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Abstract. This paper presents a novel Machine Learning (ML)-based
DeepFake detection technology named CHIEFS (Corneal-Specular High-
lights Imaging for Enhancing Fake-Face Spotter). We focus on the most
reflective area of a human face, the eyes, upon the hypothesis that
the existing DeepFake creation methods fail to coordinate their coun-
terfeits with the reflective components. In addition to the traditional
checking of the reflection shape similarity (RSS), we detect various
corneal-specular highlights features, such as color components and tex-
tures, to find corneal-specular highlights consistency (CHC). Further-
more, we inspect the ensemble of the highlights with the surrounding
environmental factors (SEF), including the light settings, directions, and
strength. We designed and built them as modular features and have con-
ducted extensive experiments with different combinations of the compo-
nents using various input parameters and Deep Neural Network (DNN)
architectures on Generative Adversarial Network (GAN)-based Deep-
Fake datasets. The empirical results show that CHIEFS with three mod-
ules improves the accuracy from 86.05% (with the RSS alone) to 99.00%
with the ResNet-50-V2 architecture.

Keywords: DeepFake · DeepFake Detection · Media Manipulation ·
Digital Media Forensics · Corneal-Specular Highlights

1 Introduction

The AI-fueled production and manipulation techniques of fictitious human facial
images, DeepFake, have accomplished notable advancement. Due to the sophis-
ticated DeepFake generation technologies [15,16,26], it is getting harder to dis-
tinguish the forged images by eye. Despite many benign applications such as
fun memes, visual effects, and realistic avatars, the generated fake media can be
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malignantly used by spreading misinformation on social media, creating decep-
tion for identity theft, and causing manipulation on election security. Hence,
DeepFake has become a pandemic risk to authenticity, privacy, and security for
our society. DeepFake detection technologies have become essential vaccines to
mitigate the possible malignant risks.

There has been a large number of research works to detect DeepFakes. For
example, [33] proposed an attention-based DeepFake detection distiller by apply-
ing frequency domain learning and optimal transport theory in knowledge dis-
tillation to improve the detection of low-quality DeepFake images. Le et al. [17]
explored the asynchronous frequency spectra of color channels to train unsu-
pervised and supervised learning models to identify GAN-based synthetic facial
images. [31] extracted deep features from facial images using a Convolutional
Neural Network (CNN). Another technique [19] checked eye blinking motions,
which tended to be missing in DeepFake videos using the Long-Term Recur-
rent Convolutional Network (LRCN). Sun et al. [30] also detected DeepFake
using facial geometric characteristics. However, previous methods lacked detec-
tion generalization on unseen data because they were trained on datasets con-
taining few low-quality video frames generated with a single model and fewer
subjects. In addition, eye-based DeepFake detection techniques in [7,9,19], and
[22] only focused on a single artifact of eyes, either iris color, blinks, or similar-
ity of corneal reflections on both eyes. Hence, they failed to detect sophisticated
DeepFake media.

This paper presents a novel ML-based DeepFake detection technology named
CHIEFS (Corneal-Specular Highlights Imaging for Enhancing Fake-Face
Spotter). As shown in Fig. 1, we focus on the most reflective area of a human
face, eyes, upon the hypothesis that DeepFake technologies, such as replacement
and synthesis, are hard to coordinate their counterfeits with the reflective compo-
nents. We seek similarity and consistency of corneal-specular highlights (CSH)
with multiple surrounding semantics, such as illumination and environmental
conditions that are hard to forge. Thus, instead of checking a single aspect
of the eyes, we extract multiple features, including CSH s’ color components,
shapes, and textures. In addition, we extract facial images surrounding envi-
ronmental factors (SEF) to check the ensemble of the reflectance with the SEF
such as indoor/outdoor, bright/dark, backgrounds, and light strength. CHIEFS
embeds the SEF into the feature extraction and classification process to detect
the symmetricity and consistency in both eyes’ color components and reflection
patterns.

