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Abstract Cloud Computing was evolved as one of the paradigm, which gives 
services to users in a utility-based manner. Services of cloud computing were 
extended to various fields and applications. Due to the enormous number of users, 
flexibility and easy to use nature of cloud paradigm, many of companies are trying 
to migrate towards cloud paradigm but from a cloud provider perspective it is a 
difficult to job to handle or schedule these heterogeneous workloads, which are 
coming onto cloud console. Therefore, it is important for a cloud provider to 
employ a task scheduling mechanism, which should be more proactive based on 
the nature of workloads coming onto cloud interface and how effectively they are 
scheduled onto suitable virtual resources. Many of existing scheduling algorithms 
used nature or bio inspired techniques to model schedulers as scheduling problem 
in cloud paradigm is a classical NP-Hard problem but still to make a schedule for 
a task onto a suitable VM based on its processing capacity while minimizing its 
makespan, energy consumption and other operational costs is still a tedious job as 
incoming user requests are highly dynamic in nature. In this paper, we have used 
a deep reinforcement learning technique i.e. DDQN model to make decisions of 
scheduling in cloud paradigm while checking incoming requests and underlying 
resources for every task. Task priorities are evaluated for all incoming tasks and 
prioritized tasks are fed to our scheduler and based on imposed conditions our 
scheduler will make decisions effectively. This entire research implemented on 
cloudsim. Extensive simulations are conducted by generating workload randomly 
and from realtime workload traces. Finally, our proposed scheduler is evaluated 
against existing baseline approaches i.e. Round Robin, FCFS, and Earliest Deadline 
first. From Simulation results, our proposed approach shown a huge impact over 
existing baseline approaches in terms of makespan, Energy consumption. 
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1 Introduction to Cloud Computing 

Cloud Computing is a distributed model, which gives on demand ubiquitous services 
from virtual resources as a service needed for cloud consumers based upon service 
level agreements. With the advent of huge generation of data from various resources, 
there is a huge pressure on IT firms to maintain applications with commodity 
hardware and trying to adopt cloud environment [1]. In on premises environment, 
organizations follows cluster or grid computing approaches where cluster comput-
ing follows a centralized computing architecture [2] and Grid Computing follows 
either centralized or distributed computing approach [3] which renders their services 
to their corresponding customers. In Cluster and Grid Computing environments, 
computing resources are fixed and they cannot scale automatically as per the on 
demand requirements of users. Cloud Computing paradigm gives users scaling 
facility to increase or decrease virtual resources as per the requirements of users. 
This entire paradigm based on service oriented architecture [4] through which 
virtual resources will be given to all users as services as per SLA made between 
cloud user and provider. The main characteristics of cloud computing paradigm are 
mentioned below [5]. 

1.1 Characteristics of Cloud Computing 

Resource Pooling It gives cloud users a virtual resource from pool of resources as 
per SLA of customer. This is an important characteristic in this paradigm as many 
of users will access virtual resources and these resources should be provisioned 
automatically from cloud provider from pool of resources running at cloud provider 
and allocation of resources to users should not affect other users while provisioning 
resources. 

On Demand Service It provides self-control for cloud customer/user for the 
application running in cloud environment. He/She can provision or deprovision 
resources based on need of the application. 

Ease of Maintenance This paradigm provides a huge flexibility to their users as 
they don’t need to maintain their applications as they do in on premises environment. 
Therefore, users can focus on their development of application improvement and 
business objectives as cloud provider will take care of maintenance in terms of 
updates, patching etc.
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Scalability This is a key characteristic in cloud paradigm as in now a days many 
of applications need to increase or decrease their resources instantly. To do so, we 
need a special paradigm, which adapts to environment and provision or deprovision 
resources according to situation. Coming to scalability it is of two types in cloud 
paradigm i.e. Horizontal and Vertical scaling. Horizontal scaling is to increase or 
decrease entire virtual machine if workload of the application cannot be handled by 
existing infrastructure. Vertical scaling is about to increase or decrease a specific 
resource. 

No Upfront Investment It is economical as cloud user need not invest money on 
resources unlike in on premises environment. Zero upfront investment is needed in 
this paradigm, as users don’t need to pay for their operational and administrational 
costs as in on premises environment. 

Measured Service It is to be used for both cloud user and provider as for all 
services which were provisioned from cloud provider end need to compute pricing 
and from cloud user end it is to be used for them to know what are different services 
they have used and amount of consumption for corresponding services. This will be 
mainly useful for generating bill for cloud user automatically. 

Security It is one of crucial characteristic of cloud paradigm as users are deploying 
their applications in third party environment not at their on premise environment. 
Therefore, cloud providers will follow high standards of security at their end and 
they will create a replica of each data point in the cloud environment as an end point 
through which data can be restored if any file gets corrupted or any crash happens in 
cloud environment. Cloud paradigm uses IAM i.e. Identity and access management 
service as their primary security service, which can give users a high standard of 
security at different levels, based on the need of the application. 

Automation This is an essential characteristic for cloud paradigm as from around 
the globe many of users requests wide variety of resources according to their 
application. All these requests need to be fulfilled by the cloud provider as per 
the demand of cloud user according to SLA. Therefore, to handle these kind of 
heterogeneous and diversified requests from various users for different types of 
needs and provisioning those resources from cloud provider on demand needs 
automation. All provisioning and deprovisioning should be done automatically. If 
it should be done automatically, underlying policies need to be defined by cloud 
provider for different resources in the cloud environment. 

Resiliency It is an important characteristic for cloud computing paradigm as if any 
data, file or computing server goes down or any crash happens it will be recovered 
quickly with little downtime unlike on premise environment. 

