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Abstract. We analyze the convergence of quasi-Newton methods in
exact and finite precision arithmetic. In particular, we derive an upper
bound for the stagnation level and we show that any sufficiently exact
quasi-Newton method will converge quadratically until stagnation. In
the absence of sufficient accuracy, we are likely to retain rapid linear
convergence. We confirm our analysis by computing square roots and
solving bond constraint equations in the context of molecular dynamics.
We briefly discuss implications for parallel solvers.

Keywords: Systems of nonlinear equations · Quasi-Newton methods ·
approximation error · rounding error · convergence · stagnation

1 Introduction

Let Ω ⊆ R
n be open, let F ∈ C1(Ω,Rn) and consider the problem of solving

F (x) = 0.

If the Jacobian F ′ of F is nonsingular, then Newton’s method is given by

xk+1 = xk − sk, F ′(xk)sk = F (xk). (1)

A quasi-Newton method is any iteration of the form

yk+1 = yk − tk, F ′(yk)tk ≈ F (yk). (2)

In exact arithmetic, we expect local quadractic convergence from Newton’s
method [7]. Quasi-Newton methods normally converge locally and at least lin-
early and some methods, such as the secant method, have superlinear conver-
gence [5,8]. In finite precision arithmetic, we cannot expect convergence in the
strict mathematical sense and we must settle for stagnation near a zero [11]. In
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this paper we analyze the convergence of quasi-Newton methods in exact and
finite precision arithmetic. In particular, we derive an upper bound for the stag-
nation level and we show that any sufficiently exact quasi-Newton method will
converge quadratically until stagnation. We confirm our analysis by computing
square roots and solving bond constraint equations in the context of molecular
dynamics.

2 Auxiliary Results

The line segment l(x, y) between x and y is defined as follows:

l(x, y) = {tx + (1 − t)y : t ∈ [0, 1]}.

The following lemma is a standard result that bounds the difference between
F (x) and F (y) if the line segment l(x, y) is contained in the domain of F .

Lemma 1. Let Ω ⊆ R
n be open and let F ∈ C1(Ω,Rn). If l(x, y) ⊂ Ω, then

F (x) − F (y) =
∫ 1

0

F ′(tx + (1 − t)y)(x − y)dt

and
‖F (x) − F (y)‖ ≤ M‖x − y‖.

where
M = sup{‖F ′(tx + (1 − t)y)‖ : t ∈ [0, 1]}.

It is convenient to phrase Newton’s method as the functional iteration:

xk+1 = g(xk), g(x) = x − F ′(x)−1F (x).

and to express the analysis of quasi-Newton methods in terms of the function g.
The next lemma can be used to establish local quadratic convergence of Newton’s
method.

Lemma 2. Let Ω ⊆ R
n be open and let F ∈ C1(Ω,Rn). Let z denote a zero of

F and let x ∈ Ω. If F ′(x) is nonsingular and if l(x, z) ⊂ Ω, then

g(x) − z = C(x)(x − z)

where

C(x) = F ′(x)−1

(∫ 1

0

[F ′(x) − F ′(tx + (1 − t)z)] dt

)

Moreover, if F ′ is Lipschitz continuous with Lipschitz constant L > 0, then

‖g(x) − z‖ ≤ 1
2
‖F ′(x)−1‖L‖x − z‖2.
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The following lemma allows us to write any approximation as a very simple
function of the target vector.

Lemma 3. Let x ∈ R
n be nonzero, let y ∈ R

n be an approximation of x and let
E ∈ R

n×n be given by

E =
1

xT x
(y − x)xT .

Then

y = (I + E)x, ‖E‖ = O

(‖x − y‖
‖x‖

)
, y → x, y 	= x.

In the special case of the 2-norm we have

‖E‖2 =
‖x − y‖2

‖x‖2 .

Proof. It is straightforward to verify that

(I + E)x = x +
1

xT x
(y − x)xT x = x + (y − x) = y.

