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Abstract. In a differential cryptanalysis attack, the attacker tries to
observe a block cipher’s behavior under an input difference: if the sys-
tem’s resulting output differences show any non-random behavior, a dif-
ferential distinguisher is obtained. While differential cryptanlysis has been
known for several decades, Gohr was the first to propose in 2019 the use
of machine learning (ML) to build a distinguisher.

In this paper, we present the first Partial Differential (PD) ML distin-
guisher, and demonstrate its effectiveness on cipher SPECK32/64. As a
PD-ML-distinguisher is based on a selection of bits rather than all bits in
a block, we also study if different selections of bits have different impact
in the accuracy of the distinguisher, and we find that to be the case. More
importantly, we also establish that certain bits have reliably higher effec-
tiveness than others, through a series of independent experiments on dif-
ferent datasets, and we propose an algorithm for assigning an effective-
ness score to each bit in the block. By selecting the highest scoring bits,
we are able to train a partial ML-distinguisher over 8-bits that is almost as
accurate as an equivalent ML-distinguisher over the entire 32 bits (68.8%
against 72%), for six rounds of SPECK32/64. Furthermore, we demon-
strate that our obtained machine can reduce the time complexity of the
key-averaging algorithm for training a 7-round distinguisher by a factor of
25 at a cost of only 3% in the resulting machine’s accuracy. These results
may therefore open the way to the application of (partial) ML-based dis-
tinguishers to ciphers whose block size has so far been considered too large.

Keywords: Differential cryptanalysis · Machine Learning based
cryptanalysis · Partial ML-distinguisher

1 Introduction

Block ciphers are cryptographic algorithms that provide confidentiality by
encrypting data using a symmetric key. Block ciphers operate on fixed-length
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groups of bits, called blocks; rather than encrypting one bit at a time as in stream
ciphers. Block ciphers are fundamental components in the design of many cryp-
tographic protocols and are widely used to encrypt large amounts of data, either
locally or over network communication. Recently, the cryptographic community
has focused on the design of lightweight cryptographic (LWC) schemes, which
are suitable for resource-constrained devices that are commonplace in settings
such as the Internet of Things, healthcare, and sensor networks. The need for
dedicated ciphers rises from the fact that the majority of current cryptographic
algorithms were designed having desktop and server environments in mind, and
due to this many of these algorithms are too computationally heavy to operate
onto constrained devices. The US National Institute of Standards and Technol-
ogy, who has a prominent role in the standardization of cryptogrphic algorithms
recognized worldwide, has recently launched an initiative to solicit, evaluate,
and standardize lightweight cryptographic algorithms [1], with the objective to
achieve a set of standards for lightweight cryptographic algorithms by 2022.

Given their pervasive use, it is vital to evaluate the security of block ciphers,
and especially those in the LWC domain, who have appeared more recently
and have therefore been less studied than standard block ciphers such as the
Advanced Encryption Standard (AES) [2]. In the research domain of cryptanal-
ysis, which studies ciphers to find weaknesses and potential attacks, there are
many generic and robust statistical techniques that can be used to attack algo-
rithms and therefore help assess their security. The two most famous examples
are differential [3] and linear [4] cryptanalysis. The main idea behind these
attacks is to find a statistical pattern introduced by the cipher: this is achieved
by looking at the ciphertexts produced by the algorithm, and by trying to distin-
guish between a random permutation and a block cipher. In a simple differential
attack, which is usually a chosen plaintext attack, pairs of plaintext related
by a constant difference (e.g. a logical XOR operation) are used. The attacker
encrypts the plaintexts and computes the differences of the corresponding cipher-
texts, in order to detect statistical patterns in their distribution. This pattern,
whose statistical properties depend upon the nature of the S-boxes1 used for
encryption, is called a differential. On the basis of the differential, the cipher can
be distinguished from random, obtaining what is called a distinguisher.

Traditionally however, the implementation of differential cryptanalysis tech-
niques requires a massive amount of data and memory, and the time complexity
of finding a good distinguisher could be infeasible in most cases. Consequently,
there is an active line of research aimed at automating these cryptanalysis meth-
ods. Until recently, the main focus was to transform the problem of finding a
good distinguisher into an optimization problem [5,6], which can then be solved
more efficiently with optimization solvers like Gurobi [7]. While this approach is
more practical, the process is still time-consuming, and the attacker still needs
a good knowledge about the block cipher under attack.

1 In symmetric key algorithms, the S-box (substitution-box) is a fundamental building
block that is responsible for carrying out the substitution of bits.
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For many years, it was believed that Machine Learning (ML) and cryptog-
raphy could not work well together due to the random behavior of block ciphers
and other cryptosystems [8,9]. However, in a seminal paper in 2019 Gohr pre-
sented an ML-based cryptanalysis of the SPECK32/64 cipher that was better
than previous attacks [10]. In that paper, it was illustrated that by using deep
learning, a differential distinguisher could be achieved in an automated way and
with less time complexity than other attacks, to the point where the cryptanal-
ysis process can be implemented on a personal computer.

