
AI Enabled Resources Scheduling
in Cloud Paradigm

Sudheer Mangalampalli, Ganesh Reddy Karri, and Prabha Selvaraj

Abstract Cloud Computing was evolved as one of the paradigm, which gives
services to users in a utility-based manner. Services of cloud computing were
extended to various fields and applications. Due to the enormous number of users,
flexibility and easy to use nature of cloud paradigm, many of companies are trying
to migrate towards cloud paradigm but from a cloud provider perspective it is a
difficult to job to handle or schedule these heterogeneous workloads, which are
coming onto cloud console. Therefore, it is important for a cloud provider to
employ a task scheduling mechanism, which should be more proactive based on
the nature of workloads coming onto cloud interface and how effectively they are
scheduled onto suitable virtual resources. Many of existing scheduling algorithms
used nature or bio inspired techniques to model schedulers as scheduling problem
in cloud paradigm is a classical NP-Hard problem but still to make a schedule for
a task onto a suitable VM based on its processing capacity while minimizing its
makespan, energy consumption and other operational costs is still a tedious job as
incoming user requests are highly dynamic in nature. In this paper, we have used
a deep reinforcement learning technique i.e. DDQN model to make decisions of
scheduling in cloud paradigm while checking incoming requests and underlying
resources for every task. Task priorities are evaluated for all incoming tasks and
prioritized tasks are fed to our scheduler and based on imposed conditions our
scheduler will make decisions effectively. This entire research implemented on
cloudsim. Extensive simulations are conducted by generating workload randomly
and from realtime workload traces. Finally, our proposed scheduler is evaluated
against existing baseline approaches i.e. Round Robin, FCFS, and Earliest Deadline
first. From Simulation results, our proposed approach shown a huge impact over
existing baseline approaches in terms of makespan, Energy consumption.

S. Mangalampalli (�) · G. R. Karri · P. Selvaraj
School of Computer Science and Engineering, VIT-AP University, Amaravati, India
e-mail: sudheer.mangalampalli@vitap.ac.in; ganesh.reddy@vitap.ac.in; prabha.s@vitap.ac.in

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Kumar et al. (eds.), 6G Enabled Fog Computing in IoT,
https://doi.org/10.1007/978-3-031-30101-8_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30101-8protect T1	extunderscore 1&domain=pdf

 885
56845 a 885 56845 a

mailto:sudheer.mangalampalli@vitap.ac.in
mailto:sudheer.mangalampalli@vitap.ac.in
mailto:sudheer.mangalampalli@vitap.ac.in
mailto:sudheer.mangalampalli@vitap.ac.in

 14866
56845 a 14866 56845 a

mailto:ganesh.reddy@vitap.ac.in
mailto:ganesh.reddy@vitap.ac.in
mailto:ganesh.reddy@vitap.ac.in
mailto:ganesh.reddy@vitap.ac.in

 25135
56845 a 25135 56845 a

mailto:prabha.s@vitap.ac.in
mailto:prabha.s@vitap.ac.in
mailto:prabha.s@vitap.ac.in
mailto:prabha.s@vitap.ac.in
https://doi.org/10.1007/978-3-031-30101-8_1
https://doi.org/10.1007/978-3-031-30101-8_1
https://doi.org/10.1007/978-3-031-30101-8_1
https://doi.org/10.1007/978-3-031-30101-8_1
https://doi.org/10.1007/978-3-031-30101-8_1
https://doi.org/10.1007/978-3-031-30101-8_1
https://doi.org/10.1007/978-3-031-30101-8_1
https://doi.org/10.1007/978-3-031-30101-8_1
https://doi.org/10.1007/978-3-031-30101-8_1
https://doi.org/10.1007/978-3-031-30101-8_1
https://doi.org/10.1007/978-3-031-30101-8_1

4 S. Mangalampalli et al.

Keywords Task scheduling · Cloud computing · Artificial intelligence · Deep
reinforcement learning · Double deep Q-network model · Round Robin · FCFS ·
Earliest dead line first · Makespan · Energy consumption

1 Introduction to Cloud Computing

Cloud Computing is a distributed model, which gives on demand ubiquitous services
from virtual resources as a service needed for cloud consumers based upon service
level agreements. With the advent of huge generation of data from various resources,
there is a huge pressure on IT firms to maintain applications with commodity
hardware and trying to adopt cloud environment [1]. In on premises environment,
organizations follows cluster or grid computing approaches where cluster comput-
ing follows a centralized computing architecture [2] and Grid Computing follows
either centralized or distributed computing approach [3] which renders their services
to their corresponding customers. In Cluster and Grid Computing environments,
computing resources are fixed and they cannot scale automatically as per the on
demand requirements of users. Cloud Computing paradigm gives users scaling
facility to increase or decrease virtual resources as per the requirements of users.
This entire paradigm based on service oriented architecture [4] through which
virtual resources will be given to all users as services as per SLA made between
cloud user and provider. The main characteristics of cloud computing paradigm are
mentioned below [5].

1.1 Characteristics of Cloud Computing

Resource Pooling It gives cloud users a virtual resource from pool of resources as
per SLA of customer. This is an important characteristic in this paradigm as many
of users will access virtual resources and these resources should be provisioned
automatically from cloud provider from pool of resources running at cloud provider
and allocation of resources to users should not affect other users while provisioning
resources.

On Demand Service It provides self-control for cloud customer/user for the
application running in cloud environment. He/She can provision or deprovision
resources based on need of the application.

Ease of Maintenance This paradigm provides a huge flexibility to their users as
they don’t need to maintain their applications as they do in on premises environment.
Therefore, users can focus on their development of application improvement and
business objectives as cloud provider will take care of maintenance in terms of
updates, patching etc.

AI Enabled Resources Scheduling in Cloud Paradigm 5

Scalability This is a key characteristic in cloud paradigm as in now a days many
of applications need to increase or decrease their resources instantly. To do so, we
need a special paradigm, which adapts to environment and provision or deprovision
resources according to situation. Coming to scalability it is of two types in cloud
paradigm i.e. Horizontal and Vertical scaling. Horizontal scaling is to increase or
decrease entire virtual machine if workload of the application cannot be handled by
existing infrastructure. Vertical scaling is about to increase or decrease a specific
resource.

No Upfront Investment It is economical as cloud user need not invest money on
resources unlike in on premises environment. Zero upfront investment is needed in
this paradigm, as users don’t need to pay for their operational and administrational
costs as in on premises environment.

Measured Service It is to be used for both cloud user and provider as for all
services which were provisioned from cloud provider end need to compute pricing
and from cloud user end it is to be used for them to know what are different services
they have used and amount of consumption for corresponding services. This will be
mainly useful for generating bill for cloud user automatically.

Security It is one of crucial characteristic of cloud paradigm as users are deploying
their applications in third party environment not at their on premise environment.
Therefore, cloud providers will follow high standards of security at their end and
they will create a replica of each data point in the cloud environment as an end point
through which data can be restored if any file gets corrupted or any crash happens in
cloud environment. Cloud paradigm uses IAM i.e. Identity and access management
service as their primary security service, which can give users a high standard of
security at different levels, based on the need of the application.

