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Abstract. Software updates are critical for ensuring systems remain
free of bugs and vulnerabilities while they are in service. While many
Internet of Things (IoT) devices are capable of outlasting desktops
and mobile phones, their software update practices are not yet well
understood, despite a large body of research aiming to create new
methodologies for keeping IoT devices up to date. This paper discusses
efforts towards characterizing the IoT software update landscape through
network-level analysis of IoT device traffic. Our results suggest that ven-
dors do not currently follow security best practices, and that software
update standards, while available, are not being deployed.

Keywords: IoT · Software Updates · Update Detection

1 Introduction

Consumer Internet of Things (IoT) devices have gained significant popularity in
recent years, resulting in a revolution of IoT devices used in many applications.
IoT devices are typically resource-constrained and require specialized operating
systems and software stacks depending on their application [5]. Due to the unique
resource constraints of IoT devices, device vendors have to either design their
software update infrastructure and supporting applications from scratch or use
an integrated third-party solution1 which has historically shown to be incon-
sistent and vulnerable [30]. Software update systems are well understood and
widely available on general-purpose computers and servers [4]; however, there
is very little insight and research into how these vendor-specific IoT software
update systems work due to a lack of standardization in the IoT space [6,31].
Our goal is to characterize how typical consumer IoT devices query for and
retrieve software updates, and evaluate the security of these techniques as used
by prominent IoT vendors.

A unique challenge for deployed IoT devices is their expected lifespan. Typical
personal computers have a relatively short lifespan compared to an IoT device,
which is expected to behave in an appliance-like fashion with minimal (if any)
downtime. Personal computers may get replaced in 5–10 years if the hardware
cannot keep up with current software demands. In contrast, an IoT device such
1 Such as Microsoft Azure IoT, or Amazon Web Services IoT.
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as a smart thermostat may be expected to run for decades before being replaced.
With the constant evolution of technology, device vendors have the additional
challenge of providing a secure implementation of their software on potentially
outdated hardware.

We hypothesize that suboptimal update intervals from IoT device vendors
may further weaken IoT update systems. For example, device libraries such as
the crucial OpenSSL library were analyzed during a study of 122 IoT device
firmware files, which revealed several vendors failed to patch OpenSSL in their
IoT devices after critical vulnerabilities were released [32]. Device vendors took
months to supply an updated system image with a patched OpenSSL version,
and one vendor took nearly 1,500 days to patch the critical vulnerability. Failing
to update critical libraries causes these devices to gain a larger attack surface that
could potentially be leveraged by bad actors to trick the device into downloading
malware [29] or to bypass security measures that are in place to prevent the
device from loading modified firmware [6,9].

In recent years there have been many proposals for secure software update
systems that are designed for IoT [7,11,32] and related cyber-physical sys-
tems [13,18]; however, there is no research (to our knowledge) aiming to
broadly understand the IoT software/firmware update landscape in consumer
IoT devices.

Our primary focus is identifying software updates being requested and taking
place. The benefits of this can be leveraged in various contexts: Network-level
update detection can be used as independent feedback to end users that their
devices are being updated regularly – an IoT device vendor may promise to pub-
lish security patches for their IoT devices, but not deliver on that promise [32].
In an enterprise context, administrators may want to apply the principle of least
privilege to fleets of IoT devices. Certain IoT devices do not need continuous
access to the open internet as most devices can function exclusively with LAN
connectivity to a central hub or other devices. The only edge case to this is
checking for updates and downloading them. If an active firewall can detect
update-related traffic from IoT devices, it can adjust rules to (1) allow the IoT
device to download an update from the internet, and (2) log the update instance.

The research contributions in this paper are:

– The first in-depth analysis of consumer IoT network traffic to identify software
update communications. We identified design patterns used in several IoT
devices and found vulnerabilities that could be exploited.

– A case study of software update schemes and practices that we identified
through our methodology. Devices featured in our case study distribute soft-
ware updates over HTTP with no tamper-resistant protection mechanisms
added on. One of the devices identified in the case study provides a happy
medium between update transparency and security.

