
Task Scheduler for Heterogeneous Data
Centres Based on Deep Reinforcement

Learning

Jaime Fomperosa, Mario Ibañez, Esteban Stafford(B), and Jose Luis Bosque

Dpto. de Ingenieŕıa Informática y Electrónica, Universidad de Cantabria,
Santander, Spain

{jaime.fomperosa,mario.ibanez,esteban.stafford,
joseluis.bosque}@unican.es

Abstract. This article advocates for the leveraging of machine learning
to develop a workload manager that will improve the efficiency of modern
data centres. The proposals stem from an existing tool that allows train-
ing deep reinforcement agents for this purpose. However, it incorporates
several major improvements. It confers the ability to model heterogeneous
data centres and then it proposes a novel learning agent that can not only
choose the most adequate job for scheduling, but also determines the best
compute resources for its execution. The evaluation experiments compare
the performance of this learning agent against well known heuristic algo-
rithms, revealing that the former is capable of improving the scheduling.

Keywords: Deep Reinforcement Learning · Task scheduling ·
Heterogeneous data centres · Machine Learning

1 Introduction

Modern Information Technology (IT) relies heavily on data centres which host
massive amounts of interconnected computers. A subset of these data centres
support the scientific and engineering communities with high performance com-
puting services. The computers that integrate these combine their processing
capabilities to accelerate the execution of complex problems [4].

To harness the power of computer clusters, data centres rely on a Workload
Manager. It is in charge of job scheduling, or choosing jobs awaiting execution
and assigning them to computing resources of the data centre. But this is an NP-
Complete problem that cannot be solved in polynomial time. This is exacerbated
by the huge growth of data centres [1], the wide variety and heterogeneity of
architectures and configurations they host [13,14]. This means that the decision
space of the workload manager has increased substantially, and consequently
so has the difficulty of finding optimal solutions to the problem. It is possible
to find near-optimal solutions using approximation methods [17] or heuristic
[11] algorithms. The latter are commonly found at the core of modern resource
managers, like Slurm [18]. They are characterised by sacrificing optimality for
speed, which is a necessary compromise.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 237–248, 2023.
https://doi.org/10.1007/978-3-031-30442-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_18&domain=pdf
https://doi.org/10.1007/978-3-031-30442-2_18


238 J. Fomperosa et al.

These heuristic algorithms are fairly simple. Three algorithms are usually
implemented nowadays: First In, First Out (FIFO), Shortest Job First (SJF)
[12] and BackFill [7]. There are more complex algorithms that consider several
attributes of each job in order to compute a score, which is then used to sort
and prioritize them, such as WFP3 or UNICEP [16] or F1 [2]. However, these
have difficulties in adapting to changes in the resources, the type of job or the
objectives. Recently, machine learning has shown its adaptability to different
scenarios, contrasting with the static approach of heuristic algorithms [9,10].

Reinforcement Learning (RL) is a branch of machine learning that can
autonomously improve its behaviour through trial and error. A key advantage
of this approach is that it can consider many more parameters than heuristic
algorithms and learn which are the most important. In this context IRMaSim
[6], emerges as a tool to develop and test reinforcement learning algorithms on
a simulator of heterogeneous data centres. A further development of this idea is
RLScheduler [19]. Its results are fairly good despite its coarse simulator, where
only homogeneous data centers with identical compute devices can be modeled.

The main hypothesis of this article is that the Deep Reinforcement Learn-
ing (DRL) techniques used in [19] can be adapted to schedule jobs in a hetero-
geneous data centre and with better performance than state-of-the-art heuristic
algorithms. The pursuit of this hypothesis requires the completion of three steps.
First, the definition of an environment that adequately represents heterogeneous
data centres. To this end the cores of the cluster are grouped into nodes with pos-
sibly differing properties. Second, is the development of the agent itself, deciding
its internal structure, how is the information from the environment fed to it, and
how is the action selected. And third, an evaluation procedure must be devised
where the performance of the agent is compared to that of well known heuristic
algorithms.