Automation This is an essential characteristic for cloud paradigm as from around
the globe many of users requests wide variety of resources according to their
application. All these requests need to be fulfilled by the cloud provider as per
the demand of cloud user according to SLA. Therefore, to handle these kind of
heterogeneous and diversified requests from various users for different types of
needs and provisioning those resources from cloud provider on demand needs
automation. All provisioning and deprovisioning should be done automatically. If
it should be done automatically, underlying policies need to be defined by cloud
provider for different resources in the cloud environment.

Resiliency It is an important characteristic for cloud computing paradigm as if any
data, file or computing server goes down or any crash happens it will be recovered
quickly with little downtime unlike on premise environment.

Availability In this model, all virtual resources to cloud user will be highly avail-
able as many users accessing their resources on demand without any haseleness.
To accommodate resources to all users seamless access to be provided by cloud
provider and infrastructure to be resilient enough to handle requests from cloud

6 S. Mangalampalli et al.

users. Cloud paradigm is having enough strength of resilient network and highly
available and scalable resources as they are using virtualization.

Remote Access In this environment all resources to cloud users will be given as
services on demand and these resources can be accessible from anywhere around the
world. Therefore, it uses Internet to access resources in cloud paradigm. It allows
users to work from anywhere to access their applications in cloud environment,
which gives high availability, resilient network and seamless access to users.

Multitenant Architecture It is a primary characteristic in cloud paradigm through
which, a resource is shared among several users as per SLA. When a single
resource is shared among several users, there will be no conflicts among provision of
resources as it is having an underlying software program managed by cloud provider
and it is automated.

The below Fig. 1 represents characteristics of Cloud Computing.

1.2 Deployment Models of Cloud Computing

To adopt to cloud environment into on premises environment either they need to
migrate their existing environment onto cloud computing infrastructure or they need
to build their new applications on cloud environment. IT firms need to use certain
deployment models for their application deployment in cloud environment. There
are certain deployment models [6] named as Private, Public, Hybrid and Community
cloud models. The below are primary deployment models of cloud paradigm which
are represented in Fig. 2.

Public Cloud renders services to all cloud users who subscribed to services of a
corresponding cloud provider on a paid basis. This deployment model can render
services to all of its users around the world and users can access cloud services at
any time around the clock in a seamless manner.

Private Cloud renders services to cloud users to a specific organization based on
the subscription of services made with cloud provider. This deployment model helps
cloud users to access their application with a secured channel and no other users out
of that organization can access the services.

Hybrid Cloud It is a combination of both public and private cloud services
rendered by a cloud provider to an organization in which some of the resources can
be accessed publicly and some other resources have to be restricted to part of users
in organization. Therefore, to handle this situation, organizations will subscribe to
a model named as Hybrid cloud model, which gives resource access to users based
on the restrictions mentioned by their organization.

AI Enabled Resources Scheduling in Cloud Paradigm 7

Fig. 1 Characteristics of Cloud Computing

8 S. Mangalampalli et al.

Fig. 2 Deployment models
of Cloud Computing

1.3 Service Models of Cloud Computing

Cloud Computing paradigm provides resources through service models as this
paradigm renders resources to users based on SLA between cloud users and
providers. There are several services available in these days with different cloud
providers.

Infrastructure-as-a-Service This service model provides virtual infrastructure to
cloud user, which can replace hardware infrastructure in on premise environment.
The advantage of this service is to scale infrastructure to an extent based on the
requirement of users. Entire infrastructure of user application can be accessed via
user interface.

The below Fig. 3 represents basic service models [7] in cloud computing.

Platform-as-a-Service This model is used to provide virtual development oppor-
tunities for cloud user based on SLA between cloud user and provider. This model
can be helpful to users to develop cloud naïve applications. It provides virtual
development platform for users by integrating it with different environments with
use of RESTFUL API service. It provides support of various languages and APIs to
develop cloud naïve applications.

Software-as-a-Service This service model renders service to cloud users for
applications hosted in cloud environment and developed by cloud provider or
applications hosted in cloud environment and developed by other users. This model
is not used to develop applications but to render services to users for applications
already hosted in cloud environment.

Main highlights of this chapter are presented below.

• Main objective of this research is to design a task-scheduling algorithm using
DDQN model i.e. reinforcement learning based approach.

• Energy consumption, makespan are considered as parameters in this approach.
• Workload considered from fabricated workloads and another real world dataset

i.e. BigDataBench [36].

AI Enabled Resources Scheduling in Cloud Paradigm 9

Fig. 3 Service models of
Cloud Computing

2 Resource Scheduling in Cloud Computing

After discussion of basic service, deployment models we need to discuss about
Provisioning of virtual resources to users by considering underlying resources in
cloud infrastructure. This process is known as Resource scheduling [8]. In Cloud
Computing, assignment of user requests to appropriate virtual resources is a highly
dynamic scenario as many users are accessing cloud resources concurrently. It is a
class of NP – hard problem and assignment of requests to virtual resources in cloud
paradigm is a challenging issue as incoming requests coming onto cloud console
varies with respect to time, size, processing capacity. Cloud paradigm needs an
effective scheduler as provisioning and deprovisioning of resources to user requests
is depends only on scheduler. Therefore, scheduler will impacts various parameters
when assigning virtual resources to user requests. It will directly impacts the
performance of cloud environment which impacts directly both cloud provider and
users. Many of resource scheduling algorithms in cloud computing were modeled
by nature inspired and metaheuristic algorithms. There are many existing algorithms
i.e. PSO [9], GA [10], ACO [11], CSA [12], CSO [13] are used to model scheduling
algorithms in cloud computing. There are many nature inspired and metaheuristic
algorithms used to develop resource scheduling mechanisms in cloud paradigm
but still it is a challenge in cloud paradigm to suitably map incoming tasks to
appropriate virtual machines. Therefore, an artificial intelligence mechanism is
needed to schedule incoming tasks to appropriate virtual resources. In this chapter,
we used a DDQNmodel i.e. deep reinforcement learning technique to map incoming
requests to VMs carefully based on incoming requests and checking underlying
resources. Initially in this chapter, we carefully studied about various resource
scheduling algorithms modeled by metaheuristic algorithms and their impact on
cloud computing.

In the coming section, we mentioned various metaheuristic algorithms used to
solve resource scheduling problems in cloud computing.

10 S. Mangalampalli et al.

2.1 Resource Scheduling Algorithms Modeled
by Metaheuristic Approaches in Cloud Computing

This section clearly discusses about various resource scheduling algorithms mod-
eled by various metaheuristic approaches.

