
Roman Wyrzykowski
Jack Dongarra
Ewa Deelman
Konrad Karczewski (Eds.)

LN
CS

 1
38

26

Parallel Processing
and Applied Mathematics
14th International Conference, PPAM 2022
Gdansk, Poland, September 11–14, 2022
Revised Selected Papers, Part I

Lecture Notes in Computer Science 13826
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Roman Wyrzykowski · Jack Dongarra ·
Ewa Deelman · Konrad Karczewski
Editors

Parallel Processing
and Applied Mathematics
14th International Conference, PPAM 2022
Gdansk, Poland, September 11–14, 2022
Revised Selected Papers, Part I

Editors
Roman Wyrzykowski
Czestochowa University of Technology
Czestochowa, Poland

Ewa Deelman
University of Southern California
Marina del Rey, CA, USA

Jack Dongarra
University of Tennessee
Knoxville, TN, USA

Konrad Karczewski
Czestochowa University of Technology
Czestochowa, Poland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-30441-5 ISBN 978-3-031-30442-2 (eBook)
https://doi.org/10.1007/978-3-031-30442-2

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
Chapters 11, 12, 14 and 20 are licensed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/). For further details see license information in the
chapters.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-30442-2
http://creativecommons.org/licenses/by/4.0/

Preface

This volume comprises the proceedings of the 14th International Conference on Parallel
Processing and AppliedMathematics – PPAM 2022, which was held in Gdańsk, Poland,
September 11–14, 2022. It was organized by the Department of Computer Science of the
Częstochowa University of Technology together with the Gdańsk University of Tech-
nology, under the patronage of the Committee of Informatics of the Polish Academy
of Sciences, in technical cooperation with the Poznań Supercomputing and Network-
ing Center. Scheduled initially for the year 2021, the fourteenth edition of PPAM was
postponed to 2022 because of the COVID-19 pandemic. PPAM 2022 was primarily an
in-person event. However, the organizers also made provision for authors and delegates
to present, attend, and interact online.

PPAM is a biennial conference. Thirteen previous events have been held in different
places in Poland since 1994, when the first conference took place in Częstochowa. The
proceedings of the last ten conferences have been published by Springer in the Lecture
Notes in Computer Science series (Nałęczów, 2001, vol. 2328; Częstochowa, 2003, vol.
3019; Poznań, 2005, vol. 3911; Gdańsk, 2007, vol. 4967;Wrocław, 2009, vols. 6067 and
6068; Toruń, 2011, vols. 7203 and 7204; Warsaw, 2013, vols. 8384 and 8385; Kraków,
2015, vols. 9573 and 9574; Lublin, 2017, vols. 10777 and 10778; Białystok, 2019, vols.
12043 and 12044.

The PPAM conferences have become an international forum for exchanging ideas
between researchers involved in parallel and distributed computing, including theory
and applications, as well as applied and computational mathematics. The focus of PPAM
2022 was on models, algorithms, and software tools that facilitate efficient and conve-
nient utilization ofmodern parallel and distributed computing architectures, as well as on
large-scale applications, including artificial intelligence andmachine learning problems.
Special attention was given to the future of computing beyond Moore’s Law.

This meeting gathered about 170 participants from 25 countries, including about
130 in-person participants. One hundred thirty-two articles were submitted for review.
Each paper secured at least three single-blind reviews from program committee mem-
bers. A thorough peer-reviewing process that included discussion and agreement among
reviewers whenever necessary resulted in the acceptance of 76 contributed papers for
publication in the conference proceedings. For regular conference tracks, 33 papers were
selected from 62 submissions, giving an acceptance rate of about 53%.

The regular tracks covered such important fields of parallel/distributed/cloud
computing and applied mathematics as:

– Numerical algorithms and parallel scientific computing
– GPU computing
– Parallel non-numerical algorithms
– Performance analysis and prediction in HPC (high performance computing) systems
– Scheduling for parallel computing
– Environments and frameworks for parallel/cloud computing

vi Preface

– Applications of parallel and distributed computing
– Soft computing with applications

The keynote talks were presented by:

– Anima Anandkumar from the California Institute of Technology and Nvidia (USA)
– Hartwig Anzt from the Karlsruhe Institute of Technology (Germany) and University

of Tennessee (USA)
– Ivona Brandic from the Vienna University of Technology (Austria)
– Ümit V. Çatalyürek from Georgia Institute of Technology (USA)
– Jack Dongarra from the University of Tennessee and ORNL (USA)
– Torsten Hoefler from ETH Zurich (Switzerland)
– Georg Hager from the University of Erlangen-Nuremberg (Germany)
– Simon Knowles from Graphcore (UK)
– Satoshi Matsuoka from the Tokyo Institute of Technology (Japan)
– Michał Mrozek from Intel (Poland)
– Simon McIntosh-Smith from the University of Bristol (UK)
– Manish Parashar from Rutgers University (USA)
– Voica Radescu from IBM (Germany)
– Enrique S. Quintana-Orti from the Universitat Politècnica de València (Spain)
– John Shalf from the Lawrence Berkeley National Laboratory (USA)
– Michela Taufer from the University of Tennessee (USA)
– Christian Terboven from RWTH Aachen (Germany)
– Manuel Ujaldon from the University of Malaga Nvidia

Important and integral parts of the PPAM 2022 conference were the workshops:

– The 9th Workshop on Language-Based Parallel Programming (WLPP 2022) orga-
nized by Ami Marowka from the Bar-Ilan University (Israel).

– The 6thWorkshop onModels, Algorithms andMethodologies for Hybrid Parallelism
in New HPC Systems (MAMHYP 2022) organized by Marco Lapegna, Giulliano
Laccetti and Valeria Mele from the University of Naples Federico II (Italy), Raffaele
Montella from the University of Naples “Parthenope” (Italy), and Sokol Kosta from
Aalborg University Copenhagen (Denmark).

– The First Workshop on Quantum Computing and Communication organized by
Krzysztof Kurowski, Cezary Mazurek, and Piotr Rydlichowski from the Poznań
Supercomputing and Networking Center (Poland)

– The First Workshop on Applications of Machine Learning and Artificial Intelligence
in High Performance Computing organized by Sergio Iserte from the Universitat
Jaume I (Spain) andKrzysztof Rojek from theCzęstochowaUniversity of Technology
(Poland).

– The 9th Workshop on Scheduling for Parallel Computing organized by Maciej
Drozdowski from the Poznań University of Technology (Poland).

– The 4th Workshop on Applied High Performance Numerical Algorithms for PDEs
organized by Piotr Krzyżanowski and LeszekMarcinkowski fromWarsawUniversity
(Poland), Talal Rahman from Bergen University College (Norway), and Jan Valdman
from the University of South Bohemia (Czech Republic).

Preface vii

– The 5th Minisymposium on HPC Applications in Physical Sciences organized by
Grzegorz Kamieniarz and Michał Antkowiak from Adam Mickiewicz University in
Poznan (Poland).

– The 8th Minisymposium on High Performance Computing Interval Methods orga-
nized by Bartłomiej J. Kubica from the Warsaw University of Technology (Poland).

– The 7th Workshop on Complex Collective Systems organized by JarosławWąs from
the AGH University of Science and Technology (Poland), Tomasz Gwizdałła from
the University of Łódz (Poland) and Krzysztof Małecki from the West Pomeranian
University of Technology (Poland).

The PPAM 2022 meeting began with four tutorials:

– Introduction to Programming Graphcore IPU, by Graphcore (Pawel Gepner team).
– Fundamentals of Deep Learning using the Nvidia Deep Learning Institute infrastruc-

ture, by Manuel Ujaldon from the University of Malaga (Spain) and Nvidia.
– Quantum Computing, by IBM, and Poznań Supercomputing and Networking Center

(Poland).
– LUMI European Pre-Exascale Supercomputer Hands-on, by Maciej Szpindler and

Marek Magryś from the Academic Computer Centre Cyfronet AGH (Poland).

The PPAM Best Paper Award is given upon recommendation of the PPAM Chairs
and Program Committee in recognition of the research paper quality, originality, and
significance of the work in high performance computing. For the main track, the PPAM
2022 winners were:

– Rafael Ravedutti Lucio Machado, Jan Eitzinger, Harald Köstler and Gerhard Wellein
from the University of Erlangen-Nuremberg and Erlangen Regional Computing
Center, who submitted the paper “MD-Bench: A generic proxy-app toolbox for
state-of-the-art molecular dynamics algorithms”.

– Anna Sasak-Okoń from the Maria Curie-Skłodowska University and Marek Tudruj
from the Polish Academy of Sciences and Polish-Japanese Academy of Information
Technology, who presented the paper “RDBMS speculative support improvement by
the use of the query hypergraph representation”.

For workshops, the PPAM 2022 winners were Yu-Hsiang Tsai, Natalie Beams, and
Hartwig Anzt from the Karlsruhe Institute of Technology and the University of Ten-
nessee, who submitted the paper “Mixed Precision Algebraic Multigrid on GPUs”. To
stimulate potential authors’ interest in submitting high-quality articles to the PPAM
conference, one author of each winning paper will receive a significant reduction in the
conference fee for the next PPAM.

New Topic at PPAM 2022: First Workshop on Applications of Machine Learning
and Artificial Intelligence in High Performance Computing

Machine learning and artificial intelligencemethods have become pervasive in recent
years due to numerous algorithmic advances and the accessibility of computational
power. In high performance computing, these methods have been used to replace,
accelerate, or enhance existing solvers.

Research topics of this workshop focused on: (i) disruptive uses of HPC technologies
in the field ofAI (artificial intelligence),ML (machine learning), andDL (deep learning);

viii Preface

(ii) integration of predictive models to improve the performance of scientific applica-
tions in terms of execution time and/or simulation accuracy; (iii) workflow of applying
AI/ML/DL to scientific applications in HPC infrastructures; (iv) characterization and
study of how to use HPC techniques with AI/ML/DL; (v) HPC tools and infrastructure
to improve the usability of AI/ML/DL for scientific applications; (vi) optimized HPC
systems design and setup for efficient AI/ML/DL.

These topics were covered at a session that consisted of five presentations:

– adaptation of AI-accelerated CFD simulations to the IPU platform (by P.
Rościszewski, A. Krzywaniak, S. Iserte, K. Rojek, and P. Gepner)

– performance analysis of convolution algorithms for deep learning on edge processors
(by P. Alonso-Jorda, H. Martinez, E. S. Quintana-Orti, and C. Ramirez)

– machine learning-based online scheduling in distributed computing (by V. Toporkov,
D. Yemelyanov, and A. Bulkhak)

– high performance computing queue time prediction using clustering and regression
(by S. Hutchison, D. Andresen, M. Neilsen, W. Hsu, and B. Parsons)

– acceptance rates of invertible neural networks on electron spectra from near-critical
laser-plasmas: a comparison (by T. Miethlinger, N. Hoffmann, and T. Kluge).

New Topic at PPAM 2022: First Workshop on Quantum Computing and Communi-
cation

The dedicated workshop focused on two relevant quantum technology areas: quan-
tum computation and communication. The main goal of this event was to bring together
scientists and practitioners experimenting with different software and hardware in the
existing Noisy Intermediate-Scale Quantum (NISQ) era. This workshop was also an
excellent opportunity to catch up on taking advantage of quantum computing, par-
ticularly Adiabatic Quantum Computing, and communication technologies from the-
oretical and practical angles. There are many exciting research topics today, from the
design of quantum algorithms, experiments on early access quantum devices, and per-
formance analysis of classical-quantum approaches to early experiences with quantum
communication applications and distributed quantum testbeds.

Therefore, the workshop consisted of nine presentations on various exciting topics
delivered during two sessions:

– An analysis of the potential of quantum computing by examining problems involved
with determining the worst-case execution time of a restricted set of programs (by
Gabriella Bettonte, Stephane Louise, and Renaud Sirdey)

– A study of LDPC decoding using quantum annealing (by Aditya Das Sarma, Utso
Majumder, Vishnu Vaidya, M Girish Chandra, Anil Kumar, and Sayantan Pramanik)

– An overview of ongoing Quantum Key Distribution (QKD) communication tech-
nology in operational networks within commercial network operators and national
research and education networks in Europe (by Piotr Rydlichowski)

– A newQUBO-based algorithm for the scheduling of heterogeneous tasks on unrelated
parallelmachines problem solved using quantum annealing (by F.Orts, A.M. Puertas,
E. M. Garzon, and G. Ortega)

– An approach to studying specific aspects of quantum entanglement contained in the
bipartite pure quantum states (by Roman Gielerak and Marek Sawerwain)

Preface ix

– A study of a set of early experiments with a photonic quantum simulator for solving
the job shop scheduling problem (by Mateusz Slysz, Krzysztof Kurowski, and Jan
Weglarz)

– A proposal for solving the traveling salesman problem with a hybrid quantum-
classical feedforward neural network (by Justyna Zawalska, and Katarzyna Rycerz)

– An analysis of the Eisert-Wilkens-Lewenstein scheme of quantum extension for
selected games on the example of Prisoners Dilemma (by Piotr Kotara, Tomasz
Zawadzki, and Katarzyna Rycerz)

– A new approach to generative quantum machine learning and description of a proof-
of-principle experiment (by Karol Bartkiewicz, Patrycja Tulewicz, Jan Roik, and
Karel Lemr).

The organizers are indebted to PPAM 2022’s sponsors, whose support was vital to
the conference’s success. The main sponsors were the Intel Corporation and Graphcore;
the others were Hewlett Packard Enterprise, Koma Nord, and Inspur. We thank all the
International Program Committee members and additional reviewers for their diligent
work in refereeing the submitted papers. Finally, we thank all of the local organizers from
the Częstochowa University of Technology and the Gdańsk University of Technology,
who helped us to run the event very smoothly. We are especially indebted to Łukasz
Kuczyński, Marcin Woźniak, Tomasz Chmiel, Piotr Dzierżak, Anna Woźniak, and Ewa
Szymczyk from the Częstochowa University of Technology; and to Paweł Czarnul and
Mariusz Matuszek from the Gdańsk University of Technology.

We hope that this volume will be useful to you. We would like everyone who reads
it to feel invited to the next conference, PPAM 2024, which will be held on September
8–11, 2024.

January 2023 Roman Wyrzykowski
Jack Dongarra
Ewa Deelman

Konrad Karczewski

Organization

Program Committee

Jan Węglarz (Honorary Chair) Poznań University of Technology, Poland
Roman Wyrzykowski (Chair of

Program Committee)
Częstochowa University of Technology, Poland

Ewa Deelman (Vice-chair of
Program Committee)

University of Southern California, USA

Konrad Karczewski (Vice-chair
for Publication)

Częstochowa University of Technology, Poland

Marco Lapegna (Vice-chair for
Tutorials)

University of Naples Federico II, Italy

Robert Adamski Intel Corporation, Poland
Francisco Almeida Universidad de La Laguna, Spain
Pedro Alonso Universidad Politécnica de Valencia, Spain
Alexander Antonov Moscov State University, Russian Federation
Hartwig Anzt Karlsruhe Institute of Technology, Germany, and

University of Tennessee, USA
Peter Arbenz ETH Zurich, Switzerland
Cevdet Aykanat Bilkent University, Turkey
Marc Baboulin University of Paris-Sud, France
David A. Bader New Jersey Institute of Technology, USA
Michael Bader TU Munchen, Germany
Bartosz Baliś Institute of Computer Science AGH, Poland
Piotr Bała ICM, Warsaw University, Poland
Krzysztof Banaś AGH University of Science and Technology,

Poland
Jorge G. Barbosa Universidade de Porto, Portugal
Olivier Beaumont Inria Bordeaux, France
Włodzimierz Bielecki West Pomeranian University of Technology,

Poland
Paolo Bientinesi Umea University, Sweden
Jacek Błażewicz Poznań University of Technology, Poland
Pascal Bouvry University of Luxembourg, Luxembourg
Jerzy Brzeziński Poznań University of Technology, Poland
Marian Bubak AGH Kraków, Poland, and University of

Amsterdam, The Netherlands

xii Organization

Tadeusz Burczyński Polish Academy of Sciences, Warsaw
Christopher Carothers Rensselaer Polytechnic Institute, USA
Jesus Carretero Universidad Carlos III de Madrid, Spain
Andrea Clematis IMATI-CNR, Italy
Paweł Czarnul Gdańsk University of Technology, Poland
Zbigniew Czech Silesia University of Technology, Poland
Davor Davidovic Ruder Boskovic Institute, Croatia
Jack Dongarra University of Tennessee and ORNL, USA
Maciej Drozdowski Poznań University of Technology, Poland
Mariusz Flasiński Jagiellonian University, Poland
Tomas Fryza Brno University of Technology, Czech Republic
Lin Gan Tsinghua University and National

Supercomputing Center in Wuxi, China
Jose Daniel Garcia Universidad Carlos III de Madrid, Spain
Pawel Gepner Graphcore, Poland
Shamsollah Ghanbari Iranian Distributed Computing and Systems

Society, Iran
Domingo Gimenez University of Murcia, Spain
Jacek Gondzio University of Edinburgh, UK
Andrzej Gościński Deakin University, Australia
Georg Hager University of Erlangen-Nuremberg, Germany
José R. Herrero Universitat Politècnica de Catalunya, Spain
Ladislav Hluchy Slovak Academy of Sciences, Slovakia
Sasha Hunold Vienna University of Technology, Austria
Roman Iakymchuk Umea University, Sweden
Aleksandar Ilic Technical University of Lisbon, Portugal
Krzysztof Jurczuk Białystok University of Technology, Poland
Grzegorz Kamieniarz Adam Mickiewicz University, Poland
Eleni Karatza Aristotle University of Thessaloniki, Greece
Jacek Kitowski Institute of Computer Science, AGH, Poland
Joanna Kołodziej NASK and Cracow University of Technology,

Poland
Jozef Korbicz University of Zielona Góra, Poland
Tomas Kozubek Technical University of Ostrava, Czech Republic
Dieter Kranzlmueller Ludwig-Maximillian University and Leibniz

Supercomputing Centre, Germany
Henryk Krawczyk Gdańsk University of Technology, Poland
Carola Kruse CERFACS, France
Piotr Krzyżanowski University of Warsaw, Poland
Krzysztof Kurowski PSNC, Poland
Jan Kwiatkowski Wrocław University of Technology, Poland
Giulliano Laccetti University of Naples Federico II, Italy

Organization xiii

Alexey Lastovetsky University College Dublin, Ireland
Joao Lourenco University Nova of Lisbon, Portugal
Tze Meng Low Carnegie Mellon University, USA
Hatem Ltaief KAUST, Saudi Arabia
Piotr Luszczek University of Tennessee, USA
Maciej Malawski Sano Center for Computational Medicine and

Institute of Computer Science AGH, Poland
Allen D. Malony University of Oregon, USA
Victor E. Malyshkin Siberian Branch, Russian Academy of Sciences,

Russia
Tomas Margalef Universitat Autònoma de Barcelona, Spain
Svetozar Margenov Bulgarian Academy of Sciences, Sofia
Ami Marowka Bar-Ilan University, Israel
Norbert Meyer PSNC, Poland
Iosif Meyerov Lobachevsky State University of Nizhni

Novgorod, Russian Federation
Marek Michalewicz ICM, Warsaw University, Poland
Carl Ch. K. Mikkelsen Umea University, Sweden
Ricardo Morla INESC Porto, Portugal
Daichi Mukunoki Riken Center for Computational Science, Japan
Jarek Nabrzyski University of Notre Dame, USA
Koji Nakano Hiroshima University, Japan
Raymond Namyst University of Bordeaux and Inria, France
Edoardo Di Napoli Forschungszentrum Juelich, Germany
Gabriel Oksa Slovak Academy of Sciences, Slovakia
Tomasz Olas Częstochowa University of Technology, Poland
Ariel Oleksiak PSNC, Poland
Marcin Paprzycki IBS PAN and SWPS University, Poland
Dana Petcu West University of Timisoara, Romania
Loic Pottier University of Southern California, USA
Radu Prodan University of Innsbruck, Austria
Enrique S. Quintana-Ortí Universitat Politècnica de València, Spain
Thomas Rauber University of Bayreuth, Germany
Lubomir Riha Technical University of Ostrava, Czech Republic
Krzysztof Rojek Częstochowa University of Technology, Poland
Witold Rudnicki University of Białystok, Poland
Leszek Rutkowski Częstochowa University of Technology, Poland
Krzysztof Rzadca Warsaw University, Poland
Robert Schaefer Institute of Computer Science, AGH, Poland
Stanislav Sedukhin University of Aizu, Japan
Franciszek Seredyński Cardinal Stefan Wyszyński University in Warsaw,

Poland

xiv Organization

Sebastiano F. Schifano University of Ferrara, Italy
Jurij Silc Jozef Stefan Institute, Slovenia
Renata Słota Institute of Computer Science, AGH, Poland
Masha Sosonkina Old Dominion University, USA
Leonel Sousa Technical University of Lisbon, Portugal
Vladimir Stegailov Joint Institute for High Temperatures of RAS and

MIPT/HSE, Russian Federation
Przemysław Stpiczyński Maria Curie-Skłodowska University, Poland
Robert Strzodka University of Heidelberg, Germany
Lukasz Szustak Częstochowa University of Technology, Poland
Boleslaw Szymanski Rensselaer Polytechnic Institute, USA
Domenico Talia University of Calabria, Italy
Andrei Tchernykh CICESE Research Center, Mexico
Christian Terboven RWTH Aachen, Germany
Parimala Thulasiraman University of Manitoba, Canada
Sivan Toledo Tel-Aviv University, Israel
Victor Toporkov National Research University “MPEI”, Russian

Federation
Roman Trobec Jozef Stefan Institute, Slovenia
Giuseppe Trunfio University of Sassari, Italy
Denis Trystram Grenoble Institute of Technology, France
Marek Tudruj Polish Academy of Sciences and Polish-Japanese

Academy of Information Technologies, Poland
Bora Ucar École Normale Supérieure de Lyon, France
Marian Vajtersic Salzburg University, Austria
Vladimir Voevodin Moscow State University, Russian Federation
Bogdan Wiszniewski Gdańsk University of Technology, Poland
Andrzej Wyszogrodzki Institute of Meteorology and Water Management,

Poland
Ramin Yahyapour University of Göttingen/GWDG, Germany
Krzysztof Zielinski Institute of Computer Science, AGH, Poland
Julius Žilinskas Vilnius University, Lithuania
Jarosław Żola University of Buffalo, USA

Steering Committee

Jack Dongarra University of Tennessee and ORNL, USA
Leszek Rutkowski Częstochowa University of Technology, Poland
Boleslaw Szymanski Rensselaer Polytechnic Institute, USA

Contents – Part I

Numerical Algorithms and Parallel Scientific Computing

How Accurate Does Newton Have to Be? . 3
Carl Christian Kjelgaard Mikkelsen, Lorién López-Villellas,
and Pablo García-Risueño

General Framework for Deriving Reproducible Krylov Subspace
Algorithms: BiCGStab Case . 16

Roman Iakymchuk, Stef Graillat, and José I. Aliaga

A Generalized Parallel Prefix Sums Algorithm for Arbitrary Size Arrays 30
Andrzej Sikorski, Izajasz Wrosz, and Michał Lewandowski

Infinite-Precision Inner Product and Sparse Matrix-Vector Multiplication
Using Ozaki Scheme with Dot2 on Manycore Processors . 40

Daichi Mukunoki, Katsuhisa Ozaki, Takeshi Ogita,
and Toshiyuki Imamura

Advanced StochasticApproaches forAppliedComputing in Environmental
Modeling . 55

Venelin Todorov, Ivan Dimov, Maria Ganzha, and Marcin Paprzycki

Parallel Non-numerical Algorithms

Parallel Suffix Sorting for Large String Analytics . 71
Zhihui Du, Sen Zhang, and David A. Bader

Parallel Extremely Randomized Decision Forests on Graphics Processors
for Text Classification . 83

Julio Cesar Batista Pires and Wellington Santos Martins

RDBMS Speculative Support Improvement by the Use of the Query
Hypergraph Representation . 95

Anna Sasak-Okoń and Marek Tudruj

GPU Computing

Mixed Precision Algebraic Multigrid on GPUs . 113
Yu-Hsiang Mike Tsai, Natalie Beams, and Hartwig Anzt

xvi Contents – Part I

Compact In-Memory Representation of Decision Trees
in GPU-Accelerated Evolutionary Induction . 126

Krzysztof Jurczuk, Marcin Czajkowski, and Marek Kretowski

Neural Nets with a Newton Conjugate Gradient Method on Multiple GPUs 139
Severin Reiz, Tobias Neckel, and Hans-Joachim Bungartz

Performance Analysis and Prediction in HPC Systems

Exploring Techniques for the Analysis of Spontaneous Asynchronicity
in MPI-Parallel Applications . 155

Ayesha Afzal, Georg Hager, Gerhard Wellein, and Stefano Markidis

Cost and Performance Analysis of MPI-Based SaaS on the Private Cloud
Infrastructure . 171

Oleg Bystrov, Arnas Kačeniauskas, and Ruslan Pacevič

Building a Fine-Grained Analytical Performance Model for Complex
Scientific Simulations . 183

Jelle van Dijk, Gabor Zavodszky, Ana-Lucia Varbanescu,
Andy D. Pimentel, and Alfons Hoekstra

Evaluation of Machine Learning Techniques for Predicting Run Times
of Scientific Workflow Jobs . 197

Bartosz Balis and Michal Grabowski

Smart Clustering of HPC Applications Using Similar Job Detection
Methods . 209

Denis Shaikhislamov and Vadim Voevodin

Scheduling for Parallel Computing

Distributed Work Stealing in a Task-Based Dataflow Runtime 225
Joseph John, Josh Milthorpe, and Peter Strazdins

Task Scheduler for Heterogeneous Data Centres Based on Deep
Reinforcement Learning . 237

Jaime Fomperosa, Mario Ibañez, Esteban Stafford, and Jose Luis Bosque

Shisha: Online Scheduling of CNN Pipelines on Heterogeneous
Architectures . 249

Pirah Noor Soomro, Mustafa Abduljabbar, Jeronimo Castrillon,
and Miquel Pericàs

Contents – Part I xvii

Proactive Task Offloading for Load Balancing in Iterative Applications 263
Minh Thanh Chung, Josef Weidendorfer, Karl Fürlinger,
and Dieter Kranzlmüller

Environments and Frameworks for Parallel/Cloud Computing

Language Agnostic Approach for Unification of Implementation Variants
for Different Computing Devices . 279

Anshu Dubey and Tom Klosterman

High Performance Dataframes from Parallel Processing Patterns 291
Niranda Perera, Supun Kamburugamuve, Chathura Widanage,
Vibhatha Abeykoon, Ahmet Uyar, Kaiying Shan, Hasara Maithree,
Damitha Lenadora, Thejaka Amila Kanewala, and Geoffrey Fox

Global Access to Legacy Data-Sets in Multi-cloud Applications
with Onedata . 305

Michał Orzechowski, Michał Wrzeszcz, Bartosz Kryza, Łukasz Dutka,
Renata G. Słota, and Jacek Kitowski

Applications of Parallel and Distributed Computing

MD-Bench: A Generic Proxy-App Toolbox for State-of-the-Art Molecular
Dynamics Algorithms . 321

Rafael Ravedutti Lucio Machado, Jan Eitzinger, Harald Köstler,
and Gerhard Wellein

Breaking Down the Parallel Performance of GROMACS,
a High-Performance Molecular Dynamics Software . 333

Måns I. Andersson, Natarajan Arul Murugan, Artur Podobas,
and Stefano Markidis

GPU-Based Molecular Dynamics of Turbulent Liquid Flows with OpenMM . . . 346
Daniil Pavlov, Daniil Kolotinskii, and Vladimir Stegailov

ANovel ParallelApproach forModeling theDynamics ofAerodynamically
Interacting Particles in Turbulent Flows . 359

Ahmad Ababaei, Antoine Michel, and Bogdan Rosa

Reliable Energy Measurement on Heterogeneous Systems–on–Chip
Based Environments . 371

Alberto Cabrera, Pavel Nichita, Sergio Afonso, Francisco Almeida,
and Vicente Blanco

xviii Contents – Part I

Distributed Objective Function Evaluation for Optimization of Radiation
Therapy Treatment Plans . 383

Felix Liu, Måns I. Andersson, Albin Fredriksson, and Stefano Markidis

Soft Computing with Applications

GPU4SNN: GPU-Based Acceleration for Spiking Neural Network
Simulations . 399

Nitin Satpute, Anna Hambitzer, Saeed Aljaberi, and Najwa Aaraj

Ant System Inspired Heuristic Optimization of UAVs Deployment
for k-Coverage Problem . 414

Krzysztof Trojanowski, Artur Mikitiuk, and Jakub Grzeszczak

Dataset Related Experimental Investigation of Chess Position Evaluation
Using a Deep Neural Network . 429

Dawid Wieczerzak and Paweł Czarnul

Using AI-based Edge Processing in Monitoring the Pedestrian Crossing 441
Łukasz Karbowiak and Mariusz Kubanek

Special Session on Parallel EVD/SVD and its Application in Matrix
Computations

Automatic Code Selection for the Dense Symmetric Generalized
Eigenvalue Problem Using ATMathCoreLib . 453

Masato Kobayashi, Shuhei Kudo, Takeo Hoshi, and Yusaku Yamamoto

On Relative Accuracy of the One-Sided Block-Jacobi SVD Algorithm 464
Gabriel Okša and Martin Bečka

Author Index . 477

Contents – Part II

9th Workshop on Language-Based Parallel Programming
(WLPP 2022)

Kokkos-Based Implementation of MPCD on Heterogeneous Nodes 3
Rene Halver, Christoph Junghans, and Godehard Sutmann

Comparison of Load Balancing Schemes for Asynchronous Many-Task
Runtimes . 14

Lukas Reitz, Kai Hardenbicker, and Claudia Fohry

New Insights on the Revised Definition of the Performance Portability
Metric . 27

Ami Marowka

Inferential Statistical Analysis of Performance Portability 39
Ami Marowka

NPDP Benchmark Suite for Loop Tiling Effectiveness Evaluation 51
Marek Palkowski and Wlodzimierz Bielecki

Parallel Vectorized Implementations of Compensated Summation
Algorithms . 63

Beata Dmitruk and Przemysław Stpiczyński

6th Workshop on Models, Algorithms and Methodologies for Hybrid
Parallelism in New HPC Systems (MAMHYP 2022)

Malleability Techniques for HPC Systems . 77
Jesus Carretero, David Exposito, Alberto Cascajo, and Raffaele Montella

Algorithm and Software Overhead: A Theoretical Approach
to Performance Portability . 89

Valeria Mele and Giuliano Laccetti

Benchmarking a High Performance Computing Heterogeneous Cluster 101
Luisa Carracciuolo, Davide Bottalico, Davide Michelino,
Gianluca Sabella, and Bernardino Spisso

xx Contents – Part II

A Generative Adversarial Network Approach for Noise and Artifacts
Reduction in MRI Head and Neck Imaging . 115

Salvatore Cuomo, Francesco Fato, Lorenzo Ugga, Gaia Spadarella,
Reanto Cuocolo, Fabio Giampaolo, and Francesco Piccialli

A GPU Accelerated Hyperspectral 3D Convolutional Neural Network
Classification at the Edge with Principal Component Analysis
Preprocessing . 127

Gianluca De Lucia, Marco Lapegna, and Diego Romano

Parallel gEUD Models for Accelerated IMRT Planning on Modern HPC
Platforms . 139

Juan José Moreno, Janusz Miroforidis, Ignacy Kaliszewski,
and Gracia Ester Martín Garzón

First Workshop on Quantum Computing and Communication

On Quantum-Assisted LDPC Decoding Augmented with Classical
Post-processing . 153

Aditya Das Sarma, Utso Majumder, Vishnu Vaidya, M Girish Chandra,
A Anil Kumar, and Sayantan Pramanik

Quantum Annealing to Solve the Unrelated Parallel Machine Scheduling
Problem . 165

Francisco Orts, Antonio M. Puertas, Ester M. Garzón, and Gloria Ortega

Early Experiences with a Photonic Quantum Simulator for Solving Job
Shop Scheduling Problem . 177

Mateusz Slysz, Krzysztof Kurowski, and Jan Węglarz

Some Remarks on Super-Gram Operators for General Bipartite Quantum
States . 187

Roman Gielerak and Marek Sawerwain

Solving the Traveling Salesman Problemwith a Hybrid Quantum-Classical
Feedforward Neural Network . 199

Justyna Zawalska and Katarzyna Rycerz

Software Aided Analysis of EWL Based Quantum Games 209
Piotr Kotara, Tomasz Zawadzki, and Katarzyna Rycerz

Contents – Part II xxi

First Workshop on Applications of Machine Learning and Artificial
Intelligence in High Performance Computing (WAML 2022)

Adaptation of AI-Accelerated CFD Simulations to the IPU Platform 223
Paweł Rościszewski, Adam Krzywaniak, Sergio Iserte, Krzysztof Rojek,
and Paweł Gepner

Performance Analysis of Convolution Algorithms for Deep Learning
on Edge Processors . 236

Pedro Alonso-Jordá, Héctor Martínez, Enrique S. Quintana-Ortí,
and Cristian Ramírez

Machine Learning-Based Online Scheduling in Distributed Computing 248
Victor Toporkov, Dmitry Yemelyanov, and Artem Bulkhak

High Performance Computing Queue Time Prediction Using Clustering
and Regression . 260

Scott Hutchison, Daniel Andresen, Mitchell Neilsen, William Hsu,
and Benjamin Parsons

Acceptance Rates of Invertible Neural Networks on Electron Spectra
from Near-Critical Laser-Plasmas: A Comparison . 273

Thomas Miethlinger, Nico Hoffmann, and Thomas Kluge

4th Workshop on Applied High Performance Numerical Algorithms
for PDEs

MATLAB Implementation of Hp Finite Elements on Rectangles Using
Hierarchical Basis Functions . 287

Alexej Moskovka and Jan Valdman

Adaptive Parallel Average Schwarz Preconditioner for Crouzeix-Raviart
Finite Volume Method . 300

Leszek Marcinkowski and Talal Rahman

Parareal Method for Anisotropic Diffusion Denoising . 313
Xiujie Shan and Martin B. van Gijzen

Comparison of Block Preconditioners for the Stokes Problem
with Discontinuous Viscosity and Friction . 323

Piotr Krzyżanowski

On Minimization of Nonlinear Energies Using FEM in MATLAB 331
Alexej Moskovka, Jan Valdman, and Marta Vohnoutová

xxii Contents – Part II

A Model for Crowd Evacuation Dynamics: 2D Numerical Simulations 343
Maria Gokieli

5th Minisymposium on HPC Applications in Physical Sciences

Parallel Identification of Unique Sequences in Nuclear Structure
Calculations . 357

Daniel Langr and Tomáš Dytrych

Experimental and Computer Study of Molecular Dynamics of a New
Pyridazine Derivative . 370

Sebastian Wołoszczuk, Aneta Woźniak-Braszak, Andrzej Olejniczak,
and Michał Banaszak

Description of Magnetic Nanomolecules by the Extended Multi-orbital
Hubbard Model: Perturbative vs Numerical Approach . 382

Romuald Lemański and Michał Antkowiak

Structural and Electronic Properties of Small-Diameter Carbon
NanoTubes: A DFT Study . 392

Bartosz Brzostowski, Artur P. Durajski, Konrad M. Gruszka,
and Jacek Wojtkiewicz

8th Minisymposium on High Performance Computing Interval
Methods

Need for Techniques Intermediate Between Interval and Probabilistic Ones 405
Olga Kosheleva and Vladik Kreinovich

A Cross-Platform Benchmark for Interval Computation Libraries 415
Xuan Tang, Zachary Ferguson, Teseo Schneider, Denis Zorin,
Shoaib Kamil, and Daniele Panozzo

Testing Interval Arithmetic Libraries, Including Their IEEE-1788
Compliance . 428

Nathalie Revol, Luis Benet, Luca Ferranti, and Sergei Zhilin

A Survey of Interval Algorithms for Solving Multicriteria Analysis
Problems . 441

Bartłomiej Jacek Kubica

Contents – Part II xxiii

7th Workshop on Complex Collective Systems

Social Fragmentation Transitions in Large-Scale Parameter Sweep
Simulations of Adaptive Social Networks . 459

Hiroki Sayama

Parking Search in Urban Street Networks: Taming Down the Complexity
of the Search-Time Problem via a Coarse-Graining Approach 470

Léo Bulckaen, Nilankur Dutta, and Alexandre Nicolas

A Multi-agent Cellular Automata Model of Lane Changing Behaviour
Considering the Aggressiveness and the Autonomy . 481

Krzysztof Małecki, Piotr Wróbel, and Patryk Górka

Comparison of the Use of UWB and BLE as Positioning Methods
in Data-Driven Modeling of Pedestrian Dynamics . 492

Dariusz Pałka, Robert Lubaś, Giuseppe Vizzari, and Jarosław Wąs

An Insight into the State-of-the-Art Vehicular Fog Computing
with an Opportunistic Flavour . 502

Krzysztof Ostrowski and Krzysztof Małecki

Author Index . 515

Numerical Algorithms and Parallel
Scientific Computing

How Accurate Does Newton Have to Be?

Carl Christian Kjelgaard Mikkelsen1(B) , Lorién López-Villellas2 ,
and Pablo Garćıa-Risueño3

1 Department of Computing Science, Ume̊a University, 90187 Ume̊a, Sweden
spock@cs.umu.se

2 Barcelona Supercomputing Center, Barcelona, Spain
lorien.lopez@bsc.es

3 Zaragoza, Spain
risueno@unizar.es

Abstract. We analyze the convergence of quasi-Newton methods in
exact and finite precision arithmetic. In particular, we derive an upper
bound for the stagnation level and we show that any sufficiently exact
quasi-Newton method will converge quadratically until stagnation. In
the absence of sufficient accuracy, we are likely to retain rapid linear
convergence. We confirm our analysis by computing square roots and
solving bond constraint equations in the context of molecular dynamics.
We briefly discuss implications for parallel solvers.

Keywords: Systems of nonlinear equations · Quasi-Newton methods ·
approximation error · rounding error · convergence · stagnation

1 Introduction

Let Ω ⊆ R
n be open, let F ∈ C1(Ω,Rn) and consider the problem of solving

F (x) = 0.

If the Jacobian F ′ of F is nonsingular, then Newton’s method is given by

xk+1 = xk − sk, F ′(xk)sk = F (xk). (1)

A quasi-Newton method is any iteration of the form

yk+1 = yk − tk, F ′(yk)tk ≈ F (yk). (2)

In exact arithmetic, we expect local quadractic convergence from Newton’s
method [7]. Quasi-Newton methods normally converge locally and at least lin-
early and some methods, such as the secant method, have superlinear conver-
gence [5,8]. In finite precision arithmetic, we cannot expect convergence in the
strict mathematical sense and we must settle for stagnation near a zero [11]. In

P. Garćıa-Risueño—Independent scholar.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 3–15, 2023.
https://doi.org/10.1007/978-3-031-30442-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_1&domain=pdf
http://orcid.org/0000-0002-9158-1941
http://orcid.org/0000-0002-1891-4359
http://orcid.org/0000-0002-8142-9196
https://doi.org/10.1007/978-3-031-30442-2_1

4 C. C. Kjelgaard Mikkelsen et al.

this paper we analyze the convergence of quasi-Newton methods in exact and
finite precision arithmetic. In particular, we derive an upper bound for the stag-
nation level and we show that any sufficiently exact quasi-Newton method will
converge quadratically until stagnation. We confirm our analysis by computing
square roots and solving bond constraint equations in the context of molecular
dynamics.

2 Auxiliary Results

The line segment l(x, y) between x and y is defined as follows:

l(x, y) = {tx + (1 − t)y : t ∈ [0, 1]}.

The following lemma is a standard result that bounds the difference between
F (x) and F (y) if the line segment l(x, y) is contained in the domain of F .

Lemma 1. Let Ω ⊆ R
n be open and let F ∈ C1(Ω,Rn). If l(x, y) ⊂ Ω, then

F (x) − F (y) =
∫ 1

0

F ′(tx + (1 − t)y)(x − y)dt

and
‖F (x) − F (y)‖ ≤ M‖x − y‖.

where
M = sup{‖F ′(tx + (1 − t)y)‖ : t ∈ [0, 1]}.

It is convenient to phrase Newton’s method as the functional iteration:

xk+1 = g(xk), g(x) = x − F ′(x)−1F (x).

and to express the analysis of quasi-Newton methods in terms of the function g.
The next lemma can be used to establish local quadratic convergence of Newton’s
method.

Lemma 2. Let Ω ⊆ R
n be open and let F ∈ C1(Ω,Rn). Let z denote a zero of

F and let x ∈ Ω. If F ′(x) is nonsingular and if l(x, z) ⊂ Ω, then

g(x) − z = C(x)(x − z)

where

C(x) = F ′(x)−1

(∫ 1

0

[F ′(x) − F ′(tx + (1 − t)z)] dt

)

Moreover, if F ′ is Lipschitz continuous with Lipschitz constant L > 0, then

‖g(x) − z‖ ≤ 1
2
‖F ′(x)−1‖L‖x − z‖2.

How Accurate Does Newton Have to Be? 5

The following lemma allows us to write any approximation as a very simple
function of the target vector.

Lemma 3. Let x ∈ R
n be nonzero, let y ∈ R

n be an approximation of x and let
E ∈ R

n×n be given by

E =
1

xT x
(y − x)xT .

Then

y = (I + E)x, ‖E‖ = O

(‖x − y‖
‖x‖

)
, y → x, y 	= x.

In the special case of the 2-norm we have

‖E‖2 =
‖x − y‖2

‖x‖2 .

Proof. It is straightforward to verify that

(I + E)x = x +
1

xT x
(y − x)xT x = x + (y − x) = y.

Moreover, if z is any vector, then

‖Ez‖ ≤ 1
‖x‖22

‖y − x‖‖xT z‖ =
(‖xT ‖‖x‖

‖x‖22

)(‖x − y‖
‖x‖

)
‖z‖.

In the case of the 2-norm, we have

‖Ez‖2 ≤ ‖x − y‖2
‖x‖2 ‖z‖2

for all z 	= 0 and equality holds for z = x. This completes the proof.

3 Main Results

In the presence of rounding errors, any quasi-Newton method can written as

xk+1 = (I + Dk)
(
xk − (I + Ek)F ′(xk)−1F (xk)

)
. (3)

Here Dk ∈ R
n×n is a diagonal matrix which represents the rounding error in

the subtraction and Ek ∈ R
n×n measures the difference between the computed

correction and the correction used by Newton’s method. We simply treat the
update tk needed for the quasi-Newton method (2) as an approximation of the
update sk = F ′(xk)−1F (xk) needed for Newton’s method (1) and define Ek

using Lemma 3. It is practical to restate iteration (3) in terms of the function g,
i.e.,

xk+1 = (I + Dk)
(
g(xk) − EkF ′(xk)−1F (xk)

)
. (4)

6 C. C. Kjelgaard Mikkelsen et al.

We shall now analyze the behavior of iteration (4). For the sake of simplicity,
we will assume that there exist nonnegative numbers K, L, and M such that

∀x : ‖F ′(x)−1‖ ≤ K, ‖F ′(x) − F ′(y)‖ ≤ L‖x − y‖, ‖F ′(x)‖ ≤ M.

In reality, we only require that these inequalities are satisfied in a neighborhood
of a zero. We have the following generalization of Lemma 2.

Theorem 1. The functional iteration given by Eq. (4) satisfies

xk+1 − z = g(xk) − z − EkF ′(xk)−1F (xk)

+ Dk

[
g(xk) − EkF ′(xk)−1F (xk)

]
(5)

and

‖xk+1 − z‖ ≤ 1
2
LK‖xk − z‖2 + ‖Ek‖KM‖xk − z‖

+‖Dk‖
(

‖z‖ +
1
2
LK‖xk − z‖2 + ‖Ek‖KM‖xk − z‖

)
. (6)

Proof. It is straightforward to verify that Eq. (5) is correct. Inequality (6) follows
from Eq. (5) using the triangle inequality, Lemma 1, and Lemma 2. The second
occurrence of the term ‖g(xk)‖ can be bounded using the inequality

‖g(xk)‖ ≤ ‖z‖ + ‖g(xk) − z‖.

This completes the proof.

It is practical to focus on the case of z 	= 0 and restate inequality (6) as

rk+1 ≤ 1
2
LK(1 + ‖Dk‖)‖z‖r2k + ‖Ek‖KM(1 + ‖Dk‖)rk + ‖Dk‖ (7)

where rk is the normwise relative forward error given by

rk = ‖z − xk‖/‖z‖.

3.1 Stagnation

We assume that the sequences {Dk} and {Ek} are bounded. Let D and E be
nonnegative numbers that satisfy

‖Dk‖ ≤ D, ‖Ek‖ ≤ E. (8)

In this case, inequality (7) implies

rk+1 ≤ 1
2
LK(1 + D)‖z‖r2k + EMK(1 + D)rk + D.

How Accurate Does Newton Have to Be? 7

It is certain that the error will be reduced, i.e., rk+1 < rk when

D < rk −
(

1
2
LK(1 + D)‖z‖r2k + EMK(1 + D)r2k

)

= (1 − EMK(1 + D)) rk − 1
2
LK(1 + D)‖z‖r2k.

This condition is equivalent to the following inequality:

D − [1 − EMK(1 + D)] rk +
1
2
LK(1 + D)‖z‖r2k < 0.

This is an inequality of the second degree. The roots are

λ± =
[1 − EMK(1 + D)] ±

√
[1 − EMK(1 + D)]2 − 2LK(1 + D)D‖z‖
LK(1 + D)‖z‖ .

If D and E are sufficiently small then the roots are positive real numbers and
the error will certainly be reduced provided

λ− < rk < λ+.

It follows that we cannot expect to do better than

rk =
‖z − xk‖

‖z‖ ≈ λ−.

If D and E are sufficiently small, then a Taylor expansion ensures that

λ− ≈ D

(1 − EMK(1 + D))2

is a good approximation. We cannot expect to do better than rk+1 = λ−, but
the threshold of stagnation is not particularly sensitive to the size of E.

3.2 The Decay of the Error

We assume that the sequences {Dk} and {Ek} are bounded. Let D and E be
upper bounds that satisfy (8). Suppose that we are not near the threshold of
stagnation in the sense that

D ≤ Crk. (9)

for a (modest) constant C > 0. In this case, inequality (7) implies

rk+1 ≤ ρkrk, ρk =
1
2
LK(1 + D)‖z‖rk + EKM(1 + D) + C. (10)

If C < 1, then we may have ρk < 1, when rk and E are sufficiently small. This
explains when and why local linear decay is possible. We now strengthen our
assumptions. Suppose that there is a λ ∈ (0, 1] and C1 > 0 such that

‖Ek‖ ≤ C1r
λ
k (11)

8 C. C. Kjelgaard Mikkelsen et al.

and that we are far from the threshold of stagnation in the sense that

D ≤ C2r
1+λ
k (12)

for a (modest) constant C2 > 0. In this case, inequality (7) implies

rk+1 ≤
[
1
2
LK(1 + D)‖z‖r1−λ

k + C1KM(1 + D) + C2

]
r1+λ
k . (13)

This explains when and why local superlinear decay is possible.

3.3 Convergence

We cannot expect a quasi-Newton method to converge unless the subtraction
yk+1 = yk − tk is exact. Then Dk = 0 and inequality (7) implies

rk+1 ≤ ηkrk, ηk =
(

1
2
LK‖z‖rk + ‖Ek‖KM

)
.

We may have ηk < 1 for all k, provided E = sup ‖Ek‖ and r0 are sufficiently
small. This explains when and why local linear convergence is possible. We now
strengthen our assumptions. Suppose that there is a λ ∈ (0, 1] and a C > 0 such
that

∀k ∈ N : ‖Ek‖ ≤ Crλ
k .

In this case, inequality (7) implies

rk+1 ≤
(

1
2
LK‖z‖r1−λ

k + CKM

)
r1+λ
k .

This inequality allows us to establish local convergence of order at least 1 + λ.

3.4 How Accurate Does Newton Have to Be?

We will assume the use of normal IEEE floating point numbers and we will apply
the analysis given in Sect. 3.2. If we use the 1-norm, the 2-norm or the ∞-norm,
then we may choose D = u, where u is the unit roundoff. Suppose that Eqs. (11)
and (12) are satisfied with λ = 1. Then inequality (13) reduces to

rk+1 ≤
[
1
2
LK(1 + u)‖z‖ + C1KM(1 + u) + C2

]
r2k.

Due to the basic limitations of IEEE floating point arithmetic we cannot expect
to do better than

rk+1 = O(u), u → 0, u > 0.

It follows that we never need to do better than

‖Ek‖ = O(
√

u), u → 0, u > 0.

How Accurate Does Newton Have to Be? 9

4 Numerical Experiments

4.1 Computing Square Roots

Let α > 0 and consider the problem of solving the nonlinear equation

f(x) = x2 − α = 0

with respect to x > 0 using Newton’s method. Let rk denote the relative error
after k Newton steps. A simple calculation based on Lemma 2 yields

|rk+1| ≤ r2k/2, |rk| ≤ 2 (|r0|/2)2
k

.

We see that convergence is certain when |r0| < 2. The general case of α > 0 can
be reduced to the special case of α ∈ [1, 4) by accessing and manipulating the
binary representation directly. Let x0 : [1, 4] → R denote the best uniform linear
approximation of the square root function on the interval [1, 4]. Then

x0(α) = α/3 + 17/24, |r0(α)| ≤ 1/24.

In order to illustrate Theorem 1 we execute the iteration

xk+1 = xk − (1 + ek)f(xk)/f ′(xk)

where ek is a randomly generated number. Specifically, given ε > 0 we choose ek

such that |ek| is uniformly distributed in the interval [12ε, ε] and the sign of ek

is positive or negative with equal probability. Three choices, namely ε = 10−2

(left), ε = 10−8 (center) and ε = 10−12 (right) are illustrated in Fig. 1.
In each case, eventually the perturbed iteration reproduces either the com-

puter’s internal representation of the square root or stagnates with a relative
error that is essentially the unit roundoff u = 2−53 ≈ 10−16. When ε = 10−2

the quadratic convergence is lost, but the relative error is decreased by a fac-
tor of approximately ε = 10−2 from one iteration to the next, i.e., extremely
rapid linear convergence. Quadratic convergence is restored when ε is reduced
to ε = 10−8 ≈ √

u. Further reductions of ε have no effect on the convergence as
demonstrated by the case of ε = 10−12. We shall now explain exactly how far
this experiment supports the theory that is presented in this paper.

Stagnation. By Sect. 3.1 we expect that the level of stagnation is essentially
independent of the size of E, the upper bound on the relative error between
the computed step and the step needed for Newton’s method. This is clearly
confirmed by the experiment.

Error Decay. Since we are always very close to the positive zero of f(x) = x2−α
we may choose

L ≈ 2, K|z| ≈ 1/2, MK ≈ 1,

10 C. C. Kjelgaard Mikkelsen et al.

In the case of ε = 10−2, Fig. 1 (left) shows that we satisfy inequality (9) with
D = u and C = ε < 1, i.e.,

u ≤ εrk, 0 ≤ k < 5.

By Eq. (10) we must have

rk+1 ≤ ρkrk, ρk ≈ 2ε, 0 < k < 5.

This is exactly the linear convergence that we have observed. In the case of
ε = 10−8, Fig. 1 (center) shows that we satisfy inequality (12) with C2 = 1 and
λ = 1, i.e.,

u ≤ r2k, k = 0, 1.

By inequality (13) we must have quadratic decay in the sense that

rk+1 ≤ Cr2k, C ≈ 3
2
, k = 0, 1.

Manual inspection of Fig. 1 reveals that the actual constant is close to 1 and
certainly smaller than C ≈ 3

2 . By Sect. 3.4 we do not expect any benefits from
using an ε that is substantially smaller than

√
u. This is also supported by the

experiment.

4.2 Constrained Molecular Dynamics

The objective is to solve a system of differential algebraic equations

q′(t) = v(t),

Mv′(t) = f(q(t)) − g′(q(t))T λ(t),
g(q(t)) = 0.

Here q and v are vectors that represent the position and velocity of all atoms, M
is a nonsingular diagonal mass matrix, f represents the external forces acting on
the atoms and −g′(q)T λ represents the constraint forces. Here g′ is the Jacobian
of the constraint function g. The standard algorithm for this problem is the
SHAKE algorithm [10]. It uses a pair of staggered uniform grids and takes the
form

vn+1/2 = vn−1/2 + hM−1
(
f(qn) − g′(qn)T λn

)
,

qn+1 = qn + hvn+1/2,

g(qn+1) = 0, (14)

where h > 0 is the fixed time step and qn ≈ q(tn), vn+ 1
2

≈ v(tn+ 1
2
), where

tn = nh and tn+ 1
2

= (n+1/2)h. Equation (14) is really a nonlinear equation for
the unknown Lagrange multiplier λn, specifically

g(φn(λ)) = 0, φn(λ) = qn + h(vn− 1
2

+ hM−1(f(qn) − g′(qn)T λ)).

How Accurate Does Newton Have to Be? 11

The relevant Jacobian is the matrix

An(λ) = (g(φn(λ)))′ = g′(φn(λ))M−1g′(qn)T .

The matrix An(λ) is close to the constant symmetric matrix Sn given by

Sn = g′(qn)M−1g′(qn)T

simply because φn(λ) = qn + O(h) as h → 0 and h > 0. It is therefore natural
to investigate if the constant matrix S−1

n is a good approximation of A−1
n (λ).

For this experiment, we executed a production molecular dynamics run using
the GROMACS [1] package. We replaced the constraint solver used by GRO-
MACS’s SHAKE function with a quasi-Newton method based on the matrix Sn.
Our experiment was based on GROMACS’s Lysozyme in Water Tutorial [6]. We
simulated a hen egg white lysozyme [9] molecule submerged in water inside a
cubic box. Lysozyme is a protein that consists of a single polypeptide chain of
129 amino acid residues cross-lined at 4 places by disulfide bonds between cys-
teine side-chains in different parts of the molecule. Lysozyme has 1960 atoms and
1984 bond length constraints. Before executing the production run, we added
ions to the system to make it electrically neutral. The energy of the system
was minimized using the steepest descent algorithm until the maximum force
of the system was below 1000.0 kJ/(mol·nm). Then, we executed 100 ps of a
temperature equilibration step using a V-Rescale thermostat in an NVT ensem-
ble to stabilize the temperature of the system at 310 K. To finish, we stabilized
the pressure of the system at 1 Bar for another 100 ps using a V-Rescale ther-
mostat and a Parrinello-Rahman barostat in an NPT ensemble. We executed
a 100 ps production run with a 2 fs time step using an NPT ensemble with a
V-Rescale thermostat and a Parrinello-Rahman barostat with time constants of
0.1 and 2 ps, respectively. We collected the results of the constraint solver every
5 ps starting at time-step 5 ps, for a total of 20 sample points. Specifically, we
recorded the normwise relative error rk = ‖λn − xk‖2/‖λn‖2 as a function of
the number k of quasi-Newton steps using the symmetric matrix Sn instead of
the nonsymmetric matrix An and we recorded ‖Ek‖2 = ‖sk − tk‖2/‖sk‖2 where
tk is needed for a quasi-Newton step and sk is needed a Newton step. By (10)
we have rk+1 ≤ ρkrk, but we cannot hope for more than rk+1 ≈ ρkrk where
ρk = O(‖Ek‖2) and this is indeed what we find in the Fig. 2c until we hit the
level of stagnation where the impact of rounding errors is keenly felt.

5 Related Work

It is well-known that Newton’s method has local quadratic convergence sub-
ject to certain regularity conditions. The simplest proof known to us is due
to Mysovskii [7]. Dembo et al. [2] analyzed the convergence of quasi-Newton
methods in terms of the ratio between the norm of linear residual, i.e., rk =
F (xk) − F ′(xk)tk and the norm of the nonlinear residual F (xk). Tisseur [11]
studied the impact of rounding errors in terms of the backward error associated

12 C. C. Kjelgaard Mikkelsen et al.

1
1.

5
2

2.
5

3
3.

5
4

-1
6

-1
4

-1
2

-1
0-8-6-4-20

log10(relative error))

k=
0

k=
1

k=
2

k=
3

k=
4

k=
5

k=
6

k=
7

1
1.

5
2

2.
5

3
3.

5
4

-1
6

-1
4

-1
2

-1
0-8-6-4-20

log10(relative error))

k=
0

k=
1

k=
2

k=
3

1
1.

5
2

2.
5

3
3.

5
4

-1
6

-1
4

-1
2

-1
0-8-6-4-20

log10(relative error))

k=
0

k=
1

k=
2

k=
3

F
ig
.
1
.
T

h
e

im
p
a
ct

o
f
in

a
cc

u
ra

ci
es

o
n

th
e

co
n
v
er

g
en

ce
o
f
N

ew
to

n
’s

m
et

h
o
d

fo
r

a
co

m
p
u
ti

n
g

sq
u
a
re

ro
o
ts

.
N

ew
to

n
’s

co
rr

ec
ti

o
n
s

h
av

e
b
ee

n
p
er

tu
rb

ed
w

it
h

ra
n
d
o
m

re
la

ti
v
e

er
ro

rs
o
f
si

ze
ε

≈
1
0
−
2

(l
ef

t)
,
ε

≈
1
0
−
8

(c
en

te
r)

a
n
d

ε
≈

1
0
−
1
2
.
In

ea
ch

ca
se

,
th

e
la

st
it

er
a
ti

o
n

p
ro

d
u
ce

s
a
n

a
p
p
ro

x
im

a
ti

o
n

th
a
t

m
a
tc

h
es

th
e

co
m

p
u
te

r’
s

va
lu

e
o
f

th
e

sq
u
a
re

ro
o
t

a
t

m
a
n
y

sa
m

p
le

p
o
in

ts
.

In
su

ch
ca

se
s,

th
e

co
m

p
u
te

d
re

la
ti

v
e

er
ro

r
is

0
.
T

h
er

ef
o
re

,
it

is
n
o
t

p
o
ss

ib
le

to
p
lo

t
a

d
a
ta

p
o
in

t
a
n
d

th
e

la
st

cu
rv

e
o
f
ea

ch
p
lo

t
a
re

d
is

co
n
ti

n
u
o
u
s.

How Accurate Does Newton Have to Be? 13

0
0.

5
1

1.
5

2
2.

5
3

3.
5

4
4.

5
5

tim
e

st
ep

↓1
0

4

-1
6

-1
4

-1
2

-1
0-8-6-4-2

log10 relative constraint violation
k=

0
k=

1
k=

2
k=

3
k=

4
k=

5
k=

6

(a
)
C
on

st
ra
in
t
vi
ol
at
io
n

0
0.

5
1

1.
5

2
2.

5
3

3.
5

4
4.

5
5

tim
e

st
ep

↓1
0

4

-1
2

-1
0-8-6-4-20

log10 relative error

k=
0

k=
1

k=
2

k=
3

k=
4

k=
5

k=
6

(b
)
R
el
at
iv
e
er
ro
r

0
0.

5
1

1.
5

2
2.

5
3

3.
5

4
4.

5
5

tim
e

st
ep

↓1
0

4

0.
55

0.
56

0.
57

80

0
0.

5
1

1.
5

2
2.

5
3

3.
5

4
4.

5
5

tim
e

st
ep

↓1
0

4

0.
96

0.
98

81

0
0.

5
1

1.
5

2
2.

5
3

3.
5

4
4.

5
5

tim
e

st
ep

↓1
0

4

0.
99

99

0.
99

99
51

82

0
0.

5
1

1.
5

2
2.

5
3

3.
5

4
4.

5
5

tim
e

st
ep

↓1
0

4

1

1.
00

00
5

1.
00

01

83

0
0.

5
1

1.
5

2
2.

5
3

3.
5

4
4.

5
5

tim
e

st
ep

↓1
0

4

1

1.
01

1.
02

84

0
0.

5
1

1.
5

2
2.

5
3

3.
5

4
4.

5
5

tim
e

st
ep

↓1
0

4

01020

85

(c
)
V
al
id
at
io
n

F
ig
.
2
.

D
a
ta

g
en

er
a
te

d
d
u
ri

n
g

a
si

m
u
la

ti
o
n

o
f

ly
so

zy
m

e
in

w
a
te

r
u
si

n
g

G
R

O
M

A
C

S
.

T
h
e

G
R

O
M

A
C

S
so

lv
er

h
av

e
b
ee

n
re

p
la

ce
d

w
it

h
a

q
u
a
si

-N
ew

to
n

m
et

h
o
d

th
a
t

u
se

s
a

fi
x
ed

sy
m

m
et

ri
c

a
p
p
ro

x
im

a
ti

o
n

o
f

th
e

J
a
co

b
ia

n
.

F
ig

u
re

2
a

is
m

a
in

ly
o
f

in
te

re
st

to
co

m
p
u
ta

ti
o
n
a
l

ch
em

is
ts

.
It

sh
ow

s
th

a
t
th

e
m

a
x
im

u
m

re
la

ti
v
e

co
n
st

ra
in

t
v
io

la
ti

o
n

a
lw

ay
s
st

a
g
n
a
te

s
a
t
a

le
v
el

th
a
t
is

es
se

n
ti

a
ll
y

th
e

IE
E

E
d
o
u
b
le

p
re

ci
si

o
n

u
n
it

ro
u
n
d
o
ff

a
ft

er
6

q
u
a
si

-N
ew

to
n

st
ep

s.
T

h
e

co
n
v
er

g
en

ce
is

a
lw

ay
s

li
n
ea

r
a
n
d

th
e

ra
te

o
f

co
n
v
er

g
en

ce
is

μ
≈

1
0
−
2
.

F
ig

u
re

2
b

sh
ow

s
th

e
d
ev

el
o
p
m

en
t

o
f

th
e

re
la

ti
v
e

er
ro

r
r k

b
et

w
ee

n
th

e
re

le
va

n
t

ze
ro

z
,

i.
e.

,
th

e
L
a
g
ra

n
g
e

m
u
lt

ip
li
er

fo
r

th
e

cu
rr

en
t

ti
m

e
st

ep
a
n
d

th
e

a
p
p
ro

x
im

a
ti

o
n
s

g
en

er
a
te

d
b
y

k
st

ep
s

o
f

th
e

q
u
a
si

-N
ew

to
n

m
et

h
o
d
.

T
h
e

co
n
v
er

g
en

ce
is

a
lw

ay
s

li
n
ea

r
a
n
d

th
e

ra
te

o
f

co
n
v
er

g
en

ce
is

μ
≈

1
0
−
2
.

F
ig

u
re

2
c

p
ro

v
id

es
p
a
rt

ia
l

va
li
d
a
ti

o
n

o
f

a
th

eo
re

ti
ca

l
re

su
lt

.
S
p
ec

ifi
ca

ll
y,

th
e

fr
a
ct

io
n
s

ν
k

=
r k

+
1
/
(r

k
‖E

k
‖ 2

)
a
re

p
lo

tt
ed

fo
r

k
=

0
,1

,2
,3

,4
,5

.
W

h
en

ν
k

is
m

o
d
es

t,
w

e
h
av

e
ex

p
er

im
en

ta
l
v
er

ifi
ca

ti
o
n

th
a
t

th
e

ra
te

o
f
co

n
v
er

g
en

ce
is

es
se

n
ti

a
ll
y

‖E
k
‖.

14 C. C. Kjelgaard Mikkelsen et al.

with approximating the Jacobians and computing the corrections, as well as the
errors associated with computing the residuals. Here we have pursued a third
option by viewing the correction tk as an approximation of the correction sk

needed for an exact Newton step. Tisseur found that Newton’s method stag-
nate at a level that is essentially independent of the stability of the solver and
we have confirmed that this is true for quasi-Newton methods in general. It is
clear to us from reading Theorem 3.1 of Dennis and Moore’s paper [3] that they
would instantly recognize Lemma 3, but we cannot find the result stated explic-
itly anywhere. Forsgren [4] uses a stationary method for solving linear systems
to construct a quasi-Newton method that is so exact that the convergence is
quadratic. Section 4.1 contains a simple illustration of this phenomenon.

6 Conclusions

Quasi-Newton methods can also be analyzed in terms of the relative error
between Newton’s correction and the computed correction. We achieve quadratic
convergence when this error is O(

√
u). This fact represent an opportunity for

improving the time-to-solution for nonlinear equations. General purpose libraries
for solving sparse linear systems apply pivoting for the sake of numerical accuracy
and stability. In the context of quasi-Newton methods we do not need maximum
accuracy. Rather, there is some freedom to pivot for the sake of parallelism. If we
fail to achieve quadratic convergence, then we are likely to still converge rapidly.
It is therefore worthwhile to develop sparse solvers that pivot mainly for the sake
of parallelism.

Acknowledgments. Prof. I. Argyros commented on an early draft of this paper and
provided the reference to the work of I. P. Mysovskii. The first author is supported
by eSSENCE, a collaborative e-Science programme funded by the Swedish Research
Council within the framework of the strategic research areas designated by the Swedish
Government. This work has been partially supported by the Spanish Ministry of Science
and Innovation (contract PID2019-107255GB-C21/AEI/10.13039/501100011033), by
the Generalitat de Catalunya (contract 2017-SGR-1328), and by Lenovo-BSC Contract-
Framework Contract (2020).

References

1. Berendsen, H., van der Spoel, D., van Drunen, R.: GROMACS: a message-passing
parallel molecular dynamics implementation. CPC 91(1), 43–56 (1995)

2. Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact Newton methods. SIAM J.
Numer. Anal. 19(2), 400–408 (1982)

3. Dennis, J.E., More, J.J.: Quasi-Newton methods, motivation and theory. SIAM
Rev. 19(1), 46–89 (1977)

4. Forsgren, A.: A sufficiently exact inexact Newton step based on reusing matrix
information. TRITA-MAT OS7, Department of Mathematics, KTH, Stockholm,
Sweden (2009)

5. Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. No. 16 in
Frontiers in Applied Mathematics. SIAM, Philadelphia (1995)

How Accurate Does Newton Have to Be? 15

6. Lemkul, J.A.: GROMACS Tutorial Lysozyme in Water. https://www.mdtutorials.
com/gmx/lysozyme/index.html

7. Mysovskii, I.P.: On the convergence of Newton’s method. Trudy Mat. Inst. Steklova
28, 145–147 (1949). (In Russian)

8. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Sev-
eral Variables. Computer Science and Applied Mathematics, Academic Press, New
York (1970)

9. RSCB: Protein Data Bank. https://www.rcsb.org/structure/1AKI
10. Ryckaert, J.P., Ciccotti, G., Berendsen, H.J.: Numerical integration of the Carte-

sian equations of motion of a system with constraints: molecular dynamics of n-
alkanes. J. Comput. Phys. 23(3), 327–341 (1977)

11. Tisseur, F.: Newton’s method in floating point arithmetic and iterative refinement
of generalized eigenvalue problems. SIAM J. Matrix Anal. Appl. 22(4), 1038–1057
(2001)

https://www.mdtutorials.com/gmx/lysozyme/index.html
https://www.mdtutorials.com/gmx/lysozyme/index.html
https://www.rcsb.org/structure/1AKI

General Framework for Deriving
Reproducible Krylov Subspace
Algorithms: BiCGStab Case

Roman Iakymchuk1,2(B) , Stef Graillat2, and José I. Aliaga3

1 Ume̊a University, Ume̊a, Sweden
riakymch@cs.umu.se

2 Sorbonne Université, CNRS, LIP6, Paris, France
{roman.iakymchuk,stef.graillat}@lip6.fr

3 Universitat Jaume I, Castellón de la Plana, Spain
aliaga@uji.es

Abstract. Parallel implementations of Krylov subspace algorithms often
help to accelerate the procedure to find the solution of a linear system.
However, from the other side, such parallelization coupled with asyn-
chronous and out-of-order execution often enlarge the non-associativity of
floating-point operations. This results in non-reproducibility on the same
or different settings. This paper proposes a general framework for deriv-
ing reproducible and accurate variants of a Krylov subspace algorithm.
The proposed algorithmic strategies are reinforced by programmability
suggestions to assure deterministic and accurate executions. The frame-
work is illustrated on the preconditioned BiCGStab method for the solu-
tion of non-symmetric linear systems with message-passing. Finally, we
verify the two reproducible variants of PBiCGStab on a set matrices from
the SuiteSparse Matrix Collection and a 3D Poisson’s equation.

Keywords: Reproducibility · accuracy · floating-point expansion ·
long accumulator · fused multiply-add · preconditioned BiCGStab

1 Introduction

Solving large and sparse linear systems of equations appears in many scien-
tific applications spanning from circuit and device simulation, quantum physics,
large-scale eigenvalue computations, and up to all sorts of applications that
include the discretization of partial differential equations (PDEs) [3]. In this case,
Krylov subspace methods fulfill the roles of standard linear algebra solvers [15].
The Conjugate Gradient (CG) method can be considered as a pioneer of such
iterative solvers operating on symmetric and positive definite (SPD) systems.
Other Krylov subspace methods have been proposed to find the solution of more
general classes of non-symmetric and indefinite linear systems. These include the
Generalized Minimal Residual method (GMRES) [16], the Bi-Conjugate Gradi-
ent (BiCG) method [7], the Conjugate Gradient Squared (CGS) method [17],

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 16–29, 2023.
https://doi.org/10.1007/978-3-031-30442-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_2&domain=pdf
http://orcid.org/0000-0003-2414-700X
https://doi.org/10.1007/978-3-031-30442-2_2

General Framework for Deriving Reproducible Krylov Subspace Algorithms 17

and the widely used BiCG stabilized (BiCGStab) method by Van der Vorst [18]
as a smoother converging version of the above two. Preconditioning is usually
incorporated in real implementations of these methods in order to accelerate the
convergence of the methods and improve their numerical features.

One would expect that the results of the sequential and parallel implemen-
tations of Krylov subspace methods to be identical, for instance, in the number
of iterations, the intermediate and final residuals, as well as the sought-after
solution vector. However, in practice, this is not often the case due to different
reduction trees – the Message Passing Interface (MPI) libraries offer up to 14
different implementations for reduction –, data alignment, instructions used, etc.
Each of these factors impacts the order of floating-point operations, which are
commutative but not associative, and, therefore, violates reproducibility. We aim
to ensure identical and accurate outputs of computations, including the resid-
uals/errors, as in our view this is a way to ensure robustness and correctness
of iterative methods. The robustness and correctness in this case have a three-
fold goal: reproducibility1 of the results with the accuracy guarantee as well as
sustainable (energy-efficient) algorithmic solutions.

In general, Krylov subspace algorithms are built from three components:
sparse-matrix vector multiplication Ax (SpMV), dot product between two vec-
tors (x, y), and scaling a vector by a scalar with the following addition of two
vectors x := αx + y (axpy). If a block data distribution is used, only axpy is
perfomed locally, while SpMV needs to gather the full operand vector, e.g. via
the MPI Allgatherv() collective, and dot product requires communication and
computation, e.g. via the MPI Allreduce() collective, among MPI processes.

In this paper, we aim to re-ensure reproducibility of Krylov subspace algo-
rithms in parallel environments. Our contributions are the following:

– we propose a general framework for deriving reproducible Krylov subspace
algorithms. We follow the bottom-up approach and ensure reproducibility of
Krylov subspace algorithms via reproduciblity of their components, includ-
ing the global communication. We build our reproducible solutions on the
ExBLAS [4] approach and its lighter version.

– even when applying our reproducible solutions, we particularly stress the
importance of arranging computations carefully, e.g. avoid possibly replace-
ments by compilers of a ∗ b + c in the favor of fused multiply-add (fma) oper-
ation or postponing divisions in case of data initialization (i.e. divide before
use). We refer to the 30-year-old but still up-to-date guide “What every com-
puter scientist should know about floating-point arithmetic” by Goldberg [9].

– we verify the applicability of the proposed method on the preconditioned
BiCGStab algorithm. We derive two reproducible variants and test them on
a set of SuiteSparse matrices and a 3D Poisson’s equation.

This article is structured as follows. Section 2 reviews several aspects of com-
puter arithmetic as well as the ExBLAS approach. Section 3 proposes a general

1 Reproducibility is the ability to obtain a bit-wise identical and accurate result for
multiple executions on the same data in various parallel environments.

18 R. Iakymchuk et al.

framework for constructing reproducible Krylov subspace methods. Section 4
introduces the preconditioned BiCGStab algorithms and describes in details
its MPI implementation. We evaluate the two reproducible implementations of
PBiCGStab in Sect. 5. Finally, Sect. 6 draws conclusions.

2 Background

At first, we will use a floating-point arithmetic that consists in approximating
real numbers by numbers that have a finite, fixed-precision representation adher-
ing to the IEEE 754 standard. The IEEE 754 standard requires correctly rounded
results for the basic arithmetic operations (+,−,×, /,

√
, fma). It means that

they are performed as if the result was first computed with an infinite precision
and then rounded to the floating-point format. The correct rounding criterion
guarantees a unique, well-defined answer, ensuring bit-wise reproducibility for a
single operation; correct rounding alone is not necessary to achieve reproducibil-
ity. Emerging attention to reproducibility strives to draw more careful atten-
tion to the problem by the computer arithmetic community. It has led to the
inclusion of error-free transformations (EFTs) for addition and multiplication
– to return the exact outcome as the result and the error – to assure numer-
ical reproducibility of floating-point operations, into the revised version of the
754 standard in 2019. These mechanisms, once implemented in hardware, will
simplify our reproducible algorithms – like the ones used in the ExBLAS [4],
ReproBLAS [6], OzBLAS [12] libraries – and boost their performance.

There are two approaches that enable the addition of floating-point numbers
without incurring round-off errors or with reducing their impact. The main idea
is to keep track of both the result and the error during the course of computa-
tions. The first approach uses EFT to compute both the result and the rounding
error and stores them in a floating-point expansion (FPE), which is an uneval-
uated sum of p floating-point numbers, whose components are ordered in mag-
nitude with minimal overlap to cover the whole range of exponents. Typically,
FPE relies upon the use of the traditional EFT for addition that is twosum [10]
and for multiplication that is twoprod EFT [13]. The second approach projects
the finite range of exponents of floating-point numbers into a long vector so
called a long (fixed-point) accumulator and stores every bit there. For instance,
Kulisch [11] proposed to use a 4288-bit long accumulator for the exact dot prod-
uct of two vectors composed of binary64 numbers; such a large long accumulator
is designed to cover all the severe cases without overflows in its highest digit.

The ExBLAS project2 is an attempt to derive fast, accurate, and reproducible
BLAS library by constructing a multi-level approach for these operations that are
tailored for various modern architectures with their complex multi-level mem-
ory structures. On one side, this approach is aimed to be fast to ensure similar
performance compared to the non-deterministic parallel versions. On the other
side, the approach is aimed to preserve every bit of information before the final

2 ExBLAS repository: https://github.com/riakymch/exblas.

https://github.com/riakymch/exblas

General Framework for Deriving Reproducible Krylov Subspace Algorithms 19

rounding to the desired format to assure correct-rounding and, therefore, repro-
ducibility. Hence, ExBLAS combines together long accumulator and FPE into
algorithmic solutions as well as efficiently tunes and implements them on var-
ious architectures, including conventional CPUs, Nvidia and AMD GPUs, and
Intel Xeon Phi co-processors (for details we refer to [4]). Thus, ExBLAS assures
reproducibility through assuring correct-rounding.

while (τ > τmax)

Step Operation Kernel Communication
S1 : d := Ap SpMV Allgatherv
S2 : ρ := β/< p, d > dot product Allreduce
S3 : r := r − ρd axpy –
S4 : y := M−1r Apply preconditioner depends
S5 : p := y + αp axpy(-type) –
S6 : τ :=

√
< r, r > dot product + sqrt Allreduce

end while

Fig. 1. Standard preconditioned Krylov subspace method with annotated BLAS ker-
nels and message-passing communication.

Our interest in this article is the dot product of two vectors, which is a crucial
fundamental BLAS operation. The exdot algorithm is based on the reproducible
parallel reduction and the twoprod EFT: the algorithm accumulates the result
and the error of twoprod to same FPEs and then follows the reduction scheme.
We derive its distributed version with two FPEs underneath (one for the result
and the other for the error) that are merged at the end of computations.

3 General Framework for Reproducible Krylov Solvers

This section provides the outline of a general framework for deriving a repro-
ducible version of any traditional Krylov subspace method. The framework is
based on two main concepts: 1) identifying the issues caused by parallelization
and, hence, the non-associativity of floating-point computations; 2) carefully
mitigating these issues primarily with the help of computer arithmetic tech-
niques as well as programming guidelines. The framework was implicitly used
for the derivation of the reproducible variants of the Preconditioned Conjugate
Gradient (PCG) method [1,2].

The framework considers the parallel platform to consist of K processes (or
MPI ranks), denoted as P1, P2, . . . , PK . In this, the coefficient matrix A is parti-
tioned into K blocks of rows (A1, A2, . . ., Ak), where each Pk stores one row-block
with the k-th distribution block Ak ∈ R

pk×n, and n =
∑K

k=1 pk. Additionally,
vectors are partitioned and distributed in the same way as A. For example, the
residual vector r is partitioned as r1, r2, . . ., rK and rk is stored in Pk. Besides,
scalars are replicated on all K processes.

20 R. Iakymchuk et al.

Identifying Sources of Non-reproducibility. The first step is to identify
sources of non-associativy and, thus, non-reproducibility of the Krylov subspace
methods in parallel environments. As it can verify in Fig. 1, there are four com-
mon operations as well as message-passing communication patterns associated
with them: sparse matrix-vector product (SpMV) and Allgatherv for gathering
the vector3, dot product with the Allreduce collective, scaling a vector with
the following addition of two vectors (axpy(-type)), and the application of the
preconditioner. Hence, we investigate each of them.

In general, associativity and reproducibility are not guaranteed when there
is perturbation of floating-point operations in parallel execution. For instance,
while invoking the MPI Allreduce() collective operation cannot ensure the same
result (its execution path) as it depends on the data, the network topology, and
the underlying algorithmic implementation. Under these assumptions, axpy and
SpMV are associativity-safe as they are performed locally on local slices of data.
The application of preconditioner can also be considered safe, e.g. the Jacobi pre-
conditioner, until all operations are reduction-free; more complex preconditioners
will certain raise an issue. Thus, the main issue of non-determinism emerges from
parallel reductions (steps S3 and S6 in Fig. 1).

Re-assuring Reproducibility. We construct our approach for reassuring
reproducibility by primarily targeting dot products and parallel reductions.
Note that the non-deterministic implementation of the Krylov subspace method
utilizes the dot routine from a BLAS library like Intel MKL followed by
MPI Allreduce(). Thus, we propose to refine this procedure into four steps:

– exploit the ExBLAS and its lighter FPE-based versions to build reproducible
and correctly-rounded dot product;

– extend the ExBLAS- and FPE-based dot products to distributed memory
by employing MPI Reduce(). This collective acts on either long accumula-
tors or FPEs. For the ExBLAS approach, since the long accumulator is an
array of long integers, we apply regular reduction. Note that we may need to
carry an extra intermediate normalization after the reduction of 2K−1 long
accumulators, where K = 64 − 52 = 12 is the number of carry-safe bits per
each digit of long accumulator. For the FPE approach, we define the MPI
operation that is based on the twosum EFT;

– rounding to double: for long accumulators, we use the ExBLAS-native
Round() routine. To guarantee correctly rounded results of the FPE-based
computations, we employ the NearSum algorithm from [14] for FPEs;

– distribute the result of dot product to the other processes by MPI Bcast()
as only master performs rounding.

It is evident that the results provided by ExBLAS dot are both correctly-
rounded and reproducible. With the lightweight dot, we aim also to be generic
and, hence, we provide the implementation that relies on FPEs of size eight
3 Certainly, there are better alternatives for banded or similar sparse matrices, but

using MPI Allgatherv is the simplified solution for nonstructured sparse matrices.

General Framework for Deriving Reproducible Krylov Subspace Algorithms 21

with the early-exit technique. Additionally, we add a check for both FPE-based
implementations for the case when the condition number and/or the dynamic
range are too large and we cannot keep every bit of information. Then, the
warning is thrown, containing also a suggestion to switch to the ExBLAS-based
implementation. But, note that these lightweight implementations are designed
for moderately conditioned problems or with moderate dynamic range in order
be accurate, reproducible, but also high performing, since the ExBLAS version
can be very resource demanding, specially on the small core count. To sum up,
if the information about the problem is know in advance, it is worth pursuing
the lightweight approach.

Programmability Effort. It is important to note that compiler optimization
and especially the usage of the fused-multiply-and-add (fma) instruction, which
performs a ∗ b + c with single rounding at the end, may lead to some non-
deterministic results. For instance, in the SpMV computation, each MPI rank
computes its dedicated part dk of the vector d by multiplying a block of rows Ak

by the vector p. Since the computations are carried locally and sequentially, they
are deterministic and, thus, reproducible. However, some parts of the code like
a∗b+c∗d∗e and a+ = b∗c – present in the original implementation of PBiCGStab
– may not always provide with the same result [19]. This is due to the fact that for

Compute preconditioner for A M

Set starting guess x0

Initialize r0 := b − Ax0, p0 := r0, τ0 := r0 2, j := 0 (iteration count)

while (τ j > τmax)
Step Operation Kernel Comm
S1 : s̃j := M−1pj Apply precond. –
S2 : sj := As̃j SpMV Allgatherv
S3 : αj := < r0, rj > / < r0, sj > dot product Allreduce
S4 : qj := rj − αjsj axpy-like –
S5 : ỹj := M−1qj Apply precond. –
S6 : yj := Aỹj SpMV Allgatherv
S7 : ωj := < qj , yj > / < yj , yj > Two dot products Allreduce
S8 : xj+1 := xj + αjpj + ωjqj Two axpy –
S9 : rj+1 := qj − ωjyj axpy-like –
S10 : βj := <r0,rj+1>

<r0,rj>
∗ αj

ωj dot product Allreduce
S11 : τ j+1 := rj+1

2 dot product + sqrt Allreduce
S12 : pj+1 := rj+1 + βj(pj − ωjsj) Two axpy-like –

end while

Fig. 2. Formulation of the PBiCGStab solver annotated with computational kernels
and communication. The threshold τmax is an upper bound on the relative residual for
the computed approximation to the solution. In the notation, <·, ·> computes the dot
(inner) product of its vector arguments.

22 R. Iakymchuk et al.

performance reasons, the C++ language standard allows compilers to change the
execution order of this type of operation. It also allows merging multiplications
and summations with fused multiply-add (fma) instructions. Hence, a compiler
might translate a∗ b+ c∗d to two multiplications t1 = a∗ b and t2 = c∗d, and a
subsequent summation t1+ t2; it might generate a single multiplication t = c∗d
with a subsequent fma (fma(a, b, t)), which gives a slightly different result; or
it may even compute t = a ∗ b first and then use the fma (fma(c, d, t)). Thus,
we advise to instruct compilers to use fma explicitly via std::fma in C++ 11,
assuming the underlying architecture supports fma.

4 BiCGStab

The classic Biconjugate Gradient Stabilized method (BiCGStab) [18] was pro-
posed as a fast and smoothly converging variant of the BiCG [7] and CGS [17]
methods. We consider the linear system Ax = b, where the coefficient matrix
A ∈ R

n×n is sparse with nz nonzero entries; b ∈ R
n is the right-hand side vector;

and x ∈ R
n is the sought-after solution vector. The algorithmic description of

the classical iterative PBiCGStab is presented in Fig. 2. For simplicity, we inte-
grate the Jacobi preconditioner [15] in our implementation, which is composed
of the diagonal elements of the matrix (M = diag(A)), whereas its application is
conducted on a vector and requires an element-wise multiplication of two vectors.

As described in Sect. 3, the framework includes a reproducible implementa-
tion of the most common operations in a parallel implementation of a Krylov
subspace method. Therefore, we next perform a communication and computa-
tion analysis of a message-passing implementation of the BiCGStab solver. From
there, we derive the reproducible version by following the guide from Sect. 3.

Message-Passing Parallel BiCGStab Implementation. For clarity, here-
after we will drop the superindices that denote the iteration count in the variable
names. Thus, for example, x(j) becomes x, where the latter stands for the storage
space employed to keep the sequence of approximations x(0), x(1), x(2), . . . com-
puted during the iterative process. Taking into account these previous consid-
erations, we analyze the different computational kernels (S1–S12) that compose
the loop body of a single PBiCGStab iteration in Fig. 2.

Sparse Matrix-Vector Product (S2, S6): This kernel needs as input operands:
the coefficient matrix A, which is distributed by blocks of rows, and the corre-
sponding vector (s̃ or ỹ), which is partitioned and distributed using the same
partitioning as A. For simplicity, we just explain below how S2 is computed.

Prior to computing this kernel, we need to obtain a replicated copy of the
distributed vector s̃ in all processes, denoted as s̃ → e; vector e is the only
array that is replicated in all processes. We can recognize here a communication
stage, but, after that, each process can then compute its local piece of the output
vector v concurrently: Pk : sk = Ak e. This kernel thus requires assembling the
distributed pieces of the vector s̃ into a single vector e that is replicated in all

General Framework for Deriving Reproducible Krylov Subspace Algorithms 23

processes (in MPI, for example via MPI Allgatherv()). The computation can
then proceed in parallel, yielding the vector result s in the expected distributed
state with no further communication involved. At the end, each MPI process
owns the corresponding piece of the computed vector.

dot Products (S3, S7, S10, S11): The next kernel in the loop body is the dot
product in the step S3 between the distributed vectors r0 and s. Here, each
process can compute concurrently a partial result Pk : ρk = <r0k, sk> and when
all processes have finished this partial computation, these intermediate values
have to be reduced into a globally-replicated scalar α := σ/(ρ1 + ρ2 + · · · + ρK).
We can apply the same idea to the dot products in the steps S7, S10 and S11,
yielding a total of five process synchronizations (in MPI, via MPI Allreduce())
since all scalars are globally-replicated, and communications in S10 and S11 can
be merged in a single MPI Allreduce().

axpy(-type)Vector Updates (S4, S8, S9, S12): The next kernel is the axpy-
like kernel in the step S4, which involves the distributed vectors q, r, s and the
globally-replicated scalar α. The operations in the steps S8, S9, and S12 follow
the same idea because all scalars are globally-replicated. In these types of kernels,
all processes can perform their local parts of the computation to obtain the result
without any communication: Pk : qk = rk − α sk.

Application of the Preconditioner (S1, S5): The kernel in the step S1 consists
of applying the Jacobi preconditioner M , scaling the vector p by the diagonal
of the matrix. Therefore, it can be executed in parallel by all processes because
each of them stores a different set of the diagonal elements (those related with
the piece of the matrix that it stores) and the corresponding set of the vector
elements: Pk : s̃k = M−1

k pk. The same procedure can be applied on the step S5
to scale the vector q, resulting in ỹ.

5 Experimental Results

In this section, we report a variety of numerical experiments to examine the
convergence, scalability, accuracy, and reproducibility of the original and two
reproducible versions of PBiCGStab. In our experiments, we employed IEEE754
double-precision arithmetic and conducted them on the SkyLake partition at
Fraunhofer with a dual Intel Xeon Gold 6132 CPU @2.6 GHz, 28 cores, and
192 GB of memory. Nodes are connected with the 54 Gbit/s FDR Infiniband.

Evaluation on the SuiteSparse Matrices. We carried out tests on a range
of different linear systems from the SuiteSparse matrix collection on a sin-
gle SkyLake node using 1, 2, 4, 8, 16, and 28 (full) cores. Table 1 lists a set
of tested matrices with the number of rows/columns N and the number of
nonzeros nnz. The right-hand side vector b in the iterative solvers was always
initialized to the product Ad, d = 1√

N
(1, . . . , 1)T , where N is the number of

rows/columns of A. However, in both ExBLAS- and FPE-based versions, marked

24 R. Iakymchuk et al.

as ReproPBiCGStab in the table, we computed b = Ad, d = (1, . . . , 1)T and then
scaled b by 1√

N
. The PBiCGStab iterations were started with the initial guess

x0 = 0. The parameter that controls the convergence of the iterative process is
‖rj‖2/‖r0‖2 ≤ 10−6.

Table 1 also reports the number of required iterations to reach the stopping
criterion as well the final true residual for PBiCGStab and ReproPBiCGStab;
the latter marks both ExBLAS- and FPE-based variants as they report identical
results independently from the number of cores/MPI processes used. For the
original version, we display the number of iterations on single and eight cores as
they differ. Notably, the two reproducible variants show the tendency to deliver
better accuracy of the approximate result (the final true residual) or converge
faster, for example for orsreg 1, rdb3200l, and tmt unsym matrices.

Figure 3 demonstrates the strong scalability results – when the problem is
fixed but the number of allocated resources varies – for the original and both
ExBLAS- and FPE-based preconditioned BiCGStab variants on the s3dkq4m2
and af shell10 matrices. The figure reports the mean execution time for the entire
loop of the solver among five samples. We select these matrices due to their large
number of nonzero elements, i.e. enough work to show scalability. Note that MPI
communication is performed within a node, most likely being exposed to intra-
node communication via shared memory. All three variants show good scalability

Table 1. Convergence of the PBiCGStab and ReproPBiCGStab on a set of the SuiteS-
parse matrices. The initial guess is x0 = 0. The number of iterations required to reach
the tolerance of 10−6 on the scaled residual, i.e. ‖rj‖2/‖r0‖2, is reported along with
the corresponding true residual ‖b − Axj‖2.

Matrix Prec N nnz ‖r0‖2 BiCGStab ReproBiCGStab

iter1 iter8 ‖b − Axj‖2 iter ‖b − Axj‖2

add32 Jac 4,960 19,848 6.38e − 05 36 36 4.97e − 09 35 7.12e − 09

bcsstk18 Jac 11,948 149,090 5.29e + 18 7 7 7.51e + 02 7 7.51e + 02

bcsstk26 Jac 1,922 30,336 3.80e + 19 11 11 5.62e + 03 11 5.62e + 03

orsreg 1 Jac 2,205 14,133 2.34e + 01 225 228 4.18e − 06 210 4.68e − 06

pde2961 Jac 2,961 14,585 9.24e − 02 128 123 5.28e − 08 125 2.67e − 07

rdb3200l Jac 3,200 18,880 9.92e + 01 641 605 4.09e − 06 583 3.17e − 06

saylr4 Jac 3,564 22,316 9.44e + 06 10 10 1.95e − 03 10 7.26e − 05

s3dkq4m2 Jac 90,449 4,427,725 3.70e + 05 23 23 7.26e − 05 23 7.27e − 05

af shell10 Jac 1,508,065 52,259,885 1.48e + 05 12 12 3.44e − 04 12 3.44e − 04

atmosmodd Jac 1,270,432 8,814,880 3.75e + 03 255 272 3.41e − 05 257 2.33e − 05

atmosmodm Jac 1,489,752 10,319,760 3.50e + 05 117 110 3.47e − 03 109 2.73e − 03

cage15 Jac 5,154,859 99,199,551 1.00e + 00 8 8 4.56e − 09 8 4.56e − 09

tmt unsym Jac 917,825 4,584,801 6.45e − 06 6957 7458 7.44e − 12 5969 1.02e − 11

Hardesty1 Jac 938,905 12,143,314 9.99e + 00 24 24 8.45e − 08 25 8.61e − 08

ecology1 Jac 1,000,000 4,996,000 1.96e + 01 11 12 1.30e − 07 12 9.08e − 08

ecology2 Jac 999,999 4,995,991 1.96e + 01 14 13 1.79e − 08 13 5.39e − 08

CurlCurl 3 Jac 1,219,574 13,544,618 2.42e + 10 24 24 2.00e + 02 24 2.00e + 02

General Framework for Deriving Reproducible Krylov Subspace Algorithms 25

results for s3dkq4m2 with 10.4×, 12.8×, and 13.3× speed up on 16 MPI processes
for the original, FPE, and ExBLAS variants, respectively; the corresponding
speed up of 8.8×, 12.2×, and 12.8× for af shell10. The reproducible variants
demonstrate higher speedup due to extra floating-point operations. The overhead
of the ExBLAS and FPE variants compared to the original variant is reduced to
2.4× and 2× for s3dkq4m2 as well as to 1.9× and 2.2× for af shell10, accordingly,
on 28 MPI processes. The scalability on the other matrices from Table 1 shows
the similar pattern and overhead. However, the smaller number of nonzeros leads
to the worse scalability. For instance, for the orsreg 1 matrix, the original and
ExBLAS/FPE variants are only 4× and 8×, respectively, faster on 16 MPI
processes.

Note that the average execution time per loop for many matrices is not
sufficient for distributed memory computations. This is due to the fact that the
potential performance gain from extra nodes is demolished by communication.

Scalability. We leverage a sparse s.p.d. coefficient matrix arising from the finite-
difference method of a 3D Poisson’s equation with 27 stencil points. We perturb
the matrix with the values 1.0 − 0.0001 below the central point to create the
unsymmetric 27-point stencil aka the e-type model [5]. The fact that the vector
involved in the SpMV kernel has to be replicated in all MPI ranks constrains
the size of the largest problem that can be solved. Given that the theoretical cost
of PBiCGStab is tc ≈ 4nnz + 26n floating-point arithmetic operations, where
nnz denotes the number of nonzeros of the original matrix and its size n, the
execution time of the method is usually dominated by that of the SpMV kernel.
Therefore, in order to analyze the weak scalability of the method, we maintain
the number of non-zero entries per node. For this purpose, we modified the

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20 25 30

no
rm

al
iz

ed
 ti

m
e

w
.r.

t o
rig

in
al

MPI processes

ExBLAS
FPE

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 5 10 15 20 25 30

no
rm

al
iz

ed
 ti

m
e

w
.r.

t o
rig

in
al

MPI processes

ExBLAS
FPE

Fig. 3. Strong scaling results of the original and reproducible PBiCGStab variants with
the Jacobi preconditioner on one SkyLake node for the s3dkq4m2 (left) and af shell10
(right) matrices, see Table 1 for details.

26 R. Iakymchuk et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 100 200 300 400 500 600 700 800 900

no
rm

al
iz

ed
 ti

m
e

w
.r.

t o
rig

in
al

MPI processes

ExBLAS
FPE

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 100 200 300 400 500 600 700 800 900

no
rm

al
iz

ed
 ti

m
e

w
.r.

t o
rig

in
al

MPI processes

ExBLAS
FPE

Fig. 4. Strong (left) and weak (right) scalability of the reproducible PBiCGStab vari-
ants with the normalized time against the non-deterministic MPI variant.

original matrix, transforming it into a band matrix, where the lower and upper
bandwidths (bandL and bandU, respectively) depend on the number of nodes
employed in the experiment as follows:

bandL = bandU = 100 × #nodes → nnz = (bandL + bandU + 1) × n.

With 32 nodes, the bandwidth ranges between 100 and 3200. With this approach
we can then maintain the number of rows/columns of the matrix equal to n =
4M (4,019,679), while increasing its bandwidth and, therefore, the computational
workload proportionally to the hardware resources, as required in a weak scaling
experiment.

The right-hand side vector b in the iterative solvers was always initialized
to the product of A with a vector containing ones only; and the PBiCGStab
iteration was started with the initial guess x0 = 0. The parameter that controls
the convergence of the iterative process was set to 10−8.

Figure 4 reports the results of both strong and weak scaling for the repro-
ducible variants against the original version. For the strong scaling, we fix the
problem to 16M non-zeros and varied the number of nodes/cores used, while
for the weak scaling the work load per node was fixed to 4M non-zeros and
the bandwidth was increased with respect to the number of nodes involved. For
both scalability cases, the initial overhead is the same, namely 67% for the ver-
sion with ExBLAS and 38–40% for FPE. With the strong scaling, the overhead
reduces to 8.2% for ExBLAS and 3.0% for FPE as the communication starts
to take over and the overhead between the two versions narrows. For the weak
scaling, the matrix size is kept constant per node so that there is enough load
to hide the impact of communication.

Accuracy and Reproducibility. In addition, we derive a sequential version
of the preconditioned BiCGStab as in Fig. 2 that relies on the GNU Multiple
Precision Floating-Point Reliably (MPFR) library [8] – a C library for multiple
(arbitrary) precision floating-point computations on CPUs – as a highly accurate

General Framework for Deriving Reproducible Krylov Subspace Algorithms 27

Table 2. Accuracy and reproducibility of the intermediate and final residual against
MPFR for the orsreg 1 matrix, see Table 1.

Iteration Residual

MPFR Original 1 proc Original 8 procs Exblas & FPE

0 0x1.3566ea57eaf3fp+2 0x1.3566ea57eab49p+2 0x1.3566ea57eab49p+2 0x1.3566ea57eaf3fp+2

1 0x1.146d37f18fbd9p+0 0x1.146d37f18faafp+0 0x1.146d37f18fabp+0 0x1.146d37f18fbd9p+0

...

99 0x1.cedf0ff322158p-13 0x1.88008701ba87p-12 0x1.04e23203fa6fcp-12 0x1.cedf0ff322158p-13

100 0x1.be3698f1968cdp-13 0x1.55418acf1af27p-12 0x1.fbf5d3a5d1e49p-13 0x1.be3698f1968cdp-13

...

208 0x1.355b0f18f5ac1p-20 0x1.19edf2c932ab8p-18 0x1.b051edae310c7p-20 0x1.355b0f18f5ac1p-20

209 0x1.114dc7c9b6d38p-20 0x1.19b74e383f74ep-18 0x1.a18fc929018d4p-20 0x1.114dc7c9b6d38p-20

210 0x1.03b1920a49a7ap-20 0x1.19c846848f361p-18 0x1.c7eb5bbc198b1p-20 0x1.03b1920a49a7ap-20

reference implementation. This implementation uses 2,048 bits of accuracy for
computing dot product, 192 bits for internal element-wise product, and performs
correct rounding of the computed result to double precision.

Table 2 reports the intermediate and final (except from original that takes
longer) scaled residual on each iteration of the PBiCGStab solvers for the
orsreg 1 matrix, as in Table 1, under the tolerance of 10−6 on eight MPI pro-
cesses. We also add the results of the original code on one core/process to high-
light the reproducibility issue. The results are presented with all digits using hex-
adecimal representation. We report only few iterations, however the difference
is present on all iterations. The sequential MPFR version confirms the accuracy
and reproducibility of parallel ExBLAS and FPE variants by reporting identical
number of iterations, intermediate residuals, and both the final true and initial
scaled residuals. However, the MPFR variant of PBiCGStab converges to the
approximate solution in 3.39e−01 s, while the ExBLAS and FPE variants take
3.95e−02 and 2.75e−02 s (8.57× and 12.32× faster), accordingly, on eight MPI
processes. The original code shows the discrepancy from few digits on the initial
iteration and up to almost the entire number on the final iterations; the count
of required iterations also differs from the reproducible and MPFR variants.

6 Conclusions

Parallel Krylov subspace algorithms may exhibit the lack of reproducibility when
implemented in parallel environments as the results in Table 2 confirm. Such
numerical reliability is needed for debugging and validation & verification. In
this work, we proposed a general framework for re-constructing reproducibil-
ity and re-assuring accuracy in any Krylov subspace algorithm. Our framework
is based on two steps: analysis of the underlying algorithm for the arithmetic
abnormalities; addressing them via algorithmic solutions and programmability
hints. The algorithmic solutions are build around the ExBLAS project, namely:
ExBLAS that effectively combines long accumulator and FPEs; FPEs only for
the leightweight version. The programmability effort was focused on: explicitly

28 R. Iakymchuk et al.

invoking fma instructions to avoid replacements by compilers as well as to post-
pone the division to the moment where it is required. As a test case, we used the
preconditioned BiCGStab algorithm and derived two reproducible algorithmic
variants of it. Both reproducible variants deliver identical results of PBiCGStab,
which are confirmed by its MPFR version, to ensure reproducibility in the num-
ber of iterations, the intermediate and final residuals, as well as the sought-after
solution vector. We verified our implementations on the SuiteSparse matrices,
showing the performance overhead of 2.5× and 2× for the ExBLAS and FPE-
based versions, accordingly; tests with the 27-point stencil on 32 nodes show
almost negligible overhead of 8% and 3%, respectively.

Acknowledgment. This research was partially supported by the EU H2020 MSCA-IF
Robust project (No. 842528); the French ANR InterFLOP project (No. ANR-20-CE46-
0009). The research from Universitat Jaume I was funded by the project PID2020-
113656RB-C21 via MCIN/AEI/10.13039/501100011033.

References

1. Iakymchuk, R., et al.: Reproducibility of parallel preconditioned conjugate gradient
in hybrid programming environments. IJHPCA 34(5), 502–518 (2020). https://doi.
org/10.1177/1094342020932650

2. Iakymchuk, R., et al.: Reproducibility strategies for parallel preconditioned con-
jugate gradient. JCAM 371, 112697 (2020). https://doi.org/10.1016/j.cam.2019.
112697

3. Barrett, R., et al.: Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods, 2nd edn. SIAM (1994)

4. Collange, S., et al.: Numerical reproducibility for the parallel reduction on multi-
and many-core architectures. Parallel Comput. 49, 83–97 (2015). https://doi.org/
10.1016/j.parco.2015.09.001

5. Cools, S., Vanroose, W.: The communication-hiding pipelined BiCGstab method
for the parallel solution of large unsymmetric linear systems. Parallel Comput. 65,
1–20 (2017). https://doi.org/10.1016/j.parco.2017.04.005

6. Demmel, J., Nguyen, H.D.: Parallel reproducible summation. IEEE Trans. Com-
put. 64(7), 2060–2070 (2015). https://doi.org/10.1109/TC.2014.2345391

7. Fletcher, R.: Conjugate gradient methods for indefinite systems. In: Watson, G.A.
(ed.) Numerical Analysis. LNM, vol. 506, pp. 73–89. Springer, Heidelberg (1976).
https://doi.org/10.1007/BFb0080116

8. Fousse, L., et al.: MPFR: a multiple-precision binary floating-point library with
correct rounding. ACM TOMS 33(2), 13 (2007). https://doi.org/10.1145/1236463.
1236468

9. Goldberg, D.: What every computer scientist should know about floating-point
arithmetic. ACM Comput. Surv. 23(1), 5–48 (1991). https://doi.org/10.1145/
103162.103163

10. Knuth, D.E.: The Art of Computer Programming: Seminumerical Algorithms, vol.
2. Addison-Wesley (1969)

11. Kulisch, U., Snyder, V.: The exact dot product as basic tool for long interval
arithmetic. Computing 91(3), 307–313 (2011). https://doi.org/10.1007/s00607-
010-0127-7

https://doi.org/10.1177/1094342020932650
https://doi.org/10.1177/1094342020932650
https://doi.org/10.1016/j.cam.2019.112697
https://doi.org/10.1016/j.cam.2019.112697
https://doi.org/10.1016/j.parco.2015.09.001
https://doi.org/10.1016/j.parco.2015.09.001
https://doi.org/10.1016/j.parco.2017.04.005
https://doi.org/10.1109/TC.2014.2345391
https://doi.org/10.1007/BFb0080116
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163
https://doi.org/10.1007/s00607-010-0127-7
https://doi.org/10.1007/s00607-010-0127-7

General Framework for Deriving Reproducible Krylov Subspace Algorithms 29

12. Mukunoki, D., Ogita, T., Ozaki, K.: Reproducible BLAS routines with tunable
accuracy using Ozaki scheme for many-core architectures. In: Wyrzykowski, R.,
Deelman, E., Dongarra, J., Karczewski, K. (eds.) PPAM 2019. LNCS, vol. 12043,
pp. 516–527. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43229-
4 44

13. Ogita, T., Rump, S.M., Oishi, S.: Accurate sum and dot product. SIAM J. Sci.
Comput. 26, 1955–1988 (2005). https://doi.org/10.1137/030601818

14. Rump, S.M., Ogita, T., Oishi, S.: Accurate floating-point summation part II: sign,
K-fold faithful and rounding to nearest. SIAM J. Sci. Comput. 31(2), 1269–1302
(2008). https://doi.org/10.1137/07068816X

15. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadel-
phia (2003). https://doi.org/10.1137/1.9780898718003

16. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869
(1986). https://doi.org/10.1137/0907058

17. Sonneveld, P.: CGS, a fast Lanczos-type solver for nonsymmetric linear systems.
SIAM J. Sci. Stat. Comput. 10(1), 36–52 (1989). https://doi.org/10.1137/0910004

18. van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-
CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput.
13(2), 631–644 (1992). https://doi.org/10.1137/0913035

19. Wiesenberger, M., et al.: Reproducibility, accuracy and performance of the Feltor
code and library on parallel computer architectures. CPC 238, 145–156 (2019).
https://doi.org/10.1016/j.cpc.2018.12.006

https://doi.org/10.1007/978-3-030-43229-4_44
https://doi.org/10.1007/978-3-030-43229-4_44
https://doi.org/10.1137/030601818
https://doi.org/10.1137/07068816X
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/0907058
https://doi.org/10.1137/0910004
https://doi.org/10.1137/0913035
https://doi.org/10.1016/j.cpc.2018.12.006

A Generalized Parallel Prefix Sums
Algorithm for Arbitrary Size Arrays

Andrzej Sikorski1 , Izajasz Wrosz1,2(B) , and Micha�l Lewandowski1

1 Intel, Gdańsk, Poland
2 Faculty of Electronics, Telecommunications and Informatics,

Gdańsk University of Technology, Gdańsk, Poland

izajasz.p.wrosz@intel.com

Abstract. The prefix sums algorithm is a fundamental parallel pro-
gramming building block used to solve significant problems in engi-
neering, mathematical software, and big data analytics. In this paper,
we present a generalization of the work-efficient prefix sums algorithm
introduced by Blelloch, which in its original form is particularly well-
performing on highly parallel architectures. However, the algorithm
works only with arrays whose size is a power of 2. While various solutions
have been developed to alleviate this limitation, we propose a canonical
extension of the classical algorithm, which preserves its original form and
maintains the performance characteristics of the work-efficient algorithm.

Keywords: parallel prefix sums · scan · parallel algorithms

1 Introduction

Prefix sums, also known as all partial sums or scan, is one of the fundamen-
tal building blocks used for designing parallel applications. As such, the pre-
fix algorithms can be found as primitive operations in many parallel software
libraries, languages, and standards, e.g., MPI, ISO C++, and SYCL [15,22,25].
The research of parallel kernels contributes to improved processes of designing
complex parallel applications, which can leverage the knowledge about intrinsic
characteristics of the fundamental kernels, as well as their behavior on different
hardware platforms.

The prefix sums problem receives as an input array X = x0, x1, ..., xN−1 and
a binary associative operation ⊕. The elements of X belong to a domain D, so
that ⊕ is defined on the Cartesian product D×D. The elements might be integers,
floating point numbers, or matrices, and the operation ⊕ may represent a min,
max, matrix multiply, etc. The goal is to calculate an array Y = y0, y1, ..., yN−1

that contains all partial sums of X, using the operation ⊕ [7]. I.e., for every
element xi ∈ X we want to calculate the sum of all elements preceding xi. Typ-
ically, two variants of prefix are considered, which differ depending on whether
the element xi should be included in the sum. The inclusive scan is such that
yk = x0 ⊕x1 ⊕ ...⊕xk, 0 ≤ k ≤ N −1. Otherwise, for the exclusive scan we have
that y0 = I, and for each 0 < k ≤ N − 1, yk = x0 ⊕ x1 ⊕ ... ⊕ xk−1, where I is
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 30–39, 2023.
https://doi.org/10.1007/978-3-031-30442-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_3&domain=pdf
http://orcid.org/0000-0002-0580-787X
http://orcid.org/0000-0003-0292-0479
https://doi.org/10.1007/978-3-031-30442-2_3

A Generalized Parallel Prefix Sums Algorithm for Arbitrary Size Arrays 31

the identity of operation ⊕. Although the problem is stated sequentially, it can
be solved in parallel by leveraging the associativity of the operation ⊕.

The prefix sums algorithm and its variants are used in a variety of parallel
applications from many computational domains such as image processing and
computational geometry [5,8], functional programming [11,12,20], sorting and
list ranking [10,23], linear algebra [4], graph analytics [19]. For a comprehensive
overview of the parallel applications which use prefix sums kernels, refer to [3,7,
18].

The remaining parts of the paper are organized as follows. Sections 2 and 3
summarize, respectively, the prior work related to parallel prefix sums and the
approaches to handling inputs whose size is not a power of two. Section 4
describes our algorithmic extension, which is the main result of this work.
Section 5 provides an experimental evaluation of the proposed solution. Section 6
concludes the work.

All logarithms in the paper have a base of 2. I.e., logn = log2 n, for all n. For
an array x0, x1, ..., xn−1, the partial sum xi ⊕ xx+1... ⊕ xj is denoted by

∑
i,j .

2 Parallel Prefix

In the context of electronic circuits, a recursion-based method was used to design
prefix circuits in a form of binary trees [16]. The method allowed to generate
a circuit calculating the prefix for arrays of a given size. The exact depth and
size of the circuit were provided in a closed form for power of two array sizes.
Subsequently, the obtained solution was used to efficiently simulate a finite-state
transducer [16,18]. Thus, the presented approach potentially enables a general
method applicable to problems whose parallelization is difficult as opposed to
straightforward serial computation.

In the context of parallel programming, a method based on the balanced
binary tree was introduced in [6,7]. As shown in Algorithm 1, prefix sums are
calculated in two phases called up-sweep and down-sweep. The input size N must
be a power of two. The data flow during computation is represented by a bal-
anced binary tree, whose each level corresponds to a parallel step. The algorithm
requires linear amount of work and 2 logN parallel steps. The calculations are
performed in-place, using a linear representation of the input array. The amount
of the parallel work halves with each level of the binary tree. At the same time,
the stride of the memory accesses needed for each of the reduced pair doubles.

The classical step-efficient parallel algorithm for prefix sums was introduced
in [14]. Although it requires more work than a trivial serial solution (by a multi-
plicative factor of logN), it requires only logN parallel steps, and exposes more
parallelism than the work-efficient algorithm. A hybrid approach was proposed
in [24], where the work-efficient algorithm is applied as long as the amount of
the parallel work is sufficient to utilize the processors available. Subsequently,
the more parallel step-efficient algorithm is used.

32 A. Sikorski et al.

Algorithm 1: The original work-efficient prefix sums algorithm [6]. The
array size N must be a power of two.
/* up-sweep phase */

1 for d from 0 to logN − 1
2 in parallel for i from 0 to N − 1 by 2d+1

3 a[i + 2d+1 − 1] ← a[i + 2d+1 − 1] + a[i + 2d − 1]
4

5 a[N − 1] ← 0
6

/* down-sweep phase */
7 for d from logN − 1 downto 0
8 in parallel for i from 0 to N − 1 by 2d+1

9 t ← a[i + 2d − 1]
10 a[i + 2d − 1] ← a[i + 2d+1 − 1]
11 a[i + 2d+1 − 1] ← a[i + 2d+1 − 1] + t

3 Handling Arbitrary Size Inputs

A general method for handling inputs of arbitrary lengths (e.g., larger than
the total number of processors in the system) has been proposed in [6]. In this
method, for a given a machine with P processors, the input array is divided into
segments. Each segment is of length N/P , where N is the size of the input. In case
P does not divide N , the reminding elements are spread across the processors.
In particular, N mod P segments are of length N/P +1. The method consists of
three phases. First, each processor calculates the sum of the assigned segment,
which is stored in an auxiliary array. Subsequently, prefix sums are calculated
for the values stored in the auxiliary array. As can be seen in Fig. 1, in the
third step, each processor calculates prefix sums for the assigned segment, while
including the corresponding element from the auxiliary array in its running sum.
The per-segment calculations can be efficiently mapped on vector machines [9].
We note that there is freedom in terms of calculating the partial prefixes in either
the first or the third phase, which opens a space for a variety of optimization
techniques, cf. [13,26,27].

The general flow of the block-based algorithm from [6,9] has been optimized
for a GPU architecture [13]. For instance, to achieve high bandwidth utilization,
bank conflicts in the memory system were avoided by modifying the in-memory
layout of the array, which allowed for more optimal memory access patterns.
Next, the block-based approach was used to overcome an architecture limitation
of the maximum array size that could be processed in parallel in the considered
device. At the same time, the technique allows for handling arrays whose size is
not a power of two. As in [6,9], the proposed algorithm consists of three phases.

A Generalized Parallel Prefix Sums Algorithm for Arbitrary Size Arrays 33

4 7 1 0 5 2 6 4 8 1 9 5

Processor 0 Processor 1 Processor 2 Processor 3

[12 7 18 15]

[0 12 19 37]

0 4 11 12 12 17 19 25 29 37 38 43

Pre-scan

Post-scan

Scan
(e.g., tree-based)

Processor sums:

Exclusive scan:

Fig. 1. The original method from [6], which generalizes the tree-based scan to arbitrary
sized arrays. Sums of the segments are calculated in the pre-scan. Then, a scan is calcu-
lated over the total sums of per-processor segments. During the post-scan, values from
the intermediate array are added to the running sums in the corresponding segments,
which obtains the final scan of the input array.

The method is different in terms of the operations performed in the first and the
last phase. In the first phase, each block is scanned by the assigned processor,
so that in the last phase it suffices to just add the values from the auxiliary
array to the values in the corresponding segments. The method presented in [13]
also differs from the approach in [6,9] in terms of handling array sizes which
cannot be evenly distributed among the processors. I.e., after distributing the
even blocks, the remaining part of the array is padded with zeros up to the block
size and processed separately.

4 The Right-Sweep Phase

We extend the work-efficient algorithm from [6,7] into the domain of arbitrary
sized arrays. The original up-sweep reduction applies directly to the input array.
As shown in Fig. 2, the reduction is performed independently in segments of the
input. The first segment is the largest and has size of the highest power of two
that is less or equal than the input size. The following segments are sized to
subsequent lower powers of two. Note that simply applying the up-sweep and
then the down-sweep operation would result in calculating a segmented scan [6].
To calculate prefix sums for the entire input, we introduce a new phase called
right-sweep that is executed between the up-sweep and the down-sweep passes.
As can be seen in Fig. 3, the right-sweep pass performs an exclusive scan over the
right-most elements of the segments. Because there are logN such elements, the
work complexity of the new phase is significantly lower than the linear complexity

34 A. Sikorski et al.

Algorithm 2: The proposed extension of the original algorithm and the
main result of our work. This code should be substituted for line 7 in
Algorithm 1.
1 t1 ← N
2 t2 ← 0
3 t3 ← 0
4 while t1 > 0 do

/* t1: total size of the remaining segments */

/* t2: index of the right-most element in the current segment */

/* t3: cumulative sum of processed segments */

/* bsr: returns the position of the highest enabled bit */

5 t2 ← t2 + 1 � bsr(t1)
6 t ← a[t2 − 1]
7 a[t2 − 1] ← t3
8 t3 ← t3 + t
9 t1 ← N − t2

10 end

x0 x1 x2 x3 x4 x5 x6 x7

x0 Σ0,1 x2 Σ2,3 x4 Σ4,5 x6 Σ6,7

x0 Σ0,1 x2 Σ0,3 x4 Σ4,5 x6 Σ4,7

x0 Σ0,1 x2 Σ0,3 x4 Σ4,5 x6 Σ0,7

x8 x9 x10 x11 x12 x13 x14

X8 Σ8,9 x10 Σ10,11 x12 Σ12,13 x14

x8 Σ8,9 x10 Σ8,11 x12 Σ12,13 x14

x8 Σ8,9 x10 Σ8,11 x12 Σ12,13 x14

8 4 2 1

Fig. 2. The up-sweep phase applied to an array whose size is not a power of two. In
3 parallel steps, independent reductions are performed on segments of the array. The
size of the largest segment is equal to the largest power of 2 that is less than the array
size. After the last parallel step, the right-most element of each segment contains the
generalized sum of the corresponding elements.

of the two other phases. E.g., even for an input size close to 264, the new pass
would processes up to 64 elements. Algorithm 2 shows the pseudo code of the
right-sweep phase. Note that the while loop iterates over the enabled bits in the
binary representation of N , the size of the input array.

The right-sweep pass performs an exclusive scan over the right-most values
of each array segment. The right-most elements correspond to the roots of the

A Generalized Parallel Prefix Sums Algorithm for Arbitrary Size Arrays 35

binary trees underlying the reduction the reduction in the up-sweep phase. The
values stored at those roots are equal to the sum of elements in the respective
segments of the array. After the right-sweep, each root node holds the sum of
elements in all segments that lie before the segment corresponding to the root.

x0 Σ0,1 x2 Σ0,3 x4 Σ4,5 x6 0

x0 Σ0,1 x2 Σ0,3 x4 Σ4,5 x6 0

x0 Σ0,1 x2 Σ0,3 x4 Σ4,5 x6 0

x0 Σ0,1 x2 Σ0,3 x4 Σ4,5 x6 0

x8 Σ8,9 x10 Σ0,7 x12 Σ0,11 Σ0,13

X8 Σ8,9 x10 Σ0,7 x12 Σ0,11 x14

x8 Σ8,9 x10 Σ0,7 x12 Σ12,13 x14

x8 Σ8,9 x10 Σ8,11 x12 Σ12,13 x14

Fig. 3. The right-sweep phase. A scan over the right-most elements of the segments is
performed. In the presented example, after 4 sequential steps, each right-most element
contains the generalized sum of all preceding segments.

During the down-sweep phase see (Fig. 4), we leverage the property of the
down-sweep operator so that the value stored at the root of the binary tree
contributes to every element of the output. Because the right-sweep pass assigns
roots with the sum of all segments that precede the current segment, the scan
of each segment is modified by the constant needed to obtain the scan for the
entire sequence.

0 x0 Σ0,1 Σ0,2 Σ0,3 Σ0,4 Σ0,5 Σ0,6

x0 0 x2 Σ0,1 x4 Σ0,3 x6 Σ0,5

x0 Σ0,1 x2 0 x4 Σ4,5 x6 Σ0,3

x0 Σ0,1 x2 Σ0,3 x4 Σ4,5 x6 0

Σ0,7 Σ0,8 Σ0,9 Σ0,10 Σ0,11 Σ0,12 Σ0,13

x8 Σ0,7 x10 Σ0,9 x12 Σ0,11 Σ0,13

x8 Σ8,9 x10 Σ0,7 x12 Σ0,11 Σ0,13

x8 Σ8,9 x10 Σ0,7 x12 Σ0,11 Σ0,13

Fig. 4. The down-sweep phase over an array with 15 elements. The pair-wise down-
sweep operation is applied to elements of the array in 3 parallel steps, independently in
the segments of the array. The down-sweep phase concludes our three-phase algorithm
that calculates the scan of the array.

36 A. Sikorski et al.

5 Experimental Results

We implemented both the classical algorithm [7] and our extended version in
SYCL, by using Data Parallel C++ [21,25] and verified the Data Parallel C++
implementation on heterogeneous hardware and software platforms available in
the Intel Developer Cloud [1]. We performed the tests on a single socket server
system with an Intel Xeon E-2176G processor that contains an integrated Intel
UHD Graphics P630 GPU. The system had 64GB of system memory. We used
the Intel oneAPI DPC++/C++ Compiler 2022.1.0 under the Ubuntu 20.04.4
LTS operating system. The performance results are shown in Fig. 5. The prefix
sums were calculated for arrays of 32-bit integers and the simple integer addi-
tion. All algorithms received the same array contents, which were drawn from
a pseudo-random distribution. Prefix calculation was offloaded from the host
CPU to the integrated GPU, using the explicit device memory allocation mode
and explicit host-device data transfers [21]. The normalized running times of
our algorithm are compared against the work-efficient algorithm [7]. We recall
that the implementation of the work-efficient and the new generalized algorithm
differ only by the right-sweep pass introduced in the generalized algorithm. As
can be seen in Fig. 5, for both algorithms, we show results for the power-of-two
array sizes, while for the generalized algorithm also the in-between data points
are provided. The performance of both algorithms is equivalent for array sizes
which are exactly a power of two. While for many in-between array sizes the per-
formance of the generalized algorithm is close to the trend line implied by the

Fig. 5. Normalized execution times of parallel prefix sums algorithms as a function
of the array size. Prefix sums are calculated using the standard addition of 32-bit
integer values. For the work-efficient algorithm, the results are available for array sizes
that are powers-of-two. For the generalized algorithm results are obtained also for the
in-between array sizes.

A Generalized Parallel Prefix Sums Algorithm for Arbitrary Size Arrays 37

work-efficient algorithm data points, for some array sizes, the processing time of
the generalized algorithm is higher. We anticipate that incorporating key aspects
of the system architecture (e.g., the memory architecture) into the design of the
algorithm is necessary to achieve sustained performance characteristics for a
large range of array sizes.

6 Conclusions

In this work we proposed a canonical method for extending the well-known work-
efficient parallel prefix sum algorithm [7] into the domain of arrays of arbitrary
size. The method is based on adding a new phase, which we call right-sweep,
between the existing up-sweep and down-sweep phases. The right-sweep phase
performs a scan over specific logN elements of the input array. Thus, in practical
scenarios, a sequential algorithm should be sufficient as requiring only logn work.
In general, a parallel algorithm can be used, reducing the number of steps to
log(logN). We used SYCL to experimentally evaluate the new algorithm by
offloading the prefix kernel to a GPU accelerator.

We observe that processing the binary-tree-based reductions with a linear
representation of the input array may not be efficient on typical NUMA sys-
tems, primarily due to low data locality. A variety of software-based approaches
exist for managing distributed and sparse data. For instance, the optimized heap
data layouts enable using of the key characteristics of a compute architecture
more efficiently, specifically the tradeoff between optimal arithmetic compute
power and memory bandwidth utilization. On the other hand, canonical repre-
sentations of sparse and irregular workloads are efficiently mapped on domain-
specific architectures like the Intel PIUMA [2,17]. The architecture features such
as partitioned global address space, power-efficient cores, as well as fast and effi-
cient in-network collective operations, allow for achieving high power efficiency
and performance in the domain of sparse computations and graph analytics,
especially with datasets, which size exceeds the memory capacity of a single
shared-memory system.

References

1. Intel Developer Cloud. https://devcloud.intel.com/. Accessed 30 Oct 2022
2. Aananthakrishnan, S., et al.: Piuma: programmable integrated unified memory

architecture. arXiv preprint arXiv:2010.06277 (2020)
3. Akl, S.G.: Parallel Computation: Models and Methods. Prentice-Hall, Inc., Hobo-

ken (1997)
4. Bell, N., Garland, M.: Implementing sparse matrix-vector multiplication on

throughput-oriented processors. In: Proceedings of the ACM/IEEE Conference on
High Performance Computing, SC 2009, November 14–20, 2009, Portland, Oregon,
USA. ACM (2009). https://doi.org/10.1145/1654059.1654078

5. Bilgic, B., Horn, B.K.P., Masaki, I.: Efficient integral image computation on the
GPU. In: IEEE Intelligent Vehicles Symposium (IV), 2010, La Jolla, CA, USA,
June 21–24, 2010, pp. 528–533. IEEE (2010). https://doi.org/10.1109/IVS.2010.
5548142

https://devcloud.intel.com/
http://arxiv.org/abs/2010.06277
https://doi.org/10.1145/1654059.1654078
https://doi.org/10.1109/IVS.2010.5548142
https://doi.org/10.1109/IVS.2010.5548142

38 A. Sikorski et al.

6. Blelloch, G.E.: Scans as primitive parallel operations. IEEE Trans. Comput.
38(11), 1526–1538 (1989). https://doi.org/10.1109/12.42122

7. Blelloch, G.E.: Prefix sums and their applications. Technical report. CMU-CS-90-
190, School of Computer Science, Carnegie Mellon University, November 1990

8. Blelloch, G.E., Little, J.J.: Parallel solutions to geometric problems in the scan
model of computation. J. Comput. Syst. Sci. 48(1), 90–115 (1994). https://doi.
org/10.1016/S0022-0000(05)80023-6

9. Chatterjee, S., Blelloch, G.E., Zagha, M.: Scan primitives for vector computers.
In: Martin, J.L., Pryor, D.V., Montry, G.R. (eds.) Proceedings Supercomputing
’90, New York, NY, USA, November 12–16, 1990, pp. 666–675. IEEE Computer
Society (1990). https://doi.org/10.1109/SUPERC.1990.130084

10. Cole, R., Vishkin, U.: Faster optimal parallel prefix sums and list ranking. Inf.
Comput. 81(3), 334–352 (1989). https://doi.org/10.1016/0890-5401(89)90036-9

11. Elliott, C.: Generic functional parallel algorithms: scan and FFT. Proc. ACM Pro-
gram. Lang. 1(ICFP), 7:1–7:25 (2017). https://doi.org/10.1145/3110251

12. Fisher, A.L., Ghuloum, A.M.: Parallelizing complex scans and reductions. In:
Sarkar, V., Ryder, B.G., Soffa, M.L. (eds.) Proceedings of the ACM SIGPLAN
1994 Conference on Programming Language Design and Implementation (PLDI),
Orlando, Florida, USA, June 20–24, 1994, pp. 135–146. ACM (1994). https://doi.
org/10.1145/178243.178255

13. Harris, M., Sengupta, S., Owens, J.D.: Chapter 39. parallel prefix sum (scan)
with CUDA (2007). https://developer.nvidia.com/gpugems/gpugems3/part-vi-
gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda

14. Hillis, W.D., Jr., G.L.S.: Data parallel algorithms. Commun. ACM. 29(12), 1170–
1183 (1986). https://doi.org/10.1145/7902.7903

15. Iso/iec 14882:2020(en) programming languages - c++. Standard, International
Organization for Standardization, Geneva, Switzerland, December 2020

16. Ladner, R.E., Fischer, M.J.: Parallel prefix computation. J. ACM 27(4), 831–838
(1980). https://doi.org/10.1145/322217.322232

17. Lakhotia, K., Petrini, F., Kannan, R., Prasanna, V.K.: Accelerating all reduce with
in-network reduction on intel PIUMA. IEEE Micro 42(2), 44–52 (2022)

18. Lakshmivarahan, S., Dhall, S.K.: Parallel Computing Using the Prefix Problem.
Oxford University Press, Oxford (1994)

19. Merrill, D., Garland, M., Grimshaw, A.S.: High-performance and scalable GPU
graph traversal. ACM Trans. Parallel Comput. 1(2), 14:1–14:30 (2015). https://
doi.org/10.1145/2717511

20. Morihata, A.: Lambda calculus with algebraic simplification for reduction paral-
lelisation: extended study. J. Funct. Program. 31, e7 (2021). https://doi.org/10.
1017/S0956796821000058

21. Reinders, J., Ashbaugh, B., Brodman, J., Kinsner, M., Pennycook, J., Tian, X.:
Data Parallel C++: Mastering DPC++ for Programming of Heterogeneous Sys-
tems Using C++ and SYCL. Springer Nature, CA (2021). https://doi.org/10.1007/
978-1-4842-5574-2

22. Sanders, P., Träff, J.L.: Parallel prefix (scan) algorithms for MPI. In: Mohr, B.,
Träff, J.L., Worringen, J., Dongarra, J.J. (eds.) Recent Advances in Parallel Virtual
Machine and Message Passing Interface, 13th European PVM/MPI User’s Group
Meeting, Bonn, Germany, September 17–20, 2006, Proceedings. LNCS, vol. 4192,
pp. 49–57. Springer, Cham (2006). https://doi.org/10.1007/11846802 15

23. Satish, N., Harris, M.J., Garland, M.: Designing efficient sorting algorithms for
manycore GPUs. In: 23rd IEEE International Symposium on Parallel and Dis-

https://doi.org/10.1109/12.42122
https://doi.org/10.1016/S0022-0000(05)80023-6
https://doi.org/10.1016/S0022-0000(05)80023-6
https://doi.org/10.1109/SUPERC.1990.130084
https://doi.org/10.1016/0890-5401(89)90036-9
https://doi.org/10.1145/3110251
https://doi.org/10.1145/178243.178255
https://doi.org/10.1145/178243.178255
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://doi.org/10.1145/7902.7903
https://doi.org/10.1145/322217.322232
https://doi.org/10.1145/2717511
https://doi.org/10.1145/2717511
https://doi.org/10.1017/S0956796821000058
https://doi.org/10.1017/S0956796821000058
https://doi.org/10.1007/978-1-4842-5574-2
https://doi.org/10.1007/978-1-4842-5574-2
https://doi.org/10.1007/11846802_15

A Generalized Parallel Prefix Sums Algorithm for Arbitrary Size Arrays 39

tributed Processing, IPDPS 2009, Rome, Italy, May 23–29, 2009, pp. 1–10. IEEE
(2009). https://doi.org/10.1109/IPDPS.2009.5161005

24. Sengupta, S., Lefohn, A., Owens, J.D.: A work-efficient step-efficient prefix sum
algorithm (2006)

25. Sycl 2020 specification (revision 5). Standard, Khronos Group, Beaverton, OR,
USA, May 2022

26. Zhang, N.: A novel parallel prefix sum algorithm and its implementation on multi-
core platforms. In: 2010 2nd International Conference on Computer Engineering
and Technology, vol. 2, pp. V2–66-V2-70. IEEE (2010). https://doi.org/10.1109/
ICCET.2010.5485315

27. Zhang, W., Wang, Y., Ross, K.A.: Parallel prefix sum with SIMD. In: Bor-
dawekar, R., Lahiri, T. (eds.) International Workshop on Accelerating Analytics
and Data Management Systems Using Modern Processor and Storage Architec-
tures, ADMS@VLDB 2020, Tokyo, Japan, August 31, 2020. pp. 1–11 (2020)

https://doi.org/10.1109/IPDPS.2009.5161005
https://doi.org/10.1109/ICCET.2010.5485315
https://doi.org/10.1109/ICCET.2010.5485315

Infinite-Precision Inner Product
and Sparse Matrix-Vector Multiplication

Using Ozaki Scheme with Dot2
on Manycore Processors

Daichi Mukunoki1(B) , Katsuhisa Ozaki2 , Takeshi Ogita3 ,
and Toshiyuki Imamura1

1 RIKEN Center for Computational Science, Kobe, Hyogo, Japan
daichi.mukunoki@riken.jp

2 Shibaura Institute of Technology, Saitama, Japan
3 Tokyo Woman’s Christian University, Tokyo, Japan

Abstract. Infinite-precision operations do not incur rounding errors
except when rounding the computed result to a finite-precision value.
This can be an effective solution for the accuracy and reproducibility con-
cerns associated with floating-point operations. This research presents
an infinite-precision inner product (IP-DOT) and sparse matrix-vector
multiplication (IP-SpMV) on FP64 data for manycore processors. We
propose using a 106-bit computation using Dot2 in the Ozaki scheme,
which is an existing IP-DOT method. First, we discuss the theoretical
performance of our method using the roofline model. Then, we demon-
strate the actual performance as IP-DOT and reproducible conjugate
gradient (CG) solvers, with IP-SpMV as their primary operation, using
an Ice Lake CPU and an Ampere GPU. Although the benefits and per-
formance are dependent on the input data, our experiments on IP-DOT
demonstrated a speedup of approximately 1.9–3.4 times compared to
the previous method, and an execution time overhead of approximately
10–25 times compared to the standard FP64 operation. On reproducible
CG, a speedup of 1.1–1.7 times was achieved compared to the existing
method, and an execution time overhead of approximately 3–19 times
was observed compared to the non-reproducible standard solvers.

Keywords: Infinite-precision · Accurate · Reproducible · Inner
product · Sparse matrix-vector multiplication (SpMV) · Conjugate
gradient (CG)

1 Introduction

Floating-point operations are susceptible to rounding errors, which might lead
to inaccurate computational result. Additionally, since a change in the order
of operation causes different errors, the output may vary even when the same

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 40–54, 2023.
https://doi.org/10.1007/978-3-031-30442-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_4&domain=pdf
http://orcid.org/0000-0002-0051-6811
http://orcid.org/0000-0003-0431-6232
http://orcid.org/0000-0002-9346-2452
http://orcid.org/0000-0003-1601-9710
https://doi.org/10.1007/978-3-031-30442-2_4

Infinite-Precision Inner Product and Sparse Matrix-Vector Multiplication 41

input is used on parallel computations where the order of operations is non-
deterministic for each execution or in different hardware (e.g., CPUs and GPUs).
This can be troublesome when debugging or porting codes to multiple environ-
ments [1]. Thus, computing methods that are both accurate and reproducible
are being developed.

Infinite-precision operations do not incur rounding errors except when round-
ing the computed result to a finite-precision value, such as in FP64. This can
be an effective solution for the accuracy and reproducibility concerns associ-
ated with floating-point operations1. Furthermore, infinite-precision operations
can be utilized as a tool to analyze the mathematical behavior of numerical
algorithms [27]. However, one of the major drawbacks of infinite-precision opera-
tions is their high runtime and program development costs, especially on modern
manycore processors.

This research focuses on the infinite-precision inner product (IP-DOT) and
sparse matrix-vector multiplication (IP-SpMV) for FP64 data on manycore pro-
cessors. It proposes a fast computation method by combining an existing infinite-
precision method with a 106-bit precision operation algorithm. IP-DOT and IP-
SpMV are then implemented on an Ice Lake CPU and an Ampere GPU. The
advantage of the proposed method is not only justified theoretically but also
demonstrated as a speedup of IP-DOT separately and a speedup of reproducible
sparse iterative solvers based on IP-DOT and IP-SpMV on matrices selected
from a database collecting real-world problems.

2 Related Work

Several arithmetic tools, including iRRAM [20], RealLib [13], and Briggs’s
work [3], have been developed to enable infinite-precision computation. Its effi-
cient implementation for vector and matrix operations (i.e., Basic Linear Algebra
Subprograms (BLAS) operations) on parallel architectures can be investigated;
for example, RARE-BLAS [4], ExBLAS [5], and OzBLAS [17] have been devel-
oped. OzBLAS adopts the same methodology that is referenced as an existing
method in this paper.

Reproducible computation2 does not necessarily require infinite-precision.
The simplest way to ensure reproducibility is to fix the order of computation,
although this is often inefficient in parallel computing. The Intel Math Kernel
Library (MKL) supports conditional numerical reproducibility [26], but this is
restricted to limited environments (with MKL on certain Intel processors) and
execution conditions. ReproBLAS [7] is a reproducible BLAS implementation
that uses a high-precision accumulator and pre-rounding technique but is not
parallelized on manycore processors.

1 Be aware, however, that infinite-precision operations do not necessarily improve the
stability or accuracy of numerical algorithms.

2 The concept of reproducibility is independent of accuracy. It is simply intended to
be able to reproduce the same result.

42 D. Mukunoki et al.

Algorithm 1 Ozaki scheme with Dot2
1: function (r = IP DOT Dot2(x,y))
2: x[1 : sx] = Split2(x)
3: y[1 : sy] = Split2(y)
4: i = 1
5: for q = 1 : sy do
6: for p = 1 : sx do
7: (u, v)[i] = Dot2(x[p], y[q])
8: i = i + 1
9: end for

10: end for
11: r = NearSum((u, v))
12: end function

Algorithm 2 Dot2
1: function ((u, v) = Dot2(x,y))
2: (u, v) = TwoProdFMA(x1,y1)
3: for i = 2 to n do
4: (h, r) = TwoProdFMA(xi,yi)
5: (u, q) = TwoSum(u, h)
6: v = fl(v + (q + r))
7: end for
8: end function

Algorithm 3 Splitting for Ozaki
scheme with Dot2. Lines 9–10 are com-
putations for 1 ≤ i ≤ n.
1: function (x[1 : sx] = Split2(x))
2: ρ = ceil(log2(n)/2)
3: μ = max1≤i≤n(|xi|)
4: j = 0
5: while μ �= 0 do
6: j = j + 1
7: τ = ceil(log2(μ))
8: σ = 0.75 × 2(ρ+τ)

9: x[j]i = fl((xi + σ) − σ)
10: xi = fl(xi−x[j]i)
11: μ = max1≤i≤n(|xi|)
12: end while
13: sx = j
14: end function

The use of high-precision arithmetic (in lower than infinite but better than
FP64 precision) can be a lightweight solution for improving accuracy (with-
out reproducibility). MPLAPACK [21] is an example of a linear algebra library
that supports various high-precision operations with a backend of several high-
precision arithmetic libraries such as the GNU Multiple Precision Floating-Point
Reliable Library [9]. However, it is often difficult to determine the required level
of precision for a specific objective.

3 Method

Hereafter, FFP64 will denote a set of FP64 floating-point numbers, and fl(·) will
denote the FP64 floating-point operations. The objective is to compute r = xTy
for x,y ∈ FFP64

n with infinite precision.
Originally proposed as an accurate matrix multiplication technique, the

Ozaki scheme [23] is employed in this research as an IP-DOT method. This
scheme computes an IP-DOT as the sum of multiple inner products that can
be calculated with some precision and without rounding errors using floating-
point operations. Algorithm 1 shows the entire IP-DOT process. It consists of
the following three steps:

Infinite-Precision Inner Product and Sparse Matrix-Vector Multiplication 43

Algorithm 4 TwoSum
1: function ((s, e) = TwoSum(a, b))
2: s = fl(a + b)
3: t = fl(s − a)
4: e = fl((a − (s − t)) + (b − t))
5: end function

Algorithm 5 TwoProdFMA
1: function ((p, e) = TwoProdFMA(a, b))
2: p = fl(a × b)
3: e = FMA(a × b − p)
4: end function

1. Splitting: In lines 2–3 of Algorithm 1, Split2 (Algorithm 3) performs the
element-wise splitting of the input vectors x and y into x and y (FP64 vec-
tors). Split2 divides the input vectors so that the inner products of the split
vectors (x and y) can be computed with 106-bit precision without rounding
errors. In line 8 of Algorithm 3, the constant 0.75 was introduced by [15].
Due to the possibility of overflow in this splitting technique, the inner prod-
uct using the Ozaki scheme accepts a narrower input range than the standard
inner product using FP64 arithmetic.

2. Computation: In line 7 of Algorithm 1, Dot2 [22] (Algorithm 2) computes
the inner products of the split vectors with at least 106-bit precision and
returns the result in 106-bit as a pair of FP64 values3. Dot2 is built utilizing
TwoSum [12] (Algorithm 4) and TwoProdFMA [11] (Algorithm 5). FMA(a× b−p)
denotes the calculation of a × b − p using the fused multiply-add (FMA)
operation. Note that although Dot2 is composed of FP64 arithmetic, the
term “FP64” will henceforth refer to the absence of Dot2 usage. In lines
5–10 of Algorithm 1, several inner inner products can be computed using
general matrix multiplication (GEMM) by combining multiple split vectors
into a matrix. This is a key aspect of the implementation process. The use of
GEMM is beneficial from a performance perspective because it permits data
reuse.

