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Abstract. A verifiable delay function (VDF) is a function whose evalu-
ation involves lengthy sequential operations, yet its outcome is publicly
verifiable. As an extension, a trapdoor-VDF is a VDF with a shortcut
that speeds up the evaluation process. This paper presents a new class of
trapdoor-VDFs featuring a large ensemble of trapdoors for each instan-
tiation of the function. This way, a client can randomly choose a private
trapdoor from the ensemble, thereby using it to encapsulate a secret to
the future as a unique puzzle. To solve the puzzle, the server, which
does not know the trapdoor, requires a prescribed number of sequen-
tial steps to evaluate the function. Any client can efficiently verify the
correctness of the server’s evaluation with zero knowledge of the trap-
door being used. We present an approach for constructing the proposed
class of trapdoor-VDFs based on bilinear pairings and a long walk on
supersingular isogeny graphs. Finally, we examine the security of our
construction under trapdoor-VDF security notions.

Keywords: Delay primitives · verifiable delay functions · delay
encryption · time-lock puzzle

1 Introduction

This work examines a remedy for the vulnerability that arises from knowing or
predicting a protocol’s outcome. The vulnerability stems from malicious partici-
pants influencing the outcome or gaining an advantage by knowing the outcome
beforehand. One way to solve this problem is to impose a prescribed number of
sequential steps to obtain the desired outcome. This solution has been introduced
in the previous works such as time-lock puzzle (TLP) [29], proofs of sequential
work (PoSW) [1,15,22,26], and verifiable delay functions (VDFs) [6]. These prim-
itives are all time-sensitive in that they only release the outcome after a prescribed
delay (T ). The outcome of VDF and PoSW is publicly verifiable, while that of TLP
requires a secret. The public verification of the outcome’s uniqueness is more effi-
cient in VDF than in PoSW since the latter requires all T steps. The uniqueness
property ensures that there are no multiple valid proofs for different outcome.

This work focuses more on the properties, specifically uniqueness and public
verifiability, that make VDF stand out from others. Furthermore, we are inter-
ested in a VDF-like primitive that allows any participant (other than the trusted
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setup) to predict the outcome in advance by knowing a secret trapdoor. In the
absence of the secret trapdoor, participants obtain the desired outcome through
a prescribed number of sequential evaluations. It is, however, possible to verify
the result efficiently and publicly. We refer to primitives with such character-
istics by trapdoor-VDF. Considering its importance, trapdoor-VDF is suitable
for time-sensitive applications that require both public verification and timely
release assurances. There are many possible applications, such as sealed-voting,
delayed decapsulation [9,25], and front-running attack prevention [14].

Related Work. Since the work of Boneh et al. [6], several VDF constructions
have been proposed based on Rivest, Shamir, and Wagner’s time-lock assump-
tion [29], including [5,17,24,28,30], and [34], which use different verification tech-
niques, provide additional properties and offer enhancement. Several other con-
structions [12,18,31] are based on the difficulty of shortening the evaluation of
isogeny with a large degree, which was first introduced by [18]. The verification
proof of [18] is based on the bilinear pairing of the Boneh-Lynn-Shacham (BLS)
signature scheme [8]. Similar to time-lock functions, Shani’s [31] proof requires
releasing a secret shortcut to the puzzle to recompute the puzzle’s answer. In
[12], Chavez-Saab et al. propose an inefficient verification method based upon
succinct non-interactive arguments (SNARGs).

Later, a delay encryption scheme [9] was developed using Boneh and
Franklin’s identity based encryption (IBE) scheme [7] in conjunction with Feo
et al.’s delay function [18]. The scheme in [9] can operate in batch mode so that
the function can be evaluated once to perform many decryptions. However, the
method requires a trusted, unpredictable seed, along with a considerable amount
of storage to perform computations (e.g., 12TB for 1 h delay [9]). Furthermore,
their approach does not employ a trapdoor mechanism to predict the answer
in advance. Hence, trapdoor-VDF is more comparable to TLP even though the
former offers efficient public verification without revealing any secrets (i.e., the
secret trapdoor). We note that recent work has extended the security of TLPs
and discusses the notion of its public verifiability, some of which are [2,3,13,20].

In addition, the term “trapdoor-VDF” has been used previously in [34],
though their approach differs from that presented in this paper. In [34], each
participant constructs independent instances of trapdoor-VDF. Every instance
has a secret trapdoor that shortens the long evaluation process. Therefore, an
instance generator can answer any challenge faster as it has the secret trap-
door. Our work presents a new class of trapdoor-VDFs, where each instantiation
includes a description of a finite trapdoor ensemble. Hence, any participant can
generate a unique challenge, together with its answer, using a hidden trapdoor
sampled at random from the ensemble.

