
Roman Wyrzykowski
Jack Dongarra
Ewa Deelman
Konrad Karczewski (Eds.)

LN
CS

 1
38

27

Parallel Processing
and Applied Mathematics
14th International Conference, PPAM 2022
Gdansk, Poland, September 11–14, 2022
Revised Selected Papers, Part II

Lecture Notes in Computer Science 13827
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Roman Wyrzykowski · Jack Dongarra ·
Ewa Deelman · Konrad Karczewski
Editors

Parallel Processing
and Applied Mathematics
14th International Conference, PPAM 2022
Gdansk, Poland, September 11–14, 2022
Revised Selected Papers, Part II

Editors
Roman Wyrzykowski
Czestochowa University of Technology
Czestochowa, Poland

Ewa Deelman
University of Southern California
Marina del Rey, CA, USA

Jack Dongarra
University of Tennessee
Knoxville, TN, USA

Konrad Karczewski
Czestochowa University of Technology
Czestochowa, Poland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-30444-6 ISBN 978-3-031-30445-3 (eBook)
https://doi.org/10.1007/978-3-031-30445-3

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-30445-3

Preface

This volume comprises the proceedings of the 14th International Conference on Parallel
Processing and AppliedMathematics – PPAM 2022, which was held in Gdańsk, Poland,
September 11–14, 2022. It was organized by the Department of Computer Science of the
Częstochowa University of Technology together with the Gdańsk University of Tech-
nology, under the patronage of the Committee of Informatics of the Polish Academy
of Sciences, in technical cooperation with the Poznań Supercomputing and Network-
ing Center. Scheduled initially for the year 2021, the fourteenth edition of PPAM was
postponed to 2022 because of the COVID-19 pandemic. PPAM 2022 was primarily an
in-person event. However, the organizers also made provision for authors and delegates
to present, attend, and interact online.

PPAM is a biennial conference. Thirteen previous events have been held in different
places in Poland since 1994, when the first conference took place in Częstochowa. The
proceedings of the last ten conferences have been published by Springer in the Lecture
Notes in Computer Science series (Nałęczów, 2001, vol. 2328; Częstochowa, 2003, vol.
3019; Poznań, 2005, vol. 3911; Gdańsk, 2007, vol. 4967;Wrocław, 2009, vols. 6067 and
6068; Toruń, 2011, vols. 7203 and 7204; Warsaw, 2013, vols. 8384 and 8385; Kraków,
2015, vols. 9573 and 9574; Lublin, 2017, vols. 10777 and 10778; Białystok, 2019, vols.
12043 and 12044.

The PPAM conferences have become an international forum for exchanging ideas
between researchers involved in parallel and distributed computing, including theory
and applications, as well as applied and computational mathematics. The focus of PPAM
2022 was on models, algorithms, and software tools that facilitate efficient and conve-
nient utilization ofmodern parallel and distributed computing architectures, as well as on
large-scale applications, including artificial intelligence andmachine learning problems.
Special attention was given to the future of computing beyond Moore’s Law.

This meeting gathered about 170 participants from 25 countries, including about
130 in-person participants. One hundred thirty-two articles were submitted for review.
Each paper secured at least three single-blind reviews from program committee mem-
bers. A thorough peer-reviewing process that included discussion and agreement among
reviewers whenever necessary resulted in the acceptance of 76 contributed papers for
publication in the conference proceedings. For regular conference tracks, 33 papers were
selected from 62 submissions, giving an acceptance rate of about 53%.

The regular tracks covered such important fields of parallel/distributed/cloud
computing and applied mathematics as:

– Numerical algorithms and parallel scientific computing
– GPU computing
– Parallel non-numerical algorithms
– Performance analysis and prediction in HPC (high performance computing) systems
– Scheduling for parallel computing
– Environments and frameworks for parallel/cloud computing

vi Preface

– Applications of parallel and distributed computing
– Soft computing with applications

The keynote talks were presented by:

– Anima Anandkumar from the California Institute of Technology and Nvidia (USA)
– Hartwig Anzt from the Karlsruhe Institute of Technology (Germany) and University

of Tennessee (USA)
– Ivona Brandic from the Vienna University of Technology (Austria)
– Ümit V. Çatalyürek from Georgia Institute of Technology (USA)
– Jack Dongarra from the University of Tennessee and ORNL (USA)
– Torsten Hoefler from ETH Zurich (Switzerland)
– Georg Hager from the University of Erlangen-Nuremberg (Germany)
– Simon Knowles from Graphcore (UK)
– Satoshi Matsuoka from the Tokyo Institute of Technology (Japan)
– Michał Mrozek from Intel (Poland)
– Simon McIntosh-Smith from the University of Bristol (UK)
– Manish Parashar from Rutgers University (USA)
– Voica Radescu from IBM (Germany)
– Enrique S. Quintana-Orti from the Universitat Politècnica de València (Spain)
– John Shalf from the Lawrence Berkeley National Laboratory (USA)
– Michela Taufer from the University of Tennessee (USA)
– Christian Terboven from RWTH Aachen (Germany)
– Manuel Ujaldon from the University of Malaga Nvidia

Important and integral parts of the PPAM 2022 conference were the workshops:

– The 9th Workshop on Language-Based Parallel Programming (WLPP 2022) orga-
nized by Ami Marowka from the Bar-Ilan University (Israel).

– The 6thWorkshop onModels, Algorithms andMethodologies for Hybrid Parallelism
in New HPC Systems (MAMHYP 2022) organized by Marco Lapegna, Giulliano
Laccetti and Valeria Mele from the University of Naples Federico II (Italy), Raffaele
Montella from the University of Naples “Parthenope” (Italy), and Sokol Kosta from
Aalborg University Copenhagen (Denmark).

– The First Workshop on Quantum Computing and Communication organized by
Krzysztof Kurowski, Cezary Mazurek, and Piotr Rydlichowski from the Poznań
Supercomputing and Networking Center (Poland)

– The First Workshop on Applications of Machine Learning and Artificial Intelligence
in High Performance Computing organized by Sergio Iserte from the Universitat
Jaume I (Spain) andKrzysztof Rojek from theCzęstochowaUniversity of Technology
(Poland).

– The 9th Workshop on Scheduling for Parallel Computing organized by Maciej
Drozdowski from the Poznań University of Technology (Poland).

– The 4th Workshop on Applied High Performance Numerical Algorithms for PDEs
organized by Piotr Krzyżanowski and LeszekMarcinkowski fromWarsawUniversity
(Poland), Talal Rahman from Bergen University College (Norway), and Jan Valdman
from the University of South Bohemia (Czech Republic).

Preface vii

– The 5th Minisymposium on HPC Applications in Physical Sciences organized by
Grzegorz Kamieniarz and Michał Antkowiak from Adam Mickiewicz University in
Poznan (Poland).

– The 8th Minisymposium on High Performance Computing Interval Methods orga-
nized by Bartłomiej J. Kubica from the Warsaw University of Technology (Poland).

– The 7th Workshop on Complex Collective Systems organized by JarosławWąs from
the AGH University of Science and Technology (Poland), Tomasz Gwizdałła from
the University of Łódz (Poland) and Krzysztof Małecki from the West Pomeranian
University of Technology (Poland).

The PPAM 2022 meeting began with four tutorials:

– Introduction to Programming Graphcore IPU, by Graphcore (Pawel Gepner team).
– Fundamentals of Deep Learning using the Nvidia Deep Learning Institute infrastruc-

ture, by Manuel Ujaldon from the University of Malaga (Spain) and Nvidia.
– Quantum Computing, by IBM, and Poznań Supercomputing and Networking Center

(Poland).
– LUMI European Pre-Exascale Supercomputer Hands-on, by Maciej Szpindler and

Marek Magryś from the Academic Computer Centre Cyfronet AGH (Poland).

The PPAM Best Paper Award is given upon recommendation of the PPAM Chairs
and Program Committee in recognition of the research paper quality, originality, and
significance of the work in high performance computing. For the main track, the PPAM
2022 winners were:

– Rafael Ravedutti Lucio Machado, Jan Eitzinger, Harald Köstler and Gerhard Wellein
from the University of Erlangen-Nuremberg and Erlangen Regional Computing
Center, who submitted the paper “MD-Bench: A generic proxy-app toolbox for
state-of-the-art molecular dynamics algorithms”.

– Anna Sasak-Okoń from the Maria Curie-Skłodowska University and Marek Tudruj
from the Polish Academy of Sciences and Polish-Japanese Academy of Information
Technology, who presented the paper “RDBMS speculative support improvement by
the use of the query hypergraph representation”.

For workshops, the PPAM 2022 winners were Yu-Hsiang Tsai, Natalie Beams, and
Hartwig Anzt from the Karlsruhe Institute of Technology and the University of Ten-
nessee, who submitted the paper “Mixed Precision Algebraic Multigrid on GPUs”. To
stimulate potential authors’ interest in submitting high-quality articles to the PPAM
conference, one author of each winning paper will receive a significant reduction in the
conference fee for the next PPAM.

New Topic at PPAM 2022: First Workshop on Applications of Machine Learning
and Artificial Intelligence in High Performance Computing

Machine learning and artificial intelligencemethods have become pervasive in recent
years due to numerous algorithmic advances and the accessibility of computational
power. In high performance computing, these methods have been used to replace,
accelerate, or enhance existing solvers.

Research topics of this workshop focused on: (i) disruptive uses of HPC technologies
in the field ofAI (artificial intelligence),ML (machine learning), andDL (deep learning);

viii Preface

(ii) integration of predictive models to improve the performance of scientific applica-
tions in terms of execution time and/or simulation accuracy; (iii) workflow of applying
AI/ML/DL to scientific applications in HPC infrastructures; (iv) characterization and
study of how to use HPC techniques with AI/ML/DL; (v) HPC tools and infrastructure
to improve the usability of AI/ML/DL for scientific applications; (vi) optimized HPC
systems design and setup for efficient AI/ML/DL.

These topics were covered at a session that consisted of five presentations:

– adaptation of AI-accelerated CFD simulations to the IPU platform (by P.
Rościszewski, A. Krzywaniak, S. Iserte, K. Rojek, and P. Gepner)

– performance analysis of convolution algorithms for deep learning on edge processors
(by P. Alonso-Jorda, H. Martinez, E. S. Quintana-Orti, and C. Ramirez)

– machine learning-based online scheduling in distributed computing (by V. Toporkov,
D. Yemelyanov, and A. Bulkhak)

– high performance computing queue time prediction using clustering and regression
(by S. Hutchison, D. Andresen, M. Neilsen, W. Hsu, and B. Parsons)

– acceptance rates of invertible neural networks on electron spectra from near-critical
laser-plasmas: a comparison (by T. Miethlinger, N. Hoffmann, and T. Kluge).

New Topic at PPAM 2022: First Workshop on Quantum Computing and Communi-
cation

The dedicated workshop focused on two relevant quantum technology areas: quan-
tum computation and communication. The main goal of this event was to bring together
scientists and practitioners experimenting with different software and hardware in the
existing Noisy Intermediate-Scale Quantum (NISQ) era. This workshop was also an
excellent opportunity to catch up on taking advantage of quantum computing, par-
ticularly Adiabatic Quantum Computing, and communication technologies from the-
oretical and practical angles. There are many exciting research topics today, from the
design of quantum algorithms, experiments on early access quantum devices, and per-
formance analysis of classical-quantum approaches to early experiences with quantum
communication applications and distributed quantum testbeds.

Therefore, the workshop consisted of nine presentations on various exciting topics
delivered during two sessions:

– An analysis of the potential of quantum computing by examining problems involved
with determining the worst-case execution time of a restricted set of programs (by
Gabriella Bettonte, Stephane Louise, and Renaud Sirdey)

– A study of LDPC decoding using quantum annealing (by Aditya Das Sarma, Utso
Majumder, Vishnu Vaidya, M Girish Chandra, Anil Kumar, and Sayantan Pramanik)

– An overview of ongoing Quantum Key Distribution (QKD) communication tech-
nology in operational networks within commercial network operators and national
research and education networks in Europe (by Piotr Rydlichowski)

– A newQUBO-based algorithm for the scheduling of heterogeneous tasks on unrelated
parallelmachines problem solved using quantum annealing (by F.Orts, A.M. Puertas,
E. M. Garzon, and G. Ortega)

– An approach to studying specific aspects of quantum entanglement contained in the
bipartite pure quantum states (by Roman Gielerak and Marek Sawerwain)

Preface ix

– A study of a set of early experiments with a photonic quantum simulator for solving
the job shop scheduling problem (by Mateusz Slysz, Krzysztof Kurowski, and Jan
Weglarz)

– A proposal for solving the traveling salesman problem with a hybrid quantum-
classical feedforward neural network (by Justyna Zawalska, and Katarzyna Rycerz)

– An analysis of the Eisert-Wilkens-Lewenstein scheme of quantum extension for
selected games on the example of Prisoners Dilemma (by Piotr Kotara, Tomasz
Zawadzki, and Katarzyna Rycerz)

– A new approach to generative quantum machine learning and description of a proof-
of-principle experiment (by Karol Bartkiewicz, Patrycja Tulewicz, Jan Roik, and
Karel Lemr).

The organizers are indebted to PPAM 2022’s sponsors, whose support was vital to
the conference’s success. The main sponsors were the Intel Corporation and Graphcore;
the others were Hewlett Packard Enterprise, Koma Nord, and Inspur. We thank all the
International Program Committee members and additional reviewers for their diligent
work in refereeing the submitted papers. Finally, we thank all of the local organizers from
the Częstochowa University of Technology and the Gdańsk University of Technology,
who helped us to run the event very smoothly. We are especially indebted to Łukasz
Kuczyński, Marcin Woźniak, Tomasz Chmiel, Piotr Dzierżak, Anna Woźniak, and Ewa
Szymczyk from the Częstochowa University of Technology; and to Paweł Czarnul and
Mariusz Matuszek from the Gdańsk University of Technology.

We hope that this volume will be useful to you. We would like everyone who reads
it to feel invited to the next conference, PPAM 2024, which will be held on September
8–11, 2024.

January 2023 Roman Wyrzykowski
Jack Dongarra
Ewa Deelman

Konrad Karczewski

Organization

Program Committee

Jan Węglarz (Honorary Chair) Poznań University of Technology, Poland
Roman Wyrzykowski (Chair of

Program Committee)
Częstochowa University of Technology, Poland

Ewa Deelman (Vice-chair of
Program Committee)

University of Southern California, USA

Konrad Karczewski (Vice-chair
for Publication)

Częstochowa University of Technology, Poland

Marco Lapegna (Vice-chair for
Tutorials)

University of Naples Federico II, Italy

Robert Adamski Intel Corporation, Poland
Francisco Almeida Universidad de La Laguna, Spain
Pedro Alonso Universidad Politécnica de Valencia, Spain
Alexander Antonov Moscov State University, Russian Federation
Hartwig Anzt Karlsruhe Institute of Technology, Germany, and

University of Tennessee, USA
Peter Arbenz ETH Zurich, Switzerland
Cevdet Aykanat Bilkent University, Turkey
Marc Baboulin University of Paris-Sud, France
David A. Bader New Jersey Institute of Technology, USA
Michael Bader TU Munchen, Germany
Bartosz Baliś Institute of Computer Science AGH, Poland
Piotr Bała ICM, Warsaw University, Poland
Krzysztof Banaś AGH University of Science and Technology,

Poland
Jorge G. Barbosa Universidade de Porto, Portugal
Olivier Beaumont Inria Bordeaux, France
Włodzimierz Bielecki West Pomeranian University of Technology,

Poland
Paolo Bientinesi Umea University, Sweden
Jacek Błażewicz Poznań University of Technology, Poland
Pascal Bouvry University of Luxembourg, Luxembourg
Jerzy Brzeziński Poznań University of Technology, Poland
Marian Bubak AGH Kraków, Poland, and University of

Amsterdam, The Netherlands

xii Organization

Tadeusz Burczyński Polish Academy of Sciences, Warsaw
Christopher Carothers Rensselaer Polytechnic Institute, USA
Jesus Carretero Universidad Carlos III de Madrid, Spain
Andrea Clematis IMATI-CNR, Italy
Paweł Czarnul Gdańsk University of Technology, Poland
Zbigniew Czech Silesia University of Technology, Poland
Davor Davidovic Ruder Boskovic Institute, Croatia
Jack Dongarra University of Tennessee and ORNL, USA
Maciej Drozdowski Poznań University of Technology, Poland
Mariusz Flasiński Jagiellonian University, Poland
Tomas Fryza Brno University of Technology, Czech Republic
Lin Gan Tsinghua University and National

Supercomputing Center in Wuxi, China
Jose Daniel Garcia Universidad Carlos III de Madrid, Spain
Pawel Gepner Graphcore, Poland
Shamsollah Ghanbari Iranian Distributed Computing and Systems

Society, Iran
Domingo Gimenez University of Murcia, Spain
Jacek Gondzio University of Edinburgh, UK
Andrzej Gościński Deakin University, Australia
Georg Hager University of Erlangen-Nuremberg, Germany
José R. Herrero Universitat Politècnica de Catalunya, Spain
Ladislav Hluchy Slovak Academy of Sciences, Slovakia
Sasha Hunold Vienna University of Technology, Austria
Roman Iakymchuk Umea University, Sweden
Aleksandar Ilic Technical University of Lisbon, Portugal
Krzysztof Jurczuk Białystok University of Technology, Poland
Grzegorz Kamieniarz Adam Mickiewicz University, Poland
Eleni Karatza Aristotle University of Thessaloniki, Greece
Jacek Kitowski Institute of Computer Science, AGH, Poland
Joanna Kołodziej NASK and Cracow University of Technology,

Poland
Jozef Korbicz University of Zielona Góra, Poland
Tomas Kozubek Technical University of Ostrava, Czech Republic
Dieter Kranzlmueller Ludwig-Maximillian University and Leibniz

Supercomputing Centre, Germany
Henryk Krawczyk Gdańsk University of Technology, Poland
Carola Kruse CERFACS, France
Piotr Krzyżanowski University of Warsaw, Poland
Krzysztof Kurowski PSNC, Poland
Jan Kwiatkowski Wrocław University of Technology, Poland
Giulliano Laccetti University of Naples Federico II, Italy

Organization xiii

Alexey Lastovetsky University College Dublin, Ireland
Joao Lourenco University Nova of Lisbon, Portugal
Tze Meng Low Carnegie Mellon University, USA
Hatem Ltaief KAUST, Saudi Arabia
Piotr Luszczek University of Tennessee, USA
Maciej Malawski Sano Center for Computational Medicine and

Institute of Computer Science AGH, Poland
Allen D. Malony University of Oregon, USA
Victor E. Malyshkin Siberian Branch, Russian Academy of Sciences,

Russia
Tomas Margalef Universitat Autònoma de Barcelona, Spain
Svetozar Margenov Bulgarian Academy of Sciences, Sofia
Ami Marowka Bar-Ilan University, Israel
Norbert Meyer PSNC, Poland
Iosif Meyerov Lobachevsky State University of Nizhni

Novgorod, Russian Federation
Marek Michalewicz ICM, Warsaw University, Poland
Carl Ch. K. Mikkelsen Umea University, Sweden
Ricardo Morla INESC Porto, Portugal
Daichi Mukunoki Riken Center for Computational Science, Japan
Jarek Nabrzyski University of Notre Dame, USA
Koji Nakano Hiroshima University, Japan
Raymond Namyst University of Bordeaux and Inria, France
Edoardo Di Napoli Forschungszentrum Juelich, Germany
Gabriel Oksa Slovak Academy of Sciences, Slovakia
Tomasz Olas Częstochowa University of Technology, Poland
Ariel Oleksiak PSNC, Poland
Marcin Paprzycki IBS PAN and SWPS University, Poland
Dana Petcu West University of Timisoara, Romania
Loic Pottier University of Southern California, USA
Radu Prodan University of Innsbruck, Austria
Enrique S. Quintana-Ortí Universitat Politècnica de València, Spain
Thomas Rauber University of Bayreuth, Germany
Lubomir Riha Technical University of Ostrava, Czech Republic
Krzysztof Rojek Częstochowa University of Technology, Poland
Witold Rudnicki University of Białystok, Poland
Leszek Rutkowski Częstochowa University of Technology, Poland
Krzysztof Rzadca Warsaw University, Poland
Robert Schaefer Institute of Computer Science, AGH, Poland
Stanislav Sedukhin University of Aizu, Japan
Franciszek Seredyński Cardinal Stefan Wyszyński University in Warsaw,

Poland

xiv Organization

Sebastiano F. Schifano University of Ferrara, Italy
Jurij Silc Jozef Stefan Institute, Slovenia
Renata Słota Institute of Computer Science, AGH, Poland
Masha Sosonkina Old Dominion University, USA
Leonel Sousa Technical University of Lisbon, Portugal
Vladimir Stegailov Joint Institute for High Temperatures of RAS and

MIPT/HSE, Russian Federation
Przemysław Stpiczyński Maria Curie-Skłodowska University, Poland
Robert Strzodka University of Heidelberg, Germany
Lukasz Szustak Częstochowa University of Technology, Poland
Boleslaw Szymanski Rensselaer Polytechnic Institute, USA
Domenico Talia University of Calabria, Italy
Andrei Tchernykh CICESE Research Center, Mexico
Christian Terboven RWTH Aachen, Germany
Parimala Thulasiraman University of Manitoba, Canada
Sivan Toledo Tel-Aviv University, Israel
Victor Toporkov National Research University “MPEI”, Russian

Federation
Roman Trobec Jozef Stefan Institute, Slovenia
Giuseppe Trunfio University of Sassari, Italy
Denis Trystram Grenoble Institute of Technology, France
Marek Tudruj Polish Academy of Sciences and Polish-Japanese

Academy of Information Technologies, Poland
Bora Ucar École Normale Supérieure de Lyon, France
Marian Vajtersic Salzburg University, Austria
Vladimir Voevodin Moscow State University, Russian Federation
Bogdan Wiszniewski Gdańsk University of Technology, Poland
Andrzej Wyszogrodzki Institute of Meteorology and Water Management,

Poland
Ramin Yahyapour University of Göttingen/GWDG, Germany
Krzysztof Zielinski Institute of Computer Science, AGH, Poland
Julius Žilinskas Vilnius University, Lithuania
Jarosław Żola University of Buffalo, USA

Steering Committee

Jack Dongarra University of Tennessee and ORNL, USA
Leszek Rutkowski Częstochowa University of Technology, Poland
Boleslaw Szymanski Rensselaer Polytechnic Institute, USA

Contents – Part II

9th Workshop on Language-Based Parallel Programming
(WLPP 2022)

Kokkos-Based Implementation of MPCD on Heterogeneous Nodes 3
Rene Halver, Christoph Junghans, and Godehard Sutmann

Comparison of Load Balancing Schemes for Asynchronous Many-Task
Runtimes . 14

Lukas Reitz, Kai Hardenbicker, and Claudia Fohry

New Insights on the Revised Definition of the Performance Portability
Metric . 27

Ami Marowka

Inferential Statistical Analysis of Performance Portability 39
Ami Marowka

NPDP Benchmark Suite for Loop Tiling Effectiveness Evaluation 51
Marek Palkowski and Wlodzimierz Bielecki

Parallel Vectorized Implementations of Compensated Summation
Algorithms . 63

Beata Dmitruk and Przemysław Stpiczyński

6th Workshop on Models, Algorithms and Methodologies for Hybrid
Parallelism in New HPC Systems (MAMHYP 2022)

Malleability Techniques for HPC Systems . 77
Jesus Carretero, David Exposito, Alberto Cascajo, and Raffaele Montella

Algorithm and Software Overhead: A Theoretical Approach
to Performance Portability . 89

Valeria Mele and Giuliano Laccetti

Benchmarking a High Performance Computing Heterogeneous Cluster 101
Luisa Carracciuolo, Davide Bottalico, Davide Michelino,
Gianluca Sabella, and Bernardino Spisso

xvi Contents – Part II

A Generative Adversarial Network Approach for Noise and Artifacts
Reduction in MRI Head and Neck Imaging . 115

Salvatore Cuomo, Francesco Fato, Lorenzo Ugga, Gaia Spadarella,
Reanto Cuocolo, Fabio Giampaolo, and Francesco Piccialli

A GPU Accelerated Hyperspectral 3D Convolutional Neural Network
Classification at the Edge with Principal Component Analysis
Preprocessing . 127

Gianluca De Lucia, Marco Lapegna, and Diego Romano

Parallel gEUD Models for Accelerated IMRT Planning on Modern HPC
Platforms . 139

Juan José Moreno, Janusz Miroforidis, Ignacy Kaliszewski,
and Gracia Ester Martín Garzón

First Workshop on Quantum Computing and Communication

On Quantum-Assisted LDPC Decoding Augmented with Classical
Post-processing . 153

Aditya Das Sarma, Utso Majumder, Vishnu Vaidya, M Girish Chandra,
A Anil Kumar, and Sayantan Pramanik

Quantum Annealing to Solve the Unrelated Parallel Machine Scheduling
Problem . 165

Francisco Orts, Antonio M. Puertas, Ester M. Garzón, and Gloria Ortega

Early Experiences with a Photonic Quantum Simulator for Solving Job
Shop Scheduling Problem . 177

Mateusz Slysz, Krzysztof Kurowski, and Jan Węglarz

Some Remarks on Super-Gram Operators for General Bipartite Quantum
States . 187

Roman Gielerak and Marek Sawerwain

Solving the Traveling Salesman Problemwith a Hybrid Quantum-Classical
Feedforward Neural Network . 199

Justyna Zawalska and Katarzyna Rycerz

Software Aided Analysis of EWL Based Quantum Games 209
Piotr Kotara, Tomasz Zawadzki, and Katarzyna Rycerz

Contents – Part II xvii

First Workshop on Applications of Machine Learning and Artificial
Intelligence in High Performance Computing (WAML 2022)

Adaptation of AI-Accelerated CFD Simulations to the IPU Platform 223
Paweł Rościszewski, Adam Krzywaniak, Sergio Iserte, Krzysztof Rojek,
and Paweł Gepner

Performance Analysis of Convolution Algorithms for Deep Learning
on Edge Processors . 236

Pedro Alonso-Jordá, Héctor Martínez, Enrique S. Quintana-Ortí,
and Cristian Ramírez

Machine Learning-Based Online Scheduling in Distributed Computing 248
Victor Toporkov, Dmitry Yemelyanov, and Artem Bulkhak

High Performance Computing Queue Time Prediction Using Clustering
and Regression . 260

Scott Hutchison, Daniel Andresen, Mitchell Neilsen, William Hsu,
and Benjamin Parsons

Acceptance Rates of Invertible Neural Networks on Electron Spectra
from Near-Critical Laser-Plasmas: A Comparison . 273

Thomas Miethlinger, Nico Hoffmann, and Thomas Kluge

4th Workshop on Applied High Performance Numerical Algorithms
for PDEs

MATLAB Implementation of Hp Finite Elements on Rectangles Using
Hierarchical Basis Functions . 287

Alexej Moskovka and Jan Valdman

Adaptive Parallel Average Schwarz Preconditioner for Crouzeix-Raviart
Finite Volume Method . 300

Leszek Marcinkowski and Talal Rahman

Parareal Method for Anisotropic Diffusion Denoising . 313
Xiujie Shan and Martin B. van Gijzen

Comparison of Block Preconditioners for the Stokes Problem
with Discontinuous Viscosity and Friction . 323

Piotr Krzyżanowski

On Minimization of Nonlinear Energies Using FEM in MATLAB 331
Alexej Moskovka, Jan Valdman, and Marta Vohnoutová

xviii Contents – Part II

A Model for Crowd Evacuation Dynamics: 2D Numerical Simulations 343
Maria Gokieli

5th Minisymposium on HPC Applications in Physical Sciences

Parallel Identification of Unique Sequences in Nuclear Structure
Calculations . 357

Daniel Langr and Tomáš Dytrych

Experimental and Computer Study of Molecular Dynamics of a New
Pyridazine Derivative . 370

Sebastian Wołoszczuk, Aneta Woźniak-Braszak, Andrzej Olejniczak,
and Michał Banaszak

Description of Magnetic Nanomolecules by the Extended Multi-orbital
Hubbard Model: Perturbative vs Numerical Approach . 382

Romuald Lemański and Michał Antkowiak

Structural and Electronic Properties of Small-Diameter Carbon
NanoTubes: A DFT Study . 392

Bartosz Brzostowski, Artur P. Durajski, Konrad M. Gruszka,
and Jacek Wojtkiewicz

8th Minisymposium on High Performance Computing Interval
Methods

Need for Techniques Intermediate Between Interval and Probabilistic Ones 405
Olga Kosheleva and Vladik Kreinovich

A Cross-Platform Benchmark for Interval Computation Libraries 415
Xuan Tang, Zachary Ferguson, Teseo Schneider, Denis Zorin,
Shoaib Kamil, and Daniele Panozzo

Testing Interval Arithmetic Libraries, Including Their IEEE-1788
Compliance . 428

Nathalie Revol, Luis Benet, Luca Ferranti, and Sergei Zhilin

A Survey of Interval Algorithms for Solving Multicriteria Analysis
Problems . 441

Bartłomiej Jacek Kubica

Contents – Part II xix

7th Workshop on Complex Collective Systems

Social Fragmentation Transitions in Large-Scale Parameter Sweep
Simulations of Adaptive Social Networks . 459

Hiroki Sayama

Parking Search in Urban Street Networks: Taming Down the Complexity
of the Search-Time Problem via a Coarse-Graining Approach 470

Léo Bulckaen, Nilankur Dutta, and Alexandre Nicolas

A Multi-agent Cellular Automata Model of Lane Changing Behaviour
Considering the Aggressiveness and the Autonomy . 481

Krzysztof Małecki, Piotr Wróbel, and Patryk Górka

Comparison of the Use of UWB and BLE as Positioning Methods
in Data-Driven Modeling of Pedestrian Dynamics . 492

Dariusz Pałka, Robert Lubaś, Giuseppe Vizzari, and Jarosław Wąs

An Insight into the State-of-the-Art Vehicular Fog Computing
with an Opportunistic Flavour . 502

Krzysztof Ostrowski and Krzysztof Małecki

Author Index . 515

Contents – Part I

Numerical Algorithms and Parallel Scientific Computing

How Accurate Does Newton Have to Be? . 3
Carl Christian Kjelgaard Mikkelsen, Lorién López-Villellas,
and Pablo García-Risueño

General Framework for Deriving Reproducible Krylov Subspace
Algorithms: BiCGStab Case . 16

Roman Iakymchuk, Stef Graillat, and José I. Aliaga

A Generalized Parallel Prefix Sums Algorithm for Arbitrary Size Arrays 30
Andrzej Sikorski, Izajasz Wrosz, and Michał Lewandowski

Infinite-Precision Inner Product and Sparse Matrix-Vector Multiplication
Using Ozaki Scheme with Dot2 on Manycore Processors . 40

Daichi Mukunoki, Katsuhisa Ozaki, Takeshi Ogita,
and Toshiyuki Imamura

Advanced StochasticApproaches forAppliedComputing in Environmental
Modeling . 55

Venelin Todorov, Ivan Dimov, Maria Ganzha, and Marcin Paprzycki

Parallel Non-numerical Algorithms

Parallel Suffix Sorting for Large String Analytics . 71
Zhihui Du, Sen Zhang, and David A. Bader

Parallel Extremely Randomized Decision Forests on Graphics Processors
for Text Classification . 83

Julio Cesar Batista Pires and Wellington Santos Martins

RDBMS Speculative Support Improvement by the Use of the Query
Hypergraph Representation . 95

Anna Sasak-Okoń and Marek Tudruj

GPU Computing

Mixed Precision Algebraic Multigrid on GPUs . 113
Yu-Hsiang Mike Tsai, Natalie Beams, and Hartwig Anzt

xxii Contents – Part I

Compact In-Memory Representation of Decision Trees
in GPU-Accelerated Evolutionary Induction . 126

Krzysztof Jurczuk, Marcin Czajkowski, and Marek Kretowski

Neural Nets with a Newton Conjugate Gradient Method on Multiple GPUs 139
Severin Reiz, Tobias Neckel, and Hans-Joachim Bungartz

Performance Analysis and Prediction in HPC Systems

Exploring Techniques for the Analysis of Spontaneous Asynchronicity
in MPI-Parallel Applications . 155

Ayesha Afzal, Georg Hager, Gerhard Wellein, and Stefano Markidis

Cost and Performance Analysis of MPI-Based SaaS on the Private Cloud
Infrastructure . 171

Oleg Bystrov, Arnas Kačeniauskas, and Ruslan Pacevič

Building a Fine-Grained Analytical Performance Model for Complex
Scientific Simulations . 183

Jelle van Dijk, Gabor Zavodszky, Ana-Lucia Varbanescu,
Andy D. Pimentel, and Alfons Hoekstra

Evaluation of Machine Learning Techniques for Predicting Run Times
of Scientific Workflow Jobs . 197

Bartosz Balis and Michal Grabowski

Smart Clustering of HPC Applications Using Similar Job Detection
Methods . 209

Denis Shaikhislamov and Vadim Voevodin

Scheduling for Parallel Computing

Distributed Work Stealing in a Task-Based Dataflow Runtime 225
Joseph John, Josh Milthorpe, and Peter Strazdins

Task Scheduler for Heterogeneous Data Centres Based on Deep
Reinforcement Learning . 237

Jaime Fomperosa, Mario Ibañez, Esteban Stafford, and Jose Luis Bosque

Shisha: Online Scheduling of CNN Pipelines on Heterogeneous
Architectures . 249

Pirah Noor Soomro, Mustafa Abduljabbar, Jeronimo Castrillon,
and Miquel Pericàs

Contents – Part I xxiii

Proactive Task Offloading for Load Balancing in Iterative Applications 263
Minh Thanh Chung, Josef Weidendorfer, Karl Fürlinger,
and Dieter Kranzlmüller

Environments and Frameworks for Parallel/Cloud Computing

Language Agnostic Approach for Unification of Implementation Variants
for Different Computing Devices . 279

Anshu Dubey and Tom Klosterman

High Performance Dataframes from Parallel Processing Patterns 291
Niranda Perera, Supun Kamburugamuve, Chathura Widanage,
Vibhatha Abeykoon, Ahmet Uyar, Kaiying Shan, Hasara Maithree,
Damitha Lenadora, Thejaka Amila Kanewala, and Geoffrey Fox

Global Access to Legacy Data-Sets in Multi-cloud Applications
with Onedata . 305

Michał Orzechowski, Michał Wrzeszcz, Bartosz Kryza, Łukasz Dutka,
Renata G. Słota, and Jacek Kitowski

Applications of Parallel and Distributed Computing

MD-Bench: A Generic Proxy-App Toolbox for State-of-the-Art Molecular
Dynamics Algorithms . 321

Rafael Ravedutti Lucio Machado, Jan Eitzinger, Harald Köstler,
and Gerhard Wellein

Breaking Down the Parallel Performance of GROMACS,
a High-Performance Molecular Dynamics Software . 333

Måns I. Andersson, Natarajan Arul Murugan, Artur Podobas,
and Stefano Markidis

GPU-Based Molecular Dynamics of Turbulent Liquid Flows with OpenMM . . . 346
Daniil Pavlov, Daniil Kolotinskii, and Vladimir Stegailov

ANovel ParallelApproach forModeling theDynamics ofAerodynamically
Interacting Particles in Turbulent Flows . 359

Ahmad Ababaei, Antoine Michel, and Bogdan Rosa

Reliable Energy Measurement on Heterogeneous Systems–on–Chip
Based Environments . 371

Alberto Cabrera, Pavel Nichita, Sergio Afonso, Francisco Almeida,
and Vicente Blanco

xxiv Contents – Part I

Distributed Objective Function Evaluation for Optimization of Radiation
Therapy Treatment Plans . 383

Felix Liu, Måns I. Andersson, Albin Fredriksson, and Stefano Markidis

Soft Computing with Applications

GPU4SNN: GPU-Based Acceleration for Spiking Neural Network
Simulations . 399

Nitin Satpute, Anna Hambitzer, Saeed Aljaberi, and Najwa Aaraj

Ant System Inspired Heuristic Optimization of UAVs Deployment
for k-Coverage Problem . 414

Krzysztof Trojanowski, Artur Mikitiuk, and Jakub Grzeszczak

Dataset Related Experimental Investigation of Chess Position Evaluation
Using a Deep Neural Network . 429

Dawid Wieczerzak and Paweł Czarnul

Using AI-based Edge Processing in Monitoring the Pedestrian Crossing 441
Łukasz Karbowiak and Mariusz Kubanek

Special Session on Parallel EVD/SVD and its Application in Matrix
Computations

Automatic Code Selection for the Dense Symmetric Generalized
Eigenvalue Problem Using ATMathCoreLib . 453

Masato Kobayashi, Shuhei Kudo, Takeo Hoshi, and Yusaku Yamamoto

On Relative Accuracy of the One-Sided Block-Jacobi SVD Algorithm 464
Gabriel Okša and Martin Bečka

Author Index . 477

9th Workshop on Language-Based
Parallel Programming (WLPP 2022)

Kokkos-Based Implementation of MPCD
on Heterogeneous Nodes

Rene Halver1 , Christoph Junghans2 , and Godehard Sutmann1,3(B)

1 Jülich Supercomputing Centre, Institute for Advanced Simulation,
Forschungszentrum Jülich, 52425 Jülich, Germany

{r.halver,g.sutmann}@fz-juelich.de
2 Los Alamos National Laboratory, CCS-7, 87545 Los Alamos, NM, USA

junghans@lanl.gov
3 ICAMS, Ruhr-University Bochum, 44801 Bochum, Germany

Abstract. The Kokkos based library Cabana, which has been devel-
oped in the Co-design Center for Particle Applications (CoPA), is used
for the implementation of Multi-Particle Collision Dynamics (MPCD),
a particle-based description of hydrodynamic interactions. It allows a
performance portable implementation, which has been used to study the
interplay between CPU and GPU usage on a multi-node system. As a
result, we see most advantages in a homogeneous GPU usage, but we
also discuss the extent to heterogeneous applications, using both CPU
and GPU concurrently.

Keywords: Kokkos · Multi-particle collision dynamics ·
GPU-computing · particle simulations · performance portability

1 Introduction

The recent development of high-end parallel architectures shows a clear trend
to a heterogeneity of compute components, pointing towards a dominance of
General Purpose Graphics Processing Units (GPU) as accelerator components,
compared to the Central Processing Units (CPU). According to the Top 500
list [4], more than 25% of the machines have GPU support while the overall per-
formance share is more than 40%, i.e., heterogeneous cluster architectures have a
large impact for high compute performance. Often these nodes consist of only a
few multicore CPUs, while supporting 2–6 GPUs. In many applications one can
observe a trend that the most powerful component of the nodes, i.e. the GPUs,
is addressed, while the CPUs are used as administrating or data management
components. A reason might be the additional overhead in writing/maintaining
two different code versions for each architecture, as usually a CPU code cannot
simply run on a GPU or vice versa.

With the advent of performance portable programming models, such as
Kokkos [6] or Raja [16] it has become possible to use the same code base for
different architectures, most prominently including CPUs or GPUs. It might
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 3–13, 2023.
https://doi.org/10.1007/978-3-031-30445-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_1&domain=pdf
http://orcid.org/0000-0002-4895-3762
http://orcid.org/0000-0003-0925-1458
http://orcid.org/0000-0002-9004-604X
https://doi.org/10.1007/978-3-031-30445-3_1

4 R. Halver et al.

be tempting to use the full capacity of a compute-node concurrently, i.e. not
wasting compute resources because of the disparate character of the architec-
ture and programming model. In this case one encounters both different perfor-
mance characteristics of components and possibly a non-negligible data transfer
between components. This discrepancy might be targeted by load balancing
strategies which would need to take into account hardware and software specific
characteristics to achieve an overall performance gain.

In the present paper we consider a stochastic particle based method for the
simulation of hydrodynamic phenomena, i.e. the Multi-Particle Collision Dynam-
ics (MPCD) [8] algorithm and its implementation with Cabana [2,14,17], a
Kokkos based library. We first introduce the underlying MPCD method and
then describe the Cabana library. We then present some benchmark results and
finally draw conclusions from our findings and give some outlook for further
research.

2 Multi-Particle Collision Dynamics

MPCD is a particle-based description for hydrodynamic interactions in an incom-
pressible fluid. The method is based on a stochastic collision scheme in which
particles, that describe the simulated fluid are rotated in velocity space while con-
serving linear momentum and energy (variants exist which also conserve angular
momentum [8]). The method proceeds by sorting particles into a regular mesh
with grid cells of size of a characteristic length scale. In order to transport
momentum and energy across the system, the mesh is randomly shifted in each
time step, changing the local environment of each particle stochastically. For
each particle in a cell its relative velocity with respect to the center-of-mass
(com) velocity of the cell is computed. This velocity is split into a parallel and
perpendicular component with respect to a randomly oriented axis in the cell.
Consequently, the perpendicular component is rotated around that axis by a
fixed angle, which determines together with the particle mass and density, the
time step and the cell length the diffusion and viscosity of the fluid under consid-
eration. This procedure can be shown to mimic hydrodynamic behaviour and, in
a limiting case, enters into the Navier Stokes equations [8]. Using this procedure
the conservation of linear momentum and energy is guaranteed and can also
be coupled to embedded particles, simulated by other methods, e.g. molecular
dynamics, thereby coupling particle dynamics to a hydrodynamic medium [8,12].

From an algorithmic point of view, three main parts can be identified, i.e. (i)
the local identification of particles in the underlying cell structure and the com-
putation of com velocities of cells; (ii) the computation of the relative velocities
of particles with respect to the com velocity of a cell; (iii) rotation of perpen-
dicular velocity component of particles around a random axis. These parts will
be discussed separately in Sect. 3 in more detail in the context of the Cabana
implementation.

Kokkos-Based Implementation of MPCD on Heterogeneous Nodes 5

Fig. 1. Illustration of the shifted collision cell grid (black, dashed) in comparison to
the static logical cell grid (black, solid). The grey cells mark the periodic images of the
shifted grid. (Color figure online)

3 Implementation with Cabana

The aim of the implementation was to write a code, that is performance portable
between clusters consisting of CPU and clusters with GPU nodes, which often
consist of one or two CPUs and a number of GPUs ranging from two to six.
Maintaining two or more codebases for all targeted architectures increases the
overhead time of, e.g., design or maintenance time, and calls for solutions which
allow a unified approach for various architectures.

For this reason performance portable programming models are attractive
for reducing time spent with porting codes to various architectures. One of the
more popular programming models in this regard is Kokkos [6], which provides
an abstraction layer for data structures, called Views, while providing differ-
ent ExecutionSpaces which can either be on the host (usually the CPU) or on
devices, i.e. GPUs or other accelerator cards, e.g. Intel KNLs. Kokkos uses differ-
ent backends to provide this performance portability, e.g. CUDA for the use of
NVIDIA GPUs or ROCm for the use of AMD GPUs. Furthermore, OpenMP or
PThread backends can be used among others to utilise multicore architectures
of CPUs.
Within the Exascale Computing Project (ECP) [5] funded by the Department
of Energy (DoE) in the USA, the Co-Design Center for Particle Applications
(CoPA) [3] developed a performance portable library, based on Kokkos, with
the main focus of supporting the development of particle and grid based codes
on HPC systems. Cabana not only provides data structures based on Kokkos
Views but also provides routines in order to facilitate data transfer between dif-
ferent processes in a distributed-memory environment, based on MPI.
Since the MPCD method is a mixture of a particle and a grid based method (due
to the requirement to sort the particles into cells), the implementation of the
MPCD code using Cabana was considered reasonable. In the rest of the section
the main points of the implementation will be presented.

6 R. Halver et al.

3.1 Collection of Particles in Cells

Before the com velocity for a cell can be calculated, it is necessary to identify
the particles that reside in each collision cell. One technique to achieve this
is the linked-cell list. Accordingly, all particles are checked and flagged with a
cell identifier to which they belong to. In addition, a (linked) list of particles
belonging to the cell is created. Listing 1.1 shows how such a list is created in
Cabana. The use of Cabana simplifies the creation of such a linked cell list, as
Cabana deals with the issues of creating a linked cell list in a multithreaded
environment, as described e.g. in [11] or [15].

Listing 1.1. Creation of the linked cell list of the shifted collision cell grid

// boundaries of spacial domains

double gridMin [3], gridMax [3];

for (int d = 0; d < 3; ++d)

{

gridMin[d] = domBorders (2*d) - (double)haloWidth

* cellSize(d) + offset(d);

gridMax[d] = domBorders (2*d+1) + (double)haloWidth

* cellSize(d) + offset(d);

}

// creating the linked cell list

// r = list of particle positions

// cellSize = size of linked cells (3d)

Cabana :: LinkedCellList <DeviceType >

linkedList(r, cellSize , gridMin , gridMax);

// permute the particle AoSoA to correspond to the cells

Cabana :: permute(linkedList , particles);

3.2 Communication of Required Information

As described in Sect. 2, it is necessary to compute the com velocity, i.e. the veloc-
ity in a zero momentum frame with regard to the local collision cell [7], in order
to calculate the collisions within each mesh cell, which requires all velocities and
masses of particles that reside within the given collision cell. The underlying par-
allel algorithm is based on a domain decomposition, where compute resources
administrate geometrical spatial regions which are connected. Since the underly-
ing mesh is shifted in each time step cells might be split among several domains.
To compute a unique value for the com velocity, one can either collect all par-
ticles together with their properties on a local domain or one can compute the
partial com velocities on each local domain and then reduce this value among
those processes which share the given cell.

The first of these methods has the advantage that since all particles are col-
lected on a single domain, the computation of the com velocity and the following
rotation of velocities can be executed without the need of additional communica-
tion steps in between. The disadvantage is that it requires the communication of
particle data in each time step, since the collision cell mesh needs to be shifted in

Kokkos-Based Implementation of MPCD on Heterogeneous Nodes 7

each time step to avoid artefacts in the computation of the hydrodynamic inter-
actions. Listing 1.2 shows the necessary steps to prepare the particle migration
between domains. Shown here is a way to try to avoid unnecessary branching
while determining the target processes for particles. This is done by masking the
target processes with a base-3 number, where each ’bit’ indicates either a shift
down(0) or up (1) or residing in the domain’s boundary concerning that Carte-
sian direction. As an example a base-3 number of (201)3 would be assigned to a
particle leaving the local domain in positive x-direction and negative y-direction,
while stay in the same z-region, as the local domain. This way to determine tar-
get processes should improve execution on GPU, with the tertiary operator being
removed, in case that true is cast to integer one and false to integer zero.

Listing 1.2. Particle based communication with Cabana

Kokkos:: parallel_for(

Kokkos :: RangePolicy <ExecutionSpace >(0, nParticles),

KOKKOS_LAMBDA (const size_t i)

{

int dims = 1, index = 0;

// compute the direction of the neighbour the particle

// needs to be moved to and use dims to compute a

// base 3 mask:

// (xyz)_3 with 0 (left), 1 (remains), 2 (right)

// r = list of particle positions

for (int d = 2; d >= 0; --d)

{

index += dims *

(1 - ((r(i,d) < domBorders (2*d))?1:0) +

((r(i,d) >= domBorders (2*d+1))?1:0));

dims *= 3;

}

// tag the particle with the target neighbour rank

export_ranks(i) = neigs(index);

});

Kokkos::fence ();

// create particles distribution object and

// migrate particles to targets

Cabana:: Distributor <DeviceType > dist(mpiCart ,

export_ranks , neighbours);

Cabana:: migrate(dist , particles);

In contrast, the second method allows the use of a stable, halo-based commu-
nication scheme, where particles are not necessarily communicated in each time
step, but only when leaving a halo region around the local domain, allowing the
distributed computation of partial com velocities, that are reduced with a static
communication scheme. The result is then sent back to the domains sharing the
same cell. Listing 1.3 shows the required function calls to Cabana to do the halo
exchange. This work, related to mesh administration, is implemented in Cajita,

8 R. Halver et al.

which is part of Cabana. In addition, it provides methods for particle-grid inter-
actions, e.g. interpolation of particle properties to a grid, which is, however, not
used in this work. Furthermore, Cajita provides a domain-based load balancing
based on a tensor decomposition scheme, provided by the ALL library [9].

Listing 1.3. Grid based halo communication with Cabana

// create the halo communication object based

// on the Cajita grid

auto arrHalo = Cajita :: createHalo(*arrNode ,

Cajita :: NodeHaloPattern <3 >());

// [...] computation of com velocities

// bring the data to the halo cells

arrHalo ->gather(ExecutionSpace(), *arrNode);

// collect the data from the halo cells

arrHalo ->scatter(ExecutionSpace(),

Cajita :: ScatterReduce ::Sum(), *arrNode);

For the implementation of the two different communication schemes two dif-
ferent kinds of communication in Cabana were used. For the former method, the
particle-based one, Cabana provides a Distributor class, which allows the trans-
fer of particle data between processes. This requires that particles are tagged
with the target process, so that the Distributor object can generate a communi-
cation topology for this specific transfer. As a consequence this object needs to
be recreated in every time step, since the communication pattern in each time
step changes due the random shift of the collision cell grid and particle move-
ments across domain borders.

For the second communication pattern, reducing the partial results and redis-
tributing them, a halo-based communication on a grid is used. For this purpose,
two different grids are combined, i.e. a logical collision grid which is used for
communication and a linked-cell list, which sorts the particles into the shifted
collision cell grid. Since the number and size of mesh cells in each grid is iden-
tical, both grids can be perfectly matched onto each other. The particles are
sorted into the linked-cell list (Sect. 3.1) from where the com momentum of each
cell is computed. For collision cells, overlapping with domain borders (Fig. 1),
a halo-based communication reduces the partial results on the process which
administrates the logical cell. This process redistributes the reduced sum back
to each participating neighbour, where the rotations of velocities are computed
for residing particles. Since the number of cells is usually far smaller than the
number of particles, this leads to (i) a static communication scheme (for each
iteration step the same operations on the same amount of data) and (ii) a reduced
and constant amount of data that needs to be communicated.

During the development, it became apparent that the second communication
scheme leads to a better performance due to the reduced amount of transferred
data and the strongly reduced necessity to recreate communication patterns, due
to the stable communication scheme of the halo exchange (this needs to be done

Kokkos-Based Implementation of MPCD on Heterogeneous Nodes 9

only once in the beginning or after possible load balancing steps, after which
the communication pattern is static). In addition, the transfer of particles can
be reduced to cases, where particles left the halo region surrounding the local
domain, instead of being required in every time step.

3.3 Rotation of Velocities

To simplify the computation of the velocity rotation, the linked cell list men-
tioned in Sect. 3.1 is used to sort particles into the correct cell of the collision cell
grid. Using the com velocity, gathered by one of the two previously described
methods, the linked-cell list provides the particles which belong to the given cell
and their velocity vector rotated.

Listing 1.4. Using the linked cell list from listing 1.1 to compute the com velocity

// Kokkos parallel_for iterates over

// all cells on local domain

// vcm = Kokkos::View containg the center

// of mass velocites for each

// collision cell

// v = Cabana::slice containing

// particle velocities

// m = Cabana::slice containing

// particles masses

Kokkos :: parallel_for(Kokkos :: RangePolicy <ExecutionSpace >

(0, linkedList.totalBins ()),

KOKKOS_LAMBDA(const size_t i)

{

int ix, iy, iz;

// computing the cartesian coordinates of the cell

linkedList.ijkBinIndex(i, ix, iy , iz);

int binOff = linkedList.binOffset(ix, iy , iz);

// compute com velocity

for (int d = 0; d < 4; ++d)

vcm(ix,iy,iz,d) = 0.0;

// computing com momentum and sum of mass

for (int n = 0; n < linkedList.binSize(ix,iy,iz); ++n)

{

for (int d = 0; d < 3; ++d)

vcm(ix,iy,iz,d) += v(binOff + n, d) *

m(binOff + n);

vcm(ix,iy,iz ,3) += m(binOff + n);

}

});

Kokkos ::fence ();

10 R. Halver et al.

Fig. 2. Performance comparison between existing Fortran implementation and new
Cabana implementation using multiple nodes.

4 Benchmarks and Discussion

For the benchmark runs simple fluid systems were used, i.e. a pure MPCD fluid
in 3d periodic boundary conditions. Each cubic collision cell has an edge length of
one length unit, while containing 〈Nc〉 = 10 particles on average. Each system in
the benchmarks is cubic with side length L (the edge length L given as the system
size in the following graphs, i.e. Fig. 2), from where the total number of particles
in a system is computed as N = L3 〈Nc〉. To check the performance of the newly
implemented code, it was compared to an existing Fortran implementation of
the MPCD algorithm [12,18].

The benchmarks were performed on the Juwels booster module [13] at Jülich
Supercomputing Centre, consisting of GPU nodes with four NVIDIA A100 cards
and two AMD EPYC 7402 processors, with 24 cores each. To maintain compa-
rability of the benchmarks the pure CPU runs were also performed on these
nodes. Since the GPU nodes are much more powerful in their computing capa-
bilities, we performed the benchmarks for the GPU runs on node numbers from
one to 16, doubling the node count each time. For the CPU, expecting longer
runtimes we chose to compare single node runs with runs on four nodes, while
also restricting the system size to a maximum edge length of 128 while for the
GPU runs we performed the benchmarks to a maximum edge length of 512. The
edge length directly influences the number of particles in the simulation, since

Kokkos-Based Implementation of MPCD on Heterogeneous Nodes 11

Table 1. Tables of runtimes for the different implementations. Empty cells indicate
combinations of node numbers and system sizes, for which additional measurements
did not show additional information. All runtimes presented are given in seconds.

(a) Runtimes for GPU C++ variant, using 4 GPUs on each node.

size 1 node 2 nodes 4 nodes 8 nodes 16 nodes

32 52.96 59.47 53.36

64 75.55 86.48 78.77

128 162.88 130.27 107.29 92.11

256 652.25 335.12 211.51 182.18 144.60

512 5897.44 2774.35 1429.14 648.252 327.49

(b) Runtimes for CPU variants, Fortran (F90) and the C++ based
variants, i.e. OpenMP-based (OMP) or serial, i.e. no hybrid
parallelization, using one or four nodes (N). OMP uses 8 MPI ranks with
6 threads each on a node, the Fortran and serial version 48 MPI ranks per
node. Only system sizes up to edge length 128 are presented due to the
longer runtimes.

size F90 1 N F90 4 N OMP 1 N OMP 4 N serial 1 N serial 4 N

32 5.36 2.75 42.62 16.37 38.33 15.06

64 49.59 11.20 284.73 78.79 221.38 69.06

128 819.06 132.06 2268.80 555.42 1967.42 474.67

there are about l3 collision cells in the system, with l being the edge length of
the system, each collision cell containing ten particles on average.

As backends for Kokkos were the AMD and Ampere70 used, since these
corresponded best to the available hardware. No further optimization on the
basis of compiler flags was attempted yet due to time constraints, but these tests
will be performed in the future. Table 1 and Fig. 2 show results for four different
benchmarks: (i) C++/Kokkos implementation with GPU variant (Table 1a and
Fig. 2b); (ii) C++/Kokkos variant with OpenMP (Table 1b and Fig. 2c); (iii)
C++/Kokkos variant with serial backend and (iv) the previous implementation
of the MPCD algorithm in Fortran (Table 1b and Fig. 2a) for comparison with
the new implementation.

The original Fortran code shows a quite good scaling behaviour for all studied
cases (edge lengths L ∈ [32, 512]), as can be seen in Fig. 2a. In comparison to that
the scaling behaviour of the GPU variant of the C++ implementation shows for
the smaller system sizes a super-linear scaling behaviour, before reaching linear
behaviour at system sizes 256 and 512, indicating that smaller sizes not fully
utilise the GPU (Fig. 2b).

When comparing the performance of the Fortran implementation (Fig. 2a)
and the CPU based variants of the C++ version, i.e. OpenMP based or serial, it
can be seen that Fortran achieves much better results (Figs. 2c, 2d). An expla-

12 R. Halver et al.

nation for this behaviour still needs to be analysed in more depth. But first
results point towards a different level of optimization (which is not the main
focus of this article). In contrast, the GPU variant is able to outperform the
Fortran implementation given sufficiently large system sizes, as can be seen in
Fig. 2e, comparing the benchmark results on a single node, respectively. Here
only the results for system sizes 32 and 64 are shown, since the measurement
strongly hint that for larger system sizes the gap between hybrid execution and
pure GPU execution will only widen.

Furthermore, it was tested on a single node if the combination of GPU and
CPU could result in a better performance than only GPU computations. Due to
the obtained performance of the CPU-based C++ variants, the results indicate
at this stage no performance gain for hybrid execution (Fig. 2f). In case of a per-
formance improvement of the CPU-based variants, this result might change for
smaller system sizes. Note that for small systems load balancing GPU and CPU
ranks can improve the overall performance for hybrid execution significantly, but
not sufficiently in order to outperform either pure CPU or GPU. This does not
lead to a recommendation of a hybrid execution model at this stage.

5 Conclusion and Outlook

Considering the benchmark results of the new implementation of the MPCD
code the following conclusions can be drawn:

(i) It is possible to implement a scalable MPCD algorithm with Cabana, that
for large enough systems is faster on GPUs than the existing Fortran imple-
mentation. The CPU variant of the Cabana implementation needs to be
improved upon to bring the performance closer to the one of the Fortran
code.

(ii) Load balancing between CPU and GPU can support hybrid execution, but
was not found to increase performance beyond the one of pure CPU or
GPU usage.

(iii) The porting effort from a pure CPU variant to a multi-architecture variant
was significantly decreased by using Cabana, which offers an architecture
independent development and code implementation which provides a uni-
fied and transparent view for the programmer. Porting effort is therefore
dramatically reduced by maintaining performance (which was not the focus
here, but which is demonstrated for other use cases [1,6,10]).

(iv) The implementation of the MPCD algorithm allows further investigation of
coupled simulations of MPCD fluids with embedded Molecular Dynamics
(MD) systems, e.g. polymer chains. For this, an implementation based on
a unified formulation of MD and MPCD, as described, e.g., in [8,12], is
required. Since the ratio of MD- to MPCD particles is often small, this
could profit from a hybrid implementation and execution model, which
invites to further investigations, including execution models for modular
supercomputing.

Kokkos-Based Implementation of MPCD on Heterogeneous Nodes 13

References

1. Artigues, V., Kormann, K., Rampp, M., Reuter, K.: Evaluation of performance
portability frameworks for the implementation of a particle-in-cell code. Concurr.
Comput. Pract. Exp. 32(11), e5640 (2020). https://doi.org/10.1002/cpe.5640

2. Cabana. https://github.com/ECP-copa/Cabana
3. Co-Design Center for Particle Applications. https://www.exascaleproject.org/

research-project/particle-based-applications/
4. Dongarra, J., Luszczek, P.: TOP500, pp. 2055–2057. Springer, US, Boston, MA

(2011). https://doi.org/10.1007/978-0-387-09766-4 157
5. Exascale Computing Project. https://www.exascaleproject.org/
6. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: Enabling manycore perfor-

mance portability through polymorphic memory access patterns. J. Parallel Dis-
trib. Comput. 74(12), 3202–3216 (2014). https://doi.org/10.1016/j.jpdc.2014.07.
003

7. Goldstein, H., Poole, C., Safko, J.: Classical Mechanics. Addison Wesley, San Fran-
cisco (2002)

8. Gompper, G., Ihle, T., Kroll, D.M., Winkler, R.G.: Multi-Particle Collision Dynam-
ics: A Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of
Complex Fluids. In: Advanced Computer Simulation Approaches for Soft Matter
Sciences III, pp. 1–87. Springer, Berlin Heidelberg (2008). https://doi.org/10.1007/
978-3-540-87706-6 1

9. Halver, R., Schulz, S., Sutmann, G.: ALL - A loadbalancing library, C++/Fortran
library. https://gitlab.version.fz-juelich.de/SLMS/loadbalancing/-/releases

10. Halver, R., Meinke, J.H., Sutmann, G.: Kokkos implementation of an Ewald
coulomb solver and analysis of performance portability. J. Parallel Distrib. Com-
put. 138, 48–54 (2020). https://doi.org/10.1016/j.jpdc.2019.12.003

11. Halver, R., Sutmann, G.: Multi-threaded construction of neighbour lists for particle
systems in OpenMP. In: Parallel Processing and Applied Mathematics 11th Inter-
national Conference, PPAM 2015, Krakow, Poland, 6–9 September 2015. Revised
Selected Papers, Part II. 11th International Conference on Parallel Processing and
Applied Mathematics, Krakow (Poland), 6 Sep 2015–9 Sep 2015 (2015). https://
juser.fz-juelich.de/record/279249

12. Huang, C., Winkler, R., Sutmann, G., Gompper, G.: Semidilute polymer solutions
at equilibrium and under shear flow. Macromolecules 43, 10107–10116 (2010)

13. Juwels. https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/
JUWELS/JUWELS node.html

14. Mniszewski, S.M., et al.: Enabling particle applications for exascale computing
platforms. Int. J. High Perform. Comput. Appl. 35(6), 572–597 (2021). https://
doi.org/10.1177/10943420211022829

15. Ohno, K., Nitta, T., Nakai, H.: SPH-based fluid simulation on GPU using verlet
list and subdivided cell-linked list. In: 2017 Fifth International Symposium on
Computing and Networking (CANDAR), pp. 132–138 (2017). https://doi.org/10.
1109/CANDAR.2017.104

16. RAJA Performance Portability Layer. https://github.com/LLNL/RAJA
17. Slattery, S., et al.: Cabana: a performance portable library for particle-based sim-

ulations. J. Open Source Softw. 7(72), 4115 (2022). https://doi.org/10.21105/joss.
04115

18. Sutmann, G.: MP2C (2022). https://fz-juelich.de/en/ias/jsc/about-us/structure/
simulation-and-data-labs/sdl-molecular-systems/mp2c

https://doi.org/10.1002/cpe.5640
https://github.com/ECP-copa/Cabana
https://www.exascaleproject.org/research-project/particle-based-applications/
https://www.exascaleproject.org/research-project/particle-based-applications/
https://doi.org/10.1007/978-0-387-09766-4_157
https://www.exascaleproject.org/
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1007/978-3-540-87706-6_1
https://doi.org/10.1007/978-3-540-87706-6_1
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing/-/releases
https://doi.org/10.1016/j.jpdc.2019.12.003
https://juser.fz-juelich.de/record/279249
https://juser.fz-juelich.de/record/279249
https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUWELS/JUWELS_node.html
https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUWELS/JUWELS_node.html
https://doi.org/10.1177/10943420211022829
https://doi.org/10.1177/10943420211022829
https://doi.org/10.1109/CANDAR.2017.104
https://doi.org/10.1109/CANDAR.2017.104
https://github.com/LLNL/RAJA
https://doi.org/10.21105/joss.04115
https://doi.org/10.21105/joss.04115
https://fz-juelich.de/en/ias/jsc/about-us/structure/simulation-and-data-labs/sdl-molecular-systems/mp2c
https://fz-juelich.de/en/ias/jsc/about-us/structure/simulation-and-data-labs/sdl-molecular-systems/mp2c

Comparison of Load Balancing Schemes
for Asynchronous Many-Task Runtimes

Lukas Reitz(B), Kai Hardenbicker, and Claudia Fohry

Research Group Programming Languages/Methodologies, University of Kassel,
Kassel, Germany

{lukas.reitz,fohry}@uni-kassel.de

Abstract. A popular approach to program scalable irregular applica-
tions is Asynchronous Many-Task (AMT) Programming. Here, programs
define tasks according to task models such as dynamic independent
tasks (DIT) or nested fork-join (NFJ). We consider cluster AMTs, in
which a runtime system maps the tasks to worker threads in multiple
processes.

Thereby, dynamic load balancing can be achieved via work-stealing
or work-sharing. A well-performing work-stealing variant is the life-
line scheme. While previous implementations are restricted to single-
worker processes, a recent hybrid extension combines the scheme with
intra-process work-sharing between multiple workers. The hybrid scheme
comes at the price of a higher complexity.

This paper investigates whether this complexity is indispensable by
contrasting the scheme with a pure work-stealing extension of the lifeline
scheme introduced in the paper. In an experimental comparison based
on independent DIT and NFJ implementations and three benchmarks,
the pure work-stealing scheme is on a par or even outperforms the hybrid
one by up to 3.8%.

Keywords: Work Stealing · Work Sharing · Runtime Systems ·
Asynchronous Many-Tasking · Task-based Parallel Programming

1 Introduction

Asynchronous Many-Task (AMT) programming, as exemplified by Cilk [2],
OpenMP tasks [14], and HPX [7], is a popular approach to tackle irregular-
ity in parallel applications. AMT programs partition the computation into units
called tasks, and a runtime system (briefly called AMT, as well) maps the tasks
to lower-level resources called workers. We consider cluster AMTs, for which the
workers correspond to threads of multiple processes that may run on different
nodes.

AMTs can be classified by their model of task cooperation [6]. In particular,
dynamic tasks are allowed to spawn child tasks to which their parent task may
pass parameters. We consider two subclasses:

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 14–26, 2023.
https://doi.org/10.1007/978-3-031-30445-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_2&domain=pdf
https://doi.org/10.1007/978-3-031-30445-3_2

Comparison of Load Balancing Schemes for AMT Runtimes 15

1. Dynamic Independent Tasks (DIT) do not communicate, but yield a task
result. The final result is calculated from the task results by reduction, e.g.,
by integer summation. Examples for DIT runtimes include GLB [27] and
Blaze-Tasks [15].

2. Nested Fork-Join (NFJ) programs begin the computation with one root task.
Then each task returns its result to its parent, and the root task yields the
final result. Examples for NFJ runtimes include Cilk and Satin [12].

Many AMTs deploy dynamic load balancing, which may be accomplished via
work stealing or work sharing. In work stealing, idle workers (thieves) take tasks
from other workers (victims), whereas in work sharing, busy workers give tasks
to others.

A well-performing work stealing variant is Lifeline-based Global Load Balanc-
ing, briefly called the lifeline scheme [22]. It was first implemented in the Global
Load Balancing (GLB) library of the parallel programming language X10 [3] and
later ported to Java [17]. Unfortunately, these implementations allow only one
worker per process.

A recent hybrid scheme overcomes this limitation by combining the lifeline
scheme for work stealing between the processes with work sharing among mul-
tiple workers within a process. This scheme has been implemented in Java GLB
variants for DIT and NFJ, which we denote by DIThybrid [5] and NFJhybrid [21],
respectively.

While the hybrid scheme overcomes the single-worker limitation, its hybrid
design has the drawback of a higher complexity. This led us to our research
question: Is the complexity of the hybrid scheme indispensable for an efficient
extension of the lifeline scheme to multiple workers per process?

To answer the question, we extended the lifeline scheme so that it solely relies
on work stealing, but still has multiple workers per process. Our new scheme,
which we call lifeline-pure, is essentially identical to the lifeline scheme, except
that threads instead of processes take over the role of workers. In particular,
each worker (thread) within a process maintains its own task queue. When a
worker runs empty, it tries to steal tasks from a random worker, which is any
thread in the same or in a different process. As will be discussed later, preferring
local over global victims may increase the efficiency. Nevertheless, even without
such locality optimization in place, we were able to show that the lifeline-pure
scheme is on a par or even outperforms the more complicated hybrid scheme by
up to 3.8%.

We conducted our experiments with up to 1280 workers and three bench-
marks. Two implementations of the lifeline-pure scheme were used. Both are
based on Java GLB, and are called DITpure and NFJpure, respectively. To
strengthen our results, the DIT and NFJ implementations were developed inde-
pendently by the second and first authors of this paper, respectively.

The remainder of the paper is organized as follows. Section 2 provides further
details on the load balancing schemes and task models. Then, Sect. 3 discusses
the design and implementation of DITpure and NFJpure. Experimental results

16 L. Reitz et al.

are presented and discussed in Sect. 4. The paper finishes with related work and
conclusions in Sects. 5 and 6, respectively.

2 Background

2.1 Lifeline Scheme

The lifeline scheme [22] deploys cooperative work stealing, i.e., thieves ask their
victims for tasks, and victims respond by sending tasks or a reject message.
When a worker runs out of tasks, it first attempts to steal from up to w random
victims. If all random steal attempts fail, it informs z so-called lifeline buddies,
which are neighbored workers in a connected graph, called the lifeline graph.
The lifeline buddies record all lifeline steal attempts and possibly answer them
later.

Each worker maintains an own local task queue. It takes out tasks for pro-
cessing and inserts child tasks at one end, and extracts loot for thieves at the
other. The workers communicate in work stealing by calling a function on the
remote worker, where it is executed by an additional thread. For example, to
answer a successful random steal request, the victim calls a function on the thief
and passes the tasks as a parameter. The function inserts the tasks into the
thief’s local task queue, which is synchronized for this purpose.

Listing 1.1 depicts pseudocode for the main loop of each worker. Workers
process tasks in chunks of k tasks (line 3), after which they respond to recorded
steal requests (line 4). When a worker runs out of tasks, it first tries to steal from
random victims (line 6). If all random steal attempts fail, the worker notifies its
lifeline buddies and enters an idle state (line 8), from which it can be restarted
if a lifeline buddy delivers tasks later.

1 do {
2 do {
3 processUpToKTasks () ;
4 answerStea lRequests () ;
5 } whi l e (t a sk sAva i l ab l e ()) ;
6 attemptRandomSteals () ;
7 } whi l e (t a sk sAva i l ab l e ()) ;
8 informBuddiesAndBecomeIdle () ;

Listing 1.1. Main loop of Lifeline-based Global Load Balancing

2.2 Hybrid Scheme

As mentioned in Sect. 1, the hybrid scheme [5] couples the lifeline scheme for work
stealing between the processes with work sharing among the workers within a
process. It uses two shared queues, which are synchronized to allow accesses from
multiple threads:

Comparison of Load Balancing Schemes for AMT Runtimes 17

– an intra queue for intra-process work sharing, and
– an inter queue chiefly for inter-process work stealing.

Listing 1.2 depicts pseudocode for the main loop of each worker. A process
begins with a single worker. After its own spawn, each worker repeatedly tries
to spawn additional workers and gives them some tasks (line 4), until some
desired maximum number of workers is reached. Then, if one of the shared queues
is empty, the worker puts any surplus tasks there (lines 6–11). Afterwards, it
processes up to k tasks, and repeats the previous steps as long as it has tasks.
When a worker runs out of tasks, it first attempts to take all tasks from the
intra queue (lines 14–16), or otherwise from the inter queue (lines 17–19). If
both shared queues are empty, the worker shuts down (end of code) and has to
be spawned again later.

1 do {
2 do {
3 i f (numWorkers < numMaxWorkers) {
4 attemptToSpawnAdditionalWorker () ;
5 }
6 i f (intraQueueEmpty) {
7 shareTasksToIntraQueue () ;
8 }
9 i f (interQueueEmpty) {

10 shareTasksToInterQueue () ;
11 }
12 processUpToKTasks () ;
13 } whi l e (t a sk sAva i l ab l e ()) ;
14 i f (! intraQueueEmpty) {
15 takeTasksFromIntraQueue () ;
16 }
17 i f (! t a sk sAva i l ab l e () && ! interQueueEmpty) {
18 takeTasksFromInterQueue () ;
19 }
20 } whi l e (t a sk sAva i l ab l e ()) ;

Listing 1.2. Main loop of Lifeline-based Global Load Balancing

2.3 Nested Fork-Join and Dynamic Independent Tasks

As already noted, the NFJ and DIT task models deploy dynamic tasks. We
assume that the tasks are free of side effects.

For NFJ, Listing 1.3 depicts pseudocode of a naive recursive Fibonacci pro-
gram. The code is invoked on worker 0 by calling fib(n). The spawn keyword in
line 5 generates a child task and passes n-1. The child task calculates fib(n-1)
recursively. Afterwards, the result is assigned to variable a of the parent task. The
sync keyword pauses the execution of the parent task until all child tasks have
returned their results. Thus, the structure of the computation can be regarded
as a task tree, in which the root task returns the final result.

18 L. Reitz et al.
1 f i b (n) {
2 i f (n < 2) {
3 re turn 1 ;
4 }
5 a = spawn f i b (n−1);
6 b = f i b (n−2);
7 sync ;
8 re turn a + b ;
9 }

Listing 1.3. Nested fork-join: naive recursive Fibonacci

Work stealing in NFJhybrid is implemented with the work-first policy: When
a worker spawns a child task, it puts a description of the parent task into the task
queue and branches into the child. The description is called a continuation and
represents the remaining computation of this task. For instance, the continuation
that is generated in line 5 of Listing 1.3 denotes the code in lines 6 to 9 enhanced
by the value of n and the knowledge that a will be provided by the child task.
The continuation may be processed by the worker itself after having finished the
child, or be stolen away. In NFJhybrid, a thief always takes a single task (steal-
one).

Thus, any work stealing scheme for NFJ must keep track of the parent-
child relations and incorporate child results into their parent. We denote these
activities as the fork-join protocol. The fork-join protocol of NFJhybrid [21] was
adapted from [8] and passes the result of a child task directly to the parent
task if the parent is still in the local queue when the child returns. Otherwise,
the worker saves the child result in a data structure that is shared between all
workers of the process. Saved results are eventually collected as follows: When
a task has to wait for its child tasks in a sync, this task is sent back to its
previous victim. Child results may already reside there, if the child has finished.
Otherwise, they are eventually inserted. Since the parent task may have been
stolen multiple times, child results may exist on further victims, and the result
collection continues there. In contrast to [8], where tasks are returned to their last
thief after incorporating all child results, we process them at their first victim.

Unlike NFJ tasks, DIT tasks only cooperate through parameter passing from
parents to children. Task results are accumulated into worker results, by com-
bining them with a commutative and associative binary operator (e.g., integer
summation). Later, each process combines its local worker results to a process
result, and finally the process results are combined to the final result.

Listing 1.4 depicts pseudocode of a naive recursive Fibonacci program in
DIT. The code is invoked on worker 0 by calling fib(n). Like before, the spawn
keyword in line 5 generates a task. Method incrementResult() adds 1 to the
worker result, since fib(0) = fib(1) = 1. After global termination of all tasks,
worker 0 initiates the calculation of the process and final results. Afterwards,
the final result may be queried from the system.

Work stealing in DIThybrid is implemented with the help-first policy: When
a worker encounters a spawn, it puts the child task into the local task queue

Comparison of Load Balancing Schemes for AMT Runtimes 19
1 f i b (n) {
2 i f (n < 2) {
3 incrementResult () ;
4 } e l s e {
5 spawn f i b (n−1);
6 f i b (n−2);
7 }
8 }

Listing 1.4. Dynamic independent tasks: naive recursive Fibonacci

and continues to execute the parent task. In DIThybrid, thieves steal half of the
available tasks of a victim (steal-half).

3 Design and Implementation of Lifeline-Pure Scheme

The lifeline-pure scheme extends the lifeline scheme with support for multi-
worker processes. As noted in Sect. 1, the scheme is essentially identical to the
lifeline scheme, except that the workers correspond to threads. Each worker
maintains an own local task queue and participates in the work stealing indepen-
dently of other workers. Also, the lifeline graph and the random victim selection
operate at the granularity of workers.

Unlike in NFJhybrid, we decided to perform all activities of the fork-join
protocol separately for each worker within a process in order to reduce contention
on the shared data structures. For DIT, as in the hybrid scheme, we first combine
the worker results within each process, and then perform a global reduction.

A modification of the lifeline scheme refers to the realization of the commu-
nication between a pair of workers. Whereas workers directly communicate with
each other in the lifeline scheme, they use a so-called coordinator in the lifeline-
pure scheme. The coordinator handles all communication, i.e., a worker that is
going to send a message to another worker calls a function of its coordinator.
The coordinator then sends a message to the remote worker’s coordinator. The
remote coordinator then forwards the message to the target worker. Global and
local worker ids are translated into each other in an obvious way. Figure 1 shows
the communication paths, where several workers, denoted as W, communicate
with each other through their coordinators, denoted as C@.

Obviously it would be profitable to prefer local over global victims, since
process internal stealing has lower communication costs. As of yet, the lifeline-
pure scheme does not incorporate such locality optimizations, but the scheme
could be easily extended accordingly.

All implementations are based on the “APGAS for Java” library [23], which
is a Partitioned Global Address Space (PGAS) platform. We used a modified
version of it, which is available in a public git repository [16].

In our implementations, the coordinator is a Java class. Messages between
workers of the same process do not get serialized and passed through the network,
but are executed in one or more separate threads of Java’s fork-join pool.

20 L. Reitz et al.

4 Experimental Evaluation

This section compares the running times of the lifeline-pure and hybrid DIT and
NFJ variants, respectively.

Fig. 1. Communication paths between workers (W) through the coordinator (C) in the
lifeline-pure scheme

All experiments were conducted with Java version 17.0.2. We run our pro-
grams on the Goethe cluster of the University of Frankfurt [25], where we used
a partition of homogeneous Infiniband-connected nodes. Each node is equipped
with two 20-core Intel Xeon Skylake Gold 6148 CPUs and 192GB of main mem-
ory. We used up to 32 nodes, with one process per node and one worker per core,
resulting in a total of 1280 workers. We report averages over 15 runs.

We used three benchmarks:

– Fib (for NFJ): The naive Fibonacci benchmark was presented in Sect. 2. It
computes fib(n).

– UTS: The Unbalanced Tree Search benchmark dynamically generates a
highly-irregular tree and counts its nodes [13]. Users provide a tree depth d,
a branching factor b, an initial seed s of a pseudorandom generator, and a
probability distribution that determines the tree shape (binomial or geomet-
ric).

– Syn: The synthetic benchmark counts the nodes of a perfect w-ary tree [19].
Users provide a desired running time Tcalc, a number m specifies the number of
tree nodes per worker, and a task duration variance v as percentage. Each task
repeatedly calculates the 5th Fibonacci number recursively until it reaches its
task duration. An execution with GLB then takes time T = Tcalc+ ε, where ε
is the additional time taken by the runtime system, called the runtime system
overhead. In the case of DIT, ε is caused by the load balancing scheme. In
the case of NFJ, ε is caused by the load balancing scheme and the fork-join
protocol.

In all benchmarks, task results are long values and the reduction operator is
sum.

Comparison of Load Balancing Schemes for AMT Runtimes 21

In preliminary experiments, we found that a so-called sequential cut-off
reduced the execution times of the NFJ GLB variants significantly: The sequen-
tial cut-off c defines a remaining depth (e.g., fib(n) calls with n ≤ c), where
the spawn statement causes workers to jump into the given function instead of
spawning a child task. We implemented a sequential cut-off for Fib and UTS@.
Syn did not require one, because the task granularity can be controlled by its
benchmark parameters.

Table 1. Benchmark parameters

Benchmark Parameters

Fib n = 67

c = 30

UTS d = 19

b = 4

c = 6

geometric tree shape
Syn Tcalc = 100 s

m = 106

v = 20%

Fig. 2. Strong scaling performance of UTS

For DIT, we used existing implementations of the benchmarks [19]. For NFJ,
we slightly improved an existing implementation of Fib [21], and implemented
UTS and Syn from scratch.

The used benchmark parameters are shown in Table 1. Recall that both the
lifeline-pure and the hybrid scheme process tasks in chunks of k tasks (see
Sect. 2). In preliminary experiments, we tried different chunk sizes for each

22 L. Reitz et al.

benchmark and found that the following values for k yield the lowest execu-
tion times: k = 511 (for UTS in DIT), k = 16 (for UTS in NFJ), k = 10 (for Fib
in NFJ), and k = 1 (for Syn).

Figures 2 and 3 show execution times for UTS and Fib. They employ strong
scaling to convey an impression of the magnitudes. For each run, we doubled the
number of nodes, and thus the number of workers. The measured execution times
decrease approximately linearly. Speedups over the execution with one worker
are between 1103 and 1243 for 1280 workers.

The strong scaling results for DIT show a bigger difference between the hybrid
and the lifeline-pure scheme than those for NFJ@. For DIT, the gap between the
two schemes is clearly visible. For NFJ, the gap between the schemes is small
and barely visible. This is likely due to the fact, that the used load balancing
scheme impacts all the communication in DIT (except the final reduction), but
only part of the communication in NFJ (not the fork-join protocol).

Fig. 3. Strong scaling performance of Fib

Fig. 4. Weak scaling performance of Syn

Figure 4 shows execution times measured with Syn. We employ weak scaling
by keeping Tcalc constant for all runs. We calculate the overhead as the difference

Comparison of Load Balancing Schemes for AMT Runtimes 23

between the measured execution time and Tcalc. Since Tcalc = 100 s for all runs,
an execution time of 101 s means, that the runtime system overhead is 1%.
Overheads increase slowly with the number of workers.

For DIT, the overhead is 1.54% for 1280 workers and the hybrid scheme, and
1.41% for the lifeline-pure scheme. For NFJ, the overhead is higher than in DIT,
since it includes the cost of the fork-join protocol. Because the hybrid and the
lifeline-pure scheme both use the same fork-join protocol, we can still compare
the overhead. The highest overhead difference between both schemes is about
3.8% for 1280 workers, where the hybrid scheme has an overhead of about 7.5%,
and the lifeline-pure scheme has an overhead of about 3.7%.

5 Related Work

AMT, also called task-based parallel programming, goes back until at least the
invention of Cilk in the 1990s [2]. Over the years, a variety of AMT programming
environments have been proposed, and, especially on shared-memory machines,
already found their way into programming practice (e.g., OpenMP tasks [14]).

From a user perspective, major differences between the AMT environments
can be seen in their target architectures and task models [6,10,24]. The latter
comprise DIT and NFJ, but also several types of dataflow-based, side effect-
based, and actor-based coordination. The runtime systems differ in whether they
support dynamic load balancing and dynamic task generation, and if they do so,
in whether they realize it with work stealing or work sharing.

Work stealing became popular with Cilk [2], but several authors see work
sharing on a par or prefer it [4,9]. Both work stealing and work sharing can be
implemented in a coordinated way, in which queues are shared between workers,
or in a cooperative way, in which they are private. The performance is about the
same [1,17]. The work stealing variants also differ in their realization of victim
selection and termination detection. Reitz [21] compared different strategies for
choosing the number of tasks to be stolen. He used the same NFJhybrid scheme
as we did in this paper.

While the lifeline scheme has traditionally been restricted to single-worker
processes, other work stealing variants permit multiple workers. For instance,
they combine shared- and distributed-memory work stealing into a two-level
algorithm [20], or combine the process-internal load balancing of Java’s fork-join
pool with the lifeline scheme for inter-process work stealing [18].

These two-level algorithms prefer local over global steals to save communi-
cation costs, as do DIThybrid and NFJhybrid. The idea of incorporating locality
optimization into work stealing was also applied to hierachical architectures,
e.g., [11]. Its usage may further improve the efficiency of our DITpure and
NFJpure schemes.

As mentioned in Sect. 2.3, the fork-join protocol of our NFJ GLB variants
was adapted from Kestor et al. [8] where tasks are returned to their last thief
after incorporating all child results instead of to their first victim. Similar to the
coordinators in the lifeline-pure scheme, they deploy a coordinator per process
who communicate with each other by calling functions on remote coordinators.

24 L. Reitz et al.

The first GLB variant for X10 that allows multiple workers per process was
presented by Yamashita and Kamada [26]. It was later improved by some tuning
mechanism and re-implemented as DIThybrid in Java [5]. We did not employ the
tuning mechanism, since it is irrelevant for our benchmarks.

6 Conclusions

This paper has shown that the lifeline scheme can be efficiently extended to
multi-worker processes, without introducing the complexity of a hybrid scheme.
Our extension, called lifeline-pure, solely relies on work stealing. We implemented
it for DIT and NFJ.

Then we performed an experimental comparison between the lifeline-pure
and hybrid schemes for DIT and NFJ, respectively. The experiments were run
with three benchmarks and up to 1280 workers on a supercomputer. Even though
the lifeline-pure scheme does not use any locality optimizations, we observed it
to be on a par or even slightly outperform the hybrid scheme. Interestingly, our
results were similar for DIT and NFJ, despite significant differences such as help-
first vs. work-first, steal-half vs. steal-one, and the fact that the implementations
have been developed independently by different people.

This similarity indicates that our findings may be of a more general nature.
In particular, it would be interesting to compare other work stealing variants
than the lifeline scheme with hybrid counterparts. Future research should also
incorporate locality optimization into the lifeline-pure scheme and quantify the
additional performance gain. Moreover, the experiments may be extended to
larger benchmarks and other task models.

References

1. Acar, U.A., Charguéraud, A., Rainey, M.: Scheduling parallel programs by work
stealing with private deques. SIGPLAN Notices 48(8), 219–228 (2013). https://
doi.org/10.1145/2442516.2442538

2. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. J. ACM 46(5), 720–748 (1999). https://doi.org/10.1145/324133.324234

3. Charles, P., et al.: X10: An object-oriented approach to non-uniform cluster
computing. SIGPLAN Notices 40(10), 519–538 (2005). https://doi.org/10.1145/
1103845.1094852

4. Dinan, J., Olivier, S., Sabin, G., Prins, J., Sadayappan, P., Tseng, C.W.: Dynamic
load balancing of unbalanced computations using message passing. In: Proceedings
of International Parallel and Distributed Processing Symposium (IPDPS), pp. 1–8.
IEEE (2007). https://doi.org/10.1109/IPDPS.2007.370581

5. Finnerty, P., Kamada, T., Ohta, C.: Self-adjusting task granularity for global load
balancer library on clusters of many-core processors. In: Proceedings of Interna-
tional Workshop on Programming Models and Applications for Multicores and
Manycores (PMAM), ACM (2020). https://doi.org/10.1145/3380536.3380539

6. Fohry, C.: An overview of task-based parallel programming models. In: Tutorial at
European Network on High-performance Embedded Architecture and Compilation
Conference (HiPEAC) (2019)

https://doi.org/10.1145/2442516.2442538
https://doi.org/10.1145/2442516.2442538
https://doi.org/10.1145/324133.324234
https://doi.org/10.1145/1103845.1094852
https://doi.org/10.1145/1103845.1094852
https://doi.org/10.1109/IPDPS.2007.370581
https://doi.org/10.1145/3380536.3380539

Comparison of Load Balancing Schemes for AMT Runtimes 25

7. Kaiser, H., Heller, T., Adelstein-Lelbach, B., Serio, A., Fey, D.: HPX: a task based
programming model in a global address space. In: Proceedings of International
Conference on Partitioned Global Address Space Programming Models (PGAS),
pp. 1–11. ACM (2014). https://doi.org/10.1145/2676870.2676883

8. Kestor, G., Krishnamoorthy, S., Ma, W.: Localized fault recovery for nested fork-
join programs. In: Proceedings International Symposium on Parallel and Dis-
tributed Processing (IPDPS), pp. 397–408. IEEE (2017). https://doi.org/10.1109/
ipdps.2017.75

9. Klinkenberg, J., Samfass, P., Bader, M., Terboven, C., Müller, M.: CHAMELEON:
reactive load balancing for hybrid MPI+openMP task-parallel applications. J. Par-
allel Distri. Comput. 138 (2019). https://doi.org/10.1016/j.jpdc.2019.12.005

10. Kulkarni, A., Lumsdaine, A.: A comparative study of asynchronous many-tasking
runtimes: Cilk, Charm++, ParalleX and AM++. CoRR abs/1904.00518 (2019).
http://arxiv.org/abs/1904.00518

11. Min, S.J., Iancu, C., Yelick, K.: Hierarchical work stealing on manycore clusters. In:
Proceedings of the International Conference on Partitioned Global Address Space
Programming Models (PGAS), ACM (2011)

12. Nieuwpoort, R.V.V., Wrzesińska, G., Jacobs, C.J.H., Bal, H.E.: Satin: a high-level
and efficient grid programming model. Trans. Program. Lang. Syst. (TOPLAS)
32(3), 1–40 (2010). https://doi.org/10.1145/1709093.1709096

13. Olivier, S., et al.: UTS: an unbalanced tree search benchmark. In: Almási, G.,
Caşcaval, C., Wu, P. (eds.) LCPC 2006. LNCS, vol. 4382, pp. 235–250. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72521-3_18

14. OpenMP Architecture Review Board: OpenMP application programming interface
(version 5.2). openmp.org (2021)

15. Pirkelbauer, P., Wilson, A., Peterson, C., Dechev, D.: Blaze-tasks: a framework for
computing parallel reductions over tasks. Trans. Architect. Code Optim. (TACO)
15(4) (2019). https://doi.org/10.1145/3293448

16. Posner, J.: Plm-apgas. https://github.com/posnerj/PLM-APGAS
17. Posner, J., Fohry, C.: Cooperation vs. coordination for lifeline-based global load

balancing in APGAS. In: Proceedings of SIGPLAN Workshop on X10, pp. 13–17.
ACM (2016). https://doi.org/10.1145/2931028.2931029

18. Posner, J., Fohry, C.: Hybrid work stealing of locality-flexible and cancelable tasks
for the APGAS library. J. Supercomput. 74(4), 1435–1448 (2018). https://doi.org/
10.1007/s11227-018-2234-8

19. Posner, J., Reitz, L., Fohry, C.: Task-level resilience: checkpointing vs. supervision.
Int. J. Netw. Comput. (IJNC) 12(1), 47–72 (2022). https://doi.org/10.15803/ijnc.
12.1_47

20. Ravichandran, K., Lee, S., Pande, S.: Work stealing for multi-core HPC clusters. In:
Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011. LNCS, vol. 6852, pp.
205–217. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23400-
2_20

21. Reitz, L.: Load balancing policies for nested fork-join. In: Proceedings of Inter-
national Conference on Cluster Computing (CLUSTER), Extended Abstract, pp.
817–818. IEEE (2021). https://doi.org/10.1109/Cluster48925.2021.00075

22. Saraswat, V.A., Kambadur, P., Kodali, S., Grove, D., Krishnamoorthy, S.: Lifeline-
based global load balancing. In: Proceedings of SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming (PPoPP), pp. 201–212. ACM (2011).
https://doi.org/10.1145/1941553.1941582

https://doi.org/10.1145/2676870.2676883
https://doi.org/10.1109/ipdps.2017.75
https://doi.org/10.1109/ipdps.2017.75
https://doi.org/10.1016/j.jpdc.2019.12.005
http://arxiv.org/abs/1904.00518
https://doi.org/10.1145/1709093.1709096
https://doi.org/10.1007/978-3-540-72521-3_18
https://doi.org/10.1145/3293448
https://github.com/posnerj/PLM-APGAS
https://doi.org/10.1145/2931028.2931029
https://doi.org/10.1007/s11227-018-2234-8
https://doi.org/10.1007/s11227-018-2234-8
https://doi.org/10.15803/ijnc.12.1_47
https://doi.org/10.15803/ijnc.12.1_47
https://doi.org/10.1007/978-3-642-23400-2_20
https://doi.org/10.1007/978-3-642-23400-2_20
https://doi.org/10.1109/Cluster48925.2021.00075
https://doi.org/10.1145/1941553.1941582

26 L. Reitz et al.

23. Tardieu, O.: The APGAS library: resilient parallel and distributed programming
in java 8. In: Proceedings of SIGPLAN Workshop on X10, pp. 25–26. ACM (2015).
https://doi.org/10.1145/2771774.2771780

24. Thoman, P., et al.: A taxonomy of task-based parallel programming technologies for
high-performance computing. J. Supercomput. 74(4), 1422–1434 (2018). https://
doi.org/10.1007/s11227-018-2238-4

25. TOP500.org: Goethe-hlr. https://www.top500.org/system/179588
26. Yamashita, K., Kamada, T.: Introducing a multithread and multistage mechanism

for the global load balancing library of X10. J. Inf. Process. 24(2), 416–424 (2016).
https://doi.org/10.2197/ipsjjip.24.416

27. Zhang, W., et al.: GLB: lifeline-based global load balancing library in X10. In:
Proceedings of Workshop on Parallel Programming for Analytics Applications
(PPAA), pp. 31–40. ACM (2014). https://doi.org/10.1145/2567634.2567639

https://doi.org/10.1145/2771774.2771780
https://doi.org/10.1007/s11227-018-2238-4
https://doi.org/10.1007/s11227-018-2238-4
https://www.top500.org/system/179588
https://doi.org/10.2197/ipsjjip.24.416
https://doi.org/10.1145/2567634.2567639

New Insights on the Revised Definition
of the Performance Portability Metric

Ami Marowka(B)

Parallel Research Lab, TelAviv-Yafo, Israel

amimar2@yahoo.com

Abstract. The rise in the demand for new performance portability
frameworks for heterogeneous computing systems has brought with it a
number of proposals of workable metrics for evaluating the performance
portability of applications.

This article compares the revised definition and criteria of the PP
metric and the P̄̄P metric that was derived from it and improves it. The
comparison is based on a detailed analysis of nine properties and recent
studies of the performance portability of various applications.

Keywords: Performance Portability · Performance Efficiency ·
Metrics

1 Introduction

Heterogeneous computing is ubiquitous, from supercomputers to core proces-
sors in every smartphone. The paradigm shift to heterogeneous computing has
brought back to the mainstream of scientific computing R&D the problem of
performance portability.

One of the major unresolved issues of the performance portability problem is
the lack of a definition and a workable metric that the research community will
accept as a de facto standard [1]. In 2016, three researchers from Intel, Penny-
cook, Sewall, and Lee proposed an innovative metric to assess the performance
portability of an application among a set of architectures [2,3]. The innovation
of the proposed metric stemmed from the clear methodology adopted by the
researchers. They defined the criteria that the definition and the metric of per-
formance portability should satisfy and then turned to formulating the metric,
which they denoted by the symbol PP. The uniqueness of the PP metric is that
it is based on the performance efficiencies that a given application achieves on
top of a given set of architectures.

Since the PP metric was proposed, many in the HPC community have studied
it and used it in their research. As often happens with innovative ideas, over
time, the limitations and shortcomings of the new PP metric were discovered
[4–10]. Some critics argue that there are significant flaws in its definition, that
is difficult to understand the theory behind it, and that it is inconvenient to
use. Others have argued that the metric is not intuitive and that its results are

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 27–38, 2023.
https://doi.org/10.1007/978-3-031-30445-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_3&domain=pdf
http://orcid.org/0000-0003-0914-2024
https://doi.org/10.1007/978-3-031-30445-3_3

28 A. Marowka

not reasonable. Along with the criticism hurled against the metric, various ways
were proposed to overcome its stumbling blocks, such as rephrasing it to fit the
criteria and proposing alternative metrics. Needless to say, all the criticisms and
proposed solutions have one goal, to achieve a better performance portability
metric.

Recently, the designers of the PP metric responded to the criticism in a
detailed article [11]. In an extensive part of the article the authors presented
a mathematical analysis of the key principles that guided them in developing
the PP metric. In the rest of the article, they clarified how, in their opinion,
the products of the metric should be interpreted and how to use it correctly
and updated the criteria to something that they believe a good performance
portability metric should satisfy.

Now that the basic principles that guided the designers of the PP metric have
been well clarified, the limitations of the metric can be discussed in a better and
more informed way. For example, in their early article [2,3] the designers of the

PP metric referred the readers to Smith’s article [12] on which they relied but
without elaborating. On the other hand, the article provided a clearer impres-
sion of the authors’ reliance on Smith’s article as their source of inspiration.
Therefore, the PP metric can now be examined in the light of Smith’s article.

This article compares and analyzes in detail the differences between the PP
metric and the proposed P̄̄P metric [4,5]. The P̄̄P metric was designed to solve
the problems and shortcomings that have arisen with regard to the PP metric in
many studies that have used it during the five years since it was first published.

To that end, this article makes the following contributions:

– Examining whether the PP and P̄̄P metrics meet the requirements of consis-
tency, linearity and lossless information.

– Presenting the core of Smith’s article and examining its relevance to the PP
metric.

– Showing the weighting relationship that exists between the harmonic mean
and the arithmetic mean and proving it mathematically.

2 Definition of the PP and P̄̄P Metrics

This section presents the original and revised criteria and definition of the PP
metric and explains the reasons that motivate a rephrasing of the PP metric
denoted P̄̄P. The criteria and definition of the P̄̄P metric as proposed and presented
in [5] are then presented.

The original set of criteria for the PP metric defines it to be:

1. measured specific to a set of platforms of interest H
2. independent of the absolute performance across H
3. zero if a platform in H is unsupported, and approach zero as the performance

of platforms in H approach zero
4. increased if performance increases on any platform in H
5. directly proportional to the sum of scores across H

New Insights on the Performance Portability Metric 29

After it was proved that the PP metric is not directly proportional to the
sum of scores across H, Pennycook and Sewall [11] admitted that they made a
mistake but chose to exclude only criterion (5) from the definition and to leave
the rest of the PP metric definition intact.

The PP metric is defined as the harmonic mean of an application’s perfor-
mance efficiency observed across a set of platforms. If the application fails on any
measured platform(s), it defines the performance portability to be 0. Formally,
for a given set of platforms H, the performance portability PP of an application
a solving problem p is:

PP(a, p,H) =

{ |H|
∑

i∈H
1

ei(a,p)
if i is supported ∀i ∈ H

0 otherwise
(1)

where ei(a, p) is the performance efficiency of application a solving problem
p on platform i.

The following discussion addresses the three main aspects that appear in the
original criteria and the definition of the PP metric and that motivated us to
propose the revised metric, P̄̄P:

First, it has been proved that the harmonic mean does not satisfy criterion
(5), or in other words, that the PP metric is not directly proportional to the
sum of scores across the given set of platforms H. As a result, it is argued that
the PP metric is inconsistent and cannot be considered comparable, as we have
shown in [5]; Sect. 3 further elaborates on this matter. Therefore, we proposed
to replace the harmonic mean by the arithmetic mean because the arithmetic
mean is directly proportional to the sum of scores across the set of platforms
H, as was proved in [5]. Pennycook and Sewall admitted that they had made a
mistake but chose to exclude only criterion (5) from the definition and to leave
the rest of the PP metric definition intact. We admit that we do not understand
the rationale of this act [11].

Second, we claim that criterion (3) is a constraint imposed on the designers
of the PP metric because the harmonic mean is not applicable when one of its
components is zero. Reference [5] shows a sample of observations from previous
studies on performance portability that demonstrate the practical implications
of this constraint for performance portability scores.

For example, it does not make sense to determine that an application’s per-
formance portability on H is 0% just because there is, at present, no implemen-
tation of the application for one or more platforms in H. Therefore, we have
suggested that such cases be defined as not applicable, thus avoiding unrealistic
and biased results. It is important to emphasize that the arithmetic mean, unlike
the harmonic mean, does not suffer from this limitation, i.e., the arithmetic mean
is applicable when one of its components is zero.

Although the P̄̄P metric can include platforms that are not supported by the
application, the decision was made here not to include them in the calculations
so as not to distort the resulting score. Notwithstanding, and after some thought,

30 A. Marowka

we accept the recommendation of Pennycook and Sewall not to include a non-
numerical value in the metric definition and therefore the decision was made to
refine the definition of the P̄̄P metric to contain only platforms that are supported
by the application.

Third, the emergence of heterogeneous computing has rekindled research
into performance portability. For this arises the desire to evaluate the perfor-
mance portability of an application in the heterogeneous environment of plat-
forms like CPUs and GPUs.

The performance portability studies of recent years explicitly show that the
performance efficiencies of CPUs are significantly lower, on average, than the per-
formance efficiencies of GPUs. For example, Pennycook, Sewall, and Lee studied
the performance portability of GPU-STREAM 2.0 [3] and reported that the per-
formance efficiency of GPUs could be twice that of CPUs. They explicitly stated
that “The PP measurements across CPUs are notably lower than the equivalent
measurements across GPUs, and this is reflected in the measurements across the
union of both subsets.”

Therefore, the P̄̄P metric was redefined to consider only platforms from the
same architecture class. In the authors’ opinion, the performance portability of
each class should be calculated individually. In addition, it is highly desirable to
present the overall calculation for a heterogeneous system.

The next step is to present the criteria and definition of the P̄̄P metric. Given
a set of supported platforms S ⊆ H, the set of criteria of the P̄̄P metric defines
it to be:

1. measured specific to a set of platforms of interest S
2. independent of the absolute performance across S
3. zero if none of the platforms is supported
4. increasing or decreasing if performance increases

or decreases on any platform in S
5. directly proportional to the sum of scores across S

The P̄̄P metric is defined as the arithmetic mean of an application’s per-
formance efficiency observed across a set of platforms from the same architec-
ture class. Formally, for a given supported set of platforms S ⊆ H from the
same architecture class, the performance portability of a case-study application
a solving problem p is:

P̄̄P(a, p, S,H) =

{∑
i∈S ei(a,p)

|S| if |S| > 0

0 otherwise
(2)

where S := {i ∈ H|ei(a, p) > 0} and ei(a, p) is the performance efficiency of
case-study application a solving problem p on platform i.

3 Proportionality

One of the desirable properties of a good single-number performance portability
metric, based on summarizing a set of observations, is direct proportionality. In

New Insights on the Performance Portability Metric 31

Fig. 1. Comparison of the Performance Portability of two applications according to
the PP (right) and P̄̄P (center) metrics over time. (Left) The cumulative performance
efficiencies of the two applications over time.

other words, its score should be directly proportional to the sum of the scores of
the observations it represents. Consequently, if the sum of the observation scores
change by a certain ratio then the score of the metric should change by the same
ratio. This property makes the metric naturally attractive to users.

We believe that this motivated the designers of the PP metric to include this
property in the criteria of the PP metric definition [3]. Once it had been proved
that the PP metric, which is based on the harmonic mean, does not satisfy this
criterion [5] , Pennycook and Sewall admitted that it was a mistake to include
it in the definition and decided to exclude it henceforth, but without providing
further explanation [11]. In authors’ opinion, this approach is wrong. Following
is an explanation and a demonstration that support this belief.

First of all, it is important to emphasize that removing the direct propor-
tionality criterion from the definition of the PP metric in itself does not solve
anything because, even after the criterion is removed, the PP metric remains not
directly proportional to the sum of scores of the observations it represents.

Let us clarify that our proposal to reformulate the PP metric, which is based
on the harmonic mean, to the P̄̄P metric, which is based on the arithmetic mean,
stemmed primarily from the desire not to remove the direct proportionality
criterion because we believe that it is essential to the definition of the metric.
Recall that we have proven that the P̄̄P metric is directly proportional [5].

The PP and P̄̄P metrics are single number-metrics and are therefore lossy met-
rics by definition. Therefore, it is essential to avoid losing additional information
unnecessarily. Removing the direct proportionality criterion from the PP met-
ric definition means losing additional vital information. In fact, the relationship
between the PP metric and the observations it represents has become looser.
Moreover, the PP metric without this criterion cannot be considered comparable
and its consistency is significantly impaired. In [5] we presented a simple example
of this claim. We will present it in a more graphic and tangible way.

Figure 1 shows a comparison of the performance portability of two appli-
cations based on the PP and P̄̄P metrics as platforms are added to the set of
platforms H over time. The Excel file that generated the graphs in Fig. 1 can
be downloaded from [18]. Figure 1(left) shows how the cumulative scores of two
applications change over time. The scores shown were taken from real applica-

32 A. Marowka

tions reported in various studies [15–17]. The cumulative scores of application a
are larger than the cumulative scores of application b over time.

Figures 1(center) and 1(right) show the scoring behavior of the P̄̄P and PP
metrics respectively. According to the P̄̄P metric, the performance portability of
application a is greater than that of application b over time. On the other hand,
according to the PP metric, the performance portability of application a is incon-
sistent and is alternately changing compared to the performance portability of
application b over time. Sometimes its performance portability is greater than
the performance portability of application b, and sometimes the opposite is true.
The fact that the cumulative score of application a is always greater than that
of application b does not affect the zigzag behavior of the PP metric. The direct
proportionality property of the P̄̄P metric makes it possible to predict that as
long as the cumulative score of application a is greater than that of application b,
it is guaranteed that the performance portability of application a will be greater
than the performance portability of application b. The induced inconsistency of
the PP metric makes it difficult to compare and predict the performance porta-
bility of different applications over time. It does not reflect the real performance
portability relationship of the two applications over time and poorly represents
their cumulative performance efficiency behavior over time.

4 Smith’s Article

The main source of inspiration for the development of the criteria and defi-
nition of the PP metric was Smith’s article [12]. Hence, it was expected that
Pennycook and Sewall would discuss Smith’s article at length in their articles
[3,11]. In practice, they only referred the readers to Smith’s article and noted
that, “The harmonic mean has been previously demonstrated by researchers as
a superior way to aggregate multiple performance numbers and, unlike the geo-
metric and arithmetic means, satisfies criteria (5) and (5)”. This section presents
what Smith’s article is about, examines the relevance of Smith’s article to the
criteria and definition of the PP metric, and presents the reference of Hennessy
and Patterson to Smith’s article [13].

Smith studied the ways of reducing benchmark performance results to a single
number that maintains the accuracy of the original benchmark. For this purpose,
Smith used a hypothetical example of a benchmark that includes two programs
running on three computers. The first rows of Table 1 shows the running times of
each program on each computer and the total times measured on each computer.
From the total time it can be deduced that computer 3 is almost three times as
fast as computer 2 and that computer 2 is nine times faster than computer 1.

Next, Smith chose to express the performance in rates (mflop/s). To that end,
he assumed that each program operates at 100 mflop. The calculated results are
presented in the last rows of Table 1, including the arithmetic, harmonic, and
geometric means of the rates for each computer. From these results Smith con-
cluded that only the harmonic mean preserves the relative performance between
the computers as calculated in Table 1 - in other words, that computer 3 is three
times faster than computer 2 and that computer 2 is nine times faster than
computer 1.

New Insights on the Performance Portability Metric 33

Based on these findings Smith formulated two properties:
Property 1. A single-number performance measure for a set of benchmarks

expressed in units of time should be directly proportional to the total
(weighted) time consumed by the benchmarks.

Property 2. A single-number performance measure for benchmarks
expressed as a rate should be inversely proportional to the total (weighted)
time consumed by the benchmarks.

The above discussion constitutes the core of Smith’s article.
Now, the reader’s attention is directed to three observations related to the

properties that Smith formulated and the criteria and definition of the PP metric:

1. Smith proved nothing. He used only one hypothetical example and deduced
from it two properties that would have been desirable to include in practical
and realistic benchmarks.

2. Smith was looking at how to summarize rates (mflop/s). In contrast, the PP
metric deals with summarizing performance efficiencies that are fractions (or
ratios) and are unitless.

3. Smith emphasized in both properties that the single-number performance
measure must be directly or inversely proportional to the total time. In other
words, Smith required the existence of a criterion (5) that Pennycook and
Sewall chose to exclude from the criteria of the PP metric.

Due to lack of space, we do not present Hennessy and Patterson’s criticism
to Smith’s paper.

Table 1. Reprint from Smith’s Article [12]

Benchmark mflop Computer 1 Computer 2 Computer 3

Program 1 (seconds) 100 1 10 20

Program 2 (seconds) 100 1000 100 20

Total Time (seconds) 1001 110 40

Program 1 (mflop/s) 100.0 10.0 5.0

Program 2 (mflop/s) .1 1.0 5.0

Arithmetic Mean (mflop/s) 50.1 5.5 5.0

Geometric Mean (mflop/s) 3.2 3.2 5.0

Harmonic Mean (mflop/s) .2 1.8 5.0

5 The Principles

In their responding article [11], Pennycook and Sewall presented the underlying
principles from which they derived the criteria and definition of the PP met-
ric. Throughout the mathematical development of their ideas, they discovered a

34 A. Marowka

weighting relationship between the PP and P̄̄P metrics. In other words, they dis-
covered a weighting relationship between the arithmetic and harmonic means.

They showed that the achieved aggregate throughput as normalized against
the peak aggregate throughput of a set of platforms is equal to the harmonic
mean of the performance efficiencies when work is weighted accordingly to the
peak throughput of each platform, and is equal to the arithmetic mean of the per-
formance efficiencies when work is weighted accordingly to the achieved through-
put of each platform.

These principles are mathematically correct but are not backed by a clear
model as we showed in Sect. 4. Moreover, these principles are only correct for
the architectural efficiency approach based on throughputs. They are not correct
for the popular application efficiency approach based on runtimes [2,8,16,17].
We will demonstrate this by an example. After the discussion, an explanation is
given of why, after all, use of the P̄̄P metric is preferable.

First, it should come as no surprise that there is a weighting relationship
between the arithmetic and harmonic means. After all, the harmonic mean is
the reciprocal of the arithmetic mean of the reciprocals.

Let E = (a1/p1, a2/p2, ..., an/pn) be a set of performance efficiencies based
on application efficiency of runtimes; A = (a1 + ... + an) the sum of the total
achieved runtimes; P = (p1 + ... + pn) the sum of the total peak runtimes;
WA = (a1/A, ..., an/A) the set of the weights of the achieved runtimes and WP
= (p1/P, ..., pn/P) the set of the weights of the peak runtimes.

The next step is to prove that the weighted arithmetic mean (WAM) of a
set E of performance efficiencies, weighted by peak runtime, is equivalent to the
weighted harmonic mean (WHM) of the set E, weighted with achieved runtime:

WAM(E, WP) = WHM (E, WA) (3)

The proof:

WAM(E, WP) = wp1 · a1
p1

+ ... + wpn · an
pn

=
p1
P

· a1
p1

+ ... +
pn
P

· an
pn

=
a1 + ... + an

P
=

A

P
=

1
p1
A + ... + pn

A

=
1

a1
a1

· p1
A + ... + an

an
· pn

A

=
1

a1
A ÷ a1

p1
+ ... + an

A ÷ an

pn

=
1

wa1
E1

+ ... + wan

En

= WHM(E, WA)

Let us demonstrate this relation by an example. Let E be the following
performance efficiency set based on achieved and peak runtimes:

(20/50, 80/100, 200/300, 40/200, 80/200)

Therefore, the total achieved runtime A is:

(20 + 80 + 200 + 40 + 80) = 420

New Insights on the Performance Portability Metric 35

The total peak runtime P is:

(50 + 100 + 300 + 200 + 200) = 850

Thus, the overall performance efficiency is: 420/850 = 0.49411.

The weights of the achieved runtimes WA are:

(20/420, 80/420, 200/420, 40/420, 80/420)

The weights of the peak runtimes WP are:

(50/850, 100/850, 300/850, 200/850, 200/850)

Now, WAM and WHM can be calculated:

WAM(E,WP) = 20/50 ∗ 50/850 + 80/100 ∗ 100/850
+ 200/300 ∗ 300/850 + 40/200 ∗ 200/850
+ 80/200 ∗ 200/850
= 42/85 = 0.49411 (4)

WHM(E,WA) = 1/((20/420)/(20/50) + (80/420)/(80/100)
+ (200/420)/(200/300) + (40/420)/(40/200)
+ (80/420)/(80/200))
= 42/85 = 0.49411 (5)

From (4) and (5), it is evident that the same result is obtained whether the
weighted harmonic mean or the weighted arithmetic mean used. Therefore, either
the weighted arithmetic mean or the weighted harmonic mean can be used to
find the average of a given set of performance efficiencies if appropriate weights
can be properly applied. However, we prefer to use the unweighted arithmetic
mean because neither the weighted arithmetic mean nor the weighted harmonic
mean is directly proportional to the sum of the scores of its observations. The
next step is to calculate the scores of the unweighted arithmetic and harmonic
means while using the performance efficiencies of the current example:

AM(20/50, 80/100, 200/300, 40/200, 80/200)
= 37/75 = 0.49333

HM(20/50, 80/100, 200/300, 40/200, 80/200)
= 20/51 = 0.39215

Without a doubt, the unweighted arithmetic mean obtained a similar result of
0.49333, which is a negligible difference compared to the result obtained by the
WAM and the WHM and far better than the unweighted harmonic mean score. It
is worth noting that the relationship between the harmonic mean and arithmetic
mean, known as HM-AM inequality, states that HM ≤ AM.

36 A. Marowka

Table 2. Reprint From [11] and [8], PP vs. P̄̄P.

PP vs. P̄̄P(Per Problem) PD PP P̄̄P

1 2 3 4 5

PP P̄̄P PP P̄̄P PP P̄̄P PP P̄̄P PP P̄̄P

ep 0.90 0.91 0.84 0.85 0.85 0.86 0.82 0.83 0.83 0.83 19.02 0.85 0.86

cg 0.72 0.80 0.76 0.80 0.91 0.92 0.97 0.97 1.00 1.00 23.70 0.86 0.89

sp 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0 0.00 1.00

bt 0.98 0.98 0.91 0.93 1.00 1.00 0.00 0.00 0.00 0.00 5.78 0.00 0.97

stencil 0.62 0.78 0.85 0.90 0.94 0.95 1.00 1.00 1.00 1.00 28.69 0.85 0.93

lbm 0.87 0.88 0.99 0.99 0.00 0.00 0.00 0.00 0.00 0.00 11.02 0.00 0.94

mri-q 0.95 0.96 1.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 3.73 0.00 0.98

6 Lossy Metrics

Single-number metrics, such as the PP and P̄̄P metrics, cannot accurately char-
acterize performance portability. On the other hand, practitioners find them
attractive, simple to use and intuitive. This section shows, using an example,
that the PP metric by definition loses more information than the P̄̄P metric.

Pennycook and Sewall refer in their article to the work of Daniel and Panetta
[8], in which they presented their PD metric. The PD metric calculates the
variability average of the performance efficiencies of a number of input sizes of
a given application on top of a given set of architectures. Pennycook and Sewall
claimed that Daniel and Panetta compared the scores of the PP metric with the
scores of the PD metric, but did so separately for each problem size. They argued
that the PP metric summarizes the individual PP scores for different problem sizes
because calculating the harmonic mean of several harmonic means is equivalent
to calculating a harmonic mean using all the data.

Table 2 was taken from the article of Pennycook and Sewall that contained
data collected from the article of Daniel and Panetta. It shows the scores of each
problem size separately and the total scores. In this study, the scores of the P̄̄P
metric have been added to the original table for comparison. Out of seven total
scores, according to the PP metric, four are zero. In contrast, the P̄̄P metric does
not lose any information. How do the Pennycook and Sewall explain this? They
claim that “This should not be surprising: both averaging over average values
and extending an average to more dimensions of a data set should be expected
to destroy more information”. Does information destruction always occur in
such cases? Clearly not, as the P̄̄P metric shows. Data destruction is inherent to
the criteria and definition of the PP metric.

7 Properties of a Good Metric

Throughout the article the PP and P̄̄P metrics have been compared according
the Pennycook and Sewall’s articles, our articles and dozens of other studies
published in the literature in the last five years.

New Insights on the Performance Portability Metric 37

Table 3. Properties of A Good Performance Portability Metric

Properties of Good Performance Portability Metric

Measurable Objective Comparable Linearity Consistency Intuitiveness Ease-of-use Lossless Familiar

P̄̄P Yes Yes Yes Yes Yes Yes Yes Yes Yes

PP Yes Yes Partly No No No Partly No No

Now, it is time for a summary. This paper has presented to the reader the
criteria and definition of each metric and the revised versions. The key aspects
that motivated us to offer a revised metric have been presented, as well as studies
that encountered problems using the PP metric. The discussions have shown that
a measure that is inconsistent is not comparable over time and how important
it is that a single-number metric be directly proportional. The core of Smith’s
article and its relevance to the PP metric have also been presented, and the
weighting relationship between the harmonic and arithmetic means has been
demonstrated. It has been explained that single-number metrics lose informa-
tion by definition and how important it is not to lose additional information.
Examples have been given illustrating that the PP metric loses additional infor-
mation by definition, whereas the P̄̄P metric preserves information. Beyond all
these criteria, a good metric should be objective, easy to use, intuitive, and
familiar to users. Table 3 summarizes the comparison using all the properties
that make a metric a good one.

8 Conclusions

The top 500 list of the most powerful supercomputers in the world is considered
a success story. Despite its criticisms and shortcomings, the HPC community has
accepted it as the de facto ranking system for supercomputers in the last three
decades. Why? Because it is based on a simple metric that is easy to measure
and intuitive.

This paper has shown that the P̄̄P metric is not only intuitive, simple, easy to
use and familiar, but also consistent and does not lose information. The authors
call upon the HPC community to use the metric, criticize it if necessary, and
suggest ways to improve it or to propose a better metric.

References

1. DOE Centers of Excellence Performance Portability Meeting, Glendale, AZ, Post-
meeting Report, 19-21 April 2016

2. Pennycook, S.J., Sewall, J.D., Lee, V.W.: A metric for performance portability,
arXiv preprint arXiv:1611.07409 (2016)

3. Pennycook, S.J., Sewall, J.D., Lee, V.W.: Implications of a metric for performance
portability, Future Generation Computer Systems, Aug 2017. https://doi.org/10.
1016/j.future.2017.08.007

http://arxiv.org/abs/1611.07409
https://doi.org/10.1016/j.future.2017.08.007
https://doi.org/10.1016/j.future.2017.08.007

38 A. Marowka

4. Marowka, A.: Toward a better performance portability metric. In: Proceeding of
29th Euromicro International Conference on Parallel, Distributed and Network-
based Processing (PDP 2021), Valladolid, Spain, 10–12 March 2021

5. Marowka, A.: Reformulation of the performance portability metric. Softw. Pract.
Experience 52(1), 154–171 (2022)

6. Dreuning, H., Heirman, R., Varbanescu, A.L.: A beginner’s guide to estimating and
improving performance portability. In: Yokota, R., Weiland, M., Shalf, J., Alam,
S. (eds.) ISC High Performance 2018. LNCS, vol. 11203, pp. 724–742. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-02465-9 52

7. Siklosi, B., Reguly, I.Z., Mudalige, G.R.: Heterogeneous CPU GPU execution of
stencil applications. In: 2018 IEEE/ACM International Workshop on Performance,
Portability and Productivity in HPC (P3HPC), pp. 71–80 (2018)

8. Daniel, D.F., Panetta, J.: On applying performance portability metrics. In: 2019
IEEE/ACM International Workshop on Performance, Portability and Productivity
in HPC (P3HPC), pp. 50–59 (2019)

9. Sedova, A., Eblen, J.D., Budiardja, R., Tharrington, A., Smith, J.C.: High-
performance molecular dynamics simulation for biological and materials sciences:
challenges of performance portability. In: 2018 IEEE/ACM International Work-
shop on Performance, Portability and Productivity in HPC (P3HPC), pp. 1–13
(2018)

10. Bertoni, C., Kwack, J., Applencourt, T., Ghadar, Y., Homerding, B., Knight, C.,
Videau, B., Zheng, H., Morozov, V., Parker, S.: Performance portability evaluation
of Opencl benchmarks across intel and Nvidia platforms. In: IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), vol. 2020,
pp. 330–339 (2020)

11. Pennycook, S.J., Sewall, J.D.: Revisiting a metric for performance portability. In:
2021 International Workshop on Performance, Portability and Productivity in HPC
(P3HPC), pp. 1–9 (2021)

12. Smith, J.E.: Characterizing computer performance with a single number. Commun.
ACM 31(10), 1202–1206 (1988). https://doi.org/10.1145/63039.63043

13. Hennessy, J.L., Patterson, D.A.: Computer Architecture; A Quantitative App-
roach. Morgan Kaufmann Publishers Inc., Burlington (1990)

14. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun ACM. 52(4), 65–76 (2009)

15. Deakin, T., Price, J., Martineau, M., McIntosh-Smith, S.: GPU-STREAM v2.0:
benchmarking the achievable memory bandwidth of many-core processors across
diverse parallel programming models. In: Taufer, M., Mohr, B., Kunkel, J.M. (eds.)
ISC High Performance 2016. LNCS, vol. 9945, pp. 489–507. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46079-6 34

16. Deakin, T., et al.: Performance portability across diverse computer architectures.
In: 2019 IEEE/ACM International Workshop on Performance, Portability and Pro-
ductivity in HPC (P3HPC), Denver, CO, USA, pp. 1–13 (2019)

17. Deakin, T.J., Poenaru, A., Lin, T., Mcintosh-Smith, S.N.: Tracking performance
portability on the yellow brick road to exascale. In: Proceedings of the Performance
Portability and Productivity Workshop P3HPC: Supercomputing 2020 Institute of
Electrical and Electronics Engineers (IEEE) (2020). (Accepted/In press)

18. Zigzag graph. https://www.dropbox.com/scl/fi/xfsvlf7pbbrx3f6isrybq/zigzag-
graph.xlsx?dl=0&rlkey=u9vah2sjduvr3ckb9o8wt2et4

https://doi.org/10.1007/978-3-030-02465-9_52
https://doi.org/10.1145/63039.63043
https://doi.org/10.1007/978-3-319-46079-6_34
https://www.dropbox.com/scl/fi/xfsvlf7pbbrx3f6isrybq/zigzag-graph.xlsx?dl=0&rlkey=u9vah2sjduvr3ckb9o8wt2et4
https://www.dropbox.com/scl/fi/xfsvlf7pbbrx3f6isrybq/zigzag-graph.xlsx?dl=0&rlkey=u9vah2sjduvr3ckb9o8wt2et4

Inferential Statistical Analysis
of Performance Portability

Ami Marowka(B)

Parallel Research Lab, Haifa, Israel
amimar2@yahoo.com

Abstract. The assessment of the performance portability of hybrid pro-
gramming models is based on many unverifiable observations. Drawing
from the assessment by knowledgeable analysts, subjective conclusions
from unverifiable data are incomplete without descriptive and inferential
statistical analysis.

In this article, a knowledgeable analyst’s assessment of the performance
portability of OpenACC, OpenMP, Kokkos and Raja, on CPU and GPU
architectures is confronted with inferential statistical analysis of two types
of hypothesis tests while carefully examining the effect of outliers.

Keywords: Performance Portability · Performance Efficiency ·
Metrics

1 Introduction

One of the challenging problems of contemporary high-performance program-
ming is to allow advanced scientific applications to be performance portable.
To enable porting high-performance applications between diverse and heteroge-
neous computing architectures while sustaining their performance efficiency and
without the need to rewrite the code.

New performance portability frameworks such as Kokkos [1] and Raja [2]
alongside mature hybrid programming models such as OpenMP [3] and Ope-
nACC [4] are the leading software development tools available to the high-
performance community today for the development of performance portable
scientific applications.

Recently, a formal definition and associated metric have been proposed to
quantitatively assess the degree of the performance portability of these perfor-
mance portability frameworks [7]. Dozens of case studies of various applications,
mini-applications, kernels, and scientific benchmarks of different characteristics
are required to assess the performance portability of such development environ-
ments. In addition, these case studies should be examined on many types of plat-
form architectures and backend compilers. This task cannot be accomplished by
one research group. Therefore, the only way to complete such complex research
is to use the professional scientific literature and collect publications of studies
that reported on performance portability experiments.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 39–50, 2023.
https://doi.org/10.1007/978-3-031-30445-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_4&domain=pdf
http://orcid.org/0000-0003-0914-2024
https://doi.org/10.1007/978-3-031-30445-3_4

40 A. Marowka

The present innovative metrics for evaluating performance portability are
based on calculating the performance efficiencies average of the case studies cho-
sen in the research [5–7]. The score obtained from this calculation is the perfor-
mance portability of the application or the performance portability framework
under assessment. The following question arises: how can one determine and clas-
sify the range of score values that provide acceptable performance portability
and those that do not?

Moreover, when it comes to a research experiment based on hundreds of
case studies, it is expected that some of the observations obtained will present
extreme values, outliers, that are not typical of the vast majority of the data col-
lected in the experiment. These observations require re-examination to ascertain
whether the results can be reproduced or whether they are measurement errors
and accordingly decide whether to remove these observations from the experi-
ment. Here, a second question arises: how should one proceed if the observations
are based on studies that have been published in the scientific literature? In such
cases, it is impossible to ascertain whether the results originate from measure-
ment errors or not. The scientific publications do not contain the information
needed to reproduce the experiment in most cases. Even when this information
exists, setting up the same testbed is almost unattainable.

It turns out that there are no objective criteria to determine whether an appli-
cation or performance portability framework has sufficient performance porta-
bility or not. Such assessment is subjective and is determined in practice by
an analyst with the subject-area knowledge needed to establish a sound and
plausible assessment that determines how to handle outliers. However, a knowl-
edgeable analyst’s assessment may not be sufficient. It needs to be confronted
with the help of objective statistical analysis that will examine the assessment
with and without outliers [21]. Such statistical analysis can discover additional
insights that may strengthen the assessment or allow the analysts to consider
refining their initial assessment in accordance with the statistical findings. Iden-
tifying outliers cannot be done using statistical rules because it depends on
subject area knowledge and how observations are collected. However, there are
techniques, plots, and statistical tests that can help to identify potential outliers
[15–18].

In this article, we confront an analyst’s assessment of a recently published
paper with a statistical analysis of the case study results provided in the research
[7]. The research studied the performance portability of OpenACC, OpenMP,
Kokkos, and Raja using various applications, mini-applications, and kernels that
were tested on different CPU and GPU architectures. Specifically, this article
makes the following contributions.

– First, we present a detailed descriptive statistical analysis of OpenACC obser-
vations, including Shapiro-Wilk normality tests and Q-Q plots.

– We confront the analyst’s performance portability assessment of OpenACC
against two nonparametric hypothesis tests, while carefully examining the
effect of outliers.

Inferential Statistical Analysis of Performance Portability 41

– We present an inferential statistical analysis of OpenACC using two statistical
hypothesis tests: Wilcoxon signed-rank test and the bootstrapping method.

– We apply the above inferential statistical analysis to OpenMP, Kokkos, and
Raja and discuss the obtained findings.

For convenience, throughout the article, we will call the group of 141 Ope-
nACC observations that include outliers and the subgroup of 109 observations
without outliers groups A and B, respectively.

To perform the descriptive and inferential statistical tests mentioned in this
study, we used several statistical tools. Some are proprietary software packages,
and others are online statistic calculators available for free: Minitab [8], Stat 101
[9], Statistic Kingdom [10], Real Statistics [11], GraphPad [12], R language [13]
and Microsoft Excel [14].

The raw data of the statistical tests presented in this article can be viewed
and downloaded at the following link [20].

2 OpenACC Performance Portability

Recently, a new metric for assessing the performance portability of high-level
parallel programming models was proposed [7]. In this research, we used the
new metric for evaluating the performance portability of OpenACC, OpenMP,
Kokkos, and RAJA based on 324 case studies in various application domains,
CPU and GPU architectures, and high-performance compilers.

In this section, we present the definition of the proposed metric and the
results of the performance portability of OpenACC obtained using this metric.
We also explain how we treated the outliers and the assumptions that guided
us to determine which observations would be marked as outliers. Later in this
article, we use OpenACC’s observations collected in this research for our in-depth
statistical analysis.

The new metric definition was formulated as follows.

Definition: Performance Portability of a Model
The arithmetic mean of the performance efficiencies, which are the achieved
performance values of a given portable model as a fraction of the performance
values of a non-portable architecture-specific model, obtained from collections of
case studies carried out on platforms of the same class of pairs (application,
problem).

Formally, the performance portability metric P̄̄PM of a high-level portable
parallel programming model M executing a set of case studies T , where each
t ∈ T corresponds to application a solving problem b on platform c is:

P̄̄PM =
∑

i∈T ei(a, b, c)
|T | (1)

where ei(a, b, c) is the performance efficiency of application a solving problem b
on platform c.

42 A. Marowka

The performance efficiency used in this evaluation is the achieved perfor-
mance of a given portable model M as a fraction of the performance of a
non-portable architecture-specific parallel programing model. For example, Ope-
nACC is a portable programming model, whereas CUDA is a non-portable archi-
tecture specific programming model. Therefore, assuming that performance val-
ues are given in gigaflop/s, the performance efficiency of each case study i in
this evaluation is:

ei(a, b, c) =
OpenACC Performance

CUDA Performance
(2)

Table 1. Performance Portability of OpenACC on GPUs.

Performance Portability

Exc. outliers Inc. outliers # of outliers
Model Case

Studies
P̄̄PM std.

dev.
max min Case

Studies
P̄̄PM std. dev. max min <

50%
50% -
100%

> 100%

GPU
OpenACC 109 81% 13% 100% 51% 141 77% 28% 200% 3% 23 109 9

Table 1 shows the calculated performance portability scores of OpenACC as
obtained by the proposed new metric P̄̄PM on the GPUs, without outliers less
than 50% and greater than 100%, alongside the calculated performance porta-
bility scores that include outliers. In addition, the table presents statistics such
as the minimum and maximum values of the calculated performance efficiencies,
the standard deviation, and the number of outliers less than 50%, greater than
100%, and in the range 50%-100%. It can be observed that the total number of
case studies used in this evaluation is 141, while 32 of them were marked as out-
liers (23%). Moreover, the calculated performance portability without outliers is
81% and with outliers is 77%.

The following question arises: what is the rationale behind our decision that
observations whose scores are less than 50% and greater than 100% will be clas-
sified as outliers? To answer this question, let us use the previous example where
OpenACC is the performance portability framework being tested, and CUDA is
the reference non-portable programming model. If the performance efficiency of a
given case study shows a score greater than 100%, it means that the performance
of the implementation developed by OpenACC is better than the implementation
developed by CUDA. This is in contrast to what is expected from the implemen-
tation that was developed using non-portable and architecture-specific program-
ming models such as CUDA. Therefore, this almost certainly indicates that the
optimization of the implementation developed by CUDA requires improvement.

Inferential Statistical Analysis of Performance Portability 43

This is what motivated us to classify case studies showing scores greater than
100% as outliers. On the other hand, if a given case study shows a score of less
than 50%, it means that the performance of the implementation developed using
OpenACC is less than half the performance of the implementation developed
using CUDA. In the subjective opinion of the authors, it should be classified as
an outlier. Other analysts could determine threshold values less or greater than
50%. In the following sections, we will confront and analyze this decision using
statistical tools.

Fig. 1. Histogram of Performance Efficiencies of OpenACC on GPUs. The dark bars
represent potential outliers.

Table 2. Statistics Summary of the Case Study Observations.

Groups Descriptive Statistics

Mean Std. Error Median Std. Dev. Kurtosis Skewness Range Min. Max. Count
A 77 2.41 78 28 3.5 0.6 197 3 200 141
B 81 1.25 81 13 −0.9 −0.2 49 51 100 109

3 OpenACC’s Observation Statistics

In this section, we present the summary statistics of OpenACC’s observations
that we are analyzing. Figure 1 shows the histogram of 141 observations rep-
resenting the performance efficiencies of 141 OpenACC case studies of various
applications on different GPU platforms as studied and reported in [7]. Table 2
presents the descriptive statistics of the distribution of observations.

44 A. Marowka

The bars in the histogram that are highlighted in a dark color represent
potential outliers marked by the analysts of the study. Recall, these outliers are
the performance efficiencies that yield scores greater than 100% and less than
50%. It can also be discerned by examining the histogram, that calculating the
mean without outliers yields a score of 81% (for 109 observations) compared to
a score of 77% (for 141 observations) including the outliers.

Table 2 shows additional descriptive statistics of groups A and B. The most
notable statistic is the standard deviation, which is double in the case where
the outliers are considered. This indicates a wider dispersion of observations
compared to the case where the outliers are not considered. This is seen visually
from looking at the histogram. The skewness and kurtosis characteristics describe
the distribution shape. Skewness measures the lack of symmetry, while kurtosis
measures whether the distribution is heavy-tailed (has outliers) or light-tailed
relative to a normal distribution. When outliers are considered, the skewness
and the kurtosis of 0.6 and 3.5, respectively, indicate an asymmetrical and right-
positive shape with long heavy tails. On the other hand, when the outliers are
removed, skewness and kurtosis are -0.2 and -0.9, respectively, indicating an
almost symmetrical shape with short thin tails.

Usually, a quantile-quantile plot (Q-Q Plot) alongside a statistic test of nor-
mality is used for determining whether observations are normally distributed.
Figure 2 presents the Q-Q plots with and without outliers, respectively, while
the Shapiro-Wilk test was chosen as the normality test [19]. The Shapiro-Wilk
test rejects the H0 hypothesis for the two groups, and hence the observations
are not normally distributed.

The p-values that were calculated by the Shapiro-Wilk test are 1.297e-7 and
0.00095 for groups A and B, respectively. Since the p-values are less than the
significance level (α) of 0.05 it can be concluded that the difference between the
distribution of the observations and the normal distribution is big enough to
be statistically significant. In the next section we elaborate further about the
concept of hypothesis tests, P-values and the significance level (α).

The Shapiro-Wilk test uses the Kolmogorov-Smirnov effect size to measure
the deviation from the normal. The observed effect sizes of groups A and B were
0.1552 and 0.09838, respectively, indicating that the magnitude of the difference
between the distribution of the observations and the normal distribution is large
for group A and small for group B.

Now, let’s look at the Q-Q plots shown in Fig. 2. To visually assess whether
the points representing the observations follow a normal distribution, we check
that the points follow a straight line.

By looking at the Q-Q plot in Fig. 2 (left), it can be observed that the straight
distribution fit line covers only some of the points, while the points at the ends
move away from the line. These points are suspected to be outliers. On the other
hand, it can be observed from the Q-Q plot in Fig. 2 (right) that the straight
distribution fit line covers most of the points. These findings are consistent with
the results obtained using the Shapiro-Wilk test.

Inferential Statistical Analysis of Performance Portability 45

Fig. 2. Q-Q Plots of the 141 tested observations including outliers (left) and 109 tested
observations without outliers (right).

Figure 3 shows beeswarm-boxplots. A beeswarm-boxplot, is a graph that is a
combination of a beeswarm plot on top of a boxplot. A boxplot, also known as a
box and whisker diagram, is a graph that shows how the observations are spread
out in a different perspective compared with histograms and Q-Q plots. A box-
plot displays the distribution of observations based on a five number summary
(“minimum”, first quartile (Q1), median, third quartile (Q3), and “maximum”).
It also shows potential outliers and their values.

Figure 3 (left) shows the beeswarm-boxplot of the 141 observations includ-
ing the outliers. The numbers 65 and 94 represent the first and third quartiles,
respectively. The line that crosses the box represents the median (78). The box
represents the interquartile range (IQR), the range from the 25th to 75th per-
centile (IQR = Q3-Q1 = 29). The “maximum” and “minimum” values (135 and
25, respectively), also known as Tukey fences, are 1.5 times the interquartile
range from the quartiles. The observations below and above the Tukey fences
are outliers (3, 8, 13,17, 20, 149, 166, 180, and 200).

Hence, according to the statistical analysis there are nine outliers compared
to the thirty-two outliers acknowledged by the analyst. Figure 3 (right) shows the
beeswarm-boxplot of 109 observations, of which the analysts determined none
were outliers. It can be noted that according to our statistical analysis, none of
the observations are below or above the Tukey fences, 51 and 100, respectively,
and therefore none of them are outliers.

Beeswarm plots are designed to show the underlying distribution of the obser-
vations in a way that avoids overlapping. They provide a better visualization of
the distribution of the observations and thus allows new conclusions and insights
to be drawn.

For example, statistical analysis of the beeswarm-boxplot in Fig. 3 (left)
shows that there are a few extreme outliers above the 100% upper threshold
as determined by the analysts. That is, there are a very small number of case
studies whose implementations in OpenACC yield a better performance than
their implementations in CUDA. This finding is consistent with the analysts’
determination that the observations showing performance efficiency scores of
greater than 100% are outliers.

46 A. Marowka

Fig. 3. Beeswarm boxplots of the 141 observations including the outliers (left) and 109
observations without outliers(right).

On the other hand, most outliers marked by the analysts are in the range
between the “minimum” Tukey fence (25%) and the lower threshold value set
by the analysts (50%). This finding allows analysts to re-examine whether their
early determination that set the lower threshold to 50% is appropriate and to
consider changing it to a lower threshold value.

4 Hypothesis Testing

Hypothesis testing is a statistical analysis that uses a sample of observations to
assess two conflicting hypotheses about the properties of a population: the null
hypothesis (H0) and the alternative hypothesis (H1). When the null hypothesis is
rejected, the results are statistically significant, meaning that there is a difference
between the population value and the null hypothesis value.

Statistical hypothesis tests use several parameters to determine whether to
reject the null hypothesis and give an estimated range of values that is likely to
include an unknown population moment. The parameters used in this article are
p-value, significance level, and 95% confidence interval. The significance level (α)
is the probability threshold value of rejecting a true null hypothesis. The p-value
represents the probability of the observation distribution and to what extent it
contradicts the null hypothesis. When the p-value is less than or equal to the
significance level, the null hypothesis is rejected. A confidence interval represents
a range of values that an estimation is expected to fall within a certain percentage
of the time. For example, a 95% confidence interval of [50 60] indicates 95%
confidence that the population mean falls within this range.

In this section, we test our case studies using two nonparametric tests (1-
sample Wilcoxon and nonparametric bootstrap).

Inferential Statistical Analysis of Performance Portability 47

4.1 One-sample Wilcoxon Signed-Rank Test

The one-sample Wilcoxon signed-rank test is a powerful nonparametric test since
the ranking of the observations is considered as well as the signs, thus giving more
accurate results. The assumptions for the one-sample Wilcoxon test are similar
to those of the paired test, but it adds an assumption that the distribution of
the observations is symmetric around the median, or at least not very skewed.
The Wilcoxon test can be applied on our case studies because the skewness of
the distribution of the observations is approximately symmetric (0.58).

The one-sample Wilcoxon signed-rank test has the following hypotheses (two-
sided test):

– H0 : η = η0
– H1 : η �= η0

where η is the population median and η0 is the hypothesized value of the
median in the population. In our test η0 = 80.

We analyze the outcome of the one-sample Wilcoxon signed-rank test we
performed for groups A and B.

Wilcoxon signed-rank test - Group A
V = 4290.5, p-value = 0.2835
H1: true median is not equal to 80
95 percent confidence interval: 73 82
sample estimates: median 78

Wilcoxon signed rank test - Group B
V = 3206.5, p-value = 0.2427
H1: true median is not equal to 80
95 percent confidence interval: 79 84
sample estimates: median 82

For group A, the null hypothesis states that the median equals 80. As the
p-value is approximately 0.28, greater than the significance level of 0.05, we
cannot reject the null hypothesis. We do not have enough evidence to conclude
that the median is different from 80. The 95% confidence interval estimates
that the actual population median is likely to be between 73 and 82. The 95%
confidence interval includes the hypothesized value of 80, which is why we can
be 95% confident that the population median is between 73 and 82. Therefore,
we cannot conclude that the population mean is different from 80.

The one-sample Wilcoxon signed-rank test for group B yields a similar out-
come except that the 95% confidence interval is narrower [79 84]. The hypothet-
ical value of 80 falls within this range and indicates that our hypothesis is closer
to the population median.

48 A. Marowka

Fig. 4. Bootstrap histograms of Group A (left) and Group B (right).

Table 3. Statistical Analysis of OpenACC, OpenMP, Kokkos and RAJA.

Performance Portability

Knowledgeable Analyst (without outliers) Statistics Analysis (with outliers)
Model Case

Studies
Num.
Outliers

P̄̄PM Normal
Distribution

95% CI Skewness Kurtosis P̄̄PM Normal
Distribution

95% CI Skewness Kurtosis

CPU
OpenACC 8 5 71 Yes [60..80] S Nt 105 Yes [84..123] S Nt
OpenMP 25 4 88 No [81..93] As Lht 97 No [86..119] As Nt
Kokkos 27 12 85 No [76..90] As Lht 92 No [77..113] As Lht
Raja 9 4 82 Yes [75..92] S Nt 109 Yes [73..162] S Nt
GPU
OpenACC 141 32 81 No [78..83] S Stt 76 No [72..81] As Lht
OpenMP 83 21 83 No [79..86] S Nt 77 No [71..82] S Nt
Kokkos 20 6 86 Yes [78..91] S Nt 85 Yes [74..95] S Nt
Raja 11 5 85 Yes [72..94] S Nt 80 No [61..93] S Nt

S: Symmetrical; As: Asymmetrical; Stt: Short thin tails; Lht: Long Heavy tails;
Nt: Normal tails; 95% CI: 95% Confidence Interval

4.2 Nonparametric Bootstrap

Bootstrapping is a technique that resamples a sample of observations with
replacement, to create many simulated samples without making assumptions
about the sample distribution. Each of the simulated samples has its own statis-
tics, such as the mean. The histogram of the distribution of these means is called
the sampling distribution of the means. By using this technique, it is possible to
calculate a variety of sample statistics, such as the median, mean, and standard
deviation. This article focuses on calculating the mean and the 95% confidence
interval.

Figure 4 (left) shows the bootstrap distribution of the means and the 95%
confidence interval for the 141 observations. The bootstrap distribution was gen-
erated by re-sampling the observations from Fig. 1 10,000 times and then cal-
culating each sample’s mean. The sampling distribution of the means is the
histogram shown in Fig. 4 (left). It can be observed that the calculated mean
of the bootstrap distribution yields a score of 76, similar to the mean of the
observations in Fig. 1. The confidence interval of the bootstrap distribution is

Inferential Statistical Analysis of Performance Portability 49

[72 81], which means that we can be 95% confident that the population mean
falls within this range. It can also be noticed that the sampling distribution of
the histogram in Fig. 4 (left) approximates a normal distribution even though the
underlying distribution of the observations is skewed. This is a direct outcome of
the Central Limit Theorem. Figure 4 (right) shows the sampling distribution of
the means and the 95% confidence interval for the 109 observations. It approxi-
mates a normal distribution around the mean (81) while the confidence interval
of the bootstrap distribution is narrower [79 84]. This means that we can be 95%
confident that the population mean falls within this range, and we know that
our hypothesis is closer to the population mean.

5 OpenMP, Kokkos, and Raja

The statistical analysis described in detail for the case of OpenACC on GPUs
was also applied to OpenMP, Kokkos, and Raja on GPUs and CPUs, based
on the case studies of the research in [7]. Table 3 shows the results obtained.
Each row in the table refers to one of the performance portability frameworks
and indicates the number of case studies considered, the performance portability
score obtained, the number of outliers detected, whether the distribution of the
observations is normal or not as obtained by the Shapiro-Wilk test, the 95%
confidence interval, and a literary assessment of the skewness and kurtosis values
obtained.

An analysis of the data in Table 3 reveals the following. As the number of
observations increases, the number of outliers increases. The distribution of the
observations tends to be non-normal, and the 95% confidence intervals tend to
be narrower, thus the statistical reliability is better. In contrast, the smaller the
number of observations, the wider the 95% confidence interval, and the abil-
ity to draw a reliable statistical assessment decreases. The conclusion is that the
accuracy of the calculation of the performance portability score of a given perfor-
mance portability framework increases as the number of observations increases.
This finding makes sense and is not surprising, but now it also has the support
of statistical tests.

6 Conclusions

Descriptive and inferential statistical analysis using powerful statistical hypoth-
esis tests constitute complementary tools for the performance portability eval-
uation of an analyst. They are used to conduct an overall reliable assessment
of the capability of a given performance portability framework to generate per-
formance portable applications. Confrontation of an analyst’s assessment with
statistical analysis is necessary when performance portability assessment is based
on unverifiable and unreproducible case studies.

In this article, we presented the method for performing a comprehensive
statistical analysis for OpenACC on GPUs when many case studies are available.
On one hand, we showed how statistical analysis strengthens the evaluation of

50 A. Marowka

an analyst, and on the other hand, we showed how statistical analysis allows an
analyst to refine his initial conclusions. Finally, we presented statistical analysis
for OpenMP, Kokkos and Raja on CPUs and GPUs, and for samples of a small
number of case studies.

References

1. Carter Edwards, H., Trott, C.R., Sundrland, D.: Kokkos: enabling manycore per-
formance portability through polymorphic memory access patterns. J. Parallel Dis-
trib. Comput. (2014)

2. Hornung, R.D., Keasler, J.A.: The RAJA Portability Layer: Overview and Status.
LLNL-TR-661403 (2014)

3. OpenMP. OpenMP 4.5 Specifications. http://www.openmp.org/specifications/.
Accessed 11 Feb 2017

4. OpenACC: Directive-Based Parallel Programming Model for Accelerators (2018).
http://www.openacc.org

5. Marowka, A.: Toward a better performance portability metric. In: Proceeding of
29th Euromicro International Conference on Parallel, Distributed and Network-
based Processing (PDP 2021), Valladolid, Spain, 10–12 March 2021

6. Marowka, A.: Reformulation of the performance portability metric. Softw. Pract.
Exp. 52(1), 154–171 (2022)

7. Marowka, A.: On the Performance Portability of OpenACC, OpenMP, Kokkos and
RAJA. In: ACM Proceeding of HPCAsia 2022, pp. 103–114, January 2022

8. Minitab. https://www.minitab.com/en-us/
9. Stat101. http://www.statistics101.net/statistics101web_000003.htm

10. Statistic Kingdom. https://www.statskingdom.com/
11. Real Statistic. https://www.real-statistics.com/
12. GraphPAD. https://www.graphpad.com/
13. R language. https://www.r-project.org/
14. Excel. https://www.microsoft.com/en-us/microsoft-365/excel
15. Cumming, J., Finch, S.: Inference by eye: confidence intervals and how to read

pictures of data. Am. Psychol. 170–180 (2005)
16. DeWinter, J., Dodou, D.: Five-Point Likert Items: t test versus Mann-Whitney-

Wilcoxon, pp. 1–16. Practical Assessment, Research and Evaluation (2010)
17. Freedman, D., Pisani, R., Purves, R.: Statistics, 3rd edn. W.W. Norton and Com-

pany, New York (1998)
18. Goldstein, H., Healy, M.J.: The graphical presentation of means. J. R. Statist. Soc.

170–180 (1995)
19. Shapiro-Wilk test. https://en.wikipedia.org/wiki/Shapiro%E2%80%93Wilk_test
20. Raw Statistic. https://www.dropbox.com/s/q84gh1jdg3xz8ip/0-statistics-merged.

pdf?dl=0
21. Torsten, H., Roberto, B.: Scientific benchmarking of parallel computing systems:

Twelve ways to tell the masses when reporting performance results. In: Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis (SC 2015) (Austin, Texas). ACM, New York, Article 73, 12
p. (2015)

http://www.openmp.org/specifications/
http://www.openacc.org
https://www.minitab.com/en-us/
http://www.statistics101.net/statistics101web_000003.htm
https://www.statskingdom.com/
https://www.real-statistics.com/
https://www.graphpad.com/
https://www.r-project.org/
https://www.microsoft.com/en-us/microsoft-365/excel
https://en.wikipedia.org/wiki/Shapiro%E2%80%93Wilk_test
https://www.dropbox.com/s/q84gh1jdg3xz8ip/0-statistics-merged.pdf?dl=0
https://www.dropbox.com/s/q84gh1jdg3xz8ip/0-statistics-merged.pdf?dl=0

NPDP Benchmark Suite for Loop Tiling
Effectiveness Evaluation

Marek Palkowski(B) and Wlodzimierz Bielecki

West Pomeranian University of Technology in Szczecin Faculty of Computer Science
and Information Systems, Zolnierska 49, 71210 Szczecin, Poland

{mpalkowski,wbielecki}@wi.zut.edu.pl
http://www.wi.zut.edu.pl

Abstract. The paper introduces ten non-serial polyadic dynamic pro-
gramming (NPDP) kernels as a benchmark suite dedicated to effective-
ness evaluation of tiled code generated by means of polyhedral optimiza-
tion compilers. Most of the applications implement bioinformatics algo-
rithms which are challenging and ongoing tasks for automatic loop nest
tiling transformations. The paper describes mathematically examined
kernels and uniformizes them in the form of loop nests presented in the C
language. In an experimental study, we applied the two automatic source-
to-source compilers, TRACO and PluTo, to generate cache-efficient codes
and analysed their performance on three multi-core machines. We dis-
cuss the limitations of well-known tiling approaches and outline future
tiling strategies for the introduced NPDP Benchmark suite.