3. Summation: In Algorithm 1, the infinite-precision result of IP-DOT is first
obtained as an array of a pair of FP64 values ([u, v]) with a length of sx × sy.
Then, in line 11, the IP-DOT result in the FP64 format is obtained with
NearSum [25], which is a correctly-rounded summation algorithm.

This scheme applies naturally to other inner-product-based operations,
including SpMV. There are two observations in SpMV. First, in Algorithm 3, the
number of non-zero elements in each row can be used instead of n. Second, just
as GEMM was used for DOT, the computation can be performed using sparse-
matrix dense-matrix multiplication (SpMM) by combining the split vectors into
a matrix.

3 The original Dot2 algorithm is designed to obtain the output as an FP64 value with
fl(u + v) at the end.

44 D. Mukunoki et al.

The performance of this scheme is input-dependent; it is determined by the
numbers of split vectors (sx and sy)4. Each of them depends on the absolute
range, the number of significant digits of the elements in the input vector (lines
3 and 11 of Algorithm 3), and the vector length n (line 2 of Algorithm 3).
As demonstrated in Sect. 5, it is often expected to be around 2 to 3 for real
problems. Thus, the GEMM utilized in the computation is usually very skinny.
Additionally, the summation cost using NearSum is expected to be relatively
small in terms of overall execution time, as the summed elements are sx × sy ×2
(2 is the pair of FP64 values), which is typically small enough compared to n.

Existing studies, such as [17], use FP64 (or lower precision [18]) for compu-
tation, but our proposal in this research is to use 106-bit operations using Dot2
for the computation (i.e., GEMM in DOT and SpMM in SpMV) and the corre-
sponding modification at line 2 in Algorithm 3. This permits the packing of more
bits into the split vectors (x, y), thereby reducing the number of split vectors. In
contrast, there are concerns regarding the increase in execution time due to the
additional computational cost required by Dot2. In practice, however, the cost
of Dot2 can be ignored in memory-intensive operations, as discussed in [16]. Our
method yields skinny-shaped GEMM and SpMM that are sufficiently memory-
intensive, and operate in Dot2 with memory-bound performance. As a result,
the throughput is unaffected when using Dot2 instead of FP64. We provide a
theoretical explanation of this in the next section.

4 Performance Estimation

4.1 Throughput of GEMM and SpMM Using Dot2

To demonstrate that the use of Dot2 does not reduce the throughput of GEMM
and SpMM relative to FP64, we first estimate the throughput of them computed
using Dot2 and FP64. We intend to use Xeon Platinum 8360Y (Ice Lake, 36
cores) later in the evaluation. Note that this discussion almost reaches the same
conclusion also for the GPU (A100-SXM4-40) used in this research. The SpMV
uses the compressed sparse row (CSR) format with 32-bit indices.

The roofline model [28] estimates the achievable throughput of the target
kernel in bytes/s (B)

B = min(BCPU, OCPU × Q/W) (1)

using the following parameters:

– BCPU: the memory throughput of the CPU in bytes/s
– OCPU: the computation throughput of the CPU in Ops/s
– Q: the target kernel’s memory traffic in bytes
– W : the number of operations of the target kernel in Ops.
4 In fact, it is even possible to adjust the accuracy of the result by varying the number

of split vectors. The result will no longer be infinite precision, but reproducibility
can still be preserved. See [17] for details.

Infinite-Precision Inner Product and Sparse Matrix-Vector Multiplication 45

Note that we use “Ops” as the number of operations per second to represent
the throughput of Dot2 and FP64 on the same scale (i.e., an inner product for
x,y ∈ FFP64

n performs 2n (Ops) in both Dot2 and FP64).
For Q and W in the GEMM and SpMM, we assume the following parameters:

– d: number of split vectors/matrices
– n: dimensions of vectors/matrices (n × n)
– nnz: number of non-zero elements of the sparse matrix in SpMM.

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6 7 8 9 10

G
B

/s

Number of split vectors/matrices (d)

GEMM-FP64
GEMM-Dot2
SpMM-FP64
SpMM-Dot2

Estimated achievable throughput (B)
 on Xeon Platinum 8360Y

Fig. 1. Estimated achievable through-
put (B) of GEMM and SpMM.

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8 9 10

Number of split vectors/matrices (d)

IP-DOT-FP64
IP-DOT-Dot2

IP-SpMV-FP64
IP-SpMV-Dot2

Estimated relative execution time to
 standard FP64 routines on Xeon Platinum 8360Y

Fig. 2. Estimated relative execution
times compared to the standard FP64
routines.

The GEMM computes Cd×d = An×d
TBn×d and the SpMM computes Cn×d =

An×nBn×d. Thus, assuming that data reusability is fully considered, the Q and
W are as follows:

– GEMM: Q = 16dn (bytes), W = 2d2n (Ops)
– SpMM: Q = 12nnz (bytes), W = 2dnnz (Ops) (assuming nnz � n).

For BCPU and OCPU, the target CPU has the following theoretical peak hard-
ware performance parameters:

– BCPU = 204.8 GB/s
– FP64: OCPU = 1382.4 GOps/s
– Dot2: OCPU = 125.7 GOps/s (1/11 of the case in FP64 as it requires 11 times

the number of floating-point instructions).

Using the above parameters with Eq. (1), the throughput of GEMM and
SpMM in bytes/s (B) is estimated, as shown in Fig. 1. In this figure, we denote
“-FP64” and “-Dot2” for operations computed by FP64 and Dot2, respectively
(the same hereinafter). When d is small, both FP64 and Dot2 can be executed in
the same amount of time as they are memory-bound. However, when d is large,
Dot2 becomes computational-bound, and the memory throughput decreases.
Here, d serves as a parameter that controls the arithmetic intensity for the
roofline model.

46 D. Mukunoki et al.

4.2 Performance of IP-DOT and IP-SpMV

Next, we discuss the total execution time of IP-DOT and IP-SpMV. We first esti-
mate the relative execution time compared with the standard DOT and SpMV
using FP64 arithmetic (DOT-FP64 and SpMV-FP64, respectively). As discussed
in [17], based on the number of memory read/written to vectors and matrices,
the relative execution time is estimated to increase by a factor of 4d, depend-
ing on d. The splitting process accounts for 3d of the 4d, and the remaining d
is attributable to the computation utilizing GEMM-FP64 (for DOT) or SpMM-
FP64 (for SpMV), with the assumption that their performance is memory-bound
and achieves BCPU. However, the estimated achievable throughput B is depicted
in Fig. 1 as discussed in Sect. 4.1. Accordingly, as shown in Fig. 2, the relative exe-
cution times of IP-DOT and IP-SpMV are projected to be (3 + BCPU/B)d times
slower compared to DOT-FP64 and SpMV-FP64. The required d is problem-
dependent; however, if the situation is similar to that demonstrated in the next
section, d is no more than 7 with FP64, and using Dot2 can reduce d by half or
less.

We then discuss a practical rather than a theoretical outlook on performance.
Although up to three-quarters of the execution time is attributable to the split-
ting process (Algorithm 3), it is a straightforward memory-bound operation that
poses no implementation challenges for manycore processors. The remaining
one-fourth, which results from matrix multiplications (GEMM or SpMM), can
be problematic. There are two issues present. First, since the highly-optimized
implementation of GEMM-Dot2 and SpMM-Dot2 are not readily available, one
must create it themselves. Second, which concerns not only in Dot2 but also in
FP64, is that GEMM for very skinny matrices, performed in our scheme, may
require a different optimization strategy than GEMM for square matrices to
achieve adequate performance. This problem is discussed in [8]5. The aforemen-
tioned issues are certainly challenges in software development. However, GEMM
for skinny matrices with FP64 and Dot2 have their independent uses and should
be discussed independently from our method6.

5 Demonstration on CPU and GPU

We demonstrate our method on DOT and conjugate gradient (CG) solvers,
where SpMV is the primary operation, using a CPU and GPU of a node
(Wisteria-A node) of the Wisteria/BDEC-01 system at the University of Tokyo.
The specifics of the CPU and GPU environments are as follows:

– CPU: Intel Xeon Platinum 8360Y (Ice Lake, 36 cores, 1382.4 GFlops in FP64,
204.8 GB/s), Intel oneAPI 2022.1.2 (with ICC 2021.5.0 and MKL 2022.0.0),
compiled with -O3 -fma -fp-model source -fprotect-parens -qopenmp
-march=icelake-server, executed with numactl --localalloc using the
same number of threads as the number of physical cores.

5 This problem is not encountered in SpMM.
6 For example, XBLAS [14] supports 106-bit operations.

Infinite-Precision Inner Product and Sparse Matrix-Vector Multiplication 47

– GPU: NVIDIA A100-SXM4-40GB (Ampere, 9.7 TFlops in FP647, 1555
GB/s), CUDA 11.4 (driver: 470.57.02), nvcc V11.4.152, compiled with “-O3
-gencode arch= compute 60, code=sm 80”.

The codes are implemented in C++ with OpenMP and CUDA. They extend
the existing implementations (the Ozaki scheme with FP64 operations) for CPUs
and GPUs in [19]; however, there have been some improvements.

Table 1. Results of DOT (n = 225). Overhead is the relative execution time compared
to the standard DOT with FP64 arithmetic (DOT-FP64).

Abs. range of input d Theor. overhead CPU GPU

GB/s Overhead GB/s Overhead

DOT-FP64 – – – 142.7 1 1314.0 1

IP-DOT-FP64 [1e0,1e1) 4 16 67.7 33.7 1105.3 19.0

[1e0,1e4) 5 20 65.2 43.8 1022.6 25.7

[1e0,1e8) 6 24 61.4 55.8 1126.8 28.0

[1e0,1e16) 7 28 59.1 67.7 993.4 37.0

IP-DOT-Dot2 [1e0,1e1) 2 8 68.6 16.6 1043.2 10.1

[1e0,1e4) 2 8 76.1 15.0 1039.2 10.1

[1e0,1e8) 2 8 69.9 16.3 1038.4 10.1

[1e0,1e16) 3 12 69.3 24.7 1055.8 14.9

5.1 DOT

As discussed in Sect. 4.2, the skinny GEMM employed in the computation rep-
resents a potential challenge in DOT. We developed not only GEMM-Dot2 but
also GEMM-FP64 ourselves for comparison, which outperformed GEMM-FP64
of MKL and cuBLAS in the Ozaki scheme. They are implemented using the
Advanced Vector Extensions 2 (AVX2) intrinsic and are parallelized along the
long axis of the matrix; this can be described as an extension of the typical
parallel implementation of DOT to compute multiple vectors.

Table 1 illustrates the performance for n = 225, which is sufficient to exceed
the cache size. Since the performance depends on the absolute range of the
elements of the input vectors, we demonstrate the performance for different
inputs using a random number within the specified absolute value range. The
number of split vectors (d) increases proportionally, and the theoretical overhead
(relative execution time) multiplies by a factor of 4d compared with DOT-FP64,
which is performed using the DOT routines of MKL and cuBLAS. In these
cases, Dot2 decreased d by half or less compared to IP-DOT-FP64. On the

7 9.7 TFlops is the performance without Tensor Cores. 19.5 TFlops with Tensor Cores
but cannot be used for Dot2.

48 D. Mukunoki et al.

CPU, the observed overhead is larger than the theoretical overhead because IP-
DOT-FP64/Dot2 has a lower throughput (GB/s) than DOT-FP64 because of
the insufficient performance optimization of GEMM-FP64/Dot2.

Table 2. Test matrices (n × n with nnz non-zeros, sorted by nnz/n).

name n nnz nnz/n kind

1 tmt sym 726,713 5,080,961 7.0 electromagnetics problem

2 gridgena 48,962 512,084 10.5 optimization problem

3 cfd1 70,656 1,825,580 25.8 computational fluid dynamics problem

4 cbuckle 13,681 676,515 49.4 structural problem

5 BenElechi1 245,874 13,150,496 53.5 2D/3D problem

6 gyro k 17,361 1,021,159 58.8 duplicate model reduction problem

7 pdb1HYS 36,417 4,344,765 119.3 weighted undirected graph

8 nd24k 72,000 28,715,634 398.8 2D/3D problem

5.2 Reproducible CG Solvers

IP-DOT and IP-SpMV are used to ensure reproducibility in CG solvers [10]
[19]. These are simply intended to ensure reproducibility but not to improve the
numerical stability or accuracy of the solution. We demonstrate the proposed
method on existing reproducible CG solvers based on the Ozaki scheme [19].
Our implementations used in this evaluation are based on the codes of previous
studies, with a few improvements8. The implementation overview of the repro-
ducible CG solvers can be summarized as follows.

– The unpreconditioned CG algorithm is implemented. All data are stored in
the FP64 format.

– All inner-product-based operations, including DOT, NRM2, and SpMV, are
performed with infinite precision using the Ozaki scheme with NearSum. The
implementations in Sect. 5.1 are used for DOT. NRM2 is implemented using
DOT.

– For SpMV, the CSR format is used, and the symmetry of the matrix is not
considered. The computation of SpMV was performed using SpMM. The GPU
implementation of SpMM extends the vector-CSR [2] SpMV implementation
to compute multiple vectors. The CPU implementation computes the output
vector in parallel in threads, and the inner product computed in each thread
is parallelized with AVX2.

– AXPY is implemented by explicitly using FMA.

8 Major improvements: (1) use of [15], (2) use of in-house GEMM and SpMM with
asymmetric splitting on CPUs, (3) use of more recent vendor libraries.

Infinite-Precision Inner Product and Sparse Matrix-Vector Multiplication 49

– The matrix splitting is required and performed only once before the iterations
begin.

– The number of split matrices is reduced by using the asymmetric splitting
technique [24], which shifts ρ at line 2 in Algorithm 3 for the matrix and
vector (it contributes to reducing the number of SpMM computed, see [19]
for details).

Eight matrices from [6] are used (Table 2) (those are the same ones used in
[19]). For Ax = b, b and the initial solution x0 are b = x0 = (1, 1, ..., 1)T .
The iteration is terminated when ||ri||/||b|| ≤ 10−16. Since the focus of this
research is the speedup with Dot2, we do not present the numerical behavior (it
is available in [19]), but the use of Dot2 does not affect the numerical behavior
at the bit level. Hereafter, the reproducible CG solvers will be referred to as
ReproCG-FP64 (existing method using FP64) and ReproCG-Dot2 (proposed
method using Dot2), and the standard non-reproducible solvers implemented

Table 3. Execution time in seconds and the relative execution time compared to the
standard CG (CG-FP64) (in parentheses).

CPU GPU

CG-FP64 ReproCG ReproCG CG-FP64 ReproCG ReproCG

-FP64 -Dot2 -FP64 -Dot2

1 2.3e+0 7.5e+1 (32.5) 4.5e+1 (19.4) 1.6e+0 2.0e+1 (12.6) 1.8e+1 (11.2)

2 4.3e-1 3.9e+0 (9.1) 2.9e+0 (6.6) 3.3e-1 2.2e+0 (6.6) 1.8e+0 (5.3)

3 9.4e-1 7.8e+0 (8.3) 5.2e+0 (5.5) 4.7e-1 3.2e+0 (6.8) 2.5e+0 (5.4)

4 2.9e+0 3.7e+1 (12.7) 2.4e+1 (8.3) 2.9e+0 2.2e+1 (7.7) 1.5e+1 (5.4)

5 3.5e+1 3.9e+2 (10.9) 2.3e+2 (6.5) 1.8e+1 1.1e+2 (6.1) 9.4e+1 (5.2)

6 7.5e+0 8.3e+1 (11.0) 5.2e+1 (6.9) 7.2e+0 4.4e+1 (6.0) 3.1e+1 (4.2)

7 2.3e+0 1.8e+1 (7.6) 1.3e+1 (5.5) 1.7e+0 8.9e+0 (5.1) 6.0e+0 (3.5)

8 2.4e+1 8.9e+1 (3.7) 7.0e+1 (2.9) 5.4e+0 2.5e+1 (4.5) 1.7e+1 (3.2)

Table 4. Number of split matrices/vectors.

ReproCG-FP64 ReproCG-Dot2

matrix vectors matrix vectors

min max med avg min max med avg

1 3 3 7 5 4.9 2 2 3 2 2.0

2 2 3 5 4 4.0 2 2 2 2 2.0

3 3 3 6 4 4.1 3 2 3 2 2.0

4 5 4 7 4 4.0 3 2 3 2 2.0

5 3 4 6 5 4.8 2 2 3 2 2.0

6 5 4 7 4 4.0 3 2 3 2 2.0

7 3 3 5 4 4.0 2 2 2 2 2.0

8 3 3 5 4 4.2 2 2 3 2 2.0

50 D. Mukunoki et al.

using the BLAS routines in MKL and cuBLAS/cuSparse will be referred to as
CG-FP64.

Table 3 illustrates the execution and relative execution times compared to
CG-FP64. First, when compared to ReproCG-FP64, ReproCG-Dot2 achieved a
speedup of 1.3–1.7 times on the CPU and a speedup of 1.1–1.5 times on the
GPU. This range of performance improvement is supported by the reduction
in the number of split matrices/vectors used in the computation, as depicted in
Table 4. Dot2 reduced the number of split vectors, which varies during iterations,
by about half, while the number of split matrices remained the same or decreased
by no more than three-fifths. Next, ReproCG-Dot2 requires 2.9–19.4 times more
execution time on the CPU and 3.2–11.2 times more execution time on the GPU
than CG-FP64. These overheads are, in most cases, lower than those reported
in [19] for reproducible CG performed using ExBLAS [10] for identical problems
and conditions. As discussed in Sect. 4, in DOT, the Ozaki scheme incurs a 4d-
fold relative execution time overhead compared to the standard operation with

CPU

 0

 10

 20

 30

 40

 50

 60

 70

 80

C
G

-F
P

64

R
eproC

G
-F

P
64

R
eproC

G
-D

ot2

#1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

C
G

-F
P

64

R
eproC

G
-F

P
64

R
eproC

G
-D

ot2

#2

 0

 1

 2

 3

 4

 5

 6

 7

 8

C
G

-F
P

64

R
eproC

G
-F

P
64

R
eproC

G
-D

ot2

#3

 0

 5

 10

 15

 20

 25

 30

 35

 40

C
G

-F
P

64

R
eproC

G
-F

P
64

R
eproC

G
-D

ot2

#4

 0

 50

 100

 150

 200

 250

 300

 350

 400

C
G

-F
P

64

R
eproC

G
-F

P
64

R
eproC

G
-D

ot2

#5

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

C
G

-F
P

64

R
eproC

G
-F

P
64

R
eproC

G
-D

ot2

#6

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

C
G

-F
P

64

R
eproC

G
-F

P
64

R
eproC

G
-D

ot2

#7

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

C
G

-F
P

64

R
eproC

G
-F

P
64

R
eproC

G
-D

ot2

#8

GPU

 0

 5

 10

 15

 20

 25

C
G

-F
P

64

R
eproC

G
-F

P
64

R
eproC

G
-D

ot2

#1

 0

 0.5

 1

 1.5

 2

 2.5

C
G

-F
P

64

R
eproC

G
-F

P
64

R
eproC

G
-D

ot2

#2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

C
G

-F
P

64

R
eproC

G
-F

P
64

R
eproC

G
-D

ot2

#3

 0

 5

 10

 15

 20

 25

C
G

-F
P

64

R
eproC

G
-F

P
64

R
eproC

G
-D

ot2

#4

 0

 20

 40

 60

 80

 100

 120

C
G

-F
P

64

R
eproC

G
-F

P
64

R
eproC

G
-D

ot2

#5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

C
G

-F
P

64

R
eproC

G
-F

P
64

R
eproC

G
-D

ot2

#6

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

C
G

-F
P

64

R
eproC

G
-F

P
64

R
eproC

G
-D

ot2

#7

 0

 5

 10

 15

 20

 25

C
G

-F
P

64

R
eproC

G
-F

P
64

R
eproC

G
-D

ot2

#8

Comp-SpMV
Comp-DOT

NearSum
Split-Vec

Split-Mat
Others

Fig. 3. Execution time breakdown (in seconds).

Infinite-Precision Inner Product and Sparse Matrix-Vector Multiplication 51

FP64 arithmetic, whereas in the CG method, the matrix is split only once before
iterations. Thus, if SpMV is dominant in execution time, the optimum overhead
would be d-fold. However, SpMV’s influence on execution time diminishes as the
matrix becomes more sparse (matrices are numbered in ascending order starting
with the most sparse in Table 2). This explains why the overhead for highly
sparse matrices is significant.

Figure 3 illustrates the execution time breakdowns to elaborate on the preced-
ing results. Examining the computational cost for SpMV (Comp-SpMV, which
is computed by SpMM), there are cases where the execution time has increased
despite the decrease in the number of split matrices by Dot2. ReproCG-FP64
employs SpMM in MKL/cuSparse, while ReproCG-Dot2 uses in-house imple-
mentations. Since the kernel design has a large impact on the performance of
SpMM, factors other than the Dot2 overhead may also be affected. Also, the
observed NearSum overhead, particularly on the CPU, maybe a future concern.

6 Conclusion

This study presents an IP-DOT and IP-SpMV on FP64 data on CPU and GPU.
We propose using 106-bit precision arithmetic (Dot2) rather than working preci-
sion (FP64) to compute the Ozaki scheme, which is an existing infinite-precision
method. Although the performance depends on various conditions, including the
input data, we demonstrate a theoretical and practical performance improve-
ment of more than twofold in IP-DOT compared with the existing method using
the Ozaki scheme with FP64 arithmetic, and the effectiveness of our approach
increases as the input range increases. As a result, our IP-DOT requires approx-
imately 10–25 times more execution time in reality (8–12 times in theory) than
the standard DOT with FP64 arithmetic in MKL and cuBLAS. On CG solvers,
a speedup of approximately 1.1–1.7 times is achieved compared to the existing
method, and the overhead required to ensure reproducibility is approximately
3–19 times compared to the standard non-reproducible solvers.

Although this research successfully improves the performance of IP-DOT
and IP-SpMV using the Ozaki scheme, the relative execution time compared to
the standard FP64 operations is still significant. Furthermore, the Ozaki scheme
is somewhat vulnerable to overflow. The superiority of this method, based on
the Ozaki scheme, over other methods (ExBLAS and RARE-BLAS) is debat-
able. They have claimed lower overhead than our IP-DOT (e.g., RARE-BLAS [4]
reported an overhead of 1–2 times at most on CPUs). However, our method offers
the advantage of low development cost. It can be built upon matrix multipli-
cation, enabling hierarchical software development and easy implementation on
manycore processors, and it can be easily extended from DOT to other BLAS
routines or tunable-accuracy operations with reproducible results, as demon-
strated in [17]. We expect that, as a means to rapidly developing infinite-precision

52 D. Mukunoki et al.

(accurate and reproducible) BLAS, our method is still an attractive option along
with other faster methods. Also, it is a practical achievement to realize the lowest
level of overhead for reproducible CG on both CPU and GPU.

This research utilized Dot2 as a swift quadruple-precision operation. How-
ever, a better alternative would be a hardware-implemented fast FP128 (with
113-bit mantissa), which would be capable of accelerating the infinite-precision
operation of computationally intensive operations on FP64 data, such as matrix
multiplication. Our research demonstrates that quadruple-precision arithmetic,
such as FP128 and Dot2, is beneficial not only for accurate computations but
also for reproducible computations in FP64 through infinite-precision operations.

Acknowledgment. This research was supported by the Japan Society for the Pro-
motion of Science (JSPS) KAKENHI Grant #19K20286. This research was conducted
using the FUJITSU Server PRIMERGY GX2570 (Wisteria/BDEC-01) at the Infor-
mation Technology Center, The University of Tokyo (project #jh220022).

References

1. Arteaga, A., Fuhrer, O., Hoefler, T.: Designing bit-reproducible portable high-
performance applications. In: Proceedings of IEEE 28th International Parallel and
Distributed Processing Symposium (IPDPS 2014), pp. 1235–1244 (2014). https://
doi.org/10.1109/IPDPS.2014.127

2. Bell, N., Garland, M.: Implementing sparse matrix-vector multiplication on
throughput-oriented processors. In: Proceedings of International Conference for
High Performance Computing, Networking, Storage and Analysis (SC 2009), pp.
1–11. No. 18 (2009). https://doi.org/10.1145/1654059.1654078

3. Briggs, K.: Implementing exact real arithmetic in python, c++ and c. Theoret.
Comput. Sci. 351(1), 74–81 (2006). https://doi.org/10.1016/j.tcs.2005.09.058

4. Chohra, C., Langlois, P., Parello, D.: Reproducible, accurately rounded and effi-
cient BLAS. In: 22nd International European Conference on Parallel and Dis-
tributed Computing (Euro-Par 2016), pp. 609–620 (2016). https://doi.org/10.
1007/978-3-319-58943-5 49

5. Collange, S., Defour, D., Graillat, S., Iakymchuk, R.: Numerical reproducibility for
the parallel reduction on multi- and many-core architectures. Parallel Comput. 49,
83–97 (2015). https://doi.org/10.1016/j.parco.2015.09.001

6. Davis, T.A., Hu, Y.: The university of Florida sparse matrix collection. ACM Trans.
Math. Softw. 38(1), 1:1–1:25 (2011). https://doi.org/10.1145/2049662.2049663

7. Demmel, J., Ahrens, P., Nguyen, H.D.: Efficient Reproducible Floating Point Sum-
mation and BLAS. Technical report. UCB/EECS-2016-121, EECS Department,
University of California, Berkeley (2016)

8. Demmel, J., Eliahu, D., Fox, A., Kamil, S., Lipshitz, B., Schwartz, O., Spillinger,
O.: Communication-optimal parallel recursive rectangular matrix multiplication.
In: 2013 IEEE 27th International Symposium on Parallel and Distributed Process-
ing, pp. 261–272 (2013). https://doi.org/10.1109/IPDPS.2013.80

9. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: a
multiple-precision binary floating-point library with correct rounding. ACM Trans.
Math. Softw. 33(2), 13:1–13:15 (2007). https://doi.org/10.1145/1236463.1236468

https://doi.org/10.1109/IPDPS.2014.127
https://doi.org/10.1109/IPDPS.2014.127
https://doi.org/10.1145/1654059.1654078
https://doi.org/10.1016/j.tcs.2005.09.058
https://doi.org/10.1007/978-3-319-58943-5_49
https://doi.org/10.1007/978-3-319-58943-5_49
https://doi.org/10.1016/j.parco.2015.09.001
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1109/IPDPS.2013.80
https://doi.org/10.1145/1236463.1236468

Infinite-Precision Inner Product and Sparse Matrix-Vector Multiplication 53

10. Iakymchuk, R., Barreda, M., Graillat, S., Aliaga, J.I., Quintana-Ort́ı, E.S.: Repro-
ducibility of parallel preconditioned conjugate gradient in hybrid programming
environments. IJHPCA (2020). https://doi.org/10.1177/1094342020932650

11. Karp, A.H., Markstein, P.: High-precision division and square root. ACM Trans.
Math. Softw. 23, 561–589 (1997). https://doi.org/10.1145/279232.279237

12. Knuth, D.E.: The Art of Computer Programming. Seminumerical Algorithms, vol.
2. Addison-Wesley, Boston (1969)

13. Lambov, B.: Reallib: an efficient implementation of exact real arithmetic.
Math. Struct. Comp. Sci. 17(1), 81–98 (2007). https://doi.org/10.1017/
S0960129506005822

14. Li, X.S., et al.: Design, implementation and testing of extended and mixed precision
BLAS. ACM Trans. Math. Softw. 28(2), 152–205 (2000). https://doi.org/10.1145/
567806.567808

15. Minamihata, A., Ozaki, K., Ogita, T., Oishi, S.: Preconditioner for ill-conditioned
tall and skinny matrices. In: The 40th JSST Annual International Conference on
Simulation Technology (JSST2016) (2016)

16. Mukunoki, D., Ogita, T.: Performance and energy consumption of accurate and
mixed-precision linear algebra kernels on GPUs. J. Comput. Appl. Math. 372,
112701 (2020). https://doi.org/10.1016/j.cam.2019.112701

17. Mukunoki, D., Ogita, T., Ozaki, K.: Reproducible BLAS routines with tunable
accuracy using Ozaki scheme for many-core architectures. In: Wyrzykowski, R.,
Deelman, E., Dongarra, J., Karczewski, K. (eds.) PPAM 2019. LNCS, vol. 12043,
pp. 516–527. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43229-
4 44

18. Mukunoki, D., Ozaki, K., Ogita, T., Imamura, T.: DGEMM using tensor cores,
and its accurate and reproducible versions. In: Sadayappan, P., Chamberlain, B.L.,
Juckeland, G., Ltaief, H. (eds.) ISC High Performance 2020. LNCS, vol. 12151, pp.
230–248. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50743-5 12

19. Mukunoki, D., Ozaki, K., Ogita, T., Iakymchuk, R.: Conjugate gradient solvers
with high accuracy and bit-wise reproducibility between CPU and GPU using
Ozaki scheme. In: Proceedings of The International Conference on High Perfor-
mance Computing in Asia-Pacific Region (HPC Asia 2021), pp. 100–109 (2021).
https://doi.org/10.1145/3432261.3432270

20. Müller, N.T.: The irram: Exact arithmetic in c++. In: Computability and
Complexity in Analysis. pp. 222–252. Springer, Berlin Heidelberg (2001). DOI:
10.1007/3-540-45335-0 14

21. Nakata, M.: Mplapack version 1.0.0 user manual (2021)
22. Ogita, T., Rump, S.M., Oishi, S.: Accurate sum and dot product. SIAM J. Sci.

Comput. 26, 1955–1988 (2005). https://doi.org/10.1137/030601818
23. Ozaki, K., Ogita, T., Oishi, S., Rump, S.M.: Error-free transformations of matrix

multiplication by using fast routines of matrix multiplication and its applica-
tions. Numer. Algorithms 59(1), 95–118 (2012). https://doi.org/10.1007/s11075-
011-9478-1

24. Ozaki, K., Ogita, T., Oishi, S., Rump, S.M.: Generalization of error-free trans-
formation for matrix multiplication and its application. Nonlinear Theory Appl.
IEICE 4, 2–11 (2013). https://doi.org/10.1587/nolta.4.2

25. Rump, S.M., Ogita, T., Oishi, S.: Accurate floating-point summation Part II: sign,
K-Fold faithful and rounding to nearest. SIAM J. Sci. Comput. 31(2), 1269–1302
(2009). https://doi.org/10.1137/07068816X

https://doi.org/10.1177/1094342020932650
https://doi.org/10.1145/279232.279237
https://doi.org/10.1017/S0960129506005822
https://doi.org/10.1017/S0960129506005822
https://doi.org/10.1145/567806.567808
https://doi.org/10.1145/567806.567808
https://doi.org/10.1016/j.cam.2019.112701
https://doi.org/10.1007/978-3-030-43229-4_44
https://doi.org/10.1007/978-3-030-43229-4_44
https://doi.org/10.1007/978-3-030-50743-5_12
https://doi.org/10.1145/3432261.3432270
https://doi.org/10.1137/030601818
https://doi.org/10.1007/s11075-011-9478-1
https://doi.org/10.1007/s11075-011-9478-1
https://doi.org/10.1587/nolta.4.2
https://doi.org/10.1137/07068816X

54 D. Mukunoki et al.

26. Todd, R.: Introduction to Conditional Numerical Reproducibility (CNR)
(2012). https://software.intel.com/en-us/articles/introduction-to-the-conditional-
numerical-reproducibility-cnr

27. Wei, S., Tang, E., Liu, T., Müller, N.T., Chen, Z.: Automatic numerical analysis
based on infinite-precision arithmetic. In: 2014 Eighth International Conference on
Software Security and Reliability (SERE), pp. 216–224 (2014). https://doi.org/10.
1109/SERE.2014.35

28. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009).
https://doi.org/10.1145/1498765.1498785

https://software.intel.com/en-us/articles/introduction-to-the-conditional-numerical-reproducibility-cnr
https://software.intel.com/en-us/articles/introduction-to-the-conditional-numerical-reproducibility-cnr
https://doi.org/10.1109/SERE.2014.35
https://doi.org/10.1109/SERE.2014.35
https://doi.org/10.1145/1498765.1498785

Advanced Stochastic Approaches
for Applied Computing in Environmental

Modeling

Venelin Todorov1,2(B) , Ivan Dimov2, Maria Ganzha3, and Marcin Paprzycki3

1 Department of Information Modeling, Institute of Mathematics and Informatics,
Bulgarian Academy of Sciences, Acad. Georgi Bonchev Street, Block 8,

1113 Sofia, Bulgaria
vtodorov@math.bas.bg

2 Department of Parallel Algorithms, Institute of Information and Communication
Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Street,

Block 25 A, 1113 Sofia, Bulgaria
venelin@parallel.bas.bg, ivdimov@bas.bg

3 Polish Academy of Sciences, Warszawa, Poland
{maria.ganzha,marcin.paprzycki}@ibspan.waw.pl

Abstract. Mathematical models are used to study and predict the
behavior of a variety of complex systems - engineering, physical, eco-
nomic, social, environmental. Sensitivity studies are nowadays applied to
some of the most complicated mathematical models from various inten-
sively developing areas of applications. Sensitivity analysis is a modern
promising technique for studying large-scale systems such as ecological
systems. The uncertainty in the model input in our case, as in many
others, can be due to various reasons: inaccurate measurements or cal-
culation, approximation, data compression, etc. Two kinds of sensitivity
analysis have been discussed in the literature: local and global. In the
current paper the subject of our study is the global sensitivity analy-
sis performed via the Sobol’ variance-based approach, applied to a spe-
cific large-scale air pollution model. The mathematical treatment of the
problem of providing global sensitivity analysis consists in evaluating
total sensitivity indices which leads to computing multidimensional inte-
grals. We propose a new specific stochastic approach which significantly
improves the results by the standard stochastic approaches.

Keywords: Monte Carlo methods · Sensitivity Analysis · Air
pollution modelling

Venelin Todorov is supported by the Bulgarian National Science Fund under Project
KP-06-N52/5 “Efficient methods for modeling, optimization and decision making” and
KP-06-M32/2 - 17.12.2019 “Advanced Stochastic and Deterministic Approaches for
Large-Scale Problems of Computational Mathematics”. The work is also supported by
the BNSF under Projects KP-06-N52/5 “Efficient methods for modeling, optimization
and decision making” and Bilateral Project KP-06-Russia/17 “New Highly Efficient
Stochastic Simulation Methods and Applications”.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 55–67, 2023.
https://doi.org/10.1007/978-3-031-30442-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_5&domain=pdf
http://orcid.org/0000-0001-7134-5901
https://doi.org/10.1007/978-3-031-30442-2_5

56 V. Todorov et al.

1 Introduction

An important issue when large-scale mathematical models are used to support
decision makers is their reliability [10]. Sensitivity analysis (SA) has a crucial role
during the process of validating computational models to ensure their accuracy
and reliability [15]. In a popular definition SA is the study of how uncertainty in
the output of a model can be apportioned to different sources of uncertainty in
the model input [20]. The focus of the present work is to perform global SA [16] of
a large-scale mathematical model describing remote transport of air pollutants.
The Unified Danish Eulerian Model (UNI-DEM) [24] is in the focus of our study
as one of the most advanced large-scale mathematical models that describes ade-
quately all physical and chemical processes during remote transport of air pollu-
tants. The Unified Danish Eulerian Model (UNI-DEM) has been developed at
the Danish National Environmental Research Institute (http://www2.dmu.dk/
AtmosphericEnvironment/DEM/, [23–25]). The model is described mathemati-
cally [23,24] by the following system of partial differential equations:

∂cs

∂t
= −∂(ucs)

∂x
− ∂(vcs)

∂y
− ∂(wcs)

∂z
+

+
∂

∂x

(
Kx

∂cs

∂x

)
+

∂

∂y

(
Ky

∂cs

∂y

)
+

∂

∂z

(
Kz

∂cs

∂z

)
+

+Es + Qs(c1, c2, . . . , cq) − (k1s + k2s)cs, s = 1, 2, . . . , q.

The number of q equations in this system is equal to the number of pollutants
studied by the model. The other dimensions included in the model are described
below:

cs - pollutant concentrations,
u, v, w - wind components along the coordinate axes,
Kx,Ky,Kz - diffusion coefficients,
Es - space emissions,
k1s, k2s - dry and wet deposit coefficients, respectively (s = 1, . . . , q),
Qs(c1, c2, . . . , cq) - nonlinear functions describing chemical reactions between

pollutants.

If the model results are sensitive to a given process, one can describe it
mathematically more precisely in a more adequate way. Therefore, the goal of
our work is to increase the reliability of the results produced by the large-scale air
pollution model, and to identify processes that must be studied more carefully, as
well as to find input parameters that need to be measured with a higher precision.
A careful SA is needed in order to decide where and how simplifications of the
model can be made. That is why it is important to develop and study more
adequate and reliable stochastic methods for SA.

The paper is organised as follows. Some basic aspects of the used large-scale
air pollution model are given in the Introduction. Some basic definitions for
global SA are given in Sect. 2. The stochastic methods and the new proposed

http://www2.dmu.dk/AtmosphericEnvironment/DEM/
http://www2.dmu.dk/AtmosphericEnvironment/DEM/

Applied Computing in Environmental Modeling 57

method are given in Sect. 3. We introduce the simplest possible Monte Carlo app-
roach - crude approach and also the simplest possible quasi-random sequence -
the van der Corput sequence and its modification. We also introduce different
lattice rules and the proposed method. The monographs of Sloan and Kachoyan
[13], Niederreiter [11], Hua and Wang [5] and Sloan and Joe [14] provide com-
prehensive expositions on the theory of integration lattices. Applications of the
methods for multidimensional numerical integration are studied in Paskov [12],
Wang and Hickernell [22], F.Y. Kuo and D. Nuyens [9]. The numerical experi-
ments are given in Sect. 4. Some final remarks are given in the Conclusion.

2 Sensitivity Analysis - Definitions

Consider a scalar model output u = f(x) corresponding to a number of
non-correlated model parameters x = (x1, x2, . . . , xd) with a joint prob-
ability density function (p.d.f.) p(x) = p(x1, . . . , xd). In Sobol’ approach
[16] the parameter importance is studied via numerical integration in the
terms of analysis of variance (ANOVA) model representation f(x) = f0 +∑d

ν=1

∑
l1<...<lν

fl1...lν (xl1 , xl2 , . . . , xlν), f0 = const, f(x) is a square integrable

model function,
∫ 1

0

fl1...lν (xl1 , . . . , xlν)dxlk = 0, 1 ≤ k ≤ ν, ν = 1, . . . , d, and

f0 =
∫

Ed

f(x)dx. The following quantities Sl1 ... lν =
Dl1 ... lν

D
, ν ∈ {1, . . . , d}.

are called Sobol’ global sensitivity indices [16] of the corresponding order (first
or higher), where Dl1 ... lν and D are the partial and the total variance of the
model function, respectively.

According to definition [20] the total and the partial variances are defined by
the following formulas:

D =
∫

Ud

f2(x)dx − f2
0 , Dl1 ... lν =

∫
f2

l1 ... lνdxl1 . . . dxlν . (1)

The total variance that is represented by the corresponding partial variances:
D =

∑d
ν=1

∑
l1<...<lν

Dl1...lν . The main sensitivity measures following the Sobol
approach are the so-called Sobol global sensitivity indices [19,20] defined by

Sl1 ... lν =
Dl1 ... lν

D
, ν ∈ {1, . . . , d}. (2)

and the total sensitivity index (TSI) of an input parameter xi, i ∈ {1, . . . , d}
defined by [19,20]:

Stot
i = Si +

∑
l1 �=i

Sil1 +
∑

l1,l2 �=i,l1<l2

Sil1l2 + . . . + Sil1...ld−1 , (3)

where Si is called the main effect (first-order sensitivity index) of xi and Sil1...lj−1

is the j-th order sensitivity index. The higher-order terms describe the interac-
tion effects between the unknown input parameters xi1 , . . . , xiν

, ν ∈ {2, . . . , d}

58 V. Todorov et al.

on the output variance. It is clear that the mathematical treatment of the prob-
lem of providing global SA consists in evaluating total sensitivity indices (3)
of corresponding order that, based on the formula (1)–(3), leads to computing
multidimensional integrals.

For evaluating small sensitivity indices and to avoid loss of accuracy because
the analyzed database comes under this case we will use a combined approach
between approach of reducing of the mean value and correlated sampling sug-
gested in [17]. We will replace the original model function with the function
ϕ(x) = f(x) − c where the constant c ∼ f0. Thus the partial and total variance
estimations are presented in such a way:

Dy =
∫

ϕ(x) [ϕ(y, z’)dxdz’ − ϕ(x’)]dxdx’, D =
∫

ϕ(x)[ϕ(x) − ϕ(x’)] dxdx’.

Homma and Saltelli discussed in [4] which is the better estimation of

f2
0 =

(∫
Us

f(x)dx
)2

(4)

for evaluating the total variance and Sobol global sensitivity measures. The first
formula is

f2
0 ≈ 1

n

n∑
i=1

f(xi,1, . . . ,xi,s) f(x′
i,1, . . . ,x

′
i,d) (5)

and the second one is

f2
0 ≈

{
1
n

n∑
i=1

f(xi,1, . . . ,xi,s)

}2

(6)

where x and x′ are two independent sample vectors. In case of estimating sensi-
tivity indices of a fixed order, formula (5) is better [4] and therefore we will use
it.

3 Stochastic Approaches

Crude Monte Carlo (CRU) is the simplest possible stochastic approach for solv-
ing multidimensional integrals [2,6]. Let I =

∫
Ω

g(x)p(x)dx. Let ξ be a random
point with a p.d.f. p(x). We introduce random variable θ = f(ξ) such that
Eθ =

∫
Ω

g(x)p(x)dx. Let the random points ξ1, ξ2, . . . , ξN be independent real-
izations of the random point ξ with p.d.f. p(x) and θ1 = f(ξ1), . . . , θN = f(ξN).
Then an approximate value of I is θN = 1

N

∑N
i=1 θi.

The well-known van der Corput (VDC) sequence [3,21] is the simplest
example of quasirandom number (or low-discrepancy) sequences. The generation
is quite simple. Let n = . . . a3(n), a2(n), a1(n) is the representation of an integer
n in base b , then the expansion of n in base b is generated: n =

∑∞
i=0 ai+1(n)bi.

The radical inverse sequence is generated by writing a decimal point followed by

Applied Computing in Environmental Modeling 59

the digits of the expansion of n, in reverse order: φb(n) =
∑∞

i=0 ai+1(n)b−(i+1).
This decimal value is actually still in base b, so it must be properly interpreted
to generate a usable value. van der Corput sequence VDC2 is obtained when
b = 2. The modified van der Corput VDC3 is obtained when b = 3.

To introduce lattice rules, firstly consider the quadrature formula IN (f) =
1
N

N∑
i=1

f(xi), where PN = {x1, x2, . . . , xN}, xi ∈ [0, 1)s are the integration nodes

of the formula. The choice of the nodes is essential, because it determines the
discrepancy of the sequence and the accuracy of the quadrature. The integration
nodes, of the lattice rules proposed by Korobov [7,8], are defined by the following
formula:

xk =
({

kz1
N

}
,

{
kz2
N

}
, . . . ,

{
kzs

N

})
, k = 1, 2, . . . , N, (7)

where N is the number of the nodes, z is an s-dimensional generating vector of
the lattice set and {a} = a− [a] is the fractional part of a. The lattice rules with
nodes (7) and generators z are called “rank 1” rules [1]. We will use some of the
most famous lattice rules for computing multidimensional integrals.

For s = 2 optimal construction exists based on generalized Fibonacci num-
bers. Based on [5] we have the following definition for the generalized Fibonacci
numbers for any dimension: F

(s)
l+s = F

(s)
l +F

(s)
l+1+...+F

(s)
l+s−1, l = 0, 1, . . . with ini-

tial conditions: F
(s)
0 = F

(s)
1 = . . . = F

(s)
s−2 = 0, F (s)

s−1 = 1. The generating vector
is constructed based on the generalized Fibonacci numbers of the corresponding
dimension.

z =
(
1, F (s)

l+1, ..., F
(s)
l+s−1

)
, nl = F

(s)
l , (8)

where F
(s)
j is the generalized Fibonacci number of dimension s. The lattice

method with this generating vector (8) is Fibonacci based lattice rule
(FIBO).

Now consider second lattice rule applying the polynomial transformation
function ϕ(t) = 3t2 − 2t3 to a nonperiodic integrand to make it suitable for
applying a lattice rule. The transformation satisfy ϕ(0) = 0, ϕ(1) = 1, ϕ′(t) > 0.
Thus ϕ is a continuous bijection from [0, 1] to [0, 1]. This is a special type of
bijectional lattice rule BIJ.

Now we proposed a new lattice rule which is a modification of a lattice rule,
suitable for periodic integrand functions, for use with a non-periodic function F ,
by applying the lattice rule to the function

G(x1, . . . , xs) =

2−s
∑

ε∈{0,1}s

F (ε1x1 + (1 − ε1)(1 − x1), . . . , εsxs + (1 − εs)(1 − xs)) . (9)

The arguments over which summation is being done could be consid-
ered as vertices of parallelotope whose diagonals intersected at the point
(1/2, 1/2, . . . , 1/2) ∈ [0, 1]s. At the first step of the proposed special lattice

60 V. Todorov et al.

rule NEWL the s-dimensional optimal generating vector z = (z1, z2, . . . zs) is
generated [9]. The second step of the algorithm include generating the points of
lattice rule by formula xk =

{
k
N z

}
, k = 1, . . . , N. And at the third and last

step of the algorithm an approximate value IN of the multidimensional integral

is evaluated by the formula: IN = 1
N

N∑
k=1

f
({

k
N z

})
.

4 Sensitivity Studies with Respect to Emission Levels

In this section we will present the results for the sensitivity of UNI-DEM out-
put (in particular, the ammonia mean monthly concentrations) with respect to
the anthropogenic emissions input data variation. The anthropogenic emissions
input consists of 4 different components
E = (EA,EN,ES,EC) :

EA − ammonia (NH3); ES − sulphur dioxide (SO2);
EN − nitrogen oxides (NO + NO2); EC − anthropogenic hydrocarbons.

The domain under consideration is the 4-dimensional hypercube [0.5, 1]4). In
the experiments the relative error is equal to the absolute value of the difference
between the computed value and the exact value of the integral, divided by the
exact value. Results of the relative error estimation for the quantities f0, the
total variance D, first-order (Si) and total (Stot

i) sensitivity indices are given
in Tables 1, 2, 3, 4, 5, respectively. f0 is presented by a 4-dimensional integral,
while the rest of the above quantities are presented by 8-dimensional integrals,
following the ideas of correlated sampling technique to compute sensitivity mea-
sures in a reliable way (see [4,18]). The four different stochastic approaches used
for numerical integration are presented in separate columns of the tables.

For n = 220 for the model function f0 the best algorithm is the NEWL,
followed by FIBO and BIJ - see the results in Tables 1 for the maximum number
of samples. A big improvement over the other algorithms is obtained - FIBO
gives 4.21e − 07 while NEWL gives 5.64e − 12.

For number of samples n = 220 for the total variance D the best algorithm
is the NEWL, followed again by FIBO and BIJ - see the results in Tables 2 for
the maximum number of samples. A big improvement over the other algorithms
is obtained - FIBO gives 1.19e − 04 while NEWL gives 1.09e − 07. However for
small number of samples VDC and BIJ gives better results by at least 1 order.

For the total and first order sensitivity indices in the Table 4 it can be seen
that the new lattice rule significantly improves the results produced by the other
algorithms.

Generally the increased number of samples to 220 improved the results pro-
duced by the new algorithm versus the other algorithms - see the results for the
relative error in Table 5 versus the results in Table 3 and Table 4.

For number of samples n = 210 in Table 3 the proposed algorithm NEWL
gives the best relative errors for S2, S3, S4, Stot

1 , Stot
2 , Stot

4 , while BIJ gives the
best result for S1 and Stot

3 .

Applied Computing in Environmental Modeling 61

Table 1. Relative error for the evaluation of f0 ≈ 0.048.

CRU VDC2 VDC3 FIBO BIJ NEWL
of samples Relative Relative Relative Relative Relative Relative
n error error error error error error

210 8.82e–03 2.80e–04 9.25e–04 2.09e–04 8.46e–04 5.95e–06
212 3.50e–03 7.73e–05 8.22e–04 4.32e–05 1.79e–04 3.72e–07
214 4.83e–04 1.37e–05 6.01e–05 2.25e–05 2.62e–06 2.32e–08
216 2.25e–03 3.11e–04 6.04e–04 8.70e–06 4.14e–07 1.45e–09
218 5.14e–04 7.66e–05 6.72e–04 1.79e–06 1.17e–06 9.07e–11
220 3.20e–05 1.48e–04 3.69e–04 4.21e–07 1.15e–06 5.64e–12

For number of samples n = 216 in Table 4 the developed algorithm NEWL
gives the best relative errors for S1, S2, S3, S4, Stot

1 , Stot
2 , Stot

3 , Stot
4 , and the

difference with BIJ and FIBO is at least 1 order.
For number of samples n = 220 in Table 4 the new algorithm NEWL gives the

best relative errors for all sensitivity indices S1, S2, S3, S4, Stot
1 , Stot

2 , Stot
3 , Stot

4 ,
and one can see that increasing the number of samples gives essential difference
versus the other stochastic approaches - the difference is at least 4 or even 5
orders versus the worst algorithms CRU and VDC. The most important small
in value sensitivity indices which are essential for reliable interpretation of the
results, are S2, Stot

2 and Stot
4 and for them only the proposed algorithm NEWL

give high accuracy.
The performance of the algorithms can be summarized as follows: the best

algorithm is NEWL, followed by lattice rules FIBO and BIJ, and after that
the basic algorithm VDC2 and the modified VDC3, and the simplest possible
stochastic approach CRU is the worst.

Table 2. Relative error for the evaluation of the total variance D ≈ 0.0002.

CRU VDC2 VDC3 FIBO BIJ NEWL
of samples Relative Relative Relative Relative Relative Relative
n error error error error error error

210 1.09e–01 6.86e–03 5.50e–02 1.63e–01 1.54e–02 1.25e–01
212 8.93e–02 3.75e–03 8.61e–03 2.39e–02 3.67e–03 7.98e–03
214 3.04e–03 2.64e–04 5.57e–03 2.90e–03 1.49e–03 6.64e–04
216 3.48e–03 2.22e–03 1.64e–02 2.65e–04 1.61e–03 1.31e–05
218 1.93e–02 2.22e–03 7.24e–03 3.01e–04 1.48e–03 1.39e–06
220 3.26e–03 7.58e–03 2.04e–03 1.19e–04 1.46e–03 1.09e–07

62 V. Todorov et al.

Table 3. Relative error for estimation of sensitivity indices of input parameters using
various stochastic approaches (n ≈ 210).

EQ RV CRU VDC2 VDC3 FIBO BIJ NEWL

S1 9e–01 3.21e–01 2.20e–02 3.49e–02 2.91e–02 1.04e–03 1.54e–03
S2 2e–04 1.25e+00 4.47e–02 2.85e+00 1.29e+01 3.44e+00 3.10e–02
S3 1e–01 7.10e–03 6.91e–01 3.14e–01 6.59e–02 8.05e–03 3.47e–04
S4 4e–05 6.27e+00 8.88e–01 2.30e+01 2.19e+01 1.76e+00 1.58e–02
Stot
1 9e–01 7.65e–02 1.07e–02 2.18e–02 3.49e–03 1.78e–03 3.38e–05

Stot
2 2e–04 1.23e+02 4.95e+02 1.97e+02 2.25e+01 3.32e+00 1.40e–01

Stot
3 1e–01 2.25e+00 3.12e+00 9.69e–01 1.98e–01 4.37e–03 1.21e–02

Stot
4 5e–05 8.94e+03 3.22e+03 3.00e+03 1.84e+01 1.06e+01 1.98e–01

Table 4. Relative error for estimation of sensitivity indices of input parameters using
various stochastic approaches (n ≈ 216).

EQ RV CRU VDC2 VDC3 FIBO BIJ NEWL

S1 9e-01 2.04e–02 3.13e–02 7.08e–02 3.62e–04 7.27e–04 7.22e–06
S2 2e-04 2.32e–01 1.28e+00 9.89e–01 1.74e–01 2.76e–02 1.94e–02
S3 1e-01 2.72e–02 9.13e–02 1.96e–02 3.22e–03 4.24e–03 1.53e–05
S4 4e-05 3.40e+00 8.30e–01 3.62e–01 4.87e–01 1.65e–02 2.19e–03
Stot
1 9e-01 1.52e–03 7.54e–03 8.68e–03 4.61e–04 5.14e–04 2.77e–06

Stot
2 2e-04 5.90e+01 4.69e+01 1.36e+01 3.45e–01 2.21e–01 1.24e–02

Stot
3 1e-01 1.19e–01 4.14e–02 1.54e–01 1.96e–03 6.41e–03 8.63e–05

Stot
4 5e-05 6.42e+02 5.54e+02 1.05e+02 5.06e–01 1.60e–01 1.52e–03

5 Sensitivity Studies with Respect to Chemical Reactions
Rates

In this section we will study the sensitivity of the ozone concentration values in
the air over Genova with respect to the rate variation of some chemical reactions
of the condensed CBM-IV scheme ([23]), namely: # 1, 3, 7, 22 (time-dependent)
and # 27, 28 (time independent). The simplified chemical equations of those
reactions are:

[#1] NO2 + hν =⇒ NO + O; [#22] HO2 + NO =⇒ OH + NO2;
[#3] O3 + NO =⇒ NO2; [#27] HO2 + HO2 =⇒ H2O2;
[#7] NO2 + O3 =⇒ NO3; [#28] OH + CO =⇒ HO2.

The domain under consideration is the 6-dimensional hypercube [0.6, 1.4]6).
The relative error estimation for the quantities f0, the total variance D and

some sensitivity indices are given in Tables 6, 7, 8, 9 and 10 respectively.
The quantity f0 is presented by 6-dimensional integral, while the rest are

presented by 12-dimensional integrals, following the ideas of correlated sampling.
For n = 220 for the model function f0 the best algorithm is the NEWL,

followed by FIBO and BIJ - see the results in Tables 6 for the maximum number

Applied Computing in Environmental Modeling 63

Table 5. Relative error for estimation of sensitivity indices of input parameters using
various stochastic approaches (n ≈ 220).

EQ RV CRU VDC2 VDC3 FIBO BIJ NEWL

S1 9e-01 8.54e–03 2.92e–03 5.44e–03 5.29e–08 2.78e–03 1.16e–08
S2 2e-04 2.73e–01 1.58e–01 5.83e–01 3.17e–03 2.32e–02 8.81e–06
S3 1e-01 1.40e–02 3.14e–02 1.33e +00 6.88e–05 4.28e–03 1.09e–08
S4 4e-05 5.87e–01 3.08e–01 3.17e–01 1.88e–01 3.46e–02 4.58e–07
Stot
1 9e-01 1.43e–03 2.99e–03 2.65e–03 2.14e–05 5.20e–04 5.86e–10

Stot
2 2e-04 1.42e + 00 9.96e +00 3.32e +01 4.56e–03 2.19e–01 6.39e–06

Stot
3 1e-01 9.31e–03 8.13e–02 4.80e–02 4.69e–05 6.41e–03 1.08e–07

Stot
4 5e-05 5.92e + 01 4.08e +01 6.61e +01 6.08e–02 1.66e–01 2.06e–06

of samples. A big improvement over the other algorithms is obtained - FIBO
gives 4.57e − 07 while NEWL gives 1.07e − 10.

For number of samples n = 220 for the total variance D the best algorithm is
the proposed algorithm NEWL, followed again by FIBO and BIJ - see the results
in Tables 7 for the maximum number of samples. An essential improvement over
the other algorithms is obtained - BIJ gives 2.22e−03 while NEWL gives 6.58e−
05. However for small number of samples the other stochastic algorithms and
especially BIJ, VDC2 and VDC3 give better results by at least 1 order.

Generally the increased number of samples to 220 improved the results pro-
duced by the new algorithm versus the other algorithms - see the results for the
relative error in Table 10 versus the results in Table 8 and Table 9.

For number of samples n = 210 in Table 8 the proposed algorithm NEWL
gives the best relative errors for S1, S3, S4, S5, S6, Stot

1 , Stot
2 , Stot

3 , Stot
4 , Stot

5 ,
Stot
6 , S14 and S45, while BIJ gives the best result for S2 and CRU the best results

for S24 and S12. However for this small number of samples the relative error for
small in value sensitivity indices is insufficient.

For number of samples n = 216 in Table 9 the new algorithm NEWL gives
the best relative errors for S1, S2, S3, S4, S5, Stot

1 , Stot
2 , Stot

3 , Stot
4 , Stot

5 , Stot
6 and

S24, while BIJ gives the best result for S12 and S6, CRU the best results for S14

and VDC2 gives the best relative error for S45.
For number of samples n = 220 in Table 10 the algorithm under consideration

NEWL gives the best relative errors for S1, S2, S3, S4, S5, S6, Stot
1 , Stot

2 , Stot
3 ,

Stot
4 , Stot

5 , Stot
6 , S12, S14 and S24, and VDC2 gives the best relative error only

for S45. It can be seen that for the small in value sensitivity index S45 VDC gives
also reliable results. However the most important and smallest in value sensitivity
index S5 only the proposed approach NEWL gives reliable relative errors.

The performance of the algorithms can be summarized as follows: the best
algorithm is NEWL, followed by VDC2 (for one of the small in value sensitivity
indices it gives better results), and after that follows BIJ and VDC3. Sometimes
the simplest possible stochastic approach CRU is even better than FIBO which
shows that the latter is not appropriate for higher dimensions.

64 V. Todorov et al.

Table 6. Relative error for the evaluation of f0 ≈ 0.27.

CRU VDC2 VDC3 FIBO BIJ NEWL
of samples Relative Relative Relative Relative Relative Relative
n error error error error error error

210 1.36e–03 1.35e–04 1.05e–04 2.08e–03 7.12e–03 1.13e–04

212 3.37e–03 1.56e–05 2.17e–04 1.40e–04 1.80e–03 7.03e–06
214 4.85e–04 9.23e–06 2.70e–05 3.98e–04 4.04e–05 4.40e–07
216 5.51e–04 8.66e–04 1.40e–04 2.61e–04 9.91e–06 2.75e–08
218 2.49e–04 4.63e–04 4.75e–04 7.29e–06 7.24e–06 1.72e–09
220 5.95e–05 7.85e–05 1.14e–04 4.57e–07 7.04e–06 1.07e–10

Table 7. Relative error for the evaluation of the total variance D ≈ 0.0025.

CRU VDC2 VDC3 FIBO BIJ NEWL
of samples Relative Relative Relative Relative Relative Relative
n error error error error error Relative

210 1.37e–01 5.63e–02 6.16e–02 6.73e+00 3.11e–02 1.00e+00

212 7.97e–02 1.01e–01 3.15e–03 5.27e–01 8.76e–02 2.07e+00

214 1.23e–01 2.07e–02 4.56e–03 1.02e–01 7.54e–04 1.37e–01

216 1.81e–03 4.21e–02 3.78e–02 1.97e–03 9.13e–04 6.64e–03

218 1.59e–02 1.06e–02 2.45e–02 4.53e–03 2.22e–03 1.13e–03
220 1.11e–02 6.51e–03 1.04e–02 9.33e–03 2.22e–03 6.58e–05

Table 8. Relative error for estimation of sensitivity indices of input parameters using
various stochastic approaches(n ≈ 210).

EQ RV CRU VDC2 VDC3 FIBO BIJ NEWL

S1 4e-01 1.82e–01 2.18e–01 1.58e–01 7.19e–01 3.32e–01 2.49e–02
S2 3e-01 1.05e+00 6.47e–01 4.73e–01 2.11e+00 6.25e–03 4.37e–02
S3 5e-02 1.27e+00 5.01e–01 1.36e+00 9.29e–01 1.76e–01 4.22e–02
S4 3e-01 4.35e–01 3.52e–01 5.30e–02 5.50e–01 2.27e–01 2.66e–02
S5 4e-07 9.72e+03 1.82e+03 8.37e+03 7.87e+03 1.93e+04 2.93e–02
S6 2e-02 1.78e+00 7.82e–01 1.39e+00 6.38e+00 1.20e+00 4.52e–02
Stot
1 4e–01 7.07e–01 1.16e+00 1.13e+00 7.89e–01 2.65e–01 3.60e–02

Stot
2 3e–01 4.79e–01 4.97e–01 1.59e–01 1.98e+00 1.42e–01 1.84e–02

Stot
3 5e–02 3.71e+00 4.40e+01 4.22e+00 8.38e–01 1.15e+00 1.87e–02

Stot
4 3e–01 1.14e+00 3.05e+00 8.65e–01 6.99e–01 4.82e–01 3.99e–02

Stot
5 2e–04 9.16e+02 2.96e+03 7.52e+02 2.19e+01 4.09e+01 1.22e+00

Stot
6 2e–02 1.86e+01 2.32e+01 4.37e+00 7.06e+00 1.16e+00 3.30e–02

S12 6e–03 5.07e–01 2.73e+00 5.27e+00 4.22e+00 2.81e+00 1.93e+00
S14 5e–03 8.79e+00 2.89e+00 1.85e+00 6.17e+00 5.51e+00 1.93e+00
S24 3e–03 8.53e–03 4.89e+00 1.00e+01 1.79e+00 9.97e+00 1.23e+00
S45 1e–05 1.32e+01 1.12e+02 8.40e+01 2.21e+02 1.82e+02 1.23e+00

Applied Computing in Environmental Modeling 65

Table 9. Relative error for estimation of sensitivity indices of input parameters using
various stochastic approaches (n ≈ 216).

EQ RV CRU VDC2 VDC3 FIBO BIJ NEWL

S1 4e-01 2.90e–02 1.07e–01 1.85e–02 3.82e–02 1.50e–02 4.80e–03
S2 3e-01 6.00e–02 5.08e–02 1.19e–01 1.03e–02 2.14e–02 9.01e–03
S3 5e-02 6.21e–02 4.05e–02 2.63e–01 5.48e–01 8.28e–02 1.90e–02
S4 3e-01 1.84e–02 7.39e–02 7.51e–03 1.07e–02 6.81e–03 5.24e–03
S5 4e-07 7.75e+02 7.26e+02 7.15e+02 3.40e+03 2.07e+03 5.79e–03
S6 2e-02 6.09e–02 4.10e–01 8.59e–02 1.32e+00 1.19e–02 2.21e–02

Stot
1 4e-01 7.98e–02 8.89e–02 2.30e–02 7.92e–02 1.07e–02 1.06e–02

Stot
2 3e-01 1.55e–01 1.06e–02 2.33e–02 3.06e–02 2.28e–02 8.76e–03

Stot
3 5e-02 5.93e–01 1.25e–01 3.94e–01 1.31e+00 4.92e–02 4.52e–03

Stot
4 3e-01 1.38e–01 1.51e–01 1.32e–01 3.84e–01 1.93e–02 2.30e–03

Stot
5 2e-04 4.70e+02 3.45e+02 2.69e+02 8.85e+01 6.78e+00 5.51e–01

Stot
6 2e-02 2.33e+00 1.63e+00 3.73e–01 2.15e+00 7.63e–02 1.36e–03

S12 6e-03 8.88e–01 9.16e–01 1.01e+00 3.21e+00 2.21e–01 8.35e–01
S14 5e-03 8.09e–02 1.91e–01 1.90e–01 8.64e+00 1.31e+00 1.71e–01
S24 3e-03 7.96e–01 3.25e–01 1.30e+00 1.37e+01 5.63e–01 1.71e–01
S45 1e-05 5.21e+00 1.41e–01 1.53e+01 4.25e+01 3.87e+01 8.35e–01

Table 10. Relative error for estimation of sensitivity indices of input parameters using
various stochastic approaches (n ≈ 220).

EQ RV CRU VDC2 VDC3 FIBO BIJ NEWL

S1 4e-01 7.43e–03 1.57e–02 1.17e–02 9.21e–03 1.49e–02 4.26e–04
S2 3e-01 3.90e–02 1.39e–02 3.55e–03 1.47e–02 2.11e–02 4.34e–04
S3 5e-02 4.42e–03 7.04e–03 3.78e–02 6.50e–01 8.25e–02 6.74e–05
S4 3e-01 1.30e–02 7.13e–04 3.73e–02 1.53e–01 5.68e–03 4.66e–05
S5 4e-07 2.08e+02 8.03e+02 3.11e+02 2.68e+03 2.08e+03 5.79e–03
S6 2e-02 3.48e–02 2.09e–02 7.06e–02 1.13e+00 1.55e–02 3.66e–03
Stot
1 4e-01 6.61e–03 1.44e–03 9.23e–03 9.69e–03 1.08e–02 4.42e–04

Stot
2 3e-01 9.65e–03 5.82e–03 1.58e–03 3.01e–02 2.19e–02 5.28e–04

Stot
3 5e-02 2.30e–01 1.29e–01 2.64e–01 1.37e+00 4.96e–02 6.43e–05

Stot
4 3e-01 2.22e–02 1.75e–02 6.95e–03 3.67e–01 1.91e–02 1.39e–04

Stot
5 2e-04 1.72e+01 6.31e+01 1.33e+01 3.90e+01 1.45e+01 9.73e–02

Stot
6 2e-02 4.26e–01 7.22e–02 7.34e–02 1.76e+00 7.68e–02 2.06e–03

S12 6e-03 1.49e–01 3.69e–01 2.05e–01 8.40e–02 2.14e–01 5.04e–02
S14 5e-03 3.55e–02 2.36e–01 3.84e–02 1.85e–01 1.30e+00 1.01e–03
S24 3e-03 1.50e–01 2.04e–01 3.03e–02 1.41e+01 6.63e+00 2.00e–03
S45 1e-05 3.69e+00 9.62e–02 7.22e–01 2.60e+01 3.85e+01 8.00e–01

66 V. Todorov et al.

6 Conclusion

The present study is in the area of environmental protection. In this paper we
proposed a new highly efficient stochastic methods based on lattice rule with
special function. We make a performance computing with the simplest possible
crude Monte Carlo approach, the van der Corput sequence and its modification
and two lattice rules based on generalized Fibonacci numbers and a bijectional
transformation function which are among the most famous before the developing
of the new algorithm. In our numerical experiments the stochastic methods has
been applied for multidimensional integration to provide sensitivity studies under
consideration. Sensitivity studies of the model output were performed with two
aspects in mind: the sensitivity of the ammonia mean monthly concentrations
with respect to the anthropogenic emissions variation, and the sensitivity of the
ozone concentration values with respect to the rate variation of several chemical
reactions. The numerical results show that the proposed method based on a
special function leads to higher accuracy of the estimated quantities in almost all
of the case studies, and there is a significant improvement for the model function
and the total variance, as well as for some small in value sensitivity indices.
Further investigations are necessary to examine if this approach is optimal for the
corresponding class of multidimensional integrals. In the future we will developed
also some Sobol based polynomial lattice rules which are expected to receive
even better accuracy. The results obtained here can be used for increasing the
reliability of the mathematical model results, and identifying input parameters
that should be measured more precisely. The developed Sobol based approach is
also general enough to be applied for sensitivity analysis for other environmental
large-scale models. The obtained results will improve mathematical models and
more importantly will help to reliably interpret the numerical results by relevant
specialists.

Acknowledgements. Venelin Todorov is supported by the Bulgarian National Sci-
ence Fund (BNSF) under Project KP-06-N52/5 “Efficient methods for modeling, opti-
mization and decision making” and BNSF under Project KP-06-N62/6 “Machine learn-
ing through physics-informed neural networks”. The work is also supported by BNSF
under Project KP-06-M32/2âĂŞ17.12.2019 “Advanced Stochastic and Deterministic
Approaches for Large-Scale Problems of Computational Mathematics” and Bilateral
Project KP-06-Russia/17 “New Highly Efficient Stochastic Simulation Methods and
Applications”.

References

1. Bahvalov. N.: On the approximate computation of multiple integrals. In: Vestnik
Moscow State University, Ser. Mat., Mech. vol. 4, pp. 3–18 (1959)

2. Dimov, I.: Monte Carlo Methods for Applied Scientists. World Scientific, Singapore
(2008)

3. Faure, H., Kritzer, P., Pillichshammer, F.: From van der Corput to modern con-
structions of sequences for quasi-monte carlo rules. Indagationes Mathematicae
26(5), 760–822 (2015)

Applied Computing in Environmental Modeling 67

4. Homma, T., Saltelli, A.: Importance measures in global sensitivity analysis of non-
linear models. Reliab. Eng. Syst. Saf. 52, 1–17 (1996)

5. Hua L. K., Wang, Y.: Applications of number theory to numerical analysis (1981)
6. Karaivanova, A., Atanassov, E., Ivanovska, S., Gurov, T., Durchova, M.: Parallel

Quasi-Monte Carlo Integration with Application in Environmental Studies, pp.
67–71. SEE-GRID-SCIUserForum, Istanbul (2009)

7. Korobov, N.M.: Properties and calculation of optimal coefficients. Soviet Math.
Doklady 1, 696–700 (1960)

8. Korobov, N.M.: Number-theoretical methods in approximate analysis, Fizmatgiz
(1963)

9. Kuo, F.Y., Nuyens, D.: Application of quasi-monte Carlo methods to elliptic PDEs
with random diffusion coefficients - a survey of analysis and implementation.
Found. Comput. Math. 16(6), 1631–1696 (2016)

10. Marchuk, G.I.: Mathematical modeling for the problem of the environment, Studies
in Mathematics and Applications, No. 16, North-Holland, Amsterdam (1985)

11. Niederreiter, H., Talay, D.: Monte Carlo and Quasi-Monte Carlo Methods, Springer
(2002)

12. Paskov, S.H.: Computing high dimensional integrals with applications to finance.
Technical report CUCS-023-94, Columbia University (1994)

13. Sloan, I.H., Kachoyan, P.J.: Lattice methods for multiple integration: theory, error
analysis and examples. S I A M J. Numer. Anal. 24, 116–128 (1987)

14. Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Oxford University
Press, Oxford (1994)

15. Saltelli, A., et al.: Global sensitivity analysis. Wiley, The Primer (2008)
16. Sobol’, I.M.: Global sensitivity indices for nonlinear mathematical models and their

monte carlo estimates. Math. Comput. Simul. 55(1–3), 271–280 (2001)
17. Sobol’, I., Myshetskaya, E.: Monte carlo estimators for small sensitivity indices.

Monte Carlo Methods Appl. 13(5–6), 455–465 (2007)
18. Sobol, I.M., Tarantola, S., Gatelli, D., Kucherenko, S., Mauntz, W.: Estimating the

approximation error when fixing unessential factors in global sensitivity analysis.
Reliab. Eng. Syst. Saf. 92, 957–960 (2007)

19. Sobol, I.M.: Sensitivity estimates for nonlinear mathematical models. Math. Model.
Comput. Experiment. 4, 407–414 (1993)

20. Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M.: Sensitivity Analysis in Prac-
tice: A Guide to Assessing Scientific Models. Halsted Press, New York (2004)

21. Van der Corput, J.G.: Verteilungsfunktionen (Erste Mitteilung) (PDF). In: Pro-
ceedings of the Koninklijke Akademie van Wetenschappen te Amsterdam (in Ger-
man), vol. 38, pp. 813–821, Zbl 0012.34705 (1935)

22. Wang, Y., Hickernell, F.J.: An historical overview of lattice point sets, in monte
carlo and quasi-monte carlo methods. In: Proceedings of a Conference held at Hong
Kong Baptist University, China (2000)

23. Zlatev, Z.: Comput. Treat. Large Air Pollut. Models. KLUWER Academic Pub-
lishers, Dorsrecht-Boston-London (1995)

24. Z. Zlatev, Z., Dimov, I.: Computational and Numerical Challengies in Environ-
mental Modelling, Amsterdam, Elsevier (2006)

25. Zlatev, Z., Dimov, I.T., Georgiev, K.: Three-dimensional version of the Danish
Eulerian model. Z. Angew. Math. Mech. 76(S4), 473–476 (1996)

Parallel Non-numerical Algorithms

Parallel Suffix Sorting for Large String
Analytics

Zhihui Du1(B) , Sen Zhang2 , and David A. Bader1

1 New Jersey Institute of Technology, Newark, NJ, USA
{zhihui.du,bader}@njit.edu

2 State University of New York, College at Oneonta, Oneonta, NY, USA
zhangs@oneonta.edu

Abstract. The suffix array is a fundamental data structure to support
string analysis efficiently. It took about 26 years for the sequential suffix
array construction algorithm to achieve O(n) time complexity and in-
place sorting. In this paper, we develop the D-Limited Parallel Induce
(DLPI) algorithm, the first O(n

p
) time parallel suffix array construction

algorithm. The basic idea of DLPI includes two aspects: dividing the
O(n) size problem into p reduced sub-problems with size O(n

p
) so we

can handle them on p processors in parallel; developing an efficient par-
allel induce sorting method to achieve correct order for all the reduced
sub-problems. The complete algorithm description is given to show the
implementation method of the proposed idea. The time and space com-
plexity analysis and proof are also given to show the correctness and
efficiency of the proposed algorithm. The proposed DLPI algorithm can
handle large strings with scalable performance.

Keywords: Suffix Array · String Algorithm · Parallel Sorting · String
Analysis · Optimal Algorithm

1 Introduction

Suffix arrays were initially introduced by Manber and Myers [18] as a space effi-
cient alternative to suffix trees [21]. Suffix arrays can be widely used in string
processing, data compression, text indexing, information retrieval and compu-
tational biology. Since the volume of string data is increasing constantly, high
performance suffix array construction algorithms (SACAs) have been a challeng-
ing problem. Thirteen years after the suffix array was proposed, the first linear
time algorithm for suffix sorting over integer alphabets was achieved by three
research groups, Ko and Aluru [12] , Kärkkäinen and Sanders [9] and Kim et
al. [11] at almost the same time. They reduced the time complexity of suffix
array construction algorithms from original O(nlog(n)) to O(n). These sequen-
tial algorithms are optimal in terms of asymptotic time complexity. Furthermore,
many lightweight algorithms [1,8,19,20] with small working space were devel-
oped. Especially, Nong et al. [22] can achieve O(1) space complexity for constant

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 71–82, 2023.
https://doi.org/10.1007/978-3-031-30442-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_6&domain=pdf
http://orcid.org/0000-0002-8435-1611
http://orcid.org/0000-0002-0173-5362
http://orcid.org/0000-0002-7380-5876
https://doi.org/10.1007/978-3-031-30442-2_6

72 Z. Du et al.

alphabets and Li et al. [17] can achieve O(1) in-place sorting for read-only inte-
ger alphabets. This also took about thirteen years to reduce the working space
complexity from O(n) to O(1).

Many parallel SACAs have also been developed. For examples, Futamura et
al. [4] gave a very early effort to implement a parallel SACA based on the sequen-
tial prefix-doubling method. Shun’s problem-based benchmark suite (PBBS) [26]
leveraged the task-parallel Cilk Plus programming model in its parallel multicore
skew algorithm implementation. Osipov [23] and Deo and Keely [2] implemented
the parallel Difference Cover 3 [10] or skewed algorithm on GPU. Homann et al.
[6] introduced the mkESA tool on multithreaded CPUs that could parallelize the
sequential induce copy method. Lao et al. [14,15] implemented their parallel recur-
sive algorithm on multicore computers. All the parallel methods can significantly
improve the practical performance compared with the corresponding sequential
methods. Yet, none of them can handle very large string on many (p) processors in
O(np) time. To achieve scalable performance, we need a parallel SACA with O(np)
time complexity. The major contributions of this paper are as follows.

– A high level parallel suffix sorting framework is proposed. This framework
aims to divide a large string’s suffix sorting problem (T (n, p)) into many even
size reduced sub-problems (T (np , 1)) and the large problem can be solved by
handling the many reduced sub-problems on p processors in parallel. In other
words, T (n, p) = T (np , 1).

– The first parallel suffix array construction algorithm DLPI with O(np) time
is presented. DLPI is optimal in terms of asymptotic time complexity.

2 Problem Description

We first give some basic definitions and notations to present the problem clearly.

Definition 1. Suffix Array: Given a string S = S[0..n − 1] with n characters,
the string’s suffix array (SA) is an array of integers providing the indices of
suffixes of S in lexicographical order. This means that ∀i < j, we have suf(i′) <
suf(j′), where i′ = SA[i], j′ = SA[j] and suf(k) is the suffix S[k..n − 1].

Definition 2. Read-only integer alphabets: The alphabets Σ is a set of charac-
ters (Σ ⊆ Z) that can be used to build a string. Given a string S = S[0..n − 1]
with n characters, ∀S[i], 0 ≤ i < n, we have S[i] ∈ Σ. At the same time, the
given string S cannot be changed during the procedure of building its suffix array.
Since different characters can be encoded as different integers, we assume ∀S[i],
we have S[i] ∈ {x|1 ≤ x ≤ |Σ|}.
In this paper, our problem is based on read-only integer alphabets instead of
constant alphabets, which have only constant characters, or integer alphabets,
whose input strings can be updated during the sorting procedure. The constant
or integer alphabets is a special case of our problem.

The proposed problem is as follows. Given a very large string S built from
a read-only integer alphabets Σ with length n and a parallel random access
machine (PRAM) with p processors, can we have a parallel algorithm to build
the suffix array of S in O(np) time?

Parallel Suffix Sorting for Large String Analytics 73

3 Algorithm Design

Unlike the existing parallel SACAs, we do not try to explore the parallelism in
the framework of sequential SACAs. Instead, we first build a parallel framework
that aims to divide the whole problem into many reduced sub-problems; and
then develop a parallel induce method to solve all the reduced sub-problems.

Definition 3. Order of Suffix Sets: Given two non-empty suffix sets Set1 and
Set2 of a string S, if ∀x ∈ Set1,∀y ∈ Set2, their lexicographical order meets
x < y (or x > y), then we define Set1 < Set2 (or Set1 > Set2).

In this section, we propose an idea to sort the suffixes of a long string in two
steps. First, we construct many (p) suffix subsets to cover all the suffixes. The
suffix subsets are ordered, but suffixes in each suffix subset are not sorted. Then,
we sort each suffix subset in parallel into its own sub-suffix array and achieve the
complete suffix array by combining the different sub-suffix arrays corresponding
to different suffix subsets together.

Algorithm 1: DLPI Algorithm
1 Function DLPI(String, p)
2 Step (1) Build parallel reduced subproblems
3 1.1 Divide all suffixes of S into p suffix subsets

SubSet1, ..., SubSetp, ∀1 ≤ i ≤ p, |SubSeti| = O(n
p)

4 1.2 Call Parallel Suffix SubSets Sorting function SA = PSSS(SubSet1, ..., SubSetp)
5 1.3 Evenly select (p − 1) splitters from each processor pi’s returned suffix array SA[i]
6 1.4 Add the (p − 1) × p splitters into each subset to get SpSubSeti, 1 ≤ i ≤ p
7 1.5 Call Parallel Suffix SubSets Sorting function

SA = PSSS(SpSubSet1, ..., SpSubSetp)
8 1.6 According to the returned SA, divide all suffixes into p ordered subsets that meet

OSubSet1 < ... < OSubSetp
9 Step (2) Sort reduced subproblems in parallel

10 2.1 Call Parallel Suffix SubSets Sorting function SA = PSSS(OSubSet1, ..., OSubSetp)
11 2.2 return SA
12 end

3.1 Algorithm Framework

In Algorithm 1, we present the framework of our parallel suffix array construc-
tion algorithm D-Limited Parallel Induce (DLPI). This framework transforms a
large T (n, p) problem, where n represents the problem size and p represents the
number processors of the PRAM, into p parallel T (np , 1) problems, which means
that each single problem is of size O(np) and can be handled in one processor.

In line 3 of Algorithm 1, for all the n suffixes of a given string S, we assign
them into p subsets evenly. The PSSS function will generate different sub-suffix
arrays corresponding to different subsets and we can select (p − 1) different
splitters [5] that divide each subset evenly (line 5). Then we augment each subset
by adding (p − 1) × (p − 1) splitters from the rest of the subsets and call PSSS
again on the augmented subsets. Afterwards, we utilize the ordered p × (p − 1)
splitters as guides to assign all the suffixes (in a round-robin order) into p ordered
subsets, OSubSet1, ..., OSubSetp (lines 6–8). Here, all suffixes are assigned into
p ordered subsets with the size of O(np).

74 Z. Du et al.

The second step is straightforward, where we just call PSSS again to gen-
erate the order of suffixes in different subsets and then combine them together
to obtain the complete suffix array SA (lines 10–11).

3.2 Parallel Induce Method

In Algorithm 2, we describe the essential function PSSS that can support paral-
lel induce on all reduced sub-problems. The basic idea of this function is that we
first construct p much smaller strings to express the different sub-problems. The
suffixes with different short prefixes can be sorted easily and the novel parallel
induce method is used to derive the order of suffixes with long and the same
prefixes.

Algorithm 2: Parallel Suffix SubSets Sorting Algorithm
1 Function PSSS(SubSet1, ..., SubSetp)
2 Step (1) Sort suffixes of each subsets and distinguish Fixed and Changeable suffixes
3 Build D-limited shrunk strings DS_S1, ..., DS_Sp according to different subsets
4 forall (i in 1..p) do
5 ESA[i][] = SeqOptSA(DS_Si)
6 Remove all indices ESA[i][j] that are not in Seti and get SA[i][] corresponding to

SubSeti
7 var mg=-1
8 for (j in 0..|SubSeti|-1) do
9 if (Suf(SA[i][j]) and its closest suffix in SA have the same D prefix) then

10 Flag[i][j]=Changeable
11 if (Suf(SA[i][j]) is the first Changeable suffix of a new group then
12 mg++
13 ChgGrp[i][mg].head=j;ChgGrp[i][mg].num=1
14 end
15 ChgGrp[i][mg].num++
16 end
17 else
18 Flag[i][j]=Fixed
19 end
20 end
21 end
22 Step (2) Induce the order of Changeable suffixes in each Changeable suffix group
23 2.1 Build aligned subsets AliSubSet1, ..., AliSubSetp for Changeable suffix groups
24 2.2 Generate the new suffix array AliSA of the suffixes just like the previous step (1)
25 2.3 Generate the distinguishable tail suffix array DTA for suffixes in the Changeable

suffix groups
26 2.4 Induce the correct order of all Changeable suffixes in SA based on DTA and AliSA
27 return SA
28 end

We introduce the first step of PSSS function at first.

Definition 4. D-limited substring and D-limited shrunk string: Given a con-
stant D, a string S with length n and one of its suffix subset SubSet, if two
suffixes suf(i) ∈ SubSet and suf(j) ∈ SubSet, where i < j and no other suffix
sits between i and j in SubSet(we will let j = n if no such suf(j) in SubSet),
then the D-limited substring of suf(i) is the substring S[i..j − 1] if j − i ≤ D or
S[i..i+D−1] if j − i > D. The D-limited shrunk string DS of S is the string by
concatenating all D-limited substrings from SubSet together according to their
original order in S.

Parallel Suffix Sorting for Large String Analytics 75

Definition 5. D-prefix substring: Given a constant D, a string S with length
n, and an index i, the D-prefix substring of suf(i) is the substring S[i..i+D−1]
if i < n − D or S[i..n] otherwise.

Building Reduced Strings. The first step of this function is building p much
smaller D-limited shrunk strings DS1, ...,DSp so each processor can handle one
smaller string in parallel (line 3). We use D-prefix substrings to replace the
original suffixes.

We will call the existing optimal sequential SACA SeqOptSA [17] to generate
the extended suffix array for the given shrunk string. Since we do not need to
compare the suffixes not included in the given subset, we remove the indices
of such suffixes in the extended suffix array and get the exact suffix array SA
(lines 5–6). We use a two-dimension array to express the partitioned data in
different processors. The cardinality of the first dimension stands for the number
of processors and that of the second dimension stands for the maximum number
of suffixes assigned to different processors.

For the suffix whose order can be decided based on its D-prefix substring,
its rank in the suffix array is correct. If there are two or more suffixes whose
D-prefix substrings are exactly the same, their ranks in SA should be induced
based on their complete suffixes. We use a two-dimension array Flag to mark the
correct rank as Fixed and the rank to be induced as Changeable. At the same
time, we use a two-dimension array ChgGrp to manage the clustered Changeable
suffixes by their D-prefix substrings. ChgGrp[i][mg] keeps the current group of
Changeable suffixes on processor i. ChgGrp[i][mg].head is the rank of the first
suffix in the corresponding suffix array and ChgGrp[i][mg].num is the total
number of suffixes in the current group (lines from 7 to 20).

Based on the ChgGrp data structure, the induce sorting method works as
follows. When we know the smallest suffix within the group mg, we just need
to switch the rank of the smallest suffix with that of the head suffix, advance
ChgGrp[i][mg].head by one, and reduce ChgGrp[i][mg].num by 1. If a suf-
fix can split the suffixes into two ordered subsets, we will put the suffix at
the correct position in its SA and split its Changeable suffix group into two
smaller groups. This way, we can induce one suffix at its correct position. When
ChgGrp[i][mg].num is one, all suffixes in the Changeable group mg have been
correctly ranked. The suffixes in different groups can be induced in parallel.

The second step is to induce the correct ranks of Changeable suffixes (line
22). The basic idea is building induce chain for all the Changeable suffixes; then
identifying the tail suffix that can distinguish the Changeable suffix from other
suffixes; inducing the order for each Changeable suffix based on the tail suffixes.
It includes four substeps and we will present the detailed descriptions as follows.

Definition 6. Aligned suffix set: Given a Changeable suffix group CG and a
non negative integer k, the set {suf(x)|∀e ∈ CG, e = suf(y)∧x = y+D×k∧x <
n} is the k aligned suffix set of CG.

76 Z. Du et al.

Building Aligned Suffix Sets. In the first substep (line 23) we build p com-
pletely new suffix subsets AliSubSet1, ..., AliSubSetp that are used to induce
the correct order of all the Changeable suffixes. Suffixes in an aligned suffix set
will be assigned to the same processor so we can get their order based on each
processor’s suffix array.

For all the Changeable suffix groups, we can generate all of their k aligned
suffix set. We will merge some overlapping aligned suffix sets and assign these
sets into p processors and form p suffix subsets AliSubSet1, ..., AliSubSetp.

Generating SA for Aligned Suffix Sets. In the second substep, we may
employ the similar method as before (lines from 2 to 21) to generate the suffix
array of each aligned suffix subset. Here we use AliSA to express the new suffix
array corresponding to the aligned suffixes. AliF lag has the similar meaning as
before to mark the Fixed and Changeable suffixes.

Now we have obtained two sets of Fixed and Changeables, we will use the
later set of Fixed suffixes to induce the previous set of Changeable suffixes by
using a data structure called DTA (to be further defined next).

Building the Distinguishable Tail Suffix Array. In the third substep, we
will build an array DTA to store the suffixes that can be used to distinguish one
Changeable suffix from other suffixes in the same Changeable group.

Definition 7. Distinguishable Tail Suffix: For any Changeable suffix suf(x) in
a Changeable suffix group ChgGrp, its distinguishable tail suffix suf(DTA(x))
is the suffix that can distinguish the order of suf(x) from the other Changeable
suffixes according to suf(DTA(x))’s D-prefix substring.

We will transfer the index t of suffix suf(t) whose flag is Fixed to its left suffix
suf(t − D) and let DTA[t − D] = t if suf(t − D) exists and it is a changeable
suffix. This procedure will continue to the head of the string along the induce
chain of suf(t). The challenge here is that we should do it in parallel. The basic
idea is as follows.

We first assign all suffixes to different processors based on the indices of
different suffixes evenly and each processor only checks about n

p suffixes. For
suffixes assigned to the current processor i, we will cluster them into D classes
based on their indices’ modulo D values. Each processor will scan every class
from its end suffix to its start suffix, in parallel. The index of the Fixed suffix
suf(f) will be passed to its left suffix suf(f − D) one by one until the new
Fixed suffix is met. Then the index of the new Fixed suffix will replace the old
one and be passed to the left suffix. In order to pass the distinguishable indices
across processors, we use a 2-D temporary array tmp[D][p] consisting of (D × p)
elements. If an ending suffix suf(e) (there are D of them) is changeable, we let
tmp[e%D][i] = −1 and DTA[e] = −(i), where i refers to the id of the processor
(ranged from 0 to (p − 1)) that means that suf(e)’s DTA value DTA(e) is
unknown and it will get its value from tmp[e%D][i]. Each Changable suf(j) on

Parallel Suffix Sorting for Large String Analytics 77

the processor i that cannot get its distinguishable tail suffix from upto its last
D-prefix suffix on the same processor will point to the same element tmp[j%D][i].

After this, we will scan the temporary array from end to start for different
modulo values. For current temporary element tmp[d][i] that corresponds to the
(i) processor and dth class, if suf(r) is the first suffix of its right processor,
r%D = d, and DTA[r] > 0, we will let tmp[d][i] = DTA[r]. If not, we will let
tmp[d][i] = tmp[d][i+1]. This means that the temporary array update will start
from tmp[d][p − 2] and end with tmp[d][0] (for all d in [0..D − 1]), sequentially.
Finally, each processor will check its suffixes whose DTA values are still negative
and update them with their respective corresponding temporary values. This
way, we can propagate the distinguishable tail suffixes from end to start in
parallel.

Inducing the Order of Changeable Suffixes. In the fourth substep, we
know the distinguishable tail suffix of each Changeable suffix. We can use such
information to induce the order of suffixes in each Changeable suffix group.
For each Changeable suffix group, first we will use its closest distinguishable
tail suffixes to distinguish the corresponding Changeable suffixes from others.
Then, we will induce the correct order of all Changeable suffixes based on their
distinguishable tail suffixes’ indices from small to large. The order of different
Changeable suffix groups can be induced in parallel.

4 Complexity Analysis

In this section, we adopt the widely used Parallel Random Access Machine
(PRAM) model [7] to analyze our parallel algorithm. The time complexity of
the proposed algorithm is O(np) and the space complexity is O(n). We will prove
that every step of our algorithm can be done in O(np) time and at most O(n)
working space (the space except the input string S and the returned suffix array)
is needed to generate the complete suffix array.

The DLPI function gives the framework of our algorithm. For substep 1.1
of step 1, we can assign the suffixes of the given string S with length n into p
parts and each has O(np) elements in O(np) time. The p D-limited shrunk strings
will need O(p × D × n

p) = O(D × n) = O(n) space. For substep 1.2, we will
give the time and space complexity of the parallel induce function PSSS later.
Selecting (p − 1) splitters for each processor based on its returned suffix array
and adding them into different subsets are straightforward and can also be done
in O(np) time. Here we assume p3 < n, when we add (p − 1)2 new elements to
each subset, each subset will have O(np) + O((p − 1)2) ≤ O(np) + O(np) = O(np)
elements. So, the total working space will also be O(p × n

p) = O(n).
For substep 1.5, just like before, we will discuss the time complexity of PSSS

later. From substeps 1.3 to 1.6, we know that the total number of elements
between two closest splitters cannot be larger than O(n

p2). So, when we combine
p parts of elements divided by the same splitters together into one subset, its

78 Z. Du et al.

size cannot be larger than O(np). At the same time, the elements of each subset
will be no larger than O(np). Based on this conclusion, it is feasible for us to
build p ordered subsets according to the p × (p − 1) splitters.

Hence, we can claim that DLPI function can generate the complete suffix
array of a given string S with length n in O(np) time on p processors using O(n)
space if the parallel induce function PSSS can return the suffix array for each
suffix subset in O(np) time on p processors using O(n) working space.

Theorem 1. For a string S with length n, if its suffixes are assigned to p given
subsets with size O(np), then the corresponding D-prefix substrings of each subset
can be sorted in O(np) time on p processors with O(n) space.

Proof. We can build D-limited shrunk strings based on given p suffix subsets of
the string S in parallel. The shrunk stings can be done by directly concatenating
all the D-limited substrings corresponding to the suffixes in each subset directly.
This work will take O(np) time with O(n) space. Then, we may employ the
existing in-place sequential linear suffix array algorithm SeqOptSA to directly
return their corresponding extended suffix arrays in O(np) time. The extended
suffix arrays will contain more indices than each subset’s elements. So, we need
to remove the additional indices. This can also be done in at most O(np) time.
Totally, O(np) time and O(n) space will be needed to sort the D-prefix substrings
of suffixes in all the given subsets.

Lemma 1. All suffixes can be marked as Fixed or Changeable suffixes and clus-
tered into groups in O(np) time and O(n) space.

Proof. To mark all suffixes as Fixed or Changeable, a Flag[1..p][] array with
O(n) space will be needed. To store the Changeable group information, at most
O(n2) space for a Changeable suffix array ChgGrp[1..p][] will be needed because
the suffixes can be divided into at most (n2) groups. Based on the returned
suffix array, each processor can compare any suffix’s D-prefix substring with its
neighbor to check if they are the same. The different D-prefix substrings mean
that the corresponding suffixes can be marked as Fixed; otherwise, they will
be marked as Changeable. The entire character comparison operations for any
processor should be O(D× n

p) = O(np). Clustering the Changeable suffixes based
on their D-prefix substrings and storing the group information into ChgGrp are
similar. So, the marking and clustering operations can be done in O(np) time
and O(n) space.

Lemma 2. The aligned subsets AliSubSet1, ..., AliSubSetp that each is no more
than O(np) elements can be built in O(np) time and O(n) space.

Proof. The total number of aligned suffixes cannot be larger than O(n). Since
we combine some overlapping aligned suffix sets and assign them to different
processors evenly, the total number of suffixes assigned to one processor cannot
be larger than O(np). The total number of suffixes in the Changeable suffix groups
cannot be larger than O(n), and the total number of suffixes in all aligned suffix

Parallel Suffix Sorting for Large String Analytics 79

sets cannot be larger than O(n) either. So, for the first substep, totally at most
O(n) space will be needed to store all the suffixes. Generating at most O(np)
suffixes AliSubSet1, ..., AliSubSetp for each processor from the Changeable suffix
groups is straightforward and can be done at most in O(np) time.

Corollary 1. The D-prefix substrings of subsets AliSubSet1, ..., AliSubSetp
can be sorted in O(np) time on p processors with O(n) space.

Proof. AliSubSet1, ..., AliSubSetp are p suffix subsets and each of them have at
most O(np) suffixes. Based on theorem 1, we can get the corollary and the third
substep can be done in O(np) time and O(n) space.

Subsequently, again all suffixes of AliSubSets can be marked as Fixed or
Changeable suffixes and clustered into groups in O(np) time and O(n) space, a
direct application of Lemma 1 on the new subsets i.e. AliSubsets.

Lemma 3. The distinguishable tail suffix array DTA can be generated in O(np)
time and O(n) space.

Proof. We can allocate the DTA array with size n to cover all suffixes. So,
O(n) space is sufficient. The basic idea of distinguishable tail suffix generation is
passing the closest Fixed suffix to the current Changeable suffix and storing the
Fixed suffix’s index in DTA. The short passing path will be easy to implement. In
order to reduce the passing time for a very long passing path, our implementation
method divides the long passing path into multiple parallel subpaths. The suffix
passing can be done on different subpaths in parallel. We allocate at most p
temporary memory space to transfer the index across different processors. Since
all the suffixes assigned to one processor cannot be larger than O(np), the first
scan procedure can be done in O(np) time for all the processors. Then we let one
processor pass the value in the temporary memory one by one from end to start.
So, at most O(p) time is needed. Finally, during the last scan, every processor
will assign the suffixes with the value of the temporary memory space if they
point to this memory space. The third substep will need at most O(np) time. So,
totally, O(np) time and O(n) space are needed to generate DTA.

Lemma 4. Inducing the order of all Changeable suffixes based on DTA and
AliSA can be done in O(np) time and O(n) space.

Proof. Generating the relative order of suffixes in each Changeable group based
on its DTA can be done in O(np) time on each processor because the length of
each suffix to be sorted will be no more than D (D or <D at the end of the
string), and we have at most O(np) such suffixes for each processor. It will need
to scan all the corresponding distinguishable tail suffixes to induce the order of
Changeable suffixes. The total number of distinguishable tail suffixes is the same
as the total number of Changeable suffixes that is no more than O(np) on each
processor. So, the induce procedure also can be done in O(np) time. The total
space to keep the AliSA and the temporary string is no more than O(n). So the
fourth substep can also be done in O(np) time and O(n) space.

80 Z. Du et al.

Theorem 2. For a string S with length n, its suffix array can be generated in
O(np) time on p processors with O(n) space in parallel.

Proof. Based on the above theorem and the lemmas, every algorithm step can
be done in O(np) time and O(n) space. So, after adding them together, we will
get the conclusion.

5 Related Work

There have been many works on the suffix array construction algorithm since
suffix array was invented in 1990 by Manber and Myers [18]. “Induce” is an
essential technique in suffix sorting. Although prefix-doubling [24] adopts the
induce technique, it cannot reduce the problem size step by step. This is why it
cannot achieve O(n) time complexity. The following works [9,11,12] recursively
solve the problem by constructing a reduced problem and employing the induce
technique to sort the suffixes.

All existing parallel suffix array construction algorithms were trying to par-
allelize one or combined sequential algorithms. Futamura et al. [4] gave the
early effort to parallel the prefix-doubling method. Larsson et al. [16] imple-
mented optimized methods based on the previous prefix-doubling technology
and improved its performance in parallel. Osipov et al. [23] implemented prefix-
doubling algorithm on GPUs. Flick and Aluru [3]’s parallel MPI-based imple-
mentation of the prefix-doubling method can achieve very high practical perfor-
mance on human genome datasets. Kulla et al. [13] parallelized the sequential
DC3 method, which regularly samples the string to build a smaller 2

3n problem.
Deo et al. [2] further implement the DC3 method on GPUs. Shun [25]’s parallel
skew (DC3) algorithm could achieve good performance on shared-memory multi-
core computers. Wang et al. [27] implemented a hybrid prefix-doubling and DC3
method on GPUs to improve the existing GPU methods significantly. Lao et
al. [14,15] employed pipeline technology to parallelize their previous sequential
linear algorithms on multicore computers.

The existing sequential algorithm framework is the barrier to the existing par-
allel methods of achieving scalable performance. We develop a parallel framework
and propose a parallel induce method to achieve O(np) time complexity.

6 Conclusion

The novel idea provided in this paper is the concept of D-limited shrunk sub-
strings that divides the complete problem with size n into p reduced sub-
problems with size O(np). An optimal parallel suffix array construction algorithm
to handle the problem in O(np) time complexity (p is the number of parallel pro-
cessors and we assume p3 < n) is critical for us to handle large strings (built on
an integer alphabet) with scalable performance. The critical technology is paral-
lel induce. The suffixes with long repeat prefixes can induce their order based on
their distinguishable tail suffixes in parallel. We take advantage of the existing

Parallel Suffix Sorting for Large String Analytics 81

optimal sequential suffix array construction algorithm as an independent execu-
tion unit to generate the order of all D-prefix substrings that can be used to
separate suffixes with long repeat prefixes from those with short unique prefixes.

The simplicity and the O(np) time complexity make the proposed D-Limited
Parallel Induce (DLPI) algorithm very promising to handle huge strings with
scalable performance. DLPI is the first parallel suffix array construction algo-
rithm with O(np) time complexity. We will focus on further reducing the total
working space O(n) in the future work.

Acknowledgement. This research was funded in part by NSF grant number CCF-
2109988.

References

1. Burkhardt, S., Kärkkäinen, J.: Fast lightweight suffix array construction and check-
ing. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS,
vol. 2676, pp. 55–69. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
44888-8_5

2. Deo, M., Keely, S.: Parallel suffix array and least common prefix for the GPU. In:
Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pp. 197–206 (2013). https://doi.org/10.1145/2442516.
2442536

3. Flick, P., Aluru, S.: Parallel distributed memory construction of suffix and longest
common prefix arrays. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pp. 1–10 (2015)

4. Futamura, N., Aluru, S., Kurtz, S.: Parallel suffix sorting. Electrical Engineering
and Computer Science - All Scholarship 64 (2001). https://surface.syr.edu/eecs/
64

5. Helman, D.R., JáJá, J., Bader, D.A.: A new deterministic parallel sorting algo-
rithm with an experimental evaluation. J. Exp. Algorithmics (JEA) 3, 4-es (1998).
https://doi.org/10.1145/297096.297128

6. Homann, R., Fleer, D., Giegerich, R., Rehmsmeier, M.: mkESA: enhanced suffix
array construction tool. Bioinformatics 25(8), 1084–1085 (2009). https://doi.org/
10.1093/bioinformatics/btp112

7. JáJá, J.: An Introduction to Parallel Algorithms, vol. 10, p. 133889. Addison-
Wesley, Reading (1992)

8. Kärkkäinen, J.: Fast BWT in small space by blockwise suffix sorting. Theoret.
Comput. Sci. 387(3), 249–257 (2007). https://doi.org/10.1016/j.tcs.2007.07.018

9. Kärkkäinen, J., Sanders, P.: Simple linear work suffix array construction. In:
Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 943–955. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-45061-0_73

10. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.
J. ACM (JACM) 53(6), 918–936 (2006). https://doi.org/10.1145/1217856.1217858

11. Kim, D.K., Sim, J.S., Park, H., Park, K.: Linear-time construction of suffix arrays.
In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol.
2676, pp. 186–199. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
44888-8_14

https://doi.org/10.1007/3-540-44888-8_5
https://doi.org/10.1007/3-540-44888-8_5
https://doi.org/10.1145/2442516.2442536
https://doi.org/10.1145/2442516.2442536
https://surface.syr.edu/eecs/64
https://surface.syr.edu/eecs/64
https://doi.org/10.1145/297096.297128
https://doi.org/10.1093/bioinformatics/btp112
https://doi.org/10.1093/bioinformatics/btp112
https://doi.org/10.1016/j.tcs.2007.07.018
https://doi.org/10.1007/3-540-45061-0_73
https://doi.org/10.1007/3-540-45061-0_73
https://doi.org/10.1145/1217856.1217858
https://doi.org/10.1007/3-540-44888-8_14
https://doi.org/10.1007/3-540-44888-8_14

82 Z. Du et al.

12. Ko, P., Aluru, S.: Space efficient linear time construction of suffix arrays. J. Discret.
Algorithms 3(2–4), 143–156 (2005). https://doi.org/10.1016/j.jda.2004.08.002

13. Kulla, F., Sanders, P.: Scalable parallel suffix array construction. Parallel Comput.
33(9), 605–612 (2007)

14. Lao, B., Nong, G., Chan, W.H., Pan, Y.: Fast induced sorting suffixes on a multi-
core machine. J. Supercomput. 74(7), 3468–3485 (2018). https://doi.org/10.1007/
s11227-018-2395-5

15. Lao, B., Nong, G., Chan, W.H., Xie, J.Y.: Fast in-place suffix sorting on a multicore
computer. IEEE Trans. Comput. 67(12), 1737–1749 (2018). https://doi.org/10.
1109/TC.2018.2842050

16. Larsson, N.J., Sadakane, K.: Faster suffix sorting. Theoret. Comput. Sci. 387(3),
258–272 (2007). https://doi.org/10.1016/j.tcs.2007.07.017

17. Li, Z., Li, J., Huo, H.: Optimal in-place suffix sorting. Inf. Comput. 285, 104818
(2022)

18. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993). https://doi.org/10.1137/0222058

19. Maniscalco, M.A., Puglisi, S.J.: Faster lightweight suffix array construction. In:
Proceedings of International Workshop on Combinatorial Algorithms (IWOCA),
pp. 16–29 (2006)

20. Manzini, G., Ferragina, P.: Engineering a lightweight suffix array construction
algorithm. Algorithmica 40(1), 33–50 (2004). https://doi.org/10.1007/s00453-004-
1094-1

21. McCreight, E.M.: A space-economical suffix tree construction algorithm. J. ACM
(JACM) 23(2), 262–272 (1976). https://doi.org/10.1145/321941.321946

22. Nong, G.: Practical linear-time O(1)-workspace suffix sorting for constant alpha-
bets. ACM Trans. Inf. Syst. (TOIS) 31(3), 1–15 (2013). https://doi.org/10.1145/
2493175.2493180

23. Osipov, V.: Parallel suffix array construction for shared memory architectures. In:
Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE
2012. LNCS, vol. 7608, pp. 379–384. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34109-0_40

24. Puglisi, S.J., Smyth, W.F., Turpin, A.H.: A taxonomy of suffix array construction
algorithms. ACM Comput. Surv. (CSUR) 39(2), 4-es (2007). https://doi.org/10.
1145/1242471.1242472

25. Shun, J.: Fast parallel computation of longest common prefixes. In: SC 2014:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 387–398. IEEE (2014). https://doi.org/10.
1109/SC.2014.37

26. Shun, J., et al.: Brief announcement: the problem based benchmark suite. In:
Proceedings of the Twenty-Fourth Annual ACM Symposium on Parallelism in
Algorithms and Architectures, pp. 68–70 (2012). https://doi.org/10.1145/2312005.
2312018

27. Wang, L., Baxter, S., Owens, J.D.: Fast parallel skew and prefix-doubling suffix
array construction on the GPU. Concurr. Comput. Pract. Exp. 28(12), 3466–3484
(2016). https://doi.org/10.1002/cpe.3867

https://doi.org/10.1016/j.jda.2004.08.002
https://doi.org/10.1007/s11227-018-2395-5
https://doi.org/10.1007/s11227-018-2395-5
https://doi.org/10.1109/TC.2018.2842050
https://doi.org/10.1109/TC.2018.2842050
https://doi.org/10.1016/j.tcs.2007.07.017
https://doi.org/10.1137/0222058
https://doi.org/10.1007/s00453-004-1094-1
https://doi.org/10.1007/s00453-004-1094-1
https://doi.org/10.1145/321941.321946
https://doi.org/10.1145/2493175.2493180
https://doi.org/10.1145/2493175.2493180
https://doi.org/10.1007/978-3-642-34109-0_40
https://doi.org/10.1007/978-3-642-34109-0_40
https://doi.org/10.1145/1242471.1242472
https://doi.org/10.1145/1242471.1242472
https://doi.org/10.1109/SC.2014.37
https://doi.org/10.1109/SC.2014.37
https://doi.org/10.1145/2312005.2312018
https://doi.org/10.1145/2312005.2312018
https://doi.org/10.1002/cpe.3867

Parallel Extremely Randomized Decision
Forests on Graphics Processors for Text

Classification

Julio Cesar Batista Pires1 and Wellington Santos Martins2(B)

1 Federal University of Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil
juliopires@discente.ufg.br

2 Federal University of Goiás, Goiânia, GO 74690-900, Brazil

wellington@inf.ufg.br

Abstract. The amount of readily available on-line text has grown expo-
nentially, requiring efficient methods to automatically manage and sort
data. Automatic text classification provides means to organize this data
by associating documents with classes. However, the use of more data and
sophisticated machine learning algorithms has demanded an increasingly
computing power. In this work we accelerate a novel Random Forest-
based classifier that has been shown to outperform state-of-art classifiers
for textual data. The classifier is obtained by applying the boosting tech-
nique in bags of extremely randomized trees (forests) that are built in
parallel to improve performance. Experimental results using standard
textual datasets show that the GPU-based implementation is able to
reduce the execution time by up to 20 times compared to an equivalent
sequential implementation.

Keywords: Extremely Randomized Trees · GPUs · Text

1 Introduction

The amount of readily available on-line text has grown unprecedentedly since
the advent of the Web. This brings new challenges as to automatically manage
and sort vast volumes of data. Fortunately, progress in computer technology and
algorithms has produced innovative solutions in this direction. On one hand, the
computer industry has shifted from single core to multicore (CPU) and manycore
(GPU) processors, making it possible to achieve superior performance through
parallel computing. On the other hand, advances in machine learning algorithms
have improved solutions that learn from this large amount of data. These two
factors have contributed to a revolution in the way we generate knowledge and
organize data.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal
de Nı́vel Superior - Brazil (CAPES) - Finance Code 001, Goiano Federal Institute - IF
Goiano/MEC - Brazil and Federal University of Mato Grosso do Sul - UFMS/MEC -
Brazil. Supported by Federal University of Goiás - UFG/MEC - Brazil.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 83–94, 2023.
https://doi.org/10.1007/978-3-031-30442-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_7&domain=pdf
http://orcid.org/0000-0002-9641-2565
https://doi.org/10.1007/978-3-031-30442-2_7

84 J. C. B. Pires and W. S. Martins

Machine learning (ML) applied to text data requires a special approach since
text can have hundreds of thousands of dimensions (size of the vocabulary)
where only a few have nonzero values, i.e. high dimensionality and high spar-
sity. Nonetheless, advances in natural language processing (NLP) continue to
evolve with outstanding results. For instance, GPT-3 [4], a language model con-
sisting of a deep learning (DL) neural network with 175 billion parameters, was
trained using powerful parallel machines and with large text datasets, showing
amazing performance in various NLP tasks, such as language translation, text
summarization, question-answering, among others.

Deep Learning really shines when there is some hierarchical structure in the
data, of a compositional nature, like syllable, word, phrase and other groupings
of a text. However, this structure is not decisive for the text classification task
which is at the heart of important applications such as recommender systems,
spam filtering, sentiment analysis, among others. In this case, traditional ML
approaches can do the job much faster and with a comparable or superior result
[6]. In particular, ensembles of classifiers have been shown to excel in this task,
with Random Forest (RF) standing out. However, RF may suffer from overfitting
issues in the presence of many irrelevant or noisy attributes - a characteristic
of text datasets. Recently, a RF-based classifier was shown to achieve state-of-
the-art results by exploiting distinct strategies to mitigate these problems [5].
The Boosted Extremely Randomized Trees (Boosted ERT) introduced another
source of randomization in the boosted strategy, i.e. it applies the boosting
technique in bags of extremely randomized trees. This makes the method rather
computationally expensive, thus limiting its use. This situation motivated us to
propose an accelerated (parallel) version of this RF-based classifier.

Although GPUs have been successfully applied to accelerate many machine
learning algorithms, it is not a trivial task to fully exploit them for training
RF-based text classifiers. Besides the high dimensionality and sparsity of text
data, the nature of tree structures adds challenges like tree traversals, irregular
memory accesses, varying parallel granularity, among others. In this work we
focus on GPU acceleration of the most demanding parts for extremely random-
ized tree bags, namely sampling for bagging, document class counting, Min/Max
calculation, finding the best split, and splitting the database. The CPU gathers
and processes this information, at each boosting step, to produce the final clas-
sification model. Experiments performed with standard textual datasets showed
significant performance gains when compared with the non-accelerated imple-
mentation.

The main contributions of the paper are:

(i) A parallel algorithm to support extremely randomized tree bags.
(ii) A scalable GPU-based implementation of the parallel algorithm.
(iii) An extensive experimental work with standard real-world textual datasets.

This paper is organized as follows. In Sect. 2, the literature on GPU tree
induction is presented. In Sect. 3 we describe the proposed parallel algorithm
to support extremely randomized tree bags. The experiments are described and
discussed in Sect. 4. Finally, in Sect. 5 we present our conclusions and highlight
future work.

Parallel Extremely Randomized Forests on GPUs 85

2 Trees and Ensembles

Some approaches to accelerate decision trees on the GPU can be found in the
literature. Most of the works deal with the construction of classifiers using the
CUDA programming model. One of the first implementations found consisted
of mapping a forest onto a texture vector from the graphics memory [21]. This
section presents the main GPU tree work of the last decade.

2.1 Decision Trees

Decision trees (DT) are one of the most powerful and popular approaches in
exploring large amounts of data to find useful patterns [19]. The tree struc-
ture consists of internal nodes representing tests (decisions) and terminal nodes
(leaves) representing class labels [23]. Induction algorithms such as CART (Clas-
sification and Regression Trees) [1] use metrics to select the best attributes and
recursively partition the dataset while creating the tree. Different types of par-
allel strategies are described in the literature, each with a different objective.
They range from parallelizing the steps that require more processing, such as
node splitting [15], to accelerating the construction of a decision tree in two
levels, node by node, and with node data sorting [18]. Some of these strate-
gies divide the construction tasks, with the heavier tasks performed in the GPU
exploiting parallelism at node level, attribute level or splitting level [22]. A more
recent work uses evolutionary tree induction, which evaluates individuals on the
GPU and stores previously constructed trees [13].

2.2 Bagging

The bagging (bootstrap aggregating) procedure replicates the original dataset
many times. Each tree is built with a different replica [2]. Approximately two-
thirds of the samples are used in training. The remaining one-third (out-of-bag)
is used as the test suite [11]. Combining multiple trees can mitigate errors made
by a single tree [19]. A popular example is random forests (RF) [3], which grows
several trees by bagging, randomly selecting and evaluating a small group of
attributes. After construction, the responses from the trees are combined into
a voting scheme [23]. A variation of the RF is the extremely randomized trees
(ERT) [8]. The difference is that the trees are generated from the original dataset
using random cutpoints on attribute values.

In the multiple parallel tree approaches, the first choice was building a tree
per thread (CudaRF). Each tree is created sequentially by the corresponding
thread. Using a greater number of trees can result in greater performance gains
[9]. There is also the hybrid construction of the decision tree (CudaTree), which
starts with a depth strategy switching to a breadth strategy later on. In the depth
strategy, each thread block is responsible for a subset of examples of a single
attribute. In the breadth strategy, the thread group is responsible for one node
and the whole level is processed simultaneously [14]. There is yet another breadth
strategy to generate ERTs and RFs, independently and in parallel (gpuRF and

86 J. C. B. Pires and W. S. Martins

gpuERT). The approach adopted works at the node level, that is, the entire
forest level is processed by the block grid and the threads slide over the node
examples. More parallelization potential is gained as trees grow [12].

2.3 Boosting

Boosting is an ensemble method that combines weak models in an iterative
process [7]. In each pass it samples using weights from the training set and
builds a new submodel, which is evaluated. If a sample is classified incorrectly,
its weight is increased. Each new model depends on the previous one. At the
end of all steps, all classifiers built form the new classifier. Boosting is one of the
most powerful learning ideas and seems to dominate bagging in many problems
[10]. Some boosting algorithms build histograms for the attributes in order to
find the best split (Light-GBM GPU) on the GPU [25]. In [17] - XGBoost GPU
- all nodes of a tree level are processed concurrently on the GPU, with the
training data being able to be partitioned in different GPUs [16]. One of the most
recent strategies (ThunderGBM) parallelizes the trees using some sophisticated
techniques like compression and dynamic workload between thread and block.
Parallelization takes place at the node, attribute and data split level [24].

2.4 Ensembles of Ensembles

Systems that combine a series of forests in boosting [5,20] correspond to
an efficient strategy to deal with overfitting problems caused by irrelevant
attributes present in large text datasets. The randomness provided by the trees
allows to decrease the variance, which makes the algorithm more robust to the
presence of noise in the data. The idea is to produce a model with high gener-
alization capability. Our proposal, Parallel Extremely Randomized Trees with
teXt (X-PERT), is meant to contribute on this front. The core of the system is
shown in Algorithm 1, and its comparison with the others proposals is shown
in Table 1. As can be seen, our proposal is not directly comparable to any other
proposal.

3 Parallel Approach

It is highly desirable to build computationally efficient algorithms to handle large
amounts of data. However, efficient algorithms must be thought of carefully tak-
ing into account various aspects of the hardware and the partition and mapping
of the problem [25]. One way of decomposing and mapping the problem of build-
ing trees using large volumes of data is to consider each level of the forest as
being processed at once. Thus, each block of threads is responsible for a tree
node, taking care of the terms (words) and documents. Our hybrid (CPU-GPU)
heterogeneous solution is detailed below.

The proposed solution builds a forest from top to bottom, in a breadth-
wise way, i.e. level by level. The assembly of the trees takes place on the CPU

Parallel Extremely Randomized Forests on GPUs 87

input : a training set S.
output: a tree ensemble T = t1, ..., tM .

1 for i ← 1 to M do
2 for j ← 1 to N do
3 if |S| < min or candidates are constant or output is constant then
4 build a leaf labeled by class frequencies in S
5 end
6 else
7 1. Select randomly a attributes among all non constant;

8 2. Compute the maximal aS
max and minimal aS

min value of a in S;

9 3. Draw a cut-point in a
[
aS
min, a

S
max

]
;

10 4. Select a split with best Score;
11 5. Split S into subsets l and r according to selected;
12 6. Build nodes from these subsets;

13 end

14 end

15 end

Algorithm 1: Extremely Randomized Trees Algorithm adapted from [8].

Table 1. GPU tree induction comparison.

Author Tree Height Split Growth Bagging Boosting Parallelism

Grahn [9] Forest Max Best Depth Yes No Thread/Tree

Liao [14] Single Max Best Depth/Breadth Yes No Block/Node

Nasridinov [18] Single Max Best Depth No No Thread/Node

Jansson [12] Forest 100 Best/Random Breadth Yes No Block/Node

Strnad [22] Forest Max Best Depth No No Block/Feature

Zhang [25] Single 8 Best Depth No Yes Thread/Features

Mitchel [16] Single 12 Best Depth No Yes Block/Feature

Wen [24] Forest 6 Best Depth Yes Yes Thread/Gain

Jurczuk [13] Forest Max Best Depth No No Block/Subset

Pires [this] Forest Max Random Breadth Yes Yes Block/Node

side while the GPU is in charge of processing the construction steps, which
demand greater computational power. The first step is to allocate the necessary
resources and load the text file into the GPU memory. The textual collection
consists of a matrix, where the rows represent documents and the columns the
terms, being that each column has word frequency values within the document.
The next steps are sampling, the root construction, and dataset splitting as the
tree grows. The entire process is repeated until some constraint is reached. The
following subsections explain the steps performed on the GPU.

88 J. C. B. Pires and W. S. Martins

b) find minimum with reductionc) split with stream compaction

a) class count with atomic operations

12 21

Fig. 1. Illustration of the procedures performed on the GPU.

3.1 Sampling

Once the data is moved to the GPU, the sampling can take place, initializ-
ing the weight vector of the dataset using a number of threads equal to the
number of documents. Thus, the bagging procedure chooses random documents
based on the weights. For this to occur, the weight values are accumulated using
an inclusive prefix sum. Then each thread generates a random number and does
a binary search on the vector to choose the document. In this way, each tree is
given a list of new instances to use. The construction of the trees happens from
top to bottom, level by level, by dividing the vector of documents at each level
until reaching the leaves. The entire tree level is built in parallel.

3.2 Class Count

The first step in building the trees is to count the class frequency of the docu-
ments in each node, as shown in Fig. 1a. Each block of threads is associated with
a tree-level node. Block threads go through the documents counting class labels
with atomic operations on shared memory1, a sort of programmable cache in that
access is almost 100 times faster than in global memory. After being counted and
returned to the CPU, the node is defined as a leaf if all documents have the same
class or the number of documents is insufficient to create new nodes.

1 https://developer.nvidia.com/blog/using-shared-memory-cuda-cc.

https://developer.nvidia.com/blog/using-shared-memory-cuda-cc

Parallel Extremely Randomized Forests on GPUs 89

3.3 Min/Max and Candidates

The step to find minimum and maximum values (Fig. 1b) consists of a block
of threads for each term of the dataset. To find the values of each term,
a reduction takes place inside the warp with shuffle instructions, in which the
threads exchange data with each other using registers. The described step finds
the values of each group of 32 threads, whereas to find the values between the
groups the shared memory is used. The minimum and maximum values also
guarantee whether a term is a candidate, that is, it has different values, meaning
that division of documents can be used.

3.4 Find Best and Split

To evaluate the best split, a subset of candidate terms is randomly chosen. Each
thread in the block chooses a cut-point between the maximum and minimum
values and evaluates the purity of the split using the chosen term and random
values. The calculation is done using the Gini index. Once the best split is
found, the document vector is split into left and right for the child nodes. This
partition uses stream compaction operations, as shown in Fig. 1c. The example
shown aggregates the prime values of the vector but, in our case, we join the
values that go to the left and those that go to the right. After the split, each
part of the vector is considered as possible internal nodes and is added to the
queue of the next node to be processed. All these steps are repeated until there
are no more nodes.

3.5 The Complete Solution

The steps described in the subsections above correspond to the tasks performed
by the proposed parallel algorithm. To implement these tasks on the GPU, kernel
functions were develop in order to exploit the fine-grained parallelism of GPUs.
The execution flow of the implementation on the CPU-GPU platform can be
seen in Fig. 2. The sampling operation follows the bagging strategy, while the
count labels, find min max, find best split and split dataset operations are in
agreement with Algorithm 1. On the left side of the figure (CPU) is the assembly
of the tree, while the operations that demand the highest processing load are
shown on the right side (GPU) of the figure. These operations use different kernel
launching configurations. In sampling, there are as many threads as there are
documents, 100,000 for the largest dataset. In count labels, each thread block
is in charge of a tree node, and the entire tree level is processed at once. For
the find min max, one block is used for each term of the dataset, approximately
50,000 blocks for the dataset with the largest vocabulary. The find best and
split operations use the same thread configuration per document, a value that
corresponds to the number of documents that the node has. All these steps are
repeated at least 200x within the iterative algorithm of boosting, as described
in [5].

90 J. C. B. Pires and W. S. Martins

CPU

GPU

load dataset

make nodes

sampling

count labels

find min max

find best split

split dataset

make leaf

[constant
output]

[|S| < min
or constant
candidates]

[else]

[else]

[else]

[nodes
queued]

Fig. 2. Algorithm execution flow.

4 Experimental Results

In this section, we report the results of the experiments conducted. A comparison
is made between the sequential solution and our parallel approach. The main
objective of the experiments is to identify when it is worthwhile to employ a
parallel strategy on the GPU.

4.1 System

All experimentation was carried out on a mid-range desktop machine equipped
with a quad-core Intel i7-7700 CPU (Kaby Lake) running at 3.60 GHz and 16 GB
of DDR4 RAM. An NVIDIA GeForce 1070 (Pascal) GPU with 8 GB of memory
and 1920 CUDA cores at 1.77 GHz was used. The programs were written in
C/C++, CUDA2 11.6 and OpenMP 2.0. The tests were conducted in a Windows
11 environment. To ensure standardized experimentation, all algorithms were
run with the same parameters, at least 5 times to obtain the averages. For each
dataset, we built 8 trees, which grew to maximum depth. The subset of terms
used was the square root of the total terms and we set the minimum number of
documents to perform a split at 2. All these hyperparameters are in agreement
with the literature.

2 https://docs.nvidia.com/cuda/cuda-c-programming-guide.

https://docs.nvidia.com/cuda/cuda-c-programming-guide

Parallel Extremely Randomized Forests on GPUs 91

4.2 Datasets

The tests considered 5 real-world text datasets: Spambase (email), 4Uni (web
pages), Reuters (news articles), 20NG (news groups), and ACM (computing
papers). All sets were pre-processed with the removal of stopwords and low-
frequency attributes [5]. In addition, we have increased the number of documents
in larger datasets to the limit of available memory. Datasets are composed of
documents represented by vectors of terms TF-IDF (Term Frequency-Inverse
Document Frequency). A detailed description can be found in Table 2. Most of
these sets can be found in the UCI Machine Learning Repository3.

Table 2. Dataset descriptions.

Names Docs Terms Classes

spam 4,601 57 2

4uni 8,199 22,581 7

reuters 13,327 17,029 90

20ng 18,846 49,025 20

acm 24,897 23,110 11

Table 3. Average runtime and speedup.

Names Seq. (s) Par. 1 (s)Par. 2 (s)Speedup

spam 0.25 0.08 2.97 0.08

4uni 417.16 100.88 487.66 0.86

reuters 440.42 97.74 255.04 1.73

20ng 5,255.40 1,678.58 1,045.31 5.03

acm 5,533.41 1,551.11 1,388.98 3.98

2x20ng12,526.26 5,270.50 1,951.94 6.42

2xacm 13,849.34 4,882.27 1,385.27 10.00

4xacm 31,591.1412,301.54 1,520.24 20.78

4.3 Analysis

In evaluating the performance of the algorithms, the sequential version was com-
pared with the proposed parallel version. The speedup metric (sequential time
divided by parallel time) was used in the comparison. Accuracy results were
not included, since the focus of the article is the analysis of runtime efficiency
in relation to the size of the sets. However, we observed that there is no loss
of quality when comparing the two algorithms. Execution time is measured in
seconds and considers all data movement between CPU and GPU over the PCIe
bus. Memory requirements of the algorithm is proportional to the dataset size.

It can be seen in Table 3, that from the third dataset onwards, the use of
parallel computing becomes worthwhile. For 100,000 documents, the GPU par-
allel version (Par. 2) takes approximately 28 min, while its sequential counter-
part takes almost 9 h, meaning the parallel version is 20x faster. A multicore
(OpenMP) CPU parallel version version (Par. 1) is included for comparison rea-
sons. Acceleration is proportional to the size of the dataset, which suggests that
our strategy is highly scalable.

As can be seen from the graphs in Fig. 3, the greater the amount of data, the
greater the sequential computational effort, and the greater the speedup factor,
3 https://archive.ics.uci.edu/ml/datasets/.

https://archive.ics.uci.edu/ml/datasets/

92 J. C. B. Pires and W. S. Martins

that is, the parallel algorithm gets an even greater advantage when the dataset
grows. As expected, very small sets are not feasible, the sequential algorithm is
faster enough. All this indicates that using a strategy with different granularities
of parallelism in large datasets, a good performance can be obtained.

0 0.5 1

·105

0

1

2

3

·104

Documents size

T
im

e
(s
ec
s)

Sequential
Parallel 1
Parallel 2

0 0.5 1

·105

0

10

20

Documents size

Sp
ee
du

p

Fig. 3. Execution and speedup according to the amount of documents.

5 Conclusions

Many important applications, such as sentiment analysis, spam filtering, topic
categorization, recommender systems, among others, can be solved by automatic
textual classifiers. However, text classification has to deal with noisy and high-
dimensional data, which makes the construction of classifiers a costly task. The
boosted extremely randomized trees with bagging have proved to be a great
alternative for automatic text classification, but with significant additional com-
putational costs. In this work we proposed an accelerated (parallel) version of
this RF-based classifier and implemented it on a heterogeneous platform (CPU-
GPU). Promising results showed that it was possible to decrease the execution
time many times, up to 20x, for the largest dataset, showing that the approach
scales well. Results suggest that even more gains can be made with larger sets,
especially with a greater number of documents.

A natural direction of the work is running on dedicated servers with multiple
GPUs, assigning each tree to a separate GPU. Another direction would be to
increase the number of trees used in each pass of boosting, and experiment with
larger datasets.

Parallel Extremely Randomized Forests on GPUs 93

References

1. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. Wadsworth and Brooks, Monterey (1984)

2. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996). https://doi.
org/10.1023/A:1018054314350

3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/
10.1023/A:1010933404324

4. Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process.
Syst. 33, 1877–1901 (2020)

5. Campos, R., Canuto, S., Salles, T., de Sá, C.C., Gonçalves, M.A.: Stacking bagged
and boosted forests for effective automated classification. In: Proceedings of the
40th International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, SIGIR 2017, pp. 105–114. ACM, New York (2017). https://doi.
org/10.1145/3077136.3080815. http://doi.acm.org/10.1145/3077136.3080815

6. Cunha, W., et al.: On the cost-effectiveness of neural and non-neural approaches
and representations for text classification: a comprehensive comparative study. Inf.
Process. Manag. 58(3), 102481 (2021)

7. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learn-
ing and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–
139 (1997). https://doi.org/10.1006/jcss.1997.1504. http://www.sciencedirect.
com/science/article/pii/S002200009791504X

8. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn.
63(1), 3–42 (2006). https://doi.org/10.1007/s10994-006-6226-1

9. Grahn, H., Lavesson, N., Lapajne, M.H., Slat, D.: CudaRF: a Cuda-based imple-
mentation of random forests. In: 2011 9th IEEE/ACS International Conference on
Computer Systems and Applications (AICCSA), pp. 95–101 (2011). https://doi.
org/10.1109/AICCSA.2011.6126612

10. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data
Mining, Inference and Prediction, 2 edn. Springer, Heidelberg (2009). http://www-
stat.stanford.edu/tibs/ElemStatLearn/

11. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical
Learning - with Applications in R. Springer Texts in Statistics, vol. 103. Springer,
New York (2013). https://doi.org/10.1007/DOI

12. Jansson, K., Sundell, H., Boström, H.: gpuRF and gpuERT: efficient and scalable
GPU algorithms for decision tree ensembles. In: 2014 IEEE International Parallel
Distributed Processing Symposium Workshops, pp. 1612–1621 (2014). https://doi.
org/10.1109/IPDPSW.2014.180

13. Jurczuk, K., Czajkowski, M., Kretowski, M.: Accelerating GPU-based evolutionary
induction of decision trees - fitness evaluation reuse. In: Wyrzykowski, R., Deelman,
E., Dongarra, J., Karczewski, K. (eds.) PPAM 2019. LNCS, vol. 12043, pp. 421–
431. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43229-4 36

14. Liao, Y., Rubinsteyn, A., Power, R., Li, J.: Learning random forests on the GPU.
In: Big Learning 2013: Advances in Algorithms and Data Management. Lake Tahoe
(2013)

15. Lo, W.T., Chang, Y.S., Sheu, R.K., Chiu, C.C., Yuan, S.M.: CUDT: a CUDA
based decision tree algorithm. Sci. World J. 2014 (2014)

16. Mitchell, R., Adinets, A., Rao, T., Frank, E.: Xgboost: scalable GPU accelerated
learning. CoRR abs/1806.11248 (2018)

https://doi.org/10.1023/A:1018054314350
https://doi.org/10.1023/A:1018054314350
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/3077136.3080815
https://doi.org/10.1145/3077136.3080815
http://doi.acm.org/10.1145/3077136.3080815
https://doi.org/10.1006/jcss.1997.1504
http://www.sciencedirect.com/science/article/pii/S002200009791504X
http://www.sciencedirect.com/science/article/pii/S002200009791504X
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1109/AICCSA.2011.6126612
https://doi.org/10.1109/AICCSA.2011.6126612
http://www-stat.stanford.edu/tibs/ElemStatLearn/
http://www-stat.stanford.edu/tibs/ElemStatLearn/
https://doi.org/10.1109/IPDPSW.2014.180
https://doi.org/10.1109/IPDPSW.2014.180
https://doi.org/10.1007/978-3-030-43229-4_36

94 J. C. B. Pires and W. S. Martins

17. Mitchell, R., Frank, E.: Accelerating the xgboost algorithm using GPU computing.
PeerJ Comput. Sci. 3, e127 (2017). https://doi.org/10.7717/peerj-cs.127

18. Nasridinov, A., Lee, Y., Park, Y.-H.: Decision tree construction on GPU: ubiquitous
parallel computing approach. Computing 96(5), 403–413 (2013). https://doi.org/
10.1007/s00607-013-0343-z

19. Rokach, L.: Decision forest: twenty years of research. Inf. Fusion 27, 111–125
(2016). https://doi.org/10.1016/j.inffus.2015.06.005. http://www.sciencedirect.
com/science/article/pii/S1566253515000561

20. Salles, T., Gonçalves, M., Rodrigues, V., Rocha, L.: Broof: exploiting out-of-
bag errors, boosting and random forests for effective automated classification.
In: Proceedings of the 38th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR 2015, pp. 353–362. ACM,
New York (2015). https://doi.org/10.1145/2766462.2767747. http://doi.acm.org/
10.1145/2766462.2767747

21. Sharp, T.: Implementing decision trees and forests on a GPU. In: Forsyth, D.,
Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 595–608. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-88693-8 44

22. Strnad, D., Nerat, A.: Parallel construction of classification trees on a GPU. Con-
curr. Comput. Pract. Exper. 28(5), 1417–1436 (2016). https://doi.org/10.1002/
cpe.3660

23. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining: Pearson New
International Edition, English Pearson Education Limited, Harlow (2013)

24. Wen, Z., Liu, H., Shi, J., Li, Q., He, B., Chen, J.: ThunderGBM: fast GBDTS and
random forests on GPUs. J. Mach. Learn. Res. 21(108), 1–5 (2020). http://jmlr.
org/papers/v21/19-095.html

25. Zhang, H., Si, S., Hsieh, C.J.: GPU-acceleration for large-scale tree boosting. CoRR
abs/1706.08359 (2017). https://doi.org/10.48550/arXiv.1706.08359. http://dblp.
uni-trier.de/db/journals/corr/corr1706.html#ZhangSH17

https://doi.org/10.7717/peerj-cs.127
https://doi.org/10.1007/s00607-013-0343-z
https://doi.org/10.1007/s00607-013-0343-z
https://doi.org/10.1016/j.inffus.2015.06.005
http://www.sciencedirect.com/science/article/pii/S1566253515000561
http://www.sciencedirect.com/science/article/pii/S1566253515000561
https://doi.org/10.1145/2766462.2767747
http://doi.acm.org/10.1145/2766462.2767747
http://doi.acm.org/10.1145/2766462.2767747
https://doi.org/10.1007/978-3-540-88693-8_44
https://doi.org/10.1002/cpe.3660
https://doi.org/10.1002/cpe.3660
http://jmlr.org/papers/v21/19-095.html
http://jmlr.org/papers/v21/19-095.html
https://doi.org/10.48550/arXiv.1706.08359
http://dblp.uni-trier.de/db/journals/corr/corr1706.html#ZhangSH17
http://dblp.uni-trier.de/db/journals/corr/corr1706.html#ZhangSH17

RDBMS Speculative Support
Improvement by the Use of the Query

Hypergraph Representation

Anna Sasak-Okoń1(B) and Marek Tudruj2,3

1 University of Maria Curie Sk�lodowska in Lublin,
Pl. Marii-Curie Sk�lodowskiej 5, 20-031 Lublin, Poland

anna.sasak@umcs.pl
2 Institute of Computer Science Polish Academy of Sciences,

ul. Jana Kazimierza 5, 01-248 Warsaw, Poland
3 Polish-Japanese Academy od Information Technology,

ul. Koszykowa 83, 02-008 Warsaw, Poland
tudruj@ipipan.waw.pl

Abstract. The paper concerns the methodology for speculative sup-
port for query execution in Relational Database Management Systems
(RDBMSs). It discusses and develops our proposal of supporting the
RDBMS query execution based on a graph-based analytic approach. This
approach assumes using the results of speculative queries defined by ana-
lyzing a multigraph representation of a stream of input queries arriving to
a RDBMS. The queries from the RDBMS input stream are permanently
analysed using a Speculation Window moving on the query stream to
define the optimized speculative queries for execution. More specifically,
the current paper develops the basic idea of the speculative query support
and shows how the use of the speculative query results by the awaiting
input user queries can be improved by the analysis of a query hypergraph
representation. The analysis of a joint hypergraph representation of the
speculative and user input queries has been employed to better organize
the use of the speculative query results in the stream of input user queries
of a RDBMS. The advantages of the proposed approach are positively
assessed based on the experiments with the simulated execution of the
testbed sets of queries.

Keywords: speculative computations · speculative database queries ·
hypergraph modelling

1 Introduction

If data dependencies in a program code make its parallel execution impossible
then a speculative instruction execution can be a method to obtain parallel exe-
cution but at the cost of using extra processing resources which are additional
processor cores. The cores can execute the fragments of code whose execution
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 95–109, 2023.
https://doi.org/10.1007/978-3-031-30442-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_8&domain=pdf
http://orcid.org/0000-0002-4593-120X
http://orcid.org/0000-0002-0444-3947
https://doi.org/10.1007/978-3-031-30442-2_8

96 A. Sasak-Okoń and M. Tudruj

is conditioned by the results of an earlier code. Speculative processing can be
applied in Relational Databases Management Systems (RDBMSs) to produce
query partial speculative results in advance to the query standard execution
order to be later used to speed-up query processing [7]. Storing the partial
query results can be a side-effect of execution of standard queries arriving to
the RDBMS (known as Query Caching [14]) or can concern Speculative Queries
specially generated based on the analysis of queries meant for execution in the
nearest future which is the method assumed in our approach [15,22].

The essence of our approach is the systematic parallel analysis of the input
query stream in a RDBMS. Multiple query optimization has been studied [11]
but without the speculative query concept nor an idea of using the streaming
processing. To implement our approach we have designed a multi-threaded mid-
dleware called the Speculative Layer which works between user applications and
the RDBMS. The motivation for our approach are RDBMSs which respond to
streams of queries of similar structures such as product browsing queries in the
Internet stores. Such databases feature a static behaviour where data modify-
ing queries occur rarely and predictably. The proposed speculative support for
query execution is based on a sliding Speculation Window (SW) on the input
query stream. The set of all SW queries is represented by a common multi-
graph. The SW multigraph is analysed to define the possibly best Speculative
Queries to support fast execution of awaiting input queries. For this analysis, the
queries are represented by their extended graphs showing the features relevant
for the query execution speculative support. The Speculative Queries are deter-
mined and executed for each SW position. They produce the speculative results
which are stored in the Speculative Database (SDB), located in the system Main
Memory, to be used in execution of awaiting input queries. During execution of
standard input queries the speculative results can be quickly accessed in SDB
avoiding time consuming transmissions from the secondary storage.

In this paper, we propose an improved method for the use of speculative
query results based on an analysis of an extended query hypergraph represen-
tation. A query hypergraph is a graph representation of queries in which the
hyperedges represent relations determined on the multi-sets of nodes, instead
of two nodes as in the ordinary graphs. The set-oriented hypergraph structures
can easily show relations between the already executed speculative queries and
user queries awaiting execution. Due to the limited size of the Speculative DB,
the results of the executed Speculative Queries are frequently deleted to provide
space for newly generated speculative results. We propose in advance assign-
ment of speculative query results to a number of input queries nearest to SW
i.e. placed in the input query stream next to SW. This extension will reduce the
situations when just deleted speculative query results will be generated again in
a short time to support soon upcoming user input queries. The proposed method
can strongly improve the overall strategy of using the query speculative results
by extension of their life period. The idea of analyzing hypergraph joint repre-
sentation of speculative queries and input user queries has been described in the
paper. It has been positively assessed by simulation experiments.

