
Security Analysis of Improved EDHOC
Protocol

Baptiste Cottier(B) and David Pointcheval

DIENS, École normale supérieure, CNRS, Inria, PSL University, Paris, France

baptiste.cottier@ens.fr

Abstract. Ephemeral Diffie-Hellman Over COSE (EDHOC) aims at
being a very compact and lightweight authenticated Diffie-Hellman key
exchange with ephemeral keys. It is expected to provide mutual authen-
tication, forward secrecy, and identity protection, with a 128-bit security
level.

A formal analysis has already been proposed at SECRYPT ’21, on
a former version, leading to some improvements, in the ongoing evalu-
ation process by IETF. Unfortunately, while formal analysis can detect
some vulnerabilities in the protocol, it cannot evaluate the actual secu-
rity level.

In this paper, we study the protocol as it appeared in version 15.
Without complete breaks, we anyway exhibit attacks in 264 operations,
which contradict the expected 128-bit security level. We thereafter pro-
pose improvements, some of them being at no additional cost, to achieve
128-bit security for all the security properties (i.e. key privacy, mutual
authentication, and identity-protection).

1 Introduction

A key agreement is under analysis by IETF [10], under the name Ephemeral
Diffie-Hellman Over COSE (EDHOC). EDHOC aims at being a very compact
and lightweight authenticated Diffie-Hellman key exchange with ephemeral keys.
It is expected to provide mutual authentication, forward secrecy, and identity
protection, with a 128-bit security level.

This protocol is deeply inspired from SIGMA [7] and OPTLS [8] and targets
constrained devices over low-power IoT radio communication technologies. For
this reason, very aggressive parameters are proposed to minimize the communi-
cations. This paper follows a request from the LAKE working group to study the
computational security of the EDHOC protocol with such aggressive parameters.

1.1 Related Work

A formal analysis of the May 2018 version has already been proposed by Bruni et
al. in [2] and later completed and updated by [3,6,9], leading to some improve-
ments. But such a formal analysis, when successful, does not give any insight
about the actual security level, in terms of time complexity of the best possible

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G.-V. Jourdan et al. (Eds.): FPS 2022, LNCS 13877, pp. 3–18, 2023.
https://doi.org/10.1007/978-3-031-30122-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30122-3_1&domain=pdf
https://doi.org/10.1007/978-3-031-30122-3_1

4 B. Cottier and D. Pointcheval

attack. While our computational analysis covers the MAC-based authentication
method, other ongoing works cover other authentication methods based on sig-
natures.

1.2 Contributions

In this paper, we analyse the August 2022 version of EDHOC proposal [10].
We are able to prove the three expected security properties in the random oracle
model, under a Diffie-Hellman assumption and with secure encryption primitives.
However, because of the aggressive settings, we exhibit attacks in 264 operations,
against authentication, which is not acceptable for a 128-bit security level.

We thereafter propose some improvements to get better security, at no
communication cost. Firstly, adding more inputs to some hash value allows
to speed-up the simulator when searching in some tables. Secondly, one con-
verts an authenticated encryption scheme into a simple one-time secure encryp-
tion scheme, for hiding the identity of the Initiator, and sends a larger tag
together with the External Authorization Data, in plaintext. We convert an
authenticated ciphertext into a smaller ciphertext encrypting only a part of
the message, and the remaining of the message is sent as plain values rather
than encrypted, but with better authentication. This conversion globally has
no communication impact, but increases from 64 to 128-bit security level for
initiator-authentication. Last, we confirm that a fourth message provides a 128-
bit security level for responder-authentication.

2 Preliminaries

2.1 Computational Assumptions

For security analysis in the computational setting, we rely on some compu-
tational assumptions: the Gap Diffie-Hellman problem and some properties of
symmetric encryption.

Gap Diffie-Hellman (GDH). The Gap Diffie-Hellman problem aims to solve a
Diffie-Hellman instance (U = gu, V = gv), in a group G with generator g, where
u, v

$← Zp, by computing guv, with access to a Decisional Diffie-Hellman oracle
DDH returning 1 if a tuple-query (ga, gb, gc) is a Diffie-Hellman tuple, and 0
otherwise. We define the advantage Advgdh

G
(t, qddh), as the maximum advantage

over all algorithms A in outputting guv, with time-complexity at most t and
making at most qddh queries to the DDH oracle.

One-Time Pad Encryption. We will use several symmetric encryption schemes,
such as the one-time pad: given a random key sk ∈ {0, 1}k, the encryption of
the message m ∈ {0, 1}k is c = E(sk,m) ← m ⊕ sk, while the decryption just
consists in m = D(sk, c) ← c ⊕ sk. It satisfies the injective property:

∀sk,m0,m1 ∈ {0, 1}k, E(sk,m0) = E(sk,m1) =⇒ m0 = m1.

