
Practical Homomorphic Evaluation
of Block-Cipher-Based Hash Functions

with Applications

Adda Akram Bendoukha1(B), Oana Stan1, Renaud Sirdey1, Nicolas Quero1,2,
and Luciano Freitas3

1 Université Paris-Saclay, CEA-List, 91120 Palaiseau, France
{adda.bendoukha,oana.stan,renaud.sirdey}@cea.fr

2 Expleo, Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
nicolas.quero@expleogroup.com

3 LTCI, Télécom Paris, Institut Polytechnique de Paris, Palaiseau, France
lfreitas@telecom-paris.fr

Abstract. Fully homomorphic encryption (FHE) is a powerful cryp-
tographic technique allowing to perform computation directly over
encrypted data. Motivated by the overhead induced by the homomor-
phic ciphertexts during encryption and transmission, the transciphering
technique, consisting in switching from a symmetric encryption to FHE
encrypted data was investigated in several papers. Different stream and
block ciphers were evaluated in terms of their “FHE-friendliness”, mean-
ing practical implementations costs while maintaining sufficient secu-
rity levels. In this work, we present a first evaluation of hash functions
in the homomorphic domain, based on well-chosen block ciphers. More
precisely, we investigate the cost of transforming PRINCE, SIMON,
SPECK, and LowMC, a set of lightweight block-ciphers into secure
hash primitives using well-established hash functions constructions based
on block-ciphers, and provide evaluation under bootstrappable FHE
schemes. We also motivate the necessity of practical homomorphic eval-
uation of hash functions by providing several use cases in which the
integrity of private data is also required. In particular, our hash construc-
tions can be of significant use in a threshold-homomorphic based protocol
for the single secret leader election problem occurring in blockchains with
Proof-of-stake consensus. Our experiments showed that using a TFHE
implementation of a hash function, we are able to achieve practical run-
time, and appropriate security levels (e.g., for PRINCE it takes 1.28
minutes to obtain a 128 bits of hash).

Keywords: FHE · Hash functions

1 Introduction

Fully homomorphic encryption (FHE) allows in theory to compute any func-
tion over an encrypted input. A plethora of works [5,16,20,26] investigated the

N. Quero—This author contribution to this work was done while at CEA LIST.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G.-V. Jourdan et al. (Eds.): FPS 2022, LNCS 13877, pp. 88–103, 2023.
https://doi.org/10.1007/978-3-031-30122-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30122-3_6&domain=pdf
https://doi.org/10.1007/978-3-031-30122-3_6

Homomorphic Evaluation of Hash Functions 89

evaluation of symmetric cryptographic primitives over FHE encrypted keys. The
interest in this topic is mainly due to the advent of proxy-re-encryption or tran-
sciphering [12], which is a technique that partially solves transmission of massive
FHE ciphertexts through limited bandwidth networks, by having the receiver
computing an homomorphic decryption of a symmetric cryptosystem. There-
fore, many stream and block-ciphers were designed to be efficiently evaluated
using an FHE encryption of their key. All the above methods were designed
mainly to protect data confidentiality, either through symmetric encryption (for
the encryption step and the transmission), or through homomorphic encryption
for their processing by an honest-but-curious entity. We argue that there are
applications of FHE in which it is useful not only to have confidentiality guar-
antees but also an integrity check over homomorphically encrypted data. More
precisely, in this work we discuss the evaluation of hash functions over an FHE
encrypted message and provide several scenarios in which this application can
be a solution to achieve integrity along with data privacy. Let us now present
the major contributions of our paper.

1.1 Contribution and Motivation

In this paper, we present a set of FHE-friendly hash functions built on lightweight
block-ciphers using provably-secure constructions, and with reasonable homo-
morphic execution times. Our choice for a block-cipher-based construction is well
motivated and it is the result of investigating several other options, including the
homomorphic execution of lightweight hash functions as well as the building of
hash functions from FHE-friendly stream-ciphers. As discussed more in details
in Sect. 1.2, the preliminary analysis of several lightweight hash functions candi-
date to the NIST competition on lightweight cryptography showed that they are
not well suited for homomorphic execution. As for the second option, to the best
of our knowledge, there is no known practical method to design a secure hash
function directly from a stream-cipher (although universal constructions do exist
based on Luby-Rackoff theory [31]). As such, we present here some hash function
constructions from “FHE-friendly” block-ciphers such as PRINCE [11], LowMC
[1] and SIMON [3]. These block-ciphers are interesting candidates to build hash
functions, from the homomorphic evaluation point of view, since they have an
appropriate design, and have already been implemented with second-generation
homomorphic schemes in the context of transciphering.

First, we derive several constructions of hash functions from PRINCE by
means of the double block length hash construction, which enables a 128-bits
hash size taking into account that the original block size in the PRINCE design is
only of 64 bits. We then look into more details and evaluate the performances of
a TFHE [15] gate-bootstrapping implementation of these hash functions. Addi-
tionally, we leverage on SIMON and LowMC (in their 128-bits block size flavors)
to obtain hash sizes of 256 bits via the same construction.

Finally, we describe several use-cases which may require to run our hash func-
tions in the encrypted domain, including integrity checking of homomorphically

90 A. A. Bendoukha et al.

encrypted data, oblivious authentication, homomorphic database querying, and
a FHE-based protocol for single secret leader election.

