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Abstract. The satellite-terrestrial integrated network (STIN) has
recently attracted considerable attention. The problem studied in this
paper is how the access controller located at the ground station selects
the best-joining satellite for multi-users, who are covered by multi-
satellites with limited onboard resources and high-speed moving in STIN.
This paper proposes a multi-objective satellite selection strategy for
multi-user based on reinforcement learning. We adopt Q-learning to con-
tinuously confirm the optimal access choice in the continuous interac-
tive learning with the environment. We consider the multi-parameters of
the integrated satellite network, including satellites’ elevation angle and
coverage time for users and the available channel related to the overall
capacity and the traffic load. Finally, a multi-LEO satellite system for
multi-user is established in STK, based on which the access algorithm
is implemented. Based on the simulation, we analyze the convergence of
the algorithm, and the results show that the proposed access algorithm
can improve selection efficiency and user satisfaction.

Keywords: LEO Satellite · Satellite-Terrestrial Integrated Networks ·
Access Algorithm · Multi-targets · SDN · Reinforcement Learning

1 Introduction

The Satellite-Terrestrial Integrated Network (STIN) is promised to provide land,
sea, air, and space users with any time, global coverage, on-demand services, and
safe and reliable information services [1]. The Low Earth Orbit (LEO) satellites
based on STIN, such as OneWeb, SpaceX, and Telesat systems, have been pro-
viding broadband Internet access services for areas with underdeveloped telecom-
munication infrastructure [2].

However, STIN features a heterogeneous structure with wide-area distributed
and highly dynamic nodes, limited onboard wireless resources, non-negligible
delay, and severe fading. Moreover, moving at a rapid speed at a low altitude,
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LEO satellites have a relatively short period of view, causing frequent handovers
between the ground terminal and the satellites. To continue communication with
the counterpart, the user has to switch among the covered satellites. Up to now,
SpaceX has launched nearly 3108 satellites for Starlink [3]. In this scenario, it
is increasingly common to see multi-satellites covering the same area simulta-
neously. Such a complex and dynamic environment greatly challenges wireless
resource management.

In the current STIN access selection scheme, the single target access algo-
rithm and multi-target weighting algorithm [4] are unsuitable for access deci-
sions for dynamic networks and fail to ensure the QoS requirements of different
users flexibly. Recently, AI (artificial intelligence) algorithms have been applied
to communication. Especially, Q-learning was proposed to continuously confirm
the optimal access choice in the continuous interactive learning with the envi-
ronment.

This paper proposes an intelligent access resource strategy based on reinforce-
ment learning for STIN, aiming to select the best-joining satellite for multiple
users covered by multi-LEO satellites with limited onboard resources at high
speed. The remainder of this paper is as follows. Section 2 illustrates the refer-
ence scenario and introduces the system model. Section 3 presents the proposed
access algorithm based on reinforcement learning in detail. The proposed method
is eventually validated through simulation in Sect. 4. Finally, the conclusions of
this paper are drawn in Sect. 5.

2 System Model

2.1 Scenario

We introduce a general formalism for the general multi-star coverage scenario.
The area covered by the satellite in the ground plane is as shown in Fig. 1(a).
user1 is simultaneously located under the signal coverage of the satellites LEO1

and LEO2. After the satellite returns the result, the ground control center sends
it to the user to complete the satellite access. Supposing the network composed
of n users and m satellites, we get :

U = {u1, u2, u3, . . . , un} (1)

S = {s1, s2, s3, . . . , sm} (2)

where U is the user set and S is satellite set. We assume multi-satellites covering
the same area simultaneously. For example, if two satellites cover useri , the set
of satellites Si that can serve the user is:

Si = {s1, s2} (3)

where i ∈ {1, 2, . . . , n}.
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Fig. 1. Figure 1(a) shows the multi-star coverage model, and Fig. 1(b) shows the satel-
lite coverage map of the earth . In Fig. 1(b), r represents the radius of the earth. ω
represents the elevation angle of the satellite, which is the angle between the user and
the satellite connection to the horizontal line, h is the height of the satellite relative to
the ground, l represents the distance from the user to the satellite, and φ represents
the satellite service area on the ground. θ represents the included angle of the satellite
relative to the user.

2.2 Parameter Evaluation

We consider the multi-parameters of the integrated satellite network from the
physical parameters of a single low-orbit satellite and the overall capacity of
the traffic load, including the satellite elevation angle, coverage time, and the
available channels.

