
Dataset Related Experimental
Investigation of Chess Position Evaluation

Using a Deep Neural Network

Dawid Wieczerzak and Pawe�l Czarnul(B)

Faculty of Electronics, Telecommunications and Informatics,
Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland

dawwiecz@pg.edu.pl, pczarnul@eti.pg.edu.pl

Abstract. The idea of training Artificial Neural Networks to evaluate
chess positions has been widely explored in the last ten years. In this
paper we investigated dataset impact on chess position evaluation. We
created two datasets with over 1.6 million unique chess positions each. In
one of those we also included randomly generated positions resulting from
consideration of potentially unpredictable chess moves. Each position was
evaluated by the Stockfish engine. Afterwards, we created a multi class
evaluation model using Multilayer Perceptron. Solution to the evaluation
problem was tested with three different data labeling methods and three
different board representations. We show that the accuracy for the model
trained for the dataset without randomly generated positions is higher
than for the model with such positions, for all data representations and
3, 5 and 11 evaluation classes.

Keywords: chess position evaluation · deep neural network · model
evaluation · accuracy

1 Introduction

Artificial Neural Networks (ANNs) have become models able to predict or esti-
mate otherwise unknown values for various applications, based on prior training
using big data sets. Convolutional Neural Networks (CNNs) are widely used
for recognition of patterns, that can be of interest in many applications. One
of these could be an attempt to evaluate game positions based on their visual
representation, for example in chess [15]. There are several interesting factors
including the quality of evaluation versus the number of classes we might want
to assign to as well as versus training and validation data sets, especially regard-
ing their size and coverage. In the context of chess, several other uses of neural
networks were proposed in the literature such as: determination of the optimum
number of moves towards winning an endgame assuming optimum play of the
other side (for some characteristics of a board position as input) [16]; using a
CNN as a piece selector that determines which chess piece should be moved fol-
lowed by a move selector to determine which move to make [12]; generation of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 429–440, 2023.
https://doi.org/10.1007/978-3-031-30442-2_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_32&domain=pdf
http://orcid.org/0000-0002-4918-9196
https://doi.org/10.1007/978-3-031-30442-2_32


430 D. Wieczerzak and P. Czarnul

natural-language commentary [4]. It should also be noted that high performance
computing systems are important in the chess context as well, either for fast
training of models or for running algorithms in parallel [5,10,17].

In this paper, we focused on training a deep neural network for numerical
evaluation of chess positions indicating advantage of either the white or black
player, based on a set of positions previously evaluated by the Stockfish chess
engine1. Rather than focusing on tuning a particular neural network model, we
adopted a model from the literature [15] and subsequently aimed at performing
investigation on how using data sets of various scope (in terms of consideration of
moves of various quality) impacts performance of a trained deep neural network
model. Additionally, we investigated to what extent the number of classes as
well as data representation in the model impacts accuracy of the final model.

2 Related Work

In paper [15] authors experimented with training ANNs for the purpose of eval-
uating chess positions. They used the Fics Games Database to generate around
3000000 chess positions which were evaluated by Stockfish. They created various
datasets with various numbers of labels referring to position evaluation such as:
3 for dataset 1, 15 for dataset 2 and 20 for dataset 3 and normalized evaluation
of [0,1] for dataset 4. For particular datasets, authors tested tuned Multilayer
Perceptrons (MLPs) versus CNNs showing benefits of the former for the task
achieving high test accuracies of 96.07%, 93.41% and 68.33% for datasets 1, 2
and 3 respectively for bitmap representation (distinguishes presence of particu-
lar chess pieces) which were higher than for an algebraic representation (distin-
guishes values of particular chess pieces - pawns 1, bishops and knights 3, rooks 5,
queens 9 and kings 10) by approx. 2–5%. Finally, the authors mentioned that the
trained ANN reached an Elo of approximately 2000 on the chess24.com server.
It should be noted that an example of works that focus on obtaining positional
values of the chess pieces for particular positions is [20] in which authors used
neural networks for that and an evolutionary algorithm for adjustment which
resulted in increasing the ranking of their chess engine from ranking 1745 to
2178.

Another paper on playing chess with limited look-ahead is [11]. The author
used a large number of board positions – 20 million samples where boards
extracted from publicly available databases were extended in such a way that
for some positions random legal moves were made and positions evaluated using
Stockfish 11. The author tested a classifier for labeling positions with winning
for white, black and draw based on evaluation of cp ≤ −150, −150 ≤ ... ≤ 150
and 150 respectively. A deep neural network with 5 layers, 25% dropout, Adam
optimizer and categorical cross entropy, ReLU activation and softmax obtaining
approximately 87% testing accuracy.