Availability In this model, all virtual resources to cloud user will be highly avail-
able as many users accessing their resources on demand without any haseleness. 
To accommodate resources to all users seamless access to be provided by cloud 
provider and infrastructure to be resilient enough to handle requests from cloud
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users. Cloud paradigm is having enough strength of resilient network and highly 
available and scalable resources as they are using virtualization. 

Remote Access In this environment all resources to cloud users will be given as 
services on demand and these resources can be accessible from anywhere around the 
world. Therefore, it uses Internet to access resources in cloud paradigm. It allows 
users to work from anywhere to access their applications in cloud environment, 
which gives high availability, resilient network and seamless access to users. 

Multitenant Architecture It is a primary characteristic in cloud paradigm through 
which, a resource is shared among several users as per SLA. When a single 
resource is shared among several users, there will be no conflicts among provision of 
resources as it is having an underlying software program managed by cloud provider 
and it is automated. 

The below Fig. 1 represents characteristics of Cloud Computing. 

1.2 Deployment Models of Cloud Computing 

To adopt to cloud environment into on premises environment either they need to 
migrate their existing environment onto cloud computing infrastructure or they need 
to build their new applications on cloud environment. IT firms need to use certain 
deployment models for their application deployment in cloud environment. There 
are certain deployment models [6] named as Private, Public, Hybrid and Community 
cloud models. The below are primary deployment models of cloud paradigm which 
are represented in Fig. 2. 

Public Cloud renders services to all cloud users who subscribed to services of a 
corresponding cloud provider on a paid basis. This deployment model can render 
services to all of its users around the world and users can access cloud services at 
any time around the clock in a seamless manner. 

Private Cloud renders services to cloud users to a specific organization based on 
the subscription of services made with cloud provider. This deployment model helps 
cloud users to access their application with a secured channel and no other users out 
of that organization can access the services. 

Hybrid Cloud It is a combination of both public and private cloud services 
rendered by a cloud provider to an organization in which some of the resources can 
be accessed publicly and some other resources have to be restricted to part of users 
in organization. Therefore, to handle this situation, organizations will subscribe to 
a model named as Hybrid cloud model, which gives resource access to users based 
on the restrictions mentioned by their organization.
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Fig. 1 Characteristics of Cloud Computing
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Fig. 2 Deployment models 
of Cloud Computing 

1.3 Service Models of Cloud Computing 

Cloud Computing paradigm provides resources through service models as this 
paradigm renders resources to users based on SLA between cloud users and 
providers. There are several services available in these days with different cloud 
providers. 

Infrastructure-as-a-Service This service model provides virtual infrastructure to 
cloud user, which can replace hardware infrastructure in on premise environment. 
The advantage of this service is to scale infrastructure to an extent based on the 
requirement of users. Entire infrastructure of user application can be accessed via 
user interface. 

The below Fig. 3 represents basic service models [7] in cloud computing. 

Platform-as-a-Service This model is used to provide virtual development oppor-
tunities for cloud user based on SLA between cloud user and provider. This model 
can be helpful to users to develop cloud naïve applications. It provides virtual 
development platform for users by integrating it with different environments with 
use of RESTFUL API service. It provides support of various languages and APIs to 
develop cloud naïve applications. 

Software-as-a-Service This service model renders service to cloud users for 
applications hosted in cloud environment and developed by cloud provider or 
applications hosted in cloud environment and developed by other users. This model 
is not used to develop applications but to render services to users for applications 
already hosted in cloud environment. 

Main highlights of this chapter are presented below. 

• Main objective of this research is to design a task-scheduling algorithm using 
DDQN model i.e. reinforcement learning based approach. 

• Energy consumption, makespan are considered as parameters in this approach. 
• Workload considered from fabricated workloads and another real world dataset 

i.e. BigDataBench [36].
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Fig. 3 Service models of 
Cloud Computing 

2 Resource Scheduling in Cloud Computing 

After discussion of basic service, deployment models we need to discuss about 
Provisioning of virtual resources to users by considering underlying resources in 
cloud infrastructure. This process is known as Resource scheduling [8]. In Cloud 
Computing, assignment of user requests to appropriate virtual resources is a highly 
dynamic scenario as many users are accessing cloud resources concurrently. It is a 
class of NP – hard problem and assignment of requests to virtual resources in cloud 
paradigm is a challenging issue as incoming requests coming onto cloud console 
varies with respect to time, size, processing capacity. Cloud paradigm needs an 
effective scheduler as provisioning and deprovisioning of resources to user requests 
is depends only on scheduler. Therefore, scheduler will impacts various parameters 
when assigning virtual resources to user requests. It will directly impacts the 
performance of cloud environment which impacts directly both cloud provider and 
users. Many of resource scheduling algorithms in cloud computing were modeled 
by nature inspired and metaheuristic algorithms. There are many existing algorithms 
i.e. PSO [9], GA [10], ACO [11], CSA [12], CSO [13] are used to model scheduling 
algorithms in cloud computing. There are many nature inspired and metaheuristic 
algorithms used to develop resource scheduling mechanisms in cloud paradigm 
but still it is a challenge in cloud paradigm to suitably map incoming tasks to 
appropriate virtual machines. Therefore, an artificial intelligence mechanism is 
needed to schedule incoming tasks to appropriate virtual resources. In this chapter, 
we used a DDQNmodel i.e. deep reinforcement learning technique to map incoming 
requests to VMs carefully based on incoming requests and checking underlying 
resources. Initially in this chapter, we carefully studied about various resource 
scheduling algorithms modeled by metaheuristic algorithms and their impact on 
cloud computing. 