Keywords: RNA folding · high-performance computing ·
computational biology · loop tiling · benchmarks

1 Introduction

A collection of non-serial polyadic dynamic programming (NPDP) benchmarks
is introduced to evaluate the performance of tiled code automatically generated
by means of state-of-the-art optimizing compilers. Tiling is a very important
loop nest transformation allowing for increasing code locality and task grain size
as well as task parallelism. The suite consists of 10 kernels belonging to NPDP
algorithms that in general are difficult for automatic generation of effective par-
allel tiled code. Eight of them present dynamic programming recurrences, which
are ones of the commonly-known approaches in computational biology, to nucleic
acid structure prediction (the folding of an RNA molecule), and sequence align-
ment (determining similar regions between two strings of nucleic acid sequences
or protein sequences). Two kernels implement classic algorithms of computer
science.

The contribution of the paper is i) to expose disadvantages of existing bench-
marks for evaluation of dynamic programming code generated by means of opti-
mizing compilers ii) collect a new benchmark suite to evaluate the effectiveness
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 51–62, 2023.
https://doi.org/10.1007/978-3-031-30445-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_5&domain=pdf
https://doi.org/10.1007/978-3-031-30445-3_5

52 M. Palkowski and W. Bielecki

of compilers optimizing dynamic programming code; iii) optimization of pre-
sented benchmarks by means of the PLUTO and TRACO compilers and the
presentation of evaluation results for those optimized codes.

Each benchmark is specified as a C code with a short description of what
the code is supposed to do. This is sufficient in the context of automated loop
transformations implemented within source-to-source compilers. Presented ker-
nels involve mathematical computations, which are easily implemented as affine
control loop nests [7,8], thus, the iteration space can be represented by the poly-
hedral model for optimizing their locality and parallelism. It provides a powerful
theoretical framework that can analyze regular loop programs with static depen-
dences [14].

Dynamic programming kernels involve opportunities for polyhedral loop
transformations such as tiling for improving code locality via allowing reuse
when the tile fits in local memory. However, NPDP irregular loop dependence
patterns prevent generation of effective tiled code by means of polyhedral opti-
mization techniques [14].

In the suite, we included only such NPDP kernels that expose non-uniform
dependences (the non-uniform dependence is represented with a dependence
vector whose elements are affine expressions, i.e., they are not constants) and
are challenging for state-of-the-art tiling strategies based on affine transformation
framework (ATF) [14,23] and the transitive closure of dependence graphs [9].

In the next section, we describe introduced NPDP kernels. In the experi-
mental study section, we demonstrate applying of two well-known polyhedral
compilers to parallelize and optimize benchmarks. In the relation work section,
we discuss related polyhedral benchmarks. In conclusion, we define future tasks
to optimize the introduced NPDP Benchmark Suite in order to outperform code
generated by means of state-of-the-art compilers.

2 NPDP Kernels

The nussinov kernel implements Nussinov’s algorithm [17] and solves the prob-
lem of RNA folding through computing the maximum number of base pairs
for subsequences, starting with subsequences of length 1 and building upwards,
storing the result of each subsequence in a dynamic programming array.

Let N be an n × n Nussinov matrix and σ(i, j) be a pairing function. Then
the following recursion N(i, j) is defined over the region 1 ≤ i ≤ j ≤ n as

N(i, j) = max(N(i + 1, j − 1) + σ(i, j), max
1≤j≤n

(N(i, k) + N(k + 1, j))) (1)

and zero elsewhere.
The zuker kernel implements Zuker’s algorithm [25] for RNA folding and

calculates the minimal free energy of the input RNA sequence on recurrence
relations. It defines two energy matrices, W (i, j) and V (i, j), as the total free
energy of a sub-sequence defined with values of i and j, and of a sub-sequence
starting with i and ending with j, respectively, if i and j pairs (otherwise V (i, j)
= ∞).

NPDP Benchmark Suite 53

The main recursion of Zuker’s algorithm for all i, j with 1 ≤ i < j ≤ N ,
where N is the length of a sequence, is the following.

W (i, j)) = min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

W (i + 1, j)
W (i, j − 1)
V (i, j)
min
i<k<j

{W (i, k) + W (k + 1, j)}
(2)

Below, we present the computation of matrix V .

V (i, j)) = min

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

eH(i, j)
V (i + 1, j − 1) + eS(i, j)

min
i≤i′≤j′≤j

2<i′−i+j−j′<d

{V (i′, j′) + eL(i, j, i′, j′)}

min
i<k<j−1

{W (i + 1, k) + W (k + 1, j − 1)}

(3)

where eH (hairpin loop), eS (stacking) and eL (internal loop) are the structure
elements of energy contributions in Zuker’s algorithm.

The Smith-Waterman algorithm (sw kernel) explores all the possible align-
ments between two sequences and as a result it returns the optimal local align-
ment guarantying the maximal sensitivity [21].

It constructs a scoring matrix H, which is used to keep track of the degree
of similarity between the cells ai and bj of two sequences to be aligned, where
1 ≤ i ≤ N, 1 ≤ j ≤ M . The size of the scoring matrix is (N+1)*(M+1). Matrix
H is first initialized with H0,0 = H0,j = Hi,0 = 0 for all i and j.

Each element Hi,j of matrix H is calculated as follows.

Hi,j = max

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Hi−1,j−1 + s(ai, bj)
max
1≤k<i

(Hi−k,j − Wk)

max
1≤k<j

(Hi,j−k − Wk)

0

, (4)

where s(ai, bj) is a similarity score of elements ai, bj that constitute the two
sequences, and Wk is a penalty of a gap that has length k.

The benchmark sw3d finds local alignment for three sequences [21]. Multiple
sequence alignments are computationally difficult to produce (much harder than
that of pairwise alignment) and most formulations of the problem lead to NP-
complete combinatorial optimization problems.

Scoring matrix H is similarly constructed to align cells ai, bj , and cl of three
sequences, where 1 ≤ i ≤ N, 1 ≤ j ≤ M, 1 ≤ l ≤ P . The size of the scoring
matrix is (N+1)*(M+1)*(P+1). Matrix H is first initialized with H0,0,0 =
Hi,0,0 = H0,j,0 = H0,0,l = 0 for all i, j, and l. Each element Hi,j,l is calculated
as follows.

54 M. Palkowski and W. Bielecki

Hi,j,l = max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hi−1,j−1,l−1 + s(ai, bj) + s(bj , cl) + s(ai, cl)
max

1≤k<min(j,l)
(Hi,j−k,l−k + s(bj , cl) − Wk)

max
1≤k<min(i,j)

(Hi−k,j−k,l + s(ai, bj) − Wk)

max
1≤k<min(i,l)

(Hi−k,j,l−k + s(ai, cl) − Wk)

max
1≤k<i

(Hi−k,j,l − 2 ∗ Wk)

max
1≤k<j

(Hi,j−k,l − 2 ∗ Wk)

max
1≤k<l

(Hi,j,l−k − 2 ∗ Wk)

0.

Multiple entries of matrix H are much more complicated by data depen-
dences, whereby each cell entry depends on the values of seven entries. The
filling stage requires one more loop for l. The number of loop nest statements for
q sequences is equal to 2q-1. For two and three sequences with the same length
n, computation of one element growths from 3*n2 to 7*n3 iterations.

The Needleman-Wunsch (nw) algorithm finds global sequence alignment
according to the scheme below [16].

F (i, j) = max

⎧
⎪⎪⎨

⎪⎪⎩

F (i − 1, j − 1) + σ(ai, bj),
max
1≤k<i

(F (i − k, j) − γ(k)),

max
1≤k<j

(F (i, j − k) − γ(k)).
(5)

where σ(ai, bj) is a score of ai, bj (match or mutation), γ(k) is a gap penalty
score with the length k.

The counting algorithm computes the exact number of nested structures for
a given RNA sequence. It was introduced by Michael S. Waterman and Temple
F. Smith [22]. It populates the matrix C by means of the following recursion.

Ci,j = Ci,j−1 +
∑

i≤k<(j−l)
Sk,Sj pair

Ci,k−1 · Ck+1,j−1, (6)

where l is the minimal number of enclosed positions, and the entry Ci,j provides
the exact number of admissible structures for the sub-sequence from position
i to j. The upper right corner C1,n presents the overall number of admissible
structures for the sequences.

The John S. McCaskill kernel (mccaskill) computes the partition function
Z =

∑
P exp(−E(P)/RT) over all possible nested structures P that can be

formed by a given RNA sequence S with E(P) as energy of structure P , gas
constant R, and temperature T [12].

Each base pair of a structure contributes a fixed energy term Ebp indepen-
dent of its context in a Nussinov-like energy scoring scheme. Given this, two

NPDP Benchmark Suite 55

dynamic programming tables Q and Qbp are populated. Qij provides the parti-
tion function for a subsequence from position i to j, while the array Qbp stores
the partition function of the subsequences which form a base pair or 0 if base
pairing is not possible. Q and Qbp are populated as follows.

Qi,j = Qi,j−1 +
∑

i≤k<(j−l)

Qi,k−1 · Qbp
k,j , (7)

Qbp
i,j =

⎧
⎨

⎩

Qi+1,j−1 · exp(−Ebp/RT) if Si, Sj can form
base pair

0 otherwise
. (8)

The mea kernel predicts the structure with the maximum expected accuracy
for a given RNA sequence using the algorithm introduced by Zhi J. Lu et al.,
2009 [11] applying the sequence’s base pair and unpaired probabilities. The kernel
consists of six NPDP program loops (Q, QBP, PB, PU, PUU, M) and follows a
Nussinov-like recursion using the probabilities derived from John S. McCaskill’s
algorithm.

The computation of PB is the sum of the Boltzmann probabilities of all the
structures that contain the base pair [6]. PB covers both the case when (i, j) is
an external base pair and that when (i, j) is directly enclosed by an outer base
pair (p, q). The PB recursions are used to compute the probabilities of individual
base pairs P bp according to the formula below.

P bp
i,j =

Q1,i−1 ·Qbp
i,j ·Qj+1,n

Q1,n
+

∑

p<i,j<q

P bp
p,q ·

exp(−Ebp/RT) ·Qp+1,i−1 ·Qbp
i,j ·Qj+1,q−1

Qbp
p,q

(9)

Analogously to base pair probabilities, we can also compute the probability
when a given subsequence Si...Sj of an RNA sequence is not involved in any
intramolecular base pair. We call this kernel as PU and use the scheme below.

Pu
i,j =

Q1,i−1 · 1 · Qj+1,n

Q1,n
+

∑

p<i,j<q

P bp
p,q · exp(−Ebp/RT) · Qp+1,i−1 · 1 · Qj+1,q−1

Qbp
p,q

(10)
The following formula is used to populate the probability Pu

i when a given
sequence position Si is not paired. We call it PUU and apply the formula below.

Pu
i = 1 −

∑

k<i

P bp
k,i −

∑

i<j

P bp
i,j (11)

Finally, the MEA structure prediction uses the following recursion to fill a
dynamic programming table M . The overall score of Mi,j and the subsequence
Si..Sj is hold in M1,n for a sequence of length n. γ is a constant base pair
weighting. We call this kernel MEA.

56 M. Palkowski and W. Bielecki

Mi,j = max

{
Mi,j−1 + Pu

j Sj unpaired

maxi≤k<(j−l)

(
Mi,k−1 + Mk+1,j−1 + γ · P bp

k,j

)
Sk paired with Sj

(12)
In the optimal (polygon) triangulation problem (the triang kernel), we are

given a convex polygon and a weight function defined on triangles formed by
sides and chords [5]. The problem is to find a triangulation that minimizes the
sum of the weights of the triangles in the triangulation.

Let cost w(i, j, k) denotes the length of the perimeter of �vivjvk = |vivj | +
|vjvk|+ |vkvi|. Then minimal cost polygon triangulation is calculated as follows.

c[i][j] =

⎧
⎨

⎩

0 j < i + 2,

max
i<k<j

(c[i][k] + c(k][j] + w(i, j, k)) otherwise. (13)

The knuth kernel is the optimal binary search tree (OBST) [10], the case
when the tree cannot be modified after it has been constructed. Knuth’s OBST
algorithm populates matrix C and is represented with the following recurrence

Ci,j = min

⎧
⎨

⎩

Ci,j

min
1≤i<k<j≤n

(Ci,k + Ck,j + Wi,j)
, (14)

where W (i, j) is the sum of the probabilities that each of the items i through j
will be accessed.

The source codes of all considered benchmarks are available in the sub-
directory input on the website https://github.com/markpal/NPDP Bench.

Table 1 presents characteristics of the presented NPDP C kernels. For each
kernel, it describes the number of nested loops, the number of arrays, the number
of relations representing loop dependences, and memory capacity. The data pre-
sented in the last two columns are discussed in the experimental study section.

3 Related Work

The commonly known benchmark suite for polyhedral optimizers is PolyBench
introduced by Louis-Noel Pouchet in 2011 [19]. PolyBench is a collection of
30 numerical computations containing static control parts. The kernels are
extracted from problems in various application domains (linear algebra compu-
tations, image processing, physics simulation, dynamic programming, statistics,
etc.). PolyBench is dedicated to evaluate code performance generated by means
of techniques based on affine transformations. In previous versions, Polybench
includes the dynamic programming kernel dynprog. However, this implemen-
tation uses a temporary three-dimensional array to avoid non-uniform depen-
dences. In current version 4.2, the kernel is removed. Instead of it, the Nussinov
kernel is added.

https://github.com/markpal/NPDP_Bench

NPDP Benchmark Suite 57

Table 1. Characteristics of the NPDP kernels.

Kernel No. of No. of No. of Memory TRACO PluTo

nested loops arrays dep. relations exact R+ limits

counting 3 1 14 N2 yes ***

knuth 3 2 10 2*N2 yes *

mcc 3 3 26 2*N2+N yes ****

mea 4 6 104 4*N2+N no

nussinov 3 2 24 N2+N yes *

nw 3 6 22 3*N2+3*N yes *

sw 3 6 22 3*N2+3*N yes *

sw3d 4 6 98 3*N23+3*N no

triang 3 1 22 N2 yes *

zuker 4 4 104 4*N2 no **

* - unitled innermost loop nest, ** - unitiled one before innermost loop nest
*** - untiled outermost loop nest, **** - serial tiled code

The Livermoore loops [13] measure numerical computation to benchmark
supercomputers. It was proposed by Francis H. McMahon from scientific source
code run on computers at the Lawrence Livermore National Laboratory. The
suite consist of 24 loops representing different mathematical kernels, and some
of them can be presented within the polyhedral model.

The polyhedral compilers are practiced to generate optimized codes for the
NAS benchmark suite (NPB) [15] derived from computational fluid dynamics.
It is a branch of fluid mechanics that uses numerical analysis and algorithms
to solve and analyse problems that involve fluid flows. The NAS parallel bench-
marks suite in version 3.3 consists of eleven kernels targeting performance eval-
uation of highly parallel supercomputers.

The UTDSP Benchmark Suite [26] was created in 1992 at the University of
Toronto to evaluate the quality of code generated by a high-level language (such
as C) compiler targeting a programmable digital signal processor (DSP). This
evaluation was used to drive the development of specific compiler optimizations
to improve the quality of generated code and to modify the architecture of the
target processor to simplify compiler’s task. The code is provided in multiple
styles, versions with arrays are represented as polyhedral loop nests.

The LORE loop repository for the evaluation of compilers maintains a large
amount of loop nests in the C language (about 2500 loops) extracted from pop-
ular benchmarks, libraries, and real applications [3]. Those loops cover a vari-
ety of properties that can be tested by optimization compilers to expose their
strengths and weaknesses. The kernels help to evaluate auto-vectorization, tiling,
interchange, unrolling, and other possible transformations implemented within
optimizers. It is worth noting that LORE contains only necessary codes to exe-
cute the kernel loops (not all source programs) to investigate speedup and effi-
ciency of optimization techniques. The authors tested the Intel C++ Compiler

58 M. Palkowski and W. Bielecki

(ICC), GNU C Compiler (GCC), and Clang (frontend of LLVM). Using those
compilers, authors provided the time execution results on an Intel Haswell gener-
ation Xeon E5-1630 v3 with -O3 flag and enabled more aggressive optimization
settings depending on the compiler. However, LORE does not contain NPDP
kernels presented in our benchmark suite. Furthermore, not all LORE loops can
be directly represented within the polyhedral model because they contain, for
example, pointers, typecasting, and arrow operators.

The disadvantage of the benchmark suites discussed above is the absence
of multiple dynamic programming kernels that is hard to be tiled to obtain
the maximal tile dimension, which has crucial impact on target code locality.
This makes it difficult to evaluate the effectiveness of loop tiling approaches
implementing in optimizing compilers for essential real-life applications.

4 Experimental Study

In this section, we present the results of an experimental study with the dis-
cussed benchmark codes generated applying PLuTo and TRACO. All parallel
tiled codes were compiled using the Intel C++ Compiler (icc) and GNU C++
Compiler (g++) with the -O3 flag of optimization.

To carry out experiments, we used three multi-processor machines: an Intel
Xeon Platinum 9242 CPU (2.30 GHz, 96 thrads, 71.5/48/3 MB Cache, compiler
icc 21.3.0), an Intel i7-8700 (3.2 GHz, 4.6 GHz in turbo, 6 cores, 12 threads, 12
MB/1.5 MB/6*32 kB (D and I) Cache, compiler icc 19.0.1), and an AMD Epyc
7542 (2.35 GHz, 32 cores, 64 threads, 128/16/2 MB Cache, compiler g++ 9.3.0).

For all examined codes, the tile size along each axis was chosen as 16. Experi-
mentally we discovered that such a tile size is optimal or near to optimal regard-
ing to target tiled code performance.

Source codes of the benchmarks with generated codes are available at the
open repository github with the following link https://github.com/markpal/
NPDP Bench. Original (sequential and without any modification) input codes
are placed in sub-folder input. Arrays are filled with random data.

For experimental study, we chose two polyhedral compilers PluTo and
TRACO, which are maintained projects with source code repositories, source-to-
source parallelizers and cache efficiency optimizers dedicated to optimize C/C++
program loops.

The state-of-the-art source-to-source PluTo compiler [2] is able to tile all
examined loop nests automatically. For this purpose, it extracts and applies
affine transformations to generate tiled code within the polyhedral model.

TRACO does not find and use any affine function to transform the loop
nest. It is based on the iteration space slicing framework [20], which envisages
applying the transitive closure of a dependence graph to carry out corrections
of original rectangular tiles so that all dependences available in the original loop
nest are preserved under the lexicographic order of target tiles. As a result, the
inter-tile dependence graph does not contain any tile cycle and any technique of

https://github.com/markpal/NPDP_Bench
https://github.com/markpal/NPDP_Bench

NPDP Benchmark Suite 59

Table 2. Times of the original and parallel tiled code execution in seconds.

Kernel counting knuth mcc mea nussinov nw sw sw3d triang zuker

Size 10000 10000 10000 2500 10000 10000 10000 500 10000 2000

XEON Platinum 9242, 96 threads, 2019

Original 409,91 730,09 3043,21 6240,48 1667,69 2221,84 2357,07 291,32 2562,11 436,76

PluTo 15,34 21,075 1299,29 185,6 80,44 112,43 114,15 29,63 82,11 21,59

TRACO 17,5 12,55 1096,88 175,6 51,91 69,43 62,15 34,01 62,9 45,99

AMD Epyc 7542, 64 threads, 2019

Original 354,51 853,09 3676,3 8296,33 4008,76 4 567,33 4 433,91 309,87 3574,98 415,55

PluTo 45,77 37,63 1005,44 356,8 217,69 188,32 173,37 24,28 180,67 30,99

TRACO 38,12 74,06 135,01 483,16 113,17 65,22 61,88 27,17 314,63 63,7

Intel i7-8700, 12 threads, 2017

Original 339,81 744,68 2066,33 3826,6 1507,17 3452,11 3389,89 240,19 2134,83 317,8

PluTo 82,43 145,45 854,9 747,76 618,66 687,22 700,76 91,29 470,26 63,8

TRACO 48,54 77,35 399,16 729,73 134,15 205,22 218,25 99,24 297,42 45,2

Fig. 1. Speedups of parallel tiled codes generated by applying TRACO and PluTo for
a) Intel Xeon Platinum 9242, b) AMD Epyc 7542, and c) Intel i7-8700.

loop parallelization can be used [1]. TRACO parallelizes tiled cods by means of
the commonly known wave-fronting technique.

60 M. Palkowski and W. Bielecki

For mea, sw3d, and zuker, the following lengths of randomized sequences
were studied, 2500, 500 and 2000, respectively. The rest of benchmarks were
considered with 10000 size of a problem.

Both compilers accelerate the NPDP benchmarks on all machines. PluTo is
not able to tile the innermost loop nest for nussinov, sw, nw, knuth, and triang.
It is not able also to tile the outermost loop for counting, and the one before the
inner loop nest for zuker, and it does not parallelize the mccaskill kernel. PluTo
fails to generate tiles of the maximal dimension for NPDP codes because the tile
dimensionality is limited to the number of linearly independent solutions to the
space/time partition constraints. The above observations are presented in the
last column of Table 1.

TRACO codes demonstrate lower or comparable speed-up for sw3d and zuker
because for those source codes, it uses not an accurate but approximated transi-
tive closure of dependence graphs. For calculation of transitive closure, TRACO
uses a corresponding function of the ISL library, which it is not able to return
exact transitive closure for those kernels. Calculation of an approximated transi-
tive closure envisages introducing addition dependences (not existing in sourced
code) in the dependence graph that worsens parallel tiled code performance. For
those kernels, TRACO generates complex code due to a complex form of an
approximated transitive closure.

Table 2 presents execution time of the codes in seconds. Figure 1 depicts the
speed-up of the examined generated codes. TRACO code performances are better
or comparable for the both Intel machines, while those of PluTo outperform
TRACO code performances for half of the kernels on AMD Epyc 7542.

Considering the above experimental results, we plan to investigate alternative
tiling strategies [4,14,18,23,24] to achieve potential higher performance for the
benchmarks of the introduced suite without applying any affine function and/or
transitive closure.

5 Conclusion

In this paper, we introduced the NPDP Benchmark Suite as a set of ten non-
serial polyadic dynamic programming kernels dedicated to polyhedral automatic
optimizing compilers implementing loop tiling. It comprises C codes to resolve
real-life problems from computational biology and computer science. Those codes
are to evaluate the performance of parallel tiled code generated automatically
by means of optimizing compilers.

In the experimental study, we applied two source-to-source optimizing com-
pilers, TRACO and PluTo, to generate parallel tiled code and evaluate its speed-
up on three multi-core machines. Obtained results demonstrate some limitations
of techniques implemented in those compilers. PluTo does not expose tiling or
parallelism for each kernel, while TRACO does not produce efficient code for each
complex non-uniform dependence patterns. We may conclude that approaches
implemented in those compilers do not allow us to get the maximal possible
cache efficiency for examined kernels.

NPDP Benchmark Suite 61

In the future, we plan to extend the suite with new NPDP kernels. Using
that suite, we are going to study alternative tiling strategies to outperform code
generated by means of well-known automatic compilers.

References

1. Bielecki, W., Palkowski, M.: Tiling of arbitrarily nested loops by means of the
transitive closure of dependence graphs. Int. J. Appl. Math. Comput. Sci. (AMCS)
26(4), 919–939 (2016)

2. Bondhugula, U., et al.: A practical automatic polyhedral parallelizer and local-
ity optimizer. SIGPLAN Not. 43(6), 101–113 (2008). https://doi.org/10.1145/
1379022.1375595

3. Chen, Z., et. al.: Lore: a loop repository for the evaluation of compilers. In: 2017
IEEE International Symposium on Workload Characterization (IISWC), pp. 219–
228. IEEE (2017)

4. Chowdhury, R., et. al.: Autogen. ACM Trans. Parallel Comput. 4(1), 1–30 (2017).
https://doi.org/10.1145/3125632

5. Cormen, T.H., et al.: Introduction to Algorithms, 3rd edn. The MIT Press, Cam-
bridge (2009)

6. Freiburg bioinformatics group: freiburg RNA Tools, Teaching RNA algorithms.
https://rna.informatik.uni-freiburg.de/teaching (2022)

7. Griebl, M.: Automatic parallelization of loop programs for distributed memory
architectures (2004)

8. Irigoin, F., Triolet, R.: Supernode partitioning. In: Proceedings of the 15th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp.
319–329. POPL 1988, ACM, New York (1988)

9. Kelly, W., et al.: Transitive closure of infinite graphs and its applications. Int. J.
Parallel Program. 24(6), 579–598 (1996)

10. Knuth, D.E.: Optimum binary search trees. Acta Informatica 1(1), 14–25 (1971)
11. Lu, Z.J., Gloor, J.W., Mathews, D.H.: Improved RNA secondary structure pre-

diction by maximizing expected pair accuracy. RNA 15(10), 1805–1813 (2009).
https://doi.org/10.1261/rna.1643609

12. McCaskill, J.S.: The equilibrium partition function and base pair binding proba-
bilities for RNA secondary structure. Biopolymers 29(6–7), 1105–1119 (1990)

13. McMahon, F.H.: The livermore fortran kernels: A computer test of the numerical
performance range. Technical Report, UCRL-53745, Lawrence Livermore National
Laboratory, Livermore, California (1986)

14. Mullapudi, R.T., Bondhugula, U.: Tiling for dynamic scheduling. In: Rajopadhye,
S., Verdoolaege, S. (eds.) Proceedings of the 4th International Workshop on Poly-
hedral Compilation Techniques, Vienna, Austria (2014)

15. NAS benchmarks suite. http://www.nas.nasa.gov (2013)
16. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for

similarities in the amino acid sequence of two proteins. In: Molecular Biology, pp.
453–463. Elsevier (1989). https://doi.org/10.1016/b978-0-12-131200-8.50031-9

17. Nussinov, R., et al.: Algorithms for loop matchings. SIAM J. Appl. Math. 35(1),
68–82 (1978)

18. Palkowski, M., Bielecki, W.: Tiling nussinov’s RNA folding loop nest with a space-
time approach. BMC Bioinf. 20(1) (2019). https://doi.org/10.1186/s12859-019-
2785-6

https://doi.org/10.1145/1379022.1375595
https://doi.org/10.1145/1379022.1375595
https://doi.org/10.1145/3125632
https://rna.informatik.uni-freiburg.de/teaching
https://doi.org/10.1261/rna.1643609
http://www.nas.nasa.gov
https://doi.org/10.1016/b978-0-12-131200-8.50031-9
https://doi.org/10.1186/s12859-019-2785-6
https://doi.org/10.1186/s12859-019-2785-6

62 M. Palkowski and W. Bielecki

19. The Polyhedral Benchmark suite (2012). http://www.cse.ohio-state.edu/pouchet/
software/polybench/

20. Pugh, W., Wonnacott, D.: An exact method for analysis of value-based array data
dependences. In: Banerjee, U., Gelernter, D., Nicolau, A., Padua, D. (eds.) LCPC
1993. LNCS, vol. 768, pp. 546–566. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-57659-2 31

21. Smith, T., Waterman, M.: Identification of common molecular subsequences. J.
Mol. Biol. 147(1), 195–197 (1981)

22. Waterman, M., Smith, T.: RNA secondary structure: a complete mathematical
analysis. Math. Biosci. 42(3–4), 257–266 (1978)

23. Wonnacott, D., Jin, T., Lake, A.: Automatic tiling of “mostly-tileable” loop nests.
In: IMPACT 2015: 5th International Workshop on Polyhedral Compilation Tech-
niques, At Amsterdam, The Netherlands (2015)

24. Zhao, C., Sahni, S.: Cache and energy efficient algorithms for Nussinov’s RNA
folding. BMC Bioinf. 18(15), 518 (2017)

25. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using
thermodynamics and auxiliary information. Nucleic Acids Res. 9(1), 133–148
(1981)

26. UTDSP benchmark suite. http://www.eecg.toronto.edu/corinna/DSP/infrastruc-
ture/UTDSP.html (2012)

http://www.cse.ohio-state.edu/pouchet/software/polybench/
http://www.cse.ohio-state.edu/pouchet/software/polybench/
https://doi.org/10.1007/3-540-57659-2_31
https://doi.org/10.1007/3-540-57659-2_31
http://www.eecg.toronto.edu/corinna/DSP/infrastructure/UTDSP.html
http://www.eecg.toronto.edu/corinna/DSP/infrastructure/UTDSP.html

Parallel Vectorized Implementations
of Compensated Summation Algorithms

Beata Dmitruk and Przemys�law Stpiczyński(B)

Maria Curie-Sk�lodowska University, Institute of Computer Science,
ul. Akademicka 9, 20-031 Lublin, Poland

{beata.dmitruk,przemyslaw.stpiczynski}@umcs.pl

Abstract. The aim of this paper is to show that Kahan’s and Gill-
Møller compensated summation algorithms that allow to achieve high
accuracy of summing long sequences of floating-point numbers can be
efficiently vectorized and parallelized. The new implementation uses Intel
AVX-512 intrinsics together with OpenMP constructs in order to utilize
SIMD extension of modern multicore processors. We describe in detail
the vectorization technique and show how to define custom reduction
operators in OpenMP. Numerical experiments performed on a server with
Intel Xeon Gold 6342 processors show that the new implementations of
the compensated summation algorithms achieve much better accuracy
than ordinary summation and their performance is comparable with the
performance of the ordinary summation algorithm optimized automati-
cally. Moreover, the experiments show that the vectorized implementa-
tion of the Gill-Møller algorithm is faster than the vectorized implemen-
tation of Kahan’s algorithm.

Keywords: Summation · Accuracy · Kahan and Gill-Møller
algorithms · Vectorization · SIMD intrinsics · OpenMP

1 Introduction

Summation of floating point numbers is one of the most common and basic
numerical algorithms. The accuracy and stability of many more complex numer-
ical algorithms depend on the quality of the summation method used. It is clear
that the ordinary summation defined recursively is one of the basic of vari-
ous possible methods. Chapter 4 of the book [7] and [6] provide an overview
of several simple and more complicated methods that achieve better accuracy
than the ordinary method. Further, more sophisticated methods can be found
in [1,3,5,15–17,24]. They can be used if the highest accuracy is desired and the
performance is not so important.

Compensated summation methods rely on ordinary recursive summation sup-
plemented with correction terms calculated in order to diminish rounding errors.
It should be noticed that compensated summation can be profitable when com-
putations are performed at the highest precision supported by underlying hard-
ware [7]. There are two basic methods that apply this approach, namely Kahan’s
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 63–74, 2023.
https://doi.org/10.1007/978-3-031-30445-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_6&domain=pdf
http://orcid.org/0000-0001-9823-2595
http://orcid.org/0000-0001-8661-414X
https://doi.org/10.1007/978-3-031-30445-3_6

64 B. Dmitruk and P. Stpiczyński

compensated summation [13] and the Gill-Møller method [18]. Although these
summation methods are relatively simple and can be described with single loops,
their optimization by compilers is not possible due to data dependencies in suc-
cessive steps. On the other hand, vectorization and parallelization is crucial to
utilize potential power of modern multicore processors [2,21–23,25].

The paper [19] shows how to vectorize Kahan’s compensated summation
in order to utilize AVX2 and AVX-512 SIMD extension of Intel processors,
while the papers [8,9] discuss how to apply low-level cache optimization tech-
niques together with the assembly language to improve the performance of the
Kahan’s algorithm applied for computing the dot product. The aim of this paper
is to compare the accuracy and performance of serial, vectorized and parallel
implementations of both Kahan’s and Gill-Møller compensated summation algo-
rithms. We show how to use Intel AVX-512 intrinsics [12] together with OpenMP
[20] constructs in order to utilize SIMD extension of modern multicore proces-
sors. We describe in detail the high-level vectorization technique and explain
how to define custom reduction operators in order to obtain simple high perfor-
mance implementations of the compensated summation methods that achieve
the performance comparable with the ordinary summation algorithm optimized
automatically by the compiler.

2 Compensated Summation Algorithms

Let us consider the summation of n floating point numbers a1, a2, . . . , an using
an arithmetic with t mantissa bits using the ordinary algorithm based on the
recursive formula

si =
{

0 for i = 0
si−1 + ai for i = 1, . . . , n.

(1)

The relative error of the computed value of sn satisfies [10,26]

en =
|sn − ∑n

i=1 ai|∑n
i=1 |ai| ≤ (1 + 2−t)n−1 − 1. (2)

Moreover, if n · 2−t ≤ 0.1, then en ≤ 1.06(n − 1)2−t. It means that for large n
such a possible relative error may be unacceptable. Therefore in order to improve
the accuracy of the summation one can consider the use of so-called compensated
summation algorithms that use correction terms that estimate (x+y)−fl(x+y)
to reduce rounding errors of add operations [7, Section 4.3].

Algorithm 1 shows Kahan’s compensated summation [4,7,13]. It uses the
correction term e on every step of summation. As soon as each partial sum is
evaluated, the correction is added to the next term before that term is added to
the partial sum. In case of the Gill-Møller algorithm (see [14,18] and Algorithm 2)
correction terms are accumulated separately by ordinary summation and finally
the global correction is added to the computed sum.

Parallel Vectorized Implementations of Compensated Summation Algorithms 65

Algorithm 1: Kahan
1 s ← 0
2 e ← 0
3 for i = 1, . . . , n do
4 temp ← s
5 y ← ai + e
6 s ← temp + y
7 e ← (temp − s) + y

8 end
9 return s

Algorithm 2: Gill-Møller
1 s ← 0
2 p ← 0
3 sold ← 0
4 for i = 1, . . . , n do
5 s ← sold + ai

6 p ← p + (ai − (s − sold))
7 sold ← s

8 end
9 return s + p

It can be proven [4,6,7,10,14] respectively, that in case of both compensated
summation algorithms, the computed sums satisfy

ŝ′
n =

n∑
i=1

ai(1 + ε′
i), |ε′

i| ≤ 2u + O(nu2) (Kahan) (3)

and

ŝ′′
n =

n∑
i=1

ai(1 + ε′′
i), |ε′′

i | ≤ 2u + n2u2 (Gill-Møller), (4)

where the unit roundoff u is equal to 2−24 or 2−53 for IEEE single and double
precision arithmetic, respectively. As long as nu ≤ 1, the constant in (3) is
independent of n. In case of Gill-Møller (see [7,11,14]) if we assume that n2u ≤
0.1, then the relative error satisfies |ε′′

i | ≤ 2.1u. It means that if n is not too large,
then sn computed by Algorithm 1 or 2 is the exact sum of slightly perturbed
input data. Moreover, if all ai > 0, then the relative error of both algorithms is
of the same order as u.

3 Implementation of Parallel Vectorized Algorithms

It is clear that the ordinary summation algorithm (Fig. 1, SumOrd) can be auto-
matically optimized by the compiler to utilize SIMD extensions of modern pro-
cessors. Moreover, it can be easily parallelized using the OpenMP parallel
for construct [20] with the reduction clause (Fig. 1, PSumOrd). However, the
optimization of the Kahan and Gill-Møller algorithms (Fig. 1, SumK and SumGM,
respectively) is not so straightforward because of their main loops with obvious
data dependencies. It should be noticed that in case of the Intel OneAPI com-
piler, one should remember to compile the functions SumK and SumGM using the
option -fprotect-parens which tells the optimizer to honor parentheses when
floating-point expressions are evaluated. Otherwise, the optimizer may reorder
expressions without regard for parentheses if it produces faster executing code
and then the benefits (i.e. the accuracy) of the compensated summation algo-
rithms can be lost.

66 B. Dmitruk and P. Stpiczyński

Fig. 1. Ordinary summation (SumOrd), parallelized ordinary summation (PSumOrd),
Kahan summation (SumK), Gill-Møller summation (SumGM), vectorized Kahan summa-
tion (VSumK) and vectorized Gill-Møller summation (VSumGM)

The general idea that can be applied to develop vectorized versions of sum-
mation is the divide-and-conquer approach. The main loop of the functions SumK
and SumGM can be divided into v separate loops, where v is the length of vec-
tors used in particular SIMD extension. For the sake of simplicity let us assume
that n is a multiple of v. In case of 512-bit Intel Advanced Vector Extensions
(AVX-512) for double precision v = 8 and v = 16 for single precision, respec-
tively. Then the loop number k, k = 0, . . . , v − 1, will perform summation of the
numbers ak+iv, where i = 1, . . . , n/v. Note that such partial summations can

Parallel Vectorized Implementations of Compensated Summation Algorithms 67

Fig. 2. Parallel vectorized Kahan summation (PVSumK)

be performed using both Kahan’s and Gill-Møller algorithms. Finally, v partial
sums are added using the appropriate algorithm (again, Kahan’s or Gill-Møller).

In order to take advantages of AVX-512 and develop vectorizable implemen-
tations of the considered algorithms we will use intrinsics for SIMD instructions
which allow to write constructs that look like C/C++ function calls correspond-
ing to actual AVX-512 instructions [12]. Such calls are automatically replaced
with assembly code inlined directly into programs. The algorithms VSumK and
VSumGM presented in Fig. 1 use two variables of the type m512d allocated in
processor’s registers: vx is used to store a sequence of v = 8 consecutive num-
bers loaded by the intrinsic mm512 load pd(), while vs works as the accumu-
lator. The intrinsic mm512 add pd() is used to perform vectorized summation.
VSumK and VSumGM also need a few auxiliary variables of the type m512d to
compute corrections using the intrinsic mm512 sub pd() which performs a sub-
traction of two vectors. The vectorized version of the Gill-Møller algorithm uses
mm512 add pd() to add the vector of v corrections to previously evaluated par-
tial sums.

68 B. Dmitruk and P. Stpiczyński

Fig. 3. Parallel vectorized Gill-Møller summation (PVSumGM)

The parallelization of the vectorized algorithms VSumK and VSumGM using the
OpenMP parallel for construct with the reduction clause requires a cus-
tom reduction operator to be defined. For that one should use the declare
reduction directive. Figure 2 shows how to define the new vkadd operator pro-
viding its initializer and combiner. The first one is responsible for the production
of the neutral element, while the second one shows how to combine two partial
results. We use the intrinsic mm512 setzero pd() as the initializer and the

Parallel Vectorized Implementations of Compensated Summation Algorithms 69

user-defined function avkadd() as the combiner. It is responsible for a single
compensated addition of two vectors that hold partial sums computed by two
separate OpenMP threads. Note that both initializer and combiner operate on
the predefined variables omp priv, omp in, and omp out.

Figure 3 shows parallel vectorized Gill-Møller summation (PVSumGM). Paral-
lelization of the main loop is more sophisticated because one should define two
helper functions avzero() and avgmadd() that work as the initializer and com-
biner of another reduction operator vgmadd. Note that we also have to define the
type GMSum that stores two vectors that holds partial sums and their corrections.
Finally, these two vectors are added using the intrinsic mm512 add pd() in the
main OpenMP thread (i.e. outside the parallel region).

4 Results of Experiments

All considered methods have been tested on a server with two Intel Xeon Gold
6342 processors (totally 48 cores with hyperthreading, 2.8 GHz, 36 MB of cache
memory), 256 GB RAM, running under Linux with Intel OneAPI version 2022.
This compiler suite consists of C/C++ and Fortran compilers and high perfor-
mance numerical libraries like MKL. As our test problem we have chosen

Sn =
n∑

k=1

ak =
n−1∑
k=0

1
(k mod m + 1)(k mod m + 2)

, (5)

where for simplicity we assume that n and m are powers of two. It is well known
that sm =

∑m−1
k=0

1
(k+1)(k+2) = m

m+1 , thus Sn = n
msm = n

m+1 . The generated
numbers have been shuffled using 2n random swaps of two elements. The meth-
ods have been tested for n = 2c, c = 15, . . . , 30, and m = 2j , j = 2, . . . , 6. We
have measured the execution time, selected speedups and accuracy. The results
have been presented in Tables 1 and 2, and Figs. 4 and 5. Note that we have two
implementations of the ordinary summation algorithm, SumOrd – vectorized by
the compiler (column V) and PSumOrd – additionally parallelized using OpenMP
(column P+V). In case of the compensated summation algorithm, we have their
three implementations, namely scalar (columns S, functions SumK and SumGM),
vectorized using intrinsics (columns V, functions VSumK and VSumGM), and the
implementations additionally parallelized using OpenMP (column P+V, functions
PVSumK and PVSumGM). It should be noticed that all functions have been com-
piled using the compiler option O3, i.e. the highest optimization level. It enables
vectorization, inlining of intrinsics, and it is recommended for applications that
have loops using floating-point calculations.

Table 1 presents the relative error for all considered methods but for each
value of n it contains only the results for one value of m, namely the value
for which the ordinary algorithm has achieved the worst accuracy in order to
show how the use of compensated summation improves the accuracy. However,
for fixed value of n, the accuracy of SumOrd for various m is always of the
same order. We can observe that the accuracy of SumOrd and PSumOrd decreases

70 B. Dmitruk and P. Stpiczyński

when the problem size n increases. PSumOrd achieves slightly better accuracy
because the parallel reduction implements a kind of the pairwise summation
approach, which gives more accurate results [6]. Both compensated summation
algorithms mostly give accurate results. For a few cases, the relative error is of the
same order as the unit roundoff, what corresponds to the theoretical properties
presented in Sect. 2. Indeed, for all problem sizes nu < 1, the relative error of
Kahan’s algorithm should not exceed O(u). In case of the Gill-Møller algorithm
the inequality n2u ≤ 0.1 is not satisfied for n ≥ 225 but even for such values of
n, the relative error is still of order u. Our parallel and vectorized versions of the
algorithms preserve these properties with a reduced number of cases for which
exact results are obtained. It was to be expected because divide and conquer
implementations of compensated summation preserve |εi| ≤ cu but at cost of a
slight increase in the size of the constant c [6,10].

Table 1. Relative error for all considered methods

Ordinary Kahan Gill-Møller

n m V P+V S V P+V S V P+V

215 23 3.7e–14 1.0e–15 0.0e–00 0.0e–00 0.0e–00 0.0e–00 0.0e–00 1.2e–16

216 22 3.6e–14 1.7e–15 0.0e–00 1.4e–16 0.0e–00 0.0e–00 1.4e–16 1.4e–16

217 22 6.1e–14 1.5e–15 0.0e–00 0.0e–00 1.4e–16 0.0e–00 1.4e–16 0.0e–00

218 22 1.4e–13 6.1e–15 0.0e–00 0.0e–00 1.4e–16 0.0e–00 0.0e–00 1.4e–16

219 22 2.4e–13 5.8e–15 0.0e–00 0.0e–00 0.0e–00 0.0e–00 0.0e–00 1.4e–16

220 23 1.0e–12 2.1e–14 0.0e–00 0.0e–00 1.3e–16 0.0e–00 0.0e–00 0.0e–00

221 24 1.3e–12 2.5e–14 0.0e–00 0.0e–00 0.0e–00 0.0e–00 0.0e–00 1.2e–16

222 22 2.3e–12 1.0e–13 0.0e–00 0.0e–00 0.0e–00 1.4e–16 0.0e–00 1.4e–16

223 23 8.6e–12 8.4e–14 0.0e–00 0.0e–00 0.0e–00 0.0e–00 0.0e–00 1.2e–16

224 24 1.6e–11 5.5e–15 0.0e–00 0.0e–00 0.0e–00 0.0e–00 0.0e–00 0.0e–00

225 23 3.6e–11 6.9e–13 0.0e–00 0.0e–00 0.0e–00 0.0e–00 0.0e–00 0.0e–00

226 22 3.7e–11 1.6e–12 0.0e–00 0.0e–00 1.4e–16 0.0e–00 1.4e–16 0.0e–00

227 23 1.5e–10 3.7e–12 0.0e–00 0.0e–00 0.0e–00 0.0e–00 0.0e–00 1.2e–16

228 22 1.5e–10 6.5e–12 0.0e–00 0.0e–00 1.4e–16 0.0e–00 0.0e–00 1.4e–16

229 25 3.3e–10 1.2e–11 0.0e–00 0.0e–00 0.0e–00 0.0e–00 0.0e–00 0.0e–00

230 24 4.2e–10 3.5e–11 0.0e–00 0.0e–00 0.0e–00 0.0e–00 0.0e–00 0.0e–00

The performance of SumK and SumGM is up to 8× slower than the performance
of SumOrd because the source code of these functions cannot be vectorized auto-
matically. Unexpectedly, SumGM is really faster than SumK (up to 2×). The same
is true for VSumK and VSumGM. Both algorithms have the same number of flops,
but probably in case of SumGM, the optimizer can make better use of the scalar
units of the processor. Both vectorized implementations of compensated sum-
mation algorithms are up to 8× faster than their scalar counterparts (Fig. 4). It

Parallel Vectorized Implementations of Compensated Summation Algorithms 71

can also be observed that for bigger problem sizes, the performance of VSumGM
is comparable with the performance of SumOrd.

The timing results presented in Table 2, and Figs. 4 and 5 have been obtained
for KMP HW SUBSET=1s,24c,1t and KMP AFFINITY=scatter. These environment
variables allow to control how the OpenMP runtime uses the hardware threads
on the processors. We can recommend to use only one thread per core and to
distribute the threads sequentially among the cores of a processor. The use of par-
allel implementations of considered algorithms, namely the functions PSumOrd,
PVSumGM, and PVSumK, is profitable for really big problem sizes, i.e. n > 224

(Fig. 4). Then the execution time of the algorithms is almost the same. However,
the efficiency of using parallel processing is not very high, because the parallel
loops are not computationally intensive. The speedup of PVSumGM over SumGM
(up to 38×) is worse than speedup of PVSumK over SumK (up to 81×) because its
implementation of parallel reduction is more complicated. Note that the speedup
of PVSumK over SumOrd, and the speedup of PVSumGM over SumOrd, are almost the
same as speedup of PSumOrd over SumOrd, namely up to 8.5× for sufficiently
large problems.

Table 2. Execution time [s] for all considered methods

Ordinary Kahan Gill-Møller

n m V P+V S V P+V S V P+V

215 23 6.2e–6 0.0022 0.0002 2.5e–5 0.0023 0.0001 1.7e–5 0.0023

216 22 1.1e–5 0.0038 0.0003 4.6e–5 0.0038 0.0001 3.1e–5 0.0033

217 22 2.1e–5 0.0041 0.0006 0.0001 0.0041 0.0003 0.0001 0.0040

218 22 5.5e–5 0.0043 0.0012 0.0002 0.0041 0.0006 0.0001 0.0041

219 22 0.0001 0.0045 0.0024 0.0003 0.0044 0.0011 0.0001 0.0043

220 23 0.0002 0.0061 0.0049 0.0006 0.0061 0.0022 0.0003 0.0060

221 24 0.0005 0.0065 0.0097 0.0012 0.0064 0.0040 0.0005 0.0063

222 22 0.0017 0.0068 0.0194 0.0025 0.0070 0.0082 0.0013 0.0069

223 23 0.0040 0.0071 0.0389 0.0056 0.0072 0.0182 0.0040 0.0071

224 24 0.0080 0.0075 0.0779 0.0111 0.0079 0.0364 0.0080 0.0104

225 23 0.0162 0.0129 0.1558 0.0222 0.0117 0.0730 0.0165 0.0098

226 22 0.0322 0.0142 0.3116 0.0445 0.0137 0.1461 0.0328 0.0129

227 23 0.0647 0.0190 0.6234 0.0889 0.0206 0.2917 0.0652 0.0202

228 22 0.1290 0.0273 1.2468 0.1775 0.0268 0.5833 0.1299 0.0235

229 25 0.2577 0.0397 2.4950 0.3552 0.0420 1.1664 0.2582 0.0405

230 24 0.5138 0.0604 4.9954 0.7125 0.0613 2.3437 0.5165 0.0609

72 B. Dmitruk and P. Stpiczyński

Fig. 4. Execution time (left) and speedup over SumOrd (right) for all considered meth-
ods and their implementations

Fig. 5. Speedup over based methods: SumK (left) and SumGM (right)

5 Conclusions and Future Work

We have shown that Kahan’s and Gill-Møller compensated summation algo-
rithms that allow to achieve high accuracy of summation of floating-point num-
bers can be efficiently vectorized using Intel AVX-512 intrinsics and parallelized
with OpenMP constructs in order to utilize SIMD extension of modern multicore
processors. Numerical experiments show that for sufficiently large problem sizes
the vectorized Gill-Møller summation algorithm is as fast as the ordinary sum-
mation algorithm optimized automatically by the compiler. Kahan’s algorithm
is slower, however, both compensated summation algorithms achieve the same
accuracy, much better than accuracy achieved by the ordinary summation algo-
rithm. Both vectorized implementations of the summation algorithms can also be
parallelized using rather easy-to-use and flexible the “declare reduction” con-
struct in order to speedup their execution, but it can be profitable for really big
problem sizes. However, if summation is only a part of implemented problem, for
example when summed numerical values are computed during summation using
a more complicated procedure, then the use of multiple processors can be prof-
itable even for smaller problem sizes. In the future, we plan to implement several

Parallel Vectorized Implementations of Compensated Summation Algorithms 73

algorithms for solving such problems (numerical integration, solving ordinary dif-
ferential equations) in order to examine how the use of the parallel vectorized
compensated summation algorithms affects accuracy and performance.

References

1. Ahrens, P., Demmel, J., Nguyen, H.D.: Algorithms for efficient reproducible float-
ing point summation. ACM Trans. Math. Softw. 46, 22:1–22:49 (2020). https://
doi.org/10.1145/3389360

2. Amiri, H., Shahbahrami, A.: SIMD programming using intel vector extensions.
J. Parallel Distrib. Comput. 135, 83–100 (2020). https://doi.org/10.1016/j.jpdc.
2019.09.012

3. Collange, S., Defour, D., Graillat, S., Iakymchuk, R.: Numerical reproducibility for
the parallel reduction on multi- and many-core architectures. Parallel Comput. 49,
83–97 (2015). https://doi.org/10.1016/j.parco.2015.09.001

4. Goldberg, D.: What every computer scientist should know about floating-point
arithmetic. ACM Comput. Surv. 23, 5–48 (1991). https://doi.org/10.1145/103162.
103163

5. He, Y., Ding, C.H.Q.: Using accurate arithmetics to improve numerical repro-
ducibility and stability in parallel applications. J. Supercomput. 18, 259–277
(2001). https://doi.org/10.1023/A:1008153532043

6. Higham, N.J.: The accuracy of floating point summation. SIAM J. Sci. Comput.
14, 783–799 (1993). https://doi.org/10.1137/0914050

7. Higham, N.: Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia
(1996)

8. Hofmann, J., Fey, D., Riedmann, M., Eitzinger, J., Hager, G., Wellein, G.: Perfor-
mance analysis of the Kahan-enhanced scalar product on current multicore proces-
sors. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski,
J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9573, pp. 63–73. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-32149-3 7

9. Hofmann, J., Fey, D., Riedmann, M., Eitzinger, J., Hager, G., Wellein, G.: Perfor-
mance analysis of the Kahan-enhanced scalar product on current multi-core and
many-core processors. Concurr. Comput. Pract. Exp. 29(9) (2017). https://doi.
org/10.1002/cpe.3921

10. Jankowski, M., Smoktunowicz, A., Woźniakowski, H.: A note on floating-point sum-
mation of very many terms. Elektronische Informationsverarbeitung und Kyber-
netik 19, 435–440 (1983)

11. Jankowski, M., Woźniakowski, H.: The accurate solution of certain continuous
problems using only single precision arithmetic. BIT Num.l Math. (1985). https://
doi.org/10.1007/BF01936142

12. Jeffers, J., Reinders, J., Sodani, A.: Intel Xeon Phi Processor High-Performance
Programming. Knights Landing Edition. Morgan Kaufman, Cambridge (2016)

13. Kahan, W.: Pracniques: further remarks on reducing truncation errors. Commun.
ACM 8, 40 (1965). https://doi.org/10.1145/363707.363723

14. Kie�lbasiński, A.: The summation algorithm with correction and their applications.
Math. Appl. (Matematyka Stosowana) (1973). 10.14708/ma.v1i1.295

15. Lefèvre, V.: Correctly rounded arbitrary-precision floating-point summation. IEEE
Trans. Comput. 66, 2111–2124 (2017). https://doi.org/10.1109/TC.2017.2690632

https://doi.org/10.1145/3389360
https://doi.org/10.1145/3389360
https://doi.org/10.1016/j.jpdc.2019.09.012
https://doi.org/10.1016/j.jpdc.2019.09.012
https://doi.org/10.1016/j.parco.2015.09.001
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163
https://doi.org/10.1023/A:1008153532043
https://doi.org/10.1137/0914050
https://doi.org/10.1007/978-3-319-32149-3_7
https://doi.org/10.1002/cpe.3921
https://doi.org/10.1002/cpe.3921
https://doi.org/10.1007/BF01936142
https://doi.org/10.1007/BF01936142
https://doi.org/10.1145/363707.363723
https://doi.org/10.1109/TC.2017.2690632

74 B. Dmitruk and P. Stpiczyński

16. Lei, X., Gu, T., Graillat, S., Jiang, H., Qi, J.: A fast parallel high-precision summa-
tion algorithm based on AccSumK. J. Computut. Appl. Math. 406, 113827 (2022).
https://doi.org/10.1016/j.cam.2021.113827

17. Lutz, D.R., Hinds, C.N.: High-precision anchored accumulators for reproducible
floating-point summation. In: Burgess, N., Bruguera, J.D., de Dinechin, F. (eds.)
24th IEEE Symposium on Computer Arithmetic, ARITH 2017, London, UK, 24–26
July 2017, pp. 98–105. IEEE Computer Society (2017). https://doi.org/10.1109/
ARITH.2017.20

18. Møller, O.: Quasi double-precision in floating point addition. BIT Num.l Math. 5,
37–50 (1965). https://doi.org/10.1007/BF01975722

19. Neuman, B., Dubois, A., Monroe, L., Robey, R.W.: Fast, good, and repeatable:
Summations, vectorization, and reproducibility. Int. J. High Perform. Comput.
Appl. 34 (2020). https://doi.org/10.1177/1094342020938425

20. van der Pas, R., Stotzer, E., Terboven, C.: Using OpenMP - The Next Step. Affinity,
Accelerators, Tasking, and SIMD. MIT Press, Cambridge (2017)

21. Stojanov, A., Toskov, I., Rompf, T., Püschel, M.: SIMD intrinsics on managed
language runtimes. In: Proceedings of the 2018 International Symposium on Code
Generation and Optimization, pp. 2–15. ACM, New York, NY (2018). https://doi.
org/10.1145/3168810

22. Stpiczyński, P.: Language-based vectorization and parallelization using intrinsics,
OpenMP, TBB and Cilk Plus. J. Supercomput. 74(4), 1461–1472 (2018). https://
doi.org/10.1007/s11227-017-2231-3

23. Stpiczyński, P.: Algorithmic and language-based optimization of Marsa-LFIB4
pseudorandom number generator using OpenMP, OpenACC and CUDA. J. Paral-
lel Distrib. Comput. 137, 238–245 (2020). https://doi.org/10.1016/j.jpdc.2019.12.
004

24. Uguen, Y., de Dinechin, F., Derrien, S.: Bridging high-level synthesis and
application-specific arithmetic: the case study of floating-point summations. In:
Santambrogio, M.D., Göhringer, D., Stroobandt, D., Mentens, N., Nurmi, J. (eds.)
27th International Conference on Field Programmable Logic and Applications,
FPL 2017, Ghent, Belgium, 4–8 September 2017, pp. 1–8. IEEE (2017). https://
doi.org/10.23919/FPL.2017.8056792

25. Wang, H., Wu, P., Tanase, I.G., Serrano, M.J., Moreira, J.E.: Simple, portable and
fast SIMD intrinsic programming: generic SIMD library. In: Proceedings of the 2014
Workshop on Programming Models for SIMD/Vector Processing, pp. 9–16. ACM,
New York, NY (2014). https://doi.org/10.1145/2568058.2568059

26. Wilkinson, J.: Rounding Errors in Algebraic Processes. Prentice-Hall, Englewood
Cliffs (1963)

https://doi.org/10.1016/j.cam.2021.113827
https://doi.org/10.1109/ARITH.2017.20
https://doi.org/10.1109/ARITH.2017.20
https://doi.org/10.1007/BF01975722
https://doi.org/10.1177/1094342020938425
https://doi.org/10.1145/3168810
https://doi.org/10.1145/3168810
https://doi.org/10.1007/s11227-017-2231-3
https://doi.org/10.1007/s11227-017-2231-3
https://doi.org/10.1016/j.jpdc.2019.12.004
https://doi.org/10.1016/j.jpdc.2019.12.004
https://doi.org/10.23919/FPL.2017.8056792
https://doi.org/10.23919/FPL.2017.8056792
https://doi.org/10.1145/2568058.2568059

6th Workshop on Models, Algorithms
and Methodologies for Hybrid

Parallelism in New HPC Systems
(MAMHYP 2022)

Malleability Techniques for HPC Systems

Jesus Carretero1(B) , David Exposito1 , Alberto Cascajo1 ,
and Raffaele Montella2

1 Universidad Carlos III de Madrid. Departamento de Informática,
Leganes, Madrid, Spain

{jcarrete,dexposit,acascajo}@inf.uc3m.es
2 Computer Science at the Department of Science and Technologies (DiST),

University of Naples “Parthenope” (UNP), Naples, Italy
raffaele.montella@uniparthenope.it

Abstract. Abstract The current static usage model of HPC systems is
becoming increasingly inefficient due to the continuously growing com-
plexity of system architectures, combined with the increased usage of
coupled applications, the need for strong scaling with extreme scale par-
allelism, and the increasing reliance on complex and dynamic workflows.
Malleability techniques adjust resource usage dynamically for HPC sys-
tems and applications to extract maximum efficiency. In this paper, we
present FlexMPI, a tool being developed in the ADMIRE project that
provides an intelligent global coordination of resource usage at the appli-
cation level. FlexMPI considers runtime scheduling of computation, net-
work usage, and I/O across all system architecture components. It can
optimize the exploitation of HPC and I/O resources while minimizing the
makespan of applications in many cases. Furthermore, FlexMPI provides
facilities such as application world recomposition to generate a new con-
sistent state when processes are added or removed to the applications,
data redistribution to the new application world, and I/O interference
detection to migrate congesting processes. We also present an environ-
mental use case co-designed using FlexMPI. The evaluation shows its
adaptability and scalability.

Keywords: Malleability · Scheduling · High-Performance
Computing · Environmental applications

1 Introduction

One major challenge for efficiently exploiting HPC infrastructures is finding a
balance between the computational and storage I/O resources. This goal is even

This work has been partially funded by the European Union’s Horizon 2020 under the
ADMIRE project “Adaptive multi-tier intelligent data manager for Exascale”, grant
Agreement number 956748-ADMIRE-H2020-JTI-EuroHPC-2019-1, and by the Spanish
Ministry of Science and Innovation.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 77–88, 2023.
https://doi.org/10.1007/978-3-031-30445-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_7&domain=pdf
http://orcid.org/0000-0002-1413-4793
http://orcid.org/0000-0002-8125-0049
http://orcid.org/0000-0001-5506-1431
http://orcid.org/0000-0002-4767-2045
https://doi.org/10.1007/978-3-031-30445-3_7

78 J. Carretero et al.

more complex when we consider the structure of the I/O stack that includes
multiple storage levels (burst buffers, ad-hoc and back-end storage systems, etc.)
and their interaction with the executing applications. In this context, the use of
malleability provides a new dimension to this problem by allowing it to expand
or shrink both the number of application processes and the number of storage
nodes.

When considering a platform where both the applications and the I/O subsys-
tem are malleable, it is difficult to determine a proper balance between these com-
ponents: HPC applications exhibit significant disparities in I/O requirements,
which may change when the application is reconfigured by malleability. In this
context, new libraries and components of the platform I/O stack are needed to
enhance the existing components with malleable capabilities. In addition, novel
control mechanisms are also required to execute malleable applications efficiently
and to adapt the I/O stack to the characteristics of each application. In this
context, ADMIRE project, depicted in the next section, provides a solution to
this challenge. This work is mainly focused on depicting the application mal-
leability provided by the FlexMPI library, developed in the context of ADMIRE
project. This work describes the main features of FlexMPI and how it is inte-
grated with the WaComM++ application to improve its performance -by means
of malleability- under different execution scenarios.

The rest of this paper is organized as follows: Sect. 2 contextualizes this work
in the framework of the ADMIRE project; a detailed description of the malleabil-
ity features implemented by the Flex-MPI library is in Sect. 3; Sect. 4 is about the
ADMIRE environmental application focusing on the WaComM++ component;
finally, Sect. 5 is about the conclusions and the future research directions.

2 ADMIRE Project

The ADMIRE project pursues the creation of an active I/O stack that dynam-
ically adjusts, computes, and storage requirements through intelligent global
coordination, the elasticity of computation and I/O, and the scheduling of stor-
age resources at all levels of the storage hierarchy. We are developing a software-
defined framework based on scalable monitoring and control principles, sepa-
rating control and data paths and orchestrating key system components and
applications through embedded control points.

The framework consists of the following new active main components:

– an ad-hoc parallel storage system, such as GekkoFS [18] and Hercules [14]
reducing the pressure on the back-end parallel file system and improve check-
pointing performance;

– malleability management will cost-effectively balance I/O and compute per-
formance via dynamic scaling of application resources;

– an I/O scheduler [8] will offer end-to-end quality-of-service guarantees for
the whole storage stack and reduce data movement. The orchestration of

Malleability Techniques for HPC Systems 79

Fig. 1. ADMIRE architecture.

the entire system, the global monitoring, and performance profiling feed the
intelligent controllers coordinating storage allocation and access through con-
trol points installed in these three new active components, the job sched-
uler, and the applications. Our software-only solution will offer quality-of-
service (QoS), energy efficiency, and resilience. The approach proposed in the
ADMIRE project enables I/O interference mitigation. This feature is enforced
by a globally coordinated minimization of data transfers between storage tiers.
Furthermore, the minimization is performed while conveying and enforcing
end-to-end QoS needs.

– an Intelligent Controller that holistically coordinates with each other based
on global monitoring information and application profiles through control
points embedded in each of them.

Figure 1 shows the architectural blocks of the ADMIRE framework.

However, to efficiently balance the computational and storage I/O resources
of the platform by combining malleability and I/O control mechanisms to
enhance the execution of multiple applications is a challenging goal in HPC
systems [13]. Therefore, in ADMIRE project, new strategies for improving the
system performance are based on closer cooperation between the I/O software
stack, the scheduler, and the running applications. To achieve those goals, we
enhance the FlexMPI environment developed by UC3M [7] to cope with these
challenges.

3 FlexMPI

FlexMPI is a library based on MPI whose primary goal is to provide malleabil-
ity facilities for MPI-based applications. FlexMPI is implemented on top of the
MPICH implementation. It makes it fully compatible with the MPI features and

80 J. Carretero et al.

Fig. 2. FlexMPI architecture.

allows it to integrate with any existing MPI-based application easily. Currently,
FlexMPI can be implemented with C/C++ and FORTRAN applications. The
structure of FlexMPI includes several blocks (See Fig. 2) that provide four main
functionalities: monitoring, load balancing (LB), dynamic process management,
and data redistribution. FlexMPI also provides prediction features for compu-
tational needs, I/O behavior, and power prediction models. This work describes
the four basic blocks that provide essential support for malleability.

The purpose of the monitoring block is to collect performance metrics for
each parallel application process during its execution. The applications we target
are iterative and alternate computation and communication phases. The com-
putation phases are monitored using hardware counters (via PAPI [2]), and the
communication routines are tracked by using the MPI profiling interface (PMPI),
which allows profiling the communications without modifying the source code of
the application. The implementation uses low-level PAPI interfaces to track the
number of floating point operations, FLOPs, the real-time, Treal (i.e. the wall-
clock time), and the CPU time, Tcpu (i.e. the time during which the processor
is running in user mode).

The dynamic process management is responsible for assigning the unused
computational resources (compute cores) to the newly executed process or to
the ones already being executed when the number of processes has been changed
through malleability. The dynamic process management determines how many
processes have to be created or destroyed, and the Resource Manager is responsi-
ble for deciding, for each reconfiguration, which specific cores must be allocated
or released.

Malleability Techniques for HPC Systems 81

The load balancing functionality receives as input the per-process values
for the performance metrics measured via monitoring. When load imbalance
is detected, the algorithm determines the new distribution of workload based on
the per-process performance metrics. Although monitoring can be performed
at every iteration, load balancing is only triggered every sampling interval-
consisting of a fixed number of iterations-to reach a trade-off between the over-
head of this operation and the performance gain related to it.

MFLOPSi =
FLOPi

Treal
(1)

The load balancing algorithm first computes the MFLOPS that each process
i has executed during the previous sampling interval. MFLOPSi is defined in
Eq. 1 as the ratio between the number of floating point operations FLOPi and
the actual execution time Treali during a given sampling interval.

RCPi =
MFLOPSi∑p
I=0 MFLOPSi

(2)

The fraction of the workload assigned to process i is computed in Eq. 2. It
depends on the relative computing power (RCPi) of a process i, which is com-
puted as the MFLOPSi divided by the total MFLOPS for all of the processes.
RCP estimates workload distribution on parallel applications since it provides
a normalized value of a process’s computational power relative to the whole
system’s computational power.

Figure 3 shows the integration of FlexMPI with the Intelligent Controller in
ADMIRE framework. FlexMPI is linked with applications for exploiting com-
puting and storage malleable features. As a result, the application’s source code
modifications are reduced. Four operations are introduced in the code: initialize
FlexMPI, declare the redistributed data structures, define the malleable code
section, and start or stop the application monitoring.

When FlexMPI is active, the application workload is redistributed when: (1)
the application is executed in exclusive compute nodes but is unbalanced or
(2) the application is executed in non-exclusive compute nodes, and long-term
external load is detected. Note that short and isolated external workloads do not
affect the application’s overall performance and do not trigger the load balance
feature.

In HPC applications, the data is usually distributed -rather than replicated-
between processes, which requires redistribution to move the data between pro-
cesses each time a load balance operation is carried out. FlexMPI includes a
data redistribution functionality which handles both one-dimensional (e.g. vec-
tors) and two-dimensional (e.g. matrices) data structures, which may be either
dense or sparse. The developer must register each data structure, which will
need to be redistributed due to load balance operations. The registering func-
tion (XMPI Register) receives as input the pointer to the data structure and
the size of the data structure.

82 J. Carretero et al.

Fig. 3. FlexMPI integration with the Intelligent Controller.

Depending on domain decomposition, a Flex-MPI-enabled application lever-
ages the provided data structure footprint, the number of elements, and the
dimensions of rows and columns.

FlexMPI can manage several data structures when registered using the same
type of domain decomposition.

Once the load balancing functionality has computed the RCP of each PE
and the new workload distribution has been mapped to a data partition, the
data redistribution functionality: (i) computes the range of data associated with
the new workload partition of every process, and (ii) moves the data from the
previous to the new processes.

XMPI-Monitor-end returns -on behalf of
the data redistribution functionality- the new count and displacement for the
new data mapping used by each process. MPI standard messages are used to
move data between MPI processes efficiently.

4 A Malleability Use Case: WaComM++

The Environment Application workflow produces operational weather and
marine forecasts and/or on-demand ad-hoc environmental simulations for sce-
narios and what-if analysis [9].

The Environment Application workflow can be seen in Fig. 4.
The computation starts when the initial and boundary conditions from

NCEP Global Forecast System (GFS) are available for download. Once the
GFS data has been downloaded, the computation workflow engine DagOn-
Star1 [10,16,17] performs data pre-processing, operation that is required by
the Weather Research and Forecasting (WRF) numerical model engine. Finally,
the results from WRF, both raw and a more processed and refined output, are

1 https://github.com/dagonstar.

https://github.com/dagonstar

Malleability Techniques for HPC Systems 83

Fig. 4. Environmental application workflow.

moved into a high-performance accessible and available storage. The refined out-
put is converted to be represented in the spatial domain (regular latitude and
longitude), and diagnostic variables enrich it. Note that the results provided by
WRF are also used for other models to predict marine and air quality in the
evaluated regions.

WaComM++ (Water Community Model) is a pollutant transport and diffu-
sion model that operates over the model outputs. In this case, the WRF model
outputs feed the WaComM++ model alongside the Campania Region coastal
pollution emission sources database.

WaComM++ is a Lagrangian model that simulates marine pollutants’ trans-
port and diffusion processes. WaComM++ is a model component of the oper-
ational model chain at the Center for Monitoring and Modelling Marine and
Atmosphere applications (CMMMA)2 of the University of Naples “Parthenope”.
The WaComM++ system can be used in different ways: (i) as an ex-ante
decision-support tool, for example, to aid in selecting the best suitable areas
for farming activity deployment; (ii) as an ex-post simulation tool for improv-
ing the management of offshore activities. WaComM++ supports three levels of
hierarchical parallelization: (i) the distributed memory enforced by the use of the
Message Passing Interface (MPI) library; (ii) the shared memory paradigm to
leverage on the modern multicore architectures thanks to the OpenMP library;
(iii) the multi-GPU computing implemented with the NVIDIA CUDA toolkit.

WaConM++ is characterized by a parallelization schema based on hierarchi-
cal and heterogeneous computation.

WaComM++ has been designed with hierarchical parallelism in mind. Nev-
ertheless, some requirements have been strongly driven by the transport and
diffusion Lagrangian model, for example, the need for data exchange using stan-
dard and well-known formats. For each time interval to simulate (i.e., one hour),

2 https://meteo.uniparthenope.it.

https://meteo.uniparthenope.it

84 J. Carretero et al.

Fig. 5. The WaComM++ data-flow and parallelization schema.

the total number of particles is distributed between the available processors in
an MPI distributed memory fashion. Each processor distributes its duty between
the available threads leveraging OpenMP. If one or more CUDA-enabled GPUs
are available, each thread partitions its particles’ computational burden between
the GPUs. The application has been designed to exploit a three level heteroge-
neous parallelization model supporting multiple CPUs, multi core CPUs and
NVIDA CUDA general purpose GPUs (Fig. 5).

WaComM++ [11] algorithm is an evolution on the Lagrangian Assessment
for Marine Pollution 3D (LAMP3D) algorithm [1]. This algorithm computes the
pollutants and evaluates the water quality near the mussel farms. To increase
the potential of LAMP3D, WaComM++ has optimized its internal algorithms,
and some features, such as parallel-computing techniques in shared memory
environments or checkpointing and restarting, have been included.

WaComM++ aims to predict the concentration of pollutants surrounding
the mussels’ farming areas, giving the expert a tool to estimate the potential
risks to human health.

In the ADMIRE project, WaComM++ has been selected as a use case for
testing the malleability features by integrating FlexMPI. This decision is moti-
vated by means of WaComM++ because it supports distributed memory par-
allelization (MPI), and the main algorithm is iterative (note that FlexMPI is
designed for iterative applications).

Figure 6 shows the integration of FlexMPI and WaComM++. In order to
include malleability features in the source code, FlexMPI provides a set of func-
tion calls that have to be included by the developers. These functions wrap
specific MPI function calls to configure the FlexMPI environment and expand
or shrink the application processes. Algorithm 1 describes the WaComM++ ker-

Malleability Techniques for HPC Systems 85

Fig. 6. Application co-design using FlexMPI.

nel iteration schema, including the code sections where the FlexMPI function
calls should be placed -at the beginning and end of the main function and the
beginning and end of the parallel loop-.

Algorithm 1 WaComM++ kernel simplified algorithm.
1: MPI Init()
2: while sim time < total time do
3: EMPI Monitor init()
4: if rank == 0 then
5: Generate new particles()
6: Calculate displacements vcounts()
7: end if
8: MPI Broadcast(displacements, vcounts)
9: MPI Scatter(particles)

10: for all HCAs in the Subnet do
11: Compute particles()
12: end for
13: MPI Gather(particles)
14: if rank == 0 then
15: Remove died particles()
16: Do checkpoint()
17: end if
18: sim time + +
19: EMPI Monitor end()
20: end while
21: MPI Finalize()

Figure 7 shows the behavior and the performance of a malleable execution
of WaComM++ when the particles increase every iteration. Note that the com-
putation will become a bottleneck if the number of processes keeps constant.

86 J. Carretero et al.

Fig. 7. Scenario with constant increasing load.

However, this problem can be avoided by expanding the number of processes
in runtime when the load achieves a certain threshold. In this case, the compu-
tation becomes a bottleneck when the application has allocated the maximum
number of resources the scheduler provides.

Figure 8 shows the behavior and the performance of another malleable execu-
tion of WaComM++. However, in this case, the algorithm focuses on those par-
ticles in a concrete region of the spatial domain. As the particles are constantly
moving, the algorithm will compute only those within a range of longitudes and
latitudes. So, in this case, the particles can increase and decrease every iteration.
The most exciting characteristic of Fig. 8 is given by the line that shows the par-
ticles per second (in yellow) and the bars that show the number of processes (in
orange). As can be seen, if the number of particles increases, FlexMPI expands
the application processes to provide extra computation resources. However, if the
number of particles decreases, FlexMPI shrinks the processes. FlexMPI includes
load-balancing algorithms to expand and shrink the application processes trying
to maintain the same computation load between the processes, achieving a good
trade-off in terms of computation power versus resource utilization.

Fig. 8. Scenario with variable load.

Malleability Techniques for HPC Systems 87

5 Conclusions

This paper describes FlexMPI, an MPI extension that provides malleable capa-
bilities to iterative SPMD MPI applications and is developed in the scope of the
ADMIRE project. FlexMPI enables MPI applications to expand or shrink the
application processes at runtime to adapt the application performance to the
existing execution conditions. The results described in this paper demonstrate
the computational malleability as a promising paradigm in HPC that could
be fully exploited in GPU, cloud, and edge computing scenarios [4,15]. In this
paper, the evaluation has been done using WaComM++ as a use case, a three-
dimensional Lagrangian model that implements an evolution of the LAMP3D
algorithm.

The experimental section shows two evaluation scenarios of WaComM++.
The first is a scenario in which the particles (as well as the computational load)
increase every iteration. In the second, the particles increase or decrease in every
iteration, depending on their position in the spatial domain. Both use cases
leverage FlexMPI to adapt the number of processes to the current workload
depending on the number of existing particles. As a future work, in the scope
of the ADMIRE project, we propose extending FlexMPI to provide compati-
bility with other programming languages, such as Python, and including MPI
Sessions for managing the existing and newly created group processes. Further-
more, WaComM++ will be extended to support other ADMIRE components
as the intelligent controller and the ad-hoc file system [3,6]. Finally, from the
computational malleability perspective, WaComM++ will be tested in virtual-
ized/remoted GPU environments [12] and real-world applications [5].

References

1. De Gaetano, P., Doglioli, A.M., Magaldi, M.G., Vassallo, P., Fabiano, M.: FOAM,
a new simple benthic degradative module for the LAMP3D model: an application
to a Mediterranean fish farm. Aquac. Res. 39(11), 1229–1242 (2008)

2. Dongarra, J., London, K., Moore, S., Mucci, P., Terpstra, D.: Using PAPI for hard-
ware performance monitoring on Linux systems. In: Conference on Linux Clusters:
The HPC Revolution, vol. 5. Linux Clusters Institute (2001)

3. Duro, F.R., Blas, J.G., Carretero, J.: A hierarchical parallel storage system based
on distributed memory for large scale systems. In: Proceedings of the 20th Euro-
pean MPI Users’ Group Meeting, pp. 139–140 (2013)

4. Lapegna, M., Balzano, W., Meyer, N., Romano, D.: Clustering algorithms on low-
power and high-performance devices for edge computing environments. Sensors
21(16), 5395 (2021)

5. Marcellino, L., et al.: Using GPGPU accelerated interpolation algorithms for
marine bathymetry processing with on-premises and cloud based computational
resources. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds.)
PPAM 2017, Part II. LNCS, vol. 10778, pp. 14–24. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78054-2 2

6. Marozzo, F., Rodrigo Duro, F., Garcia Blas, J., Carretero, J., Talia, D., Trunfio, P.:
A data-aware scheduling strategy for workflow execution in clouds. Concurrency
Comput.: Pract. Experience 29(24), e4229 (2017)

https://doi.org/10.1007/978-3-319-78054-2_2
https://doi.org/10.1007/978-3-319-78054-2_2

88 J. Carretero et al.

7. Mart́ın, G., Marinescu, M.-C., Singh, D.E., Carretero, J.: FLEX-MPI: an MPI
extension for supporting dynamic load balancing on heterogeneous non-dedicated
systems. In: Wolf, F., Mohr, B., an Mey, D. (eds.) Euro-Par 2013. LNCS, vol.
8097, pp. 138–149. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40047-6 16

8. Miranda, A., Jackson, A., Tocci, T., Panourgias, I., Nou, R.: NORNS: extending
Slurm to support data-driven workflows through asynchronous data staging. In:
2019 IEEE International Conference on Cluster Computing (CLUSTER), pp. 1–12.
IEEE (2019)

9. Montella, R., et al.: Using the face-it portal and workflow engine for operational
food quality prediction and assessment: An application to mussel farms monitoring
in the bay of Napoli, Italy. Futur. Gener. Comput. Syst. 110, 453–467 (2020)

10. Montella, R., Di Luccio, D., Kosta, S.: DagOn*: executing direct acyclic graphs
as parallel jobs on anything. In: 2018 IEEE/ACM Workflows in Support of Large-
Scale Science (WORKS), pp. 64–73. IEEE (2018)

11. Montella, R., Di Luccio, D., Troiano, P., Riccio, A., Brizius, A., Foster, I.:
WaComM: a parallel water quality community model for pollutant transport
and dispersion operational predictions. In: 2016 12th International Conference on
Signal-Image Technology & Internet-Based Systems (SITIS), pp. 717–724. IEEE
(2016)

12. Montella, R., Giunta, G., Laccetti, G.: Virtualizing high-end GPGPUs on arm clus-
ters for the next generation of high performance cloud computing. Clust. Comput.
17(1), 139–152 (2014)

13. Panziera, J.P., et al.: Strategic research agenda 2017. Technical Report (2017)
14. Rodrigo Duro, F., Marozzo, F., Garcia Blas, J., Talia, D., Trunfio, P.: Exploiting

in-memory storage for improving workflow executions in cloud platforms. J. Super-
comput. 72(11), 4069–4088 (2016). https://doi.org/10.1007/s11227-016-1678-y

15. Romano, D., Lapegna, M.: A GPU-parallel image coregistration algorithm for
InSar processing at the edge. Sensors 21(17), 5916 (2021)

16. Sánchez-Gallegos, D.D., Di Luccio, D., Gonzalez-Compean, J.L., Montella, R.:
Internet of things orchestration using DaGon* workflow engine. In: 2019 IEEE
5th World Forum on Internet of Things (WF-IoT), pp. 95–100. IEEE (2019)

17. Sánchez-Gallegos, D.D., Di Luccio, D., Kosta, S., Gonzalez-Compean, J., Montella,
R.: An efficient pattern-based approach for workflow supporting large-scale science:
the DagOnStar experience. Futur. Gener. Comput. Syst. 122, 187–203 (2021)

18. Vef, M.A., et al.: Gekkofs-a temporary distributed file system for HPC applications.
In: 2018 IEEE International Conference on Cluster Computing (CLUSTER), pp.
319–324. IEEE (2018)

https://doi.org/10.1007/978-3-642-40047-6_16
https://doi.org/10.1007/978-3-642-40047-6_16
https://doi.org/10.1007/s11227-016-1678-y

Algorithm and Software Overhead: A
Theoretical Approach to Performance

Portability

Valeria Mele(B) and Giuliano Laccetti

University of Naples “Federico II”, Naples, Italy

valeria.mele@unina.it

Abstract. In the last years, the portability term has enriched itself with
new meanings: research communities are talking about how to measure
the degree to which an application (or library, programming model, algo-
rithm implementation, etc.) has become “performance portable”. The
term “performance portability” has been informally used in computing
communities to substantially refer to: (1) the ability to run one applica-
tion across multiple hardware platforms; and (2) achieving some decent
level of performance on these platforms [1,2]. Among the efforts related
to the “performance portability” issue, we note the annual performance
portability workshops organized by the US Department of Energy [3].
This article intends to add a new point of view to the performance porta-
bility issue, starting from a more theoretical point of view, that shows
the convenience of splitting the proper algorithm from the emphover-
head, and exploring the different factors that introduce different kind of
overhead. The paper explores the theoretical framework to get a defini-
tion of the execution time of a software but that definition is not the
point. The aim is to show and understand the link between that execu-
tion time and the beginning of the design, to exploit what part of any
program is really environment-sensitive and exclude from performance
portability formulas everything is not going to change, as theoretically
shown.

Keywords: parallel computing · performance portability · overhead ·
algorithms · software

1 Introduction

In the last years, the portability term has enriched itself with new meanings:
research communities are talking about how to measure the degree to which
an application (or library, programming model, algorithm implementation, etc.)
has become “performance portable” [4]. The terms “performance portability”
has been informally used in computing communities to substantially refer to:
(1) the ability to run one application across multiple hardware platforms; and

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 89–100, 2023.
https://doi.org/10.1007/978-3-031-30445-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_8&domain=pdf
http://orcid.org/0000-0002-2643-3483
http://orcid.org/0000-0002-0057-2573
https://doi.org/10.1007/978-3-031-30445-3_8

90 V. Mele and G. Laccetti

(2) achieving some notional level of performance on these platforms [1]. Among
the efforts related to the “performance portability” issue, we note the annual
performance portability workshops organized by the US Department of Energy
[3].

Notes from a meeting on the subject held in 2016 highlight the lack of a “uni-
versally accepted definition of performance portability”, observing that “several
attempts were made by various speakers to take a crack at it” [5]. How could so
many researchers be said to be working towards a common goal, if they could
not agree upon what it was? The attendees all ascribed importance to the term
performance portability even if no precise meaning was agreed upon. Increasing
microarchitectural diversity and specialization had created challenges to address
in software, impacting the performance and portability of applications and the
productivity of the programmers creating them. An ecosystem was beginning to
develop around frameworks promising to improve performance portability and
maintainability [6]. In the absence of precise definitions, subjectivity prevailed,
community has made significant progress towards shared terminology, and we
are closer to a universally adopted methodology for assessing performance porta-
bility and programmer productivity than ever before [7], but in our opinion they
are still very vague concepts, too difficult to define first that to measure.

This article intends to add a new contribute to the performance portability
issue, starting from a more theoretical point of view, that shows the convenience
of splitting the proper algorithm characteristics from the overhead, and exploring
the different factors that introduce different kinds of overhead. The aim is to
show and understand the link between that execution time and the beginning of
the design, to exploit what part of any program is really environment-sensitive,
suggesting to exclude from performance portability formulas - that generally
involves the execution time of the software on a given hardware - everything
that is not going to change, as theoretically shown.

The performance evaluation framework we start from is the one described
in [8–12] and here briefly described in the first section to get the definition we
need. In [9] authors also show examples of application of the framework to get
parameters for a matrix-matrix multiply problem.

The framework is modular and can be as complicated as we want to match
hybrid and/or heterogeneous parallel architectures. The increasing need for par-
allel and scalable software, ready to exploit the new exascale architectures, leads
to the development of many performance models, mainly based on architecture
features [13–17] or especially made for choosen algorithm classes [18–20]. The
model we present here is mainly focused on the dependencies among the com-
putational tasks of the algorithm and is meant to be as general as possible.

2 The Performance Evaluation Framework

Starting from some preliminary concepts about a new performance evaluation
framework described in a conference paper [8], we summarize a performance
model useful to estimate the execution time of an algorithm on a specific piece

Algorithm and Software Overhead 91

of hardware, when an actual measurement is not an option (e.g. unavailability of
hardware). That framework allows to choose a level of abstraction for problem
decomposition and algorithm description which determines the level of granu-
larity in the performance analysis. A set of parameters are used both to describe
the problem and to compute cost and overhead of the algorithm, starting from
the problem decomposition.

In that paper, the authors address basic structural features of algorithms
which are dictated by data and operator dependencies [8–10,21]: by giving the
key definition of dependency relation on a set, they consider the set of all com-
putational problems Γ and any element BN ∈ Γ where N is the input data size,
called the problem size.

2.1 Decomposition of a Problem

Any BN can always be decomposed in at least one finite set of other com-
putational problems, called decomposition of BN . Given a decomposition in k
sub-problems BNi

, called Dk, and taking into account the dependencies among
such sub-problems, they build a dependency matrix or decomposition matrix 1

MDk
where in each row we put sub-problems independent of one another, but

dependent on those in the previous rows.
Given Dk, the number of column of MDk

, say cDk
, is the concurrency degree

of BN , and its number of rows, say rDk
, is the dependency degree of BN , accord-

ing to the actual decomposition, so that the dependency degree measures the
amount of dependencies induced by the chosen decomposition. Hence, number
and size of sub-problems determine the granularity of such decomposition. By
choosing a proper granularity, we can modulate the level of detail for the perfor-
mance analysis of an algorithm with this approach. Therefore, the decomposition
matrix allows us to identify some properties of the algorithm design, such as the
concurrency available in a problem when we choose a decomposition rather than
another.

2.2 Algorithm

The next step is to assign the identified sub-problems to the computing machine.
Let MP be a computing machine equipped with P ≥ 1 processing elements with
specific logical-operational capabilities2 called computing operators of MP , and
collected in the set without repetitions CopMP

= {Ij}j∈[0,q−1], where q ∈ N,
characterizes logical-operational capabilities of the machine MP .

In [8] the definition of algorithm is given as the partially ordered set of
k operators Ak,P , with not necessarily distinct elements, where each operator
solves a sub-problem in the decomposition Dk. Operators of Ak,P inherit the

1 Decomposition matrix is the name we preferred in this work, but in [8] it is referred
as dependency matrix.

2 These can be basic operations (arithmetic,. . .), special functions evaluations
(sin, cos, . . .), solvers (integrals, equations system, non-linear equations. . .).

92 V. Mele and G. Laccetti

dependencies existing between sub-problems in Dk, but not the independences,
e.g. two operators may depend on the availability of computing units in MP

during their executions [21]. Therefore, each algorithm is related to a problem
decomposition, and each problem decomposition can be related to more than
one algorithm, inducing an equivalence relationship among algorithms used to
the same problem. As a consequence, all the algorithms are split in equivalence
classes based on the problem decomposition they come from. They are also
characterized by a unique complexity value, where the definition for complexity
is the cardinality of the decomposition:

Definition 1 (Complexity). The cardinality of Ak,P is called complexity of
Ak,P . It is denoted as C(Ak,P). That is C(Ak,P) := card(Ak,P) = k.

Defining a second dependency relation between operators in an algorithm,
the so-called execution matrix Ek,P of order rE × P can be defined, where in
each row we put operators independent of one another and dependent on those
in the previous rows. These dependencies refer to relations among computations
which need to be satisfied in order to compute the problem solution correctly.
Inside an equivalence class, the algorithm which solves a problem according to a
decomposition and which is executed on a machine with just one processor is a
sequential algorithm and its execution matrix has just one column, since P = 1.

In [8] other definitions and results are given, under the strong hypothesis
that all the operators in considered algorithms have the same execution time
tcalc, but there is the general cases, taking into account algorithms that consist
of different steps, each with specific computing characteristics.

In both the cases the number of rows rE of Ek,P is directly related to the
execution time of the algorithm executed with P processing units. We will see
that the execution matrix size is related to the algorithm cost, and, in case of
zero elements in the matrix, to the algorithm overhead.

Let’s associate execution time ti (measured, for instance, in seconds) to each
Ii ∈ CopMP

. If Ii ≡ ∅, we set t∅ = 0.
Let tcalc be the execution time for one floating-point operation that here

is considered the time unit. We assume that3 all the operators have the same
execution time tcalc

4 in order to define:

Definition 2 (Execution time). Given the algorithms Ak,P executed with P
computing units, the quantity

T (Ak,P) := rEk,P
· t (1)

is called execution time of Ak,P .

Given the well known general definition of Speed Up [22] as the ratio between
the execution times of a sequential algorithm and a parallel one, authors in [8]
specify the Speed Up for algorithms in the same equivalence class,

3 For the general case, look at [12].
4 This assumption is necessary to compare two algorithms.

Algorithm and Software Overhead 93

Definition 3 (Speed Up). Given the algorithms Ak,P executed with P com-
puting units, the ratio

S(Ak,P) :=
k

rEk,P

(2)

is called Speed Up of Ak,P in its equivalence class.

Notice that, according to Definition 1, k is the unique complexity value char-
acterizing the algorithms class, proportional to the execution time of the sequen-
tial algorithm in the class.

Given two different decompositions Dki
and Dkj

, with kj �= ki, given two
different machines with two different number of processors P1 = 1 and P > 1,
for the two corresponding algorithms, Akj ,P and Aki,1 we define the General
Speed Up of the parallel one respect to the sequential one, as the product of
the Scale Up between the two decompositions5 and the classical speed up of the
parallel one.

Definition 4 (General Speed Up). The ratio

GS(Akj ,P , Aki,1) := SC(Dki
,Dkj

) · S(Akj ,P) =
ki
kj

· kj
rEAkj,P

=
rEAki,1

rEAkj,P

(3)

is called General Speed Up of Akj ,P respect to Aki,1.

Note that the ideal value of the General Speed Up is not limited by the number
of processing units P .

2.3 Algorithm Overhead

Let Q denote the cost of Ak,P . The cost is defined as the product of the execution
time and the number of processors utilized [22]. In this mathematical settings it
holds that

Proposition 1. The cost Q can be written as

Q(Ak,P) = cEk,P
· rEk,P

· t. (4)

Notice that, if cEk,P
= 1, the cost is the same of the execution time.

The definition of overhead of Ak,P that we found in [8] is the first one we
deal with in this article: it is intended as the total time spent by all the pro-
cessing elements waiting for other processing elements to complete their tasks.
Notice that is doesn’t depend on the hardware/software environment, but for
the number of computing unit of the machine.

5 Scale Up is defined in [8] as the ratio SC(Dki , Dkj) := ki
kj

and it measures the differ-

ence between the two algorithm respect to the number of operations they perform
to solve the same problem.

94 V. Mele and G. Laccetti

Definition 5 (Algorithm Overhead). Given the algorithms Ak,P executed
with P computing units, the quantity

Oh(Ak,P) := (Q(Ak,P) − k) · t =
(
cEk,P

· rEk,P
− C(Ak,P)

) · t (5)

is called overhead of Ak,P .

Since the cost of an algorithm is related to the size of the execution matrix,
they also show that

Theorem 1. It holds
Oh(Ak,P) ≥ 0. (6)

It follows that the overhead is minimum when the matrix has zero empty
elements.

In [12] authors remarks that the so-defined overhead depends directly on the
operators “time weight”. Since, they are here seen as black boxes with their own
execution time, we don’t need to know the way they work, and the weight could
be different on different machines. However, given an operator and a particular
execution machine, the weight is to be considered as fixed. Notice that the oper-
ator itself may contain other kind of “overhead” (for example memory access
overhead), that should be treated separately, in a modular fashion, in order to
understand which one introduces it more and which one can be substituted with
a more efficient one. This can also suggest to change the problem decomposition,
if needed.

Let Ef(Ak,P) := S(Ak,P)
P be the efficiency of Ak,P where P ≥ 1. It is also

proved that it is inversely proportional to the size of the execution matrix Ek,P .

Theorem 2. It holds that

Ef(Ak,P) =
k

cEk,P
· rEk,P

. (7)

It is easy to verify that it’s always Ef(Ak,P) ≤ 1 and we get the maximum value
of efficiency when the overhead is minimum.

2.4 Memory and Communication

From now on, we consider memory accesses performed by an algorithm and
we assume, for simplicity, that to each access corresponds one read/write of a
single data. Moreover, we assume that computations and memory accesses are
not performed simultaneously, instead they depend each other6.

Given the set of elementary operators of MP we introduce memory access
operators corresponding to the memory access (read r(·)/write w(·)) of process-
ing elements of MP and the set

OAMP
= {r(·), w(·)}

Now we can define
6 This is an initial, not realistic, assumption.

Algorithm and Software Overhead 95

Definition 6 (Memory Accesses set). The ordered set (whose elements
should not be different) of accesses operators of MP

ACk,P = {oa0(·), oa1(·), ...oak(·)}
where

oai(·) ∈ OAMP

is called memory accesses set of the algorithm Ak,P . Moreover we consider the
surjective correspondence

γ̄ : oai(·) ∈ OAMP
←→ Ijii ∈ Ak,P . (8)

Note that card(ACk,P) ≥ card(Ak,P) = k.

Let us remind that βij ,Ek,P
is the “time weight” of each considered operator

(seen as a working black box), according to the chosen decomposition and respect
to the execution time unit tcalc, but let us assume from now on, that they are
all equal to 1, that is all the computing operators have the same execution time
tcalc

7.
Suppose that8

– memory hierarchy has L ≥ 2 levels9,
– the data type is fixed
– we can access no more than nd data of the fixed type in the (mean) memory

access time unit at level l tlmem (bandwidth)
– tlmem = tcalc · δl, with δ ≥ 1 and 0 ≤ l < L is a level of the memory hierarchy

We will say that an operator needs meanly time tmem to get a data of the
fixed type from the memory hierarchy on the given machine.

Then we say that two operators oai ∈ ACk,P and oaj ∈ ACk,P are inde-
pendent from each other if they correspond (according to γ̄) to independent
operators in Ak,P or they correspond to the same operator in Ijii ∈ Ak,P but are
related to different data and they must be executed both before or after Ijii . In
this case we write oai � oaj and oaj � oai, or oai � oaj .

Definition 7 (Memory Matrix). Given the algorithm Ak,P , its execution
matrices Ek,P and its memory accesses set ACk,P , we define the memory matrix
of Ak,P as AMk,P,nd defined in ACk,P of order rAM × cAM , with cAM = nd10,
such that ∀i ∈ [0, rAM − 1], j ∈ [0, cAM − 1]:

– its elements aci,j ≡ oak ∈ ACk,P or aci,j = ∅;

7 There is no loss of generality because any operator can be rewritten as a number of
elementary operators with execution time tcalc.

8 This is a semplified and very general logical description of a memory hierarchy
behavior useful to the aim of the framework. Of course it could be adapted to an
actual architecture, but the following definitions hold the same.

9 Level 0 is the fastest one.
10 In general cAM ≤ nd, but we can assume cAM = nd without loss of generality.

96 V. Mele and G. Laccetti

– ∀j ∈ [0, cAM − 1], ∀k ∈ [0, cAM − 1], ∀i ∈ [0, rAM − 1] it is ac0,j � aci,k
– ∃q ∈ [0, cAM − 1] such that aci,j ← aci−1,q∀j ∈ [0, cAM − 1]
– ∀i ∈ [1, rAM − 1], j ∈ [0, cAM − 1], k ∈ [0, cAM − 1] aci,j � aci,k

Basically the memory matrix is built in the same way of the decomposition and
execution matrices, possibly much greater of the execution matrix if the access
operator we consider moves a single data and the algorithm is data-driven.

Definition 8 (Memory Time). Algorithm Ak,P , with memory matrix
AMk,P,nd, has memory access time:

TM (Ak,P , nd) = rAM · tmem (9)

where tmem is the (mean) memory access time unit in the memory hierarchy.

Let now consider the communication matrix CMk,P of order rCM × cCM

where cCM ≤ P , defined in ACk,P considering a communication like the (L +
1)−th level of the memory hierarchy (the lowest), with an unitary communication
time tLmem = tcomm [23], and built analogously to the memory matrix. Then we
can define

Definition 9 (Communication Time). Be the algorithm Ak,P and
TM (Ak,P , nd) its memory access time, we define the communication time as

TCOMM (Ak,P , nd) = rCM · tcomm (10)

2.5 Software Execution Time

Consider that memory access, communication and computation can be per-
formed partially in parallel. This means that we need to build a new matrix

Definition 10 (Global Matrix). The global matrix of the software related to
the Ak,P algorithm, of order rglobal×cglobal with cglobal ≤ cE+nd+cCM columns,
is such that ∀i ∈ [0, rglobal − 1], j ∈ [0, cglobal − 1]:

– its elements eli,j ≡ oak ∈ ACk,P or eli,j ≡ Ij ∈ CopMP
or eli,j = ∅;

– ∀j ∈ [0, cglobal−1], ∀k ∈ [0, cglobal−1], ∀i ∈ [0, rglobal−1] it is el0,j � eli,k
– ∃q ∈ [0, clglobal − 1] such that eli,j ← eli−1,q∀j ∈ [0, cglobal − 1]
– ∀i ∈ [1, rglobal − 1], j ∈ [0, cglobal − 1], k ∈ [0, cglobal − 1] eli,j � eli,k

The shape of the global matrix does not depend only on the number of rows and
columns of the three matrices, because we know that their rows have different
“weights”: each row has a different weight according to the maximum weight
of its elements. Several rows of Ek,P can correspond to one row of AMk,P,nd or
CMk,P and several rows of AMk,P,nd can correspond to one row of CMk,P .

Algorithm and Software Overhead 97

Definition 11 (Global i-th row Execution Time). The global i-th row exe-
cution time is defined as

TgiSW (Ak,P , nd) =

⎧
⎪⎨

⎪⎩

tcomm if the i-th row includes a comm. op.

tmem if the i-th row includes a mem. op. and no (new) comm.

tcalc if there isn’t any mem. or comm. op.

(11)

Then we can define at the end

Definition 12 (Global Software Execution Time). The global software
execution time is defined as

TgSW (Ak,P , nd) =
rglobal−1∑

i=0

TgiSW (Ak,P , nd). (12)

3 Performance Portability

It is clear from this theoretical description that the most of a good design is
portable everywhere. What a programmer have to deal with is

– Avoiding communications [4,25–27] to keep the communication matrix as
short as possible

– Avoiding to access the memory to keep the memory matrix as short as possible
– Work with the principle of locality in mind to keep tmem as lower as possible

[28]
– Decompose the problem keeping the concurrency degree as higher as possible
– Coding minimizing the algorithm overhead

Parameters that can help are

– Computational Intensity of the software (see [11,24]): the number of opera-
tions per memory accesses. It measures how intensely Ak,P computes with
data, once it has been received, and is defined as the ratio

CI(SW) =
rE∑

l = 0L−1rlAM

≥ 1.

– Communication Intensity of the software (see [11]): the number of communi-
cation per operations. It measures how intensely Ak,P needs to communicate
to compute the solution, and is defined as the ratio

ComI(SW) =
rCM

rE

Now, we want to distinguish two kind of software overhead :

– Memory Overhead : the ratio OhMEM = tmem

tcalc
describing how much slower11

than computing the access to a level of memory is, and
11 Meanly.

98 V. Mele and G. Laccetti

– Communication Overhead : the ratio OhCOMM = tcomm

tcalc
describing how much

slower12 than computing the communication of a single data is.

Ohl
MEM and OhCOMM are the characteristic of the hardware/software envi-

ronment that we need to know once we have build the global software execution
matrix, and they are the only two parameters we really need to compare each
time we move the algorithm from an environment to another one, in order to
estimate the actual performance.

They do not depend on the algorithm or the application we developed, and
this estimation are not portable.

4 Conclusions

The paper explores the theoretical framework to get a definition of the execution
time of a software but that definition is not the point, of course: moreover, it
is easy to show that the definition is a rewriting of other well known formu-
las [21,22], so we don’t discuss the “execution time prediction“ and keep the
hypothesis about the machine very general, even if the framework is modular
and can be as complicated as we want to match hybrid and/or heterogeneous
parallel architectures13. The aim of the description we make in the previous sec-
tions is to show and understand the link between that execution time and the
beginning of the design, or the decomposition of the problem. The parameters
we exploit are useful to understand the characteristics of an algorithm and the
software we build from it. Basically, our point is that the key for a good perfor-
mance portability is in the decomposition. We notice that today the discussions
about performance portability go so far as to suggest to loose performance as
long as it is portable: is this something that can have sense in HPC field? This
is the question. Of course, a good algorithm and software design means a lack of
productivity in many cases, because it needs many hours of coding and lots of
trials, so the answer can be that the community looks for a portability solution,
but we believe that a strong theoretical background about decomposition, per-
formance parameters, and modular parallel design can be the most helpful tool
for programmers to improve the performance portability of their application, or
at least what is possible to port of their performance.

References

1. Pennycook, S.J., Sewall, J.D., Lee, V.W.: Implications of a metric for performance
portability. Future Gener. Comput. Syst. 92, 947–958 (2017). https://doi.org/10.
1016/j.future.2017.08.007

12 Meanly.
13 For example: in case of an algorithm like the one in [13], where the architecture is

a heterogeneous GPU and Multicore based system, we can build different matrices
for different parts of the algorithm.

https://doi.org/10.1016/j.future.2017.08.007
https://doi.org/10.1016/j.future.2017.08.007

Algorithm and Software Overhead 99

2. Kwack, J., et al.: Evaluating performance portability of HPC applications
and benchmarks across diverse HPC architectures. Exascale Computing Project
(ECP) Webinar. https://www.exascaleproject.org/event/performance-portability-
evaluation/. Accessed 20 May 2020

3. DOE centres of excellence performance portability meeting: post-meeting report
technical report LLNL-TR-700962. Lawrence Livermore National Laboratory,
Livermore (2016). https://asc.llnl.gov/sites/asc/files/2020-09/COE-PP-Meeting-
2016-FinalReport 0.pdf

4. Carracciuolo, L., Mele, V., Szustak, L.: About the granularity portability of block-
based Krylov methods in heterogeneous computing environments. Concurr. Com-
put. Pract. Exp. 33(4), e6008 (2021). https://doi.org/10.1002/cpe.6008

5. Neely, J.R.: DOE centers of excellence performance portability meeting. Techni-
cal report LLNL-TR-700962, 4. Lawrence Livermore National Laboratory (2016).
https://doi.org/10.2172/1332474

6. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: enabling manycore perfor-
mance portability through polymorphic memory access patterns. J. Parallel Dis-
trib. Comput. 74(12), 3202–3216 (2014). https://doi.org/10.1016/j.jpdc.2014.07.
003

7. Pennycook, J., Sewall, J., Jacobsen, D.W., Deakin, T., McIntosh-Smith, S.N.: Nav-
igating performance, portability and productivity. Comput. Sci. Eng. 23(5), 28–38
(2021). https://doi.org/10.1109/MCSE.2021.3097276

8. Mele, V., Romano, D., Constantinescu, E.M., Carracciuolo, L., D’Amore, L.: Per-
formance evaluation for a PETSc parallel-in-time solver based on the MGRIT
algorithm. In: Mencagli, G., et al. (eds.) Euro-Par 2018. LNCS, vol. 11339, pp.
716–728. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10549-5 56

9. D’Amore, L., Mele, V., Laccetti, G., Murli, A.: Mathematical approach to the
performance evaluation of matrix multiply algorithm. In: Wyrzykowski, R., Deel-
man, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015.
LNCS, vol. 9574, pp. 25–34. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-32152-3 3

10. Mele, V., Constantinescu, E.M., Carracciuolo, L., D’amore, L.: A PETSc parallel-
in-time solver based on MGRIT algorithm. Concurr. Comput. Pract. Exp. 30(24),
e4928 (2018). https://doi.org/10.1002/cpe.4928

11. D’Amore, L., Mel, V., Romano, D., Laccetti, G.: Multilevel algebraic approach
for performance analysis of parallel algorithms. Comput. Inform. 38(4), 817–850
(2019). https://doi.org/10.31577/cai 2019 4 817

12. Romano, D., Lapegna, M., Mele, V., Laccetti, G.: Designing a GPU-parallel algo-
rithm for raw SAR data compression: a focus on parallel performance estimation.
Future Gener. Comput. Syst. 112(6), 695–708 (2020). https://doi.org/10.1016/j.
future.2020.06.027

13. Laccetti, G., Lapegna, M., Mele, V., Romano, D.: A study on adaptive algorithms
for numerical quadrature on heterogeneous GPU and multicore based systems.
In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM
2013. LNCS, vol. 8384, pp. 704–713. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-55224-3 66

14. Laccetti, G., Lapegna, M., Mele, V.: A loosely coordinated model for heap-based
priority queues in multicore environments. Int. J. Parallel Prog. 44(4), 901–921
(2015). https://doi.org/10.1007/s10766-015-0398-x

15. Laccetti, G., Lapegna, M., Mele, V., Montella, R.: An adaptive algorithm for
high-dimensional integrals on heterogeneous CPU-GPU systems. Concurr. Com-
put. Pract. Exp. 31(19), e4945 (2019). https://doi.org/10.1002/cpe.4945

https://www.exascaleproject.org/event/performance-portability-evaluation/
https://www.exascaleproject.org/event/performance-portability-evaluation/
https://asc.llnl.gov/sites/asc/files/2020-09/COE-PP-Meeting-2016-FinalReport_0.pdf
https://asc.llnl.gov/sites/asc/files/2020-09/COE-PP-Meeting-2016-FinalReport_0.pdf
https://doi.org/10.1002/cpe.6008
https://doi.org/10.2172/1332474
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1109/MCSE.2021.3097276
https://doi.org/10.1007/978-3-030-10549-5_56
https://doi.org/10.1007/978-3-319-32152-3_3
https://doi.org/10.1007/978-3-319-32152-3_3
https://doi.org/10.1002/cpe.4928
https://doi.org/10.31577/cai_2019_4_817
https://doi.org/10.1016/j.future.2020.06.027
https://doi.org/10.1016/j.future.2020.06.027
https://doi.org/10.1007/978-3-642-55224-3_66
https://doi.org/10.1007/978-3-642-55224-3_66
https://doi.org/10.1007/s10766-015-0398-x
https://doi.org/10.1002/cpe.4945

100 V. Mele and G. Laccetti

16. Montella, R., Giunta, G., Laccetti, G.: Virtualizing high-end GPGPUs on ARM
clusters for the next generation of high performance cloud computing. Cluster
Comput. 17(1), 139–152 (2014). https://doi.org/10.1007/s10586-013-0341-0

17. Marcellino, L., et al.: Using GPGPU accelerated interpolation algorithms for
marine bathymetry processing with on-premises and cloud based computational
resources. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds.)
PPAM 2017. LNCS, vol. 10778, pp. 14–24. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78054-2 2

18. D’Amore, L., Campagna, R., Mele, V., Murli, A., Rizzardi, M.: ReLaTIve. An
Ansi C90 software package for the Real Laplace Transform Inversion. Numerical
Algorithms 63(1), 187–211 (2013). https://doi.org/10.1007/s11075-012-9636-0

19. D’Amore, L., Campagna, R., Mele, V., Murli, A.: Algorithm 946. ReLIADiff. An
C++ software package for real Laplace transform inversion based on automatic
differentiation. ACM Trans. Math. Softw. 40(4), 31:1–31:20 (2014). Article 31.
https://doi.org/10.1145/2616971

20. D’Amore, L., Mele, V., Campagna, R.: Quality assurance of Gaver’s formula for
multi-precision Laplace transform inversion in real case. Inverse Probl. Sci. Eng.
26(4), 553–580 (2018). https://doi.org/10.1080/17415977.2017.1322963

21. Tjaden. G.S., Flynn. M.J.: Detection and parallel execution of independent instruc-
tions. IEEE Trans. Comput. C-19(10), 889–895 (1970). https://doi.org/10.1109/
T-C.1970.222795

22. Flatt, H.P., Kennedy, K.: Performance of parallel processors. Parallel Comput.
12(1), 1–20 (1989). https://doi.org/10.1016/0167-8191(89)90003-3

23. Maddalena, L., Petrosino, A., Laccetti, G.: A fusion-based approach to digital
movie restoration. Pattern Recogn. 42(7), 1485–1495 (2009). https://doi.org/10.
1016/j.patcog.2008.10.026

24. Hockney, R.W.: The Science of Computer Benchmarking. SIAM (1996)
25. Ballard, G., Demmel, J., Knight, N.: Avoiding communication in successive band

reduction. ACM Trans. Parallel Comput. 1(2), 37 (2015). Article 11. https://doi.
org/10.1145/2686877

26. Koanantakool, P., et al.: Communication-avoiding parallel sparse-dense matrix-
matrix multiplication. In: IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pp. 842–853 (2016). https://doi.org/10.1109/IPDPS.2016.
117

27. Sao, P., Kannan, R., Li, X.S., Vuduc, R.: A communication-avoiding 3D sparse
triangular solver. In: Proceedings of the ACM International Conference on Super-
computing (ICS 2019), pp. 127–137. Association for Computing Machinery, New
York (2019). https://doi.org/10.1145/3330345.3330357

28. Kennedy, K., McKinley, K.S.: Optimizing for parallelism and data locality. In:
Proceedings of the 6th International Conference on Supercomputing (ICS 1992),
pp. 323–334. Association for Computing Machinery, New York (1992). https://doi.
org/10.1145/143369.143427

https://doi.org/10.1007/s10586-013-0341-0
https://doi.org/10.1007/978-3-319-78054-2_2
https://doi.org/10.1007/978-3-319-78054-2_2
https://doi.org/10.1007/s11075-012-9636-0
https://doi.org/10.1145/2616971
https://doi.org/10.1080/17415977.2017.1322963
https://doi.org/10.1109/T-C.1970.222795
https://doi.org/10.1109/T-C.1970.222795
https://doi.org/10.1016/0167-8191(89)90003-3
https://doi.org/10.1016/j.patcog.2008.10.026
https://doi.org/10.1016/j.patcog.2008.10.026
https://doi.org/10.1145/2686877
https://doi.org/10.1145/2686877
https://doi.org/10.1109/IPDPS.2016.117
https://doi.org/10.1109/IPDPS.2016.117
https://doi.org/10.1145/3330345.3330357
https://doi.org/10.1145/143369.143427
https://doi.org/10.1145/143369.143427

Benchmarking a High Performance
Computing Heterogeneous Cluster

Luisa Carracciuolo1(B) , Davide Bottalico2,3 , Davide Michelino2,3 ,
Gianluca Sabella2 , and Bernardino Spisso3

1
CNR - National Research Council, Rome, Italy

luisa.carracciuolo@cnr.it
2

University of Naples Federico II, Naples, Italy
3

INFN - National Institute for Nuclear Physics, Rome, Italy

Abstract. The paper describes the results of some benchmarking tests
aimed to verify and validate all the solutions implemented during the
deployment of a HPC heterogeneous resource acquired by the data cen-
ter of the University of Naples “Federico II” thanks to the funds of the
IBiSCo (Infrastructure for Big data and Scientific COmputing) Italian
National Project. The first set of benchmarks evaluates how the network
interconnection technologies affect the inter- and intra-node communica-
tions of GP-GPU workloads. The second set evaluates the performance
of the Lustre parallel file system to ensure an efficient environment for
data-intensive applications. The tests, especially those that analyze the
lower level of the middleware (micro-benchmarks), seem to confirm the
ability of the resource to guarantee the expected performance.

Keywords: Benchmarking ⋅ High Performance Computing ⋅
Heterogeneous Computing ⋅ GP-GPU ⋅ InfiniBand ⋅ NVLink ⋅
Lustre ⋅ CUDA ⋅ RDMA ⋅ UCX ⋅ MPI

1 Introduction

In the first half of the 1990s, Thomas Sterling and Donald Becker built a cluster
of networked computers, called Beowulf [35], as an alternative to large supercom-
puters. At the time, their idea of providing “Commodity Off The Shelf (COTS)”
based systems has been a great success. This idea is still valid and can inspire
the realization of HPC computing systems, whose computational power is far
from that of the most powerful computers in the world, but whose architec-
ture is already compliant to incoming exascale era systems (e.g., see The Exas-
cale Computing Project (ECP) of U.S. Department of Energy [32]). Most likely,
these systems will respond to the following description: multi-node systems, con-
nected by high performance networks, where each node will have a high level
of internal parallelism which will be also made available by technologies such as
NVIDIA®and Intel®Xe GPUs.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 101–114, 2023.
https://doi.org/10.1007/978-3-031-30445-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_9&domain=pdf
http://orcid.org/0000-0002-8521-1645
http://orcid.org/0000-0003-2767-3726
http://orcid.org/0000-0003-3142-5346
http://orcid.org/0000-0002-9439-8771
http://orcid.org/0000-0003-1491-6151
https://doi.org/10.1007/978-3-031-30445-3_9

102 L. Carracciuolo et al.

In such context, the data center of the University of Naples “Federico II”
acquired, thanks to the IBiSCo (Infrastructure for Big data and Scientific COm-
puting) project funds [28], a heterogeneous computational resource [2]. The use
of heterogeneous features aims to ensure the best use of resources for differ-
ent scenarios applications, such as distributed memory computing, GP-GPU
(General-Purpose computing on Graphics Processing Units) accelerated work-
loads and their combinations (e.g., see [3,4,6,7,10]).

In the context of High Performance Computing, it is a common practice to
evaluate performance (in terms of speedup, throughput, I/O speed, etc.) as a
response to the HPC workload [17]. For this purpose, there are different suites
of benchmarks, among the main ones:

• The Standard Performance Evaluation Corporation (SPEC) [31] is a consor-
tium whose goals are to provide the industry with performance measurement
tools since 1994. The development of the benchmark suites includes tools to
analyze all the components of computing systems: from processors to compil-
ers, from interconnects to run-time libraries. In the context of HPC systems
can be considered: the SPECmpi for evaluating MPI-parallel performance
across a wide range of cluster and SMP hardware emphasizing the perfor-
mance of the type of computer processor, the number of computer processors,
the communication interconnect, and the shared file system. The SPEChpc
provides a set of application benchmark suites using a comprehensive mea-
sure of real-world performance offering well-selected science and engineering
codes that are representative of HPC workloads.

• The HPC Challenge (HPCC) benchmark suite [15] was developed to provide
a set of standardized hardware probes based on commonly occurring compu-
tational software kernels such as some parallel BLAS operations 1 as well as
tools to analyze communications performance, attempting to span from high
to low-level components of an HPC system.

• The CORAL Benchmarks: CORAL is a U.S. Department of Energy (DOE)
project that will culminate in three ultra-high performance supercomputers
at Lawrence Livermore, Oak Ridge, and Argonne national laboratories. In
such context, a suite of benchmarks was developed to evaluate performances
on supercomputers deployed during the project [8]. CORAL Benchmark cat-
egories represent DOE Workloads and among them should be considered: the
Throughput Benchmarks representing full applications; The Skeleton Bench-
marks investigating various platform characteristics including network per-
formance, threading overheads, I/O, memory, system software, and program-
ming models.

The benchmarks described above use one of three possible strategies: high-
level, low-level, and hybrid. In the first case, the benchmarks evaluate perfor-
mance by testing the application-level components; in the second case, they test

1
The BLAS (Basic Linear Algebra Subprograms) are routines that provide optimized
standard building blocks for performing basic vector and matrix operations. Some
vendors supply its optimized implementation of the BLAS.

Benchmarking a High Performance Computing Heterogeneous Cluster 103

low-level system functions. The strategy we use is “hybrid” also according to the
approach described in [21,23]: the tests evaluate the performance of the high-
est level components (macro benchmark tests), which can be considered tests
from “the applications point of view”; down to the evaluation of the lowest level
components (micro benchmark test).

Our work tests and analyzes all the IBiSCo cluster components. The first
set of benchmarks evaluates how the network interconnection technologies affect
the inter- and intra-node communications of GP-GPU workloads. The second set
evaluates the performance of the Lustre parallel file system to ensure efficient
access to data storage which is a critical issue for data-intensive applications.
In Sect. 2 we describe the cluster architecture and its middleware layer which
implements all the necessary software tools for communication and data storage
services. Section 3 shows tests carried out to validate what is described in the
previous section. In Sect. 4 we discuss positive aspects, observed deficiencies, and
suggestions on how to improve the obtained results. The conclusion (Sect. 5) will
summarize the contents of the work.

2 The Architecture of the Hybrid High Performance
Computing Cluster

The architecture of this cluster is depicted as a set of multiple layers (Fig. 1). The
highest layer of the architecture consists of the application layer. The lowest one
consists of the hardware resources, which comprises 32 computing nodes and 4
storage nodes. In particular, it provides 1) 128 NVIDIA Volta GPUs and about
1600 physical cores (from Intel Gen 2 Xeon Gold CPUs) distributed on 32 nodes
whose connections are based on InfiniBand [18] and NVLink2 [12] technologies;
2) 320 TB distributed on 4 storage nodes connected to the computing nodes by
an InfiniBand network. The top one is the application layer which is exposed to
users. The efficient use of cluster technologies is made possible by a software layer
interposed between the lowest and the highest levels, namely the middleware,
which is based on a combination of the following technologies:

1. OpenFabrics Enterprise Distribution (OFED) [26] for drivers and libraries
needed by the Mellanox InfiniBand network cards.

2. CUDA Toolkit [25] for drivers, libraries and, development environments,
enables NVIDA GP-GPU.

3. “MPI-CUDA aware” [22] implementation of OpenMPI [27] through the UCX
open-source framework [29].

4. Lustre [33] - a distributed, parallel and open source file system - provides high
performance access to storage resources.

Bandwidth and latency in message exchange among processes is one of
the issues preventing the full exploitation of GP-GPU potential. In this
regard, NVIDIA introduced CUDA Inter-Process Copy (IPC) [19] and GPUDi-
rect Remote Direct Memory Access (RDMA) [14] technologies for intra- and
inter-node GPU process communications to make this solution available for

104 L. Carracciuolo et al.

Fig. 1. The Layered Cluster Architecture

InfiniBand-based clusters. To optimize inter-node GPU-to-GPU communica-
tions for small messages, NVIDIA offers NVIDIA gdrcopy [30]. To combine
these technologies with communication libraries (i.e., OpenMPI), we used the
UCX open-source framework. UCX is a communication framework optimized
for modern, high-bandwidth, low-latency networks. It exposes a set of abstract
communication primitives that automatically choose the best available hardware
resources. Supported technologies include RDMA (both InfiniBand and RoCE),
TCP, GPU, shared memory, and atomic network operations.

As previously stated, a key aspect of high-performance computing is the effi-
cient delivery of data to and from the computing nodes. The implementation
adopted in the IBiSCo cluster is based on Lustre, a high-performance, parallel,
and distributed file system. High-performance is guaranteed by Lustre flexibility
in supporting multiple storage technologies, from the common ones based on
Ethernet and TCP/IP to those with high-speed and low latency such as Infini-
Band, RDMA and RoCE. Storage nodes host the OSTs2 for the two Lustre
exposed file systems, one for user home directories and one for jobs scratch area.
In particular, the home file system is characterized by large disk space needs
and fault tolerance, therefore it is made up of RAID-5 SAS HDD array. On the
other hand, the scratch area needs fast disk access times and no redundancy
requirement, hence it is hosted on SATA SSD disks.

3 Cluster Benchmarking

We have created a set of micro- and macro-benchmarks to study communication
and access to resources. As for the communication tests: the micro-benchmarks
have highlighted some limitations, mainly because they work with either very
small or very large problems. For both intra- and inter-node communication,
although peak performance is achieved (50 and 10 GB/s respectively), the tests
show sudden increases. Growth should be “softened” by decreasing intermediate
peaks. The discontinuity is due to several factors: first of all to the technologies
used, such as the GDRCopy, which works with small message sizes. The growth
of the message size leads to an automatic deactivation of the technology. This

2
The Lustre Object Storage Targets (OST) are the block devices on which data is
distributed.

Benchmarking a High Performance Computing Heterogeneous Cluster 105

feature is essential. Depending on the type of application that uses the resources,
it may be more appropriate to use one configuration of the benchmarking algo-
rithm than another. For this reason, the choice of a benchmark that keeps pace
with current technologies is indispensable for the evaluation of the cluster. As
for the macro-benchmarks, the real limitation is given by Linpack: all commu-
nications to and from GPU devices are obtained using the PCI Channel and
not NVLink (since the implementation of these benchmarks does not provide
for GPU-to-GPU), this implies that the cluster resources are not fully exploited.
Summing up, benchmark results are provided which should be useful for:

1. filling the lack of deep understanding on how modern GP-GPU can be con-
nected and the actual impact of “state-of-the-art” hardware/software tech-
nologies on multi-GPU application performance;

2. evaluating the usage of parallel file systems in applications with intensive
parallel data access.

3.1 Communication and Computation

Micro-benchmark Tests. We evaluate the basic characteristics of the four
GPU interconnections focusing on both MPI Peer-to-Peer (P2P) and MPI Col-
lective (CL) GPU-TO-GPU communication patterns. Both for intra- and inter-
node P2P, we pay special attention to assessing the communication technologies
in terms of latency and bandwidth on message size. Eventually, we evaluate the
latency of the collective communication patterns on both intra- and inter-node
scenarios. The tool used for measuring latency and bandwidth is the CUDA-
aware version of MPI OSU Micro-Benchmarks [5] which evaluates latency and
bandwidth of P2P tests as follows:

Latency Test: the latency tests are performed in a ping-pong fashion, by using
blocking versions of the MPI functions (MPI Send and MPI Recv). The sender
sends a message with certain data size and waits for a reply. The recipient
receives the message and returns a response with the same data size. Many
iterations of this test are performed and average one-way latency numbers
are obtained3.

Bandwidth Test: Non-blocking versions of the MPI functions (MPI Isend and
MPI Irecv) are used in this case. The sender sends a fixed number of con-
secutive messages to the recipient and waits for its reply. The recipient sends
the reply only after all these messages are received. This process is repeated
for several iterations and the bandwidth is calculated based on elapsed time
(until the sender receives the reply from the recipient) and the number of
bytes sent by the sender. The goal of this bandwidth test is to determine the
maximum sustained data rate which can be achieved at thethe network level.

Conversely, the latency of collective communications is measured via the fol-
lowing procedure: fixing a message size, many calls of MPI BCast, MPI Gather,
3

We used the default number of iterations that the benchmark provides: 1000 itera-
tions for small messages and 100 iterations for large messages.

106 L. Carracciuolo et al.

Fig. 2. Communication and computation micro-benchmarks results. Latency and
bandwidth of P2P GPU-TO-GPU intra-node (a) and inter-node (b) communication
and of Host-to-Host (c) communication on the considered sub-clusters (Color figure
online)

MPI Reduce (with MPI SUM operation type) functions are carried out to compute
time spent in a single call. All those time values are averaged to compute the
latency number of the Broadcast, Gather, and Reduce tests respectively for
each considered message size.

All the tests described above are carried out to evaluate the performance of
both intra- and inter-node communications of the cluster where different combi-
nations of RDMA, IPC, and gdrcopy are used as summarized in the description
of Fig. 2. Plots of trends (as a function of message size) for P2P intra- and
inter-node communications are respectively reported in Fig. 2-(a) and 2-(b). As
a term of comparison, Fig. 2-(c) shows the behavior of P2P Host-to-Host com-
munications. In all latency plots, we show, as an error bar, the value of σ where
σ
2 is the Sample Variance 4 of the measured latency times used for each mean

computation: just in very few cases the variance appears significant).

4
The following formula is used to compute the Sample Variance σ

2
of a set of n values

{xi}i=1,...,n whose mean value is x̄: σ
2 = ∑n−1

i=1 (xi−x̄)
2

n−1
.

Benchmarking a High Performance Computing Heterogeneous Cluster 107

Fig. 3. Communication and computation micro-benchmarks results. Latency of GPU-
to-GPU collective communications on the cluster: intra-node (a) and inter-node (b)
communications

In Fig. 3-(a) and 3-(b) are respectively reported plots (as a function of mes-
sage size) for collective intra- and inter-node communications where different
combinations of RDMA, IPC, and gdrcopy are used. During the tests, in the
case of intra-node collective communications, all the tasks are spawned on a
single node. Conversely, when inter-node collective communication is considered
one task is spawned on a single node. Tests are performed with different task
numbers P . Lines in the plots representing tests executed on P = 2, 3, 4 are
marked respectively with ■, ◆ and ▼ symbols.

All plots use a logarithmic scale with base 2 and 10 respectively for the x
and y coordinate axis. From Figs. 2 and 3, we can state the following:

– Significant differences can be found between the performance of intra- and
inter-node P2P communications. The intra-node communication seems to
reach the maximum bandwidth performance of 50 GB/s, guaranteed by the
NVLink technology, already with medium-sized messages. The same behavior
cannot be witnessed during inter-node communication since the performance
(about 10 GB/s) is comparable to the peak performance of the InfiniBand
technology achieved only transmitting large-sized messages.

108 L. Carracciuolo et al.

– The use of gdrcopy technology (see blue and green lines of all the plots in
Fig. 2-(a) and 2-(b)) significantly improves the performance of P2P commu-
nications with small messages. A combination of gdrcopy and GPUDirect
RDMA technologies seems to be the best choice to improve performance in
all the tested configurations: it is more noticeable in P2P inter-node commu-
nications (see green lines of all the plots in Fig. 2-(a) and 2-(b)) although the
best performance for large messages is obtained using the GPUDirect RDMA
without gdrcopy (see green lines of all the plots in Fig. 2-(b)).

– All the configurations tested show equivalent performance when P2P intra-
node communication uses large messages (see Fig. 2-(a)).

– The sustainable performance values for GPU-TO-GPU inter-node communi-
cations seem to be, in most cases, about a tenth of the value measured for
Host-to-Host communications, which reach the InfiniBand peak performance
(see Fig. 2-(c)).

– No particularly significant changes can be observed in the Collective Reduce
test if different combinations of RDMA, IPC, and gdrcopy are used. These
differences seem more noticeable in inter-node communications (see Fig. 3-
(b))

– In the other Collective Tests certain differences, can only be found for small
message sizes when different combinations of RDMA, IPC, and gdrcopy are
used.

Macro-benchmark Tests. To evaluate how the implemented multi-GPU het-
erogeneous computational resource responds to a typical parallel workload from
Scientific Computing, the CUDA-Aware version of the High Performance Lin-
pack (HPL) Benchmark is used. The HPL benchmark [1] is a software package
that solves a (random) dense linear system in double precision arithmetic on
distributed-memory architectures. The HPL package provides a timing program
to quantify the time it took to compute it. The best performance evaluation, in
terms of thethe number of floating operations per second, is currently used to
compile the list of the most powerful computers in the world [34]. The CUDA-
Aware HPL benchmark [11] uses CUDA libraries to accelerate the HPL bench-
mark on heterogeneous clusters, where both CPUs and GPUs are used with
minor or no modifications to the source code of HPL. A host library intercepts
the calls to BLAS DGEMM and DTRSM procedures and executes them simulta-
neously on both GPUs and CPU cores. However, the benchmark has a limit: all
communications to and from GPU devices are performed using the PCI channel.

In Fig. 4 we show the results of the CUDA-Aware HPL benchmark executed
on some nodes of the IBiSCo cluster: the number of total MPI tasks is 4P where
P is the number of involved nodes. The tests are performed using different values
for the problem dimension N . The graphs show:

T (P,N): The execution time of the benchmark as a function of the number P
of nodes for some values of N ;

S (P,N): The Speed-Up of the execution as a function of the number P of nodes
for some values of N . So, S (P,N) = T (1,N)

T (P,N)
;

Benchmarking a High Performance Computing Heterogeneous Cluster 109

Fig. 4. Communication and computation macro-benchmarks results: The CUDA-
Aware HPL benchmark Execution Time T (P) (a), Speed-Up S (P) (b), the Sustained
Performance SP (P, N) (c) and the fraction of Peak Performance SPF (P,N) (d).

SP (P,N): The Sustained Performance (expressed in GigaFLOPS) is obtained
during the execution as a function of the problem dimension N for some
values of P . It represents the number of Floating Point operations executable
by an algorithm in a time range;

SPF (P,N): The fraction of Peak Performance is obtained during the execu-
tion as a function of the problem dimension N for some values of P . So,
SPF (P,N) = SP (P,N)

PP (P)
where PP (P) is the Peak Performance of P nodes

when for each node all four GPU devices are considered5.

From the plots in Fig. 4 we can observe:

– the super linear speedup which is most remarkable for large problems. We
think this is due to the increased time spent on CPU-GPU communications
mainly as a consequence of a saturated PCI channel (indeed that all the four
GPUs of a node are involved in computations);

– the very low scalability of the benchmark as the number of parallel tasks
increase;

– the very small fraction of the Peak Performance scored during executions: if
we consider very large problems we get just under 10% of max computational
power which can be guaranteed by the computational resources.

5
Let PP (P) = (4NCoresGPUClockGPU + NCoresCPUClockCPU)P .

110 L. Carracciuolo et al.

3.2 Communication and Data Storage

Micro-benchmark Tests. We evaluate the basic characteristics of the imple-
mented Lustre file systems using the IOzone File system Benchmark [20], which
generates and measures the time to complete a set of file operations as read,
write, re-read, re-write. In Fig. 5 we show the throughput performance for the
same above-mentioned operations both with and without the SYNC IOZone
option6. The plots show single stream performance as a “Heat Map” of file size
and request size for two Lustre-based file systems which are an aggregation of
SAS HDDs and SATA SSDs respectively both available on storage nodes. In
the same plots, we show, as a term of comparison, the results of the same test
performed using two XFS file systems configured on different types of local disks
(SATA SSD and PCIe NVMe SSD) available on computing nodes. All plots use
a logarithmic scale with base 2 for the x and y coordinate axes. From such plots,
the following statements can be argued:

– on read operations, all the tested file systems show comparable performance
and suffer from large file size;

– the Lustre file system seems to be especially performing on write operations
when file size increases. This is more noticeable if the option SYNC is activated;

– on write operations, the performance of Lustre file systems seems to be com-
parable (in terms of order of magnitude) with results obtained on slow local
disks (especially if the option SYNC is disabled);

Fig. 5. Communication and storage micro-benchmarks results: IOZone throughput per-
formance (in KB/s) for read (a) and write operations with (b) and without (c) the SYNC

options. For better readability, we preferred to use a different color map in each plot.

Macro-benchmark Tests. We use a benchmark based on the Block-
Tridiagonal (BT) problem of the NAS Parallel Benchmarks (NPB) [24], which
is employed to test the I/O capabilities of high-performance computing systems,
especially parallel systems. As improvements were made to parallel systems, the

6
When this option is activated, IOZone will open the files with the O SYNC flag. This
forces all writes to the file to go completely to disk before returning to the benchmark.

Benchmarking a High Performance Computing Heterogeneous Cluster 111

speed with which computed results are being written to and read from files still
represents a bottleneck in practical applications. The benchmark, named BT-IO,
is based on the MPI I/O Application Programmer Interface [9] which is part of
the MPI. In Fig. 6 we report the results of th BT-IO benchmark in its “simple”
configuration where data, scattered in memory across the processors, are written
to the same file. What is considered here is the class “E” problem dimension.
During execution, one MPI task is allocated to each node, and both the Lustre
file systems described above are considered. From such plots we can argue:

– time spent during the IO stages might account for a significant portion
(>50%) of total execution time when the number of parallel tasks is large;

– the write pattern used by the tests, where each processor writes the data
elements it is responsible for directly into an output file, confirms the weak
performance due to a very high degree of fragmentation [36]. The Lustre file
system based on SSD disks better manages the such type of pattern also when
the number of processors becomes large;

– IO throughput seems far from the values measured by micro-benchmarks
which appear to be about a bigger order of magnitude.

Fig. 6. Communication and storage macro-benchmarks results. BT-IO results: the total
time of execution versus the time spent during IO phases (a), the throughput of com-
puting (b) and IO (c) stages expressed in MFlops/sec and MB/s respectively

4 Discussion on the Results

The tests that analyze the lower level of the middleware (micro-benchmarks),
seem to confirm the ability of the resource to guarantee the expected perfor-
mance.

All the macro-benchmarks confirm that the goal of achieving the maximum
performance of IT systems is extremely demanding. Although useful for eval-
uating the cluster created and highlighting the strengths of its resources, the
benchmarks are also intended to bring out any issues. In this case, the problems
in some of the results shown depend largely on the chosen benchmarks. In fact,
for the most part, they cannot fully keep up with new technologies.

112 L. Carracciuolo et al.

Our future work will be to find (or create) a version of macro benchmarks
that can to make the most of the heterogeneity of the systems with solutions
that: 1) use both the CPU and GPU present on the individual nodes, 2) exploit
all the most performing communications channels available, 3) by CUDA-Aware
messages passing library and innovative tools such as the Software for Linear
Algebra Targeting Exascale (SLATE) library [13] or innovative approach as the
HPL-AI Mixed-Precision Benchmark [16].

5 Conclusion

The paper describes the results of some benchmarking tests aimed to verify and
validate all the solutions implemented during the deployment of a computing
cluster within the Italian National Project IBiSCo able to satisfy the different
computing needs of the project partners. All the strategies implemented have
been verified and evaluated by the appropriate tools used to estimate some sig-
nificant performance indexes of all the components of the system from a micro
and macro point of view. From the communication between nodes with multiple
GP-GPU in a distributed memory environment to the efficiency of the applica-
tion during the IO phases.

Acknowledgment. This work has been funded by project code PIR01 00011
“IBISCo”, PON 2014–2020, for all three entities (INFN, UNINA, and CNR).

References

1. Petitet, A., et al.: A portable implementation of the high-performance lin-
pack benchmark for distributed-memory computers. https://www.netlib.org/
benchmark/hpl/index.html

2. Barone, G.B., et al.: Designing and implementing a high-performance comput-
ing heterogeneous cluster. In: 2022 International Conference on Electrical, Com-
puter and Energy Technologies (ICECET), pp. 1–6 (2022). https://doi.org/10.
1109/ICECET55527.2022.9872709

3. Bertero, M., et al.: MedIGrid: a medical imaging application for computational
grids. In: Proceedings International Parallel and Distributed Processing Sympo-
sium, p. 8 (2003). https://doi.org/10.1109/IPDPS.2003.1213457

4. Boccia, V., Carracciuolo, L., Laccetti, G., Lapegna, M., Mele, V.: HADAB:
enabling fault tolerance in parallel applications running in distributed environ-
ments. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.)
PPAM 2011, Part I. LNCS, vol. 7203, pp. 700–709. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31464-3 71

5. Bureddy, D., Wang, H., Venkatesh, A., Potluri, S., Panda, D.K.: OMB-GPU: a
micro-benchmark suite for evaluating MPI libraries on GPU clusters. In: Träff,
J.L., Benkner, S., Dongarra, J.J. (eds.) EuroMPI 2012. LNCS, vol. 7490, pp. 110–
120. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33518-1 16

6. Carracciuolo, L., et. al: Implementation of a non-linear solver on heterogeneous
architectures. Concurr. Comput. Pract. Exp. 30(24), e4903 (2018). https://doi.
org/10.1002/cpe.4903

https://www.netlib.org/benchmark/hpl/index.html
https://www.netlib.org/benchmark/hpl/index.html
https://doi.org/10.1109/ICECET55527.2022.9872709
https://doi.org/10.1109/ICECET55527.2022.9872709
https://doi.org/10.1109/IPDPS.2003.1213457
https://doi.org/10.1007/978-3-642-31464-3_71
https://doi.org/10.1007/978-3-642-33518-1_16
https://doi.org/10.1002/cpe.4903
https://doi.org/10.1002/cpe.4903

Benchmarking a High Performance Computing Heterogeneous Cluster 113

7. Carracciuolo, L., et al.: About the granularity portability of block-based Krylov
methods in heterogeneous computing environments. Concurr. Comput. Pract. Exp.
33(4), e6008 (2021). https://doi.org/10.1002/cpe.6008

8. CORAL procurement benchmarks. https://asc.llnl.gov/sites/asc/files/2020-06/
CORALBenchmarksProcedure-v26.pdf

9. Corbett, P., et al.: Overview of the MPI-IO parallel I/O interface. In: Jain, R.,
Werth, J., Browne, J.C. (eds.) Input/Output in Parallel and Distributed Computer
Systems. SECS, vol. 362, pp. 127–146. Springer, Boston (1996). https://doi.org/
10.1007/978-1-4613-1401-1 5

10. D’Amore, L., et al.: a scalable space-time domain decomposition approach for
solving large scale nonlinear regularized inverse ill posed problems in 4D vari-
ational data assimilation. J. Sci. Comput. 91(2), 59 (2022). https://doi.org/10.
1007/s10915-022-01826-7

11. Fatica, M.: Accelerating Linpack with CUDA on heterogenous clusters. In: 2nd
Workshop on General Purpose Processing on Graphics Processing Units. GPGPU-
2, pp. 46–51. Association for Computing Machinery, New York (2009). https://doi.
org/10.1145/1513895.1513901

12. Foley, D., et al.: Ultra-performance pascal GPU and NVLink interconnect. IEEE
Micro 37(2), 7–17 (2017). https://doi.org/10.1109/MM.2017.37

13. Gates, M., et al.: SLATE: design of a modern distributed and accelerated lin-
ear algebra library. In: International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (2019). https://doi.org/10.1145/3295500.
3356223

14. GPUDirect RDMA - CUDA Toolkit DOC. https://docs.nvidia.com/cuda/
gpudirect-rdma/index.html

15. HPC Challenge Benchmark. https://hpcchallenge.org/hpcc/
16. HPL-AI Mixed-Precision Benchmark. https://hpl-mxp.org/
17. Ihde, N., et al.: A survey of big data, high performance computing, and machine

learning benchmarks. In: Nambiar, R., Poess, M. (eds.) TPCTC 2021. LNCS,
vol. 13169, pp. 98–118. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-
94437-7 7

18. InfiniBand network standard. https://en.wikipedia.org/wiki/InfiniBand
19. Interprocess Communication - Programming Guide : CUDA Toolkit DOC. https://

docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#interprocess-
communication

20. IOzone Filesystem Benchmark. https://www.iozone.org/
21. Khorassani, K.S., Chu, C.-H., Subramoni, H., Panda, D.K.: Performance evaluation

of MPI libraries on GPU-enabled OpenPOWER architectures: early experiences.
In: Weiland, M., Juckeland, G., Alam, S., Jagode, H. (eds.) ISC High Performance
2019. LNCS, vol. 11887, pp. 361–378. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-34356-9 28

22. Kraus, J.: An introduction to CUDA-aware MPI. https://developer.nvidia.com/
blog/introduction-cuda-aware-mpi/

23. Li, A., et al.: Tartan: evaluating modern GPU interconnect via a multi-GPU bench-
mark suite. In: 2018 IEEE International Symposium on Workload Characterization
(IISWC), pp. 191–202 (2018). https://doi.org/10.1109/IISWC.2018.8573483

24. NAS Parallel Benchmarks. https://www.nas.nasa.gov/software/npb.html
25. Nickolls, J., et al.: Scalable parallel programming with CUDA. Queue 6(2), 40–53

(2008). https://doi.org/10.1145/1365490.1365500
26. NVIDIA Mellanox OFED DOC. https://docs.mellanox.com/display/MLNXOFE

Dv531001/NVIDIA+MLNX OFED+Documentation+Rev+5.3-1.0.0.1

https://doi.org/10.1002/cpe.6008
https://asc.llnl.gov/sites/asc/files/2020-06/CORALBenchmarksProcedure-v26.pdf
https://asc.llnl.gov/sites/asc/files/2020-06/CORALBenchmarksProcedure-v26.pdf
https://doi.org/10.1007/978-1-4613-1401-1_5
https://doi.org/10.1007/978-1-4613-1401-1_5
https://doi.org/10.1007/s10915-022-01826-7
https://doi.org/10.1007/s10915-022-01826-7
https://doi.org/10.1145/1513895.1513901
https://doi.org/10.1145/1513895.1513901
https://doi.org/10.1109/MM.2017.37
https://doi.org/10.1145/3295500.3356223
https://doi.org/10.1145/3295500.3356223
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://hpcchallenge.org/hpcc/
https://hpl-mxp.org/
https://doi.org/10.1007/978-3-030-94437-7_7
https://doi.org/10.1007/978-3-030-94437-7_7
https://en.wikipedia.org/wiki/InfiniBand
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#interprocess-communication
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#interprocess-communication
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#interprocess-communication
https://www.iozone.org/
https://doi.org/10.1007/978-3-030-34356-9_28
https://doi.org/10.1007/978-3-030-34356-9_28
https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/
https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/
https://doi.org/10.1109/IISWC.2018.8573483
https://www.nas.nasa.gov/software/npb.html
https://doi.org/10.1145/1365490.1365500
https://docs.mellanox.com/display/MLNXOFEDv531001/NVIDIA+MLNX_OFED+Documentation+Rev+5.3-1.0.0.1
https://docs.mellanox.com/display/MLNXOFEDv531001/NVIDIA+MLNX_OFED+Documentation+Rev+5.3-1.0.0.1

114 L. Carracciuolo et al.

27. Open MPI: Open Source High Performance Computing. https://www.open-mpi.
org/

28. Programma Operativo Nazionale Ricerca e Innovazione 2014–2020: Progetto
IBiSCo. https://www.na.infn.it/fondi-esterni/pon

29. Shamis, P., et al.: UCX: an open source framework for HPC network APIs and
beyond. In: IEEE 23rd Annual Symposium on High-Performance Interconnects,
pp. 40–43 (2015). https://doi.org/10.1109/HOTI.2015.13

30. Shi, R., et al.: Designing efficient small message transfer mechanism for inter-node
MPI communication on InfiniBand GPU clusters. In: 21st International Conference
on High Performance Computing (HiPC), pp. 1–10 (2014). https://doi.org/10.
1109/HiPC.2014.7116873

31. Standard Performance Evaluation Corporation. https://www.spec.org/
32. The Exascale Computing Project Website. https://www.exascaleproject.org/
33. The Lustre file system. https://www.lustre.org/
34. The Top 500 list Website. https://www.top500.org/
35. Sterling, T., et al.: BEOWULF: a parallel workstation for scientific computation.

In: 24th International Conference on Parallel Processing, pp. 11–14. CRC Press
(1995)

36. Wong, P., et al.: NAS parallel benchmarks I/O version 2.4. NAS Technical report
NAS-03-002 (2003)

https://www.open-mpi.org/
https://www.open-mpi.org/
https://www.na.infn.it/fondi-esterni/pon
https://doi.org/10.1109/HOTI.2015.13
https://doi.org/10.1109/HiPC.2014.7116873
https://doi.org/10.1109/HiPC.2014.7116873
https://www.spec.org/
https://www.exascaleproject.org/
https://www.lustre.org/
https://www.top500.org/

A Generative Adversarial Network
Approach for Noise and Artifacts
Reduction in MRI Head and Neck

Imaging

Salvatore Cuomo1, Francesco Fato1, Lorenzo Ugga2, Gaia Spadarella2,
Reanto Cuocolo3, Fabio Giampaolo1, and Francesco Piccialli1(B)

1 Department of Mathematics and Applications “R. Caccioppoli”, University of
Naples Federico II, Naples, Italy

{salvatore.cuomo,fabio.giampaolo,francesco.piccialli}@unina.it
2 Department of Advanced Biomedical Sciences, University of Naples Federico II,

Naples, Italy
3 Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi,

Italy

Abstract. As the volume of data available to healthcare and life sci-
ences specialists proliferates, so do the opportunities for life-saving break-
throughs. But time is a key factor. High-Performance Computing (HPC)
can help practitioners accurately analyze data and improve patient out-
comes, from drug discovery to finding the best-tailored therapy options.
In this paper, we present and discuss an Artificial Intelligent methodol-
ogy based on a Generative Adversarial Network to improve the perceived
visual quality of MRI images related to the head and neck region. The
experimental results demonstrate that once trained and validated, our
model performs better with respect to the state of art methods and test-
ing it on unseen real corrupted data improved the quality of the images
in most cases.

Keywords: Deep Learning · Generative Adversarial Networks · MRI ·
Imaging

1 Introduction

The region of the head and neck (HN), while representing a relatively small
area of the whole body, is of great interest in clinical practice. Indeed, there are
numerous pathological processes that involve the HN with significant potential
to reduce patients’ quality of life as well as being life threatening in the case of
malignancies. In this setting, medical imaging represents a crucial step in the
diagnostic workflow for lesion characterization, staging and follow up. While the
main modality for first level assessment is represented by ultrasound, magnetic

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 115–126, 2023.
https://doi.org/10.1007/978-3-031-30445-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_10&domain=pdf
https://doi.org/10.1007/978-3-031-30445-3_10

116 S. Cuomo et al.

resonance imaging (MRI) is the exam of choice for final evaluation of HN lesions
[1]. MRI presents several advantages making it particularly suitable for HN stud-
ies [2,3]. Noise and artifacts reduction of 2D magnetic resonance of HN images
is an interesting research topic in medical image analysis. Many algorithms have
been proposed to this topic, but in recent years, there has been a growing interest
in deep learning methodologies [4,5,14]. An emerging and challenging approach
to dealing with this problem is based on generative adversarial networks (GANs)
[4]. GANs are a class of methods in which two neural networks, the Generator and
the Discriminator, are competitively and separately trained to classify or predict
information. In other words, the main idea is to design a coupled neural network
where a Generator learns to generate plausible data, and a Discriminator can
distinguish the generator’s fake data from real ones. The Discriminator penalizes
the Generator for producing implausible results. Unfortunately, the learning pro-
cess, in practical GAN usage, may have many difficulties and several open issues
have to be addressed. How to train the Discriminator and Generator separately,
by updating the architecture parameters, and how to find hyperparameters for
the Generator such that the Discriminator is fooled completely are two crucial
aspects in the study of the GANs. Goodfellow et. al. in [4] identified the difficulty
of these networks to convergence as an issue that may cause the underfitting of
the data. However, radiomics and machine learning models based on this type
of data have not yet transitioned from academic research to real world clinical
practice. This has been due to several reasons, in large part related to issues
of reproducibility across different institutions and scanners [8,9,12,13]. In other
anatomical regions, GANs have already been proven to attenuate this limita-
tion of radiomics analysis [10]. Therefore, the potential impact of image quality
improvement techniques, such as those presented in our study, on quantitative
image analysis are another avenue for future research. To overcome some prac-
tical problems in the GAN implementation, we propose a method based on the
residual encoder-decoder of the Wasserstein generative adversarial network class.
The aim of this work is to design a stable GAN learning scheme able to improve
the perceived visual quality of HN images and at the same time to reduce the
artifacts that can often affect imaging with extra features, not present in the
acquired MRI, that can be confused with some disease. The paper is organized
as follows: Sect. 2 reports materials and methods; in Sect. 3 experimental results
are presented. Finally, Sect. 4 is devoted to some discussions.

