadd (&

— omp_out ,&omp_in) initializer (omp_priv =
< _mm512_setzero_pd())
double PVSumK (int n, double *a){
__m512d vsold,vx,vs,ve,Vy,Vt;
ve = _mmb12_setzero_pd();
vs = _mmb12_setzero_pd();
#pragma omp parallel for firstprivate(vx,vt,vy,ve)
<> reduction(vkadd:vs) schedule(static)
for (int k = 0; k < n; k=k+8){

¥
// the rest of the code as in VSumK

Fig. 2. Parallel vectorized Kahan summation (PVSumkK)

be performed using both Kahan’s and Gill-Mgller algorithms. Finally, v partial
sums are added using the appropriate algorithm (again, Kahan’s or Gill-Mgller).

In order to take advantages of AVX-512 and develop vectorizable implemen-
tations of the considered algorithms we will use intrinsics for SIMD instructions
which allow to write constructs that look like C/C++ function calls correspond-
ing to actual AVX-512 instructions [12]. Such calls are automatically replaced
with assembly code inlined directly into programs. The algorithms VSumK and
VSumGM presented in Fig.1 use two variables of the type __m512d allocated in
processor’s registers: vx is used to store a sequence of v = 8 consecutive num-
bers loaded by the intrinsic mm512_load_pd(), while vs works as the accumu-
lator. The intrinsic mm512_add_pd () is used to perform vectorized summation.
VSumK and VSumGM also need a few auxiliary variables of the type _m512d to
compute corrections using the intrinsic .mm512_sub_pd () which performs a sub-
traction of two vectors. The vectorized version of the Gill-Mgller algorithm uses
mm512_add_pd () to add the vector of v corrections to previously evaluated par-
tial sums.

68 B. Dmitruk and P. Stpiczynski

//parallelized and vectorized Gill-Mgller summation
// (PVSumGM)
typedef struct GMSum{
__mb512d vs,vp;
} GMSum;
void avzero (GMSum *vnew){
vnew->vp = _mm512_setzero_pd();
vnew->vs = _mmb12_setzero_pd();
}
void avgmadd (GMSum *vnew ,GMSum *vold){
mb12d tvs,tvp;

tvs = _mm512_add_pd(vold->vs,vnew->vs);
tvp = _mm512_sub_pd(tvs,vold->vs);

tvp = _mm512_sub_pd(vnew->vs,tvp);

tvp = _mm512_sub_pd (vnew->vp,tvp);
vnew->vp = _mm512_add_pd(vold->vp,tvp);
vnew->vs = tvs;

}
#pragma omp declare reduction (vgmadd:GMSum:avgmadd (&
— omp_out, &omp_in)initializer (avzero (&omp_priv))

double PVSumGM(int n, double *a){
__mb12d vx,vs,vt,vp,old;
GMSum vsold; avzero(&vsold);
#pragma omp parallel for private (vx,vt,vs) reduction(
— vgmadd:vsold) schedule (static)
for (int k¥ = 0; k < n; k=k+8){
vx = _mm512_load_pd (&alk]);
vs _mm512_add_pd(vsold.vs,vx);
vt _mm512_sub_pd(vs,vsold.vs);
vt _mm512_sub_pd (vx,vt);
vsold.vp _mm512_add_pd(vsold.vp,vt);
vsold.vs = vs;

}
vs = _mm512_add_pd(vsold.vs,vsold.vp);

// the rest of the code as in VSumGM

Fig. 3. Parallel vectorized Gill-Mgller summation (PVSumGM)

The parallelization of the vectorized algorithms VSumK and VSumGM using the
OpenMP parallel for construct with the reduction clause requires a cus-
tom reduction operator to be defined. For that one should use the declare
reduction directive. Figure 2 shows how to define the new vkadd operator pro-
viding its initializer and combiner. The first one is responsible for the production
of the neutral element, while the second one shows how to combine two partial
results. We use the intrinsic .mm512_setzero_pd() as the initializer and the

Parallel Vectorized Implementations of Compensated Summation Algorithms 69

user-defined function avkadd() as the combiner. It is responsible for a single
compensated addition of two vectors that hold partial sums computed by two
separate OpenMP threads. Note that both initializer and combiner operate on
the predefined variables omp_priv, omp_in, and omp_out.

Figure 3 shows parallel vectorized Gill-Mgller summation (PVSumGM). Paral-
lelization of the main loop is more sophisticated because one should define two
helper functions avzero() and avgmadd () that work as the initializer and com-
biner of another reduction operator vgmadd. Note that we also have to define the
type GMSum that stores two vectors that holds partial sums and their corrections.
Finally, these two vectors are added using the intrinsic .mm512_add_pd () in the
main OpenMP thread (i.e. outside the parallel region).

4 Results of Experiments

All considered methods have been tested on a server with two Intel Xeon Gold
6342 processors (totally 48 cores with hyperthreading, 2.8 GHz, 36 MB of cache
memory), 256 GB RAM, running under Linux with Intel OneAPT version 2022.
This compiler suite consists of C/C++ and Fortran compilers and high perfor-
mance numerical libraries like MKL. As our test problem we have chosen

n—1

1
Zak Z (k mod m + 1)(k mod m + 2)’ (5)

where for 51mp1101ty we assume that n and m are powers of two. It is well known
that s, = Zk 0 m mﬁl’ thus S, = s, = mL_H The generated
numbers have been shuffled using 2n random swaps of two elements. The meth-
ods have been tested for n = 2°, ¢ = 15,...,30, and m = 27, j = 2,...,6. We
have measured the execution time, selected speedups and accuracy. The results
have been presented in Tables 1 and 2, and Figs. 4 and 5. Note that we have two
implementations of the ordinary summation algorithm, SumOrd — vectorized by
the compiler (column V) and PSumOrd — additionally parallelized using OpenMP
(column P+V). In case of the compensated summation algorithm, we have their
three implementations, namely scalar (columns S, functions SumK and SumGM),
vectorized using intrinsics (columns V, functions VSumK and VSumGM), and the
implementations additionally parallelized using OpenMP (column P+V, functions
PVSumK and PVSumGM). It should be noticed that all functions have been com-
piled using the compiler option 03, i.e. the highest optimization level. It enables
vectorization, inlining of intrinsics, and it is recommended for applications that
have loops using floating-point calculations.

Table 1 presents the relative error for all considered methods but for each
value of n it contains only the results for one value of m, namely the value
for which the ordinary algorithm has achieved the worst accuracy in order to
show how the use of compensated summation improves the accuracy. However,
for fixed value of n, the accuracy of SumOrd for various m is always of the
same order. We can observe that the accuracy of SumOrd and PSumOrd decreases

70 B. Dmitruk and P. Stpiczynski

when the problem size n increases. PSumOrd achieves slightly better accuracy
because the parallel reduction implements a kind of the pairwise summation
approach, which gives more accurate results [6]. Both compensated summation
algorithms mostly give accurate results. For a few cases, the relative error is of the
same order as the unit roundoff, what corresponds to the theoretical properties
presented in Sect. 2. Indeed, for all problem sizes nu < 1, the relative error of
Kahan’s algorithm should not exceed O(u). In case of the Gill-Mgller algorithm
the inequality n?u < 0.1 is not satisfied for n > 22° but even for such values of
n, the relative error is still of order u. Our parallel and vectorized versions of the
algorithms preserve these properties with a reduced number of cases for which
exact results are obtained. It was to be expected because divide and conquer
implementations of compensated summation preserve |e;| < cu but at cost of a
slight increase in the size of the constant ¢ [6,10].

Table 1. Relative error for all considered methods

Ordinary Kahan Gill-Mgller

n m |V P+V S v P+V S v P+V
215123 | 3.7¢-14{1.0e-15| 0.0e-00 | 0.0e-00 | 0.0e-00 | 0.0e-00 | 0.0e-00 | 1.2e-16
216192 13.6e-14 | 1.7e-15 | 0.0e-00 | 1.4e-16 | 0.0e-00 | 0.0e-00 | 1.4e—16 | 1.4e-16
2171922 16.1e-14 | 1.5e-15 | 0.0e-00 | 0.0e-00 | 1.4e-16 | 0.0e-00 | 1.4e—16 | 0.0e—00
218192 11.4e-13|6.1e-15 | 0.0e-00 | 0.0e-00 | 1.4e-16 | 0.0e-00 | 0.0e—00 | 1.4e-16
219122 12.4e-13 | 5.8e-15 | 0.0e-00 | 0.0e-00 | 0.0e~00 | 0.0e-00 | 0.0e—00 | 1.4e-16
220193 11.0e-12 | 2.1e-14 | 0.0e-00 | 0.0e-00 | 1.3e-16 | 0.0e-00 | 0.0e—00 | 0.0e—00
2211 2% [1.3¢-122.5¢-14| 0.0e-00 | 0.0e-00 | 0.0e-00 | 0.0e-00 | 0.0e-00 | 1.2e-16
22292 12.3¢-12 | 1.0e-13 | 0.0e-00 | 0.0e—00 | 0.0e-00 | 1.4e-16 | 0.0e-00 | 1.4e-16
223193 18.6e-12 | 8.4e-14 | 0.0e-00 | 0.0e-00 | 0.0e-00 | 0.0e-00 | 0.0e—00 | 1.2¢-16
2241 2% |1.6e-115.5e-15| 0.0e-00 | 0.0e-00 | 0.0e-00 | 0.0e-00 | 0.0e-00 | 0.0e-00
225123 13.6e-11|6.9e-13 | 0.0e-00 | 0.0e-00 | 0.0e~00 | 0.0e-00 | 0.0e—00 | 0.0e-00
226192 13.7¢-11|1.6e-12 | 0.0e-00 | 0.0e-00 | 1.4e-16 | 0.0e-00 | 1.4e-16 | 0.0e-00
227123 |1.5e-10 | 3.7e-12 | 0.0e-00 | 0.0e-00 | 0.0e-00 | 0.0e-00 | 0.0e—00 | 1.2e-16
228192 11.5¢-10 | 6.5e-12 | 0.0e-00 | 0.0e-00 | 1.4e-16 | 0.0e-00 | 0.0e-00 | 1.4e-16
229195 13.3¢-10 | 1.2e-11 | 0.0e-00 | 0.0e—00 | 0.0e-00 | 0.0e-00 | 0.0e-00 | 0.0e—-00
2391 2% [4.2¢-103.5¢-11 | 0.0e-00 | 0.0e-00 | 0.0e-00 | 0.0e-00 | 0.0e-00 | 0.0e-00

The performance of SumK and SumGM is up to 8 x slower than the performance
of SumOrd because the source code of these functions cannot be vectorized auto-
matically. Unexpectedly, SumGM is really faster than SumK (up to 2x). The same
is true for VSumK and VSumGM. Both algorithms have the same number of flops,
but probably in case of SumGM, the optimizer can make better use of the scalar
units of the processor. Both vectorized implementations of compensated sum-
mation algorithms are up to 8x faster than their scalar counterparts (Fig. 4). It

Parallel Vectorized Implementations of Compensated Summation Algorithms 71

can also be observed that for bigger problem sizes, the performance of VSumGM
is comparable with the performance of SumOrd.

The timing results presented in Table 2, and Figs. 4 and 5 have been obtained
for KMP_HW_SUBSET=1s,24c,1t and KMP_AFFINITY=scatter. These environment
variables allow to control how the OpenMP runtime uses the hardware threads
on the processors. We can recommend to use only one thread per core and to
distribute the threads sequentially among the cores of a processor. The use of par-
allel implementations of considered algorithms, namely the functions PSumOrd,
PVSumGM, and PVSumkK, is profitable for really big problem sizes, i.e. n > 224
(Fig.4). Then the execution time of the algorithms is almost the same. However,
the efficiency of using parallel processing is not very high, because the parallel
loops are not computationally intensive. The speedup of PVSumGM over SumGM
(up to 38x) is worse than speedup of PVSumK over SumK (up to 81x) because its
implementation of parallel reduction is more complicated. Note that the speedup
of PVSumK over SumOrd, and the speedup of PVSumGM over SumOrd, are almost the
same as speedup of PSumOrd over SumOrd, namely up to 8.5x for sufficiently
large problems.

Table 2. Execution time [s] for all considered methods

Ordinary Kahan Gill-Mgller

n m |V P+V S v P+V S ') P+V
215123 16.2e-6 | 0.0022 | 0.0002 | 2.5¢-5 | 0.0023 | 0.0001 | 1.7e-5 | 0.0023
216122 | 1.1e-5 | 0.0038 | 0.0003 | 4.6e-5 | 0.0038 | 0.0001 | 3.1e-5 | 0.0033
2'712212.1e-5 | 0.0041 | 0.0006 | 0.0001 | 0.0041 | 0.0003 | 0.0001 | 0.0040
2181925 5e-5 | 0.0043 | 0.0012 | 0.0002 | 0.0041 | 0.0006 | 0.0001 | 0.0041
219122 10.0001 | 0.0045 | 0.0024 | 0.0003 | 0.0044 | 0.0011 | 0.0001 | 0.0043
220123 10.0002 | 0.0061 | 0.0049 | 0.0006 | 0.0061 | 0.0022 | 0.0003 | 0.0060
2211241 0.0005 | 0.0065 | 0.0097 | 0.0012 | 0.0064 | 0.0040 | 0.0005 | 0.0063
222122 10.0017 | 0.0068 | 0.0194 | 0.0025 | 0.0070 | 0.0082 | 0.0013 | 0.0069
223123 10.0040 | 0.0071 | 0.0389 | 0.0056 | 0.0072 | 0.0182 | 0.0040 | 0.0071
224124 10.0080 | 0.0075 | 0.0779 | 0.0111 | 0.0079 | 0.0364 | 0.0080 | 0.0104
275123 10.0162 | 0.0129 | 0.1558 | 0.0222 | 0.0117 | 0.0730 | 0.0165 | 0.0098
226192 10.0322 | 0.0142 | 0.3116 | 0.0445 | 0.0137 | 0.1461 | 0.0328 | 0.0129
227123 10.0647 | 0.0190 | 0.6234 | 0.0889 | 0.0206 | 0.2917 | 0.0652 | 0.0202
278192 10.1290 | 0.0273 | 1.2468 | 0.1775 | 0.0268 | 0.5833 | 0.1299 | 0.0235
22919251 0.2577 | 0.0397 | 2.4950 | 0.3552 | 0.0420 | 1.1664 | 0.2582 | 0.0405
230121 10.5138 | 0.0604 | 4.9954 | 0.7125 | 0.0613 | 2.3437 | 0.5165 | 0.0609

72 B. Dmitruk and P. Stpiczynski

Execution time Speedup over SumOrd
16.000
1.00000 / 4 "
o 4.000 =g
-
0.10000 < = :_,4 1.000 /
— = a /
z 0.01000 > 2 ozm0 :
£ 0.00100 - A SumOrd —— 2 /f
b PSumOrd —— @ 0.062 s PSumOrd —<—
e SumK —+— —t SumK —a—
0.00010 VSumK 1 / VSumK
i nore |
0.00001 VSumaM 1 0.004 vSumGM]
: PVSUMGM, —=— : — PVSUmMGM ——
214 516 518 520 522 24 526 528 530 o4 16 18 520 522 524 526 28 530
n n

Fig. 4. Execution time (left) and speedup over SumOrd (right) for all considered meth-
ods and their implementations

Speedup over SumK Speedup over SuUmGM
64.000
64.000 "
16.000 oo
16.000
4.000
S 4000) //
o ! o
g g 1.000 /
® 1.000 @
. / 0.250
0.250 0.062
/ VSumK A VSumGM
0.062 PVSumK —e— 0.016 PVSUmMGM ——
TUo14 516 518 520 522 524 526 528 530 TUo14 516 518 520 522 524 526 528 530
n n

Fig. 5. Speedup over based methods: SumK (left) and SumGM (right)

5 Conclusions and Future Work

We have shown that Kahan’s and Gill-Mgller compensated summation algo-
rithms that allow to achieve high accuracy of summation of floating-point num-
bers can be efficiently vectorized using Intel AVX-512 intrinsics and parallelized
with OpenMP constructs in order to utilize SIMD extension of modern multicore
processors. Numerical experiments show that for sufficiently large problem sizes
the vectorized Gill-Mgller summation algorithm is as fast as the ordinary sum-
mation algorithm optimized automatically by the compiler. Kahan’s algorithm
is slower, however, both compensated summation algorithms achieve the same
accuracy, much better than accuracy achieved by the ordinary summation algo-
rithm. Both vectorized implementations of the summation algorithms can also be
parallelized using rather easy-to-use and flexible the “declare reduction” con-
struct in order to speedup their execution, but it can be profitable for really big
problem sizes. However, if summation is only a part of implemented problem, for
example when summed numerical values are computed during summation using
a more complicated procedure, then the use of multiple processors can be prof-
itable even for smaller problem sizes. In the future, we plan to implement several

Parallel Vectorized Implementations of Compensated Summation Algorithms 73

algorithms for solving such problems (numerical integration, solving ordinary dif-
ferential equations) in order to examine how the use of the parallel vectorized
compensated summation algorithms affects accuracy and performance.

References

10.

11.

12.

13.

14.

15.

. Ahrens, P., Demmel, J., Nguyen, H.D.: Algorithms for efficient reproducible float-

ing point summation. ACM Trans. Math. Softw. 46, 22:1-22:49 (2020). https://
doi.org/10.1145/3389360

Amiri, H., Shahbahrami, A.: SIMD programming using intel vector extensions.
J. Parallel Distrib. Comput. 135, 83-100 (2020). https://doi.org/10.1016/j.jpdc.
2019.09.012

Collange, S., Defour, D., Graillat, S., lakymchuk, R.: Numerical reproducibility for
the parallel reduction on multi- and many-core architectures. Parallel Comput. 49,
83-97 (2015). https://doi.org/10.1016/j.parco.2015.09.001

Goldberg, D.: What every computer scientist should know about floating-point
arithmetic. ACM Comput. Surv. 23, 5-48 (1991). https://doi.org/10.1145/103162.
103163

He, Y., Ding, C.H.Q.: Using accurate arithmetics to improve numerical repro-
ducibility and stability in parallel applications. J. Supercomput. 18, 259-277
(2001). https://doi.org/10.1023/A:1008153532043

Higham, N.J.: The accuracy of floating point summation. STAM J. Sci. Comput.
14, 783-799 (1993). https://doi.org/10.1137/0914050

Higham, N.: Accuracy and Stability of Numerical Algorithms. STAM, Philadelphia
(1996)

Hofmann, J., Fey, D., Riedmann, M., Eitzinger, J., Hager, G., Wellein, G.: Perfor-
mance analysis of the Kahan-enhanced scalar product on current multicore proces-
sors. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski,
J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9573, pp. 63-73. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-32149-3_7

Hofmann, J., Fey, D., Riedmann, M., Eitzinger, J., Hager, G., Wellein, G.: Perfor-
mance analysis of the Kahan-enhanced scalar product on current multi-core and
many-core processors. Concurr. Comput. Pract. Exp. 29(9) (2017). https://doi.
org/10.1002/cpe.3921

Jankowski, M., Smoktunowicz, A., Wozniakowski, H.: A note on floating-point sum-
mation of very many terms. Elektronische Informationsverarbeitung und Kyber-
netik 19, 435-440 (1983)

Jankowski, M., Wozniakowski, H.: The accurate solution of certain continuous
problems using only single precision arithmetic. BIT Num.l Math. (1985). https://
doi.org/10.1007/BF01936142

Jeffers, J., Reinders, J., Sodani, A.: Intel Xeon Phi Processor High-Performance
Programming. Knights Landing Edition. Morgan Kaufman, Cambridge (2016)
Kahan, W.: Pracniques: further remarks on reducing truncation errors. Commun.
ACM 8, 40 (1965). https://doi.org/10.1145/363707.363723

Kietbasinski, A.: The summation algorithm with correction and their applications.
Math. Appl. (Matematyka Stosowana) (1973). 10.14708/ma.v1i1.295

Lefevre, V.: Correctly rounded arbitrary-precision floating-point summation. IEEE
Trans. Comput. 66, 2111-2124 (2017). https://doi.org/10.1109/TC.2017.2690632

https://doi.org/10.1145/3389360
https://doi.org/10.1145/3389360
https://doi.org/10.1016/j.jpdc.2019.09.012
https://doi.org/10.1016/j.jpdc.2019.09.012
https://doi.org/10.1016/j.parco.2015.09.001
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163
https://doi.org/10.1023/A:1008153532043
https://doi.org/10.1137/0914050
https://doi.org/10.1007/978-3-319-32149-3_7
https://doi.org/10.1002/cpe.3921
https://doi.org/10.1002/cpe.3921
https://doi.org/10.1007/BF01936142
https://doi.org/10.1007/BF01936142
https://doi.org/10.1145/363707.363723
https://doi.org/10.1109/TC.2017.2690632

74

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

B. Dmitruk and P. Stpiczynski

Lei, X., Gu, T., Graillat, S., Jiang, H., Qi, J.: A fast parallel high-precision summa-
tion algorithm based on AccSumK. J. Computut. Appl. Math. 406, 113827 (2022).
https://doi.org/10.1016/j.cam.2021.113827

Lutz, D.R., Hinds, C.N.: High-precision anchored accumulators for reproducible
floating-point summation. In: Burgess, N., Bruguera, J.D., de Dinechin, F. (eds.)
24th IEEE Symposium on Computer Arithmetic, ARITH 2017, London, UK, 24-26
July 2017, pp. 98-105. IEEE Computer Society (2017). https://doi.org/10.1109/
ARITH.2017.20

Mgller, O.: Quasi double-precision in floating point addition. BIT Num.l Math. 5,
37-50 (1965). https://doi.org/10.1007/BF01975722

Neuman, B., Dubois, A., Monroe, L., Robey, R.W.: Fast, good, and repeatable:
Summations, vectorization, and reproducibility. Int. J. High Perform. Comput.
Appl. 34 (2020). https://doi.org/10.1177/1094342020938425

van der Pas, R., Stotzer, E., Terboven, C.: Using OpenMP - The Next Step. Affinity,
Accelerators, Tasking, and SIMD. MIT Press, Cambridge (2017)

Stojanov, A., Toskov, I., Rompf, T., Piischel, M.: SIMD intrinsics on managed
language runtimes. In: Proceedings of the 2018 International Symposium on Code
Generation and Optimization, pp. 2-15. ACM, New York, NY (2018). https://doi.
org/10.1145/3168810

Stpiczynski, P.: Language-based vectorization and parallelization using intrinsics,
OpenMP, TBB and Cilk Plus. J. Supercomput. 74(4), 1461-1472 (2018). https://
doi.org/10.1007/s11227-017-2231-3

Stpiczynski, P.: Algorithmic and language-based optimization of Marsa-LFIB4
pseudorandom number generator using OpenMP, OpenACC and CUDA. J. Paral-
lel Distrib. Comput. 137, 238-245 (2020). https://doi.org/10.1016/j.jpdc.2019.12.
004

Uguen, Y., de Dinechin, F., Derrien, S.: Bridging high-level synthesis and
application-specific arithmetic: the case study of floating-point summations. In:
Santambrogio, M.D., Géhringer, D., Stroobandt, D., Mentens, N., Nurmi, J. (eds.)
27th International Conference on Field Programmable Logic and Applications,
FPL 2017, Ghent, Belgium, 4-8 September 2017, pp. 1-8. IEEE (2017). https://
doi.org/10.23919/FPL.2017.8056792

Wang, H., Wu, P., Tanase, I.G., Serrano, M.J., Moreira, J.E.: Simple, portable and
fast SIMD intrinsic programming: generic SIMD library. In: Proceedings of the 2014
Workshop on Programming Models for SIMD/Vector Processing, pp. 9-16. ACM,
New York, NY (2014). https://doi.org/10.1145/2568058.2568059

Wilkinson, J.: Rounding Errors in Algebraic Processes. Prentice-Hall, Englewood
Cliffs (1963)

https://doi.org/10.1016/j.cam.2021.113827
https://doi.org/10.1109/ARITH.2017.20
https://doi.org/10.1109/ARITH.2017.20
https://doi.org/10.1007/BF01975722
https://doi.org/10.1177/1094342020938425
https://doi.org/10.1145/3168810
https://doi.org/10.1145/3168810
https://doi.org/10.1007/s11227-017-2231-3
https://doi.org/10.1007/s11227-017-2231-3
https://doi.org/10.1016/j.jpdc.2019.12.004
https://doi.org/10.1016/j.jpdc.2019.12.004
https://doi.org/10.23919/FPL.2017.8056792
https://doi.org/10.23919/FPL.2017.8056792
https://doi.org/10.1145/2568058.2568059

6th Workshop on Models, Algorithms
and Methodologies for Hybrid

Parallelism in New HPC Systems
(MAMHYP 2022)

®

Check for
updates

Malleability Techniques for HPC Systems

1(=)

Jesus Carretero , David Exposito'®, Alberto Cascajo'®,

and Raffaele Montella?

! Universidad Carlos III de Madrid. Departamento de Informética,
Leganes, Madrid, Spain
{jcarrete,dexposit,acascajo}@inf.uc3m.es
Computer Science at the Department of Science and Technologies (DiST),
University of Naples “Parthenope” (UNP), Naples, Italy
raffaele.montella@uniparthenope.it

¥

Abstract. Abstract The current static usage model of HPC systems is
becoming increasingly inefficient due to the continuously growing com-
plexity of system architectures, combined with the increased usage of
coupled applications, the need for strong scaling with extreme scale par-
allelism, and the increasing reliance on complex and dynamic workflows.
Malleability techniques adjust resource usage dynamically for HPC sys-
tems and applications to extract maximum efficiency. In this paper, we
present FlexMPI, a tool being developed in the ADMIRE project that
provides an intelligent global coordination of resource usage at the appli-
cation level. FlexMPI considers runtime scheduling of computation, net-
work usage, and I/O across all system architecture components. It can
optimize the exploitation of HPC and I/O resources while minimizing the
makespan of applications in many cases. Furthermore, FlexMPI provides
facilities such as application world recomposition to generate a new con-
sistent state when processes are added or removed to the applications,
data redistribution to the new application world, and I/O interference
detection to migrate congesting processes. We also present an environ-
mental use case co-designed using FlexMPI. The evaluation shows its
adaptability and scalability.

Keywords: Malleability - Scheduling - High-Performance
Computing - Environmental applications

1 Introduction

One major challenge for efficiently exploiting HPC infrastructures is finding a
balance between the computational and storage I/O resources. This goal is even

This work has been partially funded by the European Union’s Horizon 2020 under the
ADMIRE project “Adaptive multi-tier intelligent data manager for Exascale”, grant
Agreement number 956748-ADMIRE-H2020-J TI-EuroHPC-2019-1, and by the Spanish
Ministry of Science and Innovation.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 77-88, 2023.
https://doi.org/10.1007/978-3-031-30445-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_7&domain=pdf
http://orcid.org/0000-0002-1413-4793
http://orcid.org/0000-0002-8125-0049
http://orcid.org/0000-0001-5506-1431
http://orcid.org/0000-0002-4767-2045
https://doi.org/10.1007/978-3-031-30445-3_7

78 J. Carretero et al.

more complex when we consider the structure of the I/O stack that includes
multiple storage levels (burst buffers, ad-hoc and back-end storage systems, etc.)
and their interaction with the executing applications. In this context, the use of
malleability provides a new dimension to this problem by allowing it to expand
or shrink both the number of application processes and the number of storage
nodes.

When considering a platform where both the applications and the I/O subsys-
tem are malleable, it is difficult to determine a proper balance between these com-
ponents: HPC applications exhibit significant disparities in I/O requirements,
which may change when the application is reconfigured by malleability. In this
context, new libraries and components of the platform I/0O stack are needed to
enhance the existing components with malleable capabilities. In addition, novel
control mechanisms are also required to execute malleable applications efficiently
and to adapt the I/O stack to the characteristics of each application. In this
context, ADMIRE project, depicted in the next section, provides a solution to
this challenge. This work is mainly focused on depicting the application mal-
leability provided by the FlexMPI library, developed in the context of ADMIRE
project. This work describes the main features of FlexMPI and how it is inte-
grated with the WaComM++ application to improve its performance -by means
of malleability- under different execution scenarios.

The rest of this paper is organized as follows: Sect. 2 contextualizes this work
in the framework of the ADMIRE project; a detailed description of the malleabil-
ity features implemented by the Flex-MPI library is in Sect. 3; Sect. 4 is about the
ADMIRE environmental application focusing on the WaComM++ component;
finally, Sect. 5 is about the conclusions and the future research directions.

2 ADMIRE Project

The ADMIRE project pursues the creation of an active I/O stack that dynam-
ically adjusts, computes, and storage requirements through intelligent global
coordination, the elasticity of computation and I/O, and the scheduling of stor-
age resources at all levels of the storage hierarchy. We are developing a software-
defined framework based on scalable monitoring and control principles, sepa-
rating control and data paths and orchestrating key system components and
applications through embedded control points.

The framework consists of the following new active main components:

— an ad-hoc parallel storage system, such as GekkoFS [18] and Hercules [14]
reducing the pressure on the back-end parallel file system and improve check-
pointing performance;

— malleability management will cost-effectively balance I/O and compute per-
formance via dynamic scaling of application resources;

— an I/O scheduler [8] will offer end-to-end quality-of-service guarantees for
the whole storage stack and reduce data movement. The orchestration of

Malleability Techniques for HPC Systems 79

Events & Data
[Monitoring & Profiling]

Application Profiling User Hints

Intelligent Controller) Applications
“ - Bl .. E; :

1/0 Co-Scheduler

Monitoring

— Ad-hoc Storage Systems 70
Malleability Manager
I I/0

~ |
b Back End Storage System
- . S

Fig. 1. ADMIRE architecture.

the entire system, the global monitoring, and performance profiling feed the
intelligent controllers coordinating storage allocation and access through con-
trol points installed in these three new active components, the job sched-
uler, and the applications. Our software-only solution will offer quality-of-
service (QoS), energy efficiency, and resilience. The approach proposed in the
ADMIRE project enables I/O interference mitigation. This feature is enforced
by a globally coordinated minimization of data transfers between storage tiers.
Furthermore, the minimization is performed while conveying and enforcing
end-to-end QoS needs.

— an Intelligent Controller that holistically coordinates with each other based
on global monitoring information and application profiles through control
points embedded in each of them.

Figure 1 shows the architectural blocks of the ADMIRE framework.

However, to efficiently balance the computational and storage I/O resources
of the platform by combining malleability and I/O control mechanisms to
enhance the execution of multiple applications is a challenging goal in HPC
systems [13]. Therefore, in ADMIRE project, new strategies for improving the
system performance are based on closer cooperation between the I/0O software
stack, the scheduler, and the running applications. To achieve those goals, we
enhance the FlexMPI environment developed by UC3M [7] to cope with these
challenges.

3 FlexMPI

FlexMPI is a library based on MPI whose primary goal is to provide malleabil-
ity facilities for MPI-based applications. FlexMPI is implemented on top of the
MPICH implementation. It makes it fully compatible with the MPI features and

80 J. Carretero et al.

Performance
objective and
constraints

(MPI application

Power profile
data

MPI calls JMPI wrapped calls | XMPI calls

FlexMPI library

Computational
prediction
model

Reconfiguring
policy

Monitoring prediction

model

Dynamic
process
management

Load
balancing

Data
redistribution

Process
scheduler

A 4 Yy 1 .
iPMPlinterface .. ; PAPI
MPI library = = library

Fig. 2. FlexMPI architecture.

allows it to integrate with any existing MPI-based application easily. Currently,
FlexMPI can be implemented with C/C++ and FORTRAN applications. The
structure of FlexMPT includes several blocks (See Fig. 2) that provide four main
functionalities: monitoring, load balancing (LB), dynamic process management,
and data redistribution. FlexMPI also provides prediction features for compu-
tational needs, I/O behavior, and power prediction models. This work describes
the four basic blocks that provide essential support for malleability.

The purpose of the monitoring block is to collect performance metrics for
each parallel application process during its execution. The applications we target
are iterative and alternate computation and communication phases. The com-
putation phases are monitored using hardware counters (via PAPI [2]), and the
communication routines are tracked by using the MPI profiling interface (PMPI),
which allows profiling the communications without modifying the source code of
the application. The implementation uses low-level PAPI interfaces to track the
number of floating point operations, F'LOPs, the real-time, Treal (i.e. the wall-
clock time), and the CPU time, Tcpu (i.e. the time during which the processor
is running in user mode).

The dynamic process management is responsible for assigning the unused
computational resources (compute cores) to the newly executed process or to
the ones already being executed when the number of processes has been changed
through malleability. The dynamic process management determines how many
processes have to be created or destroyed, and the Resource Manager is responsi-
ble for deciding, for each reconfiguration, which specific cores must be allocated
or released.

Malleability Techniques for HPC Systems 81

The load balancing functionality receives as input the per-process values
for the performance metrics measured via monitoring. When load imbalance
is detected, the algorithm determines the new distribution of workload based on
the per-process performance metrics. Although monitoring can be performed
at every iteration, load balancing is only triggered every sampling interval-
consisting of a fixed number of iterations-to reach a trade-off between the over-
head of this operation and the performance gain related to it.

FLOP;
Treal (1)

The load balancing algorithm first computes the M F' LOPS that each process
i has executed during the previous sampling interval. M FLOPS; is defined in
Eq. 1 as the ratio between the number of floating point operations F'LOP; and
the actual execution time T'real; during a given sampling interval.

MFLOPS,; =

MFLOPS; .
r_ MFLOPS,

The fraction of the workload assigned to process i is computed in Eq.2. It
depends on the relative computing power (RCF;) of a process i, which is com-
puted as the M FLOPS; divided by the total MFLOPS for all of the processes.
RCP estimates workload distribution on parallel applications since it provides
a normalized value of a process’s computational power relative to the whole
system’s computational power.

Figure 3 shows the integration of FlexMPI with the Intelligent Controller in
ADMIRE framework. FlexMPI is linked with applications for exploiting com-
puting and storage malleable features. As a result, the application’s source code
modifications are reduced. Four operations are introduced in the code: initialize
FlexMPI, declare the redistributed data structures, define the malleable code
section, and start or stop the application monitoring.

When FlexMPI is active, the application workload is redistributed when: (1)
the application is executed in exclusive compute nodes but is unbalanced or
(2) the application is executed in non-exclusive compute nodes, and long-term
external load is detected. Note that short and isolated external workloads do not
affect the application’s overall performance and do not trigger the load balance
feature.

In HPC applications, the data is usually distributed -rather than replicated-
between processes, which requires redistribution to move the data between pro-
cesses each time a load balance operation is carried out. FlexMPI includes a
data redistribution functionality which handles both one-dimensional (e.g. vec-
tors) and two-dimensional (e.g. matrices) data structures, which may be either
dense or sparse. The developer must register each data structure, which will
need to be redistributed due to load balance operations. The registering func-
tion (XMPI Register) receives as input the pointer to the data structure and
the size of the data structure.

RCP; =

82 J. Carretero et al.

Compute node 1 Compute node 2

MPI application
Proc. 3

MPI application | MPI application MPI application

Proc. 2

monitoring
data 1

4: activate monitoring

Inteligent Controller.

Fig. 3. FlexMPI integration with the Intelligent Controller.

Depending on domain decomposition, a Flex-MPI-enabled application lever-
ages the provided data structure footprint, the number of elements, and the
dimensions of rows and columns.

FlexMPI can manage several data structures when registered using the same
type of domain decomposition.

Once the load balancing functionality has computed the RCP of each PE
and the new workload distribution has been mapped to a data partition, the
data redistribution functionality: (i) computes the range of data associated with
the new workload partition of every process, and (ii) moves the data from the
previous to the new processes.

XMPI-Monitor-end returns -on behalf of
the data redistribution functionality- the new count and displacement for the
new data mapping used by each process. MPI standard messages are used to
move data between MPI processes efficiently.

4 A Malleability Use Case: WaComM+-+

The Environment Application workflow produces operational weather and
marine forecasts and/or on-demand ad-hoc environmental simulations for sce-
narios and what-if analysis [9].

The Environment Application workflow can be seen in Fig. 4.

The computation starts when the initial and boundary conditions from
NCEP Global Forecast System (GFS) are available for download. Once the
GFS data has been downloaded, the computation workflow engine DagOn-
Star® [10,16,17] performs data pre-processing, operation that is required by
the Weather Research and Forecasting (WRF) numerical model engine. Finally,
the results from WREF, both raw and a more processed and refined output, are

! https://github.com/dagonstar.

https://github.com/dagonstar

Malleability Techniques for HPC Systems 83

" Weather |
| Researchand r—

°" | WaComM++ I oo

Fig. 4. Environmental application workflow.

moved into a high-performance accessible and available storage. The refined out-
put is converted to be represented in the spatial domain (regular latitude and
longitude), and diagnostic variables enrich it. Note that the results provided by
WRF are also used for other models to predict marine and air quality in the
evaluated regions.

WaComM++ (Water Community Model) is a pollutant transport and diffu-
sion model that operates over the model outputs. In this case, the WRF model
outputs feed the WaComM++ model alongside the Campania Region coastal
pollution emission sources database.

WaComM++ is a Lagrangian model that simulates marine pollutants’ trans-
port and diffusion processes. WaComM++ is a model component of the oper-
ational model chain at the Center for Monitoring and Modelling Marine and
Atmosphere applications (CMMMA)? of the University of Naples “Parthenope”.
The WaComM-++ system can be used in different ways: (i) as an ex-ante
decision-support tool, for example, to aid in selecting the best suitable areas
for farming activity deployment; (ii) as an ex-post simulation tool for improv-
ing the management of offshore activities. WaComM++ supports three levels of
hierarchical parallelization: (i) the distributed memory enforced by the use of the
Message Passing Interface (MPI) library; (ii) the shared memory paradigm to
leverage on the modern multicore architectures thanks to the OpenMP library;
(iii) the multi-GPU computing implemented with the NVIDIA CUDA toolkit.

WaConM++ is characterized by a parallelization schema based on hierarchi-
cal and heterogeneous computation.

WaComM++ has been designed with hierarchical parallelism in mind. Nev-
ertheless, some requirements have been strongly driven by the transport and
diffusion Lagrangian model, for example, the need for data exchange using stan-
dard and well-known formats. For each time interval to simulate (i.e., one hour),

2 https://meteo.uniparthenope.it.

https://meteo.uniparthenope.it

84 J. Carretero et al.

W F ConceHntrotion

rocess 0

Domain
Decompositio
Particle
s per
Process
Local
Particles
Domain
Recompositio
n
Dead
Particles
Removal

Process 1

Particles per Thread

per

Process
Local

Particles
Particles

—_— Process np

Particles per Thread

Particles
per
Process
Local
Particles

Thread Thread
0 1

Fig. 5. The WaComM++ data-flow and parallelization schema.

the total number of particles is distributed between the available processors in
an MPI distributed memory fashion. Each processor distributes its duty between
the available threads leveraging OpenMP. If one or more CUDA-enabled GPUs
are available, each thread partitions its particles’ computational burden between
the GPUs. The application has been designed to exploit a three level heteroge-
neous parallelization model supporting multiple CPUs, multi core CPUs and
NVIDA CUDA general purpose GPUs (Fig. 5).

