
SCADA Radio Blackbox Reverse
Engineering

Jean-Benoit Larouche1(B), Sébastien Roy1, Frédéric Mailhot1,
Pierre-Martin Tardif2, and Marc Frappier3

1 Electrical and Computer Engineering Department, Université de Sherbrooke,
Sherbrooke, QC, Canada

djibylarouche@hotmail.com
2 Management School, Université de Sherbrooke, Sherbrooke, QC, Canada

3 Computer Science Department, Université de Sherbrooke, Sherbrooke, QC, Canada

Abstract. Supervisory control and data acquisition (SCADA) systems
were designed to be open, robust, and easy to operate and repair, but
not necessarily secure. In recent years, there have been multiple success-
ful attacks targeting SCADA systems. Most of them have been caused
by deploying malware on a supervisory computer in order to control
and manage programmable logic controllers (PLCs) and remote termi-
nal units (RTUs). This work investigates a different potential way to
control PLCs or RTUs in a plant which consists in inflitrating over-the-
air (OTA) links based on SCADA wireless modems. Indeed, PLCs and
RTUs are often linked to a supervisory computer wirelessly using out-
dated radios, with low security at the physical-layer level. An example of
such a radio is the CalAmp Guardian-400 wireless modem. A blackbox
reverse engineering of the physical layer of the latter is performed, which
leads to complete signal demodulation and decoding. Our results demon-
strate that any electronic equipment connected serially to the radio is
vulnerable to wireless packet injection.

Keywords: SCADA · software defined radio · scrambling · NRZI ·
digital phase locked loops · FSK

1 Introduction

Radio waves can transfer information between two or more points quite effec-
tively, over large distances, at the speed of light. However, anyone with the ade-
quate equipment can act as a valid receiver and intercept those electromagnetic
waves, or interfere with the signal by transmitting on the same time/frequency
resource, commonly known as jamming. With the ubiquitous presence of radios
in many essential aspects of our day-to-day life (such as Wi-Fi, cellphones, cars,
computers, TVs, etc.), wireless security is of utmost importance. The same degree
of care should be applied to any wireless device required in industrial processes
and critical infrastructures underlying our modern society.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G.-V. Jourdan et al. (Eds.): FPS 2022, LNCS 13877, pp. 287–302, 2023.
https://doi.org/10.1007/978-3-031-30122-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30122-3_18&domain=pdf
https://doi.org/10.1007/978-3-031-30122-3_18


288 J.-B. Larouche et al.

SCADA stands for Supervisory Control and Data Acquisition. A SCADA sys-
tem is a combination of hardware and software that enables the automation of
industrial processes by capturing Operational Technology (OT) data. Hardware
such as Remote Terminal Units (RTUs) and Programmable Logic Controllers
(PLCs) serve as local collection points for acquiring this OT data. This infor-
mation can be acted upon directly using programmed logic or gathered by a
computer commonly known as a gateway.

Gateways can come in various forms such as edge computers, Human Machine
Interfaces (HMI) or a central server. One advantage of such an architecture
resides in the ability to monitor and control systems from multiple locations.
In the past, it has often been common practice to air gap such control system
networks as they typically didn’t need to interact with other corporate systems
or the Internet. In theory, having this disconnection has been a sufficient secu-
rity measure, however this is often no longer operationally feasible in today’s
connected world.

IBM Managed Security Services (MSS) data reveals there has been a 110%
increase in attacks on industrial control systems since 2016 - a threat land-
scape that is predicted to grow at a phenomenal rate in the upcoming years
[7]. A second report from Raytheon [8] mentions that 80% of companies expect
an increase in cyber risk over the coming years. This is to be expected since
OT systems constitute easy targets. Communication protocols designed with-
out stringent security measures (ModBus, DNP3 [2]), corporate environments
running outdated software and default passwords on embedded accounts and/or
personal devices are all common security vulnerabilities which can cause a lot
of damage on many different fronts (loss of operations and revenue, infrastruc-
ture shutdown, loss of physical well-being, etc.). Additionally, updating and/or
replacing industrial devices can prove to be quite expensive and complicated.
This directly leads to a large quantity of obsolete legacy equipment still in oper-
ation and involved in critical tasks. The present paper exposes a cyber risk linked
to the usage of outdated hardware designed without stringent security measures,
in an industrial power plant. More specifically, the vulnerability resides in the
radios used to establish wireless links between PLCs and supervisory computers.