RDBMS Speculative Support Improvement with Hypergraphs 97

The paper text which follows contains 5 Sections. Section 2 discusses the
related works. Section 3 presents basics of the Speculative Layer concept i.e. the
rules of query graphs creation and the process of speculative analysis resulting in
optimized generation of speculative queries. Section 4 describes a new strategy
of in advance assignment of speculative query results to input queries. Section 5
presents experimental results obtained for user query test sets. Section 6 includes
the concluding remarks.

2 Related Work

The model of speculative execution was developed as a new method of program
parallelization the most often associated with thread level parallelism [1]. Spec-
ulative parallelization assumes parallel execution of the code fragments which
in the initial program would be run sequentially being imposed by some mutual
instruction dependences. For speculative parallelization usually some extra exec-
utive resources are used. Three main concepts of thread level speculations have
been distinguished in the literature: control, data value and data dependence
speculations. Since speculative parallel execution is done with violation (neglect-
ing) of the respective sequential program limitations, the corectness speculative
execution results must be validated against the “unspeculative” execution. As a
means for the sequential program restructuring for the speculative execution, the
program code splitting is introduced as a result of some analysis of the control
structure of the speculatively parallelized program. The speculative results which
have not been validated are rejected. However, if the speculative assumptions
are correct, the considerable efficiency improvement is obtained [2–4]. Impor-
tant research results on the speculative parallelization support for the complex
branch execution control in programs executed on processor clusters are reported
in [5]. The paper, containing an adequate references, proposes to use a synergie
of an improved code splitting technique based on conditional branch unfold-
ing (separate paths executed by threads for true and false branch results) with
the statistically supported speculative branch handling in the environment of a
cluster of the single processor systems.

The speculative support for relational database query execution has been a
subject of research. Most of the known optimization methods belong to a general
concept of query folding [6]. Query folding is the process of query execution sup-
port trying to determine whether a query can be answered using an additional
given set of resources. The considered additional resources can consist of mate-
rialized views, some cached results of previous queries, or query results coming
from other supporting databases. In [7] authors implement a speculative exe-
cution support to integrate the reception of data asynchronously coming from
different databases which can show some non-neglectable delays. The specula-
tive support for alleviating the influence of the delays was based on annotations
included into the data gathering plans. The implied operations performed specu-
latively, ahead of their normal schedule, provide significant plan implementation
speedups. The database system idle time is used for asynchronous anticipated

98 A. Sasak-Okoń and M. Tudruj

database data transformations so as in [8]. If the results of these operations were
correct, the target query would be executed in a shorter time.

Papers [9,10] present speculative execution used as a support technique for
transaction protocols in databases. An idea of the speculative locking protocol
for sequences of transactions was described which is based on two executions: for
previous and next transaction images when using some extra executive resources.
With this approach one of the speculative results is validated depending on the
obtained real result of the blocking (previous) transaction. The techniques to
support multiple query optimization, though without using the exact speculation
concept, are proposed in [11,12]. If some common sub-expressions are shared in
a group of queries, they can be used to generate a more appropriate execution
plan or as candidates for potential materialized views. This approach tries to
have a single execution of the shared sub-expressions. A popular method of query
optimization is cashing the results of previously executed queries [13,14,16]. The
concept is based on the assumption that the same query can be requested again.
In such case, instead of evaluating the query, the cached results can be reused.
Three cache variants are considered: tuple, page and semantic cache which are
used to decompose query is such way that only data not available in cache must
be loaded from database server, which speedups query execution.

Query hypergraph representation employed in this paper provides some nat-
ural modelling means for relations and interactions between query nodes of dif-
ferent types and have been often used in query optimization [17–19]. The hyper-
graph representation to support query processing with the speculative approach
has several advantages: the considered optimization items can be relations which
are easily represented as hyperedges, the operations on hypergraph elements can
be set oriented and query optimization can be simplified by a systematic sepa-
ration of operations on query elements from their semantics.

It should be noted that in the speculative parallelization there is always
some in advance processing, often based on the speculatively assumed comput-
ing states. In our case, the speculative approach is based on two components.
The first relates to the speculatively generated data - the Speculative Query
results. The second component concerns the speculatively assumed query pro-
cessing states in which the speculatively generated data will be used. According
to our best knowledge none of the methods known in the literature was based on
performing speculative actions that would be defined by a systematic analysis of
a database input query stream to cover needs of many future queries at a time.
Instead of caching the results of past queries, we analyse the stream of queries
which wait for execution in the nearest future and we generate speculative query
results prepared in advance as a result of specially defined Speculative Queries.
The above features together with the query modelling approach based on multi-
graphs and hypergraphs are the essential originality features of our methods.

3 The Speculative Layer

The Speculative Layer is located between user database applications and the
RDBMS. The cooperation between the Speculatie Layer and the RDBMS is

RDBMS Speculative Support Improvement with Hypergraphs 99

based on permanent analysis of arriving user queries which form a linear queue
waiting for the RDBMS’s answer. This analysis is performed based on a sliding
window of user queries called a Speculation Window (SW) organized in the
input query stream. The analysis is called the Speculative Analysis (SA) and
it determines the Speculative Queries to be executed for the current contents
of SW. For SA, each SW query is first represented by a query graph created
with a set of defined rules. The single query representations are next used to
create a joint representation of the SW query contents in the form of a Query
Multigraph QM. The QM is then converted into its extended version called the
Speculative Query Multigraph (SQM) used in further steps of SA. SQM contains
an additional type of edges, not appearing in QM, called the Speculative Edges.
These edges represent some important SW query features which are taken into
account in the optimized speculative query generation. As a result of selection
performed by SA on the Speculative Edges in SQM, a set of Speculative Queries
is generated for the current contents of SW which should be executed to produce
partial results useful for particular queries from the input stream.

For each contents of SW, two types of actions are performed concurrently.
First of them is the execution of the top query from SW - the non-speculative
query - adapted to use the speculative query results. The second type of action
involves execution of speculative queries (selected for execution by some defined
usefulness metrics). After the non-speculative input query is executed, the Spec-
ulation Window moves on the stream of input queries. As a result, the represen-
tation of the executed user query in the QM is replaced by the representation
of next user query from the input query queue. This process is repeated until
there are user queries waiting for execution. In each step of SA, from the group
of generated potential speculative queries, the top rated queries are selected for
execution. The speculative query rating and selection is done based on some vali-
dation metrics. The Horizontal and Vertical Selectivities are the most important
here - representing the horizontal and vertical reduction of the original data
base relation size as we want to avoid full copies of db relations. The selection
algorithm also takes into account the numbers of potential input queries in SW
which will use results of the analysed potential speculative queries. The results
of the executed speculative queries are stored in the RAM memory called the
Speculative DB which co-operates a particular RDBMS distributed worker pro-
cess housing an RDBMS engine executed inside the executive distributed system.
The results from the Speculative DB constitute ready-to-use working data, and
when used, eliminate full scans of the RDB relations thus shortening the query
processing and the user waiting time. The implemented model of the Speculative
Layer accepts Conjunctive Queries With Arithmetic Comparisons (CQAC) with
AND as a logical operator allowed in WHERE clause. An extended functionality
of queries is obtained by allowing two more operators, which are IN for value
sets and LIKE for strings.

Each user query is represented by its Query Graph GQ(VQ, EQ) with
design inspired by [20]. We use three types of vertices representing Relations
Attributes and Values from the modelled queries joined with edges repre-

100 A. Sasak-Okoń and M. Tudruj

senting functions of adjacent vertices in the query. Thus there are: Member-
ship edges (μ) for SELECT clause, Predicate (θ) and Selection (σ) edges for
WHERE clause. The process of the Speculative Analysis is executed for each QM
to determine and insert a set of Speculative Edges. These edges indicate which
graph elements should be used for speculative queries generation. Depending
on the use of speculation results we introduce three types of Speculative Edges
corresponding to equivalent Speculative Queries:

– Speculative Parameter Edges - these edges identify nested queries which,
if obtained speculatively, can be used as a parameter value in its parent query

– Speculative Data Edges - this type of Speculative Queries aims at obtain-
ing and storing in the Speculative DB a subset of records or/and attributes
of the relation so as it could be used in execution of many user queries

– Speculative State Edges - concerning a modifying query presence in the
Speculation Window.

Figure 1 presents the QM representing a set of three following component
queries created for a Speculation Window:

1. SELECT A4,2, A4,3 FROM R3, R4 WHERE A3,1 = A4,3 AND A4,2 < C1

2. SELECT A2,1, A2,2 FROM R2, R3 WHERE A2,1 = A3,3 AND A2,2 < C5

3. SELECT A2,1, A2,2 FROM R2 WHERE A2,2 > C6

Fig. 1. Speculative Query Multigraph SQM with speculative edges representing two
speculative queries

The QM contains additional speculative edges (dotted lines) representing
two speculative queries which could be generated for different relation vertices
from the analysed QM: (1) SELECT A4,1, A4,2, A4,3 FROM R4 WHERE A4,2 <
C2 (assuming C1 < C2 it would be useful for two user queries), (2) SELECT
A2,1, A2,2 FROM R2 WHERE A2,2 < C5 (assuming there are fewer records
having A2,2 < C5 then A2,2 > C6 the result size of such query would use less
space in the Speculative DB). For each analysed attribute vertex there would
be considered also another speculative queries which are not represented in the
figure for better readability. More precise description of the query graph creation
process and the speculative algorithm is included in [22–24].

RDBMS Speculative Support Improvement with Hypergraphs 101

4 A New Strategy for Speculative Query Assignment
to Input Queries

In this paper, we propose an optimized procedure of speculative query results
assignment to awaiting input queries. We execute the Speculative Analysis as it
was assumed in the previous papers but we want to verify the expected useful-
ness of speculative query results for the input queries waiting for execution just
behind the current Speculation Window by the assignment in advance. With
this early assignment rule we want to maintain the speculative query results for
the use for consecutive Speculative Windows. On the other hand, with the old
assignment strategy it frequently happened that the speculative query results
were removed from the Speculative DB (its size limit was exceeded) and the
identical speculative query was executed again in a nearby future. The specula-
tive query assignment in advance should prevent such situations.

So far the Speculative Analysis took under consideration only user queries
from the current Speculation Window (SW). For these queries a set of await-
ing speculative queries was generated. Then, a number of speculative queries
were chosen for parallel execution (two - for the use of a single SQLite engine).
The results of executed speculative queries were stored in the Speculative DB
and assigned to user queries from SW. After SW moved on, we updated query
multigraph and a new set of awaiting speculative queries was generated from
which again the top rated queries were chosen for execution if not identical to
such whose results already resided in the Speculative DB. We next assigned the
selected queries to appropriate user queries in SW for fast use of the speculative
results. Such strategy aimed at keeping the Speculative DB as small and stable
as possible.

In this paper, we propose an optimized procedure of executed speculative
query assignment to the awaiting input queries. We execute the Speculative
Analysis as it was assumed in the previous papers but we want to extend the
use of existing speculative results by input user queries for the use at a num-
ber of consecutive next positions of SW. It will be done by their “in advance”
assignment to user queries in the input stream just behind the current SW. The
motivation is that with the old assignment only to queries from SW it frequently
happened that the speculative query results were removed from the Speculative
DB when its size limit was exceeded and the identical speculative query was
executed again in a nearby future. The speculative query assignment in advance
should prevent such situations and keep speculative results usable as many times
as possible.

5 A Hypergraph for Speculative Query Assignment

As a support for the in advance speculative query assignment we introduce a
new hypergraph structure called the Assignment Hypergraph (AHg). It is used
to jointly represent the executed speculative queries from the Speculative DB
with N user queries situated in the input queue just behind SW.

102 A. Sasak-Okoń and M. Tudruj

The Assignment Hypergraphs are created according to the rules given below.
There are three types of allowed vertices:

– Query Ids Vertices (marked with a big dot) - these vertices represent unique
ids of executed speculative queries (pointing the specific relation in the Spec-
ulative DB) and user queries. The Query Ids Vertices of speculative and user
queries are distinguishable.

– Attribute Vertices Ai (marked with a square)- single attribute vertex for each
attribute appearing either in the executed speculative query or the user query

– Condition Vertices Ci (marked with a star)- one for each condition (operator
and value) appearing in the executed speculative query or the user query

Each node in the hypergraph can be adjacent to more than one hyperedge. The
AHg includes three obligatory types of hyperedges for each represented query:

– Speculative Query Hyperedge (labelled SQh) which encloses one id vertex, all
attributes appearing in the SELECT and WHERE clauses and all condition
vertices from the WHERE clause of the represented speculative query;

– Select Hyperedge (labelled Sh) which encloses one id vertex and all attribute
vertices appearing in the SELECT clause of the query;

– Where Hyperedge (labelled Wh) which encloses one id vertex and all attribute
vertices appearing in the WHERE clause of the query.

In addition, we introduce optional Condition Hyperedges to model diferrent
types of conditions appearing in the WHERE clauses:

– Nested Query Hyperedge (labelled NQh) which encloses an attribute vertex
and a condition vertex including a nested query;

– Value Condition Hyperedge (labelled V Ch) which encloses an attribute ver-
tex and a condition vertex containing value and one of allowed arithmetical
operators: <,�, >,�,=

– IN Condition Hyperedge (labelled INh) - encloses an attribute vertex and a
condition vertex including IN operator and a value set

– LIKE Condition Hyperedge (labelled LIKEh) - encloses an attribute vertex
and a condition vertex including LIKE operator and a string

Notice, that the hypergraph structure does not include hyperedges for join con-
ditions as joins between relations are not important in the speculative queries
assignment process. We also do not include vertices for database relations as it
is clear which attribute relates to which relation.

Figure 2 presents the hypergraphs created for the following two executed
speculative queries (sq1, sq2) and three user queries (Q1, Q2, Q3):

sq1: SELECT A1,1, A1,2 FROM R1 WHERE A1,3 < 8
sq2: SELECT A2,2, A2,3 FROM R2 WHERE A2,4 > 1
Q1: SELECT A1,1 FROM R1 WHERE A1,3 < 6
Q2: SELECT A1,1, A1,2, A3,1 FROM R1, R3 WHERE A1,2 = A3,1 AND A1,3 < 7

AND A3,2 IN (a, b)

RDBMS Speculative Support Improvement with Hypergraphs 103

Q3: SELECT A1,1, A1,2, A2,3 FROM R1, R2 WHERE A1,1 = A2,1 AND A1,3 > 3
AND A2,4 = 2

Since a full hypergraph structure contains a lot of hyperedges, first (Fig. 2a),
we present only a part of an Assignment Hypergraph created for two speculative
queries sq1 and sq2. We can see how particular hyperedges group certain vertices
according to their functions. We can also see that a particular vertex (for example
sq2 or A1,3) can be adjacent to a few hyperedges.
Figure 2 presents a full AHg structure which includes also three user queries.

Fig. 2. A part of the hypergraph representing two speculaive queries (a). Full AHg
representing two speculaive queries and three user queries (b).

For better picture readability, we skip all hyperedge labels. For user queries, we
also mark hyperedges with colored lines instead of shapes. We use blue color for
Speculative Query Hyperedges, green for Select Hyperedges, yellow for Where
Hyperedge and violet for different types of Condition Hyperedges.

6 In Advance Speculative Query Matching Algorithm

The in advance Speculative Query Matching Algorithm covers the executed spec-
ulative query assignment for the current SW and runs according to the following
strategy plan:

– add representation of an executed Speculative Query/Queries to the AHg

– get the set of Condition Hyperedges (CH set) (NQh, V Ch, INh, LIKEh)
– for each attribute edge in CH set, get a set of Condition Vertices from adja-

cent Condition Hyperedges (CV set). Depending on the adjacent Condition
Hyperedge type do :
• for each vertex (CVQ) in CV set incident with INh hyperedge and adja-

cent with Qn vertex (linked with it by the Where Hyperedge Wh) check if
other vertices (CVsq) in the CV set adjacent with sqn vertex contains all
elements of the CVQ set. If so, check if the appropriate Select Hyperedge
contains enough attributes. Then, assign the Speculative Query repre-
sented by the sqn vertex to the user query represented by the Qn vertex.

104 A. Sasak-Okoń and M. Tudruj

• for each vertex (CVQ) in CV set incident with V Ch hyperedge and adja-
cent with Qn vertex (linked with it by the Where Hyperedge Wh) check
other vertices (CVsq) in the CV set adjacent with sqn vertex. If the ranges
of values included in CVsq vertex are wider that range values in (CVQ),
check if the appropriate Select hyperedge contains enough attributes.
Then, assign the speculative query represented by the sqn vertex to the
user query represented by the Qn vertex.

• for the LIKEh and NQh hyperedges the compared values of CVQ and
CVsq must be identical to conform to the assignment process.

– when the Speculation Window moves after the nonspeculative query is exe-
cuted, update the hypergraph representation - remove the representation of
the user query which now enters the Speculation Window and add a next
user query from the user query queue.

– if in the process of Speculative DB cleanup any executed speculative query
results are removed, then remove the representation of such query from the
hypergraph.

The implementation of the new in advance strategy of speculative query assign-
ment does not influence (so far) the original strategy of the speculative queries
for execution selection in the Speculative Layer. Our aim is to verify if such in
advance speculative queries assignment influences the execution process of the
Speculative Layer. For the AHg hypergraph shown in Fig. 2 we would have three
speculative query assignments: sq1 to Q1 and Q2 (based on attribute A1,3) and
q2 to Q3 (based on A2,4).

7 Experimental Results

The Speculative Layer is implemented in C++ with multithreaded execution
supported by the Pthread library and SQLite as a database engine. The database
used for the experiments contained the structure and data (8 relations, 1GB
data) taken from the well known TPC-H benchmark [21]. A set of 6 query tem-
plates was prepared to generate 3 sets of 1000 user queries each with random val-
ues for the attributes in WHERE clauses and similar densities of each query type
in the set. The structures of the T1-T6 templates are described below, includ-
ing the relations they refer to and the attributes appearing in their WHERE
clauses (in brackets). Each listed attribute appears in at least one condition in
WHERE clause of such query which also contains one of the allowed operators
and a randomly generated value appropriate for this attribute. A more detailed
description of a similar testbed query set can be found in our paper [15].
T1: LINEITEM(L ORDERKEY nested query from ORDERS)
T2: LINEITEM (L DISCOUNT, L QUANTITY), PART (P BRAND, P CO
NTAINER)
T3: PART(P BRAND, P TYPE, P SIZE), PARTSUPP(PS AVAILQTY)
T4: LINEITEM(L EXTENDEDPRICE,L QUANTITY), ORDERS(O TOTA
LPRICE, O ORDERPRIORITY), CUSTOMER(C MKTSEGMENT)
T5: LINEITEM(L DISCOUNT, L QUANTITY), PART(P BRAND,P TYPE,

RDBMS Speculative Support Improvement with Hypergraphs 105

P SIZE), PARTSUPP(PS AVAILQTY)
T6: LINEITEM (L EXTENDEDPRICE, L QUANTITY), ORDERS (O OR
DER PRIORITY), CUSTOMER (C MKTSEGMENT), PART (P TYPE,
P SIZE)

Fig. 3. Percentage of each template user queries supported by 0 to 2 speculative results
- execution without the in advance speculative query assignment (a). Percentage of
each template user queries supported by 0 to 3 speculative results - execution with the
hypergraph-based in advance speculative query assignment (b).

In Fig. 3, we show a percentage comparison of the numbers of 6 query tem-
plates as described above, executed with the use of different numbers of spec-
ulative results with and without the hypergraph-based in advance speculative
query assignments, respectively. We can see that from 3% (T1) up to 29% (T3)
of user queries were executed without the speculative support when we used
only the multigraph query representation. When we have used the hypergraph-
based speculative assignment, the number of speculatively un-supported user
queries decreased to the maximal 13% (for T3). What’s more, the number of
user queries supported by 2 speculative query results increased and new query
groups appeared (for T5 and T6) supported by the use of 3 speculative query
results.

Figure 4a presents average execution times for each query template depend-
ing on the number of speculative query results we managed to prepare and use
when we have added the hypergraph modelling for the in advance speculative
query assignment. We can see that each used speculative result provided further
reduction in the user query execution time. For each template, the maximal num-
ber of used speculative results equals to the number of relations in its WHERE
clause. Thus, for templates T1, T2, T3, T5 we have managed to execute some
user queries with the maximum possible number of used speculative results (1,
2 and 3 speculative queries used, respectively), while for the multigraph only

106 A. Sasak-Okoń and M. Tudruj

Fig. 4. Average execution times for user queries depending on the number of used
speculative query results with the hypergraph modelling a). The reduction of average
user query execution time due to the speculative support of the in advance query
assignment based on the multigraph and hypergraph query modelling (b).

modelling, the maximum number of used speculative results was 2. Figure 4b
presents the percentage reduction of user query execution times obtained with
each additional speculative result used. We can see that we can obtain up to 85%
reduction in a user query execution time (plain green, blue and yellow bars), with
average reduction between 20% and 73% for all query templates (orange pat-
terned bar).

Fig. 5. User queries executed with 0–2 spec. results used for different sizes of the
extended QM representation (a). User queries executed with 0, 1 or 2 speculative
results used for different sizes of the Assignment Hypergraph (b).

Figure 5 shows the positive influence of the proposed algorithm of in advance
speculative query assignment based on the hypergraph structures on the exe-
cution of user queries. We run comparative experiments which measured the
numbers of user queries executed without and with the in advance speculative

RDBMS Speculative Support Improvement with Hypergraphs 107

query assignment and the use of different numbers of speculative results. First,
we did not use the hypergraph query representation but we extended the number
of user queries analysed inside the SW multigraph. As we can see in Fig. 5(a),
there is almost no visible change in the number of user queries executed without
the use of speculative results. What’s more, there are only single user queries
executed with the use of 3 speculative results and the number of user queries
executed with 2 speculative results is decreasing in favour of user queries exe-
cuted with only 1 speculative result which is not a favourable effect. In Fig. 5(b),
we present the average percentage of queries executed with the support of 0 to 3
speculative query results where instead of extending the size of SW we used the
algorithm of in advance speculative query assignment based on hypergraphs. As
we can see in Fig. 5(b) - the line with blue circles, the number of user queries
executed without speculative query results decreased 2 times (from 10% to 5%).
We can also see that input user queries were observed which used 3 speculative
query results (bottom line with red stars). The stabilization of the algorithm for
bigger numbers of user queries assigned in advance is dependent on the size limit
of the Speculative DB and the strategy of the speculative results removal when
this limit is exceeded. The speculative results assigned to the user queries from
the current SW are always the last to be deleted. Thus, the speculative results
assigned to future user queries based on the hypergraph analysis may be deleted
if it is immediately required to provide space in the Speculative DB.

8 Conclusions

This paper has presented an optimized method for using speculative query results
in RDBMS systems. It was implemented inside the multithreaded middleware
called the Speculative Layer. The Speculative Layer, based on joint graph mod-
elling of the speculative and input user queries, controls execution of the spec-
ulative queries which are assigned and used to speedup execution of input user
queries. In this paper, we have introduced the use of a hypergraph query rep-
resentation, which due to its set-oriented characteristics, can easily be used to
analyze relations between executed speculative and not yet examined input user
queries. The experimental results have confirmed the advantages from using
this representation for the new proposed mechanism of the in advance specula-
tive query assignment. The proposed methods have reduced the number of user
queries executed without the use of the speculative query results. They have
also increased the use of the speculative query results, comparing the execution
based only on the multigraph query modelling, thus speeding up execution of
input user queries in RDBMS. Our further research will focus on development of
the query speculative support algorithms exclusively based on the hypergraph
modelling.

References

1. Kejariwal, A., et al.: On the performance potential of different types of speculative
thread-level parallelism. In: ICS Proceedings, pp. 1–24, Cairns (2006)

108 A. Sasak-Okoń and M. Tudruj

2. Silc, J., Ungerer, T., Robic, B.: Dynamic branch prediction and control speculation.
Int. J High Perform. Sys. Arch. 1(1), 2–13 (2007)

3. Pan, S., So, K., Rahmeh, J.T.: Improving the accuracy of dynamic branch predic-
tion using branch correlation, in International Conference on Architectural Support
for Programming Languages and Operating Systems, Boston, pp. 76–84 (1992)

4. Moshovos, A., Breach, S.E., Vijaykumar, T.N., Sohi G.S.: dynamic speculation and
synchronization of data dependence. In: 24th ISCA, ACM SIGARCH Computer
Architecture News, vol. 25 (202)

5. Puiggali, J., Szymański, B.K., Jove, T., Marzo, J.L.: Dynamic branch speculation in
a speculative parallelization architecture for computer clusters. Concurr. Comput
Pract. Exp. 25, 932–960 (2013)

6. Gryz, J.: Query folding with inclusion dependencies. In: Proceedings 14th Interna-
tional Conference on Data Engineering, pp. 126–133 (1998)

7. Barish, G., Knoblock, C.A.: Speculative plan execution for information gathering.
Artif. Intell. 172(4–5), 413–453 (2008)

8. Polyzotis, N., Ioannidis, Y.: Speculative query processing. In: CIDR Conference
Proceedings, pp. 1–12, Asilomar (2003)

9. Reddy, P.K., Kitsuregawa, M.: Speculative locking Protocols to Improve Perfor-
mance for Distributed Database Systems. IEEE Trans. Knowl. Data Eng. 16(2),
54–169 (2004)

10. Ragunathan, T., Reddy, P.K.: Improving the performance of Readonly transactions
through Asynchronous Speculation. In: SPRINGSIM, pp. 467–474, Ottawa (2008)

11. Ge, X., et al.: LSShare: an efficient multiple query optimization system in the
cloud. Distrib. Parallel Databases 32(4), 593–605 (2014)

12. Chaudhari, M.B., Dietrich, S.W.: Detecting common sub-expressions for multi-
ple query optimization over loosely-coupled heterogeneous data sources. Distrib.
Parallel Databases 34, 119–143 (2016)

13. Faisal, H.M., et al.: A Query Matching approach for object relational databases
over semantic cache. In: Chapter 13 in Application of Decision Science in Business
and Management (2019)

14. Ahmad, M., Qadir, M.A., Sanaullah, M.: Query processing over relational
databases with semantic cache: a survey. In: IEEE International Multitopic Con-
ference, pp. 558–564, Karachi (2008)

15. Sasak-Okoń, A.: Tudruj, M. Graph-based speculative query execution in relational
databases. In: ISPDC, IEEE Explore, Innsbruck (2017)

16. Cybula, P., Subieta, K.: Query optimization by result caching in the stack-based
approach. In: Dearle, A., Zicari, R.V. (eds.) ICOODB 2010. LNCS, vol. 6348, pp.
40–54. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16092-9 7

17. Han, J.L.: Optimizing relational queries in connection hypergraphs: nested queries,
views, and binding propagations. VLDB J. 7, 1–11 (1998)

18. Sen, S., Ghosh, M., Dutta, A., Dutta B.: Hypergraph Based Query Optimization.
In: ICCI-2015, pp. 1–8, Combinatore (2015)

19. Qian, X.: Query folding. In: ICDE, pp. 48–55 (1996)
20. Koutrika, G., Simitsis, A., Ioannidis, Y.E.: Explaining structured queries in natural

language. In: ICDE Proceedings, pp. 333–344, Long Beach (2010)
21. TPC benchmarks (2015). http://www.tpc.org/tpch/default.asp
22. Sasak-Okoń, A., Tudruj, M.: Graph-based speculative query execution for RDBMS.

In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds.) PPAM
2017. LNCS, vol. 10777, pp. 303–313. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-78024-5 27

https://doi.org/10.1007/978-3-642-16092-9_7
http://www.tpc.org/tpch/default.asp
https://doi.org/10.1007/978-3-319-78024-5_27
https://doi.org/10.1007/978-3-319-78024-5_27

RDBMS Speculative Support Improvement with Hypergraphs 109

23. Sasak-Okoń, A.: Modifying queries strategy for graph-based speculative query exe-
cution for RDBMS. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski,
K. (eds.) PPAM 2019. LNCS, vol. 12043, pp. 408–418. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-43229-4 35

24. Sasak-Okoń, A., Tudruj, M.: Speculative query execution in RDBMS based on
analysis of query stream multigraphs. In: IDEAS, pp. 192–201, Seoul (2020)

https://doi.org/10.1007/978-3-030-43229-4_35

GPU Computing

Mixed Precision Algebraic Multigrid
on GPUs

Yu-Hsiang Mike Tsai1 , Natalie Beams2 , and Hartwig Anzt1,2(B)

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
2 University of Tennessee, Knoxville, USA

hanzt@icl.utk.edu

Abstract. In this paper, we present the first GPU-native platform-
portable algebraic multigrid (AMG) implementation that allows the user
to use different precision formats for the distinct multigrid levels. The
AMG we present uses an aggregation size 2 parallel graph match as the
AMG coarsening strategy. The implementation provides a high level of
flexibility in terms of configuring the bottom-level solver and the preci-
sion format for the distinct levels. We present convergence and perfor-
mance results on the GPUs from AMD, Intel, and NVIDIA, and compare
against corresponding functionality available in other libraries.

Keywords: Algebraic multigrid · Mixed precision · Portability · GPUs

1 Introduction

Multigrid methods approximate the solution of a linear system aided by a solu-
tion computed for a smaller system of equations arising from a coarser mesh.
The coarser and finer mesh are related through operators that restrict the fine
grid solution to the coarse grid and prolongate the coarse grid solution to the
fine grid. This idea of approximating solutions on a coarser grid can be applied
recursively, resulting in a hierarchy of successively coarser grids which can effi-
ciently target different frequencies in the error on the fine grid. Traditionally,
one distinguishes two classes of multigrid methods: those that use the geometric
mesh information from a spatial discretization to derive the hierarchy of grids are
called “geometric multigrid methods” (GMG); those that generate the hierarchy
of grids exclusively from the large sparse matrix are called “algebraic multigrid
methods” (AMG). Thus, in AMG, the coarse grids no longer directly corre-
spond to coarser discretizations of the original problem, making AMG methods
effective for unstructured grids or problems of unknown origin, and particularly
attractive for black-box usage.

With the widespread use of GPU accelerators in scientific computing, much
effort is focused on effective and efficient multigrid methods targeting GPUs or
amenable to GPU porting (see, e.g., [8–10]). Increased use of GPUs also moti-
vates further development and analysis of mixed-precision multigrid methods for
accelerators that can exploit high performance available in low precision com-
putations [11].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 113–125, 2023.
https://doi.org/10.1007/978-3-031-30442-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_9&domain=pdf
http://orcid.org/0000-0001-5229-3739
http://orcid.org/0000-0001-6060-4082
http://orcid.org/0000-0003-2177-952X
https://doi.org/10.1007/978-3-031-30442-2_9

114 Y.-H. M. Tsai et al.

In this paper, we present an AMG, implemented in and available through
the open-source Ginkgo library, that

1. allows for mixed-precision AMG execution;
2. is platform portable and can execute on AMD, Intel, and NVIDIA GPUs;
3. allows independent configuration of components for each level in the grid

hierarchy, as well as the bottom-level solver;
4. is competitive with AmgX [13] for real-world applications and benchmarks.

2 Background on AMG and Related Work

Algebra multigrid (AMG) is a popular choice for solving or preconditioning
linear problems originating from finite element discretizations. Unlike geomet-
ric multigrid (GMG), which relies on using information about the underlying
geometric mesh, an AMG solver is constructed directly from the sparse system
matrix. Similarly to GMG, AMG builds a hierarchy of consecutively-coarser grids
and computes error correction terms on the coarser grids to improve the solu-
tion on finer grids. Specifically, it restricts the residual on a fine grid to a coarser
grid, then uses the coarser grid to obtain an error correction that is prolongated
back to the finer grid to update the solution approximation. These correction
computations generally entail a few iterations of an iterative method, called a
“smoother” because it acts to smooth the high-frequency errors on the scale of
that grid, while the coarsest grid may opt for a direct solve of the restricted
problem, which is much smaller than the original matrix.

Parallel Graph Match. Strategies for creating the successively coarser grids
are generally more complicated in AMG than GMG, due to the lack of a physical
grid or mesh in the AMG initialization process (or entirely). The AMG imple-
mentation in Ginkgo uses parallel graph match (PGM), which was introduced
by Naumov et al. [13] as a GPU-based algorithm for deriving a coarse approxi-
mation through exploration of the graph representation of a matrix. It is a type
of aggregation method, in which nodes in the fine grid are combined to form a
single coarse grid node.

AmgX [13] is a library developed by NVIDIA that allows for single-GPU and
multi-GPU use and provides several coarsening methods, including parallel max-
imal independent set (PMIS) and parallel graph match (PGM). The library only
supports execution on NVIDIA GPUs. HYPRE [7] is a powerful library for dis-
tributed computing with its popular BoomerAMG [15] a central component. Its
different interfaces allows HYPRE to customize integration into specific appli-
cations, often permitting users to avoid conversions to a generic matrix format.
Currently, HYPRE supports execution on both NVIDIA and AMD GPUs, with
work in progress for Intel GPUs. We will compare the performance of Ginkgo
to both of these popular libraries in Sect. 4. Other open-source GPU-enabled
AMG implementations can be found in rocALUTION [1], an iterative sparse
solver library developed by AMD, and MueLu [4], a multigrid package inside
the Trilinos [14] ecosystem.

Mixed Precision Algebraic Multigrid on GPUs 115

To the best of our knowledge, there exists no AMG implementation that can
execute on Intel GPUs. We also did not find any AMG implementation that
allows the use of different precision formats for the distinct multigrid levels.
NVIDIA AmgX can use AMGX mode to choose the matrix and vector precisions
of the top-level linear system, but not the precision of each level in the multigrid.
Hence, our AMG implementation is leading the community in platform porta-
bility (AMD, Intel and NVIDIA GPUs) and flexibility (level components and
mixed precision mode).

3 Design of the Flexible and Platform-Portable AMG

The design of the Ginkgo AMG is driven by three main goals: flexibility, per-
formance, and platform portability.

Fig. 1. The MultigridLevel class with its components.

MultigridLevel. In Ginkgo, we define a MultigridLevel class, visualized
in Fig. 1, that contains a fine grid matrix from which it constructs the coarse
grid matrix (C) via the coarsening algorithm, as well as the restriction (R) and
prolongation (P) operators. The fine matrix (F) is merely the input matrix A, but
with the storage precision or format potentially altered by the MultigridLevel
according to the algorithm requirement or settings.

Using Ginkgo’s factory design pattern [3], a MultigridLevelFactory stores
the configuration and allows a top-level Multigrid object to use it repeatedly to
generate MultigridLevel objects for different levels in the multigrid hierarchy.
The parameters for the factory are order-free and optional where the factory has
sensible default values.

Multigrid Cycle. Multiple MultigridLevel objects combine with smoothing
operations at the interfaces to form a full AMG cycle in a Multigrid object.
The Multigrid class is highly flexible in configuring its components, with a long
list of parameters defining pre-/mid-/post-smoother options, coarse grid solvers,
the maximum number of levels in the multigrid hierarchy, the minimum number
of rows in the coarsest matrix, and mixed-precision use options, among others.

Supporting Mixed Precision in AMG. Ginkgo’s AMG implementation
allows the use of different precision formats on different levels of the multigrid
hierarchy, resulting in a mixed-precision AMG. The precision conversion happens
on-the-fly in the restriction and prolongation operations.

116 Y.-H. M. Tsai et al.

1 multigrid :: build()
2 .with_max_levels (10u) // equa l to NVIDIA/AMGX 11 max l e v e l s
3 .with_min_coarse_row (64u)
4 DP .with_pre_smoother(sm)
5 | .with_mg_level(pgm)
6 DP .with_coarest_solver(coarest_solver)
7 MP .with_pre_smoother(sm , sm_f)
8 || .with_mg_level(pgm , pgm_f)
9 || .with_coarest_solver(coarest_solver_f)

10 || .with_level_selector(
11 || [](const size_type level , const LinOp*) -> size_type {
12 || // Only the first level is generated by MultigridLevel(double).
13 || // The subsequent levels are generated by MultigridLevel(float)
14 || return level >= 1 ? 1 : 0;
15 MP })

Listing 1.1. Configuration of a Ginkgo Multigrid object. Lines with a red
background are used when configuring for double precision (DP), while the green
background indicates configuration for mixed precision (MP).

The gray and red portions of Listing 1.1 show a standard AMG V-cycle with
a max level depth of 10 (equivalent to 11 in NVIDIA/AmgX), a smoother sm
that is used for all smoothing operations, a MultigridLevel pgm, and a coarse
level solver, coarsest solver. (Note that the number of smoothing sweeps is a
parameter of the smoother object sm.)

In the configuration shown in the gray and green parts of Listing 1.1, we
enable mixed precision by adding two MultigridLevels and two smoothers in
the corresponding configuration list, with f indicating “float” or single precision.
We also need to configure the level selector to describe the desired scheme.
Here, when the level is larger than or equal to 1 (that is, all levels except the finest
grid), we use the second pair (pgm f, sm f). When the level is less than 1, we use
the first pair (pgm, sm). Taken together, this configuration generates a mixed-
precision Multigrid where only the finest level is using double precision, and all
other levels use single precision. We note that this mixed-precision Multigrid
configuration allows for smooth integration as a preconditioner into an iterative
solver using double precision, as the input and output vectors, as well as the
original matrix, remain in double precision.

Performance and Platform Portability. To enable both platform and per-
formance portability, we implement the Ginkgo AMG using a backend model
as described in [3,5], where we complement an algorithm skeleton invoking a
sequence of subroutines with backends containing the corresponding subroutines
as heavily optimized GPU kernels in the vendor-native programming languages.
Specifically, we implement CUDA kernels for NVIDIA GPUs, DPC++ kernels
for Intel GPUs, and HIP kernels for AMD GPUs. Instead of having three com-
plete stand-alone AMG implementations for the distinct GPU architectures with
the corresponding kernel sets, we use C++ runtime polymorphism for automat-
ically selecting and invoking the suitable kernels when executing the AMG algo-
rithm. This allows the deployment of the AMG solver in an application or a
software library without having to maintain different variants for different hard-
ware architectures. By doing so, we keep the cutting-edge features from ven-
dors’ official compilers without waiting for another compiler to adopt the new

Mixed Precision Algebraic Multigrid on GPUs 117

features. In [3], the basic idea and the library design of Ginkgo are outlined, and
[5] describes more details about how to prepare different backends and how to
reduce the maintenance efforts.

Reusing temporary storage and avoiding redundant residual computation
were found to be key performance features required by Ginkgo’s AMG. Unlike
Ginkgo’s Krylov solvers (CG, BiCG, or GMRES) which solve the linear system
in one application, AMG requires several pieces of Ginkgo solvers in each level.
Each call to a solver for smoothing will likely only do a few iterations at a time, so
if we generate a temporary workspace and free the memory after application, it
creates large overhead; the full AMG cycle contains many smoothing steps, so the
overhead is noticeable. In fact, before improving Ginkgo’s temporary storage
allocation to alleviate this overhead in AMG, profiling for a sample V-cycle
showed that only 6% of the total time was spent in GPU activities, versus 27% for
AmgX. We mark these temporary storage allocations with the mutable keyword
in order to avoid reallocation. We also avoid unnecessary residual computations,
e.g. when the input is zero and thus the residual can be copied directly from
right hand side.

4 Experiments

To evaluate performance of our mixed-precision AMG implementation, we use
both simulations of real-world problems within the MFEM finite element frame-
work and a set of benchmark problems taken from the Suite Sparse Matrix Col-
lection [6]; see Table 1 for the list of test problems and their key characteristics.

Table 1. Matrix characteristics for the selected MFEM discretizations and Suite Sparse
Matrix Collection matrices. The MFEM matrices marked with (*) were exported from
MFEM and also used in the platform-independent tests.

Problem Size Nonzero elements

Matrices in MFEM integration test Beam (–o2 –l3) 37, 281 21, 67, 425

Beam (–o3 –l3)* 120, 625 14, 070, 001

Beam (–o4 –l3) 279, 873 57, 251, 713

Beam (–o3 –l4) 924, 385 111, 573, 601

L-shape (–o3 –l7)* 443, 905 11, 066, 881

L-shape (–o3 –l8) 1, 772, 545 44, 252, 161

L-shape (–o4 –l7) 788, 481 28, 323, 841

L-shape (–o4 –l8) 3, 149, 825 113, 270, 785

2cubes sphere 101, 492 1, 647, 264

Thermal2 1, 228, 045 8, 580, 313

SuiteSparse matrices cage14 1, 505, 785 27, 130, 349

for platform-independent cage13 445, 315 7, 479, 343

Tests offshore 259, 789 4, 242, 673

tmt sym 726, 713 5, 080, 961

118 Y.-H. M. Tsai et al.

To demonstrate platform portability, we evaluate Ginkgo’s AMG imple-
mentation on GPU architectures from AMD, Intel, and NVIDIA. The GPUs
and corresponding compilers are listed along with some key characteristics in
Table 2. We compare the performance of Ginkgo’s AMG against two well-
established AMG libraries: HYPRE [7]1 for NVIDIA and AMD GPUs, and
NVIDIA’s AmgX2 for NVIDIA GPUs. For Ginkgo’s AMG, we have two exe-
cution modes: Ginkgo’s AMG (DP): The AMG executes the full algebraic
multigrid cycle in IEEE double precision (DP); Ginkgo’s AMG (MP): The
mixed-precision AMG executes the first level in DP and the rest of levels in
IEEE single precision.

Table 2. GPU characteristics.

GPU Peak Perf. (DP) Peak Perf. (SP) Mem. size Bandwidth Compiler Type

AMD MI100 11.54 TFLOP/s 23.1 TFLOP/s 32 GB 1,229 GB/s HIP 4.3 Discrete

Intel UHD P630 0.12 TFLOP/s 0.46 TFLOPS RAM 42 GB/s DPC++ 2021.4 Integrated

NVIDIA V100 7.79 TFLOP/s 15.7 TFLOP/s 16 GB 900 GB/s CUDA 11.4 Discrete

Experiments on Real-World Test Problems in MFEM. First, we com-
pare Ginkgo’s AMG and NVIDIA’s AmgX when used as a preconditioner for
the solution of finite element problems in MFEM. MFEM [2,12] is a popular
open-source finite element library with support for high-order meshes and basis
functions, among many other features. We consider a modification of MFEM’s
“example 1”, solving a standard diffusion problem −∇ · (c∇u) = 1, where c
is a given coefficient. We use homogeneous Dirichlet boundary conditions. Two
of MFEM’s provided meshes are tested; they are shown in Fig. 2. For the “L-
shape” mesh, a constant coefficient of c = 1 is used, while the “beam” mesh uses
a piecewise constant coefficient with a jump from 1 to 0.1 at the midpoint of
the length of the beam. All tests use standard tensor-product basis functions on
the Legendre-Gauss-Lobatto nodes and MFEM’s default choices for quadrature
points based on the order of basis functions.

Fig. 2. Meshes used for MFEM diffusion experiments. Left: L-shape mesh with 7 levels
of uniform refinement (49,152 elements); Right: Beam mesh with 3 levels of uniform
refinement (4,096 elements).

1 HYPRE using commit 84fa589.
2 NVIDIA AmgX using commit 77f91a9.

Mixed Precision Algebraic Multigrid on GPUs 119

We use AMG as a preconditioner within MFEM’s CG solver, with one V-
cycle application for each iteration of CG. Intending to provide a fair compar-
ison, we have matched parameter settings as closely as possible for AmgX and
Ginkgo; as comparison is our main goal, we have not attempted to determine
an optimal set of parameters for either library individually. We use the par-
allel graph match with deterministic aggregation of size 2 for coarsening. The
maximum number of levels is 11 (which corresponds to a parameter value of
10 in Ginkgo, but 11 in AmgX), with a minimum of 64 rows in the coarsest
matrix. The pre-/post-smoothing is weighted Jacobi with a weight of 0.9, i.e.,
xi+1 = xi + 0.9 ∗ D−1(b − Axi) where xi is the solution at iteration i, D is the
diagonal matrix of A, and b is the right-hand side of the linear system being
solved. The same relaxation is used on the coarse grid problem, but with four
relaxation sweeps instead of one. We built on MFEM’s existing Ginkgo wrap-
pers to use Ginkgo AMG within MFEM, and AmgX preconditioning support is
provided through MFEM’s AmgXSolver class. In the following tests, we consider
several orders of basis functions (-o) and levels of mesh refinement (-l), which
define the problem names in Table 1. Increasing the order of basis functions
increases both the problem size and the number of non-zeros per row; increasing
the refinement of the mesh increases the problem size while retaining sparsity.
We set the stopping criterion as implicit relative residual norm reduction of
10−12 or maximum 300 iterations.

Table 3. MFEM Beam (top) and L-shape (bottom) examples using MFEM’s AMG-
preconditiond CG solver. Ginkgo’s AMG is executed in IEEE double precision (DP)
and mixed precision mode (MP) using IEEE single precision on the subsequent levels.
Target architecture is the NVIDIA V100 GPU.

Geometry Problem NVIDIA AmgX (DP) Ginkgo AMG (DP) Ginkgo AMG (MP)

Runtime [ms] #iter runtime [ms] #iter runtime [ms] #iter

Beam –o 2 –l 3 20.71 15 20.27 15 19.96 15

–o 3 –l 3 52.94 20 39.93 21 39.56 21

–o 4 –l 3 155.47 26 128.69 27 120.41 27

–o 3 –l 4 329.68 29 294.68 29 270.39 29

L-shape –o 3 –l 7 242.27 93 178.02 93 170.08 94

–o 3 –l 8 1211.38 180 1033.96 173 943.27 177

–o 4 –l 8 3452.91 251 3044.24 236 2722.63 237

–o 4 –l 7 551.99 129 407.27 122 366.99 120

In Table 3, we list the iteration counts and runtime performance for different
CG/preconditioner configurations on the NVIDIA V100 GPU. We first focus
on four discretizations for the Beam geometry. The iteration counts of the
AMG-preconditioned CG solver are generally consistent, and using Ginkgo’s
AMG in mixed-precision mode does not, in this case, increase the CG iteration
count above the double precision setting. The CG preconditioned with NVIDIA’s

120 Y.-H. M. Tsai et al.

AmgX preconditioner sometimes converges one iteration sooner, but the AmgX
preconditioner application is more expensive per iteration than Ginkgo’s AMG
preconditioner: see Fig. 3 (top), which shows the average execution time per one
CG iteration, with Ginkgo’s AMG being approximately 20–40% faster than
NVIDIA’s AmgX for the three larger problems. This performance combined
with nearly-identical iteration counts results in Ginkgo’s AMG consistently
outperforming NVIDIA’s AmgX for this test case – with the mixed-precision
configuration increasing the performance advantages.

Compared to the Beam geometry, the L-shape geometry is numerically
more challenging due to its re-entrant corner. We use the same experiment set-
tings and report the results in the bottom part of Table 3. Here, the trend of
the AmgX-preconditioned CG requiring fewer iterations is reversed, as in this
case Ginkgo’s AMG enables faster convergence. Combined with the faster pre-
conditioner application per iteration, which holds for this test case as well (see
bottom of Fig. 3), Ginkgo’s AMG offers attractive runtime savings over AmgX
for all discretizations of the L-shape geometry. The runtime savings increase
when using Ginkgo’s AMG in mixed-precision mode. For example, for the “–0
4 –l 7” discretization, preconditioning CG with Ginkgo’s mixed-precision AMG
allows us to solve the problem 1.5× faster than when using NVIDIA’s AmgX;
see Table 3 (bottom).

Fig. 3. Runtime of one AMG-preconditioned CG iteration on the V100 GPU for
MFEM’s example 1 for the beam mesh (top) and the L-shape mesh (bottom).

Platform Portability Experiments. For demonstrating the full platform
portability of Ginkgo’s AMG, we can no longer rely on simulations within
MFEM, as MFEM does not yet support execution on Intel GPUs (though this
feature is in development as of this writing). Furthermore, while MFEM does

Mixed Precision Algebraic Multigrid on GPUs 121

support AMD GPU use, AmgX—and thus the use of MFEM’s AmgXSolver
class—is limited to NVIDIA GPUs. Instead, for evaluating platform portabil-
ity, we consider AMG as a stand-alone solver and use one discretization of the
beam mesh and one discretization of the L-shape mesh in conjunction with
benchmark problems from the Suite Sparse Matrix Collection [6], as summa-
rized in Table 1. The MFEM-exported matrices are accompanied with their cor-
responding MFEM-generated right-hand sides for the linear systems solved in
the previous experiments. For the Suite Sparse test matrices, we use a right-hand
side of all-ones. The initial guess is in all experiments set to all-zeros. We use a
residual stopping criterion of 10−9 and allow for at most 100 AMG iterations.
In the standalone solver performance tests, we compare NVIDIA AmgX and
HYPRE against Ginkgo DP AMG and Ginkgo MP AMG where allowed by
current library support, meaning HYPRE on AMD and NVIDIA GPUs, and
AmgX for NVIDIA GPUs. We configure HYPRE to use a similar multigrid con-
figuration as the one used by NVIDIA’s AmgX and Ginkgo’s AMG from the
previous section: we use 1 pre-/post-sweep, 4 coarse sweeps, HYPRE’s weighted
Jacobi smoother, 11 total levels, and set the minimum coarse system size to
64. However, as HYPRE BoomerAMG only fully supports the parallel maximal
independent set (PMIS) coarsening on GPUs, coarsening, the interpolation, and
the level sizes differ from the other libraries. While HYPRE supports multi-GPU
usage, we restrict the comparison to single-GPU runs.

Table 4. Comparison of performance, convergence, and accuracy of different AMG
solvers on the NVIDIA V100 GPU. For HYPRE, we mark * on iteration when HYPRE
does not generate any level for the problem.

Problem NVIDIA AmgX (DP) Ginkgo’s AMG (DP) Ginkgo’s AMG (MP) HYPRE AMG (DP)

[ms] #it res.norm [ms] #it res.norm [ms] #it res.norm [ms] #it res.norm

beam(o3l3) 199.44 87 9.03e–10 152.87 84 9.75e–10 142.49 83 8.94e–10 82.394 30 9.68e–10

L-shp.(o3l7) 251.01 100 7.43e–04 236.43 100 6.89e–04 226.15 100 6.91e–04 67.892 33 9.99e–10

2cubes. 130.14 88 7.94e–10 160.63 91 8.88e–10 114.90 91 8.88e–10 187.48 100 1.33e–8

thermal2 284.73 100 1062.42 304.79 100 1062.74 286.56 100 1062.73 327.42 100 5.7206

cage14 79.30 15 4.28e-10 84.01 14 6.73e–10 76.08 14 6.67e–10 119.67 *86 8.46e–10

cage13 40.99 17 7.29e-10 42.61 18 5.37e–10 40.26 18 5.40e–10 44.87 *87 8.68e–10

offshore 180.92 100 1.76e33 172.48 100 1.95e33 172.10 100 1.95e33 236.34 100 inf

tmt sym 211.65 100 858.151 197.63 100 858.84 188.58 100 858.83 265.46 100 1.45e6

We first consider the stand-alone AMG solver experiments for an NVIDIA
V100 GPU, summarized in Table 4. The per-iteration runtimes in Fig. 4 (top)
reveal that AmgX and Ginkgo’s double precision AMG have similar per-
iteration runtimes. Ginkgo’s mixed-precision AMG benefits from the higher
performance in single precision. In the time-to-solution metric, NVIDIA’s AmgX
outperforms Ginkgo’s double precision AMG for the SuiteSparse test prob-
lems, but Ginkgo’s AMG outperforms NVIDIA’s AmgX for the MFEM test
problems. However, in both cases, the differences are small, and the faster iter-
ation execution makes Ginkgo’s mixed-precision AMG superior or similar to

122 Y.-H. M. Tsai et al.

NVIDIA’s AmgX for all test problems. HYPRE’s AMG3 is significantly faster
than NVIDIA’s AmgX and Ginkgo’s AMG for the MFEM test problems. For
the SuiteSparse problems, HYPRE’s AMG is slower and/or converging more
slowly than the competitors. For cage14 and cage13 in Table 4, the settings we
choose result in HYPRE not generating any grid hierarchy.

Fig. 4. AMG per-iteration runtime on the NVIDIA V100 GPU (top), the AMD MI100
GPU (center) and the Intel Gen9 GPU (bottom).

We now turn to AMD’s MI100 GPU and run both HYPRE’s AMG and
Ginkgo’s AMG on the same test matrices. The results in Table 5 reveal that
3 The coarsening method is different from others’ settings.

Mixed Precision Algebraic Multigrid on GPUs 123

Table 5. Comparison of performance, convergence, and accuracy of HYPRE’s AMG
solver and Ginkgo’s AMG solver on the AMD MI100 GPU. In HYPRE, we mark *
on iterations where HYPRE does not generate any level for the problem, and # when
HYPRE terminates early due to a nan result.

Problem Ginkgo’s AMG (DP) Ginkgo’s AMG (MP) HYPRE AMG (DP)

[ms] #it res.norm [ms] #it res.norm [ms] #it res.norm

beam (–o3 –l3) 235.23 84 9.80e–10 220.30 83 9.30e–10 93.79 31 6.56e–10

L-shape (–o3 –l7) 272.28 100 6.88e–04 261.14 100 6.88e–04 109.95 33 9.25e–10

2cubes sphere 130.63 91 8.88e–10 130.08 91 8.88e-10 360.54 100 1.38e–07

thermal2 287.12 100 1062.74 270.79 100 1062.73 376.19 100 5.4256

cage14 105.50 14 6.75e–10 99.61 14 6.68e–10 130.68 *86 8.46e–10

cage13 62.27 18 5.37e–10 60.24 18 5.40e–10 55.71 *87 8.68e-10

offshore 207.69 100 1.95e33 195.82 100 1.95e33 247.89 #49 nan

tmt sym 208.72 100 858.843 205.13 100 858.854 289.58 100 3.18e9

the convergence and accuracy results are consistent with those obtained for
the V100 results. Running Ginkgo’s AMG in mixed-precision mode renders
small performance advantages on the MI100 GPU; see center row in Fig. 4. The
advantages are, however, smaller than on the V100 GPU. Again, HYPRE is
faster for the MFEM problems, but Ginkgo is faster for the selected SuiteSparse
benchmark problems. Although the theoretical bandwidth of the MI100 is higher
than the V100’s, we can not achieve the same usage ratio of the bandwidth,
rendering the performance of the MI100 slightly slower. [5] shows the Ginkgo
SpMV achieves similar performance to hipSPARSE, but both of them attain
a smaller fraction of peak bandwidth than corresponding routines on NVIDIA
GPUs.

We now run the same experiments on an Intel Gen9 UHD P630 GPU, which
is an integrated GPU with Intel E-2146G CPU. Table 6 demonstrates that con-
vergence and accuracy of Ginkgo’s AMG solvers carry over to Intel GPUs. We
visualize the per-iteration runtime in the bottom of Fig. 4.4 On the P630 GPU,
we see a small runtime advantage for the mixed-precision AMG over double
precision except for the tmt sym problem.

Comparing in Fig. 4 the performance of Ginkgo’s AMG on the three GPUs,
we note that the NVIDIA V100 GPU allows for the fastest AMG execution,
closely followed by the AMD MI100 GPU. The execution on the Intel P630 GPU
being more than an order of magnitude slower is expected from the hardware
characteristics in Table 2.

4 At the time of writing, the integrated P630 GPU is the only widely-available GPU
from Intel supporting double precision.

124 Y.-H. M. Tsai et al.

Table 6. Ginkgo’s AMG characteristics on the Intel P630 GPU.

problem Ginkgo’s AMG (DP) Ginkgo’s AMG (MP)

[ms] #iter res. norm [ms] #iter res. norm

beam (–o3 –l3) 3535.40 85 8.53e–10 3403.34 83 9.57e–10

L-shape (–o3 –l7) 5756.48 100 6.89e–04 5206.85 100 6.94e–04

2cubes sphere 1806.15 91 8.88e–10 1746.48 91 8.88e–10

thermal2 6715.82 100 1062.7 6641.03 100 1062.7

cage14 3449.86 14 6.77e–10 3247.38 14 6.67e–10

cage13 1031.46 18 5.37e–10 949.23 18 5.40e–10

offshore 3155.41 100 1.95e33 3085.29 100 1.95e33

tmt sym 4043.05 100 857.767 4656.52 100 858.304

5 Conclusion

We describe the design, usage, portability, and performance of a new algebraic
multigrid (AMG) implementation for GPUs. The new AMG implemented in the
Ginkgo library allows for more flexibility in terms of choosing multigrid compo-
nents and precision formats: we can configure the AMG to use different precision
formats for the distinct multigrid levels, resulting in a mixed-precision AMG.
The AMG is performance portable via a backend model that features kernels
written in the vendor-native programming language for GPUs from AMD, Intel,
and NVIDIA. We demonstrate that the new AMG implementation is competi-
tive to NVIDIA’s AmgX implementation, and the mixed-precision configuration
is outperforming AmgX. On AMD and NVIDIA GPUs, we compare also with
HYPRE’s GPU-capable AMG implementation that is based on PMIS aggrega-
tion. We conclude with performance results for AMG execution on Intel GPUs.

References

1. AMD: rocALUTION. https://dgithub.com/ROCmSoftwarePlatform/rocALU-
TION

2. Anderson, R., et al.: Ginkgo: a Modern linear operator algebra framework for high
performance Comput. ACM Trans. Math. Softw. 48(1), 2:1–2:33 (2022). https://
doi.org/10.1016/j.camwa.2020.06.009

3. Anzt, H., et al.: Ginkgo: a modern linear operator algebra framework for high
performance. Comput. ACM Trans. Math. Softw. 48(1), 2:1–2:33 (2022). https://
doi.org/10.1145/3480935

4. Berger-Vergiat, L., et al.: MueLu multigrid framework 2019). https://trilinos.org/
packages/muelu

5. Cojean, T., Tsai, Y.H.M., Anzt, H.: Ginkgo-a math library designed for platform
portability. Parallel Comput. 111, 102902 (2022)

6. Davis, T.A., Hu, Y.: The university of Florida sparse matrix collection. ACM Trans.
Math. Softw. (TOMS) 38(1), 1–25 (2011)

https://dgithub.com/ROCmSoftwarePlatform/rocALUTION
https://dgithub.com/ROCmSoftwarePlatform/rocALUTION
https://doi.org/10.1016/j.camwa.2020.06.009
https://doi.org/10.1016/j.camwa.2020.06.009
https://doi.org/10.1145/3480935
https://doi.org/10.1145/3480935
https://trilinos.org/packages/muelu
https://trilinos.org/packages/muelu

Mixed Precision Algebraic Multigrid on GPUs 125

7. Falgout, R.D., Yang, U.M.: hypre: a library of high performance preconditioners.
In: Sloot, P.M.A., Hoekstra, A.G., Tan, C.J.K., Dongarra, J.J. (eds.) ICCS 2002.
LNCS, vol. 2331, pp. 632–641. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-47789-6 66

8. Ganesan, S., Shah, M.: SParSH-AMG: a library for hybrid CPU-GPU algebraic
multigrid and preconditioned iterative methods. arXiv preprint arXiv:2007.00056
(2020)

9. Li, R., Sjögreen, B., Yang, U.M.: A new class of AMG interpolation methods based
on matrix-matrix multiplications. SIAM J. Sci. Comput. 43(5), S540–S564 (2021)

10. Liu, H., Yang, B., Chen, Z.: Accelerating algebraic multigrid solvers on NVIDIA
GPUs. Comput. Math. Appl. 70(5), 1162–1181 (2015)

11. McCormick, S.F., Benzaken, J., Tamstorf, R.: Algebraic error analysis for mixed-
precision multigrid solvers. SIAM J. Sci. Comput. 43(5), S392–S419 (2021)

12. MFEM: Modular finite element methods [Software]. https://mfem.org/. https://
doi.org/10.11578/dc.20171025.1248

13. Naumov, M., et al.: AmgX: a library for GPU accelerated algebraic multigrid and
preconditioned iterative methods. SIAM J. Sci. Comput. 37(5), S602–S626 (2015)

14. Trilinos Project Team, T.: The Trilinos Project Website
15. Yang, U.M., et al.: BoomerAMG: a parallel algebraic multigrid solver and precon-

ditioner. Appl. Numer. Math. 41(1), 155–177 (2002)

https://doi.org/10.1007/3-540-47789-6_66
https://doi.org/10.1007/3-540-47789-6_66
http://arxiv.org/abs/2007.00056
https://mfem.org/
https://doi.org/10.11578/dc.20171025.1248
https://doi.org/10.11578/dc.20171025.1248

Compact In-Memory Representation
of Decision Trees in GPU-Accelerated

Evolutionary Induction

Krzysztof Jurczuk(B) , Marcin Czajkowski , and Marek Kretowski

Faculty of Computer Science, Bialystok University of Technology, Wiejska 45a,
15-351 Bialystok, Poland

{k.jurczuk,m.czajkowski,m.kretowski}@pb.edu.pl

Abstract. Decision trees (DTs) are popular techniques in the field of
explainable machine learning. Traditionally, DTs are induced using a
top-down greedy search that is usually fast; however, it may lead to sub-
optimal solutions. Here, we deal with an alternative approach which is
an evolutionary induction. It provides global exploration that results in
less complex DTs but it is much more time-demanding. Various parallel
computing approaches were considered, where GPU-based one seems to
be the most efficient. To speed up the induction further, different GPU
memory organization/layouts could be dealt with.

In this paper, we introduce a compact in-memory representation of
DTs. It is a one-dimensional array representation where links between
parent and children tree nodes are explicitly stored next to the node data
(testes in internal nodes, classes in leaves, etc.). On the other side, when
the complete representation is applied, children positions are calculated
based on the parent place. However, it needs a spacious one-dimensional
array as if all DT levels would be completely filled, no matter if all nodes
actually exist. Experimental validation is performed on real-life and arti-
ficial datasets with various sizes and dimensions. Results show that by
using the compact representation not only the memory requirements are
reduced but also the time of induction is decreased.

Keywords: Evolutionary data mining · Decision trees · Compact
in-memory representation · Graphics processing unit (GPU) · CUDA

1 Introduction

Explainable Machine Learning (XML) [2] is a new subfield of Machine Learning
(ML) that aims to explain how ML models make predictions. Until recently, most
research has focused on the predictive power of algorithms rather than on under-
standing rationale behind these predictions. The revival in this field reflects, as it
were, an interest in and demand for understandable and interpretable methods
for real-world applications. A learning model, to qualify as an XML algorithm,
should be understandable using concepts related to human intelligence.

Decision trees (DTs) form a class of models that generally fall into the XML
category. They are usually induced by top-down greedy methods. Such an induc-
tion is usually fast; however, it can lead to sub-optimal solutions [1]. One of the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 126–138, 2023.
https://doi.org/10.1007/978-3-031-30442-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_10&domain=pdf
http://orcid.org/0000-0001-6469-1769
http://orcid.org/0000-0002-3967-1819
http://orcid.org/0000-0001-9175-2678
https://doi.org/10.1007/978-3-031-30442-2_10

Compact In-Memory Representation of Decision Trees 127

alternative approaches is the use of evolutionary algorithms (EAs). The incorpo-
ration of EAs into the DT induction allows for global solution-space exploration,
leading to better solutions, that is, generated trees are much simpler and at least
as accurate as those induced with traditional methods. Moreover, evolutionary
induced DTs are less prone to overfitting, instability to changes in training data
and attribute-selection bias [14]. At the same time, EA approach in the DT
induction brings new challenges. Population-based and iterative calculations may
be time-demanding, or even unachievable for big data [1,7,10].

To speed up the evolutionary induction of DTs, different parallel computing
approaches were studied [10]. In this paper, we focus on the GPU-supported
one that appeared to be the most efficient [6,7]. To boost the induction calcula-
tions we investigated different GPU memory layouts and representations, and we
would like to propose a compact in-memory representation of DTs. It uses a one-
dimensional array where links (corresponding to tree branches) between parent
and children nodes are explicitly stored. In comparison to (previous) complete
representation, it only holds the nodes that actually exist. There is no need to
store all nodes as if all DT levels would be completely filled, no matter if a node
really exists. We experimentally show that the compact representation not only
saves memory resources but also speeds up the induction further.

The next section gives a brief overview of DTs, the ways of their induction
as well as describes the Global Decision Tree (GDT) system that serves as the
framework for our solution. Section 3 describes the GPU-boosted solution using
the compact in-memory representation. Section 4 provides the evaluation, while
Sect. 5 includes the conclusion and possible future works.

2 Background

2.1 Decision Trees

Despite more than 50 years of research [11], DTs are still being developed to
address the various challenges they continue to face. They can be used as stand-
alone single-tree solutions or as part of larger models such as random forests and
gradient boosted DTs. In the latter case, however, it is not possible to speak of
XML models, because in the pursuit of greater accuracy, the ease of interpreting
and understanding ensemble models has been lost.

A typical DT consists of nodes and branches (see Fig. 1), where: each inter-
nal node is associated with a test on one or more attributes; each branch repre-
sents a test result, and each leaf (terminal node) contains a prediction [9]. Most
tree-inducing algorithms partition the feature space using axis-parallel hyper-
planes. Trees of this type are often called univariate because the test at each
non-terminal node usually involves a single attribute that is selected according
to the given goodness of split. Multivariate tests, which are generally based on
linear combinations of many dependent qualities, are also used in some algo-
rithms. The oblique split causes a non-orthogonal hyperplane to partition the
feature space in a linear manner. DTs that enable multiple features to be tested

128 K. Jurczuk et al.

Fig. 1. An example of univariate
decision tree.

Fig. 2. Flowchart of the typical evolu-
tionary algorithm.

at a node may be smaller than those confined to single univariate splits, but they
have a substantially higher computing cost and are often difficult to interpret.

To make a prediction forecast, the new instance is followed down from a root
node to a leaf, with the attribute values of each internal node being used to
determine which branch to choose. The terminal node reflects the problem to
which the DT is applied. In the case of classification trees, we are concerned
with assigning a decision (class label) to each leaf. Typically, this is the class of
the majority of all training instances that go into a given leaf. For the regression
problem, DT models are used to approximate real-valued functions, so each leaf
contains either a constant value or some linear (or nonlinear) regression model.

2.2 Decision Tree Induction

The complexity of inducing an optimal DT is NP-complete [5]. Therefore, heuris-
tic improvements to practical DT learning algorithms are needed [9,11]. One of
the major changes proposed in recent years for DTs concerns the induction pro-
cess which has traditionally relied on a greedy partitioning strategy. Originally,
the algorithm starts with a root node where a locally optimal split (test) is
searched for based on a given criterion. The training instances are then redi-
rected to the newly constructed nodes, and the procedure is repeated until a
stopping condition is satisfied for each node. Furthermore, post-pruning is often
used after induction to avoid the problem of over-fitting the training data and to
improve the generalization ability of the predictive model. CART and C4.5/5.0
are the two most commonly applied top-down DT inducers.

To limit the impact of local, sub-optimal splits, alternative approaches based
on metaheuristics, such as evolutionary algorithms (EAs), have been introduced
to the tree induction process [1]. EAs belong to a family of meta-heuristic meth-
ods and represent techniques for solving a wide range of difficult optimization

Compact In-Memory Representation of Decision Trees 129

problems [12]. The general framework (see Fig. 2) is based on biological evolution
mechanisms. The typical EA works on the individuals, gathered in a population,
that represent potential solutions to the target problem. In each evolutionary
iteration, individuals are:

• transformed with genetic operators such as mutation and crossover that pro-
duce new offspring;

• evaluated according to a measure named the fitness function which determines
its score;

• selected for reproduction - individuals with better fitness individuals being
reproduced more frequently.

When the convergence criteria are met, the evolutionary loop is terminated.
The strength of the evolutionary approach lies in the global search in which

tree structure and tests in internal nodes are searched simultaneously. It has
been shown that evolutionary induced decision trees offer better suited, more
stable, and simpler prediction models [1,10]. Of course, such a global induction
is clearly more computationally demanding, but it can reveal underlying patterns
that greedy approaches generally miss.

2.3 Global Decision Tree System

The proposed solution has been integrated into a system called the Global Deci-
sion Tree (GDT) [10]. The family of algorithms based on the GDT framework is
very diverse and addresses almost every aspect related to evolutionary induced
DTs like problem domain (classification, regression), tree representation (univari-
ate, oblique, mixed), search (cost-sensitive, Pareto, memetic), real-world appli-
cation (finance, medicine), parallelization and more [3,8].

GDT’s overall structure is based on a typical EA schema [12] with an unstruc-
tured population and generational selection. The individuals are represented in
their actual form as potential solutions using a tree-encoding schema. Initializa-
tion is performed in a simple greedy top-down manner with randomly selected
samples of the training data. This way the population is fed with average solu-
tions that should keep an initial balance between exploration and exploitation.

The selection mechanism is based on a ranking linear selection [12] with
the elitist strategy, which copies the best individual found so far to the next
population. Evolution terminates when a maximum number of generations is
reached (default: 10 000) or the fitness of the best individual in the population
does not improve during a fixed number of generations (default: 1 000).

To preserve genetic diversity, the GDT system applies two specialized meta-
operators corresponding to the classical mutation and crossover. Both operators
may have a two-level influence on the individuals as either the decision tree
structure or a test in the splitting node can be modified. The type of node
(internal, leaf), position in the tree (upper or lower parts), and node prediction
error is taken into account to determine the crossover/mutation point. This way
low quality nodes (or leaves) in the bottom parts of the tree are modified more

130 K. Jurczuk et al.

Fig. 3. General idea of the GPU-
accelerated evolutionary induction. On
the GPU, side the training dataset
calculations are performed, while the
CPU controls the evolution.

Fig. 4. Flow chart of updating an
individual when a genetic operator is
applied, including CPU-GPU commu-
nication, memory allocation and ker-
nels’ execution.

often. GDT offers dozens of specialized variants of crossover/mutations [10],
often specific to the DT representation and problem domain, but the generic
ones cover: (i) pruning nodes and expanding leaves; (ii) replacing, modifying or
exchanging subtrees, branches, nodes, tests. New tests are created according to
the dipolar strategy. A dipole is a pair of objects used to find the effective test.

The fitness function controls the accuracy and complexity of each individual.
GDT offers various multi-objective optimization strategies [10]. Among them a
weighted formula is the most universal one as it maximalizes the following fitness
function: Fitness(T) = Q(T)−α∗Complexity(T), where: Q(T) is the accuracy
calculated on the training set, Complexity(T) is the tree complexity calculated
as the sum of leaves and α is the relative importance of the complexity term
(default: 0.001) and it is a user-supplied parameter.

3 GPU-Supported Evolution Using Compact In-Memory
Representation of Decision Trees

The general idea of the GPU-supported solution (called cuGDT) is illustrated in
Fig. 3. The most time-consuming operations (like fitness calculations or searching
objects for dipoles, which are directly related to the training dataset) are isolated
and delegated to the device [6]. The evolutionary induction is controlled by a
CPU. Such a construction of cuGDT ensures that the parallelization does not
affect the behavior of the original EA.

Compact In-Memory Representation of Decision Trees 131

Fig. 5. Complete vs. compact one-dimensional array in-memory representation of a
decision tree. Dotted lines indicate sample links between parent and children nodes. In
the compact representation, each tree node contains three additional elements: array
indexes of the left child, right child and parent nodes. In the complete representation,
a parent node and its descendants can be found using the mathematical formula.

The dataset is transferred to the device before the evolution starts and it
is kept till the evolutionary induction stops. This transfer time is negligible in
relation to the evolution time. It was a conscious design decision to reduce the
bottleneck of host/device memory transfers. However, this forced us to perform
most of the dataset-related operations on the device, not only related to fit-
ness calculations but also to searching for optimal splits. The CPU does not
have direct access to the training dataset, it only receives sample objects to
construct dipoles. During the evolution, the transfer between host and device
includes sending the individuals to the GPU and sending back the results (class
distribution, errors and objects for dipoles) to the CPU.

3.1 In-Memory Representation of Decision Trees

In the evolutionary loop, each time the genetic operator is successfully applied,
the GPU is asked to help the CPU (see Fig. 4). Before transferring the modified
individual, its flat representation is created based on its tree-like (using pointers)
host representation (see Fig. 5). A one-dimensional array is built and then sent

132 K. Jurczuk et al.

to the device. A complete in-memory representation was previously used [6–8].
It did not require explicitly storing the links (as array indexes) between a parent
node and its children. A simple mathematical formula was used to indicate the
array indexes of children nodes or a parent node. The array index of the left
child of the i -th node equals (2 ∗ i + 1), while for the right child, it is (2 ∗ i + 2).
Unfortunately, the complete representation imposed to reserve memory space as
if all DT levels would be completely filled, no matter if all the nodes really exist.

On the other side, the compact in-memory representation (see Fig. 5(c))
assumes that only the nodes that actually exist are put into the one-dimensional
array. Thus, the array indexes of the parent node and descendants for each node
have to be explicitly saved (next to the node data, like tests or classes). Obvi-
ously, this increases the memory requirements per node, but globally it may be
compensated by keeping only actually existing nodes. The number of nodes in
the complete representation grows fast, exponentially with the tree level. For a
binary tree, in each successive tree level, it equals: 2ˆ(tree level − 1), while the
total number of nodes is: 2ˆ(number of tree levels) − 1. If we considered more
than two children/branches then the growth would be even more prominent.

For DTs, the Structure-of-Arrays (SoA) data layout is used. In SoA
[16], multi-value data are stored in separated arrays and the arrays are
grouped in a structure. In our case, it is struct DT{float thresholds[];int
attributes[]; int leftChildNodesIdx[];
int rightChildNodesIdx[];int parentNodesIdx[];}. The SoA layout is
usually preferred from a GPU performance perspective because one thread may
copy data to cache for other threads (coalesced memory access).

3.2 GPU Kernels Implementation

GPU computations are organized into two kernel functions: fitnesspre and fit-
nesspost (see Fig. 4). The first kernel calculates the number of objects of each
class located in each tree leaf. In addition, two randomly selected objects of each
class are provided in each tree leaf. They may be later used to construct dipoles
and finally effective tests. However, the results are scattered over separated copies
of the individual created for each GPU block.

The fitnesspost function reduces the partial results collected by each GPU
block. When the information about the class distribution is reduced, prediction
errors in all leaves are found. Then, the class distribution, estimated errors and
selected objects for dipoles are propagated from the leaves towards the tree root.
Finally, all the results, in all tree nodes, are sent to the host.

The use of compact representation forced us to modify the way of travers-
ing through DTs, among others. Considering the kernel fitnesspre, when objects
are propagated from the tree root towards the leaves, children nodes are found
based on stored indexes in the arrays int leftChildNodesIdx[] and int
rightChildNodesIdx[]. For the fitnesspost kernel, when the results are propa-
gated from the leaves towards the tree root, parent nodes are found based on

Compact In-Memory Representation of Decision Trees 133

Table 1. Characteristics of the real-life and artificial datasets.

Dataset No. samples No. attributes No. classes

Chess10K 10 000 2 2

Chess100K 100 000 2 2

Chess1M 1 000 000 2 2

Chess10M 10 000 000 2 2

SDD 2C ∗ 10 639 49 2

SDD 4C ∗ 21 277 49 4

SDD 6C ∗ 31 915 49 6

SDD 8C ∗ 42 553 49 8

SDD 10C ∗ 53 191 49 10

SDD 58 509 49 11
∗ Note: A subset of the SDD dataset containing objects of first
2, 4, 6, 8 and 10 classes.

the indexes in the array int parentNodesIdx[]. The reduction is similar but
is performed on less (compact) array elements.

4 Experimental Validation

Validation was performed on both real-life and artificial datasets. The details
of each one are presented in Table 1. The artificial dataset, called Chess, repre-
sents a classification problem with two classes, two real-values attributes and
objects arranged on a 3 × 3 chessboard [10]. We used the synthetic dataset
to scale it freely (from 10 000 to 10 000 000 objects). Concerning the real-life
dataset, Sensorless Drive Diagnosis (SDD) from UCI Machine Learning Reposi-
tory [4] was used. It contains 48 features extracted from the motor current signal
and 11 different class labels. To check the solution behavior when the number
of classes increases, we extracted from the SDD dataset five subsets, containing
successively objects of the first 2, 4, 6, 8 and 10 classes. We called them SDD 2C,
SDD 4C, SDD 6C, SDD 8C and SDD 10C.

Experiments were performed using two NVIDIA GPU cards installed on:

• server with two 8-core processors Intel Xeon E5-2620 v4 (20 MB Cache,
2.10 GHz), 256 GB RAM, NVIDIA Tesla P100 GPU card (3 584 CUDA cores
and 12 GB of memory);

• server with two 24-Core processors AMD EPYC 7402 (128 MB Cache,
2.80 GHz), 1 TB RAM, NVIDIA Tesla A100 GPU card (13 824 CUDA cores
and 40 GB of memory).

Servers run 64-bit Ubuntu Linux 18.04.6 LTS. The original GDT system was
implemented in C++ and compiled with the use of gcc version 7.5.0. The GPU-
based parallelization was implemented in CUDA-C [15] and compiled by nvcc

134 K. Jurczuk et al.

Table 2. Mean execution times of sequential, OpenMP and GPU-supported implemen-
tations (in seconds). Concerning GPU-supported ones, time for complete and compact
in-memory representations of DTs is shown.

GPU

Dataset Sequential OpenMP P100 A100

Complete Compact Complete Compact

Chess10K 61 14.5 19.2 8.1 14.3 7.3

Chess100K 692 145.3 21.5 10.7 15.2 8.2

Chess1M 23 536 3 605.7 55.9 51.2 25.3 23.8

Chess10M 324 000 47 600.4 641.1 621.7 143.9 142.5

SDD 2C 38 10.7 10.1 8.53 8.9 8.1

SDD 4C 87 27.2 24.7 10.35 12.5 9.5

SDD 6C 411 128.8 119.9 19.74 51.7 12.1

SDD 8C 945 286.4 195.2 33.91 75.8 14.9

SDD 10C 1 984 548.4 420.4 57.64 301.1 27.2

SDD 2 858 766.8 561.2 75.76 447.5 36.1

CUDA 11.6 [13] (single-precision arithmetic was applied). All presented results
correspond to averages of 5-10 runs and were obtained with a default set of
parameters from the original GDT system [6,10]. As we are focused in this
paper only on time and memory resources, results for the classification accuracy
are not included (they can be found in [6,10]).

4.1 Results

Table 2 presents the preliminary results for all tested datasets. The mean execu-
tion times of cuGDT (using two different GPUs) as well as OpenMP-accelerated
and sequential GDT versions (using the Intel CPU server) are shown. It is clearly
visible that the use of compact representation gives an additional reduction in
the evolution time. Concerning Chess dataset, the acceleration is more relevant
for smaller datasets. When the number of objects grows, the difference between
compact and complete representations becomes less important. The reason can
be found when the run-time breakdown is analyzed (see Fig. 6(a,b)). We see that
for 10M of objects, the fitnesspre kernel dominates (more than 97% of time in
both cases). The applied DT in-memory representation has no significant impact
on the workload in this kernel. On the other side, for 10K of objects, the fit-
nesspost kernel is the most important, and here the representation makes a real
difference. The reduction and propagation of results (towards the root node)
are done through all elements of the one-dimensional array (representing DT)
without any control decision. Thus, in the complete representation, many more
operations have to be done.

As regards the SDD dataset, the compact representation also reduces the
evolution time. However, the improvement grows when the number of classes

Compact In-Memory Representation of Decision Trees 135

(a) Chess, complete (b) Chess, compact

(c) SDD, complete (d) SDD, compact

Fig. 6. The run-time breakdown of the GPU-accelerated algorithm using complete and
compact in-memory representations of decision trees for NVIDIA Tesla P100 GPU
card. The average time (as a percentage of total run-time) of the most relevant parts
is shown, both communication between host and device (HtoD, DtoH) and GPU/CPU
computations are included.

(and objects) increases. Similarly, the run-time breakdown in Fig. 6(c,d) can be
used to explain the solution behavior. The kernel fitnesspost dominates and the
compact representation is more efficient in it (as the reduction is performed on
a smaller (compact) array). Another reason can be deduced from the results in
Table 3 where the transfer size between the host and device is presented. We
see that when the number of classes increases also the size of transfer grows. At
the same time, the difference in the size of sent data becomes more important,
particularly, for the transfer from the device to the host (transfer of the results).

136 K. Jurczuk et al.

Table 3. Transfer size in MB for Tesla P100 GPU card. Decision trees sent from host
to device (HtoD) as well as results sent from device to host (DtoH) are included.

Dataset
Complete Compact

HtoD DtoH HtoD DtoH

Chess10K 18.05 72.19 15.36 24.49

Chess100K 17.71 70.85 14.83 23.62

Chess1M 17.17 68.68 15.64 24.99

Chess10M 20.07 80.29 14.39 22.99

SDD 2C 7.01 28.05 8.02 12.83

SDD 4C 16.57 115.61 11.81 33.05

SDD 6C 59.99 597.21 19.24 76.95

SDD 8C 71.71 929.37 27.46 142.77

SDD 10C 84.91 1 358.57 34.36 219.88

SDD 134.02 2 338.61 41.16 288.12

If there are more classes, there is a need to send back to the host results contain-
ing more data (in each DT node, for each class, the number of located training
objects as well as two objects for constructing dipoles). Considering the transfer
from the host to the device, the increase can be explained by bigger DTs when
the problem is more difficult. For the Chess dataset, the transfer size is similar
through the various number of objects as it does not influence the problem and
DTs of similar size are transferred. Obviously, there are differences in transfer
size between compact and complete representations but there are smaller than in
the case of the SDD dataset as objects in Chess are only labeled by two classes.

NVIDIA Tesla A100 GPU card provides better results than P100 GPU one
as it is more powerful, both from computational and memory (bandwidth) per-
spectives. If compared to the sequential GDT or even to its OpenMP-supported
version [10], the GPU-boosted GDT is at least one order faster in most cases.
cuGDT with the compact representation is always at least a little faster than
using the complete one. Moreover, in some cases (8 and more classes), we had
to limit the maximum size of DTs able to be processed by a GPU when the
complete representation was used. It was the case when very deep DTs with
sparsely filled nodes were verified. The memory size needed to store the struc-
ture of DTs was quite small, but the results (sent to the host) required too much
GPU memory.

5 Conclusion

In this paper, we introduce a compact in-memory representation of DTs into
the GPU-supported evolutionary induction. This representation stores explic-
itly links between parent and children nodes. It required allocating additional
memory space for each tree node to save these links. However, in comparison to

Compact In-Memory Representation of Decision Trees 137

the (previously used) complete representation, the compact one allowed us to
globally decrease both the memory and time resources. It is only a preliminary
investigation, and we are conscious that more research is needed, e.g. processing
other datasets with different characteristics, checking kernel call settings and
deeper profiling. Moreover, our plans include more research on other memory
layouts and representations both for training data and DTs.

Acknowledgements. This work was supported by Bialystok University of Technol-
ogy, Poland under the Grant WZ/WI-IIT/4/2023 founded by Ministry of Science and
Higher Education.

References

1. Barros, R.C., Basgalupp, M.P., De Carvalho, A.C., Freitas, A.A.: A survey of
evolutionary algorithms for decision-tree induction. IEEE Trans. SMC, Part C
42(3), 291–312 (2012)

2. Belle, V., Papantonis, I.: Principles and practice of explainable machine learning.
Front. Big Data. 4, 39 (2021)

3. Czajkowski, M., Kretowski, M.: Decision tree underfitting in mining of gene expres-
sion data. An evolutionary multi-test tree approach. Expert Syst. Appl. 137, 392–
404 (2019)

4. Dua, D., Karra Taniskidou, E.: UCI machine learning repository (2022). https://
archive.ics.uci.edu/ml

5. Hyafil, L., Rivest, R.L.: Constructing optimal binary decision trees is NP-complete.
Inf. Process. Lett. 5(1), 15–17 (1976)

6. Jurczuk, K., Czajkowski, M., Kretowski, M.: Evolutionary induction of a decision
tree for large-scale data: a GPU-based approach. Soft. Comput. 21(24), 7363–7379
(2017)

7. Jurczuk, K., Czajkowski, M., Kretowski, M.: Multi-GPU approach to global induc-
tion of classification trees for large-scale data mining. Appl. Intell. 51(8), 5683–5700
(2021). https://doi.org/10.1007/s10489-020-01952-5

8. Jurczuk, K., Czajkowski, M., Kretowski, M.: GPU-based acceleration of evolution-
ary induction of model trees. Appl. Soft Comput. 119, 108503 (2022)

9. Kotsiantis, S.B.: Decision trees: a recent overview. Artif. Intell. Rev. 39(4), 261–283
(2013)

10. Kretowski, M.: Evolutionary Decision Trees in Large-Scale Data Mining. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-21851-5

11. Loh, W.Y.: Fifty years of classification and regression trees. Int. Stat. Rev. 82(3),
329–348 (2014)

12. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs,
3rd edn. Springer-Verlag, Berlin, Heidelberg (1996). https://doi.org/10.1007/978-
3-662-03315-9

13. NVIDIA: NVIDIA Developer Zone - CUDA Toolkit Documentation (2022).
https://docs.nvidia.com/cuda/

14. Rivera-Lopez, R., Canul-Reich, J., Mezura-Montes, E., Cruz-
Chávez, M.A.: Induction of decision trees as classification models
through metaheuristics. Swarm Evol. Comput. 69, 101006 (2022)

https://archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml
https://doi.org/10.1007/s10489-020-01952-5
https://doi.org/10.1007/978-3-030-21851-5
https://doi.org/10.1007/978-3-662-03315-9
https://doi.org/10.1007/978-3-662-03315-9
https://docs.nvidia.com/cuda/

138 K. Jurczuk et al.

15. Storti, D., Yurtoglu, M.: CUDA for Engineers: An Introduction to High-
Performance Parallel Computing. Addison-Wesley, New York (2016)

16. Strzodka, R.: Abstraction for AoS and SoA layout in C++. In: Hwu, W.W. (ed.)
GPU Computing Gems Jade Edition, pp. 429–441. Morgan Kaufmann (2012)

Neural Nets with a Newton Conjugate
Gradient Method on Multiple GPUs

Severin Reiz(B) , Tobias Neckel , and Hans-Joachim Bungartz

School of Computation, Information and Technology, Technical University
of Munich (TUM), Munich, Germany

s.reiz@tum.de

Abstract. Training deep neural networks consumes increasing compu-
tational resource shares in many compute centers. Often, a brute force
approach to obtain hyperparameter values is employed. Our goal is (1) to
enhance this by enabling second-order optimization methods with fewer
hyperparameters for large-scale neural networks and (2) to compare opti-
mizers for specific tasks to suggest users the best one for their problem.
We introduce a novel second-order optimization method that requires
the effect of the Hessian on a vector only and avoids the huge cost of
explicitly setting up the Hessian for large-scale networks.

We compare the proposed second-order method with two state-of-the-
art optimizers on five representative neural network problems, including
regression and very deep networks from computer vision or variational
autoencoders. For the largest setup, we efficiently parallelized the opti-
mizers with Horovod and applied it to a 8 GPU NVIDIA A100 (DGX-1)
machine with 80% parallel efficiency.

Keywords: Numerical methods · Machine learning · Deep learning ·
Second-order optimization · Data parallelism

1 Introduction

Machine Learning (ML) is widely used in todays software world: regression or
classification problems are solved to obtain efficient models of input-output rela-
tionships learning from measured or simulated data. In the context of scientific
computing, the goal of ML frequently is to create surrogate models of similar
accuracy than existing models but with evaluation runtimes of much cheaper
computational costs. Applying an ML technique typically results in an online
vs. an offline phase. While the offline phase comprises all computational steps
to create the ML model from given data (the so-called training data), the online
phase is associated to obtaining desired answers for new data points (typically
called validation points). Different types of ML techniques exist: Neural networks
in various forms, Gaussian processes which incorporate uncertainty, etc. [1].

For almost all methods, numerical optimization is necessary to tune param-
eters or hyperparameters of the corresponding method in the offline phase such
c© The Author(s) 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 139–152, 2023.
https://doi.org/10.1007/978-3-031-30442-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_11&domain=pdf
http://orcid.org/0000-0001-5752-4233
http://orcid.org/0000-0002-3442-7171
http://orcid.org/0000-0002-0171-0712
https://doi.org/10.1007/978-3-031-30442-2_11

140 S. Reiz et al.

that good/accurate results can be obtained in the online phase. Even though
numerical optimization is a comparably mature field that offers many solution
approaches, the optimization problem associated with real-world large-scale ML
scenarios is non-trivial and computationally very demanding: The dimensional-
ity of the underlying spaces is high, the amount of parameters to be optimized
is large to enormous, and the cost function (the loss) is typically mathematically
complicated being non-convex and possessing many local optima and saddle
points in general. Additionally, the performance of a method typically depends
not only on the ML approach but also on the scenario of application.

Of the zoo of different optimization techniques, certain first-order methods
such as the stochastic gradient descent (SGD) have been very popular and repre-
sent the de-facto fallback in many cases. Higher-order methods provide generally
nice convergence features since they include more derivative information of the
loss function. These methods, however, come at the price of evaluating the Hes-
sian of the problem, which typically is way too costly for real-world large-scale
ML scenarios, both w.r.t. setting up and storing the matrix and w.r.t. evaluating
the matrix-vector product with standard implementations (e.g., the ResNet50
scenario discussed below has about 16 million degrees of freedom in form of
corresponding weights).

In this paper, we analyze a second-order Newton-based optimization method
w.r.t. accuracy and computational performance in the context of large-scale neu-
ral networks of different type. To cope with challenging costs in such scenarios,
we implemented a special variant of a regularized Newton method using the
Pearlmutter scheme together with a matrix-free conjugate gradient method to
evaluate the effect of the Hessian on a given vector with about twice the costs of
a backpropagation itself. All implementations are publicly available and easy to
integrate since they rely on TensorFlow Keras code1. We compare our proposed
solution with existing TensorFlow implementations of the prominent SGD and
Adam method for five representative ML scenarios of different categories. In
particular, we exploit parallelisation in the optimization process on two different
levels: a parallel execution of runs the as well as data parallelism by treating
several chunks of data (the so-called batches or mini batches) in parallel. The
latter results in a quasi-Newton method where the effect of the Hessian is kept
constant for a couple of data points before the next update is computed. Our
approach, thus, represents a combination of usability, accuracy and efficiency.

The remainder of this paper is organized as follows. Section 2 lists work in
the community that is related to our approach. In Sect. 3, basic aspects of deep
neural networks are briefly stated to fix the nomenclature for the algorithmic
building blocks we combine for our method. The detailed neural network struc-
tures and architectures for the five scenarios to be discussed are discussed in
Sect. 4. We briefly describe aspects of the implementation in Sect. 5 and show
results for the five neural network scenarios in Sect. 6. Section 7 finally concludes
the discussion.

1 https://github.com/severin617/Newton-CG.

https://github.com/severin617/Newton-CG

Newton-CG for Large ResNets 141

2 Related Work

Hessian multiplication for neural networks without forming the matrix was intro-
duced very early [2]; while there are multiple optimization techniques around [3],
it gained importance again with Deep Learning via Hessian-free optimization
[4]. Later, the Kronecker-factored approximate curvature (KFAC) of the Fisher
matrix(similar to Gauss-Newton Hessian) was introduced [5]; for high perfor-
mance computing, chainerkfac was introduced [6]. AdaHessian uses the Hutchin-
son method for adapting learning rate [7], other work involves inexact new-
ton methods for neural networks [8] or a comparison of optimizers [9]. With
GOFMM, we performed initial studies on Hessian matrices [10], where later we
looked at the fast approximation for a multilayer perceptron [11].

3 Methods

In this section, we first briefly describe the basics of deep neural networks2

and the peculiarities of the variants we are going to use in the five different
scenarios in Sect. 6. Afterwards, we highlight the basic algorithmic ingredients
of the reference implementations (SGD and Adam) [1]. Finally, we explain the
building blocks of our approach: The Pearlmutter trick and the Newton-CG step.

3.1 Scientific Computing for Deep Learning

Consider a feed-forward deep neural network defined as the parameterized func-
tion f(X,W). The function f is composed by vector-valued functions f (i), i =
1, . . . , D, which represent each one layer in the network of depth D, in the fol-
lowing way: f(x) = f (D)(. . . f (2)(f (1)(x)))

The function corresponding to a network layer (d) and the output of the j-th
neuron are computed via

f (d) =

⎡
⎢⎢⎢⎢⎣

z
(d)
1

z
(d)
2
...

z
(d)

M(d)

⎤
⎥⎥⎥⎥⎦

and z
(d)
j = φ(

M(d−1)∑
i=1

(w(d)
ji f

(d−1)
i) + w0

j)

with activation function φ and weights w. All weights w are comprised in a large
vector W ∈ R

n which represents a parameter for f . The optimization problem
consists now of finding weights W a given loss function l will be minimized for
given training samples X,Y : minW l(X,Y,W).

A prominent example of a loss function is the categorical cross-entropy:

lentr(X,Y,W) := −
N∑

l=1

yi log(f (D)(X,W)) .

2 For a brief introduction on deep NN, cf. [12].

142 S. Reiz et al.

Note that only the last layer function f (D) of the network directly shows up
in the loss, but all layers are indirectly relevant due to the optimization for all
weights in all layers.

Optimizers look at stochastic mini batches of data, i.e. disjoint collections of
data points. The union of all mini batches will represent the whole training data
set. The reason for considering data in chunks of mini batches and not in total is
that the backpropagation in larger neural networks will face severe issues w.r.t.
memory. Hence, the mini batch loss function, where the mini batch is varied in
each optimization step in a round-robin manner, is now defined by

L(x, y,W) := −
batch-size∑

i=1

yi log(f (D)(X,W)) .

3.2 State-of-the-Art Optimization Approaches

In order to solve the optimization problem (3.1), different first-order methods
exist (for a survey, see [1], e.g.). The pure gradient descent without momentum
computes weights Wk in iteration k via Wk = Wk−1 − ak−1∇l(Wk−1) where
∇l(Wk−1) denotes the gradient of the total loss l w.r.t. the weights W.

The stochastic gradient descent method (SGD) includes stochasticity by
changing the loss function to the input of a specific mini batch of data, i.e. using
L instead of l. Each mini batch of data provides a noisy estimator of the aver-
age gradient over all data points, hence the term stochastic. Technically, this is
realised by switching the mini batches in a round-robin manner to reach over the
full dataset (one full sweep is called an epoch; frequently, more than one epoch
of iterations is necessary to achieve quality in the optimization).

The family of Adam methods updates weight values by enhancing averages
of the gradient sk with estimates of the 1st moment (the mean) and the 2nd raw
moment (the uncentered variance). The approach called AdaGrad is directly
using these estimators:

Wk+1 = Wk − αk
sk

δ +
√

rk
(1)

The Adam method corrects for the biases in the estimators by using the esti-
mators ŝk = sk

1−βk
1

and r̂k = rk

1−βk
2

instead of sk and rk. Good default settings
for the tested machine learning problems described in this paper are a0 = 0.001,
β1 = 0.9, β2 = 0.999, and δ = 10−8.

3.3 Proposed 2nd-Order Optimizer

The second-order optimizer implemented and used for the results of this work con-
sists of a Newton scheme with a matrix-free conjugate gradient (CG) solver for the
linear systems of equations arising in each Newton step. The effect of the Hessian
on a given vector (i.e. a matrix-vector multiplication result) is realised via the so-
called Pearlmutter approach and avoids setting up the Hessian explicitly.

Newton-CG for Large ResNets 143

PearlmutterApproach. The explicit setup of the Hessian is memory-expensive
due to the quadratic dendence on the problem size; e.g., a 16M×16M matrix
requires about 1 TB of memory. We can obtain “cheap” access to the problems
curvature information by computing the Hessian-vector product. This method is
called Fast Exact Multiplication by the Hessian H (see [2], e.g.). Specifically, it
computes the Hessian vector product Hs for any s in just two (instead of the num-
ber of weights n) backpropagations (i.e. automatic differentiations for 1st deriva-
tive components). For our formulation of the problem this is defined as:

HL(W)s =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑
i=1

si
δ2

δw1δwi
L(W)

n∑
i=1

si
δ2

δw2δwi
L(W)

...
n∑

i=1

si
δ2

δwnδwi
L(W)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ
δw1

n∑
i=1

si
δ

δwi
L(W)

δ
δw2

n∑
i=1

si
δ

δwi
L(W)

...
δ

δwn

n∑
i=1

si
δ

δwi
L(W)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ∇w(∇wL(W)·s)

The resulting formula is both efficient and numerically stable [2]. This results in
the Algorithm 1, denoted Pearlmutter in the implementation.

Newton’s Method. Recall the Newton equation

HL(Wk)dk = −∇L(Wk)

for the network loss function L : Rn → R, where W is the vector of network
weights and Wk the current iterate of Newton’s method to solve for the update
vector dk. The size of the Hessian is Rn×n which becomes infeasible to store with
state-of-the-art weight parameter ranges of ResNets (or similar).

Since frequently the Hessian has a high condition number, which implies near-
singularity and provokes imprecision, one would apply regularization techniques
to counteract a bad condition. A common choice is Tikhonov regularization. To
this end, a multiple of the unit matrix is added to the Hessian of the loss function
such that the regularized system is given by

(H(Wk) + τI)dk = H(Wk)dk + τIdk = −∇L(Wk) (2)

Note that for large τ the solution will converge to a fraction of the negative gra-
dient ∇L(Wk), similar to a stochastic gradient descent method. The regularized
Newton method is summarized in Algorithm 2.

Algorithm 1. Pearlmutter
Require: X, Y,W, s: Compute HLs = ∇w(∇wL(W) · s)
Require: W0: Initial estimate for W.
1: g0 ← gradient(L(W)) � Back-Prop
2: intermediate ← matmul(g0, s) � Matrix-Multiplication
3: Hs ← gradient(intermediate) � Back-Prop
4: return Hs

144 S. Reiz et al.

Algorithm 2. Newton Step
Require: W0: Starting point
Require: τ : Tikhonov regularization/damping factor
1: k ← 0
2: while Wk not converged do
3: k ← k + 1
4: pk ← CG((H + τI) , −∇L (Wk)) # Approx (H + τI) pk = −∇L (Wk)
5: if ∇L (Wk)

� pk > τ then pk ← −∇L (Wk) # Feasibility check.
6: end if
7: αk ← α # Compute with lr-scheduler or use a given step size.
8: Wk ← Wk−1 + αkpk

9: end while

Conjugate Gradient Step. Since Pearlmutter realises a matrix-vector prod-
uct without setting up the full matrix, we employ an iterative solver that requires
matrix products only. We therefore employ a few (inaccurate) CG-iterations
to solve Newton’s regularized Eq. (2), resulting in an approximated Newton
method. The standard CG-algorithm is e.g. described in [13]; note that no direct
matrix-access is required since CG relies only on products of vectors.

Complexity: The method described above requires O(bn) operations for the eval-
uation of the gradient, where n is the number of network weights and b is the
size of the mini batch. In addition, for the evaluation of the Hessian product
and the solution of the Newton-like equation O(2mbn) is needed, where m is the
number of iterations conducted by the CG solver until a sufficient approximation
to the solution is reached. Although the second-order optimizer requires more
work than ordinary gradient descent, it may still be beneficial since, under the
conditions that it promises local q-superlinear convergence, where W� is a local
minimizer (see [14]), i.e. ∃ γ ∈ (0, 1), l ≥ 0, such that

||Wk+1 − W∗|| ≤ γ||Wk − W∗|| ∀k > l .

4 Scenarios and Neural Network Architectures

In this section, we briefly outline the different neural network structures for the
five different ML scenarios used in Sect. 6. Those networks share the general
structure outlined in Sect. 3.1 but differ in details considerably.

Regressional Analysis: Most regression models connect the input X with some
parametric function f to the output Y , including some error ε, i.e. Y = f(X,β)+
ε. The goal is find W to minimize the loss function which here is the sum of the
squared error for all samples i in the training data set

l =
N∑

i=1

(yi − f(xi,W))2 .

Newton-CG for Large ResNets 145

Variational Autoencoder: A variational autoencoder (VAE) consists of two cou-
pled but independently parametrized components: The encoder compresses the
sampled input X into the latent space. The decoder receives as input the infor-
mation sampled from the latent space and produces x′ as close as possible to X.
In a variational autoencoder, encoder and decoder are trained simultaneously
such that output X ′ minimizes a reconstruction error to X by the Kullback-
Leibler divergence. For details on VAEs, see [15], e.g.

Bayesian Neural Network: One of the biggest challenges in all areas of machine
learning is deciding on an appropriate model complexity. Models with too low
complexity will not fit the data well, while models possessing high complex-
ity will generalize poorly and provide bad prediction results on unseen data, a
phenomenon widely known as overfitting. Two commonly deployed strategies
to counteract this problem are hold-out or cross-validation on one hand, where
part of the data is kept from training in order to optimize hyperparameters of
the respective model that correspond to model complexity, and controlling the
effective complexity of the model by inducing a penalty term on the loss function
on the other hand. The latter approach is known as regularization and can be
implemented by applying Bayesian techniques on neural networks [16].

Let θ, ε ∼ N(0, 1) be random variables, w = t(θ, ε), where t is a deterministic
function. Moreover, let w ∼ q(w|θ) be normally distributed. Then our optimiza-
tion task where the loss function l is the log-likelihood reads [17]

l(w, θ) = log q(w|θ) − log P (D|w) − log P (w) .

Convolutional Neural Network (CNN): In general, the convolution is an opera-
tion on two functions I, K, defined by

S(t) = (I ∗ K)(t) =
∫

I(a)K(t − a)da .

If we use a 2D image I as input with a 2D kernel K, we obtain a two-dimensional
discrete convolution S(i, j) = (I ∗ K)(i, j) =

∑
x

∑
y I(x, y)K(i − x, j − y).

Color images additionally have at least a channel for red, blue and green
intensity at each pixel position. Assume that each image is a 3D-tensor and
Vi,j,k describes the value of channel i at row j and column k. Then let our kernel
be a 4D-tensor with Kl,i,j,k denoting the connection strength (weight) between a
unit in input channel i and output channel l at an offset of k rows and l columns
between input and output. CNNs apply, besides other incredients, convolution
kernels of different size in different layers in a sliding window approach to extract
features. For a brief introduction to CNN, see [12], e.g. As an example, the
prominent ResNet 50 network structure consists of 50 layers of convolutions or
other layers, with skip connections to avoid the problem of diminishing gradients.

Transfer Learning: Transfer learning (TL) deals with applying already gained
knowledge for generalization to a different, but related domain [18]. Creating a
separate, labeled dataset of sufficient size for a specific task of interest in the
context of image classification is a time-consuming and resource-intensive pro-
cess. Consequently, we find ourselves working with sets of training data that

146 S. Reiz et al.

are significantly smaller than other renowned datasets, such as CIFAR and Ima-
geNet [19]. Moreover, the training process itself is time-consuming too and relies
on dedicated hardware. Since modern CNNs take around 2–3 weeks to train on
ImageNet in a professional environment, starting this process from scratch for
every single model is hardly efficient. Therefore, general pretrained networks are
typically used which are then tailored to specific inputs.

5 Implementation

5.1 Automatic Differentiation Framework

The Newton-CG optimization strategy is independent of the implementation, and
of course, is suitable in any setting where second-order is beneficial (1) and stor-
ing Hessians is infeasible w.r.t. memory consumption (2). However, one needs a
differentiation framework. During the course of the work, a custom auto-encoder
(and similar) implementation with optimized matrix operations [10] became dif-
ficult w.r.t. the automatic differentiation (especially with convolutions), so we
decided to move to a prominent framework, TensorFlow. The TensorFlow pro-
gramming model consists of two main steps: (1) Define computations in form of
a “stateful dataflow graph” and (2) execute this graph. At the heart of model
training in TensorFlow lies the optimizer; like Adam or SGD, newton-cg uses
inheritance from the class tf.python.keras.optimizer v2.Optimizer v2. The
base class handles the two main steps of optimization: compute gradients()
and apply gradients(). When applying the gradients, for each variable that
is optimized, the method resource compute dense(grad, var) is called with
the variable and its (earlier computed) gradient. In this method, the algorithm
update step for this variable is computed. It has to be overwritten by any sub-
classing optimizer. We implemented two versions of our optimizer: one inheriting
from the optimizer in tf.train and one inheriting from the Keras Optimizer v2.
The constructor accepts the learning rate as well as the Newton-CG hyperparam-
eters: regularization factor τ , the CG-convergence-tolerance and the maximum
number of CG iterations. Internally, the parameters are converted to tensors and
stored as python object attributes. The main logic happens in the above men-
tioned resource compute dense(grad, var) method3. Table 1 lists the five ML
scenarios and their implementation used to generate the results below.

5.2 Data Parallelism

In order to show the applicability of the proposed second-order optimizer for
real-world large-scale networks, it was necessary to parallelize optimization com-
putations to obtain suitable runtimes. We decided to use the comparably simple
and prominent strategy of data parallelism. Data-parallel strategies t distribute
data across different compute units, and each unit operates on the data in par-
allel. So in our setting, we compute different Newton-CG steps on i different
3 See the implementation in https://github.com/severin617/Newton-CG/blob/main/

newton cg/newton cg.py#L127.

https://github.com/severin617/Newton-CG/blob/main/newton_cg/newton_cg.py#L127
https://github.com/severin617/Newton-CG/blob/main/newton_cg/newton_cg.py#L127

Newton-CG for Large ResNets 147

Table 1. Five ML scenarios with different neural network structures.

Scenario Description

reg-lif one-layer life expectancy predictiona

reg-bos two-layer boston housing price projection with keras b

vae-mnist variational autoencoder from Keras c

bnn-mnist Bayesian neural network with tensorflow-probabilityd [20]

resnet ResNet architecture from Keras e

ahttps://valueml.com/predicting-the-life-expectancy-using-tensorflow/.
bhttps://www.kaggle.com/code/prasadperera/the-boston-housing-
dataset.
chttps://keras.io/examples/generative/vae/.
dhttps://www.tensorflow.org/probability/.
ehttps://www.tensorflow.org/api docs/python/tf/keras/applications/
resnet50/ResNet50.

mini-batches in parallel, and the resulting update vectors are accumulated using
an Allreduce. Note that this is different to e.g. a i-times as big batch or i-times
as many steps since this would use an updated weight when computing gradient
information via backpropagations. In a smoothly defined function, this could
converge to a similar minimum, however due to stochasticity this may not.

Horovod is a data-parallel distributed training framework (open source) for
TensorFlow, Keras, PyTorch, and Apache MXNet, that scales a training script
up to many GPUs using MPI [21]. We apply Horovod for the data parallelisation
of the second-order Newton-CG approach. In a second step the whole algorithms
could be parallelized, this would then be model parallelism. The following matrix
summarizes the data and model parallelism in the context of neural network
optimization.

Data parallelism Model parallelism

Operations performed on different
batches of data

Parallel operations performed on
same data (in identical batch)

5.3 Software and Hardware Setup

Training with Keras and Horovod was used to show applicability and scalability
of the proposed second order optimization. The ResNets for computer vision were
pretrained for 200 epochs to improve second-order convergence, see Fig. 1 (f),
with training data from the Imagenet Large Scale Visual Recognition Challenge
2012 (ILSVRC2012)4. Test runs were performed on the Leibniz Rechenzentrum
(LRZ) AI System DGX-1 A100 Architecture with 8 NVIDIA Tesla A100 and 80
GB per GPU.
4 Following parameters were utilized in the pretraining: training/val-batch-size: 64,

learning-rate: 0.001, momentum: 0.9, weight-decay: 0.00005. After each step, ten
validation steps were used to calculate the top 5 accuracy, resulting in a final loss of
4.5332 and a final top 5 accuracy of 0.6800 after 2e5 steps.

https://valueml.com/predicting-the-life-expectancy-using-tensorflow/.
https://www.kaggle.com/code/prasadperera/the-boston-housing-dataset.
https://www.kaggle.com/code/prasadperera/the-boston-housing-dataset.
https://keras.io/examples/generative/vae/.
https://www.tensorflow.org/probability/.
https://www.tensorflow.org/api_docs/python/tf/keras/applications/resnet50/ResNet50.
https://www.tensorflow.org/api_docs/python/tf/keras/applications/resnet50/ResNet50.

148 S. Reiz et al.

6 Results

6.1 Accuracy Results for Different Scenarios

In this study, we applied the Newton-CG method as well as the two state-
of-the-art methods SGD and Adam for the five different network architectures
and specific scenarios described in Sect. 4 and Table 1 to evaluate the perfor-
mance for each case and obtain insight into potential patterns. We show the
detailed optimization behavior in Fig. 1 while the final validation loss optimum
is summarized in Fig. 2. A similar comparison figure was used in [9] highlighting
a similar insight that it is hard to predict the performance of different optimizers
for considerably different scenarios.

One can observe significant benefits of the 2nd-order Newton-CG in regres-
sion models, be it the life expectancy prediction or the boston housing data
regression. We believe this is mostly due to the continuity in loss/optimization,
whereas in the other scenarios this could jump, due to mini batches and classi-
fication.

The variatonal autoencoder seems to work better with the conventional opti-
mizers. Our hope was that due to the continuous behaviour we may see some
benefits. However, this is also very hyper-parameter dependent, and the conven-
tional methods have to be considerably tuned for that. In the Bayesian Neural
Network we see benefits of Newton-CG especially against Adam.

We observe hardly any benefits of 2nd-order optimization for the ResNet50
model. While at first we follow the near-optimal training curve, Newton-CG
moves away from the minimum. One problem could be that we work with a
fixed learning rate. This could be tuned with a learning-rate-scheduler, which we
currently work on.

6.2 Parallel Runs

Exploiting parallelism allows for distributing work in case of failures (e.g.
resilience), usage of modern compute architectures with accelerators, and ulti-
mately, lower time-to-solution. All network architectures shown before can be
run in parallel, in the data parallel approach explained in Sect. 5.2.

For the following measurements, we ran the ResNet50 model on the DGX-
1 partition of the LRZ, since it is our biggest network model and therefore,
allows for the biggest parallelism gains (see Table 2).5 Note that the batch size is
reduced with GPUs, in order to account for a similar problem to be solved when
increasing the amount of workers. However, it cannot be fully related to strong
scaling, since the algorithm changes as explained in Sect. 5. In a parallel setup,
the loss is calculated for a smaller mini-batch and then the update is accumulated.
This is different to looking at a bigger batch, since the loss function is a different
one (computed for mini-batch per GPU only).

5 On the LRZ cluster, we had to reduce to 20% training images for lower memory disk
usage and 60% of the optimization layers, 30 layers for ResNet-50.

Newton-CG for Large ResNets 149

Fig. 1. Results for the training loss ((a), (b) and (f)) and the validation loss ((c)–
(e)) for the three compared methods: SGD in green, Adam in blue and Newton-CG
in orange. The methods have been applied to the five different ML scenarios with
corresponding different neural network structure: (a) regression case for life expectancy
prediction, (b) regression for boston housing dataset, (c) Variational Auto Encoder with
MNIST, (d) Bayesian Neural Network with MNIST, (e) ResNet50 with ImageNet, and
(f) the corresponding sgd pretraining run (“steps” corresponds to epochs). (Color figure
online)

150 S. Reiz et al.

Fig. 2. Final loss value of each optimizer for the five different neural network architec-
tures and scenarios.

Table 2. Newton-CG runtimes per epoch with batch-size 512, ResNet-50 on ImageNet

1 GPU 2 GPUs 4 GPUs 8 GPUs

A100 runtime 238 s 121 s 65 s 37 s

A100 parallel efficiency 100% 98.3% 91.5% 80.4%

Similarly, we conducted the performance study on a single GPU for the
two other optimizers. SGD and Adam take 238 s and 242 s per epoch, resp.,
showing similar runtimes as Newton-CG with 238 s. We believe that for this
big scenario the runtime is dominated by memory transfer and the one vs. two
backpropagations hardly makes a difference.

7 Conclusion and Future Work

In conclusion, we found benefits of second-order curvature information plugged
into the optimization of the neural network weights especially for regression
cases, but not much benefits in classification scenarios. In order to improve for
classification, we experimented with a cyclical learning rate scheduler for ResNets
for computer vision and Natural Language Processing, but more studies need to
be investigated. The data-parallel approach seems to work well in performance
numbers, since we reach about 80% parallel efficiency for 8 A100 GPUs.

For showcasing purposes, you may also try the frontend android application
TUM-lens6, where some models have been trained with Newton-CG.

6 https://play.google.com/store/apps/details?id=com.maxjokel.lens.

https://play.google.com/store/apps/details?id=com.maxjokel.lens

Newton-CG for Large ResNets 151

References

1. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016). http://www.deeplearningbook.org

2. Pearlmutter, B.A.: Fast exact multiplication by the Hessian. Neural Comput. 6(1),
147–160 (1994)

3. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Heidelberg (1999)
4. Martens, J., et al.: Deep learning via Hessian-free optimization. In: ICML, vol. 27,

pp. 735–742 (2010)
5. Martens, J.: Second-order optimization for neural networks. University of Toronto

(Canada) (2016)
6. Osawa, K., Tsuji, Y., Ueno, Y., Naruse, A., Yokota, R., Matsuoka, S.: Large-scale

distributed second-order optimization using kronecker-factored approximate cur-
vature for deep convolutional neural networks. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 12359–12367 (2019)

7. Yao, Z., Gholami, A., Shen, S., Mustafa, M., Keutzer, K., Mahoney, M.W.: Ada-
hessian: an adaptive second order optimizer for machine learning. arXiv preprint
arXiv:2006.00719 (2020)

8. O’Leary-Roseberry, T., Alger, N., Ghattas, O.: Inexact newton methods for
stochastic nonconvex optimization with applications to neural network training.
arXiv preprint arXiv:1905.06738 (2019)

9. Schmidt, R.M., Schneider, F., Hennig, P.: Descending through a crowded valley-
benchmarking deep learning optimizers. In: International Conference on Machine
Learning, pp. 9367–9376. PMLR (2021)

10. Chenhan, D.Y., Reiz, S., Biros, G.: Distributed-memory hierarchical compression
of dense SPD matrices. In: SC 2018: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 183–197. IEEE (2018)

11. Chen, C., Reiz, S., Yu, C.D., Bungartz, H.-J., Biros, G.: Fast approximation of
the Gauss-Newton Hessian matrix for the multilayer perceptron. SIAM J. Matrix
Anal. Appl. 42(1), 165–184 (2021)

12. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
13. Shewchuk, J.R., et al.: An introduction to the conjugate gradient method without

the agonizing pain (1994)
14. Suk, J.: Application of second-order optimisation for large-scale deep learning.

Masterarbeit, TUM (2020)
15. Kingma, D.P., Welling, M.: An introduction to variational autoencoders. Found.

Trends R© Mach. Learn. 12(4), 307–392 (2019)
16. Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford University

Press, Oxford (1995)
17. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in

neural network. In: International Conference on Machine Learning, pp. 1613–1622.
PMLR (2015)

18. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in
deep neural networks? In: Advances in Neural Information Processing Systems,
vol. 27 (2014)

19. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images. Master’s thesis, University of Tront (2009)

20. Weigold, H.: Second-order optimization methods for Bayesian neural networks.
Masterarbeit, Technical University of Munich (2021)

21. Sergeev, A., Del Balso, M.: Horovod: fast and easy distributed deep learning in
TensorFlow. arXiv preprint arXiv:1802.05799 (2018)

http://www.deeplearningbook.org
http://arxiv.org/abs/2006.00719
http://arxiv.org/abs/1905.06738
http://arxiv.org/abs/1802.05799

152 S. Reiz et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Performance Analysis and Prediction
in HPC Systems

Exploring Techniques for the Analysis
of Spontaneous Asynchronicity
in MPI-Parallel Applications

Ayesha Afzal1(B) , Georg Hager1 , Gerhard Wellein1,2 ,
and Stefano Markidis3

1 Erlangen National High Performance Computing Center (NHR@FAU),
91058 Erlangen, Germany

{ayesha.afzal,georg.hager,gerhard.wellein}@fau.de
2 Department of Computer Science, University of Erlangen-Nürnberg,

91058 Erlangen, Germany
3 Department of Computer Science, KTH Royal Institute of Technology,

11428 Stockholm, Sweden
markidis@kth.se

Abstract. This paper studies the utility of using data analytics and
machine learning techniques for identifying, classifying, and characteriz-
ing the dynamics of large-scale parallel (MPI) programs. To this end, we
run microbenchmarks and realistic proxy applications with the regular
compute-communicate structure on two different supercomputing plat-
forms and choose the per-process performance and MPI time per time
step as relevant observables. Using principal component analysis, clus-
tering techniques, correlation functions, and a new “phase space plot,”
we show how desynchronization patterns (or lack thereof) can be readily
identified from a data set that is much smaller than a full MPI trace.
Our methods also lead the way towards a more general classification of
parallel program dynamics.

Keywords: Parallel distributed computing · Data analytic
techniques · Machine learning techniques · Asynchronous MPI
execution · Scalability and bottleneck

1 Introduction and Related Work

Highly parallel MPI programs with no or weak global synchronization points
show interesting dynamics that go beyond what is expected from their usually
regular compute-communicate structure. Initiated by what is typically called
“noise,” a plethora of patterns can emerge: Propagating delays emanating from
strong one-off disturbances, so-called idle waves [10], can interact [1] and even-
tually decay [1–3] via various mechanisms. Caused by idle waves, but also under

c© The Author(s) 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 155–170, 2023.
https://doi.org/10.1007/978-3-031-30442-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_12&domain=pdf
http://orcid.org/0000-0001-5061-0438
http://orcid.org/0000-0002-8723-2781
http://orcid.org/0000-0001-7371-3026
http://orcid.org/0000-0003-0639-0639
https://doi.org/10.1007/978-3-031-30442-2_12

156 A. Afzal et al.

the natural, fine-grained system noise, some applications are unstable and leave
their initial lock-step mode (Fig. 2 (left)) where all processes either compute or
communicate. It was shown [2,5] that a hardware bottleneck such as main mem-
ory bandwidth is a prerequisite for this bottleneck evasion to occur. As a conse-
quence, such programs settle in a metastable state, a computational wavefront,
where neighboring processes are shifted in time with respect to each other (Fig. 2
(right)). It was also shown [4] that this desynchronization can lead to substantial
speedups via automatic overlap of communication and code execution.

Investigating these dynamics typically requires the analysis of MPI traces
taken by tools such as Intel Trace Analyzer/Collector or VAMPIR. Apart from
the often prohibitive amount of data contained in such traces, the relevant pat-
terns are often hidden in the data and not readily visible to the human eye.
Furthermore, it is hard, if not impossible, to obtain this data in a production
environment without adverse effects on the performance of applications. For
applications that have natural regular compute-communicate cycles, we propose
to use the MPI waiting time per process and time step (i.e., the time spent
in the MPI library, regardless of whether communication takes place or not)
as a starting point and input metric for data analysis methods that can iden-
tify the structural processes described above. The performance per process and
time step can serve as a supplemental metric to track the impact of automatic
communication overlap.

This paper makes the following relevant contributions:

– We demonstrate how to automatically characterize different flavors of syn-
chronous versus non-synchronous execution of MPI-parallel codes without
taking full MPI traces or in-depth application analysis.

– We show that the MPI waiting time per process and time step provides a
powerful input metric for principal component analysis (PCA) and clustering
methods in order to spot these patterns.

– We introduce the MPI phase space plot as a tool to visualize the long-term
evolution and peculiar patterns of MPI waiting time in a parallel program.

This paper is organized as follows: We first provide details about our experi-
mental environment and methodology in Sect. 2. To investigate the dynamics of
large-scale parallel programs, simple metrics such as the histogram and time-
lines for all or individual MPI processes are studied in Sect. 3, while Sect. 4
covers advanced methods like correlation coefficient matrices and phase space
plots. Sect. 5 addresses machine learning techniques such as Principal Compo-
nent analysis and k-means clustering. Finally, Sect. 6 concludes the paper and
gives an outlook to future work.

Analysis of Spontaneous Asynchronicity in MPI-Parallel Applications 157

2 Case Studies, Testbed and Experimental Methods

Table 1. Key hardware and software properties of systems.

Systems Meggie Fritz

Micro-architecture Processor Intel Xeon Broadwell EP Intel Xeon Ice Lake

Processor Model E5-2630 v4 Platinum 8360Y

Base clock speed 2.2 GHz 2.4 GHz

Physical cores per node 20 72

Numa domains per node 2 4

Last-level cache (LLC) size 25 MB (L3) 54MB (L3)

Memory per node (type) 64 GB (DDR4) 256 GB (DDR4)

Theor. memory bandwidth 68.3 GB/s 102.4 GB/s

Network Node interconnect Omni-Path Infiniband

Interconnect topology Fat-tree Fat-tree

Raw bandwidth p. lnk n. dir 100 Gbit s−1 100 Gbit s−1

Software Compiler Intel C++ v2019.5.281 intel C++ v2021.4.0

Message passing library Intel MPI v2019u5 intelmpi/2021.4.0

Operating system CentOS Linux v7.7.1908 AlmaLinux v8.5 rhel centos fedora

Fig. 1. Saturation attributes Fig. 2. Timeline traces of synchronized
(left) and desynchronized (right) MPI
processes on sockets (Si).

2.1 Test Systems and Methodology

The details of the hardware and software environments on the “Meggie”1 and
“Fritz”2 clusters can be found in Table 1. By default, hyper-threading (SMT)
is disabled on both systems and Sub-NUMA Clustering (SNC) is enabled on
the Fritz system. The optimization flag -O3 was utilized with the Intel com-
piler. Process-core affinity was enforced using the I MPI PIN PROCESSOR LIST
environment variable. The clock frequency was always fixed to the base value
1 https://hpc.fau.de/systems-services/systems-documentation-instructions/clusters/

meggie-cluster/.
2 https://hpc.fau.de/systems-services/systems-documentation-instructions/clusters/

fritz-cluster/.

https://hpc.fau.de/systems-services/systems-documentation-instructions/clusters/meggie-cluster/
https://hpc.fau.de/systems-services/systems-documentation-instructions/clusters/meggie-cluster/
https://hpc.fau.de/systems-services/systems-documentation-instructions/clusters/fritz-cluster/
https://hpc.fau.de/systems-services/systems-documentation-instructions/clusters/fritz-cluster/

158 A. Afzal et al.

of the respective CPUs. Working sets were chosen large enough to not fit into
any cache, i.e., at least ten times the last-level cache size on both systems. All
floating-point computations were done in double precision. All experiments were
performed for 500 k iterations (compute-communicate cycles), except for LBM
where we used 100 k iterations. Each experiment was repeated at least five times
to ensure that the runtime analysis is stable. The scripts, which are used to gen-
erate plots for all data analytic and machine learning techniques, are available
online at https://github.com/RRZE-HPC/PPAM22-AA.

2.2 Synthetic Microbenchmarks

We ran pure-MPI versions of the McCalpin STREAM Triad [11] (A(:)=B(:)+
s*C(:))) and a “slow” Schönauer vector Triad (A(:)=B(:)+cos(C(:)/D(:)))3

with bidirectional next-neighbor communication. The saturation characteristics
of these streaming kernels on one socket (ccNUMA domain) of Meggie are shown
in Fig. 1. Each MPI rank i sends and receives messages to and from each of its
direct neighbors i + 1 and i − 1 after each full loop traversal. Each array had
400 M elements, which yields a 9.6 GB working set for the STREAM Triad and a
12.8 GB working set for the Schönauer Triad. To mimic scalable applications, we
set up a PISOLVER code which calculates the value of π by evaluating

∫ 1

0
4/(1+

x2) dx using the mid-point rule with 500 M steps. Overall, four microbenchmark
variants were employed:

1. MPI-parallel STREAM Triad with 5 MB messages
2. MPI-parallel STREAM Triad with 8 B messages
3. MPI-parallel “slow” Schönauer Triad with 8 B messages
4. MPI-parallel PISOLVER with 8 B messages

These four cases were run in two scenarios on the Meggie system: (A) open-chain
process topology with 40 MPI processes on four ccNUMA domains (sockets), and
(B) closed-ring process topology with 400 MPI processes on 40 sockets. Later
these scenarios will be denoted “Bench iA” and “Bench iB”, respectively, where
i is the label in the enumeration list above.

2.3 Proxy Memory-Bound Parallel Applications

We experiment with the following two MPI-parallel proxy applications and run
them with 1440 MPI processes on 40 sockets of the Fritz system.

MPI-Parallel LBM Solver. This is a prototype application based on a Lat-
tice Boltzmann Method (LBM) from computational fluid dynamics using the
Bhatnagar-Gross-Krook collision operator [6] and implementing a 3D lid-driven
cavity scenario. It is purely memory bound on a single ccNUMA domain, but

3 The low-throughput cosine and floating-point division shifts the bandwidth satura-
tion point to a higher number of cores.

https://github.com/RRZE-HPC/PPAM22-AA

Analysis of Spontaneous Asynchronicity in MPI-Parallel Applications 159

the halo exchange makes it communication dominated in strong scaling scenar-
ios. The double-precision implementation employs a three-dimensional D3Q19
space discretization [12]. The domain decomposition is performed by cutting
slices in the z direction. For halo exchange, five PDFs per boundary cell must
be communicated. The MPI communication is done with non-blocking point-
to-point calls, but no explicit overlapping of communication with useful work
is implemented. We use an overall problem size of nx × ny × nz = 14403 lat-
tice cells, which amounts to a working set of 908 GB plus halo layers. Due to
the one-dimensional domain decomposition, the communication volume per halo
depends on nx and ny only and is independent of the number of processes.

MPI-Parallel spMVM Solver. The sparse matrix-vector multiplication
(SpMVM) �b = A�x is a most relevant, time-consuming building block of numer-
ous applications in science and engineering. Here, A is an n × n sparse matrix,
and �b, �x are n-dimensional vectors. SpMVM plays a central role in the itera-
tive solution of sparse linear systems, eigenvalue problems and Krylov subspace
solvers. Due to its low computational intensity, the SpMVM kernel is mostly lim-
ited by the main memory bandwidth if the matrix does not fit into a cache. Our
implementation uses non-blocking point-to-point communication calls, where the
communication requests for reading the remote parts of �x are issued and then
collectively finished via MPI Waitall. After that, the whole SpMVM kernel is
executed. The communication volume is crucially dependent on the structure
of the matrix; the distribution of the nonzero entries plays a decisive role. In
this paper, we use a matrix that arises from strongly correlated electron-phonon
systems in solid state physics. It describes a Holstein-Hubbard model [7] com-
prising 3 electrons on 8 lattice sites coupled to 10 phonons. The sparse matrix
A has 60, 988, 928 rows and columns and 889, 816, 368 non-zero entries, respec-
tively, which leads to an average of 13 nonzeros per row and an overall data set
size of 10.9 GB using four-byte indices in the Compressed Row Storage format
(one-dimensional arrays for values, column indices, and row pointers).

2.4 Observables for Analysis

We instrument all codes to collect the time stamps of entering and leaving MPI
calls (MPI waiting time per process) at each iteration of each MPI process across
the full run. From this data we construct a non-square matrix of size Np × Nit,
where Np is the number of MPI processes and Nit is the number of iterations.
Each row (column) of the observable matrix represents the observable value,
i.e., the time spent in MPI, for each process (iteration). There is a choice as to
how this data can be used in analysis: One can either use the full timeline per
process, which takes the end-to-end evolution of execution characteristics (such
as desynchronization) into account, or cut out a number of consecutive iterations
from different execution phases, which allows to investigate the development of
interesting patterns in more detail. In addition, for some experiments we collect
performance per MPI process averaged over the 1000 time steps.

160 A. Afzal et al.

3 Simple Timeline Metrics for Analysis

Fig. 3. Histograms sorting MPI times [sec] into bins for all benchmarks on the first
process of each Meggie socket used in the run. The x-axes show the MPI times and the
y-axes indicate the number of MPI time values in each bin.

3.1 Rank/ccNUMA-wise Timelines and Histogram of MPI Time
and Performance

The histograms in Fig. 3 sort the MPI time values of end-to-end (500 k itera-
tions) runs of Bench[1–4]A into 35 bins. For memory-bound code, idle times are
lower for desynchronized processes if the bandwidth saturation on a ccNUMA
domain is weaker [2] (see Fig. 3(c)). In the compute-bound PISOLVER case
(Fig. 3(d)), all processes are synchronized because of the absence of any con-
tention on the memory interface or on the network. Open-chain boundary con-
ditions and strong memory contention ((a) and (b)) lead to a single synchronized
socket. In the other cases, all sockets desynchronize gradually over 500 k itera-
tions, which causes a spread in the histogram because processes evolve from
lower to higher idle times. We have observed that this spread is more prominent
for codes with stronger saturation and higher communication (Bench1B, LBM,
and spMVM; data not shown for brevity).

We first investigate the open chain high communication overhead benchmark
mode (Bench1A). Figure 4(a) shows the histograms at the different stages of evo-
lution of a single MPI process (i.e., rank 20 on third ccNUMA domain) through
the whole execution. Each histogram encompasses 1000 iterations. Initially (e.g.,
till 50 k iterations), the distributions are multimodal, which indicates different
phases. On closer inspection it can be observed that the peak snaps from left
to right as the process goes out of sync with its neighbors. This corroborates
that the MPI waiting time is a good observable in our context. Since desyn-
chronization cannot yield significant speedup if communication is insignificant,
we show plots of performance vs. time step for significant communication cases
only (Bench1A in Fig. 4(b) and Bench1B in Fig. 4(c)). These plots show the ini-
tial 1 k iterations. With open boundary conditions (b), one observes fluctuating
performance as processes get desynchronized on all but one socket. However,
this slow synchronized socket does not permit a global performance increase as
desynchronized processes on other sockets cannot lag behind indefinitely. With
closed boundary conditions (c), as the simulation progresses, performance (along

Analysis of Spontaneous Asynchronicity in MPI-Parallel Applications 161

Fig. 4. (a) Snippet view of histograms for MPI times [sec] (x-axes) of rank 20 only and
(b-c) performance [iterations/sec] (y-axes) on every first MPI process of each Meggie
socket for the initial-zoomed 1 k iterations (x-axes) snapshot of Bench1A and Bench1B.
Since the performance remains constant afterwards, we don’t show the whole run of
500 k iterations.

with MPI waiting times) increases by about 15% and stays constant at the higher
level till the end of the run.

3.2 Timeline in Compact Representation

MPI waiting times facilitate a compact representation of the timeline of a parallel
program. Figure 5 show ranks on the x-axis and time steps on the y-axis, with
the normalized MPI waiting time for each rank and time step color coded. For
this representation, the mean value of MPI times across all processes and time
steps is shown in white while red (positive value) and blue (negative value)
represent values above and below the mean, respectively. This makes it possible
to distinguish between synchronized and desynchronized groups of processes:
Strongly desynchronized processes spend more time in MPI (red), while white
color marks synchronized processes (Ranks 1–10 and 20–30 in Fig. 5(b) and (c),
respectively). This visualization is similar to what tracing tools like ITAC or
Vampir display; however, these tools often encompass too much information,
and depending on the chosen resolution one can easily get lost in the data. In
contrast, compact timelines of the waiting time per time step deliver a condensed
view on this information and help to better visualize certain phenomena. For
instance, the weaker saturation cases collect lower idle times which can be seen
when comparing Figs. 5(c)–(e) and (h)–(j)). Asymptotic behavior in longer runs
can be observed at the top part of the plot in all cases. Idle waves are prominently
visible as dark-blue stripes in the LBM benchmark (Fig. 5(a)).

162 A. Afzal et al.

Fig. 5. Compact rank(x-axis)-iteration(y-axis) timelines of MPI waiting times [sec] for
all benchmarks and full end-to-end runs.

4 Advanced Metrics for Analysis

Beyond timeline visualization and statistics, a plethora of advanced data analy-
sis methods exist which can lead to deeper insights into the desynchronization
process. Here we pick the correlation coefficient and the phase space plot.

4.1 Correlation Coefficient

The correlation coefficient function [14] provides a simple way to uncover correla-
tions between the timelines of two MPI processes. Figure 6 shows the color-coded
correlation coefficients of rank pairs for all benchmarks, using the full end-to-end
timelines. The matrices are obviously symmetric, and the diagonal entries (dark
red) are set to one by convention. The correlation coefficients range from −1 to 1,
with −1 representing a direct, negative correlation, 0 representing no correlation,
and 1 representing a direct, positive correlation. For the memory-bound applica-
tions, the ccNUMA domain structure is clearly visible in Figs. 6(a–c, f–h). This
implies that processes within ccNUMA domains are strongly correlated, while
they are less (or not) correlated across sockets. The data shows strong correla-
tions within desynchronized sockets with a bi-modal distribution of MPI times
since the socket already started to lose the sync pattern. In the open chain sce-
narios, processes on the last socket show a weaker correlation. In the SpMVM
application, the sparse matrix structure is reflected in the correlation coefficients
since the desynchronization process is strongly influenced by the communication
structure (Fig. 6(f)). In weakly or non-saturated applications (Figs. 6(d–e, i–j)),
correlations are generally weaker, as expected.

Analysis of Spontaneous Asynchronicity in MPI-Parallel Applications 163

Fig. 6. Correlation coefficients of MPI times [sec] between process pairs for all bench-
marks.

4.2 Phase Space Plots

In order to capture the temporal evolution of MPI waiting time, we set up a
scatter plot where each data point has coordinates (MPItime(ti, r),MPItime(ti+
1, r)). For each process, a fixed point in this “phase space” is a point on the
slope-1 line through the origin. If the waiting time evolves, a process will move
through the first quadrant; if waiting time increases over time (e.g., due to
desynchronization), the path of a process will rise above the axis and move
further up and to the right. Color coding in the point cloud, from early (blue)
to late (yellow), helps to visualize how processes move. We choose two different
types of analysis.

In the snippet view, only a small part (e.g., 1000 iterations) of the data
is visualized per plot; separate plots are used to show the long-term temporal
evolution (initial -mid -end in Fig. 7). In Figs. 7(a)–(c), after the initial in-sync
phase, the cloud gets spread out. Asymptotically, we identify multiple weak and
strong clusters (smaller and bigger attractors basin for observable). Stronger
or weaker clustering along the diagonal line expresses how much the observable
fluctuates around a “steady-state” value. In the example shown, all but one (blue
points) sockets get desynchronized. This separation of sockets should go away
as time progresses for the close chain scenario (see Figs. 7(f)–(h)), but obviously
the progression is too slow to be discernible in this visualization. For PISOLVER
(Figs. 7(d)–(e)), the point cloud starts around the origin and remains there since
this scalable code is self-synchronizing.

164 A. Afzal et al.

Fig. 7. (a, c, f, h) Snippets view of phase space of all MPI processes for 100 iterations
at the beginning. (b) Snapshot of 1 K iterations (9.9–10 K iterations) for LBM in the
middle state. (d, e, g, i, j) Snapshot of 1 K iterations in the middle (1.9–2 k iterations)
and at the end evolved state (499.9–500 k iterations).

In the overall view (see Fig. 8), the full timeline is shown for one process in
one plot (plotting all processes would not allow useful conclusions)). Here the
gradual evolution of waiting time is hard to see since it is drowned in fluctua-
tions. However, especially in the open-chain scenarios (Figs. 8(b)–(d)) we observe
structures parallel to the axes, indicating singular long delays of a few preferred
lengths. These are signatures of traveling idle waves, which for a single process
manifest themselves as singular high waiting time in one time step.

5 Machine Learning Techniques for Analysis

In order to prepare the timeline data for machine learning techniques, we sub-
tract the mean values of MPI times across all time steps and processes of each
experiment from the value at each step. This is one of many possible options
for data normalization; better ones might exist. We then apply PCA [8] to the
timelines of each run, using the MPI times of each process as feature vectors, and
then classify the projections of the feature vectors on the first two principal com-
ponent vectors using clustering techniques. Finally, we validate the quality of the
clustering for an accurate evaluation. To do that, we look at the reconstruction
error that is generated using an essential number of Principal Components only.

Analysis of Spontaneous Asynchronicity in MPI-Parallel Applications 165

Fig. 8. Overall view of phase space for one MPI process (rank 32) of all benchmarks.
The axes show the time spent in the MPI library at the n-th and (n + 1)-th iteration,
respectively.

5.1 Principal Component Analysis (PCA)

Principal Component analysis projects the directions of high-dimensional data
onto a lower-dimensional subspace while retaining most of the information. Ide-
ally, the low-dimensional manifolds still retain almost all variance of the data
set needed to identify and interpret generic behavior. Coarse features are cap-
tured by the first principal components while the highest-frequency features are
captured by highest principal components. PCA centers the data and uses the
singular value decomposition algorithm on the non-square observable matrix.
Rows and columns of the input matrix correspond to observations and vari-
ables, respectively. Each row vector is the timeline of MPI times in a process; the
observable values in different iterations are the coordinates in a high-dimensional
space.

Projection Plot on the Reduced Principal Components. The points in Fig. 9(a, e)
indicate the score of each observation for the first three principal components in
the Bench1B experiment. They show the PCA analysis on the full run and on the
last 1000 iterations, respectively. For the compute-bound PISOLVER (Bench4),
all processes cluster around one point because of absence of contention on the
sockets (data not shown). In contrast, for the memory-bound Triad variants, four
or 40 clusters emerge at the start due to the presence of four or 40 ccNUMA
domains, respectively. As time progresses, all desynchronized sockets form weak
clusters by collecting larger scores for PC1 and nonzero scores for PC2, while
the in-sync domain forms a compact cluster due to lower scores for PC1 and
zero scores for PC2. Desynchronization is strongest for the processes on the top
right of the plot. The negative values for projections on eigenvectors indicate an

166 A. Afzal et al.

Fig. 9. Principal Component analysis, k-mean clustering, eigenvectors, percentile and
Silhouette analyses of Bench1B (a–c, f–g) for the whole run time of 500k iterations and
(d–e, h–i) for snapshot of last 1 k iterations only.

inverse relationship, but large (either positive or negative) values indicate that
a vector has a strong overlap with that principal component. If all ccNUMA
domains are eventually desynchronized, all processes cluster on the top right as
shown in Fig. 9(e) for the last 1000 iterations.