WaComM++ [11] algorithm is an evolution on the Lagrangian Assessment
for Marine Pollution 3D (LAMP3D) algorithm [1]. This algorithm computes the
pollutants and evaluates the water quality near the mussel farms. To increase
the potential of LAMP3D, WaComM++ has optimized its internal algorithms,
and some features, such as parallel-computing techniques in shared memory
environments or checkpointing and restarting, have been included.

WaComM++ aims to predict the concentration of pollutants surrounding
the mussels’ farming areas, giving the expert a tool to estimate the potential
risks to human health.

In the ADMIRE project, WaComM++ has been selected as a use case for
testing the malleability features by integrating FlexMPI. This decision is moti-
vated by means of WaComM++ because it supports distributed memory par-
allelization (MPI), and the main algorithm is iterative (note that FlexMPIT is
designed for iterative applications).

Figure 6 shows the integration of FlexMPI and WaComM++. In order to
include malleability features in the source code, FlexMPI provides a set of func-
tion calls that have to be included by the developers. These functions wrap
specific MPI function calls to configure the FlexMPI environment and expand
or shrink the application processes. Algorithm 1 describes the WaComM++ ker-

Malleability Techniques for HPC Systems 85

3 main cycles:
L1: [#include <mpi.h>
12: |#include <xmpi.h> e
[Ocean outer cycle (iterate over ocean 13: |int main (int arge, char *argv(]) { PAPI 7 FLEX-MPI
A library library
status by time) T4T{| MPI_Init (argc, argv):
L5: | | XMPI_Get_wsize (size, &displ, scount);
Outer particles cycle (compute in parallel L6: | |Load_data (a2, displ,count);
each inert particle path) L7: | | XMPI_Register (sA,“vector”,size); Monhoring
18: for (it=0; it<maxit; it++) { G i ‘
Dynamic
L9: XMPI_Monitor_init (); process
Inner particle cycle (compute the particle L »@ //Parallel computation) '"'"‘ ent
movement, sequential) @ R ey e
1123) @ Load balancing
L134 MPI_Allreduce (...);p======== - 1t
1143 XMPI_Monitor_end (idispl, scount) o A Data

} redistribution

L15: MPI_Finalize ();
)

Fig. 6. Application co-design using FlexMPI.

nel iteration schema, including the code sections where the FlexMPI function
calls should be placed -at the beginning and end of the main function and the
beginning and end of the parallel loop-.

Algorithm 1 WaComM++ kernel simplified algorithm.

1: MPI_Init()
2: while sim_time < total_time do
3: EMPI_Monitor_init()

4 if rank ==0 then

5 Generate_new_particles()

6: Calculate_displacements_vcounts()

7: end if

8 M PI_Broadcast(displacements, vcounts)

9: M PI_Scatter(particles)

10: for all HCAs in the Subnet do
11: Compute_particles()

12: end for

13: M PI_Gather(particles)

14: if rank == 0 then

15: Remove_died_particles()
16: Do_checkpoint()
17 end if

18: stm_time + +

19: EMPI_Monitor_end()
20: end while

21: MPI_Finalize()

Figure 7 shows the behavior and the performance of a malleable execution
of WaComM++ when the particles increase every iteration. Note that the com-
putation will become a bottleneck if the number of processes keeps constant.

86 J. Carretero et al.

%108

IS

125

[
o

w
n
o

o
&
o

Number of processes

-
o
o

Number of processed particles
N
o

o
o

|
o

0 100 200 300 400 500 600 700 800 900 °

Computation time [s]

Fig. 7. Scenario with constant increasing load.

However, this problem can be avoided by expanding the number of processes
in runtime when the load achieves a certain threshold. In this case, the compu-
tation becomes a bottleneck when the application has allocated the maximum
number of resources the scheduler provides.

Figure 8 shows the behavior and the performance of another malleable execu-
tion of WaComM++. However, in this case, the algorithm focuses on those par-
ticles in a concrete region of the spatial domain. As the particles are constantly
moving, the algorithm will compute only those within a range of longitudes and
latitudes. So, in this case, the particles can increase and decrease every iteration.
The most exciting characteristic of Fig. 8 is given by the line that shows the par-
ticles per second (in yellow) and the bars that show the number of processes (in
orange). As can be seen, if the number of particles increases, FlexMPI expands
the application processes to provide extra computation resources. However, if the
number of particles decreases, FlexMPI shrinks the processes. FlexMPI includes
load-balancing algorithms to expand and shrink the application processes trying
to maintain the same computation load between the processes, achieving a good
trade-off in terms of computation power versus resource utilization.

ol

6
63<10

4]
S

I
w

N
Number of processes

N

Number of processed particles
w

-

|
o

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 0

Computation time [s]

Fig. 8. Scenario with variable load.

Malleability Techniques for HPC Systems 87

5 Conclusions

This paper describes FlexMPI, an MPI extension that provides malleable capa-
bilities to iterative SPMD MPI applications and is developed in the scope of the
ADMIRE project. FlexMPI enables MPI applications to expand or shrink the
application processes at runtime to adapt the application performance to the
existing execution conditions. The results described in this paper demonstrate
the computational malleability as a promising paradigm in HPC that could
be fully exploited in GPU, cloud, and edge computing scenarios [4,15]. In this
paper, the evaluation has been done using WaComM++ as a use case, a three-
dimensional Lagrangian model that implements an evolution of the LAMP3D
algorithm.

The experimental section shows two evaluation scenarios of WaComM-+-.
The first is a scenario in which the particles (as well as the computational load)
increase every iteration. In the second, the particles increase or decrease in every
iteration, depending on their position in the spatial domain. Both use cases
leverage FlexMPI to adapt the number of processes to the current workload
depending on the number of existing particles. As a future work, in the scope
of the ADMIRE project, we propose extending FlexMPI to provide compati-
bility with other programming languages, such as Python, and including MPI
Sessions for managing the existing and newly created group processes. Further-
more, WaComM++ will be extended to support other ADMIRE components
as the intelligent controller and the ad-hoc file system [3,6]. Finally, from the
computational malleability perspective, WaComM++ will be tested in virtual-
ized /remoted GPU environments [12] and real-world applications [5].

References

1. De Gaetano, P., Doglioli, A.M., Magaldi, M.G., Vassallo, P., Fabiano, M.: FOAM,
a new simple benthic degradative module for the LAMP3D model: an application
to a Mediterranean fish farm. Aquac. Res. 39(11), 1229-1242 (2008)

2. Dongarra, J., London, K., Moore, S., Mucci, P., Terpstra, D.: Using PAPI for hard-
ware performance monitoring on Linux systems. In: Conference on Linux Clusters:
The HPC Revolution, vol. 5. Linux Clusters Institute (2001)

3. Duro, F.R., Blas, J.G., Carretero, J.: A hierarchical parallel storage system based
on distributed memory for large scale systems. In: Proceedings of the 20th Euro-
pean MPI Users’ Group Meeting, pp. 139-140 (2013)

4. Lapegna, M., Balzano, W., Meyer, N., Romano, D.: Clustering algorithms on low-
power and high-performance devices for edge computing environments. Sensors
21(16), 5395 (2021)

5. Marecellino, L., et al.: Using GPGPU accelerated interpolation algorithms for
marine bathymetry processing with on-premises and cloud based computational
resources. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds.)
PPAM 2017, Part II. LNCS, vol. 10778, pp. 14-24. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78054-2_2

6. Marozzo, F., Rodrigo Duro, F., Garcia Blas, J., Carretero, J., Talia, D., Trunfio, P.:
A data-aware scheduling strategy for workflow execution in clouds. Concurrency
Comput.: Pract. Experience 29(24), e4229 (2017)

https://doi.org/10.1007/978-3-319-78054-2_2
https://doi.org/10.1007/978-3-319-78054-2_2

88

10.

11.

12.

13.
14.

15.

16.

17.

18.

J. Carretero et al.

. Martin, G., Marinescu, M.-C.; Singh, D.E., Carretero, J.: FLEX-MPI: an MPI
extension for supporting dynamic load balancing on heterogeneous non-dedicated
systems. In: Wolf, F., Mohr, B., an Mey, D. (eds.) Euro-Par 2013. LNCS, vol.
8097, pp. 138-149. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40047-6-16

. Miranda, A., Jackson, A., Tocci, T., Panourgias, I., Nou, R.: NORNS: extending

Slurm to support data-driven workflows through asynchronous data staging. In:

2019 IEEE International Conference on Cluster Computing (CLUSTER), pp. 1-12.

IEEE (2019)

Montella, R., et al.: Using the face-it portal and workflow engine for operational

food quality prediction and assessment: An application to mussel farms monitoring

in the bay of Napoli, Italy. Futur. Gener. Comput. Syst. 110, 453-467 (2020)

Montella, R., Di Luccio, D., Kosta, S.: DagOn*: executing direct acyclic graphs

as parallel jobs on anything. In: 2018 IEEE/ACM Workflows in Support of Large-

Scale Science (WORKS), pp. 64-73. IEEE (2018)

Montella, R., Di Luccio, D., Troiano, P., Riccio, A., Brizius, A., Foster, I.:

WaComM: a parallel water quality community model for pollutant transport

and dispersion operational predictions. In: 2016 12th International Conference on

Signal-Image Technology & Internet-Based Systems (SITIS), pp. 717-724. IEEE

(2016)

Montella, R., Giunta, G., Laccetti, G.: Virtualizing high-end GPGPUs on arm clus-

ters for the next generation of high performance cloud computing. Clust. Comput.

17(1), 139-152 (2014)

Panziera, J.P., et al.: Strategic research agenda 2017. Technical Report (2017)

Rodrigo Duro, F., Marozzo, F., Garcia Blas, J., Talia, D., Trunfio, P.: Exploiting

in-memory storage for improving workflow executions in cloud platforms. J. Super-

comput. 72(11), 4069-4088 (2016). https://doi.org/10.1007/s11227-016-1678-y

Romano, D., Lapegna, M.: A GPU-parallel image coregistration algorithm for

InSar processing at the edge. Sensors 21(17), 5916 (2021)

Sanchez-Gallegos, D.D., Di Luccio, D., Gonzalez-Compean, J.L., Montella, R.:

Internet of things orchestration using DaGon* workflow engine. In: 2019 IEEE

5th World Forum on Internet of Things (WF-IoT), pp. 95-100. IEEE (2019)

Sénchez-Gallegos, D.D., Di Luccio, D., Kosta, S., Gonzalez-Compean, J., Montella,

R.: An efficient pattern-based approach for workflow supporting large-scale science:

the DagOnStar experience. Futur. Gener. Comput. Syst. 122, 187-203 (2021)

Vef, M.A. et al.: Gekkofs-a temporary distributed file system for HPC applications.

In: 2018 IEEE International Conference on Cluster Computing (CLUSTER), pp.

319-324. IEEE (2018)

https://doi.org/10.1007/978-3-642-40047-6_16
https://doi.org/10.1007/978-3-642-40047-6_16
https://doi.org/10.1007/s11227-016-1678-y

®

Check for
updates

Algorithm and Software Overhead: A
Theoretical Approach to Performance
Portability

Valeria Mele®)® and Giuliano Laccetti

University of Naples “Federico II”, Naples, Italy
valeria.mele@unina.it

Abstract. In the last years, the portability term has enriched itself with
new meanings: research communities are talking about how to measure
the degree to which an application (or library, programming model, algo-
rithm implementation, etc.) has become “performance portable”. The
term “performance portability” has been informally used in computing
communities to substantially refer to: (1) the ability to run one applica-
tion across multiple hardware platforms; and (2) achieving some decent
level of performance on these platforms [1,2]. Among the efforts related
to the “performance portability” issue, we note the annual performance
portability workshops organized by the US Department of Energy [3].
This article intends to add a new point of view to the performance porta-
bility issue, starting from a more theoretical point of view, that shows
the convenience of splitting the proper algorithm from the emphover-
head, and exploring the different factors that introduce different kind of
overhead. The paper explores the theoretical framework to get a defini-
tion of the execution time of a software but that definition is not the
point. The aim is to show and understand the link between that execu-
tion time and the beginning of the design, to exploit what part of any
program is really environment-sensitive and exclude from performance
portability formulas everything is not going to change, as theoretically
shown.

Keywords: parallel computing - performance portability - overhead -
algorithms - software

1 Introduction

In the last years, the portability term has enriched itself with new meanings:
research communities are talking about how to measure the degree to which
an application (or library, programming model, algorithm implementation, etc.)
has become “performance portable” [4]. The terms “performance portability”
has been informally used in computing communities to substantially refer to:
(1) the ability to run one application across multiple hardware platforms; and

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 89-100, 2023.
https://doi.org/10.1007/978-3-031-30445-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_8&domain=pdf
http://orcid.org/0000-0002-2643-3483
http://orcid.org/0000-0002-0057-2573
https://doi.org/10.1007/978-3-031-30445-3_8

90 V. Mele and G. Laccetti

(2) achieving some notional level of performance on these platforms [1]. Among
the efforts related to the “performance portability” issue, we note the annual
performance portability workshops organized by the US Department of Energy
[3].

Notes from a meeting on the subject held in 2016 highlight the lack of a “uni-
versally accepted definition of performance portability”, observing that “several
attempts were made by various speakers to take a crack at it” [5]. How could so
many researchers be said to be working towards a common goal, if they could
not agree upon what it was? The attendees all ascribed importance to the term
performance portability even if no precise meaning was agreed upon. Increasing
microarchitectural diversity and specialization had created challenges to address
in software, impacting the performance and portability of applications and the
productivity of the programmers creating them. An ecosystem was beginning to
develop around frameworks promising to improve performance portability and
maintainability [6]. In the absence of precise definitions, subjectivity prevailed,
community has made significant progress towards shared terminology, and we
are closer to a universally adopted methodology for assessing performance porta-
bility and programmer productivity than ever before [7], but in our opinion they
are still very vague concepts, too difficult to define first that to measure.

This article intends to add a new contribute to the performance portability
issue, starting from a more theoretical point of view, that shows the convenience
of splitting the proper algorithm characteristics from the overhead, and exploring
the different factors that introduce different kinds of overhead. The aim is to
show and understand the link between that execution time and the beginning of
the design, to exploit what part of any program is really environment-sensitive,
suggesting to exclude from performance portability formulas - that generally
involves the execution time of the software on a given hardware - everything
that is not going to change, as theoretically shown.

The performance evaluation framework we start from is the one described
in [8-12] and here briefly described in the first section to get the definition we
need. In [9] authors also show examples of application of the framework to get
parameters for a matrix-matrix multiply problem.

The framework is modular and can be as complicated as we want to match
hybrid and/or heterogeneous parallel architectures. The increasing need for par-
allel and scalable software, ready to exploit the new exascale architectures, leads
to the development of many performance models, mainly based on architecture
features [13-17] or especially made for choosen algorithm classes [18-20]. The
model we present here is mainly focused on the dependencies among the com-
putational tasks of the algorithm and is meant to be as general as possible.

2 The Performance Evaluation Framework

Starting from some preliminary concepts about a new performance evaluation
framework described in a conference paper [8], we summarize a performance
model useful to estimate the execution time of an algorithm on a specific piece

Algorithm and Software Overhead 91

of hardware, when an actual measurement is not an option (e.g. unavailability of
hardware). That framework allows to choose a level of abstraction for problem
decomposition and algorithm description which determines the level of granu-
larity in the performance analysis. A set of parameters are used both to describe
the problem and to compute cost and overhead of the algorithm, starting from
the problem decomposition.

In that paper, the authors address basic structural features of algorithms
which are dictated by data and operator dependencies [8-10,21]: by giving the
key definition of dependency relation on a set, they consider the set of all com-
putational problems I" and any element By € I where N is the input data size,
called the problem size.

2.1 Decomposition of a Problem

Any By can always be decomposed in at least one finite set of other com-
putational problems, called decomposition of Bp. Given a decomposition in k
sub-problems By, called Dy, and taking into account the dependencies among
such sub-problems, they build a dependency matriz or decomposition matriz’
M p, where in each row we put sub-problems independent of one another, but
dependent on those in the previous rows.

Given Dy, the number of column of Mp, , say cp,, is the concurrency degree
of By, and its number of rows, say rp,, is the dependency degree of By, accord-
ing to the actual decomposition, so that the dependency degree measures the
amount of dependencies induced by the chosen decomposition. Hence, number
and size of sub-problems determine the granularity of such decomposition. By
choosing a proper granularity, we can modulate the level of detail for the perfor-
mance analysis of an algorithm with this approach. Therefore, the decomposition
matrix allows us to identify some properties of the algorithm design, such as the
concurrency available in a problem when we choose a decomposition rather than
another.

2.2 Algorithm

The next step is to assign the identified sub-problems to the computing machine.
Let M p be a computing machine equipped with P > 1 processing elements with
specific logical-operational capabilities? called computing operators of M p, and
collected in the set without repetitions Copp, = {Ij}je[&q,l], where ¢ € N,
characterizes logical-operational capabilities of the machine M p.

In [8] the definition of algorithm is given as the partially ordered set of
k operators Ay p, with not necessarily distinct elements, where each operator
solves a sub-problem in the decomposition Dj. Operators of Ay p inherit the

Y Decomposition matriz is the name we preferred in this work, but in [8] it is referred
as dependency matrix.

2 These can be basic operations (arithmetic,...), special functions evaluations
(sin, cos, .. .), solvers (integrals, equations system, non-linear equations. . .).

92 V. Mele and G. Laccetti

dependencies existing between sub-problems in Dy, but not the independences,
e.g. two operators may depend on the availability of computing units in Mp
during their executions [21]. Therefore, each algorithm is related to a problem
decomposition, and each problem decomposition can be related to more than
one algorithm, inducing an equivalence relationship among algorithms used to
the same problem. As a consequence, all the algorithms are split in equivalence
classes based on the problem decomposition they come from. They are also
characterized by a unique complexity value, where the definition for complexity
is the cardinality of the decomposition:

Definition 1 (Complexity). The cardinality of Ak p is called complexity of
Ay p. It is denoted as C(Ag,p). That is C(Ay,p) = card(Ay.p) = k.

Defining a second dependency relation between operators in an algorithm,
the so-called execution matriz & p of order r¢ X P can be defined, where in
each row we put operators independent of one another and dependent on those
in the previous rows. These dependencies refer to relations among computations
which need to be satisfied in order to compute the problem solution correctly.
Inside an equivalence class, the algorithm which solves a problem according to a
decomposition and which is executed on a machine with just one processor is a
sequential algorithm and its execution matrix has just one column, since P = 1.

In [8] other definitions and results are given, under the strong hypothesis
that all the operators in considered algorithms have the same execution time
tealc, but there is the general cases, taking into account algorithms that consist
of different steps, each with specific computing characteristics.

In both the cases the number of rows rg of & p is directly related to the
execution time of the algorithm executed with P processing units. We will see
that the execution matrix size is related to the algorithm cost, and, in case of
zero elements in the matrix, to the algorithm overhead.

Let’s associate execution time ¢; (measured, for instance, in seconds) to each
I' € Copp,. If I' = @, we set ty = 0.

Let tcqie be the execution time for one floating-point operation that here
is considered the time unit. We assume that® all the operators have the same
execution time t.q.* in order to define:

Definition 2 (Execution time). Given the algorithms Ay p executed with P
computing units, the quantity

T(A}C’p) = Tfk,p -t (1)
is called execution time of A p.

Given the well known general definition of Speed Up [22] as the ratio between
the execution times of a sequential algorithm and a parallel one, authors in [§]
specify the Speed Up for algorithms in the same equivalence class,

3 For the general case, look at [12].
4 This assumption is necessary to compare two algorithms.

Algorithm and Software Overhead 93

Definition 3 (Speed Up). Given the algorithms Ay p executed with P com-
puting units, the ratio

k

T&e p

S(A]“p) =

(2)
is called Speed Up of Ay p in its equivalence class.

Notice that, according to Definition 1, k is the unique complexity value char-
acterizing the algorithms class, proportional to the execution time of the sequen-
tial algorithm in the class.

Given two different decompositions Dy, and Dy, with k; # k;, given two
different machines with two different number of processors P, = 1 and P > 1,
for the two corresponding algorithms, Ay, p and Ay, ;1 we define the General
Speed Up of the parallel one respect to the sequential one, as the product of
the Scale Up between the two decompositions® and the classical speed up of the
parallel one.

Definition 4 (General Speed Up). The ratio

k; k’j TfA,w,l
GS(Ak;,ps A, 1) = SC(Dy,, D) - S(Ag,;p) = 7 = : (3)

kj TgAkj,P TgAkj.P

is called General Speed Up of Ay; p respect to Ay, 1.

Note that the ideal value of the General Speed Up is not limited by the number
of processing units P.

2.3 Algorithm Overhead

Let @) denote the cost of Ay p. The cost is defined as the product of the execution
time and the number of processors utilized [22]. In this mathematical settings it
holds that

Proposition 1. The cost Q can be written as

Q(Ak,P) =C&.p "TEkp - t. (4)

Notice that, if cg, , = 1, the cost is the same of the execution time.

The definition of overhead of Ay p that we found in [§] is the first one we
deal with in this article: it is intended as the total time spent by all the pro-
cessing elements waiting for other processing elements to complete their tasks.
Notice that is doesn’t depend on the hardware/software environment, but for
the number of computing unit of the machine.

5 Scale Up is defined in [8] as the ratio SC(Dx,, Dy;) = % and it measures the differ-
J
ence between the two algorithm respect to the number of operations they perform

to solve the same problem.

94 V. Mele and G. Laccetti

Definition 5 (Algorithm Overhead). Given the algorithms Ay p executed
with P computing units, the quantity

Oh(Ay.p) = (Q(Ar.p) — k) -t = (cey p e, » — C(Arp)) - L (5)
is called overhead of Ay p.

Since the cost of an algorithm is related to the size of the execution matrix,
they also show that

Theorem 1. It holds
Oh(Ay.p) > 0. (6)

It follows that the overhead is minimum when the matrix has zero empty
elements.

In [12] authors remarks that the so-defined overhead depends directly on the
operators “time weight”. Since, they are here seen as black boxes with their own
execution time, we don’t need to know the way they work, and the weight could
be different on different machines. However, given an operator and a particular
execution machine, the weight is to be considered as fixed. Notice that the oper-
ator itself may contain other kind of “overhead” (for example memory access
overhead), that should be treated separately, in a modular fashion, in order to
understand which one introduces it more and which one can be substituted with
a more efficient one. This can also suggest to change the problem decomposition,
if needed.

Let Ef(Ag,p) := % be the efficiency of A, p where P > 1. It is also
proved that it is inversely proportional to the size of the execution matrix & p.

Theorem 2. It holds that

k
Ef(App) = —————. (7)
Cepp " Tk P
It is easy to verify that it’s always E f(Ax p) < 1 and we get the maximum value
of efficiency when the overhead is minimum.

2.4 Memory and Communication

From now on, we consider memory accesses performed by an algorithm and
we assume, for simplicity, that to each access corresponds one read/write of a
single data. Moreover, we assume that computations and memory accesses are
not performed simultaneously, instead they depend each otherS.

Given the set of elementary operators of Mp we introduce memory access
operators corresponding to the memory access (read r(-)/write w(-)) of process-
ing elements of Mp and the set

OAmp ={r();w(")}
Now we can define

6 This is an initial, not realistic, assumption.

Algorithm and Software Overhead 95

Definition 6 (Memory Accesses set). The ordered set (whose elements
should not be different) of accesses operators of Mp

ACy p = {oag(+),0a1(-), ...oar(-)}

where

0ai(-) € OAm,

is called memory accesses set of the algorithm Ay p. Moreover we consider the
surjective correspondence

7 :0a;() € OApm, <—>If’ € App. (8)
Note that card(ACy p) > card(Ag p) = k.

Let us remind that 3;; ¢, , is the “time weight” of each considered operator
(seen as a working black box), according to the chosen decomposition and respect
to the execution time unit t.q;., but let us assume from now on, that they are

all equal to 1, that is all the computing operators have the same execution time

7
tcalc .

Suppose that®

— memory hierarchy has L > 2 levels?,

the data type is fixed

— we can access no more than nd data of the fixed type in the (mean) memory
access time unit at level [¢, _ =~ (bandwidth)

_ ¢

mem = tealc 8, with § > 1 and 0 <[< L is a level of the memory hierarchy

We will say that an operator needs meanly time ¢, to get a data of the
fixed type from the memory hierarchy on the given machine.

Then we say that two operators oa; € ACy p and oa; € ACy p are inde-
pendent from each other if they correspond (according to %) to independent

operators in Ay p or they correspond to the same operator in I}* € Ay p but are

related to different data and they must be executed both before or after I f’ In
this case we write oa; <~ oa; and oa; < oa;, or oa; <+ oa;.

Definition 7 (Memory Matrix). Given the algorithm Ay p, its execution
matrices & p and its memory accesses set ACy, p, we define the memory matrix
of Ag.p as AMy, pna defined in ACy p of order rap X can, with cay = nd'?,
such that Vi € [0,7am — 1,5 € [0, can — 1]:

— its elements ac; ; = oay, € ACy p or ac; ; = O;

" There is no loss of generality because any operator can be rewritten as a number of
elementary operators with execution time tcqic.

8 This is a semplified and very general logical description of a memory hierarchy
behavior useful to the aim of the framework. Of course it could be adapted to an
actual architecture, but the following definitions hold the same.

9 Level 0 is the fastest one.

10 Tn general cap < nd, but we can assume cay = nd without loss of generality.

96 V. Mele and G. Laccetti

-Vje[0,cam —1], Vke€[0,cam — 1], Vi€ [0,7anm — 1] it is aco; < ac; i
- 3dg€0,cam — 1] such that ac;j «— aci—1,4Vj € [0,can — 1]
-Vie [17TAM - 1]7] € [OchM - 1]7k € [O7CAI\/I - 1} aCy,j < AC4 k

Basically the memory matriz is built in the same way of the decomposition and
execution matrices, possibly much greater of the execution matrix if the access
operator we consider moves a single data and the algorithm is data-driven.

Definition 8 (Memory Time). Algorithm A p, with memory matric
AM}, ppnd, has memory access time:

TM(Ak,P7 nd) =7AM * tmem (9)
where tmem 18 the (mean) memory access time unit in the memory hierarchy.

Let now consider the communication matrix CMy p of order roar X com
where copr < P, defined in ACy p considering a communication like the (L +
1)—th level of the memory hierarchy (the lowest), with an unitary communication
time tL = teomm [23], and built analogously to the memory matriz. Then we

can define

Definition 9 (Communication Time). Be the algorithm Aip and
Trr(Ag,p,nd) its memory access time, we define the communication time as

Tecomm(Ax,p,nd) =1 - teomm (10)

2.5 Software Execution Time

Consider that memory access, communication and computation can be per-
formed partially in parallel. This means that we need to build a new matrix

Definition 10 (Global Matrixz). The global matrix of the software related to
the Ay, p algorithm, of order rgiopal X Cgiobal With Cgiopar < cg+nd-+conm columns,
is such that Vi € [0, 7gi0par — 1],7 € [0, cgiobar — 1]:

— its elements el; j = oay, € ACy p orel;; = I € Coppm, or el;; = @;
-Vje [0, Cglobal_l]a Vk € [O,Cglobal—l], Vi € [Oarglobal_l} itisely; «+ el;k
~ g€ [0, par — 1] such that elij — el 1,477 € [0, cgiopar — 1]

- Vi e [17Tgl0bal — 1},]‘ S [07cgl0bal — 1}, ke [0, Cglobal — 1] elm > eli,k

The shape of the global matriz does not depend only on the number of rows and
columns of the three matrices, because we know that their rows have different
“weights”: each row has a different weight according to the maximum weight
of its elements. Several rows of &, p can correspond to one row of AMj, p,q or
C My, p and several rows of AM}, pnq can correspond to one row of C My, p.

Algorithm and Software Overhead 97

Definition 11 (Global i-th row Execution Time). The global i-th row exe-
cution time is defined as

teomm if the i-th row includes a comm. op.
Tgéw (Ak,p,nd) = { tmem if the i-th row includes a mem. op. and no (new) comm.

teale if there isn’t any mem. or comm. op.
(11)
Then we can define at the end

Definition 12 (Global Software Execution Time). The global software
execution time is defined as

Tglobal_l

Tgsw(Aep,nd) = > Tgby (App,nd). (12)
1=0

3 Performance Portability

It is clear from this theoretical description that the most of a good design is
portable everywhere. What a programmer have to deal with is

— Avoiding communications [4,25-27] to keep the communication matrix as
short as possible

— Avoiding to access the memory to keep the memory matrix as short as possible

— Work with the principle of locality in mind to keep t,,em as lower as possible
[28]

— Decompose the problem keeping the concurrency degree as higher as possible

— Coding minimizing the algorithm overhead

Parameters that can help are

— Computational Intensity of the software (see [11,24]): the number of opera-
tions per memory accesses. It measures how intensely Ay p computes with
data, once it has been received, and is defined as the ratio

r
o 2
D =081y,

— Communication Intensity of the software (see [11]): the number of communi-
cation per operations. It measures how intensely Ay p needs to communicate
to compute the solution, and is defined as the ratio

Cr(SW) =

rem

C’OTTL](SW) = -
E

Now, we want to distinguish two kind of software overhead:

1

— Memory Overhead: the ratio Ohpypp = f‘tmm describing how much slower!

calc

than computing the access to a level of memory is, and

1 Meanly.

98 V. Mele and G. Laccetti

— Communication Querhead: the ratio Ohcopm = ti‘”””" describing how much

calc

slower!'? than computing the communication of a single data is.

ORY;pas and Ohconra are the characteristic of the hardware/software envi-
ronment that we need to know once we have build the global software execution
matriz, and they are the only two parameters we really need to compare each
time we move the algorithm from an environment to another one, in order to
estimate the actual performance.

They do not depend on the algorithm or the application we developed, and
this estimation are not portable.

4 Conclusions

The paper explores the theoretical framework to get a definition of the execution
time of a software but that definition is not the point, of course: moreover, it
is easy to show that the definition is a rewriting of other well known formu-
las [21,22], so we don’t discuss the “execution time prediction“ and keep the
hypothesis about the machine very general, even if the framework is modular
and can be as complicated as we want to match hybrid and/or heterogeneous
parallel architectures'3. The aim of the description we make in the previous sec-
tions is to show and understand the link between that execution time and the
beginning of the design, or the decomposition of the problem. The parameters
we exploit are useful to understand the characteristics of an algorithm and the
software we build from it. Basically, our point is that the key for a good perfor-
mance portability is in the decomposition. We notice that today the discussions
about performance portability go so far as to suggest to loose performance as
long as it is portable: is this something that can have sense in HPC field? This
is the question. Of course, a good algorithm and software design means a lack of
productivity in many cases, because it needs many hours of coding and lots of
trials, so the answer can be that the community looks for a portability solution,
but we believe that a strong theoretical background about decomposition, per-
formance parameters, and modular parallel design can be the most helpful tool
for programmers to improve the performance portability of their application, or
at least what is possible to port of their performance.

References

1. Pennycook, S.J., Sewall, J.D., Lee, V.W.: Implications of a metric for performance
portability. Future Gener. Comput. Syst. 92, 947-958 (2017). https://doi.org/10.
1016/j.future.2017.08.007

12 Meanly.

3 For example: in case of an algorithm like the one in [13], where the architecture is
a heterogeneous GPU and Multicore based system, we can build different matrices
for different parts of the algorithm.

https://doi.org/10.1016/j.future.2017.08.007
https://doi.org/10.1016/j.future.2017.08.007

10.

11.

12.

13.

14.

15.

Algorithm and Software Overhead 99

Kwack, J., et al.: Evaluating performance portability of HPC applications
and benchmarks across diverse HPC architectures. Exascale Computing Project
(ECP) Webinar. https://www.exascaleproject.org/event /performance-portability-
evaluation/. Accessed 20 May 2020

DOE centres of excellence performance portability meeting: post-meeting report
technical report LLNL-TR-700962. Lawrence Livermore National Laboratory,
Livermore (2016). https://asc.llnl.gov/sites/asc/files/2020-09/COE-PP-Meeting-
2016-FinalReport_0.pdf

Carracciuolo, L., Mele, V., Szustak, L.: About the granularity portability of block-
based Krylov methods in heterogeneous computing environments. Concurr. Com-
put. Pract. Exp. 33(4), e6008 (2021). https://doi.org/10.1002/cpe.6008

Neely, J.R.: DOE centers of excellence performance portability meeting. Techni-
cal report LLNL-TR-700962, 4. Lawrence Livermore National Laboratory (2016).
https://doi.org/10.2172/1332474

Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: enabling manycore perfor-
mance portability through polymorphic memory access patterns. J. Parallel Dis-
trib. Comput. 74(12), 3202-3216 (2014). https://doi.org/10.1016/j.jpdc.2014.07.
003

Pennycook, J., Sewall, J., Jacobsen, D.W., Deakin, T., McIntosh-Smith, S.N.: Nav-
igating performance, portability and productivity. Comput. Sci. Eng. 23(5), 28-38
(2021). https://doi.org/10.1109/MCSE.2021.3097276

Mele, V., Romano, D., Constantinescu, E.M., Carracciuolo, L., D’Amore, L.: Per-
formance evaluation for a PETSc parallel-in-time solver based on the MGRIT
algorithm. In: Mencagli, G., et al. (eds.) Euro-Par 2018. LNCS, vol. 11339, pp.
716-728. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10549-5_56
D’Amore, L., Mele, V., Laccetti, G., Murli, A.: Mathematical approach to the
performance evaluation of matrix multiply algorithm. In: Wyrzykowski, R., Deel-
man, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015.
LNCS, vol. 9574, pp. 25-34. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-32152-3_3

Mele, V., Constantinescu, E.M., Carracciuolo, L., D’amore, L.: A PETSc parallel-
in-time solver based on MGRIT algorithm. Concurr. Comput. Pract. Exp. 30(24),
€4928 (2018). https://doi.org/10.1002/cpe.4928

D’Amore, L., Mel, V., Romano, D., Laccetti, G.: Multilevel algebraic approach
for performance analysis of parallel algorithms. Comput. Inform. 38(4), 817-850
(2019). https://doi.org/10.31577 /cai_2019_4_817

Romano, D., Lapegna, M., Mele, V., Laccetti, G.: Designing a GPU-parallel algo-
rithm for raw SAR data compression: a focus on parallel performance estimation.
Future Gener. Comput. Syst. 112(6), 695-708 (2020). https://doi.org/10.1016/j.
future.2020.06.027

Laccetti, G., Lapegna, M., Mele, V., Romano, D.: A study on adaptive algorithms
for numerical quadrature on heterogeneous GPU and multicore based systems.
In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waséniewski, J. (eds.) PPAM
2013. LNCS, vol. 8384, pp. 704-713. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-55224-3_66

Laccetti, G., Lapegna, M., Mele, V.: A loosely coordinated model for heap-based
priority queues in multicore environments. Int. J. Parallel Prog. 44(4), 901-921
(2015). https://doi.org/10.1007/s10766-015-0398-x

Laccetti, G., Lapegna, M., Mele, V., Montella, R.: An adaptive algorithm for
high-dimensional integrals on heterogeneous CPU-GPU systems. Concurr. Com-
put. Pract. Exp. 31(19), e4945 (2019). https://doi.org/10.1002/cpe.4945

https://www.exascaleproject.org/event/performance-portability-evaluation/
https://www.exascaleproject.org/event/performance-portability-evaluation/
https://asc.llnl.gov/sites/asc/files/2020-09/COE-PP-Meeting-2016-FinalReport_0.pdf
https://asc.llnl.gov/sites/asc/files/2020-09/COE-PP-Meeting-2016-FinalReport_0.pdf
https://doi.org/10.1002/cpe.6008
https://doi.org/10.2172/1332474
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1109/MCSE.2021.3097276
https://doi.org/10.1007/978-3-030-10549-5_56
https://doi.org/10.1007/978-3-319-32152-3_3
https://doi.org/10.1007/978-3-319-32152-3_3
https://doi.org/10.1002/cpe.4928
https://doi.org/10.31577/cai_2019_4_817
https://doi.org/10.1016/j.future.2020.06.027
https://doi.org/10.1016/j.future.2020.06.027
https://doi.org/10.1007/978-3-642-55224-3_66
https://doi.org/10.1007/978-3-642-55224-3_66
https://doi.org/10.1007/s10766-015-0398-x
https://doi.org/10.1002/cpe.4945

100

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

V. Mele and G. Laccetti

Montella, R., Giunta, G., Laccetti, G.: Virtualizing high-end GPGPUs on ARM
clusters for the next generation of high performance cloud computing. Cluster
Comput. 17(1), 139-152 (2014). https://doi.org/10.1007/s10586-013-0341-0
Marcellino, L., et al.: Using GPGPU accelerated interpolation algorithms for
marine bathymetry processing with on-premises and cloud based computational
resources. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds.)
PPAM 2017. LNCS, vol. 10778, pp. 14-24. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78054-2_2

D’Amore, L., Campagna, R., Mele, V., Murli, A., Rizzardi, M.: ReLaTIve. An
Ansi C90 software package for the Real Laplace Transform Inversion. Numerical
Algorithms 63(1), 187-211 (2013). https://doi.org/10.1007/s11075-012-9636-0
D’Amore, L., Campagna, R., Mele, V., Murli, A.: Algorithm 946. ReLIADiff. An
C++ software package for real Laplace transform inversion based on automatic
differentiation. ACM Trans. Math. Softw. 40(4), 31:1-31:20 (2014). Article 31.
https://doi.org/10.1145/2616971

D’Amore, L., Mele, V., Campagna, R.: Quality assurance of Gaver’s formula for
multi-precision Laplace transform inversion in real case. Inverse Probl. Sci. Eng.
26(4), 553-580 (2018). https://doi.org/10.1080/17415977.2017.1322963

Tjaden. G.S., Flynn. M.J.: Detection and parallel execution of independent instruc-
tions. IEEE Trans. Comput. C-19(10), 889-895 (1970). https://doi.org/10.1109/
T-C.1970.222795

Flatt, H.P., Kennedy, K.: Performance of parallel processors. Parallel Comput.
12(1), 1-20 (1989). https://doi.org/10.1016/0167-8191(89)90003-3

Maddalena, L., Petrosino, A., Laccetti, G.: A fusion-based approach to digital
movie restoration. Pattern Recogn. 42(7), 1485-1495 (2009). https://doi.org/10.
1016/j.patcog.2008.10.026

Hockney, R.W.: The Science of Computer Benchmarking. STAM (1996)

Ballard, G., Demmel, J., Knight, N.: Avoiding communication in successive band
reduction. ACM Trans. Parallel Comput. 1(2), 37 (2015). Article 11. https://doi.
org/10.1145/2686877

Koanantakool, P., et al.. Communication-avoiding parallel sparse-dense matrix-
matrix multiplication. In: IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pp. 842-853 (2016). https://doi.org/10.1109/IPDPS.2016.
117

Sao, P., Kannan, R., Li, X.S., Vuduc, R.: A communication-avoiding 3D sparse
triangular solver. In: Proceedings of the ACM International Conference on Super-
computing (ICS 2019), pp. 127-137. Association for Computing Machinery, New
York (2019). https://doi.org/10.1145/3330345.3330357

Kennedy, K., McKinley, K.S.: Optimizing for parallelism and data locality. In:
Proceedings of the 6th International Conference on Supercomputing (ICS 1992),
pp. 323-334. Association for Computing Machinery, New York (1992). https://doi.
org/10.1145/143369.143427

https://doi.org/10.1007/s10586-013-0341-0
https://doi.org/10.1007/978-3-319-78054-2_2
https://doi.org/10.1007/978-3-319-78054-2_2
https://doi.org/10.1007/s11075-012-9636-0
https://doi.org/10.1145/2616971
https://doi.org/10.1080/17415977.2017.1322963
https://doi.org/10.1109/T-C.1970.222795
https://doi.org/10.1109/T-C.1970.222795
https://doi.org/10.1016/0167-8191(89)90003-3
https://doi.org/10.1016/j.patcog.2008.10.026
https://doi.org/10.1016/j.patcog.2008.10.026
https://doi.org/10.1145/2686877
https://doi.org/10.1145/2686877
https://doi.org/10.1109/IPDPS.2016.117
https://doi.org/10.1109/IPDPS.2016.117
https://doi.org/10.1145/3330345.3330357
https://doi.org/10.1145/143369.143427
https://doi.org/10.1145/143369.143427

®

Check for
updates

Benchmarking a High Performance
Computing Heterogeneous Cluster

Luisa Carracciuolo' ™ , Davide Bottalico™ , Davide Michelino®*
Gianluca Sabella® , and Bernardino Spisso3

! CNR - National Research Council, Rome, Italy
luisa.carracciuolo@cnr.it
2 University of Naples Federico II, Naples, Italy
INFN - National Institute for Nuclear Physics, Rome, Italy

Abstract. The paper describes the results of some benchmarking tests
aimed to verify and validate all the solutions implemented during the
deployment of a HPC heterogeneous resource acquired by the data cen-
ter of the University of Naples “Federico II” thanks to the funds of the
IBiSCo (Infrastructure for Big data and Scientific COmputing) Italian
National Project. The first set of benchmarks evaluates how the network
interconnection technologies affect the inter- and intra-node communica-
tions of GP-GPU workloads. The second set evaluates the performance
of the Lustre parallel file system to ensure an efficient environment for
data-intensive applications. The tests, especially those that analyze the
lower level of the middleware (micro-benchmarks), seem to confirm the
ability of the resource to guarantee the expected performance.

