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Abstract. Accurate estimation of intentions is a prerequisite in a non-
verbal human-machine collaborative search task. Electroencephalogra-
phy (EEG) based intent recognition promises a convenient approach for
recognizing explicit and implicit human intentions based on neural activ-
ity. In search tasks, implicit intent recognition can be applied to differ-
entiate if a human is looking at a specific scene, i.e., Navigational Intent,
or is trying to search a target to complete a task, i.e., Informational
Intent. However, previous research studies do not offer any robust mech-
anism to precisely differentiate between the intents mentioned above.
Additionally, these techniques fail to generalize over several participants.
Thus, making these methods unfit for real-world applications. This paper
presents an end-to-end intent classification pipeline that can achieve the
highest mean accuracy of 97.89 ± 0.74 (%) for a subject-specific sce-
nario. We also extend our pipeline to support cross-subject conditions
by addressing inter and intra-subject variability. The generalized cross-
subject model achieves the highest mean accuracy of 96.83 ± 0.53 (%),
allowing our cross-subject pipeline to transfer learning from seen subjects
to an unknown subject, thus minimizing the time and effort required to
acquire subject-specific training sessions. The experimental results show
that our intent recognition model significantly improves the classification
accuracy compared to the state-of-the-art.

Keywords: Intent recognition · Brain-machine interaction · Machine
learning

1 Introduction

Enabling machines to understand humans and their implicit or explicit intents
accurately is a key objective of any efficient human-machine collaborative system
[22]. For instance, one of the tasks of an assistive robotic arm in a noisy industrial
scenario could be to hand over specific tools the human is searching for. If the
robotic arm knows that the person is searching for something, it can assist
with searching and handing over the desired object or tool. However, how can a
robotic arm be sure if a human is searching for something or just scanning the
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environment? Object selection with eye-tracking has been studied in multiple
literature [2,3] to identify implicit intents. The EEG analysis in Kang et al. [1]
barely exceeds the chance level for distinguishing a search intent or a scene scan.

Another challenging task is to address the EEG variability. EEG signals are
highly non-stationary and can differ a lot across days or even within the same
day for the same user. Inter-subject variability refers to the differences in brain
signals between multiple subjects, and intra-subject variability refers to the dif-
ferences in brain activity for the same subject occurring in various repetitions
of the same task [13]. Inter and Intra- subject variability is unavoidable due
to the involved time-variant factors connected to the experimental recording
setup and underlying psychological and neurophysiological parameters. Ideally,
a real-world Brain-machine communication would need to be effective and effi-
cient at all times, i.e., across sessions and participants, without re-calibration. To
address these problems, we propose a combination of brain signals recorded via
Electroencephalography (EEG) and eye-tracking in a simulated working environ-
ment to investigate correlations between EEG data and the eye-tracking data for
two reasons (1) to create context from overt data by automatically labeling EEG
data based on the eye-tracking input (2) to build models for intention recogni-
tion based on this labeled EEG data. We use eye-tracking information only to
perform automatic labeling of the EEG data. Using eye-tracking information as
an interaction modality is beyond the scope of this paper.

The main objective of this paper is to predict different human implicit inten-
tions that occur during visual stimulus presentation, i.e., Navigational Intent
(Free viewing) and Informational Intent (Target searching). This research col-
lects the EEG data from various participants during a visual search task to iden-
tify brain state transitions between those intentions and classify users’ implicit
intentions using machine learning classification algorithms. We investigate a wide
range of feature extraction methods and classification algorithms to provide the
best setup for labeling Navigational and Informational Intent based on EEG
activity with plausible accuracy. Our main contributions to this paper are as
follows:

1. We design and develop an effective data acquisition paradigm and an end-to-
end classification pipeline to categorize human intents using EEG signals.

2. We extensively evaluate our classification pipeline for single-subject to show
a significant improvement compared to the existing state-of-the-art.

3. We extend the single-subject classification pipeline to enable the transfer of
EEG-based learning to cross-subject scenarios for the first time.

