
Experiments on Speeding
Up the Recursive Fast Fourier Transform

by Using AVX-512 SIMD Instructions

Giacomo Sansone(B) and Marco Cococcioni(B)

Department of Information Engineering Largo Lucio Lazzarino, University of Pisa,
56122 Pisa, Italy

giacomo.sansone@yahoo.com, marco.cococcioni@unipi.it

Abstract. The Fast Fourier Transform is probably one of the most
studied algorithms of all time. New techniques regarding hardware and
software are often applied and tested on it, but the interest in FFT
is still large because of its applications - signal and image processing,
numerical computations, etc. In this paper, we start from a trivial recur-
sive version of the algorithm and we speed it up using AVX-512 Single
Instruction Multiple Data (SIMD) instructions on an Intel i7 CPU with
native support to AVX-512. In particular, we study the impact of two
different storage choices of vector of complex numbers: block interleaving
and complex interleaving. Experimental results show that automatic vec-
torization provides a 10.65% (∼ 1.12×) speedup, while with vectorization
done by hand the speedup reaches 33.78% (∼ 1.51×). We have made our
code publicly available, which could be helpful for SIMD instructions
teaching purposes.

Keywords: Recursive Fast Fourier Transform · SIMD instructions ·
AVX-512 · complex number arithmetic · complex interleaving/block
interleaving · memoization · automatic vectorization

1 Introduction

FFT has been studied far and wide. Every year, new results about its implemen-
tation appear, boosting the speed of some of the most famous versions, such as
FFTW [1]. Recently, NEC-SX Aurora Vector Engine has been used to test the
behaviour of some FFT’s implementations on large vector registers (256 dou-
ble, 16384 bit per register) [2]. That is an important result for our work, since
it pushes the usage of SIMD/vectorized architectures. Nevertheless, outside the
world of High Performance Computing (HPC), the most available SIMD tech-
nology is the AVX-512 extension (see Sect. 3) which is spreading among x86
CPUs, both Intel and AMD. Hence in this work we focus on the latter, with the
following contributions:

– we experiment a different and uncommon way to memorize complex numbers;
– we work on a manual vectorization of the FFT, keeping it simple and readable

so that it can be used for teaching purposes;
– we measure the performances of different versions, pointing out the advan-

tages of using AVX-512.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
R. Berta and A. De Gloria (Eds.): ApplePies 2022, LNEE 1036, pp. 255–263, 2023.
https://doi.org/10.1007/978-3-031-30333-3_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30333-3_34&domain=pdf
http://orcid.org/0000-0002-7020-1524
https://doi.org/10.1007/978-3-031-30333-3_34

256 G. Sansone and M. Cococcioni

2 Different Data Layouts: An Overview

We can memorize complex numbers as pairs of floating point numbers, choosing
the dimension (single/double precision) best suited for the needs of the compu-
tation at hand. Once we have a complex structure, by instantiating an array we
obtain a sequence of numbers where the real and imaginary parts are staggered.
We can call this kind of memorization complex interleaved (Fig. 1a).

An alternative is to memorize separately the two components in two arrays of
floating point numbers. This is called block interleaved memorization (Fig. 1b):
that is not common at all since existing software and standards for C/C++ only
support the interleaved data format [3], but it could be useful dealing with vector
registers and data gathering from memory.

Exploiting a mixture of these memorizations to boost the performance of
algorithms on SIMD architectures has already been studied [3], achieving up to
2x performance improvements over state of the art library implementations. Our
work will study and compare both types of memorization.

3 The AVX-512 Instruction Set

It has been a while now since computers have had some kind of SIMD extensions.
SSE and AVX2 are fundamental in the history of this process, though their
usage was limited by the length of their registers, respectively 128 and 256 bits.
AVX-512 came out in 2013 as an improvement of the latter, introducing new
instructions and providing registers 512 bits long.

Fig. 1. Different memorizations for array of complex numbers

Despite the speedup you can get from these instructions, AVX-512 is not
always appropriate: it does not make IO-bound programs faster, as well as pro-
grams with complex conditional behaviours, since there are no parallel operations
to execute; the tasks which can be boosted because of their parallelism regard AI,
cryptography, mathematical computations... Programmers should understand
where and when this extension could be useful, in order to gain a speedup which
is independent from the algorithm itself.

Browsing the Intel’s intrinsics guide1 is a great starting point: this way one
may familiarize with nomenclature and the different available instructions.