In [9], a scheduling framework designed by authors which focuses on min-
imization of task processing time. This algorithm modeled by using MPSO,
which used over diversified population. It was simulated on Cloudsim. Main
intention of this algorithm to minimize processing time of task with in deadline.
It was evaluated against existing PSO, APSO, artificial bee colony, BAT, min-
min algorithms. From simulation results it was proved that it was dominant
over existing approaches for mentioned parameter. In [15], authors proposed a
hybrid resource scheduling model was developed to address a single objective
i.e. makespan. It was modeled by hybridization of whale algorithm by tuning
parameters for both exploration, exploitation and to avoid premature convergence. It
implemented on cloudsim. Workload taken from real world and synthetic datasets.
It was compared over existing Whale optimization algorithm and finally evaluated
makespan. From simulation results, it was proved that hybrid approach improves
makespan over existing baseline algorithm for mentioned parameter. In [16], authors
focused on development of a resource-scheduling model, which minimizes energy
consumption, execution cost. Methodology used in this approach CSSA algorithm.
Cloudsim was used as simulation tool. Real time and synthetic workloads given as
input to algorithm. It compared over existing baseline models i.e. Hybrid GA-PSO,
PSO-BAT, SSA algorithms. Results demonstrated that proposed model minimizes
specified parameters. In [17], a resource scheduling model was developed to focus
on parameters i.e. makespan, throughput, degree of imbalance. Hybrid Gradient was
added to cuckoo search to solve resource-scheduling problem. Cloudsim was used
as a simulation tool for experimentation. Real time work log traces from HPC2N
[13], NASA [13] were used in simulation. It was compared over existing approaches
i.e. ACO, CS. From results, it proved that HGDCS outperforms over existing
algorithms for mentioned parameters. In [18], a resource-scheduling algorithm
developed for vehicular cloud, which addressed makespan, energy consumption. It
was mainly developed to schedule tasks properly onto vehicular clouds to avoid
latency from centralized cloud architecture. It was modeled into three layers of
scheduling and schedules on demand requests of road side users successfully
based on usage of HAPSO by combining genetic, PSO algorithms. Sumo, NS2,
MATLAB were used as simulation environments for resource scheduling. It was
evaluated against PSO, GA algorithms. From simulation results it was greatly
improved makespan, energy consumption by 34%, 32.5% respectively. In [19],
task-scheduling mechanism was developed to focus on makespan. It works with
crow search which is a nature inspired algorithm based on food habits of the
crow. It was simulated on cloudsim. Heterogeneous random workloads were given
as input to algorithm. It was evaluated over existing ACO, Min-Min algorithms.
Simulation results revealed that existing works were outperformed by this approach

AI Enabled Resources Scheduling in Cloud Paradigm 11

for mentioned parameter. In [20], authors formulated a task scheduling approach
focused on parameters i.e. makespan, resource utilization, cost. LOA was used as
methodology to solve scheduling problem. Cloudsim was used for entire simulation.
Random generated workload used in simulation. It was evaluated over existing
GA, PSO algorithms. Simulation results proved this approach was dominant
over existing mechanisms for specified parameters. In [21], scheduling algorithm
formulated to address computational cost, makespan, resource utilization, degree
of imbalance. This mechanism modeled based on CSSA algorithm, which selects
search space for optimization by using randomized inertia weights. It helps to
converge swarm towards solution quickly. It implemented on cloudsim. It compared
over GA, PSO, ABC approaches. It outperformed over existing algorithms for
mentioned parameters. In [22], authors designed two scheduling algorithms i.e.
LJFP, MCT based on existing PSO algorithm. It developed based on PSO in
which modification was done at initialization of population done by these two-
mentioned LJFP, MCT. It implemented on MATLAB. It was evaluated against
baseline approach i.e. PSO. From results, it proved that these two approaches
dominant over classical PSO in terms of execution time, energy consumption,
degree of imbalance. In [23], a scheduling framework designed in two folds aimed at
minimization of makespan, energy consumption. This approach based on scheduling
tasks in compute clouds. Hybrid methodology used to solve task scheduling problem
by combining GA, BFA. In first fold, this approach was addressed makespan. In
second fold, it was addressed energy consumption. Entire simulations conducted on
MATLAB. Metrics addressed in this approach evaluated with different workload
heterogeneities. Initially simulation carried out with low heterogeneity workload
and later it carried out with high heterogeneous and diversified workload. It was
evaluated over existing GA, PSO, BFA algorithms. Simulation results revealed that
it outperforms all existing approaches for specified parameters. In [24], SACO was
developed to address how makespan, processing time of tasks effects scheduling
in cloud computing. This algorithm uses diversification, reinforcement approach to
avoid long path to capture their food shown by leader ants. Simulation carried out
on Cloudsim. It was compared over variants of ACO. From results, it proved that
SACO outperformed other variants for mentioned parameters. In [25], BMDA was
proposed by authors to solve scheduling in cloud computing. Methodology used
in this algorithm is a combination of BBO and dragon fly algorithms. BBO used
as a technique to avoid premature convergence, which combined with dragon, fly
algorithm to give optimal solutions. It implemented on Cloudsim. Workload given
to this algorithm is from NASA [13] parallel work log archives and from CEC 2017
[26] benchmark functions. It compared over DA, PSO, BAT, GWO, RRO, Adaptive
DA algorithms. From results, BMDA outperforms over existing algorithms for
metrics i.e. response time, execution time, SLA violation. In [27], authors developed
a task-scheduling algorithm focuses on minimization of makespan, maximization
of resource utilization. EMVO developed by combining MVO, PSO algorithms that
addresses local optimization problem in PSO. In EMVO, experiments conducted
by using fixed and variable number of VMs. Entire experiments conducted on
MATLAB. It evaluated over MVO, PSO algorithms and results revealed that it

12 S. Mangalampalli et al.

shows huge impact over existing approaches for specified parameters. Authors
in [28] proposed a task scheduling algorithm i.e. IE-ABC a hybrid metaheuristic
approach addressed parameters i.e. Security, QoS. It was modeled by classical
ABC approach which improved by adding a dedicated employee bee which keeps
track of VM and datacenter status. Therefore, it is easy for a scheduler to look
at VM and datacenter status to map its tasks easily and precisely. Simulations
conducted on cloudsim. It was compared against classical ABC algorithm with
respect to makespan, cost, Number of tasks migrated. Finally, from simulation
results, there is a huge impact over existing ABC for specified parameters. In [29],
scheduling algorithm formulated to schedule tasks onto virtual machines. CRO
and ACO combined to solve scheduling problem. It implemented on Cloudsim.
Random workload and Amazon EC2 instances workload given input to algorithm.
It evaluated against CRO, ACO, PSO, CEGA algorithms and results revealed that
it shows improvement in makespan, cost. In [30], FA-SA algorithm proposed
by authors to introduce a new local search to optimize solution. This algorithm
initializes a new population strategy to converge towards near optimal solutions.
Cloudsim. used for simulation. Workload given to algorithm from real time datasets
and synthetic workloads. It compared against existing firefly, SA, min-min, max-
min algorithms. Results revealed that it shown huge impact over existing approaches
for specified parameters makespan for different workloads with different datasets.
In [31], a hybrid algorithm proposed by authors to schedule tasks effectively by
addressing energy consumption, SLA violation. Methodology used in this algorithm
is BMW-TOPSIS to map tasks to VMs. Entire simulations conducted on Cloudsim.
It compared over existing BMW, TOPSIS algorithms and performed ANOVA test
to evaluate statistics from results. From simulation results, it outperforms existing
approaches for energy consumption, makespan, resource utilization.

Table 1, it clearly shown that many of metaheuristic algorithms addressed
baseline parameters but scheduling in cloud computing environment is highly
dynamic and to map tasks effectively and these metaheuristic approaches still
facing challenges to get optimal solutions in terms of metrics addressed in cloud
environment. Therefore, it is necessary to employ a machine-learning model in
scheduling architecture through which decision need to be taken for mapping of
requests with resources.

In the next section, we mentioned various ML based scheduling algorithms to
solve resource scheduling problems in cloud computing.