A different way of chess position assessment and incorporation into a chess
playing engine was proposed in [6]. Specifically, they designed and implemented
1 https://stockfishchess.org/.

https://stockfishchess.org/


Dataset Related Investigation of Chess Position Evaluation Using DNN 431

a solution that learned to compare chess positions. They used the CCRL dataset
(www.computerchess.org.uk/ccrl) with 640000 chess games, out of which white
won 221695 games and black won 164387 games – only games that ended with
a win were of interest. Firstly, they trained a deep belief network (DBN) called
pos2vec that converted a position into a vector. Then, they created a network
called DeepChess in which two copies of pos2vec were stacked side by side for
position comparison and they trained fully connected layers on top of those for
comparison. The authors reported both training and validation accuracies at the
very high level of 98%. Subsequently, they conducted play experiments against
Falcon for which the evaluation function was 4 times faster than that of the
developed solution. Given that DeepChess performed on par, given 4 times more
time outperformed Falcon. It also showed 70 more Elo strength than Crafty.

Another work in which the author attempted evaluation of chess positions
using a CNN network is presented in [19], versus Stockfish evaluations. The
author used the April 2019 https://database.lichess.org database out of which
training data was generated from the first 100000 games when white was to move.
Finally, 310690 samples were generated with numerical evaluations between
−255 and +255 (boundary values for checkmates), forced checkmate +/−127
and normal evaluation capped onto the [−63,63] range. The author used a model
with four 2D convolutional layers: the first three with kernel size 3 by 3, the last:
2 by 2. The number of filters were 8, 16, 32 and 64 respectively, with ReLU-
activation. 60% of the data set was used for training, 20% for validation and
20% for testing. Final loss and MAE for the test data set were 863.48 and 12.18
respectively. At the same time it was concluded that the model is not able to
recognize combinations and tactics and a more complex model shall be tried for
improved results. However, whether such can be obtained has to be investigated.

In work [9] the author used a CNN to predict the winning side for positions
of a game that ended with a particular result (win for white or black). The
model, in the implementation, included layers: Mocha.AsyncHDF5DataLayer,
Mocha.ConvolutionLayer, Mocha.PoolingLayer, Mocha.ConvolutionLayer, Mo-
cha.InnerProductLayer, Mocha.DropoutLayer, Mocha.InnerProductLayer, Mo-
cha.BinaryCrossEntropyLossLayer. The data set used for training included
games played by opponents with ranking 2000 or higher downloaded from FICS
games database2, finished with checkmates. Data representation used 6 channels
corresponding to the boards storing {−1, 0, 1} information concerning particu-
lar piece types. Finally, obtained validation and test accuracies were 73.5% and
71.8% respectively.

An interesting idea of chess position evaluation was introduced in [12]. Instead
of providing numerical board evaluation authors proposed a method for predict-
ing a probability distribution over the grid for pieces to move. For each chess
piece they trained a separate model based on a CNN. This approach allowed to
predict situations such as escape when a piece is under attack or the king needs to
move. The results show that this evaluation method performs significantly better
for pieces with local movement (pawn, knight, king). The authors also noticed

2 https://www.ficsgames.org/download.html.

https://database.lichess.org
https://www.ficsgames.org/download.html


432 D. Wieczerzak and P. Czarnul

that a downside of this approach was that highly specific move combinations
between nets were not learned. A newer model [13] proposed by other authors
based on a similar architecture and board representation showed evaluation as
a single numerical value. The output was passed through a mini-max algorithm
to determine the best move. A chess engine based on this model showed simple
tactics such as sacrificing a piece or forks. In 100 games against the Stockfish
engine the system was able to win 3% and draw 2% of games.

In paper [14] authors, motivated by the fact that chess engines can beat even
top human players, they assessed the quality of play of many human players, even
from various generations, using the Stockfish engine as a quality benchmark.
Specifically, score of each move by a human player was compared versus a chess
engine move which allowed to compute average error, whether the human player
selected first, second etc. engine’s preference etc. Out of the world championship
(WCC) players, best were Carlsen and Caruana with errors 0.0674 and 0.0709
respectively. Best move percentage winners were Gelfand and Kramnik with
59.9% and 59.2% respectively and average numbers of blunders per WCC were
best for Caruana (1.0) and Carlsen (1.3). Work [2] provides selected results of
large-scale analysis of chess games with chess engines – authors gathered and
analyzed 4.78 million unique games publicly available on some Web repositories.
They provided information on Elo distribution, Elo differences between players,
plys per game depending on player’s Elo differences, percentage of win for white
player depending on Elo, first moves depending on game date.

