
Automatic Code Selection for the Dense
Symmetric Generalized Eigenvalue
Problem Using ATMathCoreLib

Masato Kobayashi1, Shuhei Kudo1, Takeo Hoshi2, and Yusaku Yamamoto1(B)

1 The University of Electro -Communications, Tokyo 182-8585, Japan
yusaku.yamamoto@uec.ac.jp

2 Tottori University, Tottori 680-8552, Japan

Abstract. Solution of the symmetric definite generalized eigenvalue
problem (GEP) Ax = λBx lies at the heart of many scientific compu-
tations like electronic structure calculations. The standard algorithm for
this problem consists of two parts, namely, reduction of the GEP to the
symmetric eigenvalue problem (SEP) and the solution of the SEP. Sev-
eral algorithms and codes exist for both of these parts, and their execution
times differ considerably depending on the input matrix size and the com-
putational environment. So, there is a strong need to choose the best com-
bination of codes automatically given these conditions. In this paper, we
propose such a methodology based on ATMathCoreLib, which is a library
to assist automatic performance tuning. Numerical experiments using per-
formance data on the K computer, Fujitsu FX10 and SGI Altix show that
our methodology is robust and can choose the fastest codes even in the
presence of large fluctuations in the execution time.

Keywords: automatic code selection · automatic performance
tuning · ATMathCoreLib · generalized eigenvalue problem · parallel
computing · ScaLAPACK · ELPA · EigenExa · performance prediction

1 Introduction

Suppose that there are M computer programs that can perform a given task.
Their functions are all equivalent, but their execution times may be different
and may vary depending on the input problem size, the computing environment
and random factors such as influence from other programs running on the same
machine. Suppose also that we want to perform the task N (≥ M) times using
the same computing environment, using different inputs of the same size, and
minimize the total execution time. If we have no prior knowledge on the execution
time of each program, a possible strategy is to use each of the M programs once
for the first M executions, choose the fastest one, and use it for the remaining
N −M executions. But the execution time may fluctuate due to random factors
and therefore the estimations from the first M executions may not be accurate.
Then, what is the best strategy?
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 453–463, 2023.
https://doi.org/10.1007/978-3-031-30442-2_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_34&domain=pdf
https://doi.org/10.1007/978-3-031-30442-2_34


454 M. Kobayashi et al.

More specifically, let the execution time of the mth program be denoted
by T (m,n,p, z), where n, p are parameters that specify the input problem
size and the computing environment, respectively, and z denotes the random
factor. Note that n, p and z are in general vector variables. For example, in the
case of eigenvalue computation, n consists of the matrix size and the number of
eigenvalues to be computed. The parameter p might consist of integers specifying
the target machine and the number of processors to be used. Then, our objective
is to choose the sequence m1,m2, . . . ,mN (1 ≤ mi ≤ M) judiciously to minimize
the expected value E[

∑N
i=1 T (mi,n,p, zi)], given n, p and some assumptions on

the probability distribution of {zi}. Note that mi may depend on the already
measured execution times, {T (mj ,n,p, zj)}i−1

j=1. This problem is known as online
automatic tuning [1].

There are two criteria in choosing m1,m2, . . . ,mN . On one hand, we need
to estimate the mean execution time E[T (m,n,p, z)] for each m accurately to
find the fastest program. In general, the accuracy is improved as the number of
measurement for each m is increased. On the other hand, we want to exploit the
knowledge obtained by previous measurements as much as possible, by maxi-
mizing the use of the program estimated to be the fastest. These two objectives
are conflicting, so there is a tradeoff between exploration and exploitation.

To solve this problem, Suda developed ATMathCoreLib [2], which is a library
to assist online automatic tuning. It constructs a statistical execution time model
for each of the M programs and chooses the one to be executed next time by
considering the tradeoff between exploration and exploitation. After execution, it
receives the actual execution time and updates the model using Bayes’ rule. This
process is repeated N times. In this way, the total execution time is minimized
in the sense of expected value.