Using artificial intelligence (AI) techniques such as machine learning for
the cryptanalysis of block ciphers can open many exciting opportunities. For
instance, with the help of AI, it is possible to extend the known differential
distinguishers for block ciphers [11]. In this paper, we focus on reducing the
memory and computation costs of differential ML attacks by proposing the first
partial differential ML-based distinguisher. In doing so, we also establish the
first experimental differential evaluation of the role of each bit of the input and
output of a cipher in its security.

1.1 Related Work

In 2019, Aron Gohr introduced an 8-round differential distinguisher for the
SPECK32/64 cipher with the help of machine learning [10], and based on that,
an 11-round attack was established, which was better than previous classic
attacks. Gohr’s central idea was using distinguishing attacks with the help of
AI. He trained a neural classifier that can classify between a block cipher and
a random permutation by looking at the output differences of the ciphertexts
for a specific plaintext difference in SPECK32/64. He then compared this neu-
ral distinguisher with the traditional all-in-one differential distribution table
of SPECK32/64, which was commutable due to cipher’s small block size, and
noticed ML-distinguishers could be a good model of it. Furthermore, he pre-
sented a method to find a good input difference for distinguishing attacks with
the help of ML without any prior knowledge.

Following Gohr’s intuition, a subsequent study was published by Baksi et
al. [12] which used deep learning differential to train distinguishers for non-
Markov ciphers, and on that basis could simulate non-Markov cipher’s all-in-one
differential distribution table. This was modeled successfully for ciphers with
big state sizes such as Gimli. Moreover, the paper studied other architectures
of deep learning networks, including Long Short-Term Memory (LSTM) and
Multilayer Perceptron (MLP). Their results indicate that an MLP network with
three hidden layers can be efficient enough to train a distinguisher.

Linear cryptanalysis has also been recently attempted using machine learn-
ing. Hou et al. applied machine learning on DES cipher to achieve a linear attack
[13], using known plaintext and their corresponding ciphertexts. The results show
that a neural network can recognize the XOR distribution of a linear expression
in DES cipher. Other attacks such as integral have also been investigated in
conjunction with machine learning [14].
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Recent research in this direction is not limited to block ciphers: Liu et al.
in [15] analyze the security of variants of Xoodyak hash mode against preimage
attack utilizing deep learning. They trained a model for one round of permutation
to predict the message of a hash function and discover that the accuracy is high.
However, as the number of rounds is increased, the deep learning preimage attack
diminishes in effectiveness.

Benamira et al. contributed a more in-depth analysis of the functioning of
ML-based distinguishers, and focused in particular on what information they
use [16]. Their results indicate that these machines not only use the differential
distribution on ciphertext pairs, but the distinguisher depends on the penulti-
mate or antepenultimate rounds. Based on these findings, they propose a new
pure cryptanalysis distinguisher with the same accuracy as Gohr’s neural dis-
tinguisher.

Due to the fact that the majority of the literature review on differential
machine learning analysis focuses on the Speck cipher, such as the aforemen-
tioned [10,16], and [17], our primary emphasis in this paper is also on this cipher.

An important limitation of current attacks relates to their complexity. To
attack n + 1 rounds of a block cipher using n-round of Gohr’s neural distin-
guisher, we need to guess all the possible last-round subkeys. Although this
approach works well on SPECK32/64, whose length of subkeys is 16 bits, it may
not work efficiently for many other ciphers. For example, in AES-128 [2] the size
of subkeys (round keys) and the main secret key is equal to 128 bits, so the
complexity of trying all last-round subkeys is equivalent to a brute force attack.

Furthermore, the block size of ciphers can affect the training phase of ML-
distinguishers because each bit in the training stage acts as a feature for the
machine. SPECK32/64 has a 32 bits block size, but usually, ciphers have a
block size higher than that. As a result, training ML-distinguishers could be
harder for other block ciphers, especially ones with a Substitution-Permutation
Network (SPN)2 structure.

1.2 Contribution

In this paper, we present novel results that advance the efficiency, and reduce
the cost of ML-based distinguishers. In particular, we show experimentally that
not all the bits in a block are necessary as features to have an adequate neural
distinguisher. We also find that different selections of bits (features) in the ML-
distinguisher lead to vastly different accuracy results, and that certain bits are
consistently better than others for this purpose. On this basis, we propose a
new feature selection method for partial differential ML-based distinguishers.
We use the selection method to obtain a much more compact partial differential
ML-based distinguisher.

2 Given a plaintext block and a key, the substitution-permutation network (SPN)
generates the ciphertext block through a series of rounds or layers of substitution
boxes (S-boxes) and permutation boxes (P-boxes).
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In particular, we first present a novel method aimed at training a neural
distinguisher more efficiently than in current literature. We do so by introduc-
ing the first partial differential machine learning based distinguisher (PD-ML-
distinguisher). The idea behind a partial differential ML distinguisher is that it is
not necessary to train the ML model on all the bit differences of ciphertext pairs
in order to achieve a distinguisher. Consequently, if we have an ML-distinguisher
that can tell, without knowing all bits, whether some difference in ciphertext
pairs δ = C0 ⊕ C1 is generated as random or as the result of the encryption
of the plaintext pairs, then we do not need to guess all the subkeys in the last
round to recover the secret key.

