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Preface

Welcome to the proceedings of the 29th International Conference on Neural Information
Processing (ICONIP 2022) of the Asia-Pacific Neural Network Society (APNNS), held
virtually from Indore, India, during November 22–26, 2022.

The mission of the Asia-Pacific Neural Network Society is to promote active inter-
actions among researchers, scientists, and industry professionals who are working in
neural networks and related fields in the Asia-Pacific region. APNNS has Govern-
ing Board Members from 13 countries/regions – Australia, China, Hong Kong, India,
Japan, Malaysia, New Zealand, Singapore, South Korea, Qatar, Taiwan, Thailand, and
Turkey. The society’s flagship annual conference is the International Conference of
Neural Information Processing (ICONIP).

The ICONIP conference aims to provide a leading international forum for
researchers, scientists, and industry professionals who are working in neuroscience,
neural networks, deep learning, and related fields to share their new ideas, progress,
and achievements. Due to the current situation regarding the pandemic and international
travel, ICONIP 2022, which was planned to be held in New Delhi, India, was organized
as a fully virtual conference.

The proceedings of ICONIP 2022 consists of a multi-volume set in LNCS and
CCIS, which includes 146 and 213 papers, respectively, selected from 1003 submissions
reflecting the increasingly high quality of research in neural networks and related areas.
The conference focused on four main areas, i.e., “Theory and Algorithms,” “Cognitive
Neurosciences,” “Human Centered Computing,” and “Applications.” The conference
also had special sessions in 12 niche areas, namely

1 International Workshop on Artificial Intelligence and Cyber Security (AICS)
2. Computationally Intelligent Techniques in Processing and Analysis of Neuronal

Information (PANI)
3. Learning with Fewer Labels in Medical Computing (FMC)
4. Computational Intelligence for Biomedical Image Analysis (BIA)
5 Optimized AI Models with Interpretability, Security, and Uncertainty Estimation

in Healthcare (OAI)
6. Advances in Deep Learning for Biometrics and Forensics (ADBF)
7. Machine Learning for Decision-Making in Healthcare: Challenges and Opportuni-

ties (MDH)
8. Reliable, Robust and Secure Machine Learning Algorithms (RRS)
9. Evolutionary Machine Learning Technologies in Healthcare (EMLH)
10 High Performance Computing Based Scalable Machine Learning Techniques for

Big Data and Their Applications (HPCML)
11. Intelligent Transportation Analytics (ITA)
12. Deep Learning and Security Techniques for Secure Video Processing (DLST)



vi Preface

Our great appreciation goes to the Program Committee members and the reviewers
who devoted their time and effort to our rigorous peer-review process. Their insight-
ful reviews and timely feedback ensured the high quality of the papers accepted for
publication.

The submitted papers in the main conference and special sessions were reviewed
following the same process, and we ensured that every paper has at least two high-
quality single-blind reviews. The PC Chairs discussed the reviews of every paper very
meticulously before making a final decision. Finally, thank you to all the authors of
papers, presenters, and participants, which made the conference a grand success. Your
support and engagement made it all worthwhile.

December 2022 Mohammad Tanveer
Sonali Agarwal
Seiichi Ozawa

Asif Ekbal
Adam Jatowt
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Abstract. The Detrended Fluctuation Analysis is a widely used method
for analysis of non-stationary time series which has been applied to EEG
signals. However, few studies have applied this method to the assessment
of cognitive abilities in healthy groups, especially in the context of science
education. In this work, for the first time, the DFA method was applied to
analyze the EEG time series during physics problem solving. We studied
the DFA exponents on brain activation when individuals with different
learning progression were solving the physics problems, as well as the
relationship between DFA exponents and their performance. Statistical
analysis reveals that, excellent groups with the best learning progression
demonstrated the higher DFA exponents when compared the other two
groups. Since DFA provides correlations between time series in EEG, the
correlations are believed to be associated with model dynamical systems
which reflect sustained cognitive operations. The results reflected that
students in this group have developed the dynamic model systems of
physics concepts. They can extract relevant knowledge more accurately
and efficiently to build scientific models during problem-solving. The
application of DFA method in physics education context may deepen our
understanding of the neural basis of problem-solving ability and provide
a promising indicator of learning achievement.

Keywords: Physics problem solving · Electrophysiological ·
Detrended Fuctuation Analysis

1 Introduction

Problem-solving ability is widely regarded as a core skill and key competency in
science education. Problem solving is a higher order cognition process involving
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attention, reasoning, working memory, visual processing, semantic memory and
multisensory integration [1]. Despite the impressive amount of research devoted
to problem solving research in the field of science education, it is surprising that
little is known about the neural processes and brain activation during science
problem solving. In this case, research on neural features in science problem solv-
ing may have values in revealing neural correlates of knowledge representation
and scientific reasoning.

Previous studies on problem solving mainly focused on event-related changes
of EEG power, dynamic changes in EEG rhythm and neural representation
by function MRI [2–6]. Considering the sustained cognitive operations of the
problem-solving process, we presented the temporal correlations in neuronal
oscillations. Previous studies on the temporal dependency of neuronal activi-
ties have consistently showed that the fluctuations of neuronal signals at many
levels of nervous system are controlled by temporal correlations. These results
suggest that temporal correlation may represent a compromising indicator of the
competing demands of stability and information transmission in neuronal net-
works [7]. The Detrended fluctuation analysis method (DFA) is a widely used
method for analysis of non-stationary time series which has been applied to
EEG signals [8,9]. The DFA methods allows quantifying the presence of long-
and short-term correlations in time series. Until now, the DFA method has been
mostly used to distinguish between healthy and diseased human systems. How-
ever, few studies have applied this method to the assessment of cognitive abilities
in healthy groups, especially in the context of science education. In this work,
for the first time, the DFA method was applied to analyze the EEG time series
during physics problem solving. We studied the temporal correlations on brain
activation when individuals with different learning progression were solving the
physics problems, as well as the relationship between temporal correlations and
their problem-solving performance.

2 Methods

2.1 Participants

Fifty-five graduate students in Southeast University were recruited in the study.
According to their academic performance in physics, these students were divided
into three groups with various learning progression: excellent group (19 partic-
ipants; mean age = 20.63; SD = 1.50); moderate group (18 participants; mean
age = 21.28; SD = 2.32) and poor group (18 participants; mean age = 22.06; SD
= 2.12). All study procedures and research methods were carried out in accor-
dance with the Declaration of Helsinki (1964) by the World Medical Association
concerning human experimentation and were approved by the Research Ethics
Committee of Affiliated Zhongda Hospital, Southeast University, China.

2.2 Stimuli Materials and Procedure

Stimulus in this study were physics problems about the motion of a ball pass-
ing through a curved pipe. There were 160 non-repetitive physics problems for
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the participants to solve. Each trial of a task was shown by two-part stimu-
lus presentation: problem stimulus and answer stimulus including four possible
outcomes. As illustrated in Fig. 1, each trial started with the presentation of a
central fixation cross on the screen for a random of 1000–1500 ms. Then the
problem stimulus of a ball shooting into a curved pipe with certain velocity was
presented for 2000 ms. After that, the answer stimulus appeared and remained
on the screen for 5000 ms, the participants were required to choose the correct
answer from four options by pressing the responding reaction button. All trials
were presented in a random order for each participant and the task lasted approx-
imately 25 min. Participants were instructed to respond to answer stimulus as
correctly and quickly as possible.

Fig. 1. Schematic representation of an experimental trial.

2.3 EEG Data Acquisition and Data Preprocess

The EEG activity was recorded from 64 tin electrodes mounted in an elastic cap
(NeuroScan Inc., Herndon, Virginia, USA) according to the international 10–20
system. All electrode impedances were maintained below 5 kΩ. The EEG signals
were amplified and digitized using a band pass of 0.01–100 Hz and a sampling
rate 500 Hz.

After acquisition, EEG data were preprocessed under the EEGLAB and
MATLAB platform. EEG signals were re-referenced to the bilateral mastoids, fil-
tered with 30 Hz low-pass filter and a 0.1 Hz high-pass filter. trials were extracted
with the epoch of 3500 ms (1000 ms pre-stimulus and 2500 ms post-stimulus
intervals with baseline correction. Artifact rejection via independent component
analysis (ICA) was performed subsequently for each subject.

2.4 Detrended Fluctuation Analysis (DFA) and Scaling Exponents

The complex nature of the electrical brain activity results in a high degree of
spatial and temporal fluctuations in the EEG [10]. To understand the EEG
activity in a better way, it is important to characterize its fluctuations over
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different time scales. Detrended fluctuation analysis (DFA) can provide a scaling
exponent with a single metric. It is appropriate for nonlinear and non-stationary
physiological data such as EEG [9]. In our study, we used DFA to estimate
short-range temporal correlations (SRTCs) and long-range temporal correlations
(LRTCs) of EEG signals during physics problem solving.

The calculation process of DFA was divided into the following steps:
(1) Time series x(t) with length N , t = 1, 2, · · · , N , calculating the cumula-

tive deviation and converted to the new sequence:

y(t) =
t∑

i=1

(x(i) − x̄) (1)

where x̄ represents mean of time series: x̄ = 1
N

∑N
t=1 x(t).

(2) y(t) is divided into m non-overlapping intervals with equal length n, where
N is the interval length, namely the time scale, and m is the number of intervals
(or Windows), which is the integer part of N/n.

(3) The local trend yn(t) was obtained by the least square normal fitting for
each sequence.

(4) The local trend of each interval is removed for y(t), and the root mean
square of the new sequence is calculated:

F (n) =

√√√√ 1
N

N∑

t=1

[y(t) − yn(t)]2 (2)

(5) Change the size of window length n and repeat steps (2), (3) and (4) to
obtain the relationship between different window length n and its corresponding
average fluctuation F (n). If there is power law temporal correlation in time
series, there is a linear relationship in the logarithmic graph of F (n) and N ,
which is the temporal correlation phenomenon:

F (n) ∝ nα (3)

where α refers to scaling exponent of DFA. In this study, we set a short-range
correlation time window length with 0.02 to 0.2 s and a long-range correlation
time window length with 0.2 to 1 s. The value of α represents the correlation of
time series. Also, α1 refers to short-range correlation and α2 refers to long-range
correlation.

2.5 Data Analysis

For behavioral data, we considered two behavior measures: (1) Accuracy (ACC),
which is the percentage of correct responses phase for physics problems; and (2)
Reaction time (RT), which is the time delay from problem onset to key-press for
a correct response.

For scaling exponents of EEG data, we both selected electrodes FP1, FPZ,
FP2, F3, F1, FZ, F2, F4, FC1, FCZ, FC2, C3, C1, CZ, C2, C4, CP1, CPZ, CP2,
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P3, P1, PZ, P2, P4, PO3, POZ, PO4, O1, OZ, O2. Two-way repeated measures
analysis of variance (ANOVA) was performed on the α1 and α2, with group
(excellent, moderate, poor) as the between-participants factor and with within-
participant variable of channel. Furthermore, we set electrode site 1, 3; Z and 2,
4 to represent the left, middle and right hemisphere. We performed a two-way
repeated measures analysis of variance with group as the between-participants
factor and brain region as the within-participant factor. Greenhouse-Geisser cor-
rection was applied to correct for violations of the sphericity assumption when
appropriate. We used partial eta squared (η2) as the effect size estimate. All post-
hoc tests were Bonferroni-corrected. Finally, we performed exploratory correla-
tion analyses, computing Pearson’s R between the ACC and scaling exponents
α2 of 30 channels.

3 Results and Discussions

3.1 Behavior Results

The ACCs of responses phase to problems for three group (excellent, moderate,
poor) were 96.8% (SD = 0.03), 44.9% (SD = 0.11) and 19.3% (SD = 0.09),
respectively. For the RT, excellent group, moderate group and poor group were
1483.98 ms (SD = 412.23), 2520.64 ms (SD = 620.52) and 2507.68 ms (SD =
547.09), respectively. One-way ANOVA revealed that the ACCs of responses
was significantly affected by participant type, F (2, 52) = 405.31, p < .00. Post
hoc multiple comparisons showed that there were significant pairwise differences
between the three groups (ps < .00, adjusted). For the RT, the ANOVA revealed
a significant difference of three groups, F (2, 52) = 23.36, p < .00. Post hoc results
showed that there were significant differences between the excellent group and
the moderate group, the excellent group and the poor group (ps < .00, adjusted).
Our behavior findings indicated that there was a significant difference among
three groups of participant in terms of ACC and RT during physics problem
solving, and the higher the ACC of participants, the shorter the RT.

3.2 Short-Range Temporal Correlations (SRTCs: α1)

The group × channel ANOVA using α1 revealed a significant effect of channel,
F (3, 156) = 7.62, p = .0001, η2 = .0023, but the group effect failed to reach
statistical significant, F (2, 52) = .23, p = .79, η2 = .007. Specifically, the mean,
standard deviation and coefficient of variation of α1 were 1.31±.026 (1.98%) for
excellent group, 1.32±.035 (2.65%) for moderate group, and 1.32±.023 (1.74%)
for poor group. There was no significant interaction effect, F (6, 156) = .70,
p = .64, η2 = .004.

The group × brain region ANOVA showed a significant effect of brain region,
F (2, 86) = 13.04, p < .0001, η2 = .003. There was no group effect, F (2, 52) = .24,
p = .79, η2 = .008, and no significant interaction effect, F (3, 86) = 1.75, p = .16,
η2 = .0007. Post hoc paired t-test results showed that in the group of poor and
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moderate, the α1 of the right hemisphere and midline was significantly higher
than left hemisphere (t value : −3.16 ∼ −2.37, ps < 0.05, Cohen′s d : −.243 ∼
−.037, adjusted), but in the group of excellent, the α1 of the right hemisphere
was significantly lower than midline (t = 2.31, p = .044, Cohen′s d = .03,
adjusted), as shown in Fig. 2. For the α1, we observed no significant difference in
group. While, the three groups of participants differed on scaling exponents in
different brain regions, and the right hemisphere and midline were higher than
the left hemisphere.

Fig. 2. Differences in short-range correlations (α1) among three groups of participants
in different brain regions. ∗ : p < 0.05.

3.3 Long-Range Temporal Correlations (LRTCs: α2)

The group × channel ANOVA using α2 revealed a significant effect of group,
F (2, 52) = 3.82, p = .028, η2 = .010. Specifically, the mean, standard deviation
and coefficient of variation of α2 were 1.093±.040 (3.66%) for excellent group,
1.060±.054 (5.09%) for moderate group, and 1.053±.061 (5.79%) for poor group.
The effect of channel was not significant, F (3, 177) = .85, p = .47, η2 = .002, and
there was no significant interaction effect, F (6, 177) = .72, p = .64, η2 = .004.
Post hoc unpaired multiple comparisons showed that the α2 of excellent group
was higher than that of the poor and moderate groups in most channels in
the midline and right hemisphere, and some of channels in the left hemisphere
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(ps < 0.05, adjusted), as shown in Fig. 3. Besides, there were more channels
with significant differences in the poor group compared to the moderate group,
including three channels in the frontal lobe (FPZ, FP2, F2) and the O1 in the
occipital lobe.

Fig. 3. Differences in long-range correlations (α2) on different channels. Color marked
channels indicated a significant difference (p < 0.05). (a) Differences in α2 exponent
between excellent and poor was reflected in the channels marked blue color; (b) Dif-
ferences in α2 exponent between excellent and moderate was showed in the channels
with red color. (Color figure online)

The group × brain region ANOVA revealed a significant effect of group,
F (2, 52) = 3.85, p = .027, η2 = .012. There was no significant effect of brain
region, F (2, 77) = .87, p = .38, η2 = .0002, and no significant interaction effect,
F (3, 77) = .77, p = .50, η2 = .0003. Post hoc unpaired multiple comparisons
showed that the α2 of excellent group was higher in both midline and right
hemisphere than moderate and poor groups (ps < 0.05, adjusted), while the
difference between the poor and moderate groups was not significant (ps > 0.05,
adjusted), as shown in Fig. 4. Similar to the results of group × channel, the
differences in LRTC exponents were mainly in the regions of right hemisphere
and midline. Previous researches has demonstrated that attention and inhibitory
functions during problem solving were showed on EEG oscillations in the regions
of occipital-parietal and central region [11]. This interpretation was consistent
with our results.

3.4 Correlation Between DFA Exponents and Accuracy

The Pearson correlation test showed that there was a significant positive corre-
lation between the participants’ accuracy (ACC) and the long-range correlation
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Fig. 4. Differences in long-range correlations (α2) among three groups of participants
in different brain regions. ∗ : p < 0.05.

Fig. 5. Correlations between DFA exponents and accuracy in different brain regions.
The results in order from left to right was: left hemisphere, midline and right hemi-
sphere. (a) Correlation between the short-range correlation exponent (α1) and accu-
racy; (b) Correlation between the short-range correlation exponent (α2) and accuracy.
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(α2) of 30 channels, as well as the long-range correlation (α2) of three brain
regions. While there was no significant correlation with the short-range corre-
lation (α1) of 30 channels and the three brain regions. In Fig. 5 we gave the
specific results of correlation tests for the α1 and α2 of three brain regions and
ACC. The correlation coefficient between the α1 and ACC was close to 0, while
the correlation coefficient R between the α2 and ACC ranged from 0.32 to 0.37,
p < .05. The midline and right hemisphere was higher than left hemisphere.
According the correlation, we speculated that LRTC may predict the ACC of
physics problem solving for participants.

4 Conclusions

In the study, we applied the DFA exponents of EEG signals to investigate the
brain activation when students with different learning progression were solv-
ing physics problem. By calculating DFA exponents at short and long scales of
observation, we explored the scale properties of the EEG time series across the
different groups, as well as underlying cognitive mechanism. The present study
demonstrates that both of the DFA exponents in participants of three groups
were greater than 1 and less than 1.5, regardless of their various learning progres-
sion. These results showed that the EEG in three groups exhibited SRTC and
LRTC with power-law behavior. Previous researches suggested that a power-law
exponent was a sign of critical state, and a brain near a critical state may oper-
ate in a more flexible and adaptive way for information transfer, processing, and
storage [12]. In our study, this indicator reflected the more flexible extraction
and processing of information during physics problem solving correspondingly.

Furthermore, the results showed that excellent groups demonstrated differ-
ences in brain activity with a higher LRTC when compared the other two groups.
Thus, the excellent group showed a positive temporal dependence (i.e., auto-
correlation) within the signal during physics problem-solving. The long-range
temporal correlations were believed to be associated with model dynamical sys-
tems that show efficiency in learning, rapid information transfer and conception
network organization [13,14]. The results reflected that students with excellent
learning progression have developed dynamic model systems of physics concepts.
They can extract relevant knowledge more accurately and build scientific mod-
els efficiently during problem-solving. Moreover, the excellent group presented
higher DFA exponents in the regions of occipital-parietal and central region. It
implied that more attention and inhibition were inputted during physics prob-
lem solving for the excellent group. Meanwhile, we also find that a significant
positive correlation between LRTC exponents and ACC. It indicated that higher
LRTC exponents was advantageous for effective extraction and transmission of
information, thereby supporting solving physics problem correctly. This study
suggested that the application of DFA method in physics education context may
deepen our understanding of the neural basis of problem-solving ability and
provide a promising indicator of learning achievement.
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Abstract. The lateral prefrontal cortex (lPFC) plays crucial roles in
executive functions, including working memory and behavioral plan-
ning. The functions of lPFC require conservation of its limited neuronal
resources. Herein, we examined lPFC neuronal activities in monkeys dur-
ing a path-planning task that required behavioral planning and work-
ing memory. We analyzed the coding dynamics of final-goal neurons, and
found selective and sustained activities toward the final goal, reflecting
working memory. Putative excitatory pyramidal neurons shifted their
scheme from discrete to collective coding during the preparatory period of
the task, whereas inhibitory interneurons used a collective coding scheme.

Keywords: lateral prefrontal cortex · monkey · dynamic coding ·
economical coding · robust coding

1 Introduction

The lateral prefrontal cortex (lPFC) plays crucial roles in executive functions,
including working memory and behavioral planning [1–3]. To integrate infor-
mation from other cortical areas and make behavioral decisions in complex,
ever-changing environments, the limited neuronal resources of lPFC should be
conserved. However, this has not yet been demonstrated in neurophysiological
studies.

Early unit studies reported that the firing of lPFC neurons in monkeys reflects
working memory processes. In particular, neurons show persistent activity for
specific memories, such as the location of a displayed cue, even after it has
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disappeared [4–6]. Other studies reported that, based on their firing rate, lPFC
neurons encode for planned behaviors [7–9]. With advances in computing power
and analytical methods, several studies have demonstrated dynamic coding in
lPFC neurons; for example, neuronal activity indicates a representational shift
from behavioral goals to specific actions [10–12]. Furthermore, our previous study
found that dynamic coding neurons also encode specific actions in a resource-
saving manner, via “axis coding” of action direction [13].

Fig. 1. Behavioral task and classification of neurons. A. Path-planning task; each panel
indicates a single event. Green, red, and yellow squares indicate the current cursor posi-
tion, final-goal position, and movement initiation signal, respectively. The delay period
was divided into first (delay 1) and second (delay 2) halves. The path may be blocked
during the latter half. B. Distribution of spike width for all neurons. Interneurons and
pyramidal neurons were divided at the bottom of the distribution. C. Mean firing rates
of putative interneurons and pyramidal neurons; shaded areas indicate standard error
of mean (SEM). (Color figure online)
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In the present study, we evaluated whether lPFC neurons involved in work-
ing memory encode dynamic and resource-saving coding schemes. We found
that putative excitatory pyramidal neurons shift their scheme from discrete to
collective coding during the preparatory period of the path-planning task. In
comparison, inhibitory interneurons continue to operate under a collective cod-
ing scheme during the preparatory period. These results suggest that working
memory neurons in the lPFC encode memories in a dynamic, resource-saving,
and robust manner.

2 Methods

2.1 Subjects

The experiments were performed using two adult male Japanese monkeys
(Macaca fuscata). The experimental protocols were approved by the Animal Care
and Use Committee of Tohoku University (permit # 20MeA-2) and adhered to
the National Institutes of Health guidelines for the care and use of laboratory
animals, as well as with the recommendations of the Weatherall Report.

2.2 Behavioral Task and Neuronal Recording

The details of the experimental and analytical procedures have been described
previously [7,11–14].

The monkeys were trained to perform a path-planning task that required the
planning of multiple cursor movements, controlled using manipulanda, to reach a
goal within a maze (Fig. 1A). To begin the trial, the animals were required to hold
the two manipulanda in a neutral position for 1 s (initial hold). Subsequently, a
cursor was presented at the center of the maze (start display). One second later,
the position of goal cursor was presented for 1 s (final goal display). After a
delay (delay 1 or 2), the color of the cursor changed from green to yellow, which
served as the initiation signal (1st go). After a 1-s hold period, the next go
signal was presented (2nd go). When the cursor reached the final goal position,
animals received a reward (reward). To dissociate arm and cursor movements,
arm-cursor assignments were altered on completion of a block of 48 trials. In
> 89% of trials, monkeys reached the final goal within the minimum number of
steps (i.e., three).

We used conventional electrophysiological techniques to obtain in vivo single-
cell recordings from the lPFC region of the right hemisphere.

2.3 Data Analysis

The present study examined whether neuronal activities observed during a 4-s
preparatory period (i.e., start display, final goal display, delay 1, and delay 2)
were associated with selectivity for final or immediate goals. For this purpose,
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multiple linear regression analysis of the spike counts in each 100-ms time window
was conducted using the following formula:

firing rate = α + β × (final or immediate goals), (1)

where α is the intercept and β is the set of coefficients. Categorical factors for
the final goals were the four final-goal positions presented during the final goal
display period, while those for the immediate goals were the four positions of the
cursor at the first step. Therefore, three dummy variables were used for each final
and immediate goal. Accordingly, β included three coefficients. The analyses of
final and immediate goals were conducted separately. The F-value at each time
point was normalized to the significance level of the F -value (p = 0.05), and is
referred to as the normalized goal selectivity.

Neurons with immediate-goal selectivity higher than the significance level and
final-goal selectivity in a certain time period were regarded as having significant
immediate-goal selectivity, and defined as immediate-goal neurons. Final goal
neurons were defined as those with higher selectivity for final than immediate
goals through-out the preparatory period.

To explore the mechanisms underlying neuronal coding, putative interneu-
rons and pyramidal neurons were classified on the basis of the waveforms of their
action potentials [15–17]. Pyramidal neurons had a spike width of > 0.32 ms,
whereas interneurons had a spike width of < 0.32 ms (Fig. 1B). The mean firing
rate was significantly higher for interneurons than pyramidal neurons during the
preparatory period (Fig. 1C).

Table 1. Numbers of recorded neurons classified according to goal selectivity and cell
type.

Total Task-related (Final Immediate)

Pyramidal neurons (% of PN) 731 (82%) 322 (79%) 212 (82%) 110 (74%)

Interneurons (% of IN) 156 (18%) 85 (21%) 47 (18%) 38 (26%)

Total 887 407 259 148

3 Results

3.1 Database

We recorded neuronal activities in the lPFC of the right hemisphere of two
macaque monkeys during a path-planning task. The analyses only included neu-
ronal activity data recorded during correct trials completed within the mini-
mum number of steps. Using linear regression analysis, 887 well-isolated single
units were classified as final- or immediate-goal neurons based on the aforemen-
tioned criteria. In addition, units were classified as interneurons or pyramidal
neurons based on the spike shape (Table 1, Fig. 1B). During the preparatory
period, 148 immediate-goal neurons exhibited significant selectivity for imme-
diate goals, defined on the basis of the direction of cursor movements made by
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each monkey during the first cursor movement period. In addition, 259 final-
goal neurons exhibited significant selectivity for final, but not immediate, goals
during the same period. We focus on the detailed characteristics of final-goal
neurons (n = 259).

3.2 Example Neurons

Fig. 2. Representative examples of putative final-goal interneurons (A–C) and pyra-
midal neurons (D–F). A. Raster plots and spike density histograms of the neuronal
activity of the interneuron for the four final goals. LU, left-up; RU, right-up; LD, left-
down; RD, right-down. B. Time course of the final-goal selectivity of the neuron. C.
Final-goal directional tunings at the times indicated by the red and blue arrows in
B, respectively. Red arrow, preferred direction and amplitude of final-goal selectivity.
(Color figure online)

The left column of Fig. 2 shows a typical example of the activity of interneurons.
In this example, the neuronal firing rate was strongly modulated by the direction
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of the final goal displayed during the final goal display period, but the neuron
showed selective activity in the direction of the final goal during delay 2 (i.e.,
the latter half of the delay period in which some paths may be blocked). This
neuron exhibited the highest firing rate for the left-down final goal during the
preparatory period (Fig. 2A). These properties were evaluated using regression
analysis (Fig. 2B). The left-sided panel of Fig. 2C shows the firing rates associated
with four final goals at the time of highest final-goal selectivity during the final
goal display period (pale-red arrow in Fig. 2B). The goal-directional tuning was
vector-like; in particular, the left-down goal was highest, while its opposite, i.e.,
right-down goal, was lowest. This tuning property was preserved during the
delay 2 period (pale-blue arrow in Fig. 2B), as shown in the right-sided panel of
Fig. 2C.

The right column of Fig. 2 depicts the goal-directional tuning properties of a
representative pyramidal final-goal neuron, similar to the left column of Fig. 2.
Figure 2D illustrates the neuronal activity. The firing rate was increased when
the left-up final goal was presented during the final goal display period. However,
the tuning property changed during delays 1 and 2. In particular, the neuron
showed an increase in firing rate and changed its tuning to favor the left-down
final goal during the delay period. Figure 2E shows that there was a sustained
increase in final goal selectivity during the preparatory period. Similar to Fig. 2D,
Fig. 2F shows that the final goal tuning of this pyramidal neuron during the final
goal display period (pale-red arrow in Fig. 2E) changed from left-up to left down
during the delay 2 period (pale-blue arrow in Fig. 2E). These observations are
in contrast to those for the interneuron shown in the left column.

3.3 Dynamics of Final-Goal Representation at the Population Level

Figure 3A shows time-related changes in the mean normalized final goal selec-
tivity of interneurons (n = 47) and pyramidal neurons (n = 212). Interneu-
rons had high selectivity during the final goal display period, whereas pyrami-
dal neurons showed a gradual increase in selectivity during the delay periods.
For interneurons, the distribution of preferred final-goal was significantly biased
toward the left-down final goal (n = 36, p = 0.021, binominal test; left-sided
panel in Fig. 2B). This tendency was preserved during delay 2, i.e., the distri-
bution was biased toward left-sided goals (n = 20, p = 0.021, binominal test;
right-sided panel in Fig. 2B). By contrast, pyramidal neurons did not show a
biased distribution in terms of the preferred final-goal during the final goal dis-
play period (n = 128, p = 0.23, binominal test; left-sided panel in Fig. 2C),
whereas they exhibited significantly high and low distributions of the left-down
and right-up goals, respectively (n = 134, p = 3.4 × 10− − 5 for LD, p = 0.020
for RU, binominal test; right-sided panel in Fig. 2C).

Analysis of the mean LD-component of firing rate verified the aforementioned
observations (Fig. 3D). The LD-component is defined as the LD-RU axis compo-
nent of the vector in the final-goal directional tuning plot, as shown in Fig. 2 C
and F. The LD-component was calculated for each 100-ms time window and neu-
ron. Figure 3D demonstrates that interneurons exhibit biased firing toward the
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left-down goal compared to the pyramidal neurons during the final goal display
period.

Fig. 3. Dynamics of final-goal tuning in populations of interneurons and pyramidal
neurons. A. Time-development of mean normalized final goal selectivity. B,C. Distri-
bution of the preferred final goal of interneurons (B) and pyramidal neurons (C) at the
most significant time during the final goal display and delay 2 periods, respectively.
The type and degree of distribution bias are indicated by arrow direction and length,
respectively. D. The mean LD-component of the firing rate over time. Inset, definition
of the LD-component of firing rate. E. The mean normalized final-goal selectivity of
LD-preferring neurons during the delay 2 period (shaded area). F. Percentage of neu-
rons showing significant final-goal selectivity during the delay 2 and final-goal display
periods. The time periods of the significant differences are indicated by gray bars in
(A,D,E). ***, p < 0.001; **, p < 0.01; *, p < 0.5. (Color figure online)

Figure 3E and F presents the analysis of neurons that significantly preferred
the left-down goal during delay 2 (interneurons, n = 8; pyramidal neurons, n =
55). The analysis of mean normalized final-goal selectivity demonstrated strong
final-goal selectivity of interneurons during the preparatory period, while pyra-
midal neurons did not show strong final-goal selectivity during the final goal
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display period. However, pyramidal neurons exhibited an increase in final-goal
selectivity during the delay periods. The interneurons that significantly preferred
the left-down goal during the delay 2 period (n = 8) also exhibited significant
final-goal tuning during the final goal display period. In comparison, less than
half of the pyramidal neurons that exhibited significant left-down preference dur-
ing the delay 2 period showed significant final-goal selectivity during the final
goal display period (p = 0.0048, Fisher’s exact test; Fig. 3F).

4 Discussion

Fig. 4. Coding scheme representing the direction of the final goal. A. The four final
goals. B,C. Discrete vector coding scheme and corresponding preferred direction distri-
bution. D,E. Collective vector coding scheme and preferred direction distribution. F.
Pyramidal neurons dynamically shift coding schemes during the preparatory period.
Details are provided in text.
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We investigated the tuning dynamics of final-goal-selective neurons in the lPFC
of monkeys during a path-planning task. Neuronal firing was sustained during
the preparatory period, and was modulated by the direction of the final goal.
Putative interneurons showed a biased distribution in terms of the preferred
final-goal during the preparatory period, toward the left-down direction. By
contrast, the preferred final-goal distribution of putative pyramidal neurons was
distributed evenly among the four directions during the final goal display period,
whereas it was biased toward the left-down final goal during the delay 1 and 2
periods. The dynamic tuning and biased preferred final goal of these neurons
presumably contributes to the robust and economical coding achieved by lPFC,
as discussed below.

Final-goal neurons should express are the four directions of the final goal
(Fig. 4A). The simplest coding scheme for these four directions is probably the
discrete vector coding shown in Fig. 4B, where each direction is encoded by the
on/off activity of a certain neuronal population, hereinafter referred to as the
minimal coding unit. If all these minimal coding units are in the right hemi-
sphere lPFC from which we recorded neuronal activities, the distribution of the
preferred final goals is equal among the four directions, as shown in Fig. 4C.
The four final goals are represented by the activities of each minimal coding
unit. On the other hand, if the distribution of the preferred final goal is biased,
and particularly if it is biased toward a single goal direction (e.g., lower left in
our experiment), the coding scheme of the four directions is complicated and
requires certain assumptions to be met (Fig. 4D, E). First, the minimal coding
unit does not simply encode information in an on/off manner. That is, it is
assumed that the maximum response is in the lower left direction (i.e., the pre-
ferred direction), and the minimum response is in the upper right direction (i.e.,
the anti-preferred direction), and the intermediate response is in the other two
directions. This is a natural assumption based on the tunings of the neuronal
examples shown in Fig. 2C and F. Second, it is assumed that there is another
minimal coding unit. Importantly, we recorded neuronal activity from the right
hemisphere only. Therefore, it was hypothesized that neurons that prefer the
lower right goal predominate in the left hemisphere. For the two-dimensional
information related to four final goals, it is natural to assume the existence of a
minimal coding unit that encodes a direction at an angle of 90◦ relative to the
lower left. In the present study, the coding scheme suggested by the biased pre-
ferred direction distribution is referred to as collective vector coding. As shown
in Fig. 4D, in this scheme the four goals are represented by the activity patterns
of two minimal coding units.

The final-goal selective pyramidal neurons have a discrete vector coding
scheme early in the preparatory period, and a collective vector coding scheme
late in the preparatory period (Fig. 4F). Discrete vector coding may reflect the
situation where a minimal coding unit is directly driven by other cell groups,
and has the advantage of directly driving other cell groups (left panel in Fig. 4F).
However, several minimal coding units (four in the current study) are required,
and therefore do not contribute to the conservation of neural resources. On the



22 K. Sakamoto et al.

other hand, collective vector coding conserves neural resources and only two
minimal coding units were required in the present study. This coding scheme
may not be suitable for driving other neuronal groups. However, it may be suf-
ficient if contextual information is provided to other neurons (right-sided panel
in Fig. 4F).

Fig. 5. Collective coding schemes and influence of coding error on the final-goal repre-
sentation. A. L-D coordinate system. B. LD-RD coordinate system shown in Fig. 4D.
C. Coding error probability vs. the false representation rate of neighboring goals. The
details are presented in the text.

Although lPFC final-goal selective neurons have collective vector coding, it
is necessary to determine why it does not use two-dimensional representations
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of up-down and left-right axes. In Fig. 5A, we assumed the existence of minimal
coding units that prefer left and downward directions, respectively (hereinafter
referred to as the L-D coordinate system). The four final goals are expressed
as the combination of the on/off states of the activities. This coding scheme
is simpler and more natural than that used for the lPFC neurons, which is
presented schematically in Figs. 4D and 5B (hereinafter referred to as the LD-
RD coordinate system).

For the purpose of this discussion, we considered the coding error p of mini-
mal coding units. There is variability in the firing activity of real neurons even
under similar experimental conditions, so it is important to consider coding
errors. We also considered the probability that the neighboring final goals were
mis-encoded, to distinguish between similar behaviors. In the case of the L-D
coordinate system, the probability that neighboring final goals are accidentally
encoded, i.e., the false representation rate of neighboring goals, is 2p(1 - p), as
shown in Fig. 5A. In the case of LD-RD coordinate system, there are variations
in how coding errors occur. However, we considered a case where two out of three
possible error states of a minimal coding unit have a probability of p/2, as shown
in Fig. 5B. In this case, the rate of false representations, i.e., the rate at which
neighboring goals are accidentally encoded, is p2/2. There was no significant
qualitative change in the formula for the false representation rate of neighboring
goals in the other variants. Figure 5C shows how the false representation rate
of neighboring goals changes with the coding error rate of the minimal coding
unit. If the coding error rate of the minimal coding unit is low, the false repre-
sentation rate of neighboring goals would be lower in the LD-RD compared to
L-D coordinate system. These results suggest that the coding scheme adopted
by lPFC neurons robustly encode the information of final goals.

Previous studies showed that lPFC neurons not only exhibit dynamic repre-
sentations [10–13], but also use abstract and resource-saving coding schemes
[13,18] The present study showed that the coding scheme of lPFC neurons
is dynamic, resource-saving, and robust. The neuronal properties are useful
for decision-making and behavioral planning, because lPFC is responsible for
adapting to complex and ever-changing environments despite limited neuronal
resources.
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Abstract. Recently proposed dynamic functional connectivity (dFC)
approach, which focuses on the degree of spatial-temporal variability in
regional-pair-wise functional connectivity (FC), is able to detect neural
network alternations as the core neural basis of schizophrenia (SZ). More-
over, from the perspective of “emergence” in complex network science,
the importance of the establishment of a method to evaluate the neural
interactions in the whole brain network, not separating each pair-wise
interaction, is emphasized. We proposed the micro-state approach based
on the whole-brain instantaneous frequency distribution as one of these
methods; this approach opens a new avenue as an evaluation method to
detect cognitive function impairment and pathology. Thus, we hypothe-
sized that the application of this micro-state approach to neural activity
could detect the other aspects of brain network alterations for SZ pre-
viously elucidated in conventional FC and dFC. We applied the micro-
state approach to electroencephalography (EEG) signals of SZ patients
and healthy controls. The results revealed the alternation of dynamical
leading phase transitions between the frontal and occipital regions and
right and left hemispheric regions at the beta and gamma bands. This
alternation suggested the corpus callosum impairments and abnormal
enhancement of functional hub structure at the fast bands as topology
of whole brain functional network. Thus, our proposed micro-state app-
roach succeeded in detecting the state transition alternations concerning
SZ pathology. This approach might contribute in elucidating new aspects
of dFC, thereby resulting in the discovery of a biomarker for SZ.
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1 Introduction

Schizophrenia (SZ) is a severe, chronic, and intractable mental disorder char-
acterized by distinct positive symptoms, such as delusions, hallucinations, and
thought disorder, and negative symptoms, such as decreased or lost motivation,
emotional flatness, which impair cognitive function [1,2]. Early therapeutic inter-
vention has a significant impact on the prognosis [1]. Therefore, in addition to
the conventional diagnosis based on the medical interview, devising objective
and quantitative biomarkers is desirable to facilitate an early diagnosis. Discon-
nection of neural networks in SZ is an effective candidate for a biomarker of
SZ, since the disconnection of neural networks in brain results in SZ symptoms
according to the widely known disconnection hypothesis [3].

Studies based on electroencephalograms (EEGs) and functional magnetic res-
onance imaging (fMRI) have revealed that abnormalities in the interactions of
neural activity between brain regions, which is measured by functional connec-
tivity (FC) defined as synchronization/information flow of neural activity, reflect
the pathology of SZ [4] (reviewed in [5]). Particularly, the combination of EEG
signals with a high temporal resolution and phase synchronization approach
using the high spatial-temporal resolution by reducing the volume conduction
demonstrated the frequency-band and region-specific abnormality of FC in SZ,
i.e., SZ patients have reduced beta band FCs centered in the frontal region and
gamma band FCs throughout a wide-range of brain regions [6].

While, the temporal complexity of local neural activity in individual brain
regions strongly correlates with the global network structure of FC, such as
node degree and centrality [7,8]; therefore the complexity reflects the global
interaction of neural activity among a wide range of brain regions [6,9]. In SZ,
significant increases in complexity at slow temporal scales were identified in
the front-center-temporal regions [10]. This abnormal high complexity may be
attributed to the temporal disorganization of neural activity [10] (reviewed in
[11]). This complexity is also affected by age, symptoms, and medication [11].

In addition to FC and local regional complexity in neural activity, recent
findings of dynamic functional connectivity (dFC), defined by the degree of vari-
ation in the FC strength, demonstrated that dFC more accurately reflects the
cognitive abilities than does static FC in SZ [12]. Additionally, by combining
clustering and graph analysis methods with FC transitions in a time window,
spatial and temporal patterns of network dynamics in the whole brain have been
revealed [5,13]. In dFC evaluation by fMRI, temporal changes in the coherence
of blood oxygen level dependent (BOLD) signals in brain regions using sliding
time window analysis have been used [14]. Moreover, studies on dFC of EEG
and magnetoencephalogram (MEG) with high temporal resolution have been
conducted[15]. Considering the application of dFC to EEG and MEG, although
EEG and MEG have a higher temporal resolution than fMRI, the detection of
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instantaneous dynamics in the order of several milliseconds is challenging owing
to the sliding window process used in the dFC estimation methods [15]. To tackle
this issue, recent studies using a method called dynamical phase synchroniza-
tion (DPS), which is defined by the temporal complexity of instantaneous phase
difference of neural activity between regions, successfully detected moment-to-
moment network dynamics in dFC during aging by decomposing the EEG signal
[9].

The FC approach, including dynamic FC, focuses on pair-wise neural inter-
actions among complex brain interactions [6,9]. In the SZ, the degree of FC
at the resting state alternates; especially, in a default mode network (DMN)
exhibiting intrinsic activities, this alternation becomes significant [16]. However,
brain functions are produced in global and multiple neural activities, and not
only in local neural activity [17]. Several recent studies highlighted the impor-
tance of evaluating the brain from the perspective of “emergence” of complex
systems, where new functions are created through the interaction of multiple
elements [18]. “Emergence” research in complex network science have revealed
that merely capturing pair-wise neural interaction is insufficient for evaluating
complex neural network structures characterized as the brain [19]. Therefore, the
need to incorporate an integrated approach for capturing neural interactions of
the entire brain has been noted [18]. Considering one of these approaches, in our
recent research, from the viewpoint of “emergence”, a new micro-state method
based on the instantaneous frequency (called as IF micro-state) dynamics was
proposed, which enables the evaluation of the neural activity of the entire brain
rather than the pair-wise neural interaction between brain regions [20]. Subse-
quently, in a study on AD patients, this approach revealed that maintaining the
occipital leading phase was more difficult in the AD group than in the healthy
control group and its degree exhibits the correlation with cognitive function in
AD [20].

Thus, considering the fact that cognitive dysfunction is also a core symptom
in SZ, we hypothesized that our proposed IF micro-state approach, which can
evaluate the integration of the instantaneous frequency dynamic of the whole
brain without disassembling pair-wise neural interactions, would provide a new
understanding of the relationship between the network dynamics of SZ. To val-
idate our hypothesis, we define EEG signals as micro-states based on instan-
taneous frequencies in various frequency bands, and evaluated the dynamics of
state transitions.

2 Materials and Methods

2.1 Participants

This study employed the same participants as those in our previous study con-
cerning the abnormality of FC in SZ [6]. The SZ group consisted of 21 right-
handed participants.The age-and sex-matched healthy control group (HC) con-
sisted of 31 right-handed healthy participants. The demographic characteristics
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Table 1. Demographic characteristics of healthy controls (HC) and schizophrenia (SZ)
patients

HC SZ p-value

Male/female 16/15 11/10 0.9566

Age, year 27.9 (8.2) 28.1 (10.1) 0.9262

Duration of the illness, months NA 24.2 (36.2) NA

BPRS score NA 52.6 (13.2) NA

Values represent mean (SD).
Abbreviation: BPRS, Brief Psychiatric Rating Scale; SD, standard
deviation.

of the two groups are summarized in Table 1. Participants with major neurolog-
ical diseases, previous electroshock or significant head trauma, or a history of
drug or alcohol dependence were excluded. The HC participants were recruited
from among staff members at the Kanazawa University Hospital and their family
members. They had no personal or family history of psychiatric or neurologi-
cal diseases, as confirmed by both a self-reported past history and a psychiatric
examination of the present mental state using the axis I criteria of the Diagnostic
and Statistical Manual-Fourth Edition (DSM-IV). Patients in the SZ group were
recruited from the outpatients of Kanazawa University Hospital and met the cri-
teria for DSM-IV SZ at the time of the study, and were subsequently diagnosed
with SZ by a specialized clinical psychiatrist. The patients were diagnosed with
SZ by an expert clinical psychiatrist. No patient had been treated with neurolep-
tics before the EEG recording. The Brief Psychiatric Rating Scale (BPRS) was
used to assess the patient’s symptoms on the day of the EEG recording. The
data were approved by the Ethics Committee of Kanazawa University and were
conducted in accordance with the aims of the Declaration of Helsinki. Moreover,
all the participants agreed to participate in the study upon understanding the
study. Informed consent was obtained from the all the participants.

2.2 EEG Recordings

EEG data were recorded from 16 electrodes in accordance with the Interna-
tional 10-20 System: Fp1, Fp2, F3, F4, Fz, F7, F8, C3, C4, P3, P4, Pz, T5,
T6, O1, and O2. The reference electrode was placed in the linked earlobes, and
eye movements during the EEG recording were monitored using an additional
electrooculogram. The impedance at each electrode was maintained below 5kΩ.
EEG was obtained at a sampling frequency of 200 Hz with a band pass filter
of 1.5-60 Hz, and stored for offline analysis using an 18-channel system (EEG-
44189; Nihon Kohden; Tokyo, Japan). The participants were instructed to lie
down with their eyes closed in a soundproof, light-controlled, and electrically
shielded recording room; EEG was recorded for 10–15 min in a resting-state
condition. Artifacts (e.g., muscle activities, eye movements, or blinks) were visu-
ally identified and carefully excluded. One continuous 60-s artifact-free epoch
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was extracted from every participant. A PLI study in SZ demonstrated network
abnormalities in beta and gamma bands [6]. Therefore, we focused on the whole
brain IF micro-state of the beta and gamma bands. For each epoch, band-pass
filtering was performed to isolate the conventional frequency bands as follows:
beta (13-30 Hz), and gamma (30-60 Hz) bands. The first and last 5-s epochs
were eliminated from the analysis to avoid interference related to the band pass
filtering procedure.

2.3 Estimation of the Dynamic State Based on the Instantaneous
Frequency Distribution

We defined the state of brain activity by studying the dynamics of the instan-
taneous frequencies of EEG signals. Using the time series of the instantaneous
frequencies of the EEG signals; the following process [20] was used to estimate
the state of brain activity (Fig.1).

The Hilbert transform was used to estimate the instantaneous phase θ(t)
(−π ≤ θ ≤ π) for each frequency band. This instantaneous phase has a phase
noise called phase slip, which is a large deviation from the set frequency range.
Therefore, by performing median filtering, we obtained continuous instantaneous
frequencies IF (t) (−∞ ≤ IF (t) ≤ +∞) without phase slip. This method was
employed in our previous study [9]. Against this instantaneous frequencies IFi(t)
(i: electrode position), the frequency was Z-scored among all the electrodes. The
z-scored dIFi(t) of the HC and SZ groups were classified into k clusters by the
k-means method. Here, the center of the cluster was determined by the z-scored
dIFi(t) of HC. In this study, we set the cluster size to k = 2, 3, 4. We set these
cluster sizes to approximate the number of clusters generally used in micro-states
(reviewed in [21,22]).

2.4 Statistical Analysis

To evaluate the dynamic characteristics of state transitions classified by k-means,
we used the emergence probabilities of each state and its state transition prob-
ability. A t-test was used to evaluate the difference in the emergence proba-
bilities and the state transition probabilities between the HC and SZ groups.
A Benjamini-Hochberg false discovery (FDR) correction was applied to the t-
values for multiple comparisons of transition probabilities (size of p-values: k×k
state transitions × frequency bands), and for the emergence probabilities of IF
micro-state (size of p-values: k state × 2 frequency bands) with q < 0.05.

3 Results

The parts of (a) for Figs. 2, 3, and 4 demonstrate the group average for the
temporal mean dIFi(t) among the evaluation duration at the beta and gamma
bands, in the cases with cluster size k = 2, 3, 4, respectively, in the HC and SZ
groups. In the parts of (b) for Figs. 2, 3, and 4, the emergence probabilities and
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Fig. 1. (a) Estimation process for instantaneous frequency time-series of electroen-
cephalography (EEG) signals. (b) Process to determine the IF micro-state time series
of EEG signals.

Fig. 2. (a) Topographs of the mean values of the Z-scored frequency dIFi(t) in the
healthy controls (HC) and schizophrenia (SZ) groups based on the duration for each
state (#1 and #2) (cluster size k = 2, left and right parts exhibit beta and gamma
bands, respectively). In both groups, the region-specific leading phase, such as the
frontal and occipital leading, was confirmed. (b) Emergence probability of state #1 and
#2. The significant large difference between the HC and SZ groups for the emergence
probabilities were confirmed (q < 0.05), which is squared by a solid blue circle. (Color
figure online)

the t-values for these probabilities between the HC and SZ groups are shown.
Although common region-specific topological features between the HC and SZ
groups were observed, significant differences between the HC and SZ groups in
the emergence probability were identified. Particularly, in the case of cluster
size k = 2 (see Fig. 2), at both the beta and gamma bands, the states for the
frontal and occipital leading phases were confirmed. The emergence probability
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Fig. 3. (a) Topographs of the mean values of Z-scored frequency dIFi(t) in the HC and
SZ groups based on the duration for each state (#1, #2, and #3) (cluster size k = 3,
left and right parts exhibit beta and gamma bands, respectively). In both the groups,
region-specific leading phase, such as the right and left frontal and occipital leading,
was confirmed. (b) Emergence probability of states #1, #2, and #3. The significant
large difference between the HC and SZ groups for the emergence probabilities was
confirmed (q < 0.05), which is squared by a solid blue circle. (Color figure online)

Fig. 4. (a) Topographs of the mean values of the Z-scored frequency dIFi(t) in the HC
and SZ groups based on the duration for each state (#1, #2, #3, and #4) (cluster
size k = 4, left and right parts exhibit the beta and gamma bands, respectively). In
both the groups, region-specific leading phase, such as the right/left frontal and the
right/left occipital leading phase, was confirmed. (b) Emergence probability of state
#1, #2, #3, and #4. The significant large difference between the HC and SZ groups
for the emergence probabilities was confirmed (q < 0.05), which is squared by a solid
blue circle. (Color figure online)

for the frontal (occipital) leading phase of SZ significantly decreased (increased).
Considering cluster size k = 3 (see Fig. 3), at both the beta and gamma bands,
the states for the left frontal leading phase, the right frontal leading phase, and
the occipital (especially, left occipital in gamma band) leading phase were con-
firmed. The emergence probabilities of the gamma band for the left occipital
(right frontal) leading phase of SZ significantly decreased (increased). Consid-
ering cluster size k = 4 (see Fig. 4), at both the beta and gamma bands, the
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Fig. 5. (a) Mean values of the state transition probabilities for the beta band in the
healthy control (HC) and schizophrenia (SZ) groups. (b) t-value of the state transition
probabilities between the SZ and HC groups. A larger (smaller) t-value corresponds to
a higher (lower) probability of SZ compared to that for HC. The parts surrounded by
squares indicate the t-value satisfying the criteria of Benjamini-Hochberg false discovery
correction. The probabilities of the SZ group were significantly smaller q < 0.05 than
that of the HC group.

states for the left frontal leading phase, the right frontal leading phase, the left
occipital leading phase and the right occipital leading phase were confirmed. In
the beta band, the emergence probabilities for the right occipital leading phase
of SZ significantly decreased. In the gamma band, the emergence probabilities
for the left occipital leading phase of SZ significantly decreased; however, the
emergence probabilities for the left frontal and right frontal leading phase of SZ
significantly decreased.

The parts of (a) for Figs. 5 and 6 demonstrate the mean of the state transi-
tion probabilities of the HC and SZ groups in the beta and gamma bands, respec-
tively. The parts of (b) for Figs. 5 and 6 demonstrate the t-values of the state tran-
sition probabilities between the HC and SZ groups. Considering the beta band (see
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Fig. 6. (a) Mean values of the state transition probabilities for the gamma band in the
healthy control (HC) and schizophrenia (SZ) groups. (b) t-value of the state transition
probabilities between the SZ and HC groups. A larger (smaller) t-value corresponds
to a higher (lower) probability of SZ compared to that for HC. The parts surrounded
by squares indicate the t-value satisfying the criteria of the Benjamini-Hochberg false
discovery correction. The probabilities of the SZ group were significantly smaller q <
0.05 than that of the HC group.

Fig. 5), the state transition probability of SZ becomes significantly larger from the
occipital to the frontal leading phase state and smaller from the occipital to the
occipital in k = 2 case, larger from the occipital to the left frontal leading phase
state, and smaller from the occipital to the occipital in k = 3 case, larger from the
right occipital to the left occipital leading phase state, and smaller from the right
occipital to the right occipital in k = 4 case. Considering the gamma band (see
Fig. 6), the state transition probability of SZ shows significantly larger transitions
to the occipital leading phase state in k = 2, 3, 4 case; becomes smaller from the
frontal to the frontal and occipital leading phase state in k = 2, smaller from the
occipital and right frontal to the right frontal leading phase state in k = 3, and
smaller from the left occipital to the left frontal leading phase state in k = 4.
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4 Discussion and Conclusions

To reveal the neural network dynamics of the whole brain in SZ, we introduced a
method for estimating IF micro-states distribution of the whole brain using EEG.
Concerning the emergence probability of IF micro-state, the emergence proba-
bility for the state of the occipital (frontal) leading phase increased (decreased)
in the SZ groups and all the cluster sizes (k = 2, 3, 4). Furthermore, the alterna-
tion of the state transition probability in SZ between the frontal and occipital
leading phase state in the beta and gamma bands was observed in the case of
cluster size k = 2. Similarly, in the cluster size k = 3, 4, the alternation of the
state transition probability of SZ between the right and left hemispheric leading
phase state in the beta and gamma bands was observed.

We further discussed the reason for the region specific alternation of SZ in the
emergence probability and state transition probability. In the case of cluster size
k = 2, differences were found in the frontal-occipital regions of the emergence
and state transition probability. A previous study reported the enhancement of
hub structure centering at the occipital region in the FC of the fast frequency
components of the EEG signals in SZ [23]. The hub structure plays a role in the
integration of the neural information process [24]; therefore, the enhancement
of this hub structure affects the state occipital leading phase (see the result of
k = 4 at the beta band in Fig. 4(b), the result of k = 2, 3, 4 at the gamma band in
Figs. 2, 3, and 4(b)), especially, might induce the transition of the state occipital
leading phase (see the result of k = 2, 3 at the beta band in Fig. 5 and the result
of k = 2, 3, 4 at the gamma band in Fig. 6). Moreover, in the case of cluster
size k = 3, 4, differences of the state transition probability were found in the left
and right hemispheric alterations. Many studies have suggested a decrease in the
connectivity of the corpus callosum in SZ [25]. The observed alternation of state
transition between the left and right hemispheric is considered to be attributed
to this abnormality of the corpus callosum in SZ.

Our study had certain limitations. Previous studies of hub location and
node centrality reported reduced the average centrality across hubs, shorter path
lengths, and significantly weaker centrality within frontal regions [24,26]. The
hub integrates information; however, it is currently only undirected, such as the
PLI. The high transition probability to the occipital in the SZ IF micro-state
transitions could be attributed to the centrality and hub structures. However,
in order to correspond to the leading phase state transition in this study, the
directed hub structure in the FC detected by the directed connectivity measures
typified as directed PLI and transfer entropy should be considered. Moreover,
although MEG is less clinically adaptable than EEG, applying IF-micro-state to
MEG with high spatial resolution may lead more detailed characteristics than
one for EEG. Additionally, this study used the k-means method as the most
convetional clustering method for micro-state clustering; while, other methods
such as Ward’s method and furthest neighbor method may be used to capture
the other aspects of state transitions. Thus, these points should be dealt with in
future studies.
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In conclusion, despite the limitations, our proposed IF micro-state based on
the instantaneous frequency of the EEG approach succeeded in the detection
of state transition alternations concerning SZ pathology. This approach could
contribute in the elucidation of new aspects of dFC, which results in the estab-
lishment of a biomarker for SZ.
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Abstract. Although there were some works on analog neural networks for sparse
portfolio design, the existing works do not allow us to control the number of the
selected assets and to adjust the weighting between the risk and return. This paper
proposes a Lagrange programming neural network (LPNN) model for sparse
portfolio design, in which we can control the number of selected assets. Since
the objective function of the sparse portfolio design contains a non-differentiable
�1-norm term, we cannot directly use the LPNN approach. Hence, we propose
a new formulation based on an approximation of the �1-norm. In the theoretical
side, we prove that state of the proposed LPNN network globally converges to
the nearly optimal solution of the sparse portfolio design. The effectiveness of
the proposed LPNN approach is verified by the numerical experiments. Simula-
tion results show that the proposed analog approach is superior to the comparison
analog neural network models.

Keywords: Lagrange programming neural network · sparse portfolio
optimization · financial data · analog neural network · analog optimization

1 Introduction

The analog neural network approach for optimization received a lot of attention in
the last several decades. The pioneering works of analog models date back to the
1980s [1,2]. In [1], the Hopfield model was proposed for several optimization prob-
lems. In [3], the analog neural approach was demonstrated to be able to solve various
quadratic optimization problems. Also, it is widely utilized in many optimization prob-
lems, such as feature selection [4] and sparse approximation [5]. Nevertheless, many
existing models were developed for solving a set of particular problems.

The Lagrange programming neural network (LPNN) approach [5–7] is a general
solver for various constrained optimization problems. Recently, the LPNN approach
was adopted in many new areas, such as sparse approximation [5], robust target local-
ization in multi-input multi-output and time-difference-of-arrival systems [6]. In these
signal processing applications, the LPNN-based solver achieves comparable or better
performance in comparison with numerical methods.
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M. Tanveer et al. (Eds.): ICONIP 2022, LNCS 13624, pp. 37–48, 2023.
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As a cornerstone of modern finance, portfolio optimization [8,9] is a key topic. It
aims at selecting the assets to be invested and determining the percentages of invest-
ments on the selected assets. A classical approach for asset allocation is the mean-
variance (MV) portfolio selection model [8,9]. Since a dense portfolio in the MVmodel
creates some difficulties in asset management and high transaction costs, one of the
research directions is to construct a sparse portfolio.

There were some works using continuous time neural networks [10,11] for sparse
portfolio design, which are the constrained pseudoconvex optimization (CPO) [10] and
the collaborative neurodynamic optimization (CNO) [11]. However, their formulations
have some limitations. They do not allow users to control the number of the selected
assets and to tune the weighting between risk and return. Hence it is interesting to
explore new neural network models to overcome the limitations.

This paper introduces a neural model, based on the LPNN concept, for the sparse
portfolio design. To achieve sparsity, there is an �1-norm penalty term in the objective
function. Since the �1-norm term is nondifferentiable, we propose a new formulation
of the LPNN framework based on an approximation of the �1-norm. On the theoretical
side, we show that the equilibrium point of the LPNN model is the optimal solution
of the sparse MV model. In addition, we show that the state of the proposed LPNN
network globally converges to the equilibrium point of the LPNN model. The effec-
tiveness of the proposed LPNN approach is verified by numerical experiments on three
data sets: Kenneth French 49 Industry (49Ind), 100 Fama French (100FF) and Standard
& Poor’s 500 (S&P 500). From the experimental results, there are no significant dif-
ferences between our analog approach and the comparison digital method. Also, our
method is superior to the two mentioned analog models, CPO and CNO.

The rest of this paper is arranged as follows. Section 2 presents the MV model and
the Lagrange programming neural network. The proposed LPNN-based algorithm for
portfolio optimization is given in Sect. 3. Section 4 includes the experimental results.
Finally, conclusions are presented in Sect. 5.

2 Background

Portfolio Optimization
Consider n risky assets and the daily return matrix RRR ∈ R

D×n, where each row vector
in RRR is the return vector in a particular day. Let μ ∈ R

n and C ∈ R
n×n be the mean

return vectors and covariance matrix of return vectors, respectively. The classical MV
model is given by:

min
www

wwwTCwww − γμTwww, s.t. 111Twww = 1, (1)

where www = [w1, . . ., wn]T ∈ R
n is the portfolio weight vector, γ is the risk preference

of an investor, and 111 ∈ R
n is a vector whose elements are ones. Element wi represents

the percentage of investment in the i-th assets. The values ofwi’s can negative. Note that
“wi < 0” means that short-selling is performed on the ith asset. The optimal solution
of (1) is usually a dense vector. Also, the obtained weights are sensitive to the estimation
errors and extreme samples inRRR. Some researchers suggest adding an �1-norm penalty
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term, ‖xxx‖1, into the objective function. The modified MVmodel becomes the following
non-smooth constrained optimization problem:

min
www

wwwTCwww − γμTwww + ρ‖www‖1, s.t. 111Twww = 1, (2)

where ρ > 0 is the penalty parameter. In (2), the �1-norm term is to compensate the
effect of outliers and to limit the number of the selected assets. Although the constrained
optimization problem, stated in (2), contains a non-differential term, we can solve it
using the alternating direction method of multipliers (ADMM) concept [12].

Lagrange Programming Neural Network
In the analog neural approach, we solve an optimization problem by deriving a num-
ber of continuous time differential equations. We use a number of neurons to hold the
values of the decision variables of the optimization problem. Those differential equa-
tions manages the state update of the neurons. After the neurons’ state converges to an
equilibrium state, we obtain the solution from the state of the neurons.

The LPNN approach aims at solving the following optimization problem:

min
xxx

f(xxx), s.t. h(xxx) = 0, (3)

where xxx ∈ R
n is the collection of decision variables, f : Rn → R is the objective

function, and h : R
n → R

m describes the m equality constraints. When f and h
should be twice differentiable, we can define the Lagrangian function:

L(xxx,λ) = f(xxx) + λTh(xxx), (4)

where λ ∈ R
m is the Lagrange multiplier vector. In a LPNN, there are two classes of

neurons, namely, variable neurons and Lagrange neurons. The variable neurons hold
the decision variable vector xxx, while the Lagrange neurons hold multipliers vector λ.
The dynamics of those neurons are defined by

dxxx

dt
= −∇xxxL(xxx,λ), and

dλ

dt
= ∇λL(xxx,λ). (5)

3 �1-LPNN for Sparse Portfolio Selection

3.1 Development of �1-LPNN

Since the �1-norm term in (2) is nondifferentiable, we cannot directly explore the LPNN
concept for sparse portfolio selection. To handle the nondifferentiable issue, we utilize
an approximation:

‖www‖1 =
n∑

i=1

|wi| ≈
n∑

i=1

ln(cosh(αwi))
α

, (6)

where α should be a large positive number.
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Fig. 1. Convergence examples of �1-LPNN with γ = 0.001.

One may concern that the approximation of ln(cosh(αwi))
α is complicated and would

be difficult to implement in an analog circuit. In fact, as shown in the rest of this section,
with this approximation, we only need to implement the derivative of this approxima-
tion, i.e., tanh(αwi). Activation function tanh(·) is a commonly used activation func-
tion in the neural network community.

With the approximation, the sparse portfolio optimization (2) becomes

min
www

wwwTCwww − γμTwww +
ρ

α

n∑

i=1

ln(cosh(αwi)), s.t. 111Twww = 1. (7)

To explore the LPNN concept, we construct the Lagrangian of (7):

L(www, λ) = wwwTCwww − γμTwww + λ(111Twww − 1) +
ρ

α

n∑

i=1

ln(cosh(αwi)), (8)

where λ ∈ R is the Lagrange multiplier. Applying (5) on (8), we can define the dynam-
ics for (7) as follows:

dwww

dt
= −∇wwwL(www, λ) = −(2Cwww − γμ + ρ tanh(αwww) + λ111), (9a)

dλ

dt
= ∇λL(www, λ) = 111Twww − 1. (9b)

Figure 1 shows the dynamics of the LPNNmodel on the 100FF dataset. The datasets
are described in Sect. 4. It is observed that the network can settle down within 100
characteristic times.

3.2 Properties of the Sparse MV Problem and �1-LPNN

Before we present the convergence properties, we first investigate how the equilibrium
point relates to the optimal solution of the optimization solution. Since the sparse MV
problem stated in (7) is convex, from basic optimization theories, we have the following
lemma.

Lemma 1. A point www∗ is an optimal solution of the sparse MV problem, if and only if,
there exists a λ∗ (Lagrange multiplier), such that

2Cwww∗ − γμ + ρ tanh(αwww) + λ∗111 = 111, (10a)

111Twww∗ − 1 = 0. (10b)
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In Lemma 1, (10) tells us the Karush Kuhn Tucker (KKT) conditions of the sparse MV
problem. Since the problem is convex, the KKT conditions are sufficient and necessary.
That means, if there exists {www∗, λ∗} satisfying (10), thenwww∗ is the optimization solution
of the sparse MV problem.

For the proposed �1-LPNN model, at the equilibrium, we have

dwww

dt
= 000 and

dλ

dt
= 0. (11)

Hence, we have the following lemma to describe the relationship between the optimal
solution of the sparse MV problem and the equilibrium point of the �1-LPNN.

Lemma 2. A point {www∗, λ∗} is an equilibrium point of the �1-LPNN, if and only if, it
is the optimal solution of the sparse MV problem.

Proof: Let {www∗, λ∗} be an equilibrium point of the �1-LPNN. From (9) and (11), at this
point, we have

2Cwww∗ − γμ + ρ tanh(αwww) + λ∗111 = 111, (12a)

111Twww∗ − 1 = 0. (12b)

Clearly, (12) is the same as the KKT conditions of the sparse MV problem, i.e., (12)
is the same as (10). Hence, we conclude that {www∗, λ∗} is an equilibrium point of the
�1-LPNN, if and only if, it is the optimal solution of the sparse MV problem. The proof
is completed. �

3.3 Global Stability

The aforementioned subsection only tells us that an equilibrium point of our LPNN
model is the optimal solution. But it does not tell us whether the state of the network
converges to the optimal solution (equilibrium point) or not. Since the problem, stated in
(6), is convex, the optimal solutions {xxx∗, λ∗} exist. In addition, from Lemmas 1 and 2,
any optimal solution corresponds to an equilibrium point. Hence, if we can prove that
the neurons’ state, according to (9), converges to an equilibrium, then the neurons’ state
converges to the optimal solution.

The rest of this section will prove that the neurons’ state, according to (9), converges
to an equilibrium. Mathematically, the convergence means that as t → ∞, www(t) → www∗

and λ(t) → λ∗ . Our proof has the following key points:

1. We define a scalar function V (www, λ).
2. This function is lower bounded and is radially unbounded.
3. We then prove that the time derivative V̇ (www, λ) = dV

dt = 0 for {www, λ} = {xxx∗, λ∗},
and that V̇ (www, λ) = dV

dt > 0 for {www, λ} �= {xxx∗, λ∗}.
4. From the well known Lyapunov theory, the state for any initial state {www(0), λ(0)},

as t → ∞, {www(t), λ(t)} → {www∗, λ∗}.
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Lyapunov function:
For our LPNN model, we define the following Lyapunov function V (www, λ):

V (www, λ) =
1
2
‖2Cwww − γμ + ρ tanh(αwww) + λ111‖22 +

1
2
‖111Twww − 1‖22

+
1
2
‖www − www∗‖22 +

1
2
‖λ − λ∗‖22. (13)

Clearly, V (www, λ) > 0. Also, {www, λ} is an equilibrium point, its corresponding V is
equal to zero. Thus V (www, λ) is lower bounded. Besides, as |www| → ∞ and |λ| → ∞,
V (www, λ) → ∞. That implies that V (www, λ) is radially unbounded.

Time derivative of Lyapunov function:
We separate the Lyapunov function V (www, λ) into two parts:

V (www, λ) = V1(www, λ) + V2(www, λ), (14a)

V1(www, λ) =
1
2
‖2Cwww − γμ + ρ tanh(αwww) + λ111‖22 +

1
2
‖111Twww − 1‖22, (14b)

V2(www, λ) =
1
2
‖www − www∗‖22 +

1
2
‖λ − λ∗‖22. (14c)

The derivative of V (www, λ) w.r.t. time is

V̇ (www, λ) = V̇1(www, λ) + V̇2(www, λ),

=
[
∂V1(www, λ)

∂www

]T
dwww

dt
+

[
∂V1(www, λ)

∂λ

]T
dλ

dt

+
[
∂V2(www, λ)

∂www

]T
dwww

dt
+

[
∂V2(www, λ)

∂λ

]T
dλ

dt
. (15)

Let

ggg = 2Cwww − γμ + ρ tanh(αwww) + λ... (16)

Thus, dwww
dt = −ggg. The derivative V̇1(www, λ) w.r.t. time is given by:

V̇1(www, λ) = −gggT(AAAggg + (111Twww − 1)111) + (111Twww − 1)gggT111 = −gggTAAAggg, (17)

whereAAA = 2C+ αρBBB is positive definite, whereBBB is a diagonal matrix with diagonal
elements equal to “1 + αρ tanh(αwi)”.

For V̇2(www, λ), we have:

V̇2(www, λ) = −gggT(www − www∗) + (111Twww − 1)(λ − λ∗). (18)

Based on (12), V̇2(www, λ) can be rewritten as

V̇2(www, λ) = −(www−www∗)T (2C(www−www∗)+ρ(tanh(αwww)−tanh(αwww∗))+(λ−λ∗)111)
+111T(www−www∗)(λ−λ∗)

= −2(www−www∗)TC(www−www∗)−ρ(www−www∗)T (tanh(αwww)−tanh(αwww∗)) . (19)

Now we consider three cases of {www, λ}.
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Fig. 2. Illustration of rolling windows.

• {www, λ} = {www∗, λ∗}:
From (12) and (16), ggg becomes a zero vector. Thus, from (17) and (19) V̇1(www∗, λ∗) =
V̇2(www∗, λ∗) = 0. That is, V̇ (www∗, λ∗) = 0.

• {www = www∗, λ �= λ∗}:
In this case, {www, λ} is not an equilibrium point. Since www = www∗, we have dλ

dt = 0
(from (12b)), and V̇2(www∗, λ) = 0. However, as λ �= λ∗ and the point is not an
equilibrium point, we have ggg �= 0 and V̇1(www∗, λ) < 0 (from (17)), and V̇ (www∗, λ∗) <
0. Note thatAAA is positive definite.

• {www �= www∗}:
Clearly, for www �= www∗, we have ggg �= 0 and V̇1(www, λ) < 0. Since tanh(·) is a strictly
monotonic function, we get −ρ(www−www∗)T (tanh(αwww)−tanh(αwww∗)) < 0. Hence,
V̇2(www, λ) < 0. It can be seen that V̇ (www, λ) = V̇1(www, λ) + V̇2(www, λ) < 0.

From the above cases, we can conclude that V̇ (www, λ) < 0 for {www, λ} �= {www∗, λ∗}
and V̇ (www∗, λ∗) = 0. In addition, V (www, λ) is lower bounded and radially unbounded.
Therefore, V (www, λ) is a Lyapunov function for (9). The analog system has global
asymptotic stability.

4 Experiments

This section has two objectives. The first one is to verify the effectiveness of our pro-
posed LPNN method. Since we use an approximation in our LPNN method. The pur-
pose of this section is to verify whether the performances of LPNN are similar to that
of the digital numerical algorithm �1-ADMM [8,12].

The second objective is to compare the performance of our LPNN with some exist-
ing analog models. Although there are no other analog models for the sparse MV prob-
lem stated in (2), there are other analog models, CPO [10] and CNO [11], for sparse
portfolio design. Hence, we compare the performance of LPNN with the CPO and
CNO. Note that the formulations of the two comparison models do not allow us to
control the number of the selected assets and to tune the weighting between risk and
return.

4.1 Settling

We consider three real-world datasets: 49Ind, 100FF and S&P500, to verify our pro-
posed model. In the 49Ind and 100FF datasets, there are 2788 trading days (3 Jan. 2005
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to 29 Jan. 2016)1. The S&P500 contains trading days 1699 days (1 May 2009 to 29
Jan 2016)2. In data preparation, suspended and newly enlisted assets within the time
period are excluded. Therefore, there are 49, 100 and 414 assets in the 49Ind, 100FF
and S&P500 datasets, respectively.

We use the rolling window approach in [8], shown in Fig. 2. We use a training
window with 500 days data to generate the portfolio and then use the following 100/200
days data to evaluate its out-of-sample performance. Here the test window size is called
as “rebalancing period”.

For the LPNN approach and �1-ADMM, we consider three risk preferences: γ =
{0.001, 0.005, 0.01}. The penalty parameter ρ ranges from 10−6 to 10−4 for 49Ind and
100FF, and ranges from 10−7 to 10−4 for S&P500.

Two performance indicators are used for evaluation. One is the mean daily return
(MDR) (mean daily return of test periods), denoted as μ. For the τ -th testing window,
let rrrτ ∈ R

n be the daily return vector over the testing period, where [rrrτ ]i is the daily
return for holding the i-th assest for ltest days. The MDR is defined as

μ =
1

Nw

Nw∑

τ=1

yyyT
τ rrrτ , (20)

where Nw is the number of testing periods.
Another one is the Sharpe ratio, denoted as S. In finance management, a higher

return usually results in a higher risk (variation of the returns). The Sharpe ratio is an
indicator that balances the risk and return, given by

S =
μ

σ
, where σ =

√√√√ 1
Nw − 1

Nw∑

τ=1

(yyyT
τ rrrτ − μ)2, (21)

where σ is the standard derivation of daily returns, i.e., the variation of returns.
In finance management, for two portfolios with the similar return, we should select

the one with a higher Sharpe ratio. Similarly, for two portfolios with the similar Sharpe
ratio, we should select the one with a higher return.

4.2 Sparsity

The sparse portfolio design is a kind of multi-objective optimization problems. A good
portfolio should be with a small number of assets, a high return, and a high Sharpe ratio.
This subsection studies the effect of the regularization ρ on the number of the selected
assets.

Since the objective formulation of our LPNNmodel is the same as the digital numer-
ical algorithm �1-ADMM [8], the properties of LPNN should be the same as those of
the �1-ADMM. A property of the sparse MV problem is that we can use the regular-
ization parameter ρ to control the number K of the selected assets. When we increase

1 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french.
2 https://finance.yahoo.com.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french
https://finance.yahoo.com


Sparse Portfolio Optimization Based on LPNN 45

10-6 10-5 10-4
10

20

30

40

50
49Ind with rebalancing period = 100

10-6 10-5 10-4

20

40

60

80
100FF with rebalancing period = 100

10-7 10-6 10-5 10-4
0

100

200

300

400

500
S&P500 with rebalancing period = 100

10-6 10-5 10-4
10

20

30

40

50
49Ind with rebalancing period = 200

10-6 10-5 10-4
0

20

40

60

80
100FF with rebalancing period = 200

10-7 10-6 10-5 10-4
0

100

200

300

400

500
S&P with rebalancing period = 200

Fig. 3. Sparsity parameters versus the number of the selected assets.

ρ, the number K of the selected assets becomes small. It should be noticed that the
formulations of the CPO and the CNO models do not allow us to control the number of
the selected assets.

Figure 3 shows the regularization parameter ρ versus the number K of the selected
assets. Since we use the sliding window concept, the number of the selected assets
in the resultant portfolios are not integers. It can be seen that as we increase ρ, the
numberK of the selected assets gradually decreases. On the other hand, varying the risk
parameter γ and the rebalancing period does not affect the number K of the selected
assets. From the figure, there are no significant differences among the LPNN and �1-
ADMM. It is because these two algorithms come from the same formulation. Also, the
figure confirms that the solutions obtained from our LPNN model are similar to those
obtained from the digital �1-ADMM algorithm.

Since the formulations of the CPO and the CNO models do not allow us to control
the number of the selected assets, the numbers of the selected assets in the CPO and the
CNO models are constants for a setting. For example, in the S&P500 dataset with the
rebalancing period of 100 days, the numbers of selected assets in the CPO and the CNO
models are 32.8 and 29.4, respectively.

4.3 Performance: Verification and Comparison

Figures 4 and 5 show the return and Sharpe ratio under various settings. From the fig-
ures, we can observe that in terms of return and Sharpe ratio, there are no significant
differences between our proposed analog LPNN method and the �1-ADMM method (a
digital numerical method). Hence, we can conclude that our analog LPNN method is a
good alternative for sparse portfolio optimization.

In the rest of this subsection, we discuss the influence of settings on the performance
indicators (return and Sharpe ratio), and the comparison between our LPNN model and
the two comparison analog models (CPO and CNO).
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Return and Sharpe Ratio. For the daily return, there is no general trend on various
values of K. For instance, in the 49Ind dataset, using less assets leads to a better daily
return, as shown in the first row of Fig. 4. However, for the 100FF dataset and the SP500
dataset using more assets leads to a better daily return, as shown in the second and third
rows of Fig. 4. In general, increasing the risk parameter γ leads to better return.

For the Sharpe ratio shown in Fig. 5, there is no a general trend on various values
of K and γ. For example, in the “49Ind dataset” with rebalancing periods of 100 or
200, in order to maximize the Sharpe ratio, we should use around 10–20 assets, i.e. K
around 10–20, and should set γ to 0.01, as shown in the first row of Fig. 5. On the other
hand, in the “S&P500 dataset” with rebalancing period of 200, in order to maximize
the Sharpe ratio, we should use around 100–150 assets and set γ to 0.001, as shown in
the third row of Fig. 5.

In the sparse portfolio design, there are three goals: minimizing the number of the
selected assets, maximizing return and maximizing Sharpe ratio, Investors have their
preferences on those goals. For example, for the “S&P500 dataset”, if an investor would
like to maximize the Sharpe ratio, they should use around 100–150 assets with the
rebalancing period equal to 200 days, as shown in the third row of Fig. 5.

Comparison with Other Analog Models. Now we focus on the discussion on the
comparison among the three analog models: our LPNN mode, CPO and CNO. In the
“100FF dataset”, shown in Figs. 4–5, our two proposed LPNN model is much better
than the CNO and CPO models. For example, with the rebalancing period of 100 days,
the return and Sharpe ratio of CNO are 0.0166 % (the second row of Fig. 4) and 0.1202
(the second row of Fig. 5), respectively. They are much lower than those of our LPNN
model. For the CPO model, the return and Sharpe ratio are 0.0412 % (the second row
of Fig. 4) and 0.3237 (the second row of Fig. 5), respectively. They are much lower than
those of our models with γ equal to 0.005 and 0.01.

In the “49InD dataset”, the return and the Sparpe ratio of CPO are pretty low and
we focus on the discuss on the comparison between CNO and our LPNN model. With
the rebalancing period of 100 days, the return and the Sharpe ratio of CNO are 0.03576
% and 0.4378, respectively, as shown in the first row of Fig. 4 and the first row of Fig. 5.
Also, the number of the selected assets from the CNO is around 18. Clearly, from the
figures, our LPNN model has better performance with less assets. With the rebalancing
period of 100 days, when we use 10 assets and set γ to 0.01 in our LPNN model, the
return and the Sharpe ratio of our model are 0.037 % and 0.5227, respectively, as shown
in the first row of Fig. 4 and the first row of Fig. 5. These values are better than those of
CNO.

In the “S&P500 data set”, again, the return and the Sparpe ratio of CPO are pretty
low. Hence we focus on the comparison between CNO and our LPNN model. For the
rebalancing period of 100 days the return and the Sharpe ratio of CNO are equal to
0.0427 % and 0.61825, respectively, as shown in the first row of Fig. 4 and the first
row of Fig. 5. Also, the number of the selected assets of CNO is around 30. Clearly,
the performances of our model are better than those of CNO. For instance, for the
rebalancing period of 100 days in our LPNN model, we can use 38 assets with γ equal
to 0.01. With this setting, the return and the Sharpe ratio of our LPNN model are equal
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Fig. 4.Mean Return. The first row presents the results with rebalancing every 100 days, while the
second row presents the results with re-balancing every 200 days.
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Fig. 5. Sharpe Ratio. The first row presents the results with rebalancing every 100 days, while the
second row presents the results with re-balancing every 200 days.

to 0.0530 % and 0.8314, respectively. Of course, if investors would like to use more
assets, such as around 120 assets, then the return and the Sharpe ratio of our LPNN are
much better. They are equal to 0.1122 % and 1.6874, respectively.

5 Conclusion

This paper presented a LPNN-based approach for solving the sparse MV problem. We
showed that the proposed analog algorithm is able to find out the optimal solution of the



48 H. Wang et al.

sparse MV problem, and that our algorithm is globally convergent. Numerical exper-
iments were carried out to verify our proposed algorithm based on three commonly
used datasets. Also, the performance of our proposed approach is better than that of the
analog comparison methods. In the future, we will explore the LPNN framework for
the MV model involving short-selling constraints. In such a situation, the short-selling
constraints are formulated as inequality constraints.
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Abstract. Neural coding is one of the central questions in neuroscience
for converting visual information into spike patterns. However, the exist-
ing encoding techniques require a preset time window and lack effective
learning. In order to overcome these two problems, we design an adap-
tive convolutional auto-encoder based on spiking neurons in this paper.
We first exploit the spike pixel mapping decoding approach to find the
optimal value of the time window automatically. Next, we design a deep
convolutional neural network to adapt the learning parameters by recon-
struction errors to realize the spike encoding process. Then we can nat-
urally get coding pre-training parameters for unifying the convolutional
spike coding layer with back-end deep spiking neural networks (SNNs)
for recognition tasks. Simulation results demonstrate that the proposed
method can achieve better performance compared with other encoding
methods.

Keywords: Neural coding · Convolutional auto-encoder · Encoding
time window · Spike decoding · Reconstruction error · SNNs

1 Introduction

A central question in systems neuroscience about sensory systems: how neu-
rons represent the input-output relationship between stimuli and their spikes.
This problem is formulated as neural coding and consists of two essential parts:
encoding and decoding. Spike neurons need to convert other forms of informa-
tion into spike patterns, this information transformation process is spike coding
[1]. There are two mainstream spike coding mechanisms: rate coding [2] and
temporal coding [3]. Rate coding expresses information by the number of spikes
at a selected time window, it is simple and noise-resistant, but the low efficiency
makes it difficult to achieve a rapid response to external stimuli; the temporal
coding encodes the precise release time of spikes, which can be achieved by using
sparse spike sequences or even single spikes. However, this leads to the gener-
ated spike sequences being more sensitive to noise, and the model performance
is poorer than the model using rate coding. The encoding time window is the
first necessary timescale characterizing a neural coding [4]. It is defined as the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Tanveer et al. (Eds.): ICONIP 2022, LNCS 13624, pp. 49–61, 2023.
https://doi.org/10.1007/978-3-031-30108-7_5
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window containing the particular response patterns. The encoding time window
is not as long as possible; a long simulation time can lead to unbearable resource
consumption when the network structure is deep. Existing coding methods do
not have a reasonable and efficient way to preset the time window.

In general, after years of development, researchers have proposed various bio-
inspired spike coding schemes for different modalities and problems. Still, there
are more or fewer problems with both information expression efficiency and noise
robustness. Especially the spike coding process often lacks an effective learning
process, making it challenging to make full use of the multiple dimensions of
the spike for collaborative information-bearing. The fragmentation of the back-
end SNN learning algorithm module makes it difficult to tailor the learning to
the task objectives. However, traditional coding methods do not fully utilize the
temporal and spatial dimensions for coding due to requiring a preset time window
and lacking effective learning. The encoding and decoding of spike neurons can
be seen as a back-and-forth transformation of stimuli and spikes in different
directions. In this paper, we propose an adaptive convolutional auto-encoder
based on spiking neurons, which can optimize the convolutional spike encoding
process using decoding.

Recently, a novel approximate Bayesian decoding technique [5] has been pro-
posed, which uses non-linear deep neural networks (DNNs) to decode images from
the spiking activity of populations of retinal ganglion cells (RGCs). The app-
roach outperforms linear reconstruction techniques usually used to interpret neu-
ral responses to high-dimensional stimuli. Based on this work, a novel decoding
framework based on DNNs, a spike-image decoder (SID) [6], has been presented
for reconstructing visual scenes, including static images and dynamic videos, from
experimentally recorded spikes of a population of RGCs. However, both of the
above approaches only focus on the decoding phase, and the spike encoding phase
did not get substantially changed. We believe that the encoding and decoding pro-
cesses of spikes are complementary to each other, so we can use the reconstruction
error between the decoded image and the original image for the purpose of optimiz-
ing the encoding process. First, we use the spike pixel mapping decoding approach
to automatically determine the optimal value of the time window for spike coding.
After that, we design a deep convolutional neural network to adapt the learning
parameters by reconstruction errors to realize the spike coding process.

Unlike traditional artificial neural networks (ANNs) that use real values as
valid information, SNNs use discrete spike sequences to characterize the data. To
overcome the scalability issues with an increasing number of output classes in the
fully-connected shallow SNNs, researchers in the brain-like field have proposed
spiking convolutional neural networks (SCNNs) capable of extracting high-level
features embedded in an image pattern and sharing learned features across dif-
ferent classes of ways [7]. Recent works [8,9] have achieved great progress in
exploring how to train high-performance SCNNs. With the increase in simula-
tion time and network depth, the complex spatio-temporal dynamics of SNNs
also bring challenges to the learning and optimization process. Therefore, the
learning algorithms need to consider the characteristics of the encoded spike
signals entirely. This paper verifies the learning performance of SCNNs using
optimized convolutional spike coding.
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2 Methods

In this section, we design an adaptive convolutional auto-encoder (Fig. 1) based
on spiking neurons. First, we introduce the Leaky Integrate-and-Fire (LIF) neu-
ron [10] and describe the convolutional spike coding in detail. Two decoding
methods are proposed to optimize convolutional spike coding, first using spike
pixel mapping decoding to determine the value of the encoding time window,
and then using deep convolutional decoding to determine the coding pre-training
parameters.

Fig. 1. An adaptive convolution auto-encoder based on spiking neurons. The encoding
stage proposes a convolutional spike coding; The decoding stage: (a) spike pixel value
mapping and (b) deep convolutional decoding.

2.1 Neuron Model

The LIF benefits from its computational efficiency and is the most widely used
model in computational neuroscience. In its simplest form, the spiking neuron
is modeled as a “leaky integrator” of its input current, defined as:

τm
dν

dt
= −V (t) + RI(t), I(t) =

∑

j

ωj

∑

tk
j ∈Tω

K(t − tkj )H(t − tkj ) (1)

where V (t) is the neuron’s membrane voltage at the moment t. τm = R · C
is the membrane time constant in this equation. I(t) is the weighted sum of
each postsynaptic current, and Wj is the synaptic weight from the jth input
neuron. tkj is the arrival time of the kth presynaptic spike of the jth input
neuron within the integration time window of Tω. H(·) is the Heaviside step
function, and K(·) is the kernel function describing the time-decaying effect
of synaptic currents. In Fig. 1, the LIF neuron model simulates the process of
bioelectricity transmission by biological neurons through this circuit, and the
black dot represents the capacitor. I(t) passed by the synapse charges the circuit.
V (t) that has passed through the capacitor (C) is compared to the threshold (υ)
and an output spike is generated if V (t) = υ at moment tkj .
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We convert the differential form of Eq. (1) into a discrete iterative form. The
membrane potential equation is as follows:

V (t) = (1 − dt

τm
)v(t − 1) +

dt

τm
I(t) = λv(t − 1) +

∑

j

Wjsj(t) (2)

We simplify the 1 − dt
τm

term with an attenuation factor λ, expand I(t) term
as a weighted summation of the input spikes

∑
j

Wjsj(t). sj denotes the spike

firing state of the jth input neuron expressed as a binary (0 or 1), and the
scaling effect of dt

τm
is incorporated into the synaptic weight W to obtain a

clearer representation of the membrane potential. Finally, we add the firing-reset
mechanism of LIF to Eq. (2), the LIF model is obtained as follows:

V l[t] = λl(1 − Sl[t − 1])V l[t − 1] + W lSl−1[t] (3)

U l[t] =
V l[t]
Bl

− 1, Sl[t] = H
(
U l[t]

)
=

{
1 U l[t] ≥ 0
0 U l[t] < 0 (4)

where l and t are the state of the current l-layer neuron at time t, respectively,
V l[t] is the membrane potential, W l is the synaptic weight matrix connecting
the presynaptic and postsynaptic neurons, U l[t] is the normalized membrane
potential regulated by the firing threshold Bl, and Sl[t] ∈ {0, 1} is the spike firing
state controlled by H(·). The neuron emits spike Sl[t] = 1 when the normalized
membrane potential is greater than zero, and the neuron emits no spike output
Sl[t] = 0 when the normalized membrane potential is smaller than zero.

2.2 Convolutional Spike Coding

Fast, efficient, and accurate spike coding of perceptual information, modeled on
how the brain processes perceptual information, has been critical research in
SNNs. The best method is to automate the encoding of pixel values as spikes
by simulating retinal neurons, eliminating the information loss caused by rate
representation and shortening the encoding time window, thus reducing the sim-
ulation time and resource consumption.

The retina of living organisms consists of three layers of neurons: photore-
ceptors, bipolar cells, and ganglion cells (Fig. 2(a)). First, the photoreceptors
capture signals from the visual scene. The signal is then sent to a bipolar cell
that has a fixed receptive field and performs a linear filtering operation. Finally,
signals processed by multiple bipolar cells are integrated into ganglion cells to
generate a series of action potentials transmitted to various areas downstream
of the brain via the optic nerve. All visual information about the environment
is encoded in ganglion cells’ spatiotemporal pattern of spikes output. Drawing
on these biological retinal systems, and considering that the fundamental val-
ues of static images already preserve the color information associated with the
optical signal, we propose a convolutional spike coding method (Fig. 2(b)). The
standard multi-channel sliding convolution in deep learning is used to simulate
the linear filtering operation of bipolar cells, LIF neurons are used to simulate
the spontaneous, nonlinear spike response of ganglion cells to the filtered signal.
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Fig. 2. Convolutional spike coding. (a) The retina of a living creature consists of three
layers: photoreceptors, bipolar cells, and ganglion cells. (b) Schematic diagram of the
convolutional spike encoding method.

In each time step, the convolutional kernel convolves the input channels of the
original image. It sums up the convolution results of the kernels of the different
channels. A single-channel feature map output is formed as the filtering result.
The filtered output is considered the external input current I of the LIF. With
the help of the temporal integration property of the LIF neuron and the spike
dynamics process (Eq. (3)), a spike sequence with temporal properties can be
generated. Convolutional spike coding has significant advantages since it is quite
suitable to unify the convolutional spike coding layer and the back-end deep
SNN for co-training according to the task objectives.

2.3 Spike Pixel Value Mapping

Exploring the time window allows the spike coding stage to retain more valid
information about the features. Ensuring invariance and robustness in the infor-
mation representation is particularly important to improve the accuracy of infor-
mation processing in spike coding and underlying spike learning algorithms. We
compute information about all features using putative encoding windows whose
length is varied parametrically and then characterize the range of encoding the
window length as (10,20) to balance the adequate information of images and
the computing consumption [4]. For convolutional spike coding, the spike pixel
value mapping method (Fig. 3) can automatically find an optimal value of the
time window by comparing the similarity between the decoded image and the
original image when the time window changes.

Mapping decoding takes the spike matrix generated by the neuron of the
convolutional spike coding as input. Each element of the matrix is the number
of spikes fired by neurons within the specified time window. After pre-processing
and normalization of the matrix, a mapping between the number of spikes and
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Fig. 3. Spike pixel value mapping. The neuron transforms the original image into a
spike sequence through convolutional spike coding. Then spikes fired by these neurons
are counted, the number of spikes is mapped to pixel values, and the pixel values are
then composed into the decoded image.

the pixel values are established, and the final matrix maps to a pixel map of
n × n, where n is the width and height of the image.

Then three typical reconstructed image metrics are used to evaluate image
decoding results: mean squared error (MSE), describing the absolute difference
of each pixel; the peak signal-to-noise ratio (PSNR), which represents the global
quality; and the structural similarity index metric (SSIM), which captures detail
or image distortion. The results are shown in Fig. 5. Thus, when the time window
changes from 10 to 20, the optimal value of the time window for convolutional
spike coding are 11 and 12 in processing the MNIST [11] and CIFAR10 [12]
dataset via this method, respectively.