The popular malware attacks on SCADA systems drove a lot of research in
the field of cybersecurity, but most of it focuses on potential network breaches
or possible software exploits. There is very little research on the potential risks
involved when using legacy RF equipment with an unsecured physical layer.
The only relevant work found on this topic is presented in [4]. Therein, the
reverse-engineering of a widely deployed GE MDS-9710 radio is performed. The
physical layer of the latter frequency-modulates a scrambled, duo-binary coded
signal as a means to transfer information OTA. Using GNU radio, successful
demodulation of the MDS-9710 radio signals was achieved, thanks to their access
to the theory of operation document (filed with the FCC by the manufacturer)
and the digital signal processor (DSP) firmware. In a similar fashion, our work
presents a step-by-step blackbox reverse engineering of the Guardian-400 wireless
modem physical layer, using only an ADALM-PLUTO SDR [9] platform and



SCADA Radio Blackbox Reverse Engineering 289

MATLAB software. No firmware access or technical document was available,
besides the user manual. Still, even with very limited knowledge, our work shows
how an unsecured physical layer can be simple to analyze, using widely accessible
and inexpensive tools.

The CalAmp Guardian-400 commercial radio is conveniently interopera-
ble with multiple discontinued radios such as the CalAmp DL-3400 analog
transceiver, the DL-3282 analog radio, and the T-96SR wireless modem. The
latter has the most interesting mode of operation since it is capable of telemetry
transmission at a rate of 9600 bps and thus, is more relevant in the context of
today’s SCADA systems.

The T-96SR radio was developed many years ago, circa 1999 [5], when wire-
less data transmission was very niche. Thus, little effort was made to protect
the equipment from potential wireless attacks and as a consequence, the radio
consists of a simple and unsecured physical layer. From [1], it is found that the
T-96SR physical layer implements differential raised-cosine minimum shift key-
ing (DRCMSK) modulation. Before modulation, the payload bits are scrambled
using a 7-bits scrambler, then differentially encoded using NRZI (Non-Return-
to-Zero Inverted). No forward error correction (FEC) and packet structure is
defined. Thus, it is assumed that the Guardian-400 radio behaves in the same
manner when in compatibility mode with the T-96SR. This constitutes the start-
ing point of our reverse-engineering process.

2 Previous Results

This paper is based on an in-depth signal analysis of OTA recordings, obtained
by standing at a 1 km radius from a power plant with an ADALM-PLUTO
SDR platform. In order to extract the transmitted bits, an FSK demodulator is
required. The block diagram in Fig. 1 shows the developed FSK demodulator.

Baseband_FSK X

KI

KL +

+ Z-1

Knco + Z-1

f0*Ts

mod 2

()*

cos()

sin()

Real to
Complex

angle()

Phase Detector Loop Filter NCO

Real signal

Complex signal

DPLL_out

Fig. 1. FSK demodulator block diagram.

The demodulated bits are extracted from the DPLL_out signal. This signal
follows the ADALM-PLUTO SDR sampling rate of 528KHz and is affected by



290 J.-B. Larouche et al.

multiple RF impairments. In order to extract the bits, a bit extractor, based
on the digital phase-locked loop (DPLL) presented in Fig. 1, is used. The phase
detector is replaced by an inductive minimum mean-square error (MMSE) tim-
ing error estimator, which samples the DPLL_out input at twice the expected
symbol rate of 9600 bps, then calculates the discrete-time derivative. Figure 2
illustrates this concept.

X

X X

X

X X

X

X X

X

X X

X

+1

0

-1

X

X
X

X

X
X

X

X
X

X

X
X

+1

0

-1

Qk

Qk-1

Qk+1

X

X

X

X

X

X

X

X

Fig. 2. Correct sampling phase vs. late sampling phase at twice the symbol rate.