In the coming section, we mentioned various metaheuristic algorithms used to 
solve resource scheduling problems in cloud computing.
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2.1 Resource Scheduling Algorithms Modeled 
by Metaheuristic Approaches in Cloud Computing 

This section clearly discusses about various resource scheduling algorithms mod-
eled by various metaheuristic approaches. 

In [9], a scheduling framework designed by authors which focuses on min-
imization of task processing time. This algorithm modeled by using MPSO, 
which used over diversified population. It was simulated on Cloudsim. Main 
intention of this algorithm to minimize processing time of task with in deadline. 
It was evaluated against existing PSO, APSO, artificial bee colony, BAT, min-
min algorithms. From simulation results it was proved that it was dominant 
over existing approaches for mentioned parameter. In [15], authors proposed a 
hybrid resource scheduling model was developed to address a single objective 
i.e. makespan. It was modeled by hybridization of whale algorithm by tuning 
parameters for both exploration, exploitation and to avoid premature convergence. It 
implemented on cloudsim. Workload taken from real world and synthetic datasets. 
It was compared over existing Whale optimization algorithm and finally evaluated 
makespan. From simulation results, it was proved that hybrid approach improves 
makespan over existing baseline algorithm for mentioned parameter. In [16], authors 
focused on development of a resource-scheduling model, which minimizes energy 
consumption, execution cost. Methodology used in this approach CSSA algorithm. 
Cloudsim was used as simulation tool. Real time and synthetic workloads given as 
input to algorithm. It compared over existing baseline models i.e. Hybrid GA-PSO, 
PSO-BAT, SSA algorithms. Results demonstrated that proposed model minimizes 
specified parameters. In [17], a resource scheduling model was developed to focus 
on parameters i.e. makespan, throughput, degree of imbalance. Hybrid Gradient was 
added to cuckoo search to solve resource-scheduling problem. Cloudsim was used 
as a simulation tool for experimentation. Real time work log traces from HPC2N 
[13], NASA [13] were used in simulation. It was compared over existing approaches 
i.e. ACO, CS. From results, it proved that HGDCS outperforms over existing 
algorithms for mentioned parameters. In [18], a resource-scheduling algorithm 
developed for vehicular cloud, which addressed makespan, energy consumption. It 
was mainly developed to schedule tasks properly onto vehicular clouds to avoid 
latency from centralized cloud architecture. It was modeled into three layers of 
scheduling and schedules on demand requests of road side users successfully 
based on usage of HAPSO by combining genetic, PSO algorithms. Sumo, NS2, 
MATLAB were used as simulation environments for resource scheduling. It was 
evaluated against PSO, GA algorithms. From simulation results it was greatly 
improved makespan, energy consumption by 34%, 32.5% respectively. In [19], 
task-scheduling mechanism was developed to focus on makespan. It works with 
crow search which is a nature inspired algorithm based on food habits of the 
crow. It was simulated on cloudsim. Heterogeneous random workloads were given 
as input to algorithm. It was evaluated over existing ACO, Min-Min algorithms. 
Simulation results revealed that existing works were outperformed by this approach
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for mentioned parameter. In [20], authors formulated a task scheduling approach 
focused on parameters i.e. makespan, resource utilization, cost. LOA was used as 
methodology to solve scheduling problem. Cloudsim was used for entire simulation. 
Random generated workload used in simulation. It was evaluated over existing 
GA, PSO algorithms. Simulation results proved this approach was dominant 
over existing mechanisms for specified parameters. In [21], scheduling algorithm 
formulated to address computational cost, makespan, resource utilization, degree 
of imbalance. This mechanism modeled based on CSSA algorithm, which selects 
search space for optimization by using randomized inertia weights. It helps to 
converge swarm towards solution quickly. It implemented on cloudsim. It compared 
over GA, PSO, ABC approaches. It outperformed over existing algorithms for 
mentioned parameters. In [22], authors designed two scheduling algorithms i.e. 
LJFP, MCT based on existing PSO algorithm. It developed based on PSO in 
which modification was done at initialization of population done by these two-
mentioned LJFP, MCT. It implemented on MATLAB. It was evaluated against 
baseline approach i.e. PSO. From results, it proved that these two approaches 
dominant over classical PSO in terms of execution time, energy consumption, 
degree of imbalance. In [23], a scheduling framework designed in two folds aimed at 
minimization of makespan, energy consumption. This approach based on scheduling 
tasks in compute clouds. Hybrid methodology used to solve task scheduling problem 
by combining GA, BFA. In first fold, this approach was addressed makespan. In 
second fold, it was addressed energy consumption. Entire simulations conducted on 
MATLAB. Metrics addressed in this approach evaluated with different workload 
heterogeneities. Initially simulation carried out with low heterogeneity workload 
and later it carried out with high heterogeneous and diversified workload. It was 
evaluated over existing GA, PSO, BFA algorithms. Simulation results revealed that 
it outperforms all existing approaches for specified parameters. In [24], SACO was 
developed to address how makespan, processing time of tasks effects scheduling 
in cloud computing. This algorithm uses diversification, reinforcement approach to 
avoid long path to capture their food shown by leader ants. Simulation carried out 
on Cloudsim. It was compared over variants of ACO. From results, it proved that 
SACO outperformed other variants for mentioned parameters. In [25], BMDA was 
proposed by authors to solve scheduling in cloud computing. Methodology used 
in this algorithm is a combination of BBO and dragon fly algorithms. BBO used 
as a technique to avoid premature convergence, which combined with dragon, fly 
algorithm to give optimal solutions. It implemented on Cloudsim. Workload given 
to this algorithm is from NASA [13] parallel work log archives and from CEC 2017 
[26] benchmark functions. It compared over DA, PSO, BAT, GWO, RRO, Adaptive 
DA algorithms. From results, BMDA outperforms over existing algorithms for 
metrics i.e. response time, execution time, SLA violation. In [27], authors developed 
a task-scheduling algorithm focuses on minimization of makespan, maximization 
of resource utilization. EMVO developed by combining MVO, PSO algorithms that 
addresses local optimization problem in PSO. In EMVO, experiments conducted 
by using fixed and variable number of VMs. Entire experiments conducted on 
MATLAB. It evaluated over MVO, PSO algorithms and results revealed that it
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shows huge impact over existing approaches for specified parameters. Authors 
in [28] proposed a task scheduling algorithm i.e. IE-ABC a hybrid metaheuristic 
approach addressed parameters i.e. Security, QoS. It was modeled by classical 
ABC approach which improved by adding a dedicated employee bee which keeps 
track of VM and datacenter status. Therefore, it is easy for a scheduler to look 
at VM and datacenter status to map its tasks easily and precisely. Simulations 
conducted on cloudsim. It was compared against classical ABC algorithm with 
respect to makespan, cost, Number of tasks migrated. Finally, from simulation 
results, there is a huge impact over existing ABC for specified parameters. In [29], 
scheduling algorithm formulated to schedule tasks onto virtual machines. CRO 
and ACO combined to solve scheduling problem. It implemented on Cloudsim. 
Random workload and Amazon EC2 instances workload given input to algorithm. 
It evaluated against CRO, ACO, PSO, CEGA algorithms and results revealed that 
it shows improvement in makespan, cost. In [30], FA-SA algorithm proposed 
by authors to introduce a new local search to optimize solution. This algorithm 
initializes a new population strategy to converge towards near optimal solutions. 
Cloudsim. used for simulation. Workload given to algorithm from real time datasets 
and synthetic workloads. It compared against existing firefly, SA, min-min, max-
min algorithms. Results revealed that it shown huge impact over existing approaches 
for specified parameters makespan for different workloads with different datasets. 
In [31], a hybrid algorithm proposed by authors to schedule tasks effectively by 
addressing energy consumption, SLA violation. Methodology used in this algorithm 
is BMW-TOPSIS to map tasks to VMs. Entire simulations conducted on Cloudsim. 
It compared over existing BMW, TOPSIS algorithms and performed ANOVA test 
to evaluate statistics from results. From simulation results, it outperforms existing 
approaches for energy consumption, makespan, resource utilization. 

