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Abstract. The problems of the oscillatory flow of a viscoelastic incompressible
fluid in a flat channel are solved for a given harmonic oscillation of the fluid
flow rate. The transfer function of the amplitude-phase frequency response is
determined. This function is used to determine the influence of the oscillation
frequency, acceleration, and relaxation properties of the liquid on the ratio of shear
stress on the channelwall to the average velocity over the channel section. Changes
in the amplitude and phase of the shear stress on the channel wall in an unsteady
floware also determined depending on the dimensionless oscillation frequency and
the relaxation properties of the liquid. It is shown that the viscoelastic properties
of the fluid, as well as its acceleration, are the limiting factors for using the quasi-
stationary approach. The found formulas for determining the transfer function
during the flow of a viscoelastic fluid in a non-stationary flow allow, to determine
the dissipation of mechanical energy in a non-stationary flow of the medium,
which are of no small importance when calculating the regulation of hydraulic
and pneumatic systems.

Keywords: Viscoelastic fluid · unsteady flow · transfer function · oscillatory
flow · amplitude · phase

1 Introduction

The studyof the oscillatoryflowof a viscous andviscoelastic fluid in aflat and rectangular
channel under the action of harmonic oscillations of the fluid flow rate can be used in
biological mechanics, in particular, for the operation of a microchip system [1]. These
systems are designed to diagnose the functioning of various human organs, as well as
targeted delivery of drugs to them. In addition, in order to ensure a constant flow of
liquid, pneumatic micro pumps with periodic displacement of liquid from free volumes
are often used in biomedical installations [2]. In such systems, it can be economical to
install with a pulsating flow. In addition, when transporting high-viscosity and heavy
oil and oil products over long distances and circulating drilling fluids in a well, one of
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the important tasks is to develop an effective method for reducing the hydraulic flow
resistance [3–5]. In all the industries listed above, the liquid used, both drugs and oil
products or drilling fluids, treated with high-molecular polymers can be classified as
viscoelastic liquids [3–5]. As the authors know, at present there is no information on the
effect of flow rate pulsations on fluctuations in the coefficients of hydraulic resistance
and friction resistance. However, these studies are very important for calculating the
pressure gradient and other hydrodynamic characteristics, which have a special place in
some biomedical and other technological studies [1, 2]. Thus, the study of shear stress
on the wall during oscillatory flow of a viscous and viscoelastic fluid, together with other
flow parameters, is of great importance.

The most simplified approach to the theoretical study of the oscillatory flow of a
viscous fluid is based on the assumption that a viscous fluid, incompressible, moves
laminar in an infinitely long cylindrical tube of circular cross section under the action
of a pressure gradient that changes harmonically in time. Investigated in the works of
B.C. Gromeka [6, 7], pulsating flows of viscous incompressible fluids in rigid and elastic
pipes. In them, he determined the propagation velocities of the pressure pulse wave and
their attenuation. Then the oscillatory flow of a viscous fluid in a pipe was studied in the
work of I.B. Krendala [8].