The rest of the paper proceeds as follows. In Sect. 2, we present the related
works concerning intent recognition and inter and intra-subject variability.
Section 3 describes the data recording setup with recording devices and the
overall recording procedure. Section 4 discusses the signal processing algorithm,
including feature extraction techniques. Section 5 illustrates the model perfor-
mance for a subject-wise and cross-subject scenario. Section 6 concludes the
paper with some discussions and limitations.
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2 Related Work

In the recent development of human-machine collaborative systems [15,22],
intent recognition [14] plays a major role in making the collaboration much more
efficient and successful. Recognition of human intentions using EEG signals offer
strong research interest due to their quality of giving insights into the human
mind and the ability to communicate or interact with external devices such as
wheelchairs and intelligent robots [14,16]. In Slanzi et al., the authors propose a
physiological-based analysis for predicting web users’ click intention by combin-
ing EEG responses and pupil dilation [4]. Authors design ten questions for each
website concerning finding certain information within the website. Participants
follow a navigation path from the home page to the page where information
is present. The authors chose a wide range of features like Hjorth parameters,
Petrosian Fractal Dimension, Higuchi Fractal Dimension Hurst exponent, and
statistical features to train the model. However, the performance of the clas-
sifiers is not satisfactory. This study achieved a maximum accuracy of 71.09%
with logistic regression, which may not be sufficient for real-world scenarios.

Recent research shows that EEG-based intent recognition can understand the
implicit intention, even when a human does not express his thoughts. For exam-
ple, in Kang et al., authors develop advanced interactive web service engines
which rely on identifying brain connectivity patterns related to the user’s Navi-
gational and Informational intentions through visual experiments based on static
web images [1]. In this work, the authors analyze the differences in phase-locking
value (PLV) to classify users’ Navigational and Informational intentions. Authors
use Support Vector Machines, Näıve Bayes, and Gaussian Mixture Model. How-
ever, accuracies mostly fall between 50% to 77% for all classifiers, which is not
sufficient for real-world deployment where precise estimation of intents is of
utmost importance to make the system robust.

Existing studies focus on subject-specific evaluation, which is not the best
case for real-world settings where a generalized setup could save considerable
training time and effort. Due to the complexity and high dimensionality of brain
signals, intent recognition accuracy and signal interpretability heavily depend
on feature vector representation in a sophisticated manner. Moreover, EEG sig-
nals reflect the fluctuations of the voltages from different cortical regions of the
human brain over a time period [17]. It becomes necessary to effectively combine
both spatial and temporal information to capture the uncertainties generated by
inter, and intra-subject variability [13,17]. In Wei et al., authors use hierarchical
clustering to explore the associations between EEG features and cognitive states
to tackle inter and intra-subject variability within a large-scale dataset of EEG
collected in a simulated driving task [18]. A subject transfer framework detects
drowsiness, which reduces the calibration time by 90%. Still, some amount of
training is needed. Other research studies that address these variabilities use
a completely different EEG-based paradigm like Motor Imagery [19] or P300
speller [20] to reduce task-based calibration time. So far, the possibility of han-
dling inter and intra-subject variability in improving intent recognition for visual
search tasks is unexplored.
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3 Data Acquisition Setup

Fifteen healthy subjects (age: 20 to 30 years) participated in the experiment
without prior training or knowledge. Before the start of the experiment, partici-
pants were informed about the experiment process and asked to sign an informed
consent form for the scientific use of the recorded data. The study was approved
by the ethical review board of the Faculty of Mathematics and Computer Sci-
ence at Saarland University1. The experiment was performed in a dim light room
with minimum distractions from external noises, or electronic devices, where the
voluntary participants are asked to sit in a comfortable chair to prevent unneces-
sary muscle movements to minimize noise and artifacts in the EEG signals which
could unfold from mental stress, electrical interference, and other physiological
motor activity [5,6]. The display resolution of the monitor was set to 1920 ×
1080 pixels, the screen brightness is set to 300, 00 cd/m2, the distance between
the user and the screen is set to 60 cm, and the eyes of the user are about the
same height as the center of the screen.