Moreover, if z is any vector, then

‖Ez‖ ≤ 1
‖x‖22

‖y − x‖‖xT z‖ =
(‖xT ‖‖x‖

‖x‖22

)(‖x − y‖
‖x‖

)
‖z‖.

In the case of the 2-norm, we have

‖Ez‖2 ≤ ‖x − y‖2
‖x‖2 ‖z‖2

for all z 	= 0 and equality holds for z = x. This completes the proof.

3 Main Results

In the presence of rounding errors, any quasi-Newton method can written as

xk+1 = (I + Dk)
(
xk − (I + Ek)F ′(xk)−1F (xk)

)
. (3)

Here Dk ∈ R
n×n is a diagonal matrix which represents the rounding error in

the subtraction and Ek ∈ R
n×n measures the difference between the computed

correction and the correction used by Newton’s method. We simply treat the
update tk needed for the quasi-Newton method (2) as an approximation of the
update sk = F ′(xk)−1F (xk) needed for Newton’s method (1) and define Ek

using Lemma 3. It is practical to restate iteration (3) in terms of the function g,
i.e.,

xk+1 = (I + Dk)
(
g(xk) − EkF ′(xk)−1F (xk)

)
. (4)
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We shall now analyze the behavior of iteration (4). For the sake of simplicity,
we will assume that there exist nonnegative numbers K, L, and M such that

∀x : ‖F ′(x)−1‖ ≤ K, ‖F ′(x) − F ′(y)‖ ≤ L‖x − y‖, ‖F ′(x)‖ ≤ M.

In reality, we only require that these inequalities are satisfied in a neighborhood
of a zero. We have the following generalization of Lemma 2.

Theorem 1. The functional iteration given by Eq. (4) satisfies

xk+1 − z = g(xk) − z − EkF ′(xk)−1F (xk)

+ Dk

[
g(xk) − EkF ′(xk)−1F (xk)

]
(5)

and

‖xk+1 − z‖ ≤ 1
2
LK‖xk − z‖2 + ‖Ek‖KM‖xk − z‖

+‖Dk‖
(

‖z‖ +
1
2
LK‖xk − z‖2 + ‖Ek‖KM‖xk − z‖

)
. (6)

Proof. It is straightforward to verify that Eq. (5) is correct. Inequality (6) follows
from Eq. (5) using the triangle inequality, Lemma 1, and Lemma 2. The second
occurrence of the term ‖g(xk)‖ can be bounded using the inequality

‖g(xk)‖ ≤ ‖z‖ + ‖g(xk) − z‖.

This completes the proof.

It is practical to focus on the case of z 	= 0 and restate inequality (6) as

rk+1 ≤ 1
2
LK(1 + ‖Dk‖)‖z‖r2k + ‖Ek‖KM(1 + ‖Dk‖)rk + ‖Dk‖ (7)

where rk is the normwise relative forward error given by

rk = ‖z − xk‖/‖z‖.

3.1 Stagnation

We assume that the sequences {Dk} and {Ek} are bounded. Let D and E be
nonnegative numbers that satisfy

‖Dk‖ ≤ D, ‖Ek‖ ≤ E. (8)

In this case, inequality (7) implies

rk+1 ≤ 1
2
LK(1 + D)‖z‖r2k + EMK(1 + D)rk + D.
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It is certain that the error will be reduced, i.e., rk+1 < rk when

D < rk −
(

1
2
LK(1 + D)‖z‖r2k + EMK(1 + D)r2k

)

= (1 − EMK(1 + D)) rk − 1
2
LK(1 + D)‖z‖r2k.

This condition is equivalent to the following inequality:

D − [1 − EMK(1 + D)] rk +
1
2
LK(1 + D)‖z‖r2k < 0.

This is an inequality of the second degree. The roots are

λ± =
[1 − EMK(1 + D)] ±

√
[1 − EMK(1 + D)]2 − 2LK(1 + D)D‖z‖
LK(1 + D)‖z‖ .

If D and E are sufficiently small then the roots are positive real numbers and
the error will certainly be reduced provided

λ− < rk < λ+.