1.2 Why Block Cipher-Based Constructions?

Beside security considerations, when constructing our hash functions, another
criteria we looked at was to have a relatively fast evaluation in the homomor-
phic domain (e.g. less than one minute for a 256-size digest). A first idea for
the construction of secure hashes suitable for homomorphic evaluation was to
investigate three of the NIST lightweight competition finalists [17]: SPARKLE
[4], XOODYAK [18] and Photon-Beetle [38]. We analysed them in function of
the type of homomorphic bitwise operations one should execute: “free” opera-
tions such as permutations and concatenations, relatively easy operations such
as the XOR and the AND (recall we use mainly TFHE in this work), and more
difficult operations such as the modulo. We found out that their underlying
primitives (e.g. S-boxes, modulo) and the number of rounds they require makes
their homomorphic evaluation too expensive even with a bootstrapping-based
homomorphic scheme, like TFHE. We also analyzed SPONGENT [8], another
lightweight hash function, imposing to execute ≈30000 S-box in homomorphic
domain (which corresponds to 68 S-boxes per round, 140 required rounds and
32 absorbing and squeezing steps) for 256-bits of output. Taking into account
that the execution of the S-box used takes ≈0.6 s under TFHE, it follows that
an homomorphic implementation of the SPONGENT hash function would be
too slow to be of practical interest. Further details are available in [36].

Another appealing path was to explore hash-based constructions inspired
from “FHE-friendly” stream ciphers. This option was tempting since nowadays
there are several practical solutions implementing stream-ciphers into homomor-
phic domain (e.g. Kreyvium [12], Grain128 [5], PASTA [20]). However, even if
it seems possible to obtain hash functions with very interesting homomorphic
performances, their security seems difficult to assess and this, thus, remains an
interesting open question. In essence, although theoretical constructions do exist,
the symmetric cryptography community has, to the best of our knowledge, only
marginally followed this path for building hash functions. Still, the possibility
of achieving better FHE evaluation performances may be a new motivation for
further investigations along this line.

As a consequence, we decided to consider block-cipher algorithms which have
been already considered for homomorphic evaluations and turn them into secure
hash functions using generic methods such the ones described in Sect. 2.3.

2 Background

2.1 Transciphering

Transciphering is a technique that allows offloading massive data from client to
server with the aim to perform server-side homomorphic computations. Indeed,

Homomorphic Evaluation of Hash Functions 91

when a message m is encrypted under an FHE cryptosystem, the resulting size
of the ciphertext FHE.EncFHE.pk(m) is much larger than the size of the original
message m, by an expansion factor which depends polynomially on the security
parameter λ. In all modern FHE schemes for a λ large enough (in the 110–130
bits of security ranges) ciphertext sizes reach several kbytes or even megabytes
(depending on the chosen cryptosystem and its security level). So, instead of
encrypting m directly using an FHE scheme and sending FHE.EncFHE.pk(m),
a client will rather encrypt m using a symmetric cryptosystem and sends the
encryption SYM.EncSYM.sk(m) to the server along with FHE.EncFHE.pk(SYM.sk),
the FHE encryption of the symmetric key SYM.sk. The server then homomor-
phically runs SYM.DecFHE.Enc(SYM.sk)(SYM.Enc(m)) and recovers the message
encrypted under the homomorphic public key FHE.EncFHE.pk(m).

SYM.EncSYM.sk(m) is roughly of the same size as m while SYM.sk, which is
the only FHE encrypted and transmitted element, is of fixed size and often small
enough to be homomorphically encrypted and sent (once and offline) through the
network, whilst m can be arbitrarily large. Switching from a symmetric scheme to
an FHE one allows a form of secure compression of the homomorphic ciphertexts.
It requires however, the evaluation of SYM.Enc homomorphically, which intro-
duces a non-negligible additional computational overhead on the server-side. In
[5,12], it is argued that the use of a stream-cipher is more suitable for transcipher-
ing in the case of both 2nd generations FHE schemes (e.g., BGV, BFV) as well
as TFHE. In [20] authors discuss the semantic security of transciphering seen as
Key encapsulation/Data encapsulation mechanism (KEM-DEM) depending on
the semantic security of both the symmetric and homomorphic schemes involved,
and provide also an FHE-friendly stream-cipher named Pasta, suited for levelled
FHE schemes.

2.2 Hash Functions and Security Properties

A general definition of a hash function is a mapping of messages of arbitrary
length to a fixed size digest. Additionally, a cryptographic hash function requires
the following security properties.

Pre-image Resistance. Given h ∈ {0, 1}n the output of the hash function H :
{0, 1}∗ → {0, 1}n, it must be computationally hard to find m ∈ {0, 1}∗ such that
H(m) = h.

Collision Resistance. It must be computationally hard to find two distinct mes-
sages m1 and m2 such that H(m1) = H(m2).

Second Pre-image Resistance. Given m and h such that H(m) = h, it must be
computationally hard to find m′ such that m′ �= m and H(m) = H(m′).

Since we only consider cryptographic hash functions, for simplicity sake, in
the remaining of the paper we will refer to a “cryptographic hash function” as
“a hash function”.

92 A. A. Bendoukha et al.

Black-Box Model. To prove the security of a block-cipher-based hash function
independently of the underlying cipher’s structure, it is used the black-box
model, in which a block-cipher is modeled as an invertible random permutation
defined by the key. An adversary is given access to encryption and decryption
oracles, such that given m (resp. c) the encryption Ek(m) (resp. the decryption
E−1

k (c)) is returned. The complexity of an attack is measured by the number
of encryption and decryption queries that an optimal adversary performs. Since
most attacks on block-cipher-based hash functions do not take advantage of the
block-cipher’s potential structural weaknesses or flaws, it is relevant to use a
black-box model for security analysis.

