
A Multi-brain Approach for Multiple
Tasks in Evolvable Robots

Ege de Bruin(B) , Julian Hatzky(B) , Babak Hosseinkhani Kargar(B) ,
and A. E. Eiben

Department of Computer Science, Vrije Universiteit Amsterdam,
Amsterdam, The Netherlands

egedebruin@gmail.com, julianhatzky@gmail.com

{b.hosseinkhanikargar,a.e.eiben}@vu.nl

Abstract. We investigate the joint evolution of morphologies (bodies)
and controllers (brains) of modular robots for multiple tasks. In partic-
ular, we want to validate an approach based on three premises. First,
the controller is a combination of a user-defined decision tree and evolv-
able/learnable modules, one module for each given task. Second, mor-
phologies and controllers are evolved jointly for each task simultaneously
by a multi-objective evolutionary algorithm. Third, after terminating
the evolutionary process, the brain of the users’ favorite morphology is
optimized by a learning algorithm applied to the task-specific controller
modules independently.

Keywords: Evolutionary Robotics · Morphological evolution ·
Controller evolution · Robot learning · Multi-Objective Optimization ·
Locomotion

1 Introduction

Evolutionary robotics is a field where evolutionary algorithms are used to evolve
robots. In the early years of the field, the focus was mainly on evolving the
controllers of robots with a fixed morphology [11,21], but more recently the
evolution of robot morphologies has been addressed as well [2,6,10,26].

Much of the existing work is based on evolving bodies and brains for one
task, where acquiring an adequate gait is a popular problem. However, simply
moving around without a goal is not really practical. Functional robots need to
move with purpose, for example, move towards a target in sight. There has been
work done for this targeted locomotion, on robots with fixed morphologies [19]
and robots with evolvable morphologies [15,16]. These works however assume
that the robot knows where the target is, and if the target is not in sight it
assumes the target is at the last known position. When it is completely unaware
of where the target is, it will not search for it.

In this work we, consider a practically more relevant case, where the robot
has to 1) find the target and 2) move to the target, and be able to repeat this
for additional targets.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Correia et al. (Eds.): EvoApplications 2023, LNCS 13989, pp. 129–144, 2023.
https://doi.org/10.1007/978-3-031-30229-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30229-9_9&domain=pdf
http://orcid.org/0000-0003-0111-7078
http://orcid.org/0000-0002-7991-9233
http://orcid.org/0000-0003-4841-0597
http://orcid.org/0000-0002-3106-4213
https://doi.org/10.1007/978-3-031-30229-9_9

130 E. de Bruin et al.

To achieve this, we want to end up with a robot body, that is fully capable to
perform those tasks, together with a controller architecture to move the robot
and that is a combination of a user-defined decision tree and evolvable brains,
one brain for each given task.

The decision tree is to capture the users’ domain knowledge where
the solution needs not to be evolved, only coded. For instance, IF
target-not-in-sight THEN search-for-it or IF target-in-sight THEN
move-towards-it. The evolvable modules represent (morphology-dependent)
sub-controllers specifying how that given task can be executed by the given
body. Thus, the first research question we address is:

Can a multi-objective evolutionary algorithm deliver good bodies for modular
robots for handling two tasks?

Our approach is, in essence, a multi-brain system: one brain for each task,
combined through a decision tree. However, the first research question is focused
on delivering good bodies for robots to handle two tasks regardless of doing the
tasks separately or simultaneously. Hence, the second question we address is:

How much can a secondary learning stage that separately optimizes each task
enhance robot performance in a given morphology?

To this end, we use a two-phase approach, where first the creatures are
evolved to do the tasks simultaneously, and then the creatures learn to do the
two tasks separately. This results in one morphology and two different brains,
one for each task, which can be used in the robot’s controller. Naturally, this pro-
cedure can be extended to an arbitrary number of tasks by creating an additional
number of brains.

2 Background

Locomotion for modular robots is a difficult task, but there has been promising
work with robot locomotion based on Central Pattern Generators (CPGs) [14].
Moreover, a neural network-based approach, for example using HyperNEAT [12],
can be used to evolve good controllers for robot locomotion. For targeted loco-
motion, there are studies focusing on robots with fixed shapes [19]. Lan et al.
propose a method for targeted locomotion of generic shapes by morphologically
evolving the robots [16]. A CPG-based approach was used with a HyperNEAT
generative encoding technique. This study was later extended to follow a moving
target [15]. In this work, when the target went out of sight of the robot, the robot
assumed the last-known angle towards the target to be the angle towards the
target. These studies showed that a robot can evolve and learn to walk towards
and follow a target.