The timing error estimation is calculated using the following formula:

τk+1 = τk − (Qk − Ak)(Qk+1 − Qk−1)

where Ak = ±1, following the polarity of Qk. A NCO (Numerically Controlled
Oscillator) is used to generate the sampling instants 19200Hz, with its phase
being controlled by the filtered timing error estimate. The complete block dia-
gram, including the MMSE timing error estimator, a loop filter and the NCO is
illustrated in Fig. 3.

DPLL_out

KI

KL +

+ Z-1

Knco

+

f0*Ts

Timing Error
Estimator Loop Filter

NCO

Real signal

Sampling signal

>= 1

mod 1

2X 1X

Qk+1 - Qk-1 

- X

1X

Qk

Ak

Z-1

Demodulated bits

Fig. 3. Symbol extractor block diagram.

The first phase concludes with the fact that by using a signal processing
software such as MATLAB, one can use DPLLs to demodulate a Guardian-
400 signal down to its transmitted bits. These bits however, are assumed to be
encoded and scrambled at the physical layer and thus, no direct extraction of
payload bits can be performed.



SCADA Radio Blackbox Reverse Engineering 291

The present paper goes deeper into the physical layer analysis of the radio,
thanks to its commercial availability. It is shown that one could potentially
recover transmitted payload bits from OTA recordings but more importantly,
could inject its own message at the output of the radio’s serial port. Thus,
any piece of software or hardware connected to the Guardian-400 is exposed to
potential security threats.

2.1 Hardware Description

The two main pieces of hardware and their relevant settings are presented in
Table 1.

Table 1. Hardware configuration

GUARDIAN-400 ADALM-PLUTO SDR

Tx frequency (MHz) 450 425.5
Rx frequency (MHz) 425.5 450
Data rate (bps) 9600 9600
Bandwidth (kHz) 25 25
Sampling rate (kHz) N.A 528

Both devices can be connected to a Windows 10 laptop using USB cables.
The Guardian-400’s software is used to configure and communicate with the
Guardian-400 radio through a USB-to-serial cable and MATLAB is used to con-
figure and communicate with the ADALM-PLUTO SDR.

3 Tests Description

3.1 Loopback Test

As mentioned in Sect. 2, one can demodulate the transmitted bits using DPLLs
but not unravel their encoding, thus leaving one unknown layer to traverse to
get to the payload. In order to investigate these unknowns, the following test
plan was enacted:

1. Configure the Guardian-400 to transmit a known test vector;
2. Perform an OTA recording using the ADALM-PLUTO SDR;
3. Perform FSK demodulation and symbol clock recovery on the recording using

DPLLs;
4. Using the recovered encoded bits, draw conclusions regarding the physical

layer processing blocks.

In order to transmit a known test vector, the Guardian-400 is configured
in transmit mode with a 1-second interval ASCII pattern. The pattern used to
build the packets has the following format (55 ASCII characters):



292 J.-B. Larouche et al.

000ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
001ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz

- - -
998ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
999ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
000ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
001ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz

The second step towards this goal is to perform a recording using the
ADALM-PLUTO SDR. This is easily achieved in MATLAB using the ADALM-
PLUTO SDR FM receiver example from Mathworks as a starting point. The
real portion of a 2-seconds recording is shown in Fig. 4.

From Fig. 4, it can be observed that the Guardian seems to transmit data
continuously once in transmit mode. The ASCII pattern is only 55 characters
in length. Short transmit bursts were expected every second, in an otherwise
unbroken silence. At this point, the actual position of the payload within this
recording is unknown. Nevertheless, the DPLLs developed in the first phase can
be used in order to demodulate the bits. As a reminder, the demodulated bits
are (theorically) differentially coded using NRZI and scrambled using a 7-bits
scrambler. The details about both processes were still unknown at this point in
our investigation.

In order to ensure that our recording included the known test vector, the
recording can be transmitted back to the Guardian-400 for demodulation. To do
so, a 2-FSK modulator was developed. There are multiple ways to implement
such a modulator, but an approach which uses the NCO in Fig. 1 seemed the
most logical.