2.4 Deep Convolutional Decoding

After the value of the time window is determined, we introduce deep convolu-
tional decoding (Fig. 4). Given an input image, it will generate spikes by convolu-
tional spike coding, and then spikes are input to the deep convolutional decoding
network for reconstruction operation. The reconstructed image is compared with
the original image, and then the reconstruction error is back-propagated to opti-
mize the network. Ultimately a clear and refined reconstructed image can be
obtained. Notably, the convolutional spike coding learning process is optimized,
and we can automatically get the coding pre-training parameters.

In this model (Fig. 4), a network extended from the densenet model [13] is
used for the first time for the spike-to-image reconstruction tasks. In this study,
the network is composed of L + 1 layers, where the nonlinear variation of each
layer is noted as Ci (·), Ci (·) uses the combination of BN+ReLU+ Conv(3 × 3).
Each network layer needs to implement a nonlinear transformation Ci (·) to
ensure that the spike retains the maximum information flow in the intermediate
layers. In the first L layers of the network, we record the spike input of layer i as
Si, it is written as Si = Ci([S0, Si, ..., Si−1]), where [·] stands for concatenation,
i.e., stitching together all the output spike features in S0 and Si−1 layers. The
spike input of layer i is related not only to the spike output of layer i − 1, but
also to the spike outputs of all previous layers, then passes the spike features
extracted by this layer to each subsequent layer. Here, five dense blocks are used



An Adaptive Convolution Auto-encoder Based on Spiking Neurons 55

Fig. 4. Reconstruction model based on deep convolutional decoding.

Table 1. Network architecture for deep convolutional decoding.

Layers Output Size Network architecture

Convolution layer 128,32×32 3×3 conv,stride 1

LIF 128,32×32 -

Dense block(0) 32,32×32 {1×1,stride 1}×128, {3×3,stride 1}×32

Concatenate 160,32×32 -

Dense block(1) 32,32×32 {1×1,stride 1}×128, {3×3,stride 1}×32

Concatenate 192,32×32 -

Dense block(2) 32,32×32 {1×1,stride 1}×128, {3×3,stride 1}×32

Concatenate 224,32×32 -

Dense block(3) 32,32×32 {1×1,stride 1}×128, {3×3,stride 1}×32

Concatenate 256,32×32 -

Dense block(4) 32,32×32 {1×1,stride 1}×128, {3×3,stride 1}×32

Convolution layer 3,32×32 3×3 conv,stride 1

to keep the size of the spike feature map of each block in the dense block the
same for tandem operations. It consists of two convolutional layers, the first layer
has a convolutional kernel with size of 1× 1, stride of 1, and output channel of
128, the second layer has a convolutional kernel with size of 3× 3, stride of 1,
and output channel of 32.

Noteworthy, the part of the transition layer between the original dense blocks
is omitted because there is no need to compress the extracted spike feature maps.
In order to accommodate better spike decoding, the last layer of the network
is the input without feature stacking, reducing the number of channels number
so that the last layer can be output (32× 32 × 32). Then all the extracted spike
features are transformed into images by a convolution operation. The network
structure is shown in Table 1.

This study explores three different loss functions to ensure that the errors
can be back-propagated by comparing the reconstructed and original images.
Here we use L1loss, MSEloss, and (L1+MSE) loss functions, as shown in Fig. 6,
a detailed comparison of the reconstruction results of 30 example images inside
the first training epoch processed with these three loss functions by MSE, PSNR
and SSIM. The three typical values of the reconstructed image metrics show that
we can obtain high-quality reconstruction results from the model. Convolutional
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spike coding can enable self-learning and play a crucial role in SCNN algorithms
to improve convergence speed and recognition accuracy.

3 Experiment

3.1 DataSets

To evaluate our approach, the dataset we choose are the static datasets MNIST
and CIFAR10. MNIST has ten classes (0–9) of handwritten digits, and a total
of 70000 grayscale images with a pixel size of 28 × 28. 60000 images are set as
training and 10000 images as the test set. CIFAR10 has ten classes of real objects
(truck, car, plane, boat, frog, bird, dog, cat, deer, horse). The dataset has a total
of 60000 RGB color images with a pixel size of 32 × 32. 50000 images are set as
training and 10000 images as the test set.

3.2 Determination of the Time Window

In this experiment, the spike pixel mapping decoding method decodes the spike
output from the convolutional spike coding into an image of 32× 32. The time
window is from 10 to 20, implying that each image is encoded and decoded 11
times.

Table 2. PSNR, SSIM and MSE values of sample images across different time windows.

Metric Time window

10 11 12 13 14 15 16 17 18 19 20

PSNR 8.2798 8.2876 8.3052 8.2781 8.1968 8.2322 8.2775 8.3027 8.1932 8.2674 8.1945

SSIM 0.0922 0.0943 0.0982 0.0961 0.0892 0.0932 0.0929 0.0932 0.0912 0.0903 0.0907

MSE 0.1485 0.1483 0.1477 0.1486 0.1514 0.1502 0.1486 0.1478 0.1515 0.1490 0.1515

Table 2 shows the results of comparing the 11 decoded images of the example
test image with the original image by three typical reconstructed image metrics.
For PSNR, a high value indicates good performance. And for MSE and SSIM,

Fig. 5. Percentage of optimal value of the time T found in the CIFAR10 dataset using
MSE, PSNR and SSIM.
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the values are expected to be close to 0 and 1, respectively. It can be seen that
T = 12 (in bold font) is the optimal value of the encoding time window for the
example image.

Then, this method automatically compares the 11 decoded images of each
image in the CIFAR10 dataset with the original image using the three recon-
structed image metrics and outputs the time T corresponding to the optimal
value of the MSE, PSNR, and SSIM among the 11 times, and then counts the
proportion of each T in the number of datasets. In CIFAR10, it can be seen
that T = 12 is the optimal value of the time window with a percentage over 80%
(blue), and in MNIST, T = 11 is the optimal value of the time window with a
percentage over 99% using the same method. Due to the page length limit, we
only show the time-window percentage plot for the CIFAR10 dataset in Fig. 5.

3.3 Determination of Coding Pre-training Parameters

In this task, three different methods of defining the reconstruction loss function are
explored so that we can evaluate the performance of a deep convolutional decoding
method by obtaining high-quality reconstruction results. The loss functions used
here are L1loss, MSEloss and (L1+MSE) loss, Fig. 6(a) shows the reconstructed
image results for 7 images with 30 images in the first training epoch.

It can be seen that the global and detailed content of the images is well
reconstructed. Depending on the loss function used for training, the intermedi-
ate images may differ in color detail processing. However, the final reconstructed
results are similar, with minor differences in the detailed textures. For these 30
images, all three loss functions give similar performances in terms of three met-
rics, where the MSEloss decoding performance is slightly higher. In this model,

Fig. 6. (a) Reconstruction images from three different error functions; comparison of
reconstruction errors between L1loss (gray triangles), MSEloss (orange square), and
(L1+MSE) loss (blue rhombus) measured by MSE (b), PSNR (c), and SSIM (d).
(Color figure online)
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it can be seen that the reconstructed images obtained at different losses are
highly similar to the original images, which means the model performance is
high enough to pretrain the convolutional spike coding well, so we can automat-
ically get optimal coding pre-training parameters.

3.4 Spike Convolutional Neural Networks (SCNNs)

SCNNs are mainly composed of a hierarchy of stacked convolutional layers for
feature extraction followed by fully-connected layers for final classification [7].
We designed SCNNs of different depths to cope with different datasets. For
the two-dimensional spatial structure of images in the visual classification task,
we use SCNNs to directly encode and extract effective spatio-temporal features
for recognition. To ensure sufficient perceptual field, SCNNs use convolutional
kernels of 3 × 3 sizes (C3) and average pooling of 2× 2 sizes (AP2). To adequately
characterize the spatio-temporal features of the dataset, the network architecture
of the MNIST dataset is 128C3-AP2-128C3-AP2-2048FC-10, and the network
architecture of the CIFAR10 dataset is 128C3-256C3-AP2-512C3-AP2-1024C3-
512C3-1024FC-512FC-10.

In the experiments with static data sets, the first convolutional spike layer
of SCNN is changed to an encoding layer using convolutional spike coding by
default. As shown in Table 3, for the simple MNIST dataset, the SCNN with
optimized convolutional spike coding has a relatively higher test accuracy than
the SCNN with rate coding and other visual recognition algorithms with coding.
Still, for the relatively complex CIFAR10 dataset, our proposed coding method

Fig. 7. End-to-end SCNN (blue) and SCNN with adaptive convolutional spike coding
(orange) (a) training loss curve and (b) test accuracy curve when processing MNIST
and CIFAR10 datasets. (Color figure online)
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Table 3. Performance comparison between the proposed method and the state-of-the-
art methods on different visual datasets.

Method Accuracy MNIST Accuracy CIFAR10

ANN2SNN + rate coding [14] 99.44% 90.85%

ANN2SNN + rate coding [15] - 91.55%

Spike-based BP + poisson coding [16] 99.59% 90.95%

HM2-BP + rate coding [17] 99.49% -

Whetstone + binary coding [18] 99.53% 84.67%

STCA + rate coding [19] 98.60% -

STBP + rate coding [20] 98.89% 90.53%

SCNN + rate coding 99.21% 85.48%

End to end SCNN 99.35% 90.97%

SCNN + convolutional spike coding 99.70% 91.64%

significantly improves the test accuracy and performance. For example, the test
accuracy is 6.16% higher than SCNN using rate coding. It is worth mentioning
that compared with the better-performing end-to-end SCNN algorithm, which
receives real-valued images directly and converts them into spikes without using
a coding mechanism. Our coding using optimized convolutional spikes is com-
parable to end-to-end, and our training loss and test accuracy are slightly bet-
ter than end-to-end on both datasets in 240 epochs (Fig. 7). Importantly, we
demonstrate the advantages of our approach in terms of coding. This shows that
effective spatio-temporal coding of static images is essential for the SNN learn-
ing process of complex recognition tasks. By optimizing the coding process from
pixel intensities to spatio-temporal spike patterns and maximizing the reten-
tion of original image information, SNN can achieve a much better recognition
performance.

4 Conclusion

This paper designs an adaptive convolutional auto-encoder based on spiking
neurons. First, we propose a convolutional spike coding method and optimize
the coding process using two decoding methods. We evaluate our work on both
static image MNIST and CIFAR10 datasets. The optimal time window values for
convolutional spike coding in processing the MNIST and CIFAR10 datasets are
then determined to be 11 and 12, respectively, based on the spike-pixel mapping
decoding method. Finally, the deep convolutional decoding approach is used to
have suitable pre-training parameters for the spike coding stage in both static
image datasets. Since the convolutional spike layer is a common module of the
deep SNN, it is natural to combine the convolutional spike coding layer with
the back-end deep SNN as a unified network. Experimental results show that
SCNNs using optimized convolutional spike coding have superior performance
over end-to-end SCNNs and algorithms using other codes across all datasets. In
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particular, the above two decoding methods can be used as a general approach to
optimize the coding method. In conclusion, the SNNs algorithm using optimized
convolutional spike coding can achieve better performance compared with other
encoding methods.
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Abstract. Schizophrenia (SZ) is a serious mental disorder that could
seriously affect the patient’s quality of life. In recent years, detection of
SZ based on deep learning (DL) using electroencephalogram (EEG) has
received increasing attention. In this paper, we proposed an end-to-end
recurrent auto-encoder (RAE) model to detect SZ. In the RAE model,
the raw data was input into one auto-encoder block, and the recon-
structed data were recurrently input into the same block. The extracted
code by auto-encoder block was simultaneously served as an input of a
classifier block to discriminate SZ patients from healthy controls (HC).
Evaluated on the dataset containing 14 SZ patients and 14 HC subjects,
and the proposed method achieved an average classification accuracy of
81.81% in subject-independent experiment scenario. This study demon-
strated that the structure of RAE is able to capture the differential
features between SZ patients and HC subjects.

Keywords: EEG · Schizophrenia detection · Auto-Encoder ·
Convolutional neural network

1 Introduction

Schizophrenia is a severe mental disorder. This disease affects approximately 24
million people in the world, reported by the World Health Organization [23].
One in 300, on average, people suffer from SZ, and this rate reaches up to one
in 222 in adults [7]. However, the majority of patients with SZ have not received
proper treatment. One of the most difficult issues is the absence of significant
biological markers [11].

Benefiting from the advantages such as non-invasive, high temporal reso-
lution, low cost, electroencephalography (EEG) has been widely used in the
disease detection field [1,2,4,17]. With the development of machine learning,
artificial features based on EEG signals have been rapidly employed in the field
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of SZ detection. For example, Vázquez et al. [20] proposed a method using ran-
dom forest to operate on the extracted connectivity metrics of generalized par-
tial directed coherence (GPDC) and direct directed transfer function (dDTF)
of 1-minute segments. They conduct subject-unaware partitioning and leave-p-
subject-out experiments and obtain the area under the curve (AUC) of 0.99
and 0.87, respectively. Najafzadeh et al. [12] proposed a method based on the
adaptive neuro fuzzy inference system (ANFIS). They tried to employ ANFIS,
support vector machine (SVM), and artificial neural network (ANN) to detect
the SZ using Shannon entropy, spectral entropy, approximate entropy, and the
absolute value of the highest slope of auto-regressive coefficients and achieved
accuracy of 99.92% in the subject-dependent experiment. Chandran et al. [13]
introduced their method based on Long Short-Term Memory (LSTM). They
calculated Katz fractal dimension, approximate entropy and the time-domain
feature of variance as artificial feature, and fed them into the LSTM network
to distinguish the SZ patients from HC subject. They obtained an accuracy of
99.0% in the subject-dependent experiment.

These methods utilized artificial features that are highly dependent on the
prior knowledge of researchers. The outstanding high performance of deep learn-
ing makes end-to-end SZ detection possible. For instance, the CNN-LSTM model
is proposed by Shoeibi et al. [19] They tried several combinations of 1D-CNN and
LSTM to verify the best model. Their model achieved an accuracy of 99.25% in
the subject-dependent experiment. Oh et al. [14] introduced a deep convolution
neural network (CNN) to detect SZ. This model contains four convolution layers,
five max-pooling layers and two fully connected layers. The experiments were
conducted in both subject-dependent and subject-independent scenarios using
25 s segments. They achieved an accuracy of 98.07% and 81.26% respectively.

In most of the studies presented, the methods were evaluated in a subject-
dependent scenario, which has a serious problem called data leakage. Due to
the high correlation between continuous EEG signals, when the EEG signals
collected in one subject were divided into several segments, and these segments
were shuffled and partitioned simultaneously into training set and testing set.
The training set and the testing set were inevitably intersecting. On the other
hand, logically speaking, the subject-dependent method is unpractical, as it is
unreasonable to detect SZ for subjects after knowing clearly whether they are
patients or not.

Based on this consideration, we proposed a model named Recurrent Auto-
Encoder (RAE), and evaluated its performance in a subject-independent sce-
nario. It contains a recurrent auto-encoder to extract task-related features and
a linear classifier to recognize the SZ and HC. We conducted experiments on
a publicly accessed dataset containing 14 schizophrenia patients and 14 age-
matched healthy control subjects. The results indicate that our RAE performed
better than the current baseline methods.

This paper is organized as follows. Section 2 introduces the dataset and pro-
posed model. Section 3 describes the experiment setting and result. In Sect. 4,
the discussions and conclusions are present.
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2 Materials and Methods

2.1 Dataset

In this study, we used a dataset collected by the Institute of Psychiatry and
Neurology in Warsaw, Poland [16]. This dataset consists of EEG recording from
14 patients (7 males: 27.9 ± 3.3 years, 7 females: 28.3 ± 4.1 years) with SZ
and 14 HC (7 males: 26.8 ± 2.9, 7 females: 28.7 ± 3.4 years). All the patients
met International Classification of Diseases for paranoid schizophrenia (ICD-
10, F20.0). The eyes-closed resting state EEG signals lasting for 15 min were
collected with a sampling rate 250 Hz. The 19 electrodes were used, i.e., Fp1,
Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1 and O2,
which were placed according to the standard of international 10–20 system. More
details could be found in the reference [16].

2.2 Pre-processing

To improve the signal-noise ratio, we first employed a bandpass filter with a
frequency of 0.5–50 Hz. The data were then divided into segments of 5 s in length.
The obtained segments should pass a threshold check to reduce the interference
of electrooculography (EOG). We dropped the segment which peak value is
out of range of −100µV ∼ 100µV. Finally, the common reference and z-score
normalization were applied to obtain the processed data.

2.3 Methods

The motivation of the proposed model is that: if the EEG data are recurrently
processed by a encoder-decoder is beneficial to generate more discriminative
embedding codes, the procedure is summarized as follows:

• Encode the data D1 to obtain the embedding Z1

• Decode the Z1 to reconstruct D2

• Process the D2 as above did for several loops to obtain Dn and Zn .

On the assumption that the encoder and decoder are effective and stable
enough, the embedding codes Z1, ..., Zn should remain similar task-related
property, although the waveform of D1, ..., Dn maybe not exactly the same.
We termed the similarity as semantic invariance. On the other hand, if we opti-
mize the encoder to improve the semantic invariance between Z1, ..., Zn , the
optimization could be regarded as effective. In actual application, the true label
can be defined as the task-related property. Improving the prediction accuracy
of all embedding codes, especially Z2, ... ,Zn , can be regarded as improving
semantic invariance. This is the key idea of this method.

Previous studies in the field of computer vision (CV) have proved that Auto-
Encoder is a powerful frame of feature extraction and reconstruction [6]. There-
fore, we leveraged the Auto-Encoder as the main architecture to design our
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model. EEGNet is a widely used baseline method in the field of EEG analy-
sis [9]. It has stable performance and feature representation ability. We designed
the encoder and the corresponding decoder modules using the similar operations
in EEGNet.

The structure of RAE is shown in Fig. 1. It is consisted of a recurrent auto-
encoder feature extractor and a fully-connected classifier. The fully-connected
classifier is used to classify all embedding codes extracted by RAE. The semantic
invariance is improved by optimizing the classification accuracy to improve the
performance of encoder.

Fig. 1. The structure of RAE. Zn is the representation recurrently generated by the
encoder in cycles for n times.

Backbone. The Backbone of RAE structure is modifiable. In this work, the
backbones of the encoder and decoder were comprised of the similar operation
that used in the classical EEGNet model. To facilitate decoding, the sizes of
all temporal convolution kernels were set to be odd so that the padding can be
symmetric. For similar reasons, the average pooling after the second convolution
layer was replaced by a max pooling layer. In addition, we used layer normal-
ization in the model in order to reduce the interference of other samples in one
mini-batch. The structure is shown in Fig. 2.

Decoder is the opposite procedure of encoder, which uses transposed con-
volution to realize deconvolution. In addition, layer normalization is applied in
the end to keep each reconstructed sample separate from the others in one mini-
batch. The structure of the decoder is shown in Fig. 3.

Recurrent Auto-encoder. First, the raw data Di ∈ R
C×T is input into

the encoder block En to generate the embedding code Zi, which could be
described as:

Zi = En(Di) ∈ R
N∗C′∗T ′

(1)
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Fig. 2. The structure of the encoder block. This block is denoted as En in the formula.

Fig. 3. The structure of the decoder block. This block is denoted as De in the formula.

where C ′ and T ′ are the numbers of the electrode channels and time-dimension
sampling point, which are equal to 1 and 250, respectively. N denotes the number
of the convolution kernels, which was set to 16 in this model.

The embedding code Zi is input into the decoder De to reconstruct the data
Di+1 ∈ R

C×T , which is illustrated in the following:

Di+1 = De(Zi) ∈ R
C∗T (2)

Then, the reconstructed data Di+1 ∈ R
C×T was regarded as the input of

block En in the next cycle. After n loop iterations, the model is able to generate
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embedding code Z1, Z2, ..., Zn. For the task of SZ detection, the n was set to
2 in the following experiments. All the embedding codes will be employed to
calculate the loss and predict the class label as follows.

Classifier and Loss. The classifier structure is shown in the Fig. 4.

Fig. 4. The structure of the classifier block. This block is denoted as Cls in the formula.

Embedding code Zi is input into the classifier Cls to obtain the predicted
label ŷi, which could be described as:

ŷi = arg maxCls(Zi) (3)

In this work, we employed the cross entropy loss between predicted labels
and the corresponding true labels of the samples to optimize the model, which
could be illustrated as:

Li = loss fn(ŷi, y) (4)

where loss fn denotes cross entropy operator, and y denotes true label.

ModelTraining. The parameters optimization ofEn,De andCls blocks in each
optimization loop were separate. The procedure is summarized as Algorithm 1:
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Algorithm 1: Training procedure
Input: input parameters X, Y, nloops
Output: Classifier Cls(·)

1 X0 = X;
2 for i in range(0, nloops) do
3 zi = En(Xi);
4 Ŷi = Cls(zi);
5 lossi = LossFn(Ŷ , Y);
6 lossi ← backward;
7 Xi+1 = De(zi);
8 end

In the testing stage, the for loop and code in lines 5, 6 and 7 are unessential.
The output of Cls, i.e. Ŷ0, is used to evaluate the performance of this model.

2.4 Baseline Methods

To verify the performance of RAE, we used three DL models, i.e., DeepCon-
vNet [18], Deep Convolution neural network (DCNN) [15], EEGNet [9], as the
compared baseline methods. The accuracy, sensitivity and specificity were served
as the evaluation metrics of classification performance.

DeepConvNet. DeepConvNet is a deep convolution model proposed by Schirr-
meister et al [18]. This model contains four convolution blocks. One temporal
convolution filter and one max pooling layer are employed in each block. In
particular, a spatial convolution layer is added additionally. Due to its robustness
and high performance, DeepConvNet is widely used in the field of classification
based on EEG [5,10].

DCNN. Deep Convolution neural network (DCNN) is a method specifically
used for SZ classification proposed by Oh et al [15]. DCNN consists of five
convolution layers, two max pooling layers, two average pooling layers, a global
average pooling layer and a fully-connected layer. The convolution layers are
able to extract features automatically, and the max pooling layers are able to
capture the most significant feature extracted by the previous convolution layer.
Finally, all features are used to classify the signal in the fully-connected layer.
DCNN achieved 81.26% accuracy with the time window of length 25 s.

EEGNet. EEGNet is a compact convolutional neural network proposed by
Lawhern et al [9]. They first introduced the use of depthwise convolution and
separable convolution on the EEG data. EEGNet also applied several well-known
ideas in the field of BCI, such as optimal spatial filtering and filter bank. Due
to the compact structure and stable performance, EEGNet has been widely
applied in EEG-based classification tasks, such as steady-state visual evoked
potential [22], motor imagery [24], and emotion recognition [21], etc.
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3 Experiments and Results

3.1 Model Implementation

To evaluate the performance of the methods, level-one-subject-out (LOSO) strat-
egy was used. Specifically, the data from one subject was used as the testing
data, those of the remaining subjects were adopted as the training data. This
procedure repeated until all the subjects served as the testing subject once. Each
method was run for 5 times, and then the average accuracy, sensitivity and speci-
ficity were calculated as evaluation indicators via equations (5) to (7), which are
usually used in the disease detection field [3].

accuracy =
TP + TN

TP + FP + TN + FN
(5)

sensitivity =
TP

TP + FN
(6)

specificity =
TN

TN + FP
(7)

where TP, TN, FP and FN denotes the total number of true positive, true
negative, false positive and false negative examples, respectively.

For the RAE and all compared models, adaptive moment estimation (ADAM)
optimizer was adopted as the optimization method [8], and the learning rate was
set as 1e-4. The experiment was executed for 30 iterations, and the accuracy in
the last epoch was employed to evaluate the performance of all the methods.

3.2 Results

The classification results of each subject obtained by all the methods are sum-
marized in Table 1. For each subject, the average accuracy was calculated by
averaging the accuracies of five times experiments, and the standard deviation
was also calculated on these accuracies. We could find that the proposed RAE
achieved better performance than all other methods, which yields the average
accuracy of 81.81%. Besides, the results indicate that the RAE could yield more
robust results with smaller standard deviations, such as those of subject No.4.

Since the intra-subject SEN and SPE have no significance owing to the unique
label of data from each subject, we summarized the global confusion matrix on
all the five experiments and calculated SEN and SPE across subjects. The results
are shown in Table 2 and Fig. 5. ACC denotes the average accuracy across the
subjects.
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Table 1. The classification accuracies of each subject (mean±std.) for the RAE and
all compared methods.

Sub. DeepConvNet DCNN EEGNet RAE

1 42.47 ± 52.76 95.21 ± 3.96 91.23 ± 6.75 97.95 ± 3.28

2 44.58 ± 50.13 15.52 ± 6.24 10.94 ± 11.53 21.67 ± 6.4

3 81.38 ± 41.65 100. ± 0. 99.5 ± 0.52 99.12 ± 1.63

4 59.75 ± 54.27 53.74 ± 31.61 22.09 ± 41.6 94.6 ± 7.81

5 84.84 ± 31.55 95.05 ± 2.95 99.57 ± 0.7 99.78 ± 0.48

6 64.64 ± 36.98 24.9 ± 15.08 53.38 ± 15.03 61.99 ± 12.73

7 53.29 ± 47.85 49.76 ± 22.53 40.35 ± 14.29 46.59 ± 4.79

8 69.51 ± 45.01 82.68 ± 36.34 98.29 ± 1.69 88.05 ± 11.13

9 60. ± 54.77 80.25 ± 44.16 100. ± 0. 99.88 ± 0.28

10 80. ± 44.72 84.07 ± 11.72 96.91 ± 2.83 97.28 ± 3.45

11 65.29 ± 48.36 77.53 ± 35.11 100. ± 0. 99.88 ± 0.26

12 42.73 ± 47.2 33.29 ± 35.48 37.27 ± 12.18 24.6 ± 8.45

13 58.92 ± 46.28 98.44 ± 2.14 99.04 ± 0.91 98.56 ± 1.24

14 61.56 ± 52.71 47.19 ± 21.69 32.93 ± 19.6 62.16 ± 28.35

15 31.1 ± 43.1 53.05 ± 13.29 35.37 ± 13.45 36.46 ± 8.39

16 79.75 ± 44.58 72.03 ± 35.11 93.67 ± 4.54 86.33 ± 20.86

17 40. ± 54.77 78.77 ± 9.58 75.61 ± 7.51 68.16 ± 15.98

18 75.89 ± 43.2 74.25 ± 12.15 99.73 ± 0.61 97.53 ± 1.79

19 20. ± 44.72 90.26 ± 7.21 88.55 ± 9.04 98.95 ± 1.2

20 39.69 ± 39.57 39.43 ± 7.87 51.38 ± 9.2 76.48 ± 4.19

21 60. ± 54.77 96.58 ± 7.36 100. ± 0. 99.79 ± 0.28

22 79.89 ± 44.36 92.28 ± 8.07 97.72 ± 1.41 98.8 ± 0.45

23 40. ± 54.77 94.29 ± 1.9 95.86 ± 3.79 92.02 ± 7.99

24 93.78 ± 13.91 99.27 ± 0.67 97.44 ± 2.74 98.17 ± 3.42

25 60. ± 54.77 30. ± 9.05 51.52 ± 12.97 55.22 ± 16.47

26 40. ± 53.22 93.93 ± 2.57 96.82 ± 1.43 92.94 ± 3.94

27 80. ± 44.72 99.64 ± 0.54 99.88 ± 0.27 99.28 ± 1.3

28 41.84 ± 53.23 98.37 ± 2.29 96.12 ± 6.76 98.37 ± 2.02

Mean 58.96±6.92 73.21±4.74 77.18±0.96 81.81±1.60

Table 2. Classification results of RAE and all compared methods. ACC, SEN and SPE
denotes accuracy (mean±std), sensitivity and specificity, respectively.

Methods ACC(%) SEN(%) SPE(%)

DeepConvNet 58.96±6.92 60.24 55.33

DCNN 73.21±4.74 71.91 75.18

EEGNet 77.18±0.96 74.58 79.36

RAE 81.81±1.60 80.30 83.37
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Fig. 5. Classification results of RAE and all compared methods.

4 Discussion and Conclusion

The results indicate that RAE is an effective method for SZ detection. It is
worth mentioning that RAE could serve as a model framework, the detailed
structure could be adjusted according to specific classification tasks. Namely,
the backbone of the encoder can be adapted to the tasks, and the selection of
backbone will greatly affect the performance of model. Besides, the number of
loops (n) could be optimized according to the classification task. We conducted
a series of experiments to obtain the best value of n, and each experiment was
implemented five times. As shown in the Table 3, when n was set to 2, the model
obtained the best accuracy and relatively balanced sensitivity and specificity.

In the current study, only one dataset was used to evaluate the perfor-
mance, more SZ datasets should be collected to verify the generalization of
RAE. Besides, RAE is expected to be effective in detecting other mental dis-
eases, such as major depressive disorder. We have conducted several preliminary
experiments and will release the further results in the future studies.

Table 3. Result of experiments concerning n selection.

n ACC(%) SEN(%) SPE(%)

1 77.74±2.03 75.55 79.13

2 81.81±1.60 80.30 83.37

3 79.61±1.36 78.46 80.74

4 78.26±2.72 76.08 82.13

5 77.67±1.48 75.68 79.00

In summary, we proposed a novel framework method for SZ detection with
recurrent Auto-Encoder. This method achieved an average accuracy of 81.81%,
sensitivity of 80.30%, and specificity of 83.37% in the LOSO experiments, which
improved 4.62% than the best baseline method. The RAE is expected to be
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a feasible tool in clinical diagnosis benefited by its superior performance and
stability.
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Abstract. It is important for survival of animals in nature to adapt
their behavioral strategies to everchanging environment. To do so, they
must evaluate their behaviors by reward. Experimental studies reported
the involvement of orbitofrontal cortex (OFC) and basolateral amygdala
(ABL) in value evaluation and outcome expectation. OFC and ABL play
different functional roles: ABL is critical for acquiring cue-outcome asso-
ciation, while OFC is involved in generating cue-outcome expectation
to guide adaptive behavior. However, the neural mechanism underlying
these functional roles remains unclear. To address this issue, we develop a
model of OFC/ABL circuit that accounts for theses functional roles. We
also incorporated a reinforcement learning in the model. Using the model,
we show that ABL learns the association between odor and taste infor-
mation, depending on predictive values and reward prediction errors. The
association in the ABL allows the OFC network to generate cue-outcome
expectation for forthcoming food. In a reversal learning, the mechanisms
similar to the first learning create the new association of odor and taste
in ABL and the task-relevant cue-outcome expectation in OFC.

Keywords: Orbitofrontal cortex · Basolateral amygdala · Adaptive
behavior

1 Introduction

To survive in nature, animals must adapt their behavioral strategies to ever-
changing environment. To do so, they must recognize the external world and
evaluate their behaviors by reward, which also improve the ability of outcome
prediction. However, it remains unclear how animals adapt their behaviors to
the environmental changes.

Experimental studies on odor discrimination tasks in rats [1–3] and devalu-
ation tasks in monkeys [4–6] have shown that orbitofrontal cortex (OFC) and
basolateral amygdala (ABL), besides the brain reward system, play crucial roles
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in value evaluation and outcome prediction. OFC is directly interconnected with
ABL [7]. OFC and ABL may work as an integrated system that brings associative
learning to bear on decision making. Moreover, lesion studies of ABL and OFC
in an odor discrimination task [1–3] and its reversal [8,9] demonstrated distinct
roles of ABL and OFC: ABL is critical for acquiring cue-outcome association,
while OFC is involved in generating cue-outcome expectation to guide adaptive
behavior. However, it still remains unclear the neural mechanisms underlying
the functions of these areas.

To address this issue, we develop a model of OFC/ABL circuit that accounts
for the roles of OFC and ABL and the adaptive behaviors generated by the inter-
action between these areas [10]. We are concerned with an odor discrimination
task. In the task, rats must discriminate between two odors to ingest forthcom-
ing food. The rats choose go or no-go action on the basis of odor information,
and can ingest a food after a delay period only for go action. We show that ABL
learns the association between odor and taste information, depending on predic-
tive values and reward prediction errors. The learning allows the OFC network
to create cue-selective neurons, providing expectation. In a reversal learning,
rats fail to perform the reversal task just after the switching to the reversal task.
After several failures, the mechanism similar to the first learning allows the ABL
network to learn the new association between odor and taste information, and
the association allows the OFC network to generate cue-outcome expectation
relevant to the reversal task. Our model offers the mechanisms of how ABL and
OFC work to acquire adaptive behaviors in the odor discrimination task and its
reversal.

2 Model

2.1 Odor Discrimination Task and Reversal Task

Rats were trained on a series of two-odor, go/no-go discriminations [1–3]. In the
discrimination task, rats were presented with one of the two odors (odor1 and
odor2) at an odor spot, as shown in Fig. 1a. They moved to a food spot after the
odor presentation, and chose go or no-go action. The rats poked their noses to
a food well in go action, and waited a forthcoming food during a delay period.
One odor (odor1) signaled the availability of a rewarding sucrose solution, and
other odor (odor2) signaled the delivery of an aversive quinine solution. The
procedure of the task is shown in Fig. 1b. On the other hand, in no-go action,
the rats did not poke their nose to the well, and were not available for food. After
the training, the rats learned appetitive behavior for sucrose solution coupled
with odor1 and aversive behavior for quinine solution associated with odor2.

After the learning of the odor discrimination task shown in Fig. 1b, the rela-
tionship between the odors and foods were reversed as shown in Fig. 1c [1–3].
In the reversal task [8,9], the odor1 signaled the availability of the aversive qui-
nine, and the odor2 signaled the availability of the rewarding sucrose. In the
early period of the reversal learning, the rats exhibited a panic behavior, but
they were able to adapt to the reversal task as the training proceeded.
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Fig. 1. Odor discrimination task. (a) Rats are presented with an odor at an odor spot,
and then choose go and no-go action. The rats can ingest a food after a delay period
in the go action. (b) Odor discrimination task. Odor1 is associated with sucrose, and
odor2 is associated with quinine. (c) Reversal learning.

Fig. 2. The network model for an odor discrimination task. The model consists of the
networks of ABL and OFC, the area of ventral striatum (VS) and ventral tegmental
area (VTA), and a decision area. The white and gray circles indicate a main neuron
and an inhibitory interneuron, respectively.

2.2 Overview of the Model

Figure 2 shows a model for the odor discrimination task by Schoenbaum et al.
[1,2]. The model consists of the networks of ABL and OFC, the area of ventral
striatum (VS) and ventral tegmental area (VTA), and a decision-making area.
The ABL model contains odor- and taste-selective ABL neurons, receiving the
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odors and taste information, respectively. For an action of animals, the predictive
value is updated in the VS area, and the reward prediction error is estimated in
the VTA. The value is determined by the activity of OFC neurons, and the value-
dependent activity of OFC neurons facilitates the association learning of odor
and taste information in the ABL. The reward prediction error is utilized for
Hebbian learning of ABL neurons. On the other hand, the OFC model contains
cue-selective neurons, receiving inputs from a specific combination of odor- and
taste-selective ABL neurons. The connections between ABL neurons and cue-
selective ones are learned with Hebbian rule. The probability of action ai is
determined by a function of the predictive values when cue-selective neurons are
activated. Then the predictive value is updated by the action. Thus cue-selective
neurons represent the causality of a cue (odor) and an outcome (taste). Until the
cue-selective neurons are activated, rats make a random prediction of outcome
(sucrose or quinine).

2.3 The Model of ABL

The model of ABL consists of three neuron units, neutral, appetitive, and aver-
sive units, as shown in Fig. 3. The neutral unit consists of two groups of odor-
selective neurons, odor1- and odor2-selective neurons. Each group consists of 10
neurons. The appetitive unit has three neuron groups, s-, o1-s, and o2-s neu-
rons, responding to sucrose and the pair of sucrose and one of the two odors,
respectively. The aversive unit also contains three neuron groups, q, o1-q, and
o2-q neurons, similar to those in the appetitive unit. Moreover. each group has
an interneuron, providing neurons within the group with an inhibition. A sin-
gle neuron was modeled with leaky integrate-and-fire neuron (LIF) model. The
membrane potential of the (i, j)th neuron, V ABL

ij , is given by

τABL

dV ABL
ij

dt
= −V ABL

ij +
∑

k,l

wABL
ij,kl SABL

kl + IFF
ij + IOFC(t), (1)

where wABL
ij,kl is the weight of the synaptic connection from the (k, l)th neuron to

the (i, j)th one. τABL is the time constant of V ABL
ij . IFF

ij is the feedforward input
from gustatory and olfactory sensory areas, and IOFC(t) is the input from the
OFC network, depending on the value in the reward learning. An ABL neuron
emits a spike when the membrane potential exceeds the firing threshold.

2.4 The Model of OFC

The model of OFC consists of four neuron groups, which are cue-selective neu-
rons, cue1-, cue2-, cue3-, and cue4-selective neurons. Each group consists of 10
neurons. The cue1-selective neurons receive the inputs from o1-s neurons in the
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ABL network. Other cue neurons also receive information of a pair of odor and
taste, as shown in Fig. 2. A single neuron was modeled with the LIF model. The
membrane potential of the (i, j)th neuron, V OFC,

ij is given by

τOFC

dV OFC
ij

dt
= −V OFC

ij +
∑

kl

wOFC
ij,kl SOFC

kl + IX−Y
ABL , (2)

where wOFC
ij,kl is the weight of the synaptic connection from the (k, l)th neuron

to the (i, j)th one. τOFC is the time constant of V OFC
ij . IX−Y

ABL (X = O1, O2; Y
= s, q) are the inputs from XY -selective ABL neurons responding to an odor
X and a taste Y .

Fig. 3. The model of ABL. The model contains odor-selective (O1, O2), taste-selective
(q, s), and odor-taste-selective (o1-s, o2-s, o1-q, o2-q) neurons. The white and gray
circles indicate the neurons similar to Fig. 2

2.5 Reinforcement Learning

In the training of the odor discrimination task, the rats were trained to facilitate
the sucrose ingestion coupled with odor1 and avoid quinine ingestion associated
with odor2. Adaptive actions of the discrimination task were learned using a
model of reinforcement learning, or Rescorla-Wagner algorithm [11]. For each
odor stimulus, the rats choose a go or a no-go action and, then, receive sucrose
or quinine only for go action. In the task, there are 4 events: positive go (PG),
positive no-go (PNG), negative go (NG), and negative no-go (NNG), where
“positive” means sucrose ingestion because sucrose is a preferred (sweet) food
for rats and “negative” indicates quinine ingestion because quinine is an avoided
(bitter) food. Other behaviors are to choose randomly a go or a no-go action. The
random choice behaviors appear in the early period of learning until the odor-
taste association is shaped in the ABL/OFC system. In our model, rats choose
randomly a go and a no-go action until cue-selective neurons are activated. The
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behaviors are called random positive go (RPG), random negative go (RNG),
random no-go (RNOG). The expected value for the action ai, vi(t), is updated
by

vi(t + 1) = vi(t) + ρδi(t), (3)

δi(t) = Ri − vi(t), (4)

where i = PG, PNG, NG, NNG for the activation of cue-selective neurons, and
i = RPG, RNG, and RNOG for the inactivation of cue-selective neurons. δi(t)
is the reward prediction error. The expected values were set at vi(t) = 0 for
the 7 actions before the learning, and the actual rewards were set at RPG =
0.5, RNPG = 0.1, RNG(t) = −0.5, and RNNG = −0.1, RRPG = 0.5, RRNG =
−0.5, and RNNOG = −0.1. ρ is the learning rate. Given the predictive values,
the probability of the action ai, under the odor j presentation Oj , p(ai|Oj), is
given by

p(ai|Oj) =
eβvi

∑
i eβvi

p(Oj), (5)

where β is the inverse temperature. The denominator was summed over i = PG
and PNG for odor1 and i = NG and NNG for odor2. The probabilities of random
behaviors were fixed at 0.5.

2.6 Learning of ABL and OFC Networks

The synaptic connections of ABL and OFC networks were learned in 100 trials
of the odor discrimination task, consisting of 50 odor1-sucrose and 50 odor2-
quinine trials. These trials were given randomly. The connections between ABL
neurons were developed by a reward-dependent Hebbian learning [12]. The learn-
ing makes association between odors and tastes. The synaptic weight from the
(k, l)th neuron to the (i, j)th one, wABL

ij,kl , is given by

τw

dwABL
ij,kl

dt
= −wABL

ij,kl + λABLSABL
ij SABL

kl |δm(t)|, (6)

where τw is the time constant of wABL
ij,kl , λABL is the learning rate, and δm(t)

is the reward prediction error of the action am. The connections between cue-
selective neurons and those between ABL and OFC neurons were learned with
the learning rule similar to Eq. (6).

2.7 Two Trails After the Learning

After the learning, we investigated the neuronal responses of the ABL and OFC
networks in 2 trails in the odor discrimination task. In the first trial, a trained rat
was presented with odor1 at an odor spot, and the rat performed PG action and
then received sucrose at a food well. In the second trial, the rat was presented
with odor2, and performed NG action and then received quinine.
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3 Result

3.1 Learning of Adaptive Behavior

Figure 4a shows the temporal courses of the predictive values for four actions
during the learning of odor discrimination task. The values of no-go actions,
PNG and NNG, were nearly zero. In the early learning period (t < 4000 ms),
the predictive value of RPG was increased by sucrose ingestion, whereas that of
RNG was reduced due to quinine ingestion. In the period, rats do not perceive
the association between an odor and a taste, and exhibit random choice of go
and no-go action. After the random actions (t > 4000 ms), the predictive value
of PG was beginning to increase, and that of NG was beginning to decrease.
Concurrently, the predictive values of RPG and RNG decayed. This indicates
that the association of odors and tastes is generated in ABL and cue-selective
neurons in OFC are activated. As the learning proceeds, the predictive values of
PG and NG tend to the respective asymptotic values.

Fig. 4. Temporal variations of predictive values (a) and action probabilities (b) during
the learning of odor discrimination task. Sucrose is available for positive go (PG) action,
and quinine is ingested for negative go (NG) action. RPG and RNG indicate random
choices of PG and NG action, respectively.

Figure 4b shows the action probabilities of PG and NG. In the early period
(t < 4000 ms), the probabilities of any actions were not updated, and rats chose
randomly go and no-go actions. After the random choice, the action probabil-
ity of PG was increased, while that of NG was decreased. In the late period
(t > 15000 ms), these probabilities converged to asymptotic values, indicating
that rats facilitate the sucrose ingestion associated with odor1 and suppress the
quinine ingestion coupled with odor2.
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3.2 Formation of Odor-Taste Association in ABL and Expectation
in OFC

Figure 5 shows the raster plots of ABL and OFC neurons during the learning of
odor discrimination task, together with the time course of the action probabilities
of PG and NG. ABL neurons are activated by an odor and a taste stimulus,
and the connections between these neurons are learned by the input from OFC
depending on the predictive values of the two actions. The learning elicits the
activation of ABL neurons coding odor1 and sucrose or of those encoding odor2
and quinine, making the associations between these odor-taste pairs. On the
other hand, OFC neurons were not activated in the early learning period, because
OFC neurons do not receive directly odor inputs and the connections between
ABL and OFC neurons are nearly zero in the period. As the learning proceeds,
the connections between ABL and OFC neurons were developed with the changes
of the predictive values of PG and NG, and OFC neurons encoding the specific
pairs of odor and taste, or odor1-sucrose (O1-S) and odor2-quinine (O2-Q),
were activated. The cue1-selective neurons encoding the coupling of odor1 and
sucrose show a larger activation shown in Fig. 5, leading to the facilitation of
sucrose ingestion. In contrast, the cue4-selective neurons encoding odor2 and
quinine exhibited a sparse firing, causing the suppression of quinine ingestion.

Fig. 5. Responses of ABL and OFC neurons during the learning of an odor discrimi-
nation task. (a) Temporal courses of the probabilities of PG and NG actions. (b), (c)
Raster plots of ABL and OFC neurons during the learning.

3.3 Responses of OFC Networks for Two Task Trials

Figure 6 shows the raster plots of OFC neurons in the sequence of two odor
discrimination trials. In one trial, a rat performed the PG and received sucrose
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after a delay period. In another trial, the rat performed the NG and received
quinine. The odor1 stimulation evoked the firing of cue1-selective neuron, and it
remained active during the delay period, working as expectation for forthcoming
outcome (sucrose ingestion). The firing was enhanced during the delay period
because sucrose is a preferable food for rats. On the other hand, the odor2
stimulation elicited the firing of cue4-selective neuron, sustained in a delay period
followed by quinine ingestion. The sustained firing of cue4-selective neuron also
works as expectation for the forthcoming ingestion (quinine ingestion), but it
exhibited a sparse activity because of aversive availability of quinine.

Fig. 6. Responses of OFC neurons for a sequence of two odor discrimination tasks. In
one task, sucrose is ingested after odor1 presentation. Other task has quinine ingestion
after the presentation of odor2.

3.4 Reversal Learning of ABL and OFC

Figure 7 shows the raster plots of ABL and OFC neurons during a reversal
learning, together with the action probabilities of PG and NG. After the learning
of the association of odor1-sucrose and odor2-quinine, the relationship of odors
and tastes was rapidly reversed at t = 25000 ms. The new relationship is odor1-
quinine and odor2-sucrose. In the reverse learning, the reinforcement learning
reduced the probability of PG and increased that of NG. In the late period of
the learning (t > 40000 ms), the two actions were adapted to the new relationship
of odor and taste.
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Fig. 7. Responses of ABL and OFC neurons in the first odor discrimination task and
its reversal learning. The reversal learning was started at t = 25000 ms.

The ABL made the new associations in the similar way to the first learning.
The connections between ABL neurons encoding odor1 and quinine and those
encoding odor2 and sucrose were learned, while the connections involved in the
first learning decayed. In association with the development of the new association
in ABL network, OFC neurons were activated for the reversal relationship; the
cue2- and cue3-selective neurons, encoding the pair of odor1 and quinine and
that of odor2 and sucrose, respectively, were activated.

Figure 8 shows the raster plot and firing rate of OFC neurons in the sequence
of two odor discrimination tasks after the reversal learning. The odor1 stimu-
lus activated cue2-selective neurons, and their sparse activities were maintained
during a delay period followed by quinine stimulation. Similarly, odor2 stimulus
evoked the spiking of cue3-selective neurons and their sustained activities. The
cue2-selective neurons exhibited sparse activity in the delay period, indicating
the expectation for the aversive quinine ingestion, whereas the cue3-selective
neurons caused the increased activity, reflecting the expectation of the preferred
sucrose ingestion. The reversal learning shapes the cue-selective responses con-
sistent with the reversal relationship between odor and taste information.
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Fig. 8. Responses of OFC neurons after the reversal learning. Odor1 elicit the sustained
activity of cue2-selective neurons, leading to aversive ingestion of quinine. Similarly,
odor2 elicits appetitive ingestion of sucrose. The relationship between odors and tastes
are reversed for that in the first task.

4 Conclusion

We have presented the neural mechanisms by which ABL makes association
between odors and tastes and OFC generates the expectation of cue-induced
outcome. The learning of ABL and OFC is based on a reinforcement learning
and Hebbian learning depending on reward prediction error. We have also shown
that ABL and OFC modulate the representation of odors and tastes in a reversal
leaning. The results provide insights into understanding the functional roles of
ABL and OFC in adaptive behavior.
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Abstract. Brain-Computer Interface (BCI) is an emerging technology
that facilitates a pathway between the human brain and external devices.
Electroencephalography (EEG) data are mainly employed in BCI systems
to reflect the underlyingmechanismof different neural activities associated
with various limb motions or Motor Imagery (MI) activities. Multichan-
nel EEG signal processing generally results in high-dimensional features,
which increases BCI’s overall computational and temporal complexity. We
introduce a channel selection methodology using the mutual information-
based three-way interaction scheme to reduce this burden due to many
channels. Our approach initializes a set of three candidate solutions for
a given MI classification task and subsequently determines a highly signif-
icant EEG channel set. It effectively balances relevance and redundancy
levels in the final channel subset during the selection and rejection of a
newly selected channel. The proposed scheme is evaluated on the BCI
Competition IV-2008 dataset with four MI classes (left hand, right hand,
tongue, and feet) and twenty-two channels. The performance of our scheme
is compared with three recently published state-of-the-art methods. The
proposed approach realized an average of 86.66% classification accuracy
using only nine channels on the data of nine participants. The compara-
tive study shows that our approach realized better performance in terms
of higher classification accuracy and channel reduction rate than all three
baseline models. The results are promising for the online BCI paradigm
that requires low complexity while conducting multiple sessions of BCI
experiments for a larger group of participants.

Keywords: Brain-Computer Interface · Motor Imagery ·
Electroencephalography · High Dimensional Data · Channel
Reduction · Channel Interaction Maximization

1 Introduction

The EEG-based BCI system facilitates a communication framework between
the human brain and external intelligent devices by decoding the intrinsic cog-
nitive patterns associated with different neural activities [29]. It takes in brain
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signals, analyses them, and translates them into computer-based control com-
mands. These are further used to control machines such as smart home appli-
ances, neuroprosthetics, and intelligent chairs without performing any muscular
activity. A block diagram of a generalized BCI system is shown in Fig. 1. In
BCI systems, Motor Imagery (MI) refers to a dynamic mental state in which
a subject imagines a muscular activity without actually executing it. Several
researchers defined the relationship between motor activities and corresponding
brain states by classifying respective brain oscillations [16,27] into four groups
(1) delta (<4 Hz), (2) theta (<4, 8> Hz), (3) alpha (<8.0, 13.0> Hz), and (4)
beta waves (≥13 Hz). It has been concluded that a complex EEG spectrum
consisting of an upper range of alpha waves and a lower range of beta waves
(<8, 30> Hz) represents spatial-temporal properties of MI-specific brain sig-
nals. In EEG signal processing, scalp sites are termed as channels or electrodes
from which signals are recorded. Although the dense arrangement of electrodes
reveals more information about cognitive activities, it increases the redundancy
due to noise and results in high-dimensional data. Besides, the inclusion of a
large number of channels increases the cost of the system. These factors further
increase the effort involved in the BCI setup that reduces its practicality [20].
These limitations motivate researchers to adopt efficient schemes that select only
relevant and non-redundant channels for developing a productive BCI system.

Mathematically, Optimal Channel Selection (OCS) is an NP-Complete
(NPC) problem for which no efficient solution has been found within polynomial
time. Several existing methods have been developed to filter significant chan-
nels by associating electrodes’ location and respective MI activities, but their
effectiveness is limited because of inter-subject variability. These methods often
employ the neuro-physiological basis of the human brain to locate an initial set
of candidate solutions before estimating the relevance of new ones in the opti-
mal channel subset. The selected channels achieve better classification accuracy
and minimize the computational cost involved in processing high-dimensional
cognitive signals.

This study considers multichannel EEG signal processing for MI tasks a mul-
tidimensional classification problem. This problem has been addressed in earlier
works by targeting muscular movements and cognitive task-related experiments.
A detailed discussion on existing channel selection methods is presented in [5].
These methods can be grouped into three classes: (1) Filter, (2) Wrapper, and (3)
Hybrid methods. Filter-based channel selection methods are fast, independent
of the applied classification approach, and highly scalable. However, they suf-
fer from poor classification accuracy because they ignore the relevance of newly
selected channels to earlier selected channels. Hence their performance is limited
by high redundancy associated with the selected channel subset. These methods
often explore different information-theoretic concepts such as mutual informa-
tion, correlation, entropy, and variance for channel selection. On the contrary,
wrapper methods implement a classification algorithm iteratively to determine
the effectiveness of the selected channels. Therefore, these approaches are rela-
tively more accurate than filter methods. However, because of the involvement
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of the classifier, wrapper methods require high computation time for a dataset
with many channels. In addition, they are prone to overfitting because they train
machine learning models with different combinations of features extracted from
selected channels. These methods employ a variety of metaheuristic algorithms
in the channel selection process because of their ability to maintain a good bal-
ance between search space exploration and solution space exploitation. Finally,
hybrid methods enjoy the benefits of both filter and wrapper methods in terms
of effectiveness and overfitting issues. However, the effectiveness of hybrid meth-
ods depends on the compatibility of the participating methods; otherwise, their
performance may deteriorate the classification accuracy of the BCI system.

The primary objective of existing optimization methods is to filter only task-
specific channels that can effectively refer to the performed MI activity with
minimum computational cost. Recently, various algorithms have been introduced
to solve the channel selection problem. For example, Arvaneh et al. (2011) [4]
introduced two variants of Sparse Common Spatial Patterns (SCSP). In the first
variant, they selected the least number of channels within a constraint of clas-
sification accuracy, while in the second one, they determined the least number
of channels without compromising the classification accuracy obtained by using
all the channels. Both methods maximized variance between two MI classes by
applying spatial filters. Yang et al. (2017) [30] computed the correlated chan-
nels by considering mutual information between Laplacian derivatives of power
features extracted from the selected channels and the candidate channels. How-
ever, this method suffered from excessive redundancy because of ignoring the
relevance of channels individually. Torres-Garcia et al. (2016) [26] developed a
fuzzy system interface to obtain a Pareto front solution for classification accu-
racy maximization. In this problem, a bi-objective function with two criteria
(error rate and the number of channels) was used to obtain a robust tradeoff
between the number of channels and the classification accuracy. In recent work,
the Multi-Objective Non-Sorting Genetic Algorithm (MO-NSGA) has been used
for channel selection [23]. This method employed a hybrid signal feature set using
Empirical Mode Decomposition (EMD) and Discrete Wavelet Transform (DWT)
with the MO-NSGA algorithm and achieved 100% classification accuracy.

Wang et al. [29] reduced the irrelevant and redundant EEG channels using
a threshold-based Normalized Mutual Information (NMI) measure. They con-
structed an NMI connection matrix to obtain the relationship between pairs of
channels. Then, setting an appropriate threshold, optimal channels were selected
for classification purposes. However, this method achieved better classification
accuracy but ignored channels’ relevance individually. Jiao et al. [17] developed
an improved CSP variant to capture shared salient information across related
spatial patterns using a multiscale optimization approach. They combined multi-
view learning-based sparse optimization to jointly extract robust CSP features
with the L2,1-norm regularization method. They achieved competitive results
compared to original CSP and other state-of-the-art methods.

Considering the limitations of the above-discussed methods, we present an
improved filter method by introducing a mutual-information-based three-way
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Fig. 1. Block diagram of a general BCI system

interaction scheme [6] to determine the optimal channel subset. Compared to
conventional filter methods, our method follows the maximum relevance and
minimum redundancy principle while selecting new channels. It computes an
interaction score between randomly chosen and earlier selected electrodes to
determine the significance of the newly inserted channels. In case of a positive
score, the new channel is selected else rejected. Next, Multivariate Empirical
Mode Decomposition (MEMD) [25] approach is applied to determine spatiotem-
poral features from the selected channels. Finally, classifier schemes were applied
to discriminate four MI classes (left, right, tongue, feet) specific brain signals

The rest of the paper is organized as follows: Sect. 2 presents the material
and methodology used in the proposed work. In Sect. 3, experimental results of
classification accuracy and channel reduction rate are discussed. Finally, Sect. 4
concludes the research work with the future scope of the related domain.

2 Material and Methodology

This section presents a detailed description of the dataset and proposed chan-
nel selection approach. In Fig. 2, our methodology is shown in three sequential
steps: (1) signal preprocessing, (2) channel selection & feature engineering, and
(3) classification. A detailed description of all the steps is given in subsequent
subsections.

2.1 Dataset Details

In our work, we use the BCI Competition IV- 2008 - II A dataset to validate our
methodology. It comprises EEG signals collected from 9 healthy participants.
This spectrum consists of 22 EEG channels and 3 EOG channels with the left
mastoid as reference. It is a four-class MI task-based dataset where class 1 rep-
resents the left-hand movement, the right-hand gesture constitutes class 2, class
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3 comprises the motion of both feet, and class 4 deals with the tongue activity.
This dataset consists of individual training and validation EEG samples for all
nine subjects to corroborate any classification scheme. Hence, there is no need
to decompose given data samples into the training and the validation sets using
any cross-validation technique. More details about this dataset can be found in
the reference article [8].

2.2 Proposed Methodology

This study performs a sequence of steps to discriminate four MI classes using
the selected channels. Initially, multiple preprocessing methods are applied to
improve the signal quality by curtailing unwanted noise and frequency compo-
nents. The refined signals were further used to determine the importance of
respective channels in candidate solutions. A detailed discussion of applied steps
is given below.

Channel Setting. As discussed above, the BCI dataset consists of 25 channels
in which 22 channels refer to the EEG spectrum while the remaining 3 represent
EOG waves. Here, only EEG signals are used to select the most optimal channel
subset and for the classification of performed MI tasks. Therefore, EOG channels
are directly eliminated and not considered in any data analysis step. In the next
phase, oscillations of 22 EEG channels are used for cognitive pattern analysis.

SNR Enhancement. We make our data more precise by minimizing noise and
outliers induced in the raw brain waves. This step helps to maximize Signal to
Noise Ratio (SNR) of the EEG signals. Here, a 3rd order Savitzky-Golay filter
[14] with an optimal window size of 1000 is used to optimize outliers’ data points.
This step is essential because it provides biased results and reduces classification
accuracy. Next, the Fast Independent Component Analysis (FastICA) algorithm
[21] eliminates noise and outliers from the optimized EEG signals. Since all the
frequency components are not required to discriminate MI classes, we extract
beta waves in <12 − 30Hz>. Each step mentioned above is performed sequen-
tially, and improvement was observed after each step. A pictorial representation
of all three steps is shown in Fig. 3.

Channel Selection. The proposed channel selection approach utilizes a mutual
information-based three-way channel interaction scheme to determine the rela-
tionship between newly selected channels, earlier selected ones, and three can-
didate channels. Our approach maximizes the global mutual information among
all three categories of channels so that the selected channel maximizes the rel-
evance and minimizes the redundancy score in the global channel subset. Our
proposed channel selection methodology is motivated by the earlier proposed
Feature Interaction Maximization (FIM) algorithm [6]. The original algorithm
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has been effectively used for large feature space optimization in data classifica-
tion problems. Let P(X) denote the Probability Density Function (PDF) of data
sequence X, then the entropy of X can be defined as:

H(X) = −
n∑

i=1

p(xi) log(p(xi)) (1)

where 0 ≤ H(X) ≤ 1. In the case of two variables X and Y, joint and
conditional entropy is given as:

H(X|Y ) = −
n∑

i=1

m∑

j=1

p(xi, yi) log(p(xi|yi)) (2)

H(X,Y ) = −
n∑

i=1

m∑

j=1

p(xi, yi) log(p(xi, yi)) (3)

In information theory, joint and conditional entropy are related in the fol-
lowing manner:

H(X,Y ) = H(X) + H(Y |X) (4)

H(X,Y ) = H(Y ) + H(X|Y ) (5)

The mutual information and entropy can be correlated as

I(X;Y ) =
N∑

i=1

M∑

j=1

p(xi, yi) log(
p(xi|yi)

p(xi)p(yi)
) (6)

The value of MI in Eq. 6 is always positive. It is high if both variables are
highly associated; MI is zero if both variables are independent. MI can be defined
as a function of the entropies, as follows:

I(X;Y ) = H(Y ) − H(Y |X) (7)

I(X;Y ) = H(X) − H(X|Y ) (8)

I(X;Y ) = H(X) + H(Y ) − H(X,Y ) (9)

In the channel selection problem, the mutual information I (X; Y) represents
the relation between channel X and Y. This relationship is also referred to as
information gain; the channel with the highest mutual information is considered
the most informative and given higher priority in the application. In our work,
two information theory measures, namely (1) Conditional mutual information
I(Xj ;Y/Xi) and (2) Three-way interaction information ((Xj ;Xi;Y )) are merged
to determine the relevance of the selected channels. In both cases, the relation
between a feature and target class is studied in the context of other features.

I(Xj ;Y/Xi) = H(Xj ;Y ) − H(Xj/Y,Xi) (10)

I(Xj ;Xi;Y ) = I(Xj ,Xi;Y ) − I(Xj ;Y ) − I(Xi;Y ) (11)
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Fig. 2. Block diagram of proposed EEG channel selection methodology using CIM

Fig. 3. Sequential representation of steps applied in SNR enhancement
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Unlike MI, three-way interaction measures can be positive, negative, or zero.
A positive score refers to the combined information associated with two channels
that cannot be provided by each of them individually. It is negative when any
two features compute the combined information. A zero score shows that both
channels are independent and don’t share any information. Suppose Xi is a
candidate solution and Xs is a channel belonging to the subset S (i.e., it has
already been selected) and C is a target class (attribute); channel interaction
maximization (CIM) can be defined as

CIM = arg max(I(Xi;C) + min
Xs∈S

(I(Xi;Xs;C))) (12)

where
I(xi;Xx;C) = I(xi;Xs;C) − I(Xi;C) − I(Xs;C) (13)

In Eq. 12, the mutual information between features Xi and C computes the
relationship between the candidate feature and the class attribute. The inter-
action information among xiXs, and C is the redundancy term. The selected
feature is the one that maximizes the objective function defined in Eq. 12. It
has the maximum relevance to the class attribute and the minimum interaction
with the selected features. The advantage of this criterion is its ability to select
the features that have the highest discriminative power. The pseudocode of the
three-way interaction maximization approach that we have employed in our work
is given in Algorithm 1.

Algorithm 1. Channel Interaction Maximization
1: (Initialisation) Set U ‘Initial set of 22 Channel’
2: S Contains Candidate Channels “c3,c4 and Cz”. Set X contains ‘Remaining 19

Channels’
3: (Mutual information with each Class label is calculated ) For every Channel xi ∈ X,

Calculate I(C;xi)
4: for (Greedy selection) We will Repeat until all channels are selected,i.e, S = k do
5: Calculation of the Mutual Information between elements) For all pairs of ele-

ments I(xi; xs) with xi ∈ X, xs, calculate I(xi; xs), only if it was not previously
calculated.

6: (For choosing Next Feature) feature xi is selected as the one that maximises the
goal function: I(C; xi) − β

∑
xs∈S I(xi; xs). Set X ← Xxi; set S ← SUxi

7: end for
8: Print the set S containing the chosen Channels in ranked order
9: Further we will take Top K channels from the set and perform the classification

and compute accuracy.

Feature Extraction. The MI-specific signal parameters for the categorization
of motor imagery activities are extracted using the channel chosen in the preced-
ing section. Multivariate Empirical Mode Decomposition (MEMD) is a popular
feature extraction used for dealing with nonlinear and non-stationary EEG data.
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It’s a multivariate variant of the conventional Empirical Mode Decomposition
(EMD) technique in which numerous n-dimensional envelopes are generated by
projecting EEG instances in n-variate spaces in every direction. The local mean
is then calculated using these predictions. We chose MEMD over other com-
mon feature extraction methods because it employs cross-channel information
to compute the behaviour of intrinsic EEG signals.

Let a multivariate EEG segment be represented by n-dimensional vectors
{x(t)}n

t=1 = {x1(t), x2(t), · · · , xn(t)} where dθk = {dk
1 , d

k
2 , · · · , dk

n} denotes a set
of direction vectors along the directions given by angles θk = {θk

1 , θk
2 , · · · , θk

n} on
an (n − 1) space. The steps used in MEMD computation are given below:

1. Select appropriate points for sampling on (n-1) planes.
2. Compute projection {pθk(t)}T

t=1 along the direction dθk of the input signal
{x(t)}n

t=1 for all k resulting {pθk(t)}K

k=1 to form a projection set.
3. Find the time series instants tθk

1 corresponding to the maxima {pθk(t)}K

k=1.
4. Interpolate {tθk

1 , x(tθk
1 )} to obtain multivariate envelop curves {eθk(t)}K

k=1 .
5. Compute the mean function m(t) by averaging all multivariate envelope

curves, defined as follows:

m(t) =
1
n

K∑

k=1

eθk(t) (14)

6. Compute the detail using c(t) = Y (t) − m(t). If the stopping criterion is
satisfied, this detailed Intrinsic Mode Function (IMF) becomes Multivariate
Intrinsic Mode Function (MIMF). Otherwise, Y (t) is assigned to the remain-
der c(t), and the process of identifying a new IMF is reiterated. The entire
process is iteratively performed to compute all IMFs from the signal Y (t).

Let xi ∈ Rk denote the EEG signal observation at a time instance where is the
total number of optimal channels. The formal definition of the spatial covariance
matrix is defined by Cov = E{(xj −E{xj})(xj − E{xj})T } where E{.} denotes
the expected value and is a superscript that represents the transposition of (.).
In the BCI system development, each entry of the spatial covariance matrix is
considered a feature of the respective observation.

Feature Reduction. In the last step, MEMD computes a large 3-D feature
matrix because of multiple decomposition operations for each selected channel.
Most of the produced features are redundant and static, and their role in MI-
tasks discrimination is insignificant. Hence, it is essential to recognize and elimi-
nate them before the classification process. Here, Principal Component Analysis
(PCA) [1] removes the less significant features by fixing the 96.2% variance
threshold on the originally produced MEMD feature set. In PCA, the feature
matrix F is used to compute the orthogonal matrix WK×M , which is further
used to produce the transformed matrix YK×N using Eq. 15:

YK×N = WK×M × FM×N (15)
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where M is the size of the feature set, N is the number of instances, and K ≤
M,K ≤ M represents the dimension of the output feature set where K is selected
based on the accumulation of the first few largest eigenvalues exceeding 96.2%
of the total sum of all the eigenvalues computed from the feature matrix.

3 Results and Discussion

In our experiment, six classifiers are applied to find the compatibility of the pro-
posed channel selection approach with different discrimination criteria. These
classifiers are: (1) eXtreme Gradient Boosting (XgBoost) [1], (2) Random Boost-
ing (RB) [7], (3) Light Gradient Boosting (LGB) [3], (4) Ensemble Learning
Classifier (ELC) [11], (5) Support Vector Machine (SVM) [18], and (6) Spiking
Neural Networks(SNNs) [31]. Except SNNs (a deep learning classification app-
roach), all techniques are from the class of machine learning methods. In SNNs
implementation, we executed the typical vanilla SNN architecture discussed in
the article [31] and realized best set of hyper parameters as: (1) learning rate
= 0.1, (2) exponential decay for the first moment estimates (β1) = 0.91, (3)
exponential decay rate for the second-moment estimates (β2) = 0.99, and (4)
ε (threshold to prevent any segmentation error during optimization) = 10−8.
Moreover, the SNNs implementation was time consuming on the training data
and hence not suitable for light weight BCI-based wearable device. Therefore, we

Fig. 4. Precision-Recall curve for all four MI classes
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Table 1. Performance comparison of five classification techniques in the proposed
channel selection approach.

Subject Selected channels No. of channels CSR Classification Accuracy (CA)

Xgboost RB LGB ELC SVM SNNs

A01 C3, C4, Cz, 5,3,9,14,21 8 0.37 71.98 87.52 77.42 93.36 87.41 71.66

A02 C3, C4, Cz, 2,4,9,13, 15,16,22 10 0.46 63.18 44.78 55.60 95.45 90.66 69.29

A03 C3, C4, Cz, 1,3,9,5, 11,16, 11 0.50 70.33 80.30 65.12 94.21 82.54 67.58

A04 C3, C4, Cz, 1,3,9,5,11, 16, 14, 21 8 0.37 57.68 65.40 83.46 81.62 78.40 59.33

A05 C3, C4, Cz, 2,3,14,16,22 8 0.37 51.24 72.68 76.20 85.09 87.40 63.02

A06 C3, C4, Cz, 5,9,13,16,19,22 9 0.41 89.02 60.33 91.33 91.11 98.39 73.23

A07 C3, C4, Cz, 3,14,15,22 7 0.32 65.10 77.02 77.30 79.38 74.60 78.18

A08 C3, C4, Cz, 15,11,16,19,21 8 0.37 76.48 92.30 60.0 89.91 86.33 62.50

A09 C3, C4, Cz, 1,9,15,11,16,19,22 10 0.46 72.60 75.38 80.50 83.25 78.20 68.92

Average Highly Voted Channel: 16, 14, 22,
3, 19, 15, 5, 13, 11, 21, 9, 2, 1, 4

8.77 ≈ 9 0.40 68.62 72.85 74.10 88.15 84.87 68.19

mainly focused on machine learning classification techniques and found improved
results compared to SNNs. Further, to obtain true nonlinear cognitive patterns,
radial basis function is used as kernel in the SVM classifier. The proposed study
employs five performance measures: [1] Classification Accuracy (CA), [2] Chan-
nel selection rate (CSR), [3] Precision, [4] Recall, and [5] F1-score in the demon-
stration of the results. Table 1 presents the subject-wise classification accuracy
for all 9 participants using all six classifiers. It can be observed that the ensem-
ble classifier realizes the maximum average classification accuracy among all the
applied classification schemes. It realizes maximum classification accuracy for
all the participants except A06. In this case, SVM achieves maximum classifica-
tion accuracy among all the classification techniques. It is interesting to discuss,
SNNs architecture realized a minimum classification accuracy among all classifi-
cation techniques. In addition, it ranks after the ensemble learning scheme. The
order of performance is ELC > SVM > LGB > RB > Xgboost > SNNs.

Channel Selection Rate (CSR) is another performance measure that indicates
the ratio between the number of selected and total EEG channels. In other words,
it refers to the set of selected channels used in the classification process. The
proposed CIM scheme effectively reduces the significant number of channels for
all the participants by selecting minimum channels. Our methodology realizes
average classification accuracy of 88.15% (ELC) using only 9 channels. Hence, 13
channels are effectively reduced without compromising classification accuracy.
The details of the remaining three performance measures: (1) Precision, (2)
Recall, and (3) F1-score, are given in Table 2. Precision determines ’how much the
model is correct when it claims to be correct.’ Recall indicates ’how many more
right ones the model missed when it presented the right ones.’ In Fig. 4, Precision-
Recall (PR) curve is plotted for different thresholds to show the tradeoff between
precision and recall. A high area under the curve represents both high recall and
high precision, where high precision relates to a low false-positive rate, and high
recall relates to a low false-negative rate. The harmonic mean of precision and
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Table 2. Class wise details of precision, recall, and F1-score

Metrics Class 1 Class 2 Class 3 Class 4

Precision 0.8506 0.8722 0.8715 0.8737

Recall 0.8951 0.8608 0.8482 0.8612

F1-score 0.8734 0.8665 0.8597 0.8674

Table 3. Performance comparison between our proposed channel selection scheme
and three state-of-the-art methods. CA and P refer to classification accuracy and the
number of selected features, respectively.

Subject IBGSA GSO RSS-SFSM Proposed Methodology

CA P CA P CA P CA P

A01 71.30 7 68.31 11 73.91 9 93.36 8

A02 66.04 10 56.91 13 70.08 6 95.45 10

A03 81.54 8 79.68 13 85.02 5 94.21 11

A04 81.91 9 69.43 14 77.29 12 81.62 8

A05 76.66 13 73.33 9 80.00 11 85.09 8

A06 66.66 13 83.52 9 79.52 6 91.11 9

A07 73.57 11 66.33 14 82.45 9 79.38 7

A08 79.32 7 63.10 5 83.11 8 89.91 8

A09 87.52 12 91.33 7 89.28 13 83.25 10

Average 76.05 10 72.43 11 79.85 8.77 88.15 8.77 ≈ 9

recall is the F1-score. Here, we obtain maximum precision for class 4 while the
best recall is achieved for class 1.

We compare our results with three state-of-the-art methods: (1) Glow Swarm
optimization, (2) Improved Binary Gravitational Search Algorithm (IBGSA),
and (3) Robust and Subject-Specific Sequential Forward Search Method. In the
first method, Gonzalez et al. 2014 [13] introduced Glow Swarm Optimization
(GSO) for channel reduction with Common Spatial Pattern (CSP) features.
Finally, extracted features were classified using the Näıve Bayes classifier with
better results than the conventional K-Nearest Neighbor (KN) and channel-
optimized KNN approach. In the second method, the SNR of EEG signals is
correlated with the channel optimization process, and the Improved Binary
Gravitation Search Algorithm (IBGSA) is applied for EEG channel reduction
[12]. They extracted statistical and temporal features from central beta fre-
quency after channel reduction and achieved 80% classification accuracy at the
maximum on BCI Competition 2008: 2a dataset. In [2], a Robust and Subject-
Specific Sequential Forward Search Method (RSS-SFSM) is proposed for optimal
channel selection. The proposed algorithm’s main limitation was its inadequate
validation of 100 iterations, affecting the classification accuracy when used in
real-time BCI systems.
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The comparative results between the proposed approach and the three base-
line channel selection approaches mentioned above are shown in Table 3. It can
be observed that our method achieves maximum classification accuracy com-
pared to IBGSA except for two participants (A04 and A09). However, in both
cases, our method selects fewer channels than IBGSA. In the second compari-
son, the proposed CIM method achieves higher classification accuracy than the
GSO algorithm for all participants except A09. In addition, GSO selects a fewer
number of channels compared to the proposed method for two participants, A08
and A09. Compared to RSS-SFSM, our method realizes inferior classification
accuracy for A07 and A09. Interestingly, both methods have an equal number
of average channels for all 9 participants.

4 Conclusion and Future Scope

This study develops a novel channel selection algorithm using a mutual
information-based three-way interaction scheme for multichannel BCI systems.
In this method, we minimize the redundancy level by reducing mutual informa-
tion among newly chosen, early selected channels, and target attributes. Initially,
we used a set of three channels (C3, C4, Cz) as a candidate solution to deter-
mine the relevance of the new channel. This procedure provides a sequence of
all 22 channels based on their high relevance and low redundancy level in known
solution. A MEMD feature extraction approach was applied to compute spatial-
temporal properties of selected channels. Finally, five classifiers were used to
find the suitable discrimination criteria for associated cognitive patterns. The
classification results conclude that our method realizes superior classification
accuracy than three state-of-the-art methods (GSO, IBGSA, RSS-SFSM), using
fewer channels for most participants. In the future, some advanced methods such
as channel map association using graph theory [10], information-guided search
strategy [24], and clustering-oriented metaheuristics with Markov blanket [15]
can be used to group the most significant EEG channels. Deep learning algo-
rithms such as similarity-based Graph Neural Networks (Sim-GNNs) [19] and
multi-input Deep Neural Networks (DNNs) [22] can also be used to determine
correlated channel sets.

References

1. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdiscip. Rev.
Comput. Stat. 2(4), 433–459 (2010)

2. Aydemir, O., Ergün, E.: A robust and subject-specific sequential forward search
method for effective channel selection in brain computer interfaces. J. Neurosci.
Methods 313, 60–67 (2019)

3. Alzamzami, F., Hoda, M., El Saddik, A.: Light gradient boosting machine for
general sentiment classification on short texts: a comparative evaluation. IEEE
Access 8, 101840–101858 (2020)



A Multiclass EEG Signal Classification Model 99

4. Arvaneh, M., Guan, C., Ang, K.K., Quek, C.: Optimizing the channel selection
and classification accuracy in EEG-based BCI. IEEE Trans. Biomed. Eng. 58(6),
1865–1873 (2011)

5. Baig, M.Z., Aslam, N., Shum, H.P.: Filtering techniques for channel selection in
motor imagery EEG applications: a survey. Artif. Intell. Rev. 53(2), 1207–1232
(2020)

6. Bennasar, M., Setchi, R., Hicks, Y.: Feature interaction maximisation. Pattern
Recognit. Lett. 34(14), 1630–1635 (2013)

7. Biau, G., Scornet, E.: A random forest guided tour. TEST 25(2), 197–227 (2016).
https://doi.org/10.1007/s11749-016-0481-7

8. Brunner, C., Leeb, R., Müller-Putz, G., Schlögl, A., Pfurtscheller, G.: BCI Com-
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Abstract. Speech enhancement improves speech quality and promotes
the performance of various downstream tasks. However, most current
speech enhancement work was mainly devoted to improving the per-
formance of downstream automatic speech recognition (ASR), only a
relatively small amount of work focused on the automatic speaker ver-
ification (ASV) task. In this work, we propose a MVNet consisted of
a memory assistance module which improves the performance of down-
stream ASR and a vocal reinforcement module to boosts the performance
of ASV. In addition, we design a new loss function to improve speaker
vocal similarity. Experimental results on the Libri2mix dataset show that
our method outperforms baseline methods in several metrics, including
speech quality, intelligibility, and speaker vocal similarity.

Keywords: Speech enhancement · Complex network · Speaker
similarity · Memory assistance · Vocal reinforcement

1 Introduction

The interference of additive noise with speech can seriously reduce the per-
ceptual quality and intelligibility of speech, which increases the difficulty and
complexity of speech-related recognition tasks [17]. In some scenarios, the secu-
rity of algorithms for tasks such as speech recognition and speaker verification
can be seriously threatened by noise interference [2]. Speech enhancement (SE)
is an important speech processing task dedicated to improving the perceptual
quality as well as the intelligibility of the disturbed speech and to restore the
performance of downstream tasks.

A good SE algorithm should obtain the output speech that is closer to the
clean speech. And the output speech often has better speech quality and intelli-
gibility than the input speech. In recent years, deep learning methods [9,15,27]
were widely applied to SE tasks and achieved good results. Deep learning based
methods can be classified into time domain and frequency domain depending on
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Tanveer et al. (Eds.): ICONIP 2022, LNCS 13624, pp. 101–112, 2023.
https://doi.org/10.1007/978-3-031-30108-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30108-7_9&domain=pdf
https://doi.org/10.1007/978-3-031-30108-7_9


102 J. Wang et al.

how the input speech is processed. The common practice of time domain meth-
ods [3,21,31] is to map the time domain waveform of noisy speech directly to
the time domain waveform of clean speech, through the learned mapping rela-
tionship. The frequency domain approach [9,11] obtains a mask by inputting
the noisy speech spectral features into the network. Then the clean speech is
obtained by multiplying the mask and the noisy speech.

Most of the previous work focused on improving speech quality as a train-
ing goal, and the current mainstream metrics are also based on speech quality.
Several studies proposed to train SE models directly with speech quality metrics
(PESQ and STOI), including quality-net [6], MetricGAN-u [7] and hifi-gan [14].
These methods achieved a significant improvement in speech quality. However,
ASR and ASV pay different attention to speech features. ASR pays more atten-
tion to the intelligibility of speech, while ASV pays more attention to speaker
vocal similarity. The optimization focus of the two is not consistent. Speech with
higher speech quality can have more outstanding performance in the downstream
ASR task, while less outstanding in ASV.

Current methods greatly improve speech quality (PESQ and STOI), ignoring
the importance of vocal information. However, inconsistent vocals will lead to
inconsistencies between speakers and increased distortion, which in turn affects
the performance of downstream ASVs. We call this the vocal distortion problem.
PFPL [10] started to demonstrate the importance of phonetic information. Their
work demonstrates that adding the necessary speech information can guarantee
speech details as well as speech quality. This provides us with ideas to alleviate
the vocal distortion problem.

In this work, to adapt to both ASR and ASV at the same time, and to
achieve the improvement of speech quality and vocal consistency, we propose a
MVNet consisted of a memory assistance module and a vocal feature reinforce-
ment module. Vocal reinforcement module is to extract the vocal information.
We consider it important for vocal distortion problem. Memory assistance mod-
ule is to improve the enhanced performance of the complex network. It reduces
the loss from forgetting valid information in long sequences by the network while
enhancing the gain from focusing on important information. Besides, we design
a similarity joint loss that aims to alleviate vocal distortion problem. The exper-
iments verify that our method can alleviate the vocal distortion problem while
further improving the speech quality.

2 Related Work

2.1 Complex Structure of CRN

The traditional Convolutional Recurrent Neural Network (CRN) [25] is symmet-
ric. It uses an encoder-decoder architecture in the time-domain, usually with an
LSTM layer in the middle to model the temporal dependencies. The encoder-
decoder block consists of convolution and deconvolution layers, batch normal-
ization and activation functions.
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To improve the performance of convolution in the complex domain, Tan et al.
[26] proposed an one-encoder two-decoders convolution method. Unlike previous
CRN that only targets amplitude mapping in the real domain, this network
structure is also capable of modeling phase mapping in the complex domain.
Compared with the traditional enhancement model, this structure can enhance
the amplitude and phase of the speech at the same time, and the enhanced
speech no longer needs to reuse the phase of the noisy speech. However, this one-
encoder two-decoders structure actually divided the input into two channels, the
real part and the imaginary part, and processed them as real numbers, which
did not strictly follow the operation rules of complex numbers.

The above approaches did not directly utilize the prior knowledge of the
magnitude and phase correlations of complex arithmetic. Hu et al. provided a
complex domain convolution model DCCRN [11], which used a complex encoder-
decoder combined with a complex LSTM to enhance speech. This network pro-
vided the ability to simulate complex multiplication, further enhancing the net-
work’s ability to capture the correlation between magnitude and phase. DCCRN
has been shown to be effective, we take this as our baseline model.

2.2 Speech Feature Information

With the research in the signal processing, researchers developed different speech
features according to the characteristics of different tasks. Speech feature extrac-
tion methods such as MFCC [28] and i-vector [8] were often used in various
speech signal processing tasks such as speech recognition [18], speaker recogni-
tion [30], and phoneme detection. These feature representations focus on different
speech information. A suitable feature representation can strongly promote the
performance of a specific task.

Hsieh et al. [10] proposed a perceptual loss (PFPL) for SE task. They pointed
out that phonetic feature information is the key to optimizing human perceptual.
PFPL first proposed the idea of adding phonetic feature information to the origi-
nal speech. This self-supervised SE method is based on DCCRN and wav2vec [1].
Their experimental results showed effectiveness of phonetic information. Thus
we take PFPL as another baseline model.

3 Method

In this work, we propose a MVNet as shown in Fig. 1. In general, we extract
the speaker vocal features through vocal reinforcement module, and fuse it with
the noisy speech spectrum. A complex mask is then estimated by the memory
assistance speech enhancement module and multiplied by the noisy spectrum to
obtain the enhanced speech. Besides, we use the proposed similarity joint loss
to alleviate vocal distortion problem.

Our method is based on DCCRN which excels in speech quality. We propose
the memory assistance module to further improve speech quality and make the
model pay more attention to the vocal features. To improve the vocal similarity of
speech, we propose the vocal reinforcement module and the similarity joint loss.
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Fig. 1. The overall structure of MVNet.

3.1 Memory Assistance

In order to make the model further improve the speech quality, and at the same
time make it have the ability to focus on the vocal features. We propose the
memory assistance module under the DCCRN framework, as shown in Fig. 2.
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Fig. 2. The memory assistance CED structure.

We use 6 complex convolution blocks and symmetric 6 deconvolution blocks
to implement the construction of the encoder-decoder with the number of chan-
nels set to {32, 64, 128, 256, 256, 256}, where each complex convolution block
contains complex Conv2d, complex batch normalization and real-valued PReLU.
Each complex Conv2d contains a real conv2d and an imaginary conv2d as in
DCCRN [11].

Memory Assistance Module. The overall framework of the DCCRN model
is based on CED, and the speech enhancement is mainly realized by the LSTM
with causal modeling ability. The LSTM network controls the memory state of
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information in the long-term transmission process through gates, retains impor-
tant information and forgets the information that the network considers unim-
portant. It plays the role in information filtering. Vocal information is a very
detailed speech feature that can only be noticed from a global perspective. The
core logic of the attention mechanism is the global attention, which can capture
the vocal features. But only from a global perspective will ignore some local char-
acteristics of speech. Thus, we combine it with the LSTM to form the memory
assistance module, which focuses on the both global features and local details of
speech.

Outr

Outi

Comple

Encoder Outc

1x1 conv

1x1 conv

1x1 conv

CLSTM

Complex 

Decoder

Memory assistance module

Fig. 3. Memory assistance speech enhancement module. Outr and Outi is the real
and the imaginary part of the encoder output, respectively. Outc is the fused complex
feature map. CLSTM is the complex LSTM layer.

Placing the attention before LSTM can amplify the memory ability, further
improving the memory ability of LSTM for global vocal characteristics. If it is
placed in the back, LSTM will forgot this information. At this time, the global
characteristics of this information will be destroyed, and the global attention
will not be able to pay attention to this information. Placing the attention in
the back aggravates the forgetting ability. Thus, the final vocal reinforcement is
as Fig. 3.

We utilize the features on the crisscross path to achieve global attention
through two loops while controlling the memory consumption. Module collects
contextual information in both horizontal and vertical directions to enhance the
expressiveness of feature maps. As shown in Fig. 3, the noisy speech is passed
through the complex encoder to obtain the feature maps of both the real and
imaginary parts. The feature maps is fused and sent into three one dimension
convolutional layers (Conv1ds). The horizontal and vertical attention map is
obtained from the first two Conv1ds and then passed back to the input to obtain
the global attention map. The global attention map and the output of the third
Conv1d are concatenated and fed into the complex LSTM. The output is con-
catenated with the output of the encoder and fed to the decoder for further
processing.
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3.2 Vocal Reinforcement

Vocal feature is an important factor affecting the distortion degree of the final
enhanced speech. When the vocal features of the enhanced speech and the clean
speech are quite different, the speech sounds lack of uniform speaker characteris-
tics, and it does not sound like the original speaker. That causes vocal distortion
problem.

The problem of missing vocal characteristics in speech enhancement can be
considered from two perspectives. One is that the model does not have the ability
to discover such characteristics, and the other is that the optimization direction
of the model does not care about this. To improve the vocal similarity of speech
from these two perspectives, we propose the vocal reinforcement module and
similarity joint loss.

Vocal Reinforcement Module. For the first perspective, our solution is to
explicitly add vocal features to the network, which is the direct idea of our vocal
reinforcement module.

TDNN [512, 1024, 5, 1, 0.5]

Linear

ReLU

Dropout

Transpose
TDNN [1024, 1024, 3, 1, 0.5]

TDNN [1024, 1024, 2, 2, 0.5]

TDNN [1024, 1024, 1, 1, 0.5]

TDNN [1024, 512, 1, 3, 0.5]

Linear [1024, 768]

Linear [768, 514]

MEAN STD

+

Vocal feature 

Cspectrum

+

STFT

Fig. 4. Vocal reinforcement module.

The way of combining MFCC with TDNN [13] is a common way to obtain
speaker representation in ASV, which has a strong expressive ability for vocal
features. But MFCC is a compact speech representation. Since it uses mel filter to
ignore the dynamics and distribution of speech energy, it still loses some speech
details in essence [5]. It is a coarse-grained speech representation. Therefore,
we adopt STFT (short-time Fourier transform) to obtain the spectral represen-
tation of speech and preserve the temporal information of speech. Combined
with TDNN, a fine-grained vocal feature extraction method suitable for speech
enhancement is realized. ASV directly uses the speech representation obtained by
MFCC and TDNN to do the recognition task. But speech enhancement requires
more than just vocal information. We therefore combine the obtained represen-
tation as an auxiliary feature with the spectrum obtained by STFT as the input
to CED. This forms our vocal reinforcement module.
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The proposed vocal reinforcement module is shown in Fig. 4. The spectrum
obtained by STFT is sent to 5 TDNNs connected in sequence, the first four
output 1024 channels, the last collapses the channels to 512, and the average
and standard deviation of the last TDNN‘s output are calculated and connected
to the original output, and then go through two linear layers in turn to get the
vector about the vocal features. We fuse the feature vector and the original input
into Memory Assistance CED.

Similarity Joint Loss. As mentioned above, to improve the vocal consistency,
there are two perspectives. Designing a new loss function is from the second,
changing the direction of model optimization.

The complete information of the speech signal is jointly represented by the
amplitude and the phase, and the phase contains more detailed information
of the speech. In the previous speech enhancement models, SI-SNR [19] was
mostly used as the loss function. Although SI-SNR takes into account the vector
direction of speech, the calculation process still depends on the signal amplitude.
The cosine similarity has a stronger constraint on the consistency of the vector
direction. In order to make the model pay more attention to the vector direction,
we introduce the cosine similarity to our loss function. The ability of the model
to improve the vocal consistency is enhanced by strengthening the constraint of
the loss function on the consistency of the vector direction.

The proposed similarity joint loss is to make some improvements on the basis
of the loss function of SI-SNR. We take the additive inverse of SI-SNR in our
LSI-SNR, so that larger calculated results indicate less ideal separation. LSI-SNR

is defined as:
⎧
⎪⎨

⎪⎩

starget = 〈 ˆs,s〉s
‖s‖2

enoise = ŝ − starget
LSI-SNR = 10 log10

‖starget ‖2

‖enoise ‖2

(1)

where < ·, · > represents the dot product of two vectors, ‖ · ‖2 is the euclidean
norm (L2 norm), s is the clean speech, and ŝ means the enhanced speech. SI-SNR
is commonly used in papers.

In addition to LSI-SNR, we propose to use cosine similarity to improve the
speaker vocal consistency. The similarity loss is defined as:

Lsmi = α log10(1 − cossmi(ŝ, s) + δ), (2)

where the hyperparameter α is the scaling factor, which we set to 100.
The value range of the cosine similarity function cossmi(·, ·) is [-1, 1]. We take

the -cossmi, so that the higher the calculation result, the more dissimilar the
two speeches are. We add a constant number 1 to fix the range in [0,2]. δ is an
extremely small number used to avoid zero values. We smooth the change of the
curve through a logarithmic function, so that Lsmi has a consistent change trend
with LSI-SNR. Finally, we combine these two functions to propose our similarity
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joint loss Ljoint, defined as:

Ljoint = LSI-SNR + Lsmi. (3)

3.3 Training Target

Our training target is to obtain a complex ratio mask (CRM) [33] to estimate
clean speech. We adopt the method of signal estimation, that is, the noisy signal
and the estimated mask are directly multiplied to obtain the enhanced signal.
We improve the performance of the model by minimizing the Ljoint between the
enhanced speech and the clean speech.

4 Experiment and Result

4.1 Experimental Setup

Dataset. In our experiments, we use the Librispeech [20] as the clean data,
which has 1252 speakers, each speaking for about 25 min, for a total of 478 h of
speech duration. The noise data in the experiment comes from the noise dataset
WHAM! [32], which consists of real ambient noises.

We mix the Librispeech and WHAM! datasets in the same way as the Lib-
riMix [4], resulting in a training set with 921 speakers for a total of 364 h, and
a validation set and a test set with 40 speakers for a total of 5.4 h. The dataset
SNR we get from the mix is between −15 bB and 5 dB.

Evaluation Metrics. The evaluation of our experiments is based on several
general metrics of speech quality, including Perceptual Evaluation of Speech
Quality (PESQ) [23], Short-Time Objective Intelligibility (STOI) [24], the pre-
dicted Mean Opinion Score of signal distortion (CSIG) [12], background noise
distortion (CBAK) [12], overall quality (COVL) [12], the scale-invariant signal-
to-noise ratio improvement (SI-SNRi) [29], segmental SNR (segSNR) [22] and
SIMI (a measure of vocal similarity). SIMI is the proposed new metric to mea-
sure the degree of vocal distortion, which is calculated by the speaker recognition
algorithm provided by Deep-speaker [16]. The higher the score, the higher the
probability that the speaker will be judged to be the same in the ASV task.

Baseline. We sample waveforms at 16 kHz, and set the window length and
number of hops to 25 ms and 6.25 ms, respectively. The FFT length is 512.
We use Adam optimizer. The initial learning rate is set to 0.001, and when
the validation loss increases, the learning rate decreases by 0.5. We train for
200 epochs and record the top PESQ ranked model parameters as our best
model for related experiments. For fairness, we run the official codes of baseline
models (PFPL and DCCRN) with the same training configuration as ours for
comparison.
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4.2 Ablation Study

Ablation Study for Memory Assistance. We propose the memory assis-
tance module to further improve speech quality and make the model pay more
attention to the vocal features.