2.3 Block-Cipher-Based Hash Functions

Among the most widely used constructions of hash functions are the iterated
hash functions, in which a round function, also referred to as a compression
function F : {0, 1}n·{0, 1}l → {0, 1}n is iterated over every message block, taking
as input the current message block of size n and the previous hash value1. The
output of the final compression function call is the hash of the input message as
shown in Algorithm 1. Due to its simplicity, this construction has been intensively
studied in the state of the art [6,30], giving birth to many hashing standards
such as SHA-0, SHA-1, and SHA-2. A large part of the security of these hash
functions can be attributed to the underlying compression function2. In [19]
authors demonstrate that the collision resistance of F implies collision resistance
of the hash function built from F using the Merkle-Damg̊ard construction.

These results raised interests in building secure compression functions from
which it will be easy to build secure hash functions. A block-cipher is a primitive
that already provides security properties by construction. Although the security
requirements of an encryption algorithm are different by nature from those of
a hash function, the question of how to build a secure compression function
from a block-cipher quickly appeared and was intensively investigated, laying
foundation for instance for the MDC family of hash functions [34] based on
the block-cipher DES. The main motivation of this approach is to minimize
design efforts, and use existing primitives. The task is to transform the security
properties of a block-cipher into those of a cryptographic hash function, by
carefully executing it over well-chosen linear combinations of the current message
block, the chaining variable, or other conventional constants, taken as encryption
keys or message blocks. This gave birth to a plethora of constructions, some of
them were proven secure in the black-box model, others exhibited weaknesses
regardless of the underlying block-cipher’s potential weaknesses.

One important security element is the size of the digest. Due to the birthday
paradox, collision security level of a hash function is upper-bounded by O(2n/2),
where n is the size of the hash. Thus, having a size for the hash equal to the size of
the block for the cipher used to construct the compression function raised some

1 A chaining value to provide dependency between successive hash values.
2 The security under all aspects : Pre-image, second pre-image, and collision resistance.

Homomorphic Evaluation of Hash Functions 93

issues. The size of some block-cipher’s blocks can be too small to be considered
as a secure hash size, and using a block-cipher with a large block length often
results in higher execution times. Providing a secure construction that produces
a hash twice larger than the block-cipher’s block length was subject to several
research efforts.

Algorithm 1. Merkle Damg̊ard iterated hash function
input : m = (m0,m1, · · · ,ml)
h0 is set to an initialization vector
for i = 0 to l do

hi = F (hi−1,mi)
end for
return hl

Single Block Length (SBL) Hash Functions. One of the very first con-
structions of single-block-length hash functions is the Davies-Meyer construc-
tion where Hi+1 = EMi

(Hi) ⊕ Mi and the Muguiyachi-Prennel’s scheme with
Hi+1 = EMi

(Hi)⊕Mi ⊕Hi, where Hi is the previous hash value and each block
of the message (Mi) is the key to a block cipher E.

Later, in [35], Prennel, Govaerts and Vandewalle (PGV) provided an exhaus-
tive analysis of iterated hash functions defined over {0, 1}∗ → {0, 1}n and based
on a block-cipher. The compression function is in the form F (a, b) = Ea(b) ⊕ c
where a, b and c are in {mi, hi−1, IV,mi ⊕ hi−1}, and E is {0, 1}n · {0, 1}n →
{0, 1}n block-cipher. There are 43 = 64 such compression functions, among which
12 are presented as secure. Afterwards, Black, Rogaway and Shrimpton [7] pro-
vided formal security proofs in the black-box model of the 12 constructions anal-
ysed in [35]. They also demonstrated that among the remaining 52 constructions,
8 of them were actually secure with respect to collision and pre-image resistance.
In this work we chose to evaluate Davies-Meyer’s hash function under several
block-ciphers, as it provides optimal security in the black-box model, and is
equivalent in terms of computation complexity to other secure constructions
from [7].

The security analysis and explicit constructions are provided in [7].

Double Block Length (DBL) Hash Functions. As mentioned before, con-
structions by PGV provide a hash of n-bits size when using a {0, 1}n · {0, 1}n →
{0, 1}n underlying block-cipher in the compression function. Due to the birthday
paradox, these hash functions require block-ciphers with a large enough block
length in order to provide security against collision attacks.

A measure of the efficiency of a hash function is its rate, that is, the inverse
of the number of calls to the compression function per iteration.

In [33] Merkle presents three optimally collision resistant double block length
hash functions, based on the block-cipher DES. However, their rates are low
compared to the next generation of DBL constructions.

94 A. A. Bendoukha et al.

Lai and Massey proposed TANDEM-DM [28] for a rate 1/2 hash construc-
tion, using a (n, 2n) block-cipher. It was proven optimally collision and pre-image
secure in [21]. It makes however two non-independent calls3 per iteration mak-
ing it non-parallel. Abreast-DM [29] is another construction with a rate of 1/2
making two parallel calls to the block-cipher, and was proven to have optimal
collision resistance in [22].

Lucks in [5] provides a first DBL construction of rate 1. Making a single
block-cipher call per iteration comes at the cost of computing a heavy linear
combination of the message block and the previous hash resulting in a significant
overhead. Hirose in [25] provides a rate 1/2 construction with two distinct (n,
2n) block-ciphers, then uses a tweak in order to use a single block-cipher. This
construction provides optimal bounds for both collision and pre-image resistance
in the black-box model, and is parallel. Indeed, the two calls to the compression
function (and thus, to the block-cipher) are independent, making its performance
comparable to rate 1 constructions.

Other works from [27,32] studied the possibility to build DBL hash func-
tions from an (n, n)-block-cipher. MDC-2 fails to provide optimal security, while
MDC-4 [32] is near optimal, but has a rate smaller than 1/2.