Security Analysis of Improved EDHOC Protocol 5

It also guarantees perfect privacy: for a random secret key sk, c does not leak
any information about the plaintext. We stress this is of course for a one-time
use only, as there is no additional oracle access.

Authenticated Encryption with Associated Data (AEAD). We will also use an
Authenticated Encryption with Associated Data scheme Π ′ = (E ′,D′), with a
key sk and initialisation vector IV. For a message m ∈ M and some associated
data a ∈ A, the ciphertext is c = E ′(sk, IV;m; a)1, while the decryption process
provides m = D′(sk, IV; c; a) in case of valid ciphertext c with respect to sk, IV,
and a, or ⊥ otherwise. Two security properties are expected from such an AEAD.

Indistinguishability. Π ′ = (E ′,D′) should protect message-privacy (IND-CPA,
for Indistinguishability under Chosen-Plaintext Attacks). More precisely, we con-
sider the Experiment Expind-cpa

Π′ (A) in which we randomly choose b ∈ {0, 1} and
a secret key sk, A can ask multiple queries (IV, a,m0,m1), all with different IV,
and for each we compute and send c = E ′(sk, IV;mb; a) to A. Let b′ ∈ {0, 1} be
the output of A. Then, the Experiment Expind-cpa

Π′ (A) outputs 1 if b′ = b and 0
otherwise. We define the advantage of A in violating IND-CPA security of Π ′ as
Advind-cpa

Π′ (A) = Pr[Expind-cpa
Π (A) = 1] and the advantage function Advind-cpa

Π′ (t),
as the maximum value of Advind-cpa

Π′ (A) over all A with time-complexity at most
t. We stress that c only aims at protecting the message-privacy, but does not
provide any security for the associated data. Thanks to multiple queries, we are
in the chosen-plaintext setting, and not a one-time security as before.

Authentication. An AEAD scheme is also expected to guarantee some unforge-
ability property (UF-CMA, for Unforgeability under Chosen-Message Attacks),
also for the associated data (not encrypted). More precisely, we consider the
Experiment Expuf-cma

Π′ (A) in which A is given access to the encryption oracle
E ′(sk, ·; ·; ·), for a random secret key sk. The Experiment returns 1 if A outputs
some data a, an initialisation vector IV and a ciphertext c accepted with respect
to IV and a, which means that D′(sk, IV; c; a) �= ⊥, while c has not been obtained
as the output of an encryption query to E ′(sk, ·; ·; ·). We define the advantage of
A in violating UF-CMA security of Π′ as Advuf-cma

Π′ (A) = Pr[Expuf-cma
Π′ (A) = 1]

and the advantage function Advuf-cma
Π′ (t) as the maximum value of Advuf-cma

Π′ (A)
over all A with time-complexity at most t.

2.2 Brief Description of EDHOC

As with any key exchange protocol, EDHOC aims to provide a common session
key to two parties. We briefly sketch the key elements of the EDHOC protocol.
Due to the page limitations, we refer the reader to [10] for a detailed description.
EDHOC protocol can be instantiated with several settings:

– Authentication Method : Each party (Initiator and Responder) can use an
authentication method: either with a signature scheme (SIG), or with a static
Diffie-Hellman key (STAT).

1 We use semicolons here to distinguish keying material, message and Additional Data.

6 B. Cottier and D. Pointcheval

Fig. 1. Key Derivation (for the STAT-STAT Method) from [9]. Green vertical hatchs
denote additions and red horizontal hatchs denote removals compared to the initial
version. (Color figure online)

– Cipher Suites: Ordered set of protocol security settings. Initial paper offers
many possible suites, but we focus on the most aggressive cipher suites setting
the MAC length to 8 bytes, while still using SHA-256 as a hash function, with
256-bit outputs.

– Connection Identifiers: Data that may be used to correlate between messages
and facilitate retrieval of protocol state in EDHOC and application.

– Credentials and Identifiers: They are used to identify and optionally transport
the authentication keys of the Initiator and the Responder.

We suppose both the Initiator and the Responder are aware that the authenti-
cation method is STAT/STAT. Also, we ignore the Cipher Suite ID Suites I (as
it appears in [10]) in the first message of the protocol.

Extract and Expand. In the EDHOC Key-Schedule, recalled in Fig. 1 (ignor-
ing the vertically hatched patterns for the initial protocol), the pseudoran-
dom keys (PRK) are derived using an extraction function. In our context,
Extract(salt, IKM) = HKDF-Extract(salt, IKM) is defined with SHA-256, where
IKM holds for Input Keying Material (in our context, this will be some Diffie-
Hellman keys) and Expand(PRK, info, len) = HKDF-Expand(PRK, info, len) where

Security Analysis of Improved EDHOC Protocol 7

Fig. 2. Notations

info contains the transcript hash (TH2, TH3 or TH4), the name of the derived
key and some context, while len denotes the output length.

