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Abstract. GROMACS is one of the most widely used HPC software
packages using the Molecular Dynamics (MD) simulation technique. In
this work, we quantify GROMACS parallel performance using different
configurations, HPC systems, and FFT libraries (FFTW, Intel MKL
FFT, and FFT PACK). We break down the cost of each GROMACS
computational phase and identify non-scalable stages, such as MPI com-
munication during the 3D FFT computation when using a large num-
ber of processes. We show that the Particle-Mesh Ewald phase and the
3D FFT calculation significantly impact the GROMACS performance.
Finally, we discuss performance opportunities with a particular interest
in developing GROMACS for the FFT calculations.

Keywords: Molecular Dynamics · Particle-Mesh Ewald Calculations ·
Fast-Fourier Transform

1 Introduction

Molecular Dynamics (MD) [8] is the use of computer simulations to study the
physical system particle dynamics and interactions. Today, this technique is
widely used in different scientific domains, such as biochemistry and material sci-
ence, among many others. In particular, the MD software landscape is dominated
by a number of well known HPC codes, including GROMACS [18], NAMD [14],
and CHARMM [4].

In this work, we investigate the GROMACS parallel performance. GRO-
MACS originated in the early 1990s s at the University of Groningen [2] and
has since then been developed and maintained as a community effort. It sup-
ports an open-source policy and, among its many strengths, can be executed
on a large number of systems, including small (personal) laptops all the way
to large high-performance computers (HPC) [1]. Furthermore, GROMACS sup-
ports both general-purpose processors (CPUs) as well as Graphics Processing
Units (GPUs) [12]. However, despite the continuous improvement in hardware
technologies, GROMACS (and other MD frameworks) are still challenged - from
the computational point of view - to simulate critical biological processes such
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as protein folding, conformational transition in bio-molecules (such as R to T
transition in Hemoglobin), bacterial and viral infections [3,5]. These simulations
require the usage of supercomputers and accelerators. Needless to say, GRO-
MACS is constantly developed and extended to improve its parallel efficiency as
well as algorithmic improvements [13] to facilitate the study of larger and more
complex molecular simulations.

This paper seeks to understand the GROMACS parallel performance and
identify optimization possibilities. For this reason, we run GROMACS on
two state-of-the-art HPC systems, analyze their results, and identify key
performance-limiting characteristics. In short, our contributions are:

1. A quantitative and systematic performance evaluation of GROMACS on two
HPC systems.

2. We study the impact of different GROMACS phases’ implementations, vary-
ing the number of processes. We quantify their different impact on the overall
GROMACS performance and analyze their respective performance-degrading
contribution. For a different number of processes, we identify various opti-
mization opportunities.

3. We quantify the performance impact of using various FFT libraries.

2 Background

MD simulations mimic the dynamics of molecules by numerically solving the
equation of particles’ motion using Verlet or leap-frog algorithms. To determine
each particle’s new position and velocities, we need to calculate the force acting
on each particle. Examples of such forces are the van der Walls and the Coulom-
bic forces. While the cost of particle position and velocity calculations scale with
the number of particles under study, a näıve algorithm for the calculation of the
forces requires calculating the contribution to the force for each pair of particles
present in the system, making the computation scaling as the square of the num-
ber of particles present in the system. To decrease the computational complexity
of force calculations, modern MD algorithms divide the interactions between the
molecules into short-range interactions, such as the ones from van der Waals
interactions, and long-range interactions, such as electrostatic interactions. For
instance, van der Waals forces are short-range in nature and decay with distance
rapidly. Short-range interactions are only computed for the neighboring particles
within a cut-off distance, usually 15–20 Å for many applications. The force con-
tribution from particles farther than the cut-off distance is neglected, effectively
reducing the interaction of one particle to the closest particles only. However,
the electrostatic interactions are long-range in nature, and farther particles con-
tribute to its calculations, still requiring O(N2) calculations.