As illustrated in Fig. 2, CHIEFS consists of a couple of ML components,
including Training Data Collection and Annotation (TDCA), Highlights and
Environmental Factors Detection (HEFD), and Feature Extraction, Embedding,
and Classification (FEEC). The TDCA involves creating and annotating a new
dataset named CHIEFS DeepFake Detection (CHIEFS-DFD). The CHIEFS-
DFD dataset includes real and GAN-generated DeepFake facial images anno-
tated with various CSH and environmental information. The HEFD detects right
and left CSH, as well as identifies the SEF features. The FEEC extracts features
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Fig. 1. Samples of Real and DeepFake Facial Images with their Reflective Elements.
(a) and (b) are both Real, (c) is a DeepFake Face Generated Using the Face Swapper
Online Tool [11], and Facial Images in (d) are GAN-based Synthetic Faces From [2,15].

from the CSH images, measures the right and left corneal highlights consistency
(CHC), embeds additional SEF features, and classifies the input facial images as
fake or real. We use Siamese Convolutional Neural Networks (SCNN) with vari-
ous configurable neural network backbones, including ResNet-50-V2 [8], VGG-16
[29], Xception [3], and DenseNet-201 [10], for the feature extraction. We have
conducted experiments with various GAN-generated DeepFake datasets to vali-
date the accuracy of CHIEFS. The results show that CHIEFS achieves 99.00%
accuracy in detecting highly realistic DeepFake facial images. Further, the mod-
ular design of CHIEFS renders itself as a complementary DeepFake detection
module for any existing tools to limit the potential harm from DeepFake.
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The main contributions of this work include:

– A new facial images dataset is collected and annotated for corneal reflection
segmentation and DeepFake detection applications.

– A ML method is proposed to build an ensemble with various facial reflection
features instead of a single feature.

– We study the impact of environmental factors on reflectance by collecting
various parameters such as color and illumination conditions.

– We made modular designs for feature extraction and embedding to make it
portable to other existing tools as a complementary solution module.

The remainder of this paper is organized as follows. Section 2 describes the
existing DeepFake detection methods. Section 3 explains the design of CHIEFS.
Section 4 discusses the experiment setups and results. Section 5 concludes the
paper.

2 Related Work

This section discusses the current GAN-generated DeepFake detection methods
and their limitations. Recently, several works have been proposed for DeepFake
images detection. For instance, [21] presented a shallow learning method that
fused spatial and spectrum features from an image to capture the up-sampling
artifacts of DeepFake faces. [21] achieved 87% average accuracy on the Face-
Forensics++ dataset and AUC rates of 76.88% and 66.16% on the Celeb-DF
and DFDC datasets, respectively. Mo et al. [23] proposed a CNN-based Deep-
Fake images detection method that transformed the input image into residuals
and fed the resulting residuals into three-layer groups where each group was
composed of a convolutional layer with rectified linear activation function and a
max-pooling layer. Next, the last group’s output feature maps were aggregated
and fed into two fully connected layers. Finally, the softmax layer was used to
produce the output probability. The proposed method achieved 99.4% accuracy
in detecting real facial images from CELEBA- HQ dataset [12], and DeepFake
images from the fake face images database generated by [12]. Nguyen et al. [24]
also developed a multi-task DeepFake images detection approach which per-
formed classification and segmentation using an autoencoder model containing
an encoder and a Y-shaped decoder. The activation of the encoded features was
used for classification. The output of one branch of the decoder was used for
segmentation, and the output of the second branch was used to reconstruct the
input data. Their model achieved 92.60% average accuracy on the FaceForensics
dataset and 68% average accuracy on the FaceForensics++ dataset.

Furthermore, several methods have exploited the eyes’ visual features for
DeepFake image detection. For example, [22] identified GAN-synthesised faces
through the eyes’ inconsistent iris colors or missing corneal specular reflections.
However, such artifacts have been improved in the recent DeepFake generation
models. Similarly, Hu et al. [9] also proposed a GAN-synthesized faces detection
method that used the inconsistency of the corneal specular highlights between
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the two synthesized eyes, assuming that two eyes looking at the same scene,
their corneal specular highlights should show high similarities. This method can
distinguish between the real and GAN-synthesized faces when light sources are
visible to both eyes, and the eyes are distant from the light source. However, when
these two conditions are defied, [9] will raise many false positives. [7] presented
a DeepFake detection method based on irregular pupil shapes. This method can
be effective on a specific dataset, but it will result in wrong predictions when
the pupil shapes are non-elliptical in the real faces or there are occlusions on the
pupil.

