
Infinite-Precision Inner Product
and Sparse Matrix-Vector Multiplication

Using Ozaki Scheme with Dot2
on Manycore Processors

Daichi Mukunoki1(B) , Katsuhisa Ozaki2 , Takeshi Ogita3 ,
and Toshiyuki Imamura1

1 RIKEN Center for Computational Science, Kobe, Hyogo, Japan
daichi.mukunoki@riken.jp

2 Shibaura Institute of Technology, Saitama, Japan
3 Tokyo Woman’s Christian University, Tokyo, Japan

Abstract. Infinite-precision operations do not incur rounding errors
except when rounding the computed result to a finite-precision value.
This can be an effective solution for the accuracy and reproducibility con-
cerns associated with floating-point operations. This research presents
an infinite-precision inner product (IP-DOT) and sparse matrix-vector
multiplication (IP-SpMV) on FP64 data for manycore processors. We
propose using a 106-bit computation using Dot2 in the Ozaki scheme,
which is an existing IP-DOT method. First, we discuss the theoretical
performance of our method using the roofline model. Then, we demon-
strate the actual performance as IP-DOT and reproducible conjugate
gradient (CG) solvers, with IP-SpMV as their primary operation, using
an Ice Lake CPU and an Ampere GPU. Although the benefits and per-
formance are dependent on the input data, our experiments on IP-DOT
demonstrated a speedup of approximately 1.9–3.4 times compared to
the previous method, and an execution time overhead of approximately
10–25 times compared to the standard FP64 operation. On reproducible
CG, a speedup of 1.1–1.7 times was achieved compared to the existing
method, and an execution time overhead of approximately 3–19 times
was observed compared to the non-reproducible standard solvers.

Keywords: Infinite-precision · Accurate · Reproducible · Inner
product · Sparse matrix-vector multiplication (SpMV) · Conjugate
gradient (CG)

1 Introduction

Floating-point operations are susceptible to rounding errors, which might lead
to inaccurate computational result. Additionally, since a change in the order
of operation causes different errors, the output may vary even when the same

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 40–54, 2023.
https://doi.org/10.1007/978-3-031-30442-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_4&domain=pdf
http://orcid.org/0000-0002-0051-6811
http://orcid.org/0000-0003-0431-6232
http://orcid.org/0000-0002-9346-2452
http://orcid.org/0000-0003-1601-9710
https://doi.org/10.1007/978-3-031-30442-2_4

Infinite-Precision Inner Product and Sparse Matrix-Vector Multiplication 41

input is used on parallel computations where the order of operations is non-
deterministic for each execution or in different hardware (e.g., CPUs and GPUs).
This can be troublesome when debugging or porting codes to multiple environ-
ments [1]. Thus, computing methods that are both accurate and reproducible
are being developed.

Infinite-precision operations do not incur rounding errors except when round-
ing the computed result to a finite-precision value, such as in FP64. This can
be an effective solution for the accuracy and reproducibility concerns associ-
ated with floating-point operations1. Furthermore, infinite-precision operations
can be utilized as a tool to analyze the mathematical behavior of numerical
algorithms [27]. However, one of the major drawbacks of infinite-precision opera-
tions is their high runtime and program development costs, especially on modern
manycore processors.

This research focuses on the infinite-precision inner product (IP-DOT) and
sparse matrix-vector multiplication (IP-SpMV) for FP64 data on manycore pro-
cessors. It proposes a fast computation method by combining an existing infinite-
precision method with a 106-bit precision operation algorithm. IP-DOT and IP-
SpMV are then implemented on an Ice Lake CPU and an Ampere GPU. The
advantage of the proposed method is not only justified theoretically but also
demonstrated as a speedup of IP-DOT separately and a speedup of reproducible
sparse iterative solvers based on IP-DOT and IP-SpMV on matrices selected
from a database collecting real-world problems.

2 Related Work

Several arithmetic tools, including iRRAM [20], RealLib [13], and Briggs’s
work [3], have been developed to enable infinite-precision computation. Its effi-
cient implementation for vector and matrix operations (i.e., Basic Linear Algebra
Subprograms (BLAS) operations) on parallel architectures can be investigated;
for example, RARE-BLAS [4], ExBLAS [5], and OzBLAS [17] have been devel-
oped. OzBLAS adopts the same methodology that is referenced as an existing
method in this paper.

Reproducible computation2 does not necessarily require infinite-precision.
The simplest way to ensure reproducibility is to fix the order of computation,
although this is often inefficient in parallel computing. The Intel Math Kernel
Library (MKL) supports conditional numerical reproducibility [26], but this is
restricted to limited environments (with MKL on certain Intel processors) and
execution conditions. ReproBLAS [7] is a reproducible BLAS implementation
that uses a high-precision accumulator and pre-rounding technique but is not
parallelized on manycore processors.

1 Be aware, however, that infinite-precision operations do not necessarily improve the
stability or accuracy of numerical algorithms.

2 The concept of reproducibility is independent of accuracy. It is simply intended to
be able to reproduce the same result.