Secondly, we implement the PD-ML-distinguisher for SPECK32/64 (the ref-
erence cipher in related works in the literature [10,16,17]) and we measure the
effectiveness of each bit of δ in the training of ML-distinguishers. Through an
extensive series of experiments we find that different bits have a different impact
in the training of the distinguisher. This characteristic can be reliably observed
in separate, independent experiments. Based on our measurements, we assign a
score to each bit with the help of the PD-ML-distinguishers. The bits with higher
scores are more important for the training of the models, as they lead to machines
that are significantly more effective (68.8% for 8 bits) than those trained on the
lowest scoring bits (52% for 8 bits). On this basis, we can therefore select only
the most effective bits when training PD-ML-distinguishers, achieving better
time efficiency in training the distinguisher. This is evidenced by the training of
a 6-round distinguisher for SPECK32/64 with just 8 bits achieving an accuracy
of 68.8%, against an accuracy of 72% for an equivalent ML distinguisher trained
on the full 32 bits.

In order to demonstrate how our proposed model can be put to use in prac-
tice, we also train a distinguisher for 7-round SPECK32/64 using a 6-round
distinguisher utilizing the key-averaging algorithm proposed by [10]. The exper-
iment shows that our proposed model can reduce the time complexity of this
algorithm from 216 to 211, with the cost of just 3% in accuracy of resultant
distinguisher (from 61% to 58%).

1.3 Outline

The structure of this paper is as follows. Section 2 gives an overview of the
SPECK32/64 block cipher, and a brief description of Gohr’s neural distinguisher
is explained. In Sect. 3, PD-ML-distinguishers are introduced, and they are exam-
ined on the SPECK32/64 cipher. In Sect. 4, an experiment is presented to mea-
sure effectiveness of each bit for training ML-distinguishers, and extensive exper-
imental evidence is discussed.
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2 Preliminaries

2.1 The SPECK Cipher

SPECK is a family of lightweight block ciphers designed by the NSA in 2013
[18]. These ciphers have many different block sizes and key sizes, but in this
paper, SPECK with 32 bits block size and 64 bits key size is evaluated, and it
is specified by SPECK32/64. Like many other block ciphers, it is an iterative
cipher, which means it has a function that iterates for many rounds until the
ciphertext is generated. The number of rounds for SPECK32/64 is 22.

SPECK is a Feistel cipher. Accordingly, the plaintext is divided into two
equal parts (R,L), and in the case of 32 bits block size R,L ∈ {0, 1}16, then the
below function applies to inputs at each round:

SPECK32/64 :
Lr+1 = ((Lr >> 7) � Rr) ⊕ kr

Rr+1 = (Rr << 2) ⊕ Lr+1

(1)

In Eq. (1) << and >> are cyclic left and right shift, respectively, � is
modular addition, and ⊕ is an exclusive OR (XOR).

2.2 ML-Based Differential Distinguishers

To analyze the security of a block cipher with block size of n against differential
attack, cryptographers study the statistical behavior of a difference through a
block cipher. For this, they choose an input difference and encrypt it for a spe-
cific number of rounds and, lastly, try to find non-randomness in corresponding
output differences. Throughout this paper, the input difference is represented by
Δ, and it is defined as a XOR of two plaintexts; additionally, Pi and Ci stand for
the plaintexts and ciphertexts, respectively. The output difference is specified by
δ = E(P0) ⊕ E(P1 = P0 ⊕ Δ) and (Δ → δ) is called a differential. The occur-
rence probability of a differential can be shown by Pr(Δ → δ). In a random
permutation with block size of n, the average probability of a differential is:

∀Δ, δ : Pr(Δ → δ) = 2−n

If an attacker can find a differential such that Pr(Δ → δ) > 2−n for a block
cipher, a differential distinguisher is achieved.

In Gohr’s attack [10], an ML-based distinguisher is trained with the aid
of ciphertext pairs. These pairs are generated in two ways: in the first group,
they are real ciphertexts (C0, C1) of a block cipher for a specific plaintext pairs
(P0, P1), where P0 ⊕ P1 = Δ; in the second group they are selected randomly
(noted by ∈r) where C0, C1 ∈r {0, 1}n × {0, 1}n. Then, the accuracy of this
distinguisher is evaluated, and if this accuracy is more than 50%, a distinguisher
is obtained. selection It is important to note that the power and efficacy of
this ML-based differential attack compares positively with the All-in-One attack
[19] for SPECK32/64. The All-in-One attack is a powerful differential analysis
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that considers a set of all output differences for a fixed given input difference Δ
instead of one specific differential trail Δ → δ.

All − in − one = {δ|δ = E(P0) ⊕ E(P0 ⊕ Δ)}
The steps of finding an ML-based differential distinguisher for r round

of SPECK32/64 cipher are as follows. Considering the feistel structure of
SPECK32/64, every plaintext can be represented like P = (L,R) that L ∈
{0, 1}16 and R ∈ {0, 1}16 are left and right part of plaintext, respectively. Fur-
thermore, the 32-bit values for plaintexts, ciphertexts, and differences are repre-
sented in hexadecimal form, for e.g., 6659 = 0x1a03.