The experimental results presented in the evaluation section show two impor-
tant conclusions. First, that heterogeneity poses new challenges to the scheduling
problem, even for classic algorithms that are optimal in homogeneous systems.
Secondly, the proposed agent is able to obtain better results in all the studied
objectives than heuristic algorithms, which confirms that machine learning-based
scheduling is an important new field of study.

The remainder of this article is organised as follows. Section 2 gives an
overview of reinforcement learning resource managers. Section 3 describes the
main proposals of the article. Section 4 presents the evaluation methodology and
discusses its results. Finally, a summary with the most important conclusions of
the article is in Sect. 5.

2 Background

Reinforcement learning systems usually revolve around the concept of an agent
that must drive the behaviour of the environment in order to reach a given
objective. The agent is in charge of making decisions that affect the environment
in some manner, and its aim is to learn how to satisfy the objective. Internally
the agent is implemented with a Deep Neural Network (DNN) that, before going



Task Scheduler for Heterogeneous Data Centres Based on DRL 239

into production, must be trained. This is done by exposing the environment
to stimuli, the agent considers the consequences of the actions it takes and it
progressively learns which ones are better than others.

The training process is divided in epochs, or iterations of sets of stimuli. In
turn, epochs consist of a series of steps, representing the processing of a given
stimulus [15]. In each step the agent performs an action that has an impact
in the environment. This is measured through observations and qualified by a
reward value that indicates whether the impact was positive or negative. At the
end of each epoch, the agent evaluates these and encourages those actions that
helped in reaching the objective. After experiencing a number of epochs, the
agent converges to using a particular set of actions that maximise the rewards
it obtains, and therefore, satisfies the objective.

In the context of resource managers, the environment represents the compute
resources of a data centre and the set of jobs, or workload, to be executed. The
agent must observe the incoming jobs and the state of the data centre, and decide
which job is allocated to which resource in order to achieve an optimization
objective, e.g. slowdown or average waiting time. The jobs are usually stored in a
workload queue, which can potentially be very long and become unmanageable.
Modern resource managers, use an eligible job queue, which is a fixed length
queue that holds the oldest jobs pending execution. The scheduler only considers
jobs in this queue for execution, and when one gets chosen, it vacates the queue
leaving space for another from the workload queue.

RLScheduler combines a reinforcement learning resource manager with a
simplistic data centre simulator to accelerate the training process [19]. The sim-
ulated environment defines a number of computational resources, all with the
same characteristics. Then it is only necessary to keep a number of free resources
to represent the status of the data centre. And knowing to which processors in
particular the job is assigned does not really matter. In RLScheduler, an obser-
vation represents the state of the environment by means of a vector that contains
the attributes of all the eligible jobs.

The simplicity of RLScheduler is also its major drawback, as it considers the
resources to be identical and unrelated. On contrast, modern data centres are het-
erogeneous and structured, as they host compute nodes with a number of proces-
sors or cores. These can have different architectures and compute capacities, which
can have a great impact on scheduling. In addition, some applications must exe-
cute on processors belonging to the same node. Rising to these challenges is the
main objective of this paper. Thus, a redesign of RLScheduler is proposed that
will allow the modeling of heterogeneous systems. As a consequence, it will train
agents to decide on which job to schedule and to which resource it will be assigned.

3 DRL for Scheduling in Heterogeneous Data Centres

This section details the improvements made to RLScheduler allowing its use in
heterogeneous and structured data centres, and also proposes a scheduler agent
that is able to select the best possible combinations of job and node. In order to



240 J. Fomperosa et al.

adequately model these systems, the simulated environment must keep track of
the jobs assigned to each node and their attributes to properly predict the execu-
tion time of the jobs. This also increases the amount of information that must be
taken into account by the agent to make the best possible scheduling decisions.
As a consequence, the observation and actions spaces must be redefined.

