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Abstract. When ad-hoc connectivity for a group of ground users has
to be delivered, one can use a network of Unmanned Aerial Vehicles
(UAV) equipped with Mobile Base Stations (MBS). In this research,
we minimize the number of UAVs by effectively deploying UAVs over
the zone where users are located. The proposed model divides zone into
sectors of different areas and shapes depending on users’ location and the
ranges of MBSs. Deployment of UAVs in sectors is optimized by a method
inspired by the Ant System approach and extended by a new problem-
specific heuristic. We propose a new set of benchmark problems, called
SCP2, for simulations. Simulation results show the algorithm’s efficiency
and reveal the most beneficial values of the algorithm’s parameters.

Keywords: Unmanned Aerial Vehicles · Ant Systems · k -Coverage
Problem

1 Introduction

A network of Unmanned Aerial Vehicles (UAV) equipped with Mobile Base
Stations (MBS) can provide communication services for ground users in the
case of disaster or festive areas management, military operations, or any other
scenarios where ad-hoc connectivity is needed. The performance of the MBSs
service depends on the locations of users and UAVs; thus, it can be a subject
of optimization. In this research, we focus on minimizing the number of UAVs
when establishing new connectivity for a group of users in a given zone. The
number is minimized by the effective deployment of UAVs over the zone.

In our research, the optimization problem is stationary; that is, ground users
represent, for example, routers placed in crucial locations which deliver WLAN
service to the surrounding receivers. Hence, ground users can be regarded as
immobile and previously known to the UAV swarm, so the swarm does not have
to adapt over time to the changing positions of users.

Numerous publications address different variants of the problem of deploying
UAVs for optimal wireless coverage. In [5], the authors present a method minimiz-
ing the number of MBs covering a set of immobile ground terminals with known
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locations on the horizontal plane. The method applies a spiral algorithm building
its solution by placing the MBSs sequentially until the total coverage is satisfied.
In [2], the authors use K-means clustering and a stable marriage approach to parti-
tion users into clusters and find 2-D coordinates ofUAVsfirst. Then, the third coor-
dinate, altitude, is optimized using search space-constrained exhaustive search and
particle swarm optimization (PSO). In [8], the authors also use 3-D coordinates
to represent UAVs’ locations. The proposed method finds optimal deployment of
UAVs iteratively invoking a clustering algorithm K-means and one of the popu-
lation heuristics: Particle Swarm Optimization, Genetic Algorithm, or Artificial
Bees Colony. In [6], the authors propose a problem-specific heuristic optimization
method working on a discrete representation of a UAV location, where nodes of
a square grid of L × L are considered for discrete locations. In [1], UAVs ensure
connectivity for the people uniformly and randomly distributed over the area in
previously unknown locations. The authors assume that the number of UAVs may
be insufficient to cover the entire area, and initially, some users may not be in range.
Hence, to achieve higher coverage, UAVs have to move over time. Such a network
of UAVs offers intermittent coverage to the users. Therefore, its primary aim is to
receive messages from users and route them to neighbor UAVs closer to the gate-
way or the gateway in range. The approach maximizes average people-to-drone
connected time and the percentage of people in the communication range of UAVs
for two cases: without and with mobility of UAVs. In [11], the authors maximize
users’ coverage probability using particle swarm optimization to find optimal loca-
tions of UAVs in 3-D space. A particle in a swarm represents coordinates for an
entire group of N UAVs, which is a real-valued vector of 3N dimensions. In [10],
the aim is to maximize the number of users covered by the net of UAVs without
losing network connectivity in urban disaster scenarios where the area consists of
streets, parks, and buildings. Users move randomly, and UAVs deploy over the area
using the tactical movement generation rules based on the Jaccard distance and
artificial intelligence algorithms. In [4], the authors notice that due to the limited
maximum distance of UAVs flight, the emergency network should consist of mobile
base stations and terrestrial, portable base stations, and solve the problem of opti-
mal deployment for the network consisting of base stations of two types.