Transcript hashes, denoted THi, are used as input to the HKDF-Expandfunc-
tion. More precisely, with SHA-256 as H, we have:

TH2 = H(Ye,CR,H(m1)) TH3 = H(TH2,m2) TH4 = H(TH3,m3[,m′
3])

where m1 is the first message sent by the Initiator, m2 and m3 (possibly con-
catenated to m′

3 in our improvement, to preserve the authentication property)
respectively are the plaintexts respectively encrypted in the message 2 and mes-
sage 3. More notations are provided in Fig. 2.

Protocol. The detailed description of the initial protocol is given in Fig. 3, ignor-
ing the gray highlights which will be for our improvements. The final session key
is SK = PRKout.

3 Our Improvements

We here make some remarks on the initial protocol, with some improvements,
that appear in gray highlights in Fig. 3, and to the removed/additional hatched
patterns in Fig. 1.

3.1 On Mutual Authentication

The encryption key sk3, used by the initiator to encrypt its second message m3,
is computed by calling HKDF-Expandon PRK3e2m. However, even an adversary
that plays in the name of a non-corrupted user, is able to compute PRK3e2m,

8 B. Cottier and D. Pointcheval

Fig. 3. Optimized EDHOC with four messages in the STAT/STAT Authentication
Method. Our modifications compared to [10] (draft-ietf-lake-edhoc-15) are represented

by and additions by gray highlights

Security Analysis of Improved EDHOC Protocol 9

when knowing the Initiator ephemeral key xe, as PRK3e2m does not depend on
xs, the long term secret key of the Initiator. In order to break the Initiator
authentication, with respect to a Responder, an adversary can play on behalf of
any user as an Initiator. It will be able to compute sk3, but not t3, for which
value it will need some luck, but this is only 64-bit long! Which is not enough
for a 128-bit security.

To get around this issue, we suggest to modify the construction of Initiator’s
second message as follows: Initial message m3 = (IDI‖t3||EAD3) is split as m3 ←
(IDI) and m′

3 ← (t3||EAD3)2. Thus, m3 is encrypted using sk3 (with a one-time
pad encryption scheme Π = (E ,D), under sk3 still depending on PRK3e2m)
into c3. Then m′

3 does not need to be encrypted. We introduce the value κsec,
always set as the expected bit-security parameter, independently of the �mac

value. Then, we set the length of t3 to be κsec, as it already authenticates CTX3 =
(IDI‖TH3‖Xs‖EAD3). Concretely, the second message sent by the initiator to the
responder is: c3‖m′

3, where c3 = E(sk3,m3),m′
3 = t3||EAD3. Once the Responder

receives (c3,m′
3), he first decrypts c3, retrieves Xs using m3, computes PRK4e3m

and is then able to verify the tag t3, allowing to check the authenticity of IDI,
as well as all the other values is CTX3 = IDI‖TH3‖Xs‖EAD3. The extra required
length for the tag t3 is perfectly compensated by the absence of the tag jointly
sent when using Authenticated Encryption, and the plaintext length of m3 is the
same as the encryption of m3. Therefore, this does not impact the communication
cost of the protocol, until κsec ≤ 2 × �mac, but improves to κsec-bit security for
Initiator-Authentication.

About the Responder-Authentication, t2 also provides a 64-bit security level
only: by guessing it, any active adversary can make the initiator terminate, and
thus breaking the responder-authentication, if one does not wait for the fourth
flow c4,m

′
4. However, with this fourth flow, we can show the 2×�mac-bit security

level is achieved.

3.2 On Reduction Efficiency

After analysis, we also notice another improvement: the key PRK2e is computed
according to gxeye only, as the salt used in HKDF-Extractis an empty string.
When considering several parellels sessions, this allows an adversary to find a
collision with any of the session making a single call to HKDF-Extract. Therefore,
we replace the empty string used as salt with TH2 that depends on the session
variables and is different for each session. Thus, an adversary has to make a call
to HKDF-Extract with a chosen TH2, linked to a specific session. This makes the
reduction cost of the key-privacy game independent of the number of sessions.

4 Security Analysis

Security Goals. The security goals of an authenticated key exchange protocol
are:
2 One can move EAD3 in m3, if privacy is required. It is still secure with any one-time

secure encryption, but increasing the key size in the particular case of one-time pad.

10 B. Cottier and D. Pointcheval

– Key Privacy : Equivalent to Implicit Authentication. At most both partici-
pants know the final session key, which should remain indistinguishable from
random to outsiders. With additional Perfect Forward Secrecy, by compro-
mising the long-term credential of either peer, an attacker shall not be able
to distinguish past session keys from random keys. In our context, this will
rely on a Diffie-Hellman assumption.

– Mutual Authentication: Equivalent to explicit authentication. Exactly both
participants have the material to compute the final session key.