Recording Devices: EEG signals were recorded with a LivAmp 64 amplifier by
Brain Products2. The sampling frequency was set to 500 Hz. The 10–20 interna-
tional system of electrode placement was used to locate the electrodes [7]. Elec-
trode impedances were kept below 25 kΩ throughout the duration, as it is a com-
mon practice for noise reduction in the EEG recordings [8]. Tobii pro fusion3 is used
to collect eye-tracking information, which is only used for automatically labeling
the EEG data.

3.1 Experimental Procedure

The Experiment consists of 3 parts: (i) Navigational Intent or Free viewing, (ii)
Target presentation, and (iii) Informational Intent or target searching. Figure 1
shows the experimental sequence. We designed the Experiment in Unity [9],
where the industrial scenes are as close to the original working scene in an
industrial context. The recording steps are as follows:

1. The participant glances over the input scene without knowing the target to
get the overall overview of the scene.

2. The participant is shown a specific target tool as an image.
3. The participant searches for the shown target object in the input scene by

looking around.
4. As soon as the participant finds the tool, the target object boundary appears

with a red color which later changes to green color, ensuring that the partic-
ipant found the correct tool.

The recorded dataset consists of 5 sessions for each subject recorded on the
same day with short breaks in between sessions. Each session comprises 30 scenes
1 https://erb.cs.uni-saarland.de/.
2 https://brainvision.com/products/liveamp-64/.
3 Tobii Pro AB. Tobii pro lab. 2014, https://www.tobiipro.com/siteassets/tobii-pro/

user-manuals/Tobii-Pro-Lab-User-Manual/.

https://erb.cs.uni-saarland.de/
https://brainvision.com/products/liveamp-64/
https://www.tobiipro.com/siteassets/tobii-pro/user-manuals/Tobii-Pro-Lab-User-Manual/
https://www.tobiipro.com/siteassets/tobii-pro/user-manuals/Tobii-Pro-Lab-User-Manual/
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Fig. 1. Setup of the search task. The participant is shown the image on the left without
a concrete target. Afterward (middle), the target is shown to the participant. The par-
ticipant searches the target in the scene, and by gaze tracing, the object is highlighted
and selected if the participant fixates on it for more than 2 s (right).

for both Navigational and Informational Intent. Each session consists of different
images, resulting in a total of 150 in the unique input scenes resembling the
industrial working conditions of manufacturing or production units.

4 Methods

This section presents different methods we used for EEG data signal processing,
including pre-processing and feature extraction. We assemble the dataset for the
individual subject using the following steps.

4.1 Data Preprocessing

Typically, EEG signals contain external noises and artifacts like muscle move-
ment, eye blinks, etc., while recording [21]. Therefore, it is necessary to prepro-
cess the recorded data before extracting meaningful information for further anal-
ysis. We preprocess the data in MATLAB4 using functions from the EEGLAB
toolbox [10]. Below are the preprocessing steps to clean the data:

1. Filtering: High-pass filtering at a cutoff frequency of 1 Hz is applied as rec-
ommended by [11] to remove low-frequency noise and low-frequency shifts
before using the independent component analysis (IIR Filter, pop-iirfilt
from EEGlab). A notch filter with a lower cutoff frequency of 48 Hz and an
upper cutoff frequency of 52 Hz is applied to remove power line noise [6] which
is followed by a low pass filtering done at a cutoff frequency of 40 Hz (IIR
Filter).

2. Artifact rejection: We do electrode rejection using pop clean rawdata
from EEGLAB as poor electrode-to-skin contact, broken recording device,
and low signal quality hinder the quality of signals. Electrodes with a large

4 MATLAB version 9.3.0.713579 (R2017b). 2017.
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portion of noise are removed based on their standard deviation and chan-
nels, which poorly correlate with other channels. The rejection threshold for
channel correlation is 0.8.

3. Re-referencing: All electrodes are re-referenced to a common average refer-
ence, as it minimizes uncorrelated signal and noise sources through averaging.

4. Independent Component Analysis (ICA): Since EEG data collected
in a single channel is a composition of all neuron potentials in an area, the
recordings between electrodes can be highly correlated [10]. We clean the data
using Independent Component Analysis, which removes unwanted artifacts
embedded in the data (muscle, eye blinks, or eye movements) without remov-
ing the affected data segments. We apply Second-Order Blind Identification
(SOBI) algorithm as an ICA decomposition algorithm, following a subsequent
automated IC Label rejection (muscle, heart, and eye components with a 95%
threshold).