Contributions. In this paper, we first formalize the security notions of
trapdoor-VDF. We then introduce a novel approach to trapdoor-VDF; the pro-
posed trapdoor-VDF is a VDF with a large ensemble of distinct efficient short-
cuts called trapdoors. The delay function involves sequentially evaluating a large
smooth degree supersingular isogeny, which was first proposed by Feo et al. [18].
The trapdoor ensemble is a set of isogenies of a smaller degree defined over
Fp, where p is a prime. In public verification, a bilinear pairing equality serves
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as proof of the correct evaluation of a secret trapdoor (i.e., a randomly sam-
pled isogeny). Finally, we show that our proposal is secure under trapdoor-VDF
security notions.

2 Preliminaries
General Notations. If n is a positive integer, the set {1, . . . , n} is denoted by
[n]. In general, a finite set is denoted by calligraphic font (e.g., S). The cardinality
of a set S is denoted by |S|. Let e ←R S denote the process of uniformly sampling
a random element e from S. The deterministic selection of e from S is denoted
by e ← S. If Exe is an algorithm, a ←R Exe denotes running Exe on fresh random
coins and assigning the output to a. The deterministic execution of Exe, on the
other hand, is denoted by a ← Exe. The notation Pr[Evnt : P1, P2, . . . , Pn] is
used to represent the probability of an event Evnt occurring after the ordered
processes P1, P2, . . . , Pn. We denote the composition of two functions by ◦ such
that f ◦ g(x) = f(g(x)) for some input x. Let m ←R Sn be the vector (mi)i∈[n]

of size n such that mi ←R S for all i ∈ [n]. The set of all odd prime numbers
that are less than or equal to k is referred to as Primes(k). For an integer a and
an odd prime b, the Legendre symbol is denoted by ( a

b ).

Supersingular Elliptic Curve. Throughout this work, we consider a curve
E/Fp to be a supersingular elliptic curve defined over a prime field Fp with a
large prime p. A point P on E/Fp is the pair (x, y) ∈ Fp × Fp. The set of Fp-
rational points on E/Fp is denoted as E(Fp) and the set size as |E(Fp)|. Let ∞E

be the point at infinity on E/Fp and ∞E ∈ E(Fp). The field Fp is the algebraic
closure of Fp. The subgroup of points of order N is called the N -torsion points
which is defined as E[N ] = {P ∈ E(Fp) : [N ]P = ∞E}.

Definition 1 ([32]). An elliptic curve E/Fp is supersingular if the following
equivalent properties are true

– There is no P ∈ E(Fp) with order p (i.e., E[p] = {∞E}).
– |E(Fp)| = p + 1 − t and p|t (i.e., gcd(p, t) �= 1).
– The endomorphism ring of E/Fp is an order in a quaternion algebra.

Otherwise, E/Fp is said to be an ordinary curve.

Isogenous Curves. An isogeny between curves (φ : E1 → E2) is a surjective
morphism that has a finite kernel such that φ(∞E1) = ∞E2 . We say φ is defined
over Fp, if the non-constant rational map representing φ has coefficients in Fp.
Let 〈S〉 be a cyclic subgroup of E(Fq) generated by S. In this work, we compute
an isogeny φ with kernel 〈S〉 using Vélu’s formulas [33]. Also, we will focus
on separable isogenies where the isogeny degree is its kernel size (i.e., deg φ =
|ker(φ)|). An isogeny of degree l is denoted by l-isogeny. Furthermore, an isogeny
φ has a unique dual isogeny φ̂ with the same degree (deg φ = deg φ̂) such that
φ̂ : E2 → E1, and φ ◦ φ̂ = [deg φ] on E2, where [m] is multiplication-by m
mapping (see [32, Theorem 6.1]). The non-backtracking walk is a sequence of
isogenies that is not cyclic or followed by any dual isogeny(s).
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The set of all group homomorphisms (i.e., isogenies) from E to itself is
called the endomorphism ring of E (End(E)). The endomorphism ring defined
over Fp is denoted as EndFp

(E). An isogeny is called horizontal isogeny if
EndFp

(E1) ∼= EndFp
(E2) ∼= O [21] where O is an order of an imaginary

quadratic field. Furthermore, we donate the set of supersingular elliptic curves
defined over Fp with O by EFp

(O). By definition, curves in EFp
(O) are connected

by horizontal isogenies.

A Supersingular Isogeny Graph Over Fp. The structure of a supersingular
isogeny graph over Fp is studied by Delfs and Galbraith, which is described in
[16, Theorem 2.7]. Let L be a set of distinct primes such that p �∈ L, ( −p

li
) = 1

for all li ∈ L. For p > 3, the graph G(Fp, li) is a directed supersingular isogeny
graph where the vertices are a Fp-isomorphism classes of supersingular elliptic
curves represented by j-invariants with an extra information to classify them into
their Fp-isomorphism class (i.e., to differentiate between elliptic curve twists).
The graph edges are equivalence classes of Fp-rational isogenies of a degree li. In
our work, we employ a graph that represents the union of all G(Fp, li), ∀li ∈ L.

