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Abstract Virtualization in cloud computing ensures maximum utilization of the 
computational resources by creating virtual instances. In this paper, we have 
jointly considered virtualization and ant colony optimization (ACO) to propose a 
novel encapsulated virtualization-based ACO (EVACO) technique that allocates the 
computational resources efficiently. We have developed an efficient mathematical 
model that modifies the traditional ACO and encapsulated it in virtualized cloud 
platform. The objective is to optimize the resource allocation so that execution 
can be efficient. The novelty of the proposed model has been established through 
extensive simulations and comparative study. Our algorithm took less execution 
time in compare to some popular benchmark algorithms. Moreover, the number 
of iterations and virtual resources required to complete tasks were less than that of 
other algorithms. It establishes the optimality of our proposed approach. 

Keywords EVACO · Virtualization · Cloud computing · Ant colony 
optimization · Execution model in cloud · Cloud cost model 

1 Introduction 

Cloud computing has been a twenty-first century marvel that has occupied the entire 
information technology (IT) world and also many of the non-IT enterprises has 
shifted their business information to cloud. It has appeared as a virtue to both 
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enterprises and academic users [1]. The reasons being obvious that it has helped 
the business fraternity to reduce their IT overhead. The introduction of this new 
age technology has revolutionized the concept of computational resource utilization. 
Hence, a major change in the computational approach has been observed. Different 
computing devices such as processing units, memory units, storage components, 
networking segments are virtualized and these virtual instances are used to create 
cloud infrastructural environment [2]. It has been noticed that the total cost of 
ownership (TCO) has been in the affordable range for the small and medium size 
enterprises [3]. 

Resource optimization in cloud computing has been incorporated in many 
different ways. Many algorithms have been built and many computational and 
mathematical models have been designed such as particle swarm optimization, 
genetic algorithm, Nash equilibrium, cooperative game-based optimization etc. [4– 
7]. In this context, ant colony optimization (ACO) is also a popular technique for 
achieving the optimization solution in an efficient manner. It follows probabilistic 
slant to discover the finest set of solutions from a puddle of solutions. Researchers 
have developed computational logic to create artificial ants through programming. 
These artificially programmed agents (resemblance with the behavior and properties 
of biological social insect ant) ensure a better solution after every iteration through 
predominant paradigm [8, 9]. Finally, the best solution is obtained and applied for 
enhancing the overall performance of the system. In our proposed approach, we have 
investigated resource optimization through a modified ACO technique to optimize 
the execution cost and time through an efficient resource selection mechanism. 

While virtualization will help in mimicking the computational resources into 
virtual instances [4, 10], and logically isolating and segregating them for keeping 
individual existence for participating into optimization of resources for cloud 
computing; the ACO algorithm will be in action to find out the best probable 
solutions for allocating the resources to the virtual instances. Virtualization will 
help in maximizing the utilization of the available resources [1, 11] whereas, ACO 
will allocate the required resources to incoming tasks. So, in this study, we have 
encapsulated the virtualization technology and ACO algorithm with the objective 
to reach to an optimized virtual resource allocation method that will efficiently 
compute all the tasks without affecting the system performance. 

Cloud computing is used to store secure end-to-end encrypted IoT data on 
multiple servers and can be accessed online. To avoid the dependency of internet 
based centralized cloud storage and edge devices, fog computing creates local 
networks for decentralized IoT ecosystem to decide whether to process the data 
locally or remotely. This means, fog computing enhances the opportunity to analyze 
and process offline data if access to the cloud is not stable or possible. Hence, 
efficient resource allocation in virtualized cloud platform unfolds a gateway for 
fog computing to properly place fog nodes into edge platforms that can provide 
unprecedented processing speed on sensitive and real time operations for data 
analytics in IoT. 