– An event-based characterization of when IoT devices update. We contextual-
ize the various conditions that lead to an IoT device performing updates. For
example, power cycling an IoT on is highly likely to trigger an update check.
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2 Methodology

Our research objective is to understand and characterize how and when IoT
devices perform software updates. To accomplish this, we build a network traf-
fic analysis system that identifies and analyzes software update requests and
responses from IoT devices. We aim for the system to be vendor-agnostic, requir-
ing no a priori knowledge about the IoT vendor’s infrastructure or devices. The
system should also identify updates across multiple independent cloud vendors,
which are relied upon heavily in IoT.

To accomplish this, we analyze network traffic from a 2019 Internet Measure-
ments Conference (IMC) paper by Ren et al. [24] which actively captured traffic
from 81 IoT devices. These 81 devices were located in two geographic regions; 46
in the US, 35 in the UK, and 26 common devices across both regions. In total,
the dataset contains packet captures from 55 unique devices. Collected data was
harvested at network gateways, but no form of middle-person attack was done
on TLS traffic which precludes peering into an encrypted device communica-
tion. Therefore, in this paper, we rely exclusively on extractable HTTP traffic
for identifying software updates. Additionally, we harvest metadata from the
TLS handshakes to gain insight into the security of the secure communication
channels used by these devices.

2.1 Data Extraction

In total, the dataset of packet captures from Ren et al. is 13 GB in size, which
includes 37, 744 packet captures recorded by the automated test system and
611 unsupervised experiment packet captures, yielding a total of 38, 355 packet
captures. We do not separate traffic by geographic region as Ren et al. found
very negligible differences in region-specific traffic [24].

To identify network traffic related to software updates, we hypothesize that
update interactions between an IoT device and vendor cloud follow a structured
schema. If the schema is human-readable (e.g., JSON, XML, etc.) there will be
keywords contained inside indicating some update-related information, such as
a firmware version. We initially searched for a single keyword “update”, which
led us to build a corpus of update-related keywords: update, upgrade, firmware,
software, and download.

These keywords will be the basis we use for identifying update-related traffic;
however, manually searching through files will not scale to the number of devices
we have. Therefore, we developed a parallel network traffic processing pipeline
(see Fig. 1) that manages network traffic metadata and HTTP object extraction.
The pipeline design is compatible with distributed data processing frameworks
such as Apache Spark, and works on the dataset as follows:

Metadata Extraction: We extract metadata representing the packet capture.
This includes the specific sub-dataset, region, experiment type (e.g., power on,
interact with the device, etc.), and device name. The extracted metadata is saved
to a metadata database and used for later steps in the pipeline.
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Fig. 1. Our data extraction pipeline: starting with the IoT packet capture dataset,
we extract metadata for each packet capture to represent a given packet capture as
a unit of work. We process each packet capture in parallel, extracting HTTP objects
to the local filesystem, TLS Handshakes, and update-related metadata. All extracted
metadata is stored relationally in a metadata database for further analysis, and HTTP
objects are stored on the local filesystem.

Parallelization: We parallelize the extraction of metadata and HTTP objects
on a per-packet capture basis. The parallelization is done by assigning each
packet capture to a worker node, and the worker node performs the following
steps on each packet capture individually. In practice a parallelization approach
is not needed; however, passive analysis of a large amount of packet captures
warrants the speedup gains of parallelization.

HTTP Object Extraction: We extract all HTTP payloads from a given packet
capture. The HTTP payload data is of particular interest as it provides us insight
into any files transferred along with any web service interactions.

TLS Handshake Extraction: We then extract TLS client and server hello
data using a modified version of pyshark2. Our modified version of pyshark
supports extracting an extended set of TLS handshake metadata, including the
ciphers advertised in the TLS client hello and server hello handshake. In total,
we return a list containing every TLS handshake, including the TLS version,
TLS handshake type, and a list of cipher suites. The TLS cipher suite data is
used to determine if devices are adequately securing communication channels
against TLS-related attacks.