Table 1, it clearly shown that many of metaheuristic algorithms addressed 
baseline parameters but scheduling in cloud computing environment is highly 
dynamic and to map tasks effectively and these metaheuristic approaches still 
facing challenges to get optimal solutions in terms of metrics addressed in cloud 
environment. Therefore, it is necessary to employ a machine-learning model in 
scheduling architecture through which decision need to be taken for mapping of 
requests with resources. 

In the next section, we mentioned various ML based scheduling algorithms to 
solve resource scheduling problems in cloud computing. 

2.2 Resource Scheduling Algorithms Modeled 
by Metaheuristic Approaches in Cloud Computing 

This section clearly discusses about various resource scheduling algorithms in cloud 
computing modeled with various machine-learning techniques.
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Table 1 Summary of metaheuristic resource scheduling algorithms in Cloud Computing 

References Methodology 
Objectives of resource scheduling algorithms modeled by 
metaheuristic approaches 

[9] MPSO Task processing time 
[10] Improved GA Execution time 
[11] MORA-ACS Energy consumption, load balancing 
[12] MOCSO Completion time, execution cost 
[13] CSO Energy consumption, makespan, total power cost, migration 

time 
[15] Hybrid Whale Makespan 
[16] CSSA Energy consumption, execution cost 
[17] HGDCS Makespan, throughput, degree of imbalance 
[18] HAPSO Makespan, energy consumption 
[19] Crow Search Makespan 
[20] LOA Makespan, resource utilization, cost 
[21] CSSA Computational cost, makespan, resource utilization, degree of 

imbalance 
[22] LJFP, MCT Execution time, energy consumption, degree of imbalance 
[23] GA-BFA Makespan, energy consumption 
[24] SACO Makespan, processing time of tasks 
[25] BMDA Response time, execution time, SLA violation 
[27] EMVO Makespan, resource utilization 
[28] IE-ABC Security, QoS 
[29] CR-ACO Makespan, cost 
[30] FA-SA Makespan 
[31] BMW-TOPSIS Energy consumption, makespan, resource utilization 

