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Preface

Ignis aurum probat, miseria fortes viros.

—Seneca, De providentia, 5, 9

Those who must defend a computer network against cyber attacks certainly have no
carefree life.Despite decades of investment in novel software and hardware solutions,
countless consultancy studies and op-eds from management writers, attackers still
have the advantage, and firms and government organizations regularly are victims of
cyber attacks.

Economists remind them that productive processes should use resources effec-
tively (to attain the desired goal) and efficiently (to prevent waste), but contemporary
cyberdefense realizes none of these goals. If defence was effective, we should expect
a declining incidence rate of cyber attacks—instead, both the number of attacks and
the average damage they cause keep growing. And if defense was efficient, why
would firms require management advice and procure hardware and software which
may already be outdated at the time it is deployed? And how would they navigate a
technology landscape that evolves faster than their bureaucratic budgeting processes?

Contemporary cyberdefense is too slow, it lacks foresight, and it is often ineffec-
tive. The authors in this volume present novel methods, models and interdisciplinary
perspectives that I hope will help defenders to tackle these problems. Many authors
have provided generally applicable models and code, so the analyses in this volume
can be reproduced irrespective of particular contexts. While the book has strong
foundations in operations research, applied mathematics and statistics, its viewpoint
is deeply rooted in the economics of information security: Cyber defense is too
important an issue to leave it to the technicians. The book therefore spans different
domains in an attempt to create interdisciplinary expertise.

My sincere thanks go to Fabian Muhly, Sébastien Gillard, Valerie Gürmann and
Philipp Fischer, all of whomhelped to organize the publication process and to finalize
the volume. I also thank my executive editors at Springer Nature, Christian Rauscher
andNikosChtouris,who always supported thework and positioned it in the renowned
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vi Preface

International Series in Operations Research and Management Science. In particular,
I thank series editor Camille C. Price for all her support and encouragement.

I hope this book can inspire defenders as they build the next generation cyberde-
fense we so desperately need today. This task is heavy, so their future lives will not be
easy either. But attacks cannot be thwarted unless those who are attacked stand their
ground and strike back. And so the defenders may find solace in Seneca’s immortal
words: It is in adversity where the strong prove themselves.

Zurich, Switzerland
September 2023

Marcus Matthias Keupp
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Chapter 1
Introduction and Overview

Marcus M. Keupp

1.1 Next Generation Cyberdefense

Cyber attackers are intentionally violating one or more security objectives an orga-
nization has defined for its IT infrastructure or computer networks [31]. By doing
so, they inflict significant costs on organizations, businesses, and individuals [7, 10,
15]. While global cybersecurity expenditure grew by 28% from 2015 to 2018, the
average cost of cybercrime incidents increased by 73% within the same period [1,
39]. Ransom paid by private firms to hackers is at a historic height. The average
cost per data breach for companies was 3.86 million US$ [18]. But cyberattacks also
target government organizations and individuals with public exposure, so that state-
sponsored hacks, cyber espionage, and cyber sabotage exhibit likewise growth rates
[17, 27, 29]. The absolute amount of cyberattacks against private or public organi-
zations has increased by 67% since 2014 and by 11% since 2018 [1]. Investments
meant to produce cyberdefense seem to lag attacks, and their effectiveness appears
to be limited.

Academic work has trouble finding answers to this problem. In fact, public and
private organizations fail so regularly at defending their systems that this failure has
become a research object of its own [12]. Over the past three decades, many contribu-
tions have proposed technical measures to counter cyberattacks (for an overview, see
[38]). However, the success of such technology-based approaches to cyberdefense
has been limited, not the least because they ignore the weakest link in the cyberde-
fense chain—human beings and their fallacies [2, 3, 7]. While numerous models for
cyberdefense investment strategies have been developed (e.g., [13, 22, 33]), their
significance in the real world is limited due to imperfect information, misaligned
incentives, moral hazard, and subjective bias [3, 5, 30].

M. M. Keupp (B)
Military Academy at the Swiss Federal Institute of Technology Zurich, Birmensdorf, Switzerland
e-mail: mkeupp@ethz.ch
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2 M. M. Keupp

Why then, one might ask, are organizations so bad at pre-empting, detecting and
defending cyberattacks? It appears that contemporary cyberdefense is too slow, lacks
technological foresight, and often proves to be ineffective. This book is an attempt
to provide answers and applicable analytical tools for all three problems.

1.2 Structure and Overview

1.2.1 Speed

Many cyberattacks are not only successful, but they also go unnoticed for a significant
period of time. In 2019, it took companies an average of 230 days to identify security
breaches induced by malicious attacks. The average lifecycle of a breach from iden-
tification to containment was 280 days [18]. Attackers still have the initiative—the
technology landscape is large, and there are many backdoors and zero-day vulnera-
bilities that can be exploited. Even if all of them would be technologically known,
pre-emptively defending all of them by an all-hazard approach may prove to be pro-
hibitively expensive. It is true that many organizations use digital forensics to clarify
what has happened once an attack has been finally neutralized, but they are in fact
analyzing lost chess games when they do so—players may improve their skills by
learning from past mistakes, but they still have to suffer the bitter taste of defeat. A
more productive approach should focus on shortening the cyber kill chain as much as
possible, and provide fast responses that deny attackers the ability to continue with
their attack. Speed is certainly of the essence, so the contributions in the first part of
this volume intend to assist defenders with this task.

In Chap.2, Gillard et al. start out with an agent-based model. They investigate
how autonomous agents improve their response patterns as they react instantly to
exogenous attacks. Moreover, they highlight the role of cooperation and incentive
alignment among defenders using a game-theoretic approach, and they show that
cooperative defense is both fast and effective.

In industrial control systems, attacks constitute rare events in a stream of permis-
sible commands, and although Pareto or Poisson distributions could be used tomodel
this imbalance, the sheer rareness of exploits makes it hard to attain good accuracy.
In Chap.3, Su et al. propose an alternative path. They study how unsupervised clus-
tering algorithms can respond fast to attacks against industrial control systems. They
compare the performance of four different algorithms and discuss the implications
of their findings for the security of cyber-physical systems.

Both chapters demonstrate how threats can be dynamically captured and dealt
with. Note that none of them requires big data analytics, so they should be particularly
interesting for operators of SCADA systems which have both security requirements
that differ from those of commercial computer networks and low computational
capabilities [31].

http://dx.doi.org/10.1007/978-3-031-30191-9_2
http://dx.doi.org/10.1007/978-3-031-30191-9_3


1 Introduction and Overview 3

In Chap.4, Fischer and Gillard discuss novel security information sharing plat-
forms that have recently emerged as an alternative to ISACs. Using a hierarchical
simulation model that is informed by real user data from such platforms, they discuss
the trade-offs between the value of information units and the speed with which they
are shared.

1.2.2 Foresight

As organizations face budget constraints, they must maximize the efficiency of any
investment they make in cyber security processes, products, or services [33]. Prior
research has produced quantitative models that propose to optimize such investment,
and also many recommendations that instruct firms about how to invest in particu-
lar technologies or systems (e.g., [16, 34, 41]). However, these models are deeply
rooted in microeconomic and behavioral assumptions that need not apply to actual
investment problems. Firms must protect their systems today against future attacks.
Therefore, investments often lag actual threats since vendors must first commer-
cialize defense technology to market maturity, particularly so if the technology in
question is only just emerging. The media report about attacks that have been dis-
covered, but knowledge of past incidents is not necessarily a predictor for future
threat vectors. Hence, firms must forecast technological trajectories and prioritize
investments accordingly.

Just as contemporary economists attempt to replace static ex-ante predictions with
‘nowcasting’ (e.g., [4, 24]), firms must learn to preempt rather than react to techno-
logical developments if they want to neutralize the attacker’s advantage. While tradi-
tional forecasting methods and big data analytics are costly in terms of resources and
computing power, the contributions in the second half of this book offer parsimonious
yet efficient solutions that work with open source data.

In Chap.5, Percia David et al. propose a reproducible, automated, scalable, and
freemethod for bibliometric analysis that requires little computing power and informs
managers about thematurity and likely future development of technological domains.
They also show how timelines of expert sentiment about these domains can be gen-
erated. They illustrate their approach with an analysis of the arXiv repository and
suggest how even larger databases can inform investment decisions about future
cybersecurity technologies.

In Chap.6,Mezzetti et al. propose a novel recursive algorithm that analyzes pub-
licly available data and ranks the relative influence that companies and technologies
have in a technology landscape. The results provide investors with an optimal rank-
ing of technologies and thus help them to make more informed decisions about
companies and technologies.

In Chap.7, Tsesmelis et al. develop a lean recommender system which predicts
emerging technology by a sequential blend of machine learning and network ana-
lytics. They illustrate the capabilities of this system with a large-scale patent data
analysis and discuss how it can help organizations make more informed decisions.

http://dx.doi.org/10.1007/978-3-031-30191-9_4
http://dx.doi.org/10.1007/978-3-031-30191-9_5
http://dx.doi.org/10.1007/978-3-031-30191-9_6
http://dx.doi.org/10.1007/978-3-031-30191-9_7


4 M. M. Keupp

Since patent data are public and freely available, organizations can obtain objective
advice at very little cost.

In Chap.8, Aeschlimann et al. map the landscape of cyberdefense capabilities
among public, private and academic organizations in Switzerland. They also study
the extent to which these organizations exchange capabilities with each other, and
they produce amap of their informal networks. The results suggest that the ecosystem
under study is a scale-free network that hosts many but unevenly distributed capa-
bilities. Further, inter-organizational cooperation is limited although opportunities
to cooperate exist.

While this contribution focuses on the question of where cyberdefense capabil-
ities are located right now, in the subsequent Chap. 9, Moreno et al. show how job
offers can be analyzed to predict future capability requirements. Their link predic-
tion approach features a parsimonious algorithm which crawls publicly available job
offer databases and predicts which capabilities firms will require up to six months in
the future. They compare the efficiency of this method across several unsupervised
learning algorithms as well as against a supervised learning method.

1.2.3 Effectiveness

Any investment in cyberdefense is wasted unless it provides organizationswith effec-
tive protection against attacks. However, all too often effectiveness is confused with
ticking off boxes in bureaucratic checklists. Formal certifications and regulatory
requirements certify the proper implementation of risk management processes, but
not the existence of effective defense [8, 19, 35]). Moreover, ’stress tests’ are often
limited to penetration testing exercises [9, 36] or bug bounty programs [25]. More-
over, formal performance indicators often fail to capture the effectiveness of cyber
defense systems first [14, 32]. The third part of the book therefore explores how
organizations realize effective defense.

First, they need to understand how and why attackers act. Therefore, in Chap. 10,
Fischer et al. discuss the selection problem attackers face when they attempt to exfil-
trate information from a computer network: They must identify valuable information
units among many irrelevant ones. The authors model such attacks as a repeated urn
draw under different distributional patterns and use prospect theory to model risk
aversion and overconfidence among attackers. Their findings are particularly rele-
vant to ’silent’ attacks and computer network exploitation operations which prefer to
gather intelligence over blocking or damaging a system, and they propose a number
of measures the defenders can take to thwart attacks.

However, human fallacies also exist among defenders. In Chap.11, Baschung et
al. discuss the extent to which there is a principal-agent problem between the individ-
ual career goals of corporate security officers and the effectiveness of their investment
decisions. The authors develop a recursive model which simulates the complex rela-
tionships between investment dynamics, CSO reputation and inter-firm migration,
and cyberdefense effectiveness. Using data from real cybersecurity breaches, they

http://dx.doi.org/10.1007/978-3-031-30191-9_8
http://dx.doi.org/10.1007/978-3-031-30191-9_9
http://dx.doi.org/10.1007/978-3-031-30191-9_10
http://dx.doi.org/10.1007/978-3-031-30191-9_11
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find that a positive (negative) dynamic should exist between high (low) CSO repu-
tation and effective corporate protection.

In Chap.12, Muhly discusses how serious gaming can confront defenders with
their own overconfidence and thus improve their resilience to social engineering
(which is still one of the major threat vectors by which attackers execute cyberat-
tacks). He reports the results of a randomized experiment that modeled a phishing
attack and investigates the extent towhich serious gaming can be applied as an immu-
nization treatment. The results suggest that participation in serious gaming reduces
the probability to be victimized by social engineering attacks. Overconfident and
indifferent users are more likely to fall for such attacks, whereas a more pessimistic
stance is negatively associated with failure.

In Chap.13, Shrivastava and Mathur propose how virtualized environments can
help operators of industrial control systems to detect and respond to anomalies more
effectively. However, they also note that effectiveness requires radical architectural
adaptations and a departure from IT security models of the past. They argue how
and why zero trust architectures and autonomous mechanisms can not only make
industrial control systems safer, but also empower machines to respond faster and
more accurately to threats and attacks. Ultimately, such developments may enable
industrial plants to defend themselves in a fully automated way.

In Chap.14, Gillard and Aeschlimann expand this path. They discuss automated
and scalable procedures that can identify and recombine related indicators of com-
promise which decentral users provide. In particular, these methods allow system
operators to identify incidents which may have been running unnoticed but in fact
constitute the root of many other anomalies. The authors simulate these procedures
and show how users can control them to generate more accurate threat information
which increases the effectiveness of their cyberdefense activities.

In the final Chap.15,Pangrazzi andMuhly remind organizations and governments
alike that they need not wait for a global cyberdefense regime to emerge until they
can effectively defend their systems. The norms that exist in international law today
provideuserswith powerful tools that can contribute to amore effective national cyber
defense as well as to international collaboration—provided nation-states master the
transformation of these norms into national contexts. The authors highlight four areas
where this transformation would yield productive results.

1.3 Outlook: From Defense to Counter-Attack

The erawhich left cyberdefense to the technicians is over.WhatKeupp [21] said about
the architectural challenges of next generation critical infrastructures also applies to
cyberdefense: Technical knowledge alone does not provide an effective defense.
Efforts to systematically advance cyber risk management must draw on not only
computer science but also fields such as behavioral studies, economics, law, and
management science. In particular, interactionwith legal scholars is key here [12, 36].
Without such collaboration, legislators will continue to develop reactive measures

http://dx.doi.org/10.1007/978-3-031-30191-9_12
http://dx.doi.org/10.1007/978-3-031-30191-9_13
http://dx.doi.org/10.1007/978-3-031-30191-9_14
http://dx.doi.org/10.1007/978-3-031-30191-9_15


6 M. M. Keupp

that run the risk of rapid obsolescence as newer technologies aremorewidely adopted,
and technicians may fail to understand how international law provides them with
institutions that can shape effective defense on a global scale. All in all, this volume
firmly subscribes to these perspectives and reiterates earlier initiatives which have
called for more interdisciplinary work (e.g., [11, 20, 37, 40]) and for the introduction
of economic perspectives into IT security [3, 7].

But there is more to next generation cyberdefense than interdisciplinary coopera-
tion. To date, defense is still seen from a passive perspective: With some desperation,
defenders take attacks as a natural evil one has to live with and defended against in
the best possible way. It is about time to forego this passive stance.

The next challenge is to push for attribution—defenders must begin to identify
the technical and physical locations of attackers and hence master attribution, with
an eventual view to neutralizing the technical infrastructure from which attacks are
carried out. Again, this ‘strike back capability’ will require interdisciplinary skills:
automated defense algorithms could be trained to not only defend, but also to detect
where the attack is coming from, economic perspectives can help calculate if the
attack is worth the cost of striking back, and legal perspectives can help judge if
retaliation conforms to international law.

The Tallinn manuals have tried to develop a perspective in cyberspace that is akin
to article 51 of the United Nations charter—a nation that is unlawfully attacked has
not only the right to defend itself, but it can use all force necessary to neutralize the
aggression, reestablish the status quo, and preserve the integrity of its territory and
statehood. This perspective, long established in the international law of warfare and
the fundament of the post-WWII peace order, should be expanded to the cyberspace.
Defense is therefore not limited to responding to attacks—it can even include striking
the aggressor’s territory as long as a state of war exists. Once this principle is adapted
for the cyberspace, there is no more need to simply tolerate attacks.

Finally, states or state-sponsored parties have begun to use offensive cyber oper-
ations to realize military or political goals. For example, stuxnet disabled Iranian
centrifuges which were enriching uranium, probably the first offensive cyber oper-
ation in military history [23]. Russia tried to influence the 2016 U.S. presidential
elections by cyber and information operations [28], and China has been using cyber
intelligence activities to realize commercial advantages [26]. These attacks constitute
a new level of aggression whose damage goes far beyond ordinary cybercrime. Next
generation cyberdefense will have to deal with this increased intensity of violence
in the cybersphere. Defenders will continue to lead a difficult life, but they have no
alternative but to stand their ground in the face of adversity.
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Chapter 2
Reducing Time to Response in Cyber
Defense: An Agent-based Model

Sébastien Gillard, Thomas Maillart, and Marcus M. Keupp

2.1 Introduction

The speed and evolution of cybersecurity threats force organizations and govern-
ments to quickly respond and adapt in order to protect their networks and infras-
tructures. Still, defenders often fail to respond in due time [18, 20]. Attackers still
have the initiative because it is hard, if not impossible, for any one system or human
agent to entirely grasp the evolution of the complex adaptive system that is the
cybersphere [28].

Many authors have highlighted the potential benefits of cooperation and collective
approaches to cybersecurity, such as ISACs, CERTs, bug bounty programs, or secu-
rity information sharing [7, 8, 10, 17, 24, 27]. However, these approaches are also
fraught with problems, and the intended benefits of collaboration are often realized
slowly or not at all [15, 22].

Using an agent-based model approach, we explore how and why defenders
can cooperate swiftly and effectively to neutralize attacks. This model has its ori-
gins in biology; it can be thought of as a spatial discretization of the generalized
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Lotka-Volterra equations [5, 12, 25]. For example, agents A could be pathogens
which attempt to infect cells, and agents B could be antibodies which attempt to
neutralize them. We apply this thinking to a cyberdefense setting where agents A
attack the cyberspace of an organization which its security agents B defend. In doing
so, we follow pioneering work that has applied evolutionary game theory to cyber-
security contexts [3, 26]. Coupling this model with a game-theoretic approach and
simulating the dynamics, we show that agents B can adapt to both neutralize the
attack and resolve uncooperative behavior among themselves. Thus, they can thwart
attacks not only effectively, but also faster than by acting in isolation.

2.2 Agent-based Model

2.2.1 Structure

We model the interaction of agents A and B and their evolution over time on a
continuous square grid of side length L which excludes boundary effects by design
[16, 19].1 Table 2.1 provides an overview of the key parameters and their definition
ranges.

There are L × L squares in the grid, each of which is designated by coordinates
(i, j). Each square is either empty, occupied by one agent A, and/or by one agent B.
Hence, if a square is occupied by an agent A, an attack against a particular element
of the cybersphere is taking place. If a square is occupied by an agent B, defensive
measures have been deployed to thwart or neutralize the attack against this element.

Initially, the grid is populated at random by a number NA of agents A and a
number NB of agentsB.Their respective initial locations are recordedby twomatrices
GA with elements gA

i j , and GB with elements gB
i j ∀i, j ∈ [1, L]. The densities dA =

NA/L2 and dB = NB/L2 show how intensely the grid is populated by either agent.
The damage that a focal agent A causes in the square it occupies is recorded in
εi j ≥ 0 ∀i, j ∈ [1, L], and the matrix E collocates these individual damages. The
damage per square is initialized uniformly with the location data of agents A, hence
εi j = gA

i j .
The dynamic interaction of agents A and B is analyzed by a sequential iteration of

t rounds, in each of which a focal agent A is selected randomly among the NA agents
A in the grid, and its actions (if any) are recorded. Then, a focal agent B is selected
randomly among the NB agents B, and both its actions (if any) and the implications
of this action for agents A (if any) are analyzed. Each particular agent evolves K
times on average, and the evolution process is represented by a number of Monte

1 Note that, for the purposes of illustration, we treat the term “grid” spatially here, but the grid should
rather be thought of as a graphical abstraction of a cyberspace in which each square represents
an element of this sphere that can be attacked. Hence, if a square is “occupied” by an agent A,
the organization requires a particular defense capability to thwart or neutralize an attack directed
against it.
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Table 2.1 Key variables and parameters in our model

Variable or parameters Range/defined in Description

L N≥0 Side length of the square grid

i, j [1, L] Location indices for squares in the grid

t N≥0 Number of rounds in the simulation

k [0, NMCS] Number of Monte Carlo steps

GA = (gA
i j ) (0, 1)(L × L) Matrix of locations (gA

i j ) where agents A
are present

GB = (gBi j ) (−1, 0, 1)(L × L) Matrix of locations (gBi j ) where agents B
are present

dA, dB ]0, 1[ Initial density of agents A, B in the grid

NA, NB ]0, L2[ Number of agents A, B in the grid

E = (εi j ) R
L×L
≥0 Matrix of damages εi j caused by agents A

present in square (i,j)

η ]0, 0.5] Growth rate of the damage εi j

� [0.5, 1[ Minimum damage threshold for εi j ; agent
A is neutralized if underrun

mx ,my [−M, M] x- and y-coordinates of Moore
neighborhood (2M + 1)2 defined by
Moore range M

PR ]0, 0.5[ Probability that an agent A replicates

PM ]0, 0.5[ Probability that an agent A migrates

PN [ 18 , 1
168 ] Probability that an agent A migrates to a

site within the Moore neighborhood

CL ]0, 1[ Share of agents B which initially
cooperate

� = (λi j ) R
L×L
≥0 Matrix recording individual play payoffs

λi j

U = (ui j ) R
L×L
≥0 Matrix recording the payoffs including

agent A damage attractiveness

PW ]0, 1[ Probability that agent B to moves to the
closest possible site with equivalent payoff

1 − PF [0.5, 1[ Probability that a focal agent B changes
its strategy

δ R≥0 Euclidean distance between two sites of
the grid

ω ]0, 0.5] Factor by which damage εi j is reduced
once agent B moves into a location
occupied by an agent A
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Carlo steps k. After each round, the grid is updated. The simulation which displays
and analyzes this setup and the subsequent dynamics was programmed in C/C++.
Plots and visualizations were produced in Python.

2.2.2 Dynamics of Agents A

The locations of agents A are mapped in GA such that each element gA
i j takes the

value 1 if a square is occupied by an agent A, and 0 otherwise. At the beginning
of each round t , a focal agent A has three options of how to proceed. First, with
a probability of PR ∈]0, 0.5[, it chooses to replicate, i.e., to increase the damage
εi j caused in the square it occupies. Second, with a probability of PM ∈]0, 0.5[,
it chooses to migrate to another square and damages another element there (say,
because in its current position, all opportunities to do damage have been exploited).
Alternatively, with a probability of 1 − (PR + PM) ∈]0, 1[, it remains in the square
it occupies and continues to do damage as in the round before. All three options are
mutually exclusive, and any agent A can only choose one option per round.

If it takes no action, neither the damage caused nor the geographical position
changes, so all values stored in the matrices E and GA are carried over unchanged
into the next round. If it replicates, the locationdata remainunchanged (the focal agent
A remains in the square it occupies), but the damage it causes in this square increases;
in other words, the attack against a particular element in the system intensifies. As
a result, in the next round the location data stored in matrix GA remain unchanged,
whereas the elements in the matrix E are increased by a growth factor of η in the
next round, hence ε′

i j = (1 + η) · εi j .
We posit that any migration of an agent A is restricted to the Moore neighbor-

hood since population diffusion requires energy and is therefore predetermined by
spatial patterns [14]. Hence, a focal agent A can only migrate to a site within a
(2M + 1) × (2M + 1) subgrid. Its x- and y-components mx ,my ∈ [−M, M] there-
fore define the universe of migration possibilities, and since migration to any site in
this neighborhood is equally probable, the probability of migrating to any one site is
PN = 1

(2M+1)2−1 .

After migration, the location matrix GA is updated. The entry for the previously
occupied square is set to “empty,” whereas the square the agent migrated to is set
to “occupied,” formally: gi j = 0 and gi+mx , j+my = 1, where i and j are the original
location coordinates, andmx ∈ [−2,−1, 0,+1,+2] andmy ∈ [−2,−1, 0,+1,+2]
define the range of migration options in the Moore neighborhood for a Moore range
of M = 2. In the damage matrix E, a fraction of εi j is subtracted from the original
location of the focal agent A and transferred to the site it migrates to. Figure 2.1
illustrates the options that agents A have. Hence, replication increases the depth
of the attack—the focal agent A remains at its location but executes attacks more
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Fig. 2.1 Options for agents A in each round

intensely there—whereas migration increases its breadth: the focal agent A moves
to a new location and begins a fresh attack there.2

We assume that any agent A can only remain active as long as a minimum damage
level of � > 0 is exceeded. Else, the agent A is considered neutralized; in this case,
both its location entry gA

i j in thematrixGA and damage entry εi j in thematrixE are set
to 0. This condition implies that migration is subject to the condition ε′

i j ≥ �, where
ε′
i j is the fraction of the damage transferred to the new location. Else, a focal agent A
that causes only little damage in its current location could theoretically self-destruct
by migrating if the damage would exceed (1 + �).

2 Note that, for the purposes of illustration, we treat the term “migration” spatially, but conceptually,
migration means that the current attack mutates into a new type of attacks.
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2.2.3 Dynamics of Agents B

Agents B are supposed to neutralize the damage agents A cause, but this counter-
action requires energy. Any focal agent B therefore faces a moral hazard: It may
simply hope that another agent B will spend the energy required for defense, so that
it can remain idle. This incentive for free-riding is a significant problem in cooperative
games. Although cooperation between any agents B is rewarded in game theory—
both agents receive a reward when both cooperate, and both receive a punishment
when both defect-each individual agent has an incentive to shirk a collective effort.
More formally, when R (for “reward”) denotes the payoff for mutual cooperation,
P (for “punishment”) the payoff for defection, T the payoff for the defector when
the other agent cooperates, and S the payoff for the cooperator when the other agent
defects, the situation is determined by the inequalities T > R > P > S and 2R >

T + S. Hence, as long as a focal agent B does not know which strategy another
agent B might choose, defection is more profitable than cooperation, no matter what
strategy the other agent selects. Therefore, the cooperative Nash equilibrium is not
reached although it offers superior payoff (“prisoner’s Dilemma,” see [1, 4, 9] for
backgrounds and formal game-theoretic analysis).

Figure 2.2 illustrates a subset of all interaction possibilities that agents B have.
The blue (red) squares represent cooperating (defecting) agents B. The focal agent
B first attempts to find an empty site with better payoff in its Moore neighborhood. It
then compares its strategy with that of its neighbors and changes it if a better payoff
can be expected.

In each round t , we let a focal agent B play the cooperation game with its four
adjacent neighbors in the locations gB

i−1, j , g
B
i+1, j , g

B
i, j−1 and g

B
i, j+1. Initially, agents B

are randomly assigned a status of either cooperator or defector. In the location matrix
GB, entries take the value 0, 1 if a square is empty, 1 if the square is occupied and
agent B cooperates, and−1 if the square is occupied and agent B defects. We assume
that agents B attempt to maximize their payoff in each round t [6]. We introduce
a parameter of CL > 0 that measures the share of cooperating agents B, hence the
remainder (1 − CL) captures the share of those which defect.

The payoff is defined by the available locations in the Moore neighborhood the
focal agent B can reach when it plays the cooperation game with its neighbors. After
each round t , the payoffs realized from playing are stored in the matrix � with
elements λi j . Further, after each round, a focal agent B can adapt its playing strategy
(“cooperate” or “defect”). Following [11], we posit that in any subsequent round, a
focal agent B will imitate strategies which provide higher payoffs with a probability
of PF (Fermi rule).

Since agents B are payoffmaximizers, they consider thematrix� after each round
t and ask themselves how they might be better off beyond changing their playing
strategies. Since noncooperating behavior can be overcome by migration [13, 21], a
focal agent B can migrate to a square with higher payoffs if the square it is currently
in provides only a low payoff (e.g., because its playing partners repeatedly defect).
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Fig. 2.2 Illustration of interaction among agents B

A focal agent B can therefore be expected to migrate if the payoff in another square
is higher.

In addition, this payoff is also influenced by the damage the agents A cause. Since
agents B are supposed to defend the system, they can expect to reap rewards for
effective defense (e.g., bonuses, promotions, or status if they are human agents, or
learning opportunities if they are machines), so the payoff increases with the level
of damage they can neutralize. We double-count the rewards from this effect, so
that the final payoff matrix that determines migration patterns is U with elements
ui j = λi j · 2εi j . Since ourmodel sets� ≥ 0.5, we always have 2εi j ≥ 1, so that weak
agents A in any one site cannot decrease payoffs by which agents B are attracted.

Once it knows the final payoff matrix U, a focal agent B migrates according to a
pre-set order. If the payoff of all empty squares is less than that of the current square,
agent B does not migrate. If the payoff of an empty square within the Moore neigh-
borhood is higher than the payoff of the square agent B is currently in, agent Bmoves
to the closest of such squares. If payoffs between its current and empty squares are
similar, agent B moves with a probability PW to the closest empty square. Closeness
is measured by the Euclidian distance δ0,mx,y which gives the spatial distance between
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Fig. 2.3 Snapshots of interaction at three discrete times t

the center of the grid and a square in the Moore neighborhood:

δ0,mx,y =
√

(mx − mx=0)2 + (my − my=0)2 =
√
mx

2 + my
2 (2.1)

If the distances to several empty squares with similar payoffs are identical, agent
B randomly chooses among them. Finally, if, as a result of this migration, an agent B
finds itself in a square that is also occupied by an agent A (gA

i j = gB
i j ), it fights agent

A in each subsequent round t and thus reduces the damage that agent A causes in
this square. As a result, in each round the damage εi j is decreased by a factor of ω

until the damage falls below the threshold of � so that agent A is neutralized.

2.2.4 Worked Example

Figure 2.3 provides a snapshot of a small-scale demonstrator we built to illustrate
our agent-based model. It depicts the state of the interaction at three discrete time
steps t1, t2 and t3 with t3 > t2 > t1. In the grid of side length L = 10, there are
L × L = 100 squares. The locations of agents A are shown in the lower layer, and
the damage these agents cause is shown in the third dimension. The colored legend
on the right indicates the size of the damage. The upper layer shows agents B;
cooperating (defecting) agents are marked in blue (red).3

Initially, this grid is populated at random by 25 agents A who cause an initial
damage of εi j = 1 in the squares they occupy. There are also 25 randomly distributed
agents B, of which 13 have initially chosen to cooperate while 12 have chosen to
initially defect. Hence, the initial densities are dA = dB = 0.25. The initial damage
εi j that each agent A causes is set to 1.

After multiple Monte Carlo steps, the situation at time step t1 occurs. At this time,
agents A have intensively migrated and replicated and cause much damage, whereas
agents B are still not very cooperative (as indicated by the high share of defectors

3 The code for this worked example is available on request from the corresponding author.
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marked in red). At the same time, the damage now caused by agents A provides
agents B with high potential payoffs, so that they have an incentive to cooperate and
migrate. At time step t2, agents B havemigrated and show amore cooperative pattern.
They have also begun to reduce the damage agents A cause, and some agents A have
been neutralized, as the empty squares in the lower layer which were occupied at
time step t1 show. Finally, at time step t3, cooperative behavior among agents B is
now very widespread, and almost all agents A have been neutralized.

2.3 Illustration

To illustrate the model dynamics, we simulated the evolution of a grid with L × L =
50 × 50 = 2, 500 squares randomly populated by NA = 625 agentsA and NB = 625
agents B, so the initial densities are dA = dB = 0.25. The initial damage that agents
A cause in the squares they occupy is set to εi j = 1, so the total initial damage is∑

εi j>0 ·εi j = dA · L2 = 625.
The simulation is run over 250,000 Monte Carlo time steps (2,500 rounds during

each of which each agent A and B receive 100 updates respectively). We set the
Moore ranges for agents A and B as MA = MB = 2, so the Moore neighborhoods
are given by the subgrids of (2MA + 1)2 = 2(MB + 1)2 = 25 in the center of which
the focal agent resides. Hence, each agent has 24 squares to migrate to, and so the
probability it moves to any of these is PN = 1

24 .
If a focal agent Amigrates, the damage in its original square is reduced by 1, and a

fraction of the damage it causes is transferred to the new location, so ε′
i j = εi j − 1 and

ε′
i+mx , j+my

= εi+mx , j+my + 1, formx ,my ∈ [−2,−1, 0, 1, 2]. However, migration is
subject to the condition εi j ≥ 1 + �, and we set the threshold belowwhich any agent
A is considered neutralized at � = 0.9.

We let a focal agent A replicate with (varying) probability PR = {0.2, 0.3, 0.5},
migrate with (fixed) probability PM = 0.2 and remain in its location with a proba-
bility of 1 − (PR + PM). If it replicates in its current location, the damage it causes
there grows at the rate of η = {0.1, 0.2, 0.3}.

We set the initial inclination to cooperate among the agents B at CL = 0.5, so
that at the start of the simulation, a number of CL · NB ≈ 313 agents B cooperate,
while the remaining (1 − CL) · NB ≈ 312 agents B defect. We set the payoffs for the
cooperation game the agents B play among themselves at R = 1, P = 0.1, T = 1.3,
and S = 0. Any agent B can migrate within its Moore neighborhood with probability
PW = 0.5 if any empty square has the highest payoff in this neighborhood, or if any
empty square has a higher or equivalent payoff than the square the focal agent B is
currently located at, else, it remains in its original square. After each decision to (not)
migrate, it plays the cooperation game again, but chooses the inverse to the strategy
played before. If the payoff it obtains now is higher, it changes its strategy with a
probability PF ≈ 1 (Fermi rule).

Once an agent B migrates to a field that is occupied by an agent A, the damage
this agent A causes is reduced by ω = {0.1, 0.2, 0.5}, so the remaining damage is
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ε′
i j = εi j · ω, and once the condition ε′

i j < � holds, agent A is considered neutralized
and the square is set to empty again.

Since the complete grid is too complex for a single plot, we illustrate the results
in a subgrid of side length L = 20 as shown in Fig. 2.4. The left-hand side panels A,
C, and E show the initial situation at the beginning of the simulation, and panels B,
D, and F show the final situation after 250,000 Monte Carlo steps. Note that in each
of the panels, the right-hand bar is in log-scale. It documents the maximum damage
found during the simulation.4

Panels A and B depict the development of the attack if agents B sit idly and do not
defend. In this case, agents A quicklymigrate and replicate until they fill the complete
grid. At this stage, attackers would completely control a real cybersphere. Panels C
and D show the development once agents B react. Both the number and the spatial
movement of the attackers as well as the damage they cause are reduced quickly.
Panels E and F show how the behavior of the defenders evolves. Whereas at the
beginning of the simulation, cooperative (blue) and uncooperative (red) defenders
equally populate the subgrid, by the end of the simulation, cooperative behavior
clearly prevails.

Figure 2.4 provides the steady states at the beginning and the end of the simulation,
but it does not analyze the evolution between these states. We therefore computed, at
each time step, the matrixEwhich records the damage caused by the agents A. Thus,
we obtained a timeline of how the damage developed. At the end of the simulation,
we normalized the results with the maximum damage maxt (

∑
i

∑
j εi j ) to obtain

ε% =
∑

i

∑
j εi j

maxt (
∑

i

∑
j εi j )

. Panel A in Fig. 2.5 plots these values by time step.

Further, we computed, at each time step, the matrixGB which stores the informa-
tion about the location of all agents B. We then computed the extent to which agents

B are inclined to cooperate during each time step, CL =
∑

i

∑
j �{gBi j=1}
NB

, where 1{gB
i j=1}

is the indicator function which takes the value 1 if gB
i j = 1 and 0 otherwise. Panel B

in Fig. 2.5 plots these values by time step.
The comparison of both panels over time suggests that the growth of the damage

that agents A cause initially attracts individual agents B which do neutralize some of
the damage, but they do not necessarily cooperate with other agents B. As a result,
the damage is reduced, but not eradicated, and the attack continues. Only once it
reaches a much stronger growth level, more and more agents B begin to change their
behavior and cooperate to neutralize the attack.While this relation is a first indication
that cooperative behavior does not only neutralize an attack, but also speeds up the
defense, more evidence is required to corroborate this claim.

Given that the matrix E records all damages per square and agent, and given
we calculated this matrix per time step, we can pinpoint the beginning of an attack
to the very time step t during which any one element εi j = 0 is altered to ε′

i j = 1
(which indicates that an agent A has newly occupied a particular square). As long as
the inequality εi j ≥ � holds, this agent continues to do damage until the time step t ′
when the condition εi j = 0 applies again.We therefore set the difference�ε = t ′ − t

4 The full set of results is available on request from the corresponding author.
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Fig. 2.4 Simulation results for a 20 × 20 subgrid

as the duration of the attack. Further, we define the average cooperation level among
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Fig. 2.5 Damage by agents A and cooperation among agents B over time

the agents B during this duration as CL = 1
t ′−t · 1

NB
· ∑t ′

t

∑
i

∑
j 1{gB

i j=1}. Figure 2.6
shows the heatmapwe obtainedwhenwe plotted these two values against each other.5

There are three dense zones located at �ε = 0 and CL ∈ [0.18, 0.2], CL ∈
[0.43, 0.59] and CL ∈ [0.63, 1.00]. In each of these, attacks are neutralized fast.
In the leftmost of these three zones, the cooperation level is low, which indicates
that individually motivated agents B neutralize attacks of limited intensity. In the
two other zones, high cooperation levels quickly neutralize even intense attacks. In
particular, low-key but pertinent attacks which do not cause much damage but linger
for a long time are fought and eventually neutralized by intense cooperation among
the defenders.

2.4 Conclusion

Our findings are in line with the idea that in a hostile environment, agents eventually
cooperate to produce public goods [23]. The defenders neutralize attacks with both
short and long lifespans, butmore importantly, they quickly neutralize intense attacks
when they collaborate. Our results therefore confirm the finding that in cooperative
games supposed to produce a public good or collaborative result, self-interested
agents whowant tomaximize their individual payoffsmay produce beneficial macro-
properties of the entire system [2].

In particular, our model emphasizes the role of migration as a mechanism that
can overcome uncooperative behavior. Defenders who are frustrated by a lack of

5 In order to add contrast to the map, we subdivided the area provided by the simulation data into
smaller zones and transformed the density of each zone to logarithmic values.
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Fig. 2.6 Speed of defense by cooperation level

cooperation among themselves may simply migrate to other locations. Thus, the
defectors remain among themselves and realize little payoff, whereas the defenders
can jointly organize a defense which is both effective and fast. Therefore, defenders
who are interested in maximizing their individual payoffs need not abide by an
uncooperative climate. When many defenders migrate in this way, a self-organizing
system emerges. We therefore believe that models which were originally conceived
to analyze complex adaptation processes in nature can be productively applied to
cyberdefense, and we suggest that such interdisciplinary perspectives enrich the
technical discussion about cyberdefense.

Still, the model could be extended in a number of ways. First, it assumes that the
defenders know about the locations the attackers have occupied. This assumption
need not apply in more complex settings where defenders do not or not yet know
about the full extent and nature of the attack. Future research may introduce a delay
or information asymmetry factor that captures deferred responses or migration pat-
terns. Second, we assume that ω > 0, i.e., we posit that the defenders are actually
capable to at least partially neutralize the damage the attackers cause. However, just
like bacteria can be immune to certain antibiotics, some attackers may be techno-
logically advanced to a degree where the technological capabilities of the defenders
are insufficient to reduce the damage. Future research should therefore introduce an
immunity factor by which superior attack skills or inferior neutralization capabilities
could be captured.
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Chapter 3
Unsupervised Attack Isolation in
Cyber-physical Systems: A Competitive
Test of Clustering Algorithms

KuiZhen Su, Chuadhry Mujeeb Ahmed, and Jianying Zhou

3.1 The Attack Isolation Problem

In complex critical infrastructures such as water distribution or power-generating
systems, input devices (sensors) convey information about physical parameters to
output devices (actuators) which physically act upon this information [10].

When operators note a cyberattack, they must clarify whether a properly work-
ing actuator acts on spoofed sensor data, or whether sensor data are correct but the
actuator itself is under attack. Additionally, a spoofed sensor may signal to the oper-
ator that the actuator is working normally when in fact it is under attack. A related
problem is false alarms—the system can mislead operators into believing a sensor
or actuator has been tampered with when in fact the system is operating normally.
If operators are deceived by spoofed senor data and manually override an actua-
tor they believe has been attacked when in fact it is operating normally, they may
unintendedly contribute to the attack by this intervention.