Keyword Extraction: For each of the extracted HTTP objects, we scan for the
aforementioned update-related keywords by performing a case-insensitive search
for all of the keywords. A keyword occurrence flags a packet capture related to a
software update. Counts of keyword occurrences are saved to the metadata DB
for future analysis.
2 https://github.com/KimiNewt/pyshark.

https://github.com/KimiNewt/pyshark
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The data-extraction pipeline operates per packet capture in parallel. On a
test VM with 24 virtual processors, 64 GB of RAM, and a solid-state drive, we
were able to run the extraction pipeline on 38, 355 packet captures in over 60 min,
with approximately 10 packet captures processed per second. Without a parallel
approach, our extraction pipeline would have taken over 24 h to complete.

2.2 Data Analysis

Using the metadata that corresponds to the packet capture, we can perform
extended analysis on the packet capture that had been flagged as having update-
related traffic. After identification of these packet captures, we inspect the HTTP
response data to look for any update endpoints or update artifacts. Ideally, we
should find no update-related artifacts in HTTP responses, as this would imply
these files are transmitted over an insecure channel.

Device vendors should be protecting their firmware from being tampered with
regardless of the transfer protocol being used: if a vendor uses only TLS to secure
their updates in transit, the compromise of a single cryptographic key is the only
requirement to jeopardize the integrity of the vendor’s update system [26].

Analyzing IoT update interactions by raw traffic can be misleading as it does
not consider the context that triggers a device to update, only that the device
checked for an update. To further characterize update interaction, we look at
event-related information to provide more context to the various conditions that
cause IoT devices to update. All the packets captured from the Ren et al. study
are labeled with various event-related information such as power events, app
interaction, or idle events. Therefore, we analyze these crucial pieces of context
to correlate events to update activity. For example, if an IoT device checks for
an update when powered on, an adaptive firewall can use temporal data of an
IoT device’s network connectivity to provide more context to classify if an IoT
device may be requesting and applying a software update.

Finally, we extract and analyze all TLS handshake data from all the packet
captures (independent of update keyword traffic) to assess the overall strength of
the communication channels in use. Our methodology only allows us to perform
extended analysis on unencrypted traffic; however, if IoT devices send all of their
traffic over an encrypted medium, it is a reasonable assumption that the devices
will also perform firmware updates over these encrypted connections. If the TLS
implementation on the IoT device is outdated or insecure will undermine the
overall security of the IoT device, including the software update system. Whether
TLS is explicitly or implicitly chosen for a design, using TLS is a design choice
for IoT update systems.

To interpret the set of cipher suites advertised between clients and servers, we
converted the cipher suite’s hexadecimal value to the IANA cipher suite name
by leveraging a cipher suite information API [25] which aggregates all IANA
cipher suites along with IANA cipher suite security classifications. Cipher suites
are then categorized into four buckets: insecure, weak, secure, and recommended.
Insecure cipher suites have easily exploitable security flaws and thus should never
be used, while weak cipher suites may have proof-of-concept vulnerabilities that
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are more difficult to exploit in practice. The classes of secure and recommended
cipher suites have no known vulnerabilities, and all recommended cipher suites
are a subset of secure cipher suites. The only differentiating factor is that rec-
ommended cipher suites support Perfect Forward Secrecy (PFS).

3 Results

In this section, we discuss our results in identifying update-related traffic. At
the network level, software updates are difficult to detect if the update com-
munications are taking place over an encrypted connection. TLS offloading may
be an option in non-IoT contexts; however, attempting TLS offloading on IoT
devices will require physically tampering with the device which may cause erratic
behavior [24].

Our HTTP object extraction pipeline extracted HTTP objects from 5,766 of
38,356 packet captures, which is 15% of the packet captures in the dataset. In
other words, 85% of packet captures use some form of encryption, or a protocol
other than HTTP. We extracted HTTP data for 35 out of 55 devices3, which is
63% of devices. Originally, Ren et al. attempted to measure encryption adoption
with slightly different results: no device had more than 75% unencrypted traf-
fic [24]. The key difference in our results is we focus on extractable HTTP objects,
whereas Ren et al. attempted to guess if certain UDP traffic was encrypted or
not by measuring byte entropy, which only concludes if certain packets are likely
encrypted [24].