Isogeny and Pairing. Let N be a large prime such that N �= p and N ||E1(Fp)|.
Let μN be the group of Nth roots of unity in F

∗
pu , where u is the smallest integer

such that N |pu − 1. The Weil pairing is the map êE
N : E[N ] × E[N ] → μN that

satisfies several properties. In particular, the Weil pairing has the property of being
compatible with isogenies (see [32, Proposition 8.2]); and it is trivial to show that

êE1
N (P, [deg φ]Q) = êE2

N (φ(P ), φ(Q)), (1)

where P ∈ E1[N ], Q = φ̂(Q′) for Q′ ∈ E2[N ], and φ ◦ φ̂ = [deg φ] on E2.

3 Proposed Trapdoor-VDFs

By λ ∈ N, we indicate the security level of a scheme. A function difficulty is
denoted by T , which quantifies the amount of sequential work/steps necessary to
produce/compute its output against any random input and with a polynomially
large number of parallel processes. A function with a small T is identified as a
short function, whereas one with a large T is called a long sequential function.
Generally, we will denote the long sequential function by EVAL, with T being
super-polynomial in λ.

An Informal Exposition. The proposed trapdoor-VDF is a VDF with a large
ensemble of distinct shortcuts denoted by F , called trapdoors. We say two trap-
doors are equivalent if they produce the same output for the same inputs. The
set of equivalent trapdoors is called a class. The class difficulty is the shortest
trapdoor difficulty. Hence, the ensemble F is a collection of trapdoor classes.

Trapdoor-VDF Setup Agreement. Participants of a setup protocol agree on a long
function EVAL with a difficulty T , a large ensemble of trapdoors F , and possibly
additional parameters for a security level λ.
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Generation of a Challenge. In trapdoor-VDF, a Challenger can select a secret
trapdoor trsk indexed (identified) in F by a random secret (sk). Using the trap-
door, the challenger can efficiently generate a challenge (c) and its unique answer
(a). With the same parameters, distinct trapdoors produce different challenges
(and accordingly different answers).

Obtaining the Answer. In the absence of sk, a Solver can only evaluate EVAL
function in time no less than T to output the answer to c with a proof Π. Akin to
VDF, the Solver gains no advantage from parallel computation. The Challenger
can, however, get the answer a via the trapdoor trsk (i.e., in time less than T ).

The Public Verification. The answer a is publically verifiable that is also in a
zero knowledge of the secret sk. In a timeframe less than T , a perfect trapdoor-
VDF is one in which the Challenger, who owns c and knows a, cannot pass the
public verification protocol. This is because the required proof cannot be fully
computed before the specific time T .

A Formal Definition. We present our formal definition of trapdoor-VDF,
which naturally overlaps with [6] and [34]’s VDF definition.

Definition 2. Let C, S, Y be the challenge, secret, answer spaces, respectively.
Our trapdoor-VDF is a tuple of algorithms (Setup, Challenger, Solver, Verify)
defined below

– Setup: a randomized algorithm (runs in time Poly(λ)) that takes a security
parameter λ and a difficulty T and outputs public parameter pk.

– Challenger: a randomized algorithm (runs in time Poly(log T, λ)) that takes
pk and selects a secret trapdoor trsk from the trapdoor ensemble F using
a random secret sk (i.e., trsk ← F given sk ←R S); then, it generates a
challenge c ∈ C.

– Solver: an algorithm that takes pk and a challenge c ∈ C and outputs the
answer a ∈ Y and a “possibly empty” proof Π. This algorithm must at least
run in time T with Poly(λ) parallel processors.

– Verify: is a deterministic algorithm (runs in total time polynomial in log T
and λ) takes a challenge c, an answer a, a proof Π, and pk; the algorithm
outputs accept if a is indeed the corresponding answer to c under a given
Π, otherwise reject.

Trapdoor-VDF Properties. The following assumes that all statements are
true for any λ, T and pk ←R Setup(1λ, T ). A trapdoor-VDF construction is
well-defined if it is correct, unique, and efficient.

– Correctness: A trapdoor-VDF is correct only if the Verifier accepts, with
probability one, an honest Solver’s answer a for any honest challenge c ←R

Challenger(pk).
– Uniqueness: A trapdoor-VDF is unique only if there is only one valid answer
a, accepted by Verify, to every challenge c ←R Challenger(pk) with a secret sk.

– Efficiency: A trapdoor-VDF is efficient if the Verify algorithm runs in a time
Poly(log T, λ) that is significantly faster than the Solver algorithm, which has a
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total running time polynomial in T and λ. Further, trapdoor-VDF must retain
efficiency for any public parameters generated by Setup, runs in Poly(log T, λ),
and any challenge generated by Challenger, which runs in time Poly(log T, λ).

