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Abstract. Spiking Neural Networks (SNNs) are the most common and
widely used artificial neural network models in bio-inspired comput-
ing. However, SNN simulation requires high computational resources.
Therefore, multiple state-of-the-art (SOTA) algorithms explore parallel
hardware based implementations for SNN simulation, such as the use of
Graphics Processing Units (GPUs). However, we recognize inefficiencies
in the utilization of hardware resources in the current SOTA implemen-
tations for SNN simulation, namely, the Neuron (N)-, Synapse (S)-, and
Action Potential (AP)-algorithm. This work proposes and implements
two novel algorithms on an NVIDIA Ampere A100 GPU: The Active
Block (AB)- and Single Kernel Launch (SKL)-algorithm. The proposed
algorithms consider the available computational resources on both, the
Central Processing Unit (CPU) and GPU, leading to a balanced work-
load for SNN simulation. Our SKL-algorithm is able to remove the CPU
bottleneck completely. The average speedups obtained by the best of the
proposed algorithms are factors of 0.83×, 1.36× and 1.55× in compar-
ison to the SOTA algorithms for firing modes 0, 1 and 2 respectively.
The maximum speedups obtained are factors of 1.9×, 2.1× and 2.1× for
modes 0, 1 and 2 respectively.

Keywords: SNNs · GPUs · Dynamic Parallelism · Grid-stride Loop ·
Parallelization Algorithms

1 Introduction

The brain has inspired many researchers due to its energy efficiency, accuracy and
robustness. The field of neuromorphic computing aims to mimic the underlying
neurological processes. Spiking Neural Networks (SNNs) are the most widely
used neural network model in the neuromorphic research community [23].

Researchers from deep learning community are exploring bio-inspired Artifi-
cial Neural Networks (ANNs) [10]. ANNs are known for their ability to recognize
patterns in images (e.g. [20]) or time-series data (e.g. [26]), and solve complex
problems like navigating autonomous vehicles or –in combination with reinforce-
ment learning– mastering the game of Go [29]. SNNs can be seen as the new, 3rd
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generation of ANNs [14] and can, in principle, be used for the same applications.
One motivation to develop the “traditional” ANNs to a new generation is the
surprising fact that ANNs are “easy to fool” [17], e.g. an adversarial image can
be engineered in a way that, for example, a human can still easily recognize a
stop-sign, however, the ANN will now identify the same sign as a speed-limit.
SNNs may hold the promise of greater inherent robustness to such manipula-
tions [9]. An additional motivation for the investigation of SNNs as per Roy et
al. [28] is that the human brain accomplishes extremely complex tasks with a
tiny energy budget when compared to traditional ANNs. Currently under inves-
tigation are memristor-based hardware [9], Intel Loihi [7], SpiNNaker [13], and
IBM TrueNorth [8].

However, SNN computations are challenging in contrast to ANN compu-
tations, since they involve the timing information of spikes and internal neu-
ron dynamics [23]. On the other hand, SNN training is an ongoing field of
study [25,32]. ANNs have already benefited massively from the utilization of
Graphics Processing Units (GPUs) by using the Compute Unified Device Archi-
tecture (CUDA) programming framework. The most common modelling tools,
PyTorch [27] and TensorFlow [1] readily provide a high-level CUDA interface
for Deep Neural Networks (DNNs).

Another research field with interest in the efficient simulation of biologi-
cally plausible neural networks is computational neuroscience. The size and
complexity of biological networks by far exceeds the one of current artificial
neural networks [4]. It is recognized that the analysis of biological and ANN
have developed largely independent in the past [32], though facing a set of sim-
ilar challenges [4] and future synergies are expected [35]. To handle the addi-
tional requirements of SNNs simulation in the neuromorphic research commu-
nity, several hardware and software frameworks have been developed, such as
NEURON [6], NEST [11], NeMo [12], NCS6 [18], CARLsim [5], GeNN [33],
Spike [2], BRIAN2 [30], PyNN [3] and NeuronGPU [15]. The frameworks differ
in the level of detail with which they model neural functions. In terms of utilizing
parallel hardware, BRIAN2 [30] supports multithreaded parallel computations,
while NEURON [6] and NEST [11] support distributed simulations on computer
clusters with NVIDIA GPUs using CUDA and Message Passing Interface (MPI).