In this study, we have addressed a major issue: whether the resource allocation 
policy can be optimized in virtual cloud platform or not. So, our objective is to
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find out the most feasible resource allocation policy among a pool of solutions that 
provides best cloud execution model to the cloud users. To ensure this selection, 
encapsulated virtualization-based ant colony optimization (EVACO) algorithm is 
proposed for partially virtualized cloud platform. This algorithm ensures the 
selection of the improved solution in such a way, so that least number of iterations 
are required to complete the execution. So, in our proposed approach, first the pool 
of virtualized resources is created as an initial population and then an independent 
resource will be selected through EVACO algorithm to complete the assigned task 
with minimum amount of time without affecting the system performance. 

The rest of the paper is organized as follows: Section 2, describes the existing 
works. We have explained the traditional methods in Sect. 3. Our proposed 
mathematical model and associated EVACO algorithm is formulated in Sect. 4, 
which is followed by the result analysis in Sect. 5. Finally, we conclude our 
discussion in Sect. 6. 

2 Motivation 

Computing has changed its paradigm from time to time. The main objective of this 
transformation is to efficiently solve real world problems. Furthermore, computing 
technologies became a part of daily activities. In this regard, computation needs to 
be intelligent and easily accessible to the users. The variants of distributed system 
focus on reliable, available and demand-based execution of tasks. Allocation of 
resource towards effective computation has always been an area of research and 
development. Different algorithms for different environments and dependencies 
have been proposed and implemented to enhance the execution process. Virtual 
cloud platforms make online analysis of IoT data and fog nodes do it offline. In 
both the platforms, resources are allocated to resolve tasks in competent manner. 
We started our research with the motivation to make resource allocation optimal for 
virtualized cloud platforms, so that we get most feasible solutions with unparalleled 
speed and performance. 

3 Related Study 

There have been considerable research works focusing on optimizing and analyzing 
the resource allocation of cloud computing. In such context [12], suggested a task 
scheduling algorithm based on the ant colony optimization algorithm (ACOA) that 
efficiently allocates cloud resources to users’ jobs within the virtual machines 
using diversity and reinforcement techniques [13] found that the typical cloud-
based strategy was proven to be unable to meet the requirement of low-latency 
execution of multiple devices in an edge area. Therefore, they planned to incorporate 
ACOA-based internet of things (IoT) approach that can lead to the number of edge
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devices to create an edge data centre. Finally, they proposed a two-level scheduling 
optimization scheme that will produce an efficient output in timely manner [5] 
defined a large-scale peer to peer (P2P) grid system that implements an ACOA 
to identify the location of required resources. The authors of [14] have proposed 
an efficient IaC-based resource allocation framework for simulated virtual cloud 
platforms that provides high throughput and effortless cloud resource configuration 
management. 

Mishra et al. [15] demonstrated the re-engineering approaches to migrate the 
ACOA to modern Intel multi-core architectures to mitigate the factors that has an 
impact on hardware performance. On similar research [13], presented a new open 
computing language (OpenCL) based ACOA and [16] have discussed novel parallel 
algorithms of the well-known ACOA on the multi-core platforms of Intel Xeon Phi 
co-processor. 

The authors of [8] established a strategy for efficient software module clustering 
in which dependent modules are placed together inside a cluster. According to [2], 
the computational complexity of ACO if compared to that of genetic algorithm 
(GA), crops better result as ACO can optimize the services to a higher degree [9] 
projected an adaptive learning model based on ACO Algorithm to improve stint, 
price and eminence factors to realize the optimal resource allocation. 

On contrary, our research focuses on optimizing the resource allocation towards 
completion of cloud tasks in a partially virtualized cloud platform efficiently 
without hampering the SLA and system performance through encapsulating the 
ACO algorithm with virtualization technology. In this context, we propose a novel 
EVACO algorithm along with supportive mathematical cloud execution model. Our 
research shows better performance than that of existing algorithms, which have been 
proved through extensive simulations. 

The following table displays the comprehensive comparison between different 
researches discussed above (Table 1). 

4 Traditional ACO 

In order to formulate the proposed EVACO, we have analyzed the basic approach of 
ACO. There has been a considerable study to incorporate virtualization techniques 
to increase the infliction of computational resources. Conversely, ACO has also 
proven to be a great solution towards resource allocation methods. 