3 Data Used for Experiments

We used the Lichess Elite Database [1] that includes a collection of lichess.org
games from https://database.lichess.org/ that was filtered to include only games
played by players with 2400+ ranking against players with 2200+ ranking, with-
out bullet games.

3.1 Data Preparation

Games were downloaded in the PNG format and each position of the games was
saved in a database in the FEN format. For selected tests, the original set of
positions was also augmented with randomly generated positions in the following
way. For each of the positions acquired from the database from Lichess.org 3
moves were generated randomly from all legal moves. This way for each position,
3 potentially unpredictable moves were generated. In some positions, because of
checks or specific situations, the number of legal moves was smaller than 3. Such
positions were skipped for new position generation. Repeating positions were
removed from both the original as well as randomly generated position sets.
Afterwards, counts of the two sets were equalized. This way, we acquired two
sets with over 1.6 million unique positions each – later marked as no rand and
rand respectively. The reason for considering the rand dataset was our aim of

https://database.lichess.org/


Dataset Related Investigation of Chess Position Evaluation Using DNN 433

additional testing the solution with a presumably more diverse data set including
board positions potentially reached by weaker players.

Afterwards Stockfish was used to label all positions from previously men-
tioned sets. Labels generated by Stockfish contained board evaluations expressed
as centipawns (cp). Value of 100 cp corresponds to a difference of one pawn and
this metric shows a current difference in strategic and material strength between
players. As an example, when the evaluation is +100 cp it means that the mov-
ing side has a potential advantage of one pawn. Evaluations of all positions were
stored from the point of view of white regardless of the player to move. We also
scaled the evaluations by dividing them by 100 and thus obtaining what we call
a value in scaled centipawns (scp). For our evaluations we used Stockfish 13 with
a depth of 28.

3.2 Board Representation

Positions processed in the previous step were converted into a vector represen-
tation making it usable as an input for neural networks. We used a bitboard
representation which turns each position in FEN format into binary vector with
total length of 768 bits. This method of transforming chess position into a vector
was used in some previous works [6,11,15]. Another similar bitboard approach
has been used in many chess position analyses based on CNNs [12,15,19].

We also introduced modifications into the bitboard representation which
gives us two additional representations. In total we tested 3 board represen-
tations: bitboard representation, algebraic representation, piece value represen-
tation.

A bitboard vector consists of 12 chessboards linked with one another that
form a 64-bit position vector. Each of the boards, which are considered as a
feature, stores position of a given piece (type). The first 6 features represent
positions of the white player pieces while the other 6 of their opponent – black.
Pieces are represented in the following order: pawns, knights, bishops, rooks,
queen, king. A piece position inside each 64 bit vector is represented as 1 when
it belongs to the player who should move or −1 when it belongs to the opposite
player. The total length of the vector is 768 because it stacks 64 bit features for
12 different pieces.

The algebraic representation is an extension of the binary one. We introduced
this modification in order to see what the effect of differentiating chess pieces on
position evaluation will be. Beside presence of particular pieces it also considers
different pieces by assigning them following integer numbers starting from 1. In
this method pawns are represented as 1, knights as 2, bishops as 3, rooks as
4, queens as 5 and kings as 6. Similarly to the previously described method,
opposite player’s side is represented by negative numbers.

In the last representation piece strength and its potential value were taken
into account. We used a common assignment of point values which is 1 for
pawns, 3 for knights and bishops, 5 for rooks and 9 for queens. Because of its
non exchangeable nature the king is not considered in most evaluation systems.
In this piece value representation we decided to assign 10 points to the king.



434 D. Wieczerzak and P. Czarnul

It stemmed from the important strategic role of the piece, also considered in
[20]. Point values replaced binary presence of each piece and negative values to
distinguish moves of opposite sides have also been used. We shall note that this
piece strength representation corresponds to the one called algebraic in [15], as
described in Sect. 2.

3.3 Data Labeling

For classification of positions using games with previously added Stockfish evalu-
ations we followed the approach from [15] experimenting with different numbers
of classes and data representations. We created three labeling methods for the
classification task.