Considering multiple objectives, the task of the robot influences its morphol-
ogy [4]. This is especially the case when the tasks are conflicting, and when the
multiple objectives are put into a single function. It is not certain that a single
solution exists for the problems [7], and in a single fitness function, it is difficult

A Multi-brain Approach for Multiple Tasks in Evolvable Robots 131

to find the correct trade-off between multiple behavioral terms [25]. It is there-
fore preferred to use a multi-objective function, and the NSGA-II algorithm has
been shown to be a good and fast algorithm for multi-objective functions [20]
[8].

A paper by Lipson et al. shows that when the morphology and brain of
the robot are evolved together, we run into premature convergence, and this is
especially seen in the morphology of the creature [5]. Moreover, when morphology
and brain are evolved together to optimize multiple tasks, this will lead to worse
results than when the creatures are evolved for the tasks separately [3]. Nygaard
et al. try to overcome these convergences with a two-phase approach [22]. First,
the morphology and brain are evolved together. Then, after convergence, the
morphology is fixed and the brain evolves further. This paper shows that after
convergence of evolving the morphology and brain together, the creature can
still perform better when only the brain is evolved further. This is acknowledged
by Eiben and Hart [9], who state that after the evolution of brain and body
together, the brain needs to learn the optimal way to use the body. A paper
by Lessin et al. showed results for an approach to evolve creatures for multiple
objectives [18]. The robot was initially evolved for a locomotion task, after which
most of the morphology was fixed and other tasks were learned after this. This
was later extended by a method to make the morphology more flexible after the
initial evolution phase [17]. This differs from our approach by evolving robots
to more specific actions, like turning left and turning right, and by evolving the
robot’s morphology per action instead of by all actions together.

3 Experimental Work

3.1 Phenotypes and Simulation

The robots are simulated on a Gazebo-based simulator Revolve [13]1 The robot
design is based on RoboGen [1]. There are three different robot modules which
can be used as building blocks for the robots. At first, every robot has one core
component which, when the robot is built in real life, contains the controller
board. This block has four possible connections to other components. Another
component is the fixed brick, which has four possible slots to attach other com-
ponents. Lastly, there is an active hinge component and this is the component
responsible for the robot’s movement. It is a joint that can be attached on two
lateral sides. In the simulator the orientation of the robot is a virtual sensor, if
the robot would be built in real life the camera would be located in the core com-
ponent of the robot. In Fig. 1 an example of robot with its possible components
is shown.

3.2 Central Pattern Generators

As a controller for the robots, Central Pattern Generators (CPGs) have been
shown to perform well for a task like targeted locomotion. CPGs are neural
1 (see Revolve https://github.com/ci-group/revolve).

https://github.com/ci-group/revolve

132 E. de Bruin et al.

Fig. 1. A possible robot from RoboGen. The middle white component is the core
component, the green square components are the fixed brick components, and the red
parts are the active hinge components. (Color figure online)

networks that are responsible for the rhythmic movement of animals, without
any sensory information or rhythmic inputs [14]. Because they are independent of
higher control centers, this reduces time in the motor control loop and reduces the
dimensionality to control movements. This concept is applied to robots, where
CPG models are being used to control the locomotion of robots. In this work,
CPGs are used in the hinges of the robots, with differential oscillators, which
are responsible for rhythmic movement, as its main components. The oscillators
generate patterns by calculating activation levels of neurons x and y shown at
the top of Fig. 2. Moreover, there is an output neuron that outputs the value for
the CPG model. For these neurons, the equations for calculating the difference
per time step can be seen in Eqs. 1 and 2.