Table 1. Ablation study for memory assistance. Oursma and Oursbma represents the
result of placing the memory assistance module before the LSTM layer and after the
LSTM, respectively. DCCRN represents the results obtained without memory assis-
tance.

Metric noisy Oursbma DCCRN Oursma

PESQ 1.18 2.52 2.65 2.70

STOI 0.54 0.81 0.84 0.87

SIMI 0.36 0.39 0.43 0.46

From Table 1, it can be seen that memory assistance module has the best
results when placed before LSTM. Memory assistance module can amplify the
importance of effective information before the LSTM forgets some information,
so that LSTM continues to amplify those effective information. When the mem-
ory assistance module is placed behind LSTM, the degree of forgetting of the
LSTM will be aggravated, thereby reducing the performance of the model.

Memory assistance module outperforms DCCRN in PESQ, STOI and SIMI.
This indicates its ability to further improve speech quality while empowering the
model to focus on vocal features.

Ablation Study for Vocal Reinforcement. To improve the vocal similarity
of speech, we propose the vocal reinforcement module and the similarity joint
loss. We compare with PFPL(with phonetic information) and DCCRN(without
any speech information). Results are shown in Table 2, our results are signifi-
cantly better than the above methods.

Table 2. Ablation study for vocal reinforcement. Oursvr is the model with only the
vocal reinforcement. OursMVL is the MVNet with both memory assistance and vocal
reinforcement.

Metric noisy DCCRN PFPL Oursvr OursMVL

PESQ 1.18 2.65 2.71 2.90 2.88

STOI 0.54 0.84 0.78 0.91 0.91

SIMI 0.36 0.43 0.51 0.52 0.52

SegSNR 2.07 6.49 5.58 5.88 6.55

CSIG 2.02 2.10 2.37 2.47 2.44

SI-SNRi - 6.98 6.27 9.88 9.97
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PFPL explicitly added the additional information (phonetic information) to
the DCCRN. This additional information contained more speech details, which
made the PESQ, SIMI and CSIG of PFPL higher than those of DCCRN. How-
ever, PFPL did not modify the original CED structure of DCCRN, and its model
did not have the ability to adapt to this fine-grained information. Thus, its STOI,
SegSNR and SI-SNRi were degraded. Compared with DCCRN and PFPL, both
Oursvr and OursMVL have better SIMI and CSIG scores, which prove that the
vocal reinforcement can improve the vocal consistency. Since Oursvr lacks the
memory assistance module in OursMVL, the local details (SegSNR) and overall
performance (SI-SNRi) of Oursvr are worse than OursMVL.

4.3 Comprehensive Evaluation

We comprehensively evaluate the performance of our method on various metrics,
as shown in Table 3. Our model outperforms the baseline models in all metrics
and lower distortion can be guaranteed while maintaining higher speech quality.

Table 3. Comprehensive evaluation.

PESQ STOI CSIG CBAK CVOL SIMI SegSNR SI-SNRi

noisy 1.18 0.54 2.02 1.99 1.75 0.36 2.07 -

DCCRN 2.65 0.84 2.10 2.11 1.91 0.43 6.49 9.04

PFPL 2.71 0.78 2.37 2.45 2.12 0.51 5.58 8.34

Oursma 2.70 0.87 2.26 2.34 2.08 0.46 6.37 10.61

Oursvr 2.90 0.91 2.47 2.60 2.61 0.52 5.88 11.94

OursMVL 2.88 0.91 2.44 2.59 2.27 0.52 6.55 12.04

5 Conclusions

In this work, we propose the MVNet consisted of a memory assistance mod-
ule and a vocal reinforcement module. Memory assistance module is proposed
to further improve the speech quality while making the model focus more on
vocal features. Vocal reinforcement module explicitly introduces vocal features
to improve the speaker vocal similarity. Besides, we design a similarity joint loss,
which aims to improve the speaker vocal consistency. Experiments verify that
the MVNet can further improve speech quality while maintaining the increase
in speaker similarity and the decrease in speech distortion, respectively. In the
future, we will explore real-time adaptive speech feature extraction methods.
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Abstract. Learning associative reasoning is necessary to implement
human-level artificial intelligence even when a model faces unfamiliar
associations of learned components. However, conventional memory aug-
mented neural networks (MANNs) have shown degraded performance on
systematically different data since they lack consideration of systematic
generalization. In this work, we propose a novel architecture for MANNs
which explicitly aims to learn recomposable representations with a mod-
ular structure of RNNs. Our method binds learned representations with a
Tensor Product Representation (TPR) to manifest their associations and
stores the associations into TPR-based external memory. In addition, to
demonstrate the effectiveness of our approach, we introduce a new bench-
mark for evaluating systematic generalization performance on associative
reasoning, which contains systematically different combinations of words
between training and test data. From the experimental results, our method
shows superior test accuracy on systematically different data compared to
other models. Furthermore, we validate the models using TPR by analyz-
ing whether the learned representations have symbolic properties.

Keywords: Associative reasoning · Memory augmented neural
networks · Systematic generalization

1 Introduction

Humans can constantly imagine new things and infer the expected outcomes of
what they do. One of the reasons for its promising ability is that the human
brain can relate to multiple distinct experiences by memorizing past events and
recalling appropriate knowledge. This capability, called associative reasoning,
allows humans to cope with unfamiliar situations which they have not previously
experienced. Modern deep learning approaches for memory augmented neural
networks (MANNs) show glittering advances in associative reasoning [1,7,10,
12,14,19]. However, unlike humans, conventional MANNs still fail to generalize
associations when there are systematic differences between training and test
data [16,17].
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The main reason for the failure of systematic generalization with deep neural
networks is that representations are learned only to achieve minimum training
risk without considering systematical differences in the future. Therefore, cur-
rent approaches relying on learned representations cannot generalize to unseen
combinations of learned components [9]. To achieve systematic generalization,
we hypothesize that it is essential to (a) learn representations for components
as well as (b) provide representations for their systematical combinations.

In this work, we aim to achieve those two goals for systematic generalization
in associative reasoning of MANNs. We propose a modular encoder network
to learn symbolic representations, which are reusable pieces that can be com-
bined to represent unusual associations of known entities, and a Tensor Product
Representation (TPR) [18] based external memory, which can bind such learned
representations. The TPR is an embedding method for symbolic structures which
binds symbolic representations with the tensor product. Using the TPR-based
external memory, the associations can be systematically stored in the memory
and systematically recalled. Since the TPR method assumes pre-defined symbolic
representations for a given symbolic structure, we focus on learning to extract
recomposable representations from natural language to strengthen TPR-based
memory. We adopt recent approaches using competitive learning of the modular
structure of RNNs to specialize each RNN module to have its own independent
mechanisms [6]. These modules then encode given input according to their own
dynamics, with only the modules relevant to the input mainly participating. As
a result, the input is encoded into several pieces of specialized representations,
and their collection represents the original input. This symbolic characteristic of
representations provides validity for using the TPR for associative memory.

The main contribution of our work is providing an effectual method to achieve
systematic generalization for associative reasoning. To validate systematic gen-
eralization ability of our method, we design a synthetic task called Systematic
Associative Recall (SAR). In the experiments, our approach shows improved
performance than not only existing MANN-based models [3,7,8,12] but also
TPR-based MANNs such as fast weight memory (FWM) [16]. We found that
the modular structure can effectively learn symbolic representations for the TPR
memory than their work with a conventional RNN encoder.

2 Related Work

Deep neural networks require sufficient capacity to understand the context exist-
ing in long sequential data. MANNs expand the capacity of neural networks by
adding an external memory. The objective of these networks is to store given
sequential data in the memory, retrieve meaningful information from memory,
and utilize that to solve problems.

Content-based addressable memory networks, such as Differentiable neu-
ral computer (DNC) [7] and its variations [2,5,14,15], exploited content-based
addressing for memory writing and reading operations and have shown remark-
able strength in basic reasoning tasks [21]. Also, many researchers adopted state-
of-the-art techniques of deep neural networks to enhance the reasoning ability of



Learning Associative Reasoning Towards Systematicity 115

MANNs [1,10,14]. Meta-learned neural memory (MNM) [12] interprets the mem-
ory as a rapidly adaptable function, and Transformer-XL (TXL) [3] introduces
a recurrence mechanism to grant the memory ability to transformer architec-
ture [20]. Those approaches have shown significant progress in the reinforcement
learning task and language modeling task. Despite their achievements, few stud-
ies investigated the performance degradation of MANNs in environments where
there is a systematic difference between training and test data.

Recently, some researchers have researched the systematic generalization of
MANNs using the TPR method. TPR-RNN [17] firstly introduces a TPR-based
memory approach to learn combinatorial representations, and FWM [16] pro-
vides a more general method for TPR-RNN to expand on longer sequences. We
also follow their approach using TPR as external memory; however, unlike their
work that relies solely on TPR constraints to learn symbolic representations, our
method efficiently learns such representations using modular networks with com-
petitive learning. In effect, our method provides a more valid approach for using
TPR, and it also achieves better generalization performance on systematically
different data distribution.

3 Proposed Method

We focus on learning symbolic representations for external memory represen-
tations to achieve systematic generalization. Our method utilizes a modular
structure of RNN to encode symbolic representations and a Tensor Product
Representation (TPR) to bind them. Each RNN module encodes an input into
symbolic representations based on its own dynamics, and memory representa-
tions are obtained by binding them with the TPR method.

3.1 Tensor Product Representation

TPR provides an embedding of symbolic structures to represent systematicity [4]
by using the tensor product of component representations, so-called roles and
fillers. For example, to represent associations of a pair of objects in a set {John,
Apple, Three}, the filler Apple may be the value for the role of second element.
In another perspective, the filler Apple and Three may be the values for the role
John. If roles and fillers are specified, and their distributed representations are
given, the role/filler relations can be described by binding them with a tensor
product. From the TPR literature, multiple role/filler relations are superposed
to represent an entire symbolic structure. Formally, a distributed representation
for an input that consists of N role/filler relations {rk/fk}N

k=1 is expressed as a
superposition of tensor products of roles and fillers:

T =
N∑

k=1

rk ⊗ fk (1)

where T is distributed representation for the input, ⊗ is the tensor product
operator, rk/fk are role/filler representations for k-th role/filler relation.
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In order to guarantee the correctness of binding information, the TPR
method provides unbinding operator, which extracts filler for a particular role
from TPR. Let ui be an unbinding vector for role ri. For a simple case where
the role representations are orthonormal and ui = ri, it is sufficient to unbind
filler from a particular role ri by using the inner product

ui · T = ui ·
N∑

k=1

rk ⊗ fk = fi (2)

where · is the inner product operator.

3.2 TPR-Based External Memory

In our work, the external memory for MANNs is formulated as the superpo-
sition of TPR from each time step. We utilize one of the recent TPR-based
memory approach called fast weight memory [16] as a baseline model. At
time step t, the encoder encodes the input xt into a hidden representation
ht = Encoder(xt, ht−1). We then extract a role representation rt and a filler
representation ft from the hidden state ht as follows:

rt = tanh(Wrht) (3)
ft = tanh(Wfht) (4)
β = σ(Wβht) (5)

where σ(·) is sigmoid function and β is scalar for memory write strength. For
using β, it is a common approach for conventional MANN models, replacing the
previous values with a mixture of previous and current values. The representation
of association between role and filler is embedded in TPR as rt ⊗ (β ft − (1 −
β) ft−1), and it is written on the previous memory Mt−1 as follows:

Mt = Mt−1 + rt ⊗ (β ft − (1 − β) ft−1). (6)

Since information is continuously added to memory, we normalize it to avoid
divergence.

To read previous information from memory, unbinding vector ut for time
step t is extracted from the hidden state ht when the model requires to use
memory. The final read output ot is obtained by inner producting ut and memory
state Mt.

ut = tanh(Wuht) (7)
ot = Wo(ut · Mt) (8)

To increase the capacity of memory, one can extract two role vectors r1t and
r2t , and use outer product of them to derive rt = r1t ⊗ r2t . In effect, each role



Learning Associative Reasoning Towards Systematicity 117

representation learns to manifest its own role, such as entity or action [17]. In
this case, unbinding vector for memory read also should be formulated with two
unbinding vectors. For complex reasoning such as multi-hop reasoning problems,
it is possible to read memory multiple times before the linear layer Wo.

3.3 Recurrent Encoder Modules

Since the original work of TPR assumes pre-defined roles/fillers for a given sym-
bolic structured data and their representations, extracting them and learning
their representations are essential for TPR to obtain proper representations of
symbolic structures. To this end, we utilize an efficacious approach to learn sym-
bolic representations using modular encoder RNNs with competitive learning,
specializing each module to a specific mechanism [6,13]. The intuition behind
this modular encoder concept is that each activated module participates in
encoding input so that the hidden state becomes a combination of specialized
encoding mechanisms. Specifically, we exploit Recurrent Independent Mecha-
nisms (RIMs) [6] for our encoder network. For recurrent encoder modules with
RIMs, each module is determined whether to be activated based on its relevance
to the current input. The activated modules then encode the input with their
encoding mechanisms, exploiting outputs from non-activated modules. The final
hidden state of the encoder is derived by concatenating the hidden state from
each module. During the training process, only the activated module can be
updated and this competitive learning leads modules to have their own indepen-
dent mechanisms, as demonstrated by recent works [6,11,13].

4 Experiments

We evaluate our contributions in two different levels, a synthetic level and a
realistic level. First, we design a new synthetic task called Systematic Associative
Recall (SAR) to analyze the systematic generalization of MANNs. The purpose
of this level is to show the limitations of existing MANNs and the improvement
of our proposed methods, directly. Next, we validate our proposed method on
long sequential question answering task, comparing to other models.

4.1 Systematic Associative Recall Task

The SAR is an associative reasoning task designed to measure the ability to mem-
orize combinatorial associations when there is a systematic difference between
training and test data. In this task, the combinatorial associations are formed
with multiple objects by binding them. Concretely, we consider three object sets
such as human name Sh, fruit name Sf , and number name Sn, and the data are
constructed by concatenating the word embedding vectors sampled from each
object set. The main goal of this task is to reason the association between human
name objects and other objects when the relationship has not been exposed to
the model. For evaluating the systematic generalization, we divide Sh into three
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Fig. 1. Training and test accuracy on the SAR task over 15k iterations.

subsets, S1
h, S2

h, and S3
h, and each subset is given to infer objects from specific

sets associated with its human objects: S1
h → Sn, S2

h → Sf , and S3
h → Sf ∪ Sn

where A → B indicates that the model should infer B associated with A. The
set S3

h provides more diverse combinatorial associations to the model, and this
can affect the generalization performance of the model.

In the test, the model is required to infer the associations of two cases: (a)
associations similar to the training data: S1

h → Sn and S2
h → Sf and (b) system-

atically different from the training: S1
h → Sf and S2

h → Sn. Therefore, in order
to solve case (b), the model should learn representations for objects included in
combinatorial data, and generalize to associations between objects. Additionally,
we consider the effect for the degree of systematic difference between training
and test data. For fixed value of |Sh|, we adjust the proportion of |S3

h| with a
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Fig. 2. The similarity matrices between role vector rt and unbinding vector ut for
different human objects on (a) FWM and (b) our method. The x-axis and the y-axis
indicate rt and ut for sequence, respectively.

Fig. 3. The similarity matrices between read vectors ot for same fruit objects on (a)
FWM and (b) our method. The x-axis and the y-axis indicate ot for various time steps.

value p = |S3
h|

|Sh| . Since lower value of p means larger systematic difference, the
SAR task becomes more challenging as the value of p decreases.

Results. We evaluate DNC [7], FWM [16], and our method on the SAR task
to verify their systematic generalization ability. We consider three experimental
settings with p = 0.1, 0.3, and 0.5, and the results are shown in Fig. 1. DNC and
FWM show performance degradation for all settings with large gaps between
case (a) (plotted as test (same) in the figure) and case (b) (plotted as test
(different)), whereas our model successfully achieves systematic generalization
for p = 0.3 and 0.5. Even if FWM considers systematicity by using the TPR
method, it fails on the SAR task since FWM does not explicitly learn symbolic
representations.
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Analysis. To show the effectiveness of our method for learning symbolic rep-
resentations, we analyze learned representations generated by the baseline and
our model in two aspects. We investigate the representational analogy between
(i) role vectors and unbinding vectors, and (ii) unbound vectors for the identical
target object. In this analysis, we consider the association S1

h → Sf correspond-
ing to the case (b), but the combinatorial data are consisting of multiple human
objects and one identical fruit object.

Figure 2 shows the similarities between the role representations and the
unbinding vectors for combinatorial sequence data with different human objects.
The similarities should be close to 1 for the same human objects and 0 for dif-
ferent human objects to unbind appropriate filler representations from TPR
memory; therefore, the role vectors and unbinding vectors should be orthogonal.
From the analysis, role representations and unbinding vectors are not perfectly
orthogonal for the FWM, whereas our method shows almost orthogonal results as
shown in Fig. 2. This observation demonstrates that, unlike the baseline model,
our method could accurately learn symbolic representations for objects and per-
form associative reasoning for unseen combinatorial data in a systematic way.

Figure 3 shows the similarities between unbound filler representations from
different combinations of multiple human objects and one identical fruit object.
Since every combination includes the same fruit object, and the model is required
to recall fruit objects, the read outputs should be equivalent across multiple com-
binations. Figure 3(a) exhibits that the representations of read vectors from the
FWM are not identical from each other. Compared to the FWM, the similar-
ity patterns in our method display that the representations of read vectors are
nearly identical for every association, as shown in Fig. 3(b). These results also
demonstrate that our method performs associative reasoning in systematic way.

Table 1. The average test accuracy for 3 runs of different MANN models on the
catbAbI task. * indicates experimental results from our trial. Note that our experiments
of FWM cannot reach official results from [16].

LSTM TXL MNM FWM FWM* Ours*

Test accuracy 80.88% 87.66% 88.97% 96.75% 94.94% 96.63%

4.2 Concatenated-bAbI

The concatenated-bAbI (catbAbI) [16] is a more challenging question-answering
task than the bAbI task [21] with an infinite sequence of stories from the bAbI.
Note that the catbAbI task does not explicitly target systematic generalization.
Hence, our intention of this experiment is to verify the performance of models
on general associative reasoning problems.
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In the evaluated results on catbAbI in Table 1, FWM and our approach show
the highest performance, while conventional methods show low test accuracy.
Also, our model still achieves comparable results on long sequential text under-
standing problems. Especially in our experiment, our model shows improved test
results than FWM by using a module-based encoder.

5 Conclusion

In this paper, we focused on learning representations of symbols to generalize
their associations for associative reasoning. We proposed a novel MANN model
with a modular encoder network and TPR-based external memory and a new
task called Systematic Associative Recall (SAR) to analyze the systematic gener-
alization of MANNs. Our proposed method has shown that it can learn the sym-
bolic representations for objects individually and perform associative reasoning
in a systematic way. Furthermore, our proposed method achieved state-of-the-art
results on the SAR and a large-scale task.
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Abstract. Natyashastra is an ancient wisdom of Indian performing arts,
written by Bharat Muni, and remarkable for its Rasa theory. Rasa means
nectar, the sentiments or emotion felt by the spectator while watching
a performance. There are nine Rasas (nine emotions), famously known
as Navarasa. Eminent scholars have contemplated Rasa as a superpo-
sition of several emotions with the dominance of a particular emotion.
Empirical brain research may provide evidence to understand the previ-
ous theoretical work. Hence, we carry out this research to understand the
most dominant Rasa in positive and negative emotion Rasa groups. By
dominance, we mean how well the Rasa of the positive emotion group
was distinguished from negative Rasa and vice versa. Our analysis is
based on EEG data collected on participants while watching movie clips
based on these Rasas with capturing time-varying activity using three
functional connectivity metrics. Network properties are extracted from
networks and utilized to feed as features for Random Forest classifier. We
obtained maximum accuracy (greater than 90%) in five pairs between
negative and positive emotions. We find the two most dominant Rasas
are Sringaram (Love) and Bibhatsam (Disgust), representing positive
and negative emotions, respectively. We observe that weaker connections
in delta and gamma bands with the lowest network feature values sig-
nificantly aid in classifying emotions. The strongest connections of delta
and gamma connections involve inter-hemispheric and intra-hemispheric
engagement patterns respectively, which suggest global and local infor-
mation processing while watching emotional clips. Beta waves generate
strong connections across regions, which suggest inline findings with pre-
vious works on beta for the western classification of emotions.
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1 Introduction

Natyashastra is an ancient Indian treatise on performing arts written by Bharat
Muni (Saint). It has an influence on Indian dance, music, and literature. Indian
classical dance and music are based on Natyashastra [3]. It contains a total of 36
chapters, subjected to drama composition, acting, dance movements, body move-
ments, construction of the stage, music, etc. Chap. 6 of Natyashastra talks about
Rasa or sentiments. Rasa is the audience’s experience when they are observing
a performance [13]. The performer’s primary goal is to make them experience
what they are performing, for example, if the performer is crying the audience
should feel sad. What a performer performs is bhava and what an audience feel
is a Rasa. Rasa and Bhava are interrelated and no Rasa without bhava and no
Bhava without Rasa. Rasa is what a spectator experience when he/she is observ-
ing a stimulus (which is performance/act according to Natyashastra), and Bhava
is what is presented by the stimulus. The bhava expressed in the performance
gets translated into the emotional experience of the spectator. In Fig. 1, we have
shown the eight Rasas and their division into positive and negative groups. The
last Rasa Santam (peace) is not considered for this study.

Fig. 1. [Left] Facial Expressions depict different Rasas. [Right] In the table, we provide
closest English translation and the corresponding dominant emotional state (or Sthayi
Bhava).

Electroencephalography (EEG) is the most widely used neuroimaging tech-
nique due to its temporal precision. The multi-variate time series of EEG can
be considered to extract the time-varying brain regional interaction by using
brain connectivity metrics against primary five brain waves. In this study, we
discuss the emotion attached to each Rasa. Hence EEG data was collected while
watching movie clips narrating these Rasas pertaining to a particular emotion.
In recent years, several studies discussed the classification of emotions by EEG-
based functional connectivity patterns [5,7,10]. Lee and Hsieh computed func-
tional connectivity including correlation, coherence and phase synchronizaion
and observed the connectivity patterns differentiating emotional states: neutral,
positive, or negative [5]. Liu et al., examined the subject-independent discrim-
inative connection using phase lag index (PLI) to identify the positive, neutral
and negative emotions and obtained maximum accuracy of 87.03% in the beta
band, along with role of frontal and temporal lobes in emotion-relation activi-
ties [9]. They also discussed the network property such as global efficiency was



Positive and Negative Emotion Identification 125

more distinguishable to positive compared to neutral emotion. Zhang and col-
leagues reported the differences between positive and negative emotion using
connectivity network and highlighted the role of prefrontal region in emotional
processing interactions with other regions [19].

We compute functional networks using phase lag index (PLI), weighted phase
lag index (wPLI), and corrected imaginary part of Phase Locking Value (ciPLV)
for five brain waves and further exploited the network topology by extracting
fourteen network features. These features are used for classification between
positive and negative Rasas. We use Rasa as a representation of emotion, so
we interchangeably use Rasa or emotion in this study as shown in Fig. 1. Based
on the dimensional model of emotion classification by Russell and Barrett [14],
we hypothesize that the Rasas can be divided into two categories based on
the valance: positive and negative. We considered positive valance Rasa to be
Hasyam, Shringaram, Veeram, and Adbhutam, and negative valance Rasa to be
Raudram, Bhayanakam, Bibhatsam, and Karunayam.

The objectives of this study are a) Identify the dominant emotion in positive
and negative sets of Rasas using classification b) Role of functional networks and
frequency bands in identifying the significantly distinguishable pairs c) Interpret-
ing the outcome of classifiers using network metrics.

Dominant refers to a Rasa which is mostly distinguishable to other group
across functional metrics and bands based on the significance of classification
output. This work is novel in identifying the differences using three functional
networks against five brain waves and is an extension of recent work [12] on Rasa
by introducing positive and negative emotion rasa groups.

2 Data Description

2.1 Stimuli Selection and Participants

Nine Bollywood movies were selected as a stimulus for each Rasa, based on
the highest rating given by a group of people for each Rasa independently as
shown in Table 1. Bharat muni originally defined eight Rasas, the ninth Rasa
shantam (peace) was later added and we have excluded for this study and focus
on positive and negative sets of Rasa. The duration of the movie clip was based
on the time that the content of the movie needed to evoke that particular Rasa,
hence the time was different for different Rasa. The language used in movie clips
was Hindi. The release date of movies varied from 1980 to recent that is four
decades. 20 participants (mean age: 26 years, 16 males, 4 females), right-handed
students of IIT Gandhinagar participated in the study. Before conducting the
study, the informed concern was provided to all the participants. All participants
were proficient in the Hindi language. The instruction about the study was given
prior to the study. The participants were asked to watch nine selected Bollywood
movie clips; a fixation cross appeared on a screen for 10 s following each movie
clip. The order of movies was randomized for each participant. The Institute
Ethical Committee (IEC) of the Indian Institute of Technology, Gandhinagar
approved this study.



126 P. Pandey et al.

Table 1. Movie clips used in EEG data collection

Emotion Rasa Genre Film Name Year Start Time End Time

Positive Hasyam 3 Idiots 2009 59m 55s 1h 2m 28s

Positive Sringaram Umrao Jaan 1981 43m 08s 43m 50s

Positive Adbhutam Mr. India 1987 1h 1m 40s 1h 3m 28s

Positive Veeram Lagaan: Once
Upon a Time in India

2001 2h 10m 57s 2h 13m

Negative Raudram Ghajini 2008 2h 38m 43s 2h 40m 52s

Negative Bhayanakam Bhoot 2003 1h 2m 57s 1h 4m 31s

Negative Bibhatsam Rakhta Charitra 2010 43m 55s 45m 7s

Negative Karunayam Kal Ho Naa Ho 2003 2h 47m 41s 2h 50m 18s

2.2 EEG Data Recording and Preprocessing

A High-density Geodesic system of 128 channels was used for this acquisition
with a sampling rate 250 Hz. The experiment was designed and run on E-prime
TM and recording was captured using Net-Station TM. The preprocessing was
performed using the Matlab EEGLAB package. High-frequency signals 60 Hz
were filtered to avoid noise effects. Movements and eye-blinks artifacts were
removed using artifact subspace reconstruction. Following this, the data was
chunked respective to each Rasa across subjects and used for further analysis.

3 Methodology

To identify functional signatures of Rasas, we obtain functional brain networks
using standard functional connectivity metrics. As the functional activity of the
brain is encoded into neural oscillation frequencies, we obtain these signatures in
different brain frequency bands by frequency decomposition of the metrics into
five frequency bands: delta (1 Hz–4 Hz), theta (4 Hz–7 Hz), alpha (8–13 Hz),
beta (13 Hz–30 Hz), and gamma (30 Hz–45 Hz). The nodes in these functional
brain networks are the EEG electrodes, and the edges representing functional co-
dependence are obtained using three measures- Phase Lag Index (PLI), weighted
Phase Lag Index (wPLI) and corrected imaginary part of Phase Locking Value
(ciPLV). We use three connectivity metrics to identify robust Rasa divisions into
positive and negative categories, and also to investigate which metric capture
the Rasa divisions more accurately than others.

3.1 Functional Connectivity

The definitions of the three metrics defining correlations between two timeseries
EEG signals (x and y) and hence the edge between the corresponding nodes in
the brain network are explained here. For cross and auto-power spectral densities
of these signals depicted as Pxy and (Pxx and Pyy), the definitions are,
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– PLI: The PLI value between x and y is:

PLI = |E[sign(I(Pxy))]|, (1)

where is E is the average over epochs, sign denotes positive or negative sign
of the quantity over which it is applied, I is the imaginary part of the complex
number over which it is applied, and |.| denotes absolute value of the quantity.

– wPLI: The wPLI is defined as

wPLI =
|E[I(Pxy)]|
E[|I(Pxy)|] , (2)

where symbol meanings are same as in PLI definition.
– ciPLV: The ciPLV is defined as:

ciPLV =
|E[I(Pxy/|Pxy|)]|√

1 − |E[R(Pxy/|Pxy|)]|2
, (3)

where R denotes the real part of the complex number over which it is applied.

3.2 Thresholding of Functional Networks

Functional networks mostly preserve weak and erroneous connections, which
may conceal the topology of crucial connections [15]. For all the networks con-
structed based on above defined network metrics, we perform a thresholding of
the connections to retain the important edges and discard spurious ones. Thresh-
olding is commonly used to remove a percentage of the weakest links to retain
a usable sparse network. We applied the thresholding process as implemented
in the paper [1]: the network should be 97% connected, and the average degree
should be greater than 2 ∗ log(n), while maintaining the highest threshold value
for edge weights, where n is the number of nodes.

3.3 Network Metrics as Features

To characterize the network differences of one Rasa from the other, we calculated
the 14 network properties of the brain networks constructed using the three
functional connectivity measures. The network metrics are listed along with
their definitions in Table 2.

3.4 Machine Learning and Evaluation

Random forests were trained using [number of subjects × 14] features. Due
to the complexity of the EEG setup and data collection, most EEG studies
include 15–20 participants. Hence, some techniques are proposed to determine
the significance of Machine Learning performance estimates with small sample
size. Based on the recent article [16], it is essential to use rigorous analysis
methods rather than relying on K-fold Cross-Validation alone. We therefore used
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permutation tests with 500 rounds of five-fold cross validation to produce robust
and unbiased estimates regardless of the sample size. In this paper, we reported
the accuracy based on the significance of classification using the permutation
test [11].

Table 2. The table give definitions of the fourteen network metrics used for network
analysis in the present work. The numerical computation of the metric values were
carried out using NetworkX module of python [4]

Network Measure Symbol Definition

Average Degree AD The node’s degree is the number of its direct neighbours.
Average degree is the mean over the degrees of the nodes
in the network

Maximum Degree MD It is the maximum degree existing in the network

Average Edge Weight AEW Edge weight is the numerical value of the metric governing
the connection between the network nodes. Average edge
weight is the mean over all edge weights of the network
edges

Maximum Edge Weight MEW It is the maximum edge weight existing in the network

Network Density D It is the ratio of number of existing edges in the network to
the total number of potential connections in the network

Average Clustering
Coefficient

ACC The average clustering coefficient is the fraction of closed
triplets to the total number of all open and closed triplets
present in the network

Average Local
Efficiency

ALE Local Efficiency is defined for a particular node, as the
inverse of the average shortest path connecting all its
neighbours. ALE is average over all these values

Global Efficiency GE It is defined as the inverse of the average characteristic
path length between all pairs of nodes existing in the
network

Number of
Communities

NC It is the number of clearly identifiable modules, such that
the connectivity between the nodes within a module is
higher than across module connectivity

Modularity M Vaued between 0 and 1, modularity is the value depicting
how nice is the division of nodes into modules or
communities

Transitivity T Transitivity is the ratio of three times the number of
triangles of nodes to the number of connected triples of
nodes in the network

Average Degree
Centrality

ADC The degree centrality of a node is a fraction of the number
of links a node has to all the possible links it can have

Average Node
Betweenness Centrality

NBC The betweenness of a node is the measure of how
frequently the node lies in the shortest paths in the
network. NBC is the average of this quantity over all nodes

Average Edge
Betweenness Centrailty

EBC The betweenness of an edge is the measure of how
frequently the edge lies in the shortest paths in the
network. EBC is the average of this quantity over all edges
in the network
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4 Results

4.1 Identifying the Dominant Emotion in Positive and Negative
Sets of Rasas Using Classification

We first examined the discriminating pair of Rasas with maximum accuracy. The
maximum discriminating pair for positive emotions are shown in Table 3. We
observed that Bibhatsam (Disgust) formed the maximum discrimination with
three positive Rasas, including Hasyam (Comic), Adbhutam (Astonishment),
and Veeram (Heroic). Sringaram (Love) and Karunayam (Sorrow) showed max-
imum accuracy of 97.5%. The minimum accuracy was 80% in Adbhutam. The
network generated in PLI showed the maximum discrimination, including delta,
theta, and gamma bands. The bottom of Table 3 for negative pair shows that
Sringaram formed the maximum discriminating pair with every negative emo-
tion. All the accuracies were above 90%. The most crucial finding was that PLI
preserved the critical network information for discrimination and seven maxi-
mum pairs out of eight pairs of emotions shown in Table 3.

Table 3. [Top] Maximum classification accuracy obtained in each positive emotion.
[Bottom] Maximum classification accuracy obtained in each negative emotion

Positive Hasyam Sringaram Adbhutam Veeram

Negative Bibhatsam Karunayam Bibhatsam Bibhatsam

Method PLI PLI PLI PLI

Band delta theta gamma delta

Accuracy 0.9 ±0.12 0.975 ±0.05 0.8 ±0.1 0.875 ±0.0

Precision 0.883 ±0.15 0.96 ±0.08 0.79 ±0.13 0.92 ±0.1

Recall 0.95 ±0.1 1.0 ±0.0 0.85 ±0.12 0.85 ±0.12

F1Score 0.91 ±0.11 0.978 ±0.04 0.81 ±0.09 0.87 ±0.02

pvalue 0.002 0.002 0.006 0.004

Negative Raudram Bhayanakam Bibhatsam Karunayam

Positive Sringaram Sringaram Sringaram Sringaram

Method PLI ciPLV PLI PLI

Band gamma theta gamma theta

Accuracy 0.95 ±0.06 0.95 ±0.06 0.95 ±0.06 0.975 ±0.05

Precision 0.96 ±0.08 0.96 ±0.08 0.92 ±0.1 0.96 ±0.08

Recall 0.95 ±0.1 0.95 ±0.1 1.0 ±0.0 1.0 ±0.0

F1Score 0.949 ±0.06 0.949 ±0.06 0.956 ±0.05 0.978 ±0.04

pvalue 0.002 0.002 0.002 0.002

We reduced the higher dimensional features to lower-dimensional features
to visualize the differentiation between Rasas. In Fig. 2, we plotted the pair
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for Adbhutam and Veeram. We can observe the significant distinction between
pairs of emotions (Rasas), and each data point represents a participant. Adb-
hutam and Veeram achieved 80% and 87.5% accuracy, which can be inferred
from t-SNE plots showing 3–4 data points in opposite direction. Therefore, the
network features captured a significant distinction. Similarly, we observed sepa-
ration between Raudram and Sringaram in Fig. 2. Lower-dimensional visualiza-
tion is a way to understand the distribution present in high-dimensional space.
Therefore, in our presented figures, we observed a distinction between the fea-
tures of the two emotions. Moreover, the classification algorithm also plays a
part in learning the linear and non-linear boundaries.

Fig. 2. t-SNE (t-distributed Stochastic Neighbor Embedding) visualization of features
in two-dimension for Adbhutam (Astonishment), Veeram (Heroic), Bibhatasam (Dis-
gust), Sringaram (Love) and Raudram (Anger). Each data point represents a partici-
pant. The maximum number of data points of each Rasa are clustered in the opposite
direction to other Rasa, reflecting differences in features between Rasas.

Fig. 3. Each connection indicates a significant (p < 0.05) distinguishable pair obtained
in each functional network against frequency bands.
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4.2 Role of Functional Networks and Frequency Bands
for Identifying the Significantly Distinguishable Pairs

In Fig. 3, we illustrated the significant (p < 0.05) distinguishable pairs of emo-
tions for every functional network against each frequency band. There is sig-
nificant discrimination between every pair of Rasas using delta features of PLI
and ciPLV. The most striking observation is that the low-frequency oscillations
delta provided the maximum discrimination, followed by beta and gamma, as
mentioned in Table 4. Sringaram and Bibhatsam showed the maximum discrim-
ination in the delta band across all functional networks. The alpha band showed
the minimum number of distinguishable pairs. We also derived a scale based on
the maximum number of distinguishable pairs observed across functional net-
works against bands. In Fig. 4, we observed that Sringaram and Bibhtastam
formed the maximum number of distinguishable pairs.

Table 4. Number of discriminating pairs (p < 0.05) observed in functional networks
against frequency bands [Highlighted digit shows the maximum across bands]

FC delta theta alpha beta gamma

PLI 10 6 6 6 8

wPLI 8 5 5 9 7

ciPLV 10 7 5 6 6

Total 28 18 16 21 21

Fig. 4. A scale showing the maximum number of discriminating significant pairs (p
< 0.05) observed in each Rasa after summing the pairs of three functional networks
including all bands.

Table 5. Network features of PLI networks after averaging of bands and subjects for
Rasas

Positive Average Degree Density Clustering Coeff Global Effc No. of communities

Hasyam 21.713 0.171 0.34368 0.518 3.930

Sringaram 15.194 0.120 0.2395 0.477 3.860

adbhutam 21.414 0.169 0.33191 0.515 4.070

veeram 20.948 0.165 0.33582 0.515 3.990

Negative

Raudram 22.780 0.179 0.34747 0.524 4.040

Bhayanakam 19.013 0.150 0.30981 0.503 4.010

Bibhatsam 17.858 0.141 0.2902 0.492 3.990

karunayam 22.059 0.174 0.34754 0.524 3.920
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4.3 Interpreting Outcome of Classifier Using Network Properties

In Fig. 5, we have plotted the 5% strongest network connections of PLI. We
observed a significant pattern of cross-connection across the regions of the brain
hemisphere in the delta. In contrast, cross-connections were significantly reduced
in the gamma band. In Fig. 5, equal number of edges are shown, however more
sparse connectivity is observed in Sringaram and Bibhatsam, whereas others have
strongest connections with near by nodes. And this is also inferred by Table
5, Sringaram and Bibhatsam had the minimum number of network features.
Therefore classifier results were clearly observed in the scale mentioned in Fig. 4.
Stronger connections are observed in parietal and occipitial regions in alpha and
beta bands.

Fig. 5. Functional networks (PLI) of averaged across 20 subjects are displayed for 5%
of the strongest connections. Node size denotes the degree and edge width, and color
represents the strength.
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Table 6. Average Degree of PLI is shown against each Rasa and Band

Positive delta theta alpha beta gamma

Hasyam 16.206 33.788 25.766 19.884 12.919

Sringaram 12.991 20.235 18.318 14.103 10.325

Adbhutam 19.512 28.218 26.453 21.114 11.771

Veeram 17.620 30.484 23.491 21.327 11.816

Negative

Raudram 20.519 30.527 28.178 21.664 13.012

Bhayanakam 17.961 23.945 23.307 18.311 11.541

Bibhatsam 15.264 22.196 21.991 17.349 12.491

Karunayam 21.412 25.484 26.602 23.519 13.280

5 Discussion

Weaker connections are observed in delta and gamma bands as compared to
theta, alpha, and beta waves. Sringaram on delta waves have spread connec-
tions across the brain, which seem to generate the maximum classification, as
shown in Table 5, 6 and Fig. 5. The cross-connections across hemisphere in delta
may suggest the global information processing across brain, whereas gamma
waves are primarily involved in processing local computation, higher brain and
cognitive functions [2]. Therefore, the most striking visible difference observed
of strong inter- and intra-hemispheric engagement in delta and gamma bands,
respectively. Both rhythms have different dynamical mechanisms to perform.
Buzsáki et al. discuss the magnitude of gamma oscillation modulated by slower
rhythms and coupling between active patches of cortical circuits may take place
via cross-frequency coupling [2]. Delta band has been recently documented to
preserve functional connectivity patterns for discriminating the emotions engag-
ing parietal and occipital sites [17]. Higher frequency bands (gamma and beta)
has been reported widely to be significant for the classification of different emo-
tions [6,8,18].

6 Conclusion

We have presented findings using network properties of three functional networks
between positive and negative emotion groups of Rasa. The most crucial part
of our research is the interpretability of the obtained outcome of classifiers. We
derive a scale that defines the differences between two emotional categories.
Sringaram (Love) and Bibhatsam (Disgust) form the maximum distinguishable
pairs. Delta and gamma brain waves generate the weaker connections, whereas
theta, alpha and beta show strongest connections. These findings are crucial in
their novelty and an initial attempt to bring the ancient wisdom of performing
arts into modern brain research. We have provided a limited interpretation in
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this work, but there seems to be ample opportunity to understand the theta,
alpha, and beta roles in Rasas for future work.
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Abstract. Minimally invasive surgery requires to reduce trauma to
patients during the movement of the inserted robot end-effector. The
cerebellum is able to control limbs in many scenarios, with high preci-
sion and robustness. This article designs a cerebellum-inspired model-
free scheme for the tracking control of redundant robot manipulators
with remote center of motion (RCM) constraint. The scheme is formed
by coupling liquid state machines (LSM) and zeroing neural network
(ZNN). The ZNN is able to generate approximate joint angle commands
as teaching signals without a perfect robot model to train the cerebel-
lum model based on LSM. The output of the LSM is used as the control
commands for current moment, which includes managing the constraint
on RCM. Finally, demonstration simulations and experiments are con-
ducted to verify the efficacy of the proposed control strategy.

Keywords: Liquid State Machines · Remote center of motion ·
Redundant manipulator · Zeroing Neural Network · Spiking Neural
Network

1 Introduction

With the development of artificial intelligence in the past few years, redundant
robots are increasingly used in various fields, especially in medical surgery [4].
Minimally invasive surgery requires a small incision in the patient’s abdominal
wall to allow for the insertion of surgical instruments. The small incision will have
a restraint on the inserted robot end-effector, often called the remote center of
motion (RCM) constraint [13]. This constraint requires the robot end-effector
to perform its task while surrounding the incision as much as possible to avoid
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enlarging it or causing other damage to the patient. The surgical instruments are
usually operated by a human assistant during the procedure. This requires the
human assistant to have proficient experience in operating the robot end-effector
to avoid secondary damage to the patient. In order to reduce the mental and
physical burden of the surgeon, some automatic control strategies have been
applied in medical surgery, such as visual servo automatic control strategies
[3,19]. Although a mechanical implementation is a safer alternative, it requires
complex structures and more calibration procedures. Therefore, it is more flexible
and convenient to implement tasks such as visual servo and trajectory tracking
through control algorithms. But how to maintain the RCM constraint during
the surgical operations becomes a challenging problem.

In recent years, many approaches have taken the RCM constraint into
account in control strategies [1,8,12]. Aghakhani et al. [1] designed a variable
associated with the end-effector insertion depth to obtain an augmented RCM
Jacobian matrix. The final Jacobian matrix was obtained by splicing the task
Jacobian matrix and the augmented RCM Jacobian matrix. Compared to [1],
Sadeghian et al. [12] introduced a Jacobian matrix with minimal dimension to
reduce the computational complexity. Li et al. [8] proposed a recurrent neural
network with the RCM constraint. However, in practical application scenarios,
there may be cases where some of the kinematic parameters are unavailable or the
calibrated parameters do not match the actual parameters, making these model-
based control methods less feasible. In recent years, model-free based control
methods are also developing rapidly, such as [17,18]. However, these model-free
control methods did not involve RCM constraint. The development of artificial
intelligence and the fact that humans have powerful learning and precise motion
capabilities motivate us to search for a model-free cerebellum-inspired scheme.

The human brain can be viewed as a complex, non-linear and parallel cog-
nitive machine. Artificial neural networks (ANNs) are the hardware or software
implementations inspired by the development of brain science in the last hundred
years. In [10], ANNs are divided into three stages, the first one is the perceptrons
consisting of binary gates, where each boolean function can be implemented by
a suitable network structure. The second stage is defined by more complex neu-
ronal models using continuous activation functions. Based on the continuous
behavior of neurons, a back propagation training method was proposed. How-
ever, the second generation neural networks are biologically inaccurate and do
not simulate well the operating mechanisms of real biological cerebellum. Some
works based on cerebellum-like models have borrowed the structure of the motor
nervous system [18], however they did not use spiking neurons and still did not
fully exploit the potential of cerebellum-like models.

The third generation of ANNs is known as spiking neural networks (SNNs)
with spiking neurons (e.g. integrate and fire neurons) as the basic unit. SNNs
have rich neurodynamic properties, numerous coding mechanisms and event-
driven low energy consumption properties that have attracted increased research
interest [11]. Maass [9] stated that compared to the previous two generations
of neural networks, spiking neural networks use a smaller number of neurons
and therefore possess more computational power. Even in the worst case, SNNs
possess the same computational power. Compared to the second generation of
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neural networks, SNNs are still in the early stages of rapid development, and
due to the discontinuity of spiking events, the back propagation algorithm is not
directly applicable to SNNs, and there is no uniform or clear training method.
Inspired by the structure of the mammalian central nervous system, Maass [10]
proposed a reservoir computational system based on spiking neurons, called a
liquid state machine (LSM) (which is used in this paper).

Humans are capable of accurately performing a variety of complex tasks
despite their complex skeletal structures and non-deterministic sensory delay
feedback. Inspired by the biology of cerebellar motor control, in this work we
will develop a spiking neural networks-based control strategy for redundant robot
arm trajectory tracking tasks under RCM constraint. The main contributions of
this work are summarized as follows.

• A model-free cerebellum-inspired control scheme, which based on liquid state
machine, is designed to solve the tracking control problem of redundant
manipulators with surgical tooltip, considering RCM constraint.

• Compared with some RCM constrained robot arm control schemes, the pro-
posed control scheme does not require modeling of the robot arm, which is
more robust and portable.

• Compared to general control strategies base on liquid state machine, the
proposed control scheme does not require pre-training and reduces the time
overhead.

2 Preliminaries

In this section, we discuss the concepts and formulas of the liquid state machines.
In addition, the RCM constraint and its kinematics control problem of redundant
manipulators investigated in this paper are also described.

2.1 Liquid State Machine

Liquid states machine is a reservoir computing system where many input sig-
nals are injected in a nonlinear dynamic system using spiking neurons and then
spiking sequences are collected and calculated in an external layer called read-
out [10]. The nonlinear dynamic system has the ability to represent the current
and past inputs, which is capable of solving time-series data in [5,20]. LSM usu-
ally consists of three layers: input layer, liquid layer and readout layer. Liquid
layer generally is composed of Leaky Integrate-and-Fire (LIF) neurons [6] con-
nected in a recurrent way. Readout layer can handle the high-dimensional space
of the liquid layer using a linear classifier such as a least squares linear regres-
sion [14]. As illustrated in Fig. 1, the input layer propagates the sensorimotor
information towards liquid layer at each simulation time step (2 ms). There is
no uniform way how to encode sensor data into spiking events, and common
methods include population code and probabilistic spike sampling code. In this
paper, the input layer is divided into K mossy fiber neuron groups, correspond-
ing to K input signals. Each input neuron group has L unique mossy fiber (MF)
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Fig. 1. (a) The diagram of the cerebellum model based on the LSM. (b) The schematic
diagram of the proposed cerebellum scheme for the tracking control of a redundant
manipulator with RCM constrain.

neurons representing each variable using the simplified population code. Only
K MF neurons in the input layer are activated to represent the input signals at
each simulation time step.

Liquid layer consists of the granular cells, which are modelled as Leaky
Integrate-and-Fire (LIF) neurons, that act as a reservoir and are responsible for
remembering past and present coded sensorimotor information from the input
layer. There are several spiking neuron models proposed, and [7] compares the
biological plausibility and computational efficiency between models. The LIF
neuron with exponential synaptic dynamics is used in this work, which can be
defined by a set of equations as follows:

dv

dt
=

ie(t) + ii(t) + ioffset + inoise
cm

+
vrest − v

τm
(1)

die
dt

= − ie
τsyne

(2)

dii
dt

= − ii
τsyni

(3)

where v is the membrane potential, vrest is the resting membrane potential, τm is
the membrane time constant, cm is the membrane capacitance, ioffset and inoise
can be seen as coming from different noise sources, τsyne

is the decay time of the
excitatory synaptic current while τsyni

is the decay time of the inhibitory one.
When the membrane potential of a LIF neuron is greater than the membrane
threshold(Vthreshold = 15mV ), the neuron sends a spike.

Liquid layer is created using N LIF neurons forming a 3D structure where
80% excitatory(E) neurons and 20% inhibitory(I) neurons. The liquid layer is
divided into K subgroups corresponding to the number of mossy fiber neurons
in the input layer, and mossy fiber neurons are connected in a fully connected
manner to the excitatory neurons in the corresponding liquid subgroups. The
probability of connection generation between neurons depends on the type and
distance of neurons, as shown in (4) where the value of λ is equal to 1.2 and C
depends on the type of neurons: 0.3(EE), 0.2(EI), 0.4(IE) and 0.1(II).
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Pi,j = Ce− D(i,j)2

λ2 . (4)

Readout layer consists of the Purkinje cells, which can handle the high-
dimensional space of the liquid layer in a simple way. In this paper, we use
the Ordinary Least Square (OLS) to solve the following problem:

min
w

‖wX − yl‖22. (5)

The matrix X is usually composed of a sequence of the liquid spikes, yl is the
variable values to be learned and w is the readout weight. After the input signal
u(t) ∈ R

K is fed to input layer, the spiking sequence x(t) ∈ R
N at this current

moment is obtained and the final output y(t) ∈ R
L of the readout layer is model

as a weighted sum of the liquid layer:

y(t) = w(t)x(t). (6)

2.2 Manipulator Kinematics Model

For a redundant manipulator with m joints, the forward kinematics model is
formulated as follows:

f(θ(t)) = Pa(t) (7)

where θ(t) ∈ R
m is the joint angle of the manipulator at the time t, Pa(t) ∈ R

d

is the Cartesian space position and f(·) : Rm =⇒ R
d represents the nonlinear

mapping function of the manipulator. For the highly nonlinear of (7), the forward
kinematic model is obtained at the velocity level by taking the derivative of (7)
as below:

J(t)θ̇(t) = Ṗa(t) (8)

where J ∈ R
d×m is the Jacobian matrix of the manipulator. The error of the

trajectory tracking task is defined as et(t) = Pa(t) − Pd(t), where Pd(t) ∈ R
d is

the desired end-effector position in the Cartesian space.

2.3 Remote Center of Motion Constraint

During the surgery procedure, the surgical tooltip of the robot needs to pass
through the initial insertion point (Ptrocar ∈ R

d) without moving violently with
the movement of the robot arm, as shown in Fig. 2(b).

For an m-DoF robot manipulator with a surgical tooltip, the mapping from
its joint space to the Cartesian coordinate of the robot arm end-effector Pm ∈ R

d

and the surgical tooltip end-effector Pm+1 ∈ R
d can be described by the following

function:
Pm = fm(θ),

Pm+1 = fm+1(θ).
(9)
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Fig. 2. Robotic endoscope system. (a) UR5 robot coupled with a flexible endoscope.
(b) Remote center of motion.

In order to satisfy the RCM constraint, Ptrocar should be as close to the
straight line L1 between Pm and Pm+1. The RCM point Prcm is defined as the
projection of the Ptrocar on the straight line L1 as below:

k = −((xm − xtrocar)(xm+1 − xm)
+ (ym − ytrocar)(ym+1 − ym) + (zm − ztrocar)(zm+1 − zm)),

xrcm =
k(xm+1 − xm)

(xm+1 − xm)2 + (ym+1 − ym)2 + (zm+1 − zm)2
+ xm,

yrcm =
k(ym+1 − ym)

(xm+1 − xm)2 + (ym+1 − ym)2 + (zm+1 − zm)2
+ ym,

zrcm =
k(zm+1 − zm)

(xm+1 − xm)2 + (ym+1 − ym)2 + (zm+1 − zm)2
+ zm

(10)

where Prcm := [xrcm, yrcm, zrcm]T.
Then the error of RCM can be represented as follows:

er = Prcm − Ptrocar. (11)

The Prcm should satisfy the following equation:

Jr(t)θ̇(t) = Ṗrcm(t) (12)

where Jr ∈ R
d×m is the Jacobian matrix corresponding to the RCM point.

3 Control Scheme Design

3.1 Cerebellum Model

For a redundant manipulator with m joints, a cerebellum-like spiking model
based on LSM is created as a controller and computes the joint velocity at this
moment, as illustrated in Fig. 1(b). The parameters about (1), (2) and (3) are
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chosen as: inoise ∼ U(13.5, 14.5)(nA), inoise ∼ N (0, 0.01)(nA), cm = 30(nF ),
vrest = 0(mV ), τm = 30(ms), τsyne

= 3(ms) and τsyni
= 6(ms). The joint angle

θ(t) ∈ R
m as the input signal u(t) = θ(t) ∈ R

m are fed to the cerebellum model
and the number of mossy fiber neuron groups K is equal to the number of joint
m. Next, the cerebellum model will generate the output signal

y(t) = x(t)w(t) ∈ R
m (13)

as joint velocity θ̇out(t), where x(t) ∈ R
N is the spiking sequence of the liquid

layer at moment t and N = 100 × m is the number of all LIF neurons in the
liquid layer, which means that each joint has 100 neurons.

However, many previous control methods based on liquid state machines [2,
10] required pre-training the readout weight parameters w, which requires to
model the robot arm and collect certain data in advance. Since the training of
the readout weight is based on supervised learning algorithms, in the following,
we will combine zeroing neuron network (ZNN) [21] to present a model-free,
pre-training-free and on-line learning approach.

3.2 Tracking Control Scheme

According to (8) and (12), we can obtain the two desired joint velocities for the
trajectory tracking task and the RCM constraint task, respectively, as below:

θ̇t(t) = J†(t)ėt(t),

θ̇r(t) = Jr
†(t)ėr(t)

(14)

with (·)† being the pseudo-inverse operation where ėt(t) is the derivative of
et(t) and ėr(t) is the derivative of er(t). How to handle these two desired joint
velocities appropriately is a key point, since the two task affect each other in
most cases. Inspired by [15], the following joint velocity solution is designed by:

θ̇d(t) = θ̇t(t) + ˜J†(t)(ėr(t) − Jr(t)θ̇t(t)) (15)

where
˜J = Jr(I − J†J) (16)

with I being an identity matrix. However, matrices J and Jr require accurate
prior modeling of the robotic arm model, and the Jacobian matrix Jr also involve
the specific insertion pointPtrocar. Therefore, ZNN is introduced to estimate the
Jacobian matrices Ĵ and Ĵr. A vector-valued error function is defined to measure
the error when the estimated Jacobian matrix Ĵ used in (8):

ε(t) = Ṗa(t) − Ĵ θ̇(t) ∈ R
m. (17)

The following equation is defined according to znn design idea:

ε̇(t) = −φε(t) (18)
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Fig. 3. Some snapshots of the UR5 manipulator for tracking the circular trajectory

where φ is a positive parameter for the convergence adjustment and ε̇(t) is the
derivative of ε(t) with respect to time. Substituting (17) into (18) yields

˙̂
J(t) = (P̈a(t) − Ĵ(t)θ̈(t) + φ(Ṗa(t) − Ĵ(t)θ̇(t)))θ̇†(t) (19)

where ˙̂
J(t) represents the derivative of Ĵ(t) with respect to t, P̈a(t) is the deriva-

tive of Ṗa(t), θ̈(t) is the derivative of θ̇(t) and θ̇†(t) represents the pseudo-inverse
of the θ̇(t). Correspondingly, we can similarly obtain the equation for Ĵr

˙̂
Jr(t) = (P̈rcm(t) − Ĵr(t)θ̈(t) + ν(Ṗrcm(t) − Ĵr(t)θ̇(t)))θ̇†(t) (20)

where ˙̂
Jr(t) represents the derivative of Ĵr(t) with respect to t, P̈rcm(t) is the

derivative of Ṗrcm(t) and ν ∈ R
+ is another design parameter of ZNN. Finally,

we can obtain the training signal ˙̂
θd(t) used to calculate the readout weight w

of the LSM
˙̂
θd(t) = ˙̂

θt(t) + ˜

Ĵ
†
(t)(ėr(t) − Ĵr(t)

˙̂
θt(t)),

˙̂
θt(t) = Ĵ†(t)ėt(t),

˜

Ĵ = Ĵr(I − Ĵ†Ĵ).

(21)

In order to achieve real-time training of the readout weight w(t+1), we take
the spiking sequences of the liquid layer at the previous g moments to form
Xg ∈ R

g×N and the corresponding training signals calculated by (21) to form

Yk = [ ˙̂θd(t− g +1), ..., ˙̂
θd(t− 1), ˙̂

θd(t)]T ∈ R
g×L, and the readout weight w(t+1)

is calculated according to (4).
To summarize the above proposed control scheme, the joint angle as input

signal is input into the liquid state machine and the corresponding joint veloc-
ities are obtained after a cerebellum-like simulation time. The proposed ZNN
combined with RCM constraint is used to get the training signal to iteratively
update the parameters of the readout layer of the liquid state machine.

4 Simulations and Experiments

4.1 Simulations

The liquid state machine is implemented using the Brian2 neuron simulator
[16]. To validate the effectiveness of the proposed control scheme, simulations
are performed in the virtual robot experimentation platform (V-REP).
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Fig. 4. Results of the circular trajectory tracking of the endoscope with RCM con-
straint
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Fig. 5. Results of the circular trajectory tracking of the endoscope without RCM con-
straint

Simulation Setting. As shown in Fig. 2(b), simulations are conducted on a
UR5 manipulator with a endoscope in V-REP. The tracking control task is to
control the end-effector of the endoscope to move along a circular trajectory.
The time step for this tack is set to 2 ms as the LSM simulation time step. Since
the sixth joint of UR5 is a rotating joint, it does not affect the tracking task
and RCM constraint, so it is set to a constant value (0 rad). The initial joint
angles of the robotic arm are set as θ(0) = [0, π/6, 2π/9, π/9,−π/2]T rad. The
ZNN design parameters of (19) and (20) are set as φ = ν = 0.01. The relevant
parameters of the structure of LSM also need to be specified. For the UR5 robot
arm with six joints, the number of mossy fiber neuron groups is set as K = 5,
the number of LIF neurons is set as N = 500 and the number of the readout
layer is L = 5, which expressed as first five joint speeds as well as the number
of moments to train the readout weight g = 3.

Simulation Results. Some snapshots of the UR5 manipulator for tracking the
circular trajectory are depicted in Fig. 3, where surgical tooltip passed through
the trocar point. The specific results of the tracking control task is illustrated in
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Fig. 6. Results of the circular trajectory tracking synthesized by the accelerated RNN
model

Fig. 4. As shown in Fig. 4(b), the proposed control method has achieved a root
mean squared error(RMSE) of 1.18 × 10−4 m in the trajectory tracking task.
Figure 4(a) shows that the RCM point is at a small distance from the starting
point during the motion with the RMSE being 1.0 × 10−6 m. Meanwhile, in
order to verify the effectiveness of the RCM constraint proposed in (21), we

change the training signal of the liquid state machine to ˙̂
θd(t) = ˙̂

θt(t) to obtain
the results shown in Fig. 5. The results of the simulation without considering
RCM constraint show that the RMSE of trajectory tracking is 1.18 × 10−4 m as
shown in Fig. 5(b), which is similar to the case with RCM constraint. However,
as shown in Fig. 5(a), the RCM error (1.66×10−2 m) is much larger than that of
the case considering RCM constraint. It is undesirable in surgical applications.
These simulation results have verified the effectiveness of the proposed method
in tracking control task and complying RCM constraint.

Comparison. To further reveal the advantage of the proposed cerebellum-
inspired control scheme, we adopt a model-based approach [8] based on acceler-
ated RNN model as comparison. The parameters of the accelerated RNN model
is ρ = ζ = ξ = 1 and p = 0.5. As shown in Fig. 6(b), the accelerated RNN model
has achieved an RMSE of 9.88 × 10−4 m in the tracking task. However, the
RMSE of the RCM constraint is 8.98 × 10−4 m, which is larger than that of the
proposed cerebellum-inspired control scheme (1.0×10−6 m). This illustrates the
advantage of the proposed method since the smaller the RCM error, the smaller
the possibility of secondary injury to the surgical wound of patients.

4.2 Experiment

Physical experiment based on the KINOVA JACO Gen3 manipulator with a
endoscope is conducted to verify the efficacy of the proposed control scheme
as shown in Fig. 7(c). The initial joint angles of the Jaco3 are set as θ(0) =
[8.56, 2.91, 171.84, 267.71, 2.38, 274.63]T degree. The ZNN design parameters of
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Fig. 7. Experiment results of the circular trajectory tracking of the endoscope with
RCM constraint

(19) and (20) are set as φ = ν = 0.0005. Experimental results can be found
in Fig. 7. As shown in Fig. 7(a), the manipulator has achieved the trajectory
tracking task successfully with an RMSE of 5.31 × 10−4 m. It can be seen that
the RCM error is maintained in a small range with the RMSE being 6.2×10−4 m
as depicted in Fig. 7(b). In summary, the experiment results have also validated
the efficacy of the proposed control method for robot-assisted minimally invasive
surgery.

5 Conclusion

In this paper, we have presented a cerebellum-inspired network based on LSM.
Then, based on the cerebellum-inspired network, a model-free tracking con-
trol scheme has been proposed for robotic manipulators in minimally invasive
surgery. The control scheme is capable of dealing with two vital problems simul-
taneously, namely trajectory tracking and RCM constraint. Simulations and
experiments have been designed to verify the efficacy of the proposed cerebellum-
inspired scheme in the tracking control task with RCM constraint. The results
have shown that the robot can achieve the trajectory tracking task successfully
as well as complying the RCM constraint by means of the proposed scheme. The
advantage of the proposed method has also been revealed by comparison against
existing method.
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Abstract. We present a work-in-progress on implementing reinforce-
ment learning by instrumental conditioning on SpiNNaker. Animals learn
to behave by exploring the changing environment around them such that,
over a period of time, their behaviour gives a good outcome (reward) i.e. a
perception of ‘satisfaction’. While inspired by animal learning, reinforce-
ment learning adopts a goal-directed strategy of maximising rewards
in a dynamic environment. Instrumental conditioning is a strategy to
strengthen the association between an action and the environmental
state when the state-action pair is rewarded i.e. the reward is instru-
mental in forming the association. However, in the real world, the deliv-
ery of a reward is often delayed in time, known as the distal reward
problem. Using the concept of eligibility traces and spike-time depen-
dant plasticity (STDP), Izhikevich (2007) simulated both classical and
instrumental conditioning in a spiking neural network with Dopamine
(DA)-modulated STDP. The current implementation of DA-modulated
plasticity on SpiNNaker using trace-based STDP is reported by Mikaitas
et al. (2018), who demonstrated classical conditioning with a similar
experimental set up as Izhikevich. Our results show that using delayed
DA-modulation of STDP on SpiNNaker, we can condition a neural pop-
ulation to maximise its reward over a period of time by firing at a higher
rate than another competing population. Ongoing work is looking into
a dynamic conditioning scenario where different actions can be selected
within the same run as is the case in real world scenarios.
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1 Introduction

Behavioural learning in animals evolves by exploring and interacting with their
immediate environment in a closed-loop manner. While exploring several possi-
ble actions in an unknown environmental state (S), a ‘good’ outcome (R) after
taking a certain action (A) strengthens an association between the state S and
action A, such that the animal is likely to repeat the ‘behaviour’, i.e. selecting
A when repeat encountering S. Conditioning experiments are used by psycholo-
gists and neuroscientists to understand how animals learn to behave in unknown
environments. One such paradigm is instrumental conditioning, where animals
are trained by ‘reinforcing’, their good behaviour by delivering a preferred food
or beverage. Over a period of time, by trial-and-error, the animals learn to opti-
mise their behaviour such as to obtain the maximum reinforcement, commonly
called reward (R). This biological strategy to learn to adapt to, and navigate
in, new environments forms the inspiration for the field of Reinforcement Learn-
ing (RL), where the goal has been to build algorithms for machines that can
navigate the environment to optimise their rewards in the long term [19]. The
notion of training a robot by instrumental conditioning was investigated in [21],
which in turn was inspired by the works of B.F. Skinner (1963) on ‘operant’
(a nomenclature that is conceptually similar to instrumental) conditioning. The
authors in [21] coined the term ‘Skinnerbot’ for training a robot using strategies
adopted during instrumental conditioning of animals by human trainers. We
have been working on building brain-inspired frameworks for action-selection
on SpiNNaker [18], a neuromorphic hardware that has potential for low power
robotic applications [7]. However, our previous application on SpiNNaker was
‘hardwired’ (static) to associate with a stimulus [18]. The brain is known to
learn adaptively by forming (discarding) new (unused) connections between its
neurons, a phenomenon that is termed as ‘synaptic plasticity’ [12]. In this work,
we present a work-in-progress on implementing instrumental conditioning on
SpiNNaker by parameterising a balanced random network with conductance-
based Izhikevich’s neuron models as its compute nodes, and neuromodulated
plasticity as implemented in the toolchain sPyNNaker [17].

The environment around us is noisy; by the time an animal receives R for
A while in some S1 ∈ S, the environment will have changed to S2 ∈ S. In
behavioural literature, this is known as the distal (delayed) reward problem [11],
whereby the brain needs to work out the causality between R, A and S1, even
if R was received while in S2. This led to the proposition that neurotransmit-
ters in the brain leave ‘traces’ corresponding to the pair (S1,A) that facilitate
the assigning of credit to this state-action pair for R. In RL, the distal reward
problem is referred to as the credit assignment problem, and can be addressed
by using the concept of ‘eligibility traces’ [1,22]. Thus, every time there is an
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R caused by the state-action pair (S1, A), the synaptic trace of this activity is
likely to be higher than all other state-action pairs, thus making it eligible for
assigning the credit, albeit with a degree of uncertainty that is implicit in a
noisy environment. The neurotransmitter Dopamine (DA) in the brain is now
known to cause ‘satisfaction’ after a good outcome (R) corresponding to (S1, A)
by ‘modulating’ (controlling) synaptic targets in specific areas of the brain. Such
a mechanism is referred to as DA-modulated (also, neuromodulated) synaptic
plasticity. To the best of our knowledge, Izhikevich (2007) [11] for the first time
addressed the distal reward problem in a DA-modulated spiking neural network
(SNN), demonstrating RL using both classical (a reward prediction conditioning
strategy, also called Pavlovian) and instrumental conditioning.

Following the experimental set up in [11], classical conditioning using DA-
modulated plasticity was first demonstrated in [13]. While classical conditioning
is suited for reward prediction, it is not straightforward to use it for action-
selection. Our interest is in implementing the action-selection mechanism on
SpiNNaker using DA-modulated plasticity for instrumental conditioning. Fur-
thermore, we have been using an implementation of conductance-based Izhike-
vich (IZK) neuron models on SpiNNaker [5,18]. Besides computing efficiently,
IZK neurons can be used to simulate a wide range of spike patterns as observed
in the brain; also, the parameter space corresponding to the rich repertoire of
spike dynamics are well known owing to several previous works. However, all
our previous applications with the IZK neurons were with static synapses. The
work presented here is the first implementation of plastic synapses on an IZK
neuron-based network on SpiNNaker. Our experimental set up for demonstrat-
ing instrumental conditioning in a balanced random spiking neural network is
adapted from [11]. Two sub-populations of neurons as a part of a larger popula-
tion, represent two competing ‘actions’ (A and B). We (i.e. the human trainers)
decide on a preferred ‘behaviour’ (or ‘policy’ in RL nomenclature), say, selecting
A over B; we provide reinforcement R only if A is selected, and at a delayed
time, i.e. after ‘evaluating’ the network behaviour at regular intervals during
the simulation; If the network doesn’t follow the specified behaviour, no R is
delivered. Preliminary results from our work show instrumental conditioning in
the network—over a period of time, the network learns to ‘behave’ such as to
maximise the rewards by selecting the preferred action. Furthermore, the net-
work remembers this selected action even if we stop rewarding after a period of
training. In the next phase of this work, we aim to simulate the exact instru-
mental conditioning demonstrations in [11] on SpiNNaker, where policies can
be changed dynamically in the network. Our short term goal is to map these
strategies onto an existing brain-inspired architecture on SpiNNaker [18] using
DA-modulated plasticity as implemented on sPyNNaker.

In Sect. 2 we present the relevant background to this work. In Sect. 3, we
present the simulation methodologies and the results from our work-in-progress.
In Sect. 4, we summarise and critique our work and outline future directions.
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2 Background

For readability, below we explain briefly the brain inspired theory of spike-time
dependant plasticity (STDP) that forms the substrate for neuromodulated plas-
ticity in our spiking neural network. Our narrative is in the context of reinforce-
ment learning by instrumental conditioning, and existing implementations on
SpiNNaker.

2.1 STDP and Synaptic Trace

STDP is a widely used technique to incorporate adaptability, i.e. plasticity, in
spiking neural networks, and is supported by physiological evidence [2]. The
underlying theory is similar to Hebbian correlation-based learning; the connec-
tion strength between two neurons that fire closer in time are modified based on
the temporal order of their firing. If a pre-synaptic neuron fires before a post-
synaptic neuron, and if the time-interval between their two spikes is within an
‘eligible’ time-window, then the synaptic strength between the two neurons is
increased, thereby strengthening their association, a phenomenon that is called
long term potentiation (LTP). Unlike the Hebbian learning though, in the con-
verse case of the post- firing before pre-synaptic neuron, the implicit assumption
is that there is a lack of association between the two neurons, thereby decreasing
the synaptic strength between them; this is called long term depression (LTD).
The change in synaptic strength, commonly referred to as ‘synaptic weight’, due
to STDP is an exponentially decreasing function of the temporal order as well
as the distance between the pre- and the post-synaptic spikes [14]. A biologically
plausible implementation of STDP is by means of ‘trace’ variables that simulate
the gradual decay of neurotransmitter concentration in the synaptic cleft, and
is defined below [12]:
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where si/j are pre- and post-synaptic trace variables; τ+/− are time constants
corresponding to post-synaptic decay of neurotransmitter concentration in the
synaptic cleft; tfi tfj are pre- and post-synaptic spike times respectively; the Dirac
delta function (δ) denote a spike; Δw−

ij and Δw+
ij are LTD and LTP respectively;

F± define the amplitudes of the weight changes and are a function of the current
weights.

Neuromodulators in the brain facilitate STDP-based learning by ‘reshaping’
the eligibility windows of LTP and LTD during which the weight changes are
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effective [4,15]. In the following section, we describe how the neuromodulation
of STDP by DA addresses the credit assignment problem of RL and facilitates
instrumental conditioning in the brain.

2.2 Dopamine and Neuromodulated Plasticity

A major issue in real world applications of RL is that of delayed reinforcement,
for example when an animal decides on ‘fight or flight’ in response to an envi-
ronmental situation, the ‘perception’ (good or bad) of the outcome, is delayed in
time. However, several other incidents may have happened in the meanwhile, and
yet, the animal learns to associate the outcome to the specific response under
a given circumstance. The theory of eligibility trace is one way to address the
problem of correctly assigning credit in spite of temporal delay between action
and reinforcement [20]. According to this theory [1]:

“Whenever a neuron fires, those synapses that were active during the sum-
mation of potentials leading to the discharge become eligible to undergo
changes in their transmission effectiveness. If the discharge is followed by
further depolarization, then the eligible excitatory synapses become more
excitatory. If the discharge is followed by hyperpolarization, then eligi-
ble inhibitory synapses become more inhibitory. In this way a neuron will
become more likely to fire in a situation in which firing is followed by
further depolarization and less likely to fire in a situation in which firing
leads to hyperpolarization.”

It is now known that delayed reinforcement in the brain is facilitated by DA, and
the timing of dopamine release is thought to be crucial in behavioural instru-
mental conditioning [22]. In the context of STDP, the concentration of DA is
reported to rise steeply within tens of milliseconds, followed by a rapid decay.
These concepts were used in [11] to demonstrate both classical and instrumental
conditioning using the following equations:

ċ = −c/τc + STDP (τ)δ(t − tpre/ post) (5)
ġ = c · d (6)

ḋ = −d/τd + DA(t) (7)

where c is the eligibility trace variable; g is the synaptic weight; d is the extra-
cellular DA concentration variable; τd is the time constant for DA uptake after
the synapse; DA(t) simulates the DA concentration in the extracellular space.
Interested readers may refer to [11] for further details. Below we explain the
implementations on SpiNNaker.

2.3 STDP and DA-modulation on SpiNNaker

SpiNNaker [9] is a neuromorphic computer made up from chips containing up
to 18 ARM-968 200 MHz CPUs with 64 KB of local data memory and 32 KB of
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local instruction memory for each core, coupled with 128 MB of SDRAM shared
between the cores. Boards of 48 such chips then couple together the chips with
a unique network architecture designed to multicast small messages, akin to
spikes in a neural network, to multiple targets simultaneously, replicating the
highly connected networks in the brain. The largest SpiNNaker system to date
has been built in Manchester from 1200 boards, making a single machine with
more than 1 million cores. Neural network simulation software for SpiNNaker,
called sPyNNaker [17], uses the PyNN [6] neural network language with some
extensions.

The implementation of STDP on SpiNNaker is trace-based as indicated in
Eqs. (1)–(4) and was introduced for the first time by [8]. The current implementa-
tion on SpiNNaker is as in [12], which is an improvement in terms of algorithmic
complexity over the first implementation. All applications on SpiNNaker using
STDP has thus far used Leaky-integrate-and-fire (LIF) neuron models. This is
the first formal work where we have implemented STDP in a IZK neuron based
network on SpiNNaker.

The DA-modulated STDP by Mikaitis et al [13] was a significant addition to
sPyNNaker. The equations implementing eligibility trace based DA reinforce-
ment are similar to Eqs. (5)–(7), after [11]. However, because of the event-
driven nature of processing on SpiNNaker, the equations needed adaptation. The
specific algebraic derivations and algorithmic implementations are discussed in
detail in the aforementioned work [13]. The implementation is designed with its
modularity in mind, whereby neuromodulation can simply be added to an exist-
ing STDP network with little modification. At the time of writing this paper,
the neuromodulation implementation was made available in the development
version of sPyNNaker and testing of this has been added to the daily integration
testing of the software to ensure it continues to work after future changes and in
future releases; the experiments in this work were performed using the “master”
branches on GitHub.

3 Methodology and Results

The balanced random network (BRN) proposed by Brunel [3] is widely used
to study the dynamics in a closed loop network of excitatory-inhibitory spik-
ing neural populations with recurrent connections. The BRN is implemented
on SpiNNaker with LIF neurons. Here, we implement the BRN parameterised
for conductance-based IZK neurons. We test the model output dynamics to be
within the Asynchronous-Irregular (A-I) regime using two attributes viz. irreg-
ularity and synchrony (see Sect. 3.2). Next, we add neuromodulated plasticity
in specific network pathways of the BRN to demonstrate the effects of positive
(reward) and negative (punishment) reinforcements. We then parameterise the
model to demonstrate instrumental conditioning. The simulation design, exper-
imental set up, and results are detailed below.
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3.1 Simulation Methods

The current implementation for solving the neuron model differential equations
on SpiNNaker follows the methods indicated in [10]. The simulation time-step for
IZK neurons is 0.1 ms, which executes on SpiNNaker in 1 ms wall-clock time. The
synaptic conductance parameters gx simulate the synaptic ‘weights’ correspond-
ing to a synaptic projection x. To record the progression of plastic weights, the
simulation is stopped at every 1000 ms interval within the same run i.e. without
resetting the machine. The peri-stimulus time histogram (PSTH) is computed
with time bin Δt = 1000 ms; the firing rate (νΔt) for each time bin is computed
thus: νΔt = 1

N.Δt

∑t′+Δt
t=t′

∑N−1
n=0 δn(t − tf ), where N is the total number of neu-

rons in the population, t denotes time, and tf is the times in the spike train. To
take into account the non-stationary behaviour of the output due to the noisy
input, we run 10 trials, each with randomly generated seed for the Poisson input,
and average the PSTH across all trials.

The plastic projection parameters defined in Eqs. (1)–(4) are thus:{τ+ :
1ms, τ− : 2ms,F+ : 1, F− : 1}. Plastic weight is bound between 0 and 2μS.
Neuromodulation parameters in Eqs. (5)–(7) are thus:{τc : 100ms, τd : 5ms}.
The initial concentration of DA is set as 0.05μM .

3.2 The Balanced Random Network Parameterised for IZK
Neurons

Fig. 1. The balanced random network computed with conductance-based Izhikevich’s
neurons parameterised (a,b,c,d) in the Regular (RS) and Fast (FS) spiking modes
respectively for Excitatory (E) and Inhibitory (I) populations. Each synaptic projection
is defined by its weight, which are the conductance values (gE/I), probability (pconn)
and delay (td). The proportion of neurons in the E (NE) and I (NI) populations is in
the ration 4 : 1. The number of neurons in the Poisson spike train input (Ext) to the
network is NE + NI , firing at λp = 2 Hz.

The BRN parameterised for IZK neurons (BRN-IZK) to operate in the A-I
regime is shown in Fig. 1. Recently, we have used the conductance-based IZK
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Fig. 2. (a) Peri-stimulus time histogram and (b) irregularity for the balanced random
network computed over 10 trials, where each trial of T=12 s duration is divided into
12 bins of 1s each and run with random seed for 2 Hz Poisson input. (c) Synchrony
computed for 10 trials.

neuron models to propose a reduced-scale cortical network [5] that was set in the
A-I regime based on upper- and lower-bounds for two attributes, viz. irregularity
and synchrony, as specified in [16]; we use the same bounds in this study. The
PSTH in Fig. 2(a) shows a uniform distribution for both the FS and RS neurons
with a mean firing rate of ≈ 2 Hz, similar to the input rate.

For any neuron (n) in a population, the irregularity (ιΔt) of its spike train
output over a time-bin width of Δt is measured as the coefficient of variation of
the inter-spike-intervals (isi), which is defined as a ratio of the standard deviation
(σn

Δt) to the mean (μn
Δt) of the isi:ιΔt = 1

N

∑N
n=0

σn
Δt

μn
Δt

. Bounds for A-I regime
is defined as 0.7 < ι < 1.2 [5], after [16]. The irregularity histogram for our
BRN-IZK is shown in Fig. 2(b). Being a function of isi, the plot is sensitive to
the transient effects of the simulation start and end times across all the 10 trials.
In the stable region, the measure in our network is an uniform distribution and
within the bounds defining the A-I regime.

Synchrony (κ) is measured as a dispersion in the spike count histogram (η)

for each trial run j thus:κj =
σ2

ηj

μηj
, the numerator(denominator) specifying the

variance(mean) of ηj . The synchrony measured over 10 trial runs is shown in
Fig. 2(c), and is within the specified bound κ < 8 specified for the A-I regime.

3.3 Neuromodulated Plasticity in the BRN

This is the first time that the neuromodulated plasticity is being implemented
on the BRN presented in Sect. 3.2 on SpiNNaker. Only the recurrent projection
of the E population is made plastic and modulated by reward and punishment;
all other projections remain static. Readers may note that there is no action-
selection in this example; the intention is to observe the effects of DA-modulated
STDP in a tractable manner. Towards this, reward (DA) is applied at the 2nd,
3rd and 4th second for a duration of 1, 10 and 100 ms respectively; punishment is
applied for similar progressively increasing duration respectively at the 6th, 7th

and 8th second. The total simulation duration is T = 12.5 s. Such fixed duration
reward and punishment is as during the initial demonstration of the neuromodu-
lated plasticity implementation on SpiNNaker using a basic pre-post population
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Fig. 3. (a) Spike raster of the E population of the BRN in Fig. 1; the green and red
triangles indicate the times of reward and punishment respectively. (b) The PSTH
of both E and I populations with 1000 ms time-bin and averaged across 10 trials,
demonstrating increase (decrease) in firing rate corresponding to DA-modulated reward
(punishment). (c) Weight progression for a few of the plastic projections in the network
showing increase and decrease corresponding to reward and punishment respectively,
and clipped at 2 μS.

set up computed with LIF neurons [13]. In this work, we have parameterised the
BRN to demonstrate similar behaviour as in the initial demonstrative frame-
work. The results are shown in Fig. 3.

The spike raster of the E Population of the BRN and its PSTH in Figs. 3(a)
and (b) respectively show the network responding to the rewards (increase in
firing rate) and punishments (decrease in firing rate). The corresponding progres-
sion of the plastic weights recorded at 1000 ms time bins is shown in Fig. 3 (c);
for readability, we have shown only a few projections selected randomly from the
full list generated during a single trial run. Due to the unsupervised nature of the
STDP algorithm, the weight progressions are not deterministic, i.e. all weights
are not guaranteed to increase, as can be seen in Fig. 3 (c); also, the responses to
reward and punishment by individual projections are not synchronised in time
and amplitude.
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Fig. 4. (a) The instrumental conditioning set up and parameter values. (b) PSTH of
the A and B populations corresponding to reward for firing rate νA > νB .

3.4 Instrumental Conditioning in the BRN

The set up for instrumental conditioning experiment with the BRN is shown in
Fig. 4 and is adapted from [11]. Two populations A and B with number of neurons
NA = NB = 1

10 (NE+NI) is randomly selected from E, and their respective firing
rates (νA/B) observed for action-selection, where each of these populations is
assumed to correspond to a motor task. A periodic stimulus (S) is provided as
input to both E and I populations, for a duration of 50 ms with isi of 20 ; the S
to E projection is made plastic, and modulated by DA. An ‘action’ preference,
i.e. a behavioural policy is set for the network, say νA > νB. If this condition is
satisfied at any observation instant Δt1 then all of the E population is rewarded
at a delay of Δt1+10 ms, i.e. delayed reward. The reward is delivered by a neural
population with same number of neurons as the E population, and is activated
by a current pulse of amplitude 10 nA and width 4 ms. The network is then
allowed to run freely for another 200 ms before repeating the cycle of applying
S and evaluating the network behaviour. Note that, if the reward criteria is not
met, we do not punish the network, which is similar to the experimental methods
in [11]. We observe that over a period of time, the network learns to maximise
the reward, and the preferred ‘action’ is selected, indicated by a higher PSTH
in Fig. 4(b). At this point, even if the delivery of reward is stopped, the circuit
‘remembers’ the associations and continues to prefer the ‘action’ A. We have
also tested the network for the converse situation where νA < νB ; not shown
here for brevity.

4 Conclusions

We have presented a work-in-progress on implementing instrumental condition-
ing in a balanced random network (BRN) on SpiNNaker using conductance-
based Izhikevich’s (IZK) neuron models. This is the first implementation of
BRN (a popular spiking neural network proposed by N. Brunel [3]) with
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conductance-based IZK neurons on SpiNNaker. We have parameterised the BRN
for demonstrating asynchronous-irregular dynamics measured by two quantita-
tive attributes viz. irregularity and synchrony [5,16]. Next, we have demon-
strated reward and punishment in the BRN using the DA-modulated plasticity
as implemented on the SpiNNaker toolchain sPyNNaker. Finally, we test the
BRN for reinforcement learning by instrumental conditioning. A policy (desired
behaviour) is set for the network comprising two competing populations, repre-
senting two competing motor actions in our brain. When rewarded for obeying
the set policy, over a period of time, the network learns to maximise its reward
and thus, is conditioned to behave in a desired way. Our experimental set up is
adapted from [11], where a dynamic setting of policies is demonstrated for two
competing motor actions. Our continuing work is on reproducing this aspect
on the SpiNNaker implementation presented here. In the short term, our objec-
tive will be to implement DA-modulated instrumental conditioning in an existing
brain-inspired model on SpiNNaker [18], where indeed action-selection is demon-
strated, but there is no plasticity in the network, unlike in the brain, and the DA-
modulation is simulated by direct scaling of excitatory and inhibitory synapses.
We believe our developing work will contribute to research in reinforcement
learning by instrumental conditioning, a promising direction for brain-inspired
robotics.

References

1. Barto, A.G., Sutton, R.S., Brouwer, P.S.: Associative search network: a reinforce-
ment learning associative memory. Biol. Cybern. 40(3), 201–211 (1981)

2. Bi, G., Poo, M.: Synaptic modifications in cultured hippocampal neurons: depen-
dence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci.
18(24), 10464–10472 (1998)

3. Brunel, N.: Dynamics of sparsely connected networks of excitatory and inhibitory
spiking neurons. J. Comput. Neurosci. 8(3), 183–208 (2000)

4. Brzosko, Z., Mierau, S.B., Paulsen, O.: Neuromodulation of spike-timing-dependent
plasticity: Past, present, and future. Neuron 103(4), 563–581 (2019)

5. Chiplunkar, C., et al.: A reduced-scale cortical network with Izhikevich’s neurons on
spinnaker. In: 2021 International Joint Conference on Neural Networks (IJCNN),
pp. 1–8. IEEE (2021)

6. Davison, A.P., et al.: PyNN: a common interface for neuronal network simulators.
Front. Neuroinform. 2, 11 (2009)

7. Denk, C., Llobet-Blandino, F., Galluppi, F., Plana, L.A., Furber, S., Conradt, J.:
Real-time interface board for closed-loop robotic tasks on the SpiNNaker neural
computing system. In: Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa,
A.E.P., Appollini, B., Kasabov, N. (eds.) ICANN 2013. LNCS, vol. 8131, pp. 467–
474. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40728-4 59

8. Diehl, P.U., Cook, M.: Efficient implementation of STDP rules on spinnaker neu-
romorphic hardware. In: 2014 International Joint Conference on Neural Networks
(IJCNN), pp. 4288–4295. IEEE (2014)

9. Furber, S.B., Galluppi, F., Temple, S., Plana, L.A.: The spinnaker project. Proc.
IEEE 102(5), 652–665 (2014)

https://doi.org/10.1007/978-3-642-40728-4_59


Dopamine-Based Reinforcement Learning 159

10. Hopkins, M., Furber, S.: Accuracy and efficiency in fixed-point neural ODE solvers.
Neural Comput. 27(10), 2148–2182 (2015)

11. Izhikevich, E.M.: Solving the distal reward problem through linkage of STDP and
dopamine signaling. Cereb. Cortex 17(10), 2443–2452 (2007)

12. Knight, J.C.: Plasticity in large-scale neuromorphic models of the neocortex. PhD
Thesis, The University of Manchester, UK (2016)

13. Mikaitis, M., Garcia, G.P., Knight, J., Furber, S.: Neuromodulated synaptic plas-
ticity on the spinnaker neuromorphic system. Front. Neurosci. 30(30), 10127–10134
(2018)

14. Morrison, A., Aertsen, A., Diesmann, M.: Spike-timing-dependent plasticity in
balanced random networks. Neural Comput. 19(6), 1437–1467 (2007)

15. Pedrosa, V., Clopath, C.: The role of neuromodulators in cortical plasticity. A
computational perspective. Front. Synaptic Neurosci. 8(38), 1–9 (2017)

16. Potjans, T.C., Diesmann, M.: The cell-type specific cortical microcircuit: relating
structure and activity in a full-scale spiking network model. Cereb. Cortex 24(3),
785–806 (2014)

17. Rhodes, O., et al.: sPyNNaker: a software package for running PyNN simulations
on spinnaker. Front. Neurosci. 12, 816 (2018)

18. Sen Bhattacharya, B., et al.: Building a spiking neural network model of the basal
ganglia on spinnaker. IEEE Trans. Cognitive Dev. Syst. 10(3), 823–836 (2018)

19. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press,
Cambridge (2018)

20. Sutton, R.S.: Temporal credit assignment in reinforcement learning. PhD Thesis,
University of Massachusetts Amherst, USA (1984)

21. Touretzky, D.S., Saksida, L.M.: Operant conditioning in skinnerbots. Adapt.
Behav. 5(3–4), 219–247 (1997)

22. Wickens, J., Kötter, R.: Cellular models of reinforcement. In: James C. Houk, Joel
L. Davis, D.G.B. (ed.) Models of Information Processing in the Basal Ganglia. The
MIT Press, Cambridge, November 1994



A Phenomenological Deep Oscillatory
Neural Network Model to Capture

the Whole Brain Dynamics in Terms
of BOLD Signal

Anirban Bandyopadhyay1, Sayan Ghosh1, Dipayan Biswas1,
Raju Bapi Surampudi2, and V. Srinivasa Chakravarthy1(B)

1 Computational Neuroscience Lab, Department - Biotechnology,
Indian Institute of Technology Madras, Chennai, India

schakra@ee.iitm.ac.in
2 Brain,Cognition, and Computation Lab, International Institute of Information

Technology Hyderabad, Hyderabad, India

Abstract. A large-scale model of brain dynamics, as it is manifested in
functional neuroimaging data, is presented in this study. The model is
built around a general trainable network of Hopf oscillators, the dynam-
ics of which are described in the complex domain. It was shown ear-
lier that when a pair of Hopf oscillators are coupled by power coupling
with a complex coupling strength, it is possible to stabilize the normal
phase difference at a value related to the angle of the complex coupling
strength. In the present model, the magnitudes of the complex coupling
weights are set using the Structural Connectivity information obtained
from Diffusion Tensor Imaging (DTI). The complex-valued outputs of
the oscillator network are transformed by a complex-valued feedforward
network with a single hidden layer. The entire model is trained in 2
stages: in the 1st stage, the intrinsic frequencies of the oscillators in the
oscillator network are trained, whereas in the 2nd stage, the weights of
the feedforward network are trained using the complex backpropagation
algorithm. The Functional Connectivity Matrix (FCM) obtained from
the network’s output is compared with empirical Functional Connectiv-
ity Matrix, a comparison that resulted in a correlation of 0.99 averaged
over 5 subjects.

Keywords: BOLD Signal · Functional Connectivity · Hopf Oscillator

1 Introduction

Recent advancements in neuroimaging techniques have opened new opportunities
in basic and clinical neuroscience, and have inspired a large body of computa-
tional modeling literature. The BOLD (Blood-Oxygen-Level Dependent) signal
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measured by fMRI (functional Magnetic Resonance Imaging) is widely used to
understand the nature of neural activity underlying hemodynamic changes in the
brain under normal and pathological conditions like Ischemic Cerebral Stroke,
Traumatic Brain injury (TBI) etc [1]. On the other hand, MRI also has been
used to understand the structural connectivity between different brain regions
with the help of Diffusion Tensor Imaging (DTI). The current study intends to
develop a phenomenological model of the whole brain to understand the BOLD
signal along with the functional connectivity associated with it.

Several computational and mathematical models have been developed over the
last decade to understand the relation between the functional activity of the brain,
and the BOLD signal [2]. They can be categorized into three main types—1) single
neuron—based models (often integrated with the neurovascular coupling), 2) neu-
ral mass models, and 3) abstract models like the non-linear oscillator models [2,3].
Our current model falls under the last category of an abstract network of non-linear
oscillators, wherein each brain region is modeled by a single Hopf oscillator. The
network architecture which consists of a layer of Hopf oscillators with lateral con-
nections, followed by a feedforward neural network with a single hidden layer of
sigmoidal neurons,is used to simulate the BOLD signal recorded from the whole
brain. The network is trained in two stages: in the 1st stage, the intrinsic frequen-
cies of the oscillators are trained, and in the 2nd stage, the feedforward network is
trained by supervised learning. The lateral connections among the oscillators are
set using the structural connectivity information obtained from DTI.

The current paper is divided into five sections—first, the introduction section;
in the second section, the model development section that presents equations for
model dynamics and learning; the third section provides the simulation results,
the fourth presents the discussion, and the last one outlines the conclusions and
future goals.

2 Mathematical Model

2.1 Database Used

These days fMRI data is widely available for research in public repositories.
However, we are using the processed data from the paper by Morellec et al. [4].
[The dataset can be found here - https://figshare.com/articles/dataset/Paris
HCP brain connectivity data/3749595 This repository has data from 40 unre-
lated participants, collected over approximately 55 min long sessions, taken with
a repetition time of 0.72 s. In this study, we only take the 1st session data of
1196 time points spread out over 15 min. In this study, we only take the data
from the first five participants consisting of 160 Region of Interest (ROIs). More
information about the parcellation and the ATLAS used can be found in the
original source [4].