CHIEFS is designed to efficiently detect sophisticated DeepFakes using sim-
ilarity and consistency of corneal-specular reflections with multiple surrounding
semantics, such as illumination and environmental conditions, that are hard
to counterfeit. It also coordinates various features (e.g., colors, edge, textures,
etc.) of CSH images. It embeds surrounding environmental factors, such as
indoor/outdoor, bright/dark, and light strength, and checks the ensemble with
the reflectance.

3 CHIEFS Architecture

CHIEFS is an ML-based DeepFake detection technology that analyzes facial
images’ corneal-specular highlights consistency (CHC) and checks the ensem-
ble of the highlights with multiple surrounding environmental factors (SEF).
CHIEFS is designed in a hierarchical structure, and its components are sepa-
rated into three modules. Training Data Collection and Annotation (TDCA),
Highlights and Environmental Factors Detection (HEFD), and Feature Extrac-
tion, Embedding, and Classification (FEEC) modules in Fig. 2. The modular
structure of CHIEFS allows agile updates of every module, like adding new
features and enhancements according to specific use cases, as well as making
CHIEFS available as a complementary DeepFake detection module for other
existing tools.

3.1 Training Data Collection and Annotation (TDCA)

Current DeepFake detection datasets, such as UADFV [34], FaceForensics++
[27], Celeb-DF [20], and DFDC [5] do not contain the CSH annotation or facial
image environmental factors information. Therefore, the main responsibility of
the TDCA module in Fig. 2(a) is to create CHIEFS-DFD dataset [1] by
collecting and annotating real and GAN-generated DeepFake facial images. We
manually label the right and left CSH and provide the facial image-specific
SEF information using the VGG Image Annotator (VIA) software [6]. The
CHIEFS-DFD dataset contains 1,285 facial images in high resolution. 716 real
facial images were collected from different datasets, including Flickr Faces HQ
(FFHQ) dataset [14], Celeb-DF dataset, FaceForensics++ dataset, and DFDC
dataset. Additionally, 569 GAN-generated DeepFake facial images were acquired
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Fig. 2. The CHIEFS Architecture Block-diagram.

from various DeepFake detection datasets and human visual DeepFake genera-
tion tools, such as StyleGAN2 [15], StyleGAN3 [13], FSGAN [25], DeepFaceLab
[26], and FaceShifter [18].

As illustrated in Fig. 3 (a), the CHIEFS-DFD dataset contains DeepFake and
real facial images in high resolutions with different environmental parameters,
including illumination conditions, background colors, indoor or outdoor settings,
face pose orientations, age, ethnicity, and appearances (e.g., wearing makeup
and accessories). As demonstrated in Fig. 3 (b) and Fig. 3 (c), the CHIEFS-
DFD-dataset contains two types of annotations. The CSH region annotation
in Fig. 3 (b) defines the shapes and locations of CSH and classifies them into
right-reflection and left-reflection classes. The Image Annotation in Fig. 3 (c)
identifies the image label (either Real or DeepFake), along with SEF, including
indoor or outdoor (IO), light level (LL), and light strength (LS). The CHIEFS-
DFD dataset contains the 2,570 annotated CSH segmentation masks for 1,285
facial images (two eyes per facial image). In addition, 959 images (74.63%) are
labeled as indoor, and 362 images (28.17%) are labeled as outdoor. Furthermore,
collecting and analyzing the distribution of CHIEFS-DFD dataset facial images’
LS values (explained in Subsect. 3.2) results in different LL classes (806 mid
images (62.72%), 258 low images (20.07%), and 221 high images (17.19%)).
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Fig. 3. Environmental Parameter Samples and Annotations in CHIEFS-DFD Dataset.

3.2 Highlights and Environmental Factors Detection (HEFD)

The HEFD module in Fig. 2(b) performs two major tasks, including SEF
feature extraction and CSH detection. The SEF parameters include IO, LS, and
LL. We train a MobileNet-V2 model on the Dense Indoor and Outdoor Depth
(DIODE) dataset [32] and labeled facial images from the CHIEFS-DFD dataset
(total 20,420 images) to classify the IO of an input image. To calculate the LS,
we convert the input image’s color space into a LAB format. The L channel
is independent of color information in the LAB color space and only encodes
intensity. The other two channels A and B encode color. Then, we extract the
L channel and normalize it by dividing all pixel values by the maximum pixel
value to have an LS value of the input image. Using the LS value, we identify
an LL into the low, mid, and high classes (e.g., according to the LS distribution,
the LL is a low if LS is less than 0.419, high if LS is greater than 0.637, and a
mid if it is in between). To detect the right and left reflections, we train the CSH
detection model using the MobileNetV2-SSDLite [28] to detect the bounding
boxes of right and left CSH regions and class labels.