We propose a model where the zone is divided into sectors of different areas
and shapes depending on users’ location and non-uniformly distributed inside
the given zone and the range of MBSs. We do not need to find precise coordinates
of UAV locations because any location within a sector has the same impact on
the connectivity coverage. One or multiple UAVs can occupy every single sec-
tor. In this model, the deployment of a minimal number of UAVs represents a
combinatorial problem. Due to its complexity, we apply a heuristic optimization
method inspired by the Ant System approach but extended by a new problem-
specific heuristic aimed at generating a single solution. The proposed zone model
defines a new structure of a pheromone matrix and new rules of the pheromone
deployment. For experimental verification, we created a set of benchmark prob-
lems and conducted experiments to show the algorithm’s efficiency and reveal
the most beneficial values of the algorithm’s parameters.
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The paper consists of five sections. The wireless communication system, its
model, its hypergraph representation, and optimization criteria are described
in Sect. 2. Section 3 presents an Ant System-inspired approach to optimize the
deployment of UAVs. The experimental part of the research is described in
Sect. 4. Section 5 concludes the paper.

2 The Optimization Problem

We optimize the number of UAVs equipped with base stations and their locations
to provide connectivity for n immobile ground users in the given zone. We assume
that all UAVs and MBSs have the same functionality and parameters. Moreover,
a third-party entity provides connectivity to the UAVs, so their distances have
no meaning for the network functionality. There are also some other simplifica-
tions in our model of the problem. The model lacks radio resource management,
interference management, channel estimation, prediction, or energy efficiency.
We also assume that all UAVs fly at the same altitude, offering the best compro-
mise between flight safety and productivity. Due to the homogeneity of MBSs
transmitters, the round areas with satisfying connectivity offered by MBSs have
the same size. In formal terms, we consider a set of n immobile ground users
V = {v1, . . . , vn}, and a set of p MBSs M = {m1, . . . ,mp}. The connectivity
radius of each MBS is r. We want to ensure a k-coverage for each user in V ,
that is

∀v ∈ V ∃c ∈ [M ]k such that ∀m ∈ c dist(v,m) ≤ r, (1)

where c indicates the set of k MBSs covering the ground user v, [M ]k is the
set of all the subsets of M with exactly k elements, and dist(v,m) denotes the
distance between the ground user v and the MBS m. Our optimization goal is
to minimize the number of MBSs p.

For a continuous 2-D representation of the ground users’ and MBSs’ coor-
dinates, the problem can be formulated as the Geometric Disk Cover (GDC)
problem [9]. In GDC, we minimize the number of disks of a given radius cov-
ering a set of immobile ground users, which is an NP-hard problem. When we
use a discrete model, where the area is a grid of small rectangular cells, the
problem of the effective deployment of UAVs can be similar to generating an
overview image. Cells of the observation areas represent regions of ground users’
locations. For this model, the problem of minimizing the number of UAVs can
be formulated as ILP (integer linear programming) problem [7].

2.1 The Model of a Wireless Communication System

The communication system has to ensure a k-coverage for each user, which means
that each user requires at least k MBSs available in its connectivity range. Our
goal is to minimize the number of UAVs by optimizing their locations.
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Fig. 1. Example of an operating wireless network with four users: A, B, C and D
(circles) and 12 UAVs: 0, 1, 2, . . . , 11 (squares)—on the left, and lists of UAVs covering
users and users in the range of UAVs—on the right

Figure 1 depicts an example deployment of 12 UAVs over the four users. Gray
circles around users have a radius equal to the connectivity radius of MBSs car-
ried by UAVs. Thus, locating MBS wherever in the circle guarantees connectivity
to the user in the circle’s center.

The circles divide the zone into sectors. Each sector represents a different set
of users, which we can cover by MBS service. The shades of gray of the sectors
represent the number of covered users; the darker sector, the more users. In the
example, the UAVs are placed alone in each sector. For example, UAV no. 10
hovers in the sector where its MBS covers users A, B, and D. MBS of UAV no. 11
covers users B, C, and D. MBS of UAV no. 5—users A and B. And so on. The
sector of UAV no. 0 is white, which means there are no users in its range. The
precise coordinates of a UAV location have no meaning as long as it remains
entirely in the respective sector.