Keywords: Benchmarking * High Performance Computing *
Heterogeneous Computing * GP-GPU - InfiniBand * NVLink *
Lustre - CUDA + RDMA - UCX - MPI

1 Introduction

In the first half of the 1990s, Thomas Sterling and Donald Becker built a cluster
of networked computers, called Beowulf [35], as an alternative to large supercom-
puters. At the time, their idea of providing “Commodity Off The Shelf (COTS)”
based systems has been a great success. This idea is still valid and can inspire
the realization of HPC computing systems, whose computational power is far
from that of the most powerful computers in the world, but whose architec-
ture is already compliant to incoming exascale era systems (e.g., see The Exas-
cale Computing Project (ECP) of U.S. Department of Energy [32]). Most likely,
these systems will respond to the following description: multi-node systems, con-
nected by high performance networks, where each node will have a high level

of internal parallelism which will be also made available by technologies such as
NVIDIAgand Intel@Xe GPUs.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 101-114, 2023.
https://doi.org/10.1007/978-3-031-30445-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_9&domain=pdf
http://orcid.org/0000-0002-8521-1645
http://orcid.org/0000-0003-2767-3726
http://orcid.org/0000-0003-3142-5346
http://orcid.org/0000-0002-9439-8771
http://orcid.org/0000-0003-1491-6151
https://doi.org/10.1007/978-3-031-30445-3_9

102 L. Carracciuolo et al.

In such context, the data center of the University of Naples “Federico II”
acquired, thanks to the IBiSCo (Infrastructure for Big data and Scientific COm-
puting) project funds [28], a heterogeneous computational resource [2]. The use
of heterogeneous features aims to ensure the best use of resources for differ-
ent scenarios applications, such as distributed memory computing, GP-GPU
(General-Purpose computing on Graphics Processing Units) accelerated work-
loads and their combinations (e.g., see [3,4,6,7,10]).

In the context of High Performance Computing, it is a common practice to
evaluate performance (in terms of speedup, throughput, I/O speed, etc.) as a
response to the HPC workload [17]. For this purpose, there are different suites
of benchmarks, among the main ones:

e The Standard Performance Evaluation Corporation (SPEC) [31] is a consor-
tium whose goals are to provide the industry with performance measurement
tools since 1994. The development of the benchmark suites includes tools to
analyze all the components of computing systems: from processors to compil-
ers, from interconnects to run-time libraries. In the context of HPC systems
can be considered: the SPECmpi for evaluating MPI-parallel performance
across a wide range of cluster and SMP hardware emphasizing the perfor-
mance of the type of computer processor, the number of computer processors,
the communication interconnect, and the shared file system. The SPEChpc
provides a set of application benchmark suites using a comprehensive mea-
sure of real-world performance offering well-selected science and engineering
codes that are representative of HPC workloads.

e The HPC Challenge (HPCC) benchmark suite [15] was developed to provide
a set of standardized hardware probes based on commonly occurring compu-
tational software kernels such as some parallel BLAS operations ! as well as
tools to analyze communications performance, attempting to span from high
to low-level components of an HPC system.

e The CORAL Benchmarks: CORAL is a U.S. Department of Energy (DOE)
project that will culminate in three ultra-high performance supercomputers
at Lawrence Livermore, Oak Ridge, and Argonne national laboratories. In
such context, a suite of benchmarks was developed to evaluate performances
on supercomputers deployed during the project [8]. CORAL Benchmark cat-
egories represent DOE Workloads and among them should be considered: the
Throughput Benchmarks representing full applications; The Skeleton Bench-
marks investigating various platform characteristics including network per-
formance, threading overheads, I/O, memory, system software, and program-
ming models.

The benchmarks described above use one of three possible strategies: high-
level, low-level, and hybrid. In the first case, the benchmarks evaluate perfor-
mance by testing the application-level components; in the second case, they test

' The BLAS (Basic Linear Algebra Subprograms) are routines that provide optimized
standard building blocks for performing basic vector and matrix operations. Some
vendors supply its optimized implementation of the BLAS.

Benchmarking a High Performance Computing Heterogeneous Cluster 103

low-level system functions. The strategy we use is “hybrid” also according to the
approach described in [21,23]: the tests evaluate the performance of the high-
est level components (macro benchmark tests), which can be considered tests
from “the applications point of view”; down to the evaluation of the lowest level
components (micro benchmark test).

Our work tests and analyzes all the IBiSCo cluster components. The first
set of benchmarks evaluates how the network interconnection technologies affect
the inter- and intra-node communications of GP-GPU workloads. The second set
evaluates the performance of the Lustre parallel file system to ensure efficient
access to data storage which is a critical issue for data-intensive applications.
In Sect.2 we describe the cluster architecture and its middleware layer which
implements all the necessary software tools for communication and data storage
services. Section 3 shows tests carried out to validate what is described in the
previous section. In Sect. 4 we discuss positive aspects, observed deficiencies, and
suggestions on how to improve the obtained results. The conclusion (Sect. 5) will
summarize the contents of the work.

2 The Architecture of the Hybrid High Performance
Computing Cluster

The architecture of this cluster is depicted as a set of multiple layers (Fig. 1). The
highest layer of the architecture consists of the application layer. The lowest one
consists of the hardware resources, which comprises 32 computing nodes and 4
storage nodes. In particular, it provides 1) 128 NVIDIA Volta GPUs and about
1600 physical cores (from Intel Gen 2 Xeon Gold CPUs) distributed on 32 nodes
whose connections are based on InfiniBand [18] and NVLink2 [12] technologies;
2) 320 TB distributed on 4 storage nodes connected to the computing nodes by
an InfiniBand network. The top one is the application layer which is exposed to
users. The efficient use of cluster technologies is made possible by a software layer
interposed between the lowest and the highest levels, namely the middleware,
which is based on a combination of the following technologies:

1. OpenFabrics Enterprise Distribution (OFED) [26] for drivers and libraries
needed by the Mellanox InfiniBand network cards.

2. CUDA Toolkit [25] for drivers, libraries and, development environments,
enables NVIDA GP-GPU.

3. “MPI-CUDA aware” [22] implementation of OpenMPI [27] through the UCX
open-source framework [29].

4. Lustre [33] - a distributed, parallel and open source file system - provides high
performance access to storage resources.

Bandwidth and latency in message exchange among processes is one of
the issues preventing the full exploitation of GP-GPU potential. In this
regard, NVIDIA introduced CUDA Inter-Process Copy (IPC) [19] and GPUDi-
rect Remote Direct Memory Access (RDMA) [14] technologies for intra- and
inter-node GPU process communications to make this solution available for

104 L. Carracciuolo et al.

Middleware
.
UCK ... | TR |

| 05 Drivers (CUDA 1 111, GPUDirect RDMA i +., GDRCopy v22) |

Fig. 1. The Layered Cluster Architecture

InfiniBand-based clusters. To optimize inter-node GPU-to-GPU communica-
tions for small messages, NVIDIA offers NVIDIA gdrcopy [30]. To combine
these technologies with communication libraries (i.e., OpenMPI), we used the
UCX open-source framework. UCX is a communication framework optimized
for modern, high-bandwidth, low-latency networks. It exposes a set of abstract
communication primitives that automatically choose the best available hardware
resources. Supported technologies include RDMA (both InfiniBand and RoCE),
TCP, GPU, shared memory, and atomic network operations.

As previously stated, a key aspect of high-performance computing is the effi-
cient delivery of data to and from the computing nodes. The implementation
adopted in the IBiSCo cluster is based on Lustre, a high-performance, parallel,
and distributed file system. High-performance is guaranteed by Lustre flexibility
in supporting multiple storage technologies, from the common ones based on
Ethernet and TCP/IP to those with high-speed and low latency such as Infini-
Band, RDMA and RoCE. Storage nodes host the OSTs” for the two Lustre
exposed file systems, one for user home directories and one for jobs scratch area.
In particular, the home file system is characterized by large disk space needs
and fault tolerance, therefore it is made up of RAID-5 SAS HDD array. On the
other hand, the scratch area needs fast disk access times and no redundancy
requirement, hence it is hosted on SATA SSD disks.

3 Cluster Benchmarking

We have created a set of micro- and macro-benchmarks to study communication
and access to resources. As for the communication tests: the micro-benchmarks
have highlighted some limitations, mainly because they work with either very
small or very large problems. For both intra- and inter-node communication,
although peak performance is achieved (50 and 10 GB/s respectively), the tests
show sudden increases. Growth should be “softened” by decreasing intermediate
peaks. The discontinuity is due to several factors: first of all to the technologies
used, such as the GDRCopy, which works with small message sizes. The growth
of the message size leads to an automatic deactivation of the technology. This

? The Lustre Object Storage Targets (OST) are the block devices on which data is
distributed.

Benchmarking a High Performance Computing Heterogeneous Cluster 105

feature is essential. Depending on the type of application that uses the resources,
it may be more appropriate to use one configuration of the benchmarking algo-
rithm than another. For this reason, the choice of a benchmark that keeps pace
with current technologies is indispensable for the evaluation of the cluster. As
for the macro-benchmarks, the real limitation is given by Linpack: all commu-
nications to and from GPU devices are obtained using the PCI Channel and
not NVLink (since the implementation of these benchmarks does not provide
for GPU-to-GPU), this implies that the cluster resources are not fully exploited.
Summing up, benchmark results are provided which should be useful for:

1. filling the lack of deep understanding on how modern GP-GPU can be con-
nected and the actual impact of “state-of-the-art” hardware/software tech-
nologies on multi-GPU application performance;

2. evaluating the usage of parallel file systems in applications with intensive
parallel data access.

3.1 Communication and Computation

Micro-benchmark Tests. We evaluate the basic characteristics of the four
GPU interconnections focusing on both MPI Peer-to-Peer (P2P) and MPI Col-
lective (CL) GPU-TO-GPU communication patterns. Both for intra- and inter-
node P2P, we pay special attention to assessing the communication technologies
in terms of latency and bandwidth on message size. Eventually, we evaluate the
latency of the collective communication patterns on both intra- and inter-node
scenarios. The tool used for measuring latency and bandwidth is the CUDA-
aware version of MPI OSU Micro-Benchmarks [5] which evaluates latency and
bandwidth of P2P tests as follows:

Latency Test: the latency tests are performed in a ping-pong fashion, by using
blocking versions of the MPI functions (MPI_Send and MPI_Recv). The sender
sends a message with certain data size and waits for a reply. The recipient
receives the message and returns a response with the same data size. Many
iterations of this test are performed and average one-way latency numbers
are obtained”.

Bandwidth Test: Non-blocking versions of the MPI functions (MPI_Isend and
MPI Irecv) are used in this case. The sender sends a fixed number of con-
secutive messages to the recipient and waits for its reply. The recipient sends
the reply only after all these messages are received. This process is repeated
for several iterations and the bandwidth is calculated based on elapsed time
(until the sender receives the reply from the recipient) and the number of
bytes sent by the sender. The goal of this bandwidth test is to determine the
maximum sustained data rate which can be achieved at thethe network level.

Conversely, the latency of collective communications is measured via the fol-
lowing procedure: fixing a message size, many calls of MPI_BCast, MPI_Gather,

3 We used the default number of iterations that the benchmark provides: 1000 itera-
tions for small messages and 100 iterations for large messages.

106 L. Carracciuolo et al.

Latency Test Bandwidth Test
Latency GPU-to-GPU intra-node sub-cluster #3 Bandwidth GPU-to-GPU intra-node sub-cluster #3
105 ¢ T 10° ¢ T
ROWA: NO; GDR: NO RDWA: NO; GDR: NO ——
RDMA: YES; GDR: NO —— RDMA: YES; GDR: NO —— P
10% E| RDMA: NO; GDR: YES —— 3 10% E| RDMA: NO; GDR: YES —— -~ 5
RDMA: YES; GDR: YES RDMA: YES; GDR: YES g
. 3 —Zat
ERtY @ 107 F 3
2 H g9 2
=& —
UL S " - ————— A 10! A 1
)17771’1'/‘(p=
100 1 100 i 1
pa
101 101
20 21 22 27 28 25 28 27 29 29 71011 712 713 14 15 216 717 218 19 520 21 22 20 21 22 27 28 23 28 27 29 29 710211 712 213 14 15 216 717 218 19 2021 y22
(a) Message size (Bytes) Message size (Bytes)
Latency GPU-to-GPU inter-node sub-cluster #3 Bandwidth GPU-to-GPU inter-node sub-cluster #3
10 105
ROWA: NO; GDR: NO ROWA: NO; GDR: NO
RDMA: YES; GDR: NO —— RDMA: YES; GDR: NO ——
10* F| RDMA: NO; GDR: YES —— 1 10* F| RDMA: NO; GDR: YES —— 1
RDMA: YES; GDR: YES RDMA: YES; GDR: YES
10° 103 A
_ = e e e
%102 @ 107 5
= z
L) Sanama S SSSSahs 100 e]
o] o]
10 10 b
-
101 101
20 21 22 29 2% 29 28 27 29 29 71011 712 713 18 215 216 717 218 519 20 21 22 20 21 22 29 2% 25 26 27 29 29 71011 712 713 14 215 216 717 218 719 20 21 y22
(b) Message size (Bytes) Message size (Bytes)
Latency Host-to-Host inter-node sub-cluster #3 Bandwidth Host-to-Host inter-node sub-cluster #3
100 ey 105 ey
IBVERBS 1BVERBS
1PolB s o
103 [L Ethernet] 10% | ethernet 1
Pt
= 108]
2 -] =
JRU s : R
3 . 210 -]
2 - 2
B 1 z P
1 -]
10 P
S A
0 3 100 1
S T S S A R) T S S A R
20 21 22 23 28 25 26 27 28 29 210211 212 213 718 215 716 717 18 219 920 371 22 20 21 27 23 28 25 26 27 28 29 210211 212 213 718 215 716 717 18 219 920 371 22
(c) Message size (Bytes) Message size (Bytes)

Fig. 2. Communication and computation micro-benchmarks results. Latency and
bandwidth of P2P GPU-TO-GPU intra-node (a) and inter-node (b) communication
and of Host-to-Host (c) communication on the considered sub-clusters (Color figure
online)

MPI Reduce (with MPI_SUM operation type) functions are carried out to compute
time spent in a single call. All those time values are averaged to compute the
latency number of the Broadcast, Gather, and Reduce tests respectively for
each considered message size.

All the tests described above are carried out to evaluate the performance of
both intra- and inter-node communications of the cluster where different combi-
nations of RDMA, IPC, and gdrcopy are used as summarized in the description
of Fig.2. Plots of trends (as a function of message size) for P2P intra- and
inter-node communications are respectively reported in Fig. 2-(a) and 2-(b). As
a term of comparison, Fig. 2-(c) shows the behavior of P2P Host-to-Host com-
munications. In all latency plots, we show, as an error bar, the value of o where
o is the Sample Variance = of the measured latency times used for each mean
computation: just in very few cases the variance appears significant).

* The following formula is used to compute the Sample Variance o of a set of n values
Z?:ill (CCi*QE)2

{z;} whose mean value is Z: 0° =
1Ji=1,...,n . - n—-1

Benchmarking a High Performance Computing Heterogeneous Cluster 107

Broadcast Latency GPU-to-GPU intra-node sub-cluster #1 Broadcast Latency GPU-to-GPU inter-node sub-cluster #1

goo i uvl goo i v
20 21 22 23 24 25 26 27 28 29 210711 212 713 714 15 216 517 218 719 520 321 522 20 21 22 23 24 25 26 27 28 29 210711 212 713 514 15 716 517 218 719 520 321 522

Broadcast Test

Message size (Bytes) Message size (Bytes)

Gather Latency GPU-to-GPU intra-node sub-cluster #1 Gather Latency GPU-to-GPU inter-node sub-cluster #1

o0 o0
20 21 22 23 24 25 26 27 28 29 210711 212 713 514 15 216 517 218 219 520 321 522 20 21 22 23 24 25 26 27 28 29 210711 212 713 514 15 216 517 218 319 520 321 522

Gather Test

Message size (Bytes) Message size (Bytes)

Reduce Latency GPU-to-GPU intra-node sub-cluster #1 Reduce Latency GPU-to-GPU inter-node sub-cluster #1

Reduce Test

10t 10!
20 21 22 23 24 25 26 27 28 29 210711 212 213 514 15 216 717 218 219 520 221 522 20 21 22 23 24 25 26 27 28 29 210 711 212 213 514 15 216 717 218 219 520 221 522
Message size (Bytes) Message size (Bytes)

(a) (b)

Fig. 3. Communication and computation micro-benchmarks results. Latency of GPU-
t0-GPU collective communications on the cluster: intra-node (a) and inter-node (b)
communications

In Fig. 3-(a) and 3-(b) are respectively reported plots (as a function of mes-
sage size) for collective intra- and inter-node communications where different
combinations of RDMA, IPC, and gdrcopy are used. During the tests, in the
case of intra-node collective communications, all the tasks are spawned on a
single node. Conversely, when inter-node collective communication is considered
one task is spawned on a single node. Tests are performed with different task
numbers P. Lines in the plots representing tests executed on P = 2,3,4 are
marked respectively with B, ¢ and ¥ symbols.

All plots use a logarithmic scale with base 2 and 10 respectively for the z
and y coordinate axis. From Figs. 2 and 3, we can state the following:

— Significant differences can be found between the performance of intra- and
inter-node P2P communications. The intra-node communication seems to
reach the maximum bandwidth performance of 50 GB/s, guaranteed by the
NVLink technology, already with medium-sized messages. The same behavior
cannot be witnessed during inter-node communication since the performance
(about 10 GB/s) is comparable to the peak performance of the InfiniBand
technology achieved only transmitting large-sized messages.

108 L. Carracciuolo et al.

— The use of gdrcopy technology (see blue and green lines of all the plots in
Fig.2-(a) and 2-(b)) significantly improves the performance of P2P commu-
nications with small messages. A combination of gdrcopy and GPUDirect
RDMA technologies seems to be the best choice to improve performance in
all the tested configurations: it is more noticeable in P2P inter-node commu-
nications (see green lines of all the plots in Fig. 2-(a) and 2-(b)) although the
best performance for large messages is obtained using the GPUDirect RDMA
without gdrcopy (see green lines of all the plots in Fig. 2-(b)).

— All the configurations tested show equivalent performance when P2P intra-
node communication uses large messages (see Fig. 2-(a)).

— The sustainable performance values for GPU-TO-GPU inter-node communi-
cations seem to be, in most cases, about a tenth of the value measured for
Host-to-Host communications, which reach the InfiniBand peak performance
(see Fig.2-(c)).

— No particularly significant changes can be observed in the Collective Reduce
test if different combinations of RDMA, IPC, and gdrcopy are used. These
differences seem more noticeable in inter-node communications (see Fig. 3-
(b))

— In the other Collective Tests certain differences, can only be found for small
message sizes when different combinations of RDMA, IPC, and gdrcopy are
used.

Macro-benchmark Tests. To evaluate how the implemented multi-GPU het-
erogeneous computational resource responds to a typical parallel workload from
Scientific Computing, the CUDA-Aware version of the High Performance Lin-
pack (HPL) Benchmark is used. The HPL benchmark [1] is a software package
that solves a (random) dense linear system in double precision arithmetic on
distributed-memory architectures. The HPL package provides a timing program
to quantify the time it took to compute it. The best performance evaluation, in
terms of thethe number of floating operations per second, is currently used to
compile the list of the most powerful computers in the world [34]. The CUDA-
Aware HPL benchmark [11] uses CUDA libraries to accelerate the HPL bench-
mark on heterogeneous clusters, where both CPUs and GPUs are used with
minor or no modifications to the source code of HPL. A host library intercepts
the calls to BLAS DGEMM and DTRSM procedures and executes them simulta-
neously on both GPUs and CPU cores. However, the benchmark has a limit: all
communications to and from GPU devices are performed using the PCI channel.

In Fig. 4 we show the results of the CUDA-Aware HPL benchmark executed
on some nodes of the IBiSCo cluster: the number of total MPI tasks is 4P where
P is the number of involved nodes. The tests are performed using different values
for the problem dimension N. The graphs show:

T (P, N): The execution time of the benchmark as a function of the number P
of nodes for some values of IV;
S (P, N): The Speed-Up of the execution as a function of the number P of nodes

for some values of N. So, S(P,N) = 71:((;%)),

Benchmarking a High Performance Computing Heterogeneous Cluster 109

Execution Time (secs) Speed Up

N=20000 —+— n=40000 N=7000D —e— N=100000 —— N=130000. N=10000 —— N=ag0o0 N=70000 —e— N=100000 —~— N=130000
N=20000 —— N=50000 N=80000 ——N=110000 N=20000 —— N=50000 N=80000 —— N=110000 deal
1200 |- N=30000 N=60000 —o— N=90000 —— N=120000 4 N=30000 N=60000 —o— N=90000 —— N=120000

secs
Speed Up

B= P S S S S S
12345 67 8 9101112131415 1617 18 19 20 21 123 45 6 7 8 9 1011121314 151617 18 19 20 21
(a) # of nodes # of nodes (b)

Performance 9% Peak Performance

% Peak Performance

(c) N N (d)

Fig. 4. Communication and computation macro-benchmarks results: The CUDA-
Aware HPL benchmark Execution Time T' (P) (a), Speed-Up S (P) (b), the Sustained
Performance SP (P, N) (c) and the fraction of Peak Performance SPF (P, N) (d).

SP (P,N): The Sustained Performance (expressed in GigaFLOPS) is obtained
during the execution as a function of the problem dimension N for some
values of P. It represents the number of Floating Point operations executable
by an algorithm in a time range;

SPF (P,N): The fraction of Peak Performance is obtained during the execu-
tion as a function of the problem dimension N for some values of P. So,

SPF(P,N) = % where PP (P) is the Peak Performance of P nodes

when for each node all four GPU devices are considered”.
From the plots in Fig. 4 we can observe:

— the super linear speedup which is most remarkable for large problems. We
think this is due to the increased time spent on CPU-GPU communications
mainly as a consequence of a saturated PCI channel (indeed that all the four
GPUs of a node are involved in computations);

— the very low scalability of the benchmark as the number of parallel tasks
increase;

— the very small fraction of the Peak Performance scored during executions: if
we consider very large problems we get just under 10% of max computational
power which can be guaranteed by the computational resources.

® Let PP (P) = (ANCoresgpyClockapy + NCorescpyClockepy) P.

110 L. Carracciuolo et al.

3.2 Communication and Data Storage

Micro-benchmark Tests. We evaluate the basic characteristics of the imple-
mented Lustre file systems using the IOzone File system Benchmark [20], which
generates and measures the time to complete a set of file operations as read,
write, re-read, re-write. In Fig.5 we show the throughput performance for the
same above-mentioned operations both with and without the SYNC I0Zone
optionﬁ. The plots show single stream performance as a “Heat Map” of file size
and request size for two Lustre-based file systems which are an aggregation of
SAS HDDs and SATA SSDs respectively both available on storage nodes. In
the same plots, we show, as a term of comparison, the results of the same test
performed using two XF'S file systems configured on different types of local disks
(SATA SSD and PCIe NVMe SSD) available on computing nodes. All plots use
a logarithmic scale with base 2 for the x and y coordinate axes. From such plots,
the following statements can be argued:

— on read operations, all the tested file systems show comparable performance
and suffer from large file size;

— the Lustre file system seems to be especially performing on write operations
when file size increases. This is more noticeable if the option SYNC is activated;

— on write operations, the performance of Lustre file systems seems to be com-
parable (in terms of order of magnitude) with results obtained on slow local
disks (especially if the option SYNC is disabled);

Fig. 5. Communication and storage micro-benchmarks results: IOZone throughput per-
formance (in KB/s) for read (a) and write operations with (b) and without (c) the SYNC
options. For better readability, we preferred to use a different color map in each plot.

Macro-benchmark Tests. We use a benchmark based on the Block-
Tridiagonal (BT) problem of the NAS Parallel Benchmarks (NPB) [24], which
is employed to test the I/O capabilities of high-performance computing systems,
especially parallel systems. As improvements were made to parallel systems, the

® When this option is activated, IOZone will open the files with the 0_SYNC flag. This
forces all writes to the file to go completely to disk before returning to the benchmark.

Benchmarking a High Performance Computing Heterogeneous Cluster 111

speed with which computed results are being written to and read from files still
represents a bottleneck in practical applications. The benchmark, named BT-10,
is based on the MPI I/O Application Programmer Interface [9] which is part of
the MPI. In Fig. 6 we report the results of th BT-IO benchmark in its “simple”
configuration where data, scattered in memory across the processors, are written
to the same file. What is considered here is the class “E” problem dimension.
During execution, one MPI task is allocated to each node, and both the Lustre
file systems described above are considered. From such plots we can argue:

— time spent during the IO stages might account for a significant portion
(>50%) of total execution time when the number of parallel tasks is large;

— the write pattern used by the tests, where each processor writes the data
elements it is responsible for directly into an output file, confirms the weak
performance due to a very high degree of fragmentation [36]. The Lustre file
system based on SSD disks better manages the such type of pattern also when
the number of processors becomes large;

— IO throughput seems far from the values measured by micro-benchmarks
which appear to be about a bigger order of magnitude.

12000

. 8000

“ 6000

2000

(a) (b) (c)

Fig. 6. Communication and storage macro-benchmarks results. BT-10O results: the total
time of execution versus the time spent during IO phases (a), the throughput of com-
puting (b) and IO (c) stages expressed in MFlops/sec and MB/s respectively

4 Discussion on the Results

The tests that analyze the lower level of the middleware (micro-benchmarks),
seem to confirm the ability of the resource to guarantee the expected perfor-
mance.

All the macro-benchmarks confirm that the goal of achieving the maximum
performance of IT systems is extremely demanding. Although useful for eval-
uating the cluster created and highlighting the strengths of its resources, the
benchmarks are also intended to bring out any issues. In this case, the problems
in some of the results shown depend largely on the chosen benchmarks. In fact,
for the most part, they cannot fully keep up with new technologies.

112 L. Carracciuolo et al.

Our future work will be to find (or create) a version of macro benchmarks
that can to make the most of the heterogeneity of the systems with solutions
that: 1) use both the CPU and GPU present on the individual nodes, 2) exploit
all the most performing communications channels available, 3) by CUDA-Aware
messages passing library and innovative tools such as the Software for Linear
Algebra Targeting Exascale (SLATE) library [13] or innovative approach as the
HPL-ATI Mixed-Precision Benchmark [16].

5 Conclusion

The paper describes the results of some benchmarking tests aimed to verify and
validate all the solutions implemented during the deployment of a computing
cluster within the Italian National Project IBiSCo able to satisfy the different
computing needs of the project partners. All the strategies implemented have
been verified and evaluated by the appropriate tools used to estimate some sig-
nificant performance indexes of all the components of the system from a micro
and macro point of view. From the communication between nodes with multiple
GP-GPU in a distributed memory environment to the efficiency of the applica-
tion during the IO phases.

Acknowledgment. This work has been funded by project code PIRO01.00011
“IBISCo”, PON 2014-2020, for all three entities (INFN, UNINA, and CNR).

References

1. Petitet, A., et al.. A portable implementation of the high-performance lin-
pack benchmark for distributed-memory computers. https://www.netlib.org/
benchmark/hpl/index.html

2. Barone, G.B., et al.: Designing and implementing a high-performance comput-
ing heterogeneous cluster. In: 2022 International Conference on Electrical, Com-
puter and Energy Technologies (ICECET), pp. 1-6 (2022). https://doi.org/10.
1109/ICECET55527.2022.9872709

3. Bertero, M., et al.: MedIGrid: a medical imaging application for computational
grids. In: Proceedings International Parallel and Distributed Processing Sympo-
sium, p. 8 (2003). https://doi.org/10.1109/IPDPS.2003.1213457

4. Boccia, V., Carracciuolo, L., Laccetti, G., Lapegna, M., Mele, V.: HADAB:
enabling fault tolerance in parallel applications running in distributed environ-
ments. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wadniewski, J. (eds.)
PPAM 2011, Part I. LNCS, vol. 7203, pp. 700-709. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31464-3_71

5. Bureddy, D., Wang, H., Venkatesh, A., Potluri, S., Panda, D.K.: OMB-GPU: a
micro-benchmark suite for evaluating MPI libraries on GPU clusters. In: Traff,
J.L., Benkner, S., Dongarra, J.J. (eds.) EuroMPI 2012. LNCS, vol. 7490, pp. 110—
120. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33518-1_16

6. Carracciuolo, L., et. al: Implementation of a non-linear solver on heterogeneous
architectures. Concurr. Comput. Pract. Exp. 30(24), e4903 (2018). https://doi.
org/10.1002/cpe.4903

https://www.netlib.org/benchmark/hpl/index.html
https://www.netlib.org/benchmark/hpl/index.html
https://doi.org/10.1109/ICECET55527.2022.9872709
https://doi.org/10.1109/ICECET55527.2022.9872709
https://doi.org/10.1109/IPDPS.2003.1213457
https://doi.org/10.1007/978-3-642-31464-3_71
https://doi.org/10.1007/978-3-642-33518-1_16
https://doi.org/10.1002/cpe.4903
https://doi.org/10.1002/cpe.4903

10.

11.

12.

13.

14.
15.

16.
17.

18.
19.

20.
21.

22.

23.

24.

25.

26.

Benchmarking a High Performance Computing Heterogeneous Cluster 113

Carracciuolo, L., et al.: About the granularity portability of block-based Krylov
methods in heterogeneous computing environments. Concurr. Comput. Pract. Exp.
33(4), 6008 (2021). https://doi.org/10.1002/cpe.6008

CORAL procurement benchmarks. https://asc.llnl.gov/sites/asc/files/2020-06/
CORALBenchmarksProcedure-v26.pdf

Corbett, P., et al.: Overview of the MPI-IO parallel I/O interface. In: Jain, R.,
Werth, J., Browne, J.C. (eds.) Input/Output in Parallel and Distributed Computer
Systems. SECS, vol. 362, pp. 127-146. Springer, Boston (1996). https://doi.org/
10.1007/978-1-4613-1401-1_5

D’Amore, L., et al.: a scalable space-time domain decomposition approach for
solving large scale nonlinear regularized inverse ill posed problems in 4D vari-
ational data assimilation. J. Sci. Comput. 91(2), 59 (2022). https://doi.org/10.
1007/s10915-022-01826-7

Fatica, M.: Accelerating Linpack with CUDA on heterogenous clusters. In: 2nd
Workshop on General Purpose Processing on Graphics Processing Units. GPGPU-
2, pp. 46-51. Association for Computing Machinery, New York (2009). https://doi.
org/10.1145/1513895.1513901

Foley, D., et al.: Ultra-performance pascal GPU and NVLink interconnect. IEEE
Micro 37(2), 7-17 (2017). https://doi.org/10.1109/MM.2017.37

Gates, M., et al.: SLATE: design of a modern distributed and accelerated lin-
ear algebra library. In: International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (2019). https://doi.org/10.1145/3295500.
3356223

GPUDirect RDMA - CUDA Toolkit DOC. https://docs.nvidia.com/cuda/
gpudirect-rdma/index.html

HPC Challenge Benchmark. https://hpcchallenge.org/hpec/

HPL-ATI Mixed-Precision Benchmark. https://hpl-mxp.org/

Thde, N., et al.: A survey of big data, high performance computing, and machine
learning benchmarks. In: Nambiar, R., Poess, M. (eds.) TPCTC 2021. LNCS,
vol. 13169, pp. 98-118. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-
94437-7_7

InfiniBand network standard. https://en.wikipedia.org/wiki/InfiniBand
Interprocess Communication - Programming Guide : CUDA Toolkit DOC. https://
docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#interprocess-
communication

I0zone Filesystem Benchmark. https://www.iozone.org/

Khorassani, K.S., Chu, C.-H., Subramoni, H., Panda, D.K.: Performance evaluation
of MPI libraries on GPU-enabled OpenPOWER architectures: early experiences.
In: Weiland, M., Juckeland, G., Alam, S., Jagode, H. (eds.) ISC High Performance
2019. LNCS, vol. 11887, pp. 361-378. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-34356-9_28

Kraus, J.: An introduction to CUDA-aware MPI. https://developer.nvidia.com/
blog/introduction-cuda-aware-mpi/

Li, A., et al.: Tartan: evaluating modern GPU interconnect via a multi-GPU bench-
mark suite. In: 2018 IEEE International Symposium on Workload Characterization
(IISWC), pp. 191-202 (2018). https://doi.org/10.1109/IISWC.2018.8573483
NAS Parallel Benchmarks. https://www.nas.nasa.gov/software/npb.html
Nickolls, J., et al.: Scalable parallel programming with CUDA. Queue 6(2), 40-53
(2008). https://doi.org/10.1145/1365490.1365500

NVIDIA Mellanox OFED DOC. https://docs.mellanox.com/display/MLNXOFE
Dv531001/NVIDIA+MLNX_OFED+Documentation+Rev+5.3-1.0.0.1

https://doi.org/10.1002/cpe.6008
https://asc.llnl.gov/sites/asc/files/2020-06/CORALBenchmarksProcedure-v26.pdf
https://asc.llnl.gov/sites/asc/files/2020-06/CORALBenchmarksProcedure-v26.pdf
https://doi.org/10.1007/978-1-4613-1401-1_5
https://doi.org/10.1007/978-1-4613-1401-1_5
https://doi.org/10.1007/s10915-022-01826-7
https://doi.org/10.1007/s10915-022-01826-7
https://doi.org/10.1145/1513895.1513901
https://doi.org/10.1145/1513895.1513901
https://doi.org/10.1109/MM.2017.37
https://doi.org/10.1145/3295500.3356223
https://doi.org/10.1145/3295500.3356223
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://hpcchallenge.org/hpcc/
https://hpl-mxp.org/
https://doi.org/10.1007/978-3-030-94437-7_7
https://doi.org/10.1007/978-3-030-94437-7_7
https://en.wikipedia.org/wiki/InfiniBand
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#interprocess-communication
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#interprocess-communication
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#interprocess-communication
https://www.iozone.org/
https://doi.org/10.1007/978-3-030-34356-9_28
https://doi.org/10.1007/978-3-030-34356-9_28
https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/
https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/
https://doi.org/10.1109/IISWC.2018.8573483
https://www.nas.nasa.gov/software/npb.html
https://doi.org/10.1145/1365490.1365500
https://docs.mellanox.com/display/MLNXOFEDv531001/NVIDIA+MLNX_OFED+Documentation+Rev+5.3-1.0.0.1
https://docs.mellanox.com/display/MLNXOFEDv531001/NVIDIA+MLNX_OFED+Documentation+Rev+5.3-1.0.0.1

114

27.

28.

29.

30.

31.
32.
33.
34.
35.

36.