Solving the problems of the oscillatory flow of a viscous fluid in a round endless
pipe, derived formulas for the velocity profile, fluid flow and impedance during the
propagation of a sinusoidal pressure wave. A few years later, P. Lambosia published his
findings of the same velocity profile in [9] and, in addition, calculated the viscous drag.
J.R. Womersley in [10] re-deduced P. Lambosia’s solution. His distinctive qualitative
results were that it was found: firstly, a phase shift between the pressure fluctuations and
the cross-sectional average velocity and, secondly, the formation of a non-monotonic
distribution of velocity profiles. For the first time, the effect of superimposed oscillations
of the cross-sectional average velocity in a laminar flow in a pipe was published in an
experimental work [11]. The so-called “annular effect” of Richardson was obtained at
relatively high oscillation frequencies, which appears as a maximum on the profile of
the oscillating component of the longitudinal velocity in a narrow near-wall layer, the
thickness of which decreases with increasing oscillation frequency. In the rest of the
pipe, the liquid oscillates as a whole in accordance with the fluctuation of the average
velocity over the section. In [12], experiments were also carried out on pipes with an
internal diameter of 40 mm, in which the piston creates harmonic changes in the fluid
flow rate near zero. The graph shows points obtained from oscillograms, on which local
velocities were recorded using an electrothermoanimometer at various points in the pipe
section. It can be seen from the graphs that the local velocities have the maximum values
near the wall. These experimental results are in good agreement with the results of [11].
Theoretically, the problem of a laminar pulsating fluid flow in a pipe was solved in [12].
In [13], the solution of this problem was carried out similarly to [12], but under the
condition that not the harmonic oscillation of the average velocity over the cross section,
but the oscillation of the pressure gradient was specified. From the analytical solution of
the equation of motion for a pulsating flow, it follows that at certain Reynolds numbers
of the time-averaged flow and relatively high frequencies and amplitudes of oscillations,
there is a zone of return (reverse) flows near the wall, when the local velocity is directed
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against the average flow. The presence of these zones was confirmed experimentally in
[14] with very good agreement between theory and experiment. In [15], I will carry out
a similar solution to the problem of a pulsating flow in a flat channel and in a cylindrical
pipe. It is noted that the patterns of fluctuations of hydrodynamic quantities for the flow
in a flat channel and in a round cylindrical pipe qualitatively coincide.

Unsteady pulsating flows of a viscous fluid in a round cylindrical pipe of infinite
length under the action of a harmonic changing pressure gradient were studied in [16].
By solving the problem, calculation formulas for the distribution of velocity and fluid
flow are obtained. Numerical calculations have shown that in a pulsating flow at lower
values of the dimensionless oscillation frequency, the velocity, flow rate, and other
hydrodynamic parameters from the zero initial state are established slowly, relatively
at high oscillation frequencies, and are close to the parameters of a non-pulsating flow.
In an oscillating flow at high oscillation frequencies, these parameters are set almost
instantly. Pulsating flows of a viscous incompressible fluid were studied in [17] in a
rectangular channel.

The problem is solved by the finite difference method. The optimal parameters of
the difference scheme are determined, and data are obtained on the amplitude and phase
of oscillations of the longitudinal velocity, the coefficient of hydraulic resistance, and
other flow parameters. At low vibration frequencies, it is shown that all hydrodynamic
parameters fluctuate according to the laws of the average velocity over the cross section.
For rectangular channels with different cross-sectional shapes (flat, rectangular, and
round cylindrical) in high-frequency oscillations, the dependences of the hydrodynamic
quantities on the dimensionless oscillation frequency are of the same nature. The authors
also obtained an analytical solution for a developed oscillating flow in triangular [18]
and toroidal [19] channels.

Of interest is the study of the pulsating flow of a viscoelastic fluid in a flat channel and
in a cylindrical pipe under the influence of harmonic oscillations of the pressure gradient
or when harmonic oscillations of the flow rate are superimposed on the flow. In [20], the
motion of a viscoelastic fluid along a long pipe under the action of an oscillatory pressure
gradient was studied. Laminar oscillatory flows of Maxwell and Oldroyd-B viscoelastic
fluids were studied in [21]. Where many interesting features are demonstrated that are
absent in Newtonian fluid flows. The results of the study [24] show that in the inertialess
mode, when Re � 1 the properties of the flow depend on three characteristic lengths.

Wavelength λ0 and attenuation length of viscoelastic shear waves x0 = ( 2ν
ω0

)1/2,
Where is the ν -kinematic viscosity; ω0-oscillation frequency, as well as the characteris-
tic transverse size of the system a. In this regard, according to the length, they are divided
into three scales and three independent dimensionless groups: tϑ