In [32], authors proposed an automation approach for scheduling workloads in 
cloud paradigm. Initially authors used three ML models to develop this scheduling 
algorithm i.e. RL, DQN, RNN-LSTM, DRL-LSTM. From all these approaches, 
DRL-LSTM works well in minimization of CPU usage cost, Memory usage cost. 
It was implemented using Pytorch framework. It evaluated against existing RR, 
SJF, IPSO algorithms. From results, DRL-LSTM shows a huge improvement in 
minimization of CPU usage cost 67% to SJF, 35% to RR, IPSO respectively and 
memory usage cost minimized by 72% for SJF, 65% for RR, 31.25% for IPSO 
approaches. In [33], a scheduling model designed by authors which uses deep 
reinforcement learning approach to effectively schedule tasks coming onto cloud 
console to Cloud nodes or edge nodes. This scheduling process follows precedence 
constraints in their tasks, which are incoming to cloud console. It gives a clear 
distinct mechanism to identify which tasks need to be scheduled to a VM or edge 
nodes at deployment locations or cache locations of applications. This approach 
implemented using cloudsim. It compared over several baseline approaches and 
identified that this approach minimizes 56% of energy consumption, 46% of 
execution time compared with baseline approaches. In [34], authors focused on
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development of a deadline aware scheduling model in fog cloud environment to 
deal with delicate time sensitive applications. These time sensitive and on demand 
requirement applications, found more often in IOT environment which may deal 
smart city applications. These applications changes their behavior according to time 
and heterogeneity of tasks are also is an important aspect in dealing these kind 
of applications. Therefore, authors come up with hybridizing MTOA with DQN 
machine learning model to solve scheduling problem. iFogsim used as a simulation 
tool for this entire experimentation. It compared over CAG, DNGSA, policy 
learning approaches. From results, it proved that MTOA-DQN approach shows 
huge impact over existing policies for makespan, energy consumption. In [35], 
authors developed a scheduling mechanism, which works with spark jobs in their 
customized clusters. They developed this customized cluster to check the behavior 
of spark jobs running in the cluster while maintain SLA objectives. They used 
DRL based mechanisms for scheduling and workload used by them were real-time 
AWS instances according to pricing models in Australia. They have used another 
workload from BigDataBench [36] which consists of heterogeneous jobs i.e. IO 
sensitive, Network sensitive, Computational sensitive. This entire experimentation 
conducted on AWS cloud. They Compared this work with existing algorithms i.e. 
RR, RRC, FF, ILP mechanisms. From experimental results, it proved that DRL 
based mechanism gain success in minimization of VM cost by 30%. In [37], a com-
putational sensitive based scheduler formulated by authors to effectively schedule 
tasks among VMs with the use of multi tenancy. A RL based technique used to 
effectively map tasks to VMs. Simulations carried out on green cloud simulator 
and evaluated against existing RR, FCFS approaches. From simulation results, it 
proved that it outperforms existing approaches by minimizing operational costs and 
maximizing resource utilization. In [38], authors formulated a scheduling algorithm 
based on RL focuses on improvement of system performance. This algorithm 
takes heterogeneous requests as input and fed to RL based scheduler to make a 
decision to schedule tasks in cloud computing. This entire experimentation carried 
out on Cloudsim. It evaluated against existing algorithms i.e. RR, Max, FIFO, 
Greedy, Q-Scheduling algorithms. From Simulation results, response time greatly 
minimized over existing algorithms by 49%, 46%, 44%, 43%, 38% respectively for 
above mentioned existing algorithms. In [39], authors focused on development of 
a green fair scheduler in cloud computing which minimizes energy consumption 
in datacenters. This algorithm uses a DL approach to schedule tasks in this 
complex system. Simulation carried out on cloudsim. It evaluated against existing 
conventional migration approach with variable request sizes ranging from 50 to 500 
and identified that energy consumption greatly minimized over existing approaches. 
In [40], authors formulated a scheduling mechanism, which used in edge computing 
environment. Edge computing suffers from high task failure rate, high service 
time, high mobility of devices. DRL used as methodology in this algorithm. 
Edge Cloudsim [41] used as simulation tool for experimentation. It evaluated 
against existing DQN, PPO approaches. Simulation results revealed that it greatly 
minimizes service time, task failure rate over DQN, PPO for various heterogeneous 
workloads. In [42], a multi workflow scheduling mechanism developed for IaaS
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clouds to minimize makespan, cost. Multi agent DQN model used for developing 
this approach, which takes input as multiple workflows with variable number of 
VMs. Experimentation carried out on real time AWS environment. It compared 
over existing NSGA-II, MPSO, GTBGA approaches. From simulation results, 
it proved that multi agent DQN model which takes scheduling decisions based 
on no prior knowledge outperforms existing algorithms for specified parameters. 
In [43], Reliability taken as primary objective for design of scheduler in cloud 
environment. Authors identified a multi agent approach, which takes your task to 
global queue, and then it will schedule based on buffer capacity and consumed 
resource usage. For learning purpose, this algorithm uses neural network and it 
combined with RL approach thereby achieving rewards based on metrics addressed 
by authors. It implemented on customized simulation environment and it compared 
against greedy, FIFS, Random approaches. Simulation results shown that makespan 
minimized to great extent while success rate of tasks, VM utilization rate increased 
to a good extent. In [44], a dynamic scheduler for cloud environment designed based 
on Sched RL. This approach transforms existing multi-NUMA scheduler used in 
existing approaches. Sched RL used 1500 epochs to run entire simulation and gives 
delta rewards for corresponding parameters i.e. allocation rate, fulfill number of 
tasks. Authors also mentioned that Sched RL have two limitations i.e. scalability, 
generalization. It implemented on a real time Azure cloud environment with variable 
workloads. It compared over First fit, best fit heuristics, and from results, it proved 
that proposed approach shown huge impact over existing approaches for mentioned 
parameters. In [45], workflow scheduling formulated for multiple workflows, which 
designed for prioritizing tasks based on its type and quality of service need to be 
delivered to customer. This algorithm mainly deals with task ordering into execution 
mode based on their priorities to get load balance among all nodes. To achieve 
their goal, authors used RL model, which takes decisions, based on input of tasks, 
type of tasks and priorities. Simulation carried out on Cloudsim and it compared 
over Q- learning, Random, Mixed scheduling techniques. Results revealed that 
RL model outperforms existing approaches by minimizing SLA Violations and 
maximizing resource utilization. In [46], authors proposed an energy efficient VM 
scheduling technique, which minimizes energy consumption, SLA violations while 
maintaining QoS. This work mainly focuses on extracting QoS information from 
datacenters by making it to learn by using DRL model. It compared with different 
existing resource allocation mechanisms and extensive simulations conducted on 
Cloudsim. From simulation results, it shown a huge impact over existing allocation 
mechanisms for above-mentioned parameters. In [47], a cost based scheduling 
algorithm formulated by authors to schedule VM instances in Cloud Computing. 
DRL used as methodology to schedule instances in an effective way. Cloudsim used 
as simulation tool for simulation. It compared over existing algorithms i.e. Random, 
RR, Earliest approaches. From simulation results it proved that it shown huge impact 
over existing algorithms for parameters i.e. Response time, cost, success rate of 
tasks. 