L. Carracciuolo et al.

Open MPI: Open Source High Performance Computing. https://www.open-mpi.
org/

Programma Operativo Nazionale Ricerca e Innovazione 2014-2020: Progetto
IBiSCo. https://www.na.infn.it /fondi-esterni/pon

Shamis, P., et al.: UCX: an open source framework for HPC network APIs and
beyond. In: IEEE 23rd Annual Symposium on High-Performance Interconnects,
pp. 40-43 (2015). https://doi.org/10.1109/HOTI.2015.13

Shi, R., et al.: Designing efficient small message transfer mechanism for inter-node
MPI communication on InfiniBand GPU clusters. In: 21st International Conference
on High Performance Computing (HiPC), pp. 1-10 (2014). https://doi.org/10.
1109/HiPC.2014.7116873

Standard Performance Evaluation Corporation. https://www.spec.org/

The Exascale Computing Project Website. https://www.exascaleproject.org/
The Lustre file system. https://www.lustre.org/

The Top 500 list Website. https://www.top500.org/

Sterling, T., et al.: BEOWULF: a parallel workstation for scientific computation.
In: 24th International Conference on Parallel Processing, pp. 11-14. CRC Press
(1995)

Wong, P., et al.: NAS parallel benchmarks I/O version 2.4. NAS Technical report
NAS-03-002 (2003)

https://www.open-mpi.org/
https://www.open-mpi.org/
https://www.na.infn.it/fondi-esterni/pon
https://doi.org/10.1109/HOTI.2015.13
https://doi.org/10.1109/HiPC.2014.7116873
https://doi.org/10.1109/HiPC.2014.7116873
https://www.spec.org/
https://www.exascaleproject.org/
https://www.lustre.org/
https://www.top500.org/

®

Check for
updates

A Generative Adversarial Network
Approach for Noise and Artifacts

Reduction in MRI Head and Neck
Imaging

Salvatore Cuomo?, Francesco Fato!, Lorenzo Ugga?, Gaia Spadarella?,
Reanto Cuocolo®, Fabio Giampaolo!, and Francesco Piccialli'(®)

! Department of Mathematics and Applications “R. Caccioppoli”, University of
Naples Federico II, Naples, Italy
{salvatore.cuomo,fabio.giampaolo,francesco.piccialli}@unina.it
2 Department of Advanced Biomedical Sciences, University of Naples Federico 11,
Naples, Italy
3 Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi,
Italy

Abstract. As the volume of data available to healthcare and life sci-
ences specialists proliferates, so do the opportunities for life-saving break-
throughs. But time is a key factor. High-Performance Computing (HPC)
can help practitioners accurately analyze data and improve patient out-
comes, from drug discovery to finding the best-tailored therapy options.
In this paper, we present and discuss an Artificial Intelligent methodol-
ogy based on a Generative Adversarial Network to improve the perceived
visual quality of MRI images related to the head and neck region. The
experimental results demonstrate that once trained and validated, our
model performs better with respect to the state of art methods and test-
ing it on unseen real corrupted data improved the quality of the images
in most cases.

Keywords: Deep Learning - Generative Adversarial Networks - MRI -
Imaging

1 Introduction

The region of the head and neck (HN), while representing a relatively small
area of the whole body, is of great interest in clinical practice. Indeed, there are
numerous pathological processes that involve the HN with significant potential
to reduce patients’ quality of life as well as being life threatening in the case of
malignancies. In this setting, medical imaging represents a crucial step in the
diagnostic workflow for lesion characterization, staging and follow up. While the
main modality for first level assessment is represented by ultrasound, magnetic

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 115-126, 2023.
https://doi.org/10.1007/978-3-031-30445-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_10&domain=pdf
https://doi.org/10.1007/978-3-031-30445-3_10

116 S. Cuomo et al.

resonance imaging (MRI) is the exam of choice for final evaluation of HN lesions
[1]. MRI presents several advantages making it particularly suitable for HN stud-
ies [2,3]. Noise and artifacts reduction of 2D magnetic resonance of HN images
is an interesting research topic in medical image analysis. Many algorithms have
been proposed to this topic, but in recent years, there has been a growing interest
in deep learning methodologies [4,5,14]. An emerging and challenging approach
to dealing with this problem is based on generative adversarial networks (GANS)
[4]. GANs are a class of methods in which two neural networks, the Generator and
the Discriminator, are competitively and separately trained to classify or predict
information. In other words, the main idea is to design a coupled neural network
where a Generator learns to generate plausible data, and a Discriminator can
distinguish the generator’s fake data from real ones. The Discriminator penalizes
the Generator for producing implausible results. Unfortunately, the learning pro-
cess, in practical GAN usage, may have many difficulties and several open issues
have to be addressed. How to train the Discriminator and Generator separately,
by updating the architecture parameters, and how to find hyperparameters for
the Generator such that the Discriminator is fooled completely are two crucial
aspects in the study of the GANs. Goodfellow et. al. in [4] identified the difficulty
of these networks to convergence as an issue that may cause the underfitting of
the data. However, radiomics and machine learning models based on this type
of data have not yet transitioned from academic research to real world clinical
practice. This has been due to several reasons, in large part related to issues
of reproducibility across different institutions and scanners [8,9,12,13]. In other
anatomical regions, GANs have already been proven to attenuate this limita-
tion of radiomics analysis [10]. Therefore, the potential impact of image quality
improvement techniques, such as those presented in our study, on quantitative
image analysis are another avenue for future research. To overcome some prac-
tical problems in the GAN implementation, we propose a method based on the
residual encoder-decoder of the Wasserstein generative adversarial network class.
The aim of this work is to design a stable GAN learning scheme able to improve
the perceived visual quality of HN images and at the same time to reduce the
artifacts that can often affect imaging with extra features, not present in the
acquired MRI, that can be confused with some disease. The paper is organized
as follows: Sect. 2 reports materials and methods; in Sect. 3 experimental results
are presented. Finally, Sect.4 is devoted to some discussions.

2 Materials and Methods

In this section, we show some aspects of designing a GAN for noise and artifacts
removal in MRI neck images. We first describe the MRI acquired data and some
information on the dataset information to train the network. Moreover, some
considerations about data augmentation are reported in the preprocessing dis-
cussion. The designed GAN architecture, named M-GAN;, is described in depth
to highlight the main computational tasks of the network. Finally, evaluation
metrics to show how M-GAN works are reported in the last paragraph.

A Generative Adversarial Network Approach 117

2.1 The GAN Methodology

GANSs [4,5] are a class of AT methods, in which two neural networks, the Gen-
erator and the Discriminator, are competitively and separately trained within a
minimax game framework that involves the following objective function:

where Z is the latent space with a priori distribution p, as input of the Generator,
X is the space of the real data distributed as pdata, the Discriminator D(x,0p)
acting as a classifier, outputs the probabilities that x comes from the distribution
of real data pg.t, or from the distribution of generated data ps and finally
the Generator G(z,0g) outputs the new generated data in order to fool the
Discriminator. A crucial step is the training of a GAN and some issues have
to be addressed. More in detail, the main three steps of training a GAN are
resumed as follows: i) train separately Discriminator and Generator updating
the parameters; ii) find parameters 8¢ and 6p such that the Discriminator is
completely fooled; iii) once the Discriminator is fooled, it is discarded and the
output is then the Generator. In the applications, however, the general form is
modified by obtaining two losses, which are in a kind of mutual relationship, one
for the Generator and one for the Discriminator.

2.2 MRI Dataset Description and Splitting

This observational retrospective study was approved by the local Institutional
Review Board, and the need for written informed consent was waived. All acqui-
sitions were performed on a 1.5-Tesla (Gyroscan Intera, Philips, Eindhoven,
The Netherlands) or 3T MRI scanner (Magnetom Trio, Siemens Medical Solu-
tions, Erlangen, Germany). Both protocols included an axial T2-weighted TSE
sequence, which was used for the analysis. The geometrical parameters varied
but minimum in plane image resolution was 0.8 x 0.8 mm, and maximum slice
thickness was 4 mm. The available dataset includes 3170 slices of the neck area
from 90 patients, selected from the zone just up the clavicle to the cheekbones
with 35 slices for patients on average. The data were classified by doctors accord-
ing to the noise level on a Likert scale, from 1 (more noise) to 4 (less noise), and
on a dichotomous scale for the presence of artifacts (indicated with 1) and the
absence (indicated with zero). About the dataset splitting the entire dataset has
been divided into:

— Training set. 625 target slices collected from 18 patients with O artifacts and
level noise of 3 and 4 used as target;

— Validation set. 155 slices collected from 4 patients with 0 artifacts and level
noise of 3 and 4 used as target;

— Test set. 128 slices randomly selected among 64 patients(two per patient) in
which there are some with presence of artifacts at different levels of noise(from
1 to 3) and some with absence of artifacts but with high level of noise (1 and
2).

In addition 4 patients, for a total of 150 slices with low noise level (3 or 4) and
no artifacts were used for a comparison with the state of the art.

118 S. Cuomo et al.

2.3 Data Pre-processing

Most of the images are 384 x 384 pixels in size, those that were larger have been
resized to 384 x 384 with a center crop rather than compression to add no more
noise and those of smaller size have been readapted by immersion in a black
background. After the dimensions standardization, a normalization was carried
out which led the tensor containing the whole set of images to assume values
between 0 and 1. In order to simulate degradation and noise that can occur in
MRI diagnosis we combined Gaussian blur and Rician noise. For the Training
data, given y;, a target image, we obtain:

Jji = ¥Yi + Go, + (ys + noise;)

with j = 1,2,3,4, i = 1,--- ,625 where with * we denote the convolutional
product between Gaussian distribution and our target image. So for each target
image ¥;, we obtained four corrupted versions of itself, so starting from the initial
625 slices used as target, we have 2500 corrupted slices. The value chosen for the
parameters is shown in Table 1.

Table 1. Selected parameters used for training data simulation.

Gaussian Blur (G,) | Racian Noise (noise;)
1 (80, 80)

0.9 (87, 87)

0.8 (90, 90)

0.7 (100, 100)

About the Validation data, 155 slices obtained by corrupting the 155 target
slices with unseen parameters for Gaussian blur and Rician noise used as input of
Generator have been considered. Finally for the comparisons with state-of-the-
art (S.0.T.A.) denoising algorithms we consider 150 slices obtained by corrupting
the 150 target slices with unseen parameters for Gaussian blur and Rician noise
used as input of Generator.

2.4 The M-GAN Architecture

We propose a GAN-based model for noise and artifacts reduction. Our model
comprises a generator and discriminator (see Fig. 1).

In Fig. 1 we report the M-GAN architecture. More in detail, the Generator
is composed of four convolutional 2D layers and four deconvolutional 2D layers.
The number of filters is respectively (4, 8, 16, 32, 16, 8, 4, 1). Each kernel used
in convolutional and deconvolutional layers is 3 x 3 dimensions with stride and
padding equals to 1. In the encoding phase each convolution operation is fol-
lowed by batch normalization and a LeakyReLU activation function. During the

A Generative Adversarial Network Approach 119

("&—a,,:x:[D(x 04)]~Ezpy(2)[D(G(2.05) ”n)]) +Acp-Egnp: (IVD(R)]| 1)

» cost

@]t
cle]

' ! g C [| —D

N Eyepn0)D(G(2.05). 0)] + Awse - MSE(G(2), x)

Fig. 1. The M-GAN architecture.

decoding phase, the first layer is composed of deconvolution followed by batch
normalization and a LeakyReLU activation function. In the second and third
layers, each deconvolution operation is preceded by a features concatenation
with the correspondent encoding part and a features pooling (2D convolution
between encoding and decoding features), then deconvolution followed by batch
normalization and a LeakyReLU. The last deconvolutional layer is preceded by
concatenation with the correspondent encoding part and a features pooling and
is followed by the output layer composed respectively by concatenation with
input, a features pooling, and a ReLLU activation function. Discriminator archi-
tecture: it is composed of four layers, three convolutional layers with a number of
filters respectively 4,8,16, each convolution followed only by LeakyReLLU without
batch normalization, and the last layer is a dense layer which outputs the result
of classification. Each kernel used in the convolutional layers is 3 x 3 dimen-
sions with stride and padding equal to 1. About the Loss functions, during the
training phase the Generator and the Discriminator are competitively and sepa-
rately trained both with the aim of minimizing in turn their loss functions. Loss
functions, written as follows, are of Wasserstein type [6]:

Lossp = 7(E<7:diatu,(a;) [D(I)] - EZNPz)'
D(G(2)) = AgpEamp(a [D(@)]| — 1)?]

and,
Lossg = —E.vp, [D(G(2))] + Ause MSE(G(2), z)

here z and x are respectively the corrupted image and the ground truth, D(x)
is the Discriminator output on the ground truth, D(G(z)) is the Discriminator

120 S. Cuomo et al.

output on generated data, w and h are respectively the width and the height of
the images, Agp and Aprsp are two hyperparameters.

Ezfvp(m) = (HD(QZ‘)H - 1)2

is the gradient penalty term and it is used to enforce the Lipschitz condition of
the Discriminator improving the stability of the model, p(z) is the distribution
obtained by uniformly sampling along a straight line between the real and gen-
erated distributions. The M SFE term helps Generator to better reconstruct the
details.

2.5 Evaluation Metrics

To evaluate the performance of our model we used four measures. The first one
is the peak signal-to-noise ratio (PSNR), which considers the root mean square
error (RMSE) between the ground truth and reconstructed or corrupted images.
The second is the structural similarity index measure (SSIM) [11] reconstruc-
tion, which measures the similarity between ground truth and reconstructed or
corrupted images. The third is the L1 distance that measures the pixel-wise aver-
age distance between the ground truth and reconstructed or corrupted images,
and the last is the Artifacts Power which consider the L2 squared difference
between the ground truth and reconstructed or corrupted images divided by the
L2 squared norm of the ground truth image. Higher is the AP, higher is the
corruption level in the images.

3 Experimental Results

In this section we discuss overall results in terms of accuracy in MRI image
reconstruction. Several accuracy metrics on the training, the validation and the
test sets are analyzed. Finally, some results on S.O.T.A. denoising methods are
considered.

3.1 Results on the Training Set

After training the model, it was tested on all 2500 input slices, recording an
improvement in quality in terms of measurements on all of them (Fig. 2).

Table 2 shows performances on four selected slice levels (the area just under
the lower jaw, the mouth area, the area between the superior jaw and just under
the nose, and the nose area) for each patient in the training set, an improvement
of at least one order of magnitude in terms of L1 and Artifacts power and
an improvement of at least 0.3 in terms of SSIM can be noted after M-GAN
correction. The M-GAN reaches the 98% of the SSIM value with improvements
in edge detection. The reconstructed image is close to the ground truth.

A Generative Adversarial Network Approach 121
GROUND TRUTH
L1=0.266,SSIM=0.48,AP=| 2 L1=0.0023,SSIM=0.98,AP=0.012
Fig. 2. Results on a randomly selected image from the dataset.
Table 2. Performance metrics of M-GAN generator.
SLICE | M-GAN CORRUPTED
LEVEL | L1 Distance Artifacts power | SSIM L1 Distance Artifacts power | SSIM
Oth 0.0061 £ 0.0104 | 0.029 £ 0.007 |0.98 £ 0.016 | 0.0273 £+ 0.053 | 0.31 £ 0.33 0.64 £ 0.056
1st 0.0052 £ 0.0079 | 0.015 £ 0.003 | 0.98 £ 0.003 | 0.0276 & 0.0152 | 0.21 £ 0.11 0.66 £ 0.056
2nd 0.0060 £ 0.0069 | 0.012 £ 0.002 | 0.97 £ 0.007 | 0.0291 £ 0.0162 | 0.16 £ 0.06 0.64 £ 0.048
3rd 0.0066 + 0.0073 | 0.011 £ 0.003 | 0.97 £ 0.007 | 0.0299 + 0.0167 | 0.14 £ 0.05 0.70 £ 0.051

3.2 Results on the Validation Set

Validation set was used to set the hyperparameters, the model with final setting
hyperparameters registered an improvement in terms of measures on all slices.
For the validation slices quality assessment, we selected the same slices level
chosen in the training set.

Table 3. Performance metrics of M-GAN generator on four selected slice levels for
each patient in the validation set.

SLICE | M-GAN CORRUPTED

LEVEL | L1 Distance | Artifacts power | SSIM L1 Distance | Artifacts power | SSIM

Oth 0.027 £ 0.026 | 0.076 £ 0.03 0.68 £ 0.019 | 0.057 £ 0.032 | 0.311 £ 0.24 0.32 £ 0.039
1st 0.027 £ 0.025 | 0.064 £ 0.01 0.70 £ 0.012 | 0.059 £ 0.031 | 0.227 £+ 0.11 0.35 £ 0.027
2nd 0.029 + 0.027 | 0.067 £ 0.01 0.71 £ 0.007 | 0.060 £ 0.033 | 0.213 £ 0.09 0.37 £ 0.020
3rd 0.030 £ 0.028 | 0.063 £ 0.02 0.71 £ 0.006 | 0.059 + 0.030 | 0.191 £ 0.07 0.36 + 0.019

Table 3 presents the M-GAN results in terms of perceived visual quality and
main metrics. An improvement of at least one order of magnitude in terms
of Artifacts power and an improvement of at least 0.3 in terms of SSIM can be
observed like in the training set, referring to the L1 Loss, we have an improvement
for all four selected slice levels, but less than those obtained in the training set.

122 S. Cuomo et al.

3.3 Results on the Test Set

After the training and validation phases, the model was tested on 128 slices ran-
domly selected among 64 patients, obtaining a significant improvement through
the quality control of doctors in terms of noise and artifacts on 80% of them
(103/128). An improvement regarding noise was measured with an increased
score on a Likert scale by doctors, while an improvement about artifacts, not
necessarily the total removal but also only the reduction, was denoted with the
passage from 1(for the corrupted original image) to 0 (after M-GAN correction).
In Fig.3, Fig.4 and Fig.5 were shown the results on three randomly selected
slices in the test set before and after M-GAN correction.

CORRUPTED

NOISE LEVEL=4,ARTIFACTS=0 NOISE LEVEL=2,ARTIFACTS=0

Fig. 3. Ability of M-GAN to reduce the noise. It appears in the real corrupted acqui-
sition as a grainy effect on the scanned object.

Figure 3 shows the improvement in terms of noise measured by doctors on
a Likert scale. After M-GAN correction, an increase in contrast that allows
better recognition of the elements in the image can be noted resulting in a
smoother image with a notable reduction of grainy effect. In Fig.4 we report
the performance of the M-GAN in terms of noise measured by doctors on a
Likert scale and in terms of artifacts on a dichotomous scale. After correction the
artifact due to motion is reduced with better-defined edges, resulting in an image
that makes the diagnosis less complicated for doctors than the corrupted one.
Finally, Fig.5 shows better results of M-GAN for reducing artifacts registered
from the passage from 1 to 0 on a dichotomous scale. After correction the intra-
pixel variation due to noise is alleviated and the “ghost effect” due to motion
artifacts is reduced with the restoration of details.

A Generative Adversarial Network Approach 123

M-GAN CORRUPTED

NOISE LEVEL=4,ARTIFACTS=0 NOISE LEVEL=2,ARTIFACTS=1

Fig. 4. Ability of M-GAN to reduce artifacts and noise. The corrupted image is affected
by a lack of sharpeness.

M-GAN CORRUPTED

NOISE LEVEL=4,ARTIFACTS=0 NOISE LEVEL=2,ARTIFACTS=1

Fig. 5. Ability of M-GAN to reduce motion artifacts and noise. Due to motion, the
edges of the corrupted version repeat outside the object appearing on the image black
background and inside it overlapping the real structure by altering the morphology.

3.4 Comparison with the S.O0.T.A

After training, validating and testing of our model, we compared it with some
of state of art denoising filters like Anisotropic, Non-local-means and Bilateral
[7], selecting and corrupting 150 slices from 4 new patients with unseen values of
Gaussian blur and Rician noise. Reconstruction results are reported in Table 4.

In Table4, we show that M-GAN performs better than typically denoising
filters, recovering more information about contrast and shapes. NLM shows good
performances, especially in terms of SSIM, where the increase compared to the
corrupted image and the other two filters are considerable. Anisotropic filter
doesn’t perform better like NLM and M-GAN but it is able to get an improve-

124 S. Cuomo et al.

Table 4. Performance metrics of different methods on four selected slice levels (the
same levels of validation and training stages) for each patient in the test set

SLICE | CORRUPTED ANISOTROPIC BILATERAL

LEVEL | PSNR AP SSIM PSNR AP SSIM PSNR AP SSIM

Oth 26.9 £ 0.5 0.17 &£ 0.01 | 0.57 £ 0.03 | 27.7 £ 0.7 | 0.14 & 0.001 | 0.69 £ 0.01 | 26.9 £ 0.5|0.17 & 0.01| 0.57 = 0.03
1st 26.2 & 0.7]0.16 £ 0.02 | 0.58 £ 0.01 | 26.9 4 0.8 | 0.14 £ 0.01 |0.70 & 0.01 | 26.2 £ 0.7 | 0.16 £ 0.02 | 0.58 & 0.01
2nd 25.7 4 0.5]0.15 £ 0.01 | 0.60 £ 0.01 | 26.2 4 0.6 | 0.13 £ 0.004 | 0.72 4 0.01 | 25.7 £ 0.5 0.15 £ 0.01 | 0.60 & 0.01
3rd 25.3 £ 0.5]0.15 &£ 0.01 | 0.61 £ 0.01 |25.8 &£ 0.6 | 0.13 & 0.01 |0.72 £ 0.01 |25.3 £ 0.5|0.15 & 0.01 | 0.61 £ 0.01

NLM M-GAN

PSNR AP SSIM PSNR AP SSIM

28.2 4+ 0.7/0.13 £ 0.01 |0.96 £ 0.01 32.9 £+ 1.01{0.04 &+ 0.001 | 0.99 + 0.003
27.3 £0.8/0.12 £ 0.01 | 0.96 £ 0.004 31.9 £ 1.1 |0.04 & 0.001 | 0.99 £ 0.001
26.5 + 0.6 0.13 & 0.004 | 0.96 £ 0.002 31.1 £ 0.8 |0.04 & 0.001 | 0.98 £ 0.001
26.1 4+ 0.6 0.12 + 0.001 | 0.95 + 0.003 30.5 4+ 0.7 |0.05 &+ 0.001 | 0.98 + 0.001

ment in terms of measures. Bilateral filters get an improvement in terms of
measurements only after at least the fifth decimal digit.

M-GAN recovers more information about contrast and shapes. NLM is able
to restore the morphology of the image with an improvement in terms of contrast;
the edges are preserved but slightly blurred, as reported in Fig. 6. Anisotropic
filter partially restores contrast reducing noise. Bilateral filters seem to leave the
image unchanged. Finally, we observe that if we require that the Anisotropic
and Bilateral filters reduce more noise by changing their parameters, it happens
that large structures are preserved while small ones are considered as noise and
so blurred.

Our experiments have been conducted on a server with the Intel Core i9-
9900 K 8-core CPU with 128 GB of RAM, and two GPUs: Nvidia RTX 3090
and Nvidia RTX 3070. The programming language used is Python 3.9 with the
framework Pytorch 1.9.1 for the Deep Learning model (Table 5).

Table 5. Comparing computational time on four selected patients of our approach
with the current state-of-art technique for all 150 slices.

Method Total execution time

Anisotropic | 1s
Bilateral 0.2s
NLM 21.6s
M-GAN 8.7s

A Generative Adversarial Network Approach 125

GROUND TRUTH BILATERAL ANISOTROPIC CORRUPTED

‘ .
4 N

BILATERAL ANISOTROPIC

Fig. 6. Quality assessment dealing with two slices selected from one patient.

4 Discussion and Conclusions

In this work, we propose a method based on the Wasserstein generative adver-
sarial network to reduce noise and artifacts in MRI images while effectively
preserving the structural details. This network aims to process 2D data using
2D convolutional layers. The Generator has an auto-encoder structure, while
the discriminator acting as a classifier, through 3 convolutional layers and 1
dense layer, takes an image as input and provides a value as output. Training
stage performed on a GPU, takes approximately 40 min and it is the costliest
step. The experimental results demonstrate that once trained and validated our
model, it performs better with respect to the state of art methods and test-
ing it on unseen real corrupted data improved the quality of the images in most
cases. The reduction of imaging artifacts and improvement of SNR will hopefully
lead to improvements in diagnostic accuracy of MRI HN examinations as well
as potentially reducing exam duration. Nonetheless, the clinical impact of our
results has to be investigated in future studies designed for this task. A further
consideration has to be made on the potential impact of GANs and denoising
techniques in general on quantitative analysis of medical images. Our work has
some limitations that should be acknowledged. First of all, it has a retrospec-
tive design which limits the possibility for clinical validation. However, from a
technical point of view a prospective design would not have impacted signifi-
cantly the network architecture. All the data was collected from a single center
and MRI scanner, therefore the generalizability of our results has to be proven
in a different setting. In conclusion, the results obtained are encouraging and

126 S. Cuomo et al.

efficiently demonstrate the potential of deep learning-based methods for MRI
denoising and artifacts reduction.

References

1. Dai, Y.L., King, A.D.: State of the art MRI in head and neck cancer. Clin. Radiol.
73(1), 45-59 (2018)

2. Jansen, J.F.A. et al.: Evaluation of head and neck tumors with functional MR
imaging. Magn. Reson. Imaging Clin. 24(1), 123-133 (2016)

3. Zhuo, J., Gullapalli, R.P.: MR artifacts, safety, and quality control. Radiographics
26(1), 275-297 (2006)

4. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems 27 (2014)

5. Goodfellow, Y., Bengio, Y., Courville, A.: Deep Learning. MIT press, Cambridge
(2016)

6. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks.
In: International Conference on Machine Learning, PMLR (2017)

7. Mohan, J., Krishnaveni, V., Guo, Y.: A survey on the magnetic resonance image
denoising methods. Biomed. Signal Proc. Control 9, 56-69 (2014)

8. Spadarella, G., et al.: MRI based radiomics in nasopharyngeal cancer: systematic
review and perspectives using radiomic quality score (RQS) assessment. Eur. J.
Radiol. 140, 109744 (2021)

9. Lohmann, P., et al.: Radiomics in neuro-oncology: basics, workflow, and applica-
tions. Methods 188, 112-121 (2021)

10. Marcadent, S., et al.: Generative adversarial networks improve the reproducibility
and discriminative power of radiomic features. Radiol.: Artif. Intell. 2(3), e190035
(2020)

11. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Trans. Image Process. 13(4),
600-612 (2004)

12. Piccialli, F., Cuomo, S., De Michele, P.: A regularized MRI image reconstruction
based on hessian penalty term on CPU/GPU systems. Procedia Comput. Sci. 18,
26432646 (2013)

13. Palma, G., et al.: 3D Non-local means denoising via multi-GPU. In: 2013 Federated
Conference on Computer Science and Information Systems, vol. 13884786 (2013)

14. Chianese, A., Marulli, F., Piccialli, F., Valente, I.: A novel challenge into multi-
media cultural heritage: an integrated approach to support cultural information
enrichment. In: International Conference on Signal-Image Technology & Internet-
Based Systems, pp. 217-224 (2013)

®

Check for
updates

A GPU Accelerated Hyperspectral 3D
Convolutional Neural Network
Classification at the Edge with Principal
Component Analysis Preprocessing

1() 1

Gianluca De Lucia , Marco Lapegna?®, and Diego Romano

! Institute for High Performance Computing and Networking (ICAR), CNR,
80131 Naples, Italy
{gianluca.delucia,diego.romano}@icar.cnr.it
2 Department of Mathematics and Applications, University of Naples Federico II,
80126 Naples, Italy
marco.lapegna@unina.it

Abstract. The Edge Computing paradigm promises to transfer
decision-making processes based on artificial intelligence algorithms to
the edge of the network without the need to query servers far from
the data collection point. Hyperspectral image classification is one of
the application fields that can benefit most from the close relationship
between Edge Computing and Artificial Intelligence. It consists of a
framework of techniques and methodologies for collecting and process-
ing images related to objects or scenes on the Earth’s surface, employing
cameras or other sensors mounted on Unmanned Aerial Vehicles. How-
ever, the computing performance of the edge devices is not comparable
with those of high-end servers, so specific approaches are required to
consider the influence of the computing environment on the algorithm
development methodology. In the present work, we propose a hybrid
technique to make the Hyperspectral Image classification through Convo-
lutional Neural Network affordable on low-power and high-performance
sensor devices. We first use the Principal Component Analysis to filter
insignificant wavelengths to reduce the dataset dimension; then, we use a
process acceleration strategy to improve the performance by introducing
a GPU-based form of parallelism.

Keywords: Hyperspectral classification - Edge Computing - Principal
Component Analysis + GPU computing

1 Introduction

Edge computing refers to the enabling technologies to process data at the net-
work’s edge near the data source before being sent to the cloud data center.
For some authors, edge computing is interchangeable with fog computing [1],
although it focuses more on the devices at the edge, whereas fog comput-
ing focuses more on the whole network infrastructure. This type of computing
paradigm has several advantages over traditional cloud computing, e.g., as the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 127-138, 2023.
https://doi.org/10.1007/978-3-031-30445-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_11&domain=pdf
http://orcid.org/0000-0001-7912-2083
http://orcid.org/0000-0001-9953-1319
http://orcid.org/0000-0002-2640-157X
https://doi.org/10.1007/978-3-031-30445-3_11

128 G. De Lucia et al.

results of [15] show, energy savings can reach up to 40%. There are various
metrics to consider in Edge computing, including energy and transmission rate,
especially for big data [3,13]. In addition to the network signal strength [11],
data size and available bandwidth will also influence the transmission energy
overhead [27]. For this reason, as shown in [17], new High-Performance Edge
devices mount GPUs capable of performing complex calculations by finding a
trade-off between performance and power consumption.

One stimulating application field for Edge computing is Remote Sensing
(RS). RS is the science of acquiring, processing, and interpreting images and
related data from aircraft and satellites that record the interaction between
matter and electromagnetic energy [30]. In recent years, deep learning techniques
have revolutionized how RS images are processed and classified. In particular,
standard optical, RGB, and IR (infrared) images have benefited from deep convo-
lutional neural networks (CNNs) for classification, object detection, or semantic
segmentation tasks [6,25,33].

A promising RS technology focuses on hyperspectral images (HSIs), allowing
simultaneous radiance capture at different wavelengths, and generating vari-
ous spectral bands. HSI data have an exceptionally high range and resolution
in the spectral dimension. In particular, the branch of Hyperspectral Imaging
deals with collecting and processing information on the nature of materials by
analyzing their reflectance in a part of the electromagnetic spectrum [12]. Hyper-
spectral imaging aims to obtain a spectral vector for each pixel of an image to
find objects, detect processes, or identify and classify materials [8,10].

Some classifiers preprocess the HSI to reduce the image depth to three spec-
tral bands (RGB) through Principal Component Analysis (PCA) or other strate-
gies [23,31] and only use a 2D CNN architecture to perform the classification.
However, this approach may result in the loss of some hyperspectral properties.
For this reason, we propose to use PCA to reduce the length of the HSI spec-
tral dimension while maintaining the multidimensional nature of the data. This
strategy allows adoption of more accurate and faster classification tools than the
above methods.

In this paper, we will present an HSI classifier’ that exploits the computa-
tional power of the GPU on High-Performance Edge Devices. For the develop-
ment, we used a PyTorch-based deep learning toolbox for classifying hyperspec-
tral data called DeepHyperX [4]. We focused on three-dimensional convolutional
networks (3D CNNs). Indeed, since we can interpret HSIs as volumes, we can
classify them with the aid of 3D CNNs using three-dimensional convolutions [20].
Instead of producing 2D feature maps, these 3D CNNs create 3D feature maps
suitable for spectral pattern recognition and seem theoretically more relevant
for HST classification. This approach slightly improves classification performance
compared to 2D+1D models [19]. In [9], the author showed that 3D CNNs for
the classification of hyperspectral images performed better than their 2D coun-
terparts. Indeed, compared to spectral CNNs or 2D+1D counterparts, 3D CNNs
combine spatial and spectral pattern recognition strategies in one filter, requiring
fewer parameters and layers.

! Source code: https://github.com/gigernau/PCAHyperspectralClassifier.

https://github.com/gigernau/PCAHyperspectralClassifier

A GPU Accelerated HSI 3D CNN Classification at Edge with PCA 129

Many architectures in the literature handle 3D convolutional neural networks
for hyperspectral data [7,9,16,18,21,22]. The authors of [5] compare several
variants, pointing out their ability to recognize more complex 3D reflectance
patterns, such as spectral signatures and absorption differences between bands.

With this work, we want to show how High-Performance Edge Computing
can enable onboard classification with a limited energetic impact, eventually
improving the transmission stage towards the ground station. The idea is to
preprocess raw data using a GPU-parallel PCA to reduce the spectral dimension
of the HSI while retaining the information content. Then, a properly chosen
GPU-accelerated 3D CNN classifier [20] can process the hyperspectral-reduced
data in a shorter time while maintaining high accuracy.

2 HSI Pipeline

HSIs have a data structure similar to RGB images, consisting of the superposition
of three wavelengths, one for each primary color: red, green, and blue. Even if
the visible spectrum has a broader range of wavelengths, RGB images appear
to the human eye in almost any color, thanks to the tristimulus mechanism.
In hyperspectral cameras, images have higher information content. HSI cameras
allow the simultaneous capture of radiance at different wavelength bands of
the electromagnetic spectrum, providing informative spectral details for each
material. An HSI has spatial pixels corresponding to geographical locations,
each with a spectral depth of several wavelength bands depending on the specific
sensor. Thus, an HSI is a volume graphically representable with a so-called cube
of hyperspectral data (Fig.1).

If we cut the cube perpendicularly to the spectral bands, we obtain a plane
appearing as an image whose pixels represent the reflectance at a specific wave-
length A. Therefore, the pixel’s intensity, with a value usually normalized between
0 and 1, measures the surface efficiency of the sampled material in radiative
reflection at .

Multi-spectral

Reflectance

0.5 1.0 1.5

Wavelenéth ’

0

Fig. 1. Graphical representation of a hyperspectral data cube.

130 G. De Lucia et al.

Two main methods of reducing datasets are PCA and Multidimensional Scal-
ing (MDS). We preferred to focus on using PCA, which operates on the spec-
tral dimension, rather than MDS. The output of the HSI classification produces
labels for each pixel, so we have to preserve the spatial details, while MDS focuses
mainly on reducing the spatial dimensions.

Thanks to PCA, we can reduce the spectral dimension by projecting the vec-
tor corresponding to each spatial point onto the first principal components only,
where the variance of the data and the information content are most relevant.
We can define the first principal component as the direction that maximizes the
variance of the projected data. The i-th principal component is the direction
orthogonal to the first ¢ — 1 principal components that maximize the variance of
the projected data [28]. The main steps of PCA are [32]:

— Dataset normalization.

Calculating covariance matrix for the features in the dataset.

— Calculating eigenvalues and eigenvectors for the covariance matrix.
— Ordering eigenvalues and corresponding eigenvectors.

— Selection of k eigenvalues and creation of the eigenvectors matrix.

The eigenvector associated with the largest eigenvalue indicates the direction in
which the data have the greatest variance.

In general, dimensionality reduction inevitably results in a loss of informa-
tion, leading to less accurate data classification. However, PCA minimizes this
information loss. Moreover, available parallel implementations on SIMD architec-
tures can exploit GPU acceleration using a SIMT execution model [29]. Indeed,
optimized versions of GPU-parallel cuBLAS-based PCA are up to 12 times faster
than the CPU-optimised BLAS versions [2]. Our high-performance PCA cuBLAS
implementation uses the Gram-Schmidt orthogonalization, as described in [2].
Therefore, we will perform PCA on the dataset before the classification phase
to speed up the process without sacrificing prediction accuracy.

For HSI classification through Deep Learning, many authors use CNNs [5].
In general, classifiers built with CNNs usually have the following layers:

— Convolutional layers: filters extract the features of the images analyzed.

— Pooling layers: reduce the dimension of the feature maps by downsampling,
and increase the level of abstraction.

— Fully Connected layers: work as traditional feed-forward neural networks,
in which all neurons connect to all neurons from the previous layer.

— Output layer: a fully connected layer using softmax as a trigger function to
obtain the selected input’s probabilities for a specific class.

In a fully connected layer, an activation function computes the weighted sum
of neurons of the previous layer and consequently activates neurons on the cur-
rent layer. In particular, the Rectified Linear Units (ReLU) function has excellent
performance on deep networks; therefore, many authors currently prefer it.

We will use a 3D-CNN, where the filters used in the convolutional layers
are three-dimensional and move along the three directions to calculate feature
representations (Fig. 2).

A GPU Accelerated HSI 3D CNN Classification at Edge with PCA 131

Smmmm
EEEE

|mmm
|mmm

Fig. 2. Example of three-dimensional convolution.

Hence, the pipeline of our classifier (Fig. 3) takes hyperspectral data as input,
then performs a GPU-parallel PCA by executing the code in CUDA. Next, the
reduced dataset becomes the input for the inference via the appropriately trained
3D-CNN network model. The output is an RGB image in which each pixel has
a color representing the class of the corresponding material.

pixel neighborhood

spectral bands

layers of 3D CNN

output

Fig. 3. Pipeline of the HSI classifier with PCA preprocessing.

3 Experiments

We developed a hyperspectral image classifier trained on two datasets to test
our approach. There are few public datasets [14] acquired using hyperspectral
sensors. In particular, for this work, we used:

— Indian Pines (IP): collected by the AVIRIS sensor on a NASA flight over
northwestern Indiana in 1992, with a ground pixel resolution of 17 m. The
acquired data consist of 145 x 145 pixels with 220 spectral bands, but after
removing the water absorption bands (104 — —108, 150 — —163, and 220),
they result in 200 bands. The ground truth has 16 classes, not all of which
are mutually exclusive.

— Pavia University (PU): detected by the ROSIS sensor on a DLR flight in
2002 over Pavia, Italy, with a ground pixel resolution of 1.3 m. After removing
samples without information, the dataset consists of 610 x 340 pixels, with
103 spectral bands. The ground truth differentiates 9 classes.

132 G. De Lucia et al.

We used double precision for both datasets to present coherent results during
our tests, even if the original formats differed.
We experimented on two different platforms:

— PC with a 2.60 GHz Intel Core i7-9750H CPU, 16 GB RAM, Nvidia GeForce
RTX 2060 GPU, and running Ubuntu Linux;
— Nvidia Jetson Nano developer kit.

We exploited the GPUs on both platforms to accelerate each step of the clas-
sification pipeline. To test our code in the High-Performance Edge Computing
environment, we used the Jetson Nano activating both 5W and 10W modalities
and reporting their impact on the inference time and the energy absorption.

Firstly, we selected the best 3D-CNN model in inference time and prediction
accuracy for both datasets on the Jetson Nano. This step is essential to identi-
fying the most promising model for the Edge computing environment. Then, we
tested the overall classification performance in prediction accuracy and inference
time by changing the selected number of components in the PCA preprocess-
ing. We used a customized parallel version of the PCA developed in CUDA
using the cuBLAS library for this task. We also compared the execution time of
the PCA preprocessing using our CUDA version and the scikit-learn module of
Python. Finally, we evaluated the energy consumption using both Jetson Nano
modalities.