2.2 The Basic Model

The proposed network architecture for modeling fMRI signals consists of two
components: 1) an oscillatory layer and 2) a feedforward network. The oscillatory

https://figshare.com/articles/dataset/Paris
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layer consists of Hopf oscillators connected in an all-to-all fashion. The dynamics
of a single oscillator is described in complex domain and therefore the coupling
coefficients are complex numbers. The oscillators are coupled by a special form
of coupling called “power coupling” described earlier [5]. The second component,
the feedforward network, consists of a complex-valued multilayer perceptron with
a single hidden layer. The outputs of the oscillator layer are presented as inputs
to the feedforward network. The output of the feedforward network approximates
the fMRI data on which the network is trained. The dynamics of the oscillator
layer are described below. A typical hopf oscillator can be given by this—

Ż = Z(μ + iω − |Z|2) (1)

and, in polar form (r,φ),
ṙ = μr − r3; φ̇ = ω; (2)

Now, after considering the coupling (Wij) and the external signal (D(t)), the
original Hopf oscillator equation as shown in the Eq. 1 for single oscillator turns
out to be like this—[5]

Żi = Zi(μ + iωi − |Zi|2) +
N∑

j=1,j �=i

Aije
i

θij
ωj Z

ωi
ωj

j + εe(t) (3)

The second component of the network architecture, the feedforward network,
is used in two forms, depending on the stage of learning: in the 1st stage learning,
it is a single linear stage, whereas in the 2nd stage of learning it is a two stage
network with a hidden layer, as shown below Fig. 1. Note that e(t) above is
defined in Eq. 8 below.

2.3 1st Stage of Learning

In this stage of learning, we train the intrinsic frequencies, ωi, of the oscillator
layer using Eq. 4 below. The lateral connections, which are complex numbers,
Wij , are partly trained and partly set using experimental data. While the mag-
nitude of the lateral connections is set using structural connectivity information
from DTI, the angle of the lateral connections are trained using a Hebb-like
learning rule (shown in the Eq. 7) that is applicable to complex-valued weights.
The feedforward network in this stage of learning simply consists of a linear
stage, whose weights αi, are trained using Eq. 6. Note that αi are trained by
supervised learning, with the objective of minimizing the squared error between
the network’s output and the desired fMRI signal that it is trying to approxi-
mate. The network on the whole performs a Fourier like decomposition of the
desired signal, with the αi playing the role analogous to the Fourier coefficients.
The equations governing training are given below [5].

ω̇i = βwe(t) sin φi (4)

Wij = Aije
iθij/ωij (5)
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Fig. 1. (a)The network architecture used in the 1st stage of learning. It consists of
the oscillator layer and a linear stage connecting the oscillators with the output layer.
(b) shows the network architecture for second stage of learning involving one hidden
layer consisting of 30 hidden neuron. In such feedforward network network has complex
valued weights.
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α̇i = βαe(t)ri cos φi (6)

τwẆij = −Wij + ZiZ
∗ ωi

ωj

j (7)

e(t) = D(t) − p(t); (8)

p(t) =
N∑

i=1

αi cos φi; (9)

The values of learning rates like—βα, βω , τw are set as 10−4, 10−4, and 104.

2.4 2nd Stage of Learning

In the 2nd stage of learning, we take the trained parameters of the oscillator
layer from the previous stage. The linear feedforward network, used earlier, is
replaced by a complex-valued multilayer perceptron with a single hidden layer
[5]. However, unlike the previous stage, wherein all the oscillators are connected
to all the output neurons, in this stage of learning, oscillators are coupled to the
neurons in the hidden layer more selectively.
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Fig. 2. Structural Connectivity and the oscillator’s connectivity information for the
model

A normalized structural connectivity matrix has been given in the Fig. 2a.
The number of neighbours according to the index of oscillators is given in the
Fig. 2b. Note the structural connectivity network is not a fully connected net-
work; it is a sparse one since every brain region or ROI is not connected to every
other ROI in the brain. Therefore, each ROI is associated with a single (say,
ith) oscillator, a single output neuron, and a hidden layer of size K, mediating
between the two. The oscillator corresponding to a given ROI projects to all
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the K hidden neurons associated with it. In addition, all the oscillators to which
the ith oscillator is connected, also project the same set of K hidden neurons
corresponding to the ith ROI as shown in Fig. 3.

Fig. 3. A more detailed depiction of the network architecture that Fig. 1. The figure
shows the separate hidden layer and an oscillator are associated with each ROI. See
text for details.

The feedforward network in this stage is a complex-valued multilayer percep-
tron with a single hidden layer. It is trained by complex-valued backpropagation
algorithm, with the aim of minimized squared output error for each ROI. The
back propagation of the network follows gradient descent rule, where the real
part and the complex part of the weights are updated individually [6].

3 Results

In this section, we briefly describe the simulated results from the first stage and
second stage of learning. The learning rate of the back-propagation is set at a
constant rate of 0.05 for both the weight stages (input to hidden layer and hidden
layer to output). The core idea of such graph like structure is that, the dynamics
of the network of trained oscillators, after the transformation by the feedforward
network can approximate the desired ROI activity. All the simulations are done
on the MATLAB 2021b platform. The differential equations for the 1st stage of
learning are solved with the forward Euler’s rule.

In the 1st phase of learning, the adaptive nature of the Hopf oscillator is
leveraged following the governing equations described in the Subsect. 2.3. The
time-series estimation and the frequency domain analysis are given below in the
Fig. 4.

Now we can focus on the 2nd stage of learning results. As we have discussed
in the Subsect. 2.3 above, each oscillator positioned according to the structural
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Fig. 4. Simulated result after 1st phase of learning. Figure 4. (a) shows the time domain
analysis , and 4. (b) denotes the Fourier transform (magnitude plot). D(t) is a empirical
signal, and P (t) is for simulated one

connectivity matrix is associated with its neighbours to participate in a feed-
forward single hidden layered network. The index of the oscillator with their
number of neighbours is shown in the Fig. 2b. Following the learning rule set
up in the Subsect. 2.4 the model is able to regenerate the BOLD signal signal
consisting of all the frequency components with great accuracy as shown in
Figs. 5a, and 5b. Here we use K = 30 hidden units for each ROI’s BOLD signal
generation. However, the correlation coefficient does not vary even if we decrease
the size of the hidden layer up to K = 20 hidden units as shown in the Fig. 5d.
However there is a change in Root Mean Square Error (RMSE) observed when
decreasing the number of hidden nodes as shown in the Fig. 5c. Root Mean
Square Error (RMSE) value of each ROI is captured and as an example, two
ROI’s simulated and empirical BOLD signal comparison given in the Figs. 5a,
and 5b along with RMSE value with respect to number of epochs. It can be seen
that the model can regenerate the ROI signals with high accuracy. All the 160
ROI channel simulations are not shown here; only a few representative signals
are shown. Totally 60,000 epochs are run for each ROI. How the RMSE and the
correlation value varies with the number of epochs are shown in the Figs. 5e, and
5f. It discloses that the RMSE gradually decreases when the number of epochs
are being increased.

One of the benchmarks for analyzing such a model is to check the functional
connectivity of the ROIs, with Pearson’s correlation coefficient. A correlation
coefficient matrix is estimated and compared with the empirical BOLD signal’s
correlation based connectivity matrix or the functional connectivity matrix. The
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Fig. 5. (a), (b) represents the comparison between simulated and empirical time—
series signal for ROI1, and ROI2 respectively. Yd- empirical signal, and Yp simulated
signal. (c), and (d) show how the correlation coefficient, and mean RMSE varies with
number of hidden nodes when number of epochs is fixed at 10000; (e) and (f) shows
how the number of epochs can affect the correlation coefficient, and mean RMSE, when
the number of hidden nodes is fixed, K = 30. Note that the result is shown only for
the first participant.
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Functional Connectivity (FCM) has a huge role in identifying the pathological
behaviour, sex differentiation and it is often referred to as a fingerprint of the
individual brain [7]. This model simulates the functional connectivity matrix
with correlation coefficient 0.99. Comparison between simulated and empirical
functional connectivity matrix is given in the Fig. 6. For multiple subjects based
analysis, we have taken the correlation coefficient between the grand average
of simulated functional connectivity matrices and grand average of empirical
functional connectivity matrices.
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Fig. 6. Comparison between Functional Connectivity Matrices (simulated and BOLD)

4 Discussion

The significance of resting state BOLD signal was revealed in an early study
by Biswal et al [8]. Since then several studies demonstrated the existence of a
unique relationship between functional connectivity and structural connectiv-
ity. The fact that the two forms of connectivity are not tightly correlated poses
the challenge, clinical and computational, of understanding one in terms of the
other. Computational studies proposed models wherein the structural connec-
tivity will be the input, and the functional connectivity the output [9]. In this
model, we develop a system that takes the structural connectivity, and also accu-
rately produces the functional connectivity. However, the current study achieves
comparable results with existing computational models in terms of accuracy
and the Pearson’s correlation coefficient, which is often used as a benchmark. A
comparison table is given below which compares our results with several recent
studies 1. Note that, other models are simulated on different datasets of varying
sizes.

The proposed model has several positive features. Use of Hopf oscillator per-
mits adaptation of an explicit frequency parameter, ωi, which does not exist
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Table 1. Discussion between Different Models with the current model [10–13]

Model Hopf-oscillator
Model

Structural
Connectivity

Correlation
Coeffcient

Model description

Model 1[10]
√ √

0.75 Structural Connectivity Dependent
Hopf oscillator model with
non-linear coupling system

Model 2 [11]) × √
0.80 Multiple kernel learning model with

modified Wilson-Cowan based
neuron activation

Model 3 [12]
√ √

0.82 Hopf oscillator based model and
parameters are optimized with
Monte Carlo simulation

Model 4 [13]
√ √

0.82 Hopf scillator based model with
detailed description about impact of
parameters and lesions

Current Model
√ √

0.99 Fourier like decomposition, and
retrieved with oscillatory neural
network model

in other low-dimensional neuron models like Wilson-Cowan, FitzHugh-Nagumo,
Morris-Lecar etc. The complex-valued coupling weights among oscillators encode
time delays in the form of the phase angles. Even the learning rule for the cou-
pling weights has a simple Hebbian form, without the need for use of complicated
optimization methods. The step-size of the model during solving the differential
equation is down sampled to 0.01 s. The results are also with the same time
reference.

Another important question that will be asked is whether this model can
able to simulate the full 55 min data, and whether it is applicable for any BOLD
signal data-set. Figure 7a shows that the whole time series data can be regen-
erated for ROI 1 for participant 1; and Fig. 7b shows that the model is equally
efficient in case of another data set (known as the Paris dataset) having only
200 data points. Among 21 unrelated healthy participants, the first participant’s
first indexed ROI is simulated [4]. However, in this paper, we computed the func-
tional connectivity matrix with respect to one participant; it will be not it will
not be applicable at group level or multiple participants’ analysis. Pursuing the
methodology described by Deco et al. [10], five simulations for first five partici-
pants taken from HCP dataset were done individually [Fig. 8], and compute the
average simulated functional connectivity with average empirical functional con-
nectivity with correlation coefficient value of 0.99(10000 epochs and 30 hidden
neurons have been employed for simulation).
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(a) ROI 1 from HCP dataset.
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(b) ROI 1 simulation from Paris dataset.

Fig. 7. Validity of the Model
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Fig. 8. Pearson Correlation coefficient for five participants .

5 Conclusion and Future Goal

The aim of the current work is to devise a trainable model of brain dynamics that
can account for resting state BOLD responses. The novelty of the current model
lies in the aforementioned two stages of the learning process-the Fourier like
decomposition to attribute a certain frequency to each oscillator; a novel power
coupling strategy; and a distinguished backpropagation algorithm in the second
stage. This model also eliminates the rigorous parameter space identification
for approximating the BOLD signal used in earlier modelling works. One of
the criticisms of our work is that it requires so many hidden nodes to perform;
our next goal will be reducing the hidden nodes, and incorporating some of the
biological mechanisms like conduction delay, small- worldness of brain network,
global connection strength in our model.
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Abstract. With recent developments in Social Computing, Natural Language
Processing and Clinical Psychology, the social NLP research community
addresses the challenge of automation in mental illness on social media. A recent
extension to the problem of multi-class classification of mental health issues is to
identify the cause behind the user’s intention. However, multi-class causal catego-
rization for mental health issues on social media has a major challenge of wrong
prediction due to the overlapping problem of causal explanations. There are two
possible mitigation techniques to solve this problem: (i) Inconsistency among
causal explanations/ inappropriate human-annotated inferences in the dataset, (ii)
in-depth analysis of arguments and stances in self-reported text using discourse
analysis. In this research work, we hypothesise that if there exists the inconsis-
tency among F1 scores of different classes, there must be inconsistency among
corresponding causal explanations as well. In this task, we fine tune the classi-
fiers and find explanations for multi-class causal categorization of mental illness
on social media with LIME and Integrated Gradient (IG) methods. We test our
methods with CAMS dataset and validate with annotated interpretations. A key
contribution of this research work is to find the reason behind inconsistency in
accuracy of multi-class causal categorization. The effectiveness of our methods is
evident with the results obtained having category-wise average scores of 81.29%
and 0.906 using cosine similarity and word mover’s distance, respectively.

Keywords: causal analysis · explainability · mental health · text categorization

1 Introduction

People express their thoughts more conveniently on social media than during in-person
(often analytical) sessions with experts. As per the National Institute of Mental Health
report of 20201, 52.9 million adults in the USA suffer from mental illness. “The Health
at a Glance Europe 2020” report2 noted that the COVID-19 pandemic and the subse-
quent economic crisis caused a growing burden on the mental well-being of the citizens,

1 https://www.nami.org/mhstats.
2 https://health.ec.europa.eu/system/files/2020-12/2020 healthatglance rep en 0.pdf.
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with evidence of higher rates of stress, anxiety and depression. Previous studies support
social media’s powerful role in measuring the public’s social well-being [8]. To this
end, we obtain Reddit social media posts demonstrating mental health issues for mental
health analysis.

In this research work, we narrow down the problem of mental health analysis to the
identification of reasons behind users’ intent in their social media posts. The sequence
to sequence (Seq2Seq) models are applied to solve the problem of causal categoriza-
tion over CAMS dataset3. The ground-truth of CAMS dataset contains two-fold anno-
tations (i) causal category and (ii) interpretations. The textual segments of interpreta-
tion support decision making for identifying causal categories. However, there exists
a major challenge of responsibility and explainability for multi-class causal analysis
while applying fine-tuned Seq2Seq models. In this context, we find explanations for
inconsistency among resulting accuracy of different classes/ categories. Another key
contribution is to find distance among inferences and explanations to obtain semantic
similarity over distributional word representation: (i) cosine similarity and (ii) word
mover distance.

Definition 1: Inferences - The inferences are set of interpreted textual segments by
trained human-annotators which appears as ground-truth information in CAMS dataset.

Definition 2: Explanations - The results obtained as the set of top-keywords using
explainable AI approaches for multi-class causal categorization of Reddit posts is
termed as explanations.

We further discuss a potential instance to define this problem of explainable causal
analysis in this section. Consider a given sample A where a user U post A: “Five years
now and still no job. I am done with my life.” The user U is upset about his finan-
cial problems/ career due to unemployment. We consider this text as the user-generated
social media data which demonstrates mental health issues. The intent of a user is ‘to
end life’ and a key challenge is to find the reason behind this intent. This cause-and-
effect relationship aids the causal categorization. The category for sample A is identi-
fied as ‘Jobs and careers’ because the reason is associated with unemployment. There
are five causal categories in annotated CAMS dataset, namely, (i) bias or abuse, (ii)
jobs and careers, (iii) medication, (iv) relationships, and (v) alienation.

In this research work, we use the CAMS dataset for explanations on multi-class
causal categorization. We have made three major contributions in this work. First, we
fine-tune deep learning models for multi-class causal categorization. Second, we obtain
explainable text for causal categorization using Local Interpretable Model-Agnostic
Explanations (LIME) and IG. Third, two semantic similarity measures: cosine simi-
larity and word mover distance assist the validation of resulting explainable snippets
with annotated inferences. Our experimental results explains the inconsistency among
accuracy of different classes and validates the consistency of inferences made by model
and human annotators, thereby defining the need of discourses and pragmatics for this
problem of causal analysis. All code4 used are publicly available.

3 https://github.com/drmuskangarg/CAMS.
4 https://github.com/CMOONCS/CausalExplanationMHA.git.

https://github.com/drmuskangarg/CAMS
https://github.com/CMOONCS/CausalExplanationMHA.git
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2 Background

Our task is defined as a domain-specific problem to find reasons behind the intent of
a user on social media. After extensive literature surveys, we observe minimal work
on this problem. A domain-specific dataset is available for public use to examine the
inferences (reasons) and causal categories (multi-class classification) task for mental
health data as CAMS dataset [4]. The existing solution of a task of causal analysis is
given as the use of machine learning and neural models for multi-class categorization
of causal categories. The resulting values of f-measure vary for different classes and
raise a new research question: To what extent causal categorization is responsible? We
choose to resolve this problem by finding and validating the explainable texts.

To find the explanations for causal categorization, we explore existing explainable
AI methods for natural language processing [6]. Some well-established surveys and
tutorials categorize explainable approaches into local vs global, post hoc vs self explain-
ing and model agnostic vs model specific [3]. We choose to observe local explanations
with given input features for post-hoc interpretability methods which require less infor-
mation. To this end, we identify two explainability approaches which are suitable for
this study: (i) LIME and (ii) IG.

LIME samples nearby observations and uses model estimates to fit the logistic
regression [7]. The parameters of logistic regression represent the importance measure
and larger the parameters, greater effect will have on the output. The IG is an attempt
to assign an attribution value to each input feature which measures the extent to which
an input contributes to the final prediction [12]. A recent study is carried out to set
a benchmark over three representative NLP tasks (sentiment analysis, textual similar-
ity and reading comprehension) for interpretability of both neural models and saliency
methods [14] thereby emphasizing the need of LIME and IG for downstreamNLP tasks.

The explainable methods give output in the form of important words/ text seg-
ments which serve as the most important input features. As we have available human
annotated inferences for causal categorization in the form of text, we use these infer-
ences as ground truth information (text-reference) and resulting explanations (RE) (text-
observation). Thus, we use two semantic similarity measures to evaluate the perfor-
mance of explainable methods for causal categorization- Cosine similarity and Word
Mover’s distance (WMD). Cosine similarity [9] calculates similarity between two
words, sentences, paragraph, piece of text etc. and evolves from the squared Euclidean
distance measure which is used to measure how similar the documents are irrespective
of their size. Word Mover’s Distance (WMD) outperforms Bag-of-words and TF-IDF
in terms of document classification error rates [5].
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3 Framework

In this section, we give a brief overview of the proposed framework for Fig. 1 which
represents the workflow for explainable causal analysis of mental health on social media
data. We bifurcate our framework into three phases:

– Causal Categorization: The use of neural models for causal categorization of Reddit
posts depicting mental illness.

– Explanations: Finding explanations in the form of text-observations and obtaining
top-keywords.

– Evaluations: Validate the resulting text-observations by comparing them with the
human annotations available in the CAMS dataset.

Consider a given set of self-reported short-text documents as D where D =
d1, d2, ..., dn. In Phase 1: causal categorization, we segregate D into training, vali-
dation and test set and give training set as an input and we fine-tune the multi-class
classifier build model for our task. The model prediction are given as an input to
Phase 2: Finding explanations along with Reddit posts to obtain explanations. We fur-
ther obtain these resulting explanations and human-annotated inferences present in the
CAMS dataset for Phase 3: Evaluations to test and validate the resulting explanations.
Furthermore, we discuss three phases of our proposed framework in this section.

CAMS dataset
<REDDIT POST>

(depicting mental illness)

End-to-end classifiers

LSTM
BiLSTM

CNN
CNN + LSTM

Model Prediction

Finding Explanations for Causal
Categorization

Local Explanations for post-hoc
interpretability methods

LIME
Integrated gradient

Explanations

Input: Textual features

Explanations Interpretations

Annotated Interpretations given as ground truth

Finding semantic similarity

Cosine similarity
Word Mover Distance

RESULTS AND ANALYSIS

Causal Categorization Finding Explanations Evaluations: Semantic similarity

Fig. 1. Overview of the proposed framework for explainable causal analysis of mental health on
social media data. The framework is divided into three phases - Phase 1: Causal categorization,
Phase 2: Finding explanations, Phase 3- Semantic similarity.
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3.1 Phase 1: Causal Categorization

To solve the problem of causal categorization, we employ four learning based multi-
class classifiers [1]. We exploit following deep learning models and fine-tuned them for
prediction:

– LSTM. Long-Short TermMemory (LSTM:) is a popular advanced Recurrent neural
network architecture for modeling sequential data which allows the information to
persist and is trained by taking the sequence of the embedding feature vector.

– BiLSTM: A Bidirectional LSTM trains two hidden layers on the input sequence.
The additional layer reverses the direction of information flow which means that the
input sequence flows backward in an additional LSTM layer.

– CNN: The CNN model efficiently extracts higher level features of the text using
convolutional layers and max-pooling layers.

– CNN-LSTM: A Hybrid CNN-LSTMModel uses CNN layers for feature extraction
on input text combined with LSTMs to support sequence prediction.

3.2 Phase 2: Finding Explanations

We obtain local explanations by using following two post-hoc interpretability models:

– LIME: It is a popular model-agnostic explainable method [7] which provides local
explanations for predictions of black-box models. LIME is also known as a post-hoc
method. For a given model Ḟ and a given data sample α, the method generates a
fake dataset α1, α2, α3..αn and uses the black box model, Ḟ to obtain the target
class or value for each sample. Subsequently, a white box model, Ḡ is trained with
the generated data set along with the generated target labels. The aim is to train
a white-box model for the original data sample and areas close to it even if the
model does not perform as well globally. The closeness can be estimated using an
appropriate similarity or distance metric. LIME then explains the original example
using the white-box model and weights generated by it. The prediction accuracy
of the white-box model, Ḡ gives an estimate of how close it mimics the black-box
model, Ḟ and whether its explanations can be trusted.

– Integrated Gradient: The second method employed for explainability in this work
is Integrated Gradients [12], a gradient-based explanation method. It is a model spe-
cific method that uses gradients (for example, using a deep neural network) to assess
the importance of a feature on the model’s output. It employs the knowledge asso-
ciated with the internal model for calculating the gradients of the model’s layers.
It computes an attribution score corresponding to each feature by considering the
integral of the gradients calculated along a straight path from a baseline instance u′

to the input instance u.

3.3 Phase 3: Evaluations with Semantic Similarity

The human-annotated inferences in CAMS dataset, which represents the causal expla-
nation in the post, is validated by a senior clinical psychologist and it serves as a ground
truth for our predicted explanations. There are two types of similarity measures for
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identifying document similarity (i) syntactic similarity and (ii) semantic similarity. We
omit exact string matching algorithms due to varying number of words in each chunk
and inconsistency among length of inferences and resulting keywords. The semantic
similarity among texts validates the effectiveness of classifiers. We employ two most
widely used semantic similarity measures:

– Cosine similarity: It is a widely used metric in information retrieval which models
text as vector of terms [9]. The similarity of two input sentences (documents) can
be derived by calculating cosine values of term vectors for the given input using the
following equation. The similarity between two vectors of given input documents
(Doc1 Doc2) can be defined as:

Sim(Doc1,Doc2) =
Doc1 · Doc2

||Doc1|| ||Doc2|| =
∑n

i=1 Ai · Bi
√∑n

i=1 A2
i

√∑n
i=1 B2

i

(1)

where Ai and Bi represent the components of vectors Doc1 and Doc2, respectively.
– Word Mover’s Distance(WMD): It is a novel distance metric [5] that is used to
measure the dissimilarity between two text documents. The method is different from
the conventional models that work on syntactic similarity rather than semantic sim-
ilarity. The method employs word embedding like Glove and Word2Vec to learn
semantically meaningful representations of sentences. It computes distance between
two documents A and B as the minimum cumulative distance that the embedded
words of document A need to travel to reach the embedded words of document B.
WMD is computed using the cost-matrix having xi and xj be embedding of word i
and j. The cost matrix CM ∈ R

m × R
m is the distance of embeddings, such that

CMij = ||xi − xj ||2 as referred to in Eq. 2. The distance between two documents
Doc1 and Doc2 is the optimum value of the following problem:

P∈Rm×m

∑

ij

CMij Pij (2)

such that Pij ≥ 0 Intuitively, Pij represents the amount of word i that is transported
to word j. WMD is defined as the minimum total distance to convert one document
to another document.

4 Experiments and Evaluation

This section covers the dataset description, experimental setup, results and performance
evaluation of the proposed study.

4.1 CAMS Dataset

CAMS dataset consists of 5051 instances (1896 from SDCNL dataset and (ii) 3155
Reddit posts which are available with subreddit r/depression using Python Reddit API
Wrapper (PRAW)5) to categorize the direct causes of mental disorders through men-
tions by users in their posts. Annotation is carried out manually by annotators who

5 https://praw.readthedocs.io/en/stable/.

https://praw.readthedocs.io/en/stable/
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are proficient in the language. They work independently for each post and follow the
given guidelines. Each annotator takes one hour to annotate about 15−25 Reddit posts.
The annotated files are verified by a clinical psychologist and a rehabilitation counselor.
Furthermore, the validation of three annotated files is carried out by Fliess’ Kappa inter-
observer agreement study. The trained annotators have 61.28% agreement for annota-
tions of CAMS dataset. Despite the increased subjectivity of the task, the trained anno-
tators substantially agree with their judgements.

4.2 Experimental Setup

Considering a CAMS dataset, we divide it into training, validation and testing set con-
sisting of 1699, 117 and 370 instances, respectively. After preprocessing of the given
documents D (Reddit posts), we employ four deep learning methods to predict the
causal category, namely, LSTM, BiLSTM, CNN and CNN-LSTM. At the initial layer
of the neural network, we use GloVe, a distributional word embedding with dimension
vectors of 100. The GloVe embedding extracts semantics by using information avail-
able in neighbouring spaces. For experimental study, we consider a batch size of 128,
trained on 20 epochs, with 265 maximum length of tokens. We use Adam optimizer
for all models with one or more dropout layers and optimal learning rate. We fine-tune
CNN-LSTM model with a learning rate of 0.0005 and set a learning rate of 1.46 ∗ 10−3

for all other classifiers.

4.3 Experimental Results

We perform experiments over the given dataset and obtain results as shown in Fig. 2.
To illustrate the effectiveness of our models, we give explanations for self-reported text
of each causal-category. The given input is a self-reported text of the CAMS dataset.
The human-annotations are two-fold: (i) human-annotated interpretations (inferences)
and (ii) causal category. We further perform explainable causal categorization to com-
pare and contrast the inferenceswith resulting top-keywords (explanations). We observe
minimal connection among words for Cause 0: No reasons followed by Cause 3: medi-
cations. However, the other causal categories seem to have high similarity among infer-
ences and explanations.

Error Analysis: Other than the examples given in Fig. 2, the medical terms mentioned
in inferences and explanations may vary. For instance, prescriptions like propranalol,
name of diseases, heart problems, specific type of cancer and other antidepressants. This
variation induces mismatch in semantic similarity among inferences and explanations
for class 3.

4.4 Performance Evaluation

We use performance evaluation measures of the confusion matrix to evaluate the results
of multi-class categorization. We analyze the results for each causal category and find
overall accuracy of the model. Furthermore, we use two evaluation metrics of finding
semantic similarity to evaluate explanations obtained by LIME and IG.
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Five years now and still no job. I am
done with my life

Self-reported text Inferences Causal category Explanations

Five years now, no
job

Cause 2: Jobs and
Career no job, done, life

Bad things happen to me, and worst of
all, they're inevitable. I think I'm better

off dead than alive.

bad things,
inevitable, worst Cause 5: Alienation Bad, worst, happen,

alive

I reached my limit, nothing helps
anymore, I tried everything I could get
my hands on. My family doesn't even
believe in depression. I'm just a big fat

dumb loser, but it doesn't matter
anymore, because tomorrow I'll put an

end to all of this.

family, big fat dumb
loser, reached limit,

nothing helps

Cause 4:
Relationships

dumb, loser, fat,
depression, big,
tomorrow, helps

I've been lying here for hours just doing
nothing. I can't go out today because I'm
having a chronic illness flare-up. But, I

can't seem to find anything to interest me
at home, either.

chronic illness flare
up, hobbies seems

dull

Cause 3:
Medications

illness, chronic,
lying, hours, find

I can't believe how fucking dumb I am. I
fucking ruined one of the best things that
happened to me. I want to die . I want to

die. I need to kill myself soon. Please god
don't let me wake up tomorrow

ruined, dumb Cause 1: Bias or
Abuse

dumb, fucking,
ruined, best

I've been crying almost every night for
almost 2 months now. At first it hurt my

eyes from crying so hard but not
anymore, now I just feel sick when I cry,
I just want a week where I don't feel like

crying

crying, feel sick Cause 0: No reason crying, almost, hurt,
every, night

Fig. 2. Experimental results for explainable causal categorization for six different categories.

Causal Categorization: We categorize the text into one of the six categories as men-
tioned in experimental results section and present the resulting values for multi-class
classifiers in Table 1. We observe the inconsistency in results for among different classes
but consistency in variation among classes for different classifiers. To this end, we
observe lowest F1 scores for causal category 1: Bias or Abuse. The demonstration indi-
cates errors among predictions for Alienation/ Relationship as they overlap with Bias
or Abuse. The complex interactions illustrated the perceivable overlap between Bias or
Abuse and Relationship in the following example:

My friends are ignoring me and I am feeling bad about it. I have lost all my
friends and don’t want to live anymore.

The given example is associated with biasing and friendship, in a case where someone
feels ostracized by their friends. The emphasis on friends tips the balance in favor of
the class Relationship. However, the major challenge is to train the model in such a
way that it understands the inferences and then chooses the most emphasized causal
category using optimization techniques. We view this challenge as an open research
direction.

There are two possible mitigation techniques to solve this problem: (i) Inconsistency
among causal explanations/ inappropriate human-annotated inferences in the dataset,
(ii) in-depth analysis of arguments and instances in self-reported text using discourse
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Table 1. Performance evaluation of multi-class classifiers for causal categorization of mental
illness on social media data where F1:C0, F1: C1, F1:C2, F1:C3, F1:C4 and F1:C5 defines F1-
score for 6 categories: cause 0: ‘No reason’, cause 1: ‘Bias or abuse’, cause 2: ‘jobs and careers’,
cause 3: ‘medication’, cause 4: ‘relationships’, and cause 5: ‘alienation’, respectively.

Classifier F1:C0 F1:C1 F1:C2 F1:C3 F1:C4 F1:C5 Accuracy

LSTM 0.55 0.30 0.36 0.45 0.55 0.25 0.4514

BiLSTM 0.59 0.25 0.53 0.44 0.58 0.43 0.5054

CNN 0.57 0.26 0.53 0.54 0.58 0.35 0.4919

CNN-LSTM 0.57 0.17 0.38 0.46 0.48 0.52 0.4784

analysis. In this research work, we hypothesise that if there exists the inconsistency
among F1 scores of different classes, there exists an inconsistency among correspond-
ing causal explanations as well. We find causal explanations and validate the results
with human-annotated inferences. To this end, we choose to handle the first mitigation
approach, thereby, enlisting new frontiers.

Explainability: In this section, we present evaluation of resulting top-keywords using
LIME and IG methods. We use word mover distance and cosine similarity over distribu-
tional word representations of both inferences and resulting keywords. As observed in
Table 2, the explanations of Class 0: ’No reason’ have maximum distance from human-
annotated inferences for all methods. The reason is well-justified with the fact that Red-
dit posts having no reason behind intent of a user may or may not choose random words
from the entire text. These random words does not describe any reason and thus, are the
most far away from human-generated inferences. Low values for all other classes signi-
fies the presence of patterns among explanations for other classes. We find class 2: jobs
and careers, and class 4: relationships as the semantically most similar explanations
achieved by deep learning methods.

Table 2. Values obtained for semantic similarity among resulting top-keywords and human-
annotated inferences using Word Mover Distance: More distance indicates less similarity among
two different texts.

Method used Class0 Class1 Class2 Class3 Class4 Class5

LSTM+LIME 1.029 0.854 0.857 0.896 0.838 0.889

LSTM+IG 1.097 0.890 0.870 0.926 0.867 0.906

BiLSTM+LIME 1.029 0.880 0.865 0.886 0.852 0.876

BiLSTM+IG 1.117 0.900 0.898 0.919 0.870 0.908

CNN+LIME 1.042 0.820 0.831 0.817 0.823 0.843

CNN+IG 1.123 0.907 0.882 0.912 0.880 0.913

CNN-LSTM+LIME 1.018 0.843 0.831 0.848 0.851 0.863

CNN-LSTM +IG 1.117 0.913 0.869 0.918 0.874 0.890
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We further analyse the results for cosine similarity as shown in Table 3. We give
input as a string, tokenize the text, use GloVe word embeddings to obtain word vec-
tors, and find the mean of word vectors (obtained for each token). Experimental results
demonstrate class 2: jobs and careers, and class 4: relationships as the most similar
explanations to the human-annotated inferences. Class 3: Medication , being associ-
ated with medical terms are expected to be semantically least similar as we would need
domain-specific distributional word representation for evaluation in this category. Thus,
class 3 and class 0 are illustrating low scores as compared to other classes.

Table 3. Values obtained for semantic similarity among resulting top-keywords and human-
annotated inferences using Cosine Similarity: The distance lies between 0 and 1

Method used Class0 Class1 Class2 Class3 Class4 Class5

LSTM+LIME 0.787 0.825 0.889 0.751 0.881 0.854

LSTM+IG 0.723 0.779 0.870 0.701 0.869 0.813

BiLSTM+LIME 0.784 0.821 0.881 0.751 0.867 0.857

BiLSTM+IG 0.716 0.773 0.866 0.709 0.865 0.814

CNN+LIME 0.776 0.835 0.898 0.822 0.894 0.861

CNN+IG 0.729 0.765 0.863 0.689 0.863 0.818

CNN-LSTM+LIME 0.781 0.831 0.878 0.811 0.868 0.852

CNN-LSTM+IG 0.728 0.789 0.851 0.690 0.870 0.815

4.5 Ethical Considerations

NLP researchers are responsible for transparency about computational research with
sensitive data accessed during model design and deployment. We understand the signif-
icance of ethical issues while dealing with a delicate subject of mental health analysis.
We use the publicly available dataset and do not plan to disclose any sensitive infor-
mation about the stakeholders (social media users) thereby preserving the privacy of a
user [2].

We use publicly available pre-trained base models for our demonstration to avoid
any ethical conflicts. We assure that we adhere to all ethical guidelines to solve this task.
Development of fair AI technologies in mental healthcare supports unbiased clinical
decision-making [13]. Our research work is fair and there is no intentional bias as we
consider explainable causal categories for mental health on CAMS dataset.

5 Conclusion and Future Scope

We find the explanations for causal categorization of mental health in social media posts
by using LIME and IG methods, followed by performance evaluation by using human-
annotated inferences in CAMS dataset. We conclude our work with three key take-
aways: (i) less variations among resulting values of all classes for causal explanations
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as compare to F1 scores in causal categorization validates the human-annotated inter-
pretations for causal categorization; (ii) the results for Class 0: No reason and Class 3:
Medication are least explainable due to randomization and the need of domain-specific
analysis, respectively; (iii) the performance evaluation of explanations obtained using
explainable NLP is possible with semantic similarity methods if human-annotated inter-
pretations are predefined.

One of the path-breaking work is performed for causal explanation on social media
which is obtained in the form of text [10]. The authors mentioned the complexity of
this problem and made an attempt to resolve this issue by using discourses. However,
the experiments were performed over a limited amount of Facebook data (often referred
as Causal Explanation Analysis (CEA) dataset) to classify the texts containing causal
explanations and thereby extracting causal explanations. Furthermore, the causal expla-
nation detection takes place on CEA dataset by capturing the salient semantics of dis-
courses contained in their keywords with a bottom graph-based word-level salient net-
work [15]. In this context, we choose to propose domain-specific discourse relation
embeddings [11] as a potential future research direction of causal analysis.
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Abstract. We develop a sequential Q-learning model using a recurrent
neural network to count objects in images using attentional search. The
proposed model, which is based on visual attention, scans images by
making a sequence of attentional jumps or saccades. By integrating the
information gathered by the sequence of saccades, the model counts the
number of targets in the image. The model consists primarily of two
modules: the Classification Network and the Saccade Network. Whereas
the Classification network predicts the number of target objects in the
image, the Saccade network predicts the next saccadic jump. When the
probability of the best predicted class crosses a threshold, the model
halts making saccades and outputs its class prediction. Correct prediction
results in positive reward, which is used to train the model by Q-learning.
We achieve an accuracy of 92.1% in object counting. Simulations show
that there is a direct relation between the number of glimpses required
and the number of objects present to achieve a high accuracy in object
counting.

Keywords: Attention · Object Counting · Q-learning

1 Introduction

The ability to count multiple objects in an image has several applications includ-
ing counting cells in a micrograph [19], monitoring wildlife [16], traffic surveil-
lance [13], inventory management and tracking objects through surveillance cam-
eras [22]. A significant amount of work in the field of computer vision has been
done for counting and locating objects in images. Segui et al. [21] developed
a convolutional neural network and used its features to generate a confidence
map which they use for detecting object occurrences. Inbar et al. [5] developed
a novel weakly-supervised convolutional neural network training for finding and
counting iterative objects that can be applied to single-frame scenarios. In the
aforementioned approaches, counting is treated as a classification problem. The
classification approach is helpful when the number of occurrences of the object is
sufficiently large. The network takes two inputs; the input image and the object
of interest marked in the image. Using supervised learning it learns to mark
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multiple occurrences of the objects. Hui et al. [11] developed a convolutional
neural network called LaoNet for one-shot object counting. In this network, the
counting model should consider only one instance and count objects of the new
category. The network takes two inputs: the input image and image of the object
of interest. From this input, the network uses supervised learning to create a den-
sity map of the objects of interest. In the case of the LaoNet, the approach to
training is to minimize the mean squared error between the predicted density
map and the ground truth density map. Jack et al. [12] developed a sequential
learning model using reinforcement learning and recurrent neural network archi-
tecture to count and recognize objects in images. They did not use the complete
image like the previous models but they used the attentional approach in which,
analogous to the human visual system, an attentional window scans the image by
making attentional jumps to count the target objects in the image. An instance
of an attentional approach to counting is the recurrent attention model (RAM)
model [14] in which the image is analyzed using a sequence of glimpses. Research
on approaches to object counting using bio-inspired or attentional architectures
is rather scarce. Their work introduced a method for image classification that
uses a sequence of glimpses on different regions of the image to predict the class.

In this paper, we propose a brain-inspired attention model for object count-
ing. The proposed attention model does not scan the image at once but it learns
to find important locations in the image and extracts salient parts from those
locations of the image. The architecture of the attention model is inspired by the
anatomy of the vision processing network of the human visual system (HVS).

2 Method

We consider the attention problem as a sequential decision process, where the
agent interacts with a visual environment and makes sequential decisions. This
approach is realized in the form of an attention search-based deep Q neural
network [14] applied to object counting. To perform object counting, we create a
dataset containing images that consist of patches as objects with a count ranging
from 1 to 10. The images are of size 64× 64. The patches in the image are placed
at random pixel locations (Fig. -1). To generate the image containing the patches,
we used a bivariate gaussian function (Eq. -1). The size of the cells is determined
by the value of the bi-variate gaussian function. A set of 14400 images were
generated in each of the 10 count classes. In the dataset, 50% (7200) images in
the training set, 25% (3600) images in the validation set, and 25% (3600) images
in the testing set were considered for the experiment.

Aij = min(255,

c∑

k=1

255(exp(−(xk − i)2 − (yk − j)2)/2σ2)) (1)

where, c is the count-class, A is the matrix representation of the image, Aij rep-
resents the matrix’s elements with ith row and jth column, and (yk, xk) represent
the c randomly chosen row and column, respectively i.e. the center of a patch.
The variance σ determines how concentrated the values are around(yk, xk),
therefore σ controls the size of the patches or objects in the image (Fig. 1).
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Fig. 1. Sample of images generated in dataset for each class.

Fig. 2. Attention glimpse generation from image.

The attention model takes two inputs: the cropped-out attention glimpse
from the image and the heatmap representation of the attentional window in
the entire background image (Fig. 2). To generate an attention glimpse, three
concentric attention windows of size 16× 16, 32× 32, and 64× 64 respectively,
centered on the currently attended point in the image, are cropped out of the
original image. They are resized into one common size (16× 16), and arranged
as a stack (Fig. -2). On the other side, to generate the attentional heatmap
representation of the currently attended location, pixel values of the 16× 16
window at the center location l in a 64× 64 array are assigned to 1, otherwise
0 (Fig. 3). The architecture of the complete system consists of three CNNs. The
first CNN is called the Classifier Network, the second is the Eye Position network
and the third network is the Saccade Network. The Classifier Network and the
Saccade Network take the attentional glimpse as the input and the Eye Position
Network takes the attentional heatmap representation of the currently attended
point as the input. The inputs are processed in parallel by passing through the
three constituent pathways of the proposed architecture.

To solve the counting problem, by taking a sequence of glimpses from the
image, the network must necessarily hold a memory of the past glimpses. In the
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Fig. 3. Attentional Heatmap representation.

Fig. 4. Details of the attention model architecture for counting problem.

proposed network, this memory is held by two mechanisms: 1) use of Flip-flop
neurons in the hidden layers, 2) use of Elman and Jordan feedback recurrence
layers. These two features are now described.



188 A. Sinha et al.

Flip Flop Neuron Layer: A flip-flop is an electronic component used in digital
circuits to store state information. We used JK flip-flop [10] neurons in place of
LSTM neurons for reasons of more efficient memory utilization [10]. Holla et al.
have shown that SR and Toggle flip-flops outperform the LSTM by using half
of the training parameters comparatively. The JK flip-flop neuron layer in the
current model is implemented in two ways: convolutional layer with JK flip-flops,
which is called Convolutional flip-flop layer and a fully connected layer with JK
flip-flops which is called FC flip-flop layer. The input/output relationship of the
JK flip-flop is given by (Eqns. 2–5).

J = σ(Wj .Xt) (2)

K = σ(Wk.Xt) (3)

Vt+1 = J.(1 − Vt) + (1 − K).Vt (4)

Oout = tanh(Wout.Vt+1) (5)

where Xt is the input at time t; Vt is the internal state of the FF; and Oout is
the output of the flip flop recurrence layer [10].

Fully Connected Elman Jordan Layer: This fully connected Elman-Jordan
layer retains memory by storing the state of the hidden layer from the previous
time step in the context layer; the context layer provides additional input to
the same hidden layer at the current timestep. This is called the Elman recur-
rence [18]. A memory of the output layer from the previous time step is stored
in the corresponding context layer and the context layer is input to any of the
hidden layers; this is called the Jordan recurrence [18]. The output of the fully
connected Elman-Jordan layer [2,8,9] is given as

Hj
t = f(WijH

i
t + WjjH

j
t−1 + bj) (6)

Hj
t = f(WijH

i
t + WkjH

k
t−1 + bj) (7)

Where i, j and k represents the flattened layer, the fully connected layer and
softmax layer respectively. Hj

t represents the output from the layer j at current
time step t. Wij represents the weight matrix between j and i. bj represents the
bias. f represents the activation function ReLU.

The input given to the Classifier network is passed through three convolu-
tional flip-flop layers each with different kernel sizes. The output from the first
two convolutional flip-flop layers is passed through maxpool layers [15]. The
output of the last convolution layer is then flattened and passed through a fully
connected Elman-Jordan layer. The Eye Position Network takes the heatmap
representation as an input. The input is passed through two convolutional lay-
ers [17], and two maxpool layers. The output of the last maxpool layer is then
flattened and is passed through one fully connected flip-flop layer and one fully
connected layer. The Saccade Network is responsible for learning the previous
actions of the glimpse locations and giving an optimal direction to the glimpse
movement in the image. The Saccade Network takes the attention as an input.
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The input is passed through two convolutional layers and two maxpool layers.
The output of the last convolutional layer is flattened and passed through one
fully connected flip-flop layer and one fully connected Elman-Jordan layer.

Output from the fully connected Elman-Jordan layer of the classifier network,
the fully connected layer of the eye network, and the fully connected Elman-
Jordan layer of the saccade network is concatenated into a single layer. The
concatenation layer is split into two separate parallel paths: one is to predict the
class and the other is to predict the next location of the attentional glimpse. In
one pathway, the concatenation layer first passes through one fully connected
layer then through one softmax layer [3] to give the output of classification
probabilities. When the probability of a class is greater than the threshold value
λ, the softmax classification layer makes a class prediction and receives a reward
if the prediction is true. The reward scheme is described by the equation:

Rt+1 =

⎧
⎪⎨

⎪⎩

1, arg maxi∈n(pi) == arg maxi∈n(ti)
max(p) > λ

0, otherwise

Where pi is the predicted probability for count class i and ti is the actual prob-
ability for the count class i. λ is the threshold value equal to 0.51.

In another pathway, the concatenation layer directly passes through one lin-
ear layer to give the output of action probabilities (Fig. -4). The agent makes a
decision about the attentional window location for the next timestep. For the
next location, the agent has 9 options to choose from. i.e. right, left, up, down,
top left, top right, bottom left, bottom right, and nowhere. The glimpse moves
a certain fixed amount of distance called “jump length” equal to 8 from the
previous location l in the given direction of movement.

Training and Testing. Cross entropy loss [20] and mean square error of tem-
poral difference [1] was calculated from classification probabilities and action
probabilities respectively. Both losses were added and backpropagated using
the Adam optimizer [6]. First, we trained the network with as many as 128
glimpses for each image. During the testing phase, however, we limit the num-
ber of glimpses to N , where N is equal to 1, 2, 4, 8, 16 respectively, the model
makes the decision to count class prediction if the maximum value of the pre-
dicted class probabilities crosses a threshold of 0.6. In doing so we could analyze
the model’s intermediate performance in estimating the count of objects after
only a few glimpses.
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3 Results

Fig. 5. Demonstration of the efficiency of the model with training and validation data.

The initial location of the attentional window was chosen to be random. During
training, the agent takes actions (saccadic jumps) for 128 timesteps, while at
each timestep deciding for the next window locations determined by the Saccade
Network. After tuning the hyperparameters, the learning rate is chosen to be
0.001 with a decay factor of 0.5. All the weights in the network were regularized
with a beta value of 0.1. The batch size for training, validation and testing was
512. The value of γ for Q-learning [23] was set to 0.4. The network was trained up
to 10 epochs. After training the attention model, using three concentric windows
for 10 epochs, our attention model obtained a testing accuracy of 92.10%.

Fig. 6. Demonstration of the efficiency of the glimpse location decision mechanism.

The attention model successfully learns to focus on the most salient areas of
the image (Fig. -5). During the testing phase, we limited the number of glimpses
to N. The network has shown images which have fewer objects that were cor-
rectly classified even when the model was restricted to fewer glimpses (Fig. -6).
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Images which had more objects required relatively more glimpses for correct
classification. There exists a close relationship between the number of glimpses
required and the number of objects in the image. The model has successfully
learned how to choose correct glimpse locations that correspond to objects in
the image.

4 Conclusion and Future Work

The proposed attention-based model, loosely fashioned after the what and where
pathways of the primate visual system, could be trained successfully to count
up to 10 visual items at a reasonable accuracy. It clearly learned how to count
objects by identifying the relevant locations to focus upon, rather than processing
the complete image. We have seen the effectiveness of the attention mechanism;
the success of this model is due to the correct glimpse behavior. Once trained,
it can process images more rapidly since it will process less data because it
only considers relevant areas to focus upon. A future objective in this area is
to build an attention recurrent model that not only aims to maximize counting
accuracy but also minimize the time taken (or the number of glimpses) to per-
form counting. In this regard, it would be interesting to seek inspiration from
counting strategies adopted by humans, and saccade patterns exhibited by the
human visual system engaged in the counting task [12]. Another application of
the proposed model is in change detection ( [4,7]), where the attention can move
in the image and make the decision that which part of the image is changed.
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Abstract. Emotion Detection in conversation is playing more and more impor-
tant role in dialogue system. Existing approaches to Emotion Detection in Con-
versation (EDC) use a fixed context window to recognize speakers’ emotion,
which may lead to either scantiness of key context or interference of redundant
context. In response, we explore the benefits of variable-length context and pro-
pose a more effective approach to EDC. In our approach, we leverage different
context windows when predicting the emotion of different utterances. New mod-
ules are included to realize variable-length context: 1) two speaker-aware units,
which explicitly model inner- and inter-speaker dependencies to form distilled
conversational context and 2) a top-k normalization layer, which determines the
most proper context windows from the conversational context to predict emo-
tion. Experiments and ablation study show that our approach outperforms several
strong baselines on three public datasets.

Keywords: Conversation · Emotion Detection · Transformer

1 Introduction

Emotion Detection in Conversation (EDC) is the task of predicting the speaker’s emo-
tion in conversation according to the previous context and current utterance. Great tech-
nical breakthroughs of EDC promote the development of applications in an army of
domains, such as healthcare, political elections, consumer products and financial ser-
vices [11,15,18]. Figure 1 shows an example of EDC. Existing approaches [4,6] con-
sider a fixed context window (i.e., the number of preceding utterances), which may
suffer from two issues: (1) semantic missing due to a small window; or (2) redun-
dancy problem in big context text, making it difficult to choose the right context in the
task CHQA. Therefore, knowing the current speaker is Harry is beneficial to choos-
ing the right context window since one of the preceding utterances explicitly mentions
Harry, which indicates that it may contain information relevant to the current utterance.
That is, speaker dependencies are the key indicators to determine the right context win-
dow.speaker dependencies are both critical to conversation understanding [5], where
speaker dependencies can be further categorized into inner- and inter-speaker depen-
dencies [8]. Firstly, we model the above dependencies by an attention-based utterance
encoder and two speaker-aware units to generate conversational context representation,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Tanveer et al. (Eds.): ICONIP 2022, LNCS 13624, pp. 197–206, 2023.
https://doi.org/10.1007/978-3-031-30108-7_17
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Fig. 1. Amulti-party EDC example. The ideal context window to Harry’s emotion would include
exactly two preceding utterances, among which Tony provides evidence for Harry being happy.
Utterances ahead of Tony are redundant since they are irrelevant to the current turn of conversa-
tion.

where inner- and inter-speaker dependencies are explicitly modeled to help detect the
ideal context windows. Next, a top-k normalization layer generates top-k best context
windows and their probability weights based on the dimension-reducted context repre-
sentation. Lastly, we predict the emotion of current utterance by softly leveraging the
top-k best context windows. Experiments show that our approach achieves competitive
performance on three public conversational datasets: 66.35% F1 on IEMOCAP [2];
61.22% F1 on DailyDialog [10]; and 38.93% F1 on EmoryNLP [20]. Extensive abla-
tion study demonstrate the contribution of each component in our approach as well as
the necessity of using variable-length context.

We summary our contributions as threefold:

– For the first time, we alleviate the context scantiness and context redundancy prob-
lems in EDC by varying the length of context..

– We propose a new approach that considers different context windows for different
instances to conduct emotion prediction, where 1) speaker dependency is explicitly
modeled by new speaker-aware units to help the detection of ideal context windows
and 2) a new top-k normalization layer that generates top-k best context windows as
well as their weights.

– We achieve competitive results on three public EDC datasets and conduct elaborate
ablation study to verify on the effectiveness of our approach.
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2 Related Work

Recent EDC studies are based on Deep Learning, which can be further categorized
into three main kinds: RNN-based, GCN-based and Transformer-based models. RNN-
based models have been well explored in the last few years. Poria et al. (2017) [16] first
modeled the conversational context of EDC using Recurrent Neural Networks (RNNs)
[14]. Hazarika et al. (2018) [8] took speaker information into account and Hazarika et
al. (2018) [7] first modeled Inter-speaker dependencies. Majumder et al. (2019) [13]
kept track of speakers’ states and their method could be extended to multi-party con-
versations. Lu et al. (2020) [12] proposed an RNN-based iterative emotion interac-
tion network to explicitly model the emotion interaction between utterances. Ghosal
et al. (2019) [6] and Sheng et al. (2020) [19] adopted relational Graph Convolutional
Networks (GCN) to model EDC, where the whole conversation was considered as a
directed graph and they employed graph convolutional operation to capture the depen-
dencies between vertices (utterances). However, converting conversations to graphs
loses temporal attributes of original conversation. Owing to the excellent representa-
tion power of transformers [3], some researchers adapted them to EDC and got favor-
able results [9]. Recently, Ghosal et al. (2020) [4] incorporated commonsense knowl-
edge extracted from pretrained commonsense transformers COMET [1] into RNNs and
obtained favorable results on four public EDC datasets. However, none of the above
models regarded the context scantiness or the context redundancy problem as us.

3 Our Method

3.1 Problem Formulation

A conversation consists of n temporally ordered utterances {x1, . . . , xn} and their
speakers {s1, . . . , sn}. xi is the i-th word in the sequence. At time step t, the goal of
EDC is to identify the most-likely categorical emotion label ŷt for speaker st given the
current and preceding utterances as well as their speakers: ŷt = argmaxp(yt|x1:t, s1:t),
where 1 : t means set of the former t elements.

3.2 Model

As depicted in Fig. 2, our approach consists of the following modules: (1) an utterance
encoder that encodes sequential dependencies among utterances; (2) two speaker-aware
units that explicitly encodes inner-and inter-speaker dependencies to help detect the
ideal context windows; (3) a multi-layer perception and a top-k normalization layer that
generate distribution over different context windows, from which we determine top-k
best context windows and their corresponding weights; and (4) a prediction module
that generates emotion distribution from the top-k best context windows with different
probability weights. Utterance Encoder The input of utterance encoder is a sequence
of tokens with speaker information. At time step t, we generate the input sequence by
prepending speaker information (i.e. the name of speaker) to each utterance and then
concatenating utterances up to time step t into a single sequence of tokens. The name
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Fig. 2. Overall architecture of our approach.

of speaker and the utterance are separated by special [SEP] token. The input sequence
is fed into the base version of RoBERTa [12] to encode the sequential dependencies
among utterances and generate contextual representation for each utterance:

ui = si ⊕ [SEP ] ⊕ xi,

[g1, . . . , gt] = RoBERTa(⊕t
i=1ui)

(1)

where gi represent the contextual representation for utterance at i, which is the
RoBERTa output corresponding to the first token of ui With a context window con-
sidering up to M previous time steps, the encoder outputs a sequences of vectors
[gt−M , . . . , gt−1, gt], where gi ∈ Rd.

Speaker-Aware Units: Our approach incorporates speaker dependencies to guide the
detection of ideal context windows. Concretely, we propose two speaker-aware units to
explicitly capture inner-speaker and inter-speaker dependencies. The two units have the
same attention-based structure, but they do not share parameters. We first divide utter-
ance contextual representations [gt−M , . . . , gt−1], into two subsets Ginner and Ginter
depending on whether their corresponding speakers are the same as the current one.
Each speaker-aware unit then takes the corresponding subset G and gt as input, and
applies multi-head attention with layer normalization to incorporate speaker dependen-
cies:

o = LayerNorm(c + gt),
c = Concat((head1, . . . , headh), Φ1),

headi = Attention((gt, G,G)T (Φ2, Φ3, Φ4)), Φ ∈ R
(2)

where Φs are the parameters of different layer in our model. Finally, we concatenate
ointer and oinner into the vector z as z = [ointer; oinner] ∈ R2d.
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Context Window Distribution: Using the distilled vector z, we generate a probability
distribution over context windows ranging from 0 to M. This is done via: (1) a multi-
layer perceptron (MLP) which maps the distilled vector to scores of context windows,
and (2) a top-k normalization layer which generates distribution over context windows.

Specifically, we first feed the distilled vector z into a two-layer MLP to get scores
of context windows s:

h = ReLU(z, Φ5) ∈ Rd
h,

s = MLP (h;Φ6) ∈ RM+1
(3)

.
Emotion Prediction from top-K best Context Windows Instead of using the context

windowwith the highest probability to predict emotion, we use q = softmax(s+m) as
soft labels and leverage all top-K context windows in prediction. As shown in Fig. 2, our
prediction module contains M + 1 context fields from 0 to M, where field i corresponds
to the use of context window i. The input of each field, with a [CLS] at its front, is
encoded by a field-specific contextual encoder, which has the same architecture of our
utterance encoder. We use a field-specific linear classifier to the encoder output for
[CLS], gi[CLS] ∈ Rd, to compute the emotion label distribution pi given context window
i:

pi = softmax(gi[CLS];Φ7) ∈ Rc. (4)

The final emotion label distribution p̂ combines top-K context window distribution
and emotion label distributions given different context windows:

p̂ = Σi∈top−K1[i]pi ∈ Rc. (5)

3.3 Training

We optimize cross-entropy loss L for each mini-batch B of conversations:

L = Σ|B|
i=1Σ

|Bi|
j=1 − logp̂ij [yij ], (6)

4 Experiment Design

4.1 Dataset

We evaluate our approach on four publicly available datasets, IEMOCAP [2], DailyDi-
alog [10], MELD [17] and EmoryNLP [20]. They differ in the number of interlocutors,
conversation scenes, and the emotion labels. As shown in Fig. 3, the average conversa-
tion lengths of the four datasets differ a lot, with the maximum 49.23 for IEMOCAP and
minimum 7.85 for DailyDialog. Moreover, the datasets hold varied data capacity and
average utterance lengths. Following existing approaches, models for the datasets are
independently trained and evaluated. For preprocessing, we follow Zhong et al. (2019)
[21] to lowercase and tokenize the utterances in the datasets using Spacy.
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4.2 Baselines

To demonstrate the effectiveness of our approach, we compare it with several strong
baselines as follows:

– DialogueRNN, an RNN-based ERC model that keeps track of the states of context,
emotion, speakers and listeners by several separate GRUs.

– DialogueGCN, a GCN-based ERC model, where they adopt relational graph neural
networks to model different types of relations between utterances in the conversation
according to their temporal order and speakers.

– KET , a transformer-based model, which leverages external knowledge from emo-
tion lexicon NRC VAD and knowledge base ConceptNet to enhance the word
embeddings. They adopt a hierarchical attention-based strategy to capture the con-
textual information.

– RoBERTa-BASE, the base version of RoBERTa. The inputs are concatenated utter-
ances and the representation of the first subword from the last layer is fed to a simple
linear emotion classifier. If the input length exceeds the limitation of RoBERTa, we
discard the remote utterances at utterance level.

– COSMIC, a strong ERC model which extracts relational commonsense features
from COMET and utilizes several GRUs to incorporate the features to help emo-
tion classification.

5 Experimental Result

5.1 Main Results

Fig. 3.Main results. The best F1 scores are highlighted in bold. - signifies the unreported results.
CSK is the abbreviation of commonsense knowledge. means the results obtained by our imple-
mentation

The main results are reported in Fig. 3. Our approach achieves the best performance
on IEMOCAP, DailyDialog and EmoryNLP datasets, surpassing COSMIC by 1.07%,
2.74% and 0.82% F1 scores respectively. We owe the better performance of our app-
roach over COSMIC to the consideration of variable-length context. Moreover, unlike
COSMIC, our approach does not rely on external knowledge. For MELD, the result of
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our approach is also competitive, outperforming all the baselines except COSMIC. We
show that the slightly better performance of COSMIC is due to the use of common-
sense knowledge (CSK). Our approach performs better than COSMIC without CSK.
This indicates that external knowledge could be benefitial to the prediction of short
utterances.

Fig. 4. Ablation for the speaker-aware units on the test sets of four datasets.

Ablation Study. In order to expose the contribution of different components in our
approach, we conduct ablation experiments on the main components: the speaker-aware
units and the generation method of context window distribution. Speaker-Aware Units
We compare the speaker-aware units with following modeling methods of speaker
dependencies: N-Unit: N-Unit shares the same structure with the inner- (inter-) speak-
eraware unit. Different from the speaker-aware units, the keys and values of its inputs
are all the previous utterance representations regardless of their innerand inter-speaker
relationships. N-unit is non-speaker-aware. S-Unit: S-Unit concatenates one-hot vec-
tors, which indicates the speaker of each utterance, to the utterance representations and
conducts the same operation as N-Unit. GCNs: Method from [5], where multiple graph
convolution layers captures the speaker dependencies. Nodes are utterances and edge
weights are obtained by a similarity based attention module. We add a max pooling
layer and a linear layer after it to get the vector z. The inputs of GCNs are the outputs
of our utterance encoder. Fig 4 shows the comparison results. We attribute the superior
performance of our method over S-Unit to the explicitly modeling of inner- and inter-
speaker dependencies. S-Unit surpasses N-Unit, indicating that speaker information is
indispensable in the context modeling of EDC. Moreover, our speaker-aware units gain
over the best of the other three methods by 0.33% and 0.72% F1 scores on dyadic
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datasets (IEMOCAP and DailyDialog), less than those on multiparty datasets (MELD
and EmoryNLP), 1.03% and 0.85%. We attribute this to more complex speaker depen-
dencies in multi-party conversations than dyadic conversations. Our method is better at
capturing speaker dependencies when more speakers participated in the conversation.
Generation method of Context Window Distribution Context window distribution q (see
Eq. 11) controls the activation of context fields and acts as attention weights to merge
the output distributions of activated context fields. In our method, we adopt a MLP and
a top-k normalization layer to generate q. We try several other generation methods of q
and compare them with our method. Based on the two functions of q, top-k activation
of context fields and output distribution weighting, we consider following variants of
our method:

All-Soft: The top-k normalization layer in our method is replaced by a softmax layer
to get q, which means that all of the M + 1 context fields are always activated and the
output distributions of context fields are merged by attention weights.

Topk-Hard: After top-k normalization layer, K non-zero probabilities in q are set
to 1K , meaning that the output distributions of K activated context fields are weighted
equally.

All-Hard: Regardless of the sequential and speaker dependencies, all the probabili-
ties in q are set as M1+1 , which means that all of the M + 1 context fields are always
activated and the output distributions of context fields are weighted equally.

Topk-Soft: Method in our proposed approach. F1 scores of the test sets are shown
in Fig. 5. Compared to All-Hard, AllSoft only has better performance on EmoryNLP.
We attribute this to the fact that the attention weights of proper context windows are
not significantly larger than those of improper ones. Therefore, directly deactivating
improper context fields in our approach is more reasonable than activating them and
giving them less attention weights. In response to the above analysis, Topk-Hard out-
performs All-Hard nearly across all the datasets, indicating again that we should avoid
activating improper context fields. Our top-k normalization layer promotes the attention
weights of the K activated context fields, which signified by the superior performance
of Topk-Soft over Topk-Hard. According to the above analysis, our generation method
of context window distribution not only avoids activating improper context fields but
also gives the activated ones more reasonable attention weights. As a result, our method
outperforms other generation methods. How to further reduce the attention weights of
improper context fields deserves more exploration in future.

Fig. 5. Ablation for the generation method of context window distribution on the test sets of four
datasets.
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6 Conclusion

To alleviate the context scantiness and context redundancy problems in EDC, we
present a new EDC approach being capable of recognizing speakers’ emotion from
variable-length context. In our approach, we first generate a probability distribution
over context windows according to sequential and speaker dependencies, where speaker
dependencies are explicitly modeled by the newly proposed inner- and inter-speaker
units. Then, we introduce a new top-k normalization layer to leverage all top-k best
context windows to conduct emotion prediction conditioned on the context window dis-
tribution. Elaborate experiments and ablation study demonstrate that our approach can
effectively alleviate the context scantiness and context redundancy problems in EDC
while achieving competitive performance on three public datasets. In future, we tend
to improve the context window distribution by external knowledge or auxiliary tasks.
Also, we’ll explore more effective mechanisms for the detection of proper context win-
dows.
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Abstract. Joint entity and relation extraction from unstructured texts
is a crucial task in natural language processing and knowledge graph
construction. Recent approaches still suffer from error propagation and
exposure bias because most models decompose joint entity and relation
extraction into several separate modules for cooperation. In addition, the
mode of multi-module cooperation to complete the joint extraction task
ignores the information interaction between entities and relations. Most
modeling methods are based on the pattern of token pairs, which leads
to ambiguous information about entities to a certain extent. To address
these issues, in this work, we creatively propose a method to transform
the extraction task of complex triples under multiple relations into a fine-
grained classification problem based on word pairs. Specifically, to fully
utilize entity information and facilitate decoding, the proposed model
uses a tag strategy specific to the feature of the entity itself. Extensive
experiments show that the performance achieved by the proposed model
outperforms public benchmarks and delivers consistent gain on complex
scenarios of overlapping triples.

Keywords: Joint entity and relation extraction · Word pairs · Tag
strategy · Overlapping triples

1 Introduction

In the form of a triple (subject, relation, object), extracting entity mentions and
judging relation types between them from unstructured texts are basic natu-
ral language processing tasks. Some traditional methods named pipelined [2,19]
divide joint extraction into two independent sub-tasks including entity recogni-
tion [13] and relation prediction [22]. The pipelined method has the advantage
of low coupling. It is because of low coupling that this method has the disad-
vantages of error propagation, exposure bias, and poor information interaction.
Therefore, building joint extraction frameworks to figure out these problems
becomes increasingly vital.

Recent studies on joint extraction mainly focus on two aspects: multi-task
learning [10,18,21] and single module single step framework [16]. Multi-task
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 1. An example of the Entity Pair Overlap (EPO), Single Entity Overlap (SEO),
Subject Object Overlap (SOO), and Normal patterns.

learning is divided into several sub-modules and completed step by step, which
is inevitably affected by the propagation of cascading errors between modules
and the exposure bias between training and prediction stages. The single module
single step framework eliminates these effects. But it falls into the problem that
it can not identify overlapping relation triplets. As shown in Fig. 1, it shows the
different overlapping patterns of triples under complex relations.

Now more and more work is focused on solving the problem of overlapping
triples [10,17,18,21]. Most prevalent architectures adopt the modeling method
of token pairs [17,21]. Usually, the entities in a sentence are proper nouns and
will be split into several tokens before encoding. For example, “Shijiazhuang”
(a place name) contains “Shi”, “##ji” , “##az”, “##hua”, and “##ng” after
passing through a tokenizer. However, the context information represented by
tokens is very partial. In addition, there are massive redundant calculations
existing between token pairs.

To address the aforementioned challenges, in this paper, we propose a simple
but effective joint entity and relation extraction model based on multi-relation
word pair tag space(MRWPTS). Considering that a token contains less entity
information and massive redundant information and calculations exist between
token pairs, we employ the max pooling to combine discrete tokens belonging to
the same word into word representation by looking up the position of a word in
the token sequence. Such as, for the word “Shijiazhuang” and the positions (0, 4)
of tokens, the word representation is generated by max pooling of this segment
of tokens. In order to solve the problem of overlapping triples, the model assigns
meaningful tags to each word pair under all pre-defined relations. The model
adopts a tag strategy refined by entity features, which is helpful to improve the
training and inference speed. The joint extraction model proposed in this paper
achieves outstanding performance with high efficiency in solving the problem of
overlapping triples.
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2 Related Work

Entity and relation extraction have been studied as two separated categories:
pipelined extraction and joint extraction. The pipelined extraction strategy
[9,20] is to identify named entities first and then predict the possible relations
between entities. Because entity recognition and relation prediction are regarded
as two isolated tasks in pipelined methods, they still suffer from error propaga-
tion and poor information interaction.

The joint extraction model can be subdivided into several different strategies.
The joint extraction is regarded as multi-task learning, which is composed of
multiple sub-task modules. The first kind of multi-task learning is that all entities
in a sentence are recognized first by the entity recognition module, and then the
relation classifier module classifies the relation of every entity pair. [1]. This
strategy exists a lot of redundancy of entity pairs and relations, resulting in
a waste of computing resources. This method also suffers from exposure bias
due to different sources of information for entities in the training and prediction
stages. The second kind of multi-task learning is that relations in a sentence are
predicted first, and then the head entity and tail entity for each corresponding
relation are extracted [21]. This strategy can filter out most redundant relations
and entity pairs, reducing the burden of computing resources. In the above two
multi-task learning strategies, each module is interdependent, so there will be
the problem of cascading error propagation.

Another approach is to model joint extraction as a single-stage model [17].
The joint extraction framework proposed by [17] is based on the linking of token
pairs of entity boundaries. There is no influence of error propagation and expo-
sure bias in this one-stage model, and it can handle overlapping triples well.
However, the token pairs in this method contain little entity boundary informa-
tion. Second, the decoding process for triples in this method is complicated and
inefficient. In contrast, we propose MRWPTS with more comprehensive model-
ing information and an efficient decoding process.

3 Proposed Approach

In this section, we first introduce the definition of the joint entity and relation
extraction task, then elaborate on the unique tag strategy and decoding process
of MRWPTS, and finally provide the modeling method of the model. An overview
illustration of the model is shown in Fig. 2.

3.1 Task Definition

Given a pre-defined relation set R = {r1, r2, ..., rQ} with Q types and a sentence
W = {w1, w2, ..., wX} with X words. Note that words and tokens are not equiv-
alent. The joint entity and relation extraction task aims to identify all possible
triples T = {(hn, rn, tn)}Nn=1. hn, tn, and rn represent the head entity, the tail
entity, and their relation, respectively. The entity is composed of one or more
consecutive words in the sentence.
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Fig. 2. The overall structure of MRWPTS. For a sentence Input, perform a tokeniza-
tion operation on it first and get tokens of the corresponding word. Then, perform a
max pooling operation on the token vectors of the corresponding word through the
pre-trained BERT model to obtain the word vector. Finally, feed the word sequence to
the joint extraction module based on word pairs for word pair tag modeling.

3.2 Tag Strategy and Decoding

For the input sentence W and the pre-defined relation set R, our classifier model
will generate a Q-dimensional tag matrix TMQ×X×X . Each cell of the matrix
TM is assigned a tag with a specific meaning. Each dimension in the matrix
TM corresponds to a relation, and the tag in each cell represents the meaning
of a word pair in the sentence. The rows and columns in the matrix represent
the head entity’s words and the tail entity’s words, respectively. Decoding refers
to extracting triples from the Q-dimensional matrix according to the tags.

We set eight tags according to the length feature of entities and the alignment
of entity pairs: SS, SMH, SMT, MSH, MST, MMH, MMT, and A. In the
tags, S and M indicate that the entity is composed of a single word and multiple
words, respectively.(1)SS. Both positions of this tag are S, meaning that both
the head entity and the tail entity consist of a single word. (2)SMH. The S and
M in the tag indicate that the head entity consists of a single word, and the tail
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entity consists of multiple words. H means that the first word of the head entity
is aligned with the first word of the tail entity. (3)SMT. T means that the first
word of the head entity is aligned with the end word of the tail entity. (4)MSH.
The M and S in the tag indicate that the head entity consists of multiple words,
and the tail entity consists of a single word. H means that the first word of the
head entity is aligned with the first word of the tail entity. (5)MST. T means
that the end word of the head entity is aligned with the first word of the tail
entity. (6)MMH. This tag means that the head entity and the tail entity consist
of multiple words, and the first word of the head entity is aligned with the first
word of the tail entity. (7)MMT. T indicates that the end word of the head
entity or tail entity appears in the current alignment. (8)A. This tag means an
empty alignment.

Using this tag strategy, we can make the most of the structural feature of
the entity itself and facilitate the decoding. We need to find the correct triples
under each relation in the decoding. In other words, we need to find the legal
word pair alignment tags in the Q-dimensional matrix. As shown in Fig. 2, the
two relations correspond to two sub-matrices. In the Capital sub-matrix, we
only pay attention to those tags that are not empty. We first get the SMH
tag, from which we know that the head entity is composed of a single word, the
tail entity is composed of multiple words, and the first word of the head entity
is aligned with the first word of the tail entity at present. Move to the back
of the current line and continue to find the end word of the tail entity. When
the tag SMT appears, we can extract the triple (Shijiazhuang, Capital, Hebei
Province). For the Contains sub-matrix, MSH tag is obtained first, from which
we know that the head entity is composed of multiple words, the tail entity is
composed of a single word, and the first word of the head entity is aligned with
the first word of the tail entity at present. We need to move down along the
current column and find the tag MST to extract the triplet (Hebei Province,
Contains, Shijiazhuang). For the case where the head entity and the tail entity
are composed of multiple words, such as (New York City, City name, New York),
the model will assign the MMH tag to the (New, New) word pair, the MMT
tag to the (New, York) word pair, and the (City, York) word pair. The decoding
process only needs to find specific tags according to the rules.

3.3 Modeling Method

Encoding Layer. Given a sentence W , we use a pre-trained BERT model [3]
to encode the contextualized representation for each token. The output of the
encoder is Wenc = {t1, t2, ..., tn|ti ∈ R

1×d}, where n is the number of the tokens,
and d is the embedding hidden dimension.
Word Embedding Layer. In the process of tokenization, we maintain a matrix
to preserve the token indexes belonging to each word for the subsequent fusion
operation. Now we get the token embedding of the sentence. Next, we need to fuse
the token embedding belonging to each word to get the word embedding as shown
in Fig. 2. We use a max pooling [5] operation to fuse the token embedding. This
max pooling method can enable the word embedding representation to contain
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richer semantic information. The calculation formula of the word embedding is
as follows:

Index = [(1, n1)1, (n1 + 1, n2)2, ..., (ni, n)X ],
Embi = Maxpool(Wenc[nx : ny]),∀(nx, ny)i ∈ Index,

(1)

where Index denotes the index set of tokens corresponding to each word in the
sentence, (nx, ny)i is the start and end position index of tokens corresponding to
the ith word in the sentence. : is a slice operation, Embi is the word embedding
of the ith word.

Joint Extraction Layer. For an input sentence, we get the word embedding
Embi for each word in the sentence. We enumerate all possible word pairs (Embi,
Embj) under all pre-defined relations and design a joint extraction module to
assign them high-confidence tags. Inspired by the dependency parsing and the
knowledge graph representation, we combine the ideas of Biaffine Attention [4]
and HOLE [12] to achieve this goal:

hi = MLPhead(Embi),

tj = MLP tail(Embj),
(2)

where MLPs ∈ R
d×de , de denotes the dimension of entity representations.

Applying two smaller MLPs maps word embeddings to get entity represen-
tations. This approach has two advantages: First, the smaller MLPs can strip
away information of high-dimensional word embedding not relevant to the cur-
rent decision. Second, the low-dimensional entity representations can speed up
the subsequent calculation.

P (hi, rq, tj)
Q
q=1 = Softmax(ReLU(drop(hi + tj))RT ), (3)

where ReLU is the activation function. drop denotes the dropout strategy [15].
R ∈ R

de×8Q is a trainable relation projection matrix, where 8 is the number of
classification tags. We calculate the tag score for the word pair P (hi, rq, tj)

Q
q=1

under all relations at once. Here, the entity pair representations obtained by
the + operation can also avoid the problem that the head entity and tail entity
are not exchangeable under asymmetric relations,i.e., hi + tj �= hj + ti. The
+ operation will not cause the expansion of dimension, which will affect the
calculation speed.

We optimize the objective function during training time as follows:

Lmatrix = − 1
Q × X × X

Q∑

q=1

X∑

i=1

X∑

j=1

y(hi, rq, tj)logP (hi, rq, tj), (4)

where y(hi, rq, tj) is the gold tag.
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4 Experiments

4.1 Experimental Settings

Datasets. We evaluate MRWPTS on two benchmark datasets NYT [14] and
WebNLG [7]. According to the annotation strategy, both of them have two ver-
sions. We use NYT, NYT*, WebNLG, and WebNLG* to distinguish. NYT and
WebNLG annotate the whole entity span. NYT* and WebNLG* annotate the
last word of entities. In addition, we split the test set into different subsets accord-
ing to the overlapping patterns. Detailed statistics of datasets are in Table 1.

Table 1. Statistics of datasets.

Dataset Samples Details of test set
Train Valid Test Normal SEO EPO SOO #Triples #Relations

NYT* 56195 4999 5000 3266 1297 978 45 8110 24
NYT 56196 5000 5000 3071 1273 1168 117 8616 24
WebNLG* 5019 500 703 245 457 26 84 1591 171
WebNLG 5019 500 703 239 448 6 85 1607 216

Evaluation. For a fair comparison, we follow the prior works. We evaluate the
performances with the Precision (Prec.), Recall (Rec.), and F1-score. We use the
strict evaluation criteria to measure the quality of extracted triples. An extracted
triple (h, r, t) is considered to be correct only if the last word of both the head
entity and tail entity (NYT* and WebNLG*) or the whole span of both the head
entity and tail entity (NYT and WebNLG) and the relation exactly match with
ground truth.

Implementation Details. Our model is implemented by PyTorch. The model
training is deployed on a server with a Tesla V100-PCIe GPU of 32G memory.
We use the BERT base cased English model1 as the sentence encoder. We use
Adam [8] as the optimizer with the initial learning rate of 0.00001. Following the
previous work, we limit the max length of sentence tokens to 100. The output
dimension d of BERT is 768. We set the dimension de of MLPs as 50. To avoid
overfitting, the dropout is at a rate of 0.1. We use the batch size of 6/32 for
WebNLG(WebNLG*)/NYT(NYT*), respectively. We select six strong models
as the baselines for this experiment.

4.2 Results and Analysis

We compare MRWPTS with several competing models on two benchmark
datasets and the overall results are shown in Table 2. The - in the table indicates
that the original paper has no experimental results on this dataset.
1 https://huggingface.co/bert-base-cased.

https://huggingface.co/bert-base-cased
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Table 2. Comparison results (%) of our proposed model with other baselines. Note
that the experimental results of all baseline models are derived from the original papers.

Models NYT WebNLG NYT* WebNLG*
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

GraphRel [6] – – – – – – 63.9 60.0 61.9 44.7 41.1 42.9
MHSA [10] – – – – – – 88.1 78.5 83.0 89.5 86.0 87.7
CasRel [18] – – – – – – 89.7 89.5 89.6 93.4 90.1 91.8
TPLinker [17] 91.4 92.6 92.0 88.9 84.5 86.7 91.3 92.5 91.9 91.8 92.0 91.9
CasDE [11] 89.9 91.4 90.6 88.0 88.9 88.4 90.2 90.9 90.5 90.3 91.5 90.9
PRGC [21] 93.5 91.9 92.7 89.9 87.2 88.5 93.3 91.9 92.6 94.0 92.1 93.0
Ours 93.0 92.6 92.8 92.3 89.5 90.9 92.3 93.0 92.7 94.0 94.4 94.2

Experiments show that MRWPTS achieves the great performance of gaining
92.8%, 90.9%, 92.7%, and 94.2% F1 scores on the benchmark datasets. It can
be seen from the table that our model achieves absolute F1 score improvements
of 0.8%, 4.2%, 0.8%, and 2.3% compared with the TPLinker model. It achieves
absolute F1 score improvements of 0.1%, 2.4%, 0.1%, and 1.2% compared with
the PRGC model. In addition, the model significantly gets improvements in
both Prec. and Rec. From the dataset type and absolute F1 score improve-
ments, since NYT(NYT*) has much fewer relations and much larger samples
than WebNLG(WebNLG*), the boosting performance of the model is relatively
small. In other words, the number of samples in the dataset is critical to the
performance of models. The above overall results show that our model has out-
standing performance.

4.3 Detailed Results on Overlapping Triples

To verify the performance of the MRWPTS under different overlapping triple
conditions, we split the test set into different types of subsets for detailed exper-
iments. Detailed results are shown in Table 3. From the experimental results,
it can be seen that MRWPTS improves the performance in almost all types of
overlapping triples. The number of overlapping triples exceeds one-quarter of
the total number of triples in both NYT* and WebNLG*. In the case of such a
large and complex number of overlapping triples, the performance of our model
is outstanding, which is attributed to our modeling method and tag strategy.

First, we employ word pairs to enrich the contextual information of entities,
which is crucial for the correctness of model tagging. We conduct a case study
shown in Fig. 3, the words “Ampara”, “Hospital”, “Sri”, and “Lanka” in sample1
are tokenized to get a token sequence of ’Am’, ’##par’, ’##a’, ’Hospital’, ’Sri’,
and ’Lanka’. Next, the demonstration is based on token granularity. Following
our proposed model, the model tags the token pairs (’Am’, ’Sri’), (’Am’, ’Lanka’),
and (’Hospital’, ’Lanka’) with MMH, MMT, and MMT, respectively. Accord-
ing to our decoding, the (Ampara Hospital, country, Sri Lanka) can be easily
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Table 3. Comparison results (F1 %). We only compare those baselines that set up the
detailed experiments.

Model NYT* WebNLG*
Normal SEO EPO SOO Normal SEO EPO SOO

CasRel 87.3 91.4 92.0 77.0 89.4 92.2 94.7 90.4
TPLinker 90.1 93.4 94.0 90.1 87.9 92.5 95.3 86.0
PRGC 91.0 94.0 94.5 81.8 90.4 93.6 95.9 94.6
Ours 90.7 94.4 94.8 85.1 91.6 94.7 96.0 94.6

Fig. 3. The effect of tokens on the extraction result. The sample is from WebNLG.

extracted. Sample2 is intentionally altered based on sample1. The words “Am”,
Hospital”, “Sri”, and “Lanka” in sample2 are tokenized to get a token sequence of
’Am’, ’Hospital’, ’Sri’, and ’Lanka’. However, the model still tags the token pairs
(’Am’, ’Sri’), (’Am’, ’Lanka’), and (’Hospital’, ’Lanka’) with MMH, MMT,
and MMT, respectively. As a result, the wrong triple is extracted. The reason
is that tokens contain one-sided contextual information, which brings ambiguity.
Our tags incorporate the description of the entity length feature, which will also
benefit the model.

4.4 The Model Efficiency

Table 4 shows the comparison results of MRWPTS with baselines in the training
time and inference time.

It can be seen from the table that the training time of MRWPTS is greatly
shortened on both WebNLG* and NYT*. The inference time is also competitive
with PRGC. This tag strategy containing entity features makes the difference.

As shown in Fig. 4, we extract the complete entities by finding the start word
and the end word of entities in the tag matrix. The prerequisite is to ensure that
each entity contains at least two words if we adopt the tag strategy on the right.
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Table 4. Training Time is the time spent training one epoch. Inference Time is time
spent predicting the triples in one sentence.

Model WebNLG* NYT*
Training Time Inference Time F1 Training Time Inference Time F1

TPLinker 750 s 50 ms 91.9 1685 s 33 ms 91.9
PRGC 218 s 11.6ms 93.0 1081 s 13.5ms 92.6
Ours 103 s 17.8 ms 94.2 576 s 17.1 ms 92.7

Fig. 4. Different tag strategies. The strategy on the left contains entity features, and
the strategy on the right does not contain entity features.

Since a large number of single-word entities exist in the dataset, we need to
pad an extra space after each word in a sentence. The tag strategy on the right
will double the sentence length, which will slow down the training speed and
inference speed. However, our tag strategy on the left can distinguish the entity
length through S and M. We do not need to find the end word of a single-word
entity during decoding.

5 Conclusion

In this paper, we propose a joint entity and relation extraction model based on
multi-relation word pair tag space(MRWPTS). MRWPTS uses a tag strategy
that integrates the length feature of entities. The model labels all word pairs
under different relations at once. We evaluate MRWPTS on two benchmark
datasets. The results show that the proposed model outperforms other bench-
mark models. MRWPTS is competitive in terms of efficiency and has a faster
training speed than the state-of-the-art model.
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Abstract. The application of deep reinforcement learning in multi-
agent systems introduces extra challenges. In a scenario with numerous
agents, one of the most important concerns currently being addressed
is how to develop sufficient collaboration between diverse agents. To
address this problem, we consider the form of agent interaction based on
neighborhood and propose a multi-agent reinforcement learning (MARL)
algorithm based on the actor-critic method, which can adaptively con-
struct the hypergraph structure representing the agent interaction and
further implement effective information extraction and representation
learning through hypergraph convolution networks, leading to effec-
tive cooperation. Based on different hypergraph generation methods,
we present two variants: Actor Hypergraph Convolutional Critic Net-
work (HGAC) and Actor Attention Hypergraph Critic Network (ATT-
HGAC). Experiments with different settings demonstrate the advantages
of our approach over other existing methods.

Keywords: Multi-Agent Reinforcement Learning · Hypergraph Neural
Network · Representation Learning

1 Introduction

Intelligent decision-making problems has attracted a large number of academics
in recent years because of its complexity and extensive application. Deep rein-
forcement learning (DRL), which combines the function approximation capabil-
ities of deep learning with the trial-and-error learning capabilities of reinforce-
ment learning, is closer to real-world biological learning methods, and it has pro-
gressed quickly in many fields, yielding good study outcomes. In the single-agent
scenario, DRL’s performance in Go [16] and Atari 2600 games [13], for example,
has topped that of humans. Simultaneously, academics working on the intelligent
decision-making issues in multi-agent systems have produced some impressive
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Tanveer et al. (Eds.): ICONIP 2022, LNCS 13624, pp. 219–230, 2023.
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outcomes, including intelligent transportation system [14], wireless sensor net-
work management [15], as well as Multiplayer Online Battle Arena (MOBA) and
Real-Time Strategy (RTS) games [19]. However, there are still many obstacles in
the multi-task and multi-agent setting that significantly restrict the algorithm’s
deployment and applicability in the real world. When all agents are treated as
a single entity, the joint action space grows exponentially with the number of
agents [2]. If each agent is individually trained through reinforcement learning,
the Markov property of the environment will be invalid. And because the envi-
ronment is non-stationary, each agent has no way of knowing whether the reward
it receives is the result of its own actions or those of others.

Therefore, finding creative training approaches and effectively extracting the
attributes of agents is vital to lead the mutual cooperation of agents. MADDPG
[11], for example, employs a centralized training with decentralized execution
structure to combine the benefits of the two methods. Since the critic is only
needed during the training phase, it is convenient to use all agents’ input to
develop a centralized critic for each independent actor, with each actor relying
solely on its own local observations during the execution phase. However, sim-
ply concatenate all agents’ features may result in information redundancy. Fea-
ture extraction and representation from high-dimensional and large-scale data
can enhance agents’ understanding of complex environments and improve their
decision-making level, which is also crucial for MARL. MAAC [7] leverages the
attention mechanism [18] to get better results. It allows agents to dynamically
and selectively pay attention to the features of other agents. The attention mech-
anism is also used by ATT-MADDPG [12] to complete the dynamic modeling
of teammates. Furthermore, because agents in the system can naturally form
graph topological structures depending on their locations, there has been a lot
of work combining graph neural network (GNN) [20] with MARL, such as DGN
[8] and MGAN [21]. However, the approaches described above need that each
agent interact with all other agents in the system. In a complex environment,
significant interaction between agents in a neighborhood is usually sufficient,
whereas interaction between agents in different neighborhoods can be lessened.

To this end, we discuss the adaptive generation of neighborhoods in the
multi-agent system and the cooperation of agents within and between neighbor-
hoods. We explore the application of the hypergraph neural network (HGNN) [3]
in multi-agent reinforcement learning and propose Actor Hypergraph Convolu-
tional Critic Network (HGAC) and Actor Hypergraph Attention Critic Network
(ATT-HGAC). To achieve efficient state representation learning, the dynamic
hypergraph is constructed adaptively and the hypergraph convolution is applied.
Despite the complexity of the relationship between agents in the environment,
our method is able to extract effective features from large amounts of infor-
mation to achieve efficient strategy learning. Experiments with different reward
settings and different types of collaboration show that our approach outperforms
other baselines. And the algorithm’s working mechanism is revealed by ablation
testing and visualization studies.



Efficient Policy Generation in Multi-agent Systems 221

2 Preliminaries

2.1 Markov Game

We employ the framework of Markov Games (also known as Stochastic Games,
SG) [10], which is widely used as a standardized game model for sequential
decision-making problems in multi-agent systems and can be seen as a multi-
agent extension of the single-agent Markov Decision Process (MDP). It is rep-
resented by a tuple 〈S,A1, ..,AN , r1, ..., rN ,P, γ〉, where N is the number of
agents and S is the environment state shared by all agents; Ai is the action set
of agent i and the joint action of all agents is described as A = A1 × ... × AN .
If agent i performs action a in state s and then transitions to new state s′,
the environment will reward it with ri : S × Ai × S → R; the new state
s′ is determined by the state transition probability P : S × A × S → [0, 1].
Agent i uses strategy πi : S × Ai → [0, 1] to take corresponding actions
according to its current state, and the joint strategy of all agents is denoted
as π = [π1, ..., πN ]. Following the conventional expression of game theory, we
use (πi, π−i) to distinguish the strategy of agent i from all other agents. γ rep-
resents the discount factor. Under the framework of SG, all agents can move
simultaneously in a multi-agent system. If the initial state is s, the value func-
tion of agent i is expressed as the expectation of discounted return under
the joint strategy π: vπi,π−i

(s) =
∑

t≥0 γt
Eπi,π−i

[rj
t |s0 = s, πi, π−i]. Accord-

ing to the Bellman equation, the action-state value function can be written as:
Qπi,π−i

(s,a) = ri(s,a) + γEs′∼p

[
vπi,π−i

(s′)
]
.

2.2 Hypergraph Learning

A hypergraph [23] can be defined as G = (V, E), where V = {v1, ..., vN} denotes
the set of vertices, E = {ε1, ..., εM} denotes the set of hyperedges, N and M
are the number of vertices and hyperedges, respectively. Unlike the edges in the
graph, the hyperedge can connect any number of vertices in the hypergraph
[23]. Hypergraph can be represented by an incidence matrix H ∈ R

N×M , with
elements specified as:

h (vi, εj) =
{

1, if vi ∈ εj

0, if vi /∈ εj
(1)

where vi ∈ V, εj ∈ E . Each hyperedge is given a weight wε. All of the weights com-
bine to produce a diagonal hyperedge weight matrix W ∈ R

M×M . In addition,
the degrees of hyperedges and vertices are defined as d(ε) =

∑
v∈V h(v, ε) and

d(v) =
∑

ε∈E wεh(v, ε) respectively, which in turn constitute hyperedge diagonal
degree matrix De and vertex diagonal degree matrix Dv respectively.

In a variety of domains, hypergraph learning is commonly employed. It was
first used in semi-supervised learning methods as a propagation process [22]. The
learning of distinct modalities is handled in multi-modal learning by building dif-
ferent subhypergraphs and assigning weights [24]. In deep reinforcement learning,
it is introduced to model the combined structure of multi-dimensional discrete
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Fig. 1. The overall architecture of HGAC/ATT-HGAC.

action space and execute value estimation in a single-agent environment [17]. In
the value function decomposition method of multi-agent reinforcement learning,
the utility function of each agent is fitted to the global action state value func-
tion using a hypergraph neural network [1]. Unfortunately, this method ignores
the interaction between agents.

3 Method

In this section, we introduce in detail our new methods called Actor Hypergraph
Convolutional Critic Network (HGAC) and Actor Hypergraph Attention Critic
Network (ATT-HGAC). We begin by discussing adaptive dynamic hypergraph
generation. Secondly, we look at how hypergraphs are used in centralized critics
to extract and represent information of agents. Finally, we give the overall MARL
algorithm.

3.1 Hypergraph Generation

Hypergraph, unlike the traditional graph structure, unites vertices with same
attributes into a hyperedge. In a multi-agent scenario, if the incidence matrix is
filled with scalar 1, as in other works’ graph neural network settings, each edge
is linked to all agents, then the hypergraph’s capability of gathering information
from diverse neighborhoods will be lost. Meanwhile, since the states of agents in
a multi-agent scenario vary dynamically over time, the incidence matrix should
be dynamically adjusted as well.