In this paper, we apply ATMathCoreLib to automatic code selection for
the dense symmetric generalized eigenvalue problem (GEP) Ax = λBx, where
A,B ∈ R

n×n are symmetric and B is positive definite. For this problem, the stan-
dard procedure is to transform it to the standard symmetric eigenvalue problem
and then solve the latter [3]. There are several algorithms both for the first and
second parts and several implementations exist, such as ScaLAPACK [4], ELPA
[5,6] and EigenExa [7,8]. Which one is the fastest depends on the problem size
n and the computational environment. Since the dense symmetric GEP lies at
the heart of many scientific computations and it requires long computing time,
it is desirable to be able to choose the best code for a given condition automat-
ically. As computing environments, we consider the K computer, Fujitsu FX10
and SGI Altix. In our experiments, we add artificial noise corresponding to z to
measured data given in [9] and study if ATMathCoreLib can find the optimal
code for each case even in the presence of noise.

The rest of this paper is structured as follows. In Sect. 2, we detail the oper-
ation of ATMathCoreLib. Section 3 explains algorithms for the dense symmetric
GEP and their implementations. In Sect. 4, we apply ATMathCoreLib to the
dense symmetric GEP and give experimental results in several computing envi-
ronments. Finally, Sect. 5 gives some conclusion.



Automatic Code Selection for the Generalized Eigenvalue Problem 455

2 Operation of ATMathCoreLib

The operation of ATMathCoreLib is illustrated in Fig. 1 [10]. Here, we assume
that there is a master program that executes one of the M equivalent codes
depending on the code selection parameter k. The master program also measures
the execution time of the code. ATMathCoreLib works interactively with this
master program. At the ith iteration (1 ≤ i ≤ N), it selects the code to be
executed in such a way that the expected value of the total execution time
is minimized. To achieve this, it uses its internal execution time model, which
holds the estimates of the mean and variance of the execution time of each
code. A code is more likely to be selected if its mean is smaller (faster code) or
its variance is larger (meaning that the model for the code is not yet accurate
enough). This corresponds to choosing the code to be executed by considering the
tradeoff between exploration and exploitation. Then it passes the code number
ki to the master program. The master program receives it, executes the ki-
th code, measures its execution time, and passes it to ATMathCoreLib. Then,
ATMathCoreLib uses it to update its internal model. This process is repeated
for i = 1, 2, . . . , N .

Fig. 1. Operation of ATMathCoreLib.

Actually, the model update process in ATMathCoreLib is more intricate;
it consists of two steps called update of the coefficients of the linear model
and Bayes update. But we do not go into details here. Readers interested in
mathematical foundations of ATMathCoreLib should consult [1,2].

3 Algorithms for the Dense Symmetric GEP and Their
Implementations

Here, we consider computing all the eigenvalues and eigenvectors of a dense
symmetric GEP Ax = λBx. The standard procedure to solve this problem
consists of the following two parts:



456 M. Kobayashi et al.

1. Reduction of the GEP to a standard symmetric eigenvalue problem (SEP).
2. Solution of the SEP.

There are several algorithms for both of them. For the first part, the standard
method is to use the Cholesky decomposition of B. In that case, the whole
computation proceeds as follows:

(i) Compute the Cholesky decomposition B = LL�.
(ii) C ≡ L−1AL−�.
(iii) Solve the SEP Cy = λy and obtain the eigenvalues {λj}nj=1 and the eigen-

vectors {yj}nj=1.
(iv) xj ≡ L−�yj for j = 1, 2, . . . , n.

Here, steps (i), (ii) and (iv) correspond to part 1 and step (iii) corresponds to
part 2 above. There are two options in computing steps (ii) and (iv). The first
one is to use forward and backward substitutions to multiply L−1 or L−�. This
approach is adopted by ScaLAPACK. The second one is to compute the inverse
matrix L−1 explicitly and compute steps (ii) and (iv) by matrix multiplications.
This approach has the advantage that the number of forward and backward
substitutions, which have limited parallelism, is minimized and is adopted by
ELPA.

Another method for reducing the GEP to SEP is to use the eigendecompo-
sition of B. In this case, the computation proceeds as follows.

(i) Compute the eigendecomposition B = WDW�, where D is a diagonal
matrix and W is an orthogonal matrix.

(ii) C ≡ D− 1
2 W�AWD− 1

2 .
(iii) Solve the SEP Cy = λy and obtain the eigenvalues {λj}nj=1 and the eigen-

vectors {yj}nj=1.
(iv) xj = D

1
2 W�yj for j = 1, 2, . . . , n.

This method has the advantage that the same SEP solver can be used both for
steps (i) and (iii). It is used in EigenExa.