Since both sensors and actuators are physically linked and generate live time
series of status and flow data, the problem of fast attack isolation is key to noting
and terminating cyberattacks in critical infrastructures. In the absence of a fast and
precise classification that separates sensor and actuator data into two classes and
judges which is under attack, operators cannot figure out where an attack actually
takes place unless they perform manual inspections.
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This attack isolation problem is key to the security of industrial control sys-
tems [21]. While prior research has explored options to automate anomaly detec-
tion methods (e.g., [12, 19]), and others have proposed methods to fuse or trian-
gulate data sources to reduce false alarm rates (e.g., [3, 6]), supervised and semi-
supervised machine learning methods still have two major disadvantages: Training
results depend on subjective human labeling, and they are costly in terms of com-
putation time. And while many machine learning methods can alarm operators that
the system is attacked somewhere, they cannot identify the precise source of the
anomaly [3].

Our approach therefore focuses on unsupervised methods since these can con-
tribute to building anomaly detectors for industrial control systems [11]. While past
research on unsupervisedmethods has focused on neural networks (e.g., [15, 16]), we
explore the extent to which cluster analysis can yield accurate results which are cheap
in terms of computation time. Clustering is one of the most popular unsupervised
data mining methods. For a technical introduction into clustering algorithms for time
series and their evaluation, see [5, 8, 13]. In particular, we want to explore methods
that can treat attacks on sensors and actuators data simultaneously and correctly clas-
sify alarms according to whether there truly is an attack and which element of the
system is targeted. Such perspectives are highly desirable since they have received
relatively little attention. For example, [21] show how to isolate attacks but focus
only on actuators.

Our approach draws on previous seminal work in time series analysis [1, 2],
dataset construction [8] and clustering algorithms and computing [7, 18, 20]. We let
four algorithms developed by this research, 1-nearest neighbors (1-NN), k-Means,
k-Shape, and two-time clustering (TTC), compete in the Secure Water Treatment
(SWaT) testbed which replicates a small water treatment plant.

3.2 Experimental Infrastructure, Data, and Analysis

SWaT is located at the iTrust Centre for Research in Cyber Security at the Singapore
University of Technology and Design. For a detailed technical description of this
testbed, see [10, 17]. Figure 3.1 details the six-stage water treatment process which
is controlled and operated by 24 sensors and 27 actuators, all of which are detailed in
[10]. Sensors inform operators both about water quantity (e.g., water level, flow, and
pressure) and quality (e.g., pH, ORP, and conductivity). Actuators include mixers,
motorized valves, and electric pumps.

SWaT controls a six-step physical water treatment process. These steps are labeled
P1 through P6 in Fig. 3.1. First, raw water is taken in and stored in a tank (P1). Then,
water quality is assessed and, if necessary, a static mixer adds HCl, NaOCl, or NaCl
(P2). Impurities are ultrafiltrated by fine membranes (P3), and ultraviolet lamps de-
chlorinate the water (P4). Then, the water is pumped into a reverse osmosis system
where contaminants are removed; a backwashing process uses the water produced
by reverse osmosis to clean the ultrafiltration membranes (P5). In the final step P6,
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Fig. 3.1 Overview of SWaT testbed and water treatment process

the treated water is stored for subsequent distribution. The whole process is steered
by a layered communications network, a set of dual PLCs controlled by a SCADA
system, a human-machine interface, and a historian server which logs time series
data.

Prior research has collected several large datasets with the SWaT testbed; we
use the one described by [10]. In its original form, it comprises a total of 946,722
data points collected over an observation period of 11 days with all 51 sensors and
actuators. After deleting backup attributes that had no data or duplicated values,
a subset of 41 sensors and indicators remained which we used for all subsequent
analyses (cf. Table 3.1). The last column informs about the share of all sensors and
actuators in the respective step that our subset captures.

Since the first four hours of time series data are mostly duplicated in each process
step to model the transition from one step to the next, we deleted these duplicated
blocks. Hence, 482,400 observations per attribute remained for subsequent analysis.
Before analysis, we applied z-normalization to the raw time series data to remove
invariances.

In all subsequent analyses, we work with three pre-defined, fixed observation
time spans m during which the clustering algorithms run. Since the dataset has a
sampling rate of one second, m is a multiple of 60 s of observations. We choose
values of 360, 720, and 1440 to analyze how the algorithms classify short, medium-
length, and long time series typically observed in the original dataset. Using these
values, we defined a set of 18 test sequences per step and m value which is used to
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Table 3.1 Summary of SWaT sensors and actuators used in our analysis

Step Sensors Actuators Share of all elements (%)

P1 FIT101, LIT101 MV101, P101 80

P2 AIT201, AIT202,
AIT203, FIT201

MV201, P201*,
P203, P205

72

P3 DPIT301, FIT301,
LIT301

MV301, MV302,
MV303, MV304,
P302

89

P4 AIT401, AIT402,
FIT401,
LIT401

P403*,
UV401*

67

P5 AIT501, AIT502,
AIT503, AIT504,
FIT501, FIT502,
FIT503, FIT504

P501*, PIT501,
PIT502, PIT503

92

P6 FIT601 P601*, P602 75

structure the performance analyses (viz. Table 3.2). These sequences provide both
balanced and unbalanced sets of sensors and actuators (noted as “S/A ratio”). Further,
we exclude the possibility that an object can belong to two clusters simultaneously
(“hard clustering”).

A comparison ofmultiple algorithms typically requires an objective public dataset
as a reference frame. Since the SWaT data are unique, no ready-made baseline accu-
racy measure exists. Further, [6] note that even in the presence of an objective ground
truth, unsupervised learningmethods should still be trained since they cannot identify
attacks they have not encountered before.

We therefore constructed a baseline dataset from the raw time series data and
defined it as a base case against which the algorithms were trained. n denotes the
number of time series considered in the respective analysis. We applied a fixed split
ratio between training (60%) and test data series (40%). To evaluate the training
set, we used 1-NN since a specification of k = 1 for a k-nearest neighbor algorithm
implies the training sample has a zero error rate. We used Euclidian distance (ED)
and conditional dynamic timewarping (cDTW) to evaluate the initial training results.
For a technical introduction into these measures, see [9]. Since unconstrained DTW
is very costly in terms of computation time, we constrain DTWmetrics to a window
size of w = 5. The respective results for the training set are also shown in Table 3.2.

While we trained the algorithms, we also analyzed computation times by the
time.process_time() function which returns the sum of both system and
user CPU time the algorithm requires. The results of this analysis are summarized
in Table 3.3. We set k-Means as the reference point against which we compared
the performance of k-Shape and TTC. Euclidean distance measures require the least
computation time.By comparison, k-Shape requires an average of 20min to complete
its run, whereas TTC with w = 5 requires about one hour.
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Table 3.2 Summary of training results before clustering

Seq. Step m Train(n.6) Test(n.4) S/A ratio ED
(w = 0)

cDTW
(w = 5)

1 P1 360 804 536 2:2 0.2623 0.2377

2 P1 720 404 268 2:2 0.3765 0.3765

3 P1 1440 204 136 2:2 0.9808 0.9808

4 P2 360 804 536 4:4 0.7531 0.7253

5 P2 720 408 272 4:4 0.9036 0.8735

6 P2 1440 200 137 4:4 1.0000 1.0000

7 P3 360 800 536 3:5 0.4375 0.4175

8 P3 720 408 272 3:5 0.4759 0.4759

9 P3 1440 200 136 3:5 0.5800 0.5000

10 P4 360 804 534 4:2 0.8272 0.8272

11 P4 720 300 206 4:2 0.8621 0.8621

12 P4 1440 150 113 4:2 1.0000 1.0000

13 P5 360 804 540 11:1 0.2068 0.2068

14 P5 720 408 264 11:1 0.2048 0.8275

15 P5 1440 204 136 11:1 0.1635 0.1635

16 P6 360 804 537 1:2 0.8272 0.8242

17 P6 720 402 267 1:2 0.8375 0.8375

18 P6 1440 202 137 1:2 0.6569 0.6569

For the subsequent performance analysis, the k-Shape algorithm [18] was speci-
fied with a maximum number of iterations for k-Shape. The k-Means algorithm used
both DTW and scalar-based distance (SBD) as distance measures and the arithmetic
mean of time series coordinates for centroid computation. In every iteration of k-
Shape and k-Means, the centroids of the previous run were used as reference points
to refine the centroid computation of subsequent runs.

Wemeasured the performance of all four algorithms by EDwith a window size of
w = 0 and cDTWwith awindow size ofw = 5. For pairwise comparisons, we compute
the Rand index and conditional entropy (see [4, 14] for a technical description of
these measures). We report the average of both indices over 100 runs.

We programmed our analysis in Python with Pycharm IDE to obtain consistent
evaluations. All classification reports and confusion matrices were generated with
the sklearn library. We ran all analysis on a ready-made commercial laptop with a
Dual Intel i5 CPU (4-core with 8 logical processors), 1.6GHz clock speed, and 8GB
RAM.
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Table 3.3 Computation time analysis
Seq. Process m Train(n.6) Test(n.4) k-Means(Ref.) k-Shape TTC(w = 5)

1 P1 360 804 536 0.1875 170x 10780x

2 P1 720 404 268 0.2188 30x 6393x

3 P1 1440 204 136 0.2188 28x 4941x

4 P2 360 804 536 0.1719 76x 5785x

5 P2 720 408 272 0.6094 24x 1443x

6 P2 1440 200 137 0.1250 55x 10138x

7 P3 360 800 536 0.1563 49x 17040x

8 P3 720 408 272 0.1719 286x 16551x

9 P3 1440 200 136 0.1250 82x 22489x

10 P4 360 804 534 0.0938 571x 28438x

11 P4 720 300 206 0.1719 95x 14394x

12 P4 1440 150 113 0.0781 1423x 27181x

13 P5 360 804 540 0.0781 7937x 60773x

14 P5 720 408 264 0.0625 9345x 81352x

15 P5 1440 204 136 0.0625 557x 51794x

16 P6 360 804 537 0.0469 16290x 63529x

17 P6 720 402 267 0.1094 5560x 24087x

18 P6 1440 202 137 0.0625 842x 60728x

3.3 Results

3.3.1 Comparative Accuracy

Table 3.4 details the overall accuracy of the four competing algorithms, i.e., the ratio
of correctly predicted to total observations. In 10 out of 18 sequences, the respective
accuracy exceeds the baseline. k-Shape realizes a top accuracy of 0.9111 when it
clusters data from step P2 (sequence no. 5), while 1-NN has the worst accuracy of
0.00 in step P4 (sequence no. 6). Generally, algorithms that useDTWas their distance
measure have better accuracy than those that do not. Among the three algorithms, k-
Shape performs well although the data are intentionally not arranged in shape-based
form.

3.3.2 Pairwise Comparison of k-Means and k-Shape

The accuracy distribution plot in Fig. 3.2 signals that k-Shape outperforms k-Means
over most sequences, and particularly so for process step P2. Table 3.5 presents the
related Rand index and entropy measures. k-Shape performs best in sequence no. 5,
with a value of 0.9111, and worst in sequence no. 15, with a value of 0.0000.
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Table 3.4 Summary of overall clustering accuracy
SN. Process Length(m) 1-NN(ED) 1-NN(cDTW) k-Means k-Shape TTC(w = 5)

1 P1 360 0.7377 0.7623 0.2313 0.4813 0.2276

2 P1 720 0.6235 0.6235 0.1418 0.1884 0.1399

3 P1 1440 0.0192 0.0192 0.2481 0.0224 0.2836

4 P2 360 0.2469 0.2747 0.3895 0.5412 0.3876

5 P2 720 0.0964 0.1265 0.4796 0.9111 0.4815

6 P2 1440 0.0000 0.0000 0.0074 0.3333 0.0298

7 P3 360 0.5625 0.5825 0.2276 0.4179 0.1940

8 P3 720 0.5241 0.5241 0.2610 0.0257 0.2279

9 P3 1440 0.4200 0.5000 0.0846 0.0037 0.0899

10 P4 360 0.1728 0.1728 0.6214 0.4660 0.5995

11 P4 720 0.1379 0.1379 0.5000 0.4735 0.5029

12 P4 1440 0.0000 0.0000 0.3333 0.3333 0.3457

13 P5 360 0.7932 0.7932 0.2482 0.3603 0.1618

14 P5 720 0.7952 0.1725 0.2647 0.4672 0.2336

15 P5 1440 0.8365 0.8365 0.2301 0.0000 0.2892

16 P6 360 0.1728 0.1758 0.1029 0.0708 0.2264

17 P6 720 0.1625 0.1625 0.1094 0.5809 0.1068

18 P6 1440 0.3431 0.3431 0.3285 0.3285 0.3468

Fig. 3.2 Accuracy distribution plot of k-Shape versus k-Means
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Table 3.5 Numerical performance comparison between k-Means and k-Shape

Seq. Step(m) k-Means Rand
index

cEntropy k-Shape Rand
index

cEntropy

1 P1(360) 0.2313 0.52 0.00 0.4813 0.50 0.02

2 P1(720) 0.1418 0.54 0.01 0.1884 0.54 0.06

3 P1(1440) 0.2481 0.54 0.01 0.0224 0.51 0.03

4 P2(360) 0.3895 0.52 0.00 0.5412 0.50 0.02

5 P2(720) 0.4796 0.50 0.00 0.9111 0.84 0.58

6 P2(1440) 0.0074 0.55 0.02 0.3333 0.55 0.08

7 P3(360) 0.2276 0.51 0.00 0.4179 0.50 0.02

8 P3(720) 0.2610 0.53 0.01 0.0257 0.50 0.02

9 P3(1440) 0.0846 0.55 0.02 0.0037 0.50 0.02

10 P4(360) 0.6214 0.91 0.62 0.4660 0.50 0.02

11 P4(720) 0.5000 0.51 0.00 0.4735 0.50 0.02

12 P4(1440) 0.3333 0.55 0.02 0.3333 0.52 0.04

13 P5(360) 0.2482 0.50 0.00 0.3603 0.50 0.02

14 P5(720) 0.2647 0.52 0.00 0.4672 0.51 0.03

15 P5(1440) 0.2301 0.55 0.02 0.0000 0.51 0.02

16 P6(360) 0.1029 0.50 0.00 0.0708 0.51 0.03

17 P6(720) 0.1094 0.51 0.54 0.5809 0.51 0.03

18 P6(1440) 0.3285 0.52 0.02 0.3285 0.56 0.08

We further explored the case of sequence no. 5 where k-Shape has its best score
of 0.9111. Figures 3.3 and 3.4 plot the respective cluster prototype generations of
k-Means and k-Shape. In both figures, the red lines in the background represent
the time series which the respective algorithm believes to belong to the same class.
Cluster 1 refers to inputs (signal data), and cluster 2 refers to outputs (actuator data).
The k-Means prototyping process simply computes the average of all data points,
hence the overall shape of the cluster distribution is roughly a straight line which is
highlighted in black in Fig. 3.3. By contrast, Fig. 3.4 shows that k-Shape can better
recognize similar time series.

Figures 3.5 and 3.6 present the confusion matrices for both algorithms. Here and
all subsequent matrices, the top-left value indicates the number of true positives, i.e.,
the number of positive observations (attacks) that were predicted accurately. The
bottom right value represents the number of accurately predicted true negatives. The
top-right corner collects false negatives (positive observations that the algorithm
clustered as negative), and the bottom-left value collects false positives (negative
observations that the algorithm clustered as positive).

The matrices suggest that both algorithms generate a high number of false alarms,
but k-Shape has far greater accuracy. Therefore, the case of sequence no. 15 where k-
Shape performsworse than any other algorithm seems surprising. Since sequence 15
has a highly skewed sensor/actuator ratio of 11:1 (viz. Table 3.2), we investigated this
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Fig. 3.3 Cluster prototypes rendered by k-Means

Fig. 3.4 Cluster prototypes rendered by k-Shape
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Fig. 3.5 Confusion matrix results for k-Means and sequence no. 5

Fig. 3.6 Confusion matrix results for k-Shape and sequence no. 5
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Fig. 3.7 Cluster prototypes rendered by k-Means

case further and compared it with the related performance of k-Means. Figures 3.7
and 3.8 detail the respective cluster prototype generations. Again, cluster 1 refers to
inputs (signal data), and cluster 2 refers to outputs (actuator data).

Since the time series in this sequence produce much erratic noise (red lines), and
since k-Means simply computes the average of all data points, the related cluster
distribution (black line) reduces the noise. By comparison, when time series data
feature this noise-like structure, k-Shape fails to perform appropriate abstraction and,
by attempting to classify the noise, produces inaccurate clusters. In this particular
case with highly skewed sensor-to-actuator data, an algorithm that oversimplifies
would be a more efficient choice.

The related confusion matrices shown in Figs. 3.9 and 3.10 confirm this con-
clusion. The true positive rate of k-Shape is much lower than that of k-Means, and
k-Shape fails to recognize many attacks.

3.3.3 Pairwise Comparison of k-Shape and TTC

In a second step, we compared the performance of k-Shape and TTC. The accu-
racy distribution plot in Fig. 3.11 signals that k-Shape outperforms TTC over most
sequences. Table 3.6 presents the related Rand index and entropy measures.

We further explore the case of sequence no. 10 where TTC scores best and better
than k-Shape. Figures 3.12 and 3.13 plot the respective cluster prototype generations
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Fig. 3.8 Cluster prototypes rendered by k-Shape

Fig. 3.9 Confusion matrix results for k-Means and sequence no. 15
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Fig. 3.10 Confusion matrix results for k-Shape and sequence no. 15

Fig. 3.11 Accuracy distribution plot for k-Shape versus TTC
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Table 3.6 Numerical performance comparison between TTC and k-Shape

Seq. Step(m) TTC Rand cEntropy k-Shape Rand cEntropy

1 P1(360) 0.2276 0.52 0.13 0.4813 0.50 0.02

2 P1(720) 0.1399 0.54 0.15 0.1884 0.54 0.06

3 P1(1440) 0.2836 0.53 0.14 0.0224 0.51 0.03

4 P2(360) 0.3876 0.52 0.14 0.5412 0.50 0.02

5 P2(720) 0.4815 0.50 0.12 0.9111 0.84 0.58

6 P2(1440) 0.0298 0.55 0.16 0.3333 0.55 0.08

7 P3(360) 0.1940 0.51 0.13 0.4179 0.50 0.02

8 P3(720) 0.2279 0.57 0.17 0.0257 0.50 0.02

9 P3(1440) 0.0899 0.53 0.14 0.0037 0.50 0.02

10 P4(360) 0.5995 0.52 0.14 0.4660 0.50 0.02

11 P4(720) 0.5029 0.50 0.12 0.4735 0.50 0.02

12 P4(1440) 0.3457 0.57 0.17 0.3333 0.52 0.04

13 P5(360) 0.1618 0.50 0.12 0.3603 0.50 0.02

14 P5(720) 0.2336 0.52 0.14 0.4672 0.51 0.03

15 P5(1440) 0.2892 0.52 0.14 0.0000 0.51 0.02

16 P6(360) 0.2264 0.50 0.12 0.0708 0.51 0.03

17 P6(720) 0.1068 0.55 0.16 0.5809 0.51 0.03

18 P6(1440) 0.3468 0.51 0.13 0.3285 0.56 0.08

of k-Means and k-Shape. Again, in both figures, the red lines in the background
represent the time series which the respective algorithm believes to belong to the
same class. Cluster 1 refers to inputs (signal data), and cluster 2 refers to outputs
(actuator data). Similar to the case of k-Means in sequence 15, TTC performs better
than k-Shape when the time series data is noisy because it tends to simplify cluster
prototypes, whereas k-Shape attempts to over-fit the noise. Its shape abstraction has
advantages when time series data are periodic, but they are less able to handle random
noise.

The confusion matrix results confirm this assessment: TTC is excellent at recog-
nizing true negatives, whereas k-Shape produces many false alarms (Figs. 3.14 and
3.15).

Finally, we investigated the case of sequence no. 6 where TTC performs worst,
and much worse than k-Shape. The cluster prototypes, shown in Figs. 3.16 and 3.17,
paint a similar picture as with k-Means: TTC can better handle time series data with
“noisy” distributions, whereas k-Shape overfits such data. The confusion matrices,
shown in Figs. 3.18 and 3.19, suggest that TTC adequately identifies true negatives,
whereas k-Shape returns a high rate of false negatives.
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Fig. 3.12 Cluster prototypes rendered by TTC

Fig. 3.13 Cluster prototypes rendered by k-Shape
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Fig. 3.14 Confusion matrix results for TTC and sequence no. 10

Fig. 3.15 Confusion matrix results for k-Shape and sequence no. 10
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Fig. 3.16 Cluster prototypes rendered by TTC

Fig. 3.17 Cluster prototypes rendered by k-Shape
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Fig. 3.18 Confusion matrix results for TTC and sequence no. 6

Fig. 3.19 Confusion Matrix results for k-Shape and sequence no. 6
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3.4 Conclusion

Ourfindings generally support that the k-Shape algorithmhas superior accuracywhen
it comes to attack isolation, except for the case of time series that are noisy. Overall,
k-Shape merges the efficiency of ED with the accuracy of DTW; moreover, it is a
domain-independent clustering algorithm for time series. Still, it has its shortcomings
when the time series data do not exhibit clear patterns.

This problempoints to an opportunity that [6] exploited by using a “superdetector”
approach which fuses and triangulates different data sources. The above shortcom-
ings of k-Shape may be mitigated by adding algorithms that can handle noisy data
better, and by identifying ways of how the different detector data may be combined.

While this approach is beyond the scope of this contribution, such research would
constitute amuch-needed complement. Balaji et al. [6] note that their “superdetector”
approach is a supervised one and hence requires extensive labeling and subjective
human judgment. Future research could build on our findings to construct an unsu-
pervised detector that combines different clustering algorithms which do not require
such labeling.

Finally, the fundamental problem that attack data are sparse in comparison to
normal operations data implies that attack data are rare events and hence might
follow a Poisson or negative binomial distribution. Future research should therefore
complement our computational approach with probabilistic methods to train detector
algorithms with likelihoods of attack occurrence.
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P. Karpov, & F. Theis (Eds.), Artificial neural networks and machine learning - ICANN 2019:
Text and time series (pp. 703–716). Berlin, Heidelberg: Springer LNCS.

17. Mathur, A., & Tippenhauer, N. (2016). SWaT: A water treatment testbed for research and
training on ICS security. In Proceedings of the 2016 International Workshop on Cyber-physical
Systems for Smart Water Networks (CySWater), pp. 31–36.

18. Paparrizos, J., & Gravano, L. (2016). k-Shape: Efficient and accurate clustering of time series.
ACM SIGMOD Record, 45(1), 69–76.

19. Perales Gómez, A. L., Fernández Maimó, L., Huertas Celdrán, A., & García Clemente, F. J.
(2020). MADICS: A methodology for anomaly detection in industrial control systems. Sym-
metry, 12(10), 1583.

20. Qureshi, M., Al-Madani, B., & Shawahna, A. (2019). Anomaly detection for industrial control
networks using machine learning with the help from the inter-arrival curves. arXiv:1911.05692

21. Yang, T., Murguia, C., Kuijper, M., & Nešić, D. (2019). An unknown input multi-observer
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Chapter 4
Next Generation ISACs: Simulating
Crowdsourced Intelligence for Faster
Incident Response

Philipp Fischer and Sébastien Gillard

4.1 Limitations to Security Information Sharing

Few would argue that security information sharing, i.e., the voluntary exchange of
information relevant to cybersecurity across different organizations, helps defenders
to understand, mitigate, and prevent cyber attacks [1, 2, 7]. The European Union’s
agency for network and information security (ENISA) has proposed howsuch sharing
could be stimulated [4, 5].

Among such proposals, information sharing and analysis centers (ISACs) stand
out since they facilitate an interpersonal exchange of information between cyberse-
curity professionals. Since their emergence in the late 1990s, ISACs have become a
dominant organizational model for security information sharing.

Still, security information sharing among human agents through ISACs is often
slow and ineffective, both because of the transaction costs that physical meetings
entail and because participants may purposefully withhold information when they
do not trust each other [8, 13, 15, 22]. As a result, the contribution ISACs can make
is limited [6, 17].

Since the value of cybersecurity information depreciates over time as attackers
change tactics once compromised systems are reset [11], speed is of the essence
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when it comes to sharing such information, and it is this aspect which motivates our
research.

Recently, alternative platforms have attempted to overcome the problems that
interpersonal interaction entails. These platforms provide human agents with the
tools to share indicators of compromise (IoC) remotely and directly.We first describe
and study two such “crowdsourced” platforms, ThreatFox and MISP, then we use
the insights gained from this analysis to construct a hierarchical simulation model
that studies how such platforms may facilitate the sharing of IoC. All subsequent
analyses were implemented in R, and all plots were generated with the ggplot2
package.

4.2 Crowdsourced Intelligence Sharing Platforms

4.2.1 ThreatFox

The online user community ThreatFox was founded in 2021. Its users, who are called
“reporters,” can anonymously and directly share information about cyber threats by
entering IoC into an online database.1 Any shared information is time-stamped,
categorized, and immediately made available to all users. The community comprises
both professionals and private individuals who have an interest in IT technology or
cybersecurity. Besides an initial registration which can be associated with a Twitter
handle, there is no restriction or screening process for new reporters who want to
join the platform. Data entered by reporters are neither cross-checked nor verified.
Detailed descriptive information on ThreatFox is available from [12].

We studied the IoC arrival and user onboarding on both platforms, both in order to
understand their inner workings and to inform a simulationmodel that can predict the
speed with which IoC are shared. We collected both the daily number of reporters
and the daily number of IoC shared between March 2021 when the platform was
inaugurated, and July 2022 when we began the analysis.

Figure4.1 shows that the number of IoC shared exhibits a non-linear growth pat-
tern. The black graph shows the actual growth of IoC, the fitted centered polynomial
line in blue approximates the actual growth over time. Using non-linear least squares
estimation, we estimated this growth has a non-constant rate of

E [Xt ] = μt = μtγ (4.1)

where t = 1, . . . T denotes the day, Xt is the number of new IoC on a given day t ,
μt is the growth rate, and γ is an ancillary parameter we estimated at γ̂ = 0.49 for
our particular dataset.

1 See https://threatfox.abuse.ch/.

https://threatfox.abuse.ch/


4 Next Generation ISACs: Simulating Crowdsourced … 51

Fig. 4.1 Approximation of user growth on ThreatFox

Fig. 4.2 Histogram of user confidence for all available IoC on ThreatFox

The platform allows users to assign a confidence level between 0 and 100 to their
reported IoC which reflects how strongly the user believes the shared information is
correct. Figure4.2 shows our analysis of this attribute. About half of all IoC have a
confidence level of 100%.

Finally, we found that the rate of reporter arrival is approximately constant (viz.
Fig. 4.3, left-hand panel). The associated count data (right-hand panel) suggest that
the arrival data are highly skewed; on most days, no new reporters arrive.

Let Yt denote the number of reporters who join at time t . The total number of
reporters then is Rt = ∑t

j=1 Yt . The number of IoC that are shared daily per active

reporter then is Xt
Rt
. Under the assumptions that all reporters are independent and

contribute equally, that IoC and reporters are independent, and that the constant
growth rate is E [Yt ] = λ, we can estimate the expected value of this ratio:

E

[
Xt

Rt

]

= E [Xt ]

E [Rt ]
= μt

λt
= μ

λ
tγ−1 (4.2)

For our data, we estimated (γ̂ − 1) = −0.51, which implies that the number of
IoC shared per reporter should slowly decrease over time. Figure4.4 illustrates this
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Fig. 4.3 Reporter arrival analysis

Fig. 4.4 Decreasing trend of
IoC shared per reporter over
time

effect. The grey dashed line indicates the average rate; IoC counts slowly decrease
relative to it.

Finally, we computed the empirical cumulative distribution function of the total
number of IoC shared and took its complement to get the survival function. To
estimate the power law exponent β, we used a weighted least squares scheme, so
that reporters with a longer tenure on the platform have greater significance. We
computed β = 1.00 with R2 = 0.98. Figure4.5 plots the survival function on a log-
log scale.

The survival function suggests that reporters with a short tenure typically share
more IoC per day, whereas for more senior contributors the number of IoC shared
converges towards the estimate. This suggests that they share much information as
they join, but converge towards the expected value over time.

4.2.2 MISP

Besides the relatively novel project ThreatFox, we also looked at a more established
sharing platform to gain further insights for our subsequent simulation model. The
Malware Information Sharing Platform (MISP) is an open-source platform where
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Fig. 4.5 Survival function
of shared IoC per reporter

users can share any threat intelligence. It was developed in 2011, quickly popularized
by European governments, and co-financed by the European Union.2

MISP collects decentrally entered IoC and collocates them over time into more
complex threat warnings which are called “events.” IoC are therefore published with
delay. Its inner workings and user interaction have been richly explained before [3,
16, 21].

Compared to ThreatFox,MISP is more conservative. Contributors, who are called
“organizations” (even if they are individuals), must undergo a verification and accep-
tance procedure before they are allowed to share information. MISP splits its user
base into different communities, so that users must choose a particular community
to which they want to contribute. Hence, users are not anonymous, and commu-
nity membership exerts social pressure on them to verify and check any information
before it is shared. Hence, one can assume that the IoC shared on MISP have a
confidence level of 100%.

The operators of MISP provided us with a comprehensive dataset that contains
over 86,000 events published by over 4,000 organizations between April 2014 and
February 2022. We analyzed the distribution of users across all communities in
this dataset and found it follows a power law distribution. Again, we computed
the empirical probability distribution function and took its complement to get a
corresponding survival function for MISP members. Figure4.6 plots the result on a
log-log scale.

We estimated the exponent β = 1.66with R2 = 0.99. The plot suggests that users
are distributed quite asymmetrically across communities, which is plausible given
the community size follows a power law, i.e., many communities have but a few users
while very few communities attract a large number of users. Our simulation model
takes this non-linear user-community distribution into account.

2 See https://www.misp-project.org/.

https://www.misp-project.org/
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Fig. 4.6 Survival function of
the community size on MISP

4.3 Hierarchical Simulation Model

We now use the observations we made on ThreatFox and MISP to inform a hier-
archical simulation model that should replicate the actual observations as closely
as possible. It mimics a fictitious platform on which users organize themselves in
communities and share IoC according to three subprocesses: “user arrival” describes
the onboarding of users on the platform, “IoC arrival” features a hidden Markov
process by which the emergence of IoC is simulated, and “user behavior” describes
the propensity of users to share IoC with others. The set of parameters introduced
by these subprocesses is shown in Table 4.1.

In our model, a Dirichlet process with ancillary parameters α and θ controls
both the arrival and the distribution of users across communities. Typically, such a
process would only use a single parameter θ (implying that α = 0) to assign users
to communities according to an exponential law, so that the probability of joining
a community is proportional to the number of users in that community. However,
since Fig. 4.6 suggests that the actual distribution of users on MISP follows a power
law, we introduce a second parameter α, so that we can increase the concentration of
the largest communities and further decrease the chance that a user will join a small
community. Thus, while higher values of α encourage users to either join the largest
community or start a new one, higher values of θ imply that more communities are
created. Note that for θ = α = 0, there is just a single community, hence ThreatFox
emerges as a special case of MISP. For the case of more than one community, we
used the data on 2,408 MISP communities to estimate θ̂ = 14.9 and α̂ = 0.89.

4.3.1 User Arrival Subprocess

We letYt capture the set of all active users at time t = 1, . . . , T . Hence, the number
of elements in this set is Rt = |Yt | = ∑t

j=1 Yt and the number of daily new arrivals
is |Yt | − |Yt−1| = Yt .
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Table 4.1 Parameters used in our hierarchical model

Parameter Defined in Value or estimate Description

λ R
+ λ̂ = 0.18 User arrival rate

estimated with
ThreatFox data,
remains fixed in
simulation model

θ R
+ θ̂ = 14.9 Concentration

parameter; describes
how strongly users
would rather create a
new community than
join an existing one

α [0, 1] α̂ = 0.89 Discount parameter
which controls the
distribution of users
into communities

μA, μB R μ̂A = 283,
μ̂B = 3639

IoC arrival rates for
hidden Markov
process states, both
remain fixed in
simulation model

pA, pB [0, 1] p̂A = 0.29 ,
p̂B = 0.11

Transition
probabilities for
hidden Markov
process states, both
remain fixed in
simulation model

δ R
+ δ ∈ {1, 100} Risk to user reputation

if IoC is shared,
assumed to be δ = 1
for ThreatFox and
δ = 100 for MISP

κ [0, 1] κ = 0.5 Average fraction of
users who already
know about a
particular IoC,
assumed to be κ = 0.5

If, like in the case of MISP, the total number of users increases linearly over time
with a constant rate of E [Yt ] = λ, we can assume that the number of new arrivals
per day has a Poisson distribution. The maximum likelihood estimator of the rate
parameter is then given by the average daily arrival number λ̂ = 1

T

∑T
t=1 Yt and the

estimated cumulative user count is given by the observed linear function R̂t = λ̂t with
λ̂ = 0.18 users per day. This Poisson process also facilitates the sampling procedure
since we only need to sample a new Poisson random variable Yt for each day and
add the number of new users obtained thereby to the set of all users Yt .
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Fig. 4.7 Comparison of MISP user arrival and Poisson process prediction

We checked the plausibility of our assumptions by comparing this Poisson process
to the original MISP data (viz. Fig. 4.7). It compares the relative frequency of daily
user arrival in the MISP data with the frequencies given by the Poisson model (left-
hand panel) as well as the expected values of cumulative reporter counts over time
(right-hand panel).

We further aligned the user arrival process with the actual MISP structure by
grouping users to communities. The variable 	 = 1, . . . , Lt captures the number of
communities at time t , and Y	

t with size Y 	
t = |Y	

t | records the set of all users in
a particular community at time t . The original set Yt = ⋃L

	=1 Y	
t then defines the

number of all users across all communities. We assume any user can join but one
discrete community, so Y	

t ∩ Y	′
t = ∅ for all 	 �= 	′. Therefore {Y	

t }	 is a partition
of the set of all active users.

We let a Dirichlet process assign users to communities. It assumes that the prob-
ability ω1 of a newly arriving user to be assigned to a community is proportional to

the number of users already present in that community, soω1 = Y 	
t
Yt

for community 	.
Hence, we capture a typical concentration process by which a few communities grow
the faster the larger they are already, whereas most communities will have relatively
few users.

While this process can model a fixed number of communities, we also want to
discuss the casewhere users organize themselves in newcommunities, the probability
of which we denote asω2 = θ

Yt+θ
, where θ > 0 is an ancillary parameter. Since users

can now choose to start new communities instead of joining an extant community 	,

the probability of joining the latter is ω3 = Y 	
t

Yt+θ
.

Finally, we consider themeasured distribution of community size which we found
follows a power law. The probability that a new community emerges then is ω4 =
θ+αL
Yt+θ

, where L is the number of extant communities at that time, and the probability

that a user joins community 	 is Y 	
t −α

Yt+θ
.

Figure4.8 plots the community building process which has a Pareto distribution.
With the data on all 2,408 MISP communities, we estimated a Pareto index of β =
1.66 and α̂ = 0.89.



4 Next Generation ISACs: Simulating Crowdsourced … 57

Fig. 4.8 Optimal parameters for the community building process

Fig. 4.9 Counts and density estimation of IoC shared on ThreatFox per day

4.3.2 IoC Arrival Subprocess

Next, we simulate the arrival of all IoC that the users have chosen to share with their
community. We denote by Xt the number of IoC added to the sharing platform at
time t which is measured in days, so the total number of IoC available by that time
is St = ∑t

j=1 Xt , and the set of all IoC shared on the platform at time t is Xt with
size |Xt | = St . Since the daily number of IoC arriving on ThreatFox is numerically
large (viz. Fig. 4.9, right-hand panel), we will use a continuous approximation for
the discrete count data in Xt .

In both datasets, the density of the logarithms log Xt exhibit an approximately
normal distribution (viz. Fig. 4.9, left-hand panel). We therefore posit that Xt is
distributed according to a weighted sum of log-normal distributions with mixture
weight p in logspace:

log Xt ∼ (1 − p)N (
logμA, σ

2
A

) + pN (
logμB, σ 2

B

)
(4.3)

We assumed that μB corresponds to the larger mode μB > μA and used the
ThreatFox data to estimate parameters for the first mode (μ̂A = 284; σ̂ 2

A = 0.71) and
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for the larger mode (μ̂B = 3639; σ̂ 2
B = 0.38). For the mixture weight we obtained

p̂ = 0.25.
Since the means of the two distributions are not in logspace and relate to the direct

values of Xt , we can compute the average rate of arrival μ by applying the weighted

geometric mean μ =
√

μ
1−p
A μ

p
B .

On Threatfox, IoC arrival is irregular over time: Periods of relatively low arrival
counts (viz. Fig. 4.9, right-hand panel, state HA) are interspersed with periods of
highly intensive reportingwhich typically beginswhen novelmalware appears (right-
hand panel, state HB). In order to model the autocorrelation associated with this
effect, we introduce a hidden Markov chain with these two modes HA and HB . The
sequence ht , t = 1, . . . , T assigns to each day t one of the states ht ∈ {HA, HB}.
Then, the probability that the state of the subsequent day changes from HA to HB or
vice versa is given by transition probabilities that depend only on the previous day:
P

[
ht−1 = HB |ht = HA

] = pB and P
[
ht−1 = HA|ht = HB

] = pA.
An estimate of the hidden state sequence ht can be derived by comparing the likeli-

hood ratios of each day.Under a log-normal probability density function f (x;μ, σ 2),
the likelihood ratio for each day is given by

r(Xt) = p f (Xt ;μB, σ 2
B)

(1 − p) f (Xt ;μA, σ
2
A)

(4.4)

Using theThreatFox data,we estimated that the hidden state is ĥt = HB if r(Xt) >

1. With this estimate, we counted the number of transitions and obtained transition
probabilities of p̂A = 0.29 and p̂B = 0.11.

However, the above calculation does not yet consider that the number of IoC
shared on ThreatFox exhibits a non-linear growth pattern (viz. Eq.4.1). Since the
right-hand panel of Fig. 4.9 suggests that the frequency of IoC arrivals is higher
during state HB while the sequence of the modes is rather stable, we fit the model
with fixed rates μA and μB .

4.3.3 Behavioral Subprocess

Finally, we consider that an IoC can only arrive at the platform if and only if the user
chooses to share it. Hence, IoC visible on the platform represent but a subsample of
all IoC that users are aware of. They may choose to withhold a particular IoC due to
a lack of trust in other members of their community, or they may fear to publish a
weakness that is critical to their business interests.

We follow [9] and frame the user’s decision to share an IoC as an economic
problem. IoC that are already broadly known by a subset of users I ⊂ Yt in the
community have little value for that community if they are shared again. Vice versa,
the fewer users I (x) = |I(x)| already know about an IoC, the more valuable it is to
the community. Hence, the raw value of a particular IoC x ∈ Xt can be expressed in
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terms of the number of all users who do not yet know about it. Following the example
of ThreatFox, we multiply this raw value by a confidence score c(x) ∈ [0, 1], so that
the value of an IoC is reduced proportionately to the sharer’s lack of confidence in
its novelty or relevance. The value of a particular IoC x ∈ Xt then is

vt (x) = c(x)

(

1 − |I(x)|
|Yt |

)

= c(x)

(

1 − I (x)

Yt

)

(4.5)

Since only shared IoC can be observed, the true distribution of vt (x) cannot be
known. A simple approach to this limitation is to assume that I (x) has a uniform
distribution I (x) ∼ Uni{1, . . . ,Yt }. By defining a parameter κ ∈ [0, 1] which cap-
tures the average fraction of users who already know about the IoC, we can further
refine the distributional assumption and assign a Beta distribution to this fraction:
I (x)
Yt

∼ Beta(κ, 1 − κ). A small κ thus implies that very few users already know about
an IoC and vice versa.

We now model the behavioral aspects that co-determine a user’s willingness to
share a particular IoC: benefit expectation (Uv), reputation (Up), and specificity (Ur ).
To exclude the possibility that worthless IoC are shared excessively, we introduce an
exponential scaling with a factor of 4 for all three aspects, so that IoC of very little
value are unlikely to be shared (note that e−4 < 0.02).