For the aforementioned reasons, we investigate employing deep learning to
dynamically construct hypergraphs. And instead of using a 0–1 incidence matrix,
we optimize the elements of the incidence matrix to values in the range of [0, 1],
which describe how strong the membership of the vertices in the hyperedge is.
In HGAC, we encode each agent’s observation and action features and construct
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Fig. 2. The overall architecture of HGAC/ATT-HGAC. Each agent’s feature hi, includ-
ing observation and action, is used to construct a dynamic hypergraph structure, with
each hyperedge ei representing a neighborhood. In the hypergraph convolution process,
the agents in the same neighborhood aggregate information to the hyperedge feature to
realize neighborhood cooperation and interaction. Subsequently, the embedding of each
agent h′

i is aggregated by the hyperedge information to realize cooperative interaction
between different neighbors.

the agent’s membership degree to each hyperedge using a Multilayer Perceptron
(MLP) model:

h(vi, E) = Softmax(MLP (concatenate(oi, ai))). (2)

In addition, rather than utilizing the attention mechanism to aggregate neigh-
bor information in MAAC, we propose using it to construct the hypergraph’s
incidence matrix. However, calculating the attention weight of a hyperedge to a
vertex is unusual since it presupposes that hyperedges are comparable to ver-
tices. To address this issue, we set the number of hyperedges equal to the number
of vertices (agents) and assign each hyperedge to a specific agent. On each hyper-
edge, the membership degree of the specific agent is set to 1. Each hyperedge
denotes a neighborhood of high-order attributes centered on the specific agent.
Using the attention mechanism to assess the similarity of other agents’ attributes
to its own, we can create the hypergraph’s incidence matrix:

h (vj , εi) =

{
1, if i = j

exp(f(xi,xj))∑N
m=1 exp(f(xi,xm))

, if i �= j
(3)

where x represents the feature of vertices, f(xi, xj) is the score function used to
calculate the correlation coefficient between query and key. We define f(xi, xj) =
xT

j WT
k Wqxi, where Wk and Wq are learnable parameters as proposed in [18].

Then we normalize the correlation coefficient by softmax to obtain the attention
coefficient of i to j.
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Based on the current observation and action features of all agents, the hyper-
graph generation network can adaptively generate various hyperedges. Each
hyperedge indicates a neighborhood with same or similar high-order features.
It imply that agents on a hyperedge are in close proximity, or that agents have
the same action intention, and so on.

3.2 Hypergraph Convolution Critics

Following the generation of the hypergraph, hypergraph neural networks can be
used to train the centralized critics to guide the optimization of decentralized
execution strategies, allowing the agents on same hyperedges to achieve strong
coordination and agents on different hyperedges to realize weak coordination. To
train agents’ new feature embedding vectors, we employ a two-layer hypergraph
convolutional network. Referring to the HGNN’s convolution formula [3], the
hypergraph convolution operator is defined as:

x(l+1) = σ(D−1/2
v HWD−1

e H�D−1/2
v x(l)P(l)), (4)

where W and P as learnable parameters represent the hyperedge weight matrix
and the linear mapping of the vertices features, respectively. In a convolution
process, vertices with the same high-order feature attributes combine their infor-
mation into the hyperedges to which they belong to generate hyperedges feature
vectors. After that, each agent’s feature representation will be weighted and
aggregated from the hyperedge’s feature to which it belongs. Furthermore, as
indicated in Fig. 2, we create several hypergraph convolutional neural networks
simultaneously to aid the algorithm in gaining a better understanding of cru-
cial information and increasing its robustness. The new characteristics received
by each vertex after the convolution operation fuse all of the vertices features
required for the agent to collaborate, but naturally, its original attributes are
smoothed out. Inspired by DGN [8], we connect the features of original vertices
and new features generated by each head of hypergraph convolutional networks
and input them into the critic network. The Q-value function of agent i is cal-
culated by:

Qi = ReLU(MLP (concatenate(xi, x
′
i1 , ..., x

′
iK )), (5)

where xi is the initial feature embedding of agent i, and (x′
a1

, ..., x′
aK

) is the
new feature embedding generated by hypergraph convolution of K heads. In
addition, all parameters of feature embedding and critic networks are shared,
considerably reducing training complexity and increasing training efficiency.

3.3 Learning with Hypergraph Convolution Critics

To stimulate agent exploration and prevent converging to non-optimal determin-
istic policies, we advocate employing maximum entropy reinforcement learning
[6] for training. In addition, unlike the settings in MADDPG [11], parameter
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sharing allows us to update all critics together. The loss function of critic net-
works is defined as:

L(θ) =
N∑

i=1

E(o,a,r,o′)∼D

[(
Qθ

i (o, a) − targeti
)2

]
, (6)

(a) Cooperative Treasure
Collection(CTC)

(b) Rover-Tower(RT) (c) Cooperative Naviga-
tion(CN)

Fig. 3. multi-agent particle environments used for our evaluating. In CTC and CN,
dotted lines point to the target to which the agent needs to go. In RT, dotted lines
refers to the rover and target declared by tower, and solid lines indicates the rover’s
target.

where o represents the observation of the agent, D is the reply buffer used
for experience reply, other symbol settings are the same as in Markov Games,
and targeti = ri(o, a)+ γEa′∼πµ̄(o′)

[
Qθ̄

i (o′, a′) − ω log (πμ̄i
(a′

i | o′
i))]. Qθ

i (o, a) is
the Q-value function(parameterized by θ), targeti is the target Q-value function
which is calculated by environmental rewards ri, target critics Qθ̄

i (parameterized
by θ̄) and target policies πμ̄i

(parameterized by μ̄). ω is a temperature coefficient
to balance the maximization of entropy and rewards. In terms of actor networks,
the policy gradient of each agent is expressed as:

∇μi
J (πμ) =Eo∼D,a∼π [∇θi

log (πμi
(ai | oi)) ·

(−ω log (πμi
(ai | oi)) + A (o, a−i))] .

(7)

Inspired by COMA [5], we use the advantage function A(o, a−i) = Qθ
i (o, a) −

Eai∼πi(oi)

[
Qθ

i (o, (ai, a−i))
]
with a counterfactual baseline, which can achieve the

purpose of credit assignment by fixing the actions of other agents and comparing
the value function of a specific action with the expected value function so as to
determine whether the action lead to an increase or decrease in the expected
return.

The whole algorithm adopts the framework of centralized training with
decentralized execution (CTDE) [4] and its structure is shown in Fig. 1. It extract
the features of agents within and between neighborhoods to guide their value
function estimation during training process, so that agents can only follow their
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own observations during the actual execution process and do not require any
other input to complete complex collaboration strategies.

4 Experiments

Multi-agent particle environment (MPE) [11] is one of the most commonly used
tasks to evaluate MARL algorithms. It simplifies environment animation while
still allowing for some basic physical simulation, and it focuses on evaluating
strategy effectiveness. In this section, we evaluate HGAC/ATT-HGAC and other
baselines in scenarios of multi-agent particle environments with different obser-
vation and reward settings, and investigate the algorithm mechanism through
ablation and visualization researches.

4.1 Settings

We consider environments with continuous observation spaces and discrete
action spaces. Specifically, considering different agent types and reward settings,
we use three benchmark test environments, including Cooperative Treasure Col-
lection (CTC) and Rover-Tower (RT) proposed in MAAC, and Cooperative Nav-
igation (CN) introduces in MADDPG. They are shown in Fig. 3.

Cooperative Treasure Collection. 6 hunters are in charge of gathering trea-
sures, while 2 banks are in charge of keeping treasures, with each bank only
storing treasures of a specific hue. Hunters will be rewarded for acquiring trea-
sures on an individual basis. No matter who successfully deposits treasures in
the proper bank, all agents will earn global rewards, and if they collide, they will
be penalised.

Rover-Tower. 4 rovers, 4 towers and 4 landmarks. Rovers and towers are
paired randomly in each episode. The tower sends the location signal of the
landmark to its paired rover, then the rover receives the signal and heads to the
destination. The rewards of each pair are determined by the distance between
the rover and the destination.

Cooperative Navigation. 5 hunters, 5 landmarks. Hunters need to work
together to cover all landmarks and avoid collisions. The environmental rewards
are determined by the distance between hunters and landmarks and whether
there are collisions.

We choose the well-known MARL methods MADDPG and MAAC as well as
completely decentralized independent learning methods DDPG [9] and SAC [6]
as baselines to compare with our proposed HGAC/ATT-HGAC approach. Since
DDPG and MADDPG are algorithms proposed under continuous control sce-
narios, we apply the gumbel-softmax reparameterization trick [11] to deal with
discrete action scenarios. Furthermore, in order to focus on the enhancement
of the experimental effect on the hypergraph convolutional critic network and
reduce the impact of the underlying reinforcement learning method, we imple-
ment an additional SAC algorithm based on the CTDE framework and named it
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MASAC. The hyperparameters common to all algorithms remain the same. We
examine the performance of HGAC in the Cooperative Treasure Collection and
Cooperative Navigation scenarios, as well as the performance of ATT-HGAC in
Rover-Tower, due to characteristics of the experimental environments.

All environments are trained with 60000 episodes, with each episode having
25 time steps and the program having 12 parallel rollouts. During the training
process, we keep track of the average return of each episode.

4.2 Results and Analysis

(a) CTC (b) RT (c) CN

Fig. 4. Performance curves with HGAC/ATT-HGAC, MAAC, MADDPG, MASAC,
DDPG, SAC for 3 multi-agent particle environments. The solid line represents the
median return, and the shadow part denotes the standard deviation.

Figure 4 illustrates the average return of each episode obtained by all algorithms
with five random seeds tests in three environments. The results reveal that our
methods are quite competitive when compared to other algorithms.

Experimental Results. The results show that using SAC as the underlying
algorithm has smaller variance and better performance than DDPG. In the CN
scenario, since the task is relatively simple, all algorithms achieve good results.
But on the whole, MARL methods have better performance than the fully decen-
tralized methods. And it is not hard to see that our HGAC have advantages over
other algorithms.

In the CTC scenario, although different types of agents have different reward
and observation settings, the convergence result of HGAC is surprising. Single-
agent RL algorithms can even yield decent results in this circumstance since all
agents can acquire global state information. In contrast, MADDPG and MASAC,
which merely concatenating all of the agents’ information as the input of the
critic networks, perform badly due to the input of excessively redundant data and
the lack of feature extraction capability. Correspondingly, HGAC can adaptively
split high-order attribute neighborhoods, achieve strong cooperation inside the
neighborhood and weak collaboration between neighborhoods to obtain the best
performance.



228 B. Zhang et al.

Fig. 5. Left :Incidence matrix constructed using prior knowledge. Right :Performance
curve of HGAC and HGAC-CON.

In the RT scenario, ATT-HGAC also performs at an excellent level. Single-
agent reinforcement learning algorithms are completely ineffective since rovers’
local observation is 0 and they can only receive discrete signals of all targets
given by all towers. ATT-HGAC that uses the attention mechanism to create
hypergraph enable rovers to focus on information from their own signal towers
and achieve better outcomes than MADDPG/MASAC.

Ablation Studies. To assess the effectiveness of the hypergraph generating
technique, we performe an ablation experiment. We create a static hypergraph
based on prior knowledge and utilize it to train the critic network. In the CTC
environment, specifically, six hunters are connected using one hyperedge, two
banks are connected using another hyperedge, and all agents are connected
together using a third hyperedge. We keep other settings the same as HGAC
and name it HGAC-CON.

Figure 5 shows the final experimental result. Although HGAC-CON has a
faster convergence rate than HGAC, its ultimate performance is inferior to that
of the HGAC. This is pretty simple to comprehend. The use of prior knowledge
allows the algorithm to skip the stage of hypergraph generation, which speeds up
the effect but restricts the hypergraph’s expressiveness. As a result, self-adaptive
dynamic hypergraph generation has the potential to generate better results.

Fig. 6. Left : Correspondence between towers and rovers. Right : Incidence matrixes
heat map generated by ATT-HGAC.
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Visualization Research. We perform a visualization experiment on the hyper-
graphs generation to investigate the effect of applying the attention mechanism
to generate hypergraphs in ATT-HGAC. As we hope, in the absence of clear
supervision signals, rovers on different hyperedges successfully find signal towers
they need to listen to. As shown in Fig. 6, agents 0–3 indicate rovers and agents
4–7 represent towers. In the Hypergraph 1, all of the towers (edge 4–7) success-
fully notice their rovers (node 0–3). And rovers also successfully notice their
corresponding towers in the remaining three hypergraphs. Four hypergraphs can
learn the same pairings, they proves and complements each other.

5 Conclusion and Future Work

In this paper, we propose HGAC/ATT-HGAC, a novel method for applying
hypergraph convolution to the centralized training with decentralized execution
paradigm. Our key contribution is to model agents adaptively as hypergraph
structures, implement adaptive partition of neighborhoods, as well as efficient
information feature extraction and representation to aid actors in forming more
effective cooperative policies. We evaluate our algorithms’ performance in several
multi-agent test scenarios, including various observation and rewards settings.
The ablation experiment and visualization verify our method’s efficacy and the
importance of each component. Facts have proved that HGAC/ATT-HGAC can
successfully extract high-order neighborhood information to lead agents to attain
efficient collaboration. In the future, we consider making full use of the structural
advantages of hypergraphs to carry out related research in the field of multi-agent
communication, while improving the efficiency of the algorithm, and increasing
its convergence speed and scalability.
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Abstract. Digital inpainting of murals has always been a challenging
problem. The damage forms in real murals are complex, such as cracks,
flaking, and fading. There are many difficulties in applying deep learn-
ing technology to mural inpainting. First, data sets are often difficult
to obtain. Second, the network based on supervised learning is unfit to
be applied to the real multiple mural damages, which makes the net-
work unpromotable. Third, the output of deep neural network is the
combination of the unmasked area in the label image and the corre-
sponding masked area in the generated image, so there is no change in
the unmasked area. Murals often fade or change color after a hundred
years or more, which leads to the lack of aesthetic feeling in the repaired
images. We propose a mural inpainting model based on the translation
method with three domains, including a SVD block and a dense spatial
attention with mask block. Specifically, the model trains two Variational
Auto-Encoders to respectively map the real mural images and the clean
mural images to two deep spaces, the mapping network learns the trans-
formation between the two deep spaces by paired data. This transforma-
tion can well extend to real mural images. Experiments show that the
performance of our model is better than the comparative methods, and
the visual quality is improved.

Keywords: Digital inpainting · Mural inpainting · SVD · Dense
spatial attention

1 Introduction

As an artistic entity, Chinese ancient mural paintings have rich historical and
scientific values. However, due to natural weathering and destruction by human
factors, ancient murals show considerable signs of deterioration. Digital inpaint-
ing of damaged murals can avoid the irreversible defects of manual inpainting
and improve efficiency. Therefore, the digital restoration of ancient murals has
great practical significance for preserving cultural relics.

In digital inpainting solutions for murals, these methods can be divided into
two categories: traditional methods and learnable methods. Traditional meth-
ods are always based on diffusion-based methods [2] or patch-based methods [1].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Traditional methods are prone to matching errors, blurring, and structural disor-
der when applied to murals inpainting. Data-driven deep neural network models
bring more possibilities. Ren et al. [9] proposed using generalized regression
neural networks for the digital inpainting of Dunhuang murals. Cao et al. [3]
proposed an enhanced consistency generative adversarial network, which mainly
solves the inconsistency between global and local repaired images. Meanwhile,
attentional mechanisms are widely used for image inpainting. Yang et al. [10]
proposed dilated multi-scale channel attention to perceive image information
at different scales. He et al. [5] proposed a residual attention fusion block that
enhances the utilization of practical information in the broken image and reduces
the interference of redundant information. The inpainting models based on super-
vised learning only focus on the damaged parts of murals and cannot solve the
global color problem. For this reason, we propose a mural inpainting model
based on the translation method with three domains [7]. In addition, embedding
a SVD block and a dense spatial attention with mask block to the model. The
two branches improve the ability of the model to restore murals. Specifically, the
main contributions of this paper are as follows:

• For the first time, we apply weak supervised learning to the mural inpainting
task, which can restore the missing parts and perfect the overall appearance
of murals.

• We design a dense spatial attention with mask block embedded in the map-
ping net, which further enhances the network’s ability to capture the long-
distance mapping relationship of deep features; The SVD effectively filters the
high-frequency information while retaining most of the structure and detail
information, further expanding the overlap between image features.

• Experiments show that our model not only has an excellent ability to repair
the cracks, spots, and scratches but also improves the visual effect.

2 Proposed Approach

In this section, we first introduce the basic network architecture of the inpaint-
ing network. Then we describe the two effective blocks, i.e., the Singular Value
Decomposition (SVD) and the Dense Spatial Attention with Mask (DSAWM).

2.1 Principle of Inpainting Network

The model formulates mural inpainting as an image transformation process. The
training images consist of three parts: the set of real murals R, the synthetic
set of X where images suffer from artificial degradation, and the corresponding
set of clean murals Y that comprises images without degradation. r ∈ R, x ∈ X
and y ∈ Y represent the image in the three sets. x and y are paired by data
synthesizing, i.e., x is degraded from y. The artificial degradation forms include
holes, blurs, scratches, and low resolution.

First, r ∈ R, x ∈ X and y ∈ Y are mapped respectively to the three deep
spaces by ER : R → ZR, EX : X → ZX and EY : Y → ZY . Since r ∈ R and
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x ∈ X are both corrupted, we align their spatial features into a shared space by
mandatory strategies. As shown in Fig. 1, let the overlap of the two deep spaces
(the part between black dotted lines) as large as possible, so there is ZR ≈ ZX .

Then we learn the transformation from the spatial features of corrupted
murals, ZX , to the spatial features of clean murals, ZY , through the mapping
TZ : ZX → ZY , where ZY can be further reversed to y through generator
GY : ZY → Y. By learning the spatial transformation. real ancient mural r can
be restored by sequentially performing the mappings,

rR→y = ER(r) ◦ TZ ◦ GY (1)

Fig. 1. Illustration of the principle of inpainting network.

We use the network shown in Fig. 2 to implement the inpainting process. The
model is trained in two stages. In the first stage, two VAEs are trained to recover
the input by unsupervised learning, where VAE1 takes r and x as input, VAE2

takes y as input. In the second stage, the mapping network is trained by fixing
the weight of the VAEs trained in the first stage, the training input is x, which
first enters the encoder of the VAE1, then passes through the mapping network,
and finally is decoded by GY of the VAE2. The loss function of VAE1 is defined
as

min
ER,X ,GR,X

max
DR,X

LVAE1(r) + LVAE1(x) + LVAE1,GAN(r, x) (2)

where KL divergence, L1 distance loss and the least-square loss (LSGAN) [6]
are included in LVAE1(r). LVAE1(x) and LVAE1(r) are in the same form and will
not be repeated. LVAE1,GAN(r, x) means training another discriminator DR,X
that differentiates ZR and ZX . The loss function of the mapping network can
be expressed as

LT (x, y) =λ1LT ,L1+LT ,GAN + λ2LFM (3)

where LT ,L1 , LT ,GAN and LFM represent L1 distance loss, the least-square loss
(LSGAN) [6] and feature matching loss, respectively.
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Fig. 2. Architecture of our restoration network

2.2 Singular Value Decomposition (SVD)

Visually, as shown in Fig. 1, the larger the overlap between spatial features ZR
and ZX (the part between black dotted lines), the better. To achieve the goal,
we propose to add the SVD to the encoder of VAE1. SVD is the generalization
of eigenvalue decomposition on any matrix. Let a matrix A ∈ Mm×n with rank
r, then define the SVD of the matrix as

Am×n = Um×mΣm×nV T
n×n = Um×m

(
Dr×r O

O O

)
m×n

V T
n×n (4)

where, Um×m = A × AT, Vn×n = AT × A, Σ is a matrix of m × n, Dr×r =⎛
⎜⎜⎜⎝

√
λ1 √

λ2

. . . √
λr

⎞
⎟⎟⎟⎠

r×r,

λ1 ≥ λ2 ≥ · · · λmin(m,n) = λr > 0 is the non-zero

eigenvalue of AT × A, so the SVD can be written as follows:
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Am×n = Um×mΣV T
n×n = (u1, . . . , um)

⎛
⎜⎝

√
λ1 √

λ2

. . .

⎞
⎟⎠

⎛
⎜⎝

vT
1
...

vT
n

⎞
⎟⎠ =

√
λ1u1···v

T
1 +

√
λ2u2v

T
2 + · · ·

(5)
at this point, each eigenvector vi in V is called the right singular vector of A,
each eigenvector ui in U is called the left singular vector of A. The singular
values are ordered from largest to smallest, so the top N larger singular values
and its corresponding singular vectors can approximate the matrix.

Fig. 3. Effect of SVD: (a) Ground Truth (b) Top 10 singular value composite image,
(c) Top 40 singular value composite image, (d) Top 150 singular value composite image.

Using SVD, the gap between the spatial features at high frequencies reduces
to a certain extent, and the overlap between the two spatial features further
expands. Figure 3 shows the effect of the SVD.

2.3 Dense Spatial Attention with Mask

For the image inpainting task, the ordinary spatial attention mechanism is not
applicable because the information in the masked region propagates from the
adjacent regions, which results in inaccurate attention scores after normalization.
Considering this problem, we propose the Spatial Attention with Mask (SAWM),
as shown in Fig. 4. The difference between SAWM and ordinary spatial attention
is that the mask is added to the feature map before normalization, ensuring that
the damaged areas do not affect the attention score, but the output is missing
information. To this end, we propose to solve the problem by multi-level fusion
of Dense-net. The proposed mechanism is called Dense Spatial Attention with
Mask (DSAWM).

Figure 5 shows the DSAWM. Given the input and its mask, three convolution
kernels of 1×1, 3×3, and 5×5 are used to extract multi-scale features, the input
image and the multi-scale feature maps are densely connected. This process with
x as input can be expressed as
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Fig. 4. Spatial Attention with Mask (SAWM).

y1, y2, y3 = Conv1×1(x), Conv3×3(x), Conv5×5(x) (6)

h1 = SA(x) × fc3[cat(x, y1) × mask] (7)

h2 = SAWM(h1) × fc4[cat(x, y1, y2)] (8)

h3 = SA(h2) × fc5[cat(x, y1, y2, y3)] (9)

y = SA(h3) × (x) (10)

Fig. 5. Dense Spatial Attention with Mask (DSAWM).

where, cat is channel concatenating, fc3, fc4, and fc5 indicate that the number
of channels will be 1

2 , 1
3 and 1

4 of the number of input data channels by the
convolution kernel 1×1 respectively. The mask is added to SAWM for calculating
the attention score; SA calculates the ordinary spatial attention score. The last
ordinary spatial attention score times the input image to get the final output.
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In this way, the information in the unmasked region of the image is used multiple
times, and the advantage of dense connectivity to preserve information is also
incorporated.

3 Experiments

We select 1535 mural images to form Y, which contains 300 modern murals.
R includes 1632 real damaged murals. The image size is adjusted to 256×256
pixels. The learning rate is set to 0.0002, and batchsize is set to 15. We use
the Pytorch framework to train and test the model. The experimental platform
equipment configuration: Intel Core i7-6850K 3.60GHz CPU, NVIDIA GeForce
GTX 1080Ti GPU.

3.1 Artificial Destruction Murals Repair Comparison

Table 1. Comparison of PSNR and SSIM of inpainting results.

Criminisi RN DS-net Our

Image PSNR/dB SSIM PSNR/dB SSIM PSNR/dB SSIM PSNR/dB SSIM

1 36.43 0.9824 33.48 0.9769 38.33 0.9848 37.21 0.9885

2 27.37 0.9367 21.84 0.8941 34.16 0.9157 34.77 0.9683

3 25.48 0.8661 24.72 0.8543 28.68 0.8647 31.46 0.9364

4 26.35 0.9950 37.15 0.9726 34.84 0.9792 36.41 0.9872

5 24.46 0.8476 19.86 0.8375 24.02 0.8676 24.12 0.8699

6 23.17 0.8285 18.39 0.8267 24.51 0.88419 24.78 0.8493

7 22.02 0.8272 19.97 0.8267 23.79 0.8363 24.10 0.8614

8 23.68 0.8332 19.36 0.8394 25.03 0.8418 25.28 0.8558

Eight murals are selected for inpainting experiments with artificially added
masks, random masks are added to the ones numbered 1–4, and the last four
murals are masked with center holes. We compare our model to three state-of-
the-art models in experiments: Criminisi [4], RN [11] and DS-net [8]. RN and
DS-net use the same way of training VAE2 in our model. We used peak signal-
to-noise ratio (PSNR) and structural similarity (SSIM) to evaluate the image
inpainting quality. Table 1 shows the results of the quantitative analysis.

3.2 Experiment in Inpainting Real Damaged Murals

To further verify the effectiveness of our model in restoring the real murals, eight
damaged murals are selected for the inpainting experiments. The experimental
results are shown in Fig. 6.
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Fig. 6. Qualitative comparisons on real damaged murals: (a) Damaged murals, (b)
input, (c) Criminisi, (d) RN, (e) DS-net, (f) Ours.
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The 1st image has long cracks in the background. It can be observed that
the Criminisi algorithm suffers from disruption of the line and fuzzy extension
of texture information. RN repair result has blurry area. DS-net has almost
no repair ability for the masked area. Note that our repair result is better,
which is visually indistinguishable from the inpainting marks. Moreover, the
structural consistency is better than the other 3 comparative algorithms. The
2nd and 3rd mural images have some facial cracks. It can be seen that the 3
comparative algorithms have evident artifacts and texture blur in their repair
results. Our model achieves better coordination in line fitting, and the contrast
of the repaired image is enhanced. For the 4th mural image, some mildew areas
can be observed in the lower part. Both the Criminisi and DS-net have varying
degrees of structural disorder, and the RN has large fuzzy block effect in its
repair result. All these 3 comparative algorithms have obvious repair traces.
By comparison, our method can produce better continuity and more reasonable
restoration for the deteriorated areas. In the 5th and 6th mural images, there
exist lots of scratches. Criminisi, DS-net and our model have visible repair effect,
whereas RN performs poorly. Although the Criminisi and DS-net yield noticeable
restoration for the scratches, they produced some inpainting errors and residual
artifacts. For instance, in the 5th mural image, the restoration result of the
Criminisi has a matching error near the corner of the bodhisattva’s eye. The 7th
mural image has some color falling-off in the hair bun. The Criminisi fails to
repair these color falling-offs in this test. RN and DS-net cannot restore color-
consistent areas with the surrounding region. By comparison, the repaired areas
of our proposed model are visually satisfactory and semantically reasonable. The
8th mural image looks somewhat blurry and has a color inconsistent area in the
bodhisattva’s face. In this test, The Criminisi can restore this color inconsistency,
whereas RN and DS-net cannot produce satisfactory results. Our proposed model
can restore the mural image successfully. Moreover, the overall appearance of our
result is considerably clearer than the other 3 approaches.

3.3 Ablation Study

To verify the utility of the SVD and the DSAWM, the original translation method
with three domains [7] is used as the baseline model, “B” denotes it, “S” denotes
the model after adding the SVD to the baseline model, “D” denotes the model
after adding the DSAWM to the baseline model, “F” denotes our model. Figure 7
shows the variation of the quantitative index with respect to the different number
of singularities in “F”.

In Fig. 7(a) and Fig. 7(c), the optimal values of PSNR and mean square error
(MSE) are received when the number of synthesized singularities is 112; the
suboptimal value of SSIM is obtained at the same number 112 in Fig. 7(b).
Therefore, the selected number of singularities in all experiments is 112.

The purpose of adding the SVD is to expand the overlap of ZR and ZX , so
that the network has better generalization performance. The images of build-
ing murals not included in the training dataset are selected for visual analysis.
Figure 8 and Fig. 9 show qualitative and quantitative evaluation of the ablation
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Fig. 7. (a): PSNR varies with different numbers of singular values. (b): SSIM varies
with different numbers of singular values. (c): MSE varies with different numbers of
singular values.

Fig. 8. Qualitative comparisons of the inpainting networks. (a) Ground Truth. (b)
input. (c) the inpainting results of “B”. (d) the inpainting results of “S”. (e) the
inpainting results of “D”. (f) the inpainting results of “F”.
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Fig. 9. (a): Compare the test PSNR values of the inpainting networks. (b): Compare
the test SSIM values of the inpainting networks. (c): Compare the test MSE values of
the inpainting networks.

experiment results, respectively. The comparison between Fig. 8(c) and Fig. 8(d)
shows that the restoration result is relatively clearer after adding the SVD. From
the comparison between Fig. 8(c) and Fig. 8(e), we can see that the output result
of adding the DSAWM module has a better ability to capture colour information,
structure information and detail information. The output of “F” combines the
above two advantages. From Fig. 9(a) and Fig. 9(c), it can be seen that adding
the SVD and the DSAWM can improve the PSNR value and reduce the MSE
value, which indicates that the above blocks improve the restoration quality at
the pixel level and perception level.

4 Conclusion

This paper proposed a novel DSAWM block and added the SVD to the inpaint-
ing model. The DSAWM enhances the ability of the network to capture the
long-distance mapping relationships of deep spatial features, the SVD makes
the images decomposed and then reorganized, effectively filtering high-frequency
information while retaining most of the structure and detail information, further
expanding the overlap of image features. Experiments show that our model based
on weak supervised learning not only has good restoration ability for cracks,
spots and scratches but also has some improvement in visual effects. However,
there are still problems of blurred restoration in large damaged areas, which will
be studied from the perspectives of obtaining high-quality data sets, reasonable
image enhancement algorithm and optimized network.
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Abstract. With the rapid growth of the number of social media users,
a variety of unverified information inevitably spreads on the social plat-
form, which leads to the diffusion of rumors. Although some methods
are explored on multi-modal data, they seldom take into account the
hidden knowledge behind the text and image, and ignore the widely dis-
persed structure on multi-modal data in the rumor detection field. To
solve the above issues, we propose a novel Multi-Modal Rumor detection
model via Knowledge-aware Heterogeneous Graph Convolutional Net-
works, i.e., M3KHG, which can model a post as a propagation graph,
capture the interactive semantic information of image and text at the
cross-modal level, and highlight suspicious signals according to the corre-
lation between text-image knowledge in a unified framework. Finally, the
“knowledgeable” feature generated by the propagation graph is assigned
to debunk rumors. Experimental results on three popular datasets show
that our model M3KHG is superior to the state-of-the-art baselines.

Keywords: Rumor detection · Text-image knowledge · Heterogeneous
graph

1 Introduction

Social media has bred the growth of various unverified and misleading informa-
tion. For example, there was a message that “the cotton swabs used for Covid-
19 detection were stained with toxic substances”. Such unverified information
poses tremendous risks to social stability and security. Rumor detection on social
media is of great significance to mitigate the adverse effects of rumors and pre-
vent rumor propagation. Early rumor refuting platforms were mainly reported
by users, and invited experts or institutions to confirm. They can achieve the
purpose of rumor detection but poor timeliness. Therefore, how to realize auto-
matic and real-time rumor detection has become a key research direction.

With the thriving and rapid rise of multimedia, Twitter has become the
focus of rumor detection. To minimize manpower, various neural network meth-
ods have come forward. Many earlier studies [2,9,11,18] focused on extracting

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Tanveer et al. (Eds.): ICONIP 2022, LNCS 13624, pp. 243–254, 2023.
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Fig. 1. An example of multi-modal tweets.

features from single modality, i.e., text, according to the temporal structure, and
a few studies on both texts and images [4,15,19]. With the progressive aware-
ness of the propagation structure on the social platform, researchers began to pay
attention to structural information of posts which can construct non-consecutive
information for rumor detection [1,12] but mainly focused on the text modality.

Among them, Bian et al. [1] considered the text modality and utilized critical
features of rumor propagation and dispersion to acquire the global structure of
the rumor tree. Concerning multi-modal modality, Zhang et al. [19] used tex-
tual knowledge as semantic supplementary and treated word embedding, visual
embedding, and knowledge embedding as multiple stacked channels. Sun et al.
[14] focused on source tweets and designed Content-knowledge Inconsistency
Subnetwork which spotted inconsistent information among knowledge and texts.
However, it is difficult for the above ways to consider background knowledge
behind text-image at the same time and introduce the propagation structure on
multi-modal data including source tweets and comments.

Take Fig. 1 as an example, the above methods have the following problems:
1) In fact, tweet d is not much related to the source tweet a, but the tempo-
ral structure forces them to the same semantic space, consequently we need to
introduce the non-consecutive structural information. 2) We know that the high-
dimensional representation learned by images only captured underlying features
of the visual layer (such as “person”), for better understanding of the image in
tweet a&b, we prefer to acquire semantic knowledge of the concept layer (such as
“crowd”) which is correlated to the text entity “Lineup” which implies a group
of people instead of little people.

To solve the above issues, we propose a Multi-Modal Model Rumor Detection
via Knowledge-aware Heterogeneous Graph Convolutional Networks (M3KHG)
to detect rumors, which takes multi-modal data into account in the propagation
structure and makes use of knowledge in a unified model. Firstly, our Construc-
tion of Propagation Graph (CPG) module models a thread as a multi-modal
heterogeneous graph structure. Secondly, for each pair of multi-modal posts, we
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acquire knowledge-level multi-modal representation through Cross-modal Con-
vergence of Knowledge (CCK) module. Then, according to Knowledge-driven
Graph Convolutional Network (KGCN), we obtain the feature “debunker” for
graph, which selectively obtains the information of each node in the propagation
tree. Finally, the “debunker” is assigned to query the event in Knowledgeable
Debunker Classification (KDC), and the results are fed into the classifier. To
sum up, our contributions are as follows:

(1) We introduce a multi-modal heterogeneous graph structure and creatively
evaluate the reliability of each node for the first time.

(2) We exploit both text and image knowledge to supplement semantic infor-
mation and apply Inter-sequence attention to fuse the knowledge features.

2 Related Work

2.1 Rumor Detection on Texts

Various methods using text modality have been proposed in rumor detection.
Among them, two propagation structures are mainly used.

Temporal Structure. Khoo et al. [5] proposed a rumor detection model named
PLAN based on attention, in which all tweets were organized into a sequence
structure according to the time that tweets were published, and user interaction
was achieved by self-attention. Li et al. [7] used user information, attention mech-
anism, and multi-task learning to detect rumors. They added the user credibility
information to the rumor detection layer.

Propagation Graph Structure. Ma et al. [12] proposed two recursive neural
models based on bottom-up and top-down tree structures for rumor representa-
tion learning and classification. EBGCN [16] used graph convolution to acquire
node features by aggregating the neighborhood information on the reconstructed
edge and paid attention to the uncertainty in the propagation structure. Bi-GCN
[1] exploited two GCNs where one GCN used the top-down digraph of rumor
propagation to learn the propagation mode of rumor and another GCN used the
opposite digraph to capture the spreading pattern of rumors.

2.2 Multi-modal Rumor Detection

With the success of deep neural network in multimedia, researchers realized that
visual features play an indispensable role in identifying rumors. However, there
is little research on introducing propagation structure into multi-modal data.

EANN [15] only straightforwardly concatenated the visual features and text
features to obtain multi-modal features. We believe that the concatenation strat-
egy breaks up the connection between textual and visual data. Jin et al. [4] pro-
posed a multi-modal detection model att-RNN and exploited attention mecha-
nism to balance the association between the visual features and the text/social
joint features. Zhang et al. [19] proposed a model MKEMN which explored multi-
modal information and distilled the background knowledge from the knowledge
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Fig. 2. Multi-Modal Rumor detection via Knowledge-aware Heterogeneous Graph Con-
volutional Networks (M3KHG)

map to supplement the semantic representation of text posts. Different from
Zhang et al., Sun et al. [14] took advantage of text knowledge to capture incon-
sistent features by fusing knowledge with content via attention mechanism.

3 Approach

3.1 Overview

Rumor detection task can be defined as a binary classification problem, which
aims to classify a thread on social media as a rumor or non-rumor. We define a
thread, i.e., thread = {(T0, I0), (T1, I1), ..., (Tn, In), G}, where T0 means source
tweet, Ti(i > 0) is the i -th relevant responsive post, Ii is the image attached to
Ti and it may be null which depends on whether the user published the image,
and G refers to the propagation structure. Specifically, G is defined as a graph
<V, E> with T0 being the root node.

Figure 2 shows the framework of Multi-Modal Rumor detection via
Knowledge-aware Heterogeneous Graph Convolutional Networks (M3KHG),
which consists of the following parts: Construction of Propagation Graph (CPG),
Cross-modal Convergence of Knowledge (CCK), Knowledge-driven Graph Con-
volutional Network (KGCN), Knowledgeable Debunker Classification (KDC).

The process is as follows. Given a thread, CPG module firstly constructs a
multi-modal heterogeneous graph. For each pair of heterogeneous nodes, CCK
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module exploits Inter-sequence Attention to fuse textual and visual features with
corresponding knowledge, respectively. Then Adaptive Gate is used to balance
them as final node representation. KGCN module evaluates the reliability of
each node according to entities and knowledge among texts and images, and
uses graph convolution to obtain “knowledgeable” features named debunker. In
KDC module, the debunker is assigned to debunk the event.

3.2 Construction of Propagation Graph(CPG)

For each thread, we build an undirected graph. Specifically, we construct a prop-
agation structure <V, E> for a thread based on the relationship between reply
and retweet, where V contains VT and VI . Given a thread, each text tweet is
regarded as a node nT , which is linked with the image node nI , which constitutes
a pair of multi-modal heterogeneous node pairs. Edge between nT

j and nT
k means

adjacent text nodes have a reply or retweet relationship between Tj and Tk.

3.3 Cross-Modal Convergence of Knowledge (CCK)

Textual Part. Text encoder aims to produce the text representation for a
given text Ti. We feed text into Bert-Base-Uncased [3] to capture the contextual
information, “[CLS ]” is used to represent its features ti ∈ R

768.
Then, for each tweet, we use the entity linking solution TAGME1 to link

the ambiguous entity mentions to the corresponding entities in Wiki. And we
crawl from the Wiki to get the corresponding introduction of the entity as its
knowledge. We concatenate each entity with attached knowledge as a sequence
and feed it into text encoder to get several sequence features.

Visual Part. Our model uses VIT [17] to produce the text representation for
a given image Ii. We firstly resize the image to 224 × 224 pixels, then feed the
image into a vit-base-patch16 model to capture the visual information vi ∈ R

768.
Also, for each image, using image recognition method to identify image

entities is beneficial for model to understand context. The image entities with
brief introduction are extracted as image knowledge through object recognition
method2, where only image entities higher than the recognition threshold (i.e.,
0.6) will be recognized. Like textual part, we concatenate entity with knowledge
to get sequence representation.

Node Representation. For text and image knowledge sequences, we use Inter-
sequence attention to obtain fusion features. Take the textual part as an example,
Mk including {ti, k1...kn} represents tweet content and its knowledge. We need
to initialize a training parameter v ∈ R

768 to obtain the attention score α, the
textual knowledge fusion representation Kt

i ∈ R
768 is computed as follows.

Mk = [ti, k1, ..., kn] (1)
1 https://tagme.d4science.org/tagme/.
2 The image knowledge consists of the entities with brief introduction and is extracted

by an object recognition tool (https://ai.baidu.com/tech/imagerecognition/general).

https://tagme.d4science.org/tagme/
https://ai.baidu.com/tech/imagerecognition/general
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M = tanh(Mk) (2)

α = softmax(vTM) (3)

Kt
i = tanh(Mkα

T ) (4)

Similarly, we obtain the visual knowledge fusion representation Kv
i . To bal-

ance the two vectors, we use the adaptive gate to automatically assign weights
to them. The final representation Ki ∈ R

768 is computed as follows.

e = softmax(We(Kt
i ⊕ Kv

i ) + be) (5)

Ki = (1 − e) � Kt
i + e � Kv

i (6)

where e means weight obtained via training and We, be are trainable parameters.

3.4 Knowledge-Driven Graph Convolutional Network (KGCN)

For each pair of multi-modal heterogeneous nodes, we obtain its final node knowl-
edge representation. In actual conversations on social platforms, some users’
tweets and attached images show little obvious correlation as shown in Fig. 1
tweet d, for such a propagation node, we don’t think it plays an essential role in
identifying the authenticity and should have a small proportion in the conver-
gence process. Thus, we calculate the consistency value between text and image
knowledge representation and use entity similarity between text and image to
revise the value. The consistency value of each node is computed as follows.

sk =
Kt

i � Kv
i

‖Kt
i‖ ‖Kv

i ‖ (7)

ge = mean(
∑

et∈Et

∑

ev∈Ev

tag(et, ev)) (8)

wi = sk ∗ ge (9)

W = softmax(w1, w2, ..., wn) (10)

where tag(∗, ∗) means obtaining the entity similarity between top-2 confident
text entities (Et) and image entities (Ev) and we calculate the mean value
through the method provided by TAGME, n means the count of nodes in prop-
agation tree. Note that for a few posts where the number of entities is less than
2, we make a supplement with pseudo representations with random values.

We introduce feature matrix X associated with consistency value, and adja-
cency matrix A indicating the edge set. Then we defined H(i) as the input feature
matrix of GCN layer (H(0) = X). We perform graph convolution as follows.

X = [K1, ...,Kn] ∗ W (11)

H(i+1) = σ(D− 1
2 (I + A)D− 1

2 H(i)W ) (12)

where σ(·) refers to a sigmoid function, I is the identity matrix, D is diag-
onal matrix and W is the trainable weight matrix, after two layers of GCN,
we choose the root node aggregated features as our final graph representation
named “debunker” d which selectively absorbs the information of each node in
the propagation tree.



Multi-modal Rumor Detection 249

Table 1. Distribution of Datasets

Statistic Twitter15 Twitter16 PHEME

# of tree 1458 818 6425

# of tree-depth 2.8 2.7 3.2

# of rumor 1086 613 2403

# of non-rumor 372 205 4022

# of images 4917 1333 7239

Average length of tweets 15.8 15.9 13.6

Average entities of images 2.01 1.88 1.70

Average entities of tweets 1.82 1.72 1.77

3.5 Knowledgeable Debunker Classification (KDC)

The query vector “debunker” d effectively absorbs the information of the whole
propagation tree, reducing the influence of the untrusted tweet node. Let this
query vector infer the source tweet t0 that we need to judge. The inference
process is as follows.

Ri = Attention(dWQ
i , t0W

K
i , t0W

V
i ) (13)

r = Concat(R1, ...Rh)WO (14)

res = classifier(r) (15)

where h = 8 is the count of head in attention, WO,WQ
i ,WK

i ,WV
i are the train-

able parameters, the classifier is a container including (dropout - dense - tanh -
dropout - dense).

4 Experimentation

4.1 Experimental Settings

In this paper, three public datasets are used to evaluate our model, i.e., PHEME
[6], Twitter15 [8], and Twitter16 [10]. The data distribution is shown in Table 1.
For PHEME, we randomly divided the data and used the same processing
method as Sujana et al. [13], 80% of the data was used as the training set,
10% as the validation set, and the remaining 10% as the test set. For Twitter15
and Twitter16, we adopted a 6:2:2 split. Similar to Ma et al. [10], we calculated
the accuracy, precision, recall, and F1 score to evaluate the performance.

To better fit the actual situation, the tweets in our datasets contain images
randomly, depending on whether the user published the image. For the tweets
without images, we uniformly give them a blank image. For the images contained
in the tweets, we adjust the size to 224 × 224 pixels and normalize them. Adam
optimizer is used to update the parameters, some hyperparameters such as tree-
depth is 2, entity-num is 2 and the learning rate is 10−5.
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Table 2. Results of comparison with different baselines on PHEME

Dataset Method Acc Pre Rec F1

PHEME BiGCN 0.880 0.873 0.878 0.875

EANN 0.824 0.813 0.833 0.818

Sun2021 0.893 0.892 0.881 0.886

Ours 0.910 0.906 0.903 0.904

Table 3. Results of comparison with different baselines on Twitter15 and Twitter16

Dataset Method Acc Pre Rec F1

Twitter15 BiGCN 0.908 0.871 0.909 0.887

EANN 0.866 0.824 0.886 0.843

Sun2021 0.912 0.876 0.912 0.891

Ours 0.931 0.897 0.944 0.916

Twitter16 BiGCN 0.876 0.825 0.832 0.829

EANN 0.839 0.827 0.689 0.722

Sun2021 0.861 0.804 0.823 0.812

Ours 0.883 0.831 0.859 0.844

4.2 Experimental Results

To verify the effectiveness of our proposed M3KHG, the corresponding baselines
are conducted for fair comparison as follows.

BiGCN [1]. A GCN-based model that uses the two key features of rumor
propagation and dispersion to capture the global structure of the rumor tree.
EANN [15]. A multi-modal model which uses an event adversarial neural
network to extract features.
Sun2021 [14]. A multi-modal model which explores inconsistency among
texts and images and spots information between posts and knowledge.

Considering the different partition methods of datasets and the crawled
images may differ, we rerun some experiments according to the source code
provided by the authors. Table 2 and Table 3 show the performance of other
models, it can be seen that the proposed method achieves the best results both
on Acc and F1 and we can draw the following observations:

(1) BiGCN performs well on both datasets, indicating that the propagation
structure captures the long-range semantic relations among tweets.

(2) In multi-modal methods, Sun2021 outperforms EANN. Obviously, the sim-
ple concatenating strategy implicitly forces textual and visual features into
the same dimensional space. Also, external textual knowledge in Sun2021
helps to capture the inconsistent semantics at the cross-modal level.
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Table 4. Results of comparison among different variants on Datasets

Text Image Graph-based CCK KGCN PHEME Twitter15 Twitter16

Acc F1 Acc F1 Acc F1

� 0.866 0.856 0.904 0.884 0.854 0.800

� 0.672 0.564 0.672 0.505 0.664 0.521

� � � 0.824 0.817 0.851 0.757 0.752 0.719

� � � � 0.896 0.891 0.927 0.910 0.876 0.829

� � � � � 0.910 0.904 0.931 0.916 0.883 0.844

(3) Moreover, Sun2021 performs better than BiGCN in PHEME and Twitter15
but worse in Twitter16. It can be attributed to its smaller dataset size seen
in Table 1. It also can be found that the removal of visual information leads
to the model’s declines in PHEME and Twitter15.

(4) Compared with all baselines, our model achieves a promising performance.
We attribute the superiority to two properties: a) We make use of propa-
gation structure which can construct non-consecutive information on multi-
modal data. b) We used text-image knowledge as complementary informa-
tion to strengthen the node representation.

4.3 Ablation

In this section, we compare the variants of M3KHG with the following two
aspects to demonstrate the effectiveness: the usage of multi-modal heterogeneous
graph associated with consistency value and the usage of text-image knowledge.
We conduct ablation experiments as shown in Table 4 and we can conclude that:

(1) The model based on text modality is superior to the model based on image
modality, which is obvious because the textual features contain more abun-
dant semantic information.

(2) The separate graph-network model where each node is represented by con-
catenating text features and image features performs poorly. Although the
propagation structure captures more long-range information among tweets,
we need to have a reasonable representation of node and pay attention to
the social rule that the reliability of tweets on real platforms is inconsistent.

(3) According to the CCK module, we achieve better results because we obtain
the robust representation for each node, and the background knowledge in
the image and text is fully utilized which is considered as complementary
information for authenticity judgment.

(4) Our KGCN module produces the feature named “debunker” which selec-
tively absorbs the useful information and becomes more “knowledgeable”.
This “debunker” is more robust than the convergence feature in which each
node’s reliability is considered the same.
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Fig. 3. Performance of different parameters on Twitter15

Based on the analysis above, the following conclusions can be drawn, i.e., 1) The
multi-modal heterogeneous graph plays an essential role in rumor detection, and
the “debunker” which considers the reliability of retweets is more robust; 2)
Text-Image knowledge is useful for our model to better understand the context.

Moreover, in our experiments, there are two hyperparameters that need to
be manually adjusted. In order to match the “entity-num” and “tree-depth”,
we took Twitter15 as an example and conducted the following experiments, as
shown in the Fig. 3, when we have only a one-layer tree structure, the model
performs poorly, because the shallow trees cannot provide enough information.
When the number of layers exceeds the average depth shown in Table 1, too
many empty nodes also cause interference. Similarly, when we maximize the use
of entities, we can achieve the best results.

4.4 Case Study

To illustrate the significance of our proposed model. We analyze the rumor case
from Fig. 4. In tweet d, the extracted image entity “singer” (perform by singing
songs...) shows not much correlation with text entity “birthday” (the anniversary
of the birth...), if we arrange these tweets in chronological order, it is likely that
irrelevant posts (image and text are not well-matched) will interfere with the
authenticity. In this case, we need to introduce structural information.

The “short lineup” stated by tweet a doesn’t conform to the attached image.
In the image knowledge, from the word “demonstration” (means of modern soci-
ety public opinion), we can more intuitively find that this thread belongs to a
rumor. Moreover, the tweet and image of tweet b like “fan” (sometimes called
supporters...) and “lineup” (a group of people...) in text knowledge can further
prove “short lineup” lacks authenticity.

The case helps to confirm that our model can effectively capture the knowl-
edge information and construct a more practical multi-modal propagation graph.
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Fig. 4. Illustration of case

5 Conclusion

In this paper, we propose Multi-Modal Rumor detection via Knowledge-aware
Heterogeneous Graph Convolutional Networks (M3KHG), which introduces a
multi-modal heterogeneous graph structure and explores the robust feature
“debunker” to query the thread, meanwhile semantic knowledge behind images
and texts is fully utilized. Specifically, our CPG module constructs the more
practical multi-modal propagation graph which is more suitable for social plat-
forms. CCK module offers more intuitive text-image knowledge and utilizes the
adaptive gate to balance them which can generalize well. In future work, we will
continue to study the fusion method and make full use of knowledge.
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Abstract. In the field of intelligent education, knowledge tracing (KT)
has attracted increasing attention, which estimates and traces students’
mastery of knowledge concepts to provide high-quality education. In KT,
there are natural graph structures among questions and knowledge con-
cepts so some studies explored the application of graph neural networks
(GNNs) to improve the performance of the KT models which have not
used graph structure. However, most of them ignored both the ques-
tions’ difficulties and students’ attempts at questions. Actually, ques-
tions with the same knowledge concepts have different difficulties, and
students’ different attempts also represent different knowledge mastery.
In this paper, we propose a difficulty and attempts boosted graph-based
KT (DAGKT) (https://github.com/DMiC-Lab-HFUT/DAGKT), using
rich information from students’ records. Moreover, a novel method is
designed to establish the question similarity relationship inspired by the
F1 score. Extensive experiments on three real-world datasets demon-
strate the effectiveness of the proposed DAGKT.

Keywords: Educational Data Mining · Knowledge Tracing · Graph
Neural Network

1 Introduction

In recent years, with the development of intelligent tutoring systems, more users
choose online education because it is more convenient to provide personalized
and high-quality education than traditional classrooms [2]. Knowledge tracing
(KT), which evaluates students’ knowledge mastery based on their performance
on coursework, has attracted great attention and in-depth research.
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Fig. 1. The limits and contributions. The limit of lack of difficulties and attempts is
addressed shown in Case I and II, and the limit of lack of question similarity relationship
is addressed shown in Case III.

Nowadays, KT models based on graph neural networks (GNNs) present sat-
isfied performance, because there are natural graph structures among knowl-
edge concepts (KCs) and questions in KT [9]. Nakagawa et al. [13] proposed the
graph-based KT (GKT) to learn the graph relations among KCs using the GNN.
Graph-based interaction model for KT (GIKT) [18] focuses on the relationships
between questions and KCs, obtaining higher-order embeddings of questions
and KCs by the graph convolutional network (GCN) [7]. Question embeddings
and answer embeddings in KT task [15] are integral parts of exercise embed-
dings. Among them, question and answer embeddings represent the information
of questions and students’ performance on questions, respectively. These GNN-
based KT models obtain satisfied performance because better exercise embed-
dings are achieved through question embeddings with graph relationships using
GNNs.

Exercise embedding plays an important role in KT task, because cognition
evaluation in KT relies on students’ performance on exercises. There is rich
information involved in exercises such as stem texts [17] and student behaviors
features [12]. There is still room for improvement for both embeddings, analyzed
from the following aspects, as shown in Case I–III of Fig. 1.

First, most existing GNN-based KT models ignore the question difficulties
in question embeddings as well as attempts in answer embeddings. Difficulties
and the number of attempts are critical as question embeddings and answer
embeddings which reasons are as follows. When two questions q1 and q2 examine
the same KC, student s1 may give different answers because q1 and q2 have
different difficulties (shown in Case I of Fig. 1). And if the number of attempts
is not considered, the model will think that student s2 who has tried 10 times
to get it right, and student s3 who got it right after only one attempt have the
same experience (shown in Case II of Fig. 1). So if difficulties and attempts are
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not considered models can’t discriminate between questions with the same KCs,
or between answers with different attempts.

Furthermore, the question embedding is achieved by GNN aggregating the
information of the surrounding nodes in the question-KC graph, so the question-
KC graph is very important. Most existing graph-based KT models perform
convolution on bipartite graphs and there is no question-question relationship
in the graph (shown in III of Fig. 1). Gao et al. [5] hold the view that there
are two kinds of relationships between questions: prerequisite relationships and
similarity relationships. In the field of GNN-based KT, few studies put the rela-
tionships between questions into the convolution process (most of them only use
the question similarities in the prediction process, such as [18]). Tong et al. [16]
designed a method of constructing prior support relationships between questions
from students’ answer results illustrating the effectiveness of constructing rela-
tions from students’ answer results. However, most existing studies construct
the question similarity relationship through question text information or prob-
lem embedding distances, without using the students’ answer results. There is
still a need for a method that can use students’ answer results to build similarity
relationships.

To address these two problems, we propose the DAGKT model. Specifically,
to solve the first problem, we design a fusion module to fuse two types of infor-
mation: difficulty and attempts. We get the difficulties of the questions and the
students’ number of attempts from the datasets and encode them into embed-
dings through the encoder. After that, we put them with question embeddings
and answer embeddings to the fusion module to obtain exercise embeddings
that contain enormous information. Secondly, to address the second question
and obtain a good question embedding, we design a relationship-building mod-
ule that enriches the question-KC graph so that GCN can generate question
embeddings that combine the information of the question relationships. We use
statistical information combined with the calculation method of the F1 score
to calculate similarity relationships between questions. It is assumed that the
two questions may have a close relationship when students always obtain similar
answering results (correct/incorrect) on the two questions. The F1 score is an
indicator used in statistics to measure the accuracy of binary models. Another
way to say, the F1 score infers to the degree of similarity between predicted and
target values [10]. Therefore, the similarity of questions in this study is calculated
according to the F1 score.

Finally, extensive experiments on real world datasets demonstrate the effec-
tiveness of DAGKT and each module. In summary, our main contributions are
as follows:

– To address the problem that most graph-based KT models cannot clearly
discriminate between questions with same KCs, or between answers with
different attempts, DAGKT is proposed with a fusion module. In this module,
the question and answer embeddings are fused with difficulty and attempts.

– Furthermore, the relationship-building module is designed to construct the
similarity relationship between questions, inspired by the F1 score. The con-
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structed relationship enhances the representation of questions and improves
the performance of KT.

– Several experiments are conducted on three public datasets. The results show
that our model outperforms the baseline models and the effectiveness of the
above two contributions is demonstrated.

2 Related Work

First, the KT models are reviewed. Then, the GNN-based KT model, i.e., GIKT,
is introduced.

2.1 Knowledge Tracing

KT is the task of estimating the dynamic changes in students’ knowledge state
based on their exercise records. Existing KT models can be categorized into
two main types: Bayesian-based KT and deep learning KT models [6]. BKT
is based on the hidden Markov model which is the first model proposed to
solve the KT task. Several studies have integrated some other information into
BKT, such as student’s prior knowledge [14], slip and guess probabilities [1],
and student individualization [19]. Due to the powerful ability to achieve non-
linearity and feature extraction making it well suited to modeling the complex
learning process, deep neural networks have been leveraged in many KT models.
DKT [15] uses a recurrent neural network to trace the knowledge state of the
students which is the first deep KT model. DKVMN [20] introduces an external
memory module to store the KCs and accurately points out students’ specific
knowledge state on KCs. Based on these two models, several studies consider
adding more information to the models to improve their performance [8], such
as the forgetting behavior of students [12] and student individualization [11].

With the development of GNN, it has been found that it can work well when
dealing with graph-structured data. Nakagawa et al. [13] presented the GKT,
which uses GNNs to handle the complex graph-related data, such as knowl-
edge concepts. GIKT [18] using GCN [7] to obtain higher-order embeddings of
questions through relations between questions and KCs.

2.2 GIKT

In this subsection, we introduce the student state evolution module and predic-
tion part in GIKT [18]. Our work is inspired by GIKT, an effective graph-based
KT model, and we refer readers to the reference [18] for more details about
GIKT.

Student State Evolution Module: For each time step t, GIKT concatenates
the question and answer embeddings and transforms them into the representa-
tion of exercises through nonlinear layers:

et = ReLU (W1 ([q̃t,at]) + b1) , (1)
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where [, ] denotes embedding concatenation. GIKT models the whole exercise
process to capture the students’ state changes and to learn the potential rela-
tionships between exercises. To model behaviors of students doing exercises,
GIKT uses LSTM which can capture coarse-grained dependency like potential
relationships between KCs to learn students’ states from input exercise embed-
dings. And GIKT learns the hidden state as the current student state, which
contains the coarse-grained mastery state of KCs.

Prediction: To improve the performance of model, GIKT designed a history
recap module that can select relevant history exercises (question-answer pair) to
better represent a student’s ability on a specific question. GIKT chooses history
questions sharing the same skills with the new question for prediction. After
that, GIKT uses the interaction of cognitive state and questions, the interaction
of cognitive states with related skills and interaction of the cognitive state at the
time step of the relevant history exercise with the new question and its skills to
predict, GIKT calculates the attention weights of all relevant interaction terms
and computes the weighted sum as the prediction.

3 The Proposed Model DAGKT

In this section, our model is introduced in detail. We use the GIKT model as our
base model because it is one of the state-of-the-art models in the graph-based
KT field and can make good use of exercise embeddings to predict.

3.1 Framework

The framework of DAGKT is shown in Fig. 2. First, we establish the similar-
ity relationships between questions from the records to enrich the question-
KC graph and generate the embeddings of questions through GCNs. Then, we
extract the number of attempts students made on each question and the diffi-
culty of each question from the records and encoder them into embeddings. After
that, we put the question embedding, difficulty embedding, answer embedding
and attempts embedding into the fusion module to obtain exercise embedding
which denotes information about this exercise. Finally we put exercise embed-
dings into LSTM to obtain the knowledge mastery of students at each time step.
And we make predictions through the prediction module.

3.2 Embedding Module

In this subsection, we will introduce how the model produces three impor-
tant parts of the four components of the exercise: question embedding, diffi-
culty embedding and attempts embedding. The relationship-building module is
used to generate similarity relationships between questions, and then the ques-
tion embedding propagation is used to generate question embedding. Finally,
attempts embeddings and difficulty embeddings are generated through the dif-
ficulty and attempts encoder module.
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Fig. 2. The framework of DAGKT, including four modules: embedding module
(detailed in Sect. 3.2), fusion module (detailed in Sect. 3.3), knowledge evolution mod-
ule (detailed in Sect. 3.4) and prediction module (detailed in Sect. 3.4).

Relationship-Building Module: In this module, we introduce how to estab-
lish similarity relationships between questions. The same person’s answers will
be similar when the questions have similarity relationships. And the F1 score is
a good indicator used in statistics to measure the performance of binary models
which is used to measure how well the predicted results match the real results.
Because the F1 score is a good indicator to measure the similarity of two sets
of binary data, we use the true response result of the previous question as the
prediction of the response result of the latter question, and calculate the F1 score
between them as the similarity between them:

Sim (q1, q2) =
(F1 (q1, q2) + F1 (q2, q1))

2
, (2)

where F1 (q1, q2) denotes when q1 is answered before q2, the similarity of the two
answers. And F1 (q1, q2) is calculated by:

F1 (q1, q2) = 2 · P (q1, q2) · R (q1, q2)
P (q1, q2) + R (q1, q2)

, (3)

where P (q1, q2) and R (q1, q2) are the parts used to calculate F1 (q1, q2). P (q1, q2)
and R (q1, q2) are calculated by Eqs. (4) and (5).

P (q1, q2) =
Count ((q1, q2) = (1, 1)) + λ

∑

a1=0,1 Count ((q1, q2) = (a1, 1)) + λ
, (4)

R (q1, q2) =
Count ((q1, q2) = (1, 1)) + λ

∑

a2=0,1 Count ((q1, q2) = (1, a2)) + λ
, (5)
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where Count ((qi, qj) = (ai, aj)) denotes the number of question sequences that
reply qi with answer ai before ej with an answer aj . Besides, to prevent the
denominator from becoming too small, we introduced the laplacian smoothing
parameter λ = 0.01 in Eqs. (4) and (5). After generating similarity between the
two questions, we add the edges between the questions q1, q2 to the question-
knowledge concept graph when Sim (q1, q2) is larger than hyperparameter ω. So
far, we have completed the construction of the question-KC graph.

Question Embedding Propagation: We put the initialized question embed-
dings and question-KC graph into GCNs to obtain better question embeddings
that have higher-order information between questions and KCs.

Difficulty and Attempts Encoder Module: Since the difficulty and attempts
play an important role in KT. In this module, we incorporate difficulties and
attempts into exercise embeddings. Firstly, we obtain the number of attempts
from the real dataset M = {m1,1,m1,2, . . . ,mi,j} where i denotes student ID
and j denotes question ID. Then we count the accuracy of all students on each
question and calculate the questions’ difficulties as

di = function(
n(correct(qi))

n(correct(qi)) + n(false(qi))
), (6)

where n(·) denotes the number of [·]. After obtaining the attempts and difficul-
ties, we use encoders such as three nonlinear fully connected layers to encode
them into 100-dimensional embeddings m and d:

mi,j = σ(σ(tanh(mi,j))),di = σ(σ(tanh(di)))). (7)

And three more nonlinear layers are used to transform the 100-dimensional
embeddings into numerical values:

m̃i,j = σ(σ(tanh(mi,j))), d̃i = σ(σ(tanh(di))). (8)

As the optimizer optimizing parameters, we obtain embeddings of attempts mi,j

and difficulties di when the m̃i,j and d̃i come in close to the original inputs mi,j

and di.

3.3 Fusion Module

After embedding module, we can obtain question embedding q, difficulty embed-
ding d, attempts embedding m and answer embedding a. In this module, we
fuse the four embeddings. First, we fuse the difficulties and questions through
difficulty fusion module to obtain the aggregated embeddings of question and
difficulty. Then we fuse the attempts and answers through attempts fusion mod-
ule to obtain the aggregated embeddings of answers and attempts. Finally, the
two aggregated embeddings are passed through one more layer of the nonlinear
neural network to obtain the final exercise embeddings we need. The formula for
the whole process can be expressed as follows:

xt = Relu(W3([W1([qt,dt]) + b1,W2([at,mi,j ]) + b2]) + b3), (9)

where W1,W2,W3 and b1,b2,b3 are trainable matrices and parameters.
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3.4 Knowledge Evolution Module and Prediction Module

In this subsection, we describe how the model utilizes exercise embeddings to
generate the cognitive state of students, how to use the cognitive state to generate
predictions, and how to optimize the model.

Knowledge Evolution Module: From the previous step, exercise embeddings
absorb the relationships between questions and the relationships between ques-
tions and KCs, representing the behavior of students doing exercises. In each
history step, to model the sequential behavior of students doing exercises, we
put exercise embeddings into LSTM to learn the knowledge mastery changes of
students where the hidden state denotes the current student state.

Prediction Module: When students do exercises, it is easy for them to asso-
ciate the experience of doing similar questions to help them to solve the current
questions. Like GIKT [18], we select questions with similar KCs from histori-
cal questions to help the model make predictions. And we use the interaction
of cognitive state and question, the interaction of cognitive state and related
skills, and the interaction of the cognitive state at the time step of the relevant
historical question with the current question to make predictions.

Optimization: To optimize our model, we choose the method of Adam opti-
mization, the parameters in the model can be updated by minimizing the loss
function which contains three parts: (1) cross-entropy between the probabilities
that the students will answer the question correctly pt and the true labels of the
students’ answer at, (2) mean square error between difficulties before encoder
di and difficulties after decoder d̃i and (3) mean square error between attempts
before encoder mi,j and attempts after decoder m̃i,j :

L = −
∑

t

(at log pt + (1 − at) log (1 − pt))

+
∑

n

∑

t

((mi,j − m̃i,j)2) +
∑

t

((di − d̃i)2).
(10)

4 Experiments

In this section, we conduct several experiments to investigate the performance
of our model. We evaluate the prediction by comparing our model with other
baselines on three public datasets. Then we make ablation studies show our
modules’ effectiveness in Sect. 4.3.

4.1 Setup

Datasets, baselines and implementation details are introduced in this subsection.

Datasets: To evaluate our model DAGKT, We have conducted extensive exper-
iments on three public available datasets, i.e., ASSIST091, JUNYI [3]2 and
1 https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/

skill-builder-data-2009-2010.
2 https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1198.

https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/skill-builder-data-2009-2010
https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/skill-builder-data-2009-2010
https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1198
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Table 1. Dataset statistics

Numbers→ Students Questions Skills Logs Questions/skills Skills/questions

ASSIST09 3,852 17,737 167 282,619 173 1.12

JUNYI 4,872 835 41 569,111 1 20.36

CSEDM 343 50 18 32,082 14.5 5.22

CSEDM3. In the ASSIST09 dataset, we remove the duplicated records and scaf-
folding problems. We randomly select 5000 students in JUNYI dataset as the
whole dataset is too big [18]. Table 1 illustrates the statistics of the datasets. We
conduct a comprehensive examination of the models’ performance in different
fields and under different questions on these three datasets: ASSIST09, which
is a record of mathematical questions with both single and multiple knowledge
concepts; JUNYI, which is a collection of mathematical questions with a single
KC, and CSEDM, which is a collection of programming questions with multiple
KCs. For each dataset, we take at least sequences with lengths greater than 3,
as it is meaningless to be too short.

Baselines: We select the following models as the baselines: DKT [15]4, DKVMN
[20]5, GKT [13]6 and GIKT [18]7 (detailed in Sect. 2.1).

Implementation Details: We initialize the 100-dimensional embeddings of
KCs, questions. In the LSTM part, we use an LSTM with two hidden layers
where the sizes of the memory cells are set to 200 and 100. For GCNs, we set the
maximal aggregate layer number L = 3. To avoid overfitting, we use a dropout
with a keep probability of 0.8 for GCNs. We use the Adam optimizer to optimize
the parameters of the model with the learning rate at 0.001 and the batch size
of 32. We use Bayesian optimization to choose appropriate values for the other
hyperparameters including the number of related exercises to the new question,
skills related to the new question, skill neighbors in GCNs and question neighbors
in GCNs.

Five-fold cross-validation is used to obtain a stable experimental results,
setting 80% of the sequences as the training set and 20% as the test set. We take
the average of the best results for each fold as the final result. The comparison
models use their own parameters, and each model is trained for 50 epochs. To
evaluate the performance of each model on each dataset, we use the AUC as the
evaluation metric, and the larger AUC the better performance of model.

4.2 Overall Performance

Table 2 shows the AUC results of all the compared methods. Figure 3(a–c) shows
the boxplots on three datasets. From these results, it is found that our DAGKT
3 https://pslcdatashop.web.cmu.edu/Files?datasetId=3458.
4 https://github.com/chrispiech/DeepKnowledgeTracing.
5 https://github.com/lucky7-code/DKVMN.
6 https://github.com/jhljx/GKT.
7 https://github.com/ApexEDM/GIKT.

https://pslcdatashop.web.cmu.edu/Files?datasetId=3458
https://github.com/chrispiech/DeepKnowledgeTracing
https://github.com/lucky7-code/DKVMN
https://github.com/jhljx/GKT
https://github.com/ApexEDM/GIKT
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Table 2. Performance comparison on the datasets.

Model→ DKT [15] DKVMN [20] GKT [13] GIKT [18] DAGKT

ASSIST09 0.6838 0.7253 0.7214 0.7641 0.7759

JUNYI 0.8142 0.8398 0.8663 0.9066 0.9168

CSEDM 0.7321 0.7138 0.7328 0.7378 0.7719
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Fig. 3. The boxplots and Nemenyi tests on three datasets. Our model performs best
and the distribution is more concentrated.

model performs best on three datasets, which proves the effectiveness of our
model. To be specific: (1) GKT, GIKT and DAGKT achieve better results than
DKT and DKVMN, which shows the effectiveness of GNN in handling the graph
structure between question and KC. (2) The results of GIKT and DAGKT are
better than those of GKT, which indicates that relationships of questions and
KCs should be considered when constructing graph neural networks, and it is
better to use relevant historical questions’ information when predicting new ques-
tions. (3) DAGKT performs better than GIKT, which demonstrates the effec-
tiveness of considering questions’ difficulties, attempts and establishing similar-
ity relationships between question. Moreover, the performance of our model is
relatively concentrated, indicating that our model can obtain more stable results.

To better illustrate the superiority of our model, we performed Nemenyi test
[4] on three datasets, results as Fig. 3(d–f), the smaller the value, the better the
performance of the model.

4.3 Ablation Studies

To demonstrate the effectiveness of the modules in DAGKT, we design the fol-
lowing models:

– DAGKT-R removes relationship-building module and not fuse difficulties and
attempts into exercise embeddings.

– DAGKT-D only adds difficulty information to help the model predict.
– DAGKT-A only adds attempts information to help the model predict.
– DAGKT-DA adds information on both difficulty and number of attempts to

help model predict.
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Table 3. Ablation studies of DAGKT. The relationship-building module, difficulty and
attempts fusion module all improve model performance.

Model→ DAGKT-R DAGKT-D DAGKT-A DAGKT-DA DAGKT-G DAGKT

ASSIST09 0.76414 0.7690 0.77146 0.7729 0.7647 0.7759

JUNYI 0.9066 0.9099 0.9079 0.9135 0.9106 0.9168

CSEDM 0.7378 0.7570 0.7560 0.7688 0.7577 0.7719

– DAGKT-G uses the relationship-building module to construct similarity rela-
tionships between questions so that it can produce better exercise embeddings
to help model predict.

Table 3 shows that DAGKT achieve best performance considering similarity
relationships between questions, difficulty of the question and the number of
attempts. The results of DAGKT-D and DAGKT-A are better than DAGKT-R,
which shows the effectiveness of fusing difficulties and attempts. The results of
DAGKT-D and DAGKT-A are better than DAGKT-R, which shows that the
attempts and difficulty have different improvement effects and the improvement
of the effects are more stable when used at the same time. The results of DAGKT-
G are better than DAGKT-R, which shows the effectiveness of relationship-
building module which constructs similarity relationships between questions.

5 Conclusion

In this paper, to solve the problem that most existing graph-based KT models do
not consider difficulty and attempts and do not establish similarity relationships
between questions, we propose the DAGKT model which digs into questions’ dif-
ficulties and number of attempts. Moreover, we design the relationship-building
module to calculate the similarity between questions through the F1 score cal-
culation method to establish similarity relationships between questions. Several
experiments on three datasets demonstrate the effectiveness of the proposed
model and the modules in the model.
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Abstract. Ancient minority language character recognition could be
challenging due to limited documentation, but it is always critical to
better understand history and conduct social science researches. As
an important minority language, Manchu language is confronted with
the similar challenges due to the lack of systematic document studies.
Recently, more researches focus on solving this problem through different
approaches, such as document digitalization or character image segmen-
tation. However, there are still some limitations. On one hand, exist-
ing digitalized Manchu documents are carried out based upon machine-
printed style, which is not common in real historical documents and
can cause severe recognition bias. On the other hand, most of Manchu
identification methods are based on coarse image segmentation and may
result in recognition error since it is difficult to consistently cut the words
accurately. To tackle these two challenges, we propose a segmentation-
free method for Manchu recognition with a medium scale dataset of
Woodblock-printed Manchu Words (WMW). We first develop WMW
based-upon woodblock-printed Manchu words, which are more common
in ancient documents. With the developed dataset, we conduct docu-
ment mining and carry out a framework, namely AMRE, with Attention-
based Convolutional Recurrent Neural Network. AMRE leverages atten-
tion mechanism by weighted aggregation of the convolution results from
differently sized kernels and more effectively mine the valid informa-
tion of morphed words in recognition process. By implementing our pro-
posed AMRE, the digitalized characters can be more accurately recog-
nized. The experiment results show that the word recognition accuracy
of AMRE exceeds the baseline by more than 5%.

Keywords: Manchu word recognition · Woodblock-printed dataset ·
Optical character recognition · Deep learning

1 Introduction

Manchu language is the lingua of Manchu people and belongs to the Manchu-
Tungus language branch. During the Qing Dynasty of China, the Manchu lan-
guage is leveraged as one of the official languages. However, Manchu becomes a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Tanveer et al. (Eds.): ICONIP 2022, LNCS 13624, pp. 267–278, 2023.
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rarely used language cased by the culture assimilation, thus few people can rec-
ognize Manchu words in China now. Generally, Manchu is a phonetic language
consisting of multiple letters. Moreover, according to different positions, Manchu
letters can be divided into four forms: beginning, middle, end and alone, as illus-
trated in Fig. 1. In China, a part of ancient Manchu documents is preserved in
historical archives and cultural institutions. These documents contain substan-
tial values from both historical and cultural aspects, and are of great importance
to Manchu studies. However, during the long storage time, these materials have
undergone serious degradation, such as surface damages, ink bleedings, ink fad-
ings, and paper stains. In order to preserve the contents of these deteriorated
documents, digitizations are made to transform them into image format. Figure 1
shows a fragment scanned image of ancient Manchu documents. To effectively
recognize woodblock-printed Manchu words in these digitized images still face
three main obstacles: (1) Woodblock-printed Manchu words have special mor-
phological variations because of various woodcut techniques and complex ink-
ing relationships. Therefore, the same letter in different positions have different
shapes. At the same time, there are differences in the shape of the same word.
As shown in Fig. 1 and Fig. 2. (2) Due to the long storage time, the ancient
documents in Manchu have problems such as paper deformation and blurred
fonts. (3) There are additional intervening characters in the ancient documents
because of the manual woodcut technique.

Letter o in the beginning

Letter o in the middle

Letter o at the end

Fig. 1. Illustration of a Manchu document and primary characteristics of a Manchu
word.

In this paper, we introduce a new dataset of woodblock-printed Manchu
words. The new dataset consists of 21,245 woodblock-printed Manchu words
exacted from a set of books called the Imperially-Published Revised and
Enlarged mirror of Qing (han i araha nonggime toktobuha manju gisun buleku
bithe). Moreover, to address the above challenges, we propose AMRE, a
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Fig. 2. An example of different glyphs of the same Manchu word “sembi”.

segmentation-free method based on attention mechanism, combining Convolu-
tional Neural Networks (CNN), Bi-directional Long short-term memory (Bi-
LSTM), and Connectionist Temporal Classification (CTC) to achieve high-
precision recognition of woodblock-printed Manchu words. Firstly, we leverage an
Attention-based CNN for feature extraction on Manchu images. The Attention-
based CNN could calculate the weights between different convolutional layers
efficiently and focus more on the valid feature information in the images. Next,
a Bi-LSTM is used to make the features extracted from CNN focus on the con-
textual semantic relationships. Finally, CTC is used to decode the feature vectors
and output each recognized Manchu word. We validate our proposed framework
on the new dataset, and the experimental results show the effectiveness of our
method in Manchu word recognition.

Our work has the following two contributions:

– A new woodblock-printed Manchu words dataset called WMW (Woodblock-
printed Manchu Words) is introduced, which provides a criteria for compar-
ing different woodblock-printing Manchu recognition algorithms.

– A novel method, namely AMRE (Attention-based CRNN for Manchu Word
REcognition), is proposed to tackle Manchu word recognition task. What’s
more, AMRE achieves significant performances on WMW dataset, where
word recognition accuracy exceeds the baseline CRNN by more than 5%.

2 Related Work

In this section, traditional text recognition approaches, deep learning-based
approaches and Manchu recognition approaches are introduced respectively.

Traditional Text Recognition Approaches. In the traditional works of
ancient document recognition, features in the images are extracted manually.
Gradient analysis [1], stroke analysis [2], and connected component analysis [3]
are the commonly used approaches for extracting features. Next, the extracted
features are fed into the classifier to output the results. Previous classifiers includ-
ing Support Vector Machine (SVM) [4] and Hidden Markov Model (HMM) [5]
obtain better performance in small sample dateset, but have difficulty identifying
multiple classes of similar features.
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Deep Learning-Based Approaches. Recently, thanks to the success of deep
neural networks (DNNs) in many application fields [6–14], several approaches
integrated with DNNs are proposed to improve text recognition performance
and achieve significant performance gain. Before being fed into the network, the
distorted text is preprocessed by TPS approach [15]. The recognition of text in
images is divided into Segmentation-based schemes [16] and Non-segmentation-
based schemes [17]. In Segmentation-based schemes, the accuracy of text recog-
nition depends heavily on the effectiveness of the specific segmentation. Due
to the problem of data imbalance, Wei et al. [18] expanded the dataset with
SMOTE method. Kass et al. [19] introduce the concept of Transfer Learning,
which uses optimized pre-trained models for feature migration.

Among the frameworks for deep learning, Recurrent Neural Network (RNN)
is a generally adopted network structure that is good at handling temporal
correlation tasks. Kang et al. [17] leverage LSTM to recognize text in ancient
documents. Mei et al. [20] improve this approach by jointly training CNN and
RNN, and analyzing the effect of different networks on text recognition. Later,
Shi et al. [21] incorporate CTC [22] into this model. It outputs predictions by
efficiently counting the highest conditional probabilities of input sequences. Liao
et al. [23,24] use a deep neural network to localize text in images before recog-
nition.

In recent years, attention mechanism becomes a current research hotspot.
It ignores unimportant information and highlights some distinct features in the
data. Inspired by this, Bahdanau et al. [25] first apply attention to text recog-
nition. Soon after, Vaswani et al. [26] introduce a new attention concept. It
discards the previous ways of using CNN or RNN to obtain character location
information, making the model better able to capture feature information in the
context. In addition, Jiang et al. [27] fuse attention with CTC to recognize the
input sequence with joint decoding. Cui et al. [28] propose a triple attention
network for Mongolian recognition.

Manchu Recognition Approaches. In the previous studies of Manchu recog-
nition, Zhang et al. [29] locate the baseline in Manchu words and use a wavelet
neural network to recognize Manchu characters on both sides of the baseline.
Depending on the baseline selected, this way will result in different recognition
results. Subsequently, Xu et al. [30] adapt the method by splitting the Manchu
words into separate components. Each separate component is represented by a
letter, and SVM is used for identification. This approach is limited in the number
of components and does not classify them well. To overcome these problems, Li
et al. [31] use a Segmentation-free scheme. Manchu words are overall recognized
by CNN and it has 666 classes in total. This approach avoids the problem of
inaccurate component segmentation but does not prevail in parameter tuning.

3 WMW Dataset Construction

In this section, a novel dataset called WMW is proposed. WMW contains a total
of 21,245 images of woodblock-printed Manchu words, taking 4,506 vocabularies
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into consideration. The construction of WMW dataset is comprised of three
parts: Manchu word separation, Manchu word annotation, and dataset statistic
analysis.

3.1 Manchu Word Separation

Manchu letters can form various kinds of Manchu words. However, collecting
all Manchu words from existing ancient Manchu materials is a challenging task.
Therefore, we choose a set of books which named Imperially-Published Revised
and Enlarged mirror of Qing as word vocabulary. This set of books compose a
Manchu-Manchu dictionary with great value in Manchu studies.

To establish the dataset, firstly, we implement a splitting algorithm to seg-
ment single Manchu words from each page of the books. The word locating
process is shown in Fig. 3. Each Manchu word is marked with red boxes. The
words which have additional parts need to be cut again. In this way, a total of
21,245 images of woodblock-printed Manchu words are obtained.

Imperially-Published Revised 

and Enlarged mirror of Qing

Word-level segmentation

The WMW database

Word level Annotation using  

Mullendorff transcription

Complete ?

Yes

No

Fig. 3. The overview of dataset preparation pipeline. (Color figure online)

3.2 Manchu Word Annotation

In the next step, each woodblock-printed Manchu word is annotated. In the
existing Manchu datasets, the entire word is usually annotated with a unique
identifier. It causes not only the problem of over-classification of the model, but
also the loss of the ability of generalization. Therefore, we annotate each letter in
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the word. The Möllendorff transliteration scheme proposed by German linguist
Paul Georg von Möllendorff is leveraged to annotate each different character.
The scheme is a widely adopted international transliteration scheme for Manchu
words. It contains 36 different glyph codes (a, e, i, o, u, ū, n, ng, k, g, h, b, p,
s, š, t, d, l, m, c, j, y, r, f, w, k’, g’, h’, ts’, ts, dz, dzi, ž, sy, c’y, jy). The overall
creation process is given in Fig. 3.

3.3 Dataset Statistic Analysis

Finally, we analyze some features of WMW dataset. Figure 4 shows the distri-
bution of dataset. The top 20 words are shown in Fig. 4a. Specifically, in our
dataset, the word “sembi” has the highest count of 1,262. Figure 4b shows the
distribution of the word frequency, where the number of words with 1 occurrence
is 2503. As the frequency of occurrence increases, the number of words decreases
sharply. Figure 4c shows the distribution of word lengths. The largest number
of words with length 5 is 5713. The number of letters in the longest word is 15,
and 6 words stands in that length.
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Fig. 4. Word distribution and frequency of dataset. (a) Top 20 words in the dataset.
(b) Number of words with different frequency of occurrence. (c) Number of words of
different lengths.

4 AMRE

In this section, our proposed AMRE is described in detail. The overall process
of the model is shown in Fig. 5. The architecture of the model consists of three
stages: feature extraction, sequence modeling, and prediction.

4.1 Feature Extraction Stage

Before being input into the network, all the images should be preprocessed. Each
image is normalized to 60 × 120 while maintaining the aspect ratio. Since the
Manchu is written from top to bottom, all the images need to be rotated 270◦

clockwise.
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Fig. 5. The network architecture of our AMRE model.

In the feature extraction stage, the input images are encoded into two-
dimensional feature vectors by using CNN. The convolution layer mainly con-
tains four independent convolution operations. The sizes of the convolutional
kernels are 8, 6, 4, and 2, respectively. To increase the computational nonlinear-
ity in the convolution process, we set up three convolution layers.

In order to accurately extract features through convolution operation, we
propose an attention model on CNN, named CNN-layer Attention. It focuses
on the relationship among the outputs of each convolutional layer. Suppose the
output of CNN is D, and it is divided into n independent vectors. These vectors
are denoted by d1, d2 . . . dn, where di represents the ith row of D. For each
different layer of convolution outputs, the relationship between the input vector
di and the output vector ci can be expressed as follows:

ci = λidi (1)

where λi is the coefficient of CNN-layer Attention. It is calculated as follows:

ei = ξT conv (Wdi + b) (2)

λi =
exp (ei)∑n
j=1exp (ej)

(3)

where ξT , W and b are trainable parameters. conv is the convolution function.
ei is the intermediate value.

4.2 Sequence Modeling Stage

In the sequence modeling stage, Bi-LSTM is used to capture contextual infor-
mation in the feature vector. Recognizing letters in word is more stable and
accurate than recognizing each letter individually. Bi-LSTM is good at handling
time-sensitive problems. It contains a special gating unit structure to select effec-
tive memory information and utilize it. Compared to a single LSTM, Bi-LSTM
can obtain information containing both directions. At the same time, the deep
network structure allows for a higher level of abstraction.
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4.3 Prediction Stage

In the prediction stage, the character sequences of the images are predicted by
CTC. It compares the conditional probabilities between different sequences and
outputs sequences with the highest probability as the predicted result. CTC has
significant transcriptional performance and adds blank tags to the existing tags,
ignoring the absolute position of each character.

5 Experiments

This section describes the evaluation protocols, implementation details and the
experimental results.

5.1 Evaluation Protocols

Character recognition accuracy (CRA) and word recognition accuracy (WRA)
are used as the evaluation protocols for recognizing Manchu words. CRA is
defined by:

CRA =
∑M

z=1 {xz = x̂z}
M

(4)

where M is the total number of recognized characters. xZ represents the ground
truth characters and x̂Z denotes the predicted characters. WRA is given as:

WRA =
∑N

z=1 Dis (yz, ŷz)
N

(5)

where N is the total number of words. yz represents the ground truth labels
and ŷz represents the predicted words. Dis(·) is the identification function and
returns a value in {0, 1}. 1 is returned only when yz has the same value as ŷz.

5.2 Results

We conduct experiments on our proposed WMW dataset. The training data
includes a total of 11,252 words, and a total of 9,993 words are selected as
test data. The edit distance is adopted in the model to determine whether the
predicted words and ground truth words are identical or not. The edit distance
refers to the number of different letters between two Manchu words. Table 1
shows the proportion of correctly recognized words at different edit distances. If
the edit distance is 0, the predicted word and ground truth word is the same.
A smaller edit distance means that the predicted word is more similar to the
ground truth word.

Figure 6 shows the experiment results. Our proposed AMRE model reaches
97.44% and the baseline method reaches 95.74% in CRA. In Fig. 6b, AMRE
reaches 90.92% and the baseline method reaches 85.52% in WRA. Compared
with the baseline method, AMRE is 1.70% higher in CRA and 5.40% higher in
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Table 1. The comparison of proportion of correctly identified words at different edit
distances.

Edit Distance 0 ≤ 1 ≤ 2 ≤ 3

Proportion 90.92% 97.53% 99.22% 99.58%

WRA. The accuracy of both methods stabilized after 60 rounds. The baseline
way reached the convergence condition at 60 rounds, and the accuracy fluctu-
ated more during the convergence process. Our proposed AMRE reaches the
convergence condition at 30 rounds, and the convergence process is more stable.
It shows that AMRE is better than the baseline method in terms of performance
and stability. In Fig. 6c, the loss value of AMRE is always lower than that of
the baseline method. As the training epochs increase, the loss values of the two
methods converge to the same. It indicates that our proposed AMRE has better
robustness.

Fig. 6. The comparison results between AMRE and baseline method. (a) CRA per-
formance comparison of AMRE and baseline. (b) WRA performance comparison of
AMRE and baseline. (c) Loss performance comparison of AMRE and baseline.

5.3 Discussion

To further explain the possible causes of the model’s errors, 100 Manchu words
are further analyzed. Figure 7 illustrates the recognition results of a part of
Manchu words. The left part of the figure shows some examples of the correctly
recognized words. The model can recognize complex words such as ‘becunure’
because our proposed framework could focus on the valid information in words
to perform word identification. The right part of the figure shows examples of
the incorrectly recognized words. For example, ‘ne’ is recognized as ‘na’ since
the distorted letter ‘e’ is visually similar to letter ‘a’.

Table 2 lists the misidentification causes and positions of these 100 Manchu
words. The main causes are incomplete letters, distorted letters, additional part,
semantic collocation, etc. The specific analysis of the word misidentification is
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Fig. 7. The recognition results of some woodblock-printed Manchu words.

discussed as follows. Firstly, some letters are incomplete as a result of degra-
dation, stains, and artificial factors in the documents. At the same time, the
process of recognition is affected by additional part. Secondly, due to the fact
that woodcutting techniques have different types, the same letters can have dif-
ferent forms. Some of the letters have a morphological distortion. Thirdly, a part
of the glyph codes in the transliteration scheme cannot be connected together in
semantics aspect. Though the same glyph may be encoded in different ways in
terms of shape, each glyph is given a unique glyph code that corresponds to the
semantics. Finally, a minority of the letter features differed significantly in size
and number from other letters. The model does not recognize such letters well.

Table 2. Statistics on the position and causes of words misidentification

Beginning Middle End Alone Total

Incomplete 5 10 1 0 16

Distorted 9 29 9 0 47

Additional 2 4 0 0 6

Semantic 3 4 3 0 10

Other 5 10 6 0 21

Total 24 57 19 0 100

6 Conclusion

In this paper, an Attention-based CRNN for Manchu Word Recognition method,
namely AMRE, is proposed for woodblock-printed Manchu words. At the same
time, an innovative dataset is introduced and named as WMW. It contains a
total of 21,245 images of woodblock-printed Manchu words. The Manchu words
are annotated by using the widely adopted Möllendorff transliteration scheme.
The proposed method is validated on WMW dataset with character recognition
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accuracy and word recognition accuracy, reaching 97.44% and 90.92% respec-
tively. The experimental results show that our proposed AMRE is superior to
the baseline method.
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References

1. Shivakumara, P., Phan, T.Q., Tan, C.L.: A gradient difference based technique for
video text detection. In: 2009 10th International Conference on Document Analysis
and Recognition, pp. 156–160. IEEE (2009)

2. Mosleh, A., Bouguila, N., Hamza, A.B.: Image text detection using a bandlet-based
edge detector and stroke width transform. In: BMVC, pp. 1–12 (2012)

3. Pan, Y.F., Hou, X., Liu, C.L.: A hybrid approach to detect and localize texts in
natural scene images. IEEE Trans. Image Process. 20(3), 800–813 (2010)

4. Ye, Q., Huang, Q., Gao, W., et al.: Fast and robust text detection in images and
video frames. Image Vis. Comput. 23(6), 565–576 (2005)
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Abstract. In recent years, spiking neural networks (SNNs) received sig-
nificant attention as the third generation of networks and have success-
fully been employed in energy-efficient image classification tasks. How-
ever, typical SNN construction methods still suffer from problems such as
high inference latency or incompatibility with complicated models. Thus,
applications of SNNs are limited to relatively simple tasks. In this paper,
we establish an SNN-based action recognition model which aims at a
more challenging video classification task. Specifically, the action recog-
nition SNN model with a deep two-stream architecture is constructed
with a hybrid conversion method combining channel-wise normaliza-
tion and tandem learning. A skipping-step rate decoder is applied to
decrease the conversion errors and improve the transmission accuracy. A
new conversion and inference method for recurrent spiking neural net-
work (RSNN) is introduced into the framework. The tandem learning
method with bounded ReLU (bReLU) function is employed to fine-tune
the normalized SNN parameters, decreasing the inference latency while
still preserving high accuracy. Experiments on UCF-101 show that our
proposed model obtains an accuracy of 88.46% with only 200 time steps,
which achieves a high-accuracy and energy-efficient performance in SNN.

Keywords: spiking neural network · action recognition · ANN-to-SNN
conversion · tandem learning

1 Introduction

In recent years, many researchers focus attention on spiking neural networks
(SNNs) which are considered as the third-generation of networks with biological
plausibility [1]. With supports of neuromorphic platforms and dynamic vision
sensors, SNNs are allowed to work in asynchronous mode with lower power and
computational consumption, while still providing acceptable accuracy [2,3].
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Despite the promising potential, it remains a challenge to bridge the gap
between the continuous-valued ANNs and event-based SNNs. Training meth-
ods with supervised or unsupervised paradigms are effective approaches to yield
SNNs. Despite the comparable accuracy and inference latency, training methods
suffer from unconvergence or constraints of specific architectures [7,8,12]. ANN-
to-SNN conversion is a more straightforward approach that maps pre-trained
ANNs into equivalent SNNs [4–6]. Layer-wise and Channel-wise normalization
are typical data-based conversion methods. While implementations of normal-
ization processes are compatible with complicated deep architectures [6], these
methods suffer from approximation or quantization errors and high inference
latency [10]. To minimize the conversion errors, tandem learning as a specific
conversion framework composed of an SNN and a coupled ANN is proposed
[9,10]. The coupled ANN shares parameters with the SNN and replaces the out-
put activations of each layer with the corresponding spike counts of the SNN.
The tandem learning achieves better performance in inference latency compared
with the normalization methods. However, the tandem learning method has
lower compatibility with deep architectures [10], which limits the application.