1 https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html.

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

Fast Fourier Transform Using AVX-512 Instructions 257

3.1 Loop Unrolling

One of the main usage of SIMD instructions is through loop unrolling, which
allows to avoid loops or diminish the number of iterations. For instance, suppose
one need to compute an Hadamard porduct of two arrays of 8 doubles each.
Exploiting AVX-512, one can proceed in this way:

1 // Declaration of the arrays

2 double vector1 [8];

3 double vector2 [8];

4 double result [8];

5 // Load the two arrays

6 __m512d _vec1 = _mm512_load_pd ((void*) vector1);

7 __m512d _vec2 = _mm512_load_pd ((void*) vector2);

8 // Compute the sum using an AVX -512 intrinsic

9 __m512d _res = _mm512_add_pd(_vec1 , _vec2);

10 // Store the result

11 _mm512_store_pd ((void*)result , _res);

In case the length of the arrays was greater than 8 (but, for simplicity, still
multiple of 8) one could iterate this snippet N/8 times.

3.2 Superword Level Parallelism

SLP is another technique widely adopted by programmers and compilers to
perform vectorization. It consists of gathering instructions which are similar but
not directly linked, and computing them using SIMD registers. An example of
this technique is shown in Sect. 5.2.

4 The Recursive Version of the FFT Algorithm

Radix-2 algorithm is the simplest way to decrease the complexity of the DFT
(Discrete Fourier Transform), from O(N2) to O(NlogN), though nowadays FFT
algorithms are thousands of lines of code long (they perform different operations
based on different kinds of input and of the available hardware). Furthermore,
an iterative version of the algorithm can be way more optimized than a recursive
one, which is forced to use the stack an exponential amount of times.

Despite this, our work just aims to experiment with the operation of manual
vectorization of the code; for this reason, we looked for an algorithm which is
both interesting and useful in real-world applications: the recursive FFT is simple
and follows the mathematical expression provided by Cooley and Tukey in 1965
[4]. It was easier to get into, but feasible enough to test AVX-512 capabilities
and the two types of memorization as shown above. As most of the real-world
use cases of the FFT, we will just consider input whose length is a power of 2.

258 G. Sansone and M. Cococcioni

4.1 Twiddle Factor: How Memoization Can Help

The first thing we observed about the trivial version of FFT we used was the
enormous usage of trigonometric functions to calculate the roots of the unity.
For each call of the function on an input of length N , one have to use all the
roots of order N , expressed as

e−j 2πk
N = cos(

2πk

N
) − j sin(

2πk

N
) k ∈ {0, 1, ..., N − 1}

The trigonometric functions are tremendously time-consuming for CPUs.
We made a simple benchmark2 of the FFT with an input of 213 both using and
avoiding the computation of these roots: the latter was two times faster than
the former.

An immediate observation is that once one computed the roots of order N ,
the following calls of the function with an input of the same length can use them
again. This technique is well known in literature as twiddle factor [5].

The needed roots can be both calculated before executing the algorithm or
computed them on the way and saved for further use. That is what we did: we
introduced a look-up table where we saved the results of the computation for N ,
so that we could access them later. The idea recalls the memoization of dynamic
programming.

5 The Vectorized Version of the Recursive FFT

We made two different versions of the AVX-512 FFT, one with a complex-
interleaved memorization (called CI AVX), another with a block-interleaved
memorization (called BI AVX). The C++ source code of both the versions has
been made public available and can be downloaded from this link: https://github.
com/pcineverdies/FFT-AVX-512.

5.1 Link to Hadamard Product

The main element to vectorize the function is to exploit the radix-2 expression
of the FFT: given an input X of size N = 2M , its DFT is equal to

DFT (X)k = DFT (Xe)k + e−j 2πk
N · DFT (Xo)k k ∈ {0, 1, ..., N − 1}

where DFT (Xe) is the DFT of the even terms of X, DFT (Xo) is the DFT of its
odd terms. As we compute these two elements using recursion, the result is made
by the element-wise product between the vector of the roots and DFT (Xo),
added to DFT (Xe). That is an interesting result, since element-wise product
can be easily vectorized with both the memorizations of complex numbers. An
intuitive idea of the process is shown in Fig. 2 (that figure is inspired by one
found in [3]).
2 The machine we used has an IntelR© XeonR©, 15 GiB of RAM and Ubuntu 4.15.0-171

as OS.

https://github.com/pcineverdies/FFT-AVX-512
https://github.com/pcineverdies/FFT-AVX-512

Fast Fourier Transform Using AVX-512 Instructions 259

Fig. 2. Element-wise product using two memorizations.