2.2 Resource Scheduling Algorithms Modeled
by Metaheuristic Approaches in Cloud Computing

This section clearly discusses about various resource scheduling algorithms in cloud
computing modeled with various machine-learning techniques.

AI Enabled Resources Scheduling in Cloud Paradigm 13

Table 1 Summary of metaheuristic resource scheduling algorithms in Cloud Computing

References Methodology
Objectives of resource scheduling algorithms modeled by
metaheuristic approaches

[9] MPSO Task processing time
[10] Improved GA Execution time
[11] MORA-ACS Energy consumption, load balancing
[12] MOCSO Completion time, execution cost
[13] CSO Energy consumption, makespan, total power cost, migration

time
[15] Hybrid Whale Makespan
[16] CSSA Energy consumption, execution cost
[17] HGDCS Makespan, throughput, degree of imbalance
[18] HAPSO Makespan, energy consumption
[19] Crow Search Makespan
[20] LOA Makespan, resource utilization, cost
[21] CSSA Computational cost, makespan, resource utilization, degree of

imbalance
[22] LJFP, MCT Execution time, energy consumption, degree of imbalance
[23] GA-BFA Makespan, energy consumption
[24] SACO Makespan, processing time of tasks
[25] BMDA Response time, execution time, SLA violation
[27] EMVO Makespan, resource utilization
[28] IE-ABC Security, QoS
[29] CR-ACO Makespan, cost
[30] FA-SA Makespan
[31] BMW-TOPSIS Energy consumption, makespan, resource utilization

In [32], authors proposed an automation approach for scheduling workloads in
cloud paradigm. Initially authors used three ML models to develop this scheduling
algorithm i.e. RL, DQN, RNN-LSTM, DRL-LSTM. From all these approaches,
DRL-LSTM works well in minimization of CPU usage cost, Memory usage cost.
It was implemented using Pytorch framework. It evaluated against existing RR,
SJF, IPSO algorithms. From results, DRL-LSTM shows a huge improvement in
minimization of CPU usage cost 67% to SJF, 35% to RR, IPSO respectively and
memory usage cost minimized by 72% for SJF, 65% for RR, 31.25% for IPSO
approaches. In [33], a scheduling model designed by authors which uses deep
reinforcement learning approach to effectively schedule tasks coming onto cloud
console to Cloud nodes or edge nodes. This scheduling process follows precedence
constraints in their tasks, which are incoming to cloud console. It gives a clear
distinct mechanism to identify which tasks need to be scheduled to a VM or edge
nodes at deployment locations or cache locations of applications. This approach
implemented using cloudsim. It compared over several baseline approaches and
identified that this approach minimizes 56% of energy consumption, 46% of
execution time compared with baseline approaches. In [34], authors focused on

14 S. Mangalampalli et al.

development of a deadline aware scheduling model in fog cloud environment to
deal with delicate time sensitive applications. These time sensitive and on demand
requirement applications, found more often in IOT environment which may deal
smart city applications. These applications changes their behavior according to time
and heterogeneity of tasks are also is an important aspect in dealing these kind
of applications. Therefore, authors come up with hybridizing MTOA with DQN
machine learning model to solve scheduling problem. iFogsim used as a simulation
tool for this entire experimentation. It compared over CAG, DNGSA, policy
learning approaches. From results, it proved that MTOA-DQN approach shows
huge impact over existing policies for makespan, energy consumption. In [35],
authors developed a scheduling mechanism, which works with spark jobs in their
customized clusters. They developed this customized cluster to check the behavior
of spark jobs running in the cluster while maintain SLA objectives. They used
DRL based mechanisms for scheduling and workload used by them were real-time
AWS instances according to pricing models in Australia. They have used another
workload from BigDataBench [36] which consists of heterogeneous jobs i.e. IO
sensitive, Network sensitive, Computational sensitive. This entire experimentation
conducted on AWS cloud. They Compared this work with existing algorithms i.e.
RR, RRC, FF, ILP mechanisms. From experimental results, it proved that DRL
based mechanism gain success in minimization of VM cost by 30%. In [37], a com-
putational sensitive based scheduler formulated by authors to effectively schedule
tasks among VMs with the use of multi tenancy. A RL based technique used to
effectively map tasks to VMs. Simulations carried out on green cloud simulator
and evaluated against existing RR, FCFS approaches. From simulation results, it
proved that it outperforms existing approaches by minimizing operational costs and
maximizing resource utilization. In [38], authors formulated a scheduling algorithm
based on RL focuses on improvement of system performance. This algorithm
takes heterogeneous requests as input and fed to RL based scheduler to make a
decision to schedule tasks in cloud computing. This entire experimentation carried
out on Cloudsim. It evaluated against existing algorithms i.e. RR, Max, FIFO,
Greedy, Q-Scheduling algorithms. From Simulation results, response time greatly
minimized over existing algorithms by 49%, 46%, 44%, 43%, 38% respectively for
above mentioned existing algorithms. In [39], authors focused on development of
a green fair scheduler in cloud computing which minimizes energy consumption
in datacenters. This algorithm uses a DL approach to schedule tasks in this
complex system. Simulation carried out on cloudsim. It evaluated against existing
conventional migration approach with variable request sizes ranging from 50 to 500
and identified that energy consumption greatly minimized over existing approaches.
In [40], authors formulated a scheduling mechanism, which used in edge computing
environment. Edge computing suffers from high task failure rate, high service
time, high mobility of devices. DRL used as methodology in this algorithm.
Edge Cloudsim [41] used as simulation tool for experimentation. It evaluated
against existing DQN, PPO approaches. Simulation results revealed that it greatly
minimizes service time, task failure rate over DQN, PPO for various heterogeneous
workloads. In [42], a multi workflow scheduling mechanism developed for IaaS

AI Enabled Resources Scheduling in Cloud Paradigm 15

clouds to minimize makespan, cost. Multi agent DQN model used for developing
this approach, which takes input as multiple workflows with variable number of
VMs. Experimentation carried out on real time AWS environment. It compared
over existing NSGA-II, MPSO, GTBGA approaches. From simulation results,
it proved that multi agent DQN model which takes scheduling decisions based
on no prior knowledge outperforms existing algorithms for specified parameters.
In [43], Reliability taken as primary objective for design of scheduler in cloud
environment. Authors identified a multi agent approach, which takes your task to
global queue, and then it will schedule based on buffer capacity and consumed
resource usage. For learning purpose, this algorithm uses neural network and it
combined with RL approach thereby achieving rewards based on metrics addressed
by authors. It implemented on customized simulation environment and it compared
against greedy, FIFS, Random approaches. Simulation results shown that makespan
minimized to great extent while success rate of tasks, VM utilization rate increased
to a good extent. In [44], a dynamic scheduler for cloud environment designed based
on Sched RL. This approach transforms existing multi-NUMA scheduler used in
existing approaches. Sched RL used 1500 epochs to run entire simulation and gives
delta rewards for corresponding parameters i.e. allocation rate, fulfill number of
tasks. Authors also mentioned that Sched RL have two limitations i.e. scalability,
generalization. It implemented on a real time Azure cloud environment with variable
workloads. It compared over First fit, best fit heuristics, and from results, it proved
that proposed approach shown huge impact over existing approaches for mentioned
parameters. In [45], workflow scheduling formulated for multiple workflows, which
designed for prioritizing tasks based on its type and quality of service need to be
delivered to customer. This algorithm mainly deals with task ordering into execution
mode based on their priorities to get load balance among all nodes. To achieve
their goal, authors used RL model, which takes decisions, based on input of tasks,
type of tasks and priorities. Simulation carried out on Cloudsim and it compared
over Q- learning, Random, Mixed scheduling techniques. Results revealed that
RL model outperforms existing approaches by minimizing SLA Violations and
maximizing resource utilization. In [46], authors proposed an energy efficient VM
scheduling technique, which minimizes energy consumption, SLA violations while
maintaining QoS. This work mainly focuses on extracting QoS information from
datacenters by making it to learn by using DRL model. It compared with different
existing resource allocation mechanisms and extensive simulations conducted on
Cloudsim. From simulation results, it shown a huge impact over existing allocation
mechanisms for above-mentioned parameters. In [47], a cost based scheduling
algorithm formulated by authors to schedule VM instances in Cloud Computing.
DRL used as methodology to schedule instances in an effective way. Cloudsim used
as simulation tool for simulation. It compared over existing algorithms i.e. Random,
RR, Earliest approaches. From simulation results it proved that it shown huge impact
over existing algorithms for parameters i.e. Response time, cost, success rate of
tasks.