1. First, 107 plaintext pairs (P0, P1) are randomly generated in a way that Δ =
(L0 ⊕ L1, R0 ⊕ R1) = (0x0040, 0x0000). Meanwhile, 107 labels Y ∈r {0, 1}1

are randomly generated and allocated to the pairs.
2. if Y = 0 the P1 is randomly changed to P1 ∈r {0, 1}32 then all these pairs

are encrypted with r rounds of SPECK32/64, and all the ciphertext pairs
(C0, C1) are stored with their corresponding labels in a dataset.

3. An AI machine is trained with the help of these ciphertext pairs. In this
training phase, zero label Y = 0 means it is a datum from a random per-
mutation, while Y = 1 demonstrates a ciphertext for a fixed input difference
Δ = (0x0040, 0x0000).

4. In testing stage, steps (1) and (2) are repeated for another 106 pairs, and the
accuracy of the machine is measured. If accuracy is more than 50%, then the
machine is a differential distinguisher.

As discussed in Sect. 1.1, following Gohr’s seminal work several papers have
investigated the use of ML in cryptanalysis [11,12,20]. Some of these works
changed certain steps of the original attack as mentioned above. For instance,
in [12] there are two major changes. Firstly, it is shown that using a multilayer
perceptron (MLP) for training the ML-distinguisher can achieve better results
than CNN network as used in [10]; and secondly, the training dataset containing
C0 ⊕ C1 instead of (C0, C1) is more useful for increasing the accuracy of ML-
distinguisher.

The final goal of having a distinguisher is to attack the cipher. By having a r-
round ML-based distinguisher, a trivial attack on r + 1 rounds of SPECK32/64
cipher can be implemented as follows.

1. For a fixed input difference Δ = (0x0040, 0000), n pairs of (P0, P1) is formed
and their corresponding ciphertext (C0, C1)r+1 after r+1 rounds is obtained
by asking from an oracle.

2. For all possible subkeys in round r + 1, (kr+1), ciphertexts are partially
decrypted for one round and (C0, C1)r saved in a dataset.

3. given each (C0, C1)r to r round ML-based distinguisher in the test phase, a
score is attained for every ciphertext pair.

4. Average all the scores to have a final score for each subkey kr+1.
5. Rank the subkeys based on their score. The subkey with the highest score

has the most probability to be the correct subkey.
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3 Partial Differential ML-Distinguisher

In this section, we show that it is possible to train an adequate neural distin-
guisher based on a subset of bits in a block, rather than the entire block as in
previous literature. As a result, we introduce the first Partial Differential ML-
distinguisher.

To analyze the security of a cipher, the complexity of the attack algorithm
should be less than brute force. The brute force attack complexity for a block
cipher is 2min(|k|,|n|), where |k| and |n| are key and block size, respectively. As
shown in Sect. 2.2, in order to find the key of a cipher with the help of a ML-
distinguisher, all the subkeys in the last round need to be guessed. Therefore,
to attack r rounds of SPECK32/64 cipher, the attacker has to guess all bits of
subkey kr, which has 16 bits length. As a result, the complexity of the attack is
216 which is less than brute force attack 232, and it is a successful cryptanalysis
for SPECK32/64.

On the other hand, in many ciphers, especially those with SPN structures
like AES, the complexity of guessing the last round subkey is equal to brute
force attack. In this paper, we train partial differential distinguishers (PD-ML-
distinguishers) and compare their accuracy to a full state differential distin-
guisher for 6-round SPECK32/64. We show that PD-ML-distinguishers can still
distinguish output differences that are generated by SPECK32/64 from a random
output. The proposed classifiers also reduce the complexity of further cryptanal-
ysis, as there is no need to guess all the subkeys in the last round.

3.1 Methodology

In order to show the feasibility of training a ML-based distinguisher by using
partial differences of (P0, P1) and (C0, C1), we set up an experiment where many
PD-ML-distinguishers are trained for six rounds of SPECK32/64, and their accu-
racy is recorded. We chose Speck as this has emerged as the reference cipher in
related works on ML distinguishers (such as [10,16] and [17]) and therefore allows
for better and more significant comparison of our results.

The number of rounds for encrypting plaintext pairs is set to six rounds:
this is consistent with current literature, as in [10], which shows that reasonably
strong distinguishers against up to six rounds of Speck can be trained by using
ten-layer residual networks. On the other hand, extending distinguishers to 7 and
8 rounds requires the use of more sophisticated algorithms like Key Averaging
[10] for the additional rounds. As our objective is to demonstrate the feasibility
and greater efficiency of a partial differential ML-distinguisher attack compared
to a simple ML-distinguisher, in this work we focus on the first 6 rounds, as
it is done in the previous ML-distinguishers in the literature we are comparing
too. However, for completeness, we discuss extending the proposed distinguisher
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using Key Averaging in Sect. 4.2, and we find that our technique results in a
significant reduction in complexity of key averaging as well.