Table 2, clearly shown that many of ML approaches used for resource scheduling 
algorithms addressed baseline parameters but scheduling in cloud computing
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Table 2 Summary of ML approaches for resource scheduling algorithms in Cloud Computing 

References Methodology 
Objectives of resource scheduling algorithms modeled by ML 
approaches 

[32] DRL-LSTM CPU usage cost, memory usage cost 
[33] DRL Execution time, energy consumption 
[34] MTOA-DQN Makespan, energy consumption 
[35] DRL VM cost 
[37] RL Operational costs, resource utilization 
[38] RL Response time 
[39] DL Energy consumption 
[40] DRL Service time, task failure rate 
[42] DQN Makespan, cost 
[43] RL Makespan, VM utilization rate 
[44] SchedRL Allocation rate, fulfill number of tasks 
[45] RL SLA violation, resource utilization 
[46] DRL Energy consumption, SLA violation, QoS 
[47] DRL Response time, cost, success rate 

environment is highly dynamic and more over that many of researchers used RL and 
DRL approaches to address problems in resource scheduling. To make decisions 
more accurate and precisely with heterogeneous workloads. In this chapter, we 
employed a Deep reinforcement learning approach i.e. DDQN model which is based 
on RL. 

From the extensive literature reviewed in Sect. 2, we identified that many of 
existing scheduling algorithms formulated based on nature-inspired approaches, 
which schedules tasks with near optimal solutions. Therefore still there is a 
challenge exists for researchers to map upcoming dynamic workloads onto suitable 
virtual resources. Therefore a prominent scheduling approach is needed which 
should dynamically behaves and allocate requests based on upcoming workloads 
by considering underlying virtual resources. Therefore, we thought that a machine 
learning mechanism need to be employed which should consider upcoming work-
loads and considering underlying resources, which also need to minimize energy 
consumption, makespan. 

3 Double Deep Q-Networks 

When using DQN, there is a chance that the Q values will be overestimated, which 
can result in the underutilization of resources, an increase in the makespan, and 
the need to wait for the tasks. We use double deep Q networks (DDQN) to get 
around the problems with the DQN when it comes to scheduling tasks in cloud-
based environments.
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To begin, we divide the available resources into three distinct categories. The 
first one is the bandwidth of the network in relation to the links that are established 
between the switches and routers. Second, the processing power of VMs in terms 
of CPU and Memory. The third issue is the accessibility of the data in relation to 
its storage when it is spread out across multiple locations. An environment that 
contains all three of these types of resources is known as a reinforcement learning 
environment. We consider Q1 and Q2 to be the queuing models that define the 
agents, with the Q1 agent being determined by the resources needed to carry out 
the tasks in the queue and the Q2 agent being determined by the resources that 
are readily available in the datacenter. The random weights for Q1 and Q2 are 
the first things that we look at. These values are updated as Algorithm 2 performs 
its processing of the input. In the system we suggested, we started by setting up 
the cloud environment and giving each agent its starting weights, as described in 
Algorithm 1. 

Algorithm 1: Configuring Cloud Environment and Setting Up Agent 
Input: CPU resources, Memory resources network resources, 

storage resources 
for i=1 to l //where l is the number of CPU and Memory 

resources of VMs in the cloud 
Ti 

cm= Ti 
c + Ti 

m + Ti-1 
cm 

for i=1 to n //where n number of available network 
links to VMs in the cloud 

Li 
b= Li 

b +Li-1 
b 

for i=1 to m //where m number storage components 
associated with the VMs in the cloud 

Sti 
v= Sti 

v +Sti-1 
v 

//Creating Q1 agent 
for i=1 to tk //where tk is the number of tasks 

on queue 
tw = wi //initial task weights to 

random weights wi 

//Creating Q2 agent 
for j=1 to rk //where tk is the number of 

available VMs on queue 
tw = wj //initial available VM 

resource weights to random weights rw 

After setting up all resource configurations and Q1 and Q2 agents, Algorithm 2 
starts executing. 

Algorithm 2: DDQL Task Scheduling 
Input: total number of network resources, vm resources, and 

storage rescues, Q1, Q2 agents 
Output: updating the Q1, Q2 agents rewards, select action 

agent 
for i=1 to aj //where aj number of agents 

task_rewards=0 
for j=0 to n //where n number of tasks 

Q1(s,ETETj)= t_end_time- t_start_time //where 
estimated task execution time
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Q2(s,AVMRi)= val(Ti 
cm,, Li 

b, Sti 
v) 

If UPDATE(ETETj) then 
Define aj = arg_maxa Q1(s′,a) // where a is ETETj 

Q1(s,a)←Q1(s,a) + α (s,a)(r+ γ Q2(s′,aj)-Q1(s,a)) 
else If UPDATE(AVMRj) then //where AVMRi 

is available VM resources 
Define bj = arg_maxb Q1(s′,b) // where a is AVMRi 

Q2(s,b)←Q2(s,b) + α (s,b)(r+ γ Q1(s′,bj)-Q2(s,b)) 
S←s′

The initial implementation of the Double Q-learning algorithm makes use of two 
independent estimates, which are denoted by Q1 and Q2. We use estimate Q1 to 
determine the action that will maximize profit when the probability is 0.5, but we 
also use it to update Q1. In Q1 calculations we consider the estimated task execution 
time, will update the reward of task in Q1, similarly for Q2 calculations we consider 
the available VM resources, based on the resource utilization of VMs the VM reward 
are updated. If any update in Q1 or Q2 the state parameters will be updated(s’). 