Δx = wyxy + biasx (1)

Δy = wxyx + biasy (2)

The activation functions of the output neurons are tanh functions. The hinges
also affect each other, therefore the CPG components are extended by taking
into account the neurons of neighboring hinges. To be more precise, for each pair
of neighboring hinges the x neurons in the CPG models also have an influence
on each other. Therefore, the activation values for the x and y nodes can be
calculated by the equations in Eqs. 3 and 4.

xi(t) = xi(t − 1) + Δxi(t) +
∑

j∈Nj

xj(t − 1) ∗ wji (3)

yi(t) = yi(t − 1) + Δyi(t) (4)

In these equations, Nj are all neighboring hinges of hinge i, and Δxi and
Δyi are calculated from Eqs. 1 and 2. To also take into account the angle from

A Multi-brain Approach for Multiple Tasks in Evolvable Robots 133

the robot’s vision direction towards the target, the CPG model is extended with
sensory input as shown in Fig. 2. When the angle towards the target is lower
than α, the target is assumed to be on the left and otherwise on the right. This
has an influence on the actuators, where the left actuators are influenced when
the target is on the left and visa versa. Whether the actuator is on the left or
on the right depends on its lateral position and the direction of the target. An
overview of this approach can be seen at the bottom of Fig. 2.

Fig. 2. Overview of a CPG component with angle towards target taken into
account. When the target is on the left, α is assumed to be lower than 0 and only the
left actuators are influenced. Otherwise the right actuators are influenced.

3.3 HyperNEAT and Compositional Pattern Producing Networks

We use HyperNEAT, which is a hypercube-based encoding to evolve large-scale
neural networks [23]. HyperNEAT is an effective choice when learning the weights
for the CPG controllers for a given task. The idea behind HyperNEAT is that
there is a substrate network, represented by for example a hyper-dimensional
cube, of which the coordinates of a node are used as input for a CPPN. The
CPPN is then evolved using NEAT [24] to find the optimal structure and acti-
vation functions of the CPPN for the problem at hand. For our work, to get the
correct connection weight values, the CPPN will have as input the coordinates
of the source and target CPG component, including a 1 if the target node is an
x-CPG-node, a -1 if it is a y-CPG-node, and 0 if it is an output-CPG-node. The
output of the CPPN is then the weight of the connection.

To evolve and generate the morphology of a robot a second CPPN is used.
This network takes as input the x, y and z coordinates of the possible location
for a module of the robot, and the length towards the core module as well as
input. The output is the module that is used, hinge, block or no module, and the

134 E. de Bruin et al.

rotation of the module. The generation of the robots starts at the core module
with coordinates (0,0,0), and from this module the robot is extended with new
modules dependent on the outputs of the CPPN. This CPPN is also evolved
using NEAT.

3.4 Two-Brain Approach

Other work related to targeted locomotion has mostly focused on only the loco-
motion part. For example, recent work by Lan et al. [15] showed progress in
making evolvable robots move towards a moving target, but it was the robot’s
only task. When the target was out of sight of the robot, it assumed the latest
known angle towards the target to be the current angle, so there was no specific
task for searching for the target. In this work we aim to add an additional task
to the robot, that enables it to explore its surrounding by rotating in search for
the target. Once the target’s position is known, the robot will switch back to
the task of moving towards the target. To achieve this multi-task behaviour, we
need to evolve and learn robots to do two tasks, rotation and follow target. We
want to end up with a morphology that is able to perform both behaviours well,
alongside two sets of CPG-weights, or two different brains. The two modules
can then be used in the robots controller. The controller starts with the rotation
brain module, and once the target is in sight it will switch to the follow target
brain module. An overview of the controller that will used in this work can be
seen in Fig. 3.

Fig. 3. The controller of the robot
to end up with. There will be two sets
of CPG-weights, or two brains: one for
rotation and one for follow target. The
robot will switch brains dependent on the
angle towards the target.

Fig. 4. The two-phase approach to
evolve and learn the robot to do
two tasks. First a robot is evolved for
both objectives, then it learns the two
tasks separately.

A Multi-brain Approach for Multiple Tasks in Evolvable Robots 135

3.5 Two-Phase Approach

The goal is to end up with one morphology alongside two different sets of CPG-
weights for the two tasks, and we will do that using a two-phase approach [22].
First, the morphology of the robot is evolved to do both tasks at the same time.
After that, the morphology of the robot is fixed and we will learn the robot twice.
Once for the rotation task and once for the follow target task. An overview is
given in Fig. 4.