2 Materials and Methods

In this section, we show some aspects of designing a GAN for noise and artifacts
removal in MRI neck images. We first describe the MRI acquired data and some
information on the dataset information to train the network. Moreover, some
considerations about data augmentation are reported in the preprocessing dis-
cussion. The designed GAN architecture, named M-GAN, is described in depth
to highlight the main computational tasks of the network. Finally, evaluation
metrics to show how M-GAN works are reported in the last paragraph.

A Generative Adversarial Network Approach 117

2.1 The GAN Methodology

GANs [4,5] are a class of AI methods, in which two neural networks, the Gen-
erator and the Discriminator, are competitively and separately trained within a
minimax game framework that involves the following objective function:
where Z is the latent space with a priori distribution pz as input of the Generator,
X is the space of the real data distributed as pdata, the Discriminator D(x, θD)
acting as a classifier, outputs the probabilities that x comes from the distribution
of real data pdata or from the distribution of generated data pG and finally
the Generator G(z, θG) outputs the new generated data in order to fool the
Discriminator. A crucial step is the training of a GAN and some issues have
to be addressed. More in detail, the main three steps of training a GAN are
resumed as follows: i) train separately Discriminator and Generator updating
the parameters; ii) find parameters θG and θD such that the Discriminator is
completely fooled; iii) once the Discriminator is fooled, it is discarded and the
output is then the Generator. In the applications, however, the general form is
modified by obtaining two losses, which are in a kind of mutual relationship, one
for the Generator and one for the Discriminator.

2.2 MRI Dataset Description and Splitting

This observational retrospective study was approved by the local Institutional
Review Board, and the need for written informed consent was waived. All acqui-
sitions were performed on a 1.5-Tesla (Gyroscan Intera, Philips, Eindhoven,
The Netherlands) or 3T MRI scanner (Magnetom Trio, Siemens Medical Solu-
tions, Erlangen, Germany). Both protocols included an axial T2-weighted TSE
sequence, which was used for the analysis. The geometrical parameters varied
but minimum in plane image resolution was 0.8× 0.8 mm, and maximum slice
thickness was 4 mm. The available dataset includes 3170 slices of the neck area
from 90 patients, selected from the zone just up the clavicle to the cheekbones
with 35 slices for patients on average. The data were classified by doctors accord-
ing to the noise level on a Likert scale, from 1 (more noise) to 4 (less noise), and
on a dichotomous scale for the presence of artifacts (indicated with 1) and the
absence (indicated with zero). About the dataset splitting the entire dataset has
been divided into:

– Training set. 625 target slices collected from 18 patients with 0 artifacts and
level noise of 3 and 4 used as target;

– Validation set. 155 slices collected from 4 patients with 0 artifacts and level
noise of 3 and 4 used as target;

– Test set. 128 slices randomly selected among 64 patients(two per patient) in
which there are some with presence of artifacts at different levels of noise(from
1 to 3) and some with absence of artifacts but with high level of noise (1 and
2).

In addition 4 patients, for a total of 150 slices with low noise level (3 or 4) and
no artifacts were used for a comparison with the state of the art.

118 S. Cuomo et al.

2.3 Data Pre-processing

Most of the images are 384 × 384 pixels in size, those that were larger have been
resized to 384 × 384 with a center crop rather than compression to add no more
noise and those of smaller size have been readapted by immersion in a black
background. After the dimensions standardization, a normalization was carried
out which led the tensor containing the whole set of images to assume values
between 0 and 1. In order to simulate degradation and noise that can occur in
MRI diagnosis we combined Gaussian blur and Rician noise. For the Training
data, given yi, a target image, we obtain:

jj,i = yi + Gσj
+ (yi + noisej)

with j = 1, 2, 3, 4, i = 1, · · · , 625 where with ∗ we denote the convolutional
product between Gaussian distribution and our target image. So for each target
image yi, we obtained four corrupted versions of itself, so starting from the initial
625 slices used as target, we have 2500 corrupted slices. The value chosen for the
parameters is shown in Table 1.

Table 1. Selected parameters used for training data simulation.

Gaussian Blur (Gσj) Racian Noise (noisej)

1 (80, 80)

0.9 (87, 87)

0.8 (90, 90)

0.7 (100, 100)

About the Validation data, 155 slices obtained by corrupting the 155 target
slices with unseen parameters for Gaussian blur and Rician noise used as input of
Generator have been considered. Finally for the comparisons with state-of-the-
art (S.O.T.A.) denoising algorithms we consider 150 slices obtained by corrupting
the 150 target slices with unseen parameters for Gaussian blur and Rician noise
used as input of Generator.

2.4 The M-GAN Architecture

We propose a GAN-based model for noise and artifacts reduction. Our model
comprises a generator and discriminator (see Fig. 1).

In Fig. 1 we report the M-GAN architecture. More in detail, the Generator
is composed of four convolutional 2D layers and four deconvolutional 2D layers.
The number of filters is respectively (4, 8, 16, 32, 16, 8, 4, 1). Each kernel used
in convolutional and deconvolutional layers is 3× 3 dimensions with stride and
padding equals to 1. In the encoding phase each convolution operation is fol-
lowed by batch normalization and a LeakyReLU activation function. During the

A Generative Adversarial Network Approach 119

Fig. 1. The M-GAN architecture.

decoding phase, the first layer is composed of deconvolution followed by batch
normalization and a LeakyReLU activation function. In the second and third
layers, each deconvolution operation is preceded by a features concatenation
with the correspondent encoding part and a features pooling (2D convolution
between encoding and decoding features), then deconvolution followed by batch
normalization and a LeakyReLU. The last deconvolutional layer is preceded by
concatenation with the correspondent encoding part and a features pooling and
is followed by the output layer composed respectively by concatenation with
input, a features pooling, and a ReLU activation function. Discriminator archi-
tecture: it is composed of four layers, three convolutional layers with a number of
filters respectively 4,8,16, each convolution followed only by LeakyReLU without
batch normalization, and the last layer is a dense layer which outputs the result
of classification. Each kernel used in the convolutional layers is 3× 3 dimen-
sions with stride and padding equal to 1. About the Loss functions, during the
training phase the Generator and the Discriminator are competitively and sepa-
rately trained both with the aim of minimizing in turn their loss functions. Loss
functions, written as follows, are of Wasserstein type [6]:

LossD = −(Ex∼pdata(x) [D(x)] − Ez∼pz
)·

·[D(G(z)) − λgpEx∼p(x)[||D(x)|| − 1)2]

and,
LossG = −Ez∼p(z) [D(G(z))] + λMSEMSE(G(z), x)

here z and x are respectively the corrupted image and the ground truth, D(x)
is the Discriminator output on the ground truth, D(G(z)) is the Discriminator

120 S. Cuomo et al.

output on generated data, w and h are respectively the width and the height of
the images, λgp and λMSE are two hyperparameters.

Ex∼p(x) = (||D(x)|| − 1)2

is the gradient penalty term and it is used to enforce the Lipschitz condition of
the Discriminator improving the stability of the model, p(x) is the distribution
obtained by uniformly sampling along a straight line between the real and gen-
erated distributions. The MSE term helps Generator to better reconstruct the
details.

2.5 Evaluation Metrics

To evaluate the performance of our model we used four measures. The first one
is the peak signal-to-noise ratio (PSNR), which considers the root mean square
error (RMSE) between the ground truth and reconstructed or corrupted images.
The second is the structural similarity index measure (SSIM) [11] reconstruc-
tion, which measures the similarity between ground truth and reconstructed or
corrupted images. The third is the L1 distance that measures the pixel-wise aver-
age distance between the ground truth and reconstructed or corrupted images,
and the last is the Artifacts Power which consider the L2 squared difference
between the ground truth and reconstructed or corrupted images divided by the
L2 squared norm of the ground truth image. Higher is the AP, higher is the
corruption level in the images.

3 Experimental Results

In this section we discuss overall results in terms of accuracy in MRI image
reconstruction. Several accuracy metrics on the training, the validation and the
test sets are analyzed. Finally, some results on S.O.T.A. denoising methods are
considered.

3.1 Results on the Training Set

After training the model, it was tested on all 2500 input slices, recording an
improvement in quality in terms of measurements on all of them (Fig. 2).

Table 2 shows performances on four selected slice levels (the area just under
the lower jaw, the mouth area, the area between the superior jaw and just under
the nose, and the nose area) for each patient in the training set, an improvement
of at least one order of magnitude in terms of L1 and Artifacts power and
an improvement of at least 0.3 in terms of SSIM can be noted after M-GAN
correction. The M-GAN reaches the 98% of the SSIM value with improvements
in edge detection. The reconstructed image is close to the ground truth.

A Generative Adversarial Network Approach 121

Fig. 2. Results on a randomly selected image from the dataset.

Table 2. Performance metrics of M-GAN generator.

SLICE M-GAN CORRUPTED

LEVEL L1 Distance Artifacts power SSIM L1 Distance Artifacts power SSIM

0th 0.0061 ± 0.0104 0.029 ± 0.007 0.98 ± 0.016 0.0273 ± 0.053 0.31 ± 0.33 0.64 ± 0.056

1st 0.0052 ± 0.0079 0.015 ± 0.003 0.98 ± 0.003 0.0276 ± 0.0152 0.21 ± 0.11 0.66 ± 0.056

2nd 0.0060 ± 0.0069 0.012 ± 0.002 0.97 ± 0.007 0.0291 ± 0.0162 0.16 ± 0.06 0.64 ± 0.048

3rd 0.0066 ± 0.0073 0.011 ± 0.003 0.97 ± 0.007 0.0299 ± 0.0167 0.14 ± 0.05 0.70 ± 0.051

3.2 Results on the Validation Set

Validation set was used to set the hyperparameters, the model with final setting
hyperparameters registered an improvement in terms of measures on all slices.
For the validation slices quality assessment, we selected the same slices level
chosen in the training set.

Table 3. Performance metrics of M-GAN generator on four selected slice levels for
each patient in the validation set.

SLICE M-GAN CORRUPTED

LEVEL L1 Distance Artifacts power SSIM L1 Distance Artifacts power SSIM

0th 0.027 ± 0.026 0.076 ± 0.03 0.68 ± 0.019 0.057 ± 0.032 0.311 ± 0.24 0.32 ± 0.039

1st 0.027 ± 0.025 0.064 ± 0.01 0.70 ± 0.012 0.059 ± 0.031 0.227 ± 0.11 0.35 ± 0.027

2nd 0.029 ± 0.027 0.067 ± 0.01 0.71 ± 0.007 0.060 ± 0.033 0.213 ± 0.09 0.37 ± 0.020

3rd 0.030 ± 0.028 0.063 ± 0.02 0.71 ± 0.006 0.059 ± 0.030 0.191 ± 0.07 0.36 ± 0.019

Table 3 presents the M-GAN results in terms of perceived visual quality and
main metrics. An improvement of at least one order of magnitude in terms
of Artifacts power and an improvement of at least 0.3 in terms of SSIM can be
observed like in the training set, referring to the L1 Loss, we have an improvement
for all four selected slice levels, but less than those obtained in the training set.

122 S. Cuomo et al.

3.3 Results on the Test Set

After the training and validation phases, the model was tested on 128 slices ran-
domly selected among 64 patients, obtaining a significant improvement through
the quality control of doctors in terms of noise and artifacts on 80% of them
(103/128). An improvement regarding noise was measured with an increased
score on a Likert scale by doctors, while an improvement about artifacts, not
necessarily the total removal but also only the reduction, was denoted with the
passage from 1(for the corrupted original image) to 0 (after M-GAN correction).
In Fig. 3, Fig. 4 and Fig. 5 were shown the results on three randomly selected
slices in the test set before and after M-GAN correction.

Fig. 3. Ability of M-GAN to reduce the noise. It appears in the real corrupted acqui-
sition as a grainy effect on the scanned object.

Figure 3 shows the improvement in terms of noise measured by doctors on
a Likert scale. After M-GAN correction, an increase in contrast that allows
better recognition of the elements in the image can be noted resulting in a
smoother image with a notable reduction of grainy effect. In Fig. 4 we report
the performance of the M-GAN in terms of noise measured by doctors on a
Likert scale and in terms of artifacts on a dichotomous scale. After correction the
artifact due to motion is reduced with better-defined edges, resulting in an image
that makes the diagnosis less complicated for doctors than the corrupted one.
Finally, Fig. 5 shows better results of M-GAN for reducing artifacts registered
from the passage from 1 to 0 on a dichotomous scale. After correction the intra-
pixel variation due to noise is alleviated and the “ghost effect” due to motion
artifacts is reduced with the restoration of details.

A Generative Adversarial Network Approach 123

Fig. 4. Ability of M-GAN to reduce artifacts and noise. The corrupted image is affected
by a lack of sharpeness.

Fig. 5. Ability of M-GAN to reduce motion artifacts and noise. Due to motion, the
edges of the corrupted version repeat outside the object appearing on the image black
background and inside it overlapping the real structure by altering the morphology.

3.4 Comparison with the S.O.T.A

After training, validating and testing of our model, we compared it with some
of state of art denoising filters like Anisotropic, Non-local-means and Bilateral
[7], selecting and corrupting 150 slices from 4 new patients with unseen values of
Gaussian blur and Rician noise. Reconstruction results are reported in Table 4.

In Table 4, we show that M-GAN performs better than typically denoising
filters, recovering more information about contrast and shapes. NLM shows good
performances, especially in terms of SSIM, where the increase compared to the
corrupted image and the other two filters are considerable. Anisotropic filter
doesn’t perform better like NLM and M-GAN but it is able to get an improve-

124 S. Cuomo et al.

Table 4. Performance metrics of different methods on four selected slice levels (the
same levels of validation and training stages) for each patient in the test set

SLICE CORRUPTED ANISOTROPIC BILATERAL

LEVEL PSNR AP SSIM PSNR AP SSIM PSNR AP SSIM

0th 26.9 ± 0.5 0.17 ± 0.01 0.57 ± 0.03 27.7 ± 0.7 0.14 ± 0.001 0.69 ± 0.01 26.9 ± 0.5 0.17 ± 0.01 0.57 ± 0.03

1st 26.2 ± 0.7 0.16 ± 0.02 0.58 ± 0.01 26.9 ± 0.8 0.14 ± 0.01 0.70 ± 0.01 26.2 ± 0.7 0.16 ± 0.02 0.58 ± 0.01

2nd 25.7 ± 0.5 0.15 ± 0.01 0.60 ± 0.01 26.2 ± 0.6 0.13 ± 0.004 0.72 ± 0.01 25.7 ± 0.5 0.15 ± 0.01 0.60 ± 0.01

3rd 25.3 ± 0.5 0.15 ± 0.01 0.61 ± 0.01 25.8 ± 0.6 0.13 ± 0.01 0.72 ± 0.01 25.3 ± 0.5 0.15 ± 0.01 0.61 ± 0.01

NLM M-GAN

PSNR AP SSIM PSNR AP SSIM

28.2 ± 0.7 0.13 ± 0.01 0.96 ± 0.01 32.9 ± 1.01 0.04 ± 0.001 0.99 ± 0.003

27.3 ± 0.8 0.12 ± 0.01 0.96 ± 0.004 31.9 ± 1.1 0.04 ± 0.001 0.99 ± 0.001

26.5 ± 0.6 0.13 ± 0.004 0.96 ± 0.002 31.1 ± 0.8 0.04 ± 0.001 0.98 ± 0.001

26.1 ± 0.6 0.12 ± 0.001 0.95 ± 0.003 30.5 ± 0.7 0.05 ± 0.001 0.98 ± 0.001

ment in terms of measures. Bilateral filters get an improvement in terms of
measurements only after at least the fifth decimal digit.

M-GAN recovers more information about contrast and shapes. NLM is able
to restore the morphology of the image with an improvement in terms of contrast;
the edges are preserved but slightly blurred, as reported in Fig. 6. Anisotropic
filter partially restores contrast reducing noise. Bilateral filters seem to leave the
image unchanged. Finally, we observe that if we require that the Anisotropic
and Bilateral filters reduce more noise by changing their parameters, it happens
that large structures are preserved while small ones are considered as noise and
so blurred.

Our experiments have been conducted on a server with the Intel Core i9-
9900 K 8-core CPU with 128 GB of RAM, and two GPUs: Nvidia RTX 3090
and Nvidia RTX 3070. The programming language used is Python 3.9 with the
framework Pytorch 1.9.1 for the Deep Learning model (Table 5).

Table 5. Comparing computational time on four selected patients of our approach
with the current state-of-art technique for all 150 slices.

Method Total execution time

Anisotropic 1 s

Bilateral 0.2 s

NLM 21.6 s

M-GAN 8.7 s

A Generative Adversarial Network Approach 125

Fig. 6. Quality assessment dealing with two slices selected from one patient.

4 Discussion and Conclusions

In this work, we propose a method based on the Wasserstein generative adver-
sarial network to reduce noise and artifacts in MRI images while effectively
preserving the structural details. This network aims to process 2D data using
2D convolutional layers. The Generator has an auto-encoder structure, while
the discriminator acting as a classifier, through 3 convolutional layers and 1
dense layer, takes an image as input and provides a value as output. Training
stage performed on a GPU, takes approximately 40 min and it is the costliest
step. The experimental results demonstrate that once trained and validated our
model, it performs better with respect to the state of art methods and test-
ing it on unseen real corrupted data improved the quality of the images in most
cases. The reduction of imaging artifacts and improvement of SNR will hopefully
lead to improvements in diagnostic accuracy of MRI HN examinations as well
as potentially reducing exam duration. Nonetheless, the clinical impact of our
results has to be investigated in future studies designed for this task. A further
consideration has to be made on the potential impact of GANs and denoising
techniques in general on quantitative analysis of medical images. Our work has
some limitations that should be acknowledged. First of all, it has a retrospec-
tive design which limits the possibility for clinical validation. However, from a
technical point of view a prospective design would not have impacted signifi-
cantly the network architecture. All the data was collected from a single center
and MRI scanner, therefore the generalizability of our results has to be proven
in a different setting. In conclusion, the results obtained are encouraging and

126 S. Cuomo et al.

efficiently demonstrate the potential of deep learning-based methods for MRI
denoising and artifacts reduction.

References

1. Dai, Y.L., King, A.D.: State of the art MRI in head and neck cancer. Clin. Radiol.
73(1), 45–59 (2018)

2. Jansen, J.F.A., et al.: Evaluation of head and neck tumors with functional MR
imaging. Magn. Reson. Imaging Clin. 24(1), 123–133 (2016)

3. Zhuo, J., Gullapalli, R.P.: MR artifacts, safety, and quality control. Radiographics
26(1), 275–297 (2006)

4. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems 27 (2014)

5. Goodfellow, Y., Bengio, Y., Courville, A.: Deep Learning. MIT press, Cambridge
(2016)

6. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks.
In: International Conference on Machine Learning, PMLR (2017)

7. Mohan, J., Krishnaveni, V., Guo, Y.: A survey on the magnetic resonance image
denoising methods. Biomed. Signal Proc. Control 9, 56–69 (2014)

8. Spadarella, G., et al.: MRI based radiomics in nasopharyngeal cancer: systematic
review and perspectives using radiomic quality score (RQS) assessment. Eur. J.
Radiol. 140, 109744 (2021)

9. Lohmann, P., et al.: Radiomics in neuro-oncology: basics, workflow, and applica-
tions. Methods 188, 112–121 (2021)

10. Marcadent, S., et al.: Generative adversarial networks improve the reproducibility
and discriminative power of radiomic features. Radiol.: Artif. Intell. 2(3), e190035
(2020)

11. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Trans. Image Process. 13(4),
600–612 (2004)

12. Piccialli, F., Cuomo, S., De Michele, P.: A regularized MRI image reconstruction
based on hessian penalty term on CPU/GPU systems. Procedia Comput. Sci. 18,
2643–2646 (2013)

13. Palma, G., et al.: 3D Non-local means denoising via multi-GPU. In: 2013 Federated
Conference on Computer Science and Information Systems, vol. 13884786 (2013)

14. Chianese, A., Marulli, F., Piccialli, F., Valente, I.: A novel challenge into multi-
media cultural heritage: an integrated approach to support cultural information
enrichment. In: International Conference on Signal-Image Technology & Internet-
Based Systems, pp. 217–224 (2013)

A GPU Accelerated Hyperspectral 3D
Convolutional Neural Network

Classification at the Edge with Principal
Component Analysis Preprocessing

Gianluca De Lucia1(B) , Marco Lapegna2 , and Diego Romano1

1 Institute for High Performance Computing and Networking (ICAR), CNR,
80131 Naples, Italy

{gianluca.delucia,diego.romano}@icar.cnr.it
2 Department of Mathematics and Applications, University of Naples Federico II,

80126 Naples, Italy
marco.lapegna@unina.it

Abstract. The Edge Computing paradigm promises to transfer
decision-making processes based on artificial intelligence algorithms to
the edge of the network without the need to query servers far from
the data collection point. Hyperspectral image classification is one of
the application fields that can benefit most from the close relationship
between Edge Computing and Artificial Intelligence. It consists of a
framework of techniques and methodologies for collecting and process-
ing images related to objects or scenes on the Earth’s surface, employing
cameras or other sensors mounted on Unmanned Aerial Vehicles. How-
ever, the computing performance of the edge devices is not comparable
with those of high-end servers, so specific approaches are required to
consider the influence of the computing environment on the algorithm
development methodology. In the present work, we propose a hybrid
technique to make the Hyperspectral Image classification through Convo-
lutional Neural Network affordable on low-power and high-performance
sensor devices. We first use the Principal Component Analysis to filter
insignificant wavelengths to reduce the dataset dimension; then, we use a
process acceleration strategy to improve the performance by introducing
a GPU-based form of parallelism.

Keywords: Hyperspectral classification · Edge Computing · Principal
Component Analysis · GPU computing

1 Introduction

Edge computing refers to the enabling technologies to process data at the net-
work’s edge near the data source before being sent to the cloud data center.
For some authors, edge computing is interchangeable with fog computing [1],
although it focuses more on the devices at the edge, whereas fog comput-
ing focuses more on the whole network infrastructure. This type of computing
paradigm has several advantages over traditional cloud computing, e.g., as the

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 127–138, 2023.
https://doi.org/10.1007/978-3-031-30445-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_11&domain=pdf
http://orcid.org/0000-0001-7912-2083
http://orcid.org/0000-0001-9953-1319
http://orcid.org/0000-0002-2640-157X
https://doi.org/10.1007/978-3-031-30445-3_11

128 G. De Lucia et al.

results of [15] show, energy savings can reach up to 40%. There are various
metrics to consider in Edge computing, including energy and transmission rate,
especially for big data [3,13]. In addition to the network signal strength [11],
data size and available bandwidth will also influence the transmission energy
overhead [27]. For this reason, as shown in [17], new High-Performance Edge
devices mount GPUs capable of performing complex calculations by finding a
trade-off between performance and power consumption.

One stimulating application field for Edge computing is Remote Sensing
(RS). RS is the science of acquiring, processing, and interpreting images and
related data from aircraft and satellites that record the interaction between
matter and electromagnetic energy [30]. In recent years, deep learning techniques
have revolutionized how RS images are processed and classified. In particular,
standard optical, RGB, and IR (infrared) images have benefited from deep convo-
lutional neural networks (CNNs) for classification, object detection, or semantic
segmentation tasks [6,25,33].

A promising RS technology focuses on hyperspectral images (HSIs), allowing
simultaneous radiance capture at different wavelengths, and generating vari-
ous spectral bands. HSI data have an exceptionally high range and resolution
in the spectral dimension. In particular, the branch of Hyperspectral Imaging
deals with collecting and processing information on the nature of materials by
analyzing their reflectance in a part of the electromagnetic spectrum [12]. Hyper-
spectral imaging aims to obtain a spectral vector for each pixel of an image to
find objects, detect processes, or identify and classify materials [8,10].

Some classifiers preprocess the HSI to reduce the image depth to three spec-
tral bands (RGB) through Principal Component Analysis (PCA) or other strate-
gies [23,31] and only use a 2D CNN architecture to perform the classification.
However, this approach may result in the loss of some hyperspectral properties.
For this reason, we propose to use PCA to reduce the length of the HSI spec-
tral dimension while maintaining the multidimensional nature of the data. This
strategy allows adoption of more accurate and faster classification tools than the
above methods.

In this paper, we will present an HSI classifier1 that exploits the computa-
tional power of the GPU on High-Performance Edge Devices. For the develop-
ment, we used a PyTorch-based deep learning toolbox for classifying hyperspec-
tral data called DeepHyperX [4]. We focused on three-dimensional convolutional
networks (3D CNNs). Indeed, since we can interpret HSIs as volumes, we can
classify them with the aid of 3D CNNs using three-dimensional convolutions [20].
Instead of producing 2D feature maps, these 3D CNNs create 3D feature maps
suitable for spectral pattern recognition and seem theoretically more relevant
for HSI classification. This approach slightly improves classification performance
compared to 2D+1D models [19]. In [9], the author showed that 3D CNNs for
the classification of hyperspectral images performed better than their 2D coun-
terparts. Indeed, compared to spectral CNNs or 2D+1D counterparts, 3D CNNs
combine spatial and spectral pattern recognition strategies in one filter, requiring
fewer parameters and layers.

1 Source code: https://github.com/gigernau/PCAHyperspectralClassifier.

https://github.com/gigernau/PCAHyperspectralClassifier

A GPU Accelerated HSI 3D CNN Classification at Edge with PCA 129

Many architectures in the literature handle 3D convolutional neural networks
for hyperspectral data [7,9,16,18,21,22]. The authors of [5] compare several
variants, pointing out their ability to recognize more complex 3D reflectance
patterns, such as spectral signatures and absorption differences between bands.

With this work, we want to show how High-Performance Edge Computing
can enable onboard classification with a limited energetic impact, eventually
improving the transmission stage towards the ground station. The idea is to
preprocess raw data using a GPU-parallel PCA to reduce the spectral dimension
of the HSI while retaining the information content. Then, a properly chosen
GPU-accelerated 3D CNN classifier [20] can process the hyperspectral-reduced
data in a shorter time while maintaining high accuracy.

2 HSI Pipeline

HSIs have a data structure similar to RGB images, consisting of the superposition
of three wavelengths, one for each primary color: red, green, and blue. Even if
the visible spectrum has a broader range of wavelengths, RGB images appear
to the human eye in almost any color, thanks to the tristimulus mechanism.
In hyperspectral cameras, images have higher information content. HSI cameras
allow the simultaneous capture of radiance at different wavelength bands of
the electromagnetic spectrum, providing informative spectral details for each
material. An HSI has spatial pixels corresponding to geographical locations,
each with a spectral depth of several wavelength bands depending on the specific
sensor. Thus, an HSI is a volume graphically representable with a so-called cube
of hyperspectral data (Fig. 1).

If we cut the cube perpendicularly to the spectral bands, we obtain a plane
appearing as an image whose pixels represent the reflectance at a specific wave-
length λ. Therefore, the pixel’s intensity, with a value usually normalized between
0 and 1, measures the surface efficiency of the sampled material in radiative
reflection at λ.

Fig. 1. Graphical representation of a hyperspectral data cube.

130 G. De Lucia et al.

Two main methods of reducing datasets are PCA and Multidimensional Scal-
ing (MDS). We preferred to focus on using PCA, which operates on the spec-
tral dimension, rather than MDS. The output of the HSI classification produces
labels for each pixel, so we have to preserve the spatial details, while MDS focuses
mainly on reducing the spatial dimensions.

Thanks to PCA, we can reduce the spectral dimension by projecting the vec-
tor corresponding to each spatial point onto the first principal components only,
where the variance of the data and the information content are most relevant.
We can define the first principal component as the direction that maximizes the
variance of the projected data. The i-th principal component is the direction
orthogonal to the first i− 1 principal components that maximize the variance of
the projected data [28]. The main steps of PCA are [32]:

– Dataset normalization.
– Calculating covariance matrix for the features in the dataset.
– Calculating eigenvalues and eigenvectors for the covariance matrix.
– Ordering eigenvalues and corresponding eigenvectors.
– Selection of k eigenvalues and creation of the eigenvectors matrix.

The eigenvector associated with the largest eigenvalue indicates the direction in
which the data have the greatest variance.

In general, dimensionality reduction inevitably results in a loss of informa-
tion, leading to less accurate data classification. However, PCA minimizes this
information loss. Moreover, available parallel implementations on SIMD architec-
tures can exploit GPU acceleration using a SIMT execution model [29]. Indeed,
optimized versions of GPU-parallel cuBLAS-based PCA are up to 12 times faster
than the CPU-optimised BLAS versions [2]. Our high-performance PCA cuBLAS
implementation uses the Gram-Schmidt orthogonalization, as described in [2].
Therefore, we will perform PCA on the dataset before the classification phase
to speed up the process without sacrificing prediction accuracy.

For HSI classification through Deep Learning, many authors use CNNs [5].
In general, classifiers built with CNNs usually have the following layers:

– Convolutional layers: filters extract the features of the images analyzed.
– Pooling layers: reduce the dimension of the feature maps by downsampling,

and increase the level of abstraction.
– Fully Connected layers: work as traditional feed-forward neural networks,

in which all neurons connect to all neurons from the previous layer.
– Output layer: a fully connected layer using softmax as a trigger function to

obtain the selected input’s probabilities for a specific class.

In a fully connected layer, an activation function computes the weighted sum
of neurons of the previous layer and consequently activates neurons on the cur-
rent layer. In particular, the Rectified Linear Units (ReLU) function has excellent
performance on deep networks; therefore, many authors currently prefer it.

We will use a 3D-CNN, where the filters used in the convolutional layers
are three-dimensional and move along the three directions to calculate feature
representations (Fig. 2).

A GPU Accelerated HSI 3D CNN Classification at Edge with PCA 131

Fig. 2. Example of three-dimensional convolution.

Hence, the pipeline of our classifier (Fig. 3) takes hyperspectral data as input,
then performs a GPU-parallel PCA by executing the code in CUDA. Next, the
reduced dataset becomes the input for the inference via the appropriately trained
3D-CNN network model. The output is an RGB image in which each pixel has
a color representing the class of the corresponding material.

Fig. 3. Pipeline of the HSI classifier with PCA preprocessing.

3 Experiments

We developed a hyperspectral image classifier trained on two datasets to test
our approach. There are few public datasets [14] acquired using hyperspectral
sensors. In particular, for this work, we used:

– Indian Pines (IP): collected by the AVIRIS sensor on a NASA flight over
northwestern Indiana in 1992, with a ground pixel resolution of 17 m. The
acquired data consist of 145 × 145 pixels with 220 spectral bands, but after
removing the water absorption bands (104 − −108, 150 − −163, and 220),
they result in 200 bands. The ground truth has 16 classes, not all of which
are mutually exclusive.

– Pavia University (PU): detected by the ROSIS sensor on a DLR flight in
2002 over Pavia, Italy, with a ground pixel resolution of 1.3 m. After removing
samples without information, the dataset consists of 610 × 340 pixels, with
103 spectral bands. The ground truth differentiates 9 classes.

132 G. De Lucia et al.

We used double precision for both datasets to present coherent results during
our tests, even if the original formats differed.

We experimented on two different platforms:

– PC with a 2.60 GHz Intel Core i7-9750H CPU, 16 GB RAM, Nvidia GeForce
RTX 2060 GPU, and running Ubuntu Linux;

– Nvidia Jetson Nano developer kit.

We exploited the GPUs on both platforms to accelerate each step of the clas-
sification pipeline. To test our code in the High-Performance Edge Computing
environment, we used the Jetson Nano activating both 5W and 10W modalities
and reporting their impact on the inference time and the energy absorption.

Firstly, we selected the best 3D-CNN model in inference time and prediction
accuracy for both datasets on the Jetson Nano. This step is essential to identi-
fying the most promising model for the Edge computing environment. Then, we
tested the overall classification performance in prediction accuracy and inference
time by changing the selected number of components in the PCA preprocess-
ing. We used a customized parallel version of the PCA developed in CUDA
using the cuBLAS library for this task. We also compared the execution time of
the PCA preprocessing using our CUDA version and the scikit-learn module of
Python. Finally, we evaluated the energy consumption using both Jetson Nano
modalities.

4 Results

Firstly, we present in Table 1 the execution times of a few 3D-CNN models from
the literature (He et al. [16], Li et al. [21], Hamida et al. [7]), implemented in
DeepHyperX and executed on Jetson Nano. We did not include Lee et al. [18],
Luo et al., [22] and Chen et al. [9] because they are not competitive in inference
execution times (more than 5 min in 10 W modality).

Table 1. Execution times on Jetson Nano and classification accuracy of some models
from DeepHyperX on IP and PU datasets

Indian Pines Pavia University

Inference Time Inference Time

Model 10 W 5W Accuracy 10W 5 W Accuracy

He et al. 01:05 01:24 95.35% 04:19 06:10 96.14%

Li et al. 00:23 00:27 97.08% 00:56 01:20 97.72%

Hamida et al. 00:24 00:29 85.72% 01:07 01:40 97.59%

The best results in terms of accuracy and execution time for both datasets
and power modalities are those of Li et al. All the subsequent reasonings and
tests will suppose the adoption of this promising model, considering our context
of on-board processing of remote sensing data.

A GPU Accelerated HSI 3D CNN Classification at Edge with PCA 133

(a) Indian Pines (b) Pavia University

Fig. 4. Accuracy and execution time of inference using our pipeline with several num-
bers K of Principal Components.

By applying the PCA, if we decrease the number of Principal Components
K used for the 3D-CNN, classification accuracy and execution time decrease
simultaneously (Fig. 4). The curve steepness of the execution time is greater than
that of the accuracy. Hence, we do not need to sacrifice significant accuracy to
reduce the execution time.

Moreover, the dispersion area of multiple testing increases when using fewer
Principal Components. This result means that excessive reduction of the input
components during the CNN training implies a less reliable prediction. Indeed,
prediction accuracy strictly depends on the model and the training set. We used
a random approach to sample the training set when repeating the tests, so we
trained with different random samples each time. Consequently, an increasing
accuracy dispersion means that the training samples’ choice becomes highly
relevant. Hence, the excessive reduction in the number of principal components
directly impacts the training quality of the neural network.

Following these observations, we think a good trade-off between accuracy and
execution time is K = 50 for IP (Fig. 4a), thus reducing the dimension of the
initial dataset by 75%. However, if we need to reduce the execution time further,
we could choose K = 10 while keeping a 95% prediction accuracy and a 95%
dimensional reduction. The numbers change for PU (Fig. 4b) since the hyper-
spectral bands are fewer. To maintain at least a 97% accuracy, we can choose
an optimal K = 10, obtaining an approximate 90% reduction in the dataset
dimension. On the other hand, we can choose K = 5 for an approximate 95%
dimensional reduction and a 95% accuracy. We will use the K values mentioned
above to control the prediction accuracy in the following testing.

Visual comparisons between ground truth and prediction for PU (Fig. 5)
and IP (Fig. 6) datasets show that the results of our pipeline represent reliable
classifications, as confirmed by the diagonal of the confusion matrices in Fig. 5c
and Fig. 6c.

Regarding power consumption, we tested our pipeline on the Jetson Nano
using both energy modalities: 10 W (Table 2) and 5 W (Table 3). We can notice
that the advantage of using our pipeline with PCA preprocessing for the PU

134 G. De Lucia et al.

(a) Prediction (b) Training set (c) Confusion matrix

Fig. 5. Pavia University prediction with 95% accuracy (a), the training set with 70%
samples from ground truth (class Undefined in black) (b), and relative confusion
matrix (c).

(a) Prediction (b) Training set

(c) Confusion matrix

Fig. 6. Indian Pines prediction with 95% accuracy (a), the training set with 70% sam-
ples from ground truth (class Undefined in black) (b), and relative confusion matrix (c).

dataset is evident, as it halves energy consumption and markedly reduces the
execution time. There is a slight improvement for the IP dataset when using
the 10W modality. Instead, with 5W , we only see an improvement in energy
consumption when reducing the accuracy to 95%. This limitation is due to the
HSI shape, which is spatially small but spectrally big in IP, and therefore the
GPU-parallel PCA weights more on total time and energy consumption. To bet-

A GPU Accelerated HSI 3D CNN Classification at Edge with PCA 135

Table 2. Comparison of energy consumption and execution times on Jetson Nano
(10 W modality) for Li et al. model without and with PCA preprocessing

Without PCA With PCA
accuracy
95%

With PCA
accuracy
97%

Secs Joules Secs Joules Secs Joules

Pavia University 80 320.3 42 152.41 52 199.7

IndianPines 39 175.78 28 90.80 39 173.25

Table 3. Comparison of energy consumption and execution times on Jetson Nano (5 W
modality) for Li et al. model without and with PCA preprocessing

Without PCA With
PCA
accuracy
95%

With
PCA
accuracy
97%

Secs Joules Secs Joules Secs Joules

Pavia University 107 354.97 48 166.21 62 204.07

IndianPines 50 148.58 36 102.3 48 186.24

ter understand the energetic performance of our proposed pipeline, we compare
in Table 4 several items. We calculated energy consumption on the RTX 2060 in
joules, multiplying the GPU’s Thermal Design Point (160 W) by the execution
time.

It appears evident that for the overall measuring, the execution on the RTX
is less time-consuming at the cost of more energy absorption. On the other
hand, using both Jetson’s modalities for the PCA implemented with cuBLAS,
we measured a saving of about 95% of energy compared to RTX, but with an
increment of only 55 − 61% in the execution time. This result is fascinating
when considering possible future data processing implementations at the Edge.
Regarding the performance of the PCA from scikit-learn, it does not exploit the
GPU and therefore is non-competitive.

Looking at overall measuring, including 3D-CNN, we report an increase of
about 90% in execution time, saving 70 − 80% in terms of power consumption.
That proportion is not promising as the PCA case, probably due to PyTorch
inefficiencies. However, it is still an interesting option when connection band-
width is critical. If we think of a situation with a poor transfer connection,
processing at the Edge can reduce bandwidth requests. For example, in our case
of HSI classification, the PU dataset consists of 33.2 MB, while the classification
output is an image of 610x340 bytes.

136 G. De Lucia et al.

Table 4. Comparison of energy consumption and execution times on both platforms,
isolating PCA preprocessing contributions. In italic, measures for PCA using scikit-
learn as reference. The totals refer to PCA with cuBLAS plus inference, setting the
accuracy to 95%.

RTX
(160W)

Jetson
(10 W)

Jetson
(5 W)

PaviaUniversity PCA Cublas Joules 28.8 1.34 1.21

Secs 0.18 0.4 0.42

PCA scikit-
learn

Joules 18.02 23.11

Secs 3.09 5.38 7.64

Total Joules 481.6 152.41 138.59

Secs 3.01 42 48

IndianPines PCA Cublas Joules 43.2 2.49 2.10

Secs 0.27 0.7 0.7

PCA scikit-
learn

Joules 12.12 17.10

Secs 1.48 3.41 5.7

Total Joules 432.0 90.80 102.3

Secs 0.27 28 36

5 Conclusions

This work shows an innovative perspective on the HSI classification problem
contextualized in High-Performance Edge Computing. By adopting the Nvidia
Jetson Nano system-on-chip, which can be attached to remote sensors of various
types, we developed an HSI classifier optimized for the Edge to enable onboard
processing. In such a context, the processing time is focal; therefore, we chose
the most promising 3D-CNN model in prediction accuracy and inference time
using a GPU.

Then, to further speed up the processing, we applied a Principal Component
Analysis to the original dataset to obtain up to a 90% reduction in size without
significantly depleting accuracy.

To exploit the acceleration available on the Jetson Nano and achieve high
performance, we implemented a GPU-parallel version of the PCA in CUDA.
Furthermore, we analyzed the energy absorption on the Jetson Nano to identify
the best energy configuration for our problem. The 10W modality resulted in
the shortest execution time, even if it did not correspond to greater energy
consumption for both considered datasets.

Results are encouraging to further investigate the problem by analyzing
datasets from more recent sensors that are not yet publicly available. More-
over, additional analysis of the two energy modalities in the Jetson Nano on
other applications can result in possibly interesting evidence about Edge energy
consumption. Another improvement could be considering a scenario where the
GPU is remoted and the actual computation executed on low-power devices or
single-board computers, as in [24,26].

A GPU Accelerated HSI 3D CNN Classification at Edge with PCA 137

References

1. Ai, Y., Peng, M., Zhang, K.: Edge cloud computing technologies for internet of
things: a primer. Digit. Commun. Netw. 4, 77–86 (2017)

2. Andrecut, M.: Parallel GPU implementation of iterative PCA algorithms. J. Com-
put. Biol. 16(11), 1593–1599 (2009)

3. Armbrust, M., et al.: A view of cloud computing. Commun. ACM 53(4), 50–58
(2010)

4. Audebert, N.: Deephyperx. https://github.com/nshaud/DeepHyperX
5. Audebert, N., Le Saux, B., Lefèvre, S.: Deep learning for classification of hyperspec-

tral data: a comparative review. IEEE Geosci. Remote Sens. Mag. 7(2), 159–173
(2019)

6. Audebert, N., Le Saux, B., Lefèvre, S.: Semantic segmentation of earth observation
data using multimodal and multi-scale deep networks. In: Lai, S.-H., Lepetit, V.,
Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10111, pp. 180–196. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-54181-5 12

7. Ben Hamida, A., Benoit, A., Lambert, P., Ben Amar, C.: 3-D deep learning app-
roach for remote sensing image classification. IEEE Trans. Geosci. Remote Sens.
56(8), 4420–4434 (2018)

8. Chang, C.I.: Hyperspectral Imaging: Techniques for Spectral Detection and Clas-
sification, vol. 1. Springer, Cham (2003)

9. Chen, Y., Jiang, H., Li, C., Jia, X., Ghamisi, P.: Deep feature extraction and clas-
sification of hyperspectral images based on convolutional neural networks. IEEE
Trans. Geosci. Remote Sens. 54(10), 6232–6251 (2016)

10. De Lucia, G., Lapegna, M., Romano, D.: Towards explainable AI for hyperspectral
image classification in edge computing environments. Comput. Electr. Eng. 103,
108381 (2022)

11. Ding, N., Wagner, D., Chen, X., Pathak, A., Hu, Y.C., Rice, A.: Characterizing
and modeling the impact of wireless signal strength on smartphone battery drain.
ACM SIGMETRICS Perform. Eval. Rev. 41(1), 29–40 (2013)

12. Grahn, H., Geladi, P.: Techniques and Applications of Hyperspectral Image Anal-
ysis. John Wiley, Hoboken (2007)

13. Greenberg, A., Hamilton, J., Maltz, D.A., Patel, P.: The cost of a cloud: research
problems in data center networks. SIGCOMM Comput. Commun. Rev. 39(1),
68–73 (2009)

14. Grupo de Inteligencia Computacional (GIC): Hyperspectral dataset. http://www.
ehu.eus/ccwintco/index.php/Hyperspectral Remote Sensing Scenes

15. Ha, K., Chen, Z., Hu, W., Richter, W., Pillai, P., Satyanarayanan, M.: Towards
wearable cognitive assistance. In: Proceedings of the 12th Annual International
Conference on Mobile Systems, Applications, and Services, MobiSys 2014, pp. 68–
81. Association for Computing Machinery, New York (2014)

16. He, M., Li, B., Chen, H.: Multi-scale 3D deep convolutional neural network for
hyperspectral image classification. In: 2017 IEEE International Conference on
Image Processing (ICIP), pp. 3904–3908 (2017)

17. Lapegna, M., Balzano, W., Meyer, N., Romano, D.: Clustering algorithms on low-
power and high-performance devices for edge computing environments. Sensors
21(16), 5395 (2021)

18. Lee, H., Kwon, H.: Going deeper with contextual CNN for hyperspectral image
classification. IEEE Trans. Image Process. 26(10), 4843–4855 (2017)

https://github.com/nshaud/DeepHyperX
https://doi.org/10.1007/978-3-319-54181-5_12
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes

138 G. De Lucia et al.

19. Li, J., Cui, R., Li, B., Li, Y., Mei, S., Du, Q.: Dual 1d–2d spatial-spectral CNN for
hyperspectral image super-resolution. In: IGARSS 2019–2019 IEEE International
Geoscience and Remote Sensing Symposium, pp. 3113–3116 (2019)

20. Li, Y., Zhang, H., Shen, Q.: Spectral-spatial classification of hyperspectral imagery
with 3D convolutional neural network. Remote Sens. 9(1), 67 (2017)

21. Li, Y., Zhang, H., Shen, Q.: Spectral-spatial classification of hyperspectral imagery
with 3D convolutional neural network. Remote Sens. 9(1) (2017)

22. Luo, Y., Zou, J., Yao, C., Zhao, X., Li, T., Bai, G.: HSI-CNN: a novel convolu-
tion neural network for hyperspectral image. In: 2018 International Conference on
Audio, Language and Image Processing (ICALIP), pp. 464–469 (2018)

23. Makantasis, K., Karantzalos, K., Doulamis, A., Doulamis, N.: Deep supervised
learning for hyperspectral data classification through convolutional neural net-
works. In: 2015 IEEE International Geoscience and Remote Sensing Symposium
(IGARSS), pp. 4959–4962. IEEE (2015)

24. Marcellino, L., et al.: Using GPGPU accelerated interpolation algorithms for
marine bathymetry processing with on-premises and cloud based computational
resources. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds.)
PPAM 2017. LNCS, vol. 10778, pp. 14–24. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78054-2 2

25. Marmanis, D., Wegner, J.D., Galliani, S., Schindler, K., Datcu, M., Stilla, U.:
Semantic segmentation of aerial images with an ensemble of CNSS. ISPRS Ann.
Photogrammetry Remote Sens. Spat. Inf. Sci. 2016(3), 473–480 (2016)

26. Montella, R., Giunta, G., Laccetti, G.: Virtualizing high-end GPGPUS on arm
clusters for the next generation of high performance cloud computing. Cluster
Comput. 17(1), 139–152 (2014)

27. Raychaudhuri, D., Nagaraja, K., Venkataramani, A.: Mobilityfirst: a robust and
trustworthy mobility-centric architecture for the future internet. ACM SIGMO-
BILE Mob. Comput. Commun. Rev. 16(3), 2–13 (2012)

28. Rodarmel, C., Shan, J.: Principal component analysis for hyperspectral image clas-
sification. Surv. Land Inf. Syst. 62(2), 115–123 (2002)

29. Romano, D., Lapegna, M.: A GPU-parallel image coregistration algorithm for
InSar processing at the edge. Sensors 21(17), 5916 (2021)

30. Sabins, F.F.: Remote sensing for mineral exploration. Ore Geol. Rev. 14(3–4),
157–183 (1999)

31. Slavkovikj, V., Verstockt, S., De Neve, W., Van Hoecke, S., Van de Walle, R.:
Hyperspectral image classification with convolutional neural networks. In: Pro-
ceedings of the 23rd ACM International Conference on Multimedia, pp. 1159–1162
(2015)

32. Tharwat, A.: Principal component analysis-a tutorial. Int. J. Appl. Pattern Recog-
nit. 3(3), 197–240 (2016)

33. Volpi, M., Tuia, D.: Dense semantic labeling of subdecimeter resolution images with
convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 55(2), 881–893
(2016)

https://doi.org/10.1007/978-3-319-78054-2_2
https://doi.org/10.1007/978-3-319-78054-2_2

Parallel gEUD Models for Accelerated
IMRT Planning on Modern HPC

Platforms

Juan José Moreno1(B), Janusz Miroforidis2, Ignacy Kaliszewski2,
and Gracia Ester Mart́ın Garzón1

1 Informatics Department, ceiA3, University of Almeŕıa, Almeŕıa, Spain
{juanjomoreno,gmartin}@ual.es

2 Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

Abstract. Radiotherapy treatments apply high doses of radiation to
tumorous cells to break the structure of cancer DNA, trying at the same
time to minimize radiation doses absorbed by healthy cells. The person-
alized design of radiotherapy plans has been a relevant challenge since the
beginning of these therapies. A wide set of models have been defined to
translate complex clinical prescriptions into optimization problems. The
model based on the generalized equivalent uniform dose, gEUD, is very
relevant for IMRT radiotherapy planning in clinical practice. This way,
the expert physicists can tune plans near the prescriptions, solving the
optimization problem based on gEUD in a trial-and-error process. The
gradient descent methods can be applied for solving these models per-
sonalized for every patient. However, their computational requirements
are huge. So, to facilitate their use in clinical practice it is necessary to
apply HPC techniques to implement such models. In this work, we have
developed two parallel implementations of an gEUD model for IMRT
planning on multi-core and GPU architectures, as they are increasingly
available in clinical settings. Both implementations are evaluated with
two Head&Neck clinical tumor cases on modern GPU and multi-core
CPU platforms. Our implementations are very useful since they help
expert physicists obtain fast plans that can satisfy all the prescriptions.

Keywords: Radiotherapy Planning · Intensity Modulated Radiation
Therapy (IMRT) · gEUD models · Gradient Descent · GPU
computing · multi-core CPU

1 Introduction

External beam radiation therapies kill the diseased tissue cells with radiation
emitted by a source from outside the body. To achieve this goal, it is necessary to
design personalized RadioTherapy Plans (RTPs) to get specific 3D distribution

This work has been supported by the projects: RTI2018-095993-B-I00 and PID2021-
123278OB-I00 (funded by MCIN/AEI/10.13039/501 100011033/FEDER “A way to
make Europe”); UAL18-TIC-A020-B (funded by Junta de Andalućıa and the European
Regional Development Fund, ERDF).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 139–150, 2023.
https://doi.org/10.1007/978-3-031-30445-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_12&domain=pdf
https://doi.org/10.1007/978-3-031-30445-3_12

140 J. J. Moreno et al.

radiation doses which effectively destroy diseased cells with minimal side effects
on the healthy ones.

IMRT devices deliver beams of radiation to radiated patients from different
angles with varied intensities within a beam. The angles are fixed by the IMRT
equipment. To control the radiation dose deposition each beam is decomposed
in a regular grid of (thousands of) beamlets, whose radiation intensity can be
individually controlled. Every RTP is defined by the specific intensities of all the
beamlets, referred to as a fluence map. This way, the goal is to determine the
fluence maps that deliver doses near the prescriptions on tumors and healthy
tissues. The prescribed doses are defined by the segmentation of the patients’
tomography images composed of millions of voxels. Therefore, the definition of
effective RTPs has been a challenge from the very beginning of the development
of this type of therapy, due to the contradictory aims and the high dimensions of
the involved data [1]. So, intensive efforts have been developed to obtain software
tools which help medical physicists to find the most effective RTPs. Such tools
are based on the definition of optimization models, whose solutions are developed
using high-performance computing (HPC) techniques.

The model based on generalized equivalent uniform dose (gEUD) is very rele-
vant in clinical practice and it is the focus of this work [7,13]. Such model allows
to compute RTPs near to a subset of prescriptions by solving the optimization
problem based on gEUD. It can be solved by gradient methods, as it is proposed
in [2]. These RTPs are used by the medical physicist as an important tool in the
trial-and-error process to design clinical feasible RTPs according to the whole
set of oncologist’s criteria for every patient. The workflow for the personalized
RTP design is complex and the use of fast and accurate tools in such process is
essential.

In contrast, all the main processes related with the design of IMRT planning
have huge computational demands. Consequently, in addition to the design of
efficient algorithms, it is necessary to apply HPC techniques to accelerate and
extend the application of such algorithms. There are many works focused on the
exploitation of the parallelism involved in the RTP design on several platforms,
for example, on multicore and vector units on CPU [14], or on reconfigurable
hardware architectures (FPGAs) [15].

Graphics Processing Units (GPUs) deserve special mention as HPC plat-
forms which can accelerate the computationally intensive tasks in the design
of RTPs, such as tomography reconstruction, high spatial/temporal resolution
image processing, Monte Carlo radiation dose simulations and radiotherapy plan-
ning [3,6,12]. Such computations exhibit massive parallelism which can squeeze
the architecture of GPU platforms. Moreover, currently, GPUs are consolidated
resources which can be integrated into the cloud platforms or servers applied in
clinical practices. The design of RTPs can be strongly accelerated on GPU plat-
forms. However, it is necessary to reprogram the algorithms or even to propose
new methods to better exploit the parallelism of the GPU platforms.

This work aims to develop fast planners based on the main biological criteria,
gEUD, accelerated on GPUs and multicore platforms. The convexity proprieties

Parallel gEUD Models for Accelerated IMRT Planning 141

of the corresponding objective functions allow us to apply gradient methods to
find near-optimal RTPs, as suggested from the definition of gEUD [13]. There-
fore, we have selected the Gradient Descent (GD) method since it is a well-known
optimization method [4,10] which has been already used for solving a penalty-
based quadratic optimization model for IMRT planning on GPU [5].

The main goal of this work is to express the GD for the RTP design based
on gEUD in terms of efficient matrix operations on GPUs and multi-core CPUs
and to develop the corresponding parallel planner, reducing the communications
overload and tuning the memory access performance. As far as we know, such
fast planners are not referred to in the literature, despite the great interest as it
has been motivated above.

The outline of the paper is as follows. Section 2 presents the formulation
of IMRT planning based on gEUD criteria as an optimization problem solved
by the GD method. The main issues related to the efficient GPU and multi-
core CPU implementations are described. In Sect. 3 both implementations of the
planner based on gEUD and GD are evaluated with two clinical cases in terms
of computational performance and accuracy of the planning in relation to the
prescriptions. Section 4 presents directions for further research and conclusions.

2 Formulation of Radiotherapy Planning

Oncological radiotherapy planning is needed when a number (from one to sev-
eral) tumorous cell locations (Planning Target Volumes – PTVs) have to be
radiated to kill the malignant tissue and several healthy organs (Organs at Risk
– OARs) have to be spared as much as possible. Neutral (or normal) tissue (NT)
is also to be spared. PTVs, OARs and NT form a predefined set of Regions of
Interest (ROIs). In the general case, this calls for a multiobjective optimization
setting, but the optimization model based on gEUD translates all goals to one
function to maximize. To facilitate the reading, we introduce Table 1 to define
the notation used.

In the Intensity Modulated Radiotherapy (IMRT) technique the process is
controlled by the intensities of radiating rays (beamlets) to which the field radi-
ated from the head is discretized. There are several (usually more than six)
positions of the radiating head (beams) from which the radiation is delivered to
a patient in one session.

An effective optimization model for IMRT planning is based on the general-
ized equivalent uniform dose (gEUD) using a linear-quadratic cell survival model
[7]. It is possible to define an objective function that not only defines a penalty
factor for every planning constraint but also it expresses the dose uniformity by
the integration of generalized equivalent uniform dose (gEUD) in such a model.
This approach was introduced by [13] where the optimal fluence map is defined
by the argument that maximizes F (x):

maxF (x) (1)

142 J. J. Moreno et al.

Table 1. Notation for the formulation of optimization model based on gEUD

Notation Meaning

M Number of voxels

N Number of beamlets

x Array related to fluence map

D Sparse dose deposition matrix

d(x) = Dx Array of doses for each voxel as function of fluence map x

Ss Array of voxel indices for region s

gEUD0
s Prescribed/constraining dose for region s

T Set of all PTVs

t ∈ T Index of a specific PTV

R Set of all OARs and virtual PTVs

r ∈ R Index of a specific OAR

S Set of all ROIs

s ∈ S Index of a specific ROI structure

with
F (x) =

∏

r∈R

fr(x)
∏

t∈T

ft(x) (2)

and
fr(x) ≡ 1

1 +
(

gEUDr(x)
gEUD0

r

)nr
(3)

ft(x) ≡ 1

1 +
(

gEUD0
t

gEUDt(x)

)nt
(4)

where gEUD0
t is the min desired doses at the PTV with index t and gEUD0

r

is the max dose at the region of index r with constrains doses according to the
prescriptions; the parameters nr, nt indicate the importance of the structure-
specific in the optimization model and its role is similar to a weight or penalty
of such structure. The gEUDr(x) and gEUDt(x) functions are related to a
biological metric which defines the generalized equivalent uniform dose which
gets the same effect than the actual nonuniform dose distribution on the regions
of interest. Such functions are defined by the same relations independently of
the kind of structure with index s:

gEUDs(x) =

⎛

⎝ 1
|Ss|

∑

j∈Ss

dj(x)as

⎞

⎠

1
as

(5)

where |Ss| is the number of voxels of the region s, dj(x) is the element j of
the dose vector related to voxel j in s region for the fluence map, x and it is
computed as the product of deposition matrix and the vector x, d(x) = Dx; and
as is a parameter related to the radiation effect on the specific region s, it can

Parallel gEUD Models for Accelerated IMRT Planning 143

be empirically adjusted by calibration processes. In practice such parameters are
fixed by the values available in the literature for a wide set of organs. In general,
we can say that at (ar) gets large negative (or positive) values.

As described, the proposed model clearly distinguishes between Organs at
Risk (OARs) and Planning Target Volumes (PTVs), defining different objective
functions for each one. Equation 3 controls the maximum (or average maximum,
depending on the value of ar) dose irradiated to a given OAR does not exceed
the respective constraint, while Eq. 4 controls the minimum dose irradiated to a
given PTV.

However, for PTVs, avoiding overdosage inside the volume is also important.
Therefore, is it common to define a new structure for each PTV (commonly
called “Virtual PTV”) which is treated as an OAR. On this work, we have
defined virtual PTVs for each PTV and, to lighten the optimization costs, linked
their parameters. Therefore, for each PTV t, there is a virtual PTV r with
gEUDr

0 = gEUDt
0 + 1, ar = −at and nr = nt. These virtual PTVs are treated

as OARs and included into the R set, so no special treatment or changes to the
algorithm are required.

2.1 Gradient Descent

The objective function F (x) is non-linear and differentiable, so a gradient descent
method can be used to explore possible plans that maximize F (x). To facilitate
the computation of the derivatives, we can transform optimization model bearing
in mind that functions F (x) and lnF (x) share their optimal arguments because
0 < F (x) ≤ 1, ∀x. So, the gradient function to look for the arguments x that
maximize F (x) can be decomposed by the gradients of ln fr(x) and ln ft(x) which
are computed as

∇ ln fr(x) =
−nrfr(x)∑
j∈Sr

dj(x)ar

(
gEUDr(x)
gEUD0

r

)nr

DT

⎛

⎝
Ar

1(x)
· · ·

Ar
M (x)

⎞

⎠ (6)

∇ ln ft(x) =
ntft(x)∑

j∈St
dj(x)at

(
gEUD0

t

gEUDt(x)

)nt

DT

⎛

⎝
At

1(x)
· · ·

At
M (x)

⎞

⎠ (7)

where As
j(x) = dj(x)as−1 if j ∈ Ss and As

j(x) = 0 in other case. This way, Eqs. 6
and 7 are the keys to compute the gradient vector at every x.

Algorithm 1 describes the sequential implementation of the proposed model.
This model does not require a feasible starting fluence map, so it can be ini-
tialized to zero. After the initialization, we start the iterative gradient descent
process, which begins by computing the dose deposition in the patient body.
This sparse matrix – dense vector multiplication is the most computationally
intensive part of the algorithm. Subsequently, for each region, we calculate the
gEUD (lines 4–6) and the region-specific components of Eq. 9 and 12 (lines 7–
12). Afterwards, we calculate the voxel-specific components (lines 13–19). The
resulting partial gradients (one for each ROI) are summed together to obtain a

144 J. J. Moreno et al.

Algorithm 1. Simplified gEUD-based Gradient Descent implementation
1: x ← 0 � Initialize fluence vector to zero
2: while running do
3: d ← D · x � Compute dose deposition from fluence
4: for s ∈ S do � For all ROIs
5: SUMs ← ∑

j∈Ss
das

j

6: gEUDs ←
(

1
|Ss| · ∑

j∈Ss
das

j

) 1
as � Calculate current gEUD value

7: for r ∈ R do � For each OAR
8: fr ← 1

1+

(
gEUDr
gEUD0

r

)nr � OAR objective function (Eq. 3)

9: ∂lnF
∂gEUD r

← −nrfr
gEUDr

·
(

gEUDr

gEUD0
r

)nr

� Common part of Eq. 6

10: for t ∈ T do � For each PTV
11: ft ← 1

1+

(
gEUD0

t
gEUDt

)nt � PTV objective function (Eq. 4)

12: ∂lnF
∂gEUD t

← ntft
gEUDt

·
(

gEUD0
t

gEUDt

)nt

� Common part of Eq. 7

13: for s ∈ S do � For each ROI
14: for i ∈ M do � For each voxel
15: if i ∈ Ss then � If the voxel belongs to the ROI

16: ∂gEUDs
∂di

← gEUDs · d
as−1
i

SUMs
� Voxel-specific part of Eq. 6 and 7

17: V s
i ← ∂gEUDs

∂di
· ∂lnF

∂gEUD s
� From line 16 & 9 (12) for OARs (PTVs)

18: else
19: V s

i ← 0

20: for i ∈ M do � For each voxel
21: Vi ← ∑

s∈S V s
i � Reduce the partial gradients for each ROI

22: ∇x ← DT · V � Find the delta of the fluence for the gradient
23: x ← x + ∇x · step � Move the fluence in the direction of the gradient
24: x ← smooth(x) � Smooth the fluence using a simple convolution kernel

vector of size M , which is multiplied by the transposed Dose Deposition Matrix
D to obtain the delta, which is finally added to the current fluence to move it
in the direction of the gradient.

During the final planning stage, the optimized fluence map is converted
into multileaf collimator movements by leaf-sequencing algorithms. As leaf-
sequencing can drastically change a fluency map, especially in zones with high
inhomogeneity, some precautions must be taken to produce fluences that can
be sequenced with minimal changes. With this objective, we smooth the fluence
using the beams’ geometry and a simple 3×3 convolution kernel. Our experimen-
tation shows that giving 99% of the weight to the center does not substantially
modify the beam shape, while providing enough smoothing so the adjustment
done by leaf-sequencing algorithms is minimal.

In this listing, we do not describe the stopping criteria used by our itera-
tive algorithm, as it depends on the clinical needs, available planning time and

Parallel gEUD Models for Accelerated IMRT Planning 145

computational power. For this work, our implementations stop when all the con-
straints are fulfilled and at least 20000 descent steps have been processed.

The main results of this work are two implementations of the algorithm
previously described: A GPU implementation for high-end systems containing
CUDA-capable devices and multi-core CPU implementation able to run in most
modern computers.

2.2 GPU Implementation

As described in the previous section, the most computationally intensive parts of
this program are the sparse matrix – dense vector multiplications (lines 3 and 22,
Algorithm 1) and the calculation of the gradient contributions from regions at
every voxel (lines 13–19, Algorithm 1). All three of these procedures efficiently
conform to the SIMD execution model used by modern Graphics Processing
Units (GPU).

Therefore, the first implementation provided alongside this work has been
built with the CUDA programming interface [8] to target modern NVIDIA
GPUs. We use the cuSPARSE library (part of the CUDA SDK) for the sparse
matrix multiplications [9] and we have developed several custom kernels to solve
the different parts of the Gradient Descent, always trying to achieve the best
data-level parallelism and performance. Furthermore, in terms of CPU–GPU
memory transfers, this algorithm performs efficiently, as it only requires trans-
ferring the patient data before the iterative process and the final computed
fluence at the end of the program.

2.3 Multi-core Implementation

For situations where CUDA-capable GPUs are not available or heterogeneous
computing platforms are employed (such as modern HPC clusters) we have devel-
oped a second implementation to target Multi-core CPUs. This program uses
the Intel Math Kernel Libraries (MKL) for the sparse matrix operations and
custom OpenMP-accelerated code for the calculation of the gradient of each
ROI. Additionally, we have carried some optimizations to take advantage of the
(usually) bigger memory pools available and to make this implementation more
competitive compared to the GPU one. As an example, both the Dose Deposi-
tion Matrix D and its transpose DT are precalculated and stored in optimized
forms to reduce SpMV computing time.

3 Experimental Results

For the experimentation of this study, we have solved two Head and Neck (H&N)
IMRT cases. Both cases aim to fulfill physician dose prescriptions on PTVs
while keeping the dose in OAR below the physician prescribed maximum (for
serial organs) or average maximum (for parallel organs). Furthermore, to be
able to generate the dose deposition, our optimizer uses a dose deposition model
developed by researchers at the Warsaw University of Technology [11]. Table 2

146 J. J. Moreno et al.

shows the parameters of the two cases. Case 1 has three delineated PTV, while
Case 2 only has two. Although both are treated by the same number of beam
angles, the beam geometry makes Case 2 bigger than Case 1, which is reflected
in the number of nonzero values of the sparse Dose Deposition Matrix.

Table 3 shows the gEUD parameters used by the optimization model. Six
OARs are delineated, including the special “Normal tissue”, defined as a region
of the patient body outside all other OARs and PTVs. Showcasing the ease of use
of the provided implementation, both cases share the same values of as and ns

parameters for the same kind of region (serial OARs, parallel OARs or PTVs).
For each organ, the value of gEUD0

r corresponds to the maximum (or average
maximum) dose allowed by the physician. For PTVs, gEUD0

t is the prescribed
dose in the target volume. PTVs are usually named using their prescribed dose,
defined in Table 3 as x.

Table 2. Plan specifications for each test case.

Parameter Case 1 Case 2

Beam angles 9 9

Beamlets (N) 30265 33911

Voxels (M) 94647 160786

Regions 12 11

D nonzero 64,991,188 106,792,251

PTVs 3 2

PTV0 pr. dose (Gy) 54.0 59.4

PTV1 pr. dose (Gy) 60.0 66.0

PTV2 pr. dose (Gy) 66.0 –

Table 3. gEUD optimization model parameters for both cases.

Region of Interest gEUD Parameters

gEUD0
s as ns

Normal Tissue 74.25 10 5

Mandible 70.00 10 5

Salivary Gland R 26.00 1 5

Salivary Gland L 26.00 1 5

Spinal C. +3mm 50.00 10 5

Brainstem +3mm 60.00 10 5

PTV x x −50 50

Parallel gEUD Models for Accelerated IMRT Planning 147

(a) Case 1 (b) Case 2

Fig. 1. Dose-volume histograms (DVH) of the resulting plans.

Using the model defined in Sect. 2 and the parameters defined above, we ran
the GPU implementation for 30 s (approximately 9000 iterations for Case 1 and
5700 iterations for Case 2), obtaining the plans whose DVHs are exhibited in
Fig. 1. These DVHs prove that both plans achieve good PTV coverage, while
keeping the dose in OARs below the prescribed maximums.

Table 4 displays, in increased detail, statistics and metrics for the different
ROIs. For the PTVs, the minimum or nearly minimum (d98%) dose is expected
to be higher than 95% of the prescribed dose. The maximum or nearly maximum
(d2%) dose is expected to be lower than 107% of the prescribed dose. d98% >
95% means that at least 98% of the PTV’s volume should be covered by 95%
of prescribed doses. d2% < 107% means that only at most 2% of PTV’s volume
can receive a dose higher than 107% of the prescribed dose.

From this table we can swiftly understand the characteristics of the plans.
Firstly, we confirm that, in both plans, all OARs are below the physician pre-
scribed doses. Secondly, for both cases, all PTVs are inside the upper and lower
dose-volume constraints. These results show that simple parameter selection can
achieve good results with the proposed gEUD model. However, per-case fine tun-
ing is still necessary for clinical-grade results.

Furthermore, Fig. 2 displays two sample Beam’s Eye Views from the fluence
maps of the resulting plans. Thanks to the smoothing procedure carried out after
each descend step of the gradient algorithm, these fluence maps can be easily
converted to MLC motions using common leaf-sequencing algorithms.

Finally, the evaluation of both implementations has been carried out
using two compute nodes from the HPC cluster of the “Supercomputación–
Algoritmos” research group at the University of Almeŕıa. The first platform
(alias Zen2) contains two AMD EPYC 7642 (for a total of 96 cores) and 512 GB
of DDR4 3200 MHz MHz RAM. The second platform (alias Volta) contains two
AMD EPYC 7302 (for a total of 32 cores), 512 GB of DDR4 3200 MHz MHz
RAM and one NVIDIA Tesla V100 GPU with 32 GB or VRAM. Both plat-
forms run CentOS 8.2 (OpenHPC 2), MKL 2020.1.217 and CUDA 11.7. As seen

148 J. J. Moreno et al.

Table 4. Statistics and metrics of the two proposed plans. d is the average dose, dmax

is the maximum dose and dx% is a dose-volume metric, where x is a percentage of the
volume.

ROI Parameter (Gy) Constraint Case 1 Case 2

Salivary Gland L. d 26.00 15.10 19.55

Salivary Gland R. d 26.00 17.31 17.26

Spinal C. +3mm dmax 50.00 38.74 49.30

Brainstem +3mm dmax 60.00 28.68 35.73

Mandible dmax 70.00 66.26 67.60

PTV 54 d 54.00 54.45 –

d98% 51.30 53.30 –

d2% 57.78 55.50 –

PTV 60 d 60.00 60.39 –

d98% 57.00 58.60 –

d2% 64.20 62.00 –

PTV 66 d 66.00 66.37 –

d98% 62.70 65.80 –

d2% 70.62 66.80 –

PTV 59.4 d 60.00 – 59.46

d98% 56.43 – 57.50

d2% 63.56 – 61.10

PTV 66 d 66.00 – 66.22

d98% 62.70 – 63.30

d2% 70.62 – 68.20

(a) Case 1 beam 1 (b) Case 2 beam 9

Fig. 2. Representation of two Beam’s Eye Views (BEV).

Parallel gEUD Models for Accelerated IMRT Planning 149

Table 5. Time per iteration (in milliseconds) and acceleration of the sequential, multi-
core and GPU implementations for the two platforms. For the multi-core implementa-
tions, 32 threads have been deployed in both platforms.

Platform Implementation Case 1 Case 2

T (ms) Accel. T (ms) Accel.

Zen2 MKL Sequential 98.8 1.0 × 144.1 1.0 ×
MKL OpenMP 14.0 7.1 × 20.2 7.1 ×

Volta MKL Sequential 105.8 1.0 × 153.8 1.0 ×
MKL OpenMP 14.8 7.1 × 21.1 7.3 ×
CUDA cuSPARSE 3.4 31.1 × 5.3 29.0 ×

in Table 5, both parallel implementations perform well compared to sequential
execution.

4 Conclusions and Future Works

In this work, we have developed two fast implementations of the gEUD model for
IMRT planning, applying specific HPC techniques on two implementations to
efficiently exploit modern multicore CPUs and GPUs. The performance of these
new implementations has been tested with real clinical data of two patients with
Head and Neck tumors on two multi-core CPU platforms and a GPU. On multi-
core CPUs an acceleration factor of 7 × in relation to the sequential version has
been achieved, while on GPU we have achieved accelerations of up to 31 ×.

To conclude, modern HPC platforms can enable experts to generate feasible
IMRT plans in a matter of seconds. As planning time is one of the most impor-
tant clinical constraints, it is very relevant to improve the performance of the
optimizers. Moreover, these HPC implementations allow us to address, as future
work, the combination of this model with additional physical criteria to improve
the quality of the automatically computed RTPs.

Acknowledgements. The authors wish to express their deep gratitude to following
persons: Pawe�l Kuko�lowicz and Anna Zawadzka form Department of Medicine Physics,
Memorial Sk�lodowska-Curie Cancer Center and Institute of Oncology, Warsaw, Poland,
for data acquisition and methodological guidance; Jacek Starzyński, Robert Szmur�lo,
Faculty of Electrical Engineering, Warsaw University of Technology, Warsaw, Poland,
for access to their stand-alone dose deposition calculation software.

150 J. J. Moreno et al.

References

1. Breedveld, S., Craft, D., van Haveren, R., Heijmen, B.: Multi-criteria opti-
mization and decision-making in radiotherapy. Eur. J. Oper. Res. 277(1), 1–
19 (2019). https://doi.org/10.1016/j.ejor.2018.08.019. http://www.sciencedirect.
com/science/article/pii/S0377221718307148

2. Choi, B., Deasy, J.O.: The generalized equivalent uniform dose function as a basis
for intensity-modulated treatment planning. Phys. Med. Biol. 47(20), 3579–3589
(2002). https://doi.org/10.1088/0031-9155/47/20/302

3. Jia, X., Ziegenhein, P., Jiang, S.B.: GPU-based high-performance computing for
radiation therapy. Phys. Med. Biol. 59(4), R151–R182 (2014). https://doi.org/10.
1088/0031-9155/59/4/r151

4. Lemaréchal, C.: Cauchy and the gradient method. Doc. Math. Extra 251(254), 10
(2012)

5. Men, C., et al.: GPU-based ultrafast IMRT plan optimization. Phys. Med. Biol.
54(21), 6565–6573 (2009). https://doi.org/10.1088/0031-9155/54/21/008

6. Neph, R., Ouyang, C., Neylon, J., Yang, Y., Sheng, K.: Parallel beamlet dose cal-
culation via beamlet contexts in a distributed multi-GPU framework. Med. Phys.
46(8), 3719–3733 (2019)

7. Niemierko, A.: Reporting and analyzing dose distributions: a concept of equivalent
uniform dose. Med. Phys. 24(1), 103–110 (1996)

8. NVIDIA: Cuda toolkit documentation v11.2.1 (2021). https://docs.nvidia.com/
cuda/index.html. Accessed 9 Mar 2021

9. NVIDIA: cuSPARSE library (2022). https://docs.nvidia.com/cuda/cusparse/
index.html. Accessed 18 May 2022

10. Snyman, J., Wilke, D.: Practical Mathematical Optimization - Basic Optimization
Theory and Gradient-Based Algorithms. Springer, Cham (2018)

11. Starzyński, J., Szmur�lo, R., Chaber, B., Krawczyk, Z.: Open access system for
radiotherapy planning. In: 2015 16th International Conference on Computational
Problems of Electrical Engineering (CPEE), pp. 204–206 (2015). https://doi.org/
10.1109/CPEE.2015.7333376

12. Tian, Z., et al.: Multi-GPU implementation of a VMAT treatment plan optimiza-
tion algorithm. Med. Phys. 42(6), 2841–2852 (2015)

13. Wu, Q., Mohan, R., Niemierko, A., Schmidt-Ullrich, R.: Optimization of intensity-
modulated radiotherapy plans based on the equivalent uniform dose. Int. J. Radiat.
Oncol. Biol. Phys. 52(1), 224–235 (2002)

14. Ziegenhein, P., Kamerling, C., Fast, M.F., Oelfke, U.: Real-time energy/mass trans-
fer mapping for online 4D dose reconstruction. Sci. Rep. 8(1), 1–10 (2018)

15. Ziegenhein, P., et al.: Towards real time radiotherapy simulation. J. Signal Process.
Syst. 92(9), 949–963 (2020)

https://doi.org/10.1016/j.ejor.2018.08.019
http://www.sciencedirect.com/science/article/pii/S0377221718307148
http://www.sciencedirect.com/science/article/pii/S0377221718307148
https://doi.org/10.1088/0031-9155/47/20/302
https://doi.org/10.1088/0031-9155/59/4/r151
https://doi.org/10.1088/0031-9155/59/4/r151
https://doi.org/10.1088/0031-9155/54/21/008
https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
https://doi.org/10.1109/CPEE.2015.7333376
https://doi.org/10.1109/CPEE.2015.7333376

First Workshop on Quantum
Computing and Communication

On Quantum-Assisted LDPC Decoding
Augmented with Classical Post-processing

Aditya Das Sarma1, Utso Majumder1, Vishnu Vaidya2, M Girish Chandra3(B),
A Anil Kumar3, and Sayantan Pramanik2

1 Jadavpur University, Kolkata, India
2 TCS Incubation, Bengaluru, India

{vaidya.vishnu,sayantan.pramanik}@tcs.com
3 TCS Research, Bengaluru, India

{m.gchandra,achannaanil.kumar}@tcs.com

Abstract. Utilizing present and futuristic Quantum Computers to
solve difficult problems in different domains has become one of the
main endeavors at this moment. Of course, in arriving at the requi-
site solution both quantum and classical computers work in conjunction.
With the continued popularity of Low Density Parity Check (LDPC)
codes and hence their decoding, this paper looks into the latter as a
Quadratic Unconstrained Binary Optimization (QUBO) and utilized
D-Wave 2000Q Quantum Annealer to solve it. The outputs from the
Annealer are classically post-processed using simple minimum distance
decoding to further improve the performance. We evaluated and com-
pared this implementation against the decoding performance obtained
using Simulated Annealing (SA) and belief propagation (BP) decod-
ing with classical computers. The results show that implementations of
annealing (both simulated and quantum) are superior to BP decoding
and suggest that the advantage becomes more prominent as block lengths
increase. Reduced Bit Error Rate (BER) and Frame Error Rate (FER)
are observed for simulated annealing and quantum annealing, at useful
SNR range - a trend that persists for various codeword lengths.

Keywords: LDPC code · Quantum annealing · Simulated annealing ·
Minimum distance decoding · QUBO

1 Introduction

Low Density Parity Check (LDPC) codes are linear block codes originally pro-
posed in the 1960s by Gallager in his seminal doctoral work. The name reflects
the fact that the parity check matrix used in LDPC coding is sparse with low
density of 1s in the matrix. The performance of the LDPC codes approach theo-
retically described capacity limits, and therefore are very powerful. LDPC codes
have established themselves as appropriate candidates for wireless systems based
on multi-antenna multi-carrier transmission. Suitably designed LDPC codes are
also proven to be excellent candidates for Hybrid Automatic Repeat Request

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 153–164, 2023.
https://doi.org/10.1007/978-3-031-30445-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_13&domain=pdf
https://doi.org/10.1007/978-3-031-30445-3_13

154 A. Das Sarma et al.

(HARQ) schemes. The success and the consequent popularity of the LDPC codes
over the years has resulted in support and proposals for its utilization in various
applications and standards. Some examples are DVB-S2 (2nd Generation Digital
Video Broadcasting via Satellite), 5G New Radio (NR) access technology stan-
dards, recent revisions of the 802.11Wi-Fi protocol family and various storage
applications. Practically utilizable codes should constitute certain favourable
properties, especially low encoding and decoding complexities, good waterfall
regions, low error floors and flexibility in the context of getting different rates
and frame lengths. There are various code designs available, starting from the
pseudo-random constructions to sophisticated algebraic and graph-based tech-
niques. See [10,11] and [3] and some of the original references therein for more
details.

Good performance of LDPC codes can be achieved with a proper choice
of code and decoding algorithm. Belief Propagation algorithms, like the Sum-
Product algorithm are widely used in classical LDPC decoding. The Sum-
Product algorithm can be viewed as a message passing algorithm operating
on the Tanner graph, which is a bipartite graph representing the parity check
matrix, and consisting of variable nodes and check (or constraint) nodes. Each
iteration of the algorithm can be divided into two halves. In the first half, mes-
sage is passed from each check node to all adjacent variable nodes and in the
second, from each variable node to its adjacent check nodes. The decoding per-
formance is achieved through multiple iterations of the message passing along
the edges of the graph, until some stopping criterion is reached. In the direc-
tion of reducing the complexity of the (regular) Sum-Product algorithm, many
variants of it have been proposed in the literature, one example being, min-sum
algorithm (see [5,11] and the references there in for details).

Currently, we are in an exciting period in Quantum Technologies. With the
intermediate-scale commercial quantum computers becoming increasingly avail-
able, Quantum Information Processing is witnessing spectacular developments
(see [17,19,20] and the relevant references there in). Before quantum processors
become scalable, capable of error correction and universality [17], the current
and near-term devices, referred to as the Noisy Intermediate-Scale Quantum
(NISQ) [20] devices are getting explored for solving certain hard problems to
achieve significant speedups over the best known classical algorithms. Promising
results are already reported for solutions in the areas like, optimization, machine
learning and chemistry. Apart from speedup considerations, quantum mechani-
cal properties of superposition, entanglement and interference are being explored
for solving problems differently with possible performance improvements. In the
NISQ era, the hybrid quantum-classical processing has established itself as an
essential combination, and this “cooperation” will continue for a long time.

Considering the hardness and complexity of the some of the important prob-
lems in the current and emerging Communication Systems, research efforts have
been under way to explore Quantum Computing paradigms to solve them. Some
references in this direction are [6,13,15–17] and [2], among many others. Need-
less to say, due to the present requirements of Quantum Computers (QCs), like

Quantum-Assisted LDPC Decoding 155

dilution refrigerators to maintain superconducting cooling, the usage of QCs are
targeted to the Centralized Data Centers (Radio Access Networks), see for exam-
ple, [17] and [15]. In this paper, similar to some of the references mentioned in
this paragraph, we would be considering the baseband processing, in particular
the LDPC decoding (in fact, we use [13] as the starting point). The relevance of
LDPC codes in modern wireless networks can be seen in the search for compu-
tationally efficient decoders and their ASIC/FPGA implementations in [13]. As
a futuristic notion, it is also useful to see how Quantum Processing Unit (QPU)
enhanced (or accelerated) processing together with the classical computation
can be worked out to carry out some of the complex and computationally heavy
processing at the data center.

It has been well established for the last few years that QCs can “naturally”
solve the discrete combinatorial optimization problems. Many of these problems
fall under the unifying model of Quadratic Unconstrained Binary Optimization
(QUBO) (see [18]). One of the approaches to finding the solution to a QUBO
formulation is to construct a physical system, typically a set of interacting spin
particles (two-state particles) whose lowest energy state encodes the solution to
the problem, so that solving the problem is equivalent to finding the ground state
of the system. Two main approaches have been identified to find the ground state
of interacting spin systems (quantum optimization) on NISQ processors [17,19]:
Quantum Annealing (QA) and Quantum Approximate Optimization Algorithms
(QAOA) [7]. QA is an approximate or non-ideal implementation of Adiabatic
Quantum Computing, which is an analog quantum computation. QA has been
developed theoretically in the early nineties but realized experimentally in a
programmable device by D-Wave Systems, nearly two decades later. A digitized
version of Quantum Adiabatic Computing leads to QAOA, a gate-circuit based
quantum computing.

In this paper, we have taken up the study of LDPC Decoding using Quantum
Annealers similar to [13]. But, the following novelties are brought in. Keeping
in mind the tandem working of Quantum and Classical computers, we have
attempted to exploit the inherent randomness of the QCs and the outputs or
the results of the runs/shots are subjected to classical postprocessing to arrive
at better inference (in particular, better decoding) performance. In this direc-
tion, instead of just picking up the minimum-energy solution as prevalent in
the Quantum Computing literature, the different outputs are post-processed
using simple minimum distance computation to the received codeword vector to
arrive at the final decoding. This approach sets the direction to consider appro-
priate and more sophisticated post processing for Quantum-Enhanced base-
band processing. We have taken this route to bring out a notion of diversity
emerging from the runs/shots. In fact, different outputs emerging from the
runs/shots are seen as a kind of “diversity”, which to the best of our knowl-
edge are not interpreted this way in the existing literature. Preliminary results
with length 32 and 96 rate half LDPC codes [1] demonstrate the improved per-
formance of the quantum-enhanced decoders, even with these short lengths,
over conventional Sum-Product Algorithm. The paper also spell out certain new

156 A. Das Sarma et al.

Fig. 1. Schematic of the approach

remarks/observations about different formulations considered and is organized
as follows: In Sect. 2, we capture aspects related to classical Sum-Product and
Min-Sum algorithms, QUBO and Annealing (both Simulated and Quantum).
Section 3 provides the details about the Proposed augmented method; results
and the discussions are covered in Sect. 4.

2 Brief Elaboration on Quantum Annealer and QUBO

2.1 D-Wave Quantum Annealer

Quantum Annealing (QA) is a metaheuristic for solving QUBO problems [9]. The
adiabatic theorem of quantum mechanics states that Quantum Annealing, in a
closed system, will find the final ground state encoding the solution, provided the
annealing time is appropriately large compared to the inverse of the energy gap
in quantum ground state. However, this does not guarantee that QA will always
perform better than classical optimization algorithms, as the relative success
of QA depends on the suitability of the optimization landscape to obtain an
quantum advantage. D-Wave provides access to their devices which implement
Quantum Annealing on Quantum hardware, through its cloud access provision
Leap. Here, we are not capturing information on D-Wave Annealers, since nice
documentation/information is available in their website. Also see [8,12].

2.2 QUBO

The concept of a QUBO formulation is fundamental to utilizing a Quantum
Annealer to solve a given optimization problem.

Let f : Bn → R be a quadratic polynomial with qi ∈ B = {0, 1} for 1 ≤ i ≤ n:

fᾱ(x) =
n∑

i=1

i∑

j=1

αijqiqj (1)

Quantum-Assisted LDPC Decoding 157

The QUBO problem then consists of finding q∗ such that:

q∗ = argmin
q∈Bn

fᾱ(q) (2)

The QUBO form of (1) can be written, separating the linear and quadratic terms,
and noting that q2i = qi, and setting αi = αii, as:

fᾱ(q) =
n∑

i=1

αiqi +
n∑

i=1

i∑

j=1

αijqiqj (3)

αi is called the bias of the variable qi, and αij is called the bias/coupling of the
quadratic term qiqj .

Any optimization problem that we wish to solve with the QA, must first be
formulated as a QUBO problem. We discuss the QUBO formulation of LDPC
decoding in the next section.

3 Proposed Approach

The flowchart given in Fig. 1 summarizes the proposed solution approach. In the
following sub-sections requisite details are elaborated.

3.1 Encoding

– To implement the LDPC encoding, we consider a valid parity matrix H and
the corresponding generator matrix G.

– For a randomly generated message m, codeword c corresponding to m is
obtained by multiplying c with the generator matrix G.

mG = c (4)

where the multiplication is mod-2.
– To simulate the effect of the channel on the transmission of the codeword, we

add Additive White Gaussian Noise (AWGN) to the transmitted codeword,
to obtain the received signal r:

r = c + n (5)

where n ∼ NN (0, σI). We can adjust SNR by adjusting the variance σ.

3.2 Decoding

– To decode the received signal r, we first put in place the corresponding QUBO
formulation. The QUBO for r is composed of two parts:

158 A. Das Sarma et al.

Fig. 2. BER, FER vs SNR for different problems

Quantum-Assisted LDPC Decoding 159

1. Distance Metric: Let binary variable qi represent the ith bit of the decoded
codeword. We compute the expectation of qi given the received symbol ri,
as P (qi = 1|ri). For an AWGN Channel with Binary Phase Shift Keying
(BPSK) Modulation, this quantity, as given in [13], is:

Pr(qi = 1|ri) =
1

1 + exp 2ri

σ2

(6)

We expect that the transmitted codeword is “proximal” to the received
signal. Therefore, to find the transmitted codeword, we seek to minimize
the following Distance Metric δ that computes the proximity of a code-
word to the received information:

δ =
n∑

i=1

(qi − Pr(qi = 1|ri))2 (7)

A minimum of (7) is an estimate of the transmitted codeword, computed
with the quantities Pr(qi = 1|ri) alone.

2. Constraint Satisfaction Metric: The LDPC constraints ensure that the
modulo-2 sum at each check node cn is 0. These equality constraints need
to be incorporated into an objective function that can be minimized. We
implement this with the following function. For each check node ci one
can define LDPC satisfier function (see also [7]):

Lsat(ci) = ((Σ∀j:hij=1qj) − 2Le(ci))2 (8)

Through minimization of the above function, we can force the sum at that
check node to be even: that is, force the modulo-2 sum at that node to
zero. Le(ci) is implemented with additional ancillary qubits. Next enters
the Constraint Satisfaction Metric L:

L =
∑

i

Lsat(ci) (9)

Minimizing L would result in the satisfaction of the LDPC constraints at
the check nodes.

Finally, we combine the two components with Langrange weights W1 and W2,
to compose the final QUBO. Minimizing the QUBO in general tends to min-
imize both the composite components. We can prioritize the minimization of
one component over the other with a high choice for the Langrange weight for
that component relative to the other. We have experimented with variations
on W1, keeping W2 fixed at 1.0. The resulting QUBO is:

F = W1δ + W2L (10)

– The QUBO is then passed to the D-Wave annealer. Several samples are col-
lected by running the annealer multiple times.

160 A. Das Sarma et al.

– Valid codewords (codewords that satisfy LDPC constraints) are filtered out
from the samples and then minimum distance decoding is performed with the
received signal to obtain the final decoded codeword.

As can be seen from the above description this QA-based framework doesn’t
require message passing iterations typically used to perform LDPC decoding
with classical BP algorithms. Instead, a Quantum Annealer implemented on
real Quantum hardware “naturally settles” to the optimal state for the QUBO,
thereby performing the LDPC decoding.

4 Results and Discussion

Decoding was performed on LDPC parity matrices of dimensions (32, 16) and
(96, 48), using quantum and simulated annealing, and classical Belief Prop-
agation algorithms (see [1]). Quantum methods provide an inherent mode of
diversity, due to its stochastic nature, giving different outputs for the same r,
for different runs of the experiment. This advantage is not available for classical
BP algorithms, which are deterministic in nature. In other words, for successive
runs of the experiment, using the same r results in different outputs due to the
inherent randomness in quantum information processing. On the other hand, it
is trivial to observe that the same output, and not the “different copies” of infor-
mation related to the transmitted codeword. Of course, this benefit is coming
because of the use of Quantum Computers.

4.1 Results for Fixed SNR Channel

For this scenario, different SNRs are considered for experimentation. For each
SNR, the BER and FER estimate is obtained with 106 Monte Carlo iterations.
The term “fixed” refers to the fact that the SNR remains the same for all these
106 “transmissions”. Elaborating little more, the number of times the quantum
annealer used for a given SNR was the same as that of the number of received
codewords used for assessing the performance, that is 106. Further, the number
of reads per anneal used was 20. Coming to the results, based on the four plots
in Fig. 2, the following observations are evident:

– In the moderate SNR regime, Quantum Annealing (QA) and Simulated
Annealing (SA) perform better than the classical BP.

– At lower SNRs, performance of QA and SA is close to the performance of
classical BP.

– However, a sharp drop is seen in BER, as well as in FER, around 7.5 to 8
dB range for both simulated and quantum annealing. When SNR reaches 10
dB, the noise becomes small enough such that all the methods achieves the
similar BER and FER.

In the limited amount of studies we carried out using two short codewords,
Simulated Annealing performs slightly better than Quantum Annealing. It is to

Quantum-Assisted LDPC Decoding 161

be noted that the QA results are obtained from the actual D-Wave Annealer, and
these realistic machines do have imperfections (“noisy behavior”) at present. Of
course, as remarked earlier, both SA and QA performed better than classical BP.

4.2 Results for Time-Varying SNR

Fig. 3. Variation of SNR with respect to time

In order to simulate a time-varying SNR function and observe how the proposed
approach performs in this case, the following procedure was undertaken and
observations were recorded.

– For each of the 1000 codewords transmitted, the SNR is varied. In our exper-
imentation, the samples have been drawn from the normal distribution with
μ = 5, σ = 2. A realization of the SNR is depicted in Fig. 3

– It is again observed that simulated annealing has the highest fraction of cor-
rect codewords decoded, followed by quantum annealing and classical belief
propagation, as given in Table 1.

In this paper, we have just considered a time-varying SNR to assess the per-
formance of the proposed methodology. In the direction of considering the more

162 A. Das Sarma et al.

Table 1. Fraction of correct codewords for time-varying SNR (for 106 Monte Carlo
instances)

Methods Fraction of correct codewords

Classical Belief Propagation 0.848

Simulated Annealing 0.946

Quantum Annealing 0.902

realistic scenarios, we are in the process of implementing complex-baseband pro-
cessing with the Rayleigh fading channel. The possible modifications to QUBO
formulation for this case is also envisaged.

The results for both fixed and time-varying SNR demonstrated the correct
functionality of the QUBO formulation of the LDPC decoding augmented with
post-processing which exploits the special diversity mentioned. Experimentations
with longer codewords may bring out the beneficial aspects of the proposed
approach compared to classical counterparts. Elaborating further, it is expected
that the Quantum Computers, including the Annealers will only improve in
terms of number of qubits, quality of the qubits, the connectivity between them,
etc. They can then not only accommodate larger-sized problems (for instance,
longer code lengths of practical importance, etc.), but also naturally solve them
with better performance and speed compared to the fully classical counterparts
(both Simulated Annealing and the variants of Sum-Product). Additionally, the
right integration of classical and quantum computing systems may result in
useful energy savings as well [14].

Keeping in mind the number of available qubits with D-Wave Annealers and
hence the corresponding capability of supporting larger number of variables in an
optimization problem, we focused our study in this paper using QA. QUBO prob-
lems can also be solved through Gate Model based Quantum Computing through
different algorithms like QAOA, Variational Quantum Eigensolvers (VQE, see [4]
and the references therein), etc. When futuristic gate-based hardware capable of
running the “good-sized” problems are available, the Decoding problem can be
systematically examined using the Quantum-Classical combination. The notion
of “diversity” suggested in this paper also consider the fact that in Quantum
Computing the probability amplitudes can interfere unlike in classical proba-
bilistic computing. Together with other quantum effects, in principle, one can
see a different potential of Quantum compared to classical; this thread can be
further scrutinized through both theoretical and empirical angles for decoding
as well as other communication signal processing.

5 Conclusion

Classical post-processing assisted quantum annealing is proposed for LDPC
decoding which exploits the stochastic nature of quantum computers to arrive

Quantum-Assisted LDPC Decoding 163

at improved solutions at SNRs of practical relevance, when compared with clas-
sical BP decoding. Unlike classical BP decoding, iterations are not required for
this QA-based approach. The candidate solutions obtained through runs were
post-processed based on minimum distance decoding and this can be extended
to more refined methods. There is plenty of scope for expanding this work which
uses both quantum and classical computations in co-operative manner for dif-
ferent baseband processing techniques.

References

1. https://www.uni-kl.de/channel-codes/channel-codes-database
2. Ahmed, F., Mähönen, P.: Quantum computing for artificial intelligence based

mobile network optimization. In: 2021 IEEE 32nd Annual International Sympo-
sium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1128–
1133 (2021). https://doi.org/10.1109/PIMRC50174.2021.9569339

3. Bae, J.H., Abotabl, A., Lin, H.P., Song, K.B., Lee, J.: An overview of channel
coding for 5G NR cellular communications. APSIPA Trans. Sig. Inf. Process. 8,
e17 (2019). https://doi.org/10.1017/ATSIP.2019.10

4. Bharti, K., et al.: Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys.
94(1), 015004 (2022). https://doi.org/10.1103/revmodphys.94.015004

5. Chandra, M., Harihara, S., Adiga, B., Balamuralidhar, P., Subramanian, P.: Effect
of check node processing on the performance of message passing algorithm in the
context of LDPC decoding for DVB-S2. In: 2005 5th International Conference on
Information Communications Signal Processing, pp. 1369–1373 (2005). https://
doi.org/10.1109/ICICS.2005.1689281

6. Choi, J., Oh, S., Kim, J.: Quantum approximation for wireless scheduling. Appl.
Sci. 10(20), 7116 (2020). https://doi.org/10.3390/app10207116. https://www.
mdpi.com/2076-3417/10/20/7116

7. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algo-
rithm applied to a bounded occurrence constraint problem (2015)

8. Finnila, A.B., Gomez, M., Sebenik, C., Stenson, C., Doll, J.D.: Quantum anneal-
ing: a new method for minimizing multidimensional functions. Chem. Phys. Lett.
219(5–6), 343–348 (1994)

9. Hen, I., Spedalieri, F.M.: Quantum annealing for constrained optimization. Phys.
Rev. Appl. 5(3), 034007 (2016)

10. Janakiram, B., Chandra, M.G., Harihara, S., Adiga, B., Balamuralidhar, P.: On
the usage of projective geometry based LDPC codes for wireless applications. In:
2009 7th International Conference on Information, Communications and Signal
Processing (ICICS), pp. 1–5 (2009). https://doi.org/10.1109/ICICS.2009.5397612

11. Johnson, S.J.: Iterative Error Correction: Turbo, Low-Density Parity-Check
and Repeat-Accumulate Codes. Cambridge University Press, Cambridge (2009).
https://doi.org/10.1017/CBO9780511809354

12. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model.
Phys. Rev. E 58, 5355–5363 (1998). https://doi.org/10.1103/PhysRevE.58.5355

13. Kasi, S., Jamieson, K.: Towards quantum belief propagation for LDPC decoding
in wireless networks. Association for Computing Machinery, New York (2020).
https://doi.org/10.1145/3372224.3419207

https://www.uni-kl.de/channel-codes/channel-codes-database
https://doi.org/10.1109/PIMRC50174.2021.9569339
https://doi.org/10.1017/ATSIP.2019.10
https://doi.org/10.1103/revmodphys.94.015004
https://doi.org/10.1109/ICICS.2005.1689281
https://doi.org/10.1109/ICICS.2005.1689281
https://doi.org/10.3390/app10207116
https://www.mdpi.com/2076-3417/10/20/7116
https://www.mdpi.com/2076-3417/10/20/7116
https://doi.org/10.1109/ICICS.2009.5397612
https://doi.org/10.1017/CBO9780511809354
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1145/3372224.3419207

164 A. Das Sarma et al.

14. Kasi, S., Warburton, P.A., Kaewell, J., Jamieson, K.: A cost and power feasibility
analysis of quantum annealing for NextG cellular wireless networks (2021). https://
doi.org/10.48550/ARXIV.2109.01465. https://arxiv.org/abs/2109.01465

15. Kim, M., Kasi, S., Lott, P.A., Venturelli, D., Kaewell, J., Jamieson, K.: Heuristic
quantum optimization for 6G wireless communications. IEEE Netw. 35(4), 8–15
(2021). https://doi.org/10.1109/MNET.012.2000770

16. Kim, M., Mandrà, S., Venturelli, D., Jamieson, K.: Physics-inspired heuristics for
soft MIMO detection in 5G new radio and beyond, pp. 42–55. Association for Com-
puting Machinery, New York (2021). https://doi.org/10.1145/3447993.3448619

17. Kim, M., Venturelli, D., Jamieson, K.: Leveraging quantum annealing for large
MIMO processing in centralized radio access networks. In: Proceedings of the ACM
Special Interest Group on Data Communication, SIGCOMM 2019, pp. 241–255.
Association for Computing Machinery, New York (2019). https://doi.org/10.1145/
3341302.3342072

18. Kochenberger, G.A., Glover, F.W.: A unified framework for modeling and solv-
ing combinatorial optimization problems: a tutorial. In: Hager, W.W., Huang,
S.J., Pardalos, P.M., Prokopyev, O.A. (eds.) Multiscale Optimization Methods
and Applications. NOIA, vol. 82, pp. 101–124. Springer, Boston (2006). https://
doi.org/10.1007/0-387-29550-X 4

19. Pramanik, S., Chandra, M.G.: Quantum-assisted graph clustering and quadratic
unconstrained D-ary optimisation (2021)

20. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2(79), 10
(2018). https://doi.org/10.22331/q-2018-08-06-79

https://doi.org/10.48550/ARXIV.2109.01465
https://doi.org/10.48550/ARXIV.2109.01465
https://arxiv.org/abs/2109.01465
https://doi.org/10.1109/MNET.012.2000770
https://doi.org/10.1145/3447993.3448619
https://doi.org/10.1145/3341302.3342072
https://doi.org/10.1145/3341302.3342072
https://doi.org/10.1007/0-387-29550-X_4
https://doi.org/10.1007/0-387-29550-X_4
https://doi.org/10.22331/q-2018-08-06-79

Quantum Annealing to Solve
the Unrelated Parallel Machine

Scheduling Problem

Francisco Orts1(B), Antonio M. Puertas2, Ester M. Garzón1,
and Gloria Ortega1

1 Informatics Department, University of Almeŕıa, ceiA3, Almeŕıa, Spain
{francisco.orts,gmartin,gloriaortega}@ual.es

2 Department of Chemistry and Physics, University of Almeŕıa, ceiA3,
Almeŕıa, Spain

apuertas@ual.es

Abstract. Quantum computing has emerged in recent years as an alter-
native to classical computing, which could improve the latter in solv-
ing some types of problems. One of the quantum programming mod-
els, Adiabatic Quantum Computing, has been successfully used to solve
problems such as graph partitioning, traffic routing and task scheduling.
Specifically, in this paper we focus on the scheduling on unrelated par-
allel machines problem. It is a workload-balancing problem where the
processing time of any procedure executed on any of the available pro-
cessing elements is known. Here, the problem is expressed as Quadratic
Unconstrained Binary Optimisation, which can be subsequently solved
using quantum annealers. The quantum nonlinear programming frame-
work discussed in this work consists of three steps: quadratic approxi-
mation of cost function, binary representation of parameter space, and
solving the resulting Quadratic Unconstrained Binary Optimisation. One
of the novelties in tackling this problem has been to compact the model
bearing in mind the repetitions of each task, to make it possible to solve
larger scheduling problems.

Keywords: Adiabatic Quantum Computing · Quadratic
Unconstrained Binary Optimisation · Scheduling on unrelated parallel
machines problem

1 Introduction

Quantum computing takes advantage of the quantum mechanical effects to pro-
cess information. The quantum hardware implements such principles to solve
general computational problems. There are two ways of performing computa-
tional operations on a quantum computer. The most well-known is the approach
based on a quantum circuit model of computation. This approach provides both
a framework for formulating quantum algorithms and an architecture for the
physical construction of quantum computers. This model of computation might
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 165–176, 2023.
https://doi.org/10.1007/978-3-031-30445-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_14&domain=pdf
https://doi.org/10.1007/978-3-031-30445-3_14

166 F. Orts et al.

provide a complete design of quantum computing in the long run, but nowadays
is severely limited by the small number of qubits that make up real quantum
platforms and by the errors introduced by each quantum gate. The other model
relies on the adiabatic theorem.

Adiabatic Quantum Computing (AQC) is focused on the solution of combi-
natorial optimization problems. Although the goal of AQC is particular, it is of
great interest since many of these problems are NP-complete and they are a chal-
lenge for conventional computation when the input problem grows. Moreover,
these problems are involved in a wide set of applications as illustrated in [8]. AQC
can solve such problems efficiently because their solution can be expressed as the
ground state of an Ising Hamiltonian, which evolves in polynomial time [12]. The
Ising Hamiltonian is used to model quadratic unconstrained binary optimization
(QUBO). So, the QUBO problem is formulated to find the minimum of a quadratic
polynomial with unitary variables. The physical realization of AQC are unreach-
able since the non-ideals conditions avoid the adiabatic evolution of the quantum
hardware. Quantum Annealing (QA) is based on the AQC principles but in a flex-
ible sense. Currently the Ising solvers are realized with quantum annealer, such
as the D-Wave platform [7]. Thus, the translation of combinatorial optimization
problems in QUBO models is the key for their QA solution.

Scheduling is one of the active areas of discrete optimization that plays a cru-
cial role in manufacturing and service industries. The scheduling theory has been
a focus of interest by researchers in management science, industrial engineering,
and operations research. Many classical approaches to solve the different types of
scheduling problems can be found in the literature, just to name a few [5,16,17].
In recent years, quantum computing has been postulated as an alternative and
several authors have studied the behavior of these problems on quantum plat-
forms. In [11] authors formulate the uncapacitated task allocation problem as a
QUBO model. The work by Carugno et al. [3] studies the application of quantum
annealing to solve the job shop scheduling problem and compares the solution
quality with various classical solvers. In the present work, we focused our atten-
tion on the unrelated parallel machine problem.

The unrelated parallel machines problem consists of balancing the compu-
tational load among the available (heterogeneous) processing elements, when
the processing time of any procedure executed on any of the available process-
ing elements is ‘a priori’ known. In this work, the scheduling problem is trans-
formed into a QUBO formulation, thereby allowing the use of Ising solvers such
as D-Wave’s quantum annealer. This transformation to QUBO is done by the
quadratic approximation of cost function, binary encoding of the integer vari-
ables, and solving the problem using a quantum annealer.

The main contributions of this work are the following: (1) QUBO model has
been designed and implemented in a real quantum annealer supplied by D-Wave
to solve the unrelated parallel machine scheduling problem; (2) thanks to a tech-
nique based on the use of binary variables for setting the number of repetitions of
every tasks, the number of required qubits has been considerably decreased and
case studies with about 5000 variables have been solved on quantum annealers;

QA to Solve the Unrelated Parallel Machine Scheduling Problem 167

and (3) the proposed methodology can be extended to solve other combinatorial
optimization problems.

The paper has been organized as follows. Section 2 is devoted to describing
the quantum annealing computational model. Section 3 introduces the load bal-
ancing problem addressed in this work. Section 4 shows the QUBO formulation
for the unrelated parallel machine scheduling problem and how it is solved on
the D-wave annealer. In Sect. 5 the obtained results are shown and discussed.
Finally, in Sect. 6 the main conclusions are drawn.

2 Quantum Annealing Computing

The adiabatic theorem assures that if we start at a state of minimum energy of
a simple Hamiltonian and it evolves slowly, it will always remain in the state
of lowest energy, ground state. So, the idea of quantum adiabatic computing
is to select a ground state of a simple Hamiltonian, H0, and make the system
evolve during a time T to the state of minimum energy of the Hamiltonian of
the problem Hp. So, we can define a Hamiltonian as a function of time to model
its temporal evolution:

H(t) = (1 − t

T
)H0 +

t

T
Hp (1)

In practice it is difficult to guarantee the adiabatic conditions, and quantum
annealing s used as a heuristic approach which combines the adiabatic theorem
and the Ising model [13] to build solvers of combinatorial optimization problems.
It consists of:

1. H0 = −∑n
i=1 Yi is defined as initial Hamiltonian where n is the number of

qubits,
2. Hp is defined as the target Ising Hamiltonian,
3. The system evolves from H0 to Hp without adiabatic conditions being guar-

anteed,
4. The final state is measured to compute a possible minimum,
5. The process is repeated several times to compute various approximations of

minima.

We recall that the Ising Hamiltonian defines a model of ferromagnetism in
statistical mechanics with unitary discrete variables, since they represent mag-
netic spins that can be in one of two states. Therefore, QA is useful to solve
combinatorial optimization problems with unitary variables. Moreover the Ising
model can be translated to the QUBO model, which unifies a rich variety of
combinatorial optimization problems [6].

Currently, D-Wave Systems Inc. has developed quantum hardware based on
QA with a large number of qubits. This technology still suffers from limitations
such as resource scarcity and control errors, among others. However, a wide
set of practical optimization applications are being currently adapted to this

168 F. Orts et al.

technology since potentially it offers a huge computational power for solving
large combinatorial optimization problems which are NP-complete.

The next sections are focused on the application of the QA methodology
for solving Unrelated parallel machine scheduling. Therefore, we develop the
steps related to the described methodology: (1) quadratic approximation of cost
function of a compact model, (2) binary representation of the discrete variables,
and (3) solving and testing the resulting QUBO model on the D-wave annealer.

3 Unrelated Parallel Machine Scheduling Problem Using
Quantum Annealing

3.1 Definition of the Unrelated Parallel Machine Scheduling
Problem

The problem of distributing N tasks, of J different types, in M processing units
has been already described in the literature [14]; thus here we only give a short
account. Briefly, the optimal distribution that minimizes the total time to exe-
cute all tasks is sought, namely:

Find: nj,α

to minimize max {Tα}
with Tα =

∑
j nj,αtj,α α = 1, . . . ,M

subject to
∑

α nj,α = xj j = 1, . . . , J

Here {nj,α} is the number of tasks of type j assigned to Processing Unit (PU)
named α, Tα is time needed by PU α to complete all of its tasks, and {tj,α}
is the runtime matrix of all tasks j in all PUs α. The J restrictions (last line)
indicate that all jobs of type j, xj , must be assigned.

The inputs to the problem are the number of PUs, M , the number of tasks of
every type that must be assigned, {xj}, and the runtime matrix, tj,α. Different
strategies have been proposed to solve this problem, and commercial software is
available, such as AMPL [4] and CPLEX [2].

3.2 From Binary Integer Programming (BIP) to QUBO

In order to solve this problem with quantum annealing, it has been reformulated
as a quadratic unconstrained binary optimization (QUBO) problem following
[6]. Let us define the function:

O0 =
∑

α

T 2
α (2)

The summation in O0 is dominated by the largest term, i.e. by max {Tα},
and therefore, minimizing max {Tα} is equivalent to minimizing O0.

The first, brute force, approach to the problem is to consider that all tasks
are different: nj,α becomes then a binary variable, nj,α = 1 if task j is run in PU
α and 0 otherwise, and the restriction now reads

∑
α nj,α = 1 for all j, ensuring

QA to Solve the Unrelated Parallel Machine Scheduling Problem 169

that all tasks are run once. This restriction must be incorporated in the function
to be minimized:

O =
∑

α

T 2
α +

∑

j

Pj

(

1 −
∑

α

nj,α

)2

=
∑

α

⎡

⎣
∑

j

n2
j,αt2j,α + 2

∑

k,l;k �=l

nk,αnl,αtk,αtl,α

⎤

⎦ +
∑

j

Pj

(

1 −
∑

α

nj,α

)2

(3)

where Pj are “large” constants [6], and the expression of Tα has been substituted
in the second line to get an explicit expression. This formulation corresponds to
a QUBO problem, as expected.

This approach, however, requires as many unitary variables as elements in
the matrix nj,α, i.e. tasks to be assigned times the number of PUs, what restricts
importantly the size of the problem that can be studied. To overcome this issue,
we make use of the repetition of jobs for the same task. In this case, nj,α is subject
to the last condition in the problem definition,

∑
α nj,α = xj , and therefore it is

no longer an unitary variable. To continue within the QUBO formulation, it can
be, nevertheless, expressed using unitary variables for the digits in the binary
representation [12]:

nj,α =
B∑

k=0

nj,α,k2k (4)

where B = int [log2(R + 1) + 1], with R = max {xj}; variables nj,α,k are unitary.
Introducing this representation of nj,α in the expression of O0 and the restriction
yields finally:

O =
∑

α

T 2
α +

∑

j

Pj

(

1 −
∑

α

nj,α

)2

=
∑

α

⎡

⎣
∑

j

tj,α

B∑

k=0

nj,α,k2k

⎤

⎦

2

+
∑

j

Pj

(

xj −
∑

α

B∑

k=0

nj,α,k2k

)2

(5)

It can be easily confirmed that this expression corresponds to a QUBO prob-
lem, and allows finding the distribution of J × R tasks in M processing units
using J × B × M unitary variables. Since B ∼ log2 R, this implies an important
reduction in computing resources with respect to the initial formulation, given
by Eq. 3.

4 D-Wave Implementation

This section shows how to formulate the problem to be solved using D-Wave [9,
15,18]. The code has been written in Python.

170 F. Orts et al.

The implementation is oriented to receive, as inputs, the number of PUs, the
number of different tasks, and the number of repetitions for each type of task.
It must also be indicated the maximum possible value of completion time, and
how long each type of task takes on each type of PU. The latter times can be
specified in the form of a matrix, with each row being a type of task, each column
a PU, and thus each element of the matrix represents the necessary time taken
for each possible combination of type of task and PU. An example of how this
can be easily represented is shown in Fig. 1. Based on Sect. 3, it is assumed that
there are no dependencies between tasks and that each PU can only execute a
single task at a time.

Fig. 1. Example of an input file for a problem with 2 PUs, 3 different type of tasks,
and 5 repetitions. Since tasks of the same type share execution times, the time is only
shown once for each type of task.

Following the nomenclature used in the previous section, the following param-
eters have been considered to represent the problem in the code:

– J: is the number of different tasks.
– R: is the number of repetitions.
– M: is the number of PUs.
– j: is the set of different tasks (1, 2, ..., J).
– α: is the set of PUs (1, 2, ...,M).
– tj,α: is the processing duration that PU α needs for tasks of type j.
– V: maximum possible completion time (make-span).

To simplify the problem, all tasks are considered to have the same number of
repetitions R. However, it is easy to modify the code so that each type of task
can be assigned its own number of repetitions. This decision does not limit the
conclusions of our work. These variables have also been used to work with the
model:

QA to Solve the Unrelated Parallel Machine Scheduling Problem 171

– O: is a positive integer variable that defines the completion time (make-span).
– B: is the number of necessary binary digits to represent the number of repe-

titions (Eq. 4).
– {nj,α,k}: is the matrix of the distribution of tasks, where nj,α,k represents

the k-th digit in the binary representation of n : j, α, which stands for the
number of tasks of type j that are assigned to PU α.

We recall that the aim is to minimize the make-span (O, as it is defined in Eq. 3
and Eq. 5). It is important to clarify that V and O are different variables. V is
a value entered by the user and indicates the maximum value allowed for the
make-span (assuming it is possible to solve the problem in that time). O will
contain the make-span found by the software.

According to the model described in the previous section, only one constraint
needs to be established. This constraint is focused on ensuring that each task is
executed only R times:

∑

α

nj,α = R (6)

where R will be 1 if we use the model set out in Eq. 3, or any other natural
number if we work with the model in Eq. 5.

Fig. 2. Example of an output file for the problem shown in Fig. 1. Each row corresponds
to an executed task. The first column assigns a unique id to each task for the sake of
clarity. The following columns, in groups of three, correspond to each PU. For each
task/PU, the type of task, the start time, and its duration are indicated. If the duration
is 0, it is understood that the task has not been executed on that PU.

172 F. Orts et al.

Fig. 3. Example of an output file for the problem shown in Fig. 1. Each row corresponds
to an executed task. This results is the same as the one shown in Fig. 2, but represented
graphically.

D-Wave returns the results using the representation specified in Eq. 4 through
variable n. This matrix is not suitable for quick human interpretation. Therefore,
once the results have been obtained, a further process is carried out to represent
the data in a more readable and tractable format. To this end, the procedure
carried out in Ku et al. [10] has been followed. For each task, the PU on which
it is going to be executed, the start time, and the duration are represented. This
representation is shown in text form (producing an output file with the indicated
information), and also in graphical form. The work of Ku et al. [10] is focused on
the problem called “Job Shop Scheduling”, similar to the one discussed in this
paper but with its own characteristics (tasks composed of subtasks, dependencies
between tasks, etc.). Several implementations based on this problem are avail-
able on the D-Wave website [1]. These implementations include useful routines
to transform the output of the problem into a more user-friendly format. The
adaptation of these data processing routines to the unrelated parallel machine
scheduling problem is simply a matter of Python programming skills. Exam-
ples of the output in text and graphical format can be seen in Figs. 2 and 3,
respectively.

5 Evaluation

The evaluation of the software has been split up in two parts. First, the possible
problem sizes to be addressed are studied using first the model described by
Eq. 3 and second by Eq. 5. The size of each problem depends on the number of
tasks and the number of PUs for the case of Eq. 3, and on the number of different
tasks, the maximum number of repetitions, and the number of PUs for the case
of Eq. 5. Second, the accuracy of the results has been validated.

QA to Solve the Unrelated Parallel Machine Scheduling Problem 173

5.1 Resource Assessment

The D-Wave device on which the software has been tested has 5000 qubits.
According to the CQM model, an integer variable will be dedicated to the make-
span, and J ×M binary variables for the case where all tasks are different (model
described by in Eq. 3). Ideally, the variable-qubit correspondence is direct. This
approach allows us to solve any problem with J different tasks and M PUs as
long as J × M < 5000. That is, if we set a number of PUs M , the number of
possible tasks will be a maximum of 4999/M , and if we set a number of tasks of
J , the maximum number of PUs we can include in the planning will be 4999/J .
However, in practice, some extra qubits are needed for topology reasons, so it
is not possible to use the 5000 qubits in the way described. Table 1 shows the
maximum possible values of each variable as a function of the value of the other.

Table 1. Maximum number of tasks and PUs using 5000 qubits and the model defined
in Eq. 3.

Number of tasks Number of PUs

4 1249

8 624

16 312

32 156

64 78

128 39

256 19

512 9

1024 4

2048 2

For the case where tasks can be grouped by type, an integer variable is still
dedicated for the makespan, but in this case the problem needs J × R × M
binary variables. However, according to Eq. 5, the number of repetitions is being
represented as B = int[log2(R + 1) + 1], so the actual number of variables
will be J × B × M (again, a certain number of qubits must be dedicated to
allow correct transpilation to the topology of the quantum computer). Again,
J × B × M < 5000 must be satisfied, so any combination of J,R and M values
that satisfies this expression is feasible to be solved by the proposed software.
In this case, the introduction of B allows the number of executed tasks to be
greatly increased if they can be grouped into types. Since the representation of
the number of tasks is the one that allows to express larger numbers occupying
fewer qubits, R (B) is the variable that can grow the most, so that if the problem
contains few PUs and types of tasks, it can be solved involving millions of tasks.
This is in contrast to the data shown in Table 1. Table 2 shows an example with

174 F. Orts et al.

16 PUs (M = 16) and 7 types of tasks (J = 7). It can be seen how more than
4.8E + 12 repetitions can be allowed for in each task type. That is, more than
3.3E + 13 tasks can be executed in total). This is much higher than the 300 or
so tasks we could solve with 7 PUs using the former formulation.

Table 2. Number of variables (qubits) used varying R for an example with M = 16
and J = 7. In the quantum device, R is expressed as B = int[log2(R + 1) + 1] so, for
clarity of display, B is also shown. Furthermore, column ‘Executed’ identifies the total
number of executed tasks, calculated by multiplying the number of task types by the
number of repetitions (J ×R).

R B Variables Executed

4 3 336 28

8 4 448 56

16 5 560 112

32 6 672 224

64 7 784 448

128 8 896 896

256 9 1008 1792

512 10 1120 3584

5.72E+5 20 2240 4.00E+6

5.86E+8 30 3360 4.10E+9

6.00E+11 40 4480 4.20E+12

1.20E+12 41 4592 8.40E+12

2.40E+12 42 4704 1.68E+13

4.80E+12 43 4816 3.36E+13

5.2 Validation of Results

To test the accuracy of the software, it has been used to solve more than 50
scheduling random problems by varying J , M , and R and keeping the number
of executed tasks as small as possible. To perform this, a Python script was
developed to generate input files with the corresponding configurations quickly
and easily. This script accepts as input per command J , M , R, the maximum
time that a task can last (we will denote t), and optionally the name of the
output file. The name of the output file is, by default, instance J R M.txt. The
file will be in the format specified by Fig. 1, but naturally adapted to the specific
parameters. The time for each type of task on each PU will be a random value
between 1 and t, both values included.

Once the test files have been obtained, the optimal time for the planning of
the problems they represent has been calculated using AMPL [4] and CPLEX [2].

QA to Solve the Unrelated Parallel Machine Scheduling Problem 175

The optimal value of each problem has been established as the maximum make-
span for the execution of that problem with the proposed software with the aim
of verifying whether it is capable of finding a schedule in that time. A maximum
execution time in D-Wave of 10 seconds has been set. In all tested cases, the
software was able to find a valid schedule in the optimal time. As a simple
test, times shorter than the optimal time have also been tested. In such cases,
the software has correctly indicated that it is not possible to find a task/PU
configuration that solves the problem in the given time.

6 Conclusions

In this work, the scheduling of heterogeneous tasks on unrelated parallel
machines has been solved using quantum annealing. The problem has been
formulated using modularity mathematically and transform it to QUBO. The
results obtained have been compared with classical methods such as CPLEX and
AMPL to demonstrate that the quantum solution is of the same quality as the
based on classical computing. D-Wave platform has been considered to perform
the quantum annealing version of the scheduling of heterogeneous tasks. The
obtained results are very promising since, thanks to the trick of using the binary
representation to indicate the number of repetitions of each task, the number
of qubits needed to represent them is reduced, thus being able to solve larger
problems. Finally, it should be noted that the methodology used in this work
can be applied to other combinatorial optimization problems.

Acknowledgements. This work has been supported by the projects: RTI2018-
095993-B-I00 and PID2021-123278OB-I00 (funded by MCIN/AEI/10.13039/501
100011033/FEDER “A way to make Europe”); P20 00748, UAL2020-TIC-A2101,
UAL18-FQM-B038-A and UAL18-TIC-A020-B (funded by Junta de Andalućıa and
the European Regional Development Fund, ERDF).

Authors would also like to thank Professor Dr. Eĺıas F. Combarro, from the Infor-
matics Department, University of Oviedo, Spain, because this work has been possible
thanks to the contents of his interesting lectures about Quantum Computing at Almeŕıa
University.

References

1. Ocean SDK demos. https://github.com/dwavesystems/demos
2. Bliek, C., Bonami, P., Lodi, A.: Solving mixed-integer quadratic programming

problems with IBM-CPLEX: a progress report. In: Proceedings of the Twenty-
Sixth RAMP Symposium, pp. 16–17 (2014)

3. Carugno, C., Ferrari Dacrema, M., Cremonesi, P.: Evaluating the job shop schedul-
ing problem on a D-Wave quantum annealer. Sci. Rep. 12(1), 1–11 (2022)

4. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL. A Modeling Language for Math-
ematical Programming. Thomson (2003)

5. Gehrke, J.C., Jansen, K., Kraft, S.E.J., Schikowski, J.: A PTAS for scheduling
unrelated machines of few different types. In: Freivalds, R.M., Engels, G., Cata-
nia, B. (eds.) SOFSEM 2016. LNCS, vol. 9587, pp. 290–301. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49192-8 24

https://github.com/dwavesystems/demos
https://doi.org/10.1007/978-3-662-49192-8_24

176 F. Orts et al.

6. Glover, F., Kochenberger, G., Hennig, R., Du, Y.: Quantum bridge analytics I: a
tutorial on formulating and using QUBO models. Ann. Oper. Res. 314, 141–183
(2022). https://doi.org/10.1007/s10479-022-04634-2

7. Grant, E.K., Humble, T.S.: Adiabatic quantum computing and quantum annealing.
Oxford Research Encyclopedia of Physics, July 2020

8. Kochenberger, G., et al.: The unconstrained binary quadratic programming prob-
lem: a survey. J. Comb. Optim. 28(1), 58–81 (2014). https://doi.org/10.1007/
s10878-014-9734-0

9. Koshikawa, A.S., Ohzeki, M., Kadowaki, T., Tanaka, K.: Benchmark test of black-
box optimization using D-Wave quantum annealer. J. Phys. Soc. Jpn. 90(6),
064001 (2021)

10. Ku, W.Y., Beck, J.C.: Mixed integer programming models for job shop scheduling:
a computational analysis. Comput. Oper. Res. 73, 165–173 (2016)

11. Lewis, M., Alidaee, B., Kochenberger, G.: Using xQx to model and solve the unca-
pacitated task allocation problem. Oper. Res. Lett. 33(2), 176–182 (2005)

12. Lucas, A.: Ising formulations of many NP problems. Front. Phys. 2, 5 (2014)
13. Mohseni, N., McMahon, P.L., Byrnes, T.: Ising machines as hardware solvers

of combinatorial optimization problems. Nat. Rev. Phys. 4(6), 363–379 (2022).
https://doi.org/10.1038/s42254-022-00440-8

14. Orts, F., Ortega, G., Puertas, A.M., Garćıa, I., Garzón, E.M.: On solving the unre-
lated parallel machine scheduling problem: active microrheology as a case study.
J. Supercomput. 76(11), 8494–8509 (2020). https://doi.org/10.1007/s11227-019-
03121-z

15. Phillipson, F., Bhatia, H.S.: Portfolio optimisation using the D-Wave quantum
annealer. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra,
J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS, vol. 12747, pp. 45–59. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-77980-1 4

16. Sels, V., Coelho, J., Dias, A., Vanhoucke, M.: Hybrid tabu search and a truncated
branch-and-bound for the unrelated parallel machine scheduling problem. Comput.
Oper. Res. 53, 107–117 (2015)

17. Wang, T., Liu, Z., Chen, Y., Xu, Y., Dai, X.: Load balancing task scheduling
based on genetic algorithm in cloud computing. In: Proceedings of the 2014 IEEE
12th International Conference on Dependable, Autonomic and Secure Computing,
DASC 2014, pp. 146–152. IEEE Computer Society (2014)

18. Willsch, D., et al.: Benchmarking advantage and D-Wave 2000Q quantum annealers
with exact cover problems. Quantum Inf. Process. 21(4), 1–22 (2022). https://doi.
org/10.1007/s11128-022-03476-y

https://doi.org/10.1007/s10479-022-04634-2
https://doi.org/10.1007/s10878-014-9734-0
https://doi.org/10.1007/s10878-014-9734-0
https://doi.org/10.1038/s42254-022-00440-8
https://doi.org/10.1007/s11227-019-03121-z
https://doi.org/10.1007/s11227-019-03121-z
https://doi.org/10.1007/978-3-030-77980-1_4
https://doi.org/10.1007/s11128-022-03476-y
https://doi.org/10.1007/s11128-022-03476-y

Early Experiences with a Photonic
Quantum Simulator for Solving Job Shop

Scheduling Problem

Mateusz Slysz1(B) , Krzysztof Kurowski1 , and Jan Węglarz2

1 Poznań Supercomputing and Networking Center, IBCH PAS, Poznań, Poland
{mslysz,krzysztof.kurowski}@man.poznan.pl

2 Institute of Computing Science Poznań, Poznań University of Technology,
Poznań, Poland

jan.weglarz@put.poznan.pl

Abstract. Quantum computing is a rapidly developing technology
that, in theory, can solve complex computational problems practi-
cally intractable for classical computers. Although the technology offers
promising breakthroughs, it is only in the early stages of development,
and various quantum computer architectures are emerging. One such
new development is the photonic quantum computer. Since the work on
discrete optimization using different quantum computer architectures is
well studied, in this paper, we experiment with solving a toy instance of
the Job-Shop Scheduling problem using a hybrid learning algorithm on a
photonic quantum computer simulator. The promising results, combined
with some highly desirable properties of photonic quantum computers,
show that this new architecture is worth considering for further develop-
ment and investment in the quantum technology landscape.

Keywords: Job Shop Scheduling Problem · Quantum Computing ·
Photonic Quantum Computer

1 Introduction

With the dynamic and rapid development of programmable and scalable pho-
tonic circuits, there is a natural question about potential algorithms and appli-
cation areas for optical quantum computers as near-term quantum devices. This
paper presents our early experiences with a new quantum simulation framework
supporting bosonic sampler capabilities. We use the recent advent of the simu-
lation tool to model and solve a well-known Job Shop Scheduling Problem. The
Job Shop Scheduling Problem (JSSP) is an NP-hard optimization problem in
computer science and operations research. A complete set of solutions for larger
instances of this problem is practically intractable, so typically, solving it requires
using heuristics or local search algorithms. However, even dedicated algorithms
using classical machines have many constraints due to the limited scalability of
computer architectures and their other parameters, such as processor sizes and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 177–186, 2023.
https://doi.org/10.1007/978-3-031-30445-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_15&domain=pdf
http://orcid.org/0000-0003-3124-9899
http://orcid.org/0000-0002-4478-6119
http://orcid.org/0000-0002-2237-3479
https://doi.org/10.1007/978-3-031-30445-3_15

178 M. Slysz et al.

energy consumption. Encouraged by our recent work on using quantum comput-
ers to solve the JSSP problem - in the quantum annealing (QA) model [9], as
well as in the gate-based model using the QAOA algorithm [5], we propose in
this paper yet another approach to verify if and how we can solve it by using
upcoming photonic-based quantum computers.

2 Problem Formulation

2.1 Photonic Quantum Computer

Quantum computers based on photonic technologies bring a number of highly
desirable features, such as scalability, due to parallel developments in classical
photonics - a well-established industrial sector, the ability to perform room-
temperature computing, as well as the possibility of combining into hybrid archi-
tectures, due to the growing field of photonic-based quantum communications.

In this research, we are going to use a photonic quantum computer simula-
tor provided by ORCA Computing [2]. The photonic quantum computer is an
implementation of a computation technique called Boson Sampling [7]. In a few
words, it is based on passing a number of singular photons through a linear opti-
cal system, which consist of parameterized gates. It includes beam-splitters that
create optical path intersections with parameters ϑ determining the transition
probabilities of photons moving along the respective paths, as well as parame-
terized phase-shifters, which change the phase of the photon based on the value
of the parameter ψ. Each time a particle passes through such an intersection,
it generates a quantum superposition. Furthermore, each meeting point of the
paths of two or more photons produces an entangled state. The large number
of potential paths and branches that the particles can travel through gives the
potential to obtain very large entangled states, even for a small number of pho-
tons, which determines the quantum advantage of such a device over classical
simulation. A readout of the result involves sampling the probability distribution
by measuring the number of photons in each of the single photon detectors at
the output of the system.

|ξ (ϑ,ψ)〉 =
∑

n

αn |n1, . . . , nM 〉 (1)

This measurement of the so-called Foch state can be further mapped by a
parity function to a binary tuple x with a corresponding energy function E for
an observable H.

E (ϑ,ψ) = 〈x|H|x〉 (2)

The quantum circuit composed of the parametrized phase-shifters and beam-
splitters acting on the input quantum state can be denoted as a unitary operator
U (ϑ,ψ) and the readout from the circuit can be denoted as (Fig. 1):

〈x|U† (ϑ,ψ)OU (ϑ,ψ)|x〉 . (3)

Solving JSSP on a Photonic Quantum Computer 179

Fig. 1. Boson Sampling based photonic quantum computer architecture [6].

One can derive that this holds true for any observable O in the form of:

O =
M∑

i=1

oiia
†
iai +

M∑

i,j=1

oija
†
iaj (4)

This notation can be easily mapped into a class of quadratic unconstrained
binary optimization (QUBO) problems, which are already well described as a
basic case to solve on other quantum architectures, such as quantum annealers
[4] and gate-based quantum computers [5].

E(x) =
∑

i

Qiixi +
∑

i<j

Qijxixj , (5)

Finding an optimal solution to a QUBO problem is equivalent to minimizing
a classical Ising Hamiltonian, where the minimal energy eigenstate encodes the
solution to the binary optimization problem:

min
x

xTQx, (6)

where the diagonal terms Qii are the linear coefficients and the nonzero off-
diagonal terms Qij are the quadratic coefficients.

2.2 JSSP Formulation

The JSSP formulation we are considering is defined as follows. There are J
jobs J = { j1, . . . , jJ }, each consisting of Oj operations Oj = {Oj1, . . . , OjOj

},
which are supposed to be processed in a predefined order. Each operation Oj,k

has a duration time lj,k and must be processed on a specified machine from a set
of M machines M = {m1, . . . , mM }. A set of operations Oj,k that have to be
executed on the machine mm can be denoted as Im. Each machine can process
at most one operation at a given time.

180 M. Slysz et al.

For the purpose of using the quantum computer as a solver for the JSSP
problem, we need to encode the problem variables to match the QUBO notation.
Inspired by [11] we use the time-indexed JSSP representation. We define binary
variables, which encode the starting times of each operation:

xj,k,t =

{
1 if operation Oj,k starts at time t

0 otherwise
(7)

We can now define a set of constraints for our optimization problem. The
first three are feasibility constraints, ensuring that the JSSP solution does not
break the problem statement. The last constraint is designed to minimize the
total duration of all tasks - referred to as makespan.

– Single-start constraint: Each job should start once and only once.

h1(x) =
J∑

j

Oj∑

k

(
T∑

t

xj,k,t − 1

)2

(8)

This constraint ensures, that each operation from each job has exactly 1
starting time.

– Machine sharing constraint: At a given time no 2 jobs should be running
on the same machine.

h2(x) =
M∑

m

⎛

⎝
∑

j,k,t,j′,k′,t′∈Am∪Bm

xj,k,txj′,k′,t′

⎞

⎠ (9)

where
Am = (j, k, t, j′, k′, t′) : (Oj,k, Oj′,k′) ∈ Im × Im,

(j, k) �= (j′, k′), 0 < t, t′ < T, 0 < t − t′ < ljk

Bm = (j, k, t, j′, k′, t′) : (Oj,k, Oj′,k′) ∈ Im × Im,

(j, k) �= (j′, k′), t = t′, ljk > 0, lj′k′ > 0

The set Am is defined so that the constraint forbids operation Oj,k from start-
ing at t if there is another operation Oj′,k′ still running, and Bm constrains
two operations from starting at the same time.

– Precedence constraint: The precedence of operations within jobs should
be maintained.

h3(x) =
J∑

j

Oj∑

k

∑

t+ljk<t′
xj,k,txj,k+1,t′ (10)

This ensures that no operation with a lower index within the same job starts,
before the previous one has finished.

Solving JSSP on a Photonic Quantum Computer 181

– Minimal makespan constraint: Promotes low-makespan schedules by
putting a penalty on any non-optimal schedule (schedule with finish time
further away from the maximum time Tmax).

h4(x) = (J + 1)

(
Tmax−max

J
{tj,Oj

+lj,Oj
}
)

(11)

Encoding the Q matrix coefficients takes the form of a weighted sum of those
four constraints between certain pairs of x variables.

Q = w1h1(x) + w2h2(x) + w3h3(x) + w4h4(x) (12)

2.3 Hybrid Optimization Algorithm

In a nutshell, to find the optimal solution, represented by the binary vector xopt,
we need to find the optimal set of parameters (ϑ,ψ) of the quantum circuit. To
do so, we use a gradient-based method in a hybrid (classical-quantum) loop.
Parameters of the quantum circuit are initialized randomly. Then, we run the
quantum circuit on a photonic quantum computer (or simulator) and readout
the results. After processing it through a parity function, we can calculate the
corresponding energy value using the Q matrix. Then we can use a gradient-
based model to calculate a new set of parameters. An example loop passing with
sample data for a problem of size seven is schematically shown in Fig. 2.

Fig. 2. Hybrid optimization algorithm loop, consisting of quantum computations and
classical processing and parameter optimization.

182 M. Slysz et al.

3 Experiments

3.1 Problem Instance

For the first part of the experiments, a photonic quantum computer’s sim-
ulator was used to perform an optimization of a toy problem consisting of
3 jobs J = { “cupcakes”, “smoothie”, “lasagna” } and 2 machines M =
{ “mixer”, “oven” }. The complete problem notation also shows execution times
of each operation on a given machine, along with the order of operations within
jobs is given in a dictionary-like format:

{“cupcakes” : [(“mixer”, 2), (“oven”, 1)],
“smoothie” : [(“mixer”, 1)],
“lasagna” : [(“oven”, 2)]},

or in a form of a dependency graph as shown in Fig. 3.

0

O11

O21

O12

O31

∗

0

0

0

2

1

1

2

Fig. 3. Example JSSP instance with 3 jobs, 4 operations and 2 machines. Ojk nodes
denotes k-th operation of job j and colors green and blue correspond to machines mixer
and oven respectively. The numbers on the edges of the graph indicate the processing
times of operations labelling preceding vertices. (Color figure online)

The total number of binary variables (represented by optical modes) is calcu-
lated as the total number of all operations in all jobs (|O|) times the maximum
time constant Tmax, which has been chosen arbitrarily as the problem size. The
only limitation is that Tmax should not be smaller than the optimal time of a
given instance, because if it was, finding a feasible solution would be impossible.
In most cases the optimal time is not known, however, one can estimate it based
on various factors while preprocessing the instance.

Solving JSSP on a Photonic Quantum Computer 183

3.2 Variable Prunning

To reduce the number of variables, we can perform basic pruning by eliminating
variables that, if selected, would generate infeasible solutions. The exclusion of
illegal start times is performed, by removing variables that would cause the job to
finish after the maximum time or start the operation before the earliest possible
time (due to precedence constraints).

For Tmax = 4 the original number of binary values was 16, however, it can
be reduced to 11 after this preliminary preprocessing step as shown in Table 1.

Table 1. Pruning the variables for simple instance with Tmax = 4. Out of initial 16
variables (|O| × Tmax), 5 variables marked in red can be pruned.

Cupcakes - mixer Cupcakes - oven Smoothie - mixer Lasagna - oven
x1,1,0 x1,2,0 x2,1,0 x3,1,0

x1,1,1 x1,2,1 x2,1,1 x3,1,1

x1,1,2 x1,2,2 x2,1,2 x3,1,2

x1,1,3 x1,2,3 x2,1,3 x3,1,3

3.3 Experiments

During performed experiments, we chose Adam Optimization Algorithm for clas-
sical first-order gradient-based optimization [8]. To calculate the gradient, the
parameter-shift rule was used, so that it was sufficient to estimate the function
value 2 times in each iteration. For each parameter update, the quantum circuit
has been executed 1000 times and the results were averaged.

The first batch of experiments was started with equal Q matrix weights:
w1 = 1, w2 = 1, w3 = 1 and w4 = 1. The results were promising, as in most cases
the returned binary vectors with corresponding low energy values. However, they
were not ideal, because many solutions remained infeasible. In order to obtain
the desired results, we proposed and implemented two solutions.

First, we tuned the weights using the grid-search method on the parameters
w1, w2, w3, setting the value of the optimization factor w4 = 1 as a reference
value. The best weights for this problem were found for w1 = 1, w2 = 5, w3 = 2.

Secondly, we added a regularization factor to the objective function. Since
the constraint on the number of variables was often broken, it was natural to
direct the optimizer to the correct solutions using the L2 regularization in which
the number of binary variables equal to 1 should equal the total number of
operations in all jobs.

min
x

xTQx + γ

(
N∑

i

xi − |O|
)2

(13)

184 M. Slysz et al.

Fig. 4. Learning curve for the energy function, while optimizing the parameters with
Adam algorithm.

Fig. 5. Gantt chart showing the optimal solution of the given instance with makespan
T = 3.

The regularization factor was added with an additional weight γ, but for this
experiment it was set to γ = 1 and required no more fine-tuning.

After all these adjustments, the simulator was able to return the binary vec-
tor corresponding to the optimal solution with the makespan Topt = 3. The
learning process is shown in Fig. 4 as a plot of the energy objective function
value changing in subsequent iterations. The different learning curves represent
different approaches to mapping parameters of the quantum simulator into the
binary vector x. We used two different parity functions and two different entan-

Solving JSSP on a Photonic Quantum Computer 185

glement strategies, hence four possible combinations are possible. Each time, out
of the 4 results, the one with the lowest final energy value is chosen as the best
result. The optimal solution for the given instance is shown on the Gantt chart
in Fig. 5.

4 Conclusions

This paper discussed another approach to solving the Job-Shop Scheduling Prob-
lem on a relatively new class of photonic quantum devices. Our approach used
a photonic quantum computer architecture based on the Boson Sampling tech-
nique. Similarly to previous methods using the Quantum Annealing model and
QAOA algorithm on gate-based quantum computers to solve the JSSP problem,
we applied the time-indexed notation, defined a set of constraints, and then for-
mulated a QUBO problem accordingly. Thanks to the QUBO representation,
we successfully performed experiments on a toy JSSP instance with only three
tasks and four operations, finding the optimal solution. We solved the problem
using a photonic quantum computer with classical machine learning techniques
in a hybrid (classical-quantum) loop. Some additional techniques, such as grid-
searching weights and adding regularization factor, were also introduced and
briefly discussed in this paper. Those improvements will be used and applied in
our future research and experiments to solve larger JSSP problem instances.

References

1. Aaronson, S., Arkhipov, A.: The computational complexity of linear optics. In:
Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing,
pp. 333–342 (2011)

2. Bradler, K., Wallner, H.: Certain properties and applications of shallow bosonic cir-
cuits (2021). https://doi.org/10.48550/ARXIV.2112.09766. https://arxiv.org/abs/
2112.09766

3. Clifford, P., Clifford, R.: The classical complexity of boson sampling. In: Proceed-
ings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 146–155. SIAM (2018)

4. D-Wave: Solving problems with quantum samplers. D-Wave System Documenta-
tion. https://docs.dwavesys.com/docs/latest/c_gs_3.html

5. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algo-
rithm (2014). https://doi.org/10.48550/ARXIV.1411.4028. https://arxiv.org/abs/
1411.4028

6. García-Patrón, R., Renema, J.J., Shchesnovich, V.: Simulating boson sampling in
lossy architectures. Quantum 3, 169 (2019)

7. Hamilton, C.S., Kruse, R., Sansoni, L., Barkhofen, S., Silberhorn, C., Jex, I.:
Gaussian boson sampling. Phys. Rev. Lett. 119, 170501 (2017). https://doi.org/
10.1103/PhysRevLett.119.170501, https://link.aps.org/doi/10.1103/PhysRevLett.
119.170501

8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). https://
arxiv.org/abs/1412.6980

https://doi.org/10.48550/ARXIV.2112.09766
https://arxiv.org/abs/2112.09766
https://arxiv.org/abs/2112.09766
https://docs.dwavesys.com/docs/latest/c_gs_3.html
https://doi.org/10.48550/ARXIV.1411.4028
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1411.4028
https://doi.org/10.1103/PhysRevLett.119.170501
https://doi.org/10.1103/PhysRevLett.119.170501
https://link.aps.org/doi/10.1103/PhysRevLett.119.170501
https://link.aps.org/doi/10.1103/PhysRevLett.119.170501
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

186 M. Slysz et al.

9. Kurowski, K., Wȩglarz, J., Subocz, M., Różycki, R., Waligóra, G.: Hybrid Quan-
tum Annealing Heuristic Method for Solving Job Shop Scheduling Problem. In:
Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12142, pp. 502–515.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50433-5_39

10. Pelucchi, E., et al.: The potential and global outlook of integrated photonics for
quantum technologies. Nat. Rev. Phys. 4(3), 194–208 (2022)

11. Venturelli, D., Marchand, D.J.J., Rojo, G.: Quantum annealing implementation of
job-shop scheduling (2015). https://doi.org/10.48550/ARXIV.1506.08479. https://
arxiv.org/abs/1506.08479

12. Zhong, H.S., et al.: Quantum computational advantage using photons. Science
370(6523), 1460–1463 (2020)

https://doi.org/10.1007/978-3-030-50433-5_39
https://doi.org/10.48550/ARXIV.1506.08479
https://arxiv.org/abs/1506.08479
https://arxiv.org/abs/1506.08479

Some Remarks on Super-Gram Operators
for General Bipartite Quantum States

Roman Gielerak and Marek Sawerwain(B)

Institute of Control and Computation Engineering, University of Zielona Góra,
Licealna 9, 65-417 Zielona Góra, Poland

{R.Gielerak,M.Sawerwain}@issi.uz.zgora.pl

Abstract. The Gramian matrices approach to study certain aspects of
quantum entanglement contained in the bipartite pure quantum states
is being extended to the level of a general quantum bipartite states. The
corresponding Gram matrices, called here super-gram matrices are being
constructed over the Hilbert-Schmidt structure build on the Hilbert space
of pure states. The main result is the extension of the widely known
realignment criterion to the level of super-operators.

Keywords: gramians · super-matrices · quantum states · numerical
computations

1 Introduction

Quantum computing (QC) is an area where the model of computation is
expressed by the laws of quantum physics [16]. A recent development of quantum
computing (QC) methods allows us to give many application of a new algorithms
and solutions. The set of quantum algorithms, especially widely known Shor’s
prime factorization algorithm [25], and Grover’s algorithm [6] are supplied with
a new application of QC to machine learning [21,22], methods of classification
[23,26] and neural networks [24]. It is also possible to indicate other area of
applications as security and cryptography especially in block chains theory [3],
where we can found proposal of the usage of quantum methods [5,18]. And also
in the area of clustering methods [13] where quantum solutions are also discussed
[2].

Many applications in general also entail the development of analytical tech-
niques. In work [8] we use the notion of gramians [12] to study certain aspects of
the quantum entanglement in the case of two-partite pure quantum states. Phe-
nomenon of quantum entanglement is of crucial importance in recent research
connected to teleportation protocols [15], routing problem [4], and also in the
future construction of genuine quantum networks [17].

In the present contribution we extend certain results of [8] to the case of
a general bipartite quantum states. From the paper [14] it follows the impor-
tance of the gramian technique for general multipartite entanglement problem.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 187–198, 2023.
https://doi.org/10.1007/978-3-031-30445-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_16&domain=pdf
http://orcid.org/0000-0001-8657-0829
http://orcid.org/0000-0001-8468-2456
https://doi.org/10.1007/978-3-031-30445-3_16

188 R. Gielerak and M. Sawerwain

In particular in the quantum marginal problem which is close to the one of
the basic problem known as the AME-states existence and construction. For an
extensions to the infinite dimensional setting, see [10].

Below we show how to calculate the so-called super-gram matrices (super-
gramians) of a given quantum state for two partite quantum systems. In partic-
ular we discuss how to use super-gramians to formulate some sufficient criterion
for non-separability of a general quantum states. Also we propose some Python
routines (and briefly discuss efficiency of its performance) which can be used
in numerical computations with the use of introduced here super-gramians. For
a more extended exposition of this topic see our recent paper [11].

The material of this chapter is organised as follows. To finish present section
we give introductory material, and outline some basic notation (as Table 1)
which is used in the rest of chapter. Section 2 includes precise definition of super-
gramians connected to bipartite quantum systems. Section 3 is devoted to show
some computational examples related to super-gram matrices notion. A sum-
mary of this chapter is provided in Sect. 4. Acknowledgements and bibliography
sections are final parts of chapter.

Before we start presentation of super-gramians notion for general quantum
states we summarise used notation, symbols, abbreviations and acronyms at
Table 1.

Table 1. Some symbols, notations, sets and functions used in the chapter

Notation Description

d Integer value representing dimensions of vector/matrix
d1 × d2 Dimensions of matrix,
R Set of real numbers
C Set of complex numbers
H Hilbert space
I, IN Identity matrix/operator, identity operator defined in system with N qudits
IA Identity operator defined in subsystem A

A�, A† Conjugation of matrix, hermitian adjoint of matrix
〈−|−〉 Inner product
E(Cd) Set of density matrices on Cd, i.e. ρ ≥ 0 and tr (ρ) = 1

Sep(CdA ⊗ CdB) Set of separable states on CdA ⊗ CdB

∂E(Cd) Set of pure states on Cd

HS(Cd) The Hilbert-Schmidt structure on the space of all d × d matrices Md

||ρ||2HS The Frobenius norm of ρ ∈ Md, i.e. ||ρ||2HS = tr
(
ρ†ρ

)

〈−|−〉HS The canonical Hilbert-Schmidt scalar product in HS(Cd)

ΔA(Q), ΔB(Q) Left and right super-gramians for given Q

1:n Means the sequence of 1, 2, 3, . . . , n
U(d) Group of unitary matrices acting in Cd

Super-Gram Operators for General Bipartite Quantum States 189

2 Two-Partite System Gramians

In this part of chapter we introduce main definitions and some results related to
super-gram matrices.

