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Abstract. The paper presents the cost and performance analysis of par-
allel MPI-based software as a service (SaaS) deployed on the OpenStack
cloud infrastructure. The parallel SaaS was developed by using C++ pro-
gramming language and MPI library for the scientific discrete element
method (DEM) computations of granular flows. The performance mea-
sured on KVM-based virtual machines was slightly higher than that on
Docker containers of the OpenStack cloud. Round up and proportional
pricing schemes were examined and compared from the user’s perspec-
tive. The difference in cost computed by using alternative pricing schemes
varied from 0.6% to 15.4%. However, this difference can be reduced to
1.0%, increasing execution time of considered tasks. The investigation of
a trade-off between the execution time and cost was performed by using
Pareto front analysis and a linear scalarization method. Bi-objective deci-
sion making revealed the preferable configurations of virtual machines spe-
cific to memory bound DEM computations, exploiting higher bandwidth.

Keywords: Cost and Performance Trade-off · Pareto Front · MPI ·
OpenStack

1 Introduction

In recent years, cloud computing has gained great popularity and transformed
the IT industry [1]. Cloud computing infrastructures can provide the scalable
resources on-demand to deploy performance and cost effective services. The NIST
SPI model [2] represents a layered, high-level abstraction of cloud services clas-
sified into three main categories: Infrastructure as a Service (IaaS), Platform as
a Service (PaaS) and Software as a Service (SaaS). Organizations can use dif-
ferent implementations of cloud software for deploying their own private clouds.
OpenStack [3] is an open source cloud management platform that delivers an
integrated foundation to create, deploy and scale a secure and reliable public
or private cloud. Another open source local cloud framework is Eucalyptus [4],
provided by Eucalyptus Systems, Inc.

Cloud computing makes extensive use of virtual machines (VMs) because
they allow workloads to be isolated and resource usage to be controlled. Kernel
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Virtual Machine (KVM) [5] is a feature of Linux that allows Linux to act as
a type 1 hypervisor, running an unmodified guest operating system inside a
Linux process. Containers present an emerging technology for improving the
productivity and code portability in cloud infrastructures. Due to the layered
file system, Docker [6] container images require less disk space and I/O than the
equivalent VM disk images. Thus, Docker has emerged as a standard runtime,
image format and build system for Linux containers. IBM has added Docker
container integration to Platform LSF to run the containers on an HPC cluster
[7]. EDEM software has been deployed on Rescale’s cloud simulation platform
for high-performance computations [8]. However, it is difficult to provide precise
guidelines regarding the optimal cloud platform and virtualization technology
for each type of research and application [9].

Deployment of scientific codes as software services for data preparation, high-
performance computation and visualization on the cloud infrastructure increases
the mobility of users and achieves better exploitation. Thus, flexible cloud infras-
tructures and software services are perceived as a promising avenue for future
advances in the multidisciplinary area of discrete element method (DEM) appli-
cations [8]. However, the cloud SaaS might suffer from severe performance degra-
dation due to higher latencies of networks, virtualization overheads and other
issues [1]. Cloud computing still lacks cost and performance analyses in the case
of specific MPI-based applications, such as granular materials. Most evaluations
of the virtualization overhead and performance of cloud services are based on
standard benchmarks or theoretical unrealistic load models [9], therefore, the
impact of the cloud infrastructure on the performance and cost of parallel MPI-
based DEM computations remains unclear. Moreover, cost and performance are
critical factors in deciding whether cloud infrastructures are viable for scientific
DEM software.

The performance of virtual machines and lightweight containers has already
received some attention in the academic literature [10–13]. However, few studies
include the performance analysis of the virtualized distributed memory archi-
tectures for parallel MPI-based applications [14–16]. Bag-of-gangs applications
[17] consist of parallel jobs that are in very frequent communication and must
execute simultaneously and concurrently. Moschakis and Karatza [18] evaluated
gang scheduling performance in the Amazon EC2 cloud. Sood [19] compared
gang scheduling algorithms to other scheduling mechanisms in cloud computing.
Hao et al. [20] proposed a 0–1 integer programming for the gang scheduling. Their
proposed method tried its best finishing more jobs and minimizing the average
waiting time. Bystrov et al. [21] investigated a trade-off between the comput-
ing speed and the consumed energy of a real-life hemodynamic application on
a heterogeneous cloud. Beloglazov et al. [22] have proposed a modified best-fit
algorithm for energy-aware resource provisioning in data centers while continu-
ing to deliver the negotiated service level agreement. The survey [23] concludes
that there exists no predictive model today truly and comprehensively capturing
performance and energy consumption of the highly heterogeneous and hierarchi-
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cal architecture of the modern HPC node. Moreover, the cost analysis of the
MPI-based computations was not performed in the above overviewed research.