Phase 1: Morphology Evolution. We want to have a morphology that can
perform the two distinct tasks: rotation and follow target. To achieve this we use
a multi-objective algorithm to simultaneously evolve the morphology and brain.
Previous work has shown that the NSGA-II algorithm is a good and fast algo-
rithm for multiple objectives [20]. The NSGA-II algorithm is an elitist genetic
algorithm, which uses non-dominated sorting for selection. A non-dominated
solution, in the context of multi-objective optimization, refers to a solution that
cannot be surpassed by any other solution in terms of its performance on any
objective, while maintaining equal or better performance on all other objec-
tives. A front of such non-dominated solutions is called a Pareto-front. In the
NSGA-II algorithm, there are multiple fronts, where the first front contains all
non-dominated solutions, the second front contains all non-dominated solutions
without the first front, and so on. A selection is made by choosing the solutions
which are on the highest fronts, and ties are decided on crowding distance sort-
ing to ensure diversity. This evolutionary process aims to arrive at a morphology
that is good in doing both tasks, however not yet separately. This morphology
can then be used to make the robot learn the tasks separately.

Phase 2: Task Learning. The multi-objective evolution of the morphology
alongside the brain (phase 1) results in a brain that is optimized to perform
both objectives simultaneously. However, since our goal is a clear separation
between the desired behaviors, the idea of this phase 2 is to learn a brain for
each task separately. We achieve this by fixing a chosen morphology after phase
1 and optimizing the weights of two randomly initialized copies of its CPG-brain
(Fig. 4). These two sets of CPG-weights are then used by the controller (Fig. 3)
to accomplish the execution of multiple separate tasks. Note that we randomly
re-initialize the CPG-weights before the learning step, instead of keeping the
already evolved weights intact. The reason is that by keeping the evolved CPG-
weights, we would need to unlearn the opposing task instead of learning the
desired task, and this would likely need an adjustment of the fitness function
by penalizing the undesired behavior. Instead, the robot learns the task from
scratch by randomly re-initializing the CPG-weights, so there is no unlearning
involved and we can use the same fitness function for both phases.

136 E. de Bruin et al.

3.6 Fitness Functions

There are two tasks for the robots, rotation and follow target, and for both tasks
a separate fitness function is used. The robot should be able to rotate as quickly
as possible to get a full overview of the environment, so for the objective value
of rotation the forward orientation, which is the direction of the robot’s vision,
returned from the Revolve Simulator is used. At every time step the forward
orientation of the robot is compared to the previous orientations, and this is
summed up. This will then result in the total orientation of the robot, and the
goal is to maximise this. The function for this can be seen in Eq. 5, where T
are all time points during evaluation, and o(t) is the forward orientation at time
point t.

rotation =
∑

t∈T

|o(t) − o(t − 1)| (5)

For the fitness function of the follow target task several factors are taken into
account, and a visualisation can be seen in Fig. 5. There, T0 is the start position
of the robot, T1 the end position and the red dotted line is the line towards the
target. It is important that the robot is moving into the correct direction, so the
distance travelled on the ideal trajectory line is taken into account, which is the
distance between p0(x0, y0) and p(xp, yp). Secondly, the distance between the end
point of the robot and the ideal trajectory line is taken into account, which is the
distance between p1(x1, y1) and p(xp, yp) in Fig. 5. It is preferred that the robot
moves in a straight line towards the target, so distance travelled is minimized
simultaneously. Hence, the travelled path is also taken into account, shown in
the figure as two different solid red trajectory lines. Finally, the angle between
the optimal direction and travelled direction is also taken into account, as shown
by the difference between β0 and β1. The combination of all this results in Eq. 6,
where ε is an infinitesimal constant, e1 is the distance on ideal trajectory, e2 is
the distance between the end point of the robot and the ideal trajectory, e3 is
total distance travelled, and δ is the angle between the optimal direction and
travelled direction. Finally, p1 is a penalty weight set to 0.01.

followTarget =
e1

e3 + ε
· (

e1
δ + 1

− p1 · e2) (6)

3.7 Experiment Parameters

For phase 1 we use a (μ + λ) selection mechanism with μ= 100 and λ= 50 to
update the population which is initially generated randomly. In each generation
50 offspring are produced by selecting 50 pairs of parents through tournament
selection with replacement, creating one child per pair by crossover and mutation
according to the MultiNeat implementation2 Out of the (μ + λ) solutions μ
solutions are selected through NSGA-II selection for the next generation. The
evolutionary process is terminated after 300 generations and we do a total of 30
runs.
2 (see MultiNeat https://github.com/MultiNEAT/).

https://github.com/MultiNEAT/

A Multi-brain Approach for Multiple Tasks in Evolvable Robots 137

Fig. 5. Visualisation of calculating the follow target fitness value. T0 and T1
are the start and end point of the robot respectively. The red dotted line is the line
towards the target, and the red solid lines are two possible trajectory lines of the robot.
(Color figure online)

The morphologies for phase 2 are selected among the pareto front of genera-
tion 300 and then the specified objective is learned for additional 200 generations.
For phase 2 the same set of parameters is used, but this time the morphology
of the phenotype is fixed and only the brain weights are evolved for a single
objective, again using MultiNeat (Table 1).