In this work, we homomorphically evaluate the constructions of Hirose and
Tandem-DM. The goal is to provide an idea of the runtime of two optimally
secure hash functions of rate 1/2 from both the parallel and non-parallel types
on top of an FHE encryption layer.

3 Applications of Homomorphic Hash Functions

3.1 Homomorphic Data Integrity Check

As described in Sect. 2.1, transciphering allows to transfer symmetrically
encrypted data instead of homomorphically encrypted and thus reduces the
required bandwidth. However, transciphering while preserving data privacy does
not ensure data integrity during transmission. In [5] authors describe how to
include data integrity check within transciphering, but their approach required
an AEAD encryption scheme (Authenticated Encryption with Associated Data).

Indeed, all stream-ciphers suffer from malleability, i.e., the possibility for an
adversary to create an encryption of m + k where k is some constant, from an
encryption of m4. A malleable encryption scheme can be subject to man-in-the-
middle attacks. Some modern stream-ciphers (e.g. [24]) come with the possibility
to compute a MAC (Message Authentication Code) along with the encryption
in an attempt to circumvent this issue. Another simple way to perform integrity
check within transciphering when the chosen stream-cipher does not embed a
MAC computation is to include a hash function. A client encrypts m concate-
nated to H(m) using a symmetric encryption scheme. She then transmits these

3 The output of the first block-cipher call is used to build the key of the second block-
cipher call.

4 m ⊕ keystream ⊕ k = SYM.Enc(m ⊕ k).

Homomorphic Evaluation of Hash Functions 95

elements to the server along with FHE.Enc(SYM.sk) (once and for all). Once the
server has finished transciphering both the message and the hash, it recovers
FHE.Enc(m′) and FHE.Enc(h′), he computes [h] = H(FHE.Enc(m′)). If m = m′

then h = h′ (with overwhelming probability, of course). The server computes
the homomorphically encrypted bit [r]FHE.pk =

∏n
i=0(1 ⊕ hi ⊕ h′

i) where n is the
size of the hash. [r]FHE.pk is the output of the integrity check, such that :

[r] =
[{

An encryption of 1 if m = m′

An encryption of 0 otherwise

]

, (1)

This FHE encrypted bit could then be used in many ways. The server can
simply transmit it to the client, in order to give him the ability to verify if his data
was altered or corrupted during the transmission. Or the server could choose to
reply with [f(m)] or a NIL value outside of the range of f , according to the value
of the bit r. In TFHE [15] for example, this can be realized using a homomorphic
CMUX gate at roughly the cost of an extra homomorphic multiplication5.

3.2 Single Secret Leader Election (SSLE)

The problem of securely electing a single leader in a distributed system was
formally defined by Boneh et al. in [9]. For a committee of peers which collabo-
ratively elect a node to complete a task, the problem consists in electing a node
in a way that only this elected peer is able to know that he was elected and the
others learn only that they were not elected. Also, the elected peer must be able
to provide a proof of his election when he decides to reveal himself once his task
is done. In [23] a solution to the SSLE problem is proposed based on Threshold
Fully Homomorphic encryption [10] for partially-synchronous systems. A very
high level description is the following. Every peer Pi wishing to register to the
election at a given height and cycle (low and high level steps in the leader election
protocol), provides an FHE encryption of pi = H(h||ti||c) called the proof, where
h is the height of the blockchain, c the current cycle of elections, and ti a locally
generated number belonging to process Pi. Every participating peer performs a
sampling circuit following a weighted distribution over the FHE encrypted list of
proofs and ids of all registered peers, using collaboratively generated randomness
from [37]. Then, each peer homomorphically selects6 a proof and the associated
id from the set of all proofs. He then homomorphically hashes (pi||i) where i is
the id of the elected peer, and pi the corresponding proof. The next step is to
broadcast a partial decryption of the voucher vh,c,r = H(pi||i). Every honest peer
samples the same pi and i, and broadcasts his partial decryptions of vh,c,r using
his secret key share. Assuming we have at least t honest peers in the system,
where t is the decryption threshold, every peer must eventually receive enough
partial decryptions and be able to perform a full decryption of vh,c,r. The elected

5 CMUX([r], [f(m)], NIL]) = [r] · [f(m)] + (1 − [r]) · NIL
6 I.e., homomorphically computes a one-hot encoding of an index in the proofs list

and performs a dot-product to extract one such proof, thus without knowing which
one.

96 A. A. Bendoukha et al.

peer recognizes his voucher, whereas other peers gain no information from plain
vh,c,r, nor can fake the election, since H is secure against pre-image and second
pre-image attacks. Afterward, the leader is able to prove his election by submit-
ting his plaintext proof pi = H(h||ti||c). The verification is simply performed by
running the test H(pi||i) == vh,c,r.

The homomorphically evaluated hash function plays a significant role in this
protocol. It hides the sensitive elements from Byzantine peers providing the
secrecy of the election and a simple proof mechanism, making the election easily
verifiable, yet computationally hard to forge fake proofs.7

3.3 Homomorphic Database Querying

Suppose a server maintaining a database of elements DB such that query m
has the answer Am stored at index H(m), where H is a hash function (with
a small digest size w. r. t. to cryptographic standards). In this case H is not
necessarily cryptographic. For instance pre-image resistance is not necessary
since the query is already private under an FHE encryption layer. Nevertheless,
we require from H to have balanced collisions8 and, for this sake, one can use
Luby-Rackoff’s universal hash functions from [31]. In this setting, the server is
able to homomorphically answer FHE encrypted queries.