42 D. Mukunoki et al.

Algorithm 1 Ozaki scheme with Dot2
1: function (r = IP DOT Dot2(x,y))
2: x[1 : sx] = Split2(x)
3: y[1 : sy] = Split2(y)
4: i = 1
5: for q = 1 : sy do
6: for p = 1 : sx do
7: (u, v)[i] = Dot2(x[p], y[q])
8: i = i + 1
9: end for

10: end for
11: r = NearSum((u, v))
12: end function

Algorithm 2 Dot2
1: function ((u, v) = Dot2(x,y))
2: (u, v) = TwoProdFMA(x1,y1)
3: for i = 2 to n do
4: (h, r) = TwoProdFMA(xi,yi)
5: (u, q) = TwoSum(u, h)
6: v = fl(v + (q + r))
7: end for
8: end function

Algorithm 3 Splitting for Ozaki
scheme with Dot2. Lines 9–10 are com-
putations for 1 ≤ i ≤ n.
1: function (x[1 : sx] = Split2(x))
2: ρ = ceil(log2(n)/2)
3: μ = max1≤i≤n(|xi|)
4: j = 0
5: while μ �= 0 do
6: j = j + 1
7: τ = ceil(log2(μ))
8: σ = 0.75 × 2(ρ+τ)

9: x[j]i = fl((xi + σ) − σ)
10: xi = fl(xi−x[j]i)
11: μ = max1≤i≤n(|xi|)
12: end while
13: sx = j
14: end function

The use of high-precision arithmetic (in lower than infinite but better than
FP64 precision) can be a lightweight solution for improving accuracy (with-
out reproducibility). MPLAPACK [21] is an example of a linear algebra library
that supports various high-precision operations with a backend of several high-
precision arithmetic libraries such as the GNU Multiple Precision Floating-Point
Reliable Library [9]. However, it is often difficult to determine the required level
of precision for a specific objective.

3 Method

Hereafter, FFP64 will denote a set of FP64 floating-point numbers, and fl(·) will
denote the FP64 floating-point operations. The objective is to compute r = xTy
for x,y ∈ FFP64

n with infinite precision.
Originally proposed as an accurate matrix multiplication technique, the

Ozaki scheme [23] is employed in this research as an IP-DOT method. This
scheme computes an IP-DOT as the sum of multiple inner products that can
be calculated with some precision and without rounding errors using floating-
point operations. Algorithm 1 shows the entire IP-DOT process. It consists of
the following three steps:

Infinite-Precision Inner Product and Sparse Matrix-Vector Multiplication 43

Algorithm 4 TwoSum
1: function ((s, e) = TwoSum(a, b))
2: s = fl(a + b)
3: t = fl(s − a)
4: e = fl((a − (s − t)) + (b − t))
5: end function

Algorithm 5 TwoProdFMA
1: function ((p, e) = TwoProdFMA(a, b))
2: p = fl(a × b)
3: e = FMA(a × b − p)
4: end function

1. Splitting: In lines 2–3 of Algorithm 1, Split2 (Algorithm 3) performs the
element-wise splitting of the input vectors x and y into x and y (FP64 vec-
tors). Split2 divides the input vectors so that the inner products of the split
vectors (x and y) can be computed with 106-bit precision without rounding
errors. In line 8 of Algorithm 3, the constant 0.75 was introduced by [15].
Due to the possibility of overflow in this splitting technique, the inner prod-
uct using the Ozaki scheme accepts a narrower input range than the standard
inner product using FP64 arithmetic.

2. Computation: In line 7 of Algorithm 1, Dot2 [22] (Algorithm 2) computes
the inner products of the split vectors with at least 106-bit precision and
returns the result in 106-bit as a pair of FP64 values3. Dot2 is built utilizing
TwoSum [12] (Algorithm 4) and TwoProdFMA [11] (Algorithm 5). FMA(a× b−p)
denotes the calculation of a × b − p using the fused multiply-add (FMA)
operation. Note that although Dot2 is composed of FP64 arithmetic, the
term “FP64” will henceforth refer to the absence of Dot2 usage. In lines
5–10 of Algorithm 1, several inner inner products can be computed using
general matrix multiplication (GEMM) by combining multiple split vectors
into a matrix. This is a key aspect of the implementation process. The use of
GEMM is beneficial from a performance perspective because it permits data
reuse.

3. Summation: In Algorithm 1, the infinite-precision result of IP-DOT is first
obtained as an array of a pair of FP64 values ([u, v]) with a length of sx × sy.
Then, in line 11, the IP-DOT result in the FP64 format is obtained with
NearSum [25], which is a correctly-rounded summation algorithm.

This scheme applies naturally to other inner-product-based operations,
including SpMV. There are two observations in SpMV. First, in Algorithm 3, the
number of non-zero elements in each row can be used instead of n. Second, just
as GEMM was used for DOT, the computation can be performed using sparse-
matrix dense-matrix multiplication (SpMM) by combining the split vectors into
a matrix.

3 The original Dot2 algorithm is designed to obtain the output as an FP64 value with
fl(u + v) at the end.

44 D. Mukunoki et al.

The performance of this scheme is input-dependent; it is determined by the
numbers of split vectors (sx and sy)4. Each of them depends on the absolute
range, the number of significant digits of the elements in the input vector (lines
3 and 11 of Algorithm 3), and the vector length n (line 2 of Algorithm 3).
As demonstrated in Sect. 5, it is often expected to be around 2 to 3 for real
problems. Thus, the GEMM utilized in the computation is usually very skinny.
Additionally, the summation cost using NearSum is expected to be relatively
small in terms of overall execution time, as the summed elements are sx × sy ×2
(2 is the pair of FP64 values), which is typically small enough compared to n.