Principal Components (Eigenvectors). In order to get better insight into the
governing characteristics of desynchronized execution, We analyze the essential
eigenvectors. Figures 9(c, d) show the eigenvectors and how ranks contribute
to the reduced number of principal components for the full run and the last
1000 iterations. In the full-run case (Fig. 9(c)), the PC1 eigenvector character-
izes desynchronizing processes and thus indicates a lot of waiting times with in-
between downward spikes. The PC2 eigenvector characterizes in-sync processes
and shows almost no waiting time, but upward spikes (idle periods) in between.
It must be noted that the PCs for end-to-end runs encompass the entire evolu-
tion of the program, including initial in-sync phases, transient states, and final,
stable states. Looking at the final 1000 iterations (Fig. 9dc)), the signatures are
much clearer; PC1 characterizes stable desynchronization while PC2 maps tran-
sient behavior where a noise-induced event between iteration 600 and 700 causes
processes to change from a state with small waiting times to a state with large
waiting times. One can interpret this as processes within a ccNUMA domain
“snapping” out of sync.

Analysis of Spontaneous Asynchronicity in MPI-Parallel Applications 167

Total Variance Explained by Each Principal Component. The percentage of the
total variance explained by each principal component (Pareto plots in Figs. 9(c-
bottom, d-bottom)) indicates for Bench1B how many PCs are required to recon-
struct the original data sets using only the projections. In this particular case, one
component is sufficient near the end of the run but many are required (with the
first one still dominating) over the full run. Overall, the results show that more
PCs are needed to explain the data variance for a more pronounced memory-
bandwidth saturation on the ccNUMA domain. In contrast, the compute-bound
PISOLVER has much less variance as no typical structure exists except natu-
ral, noise-induced fluctuations. Further, the more revealing socket behavior in
short-runs is captured by the higher number of PCs compared to the asymptotic
behavior in long runs.

5.2 K-means Clustering

While PCA delivers insight into typical patterns, it does not allow for automatic
grouping (clustering) of processes. This can be accomplished by partitioning the
projection of observations on the principal components into k clusters by using
k-means. Rows of PC scores correspond to points and columns correspond to
variables. We use the k-means++ algorithm [13] for the cluster center initializa-
tion; it is strongly dependent on the distance metric used.

Distance Types. Clustering quality was studied for four metrics. In the clus-
ter, each centroid c is either the mean ((x − c)(x − c)′) or component-wise
median ((

∑p
j=1 |xj − cj |) of the points in squared Euclidean and city-block met-

rics, respectively. Here, x is a row of PC scores. For the cosine and correlation
metrics, each centroid c is either the mean of the points which are already nor-

malized to unit Euclidean length (1− xc′
√

(xx′)(cc′)
) or component-wise mean of

the points which are already centered and normalized to zero mean and unit stan-

dard deviation (1− (x − x̄)(c − c̄)′
√

(x − x̄)(x − x̄)′√(c − c̄)(c − c̄)′), with x̄ =
1
p
(
∑p

j=1 xj)1p

and c̄ =
1
p
(
∑p

j=1 cj)1p.

The result is a matrix containing the k cluster centroid locations and a vector
containing cluster indices. Figure 9(b) shows a scatter plot of essential PC scores
grouped by the cluster indices of each observation in the Bench1B case. K-means
uses the squared Euclidean distance here. We expect one cluster if all processes
are in a fully evolved desynchronized state.

Number of Observables per Cluster. The number of clusters k is chosen in a way
that it assigns all unalike clusters, while the number of observables belonging to
each cluster could be significantly different. Figures 9(f, h) show the histogram
bar chart of the cluster indices in the vector, which are sorted into k bins. We
choose k equal to the number of ccNUMA domains. The x-axis indicates the
cluster IDs and the y-axis shows the number of samples.

168 A. Afzal et al.

Validation of Clustering Quality. A potential application of Principal Compo-
nent analysis is its evaluation by calculating the error between original and
reconstructed signal from fewer PCs. To this end, one can reconstruct the signal
by multiplying the scores with the first two PCs and then sum them up. This
should be very close to the original signal if the reconstruction error (using the
Euclidean norm) is less than some threshold value. In Figs. 9(g, i), we performed
a Silhouette analysis [9] to quantify the quality of the clustering. A highly rep-
resentative clustering is associated with a large positive coefficient value close to
one and indicates that the point is well matched to other points in its own cluster,
and poorly matched to other clusters. On the other hand, a negative coefficient
value represents a disqualified clustering. We get higher reconstruction error for
the high-frequency signal of the PISOLVER case as expected. While exploring
the influence of distance metrics, it turned out that cosine is the best-suited and
city-block is the worst-suited distance metric.

6 Summary and Future Work

Key Takeaways. We have presented expressive data analytics techniques for
investigating the dynamics of MPI-parallel programs with regular compute-
communicate cycles. We consider MPI waiting time per time step and process
as a good observable metric since it encompasses much of the relevant dynam-
ics in a very condensed format. Our new “phase space” analysis based on this
data provides an efficient, visual way to observe the evolution of a program
from its initial, synchronized state into a desynchronized state. However, it is
not strictly a data analytics technique since it involves manual inspection of the
data (moving dot clouds). PCA and subsequent k-means clustering allow for
a more automated analysis, providing feature extraction, i.e., typical timeline
behavior, as well as grouping of MPI processes into clusters with similar fea-
tures. Hence, these methods could pave the way towards advanced job-specific
monitoring of production jobs on clusters. We have also found that the analysis
is more expressive when applied to snippets of the timeline in order to avoid
mixing different characteristics. If one is interested in an evolved state only, the
final iterations of a run are most relevant.

Since the dynamics of MPI asynchronicity are often concealed in overwhelmed
data, our methods facilitate two fundamental benefits; First, they offer a trade-off
between the detailed data-intensive tracing analyses and the high-level integrated
time and performance metrics. Second, by enabling the investigation of unknown
applications from condensed traces without in-depth analysis, they can pave the
way for a more general classification of the dynamics of parallel programs.

Future Work. We are convinced that PCA applied to MPI waiting time data
allows the investigation of unknown applications by mapping their temporal evo-
lution to principal components found in prototypical benchmark runs. It is still
an open question how to choose these benchmarks to extract relevant, distin-
guishable patterns that real application can be tested against. It will also be nec-
essary to investigate how the waiting time metric should be normalized to be as

Analysis of Spontaneous Asynchronicity in MPI-Parallel Applications 169

generic as possible. Furthermore, we plan to apply the demonstrated techniques
to a wider spectrum of real applications in order to fathom their true scope
of applicability. We will additionally investigate the potential of adopting the
performance modeling techniques towards these dynamics of MPI synchronicity.
This can be achieved by keeping track of the practical limits of potential opti-
mization in parallel program performance. The article [4] discusses a pioneering
work along these lines.

Acknowledgments. This research work is supported by KONWIHR, the Bavarian
Competence Network for Scientific High Performance Computing in Bavaria, under
project name “OMI4papps.” The authors gratefully acknowledge the scientific sup-
port and HPC resources provided by the Erlangen National High Performance Com-
puting Center (NHR@FAU) of the Friedrich-Alexander-Universität Erlangen-Nürnberg
(FAU). The hardware is funded by the German Research Foundation (DFG).

References

1. Afzal, A., Hager, G., Wellein, G.: Propagation and decay of injected one-off delays
on clusters: a case study. In: 2019 IEEE International Conference on Cluster Com-
puting, CLUSTER 2019, Albuquerque, NM, USA, 23–26 September 2019, pp. 1–10
(2019). https://doi.org/10.1109/CLUSTER.2019.8890995

2. Afzal, A., Hager, G., Wellein, G.: Desynchronization and wave pattern formation
in MPI-parallel and hybrid memory-bound programs. In: Sadayappan, P., Cham-
berlain, B.L., Juckeland, G., Ltaief, H. (eds.) ISC High Performance 2020. LNCS,
vol. 12151, pp. 391–411. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-50743-5 20

3. Afzal, A., Hager, G., Wellein, G.: Analytic modeling of idle waves in parallel pro-
grams: communication, cluster topology, and noise impact. In: Chamberlain, B.L.,
Varbanescu, A.-L., Ltaief, H., Luszczek, P. (eds.) ISC High Performance 2021.
LNCS, vol. 12728, pp. 351–371. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-78713-4 19

4. Afzal, A., Hager, G., Wellein, G.: The role of idle waves, desynchronization, and
bottleneck evasion in the performance of parallel programs. IEEE Trans. Parallel
Distrib. Syst. TPDS (2022). https://doi.org/10.1109/TPDS.2022.3221085

5. Afzal, A., Wellein, G., Hager, G.: Addressing white-box modeling and simulation
challenges in parallel computing. In: Proceedings of the 2022 ACM SIGSIM Con-
ference on Principles of Advanced Discrete Simulation, SIGSIM-PADS 2022, pp.
25–26. Association for Computing Machinery, New York (2022). https://doi.org/
10.1145/3518997.3534986

6. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases.
I. Small amplitude processes in charged and neutral one-component systems. Phys.
Rev. 94(3), 511–525 (1954). https://doi.org/10.1103/PhysRev.94.511

7. Fehske, H., Wellein, G., Hager, G., Weiße, A., Bishop, A.: Quantum lattice dynam-
ical effects on single-particle excitations in one-dimensional Mott and Peierls insu-
lators. Phys. Rev. B 69(16), 165115 (2004). https://doi.org/10.1103/PhysRevB.
69.165115

8. Jolliffe, I.T., Cadima, J.: Principal component analysis: a review and recent devel-
opments. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 374(2065), 20150202
(2016). https://doi.org/10.1098/rsta.2015.0202

https://doi.org/10.1109/CLUSTER.2019.8890995
https://doi.org/10.1007/978-3-030-50743-5_20
https://doi.org/10.1007/978-3-030-50743-5_20
https://doi.org/10.1007/978-3-030-78713-4_19
https://doi.org/10.1007/978-3-030-78713-4_19
https://doi.org/10.1109/TPDS.2022.3221085
https://doi.org/10.1145/3518997.3534986
https://doi.org/10.1145/3518997.3534986
https://doi.org/10.1103/PhysRev.94.511
https://doi.org/10.1103/PhysRevB.69.165115
https://doi.org/10.1103/PhysRevB.69.165115
https://doi.org/10.1098/rsta.2015.0202

170 A. Afzal et al.

9. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley, Hoboken (2009). https://doi.org/10.1002/9780470316801

10. Markidis, S., Vencels, J., Peng, I.B., Akhmetova, D., Laure, E., Henri, P.: Idle waves
in high-performance computing. Phys. Rev. E 91(1), 013306 (2015). https://doi.
org/10.1103/PhysRevE.91.013306

11. McCalpin, J.D., et al.: Memory bandwidth and machine balance in current high
performance computers. IEEE Comput. Soc. Tech. Committee Comput. Archit.
(TCCA) Newsl. 2(19–25) (1995)

12. Qian, Y.H., d’Humières, D., Lallemand, P.: Lattice BGK models for Navier-Stokes
equation. Europhys. Lett. (EPL) 17(6), 479–484 (1992)

13. Vassilvitskii, S., Arthur, D.: k-means++: the advantages of careful seeding. In:
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 1027–1035 (2006). https://dl.acm.org/doi/10.5555/1283383.1283494

14. Vetterling, W.T., et al.: Numerical Recipes: Example book C. Cambridge Univer-
sity Press, Cambridge (1992)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1002/9780470316801
https://doi.org/10.1103/PhysRevE.91.013306
https://doi.org/10.1103/PhysRevE.91.013306
https://dl.acm.org/doi/10.5555/1283383.1283494
http://creativecommons.org/licenses/by/4.0/

Cost and Performance Analysis
of MPI-Based SaaS on the Private Cloud

Infrastructure

Oleg Bystrov(B) , Arnas Kačeniauskas , and Ruslan Pacevič

Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania
oleg.bystrov@vilniustech.lt

Abstract. The paper presents the cost and performance analysis of par-
allel MPI-based software as a service (SaaS) deployed on the OpenStack
cloud infrastructure. The parallel SaaS was developed by using C++ pro-
gramming language and MPI library for the scientific discrete element
method (DEM) computations of granular flows. The performance mea-
sured on KVM-based virtual machines was slightly higher than that on
Docker containers of the OpenStack cloud. Round up and proportional
pricing schemes were examined and compared from the user’s perspec-
tive. The difference in cost computed by using alternative pricing schemes
varied from 0.6% to 15.4%. However, this difference can be reduced to
1.0%, increasing execution time of considered tasks. The investigation of
a trade-off between the execution time and cost was performed by using
Pareto front analysis and a linear scalarization method. Bi-objective deci-
sion making revealed the preferable configurations of virtual machines spe-
cific to memory bound DEM computations, exploiting higher bandwidth.

Keywords: Cost and Performance Trade-off · Pareto Front · MPI ·
OpenStack

1 Introduction

In recent years, cloud computing has gained great popularity and transformed
the IT industry [1]. Cloud computing infrastructures can provide the scalable
resources on-demand to deploy performance and cost effective services. The NIST
SPI model [2] represents a layered, high-level abstraction of cloud services clas-
sified into three main categories: Infrastructure as a Service (IaaS), Platform as
a Service (PaaS) and Software as a Service (SaaS). Organizations can use dif-
ferent implementations of cloud software for deploying their own private clouds.
OpenStack [3] is an open source cloud management platform that delivers an
integrated foundation to create, deploy and scale a secure and reliable public
or private cloud. Another open source local cloud framework is Eucalyptus [4],
provided by Eucalyptus Systems, Inc.

Cloud computing makes extensive use of virtual machines (VMs) because
they allow workloads to be isolated and resource usage to be controlled. Kernel
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 171–182, 2023.
https://doi.org/10.1007/978-3-031-30442-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_13&domain=pdf
http://orcid.org/0000-0002-4477-2630
http://orcid.org/0000-0001-9264-4142
http://orcid.org/0000-0002-5135-8155
https://doi.org/10.1007/978-3-031-30442-2_13

172 O. Bystrov et al.

Virtual Machine (KVM) [5] is a feature of Linux that allows Linux to act as
a type 1 hypervisor, running an unmodified guest operating system inside a
Linux process. Containers present an emerging technology for improving the
productivity and code portability in cloud infrastructures. Due to the layered
file system, Docker [6] container images require less disk space and I/O than the
equivalent VM disk images. Thus, Docker has emerged as a standard runtime,
image format and build system for Linux containers. IBM has added Docker
container integration to Platform LSF to run the containers on an HPC cluster
[7]. EDEM software has been deployed on Rescale’s cloud simulation platform
for high-performance computations [8]. However, it is difficult to provide precise
guidelines regarding the optimal cloud platform and virtualization technology
for each type of research and application [9].

Deployment of scientific codes as software services for data preparation, high-
performance computation and visualization on the cloud infrastructure increases
the mobility of users and achieves better exploitation. Thus, flexible cloud infras-
tructures and software services are perceived as a promising avenue for future
advances in the multidisciplinary area of discrete element method (DEM) appli-
cations [8]. However, the cloud SaaS might suffer from severe performance degra-
dation due to higher latencies of networks, virtualization overheads and other
issues [1]. Cloud computing still lacks cost and performance analyses in the case
of specific MPI-based applications, such as granular materials. Most evaluations
of the virtualization overhead and performance of cloud services are based on
standard benchmarks or theoretical unrealistic load models [9], therefore, the
impact of the cloud infrastructure on the performance and cost of parallel MPI-
based DEM computations remains unclear. Moreover, cost and performance are
critical factors in deciding whether cloud infrastructures are viable for scientific
DEM software.

The performance of virtual machines and lightweight containers has already
received some attention in the academic literature [10–13]. However, few studies
include the performance analysis of the virtualized distributed memory archi-
tectures for parallel MPI-based applications [14–16]. Bag-of-gangs applications
[17] consist of parallel jobs that are in very frequent communication and must
execute simultaneously and concurrently. Moschakis and Karatza [18] evaluated
gang scheduling performance in the Amazon EC2 cloud. Sood [19] compared
gang scheduling algorithms to other scheduling mechanisms in cloud computing.
Hao et al. [20] proposed a 0–1 integer programming for the gang scheduling. Their
proposed method tried its best finishing more jobs and minimizing the average
waiting time. Bystrov et al. [21] investigated a trade-off between the comput-
ing speed and the consumed energy of a real-life hemodynamic application on
a heterogeneous cloud. Beloglazov et al. [22] have proposed a modified best-fit
algorithm for energy-aware resource provisioning in data centers while continu-
ing to deliver the negotiated service level agreement. The survey [23] concludes
that there exists no predictive model today truly and comprehensively capturing
performance and energy consumption of the highly heterogeneous and hierarchi-

Cost and Performance Analysis of MPI-Based SaaS on the Private Cloud 173

cal architecture of the modern HPC node. Moreover, the cost analysis of the
MPI-based computations was not performed in the above overviewed research.

The resource allocation problem in cloud computing has received a lot of
attention mainly in terms of cost optimization. Malawski et al. [24] presented
a model, which assumed multiple cloud providers offering computational and
storage services. The considered optimization objective was to reduce the total
cost under deadline constraints. Liu et al. [25] focused on cost minimization and
guarantee of performance, proposing the least cost per connection algorithm,
which chose the most cost-effective VMs from the available public clouds. Zhou
et al. [26] developed two evolutionary algorithms to optimize cost and execu-
tion time of scheduling workflows. Genez et al. [27] proposed an integer linear
programming-based VM scheduler to produce low-cost scheduling for workflows
execution in multiple cloud providers. Entrialgo et al. [28] designed a state-of-
the-art cost optimization tool for the optimal allocation of VMs in hybrid clouds.
Rosa et al. [29] developed the computational resource and cost prediction service,
which measured user resources and reported the runtime financial cost before
starting the workflow execution. A comprehensive review of workload schedul-
ing and resource provisioning in cloud environments can be found in Wang et
al. [30]. The most authors considered the total cost as the objective and solved
the optimization problem with deadline constraint, which did not minimize the
execution time, reducing its importance. Moreover, parallel MPI-based scientific
applications were rarely examined because of their intensive communications
between VMs and complex non-monotonous performance profiles.

The remaining paper is organized as follows: Sect. 2 outlines the governing
relations of the discrete element method, Sect. 3 describes parallel MPI-based
SaaS deployed on the OpenStack cloud infrastructure, Sect. 4 presents the cost
and performance analysis and the conclusions are given in Sect. 5.

2 The Governing Relations of the Discrete Element
Method

The discrete element method is a class of numerical techniques to simulate granu-
lar materials [31]. The frictional visco-elastic particle system consists of the finite
number of deformable spherical particles with the specified size distribution and
material properties. Any particle i in the system of N spherical particles under-
goes the translational and rotational motion, involving the forces and torques
originated in the process of their interaction. Finally, the motion of the i-th
contacting spherical particle in time t is described as follows:

mi
d2xi

dt2
= F i, Ii

dωi

dt
= T i, (1)

where mi and Ii are the mass and the moment of inertia of the particle, respec-
tively, while the vectors xi and ωi initiate the position of the centre of particle
i and the rotational velocity around the particle centre of mass. The vectors F i

and T i present the resultant force and the resultant torque, acting in the centre

174 O. Bystrov et al.

of the particle i. The vector F i can be expressed by the external force and the
sum of the contact forces between the interacting particles:

F i = F i,cont + F i,ext =
N∑

j=1,j �=i

F ij,cont + mi, g, (2)

where F i,ext and F i,cont are the external force and the resultant contact force
of particle i, respectively, g is the acceleration due to gravity, F ij,cont is the
interparticle contact force vector, describing the contact between the particles i
and j. Thus, in the present work, the electromagnetic force [32], the aerodynamic
force [33] and other external forces [34,35], except for the gravity force are not
considered. The rotational motion is governed by particle torques T i that can
be expressed by torques T ij of the neighbouring particles:

T i =
N∑

j=1,j �=i

T ij =
N∑

j=1,j �=i

dcij × F i,cont, (3)

where dcij is the vector pointing from the particle centre to the contact cen-
tre. The interparticle contact force vector F i,cont may be expressed in terms
of normal and tangential components. The normal component of the contact
force comprises the elastic counterpart according to Hertz theory and the vis-
cous counterpart that can be represented by the spring-dashpot model [36] as
follows:

F ij,n =
4
3

· EiEj

Ei(1 − ν2
j) + Ej(1 − ν2

i)
R

1/2
ij δ

3/2
ij,nnij − γnmijvij,n, (4)

where nij is the normal vector, Rij is the reduced radius of the contacting
particles, γn is the constant normal damping coefficient, mij is the reduced mass
of the contacting particles and vij,n is the normal component of the relative
velocity of the contact point. Ei and Ej are elastic moduli, νi and νj are Poison’s
ratios of contacting particles i and j, respectively. In the normal direction, the
depth of the overlap between particles i and j is defined by δij,n.

The evolution of the tangential contact force can be divided into the parts of
static friction prior to sliding F ij,stat,t and dynamic slip friction F ij,dyn,t [36]:

F ij,t = −tij

{ |F ij,stat,t|, |F ij,stat,t| < μ|F ij,n|
|F ij,dyn,t|, |F ij,stat,t| ≥ μ|F ij,n| , (5)

where tij is the unit vector of the tangential contact direction. The model of
static friction force is implemented, when the tangential force is smaller than the
Coulomb-type cut-off limit. In the opposite case, the dynamic friction expressed
by the normal contact force and the Coulomb friction coefficient μ is considered:

F ij,dyn,t = −μ|F ij,n|tij , (6)

Cost and Performance Analysis of MPI-Based SaaS on the Private Cloud 175

The static friction force is calculated by summing up the elastic and viscous
damping components [37]:

F ij,stat,t = −16
3

· GiGj

√
Rijδij,n

Gi(2 − νj) + Gj(2 − νi)
|δij,t|tij − γtmijvij,t, (7)

where |δij,t| is the length of tangential displacement, vij,t is the tangential com-
ponent of the relative velocity of the contact point, γt is the constant tangential
damping coefficient, while Gi and Gj are shear moduli of the particles i and j,
respectively.

The main CPU-time-consuming computational procedures of the DEM are
contact detection, contact force computation and time integration. Contact
detection was based on the simple and fast implementation of a cell-based algo-
rithm [38]. The explicit velocity Verlet algorithm [38] was used for time integra-
tion employing small time steps. The details of outlined DEM model (1–7) and
its implementation can be found in [36,39].

3 DEM SaaS Deployed on OpenStack Cloud

The parallel DEM software was developed and deployed as SaaS on the cloud
infrastructure to perform time-consuming computations of granular materials.

3.1 Parallel DEM SaaS

The simulation of systems at the particle level of detail has the disadvantage of
making DEM computationally very expensive. The selection of an efficient par-
allel solution algorithm depends on the specific characteristics of the considered
problem and the numerical method used [39–41]. The parallel DEM algorithms
differ from the analogous parallel processing in the continuum approach. Moving
particles dynamically change the workload configuration, making parallelization
of DEM software much more difficult and challenging. Domain decomposition
is considered one of the most efficient coarse grain strategies for scientific and
engineering computations, therefore, it was implemented in the developed DEM
code. The recursive coordinate bisection (RCB) method from the Zoltan library
[42] was used for domain partitioning because it is highly effective for particle
simulations. The RCB method recursively divides the computational domain
into nearly equal subdomains by cutting planes orthogonal to the coordinate
axes, according to particle coordinates and workload weights. This method is
attractive as a dynamic load-balancing algorithm because it implicitly produces
incremental partitions and reduces data transfer between processors caused by
repartitioning.

The employed DEM software was developed using C++ programming lan-
guage. Interprocessor communication was implemented in the DEM code by
subroutines of the message passing library MPI. Each processor computes the
forces and updates the positions of particles only in its subdomain. To perform

176 O. Bystrov et al.

their computations, the processors need to share information about particles that
are near the division boundaries in ghost layers. The main portion of commu-
nications is performed prior to performing contact detection and contact force
computation. In the present implementation, particle data from the ghost layers
are exchanged between neighboring subdomains. The exchange of positions and
velocities of particles between MPI processes is a common strategy often used in
DEM codes [43]. Despite its local character, interprocessor particle data transfer
requires a significant amount of time and reduces the parallel efficiency of com-
putations. The parallel DEM software was deployed on the cloud infrastructure
by developing the environment launchers designed for users to configure the SaaS
and define custom settings. After successful authorization, the user can define
configuration parameters and run the parallel SaaS on ordered virtual resources.

3.2 OpenStack Cloud Infrastructure

The university private cloud infrastructure based on OpenStack Train 2019 ver-
sion [3] is hosted in the Vilnius Gediminas Technical University. The deployed
capabilities of the OpenStack cloud infrastructure include compute service Nova,
compute service Zun for containers, networking service Neutron, container net-
work plugin Kuryr, image service Glance, identity service Keystone, object stor-
age service Swift and block storage service Cinder. Nova automatically deploys
the provisioned virtual compute instances (VMs), Zun launches and manages
containers, Swift provides redundant storage of static objects, Neutron manages
virtual network resources, Kuryr connects containers to Neutron, Keystone is
responsible for authentication and authorization, while Glance provides service
discovery, registration and delivery for virtual disk images.

The cloud infrastructure is managed by the OpenStack API, which provides
access to infrastructure services. The OpenStack cloud IaaS provides platforms
(PaaS) to develop and deploy software services called SaaS. The PaaS layer sup-
plies engineering application developers with programming-language-level envi-
ronments and compilers, such as GNU compiler collection. Parallel software
for distributed memory systems is developed using the Open MPI platform,
which includes the open source implementation of the MPI standard for mes-
sage passing. The development platform as a service for domain decomposition
and dynamic load balancing is provided based on the Zoltan library [42]. It sim-
plifies the load-balancing and data movement difficulties that arise in dynamic
simulations. The DEM SaaS was deployed on top of the provided platforms,
such as GNU compiler collection, the message passing library Open MPI and
the Zoltan library. Computational results are visualized using the cloud visual-
ization service VisLT [44].

The cloud infrastructure is composed of OpenStack service nodes and com-
pute nodes (Intel R©Core i7-6700 3.40 GHz CPU, 32 GB DDR4 2133 MHz MHz
RAM and 1 TB HDD) connected to 1 Gbps Ethernet LAN. Two alternatives of
the virtualization layer are implemented to gain more flexibility and efficiency
in resource configuration. Version 2.11.1 of QEMU-KVM is used for virtual
machines (VMs) deployed and managed by Nova. Alternatively, Docker version

Cost and Performance Analysis of MPI-Based SaaS on the Private Cloud 177

Table 1. Characteristics of virtual machines and containers.

Cores CPU type RAM, GB HDD, TB Price, $/h

VM.small 1 i7-6700 8 0.5 0.0455

VM.small 1 i7-6700 8 0.5 0.0455

VM.small 1 i7-6700 8 0.5 0.0455

19.03.6 containers (CNs) launched and managed by Zun create an abstraction
layer between computing resources and the services using them. Ubuntu 18.04
LTS (Bionic Beaver) is installed in the VMs and CNs. Characteristics and prices
of VMs and CNs are provided in Table 1. Monetary costs of allocated VMs/CNs
are described by price per hour according to Amazon EC2 VM type C5. Two
pay-per-use pricing schemes are considered for all VM/CN types. In the case of
the traditional cloud pricing scheme named round up, VM instances are billed
per hour of usage, but each partial instance-hour is billed as a full hour. In the
case of the pricing scheme named proportional, the cost is directly proportional
to the time the VMs are allocated, which corresponds to price per second scheme.

4 The Cost and Performance Analysis

The cost and performance of the developed DEM SaaS for parallel computa-
tions of granular flows is investigated. The gravity packing problem of granular
material, falling under the influence of gravity into a container, was considered
because it often served as a benchmark for performance measurements [16]. The
solution domain was assumed to be a cubic container with the 1.0m-long edges.

Fig. 1. Execution time and cost: (a) the execution time on KVM virtual machines and
Docker containers, (b) the cost computed by using round up and proportional pricing
schemes.

178 O. Bystrov et al.

Half of the domain was filled with 1000188 monosized particles, using a cubic
structure. Performing the benchmark on VMs and CNs of OpenStack cloud, the
computation time of 200000 time steps equal to 1.0x10-6 was measured.

Figure 1 presents the SaaS execution time and cost on KVM VMs and Docker
CNs measured for different numbers of VMs/CNs and cores used. Higher com-
putational performance of DEM SaaS was observed on KVM virtual machines,
but the measured difference did not exceed 3.9% of execution time on Docker
CNs. Speedup of parallel computations equal to 11.6 was measured on 4x4 con-
figuration of KVM VMs (16 cores), which gave parallel efficiency equal to 0.73.
The measured speedup values are close to those obtained for relevant numbers
of cores in other parallel performance studies of DEM software [16,43]. The
obvious difference in cost computed by using alternative pricing schemes can be
observed. This difference varied from 0.6% to 15.4%, depending on the number
of VMs or CNs used.

Figure 2 shows the relative difference in cost calculated by using two pricing
schemes for various software execution times. The execution time of the numeri-
cal DEM software almost linearly depends on the number of time steps used for
time integration of Eq. (1). Thus, the number of computed time steps provides
the length of the simulated physical time interval, which represents the amount
of computations. It can be observed that the difference decreased when longer
tasks were executed. The difference diminished to 1.0% in the case of 1600000
computed time steps. Moreover, larger differences caused by multi-node and
multi-core execution of MPI-based SaaS can be observed for larger number of
VMs/CNs and cores in spite of scattered results.

Fig. 2. The relative difference in cost calculated by using round up and proportional
pricing schemes for various execution times on KVM virtual machines.

The choice of the optimal hardware setup needs to be taken in the presence of
two conflicting objectives or criteria: the execution time T and the computation
cost C. This bi-objective optimization problem can be formulated as follows:

min
pi∈X

(T (pi), C(pi)), (8)

Cost and Performance Analysis of MPI-Based SaaS on the Private Cloud 179

where X = {1x1, 1x2, 2x2, 1x4, 4x2, 2x4, 3x4, 4x4} is the set of feasible solu-
tions. The alternative VMs/CNs configurations 2x2 and 1x4 mean 2 VM.medium
instances with 2 cores on 2 nodes and 1 VM.large instance with 4 cores on 1
node, respectively.

Fig. 3. Pareto fronts for alternative pricing schemes: (a) KVM VMs, (b) Docker CNs.

There are many different approaches to deal with multi-objective optimiza-
tion problems. A common approach is to find the Pareto optimal solutions, i.e.,
the solutions that cannot be improved in any of the objectives without degrading
at least one of the other objectives. For the formulated bi-objective optimiza-
tion problem (8), the Pareto optimal solutions are presented in Fig. 3. It was
expected that the proportional pricing scheme dominated over the round up
pricing scheme and was preferable for users. Solutions based on KVM VMs were
better than that based on Docker CNs, but the difference was not large in most
cases. The VMs configuration 1x2 belonged to Pareto front in the case of the
proportional pricing scheme, but it was excluded from the Pareto front in the
case of the round up pricing scheme. It is worth noting that the VMs configura-
tions 2x2 and 4x2 were always preferable over 1x4 and 2x4, which was specific
to memory bound DEM computations exploiting higher bandwidth.

Scalarization is as a popular approach to solve a multi-objective optimization
problem, considering subjective preferences of a decision maker. The original
problem (8) is converted to a single-objective optimization problem by using
user defined weights wT and wC for normalized execution time objective and
normalized cost objective, respectively. Figure 4 shows dependency of scalarized
objective function on VMs/CNs configuration for equal (Fig. 4a) and execution
time oriented (Fig. 4b) weights. The difference between pricing schemes can be
clearly observed only for VMs/CNs configurations with the total number of cores
larger than 4. The equal weights resulted in optimal VMs/CNs configuration
2x2, while execution time-oriented weights gave the optimal configuration 4x2.
DEM SaaS computations on VMs/CNs configurations 2x2 and 4x2 were so fast

180 O. Bystrov et al.

Fig. 4. The application of linear scalarization method: (a) the equal weights (wT = 0.5
and wC = 0.5), (b) the execution time oriented weights (wT = 0.7 and wC = 0.3).

(Fig. 1a) that they dominated over other solutions in the wide range of weights
values.

5 Conclusions

In this article, cost and performance analysis of MPI-based computations per-
formed by the discrete element method SaaS on KVM virtual machines and
Docker containers of the OpenStack cloud is presented. The SaaS execution
time measured on KVM virtual machines was shorter by 0.3–3.9% than that on
Docker containers. The difference in cost computed by using alternative pricing
schemes varied from 0.6% to 15.4%, depending on the number of virtual machines
or containers used. However, the difference decreased to 1.0% for 8 times longer
tasks. Pareto front and linear scalarization revealed the preferable VMs/CNs
configurations specific to memory bound DEM computations exploiting higher
bandwidth.

References

1. Khan, A.A., Zakarya, M.: Energy, performance and cost efficient cloud datacentres:
a survey. Comput. Sci. Rev. 40, 100390 (2021)

2. Mell, P.M., Grance, T.: The NIST definition of cloud computing. Technical report
(2011)

3. Openstack. https://www.openstack.org. Accessed 9 Apr 2022
4. Nurmi, D., et al.: The Eucalyptus open-source cloud-computing system. In: 2009

9th IEEE/ACM International Symposium on Cluster Computing and the Grid,
pp. 124–131. IEEE (2009)

5. Chierici, A., Veraldi, R.: A quantitative comparison between XEN and KVM. J.
Phys: Conf. Ser. 219(4), 1–10 (2010)

6. Docker. https://www.docker.com. Accessed 9 Apr 2022

https://www.openstack.org
https://www.docker.com

Cost and Performance Analysis of MPI-Based SaaS on the Private Cloud 181

7. McMillan, B., Chen, C.: High performance docking. Technical report (2014)
8. Edem now available on rescale’s cloud simulation platform. https://www.

edemsimulation.com/blog-and-news/news/edem-now-available-rescales-cloud-
simulation-platform/. Accessed 9 Apr 2022

9. Sakellari, G., Loukas, G.: A survey of mathematical models, simulation approaches
and testbeds used for research in cloud computing. Simul. Model. Pract. Theory
39, 92–103 (2013)

10. Kačeniauskas, A., et al.: Private cloud infrastructure for applications of mechanical
and medical engineering. Inf. Technol. Control 44(3), 254–261 (2015)

11. Kozhirbayev, Z., Sinnott, R.O.: A performance comparison of container-based tech-
nologies for the cloud. Futur. Gener. Comput. Syst. 68, 175–182 (2017)

12. Chae, M., Lee, H., Lee, K.: A performance comparison of linux containers and
virtual machines using docker and KVM. Clust. Comput. 22(S1), 1765–1775 (2017)

13. Potdar, A.M., Narayan, G.D., Kengond, S., Mulla, M.M.: Performance evaluation
of docker container and virtual machine. Procedia Comput. Sci. 171, 1419–1428
(2020)

14. Hale, J.S., Li, L., Richardson, C.N., Wells, G.N.: Containers for portable, produc-
tive, and performant scientific computing. Comput. Sci. Eng. 19(6), 40–50 (2017)

15. Mohammadi, M., Bazhirov, T.: Comparative benchmarking of cloud computing
vendors with high performance Linpack. In: Proceedings of the 2nd International
Conference on High Performance Compilation, Computing and Communications -
HP3C. ACM Press (2018)

16. Bystrov, O., Pacevič, R., Kačeniauskas, A.: Performance of communication- and
computation-intensive SaaS on the OpenStack cloud. Appl. Sci. 11(16), 7379
(2021)

17. Papazachos, Z.C., Karatza, H.D.: Performance evaluation of bag of gangs schedul-
ing in a heterogeneous distributed system. J. Syst. Softw. 83(8), 1346–1354 (2010)

18. Moschakis, I.A., Karatza, H.D.: Evaluation of gang scheduling performance and
cost in a cloud computing system. J. Supercomput. 59(2), 975–992 (2010)

19. Sood, K.: Comparative study of scheduling mechanisms in cloud computing. IOSR
J. Eng. 4(5), 30–33 (2014)

20. Hao, Y., Liu, G., Hou, R., Zhu, Y., Lu, J.: Performance analysis of gang scheduling
in a grid. J. Netw. Syst. Manage. 23(3), 650–672 (2014)

21. Bystrov, O., et al.: Performance evaluation of parallel haemodynamic computations
on heterogeneous clouds. Comput. Inform. 39(4), 695–723 (2020)

22. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuris-
tics for efficient management of data centers for cloud computing. Futur. Gener.
Comput. Syst. 28(5), 755–768 (2012)

23. O’Brien, K., Pietri, I., Reddy, R., Lastovetsky, A., Sakellariou, R.: A survey of
power and energy predictive models in HPC systems and applications. ACM Com-
put. Surv. 50(3), 1–38 (2017)

24. Malawski, M., Figiela, K., Nabrzyski, J.: Cost minimization for computational
applications on hybrid cloud infrastructures. Futur. Gener. Comput. Syst. 29(7),
1786–1794 (2013)

25. Luo, B., Niu, Y., Liu, F.: Cost-effective service provisioning for hybrid cloud
applications. In: Guo, S., Liao, X., Liu, F., Zhu, Y. (eds.) CollaborateCom 2015.
LNICST, vol. 163, pp. 47–56. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-28910-6 5

26. Zhou, J., Wang, T., Cong, P., Lu, P., Wei, T., Chen, M.: Cost and makespan-aware
workflow scheduling in hybrid clouds. J. Syst. Architect. 100, 101631 (2019)

https://www.edemsimulation.com/blog-and-news/news/edem-now-available-rescales-cloud-simulation-platform/
https://www.edemsimulation.com/blog-and-news/news/edem-now-available-rescales-cloud-simulation-platform/
https://www.edemsimulation.com/blog-and-news/news/edem-now-available-rescales-cloud-simulation-platform/
https://doi.org/10.1007/978-3-319-28910-6_5
https://doi.org/10.1007/978-3-319-28910-6_5

182 O. Bystrov et al.

27. Genez, T.A., Bittencourt, L.F., Madeira, E.R.: Time-discretization for speeding-
up scheduling of deadline-constrained workflows in clouds. Futur. Gener. Comput.
Syst. 107, 1116–1129 (2020)

28. Entrialgo, J., Garćıa, M., Dı́az, J.L., Garćıa, J., Garćıa, D.F.: Modelling and simu-
lation for cost optimization and performance analysis of transactional applications
in hybrid clouds. Simul. Model. Pract. Theory 109, 102311 (2021)

29. Rosa, M.J., Ralha, C.G., Holanda, M., Araujo, A.P.: Computational resource and
cost prediction service for scientific workflows in federated clouds. Futur. Gener.
Comput. Syst. 125, 844–858 (2021)

30. Wang, B., Wang, C., Song, Y., Cao, J., Cui, X., Zhang, L.: A survey and taxonomy
on workload scheduling and resource provisioning in hybrid clouds. Clust. Comput.
23(4), 2809–2834 (2020). https://doi.org/10.1007/s10586-020-03048-8

31. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies.
Géotechnique 29(1), 47–65 (1979)

32. Tumonis, L., Schneider, M., Kačianauskas, R., Kačeniauskas, A.: Comparison
of dynamic behaviour of EMA-3 railgun under differently induced loadings.
Mechanika 78(4), 31–37 (2009)

33. Kačeniauskas, A., Rutschmann, P.: Parallel FEM software for CFD problems.
Informatica 15(3), 363–378 (2004)

34. Liu, G., Marshall, J.S., Li, S.Q., Yao, Q.: Discrete-element method for particle
capture by a body in an electrostatic field. Int. J. Numer. Meth. Eng. 84(13),
1589–1612 (2010)

35. Tumonis, L., Kačianauskas, R., Kačeniauskas, A., Schneider, M.: The transient
behavior of rails used in electromagnetic railguns: numerical investigations at con-
stant loading velocities. J. Vibroeng. 9, 15–17 (2007)

36. Džiugys, A., Peters, B.: An approach to simulate the motion of spherical and
non-spherical fuel particles in combustion chambers. Granul. Matter 3(4), 231–266
(2001)

37. Kohring, G.A.: Studies of diffusional mixing in rotating drums via computer sim-
ulations. J. Phys. I 5(12), 1551–1561 (1995)

38. Norouzi, H.R., Zarghami, R., Sotudeh-Gharebagh, R., Mostoufi, N.: Coupled CFD-
DEM Modeling. Wiley, Chichester (2016)

39. Kačeniauskas, A., Kačianauskas, R., Maknickas, A., Markauskas, D.: Computation
and visualization of discrete particle systems on gLite-based grid. Adv. Eng. Softw.
42(5), 237–246 (2011)

40. Šešok, D., Belevičius, R., Kačeniauskas, A., Mockus, J.: Application of GRID com-
puting for optimization of grillages. Mechanika 82(2), 63–69 (2010)

41. Stupak, E., et al.: The geometric model-based patient-specific simulations of tur-
bulent aortic valve flows. Arch. Mech. 69(4–5), 317–345 (2017)

42. Devine, K., Boman, E., Heaphy, R., Hendrickson, B., Vaughan, C.: Zoltan data
management services for parallel dynamic applications. Comput. Sci. Eng. 4(2),
90–96 (2002)

43. Berger, R., Kloss, C., Kohlmeyer, A., Pirker, S.: Hybrid parallelization of the
LIGGGHTS open-source DEM code. Powder Technol. 278, 234–247 (2015)

44. Pacevič, R., Kačeniauskas, A.: The development of VisLT visualization service in
Openstack cloud infrastructure. Adv. Eng. Softw. 103, 46–56 (2017)

https://doi.org/10.1007/s10586-020-03048-8

Building a Fine-Grained Analytical
Performance Model for Complex

Scientific Simulations

Jelle van Dijk(B) , Gabor Zavodszky , Ana-Lucia Varbanescu ,
Andy D. Pimentel , and Alfons Hoekstra

Institute for Informatics, Faculty of Science, University of Amsterdam,
Amsterdam, The Netherlands

jelle.van.dijk@uva.nl

Abstract. Analytical performance models are powerful for understand-
ing and predicting the performance of large-scale simulations. As such,
they can help identify performance bottlenecks, assess the effect of load
imbalance, or indicate performance behavior expectations when migrat-
ing to larger systems. Existing automated methods either focus on broad
metrics and/or problems - e.g., application scalability behavior on large
scale systems and inputs - or use black-box models that are more difficult
to interpret e.g., machine-learning models.

In this work we propose a methodology for building per-process ana-
lytical performance models relying on code analysis to derive a simple,
high-level symbolic application model, and using empirical data to fur-
ther calibrate and validate the model for accurate predictions.

We demonstrate our model-building methodology on HemoCell, a
high-performance framework for cell-based bloodflow simulations. We
calibrate the model for two large-scale systems, with different archi-
tectures. Our results show good prediction accuracy for four different
scenarios, including load-balanced configurations (average error of 3.6%,
and a maximum error below 13%), and load-imbalanced ones (with an
average prediction error of 10% and a maximum error below 16%).

Keywords: Performance modeling · workload imbalance ·
performance prediction · coupled simulations

1 Introduction

Analytical performance models are powerful for understanding and predicting
the performance of large-scale simulations. An analytical performance model is
a closed-form expression that describes application performance, expressed in a
metric of choice, as a combination of application components, application specific
parameters and hardware parameters. Analytical models are human-readable and
cost little to no resources to use. Furthermore, they can provide many insights
that are otherwise expensive to obtain, e.g., locating the performance bottle-
necks [10], or are not obtainable at all, e.g., predicting how an application will
perform on a next generation of supercomputers [7].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 183–196, 2023.
https://doi.org/10.1007/978-3-031-30442-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_14&domain=pdf
http://orcid.org/0000-0003-3005-9890
http://orcid.org/0000-0003-0150-0229
http://orcid.org/0000-0002-4932-1900
http://orcid.org/0000-0002-2043-4469
http://orcid.org/0000-0002-3955-2449
https://doi.org/10.1007/978-3-031-30442-2_14

184 J. van Dijk et al.

Analytical performance models are also useful in determining the impact of
load-imbalance in large-scale parallel applications running on current parallel
(distributed) systems. Load-imbalance occurs when the parallel processes of an
application are not assigned an equal amount of work. This can cause significant
inefficiency during the parallel execution of applications on large-scale systems.
Several large-scale applications and libraries [5,9,15,21] already use different
simple analytical performance models to predict load imbalance. Some of these
analytical models have a per-process view of the application, thus allowing for
detailed load imbalance predictions [9].

Despite its advantages, analytical modeling remains challenging, as it requires
both performance-modeling and application-specific expertise. Furthermore,
because the resulting models are application-specific, most of the work needs
to be redone when modeling a different application, or even the next version
of the same application. While work on generalizing the process of building
analytical performance models already exists [10,14], most of these approaches
aim to provide performance models that predict scalability and extrapolate to
new, larger systems, and/or lack the fine granularity needed to support a better
understanding of application inefficiency.

To address such limitations, we propose in this work a detailed methodology
for building fine-grained, per-process analytical performance models for scientific
simulations. By design, the per-process modeling gives us more detailed insights
into the performance and load-balance of the modeled application. Our four-step
modeling process is as follows: (1) we identify the code-sections and input param-
eters with a relevant performance impact (2) we build a symbolic analytical per-
formance model that describes the application performance at process level, (3)
we calibrate the models for a specific machine with the help of empirical perfor-
mance data, and we aggregate the per-process models for an application-wide
performance prediction. (4) We validate the model performance. The resulting
model is outlined in Fig. 1. We note that the symbolic model remains constant
for the target application - that is, migrating the model to a different system
only requires re-calibration, i.e., collecting empirical performance data.

Fig. 1. Overview of the per-process analytical model.

We demonstrate the feasibility of our approach on HemoCell, a high-
performance framework for dense cellular suspension flows [19,20]. Previous

Building an Analytical Performance Model for Scientific Simulations 185

work, starting from L. Axner, et al. [2], developed a model to predict runtime per-
formance from fractional overheads and showed that, when accurate estimation
of these overheads is available, the model is an accurate tool (at most 5% error)
for analyzing code execution, even in load-imbalanced scenarios. S. Allowayyad,
et al. [1] applied this model for HemoCell, where the fractional overhead caused
by load imbalance was estimated under the assumption that it is entirely depen-
dent on local red blood cell count. In this work, we propose a novel methodology
to build a model for the function level performance, which, after calibration,
provides an estimation for the main sources of computational load (i.e., for the
fractional loads). This method is demonstrated using HemoCell, similarly to [1].
However, the calibrated performance functions are defined using natural units
of the simulation (red blood cell count and fluid node count). Specifically, we
build a per-process function-level symbolic model for HemoCell, and calibrate
it for two different HPC platforms: Snellius (SURF, Netherlands) and DAS6
(ASCI, Netherlands) [3]. The model accuracy is evaluated on balanced and non-
balanced simulations, using three scenarios that showcase different types of exe-
cution imbalance1. Our results demonstrate good prediction accuracy for our
models, indicating they can be useful tools for assessing load-imbalance impact
in scientific simulations.

The remainder of this paper is structured as follows. We present our modeling
approach in Sect. 2 and further show, in Sect. 3, how it is applied to build and
calibrate an analytical performance model for HemoCell. We further evaluate the
accuracy of the model in Sect. 4 on four different scenarios with different degrees
and types of load-imbalance. Finally, we provide a brief overview of related work
in Sect. 5, and conclude the paper in Sect. 6.

2 Performance Modeling Methodology

In this section we present our methodology for building per-process analytical
performance models for large-scale simulations. We assume a Single-Program,
Multiple-Data model, where processes with different ranks and are executed
concurrently on different processing units (e.g., cores or nodes). Throughout
the modeling process we also assume that at least function level performance
measurements of the application are available. The collected data depends on
the desired model output, e.g., time (s), execution rate (Mflop/s), or energy (J).

Our methodology has four steps: (1) identifying relevant code sections and
parameters, (2) building the model, (3) calibrating the model, and (4) validating
the model. In this section we elaborate on each of these steps.

(1) Identify performance relevant code sections and parameters.
A code section can be any part of the application code which is monitored
individually. Usually, in practice, such code sections are functions. The relevant
code sections are those code sections that are significant in the performance
breakdown. The performance of a code section will change based on external
1 The code for data processing and the raw data used in this paper are available at

DOI:10.5281/zenodo.6570501.

https://doi.org/10.5281/zenodo.6570501

186 J. van Dijk et al.

parameters, e.g., size of the simulated domain. For each code section, we identify
the relevant parameters, which are then selected as inputs for the model.

(2) Build the symbolic model: The model is built in a top-down manner:
we start from a coarse symbolic model, and refine parts as needed, which allows
for control over the level of detail incorporated into the model. The results, is
a symbolic analytical performance model that describes the performance of a
singe process in terms of the code-sections and parameters selected in step (1).

The output of the per-process model is aggregated into a final prediction
using operators that are application- and metric-specific (see Fig. 1). For exam-
ple, when predicting execution time for fully concurrent applications, the per-
formance is dominated by the longest process; however, when processes run
sequentially, the aggregated execution time is the sum of the execution time of
all processes.

(3) Calibrate the model: To calibrate the model we replace the symbolic
terms describing code section performance with predictive functions. Firstly,
empirical data of code section performance is collected. This data is used to fit
a function for each individual code section, the degree of the function depends
on the relationship between the code section and the input parameters e.g., the
output can scale linearly or exponentially in relation to the parameters.

(4) Validate the model: To validate the model, we measure perfor-
mance on relevant (unseen) datasets, and report prediction error, calculated
as e = abs(predicted − measured) ∗ 100/measured. If needed, to increase predic-
tion accuracy, the model can be further refined (i.e., functions can be further
split into smaller units). This, however, also increases the model complexity.

3 Modeling Hemocell

In this section, we build an analytical performance model describing the exe-
cution time of Hemocell. This model is calibrated on two different machines,
Snellius (SURF, Netherlands) and DAS6 (ASCI, Netherlands) [3].

3.1 Hemocell

Hemocell is a coupled multi-scale simulation code used for modeling blood flow.
The application simulates blood as a dense cellular suspension flow, modeling the
evolution of particles, i.e., red blood cells (RBCs) and platelets, suspended in a sol-
vent, i.e., the blood plasma, over multiple discrete time steps [19,20]. The solvent
is modeled as a fluid using the lattice Boltzman method (LBM). LBM calculations
are handled by the Palabos library [12]. The movement, deformation, and inter-
action of particles is modeled separately from the LBM calculation. Both models
are coupled together intermittently to simulate the full blood flow system.

For parallelization, Hemocell uses multi-processing: each process receives a
section of the simulated domain, i.e., a subdomain, and is responsible for com-
puting the fluid and particles within that subdomain. During the simulation, the
processes communicate with each other using MPI. The edges of the fluid field,

Building an Analytical Performance Model for Scientific Simulations 187

as well as parts of the particles which may span multiple subdomains, must be
communicated to ensure correct results.

Previous research focused on improving Hemocell’s overall performance [16],
as well as improving the scaling performance through better load balancing [1].

3.2 Performance-Relevant Functions and Parameters

A Hemocell simulation consists of three phases: (1) setup, (2) computation, and
(3) data output. Our work focuses on the most expensive of these phases, the
computation. In turn, the Hemocell computation phase has three components:
(i) fluid computation, (ii) particle computation, and (iii) model coupling.

We define performance-relevant functions as those functions that have a non-
negligible performance impact. Similarly, we define performance-relevant param-
eters as function parameters that have a non-negligible performance impact.
The process of identifying the performance-relevant functions and parameters
is based on both expert application knowledge, code inspection, and investiga-
tion of any available fine-grained performance measurements. Table 1 shows the
performance-relevant functions and parameters for Hemocell.

Table 1. Performance-relevant functions and parameters for Hemocell.

Name Component Description Parameters

CollideAndStream Fluid field Lattice-Boltzmann calculations (xs, ys, zs)

CollideAndStream comm Fluid field Lattice-Boltzmann communication (xs, ys, zs)

spreadParticleForce Model coupling Apply particle forces to the fluid field RBCs

interpolateFluidVelocity Model coupling Apply fluid forces to the particles RBCs

syncEnvelopes Particle field Setup for particle communication. RBCs

syncEnvelopes comm Particle field Communicate particle vertices. RBCs, (xs, ys, zs)

AdvanceParticles Particle field Calculate new particle position. RBCs

applyConstitutiveModel Particle field Compute and apply internal particle forces. RBCs

deleteNonLocalParticles Particle field Remove non-local particle information. RBCs

setExternalVector Fluid field Apply external forces to the fluid. (xs, ys, zs)

3.3 Model-Building

For building the model, we start with the highest-level description of the appli-
cation: the components.

T = Iters × [FluidField(xs, ys, zs) (1)
+ ParticleField(xs, ys, zs,RBCs)

+ ModelCoupling(RBCs)]

In Eq. (1), Iters is the number of iterations, (xs, ys, zs) are the dimensions
of the domain, RBCs is the number of red blood cells within the domain, and
FluidField, ParticleField and ModelCoupling are the functions that describe the

188 J. van Dijk et al.

execution time per iteration for each component2. We improve on this initial
model by expanding the component terms. Each component term is made up of
the summation of the time spent in the respective relevant functions, see Table 1.

To simplify the calibration step we derive two new parameters: V and SA,
representing the subdomain volume and surface area, respectively. For rectangu-
lar domains they are defined as V = xs×xy×xz and SA = 2 × (xs× ys+xs×
zs+ ys× zs). Expanding on the initial model, replacing xs, ys, zs with either V
or SA, gives us the following analytical model:

T = Iters × [FluidField(V, SA) (2)
+ ParticleField(SA,RBCs)

+ ModelCoupling(RBCs)]

FluidField(V, SA) = CollideAndStream(V) (3)
+ CollideAndStream comm(SA)

+ setExternalVector(V)

ParticleField(SA,RBCs) = syncEnvelopes(RBCs) (4)
+ syncEnvelopes comm(RBCs, SA)

+ AdvanceParticles(RBCs)

+ applyConstitutiveModel(RBCs)

+ deleteNonLocalParticle(RBCs)

ModelCoupling(RBCs) = spreadParticleForce(RBCs) (5)
+ interpolateFluidVelocity(RBCs)

3.4 Model Calibration

In the calibration step the terms in the model are replaced with predictors.
The predictors are fitted, using empirical data collected from the two machines,
Snellius and DAS6, the machine details are presented in Table 2.

Table 2. Machine Descriptions

Machine CPU Cores Frequency Memory

Snellius AMD Rome 7H12 (x2) 128 3.2 GHz 256 GiB

DAS6 AMD EPYC-2 7402P 24 2.8 GHz 128 GB

To collect the data, we simulate a cuboid-shaped domain of blood for 500 iter-
ations. The size of the domain ranges from (12.5, 12.5, 12.5)µm to (75, 75, 50)µm.

2 Please note: for readability purposes, when using the name of a function in a model,
we denote its performance, in most cases, execution time. In other words, we use
ParticleField instead of TParticleField.

Building an Analytical Performance Model for Scientific Simulations 189

Every domain size is run with 7 different volume fractions of RBCs (hematocrit):
0%, 9%, 10%, 12%, 14%, 16%, and 18%. The workload in these experiments is
fully balanced, i.e., every process performs the same amount of work. Throughout
the modeling and analysis process, we use the Scalasca toolchain for automatic
code instrumentation and performance measurements of Hemocell [8,11].

The predictors are all fitted functions over the respective performance data.
The degree of the fit function is dependent on the relationship between the
parameters and the output metric. For this model we have chosen the parameters
such that all relationships are linear. The calibrated predictors are presented in
Table 3.

Table 3. Calibrated performance predictors for Snellius and DAS6.

Name Predictors Snellius [S] Predictors DAS6 [S]

collideAndStream 0.0062 + V × 3.5 × 10−7 0.008 + V × 2.5 × 10−7

setExternalVector 2.6 × 10−5 + V × 4.3 × 10−8 −0.000 22 + V × 2.1 × 10−8

collideAndStream comm −0.000 47 + SA× 9.1 × 10−7 0.000 94 + SA× 2.2 × 10−7

syncEnvelopes comm 0.000 48 + SA× 1.3 × 10−7 0.000 46 + SA× 1.3 × 10−8

+RBCs× 3.5 × 10−5 +RBCs× 9.5 × 10−6

syncEnvelopes −1.4 × 10−5 + RBCs× 8.3 × 10−5 9.2 × 10−5 + RBCs× 3.6 × 10−5

advanceParticles 0.000 49 + RBCs× 0.000 14 0.000 59 + RBCs× 8.2 × 10−5

applyConstitutiveModel −1.3 × 10−5 + RBCs× 4.4 × 10−5 −4.4 × 10−5 + RBCs× 2.8 × 10−5

deleteNonLocalParticles 5.1 × 10−5 + RBCs× 1.5 × 10−5 2.1 × 10−5 + RBCs× 7.5 × 10−5

spreadParticleForce 0.000 81 + RBCs× 0.0004 0.0012 + RBCs× 0.000 25

interpolateFluidVelocity 0.000 13 + RBCs× 7.7 × 10−5 0.000 31 + RBCs× 4.2 × 10−5

4 Scenario Analysis

The fine granularity of the model allows for accurate performance predictions in
scenarios that differ from the configuration used for calibration. In this section we
evaluate the model, as presented in Sect. 3, and use it to analyze the performance
of Hemocell in four different scenarios, (1) balanced workload, (2) imbalanced
subdomains, (3) imbalanced hematocrit, and (4) imbalanced communication.

4.1 Scenario: Balanced Workload

In the balanced scenario each process receives the same amount of work. The
setup is identical to the simulation configurations used for model calibration,
however the domain sizes are of course different. Empirical and predicted results
are shown for Snellius and DAS6 in Fig. 2a and 2b.The results show that the
model can accurately predict the performance in this scenario a maximum error
of 12.87% and an average error of 3.6%.

190 J. van Dijk et al.

Fig. 2. Observed and predicted execution time and prediction error for the load bal-
anced scenario, on DAS6 and Snellius. The standard deviation of the observed results
is within 1.5%

4.2 Scenario: Imbalanced Subdomains

In an ideal scenario each process is assigned a subdomain of the same size.
However, due to complex simulation domains this is not always achievable. An
imbalanced distribution of the domain leads to a loss of performance.

The imbalance in this scenario is generated by assigning half of the processes
to 75% of the full domain, and the other half of the process to 25% of the full
domain, see Fig. 3. This means that half of the process are assigned three times
more work than the other half.

Fig. 3. Imbalanced domain distribution. Both the red and blue parts are assigned to
half of the processes. (Color figure online)

For each configuration, the results for the imbalanced and balanced configura-
tions are measured and predicted. By comparing the balanced and imbalanced

Building an Analytical Performance Model for Scientific Simulations 191

predictions we estimate the overhead introduced by the load imbalance. The
results are presented in Fig. 4.

We observe good accuracy for the imbalanced scenario predictions, with a
maximum error of 15.83% and an average of 10.26%. The prediction accuracy
on Snellius is lower than on DAS6. This is most likely caused by the difference
in memory layout. A node on Snellius is dual-socket, meaning that the L3 cache
is not shared between all threads. By assigning most of the domain to half of
the processes we are moving most of the data onto a single socket, significantly
increasing the amount of data that is accessed by that socket. This combined
with the larger overall domain on Snellius, which results in the subdomains of
one process being further apart. The result is that the cost of memory operations
increases more on Snellius, which is not captured by the model.

We also observe that the load-imbalance overhead is higher for the 18%
hematocrit configurations, compared to the equivalent 0% runs. This increase
is due to the RBC computation, which worsens the already-present workload
imbalance. This increase is correctly captured by the model.

Fig. 4. Observed and predicted execution time and prediction error for the imbalanced
domain scenario, on DAS6 and Snellius. The standard deviation of the observed results
is within 1.5%

4.3 Scenarios: Imbalanced Hematocrit

The hematocrit value has a significant impact on performance, as can be seen
in Fig. 2. A higher hematocrit means more of the volume is occupied by RBCs,
resulting in more computation and communication. In the configurations up till
now, we assumed a homogeneous hematocrit throughout the domain. However,
in more realistic scenarios the hematocrit varies throughout the domain.

The imbalanced hematocrit scenario shows the performance overhead of hav-
ing a non-homogeneous hematocrit. To create an imbalanced hematocrit each
domain is initialized such that part of the domain has a hematocrit of 18%, the
other part is either initialized at 9% or 0%. On DAS6 both parts are evenly
sized, on Snellius they are either evenly sized, see Fig. 5a, or the first 16 threads
are assigned the higher hematocrit subdomains, see Fig. 5b.

192 J. van Dijk et al.

Fig. 5. Snellius imbalanced hematocrit (18% and 0%) across 128 processes.

Because the fluid computation is not affected by the hematocrit for the results
in this scenario we only show the time spend on the particle and coupling com-
ponents. The results are presented in Fig. 6.

Fig. 6. Observed and predicted execution time and prediction error for the imbalanced
hematocrit scenario, on DAS6 and Snellius. The standard deviation of the observed
results is within 1.5%

For the imbalanced configurations where the domain is split in half, the high-
est observed prediction error is acceptable, at 8.61%. However, for the (16/112)
configurations, the predictions are less accurate, with errors above 16.8%. The
large error is caused by a change in the number of communication neighbors,
which is not captured in the current model. We address this limitation in Sect. 4.4.

4.4 Scenario: Imbalanced Communication

In the imbalanced hematocrit results, we observe a lower prediction accuracy on
the (16 / 112) distribution configurations. This is partially caused by a change
in the communication costs. The processes that are assigned more work, in the
(16/112) configuration, as shown in Fig. 5b, are located at the edge of the non-
periodic domain. This means that the number of neighbors that need to be
communicated with is less than if the subdomain computed by the process is
located in the middle of the domain. However, during calibration it is assumed
that the processes are fully surrounded by neighbors. To address this we expand
the original model to include a term to express how many direct neighbors a
process needs to communicate with.

Building an Analytical Performance Model for Scientific Simulations 193

Fig. 7. Snellius imbalanced hematocrit (18% and 0%) across 128 processes.

The model is expanded by adding CRx, which denotes the communication
ratio of the fluid or particle component, CRx = #Neighbors

Max Neighbors . This ratio is
defined separately for the fluid and particle communication because for fluid
communication the maximal number of neighbors that need to be communicated
with is 18, as opposed to 26 possible neighbors for the particle communication3.
In Eqs. (3) and (4) the functions describing the fluid and particle communications
are replaced with Eqs. (6) and (7). The functions in Eqs. (6) and 7 multiply the
original communication term with the newly introduced CRcomponent ratio.

syncEnvelopes comm(RBCs, SA,CRparticle) = (6)
CRparticle × syncEnvelopes comm(RBCs, SA)

collideAndStream comm(SA,CRfluid) = (7)
CRfluid × collideAndStream comm(SA)

To verify that the model expansion improves the accuracy the updated model
is applied to the (16/112) configuration, as well as a (8/120) configuration, shown
in Fig. 7a, and a (32/92) configuration, shown in Fig. 7b. These experiments are
run on Snellius for 500 iterations with a subdomain size of (50, 50, 50) µm. The
results are presented in Fig. 8.

The results show a clear improvement in the prediction accuracy, compared to
the previous version without the added imbalance term. The highest prediction
error is reduced from 24.53% to 16.19% when using the updated model. The
results in all experiments performed before this did not change, because in those
configurations the processes that dominate performance need to communicate
with the maximum number of neighbors. Not only is the accuracy better, but the
results also provide more detailed information about the different configurations.
With the old model, the prediction for each configuration is identical. However, in
the results we see that the different configurations do not perform the same. The
updated model is capable of better highlighting this difference in performance.

3 For CRfluid neighbors with no RBCs are not counted, because the communication is
overlapped by computation. For CRparticle the value of each neighbor is scaled with
the relative number of RBCs, i.e., if the neighboring hematocrit is half the neighbors
value is 0.5.

194 J. van Dijk et al.

Fig. 8. Observed and predicted results and prediction error for the imbalanced com-
munication scenario, on DAS6 and Snellius. Standard deviation of the observed results
is within 1.5%

5 Related Work

This section provides a brief overview of alternative performance models, and
how they differ from our own approach.

Analytical performance models for modeling the performance of large-scale
applications have been proposed for many years [14]. However, such models
are application-specific, and not generalizable to a wider range of applications.
To address this, Hoefler et al. [10] propose a multistep approach for building
analytical performance models. Their metric of interest is application scaling
behavior; therefore, these models do not capture per-process performance.

Other tools to automate parts of the modeling process, such as EXTRA-P [6,
7], target on finding scalability bugs in large-scale applications. EXTRA-P builds
a statistical model based on empirical performance results of the application.
However, the resulting model is non-trivial to understand and tweak, and cannot
predict scalability bugs at process-level.

Beyond analytical models, other types of performance models, such as simu-
lators and machine-learning based models, are typically more accurate, but have
interpretability issues. For example, models based on machine-learning require
significant training data and resources, and the resulting black-box models pro-
vide a lot less insight into the application performance characteristics [13,17].
Functional and cycle-accurate simulations provide accurate information on how
an application behaves, and why, but they take a very long time to build and
calibrate, which renders them difficult to use for large-scale applications [4,18].

6 Conclusion

In this paper we proposed a methodology for building per-process performance
models for large-scale, multi-processing simulations. The per-process modeling
approach gives portable, fine-grained, accurate, analytical performance models.

We further used the proposed methodology to build an accurate predictive
model for Hemocell, a coupled simulation for blood flow. We demonstrated that

Building an Analytical Performance Model for Scientific Simulations 195

the resulting model is capable of accurate performance prediction for both bal-
anced workloads, where we see a maximum error of 12.9%, and an average of
3.6% error, and imbalanced scenarios, with a maximum of 16.2% error, and an
average of 10.2% error. These results indicate that, although the model-building
and calibration steps are based on simple balanced workloads, the model is able
to analyze and predict simulation performance in load-imbalanced scenarios.
This is a significant advantage for our per-process approach. Finally, we have
shown how to refine the model to address potential inaccuracies, thus showing
the advantage of a white-box, analytical approach.

In future work we aim to reduce the amount of manual work required to
build the model, by for example incorporating statistical methods for determin-
ing performance behavior of code sections. In the near future, we aim to extend
the model to work for multi-node computations and both apply our model to
more simulations and increasingly dynamic scenarios. Specifically, at runtime,
the workload could be dynamically shifting between processes as a result of the
simulated phenomena, thus showing different load-imbalance patterns during
execution. Thus, we plan to use the model to predict the performance degrada-
tion due to such changes in load balancing.

References

1. Alowayyed, S., et al.: Load balancing of parallel cell-based blood flow simulations.
J. Comput. Sci. 24, 1–7 (2018). https://doi.org/10.1016/j.jocs.2017.11.008

2. Axner, L., et al.: Performance evaluation of a parallel sparse lattice Boltzmann
solver. J. Comput. Phys. 227(10), 4895–4911 (2008). https://doi.org/10.1016/j.
jcp.2008.01.013

3. Bal, H., et al.: A medium-scale distributed system for computer science research:
infrastructure for the long term. Computer 49(5), 54–63 (2016). https://doi.org/
10.1109/MC.2016.127

4. Bohrer, P., et al.: Mambo: a full system simulator for the PowerPC architecture.
SIGMETRICS Perform. Eval. Rev. 31(4), 8–12 (2004). https://doi.org/10.1145/
1054907.1054910

5. Borgdorff, J., et al.: Performance of distributed multiscale simulations. Philos.
Trans. A Math. Phys. Eng. Sci. 372(2021), 20130407 (2014). https://doi.org/10.
1098/rsta.2013.0407

6. Calotoiu, A., et al.: Using automated performance modeling to find scalability bugs
in complex codes. In: SC 2013, pp. 1–12. ACM (2013). https://doi.org/10.1145/
2503210.2503277

7. Calotoiu, A., et al.: Lightweight requirements engineering for exascale co-design.
In: IEEE Cluster 2018, pp. 201–211 (2018). https://doi.org/10.1109/CLUSTER.
2018.00038

8. Geimer, M., et al.: The Scalasca performance toolset architecture. Concurr. Com-
putat. Pract. Exper. (2010). https://doi.org/10.1002/cpe.1556

9. Germaschewski, K., et al.: The plasma simulation code: a modern particle-in-cell
code with patch-based load-balancing. J. Comput. Phys. 318, 305–326 (2016).
https://doi.org/10.1016/j.jcp.2016.05.013

10. Hoefler, T., et al.: Performance modeling for systematic performance tuning. In:
SC 2011, pp. 1–12 (2011). https://doi.org/10.1145/2063348.2063356

https://doi.org/10.1016/j.jocs.2017.11.008
https://doi.org/10.1016/j.jcp.2008.01.013
https://doi.org/10.1016/j.jcp.2008.01.013
https://doi.org/10.1109/MC.2016.127
https://doi.org/10.1109/MC.2016.127
https://doi.org/10.1145/1054907.1054910
https://doi.org/10.1145/1054907.1054910
https://doi.org/10.1098/rsta.2013.0407
https://doi.org/10.1098/rsta.2013.0407
https://doi.org/10.1145/2503210.2503277
https://doi.org/10.1145/2503210.2503277
https://doi.org/10.1109/CLUSTER.2018.00038
https://doi.org/10.1109/CLUSTER.2018.00038
https://doi.org/10.1002/cpe.1556
https://doi.org/10.1016/j.jcp.2016.05.013
https://doi.org/10.1145/2063348.2063356

196 J. van Dijk et al.

11. Knüpfer, A., et al.: Score-P: a joint performance measurement run-time infrastruc-
ture for periscope, Scalasca, TAU, and Vampir. In: Brunst, H., et al. (eds.) Tools
for High Performance Computing, pp. 79–91. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31476-6 7

12. Latt, J., et al.: Palabos: parallel lattice Boltzmann solver. Comput. Math. Appl.
(2020). https://doi.org/10.1016/j.camwa.2020.03.022

13. Lee, B.C., et al.: Methods of inference and learning for performance modeling of
parallel applications. In: Ppopp 2007, pp. 249–258. Association for Computing
Machinery (2007). https://doi.org/10.1145/1229428.1229479

14. Mathis, M.M., Amato, N.M., Adams, M.L.: A general performance model for paral-
lel sweeps on orthogonal grids for particle transport calculations. In: ISC 2000, pp.
255–263. Association for Computing Machinery (2000). https://doi.org/10.1145/
335231.335256

15. Murtaza, S., Hoekstra, A.G., Sloot, P.M.A.: Compute bound and I/O bound cel-
lular automata simulations on FPGA logic. ACM Trans. Reconfigurable Technol.
Syst. 1(4), 23:1–23:21 (2009). https://doi.org/10.1145/1462586.1462592

16. Tarksalooyeh, V.A., Závodszky, G., Hoekstra, A.G.: Optimizing parallel perfor-
mance of the cell based blood flow simulation software HemoCell. In: Rodrigues,
J.M.F., et al. (eds.) Computational Science. LNCS, vol. 11538, pp. 537–547.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22744-9 42

17. Witt, C., et al.: Predictive performance modeling for distributed batch processing
using black box monitoring and machine learning. Inf. Syst. 82, 33–52 (2019).
https://doi.org/10.1016/j.is.2019.01.006

18. Xu, G., et al.: Simulation-based performance prediction of HPC applications: a
case study of HPL. In: 2020 IEEEACM International Workshop HPC User Support
Tools HUST Workshop on Programming and Performance Visualization Tools Pro-
Tools, pp. 81–88 (2020). https://doi.org/10.1109/HUSTProtools51951.2020.00016

19. Závodszky, G., et al.: Cellular level in-silico modeling of blood rheology with an
improved material model for red blood cells. Front. Physiol. 8 (2017). https://doi.
org/10.3389/fphys.2017.00563

20. Zavodszky, G., et al.: Hemocell: a high-performance microscopic cellular library.
Procedia Comput. Sci. 108, 159–165 (2017)

21. Zhu, X., et al.: Gemini: a computation-centric distributed graph processing system.
In: 12th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2016, pp. 301–316 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-31476-6_7
https://doi.org/10.1007/978-3-642-31476-6_7
https://doi.org/10.1016/j.camwa.2020.03.022
https://doi.org/10.1145/1229428.1229479
https://doi.org/10.1145/335231.335256
https://doi.org/10.1145/335231.335256
https://doi.org/10.1145/1462586.1462592
https://doi.org/10.1007/978-3-030-22744-9_42
https://doi.org/10.1016/j.is.2019.01.006
https://doi.org/10.1109/HUSTProtools51951.2020.00016
https://doi.org/10.3389/fphys.2017.00563
https://doi.org/10.3389/fphys.2017.00563
http://creativecommons.org/licenses/by/4.0/

Evaluation of Machine Learning
Techniques for Predicting Run Times

of Scientific Workflow Jobs

Bartosz Balis(B) and Michal Grabowski

AGH University of Science and Technology, Krakow, Poland

balis@agh.edu.pl

Abstract. Predicting execution time of computational jobs helps
improve resource management, reduce execution cost, and optimize
energy consumption. In this paper, we evaluate machine learning tech-
niques for the purpose of predicting execution times of scientific workflow
jobs. Various aspects of applying these techniques are evaluated in terms
of their impact on prediction performance. These include (1) Comparison
of performance of different regressors; (2) using a single-stage prediction
pipeline vs. two-stage one; (3) impact of categorization granularity in the
first stage of the two-stage pipeline; (4) training one global model for all
jobs vs. using separate models for individual job types. We also propose
a novel prediction model based on symbolic regression and evaluate its
performance. Interpretability of prediction models and usage of proper
performance metrics are also discussed. Experimental evaluation has led
to a number of interesting findings that provide valuable insight on how
to apply machine learning techniques to prediction of execution time of
computational jobs.

Keywords: scientific workflows · performance prediction · machine
learning · symbolic regression

1 Introduction

Learning and predicting characteristics of computational workloads is crucial
for efficient resource management [7,13], optimization of energy consumption
[11], or reduction of execution cost [8]. Scientific workflows are an example of
computational workloads which are graphs of tasks, typically large and diverse in
terms of such characteristics as resource utilization, data footprint and execution
times. Unsurprisingly, machine learning techniques are increasingly used to learn
characteristics of scientific workflows in order to improve various aspects of their
management [4].

In this paper, we present experimental evaluation of different machine learn-
ing methods for prediction of the execution time of computational jobs that
are part of scientific workflows. We investigate several aspects that affect the
prediction performance:

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 197–208, 2023.
https://doi.org/10.1007/978-3-031-30442-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_15&domain=pdf
https://doi.org/10.1007/978-3-031-30442-2_15

198 B. Balis and M. Grabowski

– We compare performance of a single-stage vs. two-stage prediction pipeline.
In this approach, selected job properties are estimated in the first stage and
then added to the input vector for the second stage. In addition, we investigate
the impact of categorization granularity (from two-class to continuous) in the
first stage on the overall performance of prediction.

– In addition to evaluating several widely-used regression techniques (KNN,
MLP, SVR), we propose and evaluate a novel approach to job execution time
prediction based on symbolic regression.

– We evaluate the performance of one global model (all jobs) vs. multiple spe-
cialized models (one model per job type).

– We discuss interpretability of prediction models and usage of proper model
performance metrics.

The paper is organized as follows. Section 2 reviews related work. Section 3
describes the data set used for model training. Section 4 presents details of the
model training process. Section 5 presents the experiments and their results.
Finally, Sect. 6 concludes the paper.

2 Related Work

ML-based prediction for Spark jobs, presented in [10], focuses on the bene-
fits achieved by improving job execution time prediction. The paper presents
a broad comparison of models, metrics, and features used for vectorization. In
[5], a method for predicting job durations of HPC jobs is presented. However,
it is based on simple heuristics, not machine learning. In [3], various machine
learning methods are used to predict power consumption of HPC jobs. These
papers neither contain analysis of the impact of different factors on prediction
performance, nor discuss model interpretability, which might be considered as
flaws for a modern machine learning-based paper.

Some methods combine the foundations laid by machine learning-agnostic
research, for example, Pemogen [2]. In this paper, researchers present an app-
roach that combines machine learning and analytic methods described in detail
in the previous section. By leveraging the static analysis of the properties of
the jobs, which authors named kernels, they simplify the prediction process and
improve significantly the models’ accuracy. They also focus on the speed of pre-
dictive model generation, making their research applicable in an ad hoc way
for newly created jobs. Their approach is also easily interpretable, as they use
LASSO as their predictive model.

Pham and others [12] explore how the properties of computational jobs can be
reasoned about, describe their vectorizable parameters, and establish important
definitions of runtime and pre-runtime job parameters. They introduce a two-
stage prediction pipelines, a novel method that involves predicting some runtime
metadata in the first stage and including it in the final process of prediction of the
execution time. However, since they do not provide results with commonly used
error metrics, their work can be improved upon via extensive model validation
and error metrics discussion. Moreover, the paper lacks discussion on model
interpretability.

Machine Learning Techniques for Predicting Run Times of Workflow Jobs 199

3 Data Set Characterization

The data set used in this study comes from execution logs of the HyperFlow
workflow management system [1]. It consists of over 186k job execution traces
from 263 runs of Montage1, Montage22 and Soykb3 workflows on Kubernetes
clusters deployed in Amazon AWS and Google Cloud. Analysis of the data set
reveals that most jobs are short-lived, with execution times of between 1000 ms
and 10 min, as visualized in Fig. 1.

Fig. 1. Distribution of jobs’ execution
times.

Fig. 2. Distribution of job’s execution
times by workflow type.

Moreover, there is an additional disproportion between the distributions of
execution times of jobs originating from different workflows. Montage contains
substantially more shorter jobs, Montage2 has a slightly more balanced distri-
bution and Soykb contains more long-running jobs. The distributions among
workflow types is shown in Fig. 2. In addition, the short analysis provided above
is related exclusively to the predicted value – job’s execution time and does not
include various factors included in the feature vectors. This illustrates the need
for partitioning of the dataset, to avoid producing predictors biased towards
specific types of jobs, which would harm the predictor’s overall quality and
reliability. Consequently, we have decided to partition data into the following
(overlapping) subsets:

– Jobs shorter than 1200 ms – these are very short jobs, compared to the average
time of spawning a Kubernetes’ pod which hosts the execution [9]. Such jobs
are typically agglomerated into batches by HyperFlow to avoid the overhead
introduced by the aforementioned mechanism.

1 https://github.com/hyperflow-wms/montage-workflow.
2 https://github.com/hyperflow-wms/montage2-workflow.
3 https://github.com/hyperflow-wms/soykb-workflow.

https://github.com/hyperflow-wms/montage-workflow
https://github.com/hyperflow-wms/montage2-workflow
https://github.com/hyperflow-wms/soykb-workflow

200 B. Balis and M. Grabowski

– Jobs with execution time between 2 and 25 s.
– Jobs executed more than 3000 times – isolating this set is an attempt to

extract information from the jobs that impact the overall workflow execution
the most.

– All jobs – this is an obvious ‘partition’, however, analyzing it might prove to
be costly in terms of training the models and will certainly be biased towards
the jobs executed most frequently.

4 Models for Execution Time Prediction

4.1 Two-Stage Prediction Architecture

We employ two-stage prediction which is visualized in Fig. 3:

1. In the first stage, some useful properties of a job are estimated, e.g. the job
can be classified according to its overall CPU/memory utilization as high,
medium or low, etc.

2. In the second stage, the target property (execution time in our case) is pre-
dicted, with the results from the first stage added to the input vector.

Fig. 3. Two-step prediction process.

This approach has been shown to perform better than a single-stage one in
[12]. In this paper, we investigate how the prediction granularity (the number of
categories) used in the first stage affects the performance of the prediction in the
second stage.

Machine Learning Techniques for Predicting Run Times of Workflow Jobs 201

4.2 Model Training and Building Pipeline

Building efficient and reliable ML models typically involves several steps. Firstly,
the data set must be prepared and a proper vectorization must be applied.
Then, the models need to be trained and tested, often repeatedly, with different
evaluation metrics. Below we summarize ML techniques used in this work. The
ML pipeline is automated using Scikit-learn4.

Feature Extraction. Vectorization or feature extraction is a process of translating
data into vectors or scalars, which one suspects are meaningful in the process
attempted to capture with the predictive model. This is often the most important
step in the whole process and requires the most human supervision and expertise.
In this paper, we use Principal Component Analysis (PCA) for feature selection.

Model Training and Tuning. Model training involves partitioning of the data set,
repeated evaluation, and improving the predictive models. To avoid overfitting,
we employ the k-fold cross-validation. In addition, grid search is used to select
best possible hyperparameters of models.

For the classification step, we have tested several algorithms: MLP Classi-
fier, KNN Classifier and Support-Vector (SVC) classifier. We have evaluated the
following regressors: K-Nearest Neighbor (KNN), Lasso, Multi-Layer Perceptron
(MLP), Support-Vector Regression (SVR).

Evaluation Metrics. We use the following metrics to measure model performance:

– Coefficient of determination R2 – it denotes how much of the variance in the
observed data is explained by the predictions. The bigger R2, the better the
predictive model.

– Adjusted coefficient of determination R2
adj – it denotes how well the predictor

uses additional input variables. When the variables used in the model enhance
its predictions to be better than the values expected by chance, R2

adj increases.
– Mean Absolute Percentage Error (MAPE) – it is the mean of relative errors

expressed as a percentage. The smaller the MAPE, the better the predictive
model. As MAPE represents a relative value, it is easily interpretable and does
not require any additional statistical information about the target values.

4.3 Symbolic Regression Model

Symbolic regression is a type of regression that combines symbolic manipulation
with genetic programming. The population used as part of genetic manipulation
is based on algebraically correct and calculable expressions. These expressions
are modified and mutated using the principles of Genetic Programming to find
the one that fits the data with the least error score. Expression complexity can be
constrained in terms of the depth of the expression tree combined with penalties
for using nontrivial nodes, such as trigonometric or logarithmic functions.
4 https://scikit-learn.org.

https://scikit-learn.org

202 B. Balis and M. Grabowski

In this study, we have used the DataRobot’s Eureqa tool to build the model.
This experiment involved choosing several parameters of the symbolic regression
search:

– The R2 metric was chosen for model selection. For additional comparisons
for each model, MAE, MAPE and RAE were also calculated, as they are
easily interpretable.

– The train/test set split ratio was set to 3:1. It is important to point out that
the train and test subsets were the product of partitioning the train test used
for training classic regression models.

– For the set of operations available for use in expressions, we decided to use
simple algebraic expressions extended with basic trigonometrical and expo-
nential functions.

– As an implicit assumption on the maximal model’s complexity – to avoid
overfitting by producing overly complex expressions – we chose to discard
any model with complexity higher than 15.

5 Evaluation

5.1 Prediction Architecture Evaluation

The first experiment aims at establishing the better performing prediction archi-
tecture. For this purpose, all data sets were used to train various models using
both the single stage and the two-stage approach. The results are provided in
Table 1. The results of the best models for each dataset in terms of R2 are in
bold and among those, the one with the smallest MAPE is underlined.

It is clear that the two-step prediction architecture, in the best case of
the least erroneous first-step prediction, outperforms single-step architecture.
In almost all cases the two-step architecture yielded results better both in terms
of R2 and MAPE which means it not only did predict more accurately but also
explained the underlying variance more precisely. The only case where single-step
architecture performs better is the case of prediction on “All” dataset where
it achieved smaller MAPE. However, compared to the best two-step model on
this dataset, it yielded worse R2, with the difference between their R2 being
very small. Permutation tests [6] can provide the answer to whether the differ-
ence does come from the data.

In summary, there are a few takeaways from this experiment:

– two-step prediction architecture appears to give better results in terms of
both R2 and MAPE on smaller datasets,

– to ensure the validity of comparisons, further research should employ a type
of statistical significance tests, such as permutation tests.

Machine Learning Techniques for Predicting Run Times of Workflow Jobs 203

Table 1. Performance of best single-stage and two-stage prediction architectures.

Dataset Pipeline Regressor R2 MAPE

ShorterThan1.2Kms Single step MLP 0.68 0.37

KNN 0.67 0.36

DTR 0.6 0.51

Two steps MLP 0.85 0.22

KNN 0.82 0.23

DTR 0.79 0.28

Between2KmsAnd25Kms Single step KNN 0.77 0.24

MLP 0.73 0.3

DTR 0.69 0.32

Two steps textubMLP 0.95 0.12

KNN 0.93 0.13

DTR 0.89 0.15

ExecutedMoreThan3Ktimes Single step KNN 0.96 0.4

MLP 0.95 0.97

DTR 0.94 1.47

Two steps MLP 0.99 0.47

KNN 0.98 0.22

DTR 0.97 0.55

All Single step DTR 0.97 0.4

MLP 0.78 11.56

KNN 0.56 1.16

Two steps DTR 0.99 0.45

KNN 0.93 0.43

MLP 0.92 3.04

5.2 Impact of Granularity of the First-Stage Prediction

The goal of the second experiment was to find the best granularity for resource
utilization prediction in the two-stage prediction architecture. A detailed com-
parison of results is provided in Table 2. The best performing model for each
dataset is marked in bold.

It is apparent that among the few top-performing granularity schemes, there
is no significant difference in terms of R2, for the reasons stated before. However,
in terms of MAPE and the “All” dataset, the continuous granularity scheme
appears to be substantially better while maintaining almost the same R2.

In summary, we can conclude that continuous granularity appears to
give the best results in terms of MAPE.

5.3 Increasing Specialization of Predictors

The second experiment aimed to explore whether choosing predictors that are
more specialized and easier to interpret does increase the prediction accuracy.
Thus, this experiment consisted of preparing the more specialised, i.e. per-job-
type models, and comparing their performance with the best-performing regres-
sor discovered in the previous experiment. The results are presented in Table 3.

204 B. Balis and M. Grabowski

Table 2. Summary of performance of models using various categorisation granularities
for the first-step prediction in two-step prediction model.

Dataset Number of categories Regressor R2 MAPE

ShorterThan1.2Kms 4 MLP 0.84 23.0

5 MLP 0.83 23.0

6 MLP 0.82 24.0

7 MLP 0.84 22.0

8 MLP 0.84 23.0

9 MLP 0.84 23.0

10 MLP 0.85 22.0

continuous MLP 0.85 22.0

Between2KmsAnd25Kms 4 MLP 0.92 16.0

5 MLP 0.92 16.0

6 MLP 0.93 13.0

7 MLP 0.94 13.0

8 MLP 0.94 12.0

9 MLP 0.94 12.0

10 MLP 0.95 12.0

continuous MLP 0.93 14.00

ExecutedMoreThan3Ktimes 4 MLP 0.96 60.0

5 MLP 0.96 48.0

6 MLP 0.96 52.0

7 MLP 0.97 41.0

8 MLP 0.97 42.0

9 MLP 0.97 35.0

10 MLP 0.97 39.0

continuous MLP 0.99 45.0

All 4 DTR 0.98 119.0

5 DTR 0.93 155.0

6 DTR 0.98 91.0

7 DTR 0.97 139.0

8 DTR 0.97 57.99

9 MLP 0.91 728.0

10 DTR 0.96 140.0

continuous DTR 0.97 23.0

Each row contains the R2 and MAPE scores achieved by the globally-trained
regressor (R2

G, MAPEG) and specialized (R2
S , MAPES) one.

Specialization of prediction models proved to be beneficial for 50% (14 out
of 28) of the job types. Interestingly, more specialized predictors achieved better
performance in several cases worth mentioning:

– For jobs like combine variants where global regressor had already satisfac-
tory score (0.88 R2), specialization increased both R2 and MAPE.

– For jobs like seq dict or bwa-index specialization apparently led to the
discovery of job’s execution model properties, as it yielded results with R2 >
0.9 and MAPE decreased even up to 4 times.

What is more, specialized predictors were far less complex in terms of length
of the input vector – PCA of the global model used 71 components, while spe-
cialized models, on average, used 26 components of PCA. Such downsizing of
PCA translates to shorter training and prediction times.

There were also cases where specialization failed to improve beyond the global
regressor. Such failures occurred both for jobs with large (e.g., mDiffFit, mBack-

Machine Learning Techniques for Predicting Run Times of Workflow Jobs 205

Table 3. Comparison of performance for both types of regressors – globally and locally
trained ones. Rows marked with gray represent cases where specialized predictors per-
formed better.

Job Dataset size R2
G MAPEG R2

S MAPES

add replace 427 0.98 0.21 0.35 0.14

alignment to reference 427 0.82 0.22 0.89 0.19

bwa-index 63 0.31 0.16 0.94 0.04

combine variants 62 0.88 0.19 0.9 0.04

dedup 427 0.99 0.17 0.9 0.06

faidx 63 0.92 0.21 0.81 0.17

filtering indel 62 0.02 0.15 0.75 0.06

filtering snp 62 0.95 0.12 0.87 0.05

genotype gvcfs 1259 0.96 0.15 0.97 0.11

haplotype caller 8539 0.98 0.13 0.92 0.03

indel realign 427 0.65 0.13 0.83 0.05

mAdd 160 0.97 0.48 0.63 26.63

mBackground 15340 1.0 0.2 0.95 0.66

mBgModel 160 0.48 0.56 0.93 2.21

mConcatFit 160 0.87 0.65 0.81 1.17

mDiffFit 65323 1.0 0.28 0.88 0.41

mImgtbl 157 -23.02 1.9 0.02 1.49

mJPEG 43 0.21 0.16 0.14 0.08

mProject 11316 0.86 0.14 0.98 0.04

mProjectPP 5551 0.99 0.14 0.79 0.1

mShrink 43 1.0 0.23 0.92 0.66

mViewer 156 0.79 0.4 0.95 0.16

merge gcvf 61 0.9 0.18 0.96 0.19

realign target creator 427 0.97 0.11 0.92 0.07

select variants indel 62 -96.12 2.12 -0.02 0.14

select variants snp 62 -161.86 2.12 0.02 0.18

seq dict 63 0.34 0.25 0.82 0.09

sort sam 427 0.76 0.24 0.32 0.16

ground) and small (e.g., mShrink, realign target creator) number of executions.
However, only in 35% (5 out of 14) of such cases specialized predictors achieved
worse MAPE and in 65% (9 out of 14) of the cases they outperformed the global
regressor in this metric. The question why the more specialized predictors achieve
worse performance might be answered at least in two ways.

Firstly, the advantage of the global model could come from the amount of
data that was used for its training in comparison to the smaller models. This
might influence the model’s susceptibility to the influence of outliers, which often
introduce bias into the underlying model.

Secondly, a single global regressor might have the advantage of learning about
various jobs produced by the same workflow and uncovering the relationships
inherent to the workflow which fade out when jobs are considered separately. The
same conclusion might be drawn in the context of the execution environment
– a larger model might infer more about the job’s execution time when it has

206 B. Balis and M. Grabowski

more information about its computational environment. These two conclusions,
however, are yet to be proved or disproved as conducting such a proof is beyond
the scope of this paper.

To summarize, this experiment proves that specialized predictors are a
good way to improve on MAPE in the prediction. However, reasoning
and inferring about workflow-related properties and their embedding in the cloud
environment should be explored more as it might extend our knowledge about
the workflows we predict about and about the cloud environments.

5.4 Employing Symbolic Regression to Prediction Tasks

The aim of the final experiment is to assess whether employing symbolic regres-
sion to a specialized prediction task can provide better performance than the
previous models. The results are presented in Table 4. The table includes results
from the previous experiment for increased interpretability where results for
global and specialized regressors were marked with respective G and S sub-
scripts. Results for models generated via symbolic regression are marked with
subscript λ.

Table 4. Performance of three types of regressors – global, classical-specialized and
one originating from symbolic regression. Rows marked with gray represent cases where
symbolic regression models outperformed other types of models.

Job R2
G MAPEG R2

S MAPES R2
λ MAPEλ

add replace 0.98 0.21 0.35 0.14 0.34 0.15

alignment to reference 0.82 0.22 0.89 0.19 0.94 0.3

bwa-index 0.31 0.16 0.94 0.04 0.94 0.03

combine variants 0.88 0.19 0.9 0.04 0.58 0.09

dedup 0.99 0.17 0.9 0.06 0.85 0.11

faidx 0.92 0.21 0.81 0.17 0.3 0.2

filtering indel 0.02 0.15 0.75 0.06 0.57 0.08

filtering snp 0.95 0.12 0.87 0.05 0.84 0.05

genotype gvcfs 0.96 0.15 0.97 0.11 0.99 0.12

haplotype caller 0.98 0.13 0.92 0.03 0.82 0.06

indel realign 0.65 0.13 0.83 0.05 0.73 0.08

mAdd 0.97 0.48 0.63 26.63 0.02 1.18

mBackground 1.0 0.2 0.95 0.66 0.51 1.19

mBgModel 0.48 0.56 0.93 2.21 0.98 1.73

mConcatFit 0.87 0.65 0.81 1.17 0.99 0.33

mDiffFit 1.0 0.28 0.88 0.41 0.59 3.43

mImgtbl -23.02 1.9 0.02 1.49 -1.33 3.31

mJPEG 0.21 0.16 0.14 0.08 0.73 0.06

mProject 0.86 0.14 0.98 0.04 0.95 0.07

mProjectPP 0.99 0.14 0.79 0.1 0.61 0.13

mShrink 1.0 0.23 0.92 0.66 0.97 0.3

mViewer 0.79 0.4 0.95 0.16 0.81 0.55

merge gcvf 0.9 0.18 0.96 0.19 0.98 0.08

realign target creator 0.97 0.11 0.92 0.07 0.78 0.05

select variants indel -96.12 2.12 -0.02 0.14 -0.02 0.16

select variants snp -161.86 2.12 0.02 0.18 -0.02 0.13

seq dict 0.34 0.25 0.82 0.09 0.76 0.13

sort sam 0.76 0.24 0.32 0.16 0.15 0.18

Machine Learning Techniques for Predicting Run Times of Workflow Jobs 207

As presented in Table 4, models acquired from symbolic regression did not
perform outstandingly better than other types of models presented earlier. There
are, however, interesting exceptions – the mConcatFit and mJPEG jobs. In
these cases we can observe a significant increase in terms of R2 and also a
significant decrease in terms of MAPE. This means that symbolic-regression-
generated models not only managed to capture the underlying model but also
did it effectively in terms of robustness and reliability in future predictions, as
they maintained a high R2.

In other cases where symbolic-regression-generated models performed better
than other types of models in terms of R2 they often failed to improve MAPE.
An example of such case is genotype gvcfs job, where we can observe slight
increase in both R2 and MAPE for symbolic regression. This case raises again
the question about the statistical significance of differences so small as the one
described. There were also cases where models differed more in terms of R2

and symbolic regression still worsened the MAPE. In those cases (e.g. align-
ment to reference or select variants indel), apparently the expressions gen-
erated via symbolic regression were less prone to bias introduced by outliers at
the cost of larger errors.

In 20 out of 28 cases, the symbolic-regression-based models performed worse
than other predictors, however, they usually maintained comparable perfor-
mance to the worse models. This might indicate that either the assumed maximal
expression complexity was too low, or that the available expression set used in
the expression search was too narrow. However, allowing for more complex mod-
els would most probably take away their simplicity, which could be invaluable
for understanding the job’s execution model. For example, symbolic regression
produced a model that was several times more robust in terms of R2 and more
accurate in terms of MAPE for the mJPEG job, while maintaining extreme
simplicity, as shown below in Eq. 1:

executionT imeMs = 733 − 34 · cpuSpeed2 (1)

Such a model is not only lightweight and fast in prediction and thus perfect for
applications in job scheduling but also clearly shows the implementor directions
of possible future optimizations.

To summarize, this experiment shows that while symbolic regression does not
always provide good results, in some cases it generates models outstanding
in terms of performance and simple in terms of interpretability.

6 Conclusion

In this paper, we evaluated various aspects of machine learning techniques
applied to prediction of execution times of scientific workflow jobs. A number of
experiments have led to several interesting conclusions. The two-stage prediction
method proved to perform better in almost all cases. We also found that con-
tinuous granularity of categorization used in the first stage of this method gives
the best results. Specialized (per-job-type) models perform better in only 50% of

208 B. Balis and M. Grabowski

cases for the tested data sets. This is a surprising and hard to interpret finding
which requires further investigation. Finally, symbolic regression can perform
exceptionally well in selected cases, so it proved to be a useful tool to consider
in future research and applications.

Acknowledgment. The research presented in this paper was partially supported by
the funds of Polish Ministry of Education and Science assigned to AGH University of
Science and Technology.

References

1. Balis, B.: Hyperflow: a model of computation, programming approach and enact-
ment engine for complex distributed workflows. Futur. Gener. Comput. Syst. 55,
147–162 (2016)

2. Bhattacharyya, A., Hoefler, T.: Pemogen: automatic adaptive performance mod-
eling during program runtime. In: Parallel Architectures and Compilation Tech-
niques - Conference Proceedings, PACT (2014). https://doi.org/10.1145/2628071.
2628100

3. Borghesi, A., Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Predictive mod-
eling for job power consumption in HPC systems (2016). https://doi.org/10.1007/
978-3-319-41321-1 10

4. Deelman, E., Mandal, A., Jiang, M., Sakellariou, R.: The role of machine learning in
scientific workflows. Int. J. High Perform. Comput. Appl. 33(6), 1128–1139 (2019)

5. Galleguillos, C., Ŝırbu, A., Kiziltan, Z., Babaoglu, O., Borghesi, A., Bridi, T.:
Data-driven job dispatching in HPC systems (2018). https://doi.org/10.1007/978-
3-319-72926-8 37

6. Good, P.: Permutation Tests: A Practical Guide to Resampling Methods for Testing
Hypotheses. Springer, Heidelberg (2013)

7. Kim, I.K., Wang, W., Qi, Y., Humphrey, M.: Forecasting cloud application work-
loads with cloudinsight for predictive resource management. IEEE Trans. Cloud
Comput. 10(3), 1848–1863 (2020)

8. Li, W., Xia, Y., Zhou, M., Sun, X., Zhu, Q.: Fluctuation-aware and predictive work-
flow scheduling in cost-effective infrastructure-as-a-service clouds. IEEE Access 6,
61488–61502 (2018)

9. Medel, V., Rana, O., Bañares, J.Á., Arronategui, U.: Modelling performance &
resource management in kubernetes. In: Proceedings of the 9th International Con-
ference on Utility and Cloud Computing, pp. 257–262 (2016)

10. Mustafa, S., Elghandour, I., Ismail, M.: A machine learning approach for predicting
execution time of spark jobs. Alex. Eng. J. 57, 3767–3778 (2018). https://doi.org/
10.1016/j.aej.2018.03.006

11. Nawrocki, P., Sniezynski, B.: Adaptive context-aware energy optimization for ser-
vices on mobile devices with use of machine learning. Wireless Pers. Commun.
115(3), 1839–1867 (2020)

12. Pham, T.P., Durillo, J.J., Fahringer, T.: Predicting workflow task execution time
in the cloud using a two-stage machine learning approach. IEEE Trans. Cloud
Comput. 8(1), 256–268 (2020). https://doi.org/10.1109/TCC.2017.2732344

13. Pietri, I., Juve, G., Deelman, E., Sakellariou, R.: A performance model to estimate
execution time of scientific workflows on the cloud. In: 2014 9th Workshop on
Workflows in Support of Large-Scale Science, pp. 11–19. IEEE (2014)

https://doi.org/10.1145/2628071.2628100
https://doi.org/10.1145/2628071.2628100
https://doi.org/10.1007/978-3-319-41321-1_10
https://doi.org/10.1007/978-3-319-41321-1_10
https://doi.org/10.1007/978-3-319-72926-8_37
https://doi.org/10.1007/978-3-319-72926-8_37
https://doi.org/10.1016/j.aej.2018.03.006
https://doi.org/10.1016/j.aej.2018.03.006
https://doi.org/10.1109/TCC.2017.2732344

Smart Clustering of HPC Applications
Using Similar Job Detection Methods

Denis Shaikhislamov(B) and Vadim Voevodin

Lomonosov Moscow State University, Moscow, Russia

sdenis1995@gmail.com, vadim@parallel.ru

Abstract. In order for supercomputer resources to be effectively used, it
is necessary to constantly analyze various aspects of the operation of mod-
ern HPC systems. One of the most significant aspects is the efficiency of
execution of parallel applications running on a supercomputer. To study
this, system administrators need to constantly monitor and analyze the
entire flow of running jobs. This is a very difficult task, and there are sev-
eral reasons for this - a large number and a significant variety of executed
applications; the extreme complexity of the structure of modern HPC sys-
tems, and, as a result, a huge number of characteristics that need to be
evaluated for each job. One way to make this analysis easier is to clus-
ter similar jobs. Such clustering allows you to infer the behavior and per-
formance issues of all jobs in the cluster by examining only one of these
jobs, and it also helps to better understand the structure of the supercom-
puter job flow as a whole. In this paper, we propose a new method that
allows solving this clustering task with high accuracy. This smart cluster-
ing method analyzes both static information on the executable files and
dynamic data about the behavior of applications during their execution.
Using the Lomonosov-2 supercomputer as an example, we demonstrate
how this method can help in practice to facilitate the analysis of the exe-
cution efficiency of supercomputing applications.

Keywords: Supercomputer · Similar applications · Application
performance · Data analysis · Clustering · Machine learning

1 Introduction

Many scientists in various subject areas use supercomputers for the modeling
which they need to solve their scientific tasks. And every such scientist, being a
supercomputer user, wants to conduct as detailed and full-scale experiments as
possible, while minimizing the time waiting for his experiments to perform. To
help users with that, the HPC field is constantly evolving - more large-scale and
powerful supercomputers appear each year, more and more advanced software is
being developed, and huge human and financial resources are spent all over the
world for these purposes [1,9].

Much attention is also paid to the thorough analysis of the performance of
individual supercomputer applications. At the moment, many tools have been
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 209–221, 2023.
https://doi.org/10.1007/978-3-031-30442-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_16&domain=pdf
http://orcid.org/0000-0002-9279-6397
http://orcid.org/0000-0003-1897-1828
https://doi.org/10.1007/978-3-031-30442-2_16

210 D. Shaikhislamov and V. Voevodin

developed for profiling, debugging, and optimizing parallel applications (like
Scalasca, Vampir, ARM MAP, Valgrind, and many others). However, in order
for the user to be able to properly use these tools, it is necessary that: 1) the
user is aware that his application is underperforming; 2) the user has sufficient
skills to correctly select and use such software tools to analyze the performance
of his application. Our experience shows that these points are often not fulfilled.
For example, a survey we conducted in 2020 [12] showed that 2/3 of the users
of our Supercomputing center in the Moscow State University admit that they
either do not know about the presence of performance issues in their applica-
tions (i.e. they haven’t investigated this, which in most cases means there are
actually some issues), or they know about issues but haven’t tried (or failed)
to eliminate them. At the same time, half of those users who admitted that
their applications have performance issues do not know what exactly this issue
is. And, in our experience, such situation is basically the same in many other
modern supercomputer centers as well.

To solve this problem, it is necessary for administrators and/or analysts of
supercomputing centers to constantly analyze the efficiency of the entire flow
of jobs running on a supercomputer, which makes it possible to identify the
very fact of performance issues in applications, as well as to get a first idea of
what could be causing these issues. And this topic, which is an urgent problem
that needs to be addressed, is given much less attention, in contrast to those
mentioned above.

One of the challenges of this problem – it is considered that a general mod-
ern supercomputer usually runs a huge variety of applications that can differ in
almost everything: the intensity and profile of the usage of different computa-
tional resources, the duration and the number of processes, the use of certain
compilers, system libraries or application packages, and so on. In this case, it is
very difficult to individually study all the jobs running on a supercomputer.

While this is basically true, our experience shows that often some super-
computer jobs are very similar to each other in terms of their behavior and
performance. This happens, for example, when one user runs a series of similar
or even the same experiments, or when different users solve similar problems,
using, for example, the same functionality implemented in an application pack-
age (like GROMACS, NAMD or VASP). And the ability to cluster such similar
jobs would greatly facilitate the aforementioned task of studying the efficiency
of the job flow, since in order to study the behavior of one entire cluster, it
will, in fact, be generally enough to analyze and optimize only one application
from this cluster. Then, the knowledge gained and the optimization strategy
obtained for the studied application can be similarly applied to other applica-
tions in the cluster. Such a grouping can be useful, in particular, for identifying
clusters of failed or very inefficient job launches, as well as for determining the
most common groups of jobs, further detailed study and optimization of which
can significantly increase the overall efficiency of the supercomputer function-
ing after analyzing only one application from each cluster. In current practice,
supercomputer administrators usually can use only quite straightforward meth-

Smart Clustering of HPC Applications Using Similar Job Detection Methods 211

ods for grouping jobs, using basic job launch and performance data only, which
does not allow fully addressing the problem.

This work is aimed at solving the task of such clustering. The main contri-
bution of this paper is the development of a machine learning based method for
smart clustering of HPC applications, using both static and dynamic informa-
tion about launches of each application. This method, based on the methods we
developed earlier for searching for similar applications [15], works automatically
and, after the initial setup, allows constantly analyzing the entire flow of jobs
running on a supercomputer. This solution is implemented on the Lomonosov-2
supercomputer [20] installed in the Lomonosov Moscow State University, but it
can be adapted for usage on other HPC systems as well.

The rest of the paper is organized as follows. Section 2 is devoted to our
background on this topic as well the review of related works. Section 3 is focused
on the description of the proposed clustering method, its evaluation and param-
eter tuning processes. Section 4 shows real-life noteworthy examples obtained in
practice. Section 5 draws conclusions and describes our future plans.

2 Background and Related Work

As stated before, the main objective of this work is to develop a method for clus-
tering user applications using static and dynamic information. The clustering is
a widely popular technique for analysis because it’s results are easily interpreted
and it provides information on natural grouping in the data set. It also can be
used as additional information for other types of analysis, for example, anomaly
detection.

There are basically two types of information describing an application that
can be used for its analysis – static and dynamic data. Static data specifies
the information available before the application’s execution. Primary sources
of information for this type of clustering are source code and executable files.
There are other data, like scheduling information or list of linked libraries, but
during research we haven’t found any papers using this data for clustering. In [21]
authors present source code clustering algorithm used for plagiarism detection
in student assignment submissions. Clustering is based on feature extraction of
abstract syntax trees, that are obtained by analyzing the source code. Another
work [10] tries to cluster source codes in a very different manner – by analyzing
not the code structure and algorithms, but the comments, names of variables
and functions. Authors believe that resulting clusters form linguistic groups and
show the intention of the code. In our case, we have no access to the source codes
of the applications, and we need different approach.

Dynamic data refers to the information available only after the application
launch. This data is mainly obtained by a monitoring system that regularly
collects the information about the application behavior during it’s execution,
for example by collecting real-time data from different sensors. The examples
of such information are CPU or GPU load, network usage intensity, amount
of L1 or LLC cache misses per second, etc., which we will further refer to as

212 D. Shaikhislamov and V. Voevodin

dynamic characteristics. From this point of view, every job can be described as
multivariate time series of dynamic data.

The task of multivariate time series analysis was always difficult due to the
large amount of data needed to process and the length of time series not being
constant. That’s why multivariate time series are usually converted into a fea-
ture vector of fixed length. These features are obtained by extracting statistical
features of each time series. That approach is used, for example, in [7]. Authors
of this paper extracted so called KPIs describing the behavior of the applica-
tions, and then further calculated statistical features of each time series like
mean, max, deviation, etc. Then they used Agglomerative Clustering algorithm
to cluster obtained features. Similar approach was used in [16], where authors
used PCA to reduce dimensionality and avoid data sparsity problem, and then
applied K-Means clustering to further analyze the performance of selected appli-
cations. They used Silhouette score to obtain optimal number of clusters for
K-means algorithm.

In [3] the same approach with feature extraction is used, but for different pur-
pose – to classify applications. Using ensemble classification model and labeled
data, they were able to identify whether a new job is one of the known appli-
cations. In [19] authors also used features of dynamic characteristics for clas-
sification, but instead of classifying applications themselves, they tried to find
anomalous events on the compute nodes.

Previously we tried to use similar feature based methods (used in all papers
described above) for job similarity detection, but the accuracy was not high
enough. Also we want to pay more attention to the behavior of the application,
in what chronological order the phases of execution occurred, etc, because some
of this crucial information is lost when statistical features are used. Therefore, in
our proposed method we analyze time series themselves. We have recently devel-
oped metrics for measuring job similarity, which appear to be suitable to help us
solve the task of job clustering. In [15] we developed methods for similar applica-
tion detection based on static and dynamic data. The static method for assessing
the similarity of supercomputer jobs is based on the analysis of executable files.
We extract the names of the used functions and variables using the UNIX nm
utility, which we then feed into the trained Doc2vec [11] model. Doc2vec model
converts a set of words into a fixed-length vector. The resulting vectors can be
compared using the cosine similarity function, which calculates the cosine of the
angle between the vectors, and the closer the value to 1, the closer the vectors
are to each other. The Doc2vec model was trained on the function names of over
7000 different executable files running on the Lomonosov-2 supercomputer. We
used this method in practice to detect launches of application packages, and it
showed the accuracy of ∼95% on this task.

The dynamic method for similar application detection is based on the anal-
ysis of performance dynamic characteristics of each job execution. Lomonosov-2
has DiMMon monitoring system [17] that provides the data on aforementioned
dynamic characteristics of each job during its execution. We use Dynamic Time
Warping (DTW) algorithm [4] for time series comparison and distance estima-

Smart Clustering of HPC Applications Using Similar Job Detection Methods 213

tion. DTW is a method that calculates an optimal match between two given
time series, allowing to get distance metric for time series of different lengths.
During the evaluation of this method, it showed the accuracy of ∼90% on the
task of application package detection.

It should be mentioned that these two methods differ in used input data
and working algorithms, and therefore are most suitable in different cases, com-
plementing each other. For example, by using static method we can distinguish
different application package usages, but the use cases of some packages are vast
and can greatly differ in terms of behavior, and only dynamic approach can
detect those nuances during application’s execution.

3 Solving the Problem of Smart Job Clustering

3.1 Proposed Method

The proposed method for smart job clustering consists of the following major
steps:

1. Coarse-grain static clustering. We assume that behavior of any HPC job is
similar predominantly to the jobs with similar executable files. We understand
that there are exceptions to this assumption, but in our experience such
exceptions are very rare in practice. Thus we can first use the aforementioned
static method to get the distance estimate between jobs and group them
(based on data on their executables) using clustering algorithms. After this
step, jobs are compared only within these clusters, which significantly speeds
up the operation of the method as a whole.

2. Fine-grain dynamic clustering. After obtaining the static clusters, we use
DTW-based method described in Sect. 2 to estimate the distances between
jobs inside each cluster using dynamic data, and then group jobs into fine-
grain clusters using yet another clustering algorithm, thus concluding smart
grouping of user jobs.

We will refer to this algorithm as an offline method, as it is suited not to con-
stantly analyze the job flow in near real-time, but to process big batches of jobs.
Also it should be noted that for the proposed method to work, we need both
static and dynamic data on the analyzed jobs, which is not always available:
static information sometimes cannot be accessed due to not having read permis-
sions on user files, or executable files have been modified or deleted prior to our
analysis thus invalidating further analysis; dynamic data can be absent due to
monitoring system malfunction, or if the job is too short for accurate analysis.
For example, since the beginning of year 2022, 45% of CPU hours on Lomonosov-
2 were consumed by jobs that have both static and dynamic data. We plan to
increase this share in future by improving reliability of the monitoring system
as well as tuning the proposed method configuration.

214 D. Shaikhislamov and V. Voevodin

Choosing Clustering Algorithm. One of the main tasks that has to be solved
in order for the proposed method to work is to choose appropriate clustering
algorithms for both static and dynamic steps. The main requirements for the
algorithms were the following:

– no predefined number of clusters, because it is not known beforehand how
many groups of jobs there are;

– is able to use custom distance metric (e.g. Birch method relies on Euclidean
distance for operation);

– do not construct additional points for clustering, as we cannot introduce new
points of comparison (like centroids in K-means clustering method).

The most popular groups of clustering algorithms meeting that requirements
are hierarchical and density-based clustering algorithms. One of the most used
in each category are Agglomerative Clustering [18] and DBSCAN [5], corre-
spondingly. We used scikit-learn package’s implementation of those algorithms
[13]. Agglomerative Clustering uses bottom-up approach to clustering, meaning
that initially each cluster consists of one job, and then iteratively clusters are
merged based on the chosen principle. DBSCAN operates in the similar manner:
it finds core samples of high density and expands clusters from them. During the
experiments we found out that DBSCAN performs worse than Agglomerative
Clustering by ∼5%, that’s why we chose the latter (all further results are shown
only for this algorithm). Also it is important to mention that using DBSCAN in
static phase and Agglomerative Clustering in dynamic didn’t change the results
that much, and if we use them vice versa we observed less accurate results.
That’s why we chose the Agglomerative clustering for both static and dynamic
steps.

Selecting Metric for Assessing Clustering Accuracy. To compare and
evaluate results of the clustering algorithms, we need to choose a suitable met-
ric. There are a lot of available options, and they could be divided into 2
groups, depending on whether there is available ground truth labels or not. First
group include such functions as Rand index, Mutual Information based scores,
MojoFM, etc. The most popular of them is Rand index [8] due to its inter-
pretability: the score is proportional to the number of sample pairs which were
assigned to the correct clusters. It ranges from 0 to 1, 1 being perfect match, and
0 usually specifies random labelling. Second group includes scoring functions like
Silhouette Coefficient, Calinski-Harabasz Index, Davies-Bouldin Index. They all
produce higher scores if the resulting clusters are dense and well separated, but
Silhouette Coefficient [14] also provides additional semantic information: score is
ranged from -1 to 1, where 1 means highly dense clustering, and if score is closer
to zero, it means that clusters are overlapping. Negative values generally indi-
cate that a sample has been assigned to the wrong cluster, meaning that there
is another cluster which is closer to the sample than the selected one. Manually
labeled data is hard to obtain in our case, that’s why for the first iteration of
parameter tuning we used Silhouette Coefficient, and for more precise testing

Smart Clustering of HPC Applications Using Similar Job Detection Methods 215

we manually clustered a part of jobs and used Rand Index (see next subsections
for details).

3.2 Tuning of Proposed Solution

As mentioned before, there are two major steps in the proposed method, and
we can change their parameters to improve the overall accuracy. We consider
tuning of the following parameters:

– a threshold needed in static and dynamic clustering stages for considering
jobs similar,

– a window parameter in DTW that controls how much time series can differ
in terms of time shifts.

Clustering algorithm has a lot more parameters, but we found out that these
thresholds were the most important to the evaluation score, so we focused on
them. Next, other DTW parameters and time series preprocessing steps were fine
tuned in the previous work and therefore should not be changed, but the DTW
window can change the results significantly, so we need to consider changing it
as well.

The process of searching for the optimal parameter values is arranged as
follows. We can fix the value ranges for each parameter based on the empirical
observations during initial testing, which gives us the ability to carry out a brute-
force search for the best parameter values based on the Silhouette coefficient.
This gives us a first estimate of possible parameters, and in order to get more
precise results (i.e. verify and tune results obtained based on Silhouette coeffi-
cient), we need to manually label user jobs and calculate Rand Index. To do so,
we can find the best parameters according to the Silhouette coefficient, and then
use these parameters to cluster user jobs. This greatly reduce the efforts needed
to manually cluster user jobs – most of the work is almost done, we generally
just need to split or merge formed clusters. Using such approach, we selected top
4 users (by the number of job launches on Lomonosov-2 from January to April
2022) and labelled their jobs. We emitted obviously anomalous jobs that were
showing almost no activity within a significant part of execution time, as well
as too short jobs and jobs without needed static or dynamic data. This resulted
in ∼300 labelled jobs, that we used for tuning.

During the tuning process, it became clear that we need to solve one impor-
tant issue – is it possible to find the unified set of parameter values suitable
for all jobs and all users? The jobs of different users may behave in completely
different ways, therefore they may need different clustering configurations. So it
was unclear whether it is possible to select a unified set of parameters. But doing
this is of great interest, since it allows clustering supercomputer jobs not only
within a particular user or a series of jobs, but within the entire job flow or any
its subset (like launches of a particular application package, jobs with specified
performance property, etc.). To test that, we took 4 top users as a train set and
calculated Rand Index for every possible parameter variation. Then we were able

216 D. Shaikhislamov and V. Voevodin

to calculate adjusted average score for every parameter variation, which gave us
an estimation on how suitable parameters are for all users. A parameter set that
resulted in the highest adjusted average score was then selected, further referred
as best unified parameters set, or BUP.

adjusted average score =
∑

users user Rand Index score ∗ user job count

total job count

After determining BUP on a train set, we needed to check whether it was suitable
to use BUP in our case; this means that for each user we needed to make sure
that the difference between the best possible score and the score using BUP was
not significant. The best possible score for a user was the highest Rand Index
score specifically for this user on all available parameter sets. We considered the
difference significant if it exceeds 0.1, which in terms of Rand Index means that
there is a difference of about 10% of pairs whose labels are not the same. This
value was chosen empirically during the testing on real-life jobs.

The Rand Index values (both best possible scores and scores using BUP)
for 4 users from a train set are shown in Table 1. We found that there was no
difference between two scores, which meant that there was no need to adjust
parameters separately for each user, and we could test found BUP on other
users.

Table 1. Rand Index scores obtained during parameter tuning

User 1 User 2 User 3 User 4

Best possible score 0.953 0.957 0.986 0.989

Score using BUP 0.953 0.957 0.986 0.989

3.3 Evaluation of Proposed Method

Clustering Accuracy. After selecting the best unified parameters set in the
previous subsection, we needed to verify if it was suitable for other users as well.
To do so, we selected next top 7 users from the same time period and manually
labeled their jobs. This as well resulted in ∼300 jobs in a test set. Table 2 shows
the Rand Index scores using BUP for these users. As we can see, scores are very
high for all users, except User 10. A more detailed study of his jobs showed that
there was an issue with DTW not being able to distinguish particular behaviour
differences; we might need to change the proposed approach for these kinds of
jobs in the future. Overall, the total Rand Index score is equal to 0.95, which
means that the overall clustering accuracy is very high. This also means that we
can use a unified set of parameter values in practice, which significantly increases
the applicability of the proposed method, as stated above.

Smart Clustering of HPC Applications Using Similar Job Detection Methods 217

Table 2. Rand Index scores for 7 users from the test set

User 5 User 6 User 7 User 8 User 9 User 10 User 11

BUP Rand Index 1.0 1.0 1.0 1.0 1.0 0.78 0.978

Online Clustering Evaluation. The proposed smart clustering method is
intended to be used for on-the-fly analysis of supercomputer jobs, but to do so
we need to study on a regular basis a constantly changing flow of supercomputer
jobs. The described offline method has to do the clustering for both static and
dynamic phases for every new job, which is not feasible. There are incremental
hierarchical algorithms [6] that allow you not to recompute all the clusters,
but we have selected a computationally easier approach. During the parameter
tuning, one of the clustering parameters is the threshold of when to consider
jobs similar, and we can use this threshold to perform 1NN search (i.e. search
for one nearest neighbor). In this case, another way of cluster detection for a
new job (further referred as online method) can be the following:

– Look for the most similar job in the knowledge base (i.e. manually clustered
jobs) based on static data. If the distance to that job is less than the static
threshold – go to the next step, as it means that executable files are similar.
If the distance is bigger – we consider that this new job forms a new static
cluster, and add it to the knowledge base.

– Look for the most similar job in the found static cluster based on dynamic
data. If the distance to the found job is less than dynamic threshold – new
job belongs to this cluster. If the distance is greater – we create new dynamic
cluster for the new job.

We can update the knowledge base using the original offline method once a
selected period (once a month, for example).

To test the accuracy of this approach, we need to compare results obtained
using offline and online methods. In this case, we can think of offline method’s
clustering result as the ground truth, and use Rand Index to evaluate online
method’s clustering results.

For this purpose, we selected all Lomonosov-2 jobs from January to April of
2022 to conduct the tests. We built the knowledge base for the online method
using jobs from January to March, and used jobs running in April to con-
duct 1NN clustering. Comparing the results of 1NN clustering to the clustering
obtained using offline method on all jobs from that period, we obtained Rand
Index score of 0.9948, which indicates that two clustering results are practically
identical. That means that we can use a little less accurate but much faster
online method for constant on-the-fly clustering, and we can periodically rerun
offline method to update and fine-tune its knowledge base.

218 D. Shaikhislamov and V. Voevodin

4 Using Proposed Solution in Practice

In this section we describe several examples of useful results achieved using the
proposed method. We clustered and studied all jobs launched from Jan to April
2022 on the Lomonosov-2 supercomputer, which resulted in the total of 6000
jobs that we were able to analyze. As stated before, our method doesn’t take
into account short jobs as well as jobs for which no static or dynamic data was
available.

At first we wanted to study the size of the clusters – how big clusters can be
found in real-life data using the proposed method. It turned out that there are
definitely big groups of jobs – ∼25% of all job launches belong to only 10 clusters.
It becomes even more noticeable if we look at jobs that use specific packages: 50%
out of ∼1500 LAMMPS job launches are from 7 clusters, 25% out of ∼1500 Gro-
macs launches are from 3 clusters, and 60% out of ∼350 CP2K jobs are from only 1
cluster! This means that not only we are able to locate big groups of interest, but it
also makes the task of analyzing most impactful applications a lot easier. The same
situation can be observed with incorrectly finished jobs (that have “FAILED” fin-
ish state): only 4 clusters are responsible for 25% of such jobs, and supercomputer
administrators definitely should pay special attention to them in order to find the
reason why these applications are failing.

Another interesting field for research – finding performance issues in user
jobs. And there are several ways we can use clustering results to find anomalous
job launches. First option was described before: we can locate most impactful
clusters in terms of failed or most inefficient jobs and analyze them. Second
option is to match user jobs to their corresponding clusters, for example:

{Job1, Job2, ...} → {ClusterJob1 , ClusterJob2 , ...}
and then analyze clusters of subsequent job launches to determine whether there
are anomalous ones among such launch series. If this series consists of mostly non-
similar jobs, then it is difficult to draw any conclusion. But if there is a significant
number of launches belonging to the same cluster, among which there is one job
from another cluster, we can assume that this job might be anomalous. Consider
following sequence of job launches (jobs are colored based on the cluster):

Job1, Job2, Job3, Job4, Job5, Job6, Job7, Job8, Job9, Job10, Job11, Job12

We can see that there are plenty of consecutive launches of green labeled jobs,
but there is unexpected red labeled job, which may indicate two things: either a
user wanted to launch some different application, and everything is fine, or the
launch was anomalous in terms of unexpected behavior. We can check, whether it
is supposed to be the same application or not by using static analysis. And if the
binary files are similar, we can assume that Job7 in this case is suspicious, and the
user should be notified. Note that yellow and blue labeled jobs might be anomalous
as well, but we need to study all jobs before and after them in order to find that
out. We can’t be 100% sure that jobs are really anomalous, but signaling users of
potential issues is crucial to further decrease their number. For example, with this

Smart Clustering of HPC Applications Using Similar Job Detection Methods 219

method we were able to locate anomalous job launches of at least 5 users during
the selected time period. Some cases could be detected using less sophisticated
methods, but we can identify others using the proposed approach only.

During the results analysis we found one more peculiar benefit of clustering
algorithm. As mentioned earlier, we use application package detection system,
which are based on XALT [2] and our previously developed static method. They
work together and supplement each other, showing very high overall accuracy.
But sometimes they miss some jobs due to malfunctions in XALT or static
method, incomplete knowledge base used in static method, etc. And that is
when proposed clustering might fill in these missed jobs. During our testing we
found out that XALT+static missed 143 jobs, which accounts to ∼2% of total
found application package usages.

5 Conclusions

In this paper, we have proposed a new method for smart clustering of super-
computer jobs. This method uses both static and dynamic analysis techniques:
static information on terms found in the binary file is used for first-level coarse
clustering, and after that dynamic data describing performance characteristics
during job execution is used for subsequent subclustering. This method works
on a constant basis, analyzing all jobs running on a supercomputer, and can be
used, as shown in our examples, to simplify the process of job flow efficiency
analysis or to detect anomalies in a series of job launches.

Our future plans include providing an open-source software package, which
will make it easy to try this solution on other HPC systems as well.

Acknowledgements. The results described in this paper were achieved at Lomonosov
Moscow State University with the financial support of the Russian Science Foundation,
agreement No. 21-71-30003.

References

1. High performance computing market size to surpass USD 64.65. https://www.
globenewswire.com/news-release/2022/04/04/2415844/0/en/High-Performance-
Computing-Market-Size-to-Surpass-USD-64-65-Bn-by-2030.html

2. Agrawal, K., Fahey, M., Mclay, R., James, D.: User environment tracking and
problem detection with xalt, pp. 32–40, November 2014. https://doi.org/10.1109/
HUST.2014.6

3. Ates, E., et al.: Taxonomist: application detection through rich monitoring data. In:
Aldinucci, M., Padovani, L., Torquati, M. (eds.) Euro-Par 2018. LNCS, vol. 11014,
pp. 92–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96983-1 7

4. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time
series. In: Proceedings of the 3rd International Conference on Knowledge Discovery
and Data Mining, AAAIWS 1994, pp. 359–370. AAAI Press (1994). http://dl.acm.
org/citation.cfm?id=3000850.3000887

https://www.globenewswire.com/news-release/2022/04/04/2415844/0/en/High-Performance-Computing-Market-Size-to-Surpass-USD-64-65-Bn-by-2030.html
https://www.globenewswire.com/news-release/2022/04/04/2415844/0/en/High-Performance-Computing-Market-Size-to-Surpass-USD-64-65-Bn-by-2030.html
https://www.globenewswire.com/news-release/2022/04/04/2415844/0/en/High-Performance-Computing-Market-Size-to-Surpass-USD-64-65-Bn-by-2030.html
https://doi.org/10.1109/HUST.2014.6
https://doi.org/10.1109/HUST.2014.6
https://doi.org/10.1007/978-3-319-96983-1_7
http://dl.acm.org/citation.cfm?id=3000850.3000887
http://dl.acm.org/citation.cfm?id=3000850.3000887

220 D. Shaikhislamov and V. Voevodin

5. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining, KDD 1996,
pp. 226–231. AAAI Press (1996)

6. Gurrutxaga, I., Arbelaitz, O., Mart́ın, J., Muguerza, J., Pérez, J., Perona, I.: Sihc:
a stable incremental hierarchical clustering algorithm, pp. 300–304, January 2009

7. Halawa, M., Dı́az Redondo, R., Vilas, A.: Unsupervised kpis-based clustering
of jobs in HPC data centers. Sensors 20, 4111 (2020). https://doi.org/10.3390/
s20154111

8. Hubert, L.J., Arabie, P.: Comparing partitions. J. Classif. 2, 193–218 (1985)
9. Joseph, E., Conway, S.: Major trends in the worldwide HPC market. Techni-

cal Report (2017). https://hpcuserforum.com/presentations/stuttgart2017/IDC-
update-HLRS.pdf

10. Kuhn, A., Ducasse, S., Gı̂rba, T.: Semantic clustering: identifying top-
ics in source code. Inf. Softw. Technol. 49(3), 230–243 (2007). https://doi.
org/10.1016/j.infsof.2006.10.017, https://www.sciencedirect.com/science/article/
pii/S0950584906001820, 12th Working Conference on Reverse Engineering

11. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents.
CoRR abs/1405.4053 (2014)

12. Nikitenko, D.A., Shvets, P.A., Voevodin, V.V.: Why do users need to take care of
their HPC applications efficiency? Lobachevskii J. Math. 41(8), 1521–1532 (2020).
https://doi.org/10.1134/s1995080220080132

13. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

14. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987). https://doi.org/10.
1016/0377-0427(87)90125-7, https://www.sciencedirect.com/science/article/pii/
0377042787901257

15. Shaikhislamov, D., Voevodin, V.: Solving the problem of detecting similar super-
computer applications using machine learning methods. In: Sokolinsky, L., Zym-
bler, M. (eds.) PCT 2020. CCIS, vol. 1263, pp. 46–57. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-55326-5 4

16. Shin, M., Park, G., Park, C.Y., Lee, J., Kim, M.: Application-specific feature selec-
tion and clustering approach with HPC system profiling data. J. Supercomput.
77(7), 6817–6831 (2021). https://doi.org/10.1007/s11227-020-03533-2

17. Stefanov, K., Voevodin, V., Zhumatiy, S., Voevodin, V.: Dynamically reconfig-
urable distributed modular monitoring system for supercomputers (dimmon). In:
4th International Young Scientist Conference on Computational Science. Procedia
Computer Science, vol. 66, pp. 625–634. Elsevier B.V Netherlands (2015). https://
doi.org/10.1016/j.procs.2015.11.071

18. Steinbach, M., Karypis, G., Kumar, V.: A comparison of document clustering tech-
niques. In: KDD Workshop on Text Mining (2000)

19. Tuncer, O., et al.: Diagnosing performance variations in HPC applications using
machine learning. In: Kunkel, J.M., Yokota, R., Balaji, P., Keyes, D. (eds.) ISC
High Performance 2017. LNCS, vol. 10266, pp. 355–373. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-58667-0 19

20. Voevodin, V.V., et al.: supercomputer lomonosov-2: large scale, deep monitoring
and fine analytics for the user community. Supercomput. Front. Innov. 6(2), 4–11
(2019). https://doi.org/10.14529/jsfi190201

https://doi.org/10.3390/s20154111
https://doi.org/10.3390/s20154111
https://hpcuserforum.com/presentations/stuttgart2017/IDC-update-HLRS.pdf
https://hpcuserforum.com/presentations/stuttgart2017/IDC-update-HLRS.pdf
https://doi.org/10.1016/j.infsof.2006.10.017
https://doi.org/10.1016/j.infsof.2006.10.017
https://www.sciencedirect.com/science/article/pii/S0950584906001820
https://www.sciencedirect.com/science/article/pii/S0950584906001820
https://doi.org/10.1134/s1995080220080132
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1016/0377-0427(87)90125-7
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://doi.org/10.1007/978-3-030-55326-5_4
https://doi.org/10.1007/s11227-020-03533-2
https://doi.org/10.1016/j.procs.2015.11.071
https://doi.org/10.1016/j.procs.2015.11.071
https://doi.org/10.1007/978-3-319-58667-0_19
https://doi.org/10.14529/jsfi190201

Smart Clustering of HPC Applications Using Similar Job Detection Methods 221

21. Durač́ık, M., Krsak, E., Hrkút, P.: Scalable source code plagiarism detection using
source code vectors clustering, pp. 499–502, November 2018. https://doi.org/10.
1109/ICSESS.2018.8663708

https://doi.org/10.1109/ICSESS.2018.8663708
https://doi.org/10.1109/ICSESS.2018.8663708

Scheduling for Parallel Computing

Distributed Work Stealing
in a Task-Based Dataflow Runtime

Joseph John1(B) , Josh Milthorpe1,2 , and Peter Strazdins1

1 Australian National University, Canberra, Australia
{joseph.john,josh.milthorpe,peter.strazdins}@anu.edu.au

2 Oak Ridge National Laboratory, Oak Ridge, TN, USA

Abstract. The task-based dataflow programming model has emerged
as an alternative to the process-centric programming model for extreme-
scale applications. However, load balancing is still a challenge in task-
based dataflow runtimes. In this paper, we present extensions to the PaR-
SEC runtime to demonstrate that distributed work stealing is an effective
load-balancing method for task-based dataflow runtimes. In contrast to
shared-memory work stealing, we find that each process should consider
future tasks and the expected waiting time for execution when determin-
ing whether to steal. We demonstrate the effectiveness of the proposed
work-stealing policies for a sparse Cholesky factorization, which shows a
speedup of up to 35% compared to a static division of work.

Keywords: Tasks · Runtime · Distributed Work Stealing · PaRSEC

1 Introduction

The task-based dataflow programming model has emerged as an alternative to
the process-centric model of computation in distributed memory. In this model,
an application is a collection of tasks with dependencies derived from the data
flow among the tasks. Tasks can be executed in any order that maintains the
dependency relations between them. When compared to a process-centric model,
the task-based dataflow programming model has shown more scalability as it
exposes more asynchronicity within the application [6]. Also, the programmer
has a global view of tasks and data, while low-level problems such as scheduling
and data transfer are taken care of by the runtime.

At present, most implementations of the task-based dataflow programming
model are limited to a static work division between nodes. This paper addresses
this limitation by exploring whether distributed work stealing can be used as
an automatic load balancing method in a task-based dataflow runtime. We use
Parallel Runtime Scheduling and Execution Controller (PaRSEC) [6,7] as the
base framework. To the best of our knowledge, this is the first work in a task-
based dataflow runtime in distributed memory to use distributed work stealing
as a load balancing technique.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 225–236, 2023.
https://doi.org/10.1007/978-3-031-30442-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_17&domain=pdf
http://orcid.org/0000-0002-0031-4793
http://orcid.org/0000-0002-3588-9896
http://orcid.org/0000-0001-8541-1551
https://doi.org/10.1007/978-3-031-30442-2_17

226 J. John et al.

1.1 Contributions

The contributions of this paper are as follows: We add distributed work stealing
to PaRSEC runtime for automatic load balancing and we extend the Template
Task Graph (TTG) to allow the programmer to decide if a particular task can
be stolen. We introduce new victim policies based on waiting time and show that
this is more efficient than the existing victim policies. We also introduce a new
thief policy based on future tasks and show that this is more efficient than the
existing thief policies.

2 Related Work

Work sharing and work stealing are two primary approaches to load balancing
in task-based programming models. In work sharing, an overloaded compute
node shares its work with the underloaded nodes, while in work stealing, an
underloaded node steals work from the overloaded nodes. Work sharing requires
information collection about the load in a set of nodes and coordination between
the nodes in this set to balance the load between them. The main disadvantages
of work sharing are that collecting load information may pose scalability issues,
and due to the asynchronous nature of task execution there is no guarantee
that the information received reflects the actual load status. On the other hand,
in work stealing, a thief node initiates a steal request based on its load and
the victim node chooses whether to allow the steal based on its load. Both
victim and thief make independent decisions without any coordination between
them. While load-balancing in task-based runtimes was first introduced in shared
memory through work stealing in Cilk [4,9], shared memory load-balancing is
not discussed here as we are only interested in load-balancing across nodes in
partitioned global address space (PGAS) and distributed memory.

The PGAS model presents a unified global memory, logically partitioned
among different nodes. This global address space makes it possible to use global
data structures, shared between nodes, to implement load-balancing strategies.
In Habanero-UPC++ [13], each node publishes the current count of stealable
tasks in a shared variable in global address space and the work stealing decisions
are made based on this. In X10, each node maintains a shared queue to hold
stealable tasks and a local queue to hold non-stealable tasks [2,10,15,20]. A
starving node can directly steal from the shared queue of another node. X10
also enforces work sharing if work stealing fails [16]. Chapel [8] allows dynamic
task mapping i.e. a task can be mapped to any node in the system but once the
tasks are mapped to a node they cannot be stolen.

In the distributed-memory model, each node is a separate memory and exe-
cution domain. Unlike PGAS models, there are no shared global data structures
that can be leveraged for cooperation between the different nodes. Perarnau et
al. [17] study work stealing performance in MPI, but here the work stealing is a
property not of the runtime but of the benchmark itself. In Chameleon [11,12],
work sharing is possible but it can happen only at global MPI synchronization
points. Samfass et al. [18] implement work sharing in partial differential equation

Distributed Work Stealing in a Task-Based Dataflow Runtime 227

workloads but the work sharing is possible only between time steps. In CnC [19]
and Legion [3], similar to Chapel, dynamic task mapping is possible, but once
mapped to a node the tasks cannot be stolen. CnC also uses a broadcast opera-
tion to locate data items and this operation is not scalable either.

Task-based dataflow programming model is a subset of a task-based pro-
gramming model where the execution progression is controlled by the flow of
data from one task to the next. Charm++ is a task-based dataflow runtime that
supports work sharing [1] and it is especially well suited for iterative applica-
tions. At present, there is no dataflow task-based programming model that offers
work stealing in distributed memory.

3 Adding Work Stealing to PaRSEC

PaRSEC is a heterogeneous task-based dataflow runtime, where the execution
of tasks is fully distributed, with no centralized components. Each task in PaR-
SEC is an instance of a task class and all tasks that belong to a particular task
class have the same properties except the data it operates on and its unique
id. PaRSEC supports multiple domain-specific languages (DSL) and these DSLs
help the user define the different task classes in a program, as well the depen-
dency relations between the tasks. In this paper, we focus on the Templated
Task Graph (TTG) DSL [5] as it can better handle irregular applications. An
application can be called irregular if it has unpredictable memory access, data
flow or control flow. To study whether work stealing is effective in a task-based
dataflow runtime, we added an extra module migrate to PaRSEC to do all opera-
tions related to work stealing. We also changed how tasks are described in TTG,
to support work stealing.

The migrate module uses a dedicated migrate thread for all stealing related
activities. The thread is created when the PaRSEC communication module is
initialized and destroyed when the termination detection module in PaRSEC
detects distributed termination. All communication to and from the migrate
module is carried out using the PaRSEC communication module. The migrate
thread constantly checks the state of the node and transitions the node to a
thief if it detects starvation. On detecting starvation, the thief node sends a
steal request to a victim node. The victim’s migrate thread processes the steal
request and selects tasks to be migrated to the thief node. When a task is selected
as a victim of a steal request, the input data of the victim task are copied to the
thief node and the victim task is recreated in the thief node. To implement this
functionality, we added a new function migrate to the task class. The migrate
thread invokes this function to copy the input data to the thief node. Once all
data have arrived, the thief recreates the victim task, with the same unique id,
and it is treated like any other task by the thief node.

New Task Description. To give the user control over which tasks can be
stolen, we introduced another wrapper function in TTG (Listing 1.1), which
takes a function is stealable as an additional argument (The details about

228 J. John et al.

the wrapping function are available in [5]). For instance, in a sparse linear
algebra computation, tasks of the same type may operate on a dense or sparse
tile. So the programmer may decide that tasks that operate on a sparse tile
cannot be stolen.

Listing 1.1. New TTG wrapping function

ttg:: wrapG(task_body , is_stealable , input_edges ,

output_edges , task_name , input_edge_names , output_edge_names);

The function is stealable has the same signature as the task body, and it
has access to the same data as the task body.

Thief Policy. The thief policy dictates two aspects of stealing: 1) How is a
victim node selected? and 2) What qualifies as starvation in a node? Perarnau
et al. [17] demonstrated that randomised victim node selection is best suited for
distributed work stealing, so we use the same in this paper. A naive approach
to work stealing only consider the ready tasks waiting for a worker thread as
the indicator for available load in a node and if the available ready task is
zero, starvation is assumed. We show that this is not the correct way to predict
starvation as stealing takes non-zero time, and in that time new tasks can be
activated in a starving node. So, we propose that along with ready tasks we
should also consider the tasks that will be scheduled in the near future to measure
starvation. We take the successors of the tasks in execution as the future tasks.
Based on these we tested two starvation policies:

1. Ready tasks only: a steal request is initiated if there are no currently ready
tasks.

2. Ready tasks + Successor tasks: a steal request is initiated if there are no
currently ready tasks and no local successors of tasks currently in execution.