5. Channel interpolation: The channels marked as bad are interpolated using
spherical interpolation, pop interp. The motivation behind channel interpo-
lation is to avoid bias when calculating the average reference.

6. Epoching: We use preprocessed data to extract specific time windows from
the continuous EEG signal, with reference to the stimulus onset from the
preprocessed data. We took equal duration for Navigational and Informa-
tional Intent within each sample, as the feature extraction module expects
the input to have the same dimensions. We also removed the period in the
Informational part where the eyes are resting because the participant is only
fixating on the object successfully located, see Sect. 3.1.

4.2 Feature Extraction

In this section, we present methods to assemble a feature vector using PyEEG
[12] and Common Spatial Pattern (CSP) [21]. PyEEG is an open-source python
module for EEG feature extraction [12]. We extract 15 features to generate a fea-
ture vector for further investigation. Table 1 shows the list of features extracted
for each EEG channel. CSP extracts features from EEG data in a maximally
discriminative manner. CSP’s basic principle is applying a linear transformation
to project the multi-channel EEG signal data to a lower-dimensional spatial
subspace. The transformation results in the maximization of the variance of one
class while minimizing the variance of other classes at the same time.

4.3 Classification Algorithms

Similar to past studies [1,21], we use Random Forest (RF) and Näıve Bayes
classifiers (NB) to distinguish the EEG signals according to the users’ implicit
intention. Table 2 shows the hyper-parameters. We used default values for other
parameters. RF uses bootstrap aggregation with multiple decision tree models.
This strategy helps to improve predictive performance as compared to a single
model. NB is a probabilistic machine learning model that uses algorithms based
on the Bayes theorem. Each algorithm shares a common assumption, i.e., every
pair of classified features is independent.
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Table 1. List of extracted features from PyEEG

Feature name Description

Power spectral intensity distribution of signal power over frequency
bands: delta, theta, alpha, beta, and gamma

Petrosian Fractal
Dimension

ratio of number of self-similar pieces versus
magnification factor

Hjorth mobility and
complexity

mobility represents the proportion of the
standard deviation of the power spectrum
Complexity represents the change in
frequency

Higuchi Fractal
Dimension

computes fractal dimension of a time series
directly in the time domain

Detrended Fluctuation
Analysis

designed to investigate the long-range
correlation in non-stationary series

Skewness measure of asymmetry of an EEG signal

Kurtosis used to determine if the EEG data has
peaked or flat with respect to the normal
distribution

Minimum, Maximum,
and Standard deviation

measure of variability of an EEG signal

5 Experimental Evaluation

In this section, we present our results for subject-wise and cross-subject scenar-
ios. We provide the best setup which is capable of generalizing across different
participants. Kang et al. [1] are closely related to our work. We show their high-
est achieved accuracy as a baseline in all our box plots, depicted by a horizontal
line. Since there exists no cross-subject evaluation on the search tasks, therefore,
we cannot compare our cross-subject analysis.

5.1 Subject-Wise Analysis

We performed data assembly, training, and evaluation of the test set for each sub-
ject individually. To evaluate our classification pipeline, we use 80% of the data

Table 2. List of hyperparameters

Classifier Hyperparameter

Random Forest Number of trees, maximum depth, splitting criteria,
maximum number of features, minimum samples to split in
a node, and minimum number of data points in a leaf node

Naive Bayes Gaussian distribution with variance smoothing parameter
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(a) Random Forest (b) Naive Bayes