Method 1 : In this method each of the positions was assigned to one of three
classes: Winning, Losing or Draw. Labels were assigned according to scaled cen-
tipawn evaluations with the following conditions: positions were considered as
Winning when its scp evaluation was greater than 1.5, losing when its scp was
lower than −1.5 and draw when scp was between those two values.

Method 2 : This method extends Method 1 by dividing both the Winning and
Losing classes into two separate classes for a total of 5 different labels including
Draw. The division was done in such a way that the first Winning label contains
positions with scp between 1.5 and 4.5 and the second Winning label contains
positions with scp greater than 4.5. The same has been done for labels in the
Losing class where division point was set to −4.5 scp. Labeling conditions for
Draw class remained the same as in Method 1.

Method 3 : In this method even more labels were created. All classes including
Draw have been extended by creating new labels as follows: In Winning class,
with 2 starting from 1.5 scp, four new labels were created so that the last label-
ing window contains positions with evaluations greater than 7.5 scp. Labels in
the Losing class were assigned in the same way. If scp decreases by 2 starting
from −1.5 scp, a new label was created. Draw class, which originally contained
positions with its scp between −1.5 and 1.5, was divided into equal intervals
each of them 1 scp wide. This method creates 11 different labels in total: four
labels in Winning class, four labels in Loosing class and 3 Draw labels.

4 Test Methods

In this section we describe data analysis methods concerning the data described
in Sect. 3. We present an ANN architecture used for testing different inputs in
detail, subsequently we discuss the experiments and the training process of the
model.

4.1 Neural Network Architecture

In order to address classification tasks we created a 3 hidden layer MPL based
on the architecture and hyper parameters proposed in [15]. Similarly to the orig-
inally proposed classifier, hidden layers consisted of 1048, 500 and 50 hidden



Dataset Related Investigation of Chess Position Evaluation Using DNN 435

units. Each of 3 hidden layers has been activated by the Rectified Linear Unit
(ReLU) activation function. Due to targeting classification tasks the final out-
put layer has been connected to Softmax activation. Furthermore, in order to
achieve better model generalization Batch Normalization and Dropout regular-
ization were applied to all hidden layers of the network. We set the probability
of Dropout to 0.2 as recommended in [18].

4.2 Experiment

As a result of our experiments we wanted to assess the impact of different chess
board representations on classification performance. In order to do that, we
divided the experiment into three steps corresponding to different board repre-
sentations proposed in the previous section. For each board representation three
different classification tasks were tested. We used three previously mentioned
labeling methods: Method 1, Method 2 and Method 3 respectively. As input
data firstly we used the dataset without random positions and then the dataset
extended with randomly generated positions.

This test configuration gives us 2x3 separate network training cases in each
experimental step.

4.3 Training Method

We have split each relevant data set into training, validation and test sets in
proportion of 8:1:1. In each training the Adam algorithm was used as an opti-
mizer and it was initialized with the following parameters: lr = 0.001, β1 = 0.9,
β2 = 0.99, ε = 1e − 8. We trained the networks with minibatches of 128 samples
and categorical cross entropy as a loss function. The whole training was stopped
after the validation loss has not improved by at least 0.00001 within the last 100
epochs. For each epoch we measured the following metrics: accuracy, precision,
recall, f1 [8].

In all experiments we used Tensorflow and Python 3.8 as a programming
base running on computers with Intel i7-7700 CPU, 32GiB RAM and GeForce
GTX 1070.

5 Results

In Figs. 1, 2 and 3 we summarize results of training after the stop condition
has been met for each given configuration i.e. 3, 5 and 11 classes respectively.
There are six configurations in total i.e. for the algebraic, bitboard and piece
strength data representations, each for the no rand and rand data set. For each
configuration we present validation accuracy and f1 metrics.

In order to see the progress of training, as an example for the 5 class config-
uration and the best bitboard representation, in Fig. 4 we show how validation
accuracy and f1 scores change over 135 epochs.



436 D. Wieczerzak and P. Czarnul

Fig. 1. validation accuracy and f1 metrics, 3 classes

Fig. 2. validation accuracy and f1 metrics, 5 classes

Fig. 3. validation accuracy and f1 metrics, 11 classes



Dataset Related Investigation of Chess Position Evaluation Using DNN 437

Fig. 4. validation accuracy and f1 metrics, 5 classes, bitboard representation

Following these tests, for the best representation (bitboard) in Table 1 we
provide final precision and recall values for the three cases (3, 5 and 11 classes)
for the two data sets. Finally, in Table 2 we included accuracy values computed
for the test dataset and the bitboard representation.