Victim Policy. Victim policies impose an upper bound on the number of tasks
allowed to be stolen by a thief node. We test three victim policies:

1. Half: Half the stealable tasks are allowed to be stolen per steal request.
2. Chunk: An arbitrary number of stealable tasks is allowed to be stolen per

steal request (we went with a chunk size of 20 as it is half of the total worker
threads available).

3. Single: Only one stealable task is allowed to be stolen per steal request (this
is a special case chunk, where the chunk size is 1).

The victim policy does not guarantee work stealing. For instance, if there
are 40 stealable tasks available, the victim policy Half requests the scheduler to
return as many tasks as possible up to a maximum of 20. This is not guaranteed
to yield a task, as the migrate thread competes with worker threads, and the
worker threads may end up getting all the available tasks. So the victim policy
makes the best effort to migrate a permissible number of stealable tasks, with
an upper bound on the number of tasks migrated.

Distributed Work Stealing in a Task-Based Dataflow Runtime 229

At present, the waiting time of the task is not considered when permitting
a steal. In this paper, the victim policies have an additional condition: work
stealing is allowed only if the time required to migrate the task to the thief node
is less than the time the task has to wait for a worker thread. The waiting time
is calculated as follows:

average task execution time =
execution time elapsed

tasks executed till now

waiting time = (
#ready tasks

#worker threads
+ 1) ∗ average task execution time

4 Experiments

The experiments were conducted on the Gadi supercomputer in the National
Computing Infrastructure, Australia. Each node on Gadi has two 24-core Intel
Xeon Scalable Cascade Lake processors with 3.2 GHz clock speed and 192 GiB
of memory. All the experiments were run using openmpi (v4.0.2), intel-mkl
(v2020.2.254) and intel-compiler (v2020.2.254). As there is only one MPI pro-
cess per node, node and process are used interchangeably in this section. All the
experiments are conducted using 40 worker threads per node.

4.1 Benchmarks

We use Cholesky factorization on a tiled sparse matrix as the benchmark to
measure the different aspects of work stealing. In this benchmark, the matrix is
divided into tiles and each tile is either sparse (filled with zeroes) or dense. In our
runs, exactly half of the tiles are dense and tiles are cyclically distributed across
nodes. We chose Cholesky factorization as the benchmark because it is a good
representative of linear algebra benchmarks, and it has been used extensively
to study various aspects of distributed computing including work-stealing. Also,
there are 4 types of tasks in Cholesky factorization – POTRF, GEMM, TRSM
and SYRK. The different task types have different execution times for the same
tile size, presenting a challenge for distributed work-stealing.

We also used the Unbalanced Tree Search (UTS) benchmark [14] to study
the victim policies. In the UTS benchmark, different trees can be created by
configuring the different features of the benchmarks.

4.2 Potential for Work Stealing

Intuitively, task stealing is most effective when there is a workload imbalance and
when there are active thief nodes. To quantify the potential for work stealing as
the computation progresses, we divided the execution time of the benchmarks
without work stealing into intervals of equal duration. Within each interval,
whenever a worker thread successfully executed a select operation, the number

230 J. John et al.

of ready tasks were polled. Using these polled ready tasks, the potential for work
stealing Eb in the interval b for P processes is calculated as:

Eb = Ib ∗ P (1)

where Ib is the workload imbalance in the interval b, calculated as:

Ib = max(wb
1, w

b
2, ..., w

b
P) −

∑P
i=1 w

b
i

P
(2)

where wb
i is the workload of process i in the interval b, calculated as:

wb
i =

∑N
j=1 obj
Nb

max(ob1, o
b
2, ..., o

b
Nb

)
(3)

where obj is the jth polled value in interval b and Nb is the total number of
polled values in interval b. Figure 1 gives the potential for work stealing obtained
experimentally for the different intervals for the different number of nodes. From
Fig. 1, we see that the work stealing has the most potential at the beginning of
the execution for all numbers of nodes, remaining highest for 8 nodes as the
execution progresses.

Fig. 1. Potential for work stealing when using an interval size of 10 s. (Global matrix
of 100002 64-bit elements, organized as 2002 tiles of 502 elements)

4.3 Thief Policy

The experiments on thief policy show that performance of work stealing is better
when future tasks are taken into consideration to determine starvation. Figure 2
shows the performance of a thief policy that uses only ready tasks to determine
starvation, against a thief policy that use ready tasks as well as future tasks
(‘No-Steal’ in the experiments refer to the experimental runs without using work
stealing). Here, the successor tasks of tasks currently in execution are taken as

Distributed Work Stealing in a Task-Based Dataflow Runtime 231

Fig. 2. Thief policies that counts only ready tasks versus policy that counts ready and
successor tasks. (Global matrix of 100002 64-bit elements, organized as 2002 tiles of
502 elements. Four nodes, Single victim policy)

Fig. 3. Ready tasks in a thief node when a stolen task arrives. Only ready tasks were
considered to determine starvation. (Global matrix of 100002 64-bit elements, organized
as 1002 tiles of 1002 elements; two nodes)

future tasks. From the figure, we observe that the performance of work stealing is
better if future tasks are taken into consideration when determining starvation.

To understand why work stealing underperforms while using only ready tasks
to determine starvation, we counted the ready tasks in a thief node when a stolen
task arrives. Figure 3 shows the result of this experiment and we can see that
when the task arrives the number of ready tasks in the thief node is quite high.
This means that the stolen task will have to wait a substantial amount of time
before it is selected for execution. This happens because even when there are no
ready tasks in a thief node, there may still be tasks in execution, each of which
can have multiple successor tasks. So by the time a stolen task arrives, the tasks
in execution may have added their successors to the ready queue.

4.4 Victim Policy

The previous experiments showed that work stealing reduces the variation in
execution across multiple runs. We postulated that variation occurs because all
threads are competing to extract tasks from the scheduling queues. Thus, if the
number of threads is large, the queues will be under significant stress, and all the

232 J. John et al.

Fig. 4. Execution time for different victim policies on varying number of nodes. (Global
matrix of 100002 64-bit elements organized as 2002 tiles of 502 elements.)

locks will be conflicted leading to large variation in the task acquisition, and thus
in the task execution. The scheduler used here use node level queues that are
ordered by priority, so the select operation can only be done sequentially on all
threads. Additionally, in sparse Cholesky factorization, there are a substantial
number of tasks that do not do any useful computation, as they are operating
on a sparse tile. In such cases, the threads will be spending more time waiting
to extract the work, when compared to actual task execution. Figure 4 shows
the execution time for different victim policies across different numbers of nodes
for multiple runs and it shows that work stealing reduces the variation in the
execution time.

The speedup from work stealing (against ‘No-Steal’ as the baseline is not
uniform across different numbers of nodes as shown in Fig. 5. For each victim
policy, speedup is highest (35%) for 8 nodes, as the potential for work stealing
is high (see Fig. 1). The speedup decreases for larger number of nodes as the
potential for work stealing decreases.

Waiting Time. In all the above experiments, victim policies permit a steal
only if the waiting time to execute a task is more than the time taken to steal
the task. Figure 6 shows the comparison in performance when waiting time is
taken into consideration and when it is not. Waiting time does not seem to affect
Chunk, as the mean execution times with and without considering waiting time
are similar. Conversely, waiting time has a significant effect on Half and Single.

Distributed Work Stealing in a Task-Based Dataflow Runtime 233

Fig. 5. Speedup for different victim policies on varying number of nodes. (Global matrix
of 100002 64-bit elements, organized as 2002 tiles of 502 elements)

Fig. 6. Execution time for different victim policies, with and without waiting time
taken into consideration. (Global matrix of 100002 64-bit elements, organized as 2002

tiles of 502 elements)

In previous work, Perarnau et al. [17] found that Half gives three times the
performance of Chunk for the Unbalanced Tree Search (UTS) benchmark when
waiting time is not considered. UTS has the property that a child task is always
mapped to the same node as its parent task unless stolen by a thief. Due to this
mapping property, Half makes sense in UTS as no new task will be generated
on a starving node. At the same time, there can be an exponential increase
in tasks in a busy node. Also, UTS will not suffer from the same problems
demonstrated in Fig. 3, as no new tasks are generated in a starving node. We
were able to achieve similar results for UTS (Fig. 7) but the performance of Half
was not transferred Cholesky factorization (Fig. 6). We also found that Single
has comparable performance to Half when using UTS.

Experiments we conducted using sparse Cholesky factorization (Fig. 6) show
that when waiting time is not considered Half performs worse than Chunk. When
waiting time is taken into consideration, Half performs better than Chunk, but
not by a huge margin. These experiments suggest that when using workloads that
have child tasks with multiple parents located on different nodes, it is better to
consider waiting time in victim policies. The experiments also demonstrate that

234 J. John et al.

Fig. 7. Execution time for different victim policies when using UTS benchmark (b=120,
m=5, q= 0.200014, g=12 ∗ 106).

if a victim policy gives good performance on one workload, it is not guaranteed
that it will deliver similar performance on another.

Granularity. Granularity is the time taken to execute a single task. The gran-
ularity of different task types may be different but in sparse Cholesky factoriza-
tion, the granularity of all task types is proportional to the tile size. So we tested
the performance of different victim policies against different tile sizes. Table 1
show that work stealing is more effective with increasing granularity. Also, for
smaller granularity, Chunk outperforms Half. Additionally, for small granularity,
work stealing using Half actually degrades performance.

Steal Success Percentage. Steal success percentage is the percentage of steal
requests that have yielded at least one task. Figure 8 shows the steal success
percentage for different victim policy. When imbalance is high, steal success is
the highest for Chunk. At the same time, Fig. 5 shows that the speedup is highest
for Single when imbalance is high. From both these experiments, we can conclude
that stealing more tasks does not guarantee better speedup, even when there is
a high imbalance.

Fig. 8. Steal success percentage of different victim policies on varying numbers of nodes.
(Global matrix of 100002 64-bit elements, organized as 2002 tiles of 502 elements)

Distributed Work Stealing in a Task-Based Dataflow Runtime 235

Table 1. Speedup for different victim policies for different tile sizes. (tiled matrix,
100002 tiles, four nodes)

Execution Time Speedup

Tile size No-Steal Chunk Half Single Chunk Half Single

10 × 10 230 214 244 221 1.077 0.94 1.03

20 × 20 237 235 246 228 1.006 0.96 1.03

30 × 30 255 246 253 238 1.03 1.008 1.07

40 × 40 400 370 388 370 1.08 1.032 1.08

50 × 50 562 501 503 448 1.12 1.11 1.25

5 Conclusion

In this paper, we showed that work stealing is an effective load balancing strategy
in task-based dataflow runtime, delivering a speedup of up to 35% and reducing
variability in execution time. We also demonstrate that stealing more tasks does
not guarantee better speedup, even when there is a high imbalance. When the
task is stolen is more important than how many tasks are stolen and counting
future tasks is critical in determining starvation in a thief policy. These exper-
iments suggest that when using workloads that have child tasks with multiple
parents located on different nodes, it is better to consider waiting time in victim
policies. As an extension of this work, we will be exploring work stealing between
accelerator devices in the same node.

Acknowledgement. This research is undertaken with the assistance of resources and
services from the National Computational Infrastructure (NCI), which is supported by
the Australian Government. We thank George Bosilca and Thomas Herault (Innovative
Computing Laboratory, UTK) for the detailed design discussions.

References

1. Acun, B., et al.: Parallel Programming with Migratable Objects: Charm++ in
Practice, SC 2014, pp. 647–658 (2014). https://doi.org/10.1109/SC.2014.58

2. Agarwal, S., Barik, R., Bonachea, D., Sarkar, V., Shyamasundar, R.K., Yelick, K.:
Deadlock-Free scheduling of X10 computations with bounded resources. In: SPAA
(2007). https://doi.org/10.1145/1248377.1248416

3. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: expressing locality and
independence with logical regions. SC 2012. https://doi.org/10.1109/SC.2012.71

4. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: an efficient multithreaded runtime System. J. Parallel Distrib. Comput.
37(1), 55–69 (1996). https://doi.org/10.1006/jpdc.1996.0107

5. Bosilca, G., Harrison, R., Hérault, T., Javanmard, M., Nookala, P., Valeev, E.F.:
The template task graph (TTG) - an emerging practical dataflow programming
paradigm for scientific simulation at extreme scale. SC 2021 (2021). https://doi.
org/10.1109/ESPM251964.2020.00011

https://doi.org/10.1109/SC.2014.58
https://doi.org/10.1145/1248377.1248416
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1006/jpdc.1996.0107
https://doi.org/10.1109/ESPM251964.2020.00011
https://doi.org/10.1109/ESPM251964.2020.00011

236 J. John et al.

6. Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., Dongarra,
J.: DAGuE: a generic distributed DAG engine for high performance computing.
Parallel Comput. (2012). https://doi.org/10.1109/IPDPS.2011.281

7. Cao, Q., et al.: Extreme-scale task-based cholesky factorization toward climate
and weather prediction applications. PASC 2020 (2020). https://doi.org/10.1145/
3394277.3401846

8. Chamberlain, B.L., Callahan, D., Zima, H.P.: Parallel programmability and the
chapel language. Int. J. High Perform. Comput. Appl. (2007). https://doi.org/10.
1177/1094342007078

9. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 multi-
threaded language. In: PLDI 1998. ACM (1998). https://doi.org/10.1145/277650.
277725

10. Guo, Y., Barik, R., Raman, R., Sarkar, V.: Work-first and help-first scheduling
policies for async-finish task parallelism. In: IPDPS 2009 (2009). https://doi.org/
10.1109/IPDPS.2009.5161079

11. Klinkenberg, J., Samfass, P., Bader, M., Terboven, C., Müller, M.S.: Reactive task
migration for hybrid MPI+OpenMP applications. In: PPAM 2019 (2019). https://
doi.org/10.1007/978-3-030-43222-5 6

12. Klinkenberg, J., Samfass, P., Bader, M., Terboven, C., Müller, M.S.:
CHAMELEON: reactive load balancing for hybrid MPI+OpenMP task-parallel
applications. J. Parallel Distrib. Comput. (2020). https://doi.org/10.1016/j.jpdc.
2019.12.005

13. Kumar, V., Murthy, K., Sarkar, V., Zheng, Y.: Optimized distributed work-
stealing. SC 2016 (2016). https://doi.org/10.1109/ia3.2016.019

14. Olivier, S.L., et al.: UTS: an unbalanced tree search benchmark. In: LCPC (2006).
https://doi.org/10.1007/978-3-540-72521-3 18

15. Paudel, J., Tardieu, O., Amaral, J.N.: On the merits of distributed work-stealing
on selective locality-aware tasks. In: ICPP 2013 (2013). https://doi.org/10.1109/
ICPP.2013.19

16. Paudel, J., Amaral, J.N.: Hybrid parallel task placement in irregular applications.
J. Parallel Distrib. Comput. (2015). https://doi.org/10.1016/j.jpdc.2014.09.014

17. Perarnau, S., Sato, M.: Victim selection and distributed work stealing performance:
a case study. IPDPS 2014 (2014). https://doi.org/10.1109/IPDPS.2014.74

18. Samfass, P., Klinkenberg, J., Bader, M.: Hybrid MPI+OpenMP reactive work
stealing in distributed memory in the PDE framework sam(oa)2. In: IEEE
International Conference on Cluster Computing (2018). https://doi.org/10.1109/
CLUSTER.2018.00051

19. Schlimbach, F., Brodman, J.C., Knobe, K.: Concurrent collections on distributed
memory theory put into practice. In: Euromicro PDP 2013 (2013). https://doi.
org/10.1109/PDP.2013.40

20. Tardieu, O., Wang, H., Lin, H.: A work-stealing scheduler for X10’s task parallelism
with suspension. SIGPLAN 2012 (2021). https://doi.org/10.1145/2145816.2145850

https://doi.org/10.1109/IPDPS.2011.281
https://doi.org/10.1145/3394277.3401846
https://doi.org/10.1145/3394277.3401846
https://doi.org/10.1177/1094342007078
https://doi.org/10.1177/1094342007078
https://doi.org/10.1145/277650.277725
https://doi.org/10.1145/277650.277725
https://doi.org/10.1109/IPDPS.2009.5161079
https://doi.org/10.1109/IPDPS.2009.5161079
https://doi.org/10.1007/978-3-030-43222-5_6
https://doi.org/10.1007/978-3-030-43222-5_6
https://doi.org/10.1016/j.jpdc.2019.12.005
https://doi.org/10.1016/j.jpdc.2019.12.005
https://doi.org/10.1109/ia3.2016.019
https://doi.org/10.1007/978-3-540-72521-3_18
https://doi.org/10.1109/ICPP.2013.19
https://doi.org/10.1109/ICPP.2013.19
https://doi.org/10.1016/j.jpdc.2014.09.014
https://doi.org/10.1109/IPDPS.2014.74
https://doi.org/10.1109/CLUSTER.2018.00051
https://doi.org/10.1109/CLUSTER.2018.00051
https://doi.org/10.1109/PDP.2013.40
https://doi.org/10.1109/PDP.2013.40
https://doi.org/10.1145/2145816.2145850

Task Scheduler for Heterogeneous Data
Centres Based on Deep Reinforcement

Learning

Jaime Fomperosa, Mario Ibañez, Esteban Stafford(B), and Jose Luis Bosque

Dpto. de Ingenieŕıa Informática y Electrónica, Universidad de Cantabria,
Santander, Spain

{jaime.fomperosa,mario.ibanez,esteban.stafford,
joseluis.bosque}@unican.es

Abstract. This article advocates for the leveraging of machine learning
to develop a workload manager that will improve the efficiency of modern
data centres. The proposals stem from an existing tool that allows train-
ing deep reinforcement agents for this purpose. However, it incorporates
several major improvements. It confers the ability to model heterogeneous
data centres and then it proposes a novel learning agent that can not only
choose the most adequate job for scheduling, but also determines the best
compute resources for its execution. The evaluation experiments compare
the performance of this learning agent against well known heuristic algo-
rithms, revealing that the former is capable of improving the scheduling.

Keywords: Deep Reinforcement Learning · Task scheduling ·
Heterogeneous data centres · Machine Learning

1 Introduction

Modern Information Technology (IT) relies heavily on data centres which host
massive amounts of interconnected computers. A subset of these data centres
support the scientific and engineering communities with high performance com-
puting services. The computers that integrate these combine their processing
capabilities to accelerate the execution of complex problems [4].

To harness the power of computer clusters, data centres rely on a Workload
Manager. It is in charge of job scheduling, or choosing jobs awaiting execution
and assigning them to computing resources of the data centre. But this is an NP-
Complete problem that cannot be solved in polynomial time. This is exacerbated
by the huge growth of data centres [1], the wide variety and heterogeneity of
architectures and configurations they host [13,14]. This means that the decision
space of the workload manager has increased substantially, and consequently
so has the difficulty of finding optimal solutions to the problem. It is possible
to find near-optimal solutions using approximation methods [17] or heuristic
[11] algorithms. The latter are commonly found at the core of modern resource
managers, like Slurm [18]. They are characterised by sacrificing optimality for
speed, which is a necessary compromise.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 237–248, 2023.
https://doi.org/10.1007/978-3-031-30442-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_18&domain=pdf
https://doi.org/10.1007/978-3-031-30442-2_18

238 J. Fomperosa et al.

These heuristic algorithms are fairly simple. Three algorithms are usually
implemented nowadays: First In, First Out (FIFO), Shortest Job First (SJF)
[12] and BackFill [7]. There are more complex algorithms that consider several
attributes of each job in order to compute a score, which is then used to sort
and prioritize them, such as WFP3 or UNICEP [16] or F1 [2]. However, these
have difficulties in adapting to changes in the resources, the type of job or the
objectives. Recently, machine learning has shown its adaptability to different
scenarios, contrasting with the static approach of heuristic algorithms [9,10].

Reinforcement Learning (RL) is a branch of machine learning that can
autonomously improve its behaviour through trial and error. A key advantage
of this approach is that it can consider many more parameters than heuristic
algorithms and learn which are the most important. In this context IRMaSim
[6], emerges as a tool to develop and test reinforcement learning algorithms on
a simulator of heterogeneous data centres. A further development of this idea is
RLScheduler [19]. Its results are fairly good despite its coarse simulator, where
only homogeneous data centers with identical compute devices can be modeled.

The main hypothesis of this article is that the Deep Reinforcement Learn-
ing (DRL) techniques used in [19] can be adapted to schedule jobs in a hetero-
geneous data centre and with better performance than state-of-the-art heuristic
algorithms. The pursuit of this hypothesis requires the completion of three steps.
First, the definition of an environment that adequately represents heterogeneous
data centres. To this end the cores of the cluster are grouped into nodes with pos-
sibly differing properties. Second, is the development of the agent itself, deciding
its internal structure, how is the information from the environment fed to it, and
how is the action selected. And third, an evaluation procedure must be devised
where the performance of the agent is compared to that of well known heuristic
algorithms.

The experimental results presented in the evaluation section show two impor-
tant conclusions. First, that heterogeneity poses new challenges to the scheduling
problem, even for classic algorithms that are optimal in homogeneous systems.
Secondly, the proposed agent is able to obtain better results in all the studied
objectives than heuristic algorithms, which confirms that machine learning-based
scheduling is an important new field of study.

The remainder of this article is organised as follows. Section 2 gives an
overview of reinforcement learning resource managers. Section 3 describes the
main proposals of the article. Section 4 presents the evaluation methodology and
discusses its results. Finally, a summary with the most important conclusions of
the article is in Sect. 5.

2 Background

Reinforcement learning systems usually revolve around the concept of an agent
that must drive the behaviour of the environment in order to reach a given
objective. The agent is in charge of making decisions that affect the environment
in some manner, and its aim is to learn how to satisfy the objective. Internally
the agent is implemented with a Deep Neural Network (DNN) that, before going

Task Scheduler for Heterogeneous Data Centres Based on DRL 239

into production, must be trained. This is done by exposing the environment
to stimuli, the agent considers the consequences of the actions it takes and it
progressively learns which ones are better than others.

The training process is divided in epochs, or iterations of sets of stimuli. In
turn, epochs consist of a series of steps, representing the processing of a given
stimulus [15]. In each step the agent performs an action that has an impact
in the environment. This is measured through observations and qualified by a
reward value that indicates whether the impact was positive or negative. At the
end of each epoch, the agent evaluates these and encourages those actions that
helped in reaching the objective. After experiencing a number of epochs, the
agent converges to using a particular set of actions that maximise the rewards
it obtains, and therefore, satisfies the objective.

In the context of resource managers, the environment represents the compute
resources of a data centre and the set of jobs, or workload, to be executed. The
agent must observe the incoming jobs and the state of the data centre, and decide
which job is allocated to which resource in order to achieve an optimization
objective, e.g. slowdown or average waiting time. The jobs are usually stored in a
workload queue, which can potentially be very long and become unmanageable.
Modern resource managers, use an eligible job queue, which is a fixed length
queue that holds the oldest jobs pending execution. The scheduler only considers
jobs in this queue for execution, and when one gets chosen, it vacates the queue
leaving space for another from the workload queue.

RLScheduler combines a reinforcement learning resource manager with a
simplistic data centre simulator to accelerate the training process [19]. The sim-
ulated environment defines a number of computational resources, all with the
same characteristics. Then it is only necessary to keep a number of free resources
to represent the status of the data centre. And knowing to which processors in
particular the job is assigned does not really matter. In RLScheduler, an obser-
vation represents the state of the environment by means of a vector that contains
the attributes of all the eligible jobs.

The simplicity of RLScheduler is also its major drawback, as it considers the
resources to be identical and unrelated. On contrast, modern data centres are het-
erogeneous and structured, as they host compute nodes with a number of proces-
sors or cores. These can have different architectures and compute capacities, which
can have a great impact on scheduling. In addition, some applications must exe-
cute on processors belonging to the same node. Rising to these challenges is the
main objective of this paper. Thus, a redesign of RLScheduler is proposed that
will allow the modeling of heterogeneous systems. As a consequence, it will train
agents to decide on which job to schedule and to which resource it will be assigned.

3 DRL for Scheduling in Heterogeneous Data Centres

This section details the improvements made to RLScheduler allowing its use in
heterogeneous and structured data centres, and also proposes a scheduler agent
that is able to select the best possible combinations of job and node. In order to

240 J. Fomperosa et al.

adequately model these systems, the simulated environment must keep track of
the jobs assigned to each node and their attributes to properly predict the execu-
tion time of the jobs. This also increases the amount of information that must be
taken into account by the agent to make the best possible scheduling decisions.
As a consequence, the observation and actions spaces must be redefined.

3.1 Observation and Action Spaces

The observation space must be able to represent the state of the environment
that the agent will use to decide its next action. Similarly, the action space
contains all the possible actions an agent can take over the environment. As
mentioned in the previous section, RLScheduler considers all the computational
resources of the data centre to have the same properties, making it unnecessary
to identify which resources are allocated to each job. However, in heterogeneous
data centres it is imperative that the compute resources are represented as a set
of nodes with different number of processors. This information must be included
in the observation space. Therefore, it is divided in two sets of attributes, the
Node Observation representing the state of the data centre nodes, and the Job
Observation containing the job information.

The proposed representation of the computational resources is based on the
concept of node. Each one can have a different size and speed, regarding the
number of processors it contains and its clock frequency. As for the jobs, they
are considered memory-sharing embarrassingly parallel applications requesting
a number of processors. Meaning that a job cannot be assigned to more than one
node, that the node must have enough free processors to host the complete job,
and that there is no communication overhead. The reason behind this decision
is to streamline the simulator model. The proposed set of attributes for the
observation space is shown in Table 1. The number of attributes is lower than in
real resource managers, but since the model is expandable, it is fairly simple to
add new attributes for the agent to consider.

Table 1. List of attributes of the Job and Node Observations.

Field Name Notation Description

Job Observation Space

Requested Processors nj Number of processors requested for the job

Requested Time rj Amount of time requested for the job

Wait Time wj Amount of time spent by the job in the job queue

Node Observation Space

Total Processors tpn Number of processors in the node

Free Processors fpn Free processors in the node

Frequency fn CPU clock rate of the node processors

The action space has also been improved to accommodate the node concept.
The agent must not only decide which is the next job to be scheduled, but also

Task Scheduler for Heterogeneous Data Centres Based on DRL 241

to which resource it is allocated. This translates into a new bidimensional action
space, where one dimension covers the jobs in the eligible job queue and the
other represents the nodes in the data centre.

3.2 Agent Architecture

The proposed agent adheres to the actor-critic architecture, which is common
in DRL systems. It combines the use of two similar networks, the actor decides
on the next action, while the critic evaluates the performance of the actor. This
structure tends to improve training times. Compared to the agent in [19], there
are changes in the observation and action spaces that have a significant impact
on its design. A diagram describing the new agent, as well as its relationship
with said spaces is shown in Fig. 1.

Fig. 1. Proposed agent with observation and actions spaces for three jobs and two
nodes.

Since the input to the DNN has to have a fixed size and the number of
jobs in the queue varies over time, an eligible job queue is used with the first
128 pending jobs. This value is the same as in RLScheduler and is also common
practice in workload managers such as Slurm. The agent considers the jobs in the
eligible job queue and their three corresponding attributes, composing the Job
Observation, an array of size 128×3 (1a). Simultaneously it obtains information
about the nodes through the Node Observation array. It has as many rows as
nodes in the data centre and three columns, one for each node attribute (1b).

Next, the agent prepares the observation by merging the Job Observation
and the Node Observation attributes of each combination of job and node, and
adds an extra value called Can Be Scheduled (2), which is defined as cj,n =
nj ≤ fpn resulting in true if the node n has room for the job j and false
otherwise. This combined observation is a matrix with 128 × NumNodes rows
and JobAttributes+NodeAttributes+1. Here, the rows represent all the possible
pairings of jobs and nodes, and the columns are the total number of attributes

242 J. Fomperosa et al.

that define each of these pairs, which in this instance it is equal to seven. The
fact that the Node and Job Observations are combined serves the purposes of
presenting the agent all the possible pairings of nodes and jobs, and allow it to
make a decision with sufficient information.

The next step is to let the agent select from the observation the job-node pair
to be scheduled. This decision is reached with the aid of the actor network of the
agent (3a), which has seven inputs, one for each attribute in the observation.
Then it has three fully-connected hidden layers of 32, 16 and 8 neurons each,
with ReLU as their activation function. Finally, the output layer is of size 1,
as purpose of this network is to provide a single score value for each jobs-node
pairs. The actor is fed the whole observation matrix, therefore, the output is also
not a single score but a column vector of 128×NumNodes scores. Then, a mask
is applied to the score vector to remove the values corresponding to padding
jobs added to complete the observation, or those that request more processors
than those free in the node (4). This way, any job that the agent may choose is
assured to be able to be scheduled without waiting for resources to get free.

Next, a softmax function is applied to the masked vector, transforming the
scores into a probability distribution in which the sum of all elements is 1 (5).
With these probabilities, an action is selected that will indicate the job and node
to be scheduled next, favouring those with higher score. In production this step
is skipped and the job-node pair with the highest score is chosen. The job-node
pair is an integer ai ∈ [0, 128 × NumNodes−1], the index of the job is calculated
as � i

128� and the node as i mod NumNodes (6).
This action is passed on to the simulator that executes the corresponding

scheduling operation. After the simulator advances the time to the next event,
which results in a new state of the environment, a reward (7) will be obtained
based on the chosen objective, together with a new observation representing the
new state of the environment. These are used by the critic network in the agent
(3b) to evaluate the performance of the actor network. It guides the training
process of both networks toward a state where the agent consistently schedules
the jobs to the right computing resources, such that the objective is satisfied.
The goal of the critic network is to predict the reward that a set of jobs would
produce with the given objective.

Three reward functions have been implemented, each corresponding to a
different scheduling metric to be minimised. If ei and wi are the execution and
wait times of job i, the metrics are

– Slowdown (SLD): is the average slowdown, defined as wi+ei
ei

, for all the jobs.
This metric can give very high values when jobs are short.

– Average bounded slowdown (BSLD): variation of the slowdown that is less
sensitive to very short execution times. The bounded slowdown of a job is
defined as max((wi + ei)/max(ei, 10), 1).

– Average waiting time (AVGW): simply averages wi of all jobs.

It is worth noting that all the objectives are related, since they strive to
reduce the delay in the execution of the jobs. However, the average the bounded
slowdown metric is better suited to agent training than the other two. First,

Task Scheduler for Heterogeneous Data Centres Based on DRL 243

it conveys more information than the average waiting time because it includes
the execution time of the jobs, and second, it is more stable than the average
slowdown, since it eludes giving very high values due to short execution times.

3.3 Size Reduction Through Clustering

A drawback of this agent is the large size of the input. For instance, in a data
centre with 16 nodes, the total number of elements of both observations would
be 128 × 16 × 7 = 14336. Doubling the number of nodes in the data centre
results in 28672 elements, which has a clear impact in the performance and the
scalability. Since the size of the queue is fixed to 128, reducing the size of the
observation can only be done by limiting the size of the node observation. This
section describes how this can be accomplished with clustering techniques.

In a data centre, it is common that many nodes have a similar situation,
either due to their equivalent architectural properties or similar load. Then, it
is not necessary to identify exactly which node is going to receive a job, and it
suffices to indicate what kind of node is the target. Taking this into account,
the n nodes of the data centre can be grouped in k clusters of similar attributes
using the k-means algorithm [5]. The attributes of each cluster are calculated
as their mean value for all the nodes in each one. This is applied to the node
observation (1b) before it is merged to the job observation (Fig. 1), which now
carries job-cluster pairs instead of job-node pairs. Like before an attribute c is
calculated, indicating if the job fits in at least one node in the cluster.

The final step after the job-cluster selection has been made is to choose a
specific node for scheduling the job, which is done by simply finding the first
node of the cluster that can execute the job. This selection does not need any
further considerations, as the assumption is that nodes in the same cluster are
similar enough. By grouping the nodes in a fixed number of clusters, the size
of the node observation becomes constant. Thus, it is possible to increase the
number of nodes in the platform without complicating the agent.

4 Evaluation

The proposed agent is evaluated through four instances. The SqSLD agent, SqB-
SDL agent and SqAVGW agent aim to minimise the slowdown, average bounded
slowdown and waiting time, respectively. The ClBSLD agent uses clustering of
the compute resources to minimize the average bounded slowdown, although any
of the other two objectives could have been employed.

The target system is a heterogeneous data centre with 20 nodes. Each can
have between 4 and 64 processors, running at 2, 2.5, 3 or 3.5 GHz. The workload
used is generated from models defined in the Parallel Workloads Archive, Lublin,
1999/2003, commonly used in HPC [3,8]. This workload is composed of 10 000
jobs with varying required processors and execution times.

Also, a set of heuristic algorithms were used for comparison. They are able to
select jobs and the nodes to execute them. These result by combining two algo-
rithms, one to choose the job and another for the resource. These are summarised
in Table 2, then algorithm xy combines job selection x with node selection y.

244 J. Fomperosa et al.

The hyper-parameters used to control the training process of the agents are
mostly the same as in RLScheduler. The most relevant ones are the learning
rate α, with values of 0.0003 and 0.001 for the actor and the critic networks,
respectively, and gamma γ is equal to 0.99.

Table 2. Heuristic job and node selection algorithms.

Name Symbol Description

Job Selection

Random r Random job from the job queue is selected

First f Job with lowest submit time is selected

Shortest s Job with lowest requested run time is selected

Smallest l Chooses job with lowest requested number of processors

Node Selection

Random r Random node is selected

Biggest node b Node with highest number of processors is selected

Fastest node f Node with highest frequency is selected

To explore the training phase, each instance of the agent is subjected to 100
epochs and the evolution of the process is observed to ensure that it converges.
To lighten this process, the workload trace is not used in its full length. One
training epoch consists of 20 trajectories, which are sets of 256 consecutive jobs,
taken at a random time from the original trace. The experimental results show
that 100 epochs are more that enough because convergence was observed after
60 epochs, since the behaviour did not improve in the following epochs.

Once the training phase concludes, the inference stage is evaluated. The
trained agents must schedule trajectories of 1024 jobs extracted from the same
workload. Note that the presented results consider 20 repetitions to avoid obtain-
ing wrong conclusions due to outliers. The scheduling results are evaluated by
comparing the behaviour of the trained instances to that of the heuristic algo-
rithms. These are shown in graphs where the horizontal axis represents the values
of the metrics used, and the vertical axis shows the different schedulers, sorted
by the median. To avoid clutter, only the results for the best heuristic algorithms
are shown. The graphs combine box-and-whisker and violin representations of
the results. The box shows the 25 and 75 percentile, the line in the box indicates
the median, and the whiskers represent extreme values. The violin plots show
result distribution, where fatter parts indicate a higher data density.

Figures 2, 3 and 4 show the promising results of the four agents. In general,
the results prove that intelligent schedulers can perform better than the state-
of-the-art algorithms in a heterogeneous data centre, at least for the objectives
considered in this article.

Note how the algorithms that select the random or first jobs, the first six in
the graphs, give very bad results. In some cases, more than tripling the results

Task Scheduler for Heterogeneous Data Centres Based on DRL 245

Fig. 2. Average slowdown results for heuristic algorithms and SqSLD Agent.

Fig. 3. Average waiting time results for heuristic algorithms and SqAVGW Agent.

Fig. 4. Average bounded slowdown results for heuristic algorithms, SqBSLD and ClB-
SLD Agents.

246 J. Fomperosa et al.

Fig. 5. Agent performance with metrics different of the one used for training.

of the corresponding agent. The algorithms that choose the shortest or smallest
jobs perform better, especially with the random or fastest resource selections.

Considering only the heuristic algorithms, the graphs show the importance of
choosing the right node for a job in the context of a heterogeneous data centre.
Note that only the algorithms that choose the shortest or smallest jobs first
appear in the graphs. The rest had significantly worse results and were excluded
to avoid clutter. It can be seen that sr has always the lowest median, followed by
sf or lr, depending on the metric. As for node selection policy, the best results
are obtained by either random or fastest. It is noticeable that lr presents the
lowest values in all three metrics.

However, all these algorithms are always bested by the intelligent agents.
Indeed, the graphs show that the median is always lower than that of the best
heuristic algorithm sr, also the minimum values of the agents are similar to the
lr. But in all cases they have lower variance than any of the heuristics, ensuring
that good results are given in a more consistent manner.

An improvement was proposed where the complexity of the agent was reduced
by incorporating a clustering algorithm to group the nodes of the data centre.
As this evaluation aims only to establish the cost-benefit relation of adding the
clustering vs. reducing the complexity of the agent, only one objective has been
tested, the average bounded slowdown. The 20 nodes of the system were grouped
into 10 clusters, so the complexity of the DNN was reduced in half.

The results of the ClBSLD Agent (Fig. 4) are comparable to those of the
SqBSDL Agent. The minimum result given by the ClBSLD is smaller than the
SqBSDL, but since it has higher variance, the median ends up being slightly
higher. At any rate, the experiment proves that the clustering method can be
applied in cases where the combined observation has become too large, and many
of the nodes have the same or very similar characteristics.

It is interesting to observe the results of the agents with metrics different to
the ones used for training. To this aim, the SqBSDL Agent instance, trained to
minimise the bounded slowdown, was selected and tested with the other metrics,
average slowdown and waiting time. The results are shown in Fig. 5, compared to
the results of the SqSLD and SqAVGW Agents. In both cases the results of the
agents are roughly similar. Although the median values of SqBSDL are lower
than those of the other two, the best case results are always obtained by the
other instances. This is explained by the fact that bounded slowdown is better
suited to agent training, and therefore, it is able to give a better scheduling.

Task Scheduler for Heterogeneous Data Centres Based on DRL 247

The above evaluation proves that an intelligent agent is able to learn how to
take scheduling actions and obtain better results than classic scheduling algo-
rithms. And this can be done not for a single goal but for different ones, only
constrained by the capabilities of the simulator in which it is working. All this
suggests that using a machine learning agent to schedule a real data centre is an
idea worth considering. Provided that it is possible to obtain a trace of the jobs
typically executed in the system to perform the training of the agent.

5 Conclusions

The fact that data centres are more and more heterogeneous, combined with the
variety of the applications and their requirements, complicates scheduling sig-
nificantly. With homogeneous clusters, heuristic algorithms are used to schedule
jobs, but in heterogeneous ones it is crucial to decide also to which compute
resource they scheduled. This problem is no longer possible to solve with such
algorithms and there has been advances in employing machine learning instead.

This article presents a first approach to solving the scheduling problem in
heterogeneous clusters with deep reinforcement learning. To this aim, it was
necessary to redefine the observation space of the agent, allowing it to perceive
more data from the environment. As well as to broaden the action space to
accommodate the fact that not only jobs but also nodes had to be selected.

Also, two different agents were developed capable of successfully processing
the state of a small heterogeneous data centre and learning to choose adequate
scheduling actions. The second agent is a refinement of the first that through the
use of clustering techniques is capable of giving the similar performance using
a fraction of the memory requirements. The successful training of the agents
was possible thanks to the development of a simulation infrastructure with a
simplistic model of a heterogeneous data centre, that can simulate nodes with a
different number of processors and frequencies.

The evaluation included in this article suggests that it is possible to replace
heuristic schedulers with ones that leverage machine learning techniques. The
experiments show that the behaviour of the machine learning agent gives very
promising results, compared to well known heuristic algorithms.

Next developments could see larger clusters simulated with more detail, in
which contention could be modeled, like that appearing in memory or network
access. Furthermore, the set of objectives to optimise by the scheduler could be
increased by considering energy related metrics.

Acknowledgment. This work has been supported by the Spanish Science and
Technology Commission under contract PID2019-105660RB-C22 and the European
HiPEAC Network of Excellence.

References

1. Bosque, J.L., Perez, L.P.: Theoretical scalability analysis for heterogeneous clus-
ters. In: 4th IEEE/ACM International Symposium on Cluster Computing and the
Grid (CCGrid 2004), Chicago, USA, pp. 285–292. IEEE Computer Society (2004)

248 J. Fomperosa et al.

2. Carastan-Santos, D., De Camargo, R.Y.: Obtaining dynamic scheduling policies
with simulation and machine learning. In: Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis, pp.
1–13 (2017)

3. Feitelson, D.G., Tsafrir, D., Krakov, D.: Experience with using the parallel work-
loads archive. J. Parallel Distrib. Comput. 74(10), 2967–2982 (2014)

4. Garćıa-Saiz, D., Zorrilla, M.E., Bosque, J.L.: A clustering-based knowledge discov-
ery process for data Centre infrastructure management. J. Supercomput. 73(1),
215–226 (2017)

5. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: a K-means clustering algorithm.
J. Roy. Stat. Soc. ser. C 28(1), 100–108 (1979)

6. Herrera, A., Ibáñez, M., Stafford, E., Bosque, J.: A simulator for intelligent work-
load managers in heterogeneous clusters. In: 2021 IEEE/ACM 21st International
Symposium on Cluster, Cloud and Internet Computing (CCGrid), pp. 196–205
(2021)

7. Leonenkov, S., Zhumatiy, S.: Introducing new backfill-based scheduler for SLURM
resource manager. In: Procedia Computer Science, 4th International Young Scien-
tist Conference on Computational Science, vol. 66, pp. 661–669 (2015)

8. Lublin, U., Feitelson, D.G.: The workload on parallel supercomputers: modeling
the characteristics of rigid jobs. J. Parallel Distrib. Comput. 63(11), 1105–1122
(2003)

9. Mao, H., Alizadeh, M., Menache, I., Kandula, S.: Resource management with deep
reinforcement learning. In: Proceedings of the 15th ACM Workshop on Hot Topics
in Networks, pp. 50–56 (2016)

10. Mao, H., Schwarzkopf, M., Venkatakrishnan, S.B., Meng, Z., Alizadeh, M.: Learn-
ing scheduling algorithms for data processing clusters. In: Proceedings of the ACM
Special Interest Group on Data Communication, p. 270–288. SIGCOMM 2019
(2019)

11. Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley Longman Publishing Co., Inc, Boston (1984)

12. Pinedo, M.: Scheduling, vol. 29. Springer, Berlin (2012)
13. Stafford, E., Bosque, J.L.: Improving utilization of heterogeneous clusters. J. Super-

comput. 76(11), 8787–8800 (2020). https://doi.org/10.1007/s11227-020-03175-4
14. Stafford, E., Bosque, J.L.: Performance and energy task migration model for het-

erogeneous clusters. J. Supercomput. 77(9), 10053–10064 (2021). https://doi.org/
10.1007/s11227-021-03663-1

15. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press,
Cambridge (2018)

16. Tang, W., Lan, Z., Desai, N., Buettner, D.: Fault-aware, utility-based job schedul-
ing on blue, gene/p systems. In: IEEE International Conference on Cluster Com-
puting and Workshops, pp. 1–10 (2009)

17. Vazirani, V.V.: Approximation Algorithms. Springer Science & Business Media,
Berlin (2013)

18. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple Linux utility for resource
management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003.
LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/
10968987 3

19. Zhang, D., Dai, D., He, Y., Bao, F.S., Xie, B.: RLScheduler: an automated HPC
batch job scheduler using reinforcement learning. In: SC20: International Con-
ference for High Performance Computing, Networking, Storage and Analysis, pp.
1–15. IEEE (2020)

https://doi.org/10.1007/s11227-020-03175-4
https://doi.org/10.1007/s11227-021-03663-1
https://doi.org/10.1007/s11227-021-03663-1
https://doi.org/10.1007/10968987_3
https://doi.org/10.1007/10968987_3

Shisha: Online Scheduling of CNN
Pipelines on Heterogeneous Architectures

Pirah Noor Soomro1(B), Mustafa Abduljabbar2, Jeronimo Castrillon3,
and Miquel Pericàs1

1 Department Computer Science and Engineering, Chalmers University of
Technology, Gothenburg, Sweden
{pirah,miquelp}@chalmers.se

2 Ohio State University, Columbus, USA
abduljabbar.1@osu.edu

3 Chair for Compiler Construction, Technische Universität Dresden,
Dresden, Germany

jeronimo.castrillon@tu-dresden.de

Abstract. Many modern multicore processors integrate asymmetric
core clusters. With the trend towards Multi-Chip-Modules (MCMs) and
interposer-based packaging technologies, platforms will feature hetero-
geneity at the level of cores, memory subsystem and the interconnect. Due
to their potential high memory throughput and energy efficient core mod-
ules, these platforms are prominent targets for emerging machine learning
applications, such as Convolutional Neural Networks (CNNs). To exploit
and adapt to the diversity of modern heterogeneous chips, CNNs need to be
quickly optimized in terms of scheduling and workload distribution among
computing resources. To address this we propose Shisha, an online app-
roach to generate and schedule parallel CNN pipelines on heterogeneous
MCM-based architectures. Shisha targets heterogeneity in compute per-
formance and memory bandwidth and tunes the pipeline schedule through
a fast online exploration technique. We compare Shisha with Simulated
Annealing, Hill Climbing and Pipe-Search. On average, the convergence
time is improved by ∼ 35× in Shisha compared to other exploration algo-
rithms. Despite the quick exploration, Shisha’s solution is often better
than that of other heuristic exploration algorithms.

Keywords: CNN parallel pipelines · Online tuning · Design space
exploration · Processing on heterogeneous computing units · Processing
on chiplets

1 Introduction

Multicore processors are becoming more and more heterogeneous. Intel’s Meteor
Lake [2] features asymmetric multicore design containing high performance and
power saving cores. Similarly, Apple’s A14 Bionic [1] integrates high perfor-
mance cores called Firestorm and power saving cores called Icestorm. The trend
towards heterogeneity is complemented with the trend towards Multi-Chip-
Module (MCM) integration, which enables lower cost during design and improves
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 249–262, 2023.
https://doi.org/10.1007/978-3-031-30442-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_19&domain=pdf
https://doi.org/10.1007/978-3-031-30442-2_19

250 P. N. Soomro et al.

yield by reducing chip area (chiplets) [13]. When combined with interposer-based
packaging technology, it enables lower latency and high bandwidth transmission
to memory devices such as High Bandwidth Memory (HBM) [8]. Chip manufac-
turers are adopting a mix of these technologies in order to design high performance
processors, resulting in heterogeneity at the level of the cores, memory subsystem
and the Network on Chip (NoC). In order to effectively exploit such architectures,
applications must be optimized considering the impact of different levels of het-
erogeneity. Furthermore, to address the diversity of hardware platforms, the opti-
mization process must be fast and preferably online.

Convolutional Neural Networks (CNNs) have high computational, bandwidth
and memory capacity requirements owing to the large amount of weights and
the increasing size of intermediate results that need to be transferred between
layers. Parallel pipelining has the potential to address these requirements by
partitioning the whole network across devices, and requiring only the inputs to
be exchanged among stages. In chiplet architectures, CNNs could be efficiently
pipelined by distributing layers across chiplets so as to reduce the amount of
weights that need to be copied. Furthermore, pipelining makes the task of load
balancing manageable among heterogeneous computing units.

In order to partition and schedule pipelines, current approaches rely on
designing cost models to steer design space exploration [3,5]. For instance, the
auto-scheduler in [3] explores over ten thousand schedules for a single CNN-layer
pipeline using Halide [22]. The effectiveness of these approaches depends on the
accuracy of the cost model and the scalability of the exploration algorithm.
Sophisticated cost models, some of them using ML-models themselves, have
been proposed and used in [3,4,14,18,32–34]. These models, however, require
extensive training for near-optimal solutions [5], are sensitive to changes in the
execution environment (e.g., DVFS) and architectural parameters, need in-depth
architectural knowledge for model updates, and do not consider the impact of
heterogeneous multicore or chiplet architectures. As heterogeneity at different
levels of processing (e.g. core performance, memory bandwidth and/or MCM
organization) is expected to increase in future HPC platforms, static pipeline
partitioning and scheduling become inflexible. Online auto-tuning of the pipeline
schedule would help to ensure performance portability to future architectures.
However, to make it practical, it is critical that online pipeline partitioning and
scheduling finds an acceptable configuration with low overhead.

Pipe-Search [29] adopts an online exploration approach for finding a pipeline
configuration. It generates a database of pipeline configurations which is space-
intensive and prohibitively slow for larger systems and deeper CNNs. In this
paper, we propose a quick method to determine a meaningful starting point, or
seed, for the exploration coupled with a simple navigation heuristic for efficient
runtime auto-tuning. In Shisha, we leverage statically available information from
the CNN and from the target platform to reduce the number of exploration
points and find a near-optimal solution within reasonable time. A configura-
tion explored by Shisha suggests grouping CNN layers into pipeline stages and
mapping of pipeline stages onto available sets of processing units referred to as

Shisha: Online Scheduling of CNN Pipelines on Heterogeneous Architectures 251

Execution Places (EPs). When generating initial configurations, Shisha aims
at balancing the load among pipeline stages while considering the allocation of
stages to EPs. Shisha improves upon related work in two ways:

– Shisha achieves faster convergence by introducing two novel schemes: (i)
the seed generation and (ii) the online tuning. We demonstrate that Shisha
is able to converge faster than existing algorithms (Simulated Annealing,
Hill Climbing and Pipe-Search) and that it is able to find a solution within
practical time limits.

– We show that Shisha scales better with deeper CNNs and with larger amount
of EPs per processing unit which is one of the limitations of prior online tuning
approaches such as Pipe-Search [29].

Shisha maps pipeline stages to EPs, which could be of any type and number
of processing units, such as multicores or manycores. To measure the quality
of schedules explored by Shisha we compare our results to conventional search
exploration algorithms such as Simulated Annealing (also used by TVM [34]),
Hill Climbing, Exhaustive Search and Random Walk (executed for a longer
period of time), and to Pipe-search, an earlier online tuning approach. We test
Shisha on state of the art CNNs such as ResNet50 [11] and YOLOv3 [24].
The results show that, despite exploring only a tiny portion of the design space
(∼ 0.1% of design space for ResNet50 and YOLOv3), Shisha finds a solution
that is equivalent to exhaustive search. Moreover, due to the guided exploration,
the convergence time is improved by ∼ 35× in Shisha compared to the other
representative exploration algorithms.

2 Motivation and Problem Definition
In a computing platform with different types of memories, the assignment of work-
load and data objects becomes crucial for better performance. To investigate the
impact of different thread and data assignment strategies, we tested the STREAM
Triad benchmark [16] with two data sizes, 19 GB and 31 GB on Intel’s Knights
Landing (KNL) [28]. KNL has two types of memories, 16 GB of high bandwidth
memory(HBM), also called MCDRAM, and 90 GB of DDR4 DRAM. The band-
width of HBM is 4× higher than that of DRAM [26]. This suggests that most of the
application data should be placed in HBM. It also means that HBM should be able
to handle more parallelism until the bandwidth is saturated. For each data size,
15 GB of data are placed in MCDRAM and the remainder of the data are placed
in DRAM. In Fig. 1, we show three cases, namely, 1) when all data are placed in
DRAM (DDR only), 2) when MCDRAM is used as a cache (cache mode), and 3)
when data is distributed across the two memories. As can be seen, with a sensible
thread assignment, the case 3 yields the best performance. This shows that a clever
data partitioning and thread assignment are key to achieve high performance in
the presence of memory heterogeneity. Further analyzing case 3, Fig. 2 shows the
heatmap of the execution time of STREAM Triad with different thread assign-
ments to MCDRAM [16, 32, 64, 128] and DRAM [2, 4, 8, 16]. The optimal number
of threads is determined by a) the memory bandwidth of each memory type, b) the

252 P. N. Soomro et al.

Fig. 1. Comparison of cases 1, 2 and 3. X-axis [X + Y] shows X = threads assigned to
MCDRAM and Y = threads assigned to DRAM

additional bandwidth consumed by each extra thread, and c) the amount of data
to be processed. Results from the experiment show that for each data partition-
ing between HBM and DRAM there is a different optimal thread partitioning. An
important observation from Figs. 2 is that better performance can be achieved by
assigning fewer number of threads per memory type, rather than opting for assign-
ing maximum number of threads.

Fig. 2. (a) & (b) Execution time [s] of STREAM
Triad with data distribution [X-Y], where X =
GBs placed in MCDRAM and Y = GBs placed
in DRAM

Fig. 3. System targeted in this
paper. Memory type X and Y repre-
sent different memory bandwidths.

Problem Definition and General Approach of the Solution:
This work considers a computing platform which is composed of a set of nodes
consisting of high performance cores attached to a high-bandwidth memory
(referred to as Fast Execution Place – FEP) and clusters of relatively slower
cores attached to a low-bandwidth memory (referred to as Slow Execution Place
– SEP). This MCM based scenario is expected for chiplet architectures with
heterogeneous integration and is shown in Fig. 3. Our goal is to run throughput
maximizing CNN inference pipelines on such an architecture.

3 Background and Related Work

There are various schemes for parallelizing CNNs. In data parallelism the work
of a minibatch (a set of inputs) is partitioned among multiple computational
resources. In model parallelism the work is divided according to neurons in

Shisha: Online Scheduling of CNN Pipelines on Heterogeneous Architectures 253

each layer which corresponds to the tensor dimensions in each layer. In layer
pipelining [6] the work is partitioned by distributing network layers among com-
putational resources. Model parallelism within the layer is combined with layer
pipelining by arranging computational resources into multiple teams of workers.
This hybrid parallelism has following benefits: 1) there is no need to replicate
weight and input tensors on all devices, 2) the communication volume and points
are reduced, and 3) the weights can remain cached, thus decreasing memory
round-trips. In the rest of the paper we will refer to CNN pipelines in which
network layers are grouped into pipeline stages. Each pipeline stage is assigned
a unique set of computational resources, referred to as EPs.

Finding out the right schedule and mapping of CNN pipelines on mentioned
architectures is a design space exploration problem, where we are interested
in the configuration that achieves the highest throughput. The configuration
consists of the number of pipeline stages, CNN layers per pipeline stage and a
mapping of pipeline stages to EPs. In the literature, various meta heuristic and
machine learning algorithms have been used such as Simulated Annealing [34],
evolutionary algorithms [3,29], reinforcement learning [4,21] and deep neural
network techniques [5]. The design space under consideration is large and com-
plex, requiring tens of thousands of trials in order to reach a near optimum with
current search schemes.Exploring in such a complex space is NP-hard. Parallel
pipelines for CNN training have been applied in practice [9,12,19,20]. Recently,
Chimera [14] generates a schedule for bi-directional pipelines by using complex
cost models that represent the execution time of one network pass and calculate
the depth and parallelism per pipeline stage. In Halide, [3] the pipeline scheduling
approach uses a cost model that considers 66 platform and application specific
features. For the cost model, 26 out of 66 feature values are predicted by a neural
network trained on random representative programs. According to the specifica-
tions, one training point takes at most 320 min to train the neural network using
different schedule configurations. To predict a schedule for Halide pipelines of a
single CNN layer, the scheduler considers 10k configurations. In comparison, we
show that for a large YOLOv3 network of 52 layer, Shisha considers only 18
configurations.

4 Shisha Exploration Approach

A pipeline configuration consists of two components: 1) the number of CNN
layers assigned to each pipeline stage, and 2) the assignment of each pipeline
stage to an EP. An EP can be a single or multiple cores attached to a memory
module. Therefore, we classify the EPs according to the type of memory. For
example, in Fig. 3 EPs are colored in green or red. We use this classification in
Shisha to provide hints about the characteristics of the computing platforms
with heterogeneous modules.

Shisha is a two-step approach. The first step is the “seed generation”, in
which we use a simplified cost-model to come up with an initial solution. This
initial solution is used in the second step, “online tuning” for faster convergence.

254 P. N. Soomro et al.

4.1 Seed Generation

The goal of the seed generation is to determine a sensible starting configuration
using only static information.

Algorithm 1. Seed Generation
Require: Wl, He, N, L, C
1: seed[N]
2: E[N]
3: for passes in [0..|L − N |] do
4: minw ← min(Wl)
5: n ← min(minw − 1, minw + 1)
6: Wl ← merge(minw, n)
7: seed ← merge layers(minw, n)
8: end for
9: Rank ← rank(seed, Wl, C)

10: for i in [0...N] do
11: E[Ranki] ← assign(Ranki, Hei)
12: end for
13: return seed, E

Algorithm 2. Online Tuning
Require: seed, E, He, α
1: conf ← seed
2: throughput = execute(conf)
3: γ ← 0
4: while γ <α do
5: stage ← slowest stage(conf)
6: t stage ← nearestFEP (E)
7: conf ← move(conf, t stage)
8: Tp = execute(conf)
9: if Tp ≤ throughput then

10: γ + +
11: else
12: γ ← 0
13: throughput ← Tp
14: end if
15: end while
16: return conf

Firstly, Eq. 1 is used to calculate the weights of the CNN layers [15,17,31,32].
For each layer, H,W,C denote the height, width and depth of the input tensor.
R,S represent the height and width of the underlying convolutional kernel and K
is the number of filters of the convolutional kernel. Note that, we are considering
conventional CNNs in this paper, other type of layers can be incorporated in
the context of this work by replacing Eq. 1 with a model for the estimation of
computational intensity of the layers.

W = H × W × C × R × S × K (1)

Secondly, we capture the heterogeneity of the system to support the seed gen-
eration. This is used to guide the mapping of pipeline stages to EPs together
with the total weight of each pipeline stage. We rank the EPs in a decreasing
order of performance, for example, from Fig. 3 green EPs have rank 1 (FEP) and
red ones have rank 2 (SEP). This is a hint to Shisha to balance the workload
considering static knowledge about the heterogeneity of the system.

The seed generation process is described in Algorithm 1. Wl =
[wl1, wl2,wlL] is the weight list, where a layer weight wli is calculated using
Eq. 1. He = [e1, e2, ...eN] is a list of EPs sorted in descending order w.r.t. per-
formance. For example, for Fig. 3 He = [G1, G2, ..Gp, R1, R2, ..Rq] represents
the p EPs that belong to memory types X (green) and q Y (red) EPs. L is
the total number of layers in a given CNN. N is the total number of pipeline
stages in final pipeline (N ≤ L) and C is assignment choice which is discussed
later in this section. The output of Algorithm 1 is a pipeline configuration

Shisha: Online Scheduling of CNN Pipelines on Heterogeneous Architectures 255

Seed = [PS1, PS2, ...PSN], where PSi represents the number of CNN layers
assigned to ith pipeline stage. Output E = [e1, e2, ...eN] is a list of EPs from He

and the corresponding assignment to pipeline stages. Algorithm 1 comprises two
phases. In phase 1 (Lines from 3–8) we generate pipeline stages by combining
CNN layers. The goal of this phase is to merge layers into groups in order to
balance out the cumulative weight of groups. These groups eventually become
pipeline stages. The idea is to look for the layer with lowest weight (Line 4)
and merge it with the immediate neighbour with the smallest weight (Line 5,6).
Typically, the weight distribution in CNN layers does not follow any order, i.e.
a light weight layer can be found between two layers with heavy weights. The
second phase of Algorithm 1 (Lines 9–11) assigns the pipeline stages output by
phase 1 to EPs. In principle, heavy pipeline stages should be assigned to high
performance EPs, however, the assignment is not trivial in practice and requires
to examine the impact of a few heuristics. Eventually, this will help in balancing
execution time per pipeline stage, thus achieving a balanced pipeline.

Stage-to-EP Assignment Heuristics: Once CNN layers are grouped into
pipeline stages, we then assign an EP to each pipeline stage. Since we have
information about performance heterogeneity among EPs, we can make different
choices, such as; 1) Rank pipeline stages w.r.t. number of layers assigned to
each pipeline stage (Rankl). While merging layers into stages, it is sometimes
inevitable to have pipeline stages which are heavy in terms of aggregated weight
with many light weight layers as opposed to a pipeline stage with one heavy
layer. The highest rank corresponds to the pipeline stage with highest number
of layers. We assign higher ranks to SEPs. This facilitates the online tuning phase
later to greedily move the layers among pipeline stages to reach a solution. 2)
Rank pipeline stages w.r.t. aggregated weight of each pipeline stage (Rankw)
Here, we assign the pipeline stages with heavy weights to fast EPs to balance
the load. Line 9 controls this choice in Algorithm 1.

4.2 Online Tuning

For the exploration phase, we strive to reduce the exploration time so that it
is still practical to carry out an online exploration without causing a significant
overhead on execution time. This is particularly challenging given the size of
the multidimensional pipeline configuration space, which often includes an over-
whelming majority of slow configurations. We avoid visiting such configurations
by starting from the seed configuration and incrementally adjusting load distri-
bution by moving layers from one pipeline stage to an adjacent lighter stage. In
Algorithm 2, we describe the auto-tuning scheme of ShishaṪhe required input
is a pipeline configuration generated as a seed. A list of EPs E which repre-
sent a mapping of pipeline stages to the computing platform. The α parameter
controls how many configurations are attempted after a configuration that out-
performs the seed and recently found solution has been detected. The rationale
behind Algorithm 2 is to gradually reduce the load of the slowest pipeline stage
in order to improve the overall throughput of the pipeline. Hence, Shisha finds
the slowest stage (Line 5) and remaps one layer at a time to the nearest faster

256 P. N. Soomro et al.

EPs (Line 6–7). The layer could be popped from front or back end of the stage
depending on the location of new EP. Once a better configuration is found than
any previous one, we try α more times to search for a better configuration. In
Line 6 we balance the workload by moving layers to a nearest fast EP (nFEP)
in pipeline i.e a closer stage which is running on an FEP. However, this is not
the only choice that can be made. The nearest lightest fast EP (nlFEP) is also a
good target to move layers as well. Therefore we keep both options open for the
user to select. The complexity of Shisha is negligible therefore it does not cause
much work to test different choices for a given CNN and computing platform.

5 Experimental Setup

Shisha targets systems that are heterogeneous in core performance and mem-
ory bandwidth. As discussed in Sect. 2, the system under consideration con-
sists of different types of cores attached to different memory modules. Chiplets
such as Nvidia’s Simba [27] and Intel Meteor Lake [2] resemble such types of
architectures. We used the gem5 simulator [7] to simulate heterogeneous cores
and memory bandwidth. The simulator provides flexibility in modeling different
architectures. To simulate different core performances, we used ARM’s bigLit-
tle cores [10] models in gem5 and to simulate different memory types, we tried
different memory bandwidth values using a simple memory model connected to
core cluster in gem5. Inter-EP latency is set to 20 ns [27]. However, the execution
time of pipeline stages is orders of magnitude higher than inter-EP latency, thus
it does not impact the performance of pipeline.

A GEMM-based implementation [23] consists of two operators; 1) Im2Col
and 2) GEneralized Matrix Multiplication (GEMM). We include both operators
to simulate execution time for CNN layers of ResNet50, YOLOv3 and AlexNet.

6 Evaluation

As highlighted previously, Shisha includes a seed generation component and an
online tuning heuristic. In this section, we evaluate the quality of the seed and
the final solution generated by Shisha and analyze the convergence of the online
auto-tuning phase.

Pipe-Search [29] is an online approach that uses a database of pipeline config-
urations sorted w.r.t. the distribution of workload among pipeline stages. It tests
pipeline configurations of various depths and converges to a solution when no bet-
ter solution is found by a time limit set by the user. This approach incurs a high
overhead when generating the database of pipeline configurations which also limits
its scalability. We compare Shisha’s auto-tuning module with a set of exploration
algorithms commonly used in literature, such as Hill Climbing (HC) with proxim-
ity equal to the number of layers in the network, Simulated Annealing (SA) with
cooling factor values ranging from 0.9−5−0.01, Random walk (RW) and in selected
cases, Exhaustive Search (ES). For a fair comparison we test SA and HC with seeds
produced by Shisha referred to as SAs and HCs. For randomized algorithms, we
run 200 times and picked the solution which is closer to near optimal value

Shisha: Online Scheduling of CNN Pipelines on Heterogeneous Architectures 257

Fig. 4. Convergence of exploration algo-
rithms for SynthNet on 8 EPs. Xaxis is
time in log scale

Fig. 5. Throughput of search schemes nor-
malized to ES

We use three CNNs in our experiments. ResNet50 [11] and YOLOv3 [24] are
widely used image classification CNNs. There are 50 compute intensive layers in
ResNet50 and 52 compute intensive layers in YOLOv3. The generation of sorted
configurations, as required byPipe-Search andES, incurs an impractical time over-
head when running ResNet50 and YOLOv3 for more than 4-stage pipelines. There-
fore, we extend our benchmark set with a synthetic network (SynthNet) consisting
of 18 convolutional layers. These layers are taken from the AlexNet architecture
as AlexNet has only five convolutional layers and our testing platform consists of
8 EPs. This is to analyze CNNs that can be run on a higher number of EPs (i.e.
EP > 8) and have a compute complexity matching widely used CNNs.

6.1 Comparison of Shisha with Exploration Algorithms

Figure 4 shows the convergence behavior of all exploration algorithms. The solu-
tion found by Shisha is equal to the best solution found by ES. For a fair
comparison we run SA and HC using the same seed (SAs, HCs) generated by
Shisha as a starting configuration. HC tries configurations in close proximity;
both versions of HC and SA managed to find a better solution (throughput
= 0.80) compared to the best solution (throughput = 0.94). However, the time
of convergence of representative exploration approaches is high, this is because
of using many configurations out of which some are very slow. ES and PS, on
the other hand, incur the overhead of generating a database of configuration.
As shown in Fig. 4, it took 1200 s, after that ES and PS started exploring.
Shisha explores 0.12% of the total design space as compared to Pipe-search
which explores 2.03% of the design space. this is because Shisha attempts con-
figurations which leads towards the solution faster On average, the convergence
time is improved by ∼ 35× in Shisha compared to other search algorithms. In
our approach, the stopping condition is controlled by α as mentioned in Sect. 4.2.
We used α = 10 in our experiments.

6.2 Analysis of Optimality

To quantify the confidence on Shisha solutions, we compared against ES using
larger CNNs. In this experiment we configured a system of four EPs as it takes
a lot of time for ResNet50 and YOLOv3 to run ES for higher number of EPs.

258 P. N. Soomro et al.

Fig. 6. Comparison of Shisha seed
against a set of 100 random seeds. s =
seed, sol = solution, A = YOLOv3 and
B = ResNet50.

Fig. 7. Throughput using different heuris-
tics 1 and configurations of EPs 2

Figure 5 shows the throughput (= 1/(ExecutionT ime of slowest stage)) of the
solution found by Shisha and other algorithms normalized to best solution found
by ES. In case of ResNet50 and YOLOv3, Shisha found the best solution by
exploring 0.1% of the design space. In case of SynthNet, Shisha explored 2.5%
of the design space to find the best solution. This is due to the fact that design
space of SynthNet (18 layers) is smaller than ResNet50 (50 layers) and Shisha
on average tries 25–35 exploration points with α = 10.

6.3 Importance of Seed in the Auto-tuning Phase of Shisha

The seed generated by Shisha contains the mapping of pipeline stages to EPs.
Figure 6 represents the throughput and convergence time of Shisha when initi-
ated with the seed generated by Algorithm 1, represented as Shisha mark(red),
compared to a set of 100 random seeds and solutions obtained with random
seeds. In case of ResNet50, the solution quality in both cases is similar but con-
vergence time is increased by 35% when started with a random seed. In case of
YOLOv3, the throughput of the solution found using Shisha seed is 16% better
and the convergence time is always better than a solution found using a set of
100 random seeds.

6.4 Assignment and Balancing Schemes in Shisha

Section 4.1 and 4.2 discuss various choices that Shisha makes while assigning
EPs and balancing workload among pipeline stages. We investigate the impact
of each of these choices, with results shown in Fig. 7. Table 1 lists the heuristics to
be configured in Shisha. Assignment of EPs in H5 and H6 is random, in order to
study the impact on convergence when no heuristic is used. Table 2 lists various
configurations of the computing platform used to run this sensitivity analysis.
The balancing scheme lightest FEP is effective in all cases as Shisha tries to move
workload to an FEP which takes least time to execute assigned pipeline stage.
This helps in balancing the pipeline as well as maximizing the throughput of the
pipeline. In 80% of the cases, H1 and H3 yield better results. We investigated the
convergence time of both schemes in order to determine the effectiveness of H1

Shisha: Online Scheduling of CNN Pipelines on Heterogeneous Architectures 259

Table 1. Heuristics of Shisha

Heuristic # Assignment of EPs Balancing

H1 Rankl nlFEP

H2 Rankl nFEP

H3 Rankw nlFEP

H4 Rankw nFEP

H5 random nlFEP

H6 random nFEP

Table 2. EPs

Conf. FEPs SEPs

C1 1 8-core 1 8-core

C2 2 8-core 2 8-core

C3 4 4-core 2 8-core

C4 2 8-core 4 4-core

C5 4 4-core 4 4-core

C6 8 4-core NULL

and H3. Figure 8 Shows that the convergence time of H3 is less than H1 in 90%
of the cases. This is due to the fact that in H3 assignment is done w.r.t. weights
which means the configurations tested during exploration take reasonably less
time than in H1. We recommend to use H3 because it converges faster and yields
a near optimal solution.

6.5 Sensitivity Analysis of α

The extent of exploration of Shisha is controlled by α. The value of α should
be chosen such that it allows tuning according to the performance heterogeneity
among FEPs and SEPs while keeping a sensible convergence time. A higher value
of α also means a longer tuning phase. Figure 9 shows the quality of solution
(normalized to throughput obtained when α = 100) for the YOLOv3 pipeline
tested on three platform configurations with the SEPs [3×, 6×, 12×] slower than
the FEPs. In our experiments, the performance difference between ARM’s Big
and Little cores is three folds on average, which is the first case in the figure.
It is shown that with the higher heterogeneity between EPs, higher α yields a
better solution. We use the same starting seed for the same CNN in all cases,
therefore, for lower values of α, throughput behavior is similar, irrespective to
the performance difference between EPs, but in the case of a higher performance
difference, throughput is improved with a higher value of α.

Fig. 8. Convergence time
normalized to minimum
value in each group for H1
and H3.

Fig. 9. Impact of α on the quality of solution in presence
of heterogeneity

260 P. N. Soomro et al.

7 Conclusion

In this work we demonstrate a fast approach to scheduling CNN pipelines on het-
erogeneous computing platforms consisting of fast and slow cores. The proposed
approach is generic and can be used on platforms featuring GPUs or FPGAs, in
addition to asymmetric multicores and chiplets. We utilize compile time infor-
mation in combination with a brief and guided online search for auto-tuning the
CNN layers into parallel pipelines. Our experimental evaluation shows that the
solution found by Shisha is as good as one produced by an exhaustive search
of the design space. The results also show that Shisha scales well with larger
networks and computing platforms. In future work, we will look at more generic
tensor expressions [25] and the effect on seed parameters of high-level algebraic
transformations [30].

Acknowledgment. This work has received funding from the EU Horizon 2020 Pro-
gramme under grant agreement No 957269 (EVEREST), from the AI competence cen-
ter ScaDS.AI Dresden/Leipzig (01IS18026A-D), PRIDE from Swedish Foundation for
Strategic Research with reference number CHI19-0048 and eProcessor from the Euro-
pean High-Performance Computing Joint Undertaking (JU) under grant agreement No
956702. Some of the computations were enabled by resources provided by the Swedish
National Infrastructure for Computing (SNIC) at Chalmers Centre for Computational
Science and Engineering (C3SE) partially funded by Swedish Research Council https://
www.vr.se/ under grant agreement No 2018-05973.

References

1. Apple a14 bionic: Specs and benchmarks. https://nanoreview.net/en/soc/apple-
a14-bionic

2. Intel technology roadmaps and milestones, February 2022. https://www.
intel.com/content/www/us/en/newsroom/news/intel-technology-roadmaps-
milestones.html#gs.z47liy

3. Adams, A., et al.: Learning to optimize halide with tree search and random pro-
grams. ACM Trans. Graph. (TOG) 38(4), 1–12 (2019)

4. Ahn, B.H., et al.: Chameleon: adaptive code optimization for expedited deep neu-
ral network compilation. In: 8th International Conference on Learning Represen-
tations, ICLR 2020 (2020)

5. Anderson, l., et al.: Efficient automatic scheduling of imaging and vision pipelines
for the GPU. Proc. ACM on Program. Lang. 5(OOPSLA) (2021)

6. Ben-Nun, T., Hoefler, T.: Demystifying parallel and distributed deep learning: an
in-depth concurrency analysis. ACM Comput. Surv. (CSUR) 52(4) (2019)

7. Binkert, N., et al.: The gem5 simulator. ACM SIGARCH Comput. Architect. News
39(2), 1–7 (2011)

8. Cho, K., et al.: Design optimization of high bandwidth memory (HBM) interposer
considering signal integrity. In: 2015 IEEE EDAPS, pp. 15–18 (2015)

9. Fan, S., et al.: DAPPLE: a pipelined data parallel approach for training large
models. In: Proceedings of the 26th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pp. 431–445 (2021)

https://www.vr.se/
https://www.vr.se/
https://nanoreview.net/en/soc/apple-a14-bionic
https://nanoreview.net/en/soc/apple-a14-bionic
https://www.intel.com/content/www/us/en/newsroom/news/intel-technology-roadmaps-milestones.html#gs.z47liy
https://www.intel.com/content/www/us/en/newsroom/news/intel-technology-roadmaps-milestones.html#gs.z47liy
https://www.intel.com/content/www/us/en/newsroom/news/intel-technology-roadmaps-milestones.html#gs.z47liy

Shisha: Online Scheduling of CNN Pipelines on Heterogeneous Architectures 261

10. Greenhalgh, P.: Big. little processing with arm cortex-a15 & cortex-a7. ARM White
paper 17 (2011)

11. He, K., et al.: Deep residual learning for image recognition. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778
(2016)

12. Huang, Y., et al.: GPipe: efficient training of giant neural networks using pipeline
parallelism. In: Advances in Neural Information Processing Systems, vol. 32, pp.
103–112 (2019)

13. Kannan, A., et al.: Enabling interposer-based disintegration of multi-core proces-
sors. In: 2015 48th Annual IEEE/ACM MICRO, pp. 546–558. IEEE (2015)

14. Li, S., Hoefler, T.: Chimera: efficiently training large-scale neural networks with
bidirectional pipelines. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pp. 1–14 (2021)

15. Lu, Z., et al.: Modeling the resource requirements of convolutional neural networks
on mobile devices. In: Proceedings of the 25th ACM International Conference on
Multimedia, pp. 1663–1671 (2017)

16. McCalpin, J.D.: Stream benchmark. https://www.cs.virginia.edu/stream/ref.html
17. Minakova, S., Tang, E., Stefanov, T.: Combining task- and data-level parallelism for

high-throughput CNN inference on embedded CPUs-GPUs MPSoCs. In: Orailoglu,
A., Jung, M., Reichenbach, M. (eds.) SAMOS 2020. LNCS, vol. 12471, pp. 18–35.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60939-9 2

18. Mullapudi, R.T., et al.: Automatically scheduling halide image processing pipelines.
ACM Trans. Graph. (TOG) 35(4), 1–11 (2016)

19. Narayanan, D., et al.: PipeDream: generalized pipeline parallelism for DNN train-
ing. In: Proceedings of the 27th ACM SOSP, pp. 1–15 (2019)

20. Narayanan, D., et al.: Memory-efficient pipeline-parallel DNN training. In: Inter-
national Conference on Machine Learning, pp. 7937–7947. PMLR (2021)

21. Oren, J., et al.: SOLO: search online, learn offline for combinatorial optimiza-
tion problems. In: Proceedings of the International Symposium on Combinatorial
Search, vol. 12, pp. 97–105 (2021)

22. Ragan-Kelley, J., et al.: Halide: a language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines. Acm Sigplan Noti. 48(6),
519–530 (2013)

23. Redmon, J.: Darknet: open source neural networks in C (2013–2016). http://
pjreddie.com/darknet/

24. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint:
arXiv:1804.02767 (2018)

25. Rink, N.A., Castrillon, J.: TeIL: a type-safe imperative tensor intermediate lan-
guage. In: Proceedings of the 6th ACM SIGPLAN International Workshop on
Libraries, Languages, and Compilers for Array Programming (ARRAY), ARRAY
2019, pp. 57–68. ACM, New York, June 2019. https://doi.org/10.1145/3315454.
3329959

26. Salehian, S., Yan, Y.: Evaluation of knight landing high bandwidth memory for
HPC workloads. In: Proceedings of the Seventh Workshop on Irregular Applica-
tions: Architectures and Algorithms, pp. 1–4 (2017)

27. Shao, Y.S., et al.: Simba: scaling deep-learning inference with multi-chip-module-
based architecture. In: Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 14–27 (2019)

28. Sodani, A.: Knights landing (KNL): 2nd generation intel R© xeon phi processor. In:
2015 IEEE HCS’27, pp. 1–24. IEEE (2015)

https://www.cs.virginia.edu/stream/ref.html
https://doi.org/10.1007/978-3-030-60939-9_2
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
http://arxiv.org/abs/1804.02767
https://doi.org/10.1145/3315454.3329959
https://doi.org/10.1145/3315454.3329959

262 P. N. Soomro et al.

29. Soomro, P.N., et al.: An online guided tuning approach to run CNN pipelines
on edge devices. In: Proceedings of the 18th ACM International Conference on
Computing Frontiers, pp. 45–53 (2021)

30. Susungi, A., Rink, N.A., Cohen, A., Castrillon, J., Tadonki, C.: Meta-programming
for cross-domain tensor optimizations. In: Proceedings of 17th ACM SIGPLAN
International Conference on Generative Programming: Concepts and Experiences
(GPCE2018), GPCE 2018, pp. 79–92. ACM, New York, November 2018. https://
doi.org/10.1145/3278122.3278131

31. Tang, L., et al.: Scheduling computation graphs of deep learning models on many-
core CPUs. arXiv preprint: arXiv:1807.09667 (2018)

32. Wan, S., et al.: High-throughput CNN inference on embedded arm big. little multi-
core processors. IEEE TCAD (2019)

33. Wu, H.I., et al.: A pipeline-based scheduler for optimizing latency of convolution
neural network inference over heterogeneous multicore systems. In: 2020 2nd IEEE
International Conference on AICAS, pp. 46–49. IEEE (2020)

34. Zheng, L., et al.: Ansor: generating high-performance tensor programs for deep
learning. In: 14th {USENIX} Symposium on {OSDI} 20, pp. 863–879 (2020)

https://doi.org/10.1145/3278122.3278131
https://doi.org/10.1145/3278122.3278131
http://arxiv.org/abs/1807.09667

Proactive Task Offloading for Load
Balancing in Iterative Applications

Minh Thanh Chung1(B) , Josef Weidendorfer2 , Karl Fürlinger1 ,
and Dieter Kranzlmüller1,2

1 MNM-Team, Ludwig-Maximilians-Universitaet (LMU), Munich, Germany
{minh.thanh.chung,karl.fuerlinger,kranzlmueller}@ifi.lmu.de

2 Leibniz Supercomputing Centre (LRZ), Garching, Germany
{josef.weidendorfer,kranzlmueller}@lrz.de

Abstract. Load imbalance is often a challenge for applications in paral-
lel systems. Static cost models and pre-partitioning algorithms distribute
the load at the beginning. Nevertheless, dynamic changes during execution
or inaccurate cost indicators may lead to imbalance at runtime. Reactive
work-stealing strategies can help monitor the execution and perform task
migration to balance the load. However, the benefits depend on migration
overhead and assumption about future execution.

Our proactive approach further improves existing solutions by applying
machine learning to online load prediction. Following that, we propose a
fully distributed algorithm for adapting the prediction result to guide task
offloading. The experiments are performed with an artificial test case and a
realistic application named Sam(oa)2 on three systems with different com-
munication overhead. Our results confirm improvements for important use
cases compared to previous solutions. Furthermore, this approach can sup-
port co-scheduling tasks across multiple applications.

Keywords: HPC · Task-based Parallel Models · MPI+OpenMP ·
Machine Learning · Online Prediction · Dynamic Load Balancing

1 Introduction

Load balancing refers to the distribution of tasks over a set of computing
resources in parallel systems. We simplify load as execution time, where the
load difference between processes results in imbalance. A process is an abstract
entity performing its tasks on a processor. For example, the imbalance can hap-
pen when a process waits for the others in bulk-synchronous parallel programs.
The primary use case in our paper is represented by iterative applications such as
adaptive mesh refinement (AMR) solving partial differential equations (PDEs)
[22]. Traditional methods distribute the load at the beginning by using cost
indicators. However, an unexpected performance slowdown can lead to a new
imbalance. Therefore, dynamic load balancing strategies are more practical to
help, such as work-stealing [9]. Work-stealing principally waits until the queue of
underloaded processes is empty, then overloaded processes will steal tasks within
c© The Author(s) 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 263–275, 2023.
https://doi.org/10.1007/978-3-031-30442-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_20&domain=pdf
http://orcid.org/0000-0001-6119-3852
http://orcid.org/0000-0001-7159-1432
http://orcid.org/0000-0003-0398-4087
http://orcid.org/0000-0002-8319-0123
https://doi.org/10.1007/978-3-031-30442-2_20

264 M. T. Chung et al.

an agreement. In contrast, the reactive approach monitors execution repeatedly
to estimate the load status, and offloads1 tasks if the imbalance ratio reaches
a given condition [13]. The monitored information is the most recent number
of waiting tasks on each queue that implicitly represents computing speed per
process. Following that, the imbalance ratio is estimated; tasks at an overloaded
process can be reactively offloaded to a corresponding underloaded process [23].
Without prior load information, this idea safely fixes a consistent number of
offloaded tasks once. Nevertheless, a very high imbalance case is the challenge
that can limit reactive load balancing.

We propose a proactive approach for offloading tasks to improve the perfor-
mance further. The scheme is based on task characterization and online load
prediction. Instead of monitoring only queue information, we characterize task
features and execution time on-the-fly. Then, we apply this data to train an
adaptive prediction model. The prediction knowledge is learned from dynamic
change during execution. After that, our proactive algorithm will use the pre-
diction result to guide task offloading. The idea is implemented in a task-based
programming framework for shared and distributed memory called Chameleon
[13]. We evaluate this work with an artificial benchmark (matrix multiplication)
and an adaptive mesh refinement (AMR) named Sam(oa)2 [18]. Sam(oa)2 is
a hybrid framework PDE systems on dynamically adaptive tree-structured tri-
angular meshes. Variations in computation cost per element are caused by the
limiting procedure, space-time predictor, and numerical inundation treatment
at coastlines [21]. Our example and implementation can be found in more detail
at (See footnote 5). The main contributions are:

– We discuss what limits the existing reactive approaches and define a proactive
solution based on load prediction.

– Our approach shows when it is possible to apply machine learning on-the-fly
to predict task execution time.

– Then, a fully distributed algorithm for offloading task is proposed to improve
load balancing further.

Finally, the rest of paper begins with related work in Sect. 2. Section 3
describes the terminologies of task-based load balancing and problem motiva-
tion. Online prediction scheme and proactive algorithm for offloading tasks are
addressed in Sect. 4. Finally, Sect. 5 reveals the evaluation and Sect. 6 highlights
conclusion with future work.

2 Related Work

Assuming that system performance is stable, load balancing has been studied in
terms of static cost models and partitioning algorithms [12] [4]. The balance is
achieved by accurately mapping tasks to processors. Our paper focuses on issues
after the work has been already partitioned. As mentioned, performance slow-
down is a reason for imbalance during execution [27]. There are three classes of
1 “Offload” and “migrate” are used interchangeably to denote the migration of tasks.

Proactive Task Offloading for Load Balancing in Iterative Applications 265

dynamic load balancing algorithms, centralized [5], distributed, and hierarchical
[7]. Work stealing is a traditional approach employed in shared memory systems
[2]. For distributed memory, work-stealing is risky because of communication
overhead. Researchers attempted to improve communication by using RDMA
in PGAS programming models [9,15]. Lifflander et al. introduced a hierarchical
technique that applies the persistence principle to refine the load of task-based
applications [17]. Focus on scientific applications where computational tasks
tend to be persistent, Menon et al. proposed using partial information about
the global system state to balance load by randomized work-stealing [19]. To
improve stealing decisions, Freitas et al. analyzed workload information to com-
bine with distributed scheduling algorithms [10]. The authors reduced migration
overhead by packing similar tasks to minimize messages. Instead of enhancing
migration, reactive solutions rely on monitoring execution speed to offload tasks
from an overloaded process to underloaded targets2 [13,23]. The following idea is
replication that aims at tackling unexpected performance variability [24]. How-
ever, this is difficult to know exactly how many tasks should be offloaded or
which processes are truly underloaded in high imbalance cases. Without prior
load knowledge, replication strategies need to fix the target process for replicas,
such as neighbor ranks. The decision is not easy to make and may get high cost.
Using machine learning-based prediction to guide task scheduling is not new.
However, the difference comes from the problem feature and applied context.
Almost all studies have been proposed in terms of cloud [1] or cluster manage-
ment [8] using historic logs or traces [3,25] in profilers, i.e., TAU [26], Extrae [20].
Li et al. introduced an online prediction model to optimize task scheduling as a
master-worker model in R language [16]. Our context is a given distribution of
tasks, and the imbalance is caused by online performance slowdown. Therefore,
offline prediction from historical data is insufficient.

3 Preliminaries and Motivation

The many-task runtimes have been studied in shared memory architectures
[28]. A task is defined by an entry function and its data (e.g., input arguments).
An iterative application has a decomposition into distinct parallel phases of
executing tasks. Barriers synchronize each parallel execution phase (so-called
time step in numerical simulation). Figure 1(A) illustrates an execution phase,
where x-axis represents the time progress, y-axis lists four processes (MPI ranks3

from 0 to 3), and the green boxes indicate tasks. Each rank has 16 tasks, running
by two threads per rank. In general, we define nt independent tasks per phase,
where T = {0, ..., nt − 1} denotes a set of tasks. One task has an associated
execution wallclock time (w ≥ 0) and runs on a specific core until termination.
All tasks in T are distributed on np processes, where P = {0, ..., np − 1} denotes
a set of processes. The real value of w depends on task’s input, CPU frequency,

2 Underloaded targets/processes indicate victims with an under-average load.
3 Process/rank refers interchangeably to an entity where tasks are assigned.

266 M. T. Chung et al.

Fig. 1. The illustration of (A) an iterative task-based execution with 4 ranks, 2 threads
per rank, and (B) a real load imbalance case with Sam(oa)2.

or memory bandwidth. Therefore, it can only be measured at runtime. Below,
we address some definitions and illustrate their symbols in Fig. 1(A).

– Wi: denotes the wallclock execution time of Rank i. Besides, Li is a total load
of Rank i being the sum of load values of all tasks assigned to Rank i.

– Wpar: indicates the longest wallclock execution time (the so-called parallel
wallclock execution time), where Wpar = max∀i∈P Wi.

Thereby, the maximum wallclock execution time (Wmax) is considered as
Wpar, Wmin = min∀i∈P Wi, and the average value is Wavg = avg∀i∈P Wi. Load
balancing strategies need to minimize the Wpar value. To evaluate the balance,
we use a ratio of the maximum and average W values called Rimb in Eq. 1, where
Rimb ≥ 0 and a high Rimb means a high imbalance.

Rimb =
Wmax

Wavg
− 1 (1)

In work-stealing, underloaded ranks exchange information with overloaded ranks
when the task queues are empty, and tasks can be stolen if reaching an agreement.
However, this might be too late in distributed memory because of communication
overhead. In contrast, the reactive balancing approach uses a dedicated thread4.
Based on the most current status, tasks are offloaded by speculative balancing
operations early instead of waiting for empty queues [23]. This approach has
two strategies: reactive task offloading [14] and reactive task replication [24].
Without prior knowledge, the balancing operation of reactive decisions must be
safe at runtime about the number of offloaded tasks and potential victims. In
the cases of high imbalance ratio, such as Fig. 1(B) shows, the uncertainty of
balancing decision at a time tk can affect the overall efficiency after execution.
This leads to motivation for this work such the following points:

(1) For permanently task offloading, how can we know the appropriate number
of tasks to offload?

4 In hybrid MPI+OpenMP, we can spawn multiple threads per rank. One thread can
be dedicated to repeatedly monitoring execution speed and communication.

Proactive Task Offloading for Load Balancing in Iterative Applications 267

(2) For victim selection from phase to phase, how can we know the potential
victims to offload tasks proactively?

(3) For a long-term vision, it is necessary to learn the variability of communi-
cation overhead along with given topology information at runtime.

4 Online Load Prediction and Proactive Task Offloading

4.1 Online Load Prediction

This work exploits a task-based framework of hybrid MPI+OpenMP and a dedi-
cated thread to perform online prediction by machine learning regression model.
The results are then adapted to balance load before a new iteration begins.

Where is dataset from? The inputs (IN) are from two sides: application
(INapp) and system (INsys), where INapp is task-related features and INsys is
related to processor frequencies or performance counters. The output is defined
by OUT , which can be the wallclock execution time of a task or the total load of
a rank in the next execution phases. IN and OUT are normalized from the char-
acterized information at runtime, being used to create a training dataset. Due
to domain-specific applications, users should pre-define influence characteristics
or parameters. Therefore, we design this scheme as a user-defined tool outside
the main library [6].

When is a prediction model trained? Iterative applications can have
many execution phases (iterations) relying on computation scenarios. In hybrid
MPI+OpenMP model, our dedicated thread runs asynchronously with other
threads, which will characterize and collect runtime data in the first iterations
on each rank. We simplify in-out features as configuration parameters in the
tool. Users can flexibly tune the parameters before running applications. This
issue also raises some related questions below.

– Which input features and how much data are effective?
– Why is machine learning needed?
– In which ways do the learned parameters change during runtime?

First, in-out features are based on observing application characteristics. Depend-
ing on each use case, it is difficult to confirm how much data are generally ade-
quate. Therefore, an external user-defined tool is relevant for this issue. Second,
the hypothesis is a correlation between application and system characteristics
that can map to a prediction target over iterations. Also, the repetition of itera-
tive applications facilitates machine learning to learn the behavior. Third, learn-
ing models can be adaptive by re-training in the scope of performance variability.
However, how many levels of variability make the model ineffective has not been
addressed in the paper; this will be extended in future work.

For our experiments, we describe the input and output parameters of online
prediction in Table 1. There are two use cases: synthetic matrix multiplication
(denoted by MxM) and Sam(oa)2. In MxM, the matrix size argument of a task
mainly impacts its execution time. Thereby, we configure the training inputs

268 M. T. Chung et al.

Table 1. The input-output features for training the prediction models.

No. App. Task INapp INsys OUT

1 MxM MxM kernel matrix sizes core freq (Hz) load/task (w)

2 Sam(oa)2 grid traversal previous Li ∅ next Li

being matrix sizes and core frequency. For Sam(oa)2, it uses the concept of grid
sections where each section is processed by a single thread [18]. A traversed
section is an independent computation unit which is defined as a task. Following
the canonical approach of cutting the grid into parts of uniform load, tasks per
rank are uniform and a set of tasks on different ranks might not have the same
load. By characterizing Sam(oa)2, we predict the total load of a rank in an
iteration (LI

i) instead of the wall clock time of each task (w), where L denotes
the total load value of Rank i in Iteration I. To estimate w, we can divide L
by the number of assigned tasks per rank. Furthermore, our observation shows
that LI

i can be predicted by the correlation between the current iteration and
the previous iterations. For example, suppose Rank 0 has finished Iteration I,
and we take the total load values of four previous iterations. In that case, our
training features will be the load values from Iteration I − 4 to I − 1, such as
the following samples I = 8, 9.

· · ·
L4

0, L
5
0, L

6
0, L

7
0 → L8

0

L5
0, L

6
0, L

7
0, L

8
0 → L9

0

(2)

Concretely, the left part of the arrow is training inputs, and the right part is
training labels. Other ranks also use this format for generating their dataset.

4.2 Proactive Algorithm and Offloading Strategies

As Algorithm 1 shows, our proactive algorithm uses the prediction results as
inputs, where Array L contains the total predicted load, Array N denotes the
given number of tasks per rank. The number of ranks (np mentioned in Sect. 3)
is the size of L, N . First, L is sorted by the load values and stored in a new
array L̂. Second, Lavg indicates the average load, which is considered an optimal
balanced value. To estimate how many tasks should be offloaded, Algorithm 1
uses Array R to record the total load of offloaded tasks (so-called remote tasks).
Also, Array TB is used to track the number of local tasks (remaining tasks in a
local rank) and remote tasks. TB is a tracking table with the same number of
rows and columns (= np), where its diagonal represents the local task number,
and the others indicate the remote task number. For example, if the value of
TB[i, j] > 0 (i �= j), Rank i should offload TB[i, j] tasks to Rank j.

In detail, the outer loop goes forward each victim (L̂[i] < Lavg). The under-
loaded value between Rank i and Lavg is then calculated, named δunder, which
means that Rank i needs a load of δunder to be balanced. The inner loop goes
backward each offloader (L̂[j] > Lavg). The overloaded load (δover) between

Proactive Task Offloading for Load Balancing in Iterative Applications 269

Algorithm 1: Proactive Task Offloading

Input : Array L, N , where each has np elements; L[i] is the predicted load, N [i] is the
number of assigned tasks on Rank i.

1 New Array L̂ ← Sort L by the load values

2 Lavg ← ∑np−1
i=0

L[i]
np

3 New Array R; TB /* R has np elements denoting the total load of remote tasks per

rank, TB has np × np elements which record the number of local and remote tasks */
4 for i ← 0 to np − 1 do

5 if L̂[i] < Lavg then

6 δunder ← Lavg − L̂[i] /* the load value under average */

7 for j ← np − 1 to 0 do

8 if L̂[j] > Lavg then

9 δover ← L̂[j] − Lavg /* the load value over average */

10 ŵ ← Estimate the load per task and assert δover ≥ ŵ
11 if δover ≥ δunder then
12 Noff , Loff ← Calculate the number of tasks to offload and the total

load of remote tasks by ŵ, δunder

13 else
14 Noff , Loff ← Calculate the number of tasks to offload and the total

load of remote tasks by ŵ, δover

15 end if

16 Update δunder , L̂ at the index i and j based on Noff , Loff

17 Update N [j], R[j]; TB at the index (i, j), (j, i), (j, j)
18 Break if abs (δunder, Lavg) < ŵ

19 end if

20 end for

21 end if

22 end for
23 return TB

Rank j and Lavg is then calculated and distributed around. To compute the
number of tasks for offloading, we need to know the load per task (w) except in
the cases we predict w directly, i.e., in MxM. Otherwise, the load per task can
be estimated by the total predicted load over the number of assigned tasks per
rank, named ŵ at line 10. Afterward, the number of offloaded tasks (Noff) and
the total offloaded load (Loff) are calculated. The following values of δunder, L̂,
N , R, TB will be updated at the corresponding indices. In line 18, the absolute
value between δunder and Lavg is compared with ŵ to check whether or not the
current offloader has enough tasks to fill up a load of δunder. If not, we will go
through another offloader. Regarding complexity, if we have np ranks in total,
where K is the number of victims, np − K will be offloaders; then the algorithm
takes O(K(np − K)). As mentioned, our implementation is described in more
detail at5. For offloading tasks, we use two strategies: round-robin and packed-
tasks offloading. Round-robin sends task by task, e.g., Algorithm 1 says that R0

needs to offload 3 tasks to R1 and 5 tasks to R2. It will send the 1st task to R1,
the 2nd one to R2, and repeat the progress until all tasks are sent. In contrast,
packed-tasks offloading encodes the three tasks for R1 as a package and send it
once before proceeding R2.

5 https://github.com/chameleon-hpc/chameleon-apps/tree/master/tools/tool load
prediction.

https://github.com/chameleon-hpc/chameleon-apps/tree/master/tools/tool_load_prediction
https://github.com/chameleon-hpc/chameleon-apps/tree/master/tools/tool_load_prediction

270 M. T. Chung et al.

Fig. 2. An evalution of online load prediction for Sam(oa)2 in simulating the oscillating
lake scenario.

Table 2. The overview of compared load balancing methods.

No. Method Description

1 baseline Applications run with default task pre-partition.

2 random ws Randomized work-stealing.

3 react mig With Chameleon, only reactive migration.

4 react rep With Chameleon, only a-priori speculative replication.

5 react mig rep With Chameleon, both reactive migration and replication.

6 proact off1 With Chameleon, proactive task offloading, round-robind.

7 proact off2 With Chameleon, proactive task offloading, packed-tasks

5 Evaluation

5.1 Environment and Online Prediction Evaluation

All tests are run on three clusters with different communication infrastructures
at Leibniz Supercomputing Centre, CoolMUC26, SuperMUC-NG7 and BEAST8.
The CoolMUC2 system has 28-way Haswell-based nodes and FDR14 Infiniband
interconnect. SuperMUC-NG features Intel Skylake compute nodes with 48 cores
per dual-socket, using Intel OmniPath interconnection. In BEAST-system, we
use AMD Rome EPYC 7742 nodes with a higher interconnect bandwidth, HDR
200Gb/s InfiniBand.

The first evaluation shows the results of load prediction with Sam(oa)2. We
run 100 time-steps to simulate oscillating lake scenario. Sam(oa)2 has several
configuration parameters that can be found at [18], such as the number of grid
sections, grid size, etc. This paper use a default configuration to reproduce the
experiments. As mentioned in Subsect. 4.1, the training input features are the
total load of the first finished iterations (the dataset from the first 20 iterations).
To evaluate accuracy, we use MSE loss [11] between real and predicted values as
6 https://doku.lrz.de/display/PUBLIC/CoolMUC-2.
7 https://doku.lrz.de/display/PUBLIC/SuperMUC-NG.
8 https://www.lrz.de/presse/ereignisse/2020-11-06 BEAST/.

https://doku.lrz.de/display/PUBLIC/CoolMUC-2
https://doku.lrz.de/display/PUBLIC/SuperMUC-NG
https://www.lrz.de/presse/ereignisse/2020-11-06_BEAST/

Proactive Task Offloading for Load Balancing in Iterative Applications 271

Fig. 3. The comparison of MxM testcases with 8 ranks in total, 2 ranks per node.

the boxplot in Fig. 2 (left). It shows feasibility when using this prediction scheme
for load balancing, where x-axis points to the scale of machines, and y-axis is
the loss values. Besides, Fig. 2 (right) highlights the comparision between real
and predicted load from R28 to R31 in 16 nodes from Iteration 20 to 99, because
we collect data in Iteration 0–19 to generate the training dataset.

5.2 Artificial Imbalance Benchmark

We use the synthetic MxM test cases to ease reproducibility, where tasks are
independent and uniform load. The number of tasks per rank is varied to cause
different imbalance scenarios. In detail, we generate 4 cases from no imbalance
to a high imbalance ratio (Imb.0 - Imb.3). Compared to the baseline and other
methods, we name the proposed methods proact off1 and proact off2 that apply
the same prediction scheme and proactive algorithm but different offloading
strategies. All compared methods are addressed in Table 2. In Fig. 3, the smaller
ratio is the better. It indicates that the Wpar and waiting-time values between
ranks are low. For reactive solutions, react mig and react rep mig are competi-
tive. However, the case of Imb.3 shows the ratio of ≈ 1.7 with random ws, 1.5–1.1
with react mig and react mig rep on CoolMUC2. proact off1 and proact off2
reduce this under 0.6. On SuperMUC-NG and the BEAST system, the commu-
nication overhead is mitigated by higher bandwidth interconnection, showing
that the reactive methods are still useful. Corresponding to the Imb. values, the
second row of charts highlights the speedup values calculated by execution time
of each method over the baseline.

5.3 Realistic PDE Use Case with Sam(oa)2

In this experiment, we vary the number of ranks on each system, where two
ranks per node and each rank uses full cores of a CPU socket, e.g., 14 threads per
rank on CoolMUC2. For different communication overheads, the tests can show

272 M. T. Chung et al.

Fig. 4. The comparison of imbalance ratios and speedup in various methods by the
usecase of oscillating lake simulation.

scalability and adaptation in various methods. In Fig. 4, reactive or proactive
methods obtain higher performance than the baseline. Compared to react mig,
speculative replication (react rep) usually comes to some cost. However, their
combination react mig rep could help in the cases from 16 ranks on CoolMUC2
and BEAST. The replication strategy is difficult to deal with the imbalance
case of consecutive underloaded ranks. In contrast, our proactive approach uses
online prediction to provide information about potential victims. As we can see,
proact off1 and proact off2 can improve load balancing in the high imbal-
ance cases (≥ 8 ranks). In two offloading strategies, proact off2 has some delay
for encoding a set of tasks when the data is large. Therefore, if an overloaded
rank has multiple victims, the second victim must wait long for proceeding the
first one. Without any objection, the proactive algorithm must depend on the
accuracy of prediction models. However, the features characterized by an online
scheme at runtime can reflect the execution behavior flexibly. Therefore, it is fea-
sible to generate a reasonable runtime cost model. Furthermore, we can combine
reactive and proactive approaches to improve each other.

6 Conclusion

We have introduced a proactive approach for task-based load balancing in dis-
tributed memory systems, which mainly supports the use cases of iterative appli-
cations. This approach is enabled by combining online load prediction and proac-
tive task offloading. We proposed a fully distributed algorithm that utilizes pre-
diction results to guide task offloading. The paper shows that existing reactive
approaches can be limited in high imbalance use cases by lacking load infor-
mation to select victims and wisely decide the number of offloaded tasks. Our

Proactive Task Offloading for Load Balancing in Iterative Applications 273

proactive approach can provide prediction knowledge to make better decisions,
e.g., potential victims and how many tasks should be offloaded. We implemented
this approach in a task-based parallel library and evaluated it with synthetic and
real use cases. The results confirm the benefits in important use cases on three
different systems. For a long-term vision, this work can be considered as a poten-
tial scheme to co-schedule tasks across multiple applications in future parallel
systems. Our solution could work as a plugin on top of a task-based programming
framework for load balancing improvement.

Acknowledgment. The authors would like to thank the Chameleon (http://www.
chameleon-hpc.org/) and MNM team (http://www.mnm-team.org/) for their support
and feedback. Part of the performance results have been obtained on systems in the
test environment BEAST (Bavarian Energy Architecture & Software Testbed) at the
Leibniz Supercomputing Centre.

References

1. Amiri, M., et al.: Survey on prediction models of applications for resources provi-
sioning in cloud. J. Netw. Comput. Appl. 82, 93–113 (2017). https://doi.org/10.
1016/j.jnca.2017.01.016

2. Blumofe, R.D., Joerg, C.F., et al.: Cilk: an efficient multithreaded runtime system.
SIGPLAN Not. 30(8), 207–216 (1995). https://doi.org/10.1145/209937.209958

3. Carrington, L.C., Laurenzano, M., et al.: How well can simple metrics represent the
performance of HPC applications? In: Proceedings of the ACM/IEEE Conference
on Supercomputing (2015). https://doi.org/10.1109/SC.2005.33

4. Catalyurek, U.V., Boman, E.G., et al.: Hypergraph-based dynamic load balancing
for adaptive scientific computations. In: International Parallel and Distributed Pro-
cessing Symposium, pp. 1–11 (2007). https://doi.org/10.1109/IPDPS.2007.370258

5. Chow, Y.C., et al.: Models for dynamic load balancing in a heterogeneous multiple
processor system. IEEE Trans. Comput. C-28(5), 354–361 (1979)

6. Chung, M.T., Kranzlmüller, D.: User-defined tools for characterizing task-parallel
applications and predicting load imbalance. In: 15th International Conference on
Advanced Computing and Applications (ACOMP), pp. 98–105 (2021). https://
doi.org/10.1109/ACOMP53746.2021.00020

7. Corradi, A., Leonardi, L., Zambonelli, F.: Diffusive load-balancing policies for
dynamic applications. IEEE Concurrency 7(1), 22–31 (1999). https://doi.org/10.
1109/4434.749133

8. Delimitrou, C., Kozyrakis, C.: Quasar: resource-efficient and GOS-aware clus-
ter management. SIGPLAN Not. 49(4), 127–144 (2014). https://doi.org/10.1145/
2644865.2541941

9. Dinan, J., Larkins, D.B., et al.: Scalable work stealing. In: Proceedings of the
Conference on High Performance Computing Networking, Storage and Analysis
(2009). https://doi.org/10.1145/1654059.1654113

10. Freitas, V., Pilla, L.L., et al.: Packsteallb: a scalable distributed load balancer
based on work stealing and workload discretization. J. Parallel Distrib. Comput.
150, 34–45 (2021)

11. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016). http://www.deeplearningbook.org

http://www.chameleon-hpc.org/
http://www.chameleon-hpc.org/
http://www.mnm-team.org/
https://doi.org/10.1016/j.jnca.2017.01.016
https://doi.org/10.1016/j.jnca.2017.01.016
https://doi.org/10.1145/209937.209958
https://doi.org/10.1109/SC.2005.33
https://doi.org/10.1109/IPDPS.2007.370258
https://doi.org/10.1109/ACOMP53746.2021.00020
https://doi.org/10.1109/ACOMP53746.2021.00020
https://doi.org/10.1109/4434.749133
https://doi.org/10.1109/4434.749133
https://doi.org/10.1145/2644865.2541941
https://doi.org/10.1145/2644865.2541941
https://doi.org/10.1145/1654059.1654113
http://www.deeplearningbook.org

274 M. T. Chung et al.

12. Karypis, G., Kumar, V.: A coarse-grain parallel formulation of multilevel k-way
graph partitioning algorithm. In: PPSC (1997)

13. Klinkenberg, J., Samfass, P., et al.: Chameleon: reactive load balancing for hybrid
MPI+OpenMP task-parallel applications. J. Parallel Distrib. Comput. 138, 55–64
(2020). https://doi.org/10.1016/j.jpdc.2019.12.005

14. Klinkenberg, J., Samfass, P., et al.: Reactive task migration for hybrid
MPI+OpenMP applications. In: Parallel Processing and Applied Mathematics,
pp. 59–71 (2020). https://doi.org/10.1007/978-3-030-43222-5 6

15. Larkins, D.B., Snyder, J., Dinan, J.: Accelerated work stealing. In: Proceedings of
the 48th International Conference on Parallel Processing (2019)

16. Li, J., Ma, X., et al.: Machine learning based online performance prediction for
runtime parallelization and task scheduling. In: IEEE International Symposium on
Performance Analysis of Systems and Software, pp. 89–100 (2009)

17. Lifflander, J., et al.: Work stealing and persistence-based load balancers for itera-
tive overdecomposed applications. In: Proceedings of the 21st International Sym-
posium on High-Performance Parallel and Distributed Computing, pp. 137–148
(2012)

18. Meister, O., Rahnema, K., Bader, M.: Parallel memory-efficient adaptive mesh
refinement on structured triangular meshes with billions of grid cells. ACM Trans.
Math. Softw. (TOMS) 43(3), 1–27 (2016)

19. Menon, H., Kalé, L.: A distributed dynamic load balancer for iterative applica-
tions. In: Proceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis, pp. 1–11 (2013). https://doi.org/10.
1145/2503210.2503284

20. Munera, A., Royuela, S., et al.: Experiences on the characterization of parallel
applications in embedded systems with Extrae/Paraver. In: 49th International
Conference on Parallel Processing (2020)

21. Rannabauer, L., Dumbser, M., Bader, M.: ADER-DG with a-posteriori finite-
volume limiting to simulate tsunamis in a parallel adaptive mesh refinement frame-
work. Comput. Fluids 173, 299–306 (2018)

22. Renardy, M., Rogers, R.C.: An introduction to partial differential equations, vol.
13. Springer, New York (2006). https://doi.org/10.1007/b97427

23. Samfass, P., Klinkenberg, J., Bader, M.: Hybrid MPI+OpenMP reactive work
stealing in distributed memory in the PDE framework Sam(oa)2. In: IEEE Inter-
national Conference on Cluster Computing, pp. 337–347 (2018)

24. Samfass, P., Klinkenberg, J., et al.: Predictive, reactive and replication-based load
balancing of tasks in chameleon and Sam(oa)2. In: Proceedings of the Platform for
Advanced Scientific Computing Conference (2021)

25. Sharkawi, S., Desota, D., et al.: Performance projection of HPC applications using
SPEC CFP2006 benchmarks. In: International Symposium on Parallel & Dis-
tributed Processing, pp. 1–12 (2009)

26. Shende, S., Malony, A.D., et al.: Portable profiling and tracing for parallel, scien-
tific applications using C++. In: Proceedings of the SIGMETRICS Symposium on
Parallel and Distributed Tools, pp. 134–145

27. Skinner, D., Kramer, W.: Understanding the causes of performance variability in
HPC workloads. In: Proceedings of the IEEE Workload Characterization Sympo-
sium, pp. 137–149 (2005). https://doi.org/10.1109/IISWC.2005.1526010

28. Thoman, P., et al.: A taxonomy of task-based parallel programming technologies for
high-performance computing. J. Supercomput. 74(4), 1422–1434 (2018). https://
doi.org/10.1007/s11227-018-2238-4

https://doi.org/10.1016/j.jpdc.2019.12.005
https://doi.org/10.1007/978-3-030-43222-5_6
https://doi.org/10.1145/2503210.2503284
https://doi.org/10.1145/2503210.2503284
https://doi.org/10.1007/b97427
https://doi.org/10.1109/IISWC.2005.1526010
https://doi.org/10.1007/s11227-018-2238-4
https://doi.org/10.1007/s11227-018-2238-4

Proactive Task Offloading for Load Balancing in Iterative Applications 275

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Environments and Frameworks
for Parallel/Cloud Computing

Language Agnostic Approach
for Unification of Implementation

Variants for Different Computing Devices

Anshu Dubey1,2(B) and Tom Klosterman1

1 Mathematics and Computer Science Division, Argonne National Laboratory,
Lemont, IL 60439, USA

{adubey,tklosterman}@anl.gov
2 Department of Computer Science, University of Chicago, Chicago, IL 60637, USA

Abstract. Scientific software used on high performance computing plat-
forms is in a phase of transformation because of combined increase in the
heterogeneity and complexity of models and hardware platforms. Having
separate implementations for different platforms can easily lead to combi-
natorial explosion, therefore, computational science community has been
looking for mechanisms to express code through abstractions that can
be specialized for different platforms. Some approaches have met success
through the use of template meta-programming in C++. However, their
reliance upon C++ makes these approaches inaccessible to non C++
codes. In this paper, we describe a language agnostic methodology using
macros that not only mimics the behavior of templates as applied in
the abstractions, but also allows the use of code components as building
blocks to explore implementation variants. We have successfully applied
this methodology to Flash-X, a new multiphysics multicomponent code
with many Fortran legacy components.

Keywords: Performance Portability · Implementation Variants ·
Program assembly

1 Introduction

Scientific software used on high performance computing (HPC) platforms is
undergoing a seismic shift in its development approach because of a confluence
of circumstances. On the one side greater understanding of the phenomena of
interest is causing the models to become more complex and heterogeneous, and
on the other side computing platforms are growing in heterogeneity. Two schools
of thoughts have existed for almost the entire history of the field regarding how
to deal with these axes of complexity. One school is represented by the ninja pro-
grammers who like to “program to metal” to squeeze the last little bit of perfor-
mance out of a platform, while the other school is represented by the abstraction
and tool developers that seek to make the platform complexity transparent to
the scientific programmers. Neither approach is viable on its own in this era of
complex workflows and widely varying platform specifications. Some approaches
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 279–290, 2023.
https://doi.org/10.1007/978-3-031-30442-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_21&domain=pdf
https://doi.org/10.1007/978-3-031-30442-2_21

280 A. Dubey and T. Klosterman

that have met with a good amount of success rely upon C++ and its template
meta-programming to achieve something in-between the two extremes outlined
above, e.g. Kokkos [1], Raja [2], and GridTools [3]. However, their reliance upon
C++ makes these approaches inaccessible to non C++ codes. And they too have
a bias towards making the tools transparent to the users. Here, we describe a
language agnostic methodology that embraces a human-in-the-loop paradigm to
provide a way to unify implementation variants needed by different devices.

Our approach has evolved out of a need to adapt FLASH [4], a multiphysics
multicomponent software largely written in Fortran, for the new HPC reality
of heterogeneous architecture. FLASH has traditionally used program synthesis
through component assembly to generate different application instances. Com-
ponents can have multiple alternative implementations, and each of the imple-
mentation is self-describing in the sense that metadata about how it fits into an
application configuration is included with it. Alternative implementations have
traditionally been at most 2 or 3 for a code component to accommodate situa-
tions such as: (1) a different physical regime needing a different algorithm; (2)
difference in fidelity of solution to permit cost-benefit trade-off in computation
time; (3) difference in parallelization approach for different scales. The lowest
granularity of such components has been at the subroutine level, though a typical
code component with alternative implementations includes several subroutines.

With the advent of accelerators we were faced with the need to have many
more alternative implementations just to accommodate differences in hardware
characteristics. Combined with the already existing alternatives, in many situ-
ations we would have had a combinatorial explosion of maintained alternatives
to continue to have the same level of flexibility in application configurability
on different platforms. Often, the alternatives for different devices need either a
different data layout or a different control flow while the arithmetic of the algo-
rithm remains the same. Hence, without some form of unification of the code base
there would be rampant duplication of arithmetic code leading to maintenance
difficulties. This is the primary challenge that template meta-programming in
C++ addresses, which is not available in C or Fortran. Another obvious solu-
tion is to use macros to encode the invariant arithmetic code. We have taken this
approach, but instead of using pre-processor macros, we built a more capable
and versatile macroprocessor that lets us exploit the already existing program
assembly features of FLASH for more flexibility is applying abstractions.

We are using this approach in the new incarnation of FLASH, called Flash-
X [5], which is fundamentally rearchitected with modernization of several key
physics solvers. We highlight the efficacy of our approach in the context of
Spark [6], a new hydrodynamics (hydro) and magnetohydrodynamics (MHD)
solver, which can have many algorithmic variants specialized from a single source
expression.

The paper is organized as follows. Section 2 discusses the literature and
insights from the literature that guided our design. Section 3 describes the pro-
gram synthesis process of FLASH, and the enhancements to the process for
Flash-X. Section 4 describes our custom macroprocessor and its features designed

Unifying Variants 281

for the unification of implementation variants. Section 5 details an example of
how macros are used to unify variants of Spark. Section 6 presents our conclu-
sions.

2 Background and Insights

Separation of Concerns has been the key ingredient of complex HPC software
throughout its history. With a distributed memory model a good design princi-
pal was to keep communication primitives to remain largely isolated from the
core computations in the software. Then one could develop and optimize com-
putational sections of the software as though they were sequential, while scaling
optimizations were localized to the communication sections. The biggest chal-
lenge was to achieve a good decomposition of work so that such separation was
possible without incurring too much communication overhead.

Ever since GPUs became a part of the HPC landscape, scientific software
developers have been looking for ways to utilize them effectively. The HPC com-
munity has been looking for ways to mitigate the challenge of developing and
maintaining code that may need to be different for different devices (i.e. [7,8]).
The solutions have taken several forms, that can be broadly categorized into
two types. The first take the approach of using domain-specific languages such
as [9–11], or abstractions based on C++ template metaprogramming such as
[1,2] where a single expression of the computation can be specialized to the
target device as needed. Some solutions such as Legion [12] also provide asyn-
chronization of data movement along with abstractions. The second set consists
of new HPC languages such as chapel and julia [13,14]. These languages are well
designed, and could become the best option in future, however, they have not
yet reached wide enough adoption for guaranteed future availability.

While many of the solutions described above have been quite useful to HPC
scientific software, none of them is a truly viable option for an already existing
large complex Fortran code such as FLASH because of the extent of rewriting
needed. At the same time, we needed a solution because it is impossible to
refactor the code to suit a divergent set of platform architectures individually.
The outcome of our efforts is a set of tools, one of which is the focus of this
article.

Three key insights have guided the design of our tools. One is that the
more complex portion of abstraction tools is typically the “inferencing”, that
is analysis of the code. A compiler based tool must be conservative in making
transformation choices and it must account for exceptional or corner cases. The
execution engines are relatively easy once the analysis is done. If a code can
make its semantics more explicit, the tool that is doing the translation can be
simplified. This is also the key insight behind domain specific languages. In the
first iteration of our tools’ design we are treating a human-in-the-loop as the
inferencing engine, who is provided with the executor tools to avoid having to
code-to-metal as has been needed in the past.

The second insight is that decomposition of the code into macro like arbi-
trarily sized code-snippets allows separating out arithmetic of the computation

282 A. Dubey and T. Klosterman

from the logic of the control flow, and that turns the code components into
building blocks that can be configured in many different ways. The third insight
is that different aspects of performance portability need different treatment that
are orthogonal to one another. For example, how to unify different variants of
a code component into a single source is completely orthogonal to the chal-
lenge of composing code components into an application instance. And both of
those in turn are orthogonal to the mechanics of orchestrating data movement
between devices as needed. Because of these insights we have developed three
sets of tools where each set addresses itself to only one aspect of portability. The
tools that address the latter two aspects (composing an application instance and
orchestrating data movement) are described elsewhere [15,16]. In this paper we
focus on the tool that is used to turn code components into building blocks for
generating different variants of the same computation.

3 Program Synthesis

Some understanding of program synthesis features in FLASH is a prerequisite
for understanding how it is applied in Flash-X. Therefore, we briefly describe
the relevant features here (see [4] for more details).

3.1 In FLASH

From the outset FLASH was designed to be a component based software sys-
tem where different components and their alternative implementations could be
composed into different application instances. This was achieved through a very
limited configuration domain-specific language (DSL) to encode metadata about
code components. Metadata for a component “C1” includes information such as
other components that must be included with C1, the components that cannot
be included with C1, the state variables, the datafiles, and the runtime parame-
ters that C1 needs. This metadata is encapsulated with the components, making
them self-describing for configuration. In FLASH parlance, the highest level code
component for a specific type of functionality is called a unit, which can have
sub-units at various granularities. For example Grid is the unit for managing
the discretized mesh. It has several sub-units such as GridMain, which imple-
ments the bookkeeping for finite-difference or finite-volume discretization of the
physical domain, GridSolvers, which implements generic numerical solvers such
as multigrid, multipole etc. that operate on the grid, but are called by physics
units with some specialization, GridParticles, which handles data movement of
Lagrangian entities on the mesh if they are included in the simulation, and a few
others. Each of these sub-units can have their own sub-components with arbi-
trary degree of granularity as long as a sub-component is at least a subroutine
and exists in a separate source file. The general rule of thumb is to keep them
as coarse-grained as feasible for ease of maintenance.

Figure 1 shows an example of the highest level config file for the code unit
that computes gravitational potential and acceleration. The lines with # are

Unifying Variants 283

Fig. 1. Snapshot of a Config file for the Gravity unit.

comments. All boldface words are the keywords of the configuration DSL with
specific meaning. For example, this config file indicates that in order to run,
the Gravity unit requires the Driver unit, and that by default it will pick up
the Constant Gravity. The keywords used in this file represent a large fraction
of the DSL syntax. The tool that parses and interprets this DSL has a built
in inheritance mechanism that lets it arbitrate on which code components, and
within them which specific implementation of the code components, to include.
Simultaneously, it can assemble the build system and the necessary runtime
parameters for the application instance.

3.2 Modifications in Flash-X

As discussed in Sect. 2 code components in Flash-X needed to be finer-grained
than at the level of subroutines and functions for unifying source from different
variants of the code components. We refer to the subroutine level components
as functions, and the finer-grained components as sub-functions without any
loss of generality. Also, we wish to differentiate between fundamentally different
numerical methods for a component, which are viewed as alternative implemen-
tations of the Unit API, and variants of the same method which differ from one
another in implementation details. For example, Flash-X supports two methods
for computing shock hydro; Unsplit, and Spark that we do not attempt to unify.
They remain alternative implementations of the hydro unit. However, within
these there are variations in implementation details that relate to performance
on different devices. These implementation details have been unified into a single
high level source for Spark, described later in Sect. 5.

A function in a physics unit typically has some arithmetic interspersed with
some control flow logic. Often the features of the implementation that need
to be modified for optimization are data structures (i.e. array-of-structs ver-
sus structs-of-arrays) and control flow. The fundamental arithmetic operations
remain essentially the same. The first of these, the data structure rearrangement

284 A. Dubey and T. Klosterman

can be done through an existing feature in FLASH configuration tool that allows
array indices to be reordered as specified. Within a function we identify three
different types of code-blocks – declaration, computation and control structures.
Any, or all, of these blocks can be turned into macros to form shorthand for the
code. However, macros by themselves won’t suffice, because some of the sub-
function code-blocks will differ between variants. For a unified code, the macros
must be allowed to have alternative expansions. Additionally, if more than one
variant needs to be included in an application instance it must be possible to
invoke them under different identifiers. For example, if a function foo can gen-
erate two variants, var1 and var2, both of which need to be included in the
application, then it must be possible to call them as foo var1 and foo var2, but
if they are exclusive in another application instance then it should be possible
to simply call foo. Furthermore, with multiple alternative definitions existing for
macros, a mechanism is needed to arbitrate on which variants are to be built
with which definitions.

To achieve these objectives we added a few more keywords to the configu-
ration DSL, and implemented another inheritance mechanism more suitable for
the needs of sub-function level code-blocks. The fundamental difference between
unit and function-level code inheritance and subfunction-level code inheritance
is that the former need only one pass through the source tree, while latter need
as many passes as the number of variants to be included. Some differences also
exist in assembling the build system to account for different names of the vari-
ants. In Flash-X maintained code in the repository is the version with embedded
macros, while the expanded code is used for building the executable, but is never
added to the “main” branch of the repository. Preferred mode is to discard the
expanded code once the computation is over.

4 Macros and Macroprocessor

The macros supported in Flash-X are similar to C preprocessor macros in how
they are defined. They permit arguments, are allowed to be inlined in a regular
programming language statement, and one macro name can be embedded in
another macro’s definition as long as self-reference is avoided. Where our tool
differs from the preprocessor is in permitting alternative definitions, including
null definitions for macros, and an arbitration mechanism to select a specific
definition. The macroprocessor is written in python and the definitions are stored
in “.ini” files, according to the Python ConfigParser format. The source files with
embedded macros that need translation are given the extension “.F90-mc” to
differentiate them from the source files that do not need expansion. For Flash-X
the translation is into Fortran, but the tool can be applied to other languages
by adding “-mc” extension to files with embedded macros. The tool does not
interpret any part of the macro definition, and therefore is completely language
agnostic. The tool operates by parsing through the source tree following the
inheritance path described in Fig. 2 and accumulates all the definitions.

The tool operates by building a list of files to be linked into the object
directory as it traverses the tree. The general rule of inheritance of files is that a

Unifying Variants 285

Fig. 2. Algorithm for generating variants and arbitration on which definition of a macro
to include where.

source file is added to the list when it is first encountered. However, a file with
the same name in a subdirectory replaces previously added files recursively. Files
with “.F90-mc” extension are not linked, instead, the expanded files are placed
directly into the object directory with a “.F90” extension. As mentioned earlier,
this is because we maintain files with embedded macros only, the expanded files
are temporary. When the tool encounters a file to be expanded it checks to see if
it has variants. A file foo.F90-mc with no variants will be expanded into foo.F90.
However, if it were to have variants for say CPU and GPU, two different files will
be generated named foo CPU.F90 and foo GPU.F90, and in the corresponding
Makefile any occurence of foo.o will be replaced by foo CPU.o foo GPU.o. The
alternative definitions of the macros reside in different subdirectories named
identically to the variant names specified in the Config file of the directory where
foo.F90-mc lives.

Figure 3 shows a highly simplified example of code with embedded macros.
All the macros are preceded with phrase @M to let the tool know that a macro
follows. In all the figures macros are encoded in different colors to indicate their
different purposes. The red macros are predefined for convenience and available
to use anywhere in the code. Macros that are local to the code section and have
only one definition are blue, while those that have multiple alternative definitions
are purple. The rightmost boxes in the figure show the code emitted for different
devices through the use of different definitions of the macros.

5 Spark Variants

We now discuss how the macros are applied in Spark, the solver for the equations
of ideal MHD using finite-volume discretization and explicit time integration.
The code performance characteristics on CPU and GPU have been documented
elsewhere (see [6]), and are not relevant for this discussion. Here our objective is
to demonstrate unification of versions of code that are quite different from one

286 A. Dubey and T. Klosterman

Fig. 3. A highly simplified example of the macros for unifying CPU and GPU variants
of the same computation.

another in terms of data access and communication patterns. All the versions can
be regenerated from the same maintained source. First we describe the variants,
and then explain how they were unified into a compact unified code.

5.1 Variants

Flash-X uses adaptive mesh refinement (AMR) [17] for domain decomposition
where each block of cells is typically 163 in 3D with surrounding halo cells
(called guardcells in Flash-X). The primary computational motif in Spark is
stencils. Because stencils tend to be rather large in these calculations, making
blocks smaller is not a good option because then guardcells start to dominate
the memory footprint. Additionally, guardcells need to be updated after every
sweep of stencils update. In AMR this communication step can become expen-
sive at large scales because of irregular communication pattern. A simulation of
supernova with Flash-X can have thousands of blocks, but they cannot be coa-
lesced into larger blocks because adjacent blocks may have different resolution.
One way to reduce communication overhead is to use communication avoidance
techniques, make the halo thicker than is strictly necessary so that every other
round of guardcells update can be avoided. This comes at the cost of extra com-
putation of the inner layers of guardcells. We call this the telescoping version.
This is particularly useful with GPUs because guardcell fill involves communi-
cation. However, depending upon the size of the stencil, this extra computation
can become quite expensive, and when not operating at the largest scales, may
not be a good option. In a non-telescoping version, guardcells are filled before
each stage of sweeping through the stencils update. A second type of variant
comes from the order of traversal of cells during stencil update. For CPUs with
their deep cache hierarchy the more suitable approach is pencil-wise – a row at

Unifying Variants 287

a time, While on the GPU even one a whole block may not expose enough par-
allelism, and it may be necessary to bundle multiple blocks into one data object
for one kernel launch.

5.2 Unifying with Macros

Fig. 4. Example of use of macros with inlining and recursion to unify fine-grain code
blocks that need different data layouts.

Figure 4 shows a code snippet from Spark which covers steps in unification at
the finest granularity. The code computes fluxes from left and right states, repre-
sented in uPlus and uMinus in the example. The first difference is that the CPU
version is written with one spatial dimension while the GPU version uses three
spatial dimensions. Use of inlined macro indices with one of its definitions being
null solves this problem. The second difference is that the GPU code has explicit
loop nest, while the CPU version uses vector notation. This is also countered
with null implementations for loop and loop end macros for the CPU. The def-
inition of hy fluxes can be common to both devices through recursion by using
already defined macros that have different definitions for different devices. The
rightmost box displays the generated code for both CPU and GPU versions.

This method of unification of small code blocks is repeated where possible
until we have a collection of building blocks of reasonable granularity. Next we
build coarser code-blocks that combine fine code-blocks with control logic as
needed. This process is repeated until we arrive at a situation where high level
algorithmic variants can be expressed compactly. Figure 5 shows this process with
an example of two variants, one in telescoping mode and one in non-telescoping
mode. The leftmost box shows the overall structure of the variants at the highest
level. The middle top box expands one of the coarser building blocks while the

288 A. Dubey and T. Klosterman

middle bottom box shows one of the subroutines called from that building block.
The two rightmost boxes show how some of the definitions used in the middle
boxes differ for different devices at the level of finer building blocks. The CPU
code has an outer 2D loop with all the routines called one after another for the
vectors consisting of leading dimension of the arrays. The GPU code has separate
3D loops for each of the subroutine calls to enable maximum parallelization over
the whole data block. Note that the example excludes several lines of essential
code at every level of granularity for clarity.

Fig. 5. Use of building blocks where finer blocks are used to create increasingly coarser
blocks, that ultimately permit expression of algorithmic variants compactly.

6 Conclusions

We have presented a new approach in using macros to enable data locality on
different devices with a single code base for all the arithmetic involved in the
computation. Our approach obtains performance portability to different archi-
tectures through alternative definitions of macros in macro-value pairs. In terms
of functionality this technique resembles template meta-programming of C++
that is used in several abstraction layers being used by various scientific codes.
Our approach provides additional flexibility in turning subfunction level code
snippets into building blocks that can help make the maintained code more com-
pact. Our approach is unique in that its fundamental design is language agnostic.
Additionally, our program synthesis tools are uncomplicated, the macroprocessor
took roughly 2–3 person-week to write initially. We have been adding features
to it as we think of better ways of using the methodologies. In every instance,
updating the tool never takes more than a couple of person days. The initial
unification of telescoping versions only of CPU and GPU codes took 2–3 person

Unifying Variants 289

weeks for a developer who had not written the original code. Since then gener-
ating other variants has taken much less time. An added advantage is that the
macroprocessor can be applied to any code component as a stand alone tool to
generate the corresponding Fortran file that can be inspected by the developers
and can be debugged like any other Fortran source. This approach can provide
a viable performance portability solution for non C++ scientific codes without
a complete rewrite. And the transformation can be applied incrementally which
permits continuous verification during development.

Acknowledgements. This work was supported by supported by the Exascale Com-
puting Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration.

References

1. Edwards, H.C., Sunderland, D.: Kokkos array performance-portable manycore pro-
gramming model. In: Proceedings of the 2012 International Workshop on Program-
ming Models and Applications for Multicores and Manycores. PMAM 2012, pp.
1–10. Association for Computing Machinery, New York (2012). https://doi.org/10.
1145/2141702.2141703

2. Beckingsale, D.A., et al.: Raja: portable performance for large-scale scientific appli-
cations. In: 2019 IEEE/ACM International Workshop on Performance, Portability
and Productivity in HPC (P3HPC), pp. 71–81 (2019). https://doi.org/10.1109/
P3HPC49587.2019.00012

3. Bianco, M., Benedicic, L., et al.: GridTools (2020). https://github.com/GridTools/
gridtools

4. Dubey, A., et al.: Extensible component based architecture for FLASH, a mas-
sively parallel, multiphysics simulation code. Parallel Comput. 35, 512–522 (2009).
https://doi.org/10.1016/j.parco.2009.08.001

5. Dubey, A., et al.: Flash-x: a multiphysics simulation software instrument. Soft-
wareX 19, 101168 (2022). https://doi.org/10.1016/j.softx.2022.101168

6. Couch, S.M., Carlson, J., Pajkos, M., O’Shea, B.W., Dubey, A., Klosterman,
T.: Towards performance portability in the spark astrophysical magnetohydrody-
namics solver in the flash-x simulation framework. Parallel Comput. 108, 102830
(2021). https://doi.org/10.1016/j.parco.2021.102830

7. Unat, D., et al.: Trends in data locality abstractions for HPC systems. IEEE Trans.
Parallel Distrib. Syst. 28(10), 3007–3020 (2017). https://doi.org/10.1109/TPDS.
2017.2703149

8. Mittal, S., Vetter, J.S.: A survey of CPU-GPU heterogeneous computing tech-
niques. ACM Comput. Surv. 47(4) (2015). https://doi.org/10.1145/2788396

9. Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., Amarasinghe, S.:
Halide: a language and compiler for optimizing parallelism, locality, and recom-
putation in image processing pipelines. SIGPLAN Not. 48(6), 519–530 (2013).
https://doi.org/10.1145/2499370.2462176

10. Gysi, T., Osuna, C., Fuhrer, O., Bianco, M., Schulthess, T.C.: Stella: a domain-
specific tool for structured grid methods in weather and climate models. In: Pro-
ceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC 2015. Association for Computing Machinery,
New York (2015). https://doi.org/10.1145/2807591.2807627

https://doi.org/10.1145/2141702.2141703
https://doi.org/10.1145/2141702.2141703
https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.1109/P3HPC49587.2019.00012
https://github.com/GridTools/gridtools
https://github.com/GridTools/gridtools
https://doi.org/10.1016/j.parco.2009.08.001
https://doi.org/10.1016/j.softx.2022.101168
https://doi.org/10.1016/j.parco.2021.102830
https://doi.org/10.1109/TPDS.2017.2703149
https://doi.org/10.1109/TPDS.2017.2703149
https://doi.org/10.1145/2788396
https://doi.org/10.1145/2499370.2462176
https://doi.org/10.1145/2807591.2807627

290 A. Dubey and T. Klosterman

11. Earl, C., Might, M., Bagusetty, A., Sutherland, J.C.: Nebo: an efficient, parallel,
and portable domain-specific language for numerically solving partial differential
equations. J. Syst. Softw. 125, 389–400 (2017). https://doi.org/10.1016/j.jss.2016.
01.023

12. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: expressing locality and
independence with logical regions. In: SC 2012: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis,
pp. 1–11 (2012). https://doi.org/10.1109/SC.2012.71

13. Chamberlain, B.L., Callahan, D., Zima, H.P.: Parallel programmability and the
chapel language. Int. J.High Perform. Comput. Appl. 21(3), 291–312 (2007).
https://doi.org/10.1177/1094342007078442

14. Bezanson, J., Karpinski, S., Shah, V.B., Edelman, A.: Julia: a fast dynamic lan-
guage for technical computing. CoRR abs/1209.5145 (2012)

15. O’Neal, J., Wahib, M., Dubey, A., Weide, K., Klosterman, T., Rudi, J.: Domain-
specific runtime to orchestrate computation on heterogeneous platforms. In:
Chaves, R., et al. (eds.) Euro-Par 2021: Parallel Processing Workshops, pp. 154–
165. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06156-1 13

16. Rudi, J., O’Neal, J., Wahib, M., Dubey, A., Weide, K.: CodeFlow for FLASH: code
generation system for FLASH-X orchestration runtime. Technical Report ANL-
21/17, Argonne National Laboratory, Lemont, IL (2021)

17. MacNeice, P., Olson, K.M., Mobarry, C., de Fainchtein, R., Packer, C.: Paramesh:
a parallel adaptive mesh refinement community toolkit. Comput. Phys. Commun.
126(3), 330–354 (2000). https://doi.org/10.1016/S0010-4655(99)00501-9

https://doi.org/10.1016/j.jss.2016.01.023
https://doi.org/10.1016/j.jss.2016.01.023
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1177/1094342007078442
https://doi.org/10.1007/978-3-031-06156-1_13
https://doi.org/10.1016/S0010-4655(99)00501-9

High Performance Dataframes
from Parallel Processing Patterns

Niranda Perera1(B) , Supun Kamburugamuve2, Chathura Widanage2,
Vibhatha Abeykoon2, Ahmet Uyar2, Kaiying Shan3, Hasara Maithree4,

Damitha Lenadora5, Thejaka Amila Kanewala2, and Geoffrey Fox6

1 Luddy School of Informatics, Computing, and Engineering, Indiana University,
Bloomington, IN 47408, USA

dnperera@iu.edu
2 Indiana University Alumni, Bloomington, IN 47405, USA

3 University of Virginia, Charlottesville, VA 22904, USA
4 University of Moratuwa, Bandaranayake Mawatha, Moratuwa 10400, Sri Lanka

5 University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
6 Biocomplexity Institute and Initiative, University of Virginia, Charlottesville,

VA 22904, USA

Abstract. The data science community today has embraced the con-
cept of Dataframes as the de facto standard for data representation and
manipulation. Ease of use, massive operator coverage, and popularization
of R and Python languages have heavily influenced this transformation.
However, most widely used serial Dataframes today (R, pandas) expe-
rience performance limitations even while working on even moderately
large data sets. We believe that there is plenty of room for improvement
by investigating the generic distributed patterns of dataframe operators.

In this paper, we propose a framework that lays the foundation for
building high performance distributed-memory parallel dataframe sys-
tems based on these parallel processing patterns. We also present Cylon,
as a reference runtime implementation. We demonstrate how this frame-
work has enabled Cylon achieving scalable high performance. We also
underline the flexibility of the proposed API and the extensibility of the
framework on different hardware. To the best of our knowledge, Cylon is
the first and only distributed-memory parallel dataframe system avail-
able today.

Keywords: Dataframes · High performance computing · Data
engineering · Relational algebra · MPI · Distributed Memory Parallel

1 Introduction

The Data Science domain has expanded monumentally in both research and
industry communities over the past few decades, predominantly owing to the
Big Data revolution. Artificial Intelligence (AI) and Machine Learning (ML) offer
even more complexities to data engineering applications, which are now required
to process terabytes of data. Typically, a significant amount of developer time
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 291–304, 2023.
https://doi.org/10.1007/978-3-031-30442-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_22&domain=pdf
http://orcid.org/0000-0003-3076-0011
https://doi.org/10.1007/978-3-031-30442-2_22

292 N. Perera et al.

is spent on data exploration, preprocessing, and prototyping while developing
AI/ML pipelines. Therefore, improving its efficiency directly impacts the overall
pipeline performance.

With the wide adoption of R and Python languages, the data science com-
munity is increasingly moving away from established SQL-based abstractions.
Dataframes play a pivotal role in this transformation [14] by providing a func-
tional interface and interactive development environment for exploratory data
analytics. pandas is undoubtedly the most popular dataframe library available
today. Its open source community has grown significantly, and the API has
expanded up to 200+ operators. Despite this popularity, both R-dataframe and
pandas encounter performance limitations even on moderately large data sets. In
our view, dataframes have now exhausted the capabilities of a single computer,
which paves way for distributed dataframe systems.

There are several significant engineering challenges related to developing
a scalable and high performance distributed dataframe system (Sect. 2.1). In
this paper, we analyze dataframe operators to establish a set of generic dis-
tributed operator patterns and present an open-source high performance dis-
tributed dataframe system framework based on them, Cylon. We take inspira-
tion from Mattson et al’s Patterns for Parallel Programming [13]. Our main
focus is to present a mechanism that promotes an existing serial/ local operator
into a distributed operator (Sect. 2.2, 3). The proposed framework is aimed at
a distributed memory system executing in a Bulk Synchronous Parallel (BSP)
[8,20] environment. This combination has been widely employed by the high
performance computing (HPC) community for exascale computing applications
with admirable success.

2 Dataframe Systems

A dataframe is a heterogeneous data structure containing a set of arrays that
are individually homogeneous. In contrast, deep learning or machine learning
use tensors which are homogeneously typed multidimensional arrays. These two
data structures are integrated to support end-to-end data engineering workloads.
Dataframes were first introduced by the S language in 1990, and their popularity
grew exponentially with R and Python languages [14]. These libraries contain a
large number of SQL-like statistical, linear algebra and, relational algebra opera-
tors and are sequential in execution. With the increasing size of data, there have
been some attempts to scale dataframe execution both in the cloud and high per-
formance computing environments such as, Dask [19], Modin [18], and Koalas.