Let (eA
αβ)αβ , resp. (eB

γη)γη be some HS-orthonormal and complete system
in HS(CdA), resp. in HS(CdB). Then, the system (eA

αβ ⊗ eB
γη)αβ

γη
forms HS-

orthonormal base in HS(CdA) ⊗ HS(CdB).
For any Q ∈ HS(CdA ⊗ CdB) there is decomposition:

Q =
∑

αβ,γη

qαβ|γηeA
αβ ⊗ eB

γη, (1)

where
qαβ|γη = 〈Q|eA

αβ ⊗ eB
γη〉HS and

∑

αβ,γη

|qαβ|γη|2 = ||Q||2HS. (2)

Let us define the following isometries:

JA(Q) : eA
αβ −→ FA

αβ ∈ HS(CdB), (3)

where
FA

αβ =
∑

γη

qαβ|γηeB
γη, (4)

and extended by linearity to the whole space of HS(CdA).
Similarly, we define:

JB(Q) : eB
γη −→ FB

γη ∈ HS(CdA), (5)

where
FB

γη =
∑

αβ

qαβ|γηeA
αβ , (6)

and extended then by linearity on the whole space of HS(CdB).
Both maps:

JA(Q) : HS(CdA) −→ HS(CdB) and JB(Q) : HS(CdB) −→ HS(CdA), (7)

are isometric maps.
For further use we define the following Gram super-matrices:

ΔA(Q) := JA(Q)
† ◦ JA(Q), HS(CdA) −→ HS(CdA), (8)

and
ΔB(Q) := JB(Q)

† ◦ JB(Q), HS(CdB) −→ HS(CdB). (9)

Proposition 1. The Gram super-matrices ΔA(Q) and ΔB(Q) have the follow-
ing properties:

190 R. Gielerak and M. Sawerwain

(i) ΔA(Q) ≥ 0 and ΔB(Q) ≥ 0 i.e. are positive super-matrices and therefore
hermitian.

(ii) Let U(HS(CdA)), resp. U(HS(CdB)) stands for the groups of unitary super-
transformations on the corresponding HS-spaces of matrices. Then:
(1) ∀Ω∈U(HS(CdB))Δ

A(Q) = ΔA((1A ⊗ Ω)(Q)),
(2) ∀Ω∈U(HS(CdA))Δ

B(Q) = ΔB((Ω ⊗ 1B)(Q)).
(iii) ∀ΩA∈U(HS(CdA))

ΩB∈U(HS(CdB))

Δ(Q) = ΔA(Q) ⊗ ΔB(Q) is invariant:

(ΩA ⊗ ΩB)Δ(Q) = Δ(Q). (10)

Proof. Everything follows from the observation that

ΔA(Q)αβ|α′ β′ = 〈FA
α′ β′ |FA

αβ〉HS(CdB), (11)

and
ΔB(Q)γη|γ′ η′ = 〈FB

γ′ η′ |FB
γη〉HS(CdA), (12)

where FA
αβ , resp. FB

γη are given by Eq. (4) and Eq. (6).

Remark 1. The formulas Eq. (8) and Eq. (9) fully justify the name introduced:
“Gram super-matrices” as from these formulas it follows that matrices ΔA and
respectively ΔB are Gram matrices constructed over the space HS(CdA) and
HS(CdB) respectively.

Example 1. Let |Ψ〉 ∈ CdA ⊗CdB and such that ||Ψ || = 1. Then |Ψ〉〈Ψ | ≡ Q(Ψ) ∈
HS(CdA ⊗ CdB). Let us consider the canonical Schmidt decomposition of |Ψ〉:

|Ψ〉 =
min(dA,dB)∑

k=1

τk|ψA
k 〉 ⊗ |θB

k 〉, (13)

where τk ≥ 0,
∑

k τ2
k = 1 and the systems {|ψA

k 〉, k = 1 : dA}, resp. {|θB
k 〉, k =

1 : dB} forms complete orthonormal systems in CdA , resp. in CdB .
Let us form the following system of linear operators:

EA
αβ = |ψα〉〈ψβ | ∈ HS(CdA), α, β = 1 : dA, (14)

and
EB

γη = |θγ〉〈θη| ∈ HS(CdB), γ, η = 1 : dB . (15)

It is not hard to observe that:

(i) (EA
αβ)

† = EA
βα, (EB

γη)
† = EB

ηγ ,
(ii)

∑dA

α=1 EA
αα = IA,

∑dB

γ=1 EB
γγ = IB ,

(iii) 〈EA
αβ |EA

α′ β′ 〉HS(CdA) = δαα′ δγγ′ , 〈EB
γη|EB

γ′ η′ 〉HS(CdB) = δγγ′ δηη′ ,
(iv) the system

{Eαβ|γη = EA
αβ ⊗ EB

γη}, α, β = 1 : dA, γ, η = 1 : dB , (16)

forms a complete, HS-orthonormal system in HS(CdA ⊗ CdB).

Super-Gram Operators for General Bipartite Quantum States 191

From Eq. (13) it follows

|Ψ〉〈Ψ | =
min(dA,dB)∑

α,α′
τατα′ EA

α,α′ ⊗ EB
α,α′ . (17)

Therefore, the A-frame of |Ψ〉〈Ψ | consist of operators

{FA
αα′ = τατα′ EB

αα′ }, (18)

and B-frame of
{FB

γγ′ = τγτγ′ EA
γγ′ }. (19)

From Eq. (18) and Eq. (19) the following results follows.

Proposition 2. Let |Ψ〉 ∈ ∂E(CdA ⊗ CdB), then the corresponding super-
gramians ΔA resp. ΔB of |Ψ〉〈Ψ | are given by the formula (up to the unitary,
local transformations in the local HS-spaces HS(CdA)), and resp. in HS(CdB):

ΔA

(
|Ψ〉〈Ψ |

)

αα′ |ββ′
= τατα′ τβτβ′ δαβδα′ β′ , (20)

and
ΔB

(
|Ψ〉〈Ψ |

)

γη|γ′η′
= τγτητγ′ τη′ δγγ′ δηη′ . (21)

Remark 2. The standard reduced density matrices of the density matrix Q(Ψ) =
|Ψ〉〈Ψ | defined as

QA(Ψ) = trB (Q(Ψ)) , (22)

and respectively
QB(Ψ) = trA (Q(Ψ)) , (23)

are given by

QA(Ψ) =
∑

k

τ2
k |ψA

k 〉〈ψA
k | and QB(Ψ) =

∑

k

τ2
k |θB

k 〉〈θB
k |. (24)

The formulae Eq. (20) and Eq. (21) yields the following formulae for corre-
sponding partial traces of the operator QQ = |Q(Ψ)〉〈Q(Ψ)| acting in the space
HS(HS(CdA) ⊗ HS(CdB)) � HS(HS(CdA)) ⊗ HS(HS(CdB)):

trHS(CdB) (QQ) = ΔA(|Ψ〉〈Ψ |) and trHS(CdA) (QQ) = ΔB(|Ψ〉〈Ψ |). (25)

In the case of a general two-qudit state Q ∈ E(CdA ⊗CdB) the corresponding
super-gram operators are computable with the use of operator Schmidt decom-
position of Q.

192 R. Gielerak and M. Sawerwain

For this goals let Q ∈ HS(CdA ⊗ CdB), then there exists a sequence λ0
α,

α = 1 : dA · dB of non-negative numbers, called in the following the operator
Schmidt coefficients, and such that

∑

α

(λ0
α)

2
= ||Q||2HS(CdA⊗CdB) and Q =

∑

α

λ0
αSA

α ⊗ SB
α , (26)

where {SA
α }, and resp. {SB

β } forms HS-orthonormal and complete system in
HS(CdA), and resp. in HS(CdB).

Defining, for any Q ∈ HS(CdA ⊗ CdB) the following super-projector Q =
|Q〉〈Q| ∈ HS(HS(CdA ⊗ CdB)) and using also Eq. (26) we obtain

Q =
∑

α,β

λ0
αλ0

βS
A
αβ ⊗ SB

αβ , (27)

where
SA

αβ = |SA
α 〉〈SA

β | and SB
αβ = |SB

α 〉〈SB
β |. (28)

From Eq. (27) it follows, that the corresponding to Q super-gramians,
defined as

QA = trHS(CdB) (Q) and QB = trHS(CdA) (Q) , (29)

are given by the following formulas

QA =
∑

α

(λ0
α)

2
SA

αα and QB =
∑

α

(λ0
α)

2
SB

αα. (30)

Thus, we have obtained:

Theorem 1. Let Q ∈ Sep(CdA ⊗CdB) and let (λOp
α) be the sequence of Schmidt

coefficients connected to the Schmidt decomposition of the super operator Q ∈
HS(HS(CdA ⊗ CdB)). Then ∑

α

λOp
α ≤ 1. (31)

Remark 3. Note that values of λOp
α are in general different then those of λ0

α.

Proof. In follows by an elementary argument that:

HS(HS(CdA ⊗ CdB)) = HS(HS(CdA)) ⊗ HS(HS(CdB)). (32)

Therefore, the Hilbert-Schmidt Hilbert space structure on the space of super-
operators i.e. the linear endomorphism of the space HS(CdA ⊗ CdB) is of tensor
product metric structure type.

Let Q ∈ HS(CdA ⊗CdB) be a quantum separable state on CdA ⊗CdB . Then, as
it is well known [7] (see also [19]) that

∑
α λ0

α ≤ 1, where λ0
α are the Schmidt num-

bers of the corresponding operator Schmidt decomposition as given in Eq. (26).

Super-Gram Operators for General Bipartite Quantum States 193

Taking into account formula Eq. (27) it follows the Schmidt numbers of the
corresponding super-operator Q are given by the products λ0

αλ0
β . But,

∑

γ

λOp
γ =

∑

αβ

λ0
αλ0

β =

(
∑

α

λ0
α

)2

≤ 1. (33)

and this concludes the proof.

3 Computational Examples

In this section we will briefly discuss a selected functions supporting the concept
of gram and super-gram matrices (and also gram matrices which already have
been presented in [8]). Newly added functions are part of the EntDetector (ED)
package [9]. We also presents its performance in multithread (with several com-
putational nodes) computational environment. Apart of (super-)gram related
functions, the ED package provides also a set of functions devoted to the entan-
glement detection problem, for pure and mixed quantum states (source code of
ED package is available at [20]).

The Python programming language is a primary tool which is used to
implementation a new set functions to implementation of gramians and super-
gramians. The use of Python allows us to give a simple and uncomplicated API
which can be used directly in Python scripts. Additionally, the use of the NumPy
package enables to utilise available multi-core processors.

To show basic calculations which are necessary to compute left, right grami-
ans we create following state of two qutrits A and B:

|ψ〉 = |0〉A ⊗ |+〉B , (34)

where |+〉B = 1√
3
(|0〉 + |1〉 + |2〉). Using ED package and Python language we

need only a few lines of code (in example state |ψ〉 is represented as variable q)
to create necessary state:

import entdetector as ed
import numpy as np

q0=ed.create_base_state(3, 1, 0)
q1=ed.create_qutrit_plus_state();
q=np.kron(q0, q1)

Calculation of left, right gramian and full gramian can be performed as follows:

dRPrime, dLPrime, dFullGramPrime =
ed.gram_matrices_of_vector_state(q, 3, 3)

The values 3, 3 given in the function argument are the dimensions of the matrix
representing the left and the right gramian. We do not present the form of these

194 R. Gielerak and M. Sawerwain

matrices here, but in [20] there are other examples of source codes presenting
the application of the ED package.

To calculate the super-gram matrices we also need to use only one line of
Python code:

dRSPrime, dLSPrime, dFullSGramPrime =
ed.super_gram_matrices_of_vector_state(q, 3, 3, base=’std’)

The super-gramians calculations function also allows to give a base form. In the
example a standard zero-one base is used. The parameter base can be omitted,
so the standard form of the base will be automatically assumed.

Table 2. Computation times (denoted as Time, values given as seconds) for the super-
gramians for a bipartite system for different values of the d parameter. We use different
NumPy threads number (denoted as Threads). In experiment the Python distribution
from Intel One API 2022.0.22 package is used. The numerical experiments were per-
formed in virtual environment WSL2 for Windows 11 (version 10.0.22000.613), Linux
kernel 5.10.102.1. The calculations are performed on a workstation machine equipped
with Intel Xeon W-2245 3.9 GHZ (base clock) processor and 128 GB of RAM.

d Threads Time d Threads Time d Threads Time

3 1 15.31 s 4 1 141.12 s 5 1 501.19 s
3 2 7.23 s 4 2 62.33 s 5 2 230.67 s
3 4 3.31 s 4 4 29.23 s 5 4 64.21 s
3 8 1.61 s 4 8 7.42 s 5 8 13.83 s

The super-gram matrix dimensionality is bigger than the system for which
it calculated e.g. a system of two qutrits, the vector dimension for the example
state |ψ〉 described by Eq. (34) is 32. The dimension of density matrix is 32 ×
32, but the super-gramian dimension is described as (34) × (34). With such an
increasing dimensionality, it is reasonable to check whether the multithreaded
processing offered by the NumPy package allows to shorten the computation time
of given super-gramians. Theorem 1 of the present chapter decrease significantly
the computational complexity of computations with super-gramians use. Further
remarks about computational complexity will be given later at end of this section.

Based on the state Eq. (34), bipartite registers for qudits and computation
times for their super-gramians were determined. The time results are shown in
Table 2. It is easy to observe that the NumPy package and the given implemen-
tation allow for effective use of available computing cores and shortening the
entire computing process.

In the second numerical experiment we generate bipartite quantum state with
randomly selected values of probability amplitudes and we randomly point one
vector from base of given system:

|ψ〉 =
∑

i

αi|ek〉, (35)

Super-Gram Operators for General Bipartite Quantum States 195

where
∑

i |αi|2 = 1 and ek represents randomly selected vector from given system
(eA

αβ ⊗ eB
γη)αβ

γη
which forms HS-orthonormal base in HS(CdA) ⊗ HS(CdB).

By the use of Theorem 1 the non-separability in a finite given set of quantum
states can be detected. This type of computational task can also be computed
with parallel programming techniques. Computations can be performed using
NumPy threads, but it is necessary to underline that the set of quantum states
can be easily distributed to the other nodes. For this purpose, we use mpi4py
v3.1.3 package [1] (based on MPI protocol) for communication between compu-
tational nodes.

The distribution of cases of separability tests into individual nodes reduces
the computation time. The results as an speedup values related to the number of
nodes are presented in Fig. 1. Numerical experiment for separability tests shows
that increasing the number of nodes shortens the computation time and the
scalability of the computation process is correct.

Fig. 1. The speedup values obtained for a separability criterion for various sizes of the
quantum system described by the Eq. (35), d means the qudit dimension. The comput-
ing system which is used to perform experiment contains sixteen nodes and each one
is built of two quad-core Intel Xeon E5420 2.50 GHZ (base clock) processors and 16
GB of RAM. Each node performs eight computational tasks. The MPI protocol is used
to communicate available computations nodes. The numerical experiments were con-
ducted in the operating system Debian 8.3.0-6, Linux kernel 4.19.235-1. The numerical
values over the bins denotes duration of the experiment in seconds. In the experiment
we generate a set of 1024 state examples for different values of d.

196 R. Gielerak and M. Sawerwain

Since communication is limited only to passing the parameters, e.g. seeds val-
ues to generate pseudo-random numbers to create the state in the form Eq. (35),
therefore the influence of communication on the whole computational process is
not essential.

It should be added that “brute force” approach (i.e. we perform Schmidt
decomposition directly on the super operator Q) to the applications of the sepa-
rability test formulated as Theorem 1 depends heavily on the dimensionality of
super operator Q of examined state Q. Let e.g. Q ∈ E(CdA ⊗CdB) be examined
pure state, then dimensionality of Q is expressed as following product:

dimQ = dA · dB , (36)

where dA, dB are dimension of space for quantum subsystem A and B, e.g. for
two qutrits dimension of the state Q is equal to 3 × 3 = 9. For super operator
Q = |Q〉〈Q| ∈ HS(HS(CdA ⊗ CdB)) dimensionality is calculated as:

dimQ =
(
(dA)2 · (dA)2

)2

·
(
(dB)2 · (dB)2

)2

= (dA)8 · (dB)8. (37)

The proof of Theorem 1 is based on the Schmidt decomposition which a singular
value decomposition (SVD) is used. The general complexity of SVD is denoted
as O(N3), where N represents the leading dimension. Taking into account the
complexity of SVD, then the complexity of computational routine based on The-
orem 1 should be described as:

TThm. 1

(
Q

)
= O

(
(dA)8 · (dB)8

)3

= O

(
(dA)24(dB)24

)
. (38)

The final computational complexity remains exponential due to dimensionality
of quantum subsystems A and B. However, the use of Theorem 1 allows us to
formulate the remark:

Remark 4. The “brute force” complexity (we have assumed dA = dB = d for
simplicity) is described as O(d24). However, taking into account the Theorem 1
and relation in between Schmidt’s coefficients given in Eq. (26) and those given
in Eq. (27) allows us to reduce the computational complexity as:

– for pure state to O(d6),
– for a general quantum states to O(d12).

4 Conclusions

In the article, we have presented a notion of super-gram matrices as an analytic
tool to work with bipartite qubit and qudit systems. We also give some remarks
about implementation of computational functions in Python programming lan-
guage that perform the necessary calculations related to super-gramians.

We introduce also the super-gram matrices notion which are being con-
structed over the Hilbert-Schmidt structure build on the Hilbert space of pure

Super-Gram Operators for General Bipartite Quantum States 197

states. The main results presented in chapter is the extension of the widely
known sufficient criterion for the presence of entanglement known under the
name realignment criterion on the level of super-operators. Several extensions of
results presented in this note are being now under preparations [10]. In particular
extensions the genuine infinite-dimensional systems are included there.

We also show that implementation of the set of function to easier processing
of super-gramians also possesses scalability property which is important when
we process a significant amount of set of quantum states where multicore and
many nodes computational environment can be fully utilised.

Acknowledgments. We would like to thank for useful discussions with the Q-INFO
group at the Institute of Control and Computation Engineering (ISSI) of the University
of Zielona Góra, Poland. We would like also to thank to anonymous referees for useful
comments on the preliminary version of the chapter. The numerical results were done
using the hardware and software available at the “GPU μ-Lab” located at the Institute
of Control and Computation Engineering of the University of Zielona Góra, Poland.

References

1. Dalcin, L., Fang, Y.-L.L.: mpi4py: status update after 12 years of develop-
ment. Comput. Sci. Eng. 23(4), 47–54 (2021). https://doi.org/10.1109/MCSE.
2021.3083216

2. Decheng, F., Jon, S., Pang, C., Dong, W., Won, C.: Improved quantum clustering
analysis based on the weighted distance and its application. Heliyon 4(11), e00984
(2018). https://doi.org/10.1016/j.heliyon.2018.e00984

3. Devidas, S., Subba Rao, Y.V., Rukma Rekha, N.: A decentralized group signature
scheme for privacy protection in a blockchain. Int. J. Appl. Math. Comput. Sci.
31(2), 353–364 (2021). https://doi.org/10.34768/amcs-2021-0024

4. Farahbakhsh, A., Feng, C.: Opportunistic routing in quantum networks. arXiv
preprint (2022). https://doi.org/10.48550/arXiv.2205.08479

5. Faridi, A.R., Masood, F., Shamsan, A.H.T., Luqman, M., Salmony, M.Y.:
Blockchain in the quantum world. Int. J. Adv. Comput. Sci. Appl. 13(1), 542–
552 (2022). https://doi.org/10.14569/IJACSA.2022.0130167

6. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the 28th Annual ACM Symposium on the Theory of Computing
(STOC), pp. 212–219 (1996). https://doi.org/10.1145/237814.237866

7. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entangle-
ment. Rev. Mod. Phys. 81, 865 (2009). https://doi.org/10.1103/RevModPhys.81.
865

8. Gielerak, R., Sawerwain, M.: A Gramian approach to entanglement in bipar-
tite finite dimensional systems: the case of pure states. Quantum Inf. Comput.
20(13&14), 1081–1108 (2020). https://doi.org/10.26421/QIC20.13-1

9. Gielerak, R., Sawerwain, M., Wiśniewska, J., Wróblewski, M.: EntDetector: entan-
glement detecting toolbox for bipartite quantum states. In: Paszynski, M., Kran-
zlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS
2021. LNCS, vol. 12747, pp. 113–126. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-77980-1_9

10. Gielerak, R., Sawerwain, M.: Gramian and super-gramian approach to infinite-
dimensional quantum states. In preparation (2022)

https://doi.org/10.1109/MCSE.2021.3083216
https://doi.org/10.1109/MCSE.2021.3083216
https://doi.org/10.1016/j.heliyon.2018.e00984
https://doi.org/10.34768/amcs-2021-0024
https://doi.org/10.48550/arXiv.2205.08479
https://doi.org/10.14569/IJACSA.2022.0130167
https://doi.org/10.1145/237814.237866
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.26421/QIC20.13-1
https://doi.org/10.1007/978-3-030-77980-1_9
https://doi.org/10.1007/978-3-030-77980-1_9

198 R. Gielerak and M. Sawerwain

11. Gielerak, R., Wiśniewska, J., Sawerwain, M., Wróblewski, M., Korbicz, J.: Classical
computer assisted analysis of small multiqudit systems. IEEE Access 10, 82636–
82655 (2022). https://doi.org/10.1109/ACCESS.2022.3196656

12. Kuptsov, L.P. : Gram matrix entry. In: Hazewinkel, M. (ed.) Encyclopaedia of
Mathematics: Coproduct - Hausdorff - Young Inequalities, p. 861. Springer, New
York (1995). https://doi.org/10.1007/978-1-4899-3795-7

13. Kaliszewska, A., Syga, M.: A comprehensive study of clustering a class of 2D
shapes. Int. J. Appl. Math. Comput. Sci. 32(1), 95–109 (2022). https://doi.org/
10.34768/amcs-2022-0008

14. Klyachko, A.: Quantum marginal problem and representations of the symmetric
group. arXiv preprint (2004). https://doi.org/10.48550/arXiv.quant-ph/0409113

15. Kopszak, P., Mozrzymas, M., Studziński, M., Horodecki, M.: Multiport based tele-
portation - transmission of a large amount of quantum information. Quantum 5,
576 (2021). https://doi.org/10.22331/q-2021-11-11-576

16. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary Edition, 10th edn. Cambridge University Press, Cambridge
(2011)

17. van Meter, R.: Quantum Networking. Wiley, Hoboken (2014). https://doi.org/10.
1002/9781118648919

18. Rajan, D., Visser, M.: Quantum blockchain using entanglement in time. Quantum
Rep. 1(1), 3–11 (2019). https://doi.org/10.3390/quantum1010002

19. Rudolph, O.: Further results on the cross norm criterion for separability. Quantum
Inf. Process. 4, 219–239 (2005). https://doi.org/10.1007/s11128-005-5664-1

20. Sawerwain, M., Wiśniewska, J., Wróblewski, M., Gielerak, R.: GitHub repository
for EntDectector package (2022). https://github.com/qMSUZ/EntDetector

21. Schuld, M., Petruccione, F.: Prospects for near-term quantum machine learning.
In: Supervised Learning with Quantum Computers. QST, pp. 273–279. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96424-9_9

22. Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine
learning. Contemp. Phys. 56(2), 172–185 (2014)

23. Schuld, M., Sinayskiy, I., Petruccione, F.: Quantum computing for pattern classifi-
cation. In: Pham, D.-N., Park, S.-B. (eds.) PRICAI 2014. LNCS (LNAI), vol. 8862,
pp. 208–220. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13560-
1_17

24. da Silva, A.J., Ludermir, T.B., de Oliveira, W.R.: Quantum perceptron over a field
and neural network architecture selection in a quantum computer. Neural Netw.
76, 55–64 (2016). https://doi.org/10.1016/j.neunet.2016.01.002

25. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997).
https://doi.org/10.1137/S0097539795293172

26. Wiebe, N., Kapoor, A., Svore, K.M.: Quantum algorithms for nearest-neighbor
methods for supervised and unsupervised learning. Quantum Inf. Comput.
15(3&4), 318–358 (2015). https://doi.org/10.26421/QIC15.3-4-7

https://doi.org/10.1109/ACCESS.2022.3196656
https://doi.org/10.1007/978-1-4899-3795-7
https://doi.org/10.34768/amcs-2022-0008
https://doi.org/10.34768/amcs-2022-0008
https://doi.org/10.48550/arXiv.quant-ph/0409113
https://doi.org/10.22331/q-2021-11-11-576
https://doi.org/10.1002/9781118648919
https://doi.org/10.1002/9781118648919
https://doi.org/10.3390/quantum1010002
https://doi.org/10.1007/s11128-005-5664-1
https://github.com/qMSUZ/EntDetector
https://doi.org/10.1007/978-3-319-96424-9_9
https://doi.org/10.1007/978-3-319-13560-1_17
https://doi.org/10.1007/978-3-319-13560-1_17
https://doi.org/10.1016/j.neunet.2016.01.002
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.26421/QIC15.3-4-7

Solving the Traveling Salesman Problem
with a Hybrid Quantum-Classical

Feedforward Neural Network

Justyna Zawalska1,2(B) and Katarzyna Rycerz1,2

1 Academic Computer Centre Cyfronet AGH, ul. Nawojki 11, 30-950 Krakow, Poland
justyna.zawalska@cyfronet.pl, kzajac@agh.edu.pl

2 Institute of Computer Science, AGH, al. Mickiewicza 30, 30-059 Krakow, Poland

Abstract. Solving combinatorial optimization problems with the Quan-
tum Approximate Optimization Algorithm (QAOA) is becoming more
and more popular. The performance of the QAOA strongly depends
on the initial parameters and the optimization procedure. This work
presents a benchmark for solving the Traveling Salesman Problem (TSP)
that introduces a hybrid feedforward neural network as the QAOA’s opti-
mization routine. The strength of this method lies in training the opti-
mization procedure on many instances of the problem and using mini-
batch updates of the parameters. Although the learning process is costly,
the advantage of this method is that after the neural network is trained,
it immediately returns optimized parameters for new problem instances.
We present the advantage of our method by evaluating it on two sets
of initial parameters. The experiments demonstrated that the proposed
hybrid quantum-classical feedforward neural network can be successfully
used to solve the TSP.

Keywords: Hybrid quantum-classical feedforward neural network ·
Quantum Approximate Optimization Algorithm · Combinatorial
optimization · The Traveling Salesman Problem

1 Introduction

Current quantum computers are Noisy Intermediate-Scale Quantum (NISQ)
devices [9] therefore their practical use is limited. An answer to this issue is using
hybrid quantum-classical algorithms where a problem is solved using both quan-
tum and classical computational resources. One of the hybrid quantum-classical
algorithms is the Quantum Approximate Optimization Algorithm (QAOA). The
QAOA is mainly used to find approximate solutions for combinatorial optimiza-
tion problems [3]. However, the performance of this algorithm is highly depen-
dent on the classical optimization routine [14].

This work describes an approach of utilizing a hybrid quantum-classical feed-
forward neural network as a QAOA optimizer and presents a benchmark for
optimization that introduces the use of fixed QAOA parameters for all problem
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 199–208, 2023.
https://doi.org/10.1007/978-3-031-30445-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_17&domain=pdf
http://orcid.org/0000-0003-3189-7618
http://orcid.org/0000-0002-8032-7251
https://doi.org/10.1007/978-3-031-30445-3_17

200 J. Zawalska and K. Rycerz

instances. In this study, we focus on solving the Traveling Salesman Problem
(TSP).

The article is organized as follows. Section 2 discusses the related work,
Sect. 3 introduces the necessary theoretical background, and Sect. 4 describes
the method. The experimental setup is outlined in Sect. 5. This is followed by
Sect. 6, which examines the obtained results. Finally, Sect. 7 provides a summary
and future work.

2 Related Work

The exploration of different approaches to the process of updating the QAOA
parameters has started to attract some attention. Several studies have found that
the use of machine learning-inspired techniques [12] or hybrid quantum-classical
machine learning algorithms such as reinforcement learning [5] or recurrent neu-
ral networks [11,13] is beneficial. The QAOA combined with machine learning
methods has been used for solving i.e. MAX-2-SAT [12,13], Graph Bisection
[13], and Max-Cut [5,11] problems.

In [12] the authors employed a greedy search for the QAOA parameters. The
parameter update procedure was learned on the basis of the average response
from a training set of problem instances. The optimization procedure generalized
well to unseen problem instances.

To find an optimization heuristic, the authors of [13] used a gradient-based
technique. They suggested the use of a hybrid quantum-classical Long Short
Term Memory (LSTM) recurrent neural network. The LSTM was proven to be
a successful meta-learner that was able to approach the global optima. Similarly,
the authors of [11] also proposed using an LSTM, however, not as a standalone
optimizer, but as a heuristic for finding good initial QAOA parameters.

In our work, we wanted to verify whether a hybrid feedforward neural network
could find some fixed parameter values that for different problem instances would
yield good result (the phenomenon of parameter concentration has been observed
in the MaxCut problem [1]). Similarly to the work presented in [12], we used
a method that updated the parameters based on the average responses from
the subsets of the training set and returned the parameter values that should
generalize well to new problem instances. In contrast to the work presented in
[11,13] we tested whether a simple neural network that has no feedback loops
could also be useful for the task of finding the correct updates of the parameters.

3 Background

3.1 Traveling Salesman Problem

The TSP is an NP-hard combinatorial optimization problem aimed at deter-
mining the shortest possible route that involves visiting each city exactly once
and returning to the starting city. Let us assume that N is the number of cities,

Solving the TSP with a Hybrid Feedforward Neural Network 201

X = [xi,t]NxN is a Boolean matrix, where xi,t = 1 only if the salesperson vis-
its the city i at the timestamp t, and D = [di,j]NxN is a symmetric matrix of
distances between cities. The cost function can be expressed in the form of a
Quadratic Unconstrained Binary Optimization (QUBO) problem

C(X) = b ·
N−1∑

i,j=0
i�=j

di,j

N−1∑

t=0

xi,txj,t+1

+ a ·
N−1∑

i=0

(1 −
N−1∑

t=0

xi,t)2 + a ·
N−1∑

t=0

(1 −
N−1∑

i=0

xi,t)2,

(1)

where 0 < b· maxi�=j(di,j) < a [7]. The first component of the sum represents the
cost of visiting the cities in a given order, and the last two components are the
constraints that ensure the correctness of the solution. This discrete optimization
problem can be translated into a continuous optimization problem encoded in a
quantum subroutine using the QAOA.

3.2 QAOA

The classical cost function C(X) is translated into the cost Hamiltonian HC . In
addition to the cost Hamiltonian, a mixing Hamiltonian is required. The simplest
mixing Hamiltonian is HM =

∑N
i=1 Xi, where Xi is the Pauli-X gate. The goal

is to find 2p parameters (γ,β) ∈ [0, 2π]p × [0, π]p that minimize the expectation
value

Fp(γ,β) = 〈γ,β| HC |γ,β〉 , (2)

where
|γ,β〉 = e−iβpHM e−iγpHC · · · e−iβ1HM e−iγ1HC |+〉⊗n (3)

(|+〉⊗n is a uniform superposition of n qubits). A quantum device is used to
prepare the quantum state, while a classical device is responsible for evaluating
the expectation value and updating the values of the parameters (γ,β).

4 Method

We wanted to investigate whether it is possible to obtain a hybrid quantum-
classical neural network that, after training on many instances of the TSP, would
yield proper parameters (γ,β) for unseen instances of the TSP. To achieve this
task, we proposed the use of a hybrid feedforward neural network that consisted
of two classical layers: an input layer with a single neuron, a hidden layer with 2p
neurons, and a quantum layer with a parameterized quantum circuit, cf. Fig. 1.
The design of this network was based on the fact that the parameterized quantum
circuit had to receive 2p parameters, so the layer preceding the quantum layer
needed to consist of 2p neurons. When it comes to the classical part of this neural
network, we tested different configurations of the numbers of neurons and layers;

202 J. Zawalska and K. Rycerz

Fig. 1. The quantum layer (in this case the expectation layer) in the hybrid neural
network receives classical values as input. These values are applied to the parameterized
quantum circuit. The measurement result is the outcome of this layer. Both the input
and the output of the quantum layer are classical values.

however, we did not notice any significant improvements compared to this simple
setting.

The training begins with the classical part of the hybrid feedforward network
sending the set of candidate parameters to the parameterized quantum circuit.
The candidate (γ,β) are calculated based on the values of the weights w and
biases b connecting the input layer to the hidden layer

γi = x̂ · w2·i−1 + b2·i−1 and βi = x̂ · w2·i + b2·i for i ∈ {1, . . . , p}, (4)

x̂ is a hyperparameter provided as input, and it indicates the importance of the
weights w. After that, quantum hardware (or a simulator) executes the param-
eterized circuit. The estimated expectation value is the loss function. The task
is to minimize the loss function, so the estimated expectation value is fed back
to the classical part, where the neural network uses a gradient-based optimizer
to update its weights and biases and to suggest a new set of parameters for the
next iteration.

What is interesting in this approach is the method of parameter updates
during the optimization procedure. Instead of updating the parameters after
every training example, we use a mini-batch approach where the parameters are
updated after seeing a subset of training data. As a result, updates based on the
average responses of a subset of problem instances are expected to be a good fit
for other problem instances.

5 Experimental Setup

All experiments were implemented using TensorFlow Quantum [2] and performed
on a quantum computer simulator1.
1 The implementation is available on GitHub https://github.com/jzawalska/

qnn4qaoa.

https://github.com/jzawalska/qnn4qaoa
https://github.com/jzawalska/qnn4qaoa

Solving the TSP with a Hybrid Feedforward Neural Network 203

5.1 Data Preparation and Encoding

The first step was to create a data set consisting of 220 TSP instances by ran-
domly choosing pairs of city coordinates from the range (0, 10000]. Since the
algorithm was executed on a quantum simulator, a feasible example to solve
consisted of four cities (N = 4). The matrix D of distances between cities was
determined as the Euclidean distance between the city coordinates. From the
perspective of optimizing the expectation value, to prevent having very small
and very large distances, we normalized the distances between the cities. Nor-
malization consisted in dividing all the distances by the maximum distance. To
select the weights for the elements of the QUBO cost function (1) we used a grid
search method, which resulted in the following choice of the values: a = 4, b = 1.
Using this equation, we obtained the cost function and then translated it into
the corresponding cost Hamiltonian HC . As a mixing Hamiltonian, we used the
standard version that consists of Pauli-X gates applied on each qubit. Having
the cost and mixing Hamiltonians, we were able to generate the parameterized
quantum circuits that encoded the problem instances.

5.2 Training Phase

As input, the classical part of the network received the initial values of (γ,β)
and the value x̂ corresponding to the importance of the weights of the network.
The quantum part of the network received 200 parameterized quantum circuits
representing the training data set of TSP instances. Training consisted of 20
epochs. The training data has been divided into mini-batches of size 10, so the
parameters (γ,β) were updated 400 times. As a classical optimizer, we used
Adam [6] (learning rate = 0.01, β1 = 0.9, β2 = 0.999, ε = 10−7).

Using the trial-and-error method, it has been observed that if the value of
x̂ is not equal to 0, then it is very hard to find the parameters (γ,β) that
would correctly approximate the cost function. As a result, the neural network’s
weights were ignored and the parameter values corresponded to the values of the
biases (γ1 = b1, β1 = b2, . . . , γp = b2p−1, βp = b2p). The quantum part of this
network was differentiated using the Adjoint method [8] which is very efficient
for simulations. We did not observe overfitting.

Since the network output depended only on the bias values, after training,
we received fixed (universal) parameters (γ,β) that do not rely on the problem
instance. To check the influence of the number of QAOA’s layers, we trained this
hybrid network separately for p ∈ {1, . . . , 10}.

5.3 Testing Phase and Reference Method

We used the test set that contained 20 TSP instances. For p ∈ {1, . . . , 10} we
evaluated each test example by substituting the trained values of the parameters
(γ,β) into the parameterized quantum circuit of the problem. For each test
example, we measured the expectation value and sampled the circuit 216 times

204 J. Zawalska and K. Rycerz

to calculate the number of feasible solutions. The feasible solutions are those that
do not violate the TSP constraints; although, they do not need to be optimal.

As a reference method, we used the same hybrid neural network model. How-
ever, each test example was optimized separately and the mean and standard
deviation were calculated after evaluating the test set with 20 examples. The
initial parameters (γ,β) were updated 400 times for each test case anew. This
choice of the reference method enabled us to discover if using universal param-
eters obtained after the training on a larger number of problems with the use
of mini-batch updates can yield equally good or better parameter values than
optimizing the parameters for each problem instance separately.

6 Results

The QAOA not only is highly dependent on the optimization procedure, but also
on the values of the initial parameters. After performing the experiments with
different versions of the initial parameters, we present a solution with a high
number of correct results and a solution that is trapped in a local minimum but
presents the advantage of the introduced method.

6.1 Solution with High Number of Correct Results

For the initial values γ = (0, 0, . . .), β = (0, 0, . . .) the optimized values of the
parameters for p = 10 are presented in Fig. 2. This set of parameters returned
around 92% feasible solutions for a test 4-city TSP instance.

Fig. 2. Optimized values of γi and βi for the circuit with depth p = 10.

Although we did not observe the pattern of the parameter values resembling
the adiabatic quantum computation process [4] (increasing γ and decreasing β),
the obtained results are promising.

Solving the TSP with a Hybrid Feedforward Neural Network 205

The results indicate that the larger the depth p of the circuit, the lower the
expectation value of the cost function (cf. Table 1) and the greater the num-
ber of correct solutions (cf. Table 2), which is consistent with the theoretical
assumptions.

Table 1. Expectation values for the optimization with initial parameters (γ, β) =
(0, . . . 0, 0, . . . , 0).

p Using universal parameters Reference method

1 17.03± 0.19 17.03± 0.19

2 13.99± 0.24 13.99± 0.24

3 10.42± 0.25 10.42± 0.25

4 9.07± 0.25 9.06± 0.25

5 7.59± 0.28 7.58± 0.28

6 5.55± 0.27 5.55± 0.29

7 4.78± 0.27 4.79± 0.52

8 4.30± 0.27 4.29± 0.26

9 3.61± 0.25 3.61± 0.26

10 3.43± 0.25 3.43± 0.25

The percentage of feasible solutions is based on the measurement of the output
repeated 216 times.

Table 2. Percent of solutions in the feasible space for the optimization with initial
parameters (γ, β) = (0, . . . 0, 0, . . . , 0).

p Using universal parameters Reference method

1 2.34± 0.06 2.34± 0.06

2 5.80± 0.24 5.85± 0.37

3 16.76± 0.53 16.78± 0.50

4 27.00± 0.36 27.05± 0.58

5 48.88± 0.24 48.88± 0.51

6 74.10± 0.38 74.17± 0.55

7 82.06± 0.39 81.90± 2.80

8 86.69± 0.49 86.75± 0.59

9 91.95± 0.56 92.00± 0.48

10 92.84± 0.52 92.95± 0.46

There is no significant difference between the results of using the fixed param-
eters and the results returned by the reference method. It indicates that for a
good guess of initial parameter values the proposed method performs as well as
optimizing TSP instances separately. However, the proposed method is faster.

206 J. Zawalska and K. Rycerz

The parameter values received as a result of the training are fixed and can be
used to solve any 4-city TSP. Obtaining results for a new problem instance
requires only a single evaluation.

6.2 Solution Trapped in a Local Minimum

For the initial values γ = (0.05, 0.15, . . .), β = (1, 1, . . .), the results are worse
compared to starting with all the parameters set to 0. We did not observe a
decrease in the expectation value with increasing circuit depth. Nevertheless, the
use of these initial parameters emphasized the strength of the proposed method.
The parameters obtained after the optimization procedure provided results with
high precision, e.g., for p = 10 using the universal parameters for a test TSP
instance yielded the expectation value 7.28 ± 0.7 and 63.60 ± 3.04% solutions
in feasible space. In contrast, the reference method returned the expectation
value 11.67 ± 3.43 and 31.64 ± 15.30% of solutions in feasible space. Figure 3
and Fig. 4 present the comparison of the results obtained after the evaluation
of the fixed parameters with the reference method for 20 test instances. In the
reference method both the expectation value and the number of solutions in
feasible space have large fluctuations. Using universal parameters returned more
accurate responses on average.

Fig. 3. Estimated expectation value with respect to the QAOA circuit’s depth.

Solving the TSP with a Hybrid Feedforward Neural Network 207

Fig. 4. Percent of correct solutions with respect to the QAOA circuit’s depth.

7 Conclusion and Future Work

To sum up, this work has presented a novel way to update the parameters in the
QAOA with the use of training data and mini-batch updates. The experiments
demonstrated that the proposed hybrid quantum-classical feedforward neural
network can be successfully used to solve the TSP. We have obtained encouraging
results demonstrating that the introduced method is at least equally good as a
simpler optimization method and is faster. Although the learning process is
costly, the advantage of this method is that after the neural network is trained,
it immediately returns optimized parameters for new problem instances.

However, some shortcomings should be considered. First, the results were
not validated on a real quantum device. The effect of noise and decoherence
might significantly affect the results. Also, using this method does not prevent
being trapped in local optima—if initial parameters are far from almost optimal
values, then the optimization process will be unsuccessful.

Future research should consider checking how this method generalizes for
larger TSP instances. Also, applying this method to the TSP with time windows
[10] or other combinatorial optimization problems, such as MaxCut, Max-2-Sat
might provide new insights about the correlations between the nearly optimal
parameters for different problems. It might be beneficial to investigate other
types of hybrid neural networks that could act as an optimizer and be able to
find optimal parameters starting from initial values that are not close to the
optimal values.

Acknowledgement. We would like to thank Dr. Adam Glos for valuable discussion.
This research was supported in part by PLGrid Infrastructure.

208 J. Zawalska and K. Rycerz

References

1. Brandao, F.G.S.L., Broughton, M., Farhi, E., Gutmann, S., Neven, H.: For fixed
control parameters the quantum approximate optimization algorithm’s objective
function value concentrates for typical instances. https://arxiv.org/abs/1812.04170

2. Broughton, M., et al.: TensorFlow quantum: a software framework for quan-
tum machine learning. https://doi.org/10.48550/ARXIV.2003.02989. https://
arxiv.org/abs/2003.02989. Publisher: arXiv Version Number: 2

3. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algo-
rithm. https://arxiv.org/abs/1411.4028

4. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adia-
batic evolution. https://doi.org/10.48550/ARXIV.QUANT-PH/0001106. https://
arxiv.org/abs/quant-ph/0001106. Publisher: arXiv Version Number: 1

5. Khairy, S., Shaydulin, R., Cincio, L., Alexeev, Y., Balaprakash, P.: Learning to
optimize variational quantum circuits to solve combinatorial problems, vol. 34,
no. 3, pp. 2367–2375. https://doi.org/10.1609/aaai.v34i03.5616. https://arxiv.org/
abs/1911.11071

6. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. https://
doi.org/10.48550/ARXIV.1412.6980. https://arxiv.org/abs/1412.6980. Publisher:
arXiv Version Number: 9

7. Lucas, A.: Ising formulations of many NP problems 2. https://doi.org/10.3389/
fphy.2014.00005. https://journal.frontiersin.org/article/10.3389/fphy.2014.00005/
abstract

8. Luo, X.Z., Liu, J.G., Zhang, P., Wang, L.: Yao.jl: extensible, efficient framework for
quantum algorithm design. https://doi.org/10.48550/ARXIV.1912.10877. https://
arxiv.org/abs/1912.10877. Publisher: arXiv Version Number: 3

9. Preskill, J.: Quantum computing in the NISQ era and beyond. https://doi.org/
10.48550/ARXIV.1801.00862. https://arxiv.org/abs/1801.00862. Publisher: arXiv
Version Number: 3

10. Salehi, O., Glos, A., Miszczak, J.A.: Unconstrained binary models of the trav-
elling salesman problem variants for quantum optimization. Quantum Inf. Pro-
cess. 21(2), 67 (2022). https://doi.org/10.1007/s11128-021-03405-5. https://link.
springer.com/10.1007/s11128-021-03405-5

11. Verdon, G., et al.: Learning to learn with quantum neural networks via classical
neural networks. https://arxiv.org/abs/1907.05415

12. Wecker, D., Hastings, M.B., Troyer, M.: Training a quantum optimizer. Phys. Rev.
A 94(2), 022309 (2016). https://doi.org/10.1103/PhysRevA.94.022309. https://
arxiv.org/abs/1605.05370

13. Wilson, M., Stromswold, R., Wudarski, F., Hadfield, S., Tubman, N.M., Rief-
fel, E.G.: Optimizing quantum heuristics with meta-learning. Quantum Mach.
Intell. 3(1), 13 (2021). https://doi.org/10.1007/s42484-020-00022-w. https://link.
springer.com/10.1007/s42484-020-00022-w

14. Zhou, L., Wang, S.T., Choi, S., Pichler, H., Lukin, M.D.: Quantum approxi-
mate optimization algorithm: performance, mechanism, and implementation on
near-term devices. Phys. Rev. X 10(2), 021067 (2020). https://doi.org/10.1103/
PhysRevX.10.021067. https://arxiv.org/abs/1812.01041

https://arxiv.org/abs/1812.04170
https://doi.org/10.48550/ARXIV.2003.02989
https://arxiv.org/abs/2003.02989
https://arxiv.org/abs/2003.02989
https://arxiv.org/abs/1411.4028
https://doi.org/10.48550/ARXIV.QUANT-PH/0001106
https://arxiv.org/abs/quant-ph/0001106
https://arxiv.org/abs/quant-ph/0001106
https://doi.org/10.1609/aaai.v34i03.5616
https://arxiv.org/abs/1911.11071
https://arxiv.org/abs/1911.11071
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.3389/fphy.2014.00005
https://journal.frontiersin.org/article/10.3389/fphy.2014.00005/abstract
https://journal.frontiersin.org/article/10.3389/fphy.2014.00005/abstract
https://doi.org/10.48550/ARXIV.1912.10877
https://arxiv.org/abs/1912.10877
https://arxiv.org/abs/1912.10877
https://doi.org/10.48550/ARXIV.1801.00862
https://doi.org/10.48550/ARXIV.1801.00862
https://arxiv.org/abs/1801.00862
https://doi.org/10.1007/s11128-021-03405-5
https://springerlink.bibliotecabuap.elogim.com/10.1007/s11128-021-03405-5
https://springerlink.bibliotecabuap.elogim.com/10.1007/s11128-021-03405-5
https://arxiv.org/abs/1907.05415
https://doi.org/10.1103/PhysRevA.94.022309
https://arxiv.org/abs/1605.05370
https://arxiv.org/abs/1605.05370
https://doi.org/10.1007/s42484-020-00022-w
https://springerlink.bibliotecabuap.elogim.com/10.1007/s42484-020-00022-w
https://springerlink.bibliotecabuap.elogim.com/10.1007/s42484-020-00022-w
https://doi.org/10.1103/PhysRevX.10.021067
https://doi.org/10.1103/PhysRevX.10.021067
https://arxiv.org/abs/1812.01041

Software Aided Analysis of EWL Based
Quantum Games

Piotr Kotara1,2, Tomasz Zawadzki2, and Katarzyna Rycerz2,3(B)

1 IBM Software Laboratory, Kraków, Poland
piotr.kotara@ibm.com

2 AGH, Institute of Computer Science, al. Mickiewicza 30, 30-059 Krakow, Poland
kzajac@agh.edu.pl

3 Academic Computer Centre Cyfronet AGH, ul. Nawojki 11, 30-950 Krakow, Poland

Abstract. In this paper, we present the library supporting analysis of
Eisert–Wilkens–Lewenstein (EWL) scheme [3] proposed as a quantum
extension for 2×2 bimatrix games on the example of Prisoner’s Dilemma.
Such schemes are often used as a basis for quantization in game theory
field [8]. The proposed solution is based on modern approach combining
symbolic and numerical calculations with the actual access to quantum
simulators and real devices provided by IBM-Q. In particular, the library
provides high-level functions for searching Nash equilibria in pure strate-
gies as well as finding the best response cycles which can lead to the
existence of Nash equilibria in mixed states [16].

Keywords: quantum games · EWL · Qiskit

1 Introduction and Motivation

Quantum game research combines classical game theory with quantum mechan-
ics and focuses primarily on design, classification and analysis of quantum
games, which are an extension of their classical counterparts to the quantum
domain [9]. A well-known example of such extension is the formal approach to
a general 2 × 2 game on the case of Prisoner’s Dilemma introduced by Eisert,
Wilkens and Lewenstain [3], where the use of two-parameter unitary operators
as player strategies allows to achieve the Pareto-optimal Nash equilibrium. The
scheme is widely used in various research that often requires manual analysis
of payoff functions mostly obtained by dedicated tools for symbolical calcula-
tions [2,5,16]. In this work, we present and evaluate semi-automatic, software-
aided approach towards such analysis. The proposed tool, integrated with actual
quantum devices, provides both symbolic and numerical support for quantum
games researchers. The results show to which extend the presented approach may
be successfully applied for the purpose of theoretical analysis of various proper-
ties of quantum games in the EWL protocol, including finding best responses for
arbitrary strategies of the opponent, finding Nash equilibria in pure strategies,
or proving the lack of existence of such strategy profiles.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 209–220, 2023.
https://doi.org/10.1007/978-3-031-30445-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_18&domain=pdf
http://orcid.org/0000-0002-8032-7251
https://doi.org/10.1007/978-3-031-30445-3_18

210 P. Kotara et al.

2 Related Work

The general overview of quantum games topic can be found in [9]. One of most
common approaches in this area is EWL game scheme [3], that became a basis for
further research in this field [12]. The original proposition initiated long discus-
sion as the same approach using fully parameterised operators does not lead to
Nash equilibrium and original limitation to two degrees of freedom was accused
of being artificial [1]. However, the scheme is widely analysed and used [7], includ-
ing generalization to arbitrary number of players [4,6], extension to the repeated
version of the game [14] or inspiration for different quantisation schemes [8,11].
In [15], instead of using original angle-based parametrizations and trigonometric
functions, the authors introduce algebra of quaternions, which cleverly facilitates
calculation of probabilities of possible game outcomes.

On the other hand, there exists various software tools related to game the-
ory such as Nashpy [10] or Gambit1, implementing a wide variety of efficient
algorithms for numerical analysis of classical games in terms of the existence of
Nash equilibria, Pareto efficiency and other various properties, however with no
support for quantum games. The aim of the work presented in this paper is to
fill this gap in the context of EWL–based games.

3 Generalized Eisert-Wilkens-Lewenstein Scheme

A 2×2 bimatrix game is a two-players game described by set of payoff matrices:

(PA, PB) =
(
(a00, b00) (a01, b01)
(a10, b10) (a11, b11)

)
. (1)

The strategies are identified by the number of the row (for player A) or column
(for player B). In particular, if player A chooses row k and player B chooses
column l, their payoffs are described by matrix elements akl and bkl, respectively.

|0〉
J

UA

J†

|0〉 UB

Fig. 1. Quantum circuit for EWL protocol

Generalized form of the Eisert-Wilkens-Lewenstein (EWL) scheme [12] for
2× 2 bimatrix games is presented in the Fig. 1. The game depends on the choice
of the initial state produced by application of J gate to |00〉 state.

J |00〉 = |Ψ(γ)〉 = (cos (γ/2)|00〉 + i sin (γ/2)|11〉, (2)
1 http://www.gambit-project.org/.

http://www.gambit-project.org/

Software Aided Analysis of EWL Games 211

where γ ∈ [0, π/2] is a real parameter which is a measure of the initial state

entanglement. If we introduce W0 =
(
1 0
0 1

)
as representation of choosing row

(or column) number 0 in (1) and W1 =
(
0 i
i 0

)
as representation the of choosing

row (or column) number 1 in (1), we can define vectors

|Ψkl(γ)〉 = Wk ⊗ Wl|Ψ(γ)〉 for k, l ∈ {0, 1} (3)

that form a basis of C2 ⊗C2 for any γ ∈ [0, π/2] and therefore are used to define
columns of gate J .

In the quantum version of the game, each player (represented by one qubit)
applies his strategy as an arbitrary unitary matrix UA or UB. The payoff function
is calculated as an expectation value of the measurement output after applying
J† gate as follows:

pA(UA, UB , γ) =
1∑

k,l=0

akl|〈Ψkl(γ)|UA ⊗ UB|Ψ(γ)〉|2 (4)

pB(UA, UB , γ) =
1∑

k,l=0

bkl|〈Ψkl(γ)|UA ⊗ UB |Ψ(γ)〉|2, (5)

where akl and bkl for k, l ∈ {0, 1} are the payoffs of (1).

4 EWL Library

4.1 EWL Abstraction

The ewl library2 provides a layer of abstraction for generalized EWL circuits for
arbitrary number of players with customizable base strategies representing the
possible moves from the classical counterpart of the game. The library comes
with several built-in parametrizations for unitary player strategies UA and UB

commonly used in research [2,3,6], also allowing for the use of custom ones.
The sample usage of the ewl library is shown in the Listing 1.1. To construct
the EWL circuit, user must define the initial quantum state that can be passed
in Dirac notation, W0 and W1 operators representing classical strategies and set
of quantum strategies UA and UB actually used by players. Based on this infor-
mation, thanks to the integration with Qiskit operators package3, the library
automatically derives the corresponding entanglement operator J and its Her-
mitian conjugate, J†, amplitudes of the final state, game outcome probabilities
and payoff functions.

2 https://github.com/tomekzaw/ewl/blob/master/examples/example.ipynb.
3 https://qiskit.org/documentation/tutorials/circuits_advanced/

02_operators_overview.html.

https://github.com/tomekzaw/ewl/blob/master/examples/example.ipynb
https://qiskit.org/documentation/tutorials/circuits_advanced/02_operators_overview.html
https://qiskit.org/documentation/tutorials/circuits_advanced/02_operators_overview.html

212 P. Kotara et al.

1 import sympy as sp # Python library for symbolic calculations
2 from sympy.physics.quantum.qubit import Qubit
3

4 psi = (Qubit(’00’) + i * Qubit(’11’)) / sp.sqrt(2) # initial state
5

6 # parametrization for player A
7 theta1, alpha1, beta1 = sp.symbols(’theta1 alpha1 beta1’, real=True)
8 UA = U_theta_alpha_beta(theta=theta1, alpha=alpha1, beta=beta1)
9

10 # parametrization for player B
11 theta2, alpha2, beta2 = sp.symbols(’theta2 alpha2 beta2’, real=True)
12 UB = U_theta_alpha_beta(theta=theta2, alpha=alpha2, beta=beta2)
13

14 # construct EWL circuit
15 ewl = EWL(psi, W0, W1, players=[UA, UB], payoff_matrix)
16

17 ewl.J # J gate of EWL circuit
18 ewl.J_H # Hermitian conjugate of J
19

20 ewl.amplitudes() # symbolic amplitudes of the final state of the circuit
21 ewl.probs() # symbolic probabilities of the final state of the circuit
22

23 ewl.payoff_function(player=n) # payoff function for player n
24 ewl.payoff_function(player=None) # payoff function for all players

Listing 1.1. Creation of EWL game based on initial state |ψ〉
The library allows for direct usage of symbolic expressions as an interface.

The result can be further processed by symbolic expressions engine integrated
with SymPy package4 which applies well-known mathematical identities to sim-
plify the expression taking advantage of the fact that the parameters are real-
valued. The library design allows for easy switching from symbolic to numerical
approach if necessary.

4.2 Algorithms

Nash Equilibria. The core functionality of the library allowing EWL-based
game analysis is the possibility to calculate the payoff function of each player
in a symbolic form as a function of parameters involved in the initial quantum
state as well as the quantum operators representing the strategies of the play-
ers. Unfortunately, even for two players game symbolic calculations to obtain a
general symbolic formula of the best response for arbitrary parameters of the
opponent’s strategy turned out to be too time-consuming. Therefore we focus
on finding best responses for particular strategies using well-known numerical
optimization algorithms. This method was also extended to find Nash equilibria.

In a two-player game, Nash equilibrium is a pair of strategies (UA, UB) such
that UA is the best response for UB and simultaneously UB is the best response
for UA.
4 https://www.sympy.org/.

https://www.sympy.org/

Software Aided Analysis of EWL Games 213

A pair of strategies (U(xA), U(xB)) is a Nash equilibrium if

xB ∈ best responseB(xA) and xA ∈ best responseA(xB). (6)

Assuming that only a single best response exists, the following pair of state-
ments can be merged into

xA = best responseA(best responseB(xA)), (7)

which can be expressed as a fixed point equation

xA = f(xA) (8)

where f = (best responseA ◦ best responseB) is a composition of best response
functions, xA is a fixed point of f , and xB = best responseB(xA).

In case of a symmetric 2 × 2 game, best responseA = best responseB, so
effectively f = best response2, or alternatively xA is a 2-periodic point of best
response function.

If the analytic form of the best response function is unknown, numerous
numerical methods of fixed-point search can be employed in order to find Nash
equilibria. However, due to discrete nature of numerical computing, this requires
searching the entire grid of valid parameter values constrained by appropriate
boundaries or running the algorithm multiple number of times with randomizing
the initial strategy, as proposed in Algorithm 1.

Algorithm 1: Finding Nash equilibria numerically
Input: U(x) – parametrization of players’ strategies

X – space of valid parameter values
$A(xA,xB) – Alice’s expected payoff function
$B(xA,xB) – Bob’s expected payoff function
N – number of iterations of the algorithm

Output: E – list of found Nash equilibria in pure strategies
E ← []
i ← 0
while i < N do

xA ← RandomStrategy(X)
xB ← NumericBestResponse(U, X,xA, $B)
x′
A ← NumericBestResponse(U, X,xB, $A)

if U(x′
A) ≈ U(xA) then

E.insert((xA,xB))
end
i ← i + 1

end
return E

214 P. Kotara et al.

Best Response Cycles. Assuming that UA → UB → UA, a pure Nash equi-
librium can be seen as a special case of best response cycle. However, in some
quantum games there are no such cycles of length 2 and thus no Nash equilibria
in pure strategies. The concept of two mutual best responses in two-player games
may be easily generalized to cycles of length 2n such that

U
(1)
A

B−→ U
(1)
B

A−→ U
(2)
A

B−→ U
(2)
B

A−→ . . .
A−→ U

(n)
A

B−→ U
(n)
B

A−→ U
(1)
A (9)

where X
A−→ Y denotes that Y ∈ best responseA(X) and analogously for B−→.

A proposed numerical approach towards finding best response cycles sym-
bolically is shown in Algorithm 2.

Algorithm 2: Finding best response cycle numerically
Input: U(x) – parametrization of players’ strategies

X – space of valid parameter values
$A(xA,xB) – Alice’s expected payoff function
$B(xA,xB) – Bob’s expected payoff function

Output: C – best response cycle found
i ← 0
xA ← RandomStrategy(X)
prev ← [xA]
while True do

xB ← NumericBestResponse(U, X,xA, $B)
prev.insert(xB)
xA ← NumericBestResponse(U, X,xB, $A)
prev.insert(xA)
i ← i + 1
j ← 0
while j ≤ i do

if U(xA) ≈ U(prev[2 ∗ j]) then
return prev[2 ∗ j : 2 ∗ i]

end
j ← j + 1

end
end

4.3 Qiskit Integration

Apart from symbolic and numerical software aided EWL games analysis, the
library allows to execute games on real quantum devices. Qiskit5 integration
allows for verification of theoretical results on numerous available real IBM-Q
quantum devices or simulators including noise models. The library also greatly
5 http://qiskit.org.

http://qiskit.org

Software Aided Analysis of EWL Games 215

simplifies visualizing quantum circuit of the game after transpiling and optimiza-
tion for a selected quantum device. A sample usage is shown in the Listing 1.2,
where a user fixes parameters for particular instance of the game, creates the
circuit, transpiles it to the actual device and compares results from IBM QASM
simulator and a real device.

1

2 # fix actual parameters of parametrization strategies UA and UB
3 ewl_fixed = ewl.fix(theta1=pi / 2, alpha1=pi / 2, beta1=0,
4 theta2=0, alpha2=0, beta2=0)
5

6 # create and draw IBM-Q circuit
7 ewl_ibmq = EWL_IBMQ(ewl_fixed)
8 ewl_ibmq.draw()
9

10 # draw transpiled circuit
11 ewl_ibmq.draw_transpiled(backend_name=’ibmq_quito’, optimization_level=3)
12

13 # simulate game using QASM simulator
14 counts_qasm_simulator = ewl_ibmq.simulate_counts()
15

16 # run game on actual device
17 counts_quantum_device = ewl_ibmq.run()
18

19 # plot results
20 plot_histogram(data=[counts_qasm_simulator, counts_quantum_device],
21 legend=[’qasm simulator’, ’quantum device’])

Listing 1.2. Running example of EWL game on a real quantum device

5 Prisoner’s Dilemma Use Case

Prisoner’s Dilemma is a symmetric bimatrix game example (see Sect. 3) with the
following payoff matrix

(PA, PB) =
(
(r, r) (s, t)
(t, s) (p, p)

)
. (10)

where r is the reward payoff if both players decide to cooperate, p is the pun-
ishment payoff when both players defect, t is temptation payoff and s is sucker’s
payoff in case the first player defects while the second cooperates, respectively.
The values need to satisfy the conditions s < p < r < t and 2r > s + t (com-
monly used values are: r = 3, p = 1, t = 5 and s = 0) This condition implies
that mutual defection is the unique Nash equilibrium for this game [13] leading
to the dilemma, i.e. player payoffs are lower in comparison to the situation when
they cooperate with each other.

216 P. Kotara et al.

6 Experiment Results

6.1 Symbolic Calculations of Probability Functions

The execution time of symbolically calculating the probability functions for EWL
circuit was measured in relation to the number of qubits and degree of entangle-
ment of initial quantum state. Tests were performed on three classes of quantum
states: one maximally entangled, second one with entanglement degree equal to
0.5 and third without entanglement. Tests were performed on the MacBook Pro
16 with 8-core 2.4GHz with TurboBoost up to 5GHz Intel Core i9 equipped
with 16 MB L3 cache (Table 1).

Table 1. Execution times for calculating EWL schema probabilities

Number of qubits Execution time [s] (maximally entangled) Execution time [s] (half-entangled) Execution time [s] (non-entangled)

2 2.3 (σ = 0.2) 36 (σ = 1) 1.28 (σ = 0.12)
3 443.3 (σ = 5.5) 10940 (σ = 702) 10.7 (σ = 0.2)
4 >18000 >18000 122 (σ = 3)
5 >18000 >18000 2712 (σ = 27)

Due to the exponential nature of problem based on qubits number, the results
are suggesting, that calculations for the quantum EWL circuits based on large
amount of qubits will be impossible to perform in a reasonable amount of time.
Nonetheless, for untangled states, the calculation of probabilities is by far the
fastest. We are able to obtain formulas in a reasonable time for four-qubit sys-
tems.

6.2 Numerical Best Response and Nash Equilibrium Search

The example comparison of numerical search methods for the best response for
EWL-based Prisoner’s Dilemma is shown in Table 2. Success rate was calculated
with 0.01% tolerance. The highest success rate of 99.94% was achieved using
Powell method with bounds disabled and zero vector as starting point.

As can be seen, applying the best response function repeatedly (see Algo-
rithm 1) for Quantum Prisoner’s Dilemma with original two-parameters EWL
parametrisation [3] yields a best response cycle of length 2 which repre-
sents a Nash equilibrium as shown in Table 3, which can be generalized to
((0, x), (0, π − x)) where x ∈ [0, π] after running the experiment starting from
different initial strategy parameters.

When using Prisoner’s Dilemma variant with full parametrization [2] there
are no Nash equilibria, but for arbitrary initial startegy there exist best response
cycles of length 4 (i.e. 2 moves per each player).

Software Aided Analysis of EWL Games 217

Table 2. Comparison of numerical search for best response

Optimization method Start point Bounds Success rate

Powell Zero True 86.94%
Powell Zero False 99.94%
Powell Random True 76.34%
Powell Random False 99.23%
Powell Alice True 79.14%
Powell Alice False 99.35%
Nelder-Mead Zero True 45.89%
Nelder-Mead Zero False 96.60%
Nelder-Mead Random True 41.47%
Nelder-Mead Random False 99.52%
Nelder-Mead Alice True 43.55%
Nelder-Mead Alice False 99.01%

Table 3. A sequence of best responses leading to Nash equilibrium found numerically
in Quantum Prisoner’s Dilemma starting from a random strategy

Player θ φ Expected payoff

Alice 2.030715 2.818488 n/a
Bob 1.044621 1.510837 4.933883
Alice 6.208956 1.609381 3.499695
Bob 6.278414 1.532301 3.002761
Alice 0.000299 1.609292 3.000011
Bob 0.000019 1.532301 3.0
Alice 6.283184 1.609292 3.0
Bob 6.283185 1.532301 3.0
Alice 6.283185 1.609292 3.0
Bob 6.283185 1.532301 3.0

As shown in Table 4, after only a few iterations, the numerical method was
able to find one of the best response cycles UA1 → UB1 → UA2 → UB2 → UA1
composed of the strategies (11)

UA1 = U(−2.267319, 1.453127, 1.484048)
UB1 = U(5.408823,−1.484063, 0.117665)
UA2 = U(2.267279,−0.117653,−0.086732)
UB2 = U(−0.874319, 0.086739,−1.452943).

(11)

To sum up, the main advantage of using numerical methods for Finding Nash
equilibria as well as best response cycles is the fact that it does not require know-

218 P. Kotara et al.

Table 4. A sequence of best responses found numerically in Quantum Prisoner’s
Dilemma with U(θ, φ, α) parametrization starting from random strategy

Player θ φ α Expected payoff

Alice 2.271152 −0.118018 −0.081848 n/a
Bob −0.870404 0.081856 −1.452776 5.000000
Alice −2.270383 1.453049 1.487888 4.999995
Bob 0.871299 1.653691 0.117743 5.000000
Alice 2.270338 −0.117733 −0.082893 5.000000
Bob −0.871261 0.082902 −1.452838 5.000000
Alice −2.269523 1.453107 1.486841 4.999995
Bob 0.872155 1.654738 0.117685 5.000000
Alice 2.269483 −0.117675 −0.083941 5.000000
Bob −0.872115 0.083949 −1.452903 5.000000
Alice −2.268748 1.453130 1.485877 4.999996
Bob 0.872926 1.655703 0.117663 5.000000
Alice 2.268713 −0.117652 −0.084905 5.000000
Bob −0.872885 0.084913 −1.452932 5.000000
Alice −2.268020 1.453131 1.484945 4.999996
Bob 0.873651 1.656635 0.117661 5.000000
Alice 2.267989 −0.117650 −0.085838 5.000000
Bob −0.873609 0.085846 −1.452939 5.000000
Alice −2.267319 1.453127 1.484048 4.999996
Bob 5.408823 −1.484063 0.117665 5.000000
Alice 2.267279 −0.117653 −0.086732 5.000000
Bob −0.874319 0.086739 −1.452943 5.000000

ing the best response functions in analytic form. However, this kind of analysis
is strictly dependent on the choice of the initial strategy and it is necessary to
run the experiment a number of times and manually generalize the results after-
wards in order to draw reasonable conclusions. Moreover, the current solution
only finds a single global maximum, while in general there may exist more than
one best response.

7 Summary and Future Work

In this paper we showed that existing software for scientific computing may be
successfully utilized for the purpose of theoretical analysis of various properties
of quantum games in the EWL protocol. In particular, ewl library is a useful tool
for deriving complex formulas describing generalized variants of such quantum
games.

Software Aided Analysis of EWL Games 219

Finding best responses and Nash equilibria using numerical methods is far
more efficient than using symbolic algorithms, however involves numerical errors
and requires many iterations. Due to performance reasons the symbolic approach
can be used only for particular game examples, when the best response function
in analytic form is known.

When implementing quantum games for IBM Q, Operators library can be
used to construct arbitrary quantum gates instead of manual decomposition of
entanglement operator.

Despite numerous attempts involving simplification of the input as well as
reduction to other kinds of problems, we were not able to obtain a generic formula
for the best reply to arbitrary strategy of the opponent using Mathematica or
SymPy. If we knew the best response function in analytic form, we could find
whole families of Nash equilibria in symbolic form for arbitrary quantum game
in the EWL scheme, which is ineffective and challenging with the numerical
approach.

The ewl library, which was developed as part of the work, greatly facilitates
the analysis more general variants of quantum games in the EWL protocol, for
instance involving symbolic parameters or simply with more players, and thus
provides new opportunities for quantum game theory researchers. A particularly
interesting topic seems to be the study of influence of the underlying quantum
computer architecture, especially connections between qubits, on the noise levels
in quantum games with three or more players.

Acknowledgements. This work is partly supported by IBM Software Laboratory
in Kraków. We would like to thank Piotr Frackiewicz and Marek Szopa for fruitful
discussions.

References

1. Benjamin, S.C., Hayden, P.M.: Comment on “quantum games and quantum
strategies”. Phys. Rev. Lett. 87(6), 069801 (2001). https://doi.org/10.1103/
PhysRevLett.87.069801. https://link.aps.org/doi/10.1103/PhysRevLett.87.069801

2. Chen, K.Y., Hogg, T.: How well do people play a quantum prisoner’s dilemma?
Quantum Inf. Process. 5(1), 43–67 (2006). https://doi.org/10.1007/s11128-006-
0012-7. http://link.springer.com/10.1007/s11128-006-0012-7

3. Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies.
Phys. Rev. Lett. 83(15), 3077–3080 (1999). https://doi.org/10.1103/PhysRevLett.
83.3077. https://link.aps.org/doi/10.1103/PhysRevLett.83.3077. Number: 15.
Publisher: American Physical Society

4. Frąckiewicz, P., Rycerz, K., Szopa, M.: Quantum absentminded driver problem
revisited. Quantum Inf. Process. 21(1), 34 (2022). https://doi.org/10.1007/s11128-
021-03377-6. https://link.springer.com/10.1007/s11128-021-03377-6

5. Frąckiewicz, P.: Quantum approach to Cournot-type competition. Int. J. Theor.
Phys. 57(2), 353–362 (2017). https://doi.org/10.1007/s10773-017-3567-4

6. Frackiewicz, P., Pykacz, J.: Quantum games with strategies induced by basis
change rules. Int. J. Theor. Phys. 56(12), 4017–4028 (2017). https://doi.org/10.
1007/s10773-017-3423-6. https://link.springer.com/10.1007/s10773-017-3423-6

https://doi.org/10.1103/PhysRevLett.87.069801
https://doi.org/10.1103/PhysRevLett.87.069801
https://link.aps.org/doi/10.1103/PhysRevLett.87.069801
https://doi.org/10.1007/s11128-006-0012-7
https://doi.org/10.1007/s11128-006-0012-7
http://springerlink.bibliotecabuap.elogim.com/10.1007/s11128-006-0012-7
https://doi.org/10.1103/PhysRevLett.83.3077
https://doi.org/10.1103/PhysRevLett.83.3077
https://link.aps.org/doi/10.1103/PhysRevLett.83.3077
https://doi.org/10.1007/s11128-021-03377-6
https://doi.org/10.1007/s11128-021-03377-6
https://springerlink.bibliotecabuap.elogim.com/10.1007/s11128-021-03377-6
https://doi.org/10.1007/s10773-017-3567-4
https://doi.org/10.1007/s10773-017-3423-6
https://doi.org/10.1007/s10773-017-3423-6
https://springerlink.bibliotecabuap.elogim.com/10.1007/s10773-017-3423-6

220 P. Kotara et al.

7. Ikeda, K., Aoki, S.: Theory of quantum games and quantum economic behav-
ior. Quantum Inf. Process. 21(1), 27 (2022). https://doi.org/10.1007/s11128-021-
03378-5. https://link.springer.com/10.1007/s11128-021-03378-5

8. Iqbal, A., Abbott, D.: Two-player quantum games: when player strategies are via
directional choices. Quantum Inf. Process. 21(6), 212 (2022). https://doi.org/10.
1007/s11128-022-03526-5. https://link.springer.com/10.1007/s11128-022-03526-5

9. Khan, F.S., Solmeyer, N., Balu, R., Humble, T.S.: Quantum games: a review
of the history, current state, and interpretation. Quantum Inf. Process. 17(11),
309 (2018). https://doi.org/10.1007/s11128-018-2082-8. http://link.springer.com/
10.1007/s11128-018-2082-8

10. Knight, V., et al.: drvinceknight/Nashpy: v0.0.34, June 2022. https://doi.org/10.
5281/ZENODO.6620830. https://zenodo.org/record/6620830

11. Marinatto, L., Weber, T.: A quantum approach to static games of complete infor-
mation. Phys. Lett. A 272(5–6), 291–303 (2000). https://doi.org/10.1016/S0375-
9601(00)00441-2. http://arxiv.org/abs/quant-ph/0004081. Number: 5–6

12. Nawaz, A., Toor, A.H.: Generalized quantization scheme for two-person non-
zero sum games. J. Phys. A: Math. Gen. 37(47), 11457–11463 (2004).
https://doi.org/10.1088/0305-4470/37/47/014. https://iopscience.iop.org/article/
10.1088/0305-4470/37/47/014

13. Roth, A.E., Murnighan, J.: Equilibrium behavior and repeated play of the
prisoner’s dilemma. J. Math. Psychol. 17(2), 189–198 (1978). https://doi.
org/10.1016/0022-2496(78)90030-5. https://linkinghub.elsevier.com/retrieve/pii/
0022249678900305

14. Rycerz, K., Frackiewicz, P.: A quantum approach to twice-repeated 2 × 2 game.
Quantum Inf. Process. 19(8), 269 (2020). https://doi.org/10.1007/s11128-020-
02743-0. https://link.springer.com/10.1007/s11128-020-02743-0

15. Shaik, A., Ahmed, A.: Best response analysis in two person quantum games. Adv.
Pure Math. 04(07), 341–356 (2014). https://doi.org/10.4236/apm.2014.47045.
http://www.scirp.org/journal/doi.aspx?DOI=10.4236/apm.2014.47045

16. Szopa, M.: Efficiency of classical and quantum games equilibria. Entropy 23(5), 506
(2021). https://doi.org/10.3390/e23050506. https://www.mdpi.com/1099-4300/
23/5/506

https://doi.org/10.1007/s11128-021-03378-5
https://doi.org/10.1007/s11128-021-03378-5
https://springerlink.bibliotecabuap.elogim.com/10.1007/s11128-021-03378-5
https://doi.org/10.1007/s11128-022-03526-5
https://doi.org/10.1007/s11128-022-03526-5
https://springerlink.bibliotecabuap.elogim.com/10.1007/s11128-022-03526-5
https://doi.org/10.1007/s11128-018-2082-8
http://springerlink.bibliotecabuap.elogim.com/10.1007/s11128-018-2082-8
http://springerlink.bibliotecabuap.elogim.com/10.1007/s11128-018-2082-8
https://doi.org/10.5281/ZENODO.6620830
https://doi.org/10.5281/ZENODO.6620830
https://zenodo.org/record/6620830
https://doi.org/10.1016/S0375-9601(00)00441-2
https://doi.org/10.1016/S0375-9601(00)00441-2
http://arxiv.org/abs/quant-ph/0004081
https://doi.org/10.1088/0305-4470/37/47/014
https://iopscience.iop.org/article/10.1088/0305-4470/37/47/014
https://iopscience.iop.org/article/10.1088/0305-4470/37/47/014
https://doi.org/10.1016/0022-2496(78)90030-5
https://doi.org/10.1016/0022-2496(78)90030-5
https://linkinghub.elsevier.com/retrieve/pii/0022249678900305
https://linkinghub.elsevier.com/retrieve/pii/0022249678900305
https://doi.org/10.1007/s11128-020-02743-0
https://doi.org/10.1007/s11128-020-02743-0
https://springerlink.bibliotecabuap.elogim.com/10.1007/s11128-020-02743-0
https://doi.org/10.4236/apm.2014.47045
http://www.scirp.org/journal/doi.aspx?DOI=10.4236/apm.2014.47045
https://doi.org/10.3390/e23050506
https://www.mdpi.com/1099-4300/23/5/506
https://www.mdpi.com/1099-4300/23/5/506

First Workshop on Applications
of Machine Learning and Artificial
Intelligence in High Performance

Computing (WAML 2022)

Adaptation of AI-Accelerated CFD
Simulations to the IPU Platform

Paweł Rościszewski1(B), Adam Krzywaniak1,6, Sergio Iserte2,3,
Krzysztof Rojek4, and Paweł Gepner1,5

1 Graphcore, Gdańsk, Poland
{royr,adamk,pawelg}@graphcore.ai, pawel.gepner@pw.edu.pl

2 Department of Construction and Mechanical Engineering, Universitat Jaume I,
Castellón de la Plana, Spain

siserte@uji.es
3 Barcelona Supercomputing Center, Barcelona, Spain

sergio.iserte@bsc.es
4 Institute of Computer and Information Sciences, Czȩstochowa University

of Technology, Czȩstochowa, Poland
krojek@icis.pcz.pl

5 Faculty of Mechanical and Industrial Engineering, Warsaw University
of Technology, Warszawa, Poland

6 Department of Computer Architecture Faculty of Electronics, Telecommunications
and Informatics, Gdańsk University of Technology, Narutowicza 11/12, 80-233

Gdańsk, Poland

Abstract. Intelligence Processing Units (IPU) have proven useful for
many AI applications. In this paper, we evaluate them within the emerg-
ing field of AI for simulation, where traditional numerical simulations are
supported by artificial intelligence approaches. We focus specifically on
a program for training machine learning models supporting a computa-
tional fluid dynamics application. We use custom TensorFlow provided
by the Poplar SDK to adapt the program for the IPU-POD16 platform
and investigate its ease of use and performance scalability. Training a
model on data from OpenFOAM simulations allows us to get accurate
simulation state predictions in test time. We show how to utilize the
popdist library to overcome a performance bottleneck in feeding train-
ing data to the IPU on the host side, achieving up to 34% speedup.
Due to communication overheads, using data parallelism to utilize two
IPUs instead of one does not improve the throughput. However, once the
intra-IPU costs have been paid, the hardware capabilities for inter-IPU
communication allow for good scalability. Increasing the number of IPUs
from 2 to 16 improves the throughput from 560.8 to 2805.8 samples/s.

Keywords: Intelligence processing unit · Computational fluid
dynamics · Machine learning

1 Introduction

One of the emerging trends in high performance computing (HPC) is support-
ing traditional numerical simulations with artificial intelligence (AI) approaches.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 223–235, 2023.
https://doi.org/10.1007/978-3-031-30445-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_19&domain=pdf
https://doi.org/10.1007/978-3-031-30445-3_19

224 P. Rościszewski et al.

While various names have been proposed for this field of research, such as simula-
tion intelligence [7] or cognitive simulation [19], we refer to it as simply as AI for
simulation [11,12]. Another significant trend is designing hardware architectures
specifically for the type of workloads that are the backbone of AI [8,13,15]. In
this paper, we look into an AI for simulation approach, where a machine learn-
ing (ML) model supports a computational fluid dynamics (CFD) application,
and investigate how it can benefit from a AI-specific hardware architecture: the
intelligence processing unit (IPU) processor.

The IPU is a computing accelerator specifically designed for machine learn-
ing computation. Each IPU has 1472 cores, with its own on-chip 624KiB SRAM
memory per core. The combination of the core and the associated on-chip mem-
ory is named a tile. The tile Instruction Set Architecture (ISA) [2] includes
focused hardware elements such as Accumulating Matrix Product (AMP) and
Slim Convolution (SLIC) units which allow to complete up to 64 multiply-add
instructions per clock cycle. There are also hardware support instructions for
random number generation and selected transcendental operations generally
used in machine learning. Every tile runs 6 hardware execution threads in a
time-sliced round-robin schedule, allowing instruction and memory latency to
be hidden. With this mechanism, most instructions, including memory access
and vectorised floating-point operations, complete within one thread cycle (6
clock cycles). Every thread represents a truly independent program. There is no
restriction that threads run in groups executing the same program in lockstep,
and no requirement that memory accesses are coalesced to achieve high SRAM
bandwidth [2].

IPU accelerators have proven useful for many AI applications, but employing
them in AI for simulation is a new area of research. In this paper we adapt a
training program for AI-accelerated CFD simulations to the IPU-based POD16
platform. This allows us to evaluate the models trained on the IPU-POD16
platform for the selected problem and investigate performance scalability of the
training workload. The remainder of the paper is organized as follows: refer-
ences to related work are given in Sect. 2, implementation details are described
in Sect. 3, experimental results are reported and discussed in Sect. 4, while a
summary is provided along with proposed future work directions in Sect. 5.

2 Related Work

Kochkov et al. in [6] summarized the applications of ML to accelerating numerical
simulations and proposed the following classification:

– supporting simulations with ML for better accuracy but no performance
improvement;

– pure ML replacing the entire simulation, allowing for significant performance
gains but weak on generalization (when new physical constraints are applied
to previously trained model);

– hybrid approach replacing/accelerating iterative solvers inside the simulation
without accuracy reduction.

Adaptation of AI-Accelerated CFD Simulations to the IPU Platform 225

We reviewed several papers which support such a classification of AI-accelerated
simulations.

Maulik et. al in their work [9] presented the results of two-dimensional
Kraichan turbulence subgrid modeling with a novel data-driven neural network
support for predicting the turbulence source. Their work aimed to improve the
accuracy of modeling without focusing on increasing its performance.

Kim et al. in their paper [5] proposed a generative model called DeepFluids
to synthesize fluid simulations from a set of reduced parameters. They train a
convolutional neural network (CNN) for predicting the fluid velocity fields. In
their work they propose a fluid-specific loss function to improve the convergence
of the trained model. The aim of their work is to replace the simulation in order
to use the trained ML model in inference mode and improve the performance of
velocity fields reconstruction up to 700x.

Wiewel et al. in their work [18] proposed an approach based on the long
short-term memory (LSTM) network for fluid flow modeling, i.e. to predict the
changes of pressure fields over time. They achieved practical speed-ups with
neural network-based simulation of 3D+time functions of a physics system.

Ribeiro et al. in their paper [10] presented a CNN-based model called Deep-
CFD, that efficiently approximates solutions for the problem of non-uniform
steady laminar flows. Their proposed model is able to learn complete solutions
of the Navier-Stokes equations, for both velocity and pressure fields, directly from
ground-truth data generated using a state-of-the-art CFD code. The predictions
of the proposed model allow for achieving up to 1000x speedup in obtaining the
resulting velocity and pressure fields, when comparing classical simulation on
CPU with CNN model running on GPU.

Thuerey et. al in their work [16] investigated the accuracy of deep learning
models for the inference of Reynolds-Averaged Navier-Stokes solutions. Their
best results allowed them to obtain mean relative pressure and velocity error of
less than 3% across a range of previously unseen airfoil shapes.

Um et al. in their paper [17] present a hybrid approach called Solver-in-the-
loop. By integrating the learned function into a differentiable physics pipeline,
the corrections can interact with the physical system, alter the states, and receive
gradients about the future performance of these modifications. This provided
the model with realistic input distributions that take previous corrections into
account, yielding improvements in accuracy with stable rollouts of several hun-
dred recurrent evaluation steps and surpassing even tailored supervised variants.

In this paper we evaluate the LSTM-based approach for predicting the fluid
flow in a homogenization tank which aims to replace the simulation with an
OpenFOAM numerical solver. We evaluate the LSTM model on IPU, a new
AI-dedicated massively parallel hardware accelerator.

3 Implementation

In this section we describe the details behind the proposed implementation.
First, in Sect. 3.1 we describe the original implementation of the model selected

226 P. Rościszewski et al.

for adaptation. Section 3.2 contains a detailed description of the hardware con-
figuration used for the experiments. The basic process of porting the training
application to the IPU platform is described in Sect. 3.3. Additionally, Sect. 3.4,
describes the improvements that we introduced using the popdist library to alle-
viate data loader limitations.

3.1 The Original Model for Accelerating CFD Simulations

The case study selected for this paper trains a ML model for accelerating CFD
simulations of an industrial homogenization tank. The tank is composed of two
interconnected subtanks of 10 m length, 5 m width, and 5 m depth each. Figure 1
depicts the geometry of the tank. The figure highlights the location of the areas
of interest. They do not correspond to regular walls and can be parametrized.
The flow enters the tank through Inflow. The flow is driven to Outflow through
Bulkhead wall. Part of the flow is fed back from the second subtank to the first
one using Recirculator. Finally, stirrers inside the tank (Stirrer #1 and #2) are
responsible for impelling the flow.

Fig. 1. Geometry of the reactor under study [3]. Arrows represent the flow direction
on the highlighted areas.

We have simulated 131 different configurations of the case under study with
OpenFOAM1. In these simulations, the values of in Inlet and Recirculation are
varied within a minimum and a maximum limit. The OpenFOAM solver models
a transient incompressible flow using the Unsteady Reynolds-averaged Navier-
Stokes (URANS) equations. The state of the simulation is adjusted to a write

1 http://www.openfoam.com.

http://www.openfoam.com

Adaptation of AI-Accelerated CFD Simulations to the IPU Platform 227

interval of 10 s of simulated time. The flow is evolved until the second 4,201,
which is translated into 420 stored states per executed simulation. In this regard,
taking it all into account, the number of simulated cases, states per case, the
cells in the domain, and the velocity dimensions, generate an eventual dataset
with a shape 131× 420× 125, 565× 3.

Before feeding the trainable model, each velocity dimension is normalized to
have a distribution of mean zero and a standard deviation of one. Moreover, the
dataset is split into train and test subsets. For this purpose, cases are shuffled
and 80% of them (104 cases) are assigned to the training dataset, while the
remaining (27 cases) are assigned to the testing dataset. Notice that 20% of
training cases (20 cases) are used for cross-validating the learning.

In order to capture the temporal dependencies in the data, a sequence to
sequence model is trained, where features representing 3 consecutive simulation
states are used as the input sequence, while output represents 1 succeeding sim-
ulation state. The training program is implemented in Python using TensorFlow
and the model is constructed sequentially using the Keras API, as shown in
Listing 1.1. The main building blocks of the model are the encoder and decoder
LSTM layers with 10 hidden units each. Repeated copies of the encoder output
are used as the input for the decoder. Finally, temporal slices of the decoder
output are used by two dense layers. The rectified linear unit (ReLU) function
is used for activation and Adam optimizer is used for training.

It should be noted that considering the input sequence length, the number of
cells in the domain and the velocity dimensions, the input sequence dimensional-
ity is 3×125, 565×3 giving 1, 130, 085 features per sample. This, in combination
with relatively small hidden state numbers in the model layers, makes the train-
ing workload highly I/O-bound.

Listing 1.1. Implementation of the model layers
from ten so r f l ow . keras . l a y e r s import LSTM, RepeatVector ,

Dense , TimeDistr ibuted
. . .
model = Sequent i a l ()
model . add (LSTM(10 , a c t i v a t i on=’ re lu ’ ,

input_shape=(n_timesteps , n_features) ,
return_sequences=False))

model . add (RepeatVector (n_outputs))
model . add (LSTM(10 , a c t i v a t i on=’ re lu ’ , return_sequences=True))

model . add (TimeDistr ibuted (Dense (10 , a c t i v a t i on=’ re lu ’)))
model . add (TimeDistr ibuted (Dense (n_features)))

opt = t f . keras . op t im i z e r s .Adam(l earn ing_rate =0.00025)

model . compile (l o s s =’mae ’ , opt imize r=opt)

model . f i t (t ra in , epochs=n_epochs , verbose=1, s h u f f l e=True ,
steps_per_epoch=steps_per_epoch , c a l l b a ck s=ca l l b a ck s)

228 P. Rościszewski et al.

Fig. 2. Schematic and building block of IPU-M2000 Machine [2]

3.2 The IPU Processor, IPU-M2000 System and IPU-POD16
Configuration

From the hardware definition IPUs are distributed memory, massively parallel,
multiple-instruction multiple-data (MIMD) devices. With 1472 tiles, the IPU has
just under 900 MB of memory in total. This local memory is the only memory
directly accessible by tile instructions. It is used for both the code and the data
used by that tile. There is no shared memory access between tiles. Tiles cannot
directly access each others’ memory but can communicate via message passing
using an all-to-all high bandwidth exchange (theoretical 8 TB/s). The memory
has very low-latency (6 cycles) and ultra-high bandwidth (theoretical 47.5 TB/s).
The whole chip is built on the budget of 59.4 billion transistors using the TSMC
7nm manufacturing process [2].

The Graphcore IPU-M2000 system is essentially a 1U server utilizing 4 IPUs.
It includes also a gateway chip which connects IPUs into the compute domain
and provides access to the DRAM, two 100Gbps IPU-Fabric Links, a PCIe slot
for standard Smart NICs, two 1GbE Open BMC management interfaces, and
access to an M.2 slot. Figure 2 shows the block diagram of the IPU-M2000 sys-
tem. The host system accesses the IPU-M2000 platform over 100Gb Ethernet
with ROCE (RDMA over Converged Ethernet) with very low-latency access.
Such an implementation based on Ethernet avoids the bottlenecks and costs of
PCIe connectors and PCIe switches. This enables a flexible host CPU to accel-
erators combination and provides scaling from a single IPU-M2000 system to
massive supercomputer scale including 64,000 IPUs, all networked over stan-
dard networking at a lower cost and providing much more flexibility than using
e.g., InfiniBand [1].

IPU-Fabric is a totally new scale-out fabric designed from the ground up to
support the needs of machine intelligence communication. IPU-Fabric is natively
integrated into the IPU processors and IPU-M2000 system. A key difference
between IPU-Fabric and other proprietary fabrics is the usage of Compiled

Adaptation of AI-Accelerated CFD Simulations to the IPU Platform 229

Fig. 3. IPU-POD16 direct attach configuration [2]

Communication and Bulk Synchronous Parallel protocol; both these elements
provide deterministic communication behaviour. Every IPU has dedicated IPU-
Links providing 64 GB/s of bidirectional bandwidth and an aggregate bandwidth
per chip of 320 GB/s. Each IPU-M2000 has 8 external IPU-Links for intra-rack
scale out using OSFP copper cables. The intra-rack configuration called IPU-
POD16 contains 4 IPU-M2000s connected into a single instance with a daisy
chain topology utilizing IPU-Links. Host-Link connectivity is provided from the
Gateway through a PCIe NIC or SmartNIC card. Figure 3 shows the IPU-POD16
configuration [1].

The memory model for the IPU-Machine is also quite unique. In addition
to in-IPU Memory, each IPU-M2000 system has DDR memory available to the
four IPUs. This DDR memory is used differently from memory found in CPUs or
GPUs. Instead of a memory hierarchy that requires swapping data and code from
the host memory store to the accelerator’s memory, the Poplar Graph Compiler
creates deterministic code-memory relationships in both the memory on the IPU
tile and the DDR memory. In fact, the IPU-M2000 system can use this additional
memory in stand-alone mode for inference processing without any attachment
to a host server. And thanks to the bulk synchronous parallel (BSP) model
compiling both computation and communication, the network communication
overhead is kept to a minimum compared to traditional messaging or shared
memory constructs commonly used for parallel processing.

Built-in fabrics are becoming a necessity for AI accelerators since model sizes
are increasing dramatically, some containing billions of parameters. These large
models must be distributed across hundreds or thousands of processors to solve
problems in a reasonable time. Graphcore’s hybrid model uses a proprietary IPU-
Link fabric to communicate across the tiles in an IPU and adjacent rack IPUs,
while tunnelling the IPU-Link protocol across standard 100GbE for rack-to-rack
scale-out supporting larger configurations [1].

3.3 Porting the Training Program to the IPU Platform

The IPU is based on a sophisticated architecture which offers, to our knowledge,
the first ever BSP model implementation in hardware. Fortunately, users do not
have to be parallel processing experts to benefit from the performance opportu-

230 P. Rościszewski et al.

nities offered by the IPU accelerator. The hardware comes with a comprehensive
software ecosystem2 with the Poplar SDK3, a complete tool chain that enables
the user to exploit IPU features. The SDK includes a graph compiler responsi-
ble for handling the scheduling and work partitioning of large parallel programs
including memory control. To provide maximum possible ease of use, the SDK
is integrated with a number of industry-standard ML frameworks. In this paper,
we benefit from such an integration with TensorFlow, which requires the user
to employ pip to install a separate tensorflow package provided with the Poplar
SDK. Using this approach, porting the original code to the IPU platform requires
only a few changes, as outlined in Listing 1.2.

Listing 1.2. Code changes required to port the program to the IPU
from ten so r f l ow . python import ipu

con f i g = ipu . c on f i g . IPUConfig ()
c on f i g . auto_select_ipus = FLAGS. num_replicas
c on f i g . configure_ipu_system ()

s t r a t egy = ipu . ipu_strategy . IPUStrategy ()

with s t r a t egy . scope () :
<code from L i s t i n g 1.1>

Running the code on the IPU requires the user to import the corresponding
module tensorflow.python.ipu and use it to configure the IPU system as well
as place the adequate variables on the IPU. Running the training on multiple
IPUs using data parallelism is as simple as setting the auto_select_ipus config-
uration parameter to the desired value. Tensor and operation placement is per-
formed by wrapping the original code in the scope of a custom implementation
of a TensorFlow distribution strategy. Additionally, to avoid frequent host-IPU
synchronization, it is worth setting the steps_per_execution parameter of the
model.compile() function to a large value. We use the number of steps per epoch
as a rule of thumb in order to run the whole epoch on the IPU before returning
to the host. This straightforward approach to porting the code to IPU benefits
from the ease of use of the Poplar SDK’s TensorFlow integration.

3.4 Using the Popdist Library to Remove the I/O Bottleneck

In many cases a simple porting procedure described in Sect. 3.3 would be suffi-
cient for optimal utilization of the IPU platform. However, as shown in Sect. 4,
in the case of the investigated IO-bound CFD application, using a single Python
process for feeding multiple IPUs with input data results in a I/O bottleneck.

To remove this bottleneck, we used the poprun tool associated with the Poplar
distributed configuration library (popdist)4 to execute a separate system process
per each IPU. The crucial code changes required are shown in Listing 1.3.

2 https://www.graphcore.ai/developer.
3 https://docs.graphcore.ai/projects/sdk-overview/en/latest/index.html.
4 https://docs.graphcore.ai/projects/poprun-user-guide/en/latest/configuration.html.

https://www.graphcore.ai/developer
https://docs.graphcore.ai/projects/sdk-overview/en/latest/index.html

Adaptation of AI-Accelerated CFD Simulations to the IPU Platform 231

Listing 1.3. Code changes required to run the training in a distributed setup
import popdis t
from ten so r f l ow . python . ipu import horovod as hvd
from ten so r f l ow . python . ipu . horovod import popdis t_strategy
. . .
popdist . t en so r f l ow . set_ipu_conf ig (con f ig , ipus_per_repl i ca=1)
hvd . i n i t ()
. . .
t r a i n = t r a i n . shard (num_shards=popdis t . getNumInstances () ,

index=popdis t . ge t Ins tance Index ())
. . .
s t r a t egy = popdis t_strategy . PopDistStrategy ()

Popdist allows the user to automatically configure the desired number of IPUs
per model replica. It is used along with an implementation of the Horovod com-
munication scheme [14]. Shards of the training dataset are selected accordingly
to the number of instances executed by the poprun tool and the correspond-
ing process instance numbers. Finally, instead of the standard IPUStrategy, the
PopDistStrategy class ensures the proper variable placement in the context of
distributed execution.

4 Experimental Results

In order to evaluate the usefulness of the IPU-POD16 platform for the applica-
tion we are focusing on in this paper, first we utilized it to train a model and
investigated its accuracy. The findings are described in Sect. 4.1. Then, to assess
its performance capabilities, we measured training throughput depending on the
number of used IPUs and chosen implementation. The performance results are
provided in Sect. 4.2. The experiments were run on an IPU-POD16 with 16 IPU-
M2000 IPU chips using Graphcore TensorFlow-2.6.3 and Keras 2.6.0 on top of
Poplar SDK r2.6.0.

4.1 Model Verification

To develop a model for verification, we executed ten training sessions with a
random selection of learning rate between 1e-7 and 1e-5. The runs were stopped
when the validation loss has not improved more than 0.0001 for 10 epochs. Out of
the ten trained models we selected the one that performed best on the validation
set. The accuracy results for this model are presented in Table 1.

To estimate the accuracy, we used statistical metrics such as RMSE (root-
mean-square-error) and correlation coefficients that measure the extent to which
two variables tend to change together. These coefficients describe both the
strength and the direction of the relationship. Here, we use two coefficients,
including the Pearson correlation which estimates the linear relationship between
two continuous variables, as well as the Spearman correlation which assesses the
monotonic relationship between two continuous or ordinal variables. The corre-
lation coefficients can return values from -1 to 1. The RMSE statistic shows that
the error is below 0.08 for all the results. Since the range of data is from 0 to
1.1 we conclude that the differences are below 8% of the maximum value for the

232 P. Rościszewski et al.

10th-time step and below 1% for the steady-state. The correlation coefficients
show a strong dependency between trends of the predicted and real values (>0.9
for all the time steps).

Table 1. Accuracy of the trained model for the selected steps of simulation.

Step Pearson’s correlation Spearman’s correlation Root mean squared error

10 0.949 0.917 0.078
20 0.989 0.982 0.038

100 1.000 0.999 0.008

4.2 Performance and Scalability

Table 2 shows training throughput depending on the number of utilized IPUs and
implementation variant averaged from the aforementioned five runs, additionally
providing standard deviation. The number of IPUs corresponds to the number
of model replicas in the “data parallel” scheme used for training parallelization.
The "single process" variant is described in Sect. 3.3 while the “popdist” variant
is described in Sect. 3.4. We performed five runs for each parameter combination.
In each run, we executed four training epochs and measured the throughput for
the three last epochs as the total number of used samples divided by execution
time. We treated the first epoch as a warm-up.

While IPUs do not have a particularly high memory capacity, they do not
require large batch sizes to achieve good performance, so for all experiments
we used mini-batches containing one training sample. As training data, we used
random samples generated on the host side, so that the benchmark measures the
capability of the host + IPU system as a whole, without considering potential
limitations of storage I/O overheads. To overcome the limitations of FP16 data
handling on the CPU side, in two cases of single process implementation (8 and
16 IPUs) we used non-standard, increased buffer sizes in the internal TensorFlow
data queue.

The results allow us to draw the following conclusions. Firstly, most of the
results are statistically significant, with exceptions in the cases where 4, 8 and
16 IPUs are used by the single process implementation. The configuration that
results in the most variable results (16 IPUs, single process) is also the one
which benefits the most from switching to popdist (34% speedup). We performed
detailed profiling of the program to determine that there is a bottleneck on
the host side: multi-threading limitations of Python result in slow data pre-
processing and populating the input data queue by the CPU. As a result, the
more IPUs that are used, the more likely that they are starved.

Another interesting observation is related to scalability: increasing the num-
ber of used IPUs from 1 to 2 doesn’t significantly improve the throughput, and
even makes it slightly worse. At the same time, increasing the number of IPUs
8-fold from 2 to 16 improves the throughput around 5-fold, which is relatively

Adaptation of AI-Accelerated CFD Simulations to the IPU Platform 233

good scalability, considering the characteristics of data-parallel deep neural net-
work training. Again, the reason for the lack of scalability between 1–2 IPUs
has been determined through detailed profiling. In this case, the bottleneck is
on the IPU side: for this particular model, the overhead of introducing addi-
tional buffers and exchange operations makes the data-parallel implementation
significantly slower on a single IPU.

Table 2. Throughput (samples/s) depending on implementation variant and number
of utilized IPUs

No. of IPUs utilized Average throughput
Single process Popdist

1 571.8± 4.31 574.4± 3.20

2 558.8± 3.92 560.8± 1.94

4 862.8± 7.14 871.4± 1.36

8 1344.2± 8.35 1566.4± 1.02

16 2099.8± 193.19 2805.8± 1.17

5 Summary and Future Work

In this paper, we adopt a deep neural network training application from the AI
for simulation field for the IPU platform, demonstrating the ease of use provided
by the Poplar SDK software ecosystem. Training a model on data from tradi-
tional CFD simulations allows us to get accurate simulation state predictions
in test time. Investigating the performance of the training on the IPU-POD16
platform reveals that the main bottleneck of this particular application is feeding
training data to the IPU on the host side. We show how to utilize the popdist
library to overcome the limitations of host-side data loading. Scaling of the
program is limited in a small scale of 1–2 IPUs by communication overheads.
However, once the intra-IPU costs have been paid, the hardware capabilities for
inter-IPU communication allow for good scalability.

In the future, we would like to investigate the scalability of the IPU platform
further, utilizing a larger platform such as the IPU-POD64. It could be also ben-
eficial to use the FP8 data type to increase training performance. The predictive
model introduced in this work can be leveraged in hybrid CFD-DL solvers such
as that presented in [4]. This solver alternates stages of CFD simulation with
predictions made by a DL engine in order to reduce the time-to-solution. In their
paper, the authors are able to accelerate the simulation interleaving predictions
during the CFD simulation. That module could be easily substituted by the
IPU-trained model for inference.

Acknowledgements. The authors would like to thank Grzegorz Andrejczuk for his
ideas and help with investigating data loading overheads. Big thanks to Charis Fisher

234 P. Rościszewski et al.

for her support and valuable comments. Researcher Sergio Iserte was supported by
the postdoctoral fellowship APOSTD/2020/026 from Valencian Region Government
(GVA) and European Social Funds (ESF). CFD Simulations were executed on Tirant
III cluster of the Servei d’Informática of the University of Valencia (UV).

References

1. Freund, K., Moorhead, P.: The graphcore second-generation IPU (2020). https://
moorinsightsstrategy.com/research-paper-the-graphcore-second-generation-ipu/

2. Gepner, P.: Machine learning and high-performance computing hybrid systems, a
new way of performance acceleration in engineering and scientific applications. In:
2021 16th Conference on Computer Science and Intelligence Systems (FedCSIS),
pp. 27–36 (2021). https://doi.org/10.15439/2021F004

3. Iserte, S., et al.: Modeling of Wastewater Treatment Processes with HydroSludge.
In: Water Environment Research, pp. 1–38 (2021)

4. Iserte, S., Macías, A., Martínez-Cuenca, R., Chiva, S., Paredes, R., Quintana-Ortí,
E.S.: Accelerating urban scale simulations leveraging local spatial 3D structure. J.
Comput. Sci. 62, 101741 (2022). https://doi.org/10.1016/j.jocs.2022.101741

5. Kim, B., Azevedo, V.C., Thuerey, N., Kim, T., Gross, M., Solenthaler, B.: Deep
fluids: a generative network for parameterized fluid simulations. Comput. Graph.
Forum 38(2), 59–70 (2019)

6. Kochkov, D., Smith, J.A., Alieva, A., Wang, Q., Brenner, M.P., Hoyer, S.: Machine
learning-accelerated computational fluid dynamics. In: Proceedings of the National
Academy of Sciences, vol. 118, no. 21, p. e2101784118 (2021). https://doi.org/10.
1073/pnas.2101784118, https://www.pnas.org/doi/abs/10.1073/pnas.2101784118

7. Lavin, A., et al.: Simulation intelligence: towards a new generation of scientific
methods, December 2021. https://arxiv.org/abs/2112.03235

8. Li, Z., Wang, Y., Zhi, T., Chen, T.: A survey of neural network accelerators. Front.
Comput. Sci. 11(5), 746–761 (2017)

9. Maulik, R., San, O., Rasheed, A., Vedula, P.: Subgrid modelling for two-
dimensional turbulence using neural networks. J. Fluid Mech. 858, 122–144 (2019).
https://doi.org/10.1017/jfm.2018.770

10. Ribeiro, M.D., Rehman, A., Ahmed, S., Dengel, A.: DeepCFD: efficient steady-
state laminar flow approximation with deep convolutional neural networks, Novem-
ber 2021. https://arxiv.org/abs/2004.08826, arXiv:2004.08826 [physics]

11. Rojek, K., Wyrzykowski, R.: Performance and scalability analysis of AI-accelerated
CFD simulations across various computing platforms. In: HeteroPar 2022, Springer
International Publishing (in press 2022)

12. Rojek, K., Wyrzykowski, R., Gepner, P.: AI-accelerated CFD simulation based
on OpenFOAM and CPU/GPU computing. In: Paszynski, M., Kranzlmüller, D.,
Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS,
vol. 12743, pp. 373–385. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-77964-1_29

13. Rościszewski, P., Iwański, M., Czarnul, P.: The impact of the AC922 architecture
on performance of deep neural network training. In: 2019 International Conference
on High Performance Computing Simulation (HPCS), pp. 666–673, July 2019.
https://doi.org/10.1109/HPCS48598.2019.9188164

14. Sergeev, A., Del Balso, M.: Horovod: fast and easy distributed deep learning in Ten-
sorFlow. arXiv:1802.05799 [cs, stat], February 2018, https://arxiv.org/abs/1802.
05799, arXiv: 1802.05799

https://moorinsightsstrategy.com/research-paper-the-graphcore-second-generation-ipu/
https://moorinsightsstrategy.com/research-paper-the-graphcore-second-generation-ipu/
https://doi.org/10.15439/2021F004
https://doi.org/10.1016/j.jocs.2022.101741
https://doi.org/10.1073/pnas.2101784118
https://doi.org/10.1073/pnas.2101784118
https://www.pnas.org/doi/abs/10.1073/pnas.2101784118
https://arxiv.org/abs/2112.03235
https://doi.org/10.1017/jfm.2018.770
https://arxiv.org/abs/2004.08826
http://arxiv.org/abs/2004.08826
https://doi.org/10.1007/978-3-030-77964-1_29
https://doi.org/10.1007/978-3-030-77964-1_29
https://doi.org/10.1109/HPCS48598.2019.9188164
http://arxiv.org/abs/1802.05799
https://arxiv.org/abs/1802.05799
https://arxiv.org/abs/1802.05799
http://arxiv.org/abs/1802.05799

Adaptation of AI-Accelerated CFD Simulations to the IPU Platform 235

15. Sze, V., Chen, Y.H., Emer, J., Suleiman, A., Zhang, Z.: Hardware for machine
learning: challenges and opportunities, pp. 1–8, April 2018. https://doi.org/10.
1109/CICC.2018.8357072

16. Thuerey, N., Weißenow, K., Prantl, L., Hu, X.: Deep learning methods for reynolds-
averaged navier-stokes simulations of airfoil flows. AIAA J. 58, 1–12 (2019).
https://doi.org/10.2514/1.J058291

17. Um, K., Brand, R., Fei, Y.R., Holl, P., Thuerey, N.: Solver-in-the-loop: learning
from differentiable physics to interact with iterative PDE-solvers. In: Proceedings
of the 34th International Conference on Neural Information Processing Systems,
NIPS 2020, Curran Associates Inc., Red Hook, NY, USA (2020)

18. Wiewel, S., Becher, M., Thuerey, N.: Latent space physics: towards learning the
temporal evolution of fluid flow. Comput. Graph. Forum 38(2), 71–82 (2019)

19. Wyatt II, M.R., Yamamoto, V., Tosi, Z., Karlin, I., Van Essen, B.: Is disaggrega-
tion possible for HPC cognitive simulation? arXiv:2112.05216 [cs], December 2021,
https://arxiv.org/abs/2112.05216

https://doi.org/10.1109/CICC.2018.8357072
https://doi.org/10.1109/CICC.2018.8357072
https://doi.org/10.2514/1.J058291
http://arxiv.org/abs/2112.05216
https://arxiv.org/abs/2112.05216

Performance Analysis of Convolution
Algorithms for Deep Learning on Edge

Processors

Pedro Alonso-Jordá1(B) , Héctor Mart́ınez2 ,
Enrique S. Quintana-Ort́ı1(B) , and Cristian Ramı́rez1

1 Universitat Politécnica de Valéncia, Valencia, Spain
{palonso,crirabe}@upv.es, quintana@disca.upv.es

2 Universidad de Córdoba, Córdoba, Spain
el2mapeh@uco.es

Abstract. We provide a complete performance comparison of two real-
izations of the convolution, based on the lowering approach and a blocked
variant of the direct convolution algorithm. The theoretical analysis
focuses on the conventional, high performance implementation of the
general matrix multiplication (gemm), which is the key computational
kernel underneath these two algorithms. The study leverages a simulator
calibrated for the GAP8 edge processor and exploits the determinism
of the memory system in this type of architectures to deliver accurate
predictions of the arithmetic and data transfer costs.

Keywords: Convolution · deep learning · edge processors ·
performance analysis

1 Introduction

The deployment of deep learning (DL) at the edge, on IoT (Internet-of-Things)
appliances, is crucial to improve safety and privacy, reduce the latency for the
end-user, and/or decrease energy consumption [4,9]. The large diversity of IoT
applications, with many of them exploiting DL-based technologies, and the strict
constraints on power supply and time-to-response have resulted in a large hetero-
geneity of edge processor architectures, and the utmost need to carefully select
the algorithms and then optimize the software running on this type of devices.

In this work we focus on the optimization of convolutional deep neural net-
works (DNNs) on edge processors by conducting a complete analysis of the the-
oretical performance for two popular realizations of the convolution operator,
based on the lowering approach [2] and a blocked variant of the direct algorithm
for this operation [1,10]. Our analysis exploits that 1) both algorithms are built
on top of the general matrix multiplication (gemm); and 2) the determinism
of the memory system in edge processors, derived from the integration of user-
controlled scratchpads instead of hardware-assisted memory caches. These fea-
tures provide the means to deliver a valuable performance comparison of the two
gemm-based algorithms prior to their potential implementation. This evaluation
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 236–247, 2023.
https://doi.org/10.1007/978-3-031-30445-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_20&domain=pdf
http://orcid.org/0000-0002-6882-6592
http://orcid.org/0000-0001-5891-4479
http://orcid.org/0000-0002-5454-165X
http://orcid.org/0000-0002-7047-950X
https://doi.org/10.1007/978-3-031-30445-3_20

Analysis of Convolution Algorithms for Deep Learning on Edge Processors 237

is conducted using a simulator enhanced with a few experimental data collected
via simple calibration experiments on the RISC-V fabric controller comprised in
the GAP8 parallel-ultra-low power platform (PULP) for IoT.

2 Brief Review of the Convolution

The convolution operator
O = Conv(F, I), (1)

combines a 4D input tensor I, of size B×Hi×Wi×Ci, with a 4D filter tensor F ,
of size Ci×Hf ×Wf ×Co, in order to produce a 4D output tensor O, of dimension
B×Ho×Wo×Co. Here, B denotes the number of (input and output) images that
are to be processed simultaneously in a batch; each input/output image is of size
Hi×Wi/Ho×Wo (height × width), and consist of Ci input/Co output channels;
and there are CiCo filters, each of size Hf ×Wf (height × width). For simplicity,
we assume that the filter is applied with unit vertical/horizontal strides; and the
output is not padded so that Ho = Hi − Hf + 1,Wo = Wi − Wf + 1.

While there exist several approaches to realize the convolution operator, the
general view of the corresponding optimized implementations of these methods
is that the best option from the viewpoints of performance and accuracy is
largely dependent on the parameters that define the convolution. In this paper we
focus on the lowering approach and the direct algorithm which, compared with
the FFT or Winograd-based realizations, offer superior flexibility and numerical
stability at the cost of an increased arithmetic count.

3 Convolution via Lowering

The lowering approach leverages the im2row transform [2] in order to cast the
convolution operator in terms of a large gemm. The advantage of this method is
that there exist highly optimized implementations of gemm for virtually any pro-
cessor architecture. On the negative side, this solution requires a large workspace
and a considerable number of data copies.

The Lowering Approach. As argued earlier, this technique transforms the
convolution shown in (1), via the im2row transform, into the gemm:

C = A · B, (2)

where C ≡ O is the output tensor, viewed as an M×N = (BHoWo)×Co matrix;
and B ≡ F is the filter tensor, viewed as a K × N = (CiHfWf) × Co matrix.
Furthermore, the augmented matrix A, of size M ×K = (BHoWo)× (CiHfWf),
results from applying im2row to the input tensor I; see [2].

High Performance Implementation of GEMM. Consider next the gemm
in (2) resulting from the application of im2row. The high performance imple-
mentations of this kernel in BLIS, OpenBLAS, AMD AOML and, presumably,

238 P. Alonso-Jordá et al.

1 void Gemm(C[M][N], A[M][K], B[K][N]){
2 for (jc = 0; jc < N; jc += Nc) // Loop L1
3 for (pc = 0; pc < K; pc += Kc) { // Loop L2
4 Bc := B[pc : pc + Kc − 1][jc : jc + Nc − 1]; // Pack Bc

5 for (ic = 0; ic < M; ic += Mc) { // Loop L3
6 Ac := A[ic : ic + Mc − 1][pc : pc + Kc − 1]; // Pack Ac

7 for (jr = 0; jr < Nc; jr += Nr) // Loop L4
8 for (ir = 0; ir < Mc; ir += Mr) // Loop L5
9 // Micro -kernel

10 for (pr = 0; pr < Kc; pr++) // Loop L6
11 Cc[ir : ir + Mr − 1][jr : jr + Nr − 1]

=+21 Ac[ir : ir + Mr − 1][pr] · Bc[pr][jr : jr + Nr − 1];
13 } } }

In L3 cache In L2 cache In L1 cache In registers

Zoom

in

Br

Bc

Ac

Cr

+=

+=

+=

+=

+=

AC B

+=L6

L5

L4

L3

L2

L1

B

A

B

A

c

r

c

r r

Nr

M

Fig. 1. High performance implementation of gemm. Cc is a notation artifact, intro-
duced to ease the presentation of the algorithm, while Ac and Bc are actual buffers
that maintain copies of certain blocks of A and B.

Intel MKL follow the ideas in GotoBLAS [3] to formulate it as a collection of five
nested loops around a micro-kernel that performs a small gemm; see Fig. 1 (top).
In some detail, tiling (blocking) is applied to the operands so that a Kc × Nc

block of B is packed into a buffer Bc, and an Mc × Kc block of A is packed
into a buffer Ac. Here, the cache blocking parameters Mc, Nc,Kc are set so that,
during the execution of the micro-kernel, Bc “remains” into the L3 cache, Ac

into the L2 cache, and a specific Kc ×Nr micro-panel of Bc, say Br, into the L1
cache [5,8]. Finally, the micro-kernel performs all the arithmetic, retrieving the
data of (an Mr × Kc micro-panel Ar of) Ac from the L2 cache, Br from the L1
cache, and C directly from memory; see Fig. 1 (bottom-left).

Analysis of Convolution Algorithms for Deep Learning on Edge Processors 239

The micro-kernel is usually encoded in assembly (or in C with vector intrin-
sics). The innermost loop, inside the micro-kernel, updates an Mr×Nr micro-tile
of C, say Cr, by performing an outer product one row of Ar and one column
of Br. The packing of Ac and Bc shown in Fig. 1 (bottom-right) ensures that
the entries of Ar, Br are retrieved with unit stride. Together with a selection of
Mr, Nr � Kc, this amortizes the cost of accessing Cr.

4 GEMM-Like Direct Convolution

The basic algorithm for the convolution consists of 7 nested loops traversing the
(B,Hi/Ho,Wi/Wo, Ci, Co,Hf ,Wf) dimensions of the problem; see, e.g. [10]. The
ordering of the loops together with the layout of the tensors in memory dictate
the memory access pattern. Also, the loops in the algorithm are independent from
each other as well as from the memory layout of the tensors. In consequence, the
algorithm loops can be reorganized in any other order.

In [1], we combined the blocking ideas in [10] with the packing strategies in
the high performance formulation of gemm, obtaining the blocked variant of the
direct convolution in Fig. 2, with the following properties:

– All arithmetic occurs inside a micro-kernel that computes a small gemm via
a sequence of outer products, each updating an Mr × Nr micro-tile of O.

– The dimensions of the micro-tile are decoupled from the cache blocking
parameters Wo,b, Co,b, Ci,b (respectively analogous to Mc, Nc,Kc for gemm).

– During the algorithm, (part of) the contents of the input tensor are packed
into an Mc × Nc buffer Ac so that its entries are accessed with stride 1
from the micro-kernel. For clarity, the algorithm in Fig. 2 only indicates the
loop inside which this packing is placed but still shows the arithmetic as if
operating directly with the input tensor I.

– The filter tensor is re-packed into a 5D tensor, of dimension Hf × Wf ×
Co/Co,b × Ci × Co,b. As the filters do not vary during inference, this only
needs to be done once for the DNN model and the cost is negligible. The
advantage of this type of packing is that it allows accessing the entries of B
with unit stride during the execution of the micro-kernel.

As in the case of [10] and in the high performance realization of gemm, one of the
keys to high performance is the re-formulation of the direct convolution in terms
of a gemm, with a blocking mechanism and the utilization of an architecture-
specific micro-kernel. The decoupling of the micro-tile dimensions and the cache
blocking parameters, combined with the packing of the input tensor, allows that,
unlike the proposal in [10], the entries of Ac are accessed from the micro-kernel
with stride 1, paving the road to the utilization of micro-kernels specifically
tuned for different architectures from the BLIS framework [1].

5 Architecture Model for an Edge Processor

In order to analyze the gemm-based convolution algorithms described earlier,
we make the following considerations for the target edge processor:

240 P. Alonso-Jordá et al.

1 void ConvDirect_Blocked(I[B][Hi][Wi][Ci],, F [Ci][Hf][Wf][Co], O[B][Ho][Wo][Co])
2 {
3 for (b = 0; b < B; b++)
4 for (i′ = 0; i′ < Ci/Ci,b; i′++) // Loop L2 in GEMM
5 for (l = 0; l < Ho; l++)
6 for (k′ = 0; k′ < Wo/Wo,b; k′++) // Loop L3 in GEMM
7 for (n = 0; n < Hf; n++)
8 for (m = 0; m < Wf; m++) {
9 // Here packing for Ac

10 // Ommitted for simplicity
11 for (j′ = 0; j′ < Co/Co,b; j′++) // Loop L1 in GEMM
12 for (jj = 0; jj < Co,b; jj += Nr) // Loop L4 in GEMM
13 for (kk = 0; kk < Wo,b; kk += Mr) { // Loop L5 in GEMM
14 // Micro -kernel
15 for (ii = 0; ii < Ci,b; ii++) // Loop L6 in GEMM
16 for (jr = kk; jr < kk + Mr; jr++)
17 for (ir = Co,b; ir < Co,b + Nr; ir++)
18 O[l][k′ · Wo,b + jr][j

′ · Co,b + ir]
=+91 I[l + n][k′ · Wo,b + jr + m][i′ · Ci,b + ii]

20 · F [j′ · Co,b + ir][n][m][i′ · Ci,b + ii];
21 } }

Fig. 2. Blocked variant of the direct convolution. The loops are annotated to specify
their counterpart in the gemm algorithm in Fig. 1. Here loop L1 is re-scheduled to
amortize the cost of packing Ac.

– The processor is equipped with a single core, enhanced with a SIMD (single
instruction multiple data) arithmetic unit capable of working with 32 vector
registers of width 32 bits (4 INT8 numbers). The peak arithmetic rate is RA

MINT8S (millions of INT8 operations per second).
– The memory comprises four levels, from fastest/smallest to slowest/largest,

referred to as R (for processor registers), S1, S2, and M (for main memory),
and with capacities CR, CS1, CS2, and CM, respectively. The transfer rates
between two levels will be referred to as RO,D, with the subindices O/D
specifying the origin/destination memory levels.

– There is a strict control of the data transfers between memory levels. The
S1 and S2 levels are “scratchpad” memories instead of conventional caches.
The system relies on programmable DMA (direct memory access) units and
explicit user-control to manually orchestrate data transfers to/from the main
memory and in between S1 and S2 (instead of cache memories and a hardware-
assisted coherence mechanism). A relevant consequence of this is the deter-
minism of the memory system behavior.

For reference, Table 1 reports the transfer rates between different levels of
the memory hierarchy on the GAP8 edge platform. This system comprises a
fabric controller (FC) core for control, communications, and security functions;
a cluster of 8 cores for the execution of parallel algorithms; and a specialized
accelerator. The experimental data was collected using the RISC-V core in the
FC, which has access to its own private 16-KB S1 (data/instructions) and a
shared 512-KB S2. The arithmetic of the FC rate, when running at 250 MHz,
was experimentally determined to be RA = 84 MINT8OPS.

Analysis of Convolution Algorithms for Deep Learning on Edge Processors 241

Table 1. Experimental transfers rates in the GAP8. Note that, since we consider INT8
as the basic datatype, the Bytes/s rates directly translate into INT8/s.

Bytes/s gemm Bytes/s gemm

RM,M 1.44E+05 Packing B to Bc RM,R 4.39E+05 Stream C to reg.

RM,S2 1.36E+05 Packing A to Ac RR,M 4.39E+05 Stream C to mem.

RM,S1 1.76E+07 Bc to Br RS2,R 6.92E+06 Stream Ar to reg.

RS1,R 1.82E+07 Stream Br to reg.

When accessing data that is stored in “chunks” of r consecutive in main
memory, the transfer rates in the table for RM,M, RM,S2 (first two rows in the left
side, corresponding to the packings of Bc, Ac) have to be multiplied by a factor
of r. For all other cases, the memory accesses involve consecutive elements in
the corresponding memory level, as is the case of data transfers from the gemm
micro-kernel and the copy of Bc and Br (right side of the table).

6 Performance Analysis

The goal of our analysis is to experiment with different algorithmic alternatives
for this operation, prior to going through the effort of implementing them on a
specific edge processor. As a starting point, we remind that we target the FC in
the GAP8 operating with INT8 arithmetic (i.e., 4 INT8 numbers per SIMD reg-
ister); (M,N,K) = (BHoWo, Co, CiHfWf) for the lowering approach (LOW),
and (Mc, Nc,Kc) = (Wo,b, Co,b, Ci,b) for the blocked variant of the direct convo-
lution (BDC). Furthermore, the actual values for Mr, Nr are constrained by the
number of SIMD registers, and those of Mc,Kc by the capacities of the scratch-
pad. Finally, in the notation used for the cost in this section, the subindices for
the summations specify the bounds defined by the corresponding loop in Fig. 1.
Thus, for example, the summation

∑
L1 refers to loop L1 there, which iterates

from jc = 0 to N − 1 in steps of Nc elements.

Micro-kernel. Both gemm-based realizations of the convolution are based on
the same type of micro-kernel, which performs a sequence of Kc outer products,
each updating an Mr × Nr micro-tile Cr using a column of Ar and a row of Br

(with Mr and Nr elements, resp.). Let us first turn our attention to the total
cost of executing the micro-kernels when computing the gemm of dimension
(M,N,K) in LOW. Moreover, for simplicity assume these values are respec-
tively integer multiples of Mc, Nc,Kc; and that Mc, Nc are respectively integer
multiples of Mr, Nr. We can then easily derive that the total costs due to the
streaming of Ar, Br and Cr from the micro-kernel are respectively given by:

TstreamAr =
∑

L1

∑
L2 . . .

∑
L5 Mr Kc/RS2,R = M N K/(RS2,R Nr) s,

TstreamBr =
∑

L1

∑
L2 . . .

∑
L5 Kc Nr/RS1,R = M N K/(RS1,R Mr) s,

TstreamCr =
∑

L1

∑
L2 . . .

∑
L5 2Mr Nr/RM,R = 2M N K/(RM,R Kc) s,

(3)

242 P. Alonso-Jordá et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 200 400 600 800 1000 1200

T
im

e
(m

s)

Dimension Kc

Arithmetic
Stream (all)
Stream Cr
Stream Ar
Stream Br

Execution time

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 200 400 600 800 1000 1200

M
IN

T
8O

P
S

Dimension Kc

OVD - 4x24
OVD - 8x12
OVD - 12x8
NOV - 4x24
NOV - 8x12
NOV - 12x8

Performance rate

Fig. 3. Performance analysis of the micro-kernels in the GAP8 FC.

which take into account the number of times the micro-kernel is executed, the
dimensions of the micro-panels of A,B and the micro-tile of C being trans-
ferred, the origin/destination of the data (S2 for Ar, S1 for Br, and the main
memory for Cr), and the fact that Cr is both read from and written to mem-
ory (factor 2 in the numerator of the last cost). These expressions bring to
light the relationship between Mr, Nr,Kc and the streaming costs for the global
gemm execution in LOW, showing how increasing these parameters reduce the
corresponding streaming overheads. The analysis of the micro-kernel in BDC is
basically analogous.

In order to gain some quantitative insights from this analysis of the trans-
fer overheads incurred by the micro-kernel, let us consider the arithmetic and
memory costs for a single execution of three types of micro-kernels, which differ
in that Mr × Nr = 4 × 24, 8 × 12, or 12 × 8. (These three cases were selected
because they result in a high utilization of the 32 SIMD registers available in the
GAP8 FC. For example, the 8 × 12 micro-kernel utilizes 8/4 × 12 = 24 SIMD
registers for Cr, 8/4 = 2 for the column of Ar, and 12/4 = 3 for the row of
Br, for a total of 29 SIMD registers.) This study also considers two scenarios
(to be achieved using the spare SIMD registers to prefetch the data): overlapped
vs. non-overlapped data transfers and arithmetic, which result in the execution
time for a single execution of the micro-kernel respectively being

T ovd
MK = max(Tarith, TstreamCr + TstreamAr + TstreamBr) s or

T nov
MK = Tarith + TstreamCr + TstreamAr + TstreamBr s,

where the costs of the individual components are obtained by setting M,N,K =
Mr, Nr,Kc in (3).

The left plot in Fig. 3 illustrates the contribution of the arithmetic and mem-
ory costs to the time of a single execution of the 8 × 12 micro-kernel as Kc

varies. (The other two micro-kernels offered qualitatively similar results.) This
plot shows that the arithmetic becomes the dominant factor from a threshold
point Kc > 410. Also, the largest contribution to the memory access overhead
comes from the load/store of Cr for small values of Kc, up to 380, and the
streaming of Ar from then on. In contrast, the contribution of streaming Br

remains almost negligible. In the right plot in the same figure, the higher costs

Analysis of Convolution Algorithms for Deep Learning on Edge Processors 243

of accessing the data in S2 with respect to S1 explain the faster ramp up of the
MINT8OPS rates of the 4 × 24 micro-kernel compared with those of the other
two types of micro-kernels. Concretely, for the same value of Kc, a larger value
of Mr implies that the micro-kernel retrieves a larger volume of data for Ar

from the slower S2 (compared with Br in S1). In the same figure we can also
observe that, for the overlapped model (label “ovd”), as Kc grows, all micro-
kernels eventually saturate the full peak arithmetic rate (84 MINT8OPS), nicely
illustrating the effect of the “roofline model” effect. In contrast, none of their
non-overlapped (label “nov”) counterparts reaches that value.

Data Transfers Outside the Micro-kernel. Let us continue with the gemm
of dimension (M,N,K) appearing in LOW, and consider that the assumptions
on the integer multiplicity between M,N,K and Mc, Nc,Kc, and the former two
and Mr, Nr, still hold. In LOW, Bc is packed within the first two loops of the
gemm algorithm (see Fig. 1), and per call copies a block of Kc ×Nc elements of
B, residing in the main memory, into the buffer Bc, to be stored back in main
memory. Thus, the cost for these packing operations is

TpackBc =
∑

L1

∑
L2 2KcNc/(RM,M Nr) = 2N K/(RM,M Nr) s,

which takes into account that 1) the data is read from and written back to the
main memory; and that 2) these copies are done in “chunks” of Nr consecutive
elements in memory (see Fig. 1, right), and therefore the transfer rate needs to
be multiplied by this factor. Similarly, all the copies of A from main memory
into the buffer Ac in S2 consume

TpackAc =
∑

L1

∑
L2

∑
L3 McKc/(RM,S2 Mr) = M N K/(RM,S2 Mr Nc) s.

Finally, although not included explicitly in the algorithm in Fig. 1, the prepara-
tion of the data for the micro-kernel requires copying the micro-panels Br from
the main memory into the S1 scratchpad. This occurs inside loop L4, involves a
block of Kc × Nr elements (per call), and contributes with the cost

TcopyBr =
∑

L1

∑
L2

∑
L3

∑
L4 KcNr/RM,S1 = M N K/(RM,S1 Mc) s.

In addition, for LOW, the cost of im2row amounts for

Tim2row = 2BCi Wo HoWfHf/(RM,M Wf) s,

as this involves reading entries of I from the main memory, in order to build the
augmented matrix B in memory, and can proceed in chunks of Wf elements.

The previous expressions for the data transfer costs of LOW (outside the
micro-kernel) expose that increasing Mr, Nr reduces the corresponding over-
heads, because it provides faster transfer rates between the main memory and
the S2 scratchpad. In addition, increasing Mc, Nc diminishes the costs by saving
data transfers. A similar analysis holds for BDC, taking into account that there
is no packing of Bc nor im2row in that case.

244 P. Alonso-Jordá et al.

 0

 5

 10

 15

 20

4x4 4x8
4x1

2
4x1

6
4x2

0
4x2

4
8x4 8x8

8x1
2

12x4
12x8

16x4
20x4

24x4

T
im

e
(s

)

Micro-kernel dimensions (Mr x Nr)

Arithmetic and memory costs for layer #63 of ResNet50V1 using LOW

Arithm
Stream C

Stream Br
Stream Ar

Copy Br
Pack Ac

Pack Bc
Im2row

 0

 5

 10

 15

 20

4x4 4x8
4x1

2
4x1

6
4x2

0
4x2

4
8x4 8x8

8x1
2

12x4
12x8

16x4
20x4

24x4

T
im

e
(s

)

Micro-kernel dimensions (Mr x Nr)

Arithmetic and memory costs for layer #63 of ResNet50V1 using BDC

Arithm
Stream C

Stream Br
Stream Ar

Copy Br
Pack Ac

Fig. 4. Arithmetic and memory costs of the gemm-based convolution algorithms.

The Simulator. The cost expressions derived earlier in this section provide a
qualitative tool to explore the effect of modifying the configuration parameters
on the performance of the convolution via LOW or BDC. However, when dealing
with real convolutional DNNs, the dimensions of the gemm kernels to be exe-
cuted are rarely integer multiples of the cache configuration sizes. In such case,
the use of the previous formulas may introduce non-negligible approximation
errors in the cost calculations. To tackle this, we developed a simulator that
takes into account the actual size of the subproblems encountered during the
execution of the gemm-based convolution algorithms1. Our simulator accepts
the parameters defining the convolution as a tuple (B,Hi,Wi, Ci, Co,Hf ,Wf)
and the values for Mr, Nr to be explored. In order to reduce the search space,
the simulator automatically selects the values for Mc, Nc,Kc depending on the
memory capacity of the architecture, as discussed next.

The S1 scratchpad stores both instructions and data in the GAP8 FC. There-
fore, for safety, we leave half of its capacity for the instructions and use the
remaining half for storing Br, of size Kc×Nr. As Nr is “hard-wired” in the imple-
mentation of the micro-kernel, the simulator sets Kc = min(CS1/(2Nr),K).
Along the same line, once Kc is fixed, the “free” dimension of the Mc×Kc buffer
Ac, which has to reside in the (data) S2, is chosen as Mc = min(CS2/Kc,M).
Finally, Nc = N (or the largest value which fits in the available space in the main
memory of the GAP8, which plays the role of the L3 cache in this platform).

1 The simulator is based on a performance model for gemm that was validated in [7],
showing a relative error for the estimations below 2% against an actual implemen-
tation of that kernel on the GAP8 platform.

Analysis of Convolution Algorithms for Deep Learning on Edge Processors 245

 0

 5

 10

 15

 20

6 9 12 14 18 21 24 28 31 34 38 44 50 53 56

T
im

e
(s

)

#Layer ID

BDC + NOV
LOW + NOV

BDC + OVD
LOW + OVD

 0

 5

 10

 15

 20

60 63 66 70 73 76 80 86 92 95 98
102

105
108

112

T
im

e
(s

)

#Layer ID

BDC + NOV
LOW + NOV

BDC + OVD
LOW + OVD

 0

 5

 10

 15

 20

115
118

122
125

128
132

135
138

142
148

154
157

160
164

167
170

T
im

e
(s

)

#Layer ID

BDC + NOV
LOW + NOV

BDC + OVD
LOW + OVD

Fig. 5. Execution time of gemm-based convolution algorithms for ResNet50.

Detailed Cost Analysis of a Single Case. Fig. 4 reports the arithmetic cost
and memory access overheads for a layer with (B,Hi,Wi, Ci, Co,Hf ,Wf) =
(1, 28, 28, 128, 128, 3, 3), computed using LOW (top) and BDC (bottom), and
various types of micro-kernels. There are some aspects to highlight in that figure:

– In both algorithms, the contribution of the arithmetic is constant and inde-
pendent of the type of micro-kernel. The same holds for the cost of the
im2row transform in LOW.

– For both gemm-based algorithms, the best micro-kernel is Mr ×Nr = 8×12.
– The overheads of packing Ac, Bc and copying Br are negligible compared with

the streaming costs incurred by the micro-kernel.
– BDC exhibits a high overhead due to the streaming of Cr, independently of the

type of micro-kernel. The reason is that the simulator selects Kc = Ci = 128

246 P. Alonso-Jordá et al.

 0

 50

 100

 150

 200

 250

1 3 6 8 11 13 15 18 20 22 25 27 29

T
im

e
(s

)

#Layer ID

BDC + NOV
LOW + NOV

BDC + OVD
LOW + OVD

Fig. 6. Execution time of gemm-based convolution algorithms for VGG16.

for all micro-kernels. In comparison, for LOW, this layer and the 8×12 micro-
kernel, the simulator sets Kc = 341, which results in a considerably more
reduced cost for this component.

– For LOW, assembling the augmented matrix via im2row imposes a significant
overhead.

Hiding the Memory Transfer Costs Outside the Micro-kernel. The data
transfers for packing Ac, Bc and transferring Br from memory to S1 can be
potentially overlapped with the arithmetic of the micro-kernel by applying double
buffering. However, this requires space for (at least) two copies of each one of
these buffers in the corresponding memory level, reducing the practical capacity
of S1 and S2 to half, and consequently affecting the actual values that can
be chosen for Kc,Mc. In addition, we also need to take into account that the
first packing/transfer cannot be overlapped and, therefore, Kc,Mc should be
chosen sufficiently small with respect to K,M . Finally, this type of overlapping
can generate conflicts with the data transfers performed from inside the micro-
kernel. For those reasons, we do discard the potential overlapping outside the
micro-kernel.

Putting it All Together: Global Analysis. For the final evaluation, we target
the convolutional layers in VGG16 and ResNet50 (v1.5), combined with the
ImageNet dataset with B = 1 (single stream case in the MLPerf benchmark [6]).

Figures 5 and 6 report the global execution time of the gemm-based convo-
lution algorithms for two scenarios: 1) without any type of overlapping; and 2)
overlapping only the data transfers occurring within the micro-kernel (streaming
Ar, Br, Cr). We evaluate the same types of micro-kernels consigned in Fig. 4 and
select the best one, for each layer and scenario. Therefore, we can have different
types of micro-kernels in operation in the same DNN.

Focusing, for example, in the results for VGG16 (Fig. 6) we can make the
following observations:

– The benefit of overlapping arithmetic and data transfers in the micro-kernel
is visible for both gemm-based convolution algorithms, showing that this
operation is far from being compute-bound in the GAP8 FC.

Analysis of Convolution Algorithms for Deep Learning on Edge Processors 247

– In general, BDC outperforms LOW, both with and without overlapping,
though the differences between the two are narrower in the second case.

– In a few cases, the execution of BDC takes considerably longer. For example,
looking in more detail into layer #1, the reason is that Ci = 3 for that
layer, which results in the inner loop of the micro-kernel being executed with
kc = Ci, and explains the low performance.

7 Concluding Remarks

We have conducted a complete analysis of the memory access overheads for the
convolution operator realized via two methods: the lowering approach and a
blocked variant of the direct algorithm, both heavily based on the gemm kernel.
Our study for a RISC-V edge processor equipped with two scratchpad memories
illustrates the high performance benefits of carefully selecting the micro-kernel
prior to its implementation, and the relevance of a proper selection of the scratch-
pad configuration parameters and, of course, the convolution method.

Acknowledgments. This work was supported by project PID2020-113656RB-C22 of
MCIN/AEI/10. 13039/501100011033 C. Ramı́rez is a “Santiago Grisoĺıa” fellow sup-
ported by Generalitat Valenciana. H. Mart́ınez is a POSTDOC 21 00025 postdoctoral
fellow supported by Junta de Andalućıa.

References

1. Barrachina, S., et al.: Reformulating the direct convolution for high-performance
deep learning inference on ARM processors. Cluster Computing (2022). In review

2. Chellapilla, K., Puri, S., Simard, P.: High performance convolutional neural net-
works for document processing. In: 10th International Workshop Frontiers in Hand-
writing Recognition. Université de Rennes, France (2006)

3. Goto, K., van de Geijn, R.A.: Anatomy of a high-performance matrix multiplica-
tion. ACM Trans. Math. Softw. 34(3), 12:1-12:25 (2008)

4. Hazelwood, K., et al.: Applied machine learning at Facebook: a datacenter infras-
tructure perspective. In: IEEE International Symposium on HPC Architecture, pp.
620–629 (2018)

5. Low, T.M., et al.: Analytical modeling is enough for high-performance BLIS. ACM
Trans. Math. Softw. 43(2), 12:1–12:18 (2016)

6. Mattson, P., et al.: MLPerf training benchmark. CoRR abs/1910.01500 (2019).
http://arxiv.org/abs/1910.01500

7. Ramı́rez, C., Castelló, A., Quintana-Ort́ı, E.S.: A BLIS-like matrix multiplication
for machine learning in the RISC-V ISA-based GAP8 processor. J. Supercomput.
78(16), 18051–18060 (2022). To appear

8. - Van Zee, F.G., van de Geijn, R.A.: BLIS: a framework for rapidly instantiating
BLAS functionality. ACM Trans. Math. Softw. 41(3), 14:1-14:33 (2015)

9. Wu, C., et al.: Machine learning at Facebook: understanding inference at the edge.
In: IEEE International Symposium on HPC Architecture, pp. 331–344 (2019)

10. Zhang, J., et al.: High performance zero-memory overhead direct convolutions. In:
Proceedings 35th International Conference on Machine Learning - ICML, vol. 80,
pp. 5776–5785 (2018)

http://arxiv.org/abs/1910.01500

Machine Learning-Based Online
Scheduling in Distributed Computing

Victor Toporkov(B) , Dmitry Yemelyanov , and Artem Bulkhak

Department of Computing Technologies, National Research University “MPEI”,
Moscow, Russia

{ToporkovVV,YemelyanovDM,BulkhakAN}@mpei.ru

Abstract. In this work, we propose and evaluate an online scheduler
prototype based on machine learning algorithms. Online job-flow sched-
uler should make scheduling and resource allocation decisions for individ-
ual jobs without any prior knowledge of the subsequent job queue (i.e.,
online). We simulate and generalize this task to a more formal 0–1 Knap-
sack problem with unknown utility functions of the knapsack items. In
this way we evaluate the implemented machine learning-based solution to
classical combinatorial optimization algorithms. A hybrid machine learn-
ing and dynamic programming - based approach is proposed to consider
and strictly satisfy the knapsack constraint on the total weight. As a
main result the proposed hybrid solution showed efficiency comparable
to the greedy knapsack approximation.

Keywords: Knapsack · Machine learning · Neural network · Dynamic
programming · Resources · Scheduling · Job · Parallel computing

1 Introduction

Today’s high-performance parallel and distributed computing systems (HPCS),
including network, cloud, and hybrid infrastructures, provide access to vast
amounts of resources [1,2]. These resources include compute nodes, network
links, software tools, and data stores required to run parallel jobs submitted by
HPCS users.

Most HPCS and cloud solutions require some quality of service (QoS) for
scheduling, executing, and monitoring user applications. Therefore, QoS con-
straints typically include a set of requirements for coordinating resources’ partic-
ipation and sharing [3–5], as well as several time and cost criteria and constraints,
such as deadlines, response time, total execution cost, etc. [2–7].

One of the most important indicators of the efficiency of a distributed com-
puting environment is both the level of use of system resources and the criteria
for the time and cost of performing tasks by users [2–4,8].

Organization and support of the HPCs are associated with certain economic
costs: the acquisition and installation of machinery, power supplies, user support,
repair work, security, etc. Under such conditions, resource management and job
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 248–259, 2023.
https://doi.org/10.1007/978-3-031-30445-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_21&domain=pdf
http://orcid.org/0000-0002-1484-2255
http://orcid.org/0000-0002-9359-8245
https://doi.org/10.1007/978-3-031-30445-3_21

Machine Learning-Based Online Scheduling in Distributed Computing 249

flow scheduling based on economic models is seen as an effective way to reconcile
conflicting preferences of participants of the computing system and stakeholders
[3–7].

The easiest way to schedule jobs is to use the First Come First Served (FCFS)
method. FCFS executes jobs sequentially in the order in which they arrive. The
backfill process [4,9] uses advanced resource reservation to prevent starvation of
jobs with relatively large resource demands. Micro-scheduling methods [4,5,10]
can be added to the backfill to influence the global scheduling efficiency by
choosing appropriate secondary optimization criteria.

On the other hand, online scheduling requires the HPCS scheduler to make
resource allocation and optimization decisions when submitting jobs. One of the
obvious strategies for online scheduling is to select locally available resources for
each job. However, in this case, the efficiency of global scheduling is reduced.
The CoP micro-scheduling strategy [4] implements a set of heuristic rules to
optimize the execution time of job streams according to resource characteristics:
performance, cost, utilization, etc. Many scheduling algorithms and methods
implement exact or approximate knapsack solutions for the resource selection
step [4,11–14]. For example, in [13,14], we study the problem of jointly allo-
cating n windows of simultaneously available computing resources (the fixed-
number problem). The topic of performing combinatorial optimization tasks
using machine learning methods, including the knapsack problem [15–20], is
currently relevant. For example, [16] studied neural network and deep learning
based heuristic knapsack solvers in detail. Neural solvers have been successfully
tested on instances of up to 200 items and provide near-optimal solutions (usu-
ally better than greedy algorithms) in scenarios where there is a correlation
between the utility and weight of the items.

A method to solve the traveling salesman problem using reinforcement
machine learning and neural networks is proposed in [17]. The flexibility of
Neural Combinatorial Optimization is proved by the results of its application
on another NP-hard problem of filling a knapsack up to 200 elements. Although
the performance of this method is far from the strongest solvers, it provides fair
approximations.

Another application [18] combines dynamic programming with machine
learning, introducing a neural network instead of the conventional memoriza-
tion table to solve NP-hard combinatorial optimization problems, in particular
the traveling salesman problem. This solution can significantly reduce space com-
plexity and it is flexible in balancing space, runtime, and accuracy. Experimental
results show that the method can solve larger-scale problems.

Paper [19] provides a review of well-known combinatorial optimization prob-
lems and the most recent approaches to solve them using machine learning.
Models with supervised, unsupervised and reinforcement learning are consid-
ered. The authors propose ideas for possible overcoming the problem of finding
a balance between low accuracy, limited scalability, poor generalization, etc.

The authors of the article [20] consider the integration of machine learning
and optimization algorithms to be a more advantageous approach in solving

250 V. Toporkov et al.

combinatorial problems, in contrast to the vaguely defined and too expensive to
calculate handcrafted heuristics.

The main contribution of this paper is a machine learning-based approach
that can be trained on efficient scheduling results to perform 0–1 knapsack allo-
cation based on unknown utility functions. With this problem statement we
formalize and simulate first step of the online job flow scheduling process.

The structure of the paper is as follows. Section 2 presents the general
problem statement and the corresponding machine learning model. Section 3
describes the proposed neural network algorithm and training details. Section 4
contains simulation details, results, and analysis. Conclusion Sect. 5 summarizes
the results of the paper.

2 Problem Statement

2.1 Online Resources Selection and Knapsack Problem

It is typically impossible to explain or solve an optimization problem for simulta-
neous co-allocation of resources of various sorts (computational nodes, data stor-
ages, software packets, network connections, etc.). The minimum and maximum
required amount of resources, their proportional utility value, and other require-
ments vary depending on the type of resource being allocated. However, there is
always a single common constraint on the price of using all of the resources, i.e.,
a budget set aside for the job’s execution, when many resource types are needed
for a single user job.

Co-allocating a variety of heterogeneous resources of various sorts according
to user criterion zi and a single constraint on the total usage cost appears like an
unrealistic and erroneous issue formulation. Unbalanced resource combinations
may result from the zi criterion (or preliminary user utility estimations for each
accessible resource i calculation features. For instance, a set of solely network
resources (without a computational capacity) or a set of only computational
nodes (without access to the network or data storages) may be assigned for such
a request.

Thus, the resources allocation model in heterogeneous environments with
resources of diverse types requires formulation and simultaneous solution of sev-
eral co-allocation sub-problems specific for each type of resource. For example:
allocate n1 computational nodes, the corresponding number n2 of software pack-
ets, [n3;n4] storage drives and at least one network connection for a total alloca-
tion budget C. Such a problem formulation guarantees selection of a minimum
set of resources of each type required to execute a job, including those having
relatively small user utility values zi.

Therefore, the formulation and simultaneous solution of a number of co-
allocation sub-problems unique to each type of resource are required by the
resources allocation model in heterogeneous environments with resources of
diverse types. For a total allocation budget C, for instance, assign n1 com-
putational nodes, n2 software packets, [n3;n4] storage drives, and n1 network
connections. The choice of a minimal set of resources of each type, including

Machine Learning-Based Online Scheduling in Distributed Computing 251

those with relatively low user utility values zi, is ensured by this issue formula-
tion.

The 0–1 knapsack issue is crucial for the allocation and selection of resources.
There are numerous approaches that can be used to get individual solutions for
each resource co-allocation sub-problem with a specific budget constraint C and
a single resource type. Each of the m available computing resources has the
properties cost c1 and performance pi = zi. The maximizing of overall window
performance under the total cost restriction Cj is represented by the optimization
problem below:

Z =
m∑

i=1

zixi → max, (1)

with the following restrictions:

m∑

i=1

cixi ≤ Cj

m∑

i=1

xi = n

xi ∈ {0, 1}, i = 1, ..,m,

where zi is a target characteristic value provided by resource i, ci is its usage
price, xi is a decision variable determining whether to allocate resource i (xi = 1)
or not (xi = 0) for the solution. This problem formulation (1) is compatible with
the economic scheduling model when computing resources are made available and
have cost (ci) and performance (pi) attributes.