Existing studies, such as [17], use FP64 (or lower precision [18]) for compu-
tation, but our proposal in this research is to use 106-bit operations using Dot2
for the computation (i.e., GEMM in DOT and SpMM in SpMV) and the corre-
sponding modification at line 2 in Algorithm 3. This permits the packing of more
bits into the split vectors (x, y), thereby reducing the number of split vectors. In
contrast, there are concerns regarding the increase in execution time due to the
additional computational cost required by Dot2. In practice, however, the cost
of Dot2 can be ignored in memory-intensive operations, as discussed in [16]. Our
method yields skinny-shaped GEMM and SpMM that are sufficiently memory-
intensive, and operate in Dot2 with memory-bound performance. As a result,
the throughput is unaffected when using Dot2 instead of FP64. We provide a
theoretical explanation of this in the next section.

4 Performance Estimation

4.1 Throughput of GEMM and SpMM Using Dot2

To demonstrate that the use of Dot2 does not reduce the throughput of GEMM
and SpMM relative to FP64, we first estimate the throughput of them computed
using Dot2 and FP64. We intend to use Xeon Platinum 8360Y (Ice Lake, 36
cores) later in the evaluation. Note that this discussion almost reaches the same
conclusion also for the GPU (A100-SXM4-40) used in this research. The SpMV
uses the compressed sparse row (CSR) format with 32-bit indices.

The roofline model [28] estimates the achievable throughput of the target
kernel in bytes/s (B)

B = min(BCPU, OCPU × Q/W) (1)

using the following parameters:

– BCPU: the memory throughput of the CPU in bytes/s
– OCPU: the computation throughput of the CPU in Ops/s
– Q: the target kernel’s memory traffic in bytes
– W : the number of operations of the target kernel in Ops.
4 In fact, it is even possible to adjust the accuracy of the result by varying the number

of split vectors. The result will no longer be infinite precision, but reproducibility
can still be preserved. See [17] for details.

Infinite-Precision Inner Product and Sparse Matrix-Vector Multiplication 45

Note that we use “Ops” as the number of operations per second to represent
the throughput of Dot2 and FP64 on the same scale (i.e., an inner product for
x,y ∈ FFP64

n performs 2n (Ops) in both Dot2 and FP64).
For Q and W in the GEMM and SpMM, we assume the following parameters:

– d: number of split vectors/matrices
– n: dimensions of vectors/matrices (n × n)
– nnz: number of non-zero elements of the sparse matrix in SpMM.

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6 7 8 9 10

G
B

/s

Number of split vectors/matrices (d)

GEMM-FP64
GEMM-Dot2
SpMM-FP64
SpMM-Dot2

Estimated achievable throughput (B)
 on Xeon Platinum 8360Y

Fig. 1. Estimated achievable through-
put (B) of GEMM and SpMM.

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8 9 10

Number of split vectors/matrices (d)

IP-DOT-FP64
IP-DOT-Dot2

IP-SpMV-FP64
IP-SpMV-Dot2

Estimated relative execution time to
 standard FP64 routines on Xeon Platinum 8360Y

Fig. 2. Estimated relative execution
times compared to the standard FP64
routines.

The GEMM computes Cd×d = An×d
TBn×d and the SpMM computes Cn×d =

An×nBn×d. Thus, assuming that data reusability is fully considered, the Q and
W are as follows:

– GEMM: Q = 16dn (bytes), W = 2d2n (Ops)
– SpMM: Q = 12nnz (bytes), W = 2dnnz (Ops) (assuming nnz � n).

For BCPU and OCPU, the target CPU has the following theoretical peak hard-
ware performance parameters:

– BCPU = 204.8 GB/s
– FP64: OCPU = 1382.4 GOps/s
– Dot2: OCPU = 125.7 GOps/s (1/11 of the case in FP64 as it requires 11 times

the number of floating-point instructions).

Using the above parameters with Eq. (1), the throughput of GEMM and
SpMM in bytes/s (B) is estimated, as shown in Fig. 1. In this figure, we denote
“-FP64” and “-Dot2” for operations computed by FP64 and Dot2, respectively
(the same hereinafter). When d is small, both FP64 and Dot2 can be executed in
the same amount of time as they are memory-bound. However, when d is large,
Dot2 becomes computational-bound, and the memory throughput decreases.
Here, d serves as a parameter that controls the arithmetic intensity for the
roofline model.

46 D. Mukunoki et al.

4.2 Performance of IP-DOT and IP-SpMV

Next, we discuss the total execution time of IP-DOT and IP-SpMV. We first esti-
mate the relative execution time compared with the standard DOT and SpMV
using FP64 arithmetic (DOT-FP64 and SpMV-FP64, respectively). As discussed
in [17], based on the number of memory read/written to vectors and matrices,
the relative execution time is estimated to increase by a factor of 4d, depend-
ing on d. The splitting process accounts for 3d of the 4d, and the remaining d
is attributable to the computation utilizing GEMM-FP64 (for DOT) or SpMM-
FP64 (for SpMV), with the assumption that their performance is memory-bound
and achieves BCPU. However, the estimated achievable throughput B is depicted
in Fig. 1 as discussed in Sect. 4.1. Accordingly, as shown in Fig. 2, the relative exe-
cution times of IP-DOT and IP-SpMV are projected to be (3 + BCPU/B)d times
slower compared to DOT-FP64 and SpMV-FP64. The required d is problem-
dependent; however, if the situation is similar to that demonstrated in the next
section, d is no more than 7 with FP64, and using Dot2 can reduce d by half or
less.