0 2 4 6 8 10 12

Sample index 105

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

A
m

pl
itu

de

Fig. 4. Recording of the Guardian-400 ASCII pattern transmission.



SCADA Radio Blackbox Reverse Engineering 293

Generating the 2-FSK waveform using the demodulated bits and transmitting
them OTA using the ADALM-PLUTO SDR yielded the following results on the
Guardian-400 software ASCII terminal.

FGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz (1)

A portion of the expected ASCII pattern was correctly received, but it is
important to point out that a total of 19200 bits (2-second recording at 9600bps)
were sent by the ADALM-PLUTO in order to achieve this result, which is much
more than the 47 received ASCII characters in output (1) (which gives 376 bits
assuming an 8-bits ASCII representation). At that point, it is obvious that the
pattern of interest is somewhere in the recorded file. However, it is not clear
where and it is also not clear why there is so much overhead.

3.2 Payload Analysis

Following the loopback test, it is now of interest to dig deeper into the received
payload bits and try to reverse-engineer the modulation process (from ASCII
characters to differentially-coded and scrambled bits). As a first step, the bits
of interest need to be isolated from the overhead bits in order to perform fur-
ther processing. By visual inspection of the demodulated bits in Fig. 5, one can
identify surprisingly long series of 1’s or 0’s at many points in the bit stream.

3.8 4 4.2 4.4 4.6 4.8 5 5.2

Sample index 105

-30

-20

-10

0

10

20

30

40

50

N
C

O
 c

on
tr

ol
 s

ig
na

l a
m

pl
itu

de

Fig. 5. Sequences of same polarity bits from the demodulated bit stream.

It is surprising since the bits are supposed to be scrambled, which should
remove such scenarios. This could indicate the presence of some kind of preamble



294 J.-B. Larouche et al.

or synchronization pattern. Secondly, these series of bits also seem to appear
periodically. In order to check for the periodicity, convolution is performed using
the following coefficients, taken from the demodulated bits:

coeff =
[
1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 1

]

Plotting the result of the convolution operation gives the output shown in
Fig. 6.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Sample index 104

-20

-15

-10

-5

0

5

10

15

20

C
on

vo
lu

tio
n 

ou
tp

ut

Fig. 6. Convolution output using coeff.

From Fig. 6, it can be observed that a good portion of the demodulated bits
seems to be filled with a repetitive pattern. It also shows two other locations
of interest, which are right after the first eight peaks and at the tail portion of
the recording. Using the convolution peaks as delimiters, the 19200 bits can be
divided into multiples blocks of bits which enables us to iteratively test for the
location of our ASCII bits, by simply sending these chunks of bits, one at a time,
to the Guardian-400. Using that process enables us to locate the bits of interest
which are between the eight and ninth convolution peaks, inside a block of 1504
bits. This is definitely a step forward but the block still contains more than the
expected 376 bits.

3.3 NRZI and Scrambler Decoding

At this point, the exact location of the payload bits is unknown. We began the
analysis of the NRZI decoding and scrambling processes, which prevented us
from relating the demodulated bits at the output of the DPLLs to the ASCII



SCADA Radio Blackbox Reverse Engineering 295

characters being sent. Figure 7 illustrates an initial hypothetical block diagram
of the expected ASCII characters encoding/decoding process.

ASCII
characters Scrambling NRZI

Encoding
FSK

Modulator To antenna

From antenna FSK
Demodulator

NRZI
Decoding Descrambler ASCII

characters

Fig. 7. Hypothetical Guardian-400 encoding/decoding process.

It is also important to mention that the block diagram in Fig. 7 acts as
a starting point, extrapolated from the information in [1] and only from that
source. Therefore, at this point, it is possible that additional blocks are present
and/or that some information may be false, such as the length of the scrambler
for example.

Compared to NRZ (Non-Return-to-Zero), NRZI is a differential encoding
technique which distinguishes data bits by the presence or absence of a bit polar-
ity transition at clock edges. Two NRZI scenarios are thus possible: a transition
from one polarity to the opposite polarity could either represents a 1 or a 0.