Modern MD codes, such as GROMACS, use the Particle-Mesh Ewald (PME)
method to solve this problem. The basic strategy of the PME technique is to
discretize the simulation domain in a uniform computational grid and calculate
the charge density for each grid point, for instance, using interpolation functions.
After the charge density on the grid points is known, the Poisson Equation



Breaking Down the GROMACS Parallel Performance 335

∇2Φ = −ρ/ε0 is solved on the grid for the electrostatic potential Φ and the
electric field (still on the grid points) is calculated from it as E = −∇Φ. The
electric field information on the grid is transferred to the particle by using again
interpolation functions. The PME method use FFT to solve the Poisson equation
for electrostatic potential on the grid: we transform first the charge density
information to the spectral space, we solve the Poisson equation in the spectral
space as an algebraic equation (multiplication in spectral space), and then apply
an inverse FFT to calculate the potential in the real-space. The PME method
also accounts for force contributions arising from periodic infinite systems, such
as the typical systems studied with MD, by working in the spectral spaces. In the
PME method, 1D FFT (and the inverse 1D FFT) requires O(Ng log Ng), where
Ng is the number of grid points. We first use a 3D FFT on a real data input (the
charge density) to calculate the electrostatic potential. After the convolution, we
apply a 3D FFT to move the potential to the physical space.

GROMACS divides the calculations at different parallelization levels, rang-
ing from MPI to OpenMP, CUDA, and CPU vector instructions. At a high
level, GROMACS uses a pipelined parallelism with two main phases: the
Particle-Particle (PM) and PME calculations. GROMACS allows dividing the
MPI processes into PME processes dedicated only to PME and PP phase respon-
sible for all the other calculations, such as computing the particle dynamics and
short-range interactions. The two phases can run in parallel and typically on
different kinds of resources, such as different nodes, cores, or devices. To finish a
GROMACS computational cycle, the PME phase needs to be completed. This
synchronization might introduce a delay in the simulation (causing an idle time
on the PP processes) and load imbalance if the PP and PME phases are not
finishing at the same time. Naturally, the number of PP and PME MPI pro-
cesses impacts the load balance and the performance. In GROMACS, the choice
of the number of processes dedicated to PME and PP calculations can be set
by using the command line (via -npme option) or can be set by GROMACS in
preparation for a simulation by an auto-tuning tool: gmx tune pme (which is not
to be confused with the PME tuning done at run-time). GROMACS allocates
1:3 or 1:2 ranks for the PME and PP computations based on the domain if left
unspecified by the user. In this study, we set the ratio of PME to PP equal to
1:3.

The GROMACS PME performance largely depends on six major components
[15]. If we focus on PME calculations, we identify the six major phases as:

1. Redistribution of positions and forces (X/F). This phase redistributes
atoms, parameters, and coordinates before each 3D FFT calculation.

2. Spread. Using interpolation functions (often called window functions), such
as p-th order b-spline, the charges of the particles are distributed on the
uniform grid.

3. 1D FFT calculations. The distributed forward and backward 3D FFT is
done with a GROMACS specific 1D or 2D FFT factorization. Currently,
GROMACS allows the use of three different FFT libraries when calculating
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the FFT on CPU, namely FFTW3 [6], FFTMKL, FFTPACK [17] for the
PME computation.

4. 3D FFT communication. These costs relate to parallel communication
performed during the transpose operations during the 3D FFT operations. In
GROMACS, this is achieved either by a MPI Alltoall or by FFTW transpose
operation if the FFTW’s 3D library is used on a single node. When the 3D
FFT size in the domain x-direction is evenly divisible by the number of PME
ranks, a 2D decomposition is used, which requires less communication than
a 1D decomposition.

5. Solution of the Electric Field. In this step, we perform the calculation of
the electrostatic force by differentiating the electrostatic energy.

6. Gather. The potential (force or energy) is evaluated at the target particles
with the same interpolation functions as in the spreading step.

7. Leonard-Jones. Leonard-Jones is a commonly used potential. It is not used
in this paper because it is not possible to run this step on GPU systems at
the moment.

3 Related Work

Given the importance of GROMACS for MD studies, there is a history of bench-
marking the throughput of GROMACS. Ref. [7] discusses optimal GROMACS
configuration for a given problem on a given cluster. An additional performance
and benchmark analysis on the SuperMUC supercomputer is Ref. [11]. Ref. [13]
presents the future of GROMACS development and discusses the limitations
of performance due to PME’s limited scaling. As the PME and FFT limit the
strong scalability, new algorithmic advancements, such as the use of the Fast
Multipole Method (FMM) for MD [19] are pursued.