We then discuss a practical rather than a theoretical outlook on performance.
Although up to three-quarters of the execution time is attributable to the split-
ting process (Algorithm 3), it is a straightforward memory-bound operation that
poses no implementation challenges for manycore processors. The remaining
one-fourth, which results from matrix multiplications (GEMM or SpMM), can
be problematic. There are two issues present. First, since the highly-optimized
implementation of GEMM-Dot2 and SpMM-Dot2 are not readily available, one
must create it themselves. Second, which concerns not only in Dot2 but also in
FP64, is that GEMM for very skinny matrices, performed in our scheme, may
require a different optimization strategy than GEMM for square matrices to
achieve adequate performance. This problem is discussed in [8]5. The aforemen-
tioned issues are certainly challenges in software development. However, GEMM
for skinny matrices with FP64 and Dot2 have their independent uses and should
be discussed independently from our method6.

5 Demonstration on CPU and GPU

We demonstrate our method on DOT and conjugate gradient (CG) solvers,
where SpMV is the primary operation, using a CPU and GPU of a node
(Wisteria-A node) of the Wisteria/BDEC-01 system at the University of Tokyo.
The specifics of the CPU and GPU environments are as follows:

– CPU: Intel Xeon Platinum 8360Y (Ice Lake, 36 cores, 1382.4 GFlops in FP64,
204.8 GB/s), Intel oneAPI 2022.1.2 (with ICC 2021.5.0 and MKL 2022.0.0),
compiled with -O3 -fma -fp-model source -fprotect-parens -qopenmp
-march=icelake-server, executed with numactl --localalloc using the
same number of threads as the number of physical cores.

5 This problem is not encountered in SpMM.
6 For example, XBLAS [14] supports 106-bit operations.

Infinite-Precision Inner Product and Sparse Matrix-Vector Multiplication 47

– GPU: NVIDIA A100-SXM4-40GB (Ampere, 9.7 TFlops in FP647, 1555
GB/s), CUDA 11.4 (driver: 470.57.02), nvcc V11.4.152, compiled with “-O3
-gencode arch= compute 60, code=sm 80”.

The codes are implemented in C++ with OpenMP and CUDA. They extend
the existing implementations (the Ozaki scheme with FP64 operations) for CPUs
and GPUs in [19]; however, there have been some improvements.

Table 1. Results of DOT (n = 225). Overhead is the relative execution time compared
to the standard DOT with FP64 arithmetic (DOT-FP64).

Abs. range of input d Theor. overhead CPU GPU

GB/s Overhead GB/s Overhead

DOT-FP64 – – – 142.7 1 1314.0 1

IP-DOT-FP64 [1e0,1e1) 4 16 67.7 33.7 1105.3 19.0

[1e0,1e4) 5 20 65.2 43.8 1022.6 25.7

[1e0,1e8) 6 24 61.4 55.8 1126.8 28.0

[1e0,1e16) 7 28 59.1 67.7 993.4 37.0

IP-DOT-Dot2 [1e0,1e1) 2 8 68.6 16.6 1043.2 10.1

[1e0,1e4) 2 8 76.1 15.0 1039.2 10.1

[1e0,1e8) 2 8 69.9 16.3 1038.4 10.1

[1e0,1e16) 3 12 69.3 24.7 1055.8 14.9

5.1 DOT

As discussed in Sect. 4.2, the skinny GEMM employed in the computation rep-
resents a potential challenge in DOT. We developed not only GEMM-Dot2 but
also GEMM-FP64 ourselves for comparison, which outperformed GEMM-FP64
of MKL and cuBLAS in the Ozaki scheme. They are implemented using the
Advanced Vector Extensions 2 (AVX2) intrinsic and are parallelized along the
long axis of the matrix; this can be described as an extension of the typical
parallel implementation of DOT to compute multiple vectors.

Table 1 illustrates the performance for n = 225, which is sufficient to exceed
the cache size. Since the performance depends on the absolute range of the
elements of the input vectors, we demonstrate the performance for different
inputs using a random number within the specified absolute value range. The
number of split vectors (d) increases proportionally, and the theoretical overhead
(relative execution time) multiplies by a factor of 4d compared with DOT-FP64,
which is performed using the DOT routines of MKL and cuBLAS. In these
cases, Dot2 decreased d by half or less compared to IP-DOT-FP64. On the

7 9.7 TFlops is the performance without Tensor Cores. 19.5 TFlops with Tensor Cores
but cannot be used for Dot2.

48 D. Mukunoki et al.

CPU, the observed overhead is larger than the theoretical overhead because IP-
DOT-FP64/Dot2 has a lower throughput (GB/s) than DOT-FP64 because of
the insufficient performance optimization of GEMM-FP64/Dot2.