4 Results

Firstly, we present in Table 1 the execution times of a few 3D-CNN models from
the literature (He et al. [16], Li et al. [21], Hamida et al. [7]), implemented in
DeepHyperX and executed on Jetson Nano. We did not include Lee et al. [18§],
Luo et al., [22] and Chen et al. [9] because they are not competitive in inference
execution times (more than 5min in 10 W modality).

Table 1. Execution times on Jetson Nano and classification accuracy of some models
from DeepHyperX on IP and PU datasets

Indian Pines Pavia University
Inference Time Inference Time
Model 10W |5W Accuracy | 1I0W |5 W Accuracy
He et al. 01:05 | 01:24 95.35% 04:19 | 06:10 96.14%
Li et al. 00:23 | 00:27 97.08% 00:56 | 01:20 97.72%
Hamida et al. | 00:24 | 00:29 85.72% | 01:07 | 01:40 97.59%

The best results in terms of accuracy and execution time for both datasets
and power modalities are those of Li et al. All the subsequent reasonings and
tests will suppose the adoption of this promising model, considering our context
of on-board processing of remote sensing data.

A GPU Accelerated HSI 3D CNN Classification at Edge with PCA 133

Seconds
Seconds

s ! s s s ! s
Number of Pincipal Components Number of Pincipal Components

Time (10W) —Time (SW) Dispersion ——Average accuracy Time (10W) —Time (SW)

(a) Indian Pines (b) Pavia University

Fig. 4. Accuracy and execution time of inference using our pipeline with several num-
bers K of Principal Components.

By applying the PCA, if we decrease the number of Principal Components
K used for the 3D-CNN, classification accuracy and execution time decrease
simultaneously (Fig. 4). The curve steepness of the execution time is greater than
that of the accuracy. Hence, we do not need to sacrifice significant accuracy to
reduce the execution time.

Moreover, the dispersion area of multiple testing increases when using fewer
Principal Components. This result means that excessive reduction of the input
components during the CNN training implies a less reliable prediction. Indeed,
prediction accuracy strictly depends on the model and the training set. We used
a random approach to sample the training set when repeating the tests, so we
trained with different random samples each time. Consequently, an increasing
accuracy dispersion means that the training samples’ choice becomes highly
relevant. Hence, the excessive reduction in the number of principal components
directly impacts the training quality of the neural network.

Following these observations, we think a good trade-off between accuracy and
execution time is K = 50 for IP (Fig.4a), thus reducing the dimension of the
initial dataset by 75%. However, if we need to reduce the execution time further,
we could choose K = 10 while keeping a 95% prediction accuracy and a 95%
dimensional reduction. The numbers change for PU (Fig.4b) since the hyper-
spectral bands are fewer. To maintain at least a 97% accuracy, we can choose
an optimal K = 10, obtaining an approximate 90% reduction in the dataset
dimension. On the other hand, we can choose K = 5 for an approximate 95%
dimensional reduction and a 95% accuracy. We will use the K values mentioned
above to control the prediction accuracy in the following testing.

Visual comparisons between ground truth and prediction for PU (Fig.5)
and IP (Fig.6) datasets show that the results of our pipeline represent reliable
classifications, as confirmed by the diagonal of the confusion matrices in Fig. 5¢
and Fig. 6¢c.

Regarding power consumption, we tested our pipeline on the Jetson Nano
using both energy modalities: 10 W (Table 2) and 5W (Table 3). We can notice
that the advantage of using our pipeline with PCA preprocessing for the PU

134 G. De Lucia et al.

Confusion matrix

Shadows -|

5000
Self-Blocking Bricks -|
Bitumen | 4000
Bare Soil |
Painted metal sheets -| 3000

2000
Gravel |

Meadows -|
1000

Asphalt-|

°

Undefined -|

pauuapun]
Jeudsy |
smopeajy |
|2ARID |
saayl
1105 aJeg |
uawnyg |
smopeus |

5133Us |e3aW pajuled
syoug buppoig-yes |

(a) Prediction (b) Training set (c) Confusion matrix

Fig. 5. Pavia University prediction with 95% accuracy (a), the training set with 70%
samples from ground truth (class Undefined in black) (b), and relative confusion
matrix (c).

Confusion matrix

Stone-Steel-Towers-|
ngs-Grass-Trees-Drives -
Woods
Wheat -
Soybean-clean
Soybean-mintill -
Soybean-notill -

Hay-windrow
Grass-pasture-

Grass-trees-|
Grass-pasture
corn
Corn-mintill -|
Corn-notill |
Alfalfa-
Undefined-|

pauyapun -|
eleny |
1170U-UI0D
Iuw-uo) |
S88.13-55019

pamow-ainjsed-ssei _

(a) Prediction (b) Training set

sumysed-ssein |
pamospuim-Aey |

-5934]-s5e49-56Ul
SIaMO- 12315

(¢) Confusion matrix

Fig. 6. Indian Pines prediction with 95% accuracy (a), the training set with 70% sam-
ples from ground truth (class Undefined in black) (b), and relative confusion matrix (c).

dataset is evident, as it halves energy consumption and markedly reduces the
execution time. There is a slight improvement for the IP dataset when using
the 10 W modality. Instead, with 5W, we only see an improvement in energy
consumption when reducing the accuracy to 95%. This limitation is due to the
HST shape, which is spatially small but spectrally big in IP, and therefore the
GPU-parallel PCA weights more on total time and energy consumption. To bet-

A GPU Accelerated HSI 3D CNN Classification at Edge with PCA 135

Table 2. Comparison of energy consumption and execution times on Jetson Nano
(10 W modality) for Li et al. model without and with PCA preprocessing

Without PCA | With PCA | With PCA
accuracy accuracy
95% 97%

Secs | Joules Secs | Joules | Secs | Joules
Pavia University | 80 320.3 42 152.41 | 52 199.7
IndianPines 39 175.78 28 90.80 |39 173.25

Table 3. Comparison of energy consumption and execution times on Jetson Nano (5 W
modality) for Li et al. model without and with PCA preprocessing

Without PCA | With With
PCA PCA
accuracy accuracy
95% 97%

Secs | Joules Secs | Joules | Secs | Joules
Pavia University | 107 | 354.97 |48 |166.21 |62 |204.07
IndianPines 50 | 148.58 36 102.3 |48 186.24

ter understand the energetic performance of our proposed pipeline, we compare
in Table4 several items. We calculated energy consumption on the RTX 2060 in
joules, multiplying the GPU’s Thermal Design Point (160 W) by the execution
time.

It appears evident that for the overall measuring, the execution on the RTX
is less time-consuming at the cost of more energy absorption. On the other
hand, using both Jetson’s modalities for the PCA implemented with cuBLAS,
we measured a saving of about 95% of energy compared to RTX, but with an
increment of only 55 — 61% in the execution time. This result is fascinating
when considering possible future data processing implementations at the Edge.
Regarding the performance of the PCA from scikit-learn, it does not exploit the
GPU and therefore is non-competitive.

Looking at overall measuring, including 3D-CNN, we report an increase of
about 90% in execution time, saving 70 — 80% in terms of power consumption.
That proportion is not promising as the PCA case, probably due to PyTorch
inefficiencies. However, it is still an interesting option when connection band-
width is critical. If we think of a situation with a poor transfer connection,
processing at the Edge can reduce bandwidth requests. For example, in our case
of HSI classification, the PU dataset consists of 33.2 MB, while the classification
output is an image of 610x340 bytes.

136 G. De Lucia et al.

Table 4. Comparison of energy consumption and execution times on both platforms,
isolating PCA preprocessing contributions. In italic, measures for PCA using scikit-
learn as reference. The totals refer to PCA with cuBLAS plus inference, setting the
accuracy to 95%.

RTX Jetson Jetson
(160 W) [(1I0W) | (5W)
PaviaUniversity | PCA Cublas Joules 28.8 1.34 1.21
Secs 0.18 0.4 0.42
PCA scikit- Joules 18.02 23.11
learn Secs 3.09 5.38 7.64
Total Joules 481.6 152.41 138.59
Secs 3.01 42 48
IndianPines PCA Cublas Joules 43.2 2.49 2.10
Secs 0.27 0.7 0.7
PCA scikit- Joules 12.12 17.10
learn Secs 1.48 3.41 5.7
Total Joules 432.0 90.80 102.3
Secs 0.27 28 36

5 Conclusions

This work shows an innovative perspective on the HSI classification problem
contextualized in High-Performance Edge Computing. By adopting the Nvidia
Jetson Nano system-on-chip, which can be attached to remote sensors of various
types, we developed an HSI classifier optimized for the Edge to enable onboard
processing. In such a context, the processing time is focal; therefore, we chose
the most promising 3D-CNN model in prediction accuracy and inference time
using a GPU.

Then, to further speed up the processing, we applied a Principal Component
Analysis to the original dataset to obtain up to a 90% reduction in size without
significantly depleting accuracy.

To exploit the acceleration available on the Jetson Nano and achieve high
performance, we implemented a GPU-parallel version of the PCA in CUDA.
Furthermore, we analyzed the energy absorption on the Jetson Nano to identify
the best energy configuration for our problem. The 10W modality resulted in
the shortest execution time, even if it did not correspond to greater energy
consumption for both considered datasets.

Results are encouraging to further investigate the problem by analyzing
datasets from more recent sensors that are not yet publicly available. More-
over, additional analysis of the two energy modalities in the Jetson Nano on
other applications can result in possibly interesting evidence about Edge energy
consumption. Another improvement could be considering a scenario where the
GPU is remoted and the actual computation executed on low-power devices or
single-board computers, as in [24,26].

A GPU Accelerated HSI 3D CNN Classification at Edge with PCA 137

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

Ai, Y., Peng, M., Zhang, K.: Edge cloud computing technologies for internet of
things: a primer. Digit. Commun. Netw. 4, 77-86 (2017)

Andrecut, M.: Parallel GPU implementation of iterative PCA algorithms. J. Com-
put. Biol. 16(11), 1593-1599 (2009)

Armbrust, M., et al.: A view of cloud computing. Commun. ACM 53(4), 50-58
(2010)

Audebert, N.: Deephyperx. https://github.com/nshaud/DeepHyperX

Audebert, N., Le Saux, B., Lefévre, S.: Deep learning for classification of hyperspec-
tral data: a comparative review. IEEE Geosci. Remote Sens. Mag. 7(2), 159-173
(2019)

Audebert, N.; Le Saux, B., Leféevre, S.: Semantic segmentation of earth observation
data using multimodal and multi-scale deep networks. In: Lai, S.-H., Lepetit, V.,
Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10111, pp. 180-196. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-54181-5_12

Ben Hamida, A., Benoit, A., Lambert, P., Ben Amar, C.: 3-D deep learning app-
roach for remote sensing image classification. IEEE Trans. Geosci. Remote Sens.
56(8), 4420-4434 (2018)

Chang, C.I.: Hyperspectral Imaging: Techniques for Spectral Detection and Clas-
sification, vol. 1. Springer, Cham (2003)

Chen, Y., Jiang, H., Li, C., Jia, X., Ghamisi, P.: Deep feature extraction and clas-
sification of hyperspectral images based on convolutional neural networks. IEEE
Trans. Geosci. Remote Sens. 54(10), 62326251 (2016)

De Lucia, G., Lapegna, M., Romano, D.: Towards explainable Al for hyperspectral
image classification in edge computing environments. Comput. Electr. Eng. 103,
108381 (2022)

Ding, N., Wagner, D., Chen, X., Pathak, A., Hu, Y.C., Rice, A.: Characterizing
and modeling the impact of wireless signal strength on smartphone battery drain.
ACM SIGMETRICS Perform. Eval. Rev. 41(1), 29-40 (2013)

Grahn, H., Geladi, P.: Techniques and Applications of Hyperspectral Image Anal-
ysis. John Wiley, Hoboken (2007)

Greenberg, A., Hamilton, J., Maltz, D.A., Patel, P.: The cost of a cloud: research
problems in data center networks. SIGCOMM Comput. Commun. Rev. 39(1),
68-73 (2009)

Grupo de Inteligencia Computacional (GIC): Hyperspectral dataset. http://www.
ehu.eus/cewintco/index.php/Hyperspectral_Remote_Sensing_Scenes

Ha, K., Chen, Z., Hu, W., Richter, W., Pillai, P., Satyanarayanan, M.: Towards
wearable cognitive assistance. In: Proceedings of the 12th Annual International
Conference on Mobile Systems, Applications, and Services, MobiSys 2014, pp. 68—
81. Association for Computing Machinery, New York (2014)

He, M., Li, B., Chen, H.: Multi-scale 3D deep convolutional neural network for
hyperspectral image classification. In: 2017 IEEE International Conference on
Image Processing (ICIP), pp. 3904-3908 (2017)

Lapegna, M., Balzano, W., Meyer, N., Romano, D.: Clustering algorithms on low-
power and high-performance devices for edge computing environments. Sensors
21(16), 5395 (2021)

Lee, H., Kwon, H.: Going deeper with contextual CNN for hyperspectral image
classification. IEEE Trans. Image Process. 26(10), 4843-4855 (2017)

https://github.com/nshaud/DeepHyperX
https://doi.org/10.1007/978-3-319-54181-5_12
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes

138

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

G. De Lucia et al.

Li, J., Cui, R., Li, B., Li, Y., Mei, S., Du, Q.: Dual 1d-2d spatial-spectral CNN for
hyperspectral image super-resolution. In: IGARSS 2019-2019 IEEE International
Geoscience and Remote Sensing Symposium, pp. 3113-3116 (2019)

Li, Y., Zhang, H., Shen, Q.: Spectral-spatial classification of hyperspectral imagery
with 3D convolutional neural network. Remote Sens. 9(1), 67 (2017)

Li, Y., Zhang, H., Shen, Q.: Spectral-spatial classification of hyperspectral imagery
with 3D convolutional neural network. Remote Sens. 9(1) (2017)

Luo, Y., Zou, J., Yao, C., Zhao, X., Li, T., Bai, G.: HSI-CNN: a novel convolu-
tion neural network for hyperspectral image. In: 2018 International Conference on
Audio, Language and Image Processing (ICALIP), pp. 464-469 (2018)
Makantasis, K., Karantzalos, K., Doulamis, A., Doulamis, N.: Deep supervised
learning for hyperspectral data classification through convolutional neural net-
works. In: 2015 IEEE International Geoscience and Remote Sensing Symposium
(IGARSS), pp. 4959-4962. IEEE (2015)

Marcellino, L., et al.: Using GPGPU accelerated interpolation algorithms for
marine bathymetry processing with on-premises and cloud based computational
resources. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds.)
PPAM 2017. LNCS, vol. 10778, pp. 14-24. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78054-2_2

Marmanis, D., Wegner, J.D.; Galliani, S., Schindler, K., Datcu, M., Stilla, U.:
Semantic segmentation of aerial images with an ensemble of CNSS. ISPRS Ann.
Photogrammetry Remote Sens. Spat. Inf. Sci. 2016(3), 473-480 (2016)

Montella, R., Giunta, G., Laccetti, G.: Virtualizing high-end GPGPUS on arm
clusters for the next generation of high performance cloud computing. Cluster
Comput. 17(1), 139-152 (2014)

Raychaudhuri, D., Nagaraja, K., Venkataramani, A.: Mobilityfirst: a robust and
trustworthy mobility-centric architecture for the future internet. ACM SIGMO-
BILE Mob. Comput. Commun. Rev. 16(3), 2-13 (2012)

Rodarmel, C., Shan, J.: Principal component analysis for hyperspectral image clas-
sification. Surv. Land Inf. Syst. 62(2), 115-123 (2002)

Romano, D., Lapegna, M.: A GPU-parallel image coregistration algorithm for
InSar processing at the edge. Sensors 21(17), 5916 (2021)

Sabins, F.F.: Remote sensing for mineral exploration. Ore Geol. Rev. 14(3-4),
157-183 (1999)

Slavkovikj, V., Verstockt, S., De Neve, W., Van Hoecke, S., Van de Walle, R.:
Hyperspectral image classification with convolutional neural networks. In: Pro-
ceedings of the 23rd ACM International Conference on Multimedia, pp. 1159-1162
(2015)

Tharwat, A.: Principal component analysis-a tutorial. Int. J. Appl. Pattern Recog-
nit. 3(3), 197-240 (2016)

Volpi, M., Tuia, D.: Dense semantic labeling of subdecimeter resolution images with
convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 55(2), 881-893
(2016)

https://doi.org/10.1007/978-3-319-78054-2_2
https://doi.org/10.1007/978-3-319-78054-2_2

®

Check for
updates

Parallel gEUD Models for Accelerated
IMRT Planning on Modern HPC
Platforms

Juan José Moreno'®™ | Janusz Miroforidis?, Ignacy Kaliszewski?,
and Gracia Ester Martin Garzén!

! Informatics Department, ceiA3, University of Almerfa, Almerfa, Spain
{juanjomoreno,gmartin}@ual.es
Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

»

Abstract. Radiotherapy treatments apply high doses of radiation to
tumorous cells to break the structure of cancer DNA, trying at the same
time to minimize radiation doses absorbed by healthy cells. The person-
alized design of radiotherapy plans has been a relevant challenge since the
beginning of these therapies. A wide set of models have been defined to
translate complex clinical prescriptions into optimization problems. The
model based on the generalized equivalent uniform dose, gEUD, is very
relevant for IMRT radiotherapy planning in clinical practice. This way,
the expert physicists can tune plans near the prescriptions, solving the
optimization problem based on gEUD in a trial-and-error process. The
gradient descent methods can be applied for solving these models per-
sonalized for every patient. However, their computational requirements
are huge. So, to facilitate their use in clinical practice it is necessary to
apply HPC techniques to implement such models. In this work, we have
developed two parallel implementations of an gEUD model for IMRT
planning on multi-core and GPU architectures, as they are increasingly
available in clinical settings. Both implementations are evaluated with
two Head&Neck clinical tumor cases on modern GPU and multi-core
CPU platforms. Our implementations are very useful since they help
expert physicists obtain fast plans that can satisfy all the prescriptions.

Keywords: Radiotherapy Planning - Intensity Modulated Radiation
Therapy (IMRT) + gEUD models + Gradient Descent - GPU
computing - multi-core CPU

1 Introduction

External beam radiation therapies kill the diseased tissue cells with radiation
emitted by a source from outside the body. To achieve this goal, it is necessary to
design personalized RadioTherapy Plans (RTPs) to get specific 3D distribution

This work has been supported by the projects: RT12018-095993-B-100 and PID2021-
1232780B-100 (funded by MCIN/AEI/10.13039/501 100011033/FEDER “A way to
make Europe”); UAL18-TIC-A020-B (funded by Junta de Andalucia and the European
Regional Development Fund, ERDF).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 139-150, 2023.
https://doi.org/10.1007/978-3-031-30445-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_12&domain=pdf
https://doi.org/10.1007/978-3-031-30445-3_12

140 J. J. Moreno et al.

radiation doses which effectively destroy diseased cells with minimal side effects
on the healthy ones.

IMRT devices deliver beams of radiation to radiated patients from different
angles with varied intensities within a beam. The angles are fixed by the IMRT
equipment. To control the radiation dose deposition each beam is decomposed
in a regular grid of (thousands of) beamlets, whose radiation intensity can be
individually controlled. Every RTP is defined by the specific intensities of all the
beamlets, referred to as a fluence map. This way, the goal is to determine the
fluence maps that deliver doses near the prescriptions on tumors and healthy
tissues. The prescribed doses are defined by the segmentation of the patients’
tomography images composed of millions of voxels. Therefore, the definition of
effective RTPs has been a challenge from the very beginning of the development
of this type of therapy, due to the contradictory aims and the high dimensions of
the involved data [1]. So, intensive efforts have been developed to obtain software
tools which help medical physicists to find the most effective RTPs. Such tools
are based on the definition of optimization models, whose solutions are developed
using high-performance computing (HPC) techniques.

The model based on generalized equivalent uniform dose (gEUD) is very rele-
vant in clinical practice and it is the focus of this work [7,13]. Such model allows
to compute RTPs near to a subset of prescriptions by solving the optimization
problem based on gEUD. It can be solved by gradient methods, as it is proposed
in [2]. These RTPs are used by the medical physicist as an important tool in the
trial-and-error process to design clinical feasible RTPs according to the whole
set of oncologist’s criteria for every patient. The workflow for the personalized
RTP design is complex and the use of fast and accurate tools in such process is
essential.

In contrast, all the main processes related with the design of IMRT planning
have huge computational demands. Consequently, in addition to the design of
efficient algorithms, it is necessary to apply HPC techniques to accelerate and
extend the application of such algorithms. There are many works focused on the
exploitation of the parallelism involved in the RTP design on several platforms,
for example, on multicore and vector units on CPU [14], or on reconfigurable
hardware architectures (FPGAs) [15].

Graphics Processing Units (GPUs) deserve special mention as HPC plat-
forms which can accelerate the computationally intensive tasks in the design
of RTPs, such as tomography reconstruction, high spatial/temporal resolution
image processing, Monte Carlo radiation dose simulations and radiotherapy plan-
ning [3,6,12]. Such computations exhibit massive parallelism which can squeeze
the architecture of GPU platforms. Moreover, currently, GPUs are consolidated
resources which can be integrated into the cloud platforms or servers applied in
clinical practices. The design of RTPs can be strongly accelerated on GPU plat-
forms. However, it is necessary to reprogram the algorithms or even to propose
new methods to better exploit the parallelism of the GPU platforms.

This work aims to develop fast planners based on the main biological criteria,
gEUD, accelerated on GPUs and multicore platforms. The convexity proprieties

Parallel gEUD Models for Accelerated IMRT Planning 141

of the corresponding objective functions allow us to apply gradient methods to
find near-optimal RTPs, as suggested from the definition of gEUD [13]. There-
fore, we have selected the Gradient Descent (GD) method since it is a well-known
optimization method [4,10] which has been already used for solving a penalty-
based quadratic optimization model for IMRT planning on GPU [5].

The main goal of this work is to express the GD for the RTP design based
on gEUD in terms of efficient matrix operations on GPUs and multi-core CPUs
and to develop the corresponding parallel planner, reducing the communications
overload and tuning the memory access performance. As far as we know, such
fast planners are not referred to in the literature, despite the great interest as it
has been motivated above.

The outline of the paper is as follows. Section?2 presents the formulation
of IMRT planning based on gEUD criteria as an optimization problem solved
by the GD method. The main issues related to the efficient GPU and multi-
core CPU implementations are described. In Sect. 3 both implementations of the
planner based on gEUD and GD are evaluated with two clinical cases in terms
of computational performance and accuracy of the planning in relation to the
prescriptions. Section 4 presents directions for further research and conclusions.

2 Formulation of Radiotherapy Planning

Oncological radiotherapy planning is needed when a number (from one to sev-
eral) tumorous cell locations (Planning Target Volumes — PTVs) have to be
radiated to kill the malignant tissue and several healthy organs (Organs at Risk
— OARs) have to be spared as much as possible. Neutral (or normal) tissue (NT)
is also to be spared. PTVs, OARs and NT form a predefined set of Regions of
Interest (ROIs). In the general case, this calls for a multiobjective optimization
setting, but the optimization model based on gEUD translates all goals to one
function to maximize. To facilitate the reading, we introduce Table1 to define
the notation used.

In the Intensity Modulated Radiotherapy (IMRT) technique the process is
controlled by the intensities of radiating rays (beamlets) to which the field radi-
ated from the head is discretized. There are several (usually more than six)
positions of the radiating head (beams) from which the radiation is delivered to
a patient in one session.

An effective optimization model for IMRT planning is based on the general-
ized equivalent uniform dose (gEUD) using a linear-quadratic cell survival model
[7]. Tt is possible to define an objective function that not only defines a penalty
factor for every planning constraint but also it expresses the dose uniformity by
the integration of generalized equivalent uniform dose (gEUD) in such a model.
This approach was introduced by [13] where the optimal fluence map is defined
by the argument that maximizes F'(z):

max F(x) (1)

142 J. J. Moreno et al.

Table 1. Notation for the formulation of optimization model based on gEUD

Notation | Meaning

M Number of voxels

N Number of beamlets

T Array related to fluence map
D Sparse dose deposition matrix

d(z) = Dz | Array of doses for each voxel as function of fluence map =

Ss Array of voxel indices for region s
gEUDY? Prescribed/constraining dose for region s
T Set of all PTVs

teT Index of a specific PTV

R Set of all OARs and virtual PTVs

reR Index of a specific OAR

S Set of all ROIs

seS Index of a specific ROI structure

with
F(z) =[]) [] £:(=) (2)
rER teT
and 1
r(x) = T 3
= Q)
filw) = : @

0 nt
1+ (5500

where gEUD?Y is the min desired doses at the PTV with index ¢ and gEUD?
is the max dose at the region of index r with constrains doses according to the
prescriptions; the parameters n,, n; indicate the importance of the structure-
specific in the optimization model and its role is similar to a weight or penalty
of such structure. The gEUD,(z) and gEUD;(z) functions are related to a
biological metric which defines the generalized equivalent uniform dose which
gets the same effect than the actual nonuniform dose distribution on the regions
of interest. Such functions are defined by the same relations independently of
the kind of structure with index s:

1
as

gwmw:ﬁZwm (5)
Sl jes,

where |Ss| is the number of voxels of the region s, d;(z) is the element j of
the dose vector related to voxel j in s region for the fluence map, z and it is
computed as the product of deposition matrix and the vector z, d(x) = Dx; and
as is a parameter related to the radiation effect on the specific region s, it can

Parallel gEUD Models for Accelerated IMRT Planning 143

be empirically adjusted by calibration processes. In practice such parameters are
fixed by the values available in the literature for a wide set of organs. In general,
we can say that a; (a,) gets large negative (or positive) values.

As described, the proposed model clearly distinguishes between Organs at
Risk (OARs) and Planning Target Volumes (PTVs), defining different objective
functions for each one. Equation 3 controls the maximum (or average maximum,
depending on the value of a,.) dose irradiated to a given OAR does not exceed
the respective constraint, while Eq. 4 controls the minimum dose irradiated to a
given PTV.

However, for PTVs, avoiding overdosage inside the volume is also important.
Therefore, is it common to define a new structure for each PTV (commonly
called “Virtual PTV”) which is treated as an OAR. On this work, we have
defined virtual PTVs for each PTV and, to lighten the optimization costs, linked
their parameters. Therefore, for each PTV ¢, there is a virtual PTV r with
gEUDg = gEUDf) + 1, a, = —a; and n, = ny. These virtual PTVs are treated
as OARs and included into the R set, so no special treatment or changes to the
algorithm are required.

2.1 Gradient Descent

The objective function F'(z) is non-linear and differentiable, so a gradient descent
method can be used to explore possible plans that maximize F(z). To facilitate
the computation of the derivatives, we can transform optimization model bearing
in mind that functions F(x) and In F'(z) share their optimal arguments because
0 < F(z) < 1, Vz. So, the gradient function to look for the arguments z that
maximize F'(z) can be decomposed by the gradients of In f,.(z) and In f;(x) which
are computed as

Vinfr(@) = zj_EZiJ:lrj(éc)>ar (

Aj(x)

EUDO ,
gEEE Al ()

nfil) (gEUD?) o [
> jes, dj(@)* \gEUDy(x) AL (z)

where A%(z) = d;j(x)* " if j € S, and A%(z) = 0 in other case. This way, Eqs. 6
and 7 are the keys to compute the gradient vector at every z.

Algorithm 1 describes the sequential implementation of the proposed model.
This model does not require a feasible starting fluence map, so it can be ini-
tialized to zero. After the initialization, we start the iterative gradient descent
process, which begins by computing the dose deposition in the patient body.
This sparse matrix — dense vector multiplication is the most computationally
intensive part of the algorithm. Subsequently, for each region, we calculate the
gEUD (lines 4-6) and the region-specific components of Eq.9 and 12 (lines 7—
12). Afterwards, we calculate the voxel-specific components (lines 13-19). The
resulting partial gradients (one for each ROI) are summed together to obtain a

Vin fi(z) =

(7)

144 J. J. Moreno et al.

Algorithm 1. Simplified gEUD-based Gradient Descent implementation

1: <0 > Initialize fluence vector to zero

2: while running do

3: d—D-x > Compute dose deposition from fluence
4: for s € S do > For all ROIs

5: SUM, szess dse 1

6: gEUD, — (‘S—lql “Djes, d?s) - > Calculate current gEUD value

7 for r € R do > For each OAR

. 1 . . .
8: fr— 71+(gEUDT)nT > OAR objective function (Eq. 3)
g UDQ

9: BglEj‘llfDr — g}"{;é: . (‘Z%%) > Common part of Eq. 6
10: for t € T do > For each PTV
11: fi — W > PTV objective function (Eq. 4)

gEUD,
n n EUD?\ ™t

12: agg(th — gEthtDt . (‘ZEUD’;) > Common part of Eq. 7
13: for s € S do > For each ROI
14: for i € M do > For each voxel
15: if 1 € S; then > If the voxel belongs to the ROI

as—1

16: ‘%’]gigim «— gEUD; - Z.LTM > Voxel-specific part of Eq. 6 and 7
17: Vi 00FTRe . SBEs > From line 16 & 9 (12) for OARs (PTVs)
18: else

19: Ve 0
20: for i € M do > For each voxel
21: Vie Y oes V& > Reduce the partial gradients for each ROI
22: Vx —DT.V > Find the delta of the fluence for the gradient
23: x «— x+ V- step > Move the fluence in the direction of the gradient
24: x < smooth(z) > Smooth the fluence using a simple convolution kernel

vector of size M, which is multiplied by the transposed Dose Deposition Matrix
D to obtain the delta, which is finally added to the current fluence to move it
in the direction of the gradient.

During the final planning stage, the optimized fluence map is converted
into multileaf collimator movements by leaf-sequencing algorithms. As leaf-
sequencing can drastically change a fluency map, especially in zones with high
inhomogeneity, some precautions must be taken to produce fluences that can
be sequenced with minimal changes. With this objective, we smooth the fluence
using the beams’ geometry and a simple 3 x 3 convolution kernel. Our experimen-
tation shows that giving 99% of the weight to the center does not substantially
modify the beam shape, while providing enough smoothing so the adjustment
done by leaf-sequencing algorithms is minimal.

In this listing, we do not describe the stopping criteria used by our itera-
tive algorithm, as it depends on the clinical needs, available planning time and

Parallel gEUD Models for Accelerated IMRT Planning 145

computational power. For this work, our implementations stop when all the con-
straints are fulfilled and at least 20000 descent steps have been processed.

The main results of this work are two implementations of the algorithm
previously described: A GPU implementation for high-end systems containing
CUDA-capable devices and multi-core CPU implementation able to run in most
modern computers.

2.2 GPU Implementation

As described in the previous section, the most computationally intensive parts of
this program are the sparse matrix — dense vector multiplications (lines 3 and 22,
Algorithm 1) and the calculation of the gradient contributions from regions at
every voxel (lines 13-19, Algorithm 1). All three of these procedures efficiently
conform to the SIMD execution model used by modern Graphics Processing
Units (GPU).

Therefore, the first implementation provided alongside this work has been
built with the CUDA programming interface [8] to target modern NVIDIA
GPUs. We use the cuSPARSE library (part of the CUDA SDK) for the sparse
matrix multiplications [9] and we have developed several custom kernels to solve
the different parts of the Gradient Descent, always trying to achieve the best
data-level parallelism and performance. Furthermore, in terms of CPU-GPU
memory transfers, this algorithm performs efficiently, as it only requires trans-
ferring the patient data before the iterative process and the final computed
fluence at the end of the program.

2.3 Multi-core Implementation

For situations where CUDA-capable GPUs are not available or heterogeneous
computing platforms are employed (such as modern HPC clusters) we have devel-
oped a second implementation to target Multi-core CPUs. This program uses
the Intel Math Kernel Libraries (MKL) for the sparse matrix operations and
custom OpenMP-accelerated code for the calculation of the gradient of each
ROI. Additionally, we have carried some optimizations to take advantage of the
(usually) bigger memory pools available and to make this implementation more
competitive compared to the GPU one. As an example, both the Dose Deposi-
tion Matrix D and its transpose DT are precalculated and stored in optimized
forms to reduce SpMV computing time.

3 Experimental Results

For the experimentation of this study, we have solved two Head and Neck (H&N)
IMRT cases. Both cases aim to fulfill physician dose prescriptions on PTVs
while keeping the dose in OAR below the physician prescribed maximum (for
serial organs) or average maximum (for parallel organs). Furthermore, to be
able to generate the dose deposition, our optimizer uses a dose deposition model
developed by researchers at the Warsaw University of Technology [11]. Table 2

146 J. J. Moreno et al.

shows the parameters of the two cases. Case 1 has three delineated PTV, while
Case 2 only has two. Although both are treated by the same number of beam
angles, the beam geometry makes Case 2 bigger than Case 1, which is reflected
in the number of nonzero values of the sparse Dose Deposition Matrix.

Table 3 shows the gEUD parameters used by the optimization model. Six
OARs are delineated, including the special “Normal tissue”, defined as a region
of the patient body outside all other OARs and PTVs. Showcasing the ease of use
of the provided implementation, both cases share the same values of as and ng
parameters for the same kind of region (serial OARs, parallel OARs or PTVs).
For each organ, the value of gEUD? corresponds to the maximum (or average
maximum) dose allowed by the physician. For PTVs, gEU DY is the prescribed
dose in the target volume. PTVs are usually named using their prescribed dose,
defined in Table 3 as x.

Table 2. Plan specifications for each test case.

Parameter Case 1 Case 2
Beam angles 9 9

Beamlets (N) 30265 33911
Voxels (M) 94647 160786
Regions 12 11

D nonzero 64,991,188 | 106,792,251
PTVs 3 2

PTVy pr. dose (Gy) | 54.0 59.4

PTV, pr. dose (Gy) | 60.0 66.0

PTV; pr. dose (Gy) | 66.0 -

Table 3. gEUD optimization model parameters for both cases.

Region of Interest | gEUD Parameters
gEUDE Qs Ns
Normal Tissue 74.25 10 |5
Mandible 70.00 10 |5
Salivary Gland R | 26.00 1 5
5
5
5

Salivary Gland L |26.00 1
Spinal C. +3mm | 50.00 10
Brainstem +3mm | 60.00 10
PTV z T —50 | 50

Parallel gEUD Models for Accelerated IMRT Planning 147

100 — salivary gland L 100f — Salivary gland L
\\ —— salivary gland R \ —— salivary gland R
%011} \ Brainstem +3mm Brainstem +3mm

Spinal cord +3mm 50 Spinal cord +3mm
N\ Mandible Mandible

70 Normal tissue 70 Normal tissue
— PTVs4 — PTVE6

60 — PTV60 60 — PTV59.4

— PTVE6

Volume (%)
o
3

30 30
A\

0 =

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Dose (Grays) Dose (Grays)

(a) Case 1 (b) Case 2

Fig. 1. Dose-volume histograms (DVH) of the resulting plans.

Using the model defined in Sect. 2 and the parameters defined above, we ran
the GPU implementation for 30s (approximately 9000 iterations for Case 1 and
5700 iterations for Case 2), obtaining the plans whose DVHs are exhibited in
Fig. 1. These DVHs prove that both plans achieve good PTV coverage, while
keeping the dose in OARs below the prescribed maximums.

Table4 displays, in increased detail, statistics and metrics for the different
ROIs. For the PTVs, the minimum or nearly minimum (d98%) dose is expected
to be higher than 95% of the prescribed dose. The maximum or nearly maximum
(d2%) dose is expected to be lower than 107% of the prescribed dose. d98% >
95% means that at least 98% of the PTV’s volume should be covered by 95%
of prescribed doses. d2% < 107% means that only at most 2% of PTV’s volume
can receive a dose higher than 107% of the prescribed dose.

From this table we can swiftly understand the characteristics of the plans.
Firstly, we confirm that, in both plans, all OARs are below the physician pre-
scribed doses. Secondly, for both cases, all PTVs are inside the upper and lower
dose-volume constraints. These results show that simple parameter selection can
achieve good results with the proposed gEUD model. However, per-case fine tun-
ing is still necessary for clinical-grade results.

Furthermore, Fig. 2 displays two sample Beam’s Eye Views from the fluence
maps of the resulting plans. Thanks to the smoothing procedure carried out after
each descend step of the gradient algorithm, these fluence maps can be easily
converted to MLC motions using common leaf-sequencing algorithms.

Finally, the evaluation of both implementations has been carried out
using two compute nodes from the HPC cluster of the “Supercomputacién—
Algoritmos” research group at the University of Almeria. The first platform
(alias Zen2) contains two AMD EPYC 7642 (for a total of 96 cores) and 512 GB
of DDR4 3200 MHz MHz RAM. The second platform (alias Volta) contains two
AMD EPYC 7302 (for a total of 32 cores), 512 GB of DDR4 3200 MHz MHz
RAM and one NVIDIA Tesla V100 GPU with 32 GB or VRAM. Both plat-
forms run CentOS 8.2 (OpenHPC 2), MKL 2020.1.217 and CUDA 11.7. As seen

148 J. J. Moreno et al.

Table 4. Statistics and metrics of the two proposed plans. d is the average dose, d™*"
is the maximum dose and dz% is a dose-volume metric, where x is a percentage of the
volume.

ROI Parameter (Gy) | Constraint | Case 1 | Case 2
Salivary Gland L. | d 26.00 15.10 |19.55
Salivary Gland R. |d 26.00 17.31 |17.26
Spinal C. +3mm | d™%® 50.00 38.74 149.30
Brainstem +3mm | d™%* 60.00 28.68 |35.73
Mandible dme® 70.00 66.26 | 67.60
PTV 54 d 54.00 54.45 |-
d98% 51.30 53.30 | —
d2% 57.78 55.50 | —
PTV 60 d 60.00 60.39 |-
d9s8% 57.00 58.60 | —
d2% 64.20 62.00 |-
PTV 66 d 66.00 66.37 |-
d98% 62.70 65.80 | —
d2% 70.62 66.80 |—
PTV 59.4 d 60.00 - 59.46
d98% 56.43 - 57.50
d2% 63.56 - 61.10
PTV 66 d 66.00 - 66.22
d98% 62.70 - 63.30
d2% 70.62 - 68.20

0.30

X X

(a) Case 1 beam 1 (b) Case 2 beam 9

Fig. 2. Representation of two Beam’s Eye Views (BEV).

Parallel gEUD Models for Accelerated IMRT Planning 149

Table 5. Time per iteration (in milliseconds) and acceleration of the sequential, multi-
core and GPU implementations for the two platforms. For the multi-core implementa-
tions, 32 threads have been deployed in both platforms.