First, a user is likely to share an IoC if it is worth less than the average value
of all IoC on the platform. In this case, the user gives up relatively little value but
can benefit from more valuable IoC shared by others. Since there are Xt IoC on
the platform at time t and the average value of all IoC on the platform at time t is
1
Xt

∑
z∈Xt

vt (z), the probability that a user shares a particular IoC x of value vt (x) is

P [Uv(x) = 1] = exp

⎛

⎝−4

⎛

⎝vt (x) − 1

Xt

∑

z∈Xt

vt (z)

⎞

⎠

⎞

⎠ (4.6)

Second, we posit that highly reputable users are unlikely to share IoCs of little
value since they would risk their reputation in the user community, not the least
because mutual trust is a significant antecedent to the willingness to share [15]. We
therefore introduce an ancillary parameter δ > 0 which assigns a reputational risk
to users. Reputational risk grows with δ, hence a numerically large δ implies a high
risk that user damage their reputation if they share irrelevant or low-value IoC. We
compare the value of a given IoC with the average value of all IoC shared by a
particular user y ∈ Yt . This average can be computed by introducing the set of IoC
shared by user y, Xt (y) ⊆ Xt , and then only use the IoC in this set to compute their
average value of v̄(y) = 1

|Xt (y)|
∑

z∈Xt (y)
vt (z). We scale this value with reputational

risk δ, so that the probability that a user shares an IoC subject to his or her reputation
is:

P
[
Up(x, y) = 1

] = exp (4δ (vt (x) − v̄(y))) (4.7)
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Fig. 4.10 Sharing
probability for different
values of an IoC

Third, a user’s propensity to share an IoC is likely co-determined by the specificity
of this IoC. We argued before that a particular IoC x ∈ Xt is more valuable to a
community the fewer users in that community already know about it. Hence, the
few users that do know may be reluctant to share it since the specificity of the IoC
may point to vulnerabilities [10, 18, 19]. They would probably only share such
information in smaller communities where only a handful of users interact who trust
each other and who can be relied upon to handle such IoC discreetly. Therefore, the
value of an IoC vt (x) must be scaled at time t by the size of the community Y 	

t in

relation to the number of all users on the platform Yt with a factor of
Y 	
t −1
Yt−1 . Note the

subtraction of 1 filters out user communities with just one member which do exist
on the MISP platform. Hence, the probability that an IoC is shared within a specific
community, subject to reputational risk δ, is

P [Ur (x) = 1] = exp

(

−4δ
Y 	
t − 1

Yt − 1
vt (x)

)

(4.8)

Finally, we posit that all three aspects must be present cumulatively for an IoC
to be shared: Users should expect to realize a benefit from sharing it, they will only
do so if they really believe it is valuable, and if their fears regarding sensitivity are
alleviated. Hence, we can express the decision to share an IoC as a single Bernoulli
variable with probability U (x, y) = Uv(x) ·Up(x, y) ·Ur (x). Figure4.10 plots its
range subject to different levels of IoC value v and reputational risk δ.

The plot suggests that high values of δ decrease the probability of sharing because
of reputational risk: the higher a user’s reputation in the community, the less likely
it is that a user shares IoC below a certain value threshold—much unlike users with
a low reputation. But those users are also more likely to share IoCs of higher value
than users who are concerned about their reputation.
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4.3.4 Sampling Procedure

In order to combine the above subprocesses into a full model, we sequentially sample
from them in three steps, using one day as unit of discretization. We first sample a
number of users from the user arrival subprocess and assign them to a community.
The parameters associatedwith this first step are the arrival rateλ, and the community
concentration and dispersion parameters θ and α. Since we estimated these on the
basis of ThreatFox and MISP data, they will be fixed at their estimated values.

In the second step, we sample a number of IoC from the IoC arrival subprocess.
Using the IoC distribution with mean μ, we assign the sampled IoC to some users
at random. The hidden Markov chain is sampled with different means μA and μB

for the two states HA and HB , and we use the respective transition probabilities pA

and pB we estimated with ThreatFox and MISP data before. The number of sharing
users is scaled with

√
Yt to simulate the effect that users leave over time. The specific

users are selected with a probability proportional to the number of IoC they have
already shared. The third and final step evaluates the sharing probabilities for all
selected users and sampled IoC. In this step we scale the sharing probability using
value and reputation, and we scale the number of selected users to match the real
IoC we observed being shared on ThreatFox as closely as possible.

Figure4.11 provides an illustration of how the sampling process matches simu-
lated to actual data. It shows a single time series of simulated IoCcounts and compares
them to the real data we observed on ThreatFox. The simulation is calibrated such
that after T = 550 days, the number of simulated IoC shared is close to the actual
observed number, and the measured exponent of daily IoC counts with reputational
risk parameter δ = 1 matches exactly the observed γ = 0.49.

Fig. 4.11 Fit of sampling process and actual data
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4.4 Simulation Results

We generated all the following results by replicating the simulation six times for
a total number of T = 4000 steps. The plots show the mean values of these six
replications as dots. To facilitate the depiction of trends and patterns, we fitted cubic
splines to all results in order to obtain smooth lines.

In a first simulation, we let the reputational risk parameter δ vary across two
platforms, one with a single and one with multiple communities, and analyzed how
different levels of reputational risk influenced the total number of IoC shared (left-
hand panel) and the average value of the IoC shared (right-hand panel). Figure4.12
presents the results.

We find that on a single-community platform, users are reluctant to share IoC
when reputational risk is high, so that relatively few sensitive IoC are shared and the
average IoC value falls with increasing reputational risk. In contrast, this reputational
risk effect is much smaller on a multiple-community platform, and the average value
even increases with reputational risk, implying that users are confident and trust
each other when they share high-value IoC. This implies that a platform with a
single user community like ThreatFox will likely attract users who put less emphasis
on reputation and share more, but less valuable IoC. In contrast, multiple-community
platforms like MISP can expect to perform better in regard to the sharing of high-
value IoC.

In a second step, we let the parameters θ and α vary in order to detail this result.
Figure4.13 shows the corresponding results. Note the vertical bar is set at the estimate
of θ̂ = 14.9 we obtained from the MISP data.

Both the number and the average value of the IoC shared increase with the number
and the dispersion of the communities on the platform. We let the parameter θ vary
to study the effect of the number of communities. An isolated effect can only be
measured when α = 0, but we added the base case of MISP (α = 0.89) in Fig. 4.13
with dashed lines for the sake of completeness. Clearly, as the number of com-
munities grows, so does the number of shared IoC, regardless of reputational risk.

Fig. 4.12 IoC shared and average IoC for different levels of δ and platform designs
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Fig. 4.13 IoC shared and average IoC value for different levels of θ and α

Fig. 4.14 IoC shared and average IoC value for different levels of κ

We presume that, when this risk is low, this number likely saturates when θ exceeds
some threshold, and then other factors likely deter users from sharing.

The right-hand panel of Fig. 4.13 shows that IoC value increases with the number
of communities, and more strongly so the higher the reputational risk is. Thus, many
small communities would be required to reap the full benefit a high value IoC offers,
since the line for δ = 1 is only exceeded for high values of θ . Note, however, that
this analysis does not strictly hold for MISP which has α = 0.89, implying that the
case for high reputational risk is always above the one for low reputational risk.

In a third simulation, we let the parameter κ vary by platform design and rep-
utational risk. Since κ is the average fraction of users who already know about a
particular IoC, the term (1 − κ) is the average value of an IoC. Figure4.14 shows
that when κ is small, implying an IoC has a high value, many more IoC are shared
on a multiple-community compared to a single-community design, and this effect is
stable for different levels of reputational risk.

Vice versa, when κ is large, the average value of IoC shared decreases quickly,
on both platform designs but quicker for a single-community setting with low repu-
tational risk, implying that many IoC of low value are shared by users who are not
too much concerned about damaging their reputation by doing so.
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Fig. 4.15 Dissemination
speed by platform
community design

Finally, we analyzed the speed of IoC dissemination for different platform designs
by simulating the time required to convey a given number of IoC to a maximum
number of users. To provide a measure for this question, we multiplied the number
of shared IoC by day with the number of members the respective community had on
the day the IoC was shared. Figure4.15 presents the results.

For a single-community design where users can share IoC with all other users,
dissemination speed quickly approaches zero as reputational risk increases, implying
that users who know about sensitive (high-value) IoC would be reluctant or refuse to
share such IoC. For a multiple-community design, dissemination speed is relatively
stable across different levels of reputational risk, implying that userswould bewilling
to share high-value IoC within specialized communities without much hesitation.

4.5 Conclusion

Our results point to a trade-off between the speed with which IoC are shared, and
the average value of those IoC. Single-community designs like ThreatFox are less
associated with reputational risk, and hence IoC sharing is fast, but the average
value of what is shared remains limited. On multiple-community designs like MISP,
high-value IoC are shared provided users can organize themselves in specialized
communities in which they probably trust each other and minimize the sharing of
low-value IoC since their reputation is at stake. At the same time, such communities
seem to facilitate the exchange of high-value IoC that might be too sensitive to be
shared.

For future platform managers, this trade-off implies that a design which facil-
itates anonymous and speedy exchange will probably set limits on the value of
the IoC shared, whereas IoC sharing in multiple-community designs is probably
slower, associated with more transaction cost, but of higher value to cyberdefense.
Hence, unilateral praises of the superiority of collective online interaction and open-
community collaboration models (e.g., [14, 20, 23]) should be taken with a pinch of
salt.
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Our simulation suggests that a multiple-community approach for users who are
sensitive to reputational risk leads to a slower but more valuable exchange. Hence,
this design could be used in settings where IoC are associated with structural vul-
nerabilities that enable targeted attacks. In contrast, a single, anonymous community
could quickly share information on relatively low-key events, such as the emergence
of malware that targets average web users.

Nevertheless, future platform architects may also evaluate how these two differ-
ent approaches to sharing information may be combined in a single platform. For
example, a hybrid platform could offer users a choice to share a particular IoC either
personally within a closed community or anonymously with all users.

References

1. Böhme, R. (2016). Back to the roots: Information sharing economics and what we can learn for
security. InProceedings of the 2016 ACMWorkshop on Information Sharing and Collaborative
Security, (pp. 1–2).

2. Böhme, R. (Ed.). (2013). The economics of information security and privacy. Springer.
3. Dulaunoy, A., Wagener, G., Iklody, A., Mokaddem, S., & Wagner, C. (2018). An indicator

scoring method for MISP platforms. In Proceedings of the 2018 TNC conference, Trondheim
(Norway).

4. ENISA. (2017). Information sharing and analysis centres (ISACs): Cooperative models. Euro-
pean Union Agency For Network and Information Security.

5. ENISA. (2010). Incentives and barriers to information sharing. European Union Agency for
Network and Information Security.

6. Falco, G., et al. (2019). Cyber risk research impeded by disciplinary barriers. Science,
366(6469), 1066–1069.

7. Gal-Or, E., & Ghose, A. (2005). The economic incentives for sharing security information.
Information Systems Research, 16, 186–208.

8. Garrido-Pelaz, R., González-Manzano, L., Pastrana, S. (2016). Shall we collaborate? A model
to analyse the benefits of information sharing. In Proceedings of the 2016 ACM Workshop on
Information Sharing and Collaborative Security, (pp. 15–24).

9. He, M., Devine, L., & Zhuang, J. (2018). Perspectives on cybersecurity information sharing
among multiple stakeholders using a decision-theoretic approach. Risk Analysis, 38(2), 215–
225.

10. Horák, M., Stupka, V., & Husák, M. (2019). GDPR compliance cybersecurity software: A case
study of DPIA in information sharing platform. In Proceedings of the 14th ACM International
Conference on Availability, Reliability and Security (pp. 1–8).

11. Iklody, A., Wagener, G., Dulaunoy, A., Mokaddem, S., & Wagner, S. (2018). Decaying indi-
cators of compromise. arXiv:1803.11052.

12. Jollès, E., & Mermoud, A. (2022). Building collaborative cybersecurity for critical infrastruc-
ture protection: Empirical evidence of collective intelligence information-sharing dynamics
on ThreatFox. In Proceedings of the 17th International Conference on Critical Information
Infrastructures Security (CRITIS), forthcoming.

13. Laube, S., & Böhme, R. (2017). Strategic aspects of cyber risk information sharing. ACM
Computing Surveys, 50(5), 77: 1–36.

14. Malone, T. W. (2019). Superminds: How hyperconnectivity is changing the way we solve
problems. Oneworld Publications.

15. Mermoud, A., Keupp,M.M., Huguenin, K., Palmié,M., & Percia David, D. (2019). To share or
not to share: A behavioral perspective on human participation in security information sharing.
Journal of Cybersecurity, 5(1), tyz006.

http://arxiv.org/abs/1803.11052


66 P. Fischer and S. Gillard

16. Mokaddem, S., Wagener, G., Dulaunoy, A., & Iklody, A. (2019). Taxonomy driven indicator
scoring in MISP threat intelligence platforms. arXiv:1902.03914.

17. Moore, T. (2010). The economics of cybersecurity: Principles and policy options. International
Journal of Critical Infrastructure Protection, 3, 103–117.

18. Murdoch, S., & Leaver, N. (2015). Anonymity vs. trust in cyber-security collaboration. In
Proceedings of the 2nd ACM Workshop on Information Sharing and Collaborative Security
(pp. 27–29).

19. Pang, R., Allman, M., Paxson, V., & Lee, J. (2006). The devil and packet trace anonymization.
ACM SIGCOMM Computer Communication Review, 36(1), 29–38.

20. Postmes, T., & Brunsting, S. (2002). Collective action in the age of the internet: Mass commu-
nication and online mobilization. Social Science Computer Review, 3, 290–301.

21. Wagner, C., Dulaunoy, A., Wagener, G., & Iklody, A. (2016). MISP—The design and imple-
mentation of a collaborative threat intelligence sharing platform. In Proceedings of the 2016
ACM Workshop on Information Sharing and Collaborative Security (pp. 49–56).

22. Webster, G. D., Harris, R. L., Hanif, Z. D., Hembree, B. A., Grossklags, J., & Eckert, C.
(2018). Sharing is caring: Collaborative analysis and real-time enquiry for security analytics.
In Proceedings of the 2018 IEEE International Conference on Internet of Things (pp. 1402–
1409).

23. Woolley, A. W., Chabris, C., Pentland, A., Hashmi, N., & Malone, T. W. (2010). Evidence
for a collective intelligence factor in the performance of human groups. Science, 330(6004),
686–688.

Philipp Fischer received his Bachelor’s degree in Computational Science and Engineering in
2019 and is currently completing his Master’s degree in Data Science, both at the Swiss Federal
Institute of Technology (ETH) Zurich. His professional expertise in data science spans algorithm
development, statistical modeling and visualization, specifically for IoT data. His research inter-
ests focus on statistical computing and the development of data analytics tools and software.

Sébastien Gillard received an MSc in Physics from the University of Fribourg (Switzerland)
in 2016. He specializes in computational physics and statistics, in particular, data analysis and
applied statistical modeling and analytical and numerical resolution methods for differential equa-
tions. His current research interest is the application of insights from recommender systems to
critical infrastructure defense, including the development of code that can power deep learning
algorithms.

http://arxiv.org/abs/1902.03914


Part II
Foresight



Chapter 5
Identification of Future Cyberdefense
Technology by Text Mining

Dimitri Percia David, William Blonay, Sébastien Gillard, Thomas Maillart,
Alain Mermoud, Loïc Maréchal, and Michael Tsesmelis

5.1 Introduction

Few would doubt that firms should identify technologies today that will prove to be
important for cyberdefense tomorrow, and that they should evaluate such technolo-
gies thoroughly and objectively so they can make informed investment decisions
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[18, 23]. However, this proposition is easier written than realized, since firms are
subject to bias and misjudgment as they invest in technology for cyberdefense.

When firms defer investment for too long, or if procurement procedures are highly
bureaucratic, the acquired technology is already outdated when it is finally deployed
[41]. When they buy too early, they acquire technology that may fail to provide
effective protection. Vendors often forego security issues as they put underdeveloped
technology to market early and then use clients as beta-testers who must identify
and patch vulnerabilities [1], not the least both because creating secure technology
requires high investments, and profitability decreases with time-to-market [1, 7].

Many firms follow the advice of consultancy firms or vendors when making
investment decisions, so they are prone to any bias that such advice entails [16,
42], all the more since human information processing is often more influenced by
psychological tendencies than by objective analysis [33]. It is therefore not surprising
that many qualitative models and indicators that rely on subjective assessments have
failed to correctly predict the emergence and relevance of future technologies [3, 8,
26].

Such misjudgments are not only costly since firms must forego the sunk cost of
ineffective investment, but they also threaten the efficacy of future cyberdefense.
While the literature abounds with attempts to improve technology forecasting (for
recent reviews, see [9, 22, 28], these problems are surprisingly persistent. In an
attempt to overcome them, we propose that big data bibliometric analysis (“text
mining”) can provide firms with open source-based information about the maturity,
security, and relevance of any technology. Firms can then use this information to
make informed investment decisions.

5.2 Bibliometric Method

Our approach builds on prior work in bibliometrics and automated text mining [13,
14, 25, 37]. These methods have been successfully used to forecast and extrapolate
technological trends, if with relatively small samples (e.g., [6, 20]).

We follow recent suggestions to complement such approaches with big data ana-
lytics (e.g., [19, 30]) and bibliometric methods (e.g., [14, 37]; Jaewoo et al. 2014).
We propose an automated analysis of the arXiv repository which collects scholarly
working papers, pre-prints, technical reports, post-proceedings, and journal publi-
cations.1 These contributions (“e-prints”) can be seen as a proxy for present and
emerging technological knowledge.

With such ameasure,we capture the amount of attention that the scientific commu-
nity gives to specific cyberdefense technologies. In the scientific field of computer
science, uploading e-prints on the arXiv repository–once they are ready for sub-
mission in a scientific conference or a scientific journal—is a common practice.

1 See https://arxiv.org/.

https://arxiv.org/
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Consequently, we argue that most scientific advances are captured through the
uploaded e-prints of the arXiv platform.

We downloaded the full text of all 1,858,293 e-prints uploaded between August
14, 1991 and December 31, 2020, by a mirror of the repository which is accessible
through Cornell University.2 We isolated those e-prints that the arXiv moderators
had grouped into the domain .cs (computer science). Authors who wish to upload
e-prints must choose a category that best describes the subject matter of their work.
Since authors have no apparent incentive to misclassify their own work, and since
moderators also check the classification consistency, we believe the resulting tax-
onomy is accurate.3. However, not all contributions in this domain are necessarily
relevant for cyberdefense. Since the arXiv moderators have further subdivided the
.cs domain intomore specific clusters, we selected those clusters whose technology
was discussed in the section Defenses in Wikipedia’s information security portal.4

This selection procedure yielded a population of twenty clusters. Table 5.1 presents
them together with their respective number of e-prints. We also de-seasonalized
publication frequencies in all clusters by applying the LOESS (STL) method [12].

We first defined a set�x for all clusters whichwas used in all subsequent analyses.
While we use monthly frequencies for the purpose of this analysis, the set can be
scaled to any time frequency.

�x = {
m ∈ N

∗ | m ≤ N
}
with N ∈ N

∗ (5.1)

where x is a cluster and

– m represents a month between the date of the first e-print in a given cluster x and
the date of the last e-print in that cluster;

– N is the number of months between the date of the first e-print in a given cluster
x and the date of the last e-print in that cluster.

While arXiv is popular today, it was relatively unknown in 1991, and hence
many e-prints may have been uploaded well after their original date of creation. We
therefore cannot readily assume the repository shows a constant rate of attention. We
therefore based all subsequent analyses on the publication (and not the upload) date.
Further, we normalized the number of e-prints in each cluster by dividing the total
number of e-prints per cluster and month by the corresponding count of all e-prints
in the repository per month.5 Table 5.2 gives descriptive statistics for normalized
numbers of e-prints in each cluster obtained thereby.

2 See www.kaggle.com/Cornell-University/arxiv.
3 For more information about the classification process, see https://arxiv.org/category_taxonomy
This taxonomy substantially relies on the 2012 ACMComputing Classification System, see https://
arxiv.org/corr/subjectclasses.
4 See https://en.wikipedia.org/wiki/Information_security.
5 Raw data for monthly download statistics are available from https://arxiv.org/stats/
monthly_downloads.

www.kaggle.com/Cornell-University/arxiv
https://arxiv.org/category_taxonomy
https://arxiv.org/corr/subjectclasses
https://arxiv.org/corr/subjectclasses
https://en.wikipedia.org/wiki/Information_security
https://arxiv.org/stats/monthly_downloads
https://arxiv.org/stats/monthly_downloads
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Table 5.1 Overview of clusters and e-prints

arXiv category Description # e-prints... ... which discuss
security issues

Percentage

|cs.AI| Artificial
intelligence

38620 11447 29.64

|cs.AR| Hardware
architecture

2573 971 37.73

|cs.CC| Computational
complexity

8492 1216 14.31

|cs.CL| Computation and
language

29528 8536 28.90

|cs.CR| Cryptography and
security

19784 14952 75.57

|cs.CV| Computer vision
and pattern
recognition

64696 21852 33.77

|cs.DB| Databases 6269 2341 37.34

|cs.DC| Distributed,
parallel, and
cluster computing

14955 5686 38.02

|cs.DS| Data structures
and algorithms

18269 3458 18.92

|cs.GT| Computer science
and game theory

7992 2279 28.51

|cs.HC| Human-
Computer
interaction

8774 2753 31.37

|cs.IR| Information
retrieval

10407 3216 30.90

|cs.LG| Machine learning 94024 30142 32.05

|cs.NE| Neural and
evolutionary
computing

10155 2649 26.08

|cs.NI| Networking and
internet
architecture

16606 6826 41.10

|cs.OS| Operating
systems

652 303 46.47

|cs.PL| Programming
languages

5731 1937 33.79

|cs.RO| Robotics 16187 6055 37.40

|cs.SE| Software
engineering

10032 4109 40.95

|cs.SY| Systems and
control

18347 6845 37.30
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Table 5.2 Descriptive statistics by cluster

Cluster Mean Median std. dev. Skewness Kurtosis

cs.AI 1.013 0.473 1.421 3.532 20.656

cs.AR 0.085 0.048 0.147 7.417 79.602

cs.CC 0.412 0.414 0.191 0.212 –0.281

cs.CL 1.071 0.333 1.459 1.98 4.308

cs.CR 0.683 0.548 0.674 1.873 6.728

cs.CV 1.731 0.274 2.959 2.871 13.908

cs.DB 0.257 0.238 0.194 1.282 4.701

cs.DC 0.55 0.429 0.448 0.823 0.296

cs.DS 0.676 0.653 0.539 0.261 –1.347

cs.GT 0.332 0.366 0.249 0.294 –0.525

cs.HC 0.272 0.135 0.346 2.354 7.817

cs.IR 0.35 0.233 0.345 1.365 1.476

cs.LG 2.333 0.361 4.321 2.644 7.741

cs.NE 0.349 0.207 0.355 1.05 0.119

cs.NI 0.673 0.78 0.487 0.019 –1.454

cs.OS 0.028 0.025 0.027 0.683 –0.35

cs.PL 0.242 0.229 0.158 0.526 –0.14

cs.RO 0.447 0.12 0.827 4.617 35.723

cs.SE 0.36 0.263 0.416 5.389 54.764

cs.SY 0.964 0.84 0.875 3.295 21.205

5.3 Maturity

The literature consistently suggests that technological lifecycles follow a logistic
or sigmoid shape [6, 32, 39]. We therefore analyzed the development state of the
technologies in each of the 20 clusters byfitting sigmoid curves to the observed counts
of e-prints over time. The sigmoid curve is attractive to fit “S-shaped” distributions
because it is generated by a bounded, differentiable, and real function that is defined
for all real input values, has a non-negative derivative at each point and exactly one
inflection point [24]. The idea behind this approach is simple: If the curve fits the
observed counts, the technology is maturing, and an inflection point can be found.
If no fit is possible, the technology is still in its exponential growth phase, but the
likely inflexion point can still be predicted from the model goodness-of-fit statistic.
We specified the sigmoid curve as

σ(t) = L

1 + e−k(t−t0)
(5.2)

where t ∈ �x and
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Fig. 5.1 Sigmoid fitting for cluster cs.DS

– t0 is the maximum of the first derivative of the function, i.e., the time when the
inflection has occurred (or will occur in the future);

– L is the curve’s maximum limit value L = lim
t→+∞ σ(t);

– k is the sigmoid growth rate of the curve.

We used the Python .optimize.curve_fit procedure that comes with the
scipy package to compute the curvature, its ancillary parameters, and goodness-
of-fit statistics. The procedure finds the optimal values of the parameters L , k, and
t0 as well as their respective standard errors by minimizing non-linear least squares
errors through the Levenberg-Marquardt algorithm. We assessed the goodness-of-fit
of the sigmoid model (i.e., the extent to which the fitted sigmoid curve adequately
captures the distribution of e-prints in each cluster) by computing the squared root
of the reduced chi-squared statistic χ2

ν . If χ2
ν � 1, a sigmoid fitting is appropriate. A

χ2
ν < 1 indicates that the model is over-fitting the data by improperly fitting noise or

overestimating the error variance, whereas a χ2
ν > 1 indicates that the fit has not fully

captured the data or that the error variance has been underestimated, and a χ2
ν � 1

indicates a poor model fit [5].
Accordingly, the amplitude of the standard errors of the curve parameters diverges:

while the standard errors of L , k, and t0 are relatively low in those clusters where a
sigmoid curve can be fitted, they are much greater in those clusters where such fitting
is not supported (viz. Table 5.3).

Table 5.3 shows good sigmoid fit for fourteen clusters; in each of these we have
χ2

ν > 1. Figures5.1 and 5.2 plot the respective curves for the clusters cs.DS and
cs.CV.6

6 Due to limited space, only selected figures are shown for different χ2
ν fit values. The complete set

of figures for all fitted curves is available from the corresponding author.



5 Identification of Future Cyberdefense Technology by Text Mining 75

Table 5.3 Ancillary parameters and goodness-of-fit statistics

Cluster χ2
ν s.e. L k t0

cs.AI 10.062 3.172 49908.902 0.015 2071

cs.AR 1.889 1.375 1297.227 0.016 2065

cs.CC 2.588 1.609 0.489 0.032 2004

cs.CL 12.145 3.485 5.568 0.039 2019

cs.CR 3.013 1.736 10.783 0.015 2028

cs.CV 4.966 2.228 13.626 0.037 2019

cs.DB 2.454 1.567 0.461 0.025 2010

cs.DC 2.178 1.476 1.665 0.020 2015

cs.DS 2.788 1.670 1.273 0.037 2009

cs.GT 1.969 1.403 0.524 0.054 2009

cs.HC 2.275 1.508 1766.652 0.020 2051

cs.IR 2.137 1.462 8.690 0.015 2031

cs.LG 12.952 3.599 12463.478 0.030 2039

cs.NE 3.042 1.744 1.298 0.025 2016

cs.NI 2.383 1.544 1.125 0.046 2008

cs.OS 0.893 0.945 78.830 0.007 2115

cs.PL 2.712 1.647 0.423 0.022 2011

cs.RO 3.762 1.940 6.918 0.032 2022

cs.SE 3.297 1.816 0.855 0.025 2013

cs.SY 10.444 3.232 2.963 0.031 2018

Note that our method predicts the inflection point even if the right leg of the
sigmoid curve will only emerge in the future (viz. t0 in Table 5.3). For example, from
Fig. 5.2 and Table 5.4, evaluators can conclude that the technological evolution in the
cluster cs.CV is past the point of maximum growth since inflection has occurred in
2019. This implies that the technology in this cluster is now in its maturation phase,
even if the full sigmoid curve is yet to emerge in the future.

For the remaning six clusters, no sigmoid function fits the data. In the cluster
cs.OS where χ2

ν < 1, the distribution shows a high dispersion in the e-print data,
and although the number of contributions has grown, there is no clear trend towards
maturity, implying that technological evolution is still uncertain (viz. Fig. 5.3).

In the five clusters where χ2
ν � 1, e-prints grow exponentially. In these clusters,

technology is still evolving, implying that any significant investment would be pre-
mature, even if the inflection point seems close in some clusters. Figures5.4 and 5.5
provide illustrations for the clusters cs.AR and cs.LG.
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Fig. 5.2 Sigmoid fitting for cluster cs.CV
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Fig. 5.3 Non-sigmoid dispersion in cluster cs.OS

5.4 Security Issues

As any technology moves from an initial growth phase to a consolidation phase,
security issues come to the fore as the technology is adopted on an industry-wide
basis. For firms, the emergence of this trend signals that an initial “hype” phase
is gradually replaced by a more risk-and investment-related perspective. We would
therefore expect that the growth of e-prints which specifically discuss security issues
lags the growth of all e-prints.

We use natural language processing to assess which fraction of all e-prints in
the respective clusters is discusses security issues. This method is often used to
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Fig. 5.4 Onset of exponential growth in cluster cs.AR

Fig. 5.5 Ongoing exponential growth in cluster cs.LG

predictmarket trends [4] and to capture risk assessments among users and technology
evaluators [21, 43], because natural language conveys the judgment, thinking, and
attitudes of individuals toward a given topic [6, 10, 17]. In particular, security-related
discussions can be captured by this method [36].

Following [11, 38], we used those keywords fromWikipedia’s information secu-
rity portal that related to confidentiality, integrity, availability, and non-repudiation—
secure, security, safe, reliability,dependability, confidential, confidentiality, integrity,
availability, defense, defence, defensive, and privacy. We then authored a Python
script that queried the API of the arXiv repository with these keywords and col-
lected all e-prints that contained at least one of them. Table 5.4 shows detailed
statistics for these e-prints with security issues.
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Table 5.4 Descriptive statistics for e-prints with security issues

Cluster Mean Median std. dev. Skewness Kurtosis

cs.AI 0.278 0.116 0.463 4.488 32.157

cs.AR 0.029 0.013 0.056 6.234 60.993

cs.CC 0.057 0.055 0.04 0.454 0.348

cs.CL 0.301 0.08 0.442 2.111 5.057

cs.CR 0.502 0.388 0.53 1.888 6.558

cs.CV 0.58 0.07 1.108 3.797 24.809

cs.DB 0.095 0.086 0.079 1.011 1.806

cs.DC 0.2 0.134 0.187 1.176 1.755

cs.DS 0.125 0.099 0.113 0.509 –0.939

cs.GT 0.1 0.091 0.079 0.76 0.836

cs.HC 0.083 0.038 0.115 2.472 8.883

cs.IR 0.106 0.066 0.114 1.365 1.335

cs.LG 0.713 0.082 1.46 2.976 10.415

cs.NE 0.089 0.045 0.103 1.178 0.358

cs.NI 0.26 0.275 0.211 0.285 –1.143

cs.OS 0.012 0.0 0.016 1.126 0.438

cs.PL 0.078 0.065 0.063 0.883 1.215

cs.RO 0.168 0.034 0.338 4.826 37.944

cs.SE 0.142 0.097 0.182 5.545 56.079

cs.SY 0.343 0.252 0.368 3.188 17.82

For each cluster, we plotted the distribution of such e-prints with security issues
over all e-prints and over time. Figures5.6 and 5.7 illustrate the results for the clusters
cs.CV and cs.LG.7

Both figures suggest that the discussion of security issues lags the growth trend
of the respective technology. Firms therefore should be wary of this effect and weigh
the risk of investing early against the risk of waiting until the growth trend of the
security discussion also exhibits an inflection point.

5.5 Expert Opinion

Firms can mitigate investment risk by considering the opinion of qualified experts
in the field before making a decision. Eventually, singular expert opinions converge
to a (positive or negative) consensus [15, 29], and that consensus is related to the
maturity and market-readiness of a technology [44]. Hence, a positive (negative)
expert consensus about a particular technology makes investment more attractive

7 Due to limited space, only selected figures for the growth of e-prints with security issues. The
complete set of figures for the growth of security issues is available from the corresponding author.
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Fig. 5.6 Deferred onset of security issues in cluster cs.CV

Fig. 5.7 Deferred onset of security issues in cluster cs.LG

(risky). Given that e-print authors can be considered experts in the technology field
they help develop, the semantics they use to describe and comment on a particular
technology can be analyzed to extract a quantitative measure for expert sentiment
[31].

By using Python’s English language labeled thesaurus (NLTK), we transformed
the raw text of each e-print into machine-readable tokens by removing special char-
acters, stop words, and punctuation. We also lowered upper-cases. These normalized
tokens were then “lemmatized,” i.e., morphologically transformed to their canonical
form. Following [40], we then applied a standard cumulative-sentiment function that
classified each token into either a positive or negative sentiment and summed up the
result across all tokens in each e-print. We then normalized these counts on a score
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Table 5.5 Distribution statistics for opinion dispersion

Cluster Mean Median std. dev. Skewness Kurtosis

cs.AI –0.002 –0.001 0.006 –1.341 2.809

cs.AR –0.0 0.0 0.007 –1.592 7.664

cs.CC –0.009 –0.009 0.005 –0.967 3.658

cs.CL 0.004 0.005 0.003 –1.038 3.462

cs.CR –0.006 –0.005 0.014 –10.379 140.804

cs.CV –0.003 –0.002 0.007 –2.053 7.548

cs.DB 0.001 0.001 0.006 –0.077 9.936

cs.DC –0.0 0.0 0.005 –1.57 11.395

cs.DS –0.004 –0.003 0.005 –0.008 9.114

cs.GT 0.002 0.003 0.008 –1.379 14.532

cs.HC 0.004 0.005 0.007 –1.261 5.772

cs.IR 0.006 0.007 0.007 –3.64 22.239

cs.LG –0.002 –0.001 0.006 –1.737 10.354

cs.NE –0.003 –0.001 0.007 –2.538 13.56

cs.NI –0.002 –0.001 0.005 –1.774 13.112

cs.OS –0.003 –0.001 0.01 –1.441 4.284

cs.PL 0.002 0.002 0.006 –3.476 40.685

cs.RO –0.003 –0.002 0.007 –3.337 18.244

cs.SE –0.001 0.0 0.006 –1.022 5.65

cs.SY –0.005 –0.005 0.004 –0.529 7.064

that ranges from −1 (strongest negative sentiment) to 1 (strongest positive senti-
ment). Table 5.5 presents detailed statistics for the distribution of opinions across all
e-prints.

We plotted these statistics to visualize how opinion shifts and trends over time.8 In
all figures, black dots represent themedian, and the shaded areas cover the second and
third quartiles of the opinion dispersion across all e-prints in the respective cluster.

In Fig. 5.8, expert opinion has shifted from a neutral stance to a more negative
view about the cluster cs.CV. In Fig. 5.9, positive and negative opinions regarding
the cluster cs.SE are balanced, and no trend has emerged yet. In Fig. 5.10, expert
opinion has converged to a positive trend, but only after much initial criticism and
predominantly negative views as regards cluster cs.AI.

Firms should therefore carefully observe such shifts over a longer period of time
beforemaking an investment decision since initial optimismor pessimismcan reverse
to the opposite. Moreover, the opinion dispersion suggests that initial discussions
are likely more heated as opinions diverge more, and that considerable time may be
required before a consensus emerges. Given that opinion convergence is indicated by

8 Due to limited space, only selected figures are shown for basic patterns of opinion dispersion. The
complete set of figures is available from the corresponding author.
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Fig. 5.8 Negative opinion trend in cluster cs.CV

Fig. 5.9 Non-trending expert discussion in cluster cs.SE

a decreasing standard deviation of opinion dispersion [27], firms should recalculate
opinion patterns regularly and follow the evolution of the respective trends before
they make investment decisions.

5.6 Conclusion

In this article, we have shown how big data bibliometric analysis can help firms
to make more informed and unbiased investment decisions. The methods we have
proposed are scalable to different sample sizes and temporal frequencies. They can
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Fig. 5.10 Positive opinion shift in cluster cs.AI after initial negative views

be realized with freely available open data. Future research may want to expand and
detail our analysis by increasing the granularity of our analysis, e.g., by identifying
more specific sub-clusters within the 20 clusters we analyzed. While our analysis is
far from being exhaustive, it demonstrates that powerful analytics can be realized at
very low transaction cost. Extending our analysis to even larger samples is merely a
question of computing power.

Future research may also generate additional bibliometric measures, e.g., regard-
ing the quality, content, or dissemination of arXiv e-prints. More sophisticated
functions which can better capture the dynamic evolution of technologies (e.g., [35])
could also be used to improve the sigmoid fitting we have calculated here. Also,
more sophisticated machine-learning methods such as neural networks or proba-
bilistic classifiers may enhance the precision of the analysis. While we analyzed
open source information, our methods are not specific to any particular repository.
Firms and scholars alike may apply our proposed method to even larger databases
such as Web of Science or Semantic Scholar.

We caution the reader that arXiv e-prints are not necessarily peer-reviewed
since authors can upload any type of technological information. Hence, in a strict
scholarly sense, e-prints do not constitute validated scientific knowledge, but rather
information and opinions about technologies. Some ideas featured in these e-prints
may never materialize; on the other hand, creative and unusual thought that would
probably not survive a mainstream review process can be harnessed. As the global
scientific landscape shifts away from publisher-bound to open access formats, future
researchmay also target open access journals as a source of bibliometrics-empowered
technology evaluation.
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Chapter 6
A Novel Algorithm for Informed
Investment in Cybersecurity Companies
and Technologies
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Sébastien Gillard, Michael Tsesmelis, Thomas Maillart, and Alain Mermoud

6.1 Problem

We consider a setting where investors acquire technology for cyberdefense directly
by investing in one or more companies that develop such technology, rather than
by purchasing commercially available products from vendors. The problem these
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Fig. 6.1 Schematic tripartite
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investors face is twofold: They must decide on which technologies to focus, and
they must inform themselves about the companies which specialize in these tech-
nologies. Since investors have both limited financial and intellectual resources, they
cannot invest simultaneously in all companies or understand all existing and emerging
technologies. Moreover, they have individual preferences about companies and tech-
nologies which co-determine their decision. As investorsmaymake biased choices in
the absence of objective quantitative information, they may misread the market and
hence invest in companies that prove to be unprofitable, or in technologies that are
ineffectivewhen deployed against cyberattackers, and particularly so as they evaluate
start-up companies [22]. It is therefore paramount that investors are well-informed
before they make decisions about equity stakes or technology procurement [2].

Figure6.1 structures this problem schematically by a tripartite graph in which
investors (i) want to evaluate a set of companies (c), each of which is involved with
one or more cybersecurity technologies (t). There are hence bipartite relationships
between investors and companies, and also between companies and technologies,
but only indirect links exist between investors and technologies since technologies
are nested in companies. Hence, investors can prefer a particular technology, but they
can only access it by investing in the particular firm that is involved with it.

Subject to their investment policy and technological preferences, investors wish to
identify those companies which can generate economic value from the technologies
they are involved with, because investment in such companies will likely prove to
be profitable. At the same time, they want to identify relevant technologies which
can enable effective cyberdefense. Both points are by no means certain, since many
companies—in particular, startups—create technology but fail economically, and
because the effectiveness of any technology against future cyberattacks is unknown.
Investors therefore require rankings in which companies and technologies score the
higher the more they respond to investors’ requirements.

This setting shares some commonality with the basic problem all web users face:
among billions of websites, they want to quickly identify those which are most
relevant to the queries they submit. Users require a ranking of all websites in which
those with the highest relevance to their query appear topmost. Past contributions
have developed algorithms that solve this problem, most notably, PageRank that
powers Google’s search engine [16].

However, the ranking problem is more complicated in our tripartite setting. First,
the market for cyberdefense technology is a complex landscape in which companies
and technologies co-evolve [7]. Hence, the rankings of companies and technologies
are co-determined, so they must be calculated simultaneously. Whereas simple rank-
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ing algorithms only consider unipartite entities (e.g., websites), our setting involves
two different types of entities—companies and technologies—which require differ-
ent scores. Second, much prior research has studied directed graphs (e.g., [1, 5, 19]),
but our setting requires a solution for an undirected graph. Third, recentwork suggests
that rankings of companies or technologies as targets for investment are inadequate
unless the algorithm also considers investor preferences [4, 14]. The algorithm we
propose in the following addresses all three points.

6.2 Algorithm

Building on the work of [10, 13], we propose TechRank, a recursive random walk
algorithm that evaluates the relative importance of companies and technologies in
a tripartite network (‘landscape’). The reader is referred to these contributions for
a more detailed introduction to these design ideas behind the proposed algorithm.
Table 6.1 provides an overview of the notation and key variables the algorithm uses.

Its purpose is to simultaneously compute separate but correlated scores wc and
wt by which companies and technologies in the landscape are ranked subject to
investor preferences. Whereas wc captures the expertise a particular company has in
the landscape, wt gives the relevance a particular technology has in that system. The
algorithm calculates these scores as follows.