The network architectures are also important research issues for SNN con-
structions. Multi-layer feedforward SNNs are mostly applied to existing conver-
sion and training processes [13]. In order to leverage the temporal characteristics
of SNNs further, many researchers focus on reservoir networks constructed by
STDP methods [7]. However, the constraint of architecture is still an obstacle to
their applications. Hybrid feedforward/recurrent SNNs have also shown promis-
ing performances in temporal signal processing tasks such as speech recognition
[13]. However, the training process relies on specific spike-train-level learning
techniques and suffers from gradient explosion or vanishment.

Because of the problems mentioned above, SNNs are still limited to rela-
tively simple models or tasks. In this paper, we establish an SNN-based action
recognition model which aims at a more challenging video classification task.
The total framework consists of a deep two-stream SNN and a recurrent spiking
neural network (RSNN) fusion module. In order to achieve a high-accuracy and
low-latency performance for the relatively complicated architecture, a hybrid
conversion method combining channel-wise normalization and tandem learning
is applied to the model. To decrease the conversion errors and improve the trans-
mission efficiency in the deep architecture, we introduce a new kind of skipping-
step rate decoder and its corresponding clipped proportional gradient into the
framework. Because the RSNN module after conversion preserves independent
recurrence and time step loops, the inference process is different from previous
RSNNs and remains a problem. We propose an RSNN inference process with
the skipping-step rate decoder and optimize the required memory of hidden and
potential states. Despite the acceptable accuracy after channel-wise normaliza-
tion, there is still scope for the inference latency to improve further. Thus the
SNN model is also fine-tuned by the tandem learning method. The tandem learn-
ing method utilizes SNN firing rates as the hidden-layer outputs of the coupled
ANN model, and the normalized model can be directly loaded as a pre-trained
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model. Bounded ReLU functions are introduced in the coupled ANN model as
activations. The gradient modification for saturated neurons helps improve the
performance of tandem training. Our proposed model is evaluated on the popu-
lar action recognition dataset UCF-101, and obtains an accuracy of 88.46% with
only 200 time steps. High-accuracy and energy-efficient performance in video
action recognition has been achieved.

Our main contributions can be summarized as follows: 1) An SNN-based
action recognition model is constructed with a hybrid conversion method com-
bining channel-wise normalization and tandem learning. A new type of skipping-
step rate decoder is applied to decrease the conversion error. And a state-of-the-
art performance in SNN is achieved on the UCF-101 dataset. 2) A new con-
version and inference method for RSNN is introduced into the framework. And
the required memory during the inference process is analyzed and optimized. 3)
Tandem learning with a bounded ReLU module is employed to fine-tune the nor-
malized deep SNN model. The inference latency is reduced by 75% after tandem
learning.

2 Related Work

2.1 ANN-to-SNN Conversion

ANN-to-SNN conversion is a straightforward method to construct SNNs with
pre-trained ANN parameters. To enable fast and efficient information transmis-
sion in deep SNNs, channel-wise normalization (channel-norm) is applied and
converges several times faster than the layer-norm method [5]. Parameters are
normalized corresponding to the maximum activations of each channel. Layer-
norm and channel-norm can both be applied to deep network architectures.
However, these conversion processes still suffer from quantization or approxi-
mation errors that lead to high inference latency. To minimize the conversion
errors, Wu et al. proposed a tandem learning framework which is comprised
of an SNN coupled layerwise with an ANN through shared weights [9]. Dur-
ing the forward pass, the output activations of the ANN are replaced with the
spike counts of the SNN. During the backward pass, the gradients in SNN are
back-propagated through the coupled ANN and the shared weights are updated.
Competitive performances on a number of frame- and event-based benchmarks
have been demonstrated. However, the direct applicability of tandem learning to
deep SNNs is limited because of the difference of characteristics between spiking
neurons and analog activation functions. While an adaptive training scheduler
was proposed to overcome this obstacle [10], the layer-wise fine-tuning process
complicates the learning process and increases the computational resource.

In this study, our hybrid conversion method combines the advantage of
channel-wise normalization in deep architectures and that of tandem learning
in fine-tuning together. A bounded ReLU (bReLU) module is introduced into
the tandem learning framework to correct the back-propagated gradients of over-
activated neurons [11], which improves the learning performance.
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2.2 Recurrent Spiking Neural Network

Most existing conversion and training methods are aimed at constructions of
feedforward SNNs. Different from feedforward SNNs, recurrent spiking neural
networks with additional recurrent connections are more capable of extract-
ing temporal features of time series data such as video or speech signals [13].
Reservoir networks with input and readout layers are special implementations of
RSNNs, which can be trained by unsupervised STDP methods [7,8]. However,
the constraint of the specific network architecture and training process limits
the performance of reservoir networks. There are also deep RSNNs such as the
hybrid feedforward/recurrent networks. Training processes of these RSNNs are
challenged by the problems of back-propagation through recurrent connections
and vanishing/exploding gradients. These RSNNs can be trained by the spike-
train level back-propagation, which relies on specific aggregated effects calcula-
tion techniques for recurrent neurons [13].

Different from previous RSNNs, our proposed RSNN in this study is con-
verted from an pretrained RNN and includes an independent recurrence loop.
The tandem learning method can be applied to fine-tune the parameters, and
the learning techniques for traditional RNNs can be easily leveraged.

2.3 Action Recognition

Action recognition tasks aim to recognize human actions in videos. In recent
studies, deep learning methods have achieved great success and outperformed
traditional methods. Existing deep learning methods mainly include 3D CNNs
and two-stream networks [15,16]. 3D CNN-based methods extract spatial and
temporal features simultaneously with the extended temporal dimension in con-
volutions. However, the high training complexity requires massive data sets or 3D
convolution kernel factorization [15]. Two-stream networks exploit spatiotempo-
ral information with RGB and stacked optical flow images as inputs. They are
able to achieve competitive performance in spite of limited training data [14].

There are also researches of SNN-based video action recognition models con-
structed with unsupervised or supervised learning methods. Constrained by the
network architecture and learning performance, the gap of accuracies between
these methods and ANN-based methods still remains [17,18].

In this study, we focus on the SNN-based video action recognition task. A
deep two-stream architecture constructed with the hybrid conversion method is
applied to the framework, which achieves comparable performance to the original
ANN model.

3 Methods

3.1 SNN Framework

Our SNN framework mainly includes two-stream SNNs with ResNet50 architec-
ture and an RSNN fusion module. The total SNN framework is shown in Fig. 1.
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ResNet backbones and an ordinary RNN in a pretrained ANN are both con-
verted with the channel-wise normalization method. Then, the tandem learning
method fine-tunes the parameters, which only requires few learning epoches.
The total framework combines the compatibility with deep architectures in the
normalization process and the advantage of fine-tuning in tandem learning. A
new type skipping-step decoder is introduced to decrease the inference latency.

Fig. 1. The total SNN framework for action recognition.

SNN Structure. In our SNN framework, the inputs consist of sampled RGB
and stacked optical flow images. We sample 12 frames evenly for each video
regardless of its length. The frames are then converted into spike signals by
a rate-based encoder. Spatial and temporal features are extracted by the two-
stream ResNet50 SNN. These features in frame sequence are divided into Ns

temporal segments to learn their distinct feature representations [14]. Each tem-
poral segment contains features corresponding to 12/Ns input frames, and the
segment number Ns is set to 3 in this study. The features in each temporal seg-
ment are then down-sampled via temporal max-pooling operation. The outputs
of Ns temporal segments are fed into the RSNN sequentially. Finally, the out-
puts of the two-layer RSNN fusion module are decoded into analog types and
utilized for prediction.

Different from previous SNNs, ResNet50 SNN in our model includes no batch
normalization (BN) or batch normalization through time (BNTT) module dur-
ing the following SNN conversion process [6], which simplifies the construction.
The spiking neurons are chosen as integrate-and-fire (IF) neurons reset by sub-
straction [4,5]. Except the modules mentioned above, the entire architecture and
total layer number are the same as ResNet50 ANN.

Different from previous RSNNs constructed by training methods, the pro-
posed RSNN in this study is converted from an ordinary RNN which recurrence
loop is preserved independently after the normalization process. So the RSNN
consists of the independent recurrence and SNN time step loop during inference.

Skipping-Step Decoder. To increase the accuracy of information transferred
in the deep architecture, a new kind of skipping-step decoder is proposed and
applied to the decoding operations in the total framework. The input spike train
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of the skipping-step decoder is divided into the former and latter part along the
temporal axis. And the firing rate of the spike train is evaluated according to
the latter part of time steps. A certain number of time steps are skipped and
the output of the decoder is described as:

ro =
Tsmax∑

t=Tsk

o(t) (1)

where Tsk is the number of skipped time steps, and Tsmax is the maximum time
step. Feature information in deep architectures requires considerable time steps
to transfer accurately. And the spiking neurons tend to be insufficiently activated
at the former part of time steps. Thus skipping the former part of time steps
leads to higher accuracy of feature information transmission.

3.2 RSNN Inference

RSNN with Independent Recurrence Loops. Different from previous
RSNNs, the RSNN in our model includes the independent recurrence loop and
time step loop. The inference process remains a problem. In this part, we pro-
pose two different inference settings and discuss the transfer modes of hidden
states.

Fig. 2. RSNN inference process with the recurrence loop as inner loop

Fig. 3. RSNN inference process with the recurrence loop as outer loop

During RSNN inference, input spikes of a spiking neuron are generated from
the preceding layer, while the hidden state spikes are generated from the previous
recurrence step. According to the transmission modes of hidden state spikes, two
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different RSNN inference settings can be built up. When we choose the time step
loop as the outer loop, the recurrence loop is set as the inner loop (shown in
Fig. 2). In the t-th time step, the RSNN can be expanded along the recurrence
loop and the hidden state spike oτ (t) is fed into the spiking neuron at the (τ +
1)-th recurrence step. For the inference alone the time step loop, the membrane
states at different recurrence steps should be stored independently. Thus the
memory of the membrane potential and hidden states (for one neuron) during
inference can be evaluated as:

M1 = Trmf + mi (2)

where Tr is the total step number in a recurrence loop, mf is the memory of an
analog value for the membrane potential, and mi is the memory of a spike signal
for the hidden state.

We can also choose the time step loop as the inner loop, and the recurrence
loop as the outer loop (shown in Fig. 3). In the τ -th recurrence step, the inference
of the spiking neuron lasts for Ts time steps. And the hidden state oτ (.) should
be restored at the (τ + 1)-th recurrence step. When the whole spike train is
stored in each recurrence step, the memory of the potential and hidden states
during inference can be evaluated as:

M2 = Tsmi + mf (3)

where Ts is the total step number in a time step loop.

Improvement of RSNN Inference. It can be seen that when the total step
number Ts and Tr are high, both of the inference settings require large memory.
To overcome this problem, we optimize the restoration of hidden states based on
the second inference setting (shown in Fig. 3). In each recurrence step, the spike
train of the hidden state is decoded according to the firing rate. The decoding
output is received by an encoder at the next RNN recurrence step, and then the
spike train of the hidden state is restored via rate-based encoding. To improve the
restoration accuracy, the skipping-step decoder is also applied to the decoding
operation. The memory of the potential and hidden states can be written to:

M ′
2 = mi + 2mf (4)

Compared with Eq. 5 and 6, the required memory turns into a fixed value that
reduces the risk of insufficient memory during inference.

3.3 Tandem Learning

After channel-wise normalization, the normalized SNN model is fine-tuned with
tandem learning, which is shown in Fig. 4. Different from previous tandem learn-
ing frameworks [9], the outputs of the coupled ANN layers are replaced with the
firing rates of corresponding SNN layers. And the normalized SNN model is
directly employed as the pre-trained model in tandem learning.
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Fig. 4. Tandem learning framework with bReLU in coupled ANN

Tandem Learning for RSNN. In this study, the tandem learning method is
not only applied to the feedforward SNN backbone but also to the RSNN fusion
module. The RSNN is coupled with an ordinary RNN with shared parameters.
Because of the specific inference process of RSNN with the independent recur-
rence loop, the firing rates of each layer in the RSNN are allowed to replace the
corresponding outputs of RNN at each recurrence step. Then the problem of
RSNN learning can be transformed into the training of RNN. The BPTT tech-
nique for traditional RNN can be leveraged by expanding alone the recurrence
loop instead of the time step loop. In this study, the total number of recurrence
steps is far lower than that of time steps, and the problem of gradient explosion
during RSNN training can be avoided. On the other hand, different modifications
to RNN architectures can also be introduced.

Bounded ReLU in Tandem Learning. Previous tandem learning methods
employ ordinary ReLU functions in the coupled ANN. However, the difference of
upper bound between the ReLU function and IF neuron degrades the accuracy
of back-propagated gradients that may lead to failure of training.

Considering the difference between the spiking neuron and the coupled acti-
vation function, we introduce a bounded ReLU function (bReLU) in the coupled
ANN [11]. The bReLU keeps the maximum output consistent with the maximum
firing rates of the IF neuron. Because the maximum firing rate is always 1, the
bReLU function is described as:

fsat(x) =

⎧
⎨

⎩

0, x < 0
x, 0 ≤ x < 1
1, x ≥ 1

(5)

When the firing rate of the IF neuron is saturated, the gradient of corresponding
bReLU becomes zero. Then the updates of synaptic weights and input spike
rates corresponding to the saturated neuron can be inhibited, which is especially
essential for RSNN training. When an IF neuron appears saturated in RSNN, the
other neurons are affected through connections of hidden-hidden weights during
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training. The zero gradient of bReLU clears up the gradient for other neurons
that back-propagated from the saturated one. This improves the accuracy of
back-propagated gradients and prevents failure of training caused by increasing
occurrence of saturated IF neurons.

Proposed Gradient of the Skipping-Step Decoder. On the other hand, the
skipping-step decoder for hidden states in RSNN is also an obstacle for training.
The gradient of the corresponding module in the coupled ANN is related to
the input and output firing rate. We can simply define the gradient as 1, which
means that the output of the decoder varies synchronously with the input. The
gradient with this incremental mode can be described as:

∂rpost

∂rpre
≈ 1 (6)

where rpost are the firing rate of the latter part of the spike train, rpre is the firing
rate of the whole spike train. However, the incremental gradient can’t reflect the
difference between input and output firing rate caused by skipping steps.

Thus, we proposed a clipped proportional gradient for the skipping-step
decoder, which is described as:

∂rpost

∂rpre
≈ clip

(
rpost

rpre
, 1 − ε, 1 + ε

)
(7)

where ε is a hyper-parameter, which is chosen as 0.5. If the former part of
the spike train achieves the same firing rate as the latter part, the proportional
gradient equals to 1. If the IF neuron is insufficiently activated during the former
part of time steps, the proportional gradient is more than 1. The proportional
gradient reflects the transmission efficiency of SNN.

4 Experiments

4.1 Experimental Setup

Action recognition aims to detect human actions in videos. In experiments, we
report the Top-1 accuracy for each video to evaluate the performance of our
method. The experiments are based on PyTorch and conducted on NVIDIA
Tesla-P40 GPUs. Our action recognition SNN model is evaluated on the popular
benchmark dataset UCF-101, which consists of 13,320 videos with 101 action
classes.

4.2 Implementation Details

Firstly, the pretrained ANN model is converted to the SNN model with the
channel- norm method. The SNN time step is set as 800 and the recurrence step
is 3. Then, the normalized SNN model is fine-tuned with the tandem learning
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method. The SNN time step is fixed as 200. During tandem learning, the learning
rates of the spatial stream, temporal stream and RNN module are all set to
1e−5, and divided by 10 when the accuracies are saturated. The total number
of learning epoch for the coupled ANN is set to 15.

4.3 Ablation Studies

We first present ablation studies to explore the effectiveness of our proposed
methods. Through rigorous experiments, we conclude that: (i) SNN with the
skipping-step decoder performs better than that with the ordinary rate-based
decoder in accuracy. (ii) bReLU helps improve the performance of tandem learn-
ing for both feedforward and recurrent SNN compared with the ordinary ReLU
module. (iii) The gradient of the skipping-step decoder in clipped proportional
mode outperforms that in incremental mode.

Table 1. Conversion performance with skipping-step rate decoders

Model Fusion Skipping step Total step Accuracy

ANN RNN – – 88.42%

SNN (channel norm) RSNN 0 800 84.05%

400 800 87.90%

SNN (channel norm +
tandem learning)

RSNN 0 200 86.35%

100 200 88.46%

Table 2. Training performance of bReLU for feedforward SNN

Model Fusion Activation Total step Accuracy

SNN (channel norm +
tandem learning)

Avg. ReLU 200 87.32%

bReLU 200 87.63%

ReLU 50 81.61%

bReLU 50 83.67%

Table 3. Training performance of bReLU and the proportional gradient for RSNN
(with 200 time steps in total and 100 skipping steps)

Mmodel Fusion Activation Skipping-step decoder Accuracy

SNN (channel norm +
tandem learning)

RSNN ReLU Incremental gradient 79.30%

bReLU Incremental gradient 88.14%

bReLU Proportional gradient 88.46%
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Impact of the Hybrid Conversion Method. In Table 1, our original ANN
model achieves an accuracy of 88.42%. The converted SNN with channel-wise
normalization achieves 4.37% accuracy loss at 800 time steps with an ordinary
rate decoder (0 skipping step). And the SNN model with channel-wise normaliza-
tion and tandem learning achieves 2.07% accuracy loss with only 200 time steps.
Thus our hybrid conversion method improves both the accuracy and inference
latency compared with the normalization method.

Impact of Skipping-Steps Rate Decoder. The skipping-step decoder is
employed at the output layers of the SNN backbones and RSNN. We simply set
the skipping step as half of the total time step. Performance of the skipping-step
decoder is compared with the ordinary rate decoder. In Table 1, compared with
the ordinary rate decoder, the skipping-step decoder obtains 3.85% and 2.11%
accuracy boost for the SNN with the channel-wise normalization and the hybrid
conversion method respectively. It indicates that the spikes at the former part
of time steps with insufficient activation degrade the transmission accuracy in
deep SNNs. And the skipping-step decoder can avoid the accuracy degradation
by skipping the former part of spike trains.

Impact of bReLU. We then evaluate the impact of the bReLU module in
tandem learning. The SNN model is evaluated with average or RSNN fusion
module. When the average fusion module is employed, the SNN becomes a feed-
forward network. In Table 2, it can be seen that the bReLU in coupled ANN
outperforms the ordinary ReLU for both 200 and 50 time steps. The accuracy
improvement is 0.31% when the total time step is 200. When the total time
step decreases, the transmission accuracy of rate coding decreases and the gap
between SNN and the coupled ANN grows larger. Then the inaccuracy gradients
corresponding to the saturated neurons with ordinary ReLU increase the per-
formance degradation. While bReLU provides necessary gradient modification
for saturated neurons. Thus the accuracy improvement reaches 2.06% when the
total time step reduces to 50. When the RSNN fusion module is employed, it
can be seen that the accuracy of the coupled ANN model with ordinary ReLU
functions is only 79.30%, as shown in Table 3. It is much lower compared with
the employment of average fusion. The training process is affected by the prob-
lem of increasing saturated neurons. While the coupled ANN model with bReLU
achieves an accuracy improvement of 8.84% compared with the ordinary ReLU.
bReLU clears up the gradients back-propagated from the saturated neurons and
avoids the problem of increasing saturated neurons. Thus bReLU performs better
in RSNN training.

Impact of the Clipped Proportional Gradient for the Skipping-Step
Decoder. Our proposed clipped proportional gradient for the skipping-step
decoder is compared with the incremental gradient. In Table 3, it can be seen that
the proportional gradient for skipping-step decoders in tandem learning achieves
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an accuracy of 88.46%. Though there are only 4 skipping-step decoders employed
in the whole SNN model, the clipped proportional gradient still achieves an
accuracy improvement of 0.32%.

4.4 Comparison with State-of-the-Art Methods

Our proposed model is compared with previous state-of-the-art SNN models
for video action recognition, as shown in Table 4. Existing SNN models mainly
include STS-ResNet and D/A model [17,18]. Our implementation combines
channel-wise normalization and tandem learning. The normalization process
enables the construction of relatively complicated and deep SNN architecture,
and then the tandem learning process fine-tunes the normalized SNN model.
Our SNN model finally reaches an accuracy of 88.46% with only 200 time steps
and achieves SOTA performance in SNN. The high-accuracy and energy-efficient
action recognition task is implemented.

Table 4. Comparison with state-of-the-art methods on UCF-101

Methods Type Accuracy

Our original ANN ANN 88.42%

STS-ResNet SNN 42.10%

D/A model 81.30%

Our proposed SNN 88.46%

Table 5. Energy consumption of ANN (GPU) and proposed SNN (neuromorphic chip)

Model Device FLOPs Time steps GFLOPS/W Energy (J)

ANN Titan V100 2.13E+11 – 56 3.803

SNN (channel norm) Tianjic 1.64E+09 800 650 2.014

SNN (proposed) 1.52E+09 200 650 0.468

4.5 Energy Consumption

According to [19] and [3], the computing performance (GFLOPS/W) of a GPU
(Titan V100) and a neuromorphic chip (Tianjic) can be obtained respectively.
Based on these measurements, we evaluated the energy consumptions of the
ANN and SNN, shown in Table 5. Compared with the ANN model, the total
energy consumption of our proposed SNN model is approximately 8 times lower.
On the other hand, the tandem learning process reduces the total time step
from 800 to 200 compared with the channel-norm SNN, that reduces the energy
consumption by 76.7%.
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5 Conclusion

In this study, an action recognition model composed of a two-stream deep SNN
and an RSNN fusion module is constructed with channel-wise normalization and
tandem learning successively. A new kind of skipping-step decoder and a tandem
learning method with bReLU function are proposed to improve the inference
accuracy and latency. Experiments on UCF-101 show that our proposed model
obtains an accuracy of 88.46% with only 200 time steps, and achieves state-of-
the-art performance in SNN.
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Abstract. Sequence recommendation aims to model the dynamic pref-
erences of users from their historical interactions and accurately predict
the next item that the users may be interested. Sequence recommen-
dation models based on graph neural networks (GNNs) have become
popular in academic research recently with remarkable results. How-
ever, it is difficult for existing GNNs-based models to learn the rapidly
changing patterns of the user interests. Therefore, this paper proposes
a novel GNNs-based model with a graph attention network (GAT)
for the sequence recommendation, named Interactive Graph Attention
Network Sequence Recommendation, IGANSR in short. In particular,
the proposed IGANSR model constructs the user attributes graph and
item attributes graph respectively to acquire the dynamic characteris-
tics of both users and items. In addition, the IGANSR model utilizes a
multi-layer graph attention network to dynamically learn the higher-
order features and the representations of new nodes. Afterward, the
IGANSR model can aggregate various information of each user’s neigh-
bors’ graph and capture the embedding of similar users. Lastly, the pro-
posed IGANSR model combines the dynamic item representations with
the user representations together and projected onto multiple scales for
the augmented learning. Experimental results carried out on three public
datasets demonstrate that the IGANSR model outperforms other exist-
ing recommendation models.
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1 Introduction

Sequence recommendation (SR) aim to model the dynamic preferences of users
from their historical interactions and accurately predict the next item that the
users may be interested. Compared with the traditional recommender systems,
the purpose of SR is to obtain the intention and preference information of dif-
ferent users from different behavior types and hidden behavior objects. Conse-
quently, it is necessary for the sequential recommend to extract as much effec-
tive information as possible from the sequence to learn the user’s interest in the
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sequence, including short-term interest, long-term interest, dynamic interest,
etc. In recent years, there are some models that have been utilized for sequence
modeling, such as Markov chain-based and factorization-based, or deep neural
networks (DNNs). However, it is difficult for these advanced techniques to be well
leveraged for short-term, dynamic interest modeling to satisfy the requirements
of SR.

Since GNNs [17] are so good at learning graph representations that they have
been widely used recently in the area of SR. Li et al. [8] and Su et al. [12] utilize
GNNs-based methods to convert sequence structures to graph structures. How-
ever, existing GNNs-based models still might not provide a satisfactory joint
decision. One reason is that these models make final prediction judgments lack-
ing enough information such as the internal information, cross-interaction infor-
mation. For example, the graph convolutional network (GCN) [7] considers only
the user-item interactions; KGAT [15] cannot distinguish the internal interaction
and cross-interaction; A-PGNN [11] cannot capture useful structural information
about attribute interactions. Another reason is that these models often rarely
consider the feature interaction information. For example, GMCF [13] didn’t
consider the various effects resulted from different node attributes.

To address the above issues, this paper proposes a novel GNNs-based model
with a GAT [14] for the sequence recommendation, named Interactive Graph
Attention Network Sequence Recommendation, IGANSR in short. The main
contributions of this paper are introduced as follows:

(1) Construct the user and item attributes graph respectively to acquire the
dynamic characteristics of both them.

(2) Utilize a multi-layer graph attention network to dynamically learn the
higher-order features and the representations of new nodes.

(3) Aggregate various information of each user’s neighbors’ graph and capture
the embedding of similar users.

(4) Combine the dynamic item representations with the user representations
together and projected onto multiple scales for the augmented learning.

2 Methods

As shown in Fig. 1, the model architecture includes three important modules,
namely: the graph constructing module of users and items; an interaction mod-
ule; and an aggregation and matching module. We will describe the main idea
of each module in detail as follows.

2.1 Problem Definition

For each input data sample Xn, node i of the user or item attribute graph rep-
resents the attribute features of that user or item. Thus, the model can capture
the potential associations between users-users, items-items and users-items, as
well as complex interactions between different feature pairs. The most favorable
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Fig. 1. IGANSR framework

pairwise feature interactions are detected by the prediction model F (xn), and
the final predicted value yn is output by graph matching.

For each training data (Xn, yn), it is contained in a dataset D with input-
output pairs: D = {(Xn, yn)}1≤n≤N , yn is the predicted value calculated by the
model and represents the probability of a user clicking, the data sample Xn is
denoted in the following Eq. (1):

Xn =
{
PU

n = (p, x)
}

p∈JU
n

,
{
P I

n = (p, x)
}

p∈JI
n

(1)

The value of Xn is 1 when the user has an interaction record with the item
i.e., it is recorded in this data sample, otherwise it is 0. Where p denotes the
attribute feature and x is its corresponding value, PU

n , P I
n represent the user and

item attribute feature value pairs respectively, JU
n ⊆ JU , JI

n ⊆ JI represent the
set of user attributes and the set of item attributes, respectively, and J is the
index set of all features in datasets D.

For each attribute feature p ∈ JU ∪ JI , it is firstly represented as an initial
embedding vector ve

p in the d-dimensional space Rd for interaction modelling. A
parameter matrix is constructed as an embedding query table and the embedding
vector ve

p for that attribute is shared for data samples with the same attribute
p; Secondly, for each feature value pair (p, x), the user, item attribute graphs
are constructed separately. The feature vector corresponding to each user or
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item node in the graph is associated with the feature value pair (p, x), and the
computational formulation can be described in the following Eq. (2):

CU = x · ve
p, C

I = x · ve
p (2)

Finally, we model the interaction of two attribute features C1 and C2 in the
same data sample, when C1 and C2 appear in a data sample at the same time,
it means that there is an interaction between the two attribute features. The
specific interaction function can be represented by Eq. (3):

f (C1, C2) : R2×d → R� (3)

Where C1 and C2 are representations of feature-value pairs in the sample of
the same data, and l denotes the output dimension. For the user attribute feature
set JU

n and the item attribute feature set JI
n, which may differ in different data

samples. Collaboration of interaction information in different data samples will
help to discover interactions between attribute pairs that never occur together.
For similar feature attributes that constitute similar feature embeddings, the
function f (·, ·) can learn attribute embeddings and capture the collaborative
information between attribute features, regardless of their input order.

2.2 User and Item Diagram Constructing Blocks

This paper constructs the graph structure on the sequence of inputs, representing
each user and each item as an attribute graph, and explicitly incorporating the
user and item information into the GAT. For a data sample N and a graph
GN (VN , EN ) can be constructed:

Vertices: VN = {vi}1≤i≤N is a set of N nodes, each node is initialized to the
corresponding sequence-encoded feature vector vi. The first-level state vector
of nodes can be represented as V = (v1 , . . . , vN ), each node i representing an
attribute in the user or item sequence is expressed as a node feature representa-
tion CU

i or CI
i in the user or item attribute graph. Thus, the set of nodes of the

user, item attribute graph can be denoted in the following Eq. (4):

V U =
{
CU

i

}
i∈JU , V I =

{
CI

i

}
i∈JI (4)

Edges: The weight of each edge reflects the importance of different feature
interactions. E = (e1 , . . . , eN ), E ∈ RN×N denotes the set of edges containing
adjacency information between nodes. Eij = 1 when an edge connects nodes i
and j (there are beneficial feature interaction), otherwise Eij = 0. Eij denotes
a set of edge interaction values, which is the set of edges with neighborhood
information between nodes. Nodes i, j are also called neighborhood nodes.

For the user attribute graph, which is denoted as GU =
〈
V U , EU

〉
, where EU

contains the set of edges of all edges in the user attributes graph. By performing
the same transformation, the item attribute graph can be constructed as GI =〈
V I , EI

〉
, where EI contains the set of edges of all edges in the user attribute

graph.
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2.3 Information Interaction Module

Internal Information Transfer Between Nodes. Inspired by papers [1,12],
the Multilayer Perceptron (MLP) are utilized to model each internal interaction
and aggregates the interaction modeling results into the internal messaging. This
paper uses an MLP function f (·, ·) : R2×d → R�, which takes as input the
dimension d of a pair of node embeddings utilized for edge prediction and outputs
a binary value indicating whether the two nodes are connected by an edge. The
formulation can be described in the following Eq. (5):

wij = fM (Ci, Cj) (5)

Where Ci = xivi, wij is the result of modeling the interaction of node
pair (i, j), and Wi is the internal transfer information. The formulation can
be expressed in the following Eq. (6):

Wi =
∑

j∈Ni

wij (6)

Where Wi ∈ Rd, Ni denotes the set of neighboring nodes within the graph
including node i. The method makes use of the characteristics of graph structure
to enable the iterative transfer, updating and enrichment of information between
nodes.

Interaction Graph Attention Network. The core idea of the IGANSR
model is to use GAT to integrate nodes, edges, and their interaction infor-
mation in a unified graph interaction architecture. For a graph with N nodes,
the initial node characteristics of a single-layer GAT can be described as
H = [h1, h2, . . . , hN ], with hi ∈ Rd as input, to obtain a more abstract feature
representation Ht = [ht

1, h
t
2, . . . , h

t
N ], with ht

i ∈ Rd′
as the model output. Where

t denotes the number of messages passed between nodes. Since the interactions
on each edge has different effect, we aim to achieve interactions along the edges,
which requires each edge to have a unique weight and transformation function.
The graph attention operation implemented on the node representations can be
written in the following Eq. (7):

ht
i = σ

⎛

⎝
∑

j∈Ni

αijWhhj

⎞

⎠ (7)

Where Ni is a set containing node i and its neighborhood nodes in the graph,
d and d′ represent the input and output dimensions, respectively, Wh ∈ Rd′×d

represents the trainable weight matrix and σ is the nonlinear activation function
utilized to make the weights easily comparable between different nodes. Since we
need to infer the importance of interactions between different nodes, the weights
αij in the Eq. (7) are used to learn the weights of the edges via an attention
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mechanism, which calculates the weight value of each neighboring node hj with
respect to node hi, as expressed in the following Eq. (8):

αij =
exp (F (hi, hj))∑

j′∈Ni

exp (F (hi, hj′))
(8)

Where F is an attention function, which can be expressed as: F (hi, hj) =
LeakyReLU

(
a� [Whhi ‖ Whhj ]

)
, a ∈ R2d′

is a trainable weight matrix. Further-
more, to stabilize the process of self-attentive learning, GAT extends the above
mechanism to employ a multi-headed attentional implementation, denoted in
the following Eq. (9):

ht
i = ‖K

k=1σ

⎛

⎝
∑

j∈Ni

αk
ijW

k
h hj

⎞

⎠ (9)

Where K is the number of multi-headed attention heads, αk
ij is the k-headed

normalized attention weight, and ‖ is the serial operation. Finally, the state
vector of the node is updated by the initial node feature hi and its hidden state
ht−1

i at the last step to implement the gated recurrent neural network GRU
operation. This is expressed as ht′

i = GRU
(
ht−1

i , hi

)
. The detailed formulation

is as follows (10):

zt
i = σ

(
Wzhi + Uzh

t−1
i + bz

)

rt
i = σ

(
Wrhi + Urh

t−1
i + br

)

h̃t
i = tanh

(
Whhi + Uh

(
rt
i � ht−1

i

)
+ bh

)

ht′
i = h̃t

i � zt
i + ht−1

i � (1 − zt
i)

(10)

Where Wz,Wr,Wh, bz, br, bh are the weights and deviations of the update
function gating recursive unit GRU [2], zt

i and rt
i are the update and the reset

gate vector respectively. Based on this, node matching between two graphs can
be expressed in the following Eq. (11):

sij = ht′
i � ht′

j (11)

Where ht′
i represents the embedding feature of node i in the user graph and

ht′
i ∈ JU

n , h̃t′
j represents the embedding feature of node j in the item graph and

h̃t′
j ∈ J

V

n
, sij represents the node matching result of two nodes from different

graphs. Indicates the corresponding multiplication operation of each element.
Similar to intra-node information transfer, the node matching results from dif-
ferent graphs are summed to obtain the final information transfer result Si for
the interaction of the two graphs: Si =

∑
j∈JV

n
sij .

Information Aggregation and Graph Matching. To fuse the own infor-
mation Ci of each node in the graph, the internal association information Wi,
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and the node interaction information Si between the two graphs, this paper
uses the fusion function faggregation ∈ R3×d → Rd to integrate the parts of the
information. The input information is passed through GRU to update its node
state based on the aggregated information and historical information to obtain
c′
i = faggregation (Ci,Wi, Si) and use the element summation method to aggre-

gate the nodes represented as fG. Aggregating nodes via element-wise addition
can be described in the following Eq. (12):

fG

(
G, JV

n

)
=

∑

i∈IU
n

c′
i (12)

For graph matching, this paper obtains vector representations of both
user and item attribute graphs by using the fG (·, ·) function: vU

G =
fG

(
GU , V I

)
, vI

G = fG

(
GI , V U

)
. Due to the graph matching with the dot

product function f (·, ·) on the two graphs, we can get the predicted output
y′ = vU�

G vI
G.

Training Process. We normalize all parameters of the model using L2 reg-
ularization in the training process. Thus, the loss function is expressed in the
following Eq. (13):

R(θ) = 1
N

N∑

n=1
L (FDIGAT (Xn; θ) , yn) + λ (‖θ‖2)
θ∗ = argminθR(θ)

(13)

Where FDIGAT is the prediction function of this model, y′ is the output, λ
is the regularized weight coefficient, L(·) is the binary cross-entropy loss func-
tion, θ contains all the parameters of the model, and θ∗ is the final parameter
representative.

3 Experiments

3.1 The Dataset and Its Sources

The proposed IGANSR model is evaluated on the following three benchmark
datasets, the statistical details of which are summarized in Table 1.

MovieLens 1M [4]: is a set of movies rating data, containing movie data, user
data, etc. We convert the display feedback from this dataset into implicit data
by marking the user’s rating of the item as 0 or 1. Each data sample is a graph
containing a user and a movie with the corresponding attributes.

Bookcrossing [19]: contains ratings of books by users implicitly and explicitly.
Each data sample includes the user, the book and its attributes, such as title,
book name, author, etc.

Taobao [18]: contains data about clicks on advertisements displayed on the
page by Taobao. Each data sample contains the information of a specific user
and their corresponding attributes.
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Table 1. Dataset statistics.

Datasets Data User Item User features Item features

MovieLens 1M 1 144 739 6060 3952 30 6049

Bookcrossing 1 050 834 4873 53 168 87 43 157

Taobao 2 599 463 4532 371 760 36 4 344 254

3.2 Parameter Setting

In this paper, binary cross-entropy is used as the loss function, and each dataset
is randomly divided into a training set, a validation set and a test set in a ratio of
6:2:2. Adam [6] is utilized to combine the first-order momentum and the second-
order momentum to automatically adjust the learning rate of the parameters.
AUC and NDCG@k are the evaluation metrics. In detail, the specific hyper-
parameter settings are shown in Table 2.

Table 2. Hyperparameters of model.

Hyperparameters Description Value

d Nodal dimension 128

λ Regularization factor 1 × 10−5

lr Learning rate 1 × 10−3

n epoch Number of training iterations 50

Batch size Number of batches 512

n hidden layer Number of hidden layers 1

hidden layer Hidden layer dimension 256

3.3 Correlation Comparison Model

In this paper, the following benchmark model is compared with the IGANSR
model proposed in this paper.

• FM [9]: uses point multiplication to calculate and model the interaction of
each feature and has a good learning ability for sparse data.

• NFM [5]: combines FM with neural networks to improve FM’s ability to
capture multi-order interaction information between features.

• AutoInt [10]: map raw sparse high-dimensional feature vectors to a low-
dimensional space for explicit modeling of feature interactions.

• Fi-GNN [8]: each feature map consists of data samples, and each node in
the graph represents a feature field, which is modeled using a multi-head
self-attention method.

• NGCF [16]: is a graph-based CF approach that broadly follows the standard
GCN [3], aiming to model neighborhood information by up to three orders.
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• GMCF [13]: is a graph-based CF approach that uses the MLP structure of
interaction modeling for model internal interaction modeling.

• KGAT [15]: modeling based on collaborative knowledge graphs with a form
of graph convolution.

3.4 Experimental Results and Analysis

From the Table 3, we find that IGANSR improves the performance of books
and Taobao better than the Movie dataset, suggesting that IGANSR can handle
sparse data well.

The FM model has the worst effect because only the use of dot prod-
uct calculation is not enough to effectively capture the information features;
NFM is inspired by FM and uses MLP instead of point multiplication, and
the experimental effect is significantly improved compared with the FM results,
which demonstrate the effectiveness of the MLP calculation method; AutoInt
and Fi-GNN models combine multi-head self-attention neural network to model
attribute features, which effectively improves the ability of the model to capture
multi-order interactive information between features; Both NGCF and GMCF
implement the graph modeling process.

For the above models, although high-level feature extraction is achieved to a
certain extent, the weights are not calculated for the relevant influencing factors
of information between nodes and their adjacent nodes. Therefore, the IGANSR
model utilizes the GAT to analyze the relationship between each node and its
neighbors in the graph. Different weights are allocated between domain nodes,
and the weights of different neighbors are adaptively allocated based on extract-
ing high-order features of information. The experimental results show that the
proposed model can effectively improve the accuracy and expressive ability of
recommend results.

Table 3. Comparison of Models.

MovieLens 1M Book-Crossing Taobao

AUC NDCG @5 NDCG @10 AUC NDCG @5 NDCG @10 AUC NDCG @5 NDCG @10

FM 0.8758 0.8278 0.8457 0.7486 0.7694 0.8059 0.6115 0.8824 0.1119

NFM 0.8893 0.8537 0.8843 0.7934 0.7733 0.8315 0.6514 0.0922 0.1249

AutoInt 0.8922 0.8721 0.8947 0.8125 0.8079 0.8455 0.6376 0.0898 0.1207

Fi-GNN 0.8946 0.8827 0.9077 0.8131 0.8124 0.8593 0.6425 0.0942 0.1254

NGCF 0.8958 0.9145 0.9258 0.8197 0.8319 0.8612 0.6457 0.0958 0.1286

GMCF 0.8991 0.9373 0.9416 0.8231 0.8689 0.8957 0.6567 0.1018 0.1371

KGAT 0.9008 0.9364 0.9429 0.8292 0.8725 0.8981 0.6544 0.1027 0.1393

IGANSR 0.9035 0.9437 0.9438 0.8443 0.9030 0.9149 0.6604 0.1121 0.1485

3.5 Research on Node Dimension and Network Layers

In this section, we attempt to analyze the performance of the proposed IGANSR
with different network layers and different dimensions node representations.
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As shown in the Fig. 2, a line graph is utilized to feed back the recommen-
dation accuracy of the IGANSR model on the node representation dimensions
of 64, 128, and 256. Each subgraph is distinguished by three colors: red, green,
and blue. Different numbers of network layers (GATlayer 1, GATlayer 2, GAT-
layer 3) recommended results.

Fig. 2. Comparison of Recommendation Accuracy of Different Datasets in Different
Number of Network Layers and Different Node Attribute Embedding Dimensions.
(Color figure online)

In the Fig. 2, that when node dimension is set to 128, the model achieves
the best performance. Low-dimensional may have problems such as insufficient
parameters, while high-dimensional needs to fit more parameters that may lead
to other problems such as overfitting. This indicates that the model needs to
match the appropriate node dimensions for optimal performance. In addition,
the model does not achieve better performance with the deepening of the GAT
network layers, and there may also be an overfitting problem. It also shows that
a single-layer GAT is sufficient to meet the information transfer requirements of
cross-interaction between nodes.

4 Conclusion

In this work, we propose a novel IGANSR model incorporating GAT that facil-
itates model generalization and interpretability, exploring higher-order connec-
tivity and internal association of two-attribute graphs in a graph neural net-
work structure. In particular, the IGANSR models dual-attribute interactions
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between the users and items in an end-to-end manner according to different
ways of computing interactions for different interaction patterns. In addition,
the IGANSR model uses GAT to per-form preference matching in the cross-
interactions between dual-attribute graphs with adaptively propagating embed-
ded representations. The experimental results demon-strate the robustness and
effectiveness of the IGANSR model.

In the future, we will explore the higher-order interactions in the model
architecture and reveal the user’s decision-making process of selecting items.
In addition, we will study the prevalence of sparsity problems in recommender
systems through the self-supervised learning methods.
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Abstract. Multi-agent deep reinforcement learning (MADRL) has
made remarkable progress but usually requires delicate and fragile reward
engineering. Modeling other agents (MOA) is an effective method for
compensating for the absence of efficient reward signals. However, exist-
ing MOA methods often assume that only one agent can model other
non-learning agents. In this study, we propose continuous mutual mod-
eling (CMM), which constantly models other agents that also learn
appropriate behaviors from their viewpoints to facilitate the coordina-
tion among agents in complex MADRL environments. We then propose
a CMM framework referred to as predictor-actor-critic (PAC) in which
every agent determines its actions by estimating those of other agents
through mutual modeling. We experimentally show that the proposed
method enables agents to realize other agents’ activities and promotes
the emergence of better-coordinated behaviors in agent society.

Keywords: Control and decision theory · Modeling other agents ·
Multi-agent deep reinforcement learning · Coordination

1 Introduction

Multi-agent deep reinforcement learning (MADRL) has gained much attention
recently and has made remarkable progress in many challenging areas, such
as video games [13] and robot control [2]. To effectively use multiple intelli-
gent agents, they must learn sophisticated social behaviors through cooperation,
coordination, or competition. A large part of the successful learning of social
behaviors has been accomplished by reward engineering. Carefully hand-designed
rewards are used to encourage or punish specific behaviors of agents so that they
can establish a desired social interaction pattern.

Unfortunately, these achievements are often delicate and fragile for several
reasons. First, the rewards are usually parameter-sensitive and may lead to
unexpected results, even minor modifications. Second, appropriate rewards are
scenario-specific; thus, when the scenario changes, rewards should be re-tuned
or they do not work. Finally, such a reward scheme is often integrated with
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the intrinsic worth of individuals and non-local information, such as allowing
agents to see the rewards obtained by other agents [9]. However, these inter-
twined rewards make it difficult to achieve decentralized training of MARL and
partially push aside the primary challenge of MARL, i.e., how agents can learn
to coordinate using limited observations with only available reward signals [6].

A unique and effective method for compensating for the absence of com-
prehensive observations and efficient reward signals is modeling other agents
(MOA) [1]. An agent is trained to interact with other agents effectively by
constructing their models to predict their actions and the reason behind their
intentions. MOA is a well-known and remarkable study in adversarial games like
Chess and Go [10,18], but there are also prior studies on the issue committed to
promoting coordination [3,15,19]. For example, Barrett and Stone [3] proposed
planning and learning to adapt swiftly to teammates to improve cooperation –
policy (PLASTIC–Policy) to reuse policies that cooperate with past teammates
to adapt to new teammates quickly. Bowling and McCracken [4] proposed two
techniques for coordination between agents that join an impromptu soccer team
with other unfamiliar agents. However, they rely on the assumption that only
one agent can model other non-learning agents [1,3–5,8], but this is impractical
in actual situations. We believe that agents must mutually model other agents
continuously only from locally available information and rewards to adapt their
policy to others’ behaviors. However, it remains largely unexplored whether and
how such continuous mutual modeling (CMM) facilitates social behaviors in com-
plex MARL environments.

Therefore, we propose a CMM framework, referred to as predictor-actor-
critic (PAC), in which each agent determines its actions by estimating those of
other agents through mutual modeling. To evaluate the effectiveness and perfor-
mance of PAC, we use the cleanup game [9] generating a situation of public goods
dilemma [12] in which an agent must pay a personal cost to provide resources
that will be shared with all agents. It is usually difficult for agents to learn
cooperative policies independently. They are likely to be trapped at a socially
deficient equilibrium where no agents are willing to pay personal costs based on
individual rationality, converging in situations where no one can obtain reason-
able rewards.

Unlike the naive methods, we experimentally found that our approach
avoided such a socially deficient equilibrium, and established another type of
equilibrium, we named it imbalanced equilibrium due to its imbalanced reward
distribution among agents. We further analyzed the behaviors of individual
agents after learning and found that (1) one agent played as a farmer, which
continuously paid the personal cost to create a large number of public goods,
and (2) other agents played as robbers, which paid a few personal costs but con-
sumed most of the public goods, and (3) each robber acted with its range of
activities to reduce unnecessary competition among robbers. Although such a
coordination structure seems imbalanced, agents with PAC successfully obtained
higher rewards from a social viewpoint than those obtained by balanced and
fair behaviors. Notably, the emergence of social structure is not caused by a



Emergence of Social Asymmetric Coordinated Behavior 307

reward engineering such as external rewards, nor did by manually dividing agents
into groups. Experimental results indicate that the proposed framework enabled
agents to infer other agents’ activities and promoted the emergence of better-
coordinated behaviors in the agent society.

2 Background

2.1 Multi-agent Partially Observable Markov Games

Let A = {1, . . . , N} be the set of N agents. Our framework for MADRL is based
on a decentralized partially observable Markov decision process (Dec-POMDP),
〈A,S,O,A,P,R〉, tuple of state space S, the set of observations O = O1 ×· · ·×
ON , the joint action space A = A1 × · · · × AN , the transition probability P and
the joint reward R = R1 × · · · × RN . At time step t, agent i ∈ A observes the
state and get the local observation oi

t = oi
t(st) ∈ Oi. It then chooses an action

ai
t ∈ Ai according to its local stochastic policy πi(ai

t|oi
t). As a result of the joint

action at = (a1
t , . . . , a

N
t ), the state st transits to another state st+1 according to

the state transition probability P(st+1|st,at), while i may receive its individual
reward ri

t. At the end of episodes, i updates its behavior policy πi(ai
t|oi

t) though
its own experience to attempt to maximize its total expected discounted future
reward Ri =

∑T
t=0 γtri

t, where γ is the discount factor, and T > 0 is the horizon
parameter.

2.2 Policy Gradient, Actor-Critic and Proximal Policy Optimization

Policy gradient [14] aims to maximize agent i’s expected rewards J(θ) = E(Ri)
by directly updating its policy with respect to parameters θ, using the policy
gradient:

∇θJ(θ) = ∇θ log(πi
θ(a

i
t|oi

t))
T∑

t′=t

γt′−tri
t′ . (1)

As rewards may vary dramatically over episodes, the term
∑T

t′=t γt′−tri
t′ leads

to high variance, so actor-critic algorithms [16,17] replace it with a function
approximation and rewrite the objective as

J(θ) = Et[log πi
θ(a

i
t|oi

t)At], (2)

where At is the advantage function [16,17].
Proximal policy optimization (PPO) [17] uses constraints to guarantee mono-

tonic improvement in a simple form so that the actor network is trained to
maximize:

J(θ) = Et[min(rt(θ)At, clip(rt(θ), 1 − ε, 1 + ε)At) + σS[πi
θ(o

i
t)]], (3)

where rt(θ) is probability ratio πi
θ(a

i
t|oi

t)

πi
θold

(ai
t|oi

t)
, θold is the collection of policy parame-

ters before the update, S is the policy entropy, σ is the entropy coefficient param-
eter, and At is computed via Generalized Advantage Estimation (GAE) [16].
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Fig. 1. Architecture of predictor-actor-critic.

3 Proposed Method

3.1 Policy with Actions of Other Agents

A general form of Dec-POMDP described in the previous section has uncertainty
owing to the partial observability, i.e., agent i updates its policy πi(ai

t|oi
t) to

maximize the cumulative reward Ri, but reward is a function of state and joint
action ri

t(st,at, i). Although many existing studies showed that their algorithms
in this setting could converge and achieve somewhat acceptable performance, we
believe that if agents can predict the actions of other agents, they might be able
to derive better results. Thus, ideally, we would like to redefine the policy as

ai
t ∼ πθ(ai

t|oi
t,a

−i
t ), (4)

where a−i
t is the joint action of all agents except i, and ∼ means that i’s action

ai
t is sampled according to the conditional probability distribution πθ(ai

t|oi
t,a

−i
t ).

This is an anti-causal definition, because agent i needs the actions of other agents
as a precondition, but currently, other agents are also waiting for i’s action. In
centralized algorithms this problem can be solved by parallel processing, while
in our fully decentralized environment, a straightforward solution is to rollout
a−i

t using a neural network and rewrite Eq. 4 as

ai
t ∼ πθ(ai

t|oi
t, Pω(oi

t)), (5)

where Pω is the predictor network, which is fed the local observation oi
t as input

and output prediction â−i
t of joint action except i.

3.2 Predictor Network

Our network structure with the predictor network is shown in Fig. 1. To reduce
the noise caused by partial observability [8], we use an LSTM [7] for the predictor
network (Fig. 1(a)). As i can observe other agents only in the local observable
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area, all visible agents’ joint action (include the action of itself) at the last time
step, avis−i

t−1 , is also input to the LSTM to predict other agents’ action â−i
t ,

(e−i
t , â−i

t ) = Pω(oi
t,a

vis−i
t−1 ), (6)

where e−i
t is an action feature representation adjusted by a fully-connected (FC)

layer for actor and critic. Notably, each visible agent’s action in avis−i
t−1 is repre-

sented in a one-hot encoding, while the actions of agents out of i’s field-of-view
are masked as zeros.

3.3 Predictor-Actor-Critic (PAC)

At each time step, agent i’s predictor (Fig. 1(a)) outputs one one-step simulated
joint action, â−i

t , and its representation e−i
t according to Eq. 6. Then, e−i

t is
connected with the features in the actor network (Fig. 1(b)) and critic network
(Fig. 1(c)). Agent i’s action is finally sampled according to

ai
t ∼ πθ(ai

t|oi
t,e

−i
t ). (7)

The pseudocode of the training procedure is provided in Algorithm 1. The pre-
dictor is trained together with the actor network using a weighted sum loss
function:

LPAC = LPPO + λLpred, (8)

where LPPO is the loss function of PPO [17], λ is a weight parameter and Lpred

is the cross-entropy loss for agent i’s predictor network,

Lpred =
1
M

∑M
j=1 H(aj

t ) + DKL(aj
t ||âj

t ), (9)

where M = N − 1, is the number of all agents except i, H(aj
t ) is entropy of aj

t ,
and DKL(aj

t ||âj
t ) is the Kullback-Leibler divergence of aj

t from âj
t .

4 Experimental Evaluation

4.1 Experimental Setting

To evaluate our method, we used a cleanup game [9] generating a situation of
public goods dilemma [12], wherein an agent must pay a personal cost to provide
resources that are shared with all agents. The cleanup game is performed in a 2D
partially observable grid environment. An example snapshot is shown in Fig. 2,
where five agents, expressed by red, brown, red-violet, dark-blue, and sky-blue
nodes, move around the environment to collect apples (green nodes) to earn
rewards; one reward for one apple. The left grayish-blue area is the river; the
right black area is the land. At each time step, a piece of waste (khaki nodes)
may spawn randomly in the river area, and apples may spawn randomly on the
land. The spawn probability of a piece of waste, Pwst , is constant Cwst if the
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Algorithm 1. Training Procedure of PAC
1: Initialize θ, parameters for actor π for each agent,
2: Initialize φ, parameters for critic V for each agent,
3: Initialize ω, parameters for predictor P for each agent.
4: while step ≤ stepmax do
5: reset data buffer for each agent Di = {}
6: for t = 1 to T do
7: for agent i = 1 to N do
8: Get a local observation: oit
9: Observe previous actions avis−i

t−1

10: Predict others’ actions (e−i
t , â−i

t ) = P (oit,a
vis−i
t−1 )

11: Choose an action ai
t ∼ π(oit, e

−i
t )

12: end for
13: Execute the joint action at = [a1

t , a
2
t , · · · , aN

t ]
14: Update buffer for each agent Di+ = [oit, a

i
t, r

i
t, o

i
t+1,a

vis−i
t−1 , â−i

t ]

15: end for
16: for agent i = 1 to N do
17: for mini-batch k = 1 to K do
18: Sample random mini-batch date bik ← Di

19: Compute LPAC = LPPO + λLpred with bik
20: Compute gradient based on LPAC

21: Update θi and ωi

22: Update φi

23: end for
24: end for
25: end while

ratio of the number of waste to the number of nodes in the river area, Rwst , is
lower than the threshold Twst (0 < Twst < 1); otherwise Pwst = 0. Meanwhile,
the spawn probability of apples, Papl , is lowered by Rwst as

Papl =
(

1 − Rwst

Twst

)

· Capl , (10)

if Rwst < Twst and otherwise Papl = 0. Capl is a constant.
At the start of each episode, there are no apples on the land by setting Rwst

is slightly larger than Twst . To spawn apples, at least one agent must clean the
waste using the cleaning beam whose width is three nodes and reaches five nodes;
this is shown as a yellow beam in Fig. 2. However, cleaning does not provide any
direct reward; thus, this situation results in a social dilemma, i.e., which agent
should clean them. Furthermore, all agents are equipped with a fining beam
(cyan nodes), which costs −1 as a negative reward when used but incurs a −50
reward as damage to the agents hit. Agents are trained to maximize their rewards
by collecting as many apples as possible, but, of course, the collective rewards
of all agents also indicate the quality of their cooperation and coordination from
the social viewpoint.
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Fig. 2. Cleanup game environment. (Color figure online)

4.2 Comparative Methods

In all experiments, each agent has its neural network for learning and thus is
trained in a decentralized way to maximize its rewards without access to non-
local information, including other agents’ policies, rewards, and observations.
The only assumption is that agents can observe the actions of other agents at
the last time step. We compare our method PAC with the following methods:

PPO-baseline. Vinitsky et al. [20] proposed this by implementing a CNN-
LSTM network (only the (b) and (c) part of Fig. 1) and performing fully decen-
tralized training using proximal policy optimization (PPO).

DQN-baseline. It uses the same structure of convolution layers, fully connected
layers, and LSTM as that in the PPO-baseline. The difference from PPO-baseline
is that its last layer outputs Q-values rather than logits and values and is trained
as deep Q-network (DQN) instead of PPO.

DRPIQN. Deep recurrent policy inference Q-network (DRPIQN) [8] used adap-
tive loss, and policies are trained as DQN. Its loss function is defined as
L = λLQ + Lpred, where λ = 1/

√
Lpred, and LQ is the loss function for deep

Q-network. In the earlier training phases for DRPIQN, Lpred is large and λLQ is
small, which encourages the network to focus on other agents’ behaviors [8]. As
the training progresses, the Lpred becomes smaller, and λLQ becomes dominant.

DRPI-PPO. Deep recurrent policy inference-PPO (DRPI-PPO) is a variant of
DRPIQN [8]. It uses the network structure and adaptive loss of DRPIQN but
is trained as PPO rather than DQN. The loss function in Eq. 8 is modified as
L = λLPPO + Lpred, with λ = 1/

√
Lpred for DRPI-PPO.

We did not fine-tune specific parameters for PAC. The learning rate is set at
0.00126 initially and annealed linearly to 0.000012 until 2 × 107 time steps. The
entropy coefficient (σ in Eq. 3) is set to 0.00176 for PPO. These parameter values
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Fig. 3. Collective rewards for compared methods.

are identical to those by Vinitsky et al. [20], which give the best performance for
PPO-baseline and social influence [11,20]. We set the weight for loss function of
PAC in Eq. 8, λ = 0.06663557. DQN-baseline and DRPIQN failed to converge;
therefore, we omit their results.

4.3 Performance Comparison and Analysis

To compare the performance of three methods, PPO-baseline, DRPI-PPO, and
PAC, we plotted the mean collective rewards of five agents every 1000 time steps
until 500M time steps in five runs with different random seeds in Fig. 3. The light-
colored areas above and below the curves show their standard deviation. At the
beginning of training, the collective rewards were negative (minimally −4000)
because agents started shooting the fining beam recklessly. However, they could
soon learn to stop shooting during 3M to 9M time steps. Thus, we only show
the part of curves of collective rewards over 0 for readability.

Figure 3 indicates that first, PAC achieved the highest collective rewards
finally, and its variance was much smaller than those of other methods. This sug-
gested that the predictor network in PAC provided helpful information to the
owner agents to achieve better-coordinated activities. Second, the PPO-baseline
quickly increased the collective rewards in the earlier stage (until 30M steps). In
contrast, PAC made little learning progress during this stage, gradually increasing
the collective rewards and achieving the highest around 200M steps. We think that
the rapid convergence of the PPO-baseline was owing to its simple network struc-
ture, which only requires a small amount of data to converge. In contrast, other
methods with more complicated structures needed more data to learn.

Finally, DRPI-PPO failed to achieve good performance and learned very
slowly. This is probably because the adaptive loss function does not work correctly.
In the original environment [8], the opponent agent uses a manual non-learning
policy. Therefore, the prediction loss could be reduced gradually as the training
progressed, and the adaptive weights allowed the algorithm to focus on the oppo-
nent’s behavior in the earlier stage and then on getting higher scores later.

We can see that all agents’ policies continued to change during the whole
training process from Fig. 4, which plotted the prediction loss of PAC and DRPI-
PPO. The loss would first decrease, then increase, and then gradually decrease
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to a relatively stable range. In this case, the adaptive weights of the DRPI-PPO
may not have appropriately adjusted the algorithm’s attention and may instead
have become a burden on training.

4.4 Analyzing Learned Coordinated Behavior

We believe it is crucial to understand the learned coordination by analyzing the
agent’s behaviors in these methods. Figure 5 shows the rewards of individual
agents during the training process in five experimental runs. We can find that
among the five agents trained by PAC (Fig. 5(b-1) to (b-5)), one agent earned
low rewards, while the other four agents gained almost identical high rewards in
all runs. This phenomenon always appeared in PAC but was often not apparent
in the PPO-baseline and DRPI-PPO.

We further analyzed the movements based on the learned policies by testing
its last checkpoint (saved at step 499.2M time step) in a new cleanup game and
recording the agents’ actions and locations in the first 1000 steps. Their locations
are shown in Fig. 6 as heat maps in which darkness indicates the frequencies of
staying locations on the map. Figure 6(a) was generated using the PPO-baseline
policies of the first run (i.e., Fig. 5(a-1)) and Fig. 6(b) was generated using the
PAC policies (i.e., Fig. 5(b-1)).

We found clear patterns in the PAC agents’ behaviors in Fig. 6(b). First,
agent-2 (agents whose ID is 2) continued to move clockwise. Furthermore, when
moving in the river area (Fig. 6(f)), it sometimes fired the cleaning beam into
the river. At the same time, many apples were generated on the land, and the
other four agents moved around to collect apples greedily. Second, after agent-2
left the river area to search for the remaining apples (Fig. 6(g)), the other four
agents were still looking for apples greedily and would not intentionally leave any
apples for agent-2. When the number of apples in the environment became small,
agent-2 moved to the river area again. Here, the agent that cleaned the river area,
like agent-2, is called a farmer and other agents that collected apples are called
robbers. Finally, each robber built their territory to collect apples (Fig. 6(b-1)(b-
3)(b-4) and (b-5)); this may reduce unnecessary competition among robbers. In
this agent society, no one can gain more rewards by changing its own strategy,
that is, they reach an equilibrium. However, there are obvious differences between



314 Y. Bai and T. Sugawara

Fig. 5. Earned rewards of agents in individual runs.

agents in their strategies and rewards. Therefore, we call this social coordinated
structure imbalanced equilibrium.

Table 1 lists the numbers of apples collected and cleaned nodes with wastes
in the same episode in Fig. 6. Agent-2 in PAC cleaned up almost all the waste in
the episode but collected the smallest number of apples. The other four agents
rarely cleaned up the waste but divided the land into four subregions (Fig. 6),
collecting a roughly equal number of apples. Note that in Fig. 6, agent-2 was a
farmer but another agent was a farmer in a different episode (see Fig. 5).

In contrast, for agents trained by PPO-baseline, agent-4 cleaned up in the
river but acted as a part-time farmer because it also collected some apples by
occupying a lower-right region as the territory (see (h) in Fig. 6(a-4))). However,
it could collect only a few apples there, so resulting in the lower rewards rather
than that of agent-2 in PAC (Table 1). Furthermore, the fact that agent-4 has
such a region to stay there and collect apples reduced (1) the sizes of occupied
regions of the other four agents and (2) the efficiency of cleaning, which in turn
lowered the number of apples spawned and so overall rewards to earn.

We believe that the ability of the agents with PAC to infer the activities
of other agents is critical to establishing a sophisticated and effective social
structure and promoting better coordination by establishing an imbalanced but
socially efficient equilibrium. Robbers will not clean the river area because they
recognize that the farmer will clean the river so that the apples will respawn,
and thus they can easily collect apples to receive many rewards. In contrast,
the farmer will give up fighting the robbers for occupying a part of the land
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Fig. 6. Locations of each agent.

Table 1. Number of consumed apples and cleaned wastes in an episode.

Agent ID 1 2 3 4 5 Sum

Apple PPO-baseline 82 63 101 22 91 359

PAC 138 38 163 141 168 648

Waste PPO-baseline 0 0 0 574 0 574

PAC 1 629 7 0 0 637

area because it realizes that the other four robbers are greedy and will not clean
up the river, and thus the farmer attempts to focus on actions for cleaning that
suit other agents’ activities; otherwise, its rewards will also be decreased. Agents
with the PPO-baseline also built a similar equilibrium but were incomplete and
earned lower rewards from a social perspective.

5 Conclusion

This study proposed a CMM framework called PAC. Each agent constructed a
model to estimate the actions of all other agents and then decided their actions
considering these actions. We examined the framework in a public goods dilemma
called the cleanup game. Our experiments indicate that the trained agents spon-
taneously establish an effective social structure for coordination and can avoid
socially deficient equilibrium.

We experimentally found the emergence of imbalanced equilibrium in this
study, and we plan to conduct more mathematical and theoretical research on
it in the future. We also plan to extend our method to mixed cooperative-
competitive environments.
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Abstract. Reinforcement learning (RL) has recently been applied in autonomous
driving for planning and decision-making. However, most of them use model-free
RL techniques, requiring a large volume of interactions with the environment to
achieve satisfactory performance. In this work, we for the first time introduce
a solely self-attention environment model to model-based RL for autonomous
driving in a dense traffic environment where intensive interactions among traf-
fic participants may occur. Firstly, an environment model based solely on the
self-attention mechanism is proposed to simulate the dynamic transition of the
dense traffic. Two attention modules are introduced: the Horizon Attention (HA)
module and the Frame Attention (FA) module. The proposed environment model
shows superior predicting performance compared to other state-of-the-art (SOTA)
prediction methods in dense traffic environment. Then the environment model is
employed for developing various model-based RL algorithms. Experiments show
the higher sample efficiency of our proposed model-based RL algorithms in con-
trast with model-free methods. Moreover, the intelligent agents trained with our
algorithms all outperform their corresponding model-free methods in metrics of
success rate and passing time.

Keywords: Reinforcement Learning · Attention Mechanism · Autonomous
Driving

1 Introduction

Decision-making in a dense environment with dynamically moving obstacles has been
a hot topic in the mobile robotics community. One typical problem is passing through
dense traffic like unsignalized urban intersections for autonomous vehicles.

Although there are several algorithms that have already been successfully applied to
autonomous vehicles [19,25], most of them still rely on hand-crafted rule-based meth-
ods which are only applicable in simple driving circumstances. Situations as complex as
passing through intersections would dramatically increase the complexity of rule-based
algorithm. In contrast, learning-based algorithms can better deal with complex driv-
ing situations without complexity increase. Some researchers applied imitation learn-
ing (IL) to autonomous driving by training the intelligent agent in a supervised manner
[7,30]. However, IL suffers from tedious data labeling and poor generalizability.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Tanveer et al. (Eds.): ICONIP 2022, LNCS 13624, pp. 317–330, 2023.
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Unlike IL, RL-based methods can better generalize to unseen scenarios without data
labeling by interacting with the environment. Decision-making in dense traffic environ-
ment with RL-based methods have already been studied [11,16]. However, most of
them are based on model-free RL algorithms, which only train the intelligent agent
by exhaustively interacting with the environment. Model-based RL algorithms, on the
other hand, explicitly learn the environment transitions as well as interact with the envi-
ronment, leading to an improvement in sample efficiency.

Researchers [9,31] have already applied model-based RL to autonomous driving.
However, the environments they are dealing with are simple driving scenarios. In a
complex environment where interactions across traffic participants are unavoidable, the
environment model should be carefully designed. In such an environment, one par-
ticipant’s action not only determines its own future state but also others’ behaviors.
Compared to other model architectures, the self-attention mechanism is more capable
of extracting the interactive dependencies across all inputs.

In this work, we for the first time apply a solely self-attention environment model
to model-based RL for autonomous driving in a dense traffic environment. Our contri-
butions are listed as follows:

– We propose an environment model solely on the self-attention mechanism to simu-
late the dynamic transitions in a dense traffic environment and it shows better perfor-
mance in predicting the future states of traffic participants than other SOTAmethods.

– We introduce two self-attention modules: the Horizon Attention module to encode
the spatially interactive information and the Frame Attention module to encode
sequential state features.

– The developed environment model has been introduced to model-based RL for
autonomous driving in dense traffic. Testing results show the superiority of our pro-
posed model-based RL algorithms over their model-free RL counterparts.

2 Related Work

2.1 Attention Mechanism

Attention Mechanism is first introduced in natural language processing (NLP) by Bah-
danau et al. [3] as an improvement over the encoder-decoder neural machine translation
system based on recurrent neural network (RNN) or long short-term memory (LSTM)
[10]. However, due to the vanishing/exploding gradient problem, RNN suffers from
long-range dependency. In addition, the sequential nature of RNN/LSTMs makes the
parallelization of training examples extremely hard. By calculating the embeddings of
all input words and the weighted sum of hidden states, the attention mechanism not
only allows for the modeling of dependencies without regard to the distances but also
accelerates the training process by data parallelization.

Based on the attention-mechanism, many breakthroughs have been made in NLP
and computer vision tasks. The Transformer [26] differs from previous neural trans-
lation models in that it is based on self-attention mechanisms to draw global depen-
dencies between input and output. It gets SOTA performance in translation with less
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training time and significantly more parallelization. BERT [5] also achieves SOTA per-
formances in a wide range of NLP tasks by pretraining deep bidirectional representa-
tions from unlabeled text based on Transformers and finetuning one additional task-
specific output layer. ViT [6] directly applied a pure Transformer architecture [26] to
sequences of image patches and showed excellent results on image classification tasks.
Swin-Transformer [17] surpassed previous SOTA networks on a broad range of vision
tasks by a large margin with a hierarchical Transformer whose representation is com-
puted with shifted windows.

In this work, we equip the environment model of dense traffic with self-attention
mechanisms to extract the dependencies across both different traffic participants and
different state histories.

2.2 Traffic Trajectory Prediction Methods

Predicting the future trajectories of other traffic participants in dense traffic is a com-
plex problem for the autonomous driving community. Early researchers [21,25] mostly
focused on rule-based Finite/Hybrid State Machines to encode the desired behavior of
the vehicle in the encountered urban scenarios. However, the complexity of these meth-
ods could dramatically increase as the driving scenarios become more general. Besides,
the constant velocity assumption that is usually employed in those systems ignores
the surrounding vehicles’ reactions, leading to potential risks in dense urban traffic
scenario [8].

The learning-based prediction method, on the other hand, does not show a com-
plexity increase even in complicated situations and is more capable of modeling the
participants’ intentions. Altche et al. [2] introduced an LSTM-based network that pre-
dicted the future longitudinal and lateral trajectories for vehicles on the highway. Ma
et al. [18] also proposed an LSTM-based network that contains instance and category
layers to predict the trajectories of heterogeneous traffic participants. Tang et al. [24]
introduced a probabilistic framework to efficiently model the future motions of agents
with a dynamic attention-based state encoder.

However, most previous learning-based prediction methods are based upon RNN or
combine RNN with the attention mechanism, which could be time-consuming during
inference due to RNN’s poor parallelization capability. In this work, we propose a pre-
diction network that is solely based on the self-attention mechanism for forecasting the
future motions of all the participants involved in dense traffic.

2.3 Reinforcement Learning

RL involves interactions between the intelligent agent and the environment. It is usually
formulated as a Markov decision process < S,A, P,R, γ >, with the measurable space
S, action space A, state transition dynamics P , reward function R and discount factor
γ. The training purpose for solving RL task is just to find a policy π that maximizes the
expected γ-discounted cumulative reward.

In the RL paradigm, based on whether the intelligent agents predict the environ-
ment responses, there are two kinds of RL methods: model-free and model-based RL.
Model-free RL indicates that the agent learns policies by directly interacting with the
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Fig. 1. Illustration of model-free and model-based RL. The loop formed by the solid line denotes
the model-free RL while the loop of dotted line represents the model-based RL.

environment, while model-based RL constructs a predictive model of the environment
dynamics and integrates both learning and planning, as illustrated in Fig. 1.

Among various model-free algorithms, Q-learning [28] is a typical value optimiza-
tion method by learning a near optimal state-action value function with a sufficient num-
ber of learning samples. Deep Q-Networks (DQN) [20] achieved SOTA performances
in many Atari games by introducing deep neural network (DNN) as a non-linear value
approximator and experience replay technique. The Q value updating rule is:

Q(St, At) ← Q(St, At) + α(Rt+1 + γ max
a

Q(St+1, a) − Q(St, At)), (1)

where Q(St, At) is the estimated action value of state S when choosing action A at
time t, α ∈ [0, 1] is the learning rate.

Instead of evaluating a value function before getting the optimal policy, policy opti-
mization methods aim to obtain an optimal policy directly. In policy optimizations,
the policy function is usually parameterized as a learnable neural network πθ. The
REINFORCE [29] algorithm is a simple straightforward policy optimization algorithm,
whose policy parameters are updated by:

θ ← θ + αγtG∇θlnπ(At|St, θ), (2)

where θ denotes the parameter of policy network, α is the learning rate and γtG is
the γ-discounted cumulative reward. Actor-Critic [14] is a policy optimization method
which integrates the benefits of value optimization. Deep Deterministic Policy Gradient
(DDPG) [22] is an actor-critic algorithm that can learn policies for continuous action
space with DNN approximation function.

However, model-free methods usually suffer from low sample efficiency. For intel-
ligent agents which need to be applied to practical situations, interacting with real-
world environments would be limited due to cost and safety concerns. Model-based RL
[12,23] is advantageous in reducing the required number of interactions by simulta-
neously learning the environment transitions. In this work, we develop various model-
based RL algorithms with our proposed environment model for autonomous driving in
dense traffic.
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3 Methodology

3.1 Problem Definition

The problem of developing model-based RL algorithms for passing through dense traf-
fic could be decomposed into two tasks: one is constructing an environment model for
dense traffic, and the other is solving the passing problem with RL algorithm with the
environment model.

We first assume the states of agents involved in the traffic are preprocessed, includ-
ing their spatial coordinates, velocities, and headings. At time t, the feature vector of
any agent At

i is denoted as f t
i = (px, py, vx, vy, cosφ, sinφ)ti, where px/py is the coor-

dinate in x-/y- axis, vx/vy is the velocity in x-/y- axis, and φ is the agent heading. In the
following paragraphs, we denote ‘ego-agent’ as the traffic participant controlled by RL
algorithms and ‘other-agent’ as the participants in the environment except ‘ego-agent’.
The task of formulating an environment model is just to observe the states of all the
agents during the time interval [1, Tobs] and predict their states and rewards from the
environment at time step t = Tobs + 1.

With the environment model, the problem of autonomous driving in dense traffic
could be viewed as the ego-agent navigating to a target position without collision with
other-agents. It is an optimization problem whose objective is to maximize the expected
cumulative reward. For an environment with one ego-agent and N other-agents, the
optimization objective should be:

argmax
πθ

E[R|πθ, Se, So,1:N ],

s.t. Te ∈ [0, Tmax], Pe ∈ Pf , Ve ∈ Vf

(3)

where πθ is the policy taken by the intelligent ego agent, R is the cumulative reward, Se

is the ego agent state, so,1:N is the states for other agents. Te is the passing time of ego
agent, with the maximum allowable time as Tmax. Pe and Ve are the ego agent position
and velocity, which should be limited in the feasible position region Pf and velocity
region Vf , respectively. The collision restriction is not shown in Eq.(3) because it is
integrated in the cumulative reward R.

Fig. 2. The overall network structure for traffic environment modeling with HA precedes FA
(HA-FA model).
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3.2 Environment Model

The transition dynamics of a dense traffic environment is complex due to the inter-
actions between different agents. The action taken by one agent results in both its own
state transition and others’ decision makings. Hence, the environment model for a dense
traffic should consider not only the state histories of each agent, but also the interac-
tion dependencies on others. We propose two self-attention modules to deal with both
the state histories and the interactions: the Frame Attention (FA) module to encode
the sequential state features for each agent and the Horizon Attention (HA) module to
encode the interactive information with others.

The overall structure of our environment model can be seen in Fig. 2. The sequential
states of each agent within the time interval Tobs are first embedded by encoders. The
parameters of the ego-encoder differ from the other-encoders because it is used for
embedding ego-agent’s state. The embedded features are then fed into the HA module
to extract the interactive information across agents at each time step t ∈ [1, Tobs]. After
that, the FA module draws the time dependencies of sequential features with length Tobs

for each agent, with ego-FA for ego-agent and other-FA for other-agents. Decoders are
finally used to get the state of each agent in the next time step. The reward from the
environment is regressed by a feed-forward layer after concatenating all the FA features.

Fig. 3. (a) The detailed architecture of single-head HA-module. (b) The detailed architecture of
single-head FA-module.

The detailed architectures of HA and FA modules can be seen in Fig. 3. Both mod-
ules adopt the self-attention mechanism used in [26]. HA-module recursively uses two
self-attention modules while FA-module uses one. The main difference between HA
and FA modules lies not in their architectures but in their functionalities.

Horizon Attention (HA): The HA module is based on the multi-head self-attention
mechanism to extract the dependencies between different agents that have interactions.
In this module, the relationship between each agent can be extracted by a weight matrix,
in which a higher value indicates a more important dependency. The HAmodule outputs
a high-dimensional feature for each agent that not only encodes the ego-agent state but
also other-agents’ state and their corresponding relationship.

Frame Attention (FA): The FAmodule is proposed to encode the sequential features of
each agent in the scene. Compared to RNN/LSTM architecture, the FAmodule is advan-
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tageous in data parallelization and dependency extraction. Besides, taking an agent’s
full history of states gives it a better understanding of the dynamic environment.

Algorithm 1. Procedure for model-based value optimization in dense traffic
1: Initialize value function Q(s, a), environment model Model(s, a) and an empty experience

buffer B
2: While not done:
3: Observe S from real environment
4: Get action A ← ε-greedy(S, Q)
5: Execute action A, observe reward R and state S′

6: B ← B ∪ (S, A, R, S′)
7: Update Q(S, A) with Eq.(1) and Model(s, a) with (S, A, R, S′)
8: Repeat n times:
9: S ← random previously observed state
10: A ← random previous action taken in S
11: R, S′ ← Model(S, A)
12: Update Q(S, A) with Eq.(1)

3.3 Model-Based RL for Dense Traffic

Model-based RL is more advantageous than model-free RL in its higher sample effi-
ciency. With an environment model, the intelligent agent could learn how the environ-
ment transfers and then predict the action that would lead to desirable outcomes. In this
work, we use our proposed environment model to generate imagined future rollouts and
add them to the experience buffer from which the intelligent agent could learn a passing
policy.

The procedure for model-based value optimization RL that combines direct RL,
model learning, and planning is presented in Algorithm 1. The environment model is
trained online with the real experience from the environment, and the value function
is updated by both the real environment experience and the imagined rollouts from the
environment model.

Algorithm 2. Procedure for model-based policy optimization in dense traffic
1: Initialize parameters θ of policy π, parameters α of environment model M and an empty

experience buffer B
2: While not done:
3: Observe S from real environment
4: Get action A ← ε-greedy(πθ)
5: Execute action A, observe reward R and state S′

6: B ← B ∪ (S, A, R, S′)
7: Update environment model Mα with (S, A, R, S′)
8: Update policy πθ with Mα and B
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The general algorithm for model-based policy optimization is shown in Algorithm
2. The policy is also updated with both real and imagined experiences. The policy updat-
ing method is general such that it could be implemented by any policy optimization
method such as TD3 [4], DDPG [22], etc.

4 Experiments

4.1 Environment Setup

The simulated environment is modified upon the intersection environment presented in
[15]. The environment range is set to [−40m, 40m]. The ego-agent is rewarded by 5 if
it reaches its destination, −5 if it collides with other-agents or violates traffic rules, and
a positive reward of 0.5 is used to encourage driving in a desired speed range. There are
3 levels of difficulty for the environment based on the average number of other-agents,
i.e. easy, medium, and hard.

The agents in the simulated environment are controlled in a hierarchical manner,
including a low-level lateral controller and a high-level longitudinal controller. The lat-
eral action is implemented by a low-level lateral tracker for both ego- and other- agent.
The longitudinal acceleration is realized by our learned policies for the ego-agent while
implemented by a rule-based intelligent driver model (IDM) [13] for other-agents.

Horizon
Attention

ego Frame
Attention

other Frame
Attention

other Frame
Attention

Fig. 4. FA-HA environment model. (Dots indicate the same with HA-FA model.)

4.2 Environment Model Evaluation

In order to evaluate the effectiveness of our environment model, we first collect experi-
ence data from the simulated environment through random policy and then train envi-
ronment models in a supervised manner. The training set contains 100k data while the
testing set contains 10 k. The models are trained on a computer with the configurations:
NVIDIA GTX1080Ti graphics card, Intel i7 6800k, 48 GB RAM. During training, the
batch size is 32, the learning rate is set to 0.0005, and maximum training epoch is set
to 50.
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Besides the proposed HA-FA model, we also implement an FA-HA model as
shown in Fig. 4, where the only difference is the order of HA and FA modules. The
HA/FAmodule is also replaced with multi-layer perceptron (MLP) to get MLP-FA/HA-
MLP models. Other implemented environment models include: Social-LSTM (SL) [1],
Social-Attention (SA) [27], GMM [31], WM [9] and a naive MLP model.

Table 1. Testing Displacement Error of Different Models

Models MLP SA SL GMM WM MLP-FA HA-MLP FA-HA HA-FA

Average Error (m) 0.650 0.325 0.329 0.401 0.457 0.359 0.190 0.436 0.167

Straight Road Error (m) 0.276 0.151 0.141 0.191 0.188 0.183 0.192 0.204 0.143

Intersection Error (m) 0.782 0.388 0.397 0.477 0.555 0.425 0.187 0.520 0.172

The positional displacement error of these methods with respect to the testing data is
shown in Table 1. It is noted that our proposed HA-FA model achieves the best average
prediction performance than other methods. All these methods achieve good results in
straight road prediction, indicating the effectiveness of common prediction methods in
simple driving scenarios. However, in complex situations like intersections, the perfor-
mances of these methods differ a lot. Our proposed HA-FA model performs best in such
situation, mainly contributed to the adoption of HA module as compared with MLP-FA
model. It should be noted that FA-HA model shows a dramatic performance drop even
though it contains both HA and FA modules. The reasons are discussed in Sect. 5.
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HA-FA model MLP-FA model HA-MLP model

Fig. 5. Visualization of environment transition predictions. Green rectangle: ego-agent, blue rect-
angle: other-agents, transparent yellow rectangle: predicted states. (Color figure online)

In order to better understand the effectiveness of HA/FA modules, the visualization
results of the predicted future positions for different agents of HA-FA/MLP-FA/HA-
MLPmodels are shown in Fig. 5. It is seen that our HA-FAmodel has superior prediction
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Table 2. Average Inference Time of Different Models

Models MLP SA SL GMM WM MLP-FA HA-MLP FA-HA HA-FA

Average Inference Time (s) 0.042 0.102 0.097 0.059 0.115 0.047 0.051 0.052 0.055

performance for agents in both straight roads and intersections. The MLP-FA model,
however, has similar performance in straight road scenario while shows bad predictions
when agents are in the intersection region. In contrast, the HA-MLP model shows better
results thanMLP-FA in intersections but slightly worse when agents are at straight road.

The average inference time of each model is computed in Table 2. Although the
inference time of our proposed HA-FA model is not the shortest, it’s still much less
than the time used by other RNN/LSTM- based models like SA/SL/WM, validating the
effectiveness of parallelization for the self-attention mechanism.

4.3 Model-Based and Model-Free RL

We implement the training of different RL algorithms in both model-based and model-
free manners. Model-free RL methods have been tried with both value optimization
like DQN and policy optimization methods like DDPG and TD3. For DQN, the ego-
agent output three discrete actions “slow-down”,“idle”, and “speed-up”. For policy opti-
mization algorithms, the ego-agent produces continuous acceleration ranging in [−5, 5].
The ego-agents for all the implemented algorithms have the same structure as the Ego-
Attention network [16], and our proposed HA-FA model is used as the environment
model for the model-based RL methods.

Fig. 6. Learning curves of model-based and model-free methods

The learning curves are shown in Fig. 6 and the average cumulative reward for each
methods is shown in Table 3. If we define “Rising Time” as the used episodes when
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Table 3. Cumulative Reward and Rising Time of Different Methods (MF: model-free, MB:
model-based)

Models DQN (MF) DQN (MB) TD3 (MF) TD3 (MB) DDPG (MF) DDPG(MB)

Cumulative Reward 15.3 20.9 20.8 22.3 21.1 21.3

Rising Time 1215 1038 381 219 238 137

Table 4. Evaluated result of success rate and passing time (MF: model-free, MB: model-based)

Success Rate Easy Medium Hard Passing Time Easy Medium Hard

IDM (baseline) 97.02% 95.05% 88.12% IDM (baseline) 132.46 147.19 173.84

DQN (MF) 95.34% 92.23% 86.78% DQN (MF) 128.36 140.34 175.53

DQN (MB) 96.81% 92.13% 87.09% DQN (MB) 127.53 139.28 175.42

TD3 (MF) 96.32% 95.31% 88.19% TD3 (MF) 125.55 138.54 172.33

TD3 (MB) 97.57% 96.87% 89.77% TD3 (MB) 120.21 136.91 170.85

DDPG (MF) 95.44% 94.98% 88.09% DDPG (MF) 125.38 139.33 173.95

DDPG (MB) 96.87% 95.87% 88.59% DDPG (MB) 123.29 137.65 171.32

the cumulative reward reaches 90% of the final average reward, then the method with
less rising time has better sample efficiency, as shown in Table 3. It can be seen that all
the model-based methods equipped with our proposed environment model show higher
cumulative reward and better sample efficiency than their corresponding model-free
methods. The model-based TD3 method achieves the highest cumulative reward and
the model-based DDPG method has the best sample efficiency.

The testing result of each method with respect to the success rate and passing time
is shown in Table 4. The baseline metrics are implemented upon the IDM method. It
is seen that the model-based methods with our proposed environment model achieve a
relatively higher success rate and less passing time than their corresponding model-free
methods. Model-based TD3 and DDPG algorithms could even outperform the rule-
based IDM method in our evaluated metrics.

5 Discussion

In this section, we qualitatively discuss the performance drop by the order exchange of
HA and FA modules. As shown in Fig. 7(a), the HA-FA model first extracts the inter-
active dependencies across agents in each frame by HA, and then the decoded features
of all frames are fed into FA to get the time dependencies. In contrast, as shown in
Fig. 7(b), the FA-HA model first gets the time dependencies of each agent and then
extracts the interactive dependencies with the encoded features, which has fewer con-
nections than the HA-FA model.

Hence, the performance drop of the FA-HA model might be caused by two factors:
(1) The environmental information is not fully utilized by the FA-HA model. As shown
in Fig. 7(a)(b), the HA-FA model fully utilizes the interactive information of all frames,
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(a) HA-FA

T T+1

(b) FA-HA

T T+1

T T+1

A
A

B

C
C

B

Fig. 7. (a) Network connections for HA-FA model, (b) Network connections for FA-HA model,
Blue Lines: Horizon Attention, Green Lines: Frame Attention. (c) Illustration about the different
attention importance for different agents at different time steps. (Color figure online)

while the FA-HA model only uses the encoded features from the FA module with time
dependency while ignoring the interactive information at most time frames; (2) The
time dependencies extracted by the FA module for each agent could vary for different
agents such that the HA module could not get useful interactive information. As shown
in Fig. 7(c), the encoded feature for agent C might have higher importance at frame T
while agents A and B higher at frame T + 1.

6 Conclusion

In this work, an environment model for dense traffic based solely on the self-attention
mechanism has been proposed and model-based RL algorithms upon the proposed envi-
ronment model have been developed. The FA and HA modules are presented: the FA
module is used to encode temporal features of one agent while the HA module is to
understand the interactive dependencies among all agents spatially at each time frame.
The HA-FA model shows superior performance over other SOTA methods in predicting
future states of traffic participants. The performance drop of the FA-HA model could
be caused by less information utilization and a mismatch of temporal dependencies for
different agents. Model-based RL algorithms for both value and policy optimizations
have been developed for dense traffic environments. With our proposed HA-FA model,
we successfully trained intelligent agents in a model-based manner for various RL algo-
rithms like DQN, DDPG, and TD3 with better sample efficiency and higher cumulative
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reward. The agents trained with the proposed model-based algorithms also surpass the
corresponding agents trained in a model-free manner with a higher success rate and less
passing time.
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Abstract. Recent advances in cross-domain recommendation have
shown great potential in improving sample efficiency and coping with the
challenge of data sparsity via transferring the knowledge from the source
domain to the target domain. Previous cross-domain recommendation
methods are generally based on extracting information from overlap-
ping users, which limits their performance when there are not sufficient
overlapping users. In this paper, we propose a contrastive-based cross-
domain recommendation framework for cold-start users that simultane-
ously transfers knowledge about overlapping users and user-item inter-
actions to optimize the user/item representations. To this end, two con-
trastive loss functions and two specific learning tasks are proposed. The
proposed framework can make fuller use of the information on the source
domain and reduce the demand for overlapping users, while maintaining
or even enhancing recommendation performance. Experimental results
on a real-world dataset demonstrate the efficacy and effectiveness of our
framework on the top-N cross-domain recommendation task.

Keywords: Cross-Domain Recommendation · Contrastive Learning ·
Cold-Start · Neighborhood Inference

1 Introduction

Recommendation systems, a tool to assist in retrieving helpful information, have
applications covering all aspects of daily life. Limited by the data-driven prop-
erty, there are two challenges in recommendation systems: data sparsity and the
cold-start problem. Data sparsity refers to the few-shot case [1], while the cold-
start problem corresponds to the zero-shot case [2,3]. To address the challenges,
researchers are devoted to introducing auxiliary knowledge from other domains,
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which has given rise to a new research hotspot, namely cross-domain recom-
mendation (CDR) [4–7]. CDR aims to leverage data from the source domain to
improve recommendation performance in the target domain.

Most existing CDR approaches transfer knowledge from the source domain
to alleviate the data sparsity issue, but fail to enhance the cold-start user expe-
rience. With specific consideration for cold-start users, [8] proposed the Embed-
ding and Mapping approach (EMCDR) framework, which consists of three steps:
(1) Encode users and items to obtain the corresponding representations (a.k.a.
embedding in some literature) in each domain. (2) Learn a mapping function
to transfer the overlapping users’ information from the source domain to the
target domain. (3) Based on the output representation of the mapping function,
items on the target domain are filtered to be recommended. Along the lines
of EMCDR, there are many EMCDR-based approaches [9–12]. However, these
methods focus on optimizing the second or third step of EMCDR yet neglect the
optimization of the first step. It is well known that user and item representations
serve as inputs to downstream recommendation models, and their quality plays
a nontrivial role in the ultimate recommendation performance. Therefore, it is
highly desired to design a mechanism for learning better representations.

The effectiveness of the EMCDR framework relies on the ability to efficiently
transfer information about overlapping users, but with this comes the sensitivity
to the number of overlapping users, i.e., the performance of CDR deteriorates sig-
nificantly if there are not sufficient overlapping users. According to the analysis of
the Amazon dataset1 [13] in [10], the largest public real-world dataset for CDR
research, overlapping users (those with records on multiple domains) account
for less than 20% of all users. In order to reduce the dependency on overlapping
users, recent studies additionally consider user-item interactions when transfer-
ring information. For instance, SSCDR [10] proposed a semi-supervised learning
framework to transfer the knowledge of user-item interactions. TMCDR [14]
designed a transfer stage and a meta stage to prevent the learned mapping func-
tion from becoming biased to work well only for overlapping users. Following
these studies, we aim to leverage user-item interactions to enhance CDR per-
formance while relaxing the assumption of sufficient overlapping users. Different
from existing approaches, our work achieves the objective from the perspective
of learning better representations. Inspired by the extraordinary success of con-
trastive learning [15–17], a paradigm for learning representations of unlabeled
samples on the latent space by teaching the model which data points are similar
(positive samples) or different (negative samples), we propose two contrastive
loss functions that are applied to the first and second steps of the EMCDR
framework to optimize the input representation for the third step.

In this paper, we propose a Contrastive Learning for Cross-Domain
Recommendation (CLCDR) framework that is geared towards cold-start users.
Akin to EMCDR [8], the CLCDR framework is divided into three steps: (1) Learn
user and item representations with a proposed contrastive loss function to distill
domain-specific information on each domain. (2) Calibrate the representation
with another proposed contrastive loss function to transfer information from the

1 https://nijianmo.github.io/amazon/index.html.

https://nijianmo.github.io/amazon/index.html
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source domain to target domain. Two tasks are involved in this step, where the
main task is in charge of extracting information from overlapping users while the
auxiliary task corresponds to transferring user-item interaction knowledge. (3)
Infer the representation of cold-start users from the neighborhood of the users.

The contributions of this paper are three-fold and are summarized below.

– We propose the CLCDR framework whereby two complementary tasks
account for both overlapping user information and user-item interactions to
optimize representations and improve the experience of cold-start users.

– We propose two kinds of contrastive learning-based loss functions to extract
domain-specific and inter-domain knowledge effectively. These loss functions
are plug-and-play and compatible with most EMCDR-based frameworks.

– Extensive experiments show that CLCDR outperforms several baselines by
large margins and demonstrate the effectiveness of CLCDR.

2 The Proposed CLCDR Framework

2.1 Notations

Without loss of generality, we consider the most basic case, i.e., cross-domain
recommendations from a source domain X to a target domain Y . In this paper,
the “source domain” refers to the domain where we transfer the knowledge of user
preferences from, while the “target domain” refers to the domain in which we
make recommendations. Each domain has its corresponding item set V, a user set
U , and a binary matrix R ∈ {0, 1}|U|×|V| whose elements indicate whether there
is an interaction between a user and an item. Let UX ,VX , RX and UY ,VY , RY

denote the user sets, item sets, and user-item interactions of the source and target
domain, respectively. Specifically, the overlapping users are denoted by UO =
UX ∩ UY . Note that it is commonly assumed that the set of items in the source
and target domains do not overlap. In the source domain X, let M(uX

i ) denote
the subset of items that user uX

i has ever interacted with, M(vX
j ) denote the

subset of users who have interaction with item vX
j , and ¬M(uX

i ) = VX −M(uX
i )

denote the subset of items for which user uX
i has no interaction record. In the

following, users and items are represented by vectors if not otherwise stated.