Let A be a polynomially bounded adversary who has no knowledge of the
secret sk. Let A1 be an algorithm that outputs pre-computation on pk. Let A2

be an online efficient evaluating algorithm that runs in parallel time with Poly(λ)
processors and returns an answer a′. Let A3 be an online forging algorithm that
runs in time Poly(T, λ) and returns a malicious answer and proof (a′ �= a,Π ′).
To be secure, a well-defined trapdoor-VDF should satisfy two key properties:
sequentiality and soundness.
– Sequentiality: A trapdoor-VDF is sequential only if there is no adversary

A := (A1,A2) that has an online attack (A2) running in time less than T
and has a probability of success

Pr

⎡
⎢⎢⎢⎢⎣
a′ = a :

pk ←R Setup(1λ, T ),
pc ← A1(pk),
c ←R Challenger(pk),
(a′,−) ← A2(pk, c, pc),
(a,Π) ← Solver(pk, c).

⎤
⎥⎥⎥⎥⎦

that is greater than a negligible function of λ.
– Soundness: A trapdoor-VDF is sound only if the Verifier rejects any proof

Π ′ for any answer a′ that is not an output from Solver(pk, c) on any c ←R

Challenger(pk). The probability of success for the adversary A := (A1,A3) to
output a proof Π ′ for an answer (a′,−) �= Solver(pk, c) is

Pr

⎡
⎢⎢⎢⎢⎣
accept ← Verify(pk, c,a′,Π ′)
and a′ �= a :

pk ←R Setup(1λ, T ),
pc ← A1(pk),
c ←R Challenger(pk),
(a,Π) ← Solver(pk, c),
(a′,Π ′) ← A3(pk, c, pc).

⎤
⎥⎥⎥⎥⎦

that is a negligible function of λ.

Additionally, a well-defined trapdoor-VDF may comprise further properties,
and one that is most relevant to our work is given below.

– Perfectness: The knowledge of trsk and the pair (c,a) solely does not provide
an advantage in passing the public verification protocol. Let Â be an algo-
rithm implementing Challenger, which outputs the pair (c,a) and an algorithm
Â2. The probability of success for Â2 to output an acceptable proof Π ′, in
time less than T , for any pair (c,a) is

Pr

⎡
⎢⎢⎣
accept ← Verify(pk, c,a,Π ′)
and accept ← Verify(pk, c,a,Π) :

pk ←R Setup(1λ, T ),
(c,a, Â2) ← Â(Challenger, pk),
(−,Π ′) ← Â2(pk, c,a),
(a,Π) ← Solver(pk, c).

⎤
⎥⎥⎦

that is a negligible function of λ.
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Further on Trapdoor-VDF Properties. A secure well-defined trapdoor-
VDF accounts also for the trapdoor properties and assumption(s). This is due
to the fact that a secure well-defined Challenger requires a secure well-defined
trapdoor. Formally, a trapdoor trsk ∈ F , associated with a domain D(trsk) and
range R(trsk), is defined as follows

– trsk: a short function in sk ←R S, with evaluation time Poly(log T, λ), that
takes an input pk; the function evaluation returns a challenge and answer
pair (c,a) ∈ C × Y.

For any random secret sk ←R S and trsk ← F , the trapdoors in trapdoor-
VDF feature several properties.

– Challenger correctness: Let (c,a) be a challenge and its answer pair gener-
ated by trsk. The correctness property requires that the answer (a′,−) ←
Solver(pk, c) be equal to a with probability one (i.e., we must have a′ = a
with probability one). There is, however, an extension to the previous state-
ment. For instance, we can allow a′ �= a only if there is a one-way public
function (f) such that a ← f(a′) and accept ← Verify(pk, c, f(a′),Π) is true
for all c ∈ C and all valid proofs Π. Having such an extension allows us to
construct a prefect trapdoor-VDF in which the Challenger, who owns c and
knows a, cannot pass the public verification protocol before time T .

– Challenger efficiency: All trapdoors in a trapdoor-VDF must also be efficient.
For any λ, T and pk ←R Setup(1λ, T ), the efficiency implies that (as in [4]):

• There is an algorithm that runs in time Poly(log T, λ) and implements the
process of sampling trsk from F for all sk ∈ S.

• There is an algorithm that runs in time Poly(log T, λ) and implements the
process of sampling an element from D(trsk) (and/or R(trsk)).

• There is an algorithm that evaluates trsk in time Poly(log T, λ) for any
element of D(trsk).

– Challenger security: To be secure, the following problems must be hard for
any λ, T and pk ←R Setup(1λ, T ).

• Given any challenge c ∈ C generated under the secret trsk ∈ F , find the
challenge’s answer a ∈ Y in time less than T .

• Given any challenge and answer pair (c,a) ∈ C×Y generated by trsk ∈ F ,
find sk ∈ S.

• Let (c′,a′) ∈ C ×Y be any challenge and answer pair generated by trsk′ ∈
F . Given a challenge c ∈ C under trsk ∈ F , find its answer a ∈ Y.