2.2 Hypergraph Representation of the System

The example presented in Fig. 1 can be modeled as a hypergraph H = (V,E)
where V is a set of nodes (ground users), and E is a set of non-empty subsets of V
(sectors of the zone) called hyperedges. There are four nodes and 11 hyperedges
in this example. Let us label the hyperedges according to the UAVs’ IDs and
nodes according to the users. For example, the hyperedge no. 10 connects nodes
A, B, and D. The hyperedge no. 11—nodes B, C, and D. The hyperedge no. 5—
nodes A and B. And so on.

2.3 Representation of Solution

A solution s represents a set of UAVs assigned to the zone sectors, where each
sector may contain zero, one, or more UAVs. In particular, the sector may have
no UAV assigned when UAVs from other sectors deliver connectivity. On the
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other side, there is no limit to the number of UAVs in one sector. Formally,
s = {ei, ej , . . . , eq} where values ei, ej , . . . , eq identify zone sectors (hyperedges
in the hypergraph) where UAVs are located. The solution s is a so-called multiset.
That is, some of the values in s may appear more than once if there is more than
one UAV in the sector. When the sector identifier is absent in s, it means that
no UAV is needed in this sector.

Since multiple elements in s can have the same values, the operator ∪ applied
in, for example, the expression s ∪ {e} always adds a new element e to s even if
an element with such value already exists in s.

2.4 The Optimization Criteria

The optimization aims to minimize the number of UAVs over the zone while
ensuring all ground users’ connectivity parameters. Thus, the value of a solution
is proportional to the number of UAVs in the network. Moreover, we want to
avoid UAV overcrowding in sectors. Therefore, when we have two solutions con-
taining the same number of UAVs, we also consider the diversity of the UAVs’
distribution over sectors. The fewer UAVs occupying the same sectors, the bet-
ter. As such, the fitness function f is evaluated simply as Eq. 2, but a secondary
function (Eq. 3) can be used to pick between two similar in-length solutions.

f(s) = len(s) (2)

f(s) = len(s)/set(s) (3)

where len(·) returns the number of the hyperedge IDs in the solution, that is, the
number of UAVs in the network, and set(·)—the number of unique hyperedge
IDs in s. When the assignment of UAVs to hyperedges is unique, that is, each
UAV occupies a different sector, the penalty component len(s)/set(s) equals one.
Otherwise, it is greater than one and rises as the uniqueness falls.

The fulfillment of sufficient connectivity conditions depends on the number of
UAVs in the user vicinity. Every user needs access to at least k MBSs simultane-
ously. Otherwise, the solution is unfeasible. Therefore, we call this a k-coverage
problem. For the example given in Fig. 1, k can be equal at most four because
users A and C have four MBSs in their ranges, the lowest level of coverage
among all users. Hence, the proposed deployment of UAVs can also represent a
feasible solution for the k-coverage problem where k = 1, 2, 3, 4. One can notice
that for k = 4, the deployment is feasible but not optimal because there exist
deployments of fewer UAVs also delivering connectivity for k = 4.

3 The Optimization Method

For the aim of optimization, we apply an iterative heuristic approach inspired
by the Ant Systems. Ant Systems have two main distinguishing characteris-
tics which separate them from other heuristics, e.g., evolutionary or swarm
approaches. First is a pheromone matrix containing trails left by artificial ants
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when they create new solutions. The other is that ants are not representatives
of solutions improved over subsequent iterations. Construction of solutions with
respect to already deployed pheromone trails is the only job for ants. It is impor-
tant to stress that ants are not information transmitters between iterations; the
only information transferred is the pheromone information.

Typically, an ant constructs a solution by a sequence of probabilistic deci-
sions. Every decision extends a partial solution by adding a new component to
the solution until a complete solution is derived. The sequence of decisions can
be viewed as a path through a corresponding decision graph, so ants find paths
through the graph that correspond to reasonable solutions. Ants that have found
reasonable solutions can mark the edges of the corresponding path in the graph
with an artificial pheromone. This pheromone guides ants in the next iteration.
The paths can improve in subsequent iterations due to the pheromone indicating
beneficial decisions of ants.