Regarding the scrambler, a 7-bits scrambler is expected from the data in [1].
However, the architecture of the scrambler and the scrambler polynomial are
unknown and thus, represent the main challenge to overcome. One popular and
well known 7-bits scrambler is the 802.11 (WiFi) scrambler shown in Fig. 8.

Input bits

7 6 5 4 3 2 1 Output bits

Fig. 8. 802.11 7-bits synchronous scrambler.

This is a synchronous scrambler with polynomial 1+x4+x7. One important
point to note is the fact that the input bits are not influencing the states of the
registers in such architecture. As a consequence, for correct descrambling, the
descrambler needs to be put into a specific state, at input bit b, usually using a
preamble detection mechanism which could be possible in our case, since there
are multiple overhead bits. Both the scrambler and the descrambler are identical
in such an architecture.

A second possible architecture, which is simpler implementation-wise but
prone to error propagation, could also be used: a self-synchronous architecture.
The scrambler/descrambler of the latter is shown in Fig. 9.

These are 7-bits self-synchronous scrambler/descrambler of polynomial 1 +
x6 + x7. Compared to the synchronous architecture, the register states are



296 J.-B. Larouche et al.

Input bits 1 2 3 4 5 6 7

Output bits

1 2 3 4 5 6 7 

Output bits

Input bits

Fig. 9. 7-bits self-synchronous scrambler(top) and descrambler(bottom).

affected by the input bits and thus, a detection error at the receiver will tend to
propagate through the descrambler. However, a preamble detection mechanism
is not required, which reduces the required hardware resource and computing
power. This architecture is definitely a possibility since there is hypothetically
no packet structure defined (so no specific preamble section defined). Further-
more, its low resource usage is a good fit to the limited processing capability of
an old T-96SR radio.

That being said, there remains numerous possibilities which need to be inves-
tigated. As a first investigative step, one can try to take the FSK demodulated
bits from the DPLLs and decode them in MATLAB into the expected ASCII
characters, using a brute-force approach, by testing all possible configurations.
The 7-bits synchronous architecture is analysed first.

3.4 Synchronous Architecture

As mentioned above, synchronous scramblers/descramblers require a specific
state reset mechanism for correct descrambling. In other words, at a specific
bit b, the scrambler/descrambler needs to be in a specific state. This means that
there is a total of four variables to test in order to cover all possible scenarios:

1. NRZI transitions either represent a 0 or a 1;
2. The starting bit b of our encoded ASCII sequence which is somewhere in the

1504 bits block;
3. The state of the descrambler at bit b;
4. The descrambler polynomial.

This looks intimidating at first but this can be coded using multiple for loops
rather easily, it simply takes a significant amount of processing time. The output
of the descrambling process is validated using a convolution operation with the
8-bits representation of the following ASCII sequence: JKLM.



SCADA Radio Blackbox Reverse Engineering 297

After multiple iterations of the current approach, the expected convolution
result of 32 never occurred. Descrambler sizes of 6-bits and 8-bits were also tried
but didn’t give the expected results.

3.5 Self-synchronous Architecture

Following the results in the previous section, the code was slightly modified
in order to implement a 7-bits self-synchronous architecture. The same four
variables are tested but again, the approach never gave a convolution result of
32.

4 Single Error Injection Approach

After the unsatisfactory results of the brute force approach, it is clear that some
form of understanding is missing. Another approach to resolution is therefore
proposed: the error injection approach. This approach consists of transmitting
the 1504-bits block, which contains the ASCII characters bits, to the Guardian-
400 but with the insertion of a single bit error beforehand. The goal of such a
test is to study how the received ASCII characters are affected by this error and
try to draw some conclusions about the unknown variables. Through trial and
error, flipping the 554th bit gave the result on the Guardian-400 ASCII terminal
shown below (2).

FGHaKKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz (2)

By careful observation, one can see that the I and J ASCII characters were
affected by the single bit flip, which already gives a good hint regarding the
descrambler architecture. In a synchronous architecture, a single bit error at
the input gives a single bit error at the output, but it is not the case in a self-
synchronous architecture. The error will affect the state of the descrambler and
thus, multiple bits at the descrambler output. A closer look at the IJ ASCII
characters and their error-injected version is presented in Table 2.