Each bit of the output difference acts as a feature for the machine learn-
ing based distinguishers. Consequently, to achieve a partial ML-distinguisher for
SPECK32/64, the machine is trained by subset bits of the ciphertext difference,
δ, rather than all 32 bits. To experimentally verify to what extent we can trim the
output difference, δ, without significantly reducing the effectiveness and robust-
ness of the PD-ML-distinguisher, we conduct an experiment as follows. We first
train our distinguisher with just one feature, the least significant bit (LSB) of
δ, and record its accuracy. Next, we again train another partial distinguisher,
but this time we increase the number of features by one, where the feature is
the second least significant bit of δ. This process is repeated until we have 32
different distinguishers. Algorithm 1 gives details on the experiment. The plain-
text difference Δ to generate ciphertexts difference is Δ = (0x0040, 0x0000), and
the dataset is 32 bits differences δ = [δ0, . . . , δ31]. In order to demonstrate the
repeatability of the results, we repeat the above process 3 times, each time using
a different pairs of (P0, C0) and (P1, C1) to create new δs, while maintaining
P0 ⊕ P1 = Δ = (0x0040, 0x0000).

Baski et al. showed in [3] that the Multilayer Perceptron (MLP) architectures
are more efficient than Convolutional neural networks (CNN), including Residual
networks, or Long Short-Term Memory (LSTM) for training an ML-based dif-
ferential distinguisher. As a result, in this paper, a Multilayer Perceptron (MLP)
machine with three dense layers and a sigmoid activation function is used for
training. The number of neurons for dense layers is 32, 64 and 32, respectively.
These have been selected though a standard fine-tuning process. For each num-
ber of input bits, a new machine was trained for ten epochs on 107 different
C0 ⊕ C1 = δ. Also, another 106 sample was generated for validation. The loss
function for optimization was binary cross-entropy plus L2 weights regulariza-
tion with parameter c = 10−5 using Adam algorithm [21]. The learning schedule
applied in these ML-distinguishers is the cyclic learning rate used in [10]. All
other parameters are the default parameters in Keras [22].

In each iteration of Algorithm 1, we concatenate difference bits based on their
position. If we assume that the accuracy of the machines entirely depends on
the number of bits, rather than which bits are selected, then a different selection
method should produce comparable results, accounting for statistical differences.
In order to verify this hypothesis, we repeat the above process using Algorithm
1; however, this time, instead of starting from the least significant bit δ31, we
start from the most significant bit (MSB) δ0, and then we concatenate the next
MSB to our feature space for the next iteration of the while loop and trained
our machine.

The results of the experiment for SPECK32/64 are shown in Figs. 1
(LSB→MSB) and 2 (MSB→LSB), and are discussed in the following. The results
clearly indicate that a partial differential ML-distinguisher is effective, as a dis-
tinguisher can be obtained for a reduced number of bits. However, by looking at
the figures, it is also immediately evident that the accuracy changes if we change
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Algorithm 1: Training PD-ML differential distinguishers
1 10 Input: Data set for training the machines: δ = [δ0, . . . , δ31]

Output: Accuracy of machines: A
2 i = 31, j = 0 ;
3 Initialize an empty array Xtemp ;
4 Initialize array A with size 32;
5 while i ≥ 0 do
6 Xtemp = δ[i]||Xtemp;
7 D ←− TrainMachine(Xtemp) ;
8 A[j] = AccuracyTest(D);
9 j = j + 1 , i = i − 1

the selection of bits. These initial experimental results indicate that different bits
have a different impact on the machine accuracy. We build on these findings in
Sect. 4, where we analyse in detail the impact each bit has in the effectiveness
of the partial differential ML-distinguisher.

3.2 Results and Discussion

By looking at Figs. 1 and 2, it can be seen that we can achieve a distinguisher
without giving all bits of output difference to the machine. For instance, in Fig. 1,
we can have a suitable machine with just the first 20 bits of output difference.
However, in Fig. 2, we train the machines by concatenating the output differences
from the opposite MSB to LSB direction. In that case, the number of bits that
we need to achieve almost the same accuracy is 28, as shown in Fig. 2. From
this, we can conclude that the bits position chosen for the PD-ML-distinguisher
training can be effective in its accuracy.

We repeat this experiment three times for each direction (LSB to MSB and
MSB to LSB) to see how the machines’ behavior changes for different datasets.
Each color in Figs. 1 and 2 represents one run of Algorithm 1. By looking at the
figures, it is clear that the results achieved in the experiment can be reliably
repeated in different experimental instances. We also note that increasing the
number of features (bits) makes the accuracy of PD-ML-distinguishers fluctuate
slightly between experiments (for a number of bits >28). The reason for this
is that the number of epochs is set to 10 due to reducing training time, so
it is harder for machines to converge when the number of features is higher.
Nevertheless, this is not true when the number of bits is lesser than 22 for
both directions. Therefore, we can conclude that using PD-ML-distinguishers
can reduce feature size, resulting in faster convergence of the machines.
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Fig. 1. Accuracy of ML-distinguishers according to number of bits in LSB→MSB direc-
tion for 6 round of SPECK32/64

Fig. 2. Accuracy of ML-distinguishers according to number of bits in MSB→LSB direc-
tion for 6 round of SPECK32/64

4 Measuring Bit Effectiveness for ML-distinguishers

The results presented in Sect. 3 show that we do not need all bits of the δ to
obtain a ML-based distinguisher. In fact, we were able to train a partial differ-
ential ML distinguisher with fewer training bits and achieve results comparable
to distinguishers learned on full data. In this section, we aim to identify the
best strategy for finding the best machine, trained with the least number of bits.
Since the desire of block cipher designers is that the output bits of the encrypted
message have the most negligible correlation to each other, there is no trivial
or pre-defined way to determine which bits are the best for training the partial
distinguisher. Hence, we introduce a new experimental method to find the bits
of output difference δ for 6-round of SPECK32/64, which have the most impact
on the effectiveness of a partial differential ML-distinguisher. The main goal of
this experiment is to assign a score to each bit of δ, so that with the help of these
scores we can find the most effective bits for training a PD-ML-distinguisher.