In our problem model, a solution represents an assignment of UAVs to the
hyperedges of the hypergraph. Therefore, we update the pheromone trail in the
hyperedges contributing to the solution, and the update is inversely proportional
to the solution’s length. To ensure that the pheromone from older iterations
does not influence the following iterations for too long, some percentage of the
pheromone evaporates during an update step. Algorithm 1 presents the generic
scheme of the Ant System.

Algorithm 1
1: Initialize pheromone values
2: repeat
3: for all antk do
4: construct k-th solution � 1. ants find their paths

5: for all pheromone values do
6: decrease the value by a certain percentage � 2. evaporation

7: for all pheromone trails contributing to solutions do
8: increase the value � 3. intensification: ants pheromone is laid

9: until termination condition met

3.1 The Problem–Specific Step: Generation of a Solution

Each ant constructs one solution. The constructing method is a heuristic using
problem-specific knowledge about the hypergraph representation of the system.
The hypergraph H, elite set of hyperedges eelit, and the required coverage level
k are the input of the method.

The set eelit consists of hyperedges having a large number of nodes since
they are regarded as the most efficient for covering. For each v ∈ V , we do the
following two steps: For all hyperedges containing v, we calculate their cardinal-
ity, which is the number of vertices in the hyperedge. Then, all the hyperedges
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having the highest cardinality become eelit members. The pseudocode of the
method generating eelit is presented in Algorithm 2.

Algorithm 2
1: function generateEliteSet(H)
2: � Input: hypergraph H � Output: elite set of hyperedges eelit

3: eelit ← ∅ � create an empty elite set of hyperedges eelit

4: for all v ∈ V do
5: mcv ← maxe|v∈e(card(e)) � find the max cardinality of e among e

containing v
6: eelit ← eelit ∪ {e|(v ∈ e) ∧ (card(e) = mcv)}
7: return eelit

The complexity of the for loop in this algorithm is O(dv), where dv is the
degree of vertex v, that is, the number of hyperedges v belongs to. The whole
algorithm has complexity O(n∗dmax), where dmax is the maximum vertex degree
in the hypergraph.

The method generating a solution s consists of five steps. The pseudocode
of this method is presented in Algorithm 3. Please note, that the solution s is a
multiset of hyperedge identifiers representing respective locations of UAVs (one
identifier represents location of one UAV), whereas eelit and einit are regular sets
of hyperedges.

#1 Stochastic selection of an initial set of hyperedges einit among the hyperedges
in eelit. The chances of being selected as a candidate to einit depend on the
pheromone trails. However, the candidate is omitted when its recruitment
does not extend the set of covered nodes. The selection stops as soon as
no nodes remain uncovered. The complexity of this step is O(|eelit| ∗ cemax)
where cemax is the maximal cardinality of a hyperedge in eelit.

#2 Sequential deployment of UAVs in einit. For each of these hyperedges, we
try to deploy new UAVs. We assign as many new UAVs as necessary to
guarantee the requested level k of coverage for all the nodes joined by this
hyperedge. We process hyperedges in the same order as they were put into
einit in Step #1. The UAV assignment is asynchronous. It means that the
coverage of nodes by UAVs already assigned is considered when adding the
next ones. For |einit| ∗ cimax nodes, where cimax is the maximal cardinality of
a hyperedge in einit, we have to verify whether these nodes have k-coverage
by the UAVs already declared in s. It takes O(k ∗ |einit|) operations. When
the coverage is insufficient, we add additional UAVs to s, which takes O(k)
operations. Thus, the complexity of this step is O(k ∗ |einit|2 ∗ cimax)).