In practice, specifying the exact number n of the simultaneously required
resources usually is not possible or sensible. In a more general case, the suitable
number n of resources required to execute a parallel job depends not only on
the job structure, but also on the composition and characteristics of the cloud
system. Thus, a more flexible resources co-allocation approach should accept an
interval [nmin;nmax] of permissible values for the allocated resources number.
In this case, the resource request may be formulated as follows: allocate for a
period T a set of n ∈ [nmin;nmax] simultaneously available resources satisfying
constraints for individual characteristics (OS, minimal performance, RAM, etc.)
and an integral constraint for a total allocation cost C.

For instance, a backfilling scheduling technique can reduce the total queue
completion time by defining extra restrictions for the task queue execution order.
The work queue composition must be known in advance, which is a crucial
condition for the backfilling time optimization’s effectiveness. The fundamental
concept of backfilling is that relatively small jobs at the end of the queue are
executed on idle and waiting resources right now.

However, in a more typical case, each user parallel job is submitted separately,
and in the online mode, resources should be chosen and assigned right away.

252 V. Toporkov et al.

Therefore, our primary objective is to independently plan user jobs in order to
maximize overall scheduling criteria, such as the average jobs’ finish time or a
makespan.

The so-called microsheduling methodologies, such as CoP and PeST [4,10],
are based on comparable concepts. On the basis of the resources’ meta-
parameters and attributes, such as utilization level, performance, local schedules,
etc., they put into practice heuristic guidelines for how the resources should be
chosen for user jobs.

2.2 Artificial Neural Network Model

We consider a more structured method based on a machine learning model in the
current study. It is possible to train an artificial neural network to plan each job
separately with equivalent total overall efficiency using the outcomes of efficient
job queue scheduling (obtained, for example, through backfilling).

The more variables and characteristics of a suitable reference solution that
are considered, the more precise the online solution may be. Online scheduling
also places limitations on prior knowledge of the condition of the computer envi-
ronment. It is possible that the precise values of resource characteristics and
utility functions are uncertain or inaccurate.

The main purpose then is to create a model that will solve the 0–1 knapsack
problem with utility zi values that are a priori unknown and using just a set of
secondary resource’s features.

Accordingly, to sum up this problem we will utilize more complicated
scheduling model interpretation with elements having four numeric attributes
ai, bi, di, gi in an expansion to the weight wi. Utilities zi will be determined for
every knapsack element as a capability function Fval of attributes ai, bi, di, gi.
This function is used to find out the exact reference knapsack allocation (by
using a brute force or dynamic programming calculation). In view of this allo-
cation the AI model will be prepared to choose elements dependent just upon
the info attributes ai, bi, di, gi, consequently, reproducing the online scheduling
features.

For current study we will use five specific functions as different examples of
hidden relationships between the elements: attributes and their utility towards
the common criteria for the knapsack allocation:

Fval = a+ b+ d − g, (2)

Fval = a ∗ b+ d ∗ g2, (3)

Fval = sin(a+ b) + cos(d) + g2, (4)

Fval = a+ lg(b+ d) ∗ g, (5)

Fval = a+ lg(b) + d ∗ eg/10, (6)

Machine Learning-Based Online Scheduling in Distributed Computing 253

where a, b, d, g are knapsack elements’ attributes notwithstanding the weight.
The given functional relationships contain practically the whole numerical com-
plexity range to research at the testing stage how these relationships affect the
AI calculation precision and effectiveness.

3 Algorithms Implementation

3.1 Training and Design of the Artificial Neural Network

An artificial neural network (ANN can be addressed as a grouping of layers that
can transform input values to return an outcome. Several design and implemen-
tation iterations for knapsack problems of smaller sizes were made to choose the
ANN configuration and hyperparameters.

The ANN training set was gotten as an exact 0–1 knapsack allocations
obtained with dynamic programming algorithm based on randomized problems
set.

In the current ANN model we consider a knapsack of twenty elements. Each
knapsack item has four parameters ai, bi, di, gi (in addition to the weight param-
eter wi), the values of which are terms of the (hidden for ANN) utility functions
(2)–(6).

Thus, the training sample will contain the following set of vectors: the vector
of 20 knapsack elements weights, the vectors of the items’ parameters ai, bi, di, gi
and the vector of the results (obtained using dynamic programming algorithm),
characterizing the allocated knapsack (1 - the item is selected for the knapsack,
0 - not). Thus, total number of inputs for 20-elements knapsack is then 100, and
the number of outputs is 20.

In case we need to model knapsack problem with m < 20, we can provide
decidedly large weights wi > 1 for the spare elements i = m + 1, .., 20. In this
case such extra elements should not be selected into the knapsack.

Eventually, after forming the sample (parameters vectors, weights, and solu-
tions) of the desired size, it is divided into training and test samples. We need
that to avoid sample data coincidence, so that the training and testing of ANN
takes place correctly on various disjoint datasets.

The sample generation goes according to the following scenario. All the
parameters of the knapsack elements are randomly generated. For an array of
weights, 20 values are generated from the interval [1; 180], arrays of the rest four
parameters (ai, bi, di, gi) are generated in a similar way.

The generation is set up in such a way that in the results of the generated
knapsack problem, we achieve a uniform distribution of the item’s selections
(between 0 s and 1 s). That is, there was no obvious bias in any direction. Oth-
erwise, it is difficult to evaluate the accuracy and quality of training.

The interval for generating the limit on the total weight of the knapsack
was found experimentally: the lower bound of the interval corresponds to the
minimum value in the vector of weights, the upper bound is equal to the number
of elements in the knapsack multiplied by an experimentally selected multiplier.

254 V. Toporkov et al.

Additionally, the vector of weights was sorted to simplify the training of
ANN. That is, an item with the largest weight (and its parameters) is always
set at the beginning of the ANN inputs (and outputs), while an item with the
smallest weight - in the end. We believe that such an input regularity simplifies
the training of the ANN hidden layers of the ANN.

To improve the perception of ANN, the input values should be additionally
normalized. In order to put the input data in the same conditions for all training
samples, it is crucial to carry out the alignment process and provide input values
in a certain interval. This helps to avoid possible training errors of ANN, since
inappropriate values can be given to it, which in turn won’t affect the neurons
properly, which will lead to incorrect generalizations. Thus, as an input nor-
malization step, we divide weights vector by the limit C on the total weight of
the knapsack (Fig. 1). Weights normalization allows us to generalize the weight
constraint in (1) to C = 1 for any input sample. Additionally, in this case we
don’t need to provide the weight constraint as an input to the ANN.

Fig. 1. Input weight normalization example.

Normalization of the input layer of ANN is usually performed by scaling the
data supplied to the activation function. However, data normalization can also
be performed in hidden layers. Therefore, in addition to standard dense layers,
layers with batch normalization are used in the implemented neural network
architecture. Batch normalization provides a regularization mechanism, since it
introduces a certain noise to the outputs of hidden layers. Thus, we increase
performance and stabilize the ANN.

Machine Learning-Based Online Scheduling in Distributed Computing 255

3.2 MLAK Algorithm

While preparing an ANN, it is difficult to work with formal numerical equa-
tions and hard constraints, specifically those characterized for the 0–1 knapsack
problem (1)).

The primary issue with the ANN knapsack implementation is that even with a
high accuracy we cannot rest assured that the weight condition for the knapsack
is satisfied.

To consider the restriction on the knapsack weight, we propose to utilize the
ANN allocation result as an anticipated utility values ui which can be used in
another algorithmic knapsack solution.

That is, the input data for the task (1)) will contain weight wi and utility
zi = ui vectors, where ui values are calculated for each element based on the
item’s properties ai, bi, di, gi. In this way, the ANN will operate as a conversion
module to identify mutual relationships between the knapsack items’ properties
and map them to the common utility values. Thus, the ANN will work as a
transformation layer to distinguish shared relationships and connections between
the attributes of knapsack items and predict their utilities.

4 Simulation Study

4.1 Simulation Environment

We assess MLAK performance in comparison with traditional combinatorial
optimization knapsack algorithms (i.e., dynamic programming and greedy exe-
cution), as well as with pure neural network implementation. Neural network
results were fixed to follow the weight limitation: the items with the smallest
prediction certainty were eliminated individually until the total weight limita-
tion is fulfilled.

Thus, MLAK and ANN received ai, bi, di, gi properties as an input,
while Dynamic programming (DP) and Greedy implementations used zi =
Fval(ai, bi, di, gi) calculated utility functions to solve the knapsack problem.

Furthermore, we consider a Random choice calculation to assess MLAK and
ANN performance in between the optimal solution received with dynamic pro-
gramming and a totally random outcome.

Every one of the considered algorithms were given the same set of 1000
randomized knapsack problems as input. We then calculate two performance
criteria for each algorithm:

– the resulting knapsack total utility Z =
∑m

i=1 zixi and its relation to the DP
result (average utility);

– the resulting accuracy as element-wise comparison with the DP result for all
the experiments.

Both performance criteria depend on DP result as it gives an optimal knap-
sack allocation based on the known element utilities.

256 V. Toporkov et al.

In addition, we measure and compare average calculation times. All consid-
ered algorithms were implemented in Python. Run times were observed on a
desktop PC with a Core i5 and 8Gb RAM. The running time of MLAK includes
execution of both internal ANN algorithms and DP algorithms.

4.2 Simulation Results and Analysis

For the algorithms comparison and evaluation, we performed over 1000 simula-
tions of 20-items knapsack problem. The results are collected in Tables 1, 2, 3, 4
and 5 for each hidden function (2)–(6).

Table 1. Function (2) Optimization Results.

Algorithm Average Utility, % Accuracy, % Average working time, s

DP 100,0 100 0.0063
Greedy 98,7 48,0 0.00004
MLAK 98,2 39,9 0.0421
ANN 96,1 25,9 0.0237
Random 57,6 0,6 0.00005

Table 2. Function (3) Optimization Results.

Algorithm Average Utility, % Accuracy, % Average working time, s

DP 100 100 0.0061
Greedy 99,2 59,2 0.00004
MLAK 97,7 36,6 0.0415
ANN 94,9 21,6 0.0239
Random 53,5 1,4 0.00005

Table 3. Function (4) Optimization Results.

Algorithm Average Utility, % Accuracy, % Average working time, s

DP 100,0 100 0.00743
Greedy 99,4 64,1 0.00004
MLAK 98,4 42,5 0.04531
ANN 96,6 22,6 0.02380
Random 51,7 1,2 0.00005

Machine Learning-Based Online Scheduling in Distributed Computing 257

Table 4. Function (5) Optimization Results.

Algorithm Average Utility, % Accuracy, % Average working time, s

DP 100 100 0.00734
Greedy 99,0 49,6 0.00004
MLAK 98,7 40,8 0.04556
ANN 96,3 22,6 0.02400
Random 60,0 1,4 0.00005

Table 5. Function (6) Optimization Results.

Algorithm Average Utility, % Accuracy, % Average working time, s

MLAK 96,7 41,2 0.04784
ANN 96,9 24,1 0.02391
DP 100,0 100 0.00823
Greedy 99,8 85,9 0.00004
Random 39,8 1,0 0.00005

The obtained outcomes mainly show that Greedy calculation proved nearly
optimal average utility: close to 99% when compared to DP. Such an out-
come is expected for 20 items with randomized and uniformly distributed util-
ity attributes. 50–85% accuracy demonstrates that nearly optimal solutions are
quite achievable with different allocation configurations.

MLAK and ANN optimization efficiency is generally comparable to the
Greedy implementation. Relative difference by the average utility between
Greedy and MLAK is less than 1% for functions (2), (4), and (5). ANN pro-
vides similar results with less than 1% lower utility compared to MLAK.

For functions (3) and (6) the relative difference is as high as 3%, which can
be explained by the much larger absolute values of the utility functions obtained
from the same set of randomly generated input properties (see the Average Utility
column in Tables 1, 2, 3, 4and 5). ANN prediction works less efficiently when the
relationships between properties include multiplication and exponentiation.

And even this under 3% performance loss for MLAK (in the most pessimistic
scenario observed) is somewhat reasonable or even negligible when compared to
the Random allocation with over 40% loss from DP solution. Remember that in
the considered scenarios DP and Greedy performed knapsack calculations using
the known utility functions, while Random selection shows average outcomes
with no optimization.

Actual running time od MLAK is inferior to all other algorithms. For the
20-element knapsack problem under consideration, MLAK prediction time of
0.05 s may seem ridiculously small, but larger problems will require an increase
in ANN structure, training sample size, training time and computational effort.

258 V. Toporkov et al.

5 Conclusion

In this paper we considered a machine learning-based approach for resources
allocation in online scheduling mode based on global criteria. For a proper com-
parison we formalized and simulated the problem and compared the results to
the classical combinatorial optimization algorithms.

Based on the presented results, the proposed Machine Learning-based Algo-
rithm for the Knapsack problem (MLAK) showed efficiency comparable to the
greedy approximation. However, unlike the classical greedy solution, MLAK did
not know the knapsack items’ utility values, but firstly predicted them based
on a set of secondary characteristics. This feature distinguishes this work from
other machine learning applications for combinatorial optimization problems.

The obtained results substantiate the possibility of using the same approach
for the actual job-flow scheduling data. And thus, we expect the efficiency of the
scheduling results to be on par with the classic greedy approximation.

Future work is aimed to gather job-flow execution data from real systems to
prepare the training data for the machine learning - based online scheduler.

Acknowledgements. This work was supported by the Russian Science Foundation
project no. 22-21-00372.

References

1. Bharathi, S., Chervenak, A.L., Deelman, E., Mehta, G., Su, M., Vahi, K.: Charac-
terization of scientific workflows. In: 2008 Third Workshop on Workflows in Support
of Large-Scale Science, pp. 1–10 (2008)

2. Rodriguez, M.A., Buyya, R.: Scheduling dynamic workloads in multi-tenant scien-
tific workflow as a service platforms. Future Gener. Comput. Syst. 79(P2), 739–750
(2018)

3. Kurowski, K., Nabrzyski, J., Oleksiak, A., Weglarz, J.: multicriteria aspects of
grid resource management. In: Nabrzyski, J., Schopf, J.M., Weglarz J. (eds.) Grid
Resource Management. State of the Art and Future Trends, pp. 271–293. Kluwer
Academic Publishers. (2003)

4. Toporkov, V., Yemelyanov, D.: Coordinated and hindsight resources allocation
in distributed computing. In: Proceedings - 2019 20th International Conference
on Parallel and Distributed Computing, Applications and Technologies, PDCAT
(2019)

5. Toporkov, V., Yemelyanov, D., Toporkova, A.: Coordinated global and private job-
flow scheduling in grid virtual organizations. J. Simul. Model. Pract. Theor. 107,
102228 (2021)

6. Sukhoroslov, O., Nazarenko, A., Aleksandrov, R.: An experimental study of
scheduling algorithms for many-task applications. J. Supercomput. 75, 7857–7871
(2019)

7. Samimi, P., Teimouri, Y., Mukhtar M.: A combinatorial double auction resource
allocation model in cloud computing. J. Inf. Sci. 357(C), 201–216 (2016)

8. Rodero, I., Villegas, D., Bobroff, N., Liu, Y., Fong, L., Sadjadi, S.: Enabling inter-
operability among grid meta-schedulers. J. Grid Comput. 11(2), 311–336 (2013)

Machine Learning-Based Online Scheduling in Distributed Computing 259

9. Shmueli, E., Feitelson, D.G.: Backfilling with lookahead to optimize the packing of
parallel jobs. J. Parallel Distrib. Comput. 65(9), 1090–1107 (2005)

10. Khemka, B., et al.: Resource management in heterogeneous parallel computing
environments with soft and hard deadlines. In: Proceedings of 11th Metaheuristics
International Conference (MIC 2015) (2015)

11. Netto, M.A.S., Buyya, R.: A flexible resource co-allocation model based on advance
reservations with rescheduling support. In: Technical Report, GRIDSTR-2007-17,
Grid Computing and Distributed Systems Laboratory, The University of Mel-
bourne, Australia (2007)

12. Toporkov, V., Toporkova, A., Yemelyanov, D.: Slot co-allocation optimization
in distributed computing with heterogeneous resources. In: Del Ser, J., Osaba,
E., Bilbao, M.N., Sanchez-Medina, J.J., Vecchio, M., Yang, X.-S. (eds.) IDC 2018.
SCI, vol. 798, pp. 40–49. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-99626-4_4

13. Toporkov, V., Yemelyanov, D.: Optimization of resources selection for jobs schedul-
ing in heterogeneous distributed computing environments. In: Shi, Y., et al. (eds.)
ICCS 2018. LNCS, vol. 10861, pp. 574–583. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-93701-4_45

14. Toporkov, V., Yemelyanov, D.: Scheduling optimization in heterogeneous comput-
ing environments with resources of different types. In: Zamojski, W., Mazurkiewicz,
J., Sugier, J., Walkowiak, T., Kacprzyk, J. (eds.) DepCoS-RELCOMEX 2021.
AISC, vol. 1389, pp. 447–456. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-76773-0_43

15. Xu, S., Panwar, S.S., Kodialam, M.S., Lakshman, T.V.: Deep neural network
approximated dynamic programming for combinatorial optimization. In: AAAI
Conference on Artificial Intelligence, pp. 1684–1691 (2020)

16. Nomer, H.A.A., Alnowibet, K.A., Elsayed, A., Mohamed, A.W.: Neural knapsack:
a neural network based solver for the knapsack problem. In: IEEE Access, vol. 8,
pp. 224200–224210 (2020)

17. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural Combinatorial Opti-
mization with Reinforcement Learning. In: International Conference on Learning
Representations (2017)

18. Yang, F., Jin, T., Liu, T., Sun, X., Zhang, J.: Boosting dynamic programming with
neural networks for solving NP-hard problems. In: Proceedings of The 10th Asian
Conference on Machine Learning, PMLR, vol. 95, pp. 726–739 (2018)

19. Yang, X., et al.: A review: machine learning for combinatorial optimization prob-
lems in energy areas. Algorithms 15, 205 (2022)

20. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimiza-
tion: a methodological tour d’horizon. Eur. J. Oper. Res. 290(2), 405–421 (2021)

https://doi.org/10.1007/978-3-319-99626-4_4
https://doi.org/10.1007/978-3-319-99626-4_4
https://doi.org/10.1007/978-3-319-93701-4_45
https://doi.org/10.1007/978-3-319-93701-4_45
https://doi.org/10.1007/978-3-030-76773-0_43
https://doi.org/10.1007/978-3-030-76773-0_43

High Performance Computing Queue
Time Prediction Using Clustering

and Regression

Scott Hutchison1(B) , Daniel Andresen1, Mitchell Neilsen1, William Hsu1,
and Benjamin Parsons2

1 Kansas State University, Manhattan, KS 66506, USA
{scotthutch,dan,neilsen,bhsu}@ksu.edu

2 Engineering Research and Development Center, Vicksburg, MS 39180, USA
ben.s.parsons@erdc.dren.mil

Abstract. High Performance Computing (HPC) users are often pro-
vided little or no information at job submission time regarding how long
their job will be queued until it begins execution. Foreknowledge of a
long queue time can inform HPC user’s decision to migrate their jobs
to commercial cloud infrastructure to receive their results sooner. Vari-
ous researchers have used different machine learning techniques to build
queue time estimators. This research applies the proven technique of K-
Means clustering followed by Gradient Boosted Tree regression on over
700,000 jobs actually submitted to an HPC system to predict a submit-
ted job’s queue time from HPC system characteristics and user provided
job requirements. This method applied to HPC queue time prediction
achieves better than 96% accuracy at classifying whether a job will start
prior to an assigned deadline. Additionally, this research shows that his-
toric HPC CPU allocation data can be used to predict future increases
or decreases in job queue time with accuracy exceeding 96%.

Keywords: HPC · SLURM · Scheduling · K-Means Clustering ·
Gradient Boosted Tree Regression

1 Introduction

When a job is submitted to a High Performance Computing (HPC) cluster, a
scheduling application, like SLURM, PBS, LoadLeveler, etc., handles the alloca-
tion of HPC resources in the future to the job’s requirements as specified by the
submitter. If adequate HPC resources are currently unavailable, the job enters
a queue for execution in the future, and future resources are scheduled for that
job’s use. While a job is queued and awaiting execution, the job is making no
forward progress toward its eventual completion. Worse still, it is often unclear
to the user how long it will take until the job begins execution. The user knows
the job is waiting to start, but there is often no way for the user to know if the
job execution will begin in three hours, three days, or three weeks. Users with
a time-critical application facing long queue delays may be willing to migrate

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 260–272, 2023.
https://doi.org/10.1007/978-3-031-30445-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_22&domain=pdf
http://orcid.org/0000-0002-6698-3033
https://doi.org/10.1007/978-3-031-30445-3_22

HPC Queue Time Prediction using Clustering and Regression 261

jobs to commercial cloud infrastructure, like Amazon’s AWS, Microsoft’s Azure,
Google’s Cloud Computing, etc. Various techniques for predicting job queue
times have been implemented in the past with different trade offs and accuracy.
A machine learning pipeline which uses unsupervised K-Means clustering fol-
lowed by Gradient Boosted Tree Regression has been used to lower error rates
when used in other applications. This research investigates if this machine learn-
ing technique can also be used to a predict queue times for HPC jobs.

The goal of this research is to answer the following questions: For an HPC
system with a given current utilization, can we provide an accurate queue time
prediction for a job which factors in the future state of the HPC cluster? Can
we predict the execution of a job prior to an assigned deadline?

2 Background

Improving HPC utilization, decreasing job queue time, and decreasing job
turnaround time are all active areas of research at Kansas State University
(KSU). These areas would typically apply and are of interest to any HPC cluster
manager. Developing an accurate queue time predictor can not only help inform
job scheduling, but it can also provide additional information to users about
their expected job start times, and perhaps more importantly, about the length
of time they can expect to wait for their results.

Kumar and Vadhiyar [7] performed a similar job queue time prediction by
using k-nearest neighbors followed by support vector machines to classify jobs
into time bins of various sizes with their probabilities. Though this technique
showed promise, using regression allows for a concrete prediction value for queue
time, as opposed to the most likely time bin this job would fall into.

Jancauskas, et al. [6] conducted similar research on queue time prediction
using Naive Bayes to return a list of probability estimates (ti, pi), where pi
was the probability that a job will start before ti. They used similar features
and achieved excellent accuracy, precision, and recall. An advantage of using
clustering and regression over Naive Bayes is that a concrete start time prediction
can be generated for the current load on the HPC system for an individual job
with certain requirements. This research not only uses different machine learning
techniques for prediction, but also factors in changes of the future state of the
HPC system and the impact those changes have on job queue times, which
Jancauskas, et al. considered outside the scope of their research.

Brown, et al. [2] used a very similar technique as this research, using k-nearest
neighbors followed by gradient boosted tree regression, however they also did not
factor in the future state of the HPC system.

Unsupervised K-Means [8] clustering followed by Gradient Boosted Tree
Regression [3] (GBTR) has been used by various researchers to improve the
accuracy of regression models. For instance, Zheng and Wu [4] used this tech-
nique to improve on short-term wind forecasting, and Liu et al. [9] used this
technique to improve short-term power load forecasting. As this technique has
shown promise in improving prediction accuracy in other areas of research, using

262 S. Hutchison et al.

clustering followed by regression could also improve the accuracy of predicting
how long a job will be queued for execution on an HPC system.

3 Methodology

3.1 Data Set

The HPC cluster at KSU is a Beowulf [1] HPC cluster called “Beocat”. Beocat
currently consists of 362 compute nodes with a total of 10980 compute cores
and 5.57 Terabytes of memory, and it uses SLURM [16] as the job scheduler.
SLURM logs data from all jobs submitted to Beocat and retains 105 different
features about each job. These features include job submission time, start time,
end time, the number of CPUs requested by the user, the amount of memory and
time requested by the user, etc. The data set used for this research consisted of all
jobs submitted in 2018, which totaled approximately 730,000 jobs. Figure 1 shows
the CPU and memory allocation over time for Beocat for 2018. The calculated
CPU utilization for 2018 was roughly 60%. Jobs can remain queued due to lack
of available CPUs or lack of available memory. This data set was thought to be
a good representative data set with enough data to produce meaningful results.

Fig. 1. CPU and memory allocation over time for KSU HPC system for 2018

3.2 Feature Selection and Calculation

The queue time of a job depends primarily on two factors: the amount of
resources available in the HPC and the amount of resources a job is request-
ing. Table 1 summarizes and describes the features used for this research.

To calculate BeocatCPUsInUse, the 2018 jobs from the log data were sorted
chronologically by their start and end times. Each time a new job began, the
number of CPUs in use by the cluster was increased by the number of cores
allocated to that job. Each time a job ended, the number of CPUs in use by the
cluster was decreased by the number of cores allocated the that job. The same
strategy was employed to calculate BeocatMemoryInUse.

HPC Queue Time Prediction using Clustering and Regression 263

Table 1. Features used

Category Feature Description

HPC features BeocatCPUsInUse Current allocated CPUs

BeocatMemoryInUse Current allocated memory

QueueDepth The queue depth when job was submitted

Job features ReqCPUs Number of requested cores for a job

ReqMem Amount of memory requested for a job

ReqMinutes Amount of minutes requested for a job

OwnsResources True if user has priority access to compute nodes; False otherwise

Dependent variable QueueTimeInSec Number of seconds from submit until start

To calculate QueueDepth, jobs were sorted by their submit times and their
start times. Each time a job is submitted, the queue depth is increased by one.
Each time a job starts, the queue depth is decreased by one.

The requested CPUs, requested memory, and requested time for each job
were directly pulled from the log data to populate the ReqCPUs, ReqMem, and
ReqMinutes features.

There are a number of compute nodes which are available for all Beocat users
to use. Certain resources are owned by departments whose members have priority
access and who can preempt running jobs. The OwnsResources feature was set
to true if there were dedicated resources available which could run that job. If
the job was submitted to only the queues common to all, the OwnsResources
feature was set to false.

To calculate QueueTimeInSec, the submit time for each job was subtracted
from its start time. This time delta object was converted into an integer that
represented the number of seconds each job sat in the queue awaiting job exe-
cution.

3.3 Feature Normalization and Model Development

Min-Max scaling was used on Beocat CPU and memory allocation to return a
value between 0 and 100 which represents the percentage of Beocat currently
allocated.

A vector consisting of ScaledBeocatCPUsInUse, ScaledBeocatMemoryInUse,
QueueDepth, ReqCPUs, ReqMem, and OwnsResources was constructed, and used
to predict QueueTimeInSec. The log data containing roughly 730,000 jobs were
randomly split into an 80% training batch and a 20% testing batch. The training
batch contained roughly 583,000 jobs, and the test batch contained roughly
146,000 jobs.

A base GBTR model was trained using 5-fold cross validation on the training
data, which was then evaluated using the test data. This base model was used
later to predict clusters that contained fewer than 100 elements. This model will
be referred to as the GBTbase in various figures throughout the remainder of
this report.

264 S. Hutchison et al.

Since the optimal number of clusters required to group the training data
was initially unclear, iterative K-Means was used to cluster the data using an
increasing number of clusters from 2 to 150. The training data was fed into
K-Means and n clusters were returned, where n = 2, 3, 4, . . . , 150. After cluster-
ing, a GBTR model was developed using 5-fold cross validation for each cluster
containing more than 100 elements. A small cluster containing fewer than 100
elements would use the GBTbase model to make queue time predictions. These
models were developed using the training data, and then evaluated using the
test data. An unseen-before test input would first be classified by the K-means
model, and then the appropriate GBTR model was used to develop a prediction
of the job’s queue time. The machine learning pipeline’s error rate overall on the
test data was used to determine an ideal number of clusters that minimized the
error. The number of clusters producing a local minimum error rate was iden-
tified, and then that pipeline was selected for further evaluation. This machine
learning pipeline is outlined in Fig. 2.

Fig. 2. The machine learning pipeline used for this research.

During actual use, users may have individual and specific deadlines. This
information is not currently solicited or collected on Beocat, so it was unavailable
in the log data. An arbitrary deadline for each job was set to be the average
queue time for all jobs in 2018, or 13423 s (HH:MM:SS = 03:43:43). A queue time
prediction was made for each job, and it was assessed whether this prediction was
met or exceeded the assigned deadline. Since the actual queue time was known,
a confusion matrix was generated to determine the overall accuracy, precision,
recall, and F1 scores for the machine learning pipeline.

The above mentioned queue time prediction represents a snapshot in time
given the overall HPC system resources allocated for a job with specific require-
ments. The future state of the HPC may also impact job queue time. For
instance, if cluster allocation increases following a job submission when a large

HPC Queue Time Prediction using Clustering and Regression 265

number of higher priority jobs are started, this queue time estimate may under-
estimate when a job would actually begin. Alternatively, an HPC allocation
decrease following a job submission due to jobs finishing earlier than expected
may cause a job to begin sooner.

Since the average queue time for Beocat in 2018 was roughly 3 h and 45 min,
a sliding time window of 4 h was used to assess what impact a change in HPC
CPU allocation would have on the change in queue times for HPC jobs. Figure 3
depicts how average ΔCPUs was calculated. Average Δqueue time was calculated
in the same manner. In 2018, there were 1,520 four-hour time windows con-
taining submitted jobs. The time windows were randomly split into an 80%
training batch and 20% testing batch. A linear regression model was trained
using the average ΔCPUs from the training data and used to predict the average
Δqueue time of the test data. Again, the actual change in queue time was known
from the log data, which enabled the calculation of RMSE, accuracy, precision,
recall and the F1 Score for this linear regression model.

Fig. 3. Depiction of ΔCPUs calculation

3.4 Evaluation

Feature correlation was measured using the Pearson Correlation Coefficient [12].
This statistical measure produces a value between -1 and 1, where correlation
coefficient values closer -1 or 1 indicate a stronger correlation between two fea-
tures and a value closer to 0 indicates no or very little correlation.

Each regression model contained some N elements. The machine learning
pipeline and each regression model was evaluated using the Root Mean Squared
Error (RMSE) metric, which is calculated according to the following equation:

RMSE =

√
ΣN

i=0(actual queue timei − predicted queue timei)2

N

266 S. Hutchison et al.

Additionally, the machine learning pipeline was used to compare whether or
not the predicted queue time for each job exceeded the assigned deadline. A
confusion matrix, along with the metrics of accuracy, precision, recall, and the
F1 Score were utilized. The metrics and their descriptions are laid out in Table 2:

Table 2. Metrics for Deadline Classification

Metric Description

True Positive (TP) Model predicts job will start before deadline, and it does

True Negative (TN) Model predicts job will start after deadline and it does

False Positive (FP) Model predicts job will start before deadline, but job does not

False Negative (FN) Model predicts job will start after deadline, but job does not

The metrics used to assess the change in queue time given the change in CPU
allocation are laid out below in Table 3:

Table 3. Metrics for Future Queue Time Classification

Metric Description

True Positive (TP) Model predicts average Δqueue time will decrease 4 h from
now, and it does

True Negative (TN) Model predicts average Δqueue time will increase 4 h from
now, and it does

False Positive (FP) Model predicts average Δqueue time will decrease 4 h from
now, and it does not

False Negative (FN) Model predicts average Δqueue time will increase 4 h from
now, and it does not

These metrics were calculated in the following way:

Accuracy = TP+TN
TP+TN+FP+FN Precision = TP

TP+FP

Recall = TN
TP+FN F1 Score = 2∗TP

2∗TP+FP+FN

4 Results

PySpark is an interface for Apache Spark [17] for the Python [15] program-
ming language. PySpark was utilized for data wrangling and analysis. PySpark’s
machine learning library, MLlib [10], was utilized for statistical analysis, cluster-
ing, and regression tasks. Matplotlib [5] was used to generate plots and charts.

HPC Queue Time Prediction using Clustering and Regression 267

4.1 Correlation of Features

Table 4 lays out the Pearson Correlation Coefficients for the features used.
“Slightly correlated” values in Table 4 are displayed using orange text and the
stronger “somewhat correlated” features are displayed using red text. Perhaps
unsurprisingly, there is a slight correlation between the HPC CPUs in use and
the HPC memory in use at any given time, as well as a slight correlation between
the amount of CPUs requested by a user and the amount of memory requested
by a user. The queue depth and queue time are somewhat correlated, and the
queue depth and the amount of memory allocated on the HPC are somewhat
correlated. This makes sense given the relatively large amount of time Beocat
spends with its allocated memory near or at its maximum (See Fig. 1).

Table 4. Correlation of Features

Feature BeocatCPUsInUse BeocatMemoryInUse QueueDepth ReqCPUs ReqMem ReqMinutes QueueTimeInSec

BeocatCPUsInUse 1 0.195 0.008 0.008 –0.010 –0.067 –0.009

BeocatMemoryInUse 0.195 1 0.392 –0.047 –0.020 –0.036 0.131

QueueDepth 0.008 0.392 1 –0.061 –0.028 –0.091 0.326

ReqCPUs 0.007 –0.047 –0.047 1 0.119 0.057 –0.002

ReqMem –0.010 –0.020 –0.027 0.119 1 0.036 0.003

ReqMinutes –0.067 –0.036 –0.091 0.057 0.036 1 0.074

QueueTimeInSec –0.009 0.131 0.326 –0.002 0.003 0.074 1

4.2 K-Means Clustering and GBT Regression

The GBTbase model had a RMSE of 23229.92. This was compared to two naive
guessing strategies of guessing zero queue time for all jobs and guessing the
average queue time from 2018 for all jobs. Naively guessing zero seconds produced
a RMSE of 42818.2, and naively guessing the average queue time (13423.21 s)
produced a RMSE of 40659.8. It is clear that the base model has a lower RMSE
than these two naive guessing strategies.

It was identified by iterating through the number of generated k-means clus-
ters that 57 clusters produced a local minimum RMSE of 18119.23. As the
number of clusters increased, there was not a significant improvement in accu-
racy, and it is thought that as the number of clusters continues to increase,
the GBTbase model will be used for more and more clusters as the number of
data points in each cluster decreases. Locating this “elbow” in the data [14]
attempts to prevent overfitting and clustering beyond the point of diminishing
returns. The RMSE of the machine learning pipeline as the number of clusters
was varied is depicted in Fig. 4.

Using 57 clusters produces 42 GBTR models for clusters containing more
than 100 elements, and the machine learning pipeline uses the base GBTR model
for the remaining 15 clusters. Each test data point was clustered, and then the
appropriate GBTR model was used to predict the queue time for a job. Each
job’s queue time prediction was compared to its actual queue time, and it was

268 S. Hutchison et al.

evaluated if the predicted and actual queue time exceeded the assigned deadline.
The confusion matrix and evaluation metrics can be found in Table 5. Overall,
the machine learning pipeline was excellent at predicting future queue times,
and its accuracy, precision, recall, and F1 Score were all greater than 96%.

Fig. 4. RMSE of machine learning pipeline as the number of K-Means clusters was
varied.

Table 5. Confusion Matrix for Machine Learning Pipeline with Metrics

Actual

Total Jobs 145,658 Job runs before
Avg Queue Time

Job runs after
Avg Queue Time

Predicted
Job runs before
Avg Queue Time

TP = 107,208 FP = 1,490

Job runs after
Avg Queue Time

FN = 3,366 TN = 33,594

Metric Value

Accuracy 96.66%

Precision 98.63%

Recall 96.95%

F1 Score 97.79%

4.3 Future HPC Queue Time Prediction

The (ΔCPUs,Δqueue time) points and the line-of-best-fit provided by the lin-
ear regression model are depicted in Fig. 5. The model achieved a RMSE of
14691.17 s. The confusion matrix and evaluation metrics are found in Table 6.
Overall, the linear regression model was excellent at predicting future queue
times, and its accuracy, precision, recall, and F1 Score were all greater than 96%.

HPC Queue Time Prediction using Clustering and Regression 269

Fig. 5. Change in average CPU allocation vs. change in average queue time

Table 6. Confusion Matrix for Queue Time Increase with Metrics

Actual

Total Time Windows 1,520 Future average
Δqueue time

decreases

Future average
Δqueue time

increases

Predicted
Future average
Δqueue time

decreases

TP = 702 FP = 26

Future average
Δqueue time

increases

FN = 24 TN = 768

Metric Value

Accuracy 96.71%

Precision 96.43%

Recall 96.69%

F1 Score 96.56%

5 Discussion

The correlation between queue depth and the HPC memory in use for Beocat
is supported by the memory in use over time depicted in Fig. 1. This confirms
the observations made by Beocat’s system administrators who have determined
that more often than not, Beocat is constrained by its available memory rather
than its available CPUs. This alone has informed the equipment requirements
for purchases of new servers for the HPC system here at KSU. We now procure
servers with larger memory to try to better accommodate our user’s require-
ments. Doing a similar analysis might allow managers of other HPC systems to
better identify hardware that can support the types of jobs their users often run.

As depicted in Table 5, the accuracy, precision, recall, and F1 Score were all
greater than 96%. Although a somewhat arbitrary deadline was used for each
user’s deadline, this data could be provided by the users at submission time.
This would give more meaningful information to the users of Beocat depending

270 S. Hutchison et al.

on how time sensitive their jobs are. Various other values for deadlines were used
(1 h, 8 h, and 12 h), all of which produced similar accuracy, precision, recall, and
F1 scores exceeding at least 90%. It can only be concluded that the machine
learning pipeline does a good job at predicting a reasonable start time for most
jobs regardless of the pipeline RMSE.

Using clustering and regression as opposed to other techniques provides a
concrete queue time estimate. The pipeline RMSE was roughly 5 h of error, and
the average queue time for jobs submitted to Beocat in 2018 was approximately
3 h and 45 min. The HPC at KSU has comparatively low queue times for jobs,
and other HPC clusters may have queue time measured in the range of days,
or even weeks. An overall 5 h error rate for the prediction for Beocat somewhat
overshadows the average queue time in our case, but in other clusters, it might
be more meaningful. In practice, queue times for Beocat are very left-skewed,
and most of the jobs submitted to Beocat are executed after a very short period
of time. Only very large jobs spend any significant amount of time in the queue
waiting for resources.

It was shown that the average allocation of HPC CPUs over a 4 h window
was an effective predictor for an increase or decrease of future queue time for
jobs. This information could further inform machine learning models attempting
to predict queue time for jobs. For instance, the linear regression model could be
run before the queue time deadline assessment to determine if this contributes
to an increase in the accuracy of the queue time prediction from the machine
learning pipeline.

Finally, this queue time estimation tool could inform a decision to migrate a
job to cloud resources instead of facing a long queue delay. Okanlawon, et al. [11]
conducted research to better inform a user’s decision to either resubmit a job
with different resources or migrate that job to commercial cloud infrastructure.
An accurate queue time estimation tool could offer another data point informing
a user’s decision.

6 Conclusion and Future Work

This research demonstrated that clustering and regression can also be applied
to the task of queue time estimation for HPC systems. The machine learn-
ing pipeline described in this paper was more than 96% accurate at classifying
whether a job would start before an assigned deadline. A simple linear regression
model also achieved greater than 96% when attempting to predict if future queue
times will increase or decrease. These pieces of information could prove vital to
a researcher with a time critical application. It is also a meaningful metric for all
HPC users, so they will be better informed about the start times of their jobs.

Additional analysis is needed to determine why certain jobs were grouped
together into the clusters provided by K-Means. This research fed the cluster
and job feature vector into the K-Means algorithm in search of the number
of cluster producing a local minimum error rate. It is thought that additional
analysis of clusters might shed light onto what is causing certain kinds of jobs to

HPC Queue Time Prediction using Clustering and Regression 271

queue for longer times. Are there certain characteristics of jobs that cause them
to sit in the queue longer? Are there certain characteristics or limitations of the
HPC cluster itself which is contributing to longer queue times? Could additional
HPC user education or better documentation mitigate queue time in some way?
These remain open questions.

Our experience has been that users tend to drastically overestimate their job
requirements at submission times. There is very little downside for a user who
overestimates their resources at submission time. However, there is a very large
downside if a job is killed before completion due to a user requesting insuffi-
cient resources at submit time. In the aggregate, however, mass overestimation
of required resources leads to longer queue times for all users, which can nega-
tively impact user experience overall. Tanash, et al. [13] have looked to machine
learning to determine how actual allocated resources compared to what users
have requested at submit time. Since this queue time predictor relied upon user
submitted requirements for each job, adding a more accurate estimate of actual
resources used would presumably improve the accuracy of a model predicting
queue time.

Finally, informing the machine learning pipeline with the future queue time
prediction may further improve the accuracy of the prediction made by the
machine learning pipeline. It remains to be seen if first applying the future state
of the HPC queue time prediction has measurable impacts on the accuracy of
the clustering and regression pipeline.

References

1. Becker, D.J., Sterling, T., Savarese, D., Dorband, J.E., Ranawak, U.A., Packer,
C.V.: Beowulf: a parallel workstation for scientific computation. In: Proceedings,
International Conference on Parallel Processing, vol. 95, pp. 11–14 (1995)

2. Brown, N., Gibb, G., Belikov, E., Nash, R.: Predicting batch queue job wait times
for informed scheduling of urgent hpc workloads. arXiv preprint arXiv:2204.13543
(2022)

3. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.
Stat. 29, 1189–1232 (2001)

4. Henriques, J., Caldeira, F., Cruz, T., Simões, P.: Combining k-means and xgboost
models for anomaly detection using log datasets. Electronics 9(7), 1164 (2020)

5. Hunter, J.D.: Matplotlib: a 2d graphics environment. Comput. Sci. Eng. 9(3), 90–
95 (2007). https://doi.org/10.1109/MCSE.2007.55

6. Jancauskas, V., Piontek, T., Kopta, P., Bosak, B.: Predicting queue wait time prob-
abilities for multi-scale computing. Philos. Trans. Roy. Soc. A 377(2142), 20180151
(2019)

7. Kumar, R., Vadhiyar, S.: Prediction of queue waiting times for metascheduling
on parallel batch systems. In: Cirne, W., Desai, N. (eds.) JSSPP 2014. LNCS,
vol. 8828, pp. 108–128. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
15789-4 7

8. Likas, A., Vlassis, N., Verbeek, J.J.: The global k-means clustering algorithm.
Pattern Recogn. 36(2), 451–461 (2003)

http://arxiv.org/abs/2204.13543
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1007/978-3-319-15789-4_7
https://doi.org/10.1007/978-3-319-15789-4_7

272 S. Hutchison et al.

9. Liu, Y., Luo, H., Zhao, B., Zhao, X., Han, Z.: Short-term power load forecasting
based on clustering and xgboost method. In: 2018 IEEE 9th International Confer-
ence on Software Engineering and Service Science (ICSESS), pp. 536–539. IEEE
(2018)

10. Meng, X., et al.: Mllib: machine learning in apache spark. J. Mach. Learn. Res.
17(1), 1235–1241 (2016)

11. Okanlawon, A., Yang, H., Bose, A., Hsu, W., Andresen, D., Tanash, M.: Feature
selection for learning to predict outcomes of compute cluster jobs with application
to decision support. In: 2020 International Conference on Computational Science
and Computational Intelligence (CSCI), pp. 1231–1236. IEEE (2020)

12. Pearson, K.: Vii. note on regression and inheritance in the case of two parents. In:
Proceedings of the Royal Society of London, vol. 58, pp. 347–352, 240–242 (1895)

13. Tanash, M., Dunn, B., Andresen, D., Hsu, W., Yang, H., Okanlawon, A.: Improv-
ing hpc system performance by predicting job resources via supervised machine
learning. In: Proceedings of the Practice and Experience in Advanced Research
Computing on Rise of the Machines (learning), pp. 1–8 (2019)

14. Thorndike, R.L.: Who belongs in the family. Psychometrika, pp. 267–276 (1953)
15. Van Rossum, G., Drake, F.L.: Python 3 Reference Manual. CreateSpace, Scotts

Valley (2009)
16. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple linux utility for resource

management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003.
LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/
10968987 3

17. Zaharia, M., et al.: Apache spark: a unified engine for big data processing. Com-
mun. ACM 59(11), 56–65 (2016)

https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/10968987_3

Acceptance Rates of Invertible Neural
Networks on Electron Spectra

from Near-Critical
Laser-Plasmas: A Comparison

Thomas Miethlinger1,2(B), Nico Hoffmann1, and Thomas Kluge1

1 Helmholtz -Zentrum Dresden -Rossendorf, 01328 Dresden, Germany
{t.miethlinger,n.hoffmann,t.kluge}@hzdr.de

2 Technische Universität Dresden, 01069 Dresden, Germany

Abstract. While the interaction of ultra-intense ultra-short laser pulses
with near- and overcritical plasmas cannot be directly observed, exper-
imentally accessible quantities (observables) often only indirectly give
information about the underlying plasma dynamics. Furthermore, the
information provided by observables is incomplete, making the inverse
problem highly ambiguous. Therefore, in order to infer plasma dynamics
as well as experimental parameter, the full distribution over parameters
given an observation needs to considered, requiring that models are flex-
ible and account for the information lost in the forward process. Invert-
ible Neural Networks (INNs) have been designed to efficiently model
both the forward and inverse process, providing the full conditional pos-
terior given a specific measurement. In this work, we benchmark INNs
and standard statistical methods on synthetic electron spectra. First, we
provide experimental results with respect to the acceptance rate, where
our results show increases in acceptance rates up to a factor of 10. Addi-
tionally, we show that this increased acceptance rate also results in an
increased speed-up for INNs to the same extent. Lastly, we propose a
composite algorithm that utilizes INNs and promises low runtimes while
preserving high accuracy.

Keywords: Invertible Neural Networks · Inverse Problems · Machine
Learning · Particle-in-Cell · Laser-Plasma Physics

1 Introduction

Relativistic plasmas driven by ultra-intense ultra-short laser pulses are currently
increasingly investigated due to various prospective applications in e.g. medicine,
materials science and laboratory astrophysics. While the dynamics of underdense
plasmas, i.e. plasmas with electron density ne smaller than the critical plasma
density nc, can in principle be studied with optical methods as incoming light
there is mostly transmitted, the situation is much more difficult for near-critical
(mostly absorption, ne ≈ nc) and overdense (mostly reflection, ne > nc) plasmas.
Indeed, inferring experimental parameter values and consequently determining
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 273–284, 2023.
https://doi.org/10.1007/978-3-031-30445-3_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_23&domain=pdf
https://doi.org/10.1007/978-3-031-30445-3_23

274 T. Miethlinger et al.

the relevant underlying plasma dynamics is highly elaborate, heavily depend-
ing on comparisons with observables computed from plasma simulations where
typically the Particle-in-Cell (PIC) method is employed [3,11]. Furthermore, the
information provided by observables is incomplete in the sense that multiple
experimental parameter and plasma dynamics can cause the same values for
observables, but also retrieving information is regarded non-trivial since this
process usually depends on fitting (scalar) quantities to analytical expressions
which have been derived under strong assumptions.

This is, depending on the context, also the case for the electron spectrum,
which counts the number of electrons dNe in an energy interval dE:

fe(E) :=
dNe

dE
. (1)

In this work, we study laser-driven ion acceleration [9,15]. In this research field,
where objectives concern ion-related properties, the electron spectrum is a sec-
ondary quantity that is sometimes measured in conjunction with the ion spec-
trum. Being a high-dimensional vector, however, the electron spectrum is difficult
to interpret, infer parameters and draw conclusions from. Typically, one resorts
to computing the mean (kinetic) energy of the laser-driven electrons1:

Te :=

∫ ∞
Elaser

e
Efe(E)dE

∫ ∞
Elaser

e
fe(E)dE

, (2)

where the lower integration boundary Elaser
e is introduced to distinguish between

electrons in thermal equilibrium and laser-driven electrons exhibiting an expo-
nential distribution for high energies. One can then show, using analytical con-
siderations, that the ion cutoff energy2 scales linearly with the mean kinetic
energy of the electrons, Emax

i ∝ Te, and that the mean kinetic energy of the
electrons itself mostly depends on the laser intensity I: Te = Te(I) [14,16].

However, retrieving information from the electron spectrum beyond Te in gen-
eral requires an automatized, data-driven approach. This is all the more the case
because PIC simulations are computationally (potentially very) expensive, which
motivates researchers to this day to improve PIC simulation codes, for example,
algorithmically or by improved hardware utilization [4,5]. Therefore, employing
machine learning (ML) algorithms and ML-based surrogate models is essential to
decrease the overall computational effort which would otherwise be needed due
to the necessity of performing an excessive amount of simulations. For example,
Djordjević et al. used deep learning to predict the time evolution of ion cutoff ener-
gies and electron mean kinetic energies in overdense laser-ion acceleration [8].

2 PIC Simulation Setup and Data Generation

In this work, we employ the PIC-code Smilei [5] to generate data for our ML
models. Since the predominant acceleration mechanism in laser-ion accelera-
tion is target-normal sheath-acceleration (TNSA), which is a one-dimensional
1 Sometimes (unfortunately) also called electron temperature.
2 Or, equivalently, the maximum ion energy in a laser-driven ion spectrum.

Acceptance Rates of Invertible Neural Networks on Electron Spectra 275

physical effect, and in order to significantly reduce the computational effort
for this study, we use a narrow simulation box with 240µm × 0.2µm and
impose periodic boundary conditions in the y-direction [19]. The cell size is
Δx = Δy = λ0

resolution = 800 nm
64 = 12.5 nm, and the time step is Δt = 0.995 1√

2
Δx
c

corresponding to a Courant-Friedrichs-Lewy (CFL) value of 0.995. We initialize
our plasma with 50 particles per cell. The target is a pre-expanded hydrogen
foil with thickness D. Pre-plasma with exponential scale length � is included
at the front side of the target such that the density reaches a maximum n0

at xf = 100µm. Moreover, the pre-plasma is cut-off where the density is less
than 0.01nc, i.e. ∀x : n(x) < 0.01nc =⇒ n(x) = 0. The back side is not
pre-expanded, i.e. the density is step-function-like shaped. The laser pulse is a
Gaussian with full width at half maximum (FWHM) τ and normalized vector
potential a0 = E/E0 = E/(e−1mecω0), where E is the corresponding electric
field, e is the elementary charge, me the electron mass, c the speed of light and
ω0 = 2π c

λ0
the angular frequency corresponding to the laser’s central wavelength

λ0 = 800 nm.
In this work, we performed 5000 simulations in total, varying the five param-

eters a0, τ, n0,D and �. An overview of the parameter space that we studied in
this work is given in Table 1. Thus, the laser intensity is in the range between
1020 ≤ I(a0)/Wcm−2 ≤ 1021.

Table 1. Parameter space for PIC simulations.

Quantity Symbol Unit Min Max Scaling

Normalized vector potential a0 1 6.8 21.5 Linear

Full width at half maximum τ fs 25 50 Linear

Number density (bulk) n0 nc 15 60 Linear

Target thickness D µm 0.25 5 Linear

Pre-plasma scale length � µm 0.01 1 Square

Since ML usually strongly benefits from using normalized and/or standard-
ized values, we designed our experiments as follows:

– In an effort to have our simulations as space-filling as possible in parame-
ter space, we obtained our parameter vectors x = [x1, ..., x5]

T from a low-
discrepency sequence. In particular, we used the Halton sequence, which is
a common low-discrepancy sequence used in Monte Carlo integration and
design of experiment, with dimension nx = 5 and support x̂k ∈ [0, 1] ∀k ∈
{1, ..., 5} [17].

– Since � spans two orders of magnitude, we account for that by using a non-
linear transformation to obtain the parameter values xk as used in our simu-
lations. This can be expressed as follows:

xk = x̂s
k(xmax

k − xmin
k) + xmin

k , (3)

276 T. Miethlinger et al.

Fig. 1. Examples of electron spectra. Left: Raw spectra fe(E) as measured in the PIC
simulations (note the logarithmic scale). Right: Nonlinearly transformed spectra f̃e(E).

where xmin
k and xmax

k refer to the parameter range of the kth parameter xk,
as defined in Table 1, and where the scaling exponent s refers to s = 1 for
k ≤ 4 (linear), and s = 2 for k = 5 (squared scaling for �).

In each simulation, we measured the electron spectra 500 fs after the laser
maximum reaches the target. The electron spectra were computed by binning
the weights of electron macroparticles onto 200 bins with energies between 0 and
40 MeV. Furthermore, aiming to bridge the more than five orders of magnitude
present in the raw electron spectra, we made a nonlinear transformation f̃e(E) =(
log (fe/10−3 + 1) ∗ g

)
(E), which ensures that minE f̃e(E) ≥ 0. Here, ∗ relates

to the convolution operation, i.e. we smoothed our spectra with a Gaussian
filter g(E) = 1√

2π
e−E2/2 to make the data more robust. A comparison of the

raw electron spectra to the transformed spectra is provided in Fig. 1.
Given the limited data size, especially in relation to the relatively high num-

ber of bins, we experienced in our initial attempts of training a ML model from
parameter vectors3 x to electron spectra f̃e(E) that the training process is rather
difficult and sensitive to hyperparameter. Therefore, in order to further simplify
the training process, we expressed our transformed spectra in terms of a linear
regression model. In particular, we performed principle component regression
(PCR) using ny = 6 principle components bk(E):

f̃e(E) ≈
6∑

k=1

ckbk(E) + ¯̃
fe, (4)

where the ck’s are the coefficients corresponding to the basis functions bk(E), and
¯̃
fe is the mean transformed spectrum. Thus, altogether we train our ML models
to learn mappings between x and y := [c1, ..., c6]

T. Further information about

3 Note that we use, for the sake of better of readability, henceforth the symbol x both
for our simulation parameter x as well as normalized ML parameter x̂.

Acceptance Rates of Invertible Neural Networks on Electron Spectra 277

the ML models used and studied in this work and their training is provided in
Sects. 3 and 4, respectively.

3 Invertible Neural Networks

In this work, we employ invertible neural networks (INNs) as described by Ardiz-
zone et al. in [1]. They have been designed having in mind a common problem
in natural sciences, namely that there exists a forward process (experiment,
simulation, ...) f that maps a parameter vector x ∈ R

nx onto experimentally
accessible quantities which we call observables y = f(x) ∈ R

ny . Typically, this
forward process, at least formally, is well understood in the sense that there
exists a (often highly sophisticated) theory that supports this mapping. How-
ever, one is most often interested in the inverse process, i.e. to gain information
about experimentally inaccessible parameter given an experimental result. Fur-
thermore, since the forward process intrinsically has in general accompanying
information loss, the inverse direction can only be expressed probabilistically as
this loss of information renders the inverse process ambiguous. In other words,
multiple parameter vectors may correspond to the same observable. Therefore,
we are interested in the complete set of solutions {x ∈ R

nx | f(x) = y}, i.e. the
full conditional posterior distribution p(x|y) has to be determined.

In order to account for the information loss, INNs introduce a latent space
of dimension nz and elements z ∼ N (z;0, I). Then, the latent vectors are con-
catenated with the observables as [y, z]. Note that invertibility requires that
nx = ny+nz, which can be realized by including zero-padding as required. In our
case, since already nx = 5 < ny = 6, we fulfilled the aforementioned condition
by padding our parameter vectors as [x,0], where 0 stands for a (ny +nz −nx)-
dimensional zero vector. Then, INNs attain invertibility by composition of affine
coupling blocks (ACBs), which are invertible themselves. While various different
architectures for ACBs have been developed, in this work we use the Glow archi-
tecture4, that is very similar on the RealNVP design [7,13]. In each ACB, the
input is split into two parts u = [u1,u2] of equal size which are then transformed
by an affine function using element-wise multiplication (�) and vector addition
to an output v = [v1,v2]:

v1 = u1 � exp(s2(u2)) + t2(u2),
v2 = u2 � exp(s1(u1)) + t1(u1).

(5)

Then, given the output v = [v1,v2], we can easily retrieve u = [u1,u2] as follows:

u2 = (v2 − t1(v1)) � exp(−s1(v1)),
u1 = (v1 − t2(u2)) � exp(−s2(u2)).

(6)

The functions [si(·), ti(·)], which are typically implemented as feedforward neural
networks and hence called subnetworks, can be arbitrarily complicated functions
4 Not including ActNorm, invertible 1 × 1 convolutions, etc. relevant for their specific

application, but only the coupling part itself.

278 T. Miethlinger et al.

that need not be invertible themselves. We further elaborate on the design of
the subnetworks in Sect. 4.

INNs are bi-directionally trained with losses Lx,Ly and Lz defined for x,y
and z, respectively. While Ly in general can be any supervised loss, we use
the mean-squared loss (MSE) loss, Ly = E[(y − fy(x))2]. For Lx and Lz we
use maximum mean discrepancy (MMD), which is a kernel-based, unsupervised
loss on the space of probability distributions and which is based on reproducing
kernel Hilbert spaces [10]. For our study, we used a multiscale inverse mul-
tiquadratic kernels as follows k(x,x′) =

∑
h 1/(1 + ‖(x − x′)/h‖22), where the

bandwidth parameter h ∈ {0.04, 0.16, 0.64} are similar to the ones employed by
Ardizzone et al. [1].

4 Results

We ran our experiments on the Taurus cluster at ZIH/TU Dresden. We used
nodes of type Haswell, each node having two Intel Xeon E5-2680v3 @ 2.50 GHz
processors with 30 MB L3 cache and 12 cores each, amounting to 24 cores per
node. Each observation (1000 altogether), i.e. electron spectrum, was analyzed
with one core. Each core has 2 · 32 KB L1 cache and 256 KB L2 cache. Each
program is written in Python 3.9.12 and imports NumPy 1.21.5 and PyTorch
1.10.2.

We performed two different experiments: (1) we made a comparison of accep-
tance rates between different methods for solving the inverse problem and (2)
then measured the actual time needed to find one accepted solution. These exper-
iments were performed on hyperparameter optimized models as follows:

ML Models and Training. In this study, we both employ a multilayer per-
ceptron (MLP) that we use as our reference model for the forward process f(·)
only, and an INN for solving the inverse problem. For the training of the MLP,
we again use MSE loss, corresponding to the Ly loss of the INN. For both models
we splitted our data into 80% train and 20% test set5, and we used in both cases
the Adam optimizer with learning rate α = 0.001 and betas β1 = 0.9, β2 = 0.999
for training [12]. Furthermore, we performed a hyperparameter optimization for
the MLP with regards to:

1. the activation function σ(·): ReLU(·), Tanh(·),
2. widths of hidden layers: 12, 16, 20, 24, 30,
3. number of layers: 3, 4, 5,

where we found that the setting MLP: {Tanh(·), 16, 4} shows the lowest loss
for the test set. For the INN, we extend the hyperparameter optimization with
regards to the dimension of the latent space nz, and the number of affine coupling
blocks (ACBs):

5 I.e. 4000 and 1000 data points for the train and test set, respectively.

Acceptance Rates of Invertible Neural Networks on Electron Spectra 279

Fig. 2. Conditional probability p(a0|Te) used as prior in the modified ABC routine.

1. the activation function σ(·): ReLU(·), Tanh(·),
2. widths of layers in subnetworks: 12, 16, 20, 24, 30,
3. number of layers in subnetworks: 2, 3, 4,
4. dimension nz: 2, 3, 4, 5, 6,
5. number of ACBs: 2, 3, 4, 5, 6,

where the best results, in terms of Lx +Ly, were obtained with the setting INN:
{Tanh(·), 20, 3, 6, 5}. Note that the optimal number of ACBs in our case is
larger than proposed by Dinh who generally suggests to use four ACBs [6].

4.1 Acceptance Rate

In the first experiment we compared, in terms of their acceptance rates, different
methods suitable for (approximately) solving the inverse problem, i.e. to find a
set of samples {x} that is representative for the conditional posterior p(x|y�)
conditioned on a specific measurement y�. We call a parameter vector x to be
accepted if the acceptance condition:

d(y�, f(x)) ≤ ε, (7)

is fulfilled, where f(·) is, in this study, the hyperparameter optimized MLP, d(·, ·)
is a suitable distance function and ε is a non-negative threshold.

Approximate Bayesian Computation. If a surrogate model for the forward
process is available, then one standard method to find an approximate solu-
tion for the inverse problem is approximate Bayesian computation (ABC) [2]. In
ABC, the forward process f is embedded in a rejection-sampling scheme, i.e. the
forward model is employed by randomly sampling x from the parameter space
and subsequently checking for the acceptance condition.

280 T. Miethlinger et al.

In practice, depending on the problem’s complexity as well as y� and ε, find-
ing an appropriately sized set of solutions might require the evaluation of f for
millions of times. Furthermore, since the algorithm is, per construction, subject
to randomness, one can simply get “unlucky”, consequently spending excessive
amounts of compute time. Therefore, in order to speed up the expected con-
vergence, we also performed an experiment where we again used quasi-random
numbers produced from the Halton sequence instead of purely randomly gener-
ated numbers.

Moreover, since in naive ABC we don’t include prior knowledge as we draw
samples (quasi)randomly from the parameter space and therefore implicitly
assume a multivariate uniform distribution as our prior, we don’t sample opti-
mally and thus increase the computational effort. Consequently, in order to study
the effect of a non-uniform prior, we also conducted an experiment in which we
draw a0 based on a probability density function p(a0|Te), since Te = Te(I(a0)).
The corresponding probability distribution is illustrated in Fig. 2 and was numer-
ically computed by applying Bayes’ rule on the train set data.

Hill-Climbing. On the other hand, instead of randomly trying different param-
eter vectors x as in ABC, local search algorithms such as hill-climbing (HC) and
related methods try to find solutions by incrementally improving the current
state [18]. While typically gradient-based approaches are preferred, hill-climbing
can be used also if only a black-box model is available. Arguably it’s simplest
form, and also as implemented in this work, is first-choice hill-climbing, where
the current solution is updated directly as soon as a better candidate solution
has been found. Considering that ABC produces a set of uncorrelated samples,
however, it is necessary in HC, once having found the first solution, to restart
the search for the next solution at a randomly chosen location in order also
obtain a statistically uncorrelated sample. A pseudocode of our implementation
of first-choice hill-climbing is provided in the procedure FirstChoiceHillClimbing
in Algorithm 1. For our experiments, we used a learning rate of α = 10−3, as
commonly used in ML, and a learning rate of α = 10−2 for comparison.

Comparison. A comparison of the three different methods (ABC, HC and INN)
and their specific settings is provided in Fig. 3. First, we chose our test set of
1000 electron spectra fe(E) and computed their PCR coefficients as described in
Sect. 2. Second, with the intention of obtaining a relative measure of similarity,
we define our distance function d(·, ·) based on the L2 distance as follows:

d[f(E), g(E)] =

√∫
(f(E) − g(E))2dE
√∫

g2(E)dE
, (8)

where f(E) represents an electron spectrum containing errors, e.g. as proposed
by one of our inverse solver, and g(E) is the reference ground truth spectrum
function. In this work, g(E) corresponds to the transformed electron spectrum

Acceptance Rates of Invertible Neural Networks on Electron Spectra 281

Fig. 3. Acceptance rates of different approaches for obtaining p(x|y�) in dependence
of acceptance threshold ε, averaged over 1000 different electron spectra.

of the reference model, i.e. after the PCR procedure, and the lower and upper
limits of integration are again 0 MeV and 40 MeV, respectively. At last, using
10 iterations with mtrial = 105, we compute the acceptance rate as the ratio of
accepted solutions to all(= 10 · mtrial = 106) tested solutions.

From Fig. 3 can see that the efficiency of a method heavily depends on the
acceptance threshold ε. Not surprisingly, naive ABC using random numbers
shows a rather low acceptance rate regardless of ε. Furthermore, ABC using
quasi-random numbers behaves the same as naive ABC for larger ε, since then
the law of large numbers becomes relevant, and shows significantly better per-
formance for smaller thresholds where ε ≤ 5 · 10−3. A further improvement can
be achieved by using an informed prior for a0: On average, the acceptance rate
increases approximately by a factor of 2 when compared to uninformed ABC.
However, interestingly, it can be seen that the acceptance rate is more than two
orders of magnitude smaller than simply using ABC with the Halton sequence
for ε = 10−3. This can be understood by noting that in this case parameters
are again sampled randomly, and thus don’t exhibit the enhanced space-filling
property as in the Halton case. The largest acceptance rates for small ε were
obtained by the hill-climbing methods, which are higher by around one order
of magnitude. We can deduce, from the big drop in the acceptance rate of HC
for large ε, that HC first needs many steps to approach a region of reasonably
small distance after which, however, it apparently only takes minimal effort to
further optimize the solution. While HC with learning rate α = 10−2 always
beats HC with learning rate of α = 10−3, we can also see that the difference sig-
nificantly decreases for decreasing ε. On the other hand, the largest acceptance
rates for ε ≥ 10−2 were obtained by the INN. For ε ≤ 5 · 10−3, the INN shows
worse performance than both configurations of HC. Then, around ε ≈ 3 · 10−3,
the INN also exhibits lower acceptance rates than Halton-based ABC. Again,
the reason is that latent vectors z are sampled randomly from the multivariate

282 T. Miethlinger et al.

Fig. 4. Time to solution, i.e. of a single acceptance, of different approaches for obtaining
p(x|y�) in dependence of acceptance threshold ε, averaged over 1000 different electron
spectra.

normal distribution, and not from a quasi-random sequence. Therefore, for the
full range of ε, the INN always surpasses the acceptance rate of ABC: Random
and ABC Te, since they are also both based on random numbers rather than a
quasi-random sequence.

4.2 Runtimes

While the acceptance rate is more interesting for theoretical analysis, in practice
we are interested in the actual computational cost, e.g. in terms of the runtime.
We performed the same experiment as before, but instead we measured the
total runtime relative to the number of accepted samples, ttotal/macc. Again, we
average our results over the same 1000 electron spectra from the test set. The
result is depicted in Fig. 4.

We can see that general trends are preserved, e.g. that the INN is the fastest
method up until ε ≥ 3 · 10−3 and that ABC with informed prior is always faster
than naive ABC. HC is still a fast method for very small thresholds. However,
the relative runtimes difference between HC and all other methods decreased
by around two order of magnitude when compared to the relative difference in
acceptance rate. This can be understood as HC uses loops and needs to call
f(·) many times, while e.g. ABC calls the forward function only once for all
proposal vectors and therefore takes advantage of optimized matrix operations.
Hence, to ensure efficient computation, HC should as well be embedded in paral-
lel procedures. We can also see that using the INN does not cause any significant
overhead, since the relative speedup is approximately conserved with respect to
the relative increase in acceptance rate.

Thus, in order find uncorrelated samples for the inverse problem, the method
should be chosen having the required accuracy in mind. An algorithm based on

Acceptance Rates of Invertible Neural Networks on Electron Spectra 283

Algorithm 1. INN-HC: Inverse solver optimized for low acceptance thresholds.

1: procedure InverseSolver(y�, m, f , inn, d, ε, α)
2: Y� ← vstack(y�, m) � Vertically stack y�, i.e. Y� ∈ R

m×ny

3: Z ← rand(N (0, 1), (m, nz)) � Z ∈ R
m×nz

4: X ← inn−1([Y�,Z])
5: for i in 1, ..., m do
6: x ← Xi,·
7: if d(y�, f(x)) > ε then
8: x ← FirstChoiceHillClimbing(y�, f, d, ε,x, α)
9: Xi,· ← x

10: return X

11: procedure FirstChoiceHillClimbing(y�, f , d, ε, x0, α)
12: x ← x0

13: while d(y�, f(x)) > ε do
14: ξ ← rand(U([−1, 1]), (nx)) � Generate vector with random direction
15: ξ ← ξ/|ξ| � Normalize to unit length
16: x̃ ← x + αξ
17: if d(y�, f(x̃)) ≤ d(y�, f(x)) then
18: x ← x̃.
19: return x

the combination of an INN and HC, which is designed to also work for very small
thresholds, is provided in Algorithm 1.

5 Conclusion

In this work, we have studied INNs on synthetic electron spectra in the con-
text of near-critical laser-plasma physics. In particular, we compared INNs with
other standard statistical methods for solving the inverse process. We found that
INNs perform, both in terms of acceptance rates as well as runtimes, better than
all other methods up to a small threshold distance. Furthermore, we show that
naive ABC based on random numbers has lower acceptance rates and larger
runtimes than our INN model by a factor of approximately 10 for any threshold.
INNs also surpass informed ABC, where we used a modified prior p(a0|Te) that
we motivated due to physical considerations, by a significant amount. Moreover,
we demonstrate the importance of quasi-random numbers and recommend to
use them as well in conjunction with INNs. On the other hand, our results sug-
gest that iterative approaches, in our case hill-climbing, surpass INNs for small
thresholds ε ≤ 3 ·10−3, especially in terms of the acceptance rate. Therefore, due
to the relative strengths of the different algorithms, we propose a composite algo-
rithm for obtaining the conditional posterior that combines both hill-climbing
and INNs.

284 T. Miethlinger et al.

References

1. Ardizzone, L., Kruse, J., Rother, C., Köthe, U.: Analyzing inverse problems with
invertible neural networks (2018). http://arxiv.org/abs/10.48550/ARXIV.1808.
04730

2. Beaumont, M.A.: Approximate bayesian computation. Ann. Rev. Stat. Appl. 6,
379–403 (2019). https://doi.org/10.1146/annurev-statistics-030718-105212

3. Birdsall, C.K., Langdon, A.B.: Plasma Physics via Computer Simulation. CRC
Press, Boca Raton (2018)

4. Burau, H., et al.: Picongpu: a fully relativistic particle-in-cell code for a GPU
cluster. IEEE Trans. Plasma Sci. 38(10), 2831–2839 (2010). https://doi.org/10.
1109/tps.2010.2064310

5. Derouillat, J., et al.: Smilei: a collaborative, open-source, multi-purpose particle-
in-cell code for plasma simulation. Comput. Phys. Commun. 222, 351–373 (2018).
https://doi.org/10.1016/j.cpc.2017.09.024

6. Dinh, L., Krueger, D., Bengio, Y.: Nice: Non-linear independent components esti-
mation. arXiv preprint arXiv:1410.8516 (2014). https://doi.org/10.48550/ARXIV.
1410.8516

7. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real NVP (2016).
https://doi.org/10.48550/ARXIV.1605.08803

8. Djordjević, B.Z., et al.: Modeling laser-driven ion acceleration with deep learning.
Phys. Plasmas 28(4), 043105 (2021). https://doi.org/10.1063/5.0045449

9. Gibbon, P.: Short-Pulse Laser Interactions with Matter: an Introduction. World
Scientific, Singapore (2005)

10. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel
two-sample test. J. Mach. Learn. Res. 13(1), 723–773 (2012)

11. Hockney, R.W., Eastwood, J.W.: Computer Simulation using Particles. CRC Press,
Boca Raton (2021)

12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). https://
doi.org/10.48550/ARXIV.1412.6980

13. Kingma, D.P., Dhariwal, P.: Glow: Generative flow with invertible 1 × 1 convolu-
tions. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

14. Kluge, T., Cowan, T., Debus, A., Schramm, U., Zeil, K., Bussmann, M.: Electron
temperature scaling in laser interaction with solids. Phys. Rev. Lett. 107(20),
205003 (2011). https://doi.org/10.1103/PhysRevLett.107.205003

15. Macchi, A.: A review of laser-plasma ion acceleration (2017). https://doi.org/10.
48550/ARXIV.1712.06443

16. Mora, P.: Plasma expansion into a vacuum. Phys. Rev. Lett. 90(18), 185002 (2003).
https://doi.org/10.1103/PhysRevLett.90.185002

17. Niederreiter, H.: Random number generation and quasi-monte Carlo methods.
SIAM (1992). https://doi.org/10.1137/1.9781611970081

18. Russel, S., Norvig, P., et al.: Artificial Intelligence: A Modern Approach. Pearson
Education Limited, London (2013)

19. Wilks, S.C., et al.: Energetic proton generation in ultra-intense laser-solid interac-
tions. Phys. Plasmas 8(2), 542–549 (2001). https://doi.org/10.1063/1.1333697

http://arxiv.org/abs/10.48550/ARXIV.1808.04730
http://arxiv.org/abs/10.48550/ARXIV.1808.04730
https://doi.org/10.1146/annurev-statistics-030718-105212
https://doi.org/10.1109/tps.2010.2064310
https://doi.org/10.1109/tps.2010.2064310
https://doi.org/10.1016/j.cpc.2017.09.024
http://arxiv.org/abs/1410.8516
https://doi.org/10.48550/ARXIV.1410.8516
https://doi.org/10.48550/ARXIV.1410.8516
https://doi.org/10.48550/ARXIV.1605.08803
https://doi.org/10.1063/5.0045449
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.1103/PhysRevLett.107.205003
https://doi.org/10.48550/ARXIV.1712.06443
https://doi.org/10.48550/ARXIV.1712.06443
https://doi.org/10.1103/PhysRevLett.90.185002
https://doi.org/10.1137/1.9781611970081
https://doi.org/10.1063/1.1333697

4th Workshop on Applied High
Performance Numerical Algorithms

for PDEs

MATLAB Implementation of Hp Finite
Elements on Rectangles Using
Hierarchical Basis Functions

Alexej Moskovka1 and Jan Valdman2,3(B)

1 Department of Mathematics, Faculty of Applied Sciences, University of West
Bohemia, Technická 8, 30100 Plzeň, Czech Republic

2 Department of Computer Science, Faculty of Science, University of South Bohemia,
Branǐsovská 31, 37005 České Budějovice, Czech Republic

3 The Czech Academy of Sciences, Institute of Information Theory and Automation,
Pod vodárenskou věž́ı 4, 18208, Prague 8, Czech Republic

jan.valdman@utia.cas.cz

Abstract. A MATLAB implementation of hierarchical shape functions
on 2D rectangles is explained and available for download. Global shape
functions are ordered for a given polynomial degree according to the
indices of the nodes, edges, or elements to which they belong. For a uni-
form p-refinement, the hierarchical structure enables an effective assem-
bly of mass and stiffness matrices. A solution to a boundary value prob-
lem is approximated for various levels of uniform h and p refinements.

Keywords: MATLAB vectorization · finite elements · mass and
stiffness matrices · uniform hp-refinement · boundary value problem

1 Introduction

hp-FEM is a numerical method for solving partial differential equations based
on piecewise polynomial approximations that employ elements of variable size
(h) and degree of the polynomial (p). The origins of hp-FEM date back to the
work of Ivo Babuška and his coauthors in the early 1980 s s (e.g. [11,12]) who
discovered that the finite element method converges exponentially fast when the
mesh is refined using a suitable combination of h-refinements (dividing elements
into smaller ones) and p-refinements (increasing their polynomial degree). Many
books (e.g. [3,4,6,9]) have been written explaining the methodology of hp-FEM
accompanied by software codes [13,14] in C++. Implementing hierarchical shape
functions, particularly in the case of hp adaptivity, is not straightforward, and

A. Moskovka was supported by the MSMT CR project 8J21AT001 Model Reduction
and Optimal Control in Thermomechanics. J. Valdman announces the support of the
Czech Science Foundation (GACR) through the GF21-06569K grant Scales and shapes
in continuum thermomechanics.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 287–299, 2023.
https://doi.org/10.1007/978-3-031-30445-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_24&domain=pdf
http://orcid.org/0000-0003-0091-151X
http://orcid.org/0000-0002-6081-5362
https://doi.org/10.1007/978-3-031-30445-3_24

288 A. Moskovka and J. Valdman

special data structures are needed [5,10]. A recent MATLAB contribution [8]
provides an object-oriented approach to implement hp-FEM on triangles with
adaptive h-refinement.

Our focus is on a simple hp-FEM implementation on rectangles directly based
on [4]. We provide eight examples that demonstrate the basics of hp-FEM assem-
blies, including:

• constructions of basis functions and their isoparametric transformations to
general quadrilaterals (Sect. 2),

• the ordering of global shape functions using indexing matrices (Sect. 3),
• assemblies of the mass and stiffness matrices (Sect. 4),
• solution of a particular diffusion-reaction boundary value problem using uni-

form h and p refinements (Sect. 5).

A complementary software for this paper is available at

https://www.mathworks.com/matlabcentral/fileexchange/111420

for download and testing. The codes for the evaluation of the shape functions
were provided by Dr. Sanjib Kumar Acharya (Mumbai). The assemblies of FEM
matrices are partially based on vectorization techniques of [1,2]. The names of
most of the mesh attributes and the domain triangulation algorithms are taken
from [7].

2 Hierarchic Shape Functions

We consider the basis functions for the dimensions of space d ∈ {1, 2} (see [4]).
For a reference element Tref = [−1, 1]d and p ∈ N we denote by

Sp(Tref) (1)

Fig. 1. The hierarchic shape basis functions Nm(ξ), m = 1, . . . , 6, where p is the
corresponding polynomial degree.

https://www.mathworks.com/matlabcentral/fileexchange/111420

MATLAB Implementation of Hp Finite Elements 289

the space of polynomials of degree p defined on Tref . The basis functions that
span the space are called shape functions. We define them using Legendre poly-
nomials for x ∈ [−1, 1]:

P0(x) = 1 , P1(x) = x ,

Pn+1(x) =
(2n + 1)xPn(x) − nPn−1(x)

n + 1
, n ≥ 1 .

(2)

Hierarchic shape functions on Tref = [−1, 1] are functions Nm(ξ) : Tref →
R, m ∈ N defined using (2) as:

N1(ξ) =
1 − ξ

2
, N2(ξ) =

1 + ξ

2
,

Nm(ξ) =
1

√
2(2m − 3)

(
Pm−1(ξ) − Pm−3(ξ)

)
, m ≥ 3 .

(3)

All Nm(ξ), m ≥ 3 vanishes at the endpoints of Tref .

Example 1. The first hierarchical shape functions are shown in Fig. 1 and the
pictures can be reproduced by the script

example1_draw_hp_basis_1D

2.1 Hierarchic Shape Functions on Tref = [−1, 1]2

For p ∈ N we define the trunk space Sp(Tref) spanned by polynomials ξiηj ,
where i, j ∈ N0 satisfies i + j ≤ p, supplemented by the polynomial ξη for p = 1
and the polynomials ξpη, ξηp for p ≥ 2. Its dimension is given by

np,ref = dim(Sp(Tref)) =

{
4p , p ≤ 3
4p + (p − 2)(p − 3)/2 , p ≥ 4 .

(4)

There are three types of 2D shape functions: nodal (Q1), edge, and bubble (some-
times called internal). The nodal shape functions that span the space S1(Tref)
are defined as follows:

N1(ξ, η) =
1
4
(1 − ξ)(1 − η) , N2(ξ, η) =

1
4
(1 + ξ)(1 − η) ,

N3(ξ, η) =
1
4
(1 + ξ)(1 + η) , N4(ξ, η) =

1
4
(1 − ξ)(1 + η) .

(5)

The function of the i-th nodal shape is equal to one in the i-th node of Tref and
vanishes in other nodes. The edge shape functions are constructed by multiply-
ing one-dimensional shape functions Nm(ξ), m ≥ 3 from (3) by linear blending
functions. We define φp(x) = Np+1(x), p ≥ 2, and the edge shape functions by

N (1)
p (ξ, η) =

1
2
(1 − η)φp(ξ) , N (2)

p (ξ, η) =
1
2
(1 + ξ)φp(η) ,

N (3)
p (ξ, η) =

1
2
(1 + η)φp(−ξ) , N (4)

p (ξ, η) =
1
2
(1 − ξ)φp(−η) .

(6)

290 A. Moskovka and J. Valdman

Fig. 2. Examples of nodal (the top row), edge (the middle row) and bubble (the bottom
row) shape functions. Here, m denotes the index of the shape function, p its polynomial
degree and s is the local index.

For j ∈ {1, 2, 3, 4}, the restriction of N
(j)
p on the j-th edge is equal to the

corresponding one-dimensional edge shape function of the p-th degree, and it
vanishes along the other edges. The bubble functions are defined as

Nβ
p (ξ, η) = φp−(β+1)(ξ)φβ+1(η) , 1 ≤ β ≤ p − 3 , p ≥ 4 (7)

and any of them attains zero values on all edges. Table 1 shows the number of
shape functions in Tref for 1 ≤ p ≤ 7.

Local Indexing. The shape functions of the p th degree in Tref are ordered by
a unique index m ∈ N given by

m =

{
4(p − 1) + s , for p ≤ 4 ,

4(p − 1) + (p − 3)(p − 4)/2 + s , for p ≥ 5 ,
(8)

where for p = 1: s is the index of a node i ∈ {1, 2, 3, 4},
for p ≥ 2: s is the index of an edge j ∈ {1, 2, 3, 4},

MATLAB Implementation of Hp Finite Elements 291

Table 1. The numbers of shape functions.

polynomial degree p # of nodal functions # of edge functions # of bubble functions # of all functions

1 4 0 0 4

2 4 4 0 8

3 4 8 0 12

4 4 12 1 17

5 4 16 3 23

6 4 20 6 30

7 4 24 10 38

for p ≥ 4: s = 4+β, where β is the local index of a bubble function (7).

Example 2. Several shape functions are depicted in Fig. 2 and can be reproduced
by the script

example2_draw_hp_basis_2D

The degree of the polynomial p and the local index s are evaluated by the
function [s,p] = shapeindx(m).

Fig. 3. The isoparametric transformation of Tref indicated by the blue frame (bottom-
left) to eight quadrilaterals indicated by red frames (right) and the transformation of
the function cos (3π

4
ξ) cos (3π

4
η) approximated for p = 4. (Color figure online)

Mapping From Tref to a quadrilateral T. Transformation of a reference
element Tref to a quadrilateral T is performed by the isoparametric mapping
Q : Tref → T defined as (x, y)(ξ, η) = Q(ξ, η), where

Q(ξ, η) =
(4∑

i=1

Xi Ni(ξ, η) ,

4∑

i=1

Yi Ni(ξ, η)
)

, (9)

and (Xi, Yi), i ∈ {1, 2, 3, 4} are the coordinates of the i-th node of T . For a given
p ∈ N, we denote by

Sp(T) (10)

the space of functions spanned by Nm

(
Q−1(x, y)

)
, where Nm ∈ Sp(Tref).

292 A. Moskovka and J. Valdman

Example 3. The transformation of Tref into eight different quadrilaterals form-
ing a flattened annulus is shown in Fig. 3 and can be reproduced using the script

example3_isoparametric_transformation

It also visualizes the approximation of the function f(ξ, η) = cos (3π
4 ξ) cos (3π

4 η),
(ξ, η) ∈ Tref for p = 4 and its transformation into quadrilaterals.

3 Global Shape Functions

A domain Ω ⊂ R
2 is approximated by a triangulation T into closed elements

(quadrilaterals). We denote by N , E and T the sets of nodes, edges, and elements,
respectively, and by |N |, |E| and |T | their sizes. For a given p ∈ N we define it
by

Sp(T) (11)

the space of all global shape functions on T and by np its dimension given by

np =

{
|N | + (p − 1) |E| , p ≤ 3 ,

|N | + (p − 1) |E| + 1
2 (p − 2)(p − 3) |T | , p ≥ 4 .

(12)

We denote by N
(g)
m , 1 ≤ m ≤ np the m-th global shape function defined by its

restrictions on elements Tk ∈ T , 1 ≤ k ≤ |T | in the following way:

N
(g)
m is a nodal shape function corresponding to the i-th node: If Tk is adjacent

to the i-th node, then N
(g)
m

∣∣
Tk

= Ñl,k, where Ñl,k is the l-th local nodal shape

function on Tk which is equal to one in the i-th node. Otherwise, N
(g)
m = 0.

Fig. 4. Function u ∈ Sp(T) ∈ of (13) and the underlying rectangular mesh with indices
of elements.

MATLAB Implementation of Hp Finite Elements 293

N
(g)
m is an edge shape function corresponding to the j-th edge: If Tk is adjacent

to the j-th edge, then N
(g)
m

∣∣
Tk

= Ñl,k, where Ñl,k is the l-th local edge shape
function on Tk whose restriction on the j-th edge is the corresponding edge
shape function in 1D. Otherwise, N

(g)
m = 0.

N
(g)
m is a bubble shape function corresponding to the k-th element:

N
(g)
m

∣∣
Tk

= Ñl,k, where Ñl,k is the corresponding l-th local bubble shape func-

tion on the k-th element. Otherwise, N
(g)
m = 0.

Example 4. We assume a triangulation T of Ω = (−3, 3) × (0, 2) with |N | = 24,
|E| = 37, |T | = 14, np = 149 and the function u ∈ S4(T) defined as

u(x, y) = N
(g)
10 (x, y) − 2N

(g)
34 (x, y) − 2N

(g)
142(x, y) , (x, y) ∈ Ω (13)

shown in Fig. 4. The nodal function N
(g)
10 corresponds to the node adjacent to

T1, T2, T8, T9, the edge function N
(g)
34 to the edge adjacent to T4, T5, and the

bubble function N
(g)
142 is defined in T7. Figure 4 is generated by the script

example4_draw_hp_basis_2D_global

3.1 Global Indexing

The relation between the topology of T and the global shape function indices is
represented by three essential matrices.

Table 2. The matrix B(T , p) for T with |N | = 4, |E| = 4, |T | = 1 and p = 5. Zero
values are replaced by symbol ′−′.

p the global node index the global edge index the global element index the local bubble index

1 1 – – –

1 2 – – –

1 3 – – –

1 4 – – –

2 – 1 – –

2 – 2 – –

2 – 3 – –

2 – 4 – –

3 – 1 – –

3 – 2 – –

3 – 3 – –

3 – 4 – –

4 – 1 – –

4 – 2 – –

4 – 3 – –

4 – 4 – –

4 – – 1 1

5 – 1 – –

5 – 2 – –

5 – 3 – –

5 – 4 – –

5 – – 1 1

5 – – 1 2

294 A. Moskovka and J. Valdman

A Matrix B(T , p) is of size np × 5 and stores the key attributes of the global
shape functions N

(g)
m ∈ Sp(T), 1 ≤ m ≤ np which are uniquely determined by:

the degree of N
(g)
m (the first column of B(T , p)), the type of N

(g)
m (nodal, edge or

bubble) specified by the global index of the respective node (the 2nd column),
edge (the 3rd column), or element (the 4th column). Additionally, the type of
bubble requires a local index of a bubble (the 5th column). The key advantage
of this approach is that for the same T and 1 ≤ p1 < p2 the first np1 rows of
both matrices B(T , p1) and B(T , p2) are the same.

A Matrix C(T , p) of size np,ref ×|T | collects for individual elements the indices
of the corresponding global functions. In particular, Cl,k(T , p) = m means that
N

(g)
m

∣∣
Tk

corresponds to the l-th local shape function on the k-th element.

A Matrix S(T , p) of size np,ref × |T | for the l-th row and the k-th column
returns the sign of the l-th local function on the k-th element. For edges adjacent
to two elements, the corresponding local edge functions of odd degrees have to
be assigned opposite signs to ensure the continuity of the corresponding global
edge functions.

Example 5. We assume a triangulation T with |N | = 4, |E| = 4, and |T | = 1.
Tab. 2 depicts for p = 5 the corresponding matrix B(T , p) with 23 (the value of
np) rows and 5 columns that can be generated by the script

example5_B_matrix

Example 6. We assume a triangulation T with |N | = 6, |E| = 7 and |T | = 2.
Tab. 3 depicts for p = 3 the corresponding matrices C(T , p) and S(T , p) with 12
(the value of np,ref) rows and 2 (the value of T) columns that can be generated
by script

example6_C_S_matrices

Fig. 5 shows the global edge function N
(g)
17 of the 3rd degree. The left part exploits

the right orientation with opposite signs providing continuity, and the right part
exploits the wrong orientation leading to discontinuity.

Table 3. Matrices C(T , p) (left) and S(T , p) (right) of Example 6.

l T1 T2

1 1 2

2 2 3

3 5 6

4 4 5

5 7 9

6 10 11

7 12 13

8 8 10

9 14 16

10 17 18

11 19 20

12 15 17

l T1 T2

1 1 1

2 1 1

3 1 1

4 1 1

5 1 1

6 1 1

7 1 1

8 1 1

9 1 1

10 −1 1

11 1 1

12 1 1

MATLAB Implementation of Hp Finite Elements 295

4 Mass and Stiffness Matrices

4.1 The Reference Mass and Stiffness Matrices

are for a given p ∈ N matrices of size np,ref × np,ref defined by

Mref
i,j =

∫

Tref

NiNjdx , Kref
i,j =

∫

Tref

∇Ni · ∇Njdx . (14)

Functions

mass_matrixQp_2D_reference(p)

stiffness_matrixQp_2D_reference(p)

Fig. 5. The right (left) and wrong (right) orientation of N
(g)
17 of Example 6.

evaluate the corresponding reference mass and stiffness matrices using the Gaus-
sian quadrature rule. For a given p, the function [X,W] = intrec_hp(p) returns
the Gauss points X ∈ Tref together with the corresponding weights stored in a
vector W .

4.2 The Global Mass and Stiffness Matrices

are for a specific p and T matrices of size np × np defined by

Mi,j =
∫

T
N

(g)
i N

(g)
j dx , Ki,j =

∫

T
∇N

(g)
i · ∇N

(g)
j dx (15)

and assembled by adding the contributions of local mass and stiffness matrices
M(Tk) and K(Tk) of size np,ref × np,ref to the corresponding entries. In partic-
ular, Mi,j(Tk) and Ki,j(Tk) contribute to the ck

i -th row and the ck
j -th column

of M and K, respectively, where ck is the k-th column vector of C(T , p).
For any Tk ∈ T , 1 ≤ k ≤ |T | the local mass matrix M(Tk) is given by

M(Tk) =
|Tk|

|Tref |M
ref =

|Tk|
4

Mref , (16)

296 A. Moskovka and J. Valdman

however, this formula cannot be applied to the assembly of the local stiffness
matrix K(Tk). Instead, we apply the chain rule to evaluate

Ki,j(Tk) =
∫

Tk

∇Ñi(x, y) · ∇Ñj(x, y)dx =

=
∫

Tk

∇Ni

(
Q−1(x, y)

)
· ∇Nj

(
Q−1(x, y)

)
dx ,

(17)

where Ñi and Ni, 1 ≤ i ≤ np,ref are the i-th local function on Tk and Tref ,
respectively. Using the chain rule, one can write

∇Ñi

(
Q−1(x, y)

)
=

(∂Ñi

∂ξ

∂ξ

∂x
+

∂Ñi

∂η

∂η

∂x
,

∂Ñi

∂ξ

∂ξ

∂y
+

∂Ñi

∂η

∂η

∂y

)
, (18)

where (∂ξ

∂x
,
∂η

∂x

)
=

∂Q−1

∂x
(x, y) ,

(∂ξ

∂y
,
∂η

∂y

)
=

∂Q−1

∂y
(x, y).

Additionally, we apply derivative of the formula of inverse function to evaluate
(

∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y

)

= ∇Q−1(x, y) =
(
∇Q(ξ, η)

)−1 =

(
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

)−1

. (19)

Table 4. Mesh properties (left) of the uniform mesh refinements of Example 7 and
numbers of global shape functions for different polynomial orders (right).

level |N | |E| |T |
2 2.5 · 101 4.0 · 101 1.6 · 101

3 8.1 · 101 1.4 · 102 6.4 · 101

4 2.9 · 102 5.4 · 102 2.6 · 102

5 1.1 · 103 2.1 · 103 1.0 · 103

6 4.2 · 103 8.3 · 103 4.1 · 103

7 1.7 · 104 3.3 · 104 1.6 · 104

8 6.6 · 104 1.3 · 105 6.6 · 104

9 2.6 · 105 5.3 · 105 2.6 · 105

level n1 n2 n3 n4 n5

2 2.5 · 101 6.5 · 101 1.1 · 102 1.6 · 102 2.3 · 102

3 8.1 · 101 2.3 · 102 3.7 · 102 5.8 · 102 8.5 · 102

4 2.9 · 102 8.3 · 102 1.4 · 103 2.2 · 103 3.2 · 103

5 1.1 · 103 3.2 · 103 5.3 · 103 8.4 · 103 1.3 · 104

6 4.2 · 103 1.3 · 104 2.1 · 104 3.3 · 104 5.0 · 104

7 1.7 · 104 5.0 · 104 8.3 · 104 1.3 · 105 2.0 · 105

8 6.6 · 104 2.0 · 105 3.3 · 105 5.3 · 105 7.9 · 105

9 2.6 · 105 7.9 · 105 1.3 · 106 2.1 · 106 3.2 · 106

Example 7. For Ω = Tref = [−1, 1]2 the script

example7_M_K_matrices_times

runs a nested loop on different p and levels of uniform refinements of Ω. The mass
and stiffness matrices are assembled by the functions mass_matrixQp_2D(mesh)
and stiffness_matrixQp_2D(mesh), respectively. Tables 4 and 5 contain the
properties of the mesh and the corresponding assembly times. Assembly times
were obtained on a MacBook Air (M1 processor, 2020) with 16 GB memory
running MATLAB R2022a.

MATLAB Implementation of Hp Finite Elements 297

Table 5. Assembly times of mass and stiffness matrices in Example 7 measured in
seconds.

p = 1 p = 2 p = 3 p = 4 p = 5

level M [s] K [s] M [s] K [s] M [s] K [s] M [s] K [s] M [s] K [s]

2 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01

3 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01

4 0.00 0.01 0.00 0.00 0.01 0.02 0.01 0.02 0.01 0.03

5 0.00 0.01 0.00 0.01 0.01 0.02 0.01 0.05 0.02 0.09

6 0.00 0.02 0.01 0.04 0.02 0.08 0.03 0.16 0.07 0.33

7 0.01 0.08 0.03 0.15 0.07 0.32 0.25 0.71 0.45 1.46

8 0.04 0.31 0.15 0.66 0.48 1.44 0.98 3.14 2.00 6.20

9 0.22 1.29 0.91 2.86 1.94 6.01 5.26 12.43 11.17 27.31

5 Solving Partial Differential Equation in 2D

We solve a diffusion-reaction boundary value problem

−Δu + ν u = f in Ω ,
∂u

∂n
= 0 on ∂Ω (20)

by applying the hp-FEM method to the weak formulation of (20) given by
∫

T
∇u · ∇N (g)

m dx + ν

∫

T
uN (g)

m dx =
∫

T
f N (g)

m dx , ∀N (g)
m ∈ Sp(T) . (21)

It leads to an algebraic system of linear equations in the form of

(K + ν M) ũn = b , (22)

where M and K are global mass and stiffness matrices, un is the numerical
solution of (21) represented by the vector ũn ∈ R

np of coefficients in the cor-
responding hp basis and the vector b ∈ R

np is given by bm =
∫

T fN
(g)
m dx. We

assume the domain Ω = Tref = [−1, 1]2 and the parameter ν = 0.1. It is easy to
show that

u(x, y) = (1 − x2)2 (1 − y2)2

represents the solution of (20) corresponding to the function

f(x, y) = ν u(x, y) − 4
(

− 2 + 5y2 − y4 + x4(−1 + 3y2) + x2(5 − 12y2 + 3y4)
)

for (x, y) ∈ Ω. To study the convergence of hp approximations, we take several
levels of uniform refinements of Ω defined by |T | squares of same size, where
|T | = 4level, level = 1, . . . , 7 and solve (22) for different polynomial orders p,
1 ≤ p ≤ pmax = 5. The exact solution u is approximated in Sp̃(T), p̃ = pmax +2
by the vector ũ. The corresponding error e in the energy norm is given by

e2 =
∫

T

(
‖∇u − ∇un‖2 + (u − un)2

)
dx ≈ (ũ − ũn)T (K + M)(ũ − ũn) . (23)

298 A. Moskovka and J. Valdman

Fig. 6. Examples of solutions of (21) and convergence in the energy norm.

The script example8 diffusion reaction BVP utilizes a nested for loop on
p (inside) and mesh refinement levels (outside). Two particular numerical solu-
tions are shown in Fig. 6 (left). The corresponding errors (23) are shown in Fig. 6
(right), where the crosses on different lines correspond to the mesh refinement
levels and both x and y labels are log-scaled. The calculation confirms a theoret-
ical expectation e ≈ hp, where p is a chosen polynomial order and h is a chosen
square size satisfying |T | = 4h−2.

References

1. Anjam, I., Valdman, J.: Fast MATLAB assembly of FEM matrices in 2D and 3D:
Edge elements. Appl. Math. Comput. 267, 252–263 (2015)

2. Rahman, T., Valdman, J.: Fast MATLAB assembly of FEM matrices in 2D and
3D: Nodal elements. Appl. Math. Comput. 219, 7151–7158 (2013)

3. Szabó, B., Babuška, I.: Finite Element Analysis. Wiley-Interscience, New York
(1991)

4. Szabó, B., Babuška, I.: Introduction to Finite Element Analysis, John Wiley &
Sons (2011)

5. Bangerth, W., Kayser-Herold, O.: Data structures and requirements for hp finite
element software. ACM Trans. Math. Softw. (TOMS) 36(1), 1–31 (2009)

6. Šoĺın, P., Segeth, K., Doležel, I.: Higher-Order Finite Element Methods, Chapman
& Hall/CRC (2004)

7. Moskovka, A., Valdman, J.: Fast MATLAB evaluation of nonlinear energies using
FEM in 2D and 3D: nodal elements. Appl. Math. Comput. 424, 127048 (2022)

8. Innerberger, M., Praetorius, D.: MooAFEM: an object oriented Matlab code for
higher-order adaptive FEM for (nonlinear) elliptic PDEs. Appl. Math. Comput.
442, 127731 (2023)

MATLAB Implementation of Hp Finite Elements 299

9. Demkowicz, L.: Computing with hp-ADAPTIVE FINITE ELEMENTS, Volume
1, Chapman & Hall/CRC (2007)

10. Demkowicz, L., Oden, J.T., Rachowicz, W., Hardy, O.: Toward a Universal h-p
Adaptive Finite Element Strategy. Part 1. Constrained Approximation and Data
Structure. Comput. Methods Appl. Mech. Eng. 77(1–2), 79–112 (1989)

11. Babuška, I., Szabó, B., Katz, I.: The p-version of the finite element method. SIAM
J. Num. Anal. 18(3), 515–545 (1981)

12. Babuška, I., Guo, B.Q.: The h-p version of the finite element method. Comput.
Mech. 1, 21–41 (1986)

13. Schöberl, J.: C++11 Implementation of Finite Elements in NGSolve. Vienna Uni-
versity of Technology, Institute for Analysis and Scientific Computing (2014)

14. Šoĺın, P., Korous, L., Kus, P.: Hermes2D, a C++ library for rapid development
of adaptive hp-FEM and hp-DG solvers. J. Comput. Appl. Math. 270, 152–165
(2014)

Adaptive Parallel Average Schwarz
Preconditioner for Crouzeix-Raviart

Finite Volume Method

Leszek Marcinkowski1(B) and Talal Rahman2

1 Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw,
Banacha 2, 02 -097 Warszawa, Poland
Leszek.Marcinkowski@mimuw.edu.pl

2 Faculty of Engineering and Science, Western Norway University of Applied
Sciences, Inndalsveien 28, 5063 Bergen, Norway

Talal.Rahman@hvl.no

Abstract. In this paper, we describe and analyze an Average Schwarz
Method with spectrally enriched coarse space for a Crouzeix-Raviart
finite volume element discretization of a multiscale problem. The derived
preconditioner is symmetric and we apply GMRES iterative method to
the preconditioned problem obtaining the convergence rate of GMRES
weakly dependent on the ratio of the coarse to fine mesh h/H if the
enrichments of the coarse space contain sufficiently many specially con-
structed eigenfunctions.

Keywords: Average Schwarz method · Domain Decomposition ·
Finite Volume Element Method · Crouzeix-Raviart

1 Introduction

The finite volume element method is quite popular in science and engineering,
and therefore quite many works in which the method is analyzed have been
published, cf. e.g. [7,8,12,13,15,23] and references therein.

The Domain Decomposition Methods (DDMs) are a very powerful and effec-
tive way of solving in parallel the linear and non-linear systems of equations
arising from discretizations of PDEs.

There are not many DDMs for solving the systems arising from Finite Vol-
ume Element Discretizations, in particular a Crouzeix-Raviar Finite Volume
Element (CRFVE) discretization. To our knowledge those papers [9,16–19,29]
are the only published results concerning this topic. The last three papers are
related to DDMs for the CRFVE discretizations. In this paper, we extend the
results of [16] where there is the analysis of the classical (no enrichments) aver-
age Schwarz method for a CRFVE discretization of a multiscale problem. Those
results show that the coefficients must satisfy quite restrictive assumptions to get

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 300–312, 2023.
https://doi.org/10.1007/978-3-031-30445-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_25&domain=pdf
http://orcid.org/0000-0001-5244-6811
https://doi.org/10.1007/978-3-031-30445-3_25

Adaptive Parallel Average Schwarz Preconditioner 301

a fast convergence. Here we propose a new version of the coarse space of the aver-
age Schwarz method, i.e. the coarse space is harmonically enriched. We described
the details of this new version, in particular the new enriched coarse space. Then,
we show that the convergence speed of the GMRES iterative method with the
preconditioner obtained by this method is independent of the distribution of the
contrast if the coarse space is sufficiently enriched. It can be done adaptively,
namely, we can set a threshold and include into the coarse space all eigenfunc-
tions of some specially defined local eigenproblems problems whose eigenvalues
are above the threshold. The other option is to include a preset number of eigen-
functions, the number can be selected by a user. e.g. it may equal the number
of inclusions.

The idea of enriching the coarse space by the specially defined eigenfunctions
is not a very new one, the first results appeared in the 2010 s,s, cf. e.g. [14,27]
and the references therein.

Presented here version of the Average Schwarz method is based on the
abstract scheme of the Additive Schwarz Method (ASM), and is a very sim-
ple domain decomposition method. Perhaps one of the simplest. It was first
proposed in [2], cf. also [1,10,20,22]. Both the construction and the analysis are
based on this abstract ASM scheme, cf. e.g. [26,28].

Throughout the paper, the following notations are being used: x � y and
w � z denote that there exist positive constants c, C independent of the mesh
parameters, the number of subdomains, and the jump of coefficients such that
x ≤ cy and w ≥ Cz, respectively.

The remainder of the paper is organized as follows: in the Sect. 2 a finite vol-
ume element discretization is introduced. Section 3 is devoted to a presentation
of an Additive Schwarz Method (ASM), in particular, we describe a spectrally
enriched coarse space. Finally, in the last Sect. 4 we describe the main theoretical
results of this work.

2 Discrete Problem

First, we introduce a multiscale second-order elliptic differential problem. For a
given polygonal domain Ω on the plane we want to find u∗ ∈ H1

0 (Ω) that

−∇ · (A(x)∇u)(x) = f(x), x ∈ Ω,

u(s) = 0, s ∈ ∂Ω,

where A ∈ (L∞(Ω))2×2 is a symmetric matrix-valued function satisfying the
uniform ellipticity as follows,

∃α > 0 such that ξT A(x)ξ ≥ α|ξ|22 ∀x ∈ Ω and ∀ξ ∈ R
2,

where |ξ|22 = ξ21 + ξ22 . Further, we can assume that α equal to one which can be
always obtained by scaling the original problem by α−1.

The weak formulation of the differential problem is the following: find u ∈
H1

0 (Ω) such that
a(u, v) = f(v) ∀v ∈ H1

0 (Ω), (1)

302 L. Marcinkowski and T. Rahman

where

a(u, v) =
∫

Ω

∇uT A(x)∇v dx and f(v) =
∫

Ω

fv dx.

We now introduce a triangulation, namely, let Th = Th(Ω) be a quasiuniform
triangulation of Ω, cf. [4] or [3], hereon referred to as the primal mesh consisting
of triangles {τ} with the size parameter h = maxτ∈Th

diam(τ).
We assume that the coefficient matrix function A(x) is continuous and

smooth in each triangle τ ∈ Th, namely,

∀τ ∈ Th |A|W 1,∞(τ) ≤ C, (2)

where C is a positive constant.
Further, we also assume that

∀τ ∈ Th ∃λτ > 0 s.t. ξT A(x)ξ ≥ λτ |ξ|22 ≥ |ξ|22 ∀x ∈ τ and ∀ξ ∈ R
2. (3)

Due to A ∈ (L∞(Ω))2×2, we see that

∀τ ∈ Th ∃Λτ > 0 such that |νT A(x)ξ| ≤ Λτ |ν|2|ξ|2 ∀x ∈ τ and ∀ξ, ν ∈ R
2.

We also assume that Λτ � λτ for any τ ∈ Th.
Summing up the coefficients in each triangle τ ∈ Th are smooth and do not

vary too much, but between triangles jumps of coefficients are arbitrary.
We then have that

λτ |u|2H1(τ) ≤
∫

τ

∇uT A(x)∇u dx ≤ Λτ |u|2H1(τ) ∀u ∈ H1(τ). (4)

We assume that Ω is decomposed into a set of disjoint polygonal subdomains
{Ωj}N

j=1 aligned to the triangulation, i.e. each fine triangle of Th is contained in
one of the subdomains Ωk, i.e. Ω =

⋃
i Ωi, for any τ ∈ Th there is Ωi such that

τ ⊂ Ωi. We also assume that these substructures form a coarse triangulation of
the domain which is shape regular in the sense of [5] and let H = maxj diam(Ωj)
be its coarse parameter, cf. Fig. 1.

2.1 Crouzeix-Raviart Finite Volume Element Method

To introduce the discrete problem we have to define another partition of finite
covolumes of Ω so-called dual mesh of Ω.

Let Eh(τ) be the set of edges of τ ∈ Th and let define Eh = ∪K∈Th
Eh(K), i.e.

the union of all edges in the triangulation Th. We also need to introduce a set of
interior edges E in

h of the triangulation Th, i.e. e ∈ E in
h if and only if e ∈ Eh and

e
⊂ ∂Ω.
We also need the sets of so-called Crouzeix-Raviart (CR) nodal points i.e.

we denote the CR nodal points, i.e. the midpoints of edges e ∈ Eh, belonging

Adaptive Parallel Average Schwarz Preconditioner 303

Ω

Ω

i

j

Fig. 1. A coarse decomposition of Ω into subdomains.

to Ω,Ωi, ∂Ω and ∂Ωi by ΩCR
h , ΩCR

i,h , ∂ΩCR
h and ∂ΩCR

i,h , respectively. Correspond-
ingly, the set of P1 conforming nodal points, i.e., vertices of elements in Th are
denoted by Ωh, Ωi,h, ∂Ωh and ∂Ωi,h, respectively.

Let for any fine edge e ∈ E in
h which is the common edge of two triangles

τ1, τ2 ∈ Th we define a domain Ve as the polygon with the vertices v1, v2 which
are the ends of e (which are the common vertices of τ1, τ2) and two centroids:
c1, c2 of τ1 and τ2, respectively, i.e. the Ve is the polygon enclosed by the straight
lines connecting v1, v2, c1, c2. We see that

V e = V 1,e ∪ V 2,e

where Vk,e is the open triangle whose vertices are the ends v1, v2 of e ∈ E in
h and

the centroid ck of τk, see Fig. 2.

τ 1

τ 2

VeV2,e

V1,e
τ1

τ2

Ve

V1,e

V2,e

Fig. 2. Control volume of CRFVE: Ve related to the common edge e of two triangles
τ1 and τ2.

The region Ve is called the control volume of the edge e ∈ E in
h and we intro-

duce the dual mesh
T ∗

h = {Ve}e∈Ein
h

304 L. Marcinkowski and T. Rahman

Naturally, T ∗
h is not a triangulation of Ω, it is just a dual mesh to Th. The

solution space will be the Crouzeix-Raviart (CR) finite element space (cf. e.g.
[3]), or nonconforming P1 element space defined as follows: let

Vh = {v ∈ L2(Ω) : v|τ ∈ P1(τ), v continuous at ΩCR
h , v(m) = 0 m ∈ ∂ΩCR

h }

where Pk(τ) is the space of polynomial of degree less or equal to k. Naturally,
we see that Vh ∈ L2(Ω) but

Vh
⊂ H1(Ω).

The degrees of freedom of CR finite element function u on a triangle τ with
the three edges ek k = 1, 2, 3, are:

{u(mek
)}k=1,2,3,

where mek
is the midpoint of the fine edge ek, cf. Fig. 3.

Next, we define the control volume space as follows: let

V ∗
h = {v ∈ L2(Ω) : v|Ve

∈ P0(Ve) ; e ∈ E in
h }

Fig. 3. The degrees of freedom (DOFs) of Crouzeix-Raviart nonconforming element

We can introduce the nodal basis of Vh as: {φe}e∈Ein
h

where φe ∈ Vh is a nodal
function associated with an fine edge e ∈ E in

h whose midpoint is me ∈ ΩCR
h such

that

φe(s) =
{

1 s = me

0 s
= m
∀s ∈ ΩCR

h .

Analogously we define the basis of V ∗
h : V ∗

h = span(χe)e∈Ein
h

where χe is the
characteristic function of the control volume Ve related to the interior fine edge
e ∈ E in

h

We can also introduce two interpolation operators: Ih and I∗
h defined for a

function that has the unique values at ΩCR
h :

Ihu =
∑

e∈Ein
h

u(me)φe and I∗
hu =

∑
e∈Ein

h

u(me)χe.

Adaptive Parallel Average Schwarz Preconditioner 305

Here me is the midpoint of an edge e ∈ E in
h .

We are now able to define the CRVME discrete problem: find uFV
h ∈ Vh such

that
aFV

h (uFV
h , v) = (f, v) ∀v ∈ V ∗

h (5)

where (·, ·) is L2 inner product on Ω, or equivalently

aFV
h (uFV

h , I∗
hv) = (f, I∗

hv) ∀v ∈ Vh, (6)

where

aFV
h (u, v) = −

∑
e∈Ein

h

v(me)
∫

∂Ve

∇uT A(s)n ds u ∈ Vh, v ∈ V ∗
h . (7)

where n is the unit outer vector to Ve.
The existence of the unique solution to the CRFVE discrete problem and the

error estimates are given in [16].
Naturally, the second formulation (6) allows us to interpret the CRFVE

discrete problem as a discrete variational problem posed in Vh.
We also define a corresponding CRFE discrete problem: find uFE

h ∈ Vh such
that

aFE
h (uFE

h , v) = (f, v) ∀v ∈ Vh, (8)

where the broken form is defined for u, v ∈ Vh as follows:

aFE
h (u, v) =

∑
τ∈Th

∫
τ

∇uT A∇v dx. (9)

The last bilinear form induced the corresponding broken energy norm by

‖ · ‖a =
√

aFE
h (·, ·).

Formally, as defined it is a seminorm but an easy standard argument shows that
it is indeed a norm, cf. e.g. [3].

3 Additive Average Schwarz Method

In this section, we introduce an Additive Average Schwarz method. The method
is introduced using the abstract scheme of the Additive Schwarz method (ASM),
cf e.g. [26,28], i.e., we introduce the decomposition of the space Vh into a coarse
space and local subspaces together with respective coarse and local bilinear
forms.

306 L. Marcinkowski and T. Rahman

3.1 Local Spaces

The local spaces are defined as simple local CR spaces with the CR zero boundary
conditions on its local boundary and extended as zero at all CR nodes outside
Ωk, i.e. let

Vk = {u ∈ Vh : u(m) = 0 m
∈ ΩCR
k }. (10)

The local forms are equal to aFE
h (u, v). Note that local spaces Vk k = 1, . . . , N are

aFEM
h (u, v) orthogonal, thus we see that

⊕N
k=1 Vk ⊂ Vh is aFEM

h (u, v) orthogonal
decomposition, however we have that Vh
=

⊕N
k=1 Vk.

3.2 Harmonically Enriched Coarse Space

We first introduce a coarse interpolation operator

I0 : Vh → Vh (11)

defined as follows: for any u ∈ Vh let I0u ∈ Vh satisfies:

I0u(m) =
{

u(m) m ∈
⋃N

k=1 ∂ΩCR
k,h

uk m ∈ ΩCR
k,h k = 1, . . . , N

. (12)

where uk = 1
Mk

∑
m∈∂ΩCR

k,h
u(m) with Mk = #∂ΩCR

k,h , i.e. uk is the discrete

average over ∂ΩCR
k,h .

Then the classical additive average Schwarz coarse space is the range of I0:

V class
0 = I0Vh. (13)

Its dimension is equal to the number of interface nodal points. Then we have
the decomposition of the discrete CR space:

Vh = V class
0 +

N⊕
k=1

Vk.

Further, we introduce local generalized eigenspaces. Let Vh(Ωk) be the space
of restrictions of Vk to Ωk or equivalently we can define Vh(Ωk) as the CR local
space with the CR zero boundary condition on the local triangulation Th(Ωk)
inherited from Th.

We also need two local bilinear forms:

ak(u, v) =
∑

τ∈Th(Ωk)

∇uT A∇v dx,

bk(u, v) =
∑

τ∈Th(Ωk)

λΩk
∇uT ∇v dx.

where λΩk
= minτ∈Th(Ωk) λτ , cf. (3). Note that the both forms are symmetric

and positive definite on Vh(Ω), since the first one is the broken local form of the
FEM original one, and the second is a scaled local H1 bilinear form.

Adaptive Parallel Average Schwarz Preconditioner 307

Then, a generalized eigenvalue problem is to find all eigenpairs: (λi,k, ψi,k)
such that

ak(ψi,k, v) = λi,kbk(ψi,k, v) ∀v ∈ Vh(Ω) (14)

and
bk(ψi,k, ψi,k) = 1,

i.e., the eigenfunctions are normalized in the norm induced by the form bk(u, v).
Note that since ak(u, u) ≥ bk(u, u) for any u ∈ Vh(Ωk), we see that λi,k ≥ 1.

We can order the eigenvalues in decreasing order:

λ1,k ≥ λ2,k ≥ . . . λNk,k ≥ 1,

where Nk = dim(Vh(Ωk)).
Formally, an eigenfunction ψi,k ∈ Vh(Ωk), i.e. is a locally defined only but

we can extended it by zero elsewhere, i.e. to all Ω
CR

h with zero values. Further,
we will denote this extended function by the same symbol ψi,k.

Then the local harmonical enrichment space is defined as:

V harm
k = span(ψi,k)nk

i=1 (15)

where 0 ≤ nk ≤ Nk is any number selected by an user. One possibility is to
pre-select a threshold νk > 1 and include all ψi,k such that λi,k ≥ νk. Naturally,
the number nk = 0 means there is no enrichment related to Ωk, i.e. formally
V harm

k = {0} is the zero space. Potentially, in a ’bad’ case the nk may have any
value less or equal to Nk to get a good condition number.

Finally, our enriched coarse space is introduced:

V0 = V class
0 +

N∑
k=1

V harm
k . (16)

Remark 1. The form bk(u, v) can be defined in a bit different way, namely, we
can take: bk(u, v) = λΩk

H−2
k

∫
Ωk

uv dx and get similar results.

3.3 ASM Operator

Next as in the abstract scheme of the ASM method, cf. e.g. [26], we define
so-called projections: Tk : Vh → Vk k = 0, . . . , N :

aFE
h (Tku, v) = aFV

h (u, I∗
hv) ∀v ∈ Vk (17)

and the global operator T = T0 +
∑N

k=1 Tk. Finally, we replace our CRFVE
discrete problem (5) by:

TuFV
h = g (18)

where u∗
h is the solution of (5) and g = g0 +

∑
k gk with gk = Tku∗

h, i.e.

aFE
h (gk, v) = aFV

h (u∗
h, I∗

hv) = (f, v) ∀v ∈ Vk

308 L. Marcinkowski and T. Rahman

for k = 0, . . . , N. Note, that gk can be computed without knowing u∗
h, cf. e.g.

[26,28].
The new problem can be represented as a preconditioned old problem, i.e. if

we represent algebraically the old problem as AuFV
h = f then the new one can

be represented as BASMAuFV
h = BASMf . One can see that the original problem

is non-symmetric in general, but the parallel preconditioner BASM is symmetric.
Naturally, the preconditioner is parallel as computing the residual r = g−Tv

in an implementation of an iterative solver, e.g. PCG, is equivalent to solving
independent local problems and a coarse problem. The adaptivity of the method
lies in the possibility of automatic selection of the number of the eigenfunctions
included in the spaces V harm

k , cf. (15).

4 Convergence

4.1 GMRES Method

Since the problem (18) is nonsymmetric, it can be solved with GMRES method,
cf. e.g. [24]. We now state the convergence results of GMRES applied to the
problem (18). The original convergence results of GMRES were stated in the l2
norm, cf. [11], however, the results carry over to the general Hilbert space, in our
case to Vh equipped with the energy norm ‖ · ‖a, cf. [6,25]. The convergence rate
estimates of the GMRES are based on two parameters: the smallest eigenvalue
of the symmetric part of the operator T denoted by γ1 and the norm of the
operator T denoted by γ2, respectively, as follows:

γ1 = inf
u�=0

aFE
h (Tu, u)

‖u‖2a
and γ2 = sup

u�=0

‖Tu‖a

‖u‖a
. (19)

Then the estimate of the convergence rate of the GMRES iteration, in the ‖ · ‖a

norm can be obtained:

Theorem 1 (Eisenstat-Elman-Schultz [11]). Provided γ1 is strictly posi-
tive, the GMRES method for solving the linear system (18) converges for any
starting value u0 ∈ Vh and the following estimate holds:

‖g − Tum‖a ≤
(

1 − γ2
1

γ2
2

)m/2

‖g − Tu0‖a,

where um is the m-th iterate of the GMRES iteration method.

4.2 Main Results

Our main result is the following theorem:

Adaptive Parallel Average Schwarz Preconditioner 309

Theorem 2. There exists positive h0,H0 such that for all h ≤ h0 and H ≤ H0

we have that

‖Tu‖a � ‖u‖a ∀u ∈ Vh, (20)

aFE
h (Tu, u) �

((
1 + max

k
λnk+1,k

)−1
h

H
− Ch

)
‖u‖2a ∀u ∈ Vh, (21)

where C is a constant independent of coefficients, the mesh parameter h or the
subdomain size H, and the eigenvalues λnk+1,k are from (14).

Note that in particular for sufficiently small h0 the right-hand side of (21) is
positive. This theorem gives us directly the corollary which estimates the con-
vergence rate of GMRES iteration applied to the problem (18).

Corollary 1. The constants (19) in the convergence theory of GMRES, i.e. in
Theorem 1, for our ASM operator T can be bounded as follows

γ1 �
((

1 + max
k

λnk+1,k

)−1
h

H
− Ch

)
, γ2 � 1.

The proof of Theorem 2 is based on the scheme proposed in [18]. We have to
check three assumptions:

Assumption I: which requires that the two forms are close to each other:

|aFV
h (u, I∗

hv) − aFE
h (u, v)| � h‖u‖a‖v‖a ∀u, v ∈ Vh

This assumption is satisfied, cf. Lemma 2.5 in [16].

Assumption II: The next assumption is called a stable decomposition in the
abstract theory of the Additive Schwarz Method, cf. e.g. [26,28], i.e. we want to
check if for any u ∈ Vh there exist the following decomposition: uk ∈ Vk, k =
0, . . . , N such that

N∑
k=0

aFE
h (uk, vk) �

(
1 + max

k
λnk+1,k

)
h

H
aFE

h (u, u).

The proof of this assumption follows the lines of the proof of a similar one for
the main results of [21].

Assumption III: The final assumption to be checked is that the spectral radius
of the matrix of the constants of the strengthened Cauchy-Schwarz inequalities
is bounded independently of coefficients or mesh parameters, i.e. the strengthen
Cauchy-Schwarz inequalities for local spaces in the ASM abstract framework
hold with the minimal constants {εkl}N

k,l=1 if

aFE
h (uk, ul) ≤ εk,l

√
aFE

h (uk, uk)
√

aFE
h (ul, ul) ∀uk ∈ Vk,∀ul ∈ Vl.

310 L. Marcinkowski and T. Rahman

Then the estimate of γ2 is dependent on ρ(E) the spectral radius of the symmetric
matrix: E = (εkl)N

k,l=1. In our case, it is satisfied with the constant one as the local
spaces Vk and Vl are aFE

h (u, v) orthogonal since the functions of both subspaces
have disjoint supports. Thus the matrix E is equal to Id and its spectral radius is
equal to one. This is always the case in all versions of average Schwarz methods
and can be considered a small advantage of this class of DDMs.

Finally, those three assumptions and Theorem 5.2 in [18] proves the estimates
in the statement of Theorem 2.

5 Implementation

Due to the lack of space, we cannot provide a full description of the implemen-
tation. We refer to [16] or [20] for some details and standard DDM textbooks
like e.g. [26]. In general to apply an iterative method like GMRES, one has to
compute the residual r = g − Tv for a given iterate v, which is equivalent to
computing rk = gk − Tkv for k = 0, . . . , N what can be done in parallel as the
problems are independent. This is an intrinsic property of the Additive Schwarz
Method.

References

1. Bjørstad, P.E., Dryja, M., Rahman, T.: Additive Schwarz methods for elliptic
mortar finite element problems. Numer. Math. 95(3), 427–457 (2003). https://doi.
org/10.1007/s00211-002-0429-6

2. Bjørstad, P.E., Dryja, M., Vainikko, E.: Additive Schwarz methods without sub-
domain overlap and with new coarse spaces. In: Domain decomposition methods
in sciences and engineering (Beijing, 1995), pp. 141–157. Wiley, Chichester (1997)

3. Braess, D.: Finite elements. Cambridge University Press, Cambridge, third edn.
theory, fast solvers, and applications in elasticity theory, Translated from the Ger-
man by Larry L. Schumaker (2007). https://doi.org/10.1017/CBO9780511618635,

4. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods,
Texts in Applied Mathematics, vol. 15. Springer, New York, third edn. (2008).
https://doi.org/10.1007/978-0-387-75934-0

5. Brenner, S.C., Sung, L.Y.: Balancing domain decomposition for nonconforming
plate elements. Numer. Math. 83(1), 25–52 (1999)

6. Cai, X.C., Widlund, O.B.: Domain decomposition algorithms for indefinite elliptic
problems. SIAM J. Sci. Statist. Comput. 13(1), 243–258 (1992). https://doi.org/
10.1137/0913013

7. Chatzipantelidis, P.: A finite volume method based on the Crouzeix-Raviart ele-
ment for elliptic PDE’s in two dimensions. Numer. Math. 82(3), 409–432 (1999).
https://doi.org/10.1007/s002110050425

8. Chatzipantelidis, P.: Finite volume methods for elliptic PDE’s: a new approach.
M2AN Math. Model. Numer. Anal. 36(2), 307–324 (2002). https://doi.org/10.
1051/m2an:2002014

9. Chou, S.H., Huang, J.: A domain decomposition algorithm for general covolume
methods for elliptic problems. J. Numer. Math. 11(3), 179–194 (2003). https://
doi.org/10.1163/156939503322553072

https://doi.org/10.1007/s00211-002-0429-6
https://doi.org/10.1007/s00211-002-0429-6
https://doi.org/10.1017/CBO9780511618635
https://doi.org/10.1007/978-0-387-75934-0
https://doi.org/10.1137/0913013
https://doi.org/10.1137/0913013
https://doi.org/10.1007/s002110050425
https://doi.org/10.1051/m2an:2002014
https://doi.org/10.1051/m2an:2002014
https://doi.org/10.1163/156939503322553072
https://doi.org/10.1163/156939503322553072

Adaptive Parallel Average Schwarz Preconditioner 311

10. Dryja, M., Sarkis, M.: Additive average Schwarz methods for discretization of
elliptic problems with highly discontinuous coefficients. Comput. Methods Appl.
Math. 10(2), 164–176 (2010). https://doi.org/10.2478/cmam-2010-0009

11. Eisenstat, S.C., Elman, H.C., Schultz, M.H.: Variational iterative methods for non-
symmetric systems of linear equations. SIAM J. Numer. Anal. 20(2), 345–357
(1983). https://doi.org/10.1137/0720023

12. Ewing, R.E., Li, Z., Lin, T., Lin, Y.: The immersed finite volume element meth-
ods for the elliptic interface problems. Math. Comput. Simulation 50(1–4), 63–76
(1999). https://doi.org/10.1016/S0378-4754(99)00061-0, modelling ’98 (Prague)

13. Ewing, R.E., Lin, T., Lin, Y.: On the accuracy of the finite volume element method
based on piecewise linear polynomials. SIAM J. Numer. Anal. 39(6), 1865–1888
(2002). https://doi.org/10.1137/S0036142900368873

14. Galvis, J., Efendiev, Y.: Domain decomposition preconditioners for multiscale flows
in high-contrast media. Multiscale Model. Simul. 8(4), 1461–1483 (2010). https://
doi.org/10.1137/090751190

15. Lin, Y., Liu, J., Yang, M.: Finite volume element methods: an overview on recent
developments. Int. J. Numer. Anal. Model. Ser. B 4(1), 14–34 (2013)

16. Loneland, A., Marcinkowski, L., Rahman, T.: Additive average Schwarz method
for a Crouzeix–Raviart finite volume element discretization of elliptic problems
with heterogeneous coefficients. Numer. Math. 134(1), 91–118 (2015). https://doi.
org/10.1007/s00211-015-0771-0

17. Loneland, A., Marcinkowski, L., Rahman, T.: Edge-based Schwarz methods for the
Crouzeix-Raviart finite volume element discretization of elliptic problems. Elec-
tron. Trans. Numer. Anal. 44, 443–461 (2015)

18. Marcinkowski, L., Rahman, T., Loneland, A., Valdman, J.: Additive Schwarz pre-
conditioner for the finite volume element discretization of symmetric elliptic prob-
lems. BIT Numer. Math. 56(3), 967–993 (2015). https://doi.org/10.1007/s10543-
015-0581-x

19. Marcinkowski, L., Loneland, A., Rahman, T.: Schwarz methods for a crouzeix-
raviart finite volume discretization of elliptic problems. In: Dickopf, T., Gander,
M.J., Halpern, L., Krause, R., Pavarino, L.F. (eds.) Domain Decomposition Meth-
ods in Science and Engineering XXII. LNCSE, vol. 104, pp. 595–602. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-18827-0 61

20. Marcinkowski, L., Rahman, T.: Additive average Schwarz with adaptive coarse
spaces: scalable algorithms for multiscale problems. Electron. Trans. Numer. Anal.
49, 28–40 (2018). https://doi.org/10.1553/etna vol49s28

21. Marcinkowski, L., Rahman, T., Khademi, A.: Adaptive Schwarz method for
Crouzeix-Raviart multiscale problems in 2d. In: Domain decomposition methods
in science and engineering XXVI. Lect. Notes Comput. Sci. Eng., Springer, Cham
(2022). https://doi.org/10.1007/978-3-030-95025-5 48

22. Rahman, T., Xu, X., Hoppe, R.: Additive Schwarz methods for the Crouzeix-
Raviart mortar finite element for elliptic problems with discontinuous coefficients.
Numer. Math. 101(3), 551–572 (2005). https://doi.org/10.1007/s00211-005-0625-
2

23. Rui, H., Bi, C.: Convergence analysis of an upwind finite volume element method
with crouzeix-raviart element for non-selfadjoint and indefinite problems. Front.
Math. China 3(4), 563–579 (2008)

24. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7(3), 856–869
(1986). https://doi.org/10.1137/0907058

https://doi.org/10.2478/cmam-2010-0009
https://doi.org/10.1137/0720023
https://doi.org/10.1016/S0378-4754(99)00061-0
https://doi.org/10.1137/S0036142900368873
https://doi.org/10.1137/090751190
https://doi.org/10.1137/090751190
https://doi.org/10.1007/s00211-015-0771-0
https://doi.org/10.1007/s00211-015-0771-0
https://doi.org/10.1007/s10543-015-0581-x
https://doi.org/10.1007/s10543-015-0581-x
https://doi.org/10.1007/978-3-319-18827-0_61
https://doi.org/10.1553/etna_vol49s28
https://doi.org/10.1007/978-3-030-95025-5_48
https://doi.org/10.1007/s00211-005-0625-2
https://doi.org/10.1007/s00211-005-0625-2
https://doi.org/10.1137/0907058

312 L. Marcinkowski and T. Rahman

25. Sarkis, M., Szyld, D.B.: Optimal left and right additive Schwarz preconditioning
for minimal residual methods with Euclidean and energy norms. Comput. Meth-
ods Appl. Mech. Engrg. 196(8), 1612–1621 (2007). https://doi.org/10.1016/j.cma.
2006.03.027

26. Smith, B.F., Bjørstad, P.E., Gropp, W.D.: Domain decomposition: Parallel multi-
level methods for elliptic partial differential equations. Cambridge University Press,
Cambridge (1996)

27. Spillane, N., Dolean, V., Hauret, P., Nataf, F., Pechstein, C., Scheichl, R.: Abstract
robust coarse spaces for systems of PDEs via generalized eigenproblems in the
overlaps. Numer. Math. 126(4), 741–770 (2013). https://doi.org/10.1007/s00211-
013-0576-y

28. Toselli, A., Widlund, O.: Domain decomposition methods—algorithms and theory,
Springer Series in Computational Mathematics, vol. 34. Springer-Verlag, Berlin
(2005). https://doi.org/10.1007/b137868

29. Zhang, S.: On domain decomposition algorithms for covolume methods for elliptic
problems. Comput. Methods Appl. Mech. Engrg. 196(1–3), 24–32 (2006)

https://doi.org/10.1016/j.cma.2006.03.027
https://doi.org/10.1016/j.cma.2006.03.027
https://doi.org/10.1007/s00211-013-0576-y
https://doi.org/10.1007/s00211-013-0576-y
https://doi.org/10.1007/b137868

Parareal Method for Anisotropic Diffusion
Denoising

Xiujie Shan(B) and Martin B. van Gijzen

Delft Institute of Applied Mathematics, Delft University of Technology,
2628 CD Delft, The Netherlands

xiujieshan@gmail.com

Abstract. This paper studies time-domain parallelisation using
Parareal to speed up the computations of anisotropic diffusion filter-
ing. We consider both explicit and implicit Euler based method for the
propagation in time for Parareal. The Preconditioned Conjugate Gradi-
ent (PCG) method is used to solve the systems that arise in the implicit
based method. The estimation of the iteration numbers of PCG allows us
to predict the running time of Parareal calculation, which further guides
us in the experimental stage. Parallelisation of the method is imple-
mented using Coarray Fortran. We illustrate the experimental results
on 3D low-field MRI images using up to 960 cores. The computational
improvement in time is achieved.

Keywords: Image denoising · Parareal · Nonlinear Diffusion
equation · High performance computing

1 Introduction

The nonlinear diffusion equation has many applications, and one of the most
important is image denoising. The classical paper by Perona and Malik [18] pro-
posed image denoising by considering denoising as a diffusion process, in which
the diffusion parameter is chosen such that edges are preserved. Computation-
ally this amounts to integrating time into a nonlinear diffusion equation. This
process can be quite expensive. An option to speed up the computations is to
use a parallel-in-time integration method.

Parallelisation in time was first considered by Nievergelt [16], to make full
use of the potential of massively parallel computers. Parareal was proposed by
Lions, Maday, and Turinici in 2001 [15]. The method was a real breakthrough,
and it is now one of the most widely used parallel-in-time methods, particularly
for the time discretization of partial differential evolution equations. A further
concise version of the method, which is also commonly used now, was given in
[3]. In [2], Bal and Maday gave the convergence analysis of Parareal for the heat
equation and also the application to a nonlinear partial differential equation for
pricing of an American put. Maday and others have been working on this topic
continuously. Others developed a Parareal version for nonlinear PDEs [2] and a
stable Parareal method for first- and second-order hyperbolic systems [5].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 313–322, 2023.
https://doi.org/10.1007/978-3-031-30445-3_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_26&domain=pdf
https://doi.org/10.1007/978-3-031-30445-3_26

314 X. Shan and M. B. van Gijzen

Analysis of the Parareal algorithm has provided new insights into the rela-
tions with other algorithms, which has led to new parallel-in-time algorithms. In
2007, Gander and Vandewalle [12] analyzed the connection between the Parareal
algorithm, space-time multigrid, and the multiple shooting methods. A historical
review of Parareal can be found in [12] as well. Gander et al. further explored
this topic in [11], and interpreted the Parareal algorithm as a multigrid method
which led to the multigrid-reduction-in-time (MGRIT) algorithm. By consider-
ing Parareal a preconditioned iterative process, where the coarse time integration
method acts as the preconditioner, the authors extended Parareal (two-level) to
a multi-level method in 2014 [8]. Wu [24] proposed a parallel coarse grid correc-
tion diagonalization technique and analyzed the convergence rate of this method.
Gander and Wu developed a diagonalization-based Parareal algorithm for dis-
sipative and wave propagation problems. A new Parareal algorithm for ODEs
with discontinuous source in time has been proposed [10]. By defining a smooth
input according to the coarse discretization, the authors illustrate that the coarse
propagator can capture a highly oscillatory or discontinuous source in time.

The research about domain decomposition methods for image denoising
includes successive space correction methods, parallel space correction methods,
etc. [4]. These methods aim to do parallel computing by decomposing the image
(space domain) and they have been used to solve some convex minimization
problems, and variational inequalities with the convex set constraint [7,9,25].
The Parareal algorithm to solve the anisotropic diffusion denoising belongs to a
different category, in which the algorithm is designed to do the parallel calcula-
tion in the time domain. We consider both explicit time and implicit based inte-
gration methods for the coarse and fine grids. The implicit Euler based method
requires solving an extensive nonlinear system at every time step. To linearise
the equation, we compute the diffusion based on the solution of the previous
time step. The resulting linear system is solved with preconditioned conjugate
gradient (PCG) method. We refer to [22] for the details of this solver and the
preconditioners. We will analyse the possible speed-up for both the explicit and
implicit method by estimating the computing time per Parareal iteration, using
the upper bounds on the number of CG iterations provided in [22]. The results
are validated by numerical experiments using up to 960 cores of the DelftBlue
supercomputer of the Delft University of Technology [6].

Our paper is organized as follows. Section 2 presents the denoising model
and its numerical discretization. Section 3, discusses Parareal to integrate the
equations in time. Section 4 investigates potential speedup of Parareal. Section 5
presents the numerical experiments. Section 6 makes some concluding remarks.

2 Model and Discretization

This section describes the anisotropic diffusion denoising model and its numerical
discretization in space and time.

Parareal Method for Anisotropic Diffusion Denoising 315

2.1 Diffusion Model

The idea of using a diffusion equation for image denoising was first considered by
Koenderink in [1] by connecting the linear heat equation to the Gaussian filter.
The nonlinear diffusion model we use was proposed by Peron and Malik in 1990
in [18] and is given by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u

∂t
= ∇ · (c(‖∇u‖2)∇u), in Ω × (0, T),

∂u

∂n
= 0, on ∂Ω × (0, T),

u(0) = û0, in Ω,

(1)

where Ω ⊆ R
d for d = 2, 3. Choices for the diffusion coefficient are given by

c1(‖∇u‖2) = e−(‖∇u‖2/K)2 , c2(‖∇u‖2) = 1

1+
(‖∇u‖2

K

)2 , where K is a damping

parameter. The idea behind this nonlinear diffusion model is explained as fol-
lows. Since the edges of the image can be approximately estimated by ‖∇u‖2,
diffusion coefficient c(‖∇u‖2) is also called as edge detector. c(‖∇u‖2) → 0 as
‖∇u‖2 → +∞, this means that in the neighbourhood of an edge (where ‖∇u‖2
is large), the diffusion coefficient is small, i.e., the diffusion is slow. Similarly,
in a flat area, c(‖∇u‖2) → 1, when ‖∇u‖2 → 0. This means that the nonlinear
diffusion behaves like linear diffusion in a flat area, and noise is smoothed out
quickly. Apart from image processing, this model also arises in other contexts,
for example, faceted crystal growth [13] and continuum mechanics [14].

For the one dimensional space case, we consider Ω = [0, 1] and step size
hx = 1

Nx
, where Nx is the number of spatial grid points. ∂

∂x (c(|∂u
∂x |) · ∂u

∂x) can be
discretized as

∂

∂x
(c(|∂u

∂x
|) · ∂u

∂x
)xi

≈ ci+ 1
2

(ui+1 − ui)
h2

x

− ci− 1
2

(ui − ui−1)
h2

x

,

where ci± 1
2
= ci±1+ci

2 . ci := c(|ux|i) = c(|ui+1−ui−1
2hx

|) for 0 ≤ i ≤ Nx −1. Because
of the Neumann boundary conditions, we have that u−1 = u0 and uNx−1 = uNx

.
The discretization in space is given by

du
dt

=
1
h2

x

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−c 1
2

c 1
2

c 1
2

−(c 1
2
+ c1+ 1

2
) c1+ 1

2

.
cN− 5

2
−(cN− 5

2
+ cN− 3

2
) cN− 3

2

cN− 3
2

−cN− 3
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

u,

where u = (u0, u1, . . . , uN−1)T . The higher-dimensional case can be discretised
analogously.

316 X. Shan and M. B. van Gijzen

2.2 Linearization and Time Discretization

After spatial discretisation we obtain a system of ordinary equations

du
dt

= C(u)u.

To integrate this system in time we consider the explicit and implicit Euler based
method. Using explicit Euler method, we have for m = 0, 1, 2, . . .

um+1 − um

τ
= C(um)um. (2)

We rewrite it into um+1 = (λ(I + τC(um)))um.
The implicit Euler based method follows um+1−um

τ = C(um+1)um+1,m =
0, . . . , N − 1. To linearise the right-hand side, we approximate C(um+1) by
C(um). With this modification the implicit Euler based method is given by

(
1
τ

I − C(um)
)

um+1 =
1
τ
um, (3)

which is a linear system of the form

Au = f̃ . (4)

In every time iteration, we solve a linear system (4) by using the preconditioned
Conjugate Gradient method (PCG) [20]. Since A is strongly diagonally dominant
we use diagonal scaling (Jacobi preconditioner) as preconditioner, which means
setting the preconditioned matrix M as the main diagonal elements of A.

3 Parareal Algorithm for the Anisotropic Diffusion
Model

This section starts with explaining the idea of Parareal algorithm as a multiple
shooting method [12] and giving the algorithm for solving model (1).

Divide the time interval (0, T) into subintervals In = (Tn, Tn+1) of size ΔT ,
n = 0, 1, . . . P − 1. Then sub-interval In is decomposed further into smaller sub-
interval with size δt. Now we consider solve the problem

⎧
⎨

⎩

∂u
∂t

= C(u)u, t ∈ (0, T),

u(0) = u0.
(5)

The initial value problems on each coarse time intervals are given by
⎧
⎨

⎩

∂un

∂t
= C(un)un, t ∈ (Tn, Tn+1),

un(Tn) = Un

Parareal Method for Anisotropic Diffusion Denoising 317

and the matching conditions are U0 = u0 and Un+1 = un(Tn+1, Un).
These conditions compose a nonlinear system which we denote it by F(U) =

0, where U = (U0, U1, . . . , UP)T . Solving this system by Newton method leads
to ⎧

⎨

⎩

Uk+1
0 = u0,

Uk+1
n+1 = un(Tn+1, U

k
n) +

∂un

∂Un
(Tn+1, U

k
n)(U

k+1
n − Uk

n),

where k = 0, 1,
Approximating un(Tn+1, U

k
n) by the fine propagator F (Uk

n) and
∂un

∂Un
(Tn+1, U

k
n)(U

k+1
n − Uk

n) by the coarse propagators G(Uk+1
n) − G(Uk

n), the
recursion formula of the Parareal method is

{
Uk+1
0 = u0,

Uk+1
n+1 = F (Uk

n) + G(Uk+1
n) − G(Uk

n),

For the explicit Euler scheme, we have G(Un) = (I+ΔT ·C(Un))Un and F (Un) =
(I + δt · C(Un))Un. For the implicit Euler based method, we have G(Un) =
(I − ΔT · C(Un))−1Un and F (Un) = ((I − δt · C(Un))−1)

ΔT
δt Un.

One usual initial guess for U0
n+1 is G(U0

n). As the iteration converges and
Uk+1

n+1 − Uk
n+1 → 0, the results from the coarse method G(Uk+1

n) and G(Uk
n) will

cancel out and Parareal will only reproduces the fine time solution. It has been
proven in [12] that Parareal converges after a maximum of P iterations.

Algorithm 1. Parareal algorithm for solving the model
U0

0 ← Ũ0
0 ← u0

for n = 0 to P − 1 do
Ũ0

n+1 ← G(Ũ0
n)

U0
n+1 ← Ũ0

n+1

end for
U1

0 ← u0

for k = 0 to Kmax − 1 do
for n = 0 to P − 1 do (parallel)

Ûk
n+1 ← F (Uk

n)
end for
for n = 0 to P − 1 do

Ũk+1
n+1 ← G(Uk+1

n)

Uk+1
n+1 ← Ûk

n+1 + Ũk+1
n+1 − Ũk

n+1 which equals to:
Uk+1

n+1 ← F (Uk
n) + G(Uk+1

n) − G(Uk
n)

end for
if

‖Uk+1
n+1−Uk

n+1‖2

‖u0‖2
< ε then

BREAK
end if

end for

318 X. Shan and M. B. van Gijzen

4 Analysis of the Algorithm

The speed-up of Parareal has been estimated in [2]. The cost of the fine iteration
method is proportional to T

δt . The computational cost of Parareal is proportional
to k(T

ΔT + ΔT
δt). Fixing k, the cost of Parareal is optimal when T

ΔT = ΔT
δt . For

the aim of comparison, keeping T
δt fixed leads to ΔT =

√
Tδt. Therefore, the

maximum gain in computational time is S = 1
4

√
T
δt for k = 2.

In our paper, for solving the problem with the implicit method, the iteration
number of PCG can be bounded. Later we will use the bounds to estimate the
algorithm’s running time. Since maxi(|Ci,i|) ≤ 2d

h2 , by using the Gershgorin’s
theorem, we have

κτ ≤ 1 +
4dτ

h2
,

where τ is the time step and d is the space dimension. For the details we refer
to [22]. The iteration number of PCG is given as

Nτ = ln
(

ε

2
√

κτ

)

/ ln
(√

κτ − 1√
κτ + 1

)

. (6)

4.1 Potential Speedup by Parareal (Ideal Case)

The total amount of calculation for the fine method with the time step δt is T
δt .

By using the explicit Euler method as fine and coarse propagators, we have the
speedup for Parareal method is:

S ≈
T
δt(

(k + 1) T
ΔT + k ΔT

δt

) ,

where k + 1 is from the initialization of Parareal.
For implicit Euler based method with PCG as fine and coarse propagators,

we have

S ≈
T
δt

N T
δt(

(k + 1) T
ΔT N T

Δt

+ k ΔT
δt NΔT

δt

) , (7)

where N{·} stands for the PCG iterations for different time step. By fixing k, T
and δt, we can search the maximal gain in time.

4.2 Potential Speedup by Parareal (with Communication Time)

Assuming that one communication time between fine and coarse is Tco = Tf2c +
Tc2f , we have total communication time for Parareal is kTco. By calculating
the CPU time for one step time iteration Tf in the sequential case, we have
the estimated CPU time for Parareal as Tf

(
(k + 1) T

ΔT + k ΔT
δt

)
. The total time

for Parareal calculation for the explicit Euler in the super computer is then
Ttotal = Tf

(
(k + 1) T

ΔT + k ΔT
δt

)
+kTco. By denoting the CPU time for one PCG

iteration as Tfcg
, we have Ttotal = Tfcg

(
(k + 1) T

ΔT N T
Δt

+ k ΔT
δt NΔT

δt

)
+ kTco for

the implicit Euler based method.

Parareal Method for Anisotropic Diffusion Denoising 319

5 Experimental Results

This section will give the run time and image results tested by the denoising
model. Image data and parameter choices for the Parareal algorithm are provided
as well, including the CG iteration number, tolerance ε for Parareal, ΔT for
coarse method, and δt for fine method.

The parallel implementation for the Parareal method is done in Fortran using
Coarray Fortran (CAF). CAF follows the SPMD model. Each process (called
image) has its private variables. Variables which have a so-called codimension are
addressable from other images. We use CAF to implement the fine propagator in
parallel on each coarse interval. We run the fine steps parallel in time indicating
the number of cores.

The numerical tests have been performed on the DelftBlue supercomputer,
which now has 228 Intel Xeon compute nodes with 48 cores each. We test a 3D
melon image (128 × 128 × 128) scanned by low-field MRI machine [17] using model
(choosing diffusion coefficient to be c1 with K = 20) in Table 1 and Table 2. The
fine time step is 1e−7 and the total number of time steps is 960, meaning that
T = 960× 1e−7. The relative tolerance for Parareal and PCG to converge is 1e−6.

Table 1 shows the results for explicit method. When the number of coarse steps
equals 48,we have the lowest run time,with a speed-up of about two.The estimated
time is obtained from the ideas described in Sect. 4.2 without communication time.
This estimated time predicts well the optimal number of coarse steps for this exam-
ple. The estimated times are consistently lower than the measured run times. This
can be explained by the fact that we did not consider communication time in the
estimated time.

The results for implicit Euler based method are tabulated in Table 2. The CG
iterations we got from the experiments match the theoretical iterations in (6). We
again observe that the estimated times predict well the optimal number of cores,
which is 48, and again we see a speed-up of about a factor of two for the optimal
number of cores. We do observe that, with for increasing number of cores, our esti-
mation for the run time becomes too pessimistic. For this we do not have a satis-
factory explanation yet (Fig. 1).

Table 1. Parareal times obtained for explicit Euler. (“Coarse” stands for coarse step
T/ΔT , “Parareal” the total Parareal iterations, “Elapsed time” the running time for
the algorithm, “Total iterations” the fine and coarse iterations with Parareal iterations,
“Estimated time” is calculated as Ttotal.)

Coarse Parareal Elapsed time Total iterations Estimated time
1 1 286 960 286.00

12 12 480 1116 332.48
48 4 127 320 95.33
96 3 136 414 123.34

192 3 243 783 233.27
480 2 449 1444 430.19
960 1 646 1921 572.30

320 X. Shan and M. B. van Gijzen

Table 2. Parareal time obtained for implicit Euler based method. (“CG coarse” stands
for the iterations of CG for one coarse propagation, “CG fine” iterations of CG for one
fine propagation, “Total iterations” the CG iterations for coarse and fine propagations
with Parareal iterations, “Estimated time” is calculated as Ttotal.)

Coarse Parareal CG coarse CG fine Elapsed time Total iterations Estimated time
1 1 2 2 1102 1920 1102

12 8 7 2 1413 2036 983
48 5 4 2 656 1352 578
96 4 3 2 690 1520 707

192 3 3 2 874 2334 1075
480 3 2 2 1882 3852 2211
960 1 2 2 1502 3842 2205

Fig. 1. Three slides from the 3D melon image, the model is with diffusion coefficient c2
and K = 15. The total diffusion time is 2.4e−6.

6 Conclusions

In this paper, we have investigated the use of the Parareal method to speed up
anisotropic diffusion filtering. The parallelisation in time can be done with only
local modifications to the code, without the need to completely restructure the
program. We have derived theoretical estimates for the run time that can be used
to predict the optimal number of cores. A modest but useful speedup with a factor
of two is obtained to denoise a 3D low-field MR image of a melon.