In ACO algorithm, each ant obtains a starting node that can be considered as it’s 
nest [5, 17, 18]. From this node, the ant selects the next node based on the rules of 
the algorithm. The ant completes its journey by traversing all the nodes only once 
and finally returns home at last. The ants can travel the nodes either concurrently or 
successively. During the journey, each ant places a convinced volume of pheromones 
on the route. The amount of pheromone to be poured down in the routes depends 
on the quality of the path selected by the ant; a petite path usually fall-outs with
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Table 1 Comprehensive comparison of related studies 

Paper Problem found Proposed solution Remarks 

[12] Inefficient resource 
allocation in cloud 
platforms 

Diversity and 
reinforcement-based 
scheduling techniques 
optimized through ACOA 

Provided better result than 
existing algorithms in 
conditional cases 

[8] Lack of dependency in 
cluster-based cloud 
platforms 

Efficient software module 
clustering strategy 

Resource allocation and 
response time improved 

[15] Reduced hardware 
efficiency & performance 

Migrating ACO to 
processor-based operations. 

Performance of hardware 
increased 

[13] High latency in execution 
through edge devices 

Creation of edge data center 
using OpenCL 

Latency dropped 
significantly 

[16] Reduced hardware 
efficiency & performance 

Developed ACOA for 
multicore Intel Xeon Phi 
coprocessor 

Performance of hardware 
increased 

[5] Location transparency of 
cloud resources 

Developed large-scale P2P 
grid system embedded with 
ACOA for resource location 
finding 

Identification of location 
becomes efficient 

[9] High price of computing Proposed adaptive learning 
model based on ACOA 

Improved stint and price 

[14] Reduced performance and 
throughput because of 
configuration management 
overhead during cloud 
resource provisioning 

Proposed an efficient 
IaC-based resource 
allocation framework 

Improved throughput and 
performance because of 
programmed provisioning 

more pheromone. The precipitated pheromone undergoes disappearance which is 
best known as evaporation. 

The probability of selecting the succeeding node j by the Ant to arrive at from 
the current node i is computed as follows [15, 16, 18]: 

p
(
cij |sp

) = τα 
ij 

∗ η β 
ij

∑

cij ∈N(sp) 
τα 
ij 

∗ η β 
ij 

(1)

where, sp = a partial solution, N is the list of all existing routes from node i to
every neighbor node which are yet to be traversed by the ant, cij is the route from
i to j, p is the probability of incidence, tij is the quantity of pheromone follow on
cij, hij is calculated as some empirical factor, ηij = Q/dij, where dij is a remoteness
factor amid nodes i and j, Q is a constant weight and α and β are the algorithmic
constraints.
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4.1 Apprising Pheromone Value 

The Ants will update the value of the pheromone on the routes connecting the nodes 
according to the following formula [2, 11, 16, 17]: 

τij ← τij + 
m∑

k=1

�τk 
ij (2) 

where, m is the count of ants, �τk = Q/Lk if the ant k traveled the path Ck
ij between

nodes i and j; Q is a persistent weight (it is the set of all neighbor nodes), and Lk is
the distance covered by the ant k during travel and is represented as �τk = 0.

4.2 Evaporation 

After finishing the nth trip by the Ants, evaporation will take place in all the available 
routes between the nodes. This is given by the formula as follows: 

τn 
ij ← (1 − ξ)∗ τn 

ij (3) 

where, ξ ⊆ (0,1] is the evaporation factor.