Table 2, clearly shown that many of ML approaches used for resource scheduling
algorithms addressed baseline parameters but scheduling in cloud computing

16 S. Mangalampalli et al.

Table 2 Summary of ML approaches for resource scheduling algorithms in Cloud Computing

References Methodology
Objectives of resource scheduling algorithms modeled by ML
approaches

[32] DRL-LSTM CPU usage cost, memory usage cost
[33] DRL Execution time, energy consumption
[34] MTOA-DQN Makespan, energy consumption
[35] DRL VM cost
[37] RL Operational costs, resource utilization
[38] RL Response time
[39] DL Energy consumption
[40] DRL Service time, task failure rate
[42] DQN Makespan, cost
[43] RL Makespan, VM utilization rate
[44] SchedRL Allocation rate, fulfill number of tasks
[45] RL SLA violation, resource utilization
[46] DRL Energy consumption, SLA violation, QoS
[47] DRL Response time, cost, success rate

environment is highly dynamic and more over that many of researchers used RL and
DRL approaches to address problems in resource scheduling. To make decisions
more accurate and precisely with heterogeneous workloads. In this chapter, we
employed a Deep reinforcement learning approach i.e. DDQN model which is based
on RL.

From the extensive literature reviewed in Sect. 2, we identified that many of
existing scheduling algorithms formulated based on nature-inspired approaches,
which schedules tasks with near optimal solutions. Therefore still there is a
challenge exists for researchers to map upcoming dynamic workloads onto suitable
virtual resources. Therefore a prominent scheduling approach is needed which
should dynamically behaves and allocate requests based on upcoming workloads
by considering underlying virtual resources. Therefore, we thought that a machine
learning mechanism need to be employed which should consider upcoming work-
loads and considering underlying resources, which also need to minimize energy
consumption, makespan.

3 Double Deep Q-Networks

When using DQN, there is a chance that the Q values will be overestimated, which
can result in the underutilization of resources, an increase in the makespan, and
the need to wait for the tasks. We use double deep Q networks (DDQN) to get
around the problems with the DQN when it comes to scheduling tasks in cloud-
based environments.

AI Enabled Resources Scheduling in Cloud Paradigm 17

To begin, we divide the available resources into three distinct categories. The
first one is the bandwidth of the network in relation to the links that are established
between the switches and routers. Second, the processing power of VMs in terms
of CPU and Memory. The third issue is the accessibility of the data in relation to
its storage when it is spread out across multiple locations. An environment that
contains all three of these types of resources is known as a reinforcement learning
environment. We consider Q1 and Q2 to be the queuing models that define the
agents, with the Q1 agent being determined by the resources needed to carry out
the tasks in the queue and the Q2 agent being determined by the resources that
are readily available in the datacenter. The random weights for Q1 and Q2 are
the first things that we look at. These values are updated as Algorithm 2 performs
its processing of the input. In the system we suggested, we started by setting up
the cloud environment and giving each agent its starting weights, as described in
Algorithm 1.

Algorithm 1: Configuring Cloud Environment and Setting Up Agent
Input: CPU resources, Memory resources network resources,

storage resources
for i=1 to l //where l is the number of CPU and Memory

resources of VMs in the cloud
Ti

cm= Ti
c + Ti

m + Ti-1
cm

for i=1 to n //where n number of available network
links to VMs in the cloud

Li
b= Li

b +Li-1
b

for i=1 to m //where m number storage components
associated with the VMs in the cloud

Sti
v= Sti

v +Sti-1
v

//Creating Q1 agent
for i=1 to tk //where tk is the number of tasks

on queue
tw = wi //initial task weights to

random weights wi

//Creating Q2 agent
for j=1 to rk //where tk is the number of

available VMs on queue
tw = wj //initial available VM

resource weights to random weights rw

After setting up all resource configurations and Q1 and Q2 agents, Algorithm 2
starts executing.

Algorithm 2: DDQL Task Scheduling
Input: total number of network resources, vm resources, and

storage rescues, Q1, Q2 agents
Output: updating the Q1, Q2 agents rewards, select action

agent
for i=1 to aj //where aj number of agents

task_rewards=0
for j=0 to n //where n number of tasks

Q1(s,ETETj)= t_end_time- t_start_time //where
estimated task execution time

18 S. Mangalampalli et al.

Q2(s,AVMRi)= val(Ti
cm,, Li

b, Sti
v)

If UPDATE(ETETj) then
Define aj = arg_maxa Q1(s′,a) // where a is ETETj

Q1(s,a)←Q1(s,a) + α (s,a)(r+ γ Q2(s′,aj)-Q1(s,a))
else If UPDATE(AVMRj) then //where AVMRi

is available VM resources
Define bj = arg_maxb Q1(s′,b) // where a is AVMRi

Q2(s,b)←Q2(s,b) + α (s,b)(r+ γ Q1(s′,bj)-Q2(s,b))
S←s′

The initial implementation of the Double Q-learning algorithm makes use of two
independent estimates, which are denoted by Q1 and Q2. We use estimate Q1 to
determine the action that will maximize profit when the probability is 0.5, but we
also use it to update Q1. In Q1 calculations we consider the estimated task execution
time, will update the reward of task in Q1, similarly for Q2 calculations we consider
the available VM resources, based on the resource utilization of VMs the VM reward
are updated. If any update in Q1 or Q2 the state parameters will be updated(s’).

By carrying out this procedure, we are able to obtain an unbiased estimator
Q1(state, argmax Qnext state, action) for the expected value of Q and inhibit bias.

In our approach we use the present best for selection of the action agent.

.Q∗ (st, at) = Es
′ [Rt+1γmaxaQ∗ (

s′t, a′
t

) | s, a] (1)

With Es equal to the Q-value of the state-action pair plus the learning rate. The
algorithm’s reliability on the objective reward value is a function of its learning
rate. A discount factor, regulates the relative value of present and future benefits.
From Algorithm 2, the time required to select the best agent to execute the task on
available resources O(m*n), where m is number of agents and n in number of tasks
in cloud environment.