At the core of simulators lie detailed algorithms which differ in their paral-
lelization approach on NVIDIA GPUs. In such approaches, the number of paral-
lel threads depends on either the number of neurons (Neuron (N)-algorithm), or
synapses (Synapse (S)-algorithm) or action potentials (Action Potential (AP)-
algorithm) [23]. The N-, S- and AP-algorithms have their own limitations
when implemented on NVIDIA GPUs. The N-algorithm is compute-intensive,
since the time-complexity of the N-algorithm is proportional to the number of
synapses. The S-algorithm is resource-intensive with high GPU resource require-
ments, since the space-complexity is proportional to the number of neurons and
synapses. Both N- and S- algorithms require Central Processing Unit (CPU)
intervention which may result in the so-called CPU bottleneck. The AP-algorithm
aims to overcome limitations of the N- and S-algorithms by using the Dynamic
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Parallelism (DP) [23]. However, the AP-algorithm is resource-intensive for a
large number of spikes. There is only a limited amount of studies of the scaling
of SNNs simulation time with the number of spikes [23].

All the above-mentioned challenges motivate an efficient use of CPU-GPU
resources for improving the performance of SNN simulation. The objective of this
paper is to optimize parallelization approaches for SNN simulation. We propose
two novel algorithms for NVIDIA GPUs using CUDA. The overall contributions
of our work are as follows:

– We recognize that the scheduling and allocation of tasks on the GPU in
existing SNN simulation algorithms limit the performance.

– We propose two new parallelization algorithms [Single Kernel Launch (SKL)
and Active Block (AB)] and evaluate them against the state-of-the-art
(SOTA) approaches. For the evaluation, we use the same network (a pulse-
coupled network of Izhikevich neurons) as in the SOTA work [23] across a
wide range of modes, neuron and synapses values.

• SKL-algorithm: The CPU bottleneck is completely avoided. Iterative ker-
nel calling is shifted to the GPU, resulting in a single kernel call from the
CPU.

• AB-algorithm: An efficient GPU utilization based on available process-
ing blocks for computations and communications has led to a significant
speedup.

– The average speedups obtained by the best of the proposed algorithms are
factors of 0.83×, 1.36× and 1.55× in comparison to the SOTA algorithms
with maximum speedups of 1.9×, 2.1× and 2.1× for firing modes 0, 1 and 2
respectively.

The rest of this paper is organized as follows. Section 2 provides background
information on SNN simulation, the used neuronal model, and the grid-stride
loop. Section 3 introduces the SOTA and the proposed algorithms for the SNN
simulation on heterogeneous CPU-GPU platforms. Sections 4 and 5 explain the
evaluation methodology and present the detailed experimental results and dis-
cussions. Finally, we conclude the paper in Sect. 6.

2 Background

In this section, we first discuss the general flow in an SNN simulation (Sect. 2.1).
In particular, we use the popular Izhikevich neuron model, introduced in
Sect. 2.2. The network dynamics and modes are discussed in Sect. 2.3. We con-
clude the section by giving the necessary background knowledge on the grid-
stride loop in Sect. 2.4.

2.1 General Flow of SNN Simulation

SNN simulation involves the propagation of spikes through a network of neurons
and synapses. An SNN simulation starts with input signals in the time domain



402 N. Satpute et al.

(called spikes) applied to the neurons of the input layer. The state of each neuron
is defined by its membrane potential value. The spike at the input layer causes
an input current, which in turn results in a change of the neuron membrane
potential. If the neuron membrane potential crosses a certain threshold, the
neuron “fires” and the spike is propagated to the neurons of the subsequent
layer in the next time stamp through synapses. Consequently, the membrane
potential values of the neurons in the subsequent layer are updated and the spike
is propagated again and so on. This process of spike propagation is recursive or
iterative depending upon the implementation. In the recursive spike propagation
model, only activated neurons take part in the computation, while in the iterative
spike propagation model, the state of all neurons at all time steps is considered.