A client homomorphically encrypts a query x and sends [x]FHE.pk to the server.
The server computes [i]FHE.pk = H([x]FHE.pk), which is an FHE encryption of the
index of Ax inside his database. The server then computes a vector V which
contains FHE encryptions of 0 everywhere except at index i in which an encryp-
tion of 1 is stored. V is computed as follows : V [k] = ([i]FHE.pk == k) with
k ∈ �0, n − 1�. Lastly, to extract an FHE encryption of Ax, the server performs
a homomorphic dot product between the vector V and his database of elements∑n

i=0 DB[i]·V [i], and sends back to the client the result of this final dot product,
which will be [Ax]FHE.pk.

One remaining problem of this use-case is to homomorphically resolve colli-
sions of H. A first approach is to have the server creating lists of answers to differ-
ent queries which hash to the same index at the position H(x) in DB, and provide
a second hash function H ′, whose output is smaller than the one of H, and which
will compute the index of Ax inside the corresponding list. Thus, when an FHE
encrypted query [x]FHE.pk is received, the position (H([x]FHE.pk),H ′([x]FHE.pk))
provides an answer.

3.4 Oblivious Authenticated (Homomorphic) Calculations

It is well known that (keyed) hash functions are used in many authentication
protocols where an entity (the user) can prove its knowledge of a secret (the key

7 Secrecy is granted by the pre-image resistance of the hash function. Having a single
verifiable leader is due to the second pre-image resistance of the hash function.

8 H : {0, 1}∗ → {0, 1}n has balanced collisions if all elements in {0, 1}n have the same
number of pre-images under H.

Homomorphic Evaluation of Hash Functions 97

of the hash function) to another entity (the server). To do so, the server sends a
random challenge to the user which replies with the hash of the challenge. Since
the server can also perform the same calculation, it can check the correctness
of the client replies which proves the latter knowledge of the secret. With the
ability of running hash functions in the homomorphic domain, we can now pro-
vide the server with an FHE encryption of the secret key and have the server
performing the authentication in the encrypted domain i.e., the server generates
a challenge in the clear domain, sends it to the user and get its (non encrypted)
reply. The server can then run the (keyed) hash function homomorphically on its
challenge, and homomorphically compare the obtained (encrypted) result with
the reply received from the user. As the end of this process, the server possesses
an encrypted boolean, say β, indicating whether or not the client has success-
fully authenticated (but has by construction no knowledge of whether or not
that authentication was successful).

One way of using this consists in providing a valid calculation only to suc-
cessfully authenticated users. In essence, rather than computing f(x) in the
homomorphic domain, the server can now compute βf(x) + (1 − β)⊥ (where ⊥
denotes a constant value meaning, by convention, “not an answer”). As a conse-
quence, (encrypted) valid calculation results are duly returned only to authenti-
cated users, while other users receive only useless encryptions of ⊥. This is then
(nicely) done obliviously to the server, which cannot distinguish between cipher-
texts of valid results and ciphertexts of ⊥, and without revealing the secret hash
function key (since it is only provided with an FHE-encryption of that secret
key).

4 Adaptations of Block Ciphers for FHE-friendly Hashes

4.1 Block-Ciphers Considered

The Low-MC block-cipher [1] is part of a family of symmetric schemes designed
for practical instantiations in homomorphic domain with the objectives of mini-
mizing both the multiplicative complexity and the multiplicative depth, making
it efficient for levelled homomorphic schemes. This design principle, had to be
compensated with a large number of xor gates in order to ensure algebraic prop-
erties that provide an appropriate level of security. This latter fact makes it
rather inefficient when ran under TFHE, since the cost of all Boolean homomor-
phic gates is the same within this FHE scheme (A bootstrapping operation is
performed after every Boolean gate). It remains however a interesting candidate
for hash constructions targeting efficient homomorphic evaluation in a levelled
FHE setting. Even if the first variants of LowMC were successfully attacked,
the subsequent proposed design is more secure and highly parametrizable. In
particular, there is a closed-form formula to determine the minimal number of
rounds to reach a given security target depending on the block size (128 or 256
bits), the key size, the number of S-boxes and the allowed data complexity.

98 A. A. Bendoukha et al.

PRINCE [11], SPECK and SIMON [3] are lightweight block-ciphers, with a
relatively small block length. They were initially designed for constrained embed-
ded execution environments. Their design approaches result in small gate counts9

which results in high performances when ran under TFHE. Due to its small block
length, PRINCE is better suited with double block length constructions, result-
ing in a hash function which provides O(264) collision resistance, and O(2128)
for pre-image resistance. SPECK and SIMON can be instantiated in both the
DBL and SBL settings since they both provide a double-key-size variants.

4.2 FHE Schemes Considered

We chose to run our experiments under the TFHE cryptosystem since it provides
the possibility to evaluate (multiplicatively) unbounded homomorphic circuits
thanks to its fast bootstrapping operation. This scheme is more suited for pro-
tocols where scalability is a requirement. For example, the secret single leader
election protocol [9] described in Sect. 3.2 requires flexibility regarding the num-
ber of peers being able to disconnect or join the committee at different times.
These variations in the number of peers linearly increase the multiplicative depth
of the sampling circuit, which would be difficult to manage if a levelled homo-
morphic scheme were to be used10.

4.3 Tool: Cingulata Homomorphic Compiler

Cingulata, formerly known as Armadillo [14], is a toolchain and run-time
environment (RTE) for implementing applications running over homomorphic
encryption. Cingulata provides high-level abstractions and tools to facilitate the
implementation and the execution of privacy-preserving applications.