4 Simulation and Results

This section clearly discusses about entire simulation and results of our work.
Our simulation carried out on cloudsim [14] simulator which is a discrete event
simulator written in Java. It was developed at university of Melbourne. It simulates
cloud environment with different policies mentioned by developers. Users can
customize and add their policies to evaluate different parameters over this simulator.
Therefore, we have chosen this simulator to implement our scheduling model. In
this work, simulation carried out by using two different types of workloads. Initially
we have fabricated our datasets with different workload distributions and given
as input to algorithm and later we are enthusiastic to evaluate efficiency of our
approach using a heterogeneous workload real time benchmark dataset mentioned
in [36] i.e. BigdataBench which consists of different types of tasks with different
heterogeneities. Fabrication of dataset done in 4 types i.e. Uniform distribution-

AI Enabled Resources Scheduling in Cloud Paradigm 19

Table 3 Configuration
settings for simulation

Name of the entity Quantity

No. of tasks 100–1000
Length of tasks 100,000
Computational capacity of physical host 32 GB
Storage capacity of physical host 5 TB
Network bandwidth 1500 mbps
No. of VMs 40
Computational capacity of a VM 2GB
Network bandwidth of a VM 150 mbps
Hypervisor Xen
Operating system Linux
No. of Datacenters 8

which consists all types of equally distributed tasks. Normal distribution-which
consists of more medium distribution of tasks and less number of small, large tasks.
Left Skewed distribution-which consists of more small tasks and less large tasks.
Right Skewed distribution-which consists of more large tasks and less small tasks.
All these distributions represented as r1, r2, r3, r4 respectively. After fabrication
of these dataset distributions. BigdataBench [36] represented as r5. Our proposed
DDQN model evaluated against existing RR [48], FCFS [49], EDF [50] algorithms.
Table 3 represents configuration settings for our simulation.

5 Evaluation of Makespan

In this section, we clearly presents evaluation of makespan, as it is a primary
influential parameter for cloud computing paradigm. This parameter evaluated using
above configuration settings mentioned in Table 3. We have given r1, r2, r3, r4, r5
workloads as input to algorithm as mentioned above with different distributions. We
evaluated DDQN approach against existing RR, FCFS, EDF algorithms. DDQN run
for 50 iterations. Table 4 represents evaluation of makespan for 100 to 1000 tasks.
For considered workload r1, when DDQN used makespan generated for 100, 500,
1000 tasks 587.34, 624.99, 1458.37 respectively. For considered workload r2, when
DDQN used makespan generated for 100, 500, 1000 tasks 512.89, 945.89, 1034.36
respectively. For considered workload r3, when DDQN used makespan generated
for 100, 500, 1000 tasks 543.92, 987.23, 1327.9 respectively. For considered
workload r4, when DDQN used makespan generated for 100, 500, 1000 tasks
412.89, 523.78, 866.24 respectively. For considered workload r5, when DDQN used
makespan generated for 100, 500, 1000 tasks 769.35, 1023.56, 1356.78 respectively.

Table 4 represents evaluation of makespan of DDQN algorithm over existing
algorithms i.e. RR, FCFS, EDF respectively by using fabricated dataset distributions
and a real-time benchmark dataset used to test makespan of our approach. From

20 S. Mangalampalli et al.

Table 4 Evaluation of
makespan

Algorithms
No. of tasks RR FCFS EDF DDQN

r1
100 793.98 654.76 773.78 587.34
500 967.45 1146.98 876.29 624.99
1000 1562.89 2376.98 2178.34 1458.37
r2
100 905.76 856.32 798.88 512.89
500 1124.78 1267.90 1078.45 945.89
1000 1892.67 2035.78 1224.23 1034.36
r3
100 867.23 747.89 623.87 543.92
500 1227.98 1367.65 1164.24 987.23
1000 1562.79 1923.65 1743.87 1327.9
r4
100 785.73 689.99 534.7 412.89
500 1124.99 1038.78 865.45 523.78
1000 1323.92 1534.78 1425.79 866.24
r5
100 1867.56 1745.34 1265.23 769.35
500 2034.78 1672.23 1429.9 1023.56
1000 2989.21 3126.78 2578.89 1356.78

Table 4, it is evident that for all distributions and benchmark dataset makespan of
DDQN is greatly minimized over existing approaches.

The above Fig. 4 represents evaluation of makespan using DDQN over existing
approaches i.e. RR, FCFS, EDF by using various distribution of workloads and
real time benchmark dataset i.e. r1, r2, r3, r4, r5 respectively. It is evident that in
all the cases our evaluated makespan is outperformed over existing approaches as
mentioned in above Fig. 4.

5.1 Evaluation of Energy Consumption

In this section, we clearly presents evaluation of energy consumption, as it is an
important parameter for both cloud provider and user. This parameter evaluated
using above configuration settings mentioned in Table 3. We have given r1, r2, r3, r4,
r5 workloads as input to algorithm as mentioned above with different distributions.
We evaluated our proposed DDQN approach against existing RR, FCFS, EDF
algorithms. Proposed DDQN run for 50 iterations. For considered workload r1,
when DDQN used Energy Consumption generated for 100, 500, 1000 tasks 34.67,
51.45, 89.27 respectively. For considered workload r2, when DDQN used Energy
Consumption generated for 100, 500, 1000 tasks 43.24, 59.23, 78.45 respectively.

AI Enabled Resources Scheduling in Cloud Paradigm 21

a b

c d

e

Fig. 4 Evaluation of makespan using DDQN (a) Uniform Distribution of Tasks. (b) Normal
Distribution of Tasks. (c) Left Skewed Distribution of Tasks. (d) Right Skewed Distribution of
Tasks. (e) BigDataBench worklogs

For considered workload r3, when DDQN used Energy Consumption generated for
100, 500, 1000 tasks 49.23, 56.45, 90.35 respectively. For considered workload r4,
when DDQN used Energy Consumption generated for 100, 500, 1000 tasks 38.26,
45.78, 75.38 respectively. For considered workload r5, when DDQN used Energy
Consumption generated for 100, 500, 1000 tasks 74.29, 81.56, 90.22 respectively.
Table 5 represents evaluation of energy consumption for 100 to 1000 tasks.

22 S. Mangalampalli et al.

Table 5 Evaluation of
Energy Consumption

Algorithms
No. of tasks RR FCFS EDF DDQN

r1
100 88.99 94.35 72.86 34.67
500 100.36 106.88 92.45 51.45
1000 143.25 123.99 108.76 89.27
r2
100 92.67 103.56 84.34 43.24
500 104.65 89.46 92.22 59.23
1000 124.24 135.89 120.56 78.45
r3
100 87.57 91.45 79.23 49.23
500 93.99 100.56 94.67 56.45
1000 114.2 124.78 105.22 90.35
r4
100 89.34 92.11 87.56 38.26
500 73.78 98.21 99.14 45.78
1000 103.24 121.67 114.67 75.38
r5
100 108.56 94.67 98.22 74.29
500 124.79 114.56 106.89 81.56
1000 137.35 121.78 114.26 90.22

Table 5 represents evaluation of energy consumption of DDQN algorithm over
existing algorithms i.e. RR, FCFS, EDF respectively by using fabricated dataset dis-
tributions and a real-time benchmark dataset used to test energy consumption of our
approach. From Table 4, it is evident that for all distributions and benchmark dataset
energy consumption of DDQN is greatly minimized over existing approaches.