#3 Dispersion of UAVs over the hyperedges in their neighborhood. All generated
UAVs are shifted to a random adjacent hyperedge. We consider a hyperedge
to be adjacent if it connects all but one of the nodes connected to a previous
one. If no such hyperedges exist, the UAV is removed from the solution. In
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Algorithm 3
1: function buildANewSolution(H, eelit, k)
2: � Input: hypergraph H, elite set of hyperedges eelit, k � Output: s

3: V ′ ← V � create a set of uncovered nodes V ′

4: einit ← ∅ � create an empty initial set of hyperedges einit

5: s ← ∅ � create an empty solution s

6: repeat � Step #1: ————— select hyperedges to the initial set
7: randomize e ∈ eelit � select randomly w.r.t. pheromone trail levels
8: if {V ′ ∩ e} �= ∅ then � if any node in e remains uncovered
9: eelit ← eelit \ {e} � e is removed from eelit

10: einit ← einit ∪ {e} � e is added to einit

11: V ′ = V ′ \ e � all the nodes connected by e are removed from V ′

12: until V ′ = ∅

13: for all e ∈ einit do � Step #2: —– build a preliminary version of the solution
14: for all v ∈ e do � for all the nodes connected by e
15: if v has l-coverage by the UAVs already declared in s, where l < k then
16: add (k − l) UAVs to the hyperedge e in s

17: for all e ∈ s do� Step #3: —— disperse UAVs to their neighbour hyperedges
18: if N (e) �= ∅ then
19: while there exist identifier e in s do
20: randomize e′ ∈ N (e) � select randomly one of the neighbours
21: replace e by e′ in s � move one UAV from the hyperedge e to e′

22: remove all identifiers e from s � remove UAVs from the hyperedge e

23: for all e ∈ einit do � Step #4: ————— repeat #2 to fix the solution
24: for all v ∈ e do � for all nodes joined by the hyperedge e
25: if v has l-coverage by the UAVs already declared in s, where l < k then
26: add (k − l) UAVs to the hyperedge e in s

27: � Step #5: — remove redundant UAVs from the solution
28: divide hyperedges present in s into groups w.r.t. the number of joined nodes
29: label groups: {g1(s), g2(s), . . . , gm(s)} according to the number of joined nodes
30: for i ← 1 to m do � start with groups of hyperedges joining least nodes
31: for all e ∈ gi(s) do � take the hyperedges in gi(s) in a random order
32: while all v ∈ e have coverage higher than k do
33: remove identifier e from s � remove one redundant UAV

34: return s � Finish: ———————— return the obtained solution s

this step, the inner loop (while) requires O(k ∗ |einit|) iterations and every
iteration has cost O(1). The outer loop (for) also requires O(k ∗ |einit|)
iterations. Therefore, the complexity of this step is O(k2 ∗ |einit|2).
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#4 Fixing the deployment of UAVs. Modifications introduced in Step #3 can
make the solution unfeasible. Thus, we repeat Step #2 in this step to make
the solution feasible again. The complexity of this step is the same as in
Step #2, i.e. O(k ∗ |einit|2 ∗ cimax)).

#5 Removal of redundant UAVs. After Step #4, some UAVs can be redundant
(the requested coverage level for all the nodes remains satisfied even without
these UAVs). Therefore, we analyze groups of hyperedges regarding their
cardinality, starting from one. Within each group, and in random order, we
verify if the lack of any UAVs makes the solution unfeasible. If it does not,
the redundant UAVs are removed from the hyperedge. Dividing hyperedges
into groups has the complexity O(k∗|einit|). In the nested for loop, the while
loop is invoked k ∗ |einit| times. A single while loop invocation is O(cemax).
Thus, the complexity of this step is O(k ∗ |einit| ∗ cemax).

The whole Algorithm 3 has the complexity O(|eelit|∗cemax)+O(k∗|einit|2∗cimax)+
O(k2 ∗ |einit|2) + O(k ∗ |einit| ∗ cemax). Since |einit| ≤ |eelit| and cimax ≤ cemax, we
can assess this complexity as O(k ∗ |eelit|2 ∗ (k + cemax)).

3.2 The Main Loop

The algorithm starts with the generation of the hypergraph H = (V,E) from the
input data with the area size and locations of the ground users. Then, the func-
tion generateEliteSet generates the set eelit. Next, we create a pheromone
vector P of size |eelit|. For each of the hyperedges in eelit, the initial pheromone
level in P equals the number of ants used by the algorithm.