We denote the total number of companies in the landscape by nc and the total
number of technologies bynt . In the adjacencymatrixMCT

c,t , which has a dimension of
nc × nt , entries take a value of 1 if a particular company c is involvedwith a particular
technology t , and 0 otherwise. We initialize the scores based on the thought that a
company with a high relevance in the landscape should have more relationships with
its neighbors. Similarly, a highly relevant technology should attract many companies
[3, 6, 17]. Hence, the algorithm is initialized with the respective degrees of each
entity c and t :1

⎧
⎪⎨

⎪⎩

w0
c = ∑nt

t=1 M
CT
c,t = kc

w0
t = ∑nc

c=1 M
CT
c,t = kt

(6.1)

After initialization, the algorithmperforms a randomwalkwhich, at each iteration,
incorporates information about a company expertise and technology relevance. The
transition probabilities Gc,t and Gt,c describe the extent to which the significance of
a company or technology changes as the iteration progresses, formally:

1 The symbols kc and kt are introduced here to facilitate the display of the subsequent formulae.
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Table 6.1 Model parameters and variables

Variable Definition range Description

n(C)
N Number of external features available for

companies

nc N Number of companies

n(T )
N Number of external features available for

technologies

nt N Number of technologies

p(C)
i [0, 1] Percentage of interest in company preference

factor i

p(T )
j [0, 1] Percentage of interest in technology preference

factor j

f (C)
i R

nc Vector associated with company preference
factor i

f (T )
j R

nt Vector associated with the technology preference
factor j

ni N Number of investors

MCT
c,t R

nc ·nt Adjacency matrix of the C-T bipartite network

MIC
c,t R

ni ·nc Adjacency matrix of the I-C bipartite network

γ
i,c
t R Funding investor i provides to company c at time

t

eIC R
ni ·nc Total investments all investors made in all

companies

eC R
nc Total investments each company collected

eT R
nt Total investments each technology collected

eCmax R Maximum of total investments in all companies

eTmax R Maximum of total investments in all technologies

f Cc [0, 1] Factor of previous investments in company c

f Tt [0, 1] Factor of previous investments in technology t

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Gc,t (β) = MCT
c,t k

−β
c

∑nc

c′=1 M
CT
c′ ,t k

′−β
c

Gt,c(α) = MCT
c,t k

−α
t

∑nt

t ′=1 M
CT
c,t ′ k

′−α
t

,

(6.2)

where the parameters α and β capture the extent to which a firm c also creates
economicvaluewhen itworkswith technology t .We introduce these parameters since
interactions between companies and technologies need not necessarily be productive.
Klein et al. [13] emphasize that Wikipedia editors can engage in prolonged edit wars
that destroy rather than create value. By way of analogy, firms can invest a lot of
funds into creating technology but subsequently fail to generate any economic value



6 A Novel Algorithm for Informed Investment in Cybersecurity … 91

from these investments. Both probabilities are recomputed in every recursive step.
Using (8.1) with (8.2), we can describe the n-th recursive step as

⎧
⎪⎨

⎪⎩

wn+1
c = ∑nt

t=1 Gc,t (β)wn
t

wn+1
t = ∑nc

c=1 Gt,c(α)wn
c

(6.3)

Hence, the algorithm is a Markov process. Any step wn only depends on the
information available in the previous step wn−1. As it is the case with the PageRank
algorithm, the recursion terminates when the score values converge. However, this
preliminary ranking is incomplete unless the algorithm also considers the preferences
investors have about companies and technologies since these likely influence the
choices they make. Therefore, we introduce two ground truth scores

ŵc

and
ŵc

which capture specific features that investors consider as they make actual choices
about companies and technologies. We define these ground truth scores as

⎧
⎪⎨

⎪⎩

ŵc = ∑n(C)

i=1 p
(C)
i f (C)

i = p(C) · f (C)

ŵt = ∑n(T )

i=1 p
(T )
i f (T )

i = p(T ) · f (T )

(6.4)

where f (C) = f (C)
1 , . . . , f (C)

n(C) is a vector of a number of company-specific features

n(C) which investors consider and weight with a percentage of interest p(C)
i with

∑n(C)

i=0 p
(C)
i = 1. If investors dislike a particular feature, the evaluation enters the score

with a negative sign. Similarly, f (T ) = f (T )
1 , . . . , f (T )

n(T ) is a vector of technology-
specific features n(T ) which investors consider and weight with a percentage of
interest p(T )

i , with
∑n(T )

i=0 p
(T )
i = 1. For companies and technologies alike, these eval-

uations are converted to scalars f (C)
i ∈ [0, 1] and f (T )

i ∈ [0, 1], so that the ground
truth scores ŵc and ŵc are conditioned on values ∈ [0, 1].

We then compute Spearman correlations between the random walk scores and
the ground truth scores in order to evaluate how well the algorithm fits investor
preferences. Since these correlationsρc for companies andρt for technologies depend
on the parameters α and β, we want to identify those parameters for which the
respective correlation is maximized, formally:

{
(α∗, β∗) = argmaxα,β ρc(α, β)

(α∗, β∗) = argmaxα,β ρt (α, β),
(6.5)

http://dx.doi.org/10.1007/978-3-031-30191-9_8
http://dx.doi.org/10.1007/978-3-031-30191-9_8
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This optimization problem is solved by a grid search. The vector notation in
Eq. (6.4) allows the analyst to capture a very large array of attributes, but to keep the
computational complexity low. We restrict our demonstration to a small selection of
such preferences: The accumulated investment a company or technology has received
from all investors in the landscape to date, and the geographical distance between
investor and company. These are modeled as follows.

We believe that investors would be willing to invest in firms which have already
received significant funding in the past, since such funding would signal that other
investors have confidence in this particular company. We capture this information by
weighting the edges e as shown in Fig. 6.1 by the sum of all previous investments
that an investor i has made in company c until the current time period T . These
relationships between investors and companies are captured in the adjacency matrix
MIC

c,t .

We define the amount of a single investment from i to c at time t by γ
i,c
t . The

weight of the edge i − c is given by ei,c = ∑T
t=0 γ

i,c
t .We then sum the contribution of

all investors to find the attribute f Cc ∈ [0, 1] for a company c. We then normalize and
divide all investments by the maximum investment. By generalizing this procedure,
we obtain

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

eICi,c = ∑T
t=0 γ

i,c
t ∀i, c

eCc = ∑ni

i=1 ei,cM
IC
i,c ∀c

emax = max
c

eCc

f (C)
c = eCc /emax,

(6.6)

for each c ∈ 1, . . . , nc. Hence, Eq. (6.6) gives a scalar for each company that
summarizes the amount of previous investments that company has obtained. The
sub-algorithm no.1 which computes this scalar is shown in the technical appendix.
By the same token, the sum of previous investments f (C)

c that a particular technology
has obtained is calculated as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

e(I,C)
i,c = ∑(T

t=0 γ t
i,c ∀i, c

eCc = ∑ni

i=1 ei,c ∀c
eTt = ∑nc

c=1 ecM
CT
c,t

emax = max
t

eTt

f (T )
t = eTt /emax

. (6.7)

The sub-algorithm no. 2 which computes this scalar is shown in the techni-
cal appendix. Finally, we consider the geographical distance between investor and
company locations since investors may prefer companies they can see and visit at
low transaction cost. Following [12], we calculate the Haversine distance between
investor and company locations hi,c by sub-algorithm 3 which is set out in the tech-
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nical appendix. By implication, the scalar f (C)
c ∈ [0, 1] should approach a value of

1 as the distance decreases to zero.
We programmed all three sub-algorithms as well as the TechRank algorithm

in Python, using the libraries numPy [9], pandas [15, 18], networkX [8],
matplotlib [11], and seaborn [20]. We ran the code on a machine with a
16-core Intel Xeon CPU E5-2620 v4 @ 2.10GHz and 128GB of memory.

6.3 Evaluation

We used data from the platform Crunchbase, a crowdsourced, international repos-
itory of information about start-up companies and their investors, to compare how
well our proposed algorithm ranks them. Crunchbase records both the identity and
location of companies and investors and uses a proprietary algorithm that ranks their
significance. In particular, the database tracks all funding provided by each investor
to each company in the database. It also delivers the required data for the two features
that investors consider in our demonstration—previous investment and company and
investor location data.2

We selected all companies in the databasewhose description contained at least two
of the keywords cybersecurity, confidentiality, integrity,availability, secure, security,
safe, reliability, dependability, confidential, confidentiality, integrity, availability,
defence, defensive, and privacy.3

This query yielded a landscape of 2429 companies which were involved with 477
technologies. For purposes of illustration, Fig. 6.2 plots selected bipartite relation-
ships between companies (red) and technologies (blue) in this landscape. The size
of the respective node is proportional to its degree.

The ranking for companies (technologies) converged after 723 (1120) iterations
which took 16,890.26 (12,779.62) s. While the scores fluctuated significantly during
the first 100 iterations, they quickly converged afterwards. The number of iterations
needed for convergence appears to be independent from the number of entities, but
since there more companies than technologies in our sample, technology ranking
takes longer to converge. Figures6.3 and 6.4 display the convergence for companies
and technologies, respectively. Entities starting with a high score do not significantly
change rank. Thus, the algorithm assigns high scores to entities with a high degree
(i.e., high network centrality). However, entities starting with a low degree may
significantly change their score, especially in the case of technologies. Therefore,
TechRank does not only recognize the importance of the most established entities, it
also allows the analyst to identify emerging technologies.

2 See www.crunchbase.com/. Data were downloaded by the daily *.csv export file on April 28,
2021. about.crunchbase.com/blog/influential-companies/ gives more specific information about the
ranking procedure.
3 The choice of these keywords was motivated by Wikipedia’s information security portal. See
https://en.wikipedia.org/wiki/Information_security.

www.crunchbase.com/
https://en.wikipedia.org/wiki/Information_security
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Fig. 6.2 Sub-area of a selected landscape of companies and technologies

Fig. 6.3 Convergence of
ranking for companies
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Fig. 6.4 Convergence of
ranking for technologies

Fig. 6.5 Parameter grid
search result for companies

Figures6.5 and 6.6 depict the results of the grid search that optimizes the parame-
ters α and β for a maximum correlation between the ranks obtained by the algorithm
and the ground truth scores.

Table 6.2 identifies the optimal sets of α∗ and β∗ for companies (0.04;−1.88) and
technologies (0.48;−2.00) and shows how these sets evolved during convergence.
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Fig. 6.6 Parameter grid
search result for technologies

Table 6.2 Optimal parameters for alpha and beta for the landscape in our sample

Companies α∗(C) β∗(C) Technologies α∗(T ) β∗(T )

10 –0.36 1.92 26 –2.00 0.00

100 –0.04 0.92 134 0.52 –1.04

499 –0.08 0.88 306 0.68 –1.36

997 –0.12 0.80 371 –2.00 0.00

1494 –0.12 0.80 416 0.92 –0.12

1990 –0.04 0.92 449 0.56 –2.00

2429 0.04 –1.88 477 0.48 –2.00

6.4 Discussion

We compared the results with the ranking that Crunchbase provided for the same
set of firms and technologies. The Spearman correlation of 0.014 suggests that the
Crunchbase and our TechRank scores are almost perfectly uncorrelated. The Crunch-
base ranking procedure is unipartite since it ranks firms by investment but does not
consider the co-evolution of firms and technologies. It is therefore unsurprising that
our and Crunchbase ranking results are correlated little. Our approach does not inter-
pret the Crunchbase algorithm as a ground truth against which the performance of
our algorithm could be measured; rather, we propose that we are using a different
and more complex ranking procedure for which independent ground truths must
be identified for future performance evaluations. We do emphasize that the ranking
result crucially depends on the way technologies in the landscape are linked with
companies. To ignore this multipartite setting implies to generate flawed rankings.
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In particular, the technology ranking allows investors who are interested in a certain
technological field but unaware of the industry landscape to express their preference
and obtain meaningful solutions. Our algorithm can analyze complex landscapes at a
very lowcost; the run-time requirements are negligible.Our approach is parsimonious
in the sense that it requires no weights for the bipartite edges between companies
and technologies, and that the algorithm optimizes the ranking by a simple random
walk procedure.

Moreover, the Crunchbase rank focuses on the company’s level of activity and
not on its market influence. It considers all companies in the database, while our
illustration only covers a subset of a particular landscape. Still, even when we varied
investor preferences, we never obtained correlation coefficients above 2%. Finally,
the Crunchbase algorithm is not open source, so there is no objective way to identify
the reasons for this divergence.

Our approach does not only consider firms and investors, but a tripartite nested
setting in which investors fund companies in which technologies are nested. This
approach responds to prior calls for research (e.g., [1, 5, 13, 19]). It also confirms
call that have proposed to replace time-series analyses of static indicators with graph-
based methods (e.g., [21]). Our results demonstrate that the topological structure of
the landscape co-determines the ranking results.

As opposed to the Crunchbase ranking, our algorithm considers investor prefer-
ences about companies and technologies. In so doing we also follow prior calls for
research (e.g., [14]). We believe that future work could expand our algorithm by con-
sidering additional investor preferences, or by refining themethod bywhich these are
operationalized. For example, ethical investors may want to know about companies’
gender and diversity policies, investors with personal exposuremay emphasize social
media policy, and business angels may want to focus on incubators and accelerators
[4].

Future research should expand our approach by refining the text-based search we
used to identify relevant companies. More sophisticated techniques, such as natural
language processing, may provide more accurate selections. Further, more detailed
data about the technologies these firms produce would be helpful to refine the anal-
ysis of why investors would want to invest in them. Future research may extend
our proposed algorithm beyond investor preferences, so that the topology of any
cybersecurity landscape can be captured with greater granularity. For example, in
our Crunchbase sample there is no information about how each company allocates its
resources among all the technologies it is working on. Since firms may concurrently
work on several technologies, but assign different priorities (and hence different
budgets) to them, it would be very helpful to understand the extent to which specific
funds are reserved for specific technologies. Finally, since both our algorithm and
the Crunchbase ranking are static, future research should consider how the tripartite
network of companies, technologies, and investors evolves over time.

Acknowledgements This chapter features results from a research project funded by the Cyber
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98 A. Mezzetti et al.

Technical Appendix

Algorithm 6.1: Previous investments factor for companies

1 eC ← [0] · len(c_names)
2 for c ∈ range(c_names) do
3 for i ∈ range(i_names) do
4 for c ∈ range(i_names) do
5 eICi,c ← ∑T

t=0 γ
i,c
t // γ t

i,c is the amount of the investment

from i to c at time t
6 eC [c] ← eC [c] + eICi,c

7 eCmax ← max (eC )

8 f C ← eC/emax // f C: list of previous investments for each
technology

9 return f C

Algorithm 6.2: Previous investments factor for technologies

1 eC ← [0] · len(c_names)
2 for c ∈ range(c_names) do
3 for i ∈ range(i_names) do
4 eICi,c ← ∑(T )

t=0 γ IC
t // γ t

i,c is the amount of the investment from

i to c at time t
5 eC [c] ← eC [c] + eICi,c

6 eT ← eC · MCT // Matrix multiplication

7 emax ← max (eT )

8 f T ← eT /emax // f T: list of previous investments for each
technology

9 return f T
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Chapter 7
Identifying Emerging Technologies
and Influential Companies Using
Network Dynamics of Patent Clusters

Michael Tsesmelis, Ljiljana Dolamic, Marcus M. Keupp,
Dimitri Percia David, and Alain Mermoud

7.1 The Challenge of Predicting Emerging Technology

With accelerating innovation cycles, stakeholders in both industry and government
have an increasing need for dependable and real-time insights on technological
paradigm shifts, so that they can adapt both business models and public policy to
accommodate technological change. In particular, since cybersecurity technology
must monitor and defend computer systems, operators need to know how both these
systems and the opportunities to attack them evolve. Hence, the cybersecurity indus-
try is extremely reliant on timely information about emerging technologies. However,
although data-backed solutions to modern technology monitoring and identification
are improving, they rely heavily on subjective and qualitative assessments without
any scientific foundation. For instance, some consultancy firms continue to use the
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Delphi method to predict future business and technology trends. Others regularly
publish lists of emerging technologies with very little indication of the exact meth-
ods and assumptions by which these lists are created.

Many publications attempt to define the concept of ‘emerging technology’, and
the semantic confusion obfuscates rather than clarifies the debate. Some authors
(e.g., [5, 7, 9, 15, 18]) believe a technology is deemed emerging when its poten-
tial impact on the economy or society is high, a terminology which includes both
evolutionary change as well as disruptive innovations. Others focus on the extent to
which the future potential is ambiguous (e.g., [3]). Another group underlines novelty
and growth as key determinant factors (e.g., [21]). Still others believe that emerging
technologies arise through evolutionary processes upon novel combinations of extant
technological fields (e.g., [22]). Yet, quantitative studies of emerging technologies
generally agree that semantic differences may be less important than defining a valid
proxy measure which can adequately capture technological change. While it might
be hard to define whether one particular technology is emerging, it is much easier to
compute the relative importance of technologies.

We use patent data as such a proxy, since they provide extensive information on
hardware, software, and services innovation. Hence, they are often used to predict
emerging technologies. Therefore, we regard emerging technologies as those with
the highest growth rates in citations and patent count. Hence, in our framework,
emerging technologies are not necessarily new, but witness the fastest changes in
interest from researchers and patent applicants.

However, our approach also differs from the prior literature in methodological
terms. Many contributions have analyzed or text-mined patent data by bibliometric
methods and S-curve growth models to predict emerging technology (e.g., [1, 2, 6,
10, 11, 17, 19]).

In contrast, our approach proposes a fully automated recommender system in
whichmachine learning techniques are used to conduct large-scale patent data analy-
sis. The system ranks technologies and companies according to novel indicators, ana-
lyzes near-past dynamics, and predicts current and near-future technological trends.
By this approach, we follow recent research which highlights how artificial intelli-
gence methods can help to predict emerging technologies. For example, [12] used
supervised learning on citation graphs from the United States Patent and Trademark
Office (USPTO) data to automatically label and forecast emerging technologies with
high precision. Similarly, [23] applied supervised deep learning onworld-wide patent
data. Lee et al. [13] extracted 21 indicators from the USPTO data and used neural
networks to predict emergence.

Moreover, few contributions in the literature simultaneously rank technologies
and the firms that produce them, whereas we believe that once firms are informed
about which firms produce which emerging technologies, both the information trans-
parency about technologically leadingfirms aswell as the efficiency of both inter-firm
acquisition and research and development activities should increase significantly.

However, all of these studies focus on a specific set of technologies which is
subjectively chosen before the analysis begins (e.g., [10, 17, 19]). As a consequence,
extant recommender systems are ‘heavy’, in that every new case requires extensive
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Fig. 7.1 Flowchart depicting data layers and flow

calibration and a long process of selecting the appropriate machine learning model.
This calibration can require the full-time attention of a small team of data scientists.

Our approach describes and illustrates a lightweight system that can easily switch
between different user queries and provide results with short processing times. It can
deal with resource constraints and incomplete data sets by using probabilistic models
in machine learning to simplify the research problem and thus its computational
complexity. Inspired by financial analysismethods [4, 14], we usemultiple indicators
anddata sources to triangulate our computational analysis and improve the confidence
in our results.

7.2 Structure of the Recommender System

Our recommender system1 uses patent data to generate predictions and recommen-
dations about future technological developments. Patents provide essential, open
source, and free information that captures both the growth trajectory and the novelty
of a technology [1, 8, 16]. The system is organized in four layers (viz. Fig. 7.1).
The data science layer is the interface between the external patent database and
the recommender system. It inspects raw patent data for inconsistencies and cleans
themwhere necessary. In themachine learning layer, the descriptive features of each
patent are used to train machine learning classifiers. Thus obtained classifications
are transferred to the managerial layer which interacts with the user. It records indi-
vidual queries, matches related patents, and transfers these to the network science
layer which generates graphs of query-relevant patent clusters and assignees. The
layer then constructs several indicators on the basis of these graphs.

1 For the sake of brevity, the terms ‘recommender system’ and ‘system’ are used interchangeably.
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7.2.1 Data Science Layer

Weused thePatentsview database published by theU.S. Patent and TrademarkOffice
(USPTO) to obtain full-text information about patents for all technological applica-
tions since 1976. At the time of writing in October 2021, the data set contained
7,101,932 entries. Table 7.1 provides an overview of the specific source files we
accessed.

In the following, p designates patents and a its assignees, i.e., organizations or
individuals that have an ownership interest in the patent claims. Information about
their relationships and association with patents is also retrieved from the Patentsview
database. Further, we use the cooperative patent classification in this database to
assign patents to Cooperative Patent Classification (CPC) subgroups (‘clusters’) c.
Each CPC subgroup represents a specific technology, and hence this classification
scheme is crucial as it defines the relevant set of technologies which our system ranks
subject to user queries.

Table 7.2 summarizes the data points we used and the related source files. We
assigned each data point a data type (e.g., integer, string, or date), and missing values
were imputed with commonly used metrics such as the median of the column, a plain
zero, or NaN values.

Table 7.1 Description of Patentsview datasets

Name of dataset Description

assignee.tsv Disambiguated assignee data for granted patents and pre-granted
applications, of which we retain the assignee ID and the company
name. It is important to note the geographical diversity of the
assignees; many non-American companies have submitted
documentation to protect their inventions in the United States, and
thus our data source extends beyond the confines of the American
technological landscape

cpc_current.tsv Current Cooperative Patent Classification (CPC) data for all
patents, of which we retain the patent ID and CPC subgroup ID

otherreference.tsv Non-patent citations mentioned in patents (e.g., articles, papers,
etc). We only retain the patent ID column in order to count the
number of references each patent makes to non-patent literature

patent.tsv Data on granted patents, of which we retain the patent ID, the grant
date, the abstract text, and the number

patent_assignee.tsv Metadata table for many-to-many relationships between assignees
and patents, of which we retain the patent ID and assignee ID

patent_inventor.tsv Metadata table for many-to-many relationships between patents
and inventors, of which we retain only the patent ID information in
order to count the number of inventors present on application
documents

uspatentcitation.tsv Citations made to US granted patents by US patents, the cited
patent ID, and the citing patent ID
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Table 7.2 Summary of patent data points

Data point Description Source file

assignee_id Unique assignee identifier
used for cross-examination

assignee.tsv

organization Organization name tied to a
specific assignee identifier

assignee.tsv

patent_id Unique patent identifier used
for cross-examination

patent.tsv

date Patent grant date patent.tsv

abstract Patent application abstract patent.tsv

num_claims Number of claims made in a
patent application

patent.tsv

cpc_group Cooperative Patent
Classification (CPC) subgroup
for a specific patent

cpc_current.tsv

otherreference Number of non-patent
literature references for a given
patent

otherreference.tsv

inventors Inventor count for each patent patent_inventor.tsv

citation_id Identifier of the patent which
cites another patent

uspatentcitation.tsv

7.2.2 Machine Learning Layer

After patent data inspection and cleaning, 242,050Cooperative Patent Classifications
(CPC) were retained as the population from which significant technologies may
emerge in the future. We first proxy the absolute interest in these technologies by
recording the number of patents granted by the USPTO in each CPC subgroup per
year, countc,n .

We posit that an emerging CPC subgroup can be recognized by an increase in
patent count per year, an increase in the average patent value of the patents it contains,
or both. We derive patent value from the forward citations. Figure 7.2 shows the
average annual forward citation count for all major technology fields over time. For
instance, in the late 1990s, patents related to physics and electricity were highly cited
in the first five years following their publication.

We assign a value indicator to each patent which measures how often a specific
patent is cited during the five years following its publication, since the median of
forward citations is typically between the 4th and 5th year after publication [13]. We
term this indicator the five-year forward citation (5YFC).

While a raw patent count can be obtained by summing up how many patents
were published in a CPC subgroup in a given year, the calculation of patent values
requires citation data whichmay not be available until several years after publication.
Therefore, the 5YFC does not exist for patents published five or less years ago, and
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Fig. 7.2 Forward citation of the nine differentCooperativePatentClassification technology sections
a Key to left-hand axis: A—Human necessities (agriculture, garments,...); B—Performing opera-
tions & Transporting; C—Chemistry &Metallurgy; D—Textiles & Paper; E—Fixed constructions;
F—Mechanical engineering, lighting, heating, weapons & blasting; G—physics; H—electricity;
Y—New technological developments

a CPC subgroup’s average patent value cannot be calculated for the most recent five
years. Therefore, these values must be predicted with machine learning classifiers.
We therefore train the system with extant patent data, with the goal of predicting the
5YFC for patents published in the last five years and queried by the user.

We therefore followed [13] and compiled a shortlist of indicators which objec-
tively capture key information that any patent reveals (viz. Table 7.3). Rather than
using a single machine learning algorithm, we opt to search for the best-in-class
performance by testing a wide sample of general classifiers on our dataset and
comparing their respective performance levels. To accomplish this task, we use the
auto-sklearn framework, which automatically selects the best possible model
and calibrates its hyperparameters to maximize classification scores with patents that
already have a 5YFC value.

These indicator data are used as input for a supervised classification algorithm
which generates the output value pi . In studies such as [13], accuracy scores on clas-
sification problems using patent data are low, especially for prediction time frames
of more than two years. Moreover, the highly unbalanced training datasets of such
studies skew the results in favor of the dominant class, and hence the system’s overall
performance is kept artificially high.
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Table 7.3 Summary of patent indicators fed to the machine learning algorithms

Indicator Description

Five-year forward citation (5YFC) Number of forward citations over the next five
years after a patent is issued

Class-level technological originality (CTO) Herfindahl index on Cooperative Patent
Classification (CPC) groups of cited patents

Prior knowledge (PK) Number of backward citations

Scientific knowledge (SK) Number of non-patent literature references

Technology cycle time (TCT) Median age of cited patents

Main field (MF) Main class to which a patent belongs

Technological scope (TS) Number of classes to which a patent belongs

Protection coverage (PCD) Number of claims

Collaboration (COL) 1 if a patent has more than one assignee, else 0

Inventors (INV) Number of inventors

Total know-how (TKH) Total number of patents issued by an assignee

Core area know-how (CKH) Number of patents in a CPC subgroup of
interest issued by an assignee

Total technological strength (TTS) Number of forward citations of patents issued
by an assignee

Core technological strength (CTS) Number of forward citations of patents in a
CPC subgroup of interest issued by an assignee

We therefore propose a more robust approach by reducing the problem to a binary
classification system with value pi of 0 for low-value patents and 1 for high-value
patents. In order to label each patent, we first measure the distribution of the 5YFC
values of patents older than 5 years.We then define high-value patents as those with a
5YFC above the third quartile of the distribution. We then train the machine learning
algorithms on an identical number of low- and high-value patents.

We also considered computational issues to generate a lightweight and fast sys-
tem which can compute patent clusters and networks faster and with less memory
overhead. Compared to the common practice of loading all patent data sets as data
frames in random-access memory (RAM), the method is parsimonious in terms of
RAM consumption, and thus the system can run on consumer-grade computers with
16- or 32GB RAM space. While running the initial machine learning algorithms can
use up to 100GB of RAM, the widespread availability of Azure and AWS makes
even this higher computing power affordable. Further, running the graphs requires
much less RAM capacity.

Moreover, since we considered creating an external SQL database as too time-
consuming, and since the sequential reading of data sets is prone to errors, we stored
the data using tensors, i.e., multi-dimensional dictionaries which are saved locally
using by pickle file formatting rather than the heavier comma-separated-value (csv)
format.
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In order to improve the applicability and robustness of our system, we let it run
on a randomized selection of patents from all 242,050 CPC subgroups. Finally, we
simplified the input indicators fed to the system, and we tested our training set on
a wide selection of classification algorithms. Once this training phase is completed,
the algorithm predicts the binary value of recently granted patents. Finally, for each
cluster c in year n, we measure for every year the average value of the patents it
contains as well as the yearly patent count, formally:

si zec,n = |cn| (7.1)

valuec,n = 1

si zec,n

∑

pi∈cn
pi (7.2)

where cn is a technology cluster belonging to C which contains patents issued in
time n, and pi is the binary patent value (0 or 1) for patent i .

7.2.3 Managerial Layer

The managerial layer provides a CLI user interface and generates jobs which process
user input. These jobs contain settings to adjust job duration and to specify job
content. By providing the systemwith a list of lone or concatenated keywords related
to a search topic, the user designates a particular area of interest. Themanagerial layer
receives these keywords and scans all 7,101,932 patent abstracts for occurrences of
these words. The patents in which these keywords appear verbatim are saved in a
list of topical patents. Each job thus produces a list of patents strongly or weakly
connected to the user query, and it uses the list of topical patents to generate a network
that maps technologies and companies related to these topical patents.

Although our approach to identifying patents related to specific queries can be
deemed elementary,webelieve this approach results in amore comprehensive viewof
the patent population. By specifying a keyword list that is both precise—i.e., bearing
little overlapwith unrelated queries—andcomplete—i.e., capturing all essential traits
of the search—, the CLI captures statistically significant associations between the
search query and the patent population without the need for complex mechanisms
which may render false-positive results.

7.2.4 Network Science Layer

The network science layer generates many-to-many tables which group patents p
with their respective assignees a and CPC subgroups c. Based on the queries entered
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and jobs generated in the managerial layer, the network science layer selects relevant
CPC subgroups associated with the topical patents (also known as topical clusters).
First, all patents belonging to these selected topical clusters are retrieved, then, all
assignees that sponsored these patents (topical assignees) are recorded. The more
topical patents link to a specific CPC subgroup, the more weight the systems give to
that subgroup. Further, different jobs can run successively, with each job having a
time complexity of O(log n), since topical patents most likely share topical clusters.

The system finally constructs a graph of bipartite relationships between the
selected topical clusters c and the related assignees a, so that each topical cluster and
each assignee is depicted as a node. The resulting bipartite network comprises two
disjoint sets of topical clusters C and assignees A, with all edges E between the sets
only joining one node of each set and never two entities of the same set.

This step considerably reduces the complexity of the computational problem, since
no complex time-series of graphs are required, but merely a four-year observation
period. Each CPC subgroup node c is weighted by its value valuec,n and labeled
with its patent count countc,n . All edges e ∈ E between nodes are weighted by the
amount of patents that a tuple c ∈ C and a ∈ A have in common.

On this basis, the system computes several indices which inform the user about
both the emergence of a technology and the firms associated with it. First, it renders
a technology index by calculating two discrete growth factors between the years
argmaxN − 3 and argmaxN , namely cluster value growth and cluster size growth,
where n is one year between argmax N − 3 and argmax N , formally:

value growthc,n = valuec,n
valuec,n−1

(7.3)

cluster growthc,n = si zec,n
si zec,n−1

× m
√
si zec,n−1 (7.4)

where m is a penalty for small patent clusters (in our subsequent illustration, a value
of m = 5 is applied). Both measures are combined into a technology index:

tech indexc = 1

3

∑

n∈N
value growthc,n × cluster growthc,n (7.5)

Whereas the technology growth index refers to technologies, the remainder of
the indices we calculate refers to assignees (i.e., firms or individuals). The assignee
value index measures the average value of the patents assigned to a topical assignee
a in year argmaxN . It thus highlights organizations which produce highly impactful
research in technological domains the user is interested in. Formally,

valuea = 1

si zea

∑

pi∈az
pi (7.6)
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The more specific impact index measures the value an assignee contributes to a
user query and thus rewards assignees whose patents are highly relevant for said
query. It is defined as the sum of the relationships each assignee has with the topical
clusters. Given an assignee a and aCPC subgroup node c, the strength of this relation-
ship is defined as the product of the valuea of the assignee node, the tech indexc
of the CPC subgroup node, and the weight of the edge between the two entities
weightc,a . This index captures the overall contribution a specific assignee makes to
a technological field, formally:

weightc,a = |{(c, a) | c ∈ C, a ∈ A}| (7.7)

impacta =
∑

e∈Ea

valuea × valuec,argmax N × weightc,a (7.8)

where Ea is the set of all edges e connected to assignee a.
Further, the normalized impact index is a proportionally weighted version of the

above impact index. Since smaller assignees could be less influential as they lack the
resources to produce a large number of patents, the normalized impact index corrects
for this oversight. In particular, this index allows us to highlight small yet influential
start-ups. Formally,

normindexa = impacta
|Ea| (7.9)

Finally, we define an eigenvector centrality measure which determines the influ-
ence an assignee has in the bipartite network. Eigenvector centrality computes the
centrality of a node in the network subject to the centrality of its neighboring nodes
[20]. Formally, the eigenvector centrality for node i is the i-th element of the vector
x defined by

Ax = λx (7.10)

where A is the adjacency matrix of the Graph G with eigenvalue λ. The analysis
renders two values—the influence of an assignee node in f luencea and the influence
of CPC subgroup nodes in f luencec—of which only the first measure is retained to
inform the user.

7.3 Illustration

To illustrate the performance of our system, we defined a query with a manually
curated list of keywords from the cybersecurity glossary published by the National
Initiative for Cybersecurity Careers and Studies (NICCS), namely ‘allowlist’, ‘anti-
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malware’, ‘antispyware’, ‘antivirus’, ‘asymmetric key’, ‘attack signature’, ‘block-
list’, ‘blue team’, ‘bot’, ‘botnet’, ‘bug’, ‘ciphertext’, ‘computer forensics’, ‘computer
security incident’, ‘computer virus’, ‘computer worm’, ‘cryptanalysis’, ‘cryptogra-
phy’, ‘cryptographic’, ‘cryptology’, ‘cyber incident’, ‘cybersecurity’, ‘cyber secu-
rity’, ‘cyberspace’, ‘cyber threat intelligence’, ‘data breach’, ‘data leakage’, ‘data
theft’, ‘decrypt’, ‘decrypted’, ‘decryption’, ‘denial of service’, ‘digital forensics’,
‘digital signature’, ‘encrypt’, ‘encrypted’, ‘encryption’, ‘firewall’, ‘hacker’, ‘hash-
ing’, ‘keylogger’, ‘malware’, ‘malicious code’, ‘network resilience’, ‘password’,
‘pen test’, ‘pentest’, ‘phishing’, ‘private key’, ‘public key’, ‘red team’, ‘rootkit’,
‘spoofing’, ‘spyware’, ‘symmetric key’, ‘systems security analysis’, ‘threat actor’,
‘trojan’, and ‘white team’.

The training set consisted of 15,000 low-value patents (binary value 0) and 15,000
high-value patents (binary value 1), so that the random guess accuracy rate was 50%.
Since execution time is highly correlated with the machine learning step size, we ran
a best-model search using the auto-sklearn framework, capped at 0.6h testing
time permodel and 6h in total. The framework ran 37 different target algorithms. One
algorithm crashed, three exceeded the set time limit, and five exceeded the memory
limit. A mix of differently hyperparameterized random forest models predicted the
data best, yielding a validation score on accuracy of 0.6737, i.e., about two in three
patents were classified correctly.

These models were then used to predict the output values of the 1,740,613 patents
granted in the latest five-year period in the Patentsview dataset we used. We ran
our job on a specialized high-performance computer (HPC) node with 128 AMD
EPYC 7742 CPUs. On this machine, prediction results took just over 11h, and all
steps in the data science and machine learning layers required approximately 26h to
run. Still, we estimate that 16 CPUs should be sufficient for a job of the size in this
illustration, since maximum concurrent RAM usage never exceeded 100GB, half of
which was occupied by the ten different tensors loaded with Patentsview data and
the rest was occupied intermittently by the machine learning dataframes.

Figure 7.3 presents the cumulative distribution function for cluster size. It shows
that inmost of the clusters related to our query, there are less than 500 relevant patents
since the inception of the respective cluster.

However, the cumulative distribution function for cluster value, shown in Fig. 7.4,
suggests that there are highly-valued patents among these few.

The ‘violin plots’ in Figs. 7.5 and 7.6 which describe the probability density
functions for cluster size and cluster value capture this result in a more intuitive form.
For cluster size, the contrast between the values for CPC clusters related to the query
compared to all 242,050 clusters is striking, suggesting that technology related to the
query has drawn much attention among researchers. Further, technologies related to
the query have an average patent value of above 0.5 for the timespan from 2018 to
2021, implying that the average cluster related to the query has more high-value than
low-value patents.

Table 7.4 gives the values for our technology index as defined in Eq. (7.5). It
ranks relevant CPC subgroups based on their emergence and growth values. There
is a strong interest in privacy-preserving technologies, communication systems, and
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Fig. 7.3 Cumulative distribution function for cluster size

Fig. 7.4 Cumulative distribution function for cluster value
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Fig. 7.5 Violin plots for cluster size, from 2018 to 2021

Fig. 7.6 Violin plots for cluster value, from 2018 to 2021

database security, which suggests that these technologies will likely emerge strongly
in the future, and they would be of key interest to users who submit a query similar
or identical to ours.

Table 7.5 presents the top 10 assignees related to the query, ordered by the impact
index as defined in Eq. (7.9). Unsurprisingly, as a result of their large patent counts,
major software and hardware companies top the list.

Table 7.6 presents the ranking obtained by the normalized impact index as defined
in Eq. (7.9). Since this index qualifies the impact index by patent output size, it high-
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Table 7.4 Technologies ranked according to technology index
Score CPC

subgroup
Patent count Citation count Description

8.02 G06N3/08 6519 251.6 Computer systems based on biological
models-using neural network models-Learning
methods

8.02 G06F7/50 163 13.7 Methods or arrangements for processing data by
operating upon the order or content of the data
handled—Methods or arrangements for performing
computations using exclusively denominational
number representation, e.g., using binary, ternary,
decimal representation-using non-contact-making
devices, e.g., tube, solid state device; using
unspecified devices-Adding; Subtracting

7.92 G06Q20/3558 132 81.4 Payment architectures, schemes or
protocols—characterized by the use of specific
devices; or networks-using cards, e.g., integrated
circuit [IC] cards or magnetic
cards-Personalization of cards for use-Preliminary
personalization for transfer to user

7.90 G06N3/0454 5458 141.3 Computer systems based on biological
models-using neural network
models-Architectures, e.g., interconnection
topology-using a combination of multiple neural
nets

7.55 G06N20/00 13947 747.4 Machine learning

7.48 H04W80/08 279 14.6 Wireless network protocols or protocol adaptations
to wireless operation-Upper layer protocols

7.15 G11C8/20 243 53.7 Arrangements for selecting an address in a digital
store—Address safety or protection circuits, i.e.,
arrangements for preventing unauthorized or
accidental access

7.06 G06F9/3818 66 61.4 Arrangements for program control, e.g., control
units—using stored programs, i.e., using an internal
store of processing equipment to receive or retain
programs-Arrangements for executing machine
instructions, e.g., instruction decode—Concurrent
instruction execution, e.g., pipeline, look
ahead-Decoding for concurrent execution

7.05 H04L2209/38 2858 2728.0 Additional information or applications relating to
cryptographic mechanisms or cryptographic
arrangements for secret or secure communication
H04L9/00-Chaining, e.g., hash chain or certificate
chain

6.91 G06N3/0472 977 51.0 Computer systems based on biological
models-using neural network
models-Architectures, e.g., interconnection
topology-using probabilistic elements, e.g., p-rams,
stochastic processors
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Table 7.5 Assignees ranked according to impact index

Rank Assignee Patent count Value Impact

1 International
Business
Machines
Corporation

7314 0.4793 3,488,180

2 Microsoft
Technology
Licensing, LLC

2644 0.8150 3,157,710

3 Amazon
Technologies, Inc

2133 0.4871 1,632,140

4 Cisco
Technology, Inc

1040 0.7798 1,532,470

5 Advanced New
Technologies Co,
Ltd

518 0.4864 1,453,670

6 Intel Corporation 2788 0.4573 1,283,470

7 EMC IP Holding
Company LLC

1235 0.7336 1,265,040

8 Apple Inc 2568 0.5459 1,132,630

9 AS America, Inc 496 0.5987 941,869

10 Google LLC 1621 0.6761 921,388

Table 7.6 Assignees ranked according to normalized impact index

Rank Assignee Value Patent count Norm. impact

1 CyberArk
Software Ltd

0.7567 37 833.551

2 Intertrust
Technologies
Corporation

0.8571 14 771.041

3 Shape Security,
Inc

0.9090 11 769.185

4 F5 Networks, Inc 0.9230 26 765.03

5 Sophos Limited 0.8695 46 744.879

6 McAfee, LLC 0.8924 93 730.186

7 Sonicwall Inc 0.8571 14 726.287

8 MX
Technologies, Inc

0.875 16 717.432

9 FireEye, Inc 0.9787 47 683.293

10 Netskope, Inc 0.75 20 632.204
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Table 7.7 Assignees ranked by influence in the bipartite network

Rank Assignee Patent count Value Influence

1 International
Business
Machines
Corporation

7314 0.4793 0.3573

2 Samsung
Electronics Co.,
Ltd

5415 0.3566 0.2811

3 Qualcomm
Incorporated

2129 0.5758 0.1948

4 Huawei
Technologies Co.,
Ltd

2765 0.0239 0.1787

5 LG Electronics,
Inc

2094 0.1905 0.1763

6 Apple Inc 2568 0.5459 0.1668

7 Microsoft
Technology
Licensing, LLC

2644 0.8150 0.1608

8 Intel Corporation 2788 0.4573 0.1599

9 Amazon
Technologies, Inc

2133 0.4871 0.106

10 Facebook, Inc 1317 0.2498 0.1025

lights smaller, lesser known assignees which nevertheless are of significant relevance
in the technological fields relevant to the query. Note the table only shows assignees
which have been granted at least five patents in the last year of the timespan we ana-
lyzed. By applying this restriction, we can filter outlier assignees which produced
very few patents if in highly valuable domains.

Table 7.7 ranks the most influential assignees in the bipartite network of tech-
nologies and assignees as defined in Eq. (7.10). Again, technologically dominant
assignees top out the list, yet hardware manufacturers have the upper hand.

We finally cross-plot some of the indicators we developed to generate additional
insights. Figure 7.7 plots, for each assignee and all topical clusters, the respective
patent count (x axis) against the normalized impact index (y axis). The dot plot
distribution suggests a negative correlation with an approximate relationship of y =
1/x, x > 0. This result supports the economic theory of decreasing marginal return
of innovation in large companies; the larger the patent output of an assignee, the less
valuable a particular patent seems to be.