The resource allocation problem in cloud computing has received a lot of
attention mainly in terms of cost optimization. Malawski et al. [24] presented
a model, which assumed multiple cloud providers offering computational and
storage services. The considered optimization objective was to reduce the total
cost under deadline constraints. Liu et al. [25] focused on cost minimization and
guarantee of performance, proposing the least cost per connection algorithm,
which chose the most cost-effective VMs from the available public clouds. Zhou
et al. [26] developed two evolutionary algorithms to optimize cost and execu-
tion time of scheduling workflows. Genez et al. [27] proposed an integer linear
programming-based VM scheduler to produce low-cost scheduling for workflows
execution in multiple cloud providers. Entrialgo et al. [28] designed a state-of-
the-art cost optimization tool for the optimal allocation of VMs in hybrid clouds.
Rosa et al. [29] developed the computational resource and cost prediction service,
which measured user resources and reported the runtime financial cost before
starting the workflow execution. A comprehensive review of workload schedul-
ing and resource provisioning in cloud environments can be found in Wang et
al. [30]. The most authors considered the total cost as the objective and solved
the optimization problem with deadline constraint, which did not minimize the
execution time, reducing its importance. Moreover, parallel MPI-based scientific
applications were rarely examined because of their intensive communications
between VMs and complex non-monotonous performance profiles.

The remaining paper is organized as follows: Sect. 2 outlines the governing
relations of the discrete element method, Sect. 3 describes parallel MPI-based
SaaS deployed on the OpenStack cloud infrastructure, Sect. 4 presents the cost
and performance analysis and the conclusions are given in Sect. 5.

2 The Governing Relations of the Discrete Element
Method

The discrete element method is a class of numerical techniques to simulate granu-
lar materials [31]. The frictional visco-elastic particle system consists of the finite
number of deformable spherical particles with the specified size distribution and
material properties. Any particle i in the system of N spherical particles under-
goes the translational and rotational motion, involving the forces and torques
originated in the process of their interaction. Finally, the motion of the i-th
contacting spherical particle in time t is described as follows:

mi
d2xi

dt2
= F i, Ii

dωi

dt
= T i, (1)

where mi and Ii are the mass and the moment of inertia of the particle, respec-
tively, while the vectors xi and ωi initiate the position of the centre of particle
i and the rotational velocity around the particle centre of mass. The vectors F i

and T i present the resultant force and the resultant torque, acting in the centre
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of the particle i. The vector F i can be expressed by the external force and the
sum of the contact forces between the interacting particles:

F i = F i,cont + F i,ext =
N∑

j=1,j �=i

F ij,cont + mi, g, (2)

where F i,ext and F i,cont are the external force and the resultant contact force
of particle i, respectively, g is the acceleration due to gravity, F ij,cont is the
interparticle contact force vector, describing the contact between the particles i
and j. Thus, in the present work, the electromagnetic force [32], the aerodynamic
force [33] and other external forces [34,35], except for the gravity force are not
considered. The rotational motion is governed by particle torques T i that can
be expressed by torques T ij of the neighbouring particles:

T i =
N∑

j=1,j �=i

T ij =
N∑

j=1,j �=i

dcij × F i,cont, (3)

where dcij is the vector pointing from the particle centre to the contact cen-
tre. The interparticle contact force vector F i,cont may be expressed in terms
of normal and tangential components. The normal component of the contact
force comprises the elastic counterpart according to Hertz theory and the vis-
cous counterpart that can be represented by the spring-dashpot model [36] as
follows:

F ij,n =
4
3

· EiEj

Ei(1 − ν2
j ) + Ej(1 − ν2

i )
R

1/2
ij δ

3/2
ij,nnij − γnmijvij,n, (4)

where nij is the normal vector, Rij is the reduced radius of the contacting
particles, γn is the constant normal damping coefficient, mij is the reduced mass
of the contacting particles and vij,n is the normal component of the relative
velocity of the contact point. Ei and Ej are elastic moduli, νi and νj are Poison’s
ratios of contacting particles i and j, respectively. In the normal direction, the
depth of the overlap between particles i and j is defined by δij,n.