Acknowledgements. The authors thank the Leiden University Medical Center for
providing the low-field MR image and the reviewers’ comments to help improve the
paper.

Parareal Method for Anisotropic Diffusion Denoising 321

A Appendix

So far, we have focused on the classical denoising models as proposed in [18] by
Perona and Malik. The total variational model proposed in [19] is a widely used
alternative. In this appendix, we give numerical results for this technique. We use
Parareal with the linearised implicit Euler method. As explained in [21], it is not
possible to derive a useful upper bound on the number of CG iterations for the total
variation model and make an a priori prediction for the optimal number of cores
for this method. Solving the total variation model with gradient descent method
equals solving (1) with c(‖∇u‖2) = 1

‖∇u‖2
. Following the idea of [23], we solve it

with a lagged diffusivity fixed point iteration. For the numerical experiments, we
use 1

‖∇u‖+ε instead of 1
‖∇u‖ , where ε = 1e−5. One fine time step is 1.5e−6 and the

total evaluation time is 7.2e−4 (Table 3).

Table 3. Parareal times obtained for implicit Euler. (“Coarse” stands for coarse step
T/ΔT , “Parareal” the total Parareal iterations, “Elapsed time” the running time for the
algorithm.)

References

1. The structure of images: biological cybernetics 50, 363–370 (1984)
2. Bal, G., Maday, Y.: A “parareal” time discretization for non-linear PDE’s with appli-

cation to the pricing of an American put. In: Pavarino, L.F., Toselli, A. (eds.) Recent
Developments in Domain Decomposition Methods, vol. 23, pp. 189–202. Springer,
Berlin (2002). https://doi.org/10.1007/978-3-642-56118-4_12

3. Bal, G.: Parallelization in time of (stochastic) ordinary differential equations (2006)
4. Chang, H., Zhang, X., Xue-Cheng, T., Yang, D.: Domain decomposition methods

for nonlocal total variation image restoration. J. Sci. Comput. 60, 79–100 (2014).
https://doi.org/10.1007/s10915-013-9786-9

https://doi.org/10.1007/978-3-642-56118-4_12
https://doi.org/10.1007/s10915-013-9786-9

322 X. Shan and M. B. van Gijzen

5. Dai, X., Maday, Y.: Stable parareal in time method for first- and second-order hyper-
bolic systems. SIAM J. Sci. Comput. 35(1), A52–A78 (2013)

6. Delft High Performance Computing Centre (DHPC): DelftBlue Supercomputer
(Phase 1) (2022)

7. Duan, Y., Tai, X.C.: Domain decomposition methods with graph cuts algorithms for
total variation minimization Adv. Comput. Math. 36, 175–199 (2012). https://doi.
org/10.1007/s10444-011-9213-4

8. Falgout, R.D., Friedhoff, S., Kolev, T.V., MacLachlan, S.P., Schroder, J.B.: Parallel
time integration with multigrid. SIAM J. Sci. Comput. 36(6), C635–C661 (2014)

9. Firsov, D., Lui, S.: Domain decomposition methods in image denoising using gaus-
sian curvature. J. Comput. Appl. Math. 193(2), 460–473 (2006)

10. Gander, M.J., Kulchytska-Ruchka, I., Niyonzima, I., Schöps, S.: A new parareal algo-
rithm for problems with discontinuous sources. SIAM J. Sci. Comput. 41(2), B375–
B395 (2019)

11. Gander, M.J., Kwok, F., Zhang, H.: Multigrid interpretations of the Parareal algo-
rithm leading to an overlapping variant and MGRIT. Compu. Vis. Sci. 19, 59–74
(2018)

12. Gander, M.J., Vandewalle, S.: Analysis of the parareal time-parallel time-integration
method. SIAM J. Sci. Comput. 29(2), 556–578 (2007)

13. Kobayashi, R., Giga, Y.: Equations with singular diffusivity. J. Stat. Phys. 95, 1187–
1220 (1999). https://doi.org/10.1023/A:1004570921372

14. Kohn, R., Temam, R.: Dual spaces of stresses and strains, with applications to
hencky plasticity. Appl. Math. Optim. 10, 1–35 (1983). https://doi.org/10.1007/
BF01448377

15. Lions, J.L., Maday, Y., Turinici, G.: Résolution d’edp par un schéma en temps
«pararéel?». Comptes Rendus de l’Académie des Sciences - Series I - Mathematics
332(7), 661–668 (2001)

16. Nievergelt, J.: Parallel methods for integrating ordinary differential equations. Com-
mun. ACM 7(12), 731–733 (1964)

17. O’Reilly, T., Teeuwisse, W., Webb, A.: Three-dimensional MRI in a homogenous
27.cm diameter bore Halbach array magnet. J. Magn. Reson. 307, 106578 (2019)

18. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion.
IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

19. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal
algorithms. Physica D: Nonlinear Phenomena 60(1), 259–268 (1992)

20. Saad, Y.: Iterative methods for sparse linear systems. Society for Industrial and
Applied Mathematics Philadelphia, PA, USA (2003)

21. Shan, X., van Gijzen, M.: Deflated preconditioned conjugate gradients for nonlinear
diffusion image enhancement. In: Vermolen, F.J., Vuik, C. (eds.) Numerical Mathe-
matics and Advanced Applications ENUMATH 2019. LNCSE, vol. 139, pp. 459–468.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-55874-1_45

22. Shan, X., van Gijzen, M.B.: Deflated preconditioned conjugate gradient methods for
noise filtering of low-field MR images. J. Comput. Appl. Math. 400, 113730 (2022)

23. Vogel, C., Oman, M.: Fast, robust total variation-based reconstruction of noisy,
blurred images. IEEE Trans. Image Process. 7(6), 813–824 (1998)

24. Wu, S.L.: Toward parallel coarse grid correction for the parareal algorithm. SIAM
J. Sci. Comput. 40(3), A1446–A1472 (2018)

25. Xu, J., Tai, X.C., Wang, L.L.: A two-level domain decomposition method for image
restoration. Inverse Probl. Imaging 4(3), 523–545 (2010)

https://doi.org/10.1007/s10444-011-9213-4
https://doi.org/10.1007/s10444-011-9213-4
https://doi.org/10.1023/A:1004570921372
https://doi.org/10.1007/BF01448377
https://doi.org/10.1007/BF01448377
https://doi.org/10.1007/978-3-030-55874-1_45

Comparison of Block Preconditioners
for the Stokes Problem

with Discontinuous Viscosity and Friction

Piotr Krzyżanowski(B)

University of Warsaw, Warsaw, Poland

p.krzyzanowski@mimuw.edu.pl

Abstract. Several block preconditioning strategies for the Stokes prob-
lem with piecewise discontinuous viscosity and friction are investigated
for their efficiency and independence of the contrast in both viscosity and
friction. The constituting blocks correspond to inexact solvers, based on
algebraic multigrid. It follows that the block triangular preconditioner is
the most robust choice.

Keywords: Stokes problem · discontinuous coefficients · block
preconditioner

1 Introduction

Let us consider a stationary Stokes system with friction:

−div(ν∇u) + κu + ∇p = f,

div u = 0,
(1)

in a domain Ω ⊂ Rd, where d = 2, 3, supplemented with boundary conditions

u = uD on ∂ΩD, ν
∂u

∂n
− pn = 0 on ∂ΩN ,

where both ∂ΩD and ∂ΩN have a positive (d − 1)-dimensional measure and
they together form a splitting of ∂Ω into the Dirichlet part and the Neumann
part, respectively. For the notational simplicity, in this section, without loss of
generality, we will restrict ourselves to the case uD = 0.

We assume that Ω can be split into two disjoint subdomains, Ω̄ = Ω̄1 ∪ Ω̄2

and Ω1 ∩ Ω2 = ∅ and that the intersections of both ∂Ω1 and ∂Ω2 with ∂ΩD

have a positive measure. Further, we restrict ourselves to the case when both
the viscosity ν and the friction κ are discontinuous across the interface between
Ω1 and Ω2,

ν =

{
ν1 in Ω1,

ν2 in Ω2,
κ =

{
κ1 in Ω1,

κ2 in Ω2,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 323–330, 2023.
https://doi.org/10.1007/978-3-031-30445-3_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_27&domain=pdf
https://doi.org/10.1007/978-3-031-30445-3_27

324 P. Krzyżanowski

and both 0 < ν1 ≤ ν2, and κ1, κ2 ≥ 0 as well, are constants. The unknowns are
the fluid velocity u : Ω̄ → Rd and the pressure p : Ω → R, while the external
force f is prescribed.

Such a problem arises in many applications. For example, it appears as a part
of a linearization scheme of geophysical fluid flows [11], where different viscosities
correspond to different physical properties of the rock. It also results from the so
called one-fluid approach to two-phase flows where one assumes that i-th phase
ocuppies Ωi [10]. Another application is to use (1) to approximate flow in Ω1

around obstacle Ω2 via introduction of artificial penalizing parameters inside
Ω2: either large friction κ2 [7] or large viscosity ν2 [9], or both.

Fig. 1. Left: The geometry of the domain and its subdomains: Ω1 marked in dark color,
Ω2 painted in yellow. Right: example solution (see Sect. 3)(Color figure online).

After finite element discretization of (1), one arrives at a large system of linear
equations with a block 2×2 structure, consisting of sparse matrices (cf. Sect. 2).
The condition number of this system is adversely affected not only by the mesh
size h, but also by the viscosity contrast ν2/ν1 and the friction coefficient κ. In
turn, iterative solvers for the system will converge very slowly, unless adequately
preconditioned.

Preconditioners for the Stokes system with high contrast in the viscosity
have recently been investigated by numerous scientists. Probably the first to
analyze a preconditioning method to (4)–(5), which was based on block diagonal
preconditioning as specified below, were Olshanskii and Reusken [10]. In [11],
a block diagonal preconditioner was introduced, exploring the so called BFBT
approach [4] customized by introducing weights. Recently, a matrix–free precon-
ditioner was proposed and evaluated in [13], mixing Chebyschev smoothers with
Zulehner’s [15] approach to preconditioning saddle point problems. Seemingly,
the question how these preconditioners perform in the case when κ1 = 0
= κ2

was not investigated so far. While all these works deal with high contrast cases,
they mostly use only one type (usually block diagonal) of a block preconditioner.
Hence, in what follows we compare the efficiency of various types of block pre-
conditioners.

Block Preconditioners for the Stokes Problem with Discontinuous Viscosity 325

2 Finite Element Discretization and Matrix Formulation

Setting
V = {v ∈ H1(Ω)d : v = 0 on ∂ΩD}, W = L2(Ω),

the weak formulation of (1) is to find (u, p) ∈ V × W such that for any (v, w) ∈
V × W , there holds

2∑
i=1

∫
Ωi

(νi∇u · ∇v + κiu v) dx −
∫

Ω

p ∇ · v dx =
∫

Ω

f v dx, (2)

∫
Ω

∇ · u w dx = 0. (3)

In order to discretize (2)–(3) with the finite element method, we assume
that both Ω1 and Ω2 are polyhedrons and equip them with conforming trian-
gulations Thi

(Ωi), i = 1, 2, where hi denotes the corresponding mesh size. We
further assume that Th = Th1(Ω1) ∪ Th2(Ω2), h = max{h1, h2}, is still a proper
conforming triangulation of entire Ω. Next, we choose two finite element spaces,
Vh ⊂ V and Wh ⊂ W , satisfying the uniform inf-sup condition; one example
of such a pair of spaces is the Taylor–Hood element [6]. Then we formulate the
discretized problem as follows:

Problem 1. Find (uh, ph) ∈ Vh × Wh such that for any (vh, wh) ∈ Vh × Wh

there holds
2∑

i=1

∫
Ωi

(νi∇uh · ∇vh + κiuh vh) dx −
∫

Ω

ph div vh dx =
∫

Ω

f vh dx, (4)

∫
Ω

wh div uh dx = 0. (5)

Taking standard nodal basis functions, we can express (4)–(5) as a system of
linear equations with a 2 × 2 block matrix M:

M
(

U
P

)
≡

(
A BT

B 0

) (
U
P

)
=

(
F
0

)
, (6)

where A is an SPD matrix which corresponds to the discrete reaction–diffusion
term, while matrix B is a discretized counterpart to the divergence operator.

3 Block Preconditioners

All these preconditioners are derived from two possible variants of block LU
decomposition of a block matrix:(

A BT

B −C

)
=

(
I

B A−1 I

)(
A

SA

) (
I A−1 BT

I

)

=
(

I −BT C−1

I

) (
SC

−C

)(
I

−C−1 B I

)
,

326 P. Krzyżanowski

where SA = −C − BA−1BT and SC = A + BT C−1B are the corresponding
Schur complements. Motivated by the above decompositions, two main types of
block preconditioning matrices arise which can, in principle, be applied to (6)
(cf. [8] and the literature cited therein):

– dual block preconditioners:

P−1
d =

(
I −dA−1

0 BT

I

)(
A−1

0

S−1
0

)(
I

−cBA−1
0 I

)
(7)

– primal block preconditioners

P−1
p =

(
I

−cS−1
0 B I

)(
A−1

0

S−1
0

) (
I −dBT S−1

0

I

)
. (8)

where A0 and S0 are assumed symmetric, positive (or negative) definite matrices
and c, d are prescribed real numbers (in what follows, we will limit ourselves only
to several specific choices when c, d ∈ {−1, 0, 1}).

It can easily be verified that applying P−1
d to a vector requires one solve

with S0 and at most two solves with A0, while applying P−1
p to a vector takes

one solve with A0 and at most two solves with S0.1 In consequence, the costs of
vector multiplication by P−1

d or P−1
p may differ when cd
= 0.

Our goal here is to assess which of three block preconditioning strategies:

– block diagonal, c = d = 0 (abbr. ,,diag” in Sect. 3),
– block triangular, c = 1, d = 0 (abbr. ,,triang”),
– block indefinite, c = d = 1 (in both dual and primal versions) (abbr. ,,indef”),

leads to the most efficient iterative method, while being insensitive to the mesh
size, the viscosity contrast and the friction coefficient.

The key point to satisfactory performance of these preconditioners is to
choose the founding blocks (A0, S0) as good preconditioners to either the pair
(A,SA) or (SC , C), depending whether one uses dual or primal block precondi-
tioning, respectively [8].

Choosing S0 For the standard Stokes system (that is, ν1 = ν2 = 1 and
κ2 = 0), it is long known that SA is spectrally equivalent (uniformly in h) to the
mass matrix, so in this specific case S0 can be chosen as a preconditioner to the
mass matrix.

For the system (1) with discontinuous viscosity and no friction it was proved
in [10] that SA is uniformly spectrally equivalent (with respect to both the mesh
size and the viscosity contrast) to Mν — the mass matrix scaled by the inverse of
the viscosity, i.e. corresponding to the bilinear form

∑2
i=1

∫
Ωi

ν−1
i p q dx. There-

fore, a rather cheap preconditioner S0 for this scaled mass matrix Mν should be
sufficient.

Choosing A0 Following works mentioned above, we will set A0 as a good pre-
conditioner for A matrix — a matrix which corresponds to a reaction–diffusion
1 When cd = 0, both types of preconditioners require only one solve with A0 and one

with S0.

Block Preconditioners for the Stokes Problem with Discontinuous Viscosity 327

Table 1. Number of iterations for exact and inexact solvers with respect to the mesh
resolution N . Dual block diagonal and block triangular preconditioner case. Here, ν2 =
106, κ2 = 109.

block solver → exact inexact

precond ↓ N → 64 128 256 64 128 256

diag 25 27 25 63 34 34

triang 18 18 19 26 27 28

problem with discontinuous coefficients. Such preconditioner can be constructed
in many ways; for example, one can take a domain decomposition based precon-
ditioner, [3], which offers a high level of coarse grain parallelism.

Another possibility, confirmed by our experiments in Sect. 4, is to use an
algebraic multigrid solver which is known to be robust with respect to high
variation in the diffusion coefficient, see e.g. [14, Section 14], and can also be
parallelized [5].

4 Numerical Experiments

Our experimental setting is a variation on the theme of the classical 2D bench-
mark [12], with an obstacle serving as Ω2 and the geometry modified by moving
the center of the obstacle to the bottom of the domain, as in [9]. Zero Dirichlet
boundary conditions are imposed on the top and the bottom edges of rectangular
Ω, together with a parabolic inflow profile on its left edge. On the right, the “do
nothing” boundary condition is prescribed; cf. Figure 1. We set ν1 = 10−3, κ1 = 0
as in [12], while ν2, κ2 play the role of parameters which penalize the flow inside
the obstacle.

Fig. 2. Typical convergence histories for various preconditioners. Left: block diagonal;
center: block triangular; right: block indefinite. Inexact block solvers, dual version.
N = 256.

We ran the experiments in FEniCS [1] with PETSc [2] backend for linear
algebra, on a 4-core Intel i5-6400 2.7 GHz machine with 16 GB of RAM. For
the finite element spaces we used the classical Taylor–Hood pair. The domain
was triangulated with an unstructured, shape regular mesh, refined in the

328 P. Krzyżanowski

vicinity of the interface between Ω1 and Ω2. The mesh resolution parameter
N ∈ {32, 64, 128, 256} was roughly inversely proportional to the mesh size (dou-
bling N essentially quadrupled the number of unknowns). The largest system
solved had approximately 8 · 105 degrees of freedom.

Two types of A0 and S0 were considered:

– ,,exact”: A0 = A, S0 = Mν ,
– ,,inexact”: both A−1

0 and S−1
0 were defined as three iterations of the algebraic

multigrid solver for A or Mν , respectively. The algebraic multigrid solver was
BoomerAMG from the hypre library [5], with default parameters.

For comparison, we also include results for the so called inexact Schur comple-
ment preconditioner. This preconditioner takes A−1

0 defined as two iterations of
the GMRES preconditioned with BoomerAMG and S−1

0 defined as three itera-
tions of the Jacobi method applied to the inexact Schur complement BA−1

0 BT .
In Tables 1 and 2 we report on the total number of iterations of the

GMRES(40) solver required to reduce the norm of the residual by a factor 105,
taking zero as the initial guess. Table 3 presents the corresponding timings (in
seconds). Figure 2 shows typical convergence histories for three types of precon-
ditioners where, after a relatively short phase of fast reduction of the residual,
the convergence speed becomes slower.

Table 2. Number of iterations for varying ν2 and κ2. N = 256. Inexact dual (upper
part) and primal (middle part) preconditioners, followed by dual exact (lower part)
preconditioner.

Precond → diag triang indef inex. schur

κ2 ↓ ν2 → 10−3 100 103 106 10−3 100 103 106 10−3 100 103 106 10−3 100 103 106

0 63 34 34 34 23 29 29 29 19 24 24 24 23 29 29 29

103 79 34 34 34 61 28 29 29 49 24 24 24 60 29 29 29

109 34 35 80 34 28 28 60 28 23 24 46 24 28 28 60 29

0 63 34 34 34 23 28 28 28 25 28 28 28 38 60 56 56

103 79 34 34 34 61 28 28 28 77 28 28 28 80 61 56 56

109 34 35 80 34 28 28 60 28 27 29 76 28 60 64 80 64

0 19 27 27 27 13 19 19 19 13 18 18 18 13 20 20 20

103 62 25 27 27 34 19 19 19 33 18 18 18 33 19 20 20

109 25 25 62 25 17 17 33 19 17 17 33 18 19 19 33 19

All types of block preconditioners retain their convergence rate in a very
broad range of problem parameters under consideration: the discrete problem
size (controlled implicitly by mesh resolution N), the viscosity contrast ν2/ν1.
As concerns the friction parameter κ2, their performance was essentially uni-
form, with two outliers observed for all N and preconditioner types, when
(ν2, κ2) ∈ {(10−3, 103), (103, 109)} — in these cases, the convergence rate, while
still acceptable, was visibly reduced in comparison to other combinations of
(ν2, κ2).

Block Preconditioners for the Stokes Problem with Discontinuous Viscosity 329

Table 3. Timings for varying ν2 and κ2. N = 256. Results for dual and primal exact,
then dual and primal inexact preconditioners are presented in the subsequent parts of
the table.

precond → diag triang indef inex. schur

κ2 ↓ ν2 → 10−3 100 103 106 10−3 100 103 106 10−3 100 103 106 10−3 100 103 106

0 95 52 52 52 37 45 45 46 59 73 73 73 70 86 85 86

103 116 52 52 52 92 44 45 46 145 73 73 73 174 86 86 86

109 49 51 117 52 42 41 89 44 67 68 137 73 78 78 173 86

0 95 52 52 52 37 44 44 44 40 45 45 44 59 91 86 85

103 117 52 52 52 91 44 44 44 116 45 45 45 119 92 85 86

109 49 50 118 52 41 41 90 44 41 43 115 45 86 91 119 96

0 33 34 34 34 32 33 32 32 34 36 36 36 34 37 36 36

103 43 34 34 34 36 33 32 32 43 36 36 36 42 36 36 36

109 34 34 42 34 32 32 35 33 36 36 42 37 36 36 41 36

0 34 34 34 35 32 33 32 33 32 33 33 33 – – – –

103 44 34 34 34 37 33 33 33 42 33 33 33 – – – –

109 34 34 42 34 32 32 36 33 33 33 42 33 – – – –

5 Conclusions

While replacing exact solvers with inexact ones increases the number of itera-
tions, significantly lower cost per iteration of the latter should make the inexact
version more efficient if the blocks will grow large enough. It is expected to be
more profound in 3D, when direct solvers struggle more. However, the relatively
small-sized experiments in 2D provided here, so far show the supremacy of using
direct factorization of A and Mν . On the other hand, our inexact versions used
for the comparison were indeed very crude approximations to the exact inverse.

The most efficient preconditioners turned out the triangular and the primal
block indefinite ones, despite the dual block indefinite preconditioner offered the
fastest convergence rate. Because of greater simplicity and potential for a better
pattern of memory access and higher degree of parallelism, the former seems the
best choice overall.

Acknowledgement. The author wishes to thank the reviewers whose comments and
remarks helped to improve the paper.

References

1. Alnæs, M.S.: The FEniCS project version 1.5. Arch. Numer. Softw. 3(100) (2015)
2. Balay, S., et al.: PETSc users manual. Technical Report ANL-95/11 - Revision 3.8,

Argonne National Laboratory (1995)
3. Dryja, M., Sarkis, M.: Additive average Schwarz methods for discretization of

elliptic problems with highly discontinuous coefficients. Comput. Methods Appl.
Math. 10(2), 164–176 (2010)

330 P. Krzyżanowski

4. Elman, H.C.: Preconditioning for the steady-state navier-stokes equations with low
viscosity. SIAM J. Sci. Comput. 20(4), 1299–1316 (1999)

5. Robert D. Falgout, Jim E. Jones, and Ulrike Meier Yang. The design and implemen-
tation of hypre, a library of parallel high performance preconditioners. In Numer-
ical solution of Partial Differential Equations on Parallel Computers, Lect. Notes
Comput. Sci. Eng, pages 267–294. Springer-Verlag, 2006

6. Girault, V., Raviart, P.A.: Finite Element Method for Navier-Stokes Equations.
Theory and Algorithms. Springer, Berlin (1986)

7. Kadoch, B., Kolomenskiy, D., Angot, P., Schneider, K.: A volume penalization
method for incompressible flows and scalar advection-diffusion with moving obsta-
cles. J. Comput. Phys. 231(12), 4365–4383 (2012)

8. Krzyżanowski, P.: Block preconditioners for saddle point problems resulting from
discretizations of partial differential equations. In: Axelsson, O., Karatson, J.,
(eds.), Efficient Preconditioned Solution Methods for Elliptic Partial Differential
Equations, pp. 44–65. Bentham Publishers (2011)

9. Malikova, S.: Approximation of rigid obstacle by highly viscous fluid (2022).
arxiv:2201.10299

10. Olshanskii, M.A., Reusken, A.: A Stokes interface problem: stability, finite element
analysis and a robust solver. In: European Congress on Computational Methods
in Applied Sciences and Engineering ECCOMAS 2004 (2004)

11. Rudi, J., Stadler, G., Ghattas, O.: Weighted BFBT preconditioner for Stokes flow
problems with highly heterogeneous viscosity. SIAM J. Sci. Comput. 39(5), S272–
S297 (2017)

12. Schäfer, M., Turek, S., Durst, F., Krause, E., Rannacher, R.: Benchmark compu-
tations of laminar flow around a cylinder. In: Hirschel, E.H. (ed.) Flow Simulation
with High-Performance Computers II: DFG Priority Research Programme Results
1993–1995, pp. 547–566. Vieweg+Teubner Verlag, Wiesbaden (1996). https://doi.
org/10.1007/978-3-322-89849-4 39

13. Wichrowski, M.: Fluid-structure interaction problems: velocity-based formulation
and monolithic computational methods. PhD thesis, Polish Academy of Sciences,
Institute of Fundamental Technological Research (2021)

14. Jinchao, X., Zikatanov, L.: Algebraic multigrid methods. Acta Numerica 26, 591–
721 (2017)

15. Zulehner, W.: A class of smoothers for saddle point problems. Computing 65(3),
227–246 (2000)

http://arxiv.org/abs/2201.10299
https://doi.org/10.1007/978-3-322-89849-4_39
https://doi.org/10.1007/978-3-322-89849-4_39

On Minimization of Nonlinear Energies
Using FEM in MATLAB

Alexej Moskovka1(B) , Jan Valdman2,3 , and Marta Vohnoutová2

1 Department of Mathematics, Faculty of Applied Sciences, University of West
Bohemia, Technická 8, 30100 Plzeň, Czech Republic

alexmos@kma.zcu.cz
2 Department of Computer Science, Faculty of Science, University of South Bohemia,

Branǐsovská 31, 37005 České Budějovice, Czech Republic
3 The Czech Academy of Sciences, Institute of Information Theory and Automation,

Pod vodárenskou věž́ı 4, 18208 Prague, Czech Republic

Abstract. Two minimization problems are added to the Moskovka and
Valdman MATLAB package (2022): a Ginzburg-Landau (scalar) problem
and a topology optimization (both scalar and vector) problem in linear
elasticity. Both problems are described as nonlinear energy minimiza-
tions that contain the first gradient of the unknown field. Their energy
functionals are discretized by finite elements, and the corresponding min-
ima are searched using the trust-region method with a known Hessian
sparsity or the Quasi-Newton method.

Keywords: minimization · nonlinear energy · finite elements ·
Ginzburg-Landau model · topology optimization

1 Introduction

For solving problems given by (a system of) partial differential equations, the
variational approach is based on finding a minimum of the corresponding energy
functional

J(u) = min
v∈V

J(v) , (1)

where V is a space of test functions defined in a domain Ω and includes Dirichlet
boundary conditions on ∂Ω. Problems of this type appear in various applica-
tions of physics and are mathematically studied in the calculus of variations.
The energy functionals are then described by integrals over domains in two- or
three-dimensional space. The finite element method [9] can be applied as an
approximation of (1) and results in a minimization problem

J(uh) = min
v∈Vh

J(v) (2)

formulated in the finite-dimensional subspace Vh of V.

A. Moskovka was supported by the MSMT CR 8J21AT001 Model Reduction and Opti-
mal Control in Thermomechanical Systems project. J. Valdman announces the support
of the Czech Science Foundation (GACR) through the GF21-06569K grant Scales and
shapes in continuum thermomechanics.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 331–342, 2023.
https://doi.org/10.1007/978-3-031-30445-3_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_28&domain=pdf
http://orcid.org/0000-0003-0091-151X
http://orcid.org/0000-0002-6081-5362
http://orcid.org/0000-0002-8915-8626
https://doi.org/10.1007/978-3-031-30445-3_28

332 A. Moskovka et al.

A recent MATLAB implementation of [5,6] using the simplest linear nodal
basis functions allows us to solve (2) efficiently. The energy formulations of the
studied problems, including p-Laplace and hyperelasticity, contain the first gra-
dient parts of searched functions discretized by the finite element method (FEM)
and formulated as the sum of energy contributions from local elements. The key
ingredient is the vectorization of exact or approximate energy gradients in the
nodal patches (sets of elements adjacent to particular nodes). This leads to a
time-efficient implementation with a higher memory cost. New attempts to
apply available techniques to problems of elastoplastic deformations of layered
structures and shape memory alloys are reported in [11,12].

In this contribution, we comment on the implementation of the Ginzburg-
Landau model in superconductivity [1,3,4] and the topology optimization prob-
lem of the elastic medium [2,8]. The resulting MATLAB codes are provided
for download and testing at the following link:

https://www.mathworks.com/matlabcentral/fileexchange/97889

Assembly times were obtained on Lenovo ThinkPad T14 Gen 1 (Intel Core i7
processor, 2021) with 16 GB memory running MATLAB R2018a.

2 Finite Element Method and Minimization

The subspace Vh is spanned by a set of nb basis functions ϕi(x) ∈ Vh, i =
1, . . . , nb, and a trial function v ∈ Vh is expressed by a linear combination

v(x) =
nb∑

i=1

vi ϕi(x), x ∈ Ω, (3)

where v̄ = (v1, . . . , vnb
) ∈ R

nb is a vector of coefficients. We consider only the
case Vh = P 1(T), where P 1(T) is the space of piecewise linear nodal basis func-
tions defined on a triangulation T of the domain Ω with a Lipschitz boundary.
Note that the number of nodes corresponds to the number of all the basis func-
tions of Vh, therefore, nb = |N |. Consequently, the minimizer uh ∈ Vh of (2)
is represented by a vector of coefficients ū = (u1, . . . , u|N |) ∈ R

|N | and some
coefficients of ū, v̄ related to the Dirichlet boundary conditions are prescribed.

An appropriate minimization method is needed to solve (2). We use the MAT-
LAB Optimization Toolbox [10] which provides minimization techniques based
on two methods. The first, the Quasi-Newton method, computes a descent direc-
tion and the corresponding optimal step length to compute a new iteration. This
method does not need to know the gradient vector of J(v) from (2) explicitly but
instead computes the numerical gradient and the corresponding Hessian matrix
using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update formula. The sec-
ond, the trust-region method, is based on approximating the objective function
using the quadratic model function with the appropriate trust-region radius.
Contrary to the Quasi-Newton method, the trust region also requires knowledge

https://www.mathworks.com/matlabcentral/fileexchange/97889

On Minimization of Nonlinear Energies Using FEM in MATLAB 333

of the discrete gradient of J(v). The gradient can be explicitly derived or evalu-
ated numerically using the central difference scheme. Additionally, the Hessian
sparsity can be specified and follows directly from the FEM discretization (see
Fig. 1).

Fig. 1. Discretization of a rectangular domain (left) including Dirichlet boundary nodes
(red) and the corresponding Hessian sparsity (right). (Color figure online)

If the Hessian matrix is sparse (i.e. for the Ginzburg-Landau problem), the
trust-region method is much more time-efficient than the Quasi-Newton method.
In contrast, if the Hessian matrix has many non-zero elements (i.e. for the topol-
ogy optimization), the trust-region method can be significantly slower.

2.1 Solution Algorithm

consists for d = 2 of several typical steps:

– triangulation of the domain Ω into triangles and assembly of structures
’mesh’ and ’patches’ [6].

– defining the corresponding discrete energy functional J(v) from (2) as a sum
of the energy contributions of every element.

– if the trust region method is chosen, the ’patches’ structure is used to define
a function that represents the gradient of the discrete energy functional. This
gradient can be evaluated either exactly (in the case that the partial deriva-
tives of J(v) from (2) can be derived explicitly) or numerically using the
central difference scheme. The Hessian sparsity follows automatically from
the FEM discretization.

– the choice of a stopping criterion of the minimization process.

334 A. Moskovka et al.

3 Ginzburg-Landau Problem

Superconductors are certain metals and alloys that, when cooled below a critical
(typically very low) temperature, lose their resistivity, allowing permanent cur-
rents to circulate without loss of energy. Superconductivity was discovered by
Ohnes in 1911. As a phenomenological description of this phenomenon, Ginzburg
and Landau introduced in 1950 the Ginzburg-Landau model, which has been
proven to effectively predict the behavior of superconductors and that was sub-
sequently justified as a limit of the Bardeen-Cooper-Schrieffer (BCS) quantum
theory. It is a model of great importance in physics, and Nobel prizes have been
awarded for it to Abrikosov, Ginzburg, and Landau in 2003. For more details on
the physical and mathematical description of the models studied, see [3,4].

Fig. 2. Two numerical solutions of G-L problem on a rectangular domain Ω for ε =
10−2 and zero Dirichlet boundary conditions on the boundary ∂Ω. We can identify
flat regions, where the solutions satisfy u = 1 or u = −1. The computational mesh
consists of 512 elements and 289 nodes including 64 Dirichlet boundary nodes. The
mesh is shown independently in Fig. 1.

Leaving out the dependence on the magnetic field, we consider the simpler
Ginzburg-Landau minimization problem [1] for a scalar test function v ∈ V , and
the minimizer u ∈ V means the order parameter that indicates the local state
of the material (normal or superconducting). The energy functional reads

J(v) =
∫

Ω

(ε

2
‖∇v‖2 +

1
4
(v2 − 1)2

)
dx, (4)

where Ω ⊂ R
d is a given domain, ε a given small positive parameter and

∇v =
(∂v

∂x1
, . . . ,

∂v

∂xd

)

On Minimization of Nonlinear Energies Using FEM in MATLAB 335

denotes the vector gradient in the dimension d and ‖ · ‖ its euclidean norm. The
space V above contains testing functions v : Ω → R having the first (generalized)
derivatives and satisfying the Dirichlet boundary condition

v = 0 on ∂Ω . (5)

It is possible to show that the structure of (4) allows for more minimizers that
satisfy the corresponding Euler-Lagrange equation formulated as the boundary
value problem for the nonlinear partial differential equation

εΔu = u3 − u in Ω ,

u = 0 on ∂Ω
(6)

or its weak form
∫

Ω

ε

2
∇u · ∇v dx −

∫

Ω

(u − u3)v dx = 0 for all v ∈ V. (7)

Figure 2 shows two different solutions generated by two different initial
approximations, and Table 1 the performance of the trust-region method with
the specified Hessian sparsity pattern for different levels of uniform refinements.
The stopping criteria related to the first-order optimality, tolerance on the argu-
ment, and tolerance on the function equal to 10−6 are considered.

Table 1. Performance of G-L minimizations for ε = 10−2.

exact gradient numerical gradient

level |T | dofs time [s] iters J(u) time [s] iters J(u)

2 128 49 0.39 8 0.3867 0.08 8 0.3867

3 512 225 0.06 6 0.3547 0.05 6 0.3547

4 2048 961 0.13 7 0.3480 0.12 7 0.3480

5 8192 3969 0.28 6 0.3462 0.34 6 0.3462

6 32768 16129 1.11 7 0.3458 1.26 7 0.3458

7 131072 65025 6.63 8 0.3457 7.17 8 0.3457

8 524288 261121 56.97 8 0.3456 64.98 10 0.3456

Note that the original nonvectorized implementation [1] of the Newton-
Ralphson solver based on the weak form (7) requires, for example:

level 6 - 4.33s and 6 iterations,
level 7 - 54.46s and 6 iterations,
level 8 - 936.47s and 6 iterations.

336 A. Moskovka et al.

Our implementation only needs a slightly higher number of iterations. The under-
lying MATLAB code is heavily vectorized and therefore faster. The part most
computationally consuming is the function ’energy’ that evaluates the corre-
sponding energy J(v) for a given vector v ∈ R

|N | together with the numerical
gradient ∇J(v). The MATLAB profiler shown in Fig. 3 outputs the number of
calls and the total evaluation time of every code line related to the function
evaluating (4) and its gradient.

Fig. 3. MATLAB profiler for level 8 refinement.

The energy evaluation consists of the following steps:

– (line 79) assembly of the matrix ’v elems’ of nodal values of v on the ele-
ments.

– (line 80) evaluation of the cell ’F elems’ of gradients of v on elements stored.
– (line 81) evaluation of the vector ’densities elems’ of energy densities in

the elements. This is done by the function ’densities’ processing both the
gradient and the reaction terms of (4). Gaussian quadrature is applied for
the evaluation of the reaction term.

– (line 82) the total energy ’e’ is given by the sum of the energy contributions
of every element multiplied by their areas.

The energy gradient evaluation procedure is similar, but includes the for loop
over two components of the input vector ’eps’, which are −ε and +ε. Therefore,
the numbers of calls of lines 87–92 are twice as high.

– (line 85) assembly of the matrix ’v patches’ of the nodal values of v on
patches.

On Minimization of Nonlinear Energies Using FEM in MATLAB 337

– (line 87) perturbation of the nodal values by the corresponding component
of ’eps’ resulting in a vector ’v patches eps’.

– (line 88) evaluation of the cell ’F patches’ of gradients of ’v patches eps’
on patches.

– (lines 89–90) evaluation of the vector ’e patches’ of energy densities on
patches.

– (line 91) assembly of vector ’cumsum all e’ containing the cumulative sums
of vector ’e patches’.

– (line 92) evaluating a vector ’e’ of differences of cumulative sums using the
’indx’ vector (described in detail in [6]).

This implementation facilitates an easy extension to higher-order difference
schemes.

4 Topology Optimization in 2D

Structural topology optimization (TO) is a numerical method that aims, through
a density function, to optimally distribute a limited amount of material within
a volume, representing the initial geometry of a body that undergoes specific
loads and displacement boundary conditions. Among the approaches to solving
TO problems ([2]), we focus on the so-called phase field approach. We consider
a domain Ω ∈ R

d where the material is distributed using a scalar phase field
variable φ, representing a density fraction of the material, hence φ ∈ [0, 1] with

φ ≡ 0 corresponding to the void (no material),
φ ≡ 1 to the bulk material.

Adopting a linear elastic model, the state equations are of the form

div(σ) = 0 in Ω ,

u = 0 on ΓD ,

σ · n = g on ΓN .

(8)

Here, we have the stress tensor σ = σ(φ), the displacement vector u and with
zero value (in sense of traces) at the Dirichlet boundary ΓD, the external load g
vector at the Neumann boundary ΓN with the normal unit vector n.

The stress tensor reads

σ(φ) = C(φ) : ε(u)

with the fourth-order linear material tensor C = C(φ) and the symmetric strain
ε(u) is defined as

ε(u) = (∇u + ∇uT)/2.

The symbol ’:’ denotes the contraction of two tensors in the form that yields
σij = Cijklεkl, where the Einstein summation is applied. We consider the void
as a very soft material, adopting the following equation for C:

C(φ) = Cbulkφp + Cvoid(1 − φ)p.

338 A. Moskovka et al.

In practical calculations, we set p = 3, and Cvoid = 10−2
Cbulk and the matrix

Cbulk is specified by two material parameters (the first Lamé parameter λ and
the shear modulus μ). The weak form of the linear elastic problem (8) can be
written as ∫

Ω

σ(φ) : ε(v) dx =
∫

ΓN

g · v dx (9)

for any test displacement field v and σ(φ) = C(φ) : ε(v). The goal is to minimize
the compliance of a given structure by optimally distributing a limited amount
of material. For this purpose, we introduce an objective functional J(φ, u(φ))
defined as:

J
(
φ, u(φ)

)
=

∫

ΓN

g · u(φ) dx + κ

∫

Ω

[γ

2
‖∇φ‖2 +

1
γ

ψ0(φ)
]
dx , (10)

where for a given φ the corresponding displacement u(φ) is given as the solution
of (9). The first integral represents a measure of the compliance of the global
system, the term γ

2 ‖φ‖2 penalizes nonconstant values of φ, while 1
γ ψ0(φ), where

ψ0(φ) = (φ − φ2)2 ,

represents the double-well potential function penalizing values of φ different from
0 and 1. The parameter γ is usually set between 10−4 and 10−2 (for a finer mesh,
the lower value provides better results). Minimization of the functional (10) is
imposed under the assumption of distributing a limited constant quantity of
material within the domain; therefore, we introduce the constraint

∫

Ω

φ dx = m|Ω|

with 0 < m ≤ 1 representing a volume fraction of the target domain.
Figures 4, 5 and 6 illustrate topology optimization solutions for different

domains and the corresponding Dirichlet and Neumann boundary conditions.
For the sake of clarity, the computational meshes on the left side are depicted
for lower levels of refinement. Red circles indicate the nodes corresponding to
ΓD and green circles indicate the nodes that belong to ΓN .

Three models are given by the following parameters.

The first model:

– a rectangular domain (0, 0.02) × (0, 0.01),
– γ = 10−4,
– the left side of the boundary is fixed,
– a constant traction force g = 5 · 106 acts on the bottom side of the boundary

from x = 0.016 to x = 0.02 downwards.

The second model:

– an L-shaped domain given by the union of rectangles (0, 0.06) × (0, 0.06),
(0, 0.06) × (0.06, 0.2) and (0.06, 0.2) × (0, 0.06),

On Minimization of Nonlinear Energies Using FEM in MATLAB 339

Fig. 4. The first model: triangulation of the rectangle domain (left) with 3600 elements
and the solution (right).

Fig. 5. The second model: triangulation of the L-shaped domain (left) with 3672 ele-
ments and the solution (right).

Fig. 6. The third model: triangulation of the pincer domain (left) with 3600 elements
and the solution (right).

– γ = 10−3,
– the top side of the boundary is fixed,
– a constant traction force g = 106 acts on the bottom side of the boundary

from x = 0.14 to x = 0.2 downwards.

The third model:

340 A. Moskovka et al.

– a pincer domain given by the union of rectangles (0, 0.005) × (0, 0.02),
(0.005, 0.04) × (0, 0.005) and (0.005, 0.04) × (0.015, 0.02),

– γ = 10−3,
– the left side of the boundary from y = 0.005 to y = 0.015 is fixed,
– a constant traction force g = 2 ·105 acts on the top (upwards) and the bottom

(downwards) sides of the boundary from x = 0.035 to x = 0.04.

The following parameters are the same for all models:

– E = 12.5 · 108 (Young modulus), ν = 0.25 (Poisson ratio),
– κ = 100, m = 0.4.

Contrary to the Ginzburg-Landau problem, a small change of φ in a single
node affects the corresponding displacement u(φ) given by (9) throughout the
domain. In this case, the corresponding Hessian matrix is full, and therefore the
trust-region method is ineffective, and the quasi-Newton method is used instead.
Table 2 shows the performance of the quasi-Newton method for different levels
of uniform mesh refinements of the rectangular domain corresponding to the
first model. The same stopping criteria as for the GL-problem equal to 10−4 are
considered.

Table 2. Performance of TopOpt minimizations with domain and parameters from the
first model.

quasi-Newton

level |T | dofs time [s] iters J(u)

1.0 100 120 2.11 50 28.0815

1.5 240 270 9.52 44 24.2585

2.0 400 440 25.88 52 23.5845

2.5 900 960 194.13 82 21.4105

3.0 1600 1680 1079.45 125 21.0503

3.5 3600 3720 15737.81 323 20.3108

Similarly to 3, the MATLAB profiler shown in Fig. 7 outputs the number of
calls and the total evaluation time of code lines related to the function evaluating
(10). The energy evaluation consists of the following steps:

– (line 48) assembly of a vector ’z elems’ containing averaged values of φ on
the elements.

– (lines 49–50) evaluating vectors ’mu elems’ and ’bulk elems’ that store the
values of shear and bulk modulus, respectively, on the elements.

– (lines 52–55) an update of the elastic stiffness matrix [7].
– (line 57) restriction of the stiffness matrix on free degrees.
– (line 58) a new displacement field in free degrees is evaluated based on (9).

On Minimization of Nonlinear Energies Using FEM in MATLAB 341

Fig. 7. MATLAB profiler for level 3 refinement.

– (lines 60–62) evaluating the first (elastic), second (gradient) and third
(double-well potential) part of (10).

– (line 64) the final energy given as a sum of its three components.

The profiler shows that the main cost of the evaluation lies in the reassembling
of the elastic stiffness matrix and the solutions of the linear systems of equations
in each energy evaluation.

5 Conclusions and outlooks

We introduced a Ginzburg-Landau and topology optimization problem that
appears in physics and implemented them using the concept of our codes from
[5] based on a minimization of energy functionals.

A comparison with the original implementation of Ginzburg-Landau [1] based
on the Newton-Raphson method demonstrates the effectiveness of our vectoriza-
tion concepts, leading to significantly better evaluation times, but higher memory
cost. It shows that the trust region method requires only a slightly higher num-
ber of iterations. It would be interesting to apply our vectorization concepts to
the assembly of the Hessian matrix in the Newton-Raphson method.

A simple implementation of topology optimization of an elastic medium using
the Quasi-Newton method has proved feasible. The elasticity stiffness matrix
needs to be assembled and the resulting linear system of equations solved in
every energy iteration. The original assembly code of [7] is effectively split using
precomputed structures that do not change during the minimization process.
Practically, it still takes the majority of the evaluation time. Although this app-
roach is highly inefficient from an optimization point of view, it should allow for

342 A. Moskovka et al.

a simple extension to more complicated problems, such as topology optimiza-
tion of elastoplastic materials, where the elastoplasticity solver of [7] replaces
the original elasticity solver. To reduce the number of evaluations, we plan to
implement schemes of gradient flow type [8].

Acknowledgment. We thank Prof. Ulisse Stefanelli and Dr. Stefano Almi (Univer-
sity of Vienna) for inspiring discussions on topology optimization models and their
numerical implementation.

References

1. Alberty, J., Carstensen, C., Funken, S.A.: Remarks around 50 lines in matlab: short
finite element implementation. Numer. Algorithms 20, 117–137 (1999)

2. Bendsoe, M.P., Sigmund, O.: Topology Optimization, Springer, Berlin (2004).
https://doi.org/10.1007/978-3-662-05086-6

3. Romá, C.: Analysis of singularities in elliptic equations: the Ginzburg-Landau
model of superconductivity, the Lin-Ni-Takagi problem, the Keller-Segel model
of chemotaxis, and conformal geometry. Université Pierre et Marie Curie - Paris
VI, Mathematical Physics (2017)

4. Bethuel, F., Brezis, H., Hélein, F.: Ginzburg-Landau vortices, Birkhäuser (2017)
5. Matonoha, C., Moskovka, A., Valdman, J.: Minimization of p-Laplacian

via the finite element method in MATLAB. In: Lirkov, I., Margenov, S. (eds.)
LSSC 2021. LNCS, vol. 13127, pp. 533–540. Springer, Cham (2022). https://doi.
org/10.1007/978-3-030-97549-4 61

6. Moskovka, A., Valdman, J.: Fast MATLAB evaluation of nonlinear energies using
FEM in 2D and 3D: nodal elements. Appl. Math. Comput. 424, 127048 (2022)

7. Čermák, M., Sysala, S., Valdman, J.: Efficient and flexible MATLAB implemen-
tation of 2D and 3D elastoplastic problems. Appl. Math. Comput. 355, 595–614
(2019)

8. Carraturo, M., Rocca, E., Bonetti, E., Hömberg, D., Reali, A., Auricchio, F.:
Graded-material design based on phase-field and topology optimization. Comput.
Mech. 2019(64), 1589–1600 (2019)

9. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM, Philadel-
phia (2002)

10. MATLAB documentation on minimization with gradient and Hessian spar-
sity pattern. https://www.mathworks.com/help/optim/ug/minimization-with-
gradient-and-hessian-sparsity-pattern.html

11. Drozdenko, D., Knapek, M., Kruž́ık, M., Máthis, K., Švadlenka, K., Valdman,
J.: Elastoplastic deformations of layered structures. Milan J. Math. 90, 691–706
(2022)

12. Frost, M., Valdman, J.: Vectorized MATLAB implementation of the incremental
minimization principle for rate-independent dissipative solids using FEM: a con-
stitutive model of shape memory alloys. Mathematics 10(23), 4412 (2022)

https://doi.org/10.1007/978-3-662-05086-6
https://doi.org/10.1007/978-3-030-97549-4_61
https://doi.org/10.1007/978-3-030-97549-4_61
https://www.mathworks.com/help/optim/ug/minimization-with-gradient-and-hessian-sparsity-pattern.html
https://www.mathworks.com/help/optim/ug/minimization-with-gradient-and-hessian-sparsity-pattern.html

A Model for Crowd Evacuation
Dynamics: 2D Numerical Simulations

Maria Gokieli1,2(B)

1 Faculty of Mathematics and Natural Sciences - School of Exact Sciences,
Cardinal Stefan Wyszyński University, Wóycickiego 1/3, 01-938 Warsaw, Poland

2 ICM, University of Warsaw, Tyniecka 15/17, 02-630 Warsaw, Poland

m.gokieli@icm.edu.pl

Abstract. In [5] we have proposed a numerical scheme for solving a
macroscopic model of crowd dynamics. We apply it here to simulate a
room evacuation, for velocity fields derived from the p–Poisson equa-
tion. We analyze the stability parameters and the influence of p on the
dynamics.

Keywords: Finite elements method · crowd dynamics ·
advection–diffusion · semi–implicit scheme · CFL condition ·
p-Laplacian

1 Introduction

In [5] we have considered the following model for pedestrians’ movement: if
Ω ⊂ R

2 is the available environment,
−→
V (x) ∈ R

2 is the velocity of an individual
at x, and ρ(t, x) ∈ R is the density of the pedestrians at time t and point x ∈ Ω,
the dynamics of ρ is governed by:

∂tρ + div
(
ρ

−→
V

)
− κΔρ = 0 in R

+ × Ω . (1)

This is a regularization (κ > 0) of the continuity equation proposed originally
in this context by Hughes [7,8]

∂tρ + div
(
ρ

−→
V

)
= 0 , in R

+ × Ω . (2)

The diffusion term that we add in (1) models a natural random spread of the
pedestrians, independently of the direction

−→
V they are given.

We consider here that Ω is a room that the pedestrians exit. Consequently,
Ω is a bounded domain, the boundary ∂Ω of Ω is a union of disjoint parts: the
walls Γw, the exits Γ , and the corners Γc. The set of corners is finite; Γw and Γ
are regular and possess at each point an exterior normal vector −→ν (x).

The model requires to be supplied with a velocity field
−→
V which defines the

evacuation direction. In any nontrivial case it should of course depend on x, and
most likely also on ρ(x). This latter dependency appears in the original [7,8] and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 343–353, 2023.
https://doi.org/10.1007/978-3-031-30445-3_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_29&domain=pdf
https://doi.org/10.1007/978-3-031-30445-3_29

344 M. Gokieli

related works, see e.g. [9,13]. It makes however our problem nonlinear. It is also
possible to make

−→
V depend on other, nonlocal quantities, as the mean value of

ρ in some neighborhood of x. We neglect them here – as the nonlocal behaviour
is present in our model (1) by the diffusion term. The basic requirement for

−→
V

so as to get a model of evacuation are the following boundary conditions:

−→
V · −→ν = 0 on Γw, (3)
−→
V · −→ν > 0 on Γ. (4)

Also, we assume a homogeneous Neumann boundary condition on ρ

∇ρ · −→ν = 0 on Γw ∪ Γ (5)

and the initial condition
ρ(0, x) = ρ0(x) ≥ 0. (6)

This will ensure the evacuation process (see [5, Lemma 1]).
We are interested here in presenting numerical simulations for the evacuation

process, based on (1). We chose a geometry of Ω including obstacles inside the
evacuated space and use the numerical scheme of [5]. We have considered there
velocity fields

−→
V such that

div
−→
V ≥ 0 on Ω. (7)

and have shown that the L2-norm of the exact solution decreases under the
above assumption. The semi–implicit scheme of [5] was shown to be stable and
preserving this monotonicity property under a CFL type condition.

We show in the present paper an explicit formula for this CFL condition
when (5) is assumed and we show examples of stable and unstable evolution,
depending on the choice of parameters. We also discuss concrete choices of

−→
V .

We investigate
−→
V which were not, as far as we know, considered in this context,

and which seem to be a very natural choice for the modelled phenomenon. We
show that the pointwise assumption (7) is only relevant for special

−→
V , which do

not depend, or depend very weakly, on ρ. For
−→
V clearly dependent on ρ, the

L2-norm of the numerical solution ρh is decreasing only after an initial period
of time. This does not contradict the scheme stability, but shows that a new
analysis of these monotonicty and stability properties is needed.

The plan of this paper is as follows. Section 2 recalls the semi–implicit numer-
ical scheme proposed in [5]. We discuss the choice of

−→
V and its computation in

Sect. 3. We show in Sect. 4 the obtained simulations and discuss the choice of
the time step for particular

−→
V . We show the first confirmations of the so called

Braess paradox. i.e. a heuristic observation that obstacles to the movement may
facilitate it, and on the contrary, lack of obstacles may slow the movement down.
We illustrate this Braess paradox for evacuation, leaving a more systematic study
of the role of the obstacles for the future (see Sect. 5).

A Model for Crowd Evacuation Dynamics 345

2 Numerical Scheme

In all what follows, we assume the geometry of Ω as in the Introduction and
(3)–(4). We assume also that

−→
V may depend of x and ρ, we note

−→
V =

−→
V (ρ).

Definition 1. We say that ρ : (0, T) × Ω → R solves the model (1), (5) (in the
weak sense) if, for any t ∈ (0, T), ρ(t) ∈ H1(Ω), ρ ≥ 0 and for any η ∈ H1(Ω),
any t ∈ (0, T)
∫

Ω

∂tρ(t) η +
∫

Γ

ρ(t) η
−→
V (ρ(t))·−→ν −

∫

Ω

ρ(t)
−→
V (ρ(t))·∇η + κ

∫

Ω

∇ρ(t)·∇η = 0.

(8)
We have written

∫
Ω

f(t) for
∫

Ω
f(t, x) dx.

One can verify by classical methods that under additional assumptions on
−→
V ,

the solution ρ exists and, with the initial condition (6), is unique. We omit here
the mathematical analysis of the model; of course many mathematical properties
of ρ depend on the choice of

−→
V that we do not want to impose at this point. We

state however an important monotonicty property and its relation to
−→
V .

Definition 2. The functions m : R+ → R defined by

m(t) = M(ρ(t)) =
∫

Ω

ρ(t, x) dx. (9)

shall be called the total mass function. The function s : R+ → R defined by

s(t) = S(ρ(t)) =
∫

Ω

ρ(t, x)2 dx (10)

shall be called the L2–stability function for the equation (8) with ρ(0) = ρ0.

Lemma 1. Let
−→
V satisfy (3)–(4). Let ρ be the solution to (1) with (5) and

(6). The total mass function (9) is decreasing. The L2–stability function (10) is
decreasing in the neighborhood of t0 if and only if t0 is such that

∫

Ω

ρ2 div
−→
V + 2κ

∫

Ω

|∇ρ |2 +
∫

Γ

ρ2
−→
V · −→ν ≥ 0. (11)

This condition is in particular fulfilled for
−→
V satisfying (7).

Proof. By posing η = 1, we obtain the first statement from (3)–(4). By posing
η = ρ, again from (3)-(4) and the identity

2
∫

Ω

ρ
−→
V (ρ) · ∇ρ = −

∫

Ω

ρ2 div
−→
V (ρ) +

∫

Γ

ρ2
−→
V (ρ) · −→ν

we obtain:

1
2

d

dt

∫

Ω

ρ2 = −1
2

∫

Ω

ρ2 div
−→
V (ρ) − κ

∫

Ω

|∇ρ |2 +
∫

Γ

ρ2
−→
V (ρ) · −→ν .

�	

346 M. Gokieli

We define now the finite element spaces Vh ⊂ H1(Ω), where h is, as usual,
the mesh parameter, and look for the approximate solutions in Vh. Let Ωh ⊂ Ω
be the triangulated, shape regular domain, with the mesh size parameter h. Let
(·, ·) denote the L2 product on Ωh.

Definition 3 (cf. Def. 2 of [5]). We define the sequence {ρn
h}∞

n=0 ⊂ Vh to be
the approximate FEM solution of (8) if ρn

h satisfies the following semi–implicit
first order scheme for any test function ηh ∈ Vh:

∫

Ωh

(
ρn+1

h − ρn
h

Δt

)
ηh −

∫

Ωh

ρn+1
h

−→
V (ρn) · ∇ηh + κ

∫

Ωh

∇ρn+1
h · ∇ηh +

+
∫

Γh

ρn
h

−→
V (ρn) · −→ν ηh = 0. (12)

We say that the scheme is stable from n0 if for any n ≥ n0:

(ρn+1
h , ρn+1

h) ≤ (ρn
h, ρn

h).

Remark 1. The above definition is consistent with that of the semi–implicit
scheme in [5, Def. 2], if we put

A0(ϕ)(ρ, η) = −
∫

Ωh

ρ
−→
V (ϕ) · ∇η + κ

∫

Ωh

∇ρ · ∇η, (13)

B(ϕ)ρ = −1
2
ρ

−→
V (ϕ) · −→ν , (14)

and, for an arbitrary α > 0,

A1(ϕ)(ρ, η) =
1
2α

∫

Γ

[B(ϕ)ρ − αρ] [B(ϕ)η − αη] , (15)

A2(ϕ)(ρ, η) =
1
2α

∫

Γ

[B(ϕ)ρ + αρ] [B(ϕ)η + αη] . (16)

The notion of stability is also consistent with [5]. It is strong. A future study
should include a weaker notion of stability, where the L2 norm of the numerical
solution is bounded.

Theorem 1. [5] (CFL condition for stability). Let α > 0 be an arbitrary
constant and let’s define A1 as in (14)–(15). The semi–implicit scheme (12) is
stable under (11) and the abstract CFL condition

ΔtA1(ρh)(uh, uh) ≤ (uh, uh) ∀ρh, uh ∈ Vh. (17)

Proof. The proof is identical as in [5, Proof of Theorem 2], where the nonlinear
case has already been considered. We have assumed there (7) to infer (11). �	
In view of (14)–(15), we give below a more explicit form of the (CFL) condition.

A Model for Crowd Evacuation Dynamics 347

Remark 2. If ρ solves the model (1), (5), the CFL condition (17) writes as

Δt

∫

Γ

u2
h

(−→
V (ρh) · −→ν − 2α

)2

8α

∫

Ωh

u2
h

≤ 1. (18)

Note that κ does not appear in (18) explicitely. Instead, it has a crucial role in
(11) in the case when div

−→
V , or

∫
Ω

ρ2 div
−→
V (ρ), is not positive.

This form of CFL condition allows to find an optimal α. If we assume that
|−→V | is bounded on Ω, we obtain 2αopt = maxΓ |−→V |. With these assumptions,
(18) is satisfied if

1
4
Δt

(
2max

Γ
|−→V | − min

Γ
|−→V |

) ∫
Γ

u2
h∫

Ωh
u2

h

≤ C0 max
Γ

|−→V | Δt

h
≤ 1. (19)

Indeed, the last term on the lhs is of order oh 1/h; it depends also on the mesh and
on the degree of the elements. For a uniform mesh and P2 elements that we use in
the sequel, 1/C0,u = 6(1 +

√
2) ≈ 14.5, see e.g. [11], where the authors propose

to multiply C0,u by 10 so as to stay clearly away from the unstable region. In
most simulations, we increase this constant even more. However, max |−→V | may
be difficult to estimate if it is not granted by construction.

3 Velocity

The velocity field
−→
V is a crucial element of the model. Apart from satisfying

(3)–(4), it should reproduce the direction that the individual at x will follow so
as to reach the exit. From the modelling point of view, V should be dependent on
the space variable x, and on the density ρ(x). From the analytical and numerical
point of view, the important properties of

−→
V are (7) and (18).

A frequent simplification, that we also admit here, is to take

−→
V =

−→
V

(
ρ(x)

)
= v

(
ρ(x)

) −→
W (x), (20)

where
−→
W : Ω → R

2 is a vector field giving the direction to follow at x, and
v : R → R is a non-increasing function giving the scalar value of the veloc-
ity, responsible for a slow down when the density is bigger. So as to make v

meaningful,
−→
W is often normalized: |−→W (x)| = 1.

The most natural choice for
−→
W seems to be the vector field − ∇ Φ(x), where

Φ is the distance to the exit. It is well known (see e.g. [2,4,13] and related works)
that Φ is given by the so–called eikonal equation:

Φ ∈ W 1,p(Ω) ∩ C(Ω̄) : |∇ Φ(x)| = 1 for x ∈ Ω, Φ(ξ) = 0 for ξ ∈ Γ ,

348 M. Gokieli

The eikonal equation is highly nonlinear. Many approximations of the distance
function are used in applications (see [2]); a few however approximate its gradi-
ent. Among them, the most interesting one may be the solution of the p–Poisson
problem. If

Δpu = div
(|∇u|p−2 ∇u

)
,

we solve ⎧
⎨
⎩

−ΔpΨp(x) = 1 in Ω
∇Ψp · −→ν = 0 on Γw

Ψp = 0 on Γ ,
(21)

The result of [4] is that

Ψp converges to Φ strongly in W 1,m(Ω) as p → ∞, for all m ≥ 1.

This means in particular that |∇Ψp| → 1 as p → ∞, a property which is very
important. Thus, for bigger p, by taking

−→
W = −∇Ψp, and

−→
V as in (20), we have

a velocity field satisfying (3)–(4), |−→W | ≈ 1 and close to the vector field resulting
from the eikonal equation. The CFL condition (19) is then also easier to satisfy
and to check.

For p = 2, (21) is the linear Poisson equation. This case is of particular
interest, because if we take

−→
V = − ∇ Ψ2 in (1), the condition (7) is satisfied

directly. This
−→
V , even if not a perfect choice from the modelling point of view,

satisfies all our assumptions, and thus helps to determine constants in the CFL
condition.

4 Simulations

4.1 Settings

In the simulations, we have considered a symmetric, nearly rectangular room of
dimension 1 × 1.5, with two identical exits. We have placed obstacles in front of
the exits, as in the figures below. The code has been coded and executed with
the FreeFem++ software [6]. We used P2 elements. The mesh is shape regular,
with h of order of 0.02. The maximal step size is Δt = 0.01. The initial density
ρ0 is constant. We have used the vector field (20) in two variants: with

−→
W = −∇Ψp

or −→
W (x) =

Ψp(x)
|Ψp(x)| , (22)

where Ψp solves (21) for p ∈ {2, 3, 4, 5} (we have also used rational values close
to those). We shall clearly note in each experiment if

−→
W is normalized or not.

The p–Poisson equation (21) has been solved numerically by two methods:

1. the Newton method, see e.g. [12, Ch. 9],

A Model for Crowd Evacuation Dynamics 349

2. the fixed–point (Picard) iterations: take u0 solving Δu0 = −1 and

div
(
|∇ui−1|p−2 ∇ui− 1

2

)
= −1

for i = 1, 2, . . ., with the boundary conditions as in (21). Additionally, we use
a damping proposed in [1, (3.7), γ = 0.5], i.e. ui = γui− 1

2
+ (1 − γ)ui−1. The

equations were solved by FEM on the same grid.

The two approaches gave essentially the same results, the Newton method being,
as expected, much faster. The unexpected behaviour was the nonconvergence
of both methods for p bigger than 5. This value could be even slightly lower
depending on the geometry and on the method, but we were unable to get it
significantly higher, and this, apparently, independently of the mesh refinement.
This effect was indeed reported in [1] as for the fixed–point method.

The scalar velocity function has a piecewise linear form:

v(ρ) = min
(

vmax,max
(

1 − ρ

ρmax
, 0

))
, (23)

or a piecewise constant form:

v(ρ) =
vmax

2
if ρ ≤ ρmax; v(ρ) = 0 otherwise, (24)

or a constant form
v(ρ) =

vmax

2
. (25)

We take vmax = 1 and ρmax = 8.

4.2 Linear Model, P = 2

At first, we perform our simulations with p = 2. Here,
−→
W is not normalized:−→

W = −∇Ψ2 and v is constant as in (25). Thus,
−→
V satisfies the condition (7),

and thus, the assumptions of 1.
We use five time steps Δt between 0.001 and 0.01 and draw in Fig. 1, the

functions defined in Definition 2. (Note the log scale for t). The total mass
function is decreasing only for Δt ≤ 0.002; the same is true for the stability
function. It is clear, by Lemma 1, that these are the only cases where the scheme
is stable.

4.3 p ≥ 2

When p > 2, or if v is not constant, the property (7) is not satisfied anymore. In
Fig. 2, we show experiments with p ∈ {2, 3, 5}. So as to minimize ’side effects’,−→
W is still not normalized:

−→
W = −∇Ψp. The scalar velocity v is piecewise constant

(24). As ρ does not exceed ρmax, our model is still in the linear regime, but (7)
is not granted for p > 2.

350 M. Gokieli

Fig. 1. Here,
−→
V = −0.5∇Φ2. We compare the evolution for different time steps Δt. On

the left, the total mass of pedestrians vs time. On the right, the stability function vs
time. Both in log scale on the time axis. The decreasing curves correspond to Δt = 0.002
and Δt = 0.001, which fit almost perfectly. The light blue — to Δt = 0.0025, the others
to bigger Δt. (Color figure online)

We take Δt = 0.002 for p ∈ {2, 3} and Δt = 0.01 for bigger p, in view of the
fact that |∇ Ψp| is considerably closer to 1 for these p. We observe on one hand,
the stability of the scheme, and on the other, the effect of decreasing the total
evacuation time with increasing p. In particular, for p = 2 the evacuation is very
long. Finally, we verify that the Picard and Newton method applied to (21) give
the same result. We have checked that with increasing p, the error between the
two methods decreases.

4.4 Nonlinear Model, p ≥ 2

We finally simulate the evacuation with a normed velocity field (22) and with v
piecewise constant (24) and piecewise linear (23). Here, Δt = 0.01. The evolution
is visualized in Fig. 3. Some violations of the non–negativity of ρh are observed
when the model becomes nonlinear. The stability functions do not decrease in an
initial period of time, after which they are all perfectly monotone, going down
to zero. This means that (7) is no longer valid, and the weaker condition (11)
becomes valid after this initial time. We postulate that our scheme is still stable,
but within a larger definition of stability, meaning boundedness of the solution’s
L2 norm. This approach should be considered in view of the properties of

−→
V

itself.
We observe, as before, shortening of the evacuation time when p increases,

but the influence of p is attenuated. Surpisingly enough, introducing a piecewise
linear, decreasing velocity (23) does not shorten the evacuation time, and leads
to bigger crowd densities. However, this comparison is still quite heuristic.

The Braess paradox clearly appears in Fig. 4: the upper part of the room, with
more obstacles, evacuates more quickly and has less regions with high densities.
This phenomenon can be observed for both forms of v, but a piecewise linear
velocity (23) makes it clearer.

A Model for Crowd Evacuation Dynamics 351

5,3=t2=t5,0=t

Fig. 2. The first three rows show the evolution of the crowd density with the velocity

field
−→
V = v∇Ψp and p equal to, respectively, 2, 3, 5. We do not normalize the velocity

field here. Δt = 0.002 when p equals 2 or 3, Δt = 0.01 for p = 5. In the fourth row, on
the left, the evolution of the total mass of pedestrians: in yellow for p = 2, in blue/green
for p = 3, in brown p = 5 (4.98 for the Picard method). On the right, the stability
function for each case. (Color figure online)

352 M. Gokieli

t=0,5 t=2 t=3,5

Fig. 3. Evolution with a velocity field
−→
V = v

−→
W where

−→
W is normed according to

(22). Δt = 0.01. First row, the scalar function v is piecewise constant (24) and p = 2.
Second row, the scalar function v is piecewise linear (23) and p = 2. Third row, the
scalar function v is piecewise linear (23) and p = 4. Below, on the left, the evolution of
the total mass of pedestrians, with v piecewise constant and p taking the values 2, 5
(steeper functions) and v piecewise linear and p taking the values 2, 4, 5. On the right,
the stability function for each case. Here, the influence of p on the dynamics is smaller
than in the previous case.

5 Conclusions

We have concentrated here on the role of the velocity field
−→
V for the evacuation

dynamics, in particular when the direction of
−→
V is given by the p–Poisson equa-

tion (21). We have shown that bigger p shorten the evacuation time. We have
also seen the Braess paradox appearing in evacuation.

In this context, a more systematic study of the role of 1) the dependence
of the velocity field on ρ 2) the parameter κ (which may also be dependent
on ρ), and finally 3) the geometry, is to be performed. At this end, we need a

A Model for Crowd Evacuation Dynamics 353

mathematical study of a weaker condition for stability: (ρn
h, ρn

h) ≤ C. We also
hope to find a numerical method for solving the p–Poisson equation for larger p.

References

1. Bakker, J.C.: Wall-distance calculation for turbulence modelling. Bachelor Thesis,
Delft University of Technology (2018)

2. Belyaev, A., Fayolle, P.-A.: On variational and PDE-based distance function
approximations. Compu.r Graphics Forum 34(8), 104–118 (2015)

3. Colombo, R.M., Gokieli, M., Rosini, M.D.: Modeling crowd dynamics through
hyperbolic - elliptic equations. In: Non-Linear Partial Differential Equations, Math-
ematical Physics, and Stochastic Analysis – The Helge Holden Anniversary Vol-
ume, pp. 111–128. EMS Series of Congress Reports, May 2018

4. Bhattacharya, T., DiBenedetto, E., Manfredi, J.: Limits as p → ∞ of Δpup = f
and related extremal problems. Rend. Sem. Mat. Univ. Politec. Torino 47, 15–68
(1989)

5. Gokieli, M., Szczepańczyk, A.: A numerical scheme for evacuation dynamics. In:
Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K. (eds.) PPAM 2019.
LNCS, vol. 12044, pp. 277–286. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-43222-5 24

6. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265
(2012)

7. Hughes, R.L.: A continuum theory for the flow of pedestrians. Transp. Res. Part
B Methodol. 36(6), 507–535 (2002)

8. Hughes, R.L.: The flow of human crowds. Annu. Rev. Fluid Mech. 35(1), 169–182
(2003)

9. Jiang, Y., Zhou, S., Tian, F.-B.: Macroscopic pedestrian flow model with degrading
spatial information. J. Comp. Sci. 10, 36–44 (2015)

10. Kachroo, P.: Pedestrian Dynamics: Mathematical Theory and Evacuation Control.
CRC Press (2009)

11. Kamga, J.-B.A., Després, B.: CFL condition and boundary conditions for DGM
approximation of convection-diffusion. SIAM J. Numer. Anal. 44(6), 2245–2269
(2006)

12. M. G. Larson and F. Bengzon. The finite element method: theory, implementation,
and practice. Texts in Computational Science and Engineering 10, 2010

13. Twarogowska, M., Goatin, P., Duvigneau, R.: Macroscopic modeling and simula-
tions of room evacuation. Appl. Math. Model. 38(24), 5781–5795 (2014)

https://doi.org/10.1007/978-3-030-43222-5_24
https://doi.org/10.1007/978-3-030-43222-5_24

5th Minisymposium on HPC
Applications in Physical Sciences

Parallel Identification of Unique
Sequences in Nuclear Structure

Calculations

Daniel Langr1(B) and Tomáš Dytrych2,3

1 Faculty of Information Technology, Czech Technical University in Prague,
Thákurova 9, 16000 Praha, Czech Republic

daniel.langr@fit.cvut.cz
2 Nuclear Physics Institute, Czech Academy of Sciences, Řež 130, 25068 Řež, Czech

Republic
3 Department of Physics and Astronomy, Louisiana State University, Baton Rouge,

LA 70803, USA

Abstract. Reducing the set of sequences into the set of sequences that
are unique can save a lot of memory space in computer programs. We
study this problem on the symmetry-adapted no-core shell model (SA-
NCSM) nuclear structure calculations, where duplicated sequences of dif-
ferent kinds naturally emerge in the data of the basis of the Hilbert space
physically relevant to a given nucleus. For a fast solution of this prob-
lem on multicore architectures, we propose and present a multithreaded
algorithm suitable for high performance computing (HPC) environments.
Furthermore, we provide an experimental evaluation of this algorithm
and show that, in practice, it can significantly reduce the time required
to identify unique sequences in a real-world application.

Keywords: Multithreading · Nuclear structure · Parallel algorithm ·
Symmetry-adapted no-core shell model · Unique sequences

1 Introduction

Let us consider the programming problem of mapping indexes 0 ≤ i < n − 1 to
variable-length sequences Si, where:

Si =
(
a
(i)
0 , a

(i)
1 , . . . , a

(i)
len(Si)−1

)
. (1)

For the sake of consistency with algorithm pseudocode and computer code, we
stick to zero-based indexing even in the mathematical notation throughout this
text. In addition, assume that Si = Sj holds for many combinations of i and
j. Under this assumption, storing all the sequences S0, . . . , Sn−1 separately in a
computer memory would take an unnecessary large space.

An alternative approach is to store only sequences that are unique. Let us
denote these unique sequences by UI :

{UI : 0 ≤ I < N} = {Si : 0 ≤ i < n} and UI �= UJ if I �= J. (2)
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 357–369, 2023.
https://doi.org/10.1007/978-3-031-30445-3_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_30&domain=pdf
http://orcid.org/0000-0001-9760-7068
http://orcid.org/0000-0002-1554-1462
https://doi.org/10.1007/978-3-031-30445-3_30

358 D. Langr and T. Dytrych

Also, let len(UI) denote the length of UI .

Example 1. Let n = 5, S0 = (A,C,D), S1 = (B,D), S2 = (B,D), S3 = (A),
S4 = (A,C,D). Then, the number of unique sequences is N = 3 and a possible
way to enumerate them is U0 = (A,C,D), U1 = (B,D), U2 = (A).

Let X ·Y denote the operation of concatenating elements of two sequences X
and Y . In Example 1, storing all n = 5 sequences in a computer memory would
require an array of length 11:

elems = [S0 · S1 · S2 · S3 · S4] = [A,C,D,B,D,B,D,A,A,C,D]. (3)

The mapping of indexes to sequences can then be implemented by another array:

first = [0, 3, 5, 7, 8, 11]. (4)

Here, first [i] is the index of the first element of Si in elems, first [n] equals the
length of elems, and the length of Si can be derived as len(Si) = first [i + 1] −
first [i]. Consequently,

Si =
(
elems

[
first [i]

]
, elems

[
first [i] + 1

]
, . . . , elems

[
first [i + 1] − 1

])
. (5)

Storing the N = 3 unique sequences would require an array of length 6:

Elems = [U0 · U1 · U2] = [A,C,D,B,D,A]. (6)

Similarly to first , we can construct the corresponding array First as follows:

First = [0, 3, 5, 6]. (7)

This array is now related to unique sequences:

UI =
(
Elems

[
First [I]

]
,Elems

[
First [I] + 1

]
, . . . ,Elems

[
First [I + 1] − 1

])
. (8)

Therefore, we need to map the indexes i of Si to the indexes I of UI , which can
be accomplished with an additional array:

Map = [0, 1, 1, 2, 0]. (9)

Now, Si = UI where I = Map[i].
In this example, it does not seem that storing unique sequences in a computer

memory would be of much benefit. However, our work addresses situations where
the numbers n and N are much larger and where

N � n and M � m, where M =
N−1∑

I=0

len(UI) and m =
n−1∑

i=0

len(Si).

(10)

Parallel Identification of Unique Sequences in Nuclear Structure Calculations 359

Algorithm 1: Single-threaded unique sequences identification

Input: S0, S1, . . . , Sn−1: input sequences
Output: elems, first : arrays encoding unique seq. U0, U1, . . . , UN−1

Output: N : number of unique sequences
Output: M : total number of elements of unique sequences
Data: aux : associative data structure that maps input sequences to indexes

1 I ← 0
2 for i ← 0 to n − 1 do
3 if Si is not contained in aux then
4 insert Si into aux and set aux [Si] ← I
5 append current length of Elems to First
6 append elements of Si to Elems
7 I ← I + 1

8 append aux [Si] to Map

9 N ← length of First
10 M ← length of Elems
11 append length of Elems to First

A single-threaded algorithm for the identification of unique sequences UI

in the input sequences Si can be designed in a relatively straightforward way
with the help of an auxiliary associative data structure that provides mapping
aux : Si → I, where Si = UI . The pseudocode is presented as Algorithm 1.

This algorithm cannot be directly parallelized by splitting the loop itera-
tions between multiple threads. First, this loop is inherently sequential due to
appending data mainly to the Elems and First arrays with initially unknown
lengths. Moreover, implementations of associative data structures provided by
performance-aware programming languages (such as std::map or std::unord-
ered map in C++) are usually not thread-safe. Although thread-safe versions of
associative data structures — such as concurrent hash tables — have been devel-
oped, they mostly come up with some restrictions and drawbacks (for instance,
they commonly require keys to fit the word size of a given computer architecture
to enable their processing with atomic memory operations).

We designed a generic multithreaded parallel algorithm for identification of
unique sequences, which we present in Sect. 4. Furthermore, we used its efficient
implementation in our high-performance computing (HPC) application, which is
described in Sect. 2. Finally, we experimentally evaluated this implementation
on real-world application problems and show the results in Sect. 6.

2 Application

Our need for parallel identification of unique sequences came from symmetry-
adapted no-core shell model (SA-NCSM) nuclear structure calculations [1,8].
With these calculations, we try to model atomic nuclei, namely, to obtain their
nuclear wave functions. The SA-NCSM first forms a basis for the Hilbert space

360 D. Langr and T. Dytrych

relevant to a given nucleus. Since this basis is infinite-dimensional, only its finite
subset of basis states/functions is taken into consideration. This subset is selected
by a single even number — so-called basis cutoff parameter Nmax (it represents
the maximum allowed number of harmonic oscillator quanta above the mini-
mum for a given nucleus). As the next step, a Hamiltonian matrix operator is
constructed such that its rows and columns are spanned by the basis functions.
Finally, the resulting wave functions are obtained in the form of linear com-
binations of basis functions. The coefficients of these linear combinations are
elements of the eigenvectors of the Hamiltonian matrix. The entire SA-NCSM
workflow consists of a series of calculations with increasing Nmax . This process
is stopped once the eigenvalues converge for all the energy states in which one
is interested.

Our implementation of the SA-NCSM is the software framework called LSU3-
shell [2]. It is written in the C++ programming language, and its parallelization
is built upon the hybrid MPI+OpenMP programming model, which makes it
applicable to practically any contemporary large-scale supercomputer [10,11].
The SA-NCSM employs a sophisticated mathematical background provided by
group theory and the theory of representation, and the group of particular inter-
est is the special unitary group SU(3) [3]. Within LSU3shell, a basis is organized
into so-called IpIn blocks. Each IpIn block is related to a particular distribu-
tion of protons and neutrons in the harmonic oscillator shells. A combination of
two IpIn blocks forms a submatrix of a Hamiltonian matrix. Internally, an IpIn
block consists of multiple SU(3) proton-neutron irreducible representations (PN
irreps). Each PN irrep is mapped to a block of matrix rows/columns. Their num-
ber is given by the PN irrep dimension and its multiplicity factor in the IpIn
block. For more details on the construction of the basis and its organization,
see [6,7].

According to the description above, a submatrix related to a particular com-
bination of IpIn blocks consists of matrix blocks where each block is given by a
combination of PN irreps. To process these blocks independently — for instance,
to enable finer granularity of parallel processing — we would need to remem-
ber the first row/column index and the multiplicity factor of each PN irrep
for all IpIn blocks in a basis. In practice, this would require a large amount of
memory space. For illustration, the SA-NCSM basis for the 12C nucleus and
Nmax = 12 has n = 73, 676, 583 IpIn blocks. The total number of their PN
irreps is m = 1, 214, 960, 841. Storing a sequence of PN irrep indexes, a sequence
of first row/column indexes, and a sequence of multiplicity factors for each IpIn
block would require tens of gigabytes of memory. Moreover, these numbers grow
rapidly with the growing number of nucleons and increasing Nmax , making
explicit storage of all these sequences infeasible in practice.

In the current version of LSU3shell, only sequences of PN irrep indexes
are stored in memory for IpIn blocks. Recent research revealed that many of
these sequences are the same for different IpIn blocks. Moreover, we found that
the same holds also for the sequences of multiplicity factors. The sequences of
row/column indexes are distinct for each IpIn block. However, when we consid-

Parallel Identification of Unique Sequences in Nuclear Structure Calculations 361

Table 1. Counts of all and unique sequences and their elements for the 12C nucleus
and Nmax = 12 SA-NCSM basis.

Sequences Total
count (n)

Total number of
elements (m)

Unique
count (N)

Unique number
of elements (M)

PN irrep indexes 73,676,583 1,214,960,841 7,995 188,177

Row/column offsets 73,676,583 1,214,960,841 6,973 222,810

Multiplicity factors 73,676,583 1,214,960,841 3,769 141,025

ered only their offsets with respect to the first row/column index of the IpIn
block, we made the same observation. The particular numbers for the 12C
nucleus and Nmax = 12 basis are shown in Table 1. The numbers for unique
sequences are several orders of magnitude lower than those for all the sequences,
and storage of only unique sequences in memory requires only a few megabytes.
To achieve that, we need to quickly identify these unique sequences, which is the
goal of the presented algorithm.

3 Related Work

The defined problem may be considered as a specific instance of the generic
problem domain referred to as data deduplication. Data deduplication describes
methods that are mostly used to reduce the amount of data stored in a storage
system or transferred over a network by eliminating redundant parts [9,13,14].
Our problem represents in-memory data deduplication for particular types of
data (sequences). Problems of this type are relatively rarely addressed in the
literature. We have found some relevant papers applying deduplication methods
in order to compress the memory footprints of sparse matrices [4,5,12]. How-
ever, they focus on the data reduction results and acceleration of subsequent
matrix operations. In contrast to our work, they do not propose efficient parallel
algorithms for identification of unique/redundant data.

4 Algorithm

One way to find a parallel solution to the unique sequence identification problem
may be derived directly from Algorithm 1. The first option is to use thread-local
hash tables and then reduce them to a single global hash table. An alternative
option is to use a concurrent hash table shared by all threads. In our auxiliary
measurements, better scalability and performance were achieved using another
approach, which we present here as our final proposed solution. It is based on
calculating the hashes for all the input sequences and their subsequent grouping
with respect to the same hashes. This then enables independent processing of a
group of sequences by a single thread, since equal sequences (having the same
elements) belong to a single group. Moreover, if a sufficient hash function is used,
then all the sequences in the same group are likely to be equal.

362 D. Langr and T. Dytrych

Algorithm 2: Multithreaded parallel unique sequences identification; part I

Input: S0, S1, . . . , Sn−1: input sequences
Input: T : number of threads
Output: Elems, First , Map: arrays encoding unique seq. U0, U1, . . . , UN−1

Output: N : number of unique sequences
Output: M : total number of elements of unique sequences
Data: H: array of pairs (h, i) where h is the hash for Si

Data: EO , FO : integer arrays of size T

1 Map ← array of size n
2 H ← array of size n
3 for all 0 ≤ i < n do in parallel H[i] ← (hash(Si), i)
4 sort H in parallel using h as sorting keys
5 begin ← array of size T + 1
6 for all threads do in parallel
7 j ← index of current thread
8 k ← �j ∗ n/T �
9 h ← H[k].h

10 while k > 0 and H[k − 1].h = h do k ← k − 1
11 begin[j] ← k

12 begin[T] ← n

// To be continued as Algorithm 3.

The pseudocode of the proposed algorithm is presented as Algorithm 2, Algo-
rithm 3, and Algorithm 4. First, an auxiliary array H is constructed, where
each element contains information about a sequence index and its hash. Then,
this array is sorted considering hashes as sorting keys, which effectively places
information about sequences with the same hashes next to each other. Each
part of H with the same hash defines a single group of sequences. In the next
step, these groups are divided into T segments, where T denotes the number
of threads. Now, each thread can operate independently on its segment. Since
each unique sequence corresponds to a single group, each thread can process
its local groups to identify its unique sequences. The information about them
is encoded in thread-local arrays Elemsj and Firstj . When thread-local unique
sequences are identified, sequences within a group are compared for equality.
This is necessary since two sequences with different elements may have the same
hash. Information about index mapping is stored directly in the Map array, but
this mapping now applies only to thread-local unique sequences. Finally, thread-
local unique sequences are merged into global unique sequences, that is, into
the resulting arrays Elems and First . This requires the indexes of the elements
and the indexes in Map to be incremented accordingly. The increments are com-
puted as prefix sums (scans) on the lengths of the thread-local arrays Elemsj
and Firstj .

Parallel Identification of Unique Sequences in Nuclear Structure Calculations 363

Algorithm 3: Multithreaded parallel unique sequences identification; part II

13 for all threads do in parallel
14 j ← index of current thread
15 B ← begin[j]
16 E ← begin[j + 1]
17 Elemsj ← empty array
18 Firstj ← [0]
19 if B = E then break
20 for k ← B to E − 1 do
21 i ← H[k].i
22 if k = 0 or H[k].h �= h then
23 g ← length of Firstj
24 h ← H[k].h
25 append elements of Si to Elemsj
26 Map[i] ← length of Firstj − 1
27 append length of Elemsj to Firstj
28 else
29 present ← false
30 for l ← g to last index of Firstj do
31 b ← Firstj [l − 1]
32 e ← Firstj [l]
33 if Si = (Elemsj [b], . . . ,Elemsj [e − 1]) then
34 Map[i] ← l − 1
35 present ← true
36 break

37 if present = false then
38 append elements of Si to Elemsj
39 Map[i] ← length of Firstj − 1
40 append length of Elemsj to Firstj

41 remove last element of Firstj

// To be continued as Algorithm 4.

Almost all the steps of the algorithms are executed in parallel. There are a
few single-threaded operations, which are computationally trivial (prefix sums
are performed on T values only).

5 Implementation Issues

Here, we discuss some problems that are important for efficient implementation
of the proposed multithreaded algorithm. Some of them are applicable to the
implementation of the single-threaded algorithm as well.

First, sequences are represented in computer programs as variable-length
arrays. These generally require dynamic memory allocations. If each input

364 D. Langr and T. Dytrych

sequence were represented by a separate array, the number of corresponding allo-
cations would be O(n). However, if we reuse the same array for input sequences
and apply exponential growth of its capacity, then the number of allocations can
be reduced to O(N +logL), where L is the length of the longest input sequence.

Second, the multithreaded algorithm contains the parallel sorting step. For
our implementation, we finally chose the parallel multi-way mergesort. Initially,
we tried to use a few variants of parallel quicksort. However, it turned out that
all of them were significantly slower than the mentioned mergesort. We attribute
this behavior to the fact that quicksort is generally much more data-sensitive and
does not efficiently deal with cases where there are only relatively few distinct
sorting keys in the sorted data.

Third, in our application, we employed the method for hashing input
sequences provided by the C++ Boost library. This method combines hashes
of individual sequence elements in the following way:

h
(i)
0 = hash

(
a
(i)
0

)
,

h
(i)
k+1 = hashcombine

(
h
(i)
k , a

(i)
k

)
,

hash
(
Si

)
= h

(i)
len(Si)

,

where

hashcombine
(
h
(i)
k , a

(i)
k

)

= h
(i)
k ⊕

(
hash

(
a
(i)
k

)
+ 9E3779B916 +

(
h
(i)
k � 6

)
+

(
h
(i)
k � 2

))
,

where ⊕, �, and � denote the exclusive bit OR (XOR) operation, the left
bit shift operation, and the right bit shift operation, respectively. The hashes
of individual input sequence elements were calculated in our case by the C++
standard library std::hash functors.

Fourth, in the multithreaded algorithm, the input sequences Si are accessed
twice. In the first case (Line 3 of Algorithm 2), they are accessed in regular order
with respect to their increasing indexes i, provided that iterations are mapped
to threads such that each thread takes care of a contiguous chunk of indexes.
In the second case (Line 21 of Algorithm 3), the input sequences are accessed
in an irregular order given by the sorted array H. In our application presented
in Sect. 2, this irregular access turned out to be several times slower than the
regular one (see Sect. 7 for some details). We found that this slowdown was
mainly due to the less efficient utilization of the computer memory subsystem.
Namely, in the regular access case, the automatic prefetching of data into cache
memories was very efficient. This automatic prefetching was mostly useless in
the irregular access case. We were able to partially reduce the negative impact
of irregular basis data access with explicit software prefetching.

Parallel Identification of Unique Sequences in Nuclear Structure Calculations 365

Algorithm 4: Multithreaded parallel unique sequences identification; part III

42 M ← sum of lengths of Elemsj for 0 ≤ j < T
43 N ← sum of lengths of Firstj for 0 ≤ j < T
44 EO ← exclusive prefix sum (scan) on lengths of Elemsj for 0 ≤ j < T
45 FO ← exclusive prefix sum (scan) on lengths of Firstj for 0 ≤ j < T
46 Elems ← array of size M
47 First ← array of size N + 1
48 for all threads do in parallel
49 j ← index of current thread
50 copy elements of Elemsj to Elems from index EO[j]
51 add EO[j] to all elements of Firstj
52 copy elements of Firstj to First from index FO[j]
53 for k ← B to E − 1 do
54 i ← H[k].i
55 Map[i] ← Map[i] + FO[j]

56 First [N] ← M

6 Experiments

To evaluate the proposed algorithm, we applied it to our SA-NCSM nuclear
structure calculations introduced in Sect. 2. Within experiments, we then mea-
sured runtime of the algorithm for identification of unique sequences of all three
mentioned types (PN irrep indexes, PN irrep mulitplicities within IpIn blocks,
and block row/column offsets) on different SA-NCSM problems.

As a testbed, we used nodes of two supercomputers with different CPU archi-
tectures. The first were the computational nodes of the Karolina supercomputer
operated by IT4Innovations in Ostrava, Czech Republic. A single Karolina node
consisted of two AMD EPYC 7H12 CPUs each having 64 computational cores.
A single CPUs additionally consisted of 4 NUMA nodes.

The second were the computational nodes of the Frontera supercomputer
operated by the Texas Advanced Computing Center (TACC), University of
Texas, Austin, USA. A single Frontera node consisted of two Intel Xeon Plat-
inum 8280 CPUs each having 28 computational cores. A single CPU was a single
NUMA node as well.

The strong-scaling results obtained in the experiments conducted on these
supercomputers are shown in Table 2 and Table 3. On Karolina, we used two
different setups for multithreaded algorithm runs. In the first one, only a single
NUMA node was used, and the number of threads was set to the number of its
cores (16). In the second one, a single CPU was used, and the number of threads
was set accordingly to 64. On Frontera, each NUMA node corresponded to a
single CPU (socket). Therefore, we set the number of threads to the number of
single CPU cores (28). The rationale behind these setups is that it is the typical
way in which we map MPI processes to supercomputer nodes and split MPI
processes to threads in our productive SA-NCSM calculations.

366 D. Langr and T. Dytrych

Table 2. Unique sequences identification time in seconds with single-threaded (ST)
and multithreaded (MT) algorithm by using T threads on the Karolina supercomputer
node. The experiments for T = 16 and T = 64 threads were mapped to a single NUMA
node and to a single CPU socket, respectively.

Nucleus Nmax ST MT (T = 16) MT (T = 64)

10B 18 658.6 167.7 92.2

12C 14 221.6 51.5 28.9

12B 14 165.9 45.3 20.9

16O 12 129.4 34.7 17.8

18F 10 105.0 26.1 16.1

22Na 8 269.0 66.0 32.2

Table 3. Unique sequences identification time in seconds with single-threaded (ST)
and multithreaded (MT) algorithm by using T threads on the Frontera supercomputer
node. The experiments for T = 28 threads were mapped to a single NUMA node/CPU
socket.

Nucleus Nmax ST MT (T = 28)

10B 18 804.1 149.5

12C 14 250.2 39.1

12B 14 197.9 28.8

16O 12 154.8 24.5

18F 10 124.8 17.1

22Na 8 316.6 41.9

To evaluate the efficiency of the proposed multithreaded algorithm, we also
performed experiments with the implementation of the presented single-threaded
algorithm (Algorithm 1). Figure 1 shows the relative measured execution time
of the multithreaded algorithm normalized to the execution time of the single-
threaded algorithm on both testbed systems.

7 Discussion on Results

The results presented in Table 2 and Table 3 indicate two outcomes. First,
the proposed parallel multithreaded algorithm significantly reduced the unique
sequence identification time in contrast to its single-threaded variant in our
SA-NCSM nuclear structure calculations, which was our main goal. Although
savings of tens or hundreds of seconds might not seem to be large, we need
to realize that in production SA-NCSM calculations, the number of involved
supercomputer resources can be enormous.

The second outcome is that the speedup of the multithreaded algorithm
compared to its single-threaded variant is far from linear (ideal). We performed

Parallel Identification of Unique Sequences in Nuclear Structure Calculations 367

some additional profiling measurements and found that the problem — specific to
our application — was with the already mentioned second processing of the input
sequences Si in irregular order with respect to growing i. The measurements
revealed that this irregular-order processing of the input sequences was 3 to 4
times slower than their in-order processing in the first algorithm phase. The
cause of this effect stemmed mostly from the ineffective prefetching of data into
caches and cache-line size-based memory access, where some data transferred
from memory to CPU cache were then not used.

Fig. 1. Unique sequences relative identification time with the multithreaded (MT)
algorithm using T threads on the Karolina and Frontera supercomputer nodes. The
time is normalized by the execution time of the single-threaded algorithm (ST) on a
given system.

8 Conclusions

The contribution of the presented work is the multithreaded algorithm for the
problem of identification of unique sequences. This algorithm can be imple-
mented in performance-aware programming languages such as C or C++ without
the need for any special concurrent data structure (such as a concurrent hash
table). Also, it does not target any particular threading mechanism; therefore, it
can be implemented with different ones, such as OpenMP, C++11 threading, or
the POSIX thread library. The presented experimental evaluation showed that
this algorithm significantly reduced the unique seqeuneces identification step in
our SA-NCSM nuclear structure calculations. However, the observed speed-ups
were not linear because of irregular access to SA-NCSM basis data within our
application, which caused less effective utilization of the memory and cache sub-
system.

368 D. Langr and T. Dytrych

Acknowledgements. This work was supported by the Czech Science Foundation
under grant number 22-14497S and by the Czech Ministry of Education, Youth and
Sports under grant number CZ.02.1.01/0.0/0.0/16 019/0000765 and through the e-
INFRA CZ (ID:90140).

The authors acknowledge the Texas Advanced Computing Center (TACC) at The
University of Texas at Austin for providing HPC resources that have contributed to the
research results reported within this paper under the allocation number PHY21002.

References

1. Barrett, B.R., Navrátil, P., Vary, J.P.: Ab initio no core shell model. Prog. Part.
Nucl. Phys. 69, 131–181 (2013). https://doi.org/10.1016/j.ppnp.2012.10.003

2. Dytrych, T., et al.: Efficacy of the SU(3) scheme for ab initio large-scale calculations
beyond the lightest nuclei. Comput. Phys. Commun. 207, 202–210 (2016). https://
doi.org/10.1016/j.cpc.2016.06.006

3. Heine, V.: Group Theory in Quantum Mechanics. Pergamon Press (1960). https://
doi.org/10.1016/C2013-0-01646-5

4. Karakasis, V., Gkountouvas, T., Kourtis, K., Goumas, G., Koziris, N.: An extended
compression format for the optimization of sparse matrix-vector multiplication.
IEEE Trans. Parallel Distrib. Syst.24(10), 1930–1940 (2013). https://doi.org/10.
1109/TPDS.2012.290

5. Kourtis, K., Goumas, G., Koziris, N.: Optimizing sparse matrix-vector multipli-
cation using index and value compression. In: Proceedings of the 5th Conference
on Computing Frontiers, pp. 87–96. CF 2008, ACM, New York, NY, USA (2008).
https://doi.org/10.1145/1366230.1366244

6. Langr, D., Dytrych, T., Oberhuber, T., Knapp, F.: Efficient parallel generation
of many-nucleon basis for large-scale Ab Initio nuclear structure calculations. In:
Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds.) PPAM 2017.
LNCS, vol. 10778, pp. 341–350. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78054-2 32

7. Langr, D., Dytrych, T., Launey, K.D., Draayer, J.P.: Accelerating many-nucleon
basis generation for high performance computing enabled ab initio nuclear struc-
ture studies. The International Journal of High Performance Computing Applica-
tions 33(3), 522–533 (2019). https://doi.org/10.1177/1094342019838314

8. Launey, K.D., Dytrych, T., Draayer, J.P.: Symmetry-guided large-scale shell-model
theory. Prog. Part. Nucl. Phys. 89, 101–136 (2016). https://doi.org/10.1016/j.
ppnp.2016.02.001

9. Meister, D.: Advanced data deduplication techniques and their application. Ph.D.
thesis, Johannes Gutenberg-Univrsität (2013)

10. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard
Version 4.0 (June 2021). https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.
pdf

11. OpenMP Architecture Review Board: OpenMP Application Programming Inter-
face Version 5.2 (2021). https://www.openmp.org/specifications/

12. Willcock, J., Lumsdaine, A.: Accelerating sparse matrix computations via data
compression. In: Proceedings of the 20th Annual International Conference on
Supercomputing. pp. 307–316. ICS 2006, ACM, New York, NY, USA (2006).
https://doi.org/10.1145/1183401.1183444

https://doi.org/10.1016/j.ppnp.2012.10.003
https://doi.org/10.1016/j.cpc.2016.06.006
https://doi.org/10.1016/j.cpc.2016.06.006
https://doi.org/10.1016/C2013-0-01646-5
https://doi.org/10.1016/C2013-0-01646-5
https://doi.org/10.1109/TPDS.2012.290
https://doi.org/10.1109/TPDS.2012.290
https://doi.org/10.1145/1366230.1366244
https://doi.org/10.1007/978-3-319-78054-2_32
https://doi.org/10.1007/978-3-319-78054-2_32
https://doi.org/10.1177/1094342019838314
https://doi.org/10.1016/j.ppnp.2016.02.001
https://doi.org/10.1016/j.ppnp.2016.02.001
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.openmp.org/specifications/
https://doi.org/10.1145/1183401.1183444

Parallel Identification of Unique Sequences in Nuclear Structure Calculations 369

13. Xia, W., et al.: A comprehensive study of the past, present, and future of data dedu-
plication. Proc. IEEE 104(9), 1681–1710 (2016). https://doi.org/10.1109/JPROC.
2016.2571298

14. Zhang, X., Deng, M.: An overview on data deduplication techniques. In: Balas,
V.E., Jain, L.C., Zhao, X. (eds.) Information Technology and Intelligent Trans-
portation Systems. AISC, vol. 455, pp. 359–369. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-38771-0 35

https://doi.org/10.1109/JPROC.2016.2571298
https://doi.org/10.1109/JPROC.2016.2571298
https://doi.org/10.1007/978-3-319-38771-0_35
https://doi.org/10.1007/978-3-319-38771-0_35

Experimental and Computer Study
of Molecular Dynamics of a New

Pyridazine Derivative

Sebastian Wołoszczuk1(B), Aneta Woźniak-Braszak1, Andrzej Olejniczak2,
and Michał Banaszak1,3

1 Faculty of Physics, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 2,
61-614 Poznań, Poland

sebastian.woloszczuk@amu.edu.pl
2 Faculty of Chemistry, Nicolaus Copernicus University in Toruń, ul. Gagarina 7,

87-100 Toruń, Poland
3 NanoBioMedical Centre, Adam Mickiewicz University, ul. Wszechnicy Piastowskiej

3, 61-614 Poznań, Poland

Abstract. The paper presents experimental and computer simulation
studies of molecular dynamics of new pharmacological substances that
are pyridazine derivatives. To obtain the information about molecular
dynamics and cross-relaxation, a new pyridazine derivative was stud-
ied by the solid-state NMR spectroscopy homemade pulse spectrometer
operating at the frequency of 30.2 MHz for protons and 28.411 MHz
for fluorine nuclei, with complete absence of their interference. The
Fourier Transform Infrared Spectroscopy (FTIR) data for triazolopyri-
dazine derivates were analyzed and compared with the normal vibration
frequency as calculated by quantum chemical methods. The standard
Molecular Dynamics (MD) simulations were performed using the GRO-
MACS package for the new pyridazine derivative. The simulation data
were confronted with the experimental results.

Keywords: triazolopyridazine derivates · molecular dynamics ·
FTIR · computer simulations

1 Introduction

For many years, triazolopyridazine derivatives have been of great interest
because of their wide use in medicine thanks to showing antimicrobial and
antifungal [1,2], as well as anticancer [3,4], anxiolytic [5], hypoglycemic and
hypolipidemic [6], antihistamine [7–9], analgesic and anti-inflammatory [10],
antidiabetic [11] and antidepressant [12] properties. For example, fluorophenyl
ring triazolopyridine is a compound with documented anxiolytic (anticoagu-
lant) activity without undesirable sedative effect [13], difluoromethoxyphenyl
substituted pyridazine is a drug known as Zardavirin showing the ability to
smooth muscle relaxation with a simultaneous anti-inflammatory action [7].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 370–381, 2023.
https://doi.org/10.1007/978-3-031-30445-3_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_31&domain=pdf
https://doi.org/10.1007/978-3-031-30445-3_31

Experimental and Computer Study of Molecular Dynamics 371

The triazolopyridazines were obtained by multistep synthesis at the Depart-
ment of Organic Chemistry of Poznan University of Medical Sciences [14–16].
One of the obtained triazoplopyridazine derivatives, 6-chloro-3-trifluoromethyl-
1,2,4-triazolo [4,3-b] pyridazine, with the best antifungal activity was reacted
with alcohol involving nucleophilic substitution to obtain C6 substituted ether
derivative 6-methoxy-3-trifluoromethyl-1,2,4-triazolo[4,3-b]pyridazine. Molecu-
lar structure of C7H5ON4F3 (CF3OCH3 for short) with numbering of atoms
is shown in Fig. 1. The aim of the study was to determine the structure and
molecular dynamics of a new pharmacological substance using experimental and
simulation methods. Solid-state NMR experiments, FTIR spectroscopy quantum
chemistry calculations and standard molecular dynamics simulations were used
to investigate of the structure and molecular dynamics of the new pyridazine
derivative.

Fig. 1. Molecular structure of CF3OCH3 with numbering of atoms.

2 Results and Discussion

2.1 Cross-Relaxation NMR Experiment

The NMR cross-relaxation experiments were carried out in a wide range of tem-
peratures [17–23]. The 1 H−19F cross relaxation was studied using the NMR
sequence consisting of the first RF pulse of the frequency of 28.411MHz and
the amplitude equal to 1.2Gs, which saturated the fluorine spins. The state of
fluorine saturation was maintained for a time much longer than the proton spin-
lattice relaxation time. After the solid-echo pulse sequence at 30.2MHz, the echo
amplitude, Msat, was observed. Then, the echo amplitude, M , was determined
without the fluorine saturation. On the basis of the results obtained from the
cross-relaxation experiments, it was found that the same values of the signal

372 S. Wołoszczuk et al.

amplitude were obtained with saturation of fluorinated spins as without this
saturation. It was assumed that the cross interaction between fluorine nuclei
and hydrogen spins in CF3OCH3 compound was weak. In order to investigate
the molecular dynamics, measurements of spin-lattice T1 relaxation times as a
function of temperature were performed. The spin-lattice relaxation times were
estimated using the standard saturation recovery sequence within the range from
223K to 323K. The uncertainties were approximately ± 10 % for all measure-
ments.

The recovery of magnetization Mz(t) was biexponential in the whole tem-
perature range. For each temperature, the decay of magnetization was decom-
posed into two exponential terms characterized by different spin-lattice relax-
ation times T1(1H). The temperature dependence of the relaxation times T1(1H)
for CF3OCH3 is shown in Fig. 2, together with the corresponding theoretical
curves.

Fig. 2. Temperature dependence of the spin-lattice relaxation times T11 for 6-methoxy-
3-trifluoromethyl-1,2,4-triazolo[4,3-b]pyridazine.

Figure 2 shows two courses of relaxation times as a function of temperature. A
shallow minimum visible in the course of long relaxation times is equal to 6 s and
appears in the vicinity of 163K. The temperature dependence of the relaxation
times, T1, was analyzed in terms of dipole-dipole Bloembergen-Purcell-Pound
(BPP) theory [24]. It was assumed that the T1 values were determined by dipolar
interactions modulated by different molecular processes and were described by
Eq. 1, (1

T1

)
=

2
3
γ2ΔM2

(τc
1 + ω2

0τ
2
c

+
4τc

1 + 4ω2
0τ

2
c

)
, (1)

where the correlation time, τc, is given by Arrhenius formula τc =
τ0 exp(Ea/RT). It was suggested that the motion characterized by the relax-
ation time τ0 = 1.0e − 14 s and the activation energy Ea = 23KJmol1 can be the
hindered rotation of the triazolopyridazyne ring. On the other hand, the short-
component of the relaxation times tends to the minimum that was assigned to

Experimental and Computer Study of Molecular Dynamics 373

the hindered rotation of the methyl CH3 group around its threefold axis C3. The
activation parameters of this low temperature motion were: the relaxation time
τ0 = 1.2e − 12 s and the activation energy Ea = 8.4KJmol1, which is consistent
with the earlier NMR data [25–27].

2.2 FTIR Results

FTIR measurements were carried out on a Nicolet 6700 (Thermo Scientific) spec-
trometer equipped with a single-reflection Smart iTR attenuated total reflection
(ATR) accessory with a ZnSe crystal. For each spectrum, 64 scans in the mid-
infrared region (500−4000 cm−1), with a resolution of 1 cm−1, were accumulated.

Spectral distortion due to the nature of ATR experiment was eliminated
by applying advanced ATR correction as implemented in the OMNIC 9.2 soft-
ware. The molecular geometry optimization and computation of harmonic vibra-
tional frequencies were performed in Gaussian-09 software using hybrid B3LYP
functional and dispersion-corrected ω B97X-D functional, combined with Pople
6-311++G (d, p) split-valence basis set. The calculations were carried out for
a single molecule in the gas phase. The assignment of the normal modes was
based on the total energy distribution (TED) calculated using VEDA 4 program.
Table 1 collects the calculated vibrational frequencies and proposed assignments
for the lowest-energy CF3OCH3 conformer (Fig. 1).
Fig. 3 presents the experimental IR spectrum of CF3OCH3 conformer (whose
structure is shown in Fig. 1) along with its spectrum calculated by B3LYP and
ω B97X-D functionals.
Comparison of the experimental and calculated IR spectra (Fig. 3) shows a good
agreement for the C−H bond stretching vibration in the CH3 group, which
in the experimental spectrum appears at 3030 cm−1, while within the B3LYP
approximation, it has a calculated frequency of 3049.9 cm−1. In the range from
1624 cm−1 to 1517 cm−1, the observed bands are attributed to the stretching
vibrations of C−−C and C−−N bonds. The bands appearing in the range from
1493 cm−1 to 851 cm−1 correspond to the stretching and deformation vibrations
of C−O, C−F, N−C, and H−C bonds. Below 829 cm−1, the peaks appearing in
the IR spectrum correspond to the torsion and out-of-plane stretching vibrations
of H−C−−C−−O, C−−C−−C−N, C−−N−N−−C, N−−C−−N−N, F−C−F, and C−−CON
bonds. The calculations performed using the ω B97X-D functional, provided
a better agreement between the calculated and experimental IR frequencies,
especially within the C(4)-C(3)-N(8) moiety (1386 cm−1 band, ν C−C, ν C−N
and δ C−C−N modes) and bending modes of CH3 group (1490 − 1505 cm−1).
In both cases (B3LYP and ω B97X-D), however, the largest disagreement with
the experimental data, is found for the vibrations of the fluorine atoms. For
example, in the calculated spectra, the intensive stretching C−F mode appears
at 1158 cm−1, whereas in the experimental spectrum this band is much broader
and upshifted to 1185 cm−1. As known, fluorine atoms, especially those attached
to electron withdrawing groups, can form a special type bond with halogen (the
so-called fluorine bond) with acceptors as N, O, S, and pi-electrons [28]. Thus,
the obtained results point out that in the solid state, the fluorine atoms are

374 S. Wołoszczuk et al.

Table 1. Calculated vibrational frequencies and proposed assignments for the low-
energy conformer of CF3OCH3. For atom numbering see Fig. 1.

Wave- number (cm−1) (M1 cm−1) Assignment (TED%)a

27.00 62.3 τF15C12C7N10(77) + γC12N10N9C7(13)
73.67 0.7 F15C12C7N10(11) + τC17O16C2C1(18) + γC12N10N9C7(28) + γC4N10N8C3(10)
100.34 45.1 δC12C7N9(56) + γF13C7F15C12(10)
114.95 8.1 τC2N11N10C7(18)+ τC17O16C2C1(29) + γC12N10N9C7(27)
154.27 140.0 τC2N11N10C7(27)+ τC17O16C2C1(36)
196.22 81.5 τH18C17O16C2(36) + τH19C17O16C2(13) + τH20C17O16C2(13) + τC2N11N10C7(20)
208.33 75.6 δO16C2N11(31)+ δC17O16C2(31) + γF13C7F15C12(10)
213.47 117.8 τN10C7N9N8(11)+ τC17O16C2C1(11) + γF14C7F13C12(11) + γC4N10N8C3(25)
305.40 34.9 υC12C7(10) + δF13C12F15(11) + γF13C7F15C12(34)
350.61 0.8 τC1C4C3N10(14) + τN10C7N9N8(11) + γC4N10N8C3(18)
363.47 60.3 υC12C7(31) + δF15C12F14(25) + δC17O16C2(11)

Wave- number (cm−1) (M1 cm−1) Assignment (TED%)a

411.42 5.0 γN11C7C3N10(68)
420.98 10.7 δC2N11N10(26)+ δC17O16C2(12)
451.11 8.1 δF13C12F15(17) + δF14C12F13(17) + τC1C4C3N10(24) + γO16C1N11C2(11)
505.38 63.4 δC2N11N10(10)+ δF13C12F15(11) + δF14C12F13(12) + δF15C12F14(30)
560.33 1.9 δF13C12F15(11) + δF14C12F13(12) + τN10C7N9N8(14) + γF14C7F13C12(27)
565.44 0.8 δC4C3N8(24) + δO16C2N11(18)+ δC17O16C2(21)
606.12 30.8 υC4C3(11) + δC4C3N8(11) + γF13C7F15C12(14)
621.62 10.9 δC2N11N10(12)+ δC1C4C3(14) + δN11N10C3(20)
659.39 0.7 τC3N8N9C7(30) + γO16C1N11C2(39)
712.32 2.8 τC3N8N9C7(22) + τN10C7N9N8(20) + γF14C7F13C12(18) + γC12N10N9C7(11) + γO16C1N11C2(10)
738.68 84.5 υF13C12(11) + υF14C12(15) + υF15C12(15) + δF13C12F15(11) + δF14C12F13(10)
748.10 0.1 τC1C4C3N10(23) + τC3N8N9C7(13) + τN10C7N9N8(22) + γO16C1N11C2(14) + γC4N10N8C3(10)
775.49 38.0 υC4C3(19) + δC3N8N9(22)+ δN8N9C7(14)
837.06 224.7 τH5C1C2O16(48) + τH6C4C3N10(21) + γC4N10N8C3(12)
864.21 91.1 υO16C2(17)+ δC1C4C3(10) + δN10C7N9(14) + δO16C2N11(16)
978.98 119.7 υN10C7(15) + υO16C17(13) + δC3N8N9(17) + δC1C4C3(18) + δN8N9C7(19)
996.45 0.4 τH5C1C2O16(36) + τH6C4C3N10(53)
1021.15 180.0 υO16C17(48) + δN8N9C7(10)
1031.06 344.6 υO16C17(12) + δC3N8N9(12)+ δN11N10C3(15)
1103.39 472.7 υN8N9(50)
1109.97 1062.3 υF14C12(40) + υF15C12(40) + γF14C7F13C12(11)
1140.70 11.2 υC1C4(12) + δH5C1C2(40) + δH6C4C1(27)
1160.55 515.3 υN8N9(13)+ υF13C12(23) + υF14C12(17) + υF15C12(17)
1170.91 3.3 δH18C17H20(16)+ δH19C17H18(16) + τH18C17O16C2(32) + τH19C17O16C2(18) + τH20C17O16C2(18)
1203.20 188.1 δH20C17H19(15)+ τH19C17O16C2(22) + τH20C17O16C2(22)
1224.78 534.0 υF13C12(20) + τH19C17O16C2(11) + τH20C17O16C2(11)
1312.68 445.7 υN9C7(25) + υN11N10(25)+ δN10C7N9(11)

Wave- number (cm−1) (M1 cm−1) Assignment (TED%)a

1320.67 536.6 υN8C3(13) + υO16C2(19) + δH5C1C2(18) + δH6C4C1(11)
1341.88 48.1 υN8C3(21) + δH6C4C1(22) + δC4C3N8(16)
1403.20 379.4 υO16C2(14) + δH6C4C1(10)
1445.49 1.5 υN9C7(14) + υN10C7(23) + υN11N10(18)
1472.21 39.3 υN11C2(18) + δH18C17H20(25)+ δH19C17H18(25)
1483.04 33.2 δH18C17H20(38)+ δH19C17H18(38) + τH18C17O16C2(16)
1496.35 38.0 δH20C17H19(70)+ τH19C17O16C2(10) + τH20C17O16C2(10)
1515.61 349.1 υN11C2(10) + υN9C7(16) + υC12C7(22) + δN10C7N9(10)
1537.74 188.8 υC1C4(11) + υN11C2(33)
1581.35 220.6 υC1C4(19) + υN8C3(16) + δH5C1C2(10)
1661.20 215.7 υC1C4(35) + υN11C2(23) + υC4C3(13)
3049.85 31.8 υC17H18(17) + υC17H19(41)+ υC17H20(41)
3123.96 18.3 υC17H19(50) + υC17H20(50)
3163.57 17.7 υC17H18(82)
3210.80 0.9 υC1H5(47) + υC4H6(52)
3223.80 0.2 υC1H5(52) + υC4H6(47)
υ - stretching, δ - in-plane bending, τ - torsion, γ - out-of-plane modes, a - total energy distribution; contributions < 10% are not listed

Experimental and Computer Study of Molecular Dynamics 375

Fig. 3. Comparison of the experimental IR spectrum of the low-energy conformer with
the spectrum calculated by using B3LYP and ω B97X-D functionals.

involved in intermolecular noncovalent interactions, possibly with the methoxy
oxygen, basic nitrogen atoms, or the pi-electron system. Resolving the nature
of this interaction requires the refinement of the crystalline structure, and will
be the subject of our further study. To complement above quantum chemical
calculations results, standard Molecular Dynamics simulations were also carried
out for a single molecule.

2.3 Molecular Dynamics Simulation

Experimental study requires considerable amount of work in preparing the sam-
ples and then carrying out the relevant measurements. Quantum chemistry cal-
culations presented above give the spectra of harmonic vibrational frequencies.
Molecular Dynamics simulations, on the other hand, provide a relatively cheap
and fairly quick rough estimation of the parameters difficult to track or inacces-
sible in the experimental methods as well as by the quantum chemistry calcula-
tions. Simulations were performed using the GROMACS [29] package with the
OPLS–AA force field [30,31]. A single pyridazine molecule was placed in a cubic
box of 3 nm in size, and standard periodic boundary conditions were applied.
After the initial equilibration we performed 1× 106 timesteps with the timestep
Δt = 10 fs, that is 10 ns of simulation total time, which is long enough to capture
the essential characteristic times for the methyl group. The canonical ensemble

376 S. Wołoszczuk et al.

(NVT) was applied at a constant temperature of 303K at a v–rescaled thermo-
stat with a time constant for coupling (= 0.1 ps). All bonds were constraine0d
to the forcefield equilibrium lengths with the use of LINCS algorithm [32].

We followed the trajectory of the methyl group as shown in Fig. 4, presenting
the time dependence of the dihedral angles for a few time scales, as indicated in
the caption: (a) 10 ns, (b) 200 ps, and (c) 25 ps respectively. In Fig. 4(a) we can
see energy minima for the dihedral angles separated by 1200◦. The red line is
the eye guide to show the equilibrium position at a given energy minimum. As
shown, the dihedral angle is, at any given time, limited to one of the minima, and
every so often there is a jump of proton from the methyl group to an adjacent
minimum (or more than one minimum). The jumps between the minima are
thermally driven and therefore hindered by dihedral energy barriers. Figure 4(b),
which is an enlargement of a fragment of Fig. 4(a), in the region from 4200 ps
to 4400 ps, reveals that the 4800◦ rotation, which appeared to be continuous
in Fig. 4(a), actually consists of three jumps. Between these jumps the methyl
group oscillates (vibrational motion around the equilibrium angle). Note that
the first two jumps are separated by an angle of 1200◦, while in the third case
a jump by 2400◦ takes place. The jumps are shown in more detail in Fig. 4(c),
corresponding to the time window of 25 ps, from t = 4295 ps to t = 4320 ps. This
figure clearly displays the oscillations of the methyl group inside the individual
energy minima. We calculated the correlation time for the methyl group (average
lifetime in a given potential energy minimum) as 7e–11 s.

In Fig. 5 the time window is limited to 4 ps (between t = 2208 ps and
t = 2212 ps) which allows observations of single oscillations. The oscillatory
motion of the methyl group inside a given energy minimum has its characteristic
time, which in this case was estimated to be 1.2e-13 s. The data presented are
in agreement with the experimental results as well as the results of quantum
mechanical calculations.

When it comes to the computational complexity of this type of calculations
and simulations, one should look at it from two sides.

First, even though we are dealing with a single molecule with a small number
of atoms, depending on what kind of movements we want to study, the simula-
tion time as well as the frequency of trajectory snapshots should be appropriately
selected. If we wanted to perform a single simulation covering all possible molec-
ular motions with an accuracy appropriate to the fastest motions, the amount
of recorded data would turn out to be unimaginably large, the vast majority of
which would be completely unnecessary. Generally speaking, for a given chemical
group and its movement, which has its characteristic time, the sampling inter-
val as well as the time of the simulation itself should be appropriately selected
so as to capture all the necessary data for subsequent numerical analysis. This
optimizes the simulation time as well as the amount of recorded data, which, as
already mentioned, even for such low-molecular compounds can be overwhelm-
ing.

In a case such as this, i.e. a single molecule in vacuo, parallelization is not
needed. A single trajectory is usually tens of hours of CPU time. However,

Experimental and Computer Study of Molecular Dynamics 377

Fig. 4. Dihedral angle of the methyl group as a function of time for a few time windows:
(a) 10 ns; (b) 200 ps; and (c) 25 ps. Red line is an eye guide to show the equilibrium
position at a given energy minimum. (Color figure online)

378 S. Wołoszczuk et al.

2208 2210 2212

40

50

60

70

80

an
gl

e

time [ps]

Fig. 5. Vibrational motion of the methyl group from the time dependence of a dihedral
angle taken between 2208 ps and 2212 ps of the simulation.

given that simulations need to be run with slightly different parameters for each
chemical group of interest and having the appropriate number of computational
cores, it is possible to run quasi-parallel simulations, that is, all interesting sets
should be calculated simultaneously.

It turns out, however, that very soon with increasing number of
atoms/molecules, and therefore a rapid increase in the number of interactions
in the system, true parallelism is a necessity. Thus, for example, in a study of a
problem of adsorption and release of doxorubicin molecules at/from multi-walled
carbon nanotubes [33,34] in a system containing more than 4 × 106 atoms, the
parallel simulation (MPI) on the CPU only in a sweet-spot of the number of cores
took about 10weeks (60 ns of simulation), while the addition of the GPU (RTX
2060 Turbo) reduced this time five times to two weeks (here, too, a sweet-spot
of the number of processor cores was used).

These examples show how large time spans can be dealt with, depending
on the computational complexity of a given problem. In the case of very com-
plex systems, the standard, if only the problem can be parallelized, is the use of
paralleling libraries (e.g. MPI) and multi-core nodes. The use of GPU cards in
this case often allows to reduce simulation time several times in relation to the
pure CPU calculations. It should be emphasized that even in simulations of sim-
ple low-molecular compounds, where no algorithmic parallelization is possible,
having access to multiple cores, it is possible to achieve a several-fold reduction
in the total calculation time if we carry out quasi-parallel simulations probing
different parameter sets simultaneously.

Using appropriately selected parallelization techniques, one can expect in
most cases a significant shortening of the overall simulation time. Calculations
and simulations were performed on a computing cluster located in the Functional

Experimental and Computer Study of Molecular Dynamics 379

Materials Physics Division at the Faculty of Physics of the Adam Mickiewicz
University on an Intel i9–10980XE processor.

3 Conclusions

The structure and molecular dynamics of a new potential drug ingredient was
studied by FTIR spectroscopy, NMR technique, quantum chemistry calculations,
and Molecular Dynamics simulations. Infrared spectroscopy provides informa-
tion on the oscillations of individual functional groups within the structure of
triazolopyridazine derivative. These measurements facilitate the confirmation of
successful synthesis of the studied substance and investigate the conformation
dynamics and vibrational characteristics. Quantum chemistry calculations spec-
tra of harmonic vibrational frequencies are in very good agreement with FTIR
experiment spectra.

The MD simulations performed and presented in this study gave a more detail
insight into dynamical behavior of the methyl group of pyridazine derivative. The
use of a number of experimental methods has provided wide information on the
structure and molecular dynamics of the new pyridazine derivative.

Acknowledgement. We would like to thank Prof. Grzegorz Kamieniarz (Faculty of
Physics, AMU, Poznań, POLAND) for all his valuable comments and guidance.

References

1. Glodek, M., et al.: Process robustness–a PQRI white paper. Pharm. Eng. 26(6),
1–11 (2006)

2. Fu, J., et al.: An experimental study of the variability in the properties and quality
of wet granules. Powder Technol. 140(3), 209–216 (2004)

3. Goldszal, A., Bousquet, J.: Wet agglomeration of powders: From physics toward
process optimization. Powder Technol. 117(3), 221–231 (2001)

4. Moes, J.J., et al.: Application of process analytical technology in tablet process
development using NIR spectroscopy: Blend uniformity, content uniformity and
coating thickness measurements. Int. J. Pharm. 357, 108–118 (2008)

5. Yassin, F.A.: Synthesis and antimicrobial activity of some new triazino-, triazolo-
, and pyrazolopyridazine derivatives. Chem. Het. Cyclic Comp. 45(8), 997–1003
(2009)

6. Tehrani K.H., Mashayekhi V., Azerang P., Minami S., Sardari S., Kobasarfard F.:
Synthesis and antimycobacterial activity of some triazole derivatives - new route to
functionalized triazolopyridazines. Iran J. Pharm. Res. 14(Suppl.), 59–68 (2015)

7. Boukharsa, Y., Zaoui, Y., Taoufik, J., Ansar, M.: Pyridazin-3(2H)-ones: synthesis,
reactivity, applications in pharmacology and agriculture. J. Chem. Pharm. Res.
6(12), 297–310 (2014)

8. Bradbury, R.H., et al.: Discovery of AZD3514, a small-molecule androgen receptor
downregulator for treatment of advanced prostate cancer. Bioorg. Med. Chem.
Letters 23(7), 1945–1948 (2013)

380 S. Wołoszczuk et al.

9. Ghidu V.P., Ilies M.A., Cullen T., Pollet R., Abou-Gharbia M.: A new and efficient
synthetic route for the anxiolytic agent CL285032. Bioorg. Med. Chem. Lett. 21(1),
259–261 (2011). Enos A., Eppler C. M.; Powell D.W.: Method for the treatment
of noise phobia in companion animals, PCT Int. Appl. WO/2006/127574 (2006)

10. Boezio, A.A., et al.: Discovery and optimization of potent and selective triazolopy-
ridazine series of c-Met inhibitors. Bioorg. Med. Chem. Letters 19(22), 6307–6312
(2009)

11. Deeb A., El-Eraky W., El-Awdan S., Mahgoub S.: Pyridazine and its related com-
pounds. Part 34. Hypoglycemic and hypolipidemic activity of some novel condensed
pyridazine sulfonamides. Med Chem. Res. 23, 34–41 (2014)

12. Brunnee, T., Engelstatter, R., Steinijans, V.W., Kundel, G.: Bronchodilatory effect
of inhaled zardaverine, a phosphodiesterase III and IV inhibitor, in patients with
asthma. Eur. Respir. J. 5, 982–985 (1992)

13. Bansal, R., Thota, S.: Pyridazin-3(2H)-ones: the versatile pharmacophore of medic-
inal significance. Med. Chem. Res. 220, 2539–2552 (2013)

14. Katrusiak, A., Melzer, E., Bałoniak, S., Bobkiewicz, T., Polcyn, P.: Triazolo- and
tetrazolopyridazine derivatives and their hypotension and heart rate activity. Acta
Pol. Pharm. Drug Res. 58(3), 217–223 (2001)

15. Katrusiak, A., Ratajczak-Sitarz, M., Skierska, U., Zinczenko, W.: Nucleophilic sub-
stitution and lipophilicity - structure relations in methylazolopyridazines. Collect.
Czech. Chem. Commun. 70(9), 1372–1386 (2005)

16. Długaszewska J., Katrusiak A.: 9th Polish-German symposium on pharmaceutical
sciences, Kraków 26–27.05.2017, Towards novel concepts in pharmaceutical sci-
ences, p. 226. PQRI, Process robustness - a PQRI white paper. Pharm. Eng. 26,
1–11 (2006)

17. Jurga, K., Fojud, Z., Woźniak-Braszak, A.: NMR strong off-resonance irradiation
without sample overheating. Solid State NMR 25, 119 (2004)

18. Baranowski M., Woźniak-Braszak A., Jurga K., High homogeneity B1 30.2 MHz
nuclear magnetic resonance probe for off-resonance relaxation times measurements.
J. Mag. Res. 208, 163 (2011)

19. Czechowski, T., Baranowski, M., Jurga, K., Jurga, J., Kędzia, P.: The instrument
set for generating fast adiabatic passage. Appl. Magn. Reson. 43, 331–340 (2012).
https://doi.org/10.1007/s00723-012-0372-3

20. Woźniak-Braszak, A.: Methodology for solid state NMR study of cross relaxation
and molecular dynamics in heteronuclear systems. Solid State NMR 53, 38 (2013)

21. Woźniak-Braszak A.: Study of cross-relaxation and molecular dynamics in the
solid 3-(trifluoromethyl) benzoic acid by solid state NMR off-resonance. Solid State
NMR 81, 8–10 (2017). https://doi.org/10.1016/j.ssnmr.2016.12.002

22. Woźniak-Braszak, A., Jurga, K., Baranowski, M.: The Lipari-Szabo model-free
analysis application in study of cross relaxation in heteronuclear systems by solid
state NMR. Appl. Magn. Reson. 47(6), 567 (2016)

23. Jurga, K., Woźniak-Braszak, A., Baranowski, M.: Methodology for solid state NMR
off-resonance study of molecular dynamics in heteronuclear system. Solid State
NMR 71, 73–79 (2016)

24. Bloembergen N., Purcell E. M., Pound R. V., Relaxation effects in nuclear mag-
netic resonance absorption. Phys. Rev. 73, 679–712 (1948) https://doi.org/10.
1103/PhysRev.73.679

25. Dobrzyńska-Mizera M., Knitter M., Woźniak-Braszak A., Baranowski M.,
Sterzyński T., Di Lorenzo M.L.: Poly(l-Lactic Acid)/pine wood bio-based com-
posites. Materials 13, 3776 (2020). https://doi.org/10.3390/ma13173776

https://doi.org/10.1007/s00723-012-0372-3
https://doi.org/10.1016/j.ssnmr.2016.12.002
https://doi.org/10.1103/PhysRev.73.679
https://doi.org/10.1103/PhysRev.73.679
https://doi.org/10.3390/ma13173776

Experimental and Computer Study of Molecular Dynamics 381

26. Hołderna-Natkaniec, K., Jurga, K., Natkaniec, I., Nowak, D., Szyczewski, A.:
Molecular dynamics of Ethisterone studied by 1H NMR, IINS and quantum
mechanical calculations. Chem. Phys. 317, 178–187 (2005). https://doi.org/10.
1016/j.chemphys.2005.06.043

27. Woźniak-Braszak, A., Knitter, M., Markiewicz, E., Ingram, W.F., Spontak, R.J.:
Effect of composition on the molecular dynamics of biodegradable isotactic
polypropylene/thermoplastic starch blends. ACS Sustain. Chem. Eng. 7, 16050–
16059 (2019). https://doi.org/10.1021/acssuschemeng.9b02774

28. Eskandari, K., Lesani, M.: Does fluorine participate in halogen bonding? Chem.
Euro. J. 21(12), 4739–4746 (2015)

29. Berendsen, H.J.C., Van Der Spoel, D., Van Drunen, R.: GROMACS: a message-
passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91,
43–56 (1995). https://doi.org/10.1002/chem.201405054

30. Jorgensen W.L., Maxwell D.S., Tirado-Rives J.: Development and testing of the
OPLS all-atom force field on conformational energetics and properties of organic
liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996). https://doi.org/10.1021/
ja9621760

31. Jorgensen, W.L., Tirado-Rives J.: The OPLS [optimized potentials for liquid simu-
lations] potential functions for proteins, energy minimizations for crystals of cyclic
peptides and crambin. J. Am. Chem. Soc. 110, 1657–1666 (1988). https://doi.org/
10.1021/ja00214a001

32. Hess, B., Bekker, H., Berendsen, H., Fraaije, J.: LINCS: a linear constraint solver
for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997)

33. Chudoba, D., Łudzik, K., Jażdżewska, M., Wołoszczuk, S.: Kinetic and equilibrium
studies of doxoribicin adsorption onto carbon nanotubes. Int. J. Mol. Sci. 21, 8230
(2020)

34. Chudoba, D., Jażdżewska, M., Łudzik, K., Wołoszczuk, S., Juszyńska-Gałązka, E.,
Kościński, M.: Description of release process of doxorubicin from modified carbon
nanotubes. Int. J. Mol. Sci. 22, 12003 (2021)

https://doi.org/10.1016/j.chemphys.2005.06.043
https://doi.org/10.1016/j.chemphys.2005.06.043
https://doi.org/10.1021/acssuschemeng.9b02774
https://doi.org/10.1002/chem.201405054
https://doi.org/10.1021/ja9621760
https://doi.org/10.1021/ja9621760
https://doi.org/10.1021/ja00214a001
https://doi.org/10.1021/ja00214a001

Description of Magnetic Nanomolecules
by the Extended Multi-orbital Hubbard

Model: Perturbative vs Numerical
Approach

Romuald Lemański1(B) and Michał Antkowiak2

1 Institute of Low Temperature and Structure Research, Polish Academy of Science,
ul. Okólna 2, 50422 Wrocław, Poland

r.lemanski@intibs.pl
2 Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Umultowska 85,

61614 Poznań, Poland
antekm@amu.edu.pl

Abstract. We present a microscopic description of magnetic molecules
by the extended multi-orbital Hubbard model. In the limit of large
Coulomb on-site interaction, we derived the spin Hamiltonian using the
perturbation theory. The magnetic coupling constant between two ions
we determined in two different ways: a) from the expression obtained in
the perturbation calculus and b) from the analysis of distances between
the lowest levels of the energy spectrum obtained by the diagonaliza-
tion of the Hamiltonian of the extended multi-orbital Hubbard model.
In order to speed up the very long and memory-intensive process of
constructing the Hamiltonian matrix, whose size was 14400 × 14400, we
implemented a procedure for locating the positions of non-zero elements.
This significantly reduced the time of matrix creation and made it pos-
sible to perform calculations for more model parameters. The procedure
we use can be applied to various nanomagnets, but the final calculations
we performed for the molecular ring Cr8. We showed that the inter-
site repulsion between electrons located on neighboring ions increases
the antiferromagnetic exchange coupling between magnetic moments of
these ions, but this increase can be compensated for by the effect of
correlated hopping of electrons.

Keywords: magnetic nanomolecules · extended multi-orbital Hubbard
model · correlated hopping · Cr8 · sparse matrices · performance
analysis · optimization

1 Introduction

Typical spectra of low-energy excitations of magnetic nanomolecules (MNMs)
determined experimentally correspond (approximately) to the excitation spectra
of the Heisenberg model [1]. For this reason, the efforts of many researchers
have been directed towards determining the exchange coupling constants in a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 382–391, 2023.
https://doi.org/10.1007/978-3-031-30445-3_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_32&domain=pdf
http://orcid.org/0000-0002-0852-8761
http://orcid.org/0000-0002-4443-2062
https://doi.org/10.1007/978-3-031-30445-3_32

Description of Magnetic Nanomolecules 383

system-appropriate version of the Heisenberg model. The calculations are usually
performed with methods based on the density functional theory (DFT) [1–3].
However, in some cases these methods do not give satisfactory results [4–6]. In
general, the problem with obtaining correct magnetic coupling values by these
methods stems from the lack of consideration of electron dynamics and the
resulting electron correlations [7].

In Ref. [8,9] it was proposed to describe MNMs using the multi-orbital Hub-
bard model (HM) combined with DFT calculations [8,9]. In this DFT + MB
approach (MB stands for many-body), the microscopic parameters of the model
are determined first, and only then the exchange constant is calculated using the
second-order perturbation theory. In Ref. [8] the method was applied to study
of the molecular ring Cr8, and the magnetic coupling obtained there (after the
correction, see Ref. [10]) was 1.65 meV. However, this value is slightly larger
than the 1.46 meV deduced from the experiments. Later on, in Ref. [11] it was
shown that the correlated hopping effect can noticeably reduce the coupling.

In fact, the effect of correlated hopping, i.e. the decrease in the amplitude
of an electron jump to the orbital already occupied by an electron (with the
opposite spin), as compare to the amplitude of the jump to the empty orbital,
results from the mutual repulsion of the electrons. On the other hand, however,
the repulsion of electrons on adjacent ions reduces the relative difference between
the Coulomb energies of electrons on the same ion and on adjacent ions. And
this in turn strengthens the antiferromagnetic coupling between the ions.

Here we investigate what is the effect of the repulsion between electrons,
both by taking into account the correlated hopping and the direct Coulomb
repulsion of electrons located on adjacent ions, on the magnetic coupling between
Cr ions. Using the extended multi-orbital HM we first constructed the effective
spin Hamiltonian from the perturbation theory and obtained the Heisenberg
model with the exchange constant Γ . Then we diagonalized numerically the
Hamiltonian (1) for the system of two Cr ions and based on the analysis of the
obtained exact energy spectrum we deduced another value Γ ∗ for the exchange
constant, which turned out to be slightly greater than Γ [11].

2 Extended Multi-orbital HM

The Hamiltonian HexHM of the extended multi-orbital HM is composed of the
single-ion part HSI and two intersite terms HV, Ht, representing Coulomb repul-
sion and electron jumps, respectively. Then

HexHM = HSI + HV + Ht (1)

where

HSI = U
∑

i,m

nim↓nim↑ + (2)

1
2

∑

i,m �=m′,σ
[U ′nimσnim′σ̄ + U ′′nimσnim′σ] +

1
2

∑

i,m �=m′,σ

[
Jc†

imσc†
im′σ̄cimσ̄cim′σ+ Jc†

imσc†
imσ̄cim′σ̄cim′σ

]
,

384 R. Lemański and M. Antkowiak

HV = V
∑

i,j,m,n,σ,σ′
nimσnjnσ′ (3)

and

Ht =
∑

i,j,m,m′,σ

tijmm′ [1 − a(nim + njm′ − 1 − δijδmm′)]c†
imσcjm′σ. (4)

In the above formulas i and j denote nearest-neighbor sites, m,m′ label orbitals
and σ, σ̄ label spins of electrons (σ̄ = −σ), c†

imσ (cimσ) denotes the creation
(annihilation) operator of an electron, nimσ = c†

imσcimσ is the occupation num-
ber and nim = nim↓ + nim↑. U , U ′ and U ′′ describe the Coulomb type on-site
interactions between two electrons: U - on the same orbital and U ′(U ′′) - on
different orbitals with opposite (parallel) spins, respectively. V is the Coulomb
repulsion constant between two electrons on adjacent ions and J represents the
on-site exchange coupling resulting from the first Hund’s rule, but also the spin-
flip term and the pair hopping term, which are presented in the third line of
the formula for HSI. The latter two interactions are essential for maintaining
the correct structure of spin multiplets [9]. Here we adopt the following relations
between parameters of the model: U ′ = U − 2J and U ′′ = U − 3J . They result
from the requirements of rotational symmetry [12]. The parameter tijmm′ is the
hopping amplitude (i �= j) from orbital m′ at site j to orbital m at site i or the
energy εi

m ≡ tiimm of orbital m at site i (i = j and m = m′).
The parameter a in (4) is a mesure of reduction of the electron hopping

amplitude between two orbitals when the sum of their occupancies exceed 1.
Here we assume that for all relevant pairs of orbitals it has the same value [11].

3 Performance Analysis

Calculations have been carried out using the Wolfram Mathematica software.
After we have run some initial tests it appeared that the bottleneck of our pro-
gram is the construction of the Hamiltonian (1) matrix. Our algorithm assumed
that the matrix was the result of the outer product of vectors containing all
possible states of the system. It appeared that because of the sparsity of the
matrix the most of the time was spent adding and multiplying zeros. As running
this part of the program took unreasonable amount of time we have found the
necessity to optimize it. Knowing states combinations that give non-zero matrix
elements we have written an algorithm to create the map of non-zero elements,
which is simply a list of matrix indexes.

Using the map we can calculate the non-zero elements of the sparse matrix
in distinctively lower time. For the largest matrices considered the time of build-
ing the matrix has been decreased 260 times and the total calculation is 140
times faster (see Table 1). Although the creation of the map takes less time than
calculating the corresponding outer product it is still significant. However we

Description of Magnetic Nanomolecules 385

have excluded it from total time as the map needs to be calculated only once for
each system considered and used to construct the matrices with different sets of
parameters. It can be also stored in the file for future reuse.

Table 1. Computing performance for different total spin S resulting in matrices of
different matrix size and density (md). The total computing times before optimization
(bo) are compared to full times (ft) of optimized algorithm, which consist of matrix
building (mb) and diagonalization (ev) times. All times have been obtained running the
program on 4 cores except the non-zero elements map creation time (map) obtained
using 1 core.

S size md [%] bo [s] ft [s] mb [s] ev [s] map [s]

0 14400 0.2 18100 127 69 58 4200
1 9450 0.3 7800 56 38 18 1820
2 2520 0.8 560 7.8 6.7 1.1 135
3 210 6.3 3.7 0.3 0.3 ∼0 0.9

The optimization tilted the balance of calculation time towards the diagonal-
ization of the matrix. Fortunately the Mathematica supports parallelization of
calculations. We performed the scalability tests running the Eigenvalues function
on different numbers of cores ranging from 1 to 4 and calculated the speedup
defined as the ratio of the run time on 1 core and n cores (see Fig. 1a). We
have obtained the super-linear speedup for larger matrices which is caused by
accumulation of the cache size [13]. The diagonalization time drops significantly
when 2 cores are used however adding further cores causes just a small decrease.
Further tests on larger system have shown no speedup when using more than 4
cores.

We have also noted that Mathematica has been using more cores while the
map of non-zero elements have been built. After running that part of the code
on different number of cores it appeared that it actually slows down (see Fig. 1b)
with consecutive cores included into test runs. We did not investigate this further
as the speed of this non-repeatable part is of less importance. However, we can
see the potential of improving its parallelization as the parts of the map could
be easily created separately.

More important improvement could be obtained by parallelization of matrix
building algorithm as the non-zero elements of matrices can be calculated inde-
pendently. Another possible optimization could be based on the fact that we are
dealing with symmetric matrices, therefore we could calculate half of both the
matrix and the map.

To analyze the performance we have run our code on the 4-core system with
Intel Core i5-8265U CPU 1.60 GHz and 16 GB of RAM.

386 R. Lemański and M. Antkowiak

Fig. 1. Speedup of a) diagonalization and b) non-zero elements maps creation of matri-
ces related to total spin S denoted in the legend. The ideal linear speedup is shown by
dotted line.

4 Magnetic Interaction Between Two Ions

In further consideration, we will focus on the case of the Cr8 molecular ring, in
which Cr ions each have 3 electrons on the d shell. In the ground state, these
3 electrons occupy the half-filled quasi triplet, which has a significantly lower
energy than the unoccupied quasi doublet formed the rest of the d shell. Due
to the intra-ion exchange couplings, the diagonalization of the single-ion part
HSI of the Hamiltonian (1) results in formation of quartets and doublets. One of
these quartets corresponding to the spin S = 3/2 is the ground state. Its energy
E0 is equal to

E0 = ε1 + ε2 + ε3 + 3U − 9J, (5)

where εm ≡ tiimm (here we used the same notation for energies of the orbitals
m = 1, 2, 3 as it is given in Ref. [8]).

From the perturbative calculus applied to (1) in the limit of small tii
′

mn one
gets an effective Heisenberg Hamiltonian of interacting spins S = 3/2 with the
antiferromagnetic super-exchange coupling Γ ii′

SE. If following the discussion given
in [8] we take into account also a direct ferromagnetic Coulomb exchange term
Γ ii′

CE, then the final form of the effective Hamiltonian Heff is as follows.

Heff =
1
2

∑

i,i′
Γ ii′

Si · Si′ (6)

where Γ ii′
= Γ ii′

CE + Γ ii′
SE and the sum is over all pairs (not ordered) of adjacent

magnetic ions.

Description of Magnetic Nanomolecules 387

The super-exchange coupling Γ ii′
SE resulting from electrons kinetic can be

expressed as the sum of the following two contributions

Γ ii′
SE = Γ ii′

0 + ΔΓ ii′
, (7)

where the main part Γ ii′
0 comes from jumps of electrons between single occupied

states belonging to the quasi-triplets

Γ ii′
0 =

2
9

3∑

n=1

3∑

n′=1

|tii′
nn′ |2 + |ti′i

nn′ |2
U − V + 2J + εn − εn′

(1 − a)2 (8)

and ΔΓ ii′
results from electron jumps between single occupied states belonging

to the quasi-triplet and unoccupied states belonging to the quasi-doublet

ΔΓ ii′
=

2
9

3∑

n′=1

5∑

n=4

|tii′
nn′ |2 + |ti′i

nn′ |2
U − V + εn − εn′

−2
9

3∑

n′=1

5∑

n=4

|tii′
nn′ |2 + |ti′i

nn′ |2
U − V − 3J + εn − εn′

. (9)

The factor (1 − a)2 associated with the effect of correlated hopping occurs only
in the formula for Γ ii′

0 because only in this case an electron hops to the orbital
which is already occupied by another electron with an opposite spin. On the
other hand, ΔΓ ii′

does not depend on the parameter a, because then the electron
hops to an unoccupied orbital. Since we assume that the interactions between
adjacent Cr ions in Cr8 are the same, from now we omit the upper indices i, i′

in the coupling constants Γ , Γ0 and ΔΓ .
Let us now recall that for two spins S = 3/2 coupled antiferromagnetically

within the Heisenberg model with the coupling constant Γ , the energy spec-
trum form four levels: E = 0, Γ, 3Γ and 6Γ . Therefore, the measure of magnetic
coupling between adjacent Cr ions is the energy difference between the lowest
excited state and the ground state of the system. Using this fact, we estimated
the magnetic coupling constant not only from the perturbation theory but also
directly from the diagonalization of the Hamiltonian (1). Since in our case the
hopping amplitudes are small with respect to U , then the lowest part of energy
spectrum of the multi-orbital HM is similar to the spectrum of the Heisenberg
model. Indeed, for Sz = 0, the four lowest energy levels then have approximately
the distribution in the form of E = 0, Γ ∗, 3Γ ∗, 6Γ ∗, but Γ ∗ is slightly larger
than Γ . We conclude from this that the Γ ∗ corresponds to the magnetic exchange
constant.

The diagonalization turned out to be a big challenge, because in our case
the matrix has dimensions of 14400× 14400. However, this task was successfully
accomplished using the procedures described in the previous section, allowing
us to perform calculations across a wide range of the model parameters.

If we do not take into account neither the intersite Coulomb repulsion (V =
0), nor the correlated hopping (a = 0) and put into the formulas (6–9) the

388 R. Lemański and M. Antkowiak

parameters taken from Ref. [8] (with the corrections given in [10]), then we get
Γ ≈ 1.7 meV, whereas from the diagonalization Γ ∗ ≈ 1.71 meV.

As already mentioned in Introduction, the parameters V and a, which are
always positive from the physical premises, affect the size of the exchange con-
stants in the opposite way, i.e. Γ and Γ ∗ increase with the increase of V , but
they decrease as a increases. For Γ , the functional dependency on V and on a
is given in the formulas (8, 9). On the other hand, the dependence of Γ ∗ on V
and a is obtained numerically from the diagonalization of the Hamiltonian (1)
performed for the appropriately selected set of parameters V and a.

We do not have data on V and a for Cr8, but it is usually agreed that V is
an order of magnitude smaller than U (here U ≈ 6eV) and 0 < a < 0.4 (see [11]
and the references given there), here we examined the most relevant physically
ranges: 0 < V < 0.6eV and 0 < a < 0.1.

The main part of our results obtained from the diagonalization of the Hamil-
tonian (1) (Γ ∗ - solid lines) and from the perturbation calculus (Γ - dotted lines)
are shown in Fig. 2 and 3. In Fig. 2 it is displayed how Γ and Γ ∗ change with
V for a few fixed values of a. It turns out that Γ and Γ ∗ grow approximately
linearly with the increase of V , but this increase is small, as it is only about 0.1
meV when V increases by 0.5 eV. On the other hand, the increase in a causes a
nearly linear decrease in Γ and Γ ∗, but the decrease by 0.1 meV occurs already
at a very slight increase in a by approx. 0.023.

Fig. 2. Dependence of the exchange constants Γ ∗ (solid lines) and Γ (dotted
lines) on V for several selected values of the correlated hopping parameter a =
0, 0.05, 0.06, 0.07, 0.08, 0.1. The dashed line corresponds to Γ = Γ ∗ = 1.46 meV.

In Figs. 2 and 3 the dashed lines correspond to the value Γ ∗ = 1.46 meV,
which was obtained from the experiments. The points of intersection of this
line with solid lines correspond to such pairs of values (V, a) for which Γ =

Description of Magnetic Nanomolecules 389

Fig. 3. Dependence of the exchange constant Γ ∗ on a for several selected values of
V = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6eV. The dashed line corresponds to Γ ∗ = 1.46 meV.

1.46 meV. These pairs of numbers correspond to such values of V and a which
mutually compensate for the increase (induced by V) and the decrease (induced
by a) of the antiferromagnetic component in the exchange constant such that
the resultant Γ ∗ value is as predicted by the experimental data. Explicite values
of a meeting this condition for the set V = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 eV (see
Fig. 3) are given in Table 2.