4.1 Methodology

The experiment setup is as follows. Given the set of bit positions in a block B =
{b0, . . . , b31}, where 0 indicates the position of the most significant bit, we select
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a subset C16
B = {C0, . . . , C99} of the all the possible 16-combinations of B (that is,

the subsets of 16 distinct elements of B), in a way that the distribution of each
bi ∈ B, in Cis be uniform, where 0 ≤ i ≤ 99. Each of these 100 16-combinations
represents a selection of 16 bits out of the 32 total bits in a SPECK32/64 block
to be used in the training of a PD-ML-distinguisher.

We use the following procedure in the experiment (Algorithm 2). For each
combination, Ci ∈ C16

B we train a PD-ML-distinguisher, and we record its accu-
racy in an array A = [a0, . . . , a99]. In the next step, we construct a matrix
M32×100 in which every row and column correspond to bis and Cjs, respectively.
Equation 2 represents the M matrix, and how to construct it.

M32×100 =

⎡
⎢⎣

m0,0 . . . m0,99

...
. . .

...
m31,0 . . . m31,99

⎤
⎥⎦ and mij =

{
0 bj /∈ Ci

1 bj ∈ Ci

(2)

This matrix tells us which bits are chosen for every Cis. For example, if MSB bit
is in combination set C0 then m00 = 0 otherwise, m00 = 1. Then, considering the
matrix M , we can compute a score for each bit, S = {s0, . . . , s31}, as follows:

si =

99∑
j=0

mij ∗ aj

99∑
j=0

mij

. (3)

This score si is calculated as the average accuracy of all the PD-ML distin-
guishers built on combinations where the ith bit is included. A bit with a higher
score means that the combinations with that bit in their set lead to a PD-ML-
distinguisher with a higher accuracy on average. As a result, with the help of this
score, we can select the most effective bits for training a PD-ML-distinguisher.

4.2 Results and Discussion

By having all the scores from each combination set, we can select the most
effective bits for training a PD-ML-distinguisher with the minimum number of
features. If the scores shown in each set, Ci ∈ C16

B , were almost similar for all the
bits, then we could conclude that all the bits of δs have equal effect on training
a PD-ML-distinguisher. However, in our experiment we observed that there are
bits, like 12th, 14th and 29th, with higher scores. As a result, we can confirm
this hypothesis that the position of δ bits used for training PD-ML distinguisher
affects its accuracy.
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Algorithm 2: Scores of effectiveness
1 10 Input: Sequence set of combinations: C16

B = [C0, . . . , C99]
Output: Sequence set of scores: S = [s0, . . . , s31]
Training Data: differences of ciphertext pairs of 6-round SPECK32/64 : δ = [δ0, . . . , δ31]

2 Initialize Sequence set A with size 100
3 Initialize M32×100 Matrix
4 Initialize Sequence set S with size 32

5 for Ci ∈ C16
B do

/* Training PD-ML distinguishers */
6 D ←− TrainMachine(Ci)
7 A[i] = AccuracyTest(D)

/* Making M matrix */

8 for δj in δ do
9 if δj ∈ Ci then M [j][i] = 1 else M [j][i] = 0

/* Computing the score */

10 for 0 <= i <= 31 do S[i] =

99∑

j=0

mij ∗ aj

99∑

j=0

mij

In order to demonstrate the repeatability of these results, and since C16
B is

chosen randomly, we repeat the Algorithm 2 three more times and obtain 4
different scores for each bit. Then, we normalize all the scores based on the
average for each experiment. Figure 3 shows the result. Also, Table 1 indicates
the average score and standard deviation for each bit of δ, considering all scores
in the four experiments.

As can be seen, the scores for some bits are always above average. By look-
ing at Fig. 3 and Table 1, we choose 8 bits with the best score. We propose
two selection of bits for 6-round PD-ML distinguisher of SPECK32/64: δT =
[δ29, δ28, δ22, δ15, δ14, δ13, δ12, δ5] and δT ′

= [δ29, δ28, δ21, δ15, δ14, δ13, δ12, δ5]. The
rationale for choosing these bits is that except bit δ22 ∈ δT and δ21 ∈ δT ′

other

Fig. 3. Normalized Scores for 4 different combination sets. The bits with vertical
lines are the ones that are chosen as the most effective bits for training a PD-ML-
distinguisher for six rounds of SPECK32/64.
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Table 1. The average score (si) and standard deviation (SDi) of each bit of δ in the
experiments.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

si -0.62 -0.48 -0.19 -0.51 -0.83 0.75 -0.12 -0.20 0.01 -0.47 -0.53 -0.40 1.99 1.25 2.45 0.94

SDi 0.38 0.16 0.66 0.41 0.36 0.11 0.66 0.35 0.68 0.46 0.53 0.30 0.38 0.69 0.18 0.43

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

si -0.82 -0.75 -0.62 -0.22 -0.47 0.15 -0.10 -0.34 -0.71 -0.36 -0.59 -0.52 2.29 0.87 -0.18 -0.59

SDi 0.22 0.29 0.19 0.36 0.37 0.39 0.16 0.50 0.55 0.38 0.20 0.39 0.39 0.96 0.78 0.41

bits always have a score above average, zero. In the case of δ22, it has a very low
standard deviation while its average score is near the total average (zero), while
δ21 has the next-highest average score across experiments, despite scoring lower
than δ22 in some instances.