The evolution of the tangential contact force can be divided into the parts of
static friction prior to sliding F ij,stat,t and dynamic slip friction F ij,dyn,t [36]:

F ij,t = −tij

{ |F ij,stat,t|, |F ij,stat,t| < μ|F ij,n|
|F ij,dyn,t|, |F ij,stat,t| ≥ μ|F ij,n| , (5)

where tij is the unit vector of the tangential contact direction. The model of
static friction force is implemented, when the tangential force is smaller than the
Coulomb-type cut-off limit. In the opposite case, the dynamic friction expressed
by the normal contact force and the Coulomb friction coefficient μ is considered:

F ij,dyn,t = −μ|F ij,n|tij , (6)
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The static friction force is calculated by summing up the elastic and viscous
damping components [37]:

F ij,stat,t = −16
3

· GiGj

√
Rijδij,n

Gi(2 − νj) + Gj(2 − νi)
|δij,t|tij − γtmijvij,t, (7)

where |δij,t| is the length of tangential displacement, vij,t is the tangential com-
ponent of the relative velocity of the contact point, γt is the constant tangential
damping coefficient, while Gi and Gj are shear moduli of the particles i and j,
respectively.

The main CPU-time-consuming computational procedures of the DEM are
contact detection, contact force computation and time integration. Contact
detection was based on the simple and fast implementation of a cell-based algo-
rithm [38]. The explicit velocity Verlet algorithm [38] was used for time integra-
tion employing small time steps. The details of outlined DEM model (1–7) and
its implementation can be found in [36,39].

3 DEM SaaS Deployed on OpenStack Cloud

The parallel DEM software was developed and deployed as SaaS on the cloud
infrastructure to perform time-consuming computations of granular materials.

3.1 Parallel DEM SaaS

The simulation of systems at the particle level of detail has the disadvantage of
making DEM computationally very expensive. The selection of an efficient par-
allel solution algorithm depends on the specific characteristics of the considered
problem and the numerical method used [39–41]. The parallel DEM algorithms
differ from the analogous parallel processing in the continuum approach. Moving
particles dynamically change the workload configuration, making parallelization
of DEM software much more difficult and challenging. Domain decomposition
is considered one of the most efficient coarse grain strategies for scientific and
engineering computations, therefore, it was implemented in the developed DEM
code. The recursive coordinate bisection (RCB) method from the Zoltan library
[42] was used for domain partitioning because it is highly effective for particle
simulations. The RCB method recursively divides the computational domain
into nearly equal subdomains by cutting planes orthogonal to the coordinate
axes, according to particle coordinates and workload weights. This method is
attractive as a dynamic load-balancing algorithm because it implicitly produces
incremental partitions and reduces data transfer between processors caused by
repartitioning.

The employed DEM software was developed using C++ programming lan-
guage. Interprocessor communication was implemented in the DEM code by
subroutines of the message passing library MPI. Each processor computes the
forces and updates the positions of particles only in its subdomain. To perform
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their computations, the processors need to share information about particles that
are near the division boundaries in ghost layers. The main portion of commu-
nications is performed prior to performing contact detection and contact force
computation. In the present implementation, particle data from the ghost layers
are exchanged between neighboring subdomains. The exchange of positions and
velocities of particles between MPI processes is a common strategy often used in
DEM codes [43]. Despite its local character, interprocessor particle data transfer
requires a significant amount of time and reduces the parallel efficiency of com-
putations. The parallel DEM software was deployed on the cloud infrastructure
by developing the environment launchers designed for users to configure the SaaS
and define custom settings. After successful authorization, the user can define
configuration parameters and run the parallel SaaS on ordered virtual resources.