– Identity Protection: At most both participants know the identity of the
Initiator and the Responder. While the identity of the Initiator should be
protected against active adversaries, the identity of the Responder should be
protected against passive adversaries only.

Random Oracle Model. For the security analysis, we model Hash and Key Deriva-
tion Functions as random oracles. Respectively, the random oracles ROT and
ROP will model HKDF-Extract and HKDF-Expand functions as perfect random
functions.

4.1 Key Privacy

We describe in Fig. 4 the security game introduced in [5] following the framework
by Bellare et al. [1]. After initializing the game, the adversary A is given multiple
access to the following queries:

– NewUser: Generates a new user by generating a new pair of keys.
– Send: Controls activation and message processing of sessions
– SessionKeyReveal: Reveals the session key of a terminated session.
– LongTermKeyReveal: Corrupts a user and reveals its long term secret key.
– Test: Provides a real-or-random challenge on the session key of the queried

session.

Then, the adversary makes a single call to the Finalize algorithm, which returns
the result of the predicate [b′ = b], where b′ is the guess of A and b is the
challenge bit, after succeeding through the Sound and Fresh predicates.

The advantage of an adversary A against the key privacy is its bias in guessing
b, from the random choice: Advkp−ake(A) = Pr[b′ = b] − 1/2. A formalized
description of the EDHOC protocol can be found in the full version [4]. It is
compliant with the security game made in Fig. 4. The protocol is analyzed in
the random oracle model, therefore, HKDF can be substituted by respective
random oracles.

Theorem 1. The above EDHOC protocol satisfies the key privacy property under
the Gap Diffie-Hellman problem in the Random Oracle model. More precisely,
with qRO representing the global number of queries to the random oracles, N
the number of users, and �hash the hash digest length, Advkp−ake

EDHOC(t; qRO, N) is
upper-bounded by

(2N + 1) · AdvGDH
G (t, qRO) +

qRO
2 + 4

2�hash+1

Security Analysis of Improved EDHOC Protocol 11

Fig. 4. Authenticated Key Exchange Key Privacy Security Game Gkp−ake
AKE,A

Game G0. This game is the key privacy security game Gkp−ake
AKE,A (defined in

Fig. 4) played by A using the KeyGen, Activate and Run algorithms. The
KeyGen algorithm generates a long term pair of key, calling Activate with an
user with identity u, A creates its i-th session with u, denoted πi

u.

Pr[Succ0] = Pr[Gkp−ake
AKE,A],

where the event Succ means b′ = b.
We stress that in this security model, with Perfect Forward Secrecy, we use the
weak definition of corruption, meaning that a query to LongTermKeyReveal
only reveals the long-term key, while the ephemeral key remains unrevealed.
We say a party/session is non-corrupted if no query to LongTermKeyReveal
has been made before the time of acceptance tacc, where we consider each

12 B. Cottier and D. Pointcheval

block (InitRun1, InitRun2, RespRun1, RespRun2) as atomic. Then corruptions
can only happen between two calls to simulated players.

Game G1. In this game, we simulate the random oracles by lists that are empty
at the beginning of the game. As ROT and H always return a digest of size
�hash, we simply use the simulation oracle SOT and SOH respectively. How-
ever, ROP may return values of several lengths. We thus define a simulation
oracle by digest size: SOsize

P , for size in {�2, �id, �hash, �key, �iv, �mac, κsec}
The simulation oracles SOP and SOH work as the usual way of simulating the
answer with a new random answer for any new query, and the same answer
if the same query is asked again. For the simulation oracles SOT , the oracle
consists in a list that contains elements of the form (str, Z, (X,Y);λ), where
when first set, either Z or (X,Y) is non-empty. Indeed, when making a call
to a random oracle, the official query is of the form (str, Z), where str is any
bit string, that can be empty or a pseudo-random key, and Z is a Diffie-
Hellman value. Then, the simulator checks in the list for an entry matching
with (str, Z, ∗;λ). If such an element is found, one outputs λ, otherwise one
randomly set λ

$← {0, 1}κ and append (str, Z,⊥;λ) to the list. But later,
the simulator will also ask queries of the form (str, (X,Y)), where (X,Y) is a
pair of group elements. Then one checks in the list for an entry matching with
either (str, ∗, (X,Y);λ) or (str, Z, ∗;λ) such that DDH(g,X, Y, Z) = 1. If such
an element is found, one outputs λ, otherwise one randomly set λ

$← {0, 1}κ

and append (str,⊥, (X,Y);λ) to the list. When such new kinds of elements
exist in the list, for the first kind of queries (str, Z), one checks in the list for
an entry matching with either (str, Z, ∗;λ) as before, or (str, ∗, (X,Y);λ) such
that DDH(g,X, Y, Z) = 1. Thanks to the DDH oracle, this simulation is per-
fect, and is thus indistinguishable to the adversary: Pr[Succ0] = Pr[Succ−1].