2.2 Overview of CLCDR

As presented in the Fig. 1, this CLCDR framework is composed of three steps. (1)
In the encoding step, CLCDR aims to model the user and item representations
of the source and target domains respectively with a newly proposed contrastive
loss. In this way, the interactions between users and items can be represented
by the distances in the latent space. (2) In the transferring step, CLCDR sets
two specific tasks to learn a cross-domain mapping function that can extract
useful information from both domains and get better representations by utilizing
both overlapping users and user-item interactions. (3) In the recommendation
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step, given a cross-domain mapping function, for a cold-start user in the target
domain, CLCDR can obtain an approximation of its expected representation
in the latent space of the target domain based on its neighbors in the source
domain, then return a recommendation item list via preference prediction.

Target Domain

Source Domain

Exclusive users in source domain Exclusive users in target domainOverlapping users

Encoder

Encoder

Main Task
+

Auxiliary Task

Step 1: Encoding Step 2: Transferring

fθ(u)

Multi-hop
Inference

Recommend Items

Step 3: Recommendation

Item 1 Item 2 Item k

…

Overlapping

Users

Representation

Representation

Cross-domain 
Mapping

Fig. 1. The architecture of CLCDR. The first step is to encode users and items by
contrastive loss. The second step is to learn a mapping function through combining
main task with auxiliary task to obtain better representations. The third step is to
recommend items via multi-hop neighborhood inference.

User and Item Representation Encoding. To encode users and items in
each domain, deep neural networks (DNNs) are utilized as encoders to extract
information. Note that the DNN model can be replaced by any other kinds of
models which can learn the representation well. Different from many EMCDR-
based methods, we aim to optimize representation learning by proposing a novel
contrastive loss function that minimizes the distance between positive samples
while maximizing the distance between negative samples. We regard the items
that a user has interacted with as positive samples for that user, and otherwise
as negative samples. Compared with SSCDR [10], there is no need in CLCDR to
add the unit sphere constraint to prevent user and item vectors from spreading
too widely. The proposed contrastive loss function is formulated as follows:

L =
∑

ui∈UO

vj∈M(ui)
vk∈¬M(ui)

− 1
n

log
exp [s (ui, vj) /τ ]

exp [s (ui, vj) /τ ] + exp [s (ui, vk) /τ ]
, (1)

where n is the number of training examples, τ > 0 is a tunable temperature
hyperparamete, and s(a, b) is the cosine similarity between vector a and b, e.g.,
s (ui, vj) can be calculated as follows:

s (ui, vj) =
〈ui, vj〉

‖ui‖ · ‖vj‖ . (2)
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Learning the Cross-Domain Mapping Function for Knowledge Trans-
fer. The second step of CLCDR is to transfer the knowledge from the source
domain to the target domain by learning a cross-domain mapping function.
Unlike EMCDR [8] only exploits the information of overlapping users by formu-
lating a supervised problem, CLCDR accounts for both overlapping users and
user-item interactions. To this end, we design two specific tasks, namely the main
task and the auxiliary task.

The main task is designed to minimize the distance of overlapping users
between two domains. Specifically, the objective of the main task is to learn
a cross-domain mapping function such that the representations of overlapping
users in the source domain can, after mapping, be close to their corresponding
representations in the target domain.

The loss function is formulated as follows.

LMain = −
∑

ui∈UO

s (fθ (ui) , ui) . (3)

where fθ (·) is the cross-domain mapping function parameterized by θ.
According to collaborative filtering [18], users who have interacted with the

same item (i.e., users with similar preferences) in the source domain tend to
share the preferences in the target domain to some extent. Therefore, we set up
an auxiliary task to extend our model to scenarios with fewer overlapping users
by additionally transferring user-item interaction information. To this end, we
propose a contrastive loss to extract user-item interaction knowledge from the
source domain to the target domain, in which the set of items (M(uX

i )) that
one user uX

i (simplified as ui if it is an overlapping user) has interacted with in
the source domain is considered as the positive sample set for this user, while
the others (¬M(uX

i )) are considered as the negative sample set. Specifically, the
proposed contrast loss is given the following definition.

LCL =
∑

ui∈ UO

vX
j ∈M(ui)

vX
k ∈¬M(ui)

− 1
n

log
exp

[
s
(
fθ

(
vX

j

)
, ui

)
/τ

]

exp
[
s
(
fθ

(
vX

j

)
, ui

)
/τ

]
+ exp

[
s
(
fθ

(
vX

k

)
, ui

)
/τ

] . (4)

Combining the two losses together and adjusting the relative importance of
the two tasks by hyperparameter λ, the complete loss function used in the second
step is defined as follows.

L = LMain + λ · LCL. (5)

Top-N Items Recommendation. Following the Multi-hop Neighborhood
Inference method proposed in SSCDR [10], which can fully utilize the infor-
mation of users’ interacted items and items’ interacted users, we first get the
H-th aggregated representation of cold-start users through aggregating their
neighbors’ representation in the source domain. Given the initial representation
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Algorithm 1. The Contrastive Learning for Cross-Domain Recommendation
(CLCDR) Framework
Require: Given the user and item sets of each domain, UX , UY , VX , VY .

Given the binary matrix of user-item interaction, RX , RY .
Given the overlapping user set, UO.

Ensure: Recommend Top-N items to the cold-start users.
Step 1: User and Item Representation Encoding
1: Train a source-domain model to get representation of uX and vX with Eq.(1).
2: Train a target-domain model to get representation of uY and vY with Eq.(1).
Step 2: Learning the Cross-domain Mapping function for Knowledge Transfer.
3: Learn a cross-domain mapping function fθ (·) parameterized by θ with Eq.(4).
Step 3: Top-N Items Recommendation
4: Calculate the H-th aggregated representation of uX,H

i /vX,H
j with Eq.(6)/(7).

5: Map the aggregated representation of uX,H
i through fθ(·) with Eq.(8).

6: Get Top-N Recommendation items.

as uX,0
i = uX

i , vX,0
j = vX

j (∀uX
i ∈ UX and vX

j ∈ VX), the h-hop (h ∈ {1, · · · ,H})
aggregated representation of a user (uX,h

i ) and an item (vX,h
i ) can be calculated

by iteration as follows.

uX,h
i =

1
|M(uX

i )| + 1

⎛

⎝uX,h−1
i +

∑

vX
j ∈M(uX

i )

vX,h−1
j

⎞

⎠ , (6)

vX,h
j =

1
|M(vX

j )| + 1

⎛

⎝vX,h−1
j +

∑

uX
i ∈M(vX

j )

uX,h−1
i

⎞

⎠ , (7)

where |·| is the number of elements in a given set.
Then, the practical representation of cold-start users in the target domain is

obtained with the cross-domain mapping function as follows.

ûY
i = fθ

(
uX,H

i

)
(8)

Finally, we obtain the top-N nearest items for a cold-user uY
i , i.e., the top-N

recommendation results, by calculating the cosine similarity between ûY
i and

each vj ∈ V Y in the target domain.

3 Experiments

Extensive experiments are conducted to answer the following questions:
Q1: How does our CLCDR perform compared with the competitive baselines?
Q2: How does the number of overlapping users impact the model performance?
Q3: How does the contrastive loss affect the performance?
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3.1 Experimental Settings

Datasets. To evaluate our approach, we conduct experiments on Amazon
datasets, which is the largest public CDR dataset. And we define three CDR
scenarios as scenario 1 : Book → Movie, scenario 2 : Book → Music, scenario 3 :
Movie → Music. The detailed statistics of each domain are listed in Table 1.

Table 1. Statistics of cross-domain scenarios (Overlap. denotes overlapping users).

Datasets #Users #Items #Interactions Density #Overlap.

Book Movie 12,0918,231 40,12219,890 583,801357,656 0.12%0.22% 5,644

BookMusic 11,4206,031 38,34112,501 566,309107,376 0.13%0.14% 3,921

MovieMusic 8,6805,425 20,45811,539 360,231102,213 0.20%0.16% 2,374

Baselines. In our experiments, we compare with the following baselines.

– CMF [4]: CMF generalizes Matrix Factorization to cross-domain problems
by sharing the user latent factors and factorizing the joint rating matrix.

– BPR [19]: BPR model the latent vector by pairwise ranking loss, which
optimizes the order of the inner product of user and item latent vectors.

– EMCDR [8]: EMCDR is a widely used CDR framework. It first learns user
and item representations, and then uses a network to bridge the representa-
tions from the source domain to the target domain.

– SSCDR [10]: SSCDR is a self-supervised bridge-based method that gets the
final item list by multi-hop neighborhood inference. This method combines
the EMCDR method with CML [20]. And CML is the state-of-the-art collab-
orative filtering method.

– DAN [11]: DAN captures high-order relationships to learn user preferences
by utilizing the user-item interaction graph end-to-end.

– TMCDR [14]: TMCDR is the state-of-the-art cross-domain recommendation
method for cold-start users.

Note that, several approaches are proposed to recommend items to users who
have interactions in the target domain [9,21]. They are not included in baselines
because they can not recommend items to cold-start users. In addition, CDR
methods utilizing side information such as review texts and item details [23] are
also not included in our baselines as they require more types of data to enhance
the performance. And graph-based methods are also not included.

Evaluation Metrics. To evaluate the performance of our CLCDR, we use
three general metrics: AUC, HR and NDCG, which are widely used in the Top-
N recommendation task [6–8,22].
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Implementation Details. We convert explicit data to implicit data (i.e., con-
vert rating data to binary data). In each scenario, 50% of the overlapping users
are randomly selected, and their interaction information is removed in the tar-
get domain to regard these users as cold-start users for evaluating the model’s
performance. To study the performance of CLCDR with respect to the num-
ber of overlapping users, we extract four training sets with a certain proportion
η ∈ {5%, 20%, 50%, 100%} of overlapping users that are not the test users.

3.2 Experimental Results and Analysis

Table 2 shows the model performance with four different proportions η of over-
lapping users on three scenarios. We evaluate the performance of recommen-
dation models by HR@10, HR@20, NDCG@10, NDCG@20. In summary, our
approach CLCDR obtains the best performance compared with the baselines for
all scenarios and all η. We analyze the results from several perspectives.

Cold-Start Experiments (Q1). We evaluate the effectiveness of CLCDR
on three scenarios, comparing with the existing cross-domain recommendation
methods. The experimental results are shown in the Table 2, and the best per-
formance is shown in boldface. From the experiments, our approach CLCDR
performs best. We have several findings: (1) The CMF performs worst in sce-
narios 1 and 3 because it combines data from different domains by regarding
the data from the different domains as the same, which ignores the potential
domain knowledge transferring. Our method transfers the representation of user
and item from the source domain to the target domain, which can fully use the
source domain knowledge and alleviate the influence of domain shift. (2) We
find that CLCDR could outperform the EMCDR. The EMCDR only transfers
the overlapping users’ knowledge and ignores the user-item interaction. While
our approach CLCDR considers user-user and user-item interaction, which can
transfer more knowledge from the source domain to get a better recommenda-
tion. (3) We can also find CLCDR could outperform the SSCDR, which uses
Euclidean distance to reconstruct latent space. While in our method, we design
a novel contrastive loss with excellent properties of uniformity and alignment
that can effectively calibrate the representation of the target domain. (4) Our
approach CLCDR could also outperform the state-of-the-art method TMCDR,
because we design an effective contrastive loss and auxiliary task to better trans-
fer the domain knowledge. In summary, CLCDR is effective and performs very
well for cold-start user recommendations.

The Impact of Overlapping Users (Q2). In the Table 2, we find that the
performance of baselines is affected by the number of overlapping users. When
there are few overlapping users, that is η < 20%, the performance of baselines
deteriorates as the number of overlapping users decreases. Especially the models
which only transfer the information of overlapping users from the source domain
to the target domain. According to the statistic of [10], the average number
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Table 2. Performance comparison on three scenarios. We report the mean result over
ten runs with outliers removed. CMF, BPR and EMCDR do not utilize the user-item
interaction knowledge while others do. Best results are in boldface. Best baseline is
underlined. Improve. denotes relative improvement over the best baseline.

η Metrics CMF BPR EMCDR SSCDR DAN TMCDR CLCDR Improve.

Scenario 1: 5% HR@10 0.1421 0.1480 0.1563 0.1849 0.1924 0.2010 0.2135 6.22%

Book → Movie HR@20 0.1862 0.1902 0.2037 0.2269 0.2344 0.2373 0.2441 2.87%

NDCG@10 0.1274 0.1295 0.1346 0.1577 0.1620 0.1689 0.1840 8.94%

NDCG@20 0.1546 0.1597 0.1683 0.1870 0.1921 0.1962 0.2107 7.39%

20% HR@10 0.1447 0.1509 0.1585 0.1873 0.1989 0.2062 0.2201 6.74%

HR@20 0.1900 0.1941 0.2082 0.2304 0.2373 0.2398 0.2474 3.17%

NDCG@10 0.1316 0.1332 0.1407 0.1624 0.1665 0.1733 0.1871 7.96%

NDCG@20 0.1587 0.1648 0.1717 0.1900 0.1978 0.2015 0.2182 8.29%

50% HR@10 0.1621 0.1628 0.1699 0.1918 0.2022 0.2111 0.2286 8.29%

HR@20 0.2011 0.2131 0.2289 0.2467 0.2491 0.2503 0.2647 5.75%

NDCG@10 0.1445 0.1481 0.1535 0.1782 0.1810 0.1821 0.1903 4.50%

NDCG@20 0.1647 0.1692 0.1796 0.1931 0.2027 0.2044 0.2258 10.47%

100% HR@10 0.1737 0.1748 0.1821 0.2035 0.2100 0.2238 0.2402 7.33%

HR@20 0.2108 0.2188 0.2354 0.2503 0.2532 0.2564 0.2733 6.59%

NDCG@10 0.1501 0.1537 0.1623 0.1838 0.1862 0.1857 0.1939 4.14%

NDCG@20 0.1695 0.1716 0.1864 0.2062 0.2168 0.2147 0.2325 7.24%

Scenario 2: 5% HR@10 0.1282 0.1275 0.1310 0.1332 0.1338 0.1352 0.1535 13.54%

Book → Music HR@20 0.1721 0.1680 0.1803 0.1891 0.1879 0.1892 0.2004 8.29%

NDCG@10 0.0910 0.0913 0.1045 0.1137 0.1146 0.1145 0.1226 6.98%

NDCG@20 0.1131 0.1168 0.1238 0.1368 0.1373 0.1385 0.1503 8.52%

20% HR@10 0.1301 0.1286 0.1344 0.1368 0.1374 0.1401 0.1594 13.78%

HR@20 0.1797 0.1724 0.1848 0.1967 0.1979 0.1977 0.2131 7.68%

NDCG@10 0.0995 0.0982 0.1138 0.1158 0.1155 0.1187 0.1269 6.91%

NDCG@20 0.1171 0.1195 0.1341 0.1452 0.1471 0.1484 0.1551 4.51%

50% HR@10 0.1344 0.1301 0.1487 0.1501 0.1491 0.1510 0.1620 7.28%

HR@20 0.1805 0.1762 0.1883 0.2050 0.2072 0.2083 0.2187 4.99%

NDCG@10 0.1001 0.1003 0.1174 0.1224 0.1230 0.1254 0.1361 8.53%

NDCG@20 0.1258 0.1261 0.1502 0.1512 0.1539 0.1547 0.1631 5.43%

100% HR@10 0.1387 0.1323 0.1525 0.1611 0.1603 0.1623 0.1689 4.07%

HR@20 0.1854 0.1793 0.1902 0.2109 0.2123 0.2141 0.2234 4.34%

NDCG@10 0.1099 0.1108 0.1406 0.1428 0.1433 0.1457 0.1476 1.30%

NDCG@20 0.1291 0.1303 0.1582 0.1633 0.1668 0.1679 0.1720 2.44%

Scenario 3: 5% HR@10 0.0921 0.1010 0.1075 0.1132 0.1101 0.1172 0.1219 4.01%

Movie → Music HR@20 0.1438 0.1492 0.1580 0.1645 0.1611 0.1675 0.1734 3.52%

NDCG@10 0.0770 0.0621 0.0839 0.0911 0.0910 0.0924 0.1001 8.33%

NDCG@20 0.0811 0.0663 0.0909 0.1007 0.1081 0.1100 0.1197 8.82%

20% HR@10 0.0946 0.1021 0.1121 0.1201 0.1166 0.1199 0.1270 5.92%

HR@20 0.1471 0.1517 0.1601 0.1682 0.1673 0.1691 0.1785 5.56%

NDCG@10 0.0781 0.0628 0.0866 0.1024 0.1031 0.1044 0.1091 4.50%

NDCG@20 0.0839 0.0670 0.0921 0.1139 0.1152 0.1168 0.1231 5.39%

50% HR@10 0.0967 0.1038 0.1219 0.1298 0.1317 0.1321 0.1475 11.66%

HR@20 0.1481 0.1547 0.1681 0.1772 0.1799 0.1840 0.1996 8.48%

NDCG@10 0.0794 0.0635 0.0929 0.1064 0.1085 0.1088 0.1128 3.68%

NDCG@20 0.0845 0.0681 0.0976 0.1202 0.1210 0.1247 0.1284 2.97%

100% HR@10 0.0983 0.1065 0.1375 0.1411 0.1458 0.1462 0.1583 8.28%

HR@20 0.1502 0.1565 0.1796 0.1888 0.1902 0.1910 0.2067 4.50%

NDCG@10 0.0810 0.0711 0.1138 0.1205 0.1214 0.1249 0.1288 3.12%

NDCG@20 0.0866 0.0825 0.1222 0.1365 0.1350 0.1377 0.1425 3.48%
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of overlapping users is less than 20%, so it is necessary to try to transfer other
knowledge. In our approach, we not only transfer the overlapping user knowledge
but also transfer the user-item interaction by designing two kinds of more effec-
tive loss inspired by contrastive learning. One is for inner-domain representation.
Another one is for cross-domain calibration.

Fig. 2. The impact of the proportion η of the overlapping users on scenario 1. (left:
HR@10, right: NDCG@10)

The Fig. 2 shows the impact of the proportion η of overlapping users on the
model. Here we only compare with CMF, BPR and EMCDR, which only model
overlapping user information, to verify that it is practical to model the user-item
interaction. We can see that our approach CLCDR and other approach (SSCDR,
DAN, TMCDR), which also transfer the knowledge of user-item interaction,
work much better than other models, and the performance is smoother. Even
with very few overlapping users, our model still works very well.

The Ablation Study of Contrastive Learning (Q3). There are many
EMDCR based methods that focus on the mapping function itself. While the
performance to some extent may rely on the encoding step. Many researchers
apply their methods upon MF to conduct experiments. While in the real-world
recommendations, the MF is hard to achieve excellent performance by just mod-
eling the user-item interaction as the inner product. Thus, we use a neural-based
model to replace the MF and design the contrastive loss to better model the rep-
resentations. Contrastive loss is to minimize the distance between positive pairs,
and maximize the distance between negative pairs. And this loss function can
be applied in other networks, which means our approach can be applied upon
various models, e.g., YouTube DNN, DSSM.

Figure 3 shows the ablation study of the contrastive learning. In our repre-
sentation and calibration step, we use MF to replace the contrastive learning,
and the performance of “without CL” is shown as a blue one. The purple one is
the AUC of our approach CLCDR which is “with CL”. The result verifies the
effectiveness of the contrastive learning.
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Fig. 3. The ablation study (AUC) of w/o contrastive learning on three scenarios.

4 Conclusion

In this paper, we studied the cross-domain recommendation (CDR) for cold-
start users. Many existing EMCDR-based methods focus on learning a better
mapping function. However, the representation quality plays a nontrivial role in
the ultimate recommendation performance. Thus, we propose a novel approach
called CLCDR, to effectively retrieve the top-N items to cold-start users. The
main contribution comes from enhancing the qualities of user and item represen-
tations by domain-specific contrastive loss and inter-domain calibration loss. We
empirically demonstrated that our CLCDR learns the cross-domain knowledge
more accurately and is practical even with few overlapping users according to
the comprehensive experiments on the Amazon dataset.
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Abstract. Although current methods have advanced the development
of medical visual question answering (Med-VQA) task, two aspects
remain to be improved, namely extracting high-level medical visual
features from small-scale data and exploiting external knowledge. To
strengt-hen the performance of Med-VQA, we propose a pre-training
model called Targeted Choice Contrast (TCC) and a Multimodal Entity
Matc-hing (MEM) module, and integrate them into an end-to-end frame-
work. Specifically, the TCC model extracts deep visual features on the
small-scale medical dataset by contrastive learning. It improves model
robustness by a targeted selection of negative samples. The MEM mod-
ule is dedicated to embedding knowledge representation into the frame-
work more accurately. Besides, we apply a mixup strategy for data aug-
mentation during the framework training process to make full use of
the small-scale images. Experimental results demonstrate our framework
outperforms state-of-the-art methods.

Keywords: Medical Visual Question Answering · Contrastive
Learning · Multimodal Entity Matching · Knowledge Graph

1 Introduction

Medical visual question answering (Med-VQA) aims to answer the clinical ques-
tions based on the visual information of medical images. Currently, most Med-
VQA methods [4,7,10] leverage transfer learning to obtain better performance,
where the initial weights of the visual feature extractor are derived from the pre-
trained model with large-scale unannotated radiology images. Further, concerning
the fact that understanding complex clinical questions depends on not only the
Image-Question (I-Q) pairs but also prior knowledge, the recent approach [8] intro-
duces the knowledge graph (KG) to improve the Med-VQA performance. These
methods advance Med-VQA from the embryonic stage to the development stage.

However, there are two problems with the methods described above. The first
problem is that these methods excessively rely on external large-scale medical
images for pre-training. The pre-trained models MEVF [10], MTPT [4] and
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CPRD [7] capture visual features from 11,779, 11,014 and 22,995 unlabeled
images, respectively. In fact, it is very costly and time-consuming to obtain
large-scale medical image data. Besides, these approaches require that the data
for the downstream tasks are similar in statistical distribution to most of the
data used in the pre-training phase [20]. Otherwise, their performance will be
degraded. Therefore, it is necessary to develop a pre-training model to mine
deeper visual information using existing small-scale data as much as possible.

The second problem is that how to accurately embed the knowledge from
the KG into the Med-VQA framework is under-explored. To our best knowledge,
only Liu et al. [8] propose a pipeline method to embed the external knowledge,
which introduces irrelevant information in some cases. This irrelevant knowledge
misleads the generation of correct answer, thereby degrading the performance of
model. We take the question “which organs/organ in the picture belong to
the respiratory system” in Fig. 1 as an example to describe their approach.
First, they use two LSTMs to predict the “tail” entity, “relation” of the question,
and obtain “respiratory system” and “belong to”. Second, they combine the
“tail” entity, “relation” through TransE [1] method to get the question-related
“head” entity, which is the “larynx” entity. Finally, the “larynx” embedding
and the I-Q pair fusion information are combined to get the answer. However,
there are multiple “head” entities obtained through the “tail” entity “respiratory
system” and the relation “belong to”, including “lung”, “larynx”, “pharynx”
et. Therefore, the way that Liu et al. [8] only utilize the question information to
obtain the “head” entity is inaccurate. A better way to get the “head” entity is
to combine multimodal information in a matching manner.

Q: Which organs/organ in the picture 

belong to the respiratory system?
TransE

KG

larynx

relation tail entity head entity

Fig. 1. An example of embedding knowledge from the knowledge graph. The embed-
ding of each entity in the KG is reinforced by the TransE [1] method.

In this paper, we propose the following measures to address the two prob-
lems above. For the first problem, inspired by the superior ability of contrastive
learning in visual extraction, we propose a pre-training model called Targeted
Choice Contrast (TCC). It captures high-level visual features on small-scale data
through contrastive learning. Specifically, the main difference between TCC and
existing contrastive learning methods [2,3,5] is the selection of negative samples.
When images most similar to the positive sample are used for the negative sam-
ples, it is harder for the model to distinguish between positive and negative sam-
ples since the same domains should be more similar, resulting in a more robust
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model [13]. Considering the existence of various domains in medical images, such
as different body parts and modalities (CT, MRI, X-rays), in order to identify
the more difficult negative samples, we choose samples that are identical to the
positive samples in modalities and body parts as the negative samples. Notably,
we only use the 450 images in SLAKE [8] to train the TCC model. For the sec-
ond problem, we design a Multimodal Entity Matching (MEM) module which
combines semantic and visual information to match the most relevant “head”
entity, helping to predict answers more accurately. We integrate TCC and MEM
into our Med-VQA framework to enhance the robustness and accuracy of the
framework. In addition, we apply the mixup [19] technology in our framework
training to exploit small-scale data where possible. Our contributions in this
work are as follows:

– A effective pre-training model TCC dedicates to mining high-level visual fea-
tures from small-scale data by contrastive learning. It strengthens the robust-
ness of the model with targeted selection of negative samples.

– A novel MEM module combines multimodal information to obtain the “head”
entity from the KG that is most relevant to the I-Q pair. This representation
of knowledge grants positive guidance to the framework.

– Our framework outperforms the state-of-the-art baselines on the SLAKE [8]
benchmark dataset. Figure 5 provides visualization examples showing our
framework can predict the answer more accurately by locating and identi-
fying the special region associated with the question.

2 Method

2.1 The Proposed Med-VQA Framework

In the proposed Med-VQA framework shown in Fig. 2. First, to extract medical
visual features Fv, every input image is passed through the ResNet-50 (ini-
tialization weights from TCC), forming the 256-D enhanced image feature Fv.
Further, each input question is trimmed into a 20-word sentence, and each word
is represented a 300-D vector by a pre-trained GloVe [12]. And the question is
zero-padded in case its length is less than 20. Then the word embeddings are fed
into a 1024-D LSTM to generate the question embedding Fq.

Second, the MEM module is introduced to obtain the “head” entity embed-
ding ê from KG that is most relevant to the multimodal representation Fa.
Within the MEM module, the image features Fv and question embedding Fq are
fed to two fully connected layers, forming two different length vectors F ′

v and
F ′
q, respectively. Then, F ′

v and F ′
q are passed into BAN [6] to generate the mul-

timodal representation Fa. In the end, we compute the relevance scores between
the Fa and the embedding Re of each “head” entity found from KG, and select
the most relevant “head” entity embedding ê.

Finally, to predict the answer with the image feature, question embedding and
the most relevant “head” entity embedding, the image features Fv and question
embedding Fq are fed into another BAN [6] to obtain the joint multimodal
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Fig. 2. Overview of our proposed framework

representation Fb. It is worth noting that both BANs in our proposed framework
have the same structure and different parameters. The embedding of the most
relevant “head” entity ê and Fb are summed to obtain the feature vector Fc,
which is used as the input of the answer predictor. We employ the cross-entropy
loss as the classification loss of Med-VQA.

2.2 Targeted Choice Contrast (TCC)

In order to learn high-level visual features extraction from small-scale images, we
design the pre-training TCC model using contrastive learning. Considering the
images most similar to the positive samples for the negative samples will enhance
the robustness of the model and improve its ability to mine visual information
[13], in order to identify the more difficult negative samples, we choose samples
that are identical to the positive samples in modalities and body parts as the
negative samples. Notably, we only use the 450 images in SLAKE [8] to train
the TCC. Its structure is shown in Fig. 3a.

First, we randomly sample an image vbm labeled with a given body part b and
modality m, and N images with the same body part b and modality m. These
N images form the list l =

{
v−
j

}N

j=1
. N equals to the batch size subtracting 1.

Second, we employ the data augmentation (denoted as Aug) on vbm twice and l
once, respectively. The augmented views from vbm and l are as

ˆvbm = Aug(vbm), ˆvbm
+ = Aug(vbm), l̂ =

{
v̂−

j = Aug
(
v−
j

)}N

j=1
(1)

where, ˆvbm
+ considered positive sample for ˆvbm , l̂ considered negative samples

for ˆvbm . Next, the first view ˆvbm is passed through the encoder Eq to extract
visual features fbm = Eq( ˆvbm ). The other view ˆvbm

+ and the l̂ are fed to

the encoder Ek to produce representations f+
bm and f− =

{
f−
1 ,f−

2 , . . . ,f−
N

}
.

Finally, since fbm and f+
bm come from different view features for vbm, fbm

should be similar to f+
bm , but dissimilar to the other N representations in f−.
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This learning process can be guided with the contrastive loss InfoNCE [11]:

L
fb m ,f

+
b m

,
{

f
−
j

} = − log
exp

(
fbm · f+

bm /τ
)

exp
(
fbm · f+

bm /τ
)

+
∑N

j=1 exp
(
fbm · f−

j /τ
) (2)

where τ is a temperature parameter and · is dot product.

Fig. 3. (a) Our proposed TCC. (b) The third step in the MEM module.

2.3 Multimodal Entity Matching (MEM)

To extract more accurate information from the KG, we propose the MEM module
which exploits multimodal information to obtain the “head” entity from the KG
that is most relevant to the I-Q pair. This module takes the following three steps
to find the most relevant “head” entity, unlike the method [8] in Fig 1.

In the first step, in order to learn the implicit semantic representation of
images and questions, we use fully connected layers to encode the image fea-
tures Fv and question embedding Fq, respectively. We denote the two resulting
vectors of different lengths as F ′

v and F ′
q. In the second step, to utilize given

vision-language information seamlessly, we employ BAN [6] to fuse F ′
v and F ′

q to
generate the joint representation Fa. In the third step, we calculate the relevance
scores between Fa and multiple “head” entities embeddings found by KG, and
choose the highest-score “head” entity embeddings ê.

The third step is extremely important as it determines the accuracy of the
entity matching. The third step of the MEM module is shown in Fig. 3b. It
contains two parts: the selection of multiple “head” entities and the calculation
of relevance score. For the first part, the extraction of the “tail” entity and
“relation” in the question, we follow the method in QA-GNN [16]. After that,
we combine the “tail” entity with the “relation” to find the multiple “head”
entities from the KG. For the second part, to obtain the most relevant “head”
entity to Fa from multiple “head” entities, we use cosine similarity as a method
of calculating the relevance score after the ablation experiment in Sect 3.4. The
embedding of each “head” entity and Fa calculate the cosine similarity to obtain
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the relevance score. We select the “head” entity embedding with the highest-
score, and denote it as ê. The calculation is as follows:

ê =

{
arg max

e∈G

(sim (Fa, Re)) if G �= ∅

0 else
(3)

where G denotes the multiple “head” entities set, Re denotes the embedding of
“head” entity e, sim deontes cosine similarity.

3 Experiments

3.1 Dataset

SLAKE [8] is a bilingual Med-VQA dataset in Chinese and English. Since the
Chinese and English questions are parallel sentences, we choose the English
question for evaluation experiments, noting it as SLAKE-EN, which includes
642 radiology images and 7,033 question-answer pairs.

There are two different ways of dividing the questions. The first way separates
the questions into “closed-ended” questions where the answers are restricted
choices such as “yes”, “no” and “lung”, and “open-ended” questions where the
answers are free-form text. The second way splits the questions into vision-only
questions and knowledge-based questions based on semantic labels. We evaluate
our proposed Med-VQA framework based on the first dividing way on SLAKE-
EN. Besides, to validate the superiority of the MEM module, we experiment on
the knowledge-based questions.

3.2 Experimental Setup

The experiments of the pre-training TCC are performed on a single NVIDIA
Tesla P100 with 16 GB Graphic Memory. The experiments with the Med-VQA
framework are conducted on two NVIDIA Tesla P100 with 16 GB Graphic Mem-
ory. We implement all models with PyTorch.

Targeted Choice Contrast (TCC). We use ResNet-50 followed by two fully
connected layers to instantiate Eq and Ek (Sect 2.2) and train 200 epochs. We
set the batch size as 16 in each epoch. The temperature parameter τ in Eq. 2 is
set to 0.4. We optimize the model using the AdamW [9] method, with the initial
value of the learning rate set to 0.01. The learning rate is dynamically adjusted
by the cosine schedule. Furthermore, we use weight decay to prevent over-fitting
due to small-scale data.

The Proposed Med-VQA Framework. The initialization weights of the
visual extractor in Med-VQA are derived from the pre-trained TCC. Then, we
train the whole Med-VQA framework in an end-to-end way on SLAKE [8] for 600
epochs. The visual extractor RseNet-50 is fine-tuned in this process. We employ
the mixup [19] technology in the framework training stage, with the hyperparam-
eters α set to 5 and β set to 1 for the Beta(α, β) distribution. We use AdamW
[9] optimizer with an initial learning rate of 5 ∗ 10−4 for model optimization.
Like the normal Med-VQA, we use accuracy to evaluate our model.
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3.3 Comparison with the State-of-the-arts

To demonstrate the effectiveness of the proposed Med-VQA framework, we com-
pare it with the general Med-VQA model MFB [17], SAN [15] and BAN [6].
Besides, we compare it with the latest models involving MEVF [10,18] and
CPRD [7] , all of which are trained with extra radiology images. Table 1 shows
the results on SLAKE-EN [8]. The initialization weights of the visual feature
extractor in MFB [17], SAN [15] and BAN [6] are derived from the pre-trained
model ResNet-50 in ImageNet.

Table 1. Test accuracy of our method and baselines.

# Methods SLAKE-EN [8]

Overall(%) Open(%) Close(%)

1 MFB fw [17] 73.3 72.2 75.0

2 SAN fw [15] 76.0 74.0 79.1

3 BAN fw [6] 76.3 74.6 79.1

4 BAN fw [6]† 79.9 76.9 84.6

5 MEVF + SAN [10]* 76.5 75.3 78.4

6 MEVF + BAN [10]* 78.6 77.8 79.8

7 CPRD + BAN [7]* 81.1 79.5 83.4

8 TCC + BAN (ours) 81.9 79.1 86.3

9 MEVF + BAN + CR [18]* 80.0 78.8 82.0

10 CPRD + BAN + CR [7]* 82.1 81.2 83.4

11 TCC + BAN + MEM (ours) 82.2 79.2 86.8

1 * indicates that the method of extra medical
images is used.
2 † indicates the result of our re-
implementation.

The following observations can be made from Table 1. (1) Our TCC+BAN+
MEM outperforms the state-of-the-art baselines. (2) The TCC+BAN+ MEM
achieves state-of-the-art results on the “closed-ended” question with a 3.4%
improvement over the latest model CPRD+BAN+CR [7]. This demonstrates
that our proposed pre-training TCC model can deliver high-level visual features
for the downstream task Med-VQA, and the MEM module can provide positive
guidance for the Med-VQA framework.

3.4 Ablation Studies

In this section, we first study the contribution of the pre-training TCC model,
the MEM module and the mixup technique to our framework. Next, we discuss
the contribution of negative example selection in TCC and τ in Eq. 2 to the
framework. Finally, we explore the impact of different relevant score calculation
methods in MEM on our framework.

Med-VQA Framework. To demonstrate the effectiveness of our proposed
framework, we conduct ablation study with the BAN (row #1–4), which is shown
in Table 2.
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Table 2. Ablation studies of mixup, TCC, MEM in Med-VQA framework.

# mixup TCC MEM SLAKE-EN [8]

Overall(%) Open(%) Close(%)

1 79.9 76.9 84.6

2 � 80.3 76.6 86.1

3 � � 81.9 79.1 86.3

4 � � 81.8 78.8 86.5

5 � � � 82.2 79.2 86.8

In Table 2, the BAN network is set as the baseline and its accuracy is 79.9%.
Comparing to the baseline, we utilize pre-trained TCC model to provide ini-
tialization weights for the visual extractor, apply MEM module to learn more
accurate knowledge representation and introduce the mixup strategy into frame-
work (row #2–5), which brings an accuracy gain of 2.3%. Bedides, mixup brings
a 0.4% boost, which is used in all subsequent ablation experiments.

Selection of Negative Samples and τ in TCC. To obtain a better nega-
tive samples selection method and τ in Eq. 2, we perform experiments in the
pre-training model TCC. Specifically, we use different negative sample selection
methods and τ in TCC to obtain the pre-trained models. Then, these pre-trained
models are fine-tuned and evaluated by our Med-VQA framework (MEM module
is missing). The results are shown in Table 3.

Table 3. Selection of negative samples and τ in TCC

(a) Experiments for negative samples choice on TCC (b) The choice of parameter τ in Eq.2

# modality body part
SLAKE-EN [8]

# t
SLAKE-EN [8]

Overall(%) Open(%) Close(%) Overall(%) Open(%) Close(%)

1 80.9 78.1 85.3 1 0.07 81.8 79.1 85.8

2 � 81.4 78.1 86.5 2 0.1 81.4 78.6 85.6

3 � 81.1 78.0 85.8 3 0.2 81.5 78.9 85.6

4 � � 81.8 79.1 85.8 4 0.3 81.2 78.0 86.3

5 × 81.4 78.0 86.8 5 0.4 81.9 79.1 86.3

6 × 80.9 77.7 85.9 6 0.5 81.9 78.6 87.0

7 × × 81.2 78.0 86.1 8 0.6 81.5 79.1 85.3

In Table 3a, the τ is set to 0.07, the row #3–1 indicates that the selection
of negative samples is random. Row #3–2 show that negative samples have
the same modalities as positive samples. Row #3–5 indicates that the negative
samples are different in modalities from the positive samples. In the TCC model,
we observe that the framework performs best when the negative and positive
samples have the same modalities and body parts (row #3–4). For small-scale
image data, we argue that this selection method enhances the robustness of the
model and improves its ability to capture high-level visual features.

Based on the selection in the fourth row of Table 3a, we experiment on τ in
Eq. 2, and the results are shown in Table 3b. We can find the temperature τ is a
key parameter to control the strength of penalties on difficult negative samples.
When τ is set to 0.4 (row #3–5), it improves the feature quality.
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Relevance Score Calculation in MEM Module. In the MEM module, in
order to choose a good method for calculating the relevance score, we experiment
with our proposed framework, which does not use TCC to provide initialization
weights for the visual extractor. We compare Euclidean Distance, dot product
and cosine similarity. The result is shown in Table 4.

Table 4. Relevance Score Calculation in MEM Module

Methods SLAKE-EN [8]

Overall(%) Open(%) Close(%)

Euclidean Distance 80.7 77.4 86.1

dot 81.3 77.4 86.0

cos 81.8 78.8 86.5

As shown in Table 4, in the MEM module, the improvement in using cosine
similarity is 1.1% compared to the Euclidean distance calculation method. This is
because the cosine similarity method is a better measure of individual differences
in scientific research. Therefore, we choose the cosine similarity method in the
MEM module.

3.5 Comparison of Contrastive Learning Methods

In this part, we compare the structure and accuracy of TCC with existing
contrastive learning methods [2,3,5]. Figure 4 provides an abstraction of these
method structures.

Fig. 4. Comparison of Contrastive Learning Methods. Predictor denotes the MLP. In
MoCo-v2 [3], the queue is used to hold lots of negative examples. In TCC, we select
negative samples in a targeted manner.

BYOL [5] use positive samples only to learn model representations. MoCo-v2
[3] and SimCLR [2] utilizes negative samples to avoid model collapse. To extract
deeper visual features, we select negative samples with the same modalities and
body parts as the positive samples in a targeted manner. To compare the perfor-
mance of these contrastive learning methods on small-scale data, these methods
are first pre-trained on 450 images and then fine-tuned in our Med-VQA frame-
work (MEM module is missing, mixup [19] is used). The results are shown in
Table 5.
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Table 5. Comparison of different contrastive learning methods on Med-VQA fine-tuned
on SLAKE-EN [8].

Methods SLAKE-EN [8]

Overall(%) Open(%) Close(%)

BYOL [5] 80.4 76.6 86.3

MoCo-v2 [3] 80.7 77.2 86.1

SimCLR [2] 80.9 78.1 85.4

TCC 81.9 79.1 86.3

In Table 5, we can find the following: (1). In small-scale datasets, our proposed
TCC can provide better visual features for the downstream task Med-VQA. (2).
For a small-scale data set, methods using negative samples perform better than
approaches using positive samples only. (3). Compared with SimCLR [2], our
TCC achieves better performance on the downstream task Med-VQA, which
benefits from the targeted choice of negative samples.

3.6 Superiority of MEM Module

In order to assess the superiority of the MEM module in terms of knowledge
embedding, we compare it with the latest KG embedding approach [8]. Based
on the second way of dividing the dataset, the performance of the methods is
evaluated in knowledge-based questions. For the fairness of comparison, following
Liu et al. [8], we use VGG as visual extractor, LSTM as text extractor and SAN
[15] as fusion module. The results of the experiments are shown in Table 6. On
the Table 6, the method of Liu et al. [8] to embed knowledge representation is
denoted by KG.

Table 6. Accuracy for knowledge-based questions on SLAKE-EN [8].

Methods SLAKE-EN [8]

Overall(%) Open(%) Close(%)

VGG + SAN [8] 70.27 – –

VGG + SAN + KG [8] 72.30 – -

VGG + SAN† 70.94 69.72 74.35

VGG + SAN + KG† 72.29 71.56 74.36

VGG + SAN + MEM (ours) 77.03 76.15 79.5

1 † indicates the result of our re-implementation.

In Table 6, our proposed MEM module is superior to the knowledge embed-
ding method used in [8], bringing a 4.74% improvement. This suggests that the
most relevant “head” entity obtained by combining semantic and visual infor-
mation has a more positive guiding effect on Med-VQA.

3.7 Visualization

In this subsection, we compare our proposed framework with the baseline model
MEVF+BAN+CR [18]. Figure 5 visualizes the test results of some questions in
SLAKE-EN [8]. We leverage Grad-CAM [14] to highlight the crucial regions for
images. Our proposed framework can predict the answer more accurately by
locating and identifying the special region associated with the question.
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Fig. 5. Visualization of our proposed framework and baseline MEVF+BAN+CR [18]
results. � and × denote the correctness of what each model gives for the answer.

4 Conclusion

In this paper, we propose the pre-training TCC model to tackle the poor visual
feature extraction ability on small-scale dataset. Further, we design the MEM
module to improve the accuracy of embedding knowledge graph in the Med-
VQA task. Experimental results demonstrate that our framework outperforms
the state-of-the-art baselines on the benchmark dataset SLAKE, especially in
“closed-ended” and knowledge-based questions.
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Abstract. Nonparallel multi-domain voice conversion methods such as
the StarGAN-VCs have been widely applied in many scenarios. How-
ever, the training of these models usually poses a challenge due to their
complicated adversarial network architectures. To address this, in this
work we leverage the state-of-the-art contrastive learning techniques and
incorporate an efficient Siamese network structure into the StarGAN dis-
criminator. Our method is called SimSiam-StarGAN-VC and it boosts
the training stability and effectively prevents the discriminator overfit-
ting issue in the training process. We conduct experiments on the Voice
Conversion Challenge (VCC 2018) dataset, plus a user study to validate
the performance of our framework. Our experimental results show that
SimSiam-StarGAN-VC significantly outperforms existing StarGAN-VC
methods in terms of both the objective and subjective metrics.

Keywords: Contrastive Learning · Nonparallel Voice Conversion ·
StarGAN · Siamese Networks · Data Augmentation · Training Stability

1 Introduction

Voice conversion (VC) is a speech processing task that converts an utterance
from one speaker to that of another [19,25,32,33]. VC can be useful to vari-
ous scenarios and tasks such as speaker-identity modification for text-to-speech
(TTS) systems [16], speaking assistance [30], and speech enhancement [1].

Voice contains significant information of the speaker [23], so increasingly com-
plicated models are employed to capture the feature of voice. Statistical methods
based on Gaussian mixture models (GMMs) [7,29] have been quite successful in
VC task. Recently, deep neural networks (DNNs), including feed-forward deep
NNs [21], recurrent NNs [26], and generative adversarial nets (GANs) [11], have
also achieved promising results on VC task. Most of these conventional VC meth-
ods require accurately aligned parallel source and target speech data. However,
in many scenarios, it may be impossible to access parallel utterances. Even if we
could collect such data, we typically need to utilize time alignment procedures,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Tanveer et al. (Eds.): ICONIP 2022, LNCS 13624, pp. 355–366, 2023.
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which becomes relatively difficult when there is a large acoustic gap between the
source and target speech [8,11]. These challenges motivate how to train high-
quality VC models with non-parallel data.

Many research study non-parallel VC methods, because they require no paral-
lel utterances, transcriptions, or time alignment procedures. Currently, two rep-
resentative methods of this type are CycleGAN-VCs [12,14] and StarGAN-VCs
[10]. These methods are first developed by the computer vision (CV) community
for style transfer of figures [4,34]. The main difference between CycleGAN-VCs
and StarGAN-VCs lies in the multi-domain cases. CycleGAN-VCs are specialized
to two domain cases, while StarGAN-VCs can handle multi-domains by taking
account of the latent code for each domain [10]. Other researchers also investi-
gate how to perform voice coversion in few-shot cases, such as, [27,28]. However,
the training of GAN-like models is a challenge due to their non-convex nature.
Therefore, the training stability of StarGAN-VCs is poor and can consume a
significantly large amount of time.

In this paper, we focus on how to boost the training stability of StarGAN-
VCs that utilize a StarGAN architecture to perform VC tasks. Due to the non-
convex/stationary nature of the mini-max game, however, training StarGANs
in practice is often very unstable and extremely sensitive to many hyperpa-
rameters [5,22]. Data augmentation techniques have recently proven beneficial
to stabilizing GAN-like adversarial models [31]. Researchers also have applied
contrastive learning methods to the basic GAN as an auxiliary task upon the
GAN loss [9,17]. From the literature, contrastive methods can strengthen the
discriminator of GAN models, thereby improving the capability of the entire
GAN model. However, little attempt has been done to the complicated Star-
GAN models, let alone for the VC tasks. In this paper, we leverage the efficient
simple Siamese (SimSiam) representation learning [3], one kind of contrastive
learning, to train the discriminator of the StarGAN-VC model, and our method
is called SimSiam-StarGAN-VC. We evaluated the performance of the proposed
SimSiam-StarGAN-VC on the commonly used multi-speaker VC dataset Con-
version Challenge 2018 (VCC 2018) [18]. We observe that SimSiam-StarGAN-
VC presents better stability of the training process and better naturalness of
converted voices, compared with the original StarGAN-VC2.

Our contributions are summarized as follows:

– We propose a SimSiam-StarGAN-VC method, which incorporates a Siamese
network into StarGAN-VCs and stabilizes the training of StarGAN-VCs.

– We empirically investigate the performance of SimSiam-StarGAN-VC and
show its superiority over StarGAN-VCs in terms of both subjective and objec-
tive metrics.

2 Background

Prior to the introduction of our SimSiam-StarGAN-VC, we elaborate the
StarGAN-VC2 and SimSiam methods in this section.
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2.1 StarGAN-VC2 Method

Inspired by the success of StarGAN in the computer vision community, [10]
proposed to leverage its power to train a single generator G that converts voices
among multiple speakers or domains. For each speaker, StarGAN-VC posits
a domain code (e.g., a speaker identifier or embedding). The generator G of
StarGAN-VC takes a real acoustic feature map x and the target domain code
c′ as input and produces a feature map x′ of the target speaker domain c′. The
mathematical notations are presented in Table 1. Specifically, We denote x as
a 2-dimensional acoustic feature map (like MFCC). We use c ∈ {1, . . . , N} to
denote the domain code of a speaker, where the number of domains or speakers
is N .

To further enhance the conversion performance of StarGAN-VC, StarGAN-
VC2 [13] introduces the source-and-target conditional adversarial loss to replace
the classification loss and target conditional adversarial loss in StarGAN-VC.
Both the generator and discriminator in StarGAN-VC2 take the source (c)
and target (c′) codes as input, i.e., G(x, c, c′) → x′. The training objectives
of StarGAN-VC2 is the source-and-target adversarial loss which is shown as
follows.
Source-and-Target Adversarial Loss: the most significant contribution of
StarGAN-VC2

Lst−adv = E(x,c)∼P (x,c),c′∼P (c′) [logD (x, c′, c)]+
E(x,c)∼P (x,c),c′∼P (c′) [log(1 − D (G (x, c, c′) , c, c′))] ,

(1)

lies in that both the generator G and discriminator D takes the acoustic feature
map (x), source domain (c) and target domain codes (c′) as input. The strik-
ing difference between StarGAN-VC2 and StarGAN-VC is that StarGAN-VC
ignores the source code c. D(x, c′, c) outputs the probability that an acoustic
feature x is real from the target domain c, and its range is from 0 to 1. Similar
to other GAN models, it is a min-max game: maximizing the loss in Eq. (1) with
respect to D leads to a powerful fake voice detector, but minimizing the loss
with regards to G will train a generator to mimic the true acoustic features.

[13] also explored to deploying a conditional instance normalization (CIN)
module [6] inside the network architecture, which proceeds as in Eq. 2.

CIN (f ; c′) = γc′

(
f − μ(f)

σ(f)

)
+ βc′ , (2)

In Eq. 2, f represents a feature map of input audio, μ(f) and σ(f) are the average
and standard deviation of f that are computed for each training sample. γc′ and
βc′ are speaker(domain)-specific scale and bias parameters for the speaker (i.e.,
domain) c. In the training process, we train and learn these speaker-specific
parameters with other network parameters/weights. For the source and target
generator loss in Eq. (1), these domain specific parameters γ and β are dependent
on both the source (c) and target speakers (c′), i.e., γc′ and βc′ are replaced by
γc,c′ and βc,c′ , respectively.
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2.2 Simple Siamese Representation Learning

SimSiam is one kind of contrastive learning [3], which requires none of the fol-
lowing: 1.) negative sample pairs, 2.) large batches, and 3.) momentum encoders.
It utilizes two random data augmentations of each audio as input, and extracts
features via the same encoder network f and a multi-layer perceptron (MLP)
projection header h. More specifically, augmented speeches x1 and x2 come from
x, with their high-level features zi = f(xi) and pi = h(f(xi)). The SimSiam loss
for each real speech is

LSimSiam(x1,x2, f) =
1
2
D(p1, (z2))

+
1
2
D(p2, (z1)),

(3)

where
D(p1, z2) = − p1

||p1||2 · z2
||z2||2

with || · ||2 the �2-norm and represents the stop-gradient operation.

3 Methodology

In this section, we illustrate how our SimSiam-StarGAN-VC works. We utilize
the same network architecture as StarGAN-VC2 in [13], but our framework is
compatible to many existing GAN based VC architectures. The overall architec-
ture is shown in Fig. 1, where the G and D are the generator and discriminator,
respectively. The source and target domain codes are c and c′, respectively, and
they are embedded to latent vectors before being fed into the generator and
discriminator. For clarity, we list the mathematical notations in Table 1.

3.1 Contrastive Learning for Real Samples

In this part, we describe how to train the discriminator D with contrastive
learning. We denote the encoder part of the discriminator D as De, and it can
extract high-level features (a real vector) from an input speech, i.e., De : (x) →
R

de .
Overall, the encoder network De of SimSiam-StarGAN-VC is trained by min-

imizing two different contrastive losses: (a) the SimSiam loss in Eq. 3 on the real
speech samples, and (b) the supervised contrastive loss [15] on fake speech sam-
ples. Figure 1 displays the loss functions used in our SimSiam-StarGAN-VC. We
elaborate these two contrastive losses in detail.
Contrastive Learning with Real Speech Samples. Here, we attempt to
simply follow the SimSiam training scheme for each real sample x, the loss
function is

LSim(x,De) = LSimSiam(t1(x), t2(x),De), (4)

where t1 and t2 are augmentation methods for audio data [20].
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Fig. 1. The overall architecture of SimSiam-StarGAN-VC. The source and target
speaker (domain) codes are c and c′, respectively.

3.2 Supervised Contrastive Learning for Fake Speech Samples

In order for the encoder of De to keep necessary information to discriminate
real and fake speech samples, we consider an auxiliary loss Lcon. Specifically, we
employ the supervised contrastive loss [15] over fake (generated) speech samples.
This loss is an extended version of contrastive loss to support supervised learning
by allowing more than one sample to be positive, so that samples of the same
label can be attracted to each other in the embedding space. On a mini-batch,
we treat the real samples and their augmented versions as positive, and the
generated fake speech samples as negative. For a mini-batch of real samples, we
denote p(1) and p(2) as the projected representations (after a MLP) of two kinds
of data augmentation. pf is the set of projected representations for a batch of
converted (generated by G) fake audio samples. Formally, for each p

(1)
i , let P

(2)
i+
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Table 1. List of mathematical notations

Notation Meaning

x MFCC features of a speech

De Encoder part of the discriminator D

de The number of features in the output of De

t1, t2 Two kinds of data augmentation (DA)

t1(x) MFCC features of a speech after DA t1

t2(x) MFCC features of a speech after DA t2

z
(1)
i i.e., De(t1(xi)), hidden features of the i-th speech after DA t1

z
(2)
i Same as z

(1)
i , but for DA t2

p
(1)
i Projected features of the i-th sample, e.g., the output of feeding z

(1)
i to a

linear layer

p
(2)
i Same as p

(1)
i , but for DA t2

B The number of real samples in a training batch

p(1) The set {p(1)
i , i = 1, . . . , B} of projected features of real samples after DA

t1

p(2) The set {p(2)
i , i = 1, . . . , B} with DA t2

P
(2)
i+ Subset of p(2) containing samples of the same label (True or Fake) as the

i-th sample

pf,i The projected features of the i-th fake (generated by G) audio sample

pf,−i The set of projected features for all generated samples except the i-th
sample

be a subset of p(2) that represent the positive pairs for p(1)
i . Then the supervised

contrastive loss is defined by:

LSupCon(p
(1)
i ,p(2), P

(2)
i+ ) =

− 1

|P (2)
i+ |

∑
p
(2)
i+ ∈P

(2)
i+

log
exp(s(p(1)

i ,p
(2)
i+ ))∑

j exp(s(p
(1)
i ,p

(2)
j ))

,
(5)

where s(·, ·) is the inner product used in SimCLR [2].
Using this notation, we define the loss for fake samples as follows:

LCon =
1
B

B∑
i=1

LSupCon(pf,i, [pf,−i;p
(1);p(2)], [pf,−i]), (6)

where B is the batch size and [pf,−i;p(1);p(2)] is the union of three sets of
projected features.

The loss function of SimSiam-StarGAN-VC for the generator is Lst−adv in
Eq. (1), and for discriminator the loss is defined as follows:

LD = −Lst−adv + λ1 · LSim + λ2 · LCon, (7)

where λ1 and λ2 are the strength parameters for the SimSiam and supervised
contrastive loss.
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4 Experiments

4.1 Experimental Setup

Dataset: We utilized data from the most popular VCC 2018 dataset [18] in a
similar manner to the experiments in StarGAN-VC2 [13]. We describe how we
conduct the experiments briefly. To perform both inter-gender and intra-gender
VC, we randomly selected two male and two female speakers from VCC 2018,
denoted as SF1, SF2, SM1, and SM2, short for “Speaker of Female/Male 1 or
2”. Therefore, we have N = 4 as the number of domains (speakers). To ensure
the non-parallel setting, there is no overlapping content between the training
and evaluation datasets. For a thorough comparison, we conduct all 4 × 3 =
12 combinations intra-gender and inter-gender conversions. Each speaker has
approximately 80 utterances for model training and 30 for model evaluation.
Implementation Details: For StarGAN-VC and StarGAN-VC2, we employ
the same network architecture as shown in the Fig. 3 of [13]. For the data aug-
mentation methods in the SimSiam-StarGAN-VC, we utilized time masking and
frequency masking as t1 and t2, respectively. The upper limit of training epochs
is set to be 1× 105, early stopping is deployed, and the learning rate parameters
for G and D is tuned by carefully by closely monitoring the loss of discriminators
and generators.

4.2 Objective Evaluation

As common in the literature, an objective evaluation is done to verify the benefits
of our SimSiam-StarGAN-VC over other existing StarGAN-VCs. Similar to [13],
we also utilized the Mel-cepstral distortion (MCD) and the modulation spectra
distance (MSD). Essentially, these two metrics measure the overall and local
structural differences between the target and converted Mel-cepstral coefficients
(MCEPs). For both MCD and MSD metrics, smaller values indicate better voice
conversion performance.

Table 2. Comparison of MCD and MSD among three different models.

Method MCD [dB] MSD [dB]

StarGAN-VC 7.11± .10 2.41± .13

StarGAN-VC2 6.90± .07 1.89± .03

SimSiam-StarGAN-VC 6.35± .12 1.48± .10

Table 2 displays the performance of 3 different VC approaches in terms of
two objective metrics (MCD and MSD). To show the statistical significance,
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we have computed the mean scores by taking average over models trained with
five different initializations and reported the standard deviations in this table.
From Table 2, our SimSiam-StarGAN-VC (MCD: 6.35, MSD: 1.48) significantly
outperforms both StarGAN-VC (MCD: 7.11, MSD: 2.41) and StarGAN-VC2
(MCD: 6.90, MSD: 1.89) in terms of both metrics. This indicates that contrastive
losses (LSim and LCon) are useful for improving the feature extraction capability
of the discriminator, which further boosts the quality of converted speeches.

4.3 Subjective Evaluation

To analyze the effectiveness of SimSiam-StarGAN-VC, we conducted listening
tests to cpmpare it with StarGAN-VC2. We collected 36 generated (converted)
sentences (12 source-target combinations ×3 sentences, where the first one is
the real target utterance and the other two are generated by SimSiam-StarGAN
and StarGAN-VC2). Eight well-educated Chinese native speakers participated
in the tests as audiences. We conducted a mean opinion score (MOS) test to
evaluate the naturalness of generated speeches, from 5 (for excellent quality) to
1 (for poor quality). In these tests we presented the target speech as a reference
for audiences (the average MOS for target speeches is about 4.5), so that the
audiences can evaluate the generated speeches properly.

We also implemented an XAB test to evaluate speaker similarity by randomly
selecting 30 sentences from the evaluation set. Here we denote “X” the target
speech, and “A” and “B” were converted utterances from StarGAN-VC2 and
SimSiam-StarGAN-VC, respectively. When presenting each set of speeches, we
display “X” first, then “A” and “B” randomly. After the audiences heard one set
of speeches, we asked them to choose which speech (“A” or “B”) is closer to the
target (“X”), or to be “Fair”.

Figure 2 and Fig. 3 display the main findings of naturalness and the pref-
erence scores of StarGAN-VC2 and SimSiam-StarGAN-VC, respectively. In
Fig. 2, the pink and orange bars represent the MOS of SimSiam-StarGAN-VC
and StarGAN-VC2, respectively. These results empirically demonstrate that
SimSiam-StarGAN-VC (overall MOS: 3.7) outperforms StarGAN-VC2 (over-
all MOS: 3.1) on naturalness for every category. In Fig. 3, the pink, light
blue and orange colors the preference scores for SimSiam-StarGAN-VC, fair,
and StarGAN-VC2, respectively. The SimSiam-StarGAN-VC (overall preference:
75.0%) outperforms StarGAN-VC2 (overall: 5.6%) significantly on speaker sim-
ilarity. We also highlight that our SimSiam-StarGAN-VC takes only 100 train-
ing epochs to converge, which is shown in Fig. 4. However, StarGAN-VC2 still
oscillates significantly after 400 epochs. This demonstrates the effectiveness of
contrastive training of the discriminator.

4.4 Training Stability

To show the training stability of SimSiam-StarGAN-VC, we have produced a
figure of discriminator loss and mean opinion score (MOS) for speech naturalness
along training epochs, which is presented in Fig. 4.
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Fig. 2. The average MOS values of all, intra-gender and cross-gender conversion of
StarGAN-VC2 (orange bars) and SimSiam-StarGAN-VC (pink bars) (Color figure
online)

Fig. 3. The preference of all, intra-gender and cross-gender conversion of StarGAN-
VC2 (orange) and SimSiam-StarGAN-VC (pink) (Color figure online)

Fig. 4. The discriminator loss and MOS values along training epochs. Left panel shows
the discriminator loss of StarGAN-VC2 (orange dashed line) and SimSiam-StarGAN
(pink solid line) versus the training epochs; and the right panel displays the MOS for
naturalness of the two approaches. (Color figure online)

Figure 4 displays the discriminator loss traces and MOS for naturalness of
StarGAN-VC2 (orange dashed lines) and SimSiam-StarGAN (pink solid lines).
The discriminator loss of StarGAN-VC2 oscillates over training epochs, while
the discriminator loss of SimSiam-StarGAN converges steadily. The right panel
illustrates the MOS for naturalness of generated speech by these two methods.
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Similar to the left panel, the speech converted by SimSiam-StarGAN exhibits
increasing MOS over epochs.

4.5 Ablation Study on Contrastive Losses

We conducted comparative studies on the sensitivity of the hyperparametes λ1

and λ2 for the SimSiam-StarGAN-VC. Table 3 exhibits the MCD scores over
different combinations of λ1 and λ2, and λ1 = λ2 = 0.01 is the best choice for the
VCC 2018 dataset. We have recorded the MOS values for the ablation study in
the experiments. The extended table in shown in Table 3. When λ1 = λ2 = 0.01,
the SimSiam-StarGAN-VC performs best in terms of both the MCD and MOS
for naturalness. We will include this table in the final version paper.

Table 3. Ablation study of hyper-parameters λ1 and λ2.

λ1 0.0 0.01 0.01 0.02 0.05 0.1
λ2 0.01 0.0 0.01 0.05 0.02 0.1
MCD[dB] 7.23 6.56 6.35 6.48 6.55 6.95
MOS 3.05 3.56 3.70 3.68 3.65 3.45

5 Conclusion

To advance the research on multi-domain non-parallel voice conversion, we have
incorporated the contrastive learning methods in StarGAN-VC during the train-
ing stage. We leveraged the SimSiam and supervised contrastive loss to enhance
the capability of the encoder of the discriminator. The empirical studies on
non-parallel multi-speaker VC demonstrate the effectiveness of our SimSiam-
StarGAN-VC. Therefore, contrastive learning methods can boost the perfor-
mance of StarGANs on the VC task by improving the convergence and stabil-
ity of the complicated StarGAN training. Contrastive learning has shown good
promise in the computer vision community. It is reasonable to believe that it will
advance the speech processing area in many aspects. In the next step, we may
attempt to employ the variational information bottleneck [24] with contrastive
learning to disentangle the speaker identity information from the input speech,
which may improve the controllability of VC models.
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Abstract. Next point-of-interest (POI) recommendation aims to pre-
dict the next destination for users. In the past, most POI recommen-
dation models were based on the user’s historical check-in trajectory to
achieve recommendations. However, when these models are trained with
sparse historical trajectory data, the learned user’s sequence patterns
are unstable, which is difficult to obtain good recommendations. In view
of the above problem, we propose the next POI recommendation app-
roach that combines neighbor information with location popularity to
alleviate the sparsity of data. Specifically, we construct User-POI graph
and POI-POI graph, and use graph neural networks (GNN) to capture
neighbor information of effective users on these two graphs. In addi-
tion, considering that location popularity is influenced by different times
and distances, we design a dynamic method to measure the impact of
location popularity on the user’s check-in preferences. In evaluating the
experimental performance of two real-world datasets, our approach out-
performs several classical next POI recommendation approaches.

Keywords: POI Recommendation · Graph Neural Network · Data
Fusion · Location Popularity

1 Introduction

With the rapid development of Internet technology, location-based social net-
works (LBSN) are overwhelmingly popular in our society. Users share the expe-
rience of POI by check-in records. More and more location information is being
collected and used to improve user experience on LBSN, which provides a valu-
able opportunity to explore the user’s POI. Machine learning and deep learning
have recently become very common in the recommendation field. Markov chains
[1] captured the sequence correlation of the user’s check-in records, but it didn’t
obtain the effective impact of different check-in records on the user. Recurrent
Neural Networks (RNN) [2] have emerged to model the correlation between
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the sequence information and the location of the user’s recent check-in records,
which achieved good recommendation performance. But it still suffers from data
sparsity that cannot accurately explore the impact of different spatial and tem-
poral conditions on check-in records. In some following studies [3,4], they used
network embedding to model the social influence of users, which alleviated the
data sparsity problem to some extent. However, these studies only consider the
similarity of users’ check-in trajectories, making it difficult to effectively obtain
users’ social influence.

Although the above approaches have achieved encouraging results, they all
relied heavily on the user’s historical check-in records. The next POI recommen-
dation still encounter with a challenge as follow: when users have few historical
trajectory or users leave a familiar area to go to another area with few check-in
records. If we only rely on their check-in records to make recommendations, it is
difficult to obtain effective POI recommendations. Therefore, more information
is needed to obtain better POI recommendations. In the paper, we use GNN to
learn the potential non-linear relationships in users’ historical trajectory to get
effective neighbor information. The location popularity is also considered, which
can reflect the user’s location preferences. The more check-ins a location has,
the more popular the location is. However, the impact of location popularity on
users is dynamic. This impact varies for the user at different times and locations.
For example, users are more likely to go to the cinema in the evening than in
the morning. In addition, the user’s preferences for location decrease with dis-
tance. Therefore, we design a dynamic location popularity method to evaluate
the impact of location on user’s check-ins. The main research contributions are
as follows:

– We use GNN to capture high-order information of user-location in User-POI
graph and location-location in POI-POI graph. Then we perform similarity
calculations on users’ information to obtain the neighbors with different influ-
ences. The more similar neighbors have more influence on users’ check-ins.

– We design a dynamic popularity calculation method, which can get the
dynamic change of location popularity with time and geographical factors.

– We conduct complex compared experiments on two real-world datasets to
evaluate the performance. The results show that our approach outperforms
several classical next POI recommendation approaches.

2 Related Work

2.1 General POI Recommendation

In the past few years, Collaborative Filtering (CF) techniques [5] have been
widely used to evaluate the user’s POI preferences. User-based CF techniques
[6] usually recommend POI preferences for the target users. However, it still faced
the data sparsity problem, which led to limited recommendation performance.
To solve this problem, researchers have adopted different auxiliary information
such as social influence [7,8], sequence influence [9], geographical influence [6],
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and temporal influence [10] in POI recommendations. In addition, the model
[11] used various content-aware embeddings of context information to learn the
features of POI.

2.2 Successive POI Recommendation

Unlike general POI recommendations, the successive POI recommendations
focused on the historical trajectory of the user’s recent check-ins. Markov Chain
model learned the user’s recent sequence behaviour. It simulated the user’s
movement trajectory and focused on the transfer relationship between related
locations. Nowadays, RNN variant [12] can be well mined key information in
sequences, which is widely used for successive POI recommendations. For exam-
ple, ST-RNN [13] modeled the effects of local temporal and geographical influ-
ences. The effects of different time intervals and different location distances
are represented by two matrices, which were the time-specific transfer matrix
and the distance-specific transfer matrix, respectively. HST-LSTM [14] designed
an encoder and a decoder to model historical trajectory by combining spatio-
temporal influences. ST-CLSTM [15] mined the spatio-temporal relationships
of the user’s successive check-ins, which explored the long-term and short-term
interests of the user. CatDM [16] divided user’s check-in records into multiple
time windows, which captured POI categories and POI preferences by using
LSTM encoders. HSP [17] used item-level information about check-in records
and social relationships to model sequence transitions. It was able to learn the
location preferences of the user at different times.

However, the above approaches mainly performs the influence of user’s check-
in trajectory on the check-in behaviour, which rely heavily on the user’s historical
trajectory. On the one hand, the user’s check-in information has the problem of
data sparsity. On the other hand, reflecting preferences in the user’s check-in
records are not comprehensive. Therefore, we can combine more information
to alleviate the data sparsity problem and describe the user’s preferences more
accurately.

3 Preliminaries

3.1 Problem Formulation

In this section, we will define the formulas and terms for the problem. Let
U={u1,u2,...,un}, L={l1,l2,...,lm} and T={t1,t2,...,tm} be the sets of users,
locations, and times, respectively. Each POI is uniquely georeferenced with lon-
gitude and latitude. The check-in record for each user is a triple r i={ui,l i,t i},
which means the location l i visited by the user ui in time t i. The historical
check-in trajectory for each user is represented by tra(r i)={r1,r2,...,rmi}. We
convert each user’s check-in trajectory to the same length seq(ui)={r1,r2,...,rk},
where k is the maximum trajectory length considered.

Definition 1 (POI-POI Graph). The POI-POI graph can be defined as a graph
G l={L,E l}. L is the set of POIs and E l is the set of edges between POIs. ei,j
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Fig. 1. The architecture of our approach.

belongs to the edge set E l, it represents from location l i to location l j . The
weight w l

i,j of edge ei,j is defined as the number of times that location l j is
checked in after location l i.

Definition 2 (User-POI Graph). The User-POI graph can be defined as a graph
Gu={U,L,Eu}. U is the set of users and Eu is the set of edges between users
and POIs. ei,j belongs to the edge set Eu, it represents user ui check-in location
l j . The weight wu

i,j of edge ei,j is defined as the number of times that user ui

check-in location l j .

Definition 3 (Next POI Recommendation). Given a sequence of users, the goal
of the next POI is to predict the location that a user will visit at the following
time.

4 Approach

In this section, we will introduce our approach in detail, which is divided into
five modules. Figure 1 is the architecture of our approach.

4.1 Multimodal Embedding Module

The multimodal embedding module includes information about the user’s his-
torical trajectory and spatio-temporal intervals. As there is a cyclical pattern
to the user’s trajectory behaviour, we use a week to reflect the periodicity of
the user’s check-ins. The 168 h timestamp of a week can be converted into a
168-dimensional vector, which will help to understand the specific timestamp
intervals of the user’s check-in to a place. We use eu ∈ Rd, el ∈ Rd and et ∈ Rd

to denote the user, location and time embedding vectors, respectively, where d
is the dimension of the embedding space. Inspired by literatures [18,19], in the
embedding module, these vectors are converted into low-dimensional dense rep-
resentations, which can model the user’s check-in information more accurately
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Fig. 2. The solid red boxes represent the POI-POI graph, where each node in the graph
represents a location (l 1,l2,l3,l4,l5). The dashed boxes represent the User-POI graph,
where the green nodes (u1,u2) represent the users.(Color figure online)

and reduce the amount of computation. We use the sum of these dense vectors
to represent the user’s trajectory. The embedding of each check-in record can
be represented as ec=eu + el + et ∈ Rd. The user’s history trajectory embed-
ding matrix can be represented as M(u) = [ecr1 , ecr2 , ..., ecrk ] ∈Rk×d. The time
and space intervals between the two locations are represented as �t ∈Rk×d and
�s ∈Rk×d, respectively. We represent the embedding matrix in time and the
embedding matrix in space by M(�t) ∈Rk×k×d and M(�s) ∈Rk×k×d, respec-
tively. To represent the spatio-temporal relationship matrix M(�) ∈Rk×k of the
user’s historical trajectory, we use the weighted sum of the dimensions and sum
their values, which are defined as follows:

M(�) = Sum(M(�t)) + Sum(M(�s)) (1)

4.2 Neighbor Discovery Module

The user’s history of check-ins is often sparse. It is difficult to achieve good POI
recommendations if you only rely on the historical check-in trajectory. In social
networks, the check-in records of a user’s neighbors can influence the user’s
behaviour. Therefore, finding effective neighbors can alleviate sparsity of the
user’s check-ins. The more similar the check-in trajectory information between
users, the greater the social influence between them. The influence between users
check-in records is often a complex non-linear relationship. We construct POI-
POI graph and User-POI graph, from which we learn the embedding represen-
tation of locations and the embedding representation of users by GNN. Figure 2
consists of two parts: the POI-POI graph and the User-POI graph. In the POI-
POI graph, each node represents a location, and there are both direct and indi-
rect influences between locations. Node l1 is influenced by its two first-order
nodes (l2 and l3) and its higher-order neighbors (l4 and l5). The information of
the locations is updated by gathering the information of the surrounding loca-
tions through the GNN. Formally, we update the information of locations at the
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k layer according to the following formula:

h
(k)
li

= σ(
1

D(i)

∑

lj∈N(i)

wl
i,j × h

(k−1)
lj

W (k) + b(k)) (2)

where σ() is a LeakReLU activation function, and N (i) represents the first-order
neighbors of node i. D(i) represents the normalized factor of the sum of degrees.
wl

i,j represents the weight of the edge between node i and node j, which is the
number of times from location li to location lj . W ∈Rd and b∈Rd represent weight
matrix and bias term, respectively. h

(k)
li

represents the feature representation of
location i at the k -th layer.

In order to obtain a more efficient latent representation of users in the User-
POI graph, we consider not only the latent representation of users but also
introduce the latent representation of location in Eq. 2. We use the inner product
of the user’s representations and the neighbor’s representations to evaluate their
similarity. Finally, all neighbors’ influences are weighted, which represent by
en ∈Rd. The formula is defined as follows:

h(k)
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= σ(h(k−1)
ui

W
(k)
1 +
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i,j × h

(k)
lj

W
(k)
2 + b

(k)
1 ) (3)

Si,j = φ(h(k)
ui

, h(k)
uj

) (4)

en =
n∑

j=1

Si,jh
(k)
uj

(5)

where W1 ∈Rd and W2 ∈Rd represent weight matrix, b1 ∈Rd represents bias
term. wu

i,j represents the number of times that user ui check-in location l j . h
(k)
ui

and h
(k)
uj represent the feature representation of user i and user j at layer k,

respectively. Si,j represents the similarity between user i and user j.

4.3 Self-attention Module

In the next POI recommendation, different check-in trajectories affect the next
check-in location in different degrees. The recommendation effect will be reduced
if the same weight is given to the check-in location. Inspired by the self-attention
mechanism [20], we expand on the self-attention mechanism. We add the neigh-
bor information to the user’s trajectory. We use eH = eu + el + et + en ∈ Rd to
represent the new embedding representation of check-in record. The trajectory
embedding representation of the user is defined as a matrix H ∈ Rk×d, which
is used as input to the self-attention module. The self-attention module effec-
tively captures long-term dependencies by taking into account spatio-temporal
intervals and neighbor information, which enables to give different weights to
locations in the historical check-in trajectory. Then we transform it into three
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matrices by linear projection and feed it to the attention layer. The formula is
defined as follows:

Ws = softmax(
HWQ(HWK)T√

dv
) (6)

F = Ws(M(�)WV ) (7)

where Q ∈Rd×d, K ∈Rd×d, and V ∈Rd×d are projection matrices, M(�) is the
spatio-temporal embedding vector matrix, dv is used to prevent excessive inner
product in the self-attention module. F ∈Rk×d is the preference matrix for the
final output location.

4.4 Location Popularity Module

The number of POIs check-in by users reflects the popularity of POIs. Location
popularity is influenced by different time and space, so we design a dynamic
popularity method. We use each hour of the day as a time period and calculate
the number of POI check-ins for and the sum of all POI check-ins during time
period. We use their ratio as the probability that each location will be check-in.
Since the popularity of POI is related to distance, in general, the popularity of
POI decreases with increasing distance. To account for the effect on location
popularity, we use a decay function that transforms the distance interval into an
appropriate weight. Finally, the popularity of the user’s check-in location can be
represented by the matrix P = [p1, p2, ..., pk]. The formula is defined as follows:

fi =
mi

Mi
(8)

pi = g(di) · fi (9)

where mi is the number of the location check-in during this period. Mi represents
the number of all locations check-in within this time period. g() is a decay
function, which is denoted by g(x )= 1

log(e+x) . di represents the distance between
the i -th location and the last location. pi represents the popularity of the current
location i.

4.5 Prediction Layer Module

We will combine the user’s location preference matrix and the location popularity
matrix to calculate the score for each location. A higher score for a location indi-
cates that users are more likely to visit that location. The system recommends
the top N locations based on the score. Next, we train our model by using a
cross-entropy loss function and optimize the loss function by using stochastic
gradient descent. The formula is defined as follows:

sli = F · eTli + P · eTli (10)

loss = −
∑

i

∑

mi∈tra(ri)

[log(σ(sli)) +
L∑

j=1,j �=i

log(1 − σ(slj )] (11)



374 X. Li et al.

Table 1. Characteristics of the different baselines.

Approach Category Temporal influence Geographical influence Social influence

GeoSoCa Traditional × � �
ST-RNN Successive � � ×
HST-LSTM Successive � � ×
CatDM Successive � � ×
HSP Successive � � �
OUR Successive � � �

5 Experiments

5.1 Datasets and Parameter Setting

We conduct experiments on two real-world datasets. User’s check-in records in
New York and Tokyo are from April 12, 2012 to February 16, 2013. In the
datasets, we randomly select 70% of the check-in data as training data and
30% as test data. We use the neural network to train the same hyperparameters.
These parameters can then be applied to each module to reduce the experimental
training time. In our experiments, the embedding dimension d of each module is
set to 50, the maximum length of the trajectory sequence is set to 100, and the
values of learning rate and dropout rate are set to 0.001 and 0.2, respectively.
We use the Adam optimizer to optimize our model, setting the epoch to 100 and
the batch size to 128 for our experiments.

5.2 Evaluation Metrics

In order to effectively evaluate the experimental results, we use two metrics
to evaluate Recall@N and Precision@N, which are widely used in POI recom-
mendation systems. We choose the values of N={5, 10, 15} on Recall@N and
Precision@N as the experimental results. The formulae are as follows:

Recall =
1

|U |
∑

u∈U

|R(u) ∩ T (u)|
T (u)

(12)

Precision =
1

|U |
∑

u∈U

|R(u) ∩ T (u)|
R(u)

(13)

where R(u) represents the recommendation list of POI and T (u) represents the
actual POI check-in list.

5.3 Baseline Approach

GeoSoCa [8]: It combined geographical, social, and POI classification to calcu-
late the user’s preference scores for POI. ST-RNN [13]: It used spatial-temporal
recurrent neural network to simulate the local time and geographical influence.
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Table 2. Recommendation performance comparison with baselines.

NYC TKY

Pre@5 Pre@10 Pre@15 Rec@5 Rec@10 Rec@15 Pre@5 Pre@10 Pre@15 Rec@5 Rec@10 Rec@15

GeoSoca 0.0221 0.0183 0.0151 0.0734 0.1103 0.1422 0.0423 0.0288 0.0213 0.0953 0.1349 0.1504

HST-LSTM 0.0295 0.0228 0.0191 0.1073 0.1512 0.1937 0.0503 0.0335 0.0282 0.1153 0.1604 0.1807

ST-RNN 0.0482 0.0389 0.0282 0.1104 0.1596 0.2053 0.0605 0.0448 0.0331 0.1254 0.1649 0.1820

CatDM 0.0717 0.0456 0.0346 0.2403 0.3110 0.3465 0.0880 0.0588 0.0455 0.2147 0.2737 0.3382

HSP 0.0741 0.0490 0.0347 0.2447 0.3183 0.3566 0.0882 0.0596 0.0460 0.2169 0.2879 0.3494

OUR 0.0755 0.0502 0.0362 0.2524 0.3307 0.3715 0.0909 0.0617 0.0472 0.2296 0.3108 0.3692

Improvement 1.89% 2.45% 4.32% 3.15% 3.90% 4.18% 3.06% 3.52% 2.61% 5.86% 7.95% 5.67%

Fig. 3. Impact of POI embedding size

HST-LSTM [14]: It combined spatio-temporal influences to predict the next
location. Encoders and decoders model access sequences to improve predictive
performance. CatDM [16]: It divided the user’s check-in record into multiple
time windows. The time sequence data is modeled using an LSTM deep en-
coder, which is used to capture POI categories and the user’s POI preferences.
HSP [17]: It used item-level check-in sequences and area-level spatial informa-
tion to model sequence transformations and learns user preferences for location
at different times through recurrent neural networks.

5.4 Results and Analysis

Performance Comparison. Our approach is compared with multiple baselines
for performance in two real-world datasets. According to Table 1, we can see
the influencing factors considered in the different baselines. Table 2 shows the
experimental results of the different approaches in NYC and TKY, which can be
seen that our approach outperforms all baselines in evaluation metrics. In the
NYC dataset, our approach improves over the best baseline HSP by 1.89% to
4.32% and 3.15% to 4.18% in Precision@N and Recall@N, respectively. In the
TKY dataset, our approach improves by 2.61% to 3.52% and 5.67% to 7.95%
in the same metrics, respectively. We also observe that HSP combines spatio-
temporal relationships with social influence and outperforms the rest of the
baselines. It indicates that effective consideration of social impact can improve
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Fig. 4. The influence of neighbor information and location popularity

the recommended results. Our approach considers the influence of social and
dynamic location popularity. The results indicate that we are able to obtain
effective social influences for modeling user’s check-in sequences through GNN.
Moreover, the dynamic location popularity considered is more suitable for the
user’s check-in behaviour.

Impact of POI Embedding Size. We discuss the impact of different dimen-
sional embedding vectors of POI on our approach, using Precision@5 and
Recall@5 as our experimental evaluation metrics. Figure 3 shows the perfor-
mance of our approach in different dimensions. The experimental results show
that when the dimension of the POI vector is less than 50, the performance
improves significantly, which indicates the ability to capture more POI informa-
tion. When the dimension of the POI vector is more than 50, the performance
gradually stabilizes, which indicates that more useful POI information cannot
be captured. In our experiments, we set the dimension of the embedding to 50.

Ablation Analysis. We study the performance gains of the following modules:
the neighbor discovery module and the location popularity module. Specifically,
we use OUR-P and OUR-N to denote the removal of the neighbor discovery
module and the location popularity module, respectively. Figure 4 shows the
evaluation metrics of the different modules in Precision@5 and Recall@5. We can
observe that two modules are able to improve the performance. The results show
that we can effectively capture the relationship between users and locations to
learn neighbor information through GNN. We consider the neighbor information
in the user’s check-in trajectory, which can effectively improve the performance.
It also shows that users have different levels of preference for location at different
times and check-in distances. We use dynamic location popularity to reflect the
impact of location on user check-ins can also improve performance. Overall, we
demonstrate the effectiveness of the neighbor discovery module and the location
popularity module through ablation experiments.
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6 Conclusion

In this paper, our approach improves the POI recommendation by exploring the
neighbor relationship and location population of users. We use graph neural net-
works to find neighbors by learning the interactions between users and locations.
At the same time, we optimize the influence of location popularity on the user’s
preference for check-in locations. Effectively combine neighbor information and
location popularity in the user’s historical check-in trajectory. Our approach is
compared with the baseline approaches through two real-world datasets. The
experiments show that our approach is better. In future research, it will be the
focus of our study to use cross-domain data to alleviate the sparsity problem of
POI data in the next POI recommendation.
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Abstract. The recognition of the different phases of human gait is valu-
able in areas such as rehabilitation and sports. Machine Learning models
have been increasingly used for such recognition tasks. However, such
models are usually trained on data obtained from participants in strictly
controlled environments which—needless to say—might vary quite sig-
nificantly from the environment in which the models are subsequently
employed. Therefore, it is advisable to analyze the confidence of the
model’s predictions. To this end, we present an interpretable classifier
for gait phase detection. Together with classification reliability estima-
tion tools, classification predictions can be rejected in low confidence sce-
narios. Our classifier is based on a robust and distance-based Learning
Vector Quantization classifier. Finally, we present our approach using
a real-world application in gait phase detection, which consists of one
learning scenario and two different prediction scenarios.

Keywords: gait phase recognition · interpretable machine learning ·
drift detection · classification certainty

1 Introduction

The analyses of the human gait is prerequisite for many motion analysis applica-
tions in rehabilitation and in professional and recreational sports [6,8]. A precise
recording of the individual gait phases often serves as the basis for further analy-
ses [12]. In general, the gait is partitioned into the swing and the stance phases,
which can further be divided into eight sub-phases. For the development of a gait
phase prediction, machine learning solutions have to contend with the fact that
training data are usually recorded in strictly controlled environments whereas the
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application environment might heavily differ from the training conditions. More-
over, precisely labeled test data from the application environment are often infea-
sible to obtain due to technical restrictions. Hence, a trained model should be able
to decide in its recall mode, whether it is applicable for the given situation (data
sample) or not. This problem is related to but not fully caused by data drift due
to the changing environment. One possibility to tackle this problem is to use an
interpretable classifier for gait phase recognition. Such classifiers provide valuable
tools to estimate the classification certainty of the model for a given sample.

In the project reported here, the gait data for the training scenario (denoted
as scenario A) was recorded via a marker-based motion capturing system and
processed with the digital human model alaska/Dynamicus1, which delivers the
joint angles of the human body together with their velocity values in real time.
For precise differentiation of the gait phases, measurements obtained from Force
Measurement Plates (FMP) placed on the floor are used. However, this equip-
ment is very expensive and only allows short strides to be studied. Furthermore,
the FMP is sensitive to environmental conditions and can therefore only be used
in rather limited scenarios as compared to the full range of effects of an exoskele-
ton on human gait in the work environment. A more realistic scenario in this
sense would be a gait analysis on a treadmill for the investigation of the influence
of exoskeleton on human gait. Throughout the rest of the paper, the treadmill
scenario is denoted as B1 and the exoskeleton scenario is denoted as B2. Note
that neither B1 nor B2 requires the expensive FMP-system for the detection of
gait phases. Thus the machine learning task is to train a gait phase predictor for
scenario A and to investigate the validity of their applications to scenarios B1
and B2. This validity has to be proven individually for each test person, because
the influence of the changed environment is different for different persons. The
transition from learning scenario A to the application scenarios B1 and B2 can
be seen as a data drift in the context of machine leaning.

To tackle this task, an interpretable classifier is first trained for scenario A to
predict the gait phases based on the labeled data obtained by the FMP-system
for the angle and velocity trajectories provided by alaska/Dynamicus. For this
purpose, Generalized Matrix Learning Vector Quantizer (GMLVQ) [17,19] is
used as the classifier, which is known to be powerful, robust and interpretable.
Furthermore, the robustness is based on implicit margin hypothesis optimization
[16], which is a lower bound of the separation margin optimized by the popular
Support Vector Machine (SVM). On the one hand, the evaluation of this margin
in the working phase allows to estimate the certainty of a classification deci-
sion and on the other hand, it can be used to reject data points based on their
proximity to the decision border. In other words, the properties of GMLVQ facil-
itate the detection of data drift violating the model validity. Moreover, GMLVQ
internally applies an adaptive linear mapping of the data to achieve better clas-
sification performance. Hence, any data drift in the working phase, which only
influences the nullspace of this linear mapping, does not disturb the classification

1 alaska/Dynamicus is a module for efficient, and comfortable generation and use
of maker-based-system models of the human body provided by the ICM - Institute
Chemnitzer Maschinen- und Anlagenbau e.V, Chemnitz, Germany.
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behavior [21]. This key observation lies at the heart of the method we propose in
this work. This observation is of particular interest, because label drift detection
methods such as the one proposed in [23,24] cannot be applied because of the
entirely different label distribution in the application phase. One reason why
the label distributions are different is that humans walk differently when on a
treadmill than they would walking on the floor.

1.1 Related Work

The unique problem described above demands a custom solution. To the best
of our knowledge, we are not aware of any existing solutions that adequately
solve the problem. Having said that, after training a regular classifier model on
scenario A, subsequent unsupervised transfer learning methods could be applied
in scenarios B1 and B2 in which no labels are available. This is referred to as
transductive learning [23,24]. An appropriate model for such transductive learn-
ing is the aforementioned method [21] which explicitly evaluates the nullspace
in GMLVQ.

2 Generalized Matrix Learning Vector Quantization
as an Interpretable Machine Learning Classifier

For our approach, we require a classifier model that lends itself to making state-
ments about its own validity (classification confidence) in scenarios B1 and B2
although only trained explicitly for scenario A. Thus, we focus on explainable
or interpretable learning models, which allow for much better model inspec-
tion than black-box approaches do [11]. Having said that, interpretable mod-
els, e.g. nearest-prototype methods, should be favored over explainable methods
because they are inherently interpretable (ante-hoc interpretability) [15]. For
vector quantization methods, the training and application of models are both
intuitive and transparent, subject to the (dis-)similarities used to compare data
points and the trainable prototypes.

One such classifier is the Generalized Learning Vector Quantization method
(GLVQ) [17] adapted from the heuristic Learning Vector Quantization (LVQ)
introduced by Kohonen [10]. During training, GLVQ minimizes a cost function
that approximates the classification error. Over the years, several extensions to
GLVQ have been developed [1]. Among them, metric adaptation is one of the
most successful improvements [7,19], which additionally performs an automatic
input feature weighting and implicit classification correlation analysis to optimize
the class discrimination.

For the training of a GLVQ model, data samples xi ∈ X ⊂ R
n with corre-

sponding class labels c(xi) ∈ C, |C| = C are required. It is also assumed that
prototype vectors wk ∈ W ⊂ R

n, which are equipped with class labels c(wk) ∈ C,
such that at least one prototype per class is available. Further, a dissimilarity
measure d(xi,wk) is supposed to judge the similarity between data and proto-
types. Such a measure also has to be differentiable with respect to its second
argument for Stochastic Gradient Descent (SGD) learning.
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The model prediction for a data sample x with respect to the current proto-
type set W is realized via the Winner-Takes-All (WTA) rule

ws(x,W) = arg min
w∈W

d(x,w) , (1)

yielding the class prediction c
(
ws(x)

)
. GLVQ training distributes the prototypes

in the data space according to the class distribution given in X based on the
cost function (classification loss)

L(X ,W) =
|X |∑

i=1

f (μ(xi,W)) (2)

to be minimized usually by SGD or a variant thereof. In L(X ,W), the so-called
transfer function f(·) is a monotonously increasing function, often chosen to be
a sigmoid squashing function. The classifier function

μ(xi,W) =
d(xi,w+) − d(xi,w−)
d(xi,w+) + d(xi,w−)

(3)

depends on the most similar positive prototype w+ to xi, which is equipped
with a class label matching c(xi), and the most similar negative prototype w−

with different class label. Thus μ(xi,W) delivers a negative value if the data is
correctly classified for the current prototype configuration W.

The SGD learning is performed with

Δw± ∝ −∂f (μ(xi,W))
∂w±

using the local error f (μ(xi,W)). If d is the squared Euclidean distance this
adaptation realizes an attraction-repulsing-scheme (ARS) whereby w+ is shifted
towards xi whereas w− is repelled.

In [3] it has been proven that GLVQ implicitly maximizes the local hypothesis
margin

m (x,W) = d
(
x,ws2(x,W2)

) − d
(
x,ws(x,W)

)
, (4)

where W2 is the reduced prototype set containing all prototypes of W except
those with label c

(
ws(x)

)
is considered in (1) and the second class winner

s2(x,W2) is obtained. Hence, GLVQ delivers a robust classification decision.
Several factors contribute to the interpretability of the model overall. First

of all, the prototypes are in the feature space and are directly responsible for
the classification decision in a manner that is intuitive to understand. Further,
distance values are generally easy to interpret as opposed to inner product values
considered in (deep) neural networks (multilayer perceptrons) [5] or in SVMs [18].
In addition, distances are lower bounded whereas inner products and kernels are
generally unbounded.

A classification certainty (C) about a decision can be directly defined by

rC(x,W) =
m (x,W)

d
(
x,ws2(x,W2)

)
+ d

(
x,ws(x,W)

) (5)
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which is simply the normalized hypothesis margin. The same can be also inter-
preted as model-self-confidence [13]. Note that this quantity is the same as the
one considered in [4] albeit without referring to the relationship to the hypoth-
esis margin. Rather, the authors point out that this geometrically motivated
certainty measurement is efficient for the use as classification reject option and,
hence, could be used to optimize a respective reject threshold. The correspond-
ing reject decision is denoted as classification reject. Here, we refrain from opti-
mizing a classification reject threshold, because we do not specify a direct cost
for misclassified or rejected data points. Instead, we apply the statistics of the
classification certainty together with that of the rejected data points to detect
variations in the decision process. Therefore, we use an appropriately chosen
percentile of all rC values for the training data. In Fig. 1 on the left side, a
respective example histogram of rC − values for the training in scenario A and
a corresponding test on data of scenario B is depicted.