Figure 7.8 plots, for all topical clusters, assignee influence (x axis) against assignee
impact (y axis). The dot plot suggests no statistically significant trend, hence horizon-
tal integration or investments into many technology areas does not seem to improve
an assignee’s impact in the respective technological field.
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Fig. 7.7 Plot of assignee
patent count (x-axis) against
normalized impact index
(y-axis) by assignee

Fig. 7.8 Plot of assignee
influence (x axis) against
assignee impact (y axis)

7.4 Discussion

In this chapter, we have described a recommender system which predicts emerging
technologies by a sequential blend of machine learning and network analytics meth-
ods. In so doing, we contribute to both the technical and the economic discussion
of cybersecurity in a number of ways. We illustrated the capabilities of the system
using data from the United States Patent Office (USPTO).
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More specifically, each of the indicators we proposed has a direct economic bene-
fit for cybersecurity managers in both the public and the private sector. For example,
the technology index allows analysts to identify emerging technology early and thus
to efficiently channel investments. The impact index identifies leading firms in the
technological areas of interest. Additionally, the normalized impact index allows
analysts to identify opportunities for early-stage investments into promising tech-
nology fields. Finally, the influence index allows clients to identify well-connected
assignees; it thus provides opportunities for alliances or joint development projects.

The system could still be refined in future rounds of development. For example,
in some technology fields, firms may experience a higher pressure to patent, e.g.,
because of strong competition or as a result of international market structures. Hence,
themachine learning layer couldbe calibrated to incorporate this effect. Further, given
the current advances in natural language processing and computational Bayesian
methods, we also argue that the recognition of topical clusters could be enhanced
by using state-of-the-art topic extraction and modeling methods. Overall, we believe
our system to be a first stepping stone toward a prediction tool which is lightweight,
accurate and free and replaces subjective intuition or arbitrary choice with systematic
and objective analysis.

Ultimately, this improvement in information transparency and investment effi-
ciency should translate into a more effective cyberdefense. We therefore encourage
the reader to let our system compete against extant models and consultancy advice.
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Chapter 8
Cybersecurity Ecosystems: A Network
Study from Switzerland

Cédric Aeschlimann, Kilian Cuche, and Alain Mermoud

8.1 Capability Dispersion

In order to produce effective cyberdefense, organizations require capabilities, i.e.,
organizational routines that purposefully combine human (e.g., trained IT special-
ists), material (e.g., computer hardware), and knowledge resources (e.g., professional
knowledge) to produce a desired outcome [26]. Hence, any organization which lacks
the required capabilities must produce them or absorb them from beyond the orga-
nizational boundary. None of these options is easy to implement, since the creation
of novel capabilities requires considerable time and resources, and the organization
may lack the resources to build it. In particular, human and knowledge resources are
a scarce commodity in contemporary cyberdefense. There currently is a severe lack
of capable specialists available to organizations around the world. Each year, up to
3.5 million cybersecurity job openings cannot be filled [4, 11].

An alternative is to absorb the required capabilities from other organizations in
the industry. Scholars predict that the performance of an organization will increase
with the number of connections to other organizations in the network since such link-
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ages facilitate access to relevant information [3, 13, 15, 24]. However, the promise
that capabilities can be ‘leveraged’ by building inter-organizational networks does
not always seem to materialize [29]. Some studies find that network centrality has a
negative impact on efficiency since a high number of relationships increases coor-
dination cost and impedes innovation since network management competes with
product development for scarce resources. Moreover, organizations may be unwill-
ing to share capabilities for a variety of reasons [1, 14, 27].

We examine this tension in the context of cyberdefense in Switzerland. Since
this country is both small and technology-intensive, the network of organizations
which offer and demand capabilities for cyberdefense can be captured efficiently.
We attempted to identify all public, academic, and private organizations in Switzer-
land whose business or mission requires significant cyberdefense capabilities (in the
following, the ‘ecosystem’). We designed and implemented a survey among these
organizations that captured different types of capabilities and the extent to which the
respective organization possesses or requires these. We analyzed the distribution of
these capabilities in the ecosystem and identified net supply and demand. Finally, we
used the data to study the links that organizations established (or refused to establish)
with each other as they attempted to procure missing capabilities.

We adopted the list of capabilities in the questionnaire from the NICE and the
UCCF frameworks. The NICE framework was developed by NIST [21], and it has
been adopted on a global scale to gauge the extent to which cyberdefense capabilities
exist in both private, public, government, and military organizations (e.g., [5, 12, 19,
25]). In contrast to more context-specific approaches (e.g., [6, 9, 23]), it focuses
directly on organizational capabilities and specializes in the analysis of cyberde-
fense. However, focus group interviews conducted before the launch of our survey
suggested that it is not exhaustive for all types of organizations in the ecosystem.
Since it was primarily written for private sector firms, it lacks particular capabilities,
such as preventive measure-taking and intelligence gathering, all of which are rele-
vant to public institutions, particularly so in the defense sector. We therefore added
capabilities from NATO’s Unified Cyber Competence Framework (UCCF), which
is based on NICE but extends it to the above context [8]. The survey captured the
following eight dimensions of cyberdefense capabilities which were operationalized
by 57 variables:

• Securely Provision: Conceptualizing and building secure IT systems;
• Operate and Maintain: Providing the support and administrative tasks to ensure
secure continued usage of IT systems;

• Oversee andGovern: Providing leadership andmanagement allowing for an effec-
tive cybersecurity work;

• Protect and Defend: Identifying, analyzing, and fighting threats to IT systems;
• Analyze: Performing reviews and analyses of incoming information;
• Collect and Operate: Providing deception operations to collect information in
order to develop cybersecurity;

• Investigate: Investigating events or crimes linked to IT systems and handling digital
intelligence;
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• Cyber offense: Strategizing and implementing offensive actions designed to exfil-
trate data from or neutralize a target.

Each of the 57 variables was coded on a four-point multinomial scale with four
mutually exclusive evaluations; ‘we have the respective capability and offer it to
other organizations’ (in the following, coded as ‘offered’ for short), ‘we have the
capability, but do not offer it’ (coded as ‘used’), ‘we do not have it but require it’
(coded as ‘required’) and ‘we neither have nor require it’ (coded as ‘not needed’).1

To capture organizations in the private sector, we queried the Technology and
Market Monitoring (TMM) database which was created by the science and tech-
nology division of the Swiss Federal Office for Defense Procurement armasuisse.2

Further, we queried public databases that captured and described startup firms.3

Information about organizations in the academic sector was obtained from the
Swiss Academy of Engineering Sciences (SATW) which maintains a database of
research institutes and academic spin-offs in the cyberdefense domain, and from the
member list of the Swiss Informatics Research Association (SIRA).4 Information on
public organizations, the government, and the military sector was obtained from the
General Secretariat of the Swiss Federal Department of Defense, Civil Protection
and Sport.

Following [18], all databases were queried with a list of keywords specifically
relevant to cybersecurity. The raw list of organizations from all three sectors was
inspected for double entries and cross-validated with annual reports, trade associa-
tion documents, entries in the commercial register, and publicmarket intelligence.We
used the software SelectSurvey to administer the survey. Data were recorded with a
secure andnon-commercial server architecture hosted at theSwiss Federal Institute of
Technology Zurich, and respondents were guaranteed complete anonymity and con-
fidentiality. For the purpose of analysis, the data were aggregated and anonymized.

The final survey population comprised 712 organizations to which the question-
naire was sent. After two reminders were sent, the survey was closed, six weeks after
the questionnaire was first sent. 186 organizations had responded, for a response
rate of 26.12%. 55 replies were not considered because of too much missing data,
so that 131 questionnaires remained for analysis. Among these remaining question-
naires, 76 came from the private, 30 from the academic, 21 from the public sector,
and 4 categorized themselves as other. Those four were organizations that resulted
from a public-private partnership, or independent organizations with a public man-
date granted by the government. They were included in the calculation of general
averages but not in the sector-specific analysis.

1 The full questionnaire is available on request from the corresponding author.
2 See https://tmm.dslab.ch/#/home.
3 These comprised the Swiss Cyber Startup Map (https://cysecmap.swiss/), the Top 100 Startup
Ranking (https://www.top100startups.swiss/) and the Startup Directory (https://www.startup.ch/
startup-directory).
4 For the SATW, see https://www.satw.ch/en/topics/cybersecurity; for the SIRA, see https://sira.
swissinformatics.org/sira-members/.

https://tmm.dslab.ch/#/home
https://cysecmap.swiss/
https://www.top100startups.swiss/
https://www.startup.ch/startup-directory
https://www.startup.ch/startup-directory
https://www.satw.ch/en/topics/cybersecurity
https://sira.swissinformatics.org/sira-members/
https://sira.swissinformatics.org/sira-members/
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8.2 Analysis

Data in all tables in this section is calculated from the responses of the 131 question-
naires in the final sample. Table 8.1 shows how cyberdefense capabilities are used or
required on average across all three sectors and among all 131 firms. On average, the
private sector is a large supplier of capabilities since 40.14% of all capabilities among
organizations in this sector are also offered to other private firms and organizations
in the other two sectors. Note that on average, capability requirements in the public
and academic sectors are almost twice as large as in the private sector. The academic
sector has the highest share of capabilities marked as ‘not needed’, which probably
reflects its role as a creator, rather than a user, of the knowledge and technology from
which the respective capability results.

Table 8.2 groups the capability distribution across all three sectors by dimension.
On average, organizations seem to have a good mastery of cyberdefense, since more
than 70% use or offer to others the capabilities in the dimensions Securely Provision,
Operate and Maintain, Oversee and Govern and Protect and Defend. However, the
ecosystem as a whole also has high net requirements in the capability dimensions
Protect and Defend, Analyze, and Investigate.

Table 8.1 Average distribution (%) of capabilities across sectors

Offered Used Required Not needed

Public sector 24.40 33.48 6.47 35.65

Academic sector 22.90 24.98 5.73 46.39

Private sector 39.46 24.76 3.69 32.09

Table 8.2 Average distribution of capabilities (%) by dimension

Offered Used Required Not needed Total

Securely
provision

46.39 26.00 8.62 18.99 100

Operate and
maintain

42.48 31.97 5.78 19.77 100

Oversee and
govern

35.18 38.63 6.78 19.41 100

Protect and
defend

38.70 32.30 13.51 15.49 100

Analyze 25.45 19.38 14.15 41.02 100

Collect and
Operate

17.78 12.01 4.91 65.30 100

Investigate 34.87 22.13 15.37 27.63 100

Cyber Offense 15.16 4.49 3.40 76.95 100
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The dispersion is highest for the dimension Analyze, which 14.15% of all organi-
zations require,whereas 41.02%of all organizationsmark it as ‘not needed’, probably
because few professional applications for the automated cyberintelligence analysis
exist [7]. The more aggressive capability dimensionsCollect and Operate andCyber
Offense have the lowest rate of adoption among all organizations, with 65.30% and
76.95% noting they do not require these. While most organizations may not want to
directly attack those who threaten their cybersecurity, those 4.91% (3.4%) which do
note they require such capabilities would still have to find a way to procure them.

8.2.1 Sector-Specific Analysis

Table 8.3 shows the data for the subsample of public sector organizations only.
They least require capabilities in the dimensions Cyber Offense and Collect and
Operate, whereas the Protect and Defend and Oversee and Govern dimensions are
used most. This probably reflects the fact that Switzerland’s government institutions
have no offensive cyber doctrine. The public sector also supplies capabilities to other
organizations at a below-average yet significant rate. Public sector organizations
most require capabilities in the Investigate dimension, which reflects a demand for
professional forensics operations.

Table 8.4 details the subsample of academic organizations. Overall, this sector
is a significant provider of cyber capabilities. More than 50% of all organizations
use or provide to others capabilities from five of the eight dimensions. This effect
is unsurprising, given that Switzerland has one of the best national higher education
systems [30] and its universities rank highly in the field of Computer Science [22].
Just like the public sector, the demand for the capabilities Collect and Operate and

Table 8.3 Capability distribution (%) in the public sector by dimension

Offered Used Required Not needed Total

Securely
provision

33.96 41.86 7.44 16.74 100

Operate and
maintain

30.00 44.17 7.50 18.33 100

Oversee and
govern

27.73 50.00 5.47 16.80 100

Protect and
defend

28.75 50.00 5.00 16.25 100

Analyze 19.42 26.62 7.91 46.04 100

Collect and
Operate

19.17 11.67 3.33 65.83 100

Investigate 21.67 35.00 10.00 33.33 100

Cyber Offense 14.53 8.55 5.13 71.79 100
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Table 8.4 Capability distribution (%) in the academic sector by dimension

Offered Used Required Not needed Total

Securely
provision

41.59 28.05 4.62 25.74 100

Operate and
maintain

24.85 38.79 4.85 31.51 100

Oversee and
govern

22.70 34.59 7.03 35.68 100

Protect and
defend

26.73 36.21 6.03 31.03 100

Analyze 21.03 16.41 12.82 49.74 100

Collect and
Operate

12.49 11.88 3.13 72.50 100

Investigate 24.69 30.86 4.94 39.51 100

Cyber Offense 9.15 3.05 2.44 85.36 100

Table 8.5 Capability distribution (%) in the private sector by dimension

Offered Used Required Not needed Total

Securely
provision

50.92 29.55 1.95 17.58 100

Operate and
maintain

40.09 40.76 2.45 16.70 100

Oversee and
govern

42.19 37.23 3.10 17.48 100

Protect and
defend

52.67 29.67 2.99 14.67 100

Analyze 39.92 16.63 3.72 39.73 100

Collect and
operate

26.96 7.83 4.84 60.37 100

Investigate 43.11 22.67 4.89 29.33 100

Cyber offense 24.47 6.36 1.88 67.29 100

Cyber Offense is low, which probably reflects the role of the academic sector as a
provider of education and knowledge.

Finally, Table 8.5 details the private sector data.Overall, this sector both uses cyber
capabilities to greater extent, and it makes them available to other organizations at a
significantly higher rate. Average capability requirements across all organizations are
amere 4.06%,which indicates that private firms are capable to produce cyberdefense.
Compared to the public and academic sectors, the dimension Collect and Operate
is used more intensively, while the dimension Securely provision has a higher level
of demand which probably reflects the lack of IT specialists in that job market.
As in the public sector, there is a clear demand for forensic capabilities, since the
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Table 8.6 Capability demand (%) by sector and dimension

Capability Public sector Academic sector Private sector

Conduct security tests on your
information systems

12.00 13.79 6.67

Provide you with information on
cyber legal issues

20.00 24.14 9.33

Implement IT recruitment and
training strategies

12.00 6.90 9.33

Conduct operations to enter your
own networks (...)

20.00 13.79 4.11

Aggregate and synthesize (...)
evidence

20.00 7.14 4.00

Identify (...) targets to conduct
offensive cyber operations

0.00 7.69 4.17

Average 6.47 5.73 3.23

Table 8.7 Capability supply (%) by sector and dimension

Capability Public sector Academic sector Private sector

Conduct security tests on your
information systems

30.00 13.79 37.33

Provide you with information on
cyber legal issues

10.00 6.90 24.00

Implement IT recruitment and
training strategies

12.00 6.90 9.33

Conduct operations to enter your
own networks (...)

10.00 24.14 50.68

Aggregate and synthesize (...)
evidence

20.00 17.86 34.67

Identify (...) targets to conduct
offensive cyber operations

10.00 7.69 23.61

Average 24.40 22.90 40.04

dimension Investigate ranks second highest among those organizationswhich require
capabilities.

Table 8.6 stratifies by sector those six specific capabilities the demand for which
most exceeds the respective sector average, implying there is a net demand. Among
these six, supply for the capabilities Implement IT recruitment and training strategies
and Identify and create a list of potential targets to conduct offensive cyber operations
is significantly below the respective sector average, implying there is too little supply
among organization to fulfill these needs (viz. Table 8.7). Together, both tables show
promising fields for inter-organizational capability trades.
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Fig. 8.1 Relations and
transfer links between
organizations

8.2.2 Network Analysis

Our questionnaire also asked respondents to self-declare the organizations from or to
with it procured or supplied capabilities. Two organizations are considered to have a
dyadic relationship in the network if one of them provides one or more cyberdefense
capabilities that it possesses to the other organization. Given that 65 firms in our final
sample either refused to disclose their ties to other organizations or reported they
had none such ties, only a subsample of 76 firms remained for the network analysis.

Following the procedural recommendations in [28], we captured these relation-
ships in a worksheet matrix. Then, we fed these data into the open source software
tool Gephi which plotted the relationships. Links to or from nonrespondents were
omitted. Figure 8.1 provides the anonymized structure of the inter-organizational
network. The diameter of the node visualizes its degree, such that larger nodes rep-
resent organizations which have more relationships with other organizations. The
darker the shade of the respective node, the more cyber capabilities the organization
uses.

Figure 8.2 differentiates this network by sectors. The public (private, academic)
sector is represented in black (white, gray). Interestingly, with only few exceptions,
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Fig. 8.2 Interorganizational
links by sector

the nodes with the greatest centrality are organizations from the academic and public
sector. Further, there is an ‘outside network’ of mostly private sector firms which
have strong bilateral ties but are only weakly integrated in the ecosystem. It appears
to be a scale-free network, with a few highly and many loosely connected nodes.
A goodness-of-fit test for a power law distribution [10] confirmed this presumption.
The degree density fits a power law distribution with xmin = 12 and α = 4.46.

All in all, organizations tend to have more within than between-sector links,
whereas the particular capabilities an organization has does not govern its network-
ing behavior. Moreover, the survey identified 50 highly capable but isolated organi-
zations. As these did not report any link with other organizations, they are excluded
from the visual representation of the graph. Nevertheless, we contacted their repre-
sentatives and asked if they were willing to disclose the reasons for this isolation in a
confidential interview. Those who consented disclosed three types of reasons. Some
refused to share or require capabilities since they were concerned this information
may reveal vulnerabilities. Others, particularly start-ups and small andmedium-sized
firms, do want to participate in inter-organizational exchange but are unable to find
organizations with which to collaborate. Older and more established organizations
also displayed a lack of trust toward those new entrants. Finally, some organizations
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were sympathetic to inter-organizational collaboration, but they were not at liberty
to disclose their operations due to confidentiality requirements.

8.3 Conclusion

Our findings confirm that while the theoretical benefits of inter-organizational col-
laboration are undisputed, they are hard to reap in organizational practice. As a
result, there are three sources of inefficiency that future cyberdefense would have to
overcome:

First, while we found that the ecosystem as a whole hosts many capabilities
required for cyberdefense, and many of these are shared, cooperation and exchange
between organizations is limited to historically grown networks. In particular, there
is neither a public inventory of cyber-related capabilities nor an institutionalized
inter-organizational exchange that would allow firms to broker capabilities in an
open marketplace. Hence, information transparency is low, and the transaction cost
of identifying and ‘leveraging’ capabilities is high. As a result, inter-organizational
capability transfers that would strengthen the network as a whole are not executed
because no singular organization would be willing to incur the transaction cost.

Second, this situation is co-determined by the requirement for confidentiality
and secrecy that many firms expressed when asked why they would voluntarily
self-isolate. Any capabilities that are shielded by such motives will likely not be
transferred even if such transfers would be beneficial to particular organizations or
the ecosystem as a whole. As long as trust is not established between organiza-
tions by appropriate institutional design, this problem (and hence the inefficiency of
contemporary cyberdefense) likely persists [16, 20].

Third, given that the ecosystem is a scale-free network, i.e., characterized by
a small number of highly connected nodes whereas most other nodes have few
connections, it is relatively robust to random but highly vulnerable to intentionally
induced failure [2]. As a result, the ecosystem can collapse once highly central
organizations exit the industry. Classical security research takes such scenarios into
account by identifying nodes whose removal would interdict network flows most
(e.g., [17]). Future research could run such analyses on inter-organizational networks
to identify those whose removal poses the greatest risks for the ecosystem as a
whole. In addition, link prediction analysis could reveal which novel links between
organizations would be required to strengthen the ecosystem. Then, economic policy
could target the respective organizations and provide appropriate institutions which
could foster the development of such links.
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Chapter 9
Anticipating Cyberdefense Capability
Requirements by Link Prediction
Analysis

Santiago Anton Moreno, Dimitri Percia David, Alain Mermoud,
Thomas Maillart, and Anita Mezzetti

9.1 Predicting Technology Requirements From Job
Openings

Firms must continuously learn about novel technologies that are relevant to cyberde-
fense, and theymust forego those which are no longer effective against contemporary
threats. The better they master this transformation, the more efficiently they spend
their technology budget. However, developing technology in the right direction is
fraught with uncertainly, since the technology landscape evolves continuously [28].
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We propose that job openings data can reveal how firms manage this adaptation,
since it reflects a process of creative destruction. Economically speaking, job open-
ings reveal employers’ preferences since they uncover technological requirements
[14]. Likewise, a significant decline of job openings for a particular skill signals that
it is becoming increasingly irrelevant. As opposed to patents, whose information
remains even if they are technologically outdated, job openings data are dynamic.
They follow distribution patterns over time, and such patterns can be exploited for
predictive purposes [20].

Link prediction can inform observers about how this distribution will develop in
the future, both regarding the emergence of future and the disappearance of contem-
porary job offers. It is widely used to forecast change in social and business networks
(e.g., [1, 3, 22]). It has also informedmore specific studies of technological evolution
and convergence [15, 16, 18]. We extend this analysis to the context of cyberdefense
by proposing a bipartite network of firms which adapt and forego technologies, and
we use job openings data to capture these dynamics.

9.2 Link Prediction Model

We define a graph G = (V, E), wherein V is a finite set of companies and tech-
nologies, and E ⊆ V × V is the set of links between them.1 Then, for any subset
x, y ∈ V ,

– the neighborhood of x is �(x) = {y ∈ V s.t. (x, y) ∈ E};
– the degree of x is δx = |�(x)|;
– there is a path between x and y if there exists (x0, x1, ..., xn) such that x0 = x; xn =

y and (xi , xi+1) ∈ E ∀ 0 ≤ i ≤ n − 1;
– a graph G is said to be bipartite if there exists a subject (A, B) ⊂ V such that if

(x, y) ∈ E then x and y are not in this subset (A, B).
– with |V | = n, A ∈ Rn×n is an adjacencymatrix ofG if andonly if∀x, y ∈ V Ax,y =
1 implies (x, y) ∈ E and Ax,y = 0 otherwise.

Since we are interested in predicting the adaptation of a single organization to
changing technology landscapes, we only consider relationships between firms and
technologies, but not between different firms. We therefore consider all graphs that
link companies and technologies as bipartite, such that a company can only form
links with technologies and vice versa.

Link prediction relies on similaritymeasures which assign a similarity score sxy to
each pair of nodes (x , y). The larger sxy is, the higher is the likelihood that a link exists
between x and y.Whilemanymeasures exist bywhich these scores can be computed,
only a subset of them is eligible for the analysis of bipartite networks [17, 20].
We opted to calculate preferential attachment (PA), Katz, and hyperbolic sine (HS)

1 In the following discussion, we use the neutral term ’nodes’ for methodological discussions in
which the distinction between companies and technologies is irrelevant.
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scores, both because all three measures are eligible, they only require information
about neighboring nodes, and they can be calculated in reasonable computing time
[2, 13, 17].

Further, we used the predictions from these three static measures to train a sup-
port vector machine (SVM), i.e., a supervised machine-learning model [11] which
dynamically updates its predictions as the bipartite network changes. We used the
radial basis function as kernel.2

Since our link prediction setting is highly unbalanced, we evaluated the accuracy
of our predictions, i.e., the extent to which predicted matched actual links in the
bipartite network, by analyzing the area under the receiver operating characteristic
curve (AUC). This curve plots the true positive rate tpr against the false positive rate
fpr.We applied blocked cross-validation to receive robust estimates [4, 6, 18–20, 27].
Further, we computed precision-recall curves, specifying Precision = tp

tp+ f p and
Recall = tpr. From these estimates, we computed average precision (AP) measures,
which give the weighted mean of precision accuracy achieved at each threshold, and
the increase in recall from the previous threshold is used as the weight.

The model was implemented in Python, with the packages networkX [9], scikit-
learn [23], and statsmodel [25]. To create the bipartite network of companies and
technologies, we used data from the Technology and Market Monitoring (TMM)
database. It is hosted by the science and technology branch of armasuisse, the Swiss
Federal Office for Defence Procurement. It crawls open online repositories, such
as the commercial register, industry databases, Wikipedia, and arXiv, in order to
aggregate and link data about firms and technologies.3

The database also crawls job openings data from Indeed, one of the world’s largest
virtual labor markets.4 We therefore queried the job openings the firms in the TMM
database had posted there, and we recorded which technologies they sought.

We used automated document analysis to identify technologies related to cyber-
security (e.g., [7, 8, 12, 18]). Using the Python library difflib, we computed word
similarity indices and removed irrelevant matches. This procedure yielded a list of
124 keywords by which firms, technologies, and job offers were linked.5 The result-
ing bipartite graph had 1805 nodes.

Ourmodel builds on prior work that has used supervised learningwith link predic-
tion [10, 12, 30]. In order to maximize the accuracy of our predictions, we observed
the development of this network on amonthly basis betweenMarch 2018 andDecem-
ber 2020 and used these data to train the prediction algorithm. Thus, we created 33
graphs, each of which describes the bipartite network for the respective month in this
interval. We define G as the set that contains all 33 graphs, ordered by time, such
that G0 ∈ G and G33 ∈ G correspond to the graphs for March 2018 and December
2020, respectively. We also define Gi−j with i < j ∈ 0, 1, ..., 32 to be the subset of

2 Detailed technical information about themachine and its recursive predictionprocedure is available
from the corresponding author.
3 The database can be accessed by registered users, see https://tmm.dslab.ch.
4 See https://indeed.com.
5 The full set of these keywords is available from the corresponding author.

https://tmm.dslab.ch
https://indeed.com
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Table 9.1 Confusion matrix

Predicted

Actual Link exists Link absent

Link exists tp fn

Link absent fp tn

G that contains all graphs between Gi and G j (including the interval boundaries).
Further, we used all possible links in the graphs ofGi− j as training sets for the SVM
predictions.

The prediction algorithm considers the dynamic development of the bipartite
network by recursive time series analysis. Rather than predicting a static set of links,
it considers the present and past states of the network in order to predict both extant
and yet absent links that will exist t months in the future [21]. Such time-dependent
recursion yields results which are significantly more accurate, if at the expense of
computing time [5, 26].6

The prediction algorithm uses the set of graphs Gi−j to predict which links will
(not) exist in the bipartite network t months ahead, subject to j + t < 33 and 1 <

t < 6. It computes the similarity scores sxy for x, y ∈ V for each graph in Gi− j and
uses them to predict those in each graph G j+t . Starting from the set of graphs Gi−j,
it predicts that t months from now, a link either will or will not exist between every
company and every technology in G j+t .

These predictions are subject to a threshold θ . A link is predicted to exist if sxy ≥ θ ,
else, the link is predicted to not exist. This threshold maximizes a simple function of
tpr and fpr. Both rates are obtained from the confusion matrix shown in Table 9.1. It
gives the number of true positives (tp), false positives (fp), false negatives (fn) and
true negatives (tn). The total number of positives P is equal to (tp + f n), and the
total number of negatives F is equal to ( f p + tn).

We optimized the difference between tpr and f pr by Youden’s J statistic [29].
Robustness tests with the geometric mean of sensitivity and specificity and F scores
of precision and recall yielded identical thresholds values [24].

9.3 Results

Table 9.2 details all simulation results and their respective mean AUCs, the standard
deviation of which is between 0.03 and 0.07. The best predictions are highlighted in
bold.

There is no straightforward influence of the intensity with which the model is
trained. When we predicted the state of the bipartite network between one and four
months in the future, we observed that AUC and accuracy improve with the number

6 Detailed technical information on the recursive steps is available from the corresponding author.
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of graphs used to train the model, whereas for a prediction interval of five and six
months, the smallest number of training graphs gave the best AUC but not the best
accuracy. The best accuracy was always obtained by the SVMmethod with a training
period of six months. Further, for all but one forecast rage, among the four different
measures we used, the SVM method best predicted the actual links.

Figure 9.1 compares the performance of the four methods, the mean AUC of
which is plotted over different forecast periods. These means were calculated by

Table 9.2 Accuracy of predicted versus actual links in the bipartite network
Forecast range

Method Training size Metric 1 month 2 month 3 month 4 month 5 month 6 month

Katz Index 2 months AUC 0.831 0.737 0.668 0.642 0.628 0.626

Accuracy 0.852 0.768 0.707 0.683 0.671 0.665

3 months AUC 0.836 0.734 0.664 0.632 0.626 0.619

Accuracy 0.859 0.772 0.711 0.685 0.676 0.669

4 months AUC 0.844 0.727 0.652 0.623 0.615 0.606

Accuracy 0.864 0.772 0.71 0.686 0.676 0.667

6 months AUC 0.853 0.759 0.689 0.626 0.622 0.612

Accuracy 0.871 0.792 0.735 0.693 0.684 0.676

PA Index 2 months AUC 0.818 0.709 0.643 0.61 0.586 0.574

Accuracy 0.826 0.743 0.687 0.659 0.646 0.634

3 months AUC 0.837 0.733 0.652 0.616 0.599 0.589

Accuracy 0.837 0.757 0.692 0.668 0.657 0.647

4 months AUC 0.844 0.736 0.658 0.62 0.602 0.594

Accuracy 0.842 0.761 0.703 0.675 0.661 0.653

6 months AUC 0.849 0.754 0.683 0.65 0.633 0.619

Accuracy 0.841 0.77 0.718 0.694 0.681 0.672

HS Index 2 months AUC 0.832 0.737 0.669 0.642 0.628 0.626

Accuracy 0.853 0.768 0.707 0.683 0.671 0.665

3 months AUC 0.837 0.734 0.664 0.632 0.625 0.619

Accuracy 0.859 0.772 0.711 0.685 0.676 0.669

4 months AUC 0.844 0.727 0.652 0.624 0.615 0.605

Accuracy 0.865 0.772 0.71 0.686 0.676 0.667

6 months AUC 0.853 0.759 0.689 0.626 0.621 0.612

Accuracy 0.871 0.792 0.735 0.693 0.684 0.676

SVM 2 months AUC 0.836 0.742 0.676 0.648 0.635 0.629

Accuracy 0.856 0.773 0.712 0.688 0.678 0.671

3 months AUC 0.838 0.741 0.667 0.638 0.63 0.624

Accuracy 0.863 0.777 0.715 0.69 0.68 0.673

4 months AUC 0.852 0.734 0.658 0.628 0.619 0.613

Accuracy 0.867 0.777 0.715 0.69 0.682 0.673

6 months AUC 0.856 0.762 0.695 0.641 0.631 0.621

Accuracy 0.874 0.794 0.74 0.702 0.692 0.684
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Fig. 9.1 Mean AUC over forecast range

blocked cross-validation for a prediction model trained with six months of training
graphs. Their standard deviation is between 0.03 and 0.07.

Figure 9.2 provides the receiver operating curves (ROC) for a prediction that was
trained with the full set of all 32 training graphs. They show the model reliably
predicts the actual links in the bipartite network; in this setting, the best accuracy is
0.965. When we reran the model with a set of 28 training graphs, AUC was between
0.743 and 0.753 for all four prediction methods, and accuracy was between 0.75
and 0.77 which, for each forecast period, far exceeded the mean AUC and accuracy
obtained from all settings with a different number of training graphs. This effect
illustrates that link prediction results strongly vary with the extent to which the
prediction model is trained with data that describes the historical development of the
bipartite network over time.

The precision-recall curves in Fig. 9.3 confirm that the SVMmethod best predicts
the links in the bipartite network. They are plotted over a random classifier, the AP
of which is less than 0.01. We calculated all curves with the full set of all 32 training
graphs. AP values for the SVM predictions were always superior, no matter how we
varied the number of training graphs and forecast periods. The Katz and HS index
curves are almost congruent in this chart, whereas there is some variation between
themwhen these parameters are altered. As measured by the APmetric, the PA index
performs worst.

Figure 9.4 shows a final robustness test in which we used only the seven training
graphs between months 21 and 27 to predict the network. The SVM method still
predicts the actual links best, whereas all four methods are clearly superior to a
random classifier.
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Fig. 9.2 ROC curves by metric
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Fig. 9.3 Precision recall curves calculated with the full training set

9.4 Discussion

In this work we applied extant research on link prediction to a bipartite network of
firms and technologies, and we considered that this network dynamically changes
with the technology landscape.We posit that job offers can be used as a tool by which
firms’ preferences about technologies are revealed.

We therefore propose that our analysis helps any particular firm in the network to
make more informed decisions about future technologies. By using our link predic-
tion method to anticipate future skill demand, firms can anticipate the development
of the bipartite network and thus spend their budgets more efficiently as they adapt
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Fig. 9.4 Precision recall curves with reduced training set

to technological change. Firms can also use our methods to compare how their capa-
bilities develop vis-á-vis those of their competitors, so they can make appropriate
investments to maintain their position. Since our method is not context-specific to
any particular network or industry, it can be applied widely.

All in all, the prediction method we developed works well when it forecasts
the network. We implemented three classic similarity-based algorithms and also a
supervised SVM method, all of which predict links in the bipartite network with
good accuracy. Still, future research should complement our approach with alterna-
tive estimation methods, such as graph embedding, neural networks or maximum
likelihood probabilistic models. While we used the actual evolution of the bipartite
network to train the prediction model, future research may contrast our approach
with alternative training data, for example, job openings sentiment analysis metrics,
or scientific output indicators. Such data could inform a specialized similarity metric
which could be used to construct an unsupervised model.

While we believe our approach is productive, it could be strengthened further
in a number of ways. Future research may employ more general and broader text-
mining approaches. We selected a single virtual job market (if one of the largest in
the world), so future research may also consider job markets that exist by virtue of
social networks. Quantitative methods of keyword generation would produce more
consistent lists of keywords with specialized category matching, so that network
analyses could be customized to specific industries and fields. Further, researchers
may strive to create a balanced dataset in order to maximize the accuracy of our SVM
method, such that even longer forecast ranges would be possible.

Our analysis is restricted to the context of Switzerland because our goal was to
show the feasibility and effectiveness of the analytical method we proposed. Future
research should therefore corroborate our method with different national contexts
since the technology landscape in Switzerland represents but a fraction of the global
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technological environment. A global crawling protocolwithmulti-language keyword
extraction and a clear disambiguation framework for companies present in multiple
countries could extend our method to a global context.
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Chapter 10
Drawing with Limited Resources:
Statistical Modeling of Computer
Network Exploitation and Prevention

Philipp Fischer, Fabian Muhly, and Marcus M. Keupp

10.1 Introduction

The technological capabilities of computer hardware and IT infrastructure have
grown exponentially over the last 40 years, and intelligence agencies have fueled
this growth [4, 5, 11, 23]. Today, computer networks can be attacked remotely at
little cost, and the speed of technological innovation gives attackers the initiative to
which defenders must constantly adapt.

We focus on a particular type of attack where the goal is not to physically destroy
a computer network or to extort ransom, but to exfiltrate valuable information from a
computer network [12, 19, 21, 22]. In this case, attackers prefer to operate discreetly
and remain unnoticed. Specialized branches of national armed forces, but also intel-
ligence agencies and state-sponsored proxy actors can perform such operations [2,
3, 6–8, 14, 16].

For any attacker, only a fraction of all documents stored in a computer network has
actual operational or informational value in regard to the mission [13, 15]. Attack-
ers who infiltrate a computer network therefore continuously face a ballot sampling
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problem: They must sample each information unit once and decide whether to exfil-
trate or discard it. We explore how such an attack can be systematically modeled, and
how an attacker would decide about the length and intensity of an attack under time
and resource constraints. We also study how defenders may react as they attempt to
neutralize the attack. We hence view the problem from the attacker’s side, and we
assume that a security breach has already taken place.

We propose to formally model the exfiltration process as a repeated urn draw
under uncertainty and budget constraints, and we illustrate the model with some
simple examples. Finally, we propose some implications for effective defense. The
model was programmed in R, and all plots were generated using the ggplot2
package.

10.2 Theoretical Model

We posit that the information stored in a computer network can be described by
a quantity of discrete information units (e.g., computers in a network that can be
compromised, or files or binary objects stored on a single machine). We denote the
set of all information units available in the attacked network by �. While this set
may be numerically large, it is finite since information storage is restrained by the
physical boundaries of the network’s capacity, hence |�| = N ∈ N.

The attack proceeds in discrete time steps i ∈ N, the total number of which is
subject to the termination date of the attack. During each time step i , attackers draw
an information unitωi ∈ � and assess its value in the context of their objectives. This
draw can happen at random or according to a pre-set sequence; our model explores
both options. During the same time step, defenders survey the network for security
breaches. Note that our model is independent of the reason why the attack terminates
(attackers could voluntarily withdraw, or they may be ousted by the defenders).

10.2.1 Drawing and Evaluation of Information Units

We posit that attackers face budget constraints in terms of time (detection becomes
more likely the longer they operate in the network) and information processing
capacity (they can only evaluate a finite number of information units per time step).
Whenever attackers exfiltrate a particular information unit,we refer to this as a ’draw’.

Let x denote the number of information units they can successfully exfiltrate from
the network while the attack is undetected for a duration d. Then S = x

d gives the
average exfiltration rate for the campaign, and attackers who want to exfiltrate as
many units as possible with a minimum of time spent in the system would be inter-
ested in maximizing S. At the same time, such a massive exfiltration will probably
catch the attention of the systems operators, so that attackers may alternatively wish
to remain unnoticed as long as possible or to extract as little information as possi-
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ble in order not to be noted. In this case, they would seek to optimize the inverse
of the above ratio Q = 1/S = d/x . Since attackers cannot maximize both ratios
simultaneously, they can be thought of as two competing quasi-goods gS and gQ ,

Both quasi-goods are associated with transaction costs tS and tQ since exfiltra-
tion requires attackers to invest time and personnel. We posit that tQ < tS since
significant extraction requires more resources, if to mask the attack in order to avoid
detection. The joint two-good production can be modeled by a Cobb-Douglas utility
maximization:

max f (gS, gQ) = gρ

S g
1−ρ

Q (10.1)

subject to the budget constraint

g(gS, gQ) = tSgS + tQgQ ≤ b (10.2)

where b is the maximum number of draws the attacker can make while staying
undetected. The Lagrangian for this optimization problem is

L = f (gS, gQ) − λg(gS, gQ) = gρ

S g
1−ρ

Q − λ(b − tSgS − tQgQ) (10.3)

which, after partial differentiation, yields the optimum combination

g∗
S = 1

ρ

tS
tQ

(1 − ρ)gQ
g∗
Q = ρgS

tS
tQ

(1 − ρ)
(10.4)

By inserting the optimal amounts of the two quasi-goods into the budget constraint
equation (10.3), attackers can calculate the optimal number of draws.

However, in a real computer network, attackers likely have a mission to exfiltrate
but a fraction n of all information units N stored in the network, hence n � N . Let
the proportion of relevant units be denoted by α := n

N . Attackers now draw discrete
information units and evaluate them, and they draw each unit only once. Thus, the
exfiltration process resembles a covered draw in an urn lottery where there is a very
high probability 1 − α of drawing an irrelevant unit and a small probability α of
drawing a valuable one.

Assuming that draws are independent and that the drawing procedure is identical at
each time step i , the number of possible combinations of information units summing
up to exactly k < m valuable information units afterm draws is given by the binomial
coefficient

(
m

k

)
= m!

k!(m − k)! (10.5)

so that the probability of identifying k valuable units is
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P [V = k] =
(
m

k

)
· αk · (1 − α)m−k (10.6)

Still, draws need not be independent. Attackers may well adapt their operation
according to the value of the information units they have already drawn, e.g., by
investing more resources in the pursuit of promising tracks, or by abandoning futile
searches. In this case, attackers would still face a probability of α = n

N that the
first draw identifies a valuable information unit. Yet, in all subsequent draws, this
probability would decrease to n−1

N−1 if the drawn information unit was indeed valuable,
else it would increase to n

N−1 .
In this setting, the probability of finding k relevant information units afterm draws

without replacement can be derived through combinatorial arguments. There are
(n
k

)
ways of drawing exactly k valuable information units out of n available units, and
there are

(N−n
m−k

)
ways of drawing exactly m − k irrelevant information units from

N − n available units. Since there are
(N
m

)
ways of drawing a sample of size m from

the set of all units the probability of identifying k valuable units is

P [V = k] =
(n
k

)(N−n
m−k

)
(N
m

) (10.7)

which has a hypergeometric distribution. Since the probability mass function of
this distribution only depends on N , and since it requires the calculation of large
binomial coefficients as N grows, an approximation is desirable for large N . Under
the assumption that m � N , the variances of the two distributions converge:

VarHG[V ]
VarBin[V ] =

EHG

[(
V − mn

N

)2]

EBin

[(
V − mn

N

)2] = m n(N−n)(N−m)

N 2(N−1)

m n(N−n)

N 2

= N − m

N − 1
(10.8)

Figure 10.1 plots this convergence for a success probability of α = 1
4 , m = 20

draws and a 10-fold increase of N across the panels.
Relevant information units in the network likely differwith respect to howvaluable

they are to the attackers. Highly sensitive information should be much more relevant
to the goals of their operation, hence the model should consider different categories
of information value. We let � ∈ 1, . . . , L denote a number of mutually exclusive
cardinal categories of value, where higher numeric values are associated with greater
value.