3.3 Feature Extraction, Embedding, and Classification (FEEC)

Using the right and left CSH images and the SEF extracted from the HEFD
module Sect. (3.2), the FEEC module in Fig. 2(c) performs four primary
functions, including deep hierarchical feature extraction using Siamese Convo-
lutional Neural Network (SCNN) model with configurable neural network back-
bones, reflection shape similarity (RSS) measure, similarity measures (RSS ),
environmental factors (SEF ), and CSH features embedding, and classification.
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Feature Extraction: As shown in Fig. 2 (c), two SCNN models with the same
weights and network architecture receive the right and left CSH images in par-
allel. Various configurable neural network backbones can be used for feature
extraction, including VGG-16, Xception, ResNet-50-V2, and DenseNet-201. The
two SCNN models use feedforwards to extract features using a global max-
pooling layer by removing the fully-connected layer at the top of every network
(includetop = False). We do not need activation and classes because we only
use the backbone models for feature extraction. Then, we use the right and left
CSH features to measure RSS using euclidean and cosine distance scores.

Reflection Shape Similarity (RSS) Measure: CSH can be detected in
various shapes, which can be deformed in different colors according to illumi-
nation conditions and blended into the background. Furthermore, CSH can be
occluded by glasses, eyelids, or eyelashes, and only a tiny portion of the reflec-
tion can be visible. Hence, the similarity measures of a single factor, such as the
shape or color of the CSH alone, cannot be a strong indicator for classifying
DeepFake or real images. We measure the similarity scores using the extracted
feature vectors, which contain multiple features, including color, edge, and the
texture of the CSH images. We measure both Euclidean distance scores (EDS)
and cosine distance scores (CDS) to statistically compare the similarity between
two extracted feature vectors and find the geometric differences between right
and left CSH images. The EDS is defined as:

d (A,B) =

√
√
√
√

n∑

i=1

(Ai −Bi)
2 (1)

where n is the number of elements of the feature vectors, A and B are the corre-
sponding CSH image vectors. d is a numerical value representing the Euclidean
distance between A and B. The more similar CSH images, the EDS converges
to 0. We also compute CDS, which is defined as:

cos(A,B) =
∑n

i=1 AiBi
√∑n

i=1 (Ai)2
√∑n

i=1 (Bi)2
(2)

If A and B are identical, the cos(A,B) = 1. Otherwise, if they are completely
different cos(A,B) = −1. Thus, numbers between 0 and 1 indicate a similarity
score, and numbers between −1 and 0 indicate a dissimilarity score. We applied
the ReLU activation function to the EDS and CDS to avoid vanishing gradient
problems while training our classifiers. The output [CDS, EDS] represents the
semantic similarity between the projected representations of the two input CSH
images.

Embedding Similarity Measures and Environmental Factors: In addi-
tion to the reflection shape similarity (RSS) measure, we have designed similarity
measures and environmental factors embedding function, which takes similarity
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measures [CDS, EDS], SEF features, and extracted (right and left) CSH fea-
tures. Taking [IO, LL, LS] values from the input and annotated SEF values
from the TDCA during training or from HEFD during testing, the similarity
measures and environmental factors embedding function creates adjusted SEF
values such as [IO’, LL’, LS’]. Merging them with the similarity measures [CDS’,
EDS’] creates a row of mixed values [CDS’, EDS’, IO’, LL’, LS’] as an output.
Finally, it takes vectors of (right and left) CSH images features and combines
them in a vector for classification.