Next, the main loop starts. The main loop of the algorithm corresponds to the
one presented in Algorithm 1. In the beginning for each ant, we generate a new
solution of UAVs deployment using the function buildANewSolution with
arguments: H, eelit, and the requested level of coverage k. We then evaluate each
new solution as the inverse of its length. Next, evaporation arises. Pheromone
values for all hyperedges in eelit are reduced by a fixed proportion ρ according to
the formula: Pe = (1 − ρ)Pe. Finally, we update the pheromone trails. For each
of the solutions, we want to reward those hyperedges whose membership in einit

gave a feasible solution. However, the reward value δ is inverse proportional to the
solution length and equal to the solution score. Therefore, the new pheromone
level for a hyperedge e is calculated according to the formula Pe = Pe + δe. The
coefficient δe is the sum of scores of those solutions, where e was a member of
einit and has assigned at least one UAV.

The main loop ends when the stopping condition is met, and then the best-
found solution is returned.



Heuristic Optimization of UAVs Deployment 423

4 Experiments

4.1 Benchmark

We evaluated the algorithm experimentally on the benchmark set of test cases
called SCP2 [3]. The set consists of six classes of problems that differ in the
number of ground users and their locations. Nodes of a rectangular grid over
the square zone of size one unit define possible users’ locations. There are two
densities of grids with grid cell dimensions sgrid equal 0.04 by 0.04 or 0.02 by 0.02
units (676 or 2601 nodes in the zone, respectively). In every case, the number of
users is smaller than the number of nodes: 100, 200, or 500. The users’ locations
are selected randomly among the nodes. However, we additionally shift the final
user location from the node coordinates toward a random direction by a random
distance smaller than 1.5 of sgrid. Two grids with different cell dimensions and
three sizes of the ground users’ set eventually give six classes of users’ distribu-
tion. For every class, we generated 50 instances based on different locations of
users on the grid and directions and distances of shifts.

The zone is divided into sectors as presented in the example Fig. 1. The MBS
signal power defines the radius of circles around users, which we arbitrarily set to
0.05 units. Locations of sectors define the structure of hypergraphs obtained for
each problem instance according to the rules described in Sect. 2.2. On average,
hypergraphs representing problem instances in the two classes with 100 users
have around 18.6 (with a range of 9 to 25) connected components for sgrid = 0.02
and 20 (13 to 27) for sgrid = 0.04. For the problem instances from the two
classes with 200 users, we got the average of about 3.9 (from 1 to 10) connected
components for sgrid = 0.02 and 3 (from 1 to 6) for sgrid = 0.04. When the
number of users equals 500, the hypergraph always consists of one connected
component. The decreasing number of connected components is not surprising
because more intersections between users’ surrounding areas occur when the
number of users grows.

The last parameter of the problem is the minimum coverage level k, equal
to 1, 2, 5, or 10. Eventually, we get a benchmark consisting of 24 classes of
problems: six classes of users’ distribution over the zone by four levels of the
minimum coverage k.

4.2 Plan of Experiments

The algorithm has three parameters: the number of ants nants, evaporation coef-
ficient ρ, and stopping condition parameter, that is, the maximum number of fit-
ness function calls maxnffc. In the preliminary experiments, we observed that sat-
isfying results were obtained for ρ = 0.1 and nants = 10. We set maxnffc = 2000,
so an experiment takes 200 iterations. In the presented experiments, the coeffi-
cient ρ is also the subject of experimental tuning and varies from 0.1 to 0.5.
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The experiments are divided into two groups. In the first group, we performed
experiments with ρ = 0.1 for all 24 classes (six classes of SCP2 by four values
of k). In the second group, we selected the two classes of problems that proved
to be the most demanding in the first group of experiments: sgrid ∈ {0.02, 0.04}
for 500 ground users and k = 10. For these classes, we observed optimization
progress for five different values of ρ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.