Cingulata relies on instrumented C++ types to denote private variables,
e.g., CiInt for integers and CiBit for Booleans. Integer variables are dynami-
cally sized and are internally represented as arrays of CiBit objects. The Cin-
gulata environment monitors/tracks each bit independently. Integer operations
are performed using Boolean circuits, which are automatically generated by the
toolchain. For example a full-adder circuit is employed to perform an integer
addition. The Boolean circuit generation is configurable and two generators are
available: focused on minimal circuit size or on small multiplicative-depth. More
generally, it is possible to implement additional circuit generators or to combine
them.

A CiBit object can be in either plain or encrypted state. Plain-plain and
plain-encrypted bit operations are optimized out, in this way constant fold-
ing and propagation is automatically performed at the bit-level. Bit operations
9 A round of encryption of a block-cipher often includes a multiplication of the internal

state with an F
� matrix, this makes the number of operations quadratic with respect

to its block size.
10 In this category of homomorphic schemes, the multiplicative depth of the homo-

morphic circuit to be evaluated has to be known in advance in order to generate a
parameter set which allows homomorphic computations up to this depth.

Homomorphic Evaluation of Hash Functions 99

between encrypted values are performed by a “bit execution” object implement-
ing the IBitExec interface. This object can either be a HE library wrapper,
simply a bit-tracker object or even a plaint bit execution used for algorithm
debugging purposes. When a HE library wrapper is used the Cingulata environ-
ment directly executes the application using the underlying HE library.

Another option is to use the bit-tracker in order to build a circuit repre-
sentation of the application. This allows to use circuit optimization modules
in order to further optimize the Boolean circuit representation. The hardware
synthesis toolchain ABC11 is used to minimize circuit size. It is an open-source
environment providing implementations of state-of-the-art circuit optimization
algorithms. These algorithms are mainly designed for minimizing circuit area or
latency but, currently, none of them is designed for multiplicative depth mini-
mization. In order to fill this gap, several heuristics for minimizing the multi-
plicative depth are available in Cingulata, refer to [2,13] for more details.

The optimized Boolean circuit is then executed using Cingulata’s parallel
run-time environment. The RTE is generic, meaning that it uses a HE library
wrapper, i.e. a “bit execution” object as defined earlier, in order to execute the
gates of the circuit. The scheduler of the run-time allows to fully take advantage
of many-core processors. Besides, a set of utility applications are provided for
parameter generation (given a target security level), key generation, encryption
and decryption. These applications are also generic, in the same vein as the
parallel RTE.

4.4 Experimental Results and Performances

We ran multi core performance tests on an Intel(R) Xeon(R) CPU E3-1240
v5 @ 3.50 GHz and 8 GB RAM using Cingulata in TFHE mode. We provide
parallelism when possible using the OpenMP library.

For single block length construction, we implement Davies-Meyer’s compres-
sion function which requires a (n, n)-block-cipher. Therefore, we instantiate this
construction with SPECK, SIMON12, and the (128, 128) variant of LowMC.
In the double block length setting, since these constructions require an (n,
2n)-block-cipher, we instantiate Hirose’s and Tandem-DM constructions with
PRINCE, and the (128, 256) variants of LowMC, and SIMON. The results are
shown in Table 1 with the execution times in minutes when the hash functions
are instantiated, and an “-” symbol when the construction is not compatible
with the sizes of the key and the block of the cipher.

The obtained performances are as expected: lightweight ciphers provide bet-
ter runtimes compared to LowMC. PRINCE is the most efficient cipher for DBL

11 http://people.eecs.berkeley.edu/alanmi/abc/.
12 For SIMON, these are estimations based on the gate count from [3] and the gate-

bootstrapping time of TFHE.

http://people.eecs.berkeley.edu/alanmi/abc/

100 A. A. Bendoukha et al.

constructions as it has the lowest gate-count, and is also the most parallelizable
cipher. The number of rounds performed in every construction to produce the
hash of a 128-bits message is � 128

blocklength	. Thus, in the first row, DBL-PRINCE
performs two iterations and produces a 128-bits hash. All the remaining con-
structions perform a single iteration.

Table 1. Evaluation of hash functions over a 128-bits TFHE encrypted message in
minutes

Instantiation Davies-Meyer (SBL) Hirose (DBL) Tandem-DM (DBL)

(64, 128)-PRINCE – 1.28 2.98

(128, 128)-SPECK 3.78 – –

(128, 256)-SPECK – 4.91 8.16

(128, 128)-SIMON 2.14 – –

(128, 256)-SIMON – 3.64 7.05

(128, 128)-LowMC 6.12 – –

(128, 256)-LowMC – 8.58 17.32

5 Conclusion and Perspectives

In this work, we have investigated scenarios in which the ability to (efficiently)
evaluate hash functions in the homomorphic domain is an interesting building
block. To the best of our knowledge, this work is one of the first to address this
issue, at least for the TFHE cryptosystem. We also explored various provably-
secure constructions of “(T)FHE friendly” hash functions based on respected
block-ciphers in order to achieve several digest sizes. Fully homomorphic encryp-
tion on its own opens perspectives towards a new set of applications. Then,
combining it with the execution of hash functions in the homomorphic domain
provides it with additional versatility which can serve in various scenarios and
protocols.