Fig. 2. Subject-wise accuracy using common spatial pattern with RF and NB classi-
fiers. The Horizontal line shows the baseline. Triangle, orange line, and circular dots
show the mean, median, and outlier values, respectively (Color figure online)

as the training set and 20% as the test set. The test set is assembled randomly
at the start of the pipeline to keep it close to the online classification setup. We
use hyperparameter optimization with grid search five-fold cross-validation, as
it is a common practice for EEG classification [21]. Table 2 shows the parame-
ters that influence the classification performance for both classifiers. The com-
bination that yields the best classification accuracy is identified as the optimal
meta-parameters for each subject. Finally, we use the test set to evaluate the per-
formance of the trained classifier. The horizontal line shows the accuracy of the
state-of-the-art. Results obtained for all subjects with the CSP feature extrac-
tion technique are shown as a box plot in Fig. 2. From the plot, it is evident that
all subjects achieved admirable accuracy. For random forest, mean accuracy lies
between 90.79% and 97.18%. The standard deviation falls in the range of 0.73 and
5.06. The highest mean intent recognition accuracy of 97.18% is attained by sub-
ject S5. Moreover, other subjects, Si, i ∈ {1, 2, 5, 7, 8, 10, 13, 14, 15} achieve mean
accuracy above 95%. As compared to Random Forest, Naive Bayes performs
slightly worse, especially for subject S1, where the mean accuracy is 88.73%.
However, for subjects Si, i ∈ {3, 6, 15} Naive Bayes achieves better results with a
mean accuracy of 96.55%, 93.16%, and 96.95% respectively. For Naive Bayes, the
mean accuracy lies between 88.73% and 97.89%, and the standard deviation is
between 0.74 and 3.57. Subject S5 also attains the highest mean accuracy for the
Naive Bayes classifier. Overall, for the CSP feature extraction technique, both the
classifier perform similarly to mean accuracy. Figure 3 shows the results obtained
from the assembled feature vector using the PyEEG toolbox with Random Forest
and Naive Bayes classifiers. We use the same hyperparameters to compare differ-
ent feature extraction techniques and classifiers, as shown in Table 2. Both the
classifiers perform worse as compared to CSP. The mean accuracy lies between
81.07% and 93.93% with RF and 64.73% and 83.93% with NB. Figure 4 shows
the confusion matrix for subject S5 (which achieved the highest overall mean
accuracy) using CSP and assembled feature vector with PyEEG. The diagonal
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(a) Random Forest (b) Naive Bayes

Fig. 3. Subject-wise accuracy using assembled feature vector (FV) using RF and NB
classifiers. The Horizontal line shows the baseline. Triangle, orange line, and circular
dots show the mean, median, and outlier values, respectively (Color figure online)

(a) RF-CSP (b) RF-FV

Fig. 4. Confusion Matrix for subject S5

elements show the number of correct classifications, while off-diagonal elements
show misclassification. We have a balanced dataset between the two classes, with
the highest number of correct predictions for CSP compared to PyEEG.

5.2 Cross-Subject Analysis

For the cross-subject case, we study two types of variability. Inter-subject: differ-
ences in brain activity across subjects. Intra-subject: differences in brain activity
for the same subject occurring in multiple repetitions of the same task.

Inter-subject: Table 3 shows the result for inter-subject variability where each
subject is taken as a test subject while the remaining subjects are in the training
set. Thus, we acquire the test set from a different subject which is not a part of
the training data. The performance evaluation is done using Random forest (RF)
and Naive Bayes (NB) on the feature vector from CSP and assembled feature
vector (FV) from the PyEEG toolbox. We compute the results using grid search



Towards Improving EEG-Based Intent Recognition in Visual Search Tasks 613

five-fold cross-validation. We use the same parameters for hyperparameter opti-
mization (shown in Table 2). Since we do not fix the random state of classifiers,
we iterate the experiment 5 times to compute mean accuracy and standard devi-
ation. The highest mean accuracy of 96.83% with RF-FV is achieved when S8

is taken as the test set with Si, i ∈ {1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15} as
train set. Hyperparameter tuning plays a significant role in achieving optimal
performance with an exhaustive and wide range of combinations. Overall, RF
with assembled feature vectors performs best for all subjects.