5 Proposed Solution 

We propose for a modified version of the basic ACO algorithm by encapsulating 
it in virtualized platform. We call it encapsulating virtualization-based ant colony 
optimization (EVACO). To implement our algorithm, first, the available computing 
resources need to be virtualized to create the initial population. These virtual-
ized resources provide maximum resource utilization percentage through isolated 
instances. Then, we will apply ACO algorithm on the entire pool of isolated yet 
correlated and fully functional virtual resources. This, in turn will provide us the 
optimum solution in minimum number of iterations. The entire process will not 
hamper the overall performance of the cloud platform. To implement our algorithm, 
we have taken a step-by-step approach. We have described each step in the following 
discussion:
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5.1 Formulating Primary Population for Virtualized 
Computing Resources 

A control variable in the optimization model is the path taken by an ant in any 
stratum of an N-dimensional space. The N-dimensional array indicates the path 
taken by the ant. The array can be represented as: 

V RP  = (vr1, vr2, vr3, . . . , vri, . . . , vrn) (4) 

where, virtual resource pool (VRP) is a set of solutions, n is the total number of
control variables, and vri is the ith control variable in a single VRP. As shown below,
each control variable i selects a weight from a discrete domain Vi’s predetermined
set of weights:

Vi = (
vi,1, vi,2, . . . , vi,d , . . . , vi,Di

)
(5) 

in which, i = 1,2,3,...,N; Vi is the encoded set of weights for ith control variable,
vi,Di = dth conceivable weight for the ith control variable, and Di = total number of
conceivable weights for the ith control variable. The EVACO algorithm begins with
generating a MxN matrix at random, where M is the population size of results and N
represent the number of control variables. As a result, the pseudo-random solution
matrix looks like this:

PV R =

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

V RP 1

V RP 2
...

V RP j

...

V RP M

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

=

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

vr1,1 vr1,2 . . . vr1,i . . . vr1,N

vr2,1 vr2,2 . . . vr2,i . . . vr2,N
...

... . . .
... . . .

...

vrj,1 vrj,2 . . . vrj,i . . . vrj,N

...
... . . .

... . . .
...

vrM,1 vrM,2 . . . vrM,i . . . vrM,N

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

(6) 

in which PVR is the population of virtual resources; VRPj is the jth solution, vrj,i
is the ith control variable of the jth solution, and M is the population size (i.e., the
quantity of existing solutions to solve the task). The weight of vrj,i is arbitrarily
nominated from a set Vi.

5.2 Apprising Pheromone to the Control Domain 

The EVACO looks for information in various parts of the control space and adds 
it there. New solutions are created erratically depending on the statistical data 
available in the control domain. The EVACO algorithm assigns pheromone intensity 
value to each control variable’s weight depending on the solution’s fitness score.
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The higher the pheromone quantity, the more suitable a solution is, and the other 
way around. In virtualization scenario, if a virtual resource is available and idle, 
then the best solution is to allocate that resource to solve a problem to increase the 
utilization of resources in an optimized way. So, the idle index (φ) will be used in 
exchange of pheromone during the solution. The higher idle index is for a virtual 
resource, the higher the chances of allocating that resource to a pending task. 

To apportion pheromone to the discrete domain, N arrays of size 1xDi are used, 
each array is allotted to one control variable as follows: 

Pi =
(
pi,1, pi,2, . . . , pi,d , . . . , pi,D

)
(7) 

where, Pi = the pheromone matrix for the ith control variable and pi,d = the
pheromone intensity of the dth probable weight of the ith control variable. At the
start of the algorithmic refinement, the elements of the matrix Pi equate zero. In
virtualization platform, as the idle index is changed for a virtual resource, it becomes
either not available or any other higher idle index resource is chosen for next pending
task. So, the availability index (σ) is equivalent with evaporation coefficient (ε).

In basic ACO algorithm, pheromone intensity for the dth possible weight of the 
ith control variable is updated as follows [3, 15]: 

pn 
i,d = (1 − ε)∗ pi,d + 

M∑

j=1

�c j i,d (8) 

in which, Pn = the updated intensity of pheromone of the dth possible weight of

the control variable, ε = the rate of evaporation and .

M∑

j=1
�c

j
i,d = the quantity of 

pheromone laid on the dth possible weight of the ith control variable by the jth ant. 