3.1 Observation and Action Spaces

The observation space must be able to represent the state of the environment
that the agent will use to decide its next action. Similarly, the action space
contains all the possible actions an agent can take over the environment. As
mentioned in the previous section, RLScheduler considers all the computational
resources of the data centre to have the same properties, making it unnecessary
to identify which resources are allocated to each job. However, in heterogeneous
data centres it is imperative that the compute resources are represented as a set
of nodes with different number of processors. This information must be included
in the observation space. Therefore, it is divided in two sets of attributes, the
Node Observation representing the state of the data centre nodes, and the Job
Observation containing the job information.

The proposed representation of the computational resources is based on the
concept of node. Each one can have a different size and speed, regarding the
number of processors it contains and its clock frequency. As for the jobs, they
are considered memory-sharing embarrassingly parallel applications requesting
a number of processors. Meaning that a job cannot be assigned to more than one
node, that the node must have enough free processors to host the complete job,
and that there is no communication overhead. The reason behind this decision
is to streamline the simulator model. The proposed set of attributes for the
observation space is shown in Table 1. The number of attributes is lower than in
real resource managers, but since the model is expandable, it is fairly simple to
add new attributes for the agent to consider.

Table 1. List of attributes of the Job and Node Observations.

Field Name Notation Description

Job Observation Space

Requested Processors nj Number of processors requested for the job

Requested Time rj Amount of time requested for the job

Wait Time wj Amount of time spent by the job in the job queue

Node Observation Space

Total Processors tpn Number of processors in the node

Free Processors fpn Free processors in the node

Frequency fn CPU clock rate of the node processors

The action space has also been improved to accommodate the node concept.
The agent must not only decide which is the next job to be scheduled, but also



Task Scheduler for Heterogeneous Data Centres Based on DRL 241

to which resource it is allocated. This translates into a new bidimensional action
space, where one dimension covers the jobs in the eligible job queue and the
other represents the nodes in the data centre.

3.2 Agent Architecture

The proposed agent adheres to the actor-critic architecture, which is common
in DRL systems. It combines the use of two similar networks, the actor decides
on the next action, while the critic evaluates the performance of the actor. This
structure tends to improve training times. Compared to the agent in [19], there
are changes in the observation and action spaces that have a significant impact
on its design. A diagram describing the new agent, as well as its relationship
with said spaces is shown in Fig. 1.

Fig. 1. Proposed agent with observation and actions spaces for three jobs and two
nodes.

Since the input to the DNN has to have a fixed size and the number of
jobs in the queue varies over time, an eligible job queue is used with the first
128 pending jobs. This value is the same as in RLScheduler and is also common
practice in workload managers such as Slurm. The agent considers the jobs in the
eligible job queue and their three corresponding attributes, composing the Job
Observation, an array of size 128×3 (1a). Simultaneously it obtains information
about the nodes through the Node Observation array. It has as many rows as
nodes in the data centre and three columns, one for each node attribute (1b).

Next, the agent prepares the observation by merging the Job Observation
and the Node Observation attributes of each combination of job and node, and
adds an extra value called Can Be Scheduled (2), which is defined as cj,n =
nj ≤ fpn resulting in true if the node n has room for the job j and false
otherwise. This combined observation is a matrix with 128 × NumNodes rows
and JobAttributes+NodeAttributes+1. Here, the rows represent all the possible
pairings of jobs and nodes, and the columns are the total number of attributes



242 J. Fomperosa et al.

that define each of these pairs, which in this instance it is equal to seven. The
fact that the Node and Job Observations are combined serves the purposes of
presenting the agent all the possible pairings of nodes and jobs, and allow it to
make a decision with sufficient information.

The next step is to let the agent select from the observation the job-node pair
to be scheduled. This decision is reached with the aid of the actor network of the
agent (3a), which has seven inputs, one for each attribute in the observation.
Then it has three fully-connected hidden layers of 32, 16 and 8 neurons each,
with ReLU as their activation function. Finally, the output layer is of size 1,
as purpose of this network is to provide a single score value for each jobs-node
pairs. The actor is fed the whole observation matrix, therefore, the output is also
not a single score but a column vector of 128×NumNodes scores. Then, a mask
is applied to the score vector to remove the values corresponding to padding
jobs added to complete the observation, or those that request more processors
than those free in the node (4). This way, any job that the agent may choose is
assured to be able to be scheduled without waiting for resources to get free.