Table 2. I and J with error injection

I J
01001001 01001010
a K
10101010 01001011

From Table 2, it is clear that multiple bits were affected by our single error
injection. It is also clear that the 554th bit corresponds to the I character LSB
(rightmost bit). The same single error injection test was repeated by flipping



298 J.-B. Larouche et al.

the 555th, 556th, 557th, 558th, 559th bits. By checking the 8-bits representa-
tion of the decoded ASCII characters, two interesting observations are obtained.
First, the ASCII characters are definitely 8 bits long and second, the bits of
each ASCII character are sent OTA to the Guardian-400, LSB first. This is an
important point, since, in the brute-force approach, it was assumed that the
JKLM sequence used for the convolution operation was simply the direct 8-bits
representation of each character taken from the 8-bits ASCII table. So, instead of
testing for the bit sequence in Table 3, one should have checked for the sequence
in Table 4.

Table 3. MSB first “IJKL” bit sequence

I J K L

01001001 01001010 01001011 01001100

Table 4. LSB first “IJKL” bit sequence

I J K L

10010010 01010010 11010010 00110010

4.1 Multiple Bits Injection Approach

At this point, a self-synchronous scrambler is supposed, and another test comes
to mind, which exploits the fact that the input bits of the descrambler can
affect the register’s state. The second test consists of inserting a long string of
NRZI modulated ones or zeros. The following NRZI sequence is inserted in the
1504-bits block, at bit position 554:

1111 1111 1111 1111

The Guardian-400 ASCII terminal gives the result below (3).

FGHNÿøoLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz (3)

New characters appear on the screen, more importantly the ÿ character
at the expected location. The 8-bits ASCII representation of the ÿ character
is 11111111, which tells us about the NRZI encoding. The ability to fill the
descrambler registers with 1’s by using an NRZI sequence which contains no
polarity transition, means that a binary 1 is encoded by the absence of a transi-
tion and thus, a 0 is encoded by the presence of a polarity transition. It is now
known how to communicate a 1 and a 0 to the Guardian-400 and control the
state of the descrambler.



SCADA Radio Blackbox Reverse Engineering 299

4.2 Descrambler Impulse Response

Following the results from the previous test, it is now time to test for the impulse
response of the descrambler by first, feeding the descrambler with a series of 1’s to
put the descrambler in a known state and secondly, injecting a single 0, followed
again by multiple 1’s. The used NRZI coded sequence is as follows:

1111 1111 1111 1111 -1-1-1-1 -1-1-1-1 -1-1-1-1 -1-1-1-1

Transmission OTA to the Guardian-400 gives the output below (4) on the
ASCII terminal.

FGHNÿˆÿYJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz (4)

The characters of interest are ÿˆÿ which is illuminating with regards to the
number of registers of the descrambler and its polynomial. It is clear from the
ASCII characters that the descrambler is in an all-ones state, then a zero is
fed, which goes through all the registers, creating a sequence of multiple states
before going back to the all-ones state. The 8-bits representation of the ASCII
characters (left to right = MSB to LSB) is shown in Table 5.

Table 5. ÿ and ˆ 8-bits representation

ÿ ˆ ÿ

11111111 01011110 11111111

Simply by looking at the ˆ character from LSB to MSB, some hypothesis
can be made regarding the descrambler. First and foremost, it is indeed a 7-
bits descrambler and secondly, the polynomial is 1 + x5 + x7, which is not an
optimal choice since it is not a primitive one. One can validate these assumptions
by performing the descrambling process, by hand. The proposed descrambler
architecture from the all-ones initial state is shown in Fig. 10.

Input bits 1 1 1 1 1 1 1

Output bits

Fig. 10. Proposed self-synchronous descrambler architecture.

From Table 6, it is clear that the register length and the polynomial seem to
be correct.