Table 2. Test matrices (n × n with nnz non-zeros, sorted by nnz/n).

name n nnz nnz/n kind

1 tmt sym 726,713 5,080,961 7.0 electromagnetics problem

2 gridgena 48,962 512,084 10.5 optimization problem

3 cfd1 70,656 1,825,580 25.8 computational fluid dynamics problem

4 cbuckle 13,681 676,515 49.4 structural problem

5 BenElechi1 245,874 13,150,496 53.5 2D/3D problem

6 gyro k 17,361 1,021,159 58.8 duplicate model reduction problem

7 pdb1HYS 36,417 4,344,765 119.3 weighted undirected graph

8 nd24k 72,000 28,715,634 398.8 2D/3D problem

5.2 Reproducible CG Solvers

IP-DOT and IP-SpMV are used to ensure reproducibility in CG solvers [10]
[19]. These are simply intended to ensure reproducibility but not to improve the
numerical stability or accuracy of the solution. We demonstrate the proposed
method on existing reproducible CG solvers based on the Ozaki scheme [19].
Our implementations used in this evaluation are based on the codes of previous
studies, with a few improvements8. The implementation overview of the repro-
ducible CG solvers can be summarized as follows.

– The unpreconditioned CG algorithm is implemented. All data are stored in
the FP64 format.

– All inner-product-based operations, including DOT, NRM2, and SpMV, are
performed with infinite precision using the Ozaki scheme with NearSum. The
implementations in Sect. 5.1 are used for DOT. NRM2 is implemented using
DOT.

– For SpMV, the CSR format is used, and the symmetry of the matrix is not
considered. The computation of SpMV was performed using SpMM. The GPU
implementation of SpMM extends the vector-CSR [2] SpMV implementation
to compute multiple vectors. The CPU implementation computes the output
vector in parallel in threads, and the inner product computed in each thread
is parallelized with AVX2.

– AXPY is implemented by explicitly using FMA.

8 Major improvements: (1) use of [15], (2) use of in-house GEMM and SpMM with
asymmetric splitting on CPUs, (3) use of more recent vendor libraries.

Infinite-Precision Inner Product and Sparse Matrix-Vector Multiplication 49

– The matrix splitting is required and performed only once before the iterations
begin.

– The number of split matrices is reduced by using the asymmetric splitting
technique [24], which shifts ρ at line 2 in Algorithm 3 for the matrix and
vector (it contributes to reducing the number of SpMM computed, see [19]
for details).

Eight matrices from [6] are used (Table 2) (those are the same ones used in
[19]). For Ax = b, b and the initial solution x0 are b = x0 = (1, 1, ..., 1)T .
The iteration is terminated when ||ri||/||b|| ≤ 10−16. Since the focus of this
research is the speedup with Dot2, we do not present the numerical behavior (it
is available in [19]), but the use of Dot2 does not affect the numerical behavior
at the bit level. Hereafter, the reproducible CG solvers will be referred to as
ReproCG-FP64 (existing method using FP64) and ReproCG-Dot2 (proposed
method using Dot2), and the standard non-reproducible solvers implemented

Table 3. Execution time in seconds and the relative execution time compared to the
standard CG (CG-FP64) (in parentheses).

CPU GPU

CG-FP64 ReproCG ReproCG CG-FP64 ReproCG ReproCG

-FP64 -Dot2 -FP64 -Dot2

1 2.3e+0 7.5e+1 (32.5) 4.5e+1 (19.4) 1.6e+0 2.0e+1 (12.6) 1.8e+1 (11.2)

2 4.3e-1 3.9e+0 (9.1) 2.9e+0 (6.6) 3.3e-1 2.2e+0 (6.6) 1.8e+0 (5.3)

3 9.4e-1 7.8e+0 (8.3) 5.2e+0 (5.5) 4.7e-1 3.2e+0 (6.8) 2.5e+0 (5.4)

4 2.9e+0 3.7e+1 (12.7) 2.4e+1 (8.3) 2.9e+0 2.2e+1 (7.7) 1.5e+1 (5.4)

5 3.5e+1 3.9e+2 (10.9) 2.3e+2 (6.5) 1.8e+1 1.1e+2 (6.1) 9.4e+1 (5.2)

6 7.5e+0 8.3e+1 (11.0) 5.2e+1 (6.9) 7.2e+0 4.4e+1 (6.0) 3.1e+1 (4.2)

7 2.3e+0 1.8e+1 (7.6) 1.3e+1 (5.5) 1.7e+0 8.9e+0 (5.1) 6.0e+0 (3.5)

8 2.4e+1 8.9e+1 (3.7) 7.0e+1 (2.9) 5.4e+0 2.5e+1 (4.5) 1.7e+1 (3.2)

Table 4. Number of split matrices/vectors.

ReproCG-FP64 ReproCG-Dot2

matrix vectors matrix vectors

min max med avg min max med avg

1 3 3 7 5 4.9 2 2 3 2 2.0

2 2 3 5 4 4.0 2 2 2 2 2.0

3 3 3 6 4 4.1 3 2 3 2 2.0

4 5 4 7 4 4.0 3 2 3 2 2.0

5 3 4 6 5 4.8 2 2 3 2 2.0

6 5 4 7 4 4.0 3 2 3 2 2.0

7 3 3 5 4 4.0 2 2 2 2 2.0

8 3 3 5 4 4.2 2 2 3 2 2.0

50 D. Mukunoki et al.

using the BLAS routines in MKL and cuBLAS/cuSparse will be referred to as
CG-FP64.