Next, a softmax function is applied to the masked vector, transforming the
scores into a probability distribution in which the sum of all elements is 1 (5).
With these probabilities, an action is selected that will indicate the job and node
to be scheduled next, favouring those with higher score. In production this step
is skipped and the job-node pair with the highest score is chosen. The job-node
pair is an integer ai ∈ [0, 128 × NumNodes−1], the index of the job is calculated
as � i

128� and the node as i mod NumNodes (6).
This action is passed on to the simulator that executes the corresponding

scheduling operation. After the simulator advances the time to the next event,
which results in a new state of the environment, a reward (7) will be obtained
based on the chosen objective, together with a new observation representing the
new state of the environment. These are used by the critic network in the agent
(3b) to evaluate the performance of the actor network. It guides the training
process of both networks toward a state where the agent consistently schedules
the jobs to the right computing resources, such that the objective is satisfied.
The goal of the critic network is to predict the reward that a set of jobs would
produce with the given objective.

Three reward functions have been implemented, each corresponding to a
different scheduling metric to be minimised. If ei and wi are the execution and
wait times of job i, the metrics are

– Slowdown (SLD): is the average slowdown, defined as wi+ei
ei

, for all the jobs.
This metric can give very high values when jobs are short.

– Average bounded slowdown (BSLD): variation of the slowdown that is less
sensitive to very short execution times. The bounded slowdown of a job is
defined as max((wi + ei)/max(ei, 10), 1).

– Average waiting time (AVGW): simply averages wi of all jobs.

It is worth noting that all the objectives are related, since they strive to
reduce the delay in the execution of the jobs. However, the average the bounded
slowdown metric is better suited to agent training than the other two. First,



Task Scheduler for Heterogeneous Data Centres Based on DRL 243

it conveys more information than the average waiting time because it includes
the execution time of the jobs, and second, it is more stable than the average
slowdown, since it eludes giving very high values due to short execution times.

3.3 Size Reduction Through Clustering

A drawback of this agent is the large size of the input. For instance, in a data
centre with 16 nodes, the total number of elements of both observations would
be 128 × 16 × 7 = 14336. Doubling the number of nodes in the data centre
results in 28672 elements, which has a clear impact in the performance and the
scalability. Since the size of the queue is fixed to 128, reducing the size of the
observation can only be done by limiting the size of the node observation. This
section describes how this can be accomplished with clustering techniques.

In a data centre, it is common that many nodes have a similar situation,
either due to their equivalent architectural properties or similar load. Then, it
is not necessary to identify exactly which node is going to receive a job, and it
suffices to indicate what kind of node is the target. Taking this into account,
the n nodes of the data centre can be grouped in k clusters of similar attributes
using the k-means algorithm [5]. The attributes of each cluster are calculated
as their mean value for all the nodes in each one. This is applied to the node
observation (1b) before it is merged to the job observation (Fig. 1), which now
carries job-cluster pairs instead of job-node pairs. Like before an attribute c is
calculated, indicating if the job fits in at least one node in the cluster.

The final step after the job-cluster selection has been made is to choose a
specific node for scheduling the job, which is done by simply finding the first
node of the cluster that can execute the job. This selection does not need any
further considerations, as the assumption is that nodes in the same cluster are
similar enough. By grouping the nodes in a fixed number of clusters, the size
of the node observation becomes constant. Thus, it is possible to increase the
number of nodes in the platform without complicating the agent.

4 Evaluation

The proposed agent is evaluated through four instances. The SqSLD agent, SqB-
SDL agent and SqAVGW agent aim to minimise the slowdown, average bounded
slowdown and waiting time, respectively. The ClBSLD agent uses clustering of
the compute resources to minimize the average bounded slowdown, although any
of the other two objectives could have been employed.