4 Methodology

This work quantifies GROMACS parallel performance using different configu-
rations, HPC systems, and FFT libraries (FFTW, Intel MKL FFT, and FFT
PACK). We break down the cost of each GROMACS computational phase and
identify non-scalable stages. The performance evaluation uses test cases that are
similar to production runs. To better explain the scaling of the different compo-
nents, we turn load balancing and PME tuning off. We evaluate the impact of
the PME calculations and associated FFTs using two basic configurations, pre-
sented in Table 1. The first system, simulating Lysozyme in water, is a relatively
small benchmark system in terms of grid points and the number of particles: the
3D grid consists of 44 × 44 × 44, and there are 35,000 atoms. Instead, the second
configuration represents a simulation of the Spike protein. In this case, the grid
points are 108 × 144 × 144, and the number of atoms is 850,000. The number
of particles is 35,000 and 0.85 million approximately for the two configurations.
In particular, the viral Spike protein studied here is involved in the interaction
with the host cell receptor called hACE-2 and is responsible for the first phase
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of viral infection and is one of the potential viral targets for developing Covid-19
therapeutics.

Table 1. Specifications for the use cases

MD system Lysozyme in water Spike protein: ACE-2

# atoms 35 000 0.85 M

Time step [fs] 0.002 0.002

Domain size [nm] 7 ×7 ×7 17 ×21 ×23

Cut-off radii [nm] 1 1

PME grid [nm] 0.16 0.16

PME interpolation order 4 4

Steps (Beskow) 5 000 5 000

(Tetralith) 100 000 100 000

To characterize the performance of FFT libraries on a large scale, we eval-
uate the CPU code on two systems. For CPU evaluations, we use a system
called “Beskow” and one called “Tetralith” with CPU FFT libraries (FFTW,
MKL, and FFTPACK). In addition to two supercomputers, we evaluate the
GROMACS performance on GPUs; we use a cluster called “Kebnekaise” and a
workstation called “NJ” with cuFFT. We note that the PP and PME phases
are highly intertwined on GPU, and a clear separation of the phases is challeng-
ing (for this reason, we limit the study on GPU to the total performance). We
summarize the configurations of the systems in Table 2.

Table 2. The hardware architecture of our evaluation platforms.

Name CPU RAM GPU Compiler Env.

Beskow 2x Intel Xeon E5-2698v3 64 GB - GCC 10.3, Intel 19.1,
HT on, OpenMPI

Tetralith 2x Intel Xeon Gold 6130 96 GB - GCC 7, HT off,

Kebnekaise 2x Intel Xeon Gold 6132
2x Intel Xeon E5-2690v4

192 GB
128 GB

2 x NVIDIA V100
2, 4 x NVIDIA K80

GNU 10.3, CUDA 11.3

NJ AMD EPYC 7302P 2 x NVIDIA A100 GNU, CUDA 11.3

All simulations were performed with GROMACS 2021.3. We compile GRO-
MACS using the optimal settings, as advised in the user guide. We build FFTW
from the source. In particular, we specify to use single-precision compute. We also
enable vectorization by specifying GMX SIMD=AVX2 256 on Beskow and GMX SIMD=
AVX 512 on Tetralith. We use the GNU compiler collections on all platforms com-
bined with CUDA when GPU is used. MKL’s FFT was compiled with the Intel
compiler.

The figures of merit we use in this paper are the total execution time and
nanoseconds (ns) per day. This last metric is how many nanoseconds can be
simulated within a day of the simulation and represents the total GROMACS
throughput. Each simulation is performed ten times on Beskow and five times
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on Tetralith, showing a high standard deviation. The figures consist of the mean
(median) of these simulations. The simulation parameters are: -notunepme -dlb
no and for the GPU -notunepme -dlb no -nb gpu -update -gpu.