Table 2. The correlated hopping parameter a required to keep the exchange constant
Γ ∗ to be equal to 1.46 meV for V = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 eV:

V [eV] 0 0.1 0.2 0.3 0.4 0.5 0.6

a 0.055 0.06 0.066 0.071 0.076 0.082 0.087

5 Summary and Conclusions

In this contribution, we examined the effect of Coulomb repulsion of electrons
located on adjacent ions and of the correlated hopping of electrons on the
exchange constant between magnetic moments of the ions in Cr8. Although both
of these phenomena result from the mutual repulsion of electrons, but it turned
out that their influence on the value of the exchange constant is opposite. Indeed,
direct Coulomb repulsion causes amplification, while the effect of correlated hop-
ping weaken the antiferromagnetic coupling of the ions. So, if there are no other
factors affecting the value of the exchange constant, then to obtain consistency
with the experiment, when the electron repulsion of adjacent ions is occur, the
parameter of correlated hopping should be slightly higher.

390 R. Lemański and M. Antkowiak

We have optimized our code replacing the time consuming outer product
calculation with the creation of non-zero elements map. The computation time
has dropped by two orders of magnitude, however we can still observe the pos-
sibilities of further improvements.

Anyway, after applying the optimization, we were able to perform many
calculations not only by the perturbation calculus method, but also exactly by
diagonalizing the Hamiltonian matrices, the size of which reached 14400×14400.

Acknowledgements. We extend our thanks to G. Kamieniarz for encouraging us to
undertake the research presented here and for the fruitful discussions of some issues
raised in this paper.

References

1. Furrer, A., Waldmann, O.: Magnetic cluster excitations. Rev. Mod. Phys. 85, 367
(2013). https://doi.org/10.1103/RevModPhys.85.367

2. Kortus, J., Hellberg, C.S., Pederson, M.R.: Hamiltonian of the V15 spin system from
first-principles density-functional calculations. Phys. Rev. Lett. 86, 3400 (2001).
https://doi.org/10.1103/PhysRevLett.86.3400

3. Milios, C.J., Winpenny, R.E.P.: Cluster-based single-molecule magnets. In: Gao,
S. (ed.) Molecular Nanomagnets and Related Phenomena. SB, vol. 164, pp. 1–109.
Springer, Heidelberg (2014). https://doi.org/10.1007/430_2014_149

4. Brzostowski, B., Lemański, R., Ślusarski, T., Tomecka, D., Kamieniarz, G.:
Chromium-based rings within the DFT and Falicov–Kimball model approach. J.
Nanopart. Res. 15(4), 1–12 (2013). https://doi.org/10.1007/s11051-013-1528-2

5. Brzostowski, B., et al.: DFT and Falicov-Kimball model approach to Cr9 molecular
ring. Acta Phys. Pol. A 126, 270 (2014). https://doi.org/10.12693/APhysPolA.126.
270

6. Weissman, S., Antkowiak, M., Brzostowski, B., Kamieniarz, G., Kronik, L.: Accu-
rate magnetic couplings in chromium-based molecular rings from broken-symmetry
calculations within density functional theory. J. Chem. Theory Comput. 15(9),
4885 (2019). https://doi.org/10.1021/acs.jctc.9b00459

7. Held, K., et al.: Realistic investigations of correlated electron systems with LDA
+ DMFT. Phys. Status Solidi B 243, 2599 (2006). https://doi.org/10.1002/pssb.
200642053

8. Chiesa, A., Carretta, S., Santini, P., Amoretti, G., Pavarini, E.: Many-body models
for molecular nanomagnets. Phys. Rev. Lett. 110, 157204 (2013). https://doi.org/
10.1103/PhysRevLett.110.157204

9. Chiesa, A., Carretta, S., Santini, P., Amoretti, G., Pavarini, E.: Many-body ab
initio study of antiferromagnetic Cr7M molecular rings. Phys. Rev. B 94, 224422
(2016). https://doi.org/10.1103/PhysRevB.94.224422

10. Chiesa, A., Carretta, S., Santini, P., Amoretti, G., Pavarini, E.: Erratum: many-
body models for molecular nanomagnets. Phys. Rev. Lett. 110, 157204 (2013).
Phys. Rev. Lett. 126, 069901(E) (2021). https://doi.org/10.1103/PhysRevLett.
126.069901

11. Matysiak, J., Lemański, R.: Description of molecular nanomagnets by the multior-
bital Hubbard model with correlated hopping. Phys. Rev. B 104, 014431 (2021).
https://doi.org/10.1103/PhysRevB.104.014431

https://doi.org/10.1103/RevModPhys.85.367
https://doi.org/10.1103/PhysRevLett.86.3400
https://doi.org/10.1007/430_2014_149
https://doi.org/10.1007/s11051-013-1528-2
https://doi.org/10.12693/APhysPolA.126.270
https://doi.org/10.12693/APhysPolA.126.270
https://doi.org/10.1021/acs.jctc.9b00459
https://doi.org/10.1002/pssb.200642053
https://doi.org/10.1002/pssb.200642053
https://doi.org/10.1103/PhysRevLett.110.157204
https://doi.org/10.1103/PhysRevLett.110.157204
https://doi.org/10.1103/PhysRevB.94.224422
https://doi.org/10.1103/PhysRevLett.126.069901
https://doi.org/10.1103/PhysRevLett.126.069901
https://doi.org/10.1103/PhysRevB.104.014431

Description of Magnetic Nanomolecules 391

12. Frésard, R., Kotliar, G.: Interplay of Mott transition and ferromagnetism in the
orbitally degenerate Hubbard model. Phys. Rev. B 56, 12909 (1997). https://doi.
org/10.1103/PhysRevB.56.12909

13. Ristov, S., Prodan, R., Gusev, M., Skala, K.: Superlinear speedup in HPC systems:
why and when? In: Proceedings of the Federated Conference on Computer Science
and Information Systems, vol. 889 (2016). https://doi.org/10.15439/2016F498

https://doi.org/10.1103/PhysRevB.56.12909
https://doi.org/10.1103/PhysRevB.56.12909
https://doi.org/10.15439/2016F498

Structural and Electronic Properties
of Small-Diameter Carbon NanoTubes: A

DFT Study

Bartosz Brzostowski1(B) , Artur P. Durajski2 , Konrad M. Gruszka2 ,
and Jacek Wojtkiewicz3

1 Faculty of Physics and Astronomy, University of Wroc�law, pl. M. Borna 9,
50-204 Wroc�law, Poland

bartosz.brzostowski@uwr.edu.pl
2 Institute of Physics, Cz ↪estochowa University of Technology,

Avenue Armii Krajowej 19, 42-200 Cz ↪estochowa, Poland
{artur.durajski,konrad.gruszka}@pcz.pl

3 Faculty of Physics, Warsaw University, Pasteura 5, 02-093 Warszawa, Poland
wjacek@fuw.edu.pl

Abstract. One of the crucial properties of Carbon NanoTubes (CNTs)
is their conductivity. They can be metallic, semiconducting or insulating
in nature [6]. Therefore, their conducting properties are closely related
to the existence and width of CNTs energy band gap – quantity which is
(relatively) easily calculable. From a theoretical point of view, CNTs have
been studied by various methods. Many results have been obtained; how-
ever, their status is quite diverse. The widespread rule claims that (n,m)
CNT is metallic if n−m = 0 mod 3 [2,6]. This rule was based on ‘gluing’
of graphene sheets into tubes (or the ‘zone folding’ method). Moreover,
the geometry of all hexagons has been assumed to be identical – the
structure optimization hasn’t been performed. Such an approach can
be reliable for large-diameter CNTs, where curvature effects are small.
However, it is at least disputable for its applicability to small-diameter
CNTs. For these reasons, we undertook a systematic exploration of small-
diameter CNTs to examine the significance of the ‘deviation’ effects (i.e.
the deviation from planar regular hexagon geometry) on properties of
CNTs. In particular, we wanted to check explicitly the validity of the
claim that ‘CNTs (n,m), where n − m = 0 mod 3, possess zero energy
gap’.

In our paper, we present the results of calculations for (2,m) and
(3,m) series of CNTs. These are optimized geometries, densities of states,
energy gaps, and electronic band structures. The general conclusion is
that the ‘zone-folding’ based rule predicting metallicity for those CNTs
where n−m = 0 mod 3 is fulfilled, besides the find that hexagons form-
ing CNTs are not planar and possess non-equal bond lengths. So this
‘zone-folding’ based law describes conductivity aspects of CNTs amaz-
ingly well.

Keywords: Carbon nanotubes · Band structure · Energy gap

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 392–402, 2023.
https://doi.org/10.1007/978-3-031-30445-3_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_33&domain=pdf
http://orcid.org/0000-0002-1137-410X
http://orcid.org/0000-0002-5446-4084
http://orcid.org/0000-0002-6666-1800
http://orcid.org/0000-0001-6030-0177
https://doi.org/10.1007/978-3-031-30445-3_33

Structural and Electronic Properties of Carbon NanoTubes 393

1 Introduction

Carbon NanoTubes – one of the allotropic forms of carbon – beginning from
its discovery, still are among the most intensively studied quasi-one-dimensional
systems. It is due to its exceptional mechanical, electronic, and optical properties,
which turns scientific interests in CNTs to this day. Due to the wide applicability
of CNTs, many papers explore their diverse properties such as semiconduction/
metallicity features [7,13,20], mechanical, magnetic [6], and optical properties
[17,18] to name a few.

One of the crucial properties of Carbon NanoTubes (CNTs) is their conductiv-
ity. Their character can be metallic, semiconducting, or insulating [6] in nature.
Conducting properties are closely related to energy gap of CNTs – quantity (rel-
atively) easily calculable. From a theoretical point of view, CNTs have been
studied by various methods; the most popular are semiempirical and ab-initio
ones. Many results have been obtained; however, their status is quite diverse.
The broad ‘folk knowledge’ claims that (n,m) CNT is metallic if n−m = 0 mod
3 [2,6]. This rule was derived from simple calculations based on ‘cutting and glu-
ing’ of the graphene sheets into tubes [8]. However, in such studies the geometry
of all hexagons has been assumed to be identical – the structure optimization
hasn’t been performed. Such an approach can be reliable for large-diameter
CNTs, where curvature effects are small. However, it is at least disputable for
its applicability to small-diameter CNTs.

For these reasons, we undertook a systematic exploration of small-diameter
CNTs to examine the significance of the curvature effects. In particular, we
wanted to check explicitly the validity of the rule claiming that ‘CNTs (n,m),
where n−m = 0 mod 3, possess zero energy gap’. In our paper, we present the
results of calculations for (2,m) and (3,m) series of CNTs. We have calculated:
optimized geometries, densities of states, energy gaps, and band structures. In
our study, we have also paid attention to the technical aspect of computations.
One of them was a comparison between two popular packages: SIESTA and
Quantum Espresso. The second one was the examination of parameters crucial
for computations such as density of k−points in the grid, and the number of
carbon atoms in an elementary cell.

2 Computational Methods

2.1 Quantum Software Packages

To the study electronic properties of investigated materials, we have performed
first-principles calculations within the framework of the density-functional the-
ory (DFT) [14] as implemented in the Quantum Espresso [4,5] and SIESTA
[16] packages. We performed also calculations for finite CNTs using Gaussian09
package [3].

Quantum Espresso (opEn-Source Package for Research in Electronic Struc-
ture, Simulation, and Optimization) is an integrated suite of software for atom-
istic calculations based on electronic structure, using density functional theory, a

394 B. Brzostowski et al.

plane-wave basis set, and pseudopotentials. Quantum Espresso is free software,
released under the GNU General Public License. The compiling of Quantum
Espresso packages (7.0 version) was realized by using the open-source gfortran
(11.2.0 version) compiler from the GCC distribution with mpi-parallel execution
provided by OpenMPI (4.1.2 version). Moreover, external libraries like BLAS
and LAPACK for linear algebra and FFTW for fast Fourier transformation were
used. In the case of Quantum Espresso, (GGA-PBE) approximation was used
for the exchange-correlation functional together with the projector-augmented
wave (PAW) method.

In the case of SIESTA, the exchange and correlation effects were accounted
for by the generalized gradient approximation (GGA) with exchange-correlation
potential proposed by Pedrew, Burke and Ernzerhof (PBE) [15]. SIESTA is
density functional method using standard norm-conserving pseudopotentials
and numerical linear combination of atomic orbitals basis set, which includes
multiple-zeta and polarization orbitals. Also in the case of Gaussian09 the PBE
[15] functional was used.

2.2 Computational Parameters

The optimized atomic structures were obtained by fully relaxing of both atomic
positions as well as cell parameters until all forces were smaller than 10−6 eV/Å.
All parameters critical for convergence, such as the k-points mesh and the energy
cutoff were carefully tested to ensure the most accurate results. In the case of
Quantum Espresso after proper convergence tests, we obtained well-converged
values for the kinetic energy cutoff of the wavefunction equal to 80 Ry and
the kinetic energy cutoff for charge density equal to 400 Ry. For the Siesta
package, the parameters of the calculations were systematically tested also in
terms of further calculations of phononic properties. Since unit cells were used
for calculations, which for some nanotubes are small and contain few atoms,
it was necessary to use larger values of parameters such as plane-wave cutoff
(MeshCutoff) and Brillouin zone sampling (k-grid Monkhorst Pack). The unit
cells were constructed so that in the z direction the axis of the nanotube was
oriented, while in the x and y directions they had a size of 15 Å increased by the
diameter of the nanotube. Tests have shown that the 1x1xM Monkhorst-Pack
grid [11] is good enough and only the M value is significant for convergence. For
the smallest unit cells, the value of this parameter was tested up to 3000. To
investigate the electronic properties such as the main energy gap, a sufficiently
good value of this parameter is M equal to 1200, but for the phonon properties,
it may not be enough. For nanotubes with a clearly non-zero energy gap, a
convergence is obtained for smaller values of the M parameter. On the other
hand, nanotubes with a gap of zero or close to zero make convergence difficult.
As part of the tests, MeshCutoff from 1000 to 2000 Ry was checked. For the
study of electronic properties, the value of 1000 Ry is large enough, but even
2000 Ry may not be enough for phonon properties. In the case of Gaussian, all
calculations have been performed with the use of 6-31G(d) basis.

Structural and Electronic Properties of Carbon NanoTubes 395

2.3 Relaxation Methodology

The ideal atomic positions in cells with a fixed distance of 1.41 Å between C
atoms have been generated by the TubeASP applet [12]. The optimized atomic
structures were obtained using different methods for maximum atomic force
smaller than 10−6 eV/Å. In the case of Quantum Espresso, the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) quasi-Newton algorithm was used, whereas for the
Siesta package the optimization of the coordinates was obtained using the con-
jugate gradients method.

The change in the initial distance between the carbon atoms given in the
nanotube generator did not affect the optimization of the structure. However,
choosing a value other than 1.41 Å typically resulted in the need for more molec-
ular dynamics steps to obtain an optimized structure.

In the use of Gaussian for finite CNTs, the option ’Optimization and Fre-
quency’ has been used, i.e. after optimization, eigenfrequencies have been calcu-
lated and their positivity has been checked.

3 Results

3.1 Calculation Procedure, Energy Gaps, Band Structure

We have calculated all the CNTs of kind (2,m) and (3,m), i.e.: (2, 0), (2, 1),
(2, 2); (3, 0), (3, 1), (3, 2), (3, 3). Each of CNTs, were structure-optimized and
for each one, we have calculated their electronic properties in terms of the band
structure and density of states.

CNTs are periodic systems. In Fig. 1 we present structures of elementary cells
for all studied seven CNTs. As can be seen, elementary cells of armchair and
zig-zag CNTs are much smaller than cells for chiral CNTs. For every optimized
structure, we have calculated the band structure and density of states. Plots
of these results are presented in Fig. 4 for CNTs (2,m) and Fig. 5 for CNTs
(3,m). It is seen that the band structures are much more complicated for chiral
CNTs than for armchair and zig-zag ones. It can be attributed to the sizes of
elementary cells. For every CNT, structural optimization has been performed.
As a rule, the geometry corresponding to the optimized and non-optimized ones
are quite different. We illustrate this diversity in the Fig. 2.

It is also seen that all CNTs, for which the ‘zone-folding’ based rule predicts
metallicity (i.e. (2, 2), (3, 0) and (3, 3)) are in fact conductive, i.e. possess a
non-zero density of states at the Fermi energy. Apparently, the conductivity
holds also for optimized structures, which are not regular hexagons. On the
other hand, the CNTs (2, 0) and (3, 2) are gapped with gaps 0.65 eV and 0.29
eV, respectively – as ‘zone-folding’ based rule predicts. Interestingly enough,
we have found two isomers of the CNT (3, 1). They differ in structure and also
energy gap: One isomer with lower energy possesses a gap 0.69 eV and the second
one 0.36 eV. We have described these two structures elsewhere [1]. In any case,
both structures are gapped, as the ‘zone-folding’ based rule predicts. And last,
interestingly enough, the (2, 1) CNT is gapless, although it should be gapped
along the ‘zone-folding’ based rule.

396 B. Brzostowski et al.

Fig. 1. Elementary cells of all calculated CNTs.

3.2 Comparison with Existing Results

Wherever possible, we also made comparison with literature data. We have found
results for the (2, 2) CNT: [20], [9] and [10]. In all papers, authors have obtained
small gaps (0.1 up to 0.2 eV, implying that (2, 2) CNT is an indirect semicon-
ductor) - so, their results are similar to ours. The difference can be attributed
to the fact that they used functionals other than ones used by us.

We have also carefully inspected results for the (3, 1) CNT in [9]. The authors
found, that examined CNT possesses a gap of 0.4 eV, which is consistent with
our result for one of the isomers of (3, 1) CNT.

Summarizing our calculations for infinite CNTs, our calculations show that
(2,0), (3,1) and (3,2) CNTs are gapped, whereas (2,1), (2,2), (3,0) and (3,3) are
gapless.

Structural and Electronic Properties of Carbon NanoTubes 397

Fig. 2. Histograms of distances of atoms within elementary cell for CNT (3, 2) for
non-optimized case (right panel) and optimized one (left panel).

3.3 Finite CNTs

For the sake of comparison, we have also calculated the finite CNTs, as real
systems are finite ones. We treat these results as preliminary, as the sizes of
CNTs calculated were limited by our computational facilities and we were able
to calculate systems up to about 150 atoms.

We performed our calculations with the aid of the Gaussian 09 package [3]. The
CNT was generated with the use of the same generator as infinite ones. We used the
PBE functional as implemented in Gaussian 09. In such systems, we encounter a
problem with how to ‘end’ it, in the order to avoid artifacts coming from unpaired
bonds. We decided to take the simplest solution, i.e. to saturate the unpaired bonds
by the hydrogen atoms. For an illustration, see Fig. 3 (Table 1).

Table 1. Results of DFT calculations for energy band gaps of finite (upper part) and
infinite (lower part) CNTs. All energies are in eV. Energy gaps for infinite CNT (3,1)
correspond to two geometric isomers, see [1].

CNT (2, 0) (2, 1) (2, 2) (3, 0) (3, 1) (3, 2) (3, 3)

No. of elementary cells 12 4 12 8 3 2 13

Energy gap [eV] 0.73 0.23 0.08 0.11 0.27 0.49 0.20

Chemical formula C96 C112H6 C128H8 C96H6 C156H8 C152H10 C156H12

Gap for infinite system 0.65 0 0 0 0.69/0.36 0.29 0

We see that all finite CNTs have a non-zero energy gap. It is not unex-
pected, as they are finite systems. Yet, the values of the gap for finite CNTs
(2, 1), (2, 2), (3, 0) and (3, 3) (corresponding to zero-gap infinite CNTs) are sub-
stantially smaller than (2, 0), (3, 1) and (3, 2) (corresponding to non-zero-gap

398 B. Brzostowski et al.

infinite CNTs). Moreover, gaps of finite CNTs are greater than their infinite
counterparts (with one exception of (3, 1) CNT). We should note here that it
would be especially interesting to see how finite-size data tend to the limit of
infinite objects. Preliminary study in this direction has been made in [19]. It is
also worth noting, that this behavior is consistent and can be a guide if used
properly, to find the finite gap CNT’s using only small computational cells.

Fig. 3. Finite CNT (3, 3) with 13 elementary cells and hydrogen atoms (presented as
blue spheres) at the ends.

Fig. 4. Band structures (left panels) and densities of states for CNTs (2, 0), (2, 1) and
(2, 2). Fermi energy is located at zero.

Structural and Electronic Properties of Carbon NanoTubes 399

Fig. 5. Band structures (left panels) and densities of states for CNTs (3, 0), (3, 1),
(3, 2) and (3, 3). Fermi energy is located at zero.

4 Summary, Conclusions, Outlook

The general conclusion is that the simple ‘zone-folding’ based rule predicting
metallicity for those CNTs where n − m = 0 mod 3 is fulfilled, besides the
opportunity that hexagons forming CNTs are not planar and possess non-equal
bond lengths. It is a little bit surprising that this simple law describes conduc-
tivity aspects of CNTs amazingly well. Apparently, conductivity is not closely
related to the regularity of hexagons, but rather to the proliferation of conjugate
double bonds parallelly to the CNT axis.

Having developed the methodology and values of parameters of computation,
we would like to continue our calculations for subsequent CNTs. However, such
an extension of calculations is very demanding from the computational point of

400 B. Brzostowski et al.

view. It is related to the fact that sizes of elementary cells grow fast with n for
(n,m) CNTs. For instance, the largest elementary cell for (3,m) CNTs counts
76 atoms (for (3, 2) CNT). For (4,m) series, the elementary cell of CNT (4, 3)
counts 148 atoms, and for (5,m) the size of an elementary cell of (5, 3) is 196,
and for (5, 4) it is 244. For this reason, the use of supercomputers seems to be
inevitable in more systematic studies.

Another problem is the examination of other functionals in calculations. It
is well known that PBE functional systematically underestimates the value of
the energy gap. For large-gap CNTs, this effect can influence only the value
of the gap, but rather not its existence. We observe this for all three gapped
CNTs calculated. Another case is CNTs such as (3, 0) and (3, 3), where the
bands are crossing and presumably this effect is stable concerning the precision
of calculations, resulting in gaplessness of these CNTs. Yet there is also a third
group of CNTs, where the existence of gap depends on subtle details of the
behavior of their electronic band structure. We encounter this situation in (2, 2)
CNT. In our calculations, the Fermi level passes through an upper and lower
band and we obtain no gap. But this is a subtle effect – the Fermi level is almost
tangent to both minimal and maximal of nearby lying bands. In the paper [20],
where another functionals have been used, the upper and lower bands are divided
by a small gap. Therefore it would be very interesting to re-examine the presence
of gaps by (presumably) more precise calculations using other functionals.

A natural extension of electronic properties examination, is determination of
optical ones, i.e. calculation of UV-VIS, as well as near-infrared spectra. Such
calculations are also of great importance with respect to possible technological
applications in new generations of solar cells. Such a study, i.e. calculation of
spectra of more than thirty finite CNTs, has been undertaken in [19] in the
framework of TDDFT. However, the size of calculated CNTs were limited: only
those with elementary cells not exceeding 150 atoms have been calculated. More-
over, is some cases only part of the UV-VIS range was possible to cover. Optical
properties are much more demanding from computational point of view than
densities of states – in particular, more memory is necessary. To achieve further
progress in examination of optical properties of CNTs, it is mandatory to use
more advanced computational resources, i.e. multiprocessor stations with paral-
lel processing and large amount of memory. This aspect concerns two routes of
calculations, i.e. periodic infinite systems and finite ones. We hope to be able to
extend in planned future research the computations reported in [19].

In the case of calculations for infinite nanotubes, the basic problem is the
necessity to use a dense set of k-points. This causes a significant increase in com-
putation time and increases the amount of required RAM. For a software whose
parallelization limits its use on one node, with a typical 7-day queue walltime
it is possible to calculate basic electronic properties, however, the calculation of
phonon or optical properties is troublesome or impossible. This problem can be
avoided in a way by performing calculations for finite nanotubes. In this case,
however, detailed studies of the scalability of the obtained results in terms of
the number of unit cells included should be carried out. While for armchair or

Structural and Electronic Properties of Carbon NanoTubes 401

zig-zag nanotubes it is easy to do, because unit cells consist of a relatively small
number of atoms, for chiral nanotubes with a large number of atoms in the unit
cell it is difficult, because the calculation time increases significantly with an
increase in the number of atoms in the studied structure.

Acknowledgements. BB acknowledges the access to the PSNC supercomputing
resources.

APD is grateful to the Czestochowa University of Technology - MSK CzestMAN for
granting access to the computing infrastructure built-in project no. POIG.02.03.00-00-
028/08 “PLATON - Science Services Platform” and POIG.02.03.00-00-110/13 “Deploy-
ing high-availability, critical services in Metropolitan Area Networks (MAN-HA)”.

References

1. Brzostowski, B., Durajski, A., Gruszka, K., Wojtkiewicz, J.: Geometric isomers
of the (3,1) carbon nanotube: a theoretical study. Acta Phys. Pol. A 142 (2022).
https://doi.org/10.12693/APhysPolA.142.21

2. Fox, M.: Optical Properties of Solids. Oxford University Press, Oxford (2010)
3. Frisch, M.J., et al.: Gaussian 09 Revision D.01, Gaussian Inc., Wallingford CT

(2013)
4. Giannozzi, P., Andreussi, O., Brumme, T., et al.: Advanced capabilities for mate-

rials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901
(2017). https://doi.org/10.1088/1361-648x/aa8f79

5. Giannozzi, P., Baroni, S., Bonini, N., et al.: Quantum espresso: a modular and
open-source software project for quantum simulations of materials. J. Phys. Con-
dens. Matter 21, 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502

6. Jorio, A., Dresselhaus, G., Dresselhaus, M.S. (eds.): TAP, vol. 111. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-72865-8

7. Kamal, C., Chakrabarti, A.: Comparison of electronic and geometric structures of
nanotubes with subnanometer diameters: a density functional theory study. Phys.
Rev. B 76, 075113 (2007). https://doi.org/10.1103/PhysRevB.76.075113

8. Kataura, H., et al.: Optical properties of single-wall carbon nanotubes. Synth.
Metals 103(1), 2555–2558 (1999). https://doi.org/10.1016/S0379-6779(98)00278-
1

9. Mao, Y.L., Yan, X.H., Xiao, Y., Xiang, J., Yang, Y.R., Yu, H.L.: The viability
of 0.3 nm diameter carbon nanotubes. Nanotechnology 15(8), 1000–1003 (2004).
https://doi.org/10.1088/0957-4484/15/8/024

10. Mao, Y.L., Yan, X.H., Xiao, Y., Xiang, J., Yang, Y.R., Yu, H.L.: First-principles
study of the (2,2) carbon nanotube. Phys. Rev. B 71, 033404 (2005). https://doi.
org/10.1103/PhysRevB.71.033404

11. Monkhorst, H.J., Pack, J.D.: Special points for brillouin-zone integrations. Phys.
Rev. B 13, 5188–5192 (1976). https://doi.org/10.1103/PhysRevB.13.5188

12. https://nanotube.msu.edu/tubeASP/
13. Niranjan, M.K.: Theoretical investigation of electronic bandgaps of semiconducting

single-walled carbon nanotubes using semi-empirical self-consistent tight binding
and ab-inito density functional methods. J. Phys. Commun. 4(1), 015004 (2020).
https://doi.org/10.1088/2399-6528/ab62c0

14. Parr, R., Yang, W.: Density-functional theory of atoms and molecules. Oxford
University Press, Oxford (1995). https://doi.org/10.1093/oso/9780195092769.001.
0001

https://doi.org/10.12693/APhysPolA.142.21
https://doi.org/10.1088/1361-648x/aa8f79
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1007/978-3-540-72865-8
https://doi.org/10.1103/PhysRevB.76.075113
https://doi.org/10.1016/S0379-6779(98)00278-1
https://doi.org/10.1016/S0379-6779(98)00278-1
https://doi.org/10.1088/0957-4484/15/8/024
https://doi.org/10.1103/PhysRevB.71.033404
https://doi.org/10.1103/PhysRevB.71.033404
https://doi.org/10.1103/PhysRevB.13.5188
https://nanotube.msu.edu/tubeASP/
https://doi.org/10.1088/2399-6528/ab62c0
https://doi.org/10.1093/oso/9780195092769.001.0001
https://doi.org/10.1093/oso/9780195092769.001.0001

402 B. Brzostowski et al.

15. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation
made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/
PhysRevLett.77.3865

16. Soler, J.M., et al.: The SIESTA method for ab initio order-N materials simula-
tion. J. Phys.Conden. Matter 14, 2745–2779 (2002). https://doi.org/10.1088/0953-
8984/14/11/302

17. Spataru, C.D., Ismail-Beigi, S., Benedict, L.X., Louie, S.G.: Quasiparticle energies,
excitonic effects and optical absorption spectra of small-diameter single-walled car-
bon nanotubes. Appl. Phys. A 78(8), 1129–1136 (2004). https://doi.org/10.1007/
s00339-003-2464-2

18. Wojtkiewicz, J., Brzostowski, B., Pilch, M.: Electronic and optical properties of
carbon nanotubes directed to their applications in solar cells. In: Wyrzykowski, R.,
Deelman, E., Dongarra, J., Karczewski, K. (eds.) Parallel Processing and Applied
Mathematics, pp. 341–349 (2020). https://doi.org/10.1007/978-3-030-43222-5 30

19. Wojtkiewicz, J., Pilch, M.: Theoretical study of carbon nanotubes as candidates for
active layer in solar cells. Comput. Theoret. Chem. 1216, 113846 (2022). https://
doi.org/10.1016/j.comptc.2022.113846

20. Yuan, J., Huang, Y.: Structural, electronic and optical properties of smallest
(2, 2) carbon nanotube: a plane-wave pseudopotential total energy calculation.
J. Mol. Struct. THEOCHEM 942(1–3), 88–92 (2010). https://doi.org/10.1016/j.
theochem.2009.11.041

https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1088/0953-8984/14/11/302
https://doi.org/10.1088/0953-8984/14/11/302
https://doi.org/10.1007/s00339-003-2464-2
https://doi.org/10.1007/s00339-003-2464-2
https://doi.org/10.1007/978-3-030-43222-5_30
https://doi.org/10.1016/j.comptc.2022.113846
https://doi.org/10.1016/j.comptc.2022.113846
https://doi.org/10.1016/j.theochem.2009.11.041
https://doi.org/10.1016/j.theochem.2009.11.041

8th Minisymposium on High
Performance Computing Interval

Methods

Need for Techniques Intermediate
Between Interval and Probabilistic Ones

Olga Kosheleva and Vladik Kreinovich(B)

University of Texas at El Paso, El Paso, TX 79968, USA
{olgak,vladik}@utep.edu

Abstract. In high performance computing, when we process a large
amount of data, we do not have much information about the dependence
between measurement errors corresponding to different inputs. To gauge
the uncertainty of the result of data processing, the two usual approaches
are: the interval approach, when we consider the worst-case scenario, and
the probabilistic approach, when we assume that all these errors are inde-
pendent. The problem is that usually, the interval approach leads to too
pessimistic, too large uncertainty estimates, while the probabilistic app-
roach – that assumes independence of measurement errors – sometimes
underestimates the resulting uncertainty. To get realistic estimates, it
is therefore desirable to have techniques intermediate between interval
and probabilistic ones. In this paper, we propose such techniques based
on the assumption that, in each practical situation, there is an upper
bound b ∈ [0, 1] on the absolute value of all correlations between mea-
surement errors – the bound that needs to be experimentally determined.
The assumption that measurement errors are independent corresponds
to b = 0; for b = 1, we get interval estimates, and for intermediate values
b, we get the desired intermediate techniques. We also provide efficient
algorithms for implementing the new techniques.

Keywords: Interval uncertainty · Probabilistic uncertainty · High
performance computing

1 Formulation of the Problem

Need to Take Uncertainty into Account in High-performance Comput-
ing. One of the main applications of high performance computing is estimating
the values of some quantities y based on the inputs x1, . . . , xn. For example,

This work was supported in part by the National Science Foundation grants 1623190
(A Model of Change for Preparing a New Generation for Professional Practice in
Computer Science), and HRD-1834620 and HRD-2034030 (CAHSI Includes), and by
the AT&T Fellowship in Information Technology. It was also supported by the program
of the development of the Scientific-Educational Mathematical Center of Volga Federal
District No. 075-02-2020-1478, and by a grant from the Hungarian National Research,
Development and Innovation Office (NRDI).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 405–414, 2023.
https://doi.org/10.1007/978-3-031-30445-3_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_34&domain=pdf
http://orcid.org/0000-0003-2587-4209
http://orcid.org/0000-0002-1244-1650
https://doi.org/10.1007/978-3-031-30445-3_34

406 O. Kosheleva and V. Kreinovich

in weather prediction, we estimate tomorrow’s temperature y at some location
based on the results xi of meteorological measurements in the vicinity of this
location.

The problem is that even when the data processing algorithm

y = f(x1, . . . , xn)

describes the exact relation between y and xi, the value ỹ = f(x̃1, . . . , x̃n) –
that we obtain by processing measurement results x̃i – is not exact: since the
measurement results x̃i are, in general, different from the actual (unknown)
values xi of the corresponding quantities. Because of the measurement errors
Δxi

def= x̃i − xi, the result ỹ of data processing is, in general, different from
the desired value y. It is important to provide an estimate for the resulting
uncertainty Δy

def= ỹ − y; see, e.g., [7].

What Do We Usually Know and What We Usually Do not Know
About the Measurement Errors Δxi. For each measuring instrument, we
know the upper bound Δi on the absolute value of the measurement error, i.e.,
a value for which |Δxi| ≤ Δi. Indeed, if no such bound is guaranteed, this would
mean that for any measurement result, the actual value can be anything – this
would be a wild guess, not a measuring instrument.

In many practical applications, each measuring instrument is calibrated:
before using this instrument, we several times compare its results with the results
of a much more accurate instrument; thus, if the mean value of the measurement
error was not 0, we can find this mean value (known as bias) and correct for it
by subtracting this mean value from all the measurement results. Thus, we can
safely assume that for each instrument, the mean value of the measurement error
is 0.

In most applications, we can also safely assume that the measurement errors
are relatively small. So we can safely ignore terms which are quadratic or higher
order in terms of these errors. For example, even if the relative measurement
error is 10%, its square is 1%, which can be safely ignored in comparison with
10%.

This is often all we know. Ideally, we should also know the probability dis-
tributions of all the measurement errors and all the correlations between them.
In simple computations, when the number n of inputs is small, it is possible to
extract this information for all n instruments and all n2/2 pairs of instruments.
So, for simple computations, this information is sometimes available. However,
for high-performance computing, when n is large, it is not feasible to extract all
this information, so this information is usually not available.

Possibility of Linearization. By definition of the measurement errors, we have
xi = x̃i − Δxi, thus

Δy = f(x̃1, . . . , x̃n) − f(x̃1 − Δx1, . . . , x̃n − Δxn).

Since the measurement errors Δxi are small, we can expand the expression
f(x̃1 −Δx1, . . . , x̃n −Δxn) in Taylor series in terms of Δxi and keep only linear

Techniques Intermediate Between Interval and Probabilistic 407

terms in this expansion. As a result, we get

Δy =
n

∑

i=1

ci · Δxi, (1)

where
ci

def=
∂f

∂xi |x1=x̃1,...,xn=x̃n

. (2)

How Δy is Estimated Now: Interval Technique. Since we have no infor-
mation about the correlation between the measurement errors, a natural idea
is to consider all possible correlations. In general, since |a + b| ≤ |a| + |b| and
|a · b| = |a| · |b|, from the formula (1), we get

|Δy| ≤
n

∑

i=1

|ci| · |Δxi|.

Since |Δxi| ≤ Δi, we get

|Δy| ≤ Δint
def=

n
∑

i=1

|ci| · Δi. (3)

This value Δint is the exact upper bound, in the sense that it is possible to
have |Δy| = Δint with probability 1. Indeed, this happens when:

– with probability 1/2, we have Δxi = Δi · sign(ci), where, as usual,
sign(x) = +1 for x > 0 and sign(x) = −1 for x < 0; and

– with probability 1/2, we have Δxi = −Δi · sign(ci).

In this case:

– with probability 1/2, we have Δy = Δint, and
– with probability 1/2, we have Δy = −Δint.

This worst-case estimate (3) is known as the interval estimate, since this is
the only estimate that we can guarantee based on the available information –
that all measurement errors Δxi are located within the corresponding interval
[−Δi,Δi]; see, e.g., [2,4,5].

Interval Technique: Efficient Algorithms. How can we compute the
value Δint? A natural idea is to explicitly use the expression (3). When the
function f(x1, . . . , xn) is given by an explicit expression, we can simply differ-
entiate it with respect to all the variables xi and then compute ci by using the
Formula (1).

Often, the algorithm f(x1, . . . , xn) is only given as a proprietary black box:
we do not know the exact algorithm, so we cannot differentiate this function. In
this case, to find the values ci, we can use numerical differentiation techniques.

408 O. Kosheleva and V. Kreinovich

For example, we can take into account that, in general, the derivative is the limit
of the ratios

ci = lim
hi→0

f(x̃1, . . . , x̃i−1, x̃i + hi, x̃i+1, . . . , x̃n) − ỹ

hi
.

Thus, we can estimate ci as the value of this ratio for some small hi.
The limitation of this natural idea is that for large n, it requires applying the

algorithm f(x1, . . . , xn) n + 1 time: 1 times to compute ỹ = f(x̃1, . . . , x̃n) and
n times to compute n values c1, . . . , cn. In practice, the algorithm f(x1, . . . , xn)
is often time-consuming – it may require several hours on a high-performance
computer, and the number of inputs n may be in the thousands. In this case,
the overall time needed to apply this natural idea is unrealistically large.

In such situations, we can use a faster algorithm based on using Cauchy
distribution, with probability density proportional to 1/(1 + (x/Δ)2); see, e.g.,
[1]. This algorithm is based on the fact that if we have n independent random
variables δi each of which is Cauchy-distributed with parameter Δi, then their
linear combination

∑

ci · δi is also Cauchy-distributed, with parameter Δ =
∑ |ci| · Δi – which is exactly the desired expression (3). Thus, to estimate Δint,
we, several times k = 1, . . . ,K, simulate the Cauchy-distributed values δ

(k)
i and

compute
δ(k) = f(x̃1 + δ

(k)
1 , . . . , x̃n + δ(k)n) − ỹ

for which, according to the formula (1), we have

δ(k) =
n

∑

i=1

ci · δ
(k)
i ,

and then use the resulting Cauchy-distributed sample δ(1), . . . , δ(K) to estimate
the desired parameter Δ = Δint.

The advantage of this Cauchy-based method is that, as with all Monte-Carlo
simulation methods, the number of simulations – and thus, the number of times
we apply the time-consuming algorithm f(x1, . . . , xn) – depends only on the
desired accuracy and does not depend on the number of inputs n. In general, the
accuracy of a statistical estimate based on a sample of size K is approximately
equal to 1/

√
K (see, e.g., [8]). So, to estimate Δint with accuracy 20%, it is

sufficient to apply the algorithm f(x1, . . . , xn) K ≈ 25 times – which is much
smaller than the thousands times needed for a direct estimation.

Comment. Since the largest value of the expression (1) is attained at the end-
points of the corresponding intervals, a seemingly natural idea may be to apply
the Monte-Carlo idea directly: namely, to select, for each i, one of the endpoints
Δxi = Δi or Δxi = −Δi with equal probability 1/2, repeat this several (K)
times and take the largest of the resulting values Δy(1), . . . ,Δy(K). Unfortu-
nately, this simple idea leads to a drastic underestimation, even in the simplest
case when f(x1, . . . , xn) = x1 + . . .+xn and when all the values xi are measured
with the same accuracy Δi = Δ1.

Techniques Intermediate Between Interval and Probabilistic 409

Indeed, in this case, formula (3) leads to Δint = n · Δ1 – and, as we have
mentioned, it is possible that this value is actually attained. On the other hand,
when we use the above seemingly natural idea, then for large n, according to
the Central Limit Theorem (see, e.g., [8]), the distribution of the sum is close to
Gaussian, with mean 0 (equal to the sum of the means) and variance V = σ2

equal to the sum of the variances V = n · Δ2
1. Thus, e.g., with confidence 99.9%,

we can conclude that the resulting values Δy(k) are within the 3-sigma interval,
i.e., smaller that 3σ = 3

√
n · Δ1. For large n, we have 3

√
n � n. So indeed, this

seemingly natural idea can lead to a drastic underestimation.

Interval Technique: Limitation. The main problem with this approach is
that the resulting worst-case estimates are too pessimistic. In most practical
situations, the actual value Δy is much smaller than Δint.

How Can We Explain this Limitation. The above limitation can be easily
explained. Indeed:

– In the arrangement that leads to Δy = Δint, all measurement errors are
highly correlated, with correlation coefficients ±1.

– In practice, it is possible that common factors affect several measurement
instruments, but there are also usually other factors which affect only one
measuring instrument, so the correlation is usually larger than −1 and smaller
than 1.

How Δy is Estimated Now: Probabilistic Technique. Another idea is
that since we have no reason to prefer negative or positive correlation, it is
reasonable to assume that the correlation is 0, and, more generally, that different
measurement errors are independent.

This is also what follows from the Maximum Entropy approach [3], when
out of all possible joint distributions ρ(Δx1, . . . ,Δxn) for which mean of each
variable is 0 and which are located on the given intervals [−Δi,Δi], we select
the distribution with the largest value of entropy

S
def= −

∫

ρ(Δx1, . . . ,Δxn) · ln(ρ(Δx1, . . . ,Δxn)) dΔx1 . . . dΔxn.

Independence implies that for each i �= j, the expected value E[Δxi ·Δxj] of
the product Δxi · Δxj is equal to the product of expected values

E[Δxi · Δxj] = E[Δxi] · E[Δxj],

i.e., since the mean value of each measurement error is 0, to

E[Δxi · Δxj] = 0.

In this case, the expected value of (Δy)2 is equal to

E[(Δy)2] =
n

∑

i=1

c2i · Vi,

410 O. Kosheleva and V. Kreinovich

where by
Vi

def= E[(Δxi − E[Δxi])2] = E[(Δxi)2],

we denoted the variance of the i-th measurement error.
As is well known in statistics, for large n, the deviation from this expected

value is small – since deviation grows with n as
√

n, while the expected value
itself grows as n [8], so we conclude that the actual value (Δy)2 is, with high
accuracy, equal to this expected value:

(Δy)2 ≈
n

∑

i=1

c2i · Vi.

We do not know the variances Vi, but, since |Δxi| ≤ Δi, we have (Δxi)2 ≤ Δ2
i .

Thus, the expected value Vi of the square (Δxi)2 is also bounded by the same
bound Δ2

i :
Vi ≤ Δ2

i .

This upper bound on the variance Vi is the best we can have – it is attained
if:

– we have Δxi = Δi with probability 1/2, and
– we have Δxi = −Δi with probability 1/2.

Thus, we conclude that

(Δy)2 ≤
n

∑

i=1

c2i · Δ2
i ,

i.e., that

|Δy| ≤ Δprob
def=

√

√

√

√

n
∑

i=1

c2i · Δ2
i . (4)

Probabilistic Technique: Eficient Algorithms. How can we estimate the
value Δprob? A natural idea is to explicitly use the expression (1): when describ-
ing interval techniques, we have already mentioned how we can estimate the
values ci.

The limitation of this natural idea is the same as for the similar interval
idea: that for large n, it requires applying the algorithm f(x1, . . . , xn) too many
times and thus, the overall time needed to apply this natural idea is sometimes
unrealistically large.

To speed up computations, we can use the fact that if we have n independent
random variables δi each of which is normally distributed with mean 0 and
standard deviation Δi, then their linear combination

∑

ci · δi is also normally
distributed, with the standard deviation equal to the desired expression (1).
Thus, to estimate Δprob, we, several times k = 1, . . . ,K, simulate the normally
distributed values δ

(k)
i and compute the value

δ(k) = f(x̃1 + δ
(k)
1 , . . . , x̃n + δ(k)n) − ỹ

Techniques Intermediate Between Interval and Probabilistic 411

for which, according to the formula (1), we have

δ(k) =
n

∑

i=1

ci · δ
(k)
i ,

and then use the resulting normally distributed sample δ(1), . . . , δ(K) to estimate
the desired standard deviation Δprob.

This method has the same advantage as the Cauchy method: that when we
use this method, the number of times we apply the time-consuming algorithm
f(x1, . . . , xn) depends only on the desired accuracy and does not depend on the
number of inputs n.

Probabilistic Technique: Limitation. The main problem with this proba-
bilistic technique is that it is too optimistic, it often drastically decreases the
approximation error Δy.

We had an example of such a drastic underestimation when we explained
why a seemingly natural Monte-Carlo algorithm does not lead to a reasonable
estimate for interval uncertainty.

How Can We Explain this Limitation. The above limitation can be easily
explained. Indeed:

– This technique assumes that all the measurement errors are independent.
– However, as we have mentioned, in reality, there may be common factors

affecting several instruments, and thus, there is correlation.

Need for Intermediate Techniques. Since the interval techniques are too
pessimistic and the probability techniques are too optimistic, it is desirable to
have intermediate techniques that would provide more realistic estimates.

The main objective of this paper is to provide such estimates.

2 Main Idea and the Resulting Formula and Algorithm

Main Idea. As we have mentioned, the problem with the interval technique
is that it assumes that the absolute value of the correlation can be 1, while in
practice, it is always smaller than 1. Similarly, the problem with the probabilistic
technique is that it assumes that all correlations are 0s, while in practice, they
can take non-zero values.

So, a natural idea is to assume that there is some number b between 0 and 1
that provides an upper bound for absolute values |rij | of all the correlations

rij
def=

E[Δxi · Δxj]
σi · σj

,

where σi
def=

√
Vi:

|rij | ≤ b.

412 O. Kosheleva and V. Kreinovich

This value can be determined empirically, by computing absolute value of
the correlation for several randomly selected pairs of measuring instruments and
selecting the largest of these values.

Comments

– It should be mentioned that while the experimental determination of the
correlations is possible, it is not easy to do in the field. Hopefully, when several
different sensors are produced by the same manufacturer, this manufacturer
will be able to provide these correlation values.

– Our estimates are based on computing the largest absolute value of the
observed correlations. Instead of estimating it as the largest of the observed
values, we can instead make a usual reasonable assumption that correlations
are normally distributed. Then, based on the observed correlation values, we
can find the sample mean μ and the sample standard deviation σ and con-
clude, with some confidence, that the actual correlation values are within the
interval [μ−k0 ·σ, μ+k0 ·σ], where, as usual, k0 = 2 corresponds to reliability
95%, k0 = 3 to 99.9%, and k0 = 6 to reliability 1 − 10−8.

Comment About Novelty. While the proposed idea sounds natural, to the best of
our knowledge, this idea has not been previously followed – in spite of the fact
that several methods for processing statistical data under interval uncertainty
have been developed; see, e.g., [6].

From the Idea to the Resulting Formula. From the formula (1), we conclude
that

(Δy)2 =
∑

i=1

c2i · (Δxi)2 +
∑

i�=j

ci · cj · Δxi · Δxj ,

hence

E[(Δy)2] =
n

∑

i=1

c2i · E[(Δxi)2] +
∑

i�=j

ci · cj · E[Δxi · Δxj],

i.e.,

E[(Δy)2] =
n

∑

i=1

c2i · Vi +
∑

i�=j

ci · cj · rij · σi · σj .

We know that (Δy)2 ≈ E[(Δy)2], we know that |rij | ≤ b, so we conclude that

(Δy)2 ≤
n

∑

i=1

c2i · σ2
i +

∑

i�=j

|ci| · |cj | · b · σi · σj .

We have mentioned that σi ≤ Δi, thus

(Δy)2 ≤
n

∑

i=1

c2i · Δ2
i +

∑

i�=j

|ci| · |cj | · b · Δi · Δj . (5)

Techniques Intermediate Between Interval and Probabilistic 413

Here,

Δ2
int =

(

n
∑

i=1

|ci| · Δi

)2

=
n

∑

i=1

c2i · Δ2
i +

∑

i�=j

|ci| · |cj | · Δi · Δj ,

thus the formula (5) takes the form

(Δy)2 ≤ b · Δ2
int + (1 − b) ·

(

n
∑

i=1

c2i · Δ2
i

)

,

i.e., the form
(Δy)2 ≤ b · Δ2

int + (1 − b) · Δ2
prob.

So, we arrive at the following final formula.

Resulting Formula

|Δy| ≤ Δb
def=

√

b · Δ2
int + (1 − b) · Δ2

prob. (6)

How to Compute this Estimate. As we have mentioned earlier, there exist
efficient algorithms:

– for computing Δprob – based on Monte-Carlo simulation of normally dis-
tributed measurement errors – and

– for computing Δint – based on using Cauchy distribution [1].

In both algorithms, the number of simulations depend only on the desired accu-
racy and does not depends on the number n of inputs.

By using these algorithms, we can efficiently compute the new estimate (6).

Future Work. How realistic is this new estimate? How close is it to the actual
error Δy? To answer these questions, it is necessary to test this method on
real-life examples.

Acknowledgments. The authors are greatly thankful to the anonymous referees for
valuable suggestions.

References

1. Kreinovich, V., Ferson, S.: A new Cauchy-based black-box technique for uncertainty
in risk analysis. Reliab. Eng. Syst. Saf. 85(1–3), 267–279 (2004)

2. Jaulin, L., Kiefer, M., Didrit, O., Walter, E.: Applied Interval Analysis, with Exam-
ples in Parameter and State Estimation, Robust Control, and Robotics. Springer,
London (2001). https://doi.org/10.1007/978-1-4471-0249-6

3. Jaynes, E.T., Bretthorst, G.L.: Probability Theory: The Logic of Science. Cambridge
University Press, Cambridge (2003)

https://doi.org/10.1007/978-1-4471-0249-6

414 O. Kosheleva and V. Kreinovich

4. Mayer, G.: Interval Analysis and Automatic Result Verification. de Gruyter, Berlin
(2017)

5. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM,
Philadelphia (2009)

6. Nguyen, H.T., Kreinovich, V., Wu, B., Xiang, G.: Computing Statistics under Inter-
val and Fuzzy Uncertainty. Springer Verlag, Berlin (2012)

7. Rabinovich, S.G.: Measurement Errors and Uncertainty: Theory and Practice.
Springer Verlag, New York (2005)

8. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures.
Chapman and Hall/CRC, Boca Raton (2011)

A Cross-Platform Benchmark for Interval
Computation Libraries

Xuan Tang1(B), Zachary Ferguson1, Teseo Schneider2, Denis Zorin1,
Shoaib Kamil3, and Daniele Panozzo1

1 New York University, New York City, USA
txstc55@gmail.com

2 University of Victoria, Victoria, Canada
3 Adobe Research, San Jose, USA

Abstract. Interval computation is widely used in Computer Aided
Design to certify computations that use floating point operations to
avoid pitfalls related to rounding error introduced by inaccurate opera-
tions. Despite its popularity and practical benefits, support for interval
arithmetic is not standardized nor available in mainstream programming
languages.

We propose the first benchmark for interval computations, coupled
with reference solutions computed with exact arithmetic, and compare
popular C and C++ libraries over different architectures, operating sys-
tems, and compilers. The benchmark allows identifying limitations in
existing implementations, and provides a reliable guide on which library
to use on each system for different CAD applications. We believe that
our benchmark will be useful for developers of future interval libraries,
as a way to test the correctness and performance of their algorithms.

Keywords: Interval Arithmetic · Transcendental Functions · Certified
Computations · Collision Detection · Robust Computation ·
Open-Source Library · Benchmark

1 Introduction

Interval computation allows performing floating-point operations with certifiable
correctness, by accounting for rounding errors. Every floating-point number is
replaced by a pair of numbers, representing an interval that contains the exact
result of the computation, independently from the rounding. While this app-
roach increases the cost and memory usage of computations, it is a staple for
many algorithms in computer aided design, geometric computing, image pro-
cessing, computer graphics, and scientific computing. For example, they are
used for Boolean computation [24], intersections between parametric patches
[23], continuous collision detection [20], subdivision surfaces [28], and precision
manufacturing [25]. More applications are discussed in the survey [15].

While the formal correctness of interval computation has been proven [22],
ensuring that an implementation of interval arithmetic is correct is a daunting
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 415–427, 2023.
https://doi.org/10.1007/978-3-031-30445-3_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_35&domain=pdf
https://doi.org/10.1007/978-3-031-30445-3_35

416 X. Tang et al.

Fig. 1. We introduce a benchmark for interval arithmetic computation and test it on
four C/C++ libraries: filib, filib++ (including the native switched, multiplicative,
and pred succ methods), Boost, and BIAS. We evaluate each library for their cor-
rectness, output interval size, speed, consistency, and portability. The table shows a
summary of our benchmark where the numbers indicate a ranking from best (small)
to worst (large).

task, as the proof relies on assumptions on the order of operations (which can
be altered by the compiler or the reordering buffers on the CPU) and on a
set of hardware assumptions on the ALUs, which are architecture-dependent.
At the same time, users rely on interval computation to certify the correctness
of their algorithm, assuming that the interval computation library is correct,
which, as we will show in this paper, is not always true for specific combinations
of compilers, operating systems, and architectures.

Because a formal proof for every hardware and software combination is
impractical (requiring to adapt the proof at every new software or hardware
update), we propose an experimental approach: we introduce a large benchmark
of test expressions and real-world algorithms for which the exact answer is com-
puted using exact computation. The benchmark can then be used to test existing
implementations, and identify issues. We note that a library passing our bench-
mark problems might still contain errors, as our benchmarks do not exhaustively
test all possible combinations of operations and operands.

We use our benchmark to evaluate four popular C/C++ interval libraries
(filib, filib++, Boost, BIAS) for correctness, interval size, speed, and consistency.
The results are summarized in Table 1. The only library that is at the same time
correct, consistent, portable, and has a reasonable speed is filib, which does not
rely on using special hardware instructions to control the underlying rounding
mode.

We provide the complete source code and scripts to run our benchmark, and
in addition we provide a CMake build system for using filib on Windows, Linux,
and macOS operating systems with both x86 and ARM architectures. We believe
that our benchmark will be a useful tool to continue to assess the correctness of
existing interval libraries as new compilers and architectures are developed, and
also to provide a standardized set of tests for developers of interval libraries.

A Cross-Platform Benchmark for Interval Computation Libraries 417

2 Background

In the past two decades, numerous interval arithmetic libraries have been devel-
oped in various languages. While the logic behind interval arithmetic has been
explored in many works [3,12], the actual implementations vary from library to
library and may produce different results.

2.1 Hardware Rounding Mode Control

Many modern programming languages comply with the IEEE 754 standard for
implementing floating point datatypes, which supports different rounding rules
(round to nearest, towards ∞, and towards −∞) [14]. These rounding modes
provide good lower and upper bounds on basic arithmetic operations. Libraries
like Boost [21] or CGAL [24] use this functionality to build interval operations.
Their implementation focuses on setting the correct rounding mode before calling
the default math library [4]. Other libraries like Profil/BIAS [16] and filib++ [18]
also use or include this implementation for basic algebraic operations.

Such strategies work well for basic arithmetic operations but require a lot of
care when computing transcendental functions, where many rounding changes
need to happen to evaluate a single transcendental function [10]. Some of them,
like CGAL, sidestep the problem by not supporting transcendental operations.

2.2 Software Implementations

It is possible to avoid relying on hardware rounding mode support by using a
pure software implementation. There are two main approaches.

Multiplicative. While it is hard to obtain the exact floating point error of an
expression, the relative error of single operations can be generalized [11,17] since
there are only a finite number of bits representing a number [7]. Hence, one can
carefully analyze the error to generate a number ε such that if the true result is
α and the computed result is β, (1 − ε)β ≤ α ≤ (1 + ε)β holds and 1 − ε, 1 + ε
can be exactly represented in floating-point. Filib++, BIAS, and GAOL [8] all
provide such implementations, although the choice of ε varies depending on how
the analysis is performed.

Changing Binary Representation. Since nowadays almost all floating-point num-
bers implementations follow the IEEE 754 standard, one can deconstruct the
binary representation of a number and directly change the result to obtain an
interval [1]. Filib and filib++ adopt this approach, by directly modifying the
mantissa and exponent of a double, generating a reasonably-small interval with-
out sacrificing performance.

2.3 Other Implementations

Some libraries rely on others as part of their implementation of interval arith-
metic. For example, IBEX [5] and XSC [13] both use filib as the backend for inter-
val computation. These libraries generally do not provide better performance or

418 X. Tang et al.

smaller interval width, but they focus on providing a more user-friendly inter-
face. Other interval libraries exist in other programming languages. For example,
IntervalArithmetic.jl [2] in Julia, interval-arithmetic [19] in Javascript. Since our
goal is on C/C++ libraries we do not include such libraries for our study.

3 Methodology

A good interval library should maintain four traits: (1) correctness, (2) small
interval widths, (3) efficiency, and (4) consistency across different architectures
and compilers. We design our benchmark to test these four traits. We recognize
that in many applications, an interval itself is initialized from a single num-
ber rather than an actual range since the goal is to compute an interval that
includes the true value of an expression. Hence, the initialization of an interval
in our benchmark is always from a single value. In our benchmark, we compare
the following four popular open source libraries that complies with IEEE 754
standard: filib, filib++, Boost, and BIAS.

Filib++ supports three modes for interval computations: native switched
(uses system rounding modes), pred succ (directly manipulates the bit repre-
sentation of a double), and multiplicative (multiplies two numbers to generate
an interval). BIAS includes three rounding modes (ROUND DOWN, ROUND
UP, and ROUND NEAR) which can be set before an interval operation. Their
documentation is unclear how an interval operation is affected by these rounding
modes, thus we treat them as three different interval types.

3.1 Expressions

We list the expressions that will later be referred to in this paper here:

a(a + bc)
(b + cd)

− d (e + f/g)
(g + h)

− i

j
(1)

cos
((

cos
(

cos(f) + exp
(

d

c

))) (
sin

(√
e + a + b − √

d + c
)))

(2)

exp

(√
exp

(√
exp

(√
a
)))

(3)

exp

⎛
⎝

√
exp (cos (a/d))/exp

(
cos

(√
f
))

√
cos(cos(cos(c)))/

√
sin(cos(b))

⎞
⎠ (4)

A Cross-Platform Benchmark for Interval Computation Libraries 419

3.2 Correctness

While libraries can optimize interval operations for every single arithmetic or
transcendental function, composite expressions that combine multiple operations
can potentially cause the library to produce incorrect (interval does not include
the true result) or empty (lower bound is greater than upper bound) intervals.
In our benchmark, we test each library on 28 different basic expressions and 104
expressions from FPBench [6], a floating point accuracy benchmark that covers
a variety of application domains. The basic benchmark is composed of: four basic
arithmetic operations (addition, subtraction, multiplication, and division); four
transcendental functions (sqrt, exp, sin, cos); ten composite expressions that only
contain basic arithmetic operations; and ten composite expressions containing
both arithmetic operations and transcendental functions. These expressions are
randomly generated from a fixed seed and listed on the website.

For each expression, we generate one million valid inputs for evaluation.
To ensure that the representation of the input and result are precise, and no
additional floating point error is introduced during validation, we convert every
input and output to rational format using GMP [9]. A typical query has the
form

nl

dl
≤ expression(

n1

d1
, . . .) ≤ nu

du

for n, d ∈ Z. Using this format, the queries can be evaluated later by an arbitrary
precision software to get an exact answer. In our benchmark, we use Mathe-
matica [27].

3.3 Interval Width

To report the interval width we utilize a similar procedure to when checking
correctness. Instead of outputting the actual query, we compute the interval
width by using a rational subtraction (i.e., we convert the upper and lower
bound to rational numbers).

3.4 Speed

To test the speed of an interval library, we measure the execution time for each
expression: we generate 1,000 inputs for each expression and execute the expres-
sion 10,000 times for every input. Finally, we accumulate the total execution
time for each library and expression to report the performance. It is important
to execute different sets of inputs since input values may affect the performance
of some operations due to range reduction.

3.5 Consistency and Portability

We deployed our benchmark on four different platforms with different compilers:

– Windows (Intel Core i7 8700k, x86-64, Windows 10, MSVC 14.27.29110)

420 X. Tang et al.

– macOS Intel (2.4 GHz 8-Core Intel Core i9, x86-64, macOS Big Sur, Darwin
Kernel Version 20.1.0, Apple clang version 12.0.0)

– macOS Arm (3.2 GHz 4-Core/2 + 2 GHz 4-Core Apple M1, arm64, macOS
Big Sur, Darwin Kernel Version 20.1.0, Apple clang version 12.0.0)

– Linux (AMD EPYC 7452 32-Core Processor, x86-64, Ubuntu 19.10, GCC
9.2.1).

4 Results

We discuss in detail how each interval type perform over different platform and
expressions.

4.1 Correctness

As discussed before, we test each library on 28 (constructed by us) and 104
(extracted from FPBench) expressions. We check for correctness by ensuring
that the interval computation produces an interval containing the exact solution,
evaluated with arbitrary precision with Mathematica [27].

We begin with the 28 expressions. All of the libraries produce correct results
for basic arithmetic operations. However, when it comes to transcendental func-
tions, Boost is not correct (since it deals with transcendental functions by setting
rounding modes before calling the standard math library). Specifically, it fails
for exp and trigonometry functions, where the implementation is based on Tay-
lor expansion [10]. For composite expressions that only contain basic arithmetic
operations, all libraries are correct. When transcendental functions are included
in a composite expression, BIAS produces incorrect intervals for Expression (2).

Filib and filib++’s three interval modes are correct for the 28 expressions,
the native switched mode for filib++ is not correct on four of the expressions
from FPBench. For example, “polarToCarthesian, x”, that computes

r cos(θ · (3.14159265359/180.0))

which contains transcendental function cos. Another example is the expression
“sineOrder3”

(0.954929658551372x0) − (0.12900613773279798((x0 x0)x0))

which only contains basic arithmetic operations, and is designed to find floating
point problem caused by the order of evaluation.

We conclude that only filib and filib++’s pred succ and multiplicative
modes produce correct intervals for all tests.

A Cross-Platform Benchmark for Interval Computation Libraries 421

4.2 Interval Width

Due to the large number of test expressions, we show only some of the most
representative expressions. Specifically, we look at one expression that contains
only arithmetic operations (Expression (1)), one expression that contains only
transcendental functions (Expression (3)), and one that contains both (Expres-
sion (4)).

Windows Mac Linux ARM

P
er
ce
n
ta
g
e

P
er
ce
n
ta
g
e

P
er
ce
n
ta
g
e

Fig. 2. Distribution of interval width. Top: Expression (1). Middle: Expression (3).
Bottom: Expression (4)

Across the different platforms, the distribution of interval width does not vary
much. However, within each platform, the distribution of interval width can be
quite different between libraries. The top row of Fig. 2 shows that for expres-
sions that contain only arithmetic operations, libraries that use system rounding
modes (Boost, filib++ native switched, BIAS) produce smaller interval widths
compared to others. The multiplicative mode of filib++ produces the largest
interval widths. However, the differences are small across libraries.

When transcendental functions are added into the expression, the interval
widths can be unpredictable (Fig. 2). The difference of overall distribution of
the libraries can also be quite large depending on the expression, but within filib
and filib++’s three interval modes, the interval widths are quite similar. We also
see that Boost produces empty intervals, an indication that Boost’s results are
sometimes incorrect.

422 X. Tang et al.

4.3 Performance

We show the accumulated time in milliseconds for each expression on the Linux
platform since the relative performance across platforms is similar. We also high-
light the fastest method for each expression. From Table 1, we see that Boost
has the worst performance on all of the 28 expressions, followed by BIAS, then
filib. While filib++’s native switched mode also sets rounding mode for basic
arithmetic operations, it is highly optimized and is significantly faster than the
other two libraries.

Single Operations Arithmetic Expressions Random Expressions

T
im

e(
m
s)

Fig. 3. Time for each expression (1,000 × 10,000 runs) in ms on Linux.

Table 1. Time for each expression (1,000 × 10,000 runs) in ms on Linux. The relative
timings are similar on different platforms and OS. The complete results can be found
on our github page.

FILIB C BOOST NATIVE SWITCHED MULTIPLICATIVE PRED SUCC BIAS UPWARD BIAS DOWNWARD BIAS NEAR

ADDITION 66.52 405.78 18.49 3.94 3.92 327.93 328.69 327.94

SUBTRACTION 80.08 405.35 18.37 9.20 3.90 327.60 327.44 327.44

MULTIPLICATION 78.40 649.62 25.81 13.59 90.03 339.43 338.87 338.61

DIVISION 84.43 451.78 38.13 68.97 81.12 344.25 343.87 344.13

SQUARE ROOT 84.85 434.21 24.19 24.26 24.18 61.76 60.44 60.40

EXPONENTIAL 199.08 462.47 143.28 143.43 143.43 196.44 196.34 200.39

SIN 202.25 7115.77 171.54 172.79 172.94 2088.65 2088.34 2087.43

COS 190.21 6776.14 168.64 168.65 168.54 2425.19 2424.21 2423.90

ARITHMETIC EXPRESSION 1 861.49 6848.71 1969.52 589.98 1053.79 4126.49 4097.03 4091.17

ARITHMETIC EXPRESSION 2 1292.77 23227.45 3170.62 699.40 1040.81 5706.45 5672.61 5661.78

ARITHMETIC EXPRESSION 3 1844.20 15082.05 4984.85 1318.50 1900.36 7790.34 7769.46 7757.53

ARITHMETIC EXPRESSION 4 3758.37 30943.47 11407.83 2354.18 4077.55 16086.02 16062.78 16054.29

ARITHMETIC EXPRESSION 5 2635.54 21860.23 7910.95 1626.65 2888.93 10891.99 10883.80 10871.13

RANDOM EXPRESSION 1 2449.01 55822.93 3454.41 2112.71 2350.52 12849.99 12853.38 12858.24

RANDOM EXPRESSION 2 1354.32 4737.32 1465.94 1441.29 1440.93 1323.64 1327.30 1324.32

RANDOM EXPRESSION 3 3382.98 69212.48 5741.97 2945.31 3689.13 17524.99 17485.55 17498.33

RANDOM EXPRESSION 4 3067.34 56868.36 4927.13 3063.33 3593.86 17996.21 17975.26 17973.13

RANDOM EXPRESSION 5 5870.61 121944.99 9633.84 5146.98 6081.06 32546.81 32577.18 32540.89

Within filib++, the performance of the three modes on basic oper-
ations is comparable. However, for more complex arithmetic expressions,
native switched mode is consistently the slowest, likely because it changes
the rounding mode for each operations. The multiplicative mode is always the
fastest, while pred succ method is between the two. Since filib++ ignores inter-
val mode when computing transcendental functions, the performance on sqrt,

https://geometryprocessing.github.io/intervals/#/

A Cross-Platform Benchmark for Interval Computation Libraries 423

exp, sin, cos are similar. As a result, when computing more complicated expres-
sions, multiplicative mode remains the fastest one among three modes and among
all the interval types, followed by pred succ mode, then native switched mode.
Although the speed of filib++ can drop below filib or even BIAS on some expres-
sions, the relative difference is minimal.

4.4 Consistency and Portability

While Boost can be deployed on all platforms we test on, it does not produce
consistent results due to its system specific rounding modes.

While filib++ does well in terms of both correctness and speed, it does not
produce the same result across different platforms: we found that it produces
different results on the Linux platform. As seen in Fig. 4, the pred succ’s distri-
bution of interval width differs from Linux to Mac. Additionally, its portability is
limited due to the lack of updates since 2011 and the use of autoconf to generate
the makefile.1

xuniLcaM

P
er
ce
n
ta
g
e

Fig. 4. Distribution of each library’s interval width on expression 2, normalized.

BIAS is not maintained2 and currently does not compile out of the box on
modern windows and macOS versions. We thus only tested it on Linux.

4.5 Application on Continuous Collision Detection Queries

As a further benchmark of correctness, we integrate three interval libraries in the
continuous collision detection (CCD) benchmark of [26]. The CCD benchmark
features two interval based algorithms to detect collisions along a continuous lin-
ear trajectory. Both the univariate and multivariate interval-based CCD perform
interval-based bisection root finding [22] and use interval arithmetic to compute

1 filib++ source: http://www2.math.uni-wuppertal.de/wrswt/software/filib.html,
last updated in 2011.

2 BIAS source: https://www.tuhh.de/ti3/keil/profil/index e.html, last updated in
2009,.

http://www2.math.uni-wuppertal.de/wrswt/software/filib.html
http://www2.math.uni-wuppertal.de/wrswt/software/filib.html
https://www.tuhh.de/ti3/keil/profil/index_e.html
https://www.tuhh.de/ti3/keil/profil/index_e.html

424 X. Tang et al.

an estimate of the codomain of a function. The correctness of the interval arith-
metic ensures that no false negatives (no collision is reported when there is a
collision) occur and smaller interval width helps to reduce the number of false
positives (a collision is reported when there is no collision).

T
im

e(
u
s)

Fig. 5. Average time of each query using different interval types on different platform
in univariate interval root finder test.

T
im

e(
u
s)

Fig. 6. Average time of each query using different interval types on different platform
in multivariate interval root finder test.

Timing-wise (Fig. 5, 6), all libraries are in a similar ballpark, with the excep-
tion of Boost being slightly slower than the others in certain tests.

C
o
u
n
t

Fig. 7. Number of false positives using different interval types on different platform in
univariate interval root finder test.

None of the libraries produces false negatives in this benchmark. The num-
ber of false positives varies as expected, as the intervals are different (Fig. 7,
8). It is concerning to see that Boost and filib++’s native switched produce
different numbers of false positives on different architectures. filib, filib++’s
pred succ, and filib++’s multiplicative method produce consistent results
across all operating systems and architectures.

A Cross-Platform Benchmark for Interval Computation Libraries 425

C
o
u
n
t

Fig. 8. Number of false positives using different interval types on different platform in
multivariate interval root finder test.

5 Conclusion

In this paper, we designed a benchmark that tests interval libraries for correct-
ness, interval width, speed, and consistency. Using our benchmark we evaluated
four interval libraries: filib, filib++, Boost, and BIAS (Table 1). We also provide
the complete results along with all the expressions on our github page.3

In our study, filib is the only library that is correct, consistent, portable, and
efficient. We believe it is the best option between the libraries we tested. To
make deployment on multiple platforms easier, we provide a copy of the library
with a modern cmake build system on github.4

References

1. Abrams, S., et al.: Efficient and reliable methods for rounded-interval
arithmetic. Comput.-Aid. Des. 30(8), 657–665 (1998). https://doi.org/10.
1016/S0010-4485(97)00086-9, http://www.sciencedirect.com/science/article/pii/
S0010448597000869

2. Benet, L., Sanders, D.: Juliaintervals.jl package - Rigorous numerics with
interval arithmetic & applications (2015). https://github.com/JuliaIntervals/
IntervalArithmetic.jl

3. Benhamou, F., Older, W.J.: Applying interval arithmetic to real, integer, and
Boolean constraints. J. Logic Program. 32(1), 1–24 (1997). https://doi.org/10.
1016/S0743-1066(96)00142-2, http://www.sciencedirect.com/science/article/pii/
S0743106696001422

4. Brönnimann, H., Melquiond, G., Pion, S.: The design of the Boost interval
arithmetic library. Theor.l Comput. Sci. 351(1), 111–118 (2006). https://doi.
org/10.1016/j.tcs.2005.09.062, http://www.sciencedirect.com/science/article/pii/
S0304397505006110, real Numbers and Computers

5. Chabert, G.: IBEX (2007). http://www.ibex-lib.org/
6. Damouche, N., Martel, M., Panchekha, P., Qiu, C., Sanchez-Stern, A., Tatlock,

Z.: Toward a standard benchmark format and suite for floating-point analysis. In:
Bogomolov, S., Martel, M., Prabhakar, P. (eds.) NSV 2016. LNCS, vol. 10152, pp.
63–77. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54292-8 6

3 https://geometryprocessing.github.io/intervals/.
4 https://github.com/txstc55/filib.

https://doi.org/10.1016/S0010-4485(97)00086-9
https://doi.org/10.1016/S0010-4485(97)00086-9
http://www.sciencedirect.com/science/article/pii/S0010448597000869
http://www.sciencedirect.com/science/article/pii/S0010448597000869
https://github.com/JuliaIntervals/IntervalArithmetic.jl
https://github.com/JuliaIntervals/IntervalArithmetic.jl
https://doi.org/10.1016/S0743-1066(96)00142-2
https://doi.org/10.1016/S0743-1066(96)00142-2
http://www.sciencedirect.com/science/article/pii/S0743106696001422
http://www.sciencedirect.com/science/article/pii/S0743106696001422
https://doi.org/10.1016/j.tcs.2005.09.062
https://doi.org/10.1016/j.tcs.2005.09.062
http://www.sciencedirect.com/science/article/pii/S0304397505006110
http://www.sciencedirect.com/science/article/pii/S0304397505006110
http://www.ibex-lib.org/
https://doi.org/10.1007/978-3-319-54292-8_6
https://geometryprocessing.github.io/intervals/
https://github.com/txstc55/filib

426 X. Tang et al.

7. Goldberg, D.: What every computer scientist should know about floating-point
arithmetic. ACM Comput. Surv. 23(1), 5–48 (1991). https://doi.org/10.1145/
103162.103163

8. Goualard, F.: Gaol: NOT Just Another Interval Library (2005). https://
sourceforge.net/projects/gaol/

9. Granlund, T., Team, G.D.: GNU MP 6.0 Multiple Precision Arithmetic Library.
Samurai Media Limited, London, GBR (2015)

10. Harrison, J., Tak, P., Tang, P.: The Computation of Transcendental Functions on
the IA-64 Architecture. Intel Technol. J. 4, 234–251 (1999)

11. Harrison, J.: Formal verification of floating point trigonometric functions. In: Hunt,
W.A., Johnson, S.D. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 254–270. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-40922-X 14

12. Hickey, T., Ju, Q., Van Emden, M.H.: Interval arithmetic: from principles to imple-
mentation. J. ACM 48(5), 1038–1068 (2001). https://doi.org/10.1145/502102.
502106

13. Hofschuster, W., Krämer, W.: C-XSC 2.0 – A C++ library for extended scientific
computing. In: Alt, R., Frommer, A., Kearfott, R.B., Luther, W. (eds.) Numerical
Software with Result Verification. LNCS, vol. 2991, pp. 15–35. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24738-8 2

14. IEEE: IEEE standard for binary floating-point arithmetic. ANSI/IEEE Std 754–
1985, pp. 1–20 (1985). https://doi.org/10.1109/IEEESTD.1985.82928

15. Kearfott, R.: Interval computations: introduction, uses, and resources. Euromath
Bulletin 2 (1996)

16. Knüppel, O.: PROFIL/BIAS—A fast interval library. Computing 53(3), 277–287
(1994). https://doi.org/10.1007/BF02307379

17. Lefevre, V., Muller, J.: Worst cases for correct rounding of the elementary functions
in double precision. In: Proceedings 15th IEEE Symposium on Computer Arith-
metic. ARITH-15 2001, pp. 111–118 (2001). https://doi.org/10.1109/ARITH.2001.
930110

18. Lerch, M., Tischler, G., Gudenberg, J.W.V., Hofschuster, W., Krämer, W.:
FILIB++, a fast interval library supporting containment computations. ACM
Trans. Math. Softw. 32(2), 299–324 (2006). https://doi.org/10.1145/1141885.
1141893

19. Poppe, M.: interval-arithmetic (2015). https://github.com/mauriciopoppe/
interval-arithmetic

20. Redon, S., Kheddar, A., Coquillart, S.: Fast Continuous Collision Detection
between Rigid Bodies. Comput. Graphics Forum 21 (2002)

21. Schling, B.: The Boost C++ Libraries. XML Press (2011)
22. Snyder, J.: Interval Analysis For Computer Graphics. In: ACM SIGGRAPH,

pp. 121–130. ACM (August 1992). https://www.microsoft.com/en-us/research/
publication/interval-analysis-computer-graphics/

23. Snyder, J.M., Woodbury, A.R., Fleischer, K., Currin, B., Barr, A.H.: Interval Meth-
ods for multi-point collisions between time-dependent curved surfaces. In: Proceed-
ings of the 20th Annual Conference on Computer Graphics and Interactive Tech-
niques, pp. 321–334. SIGGRAPH ’93, Association for Computing Machinery, New
York, NY, USA (1993)

24. The CGAL Project: CGAL User and Reference Manual. CGAL Editorial Board,
5.3 edn. (2021). https://doc.cgal.org/5.3/Manual/packages.html

25. Tibken, B., Hofer, E.P., Seibold, W.: Quality control of valve push rods using
interval arithmetic. IFAC Proc. 32(2), 409–412 (1999), 14th IFAC World Congress
1999, Beijing, Chia, 5–9 July

https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163
https://sourceforge.net/projects/gaol/
https://sourceforge.net/projects/gaol/
https://doi.org/10.1007/3-540-40922-X_14
https://doi.org/10.1145/502102.502106
https://doi.org/10.1145/502102.502106
https://doi.org/10.1007/978-3-540-24738-8_2
https://doi.org/10.1109/IEEESTD.1985.82928
https://doi.org/10.1007/BF02307379
https://doi.org/10.1109/ARITH.2001.930110
https://doi.org/10.1109/ARITH.2001.930110
https://doi.org/10.1145/1141885.1141893
https://doi.org/10.1145/1141885.1141893
https://github.com/mauriciopoppe/interval-arithmetic
https://github.com/mauriciopoppe/interval-arithmetic
https://www.microsoft.com/en-us/research/publication/interval-analysis-computer-graphics/
https://www.microsoft.com/en-us/research/publication/interval-analysis-computer-graphics/
https://doc.cgal.org/5.3/Manual/packages.html

A Cross-Platform Benchmark for Interval Computation Libraries 427

26. Wang, B., Ferguson, Z., Schneider, T., Jiang, X., Attene, M., Panozzo, D.: A
large scale benchmark and an inclusion-based algorithm for continuous collision
detection. ACM Trans. Graphics 40(5) (2021)

27. Wolfram Research Inc.: Mathematica 12.0 (2020). http://www.wolfram.com
28. Zorin, D.: A method for analysis of C1-continuity of subdivision surfaces. SIAM J.

Num. Anal. 37(5), 1677–1708 (2000). https://doi.org/10.1137/s003614299834263x

http://www.wolfram.com
https://doi.org/10.1137/s003614299834263x

Testing Interval Arithmetic Libraries,
Including Their IEEE-1788 Compliance

Nathalie Revol1(B) , Luis Benet2 , Luca Ferranti3 , and Sergei Zhilin4

1 INRIA - LIP UMR 5668, ENS Lyon, University Lyon 1, Inria,
CNRS, Lyon, France

Nathalie.Revol@inria.fr
2 Instituto de Ciencias F́ısicas, Universidad Nacional Autónoma de México,

Cuernavaca, Mexico
benet@icf.unam.mx

3 University of Vaasa, Vaasa, Finland
luca.ferranti@uwasa.fi

4 CSort LLC, Barnaul, Russia

szhilin@gmail.com

Abstract. As developers of libraries implementing interval arithmetic,
we faced the same difficulties when it came to testing our libraries. What
must be tested? How can we devise relevant test cases for unit testing?
How can we ensure a high (and possibly 100%) test coverage? In this
paper we list the different aspects that, in our opinion, must be tested,
giving indications on the choice of test cases. Then we examine how sev-
eral interval arithmetic libraries actually perform tests. Next, we present
two existing frameworks developed specifically to gather test cases and
to incorporate easily new libraries in order to test them, namely JIn-
terval and ITF1788. Not every important aspects of our libraries fit in
these frameworks and we list extra tests that we deem important, but
not easy, to perform.

Keywords: Unit tests for interval arithmetic libraries · Test cases for
interval arithmetic · Testing IEEE 1788–2015 compliance

1 Introduction

Many libraries implement interval arithmetic, from XSC [1] and FILIB [2] among
the pioneers, to Octave/Interval [3], ValidatedNumerics.jl [4] and Moore [5] for
the more recent ones. An early comparison of several libraries [6] indicated that
the underlying approach of the definition of interval arithmetic was, more or
less, different and specific to each library. It was thus impossible to compare
the results obtained by different libraries, as so many differences impacted the
computations. To enable comparisons, it was decided to standardize interval
arithmetic. A collective effort, launched in 2008, led to the standardization of
interval arithmetic, specified in the IEEE 1788–2015 standard [7].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 428–440, 2023.
https://doi.org/10.1007/978-3-031-30445-3_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_36&domain=pdf
http://orcid.org/0000-0002-2503-2274
http://orcid.org/0000-0002-8470-9054
http://orcid.org/0000-0001-5588-0920
http://orcid.org/0000-0002-6961-1358
https://doi.org/10.1007/978-3-031-30445-3_36

Testing Interval Arithmetic Libraries 429

The development of IEEE 1788–2015 compliant libraries, and thus the com-
parison of their results, was therefore made possible. However, before even con-
sidering comparisons between libraries, the developers of an interval arithmetic
library need to check their developments, to ensure that their library behaves
correctly, in particular with respect to IEEE 1788–2015 compliance. How do they
usually proceed? Through intensive tests. Formal proof that each operation is
correct is the next step, but it will not be considered in what follows.

Another use of tests is, for users, at installation time, to check that the
newly installed library behaves properly on one’s platform. This is not a 100%
guarantee of correctness, but it increases the user’s confidence.

Developers test for many aspects of their libraries, not only for IEEE 1788–
2015 compliance, but also for instance the handling of exceptional or invalid
inputs and so on. Unit tests are very common: for each operation or function, one
prepares a set of inputs and checks whether the library computes the expected
output, or at least an enclosure of it. Rapidly, the developers realize that, in order
to get sufficient confidence in the implementation of a given operation, in order
to test a high enough coverage of the code (or 100% of it), a huge number of cases
must be tested. This implies that, for each implemented operation, a large part of
the development time is devoted to devising these test cases. We are developers
of different libraries, we faced the same situation and we elaborated similar tests.
We decided to make our expertise easily available to everyone interested. The
preliminary result of this collaboration is the content of this article.

In what follows, we propose to list, in Sect. 2, the different features that
must be tested. We then compare, in Sect. 3, this list of recommended tests with
the tests that are actually included in some well-known libraries (for which we
have access to their test suites). Our goal is to devise test cases for each situa-
tion we have identified and to share them: in Sect. 4 we introduce two existing
frameworks that, on the one hand, ease the integration of a new library to be
tested, and that, on the other hand, offer a significant set of test cases, as well
as a convenient mechanism to add new ones. As no setup is perfect, in Sect. 5,
we then give a list of other types of tests deemed useful in our development of
interval arithmetic libraries, but still missing. Our short- to midterm-goal is to
enrich and share test suites, and to enhance the capabilities of the frameworks
introduced in Sect. 4.

2 What Must Be Tested?

Testing floating-point arithmetic has been studied thoroughly, as testified by
Nelson Beebe’s web page for software [8] and more generally by the huge amount
of bibliographic references and of available programs. Similarly, in this article,
we gather and organize the important features that must be tested in order to
assess the correctness, compliance and possibly quality of a library implementing
interval arithmetic.

430 N. Revol et al.

2.1 General Remarks About Unit Tests

Let us denote by L the tested library, and intervals using boldface: x, y. We
focus here on unit tests, for a function, denoted by f . A unit test case is a pair
composed of the input argument x and the expected output y.

First, the output y must be the tightest representable interval enclosing f(x);
otherwise a very accurate library could compute z such that z � y and still
z ⊇ f(x). To ensure the tightness property for y, typically, one computes the
endpoints y and ȳ of y = [y, ȳ] using a precision higher than the computing
precision of L. Let us illustrate this with L using Binary64 floating-point num-
bers, on the (simple) example of the exponential function. We assume that the
given floating-point implementation of exp does not provide correct rounding,
but that, for any precision q, it satisfies RDq(exp(x)) ≤ exp(x) ≤ RUq(exp(x))
for RDq rounding downwards and RUq rounding upwards, both in precision
q. Given x = [x, x̄], to compute the infimum y of y, one gets the approxima-
tions RDq(exp(x)) and RUq(exp(x)) of exp(x) in high precision q, and finally
round them downwards in the target precision = 53. If RD53(RDq(exp(x))) and
RD53(RUq(exp(x))) are equal, then they are the sought value y for the infimum
of exp(x).

Once the test cases are devised, what conclusions can be drawn from the
comparison between y and z the result computed by L? Requiring equality may
be too demanding. Inclusion is required, but we want to dismiss, for instance,
an implementation of sin that returns [−1, 1] for any argument. If the accuracy
of the function is given in the specification of the library, how can it be used and
checked?

A last general recommendation is to incorporate the following procedure: if
(x,y) is given as a pair of input and output, pick at random (a reasonably large
number of) values x ∈ x and check whether f(x) ∈ y with f(x) computed by
the underlying arithmetic, and whether f([x, x]) ⊆ y. Those tests are discon-
nected from the knowledge of the implementation of f and may hit a zone not
considered (forgotten) in the development of f , such as an overlooked quadrant
for a trigonometric function.

2.2 Tests Common to All Interval Arithmetic Libraries

– Easy test cases. First, easy cases are tested: these test cases are both easy
to devise and easy to compute. They constitute preliminary tests, at an early
stage of the implementation of the function, to identify and correct the most
obvious bugs. These test cases are chosen to cover, roughly speaking, the
various possible magnitudes of the arguments, but without any exhaustivity.
They also span positive and negative values, if the domain and range of the
function so permit.

– Special and exceptional values. A time-consuming task, when implement-
ing a function, is the handling of special and exceptional values. In floating-
point arithmetic, 0 is a special value, because it has two representations, +0
and −0, that is, signed zeros. It is thus valuable to test whether one gets the

Testing Interval Arithmetic Libraries 431

same result, independently of the sign of the representation of 0, when 0 is
an endpoint of either an input argument or of the output.
1 is not a special value for floating-point arithmetic. However, it is often
considered as a special value, for instance for the logarithmic functions and
the arc-cosine: its image is the special value 0.
Infinities are also special values in floating-point arithmetic. If they are
supported by the library, one must have test cases containing infinities as
their endpoints, both for inputs and for outputs. If infinities are not sup-
ported by the library, it is even the more so important to test input argu-
ments that yield overflow, such as the addition or the multiplication of
[c ∗ MAXREAL, MAXREAL] by itself, with c either 0 or c = 0.75. Another
example is exp([x, x̄]) with x such that exp(x) is rather small and x̄ such that
exp(x̄) overflows, or both x and x̄ such that their exponential overflow.
Again, when floating-point arithmetic is used, NaN is an exceptional value,
that is the result of an invalid computation. How is a NaN handled when it
occurs as the endpoint of an input interval? The answer should be that, even
if it has no mathematical meaning, in practice NaNs propagate. Some libraries
use NaN to denote the emptyset, as is the case in Intlab [9]. Care must then
be taken for the union or intersection of two intervals.

– Cornercases. Another family of test cases is designed in order to test the
difficulties encountered during the implementation, such as difficult-to-round
values, or values at the boundaries of the domain of the function, or close
to points whose image is an extremum. A typical example is a floating-point
input close to an integer multiple of π

2 , for trigonometric functions. The var-
ious tools for testing floating-point arithmetic can be a source of inspiration.
Indeed, with floating-point arithmetic, as there is a sudden change in absolute
error between two consecutive floating-point numbers when the binade (i.e.
an interval of the form [2k, 2k+1) with k ∈ Z) changes, it is worth exploring
several binades, both for the inputs and output values. This is particularly
true for mid-rad representation of the intervals, that is, the representation
of intervals by their midpoint and radius. With floating-point arithmetic,
another delicate zone concerns subnormal numbers (i.e., numbers with the
minimum possible exponent). Test cases should contain intervals [0, x̄] and
[x, x̄] such that x and x̄ are subnormals – for the logarithmic functions, or
intervals [x, x̄] such that their exponential has subnormal endpoint(s).

– Functions specific to intervals. Functions such as the union (convex hull
of the union) or the intersection must be tested when one, or both endpoints
are special or exceptional values, or when one argument is the empty set, if
it is supported by the library.
Functions such as the midpoint or radius have been thoroughly studied in [10],
test cases can be taken from this reference.

– Input and Output. Finally, I/O is the place where the most unexpected
things can happen: much creativity is needed to cover a large variety of input
values given as strings.

432 N. Revol et al.

2.3 Tests About IEEE-1788 Compliance

The IEEE 1788–2015 standard [7] was developed to enable comparisons of inter-
val methods and their implementation. It mandates operations in Sect. 9; it
provides “hooks” to integrate several flavors of interval arithmetic and it defines
the so-called “set-based” flavor along with its set of recommended operations
in Sect. 10; it mandates that intervals are decorated with flags that sum up the
history of their computation (such as “every operation and function involved in
this computation is defined and continuous on its arguments”) in Sect. 8. It also
specifies the handling of exceptions in Sect. 12.1.3 and the grammar for I/O in
Sect. 13. Last but not least, it offers the possibility to return either the tightest
possible result, or simply an accurate one, or a valid one in Sect. 12.10.1. “Com-
pressed arithmetic” will not be mentioned, as it is not yet widely used. Testing
IEEE 1788–2015 compliance means testing all of these aspects:

– testing flavor compliance: each test case must be accompanied with the
indication of the corresponding flavor: how can it be specified? If several
flavors are tested (once they are defined by a new revision of the standard),
either the testing framework or the library must offer a mechanism to change
the current flavor in use. This is needed to test for instance ∅ + [1, 2] or
exp([−∞, 0]) in the set-based flavor and then [3, 2] + [4, 1] in the (future?)
Kaucher flavor.

– required functions / recommended functions: the standard mandates
that some functions are implemented by the library, such as cosh, but only
recommends other ones, such as expm1 (expm1(x) = exp(x) − 1) for the set-
based flavor. The tests must allow for executing functions if they exist in the
library but not crashing when a recommended function is not available.

– testing decorations: the set-based flavor defines 5 decorations. To test every
possible meaningful combination of decorations for inputs and output, one
must devise close to 5 test cases for unary operations and up to 25 test cases
for binary operations. Care must be taken to exhaust the complete list of
possibilities.

– testing the different accuracies: tightness/accurate/valid: we already
discussed the difficulty to validate a computed result, to compare it with the
expected output, when it is not the tightest possible one. The standard defines
three possible levels of accuracy. Test cases must include all three possibilities
for each pair of input and output, and check if the corresponding levels are
available in the library. They must include the description of this level, the
testing framework must be able to check whether the result is tight or valid
(both are easy), or accurate (by computing the enclosing interval that is only
slightly larger, as defined by the standard).

– exceptional behavior: exceptions have already been mentioned above. The
standard defines the different exceptions that must be signalled, the test cases
must include these exceptions and check whether the correct exception is
signalled.

– standard specific I/O system: the standard defines precisely the various
forms of inputs and outputs. At least one test case per form must be present

Testing Interval Arithmetic Libraries 433

in the test case. If one wants to test every possibility, with at most 3 values
for each variable field lengths, one obtains a thousand test cases.

2.4 Tests Specific to Some Libraries

Some libraries must need specific test cases, corresponding to their specificities.

– Representations of intervals. A library that uses, for instance, the mid-
rad representation of intervals must test that operations and I/O operate
correctly on this representation. There are libraries that keep track of the
openness or closedness of each endpoint: test cases must be provided to check
that this information is correctly computed. If each possibility is tested, this
can multiply by 4 the number of test cases. Some libraries do not employ
floating-point types to represent intervals, either in inf-sup or mid-rad repre-
sentation. Exact rational numbers can be used instead, as in MPRIA [11] and
JInterval [12]. Other libraries, such as ARB [14], also allow complex intervals,
that is, they use complex arithmetic as their underlying arithmetic.

– Precision. A library that accomodates several floating-point formats, such
as Binary32 and Binary64, must test that it operates soundly with both
formats and with combinations of both. Moreover, a library that uses arbi-
trary precision, such as MPFI [13] or ARB [14] must include tests for largely
varying precisions, without claiming exhaustivity.

– Directed roundings. In order to guarantee the inclusion property, libraries
rely on directed roundings. They must have tests which are specific to how
directed rounding is achieved. If it is achieved by changing the rounding mode,
ideally it should be tested that this is thread safe and that using multiple
threads doesn’t lead to undefined behavior. If it is achieved via software, by
emulating directed rounding in round to nearest (as it is done e.g. by default
in IntervalArithmetic.jl), then they very likely rely heavily on the use of Error-
Free Transforms, or EFT in short. Thus, hard to round cases and corner cases
for EFT (when it overflows, underflows, returns NaN) should also be tested.

2.5 On Tests Timing

An important issue related to tests is time. To illustrate this question, let us
mention that MPFI currently implements about 30 test cases for each function,
and running the tests (make check) takes 20 s of user’s time on a reasonably
fast PC. If all these recommended test cases were implemented, there would be
at least a few hundred test cases, at most a few thousands. The testing time
will be multiplied according by a factor between 10 and 100. Shall we stick to
our limited number of test cases and risk to have not enough tests performed, or
shall we risk to have a more complete test cases coverage and no test performed
at all, because of the time it takes? This latter risk decreases when the library
is stable, as tests are performed once and for all at installation time and this is
not frequent.

434 N. Revol et al.

2.6 Need for a Unified Framework for Testing Interval Arithmetic
Libraries

While there are several shared features between all interval arithmetic libraries,
they are all also somehow unique in design choices (how to handle direct round-
ing, tightness vs speed, etc.). This calls for a unified framework to test interval
arithmetic libraries. This has several benefits. First, a standard framework makes
it easier to compare libraries against each other. It would also offer a tool for
developers, to easily verify whether their library is compliant with the stan-
dard or not. Finally, an important use case of interval arithmetic is to perform
rigorous computations, that can be used as mathematical proofs. While sev-
eral theorems for rigorous computations have been proved, they all rely on the
assumption that the underlying implementation of interval arithmetic is correct.
For this reason, a unified testing framework, developed through inputs from
several interval libraries developers, would increase the reliability of all libraries.

Based on the above discussion, we identify the following requirements in a
unified interval testing framework:

1. Modularity: tests should be structured in a modular way, to allow users and
developers choosing what parts to test. For example, tests for decorated inter-
vals should be separated from tests for bare intervals. Tests for recommended
functions should be separated from tests for required functions.

2. Completeness: there should be tests for all functions required and recom-
mended by the standard. The tests should contain both some simple normal
cases and cornercases, as well as exceptional behavior (handle NaN, overflow,
underflow) and hard to round cases for finite precision data types.

3. Support for different number systems: allow to test when the bounds
of the interval are Binary64, Binary32, arbitrary precision floats etc.

4. Test for tightness: verify that the computed interval is the smallest valid
interval.

5. Test for validity: achieving tight bounds can be challenging or at least
computationally expensive. Libraries at early stages or libraries with a focus
on efficiency may prefer to test only that the computed interval is valid, i.e.
an enclosure of the expected result. A unified framework should allow the
user to switch between testing tightness and validity, ideally also allowing to
set a threshold on how much wider the returned interval is allowed to be.

6. Self-validated: it should be possible for the user to verify that the results
expected by the tests are indeed correct.

3 Interval Arithmetic Libraries and Their Test Sets

During decades, several interval arithmetic libraries have been developed, each
with its own design choices. Since we are interesting in testing, here we only list
some of the ones for which tests are freely available.

1. MPFI [13]: C library for arbitrary precision interval arithmetic. Based on
MPFR. Unit tests for each function: some “easy” values, exceptions, exact
cases. Currently not IEEE-1788 compliant.

Testing Interval Arithmetic Libraries 435

2. JInterval [12,18]: Java library providing preliminary standard IEEE P1788
compliant exact implementation of interval arithmetic operations and con-
trollable arbitrary precision for elementary functions. Use the set of rational
numbers extended by −∞ and +∞ as a basic number type for intervals end-
points. On top of this implementation, tightest approximations of interval
arithmetic and elementary functions are supported for float types binary16,
binary32, binary64, binary128, etc.

3. libieeep1788 [20,21]: C++ implementation of the preliminary IEEE P1788
standard. Relies on MPFR. Unit tests for IEEE-1788 compliance.

4. Octave interval package [3,22]: GNU Octave interval arithmetic package
compliant with the standard. Test sets derived from libieeep1788, MPFI,
C-XSC, FILIB plus several new tests for most of the standard functions. These
tests constitute the current ITF1788 testsuite. Relies on MPFR for both
arithmetic operations and elementary functions.

5. ValidatedNumerics.jl [4,23]: Julia set of packages for interval arithmetic
and applications. Currently not conformant with the standard. By default,
direct rounding is handled via the software emulator RoundingEmulator.jl.
However, it also supports changing rounding modes. Correctly rounded ele-
mentary functions are computed via CRlibm when possible, and using MPFR
as fallback. For Binary64 bounds, uses the ITF1788 testsuite. Also has hard-
coded tests for other non-standard functionalities (complex intervals, interval
boxes, other number formats)

6. GAOL [24]: C++ library not compliant with the standard, e.g. lacks deco-
rated intervals. Tight bounds on arithmetic operations using round upwards
mode only. Supports CRlibm and IBM Accurate Portable Mathematical
Library for elementary functions computations. Uses its own unit tests.

4 Existing Frameworks

4.1 Why They Are Needed?

As a motivating example, consider Kuliamin’s paper [25] about testing floating-
point mathematical functions. The paper defines several criteria for devising
tests, such as considering exceptional cases (overflow, underflow, NaN), inputs
out of domain, special values (signed zero, subnormal numbers) etc.

However, this leads to more than 15,000 values to test for the exponential
function alone. When interval arithmetic is tested, this means that each endpoint
must take 15,000 values: the combinatorics (even if one restricts the tests to
proper intervals, where the left endpoint is not greater than the right endpoint)
are discouraging if one plans to develop individually, manually, such intensive
tests for each new library.

A natural way to increase effectiveness of individual libraries developers is to
unite their efforts in order to accumulate tests in a properly structured common
shared database of tests equipped by appropriate tools for tests usage. That is
why the frameworks briefly described in the next two subsections are worth our
attention.

436 N. Revol et al.

4.2 JInterval P1788 Test Launcher

P1788 Test Launcher [12,19] is an interval arithmetic libraries testing applica-
tion based on the JInterval library. The features of JInterval entail a freedom for
P1788 Test Launcher in the selection of computation modes corresponding to
a tested library.

P1788 Test Launcher loads dynamic libraries (.so/.dll) with third party
implementation of P1788 and checks the results obtained from a library with
the tightest results computed internally using JInterval. Operations and func-
tions from a tested library are called through the unified adaptor wrapper inter-
face which must be preliminary implemented for the library being checked.
The structure of the wrapper interface is adapted from C++ templates of
the libieeep1788 library. So, technically, the implementation of the inter-
face in most of cases boils down to overloading methods of libieeep1788
classes describing set-based flavor of interval arithmetic for Binary64 value
set as a rule. Wrappers for the following interval arithmetic libraries are
already included in P1788 Test Launcher: Profil/BIAS, boost/interval,
C-XSC, FILIB, libieeep1788, libMoore, MPFI.

The launcher reads tests from plain text files of simple human-readable for-
mat and writes the results computed using the tested library and JInterval and
their relation into a plain text report. Test set included in the Launcher con-
sists of over 14,000 tests which partly originated from libieeep1788, FILIB,
libMoore while the others are original.

4.3 ITF1788 – Interval Test Framework for IEEE 1788

The idea behind ITF1788 is to simplify the development of unit tests for an inter-
val arithmetic library independently of the programming language it is written
in, the testing framework used and library peculiarities, such as custom func-
tion names. ITF1788 is a Python engine for converting pre-calculated tests from
domain specific language, called the Interval Test Language (ITL), to the code of
unit tests according to the configuration describing the syntax of the language,
the testing framework and the interval library.

The notation of ITL is easy to read and write and covers all notions of IEEE-
1788 necessary to test an implementation. The following small example of test
description from [26] gives a general understanding of ITL composition.

/* Testing the addition function */
testcase addition.test {

add [-1.0, 1.0] [empty] = [empty];
add [1.0, 2.0] [3.0, infinity] = [4.0, infinity];
add [1.0, infinity] [-infinity, 4.0] = [entire];
// using hexadecimal notation
add [0X1.FFFFFFFFFFFFP+0] [0X1.999999999999AP-4] =

[0X1.0CCCCCCCCCCC4P+1, 0X1.0CCCCCCCCCCC5P+1];
}

Testing Interval Arithmetic Libraries 437

/* Testing the division function */
testcase division.test {

div [empty] [empty] = [empty];
div [-30.0, 15.0] [entire] = [entire];

}

ITF1788 inputs ITL-files and converts tests to the code of unit tests for
specified language, test framework and library.

One can easily customize ITF1788 to support new programming languages,
test frameworks and library specific features. The developer simply has to pre-
pare several YAML configuration files. Additional flexibility can be obtained
using implementation of Python callback functions for proper modifications of
ITF1788 output.

Original ITF1788 engine and accompanying test sets for IEEE-1788 compli-
ance testing have been developed by M. Kiesner, M. Nehmeier and J. Wolff von
Gudenberg [26]. Later O. Heimlich contributed a lot to the original project and
to its own fork of ITF1788 [27]. The latter now contains:

– configurations for programming languages C++, Octave, Julia, Python;
– configurations for test frameworks Boost Test Library, test frameworks for

Octave, Julia and Python;
– plugins for libraries:

• libieeep1788, C-XSC, GAOL, Ibex (in C/C++);
• interval package, INTLAB toolbox (in GNU Octave);
• pyIbex (in Python);
• ValidatedNumerics (in Julia).

– almost 10,000 tests in ITL.

Most of the tests accumulated in ITF1788 are derived from unit tests of C-XSC,
FILIB, MPFI, libieeep1788.

5 What Is Missing? A Roadmap for Testing

A first important requirement, which is perhaps too obvious but still worth
mentioning, is that a standard framework for tests must be open. It should also
be portable across architectures and languages, and be properly documented.
The ITF1788 test suite has developed an interesting approach to solve these
particular issues. This is achieved by introducing a domain specific language for
storing the unit tests, and allowing the user to pass the syntactic information
necessary of the language through the configuration of some files [26].

The unit tests of the ITF1788 suite cover numerous cases, including some
cornercases, allow modularity and allow to test the tightness (equality asser-
tion) or correctness (asserting containment). Both of these aspects are desirable

438 N. Revol et al.

and should be included with certain redundancy. For instance, to avoid that an
implementation of sin trivially returns [−1, 1] and passes all containment asser-
tions, tests that involve the radius of the returned interval (to be less than two)
can be introduced that break the trivial implementation.

Yet, the unit tests of the ITF1788 suite are restricted to the binary64 floating
point format. In our view, it is desirable to have the unit test coverage enlarged
to include unit tests for quadruple and extended precision, including different
precision values (e.g., 256, 512, 1024). Similarly, concrete tests should be included
for other IEEE754 numeric formats, such as binary32.

Other unit tests should choose randomly (floating-point) values x ∈ x and
evaluate that the inclusion f([x, x]) ⊆ f(x) holds true. While these tests are
certainly redundant, in particular if the implementation is correct, they serve
to check values not explicitly covered in previous tests, in particular worst-case
accuracy. Such tests may be particularly interesting during the early stages of
development, considering specially the power function and the transcendental
functions, in particular for extended precision intervals.

In other communities, also a priori interested in reliable computations,
“friendly competitions” are organized, to compare what each tool offers: meth-
ods, limitations, new aspects, etc. The code of the tools must be publicly avail-
able, and the benchmarks must be reproducible. See for instance https://cps-vo.
org/group/ARCH/FriendlyCompetition. Organizing such a friendly competition
would be a sane motivation for developers, to update and increase the depth of
unit tests.

6 Conclusions

This paper focused on testing strategies for interval arithmetic libraries. During
the years, different libraries have adopted different design choices and as such
comparison and reproducibility has been a challenge. The IEEE 1788–2015 stan-
dardization is a big step to solve this issue, but broad adoption of the standard is
a slow process. Moreover, testing is critical in software development and, due to
its rigorous nature, even more central in interval arithmetic. It is thus fundamen-
tal to have an extensive unified testing framework. In this work, we sketched a
possible structure for such framework. Hopefully, developers of interval libraries
will join forces and share experience to develop an extensive open-source cross
platform testing framework.

References

1. Hofschuster, W., Krämer, W.: C-XSC 2.0 - A C++ Library for Extended Scientific
Computing. In: Alt, R., Frommer, A., Kearfott, R.B., Luther, W. (eds) NUMERI-
CAL SOFTWARE WITH RESULT VERIFICATION, LNCS, vol. 2991, pp. 15–35.
Springer, Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24738-8 2

2. Lerch, M., Tischler, G., Wolff von Gudenberg, J., Hofschuster, W., Krämer, W.:
FILIB++, a Fast Interval Library Supporting Containment Computations. ACM
TOMS 32(2), 299–324 (2006). http://www.xsc/de

https://cps-vo.org/group/ARCH/FriendlyCompetition
https://cps-vo.org/group/ARCH/FriendlyCompetition
https://doi.org/10.1007/978-3-540-24738-8_2
http://www.xsc/de

Testing Interval Arithmetic Libraries 439

3. Heimlich, O.: Interval arithmetic in GNU Octave. In: SWIM 2016, 9th Summer
Workshop on Interval Methods. ENS de Lyon, France (2016)

4. Sanders, D.P., Benet, L., Ferranti, L., et al.: ValidatedNumerics.jl. https://github.
com/JuliaIntervals/ValidatedNumerics.jl

5. Mascarenhas, W.F.: Moore: Interval arithmetic in modern C++ (2016) arXiv
preprint arXiv:1611.09567

6. Revol, N.: Standardized interval arithmetic and interval arithmetic used in
libraries. In: Fukuda, K., Hoeven, J.V.D., Joswig, M., Takayama, N. (eds.) ICMS
2010. LNCS, vol. 6327, pp. 337–341. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15582-6 54

7. IEEE: Institute of Electrical and Electronic Engineers: 1788–2015 IEEE Standard
for Interval Arithmetic. In: IEEE STD 1788–2015, 1–97 (2015)

8. Beebe, N.: IEEE 754 floating-point test software. https://www.math.utah.edu/
∼beebe/software/ieee/

9. Rump, S.M.: INTLAB - INTerval LABoratory. In: Developments in Reliable Com-
puting, Tibor Csendes (eds), pp. 77–104. Kluwer Academic Publishers (1999)

10. Goualard, F.: How do you compute the midpoint of an interval? ACM TOMS
40(2), 1–25 (2014)

11. MPRIA: GNU Multi-Precision Rational Interval Arithmetic Library https://www.
gnu.org/software/mpria/manual/

12. Nadezhin, D.Y., Zhilin, S.I.: JInterval library: Principles, development, and per-
spectives. Reliable Comput. 19(3), 229–247 (2013)

13. Revol, N., Rouillier, F.: Motivations for an arbitrary precision interval arithmetic
and the MPFI library. Reliable Comput. 11(4), 275–290 (2005). https://doi.org/
10.1007/s11155-005-6891-y

14. Johansson, F.: Arb: a C library for ball arithmetic. ACM Commun. Comput. Alge-
bra 47(4), 166–169 (2013)

15. Lerch, M., Tischler, G., Wolff von Gudenberg, J., Hofschuster, W., Krämer, W.:
The Interval Library FILIB++ 2.0 - Design, Features and Sample Programs.
Preprint 2001/4, Universität Wuppertal (2001)

16. FILIB++ Interval Library http://www2.math.uni-wuppertal.de/wrswt/software/
filib.html

17. Boost Interval Arithmetic Library v. 1.79.0 https://www.boost.org/doc/libs/1 79
0/libs/numeric/interval/doc/interval.htm

18. JInterval Library https://github.com/jinterval/jinterval/
19. P1788 Test Launcher (based on JInterval Library) https://github.com/jinterval/

jinterval/tree/master/p1788-launcher-java
20. Nehmeier, M.: libieeep1788: a C++ implementation of the IEEE interval standard

P1788. In: 2014 IEEE Conference on Norbert Wiener in the 21st Century (21CW),
pp. 1–6. IEEE, Massachusetts, USA (2014) https://doi.org/10.1109/NORBERT.
2014.6893854

21. libieeep1788 https://github.com/nehmeier/libieeep1788
22. Heimlich, O.: GNU Octave interval package https://octave.sourceforge.io/interval/

index.html https://sourceforge.net/p/octave/interval/ci/default/tree/
23. Sanders, D.P., Benet, L., Ferranti, L., et al.: JuliaIntervals/IntervalArithmetic.jl:

v0.20.5. Zenodo. https://doi.org/10.5281/zenodo.6337817
24. Goualard, F.: Goal: not just another interval library (2005) https://sourceforge.

net/projects/goal/
25. Kuliamin, V.V.: Standardization and testing of implementations of mathematical

functions in floating point numbers. Prog. Comput. Softw. 33(3), 154–173 (2007)

https://github.com/JuliaIntervals/ValidatedNumerics.jl
https://github.com/JuliaIntervals/ValidatedNumerics.jl
http://arxiv.org/abs/1611.09567
https://doi.org/10.1007/978-3-642-15582-6_54
https://doi.org/10.1007/978-3-642-15582-6_54
https://www.math.utah.edu/~beebe/software/ieee/
https://www.math.utah.edu/~beebe/software/ieee/
https://www.gnu.org/software/mpria/manual/
https://www.gnu.org/software/mpria/manual/
https://doi.org/10.1007/s11155-005-6891-y
https://doi.org/10.1007/s11155-005-6891-y
http://www2.math.uni-wuppertal.de/wrswt/software/filib.html
http://www2.math.uni-wuppertal.de/wrswt/software/filib.html
https://www.boost.org/doc/libs/1_79_0/libs/numeric/interval/doc/interval.htm
https://www.boost.org/doc/libs/1_79_0/libs/numeric/interval/doc/interval.htm
https://github.com/jinterval/jinterval/
https://github.com/jinterval/jinterval/tree/master/p1788-launcher-java
https://github.com/jinterval/jinterval/tree/master/p1788-launcher-java
https://doi.org/10.1109/NORBERT.2014.6893854
https://doi.org/10.1109/NORBERT.2014.6893854
https://github.com/nehmeier/libieeep1788
https://octave.sourceforge.io/interval/index.html
https://octave.sourceforge.io/interval/index.html
https://sourceforge.net/p/octave/interval/ci/default/tree/
https://doi.org/10.5281/zenodo.6337817
https://sourceforge.net/projects/goal/
https://sourceforge.net/projects/goal/

440 N. Revol et al.

26. Kiesner, M., Nehmeier, M., Wolff von Gudenberg, J.: ITF1788: An Interval Test-
framework for IEEE 1788. Report number 495, Department of Computer Sci-
ence, University of Würzburg (2015) https://www.researchgate.net/publication/
278620157 ITF1788 An Interval Testframework for IEEE 1788

27. ITF1788 - Interval Test Framework for IEEE STD 1788–2015 https://github.com/
oheim/ITF1788

https://www.researchgate.net/publication/278620157_ITF1788_An_Interval_Testframework_for_IEEE_1788
https://www.researchgate.net/publication/278620157_ITF1788_An_Interval_Testframework_for_IEEE_1788
https://github.com/oheim/ITF1788
https://github.com/oheim/ITF1788

A Survey of Interval Algorithms
for Solving Multicriteria Analysis

Problems

Bart�lomiej Jacek Kubica(B)

Institute of Information Technology, Warsaw University of Life Sciences – SGGW,
ul. Nowoursynowska 159, 02-776 Warsaw, Poland

bartlomiej kubica@sggw.edu.pl

Abstract. This paper surveys the research effort of several authors
to solve various multicriteria problems, using interval methods. These
efforts fall naturally into two categories: approximating the whole Pareto
sets and seeking a single solution point optimal with respect to the prefer-
ences of a specific decision maker. In both kinds of problems, the interval
calculus turns out to be useful. For several of the outlined approaches,
their assumptions and practical importance is discussed. Parallelization
(potential or actual) of the methods is also investigated. In particular,
the discussion on parallelization of the algorithm of Fernandez and Toth
seems to be an original contribution of this paper, as well, as an anal-
ysis of applicability of various interval goal programming and TOPSIS
approaches.

Keywords: multiple criteria analysis · interval computations · Pareto
sets · goal programming · TOPSIS

1 Introduction

Problems of multicriteria decision making are ubiquitous in several branches of
engineering and economical sciences. Several methods have been developed for
treating such decision problems [4], and we can be interested in finding various
kinds of solution(s).

2 Basic Notions

We are interested in solving the following problem:

max
x

qk(x) k = 1, . . . , N , (1)

s.t.
gj(x) ≤ 0 j = 1, . . . , m ,
xi ∈ [xi, xi] i = 1, . . . , n .

We assume all criteria to be maximized. In general, we have three kinds of
criteria:
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 441–456, 2023.
https://doi.org/10.1007/978-3-031-30445-3_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_37&domain=pdf
http://orcid.org/0000-0002-5547-3759
https://doi.org/10.1007/978-3-031-30445-3_37

442 B. J. Kubica

– maximized ones, as in the above example: we want the value to be as large
as possible;

– minimized ones: we want the value to be as small as possible;
– stabilized ones: there is an optimal value, and we want the actual value to

deviate from it, as little as possible.

Obviously, assuming all criteria to be maximized does not reduce the generality
of our considerations – all problems can be transformed to such form. Instead
of using a minimized criterion ‘min q’, we can set ‘max(−q)’, and instead of a
stabilized criterion, we can set ‘max(−||q − q0||)’, where q0 is the desired value
of the criterion.

The solution of Problem (1) can be defined in a few manners. By aggregating
all criteria, using some scalarization function, we can reduce the problem to
unicriterion optimization (cf. Subsect. 3.2). But in several cases, we are interested
in so-called Pareto-optimal solutions.

Definition 1. A feasible point x is Pareto-optimal (non-dominated), if there
exists no other feasible point x′ such that:

(∀k) qk(x′) ≥ qk(x) and (∃i) qi(x′) > qi(x) .

Now, by solving Problem (1) we can mean finding two sets. First, the Pareto-
optimal set, i.e., the set of Pareto-optimal points, i.e., feasible points that are
non-dominated according to criteria. Second, the Pareto frontier, i.e., the set
of N -tuples of criteria values for Pareto-optimal points. For convenience, in the
following text, we shall call them together Pareto sets.

In the remainder, one more definition will be needed.

Definition 2. A point y dominates a set B, iff D(y)∩B = ∅, and similarly a set
B′ dominates a set B, iff (∀y ∈ B′)D(y)∩B = ∅, where the cone D(y1, . . . , yN) ={
(y′

1, . . . , y
′
N) | (∀k)y′

k ≥ yk and (∃i)y′
i > yi

}
.

The interpretation of the definitions is straightforward. A feasible point is
Pareto-optimal if there is no other feasible point that would improve some cri-
terion without causing a simultaneous worsening in at least one other criterion.
Pareto-front is the image of Pareto-set in criterion space and D is the cone of
domination in this space.

3 Classical (i.e., Non-interval Methods)

Before we shall present interval methods for solving Problem (1), let us briefly
recall the classical methods.

3.1 Pareto-Sets Approximation

In many applications, it is sufficient to find a single solution point, but obtaining
the whole Pareto frontier (and its corresponding Pareto set) can be very useful,

A Survey of Interval Algorithms for Solving Multicriteria Analysis Problems 443

as well. Not only for cognitive reasons, but also for practical ones: it is just con-
venient to choose an appropriate solution point, when having all non-dominated
solutions presented.

The majority of the classical methods are actually not appropriate to approx-
imate a set. They are usually better at dealing with a single solution than with
a set of solutions. When there is more than one solution (especially, when the
solution set is uncountable), the problem is usually considered to be ill-posed.

The most prominent (and pretty successful) algorithms designed to deal with
this sort of problems are based on population methods, in particular on genetic
and evolutionary algorithms. Specific algorithms that have been designed are:
SPEA (Strength Pareto Evolutionary Algorithm), SPEA2, NSGA (Nondomi-
nated Sorting Genetic Algorithm), NSGA-II, etc.; see, e.g., [5,42] and the refer-
ences therein.

3.2 Decision Making

Nevertheless, for several applications, the decision maker is interested in finding
just a single point – the one that is either ‘optimal’, or at least ‘sufficient’,
corresponding to their preferences. But how to measure the ‘optimality’ in the
case of several, possibly non-homogeneous, criteria?

There are a few approaches to obtain it. Most of them involve some form
of scalarization function: q(x) = f

(
q1(x), . . . , qN (x)

)
, where qi’s are the criteria.

But what should the formula for q be like?

Linear scalarization function. The simplest scalarization function is, obviously,
a linear one: q(x) = w1q1(x) + . . . + wNqN (x) =

∑N
i=1 wi · qi(x), where wi is the

weight of the i-th criterion, for i = 1, . . . , N .
While this approach might seem simple, elegant and straightforward, there

is a serious issue with it: there are nondominated points that will never max-
imize q(x), regardless of the choice of wi’s. Other words: some solutions that
may be desired by rational decision-makers can never be chosen using a linear
scalarization function. To be more precise: this approach tends to favor extreme
solutions. Let us explain it on a specific example.

Example 1. Let us consider a problem with two maximized criteria presented on
Fig. 1.

There are three possibilities:

1. The weight of criterion 1 is higher than this of criterion 2. In this case, the
point to maximize the scalarization function is (y1 = 8, y2 = 0).

2. The weight of criterion 1 is lower than this of criterion 2. In this case, the
point to maximize the scalarization function is (y1 = 0, y2 = 8).

3. The weights of both criteria are equal. In this case, both points (y1 = 8, y2 =
0) and (y1 = 0, y2 = 8) maximize the scalarization function.

In any case, none of the other solutions: (1, 6), (3, 3), or (6, 1) can be as good as
the two extreme solutions, although all five points are Pareto-optimal!

444 B. J. Kubica

Fig. 1. The paradox of linear scalarization function.

This problem has been first described by Pekka Korhonen, but according
to [40], it has not been published in a paper, but ‘only in diverse discussions’.
This Korhonnen’s paradox causes a very limited usefulness of linear scalarization
functions, unless some auxiliary tools are used, e.g., to convexify the solution set.
Obliviousness about this issue can lead to taking wrong decisions. The book of
Wierzbicki and Nakamori [40] gives an interesting example in Subsect. 12.6.1.

A possible fix is using nonlinear scalarization functions; e.g., polynomial ones.
But such an approach would be hard both to parameterize and to justify. Also,
such scalarization functions may be unstable with respect to their arguments
and parameters.

Another approach was needed.

Goal programming. An alternative to using linear (or non-linear) scalarization
functions has been proposed by the theory of so-called satisficing decision, cred-
ited to Herbert Simon. The word ‘satisficing’ is a neologism, combining the words
‘satisfying’ and ‘sufficient’. This approach states that a decision maker does not
want to take an optimal decision, but a sufficiently good decision. Hence, instead
of trying to maximize or minimize the criteria, we choose some ‘aspiration levels’
for them, and we try to find the solution that is either at least as good (according
to all criteria), or as close as possible to satisfying the ‘aspirations’.

The discussion of the origin and importance of the concept of ‘satisficing
decision making’ (for which Simon received the Nobel Prize in Economics, in
1978) is far beyond the scope of this survey. Let us focus on the algorithms that
can be used to find such decisions.

Ironically, the search for satisficing decision points can be performed using
optimization. This is done by so-called goal programming, credited to Charles
and Cooper (again, many references could be done here; cf. [40]). The essence
of goal programming is to choose a single goal: a point in the decision space,
that the decision maker considers ‘satisficing’. Having this point, we choose the
solution by minimizing the distance from the ‘goal’ point.

Please note, this is equivalent to using the scalarization function:

q(x) = −||q(x) − qgoal|| , (2)

A Survey of Interval Algorithms for Solving Multicriteria Analysis Problems 445

where qgoal = (qgoal1 , . . . , qgoalN) is obviously the aspiration point, and the minus
sign before the expression is used, as we decided to perform maximization.

We can use various distance measures (e.g., norms L1, L2, L∞, etc.). For
instance, for the L1 norm, (2) takes the form:

q(x) = −
N∑

i=1

|qi(x) − qgoali | , (3)

It is worth noting that when q(·) is linear and the L1 norm is used, the problem
remains linear; we shall get back to this topic in Paragraph ‘Multiobjective linear
programming’. The method might seem ambiguous, because various norms can
be chosen, but the choice of distance measure has usually a minor importance
for the result. A more serious issue with goal programming is that it can choose
a dominated point as the most desired solution. In fact, the decision maker can
choose an arbitrary goal, and if they do it obliviously of the actual geometry
of the Pareto frontier, they can choose a point that is ‘not good enough’. And
the function (2) will be maximized in this very point, having smaller values for
points that dominate it. A good survey of goal programming methods can be
found in [17].

Utopia and nadir points. While choosing a goal allows selection of any non-
dominated point, setting weights to criteria may be more intuitive, or more com-
fortable to some decision makers. It is pretty simple to combine both approaches.
For instance, (3) would be replaced by: q(x) = −∑N

i=1 wi · |qi(x) − qgoali |. Such
a scalarization function is still not prone to the Korhonnen’s paradox.

As we are choosing various weights for various criteria, the choice of the
‘goal’ becomes less significant. It is convenient to use the ideal solution (also
called the utopia point) in this place. This is the point in the criteria space,
almost always having no counterpart in the decision space, where all criteria
have optimal values, i.e., values that they achieve when optimizing the given
single criterion, ignoring the others.

For the example on Fig. 1, the ‘ideal solution’ would be the point (8, 8), where
both criteria have maximal values.

A great popularity has been achieved by the so-called TOPSIS method (Tech-
nique for Order of Preference by Similarity to Ideal Solutions), using both posi-
tive and negative ideal solutions.

The negative ideal solution, also called the anti-ideal solution, is obviously the
opposite of the utopia point: the point with worst possible values of all criteria.
Such a point can also be called the nadir point; on Fig. 1. the point (0, 0) can be
considered to be the nadir.

Why the phrase ‘can be considered’ was used in the previous sentence? Actu-
ally, the definition(s) of nadir and negative ideal solution are less obvious than
in the case of the utopia point. Some authors (e.g., [17]) distinguish these two
notions: nadir is considered only among the values from the Pareto frontier,
while the negative ideal – from the whole achievable set. However, we shall not
distinguish these notions in this paper.

446 B. J. Kubica

Nevertheless, it is worth noting that precisely estimating the nadir point,
especially for nonlinear problems, may be much more difficult, than estimating
the utopia point.

TOPSIS. Let us describe the algorithm of the aforementioned TOPSIS method,
first described in [12].

Usually, it is assumed that we have a finite number of alternatives. Let them
be stored in the matrix Y = [Yij], where i = 1, . . . ,m is the number of alterna-
tive, and j = 1, . . . , N is the number of criterion (following the interval notation
from [20], matrix elements are denoted as capital letters).

The first step of the TOPSIS method is the normalization of all criteria
values:

Rij =
Yij√∑m
k=1 Y 2

kj

. (4)

Using the weights, it is transformed to the weighted normalized decision matrix:
Vij = Rij · wj , for i = 1, . . . , m, and j = 1, . . . , N . Then we choose the ‘ideal
solutions’. Assuming all criteria are maximized, the positive ideal solution is:
V +
j = maxi Vij , and the negative ideal solution (or anti-ideal solution) is: V −

j =
mini Vij . Obviously, we could also separate the criteria into subsets of maximized
and minimized ones (and such a formulation is used, e.g., in [14,38]); we omit
this for simplicity, as because stabilized criteria would be hard to fit in such
a schema. Now, having both ‘ideal’ solutions, we can compute the separation
measure from it, for each of the alternatives:

d+i = ||Vi: − V +|| , d−
i = ||Vi: − V −|| .

All papers known to the author use the L2 norm in the above equations, but
other norms would be feasible, as well.

Having the separation measures from both ideal solutions, we can aggregate
them into the relative closeness to the ideal solution measure (in [8] called the

‘separation index’): ci = d−
i

d+
i +d−

i

, for each solution. Obviously, ci ∈ [0, 1], and we

choose the alternative i with ci as close to 1, as possible (d−
i as large as possible;

d+i as small as possible).

Multiple criteria linear programming. Solving multiobjective linear program-
ming (MOLP) problems is of particular importance, and much effort has been
made in this area; see, e.g., the textbooks [29,41]. In particular, a multiobjec-
tive version of the simplex method has been developed, and also other methods
(Benson’s algorithm [2]). Section 2.4 of [32] describes, how nadir points can be
estimated for linear problems (which is, in general, not possible in the nonlinear
case).

4 Interval Algorithms

Interval calculus is a branch of numerical analysis and mathematics that operates
on intervals rather than numbers. It has been described in numerous textbooks,

A Survey of Interval Algorithms for Solving Multicriteria Analysis Problems 447

including, in particular, [10,15,19,28,33,39], or a most recent one [21]. Arith-
metic (and other) operations on intervals are designed, so that the following
condition was fulfilled:

 ∈ {+,−, ·, /}, a ∈ a, b ∈ b implies a
 b ∈ a
 b . (5)

In other words, the result of an operation on numbers will be contained in the
result of an analogous operation on intervals, containing these numbers. The size
of this paper does not allow to present the details, but this seems unnecessary due
to the aforementioned wide literature. Interval methods appear to be a proper
tool for various approaches to multicriteria optimization.

4.1 Pareto-Sets Approximation

As we have already stated, computing the Pareto sets (or even approximating
them precisely enough) is a hard task (although computable, as proven by Toth
and Kreinovich in [7]), especially for nonlinear problems; moreover classical algo-
rithms turned out to be not well-suited for this purpose.

Hence, interval methods are a useful tool to obtain such an approximation.
They can be used in at least three manners:

– reducing the problem to repeated unicriterion global optimization;
– branch-and-bound type (B&BT) procedure performed in the decision space;
– branch-and-bound type procedure performed in the criteria space and result-

ing boxes inverted to the decision space.

Let us present them briefly.

Reducing to global optimization. Fernandez and Toth [6] present a sophisticated
algorithm for a bicriteria problem. An inspiration for their approach was the
ε-constraint method, presented by Miettinen [32].

Suppose we are solving the following problem:

max
x

{f1(x), f2(x)} ,

s.t.
x ∈ X .

In [6], minimization is considered, but we change it to maximization to remain
consistent with other examples.

In this approach, one of the criteria is treated as the objective and the other
as a constraint. A sequence of constrained optimization problems is then solved.

Precisely, in each step we are seeking the set of δ-optimal points of the fol-
lowing problems:

max
x

f1(x) , (6)

s.t.
f2(x) ≥ f

(i)
2 ,

f1(x) ≤ f1
(
x̌(i)

)
+ δ · |f1

(
x̌(i)

)| ,
x ∈ X ,

448 B. J. Kubica

where δ is a parameter of the method (δ = 0.01 was used in the numerical
experiments of [6]).

In the above problem, x̌(i) is the optimal solution of (6) for the previous value
of i, and f

(i)
2 – the lower bound on f2(x) over the set of δ-optimal points).

Obviously, the search starts with f
(0)
2 = −∞, and the first optimization

problem boils down to:
max
x∈X

f1(x) . (7)

Thanks to reducing the problem to global optimization, tools analogous to
typical global optimization problems can be used. As much information as pos-
sible is extracted from the solution of each problem of type (6); in particular,
boxes that cannot contain solutions of further optimization problems get dis-
carded, not to be considered in subsequent algorithm’s stages. Obviously, the
process stops when all boxes get discarded. All details can be found in [6].

The branch-and-bound type search in decision space of the problem. This app-
roach, most similar to algorithms currently used in global optimization or equa-
tions solving, was presented in the paper of Ruetsch [36]. While processing the
boxes he uses two kinds of tests to discard them:

– comparing the bounds on criteria values in boxes, to delete dominated ones,
– a ‘differential approach’ – some procedure using the information about gradi-

ents, probably equivalent (or almost equivalent) to the ‘multicriteria variant
of the monotonicity test’, introduced by Kubica and Woźniak [23].

Unfortunately, paper [36] lacks important information, useful to implement the
algorithm. It does not describe, how are the boxes stored and chosen for com-
parisons? In particular, is linear search necessary? Also, it gives no details on
the ‘differential procedure’.

The branch-and-bound type search in criteria space of the problem. This app-
roach was first presented by Barichard and Hao [1] and then in a series of papers
of Kubica and Woźniak [23–27].

Barichard and Hao proposed an algorithm storing pairs of boxes – the box
in the decision space and in the criteria space. They perform bisection in the
criteria space and use constraint propagation to narrow the corresponding box
in decision space. Also, some algorithm, called “substitution procedure” is used
to find a feasible point in each box. Having feasibility of some points verified,
boxes dominated by them can be discarded.

Paper [1] lacks several important details about the substitution and the con-
straint propagation procedures, which makes it difficult to implement it. Also,
presented results lack information about computation time or number of itera-
tions (criteria evaluations).

Kubica and Woźniak [22,25] proposed an algorithm similar in general
assumptions, but different in significant details. Among others, boxes obtained
from B&BT procedure are inverted to the decision space. This means that with

A Survey of Interval Algorithms for Solving Multicriteria Analysis Problems 449

each box y in the criteria space a set of boxes {x} in the decision space is
associated, not a single box. This set is represented by three lists of boxes:

– boxes verified to lie in the interior of reverse image of y,
– boundary boxes of the reverse image of y,
– boxes yet to be checked.

To invert the boxes, a version of the SIVIA procedure [16] is used. In contrast to
classical SIVIA, the procedure in Kubica and Woźniak’s algorithm stops when
the first interior box is found – even, if there are still unchecked boxes. This
allows a relatively early approximation of the Pareto front, and consequently a
possibility to discard dominated boxes in the criteria space.

After obtaining the desired accuracy (given by the parameter εy) of the
Pareto front approximation, we enter the “second phase” in which all boxes
from the decision space, yet unchecked (because SIVIA was stopped), are inves-
tigated until a desired accuracy εx is obtained. This second phase does not allow
discarding boxes from the criteria space or affect the approximation of the Pareto
front.

4.2 Tools

Tools that can be applied in all three algorithms to compute Pareto sets are (at
least to some extent) distinct in all cases. In particular, a multicriterion analog
of the monotonicity test has been introduced in [23]. As Goldsztejn et al. pointed
in [9], the formulation in [23] is not completely correct; an improved version is
presented in their paper. Details of using the interval Newton operator have been
discussed in [22]. Hence, the 2nd-order Pareto-optimality conditions (analogous
to Fritz John conditions) have been proposed in [26] and specialized heuristics for
bisection [27]. Martin et al. [31] consider advanced use of constraint propagation
techniques. Also the PhD thesis of Martin [30] describes several other tools.

Parallelization. An important topic is the potential for parallel implementa-
tion of the described algorithms. Indeed, as pointed by the author in the book
[21], interval branch-and-bound-type algorithms are natural candidates for par-
allel implementation. Let us quote directly what was written in this book: ‘Both
phases of a B&BT algorithm parallelize well, as different boxes can be processed
independently. Yet, they are (in general) not ‘embarrassingly parallel’ – for both
basic kinds of parallel implementation (shared or distributed memory) some
problems have to be addressed’.

As for the algorithms for Pareto sets approximation, the first known multi-
threaded implementation seems to have been presented by the author in [24].
Further development of our algorithms has been presented in the subsequent
papers: [25–27].

A distributed memory implementation for a cluster or cloud environment
does not seem to ever have been considered, although such an implementation
would be more laborious to implement than a multithreaded one. All details can

450 B. J. Kubica

be found in a thorough discussion of parallelizing interval branch-and-bound-
type algorithms in Chap. 7 of [21].

Finally, it is worth mentioning that authors other than Kubica and Woźniak
do not seem to use parallelization in their implementations.

The algorithm of Fernandez and Toth. The author would like to pay a particu-
lar attention to the algorithm presented by Fernandez and Toth [6]. Seemingly
this algorithm is harder to parallelize than typical branch-and-bound-type algo-
rithms: it performs several steps, each including a branch-and-bound procedure,
but the steps are sequential.

How to parallelize such a procedure?
Firstly, each step can be parallelized, using the aforementioned techniques

of parallelizing branch-and-bound type methods. This is however not the only
possibility.

Please note that in each step i of this algorithm, we consider only boxes gen-
erated by the previous step, and the new value of f

(i)
2 can only be better (higher,

in the case of maximization), than the previous one. Hence, we can implement
this algorithm as a pipeline, where two or more steps will get executed con-
currently, with boxes passed between them. Such an implementation is another
interesting area of possible further research.

4.3 Decision Making

When we are interested in locating a single solution, most desired by a specific
decision maker, interval methods can be very useful, as well.

MOLP with interval coefficients. As in the case of non-interval algorithms, linear
problems are of particular interest; also specific theoretical results have been
obtained for multicriteria linear problems.

There are several kinds of interval MOLP problems, as the uncertainty can
be encountered in various places:

– coefficients in the objective function can be interval-valued:
q(x) =

∑n
i=1 ci · xi,

– parameters of the constraints can be interval-valued: A · x � b.

The paper of Oliveira and Antunes [34] gives a nice survey of various approaches.
The first kind of uncertainty turns out to be particularly important. In his

influential paper from 1980, Bitran [3] observed that we can distinguish ‘nec-
essary’ and ‘possible’ non-dominated points. Necessarily non-dominated points
are Pareto-optimal for all values of the coefficients c ∈ c, while possibly non-
dominated ones – for at least one of the values c ∈ c.

Bitran emphasizes the importance of necessarily efficient solutions, and he
proposes a ‘branch-and-bound implicit enumeration algorithm’ to enclose all
such points.

A Survey of Interval Algorithms for Solving Multicriteria Analysis Problems 451

Hladik introduces several improvements to the Bitran’s approach, in particu-
lar proposing an enhanced sufficient condition for the point to being necessarily
efficient, and analysing the complexity of the resulting problem [11].

All the above approaches consider optimization of all criteria. What about
the satisficing approach? It is adopted by the version of goal programming, with
an interval goal. Let us consider this approach in a separate paragraph.

Goal programming with an interval-valued reference ‘point’. Interval goal pro-
gramming turns out to be a quite popular research topic; see, for instance, the
following papers: [13,35,37] and the references therein.

What is worth noting is that virtually all of these papers consider the linear
case. The author is aware of very little, or even none at all, effort related to
investigating nonlinear goal programming with interval-valued goals, and such
investigations might be quite interesting.

As for linear problems, a few methods have been developed. In the non-
interval case, we have been minimizing a norm (or maximizing its opposite num-
ber), as in Eq. (2). How to ‘intervalize’ this formula?

Inuiguchi and Kume [13] propose solving four problems that arise from two
decisions:

– the subtraction between q(x) and qgoal can be done either using classical
interval subtraction ([a, a] − [b, b] = [a − b, a − b]) or using the Kaucher’s [18]
inner subtraction ([a, a]� [b, b] = [a− b, a− b]); they call these operations the
‘possible’ and ‘necessary’ subtractions, respectively,

– we can minimize the lower or upper endpoint of the resulting interval-valued
expression.

It is worth noting that other approaches are possible, as well: for instance, we
could minimize some other metrics or quasi-metrics between the intervals q(x)
and qgoal (cf. Sect. 2.7 of [21], for a discussion of various metrics on the space of
intervals). A compatible approach, but in a different context, was used in [27].
The author is not aware of any papers using this approach for goal programming.

Finally, it should be discussed, why one would use interval-valued goals? Most
of the aforementioned papers do not address this question, and it seems pretty
significant: can we not simply use the upper bound (for maximized criteria), or
lower bound (for minimized ones), and transform interval-valued goals to precise
ones?

Indeed, we can. Yet, it may be very convenient to specify goal values for
stabilized criteria, in the form of a range. Hence, in the author’s opinion, for
problems with a large number of stabilized criteria, the interval-valued goal
programming can be a very natural and intuitive approach.

TOPSIS method with interval-valued criteria. The TOPSIS method has found
several versions with interval-valued criteria. We shall consider three of them:
[8,14,38], but even the references of these papers provide links to many other
ones.

452 B. J. Kubica

Why so many variations of the interval TOPSIS approach have been devel-
oped? Because there are at least a few significant features that can be imple-
mented in various ways.

Firstly, the normalization procedure. How to normalize a set of interval val-
ues? The paper [8] ignores the problem completely, while both [14,38] use the
formula:

Rij =
Yij√∑m

k=1

(
Y 2

kj + Y
2

kj

) . (8)

Such a normalization is pretty controversial. Please note that in the case of all
Yij values being degenerate, (8) does not reduce to the non-interval case of (4).
What is more, values of the ‘normalized’ intervals can never reach 1; the maximal
possible value is close to

√
2
2 .

Another important question, when adapting TOPSIS to the interval case, is
how should the ideal solutions be represented. Should they be precise points?
Intervals? More general sets of values? Or maybe yet something else (e.g., [8]
implements them as so-called fuzzy bags).

In the version of Jahanshahloo et al. [14], they are precisely known points: the
optimal values of all intervals. Sevastjanov et al. criticize this approach in [38].
According to them, the approach of Jahanshahloo et al. ‘seems to be justified
only in the case when there are no any intersections of these intervals’ (criteria).

As an example, they consider the situation, when Y11 = [5, 7], and Y21 =
[0, 10]. We can ignore normalization, as it just divides both of these intervals by
the same quantity. Also, assume equal weights for all criteria, and V = Y.

So, according to the methodology of Jahanshahloo et al., the positive ideal
solution would be V +

1 = 10, and the negative ideal solution V −
1 = 0. Sevastjanov

et al. claim that this is ‘wrong’, and the components of ideal solutions should be
the proper components of the matrix V, as it is in the non-interval case. Hence,
in their opinion, we should have V+

1 = V11 = [5, 7], and V−
1 = V21 = [0, 10],

because midV11 > midV21.
In the author’s opinion, both approaches seem rather arbitrary. When we

consider all possible multicriteria problems arising from choosing V11 ∈ V11

and V21 ∈ V21, we would see that V +
1 can be far from the value 10 (e.g., for

V11 = V21 = 5, but it does not have to belong to the range [5, 7] (e.g., for V11 = 5
and V21 = 10. As for V −

1 , please note that it can never take any values exceeding
7, so the interval [0, 10] is definitely overestimated.

A reasonable approach seems to take the ideal solutions as intervals of all
possible values; in the case of maximized criteria, this results in:

V+
i = [max

j
V ij ,max

j
V ij] , V−

i = [min
j

V ij ,min
j

V ij] .

In the considered example, it would result in V+
1 = [5, 10], V−

1 = [0, 7], which
seems reasonable.

Yet another question is how the choice of these ‘ideal solutions’ will affect
the final selection of an actual solution from the Pareto frontier. This might be
hard to analyze in the general case. It seems, the approach of Jahanshahloo [14]

A Survey of Interval Algorithms for Solving Multicriteria Analysis Problems 453

tends to favor narrower intervals, while using interval-valued ideal solutions does
not result in such a bias. On the other hand, it is difficult to judge whether such
a bias would be an unwanted phenomenon.

This brings us to the next important point that has to be decided in the
‘intervalization’ of the TOPSIS method: how to measure the distance between
solutions, i.e., between intervals or interval vectors. Various metrics can be used
here, in particular [14] uses the Euclid distance (i.e., the one generated by the L2
norm), while [8,38] use the Manhattan distance (L1 norm). In the author’s opin-
ion, using the L1 norm is superior to the Euclid distance: it is computationally
less intensive, and equally good in describing the separation.

Finally, let us discuss the question why one would want to use interval solu-
tions in the TOPSIS method. We have already raised a similar question for goal
programming, but now the answer will be different. TOPSIS-like methods are
not well suited for stabilized criteria (unless, of course, we transform them to
some other ones – minimized or maximized), so using such criteria is a poor
excuse for the interval TOPSIS approach. Nevertheless, approximating the neg-
ative ideal solution (aka nadir, aka anti-ideal) is often difficult, as we had already
stated. Hence, interval methods may be very convenient to bound it.

Also, although TOPSIS methods are usually used for a finite number of
alternatives, thanks to the virtues of the interval approach, we can extend them
to the continuous case.

5 Conclusions

We have reviewed several versions of algorithms for solving multicriteria anal-
ysis problems. We have shown how interval algorithms can contribute to both
approximating Pareto sets and decision making in the case of multiple conflicting
criteria.

The performed survey has shown at least a few significant points where addi-
tional research would be very advisable. These include, in particular, interval
goal programming for the nonlinear case.

It is also very desired to provide novel implementations of the described
algorithms for approximating the Pareto sets (cf. Subsect. 4.1). Such implemen-
tations should use proficient techniques of modern programming languages and,
in particular, advanced parallelization, and use comparable interval techniques
for box processing. Such unified and up-to-date implementations would allow to
perform efficiency tests of the three presented approaches.

References

1. Barichard, V., Hao, J.K.: Population and interval constraint propagation algo-
rithm. Lect. Notes Comput. Sci. 2632, 88–101 (2003)

2. Benson, H.P.: An outer approximation algorithm for generating all efficient extreme
points in the outcome set of a multiple objective linear programming problem. J.
Global Optim. 13(1), 1–24 (1998)

454 B. J. Kubica

3. Bitran, G.R.: Linear multiple objective problems with interval coefficients. Manage.
Sci. 26(7), 694–706 (1980)

4. Ceberio, M., Modave, F.: Interval-based multicriteria decision making. In:
Bouchon-Meunier, B., Coletti, G., Yager, R.R. (eds.) Modern Information Pro-
cessing, pp. 281–294. Elsevier Science, Amsterdam

5. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sort-
ing genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer,
M., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-45356-3 83

6. Fernandez, J., Toth, B.: Obtaining an outer approximation of the efficient set of
nonlinear biobjective problems. J. Global Optim. 38, 315–331 (2007)

7. G-Tóth, B., Kreinovich, V.: Verified methods for computing pareto sets: general
algorithmic analysis. Int. J. Appl. Math. Comput. Sci. 19(3), 369–380 (2009)

8. Giove, S.: Interval TOPSIS for multicriteria decision making. In: Proceedings of
the 13th Italian Workshop on Neural Nets, Lecture Notes in Computer Science
2486, pp. 56–63 (2002)

9. Goldsztejn, A., Domes, F., Chevalier, B.: First order rejection tests for multiple-
objective optimization. J. Global Optim. 58(4), 653–672 (2014)

10. Hansen, E., Walster, W.: Global Optimization Using Interval Analysis. Marcel
Dekker, New York (2004)

11. Hlad́ık, M.: Complexity of necessary efficiency in interval linear programming and
multiobjective linear programming. Optim. Lett. 6(5), 893–899 (2012)

12. Hwang, C.L., Yoon, K.: Multiple attribute decision making: methods and applica-
tions. Springer-Verlag (1981)

13. Inuiguchi, M., Kume, Y.: Goal programming problems with interval coefficients
and target intervals. Euro. J. Oper. Res. 52(3), 345–360 (1991)

14. Jahanshahloo, G.R., Lotfi, F.H., Izadikhah, M.: An algorithmic method to extend
TOPSIS for decision-making problems with interval data. Appl. Math. Comput.
175(2), 1375–1384 (2006)

15. Jaulin, L., Kieffer, M., Didrit, O., Walter, É.: Applied Interval Analysis. Springer,
London (2001). https://doi.org/10.1007/978-1-4471-0249-6

16. Jaulin, L., Walter, É.: Set inversion Via interval analysis for nonlinear bounded-
error estimation. Automatica 29(4), 1053–1064 (1993)

17. Jonez, D., Tamiz, M.: Practical Goal Programming, International Series in Oper-
ations Research & Management Science, vol. 141. Springer, New York (2010).
https://doi.org/10.1007/978-1-4419-5771-9

18. Kaucher, E.: Interval analysis in the extended interval space IR. In: Fundamentals
of Numerical Computation (Computer-Oriented Numerical Analysis), pp. 33–49.
Springer, Vienna (1980). https://doi.org/10.1007/978-3-7091-8577-3 3

19. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht
(1996)

20. Kearfott, R.B., Nakao, M.T., Neumaier, A., Rump, S.M., Shary, S.P., van Hen-
tenryck, P.: Standardized notation in interval analysis. Vychislennyie Tiehnologii
(Computational Technologies) 15(1), 7–13 (2010)

21. Kubica, B.J.: Interval Methods for Solving Nonlinear Constraint Satisfaction, Opti-
mization and Similar Problems. SCI, vol. 805. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-13795-3

22. Kubica, B.J., Woźniak, A.: Interval componentwise Newton operator in computing
the Pareto-front of constrained multicriterial problems. In: Proceedings of KKA
2008 Conference. EXIT (2008)

https://doi.org/10.1007/3-540-45356-3_83
https://doi.org/10.1007/978-1-4471-0249-6
https://doi.org/10.1007/978-1-4419-5771-9
https://doi.org/10.1007/978-3-7091-8577-3_3
https://doi.org/10.1007/978-3-030-13795-3
https://doi.org/10.1007/978-3-030-13795-3

A Survey of Interval Algorithms for Solving Multicriteria Analysis Problems 455

23. Kubica, B.J., Woźniak, A.: Interval methods for computing the Pareto-front of a
multicriterial problem. In: Lecture Notes in Computer Science 4967, pp. 1382–1391
(2009). PPAM 2007 Proceedings

24. Kubica, B.J., Woźniak, A.: A multi-threaded interval algorithm for the Pareto-
front computation in a multi-core environment. In: Lecture Notes in Computer
Science 6126/6127 (2010). Accepted for publication. PARA 2008 Proceedings

25. Kubica, B.J., Woźniak, A.: Optimization of the multi-threaded interval algorithm
for the Pareto-set computation. J. Telecommun. Inf. Technol. 1, 70–75 (2010)

26. Kubica, B.J., Woźniak, A.: Using the second-order information in pareto-set com-
putations of a multi-criteria problem. In: Jónasson, K. (ed.) PARA 2010. LNCS,
vol. 7134, pp. 137–147. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-28145-7 14

27. Kubica, B.J., Woźniak, A.: Tuning the interval algorithm for seeking pareto sets
of multi-criteria problems. In: Manninen, P., Öster, P. (eds.) PARA 2012. LNCS,
vol. 7782, pp. 504–517. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-36803-5 38

28. Kulisch, U.: Computer Arithmetic and Validity - Theory Implementation and
Applications. De Gruyter, Berlin, New York (2008)

29. Luc, D.T.: Multiobjective Linear Programming. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-21091-9

30. Martin, B.: Rigorous algorithms for nonlinear biobjective optimization. Ph.D. the-
sis, Université de Nantes (2014)

31. Martin, B., Goldsztejn, A., Granvilliers, L., Jermann, C.: Constraint propagation
using dominance in interval branch & bound for nonlinear biobjective optimization.
Euro. J. Oper. Res. 260(3), 934–948 (2017)

32. Miettinen, K.: Nonlinear Multiobjective Optimization, International Series in
Operations Research & Management Science, vol. 12. Kluwer Academic Publishers,
Dordrecht (1999)

33. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM,
Philadelphia (2009)

34. Oliveira, C., Antunes, C.H.: Multiple objective linear programming models with
interval coefficients - an illustrated overview. Euro. J. Oper. Res. 181(3), 1434–
1463 (2007)

35. Rivaz, S., Yaghoobi, M.A., Hlad́ık, M.: Using modified maximum regret for finding
a necessarily efficient solution in an interval MOLP problem. Fuzzy Optim. Decis.
Making 15(3), 237–253 (2016)

36. Ruetsch, G.R.: An interval algorithm for multi-objective optimization. Struct.
Multi. Optim. 30(1), 27–37 (2005)

37. Sen, S., Pal, B.B.: Interval goal programming approach to multiobjective fuzzy goal
programming problem with interval weights. In: Procedia Technology, Proceedings
of International Conference on Computational Intelligence: Modeling Techniques
and Applications (CIMTA) 2013, vol. 10, pp. 587–595 (2013)

38. Sevastjanov, P., Tikhonenko, A.: Direct interval extension of TOPSIS method.
In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM
2011. LNCS, vol. 7204, pp. 504–512. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-31500-8 52

39. Shary, S.P.: Finite-dimensional Interval Analysis. Institute of Computational Tech-
nologies, SB RAS, Novosibirsk (2013)

40. Wierzbicki, A.P., Nakamori, Y.: Creative Environments: issues of creativity support
for the knowledge civilization age, vol. 59. Springer (2007). https://doi.org/10.
1007/978-3-540-71562-7

https://doi.org/10.1007/978-3-642-28145-7_14
https://doi.org/10.1007/978-3-642-28145-7_14
https://doi.org/10.1007/978-3-642-36803-5_38
https://doi.org/10.1007/978-3-642-36803-5_38
https://doi.org/10.1007/978-3-319-21091-9
https://doi.org/10.1007/978-3-319-21091-9
https://doi.org/10.1007/978-3-642-31500-8_52
https://doi.org/10.1007/978-3-642-31500-8_52
https://doi.org/10.1007/978-3-540-71562-7
https://doi.org/10.1007/978-3-540-71562-7

456 B. J. Kubica

41. Zeleny, M.: Linear multiobjective programming, Lecture Notes in Economics and
Mathematical Systems, vol. 95. Springer Science & Business Media (2012). https://
doi.org/10.1007/978-3-642-80808-1

42. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evo-
lutionary algorithm. TIK-report 103 (2001)

https://doi.org/10.1007/978-3-642-80808-1
https://doi.org/10.1007/978-3-642-80808-1

7th Workshop on Complex Collective
Systems

Social Fragmentation Transitions
in Large-Scale Parameter Sweep

Simulations of Adaptive Social Networks

Hiroki Sayama1,2(B)

1 Center for Collective Dynamics of Complex Systems, Binghamton University, State
University of New York, Binghamton, NY 13902-6000, USA

2 Waseda Innovation Lab, Waseda University, Shinjuku, Tokyo 169-8050, Japan

sayama@binghamton.edu

Abstract. Social fragmentation transition is a transition of social states
between many disconnected communities with distinct opinions and a
well-connected single network with homogeneous opinions. This is a
timely research topic with high relevance to various current societal
issues. We had previously studied this problem using numerical simu-
lations of adaptive social network models and found that two individ-
ual behavioral traits, homophily and attention to novelty, had the most
statistically significant impact on the outcomes of social network evo-
lution. However, our previous study was limited in terms of the range
of parameter values examined, and possible interactions between multi-
ple behavioral traits were largely ignored. In this study, we conducted a
substantially larger-scale parameter sweep numerical experiment of the
same model with expanded parameter ranges by an order of magnitude
in each parameter dimension, resulting in a total of 116,640 simulation
runs. To capture nontrivial interactions among behavioral parameters,
we modeled and visualized the dependence of outcome measures on the
model parameters using artificial neural networks. Results show that,
while the competition between homophily and attention to novelty is
still the primary determinant of social fragmentation, another transition
plane emerges when individuals have strong social conformity behavior,
which was not previously known. This implies that social fragmentation
transition can also occur in the homophily-social conformity trade-off,
the two behavioral traits that have very similar microscopic individual-
level effects but produce very different macroscopic collective-level out-
comes, illustrating the nontrivial macroscopic dynamics of complex col-
lective systems.