Table 1. Precision and recall values for various configurations, bitboard representation,
validation

Number of classes Data without random pos. Data with random pos.

precision recall precision recall

3 0.83205 0.82112 0.80039 0.78325

5 0.79523 0.73922 0.76249 0.68148

11 0.69183 0.41733 0.69250 0.39315

Table 2. Test accuracy for various configurations, bitboard representation

Number of classes Data without random pos. Data with random pos.

3 0.82528 0.79158

5 0.76727 0.72316

11 0.55795 0.53964

6 Discussion

Based on the presented results, we can conclude the following:



438 D. Wieczerzak and P. Czarnul

1. For all tests with 3, 5 and 11 classes, configurations with data without random
positions yield slightly but visibly better accuracy and f1 score values than
corresponding configurations trained using data with added random positions.

2. For almost each configuration and either data without or with random posi-
tions, the order of data representations from best to worst accuracies is gen-
erally: bitboard, algebraic and piece strength with bitboard being the best
one for all the cases. For 5 and 11 classes piece strength and algebraic config-
urations resulted in virtually same results, with minimal differences.

3. As expected, we see a visible drop in accuracies as the number of classes is
increased.

4. Taking into account results for the best tested representation bitboard we see
that with an increasing number of classes, differences between precision and
recall values for particular data sets are increasing and are visibly larger for
the data set with random positions. Additionally, while for 11 classes precision
values for the two data sets are very close, there is a visible difference of
approximately 0.024 for recall values.

We shall note that, based on our experiment and particular data sets, the
accuracy/f1/precision/recall scores for the rand data set, presumably a more
diverse one, turned out to be worse than for the no rand data set. On the other
hand, while we did not focus on ultimate improvement of the model per se
and rather focused on comparison per various data sets in these experiments,
we shall note that accuracy values obtained in [15] for 3 classes were higher.
Further investigation could be performed on if and how this could be related to
the different training data sets and/or Stockfish settings used for evaluation, in
both cases, etc. In [15] for the other data sets (for larger numbers of classes) a
different MLP structure was used.

7 Summary and Future Work

In the paper we investigated accuracy, precision/recall and f1 metrics for training
an artificial model for evaluation of chess positions – for two data sets: one – with
games by 2400+ players playing against 2200+ ranking players and another –
the same one augmented with randomly generated positions by making random
moves from already known positions. We tested three different data representa-
tions such as bitboard, algebraic and with consideration of piece strength values
– results showed that there were measurable albeit very small differences with
best results for the bitboard version. We investigated assignment of numerical
evaluations into 3, 5 and 11 classes. We found out that the dataset with ran-
domly generated positions (that intuitively corresponds to positions that could
also be reached by weaker players) resulted in test accuracy scores smaller than
that of the data set with positions obtained by stronger players. This suggests
that in this particular case it is more difficult to obtain high accuracies for a data
set with presumably more diverse positions. On the other hand, based on that,
in the future, it would be an interesting research task to investigate whether it



Dataset Related Investigation of Chess Position Evaluation Using DNN 439

can be generalized and how using even more restricted data sets affects network
performance metrics. This might refer to certain phases of the game played by
very good players, e.g. endgames, with possibly even selected sets of pieces on
the board. Another interesting topic would be training the models with consider-
ation of a training data set extended with similar positions [7] to those originally
in the dataset. Furthermore, a test on whether the observations from this paper
would also be applicable to more fine-tuned models would be of interest.

References

1. Lichess elite database. https://database.nikonoel.fr/
2. Acher, M., Esnault, F.: Large-scale analysis of chess games with chess engines:

A preliminary report. CoRR abs/1607.04186 (2016). http://arxiv.org/abs/1607.
04186

3. Baldi, P., Sadowski, P.J.: Understanding dropout. In: Advances in Neural Infor-
mation Processing Systems, vol. 26 (2013)

4. Butner, C.: Chesscoach is a neural network-based chess engine capable of
natural-language commentary (2021). https://pythonrepo.com/repo/chrisbutner-
ChessCoach-python-natural-language-processing

5. Czarnul, P.: Benchmarking parallel chess search in Stockfish on intel Xeon and intel
Xeon phi processors. In: Shi, Y., et al. (eds.) ICCS 2018. LNCS, vol. 10862, pp.
457–464. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93713-7 40

6. David, O.E., Netanyahu, N.S., Wolf, L.: DeepChess: end-to-end deep neural net-
work for automatic learning in chess. In: Villa, A.E.P., Masulli, P., Pons Rivero,
A.J. (eds.) ICANN 2016. LNCS, vol. 9887, pp. 88–96. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-44781-0 11