Similar to VDF, the difficulty T is restricted to subexponential in λ. It is
therefore cheaper to perform the T -sequential evaluation than to compromise
the trapdoor-VDF security.
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4 Design Rationale

This section discusses our approach to construct a proof-of-concept instance of
trapdoor-VDF. To construct trapdoor-VDF, we begin by defining a long sequen-
tial public function EVAL : X → X with a public challenge and answer (i.e.,
x, y ∈ X such that y ← EVAL(x)). The secret is a random string (sk ←R S) that
indexes a secret short map (trsk : X → X ) in the ensemble F . Using a random
secret map, one may craft a trapdoor. A new challenge (x′) can be obtained by
masking x with trsk (i.e., x′ ← trsk(x)). The secret map trsk, which can also
determine y′ ← trsk(y), becomes the trapdoor. This statement is true assuming
that the action trsk ◦ EVAL is equivalent to EVAL ◦ trsk. In the absence of trsk,
one can obtain y′ by evaluating y′ ← EVAL(x′), which involves a large number
of sequential steps.

Lastly, the verification procedure involves validating trsk’s correct compu-
tation statement with zero knowledge of trsk, where the Solver’s answer (y′′)
serves as the statement witness. The validation arguments should be efficient,
validating only the unique answer (i.e., a Verifier accepts only if y′′ = y′).

In the following, we present a sketch construction of the proposed trapdoor-
VDF. Essentially, the construction consists of evaluating a series of non back-
tracking horizontal isogenies with a large degree (representing EVAL), whereas
the secret trapdoor is a shorter horizontal isogeny walk in graphs over a finite
field Fp (representing trsk). Our public verification protocol uses bilinear pairings
similar to BLS signature scheme [8], which is also used in [9] and [18].

4.1 Construction Elements

First, we define the public parameters that we will use to construct our scheme.
Following that, we will briefly describe the supersingular isogeny graph, upon
which both the long evaluation function and short trapdoor operate. Lastly,
we will discuss the scheme group structure and the scheme’s public verification
method.

Selection of the Scheme Parameters. The parameters for our scheme are
generated with the help of the following algorithms.

– (p,L, N,S, t, E0) ← GGen(1λ, T ) is a public parameter generation algorithm
that takes a security parameter λ and difficulty T as an input and outputs:

• a large odd prime p such that p = 7 mod 8,
• a set L of n small distinct primes defined as follow

L := {2} ∪ {l ∈ Primes(6 log(p)2) : (
−p

l
) = 1},

• a large prime N such that N �∈ L and N | p + 1,
• the set S := {−e, . . . , e} for a positive integer e where |S| = 2e + 1,
• the vector t ← T n of n elements, where T := {−mmax

n �, . . . , mmax
n �},∑

m∈t abs(m) = T < 2o(λ), and a positive integer mmax < 2o(λ),
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• a supersingular elliptic curve E0/Fp on the surface of G(Fp, 2), where
|E0(Fp)| = p + 1 and possibly with j-invariant j(E0) ∈ {0, 1728}.

– E ←R Alg(1λ, E′,L) is a randomized algorithm that takes an initial curve
E′, the set L, and security parameter λ. The algorithm Alg outputs a random
supersingular elliptic curve E/Fp on the graph surface. Basically, this algo-
rithm involves taking a random horizontal isogeny walk (see [18]) of a length
of at least Poly(log p). It is required that the probability of finding isogeny
(path) between the output curve E and an initial curve E′ be a negligible
function in λ.

4.2 The Graph in Use and the Single Step of Computation

The graph over Fp described in [16, Theorem 2.7] is the abstraction behind our
scheme. In our scheme, the graph consists of two levels, namely a surface (i.e.,
EFp

(Z[1+
√−p
2 ])) and a floor (i.e., EFp

(Z[
√−p])). In this graph, surface and floor

have one-to-one connection by 2-isogenies, and there are no odd-degree isogenies
connecting them. On the graph surface, there are two horizontal isogenies of
degree li ∈ L from each vertex, whereas the floor is connected by isogenies of
degree li ∈ L/{2}.

In our construction, a sequential walk on the graph is represented by the
group action of the ideal class group cl(O) of an imaginary quadratic order
O ∼= Z[1+

√−p
2 ] on the set EFp

(O). Hence, both EVAL and trsk act on the set
EFp

(O). The choice of L’s elements enables us to represent the elements of cl(O)
as a product of ideals of small norm N(l) such that N(l) ∈ L. Thus, we represent
a single step in the sequential walk by the group action of an ideal of a norm in
L that acts on EFp

(O).
The elements of L are chosen to be Elkies primes. Hence, the ideal liO splits

into li = (li, π − 1) and l̂i = (li, π + 1) for every li ∈ L (i.e., liO = lîli,∀li ∈ L).
This defines the direction of a single step. From every vertex in the graph surface,
there are two actions of an ideal with norm li that can be applied, either li or l̂i.
Further, each direction can be computed via an isogeny using Vélu’s formulas
[33]. In other words, a single step in one direction, denoted by φli , is an isogeny
of a kernel of order li intersecting with ker(π − [1]). As for the step in the
opposite direction, denoted by φ−1

li
, represents an isogeny of a kernel of order li

intersecting with ker(π + [1]). Finally, for an integer mi, we denote li-sequential
walk by φmi

li
, which represents mi sequences of li-isogeny evaluation in the same

direction.