The implementation of the SNN simulation on the CUDA level involves the
invocation of two main kernels. The first kernel is an update kernel, given by
Pseudo-code 1, for updating the state variables of an individual neuron and the
spike list if the potential crosses the threshold value.

Algorithm 1. Update Kernel
1: start a thread for each neuron i:
2: update state variables vi(tn+1), ui(tn+1) using eqs. (1) to (3)
3: if vi(tn+1) > vθ then

add i to the spike list:
4: synchronize all threads:

The second kernel is propagating the spikes to postsynaptic neurons as given
by Pseudo-code 2.

Algorithm 2. Propagate Spike Kernel
1: start a thread for each synapse from i to j:
2: if presynaptic neuron i spikes then

update Ij(tn+1) by eq. (4) using an atomic operation:
3: synchronize threads to proceed to the next time step:

In each of the approaches presented in Sect. 3, these two kernels are executed
in each iteration of the SNN simulation. Typically, the CPU invokes a parent
kernel on the GPU and both kernels, corresponding to Pseudo-codes 1 and 2,
are executed on the GPU. The resulting data is transferred back to the CPU
and a new iteration starts.

2.2 Izhikevich Neuron Model

There are a number of neuron models that are currently being used in SNN
simulations. These models range in complexity, biological plausibility, and com-
putational efficiency. In this work we simulate a pulse-coupled Izhikevich neural
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network as it has been used to benchmark the SOTA AP algorithm by Kasap
and Opstal [23], as well as the GeNN SNN simulator [34].

The Izhikevich neuron model [21] is a reduced-order model of the Hodgkin-
Huxley model [19], which is obtained by means of bifurcation theory. The Izhike-
vich model sacrifices the biological plausibility of the Hodgkin-Huxley model, but
retains its functionality. In this way the Izhikevich model is less complex and
more efficient to simulate in comparison to Hodgkin-Huxley model [22]1. Fur-
thermore, it possesses the capacity to describe more complex neuronal behaviors
(spiking patterns), which make it more attractive than Leaky-integrate-and-fire
neuron models [21].

The Izhikevich model is a 2-dimensional system consisting of the states u
and v, which are the membrane potential and its recovery variable, respectively.
Their instantaneous rate of change obey the following set of ordinary differential
equations:

v′ = 0.04v2 + 5v + 140 − u + I (1)
u′ = a(bv − u) (2)

if v ≥ 30mV, then

{
v ← c

u ← u + d
(3)

where the prime ′ represents the derivative with respect to time, a, b, c and d
are dimensionless parameters that are chosen to fine-tune the desired neuronal
behavior (spiking, bursting, etc.), and I is the current. A spike is propagated if
the neuron membrane potential crosses the threshold value of 30 mV given by
Eq. (3)- if it accumulates the necessary amount of inputs. The value of v resets
to resting value c and the value of u increases by recovery reset d when the
neuron fires the spike. In our system the injected current I is modeled as

Ij(tn+1) = gexc,inh · qj(tn) + ws

S∑
i

Sijδi(tn) (4)

where Sij is the connectivity matrix element from presynaptic neuron i to neuron
j, and ws is a fixed synaptic scaling factor that depends on the total number of
synapses in the network. The δi variable is equal to 1 if neuron i spikes at time
tn, i.e. δi(tn) = 1 and δi(tn) = o otherwise.

Neurons are classified to be either excitatory or inhibitory, and their ratio
is conventionally chosen as 4:1 in the network, inspired by the mammalian cor-
tex [21,23]. If a neuron is excitatory or inhibitory is defined by its connection
strength: The connection strengths Sij to an excitatory (or inhibitory) neuron
are chosen randomly from a uniform distribution on [0, 0.5] ([−1, 0]) [23]. The
input current Ij for neuron j from Eq. (4) consists of the sum of the stochastic
input current qj scaled by an excitatory or inhibitory conductance gexc,inh and
the synaptic currents received from its active presynaptic neurons [23].
1 However, there have been a number of studies that rigorously analyze the perfor-

mance aspects of the different models that suggest otherwise. The interested reader
is referred to [31] and references therein.
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2.3 Network Dynamics and Modes

The network dynamics are determined by the values of the input conductance
values gexc,inh in Eq. (4), resulting in different firing regimes or modes of the
network as presented in Table 1. The definition is identical to the one used by
Kasap and van Opstal in [23].