The above Fig. 5 represents evaluation of Energy Consumption using DDQN
over existing approaches i.e. RR, FCFS, EDF by using various distribution of
workloads and real time benchmark dataset i.e. r1, r2, r3, r4, r5 respectively. It is
evident that in all the cases our evaluated energy consumption is outperformed over
existing approaches.

6 Conclusions and Future Research Directions

Resource scheduling in cloud computing paradigm is a huge challenge because
incoming requests onto cloud console varies in terms of processing capacities.
Therefore scheduling these wide varieties of requests onto virtual resources in cloud
is a challenge for cloud provider. Improper mapping of requests to virtual resources
leads to decay in system performance i.e. increase in makespan and consumption
of energy can be increased which affects both cloud user and provider. Existing

AI Enabled Resources Scheduling in Cloud Paradigm 23

a b

c d

e

Fig. 5 Evaluation of Energy Consumption using DDQN. (a) Uniform Distribution of Tasks. (b)
Normal Distribution of Tasks. (c) Left Skewed Distribution of Tasks. (d) Right Skewed Distribution
of Tasks. (e) BigDataBench worklogs

authors used metaheuristic approaches to design schedulers and solve scheduling
problems by taking it to near optimal solutions but cloud paradigm is dynamic
in terms of requests heterogeneity and to make appropriate decision making out
of incoming requests onto virtual resources. In this chapter, we have used DDQN
model, which is a reinforcement learning approach fed to the scheduler module
helps to take decisions considers task priorities and underlying resource capacity.
Entire simulations carried out on cloudsim. Workload for algorithm considered from

24 S. Mangalampalli et al.

a real-time benchmark dataset and datasets fabricated using different distributions.
Our proposed approach compared over existing RR, FCFS, EDF algorithms and
simulation results revealed that proposed approach using DDQN model shown great
impact in makespan, Energy Consumption.

7 Future Research Directions

To manage dynamic workloads, SLA guarantee services, and resource opinions,
AI-based algorithms are crucial. However, the various cloud scheduling algorithms,
including AI-based algorithms, are constrained by limited(multi-objective) param-
eters such as task execution time, available resources, etc., to schedule the tasks,
which makes the existing solutions considered near-optimal solutions. Future AI
algorithms must take into account the following factors in order to achieve optimal
solutions in a cloud environment.

Although virtual machines are capable of handling a variety of workloads, the
current scheduling algorithms require users to deploy their virtual machines in order
to run a single application. If users run many apps, these existing methods deliver
average performance. Thus, dynamic workloads on each VM must be taken into
account by future AI-based algorithms.

Although virtual and physical resource clustering improves QoS services, the
current VM and physical clusters remain essentially static until an auto-scaling event
occurs, with overutilization and underutilization of resources as a result. In order to
overcome this, AI algorithms must take into account the dynamic clusters in cloud
environments, where VMs must cooperate with one another.

Study the static workloads in the cloud that can provide better performance using
static schedulers because AI solutions in the cloud environment do not come with
free computing and storage.

The risk associated with cloud scheduling algorithms grows with the use of AI-
based algorithms. Attackers in this case create dynamic traffic using bots, which
can bypass the cloud security measures and result in denial of service attacks. To
lower risk in the cloud, AI scheduling algorithms need to be able to find malicious
payloads ahead of time.

References

1. Low, C., Chen, Y., & Mingchang, W. (2011). Understanding the determinants of cloud
computing adoption. Industrial Management & Data Systems, 111(1006).

2. Khallouli, W., & Huang, J. (2021). Cluster resource scheduling in cloud computing: Literature
review and research challenges. The Journal of Supercomputing, 78, 1–46.

3. Pires, A., Simão, J., & Veiga, L. (2021). Distributed and decentralized orchestration of
containers on edge clouds. Journal of Grid Computing, 19(3), 1–20.

AI Enabled Resources Scheduling in Cloud Paradigm 25

4. Hustad, E., & Olsen, D. H. (2021). Creating a sustainable digital infrastructure: The role of
service-oriented architecture. Procedia Computer Science, 181, 597–604.

5. Rashid, A., & Chaturvedi, A. (2019). Cloud computing characteristics and services: A brief
review. International Journal of Computer Sciences and Engineering, 7(2), 421–426.

6. Diaby, T., & Rad, B. B. (2017). Cloud computing: A review of the concepts and deployment
models. International Journal of Information Technology and Computer Science, 9(6), 50–58.

7. Tadapaneni, N.R. (2017). Different types of cloud service models.
8. Singh, S., & Chana, I. (2016). A survey on resource scheduling in cloud computing: Issues and

challenges. Journal of grid computing, 14(2), 217–264.
9. Kumar, M., & Sharma, S. C. (2020). PSO-based novel resource scheduling technique to

improve QoS parameters in cloud computing. Neural Computing and Applications, 32(16),
12103–12126.

10. Ma, J., et al. (2016). A novel dynamic task scheduling algorithm based on improved genetic
algorithm in cloud computing. In Wireless communications, networking and applications (pp.
829–835). Springer.

11. Pham, N. M., & Nhut, and Van Son Le. (2017). Applying Ant Colony System algorithm in
multi-objective resource allocation for virtual services. Journal of Information and Telecom-
munication, 1(4), 319–333.

12. Madni, S. H. H., et al. (2019). Multi-objective-oriented cuckoo search optimization-based
resource scheduling algorithm for clouds. Arabian Journal for Science and Engineering, 44(4),
3585–3602.

13. Mangalampalli, S., Swain, S. K., & Mangalampalli, V. K. (2022). Multi objective task
scheduling in cloud computing using cat swarm optimization algorithm. Arabian Journal for
Science and Engineering, 47(2), 1821–1830.

14. Calheiros, R. N., et al. (2011). CloudSim: A toolkit for modeling and simulation of cloud com-
puting environments and evaluation of resource provisioning algorithms. Software: Practice
and Experience, 41(1), 23–50.

15. Strumberger, I., et al. (2019). Resource scheduling in cloud computing based on a hybridized
whale optimization algorithm. Applied Sciences, 9(22), 4893.

16. Sanaj, M. S., Joe, P. M., & Prathap. (2020). Nature inspired chaotic squirrel search algorithm
(CSSA) for multi objective task scheduling in an IAAS cloud computing atmosphere.
Engineering Science and Technology, an International Journal, 23(4), 891–902.

17. Madni, S. H. H., et al. (2019). Hybrid gradient descent cuckoo search (HGDCS) algorithm for
resource scheduling in IaaS cloud computing environment. Cluster Computing, 22(1), 301–
334.

18. Midya, S., et al. (2018). Multi-objective optimization technique for resource allocation and
task scheduling in vehicular cloud architecture: A hybrid adaptive nature inspired approach.
Journal of Network and Computer Applications, 103, 58–84.

19. Prasanna Kumar, K. R., & Kousalya, K. (2020). Amelioration of task scheduling in cloud
computing using crow search algorithm. Neural Computing and Applications, 32(10), 5901–
5907.