λ
(viscosity to relaxation

time),De (relaxation time to oscillation period) and (viscosity factor). At the same time,
the oscillatory flow regions are divided into two systems corresponding to the “wide”
( ax0 > 1) «narrow» ( ax0 < 1) system. In wide systems, oscillations are limited by near-
wall flows, and in the central core by a no viscous one. In narrow systems, transverse
waves cross the entire system and cross its center too, which ultimately leads to construc-
tive resonances that lead to a sharp increase in the amplitude of the velocity profile. In
[22], unsteady flows of a viscoelastic fluid were analyzed using the Oldroyd-B model in
a round infinite cylindrical tube under the action of a time-dependent pressure gradient
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in the following cases: (a) the pressure gradient changes with time in accordance with
exponential laws; b) the pressure gradient changes according to harmonic laws; c) the
pressure gradient is constant. In all cases, formulas have been obtained for the distribu-
tion of velocity, fluid flow, and other hydrodynamic quantities in a pulsating flow. Based
on the Maxwell model, the problem of unsteady oscillatory flow of a viscoelastic fluid
in a round cylindrical pipe was considered in [23]. Formulas for determining dynamic
and frequency characteristics are obtained. With the help of numerical experiments, the
influence of the oscillation frequency and the relaxation properties of the liquid on the
tangential shear stress on the wall is studied. It is shown that the viscoelastic properties of
the fluid, as well as its acceleration, are the limiting factors for using the quasi-stationary
approach.

In recent decades, electro kinetic phenomena, including electro osmosis, flow poten-
tial, electrophoresis, and sedimentation potential, have attracted much attention and pro-
vided many applications in micro and Nano channels. In this connection, the authors
of [24] studied the electro kinetic flow of viscoelastic fluids in a flat channel under the
influence of an oscillatory pressure gradient. It is assumed that the movement of the
fluid occurs laminar and unidirectional, in this regard, the movement of the fluid is in a
linear mode. Surface potentials are considered small, so the Poisson-Boltzmann equa-
tion is linearized. Resonant behavior appears in the flow when the elastic property of the
Maxwell fluid dominates. The resonant phenomenon enhances the electro kinetic effect,
and at the same time, the efficiency of electro kinetic energy conversion is enhanced.

In the works listed above, the field of fluid velocities is mainly studied for various
modes of change in the pressure gradient. The change in shear and normal stress that
occurs during motion has been studied relatively little. In most cases, in hydrodynamic
models of unsteady flows, liquids were replaced by a sequence of flows with a quasi-
stationary distribution of hydrodynamic quantities. However, the structure of unsteady
flows differs from the structure of stationary flows, and in such cases such a replacement
should be justified in each particular case. At present, the question of the legitimacy
of studying quasi-stationary characteristics for determining the field of shear stresses
in non-stationary flows of viscous and viscoelastic fluids is far from being resolved.
Naturally, under such conditions, it becomes necessary to use hydrodynamic models of
non-stationary processes that take into account the change in the hydrodynamic char-
acteristics of the flow depending on time. It should be noted that in the general case,
the hydrodynamic characteristic in pipeline transport cannot be determined from the
characteristics that correspond to stationary flow conditions.

In this paper, we study the oscillatory flow of a viscoelastic fluid using the Maxwell
model in a flat channel when harmonic oscillations of the fluid flow rate are superim-
posed on the flow. The transfer function of the amplitude-phase frequency characteristics
(APFC) is determined. This function is used to study the dependence of the nonstationary
shear shear stress on the wall on the dimensionless oscillation frequency, acceleration,
and relaxation properties of the fluid.

2 Statement of the Problem and Solution Method

Let us consider the problems of a slow oscillatory flow of a viscoelastic incompressible
fluid between two fixed parallel planes extending in both directions to infinity Let us
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denote the distance between thewalls through 2h. Axis 0x runs horizontally in themiddle
of the channel along the flow. Axis 0y directed perpendicular to the axis 0x. The flow of a
viscoelastic fluid occurs symmetrically along the channel axis. The differential equation
of motion of a viscoelastic incompressible fluid in stress has the following form [25].