We repeated experiments 32 times for every problem instance, excluded the
best and worst results and calculated the mean number of UAVs for the remain-
ing ones.

4.3 The Results

Figure 2 shows the results of our experiments with the benchmark described in
Sect. 4.1. As the diversity level of UAVs’ deployment serves only as a tie-breaker
between two similar in-length solutions, our analysis concerns only the average
number of UAVs for each class of the problem.

For smaller numbers of users in the area, which resulted in hypergraphs with
plenty of connected components of smaller size, the proposed algorithm found
itself near the optimal solution almost instantly. Even for the highest considered
coverage of 10, it could not further improve the results after about a fifth of the
given computational time. When the user population grows, the complexity of
the corresponding hypergraph increases. Then our method needed much more
time to stop improving.

Interestingly, the algorithm reached the suboptimal solutions after similar
numbers of iterations regardless of the desired coverage level k. For classes of
100 users (Fig. 2a, 2d, 2g, 2j) this method reached the suboptimal solution within
fewer than 10 iterations, barely improving for up until iteration 30. Classes with
200 users (Fig. 2b, 2e, 2h, 2k) showed steady improvement for about 70 iterations
(700 evaluations), but further improvement stopped after about 100 iterations.

The most challenging classes of 500 users (Fig. 2c, 2f, 2i, 2l) almost doubled
the time required to find suboptimal solutions, reaching as far as 150 iterations
of varied improvement. The pace of this improvement also shows the ability of
the algorithm’s transition between different local optima, which initially slowed
down the search for the best solution.

The results of the second group of experiments with different evaporation
rates are presented in Fig. 3. One can see that a higher evaporation rate could
significantly hasten the search process at the cost of a noticeable but relatively
small tradeoff in the quality of the found solution.
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Fig. 2. Mean numbers of UAVs for the best-found solutions For two densities of grids:
with grid cell dimensions sgrid equal 0.04 by 0.04 and 0.02 by 0.02 units. For k = 1:
(a), (b), and (c), k = 2: (d), (e), and (f), k = 5: (g), (h), and (i), and k = 10: (j), (k),
and (l); X-axis represents the iteration number; maxnffc = 2000
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Fig. 3. Mean numbers of UAVs for the best-found solutions observed in selected iter-
ations; maxnffc = 2000; evaporation coefficients: [0.1, 0.2, 0.3, 0.4, 0.5], k = 10

5 Conclusions

In this paper, we proposed an Ant System-inspired algorithm for optimizing
UAVs deployment for the k-Coverage Problem. The novelty of the presented
approach lies in introducing a new model of the space where the network formed
by UAVs serves the users and a problem-specific heuristic exploiting the model’s
features. Combining the Ant System method and the heuristic is also an inno-
vative element.

We define a problem instance as a hypergraph of connections between net-
work users, where each user corresponds to a single hypergraph’s node. Hyper-
edges describe sectors of the problem area where a single UAV can connect
simultaneously to a given set of users. The shape of each sector is defined by
user positions and the range of a carried MBS.

We use the model-specific characteristics of the problem to construct an input
space for the Ant System step of the algorithm and build new solutions using a
proposed heuristic.
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A generated solution is represented as a variable-length array of hyperedges,
which can be translated to UAV positions within the problem area. We use the
feedback loop of the algorithm to find a subset of the hyperedges that results in
the shortest solutions while avoiding overcrowding within each sector. Among
solutions of a given length, the one with the lowest average UAV count per sector
within the solution is considered the best.

We tested our algorithm using three pairs of classes from the presented
dataset. The number of nodes in each problem instance differed for each pair,
and classes within pairs had different deployment characteristics. For each class,
we repeated tests for four values of the required coverage level for a solution
k—1, 2, 5, and 10.

The experiments’ results correlate with some of the benchmark problem prop-
erties and reflect the expected behavior of the Ant System-based approaches. The
density of the created hypergraph is closely related to the problem parameters
and directly affects the time required to obtain good results. Similarly, choosing
between different evaporation rates can hasten the search but at a slight cost to
the quality of the obtained solutions.
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