Figure 2 shows the satellite-to-ground diagram, in which the φ is:

ϕ = cos−1

[
r

r + h
· cos ω

]
− ω (4)

Then we get the average radius of coverage area:

r′ = r · sinϕ (5)

So size of the area is:
s = 2πr2 · (1 − cos ϕ) (6)

Assuming satellites move around the earth in a uniform circular motion. The
period T can be obtained as:

T = 2π

√
(r + h)3

μ
(7)

where μ = 398601.58 km3/s2 is the Kepler constant. Therefore, the coverage time
of the satellite to the ground is:

Ts =
2ϕ

360
· T (8)
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3 The Proposed Access Algorithm Based on Q-Learning
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Fig. 2. Structure diagram of multi-satellite access scheme based on Q-learning.

3.1 Q-Learning Algorithm

Markov Decision Process (MDP) [5] is defined by a tuple (S,A, p, r) with explicit
state transition properties. In the tuple, S represents states’ finite set, A rep-
resents actions’ finite set, p is a transition probability, and r represents the
immediate reward obtained from state s to state s′ after the execution of the
action a. π is denoted as a “policy” that represents a mapping from a state to
action. The goal of a time-infinite MDP is to maximize the expected discounted
total reward or maximize the average reward:

max
π

E

[
T∑

t=0

γrt(st, π(st))

]
(9)

where γ ∈ [0, 1] represents the discount factor, which determines the great sig-
nificance of future rewards compared with the current reward. We aim to find an
optimal policy π′ : S → A and define value function Vπ : S → R that represents
the expected value obtained by following policy π from each state s ∈ S. The
value function is:

Vπ(s) =Eπ

[ ∞∑
t=0

γrt (st, at) |s0 = s

]

=Eπ [rt (st, at) + γVπ (st+1) |s0 = s]

(10)
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As we need to find the optimal policy π∗ , an optimal action at each state
can be found through: V∗(s) = max

at

{Eπ[rt(st, at) + γVπ(st+1)]}.

We define Q∗(s, a) � rt(st, at) + γEπ[Vπ(st+1)] as the optimal Q-function
for all state-action pairs, then the optimal value function can be expressed as
V∗(s) = max

a
{Q∗(s, a)}. For all state-action pairs, this can be done through

iterative processes [6]:

Qt+1(s, a) =Qt(s, a)

+αt

[
rt(s, a)+γ max

a′
Qt(s, a′)−Qt(s, a)

] (11)

The core idea behind this update is to find the Temporal Difference (TD)
between the predicted Q-value.

3.2 Algorithm Structure

The overview of the proposed method is as shown in Fig. 2. State Evaluation
Module is to collect the observed information of the STIN. And the Reinforce-
ment Learning Module is the decision-making center to explore optimal access
links by interacting with environmental information. The algorithm is shown in
Algothrim 1. We denote Q∗

t (s, a) as the optimal Q-function at t. s∗ and a∗ is the
corresponding state and action.

Algorithm 1. Q-learning-based resource access strategy for STIN
Input:For each (s, a), initialize the table entry Q(s, a) arbitrarily. Observe the cur-
rent state s, initialize the learning rate α and the discount factor γ as Table 5.
When calls arrive do
1 Observe ω, t, and c in the STIN environment to get s as (12).
2 Generate random variable ρ, as (13):
if 0 ≤ ρ ≤ ε then Select random action a.
else Select the action a = arg max Q(s, a).
3 Execute action a to get access
4 Obtain the immediate performance reward r as (15).
5 Update the Q-table entry:

Qt+1(s, a) ← Qt(s, a)+αt [rt(s, a)+γ maxa′ Qt(s, a
′)−Qt(s, a)]

Until |Q∗
t (s, a) − Q∗

t+1(s, a)| ≤ 0.1
Output: Access strategy π∗(s) = arg max

a
{Q∗

t (s, a)}

3.3 Q-Learning Based Access Resource Strategy Based Design

The proposed scheme designs the satellite network state as the state set, the
alternative satellites as the action set, and the comprehensive network perfor-
mance as the reward function of the selection strategy. The details are as follows:
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Table 1. Parameter for Multi-satellite Environment in STK.