The Long Evaluation Function. As with [18] and [31], the long evaluation is
represented by an isogeny of large degree, exponential in T ,

EVAL := φt
L : E → EA

which is a composite of all φmi

li
for all li ∈ L and mi ∈ t (i.e., φt

L := φmn

ln
◦n

· · · ◦1 φm1
l1

, where mi ∈ t and |t| = n). The degree of φt
L is

∏n
i=1 l

abs(mi)
i and it

has a difficulty of
∑n

i=1 abs(mi) = T . The presumption is that to compute EVAL
efficiently, all T composites of φt

L must be evaluated sequentially.
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The Secret Trapdoor and Secret Trapdoor Set. As with [11,31], we want
to be able to efficiently sample a random trapdoor from their ensemble F . We
will therefore randomly sample sk := s ←R Sn to represent the trapdoor as

trsk := φs
L : E → EB .

The set S is chosen so that the trapdoor φs
L is much shorter than φt

L. However,
the size of S must be large enough to ensure that there exist |S|n ≥ 22λ possible
secrets.

4.3 The Scheme Group Structure and Its Public Verification

Let GE
i be a subgroup of E[N ] where E ∈ EFp

(O) and i ∈ [N ]. The trace-
zero and the base-field subgroup of E[N ] are represented by subscripts 1 and 2,
respectively1. Under the assumption that (i) N is coprime to |ker(φt

L)| and N �=
p, and (ii) E and EA are isogenous (so that |E[N ]| = |EA[N ]|), the surjective
morphism φt

L : E[N ] → EA[N ] must also be injective induced by the Lagrange’s
theorem; hence it is a bijective group homomorphism on the N -torsion subgroup
(similar argument applies for φs

L). Let σ−1 be a quadratic twist defined as follows

σ−1 : E → E(d) ∈ EFp
(O)

σ−1 : GE
i∈{1,2} → G

E(d)

2i mod 3

where E(d) is a twist of the curve E. The inverse quadratic twist (i.e., σ : E(d) →
E) is efficiently computable and it is defined as follows

σ : (x, y) → (x/w2, y/w3)

where w ∈ Fp2 , w �∈ Fp, and it has w2 ∈ Fp. In our configuration, it should be
noted that σ ◦ φmi

li
(E) and φ−mi

li
◦ σ(E) are equivalent.

Pairing Based Public Verification in a Nutshell Let êE
N : E[N ]× E[N ] →

μN be a non-degenerate Weil pairing map on E, where μN ⊂ F
∗
p2 . A non-trivial

bilinear Weil pairing can be defined as êE
N : GE

1 × GE
2 → μN . This definition

is equivalent to êE
N : σ(GE(d)

2 ) × GE
2 → μN , which is efficiently computable

with inputs of short representation. Let E, EA = φt
L(E), EB = φs

L(E), EAB =
φs

L(EA), and EBA = φt
L(EB) be a set of isogenous supersingular elliptic curves.

The public verification proceeds as follows:

– A Challenger, Verifier, and Solver all share as an input the description of
the isogeny φt

L : E → EA of difficulty T , and the point pair (xGE
1 , yG

EA
1 ) ∈

GE
1 × GEA

1 such that yG
EA
1 = φt

L(x
GE

1 ). All inputs are chosen for a security
parameter λ.

1 The subgroup GE
1 is defined as GE

1 := E[N ] ∩ ker(π + [1]), whereas, GE
2 := E[N ] ∩

ker(π − [1]).
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– A Challenger selects s ←R Sn that defines the secret short isogeny φs
L : E →

EB ; then, it
• randomly samples integers kA, kB , and kAB such that kAk−1

B k−1
AB =

deg φs
L(modN),

• computes and broadcasts the challenge ([kA]QG
EA
2 , x̂G

EB
1 , QG

EAB
2 ) ∈ GEA

2

× GEB
1 ×GEAB

2 such that x̂G
EB
1 = [kB ]φs

L(x
GE

1 ), QG
EA
2 ←R GEA

2 , and
QG

EAB
2 = [kAB ]φs

L(Q
G

EA
2 ).

– A Solver computes the answer ŷG
EBA
1 ← φt

L(x̂
G

EB
1 ), which requires T sequen-

tial isogeny evaluations, and then broadcasts ŷG
EBA
1 .

– A Verifier outputs accept if ŷG
EBA
1 satisfies the following equality

êEA

N (yG
EA
1 , [kA]QG

EA
2 ) = êEAB

N (ŷG
EBA
1 , QG

EAB
2 ), (2)

otherwise returns reject.

From Eq. (1), the above-mentioned verification is complete, as shown below.