The weight of .
M∑

j=1
�c

j
i,d resembles to the fitness score of the jth solution, and is 

assessed for our proposed EVACO algorithm as follows in a minimization problem:

�c j i,d =
{

Q 
F(V RP j ) if vrj,i = vi,d 

0 if otherwise 
(9) 

where j = 1, 2, . . . , M; i = 1, 2, . . . , N; d = 1, 2, . . . , Di; Q is a constant weight
and F(VRPj) is the fitness weight of the jth solution.

In the EVACO algorithm, we can replace the pheromone weight pi,d with idle 
index (φ) and the evaporation coefficient (ε) with availability index (σ ). So, the 
modified equation can be derived from Eqs. (8) and (9) as follows: 

maximize (φ) = 

⎢⎢⎢ 
⎣(1 − σ)∗ φ + 

M∑

j=1 

Q 
F

(
V RP j

)

⎥⎥⎥ 
⎦ (10)
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This equation will consider a lower edge weight which is bare minimum for idle 
index as we have used a floor function to set the lower limit. Any weight below a 
predefined constant will be disregard and hence the performance degradation cannot 
occur. If and only if the idle index of a computational resource is higher than the 
lower bound, then EVACO will consider that resource for further update. 

5.3 Generation of Updated Solution 

There is always an infinitesimal probability of never nourishing the condition p (cij 
| sp) nj, which can be deduced from equation number 1. So, in this research, we 
have used some amendment in the traditional ACO Algorithm. For the given node 
i, we create a random number nj ⊂ [0,1) and then compare that to the moving 
sum. The result is updated whenever is recalculated. When njp (cij | sp) satisfies, 
considered as the index of the next node j to travel. Essentially, this difference is 
only noticeable in the beginning phases of the test, when the amount of pheromone 
trailing on the various pathways is fairly similar. The summation of the probabilities 
of the conceivable weights of each control variable is equal to one. So, we write: 

Di∑

d=1

�i,d = 1 (11) 

The weights of the control variables of an updated result are arbitrarily elected
depending on the assessed likelihood. To do so, we calculated a cumulative
probability for each potential weight of each judgement variable, as shown below:

ϒi,r =
r∑

d=1

�i,d (12) 

in which, ϒ i,r is the accretive likelihood of the rth possible weight of the ith
control variable. Then, an arbitrary weight (ω) is inferred within the range of [0,1].
Depending on the comparative values obtained, weights are selected. For example,
if the weight of ω is less than the weight of ϒ i,r, ϒ i,1 is selected; otherwise, the rth
weight is selected in a pattern where ϒ i,r − 1 < ω < ϒ i,r.

5.4 Mutating EVACO to Optimize Further 

The worst possible situation that may occur in any optimization algorithm is when 
it gets trapped in some local optimal loop. Hence, the notion of mutation is brought 
from the genetic algorithm (GA) to avoid being locked into the local minima. When 
an ant has finished its trip, it will begin the mutation process based on the mutation 
probability. A node is randomly eliminated from the tour and is replaced by another
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Table 2 Symbols used in EVACO algorithm and their descriptions 

Symbols Description 

M Initial population size (set of all virtual instances) 
PV R Randomly generated population of virtual instances 
n # control variables 
Vi # possible weights for control variable i 
TQ Task queue (used as source node) 
Rv Virtual resource (used as destination node) 
V RP Decomposed tasks (used as ants) 
AL Availability list 

randomly picked node from the same group. Finally, the randomly chosen node is 
added into the (m 1) positions. The new solution of the afflicted ant is the shortest 
tour of all the feasible tours, including the initial route. As a result, the total number 
of iterations reduces up to a great extent resulting optimal solution. The outline of 
the proposed EVACO is represented in Algorithm 1. Note that, Table 2 represents 
different notations used in this algorithm. 