Table 1. Experiment parameters

Parameters 1, 2* Description

Population 100, 100 Individuals per generation

Offspring 50, 50 Offspring per generation

Generations 300, 200 Termination condition

Mutation NEAT, NEAT Mutation operator

Crossover NEAT, NEAT Crossover operator

Parent selection Tournament, Tournament Parent selection operator

Survivor
selection

NSGA-II, Tournament Survivor selection operator

Tournament size 2, 2 Number of individuals used
in the tournament

Evaluation time 50, 50 Duration of the test period
per fitness evaluation in
seconds

Runs 30, 30 Repetitions per experiment

*Values for Phase 1, Phase 2

138 E. de Bruin et al.

4 Results

4.1 Phase 1: Morphology Evolution

With the multi objective evolutionary process using NSGA-II, many individuals
perform well on the objectives at hand. Figure 7 shows that the dominating
morphology of generation 300 is of type snake (Fig. 6c). However, after further
investigation of the behaviour we decide to exclude this phenotype, since it
not only rotates horizontally but also vertically, and a vertical rotation is not
practical with the hardware we are using.

Hence, we decided to proceed by filtering out the snake morphologies. The
other two morphologies we call beyblade (Fig. 6a) and fancy (Fig. 6b). Lastly,
there is a category other that contains morphologies that are present in only a
very small amount. The distribution shows that the fancy morphology is mostly
good in rotating but not in following the target, whereas the beyblade scores well
for both objectives, though not as high in rotation as fancy. The rotation score
of the beyblade seems good enough for the task, and because following a target
is the more difficult task it makes sense to continue to phase 2 with a beyblade
morphology.

Fig. 6. The three most occurring morphologies after 300 generations of evolution.

4.2 Phase 2: Task Learning

By following the argument of the foregoing Sect. 4.1, we choose the beyblade
morphology that is given by the NSGA-II pareto-front of generation 300, for the
second phase of learning. As explained in Sect. 3.5, the brain weights are reset
to random values, and all morphologies of the beyblade robots are the same.
Therefore, we can pick any beyblade morphology. To this end the morphology
stays fixed and the brain weights are re-initialized and then the two objectives
are learned separately, resulting in two separate brains. In Table 2 the fitness
after 200 generations of learning - using the morphology of generation 300 - is
compared to the fitness of the evolution-only approach, which is extended to
500 generations for a fair comparison. It can be observed that for the rotation

A Multi-brain Approach for Multiple Tasks in Evolvable Robots 139

Fig. 7. Individuals in Generation 300 of 30 runs. It is observable that the snake
morphology (orange, Fig. 6c) is dominating the population. The morphology is natu-
rally good for the follow target objective, because of its straight line shape, and the
exploitation of the rotation along its horizontal axis leads to high scores for rotation
as well. However, as we state in Sect. 4.1 it comes with undesired behavioral trades.
Besides the snake morphology, fancy (red, Fig. 6b) is very good in rotation although
not so good in follow target and other (green) are potentially better in follow target
than rotation. The beyblade (blue, Fig. 6a) morphology seems to lead to a more diverse
distribution, getting decent scores for both objectives. Rotation is given in radians and
follow target in meters. (Color figure online)

objective the learning results in a higher fitness, whereas for the learning of the
follow target objective, the single objective learning performs slightly worse than
NSGA-II.