20. Almezeini, N., & Hafez, A. (2017). Task scheduling in cloud computing using lion optimiza-
tion algorithm. International Journal of Advanced Computer Science and Applications, 8, 11.

21. Arul Xavier, V. M., & Annadurai, S. (2019). Chaotic social spider algorithm for load balance
aware task scheduling in cloud computing. Cluster Computing, 22(1), 287–297.

22. Alsaidy, S. A., Abbood, A. D., & Sahib, M. A. (2020). Heuristic initialization of PSO task
scheduling algorithm in cloud computing. Journal of King Saud University-Computer and
Information Sciences, 34(6), 2370–2382.

23. Srichandan, S., Kumar, T. A., & Bibhudatta, S. (2018). Task scheduling for cloud computing
using multi-objective hybrid bacteria foraging algorithm. Future Computing and Informatics
Journal, 3(2), 210–230.

24. Moon, Y. J., et al. (2017). A slave ants based ant colony optimization algorithm for task
scheduling in cloud computing environments. Human-centric Computing and Information
Sciences, 7(1), 1–10.

26 S. Mangalampalli et al.

25. Shirani, M. R., & Safi-Esfahani, F. (2021). Dynamic scheduling of tasks in cloud computing
applying dragonfly algorithm, biogeography-based optimization algorithm and Mexican hat
wavelet. The Journal of Supercomputing, 77(2), 1214–1272.

26. Awad, N., Mz, A., Liang, J. (2016). Problem definitions and evaluation criteria for the CEC
2017 special session and competition on single objective bound constrained real-parameter
numerical optimization. Technical report, Nanyang Technology University, Singapore

27. Shukri, S. E., et al. (2021). Enhanced multi-verse optimizer for task scheduling in cloud
computing environments. Expert Systems with Applications, 168, 114230.

28. Thanka, M., Roshni, P. U., & Maheswari, and E. Bijolin Edwin. (2019). An improved efficient:
Artificial Bee Colony algorithm for security and QoS aware scheduling in cloud computing
environment. Cluster Computing, 22(5), 10905–10913.

29. Nasr, A. A., et al. (2019). Cost-effective algorithm for workflow scheduling in cloud computing
under deadline constraint. Arabian Journal for Science and Engineering, 44(4), 3765–3780.

30. Fanian, F., Bardsiri, V. K., & Shokouhifar, M. (2018). A new task scheduling algorithm
using firefly and simulated annealing algorithms in cloud computing. International Journal
of Advanced Computer Science and Applications, 9, 2.

31. Khorsand, R., & Ramezanpour, M. (2020). An energy-efficient task-scheduling algorithm
based on a multi-criteria decision-making method in cloud computing. International Journal
of Communication Systems, 33(9), e4379.

32. Rjoub, G., et al. (2021). Deep and reinforcement learning for automated task scheduling in
large-scale cloud computing systems. Concurrency and Computation: Practice and Experi-
ence, 33(23), e5919.

33. Jayanetti, A., Halgamuge, S., & Buyya, R. (2022). Deep reinforcement learning for energy
and time optimized scheduling of precedence-constrained tasks in edge–cloud computing
environments. Future Generation Computer Systems, 137, 14–30.

34. Shruthi, G., et al. (2022). Mayfly Taylor optimisation-based scheduling algorithm with
deep reinforcement learning for dynamic scheduling in fog-cloud computing. In Applied
computational intelligence and soft computing. Hindawi Limited.

35. Islam, M. T., Karunasekera, S., & Buyya, R. (2021). Performance and cost-efficient spark
job scheduling based on deep reinforcement learning in cloud computing environments. IEEE
Transactions on Parallel and Distributed Systems, 33(7), 1695–1710.

36. Wang, L., et al. (2014). Bigdatabench: A big data benchmark suite from internet services. In
2014 IEEE 20th international symposium on high performance computer architecture (HPCA).
IEEE.

37. Suresh Kumar, D., & Jagadeesh Kannan, R. (2020). Reinforcement learning-based controller
for adaptive workflow scheduling in multi-tenant cloud computing. Journal of Electrical
Engineering & Education, 0020720919894199.

38. Mostafavi, S., Fatemeh, A., & Sarram, M. A. (2020). Reinforcement-learning-based fore-
sighted task scheduling in cloud computing (pp. 387–401)

39. Karthiban, K., & Raj, J. S. (2020). An efficient green computing fair resource allocation
in cloud computing using modified deep reinforcement learning algorithm. Soft Computing,
24(19), 14933–14942.

40. Zheng, T., et al. (2022). Deep reinforcement learning-based workload scheduling for edge
computing. Journal of Cloud Computing, 11(1), 1–13.

41. Sonmez, C., Ozgovde, A., & Ersoy, C. (2018). Edgecloudsim: An environment for perfor-
mance evaluation of edge computing systems. Transactions on Emerging Telecommunications
Technologies, 29(11), e3493.

42. Wang, Y., et al. (2019). Multi-objective workflow scheduling with deep-Q-network-based
multi-agent reinforcement learning. IEEE Access, 7, 39974–39982.

43. Balla, H. A. M., Sheng, C. G., & Jing, W. (2021). Reliability-aware: Task scheduling in
cloud computing using multi-agent reinforcement learning algorithm and neural fitted Q.
International Arab Journal of Information Technology, 18(1), 36–47.

44. Sheng, J., et al. (2022). Learning to schedule multi-NUMA virtual machines via reinforcement
learning. Pattern Recognition, 121, 108254.

AI Enabled Resources Scheduling in Cloud Paradigm 27

45. Zhong, J. H., et al. (2019). Multi workflow fair scheduling scheme research based on
reinforcement learning. Procedia Computer Science, 154, 117–123.

46. Wang, B., Liu, F., & Lin, W. (2021). Energy-efficient VM scheduling based on deep
reinforcement learning. Future Generation Computer Systems, 125, 616–628.

47. Cheng, F., et al. (2022). Cost-aware job scheduling for cloud instances using deep reinforce-
ment learning. Cluster Computing, 25(1), 619–631.

48. Alhaidari, F., & Balharith, T. Z. (2021). Enhanced round-robin algorithm in the cloud
computing environment for optimal task scheduling. Computers, 10(5), 63.

49. Hamid, L., Jadoon, A., & Asghar, H. (2022). Comparative analysis of task level heuristic
scheduling algorithms in cloud computing. The Journal of Supercomputing, 78, 1–19.

50. Neciu, L.-F., et al. (2021). Efficient real-time earliest deadline first based scheduling for apache
spark. In 2021 20th International Symposium on Parallel and Distributed Computing (ISPDC).
IEEE.

	AI Enabled Resources Scheduling in Cloud Paradigm
	1 Introduction to Cloud Computing
	1.1 Characteristics of Cloud Computing
	1.2 Deployment Models of Cloud Computing
	1.3 Service Models of Cloud Computing

	2 Resource Scheduling in Cloud Computing
	2.1 Resource Scheduling Algorithms Modeled by Metaheuristic Approaches in Cloud Computing
	2.2 Resource Scheduling Algorithms Modeled by Metaheuristic Approaches in Cloud Computing

	3 Double Deep Q-Networks
	4 Simulation and Results
	5 Evaluation of Makespan
	5.1 Evaluation of Energy Consumption

	6 Conclusions and Future Research Directions
	7 Future Research Directions
	References