Table 1. Definition of the quiet, balanced and irregular firing modes based on the
chosen excitatory or inhibitory conductance values gexc,inh.

mode index mode name gexc ginh

0 quiet 2.5 1.0

1 balanced 5.0 2.0

2 irregular 7.5 3.0

The processing of the propagation of each spike through the network requires
a certain amount of hardware resources. The balanced and irregular networks
generate a large number of spikes, which makes their simulation computationally
challenging compared to mode 0, i.e. quiet networks.

2.4 Grid-Stride Loop

GPUs, in general, support dynamic (or random) scheduling of the tasks based
on the available hardware resources. This dynamic scheduling mode will assign
a loop iteration to an available thread [16].

It allows a more balanced execution time across threads, but incurs a higher
processing overhead as it requires the thread (or a block of threads) to wait after
each task(s) to receive the next iteration(s) to execute. The default scheduling
policy on the GPU, is generalized for the varying execution times for different
workloads and does not favor tasks that have similar execution time [16].

An alternative scheduling, the grid-stride loop is illustrated in Fig. 1. The
grid-stride loop [24] avoids inefficiencies in terms of idle time on the hardware
by preallocating the loop iterations to each thread in the following way: The grid-
stride loop uses a static schedule that assigns loop iterations to threads for execu-
tion [24]. In a 4-thread application with 8000 loops, static scheduling will assign
loops 0 to 1999 to thread ID 0, loops 2000 to 3999 to thread ID 1, loops 4000
to 5999 to thread ID 2 and lastly loops 6000 to 7999 to thread ID 3 [16]. This
scheduling policy favors tasks that have similar execution time which is suitable
for the special case of spike propagation. Further, GPU resources are freed as in
the grid-stride loop the block processing is CPU-orchestrated in the sense of a
static pre-allocation.

Depending on the parallelized task static pre-allocation in the grid-stride
loop demonstrates advantages over the random block processing, for example a
speedup factor of 1.4x in [16].
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Fig. 1. Illustrated are two processing methods for computational blocks of threads. In
our example, the GPU can process four blocks in parallel at a time. In the random block
processing (left hand side) the GPU-resource manager handles the workload allocation.
In contrast, in the grid-stride loop (right hand side) the CPU organizes the workload,
freeing resources on the GPU.

3 SNN Simulation Algorithms

In this section, we discuss the SOTA (N-, S- and AP- [23]) algorithms and
propose the AB- and SKL-algorithm. The implementation of the AB- and SKL-
algorithm and comparison to the SOTA (AP, N, S) are made available as open
access in the following GitHub repository: GPU4SNN.

The number of neurons N and synapses S in the SNN determine the required
processing blocks on the GPU. However, the algorithms differ in their scheduling
and allocation tactics of the processing blocks, as well as their CPU-GPU com-
munication pattern. Figure 2 shows a simplified overview and each algorithm is
discussed in the following.

N-algorithm. In the N-algorithm, the spike kernel is implemented by invoking
N threads in parallel, as detailed in [23]. The heterogeneous implementation of
the N-algorithm using CPU-GPU platforms is shown in Fig. 2. The algorithm
implementation requires repeated GPU kernel calling from the CPU. Each itera-
tion involves two kernel calls (Update Kernel and Propagate Spike Kernel) from
the host CPU. The N-algorithm starts with N parallel threads simultaneously.
Each thread operates S times repeatedly. Hence, the computational overhead for
each thread is a factor of S and therefore increases with the number of synapses.
The potential problem with the N-algorithm is the underutilization of the GPU
resources due to launching of only N threads.