Table 3 illustrates the execution and relative execution times compared to
CG-FP64. First, when compared to ReproCG-FP64, ReproCG-Dot2 achieved a
speedup of 1.3–1.7 times on the CPU and a speedup of 1.1–1.5 times on the
GPU. This range of performance improvement is supported by the reduction
in the number of split matrices/vectors used in the computation, as depicted in
Table 4. Dot2 reduced the number of split vectors, which varies during iterations,
by about half, while the number of split matrices remained the same or decreased
by no more than three-fifths. Next, ReproCG-Dot2 requires 2.9–19.4 times more
execution time on the CPU and 3.2–11.2 times more execution time on the GPU
than CG-FP64. These overheads are, in most cases, lower than those reported
in [19] for reproducible CG performed using ExBLAS [10] for identical problems
and conditions. As discussed in Sect. 4, in DOT, the Ozaki scheme incurs a 4d-
fold relative execution time overhead compared to the standard operation with

CPU

 0

 10

 20

 30

 40

 50

 60

 70

 80

C
G

-F
P

64

R
eproC

G
-F

P
64

R
eproC

G
-D

ot2

#1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

C
G

-F
P

64

R
eproC

G
-F

P
64

R
eproC

G
-D

ot2

#2

 0

 1

 2

 3

 4

 5

 6

 7

 8

C
G

-F
P

64

R
eproC

G
-F

P
64

R
eproC

G
-D

ot2

#3

 0

 5

 10

 15

 20

 25

 30

 35

 40

C
G

-F
P

64

R
eproC

G
-F

P
64

R
eproC

G
-D

ot2

#4

 0

 50

 100

 150

 200

 250

 300

 350

 400

C
G

-F
P

64

R
eproC

G
-F

P
64

R
eproC

G
-D

ot2

#5

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

C
G

-F
P

64

R
eproC

G
-F

P
64

R
eproC

G
-D

ot2

#6

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

C
G

-F
P

64

R
eproC

G
-F

P
64

R
eproC

G
-D

ot2

#7

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

C
G

-F
P

64

R
eproC

G
-F

P
64

R
eproC

G
-D

ot2

#8

GPU

 0

 5

 10

 15

 20

 25

C
G

-F
P

64

R
eproC

G
-F

P
64

R
eproC

G
-D

ot2

#1

 0

 0.5

 1

 1.5

 2

 2.5

C
G

-F
P

64

R
eproC

G
-F

P
64

R
eproC

G
-D

ot2

#2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

C
G

-F
P

64

R
eproC

G
-F

P
64

R
eproC

G
-D

ot2

#3

 0

 5

 10

 15

 20

 25

C
G

-F
P

64

R
eproC

G
-F

P
64

R
eproC

G
-D

ot2

#4

 0

 20

 40

 60

 80

 100

 120

C
G

-F
P

64

R
eproC

G
-F

P
64

R
eproC

G
-D

ot2

#5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

C
G

-F
P

64

R
eproC

G
-F

P
64

R
eproC

G
-D

ot2

#6

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

C
G

-F
P

64

R
eproC

G
-F

P
64

R
eproC

G
-D

ot2

#7

 0

 5

 10

 15

 20

 25

C
G

-F
P

64

R
eproC

G
-F

P
64

R
eproC

G
-D

ot2

#8

Comp-SpMV
Comp-DOT

NearSum
Split-Vec

Split-Mat
Others

Fig. 3. Execution time breakdown (in seconds).

Infinite-Precision Inner Product and Sparse Matrix-Vector Multiplication 51

FP64 arithmetic, whereas in the CG method, the matrix is split only once before
iterations. Thus, if SpMV is dominant in execution time, the optimum overhead
would be d-fold. However, SpMV’s influence on execution time diminishes as the
matrix becomes more sparse (matrices are numbered in ascending order starting
with the most sparse in Table 2). This explains why the overhead for highly
sparse matrices is significant.

Figure 3 illustrates the execution time breakdowns to elaborate on the preced-
ing results. Examining the computational cost for SpMV (Comp-SpMV, which
is computed by SpMM), there are cases where the execution time has increased
despite the decrease in the number of split matrices by Dot2. ReproCG-FP64
employs SpMM in MKL/cuSparse, while ReproCG-Dot2 uses in-house imple-
mentations. Since the kernel design has a large impact on the performance of
SpMM, factors other than the Dot2 overhead may also be affected. Also, the
observed NearSum overhead, particularly on the CPU, maybe a future concern.

6 Conclusion

This study presents an IP-DOT and IP-SpMV on FP64 data on CPU and GPU.
We propose using 106-bit precision arithmetic (Dot2) rather than working preci-
sion (FP64) to compute the Ozaki scheme, which is an existing infinite-precision
method. Although the performance depends on various conditions, including the
input data, we demonstrate a theoretical and practical performance improve-
ment of more than twofold in IP-DOT compared with the existing method using
the Ozaki scheme with FP64 arithmetic, and the effectiveness of our approach
increases as the input range increases. As a result, our IP-DOT requires approx-
imately 10–25 times more execution time in reality (8–12 times in theory) than
the standard DOT with FP64 arithmetic in MKL and cuBLAS. On CG solvers,
a speedup of approximately 1.1–1.7 times is achieved compared to the existing
method, and the overhead required to ensure reproducibility is approximately
3–19 times compared to the standard non-reproducible solvers.