Algorithm 1: Proposed EVACO 
Input: M, PVR, N, Vi, TQ, Rv, VRP, AL 
Output: Optimal resource allocation to the decomposed task 
Initialize M=N=AL=0 
begin 
generate M initial population PVR of possible solutions randomly 

while termination criteria stand false do { 
evaluate fitness values for all the existing solutions 
assign idle index to decision variables based on fitness values 
finalize availability index to select if a resource will enter 

AL or not 
allocate idle resources to VRP 
update AL by removing the already allocated resources 

for i: = 1 to N  do { 
for d: =1 to Vido { 
update idle index of possible value dij for decision variable i 

based on availability index and fitness value 
evaluate selection probability of possible value dij 
} 
} 

for k: = 1 to M  do { 
for i: = 1 to N  do { 
select a random value rki for ith decision variable among all 

possible values based on their probabilities 
} 
} 
} 

select a solution if the fitness value is higher than initial 
solution 
update PVR 

mutate to exit the local minima for optimize further 
}
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5.5 Flowchart and Service Model 

A flowchart is a pictorial representation of flow of control. For our proposed 
EVACO algorithm, we have presented a flowchart that make the concept easier for 
implementation. Figure 1 below, is the technical flowchart for our algorithm. 

We, moreover, have designed a service model for our proposal that shows how the 
subtasks are assigned with virtual resources efficiently using EVACO algorithm to 
produce optimal solution for the cloud customer. Figure 2 shows the service model 
for our proposal. 

6 Result Analysis 

In this section, we evaluate our proposed EVACO algorithm to prove its expediency. 
In order to evaluate the performance of the proposed approach, we have considered 
a methodological approach to create an environment for our simulations. We 
have developed a customized java program to implement the proposed EVACO 
algorithm. We have first discussed about the simulation set-up followed by the 
analysis of the results obtained from the simulations. Finally, the proposed EVACO 
algorithm is compared with some existing approaches from the literature. 

6.1 Simulation Set-Up 

Our experiment for evaluating the proposed EVACO algorithm and the proposed 
execution model requires both hardware and software set-ups. Using the hard- ware 
set-up, we have created a virtualized cloud platform. The detail of hardware set-up 
is listed in Table 3. 

The software module for our simulation is installed using the hardware speci-
fications mentioned in Table 4. As we have to apply our proposed algorithm in a 
virtualized platform, we have used VMWare workstation as type-II hypervisor. We 
have installed it on the top of Windows 10 operating system. After installing the 
workstation, we have created host virtual machines using ESXi server virtualization 
framework. 

To complete the simulation, we have started with creating the virtual instances 
inside the physical computer system. We have used the set-up described in Table 
3 for this step. We have implemented EVACO algorithm through a customized 
java code, running in our VMs. The primary intention is to find a set of optimum 
resources that can be allocated to each and every decomposed tasks. While imple-
menting the code, we have taken care of all the constraints of EVACO algorithm. 
Our proposed algorithm is a direct enactment of our proposed mathematical model.
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Fig. 1 Flowchart for EVACO algorithm
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VLB VMM ISVR1 

VR2 VR3 VRn 

Decomposed Task 

Physical Machine Virtual Infrastructure 

Optimal AVR1 

AVR2 

AVRn 

Optimal Solution 

ST1 

ST2 

STn 

Resource 

Allocator 

(EVACO) 

Given TaskConsumer 

Cloud Infrastructure & Client Connector 

Fig. 2 Proposed service model 

So, while writing the java code, we have taken care of all the required parameters 
for execution. 

6.2 Simulation Result 

Performance Evaluation of EVACO Algorithm 
In order to evaluate the performance of our proposed EVACO algorithm, we focus 
on the parameter of resource allocation to a sub task and minimization of time to 
complete the entire process. The algorithm is designed to reach to the solution with 
minimum number of iterations. Additionally, through mutations it avoids of getting 
trapped inside the local minima. 

We have started our experiment with 20 virtual resources and arbitrarily 186 
number of subtasks. These virtual resources have been created inside a host. Our 
aim in the algorithm is that whenever a subtask will appear in the queue, it will be 
allocated to the resource that is most feasible. So, the virtual resources (also called 
nodes) are placed randomly in a predefined partially virtualized cloud platform. 