In the following sections, we describe our results for identifying software
update keywords, characterizing software updates based on device interaction,
and our TLS results. These results are summarized as follows:

– Section 3.1: Out of the 35 devices that did not encrypt all traffic, 9 (25%)
checked for available software updates transparently.

– Section 3.2: Update-related traffic is correlated to power and idle events, but
a small percentage of devices checked periodically (some as often as once per
hour).

– Section 3.3: Update endpoints (where software update files are hosted) for
devices in our set exist primarily in 3rd party cloud service platforms, or
on content delivery networks (CDNs), which makes DNS-based identification
difficult.

– Section 3.4: TLS is pervasively used in IoT communications, possibly includ-
ing update-related traffic. Devices that only use TLS for communication could
be vulnerable to key compromise if there are no additional protections in
place [26].

– Section 3.4: The majority of our devices use secure TLS cipher suites which
would not make them vulnerable to TLS downgrade attacks; however, there
are devices that support vulnerable TLS cipher suites, which jeopardizes any
update communications made through TLS.

3 Originally, Ren et al. had 81 devices with 26 common devices between regions, thus
55 unique devices.
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3.1 Update Keywords Results

Fig. 2. Our results for update keywords by device and interaction event.

We successfully extracted several HTTP interactions between IoT devices and
web services related to software updates. Our most prominent keyword is update
with 1,351 occurrences among extracted HTTP objects, firmware with 639
occurrences, software with 89, and download appearing only 8 times.

The specific devices and the corresponding keywords they matched are shown
in Fig. 2b. The heatmap shows the number of occurrences of the keywords in the
rows for the devices in the columns, where a darker blue indicates more occur-
rences. We observed that certain devices exchange update-related information
much more often than others, such as the Wemo plug and Phillips hub.

The Wemo plug device had the most occurrences of keywords, which means
the Wemo plug was polling the most frequently for updates; however, this does
not imply there may be a software update in progress. For example, the Wemo
Plug exchanges firmware information in nearly every request which contributes
to the high amount of keyword detection; however, we did not find any proof
that the Wemo plug performed an update during the capture period. There is
an update web service offered by the Wemo plug, which we discuss in detail in
Sect. 4.3. By contrast, the Apple TV only has a single occurrence of exchanging
update-related keywords, and we found that the Apple TV downloaded system
firmware over HTTP, which would imply that the Apple TV installed the afore-
mentioned firmware, which we discuss in Sect. 4.2. This contrast shows that our
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Fig. 3. Count of TLS cipher usage on a per-device basis. Each bar is represented by
insecure, weak, secure, and recommended cipher suites.

heuristic does not guarantee a device is performing an update, but it is enough
to detect traffic that might be update related.

Aside from being able to detect firmware downloads in real-time, an unex-
pected result from our heuristic was it picks up current updates and firmware
versions in 7 of the 9 devices. This is because these 7 devices report their firmware
version as an HTTP request, or as part of a service discovery response. This is
valuable information for both defensive and offensive applications. A potential
application for this in defensive security is an active firewall appliance that can
scan IoT devices and fetch firmware versions from them, if a CVE is released for
that particular firmware the firewall can automatically quarantine the affected
devices. This assumes that the firmware version is accurately reported, which
may not be the case for malicious devices. For offensive security applications, an
attacker could perform reconnaissance by identifying vulnerable firmware ver-
sions of devices that actively advertise these versions.

3.2 Update Events Results

Our results for event-related update activity are shown in Fig. 2a. The heatmap
shows the number of update keyword occurrences in the rows for the interaction
event in the columns, where a lighter color indicates more occurrences. Due to
the granularity of the experiments from Ren et al., Android-related events (e.g.,
taking a photo, controlling a device from an app, etc.) and Alexa interactions
(e.g., invoking Alexa, changing color, etc.) were merged into two respective cat-
egories. Aside from these events, all 9 of the IoT devices in Fig. 2b exchange
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update-related keywords on power events, and even more on idle events. Exam-
ples of update traffic events include devices reporting their firmware version to
an update service, then receiving an update response in return.