Game G2. In order to prevent collisions in the future PRK generation, we modify
the simulation oracles SOT ,SO�hash

P and SOH, such that if a collision occurs,
the simulator stops. From the birthday paradox bound, we have:

Pr[Succ0] − Pr[Succ−1] ≤
qSOT

2 + q
SO

�hash
P

2 + qSOH
2

2�hash+1
.

Game G3. One can note that thanks to the above simulation of the random
oracles, the simulator does not need anymore to compute Diffie-Hellman val-
ues. Then, for every simulated player, the simulator generates Xe or Ye at
random in the group, and the simulation is still performed as in the previ-
ous game. As corruption queries only reveal long-term secret, still known to
the simulator, the view of the adversary is perfectly indistinguishable of the
previous game and we have: Pr[Succ0] = Pr[Succ−1].

Game G4. In this game, when simulating any initiator receiving a forged tuple
(Ye, c2,CR) from the adversary in the name of a non-corrupted user, one
simulates PRK3e2m thanks to a private oracle SOPRK3e2m

, which makes it per-
fectly unpredictable to the adversary. If the pair (Ye,CR) is forged, TH2 and
salt3e2m are different from the values obtained by a possibly simulated respon-
der, thanks to the absence of collisions as they are respectively computed

Security Analysis of Improved EDHOC Protocol 13

using SOH and SO�hash
P . Otherwise, sk2 is not modified. So if the ciphertext

c2 is forged, thanks to the injective property of the one-time pad encryption
scheme (E ,D) when the key is fixed, m2, then TH3 and salt4e3m are different
from the values obtained by a possibly simulated responder. In order to detect
the inconsistency of PRK3e2m with respect to the public oracle answer, the
adversary must have asked SOT on the correct Diffie-Hellman value Xe

ys . We
denote the event F1, that query Xe

ys is asked whereas ys is the long-term
secret key of a non-corrupted user and Xe has been generated by the sim-
ulator. If this event happens (which can easily be checked as the simulator
knows ys), one stops the simulation: |Pr[Succ0] − Pr[Succ−1]| ≤ Pr[F1].

Game G4′ . We now provide an upper-bound on Pr[F1]: given a GDH challenge
(X = gx, Y = gy), one simulates all the Xe as Xe = X · gr, for random
r

$← Zp, but chooses one user to set Ys = Y . Even if ys is therefore not
known, simulation is still feasible as the simulator can make query to the
SOT oracle with input (Xe, Ys). Then, one can still answer all the corruption
queries, excepted for that user. But anyway, if F1 happens on that user, this
user must be non-corrupted at that time: one has solved the GDH problem,
and one can stop the simulation. If the guess on the user is incorrect, one
can also stop the simulation: Pr[F1] ≤ N · AdvGDH

G (t, qRO), where N is the
number of users in the system.

Game G5. In this game, when simulating any responder receiving a forged
message m1 from the adversary in the name of a non-corrupted user, still
non-corrupted when sending c3 to RespRun2, one simulates PRK4e3m thanks
to a private oracle SOPRK4e3m

, which makes it perfectly unpredictable to the
adversary. Since m1 is forged, thanks to the absence of collisions, TH2,TH3,
and salt4e3m are different from the values obtained by a possibly simulated
responder. In order to detect the inconsistency of PRK4e3m with respect to
the public oracle answer, the adversary must have asked SOT on the correct
Diffie-Hellman value Ye

xs . We denote the event F2, that query Ye
xs is asked

whereas xs is the long-term secret key of a non-corrupted user and Ye has
been generated by the simulator. If this event happens, as above, one stops
the simulation: |Pr[Succ0] − Pr[Succ−1]| ≤ Pr[F2].

Game G5′ . We now provide an upper-bound on Pr[F2]: given a GDH challenge
(X = gx, Y = gy), one simulates all the Ye as Ye = Y · gr′

, for random
r′ $← Zp, but chooses one user to set Xs = X. Then, one can still answer all
the corruption queries, excepted for that user. But anyway, if F2 happens on
that user, this user must be non-corrupted at that time: one has solved the
GDH problem, and one can stop the simulation. If the guess on the user is
incorrect, one can also stop the simulation: Pr[F2] ≤ N · AdvGDH

G (t, qRO).
Game G6. In this game, we simulate the key generation of PRK2e, for all the

passive sessions (m1 received by a simulated responder comes from a simu-
lated initiator, or (Ye, c2,CR) received by a simulated initiator comes from a
simulated responder, and both used the same m1 as first message), thanks to
a private oracle SOPRK2e

, acting in the same vein as SOT , but not available
to the adversary. This makes a difference with the previous game if the key
PRK2e has also been generated by asking SOT on the correct Diffie-Hellman

14 B. Cottier and D. Pointcheval

value Z = gxeye . We denote by F3 the latter event, and stop the simulation
in such a case: |Pr[Succ0] − Pr[Succ−1]| ≤ Pr[F3].