3.2 OpenStack Cloud Infrastructure

The university private cloud infrastructure based on OpenStack Train 2019 ver-
sion [3] is hosted in the Vilnius Gediminas Technical University. The deployed
capabilities of the OpenStack cloud infrastructure include compute service Nova,
compute service Zun for containers, networking service Neutron, container net-
work plugin Kuryr, image service Glance, identity service Keystone, object stor-
age service Swift and block storage service Cinder. Nova automatically deploys
the provisioned virtual compute instances (VMs), Zun launches and manages
containers, Swift provides redundant storage of static objects, Neutron manages
virtual network resources, Kuryr connects containers to Neutron, Keystone is
responsible for authentication and authorization, while Glance provides service
discovery, registration and delivery for virtual disk images.

The cloud infrastructure is managed by the OpenStack API, which provides
access to infrastructure services. The OpenStack cloud IaaS provides platforms
(PaaS) to develop and deploy software services called SaaS. The PaaS layer sup-
plies engineering application developers with programming-language-level envi-
ronments and compilers, such as GNU compiler collection. Parallel software
for distributed memory systems is developed using the Open MPI platform,
which includes the open source implementation of the MPI standard for mes-
sage passing. The development platform as a service for domain decomposition
and dynamic load balancing is provided based on the Zoltan library [42]. It sim-
plifies the load-balancing and data movement difficulties that arise in dynamic
simulations. The DEM SaaS was deployed on top of the provided platforms,
such as GNU compiler collection, the message passing library Open MPI and
the Zoltan library. Computational results are visualized using the cloud visual-
ization service VisLT [44].

The cloud infrastructure is composed of OpenStack service nodes and com-
pute nodes (Intel R©Core i7-6700 3.40 GHz CPU, 32 GB DDR4 2133 MHz MHz
RAM and 1 TB HDD) connected to 1 Gbps Ethernet LAN. Two alternatives of
the virtualization layer are implemented to gain more flexibility and efficiency
in resource configuration. Version 2.11.1 of QEMU-KVM is used for virtual
machines (VMs) deployed and managed by Nova. Alternatively, Docker version
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Table 1. Characteristics of virtual machines and containers.

Cores CPU type RAM, GB HDD, TB Price, $/h

VM.small 1 i7-6700 8 0.5 0.0455

VM.small 1 i7-6700 8 0.5 0.0455

VM.small 1 i7-6700 8 0.5 0.0455

19.03.6 containers (CNs) launched and managed by Zun create an abstraction
layer between computing resources and the services using them. Ubuntu 18.04
LTS (Bionic Beaver) is installed in the VMs and CNs. Characteristics and prices
of VMs and CNs are provided in Table 1. Monetary costs of allocated VMs/CNs
are described by price per hour according to Amazon EC2 VM type C5. Two
pay-per-use pricing schemes are considered for all VM/CN types. In the case of
the traditional cloud pricing scheme named round up, VM instances are billed
per hour of usage, but each partial instance-hour is billed as a full hour. In the
case of the pricing scheme named proportional, the cost is directly proportional
to the time the VMs are allocated, which corresponds to price per second scheme.

4 The Cost and Performance Analysis

The cost and performance of the developed DEM SaaS for parallel computa-
tions of granular flows is investigated. The gravity packing problem of granular
material, falling under the influence of gravity into a container, was considered
because it often served as a benchmark for performance measurements [16]. The
solution domain was assumed to be a cubic container with the 1.0m-long edges.

Fig. 1. Execution time and cost: (a) the execution time on KVM virtual machines and
Docker containers, (b) the cost computed by using round up and proportional pricing
schemes.
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Half of the domain was filled with 1000188 monosized particles, using a cubic
structure. Performing the benchmark on VMs and CNs of OpenStack cloud, the
computation time of 200000 time steps equal to 1.0x10-6 was measured.

Figure 1 presents the SaaS execution time and cost on KVM VMs and Docker
CNs measured for different numbers of VMs/CNs and cores used. Higher com-
putational performance of DEM SaaS was observed on KVM virtual machines,
but the measured difference did not exceed 3.9% of execution time on Docker
CNs. Speedup of parallel computations equal to 11.6 was measured on 4x4 con-
figuration of KVM VMs (16 cores), which gave parallel efficiency equal to 0.73.
The measured speedup values are close to those obtained for relevant numbers
of cores in other parallel performance studies of DEM software [16,43]. The
obvious difference in cost computed by using alternative pricing schemes can be
observed. This difference varied from 0.6% to 15.4%, depending on the number
of VMs or CNs used.