êEA

N (yG
EA
1 , [kA]QG

EA
2 ) = êEAB

N (φt
L ◦ [kB ]φs

L(x
GE

1 ), [kAB ]φs
L(Q

G
EA
2 )),

êEA

N (yG
EA
1 , [deg φs

L]Q
G

EA
2 ) = êEAB

N (φs
L(y

G
EA
1 ), φs

L(Q
G

EA
2 )).

Moreover, it is obvious that the correctness of the scheme depends on the ter-
minal elliptic curves (i.e., EAB and EBA) being identical. To be consistent with
previous work [18], Fig. 1 shows the proof system’s structure.

Fig. 1. The diagram illustrates the structure of the proposed trapdoor-VDF’s proof
system. The map φ−t

L is the L-sequential walk φt
L in the opposite direction (and similar

for φs
L).
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4.4 An Instance of the Trapdoor-VDF

The following is a formal description of a trapdoor-VDF instance constructed
from the action of class groups on supersingular elliptic curves with bilinear
pairings being used for public verification. They are all defined by the parameters
chosen in the previous section.

Fig. 2. The proposed trapdoor-VDF instance is defined by the four algorithms
described above.

Discussion. It is imperative that a trusted process runs Setup due to an attack
that exploits an elliptic curve with known endomorphism rings (see [18]). To
generate the public parameters, the Setup must select E and then compute φt

L,
which takes O(T ) steps. A Challenger must sample a one-time secret s to compute
x̂G

EB
1 and QG

EAB
2 , with the evaluation time being a polynomial function in λ.

Essentially the challenge consists of three elliptic curve points. To obtain the
answer, the Solver must compute φt

L, which is a separable isogeny of a degree
exponential in T . Typically, the best approach for computing φt

L is to sequentially
compute each of its T compositions, of degrees li ∈ L, using Vélu’s formulas. A
single point on the target curve EBA serves as both the answer and the proof. The
verification involves two bilinear pairings. It also involves determining whether
all points are members of the appropriate group, a relatively trivial operation.
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5 Security

We will show that the trapdoor-VDF proposed in Sect. 4.4 is secure well-defined
with an honest challenge and the aforementioned setup that takes O(T ) steps.

Theorem 1. The trapdoor-VDF instance in Sect. 4.4 is a secure well-defined
trapdoor-VDF with a O(T ) steps long Setup and under the assumption of an
honest Challenger.

Correctness, and Uniqueness. The following assumes that all statements are
true for any λ, T , pk ←R Setup(1λ, T ). For all honest c ←R Challenger(pk), the
correctness argument implies that any honest evaluator should be able to obtain
the answer a ← Solver(pk, c) which is Verify’s acceptable answer.

However, the correctness argument is not complete yet. We also require that
the Challenger and Solver must land on the same terminal elliptic curve and
not only curves on the same isomorphism class. In other words, the evaluation
output (φt

L(c.x̂
G

EB
1 )) and the challenge (c.QG

EAB
2 ) have to be on the same curve

(i.e., EBA = EAB). This is required so that the Verifier can evaluate Eq. (2).
The verification in Eq. (2) is likewise unique, as we employ a similar version of
the [8]’s (and [18]) verifier.

Lemma 1. Given any λ, T , and pk ←R Setup(1λ, T ), a Solver’s honest out-
put a.ŷG

EBA
1 is indeed a point on the Challenger’s terminal curve (EAB) such

that a.ŷG
EBA
1 = ŷG

EAB
1 and accept ← Verify(pk, c,a), for all honest c ←R

Challenger(pk); further, there is no answer a′ that is a valid answer (i.e., accept
← Verify(pk, c,a′)) unless a′ = a = φt

L(c.x̂
G

EB
1 ).

Proof. The proof to the first part of the lemma follows from the result of Leonardi
[23, Theorem 3.1]. Leonardi’s result implies the equivalency between the action
of φs

L ◦ φt
L and φt

L ◦ φs
L when all computed with Vélu’s formulas. As for the

uniqueness, we have set our parameters so that (i) as mentioned in Sect. 4.3, the
surjective morphism φt

L : EB [N ] → EBA[N ] is a group isomorphism on the N -
torsion subgroup and (ii) as discussed in [18], Eq. (2)’s right-hand side is a group
isomorphism from GEBA

1 to μN for a given c.QG
EAB
2 . Hence, Verify((pk, c),a′)

outputs accept if and only if a′ = a = φt
L(c.x̂

G
EB
1 ) ∈ GEBA

1 .

Soundness. Since there is only one valid answer, the verification is unique, as
is a property of [8]’s verifier. Thus, and similar to [18], our trapdoor-VDF is
perfectly sound.

Sequentiality. In the following, we introduce the concept of sequentiality in our
trapdoor-VDF by presenting the shortcut game.