The starting node, marked as 1 in Fig. 3a and Fig. 3b also chosen randomly and 
represents the comparative node traversal routes in two different iterations. From
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Table 3 Details of hardware set-up for simulation 

Parameters Weight/range Specification 

# data centers 5 Simulated within the physical machine 
# hosts 5 Running inside the host 
RAM 16,384 MB Double data rate V4 
Host RAM 12,288 MB Double data rate V4 
GFX card 4096 MB Provides additional processing power 
Host N/W bandwidth 500–2000 MB/s Network card of physical machine is used 
# CPUs [2, 8] Intel i7 octa core 3.06 GHz 
# VMs 40 Used VMWare workstation, ESXi v6.7 
# vCPUs [1, 4] Assigned virtually to VM using VMM 
Capacity of vCPU [1000, 2500] MIPS Assigned virtually to VM using VMM 
Capacity of vRAM [512, 4096] MB Assigned virtually to VM using VMM 
Capacity of VM bandwidth [500, 2000] MB/s Assigned virtually to VM using VMM 
Direct attached storage 1,048,576 MB SATA HDD 
Virtual hard disk for host 358,400 MB Virtual hard disk created & managed 
VHD for VM 102,400 MB Virtual hard disk assigned to VM 
# cloud tasks [100, 700] Taken through ispell dataset ftp://gnu. 

mirror.iweb.com/ 
MIPS of vCPU [100, 20,000] vCPU speed measured in MIPS 
Size of task files [200, 400] MB Located inside VHD 
Size of output file [20, 40] MB Saved inside VHD 

Table 4 Details of software set-up specifications 

Parameters Specification/description 

File system Standard virtual machine file system 
Processor Intel VT-x 64-bit x86 NX/XD bit enabled processor with at least 2 cores 
Main memory 8 GB vRAM  
Ethernet controller 1 GB  
VHD SCSI 350 GB 
Boot partition 32 GB HDD with 8 GB USB drives embedded 
VMware tools ESX-OS data volume tool is migrated from locker partition, used for core 

dump volume and finally the partition is rubbed out 

Fig. 3a to Fig. 3b, it can be noticed that for different iterations the starting nodes 
have changed to get the optimized shortest traversal route for the given parameters. 
For example, the starting node (marked as 1) in Fig. 3a has become node number 
5 in Fig.  3b and the node number 16 in Fig. 3a has become the starting node in 
Fig. 3b. This happened because we have given different parameter list for EVACO 
algorithm for execution in these two cases. We further observe that the choice of 
next node changes with the change in starting node. The traversing of nodes from 1 
to 20 is an implication of the fact that these virtual instances (called as nodes) are 
available to be allocated to the incoming sub tasks. This is possible because the idle

ftp://gnu.mirror.iweb.com/
ftp://gnu.mirror.iweb.com/
ftp://gnu.mirror.iweb.com/
ftp://gnu.mirror.iweb.com/
ftp://gnu.mirror.iweb.com/
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Fig. 3 (a) Iteration 1 and (b) 
Iteration 2 of EVACO 
algorithm 

Fig. 4 Performance comparison graph of (a) Iteration 1 and (b) Iteration 2 of EVACO algorithm 

index (as described in the Eq. 10) of these nodes are high and hence sub tasks are 
allocated to them. 

The performance comparison for the stated iterations is demonstrated in Fig. 
4a and Fig. 4b which reflects the time (in milliseconds) required to traverse all 
20 nodes. The numeric weights of the time requirement to execute the proposed 
algorithm have been shown in Table 4 for further comparisons. 

From Table 4, it is clearly noticeable that EVACO algorithm substantially 
provides better time complexity than that of other algorithms like PSO, GA, IACO, 
SACO, ACO etc. We have calculated mean, variance and standard deviation weights 
from the obtained result to compare these algorithms in terms of computational 
time spent for different iterations. The detailed graphical comparisons have been 
displayed in Figs. 5, 6, 7, 8, 9 and 10. From the generated graphs, we can claim 
that our proposed EVACO algorithm and the associated mathematical model stands 
higher than the existing approaches (Table 5). 