ρ
∂u

∂t
= −∂p

∂x
− ∂τ

∂y
. (1)

where u - longitudinal speed; p -pressure; ρ -density;μ -dynamic viscosity; τ -tangential
stress; t -time. The rheological equation of the state of the liquid is taken in the form of
the Maxwell equation

(
1 + λ

∂

∂t

)
τ(y, t) = −μ

∂u

∂y
. (2)

where λ -relaxation time. In (2) at λ = 0 we obtain Newton’s law of viscous friction.
Substituting (2) into the equation of motion for the fluid velocity (1), we obtain

ρ

(
1 + λ

∂

∂t

)
∂u

∂t
= −

(
1 + λ

∂

∂t

)
∂p

∂x
+ μ

∂2u

∂y2
. (3)

We consider that the oscillatory flow of a viscoelastic fluid occurs due to a given
harmonic oscillation of the fluid flow rate or the longitudinal velocity averaged over the
channel section.

Q = aQcosωt = Re(aQe
iωt). (4)

<u> = aucosωt = Re(aue
iωt)

where aQ and au- the amplitude of the liquid flow rate and the amplitude of the longitudi-
nal velocity averaged over the channel section. In this case, the flowoccurs symmetrically
along the channel axis, and the no-slip conditions are satisfied for the channel wall, i.e.
the longitudinal velocity on the channel wall is zero. Then the boundary conditions will
be:

u = 0 at y = h

∂u

∂y
= 0 at y = 0 (4a)

The linearity of Eq. (3) and the given harmonic fluctuation of the fluid flow or the
longitudinal velocity averaged over the channel section in the form (4), it is possible to
write the longitudinal velocity, pressure, shear stress on the wall in the following way

u(y, t) = Re(u1(y)e
iωt)

p(x, t) = Re(p1(x)e
iωt)

τ (t) = Re(τ1e
iωt)

(5)
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Substituting expressions (5) into Eq. (3), we obtain

∂2u1(y)

∂y2
− ρiωη2(iω)

μ
u1(y) = η2(iω)

μ

∂p1(x)

∂x
. (6)

Here η2(iω) = (1 + iωλ).
The fundamental solutions of Eq. (6), without the right side are the functions

cos( i
3/2α0
h η(iω)y) and sin( i

3/2α0
h η(iω)y).

and the solutions of the inhomogeneous part have constants

1

ρiω

(
−∂p1(x)

∂x

)

Thus, the general solution of Eq. (6) has the form.

u1(y) = C1cos
(
i
3
2 α0η(iω)

y

h

)
+ C2sin

(
i
3
2 α0η(iω)

y

h

)
+ 1

ρiω

(
−∂p1(x)

∂x

)
. (7)

To determine constant coefficients C1 and C2 we use boundary conditions (4a)

∂u1(y)

∂y
= −C1

i3/2α0

h
η(iω)sin(i3/2α0η(iω)

y

h
)

+C2
i3/2α0

h
η(iω)cos(i3/2α0η(iω)

y

h
)

(8)

for has y = 0 (8) the form

0 = C2
i3/2α0

h
η(iω)

From here it’s easy to find

C2 = 0

from (7) we determine C1 on condition, what u1 = 0 at

C1 = − 1

ρiω

(
−∂p1(x)

∂x

)
1

cos
(
i
3
2 α0η(iω)

)

As a result of this, to determine the speed, we will have:

u1(y) = 1

ρiω

(
−∂p1(x)

∂x

)⎛
⎝1 −

cos
(
i
3
2 α0η(iω)

y
h

)

cos
(
i
3
2 α0η(iω)

)
⎞
⎠ (9)

where α0 −
√

ω
ν
h -vibration Womersley number (dimensionless oscillation frequency).

Using the equation

τ1 = − μ

η2(iω)

∂u1(y)

∂y
|y = h . (10)
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find the tangential shear stress on the wall

τ1 = −h

(
−∂P

∂x

)
1

iα2
0

⎛
⎝ i

3
2 α0sin

(
i
3
2 α0η(iω)

)

η(iω)cos
(
i
3
2 α0η(iω)

)
⎞
⎠ (11)

Now we will integrate both parts of formula (9) over a variable ranging from −h to
h, find formulas for fluid flow.