300 J.-B. Larouche et al.

Table 6. Proposed descrambler impulse response

Inputs bits Register states Descrambled bits

0 1111111 0

1 0111111 1

1 1011111 1

1 1101111 1

1 1110111 1

1 1111011 0

1 1111101 1

1 1111110 0

4.3 Hello World! Test

With all this new information in hand regarding the encoding and decoding
process, one could be tempted to send his own message to the Guardian-400,
using the ADALM-PLUTO SDR. To perform this test, a modulator now needs
to be developed. The modulator needs to perform the following tasks:

1. Convert the ÿÿHello World! ASCII message to 8-bits representation (ÿ is used
to put the descrambler in a known state);

2. Perform a bit flip from left to right for each ASCII character, in order to feed
the bits LSB first;

3. Scramble the bit sequence using a self-synchronous scrambler of polynomial
1 + x5 + x7, with initial state 1111111;

4. Encode the scrambled bits differentially using NRZI, where 1 = No transition
and 0 = Transition.

The test is successful if the Hello World! message is correctly decoded by the
Guardian-400 ASCII terminal. Using MATLAB, the Hello World! message is
encoded and sent to the FSK modulator, for transmission to the Guardian-400.
The output of the ASCII terminal, by inserting our encoded bits at position 554
in the 1504 bits chunk, is shown below (5).

FGH/ÿHello World!]JKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz (5)

The test is conclusive and validates our assumptions regarding the encoding
and decoding process of the Guardian-400.

4.4 Updated Brute-Force Approach

Having successfully transmitted the Hello World! message, it could now be
interesting to go back to the brute-force approach and validate if the approach
was legitimate after all. Performing the brute-force approach, with the correct



SCADA Radio Blackbox Reverse Engineering 301

descrambler polynomial and architecture, with the proposed LSB first JKLM
convolution sequence still did not yield the expected result of 32.

However, performing the same approach with another sequence, GHIJ, did
give the expected convolution result of 32. The brute-force approach also gave
some interesting information regarding the location of the sequence and the state
of the descrambler. It actually gave multiple locations, which comes from the fact
that the polynomial is not primitive.

From these results, the longer sequence GHIJK was tried but did not give
the expected convolution results. Inspection of the descrambled data shows the
presence of the following ASCII character, which follows the GHIJ sequence: ∼
or 0x7E. This character appears periodically in the descrambled sequence (for
each 3 or 4 ASCII characters) and also appears to be added to the sequence,
since now, if the test sequence becomes GHIJ∼K, the convolution results gives
the expected result.

Bottom line, going back to the brute-force approach gave an additional piece
of information, the presence of a ∼ character, probably used for synchronisation
purposes since it never appeared on the ASCII terminal in our tests. This is
validated easily by performing the Hello World! test with the following message:

∼∼∼∼∼∼H∼el∼lo∼ Wo∼r∼ld∼∼∼∼∼∼!

Multiple tests were performed with multiple different numbers of sync char-
acters and insertion locations and the result on the ASCII terminal is still simply
Hello World!.

4.5 Preamble Detection

From the results of the previous tests, it is now easy to find and remove the
excess bits from the 1504 bits chunk, simply through trial and error. But simply
sending our NRZI encoded and scrambled Hello World! message without any
of the previous bits of the 1504 bits does not work. There is definitely some
kind of preamble which is used to trigger the radio’s decoding process. Through
trial and error, it is found within a few minutes that bits 334 to 513 seem to
include that preamble. Creating an NRZI message with these bits, followed by the
scrambled and encoded ∼∼∼∼∼∼H∼el∼lo∼ Wo∼r∼ld∼∼∼∼∼∼! message,
gives the output on the ASCII terminal, shown below (6).

Hello World! (6)

This additional piece of information is definitely useful. This preamble can
now be used to trigger the radio demodulation mechanism but this preamble
could also be used in order to intercept actual OTA signals from Guardian-
400/T-96SR radios and potentially extract sensitive information, since the pay-
load bits follow the preamble.