When idle, we found some IoT devices that exchange update-related traffic
between one another. This is out of the ordinary, as independent IoT devices
should not be issuing or exchanging update commands to one another when idle
– these communications should only occur between the device and the vendor’s
update platform. We investigated these inter-device occurrences and found that
as part of service discovery protocols (e.g., SSDP, UPnP) there is an exchange
of firmware information. Certain devices even advertise endpoints for invoking
update behavior manually which is ripe for exploit by bad actors or rogue IoT
devices. Section 4.3 for more information regarding these endpoints.

Other than power and idle events, Alexa interaction events contribute the
most to our heatmap. Alexa devices do not exchange detectable update-related
traffic; however, the Philips hub exchanged update-related information when
being controlled by Alexa. Additionally, the Roku TV, Samsung TV, and Wemo
plug exchanged update-related data when controlled remotely by Android inter-
action events. We believe there is no correlation between these interactions and
update traffic: these devices exchange the same information when not being
controlled by Alexa or Android.

3.3 Observed Update Design Patterns

We analyzed the extracted HTTP interactions flagged as being update-related
to attempt characterizing common designs or behaviors between device ven-
dors. Unfortunately, no common architecture or strategy was used between the
9 devices we identified. The heterogeneity of the designs and schemas involved
provide great motivation for standardized update system designs, such as RFC
9019 and RFC 9124 [14,15]. While there is no common schema among differ-
ent device vendors, we noticed some common patterns among certain device
manufacturers.

No Security: The D-Link movement sensor, Amcrest camera, and Wemo fetch
firmware update metadata from a web service that returns a complete URL
for downloading the firmware image. What is concerning about this is there is
no tamper-protection in place for any of these devices. To make matters worse,
both of these devices fetch data from public S3 bucket endpoints over HTTP. We
examined firmware images served through these endpoints and found no forms
of tamper-protection such as checksums, digital signatures, etc. built into the
firmware.

Out-of-Band Security: While insecure device update schemes are certainly
concerning, there are update techniques that allow authentication and integrity
verification even over HTTP. The Apple TV exchanged all update-related traf-
fic over HTTP, including web service interactions for downloading the firmware
and related metadata. What sets the Apple TV apart is it exchanges digital
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signatures and certificates over HTTP to validate the responses. Apple’s design
provides a happy medium of ensuring the integrity (assuming the signatures and
certificates are validated) of the update through cryptographic means while giv-
ing us insight into specific details that can be leveraged by a network appliance,
such as specific firmware and information assuming that the network appliance
can parse the XML schema Apple uses.

Full TLS: The remaining devices encrypted all cloud-destined communications
using TLS. It is reasonable to expect that, if implemented, a software update
mechanism would also use one of the available TLS channels. While communica-
tion encryption is advantageous for security and privacy, we believe transparency
in software update implementations (perhaps implemented with an out-of-band
scheme as described above) can be beneficial for providing transparency and
security, as we described in Sect. 1. Additionally, we note that exclusive reliance
on TLS for software updates is known to be insufficient in protecting against
many update-specific attacks [26].

3.4 Cipher Suite Results

We see a larger amount of devices with extractable TLS cipher suites, which is
expected as many IoT devices use TLS as a means of interacting with the web ser-
vices they depend on. In Fig. 3 we observe there were a total of 16 insecure cipher
suites used between IoT devices. All 16 cipher suites have significant vulnerabil-
ities that when combined with a downgrade attack could allow an attacker to
perform a machine-in-the-middle (MITM) attack; however, among the 24 devices
that advertise insecure cipher suites, we estimate 4 of them would be vulnera-
ble to a downgrade attack. This is because the secure and recommended cipher
suites would take precedence over the weak and insecure cipher suites, and the
cipher suites contained in secure and recommended classes contain measures to
prevent downgrade attacks.