By carrying out this procedure, we are able to obtain an unbiased estimator 
Q1(state, argmax Qnext state, action) for the expected value of Q and inhibit bias. 

In our approach we use the present best for selection of the action agent. 

.Q∗ (st, at) = Es
′ [Rt+1γmaxaQ∗ (

s′t, a′
t

) | s, a] (1) 

With Es equal to the Q-value of the state-action pair plus the learning rate. The
algorithm’s reliability on the objective reward value is a function of its learning
rate. A discount factor, regulates the relative value of present and future benefits.
From Algorithm 2, the time required to select the best agent to execute the task on 
available resources O(m*n), where m is number of agents and n in number of tasks 
in cloud environment. 

4 Simulation and Results 

This section clearly discusses about entire simulation and results of our work. 
Our simulation carried out on cloudsim [14] simulator which is a discrete event 
simulator written in Java. It was developed at university of Melbourne. It simulates 
cloud environment with different policies mentioned by developers. Users can 
customize and add their policies to evaluate different parameters over this simulator. 
Therefore, we have chosen this simulator to implement our scheduling model. In 
this work, simulation carried out by using two different types of workloads. Initially 
we have fabricated our datasets with different workload distributions and given 
as input to algorithm and later we are enthusiastic to evaluate efficiency of our 
approach using a heterogeneous workload real time benchmark dataset mentioned 
in [36] i.e. BigdataBench which consists of different types of tasks with different 
heterogeneities. Fabrication of dataset done in 4 types i.e. Uniform distribution-
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Table 3 Configuration 
settings for simulation 

Name of the entity Quantity 

No. of tasks 100–1000 
Length of tasks 100,000 
Computational capacity of physical host 32 GB 
Storage capacity of physical host 5 TB  
Network bandwidth 1500 mbps 
No. of VMs 40 
Computational capacity of a VM 2GB 
Network bandwidth of a VM 150 mbps 
Hypervisor Xen 
Operating system Linux 
No. of Datacenters 8 

which consists all types of equally distributed tasks. Normal distribution-which 
consists of more medium distribution of tasks and less number of small, large tasks. 
Left Skewed distribution-which consists of more small tasks and less large tasks. 
Right Skewed distribution-which consists of more large tasks and less small tasks. 
All these distributions represented as r1, r2, r3, r4 respectively. After fabrication 
of these dataset distributions. BigdataBench [36] represented as r5. Our proposed 
DDQN model evaluated against existing RR [48], FCFS [49], EDF [50] algorithms. 
Table 3 represents configuration settings for our simulation. 

5 Evaluation of Makespan 

In this section, we clearly presents evaluation of makespan, as it is a primary 
influential parameter for cloud computing paradigm. This parameter evaluated using 
above configuration settings mentioned in Table 3. We have given  r1, r2,  r3, r4,  r5  
workloads as input to algorithm as mentioned above with different distributions. We 
evaluated DDQN approach against existing RR, FCFS, EDF algorithms. DDQN run 
for 50 iterations. Table 4 represents evaluation of makespan for 100 to 1000 tasks. 
For considered workload r1, when DDQN used makespan generated for 100, 500, 
1000 tasks 587.34, 624.99, 1458.37 respectively. For considered workload r2, when 
DDQN used makespan generated for 100, 500, 1000 tasks 512.89, 945.89, 1034.36 
respectively. For considered workload r3, when DDQN used makespan generated 
for 100, 500, 1000 tasks 543.92, 987.23, 1327.9 respectively. For considered 
workload r4, when DDQN used makespan generated for 100, 500, 1000 tasks 
412.89, 523.78, 866.24 respectively. For considered workload r5, when DDQN used 
makespan generated for 100, 500, 1000 tasks 769.35, 1023.56, 1356.78 respectively. 

Table 4 represents evaluation of makespan of DDQN algorithm over existing 
algorithms i.e. RR, FCFS, EDF respectively by using fabricated dataset distributions 
and a real-time benchmark dataset used to test makespan of our approach. From
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Table 4 Evaluation of 
makespan 

Algorithms 
No. of tasks RR FCFS EDF DDQN 

r1 
100 793.98 654.76 773.78 587.34 
500 967.45 1146.98 876.29 624.99 
1000 1562.89 2376.98 2178.34 1458.37 
r2 
100 905.76 856.32 798.88 512.89 
500 1124.78 1267.90 1078.45 945.89 
1000 1892.67 2035.78 1224.23 1034.36 
r3 
100 867.23 747.89 623.87 543.92 
500 1227.98 1367.65 1164.24 987.23 
1000 1562.79 1923.65 1743.87 1327.9 
r4 
100 785.73 689.99 534.7 412.89 
500 1124.99 1038.78 865.45 523.78 
1000 1323.92 1534.78 1425.79 866.24 
r5 
100 1867.56 1745.34 1265.23 769.35 
500 2034.78 1672.23 1429.9 1023.56 
1000 2989.21 3126.78 2578.89 1356.78 

Table 4, it is evident that for all distributions and benchmark dataset makespan of 
DDQN is greatly minimized over existing approaches. 