Platform | Implementation Case 1 Case 2
T (ms) | Accel. | T (ms) | Accel.
Zen2 MKL Sequential 98.8 1.0 x |144.1 1.0 x

MKL OpenMP 14.0 7.1 x 20.2 7.1 x
Volta MKL Sequential 105.8 1.0 x |153.8 1.0 x
MKL OpenMP 14.8 7.1 x 21.1 7.3 x

CUDA cuSPARSE | 3.4 |31.1 x 5.3 [29.0 x

in Table 5, both parallel implementations perform well compared to sequential
execution.

4 Conclusions and Future Works

In this work, we have developed two fast implementations of the gEUD model for
IMRT planning, applying specific HPC techniques on two implementations to
efficiently exploit modern multicore CPUs and GPUs. The performance of these
new implementations has been tested with real clinical data of two patients with
Head and Neck tumors on two multi-core CPU platforms and a GPU. On multi-
core CPUs an acceleration factor of 7 x in relation to the sequential version has
been achieved, while on GPU we have achieved accelerations of up to 31 x.

To conclude, modern HPC platforms can enable experts to generate feasible
IMRT plans in a matter of seconds. As planning time is one of the most impor-
tant clinical constraints, it is very relevant to improve the performance of the
optimizers. Moreover, these HPC implementations allow us to address, as future
work, the combination of this model with additional physical criteria to improve
the quality of the automatically computed RTPs.

Acknowledgements. The authors wish to express their deep gratitude to following
persons: Pawel Kukolowicz and Anna Zawadzka form Department of Medicine Physics,
Memorial Skltodowska-Curie Cancer Center and Institute of Oncology, Warsaw, Poland,
for data acquisition and methodological guidance; Jacek Starzyriski, Robert Szmurtlo,
Faculty of Electrical Engineering, Warsaw University of Technology, Warsaw, Poland,
for access to their stand-alone dose deposition calculation software.

150 J. J. Moreno et al.
References
1. Breedveld, S., Craft, D., van Haveren, R., Heijmen, B.: Multi-criteria opti-

10.

11.

12.

13.

14.

15.

mization and decision-making in radiotherapy. Eur. J. Oper. Res. 277(1), 1-
19 (2019). https://doi.org/10.1016/j.ejor.2018.08.019. http://www.sciencedirect.
com/science/article/pii/S0377221718307148

Choi, B., Deasy, J.O.: The generalized equivalent uniform dose function as a basis
for intensity-modulated treatment planning. Phys. Med. Biol. 47(20), 3579-3589
(2002). https://doi.org/10.1088,/0031-9155/47/20,/302

Jia, X., Ziegenhein, P., Jiang, S.B.: GPU-based high-performance computing for
radiation therapy. Phys. Med. Biol. 59(4), R151-R182 (2014). https://doi.org/10.
1088/0031-9155/59/4/r151

Lemaréchal, C.: Cauchy and the gradient method. Doc. Math. Extra 251(254), 10
(2012)

Men, C., et al.: GPU-based ultrafast IMRT plan optimization. Phys. Med. Biol.
54(21), 6565-6573 (2009). https://doi.org/10.1088/0031-9155/54/21/008

Neph, R., Ouyang, C., Neylon, J., Yang, Y., Sheng, K.: Parallel beamlet dose cal-
culation via beamlet contexts in a distributed multi-GPU framework. Med. Phys.
46(8), 3719-3733 (2019)

Niemierko, A.: Reporting and analyzing dose distributions: a concept of equivalent
uniform dose. Med. Phys. 24(1), 103-110 (1996)

NVIDIA: Cuda toolkit documentation v11.2.1 (2021). https://docs.nvidia.com/
cuda/index.html. Accessed 9 Mar 2021

NVIDIA: cuSPARSE library (2022). https://docs.nvidia.com/cuda/cusparse/
index.html. Accessed 18 May 2022

Snyman, J., Wilke, D.: Practical Mathematical Optimization - Basic Optimization
Theory and Gradient-Based Algorithms. Springer, Cham (2018)

Starzynski, J., Szmurto, R., Chaber, B., Krawczyk, Z.: Open access system for
radiotherapy planning. In: 2015 16th International Conference on Computational
Problems of Electrical Engineering (CPEE), pp. 204—206 (2015). https://doi.org/
10.1109/CPEE.2015.7333376

Tian, Z., et al.: Multi-GPU implementation of a VMAT treatment plan optimiza-
tion algorithm. Med. Phys. 42(6), 2841-2852 (2015)

Wu, Q., Mohan, R., Niemierko, A., Schmidt-Ullrich, R.: Optimization of intensity-
modulated radiotherapy plans based on the equivalent uniform dose. Int. J. Radiat.
Oncol. Biol. Phys. 52(1), 224-235 (2002)

Ziegenhein, P., Kamerling, C., Fast, M.F., Oelfke, U.: Real-time energy/mass trans-
fer mapping for online 4D dose reconstruction. Sci. Rep. 8(1), 1-10 (2018)
Ziegenhein, P., et al.: Towards real time radiotherapy simulation. J. Signal Process.
Syst. 92(9), 949-963 (2020)

https://doi.org/10.1016/j.ejor.2018.08.019
http://www.sciencedirect.com/science/article/pii/S0377221718307148
http://www.sciencedirect.com/science/article/pii/S0377221718307148
https://doi.org/10.1088/0031-9155/47/20/302
https://doi.org/10.1088/0031-9155/59/4/r151
https://doi.org/10.1088/0031-9155/59/4/r151
https://doi.org/10.1088/0031-9155/54/21/008
https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
https://doi.org/10.1109/CPEE.2015.7333376
https://doi.org/10.1109/CPEE.2015.7333376

First Workshop on Quantum
Computing and Communication

®

Check for
updates

On Quantum-Assisted LDPC Decoding
Augmented with Classical Post-processing

Aditya Das Sarma', Utso Majumder!, Vishnu Vaidya2, M Girish Chandra®®),
A Anil Kumar?, and Sayantan Pramanik?

! Jadavpur University, Kolkata, India
2 TCS Incubation, Bengaluru, India
{vaidya.vishnu,sayantan.pramanik}@tcs.com
3 TCS Research, Bengaluru, India
{m.gchandra,achannaanil.kumar}@tcs.com

Abstract. Utilizing present and futuristic Quantum Computers to
solve difficult problems in different domains has become one of the
main endeavors at this moment. Of course, in arriving at the requi-
site solution both quantum and classical computers work in conjunction.
With the continued popularity of Low Density Parity Check (LDPC)
codes and hence their decoding, this paper looks into the latter as a
Quadratic Unconstrained Binary Optimization (QUBO) and utilized
D-Wave 2000Q Quantum Annealer to solve it. The outputs from the
Annealer are classically post-processed using simple minimum distance
decoding to further improve the performance. We evaluated and com-
pared this implementation against the decoding performance obtained
using Simulated Annealing (SA) and belief propagation (BP) decod-
ing with classical computers. The results show that implementations of
annealing (both simulated and quantum) are superior to BP decoding
and suggest that the advantage becomes more prominent as block lengths
increase. Reduced Bit Error Rate (BER) and Frame Error Rate (FER)
are observed for simulated annealing and quantum annealing, at useful
SNR range - a trend that persists for various codeword lengths.

Keywords: LDPC code - Quantum annealing - Simulated annealing -
Minimum distance decoding - QUBO

1 Introduction

Low Density Parity Check (LDPC) codes are linear block codes originally pro-
posed in the 1960s by Gallager in his seminal doctoral work. The name reflects
the fact that the parity check matrix used in LDPC coding is sparse with low
density of 1s in the matrix. The performance of the LDPC codes approach theo-
retically described capacity limits, and therefore are very powerful. LDPC codes
have established themselves as appropriate candidates for wireless systems based
on multi-antenna multi-carrier transmission. Suitably designed LDPC codes are
also proven to be excellent candidates for Hybrid Automatic Repeat Request
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 153-164, 2023.
https://doi.org/10.1007/978-3-031-30445-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_13&domain=pdf
https://doi.org/10.1007/978-3-031-30445-3_13

154 A. Das Sarma et al.

(HARQ) schemes. The success and the consequent popularity of the LDPC codes
over the years has resulted in support and proposals for its utilization in various
applications and standards. Some examples are DVB-S2 (2nd Generation Digital
Video Broadcasting via Satellite), 5G New Radio (NR) access technology stan-
dards, recent revisions of the 802.11Wi-Fi protocol family and various storage
applications. Practically utilizable codes should constitute certain favourable
properties, especially low encoding and decoding complexities, good waterfall
regions, low error floors and flexibility in the context of getting different rates
and frame lengths. There are various code designs available, starting from the
pseudo-random constructions to sophisticated algebraic and graph-based tech-
niques. See [10,11] and [3] and some of the original references therein for more
details.

Good performance of LDPC codes can be achieved with a proper choice
of code and decoding algorithm. Belief Propagation algorithms, like the Sum-
Product algorithm are widely used in classical LDPC decoding. The Sum-
Product algorithm can be viewed as a message passing algorithm operating
on the Tanner graph, which is a bipartite graph representing the parity check
matrix, and consisting of variable nodes and check (or constraint) nodes. Each
iteration of the algorithm can be divided into two halves. In the first half, mes-
sage is passed from each check node to all adjacent variable nodes and in the
second, from each variable node to its adjacent check nodes. The decoding per-
formance is achieved through multiple iterations of the message passing along
the edges of the graph, until some stopping criterion is reached. In the direc-
tion of reducing the complexity of the (regular) Sum-Product algorithm, many
variants of it have been proposed in the literature, one example being, min-sum
algorithm (see [5,11] and the references there in for details).

Currently, we are in an exciting period in Quantum Technologies. With the
intermediate-scale commercial quantum computers becoming increasingly avail-
able, Quantum Information Processing is witnessing spectacular developments
(see [17,19,20] and the relevant references there in). Before quantum processors
become scalable, capable of error correction and universality [17], the current
and near-term devices, referred to as the Noisy Intermediate-Scale Quantum
(NISQ) [20] devices are getting explored for solving certain hard problems to
achieve significant speedups over the best known classical algorithms. Promising
results are already reported for solutions in the areas like, optimization, machine
learning and chemistry. Apart from speedup considerations, quantum mechani-
cal properties of superposition, entanglement and interference are being explored
for solving problems differently with possible performance improvements. In the
NISQ era, the hybrid quantum-classical processing has established itself as an
essential combination, and this “cooperation” will continue for a long time.

Considering the hardness and complexity of the some of the important prob-
lems in the current and emerging Communication Systems, research efforts have
been under way to explore Quantum Computing paradigms to solve them. Some
references in this direction are [6,13,15-17] and [2], among many others. Need-
less to say, due to the present requirements of Quantum Computers (QCs), like

Quantum-Assisted LDPC Decoding 155

dilution refrigerators to maintain superconducting cooling, the usage of QCs are
targeted to the Centralized Data Centers (Radio Access Networks), see for exam-
ple, [17] and [15]. In this paper, similar to some of the references mentioned in
this paragraph, we would be considering the baseband processing, in particular
the LDPC decoding (in fact, we use [13] as the starting point). The relevance of
LDPC codes in modern wireless networks can be seen in the search for compu-
tationally efficient decoders and their ASIC/FPGA implementations in [13]. As
a futuristic notion, it is also useful to see how Quantum Processing Unit (QPU)
enhanced (or accelerated) processing together with the classical computation
can be worked out to carry out some of the complex and computationally heavy
processing at the data center.

It has been well established for the last few years that QCs can “naturally”
solve the discrete combinatorial optimization problems. Many of these problems
fall under the unifying model of Quadratic Unconstrained Binary Optimization
(QUBO) (see [18]). One of the approaches to finding the solution to a QUBO
formulation is to construct a physical system, typically a set of interacting spin
particles (two-state particles) whose lowest energy state encodes the solution to
the problem, so that solving the problem is equivalent to finding the ground state
of the system. Two main approaches have been identified to find the ground state
of interacting spin systems (quantum optimization) on NISQ processors [17,19]:
Quantum Annealing (QA) and Quantum Approximate Optimization Algorithms
(QAOA) [7]. QA is an approximate or non-ideal implementation of Adiabatic
Quantum Computing, which is an analog quantum computation. QA has been
developed theoretically in the early nineties but realized experimentally in a
programmable device by D-Wave Systems, nearly two decades later. A digitized
version of Quantum Adiabatic Computing leads to QAOA, a gate-circuit based
quantum computing.

In this paper, we have taken up the study of LDPC Decoding using Quantum
Annealers similar to [13]. But, the following novelties are brought in. Keeping
in mind the tandem working of Quantum and Classical computers, we have
attempted to exploit the inherent randomness of the QCs and the outputs or
the results of the runs/shots are subjected to classical postprocessing to arrive
at better inference (in particular, better decoding) performance. In this direc-
tion, instead of just picking up the minimum-energy solution as prevalent in
the Quantum Computing literature, the different outputs are post-processed
using simple minimum distance computation to the received codeword vector to
arrive at the final decoding. This approach sets the direction to consider appro-
priate and more sophisticated post processing for Quantum-Enhanced base-
band processing. We have taken this route to bring out a notion of diversity
emerging from the runs/shots. In fact, different outputs emerging from the
runs/shots are seen as a kind of “diversity”, which to the best of our knowl-
edge are not interpreted this way in the existing literature. Preliminary results
with length 32 and 96 rate half LDPC codes [1] demonstrate the improved per-
formance of the quantum-enhanced decoders, even with these short lengths,
over conventional Sum-Product Algorithm. The paper also spell out certain new

156 A. Das Sarma et al.

ENCODING CHANNEL
Generator matrix G "l Generation of codeword: O ——
Message m c=mG)

Parity matrix H
(corresponding to G)

DECODING

i
Classical post-processing: A QUBO passed to
minimum-distance decoding with VElE EEEraE S ae H DWave Quantum H Computation of

" A selected from the .
received signal r. Thereby, Annealer (QA). QA QUBO for decoding r
decoded codeword is obtained SEI D RG]y @R returns ~20 samples

Fig. 1. Schematic of the approach

remarks/observations about different formulations considered and is organized
as follows: In Sect. 2, we capture aspects related to classical Sum-Product and
Min-Sum algorithms, QUBO and Annealing (both Simulated and Quantum).
Section 3 provides the details about the Proposed augmented method; results
and the discussions are covered in Sect. 4.

2 Brief Elaboration on Quantum Annealer and QUBO

2.1 D-Wave Quantum Annealer

Quantum Annealing (QA) is a metaheuristic for solving QUBO problems [9]. The
adiabatic theorem of quantum mechanics states that Quantum Annealing, in a
closed system, will find the final ground state encoding the solution, provided the
annealing time is appropriately large compared to the inverse of the energy gap
in quantum ground state. However, this does not guarantee that QA will always
perform better than classical optimization algorithms, as the relative success
of QA depends on the suitability of the optimization landscape to obtain an
quantum advantage. D-Wave provides access to their devices which implement
Quantum Annealing on Quantum hardware, through its cloud access provision
Leap. Here, we are not capturing information on D-Wave Annealers, since nice
documentation/information is available in their website. Also see [8,12].

2.2 QUBO

The concept of a QUBO formulation is fundamental to utilizing a Quantum
Annealer to solve a given optimization problem.
Let f : B" — R be a quadratic polynomial with ¢; € B = {0,1} for 1 <i < n:

fa(z) = oijaiq; (1)

i=1 j=1

Quantum-Assisted LDPC Decoding 157

The QUBO problem then consists of finding ¢* such that:

q" = argminf5(q) (2)
qeB™

The QUBO form of (1) can be written, separating the linear and quadratic terms,
and noting that ¢? = ¢;, and setting a; = a;, as:

fale) = g + > oijaigs 3)
i=1

i=1 j=1

«; is called the bias of the variable g;, and «; is called the bias/coupling of the
quadratic term ¢;q;.

Any optimization problem that we wish to solve with the QA, must first be
formulated as a QUBO problem. We discuss the QUBO formulation of LDPC
decoding in the next section.

3 Proposed Approach

The flowchart given in Fig. 1 summarizes the proposed solution approach. In the
following sub-sections requisite details are elaborated.

3.1 Encoding

— To implement the LDPC encoding, we consider a valid parity matrix H and
the corresponding generator matrix G.

— For a randomly generated message m, codeword c¢ corresponding to m is
obtained by multiplying ¢ with the generator matrix G.

mG =c (4)

where the multiplication is mod-2.

— To simulate the effect of the channel on the transmission of the codeword, we
add Additive White Gaussian Noise (AWGN) to the transmitted codeword,
to obtain the received signal r:

r=c+n (5)

where n ~ Ny (0,0I). We can adjust SNR by adjusting the variance o.

3.2 Decoding

— To decode the received signal r, we first put in place the corresponding QUBO
formulation. The QUBO for r is composed of two parts:

158 A. Das Sarma et al.

BER Evolution with SNR (Log Scale) for (n,k)=(32,16)

10~1 .
—— Red - SA
—— Blue - Classical
1024 —— Green - QA
1073 5
o
w
o
1074 4
1075 4
107° 5
a 5 6 7 8 9 10
SNR in dB
FER Evolution with SNR (Log Scale) for (n,k)=(32,16)
0
10 —— Red - SA
= Blue - Classical
10-14 —— Green -QA
1072 4
o
w
i
1073 4
1074 5
a 5 6 7 8 9 10
SNR in dB
- BER Evolution with SNR (Log Scale) for (n,k)=(96,48)
—— Red - SA
= Blue - Classical
10-2 —— Green - QA
E 1073 <
o
1074 4
1075 4
4 5 6 7 8 9 10
SNR in dB
FER Evolution with SNR (Log Scale) for (n,k)=(96,48)
100 4
—— Red-SA
—— Blue - Classical
—— Green - QA
1071 4
o
& 102
1073 4

T T T T T T y
4 5 6 7 8 9 10
SNR in dB

Fig. 2. BER, FER vs SNR for different problems

Quantum-Assisted LDPC Decoding 159

1. Distance Metric: Let binary variable g; represent the i bit of the decoded
codeword. We compute the expectation of ¢; given the received symbol r;,
as P(g; = 1|r;). For an AWGN Channel with Binary Phase Shift Keying
(BPSK) Modulation, this quantity, as given in [13], is:

1
Pr(g;=1lr;) = ———— 6
(gi |ri) 1+ exp % (6)
We expect that the transmitted codeword is “proximal” to the received
signal. Therefore, to find the transmitted codeword, we seek to minimize
the following Distance Metric § that computes the proximity of a code-

word to the received information:

n

5= 3 (a: — Prig; = 1r))? (™)

i=1

A minimum of (7) is an estimate of the transmitted codeword, computed
with the quantities Pr(g; = 1|r;) alone.

2. Constraint Satisfaction Metric: The LDPC constraints ensure that the
modulo-2 sum at each check node ¢,, is 0. These equality constraints need
to be incorporated into an objective function that can be minimized. We
implement this with the following function. For each check node ¢; one
can define LDPC satisfier function (see also [7]):

Laar(ci) = (Dvjin,,=145) — 2Le(ci))’ (®)

Through minimization of the above function, we can force the sum at that
check node to be even: that is, force the modulo-2 sum at that node to
zero. L¢(c;) is implemented with additional ancillary qubits. Next enters
the Constraint Satisfaction Metric L:

L= Z Lat(¢s) (9)

Minimizing L would result in the satisfaction of the LDPC constraints at

the check nodes.
Finally, we combine the two components with Langrange weights W and W5,
to compose the final QUBO. Minimizing the QUBO in general tends to min-
imize both the composite components. We can prioritize the minimization of
one component over the other with a high choice for the Langrange weight for
that component relative to the other. We have experimented with variations
on W1, keeping W5 fixed at 1.0. The resulting QUBO is:

F =W+ W,L (10)

The QUBO is then passed to the D-Wave annealer. Several samples are col-
lected by running the annealer multiple times.

160 A. Das Sarma et al.

— Valid codewords (codewords that satisfy LDPC constraints) are filtered out
from the samples and then minimum distance decoding is performed with the
received signal to obtain the final decoded codeword.

As can be seen from the above description this QA-based framework doesn’t
require message passing iterations typically used to perform LDPC decoding
with classical BP algorithms. Instead, a Quantum Annealer implemented on
real Quantum hardware “naturally settles” to the optimal state for the QUBO,
thereby performing the LDPC decoding.

4 Results and Discussion

Decoding was performed on LDPC parity matrices of dimensions (32, 16) and
(96, 48), using quantum and simulated annealing, and classical Belief Prop-
agation algorithms (see [1]). Quantum methods provide an inherent mode of
diversity, due to its stochastic nature, giving different outputs for the same r,
for different runs of the experiment. This advantage is not available for classical
BP algorithms, which are deterministic in nature. In other words, for successive
runs of the experiment, using the same r results in different outputs due to the
inherent randomness in quantum information processing. On the other hand, it
is trivial to observe that the same output, and not the “different copies” of infor-
mation related to the transmitted codeword. Of course, this benefit is coming
because of the use of Quantum Computers.

4.1 Results for Fixed SNR Channel

For this scenario, different SNRs are considered for experimentation. For each
SNR, the BER and FER estimate is obtained with 10® Monte Carlo iterations.
The term “fixed” refers to the fact that the SNR remains the same for all these
10 “transmissions”. Elaborating little more, the number of times the quantum
annealer used for a given SNR was the same as that of the number of received
codewords used for assessing the performance, that is 10°. Further, the number
of reads per anneal used was 20. Coming to the results, based on the four plots
in Fig. 2, the following observations are evident:

— In the moderate SNR regime, Quantum Annealing (QA) and Simulated
Annealing (SA) perform better than the classical BP.

— At lower SNRs, performance of QA and SA is close to the performance of
classical BP.

— However, a sharp drop is seen in BER, as well as in FER, around 7.5 to 8
dB range for both simulated and quantum annealing. When SNR reaches 10
dB, the noise becomes small enough such that all the methods achieves the
similar BER and FER.

In the limited amount of studies we carried out using two short codewords,
Simulated Annealing performs slightly better than Quantum Annealing. It is to

Quantum-Assisted LDPC Decoding 161

be noted that the QA results are obtained from the actual D-Wave Annealer, and
these realistic machines do have imperfections (“noisy behavior”) at present. Of
course, as remarked earlier, both SA and QA performed better than classical BP.

4.2 Results for Time-Varying SNR

SNR function varying with codeword index [t] for (n,k)=(7,4)
12

10 A

SNR

0 200 400 600 800 1000
codeword index [t]

Fig. 3. Variation of SNR with respect to time

In order to simulate a time-varying SNR function and observe how the proposed
approach performs in this case, the following procedure was undertaken and
observations were recorded.

— For each of the 1000 codewords transmitted, the SNR is varied. In our exper-
imentation, the samples have been drawn from the normal distribution with
=75, 0 = 2. A realization of the SNR is depicted in Fig. 3

— It is again observed that simulated annealing has the highest fraction of cor-
rect codewords decoded, followed by quantum annealing and classical belief
propagation, as given in Table 1.

In this paper, we have just considered a time-varying SNR to assess the per-
formance of the proposed methodology. In the direction of considering the more

162 A. Das Sarma et al.

Table 1. Fraction of correct codewords for time-varying SNR. (for 10° Monte Carlo
instances)

Methods Fraction of correct codewords

Classical Belief Propagation | 0.848
Simulated Annealing 0.946
Quantum Annealing 0.902

realistic scenarios, we are in the process of implementing complex-baseband pro-
cessing with the Rayleigh fading channel. The possible modifications to QUBO
formulation for this case is also envisaged.

The results for both fixed and time-varying SNR demonstrated the correct
functionality of the QUBO formulation of the LDPC decoding augmented with
post-processing which exploits the special diversity mentioned. Experimentations
with longer codewords may bring out the beneficial aspects of the proposed
approach compared to classical counterparts. Elaborating further, it is expected
that the Quantum Computers, including the Annealers will only improve in
terms of number of qubits, quality of the qubits, the connectivity between them,
etc. They can then not only accommodate larger-sized problems (for instance,
longer code lengths of practical importance, etc.), but also naturally solve them
with better performance and speed compared to the fully classical counterparts
(both Simulated Annealing and the variants of Sum-Product). Additionally, the
right integration of classical and quantum computing systems may result in
useful energy savings as well [14].

Keeping in mind the number of available qubits with D-Wave Annealers and
hence the corresponding capability of supporting larger number of variables in an
optimization problem, we focused our study in this paper using QA. QUBO prob-
lems can also be solved through Gate Model based Quantum Computing through
different algorithms like QAOA, Variational Quantum Eigensolvers (VQE, see [4]
and the references therein), etc. When futuristic gate-based hardware capable of
running the “good-sized” problems are available, the Decoding problem can be
systematically examined using the Quantum-Classical combination. The notion
of “diversity” suggested in this paper also consider the fact that in Quantum
Computing the probability amplitudes can interfere unlike in classical proba-
bilistic computing. Together with other quantum effects, in principle, one can
see a different potential of Quantum compared to classical; this thread can be
further scrutinized through both theoretical and empirical angles for decoding
as well as other communication signal processing.

5 Conclusion

Classical post-processing assisted quantum annealing is proposed for LDPC
decoding which exploits the stochastic nature of quantum computers to arrive

Quantum-Assisted LDPC Decoding 163

at improved solutions at SNRs of practical relevance, when compared with clas-
sical BP decoding. Unlike classical BP decoding, iterations are not required for
this QA-based approach. The candidate solutions obtained through runs were
post-processed based on minimum distance decoding and this can be extended
to more refined methods. There is plenty of scope for expanding this work which
uses both quantum and classical computations in co-operative manner for dif-
ferent baseband processing techniques.

References
1. https://www.uni-kl.de/channel-codes/channel-codes-database
2. Ahmed, F., M#honen, P.: Quantum computing for artificial intelligence based

10.

11.

12.

13.

mobile network optimization. In: 2021 IEEE 32nd Annual International Sympo-
sium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1128-
1133 (2021). https://doi.org/10.1109/PIMRC50174.2021.9569339

Bae, J.H., Abotabl, A., Lin, H.P., Song, K.B., Lee, J.: An overview of channel
coding for 5G NR cellular communications. APSIPA Trans. Sig. Inf. Process. 8,
el7 (2019). https://doi.org/10.1017/ATSIP.2019.10

Bharti, K., et al.: Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys.
94(1), 015004 (2022). https://doi.org/10.1103 /revmodphys.94.015004

Chandra, M., Harihara, S., Adiga, B., Balamuralidhar, P., Subramanian, P.: Effect
of check node processing on the performance of message passing algorithm in the
context of LDPC decoding for DVB-S2. In: 2005 5th International Conference on
Information Communications Signal Processing, pp. 1369-1373 (2005). https://
doi.org/10.1109/ICICS.2005.1689281

Choi, J., Oh, S., Kim, J.: Quantum approximation for wireless scheduling. Appl.
Sci. 10(20), 7116 (2020). https://doi.org/10.3390/app10207116. https://www.
mdpi.com/2076-3417/10/20/7116

Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algo-
rithm applied to a bounded occurrence constraint problem (2015)

Finnila, A.B., Gomez, M., Sebenik, C., Stenson, C., Doll, J.D.: Quantum anneal-
ing: a new method for minimizing multidimensional functions. Chem. Phys. Lett.
219(5-6), 343-348 (1994)

Hen, 1., Spedalieri, F.M.: Quantum annealing for constrained optimization. Phys.
Rev. Appl. 5(3), 034007 (2016)

Janakiram, B., Chandra, M.G., Harihara, S., Adiga, B., Balamuralidhar, P.: On
the usage of projective geometry based LDPC codes for wireless applications. In:
2009 Tth International Conference on Information, Communications and Signal
Processing (ICICS), pp. 1-5 (2009). https://doi.org/10.1109/ICICS.2009.5397612
Johnson, S.J.: Iterative Error Correction: Turbo, Low-Density Parity-Check
and Repeat-Accumulate Codes. Cambridge University Press, Cambridge (2009).
https://doi.org/10.1017/CBO9780511809354

Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model.
Phys. Rev. E 58, 5355-5363 (1998). https://doi.org/10.1103/PhysRevE.58.5355
Kasi, S., Jamieson, K.: Towards quantum belief propagation for LDPC decoding
in wireless networks. Association for Computing Machinery, New York (2020).
https://doi.org/10.1145/3372224.3419207

https://www.uni-kl.de/channel-codes/channel-codes-database
https://doi.org/10.1109/PIMRC50174.2021.9569339
https://doi.org/10.1017/ATSIP.2019.10
https://doi.org/10.1103/revmodphys.94.015004
https://doi.org/10.1109/ICICS.2005.1689281
https://doi.org/10.1109/ICICS.2005.1689281
https://doi.org/10.3390/app10207116
https://www.mdpi.com/2076-3417/10/20/7116
https://www.mdpi.com/2076-3417/10/20/7116
https://doi.org/10.1109/ICICS.2009.5397612
https://doi.org/10.1017/CBO9780511809354
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1145/3372224.3419207

164

14.

15.

16.

17.

18.

19.

20.

A. Das Sarma et al.

Kasi, S., Warburton, P.A., Kaewell, J., Jamieson, K.: A cost and power feasibility
analysis of quantum annealing for NextG cellular wireless networks (2021). https://
doi.org/10.48550/ARXIV.2109.01465. https://arxiv.org/abs/2109.01465

Kim, M., Kasi, S., Lott, P.A., Venturelli, D., Kaewell, J., Jamieson, K.: Heuristic
quantum optimization for 6G wireless communications. IEEE Netw. 35(4), 8-15
(2021). https://doi.org/10.1109/MNET.012.2000770

Kim, M., Mandra, S., Venturelli, D., Jamieson, K.: Physics-inspired heuristics for
soft MIMO detection in 5G new radio and beyond, pp. 42-55. Association for Com-
puting Machinery, New York (2021). https://doi.org/10.1145/3447993.3448619
Kim, M., Venturelli, D., Jamieson, K.: Leveraging quantum annealing for large
MIMO processing in centralized radio access networks. In: Proceedings of the ACM
Special Interest Group on Data Communication, SIGCOMM 2019, pp. 241-255.
Association for Computing Machinery, New York (2019). https://doi.org/10.1145/
3341302.3342072

Kochenberger, G.A., Glover, F.W.: A unified framework for modeling and solv-
ing combinatorial optimization problems: a tutorial. In: Hager, W.W., Huang,
S.J., Pardalos, P.M., Prokopyev, O.A. (eds.) Multiscale Optimization Methods
and Applications. NOIA, vol. 82, pp. 101-124. Springer, Boston (2006). https://
doi.org/10.1007/0-387-29550-X 4

Pramanik, S., Chandra, M.G.: Quantum-assisted graph clustering and quadratic
unconstrained D-ary optimisation (2021)

Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2(79), 10
(2018). https://doi.org/10.22331/g-2018-08-06-79

https://doi.org/10.48550/ARXIV.2109.01465
https://doi.org/10.48550/ARXIV.2109.01465
https://arxiv.org/abs/2109.01465
https://doi.org/10.1109/MNET.012.2000770
https://doi.org/10.1145/3447993.3448619
https://doi.org/10.1145/3341302.3342072
https://doi.org/10.1145/3341302.3342072
https://doi.org/10.1007/0-387-29550-X_4
https://doi.org/10.1007/0-387-29550-X_4
https://doi.org/10.22331/q-2018-08-06-79

®

Check for
updates

Quantum Annealing to Solve
the Unrelated Parallel Machine
Scheduling Problem

Francisco Orts!®™, Antonio M. Puertas?, Ester M. Garzén®,
and Gloria Ortega'

! Informatics Department, University of Almerfa, ceiA3, Almeria, Spain
{francisco.orts,gmartin,gloriaortega}@ual.es
2 Department of Chemistry and Physics, University of Almerfa, ceiA3,
Almeria, Spain
apuertasQual.es

Abstract. Quantum computing has emerged in recent years as an alter-
native to classical computing, which could improve the latter in solv-
ing some types of problems. One of the quantum programming mod-
els, Adiabatic Quantum Computing, has been successfully used to solve
problems such as graph partitioning, traffic routing and task scheduling.
Specifically, in this paper we focus on the scheduling on unrelated par-
allel machines problem. It is a workload-balancing problem where the
processing time of any procedure executed on any of the available pro-
cessing elements is known. Here, the problem is expressed as Quadratic
Unconstrained Binary Optimisation, which can be subsequently solved
using quantum annealers. The quantum nonlinear programming frame-
work discussed in this work consists of three steps: quadratic approxi-
mation of cost function, binary representation of parameter space, and
solving the resulting Quadratic Unconstrained Binary Optimisation. One
of the novelties in tackling this problem has been to compact the model
bearing in mind the repetitions of each task, to make it possible to solve
larger scheduling problems.

Keywords: Adiabatic Quantum Computing - Quadratic
Unconstrained Binary Optimisation - Scheduling on unrelated parallel
machines problem

1 Introduction

Quantum computing takes advantage of the quantum mechanical effects to pro-
cess information. The quantum hardware implements such principles to solve
general computational problems. There are two ways of performing computa-
tional operations on a quantum computer. The most well-known is the approach
based on a quantum circuit model of computation. This approach provides both
a framework for formulating quantum algorithms and an architecture for the
physical construction of quantum computers. This model of computation might

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 165-176, 2023.
https://doi.org/10.1007/978-3-031-30445-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_14&domain=pdf
https://doi.org/10.1007/978-3-031-30445-3_14

166 F. Orts et al.

provide a complete design of quantum computing in the long run, but nowadays
is severely limited by the small number of qubits that make up real quantum
platforms and by the errors introduced by each quantum gate. The other model
relies on the adiabatic theorem.

Adiabatic Quantum Computing (AQC) is focused on the solution of combi-
natorial optimization problems. Although the goal of AQC is particular, it is of
great interest since many of these problems are NP-complete and they are a chal-
lenge for conventional computation when the input problem grows. Moreover,
these problems are involved in a wide set of applications as illustrated in [8]. AQC
can solve such problems efficiently because their solution can be expressed as the
ground state of an Ising Hamiltonian, which evolves in polynomial time [12]. The
Ising Hamiltonian is used to model quadratic unconstrained binary optimization
(QUBO). So, the QUBO problem is formulated to find the minimum of a quadratic
polynomial with unitary variables. The physical realization of AQC are unreach-
able since the non-ideals conditions avoid the adiabatic evolution of the quantum
hardware. Quantum Annealing (QA) is based on the AQC principles but in a flex-
ible sense. Currently the Ising solvers are realized with quantum annealer, such
as the D-Wave platform [7]. Thus, the translation of combinatorial optimization
problems in QUBO models is the key for their QA solution.

Scheduling is one of the active areas of discrete optimization that plays a cru-
cial role in manufacturing and service industries. The scheduling theory has been
a focus of interest by researchers in management science, industrial engineering,
and operations research. Many classical approaches to solve the different types of
scheduling problems can be found in the literature, just to name a few [5,16,17].
In recent years, quantum computing has been postulated as an alternative and
several authors have studied the behavior of these problems on quantum plat-
forms. In [11] authors formulate the uncapacitated task allocation problem as a
QUBO model. The work by Carugno et al. [3] studies the application of quantum
annealing to solve the job shop scheduling problem and compares the solution
quality with various classical solvers. In the present work, we focused our atten-
tion on the unrelated parallel machine problem.

The unrelated parallel machines problem consists of balancing the compu-
tational load among the available (heterogeneous) processing elements, when
the processing time of any procedure executed on any of the available process-
ing elements is ‘a priori’ known. In this work, the scheduling problem is trans-
formed into a QUBO formulation, thereby allowing the use of Ising solvers such
as D-Wave’s quantum annealer. This transformation to QUBO is done by the
quadratic approximation of cost function, binary encoding of the integer vari-
ables, and solving the problem using a quantum annealer.

The main contributions of this work are the following: (1) QUBO model has
been designed and implemented in a real quantum annealer supplied by D-Wave
to solve the unrelated parallel machine scheduling problem; (2) thanks to a tech-
nique based on the use of binary variables for setting the number of repetitions of
every tasks, the number of required qubits has been considerably decreased and
case studies with about 5000 variables have been solved on quantum annealers;

QA to Solve the Unrelated Parallel Machine Scheduling Problem 167

and (3) the proposed methodology can be extended to solve other combinatorial
optimization problems.

The paper has been organized as follows. Section 2 is devoted to describing
the quantum annealing computational model. Section 3 introduces the load bal-
ancing problem addressed in this work. Section 4 shows the QUBO formulation
for the unrelated parallel machine scheduling problem and how it is solved on
the D-wave annealer. In Sect.5 the obtained results are shown and discussed.
Finally, in Sect. 6 the main conclusions are drawn.

2 Quantum Annealing Computing

The adiabatic theorem assures that if we start at a state of minimum energy of
a simple Hamiltonian and it evolves slowly, it will always remain in the state
of lowest energy, ground state. So, the idea of quantum adiabatic computing
is to select a ground state of a simple Hamiltonian, Hy, and make the system
evolve during a time T to the state of minimum energy of the Hamiltonian of
the problem H,,. So, we can define a Hamiltonian as a function of time to model
its temporal evolution:

H(t) = (1 =) Ho + = H, (1)

In practice it is difficult to guarantee the adiabatic conditions, and quantum
annealing s used as a heuristic approach which combines the adiabatic theorem
and the Ising model [13] to build solvers of combinatorial optimization problems.
It consists of:

1. Hy = — Z?:l Y; is defined as initial Hamiltonian where n is the number of
qubits,

2. H, is defined as the target Ising Hamiltonian,

3. The system evolves from H, to H, without adiabatic conditions being guar-
anteed,

4. The final state is measured to compute a possible minimum,

5. The process is repeated several times to compute various approximations of
minima.

We recall that the Ising Hamiltonian defines a model of ferromagnetism in
statistical mechanics with unitary discrete variables, since they represent mag-
netic spins that can be in one of two states. Therefore, QA is useful to solve
combinatorial optimization problems with unitary variables. Moreover the Ising
model can be translated to the QUBO model, which unifies a rich variety of
combinatorial optimization problems [6].

Currently, D-Wave Systems Inc. has developed quantum hardware based on
QA with a large number of qubits. This technology still suffers from limitations
such as resource scarcity and control errors, among others. However, a wide
set of practical optimization applications are being currently adapted to this

168 F. Orts et al.

technology since potentially it offers a huge computational power for solving
large combinatorial optimization problems which are NP-complete.

The next sections are focused on the application of the QA methodology
for solving Unrelated parallel machine scheduling. Therefore, we develop the
steps related to the described methodology: (1) quadratic approximation of cost
function of a compact model, (2) binary representation of the discrete variables,
and (3) solving and testing the resulting QUBO model on the D-wave annealer.