Although this research successfully improves the performance of IP-DOT
and IP-SpMV using the Ozaki scheme, the relative execution time compared to
the standard FP64 operations is still significant. Furthermore, the Ozaki scheme
is somewhat vulnerable to overflow. The superiority of this method, based on
the Ozaki scheme, over other methods (ExBLAS and RARE-BLAS) is debat-
able. They have claimed lower overhead than our IP-DOT (e.g., RARE-BLAS [4]
reported an overhead of 1–2 times at most on CPUs). However, our method offers
the advantage of low development cost. It can be built upon matrix multipli-
cation, enabling hierarchical software development and easy implementation on
manycore processors, and it can be easily extended from DOT to other BLAS
routines or tunable-accuracy operations with reproducible results, as demon-
strated in [17]. We expect that, as a means to rapidly developing infinite-precision

52 D. Mukunoki et al.

(accurate and reproducible) BLAS, our method is still an attractive option along
with other faster methods. Also, it is a practical achievement to realize the lowest
level of overhead for reproducible CG on both CPU and GPU.

This research utilized Dot2 as a swift quadruple-precision operation. How-
ever, a better alternative would be a hardware-implemented fast FP128 (with
113-bit mantissa), which would be capable of accelerating the infinite-precision
operation of computationally intensive operations on FP64 data, such as matrix
multiplication. Our research demonstrates that quadruple-precision arithmetic,
such as FP128 and Dot2, is beneficial not only for accurate computations but
also for reproducible computations in FP64 through infinite-precision operations.

Acknowledgment. This research was supported by the Japan Society for the Pro-
motion of Science (JSPS) KAKENHI Grant #19K20286. This research was conducted
using the FUJITSU Server PRIMERGY GX2570 (Wisteria/BDEC-01) at the Infor-
mation Technology Center, The University of Tokyo (project #jh220022).

References

1. Arteaga, A., Fuhrer, O., Hoefler, T.: Designing bit-reproducible portable high-
performance applications. In: Proceedings of IEEE 28th International Parallel and
Distributed Processing Symposium (IPDPS 2014), pp. 1235–1244 (2014). https://
doi.org/10.1109/IPDPS.2014.127

2. Bell, N., Garland, M.: Implementing sparse matrix-vector multiplication on
throughput-oriented processors. In: Proceedings of International Conference for
High Performance Computing, Networking, Storage and Analysis (SC 2009), pp.
1–11. No. 18 (2009). https://doi.org/10.1145/1654059.1654078

3. Briggs, K.: Implementing exact real arithmetic in python, c++ and c. Theoret.
Comput. Sci. 351(1), 74–81 (2006). https://doi.org/10.1016/j.tcs.2005.09.058

4. Chohra, C., Langlois, P., Parello, D.: Reproducible, accurately rounded and effi-
cient BLAS. In: 22nd International European Conference on Parallel and Dis-
tributed Computing (Euro-Par 2016), pp. 609–620 (2016). https://doi.org/10.
1007/978-3-319-58943-5 49

5. Collange, S., Defour, D., Graillat, S., Iakymchuk, R.: Numerical reproducibility for
the parallel reduction on multi- and many-core architectures. Parallel Comput. 49,
83–97 (2015). https://doi.org/10.1016/j.parco.2015.09.001

6. Davis, T.A., Hu, Y.: The university of Florida sparse matrix collection. ACM Trans.
Math. Softw. 38(1), 1:1–1:25 (2011). https://doi.org/10.1145/2049662.2049663

7. Demmel, J., Ahrens, P., Nguyen, H.D.: Efficient Reproducible Floating Point Sum-
mation and BLAS. Technical report. UCB/EECS-2016-121, EECS Department,
University of California, Berkeley (2016)

8. Demmel, J., Eliahu, D., Fox, A., Kamil, S., Lipshitz, B., Schwartz, O., Spillinger,
O.: Communication-optimal parallel recursive rectangular matrix multiplication.
In: 2013 IEEE 27th International Symposium on Parallel and Distributed Process-
ing, pp. 261–272 (2013). https://doi.org/10.1109/IPDPS.2013.80

9. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: a
multiple-precision binary floating-point library with correct rounding. ACM Trans.
Math. Softw. 33(2), 13:1–13:15 (2007). https://doi.org/10.1145/1236463.1236468

https://doi.org/10.1109/IPDPS.2014.127
https://doi.org/10.1109/IPDPS.2014.127
https://doi.org/10.1145/1654059.1654078
https://doi.org/10.1016/j.tcs.2005.09.058
https://doi.org/10.1007/978-3-319-58943-5_49
https://doi.org/10.1007/978-3-319-58943-5_49
https://doi.org/10.1016/j.parco.2015.09.001
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1109/IPDPS.2013.80
https://doi.org/10.1145/1236463.1236468

Infinite-Precision Inner Product and Sparse Matrix-Vector Multiplication 53

10. Iakymchuk, R., Barreda, M., Graillat, S., Aliaga, J.I., Quintana-Ort́ı, E.S.: Repro-
ducibility of parallel preconditioned conjugate gradient in hybrid programming
environments. IJHPCA (2020). https://doi.org/10.1177/1094342020932650

11. Karp, A.H., Markstein, P.: High-precision division and square root. ACM Trans.
Math. Softw. 23, 561–589 (1997). https://doi.org/10.1145/279232.279237

12. Knuth, D.E.: The Art of Computer Programming. Seminumerical Algorithms, vol.
2. Addison-Wesley, Boston (1969)

13. Lambov, B.: Reallib: an efficient implementation of exact real arithmetic.
Math. Struct. Comp. Sci. 17(1), 81–98 (2007). https://doi.org/10.1017/
S0960129506005822

14. Li, X.S., et al.: Design, implementation and testing of extended and mixed precision
BLAS. ACM Trans. Math. Softw. 28(2), 152–205 (2000). https://doi.org/10.1145/
567806.567808