We have only discussed the TLS cipher suites in the context of IoT devices. To
see these results in perspective to other applications that require secure commu-
nication, we searched for a dataset of TLS cipher suite support in web browsers.
While we did not find a comprehensive dataset that summarized recent browsers,
we did find a service that provides us with what our browser supports [22]. Using
this service, we found modern browsers (Firefox 94, Chromium 96) support far
fewer cipher suites with none of them being insecure – although roughly half
of the cipher suites supported were deemed to be “weak”. This can be used to
offset the large amount of IoT devices that also offer large amounts of “weak”
cipher suites, as these may only be present for backward compatibility. In this
context, the weak cipher suites used by IoT devices do not strictly increase the
attack surface as compared to modern web browsers; however, insecure cipher
suites when not using TLS 1.3 do increase the attack surface.
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3.5 Limitations

We found 11 devices that did not have extractable HTTP data or extractable
TLS data. By manually inspecting packet captures we found several devices
that stream data over UDP, which is a consistent finding with the Ren et al.
study [24]. The data was not meaningful, as it was either encoded using some
vendor-specific encoding or a stream of application-specific data (e.g., a video
stream) that can not easily be deciphered. While these edge cases are technically
possible to extract, it is challenging to do so at scale given the wide breadth of
devices and a large amount of packet captures.

A limitation of our study is TLS encrypted traffic, which is consistent with
other large scale IoT analysis papers [20,21]. A potential workaround for TLS-
encrypted edge cases is an alternative heuristic: for example, another approach
that is agnostic to the protocol in use is to look at response sizes. If a device
exchanges a large amount of data in a short burst, assuming that this burst of
traffic is abnormal for the device based on regulapproach is not ideal as there is
no way to verify if traffic is update-related – this only identifies large bursts of
abnormal traffic. Furthermore, even if we could deduce that encrypted traffic is a
device update, there is no meaningful extractable information from an encrypted
payload such as firmware version which is crucial to our motivation for detecting
IoT software updates.

Another potential heuristic is to analyze traffic patterns temporally.
O’Connor et al. developed a simple yet effective methodology for classifying
various IoT subsystems without any form of decrypting or inspecting packet
payloads, instead opting to analyze traffic frequency and size over a long period
of time [19]. This temporal approach proved effective for identifying IoT device
telemetry, and in an active measurement context, O’Connor et al. were able to
derive various attacks based on a temporal analysis of IoT device traffic. While
this approach is novel, it is not ideal for a large-scale passive analysis of traffic.

Regarding the keyword-based analysis, our heuristic which associates terms
such as “firmware” and “software” to update-related events can produce false
positives. For example, some devices report a current firmware version to a web
service contained as an HTTP payload. While this is not an update request, our
pipeline will flag it as such and require manual removal. Future work will inves-
tigate the use of additional heuristics to improve the accuracy of identification
of updates without requiring manual verification. Adding checks for outbound
traffic, inbound traffic, and schema verification would greatly assist in avoiding
false positives.

4 Case Studies

In this section, we discuss our findings by analyzing select update practices and
firmware files that we extracted through our methodology. First, we look at the
firmware update interactions from the D-Link Camera, which we use to illustrate
harmful practices that undermine the device’s security. We then contrast this
approach with the firmware update interactions we observed against the Apple
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TV, which combines several distinct tamper-resistant mechanisms with update
transparency. Finally, we conclude our case studies with a vulnerable WeMo
update service, that allows for unsigned code to be uploaded from an arbitrary
source.

4.1 D-Link Camera Firmware

The D-Link camera is an example of the No Security pattern, as it exchanged
firmware update information through HTTP. Based on the identified traffic, we
extracted a firmware update endpoint and also a firmware image. The firmware
update endpoint is a web service that accepts a device model and returns an
XML response containing firmware metadata information along with a URL to
the latest firmware download. We were able to download the latest firmware
image as it is being hosted by a static file store which does not require any prior
authorization. The firmware update endpoint does not return any checksum or
signature to validate that the firmware image was not tampered with. Using the
binwalk utility4 we analyzed the firmware image and found the following:

1. A µImage header, indicating that the OS is Linux built for a MIPS CPU.
This is likely a boot loader for the next item

2. LZMA compressed data, likely the kernel image to be executed by (1)
3. A SquashFS filesystem, which is the root filesystem

The image header indicates that the OS is a Linux Kernel from roughly 2014
(6 years old at the time of writing). Looking at the kernel image (2) we extracted
the image version, which is Kernel version 2.6.31 released in 2009 [27]. While
we did not find any notable CVEs for this particular version (2.6.31 ) of the
kernel [10], we did find CVEs for the parent minor version (2.6 ) which allow
for arbitrary code execution through multiple buffer overflows [16]. It is likely
after 2014 the device reached the end of its “service life”, thus D-Link stopped
updating it. This is unfortunately a fairly common occurrence amongst IoT
devices [23].