5.2 Base Cases of Recursion

As a consequence of the DFT’s expression, when the input is a sequence of 4 or 2
elements everything can be brought back to additions and subtractions between
real and imaginary parts of the input. That is why we can avoid a recursion up
to a sequence of length 1 (the DFT of a number is the number itself), and stop
at a length of 4. We also added the cases of input with a length of 2 and 1, which
are stand-alone situations.

In this base cases, we tried to apply SLP, as shown in the snippet below (DFT
of an input of length 4 in the array of complex wave, with CI memorization):
the first block of instructions gathers data in a correct way, while the second one
computes the additions/subtractions which give us the final result.

1 // ...

2 // _vecX are __m512d data

3 if(n == 4){

4 // Load of data

5 _vec0 = _mm512_broadcast_f64x2(_mm_load_pd ((double

*)&(wave [0])));

6 _vec1 = _mm512_broadcast_f64x2(_mm_load_pd ((double

*)&(wave [1])));

7 _vec1 = _mm512_permute_pd(_vec1 , 0b01100110);

8 _vec2 = _mm512_broadcast_f64x2(_mm_load_pd ((double

*)&(wave [2])));

9 _vec3 = _mm512_broadcast_f64x2(_mm_load_pd ((double

*)&(wave [3])));

10 _vec3 = _mm512_permute_pd(_vec3 , 0b01100110);

11

12 // Compute DFT

13 _vec0 = _mm512_mask_sub_pd(_vec0 , 0b01111000 ,

_vec0 , _vec1);

260 G. Sansone and M. Cococcioni

14 _vec0 = _mm512_mask_add_pd(_vec0 , 0b10000111 ,

_vec0 , _vec1);

15 _vec0 = _mm512_mask_sub_pd(_vec0 , 0b11001100 ,

_vec0 , _vec2);

16 _vec0 = _mm512_mask_add_pd(_vec0 , 0b00110011 ,

_vec0 , _vec2);

17 _vec0 = _mm512_mask_sub_pd(_vec0 , 0b10110100 ,

_vec0 , _vec3);

18 _vec0 = _mm512_mask_add_pd(_vec0 , 0b01001011 ,

_vec0 , _vec3);

19

20 // Store result

21 _mm512_store_pd ((void*)&wave[0], _vec0);

22

23 return;

24 }

25 // ...

6 Experimental Results

In the next subsection we provide the obtained numerical results, while in the
following we discuss why, in our implementation, block interleaved does not give
any additional speedup.

6.1 Numerical Results

We measured the performance of six versions of the FFT:

– NO AVX, which is a standard version of the FFT, optimized with the twiddle
factor, compiled with O3 flag but without auto-vectorization;

– VE AVX, which is the same as above, though auto-vectorization is enabled;
– CI AVX, which is the version vectorized by hand with complex interleaved

memorization, compiled with O3 flag.
– BI AVX, which is the version vectorized by hand and block interleaved mem-

orization, compiled with O3 flag.

In order to do that, we calculated how much time passed between the call of the
function and its termination: after 213 measures, we extracted the median of the
data, which is more statistically stable than the arithmetic average.

Some of the results are shown in Table 1, while a complete overview for N
between 23 and 217 can be found in Fig. 3. As it is evident from the numbers, the
vectorized versions are more efficient the the standard one, by the 33.78%(∼
1.51×).

Fast Fourier Transform Using AVX-512 Instructions 261

6.2 Why Is Block Interleaved not Good Enough in our Setting?

As we immediately notice from the result, the block interleaved version is quite
similar to the complex interleaved one; in some cases it is even slightly slower.
That is not what we expected: since this memorization method is not common,
we would need a major speedup to use it.

In [3] the authors use a mixed version of the two methods: they start from
a CI input, then they use the computations of the algorithm itself to get a BI
memorization (which makes some operations faster, such as the element-wise
product, since it reduces the usages of slow instructions as permutations) and

Table 1. Execution time (µs) of FFT for some values of N

N NO AVX VE AVX CI AVX BI AVX

4096 976.0 952.0 717.0 730.0

8192 1955.0 1887.0 1415.0 1444.0

16384 2918.0 2784.0 2393.0 2312.0

32768 4506.0 4244.0 3168.0 3368.0

65536 8078.5 7778.5 5892.0 5489.5

131072 15409.0 13767.0 10203.5 10379.5

Fig. 3. Charts of the measures

262 G. Sansone and M. Cococcioni

they finally end up with a CI result. Instead, since we start directly from a block
interleaved version, we are note able to replicate their speedups when using BI.