Q1 = 2h

⎡
⎣ 1

ρiω

(
−∂p1(x)

∂x

)⎛
⎝1 −

sin
(
i
3
2 α0η(iω)

)
(
i
3
2 α0η(iω)

)
cos

(
i
3
2 α0η(iω)

)
⎞
⎠

⎤
⎦. (12)

Given the formula (12)Q1 = 2h < u1 >,we find the longitudinal velocity averaged
over the channel section.

<u1> = h2

μiα2
0

(
−∂p1(x)

∂x

)⎛
⎝1 −

sin
(
i
3
2 α0η(iω)

)
(
i
3
2 α0η(iω)

)
cos

(
i
3
2 α0η(iω)

)
⎞
⎠. (13)

Here ρiω can be written in the form

ρiω = i
ω

ν
h2 · μ

h2
= iα2

0
μ

h2

Then formula (13) takes the form:

<u1> = − h

3μ
τ1 ·

3
(
i
3
2 α0η(iω)cos(i

3
2 α0η(iω)

)
− sin(i

3
2 α0η(iω)))(

i
3
2 α0)2sin(i

3
2 α0η(iω)

) . (14)

Using formula (14) we determine the transfer function Wτ,u(iω) for shear stress on
the walls, as

Wτ1,u1(iω) = τ1(iω)

u1(iω)
(15)

from Eq. (14) we obtain

Wτ1,u1(iω) = h

3μ

τ1(iω)

<u1(iω)>
= −

(
i
3
2 α0)

2sin(i
3
2 α0η(iω)

)

3
(
i
3
2 α0η(iω)cos(i

3
2 α0η(iω)

)
− sin(i

3
2 α0η(iω)))

.

(16)

The transfer function (16) is sometimes called the amplitude-phase frequency
response (APFR). This function allows you to determine the dependence of the shear
stress on the channel wall on time for a given law of change in the longitudinal velocity
averaged over the channel section. As is known, in most cases, when solving non-
stationary problems, shear stress on the wall is used, obtained in the quasi-stationary
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regime of fluid flow. In real cases, such assumptions are valid when the distribution of
local velocities over the flow section has a parabolic distribution law. In this case, the
tangential shear stress on the channel wall fluctuates in one phase with the fluctuation
of the average longitudinal velocity over the channel section.

In this case, the value τ0,kc can be calculated using the formula

τ0,kc = 3μ

h
< u1 > (17)

And instead of a quasi-stationary flow of tangential shear stress on the wall τo,kc,
can be accepted

τ0,kc = τHC (18)

Thus, relation (18) makes it possible to replace the quantity τHC on the value τ0,kc,
only under the condition that the actual distribution of local velocities over the flow
cross section differs little from the quasi-stationary one. However, in many cases, in a
non-stationary flow, the law of distribution of local velocities differs significantly from
the quasi-stationary one. In most works [9–12, 17, 21] it was shown that in the case of
oscillatory laminar flow in a cylindrical pipe, the change in local velocities in the adjacent
layers is ahead of the change in local velocities in time than in the central layers. The
oscillatory flow due to a change in the law of distribution of local velocities over the
channel cross section of the value τHC actually differs significantly from τ0κC.The linear
model of unsteady flow is the most complete representation of the dependence τHC OT
<u1> can be obtained using the transfer function (16).

3 Calculation Results and Analysis

In an unsteady flow, to determine the dependence of the shear stress on the channel wall
between the longitudinal velocity averaged over the channel section, we use the transfer
function (16). In this regard, we take into account the law of change of the longitudinal
velocity averaged over the channel section

< u1 >= au1cosωt. (19)

where au1-amplitude of the longitudinal velocity averaged over the channel section.
Using formulas (19), it is possible to determine the dependence of the shear stress on
the wall between the longitudinal velocity averaged over the channel section. Due to the
Eqs. (19) used to find the shear stress on the channel wall, its value will also be harmonic,
but in the general case, shifted in phase with respect to < u1 >.