Classification: As illustrated in Fig. 2, the classification module classifies the
input image, either real or DeepFake, by taking features from the embedding
facility. We defined the classification network with a sequence of five blocks.
The first block consists of a single BatchNormalization layer that normalizes its
inputs ([CDS’, EDS’, IO’, LL’, LS’]) by applying a transformation that maintains
the mean output close to 0 and the output standard deviation close to 1. The
following three blocks are similar. Every block consists of a sequence of a fully
connected (fc) layer with 128 nodes, a single BatchNormalization layer followed
by a ReLU activation function. The BatchNormalization layer centers the learned
features from the fully connected layer on 0, while the ReLU activation uses 0 as
a pivot to keep or drop the activated channels [4]. The fifth block consists of a
concatenate layer and a fully connected layer. The concatenate layer merges the
fourth block’s output tensor with the CSH features vector. The fully connected
layer (predication layer) returns a probability distribution with two nodes and
a softmax activation function for binary classification. A binary cross-entropy
probabilistic loss function was used to compute the cross-entropy loss between
actual and predicted labels and to measure the model’s accuracy during training
and testing. Eventually, it creates a binary classification result (either real or
DeepFake).

4 Evaluations

We conducted extensive experiments using CHIEFS-DFD datasets to evaluate
the performance under real-world scenarios and compare the accuracy with cur-
rent state-of-the-art (SOTA) DeepFake detection methods. We demonstrate one
of the environmental parameter classification results (indoor or outdoor (IO))
and evaluate CSH regions detection. Finally, we present the classification per-
formances with the CHIEFS-DFD datasets using different feature extraction
backbone models and various similarity measures and environmental factors.
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4.1 Evaluation of Indoor/Outdoor Classification

The primary purpose of this experiment is to assess the CHIEFS accuracy in
classifying input facial images to either indoor or outdoor environments. We
combined the CHIEFS and DIODE datasets with training the indoor/outdoor
classifier. Among the 20,420 images, we labeled indoor (50%) and outdoor (50%)
images equally and divided 16,336 images (80%) for the training set and 4,084
images (20%) for validation and testing sets. We used MobileNetV2 inverted
residuals and linear bottlenecks neural network with binary cross-entropy loss
function, dense layer of two nodes, and softmax activation at the top of the
network to train the indoor/outdoor classifier. All images were pre-processed
and scaled between −1 and 1. We used the Glorot normal initializer from the
Keras library for the default weight initialization. We trained the model on the
GPU environment for 18 h using the Google Colab Compute Engine (GCE)
VM backend with (NVIDIA Tesla-P100-PCIE-16 GB) model for 512 iterations
with an RMSprop optimizer, batch size of 32, and learning rate of 0.001. The
early stopping criterion was used with patience set to 32 to stop training when
a monitored metric (validation loss) stopped improving. The indoor/outdoor
classifier achieves a 94.00% success rate in predicting indoor and outdoor images.
The result indicates that CHIEFS can efficiently classify input facial images into
indoor or outdoor categories.

4.2 Evaluation of CSH Regions Detection

We evaluated the CHIEFS accuracy in detecting CSH regions from the facial
images. We split the CHIEFS dataset (1,285 facial images containing 2,570 anno-
tated CSH segmentation masks) into 1,028 images (80%) for the training set and
257 images (20%) for validation and testing sets. We used the MobileNet-V2 fea-
ture extractor model and the Single Shot Detector (SSD) to detect and return
the bounding boxes of right and left CSH regions and class labels. We trained the
CSH detection model on the GPU environment for 6 h using the Google Colab
Compute Engine (GCE) VM backend with (NVIDIA Tesla-P100-PCIE-16GB)
model for 1,028 iterations. We use the standard RMSprop optimizer by config-
uring decay and momentum to 0.9, the standard weight decay to 0.00004, an
initial learning rate of 0.045, a learning rate of 0.98 per epoch, and a batch size
of 32. The result demonstrates that the overall mean average precision (mAP)
of detecting right and left CSH regions is 90.53%, the right-reflection average
precision (AP) is (90.81%), and the left-reflection AP is (90.26%), both are high
enough for the CSH detection task.
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Fig. 4. Sample of the CHIEFS-DFD Testing Dataset Classification Result.

Table 1. Classification Performance Comparison on CHIEFS-DFD Dataset with Dif-
ferent Backbone Models for Feature Extraction.