7 Conclusion 

ACO has been able to show how effectively resources can be optimized for 
improved allocation policy. On the other hand, virtualization proved its significance 
to cloud computing by reducing the infrastructure overhead and increasing the 
throughput of the data centres. Combined, they can be used for enhancing the
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Fig. 5 Comparison of mean for PSO, GA, IACO, SACO, ACO and EVACO 

Fig. 6 Comparison of variance for PSO, GA, IACO, SACO, ACO and EVACO 

Fig. 7 Comparison of standard deviation for PSO, GA, IACO, SACO, ACO and EVACO 

resource optimization policy in partially virtualized cloud platforms. In this paper, 
we have proposed a novel algorithm (called as EVACO) that applies ACO in a 
modified approach in a partially virtualized cloud platform for finding feasible



Efficient Resource Allocation in Virtualized Cloud Platforms Using. . . 149

Fig. 8 Comparison of performance analysis for PSO, GA, IACO, SACO, ACO and EVACO 

Fig. 9 Comparison of resource requirements for PSO, GA, IACO, SACO, ACO and EVACO 

Fig. 10 Comparison of 
makespan requirements for 
PSO, GA, IACO, SACO, 
ACO and EVACO
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Table 5 Time comparison of EVACO vs. other algorithms for 30 iterations 

#Iterations PSO GA IACO SACO ACO EVACO 

1 2.753 2.871 2.748 2.846 2.949 2.617 
2 2.862 2.510 2.800 2.943 2.730 2.503 
3 2.958 2.677 2.999 2.981 3.079 2.714 
4 2.660 2.675 2.823 2.861 2.926 2.666 
5 2.801 2.779 2.722 2.650 2.909 2.709 
6 2.603 2.619 2.791 2.797 2.814 2.699 
7 2.733 2.721 2.591 2.955 2.804 2.805 
8 2.688 2.882 2.820 2.917 2.744 2.635 
9 2.683 2.871 2.720 2.519 2.904 2.800 
10 2.888 2.685 2.963 2.520 2.906 2.741 
11 2.619 2.742 2.729 2.785 2.792 2.673 
12 2.748 2.619 2.519 2.578 2.720 2.720 
13 2.800 2.709 2.677 2.889 2.817 2.811 
14 2.999 2.835 2.675 2.952 3.030 2.943 
15 2.823 3.101 2.779 2.760 2.858 2.814 
16 2.722 2.752 2.619 2.669 2.961 2.638 
17 2.791 2.795 2.721 2.617 2.728 2.521 
18 2.591 2.714 2.882 2.503 2.940 2.606 
19 2.820 2.605 2.871 2.714 2.846 2.713 
20 2.720 2.706 2.685 2.823 2.943 2.507 
21 2.963 2.828 2.742 2.722 2.981 2.825 
22 2.729 2.707 2.619 2.791 2.861 2.639 
23 2.519 2.693 2.709 2.591 2.650 2.670 
24 2.520 2.754 2.835 2.820 2.797 2.598 
25 2.785 2.774 3.101 2.720 2.955 2.813 
26 2.578 2.768 2.752 2.963 2.917 2.409 
27 2.889 2.860 2.795 2.729 2.775 2.654 
28 2.952 2.629 2.862 2.619 2.879 2.701 
29 2.760 2.633 2.958 2.721 3.053 2.789 
30 2.669 2.611 2.660 2.882 2.769 2.513 

resource allocation policy. In this context, we have also designed a new utilitarian 
mathematical model. This model shows how a cloud user can get the optimized 
solution for a given set of tasks. We have run rigorous simulations by setting up the 
environment using cloud analyst simulator. The simulation results shown in Table 
4 explains that the performance of our proposed algorithm is quite satisfactory. We 
have compared our simulation results with other existing algorithms and found that 
our proposed algorithm is giving better results than others. Overall, through the 
simulation we have shown that the performance of our proposed EVACO algorithm 
is excellent and is better than other existing algorithms in terms of optimal resource 
allocation and overall execution model.
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