S-algorithm. In the N-algorithm, N threads are invoked in parallel and each
of them iterates S times. In the S-algorithm [23], however, N × S threads are
invoked in parallel and each of them iterates one time. The N ×S threads might
create a hardware resource constraint in terms of space on the GPU. Therefore, it
is said to have an increased space-complexity. The N-algorithm, however, needs S
iterations, each of which due to its time-consumption might lead to an increased
time-complexity.

https://github.com/Crypto-TII/GPU4SNN
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Fig. 2. Simplified communication patterns between CPU and GPU for SNN simula-
tion with the SOTA algorithms (left hand side) and proposed algorithms (right hand
side). At the core of the proposed algorithms lies a grid-stride loop, which is shown
schematically in Fig. 1.

In all algorithms the same kernels as described in Sect. 2.4 are used. The
kernel launch can be handled by the CPU or GPU. A counter tracks the
iteration of the SNN simulation. Block processing can take place in a random
or grid-stride loop fashion as described in Sect. 2.4. Particular CUDA methods
are DP (dynamic parallelism) used by the AP-algorithm and kernel fusion
used by the SKL-algorithm.

The N × S threads in the S-algorithm are combined together to form blocks
of threads. The GPU resource manager randomly allocates the blocks of threads
as illustrated in Fig. 1. Due to this random allocation of tasks on the GPU, the
hardware resources are likely to be used inefficiently.

AP-algorithm. The AP-algorithm exploits the DP using CUDA on an NVIDIA
GPU [23]. As shown in Fig. 2, in the AP-algorithm, the CPU invokes one parent
kernel on the GPU with N threads. Given a spike from each of the N neurons,
the respective thread will launch a child kernel with S threads of its own. Since
launching of the child kernel depends on the presence of a spike, caused by
the potential crossing of a threshold value, this algorithm is called the Action
Potential algorithm. The space complexity of the AP-algorithm increases with
the number of spikes.

AB-algorithm. The communication pattern of the AB-algorithm is similar to
the N- or S-algorithm, as shown in Fig. 2. The main difference in the commu-
nication pattern of AB-algorithm between CPU and GPU in comparison to the
N- and S-algorithm is as follows: In the AB-algorithm, the CPU is used to place
the optimized workload on the GPU instead of immediately placing the total
workload of the respective iteration, as was done in the case of the N- and S-
algorithm. Therefore, hardware resources are used in a more balanced way. The
time consuming random resource allocation and scheduling used in the N- and
S-algorithm are thereby avoided to gain possible performance improvements.
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SKL-algorithm. There are circumstances under which the AB-algorithm might
not be the optimal choice, such as: i) If there is already a high workload present
on the CPU, or ii) if the data transfers between CPU and GPU are costly.
For these circumstances, we propose the SKL-algorithm. The SKL-algorithm is
shown schematically in Fig. 2. The CPU launches one kernel only on the GPU.
The initialization and computations of the grid-stride loop are handled by the
GPU. Since all kernels are directly invoked on the GPU, the SKL-algorithm
completely avoids a possible CPU bottleneck. However, it adds an extra step
consisting of inter-block GPU synchronization after each stage, i.e. update and
spike (kernel fusion).

In brief, each of the proposed algorithms first calculate the availability of the
hardware resources in terms of the computational thread blocks. Later on, the
proposed algorithms distribute the workload (i.e. loop iterations) of the simula-
tion equally to each thread block using grid-stride loop on the GPU. The CPU
is not only distributing the workload equally on the GPU by calling an appli-
cation program interface using CUDA but also accumulating the total number
of spikes obtained from the simulation for evaluating the accuracy of the simu-
lation. The GPU simultaneously update the neurons mapped onto the threads
and propagate the spikes while the accumulation of the spikes continues on the
CPU. We named the proposed approaches the way they are implemented on the
GPU (i.e. Active Block(AB) and Single Kernel Launch(SKL)) as opposed to the
way described in terms of SNN terminologies i.e. Neuron(N), Synapses(S), and
Active Potential(AP) [23].

4 Performance Evaluation

SNN simulators need to perform well on a wide range of possible neural networks:
from relatively small ones with only a few number of neurons and synapses
to extensively large ones. Additionally, the number of spikes may change in a
quiet (0), balanced (1), or irregular (2) mode (defined in Table 1), and for how
many time steps (or iterations) the simulation is performed. To ensure optimal
performance under the above mentioned conditions, the scaling of the underlying
parallelization algorithm needs to be favorable.