Furthermore, to minimize the effects of congestion and impact from the net-
work topology (explained in detail in [16]), every job evaluates all FFT libraries
with the same node configuration. This is not done for the Tetralith simulations.
On both Beskow and Tetralith, we run with two OpenMP threads per MPI rank,
and on Beskow, hyperthreading is turned on by default.

5 Results

As the first step of our study, we analyze the GROMACS parallel performance.
Figure 1 shows a tracing of a GROMACS run instrumented with Score-P [9] and
visualized with the Vampir tool [10]. In this run, four processes (with thread
numbers 5, 11, 17 and 23) are dedicated to the PME calculations, while there
are 20 PP processes. Within the PME processes, the all-to-all communication
is reduced to only four processes decreasing the communication cost for the
transposition in the 3D FFT. It is important to note that the PP processes
wait for the PME processes to finish in this run, and the PME calculations
dominate the computational time step. We can also observe that the PME ranks
are severely imbalanced as the 1D FFT calculations (blue) in rank 17 is much
slower than the corresponding calculations in rank 5 and 11.

We investigate the total impact of PME calculations on the GROMACS’
total execution time. Figure 2 shows the fraction of simulation time spent in the
PME calculations with respect to the PP time and the total time, varying the
total number of cores per GROMACS simulation.

The left panel presents the strong scaling results for the Lysozyme simulations
(small-size problem). In this case, the simulation scales up to 256 cores then we
observe an increase in the simulation time for 512 cores. In this case, more than
90% of the simulation is spent on MPI communication. We note that the switch
from a PP-dominated to PME-dominated simulations appears around 128 cores.
In fact, PP scales well beyond 512 cores. There is a significant imbalance between
PP and PME. This imbalance can be seen by inspecting the difference between
the slowest PP and PME and the total time. The right panel of Fig. 2 presents
the results for the Spike strong scaling test. In this case, we observe strong scaling
up to 2,048 cores. The simulation is bound by PP up to 256 cores and limited
by PME beyond that. We note that PP keeps scaling like in the Lyso case.

After identifying PME as the main obstacle to strong scalability, we ana-
lyze which parts of the PME calculations show performance bottleneck and are
amenable to performance optimization. Figure 3 presents a breakdown of the dif-
ferent phases during the PME calculations on the Beskow system with FFTW
(the right panel shows the percentage to ease the comparison).

From an analysis of the plots, we note that when a small number of cores are
dedicated to PME calculation, the PME spread and gather operations accounts
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Fig. 1. Tracing of a GROMACS run with 24 processes using ScoreP and Vampir tools.
Four processes (three visible) complete the PME calculations in this run, while twenty
processes quickly carry out the PP calculations. The PP processes wait for the PME
processes to finish. We can also see a significant load imbalance between the PME
ranks. The dark red is MPI Alltoall (Color figure online) for FFT communication. All
other MPI calls are light red. The green color represents the general compute, dark
green is gather, blue is 1D FFT, purple is spread, and turquoise is the convolution
calculation.

for most of the time. On the contrary, for a larger number of cores, e.g., more
than 256 PME cores, the communication for the 3D FFT (parallel transpose)
and PME redistribution time dominate the PME calculation and, therefore,
the whole simulation time. These two PME phases are responsible for losing
scalability at large numbers of the core. Spread and Gather also level out at
high core counts but at a lower total cost. At peak performance of the PME
calculation, 50% of the time is spent on 3D FFT calculation, and most of that
is communication.

An interesting question for GROMACS users is what performance improve-
ment can be achieved by changing the FFT library and what is the best perform-
ing one in GROMACS. We compare the results for three PME phases (3D-FFT
communication, PME 3D-FFT, and PME redistribution X/F) for different 1D
FFT libraries. The results are shown in Fig. 4.

As expected, we do not observe any significant performance change in the
communication cost as GROMACS handles the communication, and it remains
the same regardless of the library in use. Yet, we notice a difference in individual
FFT performance. While for a small number of core counts, FFTW and MKL
perform equally well, for a more significant number of cores, the FFT, built
with GNU compilers, provides the best performance on Beskow. We also notice
that the 3D FFT communication and redistribution measurements are noisy. We
also note that the different clusters perform significantly differently: the Tetralith
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Fig. 2. The fraction of time for PME, PP, and execution time on the Beskow system
varying the total number of cores, to the left the Lysozyme system and to the right the
Spike system. 1/4 of the cores are dedicated to the PME calculations. In this case, we
use FFTW as the FFT library. Due to a lack of complete overlap and synchronization
costs, the total execution is longer than each component phase duration.