The target system is a heterogeneous data centre with 20 nodes. Each can
have between 4 and 64 processors, running at 2, 2.5, 3 or 3.5 GHz. The workload
used is generated from models defined in the Parallel Workloads Archive, Lublin,
1999/2003, commonly used in HPC [3,8]. This workload is composed of 10 000
jobs with varying required processors and execution times.

Also, a set of heuristic algorithms were used for comparison. They are able to
select jobs and the nodes to execute them. These result by combining two algo-
rithms, one to choose the job and another for the resource. These are summarised
in Table 2, then algorithm xy combines job selection x with node selection y.



244 J. Fomperosa et al.

The hyper-parameters used to control the training process of the agents are
mostly the same as in RLScheduler. The most relevant ones are the learning
rate α, with values of 0.0003 and 0.001 for the actor and the critic networks,
respectively, and gamma γ is equal to 0.99.

Table 2. Heuristic job and node selection algorithms.

Name Symbol Description

Job Selection

Random r Random job from the job queue is selected

First f Job with lowest submit time is selected

Shortest s Job with lowest requested run time is selected

Smallest l Chooses job with lowest requested number of processors

Node Selection

Random r Random node is selected

Biggest node b Node with highest number of processors is selected

Fastest node f Node with highest frequency is selected

To explore the training phase, each instance of the agent is subjected to 100
epochs and the evolution of the process is observed to ensure that it converges.
To lighten this process, the workload trace is not used in its full length. One
training epoch consists of 20 trajectories, which are sets of 256 consecutive jobs,
taken at a random time from the original trace. The experimental results show
that 100 epochs are more that enough because convergence was observed after
60 epochs, since the behaviour did not improve in the following epochs.

Once the training phase concludes, the inference stage is evaluated. The
trained agents must schedule trajectories of 1024 jobs extracted from the same
workload. Note that the presented results consider 20 repetitions to avoid obtain-
ing wrong conclusions due to outliers. The scheduling results are evaluated by
comparing the behaviour of the trained instances to that of the heuristic algo-
rithms. These are shown in graphs where the horizontal axis represents the values
of the metrics used, and the vertical axis shows the different schedulers, sorted
by the median. To avoid clutter, only the results for the best heuristic algorithms
are shown. The graphs combine box-and-whisker and violin representations of
the results. The box shows the 25 and 75 percentile, the line in the box indicates
the median, and the whiskers represent extreme values. The violin plots show
result distribution, where fatter parts indicate a higher data density.

Figures 2, 3 and 4 show the promising results of the four agents. In general,
the results prove that intelligent schedulers can perform better than the state-
of-the-art algorithms in a heterogeneous data centre, at least for the objectives
considered in this article.

Note how the algorithms that select the random or first jobs, the first six in
the graphs, give very bad results. In some cases, more than tripling the results



Task Scheduler for Heterogeneous Data Centres Based on DRL 245

Fig. 2. Average slowdown results for heuristic algorithms and SqSLD Agent.

Fig. 3. Average waiting time results for heuristic algorithms and SqAVGW Agent.

Fig. 4. Average bounded slowdown results for heuristic algorithms, SqBSLD and ClB-
SLD Agents.



246 J. Fomperosa et al.

Fig. 5. Agent performance with metrics different of the one used for training.

of the corresponding agent. The algorithms that choose the shortest or smallest
jobs perform better, especially with the random or fastest resource selections.

Considering only the heuristic algorithms, the graphs show the importance of
choosing the right node for a job in the context of a heterogeneous data centre.
Note that only the algorithms that choose the shortest or smallest jobs first
appear in the graphs. The rest had significantly worse results and were excluded
to avoid clutter. It can be seen that sr has always the lowest median, followed by
sf or lr, depending on the metric. As for node selection policy, the best results
are obtained by either random or fastest. It is noticeable that lr presents the
lowest values in all three metrics.