Here, the three SOTA parallelization algorithms (AP, N, S) are compared
to the proposed ones (AB, SKL) in terms of their total simulation time under
scaling of the number of neurons and synapses for 2000 iterations for modes 0, 1,
and 2. We vary the number of neurons N by more than two orders of magnitude:
in eight steps on a logarithmic scale from N = 103, . . . , 2.5·105. Similarly, we vary
the number of synapses S in seven steps from S = 27, . . . , 213 (128, . . . , 8192).

We evaluate all scenarios by the total time each algorithm requires for the
simulation. Figure 3 visualizes the winning algorithm with the shortest total
simulation time for each neuron-synapses number pair. Overall, we see significant
speedup factors of the proposed algorithms (AB, SKL) for larger spiking neural
networks with a larger number of neurons in modes 1 and 2. The AP algorithm
performs well in the low-spiking regime (mode 0).
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Fig. 3. Shown is the winning algorithm with the smallest total simulation time t for
firing modes 0, 1, and 2 when the total number of neurons (N = 103 . . . 2.5 · 105) and
synapses per neuron (S = 27 . . . 213) are changed. The two names of the algorithms in
each rectangle indicate the top two approaches with smallest simulation times, i.e. the
winning algorithms, which can be SOTA and/or proposed algorithm(s). The number in
the rectangle represents the speedup obtained by the best of the proposed algorithms
over the best of the SOTA ones (i.e. tbest SOTA/tbest prop.). Therefore, factors > 1
show speedup obtained by the proposed algorithms over the SOTA ones. The average
speedups obtained by the best of the proposed algorithms are factors of 0.83×, 1.36×
and 1.55× in comparison to the SOTA algorithms with maximum speedups of 1.9×,
2.1× and 2.1× for firing modes 0, 1 and 2 respectively. Bold font highlights speedup
factors above or equal to 1.5, i.e. the speedup is larger than 50% compared to the best
current SOTA algorithm.

In our case the total number of neurons N is equal to the number of pre-
synaptic neurons, as well as the number of post-synaptic neurons. In region
“(NA)”, no simulation is possible because the number of synapses per pre-
synaptic neuron S is larger than the total number of post-synaptic neurons
N .

To discuss the scaling behavior of each algorithm in more detail, we perform
following analysis: Fig. 4 shows the absolute values for the elapsed times of each
algorithm for a horizontal cut (scaling with the number of neurons) and a vertical
cut (scaling with the number of synapses) through Fig. 3. We evaluate the total
number of spikes (“unsigned int”) obtained from each algorithm to evaluate
the accuracy of the simulation. We use single precision (32-bit) float variables
from CUDA for representing the state variables of neurons. We follow the same
state variables (introduced in Sect. 2.2) and precision as mentioned in SOTA
approaches [23]. We note the following scaling behaviors:

The N algorithm’s scaling behavior is compatible with our expectation:
The GPU is likely to have enough (N) threads. Therefore, the N algorithm
scales favorably with an increasing number of neurons (see left-hand side of
Fig. 4). However, as each thread has to operate S times in the N algorithm, its
time complexity increases with S (see right-hand side of Fig. 4).
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Fig. 4. Shown are the total simulation times for each algorithm when the (left) number
of neurons is scaled (S = 210, N = 103 . . . 2.5 ·105), and (right) the number of synapses
is scaled (N ≈ 104, S = 27 . . . 213) in modes 0, 1, and 2 (from top to bottom) of Fig. 3.

The S algorithm shows a more favorable scaling with the number of
synapses than the N algorithm. The S algorithm aims to launch N × S threads
in parallel. Each thread only operates one time. The GPU may not provide
enough space (space complexity), and the random allocation will consume GPU
resources.

The AP algorithm launches N threads. Given a spike of a neuron, the
respective thread will launch a child kernel with S threads of its own. Therefore
the space complexity is expected to increase with the number of spikes. Therefore
the AP algorithm performs excellent under the conditions of low spike count.
However, in the higher firing modes with higher spike count (left-hand side of
Fig. 4) the launching of child kernels per spike can become costly and the total
simulation time diverges.