Table 3. Inter-subject accuracy (%) for each subject as a test set with remaining
subjects as train set

Classifier P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 Mean

NB-FV 78.75 88.30 66.74 54.24 62.74 82.12 54.61 65.68 78.61 51.73 65.61 73.30 58.25 76.27 68.37 68.35

± 0.14 ± 0.0 ± 0.14 ± 0.29 ± 0.40 ± 0.63 ± 0.15 ± 0.17 ± 0.17 ± 0.01 ± 1.01 ± 0.16 ± 0.14 ± 0.01 ± 0.01 ± 0.09

RF-FV 85.95 93.05 83.88 89.57 90.63 93.61 83.75 96.83 87.71 88.06 77.70 75.86 79.57 79.80 96.73 86.84

± 0.43 ± 0.65 ± 0.64 ± 1.32 ± 0.47 ± 0.58 ± 0.83 ± 0.53 ± 1.04 ± 0.56 ± 1.69 ± 1.95 ± 1.25 ± 0.78 ± 0.17 ± 0.25

NB-CSP 50.00 65.25 77.78 71.09 65.41 77.13 61.15 67.55 63.89 65.62 72.66 73.86 71.74 65.15 52.31 66.70

± 0.0 ± 0.0 ± 0.0 ± 0.15 ± 0.22 ± 0.0 ± 0.0 ± 0.14 ± 7.10 ± 0.0 ± 0.0 ± 0.13 ± 0.0 ± 0.0 ± 1.22 ± 0.48

RF-CSP 50.00 53.05 68.47 71.09 53.29 63.19 54.46 59.57 61.74 69.86 65.90 68.97 66.16 61.82 50.41 61.18

± 0.0 ± 6.1 ± 4.76 ± 0.84 ± 6.07 ± 6.99 ± 3.39 ± 4.06 ± 1.36 ± 2.18 ± 3.42 ± 2.71 ± 2.83 ± 1.98 ± 0.69 ± 0.97

Intra-subject: For intra-subject estimation, we use one complete session from
all the subjects and treat it as a test set while the remaining four sessions are in
the training set. Since we do not fix the random state of the classifiers, we iterate
5 times and, thus, demonstrate the results in terms of the mean and standard
deviation of classification accuracy. The same hyperparameters are tuned (shown
in Table 2). Table 4 shows the mean accuracy, RF with assembled feature vector
using PyEEG performs significantly better than other classifiers and feature
extraction techniques. These results also align with the inter-subject analysis
where RF-FV works best.

Table 4. Intra-subject mean accuracy (%)

Classifier FV CSP

RF 92.46 ± 0.40 82.06 ± 2.05

NB 67.66 ± 0.44 71.88 ± 0.23

6 Conclusion and Discussion

This paper proposes a classification pipeline to classify users’ intentions based
on EEG data. The final prediction of the model is highly dependent on the
methods used for data acquisition, preprocessing algorithms, computing fea-
tures, and the choice of the classification algorithm. We evaluated our pipeline
for subject-specific and cross-subject scenarios. In the case of the subject-specific
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analysis, our evaluation demonstrates that the CSP feature extraction method
performs best for both Random Forest and Naive Bayes classifiers achieving a
maximum mean accuracy of 97.18% and 97.89%, respectively. Our work is a sig-
nificant improvement compared to state-of-the-art, which makes our pipeline
applicable to a real-world setting. However, for PyEEG, our pipeline could
only achieve a maximum mean accuracy of 93.93% and 83.93% for Random
Forest and Naive Bayes classification algorithms, respectively. We also extend
our pipeline to adapt to the cross-subject scenario by combining the subject-
specific dataset. Our cross-subject model achieves the highest mean accuracy
of 96.83% and 92.46% for inter and intra-subject variability, respectively. The
implementation pipeline enables generalizing brain signals across different sub-
jects, capable of reducing the necessity of exhaustive subject-specific training
sessions and training processes with tedious calibration. We also recommend
using PyEEG with a Random Forest classifier since it generalizes well over all
the subjects while being comparable to other strategies for a subject-wise sce-
nario. In the future, we would like to extend our implementation approach with
a multi-modal intent recognition model for discovering users’ intentions with
complicated scenes. Additionally, it would be interesting to use data recorded
on different days from the same subject and handle this type of variability.

Limitations: In this study, we claim that our intent recognition pipeline is
generalized from trained subjects to the new unseen subject. However, we do
not test this with subjects from diverse age groups or subjects with special
conditions.
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