7. Ganguly, D., Leveling, J., Jones, G.J.: Retrieval of similar chess positions. In: Pro-
ceedings of the 37th International ACM SIGIR Conference on Research & Devel-
opment in Information Retrieval, SIGIR 2014, pp. 687–696. Association for Com-
puting Machinery, New York, NY, USA (2014). https://doi.org/10.1145/2600428.
2609605

8. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016). http://www.deeplearningbook.org

9. Int8: Chess position evaluation with convolutional neural network in
Julia (2016). https://int8.io/chess-position-evaluation-with-convolutional-neural-
networks-in-julia/

10. Jouppi, N.P., et al.: A domain-specific supercomputer for training deep neural
networks. Commun. ACM 63(7), 67–78 (2020). https://doi.org/10.1145/3360307

11. Maesumi, A.: Playing chess with limited look ahead. CoRR abs/2007.02130 (2020).
https://arxiv.org/abs/2007.02130

12. Oshri, B., Khandwala, N.: Predicting moves in chess using convolutional neural
networks (2016)

13. Panchal, H., Mishra, S., Shrivastava, V.: Chess moves prediction using deep learn-
ing neural networks. In: 2021 International Conference on Advances in Computing
and Communications (ICACC), pp. 1–6. IEEE (2021)

14. Romero, O., Cuenca, J.F., Parra, L., Lloret, J.: Computer analysis of world chess
championship players. In: ICSEA: The Fourteenth International Conference on
Software Engineering Advances, pp. 200–205 (2019). ISBN: 978-1-61208-752-8

https://database.nikonoel.fr/
http://arxiv.org/abs/1607.04186
http://arxiv.org/abs/1607.04186
https://pythonrepo.com/repo/chrisbutner-ChessCoach-python-natural-language-processing
https://pythonrepo.com/repo/chrisbutner-ChessCoach-python-natural-language-processing
https://doi.org/10.1007/978-3-319-93713-7_40
https://doi.org/10.1007/978-3-319-44781-0_11
https://doi.org/10.1145/2600428.2609605
https://doi.org/10.1145/2600428.2609605
http://www.deeplearningbook.org
https://int8.io/chess-position-evaluation-with-convolutional-neural-networks-in-julia/
https://int8.io/chess-position-evaluation-with-convolutional-neural-networks-in-julia/
https://doi.org/10.1145/3360307
https://arxiv.org/abs/2007.02130


440 D. Wieczerzak and P. Czarnul

15. Sabatelli., M., Bidoia., F., Codreanu., V., Wiering., M.: Learning to evaluate chess
positions with deep neural networks and limited lookahead. In: Proceedings of the
7th International Conference on Pattern Recognition Applications and Methods
- ICPRAM, pp. 276–283. INSTICC, SciTePress (2018). https://doi.org/10.5220/
0006535502760283

16. Samadi, M., Azimifar, Z., Jahromi, M.Z.: Learning: an effective approach in
endgame chess board evaluation. In: Sixth International Conference on Machine
Learning and Applications (ICMLA 2007), pp. 464–469 (2007). https://doi.org/
10.1109/ICMLA.2007.48

17. Silver, D., et al.: A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science 362(6419), 1140–1144 (2018). https://doi.
org/10.1126/science.aar6404

18. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

19. Vikstrom, J.: Training a convolutional neural network to evaluate chess positions.
KTH Royal Institute of Technology, School of Electrical Engineering and Computer
Science, Stockholm, Sweden (2019)

20. Vázquez-Fernández, E., Coello Coello, C.A., Sagols Troncoso, F.D.: Assessing the
positional values of chess pieces by tuning neural networks’ weights with an evo-
lutionary algorithm. In: World Automation Congress 2012, pp. 1–6 (2012)

https://doi.org/10.5220/0006535502760283
https://doi.org/10.5220/0006535502760283
https://doi.org/10.1109/ICMLA.2007.48
https://doi.org/10.1109/ICMLA.2007.48
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1126/science.aar6404

	Dataset Related Experimental Investigation of Chess Position Evaluation Using a Deep Neural Network
	1 Introduction
	2 Related Work
	3 Data Used for Experiments
	3.1 Data Preparation
	3.2 Board Representation
	3.3 Data Labeling

	4 Test Methods
	4.1 Neural Network Architecture
	4.2 Experiment
	4.3 Training Method

	5 Results
	6 Discussion
	7 Summary and Future Work
	References