Table 2. Phase 1 results versus phase 2 results. The results of the learning only
approach with NSGA-II (phase 1) after 500 generations versus the separate learning of
each behaviour for 200 generations (phase 2, after 300 generations of NSGA-II) aver-
aged over 30 runs. It can be seen, that for rotation the learning leads to a higher overall
fitness function while for the follow line objective, the NSGA-II approach performs bet-
ter. The rotation performance is given in radians and the follow line performance in
meters.

evolution only evolution + learning

rotation 66.38 82

follow line 2.02 0.72

4.3 Combining the Tasks

To achieve a more complex search-and-chase behavior we now use the controller
to switch back and forth between the two learned sets of CPG-weights. We
showcase this by using the beyblade morphology of phase 1, together with the

140 E. de Bruin et al.

two best-learned brains of phase 2. These two brains are used in the controller of
the robot (Fig. 3). Figure 8 shows the trajectory of 30 runs for the robot, as well
as the average trajectory. There is one target and its position is at coordinates
(0,5). We estimate the performance of the robot by using the Mean Absolute
Error (MAE) of its trajectory versus the optimal (shortest) trajectory. The MAE
is calculated as MAE = 1

N

∑N
i=1 |Roboti − Ideali|, with N being the number of

data points that are sampled, and Robot and Ideal being the coordinates of
the robot and the optimal trajectory at time-step i. Compared to the optimal
trajectory, the green dotted line, the average trajectory has an MAE of 0.6,
with a standard deviation of 1.3. While none of the individual runs is able to
transition to the target with an optimal, or close to optimal, trajectory all of
them do reach the target. It seems that the robot keeps correcting itself when it
is not going in the right direction, and once the target is reached it stays there.

Figure 8b shows the trajectory of 30 runs for two targets, target 1 is at coordi-
nates (0,3) and target 2 is at coordinates (3,0). The robot will first search for the
first target and move towards it. Once the first target is reached, it will search for
the second target and move towards it. Compared to the ideal trajectory the aver-
age trajectory has an MAE of 0.9, and the standard deviation of the trajectories is
1.2. The trajectories again do not seem optimal, but in 27 cases the robot reached
both targets. Overshooting the target does not seem to be a big problem and since
more distance is traveled between the starting point and the first target, the plain
average over the trajectories does not reach the target.

Figure 9 shows the distribution of the MAE of the 30 trajectories for both
the one target scenario and the two target scenario. Both distributions look

Fig. 8. Trajectories in meters of 30 runs of the resulting beyblade morphol-
ogy with the learned controller. The trajectories are of a single beyblade robot,
with its best-learned rotation and follow target brains, starting at coordinates (0,0).
The dark blue line is the average trajectory of the 30 runs and the other blue lines
are the individual runs. The left Figure is in a two target environment and the right
Figure is in a one target environment. (Color figure online)

A Multi-brain Approach for Multiple Tasks in Evolvable Robots 141

Fig. 9. Mean Absolute Error distribution of the 30 trajectories

Fig. 10. Length of trajectory distribution of the 30 trajectories

similar, as most MAE are between 0.5 and 0.7. This is to be expected, as we
work with the same robot in both scenarios. Figure 10 shows the distribution of
the trajectory length of the 30 trajectories. The lengths are very similar to each
other, except for some outliers. As mentioned before, for the two target scenario
27 were able to reach both targets, meaning 3 of them did not. These are the
outliers between lengths 8 and 12.

142 E. de Bruin et al.

5 Discussion

The NSGA-II evolution shows an expected and steady increase in the ability
of the phenotypes to score well on the objectives. Another observation is that
through this process, the diversity among the morphologies is decreasing over
time, and converging to mostly three types of morphologies. A mechanism that
ensures a higher diversity amongst the population could be a great improvement
in this regard.

In phase 2, the learning of the rotation task for the beyblade morphology is
clearly outperforming the NSGA-II performance. However, while the learning
of the rotation objective is even able to outperform the NSGA-II we can not
observe that for the learning of the follow target objective. We hypothesize that
this is because the phenotype has a natural bias for rotation and the rotation
behaviour does not drastically harm the robots abilities to follow the target.
Moreover, another possibility is that the selection pressure is not high enough
and thus the learning algorithm can not keep up with the elitist strategy of
NSGA-II. However, our goal here is not only to outperform NSGA-II in first
place, but also to unlearn the other task. The best morphologies out of the first
phase are able to do both tasks well, but only simultaneously. The resulting
trajectory plots of Fig. 8 show as well that on average the robots follow the
target directly. Lastly, it is to point out that we use the same objective functions
for phase 1 and phase 2 in order to have better comparable results. However,
when the goal is a robot that is able to perform the desired tasks as accurately
and separately as possible, a penalty term in phase 2, that penalizes the task
that shall be unlearned has great potential to vastly improve on the resulting
behaviour.