It follows that we cannot expect to do better than

rk =
‖z − xk‖

‖z‖ ≈ λ−.

If D and E are sufficiently small, then a Taylor expansion ensures that

λ− ≈ D

(1 − EMK(1 + D))2

is a good approximation. We cannot expect to do better than rk+1 = λ−, but
the threshold of stagnation is not particularly sensitive to the size of E.

3.2 The Decay of the Error

We assume that the sequences {Dk} and {Ek} are bounded. Let D and E be
upper bounds that satisfy (8). Suppose that we are not near the threshold of
stagnation in the sense that

D ≤ Crk. (9)

for a (modest) constant C > 0. In this case, inequality (7) implies

rk+1 ≤ ρkrk, ρk =
1
2
LK(1 + D)‖z‖rk + EKM(1 + D) + C. (10)

If C < 1, then we may have ρk < 1, when rk and E are sufficiently small. This
explains when and why local linear decay is possible. We now strengthen our
assumptions. Suppose that there is a λ ∈ (0, 1] and C1 > 0 such that

‖Ek‖ ≤ C1r
λ
k (11)
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and that we are far from the threshold of stagnation in the sense that

D ≤ C2r
1+λ
k (12)

for a (modest) constant C2 > 0. In this case, inequality (7) implies

rk+1 ≤
[
1
2
LK(1 + D)‖z‖r1−λ

k + C1KM(1 + D) + C2

]
r1+λ
k . (13)

This explains when and why local superlinear decay is possible.

3.3 Convergence

We cannot expect a quasi-Newton method to converge unless the subtraction
yk+1 = yk − tk is exact. Then Dk = 0 and inequality (7) implies

rk+1 ≤ ηkrk, ηk =
(

1
2
LK‖z‖rk + ‖Ek‖KM

)
.

We may have ηk < 1 for all k, provided E = sup ‖Ek‖ and r0 are sufficiently
small. This explains when and why local linear convergence is possible. We now
strengthen our assumptions. Suppose that there is a λ ∈ (0, 1] and a C > 0 such
that

∀k ∈ N : ‖Ek‖ ≤ Crλ
k .

In this case, inequality (7) implies

rk+1 ≤
(

1
2
LK‖z‖r1−λ

k + CKM

)
r1+λ
k .

This inequality allows us to establish local convergence of order at least 1 + λ.

3.4 How Accurate Does Newton Have to Be?

We will assume the use of normal IEEE floating point numbers and we will apply
the analysis given in Sect. 3.2. If we use the 1-norm, the 2-norm or the ∞-norm,
then we may choose D = u, where u is the unit roundoff. Suppose that Eqs. (11)
and (12) are satisfied with λ = 1. Then inequality (13) reduces to

rk+1 ≤
[
1
2
LK(1 + u)‖z‖ + C1KM(1 + u) + C2

]
r2k.

Due to the basic limitations of IEEE floating point arithmetic we cannot expect
to do better than

rk+1 = O(u), u → 0, u > 0.

It follows that we never need to do better than

‖Ek‖ = O(
√

u), u → 0, u > 0.
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4 Numerical Experiments

4.1 Computing Square Roots

Let α > 0 and consider the problem of solving the nonlinear equation

f(x) = x2 − α = 0

with respect to x > 0 using Newton’s method. Let rk denote the relative error
after k Newton steps. A simple calculation based on Lemma 2 yields

|rk+1| ≤ r2k/2, |rk| ≤ 2 (|r0|/2)2
k

.

We see that convergence is certain when |r0| < 2. The general case of α > 0 can
be reduced to the special case of α ∈ [1, 4) by accessing and manipulating the
binary representation directly. Let x0 : [1, 4] → R denote the best uniform linear
approximation of the square root function on the interval [1, 4]. Then

x0(α) = α/3 + 17/24, |r0(α)| ≤ 1/24.