Definition 3 (The shortcut game). Let λ and T be a security and a difficulty
parameters, respectively. Let A := (A1,A2) be a party that participates in the fol-
lowing game. (i) A trusted process computes and publishes pk ←R Setup(1λ, T ),
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(ii) A preforms a pre-computation in time Poly(T, λ) and outputs pc ← A1(pk),
(iii) a trusted process then computes and publishes c ←R Challenge(pk), (iv) A
computes and outputs ŷG

EBA
1 ← A2(pk, c, pc) in parallel time less than T , where

ŷG
EBA
1 ∈ GEBA

1 .
To win the game, A’s output, ŷG

EBA
1 , is required to be the correct evaluation

of φpk.t
pk.L on c.x̂G

EB
1 (i.e., to be equal to a ← Solver(pk, c)).

The proposed trapdoor-VDF is sequential if there is no polynomially bounded
player A with a non-negligible probability of winning the above shortcut game.
A player A can win the game by finding (i) a shorter isogeny than φt

L, (ii)
a faster method for computing φt

L, (iii) the inverse of pairing Eq. (2), or (iv)
the secret isogeny φs

L (or a short equivalent isogeny). The three former points
have already been discussed in [18, Section 6]. With regards to the last point,
the sequentiality is also determined by recovering the secret isogeny trsk := φs

L
or obtaining a short equivalent isogeny. In other words, this is equivalent to
recovering the ideal class [b] ∈ cl(O) that is computed via the secret isogeny φs

L.

Definition 4 (Key recovery [11]). Given two supersingular elliptic curves E
and EB defined over Fp with the same Fp-rational endomorphism ring O, find
an ideal b such that [b]E = EB and b is the product of ideals of small norm in
L.

There are several possible attacks for recovering the secret, some of which are
discussed in [11].

Brute-force Attack on the Secret Key. A basic attack searches over all
potential keys. For a secret s, its corresponding secret ideal class [b] is represented
as [lm1

1 lm2
2 · · · lmn

n ] ∈ cl(O) such that N(li) = li ∈ L and mi ∈ s. Thus, it can be
argued that [b] has several representations (i.e., there are an equivalent ŝ ← Sn

that yields [b] ∈ cl(O)), which is vulnerable to exhaustive search. Castryck et al.
[11] show that the expected number of equivalent representations is |S|n/ord(G),
assuming that cl(O) is almost cyclic with a very large cyclic component of order
ord(G) close to |cl(O)|. Therefore, it suffices to choose n log |S| ≈ log(

√
p), where

|cl(O)| ≈ √
p.

Pohlig-Hellman-style Attack. To our knowledge, the Pohlig-Hellman style
attacks cannot be effectively applied to the construction in Sect. 4.4 to recover
the secret degree (deg φs

L) or the answer (ŷG
EBA
1 ).

Castryck-Decru-style Attack [10]. As in [19], we mask the torsion points
in pairing-based verification. Therefore, the point pairs (yG

EA
1 , [kA]QG

EA
2 ) on

EA and (ŷG
EAB
1 , QG

EAB
2 ) on EAB are not images of the secret isogeny φs

L. In
addition, the secret isogeny φs

L has a hidden degree determined by s, which
is similar to the countermeasure suggested in [27]. Hence, to the best of our
knowledge, our proposal is naturally resistant to a Castryck-Decru-style attack
because we conceal torsion points’ preimage and the secret isogeny degree.
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Meet-in-the-middle Attack (MITM). To find the path (φs
L : EA → EAB) in

the isogeny graph
⋃

li∈L G(Fp, li), MITH starts from EA and EAB to construct
search trees. The attacker looks for the collision in the tree. The halfway point
between EA and EAB is the isogeny evaluation of the halves of the set L, Lleft :=
{l1, l2, . . . , ln/2}, and Lright := {ln

2 +1, . . . , ln} (for simplicity assume that n is
even). Let J be the set size of all elliptic curves defined over Fp that are isogenous
to EA, constrained to S, in the halfway to EAB . We observe that the set size
is |J | = |S|n/2 − 1; thus the attack average-case isogeny computation is about
≈ 2n log(|S|)/2. Setting n log(|S|) to be ≈ log (p)/2, the attack’s average-case
complexity is 2log (p)/4.

6 Conclusion

We have presented a new class of trapdoor-VDFs that have a large ensemble of
trapdoors for each VDF instantiation. In the proposed scheme, a secret trap-
door, chosen randomly from the ensemble by Challenger, is used to generate a
challenge. In a few steps, Challenger can obtain the answer to a challenge by
using the secret trapdoor. Without knowing the secret trapdoor, a Solver on
the other hand must perform the long sequential computations. We have also
presented a trapdoor-VDF construction based on [11,18,31].

Our future work will focus on proving that the proposed construction elimi-
nates computational advantage of the instance generator (i.e., not being able to
obtain the trapdoor or break the scheme sequentiality). Further, the setup of the
proposed instantiation requires evaluating the lengthy sequential computations,
so it is beneficial to examine newer approaches to make the procedure efficient.
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