In the solution of the SEP, the matrix C is transformed to an intermediate
symmetric tridiagonal matrix T or a penta-diagonal matrix P by orthogonal
transformations, the eigenvalues and eigenvectors of T or P are computed, and
the eigenvectors are transformed to those of C by back-transformation. There
are several approaches to achieve this, as listed below.

(A) C is transformed directly to a symmetric tridiagonal matrix T by the House-
holder method. The eigenvalues and eigenvectors of T are computed by stan-
dard methods like the QR algorithm, the divide-and-conquer algorithm, or
the MR3 (Multiple Relatively Robust Representations) algorithm.

(B) C is first transformed to a symmetric band matrix S and then to a sym-
metric tridiagonal matrix T . The eigenvalues and eigenvectors of T are
computed by the standard methods.

(C) C is transformed directly to a symmetric penta-diagonal matrix P . The
eigenvalues and eigenvectors of P are computed by a specially designed
divide-and-conquer method.



Automatic Code Selection for the Generalized Eigenvalue Problem 457

Approach (A) is a conventional one and is adopted by ScaLAPACK. In ELPA
and EigenExa, there are also routines using this approach. We denote them
as ELPA1 and EIGS, respectively. While this approach is the most efficient in
terms of computational work, it has disadvantages that many inter-processor
communications are incurred in the tridiagonalization step and that matrix-
vector multiplications (DGEMV [11]) used in the tridiagonalization cannot use
cache memory effectively. In contrast, approach (B) requires less inter-processor
communications. Also, since most of the computations in the tridiagonalization
can be done in the form of matrix-matrix multiplications (DGEMM [12]), cache
memory can be used effectively. This approach is used by one of ELPA’s routine,
which we call ELPA2. Approach (C) is an intermediate approach between (A)
and (B) and is used in one of the routines in EigenExa. We call this EIGX.

In summary, there are three routines we can use for reducing the GEP to SEP,
namely, those from ScaLAPACK, ELPA and EigenExa. Also, there are five rou-
tines to solve the SEP, namely, ScaLAPACK, ELPA1, ELPA2, EIGS and EIGX.
While ScaLAPACK, ELPA and EigenExa have different matrix storage formats
and data distribution schemes, there is a middleware called EigenKernel [13]
that allows the user to freely combine routines from these libraries, by providing
automatic data conversion and re-distribution functions. Using EigenKernel, we
can evaluate the performance of various combinations and choose the fastest one
for a given matrix size and computational environment.

4 Automatic Code Selection for the Dense Symmetric
GEP Using ATMathCoreLib

Now we apply ATMathCoreLib to automatic code selection for the dense sym-
metric GEP and evaluate its performance. To this end, we use execution time
data on three distributed-memory parallel computers, namely, the K computer,
Fujitsu FX10 and SGI Altix ICE 8400EX, given in [9]. We add artificial ran-
dom noise to these data and study if ATMathCoreLib can choose the optimal
combination in the presence of error.

Among 3 × 5 = 15 possible combinations of the algorithms for reduction
to the SEP and solution of the SEP, 8 promising combinations (workflows) are
chosen as candidates in [9]. They are shown in Table 1. The specifications of the
parallel computers are listed in Table 2. The size of test matrices is n = 90, 000
and n = 430, 080. They are matrices from the ELSES matrix library, which is a
collection of matrix data from electronic structure calculations.

From the many test cases reported in [9], we picked up three cases for our
evaluation: the problem of n = 430, 080 on the K computer, n = 90, 000 on SGI
Altix and Fujitsu FX10. The number of nodes used is p = 10, 000 and 256 for the
K computer and SGI Altix, respectively. For Fujitsu FX10, p is either 1,024 or
1,369, depending on the workflow. This is because some library puts restrictions
on the number of nodes that can be used. The total execution times for the three
cases are shown in Table 3. Here, workflow D’ is the same as workflow D except



458 M. Kobayashi et al.

Table 1. Combinations of the algorithms used in [9].

Workflow Solution of SEP Reduction to SEP

A ScaLAPACK ScaLAPACK

B EIGX ScaLAPACK

C ScaLAPACK ELPA

D ELPA2 ELPA

E ELPA1 ELPA

F EIGS ELPA

G EIGX ELPA

H EIGX EigenExa

Table 2. Specifications of the parallel computers.