In addition to changes in the statistics near the decision boundary, data
points can drift out of the sight-range of the prototypes. Data points with dis-
tance d

(
x,ws(x,W)

)
significantly deviating from the majority in the training

data are denoted as outliers. Accordingly, an outlier reject option can be inte-
grated quite intuitively by specifying a suitable distance threshold [4,22]. As in
the case of the classification rejection strategy, we do not learn the threshold.
We obtain it after learning the model using the training data. For the training
set a distribution of the distances d

(
x,ws(x,W)

)
between the data points to the

winning prototypes can be estimated such that a percentile based threshold is
established, e. g. the above 99% percentile. An example histogram of the distance
statistics is shown in Fig. 1 on the right side.

Fig. 1. Histogram of the rC-values (left) and the distances (right) for the training data
(scenario A) and the test data (scenario B).

As mentioned earlier GMLVQ differs from GLVQ in that an internal linear
data mapping is incorporated to improve the flexibility and the subsequent clas-
sification performance [20]. For this purpose, the distance function is chosen as
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a quadratic form
dΩ (x,w) = (Ω(x − w))2 (6)

with Ω ∈ R
m×n being the mapping matrix and m ≤ n the mapping dimen-

sion. The mapping matrix Ω is learned in conjunction with the prototypes and
improves the class separability [19]. When m < n the so-called limited rank
GMLVQ is obtained [2]. Both, full-rank as well as limited-rank GMLVQ have
been shown to be margin optimizers [16] and thereby provide better robustness.

Additionally, the mapping matrix Ω can be exploited to further improve
interpretability. Rewriting the quadratic form (6) as

dΩ (x,w) = (x − w)TΛ(x − w) (7)

with Λ = ΩTΩ ∈ R
n×n, Λ can be interpreted as a classification correlation

matrix (CCM) delivering information about those correlations of the data fea-
tures, which contribute to a better class discrimination [9].

For limited-rank GMLVQ, frequently m << n is chosen to reduce the com-
plexity of the model significantly. However, this influences outlier detection as
well as drift detection: if the respective change/deviation of the data occurs in
the nullspace of the limited rank matrix Ω, these events have absolutely no
impact on the prediction of the classifier [21].

3 Experimental Setup

3.1 The Collected Data

Scenario A. The movement of the human body is recorded with a marker-based
optical tracking system and processed with alaska/Dynamicus. At the same time,
the ground reaction forces are measured 100 Hz via force plates that are synchro-
nised in time with the tracking system. The raw data therefore consists of time
series for marker positions and force values. From the former, the angles and
angular velocities of a skeletal model are calculated and the force values are
used for labelling, i. e. to identify whether the left or right foot is on the ground
or not. In this paper we only distinguish the swing phase from the stance phase,
even though a more detailed subdivision into all eight gait phases would also be
possible with such a system. For our experiments, we had 10 participants walk
100 times over six FMPs. Each walk comprises six footsteps over the FMP. For
the training of the machine learning model, only the first steps of the left and
right legs are used. The second steps of the left and right legs from each walk
were used to validate the model.

Scenario B. In the second scenario, 10 participants walked on a treadmill for
15 min at 4.0 km/h, once without an exoskeleton (scenario B1) and once with
an exoskeleton (scenario B2). As mentioned earlier, we do not have force plates
available for the treadmill and thus these data were not labelled.
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3.2 Feature Generation

The data features are generated from the joint angles and their angular velocities.
Only the following 10 joints of the left and right side of the human body are
used, namely the hips, knees, ankles, shoulders and elbows. The aim is to identify
the two main gait phases for each time step and for each leg independently.
Therefore, feature generation must be performed adequately. After extensive
analyses, it was found that simple statistical values of a very short time interval
are sufficient to obtain adequate classification results. The final feature extraction
for each time step is the calculation of mean and standard deviation per sensor
of a time window of the length of seven time steps. Including the skewness did
not provide an advantage. This results in a feature vector of size 120 (mean and
standard deviation of the absolute values of the angles and velocities in three
directions at the 10 joints). The feature generation is done in the same way for
all scenarios.

3.3 Model Training

We trained classification models for the left and right sides independently. For
the sake of simplicity, we will only consider the model for the left side in the
following discussion. For the right side, the consideration is completely analogous
and both models are applied to the data at the end to obtain a picture of the
entire gait phase. The GMLVQ model was trained on the features generated
from scenario A. The mapping dimension of Ω was set to 15 and only one
prototype per class was used, which means that the model can be interpreted as
a linear classifier. For building and training our models, we used the ProtoTorch
[14] Python package. To evaluate the generalization ability for the classifier in
Scenario A, we apply 10-fold cross-validation using the walks of nine subjects
for training and the one remaining for testing. We further used the data over
the first and second full steps on the FMPs as training examples and testing
examples respectively to exclude the influence of individual FMPs on the model.

3.4 Postprocessing and Evaluation

In this particular application, the performance of a classification model for a
single data point, i.e., one time step, is not really meaningful. Neither is the
average accuracy over a time interval. The most critical point is when a gait phase
begins. Therefore, after classifying each time step, we extract the contiguous
blocks for the swing and stance phases and compare the absolute difference
between real and predicted start of the blocks. We denote this difference by
Δstart. These blocks for multiple gait phases are visualized in Fig. 2. Here we
assume that a block is more than ten contiguous time steps in size. We ignore
individual misclassifications in a block, i.e., exclude them by logical reasoning
in post-processing. We also compute classification confidence and confidence per
time step (see (5)) and average them per block. We discard gait phases with small
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Fig. 2. Example of visualization of the result of the detected blocks of gait phases.

Fig. 3. Classification Correlation Matrix (CCM) for the mean values of the joint angles
trained for scenario A to detect the gait phases for the left side. The feature A (rota-
tional velocity of flexion/extension in the left hip joint), the feature B (left knee), and
the feature C (left foot angle) are most important for discrimination.

values for the classification confidence, since it can be assumed here that the
experiment was not performed properly. This avoids downgrading the model due
to erroneous measurements or movements that were not performed accurately.

4 Results

To evaluate the learned classifier for Scenario A, we use several measures. The
results are shown in Table 1. In Fig. 3, a part of the classification correlation
matrix (7) is visualized. Despite the sparse model-complexity (limited-rank Ω)
and the simple feature extraction, the prediction of gait phases is good. It can
be observed that the stance phases are slightly more difficult to detect than the
swing phases. This is reflected in the Δstart-value and in the higher outlier rate.
If the application requires higher accuracy, a more complex model, i.e., more
prototypes per class or a more complex feature extraction can be performed.
Having said that, we emphasize that there is no fundamental trade-off between
model simplicity and accuracy.

For better illustration, we consider here only the mean values of the angles
and their velocities. It can be observed that the rotational velocity of flex-
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Fig. 4. Data points of one subject and prototypes mapped with the learned mapping
matrix Ω of GMLVQ to dimension 15 and additionally PCA applied for all three
scenarios.

ion/extension in the left hip joint (feature A), the angle of internal rota-
tion/external rotation of the left knee (feature B), and the rotational velocity of
the left ankle joint (feature C) and their positive correlation are most important
to distinguish the swing and stance phases for the left foot. The body parts above
the hip (head and shoulder), i.e., features No. 0 to No. 23, have little influence
on the discrimination.

In the second step, we look at a 2D visualization of the data using principal
component analysis (PCA) applied to the mapped data using the learned Ω
matrix (4). In other words, the data and prototypes are mapped using the learned
matrix and PCA is then applied to the resulting 15-dimensional latent data. First
of all, we can see that the problem is linearly separable, which is also shown by
the accuracy values in Table 1. In the second image of scenario B1, we can see
a drift in the data, which can be observed by closely inspecting the prototype
position of the model learned for scenario A. At this point, it should be noted
that only the information in 2D is available here, but the decision takes place in
a 15-dimensional space. The same is true for the third image of Fig. 4 for scenario
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Table 1. Results of the classifier with the mean accuracy over all runs, the time mean
deviation of the start times of the blocks Δstart, the mean value of the classification
confidence rC and the mean relative rate of classification and outlier rejections. The
first two entries cannot be determined for scenarios B1 and B2 due to the lack of ground
truth labels.

Scenario Label Accuracy [%] Δstart [ms] Mean rC cl. reject rate [%] Outlier rate [%]

A Swing 99.99 9.18 0.969 0.30 0.05

stance 99.90 11.16 0.972 0.68 0.25

B1 Swing – – 0.875 5.35 1.20

Stance – – 0.914 4.72 1.23

B2 Swing – – 0.873 5.12 1.53

Stance – – 0.897 6.13 1.74

Fig. 5. Visualization of the percentage of outliers, rejected data, and classification
confidence values for the three scenarios and individual subjects (acronyms).

B2. As tempting as it may be, these visualizations should not be over-interpreted
as they are not faithful representations of the original model in their entirety.

We finally finish our analyses of the effect of data drift on model decisions
by observing three key metrics: the mean classification certainty rC , the outlier
rejection rate and the classification rejection rate for all three scenarios A, B1 and
B2. The outlier and classification rejection rates are elevated in scenarios B1 and
B2 (see Table 1). In Fig. 5 we depict the key metrics for each participant. It can
also be observed there that the metrics are relatively stable for all participants in
scenario A. However, looking at the results of scenario B1 and B2, we find a high
variance in the metrics. Thus, we need to analyze the participants individually
to decide whether the model learned in scenario A can be meaningfully applied.
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5 Conclusion

In this paper, we have shown how distance-based classifiers help to analyze the
impact of data drift on predictive performance. Depending on the subsequent
analyses and precision requirements of the downstream application, the reduc-
tion rate in classification certainty is still acceptable but must be defined on a
problem-specific basis. In our case, the model can be applied to almost all sub-
jects from scenario B1. For all but one test subject, the classification certainty
was acceptable. However, the situation differs for scenario B2, where an exoskele-
ton was worn by the volunteers. In this scenario, the classification certainty val-
ues drop significantly and also fluctuate strongly. This is a clear indication that
the drift in the data has a severe impact on predictive performance.
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Abstract. In recent years, gesture recognition has achieved remark-
able advances, restrained from either the mainly limited attribute of
the adopted single modality or the synchronous existence of multiple
involved modalities. This paper proposes a novel visual-audio modal ges-
ture embedding framework, aiming to absorb the information from other
auxiliary modalities to enhance performance. The framework includes
two main learning components, i.e., multimodal joint training and visual-
audio modal embedding training. Both are beneficial to exploring the
fundamental semantic gesture information but with a shared recognition
network or a shared gesture embedding space, respectively. The enhanced
framework trained with this method can efficiently take advantage of the
complementary information from other modalities. We experiment on a
large-scale gesture recognition dataset. The obtained results demonstrate
that the proposed framework is competitive or superior to other out-
standing methods, emphasizing the importance of the proposed visual-
audio learning for gesture recognition.

Keywords: Visual-audio modal learning · Gesture recognition ·
Gesture embedding

1 Introduction

Gestures, as a nonverbal body language, are a simple and natural way of com-
munication. There is no doubt that it will become increasingly important in
computer vision applications, such as human-computer interaction [25], human-
robot interaction [15], virtual reality and sign language recognition. Gesture
recognition aims to recognize and understand meaningful movements of human
bodies. Over the past decade, enormous efforts have been made to improve the
accuracy and robustness of gesture recognition in both unimodal and multimodal
scenarios.

Unimodal gesture recognition generally explores the salient features of ges-
tures independently by focusing on a specific modality, such as video and skele-
ton of body posture. With the advent of deep learning, such modality-specific
approaches have continually achieved promising performance [6,23,27]. In con-
trast, multimodal approaches jointly utilize several modalities to learn discrimi-
native representations from different modal sources. Due to this, such approaches
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Tanveer et al. (Eds.): ICONIP 2022, LNCS 13624, pp. 391–402, 2023.
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have been consistently evaluated to be more accurate than unimodal approaches
in previous works [1,19,29].

The mainstream literature on gesture recognition focuses on the visual modal-
ity, such as color and depth modality [14,31], color and optic flow [4,8], but does
not consider the relevant information contained in the audio modality. Wu et al.
[31] proposed a deep dynamic neural network for simultaneous gesture segmen-
tation and recognition and acquired high-level spatio-temporal representations
using different neural networks suited to three kinds of input modality: skeleton
sequences, RGB videos, and depth videos. Huang et al. [14] applied attention-
based 3D-CNN for capturing spatio-temporal features. Moreover, Cui et al. [8]
combined convolutional neural networks and bi-directional LSTM to capture
features from RGB and optic flow modalities in an iterative optimization pro-
cess. Chang et al. [4] leverage optical flow to understand human motion in gesture
recognition. Their optical flow estimation method introduces four improvements:
strong feature extractors, attention to contours, midway features, and a combi-
nation of these three. However, in reality, event perception and recognition are
inherently multimodal as multiple sensory organs (i.e., eyes, ears, skin, etc.) are
involved simultaneously [12]. While eating an apple, we simultaneously perceive
the color, taste, and sound of the bite.

Except for only using visual modality, combining audio with visual infor-
mation can enhance the performance for different applications, such as auto-
matic speech recognition [2,16] or emotion recognition [20,24]. Furthermore,
audio information has been demonstrated to be helpful in human perception of
objects by existing research [11]. However, although the visual-audio information
can be utilized jointly by realizing the modalities fusion, the model cannot fully
exploit the audio information due to the large heterogeneity between the visual
and audio modality data. Furthermore, since the features learned from different
modalities are initially located in different subspaces, the features linked with
similar semantics would differ. This phenomenon would hamper the model from
utilizing the multimodal data comprehensively.

In this paper, we propose a novel Visual-Audio modal gesture embedding
framework to transfer the knowledge from audio modality to visual modality to
enhance the performance of the visual modality gesture recognition model. Our
method consists of two main processes: multimodal joint training and visual-
audio modal embedding training. The former process does the joint training
based on visual representation prediction and audio representation prediction
and utilizes a shared recurrent neural network (RNN) to transfer or fuse the
knowledge implicitly between modalities. Meanwhile, the latter one applies a
triplet loss [5,26] on visual and audio features to minimize the distance of intra-
class representations while maximizing the inter-class ones, regardless of their
modality types. In doing this, it forces the extracted high-level representations
between visual and audio modalities to share a similar space, where the intra-
class representations have a close distance while the inter-class ones have a long
distance.
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The major contributions of this work include:

– We propose a novel learning framework to explore knowledge from visual and
audio modalities for gesture recognition. We extract modality-invariant ges-
ture embedding in a latent space via a triplet loss, further improving the fusion
efficiency between heterogeneous modalities. Furthermore, utilizing this com-
plementary information makes the model more discriminative and robust.

– We utilize a shared network to fuse visual-audio features instead of simple
concatenation or average, which reduces the computation and complexity
of the model and prevents the potential risk of overfitting. In addition, our
method does not require alignment between audio and visual modalities and
is concise.

– We assess the proposed method through qualitative and quantitative evalu-
ations. The pre-experiments prove that large heterogeneous modalities can
damage the accuracy. On the other hand, the t-SNE visualization and abla-
tion experiment demonstrate that the proposed model can successfully inte-
grate and utilize the complementary information between large heterogeneous
modalities.

Fig. 1. The proposed visual-audio gesture embedding framework for gesture recogni-
tion. The upper and lower branches extract the visual and audio features respectively
and use a triplet loss to improve the accuracy of gesture recognition by applying col-
laborative representation learning and joint training.
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2 Proposed Approach

2.1 Model Architecture

In this paper, we aim to acquire a shared embedding space to explore the latent
correlation between audio and visual signals for gesture recognition. The over-
all structure of our framework is depicted in Fig 1, visual modality is divided
into three parts, including RGB videos, depth videos, and local gesture videos.
We first extract features from visual and audio modalities. In order to capture
the correlation between audio and visual modalities, this method embeds the
visual features and the audio features into the common representation space
through the embedding network. Mathematically, the two embedding functions
fA(·) : RM → R

E and fV (·) : RN → R
E , aim at mapping audio inputs in R

M

and visual inputs in R
N onto a shared collaborative space R

E . This step is the
basis for creating a collaborative representation space in the latter method. After
the embedding network, we jointly train these two modality-specific networks
through a shared RNN while simultaneously performing visual-audio modal
embedding training.

2.2 Multimodal Collaborative Representation

Triplet loss projects the visual and audio features into a latent space where
instances with similar semantics are clustered together while instances with dif-
ferent semantics are split up. As a result, the similarity of instances with the
same semantic information is preserved in the learned representations. Moti-
vated by the success of the triplet constraint in audio and video studies [13] [9],
we propose a visual-audio modal triplet framework by adopting audio and visual
modal triplet loss to supervise the learning process.

For embedding a given instance e, we select embeddings of e+ and e− to
form a triplet tr = {e, e+, e−}. {e, e+} is embedding from the same class, called
positive pair. And {e, e−} belongs to different class, called negative pair. The
calculation of the semantic similarity D of paired instances over a batch of
embeddings can be calculated as in Eq. (1).

De,e′ = ||e − e
′ ||2 (1)

where || · ||2 denotes the Euclidean distance between two embeddings in the
pair. Accordingly, the pairwise Euclidean distance matrix can be generated by
computing the distance between all embeddings. To form the hardest positive
pair {e, e+} and the hardest negative pair {e, e−}, for each e, e+ is one embed-
ding which has the maximum distance from e in the batch, and e− is another
embedding which has the minimum distance from e in the batch. In this way,
the obtained e+ and e− applied together with e to construct the hard triplet for
each embedding, and the triplet loss constraint LT can be estimated by all hard
triplets as in Eq. (2).

LT =
∑

(Dei,e
+
i

− Dei,e
−
i
) (2)
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In order to compute the visual-audio modal triplet loss LT , the audio embed-
ding eA and the visual embedding eV are combined to form a double-sized batch
of embeddings in the form of {eA; eV }. After that, a pairwise Euclidean distance
matrix is obtained by computing the distance between all embedding pairs. Fur-
thermore, each embedding (audio or visual) is combined with two others selected
from the same batch to form a hard triplet. In doing this, the training process
forces the model to narrow the distribution gap of embeddings derived from
visual and audio modalities, while at the same time maintaining the specific
gesture semantics.

2.3 Multimodal Joint Training

Apart from the color and texture information in the RGB videos, we also consider
the spatial shape and geometric information in the depth videos. Besides those
global hand locations/motions, the local hand gestures are taken into account.
Hence, the visual modality in our work referred to RGB and depth videos, as
well as the cropped hands image from the RGB videos. It is input to independent
VGG networks and then concatenated as the visual feature vector. We denote
an audio feature vector as xA ∈ R

M and its corresponding visual feature vector
as xV ∈ R

N , where M and N are the dimensions of the audio and visual vec-
tors, respectively. The process of xA and xV are fed into two modality-specific
subnetworks that can be formulated as in Eq. (3).

eA = fA(xA), eV = fV (xV ) (3)

where the function fA(·) : RM → R
E and the function fV (·) : RN → R

E map
each input of audio and visual modalities into the same subspace, resulting in
corresponding E-dimensional representations eA and eV . After that, the follow-
ing shared layer is used to estimate the final predictions. It can be given as in
Eq. (4).

yA = f(eA), yV = f(eV ) (4)

where the function f(·) : RE → R estimates final predictions yA and yV sep-
arately. In order to take advantage of visual and audio modalities for gesture
recognition, the model is trained with a set of visual-audio features {(xA, xV )}.
The joint loss function J (θ) for gesture recognition is calculated by Eq. (5).

J (θ) = LV + α · LA (5)

where θ denotes the network parameters to be optimized, LV and LA represent
the loss of visual data and audio data, respectively, and α stand for the weight
of the audio prediction loss to balance its contribution to J (θ). The term α ·
LA enforces the optimization to consider the auxiliary modality information.
Moreover, the value of θ is optimized on the training set.

After the unimodal descriptors are extracted from the CNN and audio tool,
embedding functions fA(·) and fV (·) are estimated by two RNNs. Subsequently,
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the visual and audio embeddings are fed into a shared gesture recognition neural
network and a fully connected layer for classification. The total loss function of
the framework for gesture recognition can be formatted as in Eq. (6).

J (θ) = LV + α · LA + β · LT + λ · R(θ) (6)

where LV and LA represent the discriminative loss function of visual and audio
data, respectively. LT represents the triplet loss function of both visual and audio
data. The α and β are introduced to balance the contribution of the audio data
and the triplet loss. R(θ) is the regularization and λ, a, b are the hyperparameter.

3 Experiments

3.1 Dataset

We perform experiments on an Italian gesture dataset to evaluate our model.
The dataset is provided by ChaLearn multimodal gesture recognition in 2013
and 2014, including RGB videos, depth videos, skeleton sequences, etc. There is
audio modal data in ChaLearn13 but none in ChaLearn14. The gestures in the
ChaLearn dataset are divided into 20 categories performed by different people
and recorded by Kinect. ChaLearn13 is a dataset that includes 1,074 videos and
about 13,900 gestures. ChaLearn14 is a dataset that consists of 940 videos and
about 14,000 gestures. There are many same data between the video modal data,
but a different metric is used for evaluation. In 2013, the Levenshtein distance
was adopted, but it was replaced with the Jaccard index in 2014.

For isolated gesture recognition, we first find the same video data between
ChaLearn13 and ChaLearn14. After that, we split these videos into video seg-
ments based on the labels of ChaLearn14, in which each video segment contains
a gesture instance. Accordingly, skeleton sequences and ChaLearn13’s audio data
are divided in the same way. As a result, we obtain an augmented gesture dataset
with 10,169 gesture instances, including RGB videos, depth videos, skeleton
sequences, and audio data for each gesture instance. In this paper, we perform
gesture recognition on this augmented gesture dataset.

3.2 Preliminary Experiments

In this section, we conduct a preliminary experiment to validate our ideas which
heterogeneous modal data could influence the model learning the correlation
between modalities. Based on the experimental requirements and time efficiency,
this experiment selects a subset of the augmented gesture dataset containing
9,162 gesture instances, and the training and testing sets are split by 8:2.

Experimental Setup. Three experiments are designed for the preliminary
experiment: gesture recognition based on RGB and depth modalities, RGB and
skeleton modalities, and RGB and audio modalities. In these three experiments,
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Fig. 2. The architecture of modal fusion in gesture recognition. It is an abstract archi-
tecture used in the preliminary experiment.

Table 1. Accuracy analysis in preliminary experiment.

Methods Modality Accuracy

C3D [30] + CNN [18] RGB + audio 58.5

C3D [30] + CNN [17] RGB + skeleton 65.4

C3D [30] RGB + depth 69.7

C3D [30] is used as the feature extractor for RGB and depth modalities, whereas
AlexNet [17] is used for skeleton data. As to audio modality, first, use the audio
processing library librosa [21] to extract the Mel-Frequency Cepstral Coefficients
(MFCC) feature and then use CNN [18] to extract the discriminative feature.
MFCC feature has been widely used in speech and speaker recognition. The
multimodal fusion architecture of the preliminary experiment can be abstracted
as shown in Fig 2. The Adam optimization algorithm with an initial learning
rate of 0.0001 is adopted to train the network.

Performance Analysis. Table 1 lists the result of the preliminary experiment,
the simple concatenation between RGB and audio modal features is worse than
the other two. In general, simple fusion by concatenation in RGB modality
with depth and skeleton modalities is reasonable because they all model the
space. However, since audio and visual modalities are heterogeneous, the net-
work cannot learn their correlation. On this basis, we propose a visual-audio
modal embedding framework to capture the correlation between large heteroge-
neous modalities to improve the accuracy of gesture recognition.

3.3 Multimodal Embedding Experiments

The pre-experiments are performed with multimodal heterogeneous data that is
hard to be handled with general joint representation methods. In this section,
we validate our proposed model on the augmented dataset presented in Sect. 3.1.
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Fig. 3. The VGG structure used in the proposed model. Conv is the convolution kernel,
BN is the batch normalization, ReLU is the activation function, and MaxPool is the
maximum pooling layer.

Experimental Setup. The architecture of the proposed model is shown in Fig
1. As to visual modality, our model is implemented by the convolution neural
network (CNN) and recurrent neural network (RNN). CNN is a powerful feature
extraction that leads to successful applications in classification tasks for image
and temporal data. Specifically, we use VGG11 to extract features from visual
modality, and its detailed structure is shown in Fig. 3. RNN can better capture
temporal information. Specifically, the GRU is used as embedding networks and
the shared network because GRU has fewer parameters than LSTM due to the
lack of separate memory cells and output gates, which leads to a faster train-
ing process and increases generalization with less training data [7]. As to audio
modality, OpenSMILE [10] is used to extract features. The modality-specific
subnetworks and the modality-shared subnetwork have two hidden layers, and
each hidden layer has 80 hidden nodes. The RGB and depth videos each contain
38 frames, and the local gesture videos contain 74 frames. The Adam optimiza-
tion algorithm with an initial learning rate of 0.0001 is adopted to train the
network. Furthermore, l2 regularization is used to improve the generalization of
the model. The mini-batch size is 12.

Table 2. Ablation analysis.

Accuracy/Training Method Visual Audio

Unimodal Training 84.2% 55.1%

Visual-Audio Joint Training 87.0% 59.6%

Visual-Audio Embedding Training 87.9% 55.9%

Complete Model Training Method 89.6% 60.1%

Ablation Analysis. The results of the ablation analysis are reported in Table 2.
We perform unimodal training prediction, visual-audio modal joint training pre-
diction, and visual-audio embedding training prediction, respectively. In unimodal
training, we independently train and classify the gesture on visual and audio data.
GRU-RNNs can capture the long-term temporal dependencies in visual data from
the experimental result. In addition, the recognition accuracy of audio modality
alone is much worse than that of visual modality, because the audio modality in the
dataset is intentionally added with noise, and every person uses a different accent
to convey the meaning of gestures, such as speed and tone.

Furthermore, jointly training audio and visual data can deliver higher accu-
racy than just one modality trained, which implies that the shared semantic
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information is somewhat transferred from other heterogeneous data to the target
modality by implementing a shared subnetwork for joint training. Rather than
the visual-audio joint training, when the triplet constraint across the audio and
visual modalities is performed, the obtained accuracy (Line 3 in Table 2) shows
that it can significantly improve the performance compared with the unimodal
framework, which suggests that the implementation of the triplet constraint is
beneficial to distill discriminative representations of gesture. In conclusion, the
proposed method can essentially provide additional knowledge from audio signals
to alleviate the shortage of video signals and vice versa.

Table 3. Comparison with benchmark models.

Methods Modality Accuracy

VGG [28] RGB-D 69.2%

C3D [30] RGB-D 82.1%

3D-CNN + LSTM [22] RGB-D 84.8%

Brousmiche et al. [3] RGB-D + audio 88.3%

Ours RGB-D + audio 89.6%

Comparison Analysis. The results on the comparison of our proposed model
with other benchmark models in the ChaLearn dataset are reported in Table 3.
Since we augmented the dataset, the benchmark models are also experimental
on the augmented dataset. VGG and C3D are the typical feature extraction
network for processing images and videos, respectively. As shown in Table 3, the
accuracy of C3D is 82.1%, higher than the VGG network, because compared
with the VGG, the C3D extracts not only the spatial feature of the video but
also the temporal feature. Moreover, after adding LSTM to improve the ability
to capture temporal features with the 3D network, the experimental result is
improved by 2.7%. [3] proposed a feature-by-feature linear adjustment module,
which makes multimodal information influence each other to change each other’s
feature learning. Compared with feature fusion methods, it has a strong ability
to utilize multimodal information comprehensively. Our method independently
learns visual-audio modal features based on CNN and GRU frameworks and
establishes their correlation through triplet loss. Furthermore, after joint training
with a shared feature extractor, its recognition accuracy is greatly improved. The
results show that our visual-audio gesture embedding training method results
in better discriminative ability and indicates that the method achieves good
information complementarity, establishes a correlation between audio and visual
modalities, and increases the robustness of the model.

3.4 Visualization of Gesture Embedding

To investigate how the proposed visual-audio modal embedding framework bene-
fits gesture recognition, we extract the learned representations from the unimodal
framework and the proposed gesture framework. By t-Distributed Stochastic
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Fig. 4. A visualization of the representation learned from the training set by the uni-
modal model and our proposed multimodal model. Red and blue points represent visual
modality and audio modality, respectively, and circles and forks represent two different
gestures: ‘vieniqui’ and ‘chedupalle’. The abscissa and ordinate values represent the
size of the two components of the two-dimensional vector after dimension reduction by
t-SNE. (Color figure online)

Neighbour Embedding (t-SNE), we illustrate the distribution of the learned rep-
resentations on the development set of the augmented version of gesture dataset
of ChaLearn14 in Fig 4(a). It can be seen that in the unimodal framework,
the learned representations can be easily distinguished into two parts accord-
ing to the modal source. Specifically, the representations learned from different
modalities almost have no overlap, although they belong to the same gesture. In
contrast, the representations extracted from our proposed framework are visibly
clustered together according to their gesture categories, as shown in Fig 4(b).
Note that, for the sake of simplicity, we only chose two gesture categories for visu-
alization. Likewise, one can find that the representations belonging to the same
gesture category share almost the same latent space. These findings suggest that
the representations learned by the proposed framework are somewhat invariant
to the modalities. Furthermore, by taking advantage of the gesture embedding
space, the gesture representations extracted from audio and visual signals can
implicitly fuse the knowledge from each other. Hence, the exploitation of mutual
information possibly enhances the performance of a unimodal framework.

4 Conclusion

In this paper, we propose a visual-audio modal gesture embedding framework
to enhance gesture recognition. The proposed method uses concatenation to
fuse different video features and obtain the joint representation of the video. In
contrast, for audio features, triplet loss is applied to the audio and joint rep-
resentation of the video to embed it in a shared space, thus establishing the
correlation between audio and visual modalities. In addition, this paper uses
a shared subnetwork for joint training to further transfer the audio informa-
tion into the video information. We have evaluated the proposed method on
an augmented hand gesture dataset consisting of ChaLearn13 and ChaLearn14.
The experimental results on the augmented ChaLearn14 gesture dataset with
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audio signals demonstrate that the proposed method improves gesture recogni-
tion performance. Despite its success, our framework still has some limitations.
First, although our method considers local hand gestures, the background infor-
mation will make lots of redundant information. Therefore, proposing a method
to predict the hand shape correctly is necessary.
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Abstract. With the help of feature fusion techniques, multi-modal emo-
tion recognition has achieved great success, aiming to reach more nat-
urally and human-likely communication during human-machine interac-
tion. Existing methods focus on designing specific modules to generate
better representations in the semantic space domain. However, we find
that the frequency domain can enhance the emotion correlation among
the same category, which is omitted by previous methods. To comple-
ment this feature, we design a novel feature fusion module based on
the frequency domain to capture the information from both the space
domain and frequency domain. Specifically, an attention-based mecha-
nism is incorporated with Fourier transformation to inject the frequency
information into the fused feature representation. Furthermore, analyz-
ing features from the frequency domain may lose some normal seman-
tic information such as appearance clues. Thus a residual connection is
investigated during the feature representation and accomplishment of
the final emotion recognition. Experimental results based on benchmark
datasets demonstrate the effectiveness of the proposed module. In addi-
tion, we analyze the limitations and applicability of our method based
on the existing datasets.

Keywords: Human-machine interaction · Emotion recognition ·
Fourier transformation

1 Introduction

Emotion recognition is a rising topic with prevalent applications related to
human-machine interaction [1]. Aiming to employ emotional characteristics in
artificial intelligence agents, emotion recognition plays a crucial role to make the
machine feel the world like human beings. To capture emotion more robustly
and accurately, multi-modal based emotion recognition has attracted many
researchers’ interests [2–5].
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According to the pipeline position to perform emotion recognition, these
methods can be divided into two categories: feature extraction and feature
fusion. Feature extraction based methods concentrate on the representative fea-
ture extraction from individual modalities [6,7]. The sequential feature fusion
is relatively naive because the point is to obtain discriminative representation
from original input data. However, this kind of method omitted the fact that
the complementary of different modalities may be lost during the individual fea-
ture extraction procedure. Thus, the feature fusion based method is proposed to
design fusion strategies that can exploit the complementary of different modali-
ties, achieving a more robust affective analysis [3]. It needs to be noted that the
feature extraction in the feature fusion based methods is generally a carefully
engineered representation.

To capture the emotional contribution information by combining the advan-
tages of different information, many feature fusion methods have been proposed.
In terms of types of techniques adopted to fuse features, these methods can sum-
marize the tensor based method [2,8], attention-based method [5,9], and other
methods [3]. The tensor based method utilizes tensor fusion strategies to com-
bine different information, resulting in a high dimension representation [8]. The
attention-based method introduces the attention mechanism into the feature
fusion step to generate weighted representation [5], which enhanced the ability
of discrimination. Other methods include the concatenation operation and quan-
tum theory related operation [4]. However, all these methods analyze the fusion
schedule of different features in the original domain, i.e. time domain or space
domain. As the object analyzed is the feature, we utilized the semantic space
domain herein to describe the specific domain. As a powerful tool in information
processing, Fourier transformation has shown great success in many applica-
tions. We argue that the Fourier transformation has the potential to enhance
the feature fusion performance, which is validated by a toy experiment.

Fig. 1. A toy experiment conducted on CMU-MOSI to validate the enhanced simi-
larities of samples coming from the same category after fast Fourier transformation.

The similarities of features coming from the same category are computed
based on both original features and fast Fourier transformation of original fea-
tures. The similarity is measured with Pearson product-moment correlation coef-
ficients and the results of the dataset CMU-MOSI [10] are reported in Fig. 1.
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It can be concluded that the fast Fourier transformation can enhance the similar-
ities of features coming from the same category. Inspired by this phenomenon, we
propose a Fourier transformation based attention mechanism to achieve better
representation for emotion recognition. Specifically, the original input is encoded
into different representations by the corresponding feature extraction module
first. Then, a deliberately designed attention mechanism based on Fourier trans-
formation is introduced to enhance the representation of original representations
of different modalities. Furthermore, an optional residual connection is intro-
duced to enhance the discrimination of the proposed attention mechanism. The
main contributions of this paper can be summarized as follows:

– Firstly, inspired by the enhancement of Pearson product-moment correla-
tion coefficients after fast Fourier transformation, an attention mechanism is
incorporated with Fourier transformation to obtain better emotion recogni-
tion results.

– Secondly, residual connection based on the proposed attention mechanism is
introduced to combine the original feature from the semantic space domain,
aiming to utilize the advantages of the space domain and frequency domain
at the same time.

– Finally, the experimental results validate the proposed method and the con-
dition when the proposed method work is discussed.

2 The Proposed Method

Multi-modal based emotion recognition aims to recognize the emotion states
given a short video containing three modalities: visual frames, acoustic sound,
and textual language transcribed from the sound. Firstly, the pipeline of the
proposed Fourier-based Attention Emotion Network (FATENet) is introduced.
Then, the details of the Fourier-based Attention module are explained. Finally,
an optional residual structure is introduced and the optimized loss function is
constructed to train the parameters.

2.1 Pipeline of FATENet

The rough pipeline of FATENet can be divided into four modules: original video
input, feature extraction, Fourier-based module, and decision phase. As illus-
trated in Fig. 2, the original input is a short video containing frame sequences,
acoustic sound, and transcribed textual language.

Feature extraction: The data of different modalities are processed with differ-
ent techniques. For visual feature extraction, the Facet1 is utilized to encode emo-
tion related information based on basic and advanced emotional clues. To extract
acoustic representation from wave format files, VOCAREP [6] is exploited to

1 https://pair-code.github.io/facets/.

https://pair-code.github.io/facets/
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Fig. 2. The overall architecture of the proposed method.

obtain basic acoustic features: 12 Mel-frequency cepstral coefficients, pitch track-
ing, and so on (more details refer to [3]). As for language feature extraction, the
pre-trained GloVe model [7] is employed which can embed a word into a 300
dimension semantic space.

As mentioned before, the focus of this paper is to study the fusion strategy,
thus the feature extraction process is conducted based on the standard process
in this domain. Because these features are extracted separately, P2FA [11] is
utilized to match the frames and sound with words in the language. To format
the input, these three modalities are represented by vi, ai, and li, where i is the
position of a word, and vi represents the short frame sequences corresponding
to the word li. aiis the same as vi.

Fourier-based Module: The video naturally is sequence related data, Long
Short-Term Memory (LSTM) [12] is used to capture this sequence information,
which is also the main structure of Fourier-based module. As there are three
modalities of data, we utilize three LSTMs to model different data. It can be
found from the right of Fig. 1 that fast Fourier transformation cannot enhance the
emotional Pearson product-moment correlation coefficients of language modality.
Thus, the Fourier-based Attention structure (introduced in Sect. 2.1) is only
inserted into the visual modality and acoustic modality.

After encoded by Fourier based module, the visual representation is embed-
ded into Fourier enhanced visual representation. The acoustic representation is
encoded into Fourier enhanced acoustic representation.

Decision Phase: Enhanced representations of three different modalities are
generated from the above Fourier-based module. To perform emotion recognition
with a whole feature, these three representations need to be condensed to a
final representation. This function can be implemented by the proposed final
condensing representation computation structure (introduced in Sect. 2.2). The
output of this module is a condensed vector representation, which can be input
to the final classifier or regressor.
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Fourier-Based Attention Structure. The construction of the proposed
Fourier-based Attention is introduced here. Note that the input of this struc-
ture is the semantic feature vector extracted by the previous feature extraction
module, which is marked as vi, ai, and li. Figure 1 demonstrates that the fast
Fourier transformation only works for visual and acoustic modalities on CMU-
MOSI [10]. Thus, visual modality is chosen as an example to show the procedure
of Fourier-based Attention. Figure 3 depicts the process of Fourier-based Atten-
tion structure.

Firstly, the input visual vector vi is transformed to the frequency domain by
fast Fourier transformation:

vR
i + ivI

i = FFT (vi) (1)

where the R in vR
i and I in ivI

i represent the real part and imaginary part
after the fast Fourier transformation (FFT). Note that i in the left of ivIi is the
representation of complex numbers.

The point of the attention mechanism is how to obtain the attention score.
Here, we process the real part and imaginary part with a projection layer with
Sigmoid activation. Specifically, attention computation is formulated as follows:

sRi = σ(fproj(vR
i )) (2)

sIi = σ(fproj(vI
i )) (3)

where sRi represents the attention score computed based on the real part after
FFT. σ is the Sigmoid activation function. fproj is a liner transformation whose
parameters are trainable. The physical meaning of symbols in Eq. 3 is the same
as that of Eq. 2. After attention scores of the real part and imaginary part
are obtained, the real attended vector and imaginary attended vector can be
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calculated by multiplying the original input vector with the attention scores.
This multiplication is shown as follows:

atRi = sRi ∗ vi (4)

atIi = sIi ∗ vi (5)

where atRi is the real attended vector and atIi is the imaginary attended vector,
these two vectors contain information that is weighted by the attention scores
computed from FFT. The ideal situation is that the emotion related informa-
tion is enhanced and unrelated information is suppressed. At this stage, the
frequency information is processed separately. To consider these two parts com-
prehensively and condense the dimension of the output vector, we concatenate
two attended vectors to a frequency vector and project the concatenated vector
to the dimension of the input vector by two fully connected layers:

vo
i = fdenseproj [atRi ; atIi ] (6)

where vo
i is the output of the Fourier-based Attention structure. The dimension

of the output vector is the same as that of the input, which is controlled by the
dense projection layer. [; ] represents the vector concatenation operation.

Note both visual modality vector and acoustic modality vector are processed
by this structure. The output vector for acoustic modality is denoted by ao

i .

2.2 Optional Structure and Loss Function

To model the sequence feature of the original video, three LSTMs are utilized
to encode vo

i , ao
i , and li, i = 1, 2, ..., N , and N is the length of the textual lan-

guage. Before encoding by the LSTM, a residual connection is added to involve
the original space semantic information. The attention mechanism proposed in
Multi-Attention Recurrent Network (MARN) [9] is introduced to compress dif-
ferent information into an intermediate representation. This representation and
output final hidden states of three LSTMs are concatenated to a whole vector,
denoted with xfinal. xfinal is input to a computation schema following Eq. 1-6
to obtain xo

final. This vector is embedded by Final Condensing Representation
Computation, which is a residual connection between xfinal and xo

final. The
output condensing vector is input to the classifier or regressor to perform the
emotion recognition.

Due to the different formats of emotion labels, the L1 loss computed by Mean
Absolute Error (MEA) is used to measure the predicted output and the ground
truth label when the annotation is a float value. When the annotated label is
discrete categories, the negative log likelihood loss function is adopted.

3 Experimental Results

3.1 Dataset

Three datasets are used to validate the effectiveness of the proposed method:
CMU-MOSI, CMU-MOSEI [13], and IEMOCAP [14]. The original videos of
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CMU-MOSI and CMU-MOSEI are generally self-recoded monologues. The anno-
tation of these two datasets is a float value between -3 and 3, representing the
most negative attitude to the most positive attitude. As for dataset IEMOCAP,
the video content is the recording of two speakers in a conversation. And the
annotation used herein is four different discrete emotion classes: neural, happy,
sad, and angry. The data splits of these datasets are shown in Table 1.

Table 1. Data splits of samples in different datasets. # represents the number of
samples.

CMU-MOSI CMU-MOSEI IEMOCAP

Training # 1284 16265 2717

Validation # 229 1869 798

Testing # 686 4643 938

3.2 Compared Methods

The compared methods in this paper are presented in this subsection. We com-
pared the performance of the proposed methods with the EF-LSTM [3], LF-
LSTM [3], TFN [8], LMF [2], NUAN [5], and MARN [9]. EF-LSTM concatenates
features of three different modalities, and then an LSTM is used to model the
sequence to obtain the final representation before the classifier. On the contrary,
LF-LSTM encodes features coming from different modalities with three different
LSTMs, and then the outputs of LSTMs are concatenated to form the final rep-
resentation. TFN utilizes the tensor fusion strategy between different modalities
to generate representative high-dimension fused features. LMF adopts the low-
rank idea into TFN to reduce the amount of calculation. Among these methods,
MARN is chosen as the baseline method due to the relatively same techniques.

3.3 Main Results

Firstly, we conduct experiments on the dataset CMU-MOSI and the results are
summarized in the upper part of Table 2. For the meaning of the table’s header,
Acc-2 represents the classification performance after discretizing the float anno-
tation according to zero point; F1 means the F1 score of the binary classification.
Acc-5 and Acc-7 represent the classification of 5 discretizations and 7 discretiza-
tions. MAE is the mean absolute error and r is Pearson product-moment cor-
relation coefficient. For MAE, the smaller is better. For others, the higher is
better.

It can be observed that the proposed method is better in performance com-
pared with other methods in terms of Acc-2, F1, and Acc-7. Then, the dataset
CMU-MOSEI is used to validate the effectiveness of the proposed method. The
performance is reported in the upper part of Table 3. The results show that the
proposed method achieves the best performance in terms of F1, Acc-7, MAE,
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Table 2. Performance on dataset CMU-MOSI. (- represents there is no reported results
from the corresponding paper)

Acc-2 F1 Acc-5 Acc-7 MAE r

Comparison with other methods

EF-LSTM [3] 75.8 75.6 – 32.7 1.000 0.630

LF-LSTM [3] 76.2 76.2 – 32.7 0.987 0.624

TFN [8] 75.6 75.5 – 34.9 1.009 0.605

LMF [2] 75.3 75.2 – 30.5 1.018 0.605

MARN [9] 76.4 76.2 – 31.8 0.984 0.625

NUAN [5] 78.3 77.9 - 26.8 1.034 0.654

ours 76.53 76.48 40.67 35.13 1.0254 0.6279

Ablation study

MARN 73.18 73.14 35.13 31.78 1.0420 0.5970

Final-FFT-res 72.30 72.16 32.36 29.15 1.0740 0.5654

Final-FFT-wores 72.74 72.71 35.28 30.32 1.0676 0.5945

FFT-AV 76.53 76.48 40.67 35.13 1.0254 0.6279

FFT-AV-final-FFT-wores 70.55 70.64 33.82 29.74 1.1026 0.5847

FFT-AV-final-FFT-res 73.18 73.18 32.94 29.59 1.0584 0.6056

Table 3. Performance on dataset CMU-MOSEI

Acc-2 F1 Acc-5 Acc-7 MAE r

Comparison with other methods

EF-LSTM [3] 78.2 77.1 – 45.7 0.687 0.573

LF-LSTM [3] 79.2 78.5 – 47.1 0.655 0.614

TFN [8] 79.3 78.2 – 47.3 0.657 0.618

LMF [2] 78.2 77.6 – 47.6 0.660 0.623

MARN [9] 79.3 77.8 – 47.7 0.646 0.629

ours 79.09 78.82 50.51 49.36 0.6175 0.6513

Ablation study

MARN 78.18 78.53 49.21 48.33 0.6261 0.6579

Final-FFT-res 70.13 71.46 49.75 48.96 0.6321 0.6361

Final-FFT-wores 79.24 78.62 50.92 49.56 0.6274 0.6421

FFT-AV 79.09 78.82 50.51 49.36 0.6175 0.6513

FFT-AV-final-FFT-wores 79.32 78.62 50.51 49.13 0.6280 0.6390

FFT-AV-final-FFT-res 70.92 72.22 51.86 50.44 0.6105 0.6593
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Table 4. Performance on dataset IEMOCAP (AVG Acc represents the average accu-
racy)

Neutral Happy Sad Angry AVG Acc

Acc F1 Acc F1 Acc F1 Acc F1

Comparison with other methods

EF-LSTM [3] – 61.2 – 30.8 – 62.0 – 71.7 –

LF-LSTM [3] – 60.0 – 40.0 – 56.0 – 69.6 –

TFN [8] – 61.9 – 28.0 – 57.3 – 72.9 –

LMF [2] – 54.7 – 40.6 – 54.3 – 72.9 –

MARN [9] – 59.6 – 35.1 – 57.4 – 71.2 –

ours 68.34 67.16 84.54 82.65 83.26 82.70 84.65 85.25 80.20

Ablation study

MARN 68.12 67.24 85.50 83.18 84.86 84.62 84.22 84.81 80.68

Final-FFT-res 68.12 68.39 87.21 83.47 82.20 80.60 84.33 83.71 80.46

Final-FFT-wores 68.66 67.24 85.61 81.73 80.28 80.37 83.90 83.45 79.62

FFT-AV 68.66 68.30 85.82 81.18 84.44 83.49 83.58 84.22 80.62

FFT-AV-final-FFT-wores 69.62 68.72 85.82 79.86 78.78 78.55 80.28 79.50 78.63

FFT-AV-final-FFT-res 68.34 67.16 84.54 82.65 83.26 82.70 84.65 85.25 80.20

and r. Finally, the experiments are conducted on the dataset IEMOCAP. Accord-
ing to the upper part of Table 4, the proposed method gives the best performance
in terms of all metrics.

3.4 Ablation Studies

To validate the effectiveness of the proposed Fourier based attention structure
and optional residual structure, ablation studies are conducted on three datasets.
According to the ablation study reported in the lower part of Table 2 conducted
on dataset CMU-MOSI, MARN is a self-run algorithm, which is considered as a
baseline in the ablation study. FFT-AV represents the method in which Fourier
based Attention is inserted into acoustic and visual modalities. Final-FFT-res
represents the method that Fourier based Attention and residual connection
are adopted (Final Condensing Representation Computation). As a comparison,
Final-FFT-wores is the method that Fourier based Attention is used while the
residual connection is not used. The meaning of FFT-AV-final-FFT-wores and
FFT-AV-final-FFT-res can be inferred as the previous combination.

It can be observed from the lower part of Table 2 that FFT-AV achieves the
best performance compared with other settings in terms of all metrics. This sug-
gests that the residual connection is not necessary for dataset CMU-MOSI. Then,
ablation experiments on dataset CMU-MOSEI are reported in the lower part of
Table 3. The results illustrate that although FFT-AV can achieve better results
compared with THE baseline method, i.e., MARN, FFT-AV-final-FFT-res gives
better performance in terms of Acc-5, Acc-7, and r. This phenomenon suggests
that the residual connection is necessary for dataset CMU-MOSEI. Finally, the
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ablation results in Table 4 exhibit an abnormal conclusion: the proposed method
has no advantage compared with the baseline method. Even FFT-AV-final-FFT-
res achieves a better score in terms of measurement under the angry category,
the AVG ACC is lower than that of the baseline method, which will be discussed
in Sect. 3.5.

Fig. 4. Explanation of the performance on dataset IEMOCAP.

3.5 Analysis

According to the ablation study results in Tables 2, 3 and 4, the experimen-
tal results on datasets CMU-MOSI and CMU-MOSEI show that the proposed
method illustrates a significant increase compared with the baseline method
MARN. But for dataset IEMOCAP, there is no advantage of the proposed
method compared with the baseline method. To find the reason, we conduct
the same experiment that computing the Pearson product-moment correlation
coefficients of the same category with or without FFT. As shown in Fig. 4, the
results of language features are consistent with that of Fig. 1 while the results of
acoustic features and visual features show different characteristics. For acoustic
modality and visual modality, the correlation coefficients show a great increase
after FFT when conducted on CMU-MOSI, but the increase is hardly obvious
when conducted on IEMOCAP. Thus, we suspect the reason is the different
distribution of feature vectors in different datasets. The condition the proposed
method work is that the FFT can enhance the correlation coefficients coming
from the same category.

4 Conclusion

Feature fusion considering different characteristics is essential for multi-modal
emotion recognition. This paper proposes Fourier-based Attention Emotion Net-
work inspired by the phenomenon that the correlation coefficients are improved
after FFT on dataset CMU-MOSI. Unlike most previous methods, the frequency
domain attention mechanism can achieve a better emotion recognition perfor-
mance. In addition, the limitation of the proposed is analysed and we argue that
the effective condition of the proposed method is when the correlation coefficient
is improved after conducting FFT on the input data.
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Abstract. Policy Space Response Oracles (PSRO) is a powerful tool
for large two-player zero-sum games, which is based on the tabular Dou-
ble Oracle (DO) method and has achieved state-of-the-art performance.
Though having guarantee to converge to a Nash equilibrium, existing
PSRO and its variants suffer from two drawbacks: (1) exponential growth
of the number of iterations and (2) serious performance oscillation before
convergence. To address these issues, this paper proposes Efficient Dou-
ble Oracle (EDO), a tabular double oracle algorithm for extensive-form
two-player zero-sum games, which is guaranteed to converge linearly in the
number of infostates while decreasing exploitability every iteration. To this
end, EDO first mixes best responses at every infostate so that it can make
full use of current policy population and significantly reduce the number of
iterations. Moreover, EDO finds the restricted policy for each player that
minimizes its exploitability against an unrestricted opponent. Finally, we
introduce Neural EDO (NEDO) to scale up EDO to large games, where
the best response and the meta-NE are learned through deep reinforce-
ment learning. Experiments on Leduc Poker and Kuhn Poker show that
EDO achieves a lower exploitability than PSRO and XFP with the same
amount of computation. We also find that NEDO outperforms PSRO and
NXDO empirically on Leduc Poker and different versions of Tic Tac Toe.

Keywords: Two-player zero-sum games · Nash equilibrium · Deep
reinforcement learning

1 Introduction

Two-player zero-sum games have been a long-standing interest of the develop-
ment of artificial intelligence. In solving such games, an agent aims to minimize
its exploitability, the performance of its opponent in the worst case. When both
agents achieve zero exploitability, they reach a Nash equilibrium (NE) [13], a
classical solution concept from Game Theory. Even though NE is a clear objec-
tive, developing a general algorithm capable of finding an approximate NE often
requires tremendous human efforts.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Policy Space Response Oracles (PSRO) [6] is a general multi-agent reinforce-
ment learning algorithm which has been applied in many non-trivial tasks. Gener-
ally, PSRO aims to find an approximate NE by iteratively expanding a restricted
game of a restricted policy population, which is ideally much smaller than the orig-
inal game. Methods based on PSRO have achieved state-of-the-art performance on
large two-player zero-sum games such as Starcraft [16] and Stratego [8]. Despite
the empirical success achieved, PSRO and its variants still suffer from exponential
growth of the number of iterations and potential serious performance oscillation.
The reason for this is that PSRO is based on the tabular method Double Oracle
(DO) [11], which makes an inefficient use of the policy population and has no guar-
antee to decrease exploitability from one iteration to the next.

In this work, we propose a new double oracle algorithm, Efficient Double Ora-
cle (EDO), which is designed for extensive-form two-player zero-sum games. Like
PSRO, each player in EDO maintains a population of pure strategies. However,
EDO makes full use of the policy population by mixing best responses at every
infostate instead of mixing them only at the root of the game, which is what
DO does. EDO also removes the restriction on the opponent policy space and
creates respective meta-games for each player. EDO is guaranteed to converge
to a NE in a number of iterations that is linear in the number of infostates, while
PSRO may require a number of iterations exponential in the number of infos-
tates. EDO is also guaranteed to find the least-exploitable policy for the current
policy population in each iteration, which avoids the problem of performance
oscillation in PSRO.

We also introduce a neural version of EDO, called Neural EDO (NEDO).
NEDO uses deep reinforcement learning (DRL) methods to compute a meta-NE
in restricted games and compute best responses in each iteration for large games.
The restricted games of NEDO contain meta-actions, each selects a correspond-
ing population policy to play the next action. The meta-solver could be any
neural extensive-form game solver, such as NFSP [4] and DREAM [15]. NEDO
scales up EDO to large games using deep reinforcement learning.

To summarize, our contributions are as follows:

1. We present EDO, a tabular double oracle algorithm that converges linearly
without performance oscillation.

2. We present NEDO, a deep reinforcement learning version of EDO that scales
up EDO to large games and outperforms existing PSRO methods in all of
our experiments.

2 Background

We consider extensive-form games with perfect recall. An extensive-form game
progresses through a sequence of player actions, and has a world state w ∈ W at
each step. In an N -player game, the space of joint actions for players is denoted
as A = A1 × . . . × AN . Ai(w) ⊆ Ai denotes the legal action set for player
i ∈ {1, . . . , N} at world state w and a = (a1, . . . , aN ) ∈ A denotes a joint action.
At each world state, a transition function determines the probabilities of the next
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world state w′ after a joint action a is chosen, which is denoted as T (w, a) ∈ ΔW .
Player i makes an observation oi = Oi(w, a,w′) upon each transition. The game
ends when the players reach a terminal world state wT and player i receives a
reward Ri(w) in each world state w.

A history is a sequence of actions and world states representing a trace of
the game, denoted h = (w0, a0, w1, a1 . . . , wt), where w0 is the initial world
state of the game. Ri(h) and Ai(h) are the reward and the set of legal
actions for player i in the last world state of h. An infostate for player i,
denoted by si, is a sequence of that player’s observations and actions until that
time, denoted si(h) = (a0

i , o
1
i , a

1
i , . . . , o

t
i). It’s also assumed that different world

states corresponding to the same infostate share the same set of legal actions
Ai(si(h)) = Ai(h).

A player’s strategy πi is a function mapping from an infostate to a distribution
over legal actions. A strategy profile π is a tuple (π1, . . . , πN ). All players except
i are denoted −i and their joint strategies are denoted π−i. A strategy for a
history is defined as πi(h) = πi(si(h)). We also refer to a strategy as a policy in
the later parts of this article.

The value vπ
i (h) is the expected sum of future rewards given that all players

play the strategy profile π. The value of the entire game is denoted as vi(π). A
two-player zero-sum game has v1(π) + v2(π) = 0 for all strategy profiles π. A
Nash equilibrium (NE) is a strategy profile π∗ satisfying vi(π∗) = maxπi

(πi, π
∗
−i)

for each player i.
A best response to π−i is defined as BRi(π−i) = arg maxπi

vi(πi, π−i) and the
exploitability of a strategy profile π is defined as e(π) =

∑
i∈N maxπ′

i
vi(π′

i, π−i).
Lower exploitability means better approximation to Nash equilibrium for a strat-
egy profile.

A normal-form game is a single-step extensive-form game, in which players
choose their actions simultaneously. An extensive-form game can always induce
a normal-form game in which legal actions for player i are its deterministic
strategies in the original game.

3 Related Work

In small two-player zero-sum games, Nash equilibrium can be found via lin-
ear programming and no-regret algorithms such as replicator dynamics, ficti-
tious play (FP) and regret matching, which become infeasible when the size of
game increases. In perfect information extensive-form games, algorithms based
on minimax tree search have had success on games such as chess and Go [14].
Extensive-form fictitious play (XFP) [3] and counterfactual regret minimiza-
tion (CFR) [18] extend FP and regret matching, respectively, to extensive-
form games. Although CFR based on abstraction has been used in large
imperfect-information extensive-form zero-sum games like heads-up no limit
Texas Hold’em [2], this is not a general method for large games because finding
efficient abstractions needs expert domain knowledge.

Recently, deep reinforcement learning (DRL) [7] has been proven effective on
complex sequential decision-making problems like Atari games. Deep CFR [1] is a



Efficient Double Oracle for Extensive-Form Two-Player Zero-Sum Games 417

general method that trains a neural network on a buffer of counterfactual values.
However, external sampling used by Deep CFR may be impractical for games
with a large branching factor. AlphaStar based on self-play beat top human
players at StarCraft using population-based reinforcement learning. Neverthe-
less, self-play methods are not guaranteed to converge to an approximate NE
and can not handle some small games like Rock-Paper-Scissors. Neural Fictitious
Self Play (NFSP) approximates XFP by progressively training a best response
against an average of all past opponent policies via DRL. The average policy in
NFSP is also represented by a neural network and trained by supervised learning
using a reservoir-sampling buffer, which may become prohibitively large in large
games.

Double Oracle (DO) is an algorithm for finding a NE in normal-form games.
The algorithm works by maintaining a population of policies Πt at time t. A
meta-Nash Equilibrium (meta-NE) is computed for the game restricted to poli-
cies in Πt in each iteration. Then, a best response to the meta-NE for each
player is computed and added to the population. In the worst case, DO must
expand all pure strategies. Policy Space Response Oracles (PSRO) approximates
the DO algorithm. The meta-NE in PSRO is computed on the empirical game
matrix, which is generated by sampling each pair of policies and tracking the
average utility. The approximate best response in PSRO is computed via any
reinforcement learning method. Extensive-form Double Oracle (XDO) [9] and
its neural version, Neural XDO (NXDO) iteratively adds extensive-form BRs to
a population and then computes a meta-NE on an entensive-form meta-game
while this method is not guaranteed to decrease exploitability every iteration,
which means potential performance oscillation.

The concept of finding a low-exploitability meta-policy in a restricted game
has also been explored in recent years [10,17]. However, most of these work focus
on normal-form restricted games. This paper proposes a method to compute the
least-exploitable meta-policy in extensive-form restricted games.

4 Method

4.1 Efficient Double Oracle

In this paper, we propose Efficient Double Oracle (EDO), which is guaranteed
to converge linearly and decrease the exploitability of meta-NE monotonically.
Like other DO algorithms, EDO maintains a population of pure strategies and
computes a meta-NE of a restricted game in each iteration. Also like other DO
algorithms, EDO expands its population by best responses (BR) to the meta-
NE. However, to overcome aforementioned drawbacks of PSRO, EDO creates
different extensive-form restricted games instead of traditional normal-form ones
for each player, and the restricted game Gi for player i is constructed while
only this player is restricted to play actions suggested by any strategy in the
population at each infostate, against the opponent able to play all legal actions
in the full game.
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Fig. 1. In EDO, the following happens in one iteration: (1)Two extensive-form
restricted games are created for each player. (2)For each restricted game, a meta-NE
is computed. (3)For each player, a BR is trained against the opponent’s restricted pol-
icy and this BR is added to the population. Dashed actions are outside the restricted
games and the black solid actions are outside the meta-NE.

Formally, EDO creates a restricted extensive-form game for each player based
on a pure strategy population Πt and computes a restricted NE at time t. Each
restricted game Gp for player p has the same infostates as the full game with
restricted actions:

Ap
i (si) =

{ {
a ∈ Ai(si) : ∃πi ∈ Πt

i s.t. πi(si, a) > 0
}

, i = p,

Ai(si), i �= p.
(1)

The restricted game Gi for player i is then solved for both players to get a
meta-NE (πi

1, π
i
2). EDO uses a tabular method like XFP or CFR as the restricted

game solver. We refer to the restricted player’s strategy as the restricted NE
πr

i = πi
i . The restricted NE πr is the strategy profile with the least exploitability

supported by current population. Then, a novel best response with some unseen
action against the meta-NE of the restricted opponent is computed and added
to the strategy population for each player. Therefore, at each non-final itera-
tion of EDO, at least one new action at some non-terminal infostate is added
to the extensive-form restricted game by some player, otherwise the algorithm
terminates. As a result, the upper bound of the number of iterations is linear
to the number of infostates while the number of iterations DO takes to termi-
nate is exponential to the number of infostates in the worst case, which may
make computing meta-NE intractable in later iterations. To illustrate how EDO
works, we demonstrate a simple game in Fig. 1. Note that in large games this
restricted game may become prohibitively large to solve, which requires NEDO,
introduced later in this paper. EDO is described in Algorithm 1.
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Algorithm 1: EDO
1 Input: Initial Population Π0, t = 0
2 repeat
3 Define restricted game Gi for Πt via eq. 1, for i ∈ {1, 2}
4 πr

i ← NE policy of player i in Gi

5 for i ∈ {1, 2} do
6 Compute a novel best response βi ← BRi(π

r
−i)

7 Πt+1
i = Πt

i ∪ βi

8 end
9 t = t + 1

10 until No action of best responses is outside Gi;
11 return πr

EDO is guaranteed to terminate because the number of actions of every
infostate in a extensive-form game is finite. The returned retricted NE πr is also
a NE in the original game (Proposition 1), as shown below.

Proposition 1. The restricted NE of both players is a Nash equilibrium in the
original game, when EDO terminates.

Proof. Suppose that (πr
1, π

ur
2 ) and (πur

1 , πr
2) are the meta-NE of the restricted

games for player 1 and 2, respectively, when the algorithm is terminated. Let β1

and β2 be the novel best responses to πr
2 and πr

1. If β1 or β2 on some infostate
has support outside the respective restricted game, EDO would not terminate.
Therefore, the support of β1 and β2 on all infostates is guaranteed to be inside
the respective restricted game, which means πur

1 and πur
2 also have this property.

Refer to the policy space of the restricted players as Λr. Then:

v2(πr
1, π

r
2) ≤ v2(πr

1, π
ur
2 )

= min
π1∈Λr

1

v2(π1, π
ur
2 )

≤ v2(πur
1 , πur

2 )
≤ max

π2∈Λr
2

v2(πur
1 , π2)

= v2(πur
1 , πr

2)
= min

π1
v2(π1, π

r
2)

≤ v2(πr
1, π

r
2).

(2)

v2(πr
1, π

r
2) = v2(πr

1, π
ur
2 ) = max

π2
v2(πr

1, π2). (3)

Therefore, player 2 has no motivation to deviate from πr
2, which is same for

player 1. Hence, πr is a NE in the original game.

While DO and EDO both return a NE upon termination, EDO has the guar-
antee of non-increasing monotonicity on exploitability (Propostition 2), which
doesn’t hold for DO.
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Proposition 2. The exploitability of EDO is monotonically non-increasing.

Proof. Suppose that πt is the meta-NE at iteration t, and Λt
i is the policy space

of player i in the restricted game Gi. It’s obvious that Λt
i ⊆ Λt+1

i because
Πt

i ⊆ Πt+1
i . Then,

ei(πt
i) = − min

π−i

vi(πt
i , π−i)

= − max
πi∈Λt

i

min
π−i

vi(πi, π−i)

≥ − max
πi∈Λt+1

i

min
π−i

vi(πi, π−i)

= ei(πt+1
i ).

(4)

e(πt) =
∑

i

ei(πt
i) ≥

∑

i

ei(πt+1
i ) = e(πt+1). (5)

4.2 Neural Efficient Double Oracle

As mentioned above, the tabular EDO cannot handle large games because the
restricted games may become prohibitively large to solve. Hence, we propose
Neural Efficient Double Oracle (NEDO) algorithm, which extends EDO to large
games by deep reinforcement learning (DRL) methods. NEDO uses approximate
best responses trained by DRL and also uses DRL methods as the meta-solver.
However, approximate best responses usually have many actions with positive
probability at every infostate while a oracle best response usually has a single
action with probability 1, which means restricted action space defined in EDO
may be quite large and even equal to the original game with approximate BRs. To
avoid this problem, NEDO defines a different meta-action space for the restricted
game Gp for each player p based on the player’s DRL policy population Πp:

Ap
i (si) =

{
{1, 2, ..., |Πi|} , i = p,

Ai(si), i �= p.
(6)

NEDO is described in Algorithm 2. Although the action space differs, the
restricted game states, histories and infostates are still the same as in the origi-
nal game. After the restricted player p chooses an action indicating a DRL pop-
ulation policy, it would actually sample an action in the orginal game according
to this DRL policy. The transition function of Gp then becomes:

T p(h, ap, w) =
∑

a

π
ap
p

p (sp(h), ap)1(ap
−p = a−p)T (h, a, w). (7)

After the restricted game for each player i is defined, an approximate meta-
NE (πi∗

1 , πi∗
2 ) is computed via a DRL method like NFSP. We refer to the

restricted player’s strategy as the restricted NE πr∗
i = πi∗

i . Approximate BRs
to πr∗

2 and πr∗
1 are computed via a DRL method like DQN [12] and added

to the corresponding policy polulation: Πt+1
i = Πt

i ∪ BRi(πr∗
−i), i ∈ {1, 2}.
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Algorithm 2: NEDO
1 Input: Initial Population Π0, t = 0
2 repeat
3 Define restricted game Gi for Πt via eq. 2, for i ∈ {1, 2}
4 πr∗

i ← approximate NE policy of player i in Gi via DRL
5 for i ∈ {1, 2} do
6 Compute an approximate best response βi ← BRi(π

r∗
−i) via DRL

7 Πt+1
i = Πt

i ∪ βi

8 end
9 t = t + 1

10 until termination conditions are satisfied ;
11 return πr∗

Although contemporary DRL methods lack guarantee of the approximate solu-
tions, we show that NEDO outperforms PSRO and some other methods exper-
imentally in later sections. A potential drawback of NEDO is that the meta-
action space of the restricted player in the corresponding restricted game grows
linearly with the number of iterations, which may cause the restricted game hard
to solve in later iterations, even harder than the original game. Nevertheless, it’s
shown that the algorithm achieves significant performance with a small number
of iterations in our experiments, which means this issue does not become an real
obstacle.

5 Experiments

In this section, we report experiments upon EDO and NEDO. For the tabular
experiments, we use EDO with an oracle best response and CFR as the meta-
solver. For the neural experiments with deep reinforcement learning methods,
we use NEDO taking DQN as the best response solver and NFSP as the meta-
solver. In both experiments, we use some extensive-form zero-sum games in
Openspiel [5] as our environments and report results of different algorithms on
each environment respectively.

5.1 Experiments with Tabular Methods

As mentioned above, DO often requires more pure strategies to achieve an
approximate NE of the original game and the exploitability is not guaranteed
to decrease every iteration. Figure 2(a) presents a bad case of DO, in which DO
increases exploitability every iteration except the last one, while EDO always
decreases it. The game is the equivalent extensive-form game of a zero-sum
normal-form game, in which all values are 0, except if the row r is one more
than the column c or the column c is one more than the column r. The values of
these are

∑r−1
i=0 4i +3i and

∑c−1
i=0 −4i +3i respectively. We plot the performance

of EDO and DO in this game with 10 actions.
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Fig. 2. (a) DO Bad Case; (b) Exploitability in Kuhn Poker of PSRO, XFP and EDO;
(c) Exploitability in Leduc Poker of PSRO, XFP and EDO.

We also compare EDO with XFP and PSRO in Kuhn Poker and Leduc
Poker in Fig. 2(b) and Fig. 2(c). XFP and PSRO here also use oracle BRs and
PSRO uses fictitious play (FP) as the meta-solver. We plot the exploitability
of these algorithms as a function of iterations. It’s shown that EDO achieves
lower exploitability in much fewer iterations than PSRO and XFP. Although
EDO requires more computation in a single iteration because the policy space
of an extensive-form restricted game is often larger than the one of a normal-
form restricted game for the same population, much less iterations to achieve a
low exploitability means less amount of computation in total. In larger games,
the expensive cost of computing BRs so many times would also make PSRO
infeasible.

5.2 Experiments with Deep Reinforcement Learning

For all neural expeiments, we use the same DRL best response hyperparam-
eters in NEDO, PSRO and NXDO as well as in the measure of approximate
exploitability. In DQN, the learning rate of DQN is 0.01 and the size of replay
buffer is 2e5. In NFSP, the anticipatory factor is set to be 0.1 and the learn-
ing rate of average network in NFSP is 0.1. For PSRO, the entries of empirical
payoff tables are computed by sampling 1000 episodes for each new pair of pop-
ulations strategies. FP is used as the meta-NE solver in PSRO and the number
of inner-loop iterations for FP is 2000.

In Fig. 3(a), we compare the exploitability of NEDO and PSRO and NXDO
on Leduc Poker. DQN is used to train BRs in these methods. Although NEDO
uses DRL methods to solve the restricted games and train BRs, we find that
the number of iterations it takes to achieve a low exploitability is much smaller
than PSRO and similar to NXDO, which means NEDO inherits the property of
EDO in exntensive-form games empirically.

We also compare NEDO, PSRO and NXDO on Tic Tac Toe and Phantom
Tic Tac Toe. We plot the exploitability of these methods as a funtion of episodes.
However, it’s shown that NXDO does not outperform other methods as much
as tabular EDO. One of these reasons could be training episodes of NFSP takes
a large proportion compared with training BRs via DQN. Although episodes
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Fig. 3. (a) Exploitability in Leduc of NEDO, NXDO and PSRO as a function of iter-
ations; (b and c) Approximate Exploitability in (Phantom) Tic Tac Toe of NEDO,
NXDO and PSRO as a function of episodes gathered.

required by a single iteration in NEDO is more than PSRO, NEDO outperforms
PSRO and NXDO in both Tic Tac Toe and Phantom Tic Tac Toe which we
conjecture is due to the unrestricted opponent policy space and more effective
use of population strategies.

6 Conclusion

In this paper, we propose EDO, a modification of DO that converges to a Nash
equilibrium linearly decreasing exploitability monotonically. We also propose
NEDO, an algorithm that scales up EDO to large games via deep reinforcement
learning. As shown in our tabular experiments, EDO outperforms PSRO and
XFP on different poker games. In the neural experiments, it’s shown that NEDO
outperforms PSRO and NXDO on Leduc Poker and different Tic Tac Toe games,
which we conjecture is due to the unrestricted opponent policy space in restricted
games and more effective use of population strategies.
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Abstract. The advent of technology has led to people sharing their
views openly like never before. Parallelly, cyberbullying and hate speech
content have also increased as a side effect that is potentially hazardous
to society. While plenty of research is going on to detect online hate
speech in English, there is very little research on the Thai language.
To investigate how noisy Thai posts can be handled effectively, in this
work, we have developed a two-channel deep learning model FastTha-
iCaps based on BERT and FastText embedding along with a capsule
network. The input to one channel is the BERT language model, and
that to the other is the pre-trained FastText embedding. Our model
has been evaluated on a benchmark Thai dataset categorized into four
categories, i.e., peace speech, neutral speech, level-1 hate speech, and
level-2 hate speech. Experiments show that FastThaiCaps outperforms
state-of-the-art methods by up to 3.11% in terms F1 score.

Keywords: Hate Speech · Thai · Transformer · Capsule Network ·
FastText

1 Introduction

Social media interactions are becoming more popular due to advancements in
online communication technology. Though Social media helps spread knowl-
edge more effectively, but it also stimulates the propagation of online abuse
and harassment, including hate speech. Hate speech [18] is any communication
that disparages a person or group on the basis of a characteristic such as color,
gender, race, sexual orientation, ethnicity, nationality, religion, or other features.
These unpleasant incidents can have a measurable detrimental effect on users.
Therefore, it is crucial to identify these at the right time and stop them from
spreading to a broader group.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Tanveer et al. (Eds.): ICONIP 2022, LNCS 13624, pp. 425–437, 2023.
https://doi.org/10.1007/978-3-031-30108-7_36
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According to the Pew Research Center, 40% of social media users have experi-
enced some sort of online harassment1 [1]. Over the last decade, plenty of research
has been conducted to develop datasets and models for automatic online hate
speech detection in English language [3,20,26]. There are very few works in other
languages like Italian [4], Indonesian [9], code-mixed [13,14,17] and Thai [19,25].
According to a recent report from Reuters, the incident of hate speech increased
rapidly in Thailand during the COVID-19 outbreak2. Many Myanmar workers
at a fish market in Samut Sakhon were reported to be infected with COVID-19.
In response, hate speech against them began circulating on social media, partic-
ularly on YouTube, Facebook, and Twitter. Due to this, migrant and immigrant
workers from Myanmar were terrified for their lives. This motivated us to develop
a better model for online hate speech detection in the Thai language with the
hope that these automatic hate speech detection systems will automatically flag
the hate messages. This in turn will help the law and enforcement departments
for taking some actions against people who are spreading hate speech.

We have chosen the ThaiText [19] dataset as, unlike other Thai hate speech
datasets tagged with only hate or non-hate, it has a severity level. The vocabu-
lary utilized on these social media sites deviates from the accepted language used
in literature [2]. One of the most challenging problems with social media Thai
data is noisiness (spelling variations, short-form). Social media users frequently
purposefully obfuscate terms by using short words, acronyms, and misspelled
words to avoid automatic inspection. The pre-trained word embedding model
does not include such words, so morphological information is lost. Furthermore,
tokenization of Thai text is not that easy compared to other languages as there
is no space or any special symbol between words or sentences.

To overcome the challenges mentioned above, in this work, we have proposed
a two-channel FastThaiCaps framework to represent Thai data efficiently. The
first channel uses WangchanBERTa, a variant of RoBERTa followed by Capsule
networks. WangchanBERTa model was pre-trained on the largest Thai language
dataset of size 78.5 GB. The role of capsule networks is to learn hierarchical rela-
tionships between successive layers by employing an iterative dynamic routing
approach. In the second channel, FastText [7] embedding with Bi-LSTM has been
employed. Contrary to word2vec [11] and Glove [21], which employ word-level
representations, FastText takes advantage of the character level when putting
words into the vectors.

The following are the primary contributions of this work:

1. We have examined the BERT language model and FastText pre-trained
embedding to investigate how effectively they can handle Thai text data.

2. We have proposed the two-channel deep neural network model, FastThaiCaps,
where one channel’s input is the BERT+Capsule, and another is FastText
with LSTM.

1 https://www.pewresearch.org/internet/2017/07/11/online-harassment-2017/.
2 https://www.reuters.com/article/us-health-coronavirus-thailand-myanmar-

idUSKBN28Y0KS.

https://www.pewresearch.org/internet/2017/07/11/online-harassment-2017/
https://www.reuters.com/article/us-health-coronavirus-thailand-myanmar-idUSKBN28Y0KS
https://www.reuters.com/article/us-health-coronavirus-thailand-myanmar-idUSKBN28Y0KS


Hate Speech Detection in Thai Language 427

3. Experimental results illustrate that using BERT and FastText together sig-
nificantly enhances the performance of hate speech detection and outperforms
SOTA by 3.11% in terms of F1-score.

2 Related Works

Text mining and NLP paradigms have been used to investigate numerous sub-
jects linked to hate speech detection, including identifying online sexual preda-
tors, detection of internet abuse and cyberterrorism [24]. The associated research
described below demonstrates that hate speech detection in some low-resource
languages should get more attention as most of the current work is conducted
in the English language.

2.1 Works on English Data

Authors in [26] proposed an approach based on unigrams and patterns automat-
ically collected from training set to detect hate expressions on Twitter. They
achieved an accuracy of 87.4% on classifying hate vs non hate tweets. Based
on some specific keywords, authors in [3] collected tweets and labeled them as
hate, offensive, and none using crowd-souring. They have developed a multi-
class classifier to detect hate and offensive tweets. Authors in [6] investigated
cyberbullying detection using a corpus of 4500 YouTube comments and various
binary and multiclass classifiers. The SVM classifier attained an overall accuracy
of 66.70%, while the Naive Bayes classifier attained an accuracy of 63%. Authors
in [22] developed a Cyberbullying dataset by collecting data from Formspring.me
and finally achieved 78.5% accuracy by applying C4.5 decision tree algorithm
using Weka tool kit. CyberBERT, a BERT based framework developed by [20]
achieved state-of-the-art results on Formspring (12k posts), Twitter (16k posts),
and Wikipedia (100k posts) datasets.

2.2 Works on Thai Data

In 2021, Wanasukapunt et al. [25] developed binomial (SVM, RF) and multino-
mial (LSTM, DistilBERT) models to detect abusive speech from social media in
the Thai language. They found that the performance of deep learning models is
remarkably better than the machine learning models and achieved the best F1
score of 90.67% using DistilBERT. Authors in [19] created a benchmark Thai
hate speech dataset from Facebook, Twitter, and YouTube posts. Each post
is annotated with four labels, i.e., peace speech, neutral speech, level-1 hate
speech, and level-2 hate speech. They fine-tuned the WangchanBERTa using
Ordinal regression loss function and achieved state-of-the-art performance.
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Fig. 1. Examples of each category in the Thai hate speech dataset

3 Dataset Description

The dataset we used to evaluate our proposed model was collected from the
three widely used social media platforms: Facebook, Twitter, and YouTube.
They were collected between 18/12/2020 to 23/12/2020 after getting the news
that a merchandiser at a market in Samut Sakhon, Thailand, got infected by the
COVID-19 virus and was admitted to a hospital [19]. Many Myanmar migrant
workers were working in the market, including illegal ones and illegal immigration
of Burmese was behind the outbreak of COVID-19 in Thailand. This incident
triggered the spread of hate speech towards Myanmar migrant workers on social
media platforms and made them hardly live their life as usual. There were 7,597
messages in the dataset. The length of each message was between 1 and 428
words. The dataset was labeled into four classes: 3,198 positive or peace speech
messages, 2,246 neutral messages, 1,441 Level 1 hate speech messages, and 712
Level 2 hate speech messages. Notice that there were two levels of hate speech
messages in this dataset: Level 1 indicates hate or fear of Myanmar for no reason,
while level 2 indicates all types of violence. Examples of each category are shown
in Fig. 1.

4 Methodology

In this section, we have described the proposed methodology for hate speech
detection in Thai languages. We have developed the two-channel deep neural
network model, namely FastThaiCaps, where one channel’s input is the BERT
language model, and another is pre-trained FastText embedding. Figure 2 depicts
the overall architecture of our proposed FastThaiCaps model.

Problem Statement. We formulate our problem definition as follows: Let I =
< Xt, bt >N

t=1 be a set of N instances where bt represent the corresponding hate
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Fig. 2. FastThaiCaps architecture

labels for Xth instance. Here, Xt ∈ N , bt ∈ B (hate classes). The objective of
our proposed framework is to maximize the function (1) that maps each instance
Xt to its fitting hate label, bt.

argmax
θ

(
N∏

t=1

P (bt|Xt, θ)

)
(1)

where Xt is the input sentence whose hate label (bt) is to be predicted. θ denotes
the model’s parameters we aim to optimize.

4.1 Text Embedding Generation

To generate the embedding of input sentence X (say) containing N number of
tokens, we have experimented with BERT and FastText.

i) BERT [5] is a language model based on bidirectional transformer encoder
with a multi-head self-attention mechanism. The sentences in our dataset are
written in Thai language, so we choose WangchanBERTa [12], pre-trained in
Thai languages. We have considered the sequence output from BERT, where
each word of the input sentence has a 768 dimensional vector representation.

ii) FastText [7] was created by the Facebook Research Team for effective word
embedding of more than 157 different languages. The FastText model pro-
vides a 300-dimensional dense vector for each token after being trained using
the CBOW approach. In our model, we have used the pre-trained FastText
Thai embedding.
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4.2 Proposed FastThaiCaps Model

The proposed FastThaiCaps model has two channels. In the first channel, we
have used BERT followed by capsule network. On the other channel, we have
used Thai FastText embedding followed by Bi-LSTM with attention. Let X =
{x1, x2, . . . xn} be the input sentence with n number of words. The input sentence
is passed through two different channels with a series of operations which are
described as follows:

4.3 Channel-1

BERT. BERT takes the input sentence X and returns the sequence output
WB ∈ R

n×d of dimension max sequence length × 768. In our experiment, the
value of n = 128 as it gives better results. Next, WB will pass through CNN
layers for abstract feature extraction.

CNN [10] effectively captures abstract representations that reflect semantic
meaning at various positions in a text. To obtain N-gram feature map, c ∈
R

n−k1+1 using filter F ∈ R
k1×d, we perform convolution operation, an element-

wise dot product over each possible word-window, Wj:j+k1−1. Each element cj

of feature map c is generated after convolution by

cj = f(wj:j+k1−1 ∗ Fa + b), (2)

where f is a non-linear activation function and b is the bias. After applying t
distinct filters of the same N-gram size, t feature maps will be generated, which
can then be rearranged as

C = [c1, c2, c3, . . . , ct] (3)

After convolution, instead of applying a pooling operation, we have used a cap-
sule network [23] to keep the special features, which are generally lost due to
poling operation.

Primary Capsule Layer. This initial layer of capsule networks incorporates
CNN-generated convoluted features into the primary capsules. In order to main-
tain the instantiation parameters, such as the local order of words and semantic
representations of words, primary capsules maintain a group of neurons to rep-
resent each element in the feature maps as opposed to a scalar. We get a series
of capsules, pi ∈ R

d, by sliding each kernel, Ki, across the C, where d represents
the number of neurons in a capsule. In the primary capsule layer, a channel PCi

consisting of a list of capsules, described as

PCi = g(C ∗ Ki + b), (4)

where g is a squashing function with bias b.
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Dynamic Routing Between Capsules. The core concept of dynamic routing
is to devise a non-linear map iteratively while ensuring that the lower label
capsule has a solid connection to its appropriate upper label capsule. Let ai be
a capsule in layer L. A capsule bj in layer L + 1 is calculated as:

bj = g(
∑

i

Pij âj|i) and âj|i = Wijai, (5)

where weight matrix is Wij and from the capsule ai, a predicted vector âj|i ∈ R
d

is calculated. The capsule length was constrained by the nonlinear squashing
function g to the range of [0, 1], and the coupling coefficient Pij was iteratively
updated using the dynamic routing method [23].

Hate Capsule Layer. The hate capsule layer is the final capsule layer consist-
ing of k capsules with 16-dimensional (d = 16) instantiated parameters. Hate
capsules are flattened into a 1d vector with dimension (k × 16) to concatenate
with attenuated features generated by channel-2.

4.4 Channel-2

Bi-LSTM. [8] learns long term context-dependent semantic features into hid-
den states by sequentially encoding the embedding vectors, e, generated by Fast-
Text model as

−→
h t =

−−−−→
LSTMfd(et, ht−1),

←−
h t =

←−−−−
LSTM bd(et, ht+1), (6)

where
←−
h t and

−→
h t and are the backward and forward hidden states, respectively.

The final hidden state representation for the input sentence is obtained as,

He = [h1, h2, h3, . . . , hN ] , (7)

where ht =
−→
h t,

←−
h t and He ∈ R

N×2Dh . The number of hidden units in LSTM
is Dh.

Attention Layer. The underlying idea behind the attention mechanism is
to assign more weight to the words that contribute the most to the phrase’s
meaning. We use the word label attention [27] on the Bi-LSTM layer’s output
to create an attended sentence vector. Specifically,

ui
t = tanh(Wwhi

t + bw), (8)

σi
t =

exp(ui T
t uw)∑

t exp(ui T
t uw))

, (9)

Si =
∑

t

(σi
t ∗ hi

t), (10)

where uw is the context vector. Using a single layer MLP, we calculate the hidden
representation ui

t from the word vector hi
t. The output of the attention layer is

Si, and the attention weight for a given word is σi
t.
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FC Layers. The outputs returned by the BERT+Capsule and FastText+
LSTM+ Attention are concatenated to make a combined representation, J , of
the input sentence, X. Next, J is passed through two fully connected layers,
(FC1(200 neurons) + FC2(100 neurons)) followed by a softmax output layer
to predict the probabilities of a sample belonging to target classes.

4.5 Loss Function

To train the parameter and back-propagating the loss, categorical cross-entropy
L(Ŷ , Y ) has been employed as

LCE(Ŷ , Y ) = − 1
N

M∑
j=1

N∑
i=1

Y j
i log(Ŷ j

i ), (11)

where Ŷ j
i is predicted label and Y j

i is true label. N represent the number of
tweets in the dataset and M represents the number of classes.

5 Experimental Results and Analysis

This section describes the outcomes of various baseline models and our proposed
model, tested on the Thai Hate speech dataset. We split our dataset into 80%
train, 10% validation and 10% test sets. During validation, we experimented
with different network configurations and attained optimal performance with
batch size = 32, activation function = ReLU, dropout rate= 0.25, learning rate
= 1e–4, epoch = 20. We used Adam optimizer with a weight decay = 1e–3 (for
avoiding overfitting) for training. We performed all our experiments on a hybrid
cluster of multiple GPUs comprised of RTX 2080Ti.

5.1 Baseline Setup

We have experimented with standard machine learning baselines like Naive Bayes,
Support Vector Machine (SVM), Random forest as mentioned in [25]. Some
advanced deep learning models like BERT+Capsule [15] and LSTM+Attn+
FC [16] are also included in baselines for a strong comparison with our proposed
model. For machine learning-based baselines, we have considered the pooled out-
put of dimension 768 returned by WangchanBERTa as input. Whereas for Fast-
Text embedding, firstly, we tokenized the sentence using PyThaiNLP3, extracted
the embedding of each token from the pre-trained Thai FastText model, and took
the average to represent the entire sentence by a 300 dimension vector. Capsule:
The input is sent through a 1D CNN with 64 filters of window size 2. Then the
convoluted feature is passed through the capsule network and the final output is
generated by the hate capsule layer. Capsule+FC: Here hate capsule layer flat-
tened output again passed through two FC layers (100 neurons per layer), followed

3 https://pythainlp.github.io/docs/2.2/.

https://pythainlp.github.io/docs/2.2/
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by a soft-max output layer. LSTM+Attn+FC: We pass the input features to
BiLSTM. The obtained hidden representation from BiLSTM is sent to the word
attention layer followed by fully connected layers to obtain the output.

Table 1. Experimental results of different baselines and proposed FastThaiCaps eval-
uated on Thai Hate speech dataset

Embedding Model Accuracy Precision Recall F1 Score

Machine Learning Baselines

Naive Bayes 59.76 61.25 59.45 60.34

SVM 66.56 66.71 66.53 66.61WangchanBERTa

Random forest 60.33 62.51 60.17 61.32

Naive Bayes 54.56 56.43 54.63 55.52

SVM 67.04 68.32 67.11 67.71FastText

Random forest 62.35 64.47 62.05 63.24

Deep learning Baselines

Capsule 74.60 74.56 72.35 73.43

Capsule+FC 76.13 76.48 75.86 76.17WangchanBERTa

LSTM+Attn+FC 73.86 73.63 73.86 73.74

Capsule 73.25 73.45 70.42 71.90

Capsule+FC 74.19 74.53 73.22 73.87FastText

LSTM+Attn+FC 75.33 75.23 76.15 75.69

SOTA [19]

CE + JT 75.12 74.96 75.46 75.21
WangchanBERTa

OR + JT 75.52 75.36 75.86 75.61

Proposed Approach

BERT+FastText FastThaiCaps 78.65 77.35 80.13 78.72

Improvements 3.13 3.11

5.2 Findings from Experiments

Table 1 shows the results of our proposed model, FastThaiCaps, and other base-
lines and SOTA in terms of accuracy, precision, recall and macro F1 score.

From Table 1, we can conclude the following:

(1) The proposed FastThaiCaps model outperforms all the baselines and
SOTA significantly, improving 2.52% and 3.13% accuracy over the best
baseline (WangchanBERTa+Capsule+FC) and SOTA, respectively. The
joint optimization of channel-1 (BERT+Capsule+FC) and channel-2 (Fast-
Text+LSTM+Attn) in the proposed model lead to the classifier’s better
performance and the gain in accuracy.
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(2) When comparing three machine learning baselines, SVM always attains the
best results with both the embeddings.

(3) Capsule+FC has consistently performed better than Capsule in both embed-
ding strategies (BERT/FastText). Like, Capsule+FC performs better than
Capsule with improvements in the F1 score of 2.74% and 1.97% for BERT
and FastText embeddings, respectively. This finding supports the idea of
keeping Capsule+FC as channel-1 in the proposed model.

(4) We have also observed that excluding the Naive Bayes classifier, other
machine learning models perform better when utilizing FastText embedding
instead of WangchanBERTa.

(5) We can notice that Capsule and Capsule+FC perform better than LSTM+
Attn+FC when embedded with WangchanBERTa, and the reverse scenario
occurs for the FastText embedding. That is why in channel -1, we keep
WangchanBERTa, and for channel 2, FastText embedding is utilized.

(6) The individual performances of channel 1 (WangchanBERTa+Capsule+FC)
and channel 2 (FastText+LSTM+Attn+FC) are 76.17% and 75.69% in
terms of F1 score, respectively. But when we combined both channels, we
achieved an F1 score of 78.7%. This significant improvement suggests that
combinations of BERT and FastText embedding can efficiently handle the
noisy text.

We have conducted a statistical t-test on the results of five different runs of
our proposed model and other baselines and obtained a p-value less than 0.05.

5.3 Error Analysis

The most confused classes of this study are peace speech and neutral speech
classes. The model predicted peace speech messages as neutral and vice versa,
with 39.0% of the number of misclassified samples. The semantics of both cat-
egories are close together in our case. Individually considering a word or phase
may give us one meaning, but it changes the meaning when considering the
whole sentence. We usually find this in long sentences, metaphors, and sentences
to encourage or express feelings. For example, “ ,” it
means” Thais are very kind. The Thai government is helping the Burmese.
Let’s work together to prevent the disease. Please do not hide.” The model
classified this message as peace speech instead of neutral. According to this sen-
tence, two words can interpret and dominate the model to predict peace speech:

“ ”
(kindness) and “ ” (helpful). However, considering the whole message, it is
found that the speaker mentioned the fact and did not convey it in any direction
of showing pity or encouragement to the Burmese.

6 Conclusion and Future Work

The recent increase in online hate speech and trolling on various social media
networks has become a critical problem. In this paper, we have proposed a novel
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two channel framework FastThaiCaps for hate speech detection in Thai, a com-
plex language that is structurally different from other Asian languages. We have
examined the performance of channel-1 (BERT+Capsule+FC) and channel-2
(FastText+LSTM+Attention+FC) separately and noticed that they achieved
overall accuracies of 76.13% and 75.33%, respectively, on a benchmark Thai hate
speech dataset. We have proposed the FastThaiCaps model with the intuition
that the joint optimization of channel-1 and channel-2 leads to the development
of a better classifier. The overall accuracy of 78.65% on the proposed dataset
establishes that BERT and FastText together can handle noisy social media text
more efficiently. Furthermore, Our proposed model outperforms all the baselines
and beats state-of-the-art with an F1 score of 3.11%.

In future, we would like to enrich the existing Thai hate speech dataset
with sentiment and emotion labels and develop a deep multitask framework to
investigate how sentiment and emotion information enhance the performance of
the main task, i.e., hate speech detection.
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