Parameter Value

LEO number m = 48

Orbit number 6

LEO number in per orbit 8

LEO height 550(km)

Orbit inclination 53◦

Call arrival model Poisson Distribution, r ∼ P (10)

Number of calls arriving Uniform Distribution, n ∼ U(5, 25), n ∈ N

Call duration Exponential Distribution, T ∼ E(180)(s)

The sampling period in STK Ts = 1(min)

Channel capacity 240

Minimum services angle ωmin = 15◦ or π/12

Elevation angle ω ∈ [π/12, π/2]

Cover time t ∈ [0, 11.94] (min) as (7) and (8)

Number of available channels Uniform Distribution, c ∼ U(1, 240), c ∈ N

State Space. Three parameters, i.e., the satellite elevation angle ω, the coverage
time t, and the number of available channels c, are considered as the state space
of Q-learning. These parameters are selected based on signal strength, service
continuity, and load balancing considerations. So the state space of Q-learning
is: This paper considers the double-satellite coverage scenario. So the state space
complete formula is as follows:

S(ω, t, c) = {(ω1, t1, c1) , (ω2, t2, c2)} (12)

Action Space. The action for the satellite access scenario is the set of satellites
to be selected for access. In Fig. 1(a), the set of satellites covered by the user in
the action space is as follows:

Ai = {a1, a2} (13)

This paper adopts ε-greedy strategy, in which ε is the exploration probability.
The system generates a random ρ ∈ [0, 1] to determine whether to take the
action with the maximum value or a random action according to ρ. The ε-greedy
strategy is as follows:

aτ =
{

arg max Q(s, a), ε ≤ ρ ≤ 1
random(A), 0 ≤ ρ ≤ ε

(14)

Reward Function. The observed QoS of the entire communication network
is designed as the reward, including packet loss, jitter, and delay. Considering
the comprehensive impact of the selection strategy on network performance, we
define a utility function:

r(s, a) = αωUω(ω∗) + αtUt(t∗) + αcUc(c) (15)



A Reinforcement Learning Based Resource Access Strategy for STIN 103

Table 2. Influence of state parameters on performance indicators.

Pack Loss Delay Jitter Delay

Satellite elevation � �

Coverage time �

Load Balancing � �

Table 3. Weight of the parameters affecting business in (15).

Parameters αw αt αc

Value 0.6 0.2 0.2

where Uω(ω∗), Ut(t∗), and Uc(c) represent the satellite elevation angle, coverage
time, and the benefit function of the available channel, respectively. αω, αt, and
αc can be thought of as weights to the corresponding parameters. As shown in
Table 3.

For the satellite elevation angle, the benefit function is:

Uω(ω∗) = σ

(
ω∗ − ωmin

ωmin

)2

(16)

where ω∗ represents the current elevation angle, and ωmin is the minimum angle
that the system can provide services. σ ∈ (0, 1) is a normalization parameter
selected according to factors such as the geographical environment. This formula
reflects that the larger the satellite elevation angle, the better the signal quality.

For the utility function of satellite coverage time, the definition is given as
follows:

Ut(t∗) =

{
μ

(
tmax

tmaxt∗

)2

, tmax �= t∗

1, tmax = t∗
(17)

where t∗ represents the current coverage time, tmax is the longest satellite cov-
erage time, and μ is a normalization parameter. This formula shows that the
longer the coverage time, the better the communication quality of the user. For
the load situation of the channel, we use change in the available channels before
and after the action is taken to measure whether the action is beneficial for load
balancing. And the function is defined as:

Uc(c∗) =
{

0,Δc∗ − Δc < 0
1,Δc∗ − Δc > 0 (18)

where c∗ represents the current number of available channels. The difference in
the number of available channels after the action selection measures whether
the action benefits load balancing. If the difference is negative, the reward is 0.
Otherwise, the reward is 1.

Finally, it is necessary to design the weights of αω, αt, and αc. We com-
prehensively consider delay, jitter, and packet loss rate as the QoS measure.



104 J. Qiu et al.

The effects of three state parameters ω, t, and c on these performances are in
Table 2, which shows that pack loss is affected by both satellite elevation and the
available channel. In contrast, the delay is only affected by the elevation. The
value of the weights factor is as shown in Table 3.

4 Simulation and Result Analysis

4.1 Environment and the Parameters

We try to evaluate the availability of the algorithm in practical scenarios. The
proposed access algorithm is simulated and verified. First, STK is used to build
a low earth orbit (LEO) satellite to obtain satellite parameters, as shown in
Table 1. After the parameters are obtained from the environment, they must be
loaded into the reinforcement learning module for training through quantization
processing. The specific quantization range is shown in Table 4.