Fig. 3. The left panel shows the strong scaling results for the different parts of PME
for the Spike test case. The right panel present the PME time as a fraction of its
components. The experiment was performed on Beskow, and the optimization phases
are highlighted.
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results communication results show a significant performance variability in Fig. 4.
We also note that MKL is slightly faster than FFTW.
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Fig. 4. To the left: Strong scaling for the parts of PME with worst scaling on CPU for
Spike on Beskow and Tetralith. To the right: The strong scaling of the FFT calculation.
Note that the time (y-axis) does not align between plots.
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Fig. 5. Strong scaling of the Gather (left) and Spread (right), top three lines are
from Tetralith bottom three lines are from Beskow. The simulation uses 4th order
interpolation.

We present the strong scaling behavior of the interpolation steps in Fig. 5.
We notice that the scaling stops at approximately 512 cores for these parts,
similar to the FFT communication and redistribution. However, it only displays
a reduced performance variability after scaling breaks down compared with the
parallel transpose and redistribution. We note that the gather and spread phases
make up only 20% of the total PME calculation after they have stopped scaling.

The total performance of the PME calculations, varying FFT libraries, can
be seen in Fig. 6. It shows the diminishing effects of the 1D FFT compute and
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Fig. 6. The total time for PME depending of the FFT library on Beskow with the
Spike case.

the increasing performance variability coming from the communication with an
increased number of cores. It is clear that FFTW and MKL are better choices
than FFTPACK and are always motivated choices.

Finally, we analyze the performance of GROMACS PME on GPUs and
present the results in Fig. 7. The GPU performance for the Lysozyme test case
out-perform the CPU configurations significantly: PME on GPU and bonded
calculations on CPU resulted in a throughput of approximately 640 ns/day com-
pared with close to 380 ns/day for 128 CPU cores with FFTW.

Fig. 7. The total throughput for the different FFT libraries on Beskow (CPU), NJ
(Nvidia A100 GPU) and Kebnekaise (Nvidia K80 and V100 GPU).
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We observe a slight advantage in using FFTW as the FFT library with a
total throughput increase of 10% compared with the other libraries for the small
Lysozyme system. In the Spike test case, GROMACS runs on the Nvidia A100
perform comparably to 512 CPU cores on Beskow (46 ns/day) and a bit better
than 512 cores on Tetralith (36 ns/day).

6 Discussion and Conclusion

In this paper, we presented an evaluation of GROMACS parallel performance.
We conclude that the performance of PME is highly correlated with the parallel
transpose and the redist functions. Redist is dependent on the domain decom-
position of the PP part of the simulation, and therefore their performance is
problem specific. The 3D FFT size can be varied to more accurately solve the
Electrostatics or to balance the load. These two are also the parts of the PME
calculation with the most variance between runs. We identified three main fac-
tors in the GROMACS PME that can be improved. Firstly, there are many
classes of problems, such as embarrassingly parallel ensemble jobs or parame-
ter searching jobs, where many simulations can be distributed on many nodes
with one job running on a single node. Improving 1D FFT performance for a
single node can make noticeable overall performance in such ensemble simula-
tions. Using FFTW or MKL instead of the backup library is advised; FFTW
performs twice that of PACK in the spike problem. For the future, a possible fur-
ther optimization technique is to use batched 1D FFTs parallelized with SIMD
vector instructions. Secondly, within the most scalable range, we can see that
the cost associated with the interpolation steps and the transpose are similar
in size. We would suggest an overlap between the communication needed from
Spread-Gather and the parallel transpose. Since the GROMACS CPU code does
not depend on an external 3D FFT library, it might be possible to incorporate
the interpolation steps and therefore limit the need for communication. Finally,
we have the transpose-dominated range – the Achilles’ heel of the method.
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