Figure 2 shows the relative difference in cost calculated by using two pricing
schemes for various software execution times. The execution time of the numeri-
cal DEM software almost linearly depends on the number of time steps used for
time integration of Eq. (1). Thus, the number of computed time steps provides
the length of the simulated physical time interval, which represents the amount
of computations. It can be observed that the difference decreased when longer
tasks were executed. The difference diminished to 1.0% in the case of 1600000
computed time steps. Moreover, larger differences caused by multi-node and
multi-core execution of MPI-based SaaS can be observed for larger number of
VMs/CNs and cores in spite of scattered results.

Fig. 2. The relative difference in cost calculated by using round up and proportional
pricing schemes for various execution times on KVM virtual machines.

The choice of the optimal hardware setup needs to be taken in the presence of
two conflicting objectives or criteria: the execution time T and the computation
cost C. This bi-objective optimization problem can be formulated as follows:

min
pi∈X

(T (pi), C(pi)), (8)
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where X = {1x1, 1x2, 2x2, 1x4, 4x2, 2x4, 3x4, 4x4} is the set of feasible solu-
tions. The alternative VMs/CNs configurations 2x2 and 1x4 mean 2 VM.medium
instances with 2 cores on 2 nodes and 1 VM.large instance with 4 cores on 1
node, respectively.

Fig. 3. Pareto fronts for alternative pricing schemes: (a) KVM VMs, (b) Docker CNs.

There are many different approaches to deal with multi-objective optimiza-
tion problems. A common approach is to find the Pareto optimal solutions, i.e.,
the solutions that cannot be improved in any of the objectives without degrading
at least one of the other objectives. For the formulated bi-objective optimiza-
tion problem (8), the Pareto optimal solutions are presented in Fig. 3. It was
expected that the proportional pricing scheme dominated over the round up
pricing scheme and was preferable for users. Solutions based on KVM VMs were
better than that based on Docker CNs, but the difference was not large in most
cases. The VMs configuration 1x2 belonged to Pareto front in the case of the
proportional pricing scheme, but it was excluded from the Pareto front in the
case of the round up pricing scheme. It is worth noting that the VMs configura-
tions 2x2 and 4x2 were always preferable over 1x4 and 2x4, which was specific
to memory bound DEM computations exploiting higher bandwidth.

Scalarization is as a popular approach to solve a multi-objective optimization
problem, considering subjective preferences of a decision maker. The original
problem (8) is converted to a single-objective optimization problem by using
user defined weights wT and wC for normalized execution time objective and
normalized cost objective, respectively. Figure 4 shows dependency of scalarized
objective function on VMs/CNs configuration for equal (Fig. 4a) and execution
time oriented (Fig. 4b) weights. The difference between pricing schemes can be
clearly observed only for VMs/CNs configurations with the total number of cores
larger than 4. The equal weights resulted in optimal VMs/CNs configuration
2x2, while execution time-oriented weights gave the optimal configuration 4x2.
DEM SaaS computations on VMs/CNs configurations 2x2 and 4x2 were so fast
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Fig. 4. The application of linear scalarization method: (a) the equal weights (wT = 0.5
and wC = 0.5), (b) the execution time oriented weights (wT = 0.7 and wC = 0.3).

(Fig. 1a) that they dominated over other solutions in the wide range of weights
values.

5 Conclusions

In this article, cost and performance analysis of MPI-based computations per-
formed by the discrete element method SaaS on KVM virtual machines and
Docker containers of the OpenStack cloud is presented. The SaaS execution
time measured on KVM virtual machines was shorter by 0.3–3.9% than that on
Docker containers. The difference in cost computed by using alternative pricing
schemes varied from 0.6% to 15.4%, depending on the number of virtual machines
or containers used. However, the difference decreased to 1.0% for 8 times longer
tasks. Pareto front and linear scalarization revealed the preferable VMs/CNs
configurations specific to memory bound DEM computations exploiting higher
bandwidth.
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