Game G6′ . We now provide an upper-bound on Pr[F3]. Given a GDH challenge
(X = gx, Y = gy), one simulates all the Xe as Xe = X · gr, for random
r

$← Zp, and all the Ye as Ye = Y ·gr′
, for random r′ $← Zp. As the key PRK2e

now depends on the session context, any query Z to the SOT oracle can make
F3 occurs on a single pair (Xe = X · gr, Ye = Y · gr′

). Hence, qRO DDH-
oracle queries might be useful to detect F3 on an input Z = CDH(Xe, Ye) =
gxy ·Xr′ ·Y r ·grr′

, solving the GDH challenge (X,Y): Pr[F3] ≤ AdvGDH
G (t, qRO).

Game G7. In this game, when simulating any initiator receiving the second
message (Ye, c2,CR), from the adversary in the name of a non-corrupted
user, one simulates PRK3e2m thanks to a private oracle SOPRK3e2m

. This
makes a difference with the previous game only if this is a passive session,
in which case PRK2e is unpredictable, and thus different from the public
one excepted with probability 2−�hash . As there are no collisions, salt3e2m is
different from the value obtained by a possibly simulated responder. In order
to detect the inconsistency of PRK3e2m with respect to the public oracle
answer, the adversary must have asked SOT on the correct Diffie-Hellman
value Xys

e , which is not possible as event F1 already stops the simulation.
Hence, we just have |Pr[Succ0] − Pr[Succ−1]| ≤ 2−�hash .

Game G8. In this game, when simulating any initiator receiving the second
message (Ye, c2,CR), from the adversary in the name of a non-corrupted
user, one simulates PRK4e3m thanks to a private oracle SOPRK4e3m

. In this
case, PRK3e2m is unpredictable, as well as salt4e3m and PRK4e3m: Pr[Succ0] =
Pr[Succ−1].

Game G9. In this game, when simulating any responder receiving c3, from
the adversary in the name of a non-corrupted user, one simulates PRK4e3m

thanks to the private oracle SOPRK4e3m
. This makes a difference with the pre-

vious game only if this is not a passive session, in which case PRK2e is unpre-
dictable, and thus different from the public one excepted with probability
2−�hash . As there are no collisions, salt3e2m, PRK3e2m, and salt4e3m are dif-
ferent from the values obtained by a possibly simulated responder. In order
to detect the inconsistency of PRK4e3m with respect to the public oracle
answer, the adversary must have asked SOT on the correct Diffie-Hellman
value Y xs

e , which is not possible as event F2 already stops the simulation:
|Pr[Succ0] − Pr[Succ−1]| ≤ 2−�hash .

Game G10. In this game, for any fresh session, one simulates PRKout thanks to
the private oracle SOPRKout . A session being fresh means that no corruption
of the party or of the partner occurred before the time of acceptance: the
initiator is not corrupted before receiving (Ye, c2,CR) and the responder is not
corrupted before receiving c3. By consequent, they are not corrupted before
PRK4e3m was computed. We have seen above that in those cases, the key
PRK4e3m is generated using the private oracle SOPRK4e3m

: it is unpredictable.
The use of the private oracle SOPRKout can only be detected if the query
PRK4e3m is asked to SOP : |Pr[Succ0] − Pr[Succ−1]| ≤ q

SO
�hash
P

× 2−�hash .

Security Analysis of Improved EDHOC Protocol 15

Globally, one can note that the gap between the initial and the last games is
upper-bounded by

(2N + 1) · AdvGDH
G (t, qRO) +

qSOT
2 + q

SO
�hash
P

2 + qSOH
2

2�hash+1
+

2 + q
SO

�hash
P

2�hash

≤ (2N + 1) · AdvGDH
G (t, qRO) +

qRO
2 + 4

2�hash+1

Eventually, for all the fresh sessions, in the real case (b = 0), the private
oracle is used, and outputs a random key, while in the random case (b = 1),
the session key is random too: Pr[Succ0] = 1/2. This concludes the proof.

4.2 Explicit Authentication

Explicit authentication (or mutual authentication) aims to ensure each partici-
pant has the material to compute the final session key (accepts) when the partner
terminates. In the EDHOC protocol, this means the responder (resp. the initia-
tor) owns the private long-term key ys (resp xs) associated to the long-term
public key Ys (resp. Xs), and the private ephemeral keys, when the partner
terminates (Fig. 5).

Fig. 5. Finalize Function for the Explicit Authentication Security Game

To do so, the responder uses ys in RespRun1 to compute PRK3e2m used for
the tag t2 and the key sk3. In the same way, the initiator uses xs to compute
PRK4e3m, used for the tag t3. Furthermore, they both have to use their ephemeral
keys to compute PRK2e, used for sk2.