Theoretically speaking, the D-Link camera is vulnerable to MITM attacks as
shown in Fig. 4b: the communication between (1) the update service and (2) the
image repository is unauthenticated and does not have any integrity protection.
For (1), an on-path attacker can intercept traffic between the IoT device and
the vendor’s cloud. In this case, the message responded by the vendor’s cloud
contains the full URL to the firmware image being hosted on an S3 bucket (also
on HTTP). A second MITM attack (2) could occur if an attacker intercepts
HTTP traffic between the IoT device and the S3 bucket. With this in mind,
it is highly likely an attacker can leverage (1) to give the D-Link camera the
URL of a different S3 bucket hosted on the “malicious cloud instance” which
would then serve the modified firmware. An attacker could build and distribute
modified firmware trivially, as the original firmware file is not signed digitally or
otherwise clearly authenticated.
4 https://github.com/ReFirmLabs/binwalk.

https://github.com/ReFirmLabs/binwalk
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4.2 Apple TV Firmware

Fig. 4. Our results for update keywords by device and interaction event.

In a contrast to the D-Link camera, the Apple TV’s update behavior combines
security and transparency, making it an instance of the Out-of-Band Security
pattern. The complete update flow of the Apple TV is shown in Fig. 4a. Similar
to the D-Link Camera update metadata is exchanged over HTTP; however, there
are several additional measures to harden communications against attackers.

The Apple TV first connects to a central update repository over HTTP.
Although the connection for update metadata happens over HTTP, we found
the API response contains a certificate and signature field, which is used to
validate the responses integrity [3]. We found the certificate was issued by the
“Apple iPhone Certification Authority”, with a common name of “Asset Mani-
fest Signing”. This suggests that the certificate is purpose-made specifically for
signing these update manifest responses. Unfortunately, the certificate expired
in 2018, and the API response indicated updates from as recently as 2020.

Downloading the update files also takes place over HTTP. To protect against
tampering there is an additional field containing a validation measurement for
the update file. If the update file is downloaded and does not match the mea-
surement, the update is invalid and rejected. This behavior is consistent with



Towards Characterizing IoT Software Update Practices 419

Apple’s platform security documentation which details the measures taken to
secure device updates [3].

Using the Apple Repository response, we reconstructed the firmware down-
load URL and acquired the firmware image for the Apple TV. When unpacked,
the firmware contains a file tree for distributing software updates. Without hav-
ing the source code to the software responsible for performing updates on Apple
devices, we are unable to determine how exactly the update is performed; how-
ever, combining an analysis of the directory tree with prior reverse engineering
efforts [12] along with Apple’s platform security documentation [3] gives us good
insight into how the update is performed past this point.

After the AppleTV validates the update payload, the AppleTV must per-
form remote attestation with the Apple Updates Authorization server to fetch
keys that are required to perform the update. According to our packet cap-
tures, this communication takes place over HTTPS (as pictured in Fig. 4a), so
we do not have concrete knowledge of what exactly is being exchanged. Accord-
ing to Apple’s platform security documentation, cryptographic measurements of
the bootloader (iBoot), kernel, operating system image, and exclusive chip ID
(ECID) are sent to the update authorization server [3]. The server validates all
the measurements sent by the device, and if they are valid, the update server
returns the signature for the software, an anti-replay value, and the device’s
ECID [3].