Name CPU Clock # of cores Byte/Flop

K computer SPARC 64 VIIIfx 2.0 GHz 8 0.5

Fujitsu FX10 SPARC64 IXfx 1.848 GHz 16 0.36

SGI Altix ICE 8400EX Intel Xeon X5570 2.93 GHz 8 0.68

that it does not use SSE-optimized routines in the ELPA2 solver. For each case,
the workflow with the shortest execution time is marked with bold letters.

In our numerical experiments, we operated ATMathCoreLib by using these
data as inputs, instead of actually executing the GEP solver each time. More
specifically, at the ith execution (1 ≤ i ≤ N), if the workflow selected by
ATMathCoreLib was ki, we picked up the execution time of the ki-th work-
flow from Table 3, added random noise to it, and input it to ATMathCoreLib.
As random noise, we used a random variable following normal distribution with
mean zero and standard deviation equal to 10%, 20%, or 40% of the correspond-
ing execution time. The number of total executions was set to N = 100 for all
cases.

The results of automatic code selection is illustrated in Figs. 2 through 7.
Figures 2, 4 and 6 show the execution time for each iteration, while Figs. 3, 5
and 7 show the workflows selected by ATMathCoreLib for each iteration. As
can be seen from the latter graphs, ATMathCoreLib tries various workflows at
the beginning, but gradually narrows down the candidates to one or two, finally
chooses the one it considers the fastest and then continues executing only that
one. In all the cases given here, the workflow finally chosen by ATMathCoreLib
was actually the fastest one, even if the noise level was as high as 40%. Thus
we can conclude that automatic code selection using ATMathCoreLib is quite
robust against fluctuations in the execution time. These final choices show that
ELPA is the fastest for reduction to the SEP in all three cases. For solution of
the SEP, EIGX was the fastest for the n = 430, 080/K and n = 90, 000/Altix
cases, while EIGS was the fastest for the n = 90, 000/FX10 case.



Automatic Code Selection for the Generalized Eigenvalue Problem 459

Table 3. Execution time of each workflow for three cases (taken from [9]).

Matrix size/Machine Workflow Total execution time (sec)

n = 430, 080/K A 11,634

(p = 10, 000) B 8,953

C 5,415

D 4,242

E 2,990

F 2,809

G 2,734

H 3,595

n = 90, 000/Altix A 1,985

(p = 256) B 1,883

C 1,538

D 1,621

D’ 2,621

E 1,558

F 1,670

G 1,453

H 2,612

n = 90, 000/FX10 A 1,248 (p = 1, 369)

(p = 1, 024/1, 369) B 691 (p = 1, 024)

C 835 (p = 1, 369)

D 339 (p = 1, 024)

E 262 (p = 1, 024)

F 250 (p = 1, 369)

G 314 (p = 1, 024)

H 484 (p = 1, 369)

Fig. 2. Execution time for the 430,080/K case.



460 M. Kobayashi et al.

Fig. 3. Workflows selected by ATMathCoreLib in the 430,080/K case.

Fig. 4. Execution time for the 90,000/Altix case.



Automatic Code Selection for the Generalized Eigenvalue Problem 461

Fig. 5. Workflows selected by ATMathCoreLib in the 90,000/Altix case.

Fig. 6. Execution time for the 90,000/FX10 case.



462 M. Kobayashi et al.

Fig. 7. Workflows selected by ATMathCoreLib in the 90,000/FX10 case.

5 Conclusion

In this paper, we proposed a strategy for automatic code selection for the dense
symmetric generalized eigenvalue problem. We consider the situation where N
GEPs of the same size are to be solved sequentially in the same computational
environment and there are multiple GEP solvers available whose performance we
do not know in advance. Then, our objective is to choose the GEP solver to try
for each execution judiciously, by taking into account the tradeoff between explo-
ration and exploitation, and minimize the expected value of the total execution
time. This can be realized by using ATMathCoreLib, which is a library to assist
automatic performance tuning. Numerical experiments using the performance
data on the K computer, Fujitsu FX10 and SGI Altix show that ATMathCore-
Lib can actually find the best solver even if there are large fluctuations in the
execution time. Thus we can conclude that our method provides a robust means
for automatic code selection.

Our future work includes applying this methodology to other matrix compu-
tations and extending it to optimization of parameters in solvers.

Acknowledgements. The authors thank the anonymous reviewers for valuable com-
ments that helped us to improve the presentation of this paper. The present study is
supported in part by the Ministry of Education, Science, Sports and Culture, Grant-
in-Aid for Scientific Research Nos. 19KK0255 and 22KK19772.