However, all these algorithms are always bested by the intelligent agents.
Indeed, the graphs show that the median is always lower than that of the best
heuristic algorithm sr, also the minimum values of the agents are similar to the
lr. But in all cases they have lower variance than any of the heuristics, ensuring
that good results are given in a more consistent manner.

An improvement was proposed where the complexity of the agent was reduced
by incorporating a clustering algorithm to group the nodes of the data centre.
As this evaluation aims only to establish the cost-benefit relation of adding the
clustering vs. reducing the complexity of the agent, only one objective has been
tested, the average bounded slowdown. The 20 nodes of the system were grouped
into 10 clusters, so the complexity of the DNN was reduced in half.

The results of the ClBSLD Agent (Fig. 4) are comparable to those of the
SqBSDL Agent. The minimum result given by the ClBSLD is smaller than the
SqBSDL, but since it has higher variance, the median ends up being slightly
higher. At any rate, the experiment proves that the clustering method can be
applied in cases where the combined observation has become too large, and many
of the nodes have the same or very similar characteristics.

It is interesting to observe the results of the agents with metrics different to
the ones used for training. To this aim, the SqBSDL Agent instance, trained to
minimise the bounded slowdown, was selected and tested with the other metrics,
average slowdown and waiting time. The results are shown in Fig. 5, compared to
the results of the SqSLD and SqAVGW Agents. In both cases the results of the
agents are roughly similar. Although the median values of SqBSDL are lower
than those of the other two, the best case results are always obtained by the
other instances. This is explained by the fact that bounded slowdown is better
suited to agent training, and therefore, it is able to give a better scheduling.



Task Scheduler for Heterogeneous Data Centres Based on DRL 247

The above evaluation proves that an intelligent agent is able to learn how to
take scheduling actions and obtain better results than classic scheduling algo-
rithms. And this can be done not for a single goal but for different ones, only
constrained by the capabilities of the simulator in which it is working. All this
suggests that using a machine learning agent to schedule a real data centre is an
idea worth considering. Provided that it is possible to obtain a trace of the jobs
typically executed in the system to perform the training of the agent.

5 Conclusions

The fact that data centres are more and more heterogeneous, combined with the
variety of the applications and their requirements, complicates scheduling sig-
nificantly. With homogeneous clusters, heuristic algorithms are used to schedule
jobs, but in heterogeneous ones it is crucial to decide also to which compute
resource they scheduled. This problem is no longer possible to solve with such
algorithms and there has been advances in employing machine learning instead.

This article presents a first approach to solving the scheduling problem in
heterogeneous clusters with deep reinforcement learning. To this aim, it was
necessary to redefine the observation space of the agent, allowing it to perceive
more data from the environment. As well as to broaden the action space to
accommodate the fact that not only jobs but also nodes had to be selected.

Also, two different agents were developed capable of successfully processing
the state of a small heterogeneous data centre and learning to choose adequate
scheduling actions. The second agent is a refinement of the first that through the
use of clustering techniques is capable of giving the similar performance using
a fraction of the memory requirements. The successful training of the agents
was possible thanks to the development of a simulation infrastructure with a
simplistic model of a heterogeneous data centre, that can simulate nodes with a
different number of processors and frequencies.

The evaluation included in this article suggests that it is possible to replace
heuristic schedulers with ones that leverage machine learning techniques. The
experiments show that the behaviour of the machine learning agent gives very
promising results, compared to well known heuristic algorithms.

Next developments could see larger clusters simulated with more detail, in
which contention could be modeled, like that appearing in memory or network
access. Furthermore, the set of objectives to optimise by the scheduler could be
increased by considering energy related metrics.

Acknowledgment. This work has been supported by the Spanish Science and
Technology Commission under contract PID2019-105660RB-C22 and the European
HiPEAC Network of Excellence.