3 Unrelated Parallel Machine Scheduling Problem Using
Quantum Annealing

3.1 Definition of the Unrelated Parallel Machine Scheduling
Problem

The problem of distributing N tasks, of J different types, in M processing units
has been already described in the literature [14]; thus here we only give a short
account. Briefly, the optimal distribution that minimizes the total time to exe-
cute all tasks is sought, namely:

Find: Nj.a
to minimize mazx {1y}
with Ta = E] nj”tj,a o = 1,...,M
subject to Yo Nja = Tj j=1,...,J

Here {n;} is the number of tasks of type j assigned to Processing Unit (PU)
named «, T, is time needed by PU a to complete all of its tasks, and {¢;«}
is the runtime matrix of all tasks j in all PUs a. The J restrictions (last line)
indicate that all jobs of type j, x;, must be assigned.

The inputs to the problem are the number of PUs; M, the number of tasks of
every type that must be assigned, {z;}, and the runtime matrix, ¢; . Different
strategies have been proposed to solve this problem, and commercial software is
available, such as AMPL [4] and CPLEX [2].

3.2 From Binary Integer Programming (BIP) to QUBO

In order to solve this problem with quantum annealing, it has been reformulated
as a quadratic unconstrained binary optimization (QUBO) problem following
[6]. Let us define the function:

Oy =) T2 (2)

The summation in Og is dominated by the largest term, i.e. by maz {T,},
and therefore, minimizing max {T,} is equivalent to minimizing Oy.

The first, brute force, approach to the problem is to consider that all tasks
are different: n; o becomes then a binary variable, n; . = 1 if task j is run in PU
a and 0 otherwise, and the restriction now reads) n; = 1 for all j, ensuring

QA to Solve the Unrelated Parallel Machine Scheduling Problem 169

that all tasks are run once. This restriction must be incorporated in the function
to be minimized:

2
O=> T2+ P (1 - an,a>
«@ 7 «
2
= Z Zniatia + 2 Z Ng,aM,atk,alla | + ZP]' <1 — an7a> (3)
a J o

k,LkAL J

where P; are “large” constants [6], and the expression of T;, has been substituted
in the second line to get an explicit expression. This formulation corresponds to
a QUBO problem, as expected.

This approach, however, requires as many unitary variables as elements in
the matrix n; «, i.e. tasks to be assigned times the number of PUs, what restricts
importantly the size of the problem that can be studied. To overcome this issue,
we make use of the repetition of jobs for the same task. In this case, n; o is subject
to the last condition in the problem definition,) n;j . = z;, and therefore it is
no longer an unitary variable. To continue within the QUBO formulation, it can
be, nevertheless, expressed using unitary variables for the digits in the binary
representation [12]:

B
Mo =Y Njanr2t (4)
k=0

where B = int [log2(R + 1) + 1], with R = max {x; }; variables n; o » are unitary.
Introducing this representation of n; ., in the expression of Oy and the restriction
yields finally:

2
O:ZT§+ZPJ <1_an7a>
a g [

B 2 B 2
D1 ST SUANEL S D TS) SES D
o j k=0 J a k=0
It can be easily confirmed that this expression corresponds to a QUBO prob-
lem, and allows finding the distribution of J x R tasks in M processing units
using J X B x M unitary variables. Since B ~ logy R, this implies an important
reduction in computing resources with respect to the initial formulation, given

by Eq. 3.

4 D-Wave Implementation

This section shows how to formulate the problem to be solved using D-Wave |9,
15,18]. The code has been written in Python.

170 F. Orts et al.

The implementation is oriented to receive, as inputs, the number of PUs, the
number of different tasks, and the number of repetitions for each type of task.
It must also be indicated the maximum possible value of completion time, and
how long each type of task takes on each type of PU. The latter times can be
specified in the form of a matrix, with each row being a type of task, each column
a PU, and thus each element of the matrix represents the necessary time taken
for each possible combination of type of task and PU. An example of how this
can be easily represented is shown in Fig. 1. Based on Sect. 3, it is assumed that
there are no dependencies between tasks and that each PU can only execute a
single task at a time.

#Num of different jobs: 3
#Num of repetitions: 5
#Num of machines: 2

type id machine © machine 1
o

1 2 3

3 1

Fig. 1. Example of an input file for a problem with 2 PUs, 3 different type of tasks,
and 5 repetitions. Since tasks of the same type share execution times, the time is only
shown once for each type of task.

Following the nomenclature used in the previous section, the following param-
eters have been considered to represent the problem in the code:

— J: is the number of different tasks.

— R: is the number of repetitions.

— M: is the number of PUs.

— j: is the set of different tasks (1,2, ..., J).

— a: is the set of PUs (1,2,..., M).

— tj,o: is the processing duration that PU « needs for tasks of type j.
— V: maximum possible completion time (make-span).

To simplify the problem, all tasks are considered to have the same number of
repetitions R. However, it is easy to modify the code so that each type of task
can be assigned its own number of repetitions. This decision does not limit the
conclusions of our work. These variables have also been used to work with the
model:

QA to Solve the Unrelated Parallel Machine Scheduling Problem 171

— O: is a positive integer variable that defines the completion time (make-span).

— B: is the number of necessary binary digits to represent the number of repe-
titions (Eq. 4).

— {nj,qk}: is the matrix of the distribution of tasks, where n; o represents
the k-th digit in the binary representation of n : j, o, which stands for the
number of tasks of type j that are assigned to PU a.

We recall that the aim is to minimize the make-span (O, as it is defined in Eq. 3
and Eq.5). It is important to clarify that V and O are different variables. V' is
a value entered by the user and indicates the maximum value allowed for the
make-span (assuming it is possible to solve the problem in that time). O will
contain the make-span found by the software.

According to the model described in the previous section, only one constraint
needs to be established. This constraint is focused on ensuring that each task is
executed only R times:

Z Nja = R (6)

where R will be 1 if we use the model set out in Eq.3, or any other natural
number if we work with the model in Eq. 5.

#Number of jobs: 15
#Number of machines: 2
#Completion time: 11.0

machine @ machine 1
job id type start dur type start dur

0 0] 1]]]
1 0 1 1]]]
2 0 2 1]]]
3 0 3 1]]]
4 0 4 1]]]
5 1 5 2]]]
6 1 7 2 0]]
7 1 9 2 0]]
8 0 0 0 1] 3
9 0 0 0 1 3 3
10 0 0 0 2 6 1
11 0 0 0 2 7 1
12 0 0 0 2 8 1
13 0 0 0 2 9 1
14 0 0 0 2 10 1

Fig. 2. Example of an output file for the problem shown in Fig. 1. Each row corresponds
to an executed task. The first column assigns a unique id to each task for the sake of
clarity. The following columns, in groups of three, correspond to each PU. For each
task/PU, the type of task, the start time, and its duration are indicated. If the duration
is 0, it is understood that the task has not been executed on that PU.

172 F. Orts et al.

= job0 mmm jobl mmm job2

machine 0

machine 1

o 2 4 6 8 10

Fig. 3. Example of an output file for the problem shown in Fig. 1. Each row corresponds
to an executed task. This results is the same as the one shown in Fig. 2, but represented
graphically.

D-Wave returns the results using the representation specified in Eq. 4 through
variable n. This matrix is not suitable for quick human interpretation. Therefore,
once the results have been obtained, a further process is carried out to represent
the data in a more readable and tractable format. To this end, the procedure
carried out in Ku et al. [10] has been followed. For each task, the PU on which
it is going to be executed, the start time, and the duration are represented. This
representation is shown in text form (producing an output file with the indicated
information), and also in graphical form. The work of Ku et al. [10] is focused on
the problem called “Job Shop Scheduling”, similar to the one discussed in this
paper but with its own characteristics (tasks composed of subtasks, dependencies
between tasks, etc.). Several implementations based on this problem are avail-
able on the D-Wave website [1]. These implementations include useful routines
to transform the output of the problem into a more user-friendly format. The
adaptation of these data processing routines to the unrelated parallel machine
scheduling problem is simply a matter of Python programming skills. Exam-
ples of the output in text and graphical format can be seen in Figs.2 and 3,
respectively.

5 Evaluation

The evaluation of the software has been split up in two parts. First, the possible
problem sizes to be addressed are studied using first the model described by
Eq. 3 and second by Eq.5. The size of each problem depends on the number of
tasks and the number of PUs for the case of Eq. 3, and on the number of different
tasks, the maximum number of repetitions, and the number of PUs for the case
of Eq. 5. Second, the accuracy of the results has been validated.

QA to Solve the Unrelated Parallel Machine Scheduling Problem 173

5.1 Resource Assessment

The D-Wave device on which the software has been tested has 5000 qubits.
According to the CQM model, an integer variable will be dedicated to the make-
span, and J x M binary variables for the case where all tasks are different (model
described by in Eq. 3). Ideally, the variable-qubit correspondence is direct. This
approach allows us to solve any problem with J different tasks and M PUs as
long as J x M < 5000. That is, if we set a number of PUs M, the number of
possible tasks will be a maximum of 4999/M, and if we set a number of tasks of
J, the maximum number of PUs we can include in the planning will be 4999/.J.
However, in practice, some extra qubits are needed for topology reasons, so it
is not possible to use the 5000 qubits in the way described. Table 1 shows the
maximum possible values of each variable as a function of the value of the other.

Table 1. Maximum number of tasks and PUs using 5000 qubits and the model defined
in Eq. 3.

Number of tasks | Number of PUs
4 1249
8 624
16 312
32 156
64 78
128 39
256 19
512 9
1024
2048 2

For the case where tasks can be grouped by type, an integer variable is still
dedicated for the makespan, but in this case the problem needs J x R x M
binary variables. However, according to Eq. 5, the number of repetitions is being
represented as B = int[log2(R + 1) + 1], so the actual number of variables
will be J x B x M (again, a certain number of qubits must be dedicated to
allow correct transpilation to the topology of the quantum computer). Again,
J x B x M < 5000 must be satisfied, so any combination of J, R and M values
that satisfies this expression is feasible to be solved by the proposed software.
In this case, the introduction of B allows the number of executed tasks to be
greatly increased if they can be grouped into types. Since the representation of
the number of tasks is the one that allows to express larger numbers occupying
fewer qubits, R (B) is the variable that can grow the most, so that if the problem
contains few PUs and types of tasks, it can be solved involving millions of tasks.
This is in contrast to the data shown in Table 1. Table 2 shows an example with

174 F. Orts et al.

16 PUs (M = 16) and 7 types of tasks (J = 7). It can be seen how more than
4.8F + 12 repetitions can be allowed for in each task type. That is, more than
3.3F + 13 tasks can be executed in total). This is much higher than the 300 or
so tasks we could solve with 7 PUs using the former formulation.

Table 2. Number of variables (qubits) used varying R for an example with M = 16
and J = 7. In the quantum device, R is expressed as B = int[log2(R + 1) + 1] so, for
clarity of display, B is also shown. Furthermore, column ‘Executed’ identifies the total
number of executed tasks, calculated by multiplying the number of task types by the
number of repetitions (J X R).

R B | Variables | Executed
3| 336 28
8 4| 448 56
16 5| 560 112
32 6| 672 224
64 7| 784 448
128 8| 896 896
256 91008 1792
512 10 1120 3584
5.72E+5 |20 2240 4.00E+6
5.86E+8 |30 | 3360 4.10E+9
6.00E+11 | 40 | 4480 4.20E+412
1.20E+12 | 41 | 4592 8.40E+12
2.40E+12 |42 | 4704 1.68E+13
4.80E+12 | 43 | 4816 3.36E+13

5.2 Validation of Results

To test the accuracy of the software, it has been used to solve more than 50
scheduling random problems by varying J, M, and R and keeping the number
of executed tasks as small as possible. To perform this, a Python script was
developed to generate input files with the corresponding configurations quickly
and easily. This script accepts as input per command J, M, R, the maximum
time that a task can last (we will denote t), and optionally the name of the
output file. The name of the output file is, by default, instance_J_R_M.txt. The
file will be in the format specified by Fig. 1, but naturally adapted to the specific
parameters. The time for each type of task on each PU will be a random value
between 1 and ¢, both values included.

Once the test files have been obtained, the optimal time for the planning of
the problems they represent has been calculated using AMPL [4] and CPLEX [2].

QA to Solve the Unrelated Parallel Machine Scheduling Problem 175

The optimal value of each problem has been established as the maximum make-
span for the execution of that problem with the proposed software with the aim
of verifying whether it is capable of finding a schedule in that time. A maximum
execution time in D-Wave of 10 seconds has been set. In all tested cases, the
software was able to find a valid schedule in the optimal time. As a simple
test, times shorter than the optimal time have also been tested. In such cases,
the software has correctly indicated that it is not possible to find a task/PU
configuration that solves the problem in the given time.

6 Conclusions

In this work, the scheduling of heterogeneous tasks on unrelated parallel
machines has been solved using quantum annealing. The problem has been
formulated using modularity mathematically and transform it to QUBO. The
results obtained have been compared with classical methods such as CPLEX and
AMPL to demonstrate that the quantum solution is of the same quality as the
based on classical computing. D-Wave platform has been considered to perform
the quantum annealing version of the scheduling of heterogeneous tasks. The
obtained results are very promising since, thanks to the trick of using the binary
representation to indicate the number of repetitions of each task, the number
of qubits needed to represent them is reduced, thus being able to solve larger
problems. Finally, it should be noted that the methodology used in this work
can be applied to other combinatorial optimization problems.

Acknowledgements. This work has been supported by the projects: RTI2018-
095993-B-I00 and PID2021-1232780B-I00 (funded by MCIN/AEI/10.13039/501
100011033/FEDER “A way to make Europe”); P20.00748, UAL2020-TIC-A2101,
UAL18-FQM-B038-A and UAL18-TIC-A020-B (funded by Junta de Andalucia and
the European Regional Development Fund, ERDF).

Authors would also like to thank Professor Dr. Elias F. Combarro, from the Infor-
matics Department, University of Oviedo, Spain, because this work has been possible
thanks to the contents of his interesting lectures about Quantum Computing at Almeria
University.

References

1. Ocean SDK demos. https://github.com/dwavesystems/demos

2. Bliek, C., Bonami, P., Lodi, A.: Solving mixed-integer quadratic programming
problems with IBM-CPLEX: a progress report. In: Proceedings of the Twenty-
Sixth RAMP Symposium, pp. 16-17 (2014)

3. Carugno, C., Ferrari Dacrema, M., Cremonesi, P.: Evaluating the job shop schedul-
ing problem on a D-Wave quantum annealer. Sci. Rep. 12(1), 1-11 (2022)

4. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL. A Modeling Language for Math-
ematical Programming. Thomson (2003)

5. Gehrke, J.C., Jansen, K., Kraft, S.E.J., Schikowski, J.: A PTAS for scheduling
unrelated machines of few different types. In: Freivalds, R.M., Engels, G., Cata-
nia, B. (eds.) SOFSEM 2016. LNCS, vol. 9587, pp. 290-301. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49192-8_24

https://github.com/dwavesystems/demos
https://doi.org/10.1007/978-3-662-49192-8_24

176

10.
11.
12.
13.

14.

15.

16.

17.

18.

F. Orts et al.

Glover, F., Kochenberger, G., Hennig, R., Du, Y.: Quantum bridge analytics I: a
tutorial on formulating and using QUBO models. Ann. Oper. Res. 314, 141-183
(2022). https://doi.org/10.1007/s10479-022-04634-2
Grant, E.K., Humble, T.S.: Adiabatic quantum computing and quantum annealing.
Oxford Research Encyclopedia of Physics, July 2020

. Kochenberger, G., et al.: The unconstrained binary quadratic programming prob-

lem: a survey. J. Comb. Optim. 28(1), 58-81 (2014). https://doi.org/10.1007/
s10878-014-9734-0

Koshikawa, A.S., Ohzeki, M., Kadowaki, T., Tanaka, K.: Benchmark test of black-
box optimization using D-Wave quantum annealer. J. Phys. Soc. Jpn. 90(6),
064001 (2021)

Ku, W.Y., Beck, J.C.: Mixed integer programming models for job shop scheduling;:
a computational analysis. Comput. Oper. Res. 73, 165-173 (2016)

Lewis, M., Alidaee, B., Kochenberger, G.: Using xQx to model and solve the unca-
pacitated task allocation problem. Oper. Res. Lett. 33(2), 176-182 (2005)

Lucas, A.: Ising formulations of many NP problems. Front. Phys. 2, 5 (2014)
Mohseni, N., McMahon, P.L., Byrnes, T.: Ising machines as hardware solvers
of combinatorial optimization problems. Nat. Rev. Phys. 4(6), 363-379 (2022).
https://doi.org/10.1038/s42254-022-00440-8

Orts, F., Ortega, G., Puertas, A.M., Garcia, 1., Garzén, E.M.: On solving the unre-
lated parallel machine scheduling problem: active microrheology as a case study.
J. Supercomput. 76(11), 8494-8509 (2020). https://doi.org/10.1007/s11227-019-
03121-z

Phillipson, F., Bhatia, H.S.: Portfolio optimisation using the D-Wave quantum
annealer. In: Paszynski, M., Kranzlmiiller, D., Krzhizhanovskaya, V.V., Dongarra,
J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS, vol. 12747, pp. 45-59. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-77980-1_4

Sels, V., Coelho, J., Dias, A., Vanhoucke, M.: Hybrid tabu search and a truncated
branch-and-bound for the unrelated parallel machine scheduling problem. Comput.
Oper. Res. 53, 107-117 (2015)

Wang, T., Liu, Z., Chen, Y., Xu, Y., Dai, X.: Load balancing task scheduling
based on genetic algorithm in cloud computing. In: Proceedings of the 2014 IEEE
12th International Conference on Dependable, Autonomic and Secure Computing,
DASC 2014, pp. 146-152. IEEE Computer Society (2014)

Willsch, D., et al.: Benchmarking advantage and D-Wave 2000QQ quantum annealers
with exact cover problems. Quantum Inf. Process. 21(4), 1-22 (2022). https://doi.
org/10.1007/s11128-022-03476-y

https://doi.org/10.1007/s10479-022-04634-2
https://doi.org/10.1007/s10878-014-9734-0
https://doi.org/10.1007/s10878-014-9734-0
https://doi.org/10.1038/s42254-022-00440-8
https://doi.org/10.1007/s11227-019-03121-z
https://doi.org/10.1007/s11227-019-03121-z
https://doi.org/10.1007/978-3-030-77980-1_4
https://doi.org/10.1007/s11128-022-03476-y
https://doi.org/10.1007/s11128-022-03476-y

®

Check for
updates

Early Experiences with a Photonic
Quantum Simulator for Solving Job Shop
Scheduling Problem

(=)

Mateusz Slysz , Krzysztof Kurowski'®, and Jan Weglarz?

! Poznani Supercomputing and Networking Center, IBCH PAS, Poznan, Poland
{mslysz,krzysztof . kurowski}@man.poznan.pl
2 Institute of Computing Science Poznaii, Poznani University of Technology,
Poznan, Poland
jan.weglarz@put.poznan.pl

Abstract. Quantum computing is a rapidly developing technology
that, in theory, can solve complex computational problems practi-
cally intractable for classical computers. Although the technology offers
promising breakthroughs, it is only in the early stages of development,
and various quantum computer architectures are emerging. One such
new development is the photonic quantum computer. Since the work on
discrete optimization using different quantum computer architectures is
well studied, in this paper, we experiment with solving a toy instance of
the Job-Shop Scheduling problem using a hybrid learning algorithm on a
photonic quantum computer simulator. The promising results, combined
with some highly desirable properties of photonic quantum computers,
show that this new architecture is worth considering for further develop-
ment and investment in the quantum technology landscape.

Keywords: Job Shop Scheduling Problem - Quantum Computing -
Photonic Quantum Computer

1 Introduction

With the dynamic and rapid development of programmable and scalable pho-
tonic circuits, there is a natural question about potential algorithms and appli-
cation areas for optical quantum computers as near-term quantum devices. This
paper presents our early experiences with a new quantum simulation framework
supporting bosonic sampler capabilities. We use the recent advent of the simu-
lation tool to model and solve a well-known Job Shop Scheduling Problem. The
Job Shop Scheduling Problem (JSSP) is an NP-hard optimization problem in
computer science and operations research. A complete set of solutions for larger
instances of this problem is practically intractable, so typically, solving it requires
using heuristics or local search algorithms. However, even dedicated algorithms
using classical machines have many constraints due to the limited scalability of
computer architectures and their other parameters, such as processor sizes and

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 177-186, 2023.
https://doi.org/10.1007,/978-3-031-30445-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_15&domain=pdf
http://orcid.org/0000-0003-3124-9899
http://orcid.org/0000-0002-4478-6119
http://orcid.org/0000-0002-2237-3479
https://doi.org/10.1007/978-3-031-30445-3_15

178 M. Slysz et al.

energy consumption. Encouraged by our recent work on using quantum comput-
ers to solve the JSSP problem - in the quantum annealing (QA) model [9], as
well as in the gate-based model using the QAOA algorithm [5]|, we propose in
this paper yet another approach to verify if and how we can solve it by using
upcoming photonic-based quantum computers.

2 Problem Formulation

2.1 Photonic Quantum Computer

Quantum computers based on photonic technologies bring a number of highly
desirable features, such as scalability, due to parallel developments in classical
photonics - a well-established industrial sector, the ability to perform room-
temperature computing, as well as the possibility of combining into hybrid archi-
tectures, due to the growing field of photonic-based quantum communications.

In this research, we are going to use a photonic quantum computer simula-
tor provided by ORCA Computing [2]. The photonic quantum computer is an
implementation of a computation technique called Boson Sampling [7]. In a few
words, it is based on passing a number of singular photons through a linear opti-
cal system, which consist of parameterized gates. It includes beam-splitters that
create optical path intersections with parameters ¥ determining the transition
probabilities of photons moving along the respective paths, as well as parame-
terized phase-shifters, which change the phase of the photon based on the value
of the parameter 1. Each time a particle passes through such an intersection,
it generates a quantum superposition. Furthermore, each meeting point of the
paths of two or more photons produces an entangled state. The large number
of potential paths and branches that the particles can travel through gives the
potential to obtain very large entangled states, even for a small number of pho-
tons, which determines the quantum advantage of such a device over classical
simulation. A readout of the result involves sampling the probability distribution
by measuring the number of photons in each of the single photon detectors at
the output of the system.

‘5(07¢)>:Zan|n17“~7n1\/1> (1)

This measurement of the so-called Foch state can be further mapped by a
parity function to a binary tuple & with a corresponding energy function E for
an observable H.

E(9,9) = (z|H|z) 2)

The quantum circuit composed of the parametrized phase-shifters and beam-
splitters acting on the input quantum state can be denoted as a unitary operator
U (9,%) and the readout from the circuit can be denoted as (Fig. 1):

(@|UT (9, 4) OU (9, 9)|) . 3)

Solving JSSP on a Photonic Quantum Computer 179

—

N single photons

.4.0'_}
4 .03

’03’ M modes

000

w2800

> . . g

Y D layer of coupling gates

Fig. 1. Boson Sampling based photonic quantum computer architecture [6].

One can derive that this holds true for any observable O in the form of:

M M
0=>" oiiala; + > oijala; (4)
i=1 i,j=1

This notation can be easily mapped into a class of quadratic unconstrained
binary optimization (QUBO) problems, which are already well described as a
basic case to solve on other quantum architectures, such as quantum annealers
[4] and gate-based quantum computers [5].

E(x) =) Quzi+ Y Qijziz;, (5)
i i<j
Finding an optimal solution to a QUBO problem is equivalent to minimizing
a classical Ising Hamiltonian, where the minimal energy eigenstate encodes the
solution to the binary optimization problem:

min 27 Qz, (6)

where the diagonal terms);; are the linear coefficients and the nonzero off-
diagonal terms @);; are the quadratic coefficients.

2.2 JSSP Formulation

The JSSP formulation we are considering is defined as follows. There are J
jobs J = {ji1,...,Jjs }, each consisting of O; operations O; = { Oj1,...,0j0, },
which are supposed to be processed in a predefined order. Each operation O
has a duration time ; , and must be processed on a specified machine from a set
of M machines M = {mq,...,mp }. A set of operations O;j that have to be
executed on the machine m,, can be denoted as I,,,. Each machine can process
at most one operation at a given time.

180 M. Slysz et al.

For the purpose of using the quantum computer as a solver for the JSSP
problem, we need to encode the problem variables to match the QUBO notation.
Inspired by [11] we use the time-indexed JSSP representation. We define binary
variables, which encode the starting times of each operation:

1 if operation O; j, starts at timet
Tjk,t = . (7)
0 otherwise

We can now define a set of constraints for our optimization problem. The

first three are feasibility constraints, ensuring that the JSSP solution does not

break the problem statement. The last constraint is designed to minimize the
total duration of all tasks - referred to as makespan.

— Single-start constraint: Each job should start once and only once.

(Z xj)k)t - 1) (8)

O;
& t

hl(.T) = ZZ

This constraint ensures, that each operation from each job has exactly 1
starting time.

— Machine sharing constraint: At a given time no 2 jobs should be running
on the same machine.

ha(z) = > Tj, ket Tj k¢ (9)

m \Jj,kt,j" k' t'€AnUB,
where
Am = (jakatajlvkjvtl) : (Oj,kan’,k’) S Im X Im,
(4. k) # (G k), 0<tt'<T, 0<t—t <l
Bm = (.7; kvtujlvklvt/) : (Oj,kan’,k’) S Im X Im7
(j, k) 7& (j/, k/), t= t/, l]k > O, lj’k’ > 0
The set A,, is defined so that the constraint forbids operation O; j from start-
ing at ¢t if there is another operation Oj j still running, and B,, constrains

two operations from starting at the same time.
— Precedence constraint: The precedence of operations within jobs should

be maintained.
J O;
ha(w) =D % > Tikaikiie (10)

ik tHlp<t!

This ensures that no operation with a lower index within the same job starts,
before the previous one has finished.

Solving JSSP on a Photonic Quantum Computer 181

— Minimal makespan constraint: Promotes low-makespan schedules by
putting a penalty on any non-optimal schedule (schedule with finish time
further away from the maximum time Ty,ax).

(rmptsniod)

Encoding the @) matrix coefficients takes the form of a weighted sum of those
four constraints between certain pairs of x variables.

ha(x) = (J +1)

Q = wihy(z) + waha(x) + wshs(z) + wahy(x) (12)

2.3 Hybrid Optimization Algorithm

In a nutshell, to find the optimal solution, represented by the binary vector xopt,
we need to find the optimal set of parameters (9,1)) of the quantum circuit. To
do so, we use a gradient-based method in a hybrid (classical-quantum) loop.
Parameters of the quantum circuit are initialized randomly. Then, we run the
quantum circuit on a photonic quantum computer (or simulator) and readout
the results. After processing it through a parity function, we can calculate the
corresponding energy value using the) matrix. Then we can use a gradient-
based model to calculate a new set of parameters. An example loop passing with
sample data for a problem of size seven is schematically shown in Fig. 2.

Boson sampling Parity function
) [0210112) p x=(0010110)
Run a photonic quantum circuit with M modes Calculate
Energy

(Objective function)
for a given matrix Q

([-0.64 . 0.32 0.64 0. 0. e.]

[e. -0.64 0. 0. 0. 0.32 0.]

[0.32 eo. -0.8 0.32 0.32 0. e.]
C Q = [0.64 o. .32 -1. 0.32 o. e.]
\ _ [o o. ©.32 0.32 -0.96 0. e.]
y [e 0.32 0. 0. 0. -0.96 0.32)

PR " .] 0. 0. 0. 0. .32 -0.16

N Optimize circuit parameters L "
p to minimize Energy function E — T
(&y E=x"Qx

Fig. 2. Hybrid optimization algorithm loop, consisting of quantum computations and
classical processing and parameter optimization.

182 M. Slysz et al.

3 Experiments

3.1 Problem Instance

For the first part of the experiments, a photonic quantum computer’s sim-
ulator was used to perform an optimization of a toy problem consisting of
3 jobs J = {‘“cupcakes’,“smoothie’, “lasagna” } and 2 machines M =

“mixer”, “oven” }. The complete problem notation also shows execution times
of each operation on a given machine, along with the order of operations within

jobs is given in a dictionary-like format:

{“cupcakes” : [(“mixer”,2), (“oven”,1)],
“smoothie” : [(“mizer”,1)],

“lasagna” : [(“oven”,2)]},

or in a form of a dependency graph as shown in Fig. 3.

Fig. 3. Example JSSP instance with 3 jobs, 4 operations and 2 machines. O, nodes
denotes k-th operation of job j and colors green and blue correspond to machines mizer
and oven respectively. The numbers on the edges of the graph indicate the processing
times of operations labelling preceding vertices. (Color figure online)

The total number of binary variables (represented by optical modes) is calcu-
lated as the total number of all operations in all jobs (|O]) times the maximum
time constant Ti,ax, which has been chosen arbitrarily as the problem size. The
only limitation is that T},,, should not be smaller than the optimal time of a
given instance, because if it was, finding a feasible solution would be impossible.
In most cases the optimal time is not known, however, one can estimate it based
on various factors while preprocessing the instance.

Solving JSSP on a Photonic Quantum Computer 183

3.2 Variable Prunning

To reduce the number of variables, we can perform basic pruning by eliminating
variables that, if selected, would generate infeasible solutions. The exclusion of
illegal start times is performed, by removing variables that would cause the job to
finish after the maximum time or start the operation before the earliest possible
time (due to precedence constraints).

For T4 = 4 the original number of binary values was 16, however, it can
be reduced to 11 after this preliminary preprocessing step as shown in Table 1.

Table 1. Pruning the variables for simple instance with Ty = 4. Out of initial 16
variables (|O| X Tmax), 5 variables marked in red can be pruned.

Cupcakes - mixer

T1,1,0 T2,1,0 3,1,0
T1,1,1 T2,1,1 31,1
T1,2,2 T2,1,2 x3,1,2

3.3 Experiments

During performed experiments, we chose Adam Optimization Algorithm for clas-
sical first-order gradient-based optimization [8]. To calculate the gradient, the
parameter-shift rule was used, so that it was sufficient to estimate the function
value 2 times in each iteration. For each parameter update, the quantum circuit
has been executed 1000 times and the results were averaged.

The first batch of experiments was started with equal) matrix weights:
wy; =1, ws =1, ws = 1 and wy = 1. The results were promising, as in most cases
the returned binary vectors with corresponding low energy values. However, they
were not ideal, because many solutions remained infeasible. In order to obtain
the desired results, we proposed and implemented two solutions.

First, we tuned the weights using the grid-search method on the parameters
wy, Wy, ws, setting the value of the optimization factor wy = 1 as a reference
value. The best weights for this problem were found for wy = 1, wy = 5, w3 = 2.

Secondly, we added a regularization factor to the objective function. Since
the constraint on the number of variables was often broken, it was natural to
direct the optimizer to the correct solutions using the L2 regularization in which
the number of binary variables equal to 1 should equal the total number of
operations in all jobs.

N 2
nganQm +7 (Z xT; — |O|> (13)

184 M. Slysz et al.

3 —— M modes, M photons, parity 0
—— M modes, M photons, parity 1
—— M modes, M-1 photons, parity 0
2 —— M modes, M-1 photons, parity 1
S
g 1
=
(]
2
S o
2
o
-1
-2

0 25 50 75 100 125 150 175 200
Updates

Fig. 4. Learning curve for the energy function, while optimizing the parameters with
Adam algorithm.

Machine
W mixer

MW oven
cupcakes,

smoothie

Job

lasagna!

=)
-
~
w

Time

Fig. 5. Gantt chart showing the optimal solution of the given instance with makespan
T=3.

The regularization factor was added with an additional weight ~, but for this
experiment it was set to 7 = 1 and required no more fine-tuning.

After all these adjustments, the simulator was able to return the binary vec-
tor corresponding to the optimal solution with the makespan T,,, = 3. The
learning process is shown in Fig.4 as a plot of the energy objective function
value changing in subsequent iterations. The different learning curves represent
different approaches to mapping parameters of the quantum simulator into the
binary vector . We used two different parity functions and two different entan-

Solving JSSP on a Photonic Quantum Computer 185

glement strategies, hence four possible combinations are possible. Each time, out
of the 4 results, the one with the lowest final energy value is chosen as the best
result. The optimal solution for the given instance is shown on the Gantt chart
in Fig. 5.

4 Conclusions

This paper discussed another approach to solving the Job-Shop Scheduling Prob-
lem on a relatively new class of photonic quantum devices. Our approach used
a photonic quantum computer architecture based on the Boson Sampling tech-
nique. Similarly to previous methods using the Quantum Annealing model and
QAOA algorithm on gate-based quantum computers to solve the JSSP problem,
we applied the time-indexed notation, defined a set of constraints, and then for-
mulated a QUBO problem accordingly. Thanks to the QUBO representation,
we successfully performed experiments on a toy JSSP instance with only three
tasks and four operations, finding the optimal solution. We solved the problem
using a photonic quantum computer with classical machine learning techniques
in a hybrid (classical-quantum) loop. Some additional techniques, such as grid-
searching weights and adding regularization factor, were also introduced and
briefly discussed in this paper. Those improvements will be used and applied in
our future research and experiments to solve larger JSSP problem instances.

References

1. Aaronson, S., Arkhipov, A.: The computational complexity of linear optics. In:
Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing,
pp. 333-342 (2011)

2. Bradler, K., Wallner, H.: Certain properties and applications of shallow bosonic cir-
cuits (2021). https://doi.org/10.48550/ARXIV.2112.09766. https://arxiv.org/abs/
2112.09766

3. Clifford, P., Clifford, R.: The classical complexity of boson sampling. In: Proceed-
ings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 146-155. STAM (2018)

4. D-Wave: Solving problems with quantum samplers. D-Wave System Documenta-
tion. https://docs.dwavesys.com/docs/latest /c_gs 3.html

5. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algo-
rithm (2014). https://doi.org/10.48550/ ARXIV.1411.4028. https://arxiv.org/abs/
1411.4028

6. Garcia-Patron, R., Renema, J.J., Shchesnovich, V.: Simulating boson sampling in
lossy architectures. Quantum 3, 169 (2019)

7. Hamilton, C.S., Kruse, R., Sansoni, L., Barkhofen, S., Silberhorn, C., Jex, I.:
Gaussian boson sampling. Phys. Rev. Lett. 119, 170501 (2017). https://doi.org/
10.1103/PhysRevLett.119.170501, https://link.aps.org/doi/10.1103 /PhysRevLett.
119.170501

8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). https://
arxiv.org/abs,/1412.6980

https://doi.org/10.48550/ARXIV.2112.09766
https://arxiv.org/abs/2112.09766
https://arxiv.org/abs/2112.09766
https://docs.dwavesys.com/docs/latest/c_gs_3.html
https://doi.org/10.48550/ARXIV.1411.4028
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1411.4028
https://doi.org/10.1103/PhysRevLett.119.170501
https://doi.org/10.1103/PhysRevLett.119.170501
https://link.aps.org/doi/10.1103/PhysRevLett.119.170501
https://link.aps.org/doi/10.1103/PhysRevLett.119.170501
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

186 M. Slysz et al.

9. Kurowski, K., Weglarz, J., Subocz, M., Rozycki, R., Waligora, G.: Hybrid Quan-
tum Annealing Heuristic Method for Solving Job Shop Scheduling Problem. In:
Krzhizhanovskaya, V.V, et al. (eds.) ICCS 2020. LNCS, vol. 12142, pp. 502-515.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50433-5 39

10. Pelucchi, E., et al.: The potential and global outlook of integrated photonics for
quantum technologies. Nat. Rev. Phys. 4(3), 194-208 (2022)

11. Venturelli, D., Marchand, D.J.J., Rojo, G.: Quantum annealing implementation of
job-shop scheduling (2015). https://doi.org/10.48550/ ARXIV.1506.08479. https://
arxiv.org/abs/1506.08479

12. Zhong, H.S., et al.: Quantum computational advantage using photons. Science
370(6523), 1460-1463 (2020)

https://doi.org/10.1007/978-3-030-50433-5_39
https://doi.org/10.48550/ARXIV.1506.08479
https://arxiv.org/abs/1506.08479
https://arxiv.org/abs/1506.08479

®

Check for
updates

Some Remarks on Super-Gram Operators
for General Bipartite Quantum States

Roman Gielerak® and Marek Sawerwain (&)

Institute of Control and Computation Engineering, University of Zielona Gora,
Licealna 9, 65-417 Zielona Goéra, Poland
{R.Gielerak,M.Sawerwain}@issi.uz.zgora.pl

Abstract. The Gramian matrices approach to study certain aspects of
quantum entanglement contained in the bipartite pure quantum states
is being extended to the level of a general quantum bipartite states. The
corresponding Gram matrices, called here super-gram matrices are being
constructed over the Hilbert-Schmidt structure build on the Hilbert space
of pure states. The main result is the extension of the widely known
realignment criterion to the level of super-operators.

Keywords: gramians + super-matrices + quantum states + numerical
computations

1 Introduction

Quantum computing (QC) is an area where the model of computation is
expressed by the laws of quantum physics [16]. A recent development of quantum
computing (QC) methods allows us to give many application of a new algorithms
and solutions. The set of quantum algorithms, especially widely known Shor’s
prime factorization algorithm [25], and Grover’s algorithm [6] are supplied with
a new application of QC to machine learning [21,22], methods of classification
[23,26] and neural networks [24]. It is also possible to indicate other area of
applications as security and cryptography especially in block chains theory [3],
where we can found proposal of the usage of quantum methods [5,18]. And also
in the area of clustering methods [13] where quantum solutions are also discussed
12].

Many applications in general also entail the development of analytical tech-
niques. In work [8] we use the notion of gramians [12] to study certain aspects of
the quantum entanglement in the case of two-partite pure quantum states. Phe-
nomenon of quantum entanglement is of crucial importance in recent research
connected to teleportation protocols [15], routing problem [4], and also in the
future construction of genuine quantum networks [17].

In the present contribution we extend certain results of [8] to the case of
a general bipartite quantum states. From the paper [14] it follows the impor-
tance of the gramian technique for general multipartite entanglement problem.
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 187-198, 2023.
https://doi.org/10.1007/978-3-031-30445-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_16&domain=pdf
http://orcid.org/0000-0001-8657-0829
http://orcid.org/0000-0001-8468-2456
https://doi.org/10.1007/978-3-031-30445-3_16

188 R. Gielerak and M. Sawerwain

In particular in the quantum marginal problem which is close to the one of
the basic problem known as the AME-states existence and construction. For an
extensions to the infinite dimensional setting, see [10].

Below we show how to calculate the so-called super-gram matrices (super-
gramians) of a given quantum state for two partite quantum systems. In partic-
ular we discuss how to use super-gramians to formulate some sufficient criterion
for non-separability of a general quantum states. Also we propose some Python
routines (and briefly discuss efficiency of its performance) which can be used
in numerical computations with the use of introduced here super-gramians. For
a more extended exposition of this topic see our recent paper [11].