7 Conclusions

The final result of our experiments is a speedup of a 33.78%(∼1.51×) between
the first trivial version and the vectorized one. The automatic vectorization
reaches a much lower speedup, which amounts to 10.66%(∼1.12×). We have
shown that BI memorization, while being not common and not compatible with
standards like POSIX, does not provide any advantage over CI.

We would like to point out the importance of the AVX extension for programs
which aim to achieve efficiency and speed. Clearly, writing our own vectorized
code is not the best way to exploit this functionality, since we could make mis-
takes and it becomes difficult to maintain: the right approach should be to ask
the compilers to introduce the functionality mentioned in the previous sections,
suggesting some choices using pragmas.

In the end, the result could be not satisfying enough: in that case the pro-
grammer can disassemble the compiled code and try changing some instructions
to speedup the program. And that is why it is important to be familiar with this
extension. This is what we have learnt in this study. As a future work, we will:

– extend the code to exploit multi-threading, using the recently introduced
C++ standard class for multi-threading;

– realize a port on CPU clusters [6];
– investigate how to optimize the impact on cache hierarchies [7].

Acknowledgments. Work partially supported by H2020 project TEXTAROSSA
(grant no. 956831), https://textarossa.eu/) and partially by the Italian Ministry of
Education and Research (MUR), CrossLab project (Departments of Excellence). We
also want to thank Prof. Carlo Vallati for providing the machine used to run the exper-
iments and Emanuele Ruffaldi for interesting discussions on the topic.

References

1. Frigo, M., Johnson, S.: The design and implementation of FFTW3. Proc. IEEE
93(2), 216–231 (2005)

2. Vizcaino, P., Mantovani, F., Labarta, J.: Accelerating fft using nec sx-aurora vector
engine. In: Chaves, R., et al. (eds.) Euro-Par 2021. LNCS, vol. 13098, pp. 179–190.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06156-1 15

3. Popovici, D.T., Franchetti, F., Low, T.M.: Mixed data layout kernels for vectorized
complex arithmetic. In: 2017 IEEE High Performance Extreme Computing Conf.
(HPEC), pp. 1–7 (2017)

4. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex
Fourier series. Math. Comput. 19(90), 297–301 (1965)

5. Gentleman, W.M., Sande, G.: Fast Fourier Transforms: for fun and profit. In: Pro-
ceedings of the November 7–10, 1966, Fall Joint Computer Conference, ser. AFIPS
’66 (Fall), pp. 563–578. Association for Computing Machinery, New York (1966).
https://doi.org/10.1145/1464291.1464352

https://textarossa.eu/
https://doi.org/10.1007/978-3-031-06156-1_15
https://doi.org/10.1145/1464291.1464352

Fast Fourier Transform Using AVX-512 Instructions 263

6. Sharp, D., Stoyanov, M., Tomov, S., Dongarra, J.: A more portable HeFFTe: imple-
menting a fallback algorithm for Scalable Fourier Transforms. In: 2021 IEEE High
Performance Extreme Computing Conf. (HPEC), pp. 1–5 (2021)

7. Takahashi, D.: High-Performance FFT Algorithms, pp. 41–68. Springer, Singapore
(2020). https://doi.org/10.1007/978-981-13-9965-7 6

https://doi.org/10.1007/978-981-13-9965-7_6

	Experiments on Speeding Up the Recursive Fast Fourier Transform by Using AVX-512 SIMD Instructions*-12pt
	1 Introduction
	2 Different Data Layouts: An Overview
	3 The AVX-512 Instruction Set
	3.1 Loop Unrolling
	3.2 Superword Level Parallelism

	4 The Recursive Version of the FFT Algorithm
	4.1 Twiddle Factor: How Memoization Can Help

	5 The Vectorized Version of the Recursive FFT
	5.1 Link to Hadamard Product
	5.2 Base Cases of Recursion

	6 Experimental Results
	6.1 Numerical Results
	6.2 Why Is Block Interleaved not Good Enough in our Setting?

	7 Conclusions
	References