Keywords: adaptive social networks · social fragmentation ·
large-scale numerical simulations · homophily · attention to novelty ·
social conformity

This work was supported in part by JSPS KAKENHI Grant Number 19K21571.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 459–469, 2023.
https://doi.org/10.1007/978-3-031-30445-3_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_38&domain=pdf
http://orcid.org/0000-0002-2670-5864
https://doi.org/10.1007/978-3-031-30445-3_38

460 H. Sayama

1 Introduction

The study of temporal evolution of social structure is one of the significant
application domains of complex collective systems research. In particular, social
fragmentation transition, i.e., transition of social states between many discon-
nected communities with distinct opinions and a well-connected single network
with homogeneous opinions, is a timely research topic with high relevance to
various current societal issues [1–8]. We had previously studied this problem
using numerical simulations of adaptive social network models [9] and found
that two individual behavioral traits, homophily (i.e., tendency to strengthen
connections to similar individuals and weaken those to dissimilar ones) [10–12]
and attention to novelty (i.e., tendency to strengthen connections to individuals
whose opinions stand out compared to others), had the most statistically signif-
icant impact on the outcomes of social network evolution [9]. Specifically, when
homophily was strong, the social network evolved into fragmented states of many
disconnected clusters with diverse opinions, but when attention to novelty was
strong, the social network evolved to well-connected yet informationally homo-
geneous states. However, the previous study was rather limited in terms of the
range of parameter values examined, and possible interactions between multi-
ple behavioral traits were largely ignored, especially about the other behavioral
trait, social conformity (i.e., how strongly individuals assimilate themselves to
social neighbors).

In this study, we examined a broader spectrum of social network dynam-
ics through a larger-scale parameter sweep experiment of the same model with
expanded parameter ranges by an order of magnitude in each parameter dimen-
sion, resulting in a total of 116,640 simulation runs. To capture nontrivial interac-
tions among behavioral parameters, we modeled and visualized the dependence
of outcome measures on the model parameters using artificial neural networks.
Results show that, while the competition between homophily and attention to
novelty is still the primary determinant of social fragmentation when social con-
formity behavior of individuals is weak, another transition plane emerges at an
intermediate homophily level when individuals have strong social conformity
behavior, which was not previously known.

In what follows, we describe the model of adaptive social networks and the
settings and results of the large-scale parameter sweep numerical experiments.
We further discuss implications of the results for social evolution and potential
future research directions.

2 Model

Our original model [9] describes distributed opinion dynamics on an adaptive
social network made of n nodes. Adaptive networks [13,14] are a class of dynam-
ical network models in which node states and edge connectivities co-evolve in
adaptation to each other. In our model, node i has its own opinion state xi ∈ R.

Social Fragmentation Transitions in Adaptive Social Networks 461

Nodes are connected through weighted directed edges that represent the informa-
tion flow from source to target nodes. The edge weight is denoted as wij ∈ R≥0,
where i is the target node and j is the source node.

The adaptive network dynamics, i.e., the co-evolution of node states and edge
weights, are governed by the following differential equations:

dxi

dt
= c (〈x〉i − xi) + ε (1)

dwij

dt
= hFh(xi, xj) + aFa(〈x〉i, xj) (2)

〈x〉i =

∑
j wijxj

∑
j wij

(3)

Here, 〈x〉i (Eq. (3)) represents the weighted local average of neighbors’ opinions
(i.e., social norm) perceived by node i. Parameter c and noise term ε in Eq. (1)
represent the strength of social conformity and stochastic fluctuation of node
states, respectively. Parameters h and a in Eq. (2) represent the strength of
homophily and attention to novelty, respectively. Fh and Fa in Eq. (2) are func-
tions that describe the increase/decrease of edge weights because of homophily
and attention to novelty, respectively. Fh and Fa can be any functions that
monotonically decrease (for Fh) or increase (for Fa) as the distance between the
two arguments increase. In this study, we used the following simple functions for
Fh and Fa:

Fh(xi, xj) = θh − |xi − xj | (4)
Fa(〈x〉i, xj) = |〈x〉i − xj | − θa (5)

Here θh and −θa are the default values of Fh and Fa, respectively, when the
two given arguments are equal. These functions describe that the edge from
node j to node i tends to become strengthened when j’s state is similar to i’s
(i.e., homophily) and distant from the local average (i.e., attention to novelty),
or weakened otherwise. We restricted wij to be always nonnegative, and any
negative values resulted from numerical simulation of Eq. (2) would be rounded
up to zero.

Simulating this adaptive social network model from a random initial condi-
tion produces a sequence of social network configurations in which node states
(opinions) spread through social ties and edge weights (connection strengths)
also change due to node states (an example is shown in Fig. 1). We implemented
the numerical simulator of the model in Python 3.7 with NetworkX [15] and
PyCX [16]1.

This model is known to exhibit social fragmentation transition, i.e., transition
between fragmented and homogenized social network states, as the individuals’
behavioral parameters are varied (Fig. 2) [1–4]. Our previous study [9] showed
that, when homophily (h) is stronger or attention to novelty (a) is weaker, the

1 The simulator code is available from the author upon request.

462 H. Sayama

Fig. 1. A snapshot of the proposed adaptive social network model visualized in the mid-
dle of a simulation. Colors of nodes represent their states (opinions) using Matplotlib’s
“spectral” color map, while the shade of edges represent their weights (connection
strengths).

social network is more inclined to become fragmented into many disconnected
small clusters with various opinion states (Fig. 2, left), and in the opposite set-
tings social homogenization is more likely to occur (Fig. 2, right). Meanwhile,
the potential effect of social conformity (c) was unclear in the previous analysis,
which is the main focus of the present study.

3 Experiments

3.1 Settings

We conducted numerical simulations of the above adaptive social network model
to systematically investigate the effects of individual behavioral parameters (c,
h, a, θh, and θa) on the course of social network evolution. The parameter values
used are as follows:

– Network size: n ∈ {30, 100, 300}2
– Behavioral parameters: c, h, a, θh, θa ∈ {0.003, 0.01, 0.03, 0.1, 0.3, 1.0}
The above range of values for behavioral parameters was an order-of-magnitude
larger in each dimension than what was examined before [9]. Each parameter
value combination was simulated 5 times with independently generated random
initial conditions. This resulted in a total of 3×65×5 = 116, 640 simulation runs,
2 Simulations with a larger network size (n = 1, 000) were also conducted in our earlier

work [9] and we confirmed that their results did not differ much from those with
n = 300.

Social Fragmentation Transitions in Adaptive Social Networks 463

Fig. 2. Examples of final states of the adaptive social network simulation with n = 100
that demonstrate social fragmentation transition. Left: Fragmented state with large h
and small a. Right: Homogenized state with small h and large a. Specific parameter
settings are shown beneath each panel. Visualizations were done in the same way as in
Fig. 1.

taking a substantial amount of computational time and resource. Simulations
were thus conducted in parallel on four designated PCs for over a few months.

In each simulation, the initial configuration of the network was randomly gen-
erated so that every pair of nodes were connected by two directed edges (in both
directions) with a randomly generated weight sampled from a standard uniform
distribution (wij ∈ [0, 1]) in each direction3 and each node had a random node
state sampled from the normal distribution N (0, 1). Equations (1) and (2) were
numerically simulated using a simple Euler forward method with time step size
Δt = 0.1 for t ∈ [0, 100]. The stochastic behavior of node states represented by ε
in Eq. (1) was simulated by adding a random number sampled from N (0, 0.12)
to xi at each discrete time step Δt.

3.2 Outcome Measures

At the end of each simulation run (t = 100), we converted the final network
configuration into an undirected network by replacing the two directed edges
between each pair of nodes with a single undirected edge whose weight was the
average of the original two edges’ weights. Then the Louvain modularity maxi-
mization method [17] was applied to the undirected network to detect community
structure in the final network configuration. Within each detected community,

3 We did not use more realistic social network structures like those with long-tailed
degree distributions or modular community structures. This is because, in order to
understand social self-organization, those structures should arise as an outcome of
dynamical interactions among agents rather than used as the initial condition given
a priori.

464 H. Sayama

we calculated the average node state (called “average community state” here-
after). Using the results of these steps, we calculated the following five network
metrics as final outcome measures:

1. Average edge weight (= arithmetic average of all the edge weights in the
network)

2. Number of communities
3. Modularity of the community structure
4. Range of average community states (= difference between largest and smallest

average community states)
5. Standard deviation of average community states

These outcome measures were averaged over five independent simulation runs for
each combinations of parameter values. The first three outcome measures capture
the structural properties of the social network, while the last two capture the
opinion diversity in the social network. When the social network is fragmented,
the average edge weight takes a small value, while all the other measurements
takes large values. The opposite pattern is realized when the social network is
homogenized. This allows us to easily detect which state the adaptive social
network evolved into in quantitative ways.

4 Results

In order to capture and visualize the effects of the five behavioral parameters on
the five outcome measures (including possible nonlinear interactions among those
behavioral parameters), we modeled the parameter-outcome mapping using arti-
ficial neural networks with Wolfram Research Mathematica 12’s artificial neu-
ral network predictor [18]. Natural logarithms of the five behavioral parameter
values were used as five-dimensional input vectors, and the five outcome mea-
sures obtained from simulation results under those parameter settings were used
as five-dimensional output vectors. The combinations of these input and out-
put vectors were gathered for the whole simulation runs for each network size
(n ∈ {30, 100, 300}) and used as the data set to train an artificial neural network
model for specific n. The performance goal of training was set to maximizing
the accuracy of outcome prediction [18].

Illustrative results with n = 300 are shown as heat maps of each outcome
measure in Fig. 3 (for final network structure) and Fig. 4 (for final node states).
The competition between homophily (h) and attention to novelty (a) is still
observed as the primary determinant of social fragmentation in a low-conformity
(c) regime (top rows of all panels in Figs. 3 and 4), seen as the diagonal tran-
sition plane in the plots. However, another vertical transition plane emerges at
an intermediate homophily level in a high-conformity regime (bottom rows of
all panels in Figs. 3 and 4), which was not previously known. Similar patterns
were observed for other outcome measures and network sizes. This new result
shows that, when individuals’ social conformity (c) is sufficiently strong, homog-
enization of the social network can occur even without attention to novelty. This

Social Fragmentation Transitions in Adaptive Social Networks 465

(a) Number of communities

(b) Modularity of the community structure

Fig. 3. Phase diagrams of adaptive social network evolution in terms of network struc-
ture outcome measures. Each plot shows outcome dependence on homophily (h, hor-
izontal axis), attention to novelty (a, vertical axis) and conformity (c, varied from
top-left to bottom-right) modeled using artificial neural networks. (a) How the num-
ber of communities depends on h, a and c. (b) How the modularity of the community
structure depends on h, a and c. Red and blue regions correspond to fragmented and
homogenized network states, respectively. n = 300, θh = 0.1, and θa = 0.1. Similar
patterns were observed for other outcome measures and network sizes. (Color figure
online)

466 H. Sayama

(b) Standard deviation of average community states

(a) Range of average community states

Fig. 4. Phase diagrams of adaptive social network evolution in terms of node state
outcome measures. Each plot shows outcome dependence on homophily (h, horizontal
axis), attention to novelty (a, vertical axis) and conformity (c, varied from top-left to
bottom-right) modeled using artificial neural networks. (a) How the range of average
community states depends on h, a and c. (b) How the standard deviation of average
community states depends on h, a and c. Red and blue regions correspond to frag-
mented and homogenized network states, respectively. n = 300, θh = 0.1, and θa = 0.1.
Similar patterns were observed for other outcome measures and network sizes. (Color
figure online)

Social Fragmentation Transitions in Adaptive Social Networks 467

implies that social conformity and attention to novelty, while very different in
their intentions and actions at microscopic individual levels, have similar effects
of promoting connections among individuals in an adaptive social network.

The result shown above also reveals a previously unrecognized competition
between social conformity (c) and homophily (h) when attention to novelty is
weak (i.e., low-a regions; near the bottom edge of each heat map in Figs. 3
and 4). Namely, when c is low social fragmentation dominates, but when c is
high social homogenization becomes possible for smaller values of h. This is quite
intriguing because these two behaviors (social conformity and homophily) have
very similar effects at an individual level (i.e., they both make ego and alter
similar to each other). In fact, their differences are often very vague and unde-
tectable in empirical social network studies [19]. Meanwhile, these two behaviors
are mechanistically distinct, because social conformity is about node dynamics
while homophily is about edge dynamics. This finding, that their competitive
balance may lead to very different societal outcomes down the road, offers a lot
of implications for how we should consider our social interactions and behaviors
in this highly interconnected world.

5 Conclusions

In this study, we conducted large-scale parameter sweep simulations of our adap-
tive social network model to investigate the transition points between fragmen-
tation and homogenization of social networks in a multidimensional behavioral
parameter space. Artificial neural network-based modeling and visualization of
the parameter-outcome mapping revealed a new transition plane for strong social
conformity (c) and weak attention to novelty (a) regimes, which was previously
unrecognized. The overall multidimensional phase space structure shows a non-
linear interaction among the three key behavioral mechanisms (social confor-
mity, homophily, and attention to novelty). Within the range of parameter val-
ues tested so far, it appears that social homogenization (blue regions in Figs. 3
and 4) occupied a greater volume in the log-scale parameter space than social
fragmentation did.

This study presents a concrete example of complex collective systems research
to study Artificial Society, i.e., study of hypothetical models of society-as-
it-could-be. Such theoretical/mathematical/computational exploration of social
systems can play valuable roles complementary to more empirical social science
research, in the same spirit of Artificial Life research [20] that complements
traditional biology. Computational examination of hypothetical scenarios, such
as changing individual behaviors in our model, allows for exploration of vari-
ous possible forms of our society and may lead to a discovery of novel possi-
ble social states which would not be realized just by analyzing empirical data
obtained from real society [5]. Such exploratory endeavor is becoming increas-
ingly important and relevant in today’s highly automated, interconnected soci-
ety, as our daily interactions are moving away from traditional, “natural” forms
and becoming more and more mediated by artificially designed, “engineered”

468 H. Sayama

communication platforms. This has become even more manifested because of
the recent COVID-19 pandemic (think about Zoom, YouTube, Slack, and other
social media/collaboration platforms). We hope that studies like ours presented
here may help re-evaluate and re-design the algorithms and interfaces of online
human communications and interactions for the betterment of our social network
evolution.

This study is still limited in several aspects. First, we did not explore vari-
ations of the amplitude of stochastic fluctuations (ε) or functional shapes of
homophily and attention to novelty (Fh and Fa). Second, transition planes
were identified only by numerical simulations while analytical estimate of transi-
tion conditions is not accomplished yet. Third, we assumed that the behavioral
parameter values would apply uniformly to all individuals in society with zero
behavioral diversity. Fourth, the size of the simulated networks was relatively
small (only up to 300 nodes). Future research directions are naturally to address
each and all of these limitations in the current model. In particular, introducing
individual behavioral diversity within a collective complex system is known to
produce unexpected, nontrivial macroscopic outcomes [5,21]. Such behavioral
heterogeneity should be represented in future models to gain more nuanced,
more realistic collective outcomes. High Performance Computing frameworks
for agent-based models [22] also may be used to increase the simulated network
size and to expand parameter sweep ranges further. Finally, quantitative com-
parison and validation of model behaviors with actual social network evolution
data will ultimately be needed. However, obtaining such empirical data of social
network evolution has been extremely difficult, and this will remain one of the
major challenges in adaptive social network modeling research.

References

1. Holme, P., Newman, M.E.: Nonequilibrium phase transition in the coevolution of
networks and opinions. Phys. Rev. E 74(5), 056108 (2006). https://doi.org/10.
1103/PhysRevE.74.056108

2. Zanette, D.H., Gil, S.: Opinion spreading and agent segregation on evolving net-
works. Physica D 224(1–2), 156–165 (2006). https://doi.org/10.1016/j.physd.2006.
09.010

3. Kozma, B., Barrat, A.: Consensus formation on adaptive networks. Phys. Rev. E
77(1), 016102 (2008). https://doi.org/10.1103/PhysRevE.77.016102

4. Böhme, G.A., Gross, T.: Analytical calculation of fragmentation transitions in
adaptive networks. Phys. Rev. E 83(3), 035101 (2011). https://doi.org/10.1103/
PhysRevE.83.035101

5. Sayama, H., Yamanoi, J.: Beyond social fragmentation: coexistence of cultural
diversity and structural connectivity is possible with social constituent diversity.
In: Masuda, N., Goh, K.-I., Jia, T., Yamanoi, J., Sayama, H. (eds.) NetSci-X
2020. SPC, pp. 171–181. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-38965-9 12

6. Blex, C., Yasseri, T.: Positive algorithmic bias cannot stop fragmentation in
homophilic networks. J. Math. Sociol. 46(1), 80–97 (2020). https://doi.org/10.
1080/0022250X.2020.1818078

https://doi.org/10.1103/PhysRevE.74.056108
https://doi.org/10.1103/PhysRevE.74.056108
https://doi.org/10.1016/j.physd.2006.09.010
https://doi.org/10.1016/j.physd.2006.09.010
https://doi.org/10.1103/PhysRevE.77.016102
https://doi.org/10.1103/PhysRevE.83.035101
https://doi.org/10.1103/PhysRevE.83.035101
https://doi.org/10.1007/978-3-030-38965-9_12
https://doi.org/10.1007/978-3-030-38965-9_12
https://doi.org/10.1080/0022250X.2020.1818078
https://doi.org/10.1080/0022250X.2020.1818078

Social Fragmentation Transitions in Adaptive Social Networks 469

7. Levin, S.A., Milner, H.V., Perrings, C.: The dynamics of political polarization.
Proc. National Acad. Sci. 118(50), e21169 (2021). https://doi.org/10.1073/pnas.
2116950118

8. Sasahara, K., Chen, W., Peng, H., Ciampaglia, G.L., Flammini, A., Menczer,
F.: Social influence and unfollowing accelerate the emergence of echo chambers.
J. Comput. Soc. Sci. 4(1), 381–402 (2021). https://doi.org/10.1007/s42001-020-
00084-7

9. Sayama, H.: Extreme ideas emerging from social conformity and homophily: an
adaptive social network model. In: ALIFE 2020: the 2020 Conference on Artificial
Life (pp. 113–120). MIT Press (2020). https://doi.org/10.1162/isal a 00349

10. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in
social networks. Ann. Rev. Sociol. 27(1), 415–444 (2001). https://www.jstor.org/
stable/2678628

11. Kossinets, G., Watts, D.J.: Origins of homophily in an evolving social network.
Am. J. Sociol. 115(2), 405–450 (2009). https://doi.org/10.1086/599247

12. Bakshy, E., Messing, S., Adamic, L.A.: Exposure to ideologically diverse news and
opinion on Facebook. Science 348(6239), 1130–1132 (2015). https://doi.org/10.
1126/science.aaa1160

13. Gross, T., Sayama, H.: Adaptive Networks. Springer (2009). https://doi.org/10.
1007/978-3-642-01284-6

14. Sayama, H., et al.: Modeling complex systems with adaptive networks. Comput.
Math. Appl. 65(10), 1645–1664 (2013). https://doi.org/10.1016/j.camwa.2012.12.
005

15. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics,
and function using NetworkX. In: Proceedings of 7th Python in Science Conference
(SciPy 2008; Pasadena, CA USA), pp. 11–15 (2008). https://www.osti.gov/biblio/
960616

16. Sayama, H.: PyCX: a Python-based simulation code repository for complex systems
education. Complex Adaptive Syst. Model. 1(1), 1–10 (2013). https://doi.org/10.
1186/2194-3206-1-2

17. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008
(2008). https://doi.org/10.1088/1742-5468/2008/10/P10008

18. Wolfram Language & System Documentation Center Predict. https://reference.
wolfram.com/language/ref/Predict.html

19. Shalizi, C.R., Thomas, A.C.: Homophily and contagion are generically confounded
in observational social network studies. Sociol. Methods Res. 40(2), 211–239
(2011). https://doi.org/10.1177/0049124111404820

20. Langton, C.G.: Preface. Artificial Life II (pp. xiii-xviii). Addison-Wesley (1992)
21. Sayama, H.: Swarm chemistry. Artif. Life 15(1), 105–114 (2009). https://doi.org/

10.1162/artl.2009.15.1.15107
22. Paciorek, M., Turek, W.: Agent-based modeling of social phenomena for

high performance distributed simulations. In: Paszynski, M., Kranzlmüller, D.,
Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS,
vol. 12743, pp. 412–425. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-77964-1 32

https://doi.org/10.1073/pnas.2116950118
https://doi.org/10.1073/pnas.2116950118
https://doi.org/10.1007/s42001-020-00084-7
https://doi.org/10.1007/s42001-020-00084-7
https://doi.org/10.1162/isal_a_00349
https://www.jstor.org/stable/2678628
https://www.jstor.org/stable/2678628
https://doi.org/10.1086/599247
https://doi.org/10.1126/science.aaa1160
https://doi.org/10.1126/science.aaa1160
https://doi.org/10.1007/978-3-642-01284-6
https://doi.org/10.1007/978-3-642-01284-6
https://doi.org/10.1016/j.camwa.2012.12.005
https://doi.org/10.1016/j.camwa.2012.12.005
https://www.osti.gov/biblio/960616
https://www.osti.gov/biblio/960616
https://doi.org/10.1186/2194-3206-1-2
https://doi.org/10.1186/2194-3206-1-2
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://reference.wolfram.com/language/ref/Predict.html
https://reference.wolfram.com/language/ref/Predict.html
https://doi.org/10.1177/0049124111404820
https://doi.org/10.1162/artl.2009.15.1.15107
https://doi.org/10.1162/artl.2009.15.1.15107
https://doi.org/10.1007/978-3-030-77964-1_32
https://doi.org/10.1007/978-3-030-77964-1_32

Parking Search in Urban Street
Networks: Taming Down the Complexity

of the Search-Time Problem
via a Coarse-Graining Approach

Léo Bulckaen1,2, Nilankur Dutta1 , and Alexandre Nicolas1(B)

1 Institut Lumière Matière, CNRS and Université Claude Bernard Lyon 1,
69622 Villeurbanne, France

{leo.bulckaen,alexandre.nicolas}@polytechnique.edu
2 Ecole polytechnique, 91128 Palaiseau, France

Abstract. The parking issue is central in transport policies and drivers’
concerns, but the determinants of the parking search time remain rela-
tively poorly understood. The question is often handled in a fairly ad hoc
way, or by resorting to crude approximations. Very recently, we proposed
a more general agent-based approach, which notably takes due account
of the role of the street network and the unequal attractiveness of parking
spaces, and showed that it can be solved analytically by leveraging the
machinery of Statistical Physics and Graph Theory, in the steady-state
mean-field regime. Although the analytical formula is computationally
more efficient than direct agent-based simulations, it involves cumber-
some matrices, with linear size proportional to the number of parking
spaces. Here, we extend the theoretical approach and demonstrate that
it can be further simplified, by coarse-graining the parking spot occu-
pancy at the street level. This results in even more efficient analytical
formulae for the parking search time, which could be used efficiently by
transport engineers.

Keywords: on-street parking · parking search time · street network ·
graph theory

1 Introduction

Parking is a complex problem of great practical as well as theoretical interest.
On the theoretical side, its complexity arises from the interaction between mul-
tiple entities (cars) which have different destinations and parking preferences,
as well as several possible states (driving, searching for parking, or parked), and
whose motion is constrained by the network of streets: this complexity would
obviously vanish into thin air if one were to consider a predictable single driver
trying to park in an empty city. The problem thus presents a singular inter-
play between facets including collective effects, complex networks, psychological
factors, impact of transport policies.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 470–480, 2023.
https://doi.org/10.1007/978-3-031-30445-3_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_39&domain=pdf
http://orcid.org/0000-0002-6438-4985
http://orcid.org/0000-0002-8953-3924
https://doi.org/10.1007/978-3-031-30445-3_39

Taming Down the Complexity of Parking Search Calculations 471

On the practical side, the quandary of parking search is all too well known to
individual drivers as well as transport authorities in virtually all large metropoli-
tan areas [16]. Motorists may spend several dozens of hours every year searching
for parking, according to INRIX survey data [6], whereas the former increasingly
regard parking as a lever to enforce their transport policy. It has been assessed
that cars cruising for parking may represent a significant share of the total traffic
in many large cities (e.g., 15% in central Stuttgart, 28% to 45% in New York)
[12,16] and aggravate congestion and pollution in city centres.

A deeper understanding of the process of parking search is thus crucial, so
as to be able to predict the impact of hypothetical measures. Very recently, we
put forward a general framework which goes beyond conventional numerical and
theoretical approaches to parking search and which notably suitably accounts for
the role of the street network and the unequal attractiveness of parking spaces
[8]. One major asset of this framework is that, despite its generality, it permits
analytic progress. Indeed, the problem can be solved not only by means of a
computationally efficient agent-based algorithm that we developed, but also by
leveraging the powerful machinery of Statistical Physics and Graph Theory to
obtain analytical formulae relating the search time and the occupancy of parking
spots. While we showed [8,9] that this approach can be applied to complex, large-
scale networks such as that of the city of Lyon, France, the analytical formulae
were fairly impractical because they involved cumbersome (even though sparse)
matrices representing the graph of parking spots in the city. In this contribution,
we purport to show that the complexity of the problem can be tamed down even
more by considering a coarse-grained graph, whose smallest elements are street
portions instead of individual parking spots.

2 Modelling Framework

2.1 Short Review of Existing Agent-Based Approaches

To start with, we very succinctly review some previous models developed to
predict parking search times. The most basic model is probably the binomial
approximation [2], which expresses the search time as Ts � T0

1−φ , where T0 is
the time to drive from one spot to the next one. Unfortunately, this expression
seems to strongly underestimate search times, if it is used in conjunction with
the reported occupancy φ in city districts; it can hardly be reconciled with
the empirical observation of surging search times long before φ reaches 100%
[1,3,11,18].

To get insight into this mismatch, Arnott et al. [1] considered a simple model
in which cars moved along a circle with 100 spots along its contour and parked
in the first available spot; they found that spatial and temporal correlations
in the occupation of spots, among other factors, underlay the failure of the
binomial approximation. Belonging to the same kind of approaches revolving
around simplified networks, aimed at gaining general insight into the problem of
parking search, Krapivsky and Redner described the optimal parking strategy
on a lane of parking spaces through the lens of statistical physics [13], while

472 L. Bulckaen et al.

Dowling and colleagues analysed parking search in a regular network using the
theory of network of finite-capacity queues [7].

Aiming for a more detailed description, Levy et al. [15] put forward the
PARKAGENT model, more suitable for practical use, in which cars drive
towards their destination on a spatially described network of streets and decide
to park or not when driving by a vacant spot by estimating their odds to find
another vacant spot closer to their target, on the basis of the occupancy of spots
that they have seen so far. Should they reach their destination without having
parked before, they will start circling and accept the first vacant spot and, after
a fixed time threshold, they will drive to an off-street parking lot. Vo et al. [17]
designed a simple, easy-to-use model in NETLOGO to predict the car move-
ments in a parking lot. The model is based on a decision tree, which considers
factors such as the existence of a vacant spot near the ticket machine or the
entrance and the gender of the driver.

Game-theoretic approaches have also been employed to address this problem,
by supposing that a Nash equilibrium is reached by drivers intent on finding the
best spot within a given, agent-specific search time, provided the reaching times
for every parking space are known [5].

2.2 Presentation of the Model

The model that we recently introduced [8] can be regarded as a general frame-
work encompassing many of these agent-based models, insofar as drivers also
move on a spatially described network of streets, with parking spots located
along the streets, but their turn-choices and parking decisions can be prescribed
arbitrarily.

Fig. 1. Illustration of the effect of the parking tension on the probability to accept to
park at a vacant spot. On the left, parking tension is low, corresponding to β → ∞,
and drivers will only accept to park at their favourite spots.

More precisely, several categories α = 1, 2, . . . of drivers can be defined
depending on their destination, trip purpose, etc., and, at an intersection, drivers
of each category have different probabilities to turn into the possible outgoing
street links; these are given by the corresponding entry of a (category-dependent)
turn-choice matrix T (α). Thus, each category of drivers may be routed to a
different destination.

Taming Down the Complexity of Parking Search Calculations 473

Besides, drivers of distinct categories will naturally differ in their decision
to park or not when driving by a vacant spot: they will choose to park there
(if it is vacant) with probability p

(α)
i , which in practice depends on a variety of

explanatory variables, first of which how far it is from the destination, how much
it costs, but also what are the odds of finding a ‘better’ spot, e.g., closer to the
target [4,14]. To avoid prescribing specific rules for these parking choices, which
are likely to depend on the local context, we chose to subsume all these factors
into two generic variables, which can be tuned arbitrarily: (i) an attractiveness
A

(α)
i reflecting how attractive a spot i is perceived to be intrinsically, (ii) the

driver’s perception of how easy it currently is to park, β(α) ∈ [0,∞).

p
(α)
i (t) = f(A(α)

i , β(α)(t)). (1)

For simplicity, at present, the parameter β(α)(t) measuring parking tension will
always be a function of the global occupancy φ(t), i.e., β(α)(t) = f [φ(t)] ≡ β,
even though more realistic dependencies could readily be contemplated.

As illustrated in Fig. 1, when the occupancy is very low, parking seems
extremely easy, which implies that β → ∞, and the driver will refuse to park
anywhere but in their preferred spot, of attractiveness Amax. To the opposite,
when the occupancy is very high, β will tend to zero and the driver will accept
virtually any admissible spot (of perceived attractiveness A

(α)
i > −∞), viz.

p
(α)
i = 1. Since p

(α)
i ∈ [0, 1], these extreme cases are conducive to expressing pi

with a Boltzmann-like functional form, viz.,

p
(α)
i = eβ·(A(α)

i −Amax). (2)

Finally, parked cars leave their space at a rate D(α), which is the reciprocal
of the average parking duration. These departing cars are removed from the
simulation, because the interaction between cruising cars and the rest of the
traffic is discarded here: cars move at fixed speeds in each street.

Thus formulated, our model offers a generalisation of existing agent-based
approaches. For instance, if they prescribe to park in the first vacant spot within
a radius of the destination [10], this can be encoded in the model as β(α) � 0
and Ai equal to −∞ outside the admissible radius and 0 inside.

2.3 Mean-Field Expression for the Search Time

A major asset of the foregoing generic framework is that it can be addressed
not only by means of numerical simulations, but also more theoretically. Let us
recall the major theoretical results that we obtained in this regard in [8], while
referring the reader to that manuscript for the details of the derivation.

First, every street position associated with a parking spot as well as every
intersection were handled as nodes of a ‘graph of spots’ (this means that the
street position where the car starts to park and the parking spot are amalga-
mated). This graph contains Nnodes nodes. The numbers of cars of category α,
i.e., α-cars, passing by each node per time unit is represented by a vector I(α)(t)

474 L. Bulckaen et al.

of size Nnodes, where I
(α)
i (t) is the rate of cars passing by node i at time t, aver-

aged over random realisations. The drivers’ turn choices at the nodes define a
transition matrix T (α) such that T

(α)
ij ∈ [0, 1] is the probability that an α-car

chooses to move from node i to node j along an edge of the graph in one arbi-
trary time step, if it does not park in the meantime. In this graph theoretical
approach, α-cars initially injected at nodes j (hence, I

(α)
j (t = 0) > 0) will be

located at positions represented by I(α)(t = 1) = I(α)(0) · T (α) at the next time
step and at

I(α)(K) = I(α)(0) ·
(
T (α)

)K

(3)

after K steps, if they do not park in the mean-time. However, it is crucial to
remark that cars may actually have parked in the meantime, with a probability
p̃
(α)
i given (for each spot i) by p̃

(α)
i = p

(α)
i n̂i, where n̂i = 1 − ni is zero (one) if

the spot is vacant (occupied). Taking this possibility into account, the transition
matrix T (α) should be substituted by M

(α)
ij = (1 − p

(α)
i n̂i) · T (α)

ij and the spatial
distribution of cars at t = K is actually

I(α)(K) = I(α)(0) ·
(
M (α)

)K

. (4)

Provided that the occupancy field (ni) is known, the probability that an
α-car reaches spot j and parks there reads

P
(α)
j = H

(α)
i (0)

[(
I − M (α)

)−1]
ij︸ ︷︷ ︸

R
(α)
j

p̃
(α)
j , (5)

where Einstein’s summation convention (on repeated indices, excluding fixed
index j here) is implied, I is the identity matrix, and H

(α)
j (0) = I

(α)
j (0)/I(α) ∈

[0, 1] is a renormalised rate, with I(α) the total injection rate of α-cars. R
(α)
j

denotes the probability to reach spot j without accepting any parking spot
before.

Along the same lines, the average ‘driving, searching, and parking’ time T(α,j)
s

of an α-car finally parking at spot j (in arbitrary time steps) can be derived;
it is the average number of steps K needed to park at spot j, weighted by the
probability Hj(K) · p̃

(α)
j to reach j after K steps and park there. Accordingly,

summing over all spots j, and skipping the algebra detailed in [8],

T(α)
s = H

(α)
i (0) ·

[
M (α) ·

(
I − M (α)

)−2]
ij

· p̃
(α)
j . (6)

In reality, however, drivers will not keep cruising forever if they cannot find
any vacant spot and will quit searching for on-street parking after a given time,
represented here by a maximum number of steps Kmax. Taking into account this
upper bound, the foregoing expressions turn into

P̄
(α)
j = P

(α)
j − H

(α)
i (0)

[(
I − M (α)

)−1

· M (α)Kmax+1
]

ij
p̃
(α)
j (7)

Taming Down the Complexity of Parking Search Calculations 475

T̄s
(α) = T(α)

s − H
(α)
i (0) ·

[
(I − M (α))−2 · M (α)Kmax+1

]
ij

p̃
(α)
j . (8)

Unfortunately, computing M (α)Kmax+1
may be numerically very costly, as this

is no longer a sparse matrix.
Before explaining how this complexity can be overcome, let us note that, in

the above formulae, the search time was expressed in arbitrary units, each unit
corresponding to a hop between two nodes of the ‘graph of spots’. Real time
units can be recovered by making use of an auxiliary ‘generating’ function N(z)

defined by Nij(z) = zτij M
(α)
ij , where z is a real variable and τij is the travel

time between neighbouring nodes i and j [8], viz.

T (α)
s = H

(α)
i (0) ·

[
(I − M (α))−1 · N ′(z = 1) · (I − M (α))−1

]
ij

p̃
(α)
j , (9)

where the derivative of N(z) satisfies N ′
ij(z = 1) = τijM

(α)
ij

The foregoing formulae were derived for a given configuration of the occu-
pancy n. To get the actual mean search time requires averaging over an ensemble
of equivalent realisations of n. This step is tricky in general, but can be approx-
imated by plainly substituting 〈nj〉 ∈ [0, 1] for nj = 0 or 1 in the definition of
the Mij matrix (mean-field approximation).

2.4 Stationary State Occupancy

Up to now, it has been assumed that the occupancy of each spot (or its time
average) is known. This section explains how this occupancy field can be derived
theoretically in the stationary regime. It is worth mentioning that the reasoning
of [8] is here extended to the important case of inhomogeneous departure rates
D(α).

This is achieved by writing a conservation equation, which balances incoming
α-cars and departing ones, viz.,

φ(α) =
1
N

· I(α)

D(α)
, (10)

if all incoming drivers eventually manage to park.
In addition to this global balance, the rate at which α-cars park at any given

spot j must be balanced by the departure rate D(α) of parked α-cars, viz.,

I(α)P
(α)
j = D(α)〈n(α)

j 〉. (11)

It follows, using Eq. 5 and dropping the angular brackets, that n
(α)
i =

I(α)

D(α) R
(α)
i p

(α)
i n̂i so that, summing over all categories α, one finally arrives at

n̂i =
1

1 +
∑

α I(α)R
(α)
i p

(α)
i /D

(α)
i

, (12)

476 L. Bulckaen et al.

where R
(α)
j , defined in Eq. 5, implicitly depends on the 〈ni〉’s. This completes the

derivation of the stationary occupation field (ni), insofar as Eq. 12 is an implicit
equation which self-consistently defines (ni) and can be solved by means of a
fixed-point iterative method.

2.5 Validation in a Large-Scale Test Case

In Ref. [8], we validated the theoretical approach on the large-scale street network
of the city of Lyon and showed that the foregoing formulae giving the stationary
occupation field (Eq. 12) as well as the travel time by car category (Eq. 9) are in
excellent agreement with the steady-state results of numerical simulations of the
agent-based model, for unbound search times. Unfortunately, the computational
complexity of calculating M (α)Kmax+1

in Eq. 7-8 hampered our endeavour to
extend the comparison to the more realistic case in which cars quit searching
after a given time.

3 Coarse-Graining Occupation Fields at the Street Level

To sum up, despite the success of the theoretical approach, there remains a dif-
ficulty associated with it: it involves multiplications and inversions of matrices
such as M (α), with a linear size of order the number of spots in the network. This
reflects the fact that parking decisions are made with respect to each parking
space individually. The M (α) matrices are particularly sparse and can there-
fore be handled with dedicated algorithms, but exponentiating these matrices is
particularly inconvenient.

3.1 Coarse-Graining Method

Here, we aim to simplify the problem by coarse-graining the occupation fields
at the level of the streets, in order to be able to reason in terms of the ‘graph of
streets’, rather than the ‘graph of spots’. The gist of this simplification consists
in

(i) deriving an average occupancy φstreet = 1
Ns

∑Ns

i=1 ni per street link, where Ns

is the number of spots in the street, knowing the rate of incoming cars Istreet
and the characteristics of spots, and then

(ii) using these φstreet to define a coarse-grained counterpart to the M (α) matrices
of Eq. 9.

More concretely, for point (i), we take advantage of the fact that street links
are linear, which enables us to derive the occupancies ni in a sequential way,
starting with the first spot, i = 1, etc. Let I

(α)
street be the injection rate of α-cars

at the entrance of the street link. Then, applying Eq. 11 to the first spot,

n̂1 =
1

1 +
∑

α I
(α)
streetp

(α)
i /D(α)

, (13)

Taming Down the Complexity of Parking Search Calculations 477

which enables us to derive R
(α)
2 = (1 − n̂1p

(α)
1), and so on, until all ni have been

calculated. (This operation takes a time proportional to the number of spots
Ns.) Finally, the mean occupancy φstreet is obtained, and, along with it, the
probability that an α-car injected in the street exits from it without parking,

R(α)
∞ ([I(α)

street]) =
Ns∏
i=1

(1 − n̂ip
(α)
i). (14)

To achieve point (ii), one simply has to notice that Eq. 9 still holds for the
‘graph of streets’, provided that M (α) is suitably adjusted. More precisely, in the
coarse grained version, this matrix should turn into

M (α)

IJ ← [R(α)
∞ ([I(α)

street])]I T
(α)
IJ , (15)

where nodes I and J are now intersections marking the beginning of a street-
link, and no longer spots.

The previous derivation within each street comes down to assuming that the
spot occupancies within each street equilibrate (i.e., reach their stationary state)
between every iteration of the fixed-point method for the whole network. While
this may not be true from a dynamical perspective, it is reasonable to expect
that it tends to the same fixed-point as the non-coarse-grained method.

3.2 Validation

At this stage, the coarse-grained method should be validated and its compu-
tational efficiency ought to be compared with that of the bona fide method.
Regarding the latter point, coarse-graining has reduced the linear size of the
involved matrices M (α) (in Eq. 15) by a factor of order Ns (the number of spots
per street), at the expense only of performing a number of order N (the number
of spots in the network) of operations at each iteration of the fixed point method.
Accordingly, this strongly reduces the computational expense of all calculations
involving these matrices, which are ubiquitous in the formulae we derived, and
the reduction is all the stronger as street links contain many spots.

Turning to the validation, we considered the part of Lyon which lies to the
West of the river Saône, which represents about one third of the total street
network. Eight car categories α = 0 . . . 7 are defined, each corresponding to a
distinct destination within this zone, in line with what was done in [8]; the turn-
choice matrices T (α) guide cars from their injection point to their destination
along a route that is allowed to fluctuate around the shortest path, to some
extent. For these simulations, the parameter β controlling parking tension is set
to 0.01 and 24 cars are injected per minute, while the mean parking duration
is set to 20 min. Most importantly, an upper bound was imposed on the cruis-
ing time: drivers quit searching for on-street parking after 25 min (we also tried
15 min). Previously, this capped condition could not be handled using our ana-
lytical formulae, because of the difficulty to exponentiate the per-spot matrix
M (α); this is now possible. Thus, an intractable equation has thus become within

478 L. Bulckaen et al.

Fig. 2. Map of the stationary occupancy of street links in the Western part of Lyon
(west of the river Saône): Comparison of the results obtained by numerical simulations
of the agent-based model (left) and of the analytical predictions with the coarse-grained
method described in this section (right).

Fig. 3. Comparison of the travel (driving and searching) times obtained with direct
numerical simulations and with the coarse-grained analytical method introduced here.
The maximal time before drivers quit searching was set to 15 min here.

our reach. (On the other hand, the convergence of our fixed-point method to
determine the stationary occupancy may be tricky, which has prevented us from
theoretically handling the whole street network of Lyon so far.) Fig. 2 proves that
the parking occupancy field obtained with our revised (coarse-grained) analyt-
ical expressions are in very good agreement with the result of direct numerical

Taming Down the Complexity of Parking Search Calculations 479

simulations; the slight differences (less than a few percent) mostly occur in high-
density parking zones. Furthermore, the travel times given by the analytical
expressions also nicely reproduce the numerical outcome, as shown in Fig. 3 for
various global car injection rates, for one category of drivers. The agreement is
not quite as good as that found with the original method, for non-capped search
times, prior to coarse-graining; this is not very surprising, insofar as considering
the network at the level of street links instead of parking spaces introduces some
inaccuracy in the assessment of the final driving time, in the last street-link.

4 Conclusions

In summary, we have built on a very recently proposed framework that gener-
alises existing agent-based models for parking search and puts greater emphasis
on factors such as the topology of the street network and the unequal attractive-
ness of parking spaces. It was previously shown that, despite its generality, this
model can be solved analytically in the mean-field stationary regime. A matricial
formula relating the total driving time (including the search time) to the occu-
pancy of parking spaces was thus derived. Here, the formula was extended to
allow different categories of drivers to have different parked times (i.e., departure
rates), which is naturally of practical relevance.

Furthermore, the foregoing formula was fairly cumbersome, involving very
large matrices. In this contribution, we have demonstrated that the analytic
expression can be further simplified by aggregating parking spots by street link,
so that one now handles a ‘graph of streets’ instead of a ‘graph of spots’ (the
former containing much fewer nodes, of course). This simplification drastically
reduces the dimension of the matrices involved in the foregoing formula and
makes them even more tractable, which could be used efficiently by transport
engineers. It paves the way for a treatment of practical issues which would other-
wise be computationally costly to simulate, in particular optimisation problems
in the context of redesigns of the transport network.

For sure, our model currently presents some limitations, notably the lack
of interactions between the cruising traffic and the underlying one, as well as
the absence of feedback between the experienced search times and the parking
demand. There is no reason why these limitations could not be overcome in the
near future; for instance, the second limit can be overcome by integrating our
model for parking search as a module in a multimodal choice model.

References

1. Arnott, R., Williams, P.: Cruising for parking around a circle. Transp. Res. Part
B: Methodol. 104, 357–375 (2017)

2. Axhausen, K.W., Polak, J.W., Boltze, M., Puzicha, J.: Effectiveness of the parking
guidance information system in frankfurt am main. Traffic Eng. Control 35(5),
304–309 (1994)

3. Belloche, S.: On-street parking search time modelling and validation with survey-
based data. Transp. Res. Procedia 6, 313–324 (2015)

480 L. Bulckaen et al.

4. Bonsall, P., Palmer, I.: Modelling drivers’ car parking behaviour using data from
a travel choice simulator. Transp. Res. Part C: Emerg. Technol. 12(5), 321–347
(2004)

5. Calise, G., Murano, A., Stranieri, S.: The parking problem: a game-theoretic solu-
tion. arXiv preprint arXiv:2204.01395 (2022)

6. Cookson, G., Pishue, B.: The impact of parking pain in the US, UK and Germany.
Tech. rep, INRIX (2017)

7. Dowling, C.P., Ratliff, L.J., Zhang, B.: Modeling curbside parking as a network of
finite capacity queues. IEEE Trans. Intell. Transp. Syst. 21(3), 1011–1022 (2019)

8. Dutta, N., Charlottin, T., Nicolas, A.: Parking search in the physical world: cal-
culating the search time by leveraging physical and graph theoretical methods.
Transp. Sci (2023). https://doi.org/10.1287/trsc.2023.1206

9. Dutta, N., Nicolas, A.: Searching for parking in a busy downtown district: an agent-
based computational and analytical model. In: 2021 International Symposium on
Computer Science and Intelligent Controls (ISCSIC), pp. 348–354. IEEE (2021)

10. Fulman, N., Benenson, I.: Approximation method for estimating search times for
on-street parking. Transportation Science (2021)

11. Gu, Z., Najmi, A., Saberi, M., Liu, W., Rashidi, T.H.: Macroscopic parking
dynamics modeling and optimal real-time pricing considering cruising-for-parking.
Transp. Res. Part C: Emerg. Technol. 118, 102714 (2020)

12. Hampshire, R.C., Shoup, D.: What share of traffic is cruising for parking? J.
Transp. Econ. Policy (JTEP) 52(3), 184–201 (2018)

13. Krapivsky, P., Redner, S.: Where should you park your car? the rule. J. Stat. Mech:
Theory Exp. 2020(7), 073404 (2020)

14. Levy, N., Martens, K., Benenson, I.: Exploring cruising using agent-based and ana-
lytical models of parking. Transportmetrica A: Transp. Sci. 9(9), 773–797 (2013)

15. Levy, N., Render, M., Benenson, I.: Spatially explicit modeling of parking search
as a tool for urban parking facilities and policy assessment. Transp. Policy 39,
9–20 (2015)

16. Shoup, D.: Parking and the City. Routledge (2018)
17. Vo, T.T.A., van der Waerden, P., Wets, G.: Micro-simulation of car drivers’ move-

ments at parking lots. Procedia Eng. 142, 100–107 (2016)
18. Weinberger, R.R., Millard-Ball, A., Hampshire, R.C.: Parking search caused con-

gestion: where’s all the fuss? Transp. Res. Part C: Emerg. Technol. 120, 102781
(2020)

http://arxiv.org/abs/2204.01395
https://doi.org/10.1287/trsc.2023.1206

A Multi-agent Cellular Automata Model
of Lane Changing Behaviour Considering
the Aggressiveness and the Autonomy

Krzysztof Małecki(B) , Piotr Wróbel, and Patryk Górka

West Pomeranian University of Technology, Żołnierska 52 Str., Szczecin, Poland
kmalecki@wi.zut.edu.pl, {wp44555,gp46518}@zut.edu.pl

Abstract. Various macroscopic and microscopic road traffic models
allow traffic flow analysis. However, it should be emphasised that stan-
dard traffic flow models do not include drivers’ behaviour. Thus, we pro-
pose a multi-agent microscopic model for analysing the traffic flow con-
sidering the various type of agents. Agents represent both autonomous
cars and various drivers’ behaviour (standard and aggressive drivers).
Additionally, the presented model is based on accurate data, because it
considers the actual dimensions of the vehicles. To accurately reflect the
acquired dimensions of the cars, a small cell cellular automaton was used,
where a set of cells represents one car. The obtained numerical results
allowed us to bring both trivial and non-trivial conclusions.

Keywords: Agent-Based Modeling (ABM) · Cellular Automata
(CA) · Traffic Flow · Data-Driven Model

1 Introduction

There are many different models of car traffic and its effectiveness [1–4]. Regard-
ing microscopic approach one can point out classical models, including on the
one hand, continuous ones like Intelligent Driver Model - a time-continuous
car-following model [5]. On the other hand there are discrete models like clas-
sical ones: Nagel-Schreckenberg model [6] and Chopard- Luthi-Queloz traffic
model [7], where CA paradigm was applied. Although these models are rela-
tively simple they allow for analysis of different relationships [8–13], etc. One
can also identify a trend where drivers/cars are represented as agents. They
have different abilities and define various styles of driving [14,15].

A specific group of road traffic models are models aimed at lane changing.
In [9], the authors introduced the rules of changing lanes, setting three factors:
safety (safe distance both at the front and rear of the vehicle), legal restrictions
(German system - overtaking only in the left lane, American system - possible
overtaking in the left and right lane), optimal passage (vehicles change lanes
when the car in front of is moving slower and there is more free space in the
destination lane, which will allow the vehicle to move faster). Additionally, the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 481–491, 2023.
https://doi.org/10.1007/978-3-031-30445-3_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_40&domain=pdf
http://orcid.org/0000-0002-8687-1119
https://doi.org/10.1007/978-3-031-30445-3_40

482 K. Małecki et al.

so-called view range was introduced, determining how many CA cells are in the
adjacent lane and forward that the car sees. This parameter is crucial because
drivers will often overtake frequently with a large field of view, which causes
frequent changes in lane density.

In [16] the authors based on hexagonal CA cells to more accurately map the
lateral movement. There is a virtual lane between the left and right lanes, and
a lane-changing consists of two stages: first, the vehicle enters the virtual road
lane, and then from this lane, it exits into the destination lane. In addition, the
parameters (vehicle speed, vehicle position, and vehicle angle) during overtaking
were investigated in an experiment on a two-kilometer road [17]. The sensors
collected data from the tested vehicles every 0.2 s. Research has shown that
77% of cars overtake between 40 km/h and 60 km/h. Additionally, a model was
implemented in which CA cells were 0.5m wide and 2m long each. Each of the
vehicles occupied 15 CA cells, and the cell in the centre represented the vehicle’s
position. The authors investigated the effect of vehicle compaction and speed on
the frequency of overtaking. They did not consider the different driving styles of
road drivers.

In this article, the authors proposed a multi-agent, multi-cell CA model
to study the impact of drivers’ behaviour on the road on the lane changing
behaviour. The novelty of this work is to develop a CA model that allows vehicles
to move sideways while varying driving styles. This was achieved by mapping
each road lane as a grid of small cells and defining cars as agents with their
behaviours. With the help of computer simulation, it was investigated whether
the aggressive driving style (the road being cut by other vehicles during the
overtaking manoeuvre) impacted road traffic capacity.

2 Proposed Model

A one-way two-lane road has been mapped. Vehicles move in two directions -
forward and sideways. To get high accuracy simulation, the road was divided
into many small cells. The grid of the CA consists of two lanes of road divided
into cells of 0.5m long and 0.5m wide. It was assumed (according to polish
regulations [18]) that a single road lane is 3m wide, which is 6 CA cells (Fig. 1a).
Figure 1b presents a vehicle representation as a set of CA cells with selected
corners.

Fig. 1. (a) An empty two-lane road of 13 CA cells wide. (b) A vehicle representation
as a set of CA cells with selected corners.

A Multi-agent CA Model of Lane Changing Behaviour 483

A few type of vehicles are considered (Table 1). The dimensions of the real
vehicles are divided into few types, differing in length and width. The developed
model uses small CA cells to allow the vehicles to move sideways.

Table 1. Types of vehicles (based on real sizes [15]).

Type of vehicle Av. size (length; width) [mm] Size (length; width) [CA cells]

A 3522; 1567 7; 3
B 4015; 1721 8; 3
C 4430; 1728 9; 3
D 4895; 1862 10; 4
E 5262; 2003 11; 4

In each iteration, the vehicle retrieves information about the distances of
cars in its immediate vicinity. This allows him to make decisions based on his
environment in a situation that changes dynamically with each iteration. In the
simulation, there are several types of agents with different characteristics that
differentiate the decision making.

The boundary condition for the developed model is periodic, i.e. the cars
move along a closed track. This makes it easier to control the density of the
road. The state space contains two states; the CA cell may be occupied by part
of the vehicle or empty. Additionally, each vehicle was presented as an agent with
strictly defined properties: standard drivers and aggressive drivers (Subsect. 2.2).

2.1 CA Transition Function

The transition function consists of following steps:

1. Establishing a safe distance – small cells allow to simulate of a broad spectrum
of speeds. According to the road traffic law, the safe space in non-built-up
areas is half the speed value in meters. However, it is not specified in built-up
areas, and it is recommended that the time of reaching the vehicle in front
during braking should not be less than two seconds. This means that when
the car in front suddenly brakes, the car behind it should have such a speed
that the distance between them takes no less than 2 s. Hence, the relationship
that determines the safe space has been established:

gi(t) = vi(t) ∗ 2 ∗ gm,

where: vi(t) – the speed of the car in i-th CA cell in the time t, gi(t) – the
safe space, gm – a factor for modifying the distance between the vehicles.

2. Acceleration – cars will increase their speed by a constant amount if their
speed is lower than Vmax and the change in acceleration does not violate the
safe distance from the vehicle in front.

484 K. Małecki et al.

Vi(t) < Vmax ∧ gi(t) <= di(t) − (Vi(t) + va) → Vi(t+ 1) = Vi(t) + va,

where: Vi(t) – the speed of the car in i-th CA cell in the time t, Vmax –
maximum speed, gi(t) – the safe space, di(t) – the distance to the vehicle in
front, va – acceleration value.

3. Sudden braking – a step performed when, as a result of aggressive driving,
during a lane-changing, priority was forced, and the distance to the vehicle
in front is less than the safe space:

di(t) < g(t) → Vi(t+ 1) = di(t) − 1,

where: Vi(t+ 1) – the speed of the car in i-th CA cell in the time t+ 1, g(t)
– the safe space, di(t) – the distance to the vehicle in front.

4. Braking – takes place when the speed of the vehicle must be adapted to that
of the car in front, keeping a safe distance:

gi(t) < di(t) + Vi(t) → Vi(t+ 1) = di(t) − 1,

where: Vi(t) – the speed of the car in i-th CA cell in the time t + 1, gi(t) –
the safe space, di(t) – the distance to the vehicle in front.

5. Lane-changing – according to Fig. 2, i-th car is marked as a vehicle with the
intention to change lanes; vehicles running in the same lane are marked as
i− 1 and i+ 1 respectively, for the vehicle following the vehicle i and for the
vehicle preceding the vehicle i . Similarly, a car in the target lane behind the
i-th car is denoted as j − 1 and j + 1 is on the adjacent line in front of the
i-th car.

Fig. 2. The description of individual vehicles.

First, the i vehicle must check that no car in the adjacent lane runs parallel
to the i-th vehicle. Changing lane requires checking that the distance to the
vehicle j − 1 is appropriate:

gi(t) < dj−1(t),

where: gi(t) – the safe distance in time t, dj−1(t) – the space to the car j − 1.

A Multi-agent CA Model of Lane Changing Behaviour 485

The next step is to check that the distance to the vehicle j+1 does not violate
the safe space:

gi(t) < dj+1(t),

where: gi(t) – the safe distance, dj+1(t) – distance to the car j + 1.
Then, the vehicle changes the lane and can thus overtake the vehicle in front.
The lane-changing takes two iterations. When any conditions are not met, the
vehicle rechecks the lane-changing conditions in the next step (t+1). However,
if vehicle i + 1 has increased its speed in t + 1 step (Vt(i) < Vt+1(i+ 1)),
then car i may abandon the lane change maneuver. With equal probability,
vehicle i, after overtaking vehicle i + 1, may remain in its current lane or
return to its original lane.

6. Random events – according to [9]:

Vi > 0 ∧ P (t) < p → Vi(t+ 1) = Vi(t) − 1,

where: Vi(t) – the speed of the car in i-th CA cell in the time t, di(t) – the
distance to the vehicle in front, in time t, p – the probability with which a
random event occurs.

2.2 Classification of Agents Representing Drivers and Vehicles

Three types of agents have been defined, corresponding to standard or aggressive
drivers, and autonomous vehicles:

– standard drivers – they follow the transition function described above,
– autonomous vehicles – follow the transition function, but their parameter
gm = 0.5, which results in the reduction of the safe distance by a factor of
two; thanks to that these vehicles keep a smaller distance from other cars, also
when overtaking. It is assumed that the control mechanisms of such vehicles
are accurate and there are no random events,

– aggressive drivers – their safe distance is constant and has the value of gm =
2, during braking, their speed diminishes twice, which is expressed by the
formula:

gm < di(t) + Vi(t) → Vi(t+ 1) = (di(t) − 1)/2,

where: Vi(t) – the speed of the car in i-th CA cell in the time t+1, gm – the
safe distance, di(t) – the distance to the vehicle in front in time t.
In addition, priority may be forced during the lane-changing process. In a
situation when an aggressive driver wants to overtake while there is another
vehicle in the adjacent lane parallel to the analysed car i, aggressive lane-
changing is understood as approaching this vehicle and forcing it to brake,
and give way, as shown in the Fig. 3. The arrows indicate the direction of the
vehicle’s movement in the next iteration and the values above them are the
number of CA cells that the car will travel in the next iteration.

486 K. Małecki et al.

Fig. 3. Visualisation of the aggressive lane-changing process. To overtake the i+1 car
in front of it, the i vehicle forces the priority when changing lanes and forces the i− 1
vehicle to yield.

3 Numerical Results

Numerical tests were conducted for a fixed length of road 0.6 km. The system
was upgraded every 1 s. All charts show the results of the arithmetic mean of 100
simulations. The probability of the occurrence of random events was 30%. The
reference point for the performed tests was the control group consisting entirely
of standard drivers.

A Multi-agent CA Model of Lane Changing Behaviour 487

3.1 The Autonomy

The first study shows the impact of autonomous vehicles on traffic flow. The
acceleration value was va = 15 CA cells per one iteration. In each of the anal-
ysed cases (Fig. 4b-d), i.e. for 20%, 40% and 60% of autonomous vehicles in the
entire stream of vehicles, the traffic flow improved, compared to the control sam-
ple (Fig. 4a). The maximum value of the road traffic capacity in the fundamen-
tal diagram (Fig. 5) changes its position as the number of autonomous vehicles
increases, moving to the right in relation to the axis representing the density
of vehicles on the road. The road traffic stability (spreading of single simula-
tion samples) is on a similar level for the analysed road. The differences become
apparent when the road density exceeds 70%, especially when autonomous vehi-
cles account for 60% of the total vehicle stream.

Fig. 4. (a) The control sample for the road with two lanes, (b) 20% of autonomous
cars, (c) 40% of autonomous cars, (d) 60% of autonomous cars.

488 K. Małecki et al.

Fig. 5. Comparison of traffic flow for the control sample and autonomous vehicles.

3.2 The Aggressiveness

The second study shows the effect of aggressive drivers on the traffic flow. By
analysing Figs. 6 and 7, one can observe the difference between the control group
and the samples in which aggressive drivers accounted for 20% and 40% of the
total number of drivers. There was an increase in flow from 35% to 60% relative
to the control group. On the other hand, the decrease in the flow value is visible in
the range from 60% to 80%. This is because aggressiveness reduced the distance
between vehicles, hence greater throughput. When aggressive drivers accounted
for 60% of all drivers, the traffic flow decreased from the control sample in
the range from 30% to 80% of the density (Fig. 7). It follows that too much
aggressiveness has a negative impact on the traffic flow.

At the same time, it is necessary to point out the non-trivial aspect of the sim-
ulation research conducted. Along with the increase in the number of aggressive
drivers in the entire stream of vehicles, the instability of road traffic increases
significantly (Fig. 6). It is especially visible in the charts presenting 40% and
60% share of aggressive drivers in the entire stream of vehicles (Fig. 6 c, d).

A Multi-agent CA Model of Lane Changing Behaviour 489

Fig. 6. (a) The control sample, (b) 20% of aggressive drivers, (c) 40% of aggressive
drivers, (d) 60% of aggressive drivers.

Fig. 7. Comparison of traffic flow for the control group and aggressive drivers.

4 Conclusions

The most important conclusions from work carried out can be formulated as fol-
lows: (1) The use of small cells of cellular automaton enables efficient modelling of
lateral shifts in lane-changing simulation. (2) The agent-based approach enables
observation of traffic flow concerning the characteristics of drivers or types of
vehicles. (3) The use of a model that takes into account the actual dimensions of

490 K. Małecki et al.

vehicles allows for a reliable representation of reality. (4) Autonomous vehicles
have a positive effect on road traffic, resulting in higher traffic flow. (5) Aggressive
drivers significantly disturb road traffic stability, understood as increasing traffic
dynamics, i.e. increasing the number of acceleration and braking performed by
other road users. Further work will be focused on obtaining real data related to
the behavior of drivers and verification of the model in conditions similar to real
ones.

References

1. Macioszek, E.: Analysis of driver behaviour at roundabouts in Tokyo and the Tokyo
surroundings. In: Volume 1083 AISC of Advances in Intelligent Systems and Com-
puting (2020)

2. Macioszek, E.: Models of critical gaps and follow-up headways for turbo round-
abouts. In: Macioszek, E., Akçelik, R., Sierpiński, G. (eds.) TSTP 2018. LNNS,
vol. 52, pp. 124–134. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-
98618-0_11

3. Sierpiński, G.: Revision of the modal split of traffic model. In: Mikulski, J. (ed.)
TST 2013. CCIS, vol. 395, pp. 338–345. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-41647-7_41

4. Macioszek, E., Sierpiński, G., Czapkowski, L.: Methods of modeling the bicycle traf-
fic flows on the roundabouts. In: Mikulski, J. (ed.) TST 2010. CCIS, vol. 104, pp.
115–124. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16472-
9_12

5. Treiber, M., Hennecke, A., Helbing, D.: Congested traffic states in empirical obser-
vations and microscopic simulations. Phys. Rev. E 62, 1805–1824 (2000)

6. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J.
Phys. I France 2, 2221 (1992)

7. Chopard, B., Luthi, P.O., Queloz, P.A.: Cellular automata model of car traffic in
a two-dimensional street network. J. Phys. A Math. General 29, 2325–2336 (1996)

8. Schadschneider, A., Schreckenberg, M.: Traffic flow models with ‘slow-to-start’
rules. Ann. Phys. 509, 541–551 (1997)

9. Nagel, K., Wolf, D.E., Wagner, P., Simon, P.: Two-lane traffic rules for cellular
automata: a systematic approach. Phys. Rev. E 58, 1425 (1998)

10. Rickert, M., Nagel, K., Schreckenberg, M., Latour, A.: Two lane traffic simulations
using cellular automata. Phys. A 231, 534–550 (1996)

11. Liu, M., Shi, J.: A cellular automata traffic flow model combined with a BP neural
network based microscopic lane changing decision model. J. Intell. Transp. Syst.
23, 309–318 (2019)

12. Małecki, K.: The use of heterogeneous cellular automata to study the capacity of
the roundabout. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz,
R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10246, pp.
308–317. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59060-8_28

13. Małecki, K., Gabryś, M.: The computer simulation of cellular automata traffic
model with the consideration of vehicle-to-infrastructure communication technol-
ogy. SIMULATION 96, 911–923 (2020)

https://doi.org/10.1007/978-3-319-98618-0_11
https://doi.org/10.1007/978-3-319-98618-0_11
https://doi.org/10.1007/978-3-642-41647-7_41
https://doi.org/10.1007/978-3-642-41647-7_41
https://doi.org/10.1007/978-3-642-16472-9_12
https://doi.org/10.1007/978-3-642-16472-9_12
https://doi.org/10.1007/978-3-319-59060-8_28

A Multi-agent CA Model of Lane Changing Behaviour 491

14. Chmielewska, M., Kotlarz, M., Wąs, J.: Computer simulation of traffic flow based
on cellular automata and multi-agent system. In: Wyrzykowski, R., Deelman, E.,
Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS,
vol. 9574, pp. 517–527. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
32152-3_48

15. Małecki, K., Kamiński, M., Wąs, J.: A multi-cell cellular automata model of traffic
flow with emergency vehicles: effect of a corridor of life and drivers’ behaviour. J.
Comput. Sci. 61, 101628 (2022)

16. Shang, X.C., Lin, X.G., Xie, D.F., Jia, B., Jiang, R.: Two-lane traffic flow model
based on regular hexagonal cells with realistic lane changing behavior (2020)

17. Ma, Y., Lv, Z., Zhang, P., Chan, C.Y.: Impact of lane changing on adjacent vehicles
considering multi-vehicle interaction in mixed traffic flow: a velocity estimating
model (2020)

18. Dz, U.: Announcement of the minister of infrastructure and construction of the
Republic of Poland of 23 december 2015 on The Technical Conditions to be met
by Public Roads, vol. 124, pp. 9–10 (2015)

https://doi.org/10.1007/978-3-319-32152-3_48
https://doi.org/10.1007/978-3-319-32152-3_48

Comparison of the Use of UWB and BLE
as Positioning Methods in Data-Driven

Modeling of Pedestrian Dynamics

Dariusz Pałka1 , Robert Lubaś1 , Giuseppe Vizzari2 ,
and Jarosław Wąs1,2(B)

1 Faculty of Electrical Engineering, Automatics, IT and Biomedical Engineering,
AGH University of Science and Technology, Mickiewicza 30,

30-059 Krakow, Poland
jaroslaw.was@agh.edu.pl

2 Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi
di Milano-Bicocca, Viale Sarca 336, Building U14, 20126 Milan, Italy

Abstract. We conducted experiments on measuring the positioning of
people using standard (custom) BLE and UWB positioning systems
in an indoor test environment. Then, we analyzed and compared the
results in terms of using the data obtained from the sensors for data-
driven crowd simulations using Cellular Automata grids. Our research
confirmed the usability of both technologies as positioning methods in
data-driven modeling of pedestrian dynamics. Positioning using standard
UWB configuration revealed to be much more accurate than the standard
BLE configuration. In our experiments, based on standard configuration
of both devices, the accuracy of the UWB results equated to standard
deviation did not exceed 0.1 m - which is an order of magnitude (10
times) less than in the case of BLE.

Keywords: Positioning of people · Modeling of pedestrian dynamics ·
Positioning using BLE · Positioning using UWB

1 Introduction

Modeling of pedestrians’ dynamics based on data from position sensors has
recently been perceived as a very promising research methodology. However,
it should be emphasized that the accuracy of positioning is still a limitation.

Currently, crowd modeling is possible using a variety of methods. Navigation
and goal setting of pedestrians are quite a challenge [13]. The solution here is
to use agent systems [11], that can be based on exact grids [2,12]. In particular,
one can point out: continuous methods, discrete methods and hybrid methods.
Continuous methods, such as the social force method, known as Helbing - Mol-
nar - Vicsek model [4], assume a simulation with the use of continuous space and
time, although they use discretization, e.g. when assessing the range of forces

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 492–501, 2023.
https://doi.org/10.1007/978-3-031-30445-3_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_41&domain=pdf
http://orcid.org/0000-0003-1420-981X
http://orcid.org/0000-0002-7261-5042
http://orcid.org/0000-0002-7916-6438
http://orcid.org/0000-0003-2964-745X
https://doi.org/10.1007/978-3-031-30445-3_41

Use of UWB and BLE as Positioning Methods in Data-Driven Modeling 493

(the so-called truncation radius). In turn, discrete methods are based on Cel-
lular Automata (CA) framework, which is composed of a grid and transition
function [7,12]. CA lattice can be constant or adaptively change over time or
space [1]. The grid size is closely correlated with the human size, and in the case
of 2D and 2.5D simulations - with the projection of a human silhouette onto a
plane. A standard lattice size for pedestrian dynamics is 40 cm [8], 25cm [12],
50 cm [5], and, if necessary, an adaptive size of a grid can be also applied [1].
Any modeling approach, and especially data-driven ones, requires data about
real-world pedestrian dynamics, for several potential reasons, ranging from sim-
ulation initialization to validation of achieved results.

In our work, we decided to analyze two emerging measurement technologies
regarding data-driven crowd modeling, namely Ultra - Wideband (UWB) and
Bluetooth Low Energy (BLE), which were applied in data-driven schemes of
crowd simulation, in particular, methods based on discrete grids. The aim of our
experiment was to evaluate and compare the precision of the two technologies
within the same indoor experimental setting.

2 Application of UWB and BLE in the Positioning of
Pedestrians

The ultra-wide band UWB waveform is based on an impulse radio signalling
scheme using band-limited pulses. There are three independent bands of oper-
ation: the sub-gigahertz band, low band and high band. According to the stan-
dard IEEE 802.15.4-2011, UWB uses a combination of burst position modula-
tion (BPM) and binary phase-shift keying (BSPK) and transmits a very short
(nanosecond order) time domain single pulse or a burst of pulses. Regarding
UWB the DWM1001 development board with DWM1001 module produced by
Decawave was selected for the experiment.

Bluetooth Low Energy (BLE) is a 2.4GHz ISM wireless technology developed
by the Bluetooth Special Interest Group (SIG) for short-range communication.
BLE uses Gaussian Frequency Shift Keying (GFSK) and Adaptive Frequency
Hopping. It has 40 channels with a separation of 2MHz. It achieves the through-
put of the physical layer at the level of 1 Mbit/s and the transmission power
from -20 dBm to +10 dBm, in order to ensure low power consumption.

We use standard configurations of both devices: UWB and BLE. For both
UWB and BLE, the system configuration is similar - the system consists of two
types of devices:

– Beacons (anchors): located in specific, known position in space (generally, the
position is fixed);

– Tags (receivers): carried by pedestrians, whose position we want to determine.

494 D. Pałka et al.

Every specified time interval, the distance between the tag and individual
beacon is measured, then using trilateration (or multilateration), the position of
the receiver in 3D space is computed.

Considered Decawave’s set is rather low-cost solution (under 30 Euro per
tag). Tag dimension is less than 8 cm and weighing a few grams. The system
uses supply voltage: 2.8V to 3.6V. Tags must be placed every few meters, then
the solution can handle a larger area of space.

Fig. 1. Trilateration. Annuli with dashed outlines possible position taking into account
distance reading error, green area, common area of annuli - possible tag position, red
dot - example real position of the tag. (Color figure online)

3 Experiments

The purpose of the experiments was to estimate the minimum error of position
determination using BLE and UWB. In both cases, standard devices (transmit-
ters and receivers) were used without any modifications (both hardware and
software) to improve positioning accuracy.

3.1 Experiment BLE

The first experiment measured recorded signal strength at different distances
of BLE devices from each other. The configuration of the experiment was as
follows:

– One of the BLE devices was programmed as a BLE Peripheral (acted as a
beacon/anchor). This device was in the advertising state and sent out adver-
tisement packets at short intervals (less than 500 ms).

Use of UWB and BLE as Positioning Methods in Data-Driven Modeling 495

– The second BLE device was programmed as a BLE Observer (receiver/tag
role), it recorded the received signal strength value represented as RSSI
(Received Signal Strength Indication).

– Measurements were taken for different distances of the devices from each
other (ranging from 10 cm to 500 cm), with no obstacles between the devices.
For each distance, 500 RSSI readings were recorded.

As can be seen in Fig. 3, the graph of the receiver’s recorded signal strength
(RSSI) is banded - the observed readings are grouped around 2 or 3 different
values.

Fig. 2. Read RSSI values for the distance between BLE devices of 10 and 100 cm.

The exact distributions of RSSI values for 15 distances are shown in Fig. 3.
For each distance, 500 measurements were recorded.

Dependence of measured RSSI on distance (along with the standard devia-
tion) is shown in Fig. 4. A linear function was fitted to the measured data using

496 D. Pałka et al.

Fig. 3. Histograms of RSSI values for various distances between BLE devices.

a linear regression method with error weights (shown in the same figure). The
function has the linear form:

f(x) = a0 + a1 · x (1)

with the coefficients (determined using linear regression):

– a0 = –11.6131
– a1 = –23.9092

Disregarding the last row in the Table 1 (since the corresponding readings have
a high fluctuation), the accuracy (max error) of the distance reading between bea-
con and tag in the 10cm to 450cm range is approximately 1.1m (113 cm).

Use of UWB and BLE as Positioning Methods in Data-Driven Modeling 497

Fig. 4. Dependence of RSSI on distance for BLE devices.

Table 1. The difference between the distance resulting from the fitted linear function
f(x) and the mean readout of the measurements

Distance [cm] Mean RSSI value read Value of the fitted function f(x) Distance error [cm]

10 –37.6 –35.5 2
20 –42.7 –42.7 0
30 –46.5 –46.9 1
40 –48.6 –49.9 5
50 –49.9 –52.2 10
60 –54.6 –54.1 3
80 –58.7 –57.2 13
100 –57.9 –59.4 13
120 –61.4 –61.3 1
150 –66.4 –63.6 45
200 –68.4 –66.6 38
250 –69.9 –68.9 23
300 –68.6 –70.8 57
350 –75.3 –72.4 113
400 –71.1 –73.8 92
450 –75.3 –75.0 13
500 -81.5 -76.1 334

498 D. Pałka et al.

Fig. 5. Histograms of distance readings for various distances between UWB devices.

3.2 Experiment UWB

In the experiment on positioning using UWB, Qorvo DWM1001 development
boards were used both as beacons (anchors) and tag. To measure the distance,
DWM1001 uses two-way ranging (TWR) which is based on determining the
"time of flight” (TOF) of signals between devices, rather than on a signal strength
reading (as in the case of BLE).

DWM1001 firmware provides data on both the position between the tag and
individual beacons and the quality of a specific position (quality factor).

The experiment aimed at determining positioning accuracy consisted of mea-
suring the distance of a UWB device acting as a tag from four devices acting as
anchors (beacons). All devices were stationary (their positions did not change),
so based on the fluctuation of distance readings, the positioning error can be
determined. The standard deviation for the distribution of distance readings
was taken as a measure of accuracy (error).

Graphs showing the distribution of the measured values of distance from each
anchor are shown in Fig. 5.

Use of UWB and BLE as Positioning Methods in Data-Driven Modeling 499

Table 2. Distance reading values to individual UWB beacons

Beacon number Mean of the distance [cm] Standard deviation of the distance [cm]

1 301.8 5.6
2 323.4 8.9
3 382.8 3.8
4 930.0 5.8

The mean values and standard deviations calculated from the distributions
are shown in Table 2.

For UWB, the accuracy (equated to standard deviation) did not exceed 0.1m
(8.9 cm) - which is an order of magnitude (10 times) less than in the BLE case.

As in the case of BLE, measurements were made under good conditions, with
all beacons in line of sight with the tag.

4 Data-Driven Simulation of Crowd Dynamics Using
UWB and BLE

Modeling of pedestrians’ dynamics based on data from position sensors has
recently been perceived as a very promising research methodology [6,10]. How-

Fig. 6. Comparison of positioning accuracy using UWB and BLE - reference to a 40
cm × 40 cm grid

500 D. Pałka et al.

ever, it should be emphasized that the accuracy of positioning is still a limitation
[3]. In our work, we decided to analyze two emerging technologies, namely Ultra-
Wideband (UWB) and Bluetooth Low Energy (BLE), in terms of their use in
data-driven schemes of crowd simulation, in particular, for methods based on dis-
crete lattice. The lattice can be constant or adaptively change over time and/or
space [1].

When using positioning and placing agents (representation of a pedestrian)
on the grid, we can observe different error values. Using a UWB Tag to determine
the position of a pedestrian increases the accuracy of the position measurement
and thus allows using denser grids for Cellular Automata.

Denser grids allow the mapping of objects and pedestrians with greater accu-
racy, which is important especially in situations with high density of pedestrians.
In Fig. 4 we can observe that with the standard UWB configuration, the position-
ing accuracy on the 40 cm × 40 cm cellular automaton grid (customarily used for
crowd modeling) is sufficient for precise pedestrian positioning. Unfortunately,
the standard configuration for BLE sensors gives a much lower positioning accu-
racy, which is insufficient in the precise microscopic simulation of pedestrians
based on Cellular Automata.

5 Conclusions

The main aim of our experiment was to experimentally compare the accuracy
of people positioning using standard sets of Ultrawide band (UWB) and Blue-
tooth low energy (BLE) sensors. We have intentionally made no modifications
or optimizations to the sensor software. We placed a set of detectors UWB and
BLE in identical locations in the corridor - indoor environment and tested the
positioning accuracy.

For UWB, the accuracy, which equated to standard deviation, did not exceed
0.1m (in our measurements it was 8.9 cm) - which is an order of magnitude 10
times less than in the BLE case. Whilst in the case of BLE, measurements were
made under good conditions, with all beacons in line of sight with the tag.

This has significant implications in terms of the usability and effectiveness
of standard sensor arrays for positioning people in space. It can be seen that
the accuracy of UWB positioning in relation to a grid of 40 cm or even 25 cm is
sufficient to place a pedestrian in a specific cell. In the case of the standard BLE
sensor settings, we can only roughly define the set of cells where a pedestrian
can be placed.

In the next steps, we plan to modify the software to obtain greater accuracy
for each of the methods (especially for BLE). We also plan to expand the sensor
fusion [9] method to position peoplemore accurately based on integrated data
from various sensors.

Use of UWB and BLE as Positioning Methods in Data-Driven Modeling 501

References

1. Bazior, G., Pałka, D., Wąs, J.: Using Cellular Automata to Model High Den-
sity Pedestrian Dynamics. In: Krzhizhanovskaya, V.V., Závodszky, G., Lees, M.H.,
Dongarra, J.J., Sloot, P.M.A., Brissos, S., Teixeira, J. (eds.) ICCS 2020. LNCS,
vol. 12137, pp. 486–498. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-50371-0_36

2. Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedes-
trian dynamics using a two-dimensional cellular automaton. Physica A: Statistical
Mechanics and its Applications 295(3 - 4), 507 – 525 (2001). https://doi.org/10.
1016/S0378-4371(01)00141-8, https://doi.org/10.1016/S0378-4371(01)00141-8

3. Colmer, M.: UWB vs BLE whitepaper. GS Technology (09 2019)
4. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E

51, 4282–4286 (May 1995). https://doi.org/10.1103/PhysRevE.51.4282, https://
link.aps.org/doi/10.1103/PhysRevE.51.4282

5. Huo, F., Song, W., Lv, W., Liew, K.M.: Analyzing pedestrian merging flow on a
floor–stair interface using an extended lattice gas model. SIMULATION 90(5),
501–510 (2014). https://doi.org/10.1177/0037549714526294, https://doi.org/10.
1177/0037549714526294

6. Lee, C., Um, G., Park, S., Lee, K.: Moving object performance analysis sys-
tem using multi-camera video and position sensors. In: Lee, W., Chen, L.,
Moon, Y., Bourgeois, J., Bennis, M., Li, Y., Ha, Y., Kwon, H., Cuzzocrea,
A. (eds.) 2020 IEEE International Conference on Big Data and Smart Com-
puting, BigComp 2020, Busan, Korea (South), February 19-22, 2020. pp. 441–
445. IEEE (2020). https://doi.org/10.1109/BigComp48618.2020.00-31, https://
doi.org/10.1109/BigComp48618.2020.00-31

7. Renc, P., Pęcak, T., De Rango, A., Spataro, W., Mendicino, G., Wąs,
J.: Towards efficient GPGPU cellular automata model implementation
using persistent active cells. Journal of Computational Science 59, 101538
(2022). https://doi.org/10.1016/j.jocs.2021.101538, https://www.sciencedirect.
com/science/article/pii/S1877750321001964

8. Sarmady, S., Haron, F., Talib, A.: Simulating crowd movements using fine grid
cellular automata. In: International Conference on Computer Modeling and Simu-
lation. pp. 428–433 (01 2010). https://doi.org/10.1109/UKSIM.2010.85

9. Szlachetka, M., Borkowski, D., Wąs, J.: The downselection of measurements
used for free space determination in ADAS. Journal of Computational Sci-
ence 63, 101762 (2022). https://doi.org/10.1016/j.jocs.2022.101762, https://www.
sciencedirect.com/science/article/pii/S1877750322001454

10. Tian, Q., Wang, K.I.K., Salcic, Z.: An ins and uwb fusion-based gyroscope drift
correction approach for indoor pedestrian tracking. Sensors 20(16), 4476 (Aug
2020). https://doi.org/10.3390/s20164476, http://dx.doi.org/10.3390/s20164476

11. Vizzari, G., Crociani, L., Bandini, S.: An agent-based model for plausible wayfind-
ing in pedestrian simulation. vol. 87 (2020). https://doi.org/10.1016/j.engappai.
2019.103241, https://doi.org/10.1016/j.engappai.2019.103241

12. Wąs, J., Lubaś, R.: Towards realistic and effective agent-based models of
crowd dynamics. Neurocomputing 146, 199–209 (2014). https://doi.org/10.1016/
j.neucom.2014.04.057, https://doi.org/10.1016/j.neucom.2014.04.057

13. Zeng, Y., Ye, R., Song, W., Luo, S., Meng, F., Vizzari, G.: Entropy analysis of the
laminar movement in bidirectional pedestrian flow. Physica A: Statistical Mechan-
ics and its Applications 566, 125655 (2021). https://doi.org/10.1016/j.physa.2020.
125655, https://www.sciencedirect.com/science/article/pii/S0378437120309535

https://doi.org/10.1007/978-3-030-50371-0_36
https://doi.org/10.1007/978-3-030-50371-0_36
https://doi.org/10.1016/S0378-4371(01)00141-8
https://doi.org/10.1016/S0378-4371(01)00141-8
https://doi.org/10.1016/S0378-4371(01)00141-8
https://doi.org/10.1103/PhysRevE.51.4282
https://link.aps.org/doi/10.1103/PhysRevE.51.4282
https://link.aps.org/doi/10.1103/PhysRevE.51.4282
https://doi.org/10.1177/0037549714526294
https://doi.org/10.1177/0037549714526294
https://doi.org/10.1177/0037549714526294
https://doi.org/10.1109/BigComp48618.2020.00-31
https://doi.org/10.1109/BigComp48618.2020.00-31
https://doi.org/10.1109/BigComp48618.2020.00-31
https://www.sciencedirect.com/science/article/pii/S1877750321001964
https://www.sciencedirect.com/science/article/pii/S1877750321001964
https://doi.org/10.1109/UKSIM.2010.85
https://doi.org/10.1016/j.jocs.2022.101762
https://www.sciencedirect.com/science/article/pii/S1877750322001454
https://www.sciencedirect.com/science/article/pii/S1877750322001454
https://doi.org/10.3390/s20164476
http://dx.doi.org/10.3390/s20164476
https://doi.org/10.1016/j.engappai.2019.103241
https://doi.org/10.1016/j.engappai.2019.103241
https://doi.org/10.1016/j.engappai.2019.103241
https://doi.org/10.1016/j.neucom.2014.04.057
https://doi.org/10.1016/j.neucom.2014.04.057
https://doi.org/10.1016/j.neucom.2014.04.057
https://doi.org/10.1016/j.physa.2020.125655
https://doi.org/10.1016/j.physa.2020.125655
https://www.sciencedirect.com/science/article/pii/S0378437120309535

An Insight into the State-of-the-Art
Vehicular Fog Computing

with an Opportunistic Flavour

Krzysztof Ostrowski(B) and Krzysztof Ma�lecki

West Pomeranian University of Technology, Szczecin, Poland

krzysztof.ostrowski@zut.edu.pl, kmalecki@wi.zut.edu.pl

Abstract. Vehicular fog computing constitutes an environment for exe-
cution of demanding computation and storage tasks. There formed a hier-
archical decentralised and distributed architecture supports the resource-
constrained devices in completion of assignments too complex for them,
and too latency-sensitive to be delegated to a cloud. This paper evaluates
the recent advances in the research on vehicular fog computing focused on
the exploitation of resources of the moving vehicles that operate in the
opportunistic device-to-device dynamic networking environments. The
proposed evaluation criteria consider structural, behavioural, and func-
tional safety aspects of such systems. A set of research directions con-
cludes this article.

Keywords: vehicular fog computing (VFC) · opportunistic
computing · mobility-aware

1 Introduction

Fog computing is an emerging paradigm of massively distributed computing
that aims to provide the benefits of cloud computing to the constrained devices
in the Internet of Things (IoT) [3]. Although direct cooperation between IoT
devices and the far-end cloud data centres is technically possible, it turns out
to be practically infeasible due to high latencies and extensive communication
resource consumption [1,40]. A wide variety of solutions that bring the cloud
services ”closer” to the service requester were proposed throughout the years.
However, fog computing is considered as a more general form of them [41]. Fog
computing addresses multiple concerns in a standardised reference architecture
by providing a concept for a highly virtualised platform that distributes compu-
tation, storage, and networking tasks over the heterogeneous service providers
(called fog nodes) placed between the IoT and the cloud [19]. The act of task
distribution is customarily called an offloading, and includes phases like offload-
ing targets (offloadees) discovery and selection, task placement and execution,
result delivery, and workload migration.

A model of the fog computing concept, the vehicular fog computing
(VFC [16]) enables vehicles to act as both the service requesters and service
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 502–513, 2023.
https://doi.org/10.1007/978-3-031-30445-3_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30445-3_42&domain=pdf
http://orcid.org/0000-0002-7113-4407
http://orcid.org/0000-0002-8687-1119
https://doi.org/10.1007/978-3-031-30445-3_42

State-of-the-Art VFC with Opportunistic Flavour 503

providers. Vehicles include legacy and resource-rich smart road vehicles and, in
a broader perspective, also ships [10], drones [21,26], and satellites [44]. Figure 1
illustrates the system context for VFC. Vehicular fog computing deals with
dynamic networking environments where both the mobility and capabilities of
the vehicle nodes vary over time. Those characteristics pose multiple issues that
include i.a., scalability, availability of nodes, and the resulting service continuity.
Researchers constrained the dynamicity of VFC by leveraging vehicular ad-hoc
networks (VANETs) as a networking foundation. These simplifications enhance
mobile ad-hoc networks (MANETs [6]) with a set of immobile infrastructure
nodes located in the vicinity of the vehicles (e.g. roadside units (RSUs), cellu-
lar base stations with edge servers, etc.). However, with the introduction of a
direct vehicle-to-vehicle (V2V [43]) communication, the previously ameliorated
problem of a high dynamicity comes back with a vengeance.

Fig. 1. Vehicular fog computing.

Leveraging the peer-to-peer communication channels in the vehicular fog
computing with V2V requires new and incorporating of the existing paradigms
that operate in the environments based on the ”relaxed” MANETs. Relaxed
denotes here that nodes in such a network are not statically supplied with prior
knowledge about the network topology. In this regard, opportunistic network-
ing [30] is a good candidate for a background study. Opportunistic networking
deals with relaxed MANETs where it runs sophisticated routing strategies to
cope with intermittent connectivity caused by the mobility of network nodes.
Routing decisions are local and take advantage of knowledge inferred from con-
textual information unless simple data dissemination (flooding) is applied. The
computing paradigm founded atop that networking environment, the opportunis-
tic computing [8,9], explores human social network structures to build context-
awareness and effectively utilises mobile users’ devices in opportunistic routing,
clustering, and computing. Vehicular fog computing is likely to take advantage

504 K. Ostrowski and K. Ma�lecki

of the accomplishments in the opportunistic networking and computing at its
fine-grained peer-to-peer scale: on the level of V2V interactions, both within a
cluster and between the clusters.

This paper verifies the state-of-the-art research in vehicular fog computing,
where the mobility of vehicular fog nodes plays a pivotal role in establishing the
underlying networking facilities in the process of task offloading. Aside from the
similar review works that deal with mobile service requesters, this paper focuses
on the moving vehicular nodes that serve as offloading targets in an opportunis-
tic environment. According to the authors’ knowledge, no survey publication is
entirely dedicated to the listed aspects. For example, [29] points out the virtu-
alisation as a leading enabler for vehicular fogs, but roughly discusses dynamic
setups with moving vehicles. Similarly, [17] makes the fog node mobility charac-
teristic as optional, then briefly presents VFC as an application of fog computing.
Papers in [18,31] classify smart vehicles as the data generation layer only, and
place fog nodes in the immobile network. Authors in [24] discuss vehicles that
offload to infrastructure fog nodes, and cooperatively to the parked vehicles.
However, collaborative offloading between vehicles is not sufficiently covered.
Work in [14] surveys algorithms for the selection of the offloading target nodes,
then provides a rough insight into the behaviour modelling under uncertainty of
the network and system information. None of the works clearly associate VFC
with opportunistic computing, nor try to evaluate the existing works using the
association thus derived.

The remainder of this article is organised as follows. Section 2 categorises
existing works in the area of vehicular fog computing focused on leveraging
opportunistic behaviours in dynamic networks. Section 3 discusses the surveyed
articles, and provides a set of open issues and an outlook for further research,
while Sect. 4 concludes this article.

2 Evaluation of Approaches

This section briefly introduces the evaluation criteria (C1–C4), then presents
the existing works that address there covered concerns. Table 1 summarises the
coverage of the criteria in the surveyed research papers.

2.1 C1: Connectivity

Reliable communication in the opportunistic communication environments
requires the dynamic application of message routing strategies that reactively
or proactively cope with intermittent connectivity and delays. While most of
the works deal with one-hop network neighbourhoods, the authors of [20,23,33]
deal with multi-hop networking contexts. Due to the mobility of the network
nodes, there are many additional hurdles to overcome with sophisticated node
discovery and network monitoring algorithms. [23] elaborates on the reduction
of redundant sensor data reception in dynamic networks of low connectivity,

State-of-the-Art VFC with Opportunistic Flavour 505

then proposes an algorithm to forward the chunks of sensor data through an on-
demand sequence of relay nodes established in a decentralised manner. [20,37]
enhance connectivity with a set of mobile gateways recruited from vehicles with
stable connectivity characteristics to proxy the cloud services for other nodes.
[32] explores the heterogeneity of the communication media to predict connec-
tion opportunities and its quality indicators. [33] devises an on-request cluster
lifetime extension, where an infrastructure node either shares its own resources,
or coordinates intra-cluster collaboration to increase the serviceability.

2.2 C2: Cooperativeness

Both the collaboration, understood as workload sharing to achieve a common
goal jointly, and cooperation, thought as a relaxed of the form of work as job
delegation, play pivotal roles in the maintenance of the heterogeneous and dis-
tributed vehicular computing networks. Cooperation in VFC is associated with
a last-resort fallback offloading to a cloud, or cloud-originated task delegation.
Collaboration is observable in both flat (clustered, peer-to-peer) and hierarchical
architectures. Several works propose delegation of the workload from infrastruc-
ture to mobile nodes to support collaborative connectivity monitoring tasks [32],
or RSU-managed cooperative offloading in case of insufficient resources or excess
service handovers [22,25]. On the other hand, [38] discusses the delegation of the
offloading algorithm itself from mobile to infrastructure nodes. [33] considers
supervising upper layers that maintain clusters’ lifetime and handle upstream
escalation requests. Moreover, [5] enables vehicles to either offload to an exist-
ing or form a new resource pool cluster, as well as collaboratively aggregate
the offloading results of an application distributed to the cluster. [39] discusses
inter-cluster collaborative task offloading, while [4,15] cover also intra-cluster
collaboration with autonomic task distribution, and parallel execution, respec-
tively. Additionally, [36] uses nodal collaboration to share context-aware local
decisions, while [23] exploits it for multi-hop data forwarding. In [11] vehicles
collaborate to elect backup nodes, and to announce their willingness to leave the
cluster. Furthermore, [45] enables the infrastructure and mobile nodes to estab-
lish a VFC platform of voluntary vehicular nodes cooperatively. [12] proposes
a cooperative sensing solution within a platoon of vehicles, while [34] envisions
a collaborative sensing platform with data mules involved in the opportunistic
routing of incentives. [42] models federated learning platform with, assisted by a
base station, cooperative replacement of the RSU-cached data upon movement
of a vehicular cluster.

C2a: Context-Aware Clustering. Vehicular fog nodes are typically organ-
ised into subnetworks called clusters [2]. Clusters are managed either centrally
or locally by the members. Clusters communicate with other clusters through
an elected broker (cluster head member). Appropriate clustering and further
dynamic reconstructions of clusters impact VFC systems’ effectiveness, avail-
ability, and overall solution scalability. Both the metrics and triggers required

506 K. Ostrowski and K. Ma�lecki

to establish and maintain the clusters are derived from the current system and
network contextual information. [39] arranges vehicles into clusters based on the
road lane occupied and their turning directions at the next crossing. [5,28] use
relative mobility level between two vehicles and mobility patterns as cluster-
ing metrics. Works [15,36] propose centrally-managed vehicular resource pools
of communities of the recruited and incentivised vehicles. [11] nominates clus-
ter heads to build a temporary cluster that reflects the offloaded application
structure. [27,34] determine clusters through inspection of the temporal infor-
mation derived from the historical locations of buses. [33] constructs clusters by
fusing the locally calculated QoS value with information received from the two-
hop neighbourhood. [4] proposes a fuzzy logic-based heuristic to elect cluster
heads in a decentralised fashion, using information exchanged between one-hop
neighbours. [20] establishes two-hop clusters based on mobility, connectivity, and
centrality measures with the application of fuzzy logic and ant colony optimisa-
tion.

C2b: Distributed Decisions. In VFC systems decisions are taken either cen-
trally by the infrastructure nodes, locally by the individual fog nodes and the
clusters, or a multi-step hybrid approach run within the fog hierarchy is engaged.
[36] applies nodal collaboration to share locally taken decisions, later fused with
globally available information, to form and manage vehicular resource pools. [23]
distributes iterative route planning decisions to establish a carrier for delivery of
sensor data to fog nodes. [32] gathers the locally-calculated connection estimates
to rank and classify the candidate offloadees. [45] proposes a two-step scheme
based on contract theory and machine learning (multi-armed bandit, MAB) that
actively involves both the offloader and offloadees in the pricing-based matching
and task allocation under information asymmetry and uncertainty. [22] formu-
lates a multi-stage incentive-aware Stackelberg game between the nodes in the
hierarchical VFC.

C2c: Federated Learning. Uncertainties in VFC are typically handled with
machine learning that solves the modelled Markov decision processes. However,
such solutions incur high computation demands, especially in highly dynamic
environments. Federated learning distributes the learning process, so that the
models are locally trained in parallel with multiple datasets. [42] selects subsets
of fog nodes to collaboratively learn the adversarial autoencoder (AAE) shared
global learning model used in mobility-aware proactive caching with content
popularity prediction. A general survey in the federated learning for vehicular
environments is provided in [13].

2.3 C3: Redundancy

Redundancy is a conventional approach to assure fault tolerance using repli-
cated tasks and computing nodes. [35] estimates the number of task replicas
with a two-step distributed algorithm where the offloaders sequentially refine

State-of-the-Art VFC with Opportunistic Flavour 507

the RSU-originated approximation with a combinatorial MAB (CMAB) learn-
ing model. [11] proposes redundant fog nodes that compute at reduced rates,
and are expected to speed up their computations to reach the states of the fog
nodes that are about to leave the cluster.

2.4 C4: Migration

Migration of workload is essential to provide uninterrupted services in mobility-
oriented systems. Fog nodes in VFC communicate with their neighbourhoods to
collaboratively offload the workload or rely on the infrastructure in the results
handover and task migration. [28] discusses online migration of containerised
tasks between clustered fog nodes triggered by a latency condition.

Table 1. Coverage of the evaluation criteria concerning the analysed literature.

Year 2022 2021 2020 2019

Ref. [22] [27] [23] [42] [39] [36] [37] [5] [15] [25] [35] [38] [4] [11] [12] [32] [33] [34] [28] [20] [45]

C1 × × × × ×
C2 × × × × × × × × × × × × × × × × ×
C2a × × × × × × × × × × ×
C2b × × × ×
C2c ×
C3 × ×
C4 ×

3 Discussion

This paper presented the recent advances in the vehicular fog computing with
the mobile fog nodes that exploit opportunistic networking. Research works were
evaluated with four criteria that focused on structural (C1), behavioural (C2),
and functional safety (C3, C4) aspects. The selected papers exploit the dynamic
computing environment as either an extension of the static infrastructure or
a self-managing autonomic system. While the former is predominant, the lat-
ter slowly gains attention as with device-to-device LTE sidelink communication
becomes available with C-V2X. Peer-to-peer interactions between the cluster
members interwoven with indirect communication within the hierarchical archi-
tecture enable authors to embrace the structural complexity of the VFC envi-
ronments. However, the dynamicity of the VFC clusters poses multiple open
issues that can be jointly considered as dynamic community detection problems.
Authors employ context-aware metrics and event monitoring to form and main-
tain the communities. While it is very beneficial to use historical data to organ-
ise the communities initially, further reconstructions are likely to be led locally
by interpreting the neighbours’ contexts enhanced with third-party information
(e.g. social graph [7]). The instability of the clusters mainly stems from the

508 K. Ostrowski and K. Ma�lecki

mobility of fog nodes that results in high churn rates, but also from their over-
whelming heterogeneity, autonomous local decisions and intermittent connec-
tivity that introduce uncertainties. Constraining the execution environments of
solutions to those of controllable mobility (e.g. highways, predictable bus trajec-
tories, slowly-moving vehicles, etc.) is prevailing in the examined works. Unfor-
tunately, such limitations effectively narrow down the area of deployment. Note
that solutions with unmanned aerial vehicles (UAVs) are indisputably quasi-
static [21] as they follow the planned paths to hover at predefined areas. In that
sense, resource pools offered by UAVs correspond to the terrestrial ones formed
by parked vehicles. Only a few authors explicitly perceive high network density
and mobility as friends [23,45]. Nevertheless, the basic fault-tolerance techniques
like redundancy and workload migration between the mobile nodes attracted few
researchers. One can risk the statement that the burden of error handling has
been implicitly shifted to the underlying networking layer. That might be true
for low-level message routing and forwarding, which are extensively covered in
the opportunistic networks, but does not hold for the application layer in which
vehicular fog computing operates first and foremost. As fog computing relies
on highly virtualised environments of varying computation and communication
resources, and the number of resource-rich smart vehicles constantly increases,
VFC is expected to relieve the infrastructure of decision tasks by splitting and
distributing the problems to vehicular fog nodes. This trend is visible in hybrid
management, where rough estimations are offloaded to clusters for local refine-
ments, and in federated learning.

3.1 Research Directions

The following paragraphs briefly present the noticed research opportunities in
VFC that emphasise the role of mobile nodes in providing a highly scalable
fog computing environment. Furthermore, Fig. 2 provides an overview in the
research areas of the tomorrow’s VFC. Three aggregate domains that include
VFC management, simulated solutions’ benchmarking, and offloadee selection
are considered. These areas directly benefit from the achievements brought by
the works that contribute to the presented research directions.

Optimisation Problems, System, and Mobility Modelling. Surveyed
research works formulate optimisation problems as either binary or mixed
integer-linear. As such formulations are not efficiently solvable with a growing
number of variables and constraints, their authors lean towards heuristic-based
solutions to take advantage of multiple search agents. Problems with uncertain-
ties are conventionally solved with machine learning. Interestingly, even with the
non-exact solutions, the computation overhead is significant and will presumably
exceed the complex resource and time limits of the vast majority of fog nodes
spatiotemporally available in dynamic VFC environments. Future works should
apply localised adaptive and hybrid approaches, where the decentralised and
distributed computing for offloading management is exploited. Moreover, as the

State-of-the-Art VFC with Opportunistic Flavour 509

Fig. 2. Current state-of-the-art and research areas.

proposed VFC systems are theoretically evaluated, the choice of either synthetic
or simulator-generated (e.g. out of real-world data sets) mobility patterns of fog
nodes significantly affect the overall system performance and behaviour. That,
in turn, makes solutions generally incomparable. To cope with that, both the
simulation frameworks and data sets should be published, too.

Collaborative, Cooperative, and Replicated. Even in centrally-managed
solutions, where an RSU or a base station maintains the global network state,
VFC should take advantage of at least nodal collaboration and in-hierarchy coop-
eration. While collaboration is typically associated with local context sharing
and distributed operation, cooperation serves as a last-resort fallback offloading
(e.g. to cloud data centres), provides a path for problem escalation, and helps to
unload the congested network nodes in both the horizontal and vertical directions
within the hierarchy. These are considerable challenges to simultaneously enable
the security-oriented interoperability between VFC service providers, dynami-
cally reflect the offloaded application structure in the dynamic network of fog
nodes, and maintain the service continuity through both the multi-factor induced
migration and adaptive redundancy.

Multi-aspect Context-Awareness. Contextual operation is essential for
dynamic environments. Lack of context-awareness component leads to stale
information and inadequate behaviours resulting from no longer valid system
states. In VFC, contextual information comes from multiple sources and dynam-
ically changes with time. The intensity of changes is not constant. Future works
in VFC should focus on identification, exploitation, and consolidation of the
time-varying contextual information to predict the network and system states
efficiently and to improve the robustness, and simplify the VFC systems using
localised decisions and distributed responsibilities.

510 K. Ostrowski and K. Ma�lecki

4 Conclusion

This work discusses the vehicular fog computing enabled for opportunistic net-
working, where the mobile vehicular nodes are also the service providers. An
insight into the related research papers was provided, and the contents evaluated
according to the derived four criteria: connectivity, cooperativeness, redundancy,
and migration. By careful inspection, it has been noted that the vast majority
of studies address the structural aspects of opportunistic-aware VFC, while the
behavioural and, foremost, the reliability issues are not sufficiently covered. The
authors foresee growth in the market of resource-rich smart vehicles in the near
future, thus encourage the researchers to pay particular attention to the need
to ensure the fault-tolerant and secure infrastructure-less and hybrid vehicular
computing. As this paper is the very first survey in those topics, it is expected
that it can serve as a starting point to explore the uncharted territories of VFC.

References

1. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Inter-
net of things: a survey on enabling technologies, protocols, and applications.
IEEE Commun. Surv. Tutorials 17(4), 2347–2376 (2015). https://doi.org/10.1109/
COMST.2015.2444095

2. Baker, D., Ephremides, A., Flynn, J.: The design and simulation of a mobile radio
network with distributed control. IEEE J. Sel. Areas Commun. 2(1), 226–237
(1984). https://doi.org/10.1109/JSAC.1984.1146043

3. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In: Proceedings of the First Edition of the MCC Workshop
on Mobile Cloud Computing, pp. 13–16. MCC 2012, Association for Computing
Machinery, New York, August 2012. https://doi.org/10.1145/2342509.2342513

4. Buda, S., Guleng, S., Wu, C., Zhang, J., Yau, K.A., Ji, Y.: Collaborative vehicular
edge computing towards greener ITS. IEEE Access 8, 63935–63944 (2020). https://
doi.org/10.1109/ACCESS.2020.2985731

5. Cha, N., Wu, C., Yoshinaga, T., Ji, Y., Yau, K.L.A.: Virtual edge: exploring com-
putation offloading in collaborative vehicular edge computing. IEEE Access 9,
37739–37751 (2021). https://doi.org/10.1109/ACCESS.2021.3063246

6. Chlamtac, I., Conti, M., Liu, J.J.N.: Mobile ad hoc networking: imperatives and
challenges. Ad Hoc Netw. 1(1), 13–64 (2003). https://doi.org/10.1016/S1570-
8705(03)00013-1

7. Ciobanu, R.I., Negru, C., Pop, F., Dobre, C., Mavromoustakis, C.X., Mastorakis,
G.: Drop computing: ad-hoc dynamic collaborative computing. Future Gener.
Comput. Syst. 92, 889–899 (2019). https://doi.org/10.1016/j.future.2017.11.044

8. Conti, M., Giordano, S., May, M., Passarella, A.: From opportunistic networks to
opportunistic computing. IEEE Commun. Mag. 48(9), 126–139 (2010). https://
doi.org/10.1109/MCOM.2010.5560597

9. Conti, M., Passarella, A.: The internet of people: a human and data-centric
paradigm for the next generation internet. Comput. Commun. 131, 51–65 (2018).
https://doi.org/10.1016/j.comcom.2018.07.034

10. Cui, K., Lin, B., Sun, W., Sun, W.: Learning-based task offloading for marine fog-
cloud computing networks of USV cluster. Electronics 8(11), 1287 (2019). https://
doi.org/10.3390/electronics8111287

https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/10.1109/JSAC.1984.1146043
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1109/ACCESS.2020.2985731
https://doi.org/10.1109/ACCESS.2020.2985731
https://doi.org/10.1109/ACCESS.2021.3063246
https://doi.org/10.1016/S1570-8705(03)00013-1
https://doi.org/10.1016/S1570-8705(03)00013-1
https://doi.org/10.1016/j.future.2017.11.044
https://doi.org/10.1109/MCOM.2010.5560597
https://doi.org/10.1109/MCOM.2010.5560597
https://doi.org/10.1016/j.comcom.2018.07.034
https://doi.org/10.3390/electronics8111287
https://doi.org/10.3390/electronics8111287

State-of-the-Art VFC with Opportunistic Flavour 511

11. Dong, L., Ni, Q., Wu, W., Huang, C., Znati, T., Du, D.Z.: A proactive reliable
mechanism-based vehicular fog computing network. IEEE Internet Things J. 7(12),
11895–11907 (2020). https://doi.org/10.1109/JIOT.2020.3007608

12. Du, H., Leng, S., Wu, F., Chen, X., Mao, S.: A new vehicular fog computing
architecture for cooperative sensing of autonomous driving. IEEE Access 8, 10997–
11006 (2020). https://doi.org/10.1109/ACCESS.2020.2964029

13. Du, Z., Wu, C., Yoshinaga, T., Yau, K.L.A., Ji, Y., Li, J.: Federated learning
for vehicular internet of things: recent advances and open issues. IEEE Open J.
Comput. Soc. 1, 45–61 (2020). https://doi.org/10.1109/OJCS.2020.2992630

14. Hamdi, A.M.A., Hussain, F.K., Hussain, O.K.: Task offloading in vehicular fog
computing: state-of-the-art and open issues. Future Gener. Comput. Syst. 133,
201–212 (2022). https://doi.org/10.1016/j.future.2022.03.019

15. Hameed, A.R., ul Islam, S., Ahmad, I., Munir, K.: Energy- and performance-aware
load-balancing in vehicular fog computing. Sustain. Comput. Inf. Syst. 30, 100454
(2021). https://doi.org/10.1016/j.suscom.2020.100454

16. Hou, X., Li, Y., Chen, M., Wu, D., Jin, D., Chen, S.: Vehicular fog computing:
a viewpoint of vehicles as the infrastructures. IEEE Trans. Veh. Technol. 65(6),
3860–3873 (2016). https://doi.org/10.1109/TVT.2016.2532863

17. Hu, P., Dhelim, S., Ning, H., Qiu, T.: Survey on fog computing: architecture,
key technologies, applications and open issues. J. Netw. Comput. Appl. 98, 27–42
(2017). https://doi.org/10.1016/j.jnca.2017.09.002

18. Huang, C., Lu, R., Choo, K.R.: Vehicular fog computing: architecture, use case,
and security and forensic challenges. IEEE Commun. Mag. 55(11), 105–111 (2017).
https://doi.org/10.1109/MCOM.2017.1700322

19. IEEE: IEEE Std 1934-2018. IEEE standard for adoption of OpenFog reference
architecture for fog computing. https://doi.org/10.1109/IEEESTD.2018.8423800,
https://ieeexplore.ieee.org/document/8423800/

20. Jabri, I., Mekki, T., Rachedi, A., Ben Jemaa, M.: Vehicular fog gateways selec-
tion on the internet of vehicles: a fuzzy logic with ant colony optimization based
approach. Ad Hoc Netw. 91, 101879 (2019). https://doi.org/10.1016/j.adhoc.2019.
101879

21. Jia, Z., Wu, Q., Dong, C., Yuen, C., Han, Z.: hierarchical aerial computing for
internet of things via cooperation of HAPs and UAVs. IEEE Internet Things J. 1
(2022). https://doi.org/10.1109/JIOT.2022.3151639

22. Li, Y., Yang, B., Wu, H., Han, Q., Chen, C., Guan, X.: Joint offloading decision
and resource allocation for vehicular fog-edge computing networks: a contract-
stackelberg approach. IEEE Internet Things J. 1 (2022). https://doi.org/10.1109/
JIOT.2022.3150955

23. Liang, J., Zhang, J., Leung, V.C., Wu, X.: Distributed information exchange with
low latency for decision making in vehicular fog computing. IEEE Internet Things
J. 1 (2021). https://doi.org/10.1109/JIOT.2021.3075516

24. Liu, L., Chen, C., Pei, Q., Maharjan, S., Zhang, Y.: Vehicular edge computing and
networking: a survey. Mob. Netw. Appl. 26(3), 1145–1168 (2020). https://doi.org/
10.1007/s11036-020-01624-1

25. Lv, B., Yang, C., Chen, X., Yao, Z., Yang, J.: Task offloading and serving handover
of vehicular edge computing networks based on trajectory prediction. IEEE Access
9, 130793–130804 (2021). https://doi.org/10.1109/ACCESS.2021.3112077

26. Madan, N., Malik, A.W., Rahman, A.U., Ravana, S.D.: On-demand resource pro-
visioning for vehicular networks using flying fog. Veh. Commun. 25, 100252 (2020).
https://doi.org/10.1016/j.vehcom.2020.100252

https://doi.org/10.1109/JIOT.2020.3007608
https://doi.org/10.1109/ACCESS.2020.2964029
https://doi.org/10.1109/OJCS.2020.2992630
https://doi.org/10.1016/j.future.2022.03.019
https://doi.org/10.1016/j.suscom.2020.100454
https://doi.org/10.1109/TVT.2016.2532863
https://doi.org/10.1016/j.jnca.2017.09.002
https://doi.org/10.1109/MCOM.2017.1700322
https://doi.org/10.1109/IEEESTD.2018.8423800
https://ieeexplore.ieee.org/document/8423800/
https://doi.org/10.1016/j.adhoc.2019.101879
https://doi.org/10.1016/j.adhoc.2019.101879
https://doi.org/10.1109/JIOT.2022.3151639
https://doi.org/10.1109/JIOT.2022.3150955
https://doi.org/10.1109/JIOT.2022.3150955
https://doi.org/10.1109/JIOT.2021.3075516
https://doi.org/10.1007/s11036-020-01624-1
https://doi.org/10.1007/s11036-020-01624-1
https://doi.org/10.1109/ACCESS.2021.3112077
https://doi.org/10.1016/j.vehcom.2020.100252

512 K. Ostrowski and K. Ma�lecki

27. Mao, W., et al.: Data-driven capacity planning for vehicular fog computing. IEEE
Internet Things J. 1 (2022). https://doi.org/10.1109/JIOT.2022.3143872

28. Mseddi, A., Jaafar, W., Elbiaze, H., Ajib, W.: Intelligent resource allocation in
dynamic fog computing environments. In: 2019 IEEE 8th International Conference
on Cloud Networking (CloudNet), pp. 1–7, November 2019. https://doi.org/10.
1109/CloudNet47604.2019.9064110

29. Olariu, S.: A survey of vehicular cloud research: trends, applications and challenges.
IEEE Trans. Intell. Transp. Syst. 21(6), 2648–2663 (2020). https://doi.org/10.
1109/TITS.2019.2959743

30. Pelusi, L., Passarella, A., Conti, M.: Opportunistic networking: data forwarding
in disconnected mobile ad hoc networks. IEEE Commun. Mag. 44(11), 134–141
(2006). https://doi.org/10.1109/MCOM.2006.248176

31. Raza, S., Wang, S., Ahmed, M., Anwar, M.R.: A Survey on vehicular edge com-
puting: architecture, applications, technical issues, and future directions. Wirel.
Commun. Mob. Comput. 2019, e3159762 (2019). https://doi.org/10.1155/2019/
3159762

32. Saad, A., Grande, R.E.D.: MDP-based vehicular network connectivity model for
VCC management. In: 2020 IEEE/ACM 24th International Symposium on Dis-
tributed Simulation and Real Time Applications (DS-RT), pp. 1–8, September
2020. https://doi.org/10.1109/DS-RT50469.2020.9213698

33. Sami, H., Mourad, A., El-Hajj, W.: Vehicular-OBUs-as-on-demand-fogs: resource
and context aware deployment of containerized micro-services. IEEE/ACM Trans.
Networking 28(2), 778–790 (2020). https://doi.org/10.1109/TNET.2020.2973800

34. Sun, G., Sun, S., Yu, H., Guizani, M.: Toward incentivizing fog-based privacy-
preserving mobile crowdsensing in the internet of vehicles. IEEE Internet Things
J. 7(5), 4128–4142 (2020). https://doi.org/10.1109/JIOT.2019.2951410

35. Sun, Y., Zhou, S., Niu, Z.: Distributed task replication for vehicular edge com-
puting: performance analysis and learning-based algorithm. IEEE Trans. Wirel.
Commun. 20(2), 1138–1151 (2021). https://doi.org/10.1109/TWC.2020.3030889

36. Tang, C., Xia, S., Li, Q., Chen, W., Fang, W.: Resource pooling in vehicular fog
computing. J. Cloud Comput. 10(1), 1–14 (2021). https://doi.org/10.1186/s13677-
021-00233-x

37. Wang, P., Yu, R., Gao, N., Lin, C., Liu, Y.: Task-driven data offloading for fog-
enabled urban IoT services. IEEE Internet Things J. 8(9), 7562–7574 (2021).
https://doi.org/10.1109/JIOT.2020.3039467

38. Wang, Z., Zhao, D., Ni, M., Li, L., Li, C.: Collaborative mobile computation offload-
ing to vehicle-based cloudlets. IEEE Trans. Veh. Technol. 70(1), 768–781 (2021).
https://doi.org/10.1109/TVT.2020.3043296

39. Wu, Y., Wu, J., Chen, L., Zhou, G., Yan, J.: Fog computing model and effi-
cient algorithms for directional vehicle mobility in vehicular network. IEEE Trans.
Intell. Transp. Syst. 22(5), 2599–2614 (2021). https://doi.org/10.1109/TITS.2020.
2971343

40. Yannuzzi, M., Milito, R., Serral-Gracià, R., Montero, D., Nemirovsky, M.: Key
ingredients in an IoT recipe: fog computing, cloud computing, and more fog com-
puting. In: 2014 IEEE 19th International Workshop on Computer Aided Model-
ing and Design of Communication Links and Networks (CAMAD), pp. 325–329,
December 2014. https://doi.org/10.1109/CAMAD.2014.7033259

41. Yousefpour, A., et al.: All one needs to know about fog computing and related
edge computing paradigms: a complete survey. J. Syst. Archit. 98, 289–330 (2019).
https://doi.org/10.1016/j.sysarc.2019.02.009

https://doi.org/10.1109/JIOT.2022.3143872
https://doi.org/10.1109/CloudNet47604.2019.9064110
https://doi.org/10.1109/CloudNet47604.2019.9064110
https://doi.org/10.1109/TITS.2019.2959743
https://doi.org/10.1109/TITS.2019.2959743
https://doi.org/10.1109/MCOM.2006.248176
https://doi.org/10.1155/2019/3159762
https://doi.org/10.1155/2019/3159762
https://doi.org/10.1109/DS-RT50469.2020.9213698
https://doi.org/10.1109/TNET.2020.2973800
https://doi.org/10.1109/JIOT.2019.2951410
https://doi.org/10.1109/TWC.2020.3030889
https://doi.org/10.1186/s13677-021-00233-x
https://doi.org/10.1186/s13677-021-00233-x
https://doi.org/10.1109/JIOT.2020.3039467
https://doi.org/10.1109/TVT.2020.3043296
https://doi.org/10.1109/TITS.2020.2971343
https://doi.org/10.1109/TITS.2020.2971343
https://doi.org/10.1109/CAMAD.2014.7033259
https://doi.org/10.1016/j.sysarc.2019.02.009

State-of-the-Art VFC with Opportunistic Flavour 513

42. Yu, Z., Hu, J., Min, G., Zhao, Z., Miao, W., Hossain, M.S.: Mobility-aware proac-
tive edge caching for connected vehicles using federated learning. IEEE Trans.
Intell. Transp. Syst. 22(8), 5341–5351 (2021). https://doi.org/10.1109/TITS.2020.
3017474

43. Zeadally, S., Guerrero, J., Contreras, J.: A tutorial survey on vehicle-to-vehicle
communications. Telecomm. Syst. 73(3), 469–489 (2019). https://doi.org/10.1007/
s11235-019-00639-8

44. Zhang, Z., Zhang, W., Tseng, F.: Satellite mobile edge computing: improving QoS
of high-speed satellite-terrestrial networks using edge computing techniques. IEEE
Network 33(1), 70–76 (2019). https://doi.org/10.1109/MNET.2018.1800172

45. Zhou, Z., Liao, H., Zhao, X., Ai, B., Guizani, M.: Reliable task offloading for
vehicular fog computing under information asymmetry and information uncer-
tainty. IEEE Trans. Veh. Technol. 68(9), 8322–8335 (2019). https://doi.org/10.
1109/TVT.2019.2926732

https://doi.org/10.1109/TITS.2020.3017474
https://doi.org/10.1109/TITS.2020.3017474
https://doi.org/10.1007/s11235-019-00639-8
https://doi.org/10.1007/s11235-019-00639-8
https://doi.org/10.1109/MNET.2018.1800172
https://doi.org/10.1109/TVT.2019.2926732
https://doi.org/10.1109/TVT.2019.2926732

Author Index

A
Aaraj, Najwa I-399
Ababaei, Ahmad I-359
Abduljabbar, Mustafa I-249
Abeykoon, Vibhatha I-291
Afonso, Sergio I-371
Afzal, Ayesha I-155
Aliaga, José I. I-16
Aljaberi, Saeed I-399
Almeida, Francisco I-371
Alonso-Jordá, Pedro II-236
Andersson, Måns I. I-333, I-383
Andresen, Daniel II-260
Antkowiak, Michał II-382
Anzt, Hartwig I-113

B
Bader, David A. I-71
Balis, Bartosz I-197
Banaszak, Michał II-370
Beams, Natalie I-113
Bečka, Martin I-464
Benet, Luis II-428
Bielecki, Wlodzimierz II-51
Blanco, Vicente I-371
Bosque, Jose Luis I-237
Bottalico, Davide II-101
Brzostowski, Bartosz II-392
Bulckaen, Léo II-470
Bulkhak, Artem II-248
Bungartz, Hans-Joachim I-139
Bystrov, Oleg I-171

C
Cabrera, Alberto I-371
Carracciuolo, Luisa II-101
Carretero, Jesus II-77
Cascajo, Alberto II-77
Castrillon, Jeronimo I-249
Chandra, M Girish II-153
Chung, Minh Thanh I-263

Cuocolo, Reanto II-115
Cuomo, Salvatore II-115
Czajkowski, Marcin I-126
Czarnul, Paweł I-429

D
Das Sarma, Aditya II-153
De Lucia, Gianluca II-127
Dimov, Ivan I-55
Dmitruk, Beata II-63
Du, Zhihui I-71
Dubey, Anshu I-279
Durajski, Artur P. II-392
Dutka, Łukasz I-305
Dutta, Nilankur II-470
Dytrych, Tomáš II-357

E
Eitzinger, Jan I-321
Exposito, David II-77

F
Fato, Francesco II-115
Ferguson, Zachary II-415
Ferranti, Luca II-428
Fohry, Claudia II-14
Fomperosa, Jaime I-237
Fox, Geoffrey I-291
Fredriksson, Albin I-383
Fürlinger, Karl I-263

G
Ganzha, Maria I-55
García-Risueño, Pablo I-3
Garzón, Ester M. II-165
Gepner, Paweł II-223
Giampaolo, Fabio II-115
Gielerak, Roman II-187
Gokieli, Maria II-343
Górka, Patryk II-481

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13827, pp. 515–518, 2023.
https://doi.org/10.1007/978-3-031-30445-3

https://doi.org/10.1007/978-3-031-30445-3

516 Author Index

Grabowski, Michal I-197
Graillat, Stef I-16
Gruszka, Konrad M. II-392
Grzeszczak, Jakub I-414

H
Hager, Georg I-155
Halver, Rene II-3
Hambitzer, Anna I-399
Hardenbicker, Kai II-14
Hoekstra, Alfons I-183
Hoffmann, Nico II-273
Hoshi, Takeo I-453
Hsu, William II-260
Hutchison, Scott II-260

I
Iakymchuk, Roman I-16
Ibañez, Mario I-237
Imamura, Toshiyuki I-40
Iserte, Sergio II-223

J
John, Joseph I-225
Junghans, Christoph II-3
Jurczuk, Krzysztof I-126

K
Kačeniauskas, Arnas I-171
Kaliszewski, Ignacy II-139
Kamburugamuve, Supun I-291
Kamil, Shoaib II-415
Kanewala, Thejaka Amila I-291
Karbowiak, Łukasz I-441
Kitowski, Jacek I-305
Kjelgaard Mikkelsen, Carl Christian I-3
Klosterman, Tom I-279
Kluge, Thomas II-273
Kobayashi, Masato I-453
Kolotinskii, Daniil I-346
Kosheleva, Olga II-405
Köstler, Harald I-321
Kotara, Piotr II-209
Kranzlmüller, Dieter I-263
Kreinovich, Vladik II-405
Kretowski, Marek I-126
Kryza, Bartosz I-305
Krzywaniak, Adam II-223
Krzyżanowski, Piotr II-323

Kubanek, Mariusz I-441
Kubica, Bartłomiej Jacek II-441
Kudo, Shuhei I-453
Kumar, A Anil II-153
Kurowski, Krzysztof II-177

L
Laccetti, Giuliano II-89
Langr, Daniel II-357
Lapegna, Marco II-127
Lemański, Romuald II-382
Lenadora, Damitha I-291
Lewandowski, Michał I-30
Liu, Felix I-383
López-Villellas, Lorién I-3
Lubaś, Robert II-492

M
Maithree, Hasara I-291
Majumder, Utso II-153
Małecki, Krzysztof II-481, II-502
Marcinkowski, Leszek II-300
Markidis, Stefano I-155, I-333, I-383
Marowka, Ami II-27, II-39
Martín Garzón, Gracia Ester II-139
Martínez, Héctor II-236
Martins, Wellington Santos I-83
Mele, Valeria II-89
Michel, Antoine I-359
Michelino, Davide II-101
Miethlinger, Thomas II-273
Mikitiuk, Artur I-414
Milthorpe, Josh I-225
Miroforidis, Janusz II-139
Montella, Raffaele II-77
Moreno, Juan José II-139
Moskovka, Alexej II-287, II-331
Mukunoki, Daichi I-40
Murugan, Natarajan Arul I-333

N
Neckel, Tobias I-139
Neilsen, Mitchell II-260
Nichita, Pavel I-371
Nicolas, Alexandre II-470

O
Ogita, Takeshi I-40
Okša, Gabriel I-464

Author Index 517

Olejniczak, Andrzej II-370
Ortega, Gloria II-165
Orts, Francisco II-165
Orzechowski, Michał I-305
Ostrowski, Krzysztof II-502
Ozaki, Katsuhisa I-40

P
Pacevič, Ruslan I-171
Pałka, Dariusz II-492
Palkowski, Marek II-51
Panozzo, Daniele II-415
Paprzycki, Marcin I-55
Parsons, Benjamin II-260
Pavlov, Daniil I-346
Perera, Niranda I-291
Pericàs, Miquel I-249
Piccialli, Francesco II-115
Pimentel, Andy D. I-183
Pires, Julio Cesar Batista I-83
Podobas, Artur I-333
Pramanik, Sayantan II-153
Puertas, Antonio M. II-165

Q
Quintana-Ortí, Enrique S. II-236

R
Rahman, Talal II-300
Ramírez, Cristian II-236
Ravedutti Lucio Machado, Rafael I-321
Reitz, Lukas II-14
Reiz, Severin I-139
Revol, Nathalie II-428
Rojek, Krzysztof II-223
Romano, Diego II-127
Rosa, Bogdan I-359
Rościszewski, Paweł II-223
Rycerz, Katarzyna II-199, II-209

S
Sabella, Gianluca II-101
Sasak-Okoń, Anna I-95
Satpute, Nitin I-399
Sawerwain, Marek II-187
Sayama, Hiroki II-459
Schneider, Teseo II-415

Shaikhislamov, Denis I-209
Shan, Kaiying I-291
Shan, Xiujie II-313
Sikorski, Andrzej I-30
Słota, Renata G. I-305
Slysz, Mateusz II-177
Soomro, Pirah Noor I-249
Spadarella, Gaia II-115
Spisso, Bernardino II-101
Stafford, Esteban I-237
Stegailov, Vladimir I-346
Stpiczyński, Przemysław II-63
Strazdins, Peter I-225
Sutmann, Godehard II-3

T
Tang, Xuan II-415
Todorov, Venelin I-55
Toporkov, Victor II-248
Trojanowski, Krzysztof I-414
Tsai, Yu-Hsiang Mike I-113
Tudruj, Marek I-95

U
Ugga, Lorenzo II-115
Uyar, Ahmet I-291

V
Vaidya, Vishnu II-153
Valdman, Jan II-287, II-331
van Dijk, Jelle I-183
van Gijzen, Martin B. II-313
Varbanescu, Ana-Lucia I-183
Vizzari, Giuseppe II-492
Voevodin, Vadim I-209
Vohnoutová, Marta II-331

W
Wąs, Jarosław II-492
Węglarz, Jan II-177
Weidendorfer, Josef I-263
Wellein, Gerhard I-155, I-321
Widanage, Chathura I-291
Wieczerzak, Dawid I-429
Wojtkiewicz, Jacek II-392
Wołoszczuk, Sebastian II-370
Woźniak-Braszak, Aneta II-370

518 Author Index

Wróbel, Piotr II-481
Wrosz, Izajasz I-30
Wrzeszcz, Michał I-305

Y
Yamamoto, Yusaku I-453
Yemelyanov, Dmitry II-248

Z
Zavodszky, Gabor I-183
Zawadzki, Tomasz II-209
Zawalska, Justyna II-199
Zhang, Sen I-71
Zhilin, Sergei II-428
Zorin, Denis II-415

	 Preface
	 Organization
	 Contents – Part II
	 Contents – Part I
	I 9th Workshop on Language-Based Parallel Programming (WLPP 2022)
	Kokkos-Based Implementation of MPCD on Heterogeneous Nodes
	1 Introduction
	2 Multi-Particle Collision Dynamics
	3 Implementation with Cabana
	3.1 Collection of Particles in Cells
	3.2 Communication of Required Information
	3.3 Rotation of Velocities

	4 Benchmarks and Discussion
	5 Conclusion and Outlook
	References

	Comparison of Load Balancing Schemes for Asynchronous Many-Task Runtimes
	1 Introduction
	2 Background
	2.1 Lifeline Scheme
	2.2 Hybrid Scheme
	2.3 Nested Fork-Join and Dynamic Independent Tasks

	3 Design and Implementation of Lifeline-Pure Scheme
	4 Experimental Evaluation
	5 Related Work
	6 Conclusions
	References

	New Insights on the Revised Definition of the Performance Portability Metric
	1 Introduction
	2 Definition of the 10ptPps: currentpoint currentpoint translate scale neg exch neg exch translatetops: currentpoint currentpoint translate 1 div 1 div scale neg exch neg exch translate11to–1P and 10ptps: currentpoint currentpoint translate scale neg exch neg exch translatetops: currentpoint currentpoint translate 1 div 1 div scale neg exch neg exch translate11to–1 Metrics
	3 Proportionality
	4 Smith's Article
	5 The Principles
	6 Lossy Metrics
	7 Properties of a Good Metric
	8 Conclusions
	References

	Inferential Statistical Analysis of Performance Portability
	1 Introduction
	2 OpenACC Performance Portability
	3 OpenACC's Observation Statistics
	4 Hypothesis Testing
	4.1 One-sample Wilcoxon Signed-Rank Test
	4.2 Nonparametric Bootstrap

	5 OpenMP, Kokkos, and Raja
	6 Conclusions
	References

	NPDP Benchmark Suite for Loop Tiling Effectiveness Evaluation
	1 Introduction
	2 NPDP Kernels
	3 Related Work
	4 Experimental Study
	5 Conclusion
	References

	Parallel Vectorized Implementations of Compensated Summation Algorithms
	1 Introduction
	2 Compensated Summation Algorithms
	3 Implementation of Parallel Vectorized Algorithms
	4 Results of Experiments
	5 Conclusions and Future Work
	References

	6th Workshop on Models, Algorithms and Methodologies for Hybrid Parallelism in New HPC Systems (MAMHYP 2022)
	Malleability Techniques for HPC Systems
	1 Introduction
	2 ADMIRE Project
	3 FlexMPI
	4 A Malleability Use Case: WaComM++
	5 Conclusions
	References

	Algorithm and Software Overhead: A Theoretical Approach to Performance Portability
	1 Introduction
	2 The Performance Evaluation Framework
	2.1 Decomposition of a Problem
	2.2 Algorithm
	2.3 Algorithm Overhead
	2.4 Memory and Communication
	2.5 Software Execution Time

	3 Performance Portability
	4 Conclusions
	References

	Benchmarking a High Performance Computing Heterogeneous Cluster
	1 Introduction
	2 The Architecture of the Hybrid High Performance Computing Cluster
	3 Cluster Benchmarking
	3.1 Communication and Computation
	3.2 Communication and Data Storage

	4 Discussion on the Results
	5 Conclusion
	References

	A Generative Adversarial Network Approach for Noise and Artifacts Reduction in MRI Head and Neck Imaging
	1 Introduction
	2 Materials and Methods
	2.1 The GAN Methodology
	2.2 MRI Dataset Description and Splitting
	2.3 Data Pre-processing
	2.4 The M-GAN Architecture
	2.5 Evaluation Metrics

	3 Experimental Results
	3.1 Results on the Training Set
	3.2 Results on the Validation Set
	3.3 Results on the Test Set
	3.4 Comparison with the S.O.T.A

	4 Discussion and Conclusions
	References

	A GPU Accelerated Hyperspectral 3D Convolutional Neural Network Classification at the Edge with Principal Component Analysis Preprocessing
	1 Introduction
	2 HSI Pipeline
	3 Experiments
	4 Results
	5 Conclusions
	References

	Parallel gEUD Models for Accelerated IMRT Planning on Modern HPC Platforms
	1 Introduction
	2 Formulation of Radiotherapy Planning
	2.1 Gradient Descent
	2.2 GPU Implementation
	2.3 Multi-core Implementation

	3 Experimental Results
	4 Conclusions and Future Works
	References

	First Workshop on Quantum Computing and Communication
	On Quantum-Assisted LDPC Decoding Augmented with Classical Post-processing
	1 Introduction
	2 Brief Elaboration on Quantum Annealer and QUBO
	2.1 D-Wave Quantum Annealer
	2.2 QUBO

	3 Proposed Approach
	3.1 Encoding
	3.2 Decoding

	4 Results and Discussion
	4.1 Results for Fixed SNR Channel
	4.2 Results for Time-Varying SNR

	5 Conclusion
	References

	Quantum Annealing to Solve the Unrelated Parallel Machine Scheduling Problem
	1 Introduction
	2 Quantum Annealing Computing
	3 Unrelated Parallel Machine Scheduling Problem Using Quantum Annealing
	3.1 Definition of the Unrelated Parallel Machine Scheduling Problem
	3.2 From Binary Integer Programming (BIP) to QUBO

	4 D-Wave Implementation
	5 Evaluation
	5.1 Resource Assessment
	5.2 Validation of Results

	6 Conclusions
	References

	Early Experiences with a Photonic Quantum Simulator for Solving Job Shop Scheduling Problem
	1 Introduction
	2 Problem Formulation
	2.1 Photonic Quantum Computer
	2.2 JSSP Formulation
	2.3 Hybrid Optimization Algorithm

	3 Experiments
	3.1 Problem Instance
	3.2 Variable Prunning
	3.3 Experiments

	4 Conclusions
	References

	Some Remarks on Super-Gram Operators for General Bipartite Quantum States
	1 Introduction
	2 Two-Partite System Gramians
	3 Computational Examples
	4 Conclusions
	References

	Solving the Traveling Salesman Problem with a Hybrid Quantum-Classical Feedforward Neural Network
	1 Introduction
	2 Related Work
	3 Background
	3.1 Traveling Salesman Problem
	3.2 QAOA

	4 Method
	5 Experimental Setup
	5.1 Data Preparation and Encoding
	5.2 Training Phase
	5.3 Testing Phase and Reference Method

	6 Results
	6.1 Solution with High Number of Correct Results
	6.2 Solution Trapped in a Local Minimum

	7 Conclusion and Future Work
	References

	Software Aided Analysis of EWL Based Quantum Games
	1 Introduction and Motivation
	2 Related Work
	3 Generalized Eisert-Wilkens-Lewenstein Scheme
	4 EWL Library
	4.1 EWL Abstraction
	4.2 Algorithms
	4.3 Qiskit Integration

	5 Prisoner's Dilemma Use Case
	6 Experiment Results
	6.1 Symbolic Calculations of Probability Functions
	6.2 Numerical Best Response and Nash Equilibrium Search

	7 Summary and Future Work
	References

	First Workshop on Applications of Machine Learning and Artificial Intelligence in High Performance Computing (WAML 2022)
	Adaptation of AI-Accelerated CFD Simulations to the IPU Platform*-4pt
	1 Introduction
	2 Related Work
	3 Implementation
	3.1 The Original Model for Accelerating CFD Simulations
	3.2 The IPU Processor, IPU-M2000 System and IPU-POD16 Configuration
	3.3 Porting the Training Program to the IPU Platform
	3.4 Using the Popdist Library to Remove the I/O Bottleneck

	4 Experimental Results
	4.1 Model Verification
	4.2 Performance and Scalability

	5 Summary and Future Work
	References

	Performance Analysis of Convolution Algorithms for Deep Learning on Edge Processors
	1 Introduction
	2 Brief Review of the Convolution
	3 Convolution via Lowering
	4 GEMM-Like Direct Convolution
	5 Architecture Model for an Edge Processor
	6 Performance Analysis
	7 Concluding Remarks
	References

	Machine Learning-Based Online Scheduling in Distributed Computing
	1 Introduction
	2 Problem Statement
	2.1 Online Resources Selection and Knapsack Problem
	2.2 Artificial Neural Network Model

	3 Algorithms Implementation
	3.1 Training and Design of the Artificial Neural Network
	3.2 MLAK Algorithm

	4 Simulation Study
	4.1 Simulation Environment
	4.2 Simulation Results and Analysis

	5 Conclusion
	References

	High Performance Computing Queue Time Prediction Using Clustering and Regression
	1 Introduction
	2 Background
	3 Methodology
	3.1 Data Set
	3.2 Feature Selection and Calculation
	3.3 Feature Normalization and Model Development
	3.4 Evaluation

	4 Results
	4.1 Correlation of Features
	4.2 K-Means Clustering and GBT Regression
	4.3 Future HPC Queue Time Prediction

	5 Discussion
	6 Conclusion and Future Work
	References

	Acceptance Rates of Invertible Neural Networks on Electron Spectra from Near-Critical Laser-Plasmas: A Comparison
	1 Introduction
	2 PIC Simulation Setup and Data Generation
	3 Invertible Neural Networks
	4 Results
	4.1 Acceptance Rate
	4.2 Runtimes

	5 Conclusion
	References

	4th Workshop on Applied High Performance Numerical Algorithms for PDEs
	MATLAB Implementation of Hp Finite Elements on Rectangles Using Hierarchical Basis Functions
	1 Introduction
	2 Hierarchic Shape Functions
	2.1 Hierarchic Shape Functions on Tref= [-1,1]2

	3 Global Shape Functions
	3.1 Global Indexing

	4 Mass and Stiffness Matrices
	4.1 The Reference Mass and Stiffness Matrices
	4.2 The Global Mass and Stiffness Matrices

	5 Solving Partial Differential Equation in 2D
	References

	Adaptive Parallel Average Schwarz Preconditioner for Crouzeix-Raviart Finite Volume Method
	1 Introduction
	2 Discrete Problem
	2.1 Crouzeix-Raviart Finite Volume Element Method

	3 Additive Average Schwarz Method
	3.1 Local Spaces
	3.2 Harmonically Enriched Coarse Space
	3.3 ASM Operator

	4 Convergence
	4.1 GMRES Method
	4.2 Main Results

	5 Implementation
	References

	Parareal Method for Anisotropic Diffusion Denoising
	1 Introduction
	2 Model and Discretization
	2.1 Diffusion Model
	2.2 Linearization and Time Discretization

	3 Parareal Algorithm for the Anisotropic Diffusion Model
	4 Analysis of the Algorithm
	4.1 Potential Speedup by Parareal (Ideal Case)
	4.2 Potential Speedup by Parareal (with Communication Time)

	5 Experimental Results
	6 Conclusions
	A Appendix
	References

	Comparison of Block Preconditioners for the Stokes Problem with Discontinuous Viscosity and Friction
	1 Introduction
	2 Finite Element Discretization and Matrix Formulation
	3 Block Preconditioners
	4 Numerical Experiments
	5 Conclusions
	References

	On Minimization of Nonlinear Energies Using FEM in MATLAB
	1 Introduction
	2 Finite Element Method and Minimization
	2.1 Solution Algorithm

	3 Ginzburg-Landau Problem
	4 Topology Optimization in 2D
	5 Conclusions and outlooks
	References

	A Model for Crowd Evacuation Dynamics: 2D Numerical Simulations
	1 Introduction
	2 Numerical Scheme
	3 Velocity
	4 Simulations
	4.1 Settings
	4.2 Linear Model, P = 2
	4.3 p 2
	4.4 Nonlinear Model, p 2

	5 Conclusions
	References

	5th Minisymposium on HPC Applications in Physical Sciences
	Parallel Identification of Unique Sequences in Nuclear Structure Calculations
	1 Introduction
	2 Application
	3 Related Work
	4 Algorithm
	5 Implementation Issues
	6 Experiments
	7 Discussion on Results
	8 Conclusions
	References

	Experimental and Computer Study of Molecular Dynamics of a New Pyridazine Derivative
	1 Introduction
	2 Results and Discussion
	2.1 Cross-Relaxation NMR Experiment
	2.2 FTIR Results
	2.3 Molecular Dynamics Simulation

	3 Conclusions
	References

	Description of Magnetic Nanomolecules by the Extended Multi-orbital Hubbard Model: Perturbative vs Numerical Approach*-4pt
	1 Introduction
	2 Extended Multi-orbital HM
	3 Performance Analysis
	4 Magnetic Interaction Between Two Ions
	5 Summary and Conclusions
	References

	Structural and Electronic Properties of Small-Diameter Carbon NanoTubes: A DFT Study
	1 Introduction
	2 Computational Methods
	2.1 Quantum Software Packages
	2.2 Computational Parameters
	2.3 Relaxation Methodology

	3 Results
	3.1 Calculation Procedure, Energy Gaps, Band Structure
	3.2 Comparison with Existing Results
	3.3 Finite CNTs

	4 Summary, Conclusions, Outlook
	References

	8th Minisymposium on High Performance Computing Interval Methods
	Need for Techniques Intermediate Between Interval and Probabilistic Ones
	1 Formulation of the Problem
	2 Main Idea and the Resulting Formula and Algorithm
	References

	A Cross-Platform Benchmark for Interval Computation Libraries
	1 Introduction
	2 Background
	2.1 Hardware Rounding Mode Control
	2.2 Software Implementations
	2.3 Other Implementations

	3 Methodology
	3.1 Expressions
	3.2 Correctness
	3.3 Interval Width
	3.4 Speed
	3.5 Consistency and Portability

	4 Results
	4.1 Correctness
	4.2 Interval Width
	4.3 Performance
	4.4 Consistency and Portability
	4.5 Application on Continuous Collision Detection Queries

	5 Conclusion
	References

	Testing Interval Arithmetic Libraries, Including Their IEEE-1788 Compliance
	1 Introduction
	2 What Must Be Tested?
	2.1 General Remarks About Unit Tests
	2.2 Tests Common to All Interval Arithmetic Libraries
	2.3 Tests About IEEE-1788 Compliance
	2.4 Tests Specific to Some Libraries
	2.5 On Tests Timing
	2.6 Need for a Unified Framework for Testing Interval Arithmetic Libraries

	3 Interval Arithmetic Libraries and Their Test Sets
	4 Existing Frameworks
	4.1 Why They Are Needed?
	4.2 JInterval P1788 Test Launcher
	4.3 ITF1788 – Interval Test Framework for IEEE 1788

	5 What Is Missing? A Roadmap for Testing
	6 Conclusions
	References

	A Survey of Interval Algorithms for Solving Multicriteria Analysis Problems
	1 Introduction
	2 Basic Notions
	3 Classical (i.e., Non-interval Methods)
	3.1 Pareto-Sets Approximation
	3.2 Decision Making

	4 Interval Algorithms
	4.1 Pareto-Sets Approximation
	4.2 Tools
	4.3 Decision Making

	5 Conclusions
	References

	7th Workshop on Complex Collective Systems
	Social Fragmentation Transitions in Large-Scale Parameter Sweep Simulations of Adaptive Social Networks
	1 Introduction
	2 Model
	3 Experiments
	3.1 Settings
	3.2 Outcome Measures

	4 Results
	5 Conclusions
	References

	Parking Search in Urban Street Networks: Taming Down the Complexity of the Search-Time Problem via a Coarse-Graining Approach
	1 Introduction
	2 Modelling Framework
	2.1 Short Review of Existing Agent-Based Approaches
	2.2 Presentation of the Model
	2.3 Mean-Field Expression for the Search Time
	2.4 Stationary State Occupancy
	2.5 Validation in a Large-Scale Test Case

	3 Coarse-Graining Occupation Fields at the Street Level
	3.1 Coarse-Graining Method
	3.2 Validation

	4 Conclusions
	References

	A Multi-agent Cellular Automata Model of Lane Changing Behaviour Considering the Aggressiveness and the Autonomy
	1 Introduction
	2 Proposed Model
	2.1 CA Transition Function
	2.2 Classification of Agents Representing Drivers and Vehicles

	3 Numerical Results
	3.1 The Autonomy
	3.2 The Aggressiveness

	4 Conclusions
	References

	Comparison of the Use of UWB and BLE as Positioning Methods in Data-Driven Modeling of Pedestrian Dynamics
	1 Introduction
	2 Application of UWB and BLE in the Positioning of Pedestrians
	3 Experiments
	3.1 Experiment BLE
	3.2 Experiment UWB

	4 Data-Driven Simulation of Crowd Dynamics Using UWB and BLE
	5 Conclusions
	References

	An Insight into the State-of-the-Art Vehicular Fog Computing with an Opportunistic Flavour
	1 Introduction
	2 Evaluation of Approaches
	2.1 C1: Connectivity
	2.2 C2: Cooperativeness
	2.3 C3: Redundancy
	2.4 C4: Migration

	3 Discussion
	3.1 Research Directions

	4 Conclusion
	References

	Author Index