In order to illustrate Theorem 1 we execute the iteration

xk+1 = xk − (1 + ek)f(xk)/f ′(xk)

where ek is a randomly generated number. Specifically, given ε > 0 we choose ek

such that |ek| is uniformly distributed in the interval [12ε, ε] and the sign of ek

is positive or negative with equal probability. Three choices, namely ε = 10−2

(left), ε = 10−8 (center) and ε = 10−12 (right) are illustrated in Fig. 1.
In each case, eventually the perturbed iteration reproduces either the com-

puter’s internal representation of the square root or stagnates with a relative
error that is essentially the unit roundoff u = 2−53 ≈ 10−16. When ε = 10−2

the quadratic convergence is lost, but the relative error is decreased by a fac-
tor of approximately ε = 10−2 from one iteration to the next, i.e., extremely
rapid linear convergence. Quadratic convergence is restored when ε is reduced
to ε = 10−8 ≈ √

u. Further reductions of ε have no effect on the convergence as
demonstrated by the case of ε = 10−12. We shall now explain exactly how far
this experiment supports the theory that is presented in this paper.

Stagnation. By Sect. 3.1 we expect that the level of stagnation is essentially
independent of the size of E, the upper bound on the relative error between
the computed step and the step needed for Newton’s method. This is clearly
confirmed by the experiment.

Error Decay. Since we are always very close to the positive zero of f(x) = x2−α
we may choose

L ≈ 2, K|z| ≈ 1/2, MK ≈ 1,
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In the case of ε = 10−2, Fig. 1 (left) shows that we satisfy inequality (9) with
D = u and C = ε < 1, i.e.,

u ≤ εrk, 0 ≤ k < 5.

By Eq. (10) we must have

rk+1 ≤ ρkrk, ρk ≈ 2ε, 0 < k < 5.

This is exactly the linear convergence that we have observed. In the case of
ε = 10−8, Fig. 1 (center) shows that we satisfy inequality (12) with C2 = 1 and
λ = 1, i.e.,

u ≤ r2k, k = 0, 1.

By inequality (13) we must have quadratic decay in the sense that

rk+1 ≤ Cr2k, C ≈ 3
2
, k = 0, 1.

Manual inspection of Fig. 1 reveals that the actual constant is close to 1 and
certainly smaller than C ≈ 3

2 . By Sect. 3.4 we do not expect any benefits from
using an ε that is substantially smaller than

√
u. This is also supported by the

experiment.

4.2 Constrained Molecular Dynamics

The objective is to solve a system of differential algebraic equations

q′(t) = v(t),

Mv′(t) = f(q(t)) − g′(q(t))T λ(t),
g(q(t)) = 0.

Here q and v are vectors that represent the position and velocity of all atoms, M
is a nonsingular diagonal mass matrix, f represents the external forces acting on
the atoms and −g′(q)T λ represents the constraint forces. Here g′ is the Jacobian
of the constraint function g. The standard algorithm for this problem is the
SHAKE algorithm [10]. It uses a pair of staggered uniform grids and takes the
form

vn+1/2 = vn−1/2 + hM−1
(
f(qn) − g′(qn)T λn

)
,

qn+1 = qn + hvn+1/2,

g(qn+1) = 0, (14)

where h > 0 is the fixed time step and qn ≈ q(tn), vn+ 1
2

≈ v(tn+ 1
2
), where

tn = nh and tn+ 1
2

= (n+1/2)h. Equation (14) is really a nonlinear equation for
the unknown Lagrange multiplier λn, specifically

g(φn(λ)) = 0, φn(λ) = qn + h(vn− 1
2

+ hM−1(f(qn) − g′(qn)T λ)).
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The relevant Jacobian is the matrix

An(λ) = (g(φn(λ)))′ = g′(φn(λ))M−1g′(qn)T .

The matrix An(λ) is close to the constant symmetric matrix Sn given by

Sn = g′(qn)M−1g′(qn)T

simply because φn(λ) = qn + O(h) as h → 0 and h > 0. It is therefore natural
to investigate if the constant matrix S−1

n is a good approximation of A−1
n (λ).