2.1 Engineering Challenges

While there is a compelling need for a distributed dataframe system, there are
several engineering challenges.

– Lack of Specification: Despite the popularity, there is very little consensus
on a specification/standard for dataframes and their operators amongst the

High Performance Dataframes from Parallel Processing Patterns 293

systems available today. Rapid expansion in applications and the increasing
demand for features may have contributed to this divergence. The current
trend is to use pandas as the reference API specification [18], and we also
follow this approach for the work described in this paper.

– Massive API: pandas API consists of 240 operators [3,18]. There is also
significant redundancy amongst the operators. It would be a mammoth under-
taking to parallelize each of these operators individually. Petersohn et al. [18],
have taken a more practical approach by identifying a core set of operators
(Dataframe Algebra) listed in Table 1. In this paper, we have taken a differ-
ent approach by identifying distributed patterns in dataframe operators, and
devise a framework that can best scale them in a distributed memory parallel
environment.

Fig. 1. Distributed Memory Dataframe Abstraction

Table 1. Modin DataFrame
Algebra [18]

Selection Window
Projection Transpose
Union Map
Difference Aggregation∗

Join ToLabels
Unique FromLabels
GroupBy Rename
Sort

*Not categorized in Modin

– Efficient Parallel Execution: Distributed data engineering systems gen-
erally vary in their execution model. Dask, Modin, and Koalas dataframes
are built on top of a fully asynchronous execution environment. Conversely,
Bulk-Synchronous-Parallel (BSP) model is used in data parallel deep learning.
This mismatch poses a challenge in creating a fully integrated scalable data
engineering pipeline. Our framework attempts to bridge this gap by taking
an HPC approach to parallelizing Dataframe operators.

2.2 System Considerations

There are multiple aspects that need to be considered when developing a dis-
tributed data processing framework [11]. Our distributed dataframe model is
designed based on the following considerations.

– BSP Execution: The most widely used execution models are, 1) Bulk
Synchronous Parallel [8,20] and 2) Fully Asynchronous. The former assumes
all the tasks are executing in parallel, and the executors synchronize with each
other by exchanging messages at certain points. The sections of code between
communication synchronizations execute independently. In the latter, tasks
would be executed independently. Input and output messages will be delivered
using queues, and often this requires a central scheduler to orchestrate the

294 N. Perera et al.

tasks. Many recent data engineering frameworks (e.g. Apache Spark, Dask,
etc.) have adopted fully asynchronous execution. Our framework is based on
BSP execution in a distributed memory environment. Gao et al. [9] recently
published a similar concept for scaling joins over thousands of GPUs. We
intend to show that this approach generalizes to all operators and achieves
commendable scalability and high performance.

– Distributed Memory: Most often the parallel memory model of a sys-
tem is a choice between, 1) Shared : multiple CPU cores in a single machine
via threads/ processes (e.g. OpenMP), 2) Distributed : every instance of the
program is executed on an isolated memory, and data is communicated via
message passing (e.g. MPI), and 3) Hybrid : combines shared and distributed
models. Our framework is developed based on Distributed memory.

– Columnar Data Format: Most of dataframe operators access data along
columns, and using a columnar format allows operators to be vectorized
using SIMD and hardware accelerators (e.g. GPUs). As a result, the patterns
described in this paper focus on columnar dataframes.

– Row-based Partitioning: Dataframe partitioning is semantically different
from traditional matrix/tensor partitioning. Due to the homogeneously typed
data storage, when a matrix/ tensor is partitioned, the effective computation
reduces for each individual partition. By comparison, dataframe operator pat-
terns (Sect. 3.3) show that not all columns of a dataframe contribute equally
to the computation, e.g. join is performed on key columns, while the rest of
the columns move alongside the keys. Both Apache Spark [23] and Dask [19]
follow a row-based partitioning scheme, while Modin [18] uses block-based
partitioning with dynamic partition ID allocation. Our framework employs
BSP execution on a distributed memory parallel environment. We would like
to distribute the computation among all available executors to maximize the
scalability. We also use row-based partitioning because it allows us to hand
over the data partitions with identical schema to each executor.

3 Distributed Memory Dataframe Framework

The lack of a specification presents a challenge in properly defining a dataframe
data structure. It is not quite a relation in an SQL sense, nor a matrix/multidi-
mensional array. For our distributed memory model, we borrow definitions from
Petersohn et al. [18]. Dataframes contain heterogeneously typed data originating
from a known set of domains, Dom = {dom1, dom2, ...}. For dataframes, these
domains represent all the data types they support.

Definition 1. A Schema of a Dataframe, SM is a tuple (DM , CM), where DM

is a vector of M domains and CM is a vector of M corresponding column labels.
Column labels usually belong to String/ Object domain.

Definition 2. A Dataframe is a tuple (SM , ANM , RN), where SM is the
Schema with M domains, ANM is a 2-D array of entries where actual data
is stored, and RN is a vector of N row labels belonging to some domain. Length
of the Dataframe is N , i.e. the number of rows.

High Performance Dataframes from Parallel Processing Patterns 295

3.1 Distributed Memory Dataframe

“How to develop a high performance scalable dataframe runtime?” is the main
problem we aim to address in our framework. We attempt to promote an already
available serial (local) operator into a distributed-memory parallel execution
environment (Fig. 1). For this purpose, we extend the definition of a dataframe
for a distributed memory parallel execution environment with row-based parti-
tioning (Fig. 2).

Definition 3. A Distributed-Memory Dataframe (DMDF) is a virtual col-
lection of P Dataframes (named Partitions) of lengths {N0, ..., NP−1} and a
common Schema SM . Total length of the DMDF is ΣNi = N , and the row labels
vector is the concatenation of individual row labels, RN = {R0R1...RP−1}.

Fig. 2. Distributed Memory Dataframe

Table 2. Communication semantics in
Dataframe Operators and the frequency of
occurrence

Operation Data Structure
Dataframe Array Scalar

Shuffle (AllToAll) Common Rare N/A
Scatter Common Rare N/A
Gather/AllGather Common Common Common
Broadcast Common Common Common
Reduce/AllReduce N/A Common Common

3.2 Building Blocks

As shown in Fig. 1, a distributed operator is comprised of multiple components/
building blocks, such as,

1. Data Structures: The distributed memory framework we employ uses three
main data structures: dataframes, arrays, and scalars. While most of the
operators are defined on dataframes, arrays and scalars are also important
because they present different communication semantics.

2. Serial/Local Operators: These refer to single-threaded implementations of
core operators (Table 1). There could be one or more libraries that provide this
functionality (e.g. numpy, pandas, RAPIDS CuDF, Apache Arrow Compute,
etc). Choice of the library depends on the language runtime, the underlying
memory format, and the hardware architecture.

3. Communication Routines: A BSP execution allows the program to con-
tinue independently until the next communication boundary is reached
(Sect. 2.2). HPC message passing libraries such as MPI (OpenMPI, MPICH,
MSMPI) and UCX provide communication routines for memory buffers
(works for homogeneously typed arrays). The most primitive routines are
tag-based async send and async receive. Complex patterns (generally termed

296 N. Perera et al.

collectives) can be derived on top of these two primitive routines (e.g. MPI-
Collectives, UCX-UCC). The columnar data format represents a column by a
tuple of buffers and a dataframe is a collection of such columns. Therefore, a
communication routine would have to be called on each of these buffers. We
identified a set of communication routines required to implement distributed
memory dataframe operators. These are listed in Table 2.

4. Auxiliary Operators: Partition operators are essential for distributed mem-
ory applications. Partitioning determines how a local data partition is split
into subsets so that they can be sent across the network. This operator is
closely tied with Shuffle communication routine. The goal of hash partition-
ing is to assign a partition ID to each row of the dataframe so that at the end
of the communication routine, all the equal/key-equal rows end up in the same
partition. Ordered Partitioning is used when the operators (e.g. Sort) need to
be arranged based on sorted order. Parallel sorting on multiple key-columns
further complicates the operation by accessing values along row-dimension
(cache-unfriendly). Rebalance repartitions data across the executors equally
or based on a sequence of rows per partition. On average, an executor would
only have to exchange data with its closest neighbors to achieve this. To
determine the boundaries, the executors must perform an AllGather on their
partition lengths. Merge is another important auxiliary operator. It is used
to build the final ordered dataframe in Sort operator to merge individually
ordered sub-partitions (∼merge-sort).

3.3 Generic Operator Patterns

Table 3. Generic Dataframe Operator Patterns
Pattern Operators Result Semantic Communication

Embarrassingly parallel Select, Project, Map, Row-Aggregation Partitioned -
Loosely Synchronous
– Shuffle Compute Union, Difference, Join, Transpose Partitioned Shuffle
– Combine Shuffle Reduce Unique, GroupBy Partitioned Shuffle
– Broadcast Compute Broadcast-Join∗ Partitioned Bcast
– Globally Reduce Column-Aggregation Replicated AllReduce
– Globally Ordered Sort Partitioned Gather, Bcast, Shuffle, AllReduce
– Halo Exchange Window Partitioned Send-recv
Partitioned I/O Read/Write Partitioned Send-recv, Scatter, Gather

*Specialized join algorithm

Our key observation is that dataframe operators can be categorized into several
generic parallel execution patterns. We believe a distributed framework based on
these patterns would make the parallelization of the massive API more tractable.
These generic patterns (Table 3) have distinct distributed execution semantics,
and individually analyzing the semantics allowed us to recognize opportunities
for improvement. Rather than optimizing each operator individually, we can
focus more on improving bottlenecks of the pattern, and thereby benefiting all
operators derived from it.

High Performance Dataframes from Parallel Processing Patterns 297

Result Semantic: A local dataframe operator may produce dataframes, arrays,
or scalars as results. When we promote a local operator to distributed memory,
these result semantics could be nuanced (a global-viewed dataframe). Distributed
memory dataframes (and arrays) are partitioned, and therefore a dataframe/ar-
ray result (e.g. select, join, etc.) should also be partitioned. By contrast,
scalars cannot be partitioned, so when an operator produces a scalar, it needs
to be replicated to preserve the overall operator semantic.

Embarrassingly Parallel (EP). EP operators are the most trivial class of
operators. They do not require any communication to parallelize the computa-
tion. Select, Project, Map, and Row-Aggregation fall under this pattern. While
Select and Map apply to rows, Project works by selecting a subset of columns.
These operations are expected to show linear scaling. Arithmetic operations (e.g.
add, mul, etc.) are good examples of this pattern.

Loosely Synchronous

1. Shuffle-Compute: This is a common pattern that can be used for operators
that depend on Equality/Key Equality of rows. Of the core dataframe oper-
ators, join, union and difference directly fall under this pattern, while
transpose follows a more nuanced approach.
Hash partitioning and shuffle communication rearrange data in such a way
that equal/key-equal rows are on the same partition. Corresponding local
operation can then be called trivially. Join, Union and Difference operators
follow this pattern:

HashPartition → Shuffle → LocalOp

The local operator may access memory randomly, and allowing it to work
on in-cache data improves the efficiency of the computation. We could also
simply attach a local hash partition block at the end of the shuffle to achieve
this since hash-partitioning can stream along the columnar data and is fairly
inexpensive.

HashPartition → Shuffle → LocalHashPartition → LocalOp

A more complex scheme would be to hash-partition data into much smaller
sub-partitions from the start. Possible gains on each of these schemes depend
heavily on runtime characteristics.
Transpose is important for dataframe Pivot operations. It can be implemented
without communication in a block partitioned environment [18]. In a row
partitioned setup, a shuffle is required at the end of block-wise local transpose
to rearrange the blocks.

2. Combine-Shuffle-Reduce: An extension of the Shuffle-Compute pattern,
Combine-Shuffle-Reduce is semantically similar to the famous MapReduce
paradigm. The operations that reduce the resultant dataframe length such
as Groupby and Unique, could benefit from this pattern. The initial local
operation would reduce data into a set of intermediate results (similar to the
combine step in MapReduce) e.g. groupby.std, creating sum_x2, sum_x, and

298 N. Perera et al.

count_x, which would then be shuffled. Upon their receipt, a local operation is
performed to finalize the results. Perera et al. [17] also discuss a similar app-
roach for dataframe reductions. The effectiveness of combine-shuffle-reduce
over shuffle-compute depends on the Cardinality (C) (Sect. 3.4).

LocalOp (interm. res.) → HashPartition → Shuffle → LocalOp (final res.)

3. Broadcast-Compute: This requires a broadcast routine rather than shuf-
fle. broadcast_join, a special algorithm for join, is a good example of this
pattern. Broadcasting the smaller length relation to all other partitions and
performing a local join is potentially much more efficient than shuffling both
relations.

4. Globally-Reduce: This is most commonly seen in dataframe Column Aggre-
gation operators. It is similar to EP, but requires communication to arrive
at the final result. For example, calculating the column-wise mean requires a
local summation, a global reduction, and a final value calculation. Some util-
ity methods such as distributed length and equality also follow this pattern.
For large data sets, the complexity of this operator is usually governed by the
computation rather than the communication.

LocalOp → Allreduce → Finalize

5. Halo Exchange: This is closely related to window operations. pandas API
supports rolling and expanding windows. For row-partitions, the windows at
the boundaries would have to communicate with their neighboring partitions
and exchange partially computed results. The amount of data sent/received
is based on the window type and individual length of partitions.

6. Globally Ordered: Ascending order of rows (rowi ≤ rowj) holds if all
elements in rowi are less than or equal to the corresponding element in rowj .
Ordered partitioning preserves this order along the partition indices. For a
single numerical key-column, the data can be range-partitioned based on a
key-data histogram.

Sample → Allreduce range → Range part. → Shuffle → Local sort

For multiple key-columns, we use sample sort with regular sampling [12]. It
sorts data locally and sends out a sample to a central entity that determines
pivot points for data. Based on these points, sorted data will be split and
shuffled, and finally all executors merge the received sub-partitions locally.

Local
sort → Sample → Gather

@rank0 → Calc. pivots
@rank0 → Bcast

pivots → Split → Shuffle → Local
merge

Partitioned I/O. Partitioned Input parallelizes the input data (CSV,
JSON, Parquet) by distributing the files to each executor. It may distribute
a list of input files to each worker evenly. Alternatively, it receives a custom
one-to-many mapping from worker to input file(s) and reads the input files
according to the custom assignment. In Partitioned Output, each executor
writes its own partition dataframe to one file.

High Performance Dataframes from Parallel Processing Patterns 299

3.4 Runtime Aspects

– Cardinality: Hash-shuffle in Shuffle-Compute pattern roughly takes O(n) +
O(log P ∗n), where n is average length of a partition. In the Combine-Shuffle-
Reduce pattern, the initial local operation has the potential to reduce com-
munication order to n′ < n. This gain depends on the Cardinality (C) of the
dataframe C ∈ [1

N , 1], which is the number of unique rows relative to the
length. C ∼ 1

N =⇒ n′ ≪ n, making the combine-shuffle-reduce much more
efficient than a shuffle-compute. Consequently, when C ∼ 1 =⇒ n′ ∼ n may
in fact worsen the combine-shuffle-reduce complexity. In such cases, shuffle-
compute pattern is more efficient (5).

– Data Distribution: This heavily impacts the partitioning operators. When
there are unbalanced partitions, some executors may be underutilized, thereby
affecting the overall distributed performance. Work-stealing scheduling is
a possible solution to this problem. In a BSP environment, pseudo-work-
stealing execution can be achieved by storing partition data in a shared object
store. Some operations could employ different operator patterns based on the
data distribution. (e.g. When one relation is very small, Join could use a
broadcast_join).

– Logical Plan Optimizations: An application consists of multiple
Dataframe operator. Semantically, they are arranged in a DAG (directed
acyclic graph), i.e. logical plan. An optimized logical plan can be generated
based on rules (e.g. predicate push-down) or cost metrics. While these opti-
mizations produce significant gains in real-life applications, this is an orthog-
onal detail to the individual operator patterns we focus on in this paper.

4 Cylon

Cylon is a reference distributed memory parallel dataframe runtime based on
Sect. 3. We extended concept to implement a similar GPU Dataframe system,
GCylon. The source code is openly available in GitHub [6] under Apache License.

4.1 Architecture

– Arrow Format & Local Operators: Cylon was developed in C++
using Apache Arrow Columnar format, which allows zero-copy data trans-
fer between language runtimes. Arrow C++ Compute library is used for the
local operators where applicable. Some operators were developed in-house.
Additionally, we use pandas and numpy in Python for EP operators.

– Communication: Cylon currently supports MPI (OpenMPI, MPICH,
MSMPI), UCX, and Gloo communication frameworks. The communication
routines (Table 2) are implemented using a collection of non-blocking routines
on internal dataframe buffers. For the user, it would be a blocking routine on
dataframes. For example, Dataframe Gather is implemented via a series of
NB_Igatherv calls on each buffer.

300 N. Perera et al.

– Auxiliary Operators: Cylon supports all auxiliary operators discussed in
Sect. 3. These operators are implemented with utilities developed in-house
and from Arrow Compute, and for GCylon, we use CuDF utilities where
applicable.

– Distributed Operators Except for Window and Transpose, Cylon imple-
ments the rest of the operators identified in Table 1. As shown in Fig. 1, all of
them are implemented as a composition of local, auxiliary and communica-
tion operators based on the aforementioned patterns. Currently the pandas
operator coverage is at a moderate 25%, and we are working on improving
the coverage.

4.2 Features

– Scalability and High Performance: Cylon achieves above-average scala-
bility and higher performance than the commonly used distributed dataframe
systems. In Sect. 5, we compare strong scaling of Cylon, Modin, and Dask.

– Flexible Dataframe API: Cylon API clearly distinguishes between local
and distributed operators with minimal changes to the pandas API semantics.
This allows complex data manipulations for advanced users. As an example,
a join (shuffle) can be easily transformed into a broadcast_join just by
changing a few lines of code.
df1 = read_csv_dist (. . . , env) # large df
df2 = read_csv (. . .) i f env.rank == 0 else None # read small df at rank 0
df2_b = env.broadcast(df2 , root=0) # broadcast
df3 = df1 .merge(df2_b, . . .) # local join

– Extensibility: With the proposed model, Cylon was able to switch between
multiple communication frameworks. Additionally, we extended this model to
develop an experimental distributed memory dataframe for GPUs, GCylon
with minimum development effort.

5 Experiments

Our experiments were carried out in a 15-node Intel R© Xeon R© Platinum 8160
cluster. Each node has a total RAM of 255 GB, uses SSD for storage and are
connected via Infiniband with 40 Gbps bandwidth. A maximum of 40 (of 48)
cores were used from each node. The software used: Python v3.8 & Pandas
v1.4; Cylon (GCC v9.4, OpenMPI v4.1, & Apache Arrow v5.0); Modin v0.12
(Ray v1.9); Dask v2022.1. Uniformly random distributed data was used with
two int64 columns, 109 rows (∼16 GB), and C = 0.9. This constitutes a worse-
case scenario for key-based operators. The scripts to run these experiments are
available in Github [7].

The main goal of these operator benchmarks was to show how such generic
patterns helped Cylon achieve scalable high performance. Dask and Modin oper-
ators are compared here only as a baseline. We tried our best to refer to publicly
available documentation, user guides and forums while carrying out these tests
to get the optimal configurations.

High Performance Dataframes from Parallel Processing Patterns 301

1 2 4 8 16 32 64 128 256 512
parallelism

102

103

104
ti
m
e
(m

s)

Strong Scaling - Scalar

Cylon
Modin
Dask
pandas

100

101

102

sp
ee
d-
up

ov
er

pa
nd

as

1 2 4 8 16 32 64 128 256 512
parallelism

101

102

103

104

ti
m
e
(m

s)

Strong Scaling - Scalar Aggregation

Cylon
Modin
Dask
pandas

10−1

100

101

102

sp
ee
d-
up

ov
er

pa
nd

as

1 2 4 8 16 32 64 128 256 512
parallelism

104

105

106

ti
m
e
(m

s)

Strong Scaling - GroupBy

Cylon˙hash
Cylon˙mapred˙hash
Modin
Dask
pandas

100

101

102

sp
ee
d-
up

ov
er

pa
nd

as

1 2 4 8 16 32 64 128 256 512
parallelism

104

105

106

ti
m
e
(m

s)

Strong Scaling - Join

Cylon˙hash
Cylon˙sort
Dask
Modin

100

101

102

sp
ee
d-
up

ov
er

pa
nd

as

Fig. 3. Strong Scaling (1B rows, Log-Log) with speed-up over pandas

– Scalability: Figure 3 depicts strong scaling for the patterns. Dotted lines rep-
resent the speed-up over pandas (pandas_time/time). Compared to Dask,
Modin, and pandas, Cylon shows consistent performance and superior scal-
ability. When the parallelism is increased from 1 to 256, the wall-clock time is
reduced, and it takes longer to complete at 512 parallelism. Per executor work
is at its lowest in this instance, therefore the communication cost dominates
over computation. For EP, a Barrier is called at the end and it might carry
some communication overhead. Cylon’s local operators also perform on par or
better than pandas, which validates our decision to develop in a C++ backend.
Unfortunately, Modin join for 1B rows failed, therefore we ran a smaller 100
million row test case (Fig. 4(a)). It only uses broadcast-join [15], which
explains the lack of scalability. However, we encountered similar problems for
the rest of the operators (Fig. 3). Compared to Modin, Dask showed compara-
ble scaling to Cylon for joins. However, the other operations lacked scalability,
especially the scalar operations.

– Cardinality Impact: Figure 4(b) illustrates the impact of Cardinality
(C) on the groupby performance. When C = 0.9, hash-groupby (shuffle-
compute) consistently outperforms the mapred-groupby (combine-shuffle-
reduce), because the local combining step does not reduce the shuffle work-
load sufficiently. Whereas when C = 10−5, shuffled intermediate result size is
significantly lesser, and therefore the latter is much faster. This shows that
the same operator might need to implement several patterns and choose an
implementation based on runtime characteristics.

302 N. Perera et al.

1 2 4 8 16 32 64 128 256 512
parallelism

103

104

105
ti
m
e
(m

s)

Strong Scaling - Join

Cylon˙hash
Cylon˙sort
Modin
Dask
pandas

100

101

sp
ee
d-
up

ov
er

pa
nd

as

1 2 4 8 16 32 64 128 256 512
parallelism

103

104

105

ti
m
e
(m

s)

GroupBy Cardinality

hash C=0.9
mapred C=0.9
hash C=1e-5
mapred C=1e-5

(a) (b)

Fig. 4. a: Strong Scaling Joins with Modin (100M rows, Log-Log), b: Cardinality
Impact on Combine-Shuffle-Reduce (groupby, 1B rows, Log-Log)

6 Related Work

Dask distributed dataframe [19] was the first and foremost distributed dataframe
system. It was targeted at providing better performance in personal worksta-
tions. RAPIDS CuDF, later extended Dask DDF for GPU dataframes. In large-
scale supercomputing environments, HPC-based systems like MPI (Message
Passing Interface) [1], PGAS (partitioned global address space) [24], OpenMP,
etc. performed better compared to Apache Spark [23] and Dask [2,10,21]). Modin
[18], Dask [19], and Koalas (Apache Spark) are some of the emerging distributed
dataframe solutions, but the domain shows a lot more room for improvement.
HPC-based distributed data engineering systems show promising support for
workloads running in supercomputing environments [3,4,17,22], and this is the
main motivation for this paper.

7 Limitations and Future Work

Cylon Sort and Window operators are still under development. Additionally,
larger scale experiments have been planned to provide more finer-grained analy-
sis on communication and computation performance. Cylon execution currently
requires dedicated resource allocation, which may be a bottleneck in a multi-
tenant cloud environment. Furthermore, fault tolerance is another feature that
is yet to be added. We believe that both BSP and asynchronous executions are
important for complex data engineering pipelines and are currently working on
integrating Cylon with Parsl [5] and Ray [16]. This would enable the creation
of individual workflows that run on BSP, each of which can be scheduled asyn-
chronously, that would optimize resource allocation without hindering the overall
performance.

High Performance Dataframes from Parallel Processing Patterns 303

8 Conclusion

We recognize that today’s data science community requires scalable solutions
to meet their ever-growing data demand. Dataframes are at the heart of such
applications, and in this paper we proposed a framework based on a set of
generic operator patterns that lays the foundation for building scalable high
performance dataframe systems. We discussed how this framework complements
the existing literature available. We also presented Cylon, a reference runtime
developed based on these concepts and showcased the scalability of its operators
against leading dataframe solutions available today. We believe that there is far
more room for development in domain, and we hope our work contributes to the
next generation of distributed dataframe systems.

References

1. MPI: A Message-Passing Interface Standard Version 3.0 (2012). http://mpi-forum.
org/docs/mpi-3.0/mpi30-report.pdf. Technical Report

2. Abeykoon, V., et al.: Streaming machine learning algorithms with big data systems.
In: 2019 IEEE International Conference on Big Data (Big Data), pp. 5661–5666.
IEEE (2019)

3. Abeykoon, V., et al.: Hptmt parallel operators for high performance data science
& data engineering. arXiv preprint arXiv:2108.06001 (2021)

4. Abeykoon, V., et al.: Data engineering for HPC with python. In: 2020 IEEE/ACM
9th Workshop on Python for High-Performance and Scientific Computing
(PyHPC), pp. 13–21. IEEE (2020)

5. Babuji, Y.N., et al.: Parsl: scalable parallel scripting in python. In: IWSG (2018)
6. CylonData: cylon (2021). https://github.com/cylondata/cylon
7. CylonData: cylon experiments (2021). https://github.com/cylondata/cylon_

experiments
8. Fox, G., et al.: Solving problems on concurrent processors, vol. 1: general techniques

and regular problems. Comput. Phys. 3(1), 83–84 (1989)
9. Gao, H., Sakharnykh, N.: Scaling joins to a thousand GPUs. In: 12th International

Workshop on Accelerating Analytics and Data Management Systems Using Modern
Processor and Storage Architectures, ADMS@ VLDB (2021)

10. Kamburugamuve, S., Wickramasinghe, P., Ekanayake, S., Fox, G.C.: Anatomy of
machine learning algorithm implementations in MPI, Spark, and Flink. Int. J. High
Perform. Comput. Appl. 32(1), 61–73 (2018)

11. Kamburugamuve, S., et al.: Hptmt: operator-based architecture for scalable high-
performance data-intensive frameworks. In: 2021 IEEE 14th International Confer-
ence on Cloud Computing (CLOUD), pp. 228–239. IEEE (2021)

12. Li, X., Lu, P., Schaeffer, J., Shillington, J., Wong, P.S., Shi, H.: On the versatility
of parallel sorting by regular sampling. Parallel Comput. 19(10), 1079–1103 (1993)

13. Mattson, T., Sanders, B., Massingill, B.: Patterns for parallel programming (2004)
14. McKinney, W., et al.: pandas: a foundational python library for data analysis and

statistics. Python High Perform. Sci. Comput. 14(9), 1–9 (2011)
15. Modin: modin scalability issues (2021). https://github.com/modin-project/

modin/issues

http://mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf.
http://mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf.
http://arxiv.org/abs/2108.06001
https://github.com/cylondata/cylon
https://github.com/cylondata/cylon_experiments
https://github.com/cylondata/cylon_experiments
https://github.com/modin-project/modin/issues
https://github.com/modin-project/modin/issues

304 N. Perera et al.

16. Moritz, P., et al.: Ray: a distributed framework for emerging {AI} applications. In:
13th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 18), pp. 561–577 (2018)

17. Perera, N., et al.: A fast, scalable, universal approach for distributed data reduc-
tions. In: International Workshop on Big Data Reduction, IEEE Big Data (2020)

18. Petersohn, D., et al.: Towards scalable dataframe systems. arXiv preprint
arXiv:2001.00888 (2020)

19. Rocklin, M.: Dask: parallel computation with blocked algorithms and task schedul-
ing. In: Proceedings of the 14th Python in Science Conference, 130–136. Citeseer
(2015)

20. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (1990)

21. Wickramasinghe, P., et al.: Twister2: tset high-performance iterative dataflow. In:
2019 International Conference on High Performance Big Data and Intelligent Sys-
tems (HPBD&IS), pp. 55–60. IEEE (2019)

22. Widanage, C., et al.: High performance data engineering everywhere. In: 2020
IEEE International Conference on Smart Data Services (SMDS), pp. 122–132.
IEEE (2020)

23. Zaharia, M., et al.: apache spark: a unified engine for big data processing. Commun.
ACM 59(11), 56–65 (2016)

24. Zheng, Y., Kamil, A., Driscoll, M.B., Shan, H., Yelick, K.: UPC++: a PGAS exten-
sion for c++. In: 2014 IEEE 28th International Parallel and Distributed Processing
Symposium, pp. 1105–1114. IEEE (2014)

http://arxiv.org/abs/2001.00888

Global Access to Legacy Data-Sets
in Multi-cloud Applications with Onedata

Micha�l Orzechowski1(B) , Micha�l Wrzeszcz1 , Bartosz Kryza1 ,
�Lukasz Dutka1 , Renata G. S�lota2 , and Jacek Kitowski1,2

1 Academic Computer Centre CYFRONET AGH, Krakow, Poland
{morzech,kito}@agh.edu.pl, lukasz.dutka@cyfronet.pl

2 Institute of Computer Science, AGH University of Science and Technology,
Krakow, Poland
rena@agh.edu.pl

Abstract. Data access and management for multi-cloud applications
proves challenging where there is a need for efficient access to large
pre-existing, legacy data-sets. To address this problem, we created an
indexing subsystem incorporated into Onedata data management sys-
tem achieving a global multi-cloud integration of legacy storage systems
containing large data-sets. The solution is based on metadata manage-
ment, organization and periodic monitoring of legacy data-sets, what
makes possible scheme-less co-existence a legacy storage system and One-
data for managing the same data collections. Thanks to block based data
transfer provided by Onedata large files stored on legacy storage systems
can be efficiently accessed from the cloud. The approach has been ini-
tially evaluated in a multi-cloud deployment scenario, where a large data
collection stored on legacy storage system located in a super-computing
center is processed on a commercial cloud.

Keywords: virtual filesystem · hybrid cloud · distributed data
management · legacy application · legacy storage · data-intensive
application

1 Introduction

As demand for computational power provided by scientific data centers and
usage of data-intensive applications grows, researchers and institutions are faced
with well known problem of either expanding their on-premise infrastructure
or adopting a more modern and flexing approach of moving part of data and
computation to the cloud.

With respect to scaling-out scientific applications outside of the premise of a
single data center, existing solutions provide satisfactory functionality to form a
hybrid or multi-cloud solutions that seamlessly extend the computing resources
of a data center, but the problem of data movement specific for data-intensive
applications remains. Most existing solutions require users to manually prestage
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 305–317, 2023.
https://doi.org/10.1007/978-3-031-30442-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_23&domain=pdf
http://orcid.org/0000-0002-8558-1283
http://orcid.org/0000-0002-5981-1727
http://orcid.org/0000-0001-5407-4126
http://orcid.org/0000-0002-8781-866X
http://orcid.org/0000-0001-7424-9317
http://orcid.org/0000-0003-3902-8310
https://doi.org/10.1007/978-3-031-30442-2_23

306 M. Orzechowski et al.

data close to the computational resources, and then stage out the data back
to the data center for long term storage, which results in poor user experience
and suboptimal bandwidth usage. Furthermore, at the multi-institutional and
multi-national levels, data access and data sharing become very complicated due
to heterogeneous storage technologies, issues with policies as well as provenance
and reproducibility of the results.

Many existing data-intensive applications require transparent access to large,
file-based data collections. Some representative use cases from this category
include satellite image processing, bioinformatics and genome processing or high
energy physics. Such applications usually assume the on-premise access to a
high-performance network file system available on each computing node. These
legacy requirements make it difficult to execute the data-intensive applications
on cloud or multi-cloud infrastructures. Users have to either abandon transition
to the cloud or rewrite their applications to adapt to cloud-specific object-based
storage solutions and suffer vendor lock-in. Moreover, the redesign of how the
application accesses the data still leaves the user with the problem of file-based
data collections being stored on-premise data management systems, that usually
do not allow for easy data transfer to the cloud.

In this paper, we present our solution which enables easy migration of legacy
data-intensive applications to multi-cloud infrastructures by providing global
and transparent access to legacy data-sets in such environments. We realize our
solution by combining the global multi-cloud data access functionality of One-
data with legacy data-set access provided by Data Indexing Subsystem (DIS).
The introduction of techniques and methods for guaranteeing continuous con-
sistency and optimizations for handling the indexing of large legacy data-sets is
the novelty of this paper.

The paper is organized as follows. Section 2 discusses the problem statement
and related work in the area of distributed file systems and hybrid-cloud sup-
port. Section 3 presents our solution: the indexing subsystem for integration of
pre-existing data collections on legacy storage including with its design and
implementation. Section 4 describes in more detail Onedata data management
system and its integration with our solution for supporting multi-cloud appli-
cations. Section 5 provides evaluation of the solution with performance results.
Finally Sect. 6 concludes the paper.

2 Problem Statement and Related Work

To address the problem of running legacy data-intensive applications on multi-
cloud infrastructures, a data management system which can solve the following
issues is necessary:

– Global, transparent access to data in multi-cloud environments – in order to
easily scale out of private cloud, applications need a transparent data access
solution, enabling the users to simply deploy the application in the public
cloud, and let the application access the data as if it was available locally,

Global Access to Legacy Data-Sets in Multi-Cloud Applications 307

– Support for legacy applications – the applications assume they can access
the data as if it was available over a local file system (POSIX [10]) on virtual
machines or containers in the cloud, while cloud providers only provide object-
storage or a local network file system,

– Vendor lock-in with respect to data access – the applications cannot be easily
moved between different cloud providers due to incompatible data access and
management interfaces,

– Simultaneous access to the same data over different protocols – complex appli-
cations, composed of multiple components, some legacy relying on file system
based data access, and some novel, already adapted to object storages such as
S3 [1], need to access the same data, spanning different clouds, using different
types of protocols, which is not possible with existing solutions,

– Scalability – cloud storage, in particular from smaller and more affordable
providers, often lacks scalability characteristics required by some of the large
scale data processing applications,

– High-throughput and low latency – applications running in multi-cloud
deployments, still require high throughput and low latency data access, how-
ever existing solutions often require cumbersome prestaging of data, which
introduces large latency and complicates application logic,

– Security and access control - per file, or per data set fine grained access control
on the individual user as well as organization level with ability to share data
and collaborate on data across multiple clouds,

– Legacy data collections support – exposing legacy data via a data manage-
ment system without the necessity of making a copy of the data collection.

An example general overview of existing data management systems can be
found in [13]. Few solutions exist which support transparent access to legacy data
collections and storage systems for automatic application scaling to the cloud [4].
Most existing solutions are commercial and prone to vendor lock-in, requiring the
users to adapt their applications to specific vendor APIs. AWS Storage Gateway
[3], is a hybrid cloud data management framework, allowing access to on-premises
data sets from the Amazon cloud infrastructure and including easy integration
with other Amazon cloud data services such as S3 and Glacier. Another example
is IBM Spectrum Scale [2], which is a software-defined scalable parallel filesystem
providing a comprehensive set of storage services, built on top of the GPFS [7]
filesystem. Both these solutions are commercially proven, however they are very
expensive and require the users to commit to vendor specific interfaces.

In the area of non-commercial solutions one example is iRODS [6] which
can be also used to achieve distributed data access. However, it does not imple-
ment location transparency of the stored data, i.e., the files must be manually
moved/copied between iRODS zones. Several high-performance parallel filesys-
tems exist, such as Ceph [11], GlusterFS [8], NFS [9], unfortunately they do
not scale outside of a single Data center. Onedata [12] is an open-source, global
high-performance, transparent data management system, that unifies data access
across globally distributed infrastructures and multiple types of underlying stor-
ages and perform computations on data using applications relying on POSIX
compliant data access.

308 M. Orzechowski et al.

Having evaluated multiple data management systems, the Onedata system
seems to fulfill the most crucial of the above requirements connected with global,
multi-cloud and transparent data access. Hence it has been chosen as a software
solution to assist with solving a problem of performing computation on legacy
data-sets on multi-cloud infrastructures.

3 Data Indexing Subsystem

Data Indexing Subsystem (DIS) is our solution for unlocking legacy data-sets,
stored on legacy storage systems and with help of Onedata exposing them to
multi-cloud environments. It is designed to scan a designated location on a stor-
age system, index a data-set and expose it to Onedata, which in turn can expose
the data-set as a cloud resource. DIS allows Onedata and a legacy storage sys-
tem, that originally managed a data-set, to operate on a data-set at the same
time. To create DIS the main two challenges were addressed: 1) large number of
files in a legacy data-sets, 2) possible mutability of a legacy data-set by processes
controlled or governed by Onedata and legacy storage system.

The main assumption is that DIS is based on data-sets metadata management
and its organization. Indexing of existing data-sets can be performed only by
scanning data-sets that are to be synchronized and creating metadata for the
data, without replicating until necessary, i.e. requested a user. Periodic scans
can be enabled to ensure continued consistency of the indexed data-set.

3.1 Policies and Options

The solution exposes a generic mechanism, which allows for defining various
policies (algorithms) for scanning data. The supported policies include:

– One-time data scan - after the first scan no future changes on the legacy stor-
age (new files, modified files, removed files) are detected. The indexing pro-
cedure is time and resource consuming as it creates metadata in the database
for each indexed file.

– Continuous scanning - indexing needs to be repeated automatically, i.e. the
files on the legacy storage can be added, removed or modified by users or
computational jobs.

Furthermore, the following options can be configured to further control the
data indexing process:

– Maximum depth - maximum directory depth the scanner should follow for
consecutive updates,

– Scan interval - the time period between consecutive scans of the filesystem
changes,

– Write-once - determines that if a file was created on the legacy storage, it
will not be modified, allowing for optimized filesystem scanning. There is no
need to compare files metadata that exist in DIS with those on storage,

Global Access to Legacy Data-Sets in Multi-Cloud Applications 309

– Delete-enabled - enable or disable detection of deleted files. Detection of cre-
ated or modified files on the legacy storage requires checking whether each file
visible on storage has associated metadata in DIS and whether the metadata
differs from those on storage. Detection of files deleted on the legacy storage
requires checking whether each file on storage has a corresponding metadata
representation in DIS. That results in higher number of operations that must
be performed to complete the scan.

The above policies and options allow to customize the scan process, in terms
of the load generated on a legacy storage by DIS in order to versatilely perform
metadata gathering, management and organization.

3.2 Data Consistency

DIS consists of a metadata database and a pool of Erlang processes that are
responsible for creating, updating, and deleting metadata in response to the
detection of changes in the data-sets on the legacy storage system. Due to DIS
integration with Onedata, Onedata informs DIS about changes made to a data-
set managed by DIS. On the other hand, DIS makes Onedata aware of changes
that take place directly on the legacy storage system.

Conflict Resolution. From the perspective of global, transparent data access
DIS is responsible for detection and resolution of conflicts between modifications
of data-sets via Onedata and data-sets modifications done directly on the legacy
storage system (see Fig. 1.)

Fig. 1. Data Index Subsystem (red) working with Onedata to ensure data consistency.
(Color figure online)

310 M. Orzechowski et al.

File name conflict resolution is an integral part of Onedata, as files belonging
to the same data-set can be created and modified by multiple users in parallel.
Information about this change is distributed with a small delay due to eventual
consistency that is inherit to Onedata. Due to this delay the problem of file
name conflicts is resolved by using dynamic suffixes which are concatenated to
conflicting file names. This solution is also used by DIS to resolve file name
conflicts between Onedata and legacy storage system.

A race condition can occur when deleting an already opened file from One-
data, and – at the same time – scanning a legacy storage system. In Onedata,
similarly to POSIX, a file may be deleted only when it is not used (open) by
any user. When a user deletes a file that is already open, its metadata repre-
sentation is deleted from Onedata and therefore the file is not visible to others.
However, the file on the storage system is still available to users and applications
that opened this file before deletion of the metadata. To prevent DIS from re-
indexing the file, it is tagged with metadata, thus allowing for its later deletion.

Another issue (not depicted in Fig. 1) is a possible race condition between
deleting not an open file from Onedata and importing it back from the legacy
storage system. As it was mentioned in Sect. 3.1 DIS scans the legacy data-set
and checks each file, whether its corresponding metadata exists in Onedata and
whether they are up to date. That way, DIS decides whether metadata of scanned
files should be created, updated, or deleted in Onedata.

Listing files on storage and synchronizing them to Onedata is not an atomic
operation. Therefore, it is possible that DIS finds the file on storage and before
it synchronizes it, the file might be completely deleted from Onedata. Deleted
completely means that first, the file is deleted from the storage, and then, its
metadata are deleted from Onedata. This race condition might result in re-
importing the file deleted by user from Onedata. In such case, DIS must be able
to distinguish the file that has been just deleted from Onedata, from the newly
created file on storage. In both cases, there are no corresponding file metadata
in Onedata as in the first case, metadata have already been deleted and in the
second, metadata have not been created yet. In order to avoid such problems,
double-check was introduced to the DIS implementation: a second call to storage
to fetch file attributes, performed after checking corresponding file metadata in
Onedata. Let’s notice that if the file is still on the storage, after checking that
corresponding metadata are missing in Onedata, it means that it must be a newly
created file that should be imported. This is ensured by the order of operations
performed when the file is deleted from Onedata. First, it is deleted from storage
and then its metadata are deleted.

Eventual Consistency. Due to the eventual consistency used in Onedata, there
is a need for further solutions to allow processing data by legacy applications and
Onedata in parallel. As synchronization of metadata is asynchronous, different
metadata describing a file can not appear at once. Moreover, order of appearance
of this metadata is not fixed. Thus, it is possible that DIS analyzes the file’s
metadata having only a part of metadata changes as a result of some action on

Global Access to Legacy Data-Sets in Multi-Cloud Applications 311

the file. For this reason, DIS creates additional metadata during the scan that
cannot be modified by any other Onedata mechanism. Thanks to this metadata,
DIS is able to assess whether the inconsistency is due to asynchronous broadcast
of changes or due to the file/metadata corruption. DIS responds appropriately
by delaying the file processing until the missing metadata is fully synchronized.

DIS can detect file changes that occur between scans. DIS evaluates if the file
changes were made by Onedata or by applications external to Onedata. In the
second case, it is needed to invalidate the copies of file blocks replicated to other
clouds. DIS analyzes the file timestamps on the legacy storage system and in its
own metadata database, invalidating the corresponding copies when required.

The above considerations show our original approach of using known mech-
anisms related to the handling of parallel modification of a file by Onedata and
applications external to Onedata. Analyzing a file during its synchronization is
an expensive operation in terms of CPU. Therefore, our approach allows for
limiting the number of analyzed files, which is presented in the next chapter.

3.3 DIS Optimizations

In order to decrease the number of operations performed when continuous syn-
chronization is enabled, two optimizations have been introduced. Both of them
allow to prune file system tree that is processed during the scan.

Timestamp-Based optimization. The first optimization relies on the fact, that
the modification time of a directory is changed if and only if a child file is
created/deleted in the directory. The algorithm checks the directory modification
time and compares with it the value from the previous scan to verify whether
the directory is to be scanned.

Hash-Based Optimization. The second optimization allows to determine whether
any children metadata of the scanned directory has been changed since the
previous scan without comparing the metadata from the database with those
on storage for each file. To achieve this, the scanning algorithm divides each
directory into batches, then it computes and saves hash values for each batch
separately. In the next scan, the previous and current hash values are compared
to verify modifications of the file system.

Both optimizations together with delete-enable and write-once options reduce
the number of operations needed to perform the scan.

DIS also introduces API that allows manual file registration. If an external file
change tracking mechanism is available, one can opt out of periodic legacy stor-
age scans and take advantage of notifications for newly created files. In this case,
after the first scan for importing files, DIS is limited to handling notifications
and the resulting conflicts and race conditions. It is true that such integration
requires work from the administrators (preparation of the script calling API),
but it allows to reduce the resource consumption.

312 M. Orzechowski et al.

4 Exposing Legacy Data Collections with Onedata

Onedata data management system provides transparent access to data stored
on the distributed storage resources, which can be managed by multiple storage
providers. Due to its eventual consistency [14], Onedata provides highly scal-
able solution [12] even in high performance computing scenarios with large data
throughput. The Onedata system is composed of three elements:

POSIX Access

Oneprovider

Cloud A Cloud B

Legacy Storage
 System

Oneprovider

Data Indexing

Cloud Storage

Data Transfer

Data Replication

Metadata Exchange

Metadata Exchange

Metadata Exchange

Web Access

Metadata Transfer Data TransferMetadata and Data Transfer

POSIX Access

Metadata Transfer
Data Transfer

Data Transfer

Onezone

Fig. 2. An exemplary use case of the DIS as a part of Oneprovider, for exposing legacy
data collections stored on Legacy Storage Systems to Onedata, thus making it available
for access and processing from any Onedata-enabled cloud.

– Onezone - the main point of access for users allowing single-sign on login
mechanism for all providers who granted the user access to their resources.
Based on the Onezone authentication and authorization decisions, One-
provider instances control user data access operations.

– Oneprovider - storage providers that connect to Onezone to form a storage
federations, based on heterogeneous storage backends, while still providing to
users unified, transparent data access.

– Oneclient - a command line client provides a POSIX interface to files allowing
batch jobs to process data as in it was available locally.

Due to the features of Onedata it is easy to create a hybrid-cloud or multi-
cloud architecture with transparent access to data as illustrated in Fig. 2. To
expose legacy data-sets we devised DIS as a subsystem of Oneprovider. With
DIS the data-set is indexed by Oneprovider, deployed on Cloud B, and after
propagating its metadata to Onezone, the data-set becomes globally accessible
via Onedata. From the data-set point of view Oneprovider connected to a legacy
storage system becomes a source Oneprovider as it posses the original replica
of the data-set. Users can then use tools provided by Onedata to process and
modify the data-set and any change done to the data-set via Onedata is reflected
on a legacy storage system (see right side of Fig. 2).

To efficiently process data from a legacy storage system on an external cloud,
we deploy another instance of Oneprovider - on Cloud A - and connect it to a

Global Access to Legacy Data-Sets in Multi-Cloud Applications 313

cloud storage system that acts as a cache for replicated data. When accessing the
data, missing data blocks are transparently replicated between Oneproviders.

More Oneproviders can be deployed on clouds where we want to process data
thus creating a network of caching Oneproviders. The data is replicated between
them depending on which Oneprovider stores a needed replica. Users then can
leverage Oneclient, that exposes the data-set via POSIX filesystem abstraction
and perform computation on a data-set as in it was present locally. The on-the-fly
replication process fetches any missing blocks needed by the computation.

5 Evaluation

To evaluate the propose solution first we show the performance aspect of DIS,
then we focus on the aspect of global data access to legacy data collections.

5.1 DIS Performance

For very large data collections the time before a new file is detected can be
significant. However, files already indexed by DIS are immediately visible via
Onedata filesystem and available to any application that uses Onedata for data
access. This is thanks to the eventual consistency metadata propagation algo-
rithm build into Onedata. In order to perform the evaluation of DIS, we started
with a small data-set test followed by a larger test showing the DIS performance.

Table 1. DIS Performance

Set 1 2 3 4

Number of files (number of directories) 10k(2) 30k (303) 125k (1273) 800k(83)

Time of 1st scan (import) [s] 35.1 61.7 254.7 3178.9

Time of next scan [s] 16.1 22.8 119.9 2985.6

Time of scan with optimizations [s] 0.5 15.9 75.0 60.9

Table 1 presents the indexing times of 4 file sets of increasing size: 10,000,
30,000, 125,000 and 800,000 files respectively. The number of directories where
the files are located is given in brackets. The rows represent the following times:

– Time of the first scan - the most time-consuming operation as the system
creates metadata documents in the database for each new detected file,

– Time of a consecutive scan without optimizations - for each file the system
performs all checks (modified, added, deleted),

– Time of a consecutive scan with both optimizations (timestamp-based and
hash-based) with options write-once disabled and delete-enabled .

The results show that time of scan with optimizations depends on both the
number of files and the directory structure. Table 2 presents the scan times on
the 800,000 files (Set 4 in Table 1) depending on different combinations of settings

314 M. Orzechowski et al.

write-once and delete-enabled. The former setting determines whether file modi-
fications are acceptable, while the latter – whether file deletions are anticipated.
Fromthe resultswe can see themore restrictive settings result in shorter scan times.
The second column (“Time of next scan”) shows the time of a consecutive scan
without any optimizations (which can be considered here a worst-case scenario),
the third column shows the scan time with optimizations and no changes in the
filesystem (considered as the most economical, preservative case) and the last col-
umn shows the scan time with optimizations active and 1 file added on the storage.

Table 2. Time of Set 4 scan with DIS different configurations

DIS configuration Time of next scan [s] Time of scan with optimizations [s]

write-once delete-enabled no files changed 1 file created

true false 1184.6 42.9 50.7

true true 2155.5 51.0 60.3

false true 2985.6 60.9 68.7

The results presented in Tables 1 and 2 show how fast we can enable operating
on existing, legacy data sets with the Onedata system keeping possibility for their
modifications performed independently on legacy storage.

5.2 Transparent Global Data Access

To show the global access to data, we deploy Onedata on two cloud infras-
tructures: the first at ACK Cyfronet AGH in Krakow, the second – on Google
Cloud Site in Paris. The legacy storage located in Krakow connects to Onedata
deployed there and DIS indexes the whole data-set.

Fig. 3. Legacy data accessible via POSIX filesystem

Upon completion of the indexing process the data can be accessed via One-
data installation in Krakow or in Paris. The POSIX client can be used to list
the files and access them regardless of the physical location of files, see Fig. 3.
The list operation does not require data transfer as it only presents metadata

Global Access to Legacy Data-Sets in Multi-Cloud Applications 315

Fig. 4. Partial distribution of blocks of a file between Onedata installations

of the files, when opening a file a actually data transfer between Onedata and
POSIX client is started.

When accessing data via Onedata installation in Paris, data is transparently
partially replicated from Onedata installation in Krakow to Paris location. Since
Onedata supports block based replication, when accessing some portions of the
file only requested blocks are transferred, as it can be observed on Fig. 4. The
transferred blocks are a partial replica and yield significant benefits with regards
to time needed to access requested blocks from the second location.

6 Conclusions

In this paper, we have presented a solution for exposing preexisting large data
collections stored on legacy storage systems to multi-cloud environments. Thanks
to our solution - Data Indexing Subsystem integrated with the Onedata data
management system - applications running on cloud environments can access
legacy data-sets provided by many independent service providers. Due to the
fact, that DIS gathers and organizes metadata of indexed files, there is no
redundant data-sets replication. Data-sets are replicated between clouds only
when they are read in another cloud and the replication is limited to the data
fragments read by the user/application. Our solution differs significantly form
existing sync and share solutions like Dropbox, Owncloud, or Seafile as it does
not require synchronization of file blocks. It focuses on metadata management
and synchronization, postponing any data transfer to the moment when the data
transfer it’s actually required.

Periodic action of re-indexing of already indexed data-set is a source of
intensive process, hence DIS provides multiple policies, options, and methods
of optimization of the indexing process. All of them allow for limiting the size
of re-indexed data-set significantly, hence lowering the cost of continuous of the
changes. The DIS notification API of newly created files, allows for deep integra-
tion with legacy storage systems by allowing for manual registration of metadata
of files. This makes it possible to perform periodic re-indexing very rarely, only
to detect files for which the notification was lost or another error occurred.

Due to the highly customize nature of DIS, the assessment of its cost should
be case based. The presented tests show the upper time limits (first scan, then
full scan without optimization) along with exemplary optimizations.

316 M. Orzechowski et al.

The presented evaluation shows the indexing times of storage resources con-
taining data-sets during the metadata indexing processes for different data-sets
and various DIS configurations. The longest time is the time of the first index-
ing when metadata must be created for each file/directory from the data-sets
attached to Onedata. The cost of subsequent indexing varies considerably and
depends not only on the size and structure of the data-sets but also on the DIS
settings and on the number files added/deleted between indexing runs. In some
cases, the reduction in the time of subsequent indexing is significant.

Thanks to integration with Onedata, the legacy data can be accessed globally
from multi-cloud environments. Easy and transparent access to data proved to
be especially attractive for distributed scientific workflows. The workflow man-
agement systems is able to use Onedata and DIS API to achieve a fine grained
control over exposure of specific parts of large data-sets (see [5]).

Acknowledgements. This scientific work is co-financed in part by an international
project and by the program of the Minister of Science and Higher Education enti-
tled “PMW” in the years 2020–2023; contract No. 5145/H2020/2020/2; contract No.
5193/H2020/2021/22 and by The National Centre for Research and Development under
the program entitled ERA-NET CO-FUND ICT-AGRI-FOOD, contract No. ICTA-
GRIFOOD/I/FINDR/ 02/2022. JK and RGS are grateful for support from the sub-
vention of Polish Ministry of Education and Science assigned to AGH University of
Science and Technology.

References

1. Amazon: Amazon s3 developer guide. Technical Report, Amazon (2010). http://
aws.amazon.com/documentation/s3/

2. Haustein, N., Christ, A.: IBM SpectrumScale. automation of storage services.
https://www.ibm.com/support/pages/system/files/inline-files/Spectrum Scale
Automation v1.6.pdf

3. Kalavade, A.: AWS storage gateway in 2019. https://aws.amazon.com/blogs/
storage/aws-storage-gateway-in-2019/. Accessed 3 Feb 2020

4. Linthicum, D.S.: Emerging hybrid cloud patterns. IEEE Cloud Comput. 3(1), 88–
91 (2016). https://doi.org/10.1109/MCC.2016.22

5. Orzechowski, M., Balís, B., S�lota, R.G., Kitowski, J.: Reproducibility of computa-
tional experiments on Kubernetes-managed container clouds with HyperFlow. In:
Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12137, pp. 220–233.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50371-0 16

6. Röblitz, T.: Towards implementing virtual data infrastructures - a case study with
iRODS. Comput. Sci. (AGH) 13(4), 21–34 (2012)

7. Schmuck, F.B., Haskin, R.L.: GPFS: a shared-disk file system for large computing
clusters. In: D.D.E. Long (ed.) FAST, pp. 231–244. USENIX (2002)

8. Selvaganesan, M., Liazudeen, M.A.: An insight about glusterfs and its enforcement
techniques. In: ICCCRI, pp. 120–127. IEEE Computer Society (2016)

9. Shepler, S., et al.: NFS version 4 Protocol. RFC 3010 (Proposed Standard) (2000)
10. The IEEE and the open group: the open group base specifications issue 6 - IEEE

Std 1003.1, 2004 Edition. IEEE, New York, NY, USA (2004)

http://aws.amazon.com/documentation/s3/
http://aws.amazon.com/documentation/s3/
https://www.ibm.com/support/pages/system/files/inline-files/Spectrum_Scale_Automation_v1.6.pdf
https://www.ibm.com/support/pages/system/files/inline-files/Spectrum_Scale_Automation_v1.6.pdf
https://aws.amazon.com/blogs/storage/aws-storage-gateway-in-2019/
https://aws.amazon.com/blogs/storage/aws-storage-gateway-in-2019/
https://doi.org/10.1109/MCC.2016.22
https://doi.org/10.1007/978-3-030-50371-0_16

Global Access to Legacy Data-Sets in Multi-Cloud Applications 317

11. Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D.E., Maltzahn, C.: Ceph: a scal-
able, high-performance distributed file system. In: Bershad, B.N., Mogul, J.C.
(eds.) OSDI, pp. 307–320. USENIX Association (2006)

12. Wrzeszcz, M., �Lukasz Dutka, S�lota, R.G., Kitowski, J.: New approach to global
data access in computational infrastructures. Future Gener. Comput. Syst. 125,
575–589 (2021). https://doi.org/10.1016/j.future.2021.06.054

13. Wrzeszcz, M., Kitowski, J., S�lota, R.G.: Towards trasparent data access with con-
text awareness. Comput. Sci. 19(2), 201–221 (2018). https://doi.org/10.7494/csci.
2018.19.2.2844

14. Wrzeszcz, M., et al.: Consistency models for global scalable data access services. In:
Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds.) PPAM 2017.
LNCS, vol. 10777, pp. 471–480. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78024-5 41

https://doi.org/10.1016/j.future.2021.06.054
https://doi.org/10.7494/csci.2018.19.2.2844
https://doi.org/10.7494/csci.2018.19.2.2844
https://doi.org/10.1007/978-3-319-78024-5_41
https://doi.org/10.1007/978-3-319-78024-5_41

Applications of Parallel and Distributed
Computing

MD-Bench: A Generic Proxy-App Toolbox
for State-of-the-Art Molecular Dynamics

Algorithms

Rafael Ravedutti Lucio Machado(B), Jan Eitzinger, Harald Köstler,
and Gerhard Wellein

Erlangen National High Performance Computing Center (NHR@FAU),
Friedrich -Alexander -Universität Erlangen-Nürnberg (FAU), Erlangen, Germany

rafaelravedutti@gmail.com

Abstract. Proxy-apps, or mini-apps, are simple self-contained bench-
mark codes with performance-relevant kernels extracted from real appli-
cations. Initially used to facilitate software-hardware co-design, they are
a crucial ingredient for serious performance engineering, especially when
dealing with large-scale production codes. MD-Bench is a new proxy-
app in the area of classical short-range molecular dynamics. In con-
trast to existing proxy-apps in MD (e.g. miniMD and coMD) it does
not resemble a single application code, but implements state-of-the art
algorithms from multiple applications (currently LAMMPS and GRO-
MACS). The MD-Bench source code is understandable, extensible and
suited for teaching, benchmarking and researching MD algorithms. Pri-
mary design goals are transparency and simplicity, a developer is able to
tinker with the source code down to the assembly level. This paper intro-
duces MD-Bench, explains its design and structure, covers implemented
optimization variants, and illustrates its usage on three examples.

Keywords: proxy-app · molecular dynamics · performance analysis

1 Introduction and Motivation

Molecular dynamics (MD) simulations are used in countless research efforts to
assist the investigation and experimentation of systems at atomic level. Both
their system size and timescale are crucially limited by computing power, there-
fore they must be designed with performance in mind. Several strategies to
speedup such simulations exist, examples are Linked Cells, Verlet List and MxN
kernels from GROMACS [11,12]. These improve the performance by exploiting
either domain-knowledge or hardware features like SIMD capabilities and GPU
accelerators. MD application codes can achieve a large fraction of the theoreti-
cal peak floating point performance and are therefore among the few application
classes that can make use of the available compute power of modern proces-
sor architectures. Also, cases scientists are interested in are frequently strong
scaling throughput problems, a single run only exhibits limited parallelism but

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 321–332, 2023.
https://doi.org/10.1007/978-3-031-30442-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_24&domain=pdf
https://doi.org/10.1007/978-3-031-30442-2_24

322 R. Ravedutti Lucio Machado et al.

thousands of similar jobs need to be executed. This fact combined with arith-
metic compute power limitation makes an optimal hardware-aware implemen-
tation a critical requirement. MD is used in many areas of scientific computing
like material science, engineering, natural science and life sciences.

Proxy-apps are stripped down versions of real applications, ideally they are
self-contained, easy to build and bundled with a validated test case, which can be
a single stubbed performance-critical kernel or a full self-contained small version
of an application. Historically proxy-apps assisted in porting efforts or hardware-
software co-design studies. Today they are a common ingredient of any serious
performance engineering effort of large-scale application codes, especially with
multiple parties involved. Typically proxy-apps resemble a single application
code, e.g., miniMD [3] mimics the performance of LAMMPS [2,10]. A proxy-
app can be used for teaching purposes and as a starting point for performance
oriented research in a specific application domain.

To investigate the performance of MD applications, we developed MD-Bench
— a standalone proxy-app toolbox implemented in C99 that comprises the most
essential MD steps to calculate trajectories in an atomic-scale system. MD-Bench
contributes clean reference implementations of state-of-the-art MD optimization
schemes. As a result, and in contrast to existing MD proxy-apps, MD-Bench
is not limited to represent one MD application but aims to cover all relevant
contributions. MD-Bench is intended to facilitate and encourage performance
related research for classical MD algorithms. Its applications are low-level code
analysis and performance investigation via fine-grained profiling of hardware
resources utilized by MD runtime-intensive kernels.

This paper is structured as follows: In Sect. 2 we present related work on
proxy-apps for MD simulations, pointing out the differences compared to MD-
Bench. In Sect. 3 we explain the basic theory for MD simulations. In Sect. 4 we
list and discuss current features offered in MD-Bench, besides its employment
on benchmarking, performance analysis and teaching activities. In Sect. 5 we
present cases with analysis studies and results to illustrate how MD-Bench can
be used. Finally Sect. 6 presents the conclusion and outlook, and a discussion of
future work.

2 Related Work

There already exist multiple proxy-apps to investigate performance and portabil-
ity for MD applications. One of the better known examples is Mantevo miniMD,
which contains C++ code extracted from LAMMPS and provides a homoge-
neous copper lattice test case in which the short-range forces can be calculated
with Lennard-Jones (LJ) or embedded atom method (EAM) potentials. It was
used to investigate the performance of single instruction, multiple data (SIMD)
vectorization on the most internal loops of the neighbor-lists building and force
calculation steps [9], as well as to evaluate the portability of MD kernels through
the Kokkos framework, thus executing most of the code on GPU instead of only
the pair force and neighbor-lists. Outcomes from miniMD in LAMMPS include

MD-Bench Proxy-App Toolbox 323

better SIMD parallelism usage on code generated by compilers and most efficient
use of GPU by avoiding data transfers at all time-steps of the simulation.

ExMatEx coMD is another proxy-app from the material science domain that
focuses on co-design to evaluate the performance of new architectures and pro-
gramming models. Besides allowing users to extend and/or re-implement the
code as required, the co-design principle also permits to evaluate the performance
when switching strategies, for example using Linked-Cells for force calculations
instead of Verlet Lists.

ExaMiniMD is an improved and extended version of miniMD with enhanced
modularity that also uses Kokkos for portability. Its main components such
as force calculation, communication and neighbor-list construction are derived
classes that access their functionality through virtual functions.

In previous work we developed tinyMD [8], a proxy-app (also based on min-
iMD) created to evaluate the portability of MD applications with the AnyDSL
framework. tinyMD uses higher-order functions to abstract device iteration
loops, data layouts and communication strategies, providing a domain-specific
library to implement pair-wise interaction kernels that execute efficiently on
multi-CPU and multi-GPU targets. Its scope is beyond MD applications, since
it can be used to simulate any kind of particle simulation that relies on short-
range force calculation such as the discrete element method (DEM).

Beyond proxy-apps, performance-engineering of MD can be achieved via
auto-tuning by either running simulations as a black-box for finding optimal
system and hardware specific simulation parameters [4] or by providing program-
ming interfaces that dynamically tune the application at run-time by selecting
the best optimization strategies and data layouts [5].

MD-Bench differs from available offerings because it was primarily devel-
oped to enable an in-depth analysis of software-hardware interaction. With that
in mind, MD-Bench provides a stubbed variant to evaluate the force calculation
at different levels of the memory hierarchy, as well as a gather benchmark that
mimics the memory operations used in those kernels, thus allowing investigation
of the memory transfers without side-effects from arithmetic operations. In con-
trast to other proxy-apps MD-Bench contains optimized algorithms from mul-
tiple MD applications and allows to compare those using the same test cases.
Apart from standard Verlet Lists algorithms it contains state-of-the-art opti-
mization strategies as, e.g., the GROMACS MxN kernels, which attain higher
data level parallelism in modern architectures by using a more SIMD-friendly
data layout and up to now are not yet available as part of a simple proxy-app.
Although the significant majority of MD-Bench code is implemented in C, it also
relies on SIMD intrinsics and assembly code kernels allowing low-level tweaking
of the code without interference from a compiler.

3 Background and Theory

Fundamentally, atom trajectories in classical MD systems are computed by inte-
grating Newton’s second law equation (Eq. 1) after computing the forces, which

324 R. Ravedutti Lucio Machado et al.

are described by the negative gradient of the potential of interest. Equation 2
shows how to compute each interaction for the LJ potential, with xij being the
distance vector between atoms i and j, ε being the width of the potential well,
and σ specifying at which distance the potential is 0.

F = mv̇ = ma (1)

FLJ
2 (xi, xj) = 24ε

(
σ

xij

)6
[
2
(

σ

xij

)6

− 1

]
xij

|xij |2 (2)

To optimize the computation of short-range potentials, only atom pairs
within a cutoff radius may be considered because contributions become neg-
ligible at long-range interactions. Hence, a Verlet List (see Fig. 1(a)) can be
regularly created for each atom to track neighbor candidates within a specific
radius r, which is the cutoff radius plus a small value (verlet buffer).

(a) Verlet List (b) GROMACS MxN (c) Stubbed Patterns

Fig. 1. (a, b) Pair list creation for the red atom (cluster) in Verlet List (GROMACS
MxN), blue atoms (clusters) are evaluated and the ones within the green circle with
radius r are added to the pair list. Cell size s must be greater or equal than r. (c)
4-length neighbor-lists for atoms 0 (purple) and 1 (orange) in Stubbed Case patterns.
(Color figure online)

4 MD-Bench Features

Figure 2 depicts MD-Bench1,2 features. To facilitate experimentation with a
range of settings that influence performance, a robust build system with var-
ious configurations from the compiler and flags to whether atom types should
be explicitly stored and loaded from memory is available. Due to its modularity,
the build system permits to replace kernels at the assembly level. Particularly,
we maintain simplified C versions of each kernel with an eye toward low-level
code analysis and tweaking, which is hardly achievable on production MD appli-
cations due to the massive code base size and extensive employment of advanced
1 https://github.com/RRZE-HPC/MD-Bench.
2 MD-Bench is open source and available under LGPL3 License.

https://github.com/RRZE-HPC/MD-Bench

MD-Bench Proxy-App Toolbox 325

Fig. 2. Overview about MD-Bench Features

programming language techniques, which brings in substantial complexity and
makes an analysis more difficult. Apart from that, kernels are instrumented with
LIKWID [13] markers to allow fine-grained profiling of kernels using hardware
performance monitoring (HPM) counters.

4.1 Optimization Schemes

Verlet Neighbor-Lists. The most common optimization scheme used in MD
applications to compute short-range forces is arguably the Verlet List algorithm.
It consists of building a neighbor-list for each atom in the simulation, where
the elements are other atoms that lie within a cutoff radius that is higher or
equal than the force cutoff radius. Thus, forces are computed for each atom
by traversing their neighbor-list and accumulating forces for neighbors which
distance is smaller than the cutoff (see Algorithm 1).

Algorithm 1. Force calculation
for i ← 1 to Nlocal do � Number of local atoms

f ← 0 � Partial forces (required for parallelism)
for k ← 1 to Nneighs[i] do � Number of neighbors for atom i

j ← neighbors[i, k] � k-th neighbor of atom i
d ← calculate_distance(i, j)
if d ≤ cutoff_radius then � Force cutoff check

f ← f + calculate_force(d) � Depends on the potential used
end if

end for
force[i] ← force[i] + f � Accumulate forces

end for

The algorithm contains two major drawbacks with respect to SIMD paral-
lelism: (a) irregular access pattern, since neighbor atoms are scattered across
memory and (b) no reuse of neighbor data (positions) across atom iterations.
The consequence for them is the requirement of a gather operation to load the

326 R. Ravedutti Lucio Machado et al.

neighbor atoms data into the vector registers for each atom traversed in the
outermost loop.

There are two strategies to gather data, namely hardware or software gathers.
Hardware gathers on x86-64 processors use a vgather instruction to perform the
gathering at hardware level, where software gathers emulate the gather operation
using separate instructions to load, shuffle and permutate elements within vector
registers. When available in the target processor, hardware gathers clearly use
less instructions, but cannot take advantage of spatial locality in the array of
structures (AoS) layout, thus requiring at least three data transfers instead of
one when keeping elements aligned to the cache line size. Due to this trade-off
between instruction execution and memory transfer, it is not straightforward to
determine the best strategy, as it will depend on the target processor.

To avoid the costs of gathering data and enhance data reuse, a different
data layout is necessary. Therefore, we also introduce the GROMACS MxN
optimization scheme in MD-Bench, which is currently not present in any of the
existing MD proxy-apps. Despite its SIMD-friendly data layout, it introduces
extra computations because interactions are evaluated per clusters instead of
per atom, thus the trade-off between extra computations and overhead for SIMD
parallelism must also be assessed.

For all kernel variants available, MD-Bench contains their half neighbor-lists
counterpart, which take advantage of Newton’s Third Law to compute only
half of the pair interactions, thus decreasing the amount of partial forces to
calculate. Despite the clear benefit of having less operations, this strategy harms
parallelism because it introduces race conditions for the neighbor atoms because
forces are stored back to memory in the innermost loop. Also, gather and scatter
operations are needed for the forces of the neighbor atoms, which not only takes
effect in the instruction execution cost but also increases memory traffic.

MxN Cluster Algorithm. To address the lack of data reuse and necessity
of costly gather operations, the MxN algorithm introduced in GROMACS clus-
ters atoms in groups of max(M,N) elements (see Fig. 1(b) for M = 4, N = 4
example). Thus, tailored kernels with SIMD intrinsics are implemented to com-
pute interactions of MxN atoms. Positions for atoms in the same cluster are
contiguously stored in an array of structures of arrays (AoSoA) fashion, and
can be loaded without a gather operation. In this algorithm, M parametrizes
the reusability of data as atoms in the same i-cluster contains the same pair
lists, and therefore a single load of a j-cluster of size N is enough to compute
the interaction among all pairs of atoms. Since two kernel variants for the force
calculation are present (namely 4xN and 2xNN), then N is optimally chosen
as either the SIMD width of the target processor or half of it. Since kernels
must be kept simple and bidirectional mapping between i-clusters and j-clusters
is needed, M is either N

2 , N or 2N . Note that when a cluster size is less than
max(M,N), it is filled in with atoms placed in the infinity to fail the cutoff check-
ing. Also, different atoms in paired clusters may not be within the cutoff radius.
Hence, choosing large values for M and N can significantly grow the amount of
pairs interactions to compute, wasting resources and injuring performance.

MD-Bench Proxy-App Toolbox 327

4.2 Benchmark Test Cases

Short-range force kernels for LJ and EAM potentials are available, with Copper
face-centered cubic (FCC) lattice and Noble gases (pure argon) setups to embrace
both material modeling and bio-sciences simulation fields. Setups are provided
by providing atoms positions (and velocities in some cases) in a Protein Data
Bank (PDB), Gromos87 or LAMMPS dump file.

4.3 Tools

Detailed Statistics Mode. To collect extended runtime information for the
simulation, a detailed statistics mode can be enabled. It introduces various statis-
tics counters in the force kernels in order to display relevant performance metrics
such as cycles per SIMD iterations (processor frequency must be fixed), average
cutoff conditions that fail/succeed and useful read data volumes.

Memory Traces and Gather-Bench. The gather benchmark is a standalone
benchmark code for x86-64 CPUs (currently) that mimics the data movement
(both operations and transfers) from MD kernels in order to evaluate the “cost
of gather” from distinct architectures. It currently gathers data in the follow-
ing patterns: (a) simple 1D arrays with fixed stride, to evaluate single gather
instruction in the target CPU, (b) array of 3D vectors with fixed stride, to eval-
uate MD gathers with regular data accesses and (c) array of 3D vectors using
trace files from MD-Bench INDEX_TRACER option, to evaluate MD gathers
with irregular data accesses. The benchmark exploits the memory hierarchy by
adjusting the data volume to fit into a different cache level in successive exe-
cutions, and yields a performance metric based on the number of cache lines
touched. There are options to determine the floating point precision and include
padding to assure alignment to the cache line size.

Stubbed Force Calculation. To execute MD kernels in a steady-state
and understand their performance characteristics, we established a synthetical
stubbed case where the number of neighbors per atom remain fixed and the data
access pattern can be predicted. Figure 1(c) depicts examples for data access
patterns available (namely sequential, fixed and random), indicating whether
neighbor-lists vary or are the same across different atoms in the outermost loops
(i) and if atoms in the lists (j) are contiguous or scattered over memory. It
addresses both irregular data accesses and variations in the inner-most loop
size, thus providing a stable benchmark that can isolate effects caused by dis-
tinct reasons like memory latency and overhead for filling in the CPU instruction
pipeline.

5 Examples

For this work experiments, we made use of the following processor architectures:

328 R. Ravedutti Lucio Machado et al.

Intel Cascade Lake: Intel(R) Xeon(R) Gold 6248 CPU at 2.50 GHz, with two
20-cores sockets, two threads per core (hyper-threading enabled). Individual
32KB L1 and 1024KB L2 caches for each core, and 28 MB of shared L3 cache
for each socket, with one memory domain per socket.

Intel Ice Lake: Intel(R) Xeon(R) Platinum 8360Y CPU at 2.40 GHz, with
36-cores per chip. Individual 80KB L1 per core (32 instructions + 48 data),
512KB L2 caches for each core, and 54 MB of shared L3 cache per chip.

We used LIKWID (V5.2) to fix the CPU frequency, pin tasks to specific cores,
enable/disable prefetchers and make use of HPM counters.

5.1 Assembly Analysis

This example illustrates how MD-Bench allows to evaluate the optimizations per-
formed by compilers at the instruction code level to pinpoint possible improve-
ments in the compiler generated code. In the AVX512 generated code from the
Intel compiler (ICC) 2020.06.23, we notice lea and mov instructions before gath-
ering the data (see Listing 1.1). Removing such instructions does not change the
semantics of the code because the destination registers of the mov operations are
not read afterwards, so we can exclude them to improve performance. For the
Copper FCC lattice case with 200 time-steps, the runtime on Cascade Lake for
the force calculation is about 4.43 s without these instructions and about 4.81
with them, leading to a 8% speedup.
1 ; ymm3 <- neighs [k] * 3
2 vmovdqu ymm3, [r13+rbx∗4]
3 vpaddd ymm4, ymm3, ymm3
4 vpaddd ymm3, ymm3, ymm4
5 mov r10d, [r13+rbx*4] ; neighs [k]
6 mov r9d, [4+r13+rbx*4] ; neighs [k +1]
7 lea r10d, [r10+r10*2] ; neighs [k] * 3
8 lea r9d, [r9+r9*2] ; neighs [k +1] * 3
9 . . . ; Same for k +2, k +3, . . . k +7

10 vgatherdpd zmm4{k1}, [16+rdi+ymm3∗8]
11 vgatherdpd zmm17{k2}, [8+rdi+ymm3∗8]
12 vgatherdpd zmm18{k3}, [rdi+ymm3∗8]

Listing 1.1. LEA and MOV instructions.

1 vrcp14pd zmm24, zmm25
2 vcmppd k2, zmm25, zmm14, 1
3 vfpclasspd k0, zmm24, 30
4 kmovw edi , k2
5 knotw k1, k0
6 vmovaps zmm17, zmm25
7 and r10d , edi

8 vfnmadd213pd zmm17, zmm24, . . .
9 kmovw k3, r10d

10 vmulpd zmm18, zmm17, zmm17
11 vfmadd213pd zmm24{k1}, zmm17, zmm24
12 vfmadd213pd zmm24{k1}, zmm18, zmm24

Listing 1.2. Correction instructions.

Further instructions are also included to perform corrections after comput-
ing the reciprocal (see Listing 1.2), which are not present in kernels with explicit
SIMD intrinsics (like MxN kernels). Their usefulness is arguable because other
factors can change the results at this precision, like the order for partial forces
calculation that varies significantly across different optimization and paralleliza-
tion strategies. Table 1 shows performance, temperature and pressure for the
Verlet Lists algorithm with and without such instructions, as well as for the
MxN algorithm. Without them, we can perceive a performance improvement of
about 11% in the force calculation runtime. In terms of accuracy, not only the
differences for temperature and pressure are small, but even smaller than when
comparing to the MxN algorithm.

5.2 Investigate Memory Latency Contributions

An important assumption for performance engineering of streaming kernels is
their non-significant latency contribution due to regular data access pattern,

MD-Bench Proxy-App Toolbox 329

Table 1. Temperatures, pressures and runtimes for Verlet with/without corrections
(+C/-C) and MxN. Quantities are unitless and reflect lj style from LAMMPS.

Algorithm Temperature Pressure Time(s)

Verlet+C 7.961495 × 10−1 6.721043 × 10−1 4.78
Verlet-C 7.961635 × 10−1 6.721161 × 10−1 4.27
MxN 7.961966 × 10−1 6.721441 × 10−1 3.13

Fig. 3. Cycles per SIMD iterations on Standard, Melting and Stubbed setups with
different prefetchers enabled, together with predictions from static analyzers.

which is trivially foreseeable by cache prefetchers. On a first thought, MD sim-
ulations are expected to have significant latency impact due to their memory
access characteristics, and MD-Bench can assist on measuring such impact via
its stubbed sequential case. Nonetheless, when executing them against standard
copper lattice and melting cases, we observed that such impact is minor. Further-
more, we also compare measurements in Cascade Lake from our stubbed version
with kernel throughput predictions under ideal conditions from IACA [6] (for
Skylake-X micro-architecture), OSACA [7] and uiCA [1] static code analyzers.

Figure 3 depicts cycles per SIMD iteration for mentioned cases with distinct
prefetcher settings, together with IACA, OSACA and uiCA predictions. For the
stubbed case, the impact for disabling prefetchers is negligible as expected, and
two versions with different number of neighbors per atom (76 and 1024) are
shown to evaluate the overhead contribution from control flow divergence. With
unsteadier memory accesses, the average cycles grows by 2.1 (4%) in standard
case and 1.3 (3%) in melting case with all prefetchers, a similar behavior with
only the hardware prefetcher enabled, which makes it the most effective one.
From 76 to 1024 neighbors per atom, the number of cycles decreases by about
5.8 (15%), hence control flow divergence contribution is higher than latency con-
tribution. Predictions from OSACA and uiCA are too optimistic with only 55%
and 68% of best execution, respectively, where IACA prediction matches 92%.
IACA reports stalled backend allocation in the CPU due to frontend bubbles, but
a frontend model is not present in OSACA. Frontend stalls therefore contribute
significantly to kernel throughput, and based on IACA results our stubbed case
is close to optimal execution.

330 R. Ravedutti Lucio Machado et al.

(a) Runtime (b) HN Performance Profile (c) FN Performance Profile

Fig. 4. Runtime (subfigure (a)), and HPM counter profiling results (Half neighbor-
list HN subfigure (b) and full neighbor-list FN subfigure (c)) for the Lennard-Jones
copper lattice testcase. Results are shown using compiler flags to enforce no SIMD
vectorization, SSE (16b), AVX2 (32b), and AVX512 (64b) SIMD vectorization. In
subfigures (b) and (c) the stacked bars show total and arithmetic instruction counts
on the left y-axis, the black lines cycles per instruction (CPI) on the right y-axis.

5.3 Compiler Code Quality Study

In this example the Verlet List algorithm with half neighbor-lists (HN) and full
neighbor-lists (FN) is benchmarked and profiled to analyze how well these are
suited for vectorization and to explain the observed runtimes in more detail. AoS
data layout was used with double precision floating point arithmetic. Please note
that HN in MD-Bench currently does not implement the Ghost Newton opti-
mization, hence its benefits are not accounted for. This study was performed on
the Intel Ice Lake node using the Intel compiler (ICC) 2021.4.0. The force field
kernel was compiled for several target SIMD instruction sets and without vector-
ization using the -no-vec option. The compiler requires a #pragma omp simd
to vectorize the HN variant. The binaries were benchmarked with Turbo mode
enabled, all executions were performed in the same cluster node with the same
frequency, which was endorsed via HPM measurements.

Figure 4(a) shows the runtime for the standard Copper lattice test case. With-
out vectorization, the HN variant is as expected faster by almost a factor of two.
When using wider SIMD units, FN shows almost linear speed-up and is faster
than HN for all SIMD widths. HN gets slower for SSE, stagnates for AVX2,
and then improves by a large step with AVX512 but still being 23% slower than
FN. For instruction throughput bound codes, the best case uses least instruc-
tions combined with optimal pipelined and superscalar execution, improving
instruction-level parallelism (ILP in the processor hardware used. Both aspects
can be directly measured using HPM counters. Figure 4(b) and Fig. 4(c) show
instruction counts and cycles per instruction (CPI) measurements for all HN and
FN variants. For HN with SSE it can be seen that the arithmetic instruction
count is almost half due to using the SSE 16b registers. Still, the compiler does
not manage to reduce the overall instruction count. 29.6% more instructions are
required to get the operands into the SIMD registers. The additional instruc-
tion work is partially compensated by an improved CPI resulting in only 3.7%

MD-Bench Proxy-App Toolbox 331

worse runtime. An explanation for this improved CPI is that the register/register
SIMD instructions on Intel processors are executed on different scheduler ports
than the arithmetic instructions and therefore can be executed out-of-order. The
compiler refused to employ 32b arithmetic SIMD instructions in the AVX2 vari-
ant, the instruction count was still decreased and the runtime slightly improved.
The enhanced capabilities of the AVX512 instruction set extension enables the
compiler to generate a version with just 25% of the instruction count of the
no-vec variant. The runtime advantage is smaller because this instruction mix is
executed with a significantly worse CPI of 1.01. It is still impressive that a code
that was impossible to vectorize efficiently with the previous SIMD instruction
set extensions now shows an instruction count reduction of a factor of four (out
of the optimal eight).

For FN the compiler manages to reduce the arithmetic instruction count
with every wider SIMD unit. The overall instruction count increased slighly for
SSE, but then is just 45% for AVX2 and 18% for AVX512 compared to the
no-vec variant. This underscores that the FN version is very well suited for
SIMD vectorization. This kind of study gives interesting insights and is easy to
perform. Apart from comparing algorithmic variants it can be applied to different
processor architectures focusing on the CPI metric or different compilers focusing
on instruction counts. While this type of study can also be done on other proxy-
apps or application it is especially easy in MD-Bench, because all kernels are
already instrumented for LIKWID.

6 Conclusion and Outlook

This paper introduced MD-Bench, a proxy-app toolbox for performance research
of MD algorithms. It facilitates and encourages performance related research
and provides clean implementations of state-of-the-art MD optimization schemes
such as Verlet List and GROMACS MxN. We list and describe the most impor-
tant MD-Bench features and its differences to other offerings, highlighting its
usage on low-level code analysis and investigation of performance implications
through profiling with HPM. Further, we support our statements on the applica-
bility of MD-Bench by providing three use case examples that expose interesting
insights concerning the performance of short-range classical MD kernels.

MD-Bench is mature and usable, but there are still multiple open points.
We want to consider more MD applications as, e.g., NAMD. MD-Bench is cur-
rently a CPU-only application with a few OpenMP parallel loops. A competitive
distributed memory parallelization based on MPI is one of the next work pack-
ages. Another sorely missing part are implementations and specific optimization
schemes for GPU accelerators. Work on supporting GPUs has already started
but is in an early stage. We hope to encourage others with this paper to partici-
pate and contribute to the development of MD-Bench. A project like MD-Bench
is an ongoing effort keeping track with recent developments and supporting novel
hardware architectures.

332 R. Ravedutti Lucio Machado et al.

Acknowledgements. The authors gratefully acknowledge the scientific support and
HPC resources provided by the Erlangen National High Performance Computing Cen-
ter (NHR@FAU) of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU).
NHR funding is provided by federal and Bavarian state authorities. NHR@FAU hard-
ware is partially funded by the German Research Foundation (DFG) - 440719683.

References

1. Abel, A., Reineke, J.: A parametric microarchitecture model for accurate basic
block throughput prediction on recent intel CPUs. In: ICS 2022. pp. 1–12 (June
2022)

2. Brown, W.M., Kohlmeyer, A., Plimpton, S.J., Tharrington, A.N.: Implement-
ing molecular dynamics on hybrid high performance computers - particle-particle
particle-mesh. Computer Physics Communications 183(3), 449–459 (2012)

3. Edwards, H.C., Trott, C.R.: Kokkos: Enabling performance portability across
manycore architectures. In: 2013 Extreme Scaling Workshop (xsw 2013). pp. 18–24
(Aug 2013)

4. Gecht, M., Siggel, M., Linke, M., Hummer, G., Köfinger, J.: Mdbenchmark: A
toolkit to optimize the performance of molecular dynamics simulations. The Jour-
nal of Chemical Physics 153(14), 144105 (2020), https://doi.org/10.1063/5.0019045

5. Gratl, F.A., Seckler, S., Tchipev, N., Bungartz, H.J., Neumann, P.: Autopas: Auto-
tuning for particle simulations. In: 2019 IEEE IPDPSW. pp. 748–757 (2019)

6. Intel: Intel architecture code analyzer (Aug 2019), https://www.intel.com/content/
www/us/en/developer/articles/tool/architecture-code-analyzer.html

7. Laukemann, J., Hammer, J., Hofmann, J., Hager, G., Wellein, G.: Automated
instruction stream throughput prediction for intel and amd microarchitectures. In:
2018 IEEE/ACM PMBS. pp. 121–131 (2018)

8. Machado, R.R.L., Schmitt, J., Eibl, S., Eitzinger, J., Leißa, R., Hack, S., Pérard-
Gayot, A., Membarth, R., Köstler, H.: tinymd: Mapping molecular dynamics sim-
ulations to heterogeneous hardware using partial evaluation. Journal of Computa-
tional Science 54, 101425 (2021)

9. Pennycook, S.J., Hughes, C.J., Smelyanskiy, M., Jarvis, S.: Exploring simd for
molecular dynamics, using intel R© xeon R© processors and intel R© xeon phi copro-
cessors. In: 2013 IEEE 27th IPDPS. pp. 1085–1097 (2013)

10. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. Journal
of Computational Physics 117(1), 1–19 (1995)

11. Páll, S., Hess, B.: A flexible algorithm for calculating pair interactions on simd
architectures. Computer Physics Communications 184(12), 2641–2650 (2013)

12. van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen,
H.J.C.: GROMACS: fast, flexible, and free. Journal of Computational Chemistry
26(16), 1701–1718 (2005)

13. Treibig, J., Hager, G., Wellein, G.: Likwid: A lightweight performance-oriented
tool suite for x86 multicore environments. In: Proceedings of PSTI2010, the First
International Workshop on Parallel Software Tools and Tool Infrastructures. San
Diego CA (2010)

https://doi.org/10.1063/5.0019045
https://www.intel.com/content/www/us/en/developer/articles/tool/architecture-code-analyzer.html
https://www.intel.com/content/www/us/en/developer/articles/tool/architecture-code-analyzer.html

Breaking Down the Parallel Performance
of GROMACS, a High-Performance

Molecular Dynamics Software

Måns I. Andersson(B) , Natarajan Arul Murugan, Artur Podobas,
and Stefano Markidis

KTH Royal Institute of Technology, Stockholm, Sweden

mansande@kth.se

Abstract. GROMACS is one of the most widely used HPC software
packages using the Molecular Dynamics (MD) simulation technique. In
this work, we quantify GROMACS parallel performance using different
configurations, HPC systems, and FFT libraries (FFTW, Intel MKL
FFT, and FFT PACK). We break down the cost of each GROMACS
computational phase and identify non-scalable stages, such as MPI com-
munication during the 3D FFT computation when using a large num-
ber of processes. We show that the Particle-Mesh Ewald phase and the
3D FFT calculation significantly impact the GROMACS performance.
Finally, we discuss performance opportunities with a particular interest
in developing GROMACS for the FFT calculations.

Keywords: Molecular Dynamics · Particle-Mesh Ewald Calculations ·
Fast-Fourier Transform

1 Introduction

Molecular Dynamics (MD) [8] is the use of computer simulations to study the
physical system particle dynamics and interactions. Today, this technique is
widely used in different scientific domains, such as biochemistry and material sci-
ence, among many others. In particular, the MD software landscape is dominated
by a number of well known HPC codes, including GROMACS [18], NAMD [14],
and CHARMM [4].

In this work, we investigate the GROMACS parallel performance. GRO-
MACS originated in the early 1990s s at the University of Groningen [2] and
has since then been developed and maintained as a community effort. It sup-
ports an open-source policy and, among its many strengths, can be executed
on a large number of systems, including small (personal) laptops all the way
to large high-performance computers (HPC) [1]. Furthermore, GROMACS sup-
ports both general-purpose processors (CPUs) as well as Graphics Processing
Units (GPUs) [12]. However, despite the continuous improvement in hardware
technologies, GROMACS (and other MD frameworks) are still challenged - from
the computational point of view - to simulate critical biological processes such
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 333–345, 2023.
https://doi.org/10.1007/978-3-031-30442-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_25&domain=pdf
http://orcid.org/0000-0002-6384-2630
https://doi.org/10.1007/978-3-031-30442-2_25

334 M. I. Andersson et al.

as protein folding, conformational transition in bio-molecules (such as R to T
transition in Hemoglobin), bacterial and viral infections [3,5]. These simulations
require the usage of supercomputers and accelerators. Needless to say, GRO-
MACS is constantly developed and extended to improve its parallel efficiency as
well as algorithmic improvements [13] to facilitate the study of larger and more
complex molecular simulations.

This paper seeks to understand the GROMACS parallel performance and
identify optimization possibilities. For this reason, we run GROMACS on
two state-of-the-art HPC systems, analyze their results, and identify key
performance-limiting characteristics. In short, our contributions are:

1. A quantitative and systematic performance evaluation of GROMACS on two
HPC systems.

2. We study the impact of different GROMACS phases’ implementations, vary-
ing the number of processes. We quantify their different impact on the overall
GROMACS performance and analyze their respective performance-degrading
contribution. For a different number of processes, we identify various opti-
mization opportunities.

3. We quantify the performance impact of using various FFT libraries.

2 Background

MD simulations mimic the dynamics of molecules by numerically solving the
equation of particles’ motion using Verlet or leap-frog algorithms. To determine
each particle’s new position and velocities, we need to calculate the force acting
on each particle. Examples of such forces are the van der Walls and the Coulom-
bic forces. While the cost of particle position and velocity calculations scale with
the number of particles under study, a näıve algorithm for the calculation of the
forces requires calculating the contribution to the force for each pair of particles
present in the system, making the computation scaling as the square of the num-
ber of particles present in the system. To decrease the computational complexity
of force calculations, modern MD algorithms divide the interactions between the
molecules into short-range interactions, such as the ones from van der Waals
interactions, and long-range interactions, such as electrostatic interactions. For
instance, van der Waals forces are short-range in nature and decay with distance
rapidly. Short-range interactions are only computed for the neighboring particles
within a cut-off distance, usually 15–20 Å for many applications. The force con-
tribution from particles farther than the cut-off distance is neglected, effectively
reducing the interaction of one particle to the closest particles only. However,
the electrostatic interactions are long-range in nature, and farther particles con-
tribute to its calculations, still requiring O(N2) calculations.

Modern MD codes, such as GROMACS, use the Particle-Mesh Ewald (PME)
method to solve this problem. The basic strategy of the PME technique is to
discretize the simulation domain in a uniform computational grid and calculate
the charge density for each grid point, for instance, using interpolation functions.
After the charge density on the grid points is known, the Poisson Equation

Breaking Down the GROMACS Parallel Performance 335

∇2Φ = −ρ/ε0 is solved on the grid for the electrostatic potential Φ and the
electric field (still on the grid points) is calculated from it as E = −∇Φ. The
electric field information on the grid is transferred to the particle by using again
interpolation functions. The PME method use FFT to solve the Poisson equation
for electrostatic potential on the grid: we transform first the charge density
information to the spectral space, we solve the Poisson equation in the spectral
space as an algebraic equation (multiplication in spectral space), and then apply
an inverse FFT to calculate the potential in the real-space. The PME method
also accounts for force contributions arising from periodic infinite systems, such
as the typical systems studied with MD, by working in the spectral spaces. In the
PME method, 1D FFT (and the inverse 1D FFT) requires O(Ng log Ng), where
Ng is the number of grid points. We first use a 3D FFT on a real data input (the
charge density) to calculate the electrostatic potential. After the convolution, we
apply a 3D FFT to move the potential to the physical space.

GROMACS divides the calculations at different parallelization levels, rang-
ing from MPI to OpenMP, CUDA, and CPU vector instructions. At a high
level, GROMACS uses a pipelined parallelism with two main phases: the
Particle-Particle (PM) and PME calculations. GROMACS allows dividing the
MPI processes into PME processes dedicated only to PME and PP phase respon-
sible for all the other calculations, such as computing the particle dynamics and
short-range interactions. The two phases can run in parallel and typically on
different kinds of resources, such as different nodes, cores, or devices. To finish a
GROMACS computational cycle, the PME phase needs to be completed. This
synchronization might introduce a delay in the simulation (causing an idle time
on the PP processes) and load imbalance if the PP and PME phases are not
finishing at the same time. Naturally, the number of PP and PME MPI pro-
cesses impacts the load balance and the performance. In GROMACS, the choice
of the number of processes dedicated to PME and PP calculations can be set
by using the command line (via -npme option) or can be set by GROMACS in
preparation for a simulation by an auto-tuning tool: gmx tune pme (which is not
to be confused with the PME tuning done at run-time). GROMACS allocates
1:3 or 1:2 ranks for the PME and PP computations based on the domain if left
unspecified by the user. In this study, we set the ratio of PME to PP equal to
1:3.

The GROMACS PME performance largely depends on six major components
[15]. If we focus on PME calculations, we identify the six major phases as:

1. Redistribution of positions and forces (X/F). This phase redistributes
atoms, parameters, and coordinates before each 3D FFT calculation.

2. Spread. Using interpolation functions (often called window functions), such
as p-th order b-spline, the charges of the particles are distributed on the
uniform grid.

3. 1D FFT calculations. The distributed forward and backward 3D FFT is
done with a GROMACS specific 1D or 2D FFT factorization. Currently,
GROMACS allows the use of three different FFT libraries when calculating

336 M. I. Andersson et al.

the FFT on CPU, namely FFTW3 [6], FFTMKL, FFTPACK [17] for the
PME computation.

4. 3D FFT communication. These costs relate to parallel communication
performed during the transpose operations during the 3D FFT operations. In
GROMACS, this is achieved either by a MPI Alltoall or by FFTW transpose
operation if the FFTW’s 3D library is used on a single node. When the 3D
FFT size in the domain x-direction is evenly divisible by the number of PME
ranks, a 2D decomposition is used, which requires less communication than
a 1D decomposition.

5. Solution of the Electric Field. In this step, we perform the calculation of
the electrostatic force by differentiating the electrostatic energy.

6. Gather. The potential (force or energy) is evaluated at the target particles
with the same interpolation functions as in the spreading step.

7. Leonard-Jones. Leonard-Jones is a commonly used potential. It is not used
in this paper because it is not possible to run this step on GPU systems at
the moment.

3 Related Work

Given the importance of GROMACS for MD studies, there is a history of bench-
marking the throughput of GROMACS. Ref. [7] discusses optimal GROMACS
configuration for a given problem on a given cluster. An additional performance
and benchmark analysis on the SuperMUC supercomputer is Ref. [11]. Ref. [13]
presents the future of GROMACS development and discusses the limitations
of performance due to PME’s limited scaling. As the PME and FFT limit the
strong scalability, new algorithmic advancements, such as the use of the Fast
Multipole Method (FMM) for MD [19] are pursued.

4 Methodology

This work quantifies GROMACS parallel performance using different configu-
rations, HPC systems, and FFT libraries (FFTW, Intel MKL FFT, and FFT
PACK). We break down the cost of each GROMACS computational phase and
identify non-scalable stages. The performance evaluation uses test cases that are
similar to production runs. To better explain the scaling of the different compo-
nents, we turn load balancing and PME tuning off. We evaluate the impact of
the PME calculations and associated FFTs using two basic configurations, pre-
sented in Table 1. The first system, simulating Lysozyme in water, is a relatively
small benchmark system in terms of grid points and the number of particles: the
3D grid consists of 44 × 44 × 44, and there are 35,000 atoms. Instead, the second
configuration represents a simulation of the Spike protein. In this case, the grid
points are 108 × 144 × 144, and the number of atoms is 850,000. The number
of particles is 35,000 and 0.85 million approximately for the two configurations.
In particular, the viral Spike protein studied here is involved in the interaction
with the host cell receptor called hACE-2 and is responsible for the first phase

Breaking Down the GROMACS Parallel Performance 337

of viral infection and is one of the potential viral targets for developing Covid-19
therapeutics.

Table 1. Specifications for the use cases

MD system Lysozyme in water Spike protein: ACE-2

atoms 35 000 0.85 M

Time step [fs] 0.002 0.002

Domain size [nm] 7 ×7 ×7 17 ×21 ×23

Cut-off radii [nm] 1 1

PME grid [nm] 0.16 0.16

PME interpolation order 4 4

Steps (Beskow) 5 000 5 000

(Tetralith) 100 000 100 000

To characterize the performance of FFT libraries on a large scale, we eval-
uate the CPU code on two systems. For CPU evaluations, we use a system
called “Beskow” and one called “Tetralith” with CPU FFT libraries (FFTW,
MKL, and FFTPACK). In addition to two supercomputers, we evaluate the
GROMACS performance on GPUs; we use a cluster called “Kebnekaise” and a
workstation called “NJ” with cuFFT. We note that the PP and PME phases
are highly intertwined on GPU, and a clear separation of the phases is challeng-
ing (for this reason, we limit the study on GPU to the total performance). We
summarize the configurations of the systems in Table 2.

Table 2. The hardware architecture of our evaluation platforms.

Name CPU RAM GPU Compiler Env.

Beskow 2x Intel Xeon E5-2698v3 64 GB - GCC 10.3, Intel 19.1,
HT on, OpenMPI

Tetralith 2x Intel Xeon Gold 6130 96 GB - GCC 7, HT off,

Kebnekaise 2x Intel Xeon Gold 6132
2x Intel Xeon E5-2690v4

192 GB
128 GB

2 x NVIDIA V100
2, 4 x NVIDIA K80

GNU 10.3, CUDA 11.3

NJ AMD EPYC 7302P 2 x NVIDIA A100 GNU, CUDA 11.3

All simulations were performed with GROMACS 2021.3. We compile GRO-
MACS using the optimal settings, as advised in the user guide. We build FFTW
from the source. In particular, we specify to use single-precision compute. We also
enable vectorization by specifying GMX SIMD=AVX2 256 on Beskow and GMX SIMD=
AVX 512 on Tetralith. We use the GNU compiler collections on all platforms com-
bined with CUDA when GPU is used. MKL’s FFT was compiled with the Intel
compiler.

The figures of merit we use in this paper are the total execution time and
nanoseconds (ns) per day. This last metric is how many nanoseconds can be
simulated within a day of the simulation and represents the total GROMACS
throughput. Each simulation is performed ten times on Beskow and five times

338 M. I. Andersson et al.

on Tetralith, showing a high standard deviation. The figures consist of the mean
(median) of these simulations. The simulation parameters are: -notunepme -dlb
no and for the GPU -notunepme -dlb no -nb gpu -update -gpu.

Furthermore, to minimize the effects of congestion and impact from the net-
work topology (explained in detail in [16]), every job evaluates all FFT libraries
with the same node configuration. This is not done for the Tetralith simulations.
On both Beskow and Tetralith, we run with two OpenMP threads per MPI rank,
and on Beskow, hyperthreading is turned on by default.

5 Results

As the first step of our study, we analyze the GROMACS parallel performance.
Figure 1 shows a tracing of a GROMACS run instrumented with Score-P [9] and
visualized with the Vampir tool [10]. In this run, four processes (with thread
numbers 5, 11, 17 and 23) are dedicated to the PME calculations, while there
are 20 PP processes. Within the PME processes, the all-to-all communication
is reduced to only four processes decreasing the communication cost for the
transposition in the 3D FFT. It is important to note that the PP processes
wait for the PME processes to finish in this run, and the PME calculations
dominate the computational time step. We can also observe that the PME ranks
are severely imbalanced as the 1D FFT calculations (blue) in rank 17 is much
slower than the corresponding calculations in rank 5 and 11.

We investigate the total impact of PME calculations on the GROMACS’
total execution time. Figure 2 shows the fraction of simulation time spent in the
PME calculations with respect to the PP time and the total time, varying the
total number of cores per GROMACS simulation.

The left panel presents the strong scaling results for the Lysozyme simulations
(small-size problem). In this case, the simulation scales up to 256 cores then we
observe an increase in the simulation time for 512 cores. In this case, more than
90% of the simulation is spent on MPI communication. We note that the switch
from a PP-dominated to PME-dominated simulations appears around 128 cores.
In fact, PP scales well beyond 512 cores. There is a significant imbalance between
PP and PME. This imbalance can be seen by inspecting the difference between
the slowest PP and PME and the total time. The right panel of Fig. 2 presents
the results for the Spike strong scaling test. In this case, we observe strong scaling
up to 2,048 cores. The simulation is bound by PP up to 256 cores and limited
by PME beyond that. We note that PP keeps scaling like in the Lyso case.

After identifying PME as the main obstacle to strong scalability, we ana-
lyze which parts of the PME calculations show performance bottleneck and are
amenable to performance optimization. Figure 3 presents a breakdown of the dif-
ferent phases during the PME calculations on the Beskow system with FFTW
(the right panel shows the percentage to ease the comparison).

From an analysis of the plots, we note that when a small number of cores are
dedicated to PME calculation, the PME spread and gather operations accounts

Breaking Down the GROMACS Parallel Performance 339

Fig. 1. Tracing of a GROMACS run with 24 processes using ScoreP and Vampir tools.
Four processes (three visible) complete the PME calculations in this run, while twenty
processes quickly carry out the PP calculations. The PP processes wait for the PME
processes to finish. We can also see a significant load imbalance between the PME
ranks. The dark red is MPI Alltoall (Color figure online) for FFT communication. All
other MPI calls are light red. The green color represents the general compute, dark
green is gather, blue is 1D FFT, purple is spread, and turquoise is the convolution
calculation.

for most of the time. On the contrary, for a larger number of cores, e.g., more
than 256 PME cores, the communication for the 3D FFT (parallel transpose)
and PME redistribution time dominate the PME calculation and, therefore,
the whole simulation time. These two PME phases are responsible for losing
scalability at large numbers of the core. Spread and Gather also level out at
high core counts but at a lower total cost. At peak performance of the PME
calculation, 50% of the time is spent on 3D FFT calculation, and most of that
is communication.

An interesting question for GROMACS users is what performance improve-
ment can be achieved by changing the FFT library and what is the best perform-
ing one in GROMACS. We compare the results for three PME phases (3D-FFT
communication, PME 3D-FFT, and PME redistribution X/F) for different 1D
FFT libraries. The results are shown in Fig. 4.

As expected, we do not observe any significant performance change in the
communication cost as GROMACS handles the communication, and it remains
the same regardless of the library in use. Yet, we notice a difference in individual
FFT performance. While for a small number of core counts, FFTW and MKL
perform equally well, for a more significant number of cores, the FFT, built
with GNU compilers, provides the best performance on Beskow. We also notice
that the 3D FFT communication and redistribution measurements are noisy. We
also note that the different clusters perform significantly differently: the Tetralith

340 M. I. Andersson et al.

 3
2

 6
4

 1
28

 2
56

 5
12

10
24

20
48

40
96

81
92

Number of cores

0

50

100

150

200

250

T
ot

al
 ti

m
e

[s
]

total
pp
pme

 3
2

 6
4

 1
28

 2
56

 5
12

Number of cores

0

2

4

6

8

10

12

14

16

18

T
ot

al
 ti

m
e

[s
]

total
pp
pme

Fig. 2. The fraction of time for PME, PP, and execution time on the Beskow system
varying the total number of cores, to the left the Lysozyme system and to the right the
Spike system. 1/4 of the cores are dedicated to the PME calculations. In this case, we
use FFTW as the FFT library. Due to a lack of complete overlap and synchronization
costs, the total execution is longer than each component phase duration.

Fig. 3. The left panel shows the strong scaling results for the different parts of PME
for the Spike test case. The right panel present the PME time as a fraction of its
components. The experiment was performed on Beskow, and the optimization phases
are highlighted.

Breaking Down the GROMACS Parallel Performance 341

results communication results show a significant performance variability in Fig. 4.
We also note that MKL is slightly faster than FFTW.

8 16 32 64 12
8

25
6

51
2

10
24

20
48

Number of PME ranks

2.5

5

10

25

50

100

250

500

1000

T
im

e
[s

]

3D FFT Comm. and redist. X/F

FFTW
MKL (intel)
PACK

8 16 32 64 12
8

25
6

51
2

10
24

20
48

Number of PME ranks

1

2.5

5

10

25

50

100

250

500

1000

T
im

e
[s

]

PME 1D-FFT

FFTW
MKL (intel)
PACK

Beskow

TetralithTetralith

3D FFT
Comm.

Beskow

Redist X/F.

Fig. 4. To the left: Strong scaling for the parts of PME with worst scaling on CPU for
Spike on Beskow and Tetralith. To the right: The strong scaling of the FFT calculation.
Note that the time (y-axis) does not align between plots.

8 16 32 64 12
8

25
6

51
2

10
24

20
48

Number of PME ranks

1

2.5

5

10

25

50

100

250

500

1000

T
im

e
[s

]

PME spread

FFTW
MKL (intel)
PACK

8 16 32 64 12
8

25
6

51
2

10
24

20
48

Number of PME ranks

1

2.5

5

10

25

50

100

250

500

1000

T
im

e
[s

]

PME gather

FFTW
MKL (intel)
PACK

Fig. 5. Strong scaling of the Gather (left) and Spread (right), top three lines are
from Tetralith bottom three lines are from Beskow. The simulation uses 4th order
interpolation.

We present the strong scaling behavior of the interpolation steps in Fig. 5.
We notice that the scaling stops at approximately 512 cores for these parts,
similar to the FFT communication and redistribution. However, it only displays
a reduced performance variability after scaling breaks down compared with the
parallel transpose and redistribution. We note that the gather and spread phases
make up only 20% of the total PME calculation after they have stopped scaling.

The total performance of the PME calculations, varying FFT libraries, can
be seen in Fig. 6. It shows the diminishing effects of the 1D FFT compute and

342 M. I. Andersson et al.

Fig. 6. The total time for PME depending of the FFT library on Beskow with the
Spike case.

the increasing performance variability coming from the communication with an
increased number of cores. It is clear that FFTW and MKL are better choices
than FFTPACK and are always motivated choices.

Finally, we analyze the performance of GROMACS PME on GPUs and
present the results in Fig. 7. The GPU performance for the Lysozyme test case
out-perform the CPU configurations significantly: PME on GPU and bonded
calculations on CPU resulted in a throughput of approximately 640 ns/day com-
pared with close to 380 ns/day for 128 CPU cores with FFTW.

Fig. 7. The total throughput for the different FFT libraries on Beskow (CPU), NJ
(Nvidia A100 GPU) and Kebnekaise (Nvidia K80 and V100 GPU).

Breaking Down the GROMACS Parallel Performance 343

We observe a slight advantage in using FFTW as the FFT library with a
total throughput increase of 10% compared with the other libraries for the small
Lysozyme system. In the Spike test case, GROMACS runs on the Nvidia A100
perform comparably to 512 CPU cores on Beskow (46 ns/day) and a bit better
than 512 cores on Tetralith (36 ns/day).

6 Discussion and Conclusion

In this paper, we presented an evaluation of GROMACS parallel performance.
We conclude that the performance of PME is highly correlated with the parallel
transpose and the redist functions. Redist is dependent on the domain decom-
position of the PP part of the simulation, and therefore their performance is
problem specific. The 3D FFT size can be varied to more accurately solve the
Electrostatics or to balance the load. These two are also the parts of the PME
calculation with the most variance between runs. We identified three main fac-
tors in the GROMACS PME that can be improved. Firstly, there are many
classes of problems, such as embarrassingly parallel ensemble jobs or parame-
ter searching jobs, where many simulations can be distributed on many nodes
with one job running on a single node. Improving 1D FFT performance for a
single node can make noticeable overall performance in such ensemble simula-
tions. Using FFTW or MKL instead of the backup library is advised; FFTW
performs twice that of PACK in the spike problem. For the future, a possible fur-
ther optimization technique is to use batched 1D FFTs parallelized with SIMD
vector instructions. Secondly, within the most scalable range, we can see that
the cost associated with the interpolation steps and the transpose are similar
in size. We would suggest an overlap between the communication needed from
Spread-Gather and the parallel transpose. Since the GROMACS CPU code does
not depend on an external 3D FFT library, it might be possible to incorporate
the interpolation steps and therefore limit the need for communication. Finally,
we have the transpose-dominated range – the Achilles’ heel of the method.

Acknowledgments. Financial support was provided by the SeRC Exascale Simula-
tion Software Initiative (SESSI) and the DEEP-SEA project. The DEEP-SEA project
has received funding from the European Union’s Horizon 2020/EuroHPC research and
innovation program under grant agreement No 955606. National VR contribution from
Sweden matches the EuroHPC funding. The computations of this work were enabled
by resources provided by the Swedish National Infrastructure for Computing (SNIC)
at HPC2N, partially funded by the Swedish Research Council through grant agreement
no. 2018-05973.

344 M. I. Andersson et al.

References

1. Abraham, M., et al.: GROMACS: high performance molecular simulations through
multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25 (2015).
https://doi.org/10.1016/j.softx.2015.06.001

2. Berendsen, H.J., van der Spoel, D., van Drunen, R.: GROMACS: a message-passing
parallel molecular dynamics implementation. Comput. Phys. Commun. 91(1–3),
43–56 (1995). https://doi.org/10.1016/0010-4655(95)00042-E

3. Borhani, D.W., Shaw, D.E.: The future of molecular dynamics simulations in drug
discovery. J. Comput. Aided Mol. Des. 26(1), 15–26 (2012). https://doi.org/10.
1007/s10822-011-9517-y

4. Brooks, B.R., al.: Charmm: the biomolecular simulation program. J. Comput.
chem. 30(10), 1545–1614 (2009). https://doi.org/10.1002/jcc.21287

5. Elber, R.: Long-timescale simulation methods. Curr. Opin. Struct. Biol. 15(2),
151–156 (2005). https://doi.org/10.1016/j.sbi.2005.02.004

6. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE
93(2), 216–231 (2005). https://doi.org/10.1109/JPROC.2004.840301, special issue
on “Program Generation, Optimization, and Platform Adaptation”

7. Gruber, C.C., Pleiss, J.: Systematic benchmarking of large molecular dynamics
simulations employing GROMACS on massive multiprocessing facilities. J. Com-
put. Chem. 32(4), 600–606 (2011). https://doi.org/10.1002/jcc.21645

8. Karplus, M., McCammon, J.A.: Molecular dynamics simulations of biomolecules.
Nat. Struct. Biol. 9(9), 646–652 (2002). https://doi.org/10.1038/nsb0902-646

9. Knüpfer, A., et al.: Score-p: a joint performance measurement run-time infrastruc-
ture for periscope, scalasca, TAU, and vampir. In: Brunst, H., Muller, M., Nagel,
W., Resch, M. (eds.) Tools for High Performance Computing 2011, pp. 79–91.
Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-31476-6 7

10. Knüpfer, A., et al.: The vampir performance analysis tool-set. In: Tools for High
Performance Computing, pp. 139–155. Springer, Berlin (2008). https://doi.org/10.
1007/978-3-540-68564-7 9

11. Kutzner, C., Apostolov, R., Hess, B., Grubmuller, H.: Scaling of the GROMACS
4.6 molecular dynamics code on superMUC. Adv. Parallel Comput. 25, 722–727
(2014). https://doi.org/10.3233/978-1-61499-381-0-722

12. Kutzner, C., Páll, S., Fechner, M., Esztermann, A., de Groot, B.L., Grubmuller,
H.: More bang for your buck: Improved use of GPU nodes for GROMACS 2018.
J. Comput. Chem. 40(27), 2418–2431 (2019). https://doi.org/10.1002/jcc.26011

13. Páll, S., Abraham, M.J., Kutzner, C., Hess, B., Lindahl, E.: Tackling Exascale soft-
ware challenges in molecular dynamics simulations with GROMACS. In: Markidis,
S., Laure, E. (eds.) EASC 2014. LNCS, vol. 8759, pp. 3–27. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-15976-8 1

14. Phillips, J.C., et al.: Scalable molecular dynamics with NAMD. J. Comput. Chem.
26(16), 1781–1802 (2005). https://doi.org/10.1002/jcc.20289

15. Shamshirgar, D.S., Hess, B., Tornberg, A.K.: A comparison of the spectral EWALD
and smooth particle mesh EWALD methods in GROMACS. arXiv preprint
arXiv:1712.04718 (2017). 10.48550/arXiv. 1712.04718

16. Smith, S.A., Cromey, C.E., Lowenthal, D.K., Domke, J., Jain, N., Thiagarajan,
J.J., Bhatele, A.: Mitigating inter-job interference using adaptive flow-aware rout-
ing. In: SC 2018: International Conference for High Performance Computing, Net-
working, Storage and Analysis (2018). https://doi.org/10.1109/SC.2018.00030

https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/0010-4655(95)00042-E
https://doi.org/10.1007/s10822-011-9517-y
https://doi.org/10.1007/s10822-011-9517-y
https://doi.org/10.1002/jcc.21287
https://doi.org/10.1016/j.sbi.2005.02.004
https://doi.org/10.1109/JPROC.2004.840301
https://doi.org/10.1002/jcc.21645
https://doi.org/10.1038/nsb0902-646
https://doi.org/10.1007/978-3-642-31476-6_7
https://doi.org/10.1007/978-3-540-68564-7_9
https://doi.org/10.1007/978-3-540-68564-7_9
https://doi.org/10.3233/978-1-61499-381-0-722
https://doi.org/10.1002/jcc.26011
https://doi.org/10.1007/978-3-319-15976-8_1
https://doi.org/10.1002/jcc.20289
http://arxiv.org/abs/1712.04718
https://doi.org/10.1109/SC.2018.00030

Breaking Down the GROMACS Parallel Performance 345

17. Swarztrauber, P.N.: Vectorizing the FFTs. In: Rodrigue, G. (ed.) Parallel Com-
putations, pp. 51–83. Academic Press (1982). https://doi.org/10.1016/B978-0-12-
592101-5.50007-5

18. Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen,
H.J.: Gromacs: fast, flexible, and free. J. Comput. Chem. 26(16), 1701–1718 (2005).
https://doi.org/10.1002/jcc.20291

19. Yokota, R., Barba, L.A.: A tuned and scalable fast multipole method as a preem-
inent algorithm for exascale systems. Int. J. High Perform. Comput. Appl. 26(4),
337–346 (2012). https://doi.org/10.1177/1094342011429952

https://doi.org/10.1016/B978-0-12-592101-5.50007-5
https://doi.org/10.1016/B978-0-12-592101-5.50007-5
https://doi.org/10.1002/jcc.20291
https://doi.org/10.1177/1094342011429952

GPU-Based Molecular Dynamics
of Turbulent Liquid Flows with OpenMM

Daniil Pavlov1,2(B) , Daniil Kolotinskii1,2 , and Vladimir Stegailov1,2,3

1 Joint Institute for High Temperatures of RAS, Moscow, Russian Federation
2 Moscow Institute of Physics and Technology (National Research University),

Dolgoprudny, Russian Federation
pavlov.dg@phystech.edu

3 National Research University Higher School of Economics, Moscow, Russian

Federation

Abstract. In this paper we describe the computational framework for
GPU-based molecular dynamics of turbulent flows. The framework is
based on the open-source molecular dynamics library OpenMM. The
implementation of a special type of open boundary conditions is pre-
sented together with a generic case of a turbulent flow of Lennard-
Jones liquid. We compare the computational efficiency of OpenMM with
another popular MD library LAMMPS and other legacy MD programs
used for studying turbulence.

Keywords: Molecular dynamics · Liquid flows · GPU computing ·
OpenMM · LAMMPS · KOKKOS · Performance portability

1 Introduction

Classical molecular dynamics (MD) simulation method is a key research tool in
many areas of science and engineering. The first attempts to use MD to study
microscopic details of turbulent flows date back to the late 1980s (e.g. see [28]).
Nowadays MD is one of the major consumers of supercomputer resources world-
wide. The development of MD tools that enable ultra-long MD trajectories and
extreme MD system sizes is one of the important vectors of development for high
performance computing methods [33]. Shortly after the Nvidia CUDA technol-
ogy had been introduced in 2007, hybrid MD algorithms appeared and showed
their promising performance. Currently, GPU-accelerated hardware provides the
most efficient and affordable way of doing MD studies [18,20,21,32] and makes
various applied MD studies feasible.

The emergence of parallel distributed memory supercomputing systems stim-
ulated the development of parallel algorithms for MD calculations. Among oth-
ers, LAMMPS [34] and GROMACS [5] are two MD packages that have devel-
oped into complex simulation packages and are widely used nowadays. Since the
emergence of general-purpose computing on graphics processing units (GPGPU),
both packages have been supplemented with GPU offloading capabilities [3,6–8].
Newer MD libraries like HOOMD [4,12] and OpenMM [9,11] use GPU-oriented
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 346–358, 2023.
https://doi.org/10.1007/978-3-031-30442-2_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_26&domain=pdf
http://orcid.org/0000-0001-7472-8932
http://orcid.org/0000-0002-4419-4869
http://orcid.org/0000-0002-5349-3991
https://doi.org/10.1007/978-3-031-30442-2_26

OpenMM for GPU-Based Molecular Dynamics of Turbulent Liquid Flows 347

MD algorithms that are designed in a way that keeps the amount of CPU-GPU
communication to an absolute minimum.

In this work, we describe our OpenMM based framework based for modelling
turbulent flows. We propose a novel implementation of open boundary condi-
tions, demonstrate a working OpenMM based implementation of such boundary
conditions and compare the performance of OpenMM and the KOKKOS GPU
backend of LAMMPS for very large system sizes.

2 Related Work

With the rise of supercomputing capabilities in 2000s, molecular dynamics cal-
culations at extreme length scales were considered in LANL as a tool that is able
to complement Navier-Stokes-based continuum fluid-simulation methods [17]. A
special MD package ls1 mardyn focused on extreme length scales is under devel-
opment [33] and used for the corresponding multiscale simulations [14,15].

The paper of E. R. Smith provided a detailed description of MD modelling
of a turbulent flow [30] with the details about computational efficiency of the
MD algorithm deployed using the SGI Altix ICE 8200 EX supercomputer with
manycore CPUs and Infiniband interconnect. Below, we compare the data of [30]
with our results for modern GPUs.

The coupling between CFD and MD algorithms is under active development:
for example, Grinberg et al. discuss the coupling of Navier-Stokes equations
with particle-based models [13,26], Smith et al. described such a coupling for
OpenFOAM and LAMMPS [31].

3 Software: OpenMM as a Flexible MD Framework

As a part of this work, we implemented a new kind of boundary conditions using
the OpenMM library.

OpenMM [11] is an open source toolkit for molecular dynamics. With its main
focus being computational biology, it still performs remarkably well on other
systems. This is achieved because unlike the high-level OpenMM Application
Layer Python API [24], which is built around domain-specific constructs such as
force fields, residue chains and topologies, OpenMM Library Level C++/Python
API [25] is completely divorced from such constructs and provides a lower-level
access to the underlying structures that can be used in a broader range of appli-
cations.

OpenMM supports four platforms: Reference, CPU, CUDA, OpenCL.
There’s also an ongoing effort [16] to add HIP to the list. Both CUDA and
OpenCL are GPU-oriented platforms, and they provide the best performance.
The underlying algorithms that are used in these platforms are almost identical,
with most of the code having been merged into a meta-platform called Common
Compute. Here, we focus on the CUDA platform, implying that OpenCL and
HIP operate in mostly the same way.

348 D. Pavlov et al.

When parallelizing over a big amount of processing units, there are three
wide classes of approaches [27]: atom-decomposition, force-decomposition and
domain-decomposition. For distributing workload inside a GPU, OpenMM uses
a force-decomposition-like algorithm [10]: for N atoms, the N×N force matrix is
divided into ‘tiles’ of size 32× 32. Then, only the tiles that might contain non-
zero forces are marked as ‘interacting’ based on comparing the tiles’ coordinate
bounds. Then, the list of interacting tiles is traversed to calculate forces and
energy. Once the tiles’ bounds change to a point that new interactions might
appear, the list of interacting tiles is rebuilt.

There are a few important quirks of this algorithm that must be accounted
for: first, due to the SIMT architecture of GPU execution, it does not matter
whether there’s only one pair of atoms interacting within a tile or all atoms are
interacting with the other, the tile will take the same time to compute in either
case. This suggests that the amount of interacting tiles should be brought to a
minimum: either most atoms should interact within a tile, or none. Such an effect
is achieved by making atoms ‘spatially coherent’: when atoms within a tile all lie
close to each other, there are more interactions per tile and therefore fewer tiles.
To achieve the ‘spatial coherence’, every 250 steps atoms are reordered along a
Hilbert curve [22]. This does not eliminate the inherent possibility that there
might still be tiles with only a few interactions, so the tiles that still are not
“dense” are not processed as a whole, but split into individual atoms that are
processed separately.

The second important quirk of this algorithm is its complexity: traversing an
N× N force matrix has the complexity of O(N2). This means that this algorithm
is not infinitely scalable: at some point the rapidly increasing cost of finding inter-
acting tiles would outweigh the benefits of being able to simulate bigger systems.
The question is how soon. Current limitations restrict the use of OpenMM to
systems with about 107 − 108 atoms.

In this work we also compare the OpenMM performance with the LAMMPS
backend based on KOKKOS. KOKKOS [35] is an open-source performance
portability parallel programming library. With LAMMPS being a go-to tool for
molecular dynamics in materials science, and KOKKOS being the highest per-
formance LAMMPS backend so far, it is only reasonable to use it as a baseline
when measuring performance of other packages.

4 Constant Temperature Open Boundary Conditions

When running MD simulations, it is impossible to simulate a macroscopic system
due to its enormous amount of particles. So it is common practice to simulate a
small system as a part of the whole by putting it in periodic boundary conditions
(PBC). This approach imitates an isotropic, uniform system, acting under the
assumption that the system looks the same everywhere. However, this is not
the case for stationary flows: whenever viscosity is present, there is a pressure
gradient that counteracts this viscosity. The presence of the pressure gradient
introduces anisotropicity and makes the simple PBC unfit for this purpose. This

OpenMM for GPU-Based Molecular Dynamics of Turbulent Liquid Flows 349

problem can be addressed in a number of ways: for example, by introducing
moving walls to create Couette flow [30], or by reintroducing particles that left
the cell with a reset velocity [28]. In this paper, we expand upon the latter
method. The Open Boundary Conditions (OBC) that we introduce are a special
kind of boundary conditions that resembles PBC, but resets particles’ velocities
whenever they cross a z-axis boundary.

For simplicity, we assume that all particles in the system are the same, with
a mass of m, and that the system is an ideal gas. Let us consider the Boltzmann
equation:

∂f(r,v, t)
∂t

+ v · ∂f(r,v, t)
∂r

+
Fext

m
· ∂f(r,v, t)

∂v
=

∂f

∂t

∣
∣
∣
∣
coll

.

We wish to create a stationary flow by using some sort of boundary conditions.
Since the flow is stationary, the desired density function fobc(r,v) does not
depend on time. Also, there are no external forces, therefore Fext = 0. The
right-hand side of the equation represents the collision term. Since we assume
that the gas is ideal, the collision term represents only the interactions with
OBC. The analytical form s(r,v) of this term shall dictate the exact behavior
of OBC:

s(r,v) = v
∂

∂r
fobc(r,v).

Say the left-side boundary is situated at plane z = z1. Particles to the left of
the boundary are not simulated directly, but their impact must be somehow
approximated. We can outline two kinds of impact that these particles make:
first, they interact with particles on the right side, and second, the left and the
right side exchange particles. The former impact is sufficiently approximated by
PBC in both isotropic and anisotropic systems. The latter one, however, is not:
in the case with stationary fluid flow, it is impossible to maintain the pressure
gradient with just PBC. The solution we propose is to make OBC emit particles
into the right side of the left-side boundary, instead of them naturally coming
from the left side. For this, we want to remove all particles with z < z1 and
vz > 0 from the initial distribution f(v), while preserving it where z > z1.

f1(r,v) =

⎧

⎨

⎩

0, z < z1, vz > 0
f(v), z < z1, vz < 0

f(v), z > z1

In other words, we just multiply the initial distribution by some a1(z, vz):

f1(r,v) = a1(z, vz)f(v) = (θ (vz) θ (z − z1) + θ (−vz)) f(v).

By analogy, for the right-side boundary we can define a2(z, vz):

f2(r,v) = a2(z, vz)f(v) = (θ (−vz) θ (z2 − z) + θ (vz)) f(v).

By multiplying initial distribution f(v) by both a1(z, vz) and a2(z, vz), we will
get a sector z1 < z < z2 where all particles that come inside are emitted by
OBC:

fobc(r,v) = a1(z, vz)a2(z, vz)f(v),

350 D. Pavlov et al.

s(r,v) = v · ∂

∂r
fobc(r,v) = v · ∂

∂r
(a1(z, vz)a2(z, vz)f(v)) .

It is worth noting that a1(z, vz) ∂
∂z a2(z, vz) = ∂

∂z a2(z, vz) and a2(z, vz) ∂
∂z

a1(z, vz) = ∂
∂z a1(z, vz) for any z, vz, when z1 < z2.

Then, finally,

s(r,v) = a(z, vz)f(v) = (vzθ(vz)δ(z − z1) + vzθ(−vz)δ(z − z2))f(v).

The resulting distribution fobc(r,v) fully matches f(v) in the z1 < z < z2 sector
that we’re modelling. In other words, if we’re working inside the aforementioned
sector, there is no observable difference whether a system follows the fobc(r,v)
distribution or the f(v) distribution.

Fig. 1. The distribution generated by our OBC implementation for vflow = 1000 m/s,
T = 2000 K, m = 55.845.

5 Open Boundary Conditions Implementation

The nature of the collision term a(z, vz)f(v) = s(r,v) = ∂fobc

∂t

∣
∣
∣
coll

dictates
how often, on which side and with what velocity particles are emitted. Our
implementation does not change the amount of particles in the system, it only
resets their velocities when they hit the periodic border, effectively re-emitting
them from an appropriate side with an appropriate velocity, according to the
distribution. There is an emergent property that since the flow is stationary, the
amount of particles that leave the sector z1 < z < z2 equals the amount that is
emitted. It eliminates the need to change the amount of particles over the course
of the simulation.

Once a particle crosses the border, the first thing that needs to be computed
is which side it should be re-emitted on (the possibility of the particle being re-
emitted is one of the distinguishing traits of our approach; it wasn’t accounted
for in [28]):

OpenMM for GPU-Based Molecular Dynamics of Turbulent Liquid Flows 351

Fig. 2. The speed distribution for a liquid system of Lennard-Jones particles after
τ = 2 ns relaxation in OBC, T = 2000 K, m = 55.845, vflow = 1000 m/s. The resulting
distribution does not match the desired distribution. Such an effect can be attributed
to the fact that the premise that the system is an ideal gas does not hold anymore,
therefore causing a shift.

pleft =

∫∫

s(r,v)dxdydv
∣
∣
z=z1∫∫

s(r,v)drdv
=

=

∫ +∞
−∞ a(z1, vz)fz(vz)dvz

∫ +∞
−∞

∫ +∞
−∞ a(z, vz)fz(vz)dvzdz

=

=

∫ +∞
0

vzfz (vz) dvz
∫ +∞
0

vzfz (vz) dvz − ∫ 0

−∞ vzfz (vz) dvz

,

pright = 1 − pleft.

It’s worth noticing that the above formula is agnostic to whether the particle
left the cell upstream or downstream.

From now on, let’s assume that the particle is emitted from the left side. The
new velocities on x and y need only be picked from fx(x) and fy(y) distribu-
tions (which are just Maxwell distributions in our case). The vz can be inferred
from the following equation, where ξ0 ∈ (0, 1) is a uniformly-distributed random
number:

F (vz) =
∫∫

s(r,v′)dxdydv′
∣
∣
∣
∣
z=z1,v′

z<vz

=
∫ vz

0

v′
zfz (v′

z) dv′
z,

ξ0F (∞) = F (vz).

352 D. Pavlov et al.

Now, we want the underlying distribution f(v) to be a shifted Maxwell distri-
bution:

fz(vz) ∝ exp
(

−m(vz − vflow)2

2kT

)

.

Then F (vz) can be computed in terms of error functions, allowing us to solve the
equation numerically. We use Newton’s method to find the root of the equation:

vi+1 = vi − F (vi) − ξ0F (∞)
F ′(vi)

.

In our case, the F (v) is a monotonic function with a single inflection point
on (0,+∞), and F ′(0) = F ′(+∞) = 0. Therefore the best starting point for
Newton’s method to avoid oscillation and guarantee convergence would be that
inflection point:

v0 = −1
2

(

vflow −
√

v2
flow +

4kT

m

)

.

The illustration of the implementation is shown on Fig. 1 and Fig. 2. The lack
of the exact correspondence between the model parameters of the equilibrium
values of temperature and flow velocity is due to the non-ideal character of the
Lennard-Jones model. This discrepancy does not disqualify the algorithm but
requires its preliminary calibration.

Fig. 3. 40 × 80 × 1 grid of vorticity for a small system with an cylindrical obstacle in
the middle (N = 425651, T = 2000 K, vflow = 1000 m/s, a = 0.0645 nm, m = 55.845,
NU(r) = 6); the vorticity units are ps−1; the velocity error is σ〈vx〉 ≈ 47m

s
; the vorticity

error is σω = 2
σ〈vx〉

aNU(r)
≈ 0.14 ps−1.

6 Grid Aggregation

When processing trajectory data from simulations, it is not always feasible to
process it on per-particle basis, and some kind aggregation is necessary. Here,
we calculate average velocities on a grid of Ncells = Nx × Ny × Nz cells.

OpenMM for GPU-Based Molecular Dynamics of Turbulent Liquid Flows 353

One of the principal metrics in analyzing fluid flows is vorticity:

ω = ∇ × v =

⎛

⎝

∂x

∂y

∂z

⎞

⎠ ×
⎛

⎝

vx

vy

vz

⎞

⎠ .

Then, by abuse of notation, we can derive a numerical approximation of vorticity
for our grid:

ω(r) =
1

NU(r)

∑

Δr∈U(r)

⎛

⎝

⎛

⎝

1/Δrx

1/Δry

1/Δrz

⎞

⎠ × (〈v〉(r + Δr) − 〈v〉(r))
⎞

⎠ .

Here, U(r) is a set of neighboring grid cells. One important part is to exclude
the terms where Δri = 0 from the average to avoid infinite results.

However, the images obtained using this approximation can be noisy. Indeed,
it is not always correct to assume that it is possible to measure a continuous field
of values on an atomic level. Next step is quantifying errors of values obtained
from averaging on grid cells.

The single-axis Maxwell velocity distribution is:

fx(vx) =
√

m

2πkT
exp

(

−m(vx − 〈vx〉)2
2kT

)

,

and if there is N particles in total spread over cells with a side of a, then the
standard error of velocity, averaged over one cell is

σ〈vx〉 =

√

σ2
vx

N/Ncells
=

√

Ncells

N
· kT

m
=

√

1
a3

· kT

ρ
=

√

kT

mcell
.

When approximating the error of vorticity, the following approximation might
be useful:

〈v〉(r + Δr) − 〈v〉(r) ≈ ωaNU(r).

Now, the error of vorticity is:

σω = ωεω = ω · εv(r+Δr)−v(r) = ω · 2σvx

|v(r + Δr) − v(r)| ≈ 2
σvx

aNU(r)

= 2

√
kT

a5/2NU(r)
√

ρ
.

An illustration is presented on Fig. 3.

354 D. Pavlov et al.

Fig. 4. Benchmark results for the Lennard-Jones liquid. The performance of MD cal-
culations is shown as NatomsNstep per unit of wall-clock time. Results for A100, A30
and MI50 GPUs are presented. The rhombs show the data for OpenMM, the circles
show the data for KOKKOS backend of LAMMPS. The performance of 256 Intel Xeon
Nehalem cores used by Smith [30] for a 300 million atom simulation is shown as a star.

7 Performance Analysis

The analysis presented in this work is based on the data obtained on 3 models
of GPUs: Nvidia A100 in the cHARISMa supercomputer [19] and Nvidia A30
and AMD MI50 in the Desmos supercomputer [29] (see Table 1).

Table 1. The specifications of the GPUs considered in this work.

AMD MI50 Nvidia A30 Nvidia A100

Memory size 32 GB 24 GB 80 GB

Memory bandwidth 1 TB/s 0.9 TB/s 2 TB/s

FP32 performance 13.3 TFLOPS 10.3 TFLOPS 19.5 TFLOPS

FP64 performance 6.6 TFLOPS 5.2 TFLOPS 9.7 TFLOPS

Both libraries were built in the “Release” mode. Precision was set to mixed in
OpenMM, and to double in LAMMPS/KOKKOS (due to the fact that the mixed
precison is not supported by KOKKOS). The runtimes used were: cuda-11.7 for
A100, nvhpc-21.9 for A30, rocm-5.0.0 for MI50. OpenMM was not benchmarked
on MI50 because its HIP implementation is still highly experimental.

Currently, the master branch of OpenMM uses 32-bit counters for storing
tile indices. This makes it impossible to correctly run systems bigger than ∼ 30

OpenMM for GPU-Based Molecular Dynamics of Turbulent Liquid Flows 355

million atoms. However, in this work, a patch has been developed to change the
counters to 64-bit. This allowed benchmarking bigger systems.

The benchmarks were carried out for a Lennard-Jones system with ∼ 102

neighbors per atom (Argon fluid at T = 1500 K, initial configuration is an FCC
lattice with a = 5.376 Å and rcutoff = 13 Å). Since the best achievable algorith-
mic complexity of molecular dynamics is O(Natoms ∗ Nsteps), we use Natoms∗Nsteps

Time

as a performance metric. Then we can say that a library “scales well” if this
performance metric remains at the same level as the amount of atoms grows,
and that a library “‘scales poorly” if this performance metric drops. Time mea-
surements were taken for Nsteps = 50000 for small systems, gradually decreasing
to Nsteps = 250 for the biggest systems.

Comparison of KOKKOS performance on MI50, A30 and A100 shows that
the difference between A100 and A30 is about 2x and can be explained by about
2x lower peak performance and 2x lower memory bandwidth of A30. However,
there is practically no difference between A30 and MI50 in terms of peak perfor-
mance and memory bandwidth. That is why their performance difference should
be attributed to the lack of hardware support of fp64 atomic operations in MI50
(KOKKOS relies heavily on atomic operations).

OpenMM results for A100 show its superiority over KOKKOS for system
sizes up to 10 million particles. For larger system sizes the O(N2) becomes the
dominating factor in OpenMM’s performance, whereas KOKKOS’ algorithmic
complexity is O(N), allowing it to surpass OpenMM at high values of N .

For the sake of comparison it is instructive to list the performance features
of the SGI Altix ICE 8200 EX supercomputer partition used in [30]: 256 Xeon
Nehalem cores correspond to 64 4-core Xeon Nehalem CPUs that give in aggre-
gation 2 TB/s of memory bandwidth and 3 TFlops/sec DP. Figure 4 shows that
the performance point based on the data from [30] corresponds qualitatively well
to the performance of the KOKKOS backend of LAMMPS/KOKKOS on A30
and A100 GPUs (the MD model with the Lennard-Jones potential is a memory
bound problem [23]).

An important difference between OpenMM and LAMMPS/KOKKOS is
in the memory consumption. OpenMM allows calculations with 300 million
atoms in one GPU with 80 GB of memory. Under similar conditions LAMMP-
S/KOKKOS allows only 40 million atoms due to a difference in how neighbor
lists are stored.

For really large models LAMMPS/KOKKOS gives the best performance scal-
ability without any efficiency degradation for large N . There are MPI paral-
lelization capabilities in LAMMPS/KOKKOS (that lies beyond the analysis of
this paper). Using LAMMPS/KOKKOS on a multi-GPU system, one can make
effective MD calculations for very large models. Adaptation of the OBC method
proposed in this work to LAMMPS/KOKKOS is an ongoing effort.

To summarize, OpenMM is best at efficiently (both in terms of memory and
CPU time) calculating MD trajectories for systems of small and medium sizes
(� 107) on a single GPU, whereas LAMMPS/KOKKOS is better at handling
extra large systems and employing MPI to distribute the both CPU and memory
workload across multiple GPUs.

356 D. Pavlov et al.

8 Conclusions

In this work we described a computational framework that allows computa-
tionally effective modelling of turbulent flows. The framework is based on the
OpenMM MD engine. Comparison with LAMMPS/KOKKOS shows more effi-
cient memory usage by OpenMM (nearly 300 million atoms fit into one GPU with
80 GB of memory). However, the neighbor list updates in OpenMM result in the
O(N2) scaling that significantly affects the performance for large system sizes.
The open boundary conditions algorithm has been implemented in OpenMM
that allows one to control the flow speed and the flow temperature. Source code
for OBC [1] and the patch for big systems in OpenMM [2] are publicly available
on GitHub.

Acknowledgment. This research was supported in part through computational
resources of the Supercomputer Centre of JIHT RAS and HPC facilities at HSE Uni-
versity. The study was supported by the Russian Science Foundation (project no. 20-
71-10127).