References

1. Albrecht, M., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for
MPC and FHE. Cryptology ePrint Archive, Paper 2016/687 (2016). https://eprint.
iacr.org/2016/687

2. Aubry, P., Carpov, S., Sirdey, R.: Faster homomorphic encryption is not enough:
improved heuristic for multiplicative depth minimization of Boolean circuits. In:
Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 345–363. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-40186-3 15

3. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint
Archive, Paper 2013/404 (2013). https://eprint.iacr.org/2013/404

4. Beierle, C., et al.: Schwaemm and Esch: Lightweight authenticated encryption and
hashing using the sparkle permutation family (2019)

https://eprint.iacr.org/2016/687
https://eprint.iacr.org/2016/687
https://doi.org/10.1007/978-3-030-40186-3_15
https://eprint.iacr.org/2013/404

Homomorphic Evaluation of Hash Functions 101

5. Bendoukha, A.A., Boudguiga, A., Sirdey, R.: Revisiting stream-cipher-based homo-
morphic transciphering in the TFHE era. In: Aı̈meur, E., Laurent, M., Yaich, R.,
Dupont, B., Garcia-Alfaro, J. (eds.) Foundations and Practice of Security. LNCS,
vol. 13291, pp. 19–33. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
08147-7 2

6. Biham, E., Dunkelman, O.: A framework for iterative hash functions - HAIFA.
Cryptology ePrint Archive, Paper 2007/278 (2007). https://eprint.iacr.org/2007/
278

7. Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based
hash-function constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 320–335. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45708-9 21

8. Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.:
spongent: a lightweight hash function. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-23951-9 21

9. Boneh, D., Eskandarian, S., Hanzlik, L., Greco, N.: Single secret leader election.
Cryptology ePrint Archive, Paper 2020/025 (2020). https://eprint.iacr.org/2020/
025

10. Boneh, D., et al.: Threshold cryptosystems from threshold fully homomorphic
encryption. Cryptology ePrint Archive, Paper 2017/956 (2017). https://eprint.iacr.
org/2017/956

11. Borghoff, J., et al.: Prince - a low-latency block cipher for pervasive computing
applications (full version). Cryptology ePrint Archive, Paper 2012/529 (2012).
https://eprint.iacr.org/2012/529

12. Canteaut, A., et al.: Stream ciphers: a practical solution for efficient homomorphic-
ciphertext compression. J. Cryptol. 31(3), 885–916 (2018). https://doi.org/10.
1007/s00145-017-9273-9

13. Carpov, S., Aubry, P., Sirdey, R.: A multi-start heuristic for multiplicative depth
minimization of Boolean circuits. In: Brankovic, L., Ryan, J., Smyth, W.F. (eds.)
IWOCA 2017. LNCS, vol. 10765, pp. 275–286. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78825-8 23

14. Carpov, S., Dubrulle, P., Sirdey, R.: Armadillo: a compilation chain for privacy
preserving applications. In: Bao, F., Miller, S., Chow, S.S.M., Yao, D. (eds.) Pro-
ceedings of the 3rd International Workshop on Security in Cloud Computing,
SCC@ASIACCS 2015, Singapore, Republic of Singapore, 14 April 2015, pp. 13–19.
ACM (2015). https://doi.org/10.1145/2732516.2732520

15. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomor-
phic encryption over the torus. Cryptology ePrint Archive, Paper 2018/421 (2018).
https://eprint.iacr.org/2018/421

16. Cho, J., et al.: Transciphering framework for approximate homomorphic encryption
(full version). Cryptology ePrint Archive, Paper 2020/1335 (2020). https://eprint.
iacr.org/2020/1335

17. Cryptography: NIST lightweight cryptography. https://csrc.nist.gov/Projects/
Lightweight

18. Daemen, J., Hoffert, S., Peeters, M., Assche, G.V., Keer, R.V.: Xoodyak and a
lightweight cryptographic scheme (2020)

19. Damg̊ard, Ivan Bjerre: A design principle for hash functions. In: Brassard, Gilles
(ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 39

https://doi.org/10.1007/978-3-031-08147-7_2
https://doi.org/10.1007/978-3-031-08147-7_2
https://eprint.iacr.org/2007/278
https://eprint.iacr.org/2007/278
https://doi.org/10.1007/3-540-45708-9_21
https://doi.org/10.1007/3-540-45708-9_21
https://doi.org/10.1007/978-3-642-23951-9_21
https://doi.org/10.1007/978-3-642-23951-9_21
https://eprint.iacr.org/2020/025
https://eprint.iacr.org/2020/025
https://eprint.iacr.org/2017/956
https://eprint.iacr.org/2017/956
https://eprint.iacr.org/2012/529
https://doi.org/10.1007/s00145-017-9273-9
https://doi.org/10.1007/s00145-017-9273-9
https://doi.org/10.1007/978-3-319-78825-8_23
https://doi.org/10.1007/978-3-319-78825-8_23
https://doi.org/10.1145/2732516.2732520
https://eprint.iacr.org/2018/421
https://eprint.iacr.org/2020/1335
https://eprint.iacr.org/2020/1335
https://csrc.nist.gov/Projects/Lightweight
https://csrc.nist.gov/Projects/Lightweight
https://doi.org/10.1007/0-387-34805-0_39

102 A. A. Bendoukha et al.

20. Dobraunig, C., Grassi, L., Helminger, L., Rechberger, C., Schofnegger, M., Walch,
R.: Pasta: a case for hybrid homomorphic encryption. Cryptology ePrint Archive,
Paper 2021/731 (2021). https://eprint.iacr.org/2021/731

21. Fleischmann, E., Gorski, M., Lucks, S.: On the security of TANDEM-DM. In:
Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 84–103. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03317-9 6

22. Fleischmann, E., Gorski, M., Lucks, S.: Security of cyclic double block length hash
functions. In: Parker, M.G. (ed.) IMACC 2009. LNCS, vol. 5921, pp. 153–175.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10868-6 10