For this experiment, we executed a production molecular dynamics run using
the GROMACS [1] package. We replaced the constraint solver used by GRO-
MACS’s SHAKE function with a quasi-Newton method based on the matrix Sn.
Our experiment was based on GROMACS’s Lysozyme in Water Tutorial [6]. We
simulated a hen egg white lysozyme [9] molecule submerged in water inside a
cubic box. Lysozyme is a protein that consists of a single polypeptide chain of
129 amino acid residues cross-lined at 4 places by disulfide bonds between cys-
teine side-chains in different parts of the molecule. Lysozyme has 1960 atoms and
1984 bond length constraints. Before executing the production run, we added
ions to the system to make it electrically neutral. The energy of the system
was minimized using the steepest descent algorithm until the maximum force
of the system was below 1000.0 kJ/(mol·nm). Then, we executed 100 ps of a
temperature equilibration step using a V-Rescale thermostat in an NVT ensem-
ble to stabilize the temperature of the system at 310 K. To finish, we stabilized
the pressure of the system at 1 Bar for another 100 ps using a V-Rescale ther-
mostat and a Parrinello-Rahman barostat in an NPT ensemble. We executed
a 100 ps production run with a 2 fs time step using an NPT ensemble with a
V-Rescale thermostat and a Parrinello-Rahman barostat with time constants of
0.1 and 2 ps, respectively. We collected the results of the constraint solver every
5 ps starting at time-step 5 ps, for a total of 20 sample points. Specifically, we
recorded the normwise relative error rk = ‖λn − xk‖2/‖λn‖2 as a function of
the number k of quasi-Newton steps using the symmetric matrix Sn instead of
the nonsymmetric matrix An and we recorded ‖Ek‖2 = ‖sk − tk‖2/‖sk‖2 where
tk is needed for a quasi-Newton step and sk is needed a Newton step. By (10)
we have rk+1 ≤ ρkrk, but we cannot hope for more than rk+1 ≈ ρkrk where
ρk = O(‖Ek‖2) and this is indeed what we find in the Fig. 2c until we hit the
level of stagnation where the impact of rounding errors is keenly felt.

5 Related Work

It is well-known that Newton’s method has local quadratic convergence sub-
ject to certain regularity conditions. The simplest proof known to us is due
to Mysovskii [7]. Dembo et al. [2] analyzed the convergence of quasi-Newton
methods in terms of the ratio between the norm of linear residual, i.e., rk =
F (xk) − F ′(xk)tk and the norm of the nonlinear residual F (xk). Tisseur [11]
studied the impact of rounding errors in terms of the backward error associated
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with approximating the Jacobians and computing the corrections, as well as the
errors associated with computing the residuals. Here we have pursued a third
option by viewing the correction tk as an approximation of the correction sk

needed for an exact Newton step. Tisseur found that Newton’s method stag-
nate at a level that is essentially independent of the stability of the solver and
we have confirmed that this is true for quasi-Newton methods in general. It is
clear to us from reading Theorem 3.1 of Dennis and Moore’s paper [3] that they
would instantly recognize Lemma 3, but we cannot find the result stated explic-
itly anywhere. Forsgren [4] uses a stationary method for solving linear systems
to construct a quasi-Newton method that is so exact that the convergence is
quadratic. Section 4.1 contains a simple illustration of this phenomenon.

6 Conclusions

Quasi-Newton methods can also be analyzed in terms of the relative error
between Newton’s correction and the computed correction. We achieve quadratic
convergence when this error is O(

√
u). This fact represent an opportunity for

improving the time-to-solution for nonlinear equations. General purpose libraries
for solving sparse linear systems apply pivoting for the sake of numerical accuracy
and stability. In the context of quasi-Newton methods we do not need maximum
accuracy. Rather, there is some freedom to pivot for the sake of parallelism. If we
fail to achieve quadratic convergence, then we are likely to still converge rapidly.
It is therefore worthwhile to develop sparse solvers that pivot mainly for the sake
of parallelism.
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