References

1. https://github.com/dann239/openmm/tree/open-boundary
2. https://github.com/openmm/openmm/pull/3577
3. Abraham, M., et al.: GROMACS: high performance molecular simulations through

multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25
(2015). https://doi.org/10.1016/j.softx.2015.06.001

4. Anderson, J.A., Lorenz, C.D., Travesset, A.: General purpose molecular dynam-
ics simulations fully implemented on graphics processing units. J. Comput. Phys.
227(10), 5342–5359 (2008). https://doi.org/10.1016/j.jcp.2008.01.047

5. Berendsen, H., van der Spoel, D., van Drunen, R.: GROMACS: a message-passing
parallel molecular dynamics implementation. Comput. Phys. Commun. 91(1), 43–
56 (1995). https://doi.org/10.1016/0010-4655(95)00042-E

6. Brown, W.M., Kohlmeyer, A., Plimpton, S.J., Tharrington, A.N.: Implementing
molecular dynamics on hybrid high performance computers – Particle-particle
particle-mesh. Comput. Phys. Commun. 183(3), 449–459 (2012). https://doi.org/
10.1016/j.cpc.2011.10.012

7. Brown, W.M., Wang, P., Plimpton, S.J., Tharrington, A.N.: Implementing molec-
ular dynamics on hybrid high performance computers – short range forces. Com-
put. Phys. Commun. 182(4), 898–911 (2011). https://doi.org/10.1016/j.cpc.2010.
12.021

8. Brown, W.M., Yamada, M.: Implementing molecular dynamics on hybrid high
performance computers-three-body potentials. Comput. Phys. Commun. 184(12),
2785–2793 (2013). https://doi.org/10.1016/j.cpc.2013.08.002

9. Eastman, P., et al.: OpenMM 4: a reusable, extensible, hardware independent
library for high performance molecular simulation. J. Chem. Theory Comput. 9(1),
461–469 (2013). https://doi.org/10.1021/ct300857j

10. Eastman, P., Pande, V.S.: Efficient nonbonded interactions for molecular dynamics
on a graphics processing unit. J. Comput. Chem. 31, 1268–1272 (2009). https://
doi.org/10.1002/jcc.21413

https://github.com/dann239/openmm/tree/open-boundary
https://github.com/openmm/openmm/pull/3577
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.jcp.2008.01.047
https://doi.org/10.1016/0010-4655(95)00042-E
https://doi.org/10.1016/j.cpc.2011.10.012
https://doi.org/10.1016/j.cpc.2011.10.012
https://doi.org/10.1016/j.cpc.2010.12.021
https://doi.org/10.1016/j.cpc.2010.12.021
https://doi.org/10.1016/j.cpc.2013.08.002
https://doi.org/10.1021/ct300857j
https://doi.org/10.1002/jcc.21413
https://doi.org/10.1002/jcc.21413

OpenMM for GPU-Based Molecular Dynamics of Turbulent Liquid Flows 357

11. Eastman, P., et al.:OpenMM 7: rapid development of high performance algorithms
for molecular dynamics. PLOS Comput. Biol. 13, 1–17 (2017). https://doi.org/
10.1371/journal.pcbi.1005659

12. Glaser, J., et al.: Strong scaling of general-purpose molecular dynamics simulations
on GPUs. Comput. Phys. Commun. 192, 97–107 (2015). https://doi.org/10.1016/
j.cpc.2015.02.028

13. Grinberg, L., et al.: A new computational paradigm in multiscale simulations:
Application to brain blood flow. In: Proceedings of 2011 International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, pp. 1–5
(2011)

14. Hitz, T., Heinen, M., Vrabec, J., Munz, C.D.: Comparison of macro-and micro-
scopic solutions of the riemann problem I. supercritical shock tube and expansion
into vacuum. J. Comput. Phys. 402, 109077 (2020)

15. Hitz, T., Jöns, S., Heinen, M., Vrabec, J., Munz, C.D.: Comparison of macro-and
microscopic solutions of the riemann problem II. two-phase shock tube. J. Comput
Phys 429, 110027 (2021)

16. Johar, A.: Final HIP Platform implementation for AMD GPUs on ROCm 3338
(2021). https://github.com/openmm/openmm/pull/3338

17. Kadau, K., Barber, J.L., Germann, T.C., Holian, B.L., Alder, B.J.: Atomistic meth-
ods in fluid simulation. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368(1916),
1547–1560 (2010)

18. Kondratyuk, N., Nikolskiy, V., Pavlov, D., Stegailov, V.: GPU-accelerated molec-
ular dynamics: State-of-art software performance and porting from nvidia CUDA
to AMD HIP. The International Journal of High Performance Computing Appli-
cations 35(4), 312–324 (2021). https://doi.org/10.1177/10943420211008288

19. Kostenetskiy, P., Chulkevich, R., Kozyrev, V.: HPC resources of the Higher School
of Economics. J. Phys. Conf. Ser. 1740, 012050. IOP Publishing (2021)

20. Kutzner, C., Páll, S., Fechner, M., Esztermann, A., de Groot, B.L., Grubmüller,
H.: Best bang for your buck: GPU nodes for GROMACS biomolecular simulations.
J. Comput. Chem. 36(26), 1990–2008 (2015)

21. Kutzner, C., Páll, S., Fechner, M., Esztermann, A., de Groot, B.L., Grubmüller,
H.: More bang for your buck: Improved use of GPU nodes for GROMACS 2018.
J. Comput. Chem. 40(27), 2418–2431 (2019)

22. Moon, B., Jagadish, H., Faloutsos, C., Saltz, J.: Analysis of the clustering prop-
erties of the Hilbert space-filling curve. IEEE Trans. Knowl. Data Eng. 13(1),
124–141 (2001). https://doi.org/10.1109/69.908985

23. Nikolskiy, V.P., Stegailov, V.V., Vecher, V.S.: Efficiency of the Tegra K1 and X1
systems-on-chip for classical molecular dynamics. In: 2016 International Conference
on High Performance Computing & Simulation (HPCS), pp. 682–689. IEEE (2016)

24. OpenMM team: OpenMM application layer python API http://docs.openmm.org/
latest/api-python/app.html

25. OpenMM team: OpenMM library level C++/Python API http://docs.openmm.
org/development/api-c++/

26. Perdikaris, P., Grinberg, L., Karniadakis, G.E.: Multiscale modeling and simulation
of brain blood flow. Phys. Fluids 28(2), 021304 (2016)

27. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Com-
put. Phys. 117(1), 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039

28. Rapaport, D.C., Clementi, E.: Eddy formation in obstructed fluid flow: A
molecular-dynamics study. Phys. Rev. Lett. 57, 695–698 (1986). https://doi.org/
10.1103/PhysRevLett.57.695

https://doi.org/10.1371/journal.pcbi.1005659
https://doi.org/10.1371/journal.pcbi.1005659
https://doi.org/10.1016/j.cpc.2015.02.028
https://doi.org/10.1016/j.cpc.2015.02.028
https://github.com/openmm/openmm/pull/3338
https://doi.org/10.1177/10943420211008288
https://doi.org/10.1109/69.908985
http://docs.openmm.org/latest/api-python/app.html
http://docs.openmm.org/latest/api-python/app.html
http://docs.openmm.org/development/api-c++/
http://docs.openmm.org/development/api-c++/
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1103/PhysRevLett.57.695
https://doi.org/10.1103/PhysRevLett.57.695

358 D. Pavlov et al.

29. Shamsutdinov, A., et al.: Performance of supercomputers based on Angara inter-
connect and novel AMD CPUs/GPUs. In: Balandin, D., Barkalov, K., Gergel, V.,
Meyerov, I. (eds.) MMST 2020. CCIS, vol. 1413, pp. 401–416. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-78759-2 33

30. Smith, E.: A molecular dynamics simulation of the turbulent Couette minimal flow
unit. Phys. Fluids 27(11), 115105 (2015)

31. Smith, E., Trevelyan, D., Ramos-Fernandez, E., Sufian, A., O’Sullivan, C., Dini, D.:
CPL library – a minimal framework for coupled particle and continuum simulation.
Comput. Phys. Commun. 250, 107068 (2020)

32. Stegailov, M., et al.: Angara interconnect makes GPU-based Desmos supercom-
puter an efficient tool for molecular dynamics calculations. Int. J. High Perform.
Comput. Appl. 33(3), 507–521 (2019). https://doi.org/10.1177/1094342019826667

33. Tchipev, N., et al.: Twetris: twenty trillion-atom simulation. Int. J. High
Perf. Comp. Appl. 0(0), 1094342018819741 (2019). https://doi.org/10.1177/
1094342018819741

34. Thompson, A.P. et al.: LAMMPS – a flexible simulation tool for particle-based
materials modeling at the atomic, meso, and continuum scales. Comput. Phys.
Commun. 271, 108171 (2022)

35. Trott, C.R., et al.: Kokkos 3: programming model extensions for the exascale
era. IEEE Trans. Parallel Distrib. Syst. 33(4), 805–817 (2022). https://doi.org/
10.1109/TPDS.2021.3097283

https://doi.org/10.1007/978-3-030-78759-2_33
https://doi.org/10.1177/1094342019826667
https://doi.org/10.1177/1094342018819741
https://doi.org/10.1177/1094342018819741
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1109/TPDS.2021.3097283

A Novel Parallel Approach for Modeling
the Dynamics of Aerodynamically

Interacting Particles in Turbulent Flows

Ahmad Ababaei1(B) , Antoine Michel1 , and Bogdan Rosa1,2

1 Institute of Meteorology and Water Management – National Research Institute,
Podleśna 61, 01-673 Warsaw, Poland

ahmad.ababaei@imgw.pl
2 Department of Applied Mathematics, Warsaw University of Life Sciences,

Nowoursynowska 159, 02-776 Warsaw, Poland

Abstract. In this paper, the computational performance of a novel par-
allel code for simulating collision–coalescence of aerodynamically inter-
acting droplets in turbulent flows is examined. Modeling such systems
is essential for the quantitative description of processes relevant to pre-
cipitation formation. This knowledge, in turn, is crucial to develop more
realistic parameterizations in numerical weather forecasting systems. The
code is based on the standard Eulerian–Lagrangian approach. Direct
numerical simulations (DNS) to solve the homogeneous isotropic tur-
bulence are combined with analytical solutions of the Stokes flow to
account for aerodynamic interaction (AI) among particles. Also, short-
range interaction, the so-called lubrication forces, between particles is
incorporated into the algorithm to improve the AI representation. The
cubic computational domain is decomposed into smaller subdomains
where calculations are handled by different processes. The Message Pass-
ing Interface (MPI) library is employed to transfer particle and flow data.
This hybrid DNS (HDNS) algorithm enables tracking millions of inter-
acting droplets in turbulent flows simulated on high-resolution meshes.
The performance is evaluated by measuring the wall-clock time of major
numerical operations. The results compare the time for treating AI, mea-
sured separately for long- and short-range forces, with the time required
for the other particle operations as well as the time to advance the tur-
bulent flow field. The effects of the number and size of the particles, the
range of AI, and the number of processors are examined.

Keywords: Parallel computing · Particle-laden turbulence ·
Aerodynamic interaction · Lubrication force

1 Introduction

Particle-laden turbulent flows are present in a large number of industrial and
natural processes such as fuel combustion, dispersion of pollution by air, or

Supported by National Science Centre of Poland.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 359–370, 2023.
https://doi.org/10.1007/978-3-031-30442-2_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_27&domain=pdf
http://orcid.org/0000-0002-6510-9272
http://orcid.org/0000-0001-8182-1131
http://orcid.org/0000-0002-1501-8794
https://doi.org/10.1007/978-3-031-30442-2_27

360 A. Ababaei et al.

sediment transport in water. In clouds, turbulence is the main cause of collision–
coalescence of rain drops within the radii range 10–60 μm. This results in droplets
growing and eventually initiates rainfall.

Simulating microphysical processes in clouds entails enormous computational
costs due to the wide range of length and time scales associated with turbulent
flows and the consideration of aerodynamic interactions among a large num-
ber of particles. Thanks to development of modern high-performance computing
techniques, such simulations are feasible within a reasonable time. The stan-
dard approach to model cloud processes is based on an Eulerian–Lagrangian
description. It employs the direct numerical simulations (DNS) for simulating
the turbulent flow. Droplet tracking is carried out by integrating their individ-
ual trajectories [1]. DNS handles the evolution of the turbulent field resolving
all scales of the flow down to the smallest (i.e. Kolmogorov) ones. The locations
of the droplets in the domain are updated at every time step, and therefore the
numerical cost is proportional to the number of particles in the domain.

Aerodynamic interaction among the particles can be accounted for via
“superposing” the disturbance velocity fields induced around every single parti-
cle due to its motion in a viscous medium [2]. This results in a very large system
of equations for three components of disturbance velocities at the location of
every particle generated by its neighboring particles [3]. Consequently, solving
such a large system substantially adds to the computational cost of simulations
[4]. In the literature, the combination of DNS for the background turbulent field
and this analytical representation of interaction is known as hybrid DNS. HDNS
by itself, however, is unable to capture short-range viscous forces, known as
lubrication interactions, acting on particles [2]. Once the distance between par-
ticles is comparable to their average radii, superposition of their disturbances
does not yield the accurate force, because the superposition method is based on
the solution to the Stokes flow around a single sphere. Thus, the representation
of aerodynamic interaction can be improved by utilizing HDNS [3] for distant
particles together with exact analytical solutions [5] for particles in proximity.

The physics of this model has already been investigated [6], but a quantitative
evaluation of the computational aspects remains to be addressed. Furthermore,
it has been shown that without lubrication effects simulation time increases
with the number of droplets in the domain [4], but it is expected that consid-
ering lubrication reduces this time. This is because for the particles in proxim-
ity short-range interaction is considered, thereby excluding such pairs from the
matrix of disturbances for AI. As a result, a smaller matrix needs to be inverted
which is less demanding. In addition, the size of the distance below (over) which
the lubrication effect (superposed disturbances) would be considered is another
key factor affecting computation time. Moreover, it is important to address the
scalability of this implementation with the number of CPU cores. Additionally,
we want to check the feasibility and evaluate the cost of simulations with higher
resolution meshes and larger liquid water contents (LWC). The aim of this study
is to assess all these aspects of the model by making use of data from numerical
simulations.

Parallel Performance of Interacting Particles in Turbulence 361

2 Methodology

In order to precisely represent the momentum transfer from the background
turbulent air to the particles, the smallest scales (i.e. Kolmogorov) of the flow
need to be fully resolved [1]. (The transfer of momentum from the particles
to the flow is negligible due to the small mass loading of water droplets in
clouds.) This is achievable via direct numerical simulations of the flow. However,
due to the computational cost of DNS, such simulations are limited to small
Reynolds numbers (≈ 102) that correspond to small domain sizes (≈ 10 cm) not
typical for atmospheric clouds. To simulate larger domains, higher resolutions
of DNS are required, which are only possible by conducting massively parallel
simulations on supercomputers. To date, the most complex DNS simulations of
homogeneous isotropic turbulent flows have been performed using meshes with
81923 and 122883 grid nodes, yielding the Reynolds numbers Rλ = 650 and 1300,
respectively [7,8]. The second challenge of large-scale simulations is the need for
tracking a substantial number of droplets. It is noteworthy that when the size of
a cubic domain in each spatial direction is doubled, an eight-fold increase in the
number droplets is necessary for keeping the same liquid water content. Tracking
a considerable number of aerodynamically interacting droplets can increase the
cost of the simulations by at least one order of magnitude (see Fig. 9 in [4]).

These challenges are addressed by a two-dimensional decomposition of the
cubic domain that assigns the operations in each subdomain to a CPU core
[6]. The governing equations for modeling the turbulent flow, i.e. Navier–Stokes
(N–S) and continuity, are as follows:

∂U

∂t
= U × ω − ∇

(
P

ρ
+

U2

2

)
+ ν∇2U + f , (1)

∇ · U = 0, (2)

where U(x, t) and ω(x, t) are vectors of velocity and vorticity of the flow, respec-
tively. P (x, t) is the pressure field, and ρ and ν denote the density and kinematic
viscosity of air, respectively. f(x, t) is the external body force acting on the fluid
to maintain the turbulent flow. The equations are discretized on a grid of size N3

and solved by the pseudo-spectral method [1]. The required three-dimensional
fast Fourier transforms (FFTs) need access to the data from all of the sub-
domains. Therefore, global data transfer is necessary to advance the turbulent
flow.

After introducing the droplets into the domain at random locations, their
motion is tracked by integrating the equations of motion as follows:

dV (k)

dt
= −

V (k) −
(
U (k) + u(k)

)

τ
(k)
p

, (3)

dY (k)

dt
= V (k), (4)

362 A. Ababaei et al.

in which V (k) and Y (k) are the velocity and location of droplet k, where k =
1, . . . , Npart. To simplify the notation, U (k) ≡ U(Y (k), t) is the background
flow velocity U(x, t) interpolated at the location k-th droplet. Also, u(k) is the
disturbance velocity sensed at the location of k-th droplet resulting from the
interaction with the neighboring droplets. In addition, τ

(k)
p = 2ρp

(
a
(k)
p

)2
/9μ is

the Stokes inertial relaxation time of droplet k, with ρp and μ being the water
density and dynamic viscosity of air, respectively.

Figure 1 presents the order in which the algorithm performs computations.
Three major tasks related to the evolution of the flow, particles, and computing
AIs are marked using different colors. The particle tasks are carried out locally
within each subdomain and data exchange is conducted between neighboring
subdomains. The main particle tasks unrelated to handling AI include solving
their equations of motion, interpolation of the turbulent flow at droplet locations,
transferring particle data to a neighboring subdomain when they cross subdo-
main or domain boundaries (i.e. imposing periodicities), and collecting particle
statistics such as collision kinematics (average relative velocity and distribution)
as well as dynamics (collision rate), root mean square in velocity fluctuations, etc.

.

U ω

.

ˆ ,t tU k

Exchange data between
neighbors for particles out
of the domain/subdomains

Random relocation of
overlapping particles

Interpolate flow velocity at
the location of particles

.() ,k tU Y

Build and solve the system
of disturbance equations

using parallel GMRes .

()
HDNS
ku

Record particle statistics: collision kernel, fluctuations in
velocity and acceleration, average radial relative velocity,

radial distribution function, etc.

Stop
YesNo

No

Yes

Solve the equations of
motion for particles

..

()k t tY

Directly interpolate
pairwise drag .

()
LUB
ku

tFLOW tPART tAI-TOT

tAI-LUB

tAI-HDNS

ˆ , 0tU k

Start flow:
Random spectral field

()k tY

Start particles:
Random distribution

Simulation time
finished?

Distance less than
δ×apart?

ˆ ˆ, and ,t tU k ω k

, and ,t tU x ω x

.

ˆˆ , ,t i tω k k U k
Compute spectral vorticity

Apply FFT‒1 to

to obtain the physical flow
and vorticity fields:

Compute the term .

in N–S and apply FFT
to take it back to the

spectral space

Update the flow field

Fig. 1. Schematic diagram of the simulation algorithm. The colors mark time measure-
ments related to the flow, particles, and AIs.

Parallel Performance of Interacting Particles in Turbulence 363

Also, two major opertations are needed to compute particle aerodynamic inter-
action, including generation and solving the system of equations that yields AI
among the particles and the calculation of lubrication forces from analytical
solutions. The total disturbance in Eq. (3) is the sum of these two components,
i.e. u(k) = u

(k)
HDNS + u

(k)
LUB.

Figure 2 shows a group of interacting particles. There are two spherical
regions that define different approaches to represent aerodynamic interactions.
(i) For particles closer than δa, exact analytical solutions [5] are employed to
accurately represent the lubrication forces. Generally, the normal and tangen-
tial viscous forces are functions of separation distance and radii ratio, which is
unity in this study as all the particles in the domain are of the same size. These
solutions are in forms of infinite series and hence it is extremely time-consuming
to calculate forces for every interacting pair at every time step. Instead, in the
current implementation the forces are tabulated as functions of separation dis-
tance at the beginning of the simulation and for every instance the forces are
interpolated from the tables. (ii) For particles interacting from a larger distance,
δa < r ≤ 50a, the superposition (HDNS) approach is used [2,3]. The Stokes
disturbances of all neighboring particles are superposed at the location of every
particle, building a system of linear equations, i.e. Eq. 6 in [3]. A parallel pre-
conditioned solver based on the generalized minimal residual (GMRes) method
is used to efficiently solve this system [9]. For most of the cases analyzed here,
short-range interactions [5] are considered when the minimum distance between
the surfaces is less than or equal to their mean radius, i.e. δ = 3. This is the char-
acteristic distance below which the superposition method loses its accuracy (see
Fig. 1 in [6]). For particles that are considerably distant, r > 50a, aerodynamic
interaction is negligible (see Sect. 4.2 in [3]). The effects of gravity are entirely

Fig. 2. The two spherical regions scanned around every particle (red) for neighboring
particles interacting from short (blue) and long (black) distances (Color figure online)

364 A. Ababaei et al.

neglected and in all simulations only non-settling particles are considered. The
rest of the details regarding the methodology used in this study are available
in [6].

3 Parallel Performance

To analyze the performance of this implementation, a series of tests have been
performed. The computational cost has been estimated for various values of
the following parameters: the number of particles Npart, their radius apart, the
size of the normalized distance in which lubrication is considered δ, and the
number of CPU cores utilized to simulate the same system ncores. The results
are presented in terms of three major operations in the code: (i) the time to
evolve the turbulent flow field tFLOW, (ii) the time for all particle operations
discussed above except for their aerodynamic interaction tPART, and (iii) the
time to assess their aerodynamic interaction tAI-TOT which is the sum of times
for their long-range drag forces from the superposition method tAI-HDNS and
their short-range lubrication interactions from analytical solutions tAI-LUB. Each
task includes calculations and communications. For the performance analysis
here, the wall-clock times of these two operations are summed up. The first
step preceding performance tests is to generate a turbulent particle-free flow
field. Beginning from a random field, the flow is evolved to a fully developed
homogeneous isotropic turbulence that will be used for simulations with different
settings (Npart, apart, etc.). This stage lasts five eddy turnover times, where one
eddy turnover time corresponds roughly the time scale of the largest eddies in
the domain. The particles are then added to the domain at random locations and
each case is run for five particle response times. This relaxation time reduces the
effect of initial random distribution of particles (see Sect. 3.4 in [3]). (This time,
however, might not be enough for particles to reach a statistically stationary
stage where the averages in particle statistics remain unchanged over time.)
Data collection is carried out over five subsequent particle response times.

The performance of this implementation is analyzed by running the tests on
Okeanos supercomputer installed with the Intel Haswell Cray XC40 architecture
at the Interdisciplinary Centre for Mathematical and Computational Modelling
(ICM), University of Warsaw. The machine has 1084 nodes, each containing
128 GB of RAM and two 12-core Intel Xeon E5-2690 processors running at
2.6 GHz. All system nodes are connected by an ultra-scalable Cray Aries network
with Dragonfly topology.

3.1 Number of Particles

The number of particles (droplets) in the domain is the main factor contribut-
ing to all the tasks related to particles. In Fig. 3(a), the average wall-clock time
of the selected operations per single time step is displayed as a function of the
number of particles for Npart = {0.5, 1, 2, 4, 8, 16, 32} × 105. Thus, for this
range of Npart, the average number per cell, i.e. Npart/643, would roughly be

Parallel Performance of Interacting Particles in Turbulence 365

Npart

W
al

l-
cl

oc
k

tim
e

pe
r

tim
e

st
ep

 (
s)

105 106
10-4

10-3

10-2

10-1

100

101

102

103

tFLOW

tPART

tAI-TOT

tAI-HDNS

tAI-LUB

(a)

 = 3
apart = 40 m

ε = 400 cm2/s3

Npart

W
al

l-
cl

oc
k

tim
e

pe
r

to
ta

l t
im

e
(%

)

105 106
10-2

10-1

100

101

102

tFLOW

tPART

tAI-TOT

tAI-HDNS

tAI-LUB

(b)

Fig. 3. Wall-clock time (a) per time step and (b) per total simulation time of different
tasks as a function of the number of particles

0.2 to 12 particles. The droplets were of the same size 40 mum for which the
inertial response time of the particles τp is roughly equal to the Kolmogorov
time scale of the flow τK , leading to the Stokes number unity where St = τp/τK .
Therefore, the particles are strongly affected by the smallest scales of the flow. It
is noteworthy that having a greater number of particles in the domain enlarges
the liquid water content, thus changing the phyisics of the system. Still, only the
performance of the model is being investigated here. The time for all particle
operations, e.g. evaluation of lubrication forces, increases with Npart. For the set-
tings considered here, the calculation of long-range AI by solving large systems
of linear equations from HDNS is the most time-consuming task. Conversely,
the computation of the short-range lubrication forces is several orders of mag-
nitude faster than all the other tasks because, to maximize efficiency, the values
are precomputed and interpolated as needed. For long-range AI, the size of the
system of equations generated is 3Npart, yielding a net disturbance at the loca-
tion of every particle along every spatial direction. Solving such a large system
requires much more computational work comparing to evaluation of short-range
AI forces, which basically reduces to a simple 1D interpolation scheme.

Integrating the equations of motion of particles, interpolating fluid veloc-
ity at particle locations, and post-processing (collision detection and computing
other collision statistics including radial relative velocity and radial distribution
functions) take less time, approximately one order of magnitude, than all oper-
ations related to AI. The total time for numerical operations handling particle
dynamics can be compared with the time required to simulate the turbulent
flow. The time needed to model the particle-free flow is the same in each con-
sidered case. As shown, computing AI forces can be one (Npart = 105) to three
(Npart = 3.2×106) orders of magnitude more time-consuming than evolving the
turbulent flow field at 643 resolution considered here. However, at larger resolu-
tions, e.g. 5123 or 10243, advancing the flow field is a significantly more complex

366 A. Ababaei et al.

apart (μm)

N
pa

rt

100 101 102102

104

106

108

1010

1012

Lb = 4.92 cm (323)
Lb = 10.32 cm (643)
Lb = 20.61 cm (1283)
Lb = 41.18 cm (2563)
Lb = 75.73 cm (5123)
Lb = 159.03 cm (10243)

LWC: 1 g/m 3

(Mass loading:
m = 10 3

)

(a)

apart (μm)

W
al

l-
cl

oc
k

tim
e

pe
r

tim
e

st
ep

 (
s)

10 20 30 40 50 60
10-6

10-5

10-4

10-3

10-2

10-1

100

101

tFLOW

tPART

tAI-TOT

tAI-HDNS

tAI-LUB

 = 3
Npart = 100,000
ε = 400 cm2/s3

(b)

Fig. 4. Variation in the (a) number of particles, and (b) wall-clock time per time step
for different operations with the size of particles

operation which can be (depending on LWC) more demanding than all particle
tasks (see Fig. 4 in [4]).

In order to provide a relative comparison between different cases, their per-
centage of the total time is presented in Fig. 3(b). There is a reduction in the
shares of flow and particle wall-clock time with Npart because computing AI via
both HDNS and lubrication forces takes a larger fraction of the total simulation
time. For instance, in simulation with Npart = 5 × 104 AI takes 60% of the total
time whereas for Npart = 3.2 × 106 the contribution rises to 90%.

3.2 Size of the Particles

The liquid water content in the domain depends on the size and number of
droplets. Figure 4(a) shows the relationship between the number of equal-size
droplets and their radius for a system with a fixed LWC of 1 g/m3 in cubic
boxes of six different lengths (Lb). These lengths are chosen to match DNS flow
parameters (Kolmogorov scales) in Table 1 of [10] obtained on grids of different
resolutions (N3). The number of particles grows exponentially by decreasing
their radii or expanding size of the box.

The effect of radii of the particles on the performance of the model is pre-
sented in Fig. 4(b). A large enhancement (y–axis is in logarithmic scale) is seen
for the total wall-clock time of the AI operation. A substantial contribution to
this enhancement comes from the increase in the time needed to compute long-
range interacting forces, while computing short-range lubrication forces has a
minor influence on the increase in wall-clock time for AIs. Although having
larger particles in the domain affects their dynamics, the increase in computa-
tion time for both AI tasks is largely due to the expansion of the volume that
is scanned around every particle to account for the influence of its disturbance
on the neighboring particles (Fig. 2). That is, the larger the particle, the larger

Parallel Performance of Interacting Particles in Turbulence 367

the size (50a) of the scanned volume for potential AI with other particles, and
hence, the higher the possibility of finding such particles. Also, clustering in the
distribution of particles is another factor that affects the time to compute the
AI. Smaller particles are less willing to accumulate owing to their low inertia
that is insufficient to deviate from the streamlines of the flow. On the other
hand, larger particles with higher inertia tend to cluster, thereby increasing the
number of AIs.

Similar to AI, particle tasks show a slight enhancement with particle radius.
Data exchange is the main factor contributing to this increase in time. In order
to conduct several particle operations – e.g. detection and relocation of particles
that overlap, recording collision statistics, and computing aerodynamic interac-
tion – near the boundaries of every subdomain, data of the particles within a thin
region of all neighboring subdomains have to be added to every subdomain. The
size of this “halo” region depends on the size of the particles. Thus, larger parti-
cles need a thicker halo region which encompasses a larger number of particles,
and hence requires a greater number of calculations and communications.

3.3 Size of the Short-Range Interaction Region

So far, the results were presented for a fixed size of the region in which lubrica-
tion forces are considered: δ = 3. There are two reasons for this particular choice.
Firstly, the accuracy in the superposition method (HDNS) begins to decline for
pairs separated at normalized distances δ ≤ 3 (see Fig. 1 in [6]). For such pairs
short-range lubrication forces can be obtained from the analytical solutions to
the Stokes flow around two spherical particles [5]. Secondly, since two-sphere

δ

W
al

l-
cl

oc
k

tim
e

pe
r

tim
e

st
ep

 (
s)

2 10 18 26 34 42
10-4

10-3

10-2

10-1

100

101

tFLOW

tPART

tAI-TOT

tAI-HDNS

tAI-LUBN
o

lu
br

ic
at

io
n

apart = 40 m
Npart = 100,000
ε = 400 cm2/s3

Fig. 5. Variation in wall-clock time of different operations per time step with the size
of lubrication region

368 A. Ababaei et al.

analytical solutions are limited to pair-wise interactions, increasing the size of
lubrication region, i.e. a larger δ, results in losing the effect of many-body inter-
action among particles, which is taken into account by superposing perturbation
induced by all neighboring particles [2,3]. Therefore, δ = 3 is a choice in between
that considers the effects of both lubrication forces and many-body interaction.

Figure 5 shows the wall-clock time required by each operation as a function
of the size of lubrication region. When δ = 2, there is no lubrication region and
AI is entirely handled by HDNS (i.e. tAI-LUB = 0). As the size of lubrication
region changes from one particle radius (δ = 3) to forty particle radii (δ = 42),
the time to calculate lubrication forces increases by three orders of magnitude.
As a result, the total AI time (i.e. tAI-TOT = 0) grows, too. The rest of the tasks
do not depend on the size of lubrication region.

3.4 Number of CPU Cores

Several tests have been performed to check how each task scales with the number
of computational cores utilized: ncores = 2n for n = 6, . . . , 10. The results are
demonstrated in Fig. 6 for three systems simulated on grids of sizes 643, 1283, and
2563 with the same liquid water content 10 g/m3. The range of y–axis is identical
on all three panels to facilitate comparisons. Panels (a)–(c) illustrate the increase
in execution time for all tasks as the domain is enlarged. In general, computing
long-range aerodynamic interactions is the most time-consuming operation. This
is caused by the necessity to track a large number of particles owing to the high
LWC (assumed for the systems simulated here). A large fraction of this time is
due to HDNS, whereas interpolation of lubrication forces takes several orders
of magnitude less time. The time to advance the flow is shorter than the time
to evaluate AIs, but longer than that for particle operations (velocity interpola-
tion, recording collision statistics, etc.). Another finding is the improvement in
scalability at higher resolutions. At 643, the three major tasks – i.e. AIs, flow,
and particles – do not show a better performance with the number of CPU cores
employed. Wall-clock times of the flow and particle operations even begin to
increase when more than 256 cores are used. Scalability slightly improves at the
higher resolution 1283 displaying a logarithmic decrease in computation time,
again, until ncores = 256. However, using a larger number of cores does not lead
to a lower wall-clock time for advancing the flow and particle operations. The
best performance is observed at the resolution 2563 showing a logarithmically
decreasing time with the number of processors used.

Parallel Performance of Interacting Particles in Turbulence 369

ncores

W
al

l-
cl

oc
k

tim
e

pe
r

tim
e

st
ep

 (
s)

20
0

40
0

60
0

80
0
10
00

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

tFLOW

tPART

tAI-TOT

tAI-HDNS

tAI-LUB

(a)

Resolution = 643

(R = 76)
apart = 40 m
Npart 4 × 104

(LWC = 10 g/m3)
ε = 400 cm2/s3

 = 3

ncores

W
al

l-
cl

oc
k

tim
e

pe
r

tim
e

st
ep

 (
s)

20
0

40
0

60
0

80
0
10
00

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

tFLOW

tPART

tAI-TOT

tAI-HDNS

tAI-LUB

(b)

Resolution = 1283

(R = 124)
apart = 40 m
Npart 3 × 105

(LWC = 10 g/m3)
ε = 400 cm2/s3

 = 3

ncores

W
al

l-
cl

oc
k

tim
e

pe
r

tim
e

st
ep

 (
s)

20
0

40
0

60
0

80
0
10
00

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

tFLOW

tPART

tAI-TOT

tAI-HDNS

tAI-LUB

(c)

Resolution = 2563

(R = 201)
apart = 40 m

Npart 2.6 × 106

(LWC = 10 g/m3)
ε = 400 cm2/s3

 = 3

Fig. 6. Wall-clock time per time step of different operations as a function of the number
of CPU cores for three systems with the same LWC 10 g/m3 and turbulent flows at
resolutions: (a) 643, (b) 1283, and (c) 2563 (dotted lines: slope = −1)

4 Conclusions

This study addresses the parallel performance of a novel implementation for
tracking inertial particles in turbulent flows. This code serves for modeling cloud
processes and examining the role of turbulence on the droplet collision rate. The
main innovation of this implementation lies in the representation of aerodynamic
interactions (both short- and long-range) between the droplets. The computa-
tional performance was assessed based on a number of testing simulations by
measuring the time required to conduct individual operations. The focus was
on computation time for aerodynamic interaction and lubrication forces, and
the results were directly compared with the time required for the other tasks
related to droplet tracking and computing collision statistics as well as the time
to advance the turbulent flow field. The factors examined here were the number
and size of the particles in the domain, the size of the region in which lubrication

370 A. Ababaei et al.

effects are considered, and the number of processors to simulate three different
systems. The first three factors increased computation time. It has been observed
that the scalability of the code improves with increasing resolution of the com-
putational grid. This is an encouraging perspective to run simulations on even
larger computational meshes, or equivalently larger Reynolds numbers. There-
fore, the approach makes it possible to conduct simulations in conditions more
similar to those in realistic clouds. This leads to the development of more realistic
parameterizations for weather forecasting models.

Acknowledgements. We wish to thank the financial support of the National Science
Centre of Poland under the grant 2018/30/Q/ST8/00341. Also, we are grateful for
the computational resources provided by the Interdisciplinary Centre for Mathematical
and Computational Modelling (ICM) at the University of Warsaw, Poland, under grant
numbers GA73-14 and G87-1145.

References

1. Wang, L.-P., Maxey., M. R.: Settling velocity and concentration distribution of
heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256, 27–68
(1993). https://doi.org/10.1017/S0022112093002708

2. Wang, L.-P., Ayala, O., Grabowski, W. W.: Improved formulations of the superpo-
sition method. J. Atmosp. Sci. 62(4), 1255–1266 (2005). https://doi.org/10.1175/
JAS3397.1

3. Ayala, O., Grabowski W.W., Wang, L.-P.: A hybrid approach for simulating turbu-
lent collisions of hydrodynamically-interacting particles. J. Comput. Phys. 225(1),
51–73 (2007). https://doi.org/10.1016/j.jcp.2006.11.016

4. Ayala, O., Parishani, H., Chen, L., Rosa, B., Wang, L.-P.: DNS of hydrodynami-
cally interacting droplets in turbulent clouds: Parallel implementation and scala-
bility analysis using 2D domain decomposition. Comput. Phys. Commun. 185(12),
3269–3290 (2014). https://doi.org/10.1016/j.cpc.2014.09.005

5. Jeffrey, D.J., Onishi, Y.: Calculation of the resistance and mobility functions for
two unequal rigid spheres in low-Reynolds-number flow. J. Fluid Mech. 139, 261–
290 (1984). https://doi.org/10.1017/S0022112084000355

6. Ababaei, A., Rosa, B., Pozorski, J., Wang, L.-P.: On the effect of lubrication forces
on the collision statistics of cloud droplets in homogeneous isotropic turbulence. J.
Fluid Mech. 918 (2021). https://doi.org/10.1017/jfm.2021.229

7. Buaria, D., Pumir, A., Bodenschatz, E., Yeung, P.K.: Extreme velocity gradients
in turbulent flows. New J. Phys. 21(4), 043004 (2019). https://doi.org/10.1088/
1367-2630/ab0756

8. Buaria, D., Bodenschatz, E., Pumir, A.: Vortex stretching and enstrophy produc-
tion in high Reynolds number turbulence. Phys. Rev. Fluids 5(10), 104602 (2020).
https://doi.org/10.1103/PhysRevFluids.5.104602

9. Torres, C. E., Parishani, H., Ayala, O., Rossi, L.F., Wang, L.-P.: Analysis and
parallel implementation of a forced N-body problem. J. Comput. Phys. 245, 235–
258 (2013). https://doi.org/10.1016/j.jcp.2013.03.008

10. Rosa, B., Parishani, H., Ayala, O., Grabowski, W.W., Wang, L.-P.: Kinematic and
dynamic collision statistics of cloud droplets from high-resolution simulations. New
J. Phys. 15(4), 045032 (2013). https://doi.org/10.1088/1367-2630/15/4/045032

https://doi.org/10.1017/S0022112093002708
https://doi.org/10.1175/JAS3397.1
https://doi.org/10.1175/JAS3397.1
https://doi.org/10.1016/j.jcp.2006.11.016
https://doi.org/10.1016/j.cpc.2014.09.005
https://doi.org/10.1017/S0022112084000355
https://doi.org/10.1017/jfm.2021.229
https://doi.org/10.1088/1367-2630/ab0756
https://doi.org/10.1088/1367-2630/ab0756
https://doi.org/10.1103/PhysRevFluids.5.104602
https://doi.org/10.1016/j.jcp.2013.03.008
https://doi.org/10.1088/1367-2630/15/4/045032

Reliable Energy Measurement
on Heterogeneous Systems–on–Chip

Based Environments

Alberto Cabrera , Pavel Nichita , Sergio Afonso , Francisco Almeida ,
and Vicente Blanco(B)

HPC Group of Universidad de La Laguna, Escuela Superior de Ingenieŕıa y
Tecnoloǵıa., 38270 San Cristóbal de La Laguna, Tenerife, Spain
{acabrerp,pnichita,safonsof,falmeida,vblanco}@ull.es

Abstract. The proper evaluation of System–on–Chip architectures and
Single Board Computers, requires from scientists and developers to
acquire reliable data from their performance and energy consumption.
The performance analysis becomes a hard task due to the high varia-
tions in the systems that change dynamically even during the execution,
caused by limited power budgets or temperature constraints among oth-
ers, and producing very different results from one execution to the other.
An extra added obstacle in energy analysis arises with the difficulty to
obtain the measurements due to the lack of both a unified measurement
standard and appropriate sensors to gather them. Attaining a bench-
marking process to produce reliable and reproducible data results con-
stitutes a difficult problem to solve and an extremely necessary task.
As a consequence, unified solutions that simplify the process and reduce
the number of issues to tackle during the computational experiements
are of great beneficial to the scientific community. We enumerate sev-
eral factors that hinder proper metric gathering and propose the use of
a unified benchmarking framework to simplify energy measurements to
address and hide the toughest aspects. Finally, to validate our proposal,
we present a performance and energy evaluation to illustrate the enhance
of the quality of measurements obtained where the reliability and repro-
ducibility are improved. A mini-cluster collecting a set of heterogeneous
devices running computer fluid dynamics kernels have been used as the
testbed.

Keywords: Multiprocessor SoC · Energy Efficiency · Reliable
Benchmarking · Reproducibility

1 Introduction

In the last decade, System–on–Chip (SoC) based platforms have grown signifi-
cantly. Embedded systems deal with low power complex environments involving
energy–aware computer architectures [3]. At the same time mobile devices have
become ubiquitous at personal and professional environments. While CPUs and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 371–382, 2023.
https://doi.org/10.1007/978-3-031-30442-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_28&domain=pdf
http://orcid.org/0000-0002-5750-8476
http://orcid.org/0000-0002-6894-3959
http://orcid.org/0000-0003-0838-8057
http://orcid.org/0000-0002-1279-9636
http://orcid.org/0000-0003-1166-6310
https://doi.org/10.1007/978-3-031-30442-2_28

372 A. Cabrera et al.

SoCs are microchips of a slightly similar area, the amount of features a SoC
comprises is much richer and heterogeneous, introducing inherent difficulties for
an efficient use of these devices. Both scientists and developers require to attain
reliable data results to properly evaluate them. Additionally, power and energy
efficiencies have also become a primary concern in SoCs design. In one hand,
mobile devices need to operate providing good performance for as long as pos-
sible [8]. On the other hand, the shrinking of components has improved circuit
density, and power budgets have dropped exponentially due to the existence of
the utilization wall, heavily affecting modern hardware design [20]. Proper mea-
surement of performance and energy consumption in SoCs is key to design the
software applications that will be run in them.

Gathering data and resource usage is key to properly optimize any system.
The usual cycle of experimentation starts by designing and implement a bench-
mark for applications. Then experiments are launched and after the results are
gathered, data is analyzed to extract conclusions. If any flaw or optimization
opportunity is found, then hardware or software is redesigned and this process
is repeated.

SoC architectures add complexity to benchmarking due to their unique set
of characteristics, where thermal management, Dynamic Voltage and Frequency
Scaling (DVFS), and thermal design power have been identified as a problem
to performance evaluation [15]. The reproducibility of data results in computa-
tional analysis is a well–known problem of experimental research in computer sci-
ence [21], constantly challenging the scientific community to find better method-
ologies for experimentation [14]. Also, any experiment designed for SoCs has
to be aware of the noise induced by the aforementioned issues or the attained
results may lead to false conclusions [1].

On the other hand, energy measurements involve a set of challenges already
known in some scientific fields, such as High Performance Computing [2], where
there has been efforts towards achieving standards to obtain this metric. Sim-
ilarly, the absence of energy metric gathering standards in SoCs presents an
additional challenge. While vendors may integrate a direct mean to gather
energy measurements from sensors, such as the now obsolete Odroid-XU3, it
is often required to rely on external meters that have their own limitations,
i.e., coarse grained measurements or asynchronous measurements between the
external device and the application. Finally, the lack of standardization also
increments the complexity of our benchmarks.

Since the release of the first Raspberry Pi model in February 2012, the Sin-
gle Board Computer (SBC) market has seen a flurry of different models being
released. Most of them have an ARM architecture from different semiconductor
manufacturers, while a few have an x86/amd64 architecture. Their low power
paired with their performance has attracted the interest in HPC communities,
where multiple analyses have been made [7,11,22] since SBCs are seen as a way
to solve the huge energy usage problem that current HPC centers have [6].

This work presents a methodology to reliably benchmark energy consump-
tion in a highly heterogeneous SoC environment using SBCs, so that the com-

Reliable Energy Measurement on SoC Based Environments 373

putational results may be reproducible. Measurements performed following our
methodology is used to analyze the energetic impact of a target Java application
in a chosen architecture and reliably detect optimization opportunities. Also,
data results could be used to detect performance and energetic anomalies and
develop power models of said architectures. To illustrate and justify our proposal
we perform multiple experiments and discuss the issues addressed at each step
of the methodology. We enumerate the main contributions of this work:

– We implement a Java interface for a standard energy measurement library
to unify energy measurement and tackle different SoC architectures, using an
already validated external measurement device. This increases the homogene-
ity of our setup and hides fine details for each target architecture.

– We implement a measurement methodology to increment measurement preci-
sion, reduce external noise and greatly increase experimental reproducibility
for energy metrics by tackling thermal management, the cpu governor, oper-
ative system scheduling issues and processor affinity.

– We validate our proposal using the Java version of the NAS Parallel Bench-
marks [4] (NPB) to experiment in a SoC board using a Linux operative sys-
tem, and compare it to a traditional benchmarking methodology.

We analyzed the results obtained by executing various NPB kernels and
observed how the variability of the gathered metrics was reduced significantly.
Using this methodology for benchmarking, we can accurately perform optimiza-
tions in our benchmarks and ensure that improvements are caused by our mod-
ifications and not due to external factors. Moreover, with more accurate mea-
surements, we would be able to develop more accurate energy consumption and
performance models.

The rest of the paper is structured as follows: Sect. 2, related work in the
field is discussed and analyzed; Sect. 3 describes the solution to reliably mea-
sure energy consumption in SBCs, an evaluation and validation of the proposed
methodology is presented in Sect. 4 and finally, Sect. 5 concludes our work.

2 Related Work

Several authors have introduced significant advances in the process for the mea-
surement and analysis of energy usage in SoCs. They have run over some of the
aforementioned problems associated to SoCs in this contexts. Some solutions
have been fixed but in general the problem of analysis and modeling of energy
in SoCs still remains open.

Núñez-Yáñez et al. [18] describes a methodology for power modeling and
energy estimation in complex SoCs based on developing statistical power mod-
els for the system components. The obtained results show the effects of different
hardware configurations on power and energy for a given application and how
system level energy consumption analysis can help the design team to make
informed architectural trade-offs during the design process. They focus on the
interaction of the application processor and the memory subsystem in terms of

374 A. Cabrera et al.

energy analysis. However, they do not consider the effect of dynamic and fre-
quency scaling what would introduce a high variation on the measurements and
presumably in the models. Models based on physical information of the devel-
opment platform, Performance Monitoring Unit (PMU) events and CPU state
information are presented in [17]. These models present a very high accuracy
to predict the average power between different CPU energy levels under sim-
ulated scenarios, and also consider DVFS and advanced scheduling strategies.
However important deviations and inaccuracies may arise under real production
processes. The models need to be recalibrated since new PMU or different CPU
states could be considered in the architecture provided for new devices.

Milosevic et al. [10,16] introduces an environment for automated power mea-
surements of programs running on a mobile development platform, mPowerPro-
file. The environment relies on minimally invasive instrumentation of a mobile
platform using a shunt resistor on the power line and an inexpensive data acqui-
sition system (DAQ) for sampling the voltage at the shunt resistor. Energy
consumption when transferring data with and without compression is analyzed
in Linux and Android. It worth to mention the high resolution and accuracy pre-
sented, the setup allows collection of up to 200,000 samples per second of power
supply current. Our work uses also external power meters to perform measure-
ments but we are less intrusive, we also try to go deeper in the reproducibility
of the computational results.

An ESL-tool (Electronic System Level) power estimation methodology sup-
porting black box models been presented in [19], it uses ARM Cortex-A9 for
reference. The method is based on automatic tracing of the transactions of the
Virtual Platform (VP). In an even simpler mode, only the processor activity
is traced via the instruction fetch port showing for the VP a timing error of
9% compared to the reference system. The power estimation error is only about
5% on average for fixed-frequency power models. Because the ARM Cortex-A9
processor is a rather complex RISC processor, it is expected that similar levels
of accuracy can be achieved for most RISC processors.

As stated, there are multiple ways of collecting energy data: external power
meters, models based on PMUs and CPU states or estimation methodologies
based on ESL. Our work with SBCs reveals significant variations in energy mea-
surements appear during experimentation. Reproducibility is a key factor in
these studies and we propose a unified solution that address this problem.

3 Reliable Energy Benchmarking

Ideally, the experimental codes developed to benchmark any target architec-
ture should be portable and independent, for both the hardware (SBCs) and the
measurement devices. We propose to assemble a software solution to simplify the
programming challenges associated with the development experimental bench-
marks, to prevent errors associated with erroneous metric gathering, and to deal
with external factors affecting our applications. Traditionally ignored for CPUs,
SoC architectures require special attention to finite power budgets, temperature

Reliable Energy Measurement on SoC Based Environments 375

(a) Experimental setup interconnection diagram.

Matrix Avg. Energy (J)
Size Eml C Eml Java

200 0.571 0.752
300 1.916 1.892
400 5.989 5.912
500 9.668 9.702

Error (%) Error

200 24.07 0.181
300 -1.27 -0.024
400 -1.30 -0.077
500 0.35 0.034

(b) EML C and JNI comparative

Fig. 1. EML JNI Evaluation and interconnection

limits and, due to the lack of active cooling, temperature dissipation problems.
Also, in big.LITTLE architectures two different types of processor clusters are
available, usually powerful and efficient cores. The operative system scheduler
moves continuously processes between each group to optimize the energy con-
sumption of the system. If unaddressed, the less computationally intense sec-
tions from our benchmark could be scheduled in efficient cores altering our final
results. Thus benchmark developers have many additional issues to tackle for
precise testing.

3.1 EML Java Native Interface

We propose a Java interface for energy measurement as an extension of our pre-
vious work, EML [9]. EML was developed to unify multiple energy measurement
devices, external and internal meters, and provide homogeneous measurement
metrics using a single interface. The objective of EML-JNI is to keep a unified
interface for measurement while maintaining all the already existing features,
such as auto–discovery of measurement devices or nested measurements. This
library covers most of the needs to perform the experimentation as it tack-
les the complexity of having multiple measurement interfaces that are accessed
through different Application Programming Interfaces, while also managing the
differences between instant power measurements and accumulated energy con-
sumption. The result is a library with a very low code intrusion that hides many
of the measurement details to the user.

To obtain the measurements, we make use of the AccelPowerCape [13], a Bea-
gleBone Black combined with the Accelpower module [12], which uses INA219
sensors to attain current, voltage and wattage. The Accelpower module uses a
modified version of pmlib library [5], a server daemon specifically created to
monitor energy consumption. pmlib is run in the BeagleBone Black, which is

376 A. Cabrera et al.

then, accessed by the EML pmlib driver. This driver is a client library devel-
oped to communicate with the pmlib server and obtain metrics from sensors
selected by the user at runtime, interconnected as shown in Fig. 1a.

In the Table appearing in Fig. 1b, we compare the measurements obtained
executing a simple matrix multiplication using different sizes, for the C and
Java versions of EML. The code is executed 30 times for each matrix size, from
200 to 500, which is then averaged. The Java overhead for the measurement
section is negligible as the JNI calls are done before and after our critical code
has been executed, thus error is minimal, with a maximum absolute error of
0.181 J. The average error is high for smallest problem size, 24.07%, as the code
consumes little energy, and that 0.181 J of difference between each code is very
high, but could also be caused by the precision of the measurement device. For
the remaining sizes, the relative error is lower than 1.3%.

To minimize overhead in SoCs, removing all the non–essential operations
from the evaluated hardware is a key factor. Therefore, we also implemented a
remote variant of the EML driver to remove all intrusion caused by the EML
workflow in our hardware. Servers such as pmlib continuously poll power or
energy metrics and delegates data management and synchronization to the end–
user. The remote EML solution is a server based driver, but follows the workflow
of all EML drivers and serves stop–watch like operations for energy measurement.
Thus, switching from a local EML–JNI interface to remote measurements is hid-
den from the experimental code. Moreover, in the presented case, as energy met-
rics have to be gathered using pmlib the network access is unavoidable. Hence
moving all network usage in our benchmarks outside of the critical measurement
zone is the best option.

3.2 Reliable Benchmarking

Rancid [1] is a flexible benchmarking framework designed in Java to reduce the
programming efforts required to address all issues that add potential noise to our
measurements in Android devices. While SBCs are the target architecture, many
of the issues that affect Android devices also add noise to metric measurement in
SoCs, such as bad temperature dissipation, process priority and process affinity.
Benchmarks also have to be error–free, so implementing all the operations for
each benchmark is not only impractical, but prone to error. Moreover, techniques
to reduce the variability of benchmarks should be designed to be independent
from the specific hardware they are being developed for.

Rancid is designed as a modular and extensible framework. To avoid sce-
narios that potentially add noise to our experimentation, it includes techniques
to provide control over CPU frequencies, temperature monitorization, and pro-
cess priority and affinity. The framework also provides measurement classes to
define a set of desired metrics to evaluate in a running benchmark. In Fig. 2, all
the main components of the Rancid framework are illustrated. The Benchmark-
Manager is able to execute all the Benchmarks defined by users, were multiple
metrics are gathered through the Meter interface. Once the benchmark process
is finished, data can be analyzed within the Java program or can be exported to
be processed at a later time.

Reliable Energy Measurement on SoC Based Environments 377

Fig. 2. Main components of the Rancid framework.

To include energy consumption as a possible metric to evaluate benchmarks,
we developed the EMLMeter class, extending the provided interface Meter.
EMLMeter uses the previously presented EML-JNI interface and interconnect-
ing to the measurement devices as shown in Fig. 1a. To implement a new Meter,
only three functions require an implementation: EMLMeter.start(), EMLMe-
ter.stop() and EMLMeter.stoperror(). The similarities with EML-JNI made the
implementation trivial, with a small addition to stop the energy measurement
and discard the value on EMLMeter.stoperror(), a function necessary to reset a
benchmark run that has failed.

To develop a set of benchmarks, users are required to extend the Bench-
markImplementation class with the target code. Users can override methods to
execute before and after each designed benchmark (PreBenchmark() and Post-
Benchmark()) to reconfigure the system into a desired state, and outside of
the measurement section (PreRun and PostRun), so that users deal with ini-
tialization and finalization operations required by test codes. To finalize the
configuration, users have to specify a set of inputs for each Benchmark, and a
StopCondition, that may be a simple condition based on a fixed number of runs
or a complex condition to achieve a specific objective through experimentation.

In our Rancid BenchmarkManager, we incorporated the EMLMeter imple-
mentation to connect through the EML-JNI interface to the pmlib driver and
read energy consumption metrics from the BeagleBone Black. Finally, before and
after executing any of our Benchmarks, all the techniques developed to reduce
potential noise within our experiments are implemented, including selecting the
performance cpu governor, forcing thread pinning in the powerful cores, con-
trolling the temperature of the device with cooldown operations and setting the
StopCondition to meet carefully selected error criteria.

4 Experimentation

We evaluate our methodology by executing multiple instances of the NAS Par-
allel Benchmarks (NPB) kernels, Block Tri–diagonal solver (BT), Integer Sort
(IS), and Multi-Grid on a sequence of meshes (MG), in their Java 3.0.0 version.
These are three of multiple computational kernels derived from computational
fluid dynamics (CFD) applications designed to help evaluate the performance

378 A. Cabrera et al.

of parallel supercomputers. The modifications introduced to these benchmarks
are the strictly necessary to execute our benchmarks using Rancid, and to mea-
sure the critical computational code designed by its original authors after the
initialization phase of each kernel. Moreover, as NPB kernel codes are intro-
duced within our BenchmarkImplementation, we have to control thread creation
in the initialization phase, to avoid repeatedly creating new threads that keep
running indefinitely until our benchmark is over. For this computational expe-
rience, we opted to study a single size for each benchmark, referred as class by
the NPB authors. The selected sizes for each kernel are BT W (a grid size of
24× 24 × 24, executed 200 iterations with a time step of 0.0008), IS B (an
array of 225 keys) and MG A (grid size of 2563 elements executed 4 iterations).
In this section we will compare two evaluations for each benchmark: a standard
approach, where results are obtained by executing a given benchmark for fixed
amount of iterations; and a reliable managed approach, where we introduce all
of viable techniques to improve the quality of the executed benchmarks.

The target architecture is a Hikey960 development ARM 64 platform, com-
prised of a Huawei Kirin 960 SoC, with a Cortex A7 @ 2.36 GHz and a Cortex
A53 @ 1.8 GHz, and has 6 GB, LPDDR4X@1866 MHz of DRAM. Is has installed
a Debian 9 kernel version 4.9. For compiling and executing the NPB, we used
Java openjdk 1.8.0 272.

In the benchmark we denote as standard, the experimental codes are executed
for fixed number of 300 repetitions. The reliable approach introduces a more
complex stop condition. We calculate the target error of the energy consumption
metric for the last window iterations and stop when the calculations are inferior
to a definite threshold. In our case, the objective error was set at 5% within the
last 50 repetitions for the total energy consumption metric e. The error at the
i-th iteration is calculated as follows:

Erri =

√
Var ([ei−window, ei−window+1, · · · , ei])

∑i
j=i−window ei

n

(1)

Thus, the stop condition is defined as Erri <= 0.05 ∧ i > 50. To avoid infinite
experimentation if error does not converge, a fixed amount of iterations is also set
as an alternative stop condition. The reliable version also includes mechanisms to
control the temperature of the devices to avoid performance degradation, ensures
that threads are assigned to the powerful cores if a big.LITTLE architecture is
detected, and gives our process real time priority. Finally, warm up operations
are included beforehand to increase the frequency of the processor.

Figures 3a and 3b illustrate the measurement irregularities that are caused by
the issues detected in SoCs, using the HiKey960. While every algorithm presents
a different behaviour, a reliable benchmarking methodology is mandatory to
ensure that different executions of the same benchmarks achieve similar results.
Figure 3a illustrates one scenario where execution time is completely stable, yet
energy readings vary through four different states during the benchmarking pro-
cedure. On the other hand, the situation presented in Fig. 3b illustrates a situa-
tion where the thermal design power is reached. In this second case, temperature,

Reliable Energy Measurement on SoC Based Environments 379

(a) Standard BT W (b) Standard MG A

(c) Reliable BT W (d) Reliable MG A

Fig. 3. Hikey960 detailed benchmark measurements

governor, and frequency issues affect the final results in the standard benchmark-
ing procedure. In Figs. 3c and 3d, we apply the proposed reliable benchmarking
methodology to reduce the noise from external sources, yielding in more stable
results.

Our computational experience is condensed in Fig. 4. These bar plots illus-
trate the median execution time and the energy consumption of the BT W,
IS B and MG A, and their interquartile range (IQR). Each group of bars por-
trays the result of the benchmark execution for 1, 2, 3 or 4 threads. Within each
group, the first 2 bars represent the execution time, using the standard approach
and our reliable proposal, respectively. The third and fourth bar represent the
energy consumption measurements, following the same pattern. Be aware that
the Y axis does not start at 0 in Figs. 4a and 4b. In each case, our objective
is to minimize the IQR in order to improve the precision of our benchmark-
ing methodology, reduce external noise, and increase the reproducibility of our
experimentation, i.e., a smaller the IQR in these Figures is better.

Figure 4a illustrates the results obtained by executing the BT W kernel. In
this first case, we are tackling the scenario presented in Fig. 3a. The standard
benchmarking procedure is clearly worse in the serial execution, as its IQR is
notably higher than the reliable version in both execution time and energy mea-
surements. The parallel versions of the benchmark, from 2 to 4 threads, are

380 A. Cabrera et al.

(a) Standard BT W (b) Standard IS B (c) Standard MG A

Fig. 4. HiKey960 NPB benchmark measurements, standard v. reliable.

slightly better in the reliable case except for the execution time using 4 threads.
In Figs. 3a and 3c, we can see this case in detail. The execution time is already
very stable for this kernel and its variability is very small to appreciate any
improvements by the reliable procedure. However, neither the standard nor the
reliable version of the kernel is able to portrait the different levels of energy
consumption introduced by external factors. Using our proposal for experimen-
tation, the IQR for the execution time and energy consumption in the BT W is,
on average, 1.394 s and 14.46 J (3.03% and 4.56%) better respectively. Without
taking into account the serial case, which is very favorable for us, the reliable
benchmarking attains a slightly worse IQR for execution time, 0.484 s compared
to the 0.289 s from the standard version (0.42% worse). Still, for energy con-
sumption the reliable benchmark IQR, 7.60 J, is better compared to the standard
benchmark IQR, 18.78 J (1.56% improvement).

In Fig. 4b, we observe the behavior for the IS B kernel. This kernel is more
stable than the BT, and we observe how the execution time variation for the
standard (0.020 s) and the reliable (0.035 s) procedure is negligible. The IQR is
0.015 s (0.22%) better for the standard procedure. For energy consumption how-
ever, we observe great variability, specially for the 2 threaded case. On average,
IQR is improved by 3.063J (5.96%) when using our benchmarking proposal.

Finally, Fig. 4c depicts the last case, the MG A kernel. This kernel pro-
duces very irregular measurements using the standard benchmarking, as shown
in Fig. 3b, since it is heavy both computationally and in memory usage. Hence,
the results obtained through the reliable methodology have a significantly lower
IQR, specially for the 3 and 4 threaded cases, where all the components of the
device are used, except for the GPU. The standard time IQRs are, on average,
0.179 s and 5.616 J for execution time and energy consumption respectively,
while the reliable methodology IQRs are 0.007 s and 0.777 J (5.11% and 17.41%
improvement).

Overall we can observe how the IQRs are equal or better in this computa-
tional experience using our methodology. In some cases, as presented in the BT
W, the median of the measurement for the reliable benchmarking methodology
is different to the standard benchmarking. Still, the variability of the results is

Reliable Energy Measurement on SoC Based Environments 381

reduced and the IQR is lower overall. On the other hand, algorithms with great
variability such as the MG are greatly improved, specially for energy consump-
tion measurements.

5 Conclusion

New factors introduced in SoCs have been proven to heavily affect algorithm per-
formance due to their limited power, temperature constraints or lack of active
cooling. Reliable benchmarking is a mandatory tool to improve the performance
and the energy consumption of computational systems. In order to apply opti-
mization techniques in any procedure, metrics have to be accurate. Any variabil-
ity may hide performance variations, be it improvement or losses, thus increasing
the difficulty of comparing optimization techniques. In this work we propose a
reliable methodology to benchmark SoCs and reduce the variability for time and
energy consumption measurements. To do so, we have implemented a Java native
interface for EML and extended Rancid to make use of energy measurements.
Using Rancid, we designed a computational experience to evaluate multiple NPB
kernels. These experiments indicate that our proposal reduces the variability of
the final benchmark results, which we can then use to evaluate algorithms and
optimization techniques accurately.

Acknowledgments. This work has been supported by the Spanish Ministry
of Science and Innovation with the PID2019-107228RB-I00 project, and Con-
tract FPU16/00942; by the Government of the Canary Islands, with the project
ProID2021010012 and the grant TESIS2017010134, which is co-financed by the Min-
istry of Economy, Industry, Commerce and Knowledge of Canary Islands and the Euro-
pean Social Funds (ESF), operative program integrated of Canary Islands 2014–2020
Strategy Aim 3, Priority Topic 74(85%); and the Spanish network CAPAP-H.

References

1. Afonso, S., Almeida, F.: Rancid: reliable benchmarking on android platforms. IEEE
Access 8, 143342–143358 (2020)

2. Almeida, F., Arteaga, J., Blanco, V., Cabrera, A.: Energy measurement tools for
ultrascale computing: a survey. Supercomput. Front. Innov. 2(2), 64–76 (2015)

3. Andrae, A.S., Edler, T.: On global electricity usage of communication technology:
trends to 2030. Challenges 6(1), 117–157 (2015)

4. Bailey, D., Harris, T., Saphir, W., Van Der Wijngaart, R., Woo, A., Yarrow, M.:
The NAS parallel benchmarks 2.0. Technical Report, Technical Report NAS-95-
020, NASA Ames Research Center (1995)

5. Barrachina, S., Barreda, M., Catalán, S., Dolz, M.F., Fabregat, G., Mayo, R.,
Quintana-Ort́ı, E.: An integrated framework for power-performance analysis of
parallel scientific workloads. In: Energy pp. 114–119 (2013)

6. Bergman, K., Borkar, S., Campbell, D., Carlson, W., et al.: ExaScale computing
study: technology challenges in achieving exascale systems peter Kogge, Editor &
Study Lead (2008)

382 A. Cabrera et al.

7. Bez, J.L., Bernart, E.E., dos Santos, F.F., Schnorr, L.M., Navaux, P.O.A.: Perfor-
mance and energy efficiency analysis of HPC physics simulation applications in a
cluster of ARM processors. Concurrency Comput. Pract. Experience 29(22), e4014
(2017)

8. Borkar, S., Chien, A.A.: The future of microprocessors. Commun. ACM 54(5),
67–77 (2011)

9. Cabrera, A., Almeida, F., Arteaga, J., Blanco, V.: Measuring energy consumption
using EML (energy measurement library). Comput. Sci.-Res. Dev. 30(2), 135–143
(2015)

10. Dzhagaryan, A., Milenkovic, A., Milosevic, M., Jovanov, E.: An environment for
automated measuring of energy consumed by android mobile devices. In: Ahrens,
A., Benavente-Peces, C. (eds.) Proceedings of the 6th International Joint Con-
ference on Pervasive and Embedded Computing and Communication Systems
(PECCS 2016), Lisbon, Portugal, 25–27 July 2016, pp. 28–39. SciTePress (2016)

11. Göddeke, D., et al.: Energy efficiency vs. performance of the numerical solution of
PDEs: an application study on a low-power arm-based cluster. J. Comput. Phys.
237, 132–150 (2013)

12. González Rincón, J.D.: Sistema basado en open source hardware para la monitor-
ización del consumo de un computador (2015)

13. Group of architecture and technology of computing systems (ArTeCS) of the Com-
plutense University of Madrid: AccelPowerCape reference Page. https://artecs.
dacya.ucm.es/tools/accelpowercape/ Accessed 17 Feb 2021

14. Hunold, S., Träff, J.L.: On the state and importance of reproducible experimental
research in parallel computing (2013)

15. Kim, J.M., Kim, Y.G., Chung, S.W.: Stabilizing CPU frequency and voltage for
temperature-aware DVFS in mobile devices. IEEE Trans. Comput. 64(1), 286–292
(2015)

16. Milosevic, M., Dzhagaryan, A., Jovanov, E., Milenkovic, A.: An environment for
automated power measurements on mobile computing platforms. In: Saad, A. (ed.)
ACM Southeast Regional Conference 2013, ACM SE’13, Savannah, GA, USA, 4–6
April 2013. pp. 19:1–19:6. ACM (2013)

17. Nikov, K., Núñez-Yáñez, J.L.: Intra and inter-core power modelling for single-ISA
heterogeneous processors. Int. J. Embed. Syst. 12(3), 324–340 (2020)

18. Núñez-Yáñez, J.L., Lore, G.: Enabling accurate modeling of power and energy
consumption in an arm-based system-on-chip. Microprocess. Microsyst. 37(3), 319–
332 (2013)

19. Schürmans, S., Onnebrink, G., Leupers, R., Ascheid, G., Chen, X.: Frequency-
aware ESL power estimation for ARM cortex-a9 using a black box processor model.
ACM Trans. Embed. Comput. Syst. 16(1), 26:1–26:26 (2016)

20. Venkatesh, G., et al.: Conservation cores: reducing the energy of mature computa-
tions. ACM Sigplan Not. 45(3), 205–218 (2010)

21. Vitek, J., Kalibera, T.: R3: repeatability, reproducibility and rigor. SIGPLAN Not.
47(4a), 30–36 (2012)

22. Yokoyama, D., Schulze, B., Borges, F., Mc Evoy, G.: The survey on ARM pro-
cessors for HPC. J. Supercomput. 75(10), 7003–7036 (2019). https://doi.org/10.
1007/s11227-019-02911-9

https://artecs.dacya.ucm.es/tools/accelpowercape/
https://artecs.dacya.ucm.es/tools/accelpowercape/
https://doi.org/10.1007/s11227-019-02911-9
https://doi.org/10.1007/s11227-019-02911-9

Distributed Objective Function
Evaluation for Optimization of Radiation

Therapy Treatment Plans

Felix Liu1,2(B) , Måns I. Andersson1 , Albin Fredriksson2,
and Stefano Markidis1

1 KTH Royal Institute of Technology, Stockholm, Sweden
felixliu@kth.se

2 RaySearch Laboratories, Stockholm, Sweden

Abstract. The modern workflow for radiation therapy treatment plan-
ning involves mathematical optimization to determine optimal treatment
machine parameters for each patient case. The optimization problems
can be computationally expensive, requiring iterative optimization algo-
rithms to solve. In this work, we investigate a method for distributing
the calculation of objective functions and gradients for radiation therapy
optimization problems across computational nodes. We test our approach
on the TROTS dataset— which consists of optimization problems from
real clinical patient cases—using the IPOPT optimization solver in a
leader/follower type approach for parallelization. We show that our app-
roach can utilize multiple computational nodes efficiently, with a speedup
of approximately 2-3.5 times compared to the serial version.

Keywords: Optimization · Radiation Therapy · Distributed
Computing

1 Introduction

Radiation therapy is one of the most common forms of cancer treatment today.
Before a patient undergoes treatment, the control parameters for the treatment
machine, such as the dose rate and the shape of the aperture through which to
irradiate the patient, must be determined. This process is known as treatment
planning. Ultimately, the goal of the treatment is to deliver sufficient dose to the
tumor to kill cancerous cells, while sparing surrounding healthy tissue.

In modern radiation treatment planning, mathematical optimization is used
to determine parameters for the treatment machine (often a linear- or parti-
cle accelerator). The planning process typically begins after a CT (Computed
Tomography) scan of the patient has been imported into a treatment planning
system (TPS), a software product designed for radiation treatment planning.
Contours of important structures such as risk organs and the tumor—the regions-
of-interest (ROIs)—in the patient are drawn on the CT. Optimization functions
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 383–395, 2023.
https://doi.org/10.1007/978-3-031-30442-2_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_29&domain=pdf
http://orcid.org/0000-0001-6865-9379
http://orcid.org/0000-0002-6384-2630
https://doi.org/10.1007/978-3-031-30442-2_29

384 F. Liu et al.

in the form of objectives and constraints corresponding to desirable qualities of
the dose delivered to the ROIs are defined, yielding a mathematical optimization
problem. The optimization problem is then solved numerically, and, if needed,
the process is repeated in a trial-and-error fashion where the optimization func-
tions and possible importance weights are changed until a high-quality plan is
achieved.

The treatment planning process is time-consuming, in part because the opti-
mization problem is computationally demanding. Efficient algorithms for solving
the problem is crucial, both for efficiency at the clinics and for the quality of
the resulting treatment plans. Due to the high computational demand, utiliz-
ing HPC resources such as accelerators or distributed computing clusters is an
important step.

In this work, we propose a method for distributing the computation of objec-
tive function, constraints and gradients—in many cases an important computa-
tional bottleneck—across multiple computational nodes. We show the effective-
ness of our approach by utilizing the IPOPT solver [9], a general software library
for nonlinear optimization, together with our method for distributing optimiza-
tion function evaluations across nodes, on optimization problems from radiation
therapy. We study problems from the TROTS dataset, an open dataset with
data for optimization problems from real patients treated for cancers in the
head-and-neck region. We provide an implementation to calculate function val-
ues and gradients using input data from TROTS in a distributed fashion and
show that our approach can produce solutions of high quality while being able
to effectively utilize distributed computing resources, with approximately a 2-3x
speedup compared to the single node version.

2 Background and Related Work

We consider treatment planning for high-energy photons using the treatment
technique volumetric modulated arc therapy (VMAT) [7], where the gantry head
of the treatment machine is continuously rotated around the patient during the
treatment. The optimization variables in our problems are beamlet weights, which
are intensity values for the delivered beams in the plane in front of the gantry.
From the beamlet weights, the actual treatment machine settings required to
deliver such an intensity profile at each beam angle can be determined and a
deliverable plan can be created.

2.1 TROTS Dataset

The TROTS dataset [2] consists of data for patients with cancers in the head-
and-neck region, liver or prostate. The dataset contains objective functions and
constraints for the dose in each ROI of the patient, which form the nonlinear
optimization problem to be solved. Furthermore, dose influence matrices are

Distributed Optimization for Radiation Therapy 385

Table 1. The different types of optimization functions used in the TROTS dataset
problems we have used. In the following f(x) denotes an optimization function, di(x)
is the dose in voxel i of a given ROI, and d̂ denotes a desired dose level.

Name f(x) Comment

LTCP: 1
n

∑n
i=1 e−α(di(x)−d̂) where α ∈ R is a parameter

min/max dose: g(d(x)) g is min/max function

Mean dose 1
n

∑n
i=1 di(x)

Generalized mean:
(
1
n

∑n
i=1 di(x)a

) 1
a a ∈ R is a parameter

Quadratic: 1
2
xT Ax + bT x + c A is a matrix, b, c are constant vectors

provided for each ROI separately. The dose influence matrix gives the rela-
tion between the optimization variables, beamlet weights, and the resulting
dose in the ROI. In previous work, the TROTS dataset has for instance been
used to evaluate the performance of optimization solvers tailored for radiation
therapy [1].

We note that having separate dose matrices for each ROI is not ubiquitous in
radiation therapy optimization, it is also possible to provide a single dose matrix
covering the entire relevant part of the patient volume and to extract the doses for
each ROI from the total dose. Since there is only a single dose matrix in this case,
distributing the computation becomes more complicated, in which case it may be
more natural to look to GPU accelerators instead, see for instance the work in [6].

For our experiments, we use the same optimization functions as provided
in TROTS, with the exception of the min and max dose constraints, which we
substitute with quadratic penalties of the form:

f(x) =
1
n

n∑

i=1

(g(di(x) − d̂, 0))2

where g again is either min or max.
The dependence between the dose d(x) for a given ROI and the optimization

variables x is linear. To calculate the dose for a given ROI and value of x, we
simply multiply x by the dose influence matrix A for that ROI: d(x) = Ax. The
TROTS dataset provides one dose influence matrix for each ROI, which is stored
as a sparse matrix.

The optimization problem for a TROTS case is then specified using a
weighted sum of the objectives, shown in Table 1 on the different ROIs, together
with the constraints on ROIs in the following form:

386 F. Liu et al.

min
x

n∑

i=1

wifi(x)

s.t. gi(x) ≤ 0
x ≥ 0

Here, fi(x) are the objectives for the different ROIs, with wi being their cor-
responding weight and gi(x) are the constraint functions on the doses in the
ROIs. Typically, very strict requirements on some dose function in a particular
ROI may be specified as a hard constraint, instead of as a term in the objective
function.

2.2 Dose Influence Matrices

Since all the optimization functions used in the optimization problems are func-
tions of dose in the different regions of interest in the patient, dose calculation is
an important computational kernel. The dose calculation in our case is a sparse
matrix-vector product, d = Ax, with the dose influence matrices A being pro-
vided by the TROTS dataset. Note also that in the case of TROTS, the dose
influence matrices are given for each ROI separately, instead of for the patient
volume as a whole.

The size of the dose influence matrix varies quite significantly between the
ROIs, meaning that the computational time needed to compute the optimization
function for the different ROIs varies significantly. A histogram of the number of
non-zero values in the different dose influence matrices (there are approximately
40 in total) is shown in Fig. 1a. We see that the number of non-zeros varies
significantly, with some matrices having approximately 5000 non-zero elements,
while others have closer to 10 million.

2.3 Radiatiation Therapy Plan Quality

The ultimate goal when solving optimization problems in radiation therapy
treatment planning is to create treatment plans of high quality. To this end,
the mathematical optimization problem can be seen as a proxy, providing a way
to produce plans with desirable dose characteristics. Considering this, the qual-
ity of the resulting plan should not only be evaluated based on how accurately
the optimization problem was solved, but also using other dose-based metrics
which may reflect plan quality more accurately.

One common method for evaluating and comparing treatment plans is using
dose-volume histograms (DVH) [4]. DVHs are defined using the so called volume-
at-dose metric. For a given ROI with n voxels (with identical sizes), discretized
dose d ∈ Rn and dose level d̂, the volume-at-dose Vd̂(d) is defined as:

Distributed Optimization for Radiation Therapy 387

(a) Histogram of the distribution of the num-

ces in the Head-and-Neck problem 01 from the
TROTS dataset.

(b)
ence matrices for objective functions.

(c)
ence matrices for constraints.

Fig. 1. Distribution of the dose influence matrices using the greedy algorithms on six
ranks (one rank reserved for IPOPT). The histogram of the distribution of non-zeros
of the dose matrices is shown on top. The bottom figure shows the distribution of
dose matrices produced by our greedy heuristic with MPI ranks on the x-axis and
corresponding colored bars being the sizes of the dose matrices assigned to that rank.
The total size of all dose matrices for each ranks is shown above each bar.

Vd̂(d) =
∑n

i=1 1(di ≥ d̂)
n

,

where 1 is the indicator function. Informally, the volume-at-dose gives the pro-
portion of the ROI volume receiving a dose of at least d̂. A DVH for a given ROI
is a plot showing Vd̂ as a function of different dose levels d̂, and can be used to
visually compare dose distributions from different plans.

388 F. Liu et al.

Table 2. Timings comparing IPOPT using MUMPS and MKL Pardiso. All times are
wall-clock times and measured in seconds.

Setup Function Evaluation (s) Linear System Sol. (s) Total Time (s)

IPOPT w. MUMPS 248.607 598.884 891.163

IPOPT w. MKL Pardiso 212.223 58.951 279.399

3 Methodology

3.1 Serial Version and Data Preprocessing

While the TROTS dataset provides the data required to specify the optimization
problems for each of its patient cases, it does not provide the code to compute
the objective functions, constraints or gradients, or code to interface the data to
optimization libraries. To be able to interface the problem to the IPOPT solver,
we have developed a C++ library (which is available on Github1) to enable
the use of general optimization libraries on the dataset. The library provides
a TROTSProblem class, which represents a single TROTS optimization prob-
lem and provides member functions to compute objective functions, constraints
and gradients. Finally, to interface the TROTS problem to the IPOPT opti-
mization library, we simply use IPOPT’s C++ interface. Note also that our
library provides functions to compute function values and first-derivatives only,
meaning that the optimization solver used needs to be able to run using only
first-derviatives. This does not exclude the use of second-order methods which
incorporate Hessian information in the optimization however, since the Hessian
can be approximated using quasi-Newton methods [3], which are supported in
IPOPT.

IPOPT supports the use of multiple different linear solvers to solve the linear
systems arising internally from its optimization algorithm. In general, one can
expect that the overall performance of the optimization solver depends on the
choice of linear solver. Initially, we tried IPOPT using the linear solvers MUMPS,
and MKL Pardiso (a part of Intel MKL), since those packages are freely available.
We used IPOPT’s internal timers to compare the two linear solvers, and the
results are summarized in Table 2. The optimization was run for a total of 3000
iterations.

As seen in Table 2, we get significantly better performance when using the
MKL Pardiso linear solver, compared to MUMPS. Thus we use the MKL Pardiso
solver for the remainder of this work.

When using IPOPT with MKL Pardiso, we see that the computational time
becomes dominated by the function evaluations, taking approximately 76% of
the total wall clock time in optimization. This part is thus a natural candidate
for parallelization to further improve performance.

1 https://github.com/felliu/Optimization-Benchmarks.

https://github.com/felliu/Optimization-Benchmarks

Distributed Optimization for Radiation Therapy 389

3.2 Parallelization

As mentioned in the previous section, function evaluation is a significant compu-
tational bottleneck in the optimization. This part thus becomes a natural target
for parallelization, which can be achieved by distributing terms of the objec-
tive function and constraints between computational nodes. Indeed, that is the
approach we use in this work.

We use MPI to distribute the computation, where MPI rank 0 (the leader)
holds the IPOPT instance (which does not natively support MPI), and the
remaining ranks compute objective function and constraints in parallel when
requested by rank 0. The parallelization works such that each MPI process is
assigned a set of terms of the objective function and constraints for which it is
responsible for computing values. When rank 0 requires new function values, it
broadcasts the current values of the optimization variables to all other processes,
which then computes the function and gradient values for which it is responsi-
ble, before MPI collectives are used to aggregate the result to rank 0, which can
then proceed with the next iteration in the optimization algorithm. A conceptual
overview of the parallelization method is shown in Fig. 2.

Listing 1.1 shows the code for the function handling the dispatching of func-
tion evaluations to the different MPI ranks which is the key in enabling the use
of a distributed method for computing function values with an MPI-unaware
optimization solver. At startup, when initialization is finished, all ranks, except
rank 0, call the compute vals mpi function and wait at the MPI Barrier. When
the optimization solver requires new function and constraint values to continue,
it calls compute vals mpi, thus releasing the barrier and allowing all ranks to
compute the required values in parallel.

Considering the uneven distribution in sizes of the dose matrices, as seen
in Fig. 1a, a way to balance the workload between processes is required. When
calculating objectives and constraints, the most computationally expensive part
is the sparse matrix-vector product for the dose. Thus, we use the number of
non-zeros in the dose influence matrices for each term to balance the workload
between processors.

The problem of distributing the terms of the objectives and constraints as
evenly as possible is an instance of the multi-way number partitioning problem
[8], where one seeks a partitioning of a multiset of integers into k partitions, such
that the discrepancy between the sizes of the partitions is minimal. This problem
is NP-complete, making heuristic algorithms attractive choices. A simple greedy
heuristic is to sort the numbers in descending order, then, in order, assign the
numbers to the partition with the smallest sum at that point. On average, one
would expect this to give a partitioning with a discrepancy on the order of the
smallest number [8]. Considering the difference in size between the smallest and
largest dose influence matrices (again, see Fig. 1a), we expect the greedy heuristic
to work well enough in our case. Thus, our method of distributing terms of the
objectives and constraints is as follows:

390 F. Liu et al.

1 double compute vals mpi(bool calc obj, const double∗ x, double∗ cons vals,
2 bool calc grad, double∗ grad,
3 LocalData& local data,
4 std::optional<ConsDistributionData> distrib data,
5 bool done) {
6 while (true) {
7 //"Task-pool", wait here until rank 0 is requesting function

values to be computed

8 MPI Barrier(MPI COMM WORLD);
9

10 //Check if rank 0 is signalling that the optimization is done

11 int done flag = static_cast<int>(done);
12 MPI Bcast(&done flag, 1, MPI INT, 0, MPI COMM WORLD);
13 if (done flag)
14 return 0.0;
15
16 int rank;
17 MPI Comm rank(MPI COMM WORLD, &rank);
18 double obj val = 0.0;
19
20 //Are we calculating objectives or constraints?

21 int calc obj flag = static_cast<int>(calc obj);
22 MPI Bcast(&calc obj, 1, MPI INT, 0, MPI COMM WORLD);
23 if (calc obj) {
24 obj val = compute obj vals mpi(x, calc grad, grad, local data);
25 } else {
26 compute cons vals mpi(x, cons vals, calc grad,grad, local data,

distrib data);
27 }
28
29 //Rank 0 returns to the optimization solver

30 //to continue to the next iteration / step

31 if (rank == 0)
32 return obj val;
33 }
34 }
Listing 1.1. “Task-pool”, function handling dispatching of function evaluations to
different ranks. All ranks but 0 wait in the barrier at line 7 until rank 0 requests new
function values to be computed.

Distributed Optimization for Radiation Therapy 391

Rank 0

IPOPT
solver

Rank 1

Dose
Matrices

Rank 2

Dose
Matrices

Rank 3

Dose
Matrices

Rank 4

Dose
Matrices

Obj. func.

Gradient

Constraints

Jacobian

Rank Local Func. Values

MPI_Reduce /
MPI_Gather /
MPI_Gatherv

Global Func. Values

Obj. func.

Gradient

Constraints

Jacobian

Fig. 2. Illustration of the parallelization method used. Rank 0 holds the optimization
solver and the global values for objective functions, constraints and gradients. The
different terms and values are spread across the ranks, which compute local values that
are aggregated back to Rank 0 using MPI collectives.

1. Sort the terms in descending order based on number of non-zeros in the
corresponding dose matrix

2. Go through the terms in order, assigning each term to the processor with the
smallest total number of non-zeros.

An example of a resulting distribution of matrices for the case with six total
MPI ranks (recalling that one rank is reserved for the optimization solver) is
shown in Fig. 1.

3.3 Experimental Setup

The performance experiments in this study are carried out on following systems:

– Dardel is an HPE Cray EX supercomputer at PDC in Stockholm, Sweden.
We use the main partition on Dardel where each node has two AMD EPYC
7742 CPUs.

– Kebnekaise is a supercomputer at HPC2N in Ume̊a, Sweden. Again we use
the Compute partition of the cluster where each node has a single Intel Xeon
E5-2690v4 CPU, 128 GB of RAM.

We compile our codes using GCC 11.2.0 on both systems. We refer to the Github
repository of the code for the dependencies required to build our library. For
MPI, we use Cray MPICH 8.1.11 on Dardel and OpenMPI 4.1.1 on Kebnekaise.

392 F. Liu et al.

4 Results

4.1 Performance and Parallel Scaling

(a) Parallel scaling on Dardel, the serial
case uses half a node, since we only want
to use one CPU socket to get a proper
serial reference.

(b) Parallel scaling on Kebnekaise. The
2 node case is omitted, since there is no
parallelism in that case due to the opti-
mization solver occupying one full node.

Fig. 3. Scaling tests on Dardel and Kebnekaise

We begin by assessing the performance and parallel scaling of our code on two
supercomputing clusters. Figure 3 shows the total run time of the optimizer
depending on the number of nodes. In all cases, the optimization was run for
3000 iterations, and repeated five times with the average times and standard
deviations (vertical red lines) shown. All times were measured using IPOPT’s
internal timers, using the print timing statistics option. The upper data
points (triangles) show the total execution time of the optimization. The lower
data points (squares) show the portion of time in function evaluations only. The
solid red line shows the theoretically possible time as predicted by Amdahl’s law,
where the serial portion is the time spent in IPOPT.

4.2 Plan Quality

To verify that our approach produces treatment plans of high quality, we compare
DVH curves (see Sect. 2.3) from our plans with the reference solution provided
from TROTS. Figure 4 shows DVH curves from our parallel implementation
(solid lines) compared to a reference plan provided by TROTS (dashed lines) on
the first VMAT Head-and-Neck case. While a complete discourse on evaluating
plans based on DVH curves is out of scope for this paper, we can see that the
DVH curves between our solution and the reference are quite similar. A general
guideline for treatment plans is that the planning target volume (PTV), which
encompasses the tumor, should receive a sufficiently high uniform dose, while
organs at risk should receive as little dose as possible.

Distributed Optimization for Radiation Therapy 393

0 5 10 15 20 25 30 35 40 45 50
Dose (Gy)

0

10

20

30

40

50

60

70

80

90

100

V
ol

um
e

(%
)

PTV 0-46 Gy
Parotid (R)
Parotid (L)
SMG (R)
SMG (L)
Oral Cavity
Spinal Cord
Brainstem
Larynx
MCS
MCM
MCI
MCP
Oesophagus
Cochlea (R)
Cochlea (L)
Patient
PTV Shell 0 mm
PTV Shell 5 mm
PTV Shell 15 mm
PTV Shell 30 mm
PTV Shell 40 mm
External Ring 20 mm

MPI IPOPT Plan
TROTS Reference Solution

Fig. 4. DVH comparison between our plan, computed using IPOPT and 3 nodes on
Dardel, and a reference plan from the TROTS dataset. The DVH curves from our plan
are shown in solid lines and the reference plan is the dashed line. This plot was created
using a slightly modified version of Matlab scripts provided by the TROTS authors5.

4.3 Performance Analysis and Execution Tracing

To further understand the performance of our code, we traced our applications
using Score-P [5]. We traced for a total of 100 iterations using 6 MPI ranks on
the Dardel system, and the trace for a few iterations can be seen in Fig. 5, which
shows the tracing for a few iterations but zoomed in at different scales. The red
bars show the idle time in MPI Barrier for each rank, the green bars in rank
0 is the time rank 0 spends in the IPOPT optimization solver. The cyan bars
in the other ranks is the time computing the sparse matrix-vector products to
evaluate function values, and the brown bars come from time spent in function
evaluations outside the matrix-vector products.

From the tracing in Fig. 5 we see that our load balancing scheme works
reasonably well, with the amount of time spent in the different ranks when com-
puting function values being similar. There is some imbalance, especially when
looking at rank 5, which appears to be caused by the function value evaluation
from the dose. On closer investigation the function type causing the long evalu-
ation times is the generalized mean, for which we use the C++ standard library
function std::pow to compute the powers, which may be quite expensive. From
the tracing we can also see the limitation in scaling imposed by the serial IPOPT
solver, where the other MPI ranks are idle.

394 F. Liu et al.

Fig. 5. Tracing from a number of iterations of the optimization. Rank 0 handles the
optimization solver (green is time spent in IPOPT) while the other ranks do the func-
tion evaluations where cyan is sparse linear algebra operations (to compute the dose),
red is time waiting for the optimization solver, and the brown is computing function
values from the dose. In the second panel we zoom in and show three evaluations.
In the third panel the different stages of the objective function evaluation are clearly
distinguishable. (Color figure online)

Fig. 6. The accumulated exclusive time per function. The optimization solver is found
on rank 0 and, green represents compute. The color scheme is the same as in Fig. 5
(Color figure online)

Figure 6 shows the accumulated time spent in different functions for the MPI
ranks, with each row representing one MPI rank. The length of each bar shows
the proportion of time spent in the corresponding function call. We see that the
load balancing between the ranks is decent, but with some room for improve-
ment.

5 Discussion and Conclusion

We have developed a parallel code for solving optimization problems from the
TROTS dataset for radiation therapy treatment planning, capable of utilizing
multi-node computational clusters for evaluating objective functions, constraints
and their gradients. We show that our code can produce treatment plans of high
quality while utilizing high-performance computing clusters effectively. Our app-
roach distributes the function evaluations at each iteration across computational
nodes, while using the state of the art single-node optimization solver IPOPT
to compute the next iteration. We show that our approach can improve solu-

Distributed Optimization for Radiation Therapy 395

tion times by a factor of around 3.5 when compared to the serial time on a
traditional supercomputer. While the possible parallel scaling is limited by the
serial portion coming from the optimization solver, computational efficiency is
often crucial for real clinics, and improvements in optimization times and time-
to-solution are valued highly.

Acknowledgements. The computations were enabled by resources provided by the
Swedish National Infrastructure for Computing (SNIC) at High Performance Com-
puting Center North (HPC2N) and PDC Center for High Performance Computing,
partially funded by the Swedish Research Council through grant agreement no. 2018-
05973.

References

1. Breedveld, S., van den Berg, B., Heijmen, B.: An interior-point implementation
developed and tuned for radiation therapy treatment planning. Computational Opti-
mization and Applications 68(2), 209–242 (2017). https://doi.org/10.1007/s10589-
017-9919-4

2. Breedveld, S., Heijmen, B.: Data for trots-the radiotherapy optimisation test set.
Data in brief 12, 143–149 (2017). https://doi.org/10.1016/j.dib.2017.03.037

3. Dennis, J.E., Jr., Moré, J.J.: Quasi-newton methods, motivation and theory. SIAM
review 19(1), 46–89 (1977). https://doi.org/10.1137/1019005

4. Drzymala, R., Mohan, R., Brewster, L., Chu, J., Goitein, M., Harms, W., Urie, M.:
Dose-volume histograms. International Journal of Radiation Oncology* Biology*
Physics 21(1), 71–78 (1991). https://doi.org/10.1016/0360-3016(91)90168-4

5. Knüpfer, A., Rössel, C., Biersdorff, S., Diethelm, K., Eschweiler, D., Geimer, M.,
Gerndt, M., Lorenz, D., Malony, A., Nagel, W.E., et al.: Score-p: A joint performance
measurement run-time infrastructure for periscope, scalasca, tau, and vampir. In:
Tools for High Performance Computing 2011, pp. 79–91. Springer (2012). https://
doi.org/10.1007/978-3-642-31476-6 7

6. Liu, F., Jansson, N., Podobas, A., Fredriksson, A., Markidis, S.: Accelerating radia-
tion therapy dose calculation with nvidia gpus. In: 2021 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW). pp. 449–458. IEEE
(2021). https://doi.org/10.1109/IPDPSW52791.2021.00076

7. Otto, K.: Volumetric modulated arc therapy: Imrt in a single gantry arc. Medical
physics 35(1), 310–317 (2008). https://doi.org/10.1118/1.2818738

8. Schreiber, E.L., Korf, R.E., Moffitt, M.D.: Optimal multi-way number partitioning.
Journal of the ACM (JACM) 65(4), 1–61 (2018). https://doi.org/10.1145/3184400

9. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Mathematical program-
ming 106(1), 25–57 (2006). https://doi.org/10.1007/s10107-004-0559-y

https://doi.org/10.1007/s10589-017-9919-4
https://doi.org/10.1007/s10589-017-9919-4
https://doi.org/10.1016/j.dib.2017.03.037
https://doi.org/10.1137/1019005
https://doi.org/10.1016/0360-3016(91)90168-4
https://doi.org/10.1007/978-3-642-31476-6_7
https://doi.org/10.1007/978-3-642-31476-6_7
https://doi.org/10.1109/IPDPSW52791.2021.00076
https://doi.org/10.1118/1.2818738
https://doi.org/10.1145/3184400
https://doi.org/10.1007/s10107-004-0559-y

Soft Computing with Applications

GPU4SNN: GPU-Based Acceleration
for Spiking Neural Network Simulations

Nitin Satpute(B), Anna Hambitzer, Saeed Aljaberi, and Najwa Aaraj

Cryptography Research Centre, Technology Innovation Institute, 9639, Masdar City,
Abu Dhabi, UAE

{nitin.satpute,anna.hambitzer,saeed.aljaberi,najwa.aaraj}@tii.ae
https://www.tii.ae/

Abstract. Spiking Neural Networks (SNNs) are the most common and
widely used artificial neural network models in bio-inspired comput-
ing. However, SNN simulation requires high computational resources.
Therefore, multiple state-of-the-art (SOTA) algorithms explore parallel
hardware based implementations for SNN simulation, such as the use of
Graphics Processing Units (GPUs). However, we recognize inefficiencies
in the utilization of hardware resources in the current SOTA implemen-
tations for SNN simulation, namely, the Neuron (N)-, Synapse (S)-, and
Action Potential (AP)-algorithm. This work proposes and implements
two novel algorithms on an NVIDIA Ampere A100 GPU: The Active
Block (AB)- and Single Kernel Launch (SKL)-algorithm. The proposed
algorithms consider the available computational resources on both, the
Central Processing Unit (CPU) and GPU, leading to a balanced work-
load for SNN simulation. Our SKL-algorithm is able to remove the CPU
bottleneck completely. The average speedups obtained by the best of the
proposed algorithms are factors of 0.83×, 1.36× and 1.55× in compar-
ison to the SOTA algorithms for firing modes 0, 1 and 2 respectively.
The maximum speedups obtained are factors of 1.9×, 2.1× and 2.1× for
modes 0, 1 and 2 respectively.

Keywords: SNNs · GPUs · Dynamic Parallelism · Grid-stride Loop ·
Parallelization Algorithms

1 Introduction

The brain has inspired many researchers due to its energy efficiency, accuracy and
robustness. The field of neuromorphic computing aims to mimic the underlying
neurological processes. Spiking Neural Networks (SNNs) are the most widely
used neural network model in the neuromorphic research community [23].

Researchers from deep learning community are exploring bio-inspired Artifi-
cial Neural Networks (ANNs) [10]. ANNs are known for their ability to recognize
patterns in images (e.g. [20]) or time-series data (e.g. [26]), and solve complex
problems like navigating autonomous vehicles or –in combination with reinforce-
ment learning– mastering the game of Go [29]. SNNs can be seen as the new, 3rd
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 399–413, 2023.
https://doi.org/10.1007/978-3-031-30442-2_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_30&domain=pdf
https://doi.org/10.1007/978-3-031-30442-2_30

400 N. Satpute et al.

generation of ANNs [14] and can, in principle, be used for the same applications.
One motivation to develop the “traditional” ANNs to a new generation is the
surprising fact that ANNs are “easy to fool” [17], e.g. an adversarial image can
be engineered in a way that, for example, a human can still easily recognize a
stop-sign, however, the ANN will now identify the same sign as a speed-limit.
SNNs may hold the promise of greater inherent robustness to such manipula-
tions [9]. An additional motivation for the investigation of SNNs as per Roy et
al. [28] is that the human brain accomplishes extremely complex tasks with a
tiny energy budget when compared to traditional ANNs. Currently under inves-
tigation are memristor-based hardware [9], Intel Loihi [7], SpiNNaker [13], and
IBM TrueNorth [8].

However, SNN computations are challenging in contrast to ANN compu-
tations, since they involve the timing information of spikes and internal neu-
ron dynamics [23]. On the other hand, SNN training is an ongoing field of
study [25,32]. ANNs have already benefited massively from the utilization of
Graphics Processing Units (GPUs) by using the Compute Unified Device Archi-
tecture (CUDA) programming framework. The most common modelling tools,
PyTorch [27] and TensorFlow [1] readily provide a high-level CUDA interface
for Deep Neural Networks (DNNs).

Another research field with interest in the efficient simulation of biologi-
cally plausible neural networks is computational neuroscience. The size and
complexity of biological networks by far exceeds the one of current artificial
neural networks [4]. It is recognized that the analysis of biological and ANN
have developed largely independent in the past [32], though facing a set of sim-
ilar challenges [4] and future synergies are expected [35]. To handle the addi-
tional requirements of SNNs simulation in the neuromorphic research commu-
nity, several hardware and software frameworks have been developed, such as
NEURON [6], NEST [11], NeMo [12], NCS6 [18], CARLsim [5], GeNN [33],
Spike [2], BRIAN2 [30], PyNN [3] and NeuronGPU [15]. The frameworks differ
in the level of detail with which they model neural functions. In terms of utilizing
parallel hardware, BRIAN2 [30] supports multithreaded parallel computations,
while NEURON [6] and NEST [11] support distributed simulations on computer
clusters with NVIDIA GPUs using CUDA and Message Passing Interface (MPI).

At the core of simulators lie detailed algorithms which differ in their paral-
lelization approach on NVIDIA GPUs. In such approaches, the number of paral-
lel threads depends on either the number of neurons (Neuron (N)-algorithm), or
synapses (Synapse (S)-algorithm) or action potentials (Action Potential (AP)-
algorithm) [23]. The N-, S- and AP-algorithms have their own limitations
when implemented on NVIDIA GPUs. The N-algorithm is compute-intensive,
since the time-complexity of the N-algorithm is proportional to the number of
synapses. The S-algorithm is resource-intensive with high GPU resource require-
ments, since the space-complexity is proportional to the number of neurons and
synapses. Both N- and S- algorithms require Central Processing Unit (CPU)
intervention which may result in the so-called CPU bottleneck. The AP-algorithm
aims to overcome limitations of the N- and S-algorithms by using the Dynamic

GPU4SNN: GPU-Based Acceleration 401

Parallelism (DP) [23]. However, the AP-algorithm is resource-intensive for a
large number of spikes. There is only a limited amount of studies of the scaling
of SNNs simulation time with the number of spikes [23].

All the above-mentioned challenges motivate an efficient use of CPU-GPU
resources for improving the performance of SNN simulation. The objective of this
paper is to optimize parallelization approaches for SNN simulation. We propose
two novel algorithms for NVIDIA GPUs using CUDA. The overall contributions
of our work are as follows:

– We recognize that the scheduling and allocation of tasks on the GPU in
existing SNN simulation algorithms limit the performance.

– We propose two new parallelization algorithms [Single Kernel Launch (SKL)
and Active Block (AB)] and evaluate them against the state-of-the-art
(SOTA) approaches. For the evaluation, we use the same network (a pulse-
coupled network of Izhikevich neurons) as in the SOTA work [23] across a
wide range of modes, neuron and synapses values.

• SKL-algorithm: The CPU bottleneck is completely avoided. Iterative ker-
nel calling is shifted to the GPU, resulting in a single kernel call from the
CPU.

• AB-algorithm: An efficient GPU utilization based on available process-
ing blocks for computations and communications has led to a significant
speedup.

– The average speedups obtained by the best of the proposed algorithms are
factors of 0.83×, 1.36× and 1.55× in comparison to the SOTA algorithms
with maximum speedups of 1.9×, 2.1× and 2.1× for firing modes 0, 1 and 2
respectively.

The rest of this paper is organized as follows. Section 2 provides background
information on SNN simulation, the used neuronal model, and the grid-stride
loop. Section 3 introduces the SOTA and the proposed algorithms for the SNN
simulation on heterogeneous CPU-GPU platforms. Sections 4 and 5 explain the
evaluation methodology and present the detailed experimental results and dis-
cussions. Finally, we conclude the paper in Sect. 6.

2 Background

In this section, we first discuss the general flow in an SNN simulation (Sect. 2.1).
In particular, we use the popular Izhikevich neuron model, introduced in
Sect. 2.2. The network dynamics and modes are discussed in Sect. 2.3. We con-
clude the section by giving the necessary background knowledge on the grid-
stride loop in Sect. 2.4.

2.1 General Flow of SNN Simulation

SNN simulation involves the propagation of spikes through a network of neurons
and synapses. An SNN simulation starts with input signals in the time domain

402 N. Satpute et al.

(called spikes) applied to the neurons of the input layer. The state of each neuron
is defined by its membrane potential value. The spike at the input layer causes
an input current, which in turn results in a change of the neuron membrane
potential. If the neuron membrane potential crosses a certain threshold, the
neuron “fires” and the spike is propagated to the neurons of the subsequent
layer in the next time stamp through synapses. Consequently, the membrane
potential values of the neurons in the subsequent layer are updated and the spike
is propagated again and so on. This process of spike propagation is recursive or
iterative depending upon the implementation. In the recursive spike propagation
model, only activated neurons take part in the computation, while in the iterative
spike propagation model, the state of all neurons at all time steps is considered.

The implementation of the SNN simulation on the CUDA level involves the
invocation of two main kernels. The first kernel is an update kernel, given by
Pseudo-code 1, for updating the state variables of an individual neuron and the
spike list if the potential crosses the threshold value.

Algorithm 1. Update Kernel
1: start a thread for each neuron i:
2: update state variables vi(tn+1), ui(tn+1) using eqs. (1) to (3)
3: if vi(tn+1) > vθ then

add i to the spike list:
4: synchronize all threads:

The second kernel is propagating the spikes to postsynaptic neurons as given
by Pseudo-code 2.

Algorithm 2. Propagate Spike Kernel
1: start a thread for each synapse from i to j:
2: if presynaptic neuron i spikes then

update Ij(tn+1) by eq. (4) using an atomic operation:
3: synchronize threads to proceed to the next time step:

In each of the approaches presented in Sect. 3, these two kernels are executed
in each iteration of the SNN simulation. Typically, the CPU invokes a parent
kernel on the GPU and both kernels, corresponding to Pseudo-codes 1 and 2,
are executed on the GPU. The resulting data is transferred back to the CPU
and a new iteration starts.

2.2 Izhikevich Neuron Model

There are a number of neuron models that are currently being used in SNN
simulations. These models range in complexity, biological plausibility, and com-
putational efficiency. In this work we simulate a pulse-coupled Izhikevich neural

GPU4SNN: GPU-Based Acceleration 403

network as it has been used to benchmark the SOTA AP algorithm by Kasap
and Opstal [23], as well as the GeNN SNN simulator [34].

The Izhikevich neuron model [21] is a reduced-order model of the Hodgkin-
Huxley model [19], which is obtained by means of bifurcation theory. The Izhike-
vich model sacrifices the biological plausibility of the Hodgkin-Huxley model, but
retains its functionality. In this way the Izhikevich model is less complex and
more efficient to simulate in comparison to Hodgkin-Huxley model [22]1. Fur-
thermore, it possesses the capacity to describe more complex neuronal behaviors
(spiking patterns), which make it more attractive than Leaky-integrate-and-fire
neuron models [21].

The Izhikevich model is a 2-dimensional system consisting of the states u
and v, which are the membrane potential and its recovery variable, respectively.
Their instantaneous rate of change obey the following set of ordinary differential
equations:

v′ = 0.04v2 + 5v + 140 − u + I (1)
u′ = a(bv − u) (2)

if v ≥ 30mV, then

{
v ← c

u ← u + d
(3)

where the prime ′ represents the derivative with respect to time, a, b, c and d
are dimensionless parameters that are chosen to fine-tune the desired neuronal
behavior (spiking, bursting, etc.), and I is the current. A spike is propagated if
the neuron membrane potential crosses the threshold value of 30 mV given by
Eq. (3)- if it accumulates the necessary amount of inputs. The value of v resets
to resting value c and the value of u increases by recovery reset d when the
neuron fires the spike. In our system the injected current I is modeled as

Ij(tn+1) = gexc,inh · qj(tn) + ws

S∑
i

Sijδi(tn) (4)

where Sij is the connectivity matrix element from presynaptic neuron i to neuron
j, and ws is a fixed synaptic scaling factor that depends on the total number of
synapses in the network. The δi variable is equal to 1 if neuron i spikes at time
tn, i.e. δi(tn) = 1 and δi(tn) = o otherwise.

Neurons are classified to be either excitatory or inhibitory, and their ratio
is conventionally chosen as 4:1 in the network, inspired by the mammalian cor-
tex [21,23]. If a neuron is excitatory or inhibitory is defined by its connection
strength: The connection strengths Sij to an excitatory (or inhibitory) neuron
are chosen randomly from a uniform distribution on [0, 0.5] ([−1, 0]) [23]. The
input current Ij for neuron j from Eq. (4) consists of the sum of the stochastic
input current qj scaled by an excitatory or inhibitory conductance gexc,inh and
the synaptic currents received from its active presynaptic neurons [23].
1 However, there have been a number of studies that rigorously analyze the perfor-

mance aspects of the different models that suggest otherwise. The interested reader
is referred to [31] and references therein.

404 N. Satpute et al.

2.3 Network Dynamics and Modes

The network dynamics are determined by the values of the input conductance
values gexc,inh in Eq. (4), resulting in different firing regimes or modes of the
network as presented in Table 1. The definition is identical to the one used by
Kasap and van Opstal in [23].

Table 1. Definition of the quiet, balanced and irregular firing modes based on the
chosen excitatory or inhibitory conductance values gexc,inh.

mode index mode name gexc ginh

0 quiet 2.5 1.0

1 balanced 5.0 2.0

2 irregular 7.5 3.0

The processing of the propagation of each spike through the network requires
a certain amount of hardware resources. The balanced and irregular networks
generate a large number of spikes, which makes their simulation computationally
challenging compared to mode 0, i.e. quiet networks.

2.4 Grid-Stride Loop

GPUs, in general, support dynamic (or random) scheduling of the tasks based
on the available hardware resources. This dynamic scheduling mode will assign
a loop iteration to an available thread [16].

It allows a more balanced execution time across threads, but incurs a higher
processing overhead as it requires the thread (or a block of threads) to wait after
each task(s) to receive the next iteration(s) to execute. The default scheduling
policy on the GPU, is generalized for the varying execution times for different
workloads and does not favor tasks that have similar execution time [16].

An alternative scheduling, the grid-stride loop is illustrated in Fig. 1. The
grid-stride loop [24] avoids inefficiencies in terms of idle time on the hardware
by preallocating the loop iterations to each thread in the following way: The grid-
stride loop uses a static schedule that assigns loop iterations to threads for execu-
tion [24]. In a 4-thread application with 8000 loops, static scheduling will assign
loops 0 to 1999 to thread ID 0, loops 2000 to 3999 to thread ID 1, loops 4000
to 5999 to thread ID 2 and lastly loops 6000 to 7999 to thread ID 3 [16]. This
scheduling policy favors tasks that have similar execution time which is suitable
for the special case of spike propagation. Further, GPU resources are freed as in
the grid-stride loop the block processing is CPU-orchestrated in the sense of a
static pre-allocation.

Depending on the parallelized task static pre-allocation in the grid-stride
loop demonstrates advantages over the random block processing, for example a
speedup factor of 1.4x in [16].

GPU4SNN: GPU-Based Acceleration 405

Fig. 1. Illustrated are two processing methods for computational blocks of threads. In
our example, the GPU can process four blocks in parallel at a time. In the random block
processing (left hand side) the GPU-resource manager handles the workload allocation.
In contrast, in the grid-stride loop (right hand side) the CPU organizes the workload,
freeing resources on the GPU.

3 SNN Simulation Algorithms

In this section, we discuss the SOTA (N-, S- and AP- [23]) algorithms and
propose the AB- and SKL-algorithm. The implementation of the AB- and SKL-
algorithm and comparison to the SOTA (AP, N, S) are made available as open
access in the following GitHub repository: GPU4SNN.

The number of neurons N and synapses S in the SNN determine the required
processing blocks on the GPU. However, the algorithms differ in their scheduling
and allocation tactics of the processing blocks, as well as their CPU-GPU com-
munication pattern. Figure 2 shows a simplified overview and each algorithm is
discussed in the following.

N-algorithm. In the N-algorithm, the spike kernel is implemented by invoking
N threads in parallel, as detailed in [23]. The heterogeneous implementation of
the N-algorithm using CPU-GPU platforms is shown in Fig. 2. The algorithm
implementation requires repeated GPU kernel calling from the CPU. Each itera-
tion involves two kernel calls (Update Kernel and Propagate Spike Kernel) from
the host CPU. The N-algorithm starts with N parallel threads simultaneously.
Each thread operates S times repeatedly. Hence, the computational overhead for
each thread is a factor of S and therefore increases with the number of synapses.
The potential problem with the N-algorithm is the underutilization of the GPU
resources due to launching of only N threads.

S-algorithm. In the N-algorithm, N threads are invoked in parallel and each
of them iterates S times. In the S-algorithm [23], however, N × S threads are
invoked in parallel and each of them iterates one time. The N ×S threads might
create a hardware resource constraint in terms of space on the GPU. Therefore, it
is said to have an increased space-complexity. The N-algorithm, however, needs S
iterations, each of which due to its time-consumption might lead to an increased
time-complexity.

https://github.com/Crypto-TII/GPU4SNN

406 N. Satpute et al.

Fig. 2. Simplified communication patterns between CPU and GPU for SNN simula-
tion with the SOTA algorithms (left hand side) and proposed algorithms (right hand
side). At the core of the proposed algorithms lies a grid-stride loop, which is shown
schematically in Fig. 1.

In all algorithms the same kernels as described in Sect. 2.4 are used. The
kernel launch can be handled by the CPU or GPU. A counter tracks the
iteration of the SNN simulation. Block processing can take place in a random
or grid-stride loop fashion as described in Sect. 2.4. Particular CUDA methods
are DP (dynamic parallelism) used by the AP-algorithm and kernel fusion
used by the SKL-algorithm.

The N × S threads in the S-algorithm are combined together to form blocks
of threads. The GPU resource manager randomly allocates the blocks of threads
as illustrated in Fig. 1. Due to this random allocation of tasks on the GPU, the
hardware resources are likely to be used inefficiently.

AP-algorithm. The AP-algorithm exploits the DP using CUDA on an NVIDIA
GPU [23]. As shown in Fig. 2, in the AP-algorithm, the CPU invokes one parent
kernel on the GPU with N threads. Given a spike from each of the N neurons,
the respective thread will launch a child kernel with S threads of its own. Since
launching of the child kernel depends on the presence of a spike, caused by
the potential crossing of a threshold value, this algorithm is called the Action
Potential algorithm. The space complexity of the AP-algorithm increases with
the number of spikes.

AB-algorithm. The communication pattern of the AB-algorithm is similar to
the N- or S-algorithm, as shown in Fig. 2. The main difference in the commu-
nication pattern of AB-algorithm between CPU and GPU in comparison to the
N- and S-algorithm is as follows: In the AB-algorithm, the CPU is used to place
the optimized workload on the GPU instead of immediately placing the total
workload of the respective iteration, as was done in the case of the N- and S-
algorithm. Therefore, hardware resources are used in a more balanced way. The
time consuming random resource allocation and scheduling used in the N- and
S-algorithm are thereby avoided to gain possible performance improvements.

GPU4SNN: GPU-Based Acceleration 407

SKL-algorithm. There are circumstances under which the AB-algorithm might
not be the optimal choice, such as: i) If there is already a high workload present
on the CPU, or ii) if the data transfers between CPU and GPU are costly.
For these circumstances, we propose the SKL-algorithm. The SKL-algorithm is
shown schematically in Fig. 2. The CPU launches one kernel only on the GPU.
The initialization and computations of the grid-stride loop are handled by the
GPU. Since all kernels are directly invoked on the GPU, the SKL-algorithm
completely avoids a possible CPU bottleneck. However, it adds an extra step
consisting of inter-block GPU synchronization after each stage, i.e. update and
spike (kernel fusion).

In brief, each of the proposed algorithms first calculate the availability of the
hardware resources in terms of the computational thread blocks. Later on, the
proposed algorithms distribute the workload (i.e. loop iterations) of the simula-
tion equally to each thread block using grid-stride loop on the GPU. The CPU
is not only distributing the workload equally on the GPU by calling an appli-
cation program interface using CUDA but also accumulating the total number
of spikes obtained from the simulation for evaluating the accuracy of the simu-
lation. The GPU simultaneously update the neurons mapped onto the threads
and propagate the spikes while the accumulation of the spikes continues on the
CPU. We named the proposed approaches the way they are implemented on the
GPU (i.e. Active Block(AB) and Single Kernel Launch(SKL)) as opposed to the
way described in terms of SNN terminologies i.e. Neuron(N), Synapses(S), and
Active Potential(AP) [23].

4 Performance Evaluation

SNN simulators need to perform well on a wide range of possible neural networks:
from relatively small ones with only a few number of neurons and synapses
to extensively large ones. Additionally, the number of spikes may change in a
quiet (0), balanced (1), or irregular (2) mode (defined in Table 1), and for how
many time steps (or iterations) the simulation is performed. To ensure optimal
performance under the above mentioned conditions, the scaling of the underlying
parallelization algorithm needs to be favorable.

Here, the three SOTA parallelization algorithms (AP, N, S) are compared
to the proposed ones (AB, SKL) in terms of their total simulation time under
scaling of the number of neurons and synapses for 2000 iterations for modes 0, 1,
and 2. We vary the number of neurons N by more than two orders of magnitude:
in eight steps on a logarithmic scale from N = 103, . . . , 2.5·105. Similarly, we vary
the number of synapses S in seven steps from S = 27, . . . , 213 (128, . . . , 8192).

We evaluate all scenarios by the total time each algorithm requires for the
simulation. Figure 3 visualizes the winning algorithm with the shortest total
simulation time for each neuron-synapses number pair. Overall, we see significant
speedup factors of the proposed algorithms (AB, SKL) for larger spiking neural
networks with a larger number of neurons in modes 1 and 2. The AP algorithm
performs well in the low-spiking regime (mode 0).

408 N. Satpute et al.

Fig. 3. Shown is the winning algorithm with the smallest total simulation time t for
firing modes 0, 1, and 2 when the total number of neurons (N = 103 . . . 2.5 · 105) and
synapses per neuron (S = 27 . . . 213) are changed. The two names of the algorithms in
each rectangle indicate the top two approaches with smallest simulation times, i.e. the
winning algorithms, which can be SOTA and/or proposed algorithm(s). The number in
the rectangle represents the speedup obtained by the best of the proposed algorithms
over the best of the SOTA ones (i.e. tbest SOTA/tbest prop.). Therefore, factors > 1
show speedup obtained by the proposed algorithms over the SOTA ones. The average
speedups obtained by the best of the proposed algorithms are factors of 0.83×, 1.36×
and 1.55× in comparison to the SOTA algorithms with maximum speedups of 1.9×,
2.1× and 2.1× for firing modes 0, 1 and 2 respectively. Bold font highlights speedup
factors above or equal to 1.5, i.e. the speedup is larger than 50% compared to the best
current SOTA algorithm.

In our case the total number of neurons N is equal to the number of pre-
synaptic neurons, as well as the number of post-synaptic neurons. In region
“(NA)”, no simulation is possible because the number of synapses per pre-
synaptic neuron S is larger than the total number of post-synaptic neurons
N .

To discuss the scaling behavior of each algorithm in more detail, we perform
following analysis: Fig. 4 shows the absolute values for the elapsed times of each
algorithm for a horizontal cut (scaling with the number of neurons) and a vertical
cut (scaling with the number of synapses) through Fig. 3. We evaluate the total
number of spikes (“unsigned int”) obtained from each algorithm to evaluate
the accuracy of the simulation. We use single precision (32-bit) float variables
from CUDA for representing the state variables of neurons. We follow the same
state variables (introduced in Sect. 2.2) and precision as mentioned in SOTA
approaches [23]. We note the following scaling behaviors:

The N algorithm’s scaling behavior is compatible with our expectation:
The GPU is likely to have enough (N) threads. Therefore, the N algorithm
scales favorably with an increasing number of neurons (see left-hand side of
Fig. 4). However, as each thread has to operate S times in the N algorithm, its
time complexity increases with S (see right-hand side of Fig. 4).

GPU4SNN: GPU-Based Acceleration 409

Fig. 4. Shown are the total simulation times for each algorithm when the (left) number
of neurons is scaled (S = 210, N = 103 . . . 2.5 ·105), and (right) the number of synapses
is scaled (N ≈ 104, S = 27 . . . 213) in modes 0, 1, and 2 (from top to bottom) of Fig. 3.

The S algorithm shows a more favorable scaling with the number of
synapses than the N algorithm. The S algorithm aims to launch N × S threads
in parallel. Each thread only operates one time. The GPU may not provide
enough space (space complexity), and the random allocation will consume GPU
resources.

The AP algorithm launches N threads. Given a spike of a neuron, the
respective thread will launch a child kernel with S threads of its own. Therefore
the space complexity is expected to increase with the number of spikes. Therefore
the AP algorithm performs excellent under the conditions of low spike count.
However, in the higher firing modes with higher spike count (left-hand side of
Fig. 4) the launching of child kernels per spike can become costly and the total
simulation time diverges.

The AB and SKL algorithm show a favorable scaling of the total simula-
tion time under both, the number of neurons or synapses in Fig. 4. AB and SKL
algorithm’s scaling with the number of synapses is comparable to the one of the
S algorithm and therefore favorable. In contrast to the S algorithm, though, the
two proposed algorithms show a more favorable scaling under an increasing neu-
ron number. This favorable scaling explains why the proposed algorithms win

410 N. Satpute et al.

in the higher neuron number region of Fig. 3. The difference between AB/SKL
and the S algorithm is that for AB/SKL, the CPU orchestrates the workload
on the GPU. The algorithm still aims to perform computations corresponding
to N ×S threads. However, only maximum possible active threads are launched
and the total workload is distributed among active threads. Hence, the GPU is
free from the orchestration workload in AB/SKL.

5 Discussion

In this paper, we quantify the performance of the SOTA (S-, N-, AP-algorithm)
and two proposed algorithms (AB-, SKL-algorithm) for SNN simulation on
A100 NVIDIA GPU. The proposed algorithms show advantageous scaling under
variation of the number of neurons and synapses (N = 103, . . . , 2.5 · 105,
S = 27, . . . , 213).

Intuitively, we expect the SKL-algorithm to be the fastest among the other
algorithms since all intermediate communications between host and device are
completely avoided.

In comparison to the SKL-algorithm, the AB-algorithm does not need a
counter on the GPU. The CPU controls the time steps and hence launches
Update and Spike Propagation kernel iteratively on the GPU until the total
number of time steps are evaluated for the simulation. In this way, the AB-
algorithm distributes the tasks more efficiently on the hardware resources i.e.
CPU and GPU, resulting in a significant speedup and maintaining the accuracy
in terms of the total number of spikes.

Two possible drawbacks of the SKL-algorithm could be the following: First,
since all intermediate communication is avoided, the SKL-algorithm cannot store
the temporal variation of an SNN since the data is transferred in the last itera-
tion. Especially in the context of neuroscience the time dynamics and evolution of
membrane potentials and spikes in an SNN might be important. In such a case,
the limitation of intermediate communication in the SKL-algorithm limits its
applications. A possible future solution could be to modify the SKL-algorithm to
provide flexibility to send the data after a certain number of iterations instead of
the last iteration. Another solution is to always use the proposed AB-algorithm:
In the N -S configurations where the SKL-algorithm is the winner in terms of
total execution time, the runner-up in the vast majority of the cases is the pro-
posed AB-algorithm (see Fig. 3). A second disadvantage may be memory limita-
tion. The SKL-algorithm assumes the input data as well as intermediate results
will be available in the GPU memory for all the iterations. If the device memory
is not large enough then its better to utilize the AB-algorithm to pipeline com-
putations and communications. If the device memory does not entirely fit the
input data and/or neural network model, then the data and/or model will be
evaluated in phases. This multi-phase mode will involve the CPU intervention
to load the GPU memory when the evaluation of the previous phase of the data
and/or model is finished. Such a mode requires iterative kernel launching, which
can be implemented by the AB-algorithm but not by the SKL-algorithm.

GPU4SNN: GPU-Based Acceleration 411

6 Conclusion

In this paper, we propose and evaluate two novel GPU-based algorithms (SKL
and AB) for SNN simulation with a grid-stride loop as their core element. Iter-
ative invocations of a GPU kernel from the host CPU involve time consuming
tasks and the corresponding complexity increases with an increase in the num-
ber of iterations. The SKL-algorithm avoids iterative kernel calling from the host
CPU. In this way, the CPU bottleneck is completely avoided and iterative calling
of a kernel is shifted to the GPU resulting in a single kernel call from the CPU.

An efficient heterogeneous CPU-GPU utilization using the AB-algorithm has
also provided significant speedup while maintaining the SNN accuracy in terms
of the total number of spikes. The average speedups obtained by the best of the
proposed algorithms are factors of 0.83×, 1.36× and 1.55× in comparison to the
SOTA algorithms with maximum speedups of 1.9×, 2.1× and 2.1× for firing
modes 0, 1 and 2 respectively.

References

1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In:
12th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 2016), pp. 265–283 (2016)

2. Ahmad, N., Isbister, J.B., Smithe, T.S.C., Stringer, S.M.: Spike: a GPU optimised
spiking neural network simulator. bioRxiv, p. 461160 (2018)

3. Balaji, A., et al.: PyCARL: a PyNN interface for hardware-software co-simulation
of spiking neural network. arXiv preprint arXiv:2003.09696 (2020)

4. Barrett, D.G., Morcos, A.S., Macke, J.H.: Analyzing biological and artificial neural
networks: challenges with opportunities for synergy? Curr. Opin. Neurobiol. 55,
55–64 (2019). https://doi.org/10.1016/j.conb.2019.01.007. Machine Learning, Big
Data, and Neuroscience

5. Beyeler, M., Carlson, K.D., Chou, T.S., Dutt, N., Krichmar, J.L.: Carlsim 3: a
user-friendly and highly optimized library for the creation of neurobiologically
detailed spiking neural networks. In: 2015 International Joint Conference on Neural
Networks (IJCNN), pp. 1–8 (2015). https://doi.org/10.1109/IJCNN.2015.7280424

6. Carnevale, N.T., Hines, M.L.: The NEURON Book. Cambridge University Press,
Cambridge (2006). https://doi.org/10.1017/CBO9780511541612

7. Davies, M., et al.: Loihi: a neuromorphic manycore processor with on-chip learning.
IEEE Micro 38(1), 82–99 (2018). https://doi.org/10.1109/MM.2018.112130359

8. DeBole, M.V., et al.: Truenorth: accelerating from zero to 64 million neurons in 10
years. Computer 52(5), 20–29 (2019). https://doi.org/10.1109/MC.2019.2903009

9. Demin, V., et al.: Necessary conditions for STDP-based pattern recognition learn-
ing in a memristive spiking neural network. Neural Netw. 134, 64–75 (2021).
https://doi.org/10.1016/j.neunet.2020.11.005

10. Diamant, E.: Designing artificial cognitive architectures: brain inspired or biologi-
cally inspired? Procedia Comput. Sci. 145, 153–157 (2018)

11. Eppler, J., Helias, M., Muller, E., Diesmann, M., Gewaltig, M.O.: Pynest: a con-
venient interface to the nest simulator. Front. Neuroinform. 2, 12 (2008). https://
doi.org/10.3389/neuro.11.012.2008

http://arxiv.org/abs/2003.09696
https://doi.org/10.1016/j.conb.2019.01.007
https://doi.org/10.1109/IJCNN.2015.7280424
https://doi.org/10.1017/CBO9780511541612
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/MC.2019.2903009
https://doi.org/10.1016/j.neunet.2020.11.005
https://doi.org/10.3389/neuro.11.012.2008
https://doi.org/10.3389/neuro.11.012.2008

412 N. Satpute et al.

12. Fidjeland, A.K., Shanahan, M.P.: Accelerated simulation of spiking neural net-
works using GPUs. In: The 2010 International Joint Conference on Neural Net-
works (IJCNN), pp. 1–8. IEEE (2010)

13. Furber, S.B., Galluppi, F., Temple, S., Plana, L.A.: The spinnaker project. Proc.
IEEE 102(5), 652–665 (2014)

14. Ghosh-Dastidar, S., Adeli, H.: Third Generation Neural Networks: Spiking Neural
Networks. In: Yu, W., Sanchez, E.N. (eds.) Advances in Computational Intelli-
gence, vol. 61, pp. 167–178. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-03156-4 17

15. Golosio, B., Tiddia, G., De Luca, C., Pastorelli, E., Simula, F., Paolucci, P.S.:
Fast simulations of highly-connected spiking cortical models using GPUs. Front.
Comput. Neurosci. 15, 13 (2021). https://doi.org/10.3389/fncom.2021.627620

16. Gupta, K., Stuart, J.A., Owens, J.D.: A study of persistent threads style GPU pro-
gramming for GPGPU workloads. In: 2012 Innovative Parallel Computing (InPar),
pp. 1–14 (2012). https://doi.org/10.1109/InPar.2012.6339596

17. Heaven, D.: Why deep-learning AIs are so easy to fool. Nature 574(7777), 163–166
(2019). https://doi.org/10.1038/d41586-019-03013-5

18. Hoang, R.V., Tanna, D., Jayet Bray, L.C., Dascalu, S.M., Harris, F.C., Jr.: A
novel CPU/GPU simulation environment for large-scale biologically realistic neural
modeling. Front. Neuroinform. 7, 19 (2013)

19. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and
its application to conduction and excitation in nerve. J. Physiol. 117(4), 500 (1952)

20. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018).
https://doi.org/10.1109/CVPR.2018.00745

21. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Networks
14(6), 1569–1572 (2003). https://doi.org/10.1109/TNN.2003.820440

22. Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE Trans.
Neural Networks 15(5), 1063–1070 (2004)

23. Kasap, B., van Opstal, A.J.: Dynamic parallelism for synaptic updating in GPU-
accelerated spiking neural network simulations. Neurocomputing 302, 55–65 (2018)

24. Mark, H.: CUDA Pro Tip: Write Flexible Kernels with Grid-Stride Loops. online
(2013)

25. Neftci, E.O., Mostafa, H., Zenke, F.: Surrogate gradient learning in spiking neu-
ral networks: bringing the power of gradient-based optimization to spiking neural
networks. IEEE Signal Process. Mag. 36(6), 51–63 (2019)

26. Oreshkin, B.N., Carpov, D., Chapados, N., Bengio, Y.: N-beats: neural basis expan-
sion analysis for interpretable time series forecasting. In: International Conference
on Learning Representations (2020)

27. Paszke, A., et al.: Automatic differentiation in pytorch. Openreview (2017)
28. Roy, K., Jaiswal, A., Panda, P.: Towards spike-based machine intelligence with

neuromorphic computing. Nature 575(7784), 607–617 (2019)
29. Schrittwieser, J., et al.: Mastering Atari, Go, chess and shogi by planning with

a learned model. Nature 588(7839), 604–609 (2020). https://doi.org/10.1038/
s41586-020-03051-4

30. Stimberg, M., Brette, R., Goodman, D.F.: Brian 2, an intuitive and efficient neural
simulator. eLife 8, e47314 (2019). https://doi.org/10.7554/eLife.47314

31. Valadez-God́ınez, S., Sossa, H., Santiago-Montero, R.: On the accuracy and compu-
tational cost of spiking neuron implementation. Neural Netw. 122, 196–217 (2020)

https://doi.org/10.1007/978-3-642-03156-4_17
https://doi.org/10.1007/978-3-642-03156-4_17
https://doi.org/10.3389/fncom.2021.627620
https://doi.org/10.1109/InPar.2012.6339596
https://doi.org/10.1038/d41586-019-03013-5
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1109/TNN.2003.820440
https://developer.nvidia.com/blog/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.7554/eLife.47314

GPU4SNN: GPU-Based Acceleration 413

32. Woźniak, S., Pantazi, A., Bohnstingl, T., Eleftheriou, E.: Deep learning incorporat-
ing biologically inspired neural dynamics and in-memory computing. Nat. Mach.
Intell. 2(6), 325–336 (2020). https://doi.org/10.1038/s42256-020-0187-0

33. Yavuz, E., Turner, J., Nowotny, T.: GeNN: a code generation framework for accel-
erated brain simulations. Sci. Rep. 6(1), 1–14 (2016)

34. Yavuz, E., Turner, J., Nowotny, T.: GeNN: a code generation framework for accel-
erated brain simulations. Nat. Sci. Rep. 6(Jan), 1–14 (2016). https://doi.org/10.
1038/srep18854

35. Zenke, F., et al.: Visualizing a joint future of neuroscience and neuromorphic engi-
neering. Neuron 109(4), 571–575 (2021)

https://doi.org/10.1038/s42256-020-0187-0
https://doi.org/10.1038/srep18854
https://doi.org/10.1038/srep18854

Ant System Inspired Heuristic
Optimization of UAVs Deployment

for k-Coverage Problem

Krzysztof Trojanowski , Artur Mikitiuk , and Jakub Grzeszczak(B)

Cardinal Stefan Wyszyński University in Warsaw, Wóycickiego 1/3,
01-938 Warsaw, Poland

{k.trojanowski,a.mikitiuk,jakub.grzeszczak}@uksw.edu.pl

Abstract. When ad-hoc connectivity for a group of ground users has
to be delivered, one can use a network of Unmanned Aerial Vehicles
(UAV) equipped with Mobile Base Stations (MBS). In this research,
we minimize the number of UAVs by effectively deploying UAVs over
the zone where users are located. The proposed model divides zone into
sectors of different areas and shapes depending on users’ location and the
ranges of MBSs. Deployment of UAVs in sectors is optimized by a method
inspired by the Ant System approach and extended by a new problem-
specific heuristic. We propose a new set of benchmark problems, called
SCP2, for simulations. Simulation results show the algorithm’s efficiency
and reveal the most beneficial values of the algorithm’s parameters.

Keywords: Unmanned Aerial Vehicles · Ant Systems · k -Coverage
Problem

1 Introduction

A network of Unmanned Aerial Vehicles (UAV) equipped with Mobile Base
Stations (MBS) can provide communication services for ground users in the
case of disaster or festive areas management, military operations, or any other
scenarios where ad-hoc connectivity is needed. The performance of the MBSs
service depends on the locations of users and UAVs; thus, it can be a subject
of optimization. In this research, we focus on minimizing the number of UAVs
when establishing new connectivity for a group of users in a given zone. The
number is minimized by the effective deployment of UAVs over the zone.

In our research, the optimization problem is stationary; that is, ground users
represent, for example, routers placed in crucial locations which deliver WLAN
service to the surrounding receivers. Hence, ground users can be regarded as
immobile and previously known to the UAV swarm, so the swarm does not have
to adapt over time to the changing positions of users.

Numerous publications address different variants of the problem of deploying
UAVs for optimal wireless coverage. In [5], the authors present a method minimiz-
ing the number of MBs covering a set of immobile ground terminals with known
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 414–428, 2023.
https://doi.org/10.1007/978-3-031-30442-2_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_31&domain=pdf
http://orcid.org/0000-0001-9009-049X
http://orcid.org/0000-0001-5038-1196
http://orcid.org/0000-0001-8679-9076
https://doi.org/10.1007/978-3-031-30442-2_31

Heuristic Optimization of UAVs Deployment 415

locations on the horizontal plane. The method applies a spiral algorithm building
its solution by placing the MBSs sequentially until the total coverage is satisfied.
In [2], the authors use K-means clustering and a stable marriage approach to parti-
tion users into clusters and find 2-D coordinates ofUAVsfirst. Then, the third coor-
dinate, altitude, is optimized using search space-constrained exhaustive search and
particle swarm optimization (PSO). In [8], the authors also use 3-D coordinates
to represent UAVs’ locations. The proposed method finds optimal deployment of
UAVs iteratively invoking a clustering algorithm K-means and one of the popu-
lation heuristics: Particle Swarm Optimization, Genetic Algorithm, or Artificial
Bees Colony. In [6], the authors propose a problem-specific heuristic optimization
method working on a discrete representation of a UAV location, where nodes of
a square grid of L × L are considered for discrete locations. In [1], UAVs ensure
connectivity for the people uniformly and randomly distributed over the area in
previously unknown locations. The authors assume that the number of UAVs may
be insufficient to cover the entire area, and initially, some users may not be in range.
Hence, to achieve higher coverage, UAVs have to move over time. Such a network
of UAVs offers intermittent coverage to the users. Therefore, its primary aim is to
receive messages from users and route them to neighbor UAVs closer to the gate-
way or the gateway in range. The approach maximizes average people-to-drone
connected time and the percentage of people in the communication range of UAVs
for two cases: without and with mobility of UAVs. In [11], the authors maximize
users’ coverage probability using particle swarm optimization to find optimal loca-
tions of UAVs in 3-D space. A particle in a swarm represents coordinates for an
entire group of N UAVs, which is a real-valued vector of 3N dimensions. In [10],
the aim is to maximize the number of users covered by the net of UAVs without
losing network connectivity in urban disaster scenarios where the area consists of
streets, parks, and buildings. Users move randomly, and UAVs deploy over the area
using the tactical movement generation rules based on the Jaccard distance and
artificial intelligence algorithms. In [4], the authors notice that due to the limited
maximum distance of UAVs flight, the emergency network should consist of mobile
base stations and terrestrial, portable base stations, and solve the problem of opti-
mal deployment for the network consisting of base stations of two types.

We propose a model where the zone is divided into sectors of different areas
and shapes depending on users’ location and non-uniformly distributed inside
the given zone and the range of MBSs. We do not need to find precise coordinates
of UAV locations because any location within a sector has the same impact on
the connectivity coverage. One or multiple UAVs can occupy every single sec-
tor. In this model, the deployment of a minimal number of UAVs represents a
combinatorial problem. Due to its complexity, we apply a heuristic optimization
method inspired by the Ant System approach but extended by a new problem-
specific heuristic aimed at generating a single solution. The proposed zone model
defines a new structure of a pheromone matrix and new rules of the pheromone
deployment. For experimental verification, we created a set of benchmark prob-
lems and conducted experiments to show the algorithm’s efficiency and reveal
the most beneficial values of the algorithm’s parameters.

416 K. Trojanowski et al.

The paper consists of five sections. The wireless communication system, its
model, its hypergraph representation, and optimization criteria are described
in Sect. 2. Section 3 presents an Ant System-inspired approach to optimize the
deployment of UAVs. The experimental part of the research is described in
Sect. 4. Section 5 concludes the paper.

2 The Optimization Problem

We optimize the number of UAVs equipped with base stations and their locations
to provide connectivity for n immobile ground users in the given zone. We assume
that all UAVs and MBSs have the same functionality and parameters. Moreover,
a third-party entity provides connectivity to the UAVs, so their distances have
no meaning for the network functionality. There are also some other simplifica-
tions in our model of the problem. The model lacks radio resource management,
interference management, channel estimation, prediction, or energy efficiency.
We also assume that all UAVs fly at the same altitude, offering the best compro-
mise between flight safety and productivity. Due to the homogeneity of MBSs
transmitters, the round areas with satisfying connectivity offered by MBSs have
the same size. In formal terms, we consider a set of n immobile ground users
V = {v1, . . . , vn}, and a set of p MBSs M = {m1, . . . ,mp}. The connectivity
radius of each MBS is r. We want to ensure a k-coverage for each user in V ,
that is

∀v ∈ V ∃c ∈ [M]k such that ∀m ∈ c dist(v,m) ≤ r, (1)

where c indicates the set of k MBSs covering the ground user v, [M]k is the
set of all the subsets of M with exactly k elements, and dist(v,m) denotes the
distance between the ground user v and the MBS m. Our optimization goal is
to minimize the number of MBSs p.

For a continuous 2-D representation of the ground users’ and MBSs’ coor-
dinates, the problem can be formulated as the Geometric Disk Cover (GDC)
problem [9]. In GDC, we minimize the number of disks of a given radius cov-
ering a set of immobile ground users, which is an NP-hard problem. When we
use a discrete model, where the area is a grid of small rectangular cells, the
problem of the effective deployment of UAVs can be similar to generating an
overview image. Cells of the observation areas represent regions of ground users’
locations. For this model, the problem of minimizing the number of UAVs can
be formulated as ILP (integer linear programming) problem [7].

2.1 The Model of a Wireless Communication System

The communication system has to ensure a k-coverage for each user, which means
that each user requires at least k MBSs available in its connectivity range. Our
goal is to minimize the number of UAVs by optimizing their locations.

Heuristic Optimization of UAVs Deployment 417

Fig. 1. Example of an operating wireless network with four users: A, B, C and D
(circles) and 12 UAVs: 0, 1, 2, . . . , 11 (squares)—on the left, and lists of UAVs covering
users and users in the range of UAVs—on the right

Figure 1 depicts an example deployment of 12 UAVs over the four users. Gray
circles around users have a radius equal to the connectivity radius of MBSs car-
ried by UAVs. Thus, locating MBS wherever in the circle guarantees connectivity
to the user in the circle’s center.

The circles divide the zone into sectors. Each sector represents a different set
of users, which we can cover by MBS service. The shades of gray of the sectors
represent the number of covered users; the darker sector, the more users. In the
example, the UAVs are placed alone in each sector. For example, UAV no. 10
hovers in the sector where its MBS covers users A, B, and D. MBS of UAV no. 11
covers users B, C, and D. MBS of UAV no. 5—users A and B. And so on. The
sector of UAV no. 0 is white, which means there are no users in its range. The
precise coordinates of a UAV location have no meaning as long as it remains
entirely in the respective sector.

2.2 Hypergraph Representation of the System

The example presented in Fig. 1 can be modeled as a hypergraph H = (V,E)
where V is a set of nodes (ground users), and E is a set of non-empty subsets of V
(sectors of the zone) called hyperedges. There are four nodes and 11 hyperedges
in this example. Let us label the hyperedges according to the UAVs’ IDs and
nodes according to the users. For example, the hyperedge no. 10 connects nodes
A, B, and D. The hyperedge no. 11—nodes B, C, and D. The hyperedge no. 5—
nodes A and B. And so on.

2.3 Representation of Solution

A solution s represents a set of UAVs assigned to the zone sectors, where each
sector may contain zero, one, or more UAVs. In particular, the sector may have
no UAV assigned when UAVs from other sectors deliver connectivity. On the

418 K. Trojanowski et al.

other side, there is no limit to the number of UAVs in one sector. Formally,
s = {ei, ej , . . . , eq} where values ei, ej , . . . , eq identify zone sectors (hyperedges
in the hypergraph) where UAVs are located. The solution s is a so-called multiset.
That is, some of the values in s may appear more than once if there is more than
one UAV in the sector. When the sector identifier is absent in s, it means that
no UAV is needed in this sector.

Since multiple elements in s can have the same values, the operator ∪ applied
in, for example, the expression s ∪ {e} always adds a new element e to s even if
an element with such value already exists in s.