Finally, we train a new distinguisher with just these eight bits to verify if
they are sufficient for training a neural distinguisher, and we obtain a PD-ML-
distinguisher with an accuracy of 68.7% for δT and 68.8% for δT ′

. For compar-
ison, we train a comparable non-partial differential ML-distinguisher, using all
32 bits, and we obtain an accuracy of 72%. For further comparison and verifi-
cation, we also train a PD-ML-distinguisher on the lowest scoring 8 bits. This
time, we obtain an accuracy of 52%, only slightly above the 50% threshold,
at which the ML model is not able to distinguish from random, and therefore
a distinguisher is not obtained. Figure 4 illustrates the process of the training
PD-ML-distinguishers.

The above results clearly indicate the validity and effectiveness of the novel
partial differential ML-based distinguisher approach we propose in this paper.
The proposed bit selection mechanism further improves the results, and makes it
possible to train a PD-ML-distinguisher using a fraction (25%) of the bits, and
therefore leading to a reduction in the time and space complexity of training
the model, as well as a reduced size for the neural network. This reduced size
means we will have a lesser number of neurons in the input layer. Therefore, it
decreases the time complexity of the training phase because we can train the
machine with a lower number of input features compared to when we increase
the feature space of the dataset.

Although in Sects. 3 and 4 we use the same input difference as Gohr’s paper,
this bit selection can be used in a black-box method. In [12], a procedure was
introduced to find the best input difference Δ for the All-in-One differential
attack without any prior knowledge by ML-based distinguishers. So, for having
a black-box bit selection, we can use the ML-distinguisher for finding the best
possible Δ and then use the bit selection of this section.

In the following, when discussing the differences between our machine and
Gohr’s results, it is important to consider an important distinction. According
to [16], the Gohr machine understands information better than the pure differen-
tial distribution of outputs. In fact, if we give the ML-distinguisher (C0||C1) as
input instead of C0 ⊕ C1, the machine understands the differential distribution
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Fig. 4. The Training Process of PD-ML-distinguishers. Rank values are as per Table 1.
Plotted bars are approximation of the values (due to graphical constraints).

in the penultimate and antepenultimate rounds as well. To prove this assump-
tion, Bnamira et al. [16] used the Gohr ML-distinguisher in one experiment, but
instead of ciphertext pairs, they used C0⊕C1 = δ as an input of the distinguisher
and observed that the machine’s accuracy decreased from 78.8% to 75.4%. So,
they conclude that Gohr’s machine can extract more information than just the
differential distribution of outputs. Hence, throughout this paper, we aim to
assess how each bit of the output difference, δ, affects the training of the distin-
guisher. When comparing our results to the accuracy of other machines, we do
so referring to pure differential inputs, which in the case of Speck32/64 is 75.4%
[16].

The details of the ML models used are summarised in Table 2, showing that
our Partial ML-distinguisher machine is significantly smaller in terms of depth,
number of epochs and number of features than the comparable Gohr’s machine
[10].

4.3 Reducing the Time Complexity of key Averaging

While the this work focuses on the ML-distinguisher, and therefore on the first six
rounds of the SPECK32/64, as per the relevant literature, the proposed partial
differential ML-distinguisher can also reduce the complexity of algorithms tar-
geting subsequent rounds, and in particular the key averaging algorithm, which
is described in [10]. By employing an r-round differential ML-distinguisher, the
key averaging method is utilized to raise the number of rounds for a differential
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Table 2. Comparison of different machine learning based differential distinguishers.
The training time refers to the networks running on the Google Colab platform [23]

Reference Network Number of
input features

Depth Epochs Input of the
Machine

Training time
per epoch

Accuracy

[10] CNN 32 (bits) 10 200 C0||C1 ≈ 7 min %78.8

[16] CNN 32 (bits) 10 200 C0 ⊕ C1 ≈ 7 min %75.4

[17] MLP 32 (bits) 6 10 C0 ⊕ C1 ≈ 2.5 min %7.5a

This work MLP 32 (bits) 3 10 C0 ⊕ C1 ≈ 1 min %72

This work MLP 8 (bits) 3 10 C0 ⊕ C1 ≈ 30 sec %68.8
aThis machine is not a binary classifier; rather, the training set includes 32 distinct
classes. More information can be found at [17].