Automatic Code Selection for the Generalized Eigenvalue Problem 463

References

1. Naono, K., Teranishi, K., Cavazos, J., Suda, R. (Eds.): Software Automatic Tuning:
From Concepts to the State-of-the-Art Results, Springer, 2010. https://doi.org/10.
1007/978-1-4419-6935-4

2. Suda, R.: ATMathCoreLib: mathematical core library for automatic tuning (in
Japanese), IPSJ SIG Technical Report, Vol. 2011-HPC-129, No. 14, pp. 1–12 (2011)

3. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins Uni-
versity Press, Baltimore (2012)

4. Blackford, L.S., et al.: ScaLAPACK Users’ Guide, SIAM. Philadelphia (1997).
https://doi.org/10.1137/1.9780898719642

5. Auckenthaler, T., et al.: Parallel solution of partial symmetric eigenvalue problems
from electronic structure calculations. Parallel Comput. 37(12), 783–794 (2011).
https://doi.org/10.1016/j.parco.2011.05.002

6. Marek, A., et al.: The ELPA library - scalable parallel eigenvalue solutions for
electronic structure theory and computational science. J. Phys.: Condens. Matter
26, 213201 (2014). https://doi.org/10.1088/0953-8984/26/21/213201

7. Imamura, T., Yamada, S., Yoshida, M.: Development of a high performance eigen-
solver on a peta-scale next-generation supercomputer system. Prog. Nucl. Sci.
Technol. 2, 643–650 (2011). https://doi.org/10.15669/pnst.2.643

8. Imamura, T., Hirota, Y., Fukaya, T., Yamada, S., Machida, M.: EigenExa: high
performance dense eigensolver, present and future, 8th International Workshop
on Parallel Matrix Algorithms and Applications (PMAA14), Lugano, Switzerland,
2014. http://www.aics.riken.jp/labs/lpnctrt/index e.html

9. Imachi, H., Hoshi, T.: Hybrid numerical solvers for massively parallel eigenvalue
computation and their benchmark with electronic structure calculation. J. Inform.
Process. 24(1), 164–172 (2016). https://doi.org/10.2197/ipsjjip.24.164

10. Nagashima, S., Fukaya, T., Yamamoto, Y.: On constructing cost models for online
automatic tuning using. ATMathCoreLib, In: Proceedings of IEEE MCSoC 2016,
IEEE Press (2016). https://doi.org/10.1109/MCSoC.2016.52

11. Dongarra, J., Du Croz, J., Hammarling, S., Hanson, R.J.: An extended set of
fortran basic linear algebra subprograms. ACM Trans. Math. Softw. 14(1), 1–17
(1988). https://doi.org/10.1145/42288.42291

12. Dongarra, J.J., Du Croz, J., Hammarling, S., Hanson, R.J.: Algorithm 656: an
extended set of basic linear algebra subprograms: Model implementation and test
programs. ACM Trans. Math. Softw. 14(1), 18–32 (1988). https://doi.org/10.1145/
42288.42292

13. Tanaka, K., et al.: EigenKernel. Jpn. J. Ind. Appl. Math. 36(2), 719–742 (2019).
https://doi.org/10.1007/s13160-019-00361-7

14. http://www.elses.jp/matrix/

https://doi.org/10.1007/978-1-4419-6935-4
https://doi.org/10.1007/978-1-4419-6935-4
https://doi.org/10.1137/1.9780898719642
https://doi.org/10.1016/j.parco.2011.05.002
https://doi.org/10.1088/0953-8984/26/21/213201
https://doi.org/10.15669/pnst.2.643
http://www.aics.riken.jp/labs/lpnctrt/index_e.html
https://doi.org/10.2197/ipsjjip.24.164
https://doi.org/10.1109/MCSoC.2016.52
https://doi.org/10.1145/42288.42291
https://doi.org/10.1145/42288.42292
https://doi.org/10.1145/42288.42292
https://doi.org/10.1007/s13160-019-00361-7
http://www.elses.jp/matrix/

	Automatic Code Selection for the Dense Symmetric Generalized Eigenvalue Problem Using ATMathCoreLib
	1 Introduction
	2 Operation of ATMathCoreLib
	3 Algorithms for the Dense Symmetric GEP and Their Implementations
	4 Automatic Code Selection for the Dense Symmetric GEP Using ATMathCoreLib
	5 Conclusion
	References