2.4 The Optimization Criteria

The optimization aims to minimize the number of UAVs over the zone while
ensuring all ground users’ connectivity parameters. Thus, the value of a solution
is proportional to the number of UAVs in the network. Moreover, we want to
avoid UAV overcrowding in sectors. Therefore, when we have two solutions con-
taining the same number of UAVs, we also consider the diversity of the UAVs’
distribution over sectors. The fewer UAVs occupying the same sectors, the bet-
ter. As such, the fitness function f is evaluated simply as Eq. 2, but a secondary
function (Eq. 3) can be used to pick between two similar in-length solutions.

f(s) = len(s) (2)

f(s) = len(s)/set(s) (3)

where len(·) returns the number of the hyperedge IDs in the solution, that is, the
number of UAVs in the network, and set(·)—the number of unique hyperedge
IDs in s. When the assignment of UAVs to hyperedges is unique, that is, each
UAV occupies a different sector, the penalty component len(s)/set(s) equals one.
Otherwise, it is greater than one and rises as the uniqueness falls.

The fulfillment of sufficient connectivity conditions depends on the number of
UAVs in the user vicinity. Every user needs access to at least k MBSs simultane-
ously. Otherwise, the solution is unfeasible. Therefore, we call this a k-coverage
problem. For the example given in Fig. 1, k can be equal at most four because
users A and C have four MBSs in their ranges, the lowest level of coverage
among all users. Hence, the proposed deployment of UAVs can also represent a
feasible solution for the k-coverage problem where k = 1, 2, 3, 4. One can notice
that for k = 4, the deployment is feasible but not optimal because there exist
deployments of fewer UAVs also delivering connectivity for k = 4.

3 The Optimization Method

For the aim of optimization, we apply an iterative heuristic approach inspired
by the Ant Systems. Ant Systems have two main distinguishing characteris-
tics which separate them from other heuristics, e.g., evolutionary or swarm
approaches. First is a pheromone matrix containing trails left by artificial ants

Heuristic Optimization of UAVs Deployment 419

when they create new solutions. The other is that ants are not representatives
of solutions improved over subsequent iterations. Construction of solutions with
respect to already deployed pheromone trails is the only job for ants. It is impor-
tant to stress that ants are not information transmitters between iterations; the
only information transferred is the pheromone information.

Typically, an ant constructs a solution by a sequence of probabilistic deci-
sions. Every decision extends a partial solution by adding a new component to
the solution until a complete solution is derived. The sequence of decisions can
be viewed as a path through a corresponding decision graph, so ants find paths
through the graph that correspond to reasonable solutions. Ants that have found
reasonable solutions can mark the edges of the corresponding path in the graph
with an artificial pheromone. This pheromone guides ants in the next iteration.
The paths can improve in subsequent iterations due to the pheromone indicating
beneficial decisions of ants.

In our problem model, a solution represents an assignment of UAVs to the
hyperedges of the hypergraph. Therefore, we update the pheromone trail in the
hyperedges contributing to the solution, and the update is inversely proportional
to the solution’s length. To ensure that the pheromone from older iterations
does not influence the following iterations for too long, some percentage of the
pheromone evaporates during an update step. Algorithm 1 presents the generic
scheme of the Ant System.

Algorithm 1
1: Initialize pheromone values
2: repeat
3: for all antk do
4: construct k-th solution � 1. ants find their paths

5: for all pheromone values do
6: decrease the value by a certain percentage � 2. evaporation

7: for all pheromone trails contributing to solutions do
8: increase the value � 3. intensification: ants pheromone is laid

9: until termination condition met

3.1 The Problem–Specific Step: Generation of a Solution

Each ant constructs one solution. The constructing method is a heuristic using
problem-specific knowledge about the hypergraph representation of the system.
The hypergraph H, elite set of hyperedges eelit, and the required coverage level
k are the input of the method.

The set eelit consists of hyperedges having a large number of nodes since
they are regarded as the most efficient for covering. For each v ∈ V , we do the
following two steps: For all hyperedges containing v, we calculate their cardinal-
ity, which is the number of vertices in the hyperedge. Then, all the hyperedges

420 K. Trojanowski et al.

having the highest cardinality become eelit members. The pseudocode of the
method generating eelit is presented in Algorithm 2.

Algorithm 2
1: function generateEliteSet(H)
2: � Input: hypergraph H � Output: elite set of hyperedges eelit

3: eelit ← ∅ � create an empty elite set of hyperedges eelit

4: for all v ∈ V do
5: mcv ← maxe|v∈e(card(e)) � find the max cardinality of e among e

containing v
6: eelit ← eelit ∪ {e|(v ∈ e) ∧ (card(e) = mcv)}
7: return eelit

The complexity of the for loop in this algorithm is O(dv), where dv is the
degree of vertex v, that is, the number of hyperedges v belongs to. The whole
algorithm has complexity O(n∗dmax), where dmax is the maximum vertex degree
in the hypergraph.

The method generating a solution s consists of five steps. The pseudocode
of this method is presented in Algorithm 3. Please note, that the solution s is a
multiset of hyperedge identifiers representing respective locations of UAVs (one
identifier represents location of one UAV), whereas eelit and einit are regular sets
of hyperedges.

#1 Stochastic selection of an initial set of hyperedges einit among the hyperedges
in eelit. The chances of being selected as a candidate to einit depend on the
pheromone trails. However, the candidate is omitted when its recruitment
does not extend the set of covered nodes. The selection stops as soon as
no nodes remain uncovered. The complexity of this step is O(|eelit| ∗ cemax)
where cemax is the maximal cardinality of a hyperedge in eelit.

#2 Sequential deployment of UAVs in einit. For each of these hyperedges, we
try to deploy new UAVs. We assign as many new UAVs as necessary to
guarantee the requested level k of coverage for all the nodes joined by this
hyperedge. We process hyperedges in the same order as they were put into
einit in Step #1. The UAV assignment is asynchronous. It means that the
coverage of nodes by UAVs already assigned is considered when adding the
next ones. For |einit| ∗ cimax nodes, where cimax is the maximal cardinality of
a hyperedge in einit, we have to verify whether these nodes have k-coverage
by the UAVs already declared in s. It takes O(k ∗ |einit|) operations. When
the coverage is insufficient, we add additional UAVs to s, which takes O(k)
operations. Thus, the complexity of this step is O(k ∗ |einit|2 ∗ cimax)).

#3 Dispersion of UAVs over the hyperedges in their neighborhood. All generated
UAVs are shifted to a random adjacent hyperedge. We consider a hyperedge
to be adjacent if it connects all but one of the nodes connected to a previous
one. If no such hyperedges exist, the UAV is removed from the solution. In

Heuristic Optimization of UAVs Deployment 421

Algorithm 3
1: function buildANewSolution(H, eelit, k)
2: � Input: hypergraph H, elite set of hyperedges eelit, k � Output: s

3: V ′ ← V � create a set of uncovered nodes V ′

4: einit ← ∅ � create an empty initial set of hyperedges einit

5: s ← ∅ � create an empty solution s

6: repeat � Step #1: ————— select hyperedges to the initial set
7: randomize e ∈ eelit � select randomly w.r.t. pheromone trail levels
8: if {V ′ ∩ e} �= ∅ then � if any node in e remains uncovered
9: eelit ← eelit \ {e} � e is removed from eelit

10: einit ← einit ∪ {e} � e is added to einit

11: V ′ = V ′ \ e � all the nodes connected by e are removed from V ′

12: until V ′ = ∅

13: for all e ∈ einit do � Step #2: —– build a preliminary version of the solution
14: for all v ∈ e do � for all the nodes connected by e
15: if v has l-coverage by the UAVs already declared in s, where l < k then
16: add (k − l) UAVs to the hyperedge e in s

17: for all e ∈ s do� Step #3: —— disperse UAVs to their neighbour hyperedges
18: if N (e) �= ∅ then
19: while there exist identifier e in s do
20: randomize e′ ∈ N (e) � select randomly one of the neighbours
21: replace e by e′ in s � move one UAV from the hyperedge e to e′

22: remove all identifiers e from s � remove UAVs from the hyperedge e

23: for all e ∈ einit do � Step #4: ————— repeat #2 to fix the solution
24: for all v ∈ e do � for all nodes joined by the hyperedge e
25: if v has l-coverage by the UAVs already declared in s, where l < k then
26: add (k − l) UAVs to the hyperedge e in s

27: � Step #5: — remove redundant UAVs from the solution
28: divide hyperedges present in s into groups w.r.t. the number of joined nodes
29: label groups: {g1(s), g2(s), . . . , gm(s)} according to the number of joined nodes
30: for i ← 1 to m do � start with groups of hyperedges joining least nodes
31: for all e ∈ gi(s) do � take the hyperedges in gi(s) in a random order
32: while all v ∈ e have coverage higher than k do
33: remove identifier e from s � remove one redundant UAV

34: return s � Finish: ———————— return the obtained solution s

this step, the inner loop (while) requires O(k ∗ |einit|) iterations and every
iteration has cost O(1). The outer loop (for) also requires O(k ∗ |einit|)
iterations. Therefore, the complexity of this step is O(k2 ∗ |einit|2).

422 K. Trojanowski et al.

#4 Fixing the deployment of UAVs. Modifications introduced in Step #3 can
make the solution unfeasible. Thus, we repeat Step #2 in this step to make
the solution feasible again. The complexity of this step is the same as in
Step #2, i.e. O(k ∗ |einit|2 ∗ cimax)).

#5 Removal of redundant UAVs. After Step #4, some UAVs can be redundant
(the requested coverage level for all the nodes remains satisfied even without
these UAVs). Therefore, we analyze groups of hyperedges regarding their
cardinality, starting from one. Within each group, and in random order, we
verify if the lack of any UAVs makes the solution unfeasible. If it does not,
the redundant UAVs are removed from the hyperedge. Dividing hyperedges
into groups has the complexity O(k∗|einit|). In the nested for loop, the while
loop is invoked k ∗ |einit| times. A single while loop invocation is O(cemax).
Thus, the complexity of this step is O(k ∗ |einit| ∗ cemax).

The whole Algorithm 3 has the complexity O(|eelit|∗cemax)+O(k∗|einit|2∗cimax)+
O(k2 ∗ |einit|2) + O(k ∗ |einit| ∗ cemax). Since |einit| ≤ |eelit| and cimax ≤ cemax, we
can assess this complexity as O(k ∗ |eelit|2 ∗ (k + cemax)).

3.2 The Main Loop

The algorithm starts with the generation of the hypergraph H = (V,E) from the
input data with the area size and locations of the ground users. Then, the func-
tion generateEliteSet generates the set eelit. Next, we create a pheromone
vector P of size |eelit|. For each of the hyperedges in eelit, the initial pheromone
level in P equals the number of ants used by the algorithm.

Next, the main loop starts. The main loop of the algorithm corresponds to the
one presented in Algorithm 1. In the beginning for each ant, we generate a new
solution of UAVs deployment using the function buildANewSolution with
arguments: H, eelit, and the requested level of coverage k. We then evaluate each
new solution as the inverse of its length. Next, evaporation arises. Pheromone
values for all hyperedges in eelit are reduced by a fixed proportion ρ according to
the formula: Pe = (1 − ρ)Pe. Finally, we update the pheromone trails. For each
of the solutions, we want to reward those hyperedges whose membership in einit

gave a feasible solution. However, the reward value δ is inverse proportional to the
solution length and equal to the solution score. Therefore, the new pheromone
level for a hyperedge e is calculated according to the formula Pe = Pe + δe. The
coefficient δe is the sum of scores of those solutions, where e was a member of
einit and has assigned at least one UAV.

The main loop ends when the stopping condition is met, and then the best-
found solution is returned.

Heuristic Optimization of UAVs Deployment 423

4 Experiments

4.1 Benchmark

We evaluated the algorithm experimentally on the benchmark set of test cases
called SCP2 [3]. The set consists of six classes of problems that differ in the
number of ground users and their locations. Nodes of a rectangular grid over
the square zone of size one unit define possible users’ locations. There are two
densities of grids with grid cell dimensions sgrid equal 0.04 by 0.04 or 0.02 by 0.02
units (676 or 2601 nodes in the zone, respectively). In every case, the number of
users is smaller than the number of nodes: 100, 200, or 500. The users’ locations
are selected randomly among the nodes. However, we additionally shift the final
user location from the node coordinates toward a random direction by a random
distance smaller than 1.5 of sgrid. Two grids with different cell dimensions and
three sizes of the ground users’ set eventually give six classes of users’ distribu-
tion. For every class, we generated 50 instances based on different locations of
users on the grid and directions and distances of shifts.

The zone is divided into sectors as presented in the example Fig. 1. The MBS
signal power defines the radius of circles around users, which we arbitrarily set to
0.05 units. Locations of sectors define the structure of hypergraphs obtained for
each problem instance according to the rules described in Sect. 2.2. On average,
hypergraphs representing problem instances in the two classes with 100 users
have around 18.6 (with a range of 9 to 25) connected components for sgrid = 0.02
and 20 (13 to 27) for sgrid = 0.04. For the problem instances from the two
classes with 200 users, we got the average of about 3.9 (from 1 to 10) connected
components for sgrid = 0.02 and 3 (from 1 to 6) for sgrid = 0.04. When the
number of users equals 500, the hypergraph always consists of one connected
component. The decreasing number of connected components is not surprising
because more intersections between users’ surrounding areas occur when the
number of users grows.

The last parameter of the problem is the minimum coverage level k, equal
to 1, 2, 5, or 10. Eventually, we get a benchmark consisting of 24 classes of
problems: six classes of users’ distribution over the zone by four levels of the
minimum coverage k.

4.2 Plan of Experiments

The algorithm has three parameters: the number of ants nants, evaporation coef-
ficient ρ, and stopping condition parameter, that is, the maximum number of fit-
ness function calls maxnffc. In the preliminary experiments, we observed that sat-
isfying results were obtained for ρ = 0.1 and nants = 10. We set maxnffc = 2000,
so an experiment takes 200 iterations. In the presented experiments, the coeffi-
cient ρ is also the subject of experimental tuning and varies from 0.1 to 0.5.

424 K. Trojanowski et al.

The experiments are divided into two groups. In the first group, we performed
experiments with ρ = 0.1 for all 24 classes (six classes of SCP2 by four values
of k). In the second group, we selected the two classes of problems that proved
to be the most demanding in the first group of experiments: sgrid ∈ {0.02, 0.04}
for 500 ground users and k = 10. For these classes, we observed optimization
progress for five different values of ρ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.

We repeated experiments 32 times for every problem instance, excluded the
best and worst results and calculated the mean number of UAVs for the remain-
ing ones.

4.3 The Results

Figure 2 shows the results of our experiments with the benchmark described in
Sect. 4.1. As the diversity level of UAVs’ deployment serves only as a tie-breaker
between two similar in-length solutions, our analysis concerns only the average
number of UAVs for each class of the problem.

For smaller numbers of users in the area, which resulted in hypergraphs with
plenty of connected components of smaller size, the proposed algorithm found
itself near the optimal solution almost instantly. Even for the highest considered
coverage of 10, it could not further improve the results after about a fifth of the
given computational time. When the user population grows, the complexity of
the corresponding hypergraph increases. Then our method needed much more
time to stop improving.

Interestingly, the algorithm reached the suboptimal solutions after similar
numbers of iterations regardless of the desired coverage level k. For classes of
100 users (Fig. 2a, 2d, 2g, 2j) this method reached the suboptimal solution within
fewer than 10 iterations, barely improving for up until iteration 30. Classes with
200 users (Fig. 2b, 2e, 2h, 2k) showed steady improvement for about 70 iterations
(700 evaluations), but further improvement stopped after about 100 iterations.

The most challenging classes of 500 users (Fig. 2c, 2f, 2i, 2l) almost doubled
the time required to find suboptimal solutions, reaching as far as 150 iterations
of varied improvement. The pace of this improvement also shows the ability of
the algorithm’s transition between different local optima, which initially slowed
down the search for the best solution.

The results of the second group of experiments with different evaporation
rates are presented in Fig. 3. One can see that a higher evaporation rate could
significantly hasten the search process at the cost of a noticeable but relatively
small tradeoff in the quality of the found solution.

Heuristic Optimization of UAVs Deployment 425

Fig. 2. Mean numbers of UAVs for the best-found solutions For two densities of grids:
with grid cell dimensions sgrid equal 0.04 by 0.04 and 0.02 by 0.02 units. For k = 1:
(a), (b), and (c), k = 2: (d), (e), and (f), k = 5: (g), (h), and (i), and k = 10: (j), (k),
and (l); X-axis represents the iteration number; maxnffc = 2000

426 K. Trojanowski et al.

Fig. 3. Mean numbers of UAVs for the best-found solutions observed in selected iter-
ations; maxnffc = 2000; evaporation coefficients: [0.1, 0.2, 0.3, 0.4, 0.5], k = 10

5 Conclusions

In this paper, we proposed an Ant System-inspired algorithm for optimizing
UAVs deployment for the k-Coverage Problem. The novelty of the presented
approach lies in introducing a new model of the space where the network formed
by UAVs serves the users and a problem-specific heuristic exploiting the model’s
features. Combining the Ant System method and the heuristic is also an inno-
vative element.

We define a problem instance as a hypergraph of connections between net-
work users, where each user corresponds to a single hypergraph’s node. Hyper-
edges describe sectors of the problem area where a single UAV can connect
simultaneously to a given set of users. The shape of each sector is defined by
user positions and the range of a carried MBS.

We use the model-specific characteristics of the problem to construct an input
space for the Ant System step of the algorithm and build new solutions using a
proposed heuristic.

Heuristic Optimization of UAVs Deployment 427

A generated solution is represented as a variable-length array of hyperedges,
which can be translated to UAV positions within the problem area. We use the
feedback loop of the algorithm to find a subset of the hyperedges that results in
the shortest solutions while avoiding overcrowding within each sector. Among
solutions of a given length, the one with the lowest average UAV count per sector
within the solution is considered the best.

We tested our algorithm using three pairs of classes from the presented
dataset. The number of nodes in each problem instance differed for each pair,
and classes within pairs had different deployment characteristics. For each class,
we repeated tests for four values of the required coverage level for a solution
k—1, 2, 5, and 10.

The experiments’ results correlate with some of the benchmark problem prop-
erties and reflect the expected behavior of the Ant System-based approaches. The
density of the created hypergraph is closely related to the problem parameters
and directly affects the time required to obtain good results. Similarly, choosing
between different evaporation rates can hasten the search but at a slight cost to
the quality of the obtained solutions.

References

1. Guinand, F., Guérin, F., �Lubniewski, P.: Allowing people to communicate after
a disaster using FANETs. In: Krief, F., Aniss, H., Mendiboure, L., Chaumette,
S., Berbineau, M. (eds.) Communication Technologies for Vehicles. LNCCN, vol.
12574, pp. 181–193. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
66030-7 16

2. Hydher, H., Jayakody, D.N.K., Hemachandra, K.T., Samarasinghe, T.: Intelligent
UAV deployment for a disaster-resilient wireless network. Sensors 20(21), 6140
(2020). https://doi.org/10.3390/s20216140

3. Grzeszczak, J., Mikitiuk, A., Trojanowski, K.: Station Coverage Problem 2 (SCP2)
dataset (2022). https://jaga.blog.uksw.edu.pl/scp2/. Accessed 25 Apr 2022

4. Košmerl, J., Vilhar, A.: Base stations placement optimization in wireless net-
works for emergency communications. In: 2014 IEEE International Conference on
Communications Workshops (ICC), pp. 200–205 (2014). https://doi.org/10.1109/
ICCW.2014.6881196

5. Lyu, J., Zeng, Y., Zhang, R., Lim, T.J.: Placement optimization of UAV-mounted
mobile base stations. IEEE Commun. Lett. 21(3), 604–607 (2017). https://doi.
org/10.1109/LCOMM.2016.2633248

6. Masroor, R., Naeem, M., Ejaz, W.: Efficient deployment of UAVs for disaster
management: a multi-criterion optimization approach. Comput. Commun. 177,
185–194 (2021). https://doi.org/10.1016/j.comcom.2021.07.006

7. Quaritsch, M., Kruggl, K., Wischounig-Strucl, D., Bhattacharya, S., Shah, M.,
Rinner, B.: Networked UAVs as aerial sensor network for disaster management
applications. e & i Elektrotechnik und Informationstechnik 127(3), 56–63 (2010).
https://doi.org/10.1007/s00502-010-0717-2

8. Sawalmeh, A., Othman, N.S., Liu, G., Khreishah, A., Alenezi, A., Alanazi, A.:
Power-efficient wireless coverage using minimum number of UAVs. Sensors 22(1),
223 (2021). https://doi.org/10.3390/s22010223

https://doi.org/10.1007/978-3-030-66030-7_16
https://doi.org/10.1007/978-3-030-66030-7_16
https://doi.org/10.3390/s20216140
https://jaga.blog.uksw.edu.pl/scp2/
https://doi.org/10.1109/ICCW.2014.6881196
https://doi.org/10.1109/ICCW.2014.6881196
https://doi.org/10.1109/LCOMM.2016.2633248
https://doi.org/10.1109/LCOMM.2016.2633248
https://doi.org/10.1016/j.comcom.2021.07.006
https://doi.org/10.1007/s00502-010-0717-2
https://doi.org/10.3390/s22010223

428 K. Trojanowski et al.

9. Srinivas, A., Zussman, G., Modiano, E.: Construction and maintenance of wire-
less mobile backbone networks. IEEE/ACM Trans. Netw. 17(1), 239–252 (2009).
https://doi.org/10.1109/TNET.2009.2012474

10. Sánchez-Garćıa, J., Garćıa-Campos, J.M., Toral, S.L., Reina, D.G., Barrero, F.: An
intelligent strategy for tactical movements of UAVs in disaster scenarios. Int. J.
Distrib. Sens. Netw. 12(3), 8132812 (2016). https://doi.org/10.1155/2016/8132812

11. Yuheng, Z., Liyan, Z., Chunpeng, L.: 3-D deployment optimization of UAVs based
on particle swarm algorithm. In: 2019 IEEE 19th International Conference on Com-
munication Technology (ICCT). IEEE, October 2019. https://doi.org/10.1109/
icct46805.2019.8947140

https://doi.org/10.1109/TNET.2009.2012474
https://doi.org/10.1155/2016/8132812
https://doi.org/10.1109/icct46805.2019.8947140
https://doi.org/10.1109/icct46805.2019.8947140

Dataset Related Experimental
Investigation of Chess Position Evaluation

Using a Deep Neural Network

Dawid Wieczerzak and Pawe�l Czarnul(B)

Faculty of Electronics, Telecommunications and Informatics,
Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland

dawwiecz@pg.edu.pl, pczarnul@eti.pg.edu.pl

Abstract. The idea of training Artificial Neural Networks to evaluate
chess positions has been widely explored in the last ten years. In this
paper we investigated dataset impact on chess position evaluation. We
created two datasets with over 1.6 million unique chess positions each. In
one of those we also included randomly generated positions resulting from
consideration of potentially unpredictable chess moves. Each position was
evaluated by the Stockfish engine. Afterwards, we created a multi class
evaluation model using Multilayer Perceptron. Solution to the evaluation
problem was tested with three different data labeling methods and three
different board representations. We show that the accuracy for the model
trained for the dataset without randomly generated positions is higher
than for the model with such positions, for all data representations and
3, 5 and 11 evaluation classes.

Keywords: chess position evaluation · deep neural network · model
evaluation · accuracy

1 Introduction

Artificial Neural Networks (ANNs) have become models able to predict or esti-
mate otherwise unknown values for various applications, based on prior training
using big data sets. Convolutional Neural Networks (CNNs) are widely used
for recognition of patterns, that can be of interest in many applications. One
of these could be an attempt to evaluate game positions based on their visual
representation, for example in chess [15]. There are several interesting factors
including the quality of evaluation versus the number of classes we might want
to assign to as well as versus training and validation data sets, especially regard-
ing their size and coverage. In the context of chess, several other uses of neural
networks were proposed in the literature such as: determination of the optimum
number of moves towards winning an endgame assuming optimum play of the
other side (for some characteristics of a board position as input) [16]; using a
CNN as a piece selector that determines which chess piece should be moved fol-
lowed by a move selector to determine which move to make [12]; generation of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 429–440, 2023.
https://doi.org/10.1007/978-3-031-30442-2_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_32&domain=pdf
http://orcid.org/0000-0002-4918-9196
https://doi.org/10.1007/978-3-031-30442-2_32

430 D. Wieczerzak and P. Czarnul

natural-language commentary [4]. It should also be noted that high performance
computing systems are important in the chess context as well, either for fast
training of models or for running algorithms in parallel [5,10,17].

In this paper, we focused on training a deep neural network for numerical
evaluation of chess positions indicating advantage of either the white or black
player, based on a set of positions previously evaluated by the Stockfish chess
engine1. Rather than focusing on tuning a particular neural network model, we
adopted a model from the literature [15] and subsequently aimed at performing
investigation on how using data sets of various scope (in terms of consideration of
moves of various quality) impacts performance of a trained deep neural network
model. Additionally, we investigated to what extent the number of classes as
well as data representation in the model impacts accuracy of the final model.

2 Related Work

In paper [15] authors experimented with training ANNs for the purpose of eval-
uating chess positions. They used the Fics Games Database to generate around
3000000 chess positions which were evaluated by Stockfish. They created various
datasets with various numbers of labels referring to position evaluation such as:
3 for dataset 1, 15 for dataset 2 and 20 for dataset 3 and normalized evaluation
of [0,1] for dataset 4. For particular datasets, authors tested tuned Multilayer
Perceptrons (MLPs) versus CNNs showing benefits of the former for the task
achieving high test accuracies of 96.07%, 93.41% and 68.33% for datasets 1, 2
and 3 respectively for bitmap representation (distinguishes presence of particu-
lar chess pieces) which were higher than for an algebraic representation (distin-
guishes values of particular chess pieces - pawns 1, bishops and knights 3, rooks 5,
queens 9 and kings 10) by approx. 2–5%. Finally, the authors mentioned that the
trained ANN reached an Elo of approximately 2000 on the chess24.com server.
It should be noted that an example of works that focus on obtaining positional
values of the chess pieces for particular positions is [20] in which authors used
neural networks for that and an evolutionary algorithm for adjustment which
resulted in increasing the ranking of their chess engine from ranking 1745 to
2178.

Another paper on playing chess with limited look-ahead is [11]. The author
used a large number of board positions – 20 million samples where boards
extracted from publicly available databases were extended in such a way that
for some positions random legal moves were made and positions evaluated using
Stockfish 11. The author tested a classifier for labeling positions with winning
for white, black and draw based on evaluation of cp ≤ −150, −150 ≤ ... ≤ 150
and 150 respectively. A deep neural network with 5 layers, 25% dropout, Adam
optimizer and categorical cross entropy, ReLU activation and softmax obtaining
approximately 87% testing accuracy.

A different way of chess position assessment and incorporation into a chess
playing engine was proposed in [6]. Specifically, they designed and implemented
1 https://stockfishchess.org/.

https://stockfishchess.org/

Dataset Related Investigation of Chess Position Evaluation Using DNN 431

a solution that learned to compare chess positions. They used the CCRL dataset
(www.computerchess.org.uk/ccrl) with 640000 chess games, out of which white
won 221695 games and black won 164387 games – only games that ended with
a win were of interest. Firstly, they trained a deep belief network (DBN) called
pos2vec that converted a position into a vector. Then, they created a network
called DeepChess in which two copies of pos2vec were stacked side by side for
position comparison and they trained fully connected layers on top of those for
comparison. The authors reported both training and validation accuracies at the
very high level of 98%. Subsequently, they conducted play experiments against
Falcon for which the evaluation function was 4 times faster than that of the
developed solution. Given that DeepChess performed on par, given 4 times more
time outperformed Falcon. It also showed 70 more Elo strength than Crafty.

Another work in which the author attempted evaluation of chess positions
using a CNN network is presented in [19], versus Stockfish evaluations. The
author used the April 2019 https://database.lichess.org database out of which
training data was generated from the first 100000 games when white was to move.
Finally, 310690 samples were generated with numerical evaluations between
−255 and +255 (boundary values for checkmates), forced checkmate +/−127
and normal evaluation capped onto the [−63,63] range. The author used a model
with four 2D convolutional layers: the first three with kernel size 3 by 3, the last:
2 by 2. The number of filters were 8, 16, 32 and 64 respectively, with ReLU-
activation. 60% of the data set was used for training, 20% for validation and
20% for testing. Final loss and MAE for the test data set were 863.48 and 12.18
respectively. At the same time it was concluded that the model is not able to
recognize combinations and tactics and a more complex model shall be tried for
improved results. However, whether such can be obtained has to be investigated.

In work [9] the author used a CNN to predict the winning side for positions
of a game that ended with a particular result (win for white or black). The
model, in the implementation, included layers: Mocha.AsyncHDF5DataLayer,
Mocha.ConvolutionLayer, Mocha.PoolingLayer, Mocha.ConvolutionLayer, Mo-
cha.InnerProductLayer, Mocha.DropoutLayer, Mocha.InnerProductLayer, Mo-
cha.BinaryCrossEntropyLossLayer. The data set used for training included
games played by opponents with ranking 2000 or higher downloaded from FICS
games database2, finished with checkmates. Data representation used 6 channels
corresponding to the boards storing {−1, 0, 1} information concerning particu-
lar piece types. Finally, obtained validation and test accuracies were 73.5% and
71.8% respectively.

An interesting idea of chess position evaluation was introduced in [12]. Instead
of providing numerical board evaluation authors proposed a method for predict-
ing a probability distribution over the grid for pieces to move. For each chess
piece they trained a separate model based on a CNN. This approach allowed to
predict situations such as escape when a piece is under attack or the king needs to
move. The results show that this evaluation method performs significantly better
for pieces with local movement (pawn, knight, king). The authors also noticed

2 https://www.ficsgames.org/download.html.

https://database.lichess.org
https://www.ficsgames.org/download.html

432 D. Wieczerzak and P. Czarnul

that a downside of this approach was that highly specific move combinations
between nets were not learned. A newer model [13] proposed by other authors
based on a similar architecture and board representation showed evaluation as
a single numerical value. The output was passed through a mini-max algorithm
to determine the best move. A chess engine based on this model showed simple
tactics such as sacrificing a piece or forks. In 100 games against the Stockfish
engine the system was able to win 3% and draw 2% of games.

In paper [14] authors, motivated by the fact that chess engines can beat even
top human players, they assessed the quality of play of many human players, even
from various generations, using the Stockfish engine as a quality benchmark.
Specifically, score of each move by a human player was compared versus a chess
engine move which allowed to compute average error, whether the human player
selected first, second etc. engine’s preference etc. Out of the world championship
(WCC) players, best were Carlsen and Caruana with errors 0.0674 and 0.0709
respectively. Best move percentage winners were Gelfand and Kramnik with
59.9% and 59.2% respectively and average numbers of blunders per WCC were
best for Caruana (1.0) and Carlsen (1.3). Work [2] provides selected results of
large-scale analysis of chess games with chess engines – authors gathered and
analyzed 4.78 million unique games publicly available on some Web repositories.
They provided information on Elo distribution, Elo differences between players,
plys per game depending on player’s Elo differences, percentage of win for white
player depending on Elo, first moves depending on game date.

3 Data Used for Experiments

We used the Lichess Elite Database [1] that includes a collection of lichess.org
games from https://database.lichess.org/ that was filtered to include only games
played by players with 2400+ ranking against players with 2200+ ranking, with-
out bullet games.

3.1 Data Preparation

Games were downloaded in the PNG format and each position of the games was
saved in a database in the FEN format. For selected tests, the original set of
positions was also augmented with randomly generated positions in the following
way. For each of the positions acquired from the database from Lichess.org 3
moves were generated randomly from all legal moves. This way for each position,
3 potentially unpredictable moves were generated. In some positions, because of
checks or specific situations, the number of legal moves was smaller than 3. Such
positions were skipped for new position generation. Repeating positions were
removed from both the original as well as randomly generated position sets.
Afterwards, counts of the two sets were equalized. This way, we acquired two
sets with over 1.6 million unique positions each – later marked as no rand and
rand respectively. The reason for considering the rand dataset was our aim of

https://database.lichess.org/

Dataset Related Investigation of Chess Position Evaluation Using DNN 433

additional testing the solution with a presumably more diverse data set including
board positions potentially reached by weaker players.

Afterwards Stockfish was used to label all positions from previously men-
tioned sets. Labels generated by Stockfish contained board evaluations expressed
as centipawns (cp). Value of 100 cp corresponds to a difference of one pawn and
this metric shows a current difference in strategic and material strength between
players. As an example, when the evaluation is +100 cp it means that the mov-
ing side has a potential advantage of one pawn. Evaluations of all positions were
stored from the point of view of white regardless of the player to move. We also
scaled the evaluations by dividing them by 100 and thus obtaining what we call
a value in scaled centipawns (scp). For our evaluations we used Stockfish 13 with
a depth of 28.

3.2 Board Representation

Positions processed in the previous step were converted into a vector represen-
tation making it usable as an input for neural networks. We used a bitboard
representation which turns each position in FEN format into binary vector with
total length of 768 bits. This method of transforming chess position into a vector
was used in some previous works [6,11,15]. Another similar bitboard approach
has been used in many chess position analyses based on CNNs [12,15,19].

We also introduced modifications into the bitboard representation which
gives us two additional representations. In total we tested 3 board represen-
tations: bitboard representation, algebraic representation, piece value represen-
tation.

A bitboard vector consists of 12 chessboards linked with one another that
form a 64-bit position vector. Each of the boards, which are considered as a
feature, stores position of a given piece (type). The first 6 features represent
positions of the white player pieces while the other 6 of their opponent – black.
Pieces are represented in the following order: pawns, knights, bishops, rooks,
queen, king. A piece position inside each 64 bit vector is represented as 1 when
it belongs to the player who should move or −1 when it belongs to the opposite
player. The total length of the vector is 768 because it stacks 64 bit features for
12 different pieces.

The algebraic representation is an extension of the binary one. We introduced
this modification in order to see what the effect of differentiating chess pieces on
position evaluation will be. Beside presence of particular pieces it also considers
different pieces by assigning them following integer numbers starting from 1. In
this method pawns are represented as 1, knights as 2, bishops as 3, rooks as
4, queens as 5 and kings as 6. Similarly to the previously described method,
opposite player’s side is represented by negative numbers.

In the last representation piece strength and its potential value were taken
into account. We used a common assignment of point values which is 1 for
pawns, 3 for knights and bishops, 5 for rooks and 9 for queens. Because of its
non exchangeable nature the king is not considered in most evaluation systems.
In this piece value representation we decided to assign 10 points to the king.

434 D. Wieczerzak and P. Czarnul

It stemmed from the important strategic role of the piece, also considered in
[20]. Point values replaced binary presence of each piece and negative values to
distinguish moves of opposite sides have also been used. We shall note that this
piece strength representation corresponds to the one called algebraic in [15], as
described in Sect. 2.

3.3 Data Labeling

For classification of positions using games with previously added Stockfish evalu-
ations we followed the approach from [15] experimenting with different numbers
of classes and data representations. We created three labeling methods for the
classification task.

Method 1 : In this method each of the positions was assigned to one of three
classes: Winning, Losing or Draw. Labels were assigned according to scaled cen-
tipawn evaluations with the following conditions: positions were considered as
Winning when its scp evaluation was greater than 1.5, losing when its scp was
lower than −1.5 and draw when scp was between those two values.

Method 2 : This method extends Method 1 by dividing both the Winning and
Losing classes into two separate classes for a total of 5 different labels including
Draw. The division was done in such a way that the first Winning label contains
positions with scp between 1.5 and 4.5 and the second Winning label contains
positions with scp greater than 4.5. The same has been done for labels in the
Losing class where division point was set to −4.5 scp. Labeling conditions for
Draw class remained the same as in Method 1.

Method 3 : In this method even more labels were created. All classes including
Draw have been extended by creating new labels as follows: In Winning class,
with 2 starting from 1.5 scp, four new labels were created so that the last label-
ing window contains positions with evaluations greater than 7.5 scp. Labels in
the Losing class were assigned in the same way. If scp decreases by 2 starting
from −1.5 scp, a new label was created. Draw class, which originally contained
positions with its scp between −1.5 and 1.5, was divided into equal intervals
each of them 1 scp wide. This method creates 11 different labels in total: four
labels in Winning class, four labels in Loosing class and 3 Draw labels.

4 Test Methods

In this section we describe data analysis methods concerning the data described
in Sect. 3. We present an ANN architecture used for testing different inputs in
detail, subsequently we discuss the experiments and the training process of the
model.

4.1 Neural Network Architecture

In order to address classification tasks we created a 3 hidden layer MPL based
on the architecture and hyper parameters proposed in [15]. Similarly to the orig-
inally proposed classifier, hidden layers consisted of 1048, 500 and 50 hidden

Dataset Related Investigation of Chess Position Evaluation Using DNN 435

units. Each of 3 hidden layers has been activated by the Rectified Linear Unit
(ReLU) activation function. Due to targeting classification tasks the final out-
put layer has been connected to Softmax activation. Furthermore, in order to
achieve better model generalization Batch Normalization and Dropout regular-
ization were applied to all hidden layers of the network. We set the probability
of Dropout to 0.2 as recommended in [18].

4.2 Experiment

As a result of our experiments we wanted to assess the impact of different chess
board representations on classification performance. In order to do that, we
divided the experiment into three steps corresponding to different board repre-
sentations proposed in the previous section. For each board representation three
different classification tasks were tested. We used three previously mentioned
labeling methods: Method 1, Method 2 and Method 3 respectively. As input
data firstly we used the dataset without random positions and then the dataset
extended with randomly generated positions.

This test configuration gives us 2x3 separate network training cases in each
experimental step.

4.3 Training Method

We have split each relevant data set into training, validation and test sets in
proportion of 8:1:1. In each training the Adam algorithm was used as an opti-
mizer and it was initialized with the following parameters: lr = 0.001, β1 = 0.9,
β2 = 0.99, ε = 1e − 8. We trained the networks with minibatches of 128 samples
and categorical cross entropy as a loss function. The whole training was stopped
after the validation loss has not improved by at least 0.00001 within the last 100
epochs. For each epoch we measured the following metrics: accuracy, precision,
recall, f1 [8].

In all experiments we used Tensorflow and Python 3.8 as a programming
base running on computers with Intel i7-7700 CPU, 32GiB RAM and GeForce
GTX 1070.

5 Results

In Figs. 1, 2 and 3 we summarize results of training after the stop condition
has been met for each given configuration i.e. 3, 5 and 11 classes respectively.
There are six configurations in total i.e. for the algebraic, bitboard and piece
strength data representations, each for the no rand and rand data set. For each
configuration we present validation accuracy and f1 metrics.

In order to see the progress of training, as an example for the 5 class config-
uration and the best bitboard representation, in Fig. 4 we show how validation
accuracy and f1 scores change over 135 epochs.

436 D. Wieczerzak and P. Czarnul

Fig. 1. validation accuracy and f1 metrics, 3 classes

Fig. 2. validation accuracy and f1 metrics, 5 classes

Fig. 3. validation accuracy and f1 metrics, 11 classes

Dataset Related Investigation of Chess Position Evaluation Using DNN 437

Fig. 4. validation accuracy and f1 metrics, 5 classes, bitboard representation

Following these tests, for the best representation (bitboard) in Table 1 we
provide final precision and recall values for the three cases (3, 5 and 11 classes)
for the two data sets. Finally, in Table 2 we included accuracy values computed
for the test dataset and the bitboard representation.

Table 1. Precision and recall values for various configurations, bitboard representation,
validation

Number of classes Data without random pos. Data with random pos.

precision recall precision recall

3 0.83205 0.82112 0.80039 0.78325

5 0.79523 0.73922 0.76249 0.68148

11 0.69183 0.41733 0.69250 0.39315

Table 2. Test accuracy for various configurations, bitboard representation

Number of classes Data without random pos. Data with random pos.

3 0.82528 0.79158

5 0.76727 0.72316

11 0.55795 0.53964

6 Discussion

Based on the presented results, we can conclude the following:

438 D. Wieczerzak and P. Czarnul

1. For all tests with 3, 5 and 11 classes, configurations with data without random
positions yield slightly but visibly better accuracy and f1 score values than
corresponding configurations trained using data with added random positions.

2. For almost each configuration and either data without or with random posi-
tions, the order of data representations from best to worst accuracies is gen-
erally: bitboard, algebraic and piece strength with bitboard being the best
one for all the cases. For 5 and 11 classes piece strength and algebraic config-
urations resulted in virtually same results, with minimal differences.

3. As expected, we see a visible drop in accuracies as the number of classes is
increased.

4. Taking into account results for the best tested representation bitboard we see
that with an increasing number of classes, differences between precision and
recall values for particular data sets are increasing and are visibly larger for
the data set with random positions. Additionally, while for 11 classes precision
values for the two data sets are very close, there is a visible difference of
approximately 0.024 for recall values.

We shall note that, based on our experiment and particular data sets, the
accuracy/f1/precision/recall scores for the rand data set, presumably a more
diverse one, turned out to be worse than for the no rand data set. On the other
hand, while we did not focus on ultimate improvement of the model per se
and rather focused on comparison per various data sets in these experiments,
we shall note that accuracy values obtained in [15] for 3 classes were higher.
Further investigation could be performed on if and how this could be related to
the different training data sets and/or Stockfish settings used for evaluation, in
both cases, etc. In [15] for the other data sets (for larger numbers of classes) a
different MLP structure was used.

7 Summary and Future Work

In the paper we investigated accuracy, precision/recall and f1 metrics for training
an artificial model for evaluation of chess positions – for two data sets: one – with
games by 2400+ players playing against 2200+ ranking players and another –
the same one augmented with randomly generated positions by making random
moves from already known positions. We tested three different data representa-
tions such as bitboard, algebraic and with consideration of piece strength values
– results showed that there were measurable albeit very small differences with
best results for the bitboard version. We investigated assignment of numerical
evaluations into 3, 5 and 11 classes. We found out that the dataset with ran-
domly generated positions (that intuitively corresponds to positions that could
also be reached by weaker players) resulted in test accuracy scores smaller than
that of the data set with positions obtained by stronger players. This suggests
that in this particular case it is more difficult to obtain high accuracies for a data
set with presumably more diverse positions. On the other hand, based on that,
in the future, it would be an interesting research task to investigate whether it

Dataset Related Investigation of Chess Position Evaluation Using DNN 439

can be generalized and how using even more restricted data sets affects network
performance metrics. This might refer to certain phases of the game played by
very good players, e.g. endgames, with possibly even selected sets of pieces on
the board. Another interesting topic would be training the models with consider-
ation of a training data set extended with similar positions [7] to those originally
in the dataset. Furthermore, a test on whether the observations from this paper
would also be applicable to more fine-tuned models would be of interest.

References

1. Lichess elite database. https://database.nikonoel.fr/
2. Acher, M., Esnault, F.: Large-scale analysis of chess games with chess engines:

A preliminary report. CoRR abs/1607.04186 (2016). http://arxiv.org/abs/1607.
04186

3. Baldi, P., Sadowski, P.J.: Understanding dropout. In: Advances in Neural Infor-
mation Processing Systems, vol. 26 (2013)

4. Butner, C.: Chesscoach is a neural network-based chess engine capable of
natural-language commentary (2021). https://pythonrepo.com/repo/chrisbutner-
ChessCoach-python-natural-language-processing

5. Czarnul, P.: Benchmarking parallel chess search in Stockfish on intel Xeon and intel
Xeon phi processors. In: Shi, Y., et al. (eds.) ICCS 2018. LNCS, vol. 10862, pp.
457–464. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93713-7 40

6. David, O.E., Netanyahu, N.S., Wolf, L.: DeepChess: end-to-end deep neural net-
work for automatic learning in chess. In: Villa, A.E.P., Masulli, P., Pons Rivero,
A.J. (eds.) ICANN 2016. LNCS, vol. 9887, pp. 88–96. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-44781-0 11

7. Ganguly, D., Leveling, J., Jones, G.J.: Retrieval of similar chess positions. In: Pro-
ceedings of the 37th International ACM SIGIR Conference on Research & Devel-
opment in Information Retrieval, SIGIR 2014, pp. 687–696. Association for Com-
puting Machinery, New York, NY, USA (2014). https://doi.org/10.1145/2600428.
2609605

8. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016). http://www.deeplearningbook.org

9. Int8: Chess position evaluation with convolutional neural network in
Julia (2016). https://int8.io/chess-position-evaluation-with-convolutional-neural-
networks-in-julia/

10. Jouppi, N.P., et al.: A domain-specific supercomputer for training deep neural
networks. Commun. ACM 63(7), 67–78 (2020). https://doi.org/10.1145/3360307

11. Maesumi, A.: Playing chess with limited look ahead. CoRR abs/2007.02130 (2020).
https://arxiv.org/abs/2007.02130

12. Oshri, B., Khandwala, N.: Predicting moves in chess using convolutional neural
networks (2016)

13. Panchal, H., Mishra, S., Shrivastava, V.: Chess moves prediction using deep learn-
ing neural networks. In: 2021 International Conference on Advances in Computing
and Communications (ICACC), pp. 1–6. IEEE (2021)

14. Romero, O., Cuenca, J.F., Parra, L., Lloret, J.: Computer analysis of world chess
championship players. In: ICSEA: The Fourteenth International Conference on
Software Engineering Advances, pp. 200–205 (2019). ISBN: 978-1-61208-752-8

https://database.nikonoel.fr/
http://arxiv.org/abs/1607.04186
http://arxiv.org/abs/1607.04186
https://pythonrepo.com/repo/chrisbutner-ChessCoach-python-natural-language-processing
https://pythonrepo.com/repo/chrisbutner-ChessCoach-python-natural-language-processing
https://doi.org/10.1007/978-3-319-93713-7_40
https://doi.org/10.1007/978-3-319-44781-0_11
https://doi.org/10.1145/2600428.2609605
https://doi.org/10.1145/2600428.2609605
http://www.deeplearningbook.org
https://int8.io/chess-position-evaluation-with-convolutional-neural-networks-in-julia/
https://int8.io/chess-position-evaluation-with-convolutional-neural-networks-in-julia/
https://doi.org/10.1145/3360307
https://arxiv.org/abs/2007.02130

440 D. Wieczerzak and P. Czarnul

15. Sabatelli., M., Bidoia., F., Codreanu., V., Wiering., M.: Learning to evaluate chess
positions with deep neural networks and limited lookahead. In: Proceedings of the
7th International Conference on Pattern Recognition Applications and Methods
- ICPRAM, pp. 276–283. INSTICC, SciTePress (2018). https://doi.org/10.5220/
0006535502760283

16. Samadi, M., Azimifar, Z., Jahromi, M.Z.: Learning: an effective approach in
endgame chess board evaluation. In: Sixth International Conference on Machine
Learning and Applications (ICMLA 2007), pp. 464–469 (2007). https://doi.org/
10.1109/ICMLA.2007.48

17. Silver, D., et al.: A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science 362(6419), 1140–1144 (2018). https://doi.
org/10.1126/science.aar6404

18. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

19. Vikstrom, J.: Training a convolutional neural network to evaluate chess positions.
KTH Royal Institute of Technology, School of Electrical Engineering and Computer
Science, Stockholm, Sweden (2019)

20. Vázquez-Fernández, E., Coello Coello, C.A., Sagols Troncoso, F.D.: Assessing the
positional values of chess pieces by tuning neural networks’ weights with an evo-
lutionary algorithm. In: World Automation Congress 2012, pp. 1–6 (2012)

https://doi.org/10.5220/0006535502760283
https://doi.org/10.5220/0006535502760283
https://doi.org/10.1109/ICMLA.2007.48
https://doi.org/10.1109/ICMLA.2007.48
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1126/science.aar6404

Using AI-based Edge Processing
in Monitoring the Pedestrian Crossing

�Lukasz Karbowiak(B) and Mariusz Kubanek

Czestochowa University of Technology, Dabrowskiego 69,
42 -201 Czestochowa, Poland

{lukasz.karbowiak,mariusz.kubanek}@icis.pcz.pl

Abstract. In edge processing, data collection devices are used to pre-
filter data. As a result, only data of interest will be written to mem-
ory. This approach significantly reduces the amount of transferred data.
Various algorithms, such as background segmentation or artificial intel-
ligence (AI) techniques based on various neural networks, can be used
to detect data of interest. This paper uses an AI-based technique in the
edge processing environment to perform the learning process with a cho-
sen neural network. The environment containing Nvidia Jetson Xavier
NX is employed to train the MobileNetV3 network dedicated to detecting
objects of interest like people or vehicles while monitoring the pedestrian
crossing. The network consists of the initial fully connected convolution
layer with 32 filters, followed by 19 residual bottleneck layers. This paper
also proposes a learning process that uses the collected data after manual
validation and significantly improves accuracy over the original network.

Keywords: artificial intelligence · edge computing · convolutional
neural networks · pedestrian crossing

1 Introduction

Edge processing assumes pre-processing data on an edge device as close to sensors
as possible. Such an approach is becoming an eminent trend because it offers sig-
nificant business benefits. First, if the input data are pre-filtered on edge, the cus-
tomer only pays for the data that are useful to him. Secondly, it enhances security
and helps the correct transmission of data between different countries, taking into
account the various legal regulations. Security is enhanced by using distributed
data storage spread across multiple devices with their own security layers. Another
advantage is reducing network bandwidth requirements. Due to transferring only
relevant data, their amount is significantly reduced relative to raw data.

In this work, edge processing is applied to data from pedestrian crossings
[1–3]. Two cases are considered: (i) with fixed cameras (e.g., city surveillance)
and (ii) mobile cameras, e.g., mounted in cars. The analysis makes it possible to
create a system that warns of unusual situations within the pedestrian crossing.
Among such situations is a pedestrian and a vehicle in the lanes simultaneously.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 441–450, 2023.
https://doi.org/10.1007/978-3-031-30442-2_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_33&domain=pdf
http://orcid.org/0000-0003-4389-5548
http://orcid.org/0000-0001-9651-9525
https://doi.org/10.1007/978-3-031-30442-2_33

442 �L. Karbowiak and M. Kubanek

The material of the paper is organized in the following way. The experimental
environment is presented in Sect. 2, while the case with stationary and mobile
cameras are discussed in Sect. 3 and Sect. 4, respectively. Section 5 concludes the
paper.

2 Experimental Environment

The workflow for the two cases considered in this paper is presented in Fig. 1.
The workflow starts with retrieving data from a camera, either a stationary
one that monitors the pedestrian crossing or a mobile camera mounted on a
moving car. The second step involves transferring the data thus obtained to a
pre-trained neural network. The selection of the neural network is made through
an in-depth analysis and testing. The neural network analyzes the received image
and performs labeling. Then our software checks whether the labels correspond
to the image of interest for the analysis. If yes, the image is saved to memory in
the folder corresponding to a label. If not, the image is dropped. The next steps
are responsible for training the neural network in the learning process. Step 3 is
performed after a sufficiently large amount of data has been collected. The data
have to be manually verified because sometimes the pre-trained network performs
labeling incorrectly. Corrections at this step are very important and cannot be
overlooked, as this significantly affects the accuracy of detection performed by
the neural network after the learning process. The final step 4 involves swapping
the initial neural network that analyzes the camera images (in step 1) with the
new one obtained through the learning process. Such swapping allows a better
accuracy of detection. The learning process can also increase the number of
detected objects. This is the case with mobile cameras.

The Nvidia Jetson Xavier NX [24] device is used for edge processing. The
required computing power is provided by 384 GPU CUDA cores and 48 Tensor
cores. In addition, a 6-core ARM CPU is included in this device with 8GB

Fig. 1. Workflow for the experimental environment

Using AI-based Edge Processing in Monitoring the Pedestrian Crossing 443

of DRAM memory, providing a bandwidth of 51.2 GB/s. Two cameras collect
images - one dedicated to Raspberry Pi, connected via the CSI interface, and
the second is the LifeCam Studio camera from Microsoft. The second camera
has a resolution of 1280× 720 and is connected via a USB port.

3 Case with Stationary Cameras

3.1 Data Collecting

Collecting data for stationary cameras involves taking a frame from a stationary
surveillance camera. The frame is passed to a pre-trained neural network. For
fixed cameras, this is the MobileNetV3 network [5]. After analyzing data in the
frame, this network returns the class to which the data can be assigned. During
data collection, the relevant information embraces the situations in which the
frame contains: a car, a pedestrian, both of them, and an empty pedestrian
crossing. The classes should consider different weather and lighting conditions,
as they should encompass the diversity of the scene to the best possible extent.

3.2 Network Training and Detection

For fixed cameras, the learning process is performed after obtaining about 2,000
patterns. Learning is based on the MobileNetV3 network, and the final network
return classes in the range: person, car, both of them, empty. For the first class
of person, exemplary training data are shown in Fig. 2. Among these data are
examples with one person as well as with a group of pedestrians.

Training data for the class of car (Fig. 3) include samples containing different
models, colors, and types of cars located at different positions in the image.
Another class, both, corresponds to samples (Fig. 4) with a mixture of single or
several vehicles and a single pedestrian or a group of pedestrians. Training data
for the last class, empty, contain static images (Fig. 5) of an empty pedestrian
crossing.

All samples are collected under different weather conditions. In addition,
samples are acquired at different times, resulting in varying lighting conditions,
which also positively affects the effectiveness of detecting the defined classes.

The learning process is performed using full scenes from the above-defined
classes. The accuracy of the newly created model is 98.6% for all classes, using
data for the studied pedestrian crossing (Fig. 6). This high accuracy of the model

Fig. 2. Training data for the class person

444 �L. Karbowiak and M. Kubanek

Fig. 3. Training data for the class car

Fig. 4. Training data for the class both

is due to a sufficient amount of learning data for this case. The fixed camera and
the study of a single pedestrian crossing minimize the variability of background
[25]. Variable weather conditions are not an issue for this network model as the
learning process uses data collected at different hours and with different weather.

4 Mobile Cameras

4.1 Analysis of Different Neural Network

In the case of mobile cameras, the choice of the final neural network is made
experimentally. We decided to analyze publicly available solutions and refine the
one that would achieve the best results, namely, the best accuracy of detecting
vehicles and pedestrians with a high frame per second (FPS) ratio.

The approach using a Convolutional Neural Network (CNN) is discussed
first. Image recognition and classification with CNNs are used to detect objects,
recognize faces, etc. The proposed improvement involves [4] automatically opti-
mizing the feature representation for the detection task and regularizing the
neural network. The accuracy of the Support Vector Machine (SVM) classifier
using the features learned by the CNN is equivalent to the accuracy of the CNN,
confirming the importance of automatically optimized features. However, the
computational demand of the CNN classifier is more than an order of magni-
tude lower than that of the SVM, irrespective of the type of features used.

Fig. 5. Training data for class empty

Using AI-based Edge Processing in Monitoring the Pedestrian Crossing 445

Fig. 6. Results of detection corresponding to various situations

The next group relates to Region-based CNNs (R-CNNs), namely, pure R-
CNN, Fast R-CNN, and Faster R-CNN. Region-based CNNs first generate region
proposals used then to locate objects within the input image. Girshick et al. [6,7]
proposed extracting 2,000 region proposals from images and processing them.
The disadvantage of such a solution is the high computing cost of processing a
large number of region proposals. This disadvantage makes it practically impos-
sible to process data in real time since processing a single image takes a few to
tens of seconds. In addition, the quality of the candidate region proposals cannot
be improved. Based on this knowledge, a modified approach was introduced in
works [8,9]. The resulting Fast R-CNN and Faster-CNN methods do not require
determining a large number of region proposals that significantly reduce the
computing cost.

The analysis of the Faster R-CNN method for pedestrian detection was per-
formed in paper [10]. The study showed the effectiveness of this method. Another
proposal [11] to improve the Faster R-CNN method focuses on improving the
quality of the network and using the K-means cluster analysis. In particular, the
Faster R-CNN method can detect people from a drone [12]. By incorporating
feature fusion and context analysis, a new FCF R-CNN algorithm was developed
[13]. The proposed algorithm gives better results for pedestrians that are small
in size and obscured, and it is also robust for difficult scenes.

In 2015, Redmon et al. proposed the first single-stage detector YOLO [14]. The
first version achieved a reduced detection accuracy relative to the two-stage detec-
tor but allowed significantly increasing detection speed. High speed and accuracy
are crucial for pedestrians and unusual situations on the road. The next versions
of the YOLO network were introduced to improve the detection quality. Among
them is the YOLOv2 network [15,18]. The improvement provided by this network

446 �L. Karbowiak and M. Kubanek

begins with a modification of the DataNet53 model, in which feature creation is
strengthened. In addition, three inceptive depth convolution modules are added
and integrated at different levels. All these changes lead to a more comprehen-
sive characterization of the object in the image. The next version is the YOLOv3
network [16,19] that applies the HOG (histogram of oriented gradients) method
to implement pre-processing. This method makes it possible to highlight pedes-
trian contour features, especially small pedestrian target features, and reduce the
implication of background information for detection results.

Further improvements were provided by the YOLOv4 [20] network based
on implementing a modified detection model. The proposed model combines
a new type of SPP (spatial pyramid pooling) network and K-means clustering
algorithm with the YOLOv4 model for easier feature extraction. In addition, the
Mish activation function is applied to the neck of the detection model, replacing
the Leaky ReLU activation function to improve detection accuracy.

Another solution to improve pedestrian detection accuracy is an updated
version of MobileNet [21] combined with SSD (Single Shot MultiBox Detector)
[22,23]. This method provides four components that are important for pedestrian
detection: feature extraction, deformation, occlusion handling, and classification.
The proposed solution allows the coordination of the components to increase
their strength with fewer parameters.

In the analysis of the capabilities of each neural network (Tab. 1), the two
parameters that are most relevant to the analysis of pedestrian crossings were
taken into account - the efficiency (accuracy) of detection of pedestrians and
vehicles, and the speed of the network, i.e., the number of analyzed frames
per second (FPS). The last parameter is crucial for real-time data analysis for
monitoring the pedestrian crossing. The best results for pedestrian recognition
are achieved by YOLOv4, YOLOv3 and MobileNetv3. For car recognition, high
accuracy and speed are provided by ResNet50 and ResNet101, but YOLOv4
gives the best results. At the same time, MobileNetv3 seems to be a suitable
network for less powerful edge devices, another being YOLOv4. As a result, we
finally select MobileNetv3 for static cameras and YOLOv4 for mobile cameras.

4.2 Data Collecting

Collecting learning data for mobile cameras is similar to that for fixed cameras.
In our study, we use records from cameras placed in cars, and YOLOv4 [17] is
applied as the pre-trained neural network. As in the previous case, all data have
to be manually verified and prepared for the learning process.

4.3 Network Training and Detection Results

The learning process for the YOLOv4 network is different from the process used
in the previous case. To learn the model, it is required to define the position
of all objects of interest within the current scene. To improve the quality of
monitoring pedestrian crossings and detecting objects, the model is extended to
include new classes: pedestrian crossing, pedestrian crossing signs, and traffic

Using AI-based Edge Processing in Monitoring the Pedestrian Crossing 447

Table 1. Comparison of the various neural networks based on the accuracy of detecting
pedestrians and cars, as well the parameter FPS (frames per second)

Name Pedestrian (%) Car (%) FPS

VGG16 72,89 83.51 18

ResNet50 73.05 88.74 25

ResNet101 74.19 89.13 22

Fast RCNN 68.4 74.64 23

Faster RCNN 70.4 77.42 56

YOLO 57.9 59.98 25

YOLOv2 76.8 62.76 36

YOLOv3 78.12 79.31 31

YOLOv4 82.30 93.39 61

MobileNetv3 76.17 86.65 73

lights. The LabelImg tool [26] is used for labeling (Fig. 7), which allows us to
improve the labeling process significantly. The tool automatically loads images,
allowing us to define the classes to be labeled on scenes, and after defining all
objects of the scene, a file containing information about classes, objects, and
their location is automatically generated. Based on data available in all files
containing the description of the scene, a single file is generated where data are
stored in the format required for the learning process.

Fig. 7. Example of using LabelImg tool for label scenes

For mobile monitoring of pedestrian crossings, an additional functionality
has been added to warn of a person in a close proximity. The algorithm is based
on the knowledge of objects detected by the network, and the distance between
them. The algorithm uses several distance values calculated on successively cap-
tured frames. When the algorithm determines that a pedestrian is, or is about
to be, at a pedestrian crossing, the appropriate warning is displayed.

448 �L. Karbowiak and M. Kubanek

Fig. 8. Example results for the trained model

Fig. 9. Scene with algorithm attention information

The accuracy of the model refers to two criteria. The first is the accuracy of
object detection, which is 97.4% (see Fig. 8). The second is the accuracy of the
pedestrian warning algorithm equal to 82.9% (see Fig. 9). The reason for such a
low value is discussed in the next subsection.

4.4 Accuracy Analysis

Accuracy analysis concerns two aspects. The first one is labeling pedestrian
crossings correctly. None of the analyzed networks did this by default, so our
network is trained based on the collected recordings. After the learning pro-
cess with the YOLOv4 network, an average accuracy of 97.4% is achieved. The
second aspect concerns the new functionality - warning of dangerous situations
at pedestrian crossings. Here the final accuracy is influenced by the accuracy
of detecting pedestrians and vehicles and the accuracy of detecting pedestrian
crossings. When the system correctly receives data about all these objects, it
becomes possible to identify a real danger at the pedestrian crossing correctly.
For this reason, the average accuracy of this solution is 82.9%.

5 Conclusions

This paper presents the application of various neural networks in monitoring
pedestrian crossings with fixed and mobile cameras. In the case of fixed cam-
eras, the study shows a high efficiency of correct detection using the trained
MobileNetV3 network. This is due to a relatively static background for the image
of exactly the same area. At the same time, such a learned neural network model

Using AI-based Edge Processing in Monitoring the Pedestrian Crossing 449

only works for the pedestrian crossing used in the learning process. In future
work, we will replace the current neural network with the network applied for
mobile cameras.

The solution for mobile cameras based on the YOLOv4 network achieves
good results for the detection of all classes, including the newly created ones.
Future works will focus on improving the accuracy of the algorithm that warns
drivers of dangerous situations.

References

1. Tian, D., Han, Y., Wang, B., Guan, T., Wei, W.,: A Review of Intelligent Driving
Pedestrian Detection Based on Deep Learning. Comput. Intell. Neurosci. article
ID 5410049 (2021)

2. Gauerhof, L., Hawkins, R., Picardi, C., Paterson, C., Hagiwara, Y., Habli, I.:
Assuring the safety of machine learning for pedestrian detection at crossings. In:
Casimiro, A., Ortmeier, F., Bitsch, F., Ferreira, P. (eds.) SAFECOMP 2020. LNCS,
vol. 12234, pp. 197–212. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-54549-9 13

3. Zhang, S., Abdel-Aty, M.: Real-time pedestrian conflict prediction model at the
signal cycle level using machine learning models. IEEE Open J. Intell. Transp.
Syst. 3, 176–186 (2022)

4. Szarvas, M., Yoshizawa, A., Yamamoto, M., Ogata, J.,: Pedestrian detection with
convolutional neural networks. In: IEEE Proceedings. Intelligent Vehicles Sympo-
sium, pp. 224–229 (2005)

5. Andrew H., et al.: Searching for MobileNetV3. arXiv:1905.02244 (2019)
6. Girshick, R., Donahue, J., Darrell, T., Malik, J.,: Rich Feature Hierarchies for

Accurate Object Detection and Semantic Segmentation. In: 2014 IEEE Conference
Computer Vision and Pattern Recognition, pp. 580–587 (2014)

7. R-CNN, Fast R-CNN, Faster R-CNN, YOLO - Object Detection Algo-
rithms https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-
detection-algorithms-36d53571365e (October 22, 2022)

8. Dong, P., Wang, W.: Better region proposals for pedestrian detection with R-CNN.
In: 2016 Visual Communications and Image Processing (VCIP), pp. 1–4 (2016)

9. Dollár, P., Appel, R., Belongie, S., Perona, P.: Fast feature pyramids for object
detection. IEEE Trans. Pattern Anal. Mach. Intell. 36(8) 1532–1545 (2014)

10. Zhang, L., Lin, L., Liang, X., He, K.: Is faster R-CNN doing well for pedestrian
detection? In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS,
vol. 9906, pp. 443–457. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46475-6 28

11. Zhang, H., Du, Y., Ning, S., Zhang, Y., Yang, S., Du, C.: Pedestrian Detection
Method Based on Faster R-CNN. In: 13th International Conference Computational
Intelligence and Security, pp. 427–430 (2017)

12. Hung, G.L. et al.: Faster R-CNN deep learning model for pedestrian detection from
drone images. SN Comput. Sci. 1(116), 427–430 (2020)

13. Zhai, S., Dong, S., Shang, D., Wang, S.: An improved faster r-cnn pedestrian
detection algorithm based on feature fusion and context analysis. IEEE Access 8,
138117–138128 (2020)

https://doi.org/10.1007/978-3-030-54549-9_13
https://doi.org/10.1007/978-3-030-54549-9_13
http://arxiv.org/abs/1905.02244
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e
https://doi.org/10.1007/978-3-319-46475-6_28
https://doi.org/10.1007/978-3-319-46475-6_28

450 �L. Karbowiak and M. Kubanek

14. Redmon, J., Divvala, S., Girshick R., Farhadi, A.: You Only Look Once: Unified,
Real-Time Object Detection. In: 2016 IEEE Conference Computer Vision and Pat-
tern Recognition, pp. 779–788 (2016)

15. Redmon, J., Farhadi, A.: YOLO9000: Better, Faster, Stronger. arXiv:1612.08242
(2016)

16. Redmon, J., Farhadi, A.: YOLOv3: An Incremental Improvement, arXiv:1804.
02767 (2018)

17. Bochkovskiy, A., Chien-Yao W., Hong-Yuan M.: YOLOv4: Optimal Speed and
Accuracy of Object Detection. arXiv:2004.10934 (2020)

18. Panigrahi, S., Raju, U.S.: InceptionDepth-wiseYOLOv2: improved implementation
of YOLO framework for pedestrian detection. Int. J. Multimed. Inform. Retrieval
11(12), 409–430 (2022)

19. Ao L., Xiuxiang G., Chengming Q.: Pedestrian detection based on improved
YOLOv3 algorithm. In: ICSEE 2021: Intelligent Life System Modelling, Image
Processing and Analysis, pp. 221-231 (2021)

20. Boyuan, W., Muqing, W.: Study on Pedestrian Detection Based on an Improved
YOLOv4 Algorithm. In: IEEE 6th Int. Conf. Computer and Communications, pp.
1198–1202 (2020)

21. Howard, A.G. et al.: MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications. arXiv:1704.04861 (2017)

22. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0 2

23. Murthy, C.B., Hashmi, M.F., Keskar, A.G.: Optimized MobileNet + SSD: a real-
time pedestrian detection on a low-end edge device. Int. J. Multimed. Inform.
Retrieval. 10(8), 1–14 (2021)

24. Nvidia Xavier NX. https://www.nvidia.com/en-us/autonomous-machines/
embedded-systems/jetson-xavier-nx/ (2022)

25. Karbowiak, L., Bobulski, J.: Background segmentation in difficult weather condi-
tions. PeerJ Comput. Sci. article 8, e962 (2022)

26. LabelImg tool. https://github.com/heartexlabs/labelImg (2022)

http://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/2004.10934
http://arxiv.org/abs/1704.04861
https://doi.org/10.1007/978-3-319-46448-0_2
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://github.com/heartexlabs/labelImg

Special Session on Parallel EVD/SVD
and its Application in Matrix

Computations

Automatic Code Selection for the Dense
Symmetric Generalized Eigenvalue
Problem Using ATMathCoreLib

Masato Kobayashi1, Shuhei Kudo1, Takeo Hoshi2, and Yusaku Yamamoto1(B)

1 The University of Electro -Communications, Tokyo 182-8585, Japan
yusaku.yamamoto@uec.ac.jp

2 Tottori University, Tottori 680-8552, Japan

Abstract. Solution of the symmetric definite generalized eigenvalue
problem (GEP) Ax = λBx lies at the heart of many scientific compu-
tations like electronic structure calculations. The standard algorithm for
this problem consists of two parts, namely, reduction of the GEP to the
symmetric eigenvalue problem (SEP) and the solution of the SEP. Sev-
eral algorithms and codes exist for both of these parts, and their execution
times differ considerably depending on the input matrix size and the com-
putational environment. So, there is a strong need to choose the best com-
bination of codes automatically given these conditions. In this paper, we
propose such a methodology based on ATMathCoreLib, which is a library
to assist automatic performance tuning. Numerical experiments using per-
formance data on the K computer, Fujitsu FX10 and SGI Altix show that
our methodology is robust and can choose the fastest codes even in the
presence of large fluctuations in the execution time.

Keywords: automatic code selection · automatic performance
tuning · ATMathCoreLib · generalized eigenvalue problem · parallel
computing · ScaLAPACK · ELPA · EigenExa · performance prediction

1 Introduction

Suppose that there are M computer programs that can perform a given task.
Their functions are all equivalent, but their execution times may be different
and may vary depending on the input problem size, the computing environment
and random factors such as influence from other programs running on the same
machine. Suppose also that we want to perform the task N (≥ M) times using
the same computing environment, using different inputs of the same size, and
minimize the total execution time. If we have no prior knowledge on the execution
time of each program, a possible strategy is to use each of the M programs once
for the first M executions, choose the fastest one, and use it for the remaining
N −M executions. But the execution time may fluctuate due to random factors
and therefore the estimations from the first M executions may not be accurate.
Then, what is the best strategy?
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 453–463, 2023.
https://doi.org/10.1007/978-3-031-30442-2_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_34&domain=pdf
https://doi.org/10.1007/978-3-031-30442-2_34

454 M. Kobayashi et al.

More specifically, let the execution time of the mth program be denoted
by T (m,n,p, z), where n, p are parameters that specify the input problem
size and the computing environment, respectively, and z denotes the random
factor. Note that n, p and z are in general vector variables. For example, in the
case of eigenvalue computation, n consists of the matrix size and the number of
eigenvalues to be computed. The parameter p might consist of integers specifying
the target machine and the number of processors to be used. Then, our objective
is to choose the sequence m1,m2, . . . ,mN (1 ≤ mi ≤ M) judiciously to minimize
the expected value E[

∑N
i=1 T (mi,n,p, zi)], given n, p and some assumptions on

the probability distribution of {zi}. Note that mi may depend on the already
measured execution times, {T (mj ,n,p, zj)}i−1

j=1. This problem is known as online
automatic tuning [1].

There are two criteria in choosing m1,m2, . . . ,mN . On one hand, we need
to estimate the mean execution time E[T (m,n,p, z)] for each m accurately to
find the fastest program. In general, the accuracy is improved as the number of
measurement for each m is increased. On the other hand, we want to exploit the
knowledge obtained by previous measurements as much as possible, by maxi-
mizing the use of the program estimated to be the fastest. These two objectives
are conflicting, so there is a tradeoff between exploration and exploitation.

To solve this problem, Suda developed ATMathCoreLib [2], which is a library
to assist online automatic tuning. It constructs a statistical execution time model
for each of the M programs and chooses the one to be executed next time by
considering the tradeoff between exploration and exploitation. After execution, it
receives the actual execution time and updates the model using Bayes’ rule. This
process is repeated N times. In this way, the total execution time is minimized
in the sense of expected value.

In this paper, we apply ATMathCoreLib to automatic code selection for
the dense symmetric generalized eigenvalue problem (GEP) Ax = λBx, where
A,B ∈ R

n×n are symmetric and B is positive definite. For this problem, the stan-
dard procedure is to transform it to the standard symmetric eigenvalue problem
and then solve the latter [3]. There are several algorithms both for the first and
second parts and several implementations exist, such as ScaLAPACK [4], ELPA
[5,6] and EigenExa [7,8]. Which one is the fastest depends on the problem size
n and the computational environment. Since the dense symmetric GEP lies at
the heart of many scientific computations and it requires long computing time,
it is desirable to be able to choose the best code for a given condition automat-
ically. As computing environments, we consider the K computer, Fujitsu FX10
and SGI Altix. In our experiments, we add artificial noise corresponding to z to
measured data given in [9] and study if ATMathCoreLib can find the optimal
code for each case even in the presence of noise.

The rest of this paper is structured as follows. In Sect. 2, we detail the oper-
ation of ATMathCoreLib. Section 3 explains algorithms for the dense symmetric
GEP and their implementations. In Sect. 4, we apply ATMathCoreLib to the
dense symmetric GEP and give experimental results in several computing envi-
ronments. Finally, Sect. 5 gives some conclusion.

Automatic Code Selection for the Generalized Eigenvalue Problem 455

2 Operation of ATMathCoreLib

The operation of ATMathCoreLib is illustrated in Fig. 1 [10]. Here, we assume
that there is a master program that executes one of the M equivalent codes
depending on the code selection parameter k. The master program also measures
the execution time of the code. ATMathCoreLib works interactively with this
master program. At the ith iteration (1 ≤ i ≤ N), it selects the code to be
executed in such a way that the expected value of the total execution time
is minimized. To achieve this, it uses its internal execution time model, which
holds the estimates of the mean and variance of the execution time of each
code. A code is more likely to be selected if its mean is smaller (faster code) or
its variance is larger (meaning that the model for the code is not yet accurate
enough). This corresponds to choosing the code to be executed by considering the
tradeoff between exploration and exploitation. Then it passes the code number
ki to the master program. The master program receives it, executes the ki-
th code, measures its execution time, and passes it to ATMathCoreLib. Then,
ATMathCoreLib uses it to update its internal model. This process is repeated
for i = 1, 2, . . . , N .

Fig. 1. Operation of ATMathCoreLib.

Actually, the model update process in ATMathCoreLib is more intricate;
it consists of two steps called update of the coefficients of the linear model
and Bayes update. But we do not go into details here. Readers interested in
mathematical foundations of ATMathCoreLib should consult [1,2].

3 Algorithms for the Dense Symmetric GEP and Their
Implementations

Here, we consider computing all the eigenvalues and eigenvectors of a dense
symmetric GEP Ax = λBx. The standard procedure to solve this problem
consists of the following two parts:

456 M. Kobayashi et al.

1. Reduction of the GEP to a standard symmetric eigenvalue problem (SEP).
2. Solution of the SEP.

There are several algorithms for both of them. For the first part, the standard
method is to use the Cholesky decomposition of B. In that case, the whole
computation proceeds as follows:

(i) Compute the Cholesky decomposition B = LL�.
(ii) C ≡ L−1AL−�.
(iii) Solve the SEP Cy = λy and obtain the eigenvalues {λj}nj=1 and the eigen-

vectors {yj}nj=1.
(iv) xj ≡ L−�yj for j = 1, 2, . . . , n.

Here, steps (i), (ii) and (iv) correspond to part 1 and step (iii) corresponds to
part 2 above. There are two options in computing steps (ii) and (iv). The first
one is to use forward and backward substitutions to multiply L−1 or L−�. This
approach is adopted by ScaLAPACK. The second one is to compute the inverse
matrix L−1 explicitly and compute steps (ii) and (iv) by matrix multiplications.
This approach has the advantage that the number of forward and backward
substitutions, which have limited parallelism, is minimized and is adopted by
ELPA.

Another method for reducing the GEP to SEP is to use the eigendecompo-
sition of B. In this case, the computation proceeds as follows.

(i) Compute the eigendecomposition B = WDW�, where D is a diagonal
matrix and W is an orthogonal matrix.

(ii) C ≡ D− 1
2 W�AWD− 1

2 .
(iii) Solve the SEP Cy = λy and obtain the eigenvalues {λj}nj=1 and the eigen-

vectors {yj}nj=1.
(iv) xj = D

1
2 W�yj for j = 1, 2, . . . , n.

This method has the advantage that the same SEP solver can be used both for
steps (i) and (iii). It is used in EigenExa.

In the solution of the SEP, the matrix C is transformed to an intermediate
symmetric tridiagonal matrix T or a penta-diagonal matrix P by orthogonal
transformations, the eigenvalues and eigenvectors of T or P are computed, and
the eigenvectors are transformed to those of C by back-transformation. There
are several approaches to achieve this, as listed below.

(A) C is transformed directly to a symmetric tridiagonal matrix T by the House-
holder method. The eigenvalues and eigenvectors of T are computed by stan-
dard methods like the QR algorithm, the divide-and-conquer algorithm, or
the MR3 (Multiple Relatively Robust Representations) algorithm.

(B) C is first transformed to a symmetric band matrix S and then to a sym-
metric tridiagonal matrix T . The eigenvalues and eigenvectors of T are
computed by the standard methods.

(C) C is transformed directly to a symmetric penta-diagonal matrix P . The
eigenvalues and eigenvectors of P are computed by a specially designed
divide-and-conquer method.

Automatic Code Selection for the Generalized Eigenvalue Problem 457

Approach (A) is a conventional one and is adopted by ScaLAPACK. In ELPA
and EigenExa, there are also routines using this approach. We denote them
as ELPA1 and EIGS, respectively. While this approach is the most efficient in
terms of computational work, it has disadvantages that many inter-processor
communications are incurred in the tridiagonalization step and that matrix-
vector multiplications (DGEMV [11]) used in the tridiagonalization cannot use
cache memory effectively. In contrast, approach (B) requires less inter-processor
communications. Also, since most of the computations in the tridiagonalization
can be done in the form of matrix-matrix multiplications (DGEMM [12]), cache
memory can be used effectively. This approach is used by one of ELPA’s routine,
which we call ELPA2. Approach (C) is an intermediate approach between (A)
and (B) and is used in one of the routines in EigenExa. We call this EIGX.

In summary, there are three routines we can use for reducing the GEP to SEP,
namely, those from ScaLAPACK, ELPA and EigenExa. Also, there are five rou-
tines to solve the SEP, namely, ScaLAPACK, ELPA1, ELPA2, EIGS and EIGX.
While ScaLAPACK, ELPA and EigenExa have different matrix storage formats
and data distribution schemes, there is a middleware called EigenKernel [13]
that allows the user to freely combine routines from these libraries, by providing
automatic data conversion and re-distribution functions. Using EigenKernel, we
can evaluate the performance of various combinations and choose the fastest one
for a given matrix size and computational environment.

4 Automatic Code Selection for the Dense Symmetric
GEP Using ATMathCoreLib

Now we apply ATMathCoreLib to automatic code selection for the dense sym-
metric GEP and evaluate its performance. To this end, we use execution time
data on three distributed-memory parallel computers, namely, the K computer,
Fujitsu FX10 and SGI Altix ICE 8400EX, given in [9]. We add artificial ran-
dom noise to these data and study if ATMathCoreLib can choose the optimal
combination in the presence of error.

Among 3 × 5 = 15 possible combinations of the algorithms for reduction
to the SEP and solution of the SEP, 8 promising combinations (workflows) are
chosen as candidates in [9]. They are shown in Table 1. The specifications of the
parallel computers are listed in Table 2. The size of test matrices is n = 90, 000
and n = 430, 080. They are matrices from the ELSES matrix library, which is a
collection of matrix data from electronic structure calculations.

From the many test cases reported in [9], we picked up three cases for our
evaluation: the problem of n = 430, 080 on the K computer, n = 90, 000 on SGI
Altix and Fujitsu FX10. The number of nodes used is p = 10, 000 and 256 for the
K computer and SGI Altix, respectively. For Fujitsu FX10, p is either 1,024 or
1,369, depending on the workflow. This is because some library puts restrictions
on the number of nodes that can be used. The total execution times for the three
cases are shown in Table 3. Here, workflow D’ is the same as workflow D except

458 M. Kobayashi et al.

Table 1. Combinations of the algorithms used in [9].

Workflow Solution of SEP Reduction to SEP

A ScaLAPACK ScaLAPACK

B EIGX ScaLAPACK

C ScaLAPACK ELPA

D ELPA2 ELPA

E ELPA1 ELPA

F EIGS ELPA

G EIGX ELPA

H EIGX EigenExa

Table 2. Specifications of the parallel computers.

Name CPU Clock # of cores Byte/Flop

K computer SPARC 64 VIIIfx 2.0 GHz 8 0.5

Fujitsu FX10 SPARC64 IXfx 1.848 GHz 16 0.36

SGI Altix ICE 8400EX Intel Xeon X5570 2.93 GHz 8 0.68

that it does not use SSE-optimized routines in the ELPA2 solver. For each case,
the workflow with the shortest execution time is marked with bold letters.

In our numerical experiments, we operated ATMathCoreLib by using these
data as inputs, instead of actually executing the GEP solver each time. More
specifically, at the ith execution (1 ≤ i ≤ N), if the workflow selected by
ATMathCoreLib was ki, we picked up the execution time of the ki-th work-
flow from Table 3, added random noise to it, and input it to ATMathCoreLib.
As random noise, we used a random variable following normal distribution with
mean zero and standard deviation equal to 10%, 20%, or 40% of the correspond-
ing execution time. The number of total executions was set to N = 100 for all
cases.

The results of automatic code selection is illustrated in Figs. 2 through 7.
Figures 2, 4 and 6 show the execution time for each iteration, while Figs. 3, 5
and 7 show the workflows selected by ATMathCoreLib for each iteration. As
can be seen from the latter graphs, ATMathCoreLib tries various workflows at
the beginning, but gradually narrows down the candidates to one or two, finally
chooses the one it considers the fastest and then continues executing only that
one. In all the cases given here, the workflow finally chosen by ATMathCoreLib
was actually the fastest one, even if the noise level was as high as 40%. Thus
we can conclude that automatic code selection using ATMathCoreLib is quite
robust against fluctuations in the execution time. These final choices show that
ELPA is the fastest for reduction to the SEP in all three cases. For solution of
the SEP, EIGX was the fastest for the n = 430, 080/K and n = 90, 000/Altix
cases, while EIGS was the fastest for the n = 90, 000/FX10 case.

Automatic Code Selection for the Generalized Eigenvalue Problem 459

Table 3. Execution time of each workflow for three cases (taken from [9]).

Matrix size/Machine Workflow Total execution time (sec)

n = 430, 080/K A 11,634

(p = 10, 000) B 8,953

C 5,415

D 4,242

E 2,990

F 2,809

G 2,734

H 3,595

n = 90, 000/Altix A 1,985

(p = 256) B 1,883

C 1,538

D 1,621

D’ 2,621

E 1,558

F 1,670

G 1,453

H 2,612

n = 90, 000/FX10 A 1,248 (p = 1, 369)

(p = 1, 024/1, 369) B 691 (p = 1, 024)

C 835 (p = 1, 369)

D 339 (p = 1, 024)

E 262 (p = 1, 024)

F 250 (p = 1, 369)

G 314 (p = 1, 024)

H 484 (p = 1, 369)

Fig. 2. Execution time for the 430,080/K case.

460 M. Kobayashi et al.

Fig. 3. Workflows selected by ATMathCoreLib in the 430,080/K case.

Fig. 4. Execution time for the 90,000/Altix case.

Automatic Code Selection for the Generalized Eigenvalue Problem 461

Fig. 5. Workflows selected by ATMathCoreLib in the 90,000/Altix case.

Fig. 6. Execution time for the 90,000/FX10 case.

462 M. Kobayashi et al.

Fig. 7. Workflows selected by ATMathCoreLib in the 90,000/FX10 case.

5 Conclusion

In this paper, we proposed a strategy for automatic code selection for the dense
symmetric generalized eigenvalue problem. We consider the situation where N
GEPs of the same size are to be solved sequentially in the same computational
environment and there are multiple GEP solvers available whose performance we
do not know in advance. Then, our objective is to choose the GEP solver to try
for each execution judiciously, by taking into account the tradeoff between explo-
ration and exploitation, and minimize the expected value of the total execution
time. This can be realized by using ATMathCoreLib, which is a library to assist
automatic performance tuning. Numerical experiments using the performance
data on the K computer, Fujitsu FX10 and SGI Altix show that ATMathCore-
Lib can actually find the best solver even if there are large fluctuations in the
execution time. Thus we can conclude that our method provides a robust means
for automatic code selection.

Our future work includes applying this methodology to other matrix compu-
tations and extending it to optimization of parameters in solvers.

Acknowledgements. The authors thank the anonymous reviewers for valuable com-
ments that helped us to improve the presentation of this paper. The present study is
supported in part by the Ministry of Education, Science, Sports and Culture, Grant-
in-Aid for Scientific Research Nos. 19KK0255 and 22KK19772.

Automatic Code Selection for the Generalized Eigenvalue Problem 463

References

1. Naono, K., Teranishi, K., Cavazos, J., Suda, R. (Eds.): Software Automatic Tuning:
From Concepts to the State-of-the-Art Results, Springer, 2010. https://doi.org/10.
1007/978-1-4419-6935-4

2. Suda, R.: ATMathCoreLib: mathematical core library for automatic tuning (in
Japanese), IPSJ SIG Technical Report, Vol. 2011-HPC-129, No. 14, pp. 1–12 (2011)

3. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins Uni-
versity Press, Baltimore (2012)

4. Blackford, L.S., et al.: ScaLAPACK Users’ Guide, SIAM. Philadelphia (1997).
https://doi.org/10.1137/1.9780898719642

5. Auckenthaler, T., et al.: Parallel solution of partial symmetric eigenvalue problems
from electronic structure calculations. Parallel Comput. 37(12), 783–794 (2011).
https://doi.org/10.1016/j.parco.2011.05.002

6. Marek, A., et al.: The ELPA library - scalable parallel eigenvalue solutions for
electronic structure theory and computational science. J. Phys.: Condens. Matter
26, 213201 (2014). https://doi.org/10.1088/0953-8984/26/21/213201

7. Imamura, T., Yamada, S., Yoshida, M.: Development of a high performance eigen-
solver on a peta-scale next-generation supercomputer system. Prog. Nucl. Sci.
Technol. 2, 643–650 (2011). https://doi.org/10.15669/pnst.2.643

8. Imamura, T., Hirota, Y., Fukaya, T., Yamada, S., Machida, M.: EigenExa: high
performance dense eigensolver, present and future, 8th International Workshop
on Parallel Matrix Algorithms and Applications (PMAA14), Lugano, Switzerland,
2014. http://www.aics.riken.jp/labs/lpnctrt/index e.html

9. Imachi, H., Hoshi, T.: Hybrid numerical solvers for massively parallel eigenvalue
computation and their benchmark with electronic structure calculation. J. Inform.
Process. 24(1), 164–172 (2016). https://doi.org/10.2197/ipsjjip.24.164

10. Nagashima, S., Fukaya, T., Yamamoto, Y.: On constructing cost models for online
automatic tuning using. ATMathCoreLib, In: Proceedings of IEEE MCSoC 2016,
IEEE Press (2016). https://doi.org/10.1109/MCSoC.2016.52

11. Dongarra, J., Du Croz, J., Hammarling, S., Hanson, R.J.: An extended set of
fortran basic linear algebra subprograms. ACM Trans. Math. Softw. 14(1), 1–17
(1988). https://doi.org/10.1145/42288.42291

12. Dongarra, J.J., Du Croz, J., Hammarling, S., Hanson, R.J.: Algorithm 656: an
extended set of basic linear algebra subprograms: Model implementation and test
programs. ACM Trans. Math. Softw. 14(1), 18–32 (1988). https://doi.org/10.1145/
42288.42292

13. Tanaka, K., et al.: EigenKernel. Jpn. J. Ind. Appl. Math. 36(2), 719–742 (2019).
https://doi.org/10.1007/s13160-019-00361-7

14. http://www.elses.jp/matrix/

https://doi.org/10.1007/978-1-4419-6935-4
https://doi.org/10.1007/978-1-4419-6935-4
https://doi.org/10.1137/1.9780898719642
https://doi.org/10.1016/j.parco.2011.05.002
https://doi.org/10.1088/0953-8984/26/21/213201
https://doi.org/10.15669/pnst.2.643
http://www.aics.riken.jp/labs/lpnctrt/index_e.html
https://doi.org/10.2197/ipsjjip.24.164
https://doi.org/10.1109/MCSoC.2016.52
https://doi.org/10.1145/42288.42291
https://doi.org/10.1145/42288.42292
https://doi.org/10.1145/42288.42292
https://doi.org/10.1007/s13160-019-00361-7
http://www.elses.jp/matrix/

On Relative Accuracy of the One-Sided
Block-Jacobi SVD Algorithm

Gabriel Okša(B) and Martin Bečka

Institute of Mathematics, Slovak Academy of Sciences, Bratislava, Slovak Republic
{Gabriel.Oksa,Martin.Becka}@savba.sk

Abstract. We are interested in the relative accuracy of computed sin-
gular values in the serial real one-sided block-Jacobi SVD algorithm with
dynamic ordering using approximate weights, and in the orthogonality
of computed left and right singular vectors. Test matrices are of the
form A = BD, where B is a random matrix with a prescribed con-
dition number κ(B) and D is diagonal with given κ(D). We compare
the relative accuracy of singular values as well as the orthogonality of
left and right singular vectors computed by the Jacobi SVD algorithm
with results computed using the SVD algorithm based on the matrix bi-
diagonalization. When B is well-conditioned, the one-sided block-Jacobi
algorithm inherits a high relative accuracy from its element-wise coun-
terpart over a wide range of condition numbers κ(A).

Keywords: singular value decomposition · one-sided block-Jacobi
algorithm · preconditioning · dynamic ordering · relative accuracy

1 Introduction

In general, as a consequence of the Hoffman–Wielandt theorem [8], the algo-
rithms for the singular value decomposition (SVD) based on the bi-diagonaliza-
tion of matrix A ∈ R

m×n, m ≥ n, only compute its singular values σi(A) with
an absolute accuracy:

|σ̂i(A) − σi(A)| ≤ σmax(A)O(εM), 1 ≤ i ≤ n,

where σ̂i(A) is the ith computed singular value, σmax(A) is the maximal sin-
gular value of A, εM is the machine precision and the term O(εM) includes the
perturbation of A caused by its updates during computation. This means that
the smallest singular values may be computed with a small relative accuracy.
In contrast, the element-wise one-sided Jacobi SVD algorithm with the column-
cyclic ordering and the preconditioning based on the QR decomposition (QRD)
of A can achieve a high relative accuracy for all singular values, i.e.,

|σ̂i(A) − σi(A)|
σi(A)

≤ O(εM) min
S

κ(AS), 1 ≤ i ≤ n, (1)

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 464–475, 2023.
https://doi.org/10.1007/978-3-031-30442-2_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30442-2_35&domain=pdf
https://doi.org/10.1007/978-3-031-30442-2_35

On Relative Accuracy of the One-Sided Block-Jacobi SVD Algorithm 465

where S is a diagonal regular matrix that scales the columns of A. If κ(AS) �
κ(A) for some S, all singular values will be computed with high relative accuracy
[6]. As shown in [9], a diagonal scaling by reciprocal Euclidean norms of columns
of A (i.e., AS has all columns of unit norm) is nearly optimal.

Hence, for matrices of the form A = BD, where D is diagonal and B is
random with columns of unit norm and a prescribed 2-norm condition number
κ(B), the relative error is mainly governed by κ(B). This theoretical result was
confirmed for the element-wise one-sided Jacobi SVD algorithm with column-
cyclic ordering and preconditioning based on the QRD of A in [7] by numerical
tests for small values of κ(B) and a wide range of values of κ(D). Here we
test and analyze the relative accuracy of the one-sided block-Jacobi SVD algo-
rithm (OSBJA) with dynamic ordering using approximate weights (see [1,2])
and compare it with the relative accuracy of the SVD algorithm based on the
matrix bi-diagonalization (BIDSVDA). The same form of matrix A, A = BD,
was adopted as in [7] with prescribed values of κ(B) and κ(D). Although both
algorithms were serial, the conclusions also apply for their parallel versions.

2 One-Sided Block-Jacobi Algorithm
with Preconditioning

The OSBJA is listed below as Algorithm 1 (see [3] for details of preconditioning).

Algorithm 1. The OSBJA with Preconditioning and Dynamic Ordering
Input: �, A = (A1, A2, . . . A�), each block column is m × n/�
bsw = �(� − 1)/2
Compute the Gram matrix: B = AT A
[W, Λ] = EVD(B)
A = AW
Set: V = W
Compute the weights wrs

Choose the pair (i, j) of block columns with the maximum weight maxw
iter = 0
while (maxw ≥ (2n/�) εM) and (iter < 10 bsw) do

iter = iter + 1
Gij = [Ai, Aj]
[Xij , Σij] = SVD(Gij)
(Ai, Aj) = (Ai, Aj) ∗ Xij

(Vi, Vj) = (Vi, Vj) ∗ Xij

Update the weights wrs

Choose the pair of block columns (i, j) with the maximum weight maxw
end while
σr = ‖A(:, r)‖2 (the Euclidean norm of the rth column of A, 1 ≤ r ≤ n)
U = A diag(σ−1

r) (left singular vectors of A)
end

466 G. Okša and M. Bečka

Its detailed description together with the analysis of its implementation in
finite arithmetic can be found in [2,3]. Briefly, using the blocking factor �, the
input matrix is divided into � block columns (A1, A2, . . . A�), where each block
column is of size m × n/�. The variable bsw is the value of block sweep. Recall
that in any cyclic ordering a block sweep is the number of consecutive iteration
steps during which each off-diagonal block is zeroed exactly once. Although the
dynamic ordering does not have such a property, it is useful to introduce this
notion for a comparison of performance of the OSBJA with dynamic ordering
with any Jacobi SVD algorithm based on a cyclic block ordering.

For any r, 1 ≤ r ≤ �, let Ãr be normalized block column Ar where each
column has the unit Euclidean norm. Taking any Ãs, define the vector cs as

cs ≡ Ãs e

‖e‖2 , e = (1, 1, . . . , 1)T

as the representative vector of subspace span(As). Then the approximate weight
wrs, r < s, is defined as

wrs ≡ ‖ÃT
r cs‖2 =

‖ÃT
r Ãs e‖2
‖e‖2 .

When the columns of blocks Ar and As are mutually orthogonal, wrs = 0. A lar-
ge, positive value of wrs corresponds to highly mutually inclined block columns.

Inside the OSBJA, the SVD of each Gij of size m×2n/� was computed start-
ing with its QRD, and then using the classical element-wise two-sided SVD algo-
rithm on its square upper triangular factor Rij of order 2n/�. Recall the meaning
of ‘classical’: The off-diagonal element with maximal modulus was zeroed in each
iteration step. For these inner iterations, the following stopping criterion at inner
iteration step k was used:

‖off(R(k)
ij)‖F < ‖Rij‖F εM or max

p�=q
|R(k)

ij (p, q)| <

√
2

n(n − 1)
‖Rij‖F εM, (2)

where ‖Rij‖F and ‖off(R(k)
ij)‖F is the Frobenius norm of Rij and off-diagonal

Frobenius norm of R
(k)
ij , respectively. Note that no Gram matrix was computed

for the inner SVD.

3 Test Matrices

As mentioned above, the square test matrices of order n were of the form A =
BD. A matrix B of order n was random with a prescribed κ(B) and a decreasing
geometric sequence of singular values lying in the interval [κ(B)−1, 1]:

σi(B) = [κ(B)]−(i−1)/(n−1), 1 ≤ i ≤ n. (3)

A matrix B was constructed as follows (see [7]). First, two random orthogonal
matrices Q1, Q2 distributed uniformly according to the Haar measure were gene-
rated. If Σ̃ is diagonal with prescribed singular values from (3), then C = Q1Σ̃Q2

On Relative Accuracy of the One-Sided Block-Jacobi SVD Algorithm 467

was created. Second, for the matrix CT C there always exists an orhogonal Q3

such that the diagonal entries of QT
3 (CT C)Q3 are all equal to Trace(CT C)/n

(see [4]). Then the matrix B = CQ3 has all columns of the same Euclidean norm
and singular values from (3).

A matrix D was diagonal with a prescribed κ(D) and a decreasing arithmetic
sequence of singular values on main diagonal:

σi(D) = 1 − i − 1
n − 1

[1 − κ(D)−1], 1 ≤ i ≤ n, (4)

i.e., they lay in the interval [κ(D)−1, 1].
Since all columns of B had the same norm, the scaling of columns of A was

controlled mainly by a diagonal matrix D. Furthermore, each test matrix A
belonged to one class described by a pair (κ(B), κ(D)). Various values of κ(B)
and κ(D) enabled to construct matrices A with a wide range of condition num-
bers κ(A). Moreover, for a given class one could construct several independent
random matrices A as to get some insight into the statistical behavior of that
class.

Note that singular values σi(A) were not simple functions of σi(B) and σi(D).
However, it can be easily proved that κ(A) ≤ κ(B)κ(D). Also the distribution
of singular values A could not be deduced from distributions in B and D–except
when D = I and σi(A) = σi(B) for all i.

Now suppose that for a given matrix A of order n its SVD, A = UΣV T ,
was computed by two algorithms: the OSBJA with dynamic ordering using ap-
proximate weights (see Algorithm 1) and some BIDSVDA (e.g., the routine svd
in MATLAB). Denote the results computed in the OSBJA by a lower index
‘jc’, whereas those computed using the second algorithm by a lower index ‘bd’.
Further assume that the singular values at the end of computation are ordered
in the same way (e.g., non-increasingly) in both cases. Finally, we needed ‘exact‘
singular values for each matrix A, which were denoted by σi,ex(A) and ordered
in the same way. Note that the ‘exact’ singular values were computed using the
variable precision arithmetic (vpa) with 32 decimal digits in MATLAB, while
all other computations were performed in double precision. Then the relative
accuracy of both SVD algorithms was measured by following three parameters
(the results computed in double precision are denoted by a hat):

1. Maximal relative error in computed singular values:

ηjc = max
1≤i≤n

|σ̂i,jc(A) − σi,ex(A)|
σi,ex(A)

, ηbd = max
1≤i≤n

|σ̂i,bd(A) − σi,ex(A)|
σi,ex(A)

. (5)

2. Orthogonality of the computed left singular vectors:

ωjc = ‖ÛT
jc Ûjc − In‖F, ωbd = ‖ÛT

bdÛbd − In‖F. (6)

3. Orthogonality of the computed right singular vectors:

τjc = ‖V̂ T
jc V̂jc − In‖F, τbd = ‖V̂ T

bdV̂bd − In‖F. (7)

468 G. Okša and M. Bečka

4 Implementation in MATLAB

Algorithm 1 was implemented in MATLAB, v. 2020b, together with the cre-
ation of test matrices. Condition numbers κ(B) were taken from the set ZB =
{10j , 1 ≤ j ≤ 4}, whereas those of κ(D) from the set ZB = {10j , 0 ≤ j ≤ 7}. For
each class (κ(B), κ(D)), nmat = 5 random matrices A = BD were constructed.
For this purpose, the MATLAB function B = gallery(‘randcolu′, svB) was
used where svB is the vector of singular values of matrix B. Note that before
calling this function the singular values of B were properly scaled: The sum of
their squares was equal to the number of matrix columns n. Then all columns of
B had the unit Euclidean norm. Given κ(D), the construction of diagonal matrix
D was straightforward. In the experiment, square matrices of order n = 500 and
blocking factor � = 10 were used.

Matrices A = BD were created using three embedded cycles. The outermost
cycle, I = 1 : |ZB|, where |ZB| is the number of elements in the set ZB, computed
a vector of singular values of B for given κ(B) (see (3)). Similarly, the second
cycle, J = 1 : |ZD|, computed a vector of singular values of D for given κ(D)
(see (4)). Finally, the innermost cycle, K = 1 : nmat , computed matrices B, D
and A = BD.

The eigenvector matrix W of the Gram matrix AT A, used for the precondi-
tioning in the OSBJA, was computed using the MATLAB function eig(A′ ∗ A),
where A′ = AT .

Matrices AW and A then entered the OSBJA and the MATLAB function
svd, respectively, to compute the SVD of A using two different algorithms. The
innermost loop (for index K) was repeated nmat times, each time with a new
random matrix B (but with the same κ(B)) and the same matrix D. Hence,
together |ZB| × |ZD| × nmat = 160 matrices were analyzed. For each matrix, its
global index globind was computed as follows:

globind = (I − 1) × |ZD| × nmat + (J − 1) × nmat + K.

Note that for a given (constant) κ(B) there were 8×5 = 40 matrices when going
through all values of κ(D) and nmat .

Almost all computations were performed in double precision with εM ≈
2.22 × 10−16. However, for the computation of ‘exact’ singular values of A, the
MATLAB function svd with 32 decimal digit accuracy was used: svd(vpa(A, 32)).
Subsequently, the ‘exact‘ singular values were rounded to double precision and
served as the reference values for the computation of maximal relative errors ηjc
and ηbd in (5).

5 Discussion of Numerical Results

We start with the estimated values of κ(A) that are depicted in Fig. 1. As can
be seen, the values of κ(A) range from the very well-conditioned matrices with
κ(A) = 10 for the class (10, 1) (here A has the same singular values as B) up to
very ill-conditioned ones with κ(A) ≈ 1010 for the class (104, 107). In each class,

On Relative Accuracy of the One-Sided Block-Jacobi SVD Algorithm 469

Fig. 1. Estimated values of κ(A)

all nmat = 5 random matrices have practically the same condition number. The
increase of κ(A) with global index is organized into 4 groups of 40 matrices,
where each group corresponds to constant κ(B) and variable κ(D).

For a given class (κ(B), κ(D)), the maximal number of outer iterations
needed for the convergence of the OSBJA is provided in Table 1. Note that
for each class the minimal number of outer iterations was about 2-3 iterations
less that the maximal one when going through nmat = 5 random matrices. In
this sense, the OSBJA was very consistent.

Table 1. Maximal number of outer iterations in the OSBJA

κ(B)\κ(D) 1 10 102 103 104 105 106 107

10 0 1 8 9 9 9 9 9

102 11 16 17 19 19 19 19 19

103 28 31 31 30 31 31 32 32

104 35 37 37 37 37 37 37 41

Several interesting observations can be made by analyzing Fig. 1 and Table 1.
The number of iterations clearly depends on κ(B), and is practically constant
for given κ(B) and increasing κ(D). This means that for matrices A = BD the
column-scaling of B by diagonal D is not important for the convergence of the
OSBJA. It is well-known that the element-wise Jacobi algorithm with column-
cyclic ordering ‘sees’ through the column scaling of A (compare with (1)), and
its high relative accuracy is the consequence of this property. Our experiments

470 G. Okša and M. Bečka

show that this feature is present also in the OSBJA with dynamic ordering using
approximate weights.

Note that all matrices A belonging to the class (κ(B), 1) (first column in
Table 1) have all singular values equal to those of B, so that they are distributed
as a geometric sequence in the interval [κ(B)−1, 1]. For matrices from the class
(10, 1) there were no iterations of the OSBJA needed; a simple application of the
preconditioning gave the SVD of A with required accuracy. In other words, all
computed weights were already less than 2nεM/� ≈ 2.22×10−14 at the beginning
of the OSBJA. Very similar situation can be observed for matrices in the class
(10, 10) where only one iteration of the OSBJA was needed.

When moving along the columns of Table 1, the number of iterations in the
OSBJA increases. This increase is clearly controlled by κ(B) and is very consis-
tent if one forgets two extreme classes of very well-conditioned matrices discussed
in the previous paragraph. Recall that according to the analysis in [3] the quality
of preconditioner W decreases with increasing value of κ(A), so that more outer
iterations are needed for the convergence. This is confirmed by increasing num-
bers of iterations in any fixed column of Table 1 whereby κ(A) also increases.
However, it is not confirmed by an approximately constant number of iterations
along any fixed row of Table 1, where κ(A) also increases (compare with Fig. 1).
To explain this observation one needs more information about the MATLAB
EVD function eig, namely, what algorithm is used for the EVD of a symmetric
Gram matrix AT A in the factored form. Note that in our experiment the Gram
matrix had a special structure DBT BD with 102 ≤ κ(BT B) ≤ 108. Hence, a
well- or ill-conditioned ‘core’ matrix BT B had its rows and columns scaled by the
same diagonal matrix D. It is possible that these properties enable to compute
such W that AW is close to range(U) regardless of κ(D).

It is interesting to note, that the OSBJA converged in less than one block
sweep for all matrices A with a huge range of κ(A) covering 10 orders of mag-
nitude (in our case, bsw = 45 outer iterations). This is an excellent result, espe-
cially w.r.t. the element-wise Jacobi SVD algorithm with some cyclic ordering,
which usually requires 5–8 sweeps for convergence. It also explains why the par-
allel OSBJA with dynamic ordering is comparable in speed with some parallel
SVD algorithms based on bi-diagonalization–see [5].

The comparison of achieved relative accuracy in computing singular values
and orthogonality of computed left and right singular vectors for the OSBJA
and BIDSVDA is provided in Fig. 2.

The final maximal weight for the OSBJA is depicted on Fig. 2a, where the
thick horizontal line denotes the convergence tolerance 2nεM/� ≈ 2.22 × 10−14.
Clearly, all maximal weights are located below that horizontal line, some of them
substantially below.

Figure 2b contains a comparison of achieved relative accuracy in computed
singular values between the OSBJA and BIDSVDA. For the first two values of
κ(B) = 10 and 102 (global indices in the interval [1, 80]), the OSBJA computes
all singular values of A with the relative accuracy of 10−15, while the BIDSVDA
can be more than 2 orders of magnitude worse. The first jump in ηjc comes

On Relative Accuracy of the One-Sided Block-Jacobi SVD Algorithm 471

Fig. 2. Relative accuracy of the OSBJA and BIDSVDA

with κ(B) = 103 (global indices in [81, 120]), the second one with κ(B) = 104

(global indices in [121, 160]). Each jump in ηjc means a loss of one decimal
digit of relative accuracy. While for κ(B) = 103 the OSBJA has still a better
relative accuracy than the BIDSVDA, this is not true for κ(B) = 104 where the
OSBJA can achieve even lower relative accuracy than the BIDSVDA. All these
results confirm the upper bound in (1) (note that in our notation AS = B). In
other words, if B = AS is ill-conditioned, the OSBJA may loose its property to
compute all singular values with high relative accuracy.

More insight into the loss of relative accuracy in the OSBJA is enabled by
Fig. 3. Its upper part repeats (albeit with better resolution) Fig. 2b. Additional-
ly, the lower part depicts the index of that singular value of A at which ηjc was
achieved. As can be clearly seen, for well-conditioned B with 10 ≤ κ(B) ≤ 102

(global indices in [1, 80]), the index of ηjc is distributed almost randomly and the
maximal relative error is sometimes achieved for maximal singular value of A
with index 1 (recall that the singular values are ordered non-increasingly). How-
ever, the situation changes substantially for 103 ≤ κ(B) ≤ 104 (global indices
in [81, 160]), where the index of ηjc is limited to the interval [400, 500], i.e., to
the smallest singular values of A. This observation can be, at least partially,
explained as follows. Recall that matrices B have geometrically distributed sin-
gular values in the interval [(κ(B)−1, 1], which means that for large values of
κ(B) they form tight clusters in the vicinity of σn(B) = σmin(B). Although
these clusters are modified by arithmetically distributed singular values of D,

472 G. Okša and M. Bečka

Fig. 3. Maximal relative error in computed singular values and the index of maximal
relative error for the OSBJA

they may be dispersed only partially, and even new tight clusters can be formed.
Additionally, for very ill-conditioned matrices A with κ(A) > 108 (see Fig. 1),
σmin(A) can be tiny, say, of order 10−9. Apparently, for both algorithms it is
then difficult to compute members of tight clusters and/or tiny singular values
with high relative accuracy.

Figure 2c contains the comparison of the loss of orthogonality of computed
left singular vectors by both algorithms. As can be seen, for the BIDSVDA the
parameter ωbd ≈ 5 × 10−14 for all matrices, whereas for the OSBJA ωjc varies
in the interval [2× 10−13, 6× 10−13] and is about one order of magnitude larger.
In our experience, the level of orthogonality of left singular vectors computed by
the OSBJA cannot be improved easily. Recall that at the end of the OSBJA the
Euclidean norms of columns of the iterated matrix A are singular values of A, and
after scaling of the ith column by (σ̂i(A))−1 one obtains the ith column of Ûjc. In
each outer iteration step, two block columns of A are updated by an orthogonal
transformation Xij , which is the accumulation of the Givens rotations in the
inner SVD of Gij (see Algorithm 1). Hence, an accumulation of rounding errors
in the computation of Xij , an inaccuracy of Xij due to the stopping criterion in
the inner SVD as well as an inexact update of two block columns (Ai, Aj) may
result in the loss of orthogonality of computed left singular vectors.

On Relative Accuracy of the One-Sided Block-Jacobi SVD Algorithm 473

Finally, Fig. 2d depicts the loss of orthogonality of computed right singular
vectors. Note that in Algorithm 1 these vectors are updated by the same accu-
mulated orthogonal matrix Xij as the iterated matrix A, but initially V̂jc = W ,
where W is the preconditioner, i.e., the matrix of eigenvectors of AT A. Hence,
the orthogonality of final V̂jc critically depends on the orthogonality of computed
W (see the analysis in [3]). As can be observed, one has τjc ≈ 5 × 10−14 for all
matrices, which is about one order of magnitude better than ωjc in Fig. 2c.

However, for very ill-conditioned matrices with κ(A) > 108 (see Fig. 1, global
indices in [140, 160]) the preconditioner W looses its orthogonality, so that τjc
starts to increase. Our numerical experiment was extended with κ(B) = 105 and
all 8 values of κ(D) used above, so that additional 40 matrices were processed
with κ(A) ∈ [105, 1011] and global indices in [161, 200]. In Fig. 4, the loss of
orthogonality of computed right singular vectors is depicted. As can be observed,
τjc may almost double for matrices in classes (104, κ(D)) with κ(D) > 102 (global
indices in [176, 200]).

Fig. 4. Loss of orthogonality of right singular vectors in extended experiment

If the preconditioner W looses its orthogonality, the SVD of the precondi-
tioned AW may be a severe perturbation of that of A. This conclusion is con-
firmed by Fig. 5. Besides an additional jump in ηjc for matrices with κ(B) = 105

(global indices in [161, 200]) one can observe another significant increase of ηjc by
2 orders of magnitude for some matrices in the classes (105, 106) and (105, 107)
(global indices in [191, 200]). It seems that for a very ill-conditioned A, the com-
putation of a ‘sufficiently’ orthogonal W by eig(A′∗A) in MATLAB has its limits
in double precision. One possible explanation may be the presence of tight clus-
ters of eigenvalues of the Gram matrix AT A (which are the squares of singular
values of A) that cause an ill-conditioning of the corresponding eigenvectors.

474 G. Okša and M. Bečka

Fig. 5. Maximal relative error in computed singular values and the index of maximal
relative error for the OSBJA in extended experiment

6 Conclusions

For matrices of type A = BD, where B is well-conditioned and D diagonal, the
OSBJA with dynamic ordering using approximate weights inherits a high rela-
tive accuracy in computing all singular values from its element-wise counterpart
over a wide range of condition numbers κ(A). The achieved relative accuracy is
sometimes more than 2 orders of magnitude better than that of the BIDSVDA.
However, with increasing κ(B), the relative accuracy of the OSBJA decreases
by approximately one decimal digit per 10-fold increase of κ(B).

The use of the orthogonal eigenvector matrix W of the Gram matrix AT A
as a preconditioner gives fast convergence of the OSBJA for almost all matrices
A, but it has its limits for huge values of κ(AT A). Another open issue is the
problem of achieving a better orthogonality of computed left singular vectors
Ûjc by an iterative orthogonalization of the columns of A.

Acknowledgment. Authors were supported by the VEGA grant no. 2/0015/20.

References

1. Bečka, M., Okša, G., Vajteršic, M.: New dynamic orderings for the parallel one-sided
block-Jacobi SVD algorithm. Parallel Proc. Lett. Ser. 25, 1–19 (2015). https://doi.
org/10.1142/S0129626415500036

https://doi.org/10.1142/S0129626415500036
https://doi.org/10.1142/S0129626415500036

On Relative Accuracy of the One-Sided Block-Jacobi SVD Algorithm 475

2. Bečka, M., Okša, G., Vidličková, E.: New preconditioning for the one-sided block-
Jacobi SVD algorithm. In: Wyrzykowski, R., et al. PPAM17, Springer Nature.
LNCS, vol. 10777, pp. 590–599. Springer, Cham (2018). https://doi.org/10.1007/
978-3-310-78024-5 51

3. Bečka, M., Okša, G.: Preconditioned Jacobi SVD algorithm outperforms
PDGESVD. In: Wyrzykowski, R., et al. (Eds.) PPAM19, Springer Nature. LNCS,
vol. 12043, pp. 555–566. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
43229-4 47

4. Davies, P.I., Higham, N.J.: Numerically stable generation of correlation matrices
and their factors. BIT Numer. Math. Ser. 40, 640–651 (2000). https://doi.org/10.
1023/A:1022384216930

5. Dongarra, J., et al.: The singular value decomposition: anatomy of optimizing an
algorithm for extreme scale. SIAM Rev. Ser. 60, 808–865 (2018). https://doi.org/
10.1137/17M1117732

6. Drmač, Z., Veselić, K.: New fast and accurate Jacobi SVD algorithm: I. SIAM J.
Matrix Anal. Appl. Ser. 29, 1322–1342 (2008). https://doi.org/10.1137/050639193

7. Drmač, Z., Veselić, K.: New fast and accurate Jacobi SVD algorithm: II. SIAM J.
Matrix Anal. Appl. Ser. 29, 1343–1362 (2008). https://doi.org/10.1137/05063920X

8. Hoffman, A.J., Wielandt, H.W.: The variation of the spectrum of a normal matrix.
Duke Math. J. Ser. 20, 37–39 (1953). https://doi.org/10.1215/S0012-7094-53-
02004-3

9. van der Sluis, A.: Condition numbers and equilibration of matrices. Numer. Math.
Ser. 14, 14–23 (1969). https://doi.org/10.1007/BF02165096

https://doi.org/10.1007/978-3-310-78024-5_51
https://doi.org/10.1007/978-3-310-78024-5_51
https://doi.org/10.1007/978-3-030-43229-4_47
https://doi.org/10.1007/978-3-030-43229-4_47
https://doi.org/10.1023/A:1022384216930
https://doi.org/10.1023/A:1022384216930
https://doi.org/10.1137/17M1117732
https://doi.org/10.1137/17M1117732
https://doi.org/10.1137/050639193
https://doi.org/10.1137/05063920X
https://doi.org/10.1215/S0012-7094-53-02004-3
https://doi.org/10.1215/S0012-7094-53-02004-3
https://doi.org/10.1007/BF02165096

Author Index

A
Aaraj, Najwa I-399
Ababaei, Ahmad I-359
Abduljabbar, Mustafa I-249
Abeykoon, Vibhatha I-291
Afonso, Sergio I-371
Afzal, Ayesha I-155
Aliaga, José I. I-16
Aljaberi, Saeed I-399
Almeida, Francisco I-371
Alonso-Jordá, Pedro II-236
Andersson, Måns I. I-333, I-383
Andresen, Daniel II-260
Antkowiak, Michał II-382
Anzt, Hartwig I-113

B
Bader, David A. I-71
Balis, Bartosz I-197
Banaszak, Michał II-370
Beams, Natalie I-113
Bečka, Martin I-464
Benet, Luis II-428
Bielecki, Wlodzimierz II-51
Blanco, Vicente I-371
Bosque, Jose Luis I-237
Bottalico, Davide II-101
Brzostowski, Bartosz II-392
Bulckaen, Léo II-470
Bulkhak, Artem II-248
Bungartz, Hans-Joachim I-139
Bystrov, Oleg I-171

C
Cabrera, Alberto I-371
Carracciuolo, Luisa II-101
Carretero, Jesus II-77
Cascajo, Alberto II-77
Castrillon, Jeronimo I-249
Chandra, M Girish II-153
Chung, Minh Thanh I-263

Cuocolo, Reanto II-115
Cuomo, Salvatore II-115
Czajkowski, Marcin I-126
Czarnul, Paweł I-429

D
Das Sarma, Aditya II-153
De Lucia, Gianluca II-127
Dimov, Ivan I-55
Dmitruk, Beata II-63
Du, Zhihui I-71
Dubey, Anshu I-279
Durajski, Artur P. II-392
Dutka, Łukasz I-305
Dutta, Nilankur II-470
Dytrych, Tomáš II-357

E
Eitzinger, Jan I-321
Exposito, David II-77

F
Fato, Francesco II-115
Ferguson, Zachary II-415
Ferranti, Luca II-428
Fohry, Claudia II-14
Fomperosa, Jaime I-237
Fox, Geoffrey I-291
Fredriksson, Albin I-383
Fürlinger, Karl I-263

G
Ganzha, Maria I-55
García-Risueño, Pablo I-3
Garzón, Ester M. II-165
Gepner, Paweł II-223
Giampaolo, Fabio II-115
Gielerak, Roman II-187
Gokieli, Maria II-343
Górka, Patryk II-481

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
R. Wyrzykowski et al. (Eds.): PPAM 2022, LNCS 13826, pp. 477–480, 2023.
https://doi.org/10.1007/978-3-031-30442-2

https://doi.org/10.1007/978-3-031-30442-2

478 Author Index

Grabowski, Michal I-197
Graillat, Stef I-16
Gruszka, Konrad M. II-392
Grzeszczak, Jakub I-414

H
Hager, Georg I-155
Halver, Rene II-3
Hambitzer, Anna I-399
Hardenbicker, Kai II-14
Hoekstra, Alfons I-183
Hoffmann, Nico II-273
Hoshi, Takeo I-453
Hsu, William II-260
Hutchison, Scott II-260

I
Iakymchuk, Roman I-16
Ibañez, Mario I-237
Imamura, Toshiyuki I-40
Iserte, Sergio II-223

J
John, Joseph I-225
Junghans, Christoph II-3
Jurczuk, Krzysztof I-126

K
Kačeniauskas, Arnas I-171
Kaliszewski, Ignacy II-139
Kamburugamuve, Supun I-291
Kamil, Shoaib II-415
Kanewala, Thejaka Amila I-291
Karbowiak, Łukasz I-441
Kitowski, Jacek I-305
Kjelgaard Mikkelsen, Carl Christian I-3
Klosterman, Tom I-279
Kluge, Thomas II-273
Kobayashi, Masato I-453
Kolotinskii, Daniil I-346
Kosheleva, Olga II-405
Köstler, Harald I-321
Kotara, Piotr II-209
Kranzlmüller, Dieter I-263
Kreinovich, Vladik II-405
Kretowski, Marek I-126
Kryza, Bartosz I-305
Krzywaniak, Adam II-223
Krzyżanowski, Piotr II-323

Kubanek, Mariusz I-441
Kubica, Bartłomiej Jacek II-441
Kudo, Shuhei I-453
Kumar, A Anil II-153
Kurowski, Krzysztof II-177

L
Laccetti, Giuliano II-89
Langr, Daniel II-357
Lapegna, Marco II-127
Lemański, Romuald II-382
Lenadora, Damitha I-291
Lewandowski, Michał I-30
Liu, Felix I-383
López-Villellas, Lorién I-3
Lubaś, Robert II-492

M
Maithree, Hasara I-291
Majumder, Utso II-153
Małecki, Krzysztof II-481, II-502
Marcinkowski, Leszek II-300
Markidis, Stefano I-155, I-333, I-383
Marowka, Ami II-27, II-39
Martín Garzón, Gracia Ester II-139
Martínez, Héctor II-236
Martins, Wellington Santos I-83
Mele, Valeria II-89
Michel, Antoine I-359
Michelino, Davide II-101
Miethlinger, Thomas II-273
Mikitiuk, Artur I-414
Milthorpe, Josh I-225
Miroforidis, Janusz II-139
Montella, Raffaele II-77
Moreno, Juan José II-139
Moskovka, Alexej II-287, II-331
Mukunoki, Daichi I-40
Murugan, Natarajan Arul I-333

N
Neckel, Tobias I-139
Neilsen, Mitchell II-260
Nichita, Pavel I-371
Nicolas, Alexandre II-470

O
Ogita, Takeshi I-40
Okša, Gabriel I-464

Author Index 479

Olejniczak, Andrzej II-370
Ortega, Gloria II-165
Orts, Francisco II-165
Orzechowski, Michał I-305
Ostrowski, Krzysztof II-502
Ozaki, Katsuhisa I-40

P
Pacevič, Ruslan I-171
Pałka, Dariusz II-492
Palkowski, Marek II-51
Panozzo, Daniele II-415
Paprzycki, Marcin I-55
Parsons, Benjamin II-260
Pavlov, Daniil I-346
Perera, Niranda I-291
Pericàs, Miquel I-249
Piccialli, Francesco II-115
Pimentel, Andy D. I-183
Pires, Julio Cesar Batista I-83
Podobas, Artur I-333
Pramanik, Sayantan II-153
Puertas, Antonio M. II-165

Q
Quintana-Ortí, Enrique S. II-236

R
Rahman, Talal II-300
Ramírez, Cristian II-236
Ravedutti Lucio Machado, Rafael I-321
Reitz, Lukas II-14
Reiz, Severin I-139
Revol, Nathalie II-428
Rojek, Krzysztof II-223
Romano, Diego II-127
Rosa, Bogdan I-359
Rościszewski, Paweł II-223
Rycerz, Katarzyna II-199, II-209

S
Sabella, Gianluca II-101
Sasak-Okoń, Anna I-95
Satpute, Nitin I-399
Sawerwain, Marek II-187
Sayama, Hiroki II-459
Schneider, Teseo II-415

Shaikhislamov, Denis I-209
Shan, Kaiying I-291
Shan, Xiujie II-313
Sikorski, Andrzej I-30
Słota, Renata G. I-305
Slysz, Mateusz II-177
Soomro, Pirah Noor I-249
Spadarella, Gaia II-115
Spisso, Bernardino II-101
Stafford, Esteban I-237
Stegailov, Vladimir I-346
Stpiczyński, Przemysław II-63
Strazdins, Peter I-225
Sutmann, Godehard II-3

T
Tang, Xuan II-415
Todorov, Venelin I-55
Toporkov, Victor II-248
Trojanowski, Krzysztof I-414
Tsai, Yu-Hsiang Mike I-113
Tudruj, Marek I-95

U
Ugga, Lorenzo II-115
Uyar, Ahmet I-291

V
Vaidya, Vishnu II-153
Valdman, Jan II-287, II-331
van Dijk, Jelle I-183
van Gijzen, Martin B. II-313
Varbanescu, Ana-Lucia I-183
Vizzari, Giuseppe II-492
Voevodin, Vadim I-209
Vohnoutová, Marta II-331

W
Wąs, Jarosław II-492
Węglarz, Jan II-177
Weidendorfer, Josef I-263
Wellein, Gerhard I-155, I-321
Widanage, Chathura I-291
Wieczerzak, Dawid I-429
Wojtkiewicz, Jacek II-392
Wołoszczuk, Sebastian II-370
Woźniak-Braszak, Aneta II-370

480 Author Index

Wróbel, Piotr II-481
Wrosz, Izajasz I-30
Wrzeszcz, Michał I-305

Y
Yamamoto, Yusaku I-453
Yemelyanov, Dmitry II-248

Z
Zavodszky, Gabor I-183
Zawadzki, Tomasz II-209
Zawalska, Justyna II-199
Zhang, Sen I-71
Zhilin, Sergei II-428
Zorin, Denis II-415

	 Preface
	 Organization
	 Contents – Part I
	 Contents – Part II
	Numerical Algorithms and Parallel Scientific Computing
	How Accurate Does Newton Have to Be?
	1 Introduction
	2 Auxiliary Results
	3 Main Results
	3.1 Stagnation
	3.2 The Decay of the Error
	3.3 Convergence
	3.4 How Accurate Does Newton Have to Be?

	4 Numerical Experiments
	4.1 Computing Square Roots
	4.2 Constrained Molecular Dynamics

	5 Related Work
	6 Conclusions
	References

	General Framework for Deriving Reproducible Krylov Subspace Algorithms: BiCGStab Case
	1 Introduction
	2 Background
	3 General Framework for Reproducible Krylov Solvers
	4 BiCGStab
	5 Experimental Results
	6 Conclusions
	References

	A Generalized Parallel Prefix Sums Algorithm for Arbitrary Size Arrays
	1 Introduction
	2 Parallel Prefix
	3 Handling Arbitrary Size Inputs
	4 The Right-Sweep Phase
	5 Experimental Results
	6 Conclusions
	References

	Infinite-Precision Inner Product and Sparse Matrix-Vector Multiplication Using Ozaki Scheme with Dot2 on Manycore Processors
	1 Introduction
	2 Related Work
	3 Method
	4 Performance Estimation
	4.1 Throughput of GEMM and SpMM Using Dot2
	4.2 Performance of IP-DOT and IP-SpMV

	5 Demonstration on CPU and GPU
	5.1 DOT
	5.2 Reproducible CG Solvers

	6 Conclusion
	References

	Advanced Stochastic Approaches for Applied Computing in Environmental Modeling
	1 Introduction
	2 Sensitivity Analysis - Definitions
	3 Stochastic Approaches
	4 Sensitivity Studies with Respect to Emission Levels
	5 Sensitivity Studies with Respect to Chemical Reactions Rates
	6 Conclusion
	References

	Parallel Non-numerical Algorithms
	Parallel Suffix Sorting for Large String Analytics
	1 Introduction
	2 Problem Description
	3 Algorithm Design
	3.1 Algorithm Framework
	3.2 Parallel Induce Method

	4 Complexity Analysis
	5 Related Work
	6 Conclusion
	References

	Parallel Extremely Randomized Decision Forests on Graphics Processors for Text Classification
	1 Introduction
	2 Trees and Ensembles
	2.1 Decision Trees
	2.2 Bagging
	2.3 Boosting
	2.4 Ensembles of Ensembles

	3 Parallel Approach
	3.1 Sampling
	3.2 Class Count
	3.3 Min/Max and Candidates
	3.4 Find Best and Split
	3.5 The Complete Solution

	4 Experimental Results
	4.1 System
	4.2 Datasets
	4.3 Analysis

	5 Conclusions
	References

	RDBMS Speculative Support Improvement by the Use of the Query Hypergraph Representation
	1 Introduction
	2 Related Work
	3 The Speculative Layer
	4 A New Strategy for Speculative Query Assignment to Input Queries
	5 A Hypergraph for Speculative Query Assignment
	6 In Advance Speculative Query Matching Algorithm
	7 Experimental Results
	8 Conclusions
	References

	GPU Computing
	Mixed Precision Algebraic Multigrid on GPUs*-4pt
	1 Introduction
	2 Background on AMG and Related Work
	3 Design of the Flexible and Platform-Portable AMG
	4 Experiments
	5 Conclusion
	References

	Compact In-Memory Representation of Decision Trees in GPU-Accelerated Evolutionary Induction
	1 Introduction
	2 Background
	2.1 Decision Trees
	2.2 Decision Tree Induction
	2.3 Global Decision Tree System

	3 GPU-Supported Evolution Using Compact In-Memory Representation of Decision Trees
	3.1 In-Memory Representation of Decision Trees
	3.2 GPU Kernels Implementation

	4 Experimental Validation
	4.1 Results

	5 Conclusion
	References

	Neural Nets with a Newton Conjugate Gradient Method on Multiple GPUs
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Scientific Computing for Deep Learning
	3.2 State-of-the-Art Optimization Approaches
	3.3 Proposed 2nd-Order Optimizer

	4 Scenarios and Neural Network Architectures
	5 Implementation
	5.1 Automatic Differentiation Framework
	5.2 Data Parallelism
	5.3 Software and Hardware Setup

	6 Results
	6.1 Accuracy Results for Different Scenarios
	6.2 Parallel Runs

	7 Conclusion and Future Work
	References

	Performance Analysis and Prediction in HPC Systems
	Exploring Techniques for the Analysis of Spontaneous Asynchronicity in MPI-Parallel Applications
	1 Introduction and Related Work
	2 Case Studies, Testbed and Experimental Methods
	2.1 Test Systems and Methodology
	2.2 Synthetic Microbenchmarks
	2.3 Proxy Memory-Bound Parallel Applications
	2.4 Observables for Analysis

	3 Simple Timeline Metrics for Analysis
	3.1 Rank/ccNUMA-wise Timelines and Histogram of MPI Time and Performance
	3.2 Timeline in Compact Representation

	4 Advanced Metrics for Analysis
	4.1 Correlation Coefficient
	4.2 Phase Space Plots

	5 Machine Learning Techniques for Analysis
	5.1 Principal Component Analysis (PCA)
	5.2 K-means Clustering

	6 Summary and Future Work
	References

	Cost and Performance Analysis of MPI-Based SaaS on the Private Cloud Infrastructure
	1 Introduction
	2 The Governing Relations of the Discrete Element Method
	3 DEM SaaS Deployed on OpenStack Cloud
	3.1 Parallel DEM SaaS
	3.2 OpenStack Cloud Infrastructure

	4 The Cost and Performance Analysis
	5 Conclusions
	References

	Building a Fine-Grained Analytical Performance Model for Complex Scientific Simulations*-4pt
	1 Introduction
	2 Performance Modeling Methodology
	3 Modeling Hemocell
	3.1 Hemocell
	3.2 Performance-Relevant Functions and Parameters
	3.3 Model-Building
	3.4 Model Calibration

	4 Scenario Analysis
	4.1 Scenario: Balanced Workload
	4.2 Scenario: Imbalanced Subdomains
	4.3 Scenarios: Imbalanced Hematocrit
	4.4 Scenario: Imbalanced Communication

	5 Related Work
	6 Conclusion
	References

	Evaluation of Machine Learning Techniques for Predicting Run Times of Scientific Workflow Jobs
	1 Introduction
	2 Related Work
	3 Data Set Characterization
	4 Models for Execution Time Prediction
	4.1 Two-Stage Prediction Architecture
	4.2 Model Training and Building Pipeline
	4.3 Symbolic Regression Model

	5 Evaluation
	5.1 Prediction Architecture Evaluation
	5.2 Impact of Granularity of the First-Stage Prediction
	5.3 Increasing Specialization of Predictors
	5.4 Employing Symbolic Regression to Prediction Tasks

	6 Conclusion
	References

	Smart Clustering of HPC Applications Using Similar Job Detection Methods
	1 Introduction
	2 Background and Related Work
	3 Solving the Problem of Smart Job Clustering
	3.1 Proposed Method
	3.2 Tuning of Proposed Solution
	3.3 Evaluation of Proposed Method

	4 Using Proposed Solution in Practice
	5 Conclusions
	References

	Scheduling for Parallel Computing
	Distributed Work Stealing in a Task-Based Dataflow Runtime
	1 Introduction
	1.1 Contributions

	2 Related Work
	3 Adding Work Stealing to PaRSEC
	4 Experiments
	4.1 Benchmarks
	4.2 Potential for Work Stealing
	4.3 Thief Policy
	4.4 Victim Policy

	5 Conclusion
	References

	Task Scheduler for Heterogeneous Data Centres Based on Deep Reinforcement Learning
	1 Introduction
	2 Background
	3 DRL for Scheduling in Heterogeneous Data Centres
	3.1 Observation and Action Spaces
	3.2 Agent Architecture
	3.3 Size Reduction Through Clustering

	4 Evaluation
	5 Conclusions
	References

	Shisha: Online Scheduling of CNN Pipelines on Heterogeneous Architectures
	1 Introduction
	2 Motivation and Problem Definition
	3 Background and Related Work
	4 Shisha Exploration Approach
	4.1 Seed Generation
	4.2 Online Tuning

	5 Experimental Setup
	6 Evaluation
	6.1 Comparison of Shisha with Exploration Algorithms
	6.2 Analysis of Optimality
	6.3 Importance of Seed in the Auto-tuning Phase of Shisha
	6.4 Assignment and Balancing Schemes in Shisha
	6.5 Sensitivity Analysis of

	7 Conclusion
	References

	Proactive Task Offloading for Load Balancing in Iterative Applications
	1 Introduction
	2 Related Work
	3 Preliminaries and Motivation
	4 Online Load Prediction and Proactive Task Offloading
	4.1 Online Load Prediction
	4.2 Proactive Algorithm and Offloading Strategies

	5 Evaluation
	5.1 Environment and Online Prediction Evaluation
	5.2 Artificial Imbalance Benchmark
	5.3 Realistic PDE Use Case with Sam(oa)2

	6 Conclusion
	References

	Environments and Frameworks for Parallel/Cloud Computing
	Language Agnostic Approach for Unification of Implementation Variants for Different Computing Devices
	1 Introduction
	2 Background and Insights
	3 Program Synthesis
	3.1 In FLASH
	3.2 Modifications in Flash-X

	4 Macros and Macroprocessor
	5 Spark Variants
	5.1 Variants
	5.2 Unifying with Macros

	6 Conclusions
	References

	High Performance Dataframes from Parallel Processing Patterns
	1 Introduction
	2 Dataframe Systems
	2.1 Engineering Challenges
	2.2 System Considerations

	3 Distributed Memory Dataframe Framework
	3.1 Distributed Memory Dataframe
	3.2 Building Blocks
	3.3 Generic Operator Patterns
	3.4 Runtime Aspects

	4 Cylon
	4.1 Architecture
	4.2 Features

	5 Experiments
	6 Related Work
	7 Limitations and Future Work
	8 Conclusion
	References

	Global Access to Legacy Data-Sets in Multi-cloud Applications with Onedata
	1 Introduction
	2 Problem Statement and Related Work
	3 Data Indexing Subsystem
	3.1 Policies and Options
	3.2 Data Consistency
	3.3 DIS Optimizations

	4 Exposing Legacy Data Collections with Onedata
	5 Evaluation
	5.1 DIS Performance
	5.2 Transparent Global Data Access

	6 Conclusions
	References

	Applications of Parallel and Distributed Computing
	MD-Bench: A Generic Proxy-App Toolbox for State-of-the-Art Molecular Dynamics Algorithms
	1 Introduction and Motivation
	2 Related Work
	3 Background and Theory
	4 MD-Bench Features
	4.1 Optimization Schemes
	4.2 Benchmark Test Cases
	4.3 Tools

	5 Examples
	5.1 Assembly Analysis
	5.2 Investigate Memory Latency Contributions
	5.3 Compiler Code Quality Study

	6 Conclusion and Outlook
	References

	Breaking Down the Parallel Performance of GROMACS, a High-Performance Molecular Dynamics Software
	1 Introduction
	2 Background
	3 Related Work
	4 Methodology
	5 Results
	6 Discussion and Conclusion
	References

	GPU-Based Molecular Dynamics of Turbulent Liquid Flows with OpenMM
	1 Introduction
	2 Related Work
	3 Software: OpenMM as a Flexible MD Framework
	4 Constant Temperature Open Boundary Conditions
	5 Open Boundary Conditions Implementation
	6 Grid Aggregation
	7 Performance Analysis
	8 Conclusions
	References

	A Novel Parallel Approach for Modeling the Dynamics of Aerodynamically Interacting Particles in Turbulent Flows
	1 Introduction
	2 Methodology
	3 Parallel Performance
	3.1 Number of Particles
	3.2 Size of the Particles
	3.3 Size of the Short-Range Interaction Region
	3.4 Number of CPU Cores

	4 Conclusions
	References

	Reliable Energy Measurement on Heterogeneous Systems–on–Chip Based Environments
	1 Introduction
	2 Related Work
	3 Reliable Energy Benchmarking
	3.1 EML Java Native Interface
	3.2 Reliable Benchmarking

	4 Experimentation
	5 Conclusion
	References

	Distributed Objective Function Evaluation for Optimization of Radiation Therapy Treatment Plans
	1 Introduction
	2 Background and Related Work
	2.1 TROTS Dataset
	2.2 Dose Influence Matrices
	2.3 Radiatiation Therapy Plan Quality

	3 Methodology
	3.1 Serial Version and Data Preprocessing
	3.2 Parallelization
	3.3 Experimental Setup

	4 Results
	4.1 Performance and Parallel Scaling
	4.2 Plan Quality
	4.3 Performance Analysis and Execution Tracing

	5 Discussion and Conclusion
	References

	Soft Computing with Applications
	GPU4SNN: GPU-Based Acceleration for Spiking Neural Network Simulations
	1 Introduction
	2 Background
	2.1 General Flow of SNN Simulation
	2.2 Izhikevich Neuron Model
	2.3 Network Dynamics and Modes
	2.4 Grid-Stride Loop

	3 SNN Simulation Algorithms
	4 Performance Evaluation
	5 Discussion
	6 Conclusion
	References

	Ant System Inspired Heuristic Optimization of UAVs Deployment for k-Coverage Problem
	1 Introduction
	2 The Optimization Problem
	2.1 The Model of a Wireless Communication System
	2.2 Hypergraph Representation of the System
	2.3 Representation of Solution
	2.4 The Optimization Criteria

	3 The Optimization Method
	3.1 The Problem–Specific Step: Generation of a Solution
	3.2 The Main Loop

	4 Experiments
	4.1 Benchmark
	4.2 Plan of Experiments
	4.3 The Results

	5 Conclusions
	References

	Dataset Related Experimental Investigation of Chess Position Evaluation Using a Deep Neural Network
	1 Introduction
	2 Related Work
	3 Data Used for Experiments
	3.1 Data Preparation
	3.2 Board Representation
	3.3 Data Labeling

	4 Test Methods
	4.1 Neural Network Architecture
	4.2 Experiment
	4.3 Training Method

	5 Results
	6 Discussion
	7 Summary and Future Work
	References

	Using AI-based Edge Processing in Monitoring the Pedestrian Crossing
	1 Introduction
	2 Experimental Environment
	3 Case with Stationary Cameras
	3.1 Data Collecting
	3.2 Network Training and Detection

	4 Mobile Cameras
	4.1 Analysis of Different Neural Network
	4.2 Data Collecting
	4.3 Network Training and Detection Results
	4.4 Accuracy Analysis

	5 Conclusions
	References

	Special Session on Parallel EVD/SVD and its Application in Matrix Computations
	Automatic Code Selection for the Dense Symmetric Generalized Eigenvalue Problem Using ATMathCoreLib
	1 Introduction
	2 Operation of ATMathCoreLib
	3 Algorithms for the Dense Symmetric GEP and Their Implementations
	4 Automatic Code Selection for the Dense Symmetric GEP Using ATMathCoreLib
	5 Conclusion
	References

	On Relative Accuracy of the One-Sided Block-Jacobi SVD Algorithm
	1 Introduction
	2 One-Sided Block-Jacobi Algorithm with Preconditioning
	3 Test Matrices
	4 Implementation in MATLAB
	5 Discussion of Numerical Results
	6 Conclusions
	References

	Author Index