We assume that there are n� information units of category � among all information
units, hence N = ∑L

�=1 n�. The probability of drawing an information unit of cate-
gory � therefore is α� = n�

N . Then, the random vector Xi := [X (1)
i · · · XL)

i ] ∈ {0, 1}L
has a categorical distribution with probabilities α = [α1 · · · αL ].

Attackers therefore exfiltrate a total number of information units in each category
of V = ∑m

i=1 Xi where each component V (�) = ∑m
i=1 X

(�)
i corresponds to the num-



10 Drawing with Limited Resources: Statistical Modeling … 153

Fig. 10.1 Convergence of binomial and hypergeometric distribution

ber of information units drawn from the �-th category. This number has amultinomial
distribution with the probability mass function

P
[
V (1) = k1, . . . , V

(L) = kL
] = m!

k1! · · · kL !α
k1
1 · · · αkL

L (10.9)

To facilitate a scalar expression of this value, we introduce a vector of weightsw ∈
R

L that assigns a cardinal number to each category. For example, one could choose
w = [0 1 100] for the categories unclassified, classified and top-secret to model a
setting where unclassified information is useless, whereas top-secret information is
100-fold more valuable to the attackers than classified information.

With these weights, the total value the attackers can realize is the dot product
V = w · V = ∑L

�=1 w�V (�) which has the expected value

E [V ] = w · E [V] = m
L∑

�=1

w�α� (10.10)

We now extend the model to a setting where a categorical value comparison is
unfeasible. For example, attackers who intend to exfiltrate personal user data may
find it difficult to rank the relevance and value of demographic characteristics or
usage statistics. We discuss a simple and a more advanced case.

First, if the pattern of the attack suggests that Xi follows a Gaussian distribution
Xi ∼ N (μ, σ 2), the expected value of a single draw simply corresponds to its first
parameter E [Xi ] = μ. One can show with probability generating functions that the
total value attackers can expect from the operation is1

V =
m∑
i=1

Xi ∼ N (mμ,mσ 2) (10.11)

1 Formal proof is available on request from the corresponding author.
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Since the Gaussian is a continuous distribution, a quantile function can be used to
provide more robust statements about the outcome of an operation rather thanmerely
about its expected value. It provides an estimate that attackers can realize a value of
at least q(γ ) with a probability of at least 1 − γ , formally:

q(γ ) := min [k ∈ N |P [V ≤ k] ≥ γ ], γ ∈ [0, 1] (10.12)

Implicitly using the distribution function 
(x) of the standardized Gaussian dis-
tribution with μ = 0 and σ 2 = 1, the quantile function that gives the variability of
the value as specified in Eq. (10.11) is

q(γ ) = mμ + 
−1(γ )
√
mσ (10.13)

Even if Xi follows a binomial distribution, quantile functions can still be used
[18]. In this case, E [V ] = mα and Var [V ] = mα(1 − α). The lower bound of the
quantile function then is

q(γ ) ≥ mα + 
−1(γ )
√
mα(1 − α) − 1

3

−1(γ )2 − 1 (10.14)

A specification of γ = 0.01 suggests that attackers want to obtain a particular
value with a probability of at least 99%. Since 
−1(0.01) = −2.326, the lower
quantile bound is

q(0.01) ≥ mα − 2.326 · √
mα(1 − α) − 0.804 (10.15)

Figure 10.2 plots the respective quantiles for different specifications of m and α,
together with their respective lower bounds.

Finally, prospect theory suggests that humans overvalue realized losses and under-
value the opportunity to realize future but uncertain gains [10]. Hence, whenever
attackers learn that they have exfiltrated an irrelevant information unit, they realize a
loss in terms of the time and resources they spent to draw this particular unit. Hence,

Fig. 10.2 Quantile plots for
a binomial distribution with
γ = 0.01
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the experience of repeated exfiltrations of information irrelevant to their operational
goals may motivate attackers to terminate the attack prematurely.

Prospect theory posits that the expected value of a discrete decision under uncer-
tainty and K alternatives is the sum of the value of all k=1, …, K outcomes vk
multiplied with their respective likelihood of occurrence pk :

E [V ] =
K∑

k=1

pkvk (10.16)

This expected value is qualified with a re-weighting function which takes into
account loss aversion [9]:

η(v) =
{

vβ , v ≥ 0

−λ|v|β , v < 0
(10.17)

Takemura and Murakami [20] experimentally found β = 0.88 and λ = 2.55.
Finally, following prospect theory, we correct the probability for human overreaction
to events with small probabilities. The corrected probability π(p) is given by

π(p) = pδ

(
pδ + (1 − p)δ

) 1
δ

(10.18)

where δ is an ancillary parameter that captures the asymmetric perception of prob-
abilities by human agents [9]. We use these two corrections to construct a pseudo-
probability measure Pπ [V = vk] = π(pk) and to calculate the revised values of
η(vk). Attackers thus realize an expected perceived value per draw of

Eπ [η(V )] =
K∑

k=1

π(pk)η(vk) (10.19)

While this modification works well with discrete distributions, further modifica-
tions as suggested by [17] are required for continuous distributions.

10.2.2 Interaction with Defenders

We assume that those who operate and maintain the computer network (the ’defend-
ers’) will attempt to protect the data from exfiltration. Attackers therefore operate
under the risk of beingmonitored or detected. At the same time, defenders can falsely
conclude there is an attack when in fact there is none (false positives), or they may
be ignorant of an actual attack (false negatives).



156 P. Fischer et al.

Let the random variable Y ∈ {0, 1} objectively indicate whether the system is
compromised during a specific time step. Defenders can only imperfectly observe
the extent to which this is the case. Let the random variable Z ∈ {0, 1} capture their
(if erroneous) assessment. We assign a total probability to both variables:

P [Y = 1] =: q and P [Z = 1] =: p (10.20)

Weassume that the probability of an actual cyber network exploitation occurring at
present is small, hence q � 1. Defenders strive to realize almost-perfect prediction,
formally, the set {Z = 1 ∧ Y = 1} the probability of which we denote as ξ ∈ [0, 1].
Assuming that there are only positive associations of Y and Z , its lower bound is
given by the multiple of p and q, and its upper bound is given by the Fréchet bound:

pq ≤ ξ ≤ min{p, q} (10.21)

Then, the true positive rate that captures correct predictions (and thus the effec-
tiveness of defense operations) is

P [Z = 1|Y = 1] = P [Z = 1 ∧ Y = 1]

P [Y = 1]
= ξ

q
(10.22)

and the false positive rate that captures erroneous predictions (and thus the inverse
of the efficiency of defense operations) is

P [Z = 1|Y = 0] = P [Z = 1 ∧ Y = 0]

P [Y = 0]
= p − ξ

1 − q
(10.23)

Defenders therefore face a basic trade-off: With q � p, the true positive rate can
bemaximized bymaximizing p toward 1. However, this also implies tomaximize the
false positive rate, so that highly sensitive monitoring systems (i.e., those with a high
true positive rate) also generate many false alarms. This trade-off can be expressed
by the false discovery rate:

P [Y = 0|Z = 1] = P [Z = 1 ∧ Y = 0]

P [Z = 1]
= p − ξ

p
= 1 − ξ

p
(10.24)

Since, by the Fréchet bound, ξ ≤ q, and assuming q � p, the false discovery rate
is close to unity, implying that almost all alarms are false alarms. This effect may
discourage defenders from investigating every incident, and hence attackers have a
chance to remain in the network not only for a negligible number of time steps.

As they monitor the network, defenders sample indicators of compromise during
each time step, assuming attackers exfiltrate information units at random.With prob-
ability p ∈ [0, 1], they discover that the network has been compromised. Therefore,
each time step can be considered as an independent Bernoulli trial whose outcome is
captured by the indicator random variable Zi ∈ {0, 1} which is Bernoulli distributed
with probability p.
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We assume that defenders can terminate the attackers’ operation as soon as they
have collected r ∈ N indicators of compromise. The time by which this collection is
complete is captured by the random variable T ∈ N. Hence, the sum of all indicators
of compromise up to time step T is

r =
T∑
i=1

Zi (10.25)

which implies that T has a negative binomial distribution whose probability mass
function is

P [T = k] =
(
k − 1

r − 1

)
pr (1 − p)k−r , for k = r, r + 1, r + 2, . . . (10.26)

Thus, the number of draws the attackers can expect to make before the defenders
terminate the attack is

m := E [T ] =
∞∑
k=r

k

(
k − 1

r − 1

)
pr (1 − p)k−r = r

p
(10.27)

We argued before that during a real attack, the exfiltration process resembles a
covered draw in an urn lottery, whereby attackers do not evaluate the same informa-
tion unit twice. In this case, T has a negative hypergeometric distribution, and the
probability of defenders terminating the attack after k time steps is

P [T = k] =
(k−1
k−r

)( N−k
pN−k+r

)
( N
pN

) (10.28)

and hence the expected number of information units that the attackers can draw
before the defenders terminate the attack is

m = E [T ] = r
N + 1

(1 − p)N + 1
(10.29)

Finally, intelligent defenders likely learn incrementally about the attackwith every
confirmation that an informationunitwas exfiltrated.With such a learningmechanism
in place, an observed is also a confirmed incident, and the probability of detection
during each time step t should be proportional to the number of information units
drawn. Therefore, the probability of detection pt is

pt := P [Zt = 1] = t

N
(10.30)

and the probability that defenders can terminate the attack by time step k is
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P [T = k] = pk

k−1∏
t=0

(1 − pt ) = k

N

k−1∏
t=0

(
1 − t

N

)
= k

Nk

(N − 1)!
(N − k)! = k!

Nk

(
N − 1

k − 1

)

(10.31)
While the expectation value of this distribution does not have a closed-form solu-

tion, it can be computed by fitting a power function to it. For 1 < N < 40, 000, we
found

m = E [T ] =
N∑

k=1

kP [T = k] =
N∑

k=1

k
k!
Nk

(
N − 1

k − 1

)
≈ 1.236 · N 0.501 ≈ 1.236 · √

N

(10.32)
Once defenders can react in this way, the attackers must qualify the total value

their operation can attain with the possibility that the defenders terminate it. The true
value of the operation is therefore given by the compound distribution of Xt and T :

V =
T∑
t=1

Xt (10.33)

Let again α denote the share of valuable information units in the network, and let
E [T ] = m denote the number of draws the attackers can make before the defenders
terminate the attack. Assuming that T and Xt are independent, we can exploit the
tower property of the expectation value to obtain

E [V ] = E

[
T∑
t=1

Xt

]
= E

[
E

[
T∑
t=1

Xt

∣∣∣∣T
]]

= E [TE [X |T ]] = E [Tα] = αm

(10.34)

10.3 Illustrations

Suppose the attackers have obtained access to a client management server of an
industrial firm with N = 10, 000 clients, of which only n = 100 have highly valu-
able strategy documents on them, whereas the rest does not store any data worth
exfiltrating. Thus, α = n

N = 0.01. Under pure random choice, valuable clients are
binomially distributed, so the expected value is E [V ] = αm = 0.01 · m, implying
the attackers would have to conduct at least 100 discrete exfiltrations to identify
at least one valuable client. If they are following a promising track, the number of
valuable clients would be hypergeometrically distributed. Still, under both distribu-
tional assumptions, the chance to have exfiltrated at least one valuable client after
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100 draws is only 26.4%. Using the quantile function, and assuming a binomial dis-
tribution, attackers can calculate that they would need to exfiltrate at least m = 299
(459) clients to find a valuable one among these with a probability of at least 95%
(99%). If the attackers do not draw at random, but evaluate each client only once—
implying a hypergeometric distribution—they would require 294 (448) draws for a
success probability of at least 95% (99%). The defenders can expect to observe at
least m = E [T ] = 1.236 · √

N ≈ 124 draws before they can terminate the attack.
Say the attackers have identified a way to exfiltrate user data from the database of

a social network. Since individual user data sets are independent from another and
each set can be potentially valuable, the drawing sequence is irrelevant. Assuming
the value of user data sets has a Gaussian distribution with mean μ and standard
deviation σ , the expected value for the operation after m draws is V = ∑m

j=1 X j

with expectation value E [V ] = mE [X ] = mμ. The value of the operation therefore
crucially depends on the average value of a user data set. For μ = 0.1$ - a relatively
low value which implies there are many users in the network who do not have any
particularly valuable data associated with their profile, or that the evaluation of such
data is costly - there is only a 54% probability that the value of the whole operation
is greater than zero. The attackers would have to draw at least 271 (542) user data
sets to be 95% (99%) sure this is the case. Therefore, they are likely to compensate
the low expected value with a high attack frequency. After drawing 100,000 user
data sets, the attackers can be at least 99% sure that the value of their operation will
exceed $9,264.

Finally, consider a case where the attackers have breached the firewall that pro-
tects the main file server of a government organization. They can now download
any file stored on it, but only learn about its information value upon inspection,
hence the draw is a random event. Suppose the files are classified under unclassi-
fied, internal, confidential, secret and top-secret. The expected value of a randomly
chosen file then is E [X ] = ∑5

�=1 p�v�, and the expected value of all m files that
the attackers draw before the defenders can stop them has a multinomial distribu-
tion with E [V ] = m

∑5
�=1 p�v�. Say the vector of the respective value of a file per

classification is v = [0 1 5 10 100] monetary units, implying that unclassified files
are worthless, whereas top-secret files are highly valuable. Say the vector for the
respective probabilities that a randomly chosen document pertains to one of the five
categories is p = [0.9 0.05 0.04 0.009 0.001], implying that there is a very high
chance of finding irrelevant files and a minute chance of finding very valuable ones.
A single random draw therefore has an expected value of E [X ] = p · v = 0.44, and
the total expected value after m draw is E [V ] = mp · v. If the file server stores
N = 10, 000 files, we would expect the attackers to draw m = 1.236 · √

N ≈ 124
files with an expected value of 54.6 monetary units.

Applyingprospect theory to this case,we skew thevalue vector elementwise, using
the function from Eq. (10.17), which gives η(v) = v0.88. We do so to reflect the fact
that, according to prospect theory, humans prefer to avoid losses over betting on
risky gains. Hence, the vector of perceived values is η ≈ [0.0 1.0 4.1 7.6 57.5]. We
calculate the perceived probabilities with δ = 0.5 as suggested by [9], so thatπ(p) =
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√
p

(
√
p+√

1−p)
2 , which replaces the probability vector p, can be computed elementwise

to get π ≈ [0.59 0.16 0.14 0.08 0.03].
The perceived expected value that the attackers hope to realize per draw is now

much higher, since Eπ [η(X)] = π · η = 3.1 monetary units. Accordingly, the per-
ceived expected value of the whole operation after m = 124 files are exfiltrated is

Eπ

[∑124
j=1 η(X j )

]
= 380 monetary units. Hence, if the attackers overreact to events

with small probabilities, they may engage in an exfiltration operation although, from
a purely rational point of view, this operation is unlikely to yield much value.

10.4 Conclusion

We intended to put ourselves in the position of attackers who are interested in exfil-
trating valuable information from a computer network. The formal model we devel-
oped not only considers different methods by which attackers would proceed with
or terminate the attack, but it also attempts to show how they might operate under
a situation of asymmetric information, budget constraints, and typical fallacies of
human judgment.

It is true that defenders cannot prevent attacks from happening—there is no zero-
day, all-hazard protection level, or if there is, excessive investments or total system
isolation are required to realize it. While strong encryption is an option to render
exfiltrated information units useless to attackers, it does not dissuade them from
continuing the operation.

Our model suggests that defenders can deceive attackers by conveying a credible
message that the network stores no valuable information, or that an excessive number
of drawsmaybe required to exfiltrate valuable information units.As a result, attackers
aremotivated to terminate their operation.Defenders have two options to convey such
messages.

First, defenders can decrease the probability that attackers exfiltrate valuable infor-
mation units by increasing the total number N of all units, e.g., by flooding the net-
work with irrelevant information. While this idea is counter-intuitive to the principle
of clean data management, the repeated exfiltration of worthless information units
likely deters attackers from continuing the operation. This situation resembles the
famous ’market for lemons’ problem [1]. Just like buyers of used cars, attackers are
faced with information asymmetry about the quality of the good to be obtained, and
they must incur transaction costs to resolve this asymmetry. These ’hidden char-
acteristics’ of information units—attackers do not and cannot know the true value
prior to exfiltration—make the attack costly andmaymotivate attackers to abandon it
early. Ideally, such intentionally worthless information units could be equipped with
false flags or conspicuously strong encryption, so that they would serve as honeypots
which attract attackers and enable defenders to monitor and analyze their behavior.

Second, defenders may minimize the number of draws m attackers can make
before they are detected. In all variants of our model, the value attackers can realize
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depends on m. Hence, defenders should not wait until an attack has occurred and
then analyze it with ex-post forensics, but they should strive to build early detection
system and fast incident response.
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Chapter 11
Individual Career Versus Corporate
Security: A Simulation of CSO
Investment Choices

David Baschung, Sébastien Gillard, Jean-Claude Metzger,
and Marcus M. Keupp

11.1 Introduction

Although global cybersecurity expenditures have increased with a compound annual
growth rate of about 8% over the last years, and although governments and industry
organizations have introduced regulatory requirements and certification processes
such as ISO 27001, organizations still suffer from security breaches and struggle
to defend themselves against cyber attacks. Reports abound with case studies of
business interruption caused by cyberattacks [1, 12, 30]. Further, certifications and
regulatory requirements assess the proper implementation of formal processes, but
not how effectively they neutralize or thwart cyberattacks [7, 9]. Often, cyberdefense
effectiveness is assessed by tests that verify the existence rather than the effective
performance of cyberdefense measures [6, 10, 29].

Althoughmicroeconomic theory proposes straightforward solutions to these prob-
lems (e.g., [18, 19]), corporate reality is more complicated. It is difficult to quantify
losses from cyber incidents in monetary terms since future attacks and the damage

D. Baschung (B)
D-MTEC, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
e-mail: dbaschun@student.ethz.ch

S. Gillard · M. M. Keupp
Military Academy at the Swiss Federal Institute of Technology Zurich, Birmensdorf, Switzerland
e-mail: sebastien.gillard@milak.ethz.ch

M. M. Keupp
e-mail: mkeupp@ethz.ch

J.-C. Metzger
Hemotune AG, Zurich, Switzerland
e-mail: jean-claude.metzger@hemotune.ch

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. M. Keupp (ed.), Cyberdefense, International Series in Operations
Research & Management Science 342,
https://doi.org/10.1007/978-3-031-30191-9_11

163

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30191-9_11&domain=pdf
mailto:dbaschun@student.ethz.ch
mailto:sebastien.gillard@milak.ethz.ch
mailto:mkeupp@ethz.ch
mailto:jean-claude.metzger@hemotune.ch
https://doi.org/10.1007/978-3-031-30191-9_11


164 D. Baschung et al.

they cause are uncertain [8, 11]. Therefore, CSOs can only estimate, but never know
the truly (objectively) required values of the parameters of the Gordon-Loeb model,
and hence the effectiveness of their investment decisions depends on their ability to
accurately predict the vector, scope and extent of future cyberattacks.

Further, the personal career ambitions CSOs have may not always directly align
with the interests of the firm [2–4]. Since the average tenure of a CSO typically spans
between 24 and 48months [23],managerswhose investment decisions fail to produce
effective cyberdefensemay already have found employment with another firm before
security breaches occur at their original employer. However, the reputation, i.e., the
way an agent is perceived by others as a result of past accomplishments and failures
[22] is likely negatively affected by such moves. In contrast, CSOs who managed to
produce effective cyberdefense should enjoy a good reputation in the industry even
if they leave the original firm they worked for.

Hence, CSOs who understand to organize cyberdefense effectively would acquire
a good reputation in the industry over time. In turn, this reputation would maximize
their employment opportunities in the job market, such that firms which require
effective cyberdefensewould bewilling to hire theseCSOs at a premium.By the same
token, the inter-firm mobility of CSOs who fail to provide effective cyberdefense
should be limited since the loss of reputation associated with such events negatively
affects their employment prospects. We would therefore expect that, in the long
run, and despite the principal-agent-problem, CSOs with a high (low) reputation in
the industry will be found in firms which have effective (ineffective) cyberdefense
in place. We therefore propose a recursive multi-round model which simulates the
migration of cybersecurity investments by 10,000 CSOs over a period of 40 years.

11.2 Modeling CSO Investment Decisions

11.2.1 Basic Gordon-Loeb Setup

Our approach is based on the Gordon-Loeb model [18], and Table 11.1 details its
key parameters and variables. A firm is facing a yearly monetary loss λ j as a result
of a cybersecurity breach which occurs with a probability of t j , where the subscript
j denotes discrete years. In the absence of any investment in information security,
the vulnerability of the IT asset stock is noted as v j ∈ [0, 1], and the yearly expected
loss is given by λ j t jv j .

By investing an amount z j in cyberdefense, the firm can reduce this expected
loss, subject to a technology productivity parameter α ∈]0, 1]. As a result of such
investments, the yearly expected loss decreases to λ j t j S j

(
z j , v j

)
, where Sj is the

security breach probability function given by

Sj
(
z j , v j

) = v
αz j+1
j (11.1)
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Table 11.1 Model parameters and variables

Parameter Definition range Description

j {1, . . . , 40} Index for time periods

λ j [1,∞[ Expected loss in period j

t j ]0, 1[ Probability of a security breach in period j

v j ]0, 1[ Vulnerability of IT asset stock without cyberdefense

S j [0, v j ] Security breach probability function

α ]0, 1] Productivity parameter

z j [0,∞[ Accumulated IT asset stock in the current period j

z j−1 [0,∞[ Accumulated IT asset stock carried over from prior
period j − 1

za, j [0,∞[ Degraded IT asset stock by year j

λ̂ j [0,∞[ CSO’s estimate of true but unknown λ j

t̂ j [0, 1] CSO estimate of true but unknown t j
v̂ j [0, 1] CSO estimate of true but unknown v j

z j,des [0,∞[ Desired IT asset stock by CSO’s estimates

�z j,des [0,∞[ Optimal investment required to realize z j,des
d j,CSO [0, 10] Factor by which CSO qualifies �z j,des in year j

z j,app [0,∞[ Investment approved by executive board in time
period j

κ0 [0, 1] Scaling factor for CSO’s prediction accuracy

κ1 [0, 1] Scaling factor for CSO self-confidence by reputation
growth

κ2 [0, 1] Scaling factor for CSO self-confidence by past
budget approvals

κ3 ]1, 3] Scaling factor for relative size of requested budget

κ4 [0, 1] Scaling factor for arbitrariness of CSO behavior

dEB, j [0, 3] Investment the executive board approves in year j

λB, j [0,∞[ Maximum loss realized loss due to a security breach

λA, j [0,∞[ Maximum loss as a result of failing an audit

R j [0, 1] CSO reputation by time period j

R j−1 [0, 1] CSO reputation in the prior time period ( j − 1)

�RA R Change in CSO reputation due to executive board
approvals

�RB R Change in CSO reputation due to security breaches

�RC R Change in CSO reputation due to (not) passing audits

Ctot, j [107, 109] Total capitalization of the organization

r j [0,∞[ Revenue the firm makes in year j

ρ [0, 1] Return on investment (ROI) the firm realizes

τtyp [0, 1] Typical investment rate in cyberdefense in the
industry

ζtyp [0, 1] Typical loss in the industry after a cyberattack
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We assume there is one CSO per firm. A rational and fully informed CSO would
invest an amount of z j which maximizes the expected net benefit for information
security (ENBIS):

EN BI Sj = λ j t jv j − λ j t j S j
(
z j , v j

) − z j (11.2)

Funds are invested until the marginal cost of the investment z j is equal to the
marginal expected net benefit λ j t jv j − λ j t j S j

(
z j , v j

)
, formally:

z j,opt
(
λ j , t j , v j

) =
ln

(
1

−αv jλ j t j ln(v j)

)

α ln
(
v j

) (11.3)

11.2.2 Dynamic Extension

We suggest that in corporate reality, an investment in cybersecurity is not a one-off
event, and neither can CSOs fully control the amount that is spent nor are IT assets
exempt from depreciation and obsolescence. Rather, we believe that any investment
in cybersecurity is an interactive process which comprises several subsequent steps
as shown in Fig. 11.1.

Both technological evolution and depreciation degrade an initial IT asset stock
of z0 made in year j = 0 to za,0. Therefore, last years’ security breach probability
function changes to Sa, j−1 = η · Sj−1, where η > 1. The lower bound of za, j is given
by the vulnerability v j−1. Hence,

Sa, j−1 = η · Sj−1 = v
αza, j−1+1
j−1 (11.4)

This equation can be solved for za, j−1, so that the monetary value of the degraded
asset stock is

za, j−1 =
(
ln

(
η · Sj−1

)

ln
(
v j−1

) − 1

)

/αn (11.5)

where αn is the individual productivity parameter of the n-th CSO (since our model
considers a setting of many CSOs who migrate between firms). As they note this
degradation, CSOs generate estimates in the subsequent year j = 1 for λ j , t j and
v j , all of which are based on their personal beliefs and threat assessments, in order
to determine how much to invest in order to renew the asset stock. We model these
estimates by a symmetric probability function, according to which it is equally likely
that a CSO over- or underestimates the actual values of these parameters. Hence, in
contrast to [18], we believe that anyCSO can only imperfectly estimate the parameter
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Fig. 11.1 Dynamic interactions before and after investment decision

values which determine the optimal investment in cybersecurity. We use a Gaussian
distribution to model these estimates and set the real threat environment of the cor-
responding year j as expected values:

λ̂ j ∼ N (
λ j , (κ0 · λ j )

2
)

(11.6)

t̂ j ∼ N (
t j , (κ0 · t j )2

)
(11.7)

v̂ j ∼ N (
v j , (κ0 · v j )

2
)

(11.8)

The variance of the distribution σ 2 is modeled with a scaling factorκ0; the smaller
it is, the more accurately CSOs can estimate the true parameters. The scaling factor
is always chosen so that the condition that the loss λ̂ j is never smaller than 0 and
the attack probability t̂ j and the breach probability v̂ j never exceed the bounds [0, 1]
during the simulation. As CSOs enter their estimates in Eq. (11.3), they obtain a
desired asset stock of z j,des, formally:
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z j,des = z j,opt
(
λ̂ j , t̂ j , v̂ j

) =
ln

(
1

−αv̂ j λ̂ j t̂ j ln(v̂ j)

)

α ln
(
v̂ j

) (11.9)

By deducting the remaining stock of za, 0, they obtain the desired investment of
�z1,des which is required to renew the asset stock. In addition, we assume that a
CSO will have to exhibit at least some basic activity and hence invest not less than
a minimum of 5% of the optimal investment amount. Hence,

�z j,des =
{
z j,des − za, j−1 z j,des − za, j−1 > 0.05 · z j,des
0.05 · z j,des z j,des − za, j−1 ≤ 0.05 · z j,des (11.10)

11.2.3 CSO Reputation and Self-interest

We model CSOs as managers who do not only request a budget to provide the
organizations they work for with effective cyberdefense, but also to optimize their
future career prospects. We therefore alter the optimal investment of �z j,des calcu-
lated in Eq. (11.10) by considering this self-interest in reputation. Since reputation
is dynamic—it grows or decays over time with the effectiveness of the cyberdefense
the CSOs invested in—we define a measure of current reputation R j ∈ [0, 1] which
evolves recursively:

R j = R j−1 + �RA + �RB + �RC (11.11)

where R j−1 is CSO reputation in the preceding year, �RA is the growth reputation
obtained from effective investments,�RB is the reputation obtained from preventing
losses from a cyberattack, and �RC is the reputation obtained from passing assess-
ments and audits. Their recursive dynamization is described further below in section
6.2.4. Note that all three terms can be positive or negative, so that CSO reputation
can grow or decay over any time period. We delimit R j ∈ [0, 1] so that values of
R j > 1 or R j < 0 are reset to R j = 1 and R j = 0, respectively. To operationalize
and calculate these components of CSO reputation, we introduce four scaling factors
which captures different antecedents which we believe influence reputation. The first
scaling factor captures the path dependency of reputation over time, formally:

dCSO1(R j−1) = κ1 · R j−1 − R j−1,min

R j−1,max − R j−1,min
(11.12)

whereκ1 is an ancillary parameter whose magnitude reflects how strongly CSO self-
confidence changes with a repeated growth or decay over time. Further, we believe
the budget CSOs present to the executive board for approval is likely influenced by
the extent to which (if any) this board has already approved prior requests [5, 28].
We therefore introduce a second scaling factor of
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dCSO2(dEB) = κ2 · 1

j − 1
·
j−1∑

i=1

di,EB (11.13)

where κ2 is an ancillary parameter whose magnitude reflects how strongly CSO
self-confidence changes as a result of past successful budget requests, and d j,EB is
the extent to which the board is likely to approve the current request. We assume that
approval is certain if a cybersecurity breach b j−1 has occurred in the previous year,
otherwise, the budget approved by the executive board grows with CSO reputation.
However, we assume that at least 50% of the request will be granted if there was no
breach in period j − 1 even if CSO reputation is low, hence:

d j,EB =
{
1 b j−1 = 1
1
2 + R j−1

2 b j−1 = 0
(11.14)

Newly appointed CSOs likely want to conduct a larger IT security project to
prove their competence and increase their reputation in the industry, or they are even
expected to implement large projects upon appointment [17]. Hence, we model a
third scaling factor which makes larger budget requests more likely between the
second and fourth year of CSO tenure (we assume CSOs require the first year on the
job to establish themselves and learn about the company). Thus,

dCSO3( j) =
{

κ3 if j ∈ {2, 3, 4} and X = 1, where X ∼ Bernoulli(p = 2/3)

1 otherwise
(11.15)

whereκ3 is an ancillary parameter which measures how large the requested budget is
in comparison to an average project. Finally, a fourth scaling factor of dCSO4 captures
arbitrariness and random behavior among CSOs:

dCSO4( j) ∼ Uniform[1 − κ4, 1 + κ4] (11.16)

where κ4 is an ancillary parameter whose magnitude reflects the degree of arbitrari-
ness of CSO behavior. Note that while dCSO1 and dCSO2 are calculated iteratively,
dCSO3 and dCSO4 are not. Finally, these four scaling factors are used to qualify the
optimal investment of�z j,des obtained from Eq. (11.10). The resulting amount z j,app
which the executive board approves then is

z j,app = �z j,des · dCSO =
�z j,des · [

dCSO1(R j−1) + dCSO2(dEB) + dCSO3( j)
] · dCSO4

(11.17)
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Note that this final amount can be larger or smaller than the optimal investment
obtained in Eq. (11.10) and the CSO’s initial budget request. After investment, the
IT asset stock increases, and the next round of degradation begins, which in turn is
followed by renewed investment. Since any cybersecurity investment cannot exceed
the firm’s total revenue r j in the respective budget year, we take the minimum of the
computed desired investment �z j,des · d j,CSO · d j,EB and the revenue r j :

�z j,app = min{�z j,des · d j,CSO · d j,EB, r j } (11.18)

z j = za, j−1 + �z j,app (11.19)

11.2.4 Recursive Modeling of CSO Reputation

Since y = tanh(x) ∈ [−1, 1], and since the function is strictly monotonous, we can
condition each of the three components of CSO reputation in Eq. (11.11) on the min-
imum and maximum range of R j . Further, since tanh(±2.65) = ±0.99, we include
a factor of ±2.65 which limits the maximum increase or decrease of reputation per
time interval.

To model CSO reputation change over time, we compare the approved amount
with what would be a ‘typical’ investment ztyp in the focal firm’s industry, given its
total capitalizationC j,tot, total return on investment (ROI) ρ, and the typical cyberde-
fense investment rate of τtyp. Since firms typically spend US$2.84 per US$1,000 of
revenue on IT security [21], we set τ = 0.284%.

ztyp = C j,tot · ρ · τtyp (11.20)

We suggest that CSO reputation increases in period j if the investment the exec-
utive board approves is larger than this ‘typical’ investment. Thus,

�RA = tanh

(
2.65 · �z j,des · d j,CSO · d j,EB

ztyp

)
(11.21)

While CSOs cannot prevent a cyberattack from occurring, they can (if erro-
neously) predictwhich investment is likely required tominimize future losses.Hence,
CSO reputation likely decreases with the magnitude of the loss a firm suffers when a
cybersecurity breach occurs. We therefore simulate a randomly occurring breach in
year j which occurs with probability t j and leads to a loss of λB, j · Sj (z j , v j ). The
executive board compares this actual loss to what would be a ‘typical’ loss (λ · S)typ
among other firms in the industry which occurs every 1/t j years. This ‘typical’ loss
can be expressed as

(λ · S)typ = ρ · C j,tot · ζtyp (11.22)
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where ζtyp is the typical loss rate as a result of a cyberattack. Given that the cost of
a cyber incident in a firm typically amounts to 0.4% of annual revenues [26], we set
ζ = 0.4%. The resulting change in reputation then is

�RB = tanh

(

−2.65 · λB, j · Sj
(
z j , v j

)

(λ · S)typ
+ 1

)

· 1

t j
(11.23)

Note that the addition of the term (+1) in Eq. (11.23) implies that a loss due to a
cybersecurity breach only diminishes CSO reputation if this loss is significant. Note
that CSO reputation can decrease significantly as a result of this effect; it decays the
stronger the larger the loss is in comparison to a ‘typical’ loss.

CSO reputation is considered irrevocably destroyed if the firm loses 90% or more
of its total capitalization, no matter if this loss is due to a devastating impact of λB, j

or insufficient investment Sj (z j , v j ). Whenever either event occurs, the respective
CSO is considered fired and the firm insolvent, and neither is further considered in
the simulation.

Our approach follows prior contributions which confirm a log-normal distribution
is appropriate to model λB, j [16, 20]. Its probability density function is determined
by two ancillary parametersμ and σ 2 which are defined in the probability distribution
function [14]:

P(X = x) = 1

xσ
√
2π

exp

(
− [ln(x) − μ]2

2σ 2

)
, (11.24)

Hence,
med(X) = exp(μ) ⇒ μ = ln(med(X)), (11.25)

and

E(X) = exp

(
μ + σ 2

2

)
⇒ σ 2 = 2 ln(E(X) − μ) (11.26)

We use the data on actual cyber security breaches and the losses they caused that
[26] provides. The n = 921 breaches studied caused a median loss of 250,000 US$,
while the expected loss is 7.84 million US$. From these values, we obtain rounded
ancillary parameters of μ = 12.43 and σ 2 = 6.89.

Finally, CSO reputation should grow with the extent to which he or she can
make the firm successfully pass cybersecurity assessments which audit the security
probability breach function Sj .

Since auditors cannot evaluate a complex IT landscape exhaustively within a
reasonable time frame, they will likely run a test which simulates a cybersecurity
breach. The potential loss from this simulated breach amounts to λA, j · Sj

(
z j , v j

)
.

The higher this loss is in comparison to a typical loss of (λ · S)typ in the firm’s industry,
the more CSO reputation will decrease. We assume that λA, j follows a log-normal
distribution with ancillary parameters of μ = 12.43 and σ 2 = 6.89, and that over a
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simulation period of 40 years, an audit is scheduled every three years. Therefore, the
associated change in CSO reputation is

�RC = tanh

(

−2.65 · λA, j · Sj
(
z j , v j

)

(λ · S)typ
+ 1

)

· 40
13

(11.27)

Like above.

11.3 Simulation Set-Up and Parameter Initialization

Weperformed four different simulations of thismodel, the parametric setup of each of
which is given in Table 11.2. In each simulations, the time index is set to j ∈ [1, 40].
Each CSO has a productivity parameter αn which corresponds to the n-th CSO.

The firm faces an (uncertain) monetary loss of λ j ∈ R
∗ with a probability of

t j ∈]0, 1[. We assume a rather aggressive threat landscape and therefore set v ∈
[0.5, 0.9]. Since by Eq. (11.1), Sj (z j , v) follows a power law, as the left-hand panel
of Fig. 11.2 shows, and since z j ≥ 0, each αn must exceed a lower bound defined by
the intersection between the x-axis and the curve in the right-hand panel of Fig. 11.2.
The power law distribution entails that the convergence of Sj (z j , v) toward zero is
slow as αn grows. Hence, a too large αn would imply that even very small investments
of z j would reduce the firm’s vulnerability to 0.We therefore define a range of±10%
around αmax which corresponds to max( j, zopt(αn)).

In period j = 0, the investment of z j=0 is initialized with z j=0 = z j=0,opt. Each
year, this investment degrades with a rate of η to za, j as a result of depreciation and
technological development (viz., Eq. 11.5). Typically, cybersecurity investments are
fully depreciated after four years [25, 27], so the residual of Sj (z j , v) − v decreases
annually by 25%. With Eq. (11.5) and the properties of all other parameters, we
obtain η = 1.25.

Wesetκ0 ∈]0.00, 0.05[, bothκ1 andκ2 ∈ [0, 1], andκ4 ∈]0, 1[.We letκ3in]1, 3]
follows a Bernoulli distribution, by which a random variable X takes on a value of
X = 1 with a probability p and of X = 0 with a probability q = 1 − p. In our case,
over the three-year interval j ∈ 2, 3, 4, the CSO has two chances to succeed (X = 1)

Table 11.2 Model parameters used in the simulation runs

No. ϕ v κ0 κ1 κ2 κ3 κ4 Ctot

1 2
40 0.70 0.02 0.90 0.90 2.00 0.20 109$

2 1
40 0.60 0.02 0.10 0.30 3.00 0.30 107$

3 5
40 0.50 0.04 0.70 0.30 2.00 0.50 108$

4 3
40 0.80 0.03 0.50 0.60 2.00 0.20 107$
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Fig. 11.2 Power law distribution of security breach probability function

and one to fail (X = 0) when he or she proposes a major project. Thus, the optimal
investment �z j,des that CSOs request grows with κ3.

To compute the ‘typical’ investment ztyp, we consider larger firms with a total
capitalization Ctot, j ∈ [107, 109], and we follow prior literature on average S&P 500
earnings which assumes an ROI of ρ = 12% [13, 24].

Finally, we assume that between one and five significant security breaches can
occur within a timeframe of 40 years and that the probability of such a breach follows
a Bernoulli distribution, hence B j−1 ∼ Bernoulli(ϕ), with ϕ ∈ { 1

40 ,
2
40 ,

3
40 ,

4
40 ,

5
40 }.

11.4 Results

The four panels in Fig. 11.3 show the changes in CSO reputation over 40 years for all
10,000 CSOs and for each of the four simulations specified in Table 11.2. The four
panels in Fig. 11.4 show the associated changes in firms’ ENBIS. Due to significant
overlap between the individual curves in both figures, the respective means (green
circles) and medians (indigo crosses) have been redrawn separately.

Using OLS regression, we modeled ENBIS j as a function of CSO reputation
R j after 10, 20, 30 and 40 years. We assessed the goodness-of-fit of each regression
model by Pearson’s coefficient of determination R2 and aWald test. All computations
were performedwith the Python libraryscipy.stats.linregress. Table 11.3
documents the results, and Fig. 11.5 plots those for j = 40 years.

The results suggest that the OLS parameter estimates are significant. Given that
we analyze human behavior which is notoriously hard to model and predict, with
one exception we find a relatively high correlation between reputation R j and
ENBIS j (0.36 ≤ R2 ≤ 0.82) once the simulation covers a full 40-year time span
(viz., Fig. 11.5).
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Fig. 11.3 Evolution of CSO reputation over time

Figure 11.6 analyses, for a simulation time of j = 40 years, the consequences for
CSO reputation when the loss of a specific security breach significantly exceeds the
‘typical’ range of such a loss, i.e., when λB, j · Sj (z j , v j ) > (λ · S)typ. In each of the
four simulations, there is a significant and negative relationship between the number
of such security breaches and CSO reputation.

We expect that CSOs with a low reputation would be found in firms which have
higher cumulative losses from repeated security breaches

∑40
j=1 λB, j · Sj (z j , v j ) over

a timespan of j = 40 years. Table 11.4 provides the OLS regression parameters we
found when we simulated this relationship, and Fig. 11.7 plots the results for all four
simulation time spans (note the y-axis in all panels of Fig. 11.7 is on a logarithmic
scale).
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Fig. 11.4 Changes in firms’ ENBIS over time

The results suggest that there is no such relationship for simulations 1 and 3
(panels A and C in Fig. 11.7), but the effect exists in simulations 2 and 4 (panels
B and D).