The material of this chapter is organised as follows. To finish present section
we give introductory material, and outline some basic notation (as Tablel)
which is used in the rest of chapter. Section 2 includes precise definition of super-
gramians connected to bipartite quantum systems. Section 3 is devoted to show
some computational examples related to super-gram matrices notion. A sum-
mary of this chapter is provided in Sect. 4. Acknowledgements and bibliography
sections are final parts of chapter.

Before we start presentation of super-gramians notion for general quantum
states we summarise used notation, symbols, abbreviations and acronyms at
Table 1.

Table 1. Some symbols, notations, sets and functions used in the chapter

Notation Description

d Integer value representing dimensions of vector/matrix

di X d2 Dimensions of matrix,

R Set of real numbers

C Set of complex numbers

H Hilbert space

I In Identity matrix/operator, identity operator defined in system with N qudits
Ta Identity operator defined in subsystem A

Ax, At Conjugation of matrix, hermitian adjoint of matrix

(=|-) Inner product

E(C?) Set of density matrices on C%, i.e. p >0 and tr(p) = 1

Sep(C%4 @ C?2) | Set of separable states on C?4 @ C?B

OE(C?) Set of pure states on C?

HS(C?) The Hilbert-Schmidt structure on the space of all d x d matrices Mgy
[lol7s The Frobenius norm of p € Mg, i.e. ||p|[5g = tr (p'p)

(=|—)us The canonical Hilbert-Schmidt scalar product in HS(C)

AY(Q), AP(Q) |Left and right super-gramians for given Q

1n Means the sequence of 1,2,3,...,n

U(d) Group of unitary matrices acting in C?

Super-Gram Operators for General Bipartite Quantum States

2 Two-Partite System Gramians

189

In this part of chapter we introduce main definitions and some results related to

super-gram matrices.

Let (ef3)ap, resp. (€2),, be some HS-orthonormal and complete system
in HS(C%), resp. in HS(C??). Then, the system (el; ® €2)as forms HS-

orthonormal base in HS(C%4) @ HS(C?).
For any Q € HS(C?% ® C98) there is decomposition:

A B
Q= Z daBlyn€ap @ Eyns
aB,yn

where

A 2
Qaplyn = <Q|€a5 ® 6577>HS and E |Qaﬂ\’yn‘ = ||QH2HS
aB,ym

Let us define the following isometries:
JANQ): ey — Fiy € HS(C?),
where

A B
Faop = anﬁlvnew’
T

and extended by linearity to the whole space of HS(C%4).
Similarly, we define:

JBQ): &8 — FB e HS(C™),
where

B _ A
Fon = quﬁhneaﬁ7
ap

and extended then by linearity on the whole space of HS(C?z).
Both maps:

JA(Q) : HS(C%) — HS(C??) and JB(Q): HS(C??) — HS(C%),
are isometric maps.
For further use we define the following Gram super-matrices:

¥

ANQ) = JHQ) 0 JHQ), HS(C) — HS(C™),

and

AB(Q) = J%(@Q)" 0 TP(Q), HS(C*) — HS(C%).

(1)

®)

9)

Proposition 1. The Gram super-matrices A*(Q) and AB(Q) have the follow-

ing properties:

190 R. Gielerak and M. Sawerwain

(i) AY(Q) > 0 and AB(Q) > 0 i.e. are positive super-matrices and therefore
hermitian.

(ii) Let U(HS(C)), resp. U(HS(C?®)) stands for the groups of unitary super-
transformations on the corresponding HS-spaces of matrices. Then:
(1) vQeu(Hs(o:dB))AA(Q) =AY 14 ® 2)(Q)),
(2) YocumsciayAP(Q) = AP ((2 @ 15)(Q)).

(iti) ¥ gacymsciand(Q) = AA(Q) @ AB(Q) is invariant:

2B ecuHSs(CB))
(24 © 2P)AQ) = AQ). (10)
Proof. Everything follows from the observation that
AA(Q)ama’,@' = <-7'—3/5/ |F) us(cas)» (11)
and
AB(Q)'ynh/nl = <‘7:/5n’|‘7:'\/B;]>HS(CdA)7 (12)

where F7, resp.]-"57 are given by Eq. (4) and Eq. (6).

Remark 1. The formulas Eq. (8) and Eq. (9) fully justify the name introduced:
“Gram super-matrices” as from these formulas it follows that matrices A4 and
respectively AP are Gram matrices constructed over the space HS(C%) and
HS(C?#) respectively.

Ezample 1. Let |¥) € C% ®C?2 and such that ||¥|| = 1. Then [¥)(¥| = Q(¥) €
HS(C% ® C?%). Let us consider the canonical Schmidt decomposition of |¥):

min(da,dp)

)= Y mlei) 168, (13)

k=1

where 7, > 0, Y, 72 = 1 and the systems {|¢)f),k = 1 : da}, resp. {|62),k =
1:dp} forms complete orthonormal systems in C94, resp. in C95.
Let us form the following system of linear operators:

Efls = [ha)(s] € HS(C™), a,B=1:da, (14)

and
ED =10,)(0,] € HS(C??), ~y,n=1:dp. (15)
It is not hard to observe that:

() (Bgp)' = By (BJ) = EJ,
(i) S0k B =Ta, 92, BZ =1,
(111) <E£B|E£/ﬁ’>HS(CdA) = 50404/ 5’7’7/’ <E’YB’I7‘E5»,7’>HS(CdB) = 57’7/ 5777]/’
(iv) the system
{Ea,[ﬂ’yn = (;45 ® Er?n}a a,B3=1:da, v,m=1: dg, (16)

forms a complete, HS-orthonormal system in HS(C%4 @ C?2).

Super-Gram Operators for General Bipartite Quantum States 191

From Eq. (13) it follows

min(dA,dB)
W= > rarg B @EP . (17)

a0
Therefore, the A-frame of |¥)(¥| consist of operators
{fja, = 1aTy ED Y, (18)

and B-frame of
B _ A
{fwl = TWT,Y/EW,}. (19)
From Eq. (18) and Eq. (19) the following results follows.

Proposition 2. Let |¥) € OE(C% ® C98), then the corresponding super-
gramians A% resp. AP of |(W)(¥| are given by the formula (up to the unitary,
local transformations in the local HS-spaces HS(C%4)), and resp. in HS(C®):

AA<|¢><W> = TaTy T8T5 0aB0, 5 » (20)
aa’|66’

and
AB (|y7><gl|) = T'YT"T’Y,Tnl(SW’Y,(Sﬁn,' (21)
ynlv'n’

Remark 2. The standard reduced density matrices of the density matrix Q(¥) =
|@) (| defined as

Q) = tr (Q(¥)), (22)
and respectively
QP (W) = tra (Q(¥)), (23)
are given by
QW) =Y mli) (Wil and QP(W) =Y 7I6¢) (67 (24)
k k

The formulae Eq. (20) and Eq. (21) yields the following formulae for corre-
sponding partial traces of the operator QQ = |Q(¥)){Q(¥)| acting in the space
HS(HS(C?) @ HS(C?#)) ~ HS(HS(C?)) @ HS(HS(C?2)):

trugcas) (QQ) = AN(|lw)(w]) and trag(caa) (QQ) = AB(|w)(w)). (25)

In the case of a general two-qudit state Q € E(C% @ C?2) the corresponding
super-gram operators are computable with the use of operator Schmidt decom-
position of Q.

192 R. Gielerak and M. Sawerwain

For this goals let Q € HS(C% ® C98), then there exists a sequence A,
a =1 :da -dp of non-negative numbers, called in the following the operator
Schmidt coefficients, and such that

2
ST =11Qlfiseirpcasy and Q=D XS4 ® 82, (26)

[e3%

where {S7'}, and resp. {S};9 } forms HS-orthonormal and complete system in
HS(C44), and resp. in HS(C9®).

Defining, for any Q € HS(C% ® C?2) the following super-projector Q =
|Q)(Q] € HS(HS(C%4 @ C?7)) and using also Eq. (26) we obtain

a,
where
Shs = 152)(S5| and &5 = [S2)(SF . (28)

From Eq. (27) it follows, that the corresponding to Q super-gramians,
defined as

QA = trHs(CdB) (Q) and DB = trHs(CdA) (Q) 5 (29)
are given by the following formulas
24 =Y" ()61, and 9 =Y ()6l (30)

Thus, we have obtained:

Theorem 1. Let Q € Sep(C% @ C98) and let (\JP) be the sequence of Schmidt
coefficients connected to the Schmidt decomposition of the super operator Q €

HS(HS(C% @ C95)). Then
DA<l (31)

[e3

Remark 3. Note that values of AQP are in general different then those of A2.
Proof. In follows by an elementary argument that:
HS(HS(C% @ C9%)) = HS(HS(C%)) ® HS(HS(C)). (32)

Therefore, the Hilbert-Schmidt Hilbert space structure on the space of super-
operators i.e. the linear endomorphism of the space HS(C% ® C92) is of tensor
product metric structure type.

Let Q € HS(C%4 ®C?#) be a quantum separable state on C%4 @ C?%. Then, as
it is well known [7] (see also [19]) that >~ A% < 1, where A2, are the Schmidt num-
bers of the corresponding operator Schmidt decomposition as given in Eq. (26).

Super-Gram Operators for General Bipartite Quantum States 193

Taking into account formula Eq. (27) it follows the Schmidt numbers of the
corresponding super-operator are given by the products A\ Aj. But,

2
D AP =D "N = (Z A&) <1. (33)
ol af [eY
and this concludes the proof.

3 Computational Examples

In this section we will briefly discuss a selected functions supporting the concept
of gram and super-gram matrices (and also gram matrices which already have
been presented in [8]). Newly added functions are part of the EntDetector (ED)
package [9]. We also presents its performance in multithread (with several com-
putational nodes) computational environment. Apart of (super-)gram related
functions, the ED package provides also a set of functions devoted to the entan-
glement detection problem, for pure and mixed quantum states (source code of
ED package is available at [20]).

The Python programming language is a primary tool which is used to
implementation a new set functions to implementation of gramians and super-
gramians. The use of Python allows us to give a simple and uncomplicated API
which can be used directly in Python scripts. Additionally, the use of the NumPy
package enables to utilise available multi-core processors.

To show basic calculations which are necessary to compute left, right grami-
ans we create following state of two qutrits A and B:

[v) = [0)4 ® |+) B, (34)

where |[+)p = %(|0> + |1) 4+ |2)). Using ED package and Python language we
need only a few lines of code (in example state |1)) is represented as variable q)
to create necessary state:

import entdetector as ed

import numpy as np

q0=ed.create_base_state(3, 1, 0)
gql=ed.create_qutrit_plus_state();
g=np.kron(q0, q1)

Calculation of left, right gramian and full gramian can be performed as follows:

dRPrime, dLPrime, dFullGramPrime =
ed.gram_matrices_of_vector_state(q, 3, 3)

The values 3, 3 given in the function argument are the dimensions of the matrix
representing the left and the right gramian. We do not present the form of these

194 R. Gielerak and M. Sawerwain

matrices here, but in [20] there are other examples of source codes presenting
the application of the ED package.

To calculate the super-gram matrices we also need to use only one line of
Python code:

dRSPrime, dLSPrime, dFullSGramPrime =
ed.super_gram_matrices_of_vector_state(q, 3, 3, base=’std’)

The super-gramians calculations function also allows to give a base form. In the
example a standard zero-one base is used. The parameter base can be omitted,
so the standard form of the base will be automatically assumed.

Table 2. Computation times (denoted as Time, values given as seconds) for the super-
gramians for a bipartite system for different values of the d parameter. We use different
NumPy threads number (denoted as Threads). In experiment the Python distribution
from Intel One APIT 2022.0.22 package is used. The numerical experiments were per-
formed in virtual environment WSL2 for Windows 11 (version 10.0.22000.613), Linux
kernel 5.10.102.1. The calculations are performed on a workstation machine equipped
with Intel Xeon W-2245 3.9 GHZ (base clock) processor and 128 GB of RAM.

d | Threads | Time |d | Threads | Time d | Threads | Time

31 1531s|4 |1 141.12s |5 |1 501.19 s
32 723542 62.33s|5 |2 230.67 s
34 3.31s/4 |4 29.23s|5 |4 64.21 s
38 1.61s/4 |8 742s|5|8 13.83 s

The super-gram matrix dimensionality is bigger than the system for which
it calculated e.g. a system of two qutrits, the vector dimension for the example
state [1) described by Eq. (34) is 3%2. The dimension of density matrix is 32 x
32, but the super-gramian dimension is described as (3*) x (3%). With such an
increasing dimensionality, it is reasonable to check whether the multithreaded
processing offered by the NumPy package allows to shorten the computation time
of given super-gramians. Theorem 1 of the present chapter decrease significantly
the computational complexity of computations with super-gramians use. Further
remarks about computational complexity will be given later at end of this section.

Based on the state Eq. (34), bipartite registers for qudits and computation
times for their super-gramians were determined. The time results are shown in
Table 2. It is easy to observe that the NumPy package and the given implemen-
tation allow for effective use of available computing cores and shortening the
entire computing process.

In the second numerical experiment we generate bipartite quantum state with
randomly selected values of probability amplitudes and we randomly point one
vector from base of given system:

) = ailex), (35)

Super-Gram Operators for General Bipartite Quantum States 195

where >", |a;|? = 1 and ey, represents randomly selected vector from given system
(€5 ® e?n)‘;ﬁ which forms HS-orthonormal base in HS(C%4) @ HS(C?2).

By the use of Theorem 1 the non-separability in a finite given set of quantum
states can be detected. This type of computational task can also be computed
with parallel programming techniques. Computations can be performed using
NumPy threads, but it is necessary to underline that the set of quantum states
can be easily distributed to the other nodes. For this purpose, we use mpidpy
v3.1.3 package [1] (based on MPI protocol) for communication between compu-
tational nodes.

The distribution of cases of separability tests into individual nodes reduces
the computation time. The results as an speedup values related to the number of
nodes are presented in Fig. 1. Numerical experiment for separability tests shows
that increasing the number of nodes shortens the computation time and the
scalability of the computation process is correct.

Speedup of separability testing experiment

20.0 A
mm d=4
17.5 4 m d=3 8
B gy
m &
15.0 A q:S
i
o 1251 g
=] Q
3 > Y 2
 10.0 1 8¢ b
< ¥ ®S g N
7.5 38 ~ 8 o
9} © . ©
. Q - o Vv oM
23y v 9y ©®Q o
5.0 A n n o © n Y - S
o<V o AN
A Yo g o
25{ A0 @
o ooem Him
1 2 4 8 16
Nodes

Fig. 1. The speedup values obtained for a separability criterion for various sizes of the
quantum system described by the Eq. (35), d means the qudit dimension. The comput-
ing system which is used to perform experiment contains sixteen nodes and each one
is built of two quad-core Intel Xeon E5420 2.50 GHZ (base clock) processors and 16
GB of RAM. Each node performs eight computational tasks. The MPI protocol is used
to communicate available computations nodes. The numerical experiments were con-
ducted in the operating system Debian 8.3.0-6, Linux kernel 4.19.235-1. The numerical
values over the bins denotes duration of the experiment in seconds. In the experiment
we generate a set of 1024 state examples for different values of d.

196 R. Gielerak and M. Sawerwain

Since communication is limited only to passing the parameters, e.g. seeds val-
ues to generate pseudo-random numbers to create the state in the form Eq. (35),
therefore the influence of communication on the whole computational process is
not essential.

It should be added that “brute force” approach (i.e. we perform Schmidt
decomposition directly on the super operator) to the applications of the sepa-
rability test formulated as Theorem 1 depends heavily on the dimensionality of
super operator of examined state Q. Let e.g. Q € [E(C%4 @ C92) be examined
pure state, then dimensionality of () is expressed as following product:

dimQ:dA-dB, (36)

where d4, dg are dimension of space for quantum subsystem A and B, e.g. for
two qutrits dimension of the state Q) is equal to 3 x 3 = 9. For super operator
0 =|Q){Q| € HS(HS(C% ® C?#)) dimensionality is calculated as:

am = (@) (dA>2)2 (- <dB>2>2 — (da)- (s (3

The proof of Theorem 1 is based on the Schmidt decomposition which a singular
value decomposition (SVD) is used. The general complexity of SVD is denoted
as O(N?), where N represents the leading dimension. Taking into account the
complexity of SVD, then the complexity of computational routine based on The-
orem 1 should be described as:

T 1(2) = 0(()" (dB>8)3 o). 69

The final computational complexity remains exponential due to dimensionality
of quantum subsystems A and B. However, the use of Theorem 1 allows us to
formulate the remark:

Remark 4. The “brute force” complexity (we have assumed d4 = dg = d for
simplicity) is described as O(d?*). However, taking into account the Theorem 1
and relation in between Schmidt’s coefficients given in Eq. (26) and those given
in Eq. (27) allows us to reduce the computational complexity as:

— for pure state to O(d®),
— for a general quantum states to O(d'?).

4 Conclusions

In the article, we have presented a notion of super-gram matrices as an analytic
tool to work with bipartite qubit and qudit systems. We also give some remarks
about implementation of computational functions in Python programming lan-
guage that perform the necessary calculations related to super-gramians.

We introduce also the super-gram matrices notion which are being con-
structed over the Hilbert-Schmidt structure build on the Hilbert space of pure

Super-Gram Operators for General Bipartite Quantum States 197

states. The main results presented in chapter is the extension of the widely
known sufficient criterion for the presence of entanglement known under the
name realignment criterion on the level of super-operators. Several extensions of
results presented in this note are being now under preparations [10]. In particular
extensions the genuine infinite-dimensional systems are included there.

We also show that implementation of the set of function to easier processing
of super-gramians also possesses scalability property which is important when
we process a significant amount of set of quantum states where multicore and
many nodes computational environment can be fully utilised.

Acknowledgments. We would like to thank for useful discussions with the Q-INFO
group at the Institute of Control and Computation Engineering (ISSI) of the University
of Zielona Goéra, Poland. We would like also to thank to anonymous referees for useful
comments on the preliminary version of the chapter. The numerical results were done
using the hardware and software available at the “GPU u-Lab” located at the Institute
of Control and Computation Engineering of the University of Zielona Goéra, Poland.

References

1. Dalcin, L., Fang, Y.-L.L.: mpidpy: status update after 12 years of develop-
ment. Comput. Sci. Eng. 23(4), 47-54 (2021). https://doi.org/10.1109/MCSE.
2021.3083216

2. Decheng, F., Jon, S., Pang, C., Dong, W., Won, C.: Improved quantum clustering
analysis based on the weighted distance and its application. Heliyon 4(11), e00984
(2018). https://doi.org/10.1016/j.heliyon.2018.e00984

3. Devidas, S., Subba Rao, Y.V., Rukma Rekha, N.: A decentralized group signature
scheme for privacy protection in a blockchain. Int. J. Appl. Math. Comput. Sci.
31(2), 353-364 (2021). https://doi.org/10.34768 /amcs-2021-0024

4. Farahbakhsh, A., Feng, C.: Opportunistic routing in quantum networks. arXiv
preprint (2022). https://doi.org/10.48550/arXiv.2205.08479

5. Faridi, A.R., Masood, F., Shamsan, A.H.T., Lugman, M., Salmony, M.Y.:
Blockchain in the quantum world. Int. J. Adv. Comput. Sci. Appl. 13(1), 542—
552 (2022). https://doi.org/10.14569 /IJACSA.2022.0130167

6. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the 28th Annual ACM Symposium on the Theory of Computing
(STOC), pp. 212219 (1996). https://doi.org/10.1145/237814.237866

7. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entangle-
ment. Rev. Mod. Phys. 81, 865 (2009). https://doi.org/10.1103/RevModPhys.81.
865

8. Gielerak, R., Sawerwain, M.: A Gramian approach to entanglement in bipar-
tite finite dimensional systems: the case of pure states. Quantum Inf. Comput.
20(13&14), 1081-1108 (2020). https://doi.org/10.26421/Q1C20.13-1

9. Gielerak, R., Sawerwain, M., Wisniewska, J., Wroblewski, M.: EntDetector: entan-
glement detecting toolbox for bipartite quantum states. In: Paszynski, M., Kran-
zlmiiller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS
2021. LNCS, vol. 12747, pp. 113-126. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-77980-1_9

10. Gielerak, R., Sawerwain, M.: Gramian and super-gramian approach to infinite-
dimensional quantum states. In preparation (2022)

https://doi.org/10.1109/MCSE.2021.3083216
https://doi.org/10.1109/MCSE.2021.3083216
https://doi.org/10.1016/j.heliyon.2018.e00984
https://doi.org/10.34768/amcs-2021-0024
https://doi.org/10.48550/arXiv.2205.08479
https://doi.org/10.14569/IJACSA.2022.0130167
https://doi.org/10.1145/237814.237866
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.26421/QIC20.13-1
https://doi.org/10.1007/978-3-030-77980-1_9
https://doi.org/10.1007/978-3-030-77980-1_9

198

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

R. Gielerak and M. Sawerwain

Gielerak, R., Wisniewska, J., Sawerwain, M., Wréblewski, M., Korbicz, J.: Classical
computer assisted analysis of small multiqudit systems. IEEE Access 10, 82636—
82655 (2022). https://doi.org/10.1109/ACCESS.2022.3196656

Kuptsov, L.P. : Gram matrix entry. In: Hazewinkel, M. (ed.) Encyclopaedia of
Mathematics: Coproduct - Hausdorff - Young Inequalities, p. 861. Springer, New
York (1995). https://doi.org/10.1007/978-1-4899-3795-7

Kaliszewska, A., Syga, M.: A comprehensive study of clustering a class of 2D
shapes. Int. J. Appl. Math. Comput. Sci. 32(1), 95-109 (2022). https://doi.org/
10.34768 /amcs-2022-0008

Klyachko, A.: Quantum marginal problem and representations of the symmetric
group. arXiv preprint (2004). https://doi.org/10.48550/arXiv.quant-ph/0409113
Kopszak, P., Mozrzymas, M., Studzinski, M., Horodecki, M.: Multiport based tele-
portation - transmission of a large amount of quantum information. Quantum 5,
576 (2021). https://doi.org/10.22331 /q-2021-11-11-576

Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary Edition, 10th edn. Cambridge University Press, Cambridge
(2011)

van Meter, R.: Quantum Networking. Wiley, Hoboken (2014). https://doi.org/10.
1002/9781118648919

Rajan, D., Visser, M.: Quantum blockchain using entanglement in time. Quantum
Rep. 1(1), 3-11 (2019). https://doi.org/10.3390/quantum1010002

Rudolph, O.: Further results on the cross norm criterion for separability. Quantum
Inf. Process. 4, 219-239 (2005). https://doi.org/10.1007/s11128-005-5664-1
Sawerwain, M., Wisniewska, J., Wroblewski, M., Gielerak, R.: GitHub repository
for EntDectector package (2022). https://github.com/qMSUZ/EntDetector
Schuld, M., Petruccione, F.: Prospects for near-term quantum machine learning.
In: Supervised Learning with Quantum Computers. QST, pp. 273-279. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96424-9 9

Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine
learning. Contemp. Phys. 56(2), 172185 (2014)

Schuld, M., Sinayskiy, I., Petruccione, F.: Quantum computing for pattern classifi-
cation. In: Pham, D.-N., Park, S.-B. (eds.) PRICAI 2014. LNCS (LNAI), vol. 8862,
pp. 208—220. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13560-
1 17

da Silva, A.J., Ludermir, T.B., de Oliveira, W.R.: Quantum perceptron over a field
and neural network architecture selection in a quantum computer. Neural Netw.
76, 55-64 (2016). https://doi.org/10.1016/j.neunet.2016.01.002

Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM J. Comput. 26(5), 1484-1509 (1997).
https://doi.org/10.1137/S0097539795293172

Wiebe, N., Kapoor, A., Svore, K.M.: Quantum algorithms for nearest-neighbor
methods for supervised and unsupervised learning. Quantum Inf. Comput.
15(3&4), 318-358 (2015). https://doi.org/10.26421 /QIC15.3-4-7

https://doi.org/10.1109/ACCESS.2022.3196656
https://doi.org/10.1007/978-1-4899-3795-7
https://doi.org/10.34768/amcs-2022-0008
https://doi.org/10.34768/amcs-2022-0008
https://doi.org/10.48550/arXiv.quant-ph/0409113
https://doi.org/10.22331/q-2021-11-11-576
https://doi.org/10.1002/9781118648919
https://doi.org/10.1002/9781118648919
https://doi.org/10.3390/quantum1010002
https://doi.org/10.1007/s11128-005-5664-1
https://github.com/qMSUZ/EntDetector
https://doi.org/10.1007/978-3-319-96424-9_9
https://doi.org/10.1007/978-3-319-13560-1_17
https://doi.org/10.1007/978-3-319-13560-1_17
https://doi.org/10.1016/j.neunet.2016.01.002
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.26421/QIC15.3-4-7

®

Check for
updates

Solving the Traveling Salesman Problem
with a Hybrid Quantum-Classical
Feedforward Neural Network

(=) 1,2

Justyna Zawalska!2 and Katarzyna Rycerz

! Academic Computer Centre Cyfronet AGH, ul. Nawojki 11, 30-950 Krakow, Poland
justyna.zawalska@cyfronet.pl, kzajac@agh.edu.pl
2 TInstitute of Computer Science, AGH, al. Mickiewicza 30, 30-059 Krakow, Poland

Abstract. Solving combinatorial optimization problems with the Quan-
tum Approximate Optimization Algorithm (QAOA) is becoming more
and more popular. The performance of the QAOA strongly depends
on the initial parameters and the optimization procedure. This work
presents a benchmark for solving the Traveling Salesman Problem (TSP)
that introduces a hybrid feedforward neural network as the QAOA’s opti-
mization routine. The strength of this method lies in training the opti-
mization procedure on many instances of the problem and using mini-
batch updates of the parameters. Although the learning process is costly,
the advantage of this method is that after the neural network is trained,
it immediately returns optimized parameters for new problem instances.
We present the advantage of our method by evaluating it on two sets
of initial parameters. The experiments demonstrated that the proposed
hybrid quantum-classical feedforward neural network can be successfully
used to solve the TSP.

Keywords: Hybrid quantum-classical feedforward neural network -
Quantum Approximate Optimization Algorithm - Combinatorial
optimization + The Traveling Salesman Problem

1 Introduction

Current quantum computers are Noisy Intermediate-Scale Quantum (NISQ)
devices [9] therefore their practical use is limited. An answer to this issue is using
hybrid quantum-classical algorithms where a problem is solved using both quan-
tum and classical computational resources. One of the hybrid quantum-classical
algorithms is the Quantum Approximate Optimization Algorithm (QAOA). The
QAOA is mainly used to find approximate solutions for combinatorial optimiza-
tion problems [3]. However, the performance of this algorithm is highly depen-
dent on the classical optimization routine [14].

This work describes an approach of utilizing a hybrid quantum-classical feed-
forward neural network as a QAOA optimizer and presents a benchmark for
optimization that introduces the use of fixed QAOA parameters for all problem

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 199-208, 2023.
https://doi.org/10.1007,/978-3-031-30445-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_17&domain=pdf
http://orcid.org/0000-0003-3189-7618
http://orcid.org/0000-0002-8032-7251
https://doi.org/10.1007/978-3-031-30445-3_17

200 J. Zawalska and K. Rycerz

instances. In this study, we focus on solving the Traveling Salesman Problem
(TSP).

The article is organized as follows. Section2 discusses the related work,
Sect. 3 introduces the necessary theoretical background, and Sect.4 describes
the method. The experimental setup is outlined in Sect.5. This is followed by
Sect. 6, which examines the obtained results. Finally, Sect. 7 provides a summary
and future work.

2 Related Work

The exploration of different approaches to the process of updating the QAOA
parameters has started to attract some attention. Several studies have found that
the use of machine learning-inspired techniques [12] or hybrid quantum-classical
machine learning algorithms such as reinforcement learning [5] or recurrent neu-
ral networks [11,13] is beneficial. The QAOA combined with machine learning
methods has been used for solving i.e. MAX-2-SAT [12,13], Graph Bisection
[13], and Max-Cut [5,11] problems.

In [12] the authors employed a greedy search for the QAOA parameters. The
parameter update procedure was learned on the basis of the average response
from a training set of problem instances. The optimization procedure generalized
well to unseen problem instances.

To find an optimization heuristic, the authors of [13] used a gradient-based
technique. They suggested the use of a hybrid quantum-classical Long Short
Term Memory (LSTM) recurrent neural network. The LSTM was proven to be
a successful meta-learner that was able to approach the global optima. Similarly,
the authors of [11] also proposed using an LSTM, however, not as a standalone
optimizer, but as a heuristic for finding good initial QAOA parameters.

In our work, we wanted to verify whether a hybrid feedforward neural network
could find some fixed parameter values that for different problem instances would
yield good result (the phenomenon of parameter concentration has been observed
in the MaxCut problem [1]). Similarly to the work presented in [12]|, we used
a method that updated the parameters based on the average responses from
the subsets of the training set and returned the parameter values that should
generalize well to new problem instances. In contrast to the work presented in
[11,13] we tested whether a simple neural network that has no feedback loops
could also be useful for the task of finding the correct updates of the parameters.

3 Background

3.1 Traveling Salesman Problem

The TSP is an NP-hard combinatorial optimization problem aimed at deter-
mining the shortest possible route that involves visiting each city exactly once
and returning to the starting city. Let us assume that N is the number of cities,

Solving the TSP with a Hybrid Feedforward Neural Network 201

X = [zi4]NeN is a Boolean matrix, where x;; = 1 only if the salesperson vis-
its the city ¢ at the timestamp ¢, and D = [d; j]n.n 1S & symmetric matrix of
distances between cities. The cost function can be expressed in the form of a
Quadratic Unconstrained Binary Optimization (QUBO) problem

i,j=0
i£j (1)
N-1 N-1 —1 -1
+a~2(1— xiﬁt)2+a~2(1le"i,t)2,
i=0 t=0 t=0 i—

where 0 < b- max;-;(d; ;) < a [7]. The first component of the sum represents the
cost of visiting the cities in a given order, and the last two components are the
constraints that ensure the correctness of the solution. This discrete optimization
problem can be translated into a continuous optimization problem encoded in a
quantum subroutine using the QAOA.

3.2 QAOA

The classical cost function C'(X) is translated into the cost Hamiltonian Hc¢. In
addition to the cost Hamiltonian, a mixing Hamiltonian is required. The simplest
mixing Hamiltonian is Hys = Zfil X;, where X; is the Pauli-X gate. The goal
is to find 2p parameters (v, 3) € [0, 27]P x [0, 7]” that minimize the expectation
value

FP(‘Y?/@) = <77/6‘ HC |77ﬁ>7 (2)

where
Iy, B) = e~ BnHu g=impHo . o=iBiHa g=iniHo | | y®n 3

(|4+)®" is a uniform superposition of n qubits). A quantum device is used to
prepare the quantum state, while a classical device is responsible for evaluating
the expectation value and updating the values of the parameters (v, 3).

4 Method

We wanted to investigate whether it is possible to obtain a hybrid quantum-
classical neural network that, after training on many instances of the TSP, would
yield proper parameters (v, 3) for unseen instances of the TSP. To achieve this
task, we proposed the use of a hybrid feedforward neural network that consisted
of two classical layers: an input layer with a single neuron, a hidden layer with 2p
neurons, and a quantum layer with a parameterized quantum circuit, cf. Fig. 1.
The design of this network was based on the fact that the parameterized quantum
circuit had to receive 2p parameters, so the layer preceding the quantum layer
needed to consist of 2p neurons. When it comes to the classical part of this neural
network, we tested different configurations of the numbers of neurons and layers;

202 J. Zawalska and K. Rycerz

~N == ~
| LI IS = 1
TR R [
LIS Bl
] :‘m s
Hoeqt o P A
] ==
1 Q |
1 |$ S|
O
ISR =
R S o
- | — -

Input Hidden
layer layer

Expectation layer

Fig. 1. The quantum layer (in this case the expectation layer) in the hybrid neural
network receives classical values as input. These values are applied to the parameterized
quantum circuit. The measurement result is the outcome of this layer. Both the input
and the output of the quantum layer are classical values.

however, we did not notice any significant improvements compared to this simple
setting.

The training begins with the classical part of the hybrid feedforward network
sending the set of candidate parameters to the parameterized quantum circuit.
The candidate (v, 3) are calculated based on the values of the weights w and
biases b connecting the input layer to the hidden layer

Yi =& - wa.j—1 + ba.i—1 and f; = & - wa.; + by for i € {1,...,p}, (4)

T is a hyperparameter provided as input, and it indicates the importance of the
weights w. After that, quantum hardware (or a simulator) executes the param-
eterized circuit. The estimated expectation value is the loss function. The task
is to minimize the loss function, so the estimated expectation value is fed back
to the classical part, where the neural network uses a gradient-based optimizer
to update its weights and biases and to suggest a new set of parameters for the
next iteration.

What is interesting in this approach is the method of parameter updates
during the optimization procedure. Instead of updating the parameters after
every training example, we use a mini-batch approach where the parameters are
updated after seeing a subset of training data. As a result, updates based on the
average responses of a subset of problem instances are expected to be a good fit
for other problem instances.

5 Experimental Setup

All experiments were implemented using TensorFlow Quantum [2| and performed
on a quantum computer simulator!.

! The implementation is available on GitHub https://github.com/jzawalska/
qnn4qaoa.

https://github.com/jzawalska/qnn4qaoa
https://github.com/jzawalska/qnn4qaoa

Solving the TSP with a Hybrid Feedforward Neural Network 203

5.1 Data Preparation and Encoding

The first step was to create a data set consisting of 220 TSP instances by ran-
domly choosing pairs of city coordinates from the range (0,10000]. Since the
algorithm was executed on a quantum simulator, a feasible example to solve
consisted of four cities (N = 4). The matrix D of distances between cities was
determined as the Euclidean distance between the city coordinates. From the
perspective of optimizing the expectation value, to prevent having very small
and very large distances, we normalized the distances between the cities. Nor-
malization consisted in dividing all the distances by the maximum distance. To
select the weights for the elements of the QUBO cost function (1) we used a grid
search method, which resulted in the following choice of the values: a = 4,b = 1.
Using this equation, we obtained the cost function and then translated it into
the corresponding cost Hamiltonian H¢. As a mixing Hamiltonian, we used the
standard version that consists of Pauli-X gates applied on each qubit. Having
the cost and mixing Hamiltonians, we were able to generate the parameterized
quantum circuits that encoded the problem instances.

5.2 Training Phase

As input, the classical part of the network received the initial values of (v, 3)
and the value & corresponding to the importance of the weights of the network.
The quantum part of the network received 200 parameterized quantum circuits
representing the training data set of TSP instances. Training consisted of 20
epochs. The training data has been divided into mini-batches of size 10, so the
parameters (v, 3) were updated 400 times. As a classical optimizer, we used
Adam [6] (learning rate = 0.01, 3; = 0.9, B2 = 0.999, ¢ = 1077).

Using the trial-and-error method, it has been observed that if the value of
Z is not equal to 0, then it is very hard to find the parameters (v,3) that
would correctly approximate the cost function. As a result, the neural network’s
weights were ignored and the parameter values corresponded to the values of the
biases (y1 = b1, = ba,...,Vp = bap_1, B, = bgp). The quantum part of this
network was differentiated using the Adjoint method [8] which is very efficient
for simulations. We did not observe overfitting.

Since the network output depended only on the bias values, after training,
we received fixed (universal) parameters (v, 3) that do not rely on the problem
instance. To check the influence of the number of QAOA’s layers, we trained this
hybrid network separately for p € {1,...,10}.

5.3 Testing Phase and Reference Method

We used the test set that contained 20 TSP instances. For p € {1,...,10} we
evaluated each test example by substituting the trained values of the parameters
(v, 8) into the parameterized quantum circuit of the problem. For each test
example, we measured the expectation value and sampled the circuit 26 times

204 J. Zawalska and K. Rycerz

to calculate the number of feasible solutions. The feasible solutions are those that
do not violate the TSP constraints; although, they do not need to be optimal.

As a reference method, we used the same hybrid neural network model. How-
ever, each test example was optimized separately and the mean and standard
deviation were calculated after evaluating the test set with 20 examples. The
initial parameters (v, 3) were updated 400 times for each test case anew. This
choice of the reference method enabled us to discover if using universal param-
eters obtained after the training on a larger number of problems with the use
of mini-batch updates can yield equally good or better parameter values than
optimizing the parameters for each problem instance separately.

6 Results

The QAOA not only is highly dependent on the optimization procedure, but also
on the values of the initial parameters. After performing the experiments with
different versions of the initial parameters, we present a solution with a high
number of correct results and a solution that is trapped in a local minimum but
presents the advantage of the introduced method.

6.1 Solution with High Number of Correct Results

For the initial values v = (0,0,...), 3 = (0,0,...) the optimized values of the
parameters for p = 10 are presented in Fig. 2. This set of parameters returned
around 92% feasible solutions for a test 4-city TSP instance.

- B

0.3

0.2

0.1

Parameter values

0.0 A

—-0.1

—-0.2 1

Fig. 2. Optimized values of 7; and (3; for the circuit with depth p = 10.

Although we did not observe the pattern of the parameter values resembling
the adiabatic quantum computation process [4] (increasing « and decreasing 3),
the obtained results are promising.

Solving the TSP with a Hybrid Feedforward Neural Network 205

The results indicate that the larger the depth p of the circuit, the lower the
expectation value of the cost function (cf. Table1) and the greater the num-
ber of correct solutions (cf. Table?2), which is consistent with the theoretical
assumptions.

Table 1. Expectation values for the optimization with initial parameters (v,3) =
(0,...0,0,...,0).

p | Using universal parameters | Reference method
1 /17.03+0.19 17.03 £ 0.19
2 13.994+0.24 13.99 + 0.24
3 10.42+£0.25 10.42 £0.25
4 19.074+0.25 9.06 +0.25
5 |7.59+0.28 7.58 £0.28
6 | 5.55+0.27 5.55 +0.29
7 1478 £0.27 4.79 +0.52
8 14.30£0.27 4.29 + 0.26
9 3.61+£0.25 3.611+0.26
101 3.43+0.25 3.43 £ 0.25

The percentage of feasible solutions is based on the measurement of the output
repeated 26 times.

Table 2. Percent of solutions in the feasible space for the optimization with initial
parameters (v, 3) = (0,...0,0,...,0).

p | Using universal parameters | Reference method
1 2.34+0.06 2.34 +0.06
2 |5.80£0.24 5.85 +0.37
3 116.76 £ 0.53 16.78 £ 0.50
4 127.00+0.36 27.05 £ 0.58
5 |48.88 +0.24 48.88 £