302 J.-B. Larouche et al.

5 Conclusion

In this report, a thorough analysis of the Guardian-400 physical layer is achieved.
As presented in Fig. 7, a 7-bits scrambler and an NRZI encoder are the only pro-
cessing blocks which manipulate the payload bits before FSK modulation. Addi-
tionally, the existence of a synchronisation character and a preamble is observed.
In order to perform these tests, one simply needs a Guardian-400, an off-the-shelf
SDR platform and a laptop. The absence of any packet structure, authentication
process and forward error correction mechanism makes the Guardian-400 physi-
cal layer unsecure and easy to investigate. This work illustrates the necessity to
add additional security layers to any equipment connected to a Guardian-400.
This recommendation can confidently be extended to any SCADA system which
includes radios which are interoperable with the latter, such as the T-96SR,
the DL-3400 and the DL-3282. Finally, using the acquired knowledge from the
present work, one can look back at Appendix A in [1] and identify other radios
which could be potentially reverse-engineered, which is worrisome. Most of them
are using FSK modulation but integrate additional signal processing techniques,
such as Hamming Code FEC and Cyclic Redundancy Checks (CRCs). The capa-
bility to reverse-engineer such radios would be very interesting to investigate in
the future. Our work demonstrates that the underlying assumption when those
SCADA radios were designed—that usage of an obscure and secret modulation
format was secure enough—no longer holds given the widespread availability of
low-cost SDR hardware and associated knowledge.

References

1. Roark, R.C., Van Wie, D.G.: Feasibility Study of a New Air Interface and Physical
Layer Packet Definition for the ALERT User Community (2003)

2. Boyes, W.: Instrumentation Reference Book, 4th edn, p. 27. Butterworth-
Heinemann (2011). ISBN 978-0-7506-8308-1

3. Siggins, M.: 14 Major SCADA Attacks and What You Can Learn From Them. DPS
Telecom. Accessed 26 Apr 2021

4. Reverse-Engineering Wireless SCADA Systems. https://shmoo.gitbook.io/2016-
shmoocon-proceedings/build_it/10_reverse-engineering-wireless-scada-systems.
Accessed 14 Dec 2020

5. FCC Id NP42424016-001 - CalAmp Wireless Networks Corporation T-96SR Teleme-
try Transceiver/Modem. https://fccid.io/NP42424016-001. Accessed 16 July 2022

6. Blossom, E.: GNU radio: tools for exploring the radio frequency spectrum. Linux J.
(2004)

7. Attacks targeting industrial control systems is up 110 percent. https://
securityintelligence.com/attacks-targeting-industrial-control-systems-ics-up-
110-percent/. Accessed 29 Aug 2022

8. Global Cyber Megatrends. https://www.raytheon.com/sites/default/files/2018-02/
2018_Global_Cyber_Megatrends.pdf. Accessed 29 Aug 2022

9. ADALM-PLUTO Software-Defined Radio Active Learning Module. https://
www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-
boards-kits/adalm-pluto.html. Accessed 23 Nov 2022

https://shmoo.gitbook.io/2016-shmoocon-proceedings/build_it/10_reverse-engineering-wireless-scada-systems
https://shmoo.gitbook.io/2016-shmoocon-proceedings/build_it/10_reverse-engineering-wireless-scada-systems
https://fccid.io/NP42424016-001
https://securityintelligence.com/attacks-targeting-industrial-control-systems-ics-up-110-percent/
https://securityintelligence.com/attacks-targeting-industrial-control-systems-ics-up-110-percent/
https://securityintelligence.com/attacks-targeting-industrial-control-systems-ics-up-110-percent/
https://www.raytheon.com/sites/default/files/2018-02/2018_Global_Cyber_Megatrends.pdf
https://www.raytheon.com/sites/default/files/2018-02/2018_Global_Cyber_Megatrends.pdf
https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/adalm-pluto.html
https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/adalm-pluto.html
https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/adalm-pluto.html

	SCADA Radio Blackbox Reverse Engineering
	1 Introduction
	2 Previous Results
	2.1 Hardware Description

	3 Tests Description
	3.1 Loopback Test
	3.2 Payload Analysis
	3.3 NRZI and Scrambler Decoding
	3.4 Synchronous Architecture
	3.5 Self-synchronous Architecture

	4 Single Error Injection Approach
	4.1 Multiple Bits Injection Approach
	4.2 Descrambler Impulse Response
	4.3 Hello World! Test
	4.4 Updated Brute-Force Approach
	4.5 Preamble Detection

	5 Conclusion
	References