Thus, the change in shear stress on the wall is determined as follows:

τ1 = aτ1cos(ωt + φτ1). (20)

where aτ1 - shear stress amplitude on the channel wall; φτ1 - phase between magnitude
τ1 and <u1>
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Using the relation

cos(ωt + φτ1) = cosωtcosφτ1 − sinωtsinφτ1

And given that

∂ < u1 >

∂t
= −au1ωsinωt

we reduce Eq. (19) to the form

τ1 =
(
aτ1

au1
cosφτ1

)
< u1 > +

(
aτ1

au1
sinφτ1

)
1

ω

∂ < u1 >

∂t
. (21)

Quantities (
aτ1
au1

cosφτ1) and
aτ1
au1

sin φτ1 are respectively the real and imaginary parts

of the transfer function (16), so from (16) we obtain

Wτ1,u1 = − 1

3

⎛
⎝ −iα20 sin(i

3/2α0

(
1 + iDeα20 )1/2

)

i3/2α0(1 + iDeα20 )1/2cos(i3/2α0
(
1 + iDeα20 )1/2

)
− sin(i3/2α0

(
1 + iDeα20 )1/2

)
⎞
⎠

= χ + βi

(22)

Here De = νλ
h2

- elastic Debory number characterizes the elastic properties of a fluid,

χ =
(
aτ1

au1
cosφτ1

)
, β = aτ1

au1
sin φτ1

Then (21) the formula takes the form.

h

3μ

τ1

< u1 >
= W τ1, u1 = χ + β

1

ω
KH (23)

Here KH = ∂<u1>
<u1>∂t

- parameter characterizes the fluid acceleration, χ and β- dimen-
sionless quantities, t dimensional values, so it needs to be converted to a dimensionless
form, using the transformation

t = h2ρ

3μ
t∗

Taking into account (17) and (23) on (22) we obtain the calculation formulas

τHC

τ0κC
= χ + 3β

α2
0

KH (24)

Here τ0κC = 3μ
h < u1 > and τ1 = τHC.

Using formula (24), graphs in Fig. 1 are constructed showing the change in the
relative shear stress on the wall in an unsteady flow depending on the dimensionless
oscillation frequency when the Debory number is equal to zero.

The constructed graph in Fig. 1 shows that when KH = 0 relations τHC
τ0κC

close to

unity while α2
0 less than units. If a α2

0 takes on values greater than unity, then even if
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Fig. 1. Change in the ratio of the non-stationary shear stress on the wall to the quasi-stationary
shear stress depending on the dimensionless oscillation frequency, for different values of the liquid
acceleration parameter KH

KH = 0 relations τHC
τ0κC

becomes greater than unity and increases with an increase in the
dimensionless oscillation frequency. This suggests that shear stresses on the channel wall
during unsteady fluid flow can exceed their quasi-stationary values even at those times
when the fluid acceleration is zero. Attitude τHC

τ0κC
increases with increasing parameter

KH which is explained by a change in the shear stress on the wall, occurs with a phase
advance compared to the average speed over the cross section.

Fig. 2. Change in the ratio of the non-stationary shear stress on the wall to the quasi-stationary
shear stress depending on the oscillation frequency, for different values of the liquid acceleration
parameter KH and the elastic Debory number 0.01
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Fig. 3. Change in the ratio of the non-stationary shear stress on the wall to the quasi-stationary
shear stress depending on the oscillation frequency, for different values of the liquid acceleration
parameter KH and the elastic Debory number 0.05.

Fig. 4. Change in the ratio of the non-stationary shear stress on the wall to the quasi-stationary
shear stress depending on the oscillation frequency, for different values of the liquid acceleration
parameter KH and the elastic Debory number 0.1

The flow of a viscoelastic fluid in a flat channel shows a significant change in the
shear stress on the wall at low vibration frequencies depending on the elastic Debory
number. In [21], an oscillatory flow of a viscoelastic fluid in a flat channel and in a
cylindrical pipe was studied, where the flow region is divided into two classes, of which
α0 > 1 belongs to the “broad” class, and the other α0 < 1 to “narrow”. In the “wide”
classes, the oscillatory fluid flows are limited near the wall flows, and in the central
part of the inviscid. In “narrow” systems, shear waves cross the entire flow area, which
ultimately leads to a sharp increase in the amplitude of the velocity profile and other
hydrodynamic parameters, such as shear stress on the wall, fluid flow, depending on the
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elastic Debory number. Based on formula (24), graphs are plotted in Figs. 2, 3 and 4
showing the change in shear stress during an oscillatory flow of a viscoelastic fluid in a
flat channel depending on the oscillation frequency and the Debory number, respectively
De = 0.01; 0.05; 0.1 It should be noted that all graphs for the flow of a viscoelastic fluid
in a flat channel are of an oscillatory nature.