11.5 Conclusion

Although the strength of the correlation varies, the simulation illustrates our point that
there should be a positive relationship between CSO reputation and the cyberdefense
effectiveness.Hence,weposit that in the long term,CSOswith a high (low) reputation
will be found in firms with high (low) ENBIS. Therefore, the individual emphasis on
maximizing reputation (and thus employability) need not contest the firm’s interest
in effective cyberdefense.
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Table 11.3 Results of OLS regression analysis

Simulation n◦ Year Estimated parameter
R2

p-value

1 j = 10 βE = 0.38(1) 0.20 < 10−3

j = 20 βE = 0.57(1) 0.48 < 10−3

j = 30 βE = 0.58(1) 0.58 < 10−3

j = 40 βE = 0.58(1) 0.64 < 10−3

2 j = 10 βE = 0.06(1) 0.08 < 10−3

j = 20 βE = 0.06(1) 0.23 < 10−3

j = 30 βE = 0.07(1) 0.32 < 10−3

j = 40 βE = 0.07(1) 0.36 < 10−3

3 j = 10 βE = 1.15(2) 0.18 < 10−3

j = 20 βE = 1.07(2) 0.32 < 10−3

j = 30 βE = 1.13(1) 0.42 < 10−3

j = 40 βE = 1.17(1) 0.47 < 10−3

4 j = 10 βE = 1.04(1) 0.40 < 10−3

j = 20 βE = 0.99(1) 0.63 < 10−3

j = 30 βE = 1.03(1) 0.76 < 10−3

j = 40 βE = 1.04(1) 0.82 < 10−3

However, we expect that those CSOs who attempt to maximize their reputation
but fail to implement effective cyberdefense will eventually degrade their reputation
and end up in firms with less effective protection. It is possible that CSOs make
bad investment decisions and leave the firm before the consequences of their actions
show. For example, panel B in Fig. 11.5 shows a cluster of low-performing CSOs
who enjoy a fairly high reputation (>60%) although ENBIS is low. However, the
simulation results for longer time frames also suggest that noncompliant behavior is
not rewarded in the long run.

Reputation, in our view, provides firms with a signaling mechanism that allows
them to differentiate between CSO candidates. Firms should therefore hire CSOs
with a long and proven track record, rather than those who can merely demonstrate
short-term success. Moreover, they should provide CSOs with incentives that align
with their individual interest in maximizing a positive reputation in the industry.

Future research could further extend our simulation model to gain additional
insights. For example, one could additionally distinguish between λB > λtyp and
λB ≤ λtyp, and also between

∑
j

(
�zapproved, j

)
and

∑
j

(
λB, j · Sj S j (z j , v j )

)
.

Further, the response of executive board members to CSO budget proposals could
be modeled in greater detail. Since budget decisions are typically an interactive
process that involves initiatives and negotiations, members could be modeled as risk-
taking or risk-avoiding, and also their reaction to ‘small’ security breaches which do
not threaten the going concern of the firm should be assessed.
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Fig. 11.5 OLS regression results for j = 40years

Even with these incremental improvements, our approach still fundamentally
rests on the Gordon-Loeb setting of a single breach probability function and a single
parameter set which approximates the totality of all technologies the firm uses in
its cyberdefense. Hence, future research could subdivide the simulation into com-
ponents with different (λ, t, v)-tuples or different probability functions with differ-
ent productivity factors α. For example, there are established markets for antivirus,
firewall and intrusion prevention systems, implying that α is high, whereas it should
be lower for smaller and specialized markets such as sandboxing. Finally, threat vec-
tors could be differentiated by ‘stealth’ (intelligence services, industry espionage)
and ‘noisy’ agents (criminals, script kids) or by technological capabilities such as
‘identify’, ‘protect’, ‘detect’ and ‘respond’ [15].
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Fig. 11.6 Impact of significant security breaches on CSO reputation

Table 11.4 Estimation results for effect of cumulative loss on CSO reputation

Simulation no. Estimated parameter R2 p-value

1 βλ,R = −0.03(1) 0.39 <10−3

2 βλ,R = −0.03(1) 0.67 <10−3

3 βλ,R = −0.03(1) 0.30 <10−3

4 βλ,R = −0.02(1) 0.54 <10−3
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Fig. 11.7 OLS regressions for impact of CSO reputation on cumulative losses
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Chapter 12
Improving Human Responses
to Cyberdefense by Serious Gaming

Fabian Muhly

12.1 Social Engineering and Information Security

Social engineering—a term originally coined in political science [16]—designates
a set of psychological influence techniques (PIT) by which attackers exploit social
situations or typical human fallacies to gain access to computer systems [3, 5, 11, 18].
In a longitudinal study that spanned five years, researchers applied suchmanipulation
techniques and managed to penetrate 96.4% of the systems they tested [17]. The
2020 Twitter hack also used social engineering methods to access the handles of
several politicians and celebrities [6]. However, social engineering is not merely
related to cybercrime, on the contrary it creates severe security threats for critical
infrastructures, governments, and national defense [8, 9].

This study investigates the extent to which serious gaming may educate people
to recognize and neutralize such social engineering attacks. Serious gaming (SG) is
an interactive way to convey knowledge in an experiential learning style. Trainers
can use interactive, experiential learning tools which are both entertaining and of
educational value. To date, only a handful of studies have applied SG approaches to
fight social engineering [1, 2, 14, 15].

In an attempt to contribute to this debate, the present study designed and imple-
mented an experiment which studied human participants in a controlled setting. The
study is based on and a result of the author’s PhDwork [13]. Experimental designs are
procedures where one or more sample groups are treated in a specific way and where
the outcome of different treatment measures among a treatment group and a control
group is compared against each other to derive conclusions about the treatment’s
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effectiveness [7, 10]. In the present study, participation in a serious gaming exer-
cise was used as the ‘treatment’ that is supposed to ‘immunize’ human participants
against future social engineering attacks.

12.2 Experiment

The study was conducted as a quasi-experiment between February 2022 and May
2022. It comprised a pre-test, treatment, and post-test phase which are detailed in
Fig. 12.1. Before the study was carried out, a number of preliminary field observa-
tions with three samples collected between December 2019 and February 2020 were
performed in order to test and refine the study concept [12].

Study participants were recruited from a technical reserve battalion of the Swiss
Armed Forces. The daily tasks of soldiers, NCOs, and officers in this battalion fre-
quently involved operating computer systems and communicating by email and inter-
net applications. Since the study intentionallymimics psychologically abusive behav-
iors, and since these must appear as realistically as possible, ethical considerations
had to be respected. Therefore, to safeguard both research ethics, professional stan-
dards, and participants’ personal data, the study design was reviewed and approved
both by the legal department of the Swiss Armed Forces and by the ethics committee
of the School of Criminal Justice of the University of Lausanne (Switzerland).

12.2.1 Pre-test Phase

A survey was administered among all members of the technical reserve battalion
to gather knowledge about participants’ personality traits, behaviors, and attitudes

Fig. 12.1 Overview of research design and phases
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toward cyber risk. Participation was completely voluntary, and participants had to
submit an active declaration of consent. The questionnaire contained 129 questions
in 5 sections which did not allow respondents to navigate back once they had com-
pleted a section. Table 12.1 summarizes the variables the survey captured. It was
implemented between February 25, 2022, and March 27, 2022 with the free and
anonymized online survey tool LimeSurvey.1 Before implementation, the question-
naire was pre-tested for clarity and understandability by the study leader and a group
of colleagues.

A physical flyer was produced which explained the survey and gave a QR code
by which the online questionnaire could be accessed. This code was scanned by 276
unique individuals, 182 of whom fully completed the questionnaire. The arithmetic
mean of processing time was 21 minutes and 42 seconds. After the survey was com-
pleted, two individuals decided to opt out. In order to provide conservative estimates,
imputation was not applied, so all analyses were performed with the remainder of
the 180 participants.

On April 8, 2022, these 180 participants received a phishing email in their work
account inbox that intended to test participants’ proneness to fall for PIT. Four dif-
ferent and intricate variants were designed, each of which asked respondents to click
on a link and provide information. The technical implementation and execution of
this email was performed by a vendor of the Swiss Armed Force’s cybersecurity and
awareness team who had no direct relation to the battalion. In order to increase time
pressure, the phishing emails were sent on a Friday, and information asymmetry was
induced by discouraging escalation or consultation with co-workers. Upon receipt,
57.2% of study participants clicked on the link, and 88.3% of these also disclosed
information.

12.2.2 Treatment

Three and a half weeks after the phishing email had been sent, representatives of
the Swiss Armed Forces grouped study participants into a treatment group whose 42
members played a serious game, and a in control group whose 138 members carried
on with their ordinary work tasks.

Strictly speaking, this allocation process involves some subjectivity, and therefore
the experimental design cannot be considered a fully randomized controlled exper-
iment. However, a meta-analysis of social engineering intervention studies shows
that the type of participant randomization was not a significant predictor for the
effectiveness of the respective intervention under scrutiny [4].

The serious game was played during the whole day of May 4, 2022. In order
to control diffusion bias, members of the treatment group were assigned to either
a morning (8am to noon) or an afternoon (1:30pm to 5:30pm) session. The game
adopted the design by Beckers and Pape [2]. It featured an offline, physical ‘tabletop’

1 See https://www.limesurvey.org/.

https://www.limesurvey.org/
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Table 12.1 Overview of variables in the survey
Variable Code name Scale Question

Clicking on link in phishing email Link Binary –

Inputting requested information on
dedicated landing page

Info Binary –

Participation in serious game training PSGpart Binary –

Post-test 1 time1post Binary Results of post-test1

Post-test 2 time2post Binary Results of post-test2

Honesty-Humility Hone 5-point Likert
scale

60-item HEXACO personality
inventory

Emotionality Emot 5-point Likert
scale

60-item HEXACO personality
inventory

Extraversion Extr 5-point Likert
scale

60-item HEXACO personality
inventory

Agreeableness Agre 5-point Likert
scale

60-item HEXACO personality
inventory

Conscientiousness Cons 5-point Likert
scale

60-item HEXACO personality
inventory

Openness Open 5-point Likert
scale

60-item HEXACO personality
inventory

Previous information security training
for personal information

PIST_pitrue Binary Have you attended any training in the
last 12 months that focused on the
protection of personal data and
information?

Previous online information security
training for personal information

PIST_piOtrue Binary Was it an online training?

Previous information security training
for military information

PIST_mitrue Binary Have you attended any training in the
last 12 months that focused on
protecting military data and
information?

Previous online information security
training for military information

PIST_miOtrue Binary Was it an online training?

Previous individual victimization PIV_receivetrue Binary In the last 12 months, have you ever
received an email link from someone
asking you to provide sensitive
information such as personal
identification, bank and credit card
details, and passwords?

Individual victimization expectation IVE 5-point Likert
scale

In the next 12 months, how likely are
you to provide personal information
online to someone who asks you to
provide sensitive information (e.g.,
personal identification, bank and
credit card information, and
passwords) via email?

Risky cybersecurity behavior RCsB_Mean 7-point Likert
scale

20-item inventory concerning
self-reported cybersecurity behavior

Attitudes toward cybersecurity and
cybercrime in business

ATCIB_Mean 4-point Likert
scale

25-item inventory concerning
self-reported attitudes
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setting which created a situation plan of a fictitious company and a set of fictitious
employees, each of whom was characterized by job position, computer skills, and
personal strengths and weaknesses. The game is designed to help people familiarize
with the concept of social engineering, so that they are able to understand and detect
related attacks. Participants play with two stacks of cards, one of which covers
typical PIT, and one of which details how attackers approach their targets using
these techniques.

The game is led by a game master and played iteratively by 4–5 teams of 2–3
persons each per game table. In the study, there were three game masters, each of
whom led a game table with eight participants grouped in teams of two. The game
masters were all male, between 25 and 36 years old, and none of them had any direct
relation to the battalion or the Swiss Armed Forces during the period of the study.
At the end of the game, each game table has a winning team. During each round, the
teams are asked to create a social engineering attack. Each team defines a target asset
they want to exfiltrate from the fictitious company, such as financial information,
documents, or passwords.

After an initial phase of about 10 minutes during which the teams familiarize with
the situation plan and the fictitious employees, each team draws three cards from
the PIT and attack technique stacks. The teams now have 10 minutes to formulate a
reasonable social engineering attack. Depending onwhich cards they drew, theymust
find a combination of PIT and attack technique which, in their opinion, effectively
targets one of the fictitious employees. Subsequently, they must script their strategy
anddetail how theydeceived these particular employees. The teams thenpresent these
formulated plans to each other. Each team’s attack is evaluated by the other teams at
the table with a pre-defined point scale. This rating essentially checks whether the
team correctly understood and applied the PIT and social engineering techniques in
question.

This process is repeated for each team at the table. Once all teams at the table
have been evaluated, another round begins. The team which accumulated the most
points over all rounds is the winner of the respective game table. Although winning
is not the sole purpose of the game, it motivates participants to familiarize with the
concepts of social engineering and PIT. When all teams have completed the game,
the game master moderates a joint discussion about the opinions and experiences
the participants had while playing, in order to let them reflect and learn about the
concepts and techniques they were confronted with during the game.

12.2.3 Post-test Phase

On May 6, 2022, all participants again received a phishing email that was generated
as described before. This first post-test phase served to test whether participants had
realized short-term learning effects immediately after the game. It applied the same
PIT as those sent in the pre-test phase. After this first post-test, a second phishing
email was sent to all participants on May 27, 2022, i.e., three and a half weeks after
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the gamewas played. These two post-tests were independent, and their PIT scenarios
were different from those used in the pre-test phase. During the first post-test, 16.7%
(–70.1% compared to the pre-test phase) clicked on the link, and 26.7% (–69.7%)
of these provided information as requested, suggesting an immediate and significant
reduction. During the second post-test, the effect was weaker, but still constituted a
significant reduction. Compared to the pre-test phase, 25.6% (–55.2%) clicked on
the link, and 43.5% (–50.7%) of these provided information.

12.3 Effect Size and Marginal Analysis

While these descriptive results suggest that serious gaming is, at least in the short
term, a tool which sensitizes IT operators against PIT and social engineering tech-
niques, the learning effect could also be correlated to a particular personality type.
To investigate this hypothesis, a logistic regression was run, the results of which are
shown in Tables 12.2 and 12.3. In this model, victimization was measured by mul-
tiple constructs. The variable Link measures the victimization of participants who
clicked on the link in the phishing email during the first stage of the experiment, and
the variable Infomeasures whether those participants also provided information. The
variables participation in serious game, previous phishing victimization, personality
traits, previous information security training, previous individual victimization, indi-
vidual victimization expectation, risky cybersecurity behaviors and attitudes toward
cybersecurity in businesswere all used as instrumental variables which could predict
future phishing victimization.

Then, bidirectional stepwise elimination was performed to exclude all variables
which did not significantly contribute to effect size. The reduced-form models for
both dependent variables are shown in Tables 12.4 and 12.5.

A chi-square test (viz. Table 12.6) confirmed that the estimates in the reduced-form
model were not significantly different from those in the original model.

The results suggest that previous completion of a security training related to
handling classified information correctly (PIST_mitrue), as well as self-reported
previous individual victimization (PIV_receive_mitrue) almost halve the chance that
a participant will fall for social engineering exploits.

Among the predictors in the reduced-form model, individual victimization expec-
tation (IVE3) seems to contribute most to effect size, with a coefficient of 4.280
(4.454) for the probability that a participant clicks on the link in the phishing email
(provides information as requested). Thus, study participants who reported that they
consider themselves neither likely nor unlikely to fall for social engineering tech-
niques during next 12 months are almost four times more likely to do so than those
who were more pessimistic and said that they will likely fall for such a scam in the
12 months ahead.

All in all, both confident (IVE2) and indifferent (IVE3) participants seem to
have the highest probability of eventually falling for social engineering techniques,
whereas thosewho expect to be victimized by such an attack are less likely to actually
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Table 12.2 Logistic regression model for clicking the link in the phishing email

Variable Coefficient p-value

Intercept 3.216 0.519

PSGpart 0.962 0.882

time1post 0.129 0.000

time2post 0.229 0.000

Hone 1.093 0.655

Emot 0.787 0.246

Extr 0.951 0.783

Agre 0.860 0.472

Cons 1.027 0.884

Open 1.053 0.764

PIST_pitrue 0.704 0.275

PIST_pi0True 1.024 0.965

PIST_miTrue 0.467 0.296

PIST_mi0True 0.982 0.981

PIV_receivetrue 0.540 0.005

IVE2 1.635 0.089

IVE3 4.494 0.003

IVE4 1.113 0.914

RCsB_Mean 1.199 0.412

ATCIB_Mean 1.040 0.931

become victims, probably because their pessimistic stance cautions them against
inappropriate trust and restrains the initiative to immediately respond or comply.

Finally, the extent towhichparticipation in the serious gamepreventedparticipants
from falling for the attack remains to be determined. Somewhat surprisingly, and
contrary to the descriptive findings during the post-test phase, the treatment indicator
PSGpart which captures whether or not a participant has played the game is not
significant in the reduced-form model.

Since this effect may be due to the small sample size, power analysis was used to
determine if there truly was no effect size. Power analysis is an alternative way to
detect statistically significant effects, since a power level of 80% corresponds to the
chance of detecting an effect at a significance level of 5% or less.

The required number of participants depends on the base level, which is the
probability that a member of the control group passes the post-test independent of
prior training. The desired effect to be measured is expressed as the odds ratio that a
participant fails the post-hoc test despite having participated in the game. The effect
estimates are transformed from a log to a linear scale in order to represent ratios.
Figure 12.2 illustrates the respective ranges.

Under the (somewhat generous) assumption that participation in the game implies
a measurable odds ratio of 0.5—in other words, a participant who participated in



190 F. Muhly

Table 12.3 Logistic regression model for providing information after clicking

Variable Coefficient p-value

Intercept 0.188 0.447

PSGpart 1.178 0.597

time1post 0.037 0.000

time2post 0.104 0.000

Hone 1.637 0.047

Emot 0.838 0.480

Extr 1.080 0.727

Agre 1.095 0.719

Cons 0.788 0.295

Open 0.811 0.320

PIST_pitrue 0.914 0.811

PIST_pi0True 1.012 0.985

PIST_miTrue 0.660 0.601

PIST_mi0True 0.754 0.740

PIV_receivetrue 0.509 0.012

IVE2 1.653 0.151

IVE3 5.219 0.005

IVE4 0.652 0.737

RCsB_Mean 1.247 0.412

ATCIB_Mean 1.678 0.340

Table 12.4 Final model for link after bidirectional stepwise selection

Variable Coefficient p-value

Intercept 2.048 0.001

time1post 0.131 0.000

time2post 0.232 0.000

PIST_miTrue 0.429 0.003

PIV_receivetrue 0.530 0.003

IVE2 1.635 0.075

IVE3 4.280 0.002

IVE4 0.954 0.961

Hone NA NA
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Table 12.5 Final model for info after bidirectional stepwise selection

Variable Coefficient p-value

Intercept 0.348 0.204

time1post 0.039 0.000

time2post 0.107 0.000

PIST_miTrue 0.505 0.044

PIV_receivetrue 0.519 0.011

IVE2 1.653 0.132

IVE3 4.454 0.007

IVE4 0.574 0.655

Hone 1.496 0.068

Table 12.6 Chi-square test results

Dependent variable Resid. Df Resid. Dev Df Deviance P > χ)

Link 539 686.041 NA NA NA

Link 532 580.566 7 105.175 0.000

Link 520 576.963 12 3.903 0.985

Info 539 569.566 NA NA NA

Info 531 419.126 8 150.440 0.000

Info 520 413.949 11 5.177 0.922

the game has a 50% chance to fail the post-hoc test—a sample of more than 500
participants would be required for a statistically significant result. Moreover, if the
post-hoc tests had a base effect of around 50% like the pre-tests had, the number of
participants would have been sufficient to measure an odds ratio of up to 0.6.

Finally, an analysis of the discordant probability ratio was run, which is the ratio
between the participants that went from failing to passing after participation, and
those who changed vice versa. The respective ratios are shown in Fig. 12.3.

The same analysis can be run only for the group that participated in the training.
Then, the base effect is the chance that participants change at random from failing
the pre-test to passing the post-tests or vice versa randomly. The measured effect is
the discordant probability ratio. Figure 12.3 shows that with a probability level of
1%, the size of the training participant group (the black line) was sufficient to return
a measured effect of 20 times more participants who improved from the pre-test to
the post-test phase than vice versa. Thus, there is statistically significant evidence
that the number of participants in the experimental group was sufficient.

Finally, resampling was used to derive a synthetic dataset for marginal analysis,
more specifically, to estimate the extent to which the post-test results were influenced
by the serious game training. Participants were resampled in away that an equal num-
ber of them passed and failed the first post-test. Moreover, the number of participants
was also synthetically oversampled to exaggerate any measured effects and to study
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Fig. 12.2 Required number of participants per base effect

Fig. 12.3 Required number of participants per discordant probability ratio

Fig. 12.4 Marginal analysis with resampling procedure

which hypothetical results the chi-square test would give if more participants had
responded.

Figure 12.4 shows the results of this procedure. There are statistically significant
results for at least two post-tests of whether or not the link was clicked with large
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statistical power, as the numbers for (1-β) in the plot demonstrates. The synthetic
dataset for these cases used a sample size that was double to four times as large
as the effective sample size in the experiment. Hence, with a larger sample size
of respondents, a statistically significant relationship between participation in the
serious game and passing the post-test of whether or not information was provided
could have been observed.

12.4 Conclusion

This chapter presented the results of an experiment that tested the extent to which
serious gaming could immunize participants against social engineering attacks. In a
tabletop serious gaming approach, participants were confronted with the rationales
and techniques that social engineers use for their malicious attacks. The interactive
experiential learning style provides participants with the opportunity to acquaint
themselves with knowledge about social engineering and build resilience against
such attacks. The results suggest that participation in the game reduces the probability
to fall for such an attack, but this probability also depends on the focal participant’s
level of self-confidence.

While the sample size in this study was small, discordant probability analysis
suggests the effect of serious gaming on immunization is positive and significant.
Hence, with a larger experimental setting of about 500 participants, statistically
significant effects would probably be observable. Future research should therefore
explore more serious gaming approaches in larger settings.

Somewhat ironically, a high level of confidence in one’s own capabilities to spot
social engineering attacks is a significant predictor of victimization. Future research
should therefore further investigate how this typical human fallacy could be modeled
by serious gaming techniques to make participants aware.

This experiment tested a particular social engineering technique (phishing) which
is indicative of, but not exclusively congruent with social engineering as such. Future
research should therefore complement this experiment with studies of other tech-
niques to arrive at a more complete picture of how social engineering can be spotted
and prevented.
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Chapter 13
Next Generation Cyber-Physical
Architecture and Training

Siddhant Shrivastava and Aditya P. Mathur

13.1 Mixed Reality Architecture

Mixed reality (MR)—a technology that combines elements of both virtual and aug-
mented reality—can create a more immersive and interactive user experience. MR
improves the safety, security, and effectiveness of the defense of cyber-physical sys-
tems in general and industrial control systems in particular. First, it allows operators
to remotely monitor and operate assets, so that the need for human intervention in
potentially dangerous areas is reduced. For example, an oil and gas company could
remotely control and monitor offshore drilling platforms, so that operators could
safely assess and respond to potential hazards without physically traveling to the
site. This not only improves safety but also reduces costs associated with travel and
maintenance.

Second, operators can use MR technology to train proper procedures and emer-
gency response protocols. They can practice handling emergency situations, such as
a chemical spill, in a safe and controlled environment. This can significantly reduce
the risk of human error and improve emergency response times in real-life situations.
In addition, these systems can be used to train operators on new equipment or proce-
dures, allowing them to quickly and efficiently adapt to changes in the infrastructure.

Third, MR empowers the user to detect and respond to cyber threats in real time.
By providing operators with a simulated view of the plant, MR can identify and
respond to anomalies or suspicious activity that may indicate a cyberattack. Since
surveillance can be a time-consuming task, and because detecting the cause of any
problems in complex industrial system is difficult, operators can administer their
systems more efficiently.

One of the main advantages of mixed over virtual reality is that MR allows oper-
ators to interact with the physical environment, while it still provides them with
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Fig. 13.1 Interaction of physical and virtual layer in PlantXR

virtual information. This can be especially beneficial in industrial control systems
where operators need to physically manipulate equipment while they receive real-
time data and instructions.

We exploited this property to design PlantXR, a virtual, three-dimensional world
that lets operators visualize cyber-physical systems [12]. The system lets operators
virtually overlay the physical environment with real-time data, so that they can iden-
tify problems and resolve them quickly. Figure13.1 illustrates how the operator sees
the virtual and physical layer simultaneously.

PlantXRcan be used in plant design, simulation, training,monitoring, and forensic
investigation. It intends to enhance the cyber-physical security and safety of indus-
trial control systems by integrating both spatial and numerical information. PlantXR
displays both seamlessly, providing operators with a more holistic view of the plant,
and it lets them explore different scenarios in a safe and reproducible environment.
Figure13.2 shows how an operator can virtually walk the plant.

Users can access PlantXR by using an Oculus Rift headset, a handheld device,
or a desktop computer. Operators can roam the plant and interact with virtually
displayed information and control panels. For example, an operator can virtually
blend in data streams while physically walking the plant’s control systems and use
MR to visually highlight any unusual activity or deviations from normal operating
parameters. PlantXR is also connected to the physical plant in real time, so the plant
can be operated remotely.

We implemented this prototype in the experimental water treatment facility SWaT
which serves to simulate such plants. It replicates an industrial water processing
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Fig. 13.2 Virtual operator walk

plant in which operators must monitor a large number of parameters, such as pH or
chlorine levels, turbidity, reverse osmosis, or desalination.1

PlantXR can assist operators with detecting and responding to cyber threats before
these cause significant damage. Furthermore, it can be used to conduct regular secu-
rity audits. Figure13.3 shows how interconnected and virtualized testbeds empower
operators to explore cascading attacks that span multiple sections of the plant.

PlantXR demonstrates how operators can tap into the technological potential of
MR to quickly identify and respond to potential hazards or cyber threats without the
need to switch between different monitoring systems. For example, in an industrial
plant, an operator could useMR to overlay real-time data on top of the physical plant,
highlighting any unusual activity or deviations from normal operation. This can help
detect and respond to cyber threats before they can cause significant damage.

However, MR also has some disadvantages. One of the main challenges is the
cost and complexity of implementingMR systems. Developing and maintainingMR
systems can be costly, and it requires specialized equipment and trained personnel.
Additionally, the technology is still relatively new, and there is a lack of standardiza-
tion in the industry, which can make it difficult for different systems to communicate
and work together. Another disadvantage is the fact that MR technology relies on
a high degree of accuracy and precision, which can be affected by environmental
factors such as lighting and reflections. This can make it difficult to maintain a stable
and consistent MR experience, which can impact the effectiveness of the system.

While we are aware of these problems, we suggest that international cyber-
physical exercises are recognizing the role that mixed reality can play in future

1 This facility is located with the iTrust Center for Research in Cyber Security at the Singapore
University of Technology and Design. Its technical structure is explained in detail by [9, 12].
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Fig. 13.3 Interconnectedness of testbeds in PlantXR

defense efforts. These cyber defence exercises comprise red, blue, green, and purple
teaming. They can be instrumental in improving the preparedness of governments,
industries, and academia to protect against and respond to cyber-physical attacks on
critical infrastructures. Furthermore, these exercises can also train staff members to
appropriately react to attacks [11, 12].

Red teaming is a simulation of an adversarial attack, where a team of experts acts
as an attacker to test the security of an organization. The goal of red teaming is to
identify vulnerabilities and weaknesses in the organization’s systems, processes, and
procedures, and to develop strategies to mitigate and respond to potential threats.
For example, a government agency can use red teaming to simulate a cyberattack
on a critical infrastructure such as a power grid, and to test the effectiveness of their
incident response plans.

Blue teaming, also known as defensive teaming, involves simulating a cyber inci-
dent, and testing the organization’s ability to detect and respond to the attack. The
goal of blue teaming is to identify and address any gaps in the organization’s incident
response plans and procedures. For example, a power company can use blue teaming
to test its ability to detect and respond to a cyberattack on their control systems.

Green teaming is a simulation of a cyber-physical incident,where a teamof experts
simulates both attackers and defenders to test the security of an organization. The goal
of green teaming is to identify vulnerabilities and weaknesses in the organization’s
systems, processes, and procedures, and to develop strategies tomitigate and respond
to potential threats. For example, a transportation company can use green teaming
to simulate a cyberattack on a train control system and test the effectiveness of their
incident response plans.
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Fig. 13.4 Human-machine interface of digital twin water treatment plant

Purple teaming refers to the combination of Red and Blue teaming, where the Red
team simulates an attack and the Blue team defends against it. This approach allows
the organization to identify vulnerabilities, improve incident response, and also to
train the staff on how to detect and respond to a cyberattack.

These exercises can be further enhanced by mixed reality technology. For exam-
ple, by using virtual reality simulations, operators can practice how to handle emer-
gency situations in a safe and controlled environment. Thus, they can reduce the
risk of human error and improve emergency response times in real-life situations.
Additionally, MR can also be used to conduct regular security audits and penetration
testing, allowing organizations to identify and address vulnerabilities before they
can be exploited by attackers. The 2022 NATO exercise Locked Shields already uses
such intricate simulation and training infrastructures. It brings together international
teams whose members must defend realistic simulations of cyber-physical incidents
in real time [15].

Since 2010, it has been organized annually by the NATO Cooperative Cyber
Defence Centre of Excellence. Over the recent years, the exercise has embraced
the use of digital twins of a water treatment plant as an attack and defense target.
Figure13.4 shows the human-machine interface that we used for the digital twin of
a water treatment plant in both Locked Shields and other exercises. The next logical
step would be to virtualize the experience withMR, so that participants could interact
on a more advanced technological level [2, 7].
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13.2 Zero Trust Architectures

While MR technology allows operators to virtually walk a system, it cannot change
its architecture. This fact implies that the security design by which the system is built
critically co-determines its defense capacity. Cyber-physical systems use sensors,
actuators, and controllers connected via computing, networking, and physical pro-
cesses to interact with entities and processes in the physical domain. The physical
processes are integrated, monitored, and controlled by computers, known as con-
trollers. The intelligence programed in the cyber domain decides about the steps that
the physical processes should take, subject to the state of the system.

All of these components are traditionally assumed to be trusted. But when the
cyber-physical system is built on this trust assumption, then the confidentiality,
integrity, availability, and authenticity can all be compromised once attackers can
pass off a tampered for a trusted component. The weakness of system architectures
which are based on trusted devices became clear during the 2015 attacks against the
Ukrainian power system.

A professionally executed attack led to a blackout in several regions of Ukraine
which affected approximately 225,000 households. The primary targets of the attack
were Windows-based machines that were used in the plant network as HMIs and to
manage power administration. The power circuit breakers for the regional substa-
tionswere affected directly by remote access to theHMI. The breakers were remotely
opened in a number of affected substations. The SCADA system was remotely con-
trolled by a remote user with administrator privileges. The UPS was configured to
remain switched off even in the case of a power cut. The call center service was
disrupted due to a telephonic denial-of-service effort by the attackers on the power
company’s call center. That further delayed the time it took to estimate the scope
of the attack, in terms of affected regions and people. The BlackEnergy3 mal-
ware and a modified Dropbear SSH server were used for C&C operations. The
KillDisk component of BlackEnergy3 enabled themaster boot recordwipeout
which made it impossible for systems to be restored without manual intervention.2

This attack highlighted the security flaws that exist in conventional industrial
control systems. The attack consumed much fewer resources than other malware-
based attacks since it exploited the legitimate features of the system, such as macros
in Microsoft Office products, rather than any zero-day vulnerabilities. The VPNs
lacked two-factor authentication. The firewall configuration made it possible for
the attackers to remotely control the environment by using a Dropbear SSH client
that connected to the affected computers. There were no active network security
monitoring tools in place. We therefore believe that a cyber-physical system is not
secure unless its elements are designed to interact in a trustless manner with each
other. Thus, we advocate that a zero trust architecture can increase the effectiveness
of the cyberdefense of industrial control systems.

2 More detailed evidence of BlackEnergy operations against industrial control systems is avail-
able in ICS-ALERT-14-281-01.
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Under a zero trust security architecture, all users, devices, and networks are not
trusted by default but instead are identified and authenticated before any access is
granted. While zero trust has been widely adopted in traditional IT environments, its
application in cyber-physical systems and critical infrastructures has received less
attention.3 This can be achieved by implementing secure authentication methods
such asmulti-factor authentication and identitymanagement. Additionally, operators
can use network segmentation and micro-segmentation to subdivide any industrial
control system into smaller, isolated networks that are more difficult for attackers
to access. Finally, since unauthorized access is displayed, but not granted, operators
can better audit their networks and respond quickly to mitigate intrusion attempts.

We believe that a zero trust architecture can be applied to industrial control sys-
tems. For example, any communication to and from a PLC would have to be authen-
ticated, authorized, and validated. For operators of SCADA systems, applying zero
trust implies that they are able to perform actions only when authorized and authenti-
cated inmultipleways (e.g., by usingmulti-factor authentication). A zero trust design
can therefore prevent different classes of cyber-physical attacks on cyber-physical
systems, and particularly so on critical infrastructures: it forbids unauthorized access
to control elements by designing systems with strong security controls, it prevents
unauthorized users from gaining access to the system, and it prevents malware or
other malicious software from infiltrating CIs by designing systemswith robust secu-
rity controls, such as firewalls, antivirus software, and intrusion detection systems,
It impedes prevent denial-of-service attacks by designing systems with redundant
components and backup systems to ensure that the system remains operational even
if one component fails or is attacked. It thwarts unauthorized changes to control
elements by designing systems with robust change management processes and con-
trols, such as version control and rollback capabilities, to ensure that only authorized
changes are made to the system. Finally, it negates any unauthorized exfiltration of
data by designing systems with strong data protection controls, such as encryption
and access controls.

However, implementing zero trust in cyber-physical systems can be challenging
due to the complexity of these systems and the difficulty of verifying the trustworthi-
ness of devices and users with currently available tooling. Despite these problems,
recent academic work stresses the role zero trust architectures can play to effectively
protect industrial control systems (e.g., [4, 8]), as do network security analysts (e.g.,
[3, 6]).

3 For an introduction and discussion about the benefits and problems of a zero trust architecture,
see Rose et al. [10] and Buck et al. [5].
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13.3 Automated Defense

Finally, we advocate that automated protection systems (APS) can address the inad-
equacies of current anomaly detectors against ransomware attacks and modern time-
sensitive attacks, but also the delay with which humans can respond to such attacks.
Existing detection and analysis tools can alarm operators about detected threats, but
operators may fail to respond adequately. Delays due to human error may cause ser-
vice disruptions or damage to physical components. Many attacks also happen faster
than operators can respond, so that the impact is felt before operators note that IT or
OT components have been attacked.

In such situations, APS can rapidly detect and respond to anomalies without the
need for human intervention [1, 12]. An automatic defense mechanism depends
on a pervasive, orthogonal detection mechanism that is resilient to cyberattacks at
multiple layers of the plant (network, computation, power). Such an APS should
empower operators to maintain visibility into system operations during an attack,
and guarantee that even if attackers can access plant controls, they cannot cause
damage to plant components. It is important to note that such an APS is different
from emergency plant control mechanisms which are designed to protect the facility
and its personnel, and also from failsafe or hot standby mechanisms which ensure
the continued operation of a facility once a failure or malfunction occurs (e.g., by
activating backup generators or redundant equipment).

In the SWaT testbed described in Sect. 13.1, each of the six water processing
stages is controlled by its own set of dual PLCs, one serving as a primary and the
other as a backup in case of any failure of the primary. Each PLC obtains data from
sensors associated with the corresponding stage and controls pumps and valves in its
domain. Level sensors in each tank inform the PLCs when to turn a pump on or off.
Several other sensors are available to check the physical and chemical properties of
water flowing through the six stages. PLCs communicate with each other through a
separate network. Communications among sensors, actuators, and PLCs can happen
by either wired or wireless links, and manually operated switches control the status
changes from wired to wireless and vice versa.

Simulating a popular cyber-physical attack on this infrastructure, we studied the
extent to which an APS could be applied to and provide effective defense for an
industrial control system [13, 14]. We followed a ‘security by design’ philosophy to
design a defence system, trying to understand howan attackerwould execute an attack
on a given cyber-physical structure [1]. This APS offers visibility into operations
when the plant is under attack, and it provides protection against rogue commands
channeled to plant components. A prototype of this APS has been successfully tested
in a cyber-physical exercise and is currently being extended for bidirectional plant
control in a live-fire exercise in 2023 [12].
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Chapter 14
Improving the Effectiveness
of Cyberdefense Measures

Sébastien Gillard and Cédric Aeschlimann

14.1 Introduction

Administrators, users, and artificial intelligence in a computer network can exchange
indicators of compromise (IoCs) which inform about threats, vulnerabilities, or
exploits. Thus, these experts can benefit from mutually shared experience and infor-
mation to organize cyberdefense [12, 19].

Although users and machines generate IoCs when an attack occurs, the informa-
tion they convey lacks order and completeness unless relations and dependencies
between IoCs are detected. Information recombination and integration are therefore
key to the creation of effective knowledge [2, 9]. Thus, the better defenders can com-
bine different IoC into a more complete picture, explaining linkages and networks
between them, the more accurately they can analyze the threat.

While some threat information sharing platforms may be able to auto link novel
with extant content (e.g., by auto-completion), they scarcely consider all relevant
information criteria [11]. At the same time, the manual recombination of such infor-
mation by human agents is probably excessive in terms of both time, transaction cost,
and the odds of errors.

We therefore propose an automated model that can provide defenders with this
integrated information, so that their cyberdefense efforts become more effective. It
automatically generates a network of all IoCs and identifies and clusters similarities.
It considers all available features in the data structure to collocate new with extant
IoCs according to relevance and centrality.
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14.2 Model

We consider the setting of a platform where users can submit IoCs. Every single
IoC has a number of features, i.e., specific fields that record string (e.g., plain text),
boolean (e.g., “true” or “false”), or numeric information about threats. LetC define the
finite set of available characters, i.e., all letters, numbers, and non-reserved characters
that users can employ to report an IoC.1 Let X denote the set of all strings of length
N produced with characters in C, where N ∈ N<∞.

Each IoC conveys both text, boolean and numerical information, each of which
corresponds to a peculiar function of the finite set of functions F which refers to
these different types of information. A specific function fγ then corresponds to one
of these types which contains N characters, so the specific set is given by

cα = (cα,1, . . . , cα,i , . . . , cα,N ), whereα ∈ C and i < N (14.1)

With Eq. (14.1), the string of characters can be expressed as

xβ = (cβ
α,1 · · · cβ

α,i · · · cβ
α,N ), whereβ ∈ X (14.2)

Applying the function fγ to the string in Eq. (14.2) then yields

fγ(xβ) = {cβ
α,1 · · · cβ

α,i · · · cβ
α,N }, where γ ∈ F (14.3)

With Eq. (14.3), the full setD that comprises all IoCs which populate the platform
can be described. Then, a matrix P can be derived that contains all information stored
on the platform. By using cardinalities which describe the size of a finite set ∈ N<∞,
we can write D = Card(D) and F = Card(F) and obtain

P = ( fk,l(xk,l))k∈[1,D],l∈[1,F] =

⎡
⎢⎢⎢⎢⎢⎢⎣

f1,1(x1,1) . . . f1,l(x1,l) . . . f1,F (x1,F )
...

. . .
...

. . .
...

fk,1(xk,1) . . . fk,l(xk,l) . . . fk,F (xk,F )
...

. . .
...

. . .
...

fD,1(xD,1) . . . fD,l(xD,l) . . . fD,F (xD,F )

⎤
⎥⎥⎥⎥⎥⎥⎦

(14.4)

1 For example, a code syntax could require strings to be opened and closed by the brackets “{” and
“}”, so that these reserved characters would have to be filtered.
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14.2.1 Sequence Matching Procedure

We now introduce an algorithm that allows us to compare these strings and to iden-
tify the extent to which they are similar or related. Once these relations are known,
cluster and network analysis can be applied to group and discover relations between
them. Our algorithm is based on prior research in the field of natural language pro-
cessing [7].