15. Minamihata, A., Ozaki, K., Ogita, T., Oishi, S.: Preconditioner for ill-conditioned
tall and skinny matrices. In: The 40th JSST Annual International Conference on
Simulation Technology (JSST2016) (2016)

16. Mukunoki, D., Ogita, T.: Performance and energy consumption of accurate and
mixed-precision linear algebra kernels on GPUs. J. Comput. Appl. Math. 372,
112701 (2020). https://doi.org/10.1016/j.cam.2019.112701

17. Mukunoki, D., Ogita, T., Ozaki, K.: Reproducible BLAS routines with tunable
accuracy using Ozaki scheme for many-core architectures. In: Wyrzykowski, R.,
Deelman, E., Dongarra, J., Karczewski, K. (eds.) PPAM 2019. LNCS, vol. 12043,
pp. 516–527. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43229-
4 44

18. Mukunoki, D., Ozaki, K., Ogita, T., Imamura, T.: DGEMM using tensor cores,
and its accurate and reproducible versions. In: Sadayappan, P., Chamberlain, B.L.,
Juckeland, G., Ltaief, H. (eds.) ISC High Performance 2020. LNCS, vol. 12151, pp.
230–248. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50743-5 12

19. Mukunoki, D., Ozaki, K., Ogita, T., Iakymchuk, R.: Conjugate gradient solvers
with high accuracy and bit-wise reproducibility between CPU and GPU using
Ozaki scheme. In: Proceedings of The International Conference on High Perfor-
mance Computing in Asia-Pacific Region (HPC Asia 2021), pp. 100–109 (2021).
https://doi.org/10.1145/3432261.3432270

20. Müller, N.T.: The irram: Exact arithmetic in c++. In: Computability and
Complexity in Analysis. pp. 222–252. Springer, Berlin Heidelberg (2001). DOI:
10.1007/3-540-45335-0 14

21. Nakata, M.: Mplapack version 1.0.0 user manual (2021)
22. Ogita, T., Rump, S.M., Oishi, S.: Accurate sum and dot product. SIAM J. Sci.

Comput. 26, 1955–1988 (2005). https://doi.org/10.1137/030601818
23. Ozaki, K., Ogita, T., Oishi, S., Rump, S.M.: Error-free transformations of matrix

multiplication by using fast routines of matrix multiplication and its applica-
tions. Numer. Algorithms 59(1), 95–118 (2012). https://doi.org/10.1007/s11075-
011-9478-1

24. Ozaki, K., Ogita, T., Oishi, S., Rump, S.M.: Generalization of error-free trans-
formation for matrix multiplication and its application. Nonlinear Theory Appl.
IEICE 4, 2–11 (2013). https://doi.org/10.1587/nolta.4.2

25. Rump, S.M., Ogita, T., Oishi, S.: Accurate floating-point summation Part II: sign,
K-Fold faithful and rounding to nearest. SIAM J. Sci. Comput. 31(2), 1269–1302
(2009). https://doi.org/10.1137/07068816X

https://doi.org/10.1177/1094342020932650
https://doi.org/10.1145/279232.279237
https://doi.org/10.1017/S0960129506005822
https://doi.org/10.1017/S0960129506005822
https://doi.org/10.1145/567806.567808
https://doi.org/10.1145/567806.567808
https://doi.org/10.1016/j.cam.2019.112701
https://doi.org/10.1007/978-3-030-43229-4_44
https://doi.org/10.1007/978-3-030-43229-4_44
https://doi.org/10.1007/978-3-030-50743-5_12
https://doi.org/10.1145/3432261.3432270
https://doi.org/10.1137/030601818
https://doi.org/10.1007/s11075-011-9478-1
https://doi.org/10.1007/s11075-011-9478-1
https://doi.org/10.1587/nolta.4.2
https://doi.org/10.1137/07068816X

54 D. Mukunoki et al.

26. Todd, R.: Introduction to Conditional Numerical Reproducibility (CNR)
(2012). https://software.intel.com/en-us/articles/introduction-to-the-conditional-
numerical-reproducibility-cnr

27. Wei, S., Tang, E., Liu, T., Müller, N.T., Chen, Z.: Automatic numerical analysis
based on infinite-precision arithmetic. In: 2014 Eighth International Conference on
Software Security and Reliability (SERE), pp. 216–224 (2014). https://doi.org/10.
1109/SERE.2014.35

28. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009).
https://doi.org/10.1145/1498765.1498785

https://software.intel.com/en-us/articles/introduction-to-the-conditional-numerical-reproducibility-cnr
https://software.intel.com/en-us/articles/introduction-to-the-conditional-numerical-reproducibility-cnr
https://doi.org/10.1109/SERE.2014.35
https://doi.org/10.1109/SERE.2014.35
https://doi.org/10.1145/1498765.1498785

	Infinite-Precision Inner Product and Sparse Matrix-Vector Multiplication Using Ozaki Scheme with Dot2 on Manycore Processors
	1 Introduction
	2 Related Work
	3 Method
	4 Performance Estimation
	4.1 Throughput of GEMM and SpMM Using Dot2
	4.2 Performance of IP-DOT and IP-SpMV

	5 Demonstration on CPU and GPU
	5.1 DOT
	5.2 Reproducible CG Solvers

	6 Conclusion
	References