The AB and SKL algorithm show a favorable scaling of the total simula-
tion time under both, the number of neurons or synapses in Fig. 4. AB and SKL
algorithm’s scaling with the number of synapses is comparable to the one of the
S algorithm and therefore favorable. In contrast to the S algorithm, though, the
two proposed algorithms show a more favorable scaling under an increasing neu-
ron number. This favorable scaling explains why the proposed algorithms win
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in the higher neuron number region of Fig. 3. The difference between AB/SKL
and the S algorithm is that for AB/SKL, the CPU orchestrates the workload
on the GPU. The algorithm still aims to perform computations corresponding
to N ×S threads. However, only maximum possible active threads are launched
and the total workload is distributed among active threads. Hence, the GPU is
free from the orchestration workload in AB/SKL.

5 Discussion

In this paper, we quantify the performance of the SOTA (S-, N-, AP-algorithm)
and two proposed algorithms (AB-, SKL-algorithm) for SNN simulation on
A100 NVIDIA GPU. The proposed algorithms show advantageous scaling under
variation of the number of neurons and synapses (N = 103, . . . , 2.5 · 105,
S = 27, . . . , 213).

Intuitively, we expect the SKL-algorithm to be the fastest among the other
algorithms since all intermediate communications between host and device are
completely avoided.

In comparison to the SKL-algorithm, the AB-algorithm does not need a
counter on the GPU. The CPU controls the time steps and hence launches
Update and Spike Propagation kernel iteratively on the GPU until the total
number of time steps are evaluated for the simulation. In this way, the AB-
algorithm distributes the tasks more efficiently on the hardware resources i.e.
CPU and GPU, resulting in a significant speedup and maintaining the accuracy
in terms of the total number of spikes.

Two possible drawbacks of the SKL-algorithm could be the following: First,
since all intermediate communication is avoided, the SKL-algorithm cannot store
the temporal variation of an SNN since the data is transferred in the last itera-
tion. Especially in the context of neuroscience the time dynamics and evolution of
membrane potentials and spikes in an SNN might be important. In such a case,
the limitation of intermediate communication in the SKL-algorithm limits its
applications. A possible future solution could be to modify the SKL-algorithm to
provide flexibility to send the data after a certain number of iterations instead of
the last iteration. Another solution is to always use the proposed AB-algorithm:
In the N -S configurations where the SKL-algorithm is the winner in terms of
total execution time, the runner-up in the vast majority of the cases is the pro-
posed AB-algorithm (see Fig. 3). A second disadvantage may be memory limita-
tion. The SKL-algorithm assumes the input data as well as intermediate results
will be available in the GPU memory for all the iterations. If the device memory
is not large enough then its better to utilize the AB-algorithm to pipeline com-
putations and communications. If the device memory does not entirely fit the
input data and/or neural network model, then the data and/or model will be
evaluated in phases. This multi-phase mode will involve the CPU intervention
to load the GPU memory when the evaluation of the previous phase of the data
and/or model is finished. Such a mode requires iterative kernel launching, which
can be implemented by the AB-algorithm but not by the SKL-algorithm.
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6 Conclusion

In this paper, we propose and evaluate two novel GPU-based algorithms (SKL
and AB) for SNN simulation with a grid-stride loop as their core element. Iter-
ative invocations of a GPU kernel from the host CPU involve time consuming
tasks and the corresponding complexity increases with an increase in the num-
ber of iterations. The SKL-algorithm avoids iterative kernel calling from the host
CPU. In this way, the CPU bottleneck is completely avoided and iterative calling
of a kernel is shifted to the GPU resulting in a single kernel call from the CPU.

An efficient heterogeneous CPU-GPU utilization using the AB-algorithm has
also provided significant speedup while maintaining the SNN accuracy in terms
of the total number of spikes. The average speedups obtained by the best of the
proposed algorithms are factors of 0.83×, 1.36× and 1.55× in comparison to the
SOTA algorithms with maximum speedups of 1.9×, 2.1× and 2.1× for firing
modes 0, 1 and 2 respectively.
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