Table 4. The actual parameter range corresponding to the quantized value in Uω(ω∗),
Ut(t

∗), and Uc(c
∗) about the elevation angle, coverage time, and the number of available

channels.

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Elevation Angle(ω∗) [15◦, 33◦) [33◦, 60◦) [60◦, 90◦)

Cover Time(t∗) [0 s, 3.98 s) [3.98 s, 7.96 s) [7.96 s, 11.94 s)

Channel Number(c∗) [0, 40) [40, 80) [80, 120) [120, 160) [160, 200) [200, 240)

The parameters of Q-Learning Module are as shown in Table 5.

Table 5. Parameter for Q-Learning Model.

Parameter Description Value

α Learning rate 0.5

γ Discount factor 0.8

ε Probability choose to explore in the ε-greedy strategy 0.8

ρ Decay coefficients for the probability of exploration 0.08

τ Decay cycles for the probability of exploration 10(s)

4.2 Result Analysis

For this algorithm, we set the number of training rounds to 500. Then we analyze
the impact of the access selection algorithm on communication performance.
And the convergence process of the Q-learning algorithm model based on a real-
time communication system is first analyzed. We use a single utility function
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adopting the weighted sum of the satellite elevation angle, coverage time, and
available channel for comparison. CLWA represents comprehensive weighting
and static access algorithms in the following figures, and Q-Learning illustrates
the proposed method.

Fig. 3. Convergence Process of Q-learning.

Convergence Analysis. As the training progresses, Fig. 3 shows that the Q-
learning algorithm is converging. It shows that the agent can obtain the optimal
access strategy from the satellite elevation angle, coverage time and the num-
ber of available channels to explore the STIN environment. It also shows the
difference in algorithm convergence when the learning rates α are 0.8 and 0.5,
respectively. As demonstrated by the curve, when the learning rate is 0.8, the Q
value changes faster and stabilizes earlier. α determines the learning ability. The
larger the α, the faster the learning speed under the premise of convergence.

Successful Access Rate Analysis. We measure this performance with access
probability, which refers to the number of calls successfully connected to the
satellite to the total number of calls. The access probability is related to the
access algorithm and the busyness of the network. As shown in Fig. 4, when the
number of call arrivals per unit time increases from 5 to 25, the access probability
of the curves corresponding to the two algorithms first remains close to 100%,
then gradually decreases, and finally remains around 50%. It is because when
the call arrival is relatively low, the network load is relatively small, the call
requests of all users can be satisfied, and the access probability is 1. As the call
arrival rate increases, the network load gradually increases. As demonstrated
in Fig. 4, compared with the Q-Learning algorithm, the access probability of
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Fig. 4. Probability of complete call versus new call arrival rate.

the CLWA algorithm curve decreases first. Meanwhile, the access probability
of the CLWA algorithm is lower than that of the Q-Learning algorithm, which
indicates the proposed algorithm can improve the access probability of users,
thereby providing higher communication quality and user satisfaction.

Fig. 5. Satellite channel utilization versus call arrival rate.

Network Resource Utilization Analysis. We consider the impact of this
algorithm on the utilization of the entire network resources. Channel utilization
refers to the difference between the successfully utilized channels and the chan-
nel capacity in STIN. As shown in Fig. 5, as the number of calls increases, the
channel utilization rises and then tends to stabilize, and its value is close to 1.
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When the call arrival rate is low, the network load is small, fewer channels are
needed at this time, and the channel utilization rate is low. At the same time, it
shows that the channel utilization rate of the CLWA algorithm is lower than that
of the Q-Learning algorithm, and the time to reach the highest channel utiliza-
tion rate is relatively late. It shows that the proposed Q-Learning-based access
algorithm can better allocate the channel resources of the STIN and improve
channel utilization.

5 Summary

This paper proposes a multi-objective integrated satellite access algorithm based
on Q-learning for the satellite-terrestrial integrated network (STIN), aiming to
select the optimal access satellite for multiple users covered by multi-LEO satel-
lites with limited channel resources. We consider the multi-parameters, includ-
ing the elevation angle of satellites, the coverage time, and the available channel
related to the traffic load. According to the QoS requests, we design the access
problem as a multi-objective optimal problem and adopt reinforcement learning
to select the satellite. Finally, an LEO-based STIN is simulated in STK, and the
proposed algorithm is implemented. Based on the results, we analyze the con-
vergence of the algorithm and verify that the algorithm provides more efficient
access selection by analyzing user satisfaction and network resource utilization.
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