ML-distinguisher to r+1 rounds. [10] employed a six-round neural distinguisher
to assess the one round partial decryption of each ciphertext pair in the test
set, and the aggregated results were used to compute a score for each pair by
average across them. The complexity of this approach for Gohr’s distinguisher
is 216, and he was able to create a 7-round distinguisher with a 61% accuracy.
Using the proposed PD-ML-distinguisher, however, we can execute this method
with a complexity of 211 and obtain a 7-round distinguisher with a 58% accu-
racy. The complexity is therefore significantly reduced, as we do not need to
know all of the bit differences in the ciphertext pairings, at a small cost in the
accuracy. While extending to further rounds is outside of the scope of this work,
the application and improvement of key averaging and other techniques to the
PD-ML-distinguisher represent an interesting future research direction, as dis-
cussed in the Conclusion. The time complexity and accuracy of the 7-round
ML-distinguisher produced by our proposed model, based on the key averaging
algorithm, are compared to those of Gohr’s model in the Table 3.

Table 3. Evaluation of the performance of ML-distinguishers in executing the key
averaging algorithm.

Reference Time Accuracy of

Complexity resultant distinguisher

[10] 216 %61

This work 211 %58

The same is true if an attacker wishes to apply the key ranking to the final
round of the cipher. In this type of attack, the attacker employs a r-round ML-
distinguisher to attack the r + 1-round of the block cipher by guessing all of
the required subkeys from the previous round. Again, if we use the Gohr’s ML-
distinguisher to perform the key ranking attack, we must guess 216 subkeys;
however, with the help of our proposed model, this time complexity can be
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reduced to 211, because we only need to partially decrypt 8-bits of the previous
round, which we can do by guessing 11 bit keys.

Furthermore, our model allows attackers to find a trade-off between time
complexity and distinguisher accuracy. To accomplish this, the attacker simply
needs to increase the number of inputs for the machine based on their score and
then have a higher accuracy. This flexibility is useful in SPN-like ciphers, where
the length of the subkey is typically the same as the length of the block, and
guessing all of the keys from the last round makes the attack infeasible due to
time complexity.

5 Conclusion

In this paper, we investigated the applicability of partial differences in train-
ing neural distinguishers, and we proposed the first partial differential Machine
Learning (ML) distinguisher. As a partial differential ML-distinguisher is trained
on a selection of bits rather than all bits in a block, we also studied the impact
of the selection of bits in the accuracy of the distinguisher, and we established
that certain bits have reliably higher effectiveness than others, through a series
of independent experiments on different inputs. On this basis, we proposed an
algorithm for assigning an effectiveness score to each bit in the block.

In applying a differential attack, our goal was to find non-random behav-
ior in a block cipher when we do not have all bits of difference in ciphertext
pairs, δ. To achieve this purpose, we trained a ML-based differential distin-
guisher for 6-rounds of SPECK32/64 by using just some parts of δ, and we
studied the effectiveness of such a partial ML-based differential distinguisher,
which we call PD-ML-distinguisher. Our experiments indicate that it is possible
to achieve PD-ML-distinguishers with high accuracy, that is comparable to that
of a ML-distinguisher trained on the full 32-bits of the block. We also observe
that increasing the number of bits does not necessarily lead to an increase in the
machine accuracy; but it can reduce the converging speed.

Based on these results, we then experimentally examined if all bits have an
equal impact on the training stage by creating new PD-ML-distinguishers. We
detect that the accuracy changes when we alter the bits. We conclude that some
bits are more critical for ML-distinguishers.

To find the most effective bits in the training phase, we proposed an algorithm
to allocate a score to each bit of δ for 6-round SPECK32/64. With the help of
this score, we could select the eight most effective bits and construct a 6-round
PD-ML-distinguisher for SPECK32/64 achieving an accuracy of 68.8%. This is
comparable, and only slightly lower than the 72% accuracy of a ML-distinguisher
trained on the full 32-bits, which implies a significantly higher cost in terms of
computational and space complexity.

The reduced input also leads to a significant reduction in the complexity of a
potential subsequent key recovery attack, as we would not need to guess all the
possible subkeys, but rather just 8 bits of them. As an example, we compared
our model’s performance to that of Gohr’s when both were used to execute the
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key-averaging algorithm on SPECK32/64 and found that our model improved
runtime (reducing complexity from 216 to 211), while sacrificing just a small
amount of the resulting ML-distinguisher’s accuracy (∼3%).

While our experiments are obtained on lightweight cipher SPECK32/64 (the
most widely used cipher in the ML-distinguishers literature), the proposed tech-
niques are generic and can be applied on other ciphers. These results are in fact
likely to open the way to efficient ML-based differential cryptanalysis of ciphers
with larger block sizes, placing standard block ciphers potentially within reach.

As a future research direction, further analysis of the PD-ML-distinguishers
may determine the factors that influence the effectiveness of particular bits and,
based on that, establish precise criteria concerning the round functions of a
cipher. Also, additional insight into the connection between the features (bits)
and the prediction may be gleaned from comparing our proposed algorithm with
machine learning model interpretations like SHAP or LIME. Another direction
may be to use r round distinguishers to create new distinguishers for r + 1
or higher number of rounds. For instance, as briefly discussed in Sect. 4.2, the
key averaging algorithm can produce a 7-round distinguisher by using 6-round
distinguisher without training a new machine. In this scenario, utilizing PD-ML
distinguishers may reduce the complexity of the algorithms used to do this.
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