Responder Authentication. Consider a simulated initiator receiving a forged
message (Ye, c2,CR) from the adversary in the name of a non-corrupted user.
In such a case, consider the modifications made in the key privacy proof up
to the game G7. Hence, we have replaced the generation of PRK3e2m with a
private oracle. Then the advantage of the adversary in breaking the explicit
authentication of the responder in this game is bounded by 2−�mac , added to the
gap induced by the modifications made up to the game G7. This leads to the
following theorem:

16 B. Cottier and D. Pointcheval

Theorem 2. The above EDHOC protocol satisfies the responder-authentication
property under the Gap Diffie-Hellman problem in the Random Oracle model.
More precisely, with qRO representing the global number of queries to the random
oracles, N the number of users, �hash the hash digest length and �mac the MAC
digest length, we have Advauth−resp

EDHOC (t; qRO, N) is upper-bounded by

(2N + 1) · AdvGDH
G (t, qRO) +

qRO
2 + 2

2�hash+1
+

1
2�mac

.

Optimal Reduction. One cannot expect more after these three flows, as the
adversary can play the role of the responder with known ye. Without knowing
ys, it just gets stuck to compute PRK3e2m and thus t2. But it can guess it (with
probability 2−�mac), breaking authentication. But it will not know SK. However,
by waiting for the fourth message containing an authenticated encryption c4, as
said in the documentation, this will add a factor Advuf-cma

Π′ (t) ≈ 2−�mac to the
Responder Authentication security: Advauth−resp

EDHOC (t; qRO, N) is upper-bounded by

(2N + 1) · AdvGDH
G (t, qRO) +

qRO
2 + 2

2�hash+1
+

1
2�mac

× Advuf-cma
Π′ (t).

Initiator Authentication. We now consider any responder receiving a forged
message c3 from the adversary in the name of a non-corrupted user. As above,
considering the modifications made in the key privacy proof up to the game G8,
we have replaced the generation of PRK4e3m with a private oracle. Then the
advantage of the adversary in breaking the explicit authentication of the initiator
in this game is bounded by 1

2κsec . Added to the gap induced by the modifications
made up to the game G7. This leads to the following theorem:

Theorem 3. The above EDHOC protocol satisfies the initiator-authentication
property under the Gap Diffie-Hellman problem in the Random Oracle model.
More precisely, with qRO representing the global number of queries to the random
oracles, N the number of users, �hash the hash digest length and κsec the expected
bit-security, we have Advauth−init

EDHOC (t; qRO, N) upper-bounded by

(2N + 1) · AdvGDH
G (t, qRO) +

qRO
2 + 4

2�hash+1
+

1
2κsec

.

4.3 Identity Protection

Let us now consider anonymity, with identity protection. More precisely, we want
to show that the initiator’s identity (IDI) is protected against active adversaries,
while responder’s identity (IDR) is protected only against passive adversaries.

The values IDI and IDR are the authentication credentials containing the
public authentication keys of the Initiator and the Responder, respectively.

Both those values are sent to the other respective party using One-Time Pad
encryption, that perfectly protects the privacy. Then, in one hand we have IDR

that is part of CTX2 used to compute t2 and in the other hand, we have IDI that
is part of CTX3 used to compute t3. We thus define the similar responder and
initiator identity protection experiment as follows:

Security Analysis of Improved EDHOC Protocol 17

ExpID−resp−b
EDHOC

1 : IDR0 , IDR1 ← A(peerid)
2 : m1 ← A(InitRun1(.))
3 : b ← {0, 1}
4 : IDR ← IDRb

5 : ys ← skIDR

6 : (Ye, c2,CR) ← RespRun1(IDR, ys,m1)
7 : b′ ← A(c2)
8 : return b = b′

ExpID−init−b
EDHOC

1 : IDI0 , IDI1 ← A(peerid)
2 : (Ye, c2,CR) ← A(RespRun1(.))
3 : b ← {0, 1}
4 : IDI ← IDIb

5 : xs ← skIDI

6 : Ys ← peerpk[IDI]
7 : c3 ← InitRun2(IDI, xs, Ys, (Ye, c2,CR))
8 : b′ ← A(c3)
9 : return b = b′

In both cases, we consider the modifications made in the key privacy proof up
to the game G7, making PRK2e and PRK3e4m random, and by consequent, so
are sk2 and sk3.

Responder Identity Protection. The responder’s identity has to be protected
against passive adversaries only. To distinguish ExpID−resp−0

EDHOC and ExpID−resp−1
EDHOC ,

one must distinguish between an encryption of IDR0 and IDR1 , as sk2 is random,
this implies breaking the injective property and the indistinguishability of Π =
(E ,D), both being perfect with the one-time pad.