Backbone Accuracy Loss

CHIEFS (DenseNet-201) 96.00% 0.592

CHIEFS (Xception) 98.00% 0.242

CHIEFS (VGG-16) 98.75% 0.203

CHIEFS (ResNet-50-V2) 99.00% 0.160
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4.3 Classification Using Different Backbone Models for Feature
Extraction

We evaluated the CHIEFS method with four different neural network back-
bones for feature extraction, including ResNet-50-V2, VGG-16, Xception, and
DenseNet-201, using the CHIEFS-DFD dataset. After splitting the dataset with
an 80:20 (training vs. validation) ratio. We trained the models on the GPU
environment using the Google Colab Compute Engine (GCE) VM backend with
(NVIDIA Tesla-P100-PCIE-16GB) model for 1,024 iterations with RMSprop
optimizer, batch size of 8, and a learning rate of 1e−5. The early stopping crite-
rion was used with patience set to 64 epochs to stop training when a monitored
metric (validation loss) stopped improving. The results in Table 1 show the classi-
fication accuracy and loss of the CHIEFS method with different backbone models
for feature extraction on the CHIEFS-DFD testing datasets. Overall, CHIEFS
performs well with different feature extractors. For example, CHIEFS (ResNet-
50-V2) is the best in both accuracy (99.00%) and loss (0.160). CHIEFS (VGG-
16) is the second-best in both accuracy (98.75%) and loss (0.203). CHIEFS
(Xception) is the third-best with accuracy (98.00%) and loss (0.242). Finally,
CHIEFS (DenseNet-201)’s accuracy is the least (96.00%), and its loss is the
highest (0.592). Figure 4 presents samples of the CHIEFS-DFD testing dataset
classification results. CHIEFS detects DeepFake images with various face pose
orientations, age, ethnicity, and appearances, such as makeup and accessories.
Results indicate that CHIEFS performs well on realistic human visual DeepFake
images.

4.4 Classification Using Different Feature Classifiers

Using the CHIEFS-DFD dataset, we assess different feature classifiers for
CHIEFS (ResNet-50-V2). Table 2 shows that using all features, including right
and left CSH, RSS ([CDS’, EDS’]), and SEF ([IO’, LL’, LS’]) for classification
achieves the best performance for CHIEFS (ResNet-50-V2) (99.00%) in accuracy.
However, using a single RSS feature alone, such as [CDS’] or [EDS’], results in
low accuracy (around 89.92%) with [CDS’] and (86.05%) with [EDS’]. It also
demonstrates that using right and left CSH features achieves high accuracy
(93.00%) compared with other single components such as [CDS’] and [EDS’].
When SEF features are used with the CSH features, the accuracy improves
to (97.00%). Similarly, when SEF features are used with [CDS’] and [EDS’],
the accuracy also improves to (94.00%) and (96.00%), respectively. The results
indicate that using a single feature alone is not a good idea, and combining var-
ious features can improve performance greatly. In addition, the SEF features
significantly impact accuracy improvement.
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Table 2. Classification Performance Comparison with CHIEFS-DFD Dataset Using
Different Feature Classifiers (i.e., CSH, CDS’, EDS’, IO’, LL’, LS’) for CHIEFS
(ResNet-50-V2).

Feature Classifiers Accuracy

[CDS’] 89.92%

[CDS’, IO’, LL’, LS’] 94.00%

[EDS’] 86.05%

[EDS’, IO’, LL’, LS’] 96.00%

[CDS’, EDS’] 91.47%

[CSH] 93.00%

[CSH, IO’, LL’, LS’] 97.00%

[CSH, CDS’, EDS’, IO’, LL’, LS’] 99.00%

5 Conclusions

We proposed a novel ML-based DeepFake detection technology named CHIEFS
(Corneal-Specular Highlights Imaging for Enhancing Fake-Face Spotter). We
focus on the most reflective area of a human face, eyes, using CSH images. We
verified the hypothesis that DeepFake technologies struggle to fake reflective
components in their counterfeits by using various classifiers with environmental
factors embedding. We designed and implemented feature extractors, classifiers,
and embedding functions using advanced DNN architectures and tested them
with different GAN-generated DeepFake datasets. The experimental results show
that CHIEFS achieved high accuracy 99.00% in detecting sophisticated GAN-
generated DeepFake images. Note that the modular design of CHIEFS renders
itself as a complementary DeepFake detection module for any existing tools.
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