4.3 WeMo Update Service

The Belkin WeMo plug largely communicates using Simple Service Discovery
Protocol (SSDP), which is a protocol used to advertise services and consume
them in a standardized way [1]. SSDP uses HTTP as its underlying communi-
cation protocol, therefore all SSDP activity was captured by our passive analy-
sis. We observed amongst the various device management services listed is one
for firmware updates. The firmware update service advertised various methods
for firmware management, one of particular interest is the “UpdateFirmware”
method, which accepts various parameters describing the new firmware – one
such parameter allows for an unsigned image to be uploaded, which has been
historically shown to be exploitable [8,17]. An attacker could have a local or
remote firmware repository and upload a modified firmware image to the device.
Due to the lack of authentication and authorization on this SSDP endpoint, this
is an instance of the No Security pattern.

We cannot test the viability of uploading arbitrary firmware to the WeMo
update service as we are passively analyzing packet captures; however, previous
efforts aimed at exploiting this update endpoint have proven to be successful,
leading to arbitrary firmware uploads to the WeMo device [8]. An attacker could
have a local (or remote) firmware repository, and upload a modified firmware
image to the WeMo device. The only difference between the exploit used in the
D-Link camera and the WeMo plug is the attacker has the ability to trigger
device update behavior by interacting with an endpoint, whereas the D-Link
camera has no such functionality.
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5 Related Work

To our knowledge, this is the first work attempting to analyze and characterize
how consumer IoT devices perform software updates at the network level. There
have been recent works focusing on the different network-level analysis of IoT
devices: Prakash et al. analyze the update practices of IoT vendors by tracking
software versions listed in the user-agent header included in HTTP requests made
by IoT devices [21]. The conclusions found by Parakash et al. do not characterize
and analyze how IoT update systems work, rather, they conclude that IoT device
vendors are slow to update their devices when new vulnerabilities are found.

We identified pervasive use of TLS, which precludes the identification of
update-related traffic without additional data analysis. Related work here
includes Alrawi et al., who provide an excellent SoK of the overall security of
home IoT devices by systematizing the current state (as of 2019) of IoT vul-
nerability literature and then evaluating 45 devices, a subset of the security
evaluation involves looking at various encryption qualities that would make the
device vulnerable [2]. More recently in 2021, Paracha et al. performed a deep
dive into IoT TLS usage patterns which ultimately found 11/32 IoT devices
are vulnerable to interception attacks [20]. If IoT devices are relying on TLS to
secure communications to backend APIs and endpoints for software updates, any
vulnerabilities in the TLS transport layer will undermine the overall soundness
of how these devices perform updates.

An encouraging finding is the high amounts of TLS usage among devices;
however, there is a caveat to this high TLS usage: it is only one line of defense.
If a private key is compromised, this could jeopardize the integrity of update-
related services if there are no additional lines of defense. Samuel et al. present
a novel design for an updated system that allows for key compromise in update
systems [26].

Due to the previously discussed challenges, there are several opportunities
to explore and innovate IoT software update designs. Related work in this space
consists of proposed designs for IoT update systems relating to firmware updates
and library management. Zandberg et al. present a prototype for a firmware
update system on IoT devices by leveraging various open-source libraries and
standards [31]. Zandberg et al. leverage SUIT, a new IETF standard that pro-
vides encrypted firmware update files with encryption keys provided by hybrid
public-key encryption [28]. The SUIT standard appears as if it may not work
on resource-constrained IoT devices, but Zandberg et al. have their reference
implementation built on IoT devices with less than 32 KB of RAM and 128 KB
of storage [31].

6 Conclusion

Using a passive measurements approach and a dataset from one of the largest IoT
information exposure studies to date [24] we identified and characterized several
design patterns used by IoT devices to perform updates. There is no common
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schema or design pattern behind various update systems, which provides addi-
tional motivation for standardizing IoT software updates [15]. Additionally, we
characterized events related to when an IoT device may update, which is useful
for building data-driven models for real-time update identification. In our anal-
ysis of update systems, we found vulnerable devices that provide no mechanisms
for securing firmware updates. We observed that many devices use encrypted
connections to secure communications: 60% of devices support insecure TLS
cipher suites, while 10% of devices are vulnerable to downgrade attacks.

In the future, more comprehensive studies can follow by performing active
measurements during software updates. This can reveal more IoT update end-
points, allow us to develop more accurate heuristics for identifying when a device
is updating, and therefore gain a better understanding of these walled gardens.
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