5.1 Future Work

As of now, only the learning for the beyblade morphology is analyzed. In the
future it can be interesting to also apply the two phase approach to the fancy
morphology as well as others. Furthermore, the state-machine controller could be
exchanged by a reward-driven system like reinforcement learning. Another inter-
esting idea would be to test the approach with different or more objectives and
other types of environments. It is also of interest how the learning after genera-
tion 300 would behave without re-initialization of the brain weights, using more
of a Lamarckian approach. Lastly, the forward orientation of the robot, which
is also the potential view field, is not necessarily its direction of movement. The
robot might be moving backwards, sideways or diagonally while facing forward.
We would like to investigate how the enforcing of a forward orientation changes
the phenotype space and behavioural space of the evolution.

6 Conclusion

The first question that we ask is: Can a multi-objective evolutionary algorithm
deliver good bodies for modular robots for handling two tasks? We demonstrate

A Multi-brain Approach for Multiple Tasks in Evolvable Robots 143

that this is possible with the two-phase approach. Initially, we evolve a set of
candidate morphologies using the multi-objective NSGA-II algorithm, and then
we further separate the desired behaviors with a second phase of learning. To
this end, we compare the effects of evolving the phenotypes for the two objec-
tives (follow target and rotation) with only evolving the brain for the specified
objectives separately. We show that using a two-phase approach leads to a better
separation of desired behaviors and an increase in overall fitness performance for
at least one objective. The second question we ask is: How much can a secondary
learning stage that separately optimizes each task enhance robot performance in
a given morphology? By using the evolved morphology of phase 1 and the two
separately learned brains of phase 2, together with a controller that switches
between the brains, we demonstrate that the robot is able to navigate through
its environment while performing the tasks of searching and chasing one or mul-
tiple targets. Videos of the robot can be found on a video playlist3.

References

1. Auerbach, J., et al.: Robogen: robot generation through artificial evolution. In:
ALIFE 14: The Fourteenth International Conference on the Synthesis and Simu-
lation of Living Systems, pp. 136–138 (2014)

2. Beer, R.D.: The dynamics of brain–body–environment systems. In: Handbook of
Cognitive Science, pp. 99–120. Elsevier (2008)

3. Carlo, M.D., Ferrante, E., Ellers, J., Meynen, G., Eiben, A.E.: The impact of
different tasks on evolved robot morphologies. In: Proceedings of the Genetic and
Evolutionary Computation Conference Companion. ACM, July 2021

4. Carlo, M.D., Zeeuwe, D., Ferrante, E., Meynen, G., Ellers, J., Eiben, A.: Robotic
task affects the resulting morphology and behaviour in evolutionary robotics.
In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE,
December 2020

5. Cheney, N., Bongard, J., Sunspiral, V., Lipson, H.: On the difficulty of co-
optimizing morphology and control in evolved virtual creatures. IN: Proceedings
of the Artificial Life Conference 2016, July 2016

6. Cheney, N., Bongard, J., SunSpiral, V., Lipson, H.: Scalable co-optimization of
morphology and control in embodied machines. J. Roy. Soc. Interface 15 (2018)

7. Coello, C.C.: Evolutionary multi-objective optimization: a historical view of the
field. IEEE Comput. Intell. Mag. 1(1), 28–36 (2006)

8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

9. Eiben, A.E., Hart, E.: If it evolves it needs to learn. In: Proceedings of the 2020
Genetic and Evolutionary Computation Conference Companion. ACM, July 2020

10. Eiben, A., et al.: The triangle of life: evolving robots in real-time and real-space.
In: Lio, P., Miglino, O., Nicosia, G., Nolfi, S., Pavone, M. (eds.) Proceedings of
the 12th European Conference on the Synthesis and Simulation of Living Systems
(ECAL 2013), pp. 1056–1063. MIT Press (2013)

11. Floreano, D., Husbands, P., Nolfi, S.: Evolutionary robotics. In: Siciliano, B. and
Khatib, O. (ed.) Handbook of Robotics, 1st edn, pp. 1423–1451. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-30301-5 62

3 (see shorturl.me/JtySjtH).