Figure 2 presents, for the case De = 0.01 change in the ratio of the non-stationary
shear stress on the channel wall to the quasi-stationary shear stress depending on the
dimensionless oscillation frequency. It should be noted that in this case, in contrast to the
Newtonian flow, an increase in shear stress is observed in the region near the zero value
of the oscillation frequency, depending on the acceleration of the liquid. Then there is a
gradual decrease for KH = 10; 50; 100 and for KH = 0; 1 increase to value τHC

τ0κC
= 3 at

high oscillation frequencies. For the case De = 0.05 the change in the ratio of the non-
stationary shear stress on the channel wall to the quasi-stationary shear stress depending
on the dimensionless oscillation frequency is shown in Fig. 3. In this case, near the zero
value of the oscillation frequency, a decrease in shear stress is observed depending on
the acceleration of the liquid, and then there is an increase to a maximum in the region
2 < α0 < 4, then gradually asymptotically decreasing to the value τHC

τ0κC
= 1.5.

We note the features, for the case De = 0.1 in which, close to zero, the oscillation
frequency, a sharp decrease occurs in all cases, except KH = 0 case.

This means that at large values of the relaxation time, reverse flows of the liquid can
occur at low oscillation frequencies. Then, with an increase in the oscillation frequency,
all curves showing a change in the ratio of the non-stationary shear stress on the channel
wall, with oscillation asymptotically approaches, to the value τHC

τ0κC
= 1 depending on

the acceleration of the fluid.
Then the phase advance decreases with increasing frequency of the oscillation and

approaches asymptotically to the value of the quasi-stationary flow with oscillation.
Thus, the considered features in changes in the shear stress on the wall for a given
harmonic fluctuation of the flow rate are caused by the violation of the parabolic law of
the distribution of local velocities over the channel section. Calculations show that in the
near-surface layer the velocities change in phase with the change in shear stress on the
wall along the channel, while in the central part of the flow they remain in phase with
the phase of shear stress on the wall. Therefore, the viscoelastic properties of the fluid,
as well as its acceleration, are limiting factors for using the quasi-stationary approach.
In addition, the found formulas (21) and (22) for determining the transfer function
during the flow of a viscoelastic fluid in a non-stationary flow allow, to determine the
dissipation of mechanical energy in a non-stationary flow of the medium, which are of
greater importance when calculating the regulation of hydraulic and pneumatic systems.

4 Conclusion

Theproblemsof theoscillatoryflowof aviscoelastic incompressiblefluid in aflat channel
are solved for a given harmonic oscillation of the fluid flow rate. The transfer function of
the amplitude-phase frequency response is determined. Using this function, the influence
of the oscillation frequency, acceleration, and relaxation properties of the liquid on the
ratio of the tangential shear stress on the channel wall to the average velocity over the
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channel section is determined. Calculations show that the non-stationary shear stress on
the channel wall during the flow of a viscoelastic fluid increases no monotonically with
the acceleration of the fluid particle, at low oscillation frequencies.

Reaching themaximumvalue, thendecreasingwith increasingdimensionless oscilla-
tion frequency and asymptotically approaching the values without accelerated flow with
oscillation.Then the phase advancedecreaseswith increasing frequencyof the oscillation
and approaches asymptotically to the value of the quasi-stationary flow with oscillation.
It is shown that the viscoelastic properties of the fluid, as well as its acceleration, are the
limiting factors for using the quasi-stationary approach.

Formulas are found for determining the transfer function for a viscoelastic fluid flow
in an unsteady flow, which are of no small importance in calculating the regulation of
hydraulic and pneumatic systems.
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