The algorithm attempts to find the longest substring which is common to two
strings and does not contain unwanted artifacts. It was implemented with the
Python sklearn and scikit libraries. In a first step, the strings of characters
are cleaned from spaces and punctuation symbols, and upper are transformed to
lower cases. The following example shows how the algorithm identifies match-
ing substrings. Consider two strings of characters x1 = (c1α,1 · · · c1α,i · · · c1α,n) and
x2 = (c2α,1 · · · c2α, j · · · c2α,m), where n,m ∈ [0, N ], i ∈ [1, n] and j ∈ [1,m]. We
extend the notation from Eq. (14.2) for these two strings as follows:

x1 =
⎛
⎝

1︷ ︸︸ ︷
c�
α,1c

�
α,2 c

1
α,3

2︷ ︸︸ ︷
c◦
α,5c

◦
α,6 · · · c1α,i · · · c1α,n

⎞
⎠

x2 =
⎛
⎜⎝c2α,1 c

�
α,1c

�
α,2︸ ︷︷ ︸

1

c2α,4c
2
α,5 c

◦
α,5c

◦
α,6︸ ︷︷ ︸

2

· · · c1α,i · · · c1α,m

⎞
⎟⎠ (14.5)

where the superscripts � and ◦ represent matching substrings. There are
M = 2 · 2 = 4 matches.

The algorithm works the sequence according to which the strings are ordered,
so that the comparison of x1 with x2 is not identical to the comparison of x2 with
x1. It scans each string from left to right and attempts to identify every possible
match between a character in a given string and all occurrences of this character in
subsequent strings. If a match is found, another character is added to the left of the
original string, and the search is performed again. This recursive procedure runs until
the longest common substring has been found.

The similarity score � ∈ [0, 1] then captures the relatedness of two strings x1 of
length n and x2 of length m between which M substring matches are found:

� = 2 · M
(n + m)

(14.6)

where the factor of 2 in the numerator suggests that the obtained matches appear in
the two strings, while the denominator gives the total number of characters across
the two strings. We assume that � ≥ 0.8 suggests the strings are similar.

The algorithm computes these similarity scores for all IoCs in the matrix P, so
that it generates a score matrix Sl = (�p,q)p,q∈[1,D] of size D × D for the l-th field
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(i.e., column of thematrixP), where l ∈ [1, F] and �p,q ∈ [0, 1]. Then, each selected
column provides a corresponding scorematrix.Wewill subsequently use these scores
to inform the network analysis featured in Sect. 14.2.3.

14.2.2 Clustering Method

Cluster analysis is useful when one wants to identify features by which elements in
a dataset are related [13]. Since the data we analyze has both features with different
(text, boolean, numeric) values and requires manipulation such as cleaning, trans-
formation, and labeling, we use a random forest classifier (RFC). This supervised
learning method is advantageous when one wants to solve classification problems
in big datasets [8]. It categorizes data in a forest of decision trees where each tree
predicts a class. Moreover, analysts can define the relative importance of each clas-
sification variable (in our case, the columns of the matrix P) should have [5].

We set one of the columns in the matrix P as our target (explained) variable
w whose variation is to be explained by the set of explanatory variables K which
comprises all other columns. The subsequent discussion of our method does not
depend on which column is selected as the explained variable.

The RFC partitions the matrix P into a training set A (67% of the initial dataset)
and a test set B (33%) in which it also inserts randomness. Before it can run, all
categorical must be transformed into ordinal variables, and both the number of trees
T and their maximum depth δ must be specified.We use the training set A to generate
T , while the test set B is used to evaluate the performance of the predictions.

Let ai ∈ A denominate training vectors from the training dataset, with i ∈ [1, D].
The vector y = [1, · · · , F] represents the features of the dataset. We designate the
quantity of data at node k as Qk which is composed by a number of samples qk .

At each node, there is a possibility � = (γ, ζk), where γ ∈ y and ζk is a chosen
threshold, that Qk splits into two child sets:

Q←
k (�) = {(a, y) | aγ ≤ ζk} (14.7)

Q→
k (�) = Qk\Q←

k (�) (14.8)

With these subsets, the function that evaluates the splitting can be written as

G(Qk,�) = q←
k

qk
�(Q←

k (�)) + q→
k

qk
�(Q→

k (�)) (14.9)

In Eq. (14.9), �k is the Gini impurity:

�(Qk) =
U∑

σ=1

νk
σ(1 − νk

σ) (14.10)
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where νk
σ is the frequency of label σ at node k andU is the number of unique labels.

To define the split, we seek the optimal parameter that minimizes G(Qk,�):

�� = argmin�G(Qk,�) (14.11)

This algorithm is iterated until the maximum depth δ is reached or qk = 1. Once
the RFC has generated a tree, the significance of a node ηk with k ∈ [1, D] can be
expressed by using binary trees for two child nodes:

ηk = λk� j − λ←
k �←

k − λ→
k �→

k (14.12)

where λk is the weighted number of samples reaching node k,�k is the Gini impurity
of node k, λ←

k and λ→
k are the weighted numbers of samples which reach the left or

right child nodes from node k, and �←
k and �→

k are the Gini impurity values for the
child nodes to the left or right of node k. With Eq. (14.12), we can now compute the
importance Il that each feature l has in the decision tree:

Il =
∑θl

k=1 ηk∑F
l=1

∑θl
k=1 ηk

(14.13)

The numerator in Eq. (14.13) represents the number of node splits θl over the
features l, while the denominator is the sum of all such node splits over all features.
Finally, the importance Il can be conditioned on values between 0 and 1:

Ĩl = Il∑F
l=1 Il

(14.14)

Since Eq. (14.14) gives the result for one tree only, we compute the mean over all
trees T the RFC produces:

RFl =
∑T

τ=1 Ĩl,τ
T (14.15)

The results from Eq. (14.15) now allow us to determine which features explain
most of the variation in the target variable w, so that we can rank them. Finally, we
assess the accuracy of the classification by computing precision, recall, and F scores.
Further, results can be classified in a confusion matrix to measure the accuracy of
the prediction and to identify false positives and false negatives [14].

To define the precision of the classifier, we apply the classification with our test
set B to obtain the associated predicted values for b̂ j . We then compare these to the
real features b j ∈ B. The precision score is then given by the ratio �P ∈ [0, 1] of
correct predictions and all elements in the test set B.

The recall score �R ∈ [0, 1] gives the ratio of elements in a feature r̂γ that the
classifier identified correctly and the total number of elements of this feature. It is
computed as the average over all chosen features in the dataset. With both values �P
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and �R , we can also compute the F-Score to measure the accuracy and performance
of the algorithm:

F-Score = 2 · �P · �R

�P + �R
. (14.16)

14.2.3 Network Analysis

Networks can be conceived of as a set of nodes connected by edges. Even in large
networks, each node is separated from every other node only by a short path, and
cluster analysis can identify areas with similar relationships or content [3, 4, 17,
20]. We exploit these properties to model the extent to which IoCs are structurally
related.

We model IoCs as nodes, and we compute a global similarity matrix SG to define
the edges that connect them. We first choose the features γ� ∈ F � which, according
to Eq. (14.15), contribute most to explaining the variance of the target variable w.

If these features are sequences of characters, the sequence matching procedure
is applied to compute similarity ratios �

γ�

p,q according to Eq. (14.6) for each possible
pair of IoCs. If the features are numerical, boolean, or a strict sequence of characters,
these similarity ratios are dichotomous, so �

γ�

p,q = 1 if two pairwise compared IoCs
are similar, and �

γ�

p,q = 0 otherwise.
All similarity scores are recorded in the similarity matrix S� , from which the

global similarity matrix SG can be written as

SG =
F�∑

γ�=1

Sγ� = (�G
p,q)p,q∈[1,D] (14.17)

where F� = Card(F �). The non-zero elements (�G
p,q) of SG represent the weights

of the edges. Since these edges are not yet directed and unidirectional, we order all
IoCs from oldest to most recent and only keep those edges from older to more recent
IoCs. This operation yields the following upper triangular matrix from which the
directed and weighted network can be created:

ŜG =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 . . . �1,q . . . �1,D
...

. . .
...

. . .
...

0 . . . 0 . . . �p,D
...

. . .
...

. . .
...

0 . . . 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(14.18)

Our model computes the distance between nodes relative to their similarity, so
IoCs similarity is negatively associated with path length. In unweighted networks,
distance is simply the minimal sum of edges required to travel from a given to a
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focal node. However, since the edges in our network are weighted according to their
strength,wefirst inverse theweights and then applyDijkstra’s algorithm.The shortest
path between two nodes in our network then is

dω(i, j) = min(
1

ωih
+ · · · + 1

ωh j
) (14.19)

where ω is the weighted adjacency matrix of a node, i is the focal node, j represents
every other node, and h represents intervening nodes on the path between i and j [15].

When Eq. (14.19) is applied to every node in the network, a distance matrix D
can be created which contains the weight of the shortest path between every pair of
nodes. This matrix allows us to find IoCs which are closest and hence most similar
to the focal node:

D =
⎡
⎢⎣
dω(1, 1) . . . dω(1, j)

...
. . .

...

dω(i, 1) . . . dω(i, j)

⎤
⎥⎦ (14.20)

We also examine the centrality of a node in the network. Nodeswith high between-
ness centrality are more likely to be situated on the shortest path between two nodes,
and thus they are more likely to be influential. With Eq. (14.19), we adapt the defini-
tion of betweenness centrality CB(i) originally introduced by Freeman (1978) for a
weighted network:

Cω
B(i) = gω

jk(i)

gω
jk

(14.21)

where gω
jk is the number of weighted shortest paths between nodes j and k, and gω

jk(i)
is the number of those weighted paths that pass through node i.

Finally, we compare the influence a node has in the network by computing PageR-
ank centrality scores [16]. This measure awards a score to each node i based on its
incoming edges which are weighted according to the score of the originating nodes:

PR(i) = 1 − d

N
+ d

N∑
j∈in(i)

PR( j)

|out ( j)| (14.22)

where N is the number of nodes in the network, d is a constant dampening factor,
in(i) are incoming links which connect to i , and |out ( j)| is the number of outgoing
links from j . Hence, nodes with a large amount of incoming links are considered
influential, and they share that influence with nodes to which they are connected.
We exploit this property to discover those nodes whose influence stretches beyond
their immediate neighbors. When these metrics are applied, we recommend to use
statistical tests, in particular Spearman’s �, to analyze the congruence of the results
across different indicators.
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14.3 Worked Example

We illustrate the model with a random dataset we created. Note that this example
of merely ten IoCs is purely illustrative and does not claim any statistical validity.
Negligible elements were removed and all letters were changed to lower case prior
to analysis. Table14.1 details the dataset.

Table 14.1 Dataset for illustration

IoC # IoC type Boolean
characteristic

Numerical
characteristic

String characteristic Timestamp

1 sha256 1 8781 loremipsum 1672527601

2 filename 1 8761 loremipsumdolor 1672614001

3 domain 0 2121 loremipsumamet 1672834152

4 hostname 1 1092 loremipsumsitamet 1674295238

5 hostname 0 2120 loremipsumxyz 1672587412

6 sha256 1 2128 loremipsumdoloramet 1672954682

7 sha256 0 9579 kwxyzqv 1674289160

8 sha256 0 9115 consecteturadipiscingelit 1673579514

9 domain 0 9136 consecteturadipiscingdolor 1673698521

10 filename 1 3973 kwxyz 1672894578

11 filename 0 1979 xyzq 1673483296

12 sha1 0 3987 seddoeiusmodadispingelit 1674568685

We chose timestamp as the explained variable and ran the random forest classifier.
Figure14.1 shows the result. It suggests that IoC type and string characteristic are
the most relevant features that define relations between IoCs.2

Fig. 14.1 Results for the feature importance score RFl

2 Note thatwe disregard the feature IoC# in the subsequent analysis since it is collinear to timestamp.
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The feature String characteristic represents sequences of characters, sowe applied
the sequencematching procedure and obtained the similaritymatrixSString characteristic:

SString characteristic =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1.00 0.87 0.80 0.83 0.00 0.69 0.00 0.29 0.17 0.00 0.74 0.12
0.87 1.00 0.71 0.74 0.33 0.62 0.35 0.26 0.15 0.30 0.67 0.11
0.80 0.71 1.00 0.69 0.00 0.88 0.00 0.30 0.49 0.00 0.62 0.21
0.83 0.74 0.69 1.00 0.00 0.85 0.00 0.36 0.15 0.00 0.90 0.16
0.00 0.33 0.00 0.00 1.00 0.00 0.67 0.00 0.00 0.83 0.00 0.00
0.87 1.00 0.71 0.74 0.33 0.62 0.35 0.26 0.15 0.30 0.67 0.11
0.69 0.62 0.88 0.85 0.00 1.00 0.00 0.32 0.44 0.00 0.78 0.23
0.00 0.35 0.00 0.00 0.67 0.00 1.00 0.00 0.00 0.73 0.00 0.00
0.29 0.26 0.30 0.21 0.00 0.18 0.00 1.00 0.86 0.00 0.24 0.61
0.17 0.15 0.49 0.15 0.00 0.44 0.00 0.86 1.00 0.00 0.14 0.48
0.00 0.30 0.00 0.00 0.83 0.00 0.73 0.00 0.00 1.00 0.00 0.00
0.74 0.67 0.62 0.90 0.00 0.78 0.00 0.33 0.14 0.00 1.00 0.15
0.18 0.16 0.21 0.16 0.00 0.23 0.00 0.61 0.48 0.00 0.24 1.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Since the feature IoCType is a strict sequence of characters, the sequencematching
procedure need not be applied. If IoC Type is similar between two IoCs, then the
corresponding matrix element in SIoC Type takes the value 1, else it is zero. The
comparison of all pairs of IoCs yields the following similarity matrix:

SIoC Type =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.00
0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.00
0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.00
0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

⎤
⎥⎥⎥⎥⎥⎥⎦

We then apply Eq. (14.17) to the two matrices SString characteristic and SIoC Type and
order the IoCs, so that we can compute the 12 × 12 upper triangular matrix SG

according to Eq. (14.18):

SG =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.00 0.87 0.80 0.83 0.00 1.69 0.00 1.29 0.17 1.00 0.74 0.12
0.00 0.00 0.71 0.74 0.33 0.62 0.35 0.26 0.15 0.30 1.67 0.11
0.00 0.00 0.00 0.69 1.00 0.88 1.00 0.30 0.49 0.00 0.62 0.21
0.00 0.00 0.00 0.00 0.00 0.85 0.00 0.36 1.15 0.00 0.90 0.16
0.00 0.00 0.00 0.00 0.00 0.00 1.67 0.00 0.00 0.83 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.32 0.44 1.00 0.78 0.23
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.73 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 1.00 0.24 0.61
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.48
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

⎤
⎥⎥⎥⎥⎥⎥⎦

With the matrix SG , we can create the network between the IoCs. The edges
are directed according to the timestamp value associated with each IoC. Figure14.2
shows the resulting network.
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9

10

11

12

5

7

Fig. 14.2 Network generated from random dataset

Table14.2 shows the weighted distance matrix for this network from which we
can identify closely related nodes and obtain betweenness centrality and PageRank
scores. For example, we find that node 6 is closest to node 1, with aminimumdistance
score of 0.40, and farthest from node 12, with a maximum distance score of 1.62.

Table 14.2 Weighted distance matrix

1 2 3 4 5 6 7 8 9 10 11 12

1 0.78 0.85 0.82 1.49 0.40 1.52 0.53 1.31 0.68 0.92 1.64

2 0.95 0.92 1.63 1.09 1.63 1.30 1.50 1.46 0.41 2.41

3 0.98 0.68 0.77 0.68 1.28 1.38 1.45 1.09 2.39

4 1.66 0.80 1.66 1.31 0.59 1.47 0.75 2.00

5 1.45 0.41 1.49 2.06 0.82 1.77 2.60

6 1.45 0.51 1.30 0.68 0.87 1.62

7 1.61 2.06 0.93 1.77 2.72

8 0.79 0.68 1.44 1.11

9 1.47 1.34 1.41

10 1.55 1.79

11 2.49

12
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Table14.3 gives the weighted betweenness centrality and PageRank scores.
Whereas nodes 3 and 8 score highest on the former, node 1 is the most influen-
tial in the network.

Table 14.3 Score table

Node weighted betweenness centrality PageRank score

1 9 0.29

2 0 0.17

3 22 0.12

4 4 0.07

5 0 0.05

6 13 0.06

7 0 0.04

8 22 0.05

9 2 0.04

10 10 0.03

11 0 0.04

12 0 0.03

In our model, the prediction quality improves with every recursive step that brings
new information to the network. We illustrate this effect with our example dataset by
adding a new IoC as follows, thenwe examine how the scores and network topologies
change. Table14.4 provides the values for the novel IoC.

Table 14.4 Additional information from a novel IoC

IoC # IoC type Boolean
characteristic

Numerical
characteristic

String
characteristic

Timestamp

13 domain 1 3127 xyloresed 1674721967

This novel IoC is now compared to all pairs of IoCs already in the network in
order to compute the similarity scores. The resulting vector

(�G
p,D)p∈[1,D] = [

0.53 0.45 0.50 1.52 0.29 0.43 0.31 0.24 1.17 0.25 0.46 0.18
]
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now becomes the 13-th column of the matrix SG , and a new row with zeroes must be
added to preserve its square property. Figure14.3 shows the new network topology
once the novel IoCs is added. The above operations are then repeated. Table14.5
shows the new entries for the revised weighted distance matrix, and Table14.6 gives
the revised betweenness centrality and PageRank scores.

1

2

3

4

6

8

9

10

11

12

13

57

Fig. 14.3 Network topology after addition of 13th IoC

Table 14.5 Weighted distance table for novel IoC no. 13

Nodes 1 2 3 4 5 6 7 8 9 10 11 12 13

13 1.21 1.30 1.29 0.43 1.94 1.19 1.94 1.31 0.55 1.83 1.14 1.90
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Table 14.6 Revised score table after addition of 13th IoC

Node weighted betweenness centrality PageRank score

1 9 0.28

2 0 0.17

3 26 0.12

4 14 0.07

5 0 0.05

6 15 0.06

7 0 0.04

8 22 0.05

9 6 0.04

10 10 0.03

11 0 0.04

12 0 0.03

13 0 0.03

In this example, the addition of more information reduces the distance between
the novel and the incumbent nodes, so that the results the algorithm renders become
more accurate as more information is entered and matched. Hence, the model does
not require the exhaustive set of all IoCs to run; it can work with smaller subsets
which can then be gradually expanded as new information comes in. While no node
alters its position in either centrality ranking once the novel information is entered,
the scores are adjusted, which suggests that novel information helps to refine the
predicted relatedness of nodes in the network.

14.4 Conclusion

We have offered a model that can spot and classify similarities and relatedness in a
network of IoCs. The betweenness centrality scores allow analysts to identify IoCs
which link together many other IoCs. Hence, they can identify specific incidents
which are the root for subsequent anomalies. The PageRank scores inform themabout
the most influential IoC in the network, so they can recognize incidents which may
have gone unnoticed but continue to exert influence on others. Finally, the distance
froma focal to other IoCs lets them recognize the relative degree of similarity between
incidents. Due to the recursive construction of our model, these analyses become
more refined and more accurate the more IoCs are added to an extant network. There
is hence a trade-off between precision and timeliness that analysts can exploit. For
example, they can restrict the number of IoCs under scrutiny and first study those
which are most related to their defensive goals. Defenders can use these insights to
organize a defense that can not only respond faster once a threat is detected, but also
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more accurately. They can use the results our model provides to collocate related
IoCs into comprehensive threat warnings which describe the relatedness between
IoCs with a minimum of human error.

The model we propose is scalable and free, and the generalizable nature of its
analytics implies it can accommodate a wide range of platforms and features. Still,
the model could be extended in a number of ways. First, network theory offers a
wide range of additional diagnostics—e.g., percolation centrality, assortativity, or
spread—which have not employed in our short demonstration due to limited space
[1]. Still, these would be useful to improve the assessment of the relative position
and importance of particular nodes. Further, analysts could add IoCs authors to the
analysis in order to obtain a bipartite network by which influential individuals who
report many or influential IoCs could be identified. Future research may also explore
how our model could predict the emergence of novel IoC based on the extant threat
landscape, e.g., by adding a link prediction analysis procedure to the model.
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Chapter 15
International Law and Cyber Defense
Best Practices: The Way Forward

Sara Pangrazzi and Fabian Muhly

15.1 International Law and the Cyberspace

Back in 2010, the computer worm stuxnet which disabled the Iranian centrifuges that
were supposed to enrich uranium, made legal scholars question the extent to which
international law could be applied to the cyberspace, and if so, how it would have to
be interpreted [6].

Traditionally, (public) international law is conceived of as an instrument by which
statehood is applied in an international political context. It refers to all legally binding
rules and principles (norms) that apply at the international level and concerns the
responsibilities of nation-states and their behavior towardone another.Although there
is not just one set of rules or approaches to international law, the totality of these
norms regulates the behavior of nation-states by providing predictable, reciprocal
patterns based on common rules, and thus contributes to creating peace and stability
[19]. Usually, these norms bind states as a matter of customary international law,
general principles of law or through bi- or multilaterally ratified treaties [18].

In this process, the United Nations (UN), multi- or bilateral treaty bodies, and
international courts play an important role since they help shape these norms and
provide arbitration and intervention mechanisms. The ’publicness’ of these bodies
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appears as a supranational extension of statehood and is an important factor that
contributes to the realizing of a global governance regime which helps states develop
[19]. Particularly with respect to the cyberspace and its defense, such international
norms are increasingly important since they can help reduce the risks to statehood,
sovereignty, and prosperity that unprotected or undefended technology may imply
[30, 34].

The broad (and mostly extraterritorial) dependence on the cyberspace does not
only internationally interconnect states, but also pose important questions on how
to approach security and defense in the digital realm [13]. The unrelenting stream
of reports about both criminal and state-sponsored actors who attack others in the
cyberspace for personal or political gains has led some scholars to question the
relevance—or even the existence—of norms for the cyberspace. These positions
paint the picture of a ’wild west’ cybersphere, portraying it as an unregulated and
dangerous field, where the application of norms is difficult if not impossible, and
where attackers can hide in faraway jurisdictions.Moreover, nation-stateswhichwere
not even attacked in the first place could nevertheless suffer damage from spillover
effects or damaged cross-border infrastructures. These issues motivate some to posit
that novel norms are required to secure the cyberspace (formore detailed discussions,
see [7, 29, 41]).

Likewise, the international community of states has been quarreling for some time
over the question if, in the context of international security, there are any applicable
norms for the cyberspace at all [6, 40]. In September 2019, during the session at
the United Nations’ Open-Ended Working Group (OEWG) which was established
by General Assembly resolution 73/27 to advance the discussion on responsible
state behavior in cyberspace in the context of international security, some countries
claimed that there was a need for a new and specifically tailored legal framework to
fill the existing ’legal vacuum’ [23, 43].

15.2 The Transformation Challenge

We believe that such views somewhat fail to understand the nature and applica-
bility of extant norms. They are based on the assumption that the cyberspace is a
new and inherently different ’field’ or ’domain’ of state conduct. According to these
perspectives, international law could not be applied in cyberspace unless supported
by sufficient evidence of domain-specific state practice and opinio juris [2]. How-
ever, international law governs all technology used by state and non-state actors,
be it old or new, physical or digital (see more in dept and with further references
on this argument: [2]). Hence, historically grown, extant norms and binding rules
are generally applicable to the cyberspace, even if they were not conceived with a
particular technological background in mind, or if they were written before contem-
porary information technology even existed. The fact that, to date, states have only
hardly applied norms from international law to the cyberspace does not imply that
these norms are irrelevant. There is hence no liability to specifically prove that a
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particular norm also applies to the cyberspace, and there is no overarching need to
create ‘novel’ or ‘domain-specific’ norms [2, 17].

Furthermore, open disputes notwithstanding, a growing number of governments
support the view that extant international law is applicable to the cyberspace. In this
regard, throughout the last years, the mentioned UN-processes that were established
to advance the discussion on state behavior in cyberspace in the context of interna-
tional security have generated much improvement in terms of establishing a more
transparent understanding of the application of international norms deriving from
international law. Although nation-states do drive the development of international
law, international organizations thus provide important fora to that end [6]. In this
sense, at the 2013 and 2015 United Nations Group of Governmental Experts on
Information Security (UN GGE), states agreed in the respective final reports that
international law and the principles of the UN Charter do apply to states’ activities
in cyberspace [32]. Both reports were subsequently endorsed by the UN General
Assembly [12]. NATO’s Wales Summit declaration contains a likewise statement
[25]. More recently, the Final Substantive Report of the OEWG reaffirmed that
international law is applicable and essential to maintaining peace, security, and sta-
bility in the information and communications technology environment; this report
was consensually adopted by allUNmember states [2, 44]. Also, theUNGGE report
that was adopted inMay 2021 [33] reaffirms the general agreement that international
law also applies to the activities states pursue in cyberspace, as well as to the digital
infrastructure within their territory and under their jurisdiction. This seems partic-
ularly noteworthy as the UN GGE failed to produce a consensus report since their
last one in 2015. Therefore, should states decide to engage in law-making processes
through the establishment of new rules by treaties or new customary international
law, they are not building on a legal vacuum, but rather are bound by and build upon
existing frameworks [2].

It is true that the development of a common understanding and consensus on how
to apply (or develop) international norms proceeds at a rather moderate pace. As
the example of nuclear disarmament and control treaties shows, states take time to
learn how to respond to disruptive technological change, and how to establish rules
or institutions which can address it [30]. It took the international community about
twenty years to reach first cooperative agreements in the nuclear era [28]. Today,
about thirteen years after the stuxnet incident, the discourse surrounding responsible
state behavior in cyberspace is still ongoing, but the frequency of academic contri-
butions and reports by international gremia increases steadily [6]. Among others, the
two Tallinn Manuals published in 2013 and 2017 and official state positions have
contributed to substantive transparency and precision of some of the open normative
questions concerning the cyberspace and international security [35, 36]. Furthermore,
there are national laws and regional or international treaties that address cybersecu-
rity issues, all of which can be also relevant to questions on effective cyber defense
and resilience. In addition, industry-specific, cross-industry, and topic-oriented stan-
dards, some of which even qualify as soft law, can also play important (and more
agile) guiding roles [47].
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However, while information technology develops rapidly, governmental, legal,
and societal efforts develop at a muchmoremoderate pace. Although skeptical views
tend to criticize this, the stability that is eventually obtained through a proactive but
thoughtful process should not be underestimated. As is the case with the shaping of
international norms, they are typically proposed and heralded by a group of states
until they are eventually adopted by a wider community [11]. This—if lengthy—
multilateral way bywhich these norms are developed raises the cost of non-compliant
behavior [29] while keeping the involved parties ‘on board’. Thereby, the multilater-
alization of such a process is an important factor that helps to strenghten the normative
value of the underlying norms [30]. These developments are often accompanied by
processes coordinated by international institutions such as the United Nations, the
Council of Europe, the OECD, theWTO, and other bi- or multilateral fora. In princi-
ple, these processes are no different for the cyber defense context: For example, such
a multilateralization process did and does take place with the OEWG. The OEWG,
for the first time, constitutes an inclusive platform for dialogue among all states on
the developments in the field of cyber and international security. Thereby, everyUN-
member state world-wide can access and engage in the discussions—which most of
them actually do (see the broad participation of states in the final report 2021 [44]).

TheOEWGprocess providesmember stateswith an active platform todiscuss how
norms should be interpreted and applied [44]. Thus, the normative and multilateral
value grows with the number of states subscribing to this consensus. Globally agreed
normsprovide transparency and expectations about behavior that canhold other states
accountable and thus motivate predictable action. A deliberate pace of development
is the price to be paid for this consensus. Once it exists, the norms in question can
legitimize official actions and help states gain multilateral support when they decide
that a norm has been violated [30]. Therefore, norms are not rendered irrelevant
even if they are violated, and their compliance can be encouraged the more states
have subscribed to a consensus that the norm in question should be applied and
upheld. Convergence about the applicability of extant norms to the cyberspace is
reached slowly and incrementally but can be considered effective in the long term.
Therefore, the current process in relation to the clarification of cyber norms does not
structurally differ from prior examples in legal history [6, 30].

However, as noted before, international state policy and defense in the cyberspace
is not confronted with a ‘legal vacuum’ even if no domain-specific norms exist. With
international law, an international regulatory framework already exists from which
guidelines for application can be deducted. The issue at hand is not necessarily one
of creating novel norms, but rather of understanding their scope and potential for
application to the cyberspace. The challenge is therefore one of transformation: A
process bywhich extant international norms are translated into national standards and
legislation. For example, with respect to cybercrime, international frameworks such
as the Budapest Convention (Council of Europe, ETS 185) exist, but, in principle,
each state must transform and translate its provisions to the specific national contexts
[4, 8].

The responsibility for this implementation process is notwith international bodies,
but ultimately with nation-states themselves. What [16] meant with a technical view
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to system security—‘the challenge to defend infrastructure against intentional attacks
is an architectural one’—certainly also applies to nation-states who must translate
international norms into their legal landscapes.

In this sense, as extant international law applies to the cyber context, it can be
deducted that there are international obligations that require states to secure certain
national (critical) infrastructure or technological domains in order to not cause dam-
age that is ormay be relevant to public national and international security [2]. It there-
fore follows that meeting said obligations would require nation-states to contribute
to an effective defense of such infrastructure. Thereby, the present understanding of
‘cyber defense’ primarily refers to an effective protection of digital infrastructure
against cyberattacks. In order to be able to effectively protect digital infrastructure
from being infected, this involves taking steps to prevent malicious cyber actions
before actual (and large scale) harm occurs. States who want to achieve effective
cyber defense should therefore focus on endeavours that support and enhance the
resilience of infrastructures and networks [14]. In this regard, any resilience-based
national defense requires, in the first place, a decent and clear understanding of
national cyber landscapes. States should know about critical infrastructures and busi-
nesses, and also constantly assess vulnerable points, dependencies, andmeasures that
can mitigate the consequences of large-scale cyber incidents [13].

However, achieving such progress is difficult since states must not only reflect
about how they may apply, comply with, and implement existing and useful frame-
works to that end, but also about the individual economic and technological capa-
bilities at their disposal [6]. Furthermore, since a comprehensive and effective cyber
defense that covers the complete attack surface of a state is highly complex, decen-
tralized, and thus difficult to organize, a preventive and holistic approach toward
cyber defense is key. We suggest that states could focus on four areas that are not
only essential but also most promising to help transform and implement an effective
cyber defense.

15.3 The Implementation Agenda

First, many obstacles stand in the way of effective security information sharing,
as many chapters in this volume have noted and detailed. The sharing of relevant
security information can be key to fastly and effectively detect and defend against
cyberattacks as quite often various organizations can be affected by the same threat
actor or by the same (large-scale) cyber campaign. States should therefore facil-
itate and encourage the (voluntary) sharing and reporting of relevant information
to national govCERTS or other relevant incident response and security teams and
networks. Note that this need not necessarily just entail mandatory security breach
reporting as it already exists in several states or regional agreements (see for instance
the reporting obligations according to the General Data Protection Regulation in the
European Union [46] or in the more recently passed US Cyber Incident Reporting
for Critical Infrastructure Act of 2022 (CIRCIA)). The important point is to create
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an environment that both significantly reduces the transaction cost of sharing and
establishes trust between participants, so that ultimately every party benefits from
such a collaboration. For example, in Switzerland, the National Cyber Security Cen-
ter and its govCERT have been created with this goal in mind (among others). It
understands cybersecurity as a joint task of society, the business community and the
state, with shared (but different) responsibilities [26]. To that end, awareness raising
and the building of trust are central aspects that accompany any such intersectoral
interplay. Additionally, states can inform and sensitize about why information shar-
ing can be crucial for cybersecurity and motivate individuals and organizations to
contribute to relevant information sharing, or could even support open communities
such as useful public information sharing platforms like the Open Source Threat
Intelligence and Sharing Platform MISP (that is co-funded by the European Union).
The access to a large amount of security threat information through such commu-
nities or national govCERTS allows for the aggregation of information in order to
understand (and possibly predict) a bigger picture of technically accumulating risks.
And if the added value of such cooperation and security information sharing is vis-
ible and comprehensible for every participant, this can contribute to a constructive
cooperative environment (that could ultimately increase the security and defense of
several IT systems).

Second, states should facilitate bi- and multilateral cooperative agreements as
well as agreements between a nation-state and its private industry to harness civilian
competence for national cyber defense. For example, NATO’s Cooperative Cyber
Defense Centre of Excellence [5] facilitates the exchange of security and defense
information acrossNATOallies.As is the casewith security information sharing, such
cooperations will only prove fruitful if the transaction cost of entering and managing
them remains low, and if productive outcomes of successful collaborative action are
rewarded.Reciprocal conditions are necessary for an effective cooperation, butwhere
this is not the case, national governments could step in and balance, coordinate, or
encourage cooperation.

Public-private cooperation is an often discussed concept that appears to be very
promising in the cyber (defense) context. As an often cited example, the private IT
industry in Israel cooperates intensively with the government to develop and apply
cyber defense technology, both within and across sectors, since the state and its
national legislation provide them with incentives to do so [38]. Switzerland, for its
part, has an established approach to public-private partnerships, which is primarily
based on voluntary participation [3]. Nevertheless, the public-private cooperation
landscape in the cyber domain is increasingly evolving too. And since many critical
infrastructures are not only decentralized in terms of their IT posture but also privately
run, the private sector takes an important role and initiative itself. For example,
the sectoral network of the Swiss Bankers Association—note the banking sector
is typically considered to have an advanced cyber security posture and network—
incentivizes itsmembers to cooperate on best practices and to jointly exploit expertise
in cyber security and the defense of IT systems. Although this industry association
primarily focuses on the banking sector, it stresses the fact that cooperation on cyber
defense issues generates a public good which also protects the economy as a whole.
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It therefore recommends cooperation to a wider public and states that future success
depends on a close collaboration between the authorities and the private sector. In
this sense, states can help create an environment that develops useful public-private
partnerships which facilitate reciprocity and inter-industry exchange of information.

For example, in the United States, the Cyber Testing for Resilient Industrial Con-
trol Systems (CyTRICS), which is affiliated with the US Department of Energy,
connects national laboratories and stakeholders from private industry to leverage
analytic and defense capabilities in the energy sector [45]. It is based on the premise
that human society and urban life in particular depend on critical infrastructures
which often consist of and are controlled by physical components which are opera-
tive for decades before they are replaced. CyTRICS focuses on high-priority critical
infrastructure and motivates vendors to supply bills of materials used to construct
these infrastructures in order to identify specific vulnerabilities, and to share these
with state authorities. This mapping is important, since the vendor can resolve infor-
mation asymmetry between operators and state agencies at little cost; moreover,
while vulnerabilities may be known for a specific component in isolation, they often
are not mapped to all systems that use this particular component.

Additionally, CyTRICS can identify novel vulnerabilities by an intricate testing
process that involves vendors and lets them immediately patch any weaknesses.
Further, it involves key stakeholders, such as technology developers, manufactur-
ers, asset owners and operators, and interagency partners in this process, in order
to identify high-priority operational technology components, perform expert test-
ing, share information about vulnerabilities in the digital supply chain, and inform
about improvements in component design andmanufacturing. Componentswith high
impact, prevalence, and relevance to national security are prioritized for testing and
analysis.

Thus, once a company joins this network, it is provided with a visible (and mar-
ketable) performance indicator andwritten certificates about the safety of its technol-
ogy and themeasures it took to guarantee it, so that the firm can improve its reputation
in the marketplace. In return, it must cooperate and disclose relevant cyber security
information in order to enjoy these benefits. This ends up in a win-win(-win) situ-
ation to both the state (1. win) and the participating energy sector entities (2. win),
which ultimately even increases overall cyber security of very critical IT systems for
the broader public (3. win).

Third, effective cyber defense does not only involve technical, but also human
factors. Whenever the members of a human society interact digitally, vulnerabilities
are spread across the state, and those who interact—be it as an individual or as a
member of a bigger (critical) infrastructure—may become targets that can be relevant
for critical state functions [13].Any cyber defense or national cyber securitymeasures
are therefore intricately linked to society in general. Therefore, national cyber defense
could be understood as a ‘societal defense problem’, since the resources a state must
deploy to defend the attack surface of thewhole society (and its critical infrastructures
and services) are largely located outside themilitary and even government itself’ (see
more in depth on the concept of a “societal defense problem” in relation to national
cyber defense: [13]). Governments and their militaries consequently not only benefit
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from, but highly depend on human and societal factors even when it comes to the
security and defense of core state functions [9]. As a result, coordinated efforts across
society are required, so that information and education campaigns are paramount.

Since there is a global skill shortage of about 3.5 million cybersecurity specialists
[22], education becomes a key field where states could stimulate the development of
cyber defense knowledge and capabilities. Hence, states should facilitate education
and awareness programs which convey relevant knowledge and skills not only to
prospective specialists, but also to the general public. Such programs could begin
as early as during secondary education. National boards of education could revise
their teaching curricula—e.g., by including serious games [24]—to equip as broadly
a cohort as possible with relevant knowledge about the cyberspace and its protection.
The same arguments also apply to tertiary education, and there are first initiatives to
coordinate education and awareness programs on a supranational level. For example,
COLTRANE is a cybersecurity awareness education community across Europe and
a strategic partnership under the ERASMUS+ program that tries to modernize and
standardize cybersecurity education across Europe [21]. States could take this pan-
European cooperation in the education sector as an example to reflect how similar
programs could be created on the national level.

Fourth and finally, an effective prevention and defense against cyberattacks goes
hand in hand with robust law enforcement mechanisms. While the underlying legal
regime of cybercrime as a matter of criminal justice needs to be distinguished from
the context of national and international security, the very general goal of preventing
such attacks in practice is largely the same.Therefore, states should continue to jointly
develop standards and find ways to facilitate the prosecution of cyber incidents, even
across territorial borders [39]. Since cybercrime can also compromise the homeland
security of a state once crucial supply chains, hospitals, or energy providers are
attacked, effective law enforcement mechanisms which thwart such crimes may also
improve a state’s national defense posture.

However,while cyber attacks (also by cyber criminals)mostly have a transnational
component, law enforcement is often impeded by jurisdictional boundaries between
states. Moreover, law enforcement is not only partitioned between different sub-
domains of legal studies (e.g., criminal law, data protection law, public law) but also
by disciplinary boundaries. Legal scholars thus should learn and bemore comfortable
in collaborating with technical specialists. The postmodern world will have to further
strengthen and enhance an interdisciplinary and holistic way of approaching complex
digital realities and of building bridges between domains. And in order to address the
transnational dimension, supranational law enforcement mechanisms are required.
The Budapest Convention on cybercrime is an ideal example for an international
instrument that was created with this agenda in mind. As of April 2023, 68 countries
have ratified the convention. It sets both guiding international norms and requires all
signatories to adapt and harmonize national laws to comply with its principles [27,
37, 48]. Also, EUROPOL, Europe’s joint law enforcement agency, has benefitted
from legislation that allows law enforcement agencies to coordinate across borders
[10].
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15.4 Conclusion

In principle, international norms and evolving best practices can enhance and encour-
age an effective prevention of and defense against cyberattacks. Moreover, states are
not acting in a legal vacuum when it comes to their international obligations toward
another state. Precisely because a state is required to fulfill its obligations under
international law, it will have to find ways to improve its national (cyber) security
posture that—in the face of unrelenting transnational cyberattacks—may become
relevant for national and international security. Ultimately, any effective defense of
(critical) cyber infastructure, even in the military context, will significantly come
down to core (and socially broad) cyber hygiene.

Thus, while states continue to explore their best ways to transform and implement
security in their national contexts, they can deploy a range of tools that could entail
security improvement efforts for bigger (internationally interconnected) critical sec-
tors to security and awareness improvements for individual digital devices that are
used by the broader civil society [1]. However, states can not only create legislation
but also help create a favorable environment in which different actors can practically
contribute to realize effective cyber defense. For example, economicmechanisms that
facilitate self-governance and public-private cooperation between different stake-
holders and technology leaders. The role of government is not necessarily restricted
to top-down instructions which needs to consist in strictly directing or monitoring
individual action; rather, it can also stimulate awareness, use market-based incen-
tives and institutions that motivate, support, enable, or engage individuals who create
and contribute to overall (and more “bottom-up”) cyber defense. Since all of these
stakeholders are digitally interconnected, the effectiveness of overall cyber defense
largely depends on the interplay and contribution of every stakeholder. Hence, these
collaborative environments will inherently have to be built on broad (and not least
also social) trust and partnerships in order to be efficient.

While each state will build upon its own national norms and governmental land-
scape, international law seems to unite all such endeavors by setting commonly
defined goals and directions. Although cyber technologies that are maliciously
exploited can negatively affect both states and their civilizations, these technolo-
gies have ultimately been built by and for human beings in order to satisfy social,
political, cultural, and economic needs. Even if the global impact of said technologies
implies new layers of complexity and new ways to create and implement security,
the legal side that addresses the human conduct responsible for this security remains
very much grounded in the “real” world [2]. After all, cyber issues and the question
of effective defense will remain integral to the existing geopolitical context, and state
policy is and will be as relevant to the cyberspace as it is to the physical world [15].
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