https://doi.org/10.1007/978-3-540-30301-5_62
http://shorturl.me/JtySjtH

144 E. de Bruin et al.

12. Haasdijk, E., Rusu, A.A., Eiben, A.E.: HyperNEAT for locomotion control in mod-
ular robots. In: Tempesti, G., Tyrrell, A.M., Miller, J.F. (eds.) ICES 2010. LNCS,
vol. 6274, pp. 169–180. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15323-5 15

13. Hupkes, E., Jelisavcic, M., Eiben, A.E.: Revolve: a versatile simulator for online
robot evolution. In: Sim, K., Kaufmann, P. (eds.) EvoApplications 2018. LNCS,
vol. 10784, pp. 687–702. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-77538-8 46

14. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and
robots: a review. Neural Netw. 21(4), 642–653 (2008)

15. Lan, G., van Hooft, M., Carlo, M.D., Tomczak, J.M., Eiben, A.: Learning locomo-
tion skills in evolvable robots. Neurocomputing 452, 294–306 (2021)

16. Lan, G., Jelisavcic, M., Roijers, D.M., Haasdijk, E., Eiben, A.E.: Directed loco-
motion for modular robots with evolvable morphologies. In: Auger, A., Fonseca,
C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018.
LNCS, vol. 11101, pp. 476–487. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99253-2 38

17. Lessin, D., Fussell, D., Miikkulainen, R.: Adopting morphology to multiple tasks
in evolved virtual creatures. In: Artificial Life 14: Proceedings of the Fourteenth
International Conference on the Synthesis and Simulation of Living Systems. The
MIT Press, July 2014

18. Lessin, D., Fussell, D., Miikkulainen, R.: Open-ended behavioral complexity for
evolved virtual creatures. In: Proceedings of the 15th annual conference on Genetic
and evolutionary computation. ACM, July 2013

19. Matos, V., Santos, C.P.: Towards goal-directed biped locomotion: combining CPGs
and motion primitives. Robot. Auton. Syst. 62(12), 1669–1690 (2014)

20. Moshaiov, A., Abramovich, O.: Is MO-CMA-ES superior to NSGA-II for the evolu-
tion of multi-objective neuro-controllers? In: 2014 IEEE Congress on Evolutionary
Computation (CEC). IEEE, July 2014

21. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Tech-
nology of Self-organizing Machines. MIT Press, Cambridge (2000)

22. Nygaard, T.F., Samuelsen, E., Glette, K.: Overcoming initial convergence in multi-
objective evolution of robot control and morphology using a two-phase approach.
In: Squillero, G., Sim, K. (eds.) EvoApplications 2017. LNCS, vol. 10199, pp. 825–
836. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55849-3 53

23. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolv-
ing large-scale neural networks. Artif. Life 15(2), 185–212 (2009)

24. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evol. Comput. 10(2), 99–127 (2002)

25. Trianni, V., López-Ibáñez, M.: Advantages of task-specific multi-objective optimi-
sation in evolutionary robotics. PLoS ONE 10(8), e0136406 (2015)

26. Weel, B., Crosato, E., Heinerman, J., Haasdijk, E., Eiben, A.E.: A Robotic Ecosys-
tem with Evolvable Minds and Bodies. In: 2014 IEEE International Conference on
Evolvable Systems, pp. 165–172. IEEE Press, Piscataway (2014)

https://doi.org/10.1007/978-3-642-15323-5_15
https://doi.org/10.1007/978-3-642-15323-5_15
https://doi.org/10.1007/978-3-319-77538-8_46
https://doi.org/10.1007/978-3-319-77538-8_46
https://doi.org/10.1007/978-3-319-99253-2_38
https://doi.org/10.1007/978-3-319-99253-2_38
https://doi.org/10.1007/978-3-319-55849-3_53

	A Multi-brain Approach for Multiple Tasks in Evolvable Robots
	1 Introduction
	2 Background
	3 Experimental Work
	3.1 Phenotypes and Simulation
	3.2 Central Pattern Generators
	3.3 HyperNEAT and Compositional Pattern Producing Networks
	3.4 Two-Brain Approach
	3.5 Two-Phase Approach
	3.6 Fitness Functions
	3.7 Experiment Parameters

	4 Results
	4.1 Phase 1: Morphology Evolution
	4.2 Phase 2: Task Learning
	4.3 Combining the Tasks

	5 Discussion
	5.1 Future Work

	6 Conclusion
	References