23. Freitas, L., et al.: Homomorphic sortition - secret leader election for blockchain
(2022). https://doi.org/10.48550/ARXIV.2206.11519, https://arxiv.org/abs/2206.
11519

24. Hell, M., Johansson, T., Meier, W., Sönnerup, J., Yoshida, H.: An AEAD variant
of the grain stream cipher. In: Carlet, C., Guilley, S., Nitaj, A., Souidi, E.M. (eds.)
C2SI 2019. LNCS, vol. 11445, pp. 55–71. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-16458-4 5

25. Hirose, S.: Provably secure double-block-length hash functions in a black-box
model. In: Park, C., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 330–342.
Springer, Heidelberg (2005). https://doi.org/10.1007/11496618 24

26. Hoffmann, C., Méaux, P., Ricosset, T.: Transciphering, using FiLIP and TFHE
for an efficient delegation of computation. In: Bhargavan, K., Oswald, E., Prab-
hakaran, M. (eds.) INDOCRYPT 2020. LNCS, vol. 12578, pp. 39–61. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-65277-7 3

27. Jetchev, D., Özen, O., Stam, M.: Collisions are not incidental: a compression func-
tion exploiting discrete geometry. In: Cramer, R. (ed.) TCC 2012. LNCS, vol.
7194, pp. 303–320. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-28914-9 17

28. Lai, X., Massey, J.L.: Hash functions based on block ciphers. In: Rueppel, R.A.
(ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-47555-9 5

29. Lee, J., Kwon, D.: The security of Abreast-DM in the ideal cipher model. Cryp-
tology ePrint Archive, Paper 2009/225 (2009). https://eprint.iacr.org/2009/225

30. Lei, D., Lin, D., Chao, L., Feng, K., Qu, L.: The design principle of hash function
with Merkle-Damg̊ard construction. Cryptology ePrint Archive, Paper 2006/135
(2006). https://eprint.iacr.org/2006/135

31. Luby, M.: Pseudorandomness and Cryptographic Applications (1996). https://doi.
org/10.2307/j.ctvs32rpn

32. Mennink, B.: On the collision and preimage security of MDC-4 in the ideal cipher
model. Cryptology ePrint Archive, Paper 2012/113 (2012). https://eprint.iacr.org/
2012/113

33. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, New York (1990). https://doi.org/
10.1007/0-387-34805-0 40

34. Preneel, B.: MDC-2 and MDC-4. In: van Tilborg, H.C.A., Jajodia, S. (eds.) Ency-
clopedia of Cryptography and Security, pp. 771–772. Springer, Boston, MA (2011).
https://doi.org/10.1007/978-1-4419-5906-5 596

35. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers:
a synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
368–378. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2 31

https://eprint.iacr.org/2021/731
https://doi.org/10.1007/978-3-642-03317-9_6
https://doi.org/10.1007/978-3-642-10868-6_10
https://doi.org/10.48550/ARXIV.2206.11519
https://arxiv.org/abs/2206.11519
https://arxiv.org/abs/2206.11519
https://doi.org/10.1007/978-3-030-16458-4_5
https://doi.org/10.1007/978-3-030-16458-4_5
https://doi.org/10.1007/11496618_24
https://doi.org/10.1007/978-3-030-65277-7_3
https://doi.org/10.1007/978-3-642-28914-9_17
https://doi.org/10.1007/978-3-642-28914-9_17
https://doi.org/10.1007/3-540-47555-9_5
https://eprint.iacr.org/2009/225
https://eprint.iacr.org/2006/135
https://doi.org/10.2307/j.ctvs32rpn
https://doi.org/10.2307/j.ctvs32rpn
https://eprint.iacr.org/2012/113
https://eprint.iacr.org/2012/113
https://doi.org/10.1007/0-387-34805-0_40
https://doi.org/10.1007/0-387-34805-0_40
https://doi.org/10.1007/978-1-4419-5906-5_596
https://doi.org/10.1007/3-540-48329-2_31

Homomorphic Evaluation of Hash Functions 103

36. Quero, N.: Etude des fonctions de hachage homomorphes pour un proto-
cole d’élection secrète pour la blockchain (2022). Internship report. REF:
LIST/DSCIN/21-0189/NQ

37. de Souza, L.F., Tucci Piergiovanni, S., Sirdey, R., Stan, O., Quero, N., Kuznetsov,
P.: Randsolomon: optimally resilient multi-party random number generation pro-
tocol. CoRR abs/2109.04911 (2021). https://arxiv.org/abs/2109.04911

38. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash
functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 13

https://arxiv.org/abs/2109.04911
https://doi.org/10.1007/978-3-642-22792-9_13

	Practical Homomorphic Evaluation of Block-Cipher-Based Hash Functions with Applications
	1 Introduction
	1.1 Contribution and Motivation
	1.2 Why Block Cipher-Based Constructions?

	2 Background
	2.1 Transciphering
	2.2 Hash Functions and Security Properties
	2.3 Block-Cipher-Based Hash Functions

	3 Applications of Homomorphic Hash Functions
	3.1 Homomorphic Data Integrity Check
	3.2 Single Secret Leader Election (SSLE)
	3.3 Homomorphic Database Querying
	3.4 Oblivious Authenticated (Homomorphic) Calculations

	4 Adaptations of Block Ciphers for FHE-friendly Hashes
	4.1 Block-Ciphers Considered
	4.2 FHE Schemes Considered
	4.3 Tool: Cingulata Homomorphic Compiler
	4.4 Experimental Results and Performances

	5 Conclusion and Perspectives
	References