References

1. Bosque, J.L., Perez, L.P.: Theoretical scalability analysis for heterogeneous clus-
ters. In: 4th IEEE/ACM International Symposium on Cluster Computing and the
Grid (CCGrid 2004), Chicago, USA, pp. 285–292. IEEE Computer Society (2004)



248 J. Fomperosa et al.

2. Carastan-Santos, D., De Camargo, R.Y.: Obtaining dynamic scheduling policies
with simulation and machine learning. In: Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis, pp.
1–13 (2017)

3. Feitelson, D.G., Tsafrir, D., Krakov, D.: Experience with using the parallel work-
loads archive. J. Parallel Distrib. Comput. 74(10), 2967–2982 (2014)

4. Garćıa-Saiz, D., Zorrilla, M.E., Bosque, J.L.: A clustering-based knowledge discov-
ery process for data Centre infrastructure management. J. Supercomput. 73(1),
215–226 (2017)

5. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: a K-means clustering algorithm.
J. Roy. Stat. Soc. ser. C 28(1), 100–108 (1979)

6. Herrera, A., Ibáñez, M., Stafford, E., Bosque, J.: A simulator for intelligent work-
load managers in heterogeneous clusters. In: 2021 IEEE/ACM 21st International
Symposium on Cluster, Cloud and Internet Computing (CCGrid), pp. 196–205
(2021)

7. Leonenkov, S., Zhumatiy, S.: Introducing new backfill-based scheduler for SLURM
resource manager. In: Procedia Computer Science, 4th International Young Scien-
tist Conference on Computational Science, vol. 66, pp. 661–669 (2015)

8. Lublin, U., Feitelson, D.G.: The workload on parallel supercomputers: modeling
the characteristics of rigid jobs. J. Parallel Distrib. Comput. 63(11), 1105–1122
(2003)

9. Mao, H., Alizadeh, M., Menache, I., Kandula, S.: Resource management with deep
reinforcement learning. In: Proceedings of the 15th ACM Workshop on Hot Topics
in Networks, pp. 50–56 (2016)

10. Mao, H., Schwarzkopf, M., Venkatakrishnan, S.B., Meng, Z., Alizadeh, M.: Learn-
ing scheduling algorithms for data processing clusters. In: Proceedings of the ACM
Special Interest Group on Data Communication, p. 270–288. SIGCOMM 2019
(2019)

11. Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley Longman Publishing Co., Inc, Boston (1984)

12. Pinedo, M.: Scheduling, vol. 29. Springer, Berlin (2012)
13. Stafford, E., Bosque, J.L.: Improving utilization of heterogeneous clusters. J. Super-

comput. 76(11), 8787–8800 (2020). https://doi.org/10.1007/s11227-020-03175-4
14. Stafford, E., Bosque, J.L.: Performance and energy task migration model for het-

erogeneous clusters. J. Supercomput. 77(9), 10053–10064 (2021). https://doi.org/
10.1007/s11227-021-03663-1

15. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press,
Cambridge (2018)

16. Tang, W., Lan, Z., Desai, N., Buettner, D.: Fault-aware, utility-based job schedul-
ing on blue, gene/p systems. In: IEEE International Conference on Cluster Com-
puting and Workshops, pp. 1–10 (2009)

17. Vazirani, V.V.: Approximation Algorithms. Springer Science & Business Media,
Berlin (2013)

18. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple Linux utility for resource
management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003.
LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/
10968987 3

19. Zhang, D., Dai, D., He, Y., Bao, F.S., Xie, B.: RLScheduler: an automated HPC
batch job scheduler using reinforcement learning. In: SC20: International Con-
ference for High Performance Computing, Networking, Storage and Analysis, pp.
1–15. IEEE (2020)

https://doi.org/10.1007/s11227-020-03175-4
https://doi.org/10.1007/s11227-021-03663-1
https://doi.org/10.1007/s11227-021-03663-1
https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/10968987_3

	Task Scheduler for Heterogeneous Data Centres Based on Deep Reinforcement Learning
	1 Introduction
	2 Background
	3 DRL for Scheduling in Heterogeneous Data Centres
	3.1 Observation and Action Spaces
	3.2 Agent Architecture
	3.3 Size Reduction Through Clustering

	4 Evaluation
	5 Conclusions
	References