Initiator Identity Protection. The initiator’s identity has to be protected against
active adversaries. However, if the adversary plays in the name of a responder,
he will be detected with high probability with the tag t2 before reaching game
G7. Therefore, distinguish between ExpID−init−0

EDHOC and ExpID−init−1
EDHOC also implies

breaking the injective property and the indistinguishability of Π = (E ,D), both
being perfect with the one-time pad.

Theorem 4. The above EDHOC protocol protects Initiator and Responder’s
Identity under the Gap Diffie-Hellman problem in the Random Oracle model.
More precisely, with qRO representing the global number of queries to the random
oracles, N the number of users, and �hash the hash digest length, both advantages
AdvID−init−b

EDHOC (t; qRO, N) and AdvID−resp−b
EDHOC (t; qRO, N) are upper-bounded by

(2N + 1) · AdvGDH
G (t, qRO) +

qRO
2 + 2

2�hash+1
.

5 Conclusion

Our computational analysis proved the EDHOC protocol instantiated with the
STAT-STAT authentication method, with �mac = 64 and κsec = 128, provides
nearly a 128-bit security level for key privacy and identity protection for both
the responder and the initiator. In a three-flow scenario, Initiator Authentication
reaches a 128-bit security level, using our improvements without extra-cost in our
settings, but only a 64-bit security level for the responder. However, as suggested

18 B. Cottier and D. Pointcheval

in their documentation, a fourth message using authenticated encryption (AEAD)
from the responder to the initiator increases this security up to a 128-bit level.
Hence, our improvement of EDHOC, at no communication cost, provides a global
128-bit security level.

Acknowledgments. This work was supported in part by the French ANR Project
Crypto4Graph-AI.

References

1. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679 25

2. Bruni, A., Sahl Jørgensen, T., Grønbech Petersen, T., Schürmann, C.: Formal
verification of ephemeral Diffie-Hellman over COSE (EDHOC). In: Cremers, C.,
Lehmann, A. (eds.) SSR 2018. LNCS, vol. 11322, pp. 21–36. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-04762-7 2

3. Cheval, V., Jacomme, C., Kremer, S., Künnemann, R.: SAPIC+: protocol verifiers
of the world, unite! In: USENIX Security Symposium (USENIX Security) (2022)

4. Cottier, B., Pointcheval, D.: Security Analysis of Improved EDHOC Protocol.
https://hal.inria.fr/hal-03772082

5. Davis, H., Günther, F.: Tighter proofs for the SIGMA and TLS 1.3 key exchange
protocols. Cryptology ePrint Archive, Report 2020/1029 (2020). https://eprint.
iacr.org/2020/1029

6. Jacomme, C., Klein, E., Kremer, S., Racouchot, M.: A comprehensive, formal and
automated analysis of the EDHOC protocol. In: USENIX Security Symposium
(USENIX Security) (2023, to appear)

7. Krawczyk, H.: SIGMA: the “SIGn-and-MAc” approach to authenticated Diffie-
Hellman and its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45146-4 24

8. Krawczyk, H., Wee, H.: The OPTLS protocol and TLS 1.3. In: 2016 IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P 2016), pp. 81–96. IEEE Com-
puter Society (2016). https://doi.org/10.1109/EuroSP.2016.18. https://eprint.iacr.
org/2015/978

9. Norrman, K., Sundararajan, V., Bruni, A.: Formal analysis of EDHOC key estab-
lishment for constrained IoT devices. In: Proceedings of the 18th International Con-
ference on Security and Cryptography (SECRYPT 2021), pp. 210–221. INSTICC,
SciTePress (2021). https://doi.org/10.5220/0010554002100221. https://arxiv.org/
abs/2007.11427

10. Selander, G., Mattsson, J.P., Palombini, F.: Ephemeral Diffie-Hellman over
COSE (EDHOC). Internet-Draft draft-ietf-lake-edhoc-15, Internet Engineering
Task Force (2022). https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-15.
https://datatracker.ietf.org/doc/draft-ietf-lake-edhoc/

https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-030-04762-7_2
https://hal.inria.fr/hal-03772082
https://eprint.iacr.org/2020/1029
https://eprint.iacr.org/2020/1029
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1109/EuroSP.2016.18
https://eprint.iacr.org/2015/978
https://eprint.iacr.org/2015/978
https://doi.org/10.5220/0010554002100221
https://arxiv.org/abs/2007.11427
https://arxiv.org/abs/2007.11427
https://datatracker.ietf.org/doc/html/draft-ietf-lake-edhoc-15
https://datatracker.ietf.org/doc/draft-ietf-lake-edhoc/

	Security Analysis of Improved EDHOC Protocol
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Preliminaries
	2.1 Computational Assumptions
	2.2 Brief Description of EDHOC

	3 Our Improvements
	3.1 On Mutual Authentication
	3.2 On Reduction Efficiency

	4 Security Analysis
	4.1 Key Privacy
	4.2 Explicit Authentication
	4.3 Identity Protection

	5 Conclusion
	References