The above Fig. 4 represents evaluation of makespan using DDQN over existing 
approaches i.e. RR, FCFS, EDF by using various distribution of workloads and 
real time benchmark dataset i.e. r1, r2, r3, r4, r5 respectively. It is evident that in 
all the cases our evaluated makespan is outperformed over existing approaches as 
mentioned in above Fig. 4. 

5.1 Evaluation of Energy Consumption 

In this section, we clearly presents evaluation of energy consumption, as it is an 
important parameter for both cloud provider and user. This parameter evaluated 
using above configuration settings mentioned in Table 3. We have given  r1, r2,  r3, r4,  
r5 workloads as input to algorithm as mentioned above with different distributions. 
We evaluated our proposed DDQN approach against existing RR, FCFS, EDF 
algorithms. Proposed DDQN run for 50 iterations. For considered workload r1, 
when DDQN used Energy Consumption generated for 100, 500, 1000 tasks 34.67, 
51.45, 89.27 respectively. For considered workload r2, when DDQN used Energy 
Consumption generated for 100, 500, 1000 tasks 43.24, 59.23, 78.45 respectively.
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a b  

c d  

e 

Fig. 4 Evaluation of makespan using DDQN (a) Uniform Distribution of Tasks. (b) Normal 
Distribution of Tasks. (c) Left Skewed Distribution of Tasks. (d) Right Skewed Distribution of 
Tasks. (e) BigDataBench worklogs 

For considered workload r3, when DDQN used Energy Consumption generated for 
100, 500, 1000 tasks 49.23, 56.45, 90.35 respectively. For considered workload r4, 
when DDQN used Energy Consumption generated for 100, 500, 1000 tasks 38.26, 
45.78, 75.38 respectively. For considered workload r5, when DDQN used Energy 
Consumption generated for 100, 500, 1000 tasks 74.29, 81.56, 90.22 respectively. 
Table 5 represents evaluation of energy consumption for 100 to 1000 tasks.



22 S. Mangalampalli et al.

Table 5 Evaluation of 
Energy Consumption 

Algorithms 
No. of tasks RR FCFS EDF DDQN 

r1 
100 88.99 94.35 72.86 34.67 
500 100.36 106.88 92.45 51.45 
1000 143.25 123.99 108.76 89.27 
r2 
100 92.67 103.56 84.34 43.24 
500 104.65 89.46 92.22 59.23 
1000 124.24 135.89 120.56 78.45 
r3 
100 87.57 91.45 79.23 49.23 
500 93.99 100.56 94.67 56.45 
1000 114.2 124.78 105.22 90.35 
r4 
100 89.34 92.11 87.56 38.26 
500 73.78 98.21 99.14 45.78 
1000 103.24 121.67 114.67 75.38 
r5 
100 108.56 94.67 98.22 74.29 
500 124.79 114.56 106.89 81.56 
1000 137.35 121.78 114.26 90.22 

Table 5 represents evaluation of energy consumption of DDQN algorithm over 
existing algorithms i.e. RR, FCFS, EDF respectively by using fabricated dataset dis-
tributions and a real-time benchmark dataset used to test energy consumption of our 
approach. From Table 4, it is evident that for all distributions and benchmark dataset 
energy consumption of DDQN is greatly minimized over existing approaches. 

The above Fig. 5 represents evaluation of Energy Consumption using DDQN 
over existing approaches i.e. RR, FCFS, EDF by using various distribution of 
workloads and real time benchmark dataset i.e. r1, r2, r3, r4, r5 respectively. It is 
evident that in all the cases our evaluated energy consumption is outperformed over 
existing approaches. 

6 Conclusions and Future Research Directions 

Resource scheduling in cloud computing paradigm is a huge challenge because 
incoming requests onto cloud console varies in terms of processing capacities. 
Therefore scheduling these wide varieties of requests onto virtual resources in cloud 
is a challenge for cloud provider. Improper mapping of requests to virtual resources 
leads to decay in system performance i.e. increase in makespan and consumption 
of energy can be increased which affects both cloud user and provider. Existing
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Fig. 5 Evaluation of Energy Consumption using DDQN. (a) Uniform Distribution of Tasks. (b) 
Normal Distribution of Tasks. (c) Left Skewed Distribution of Tasks. (d) Right Skewed Distribution 
of Tasks. (e) BigDataBench worklogs 

authors used metaheuristic approaches to design schedulers and solve scheduling 
problems by taking it to near optimal solutions but cloud paradigm is dynamic 
in terms of requests heterogeneity and to make appropriate decision making out 
of incoming requests onto virtual resources. In this chapter, we have used DDQN 
model, which is a reinforcement learning approach fed to the scheduler module 
helps to take decisions considers task priorities and underlying resource capacity. 
Entire simulations carried out on cloudsim. Workload for algorithm considered from
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a real-time benchmark dataset and datasets fabricated using different distributions. 
Our proposed approach compared over existing RR, FCFS, EDF algorithms and 
simulation results revealed that proposed approach using DDQN model shown great 
impact in makespan, Energy Consumption. 

7 Future Research Directions 

To manage dynamic workloads, SLA guarantee services, and resource opinions, 
AI-based algorithms are crucial. However, the various cloud scheduling algorithms, 
including AI-based algorithms, are constrained by limited(multi-objective) param-
eters such as task execution time, available resources, etc., to schedule the tasks, 
which makes the existing solutions considered near-optimal solutions. Future AI 
algorithms must take into account the following factors in order to achieve optimal 
solutions in a cloud environment. 

Although virtual machines are capable of handling a variety of workloads, the 
current scheduling algorithms require users to deploy their virtual machines in order 
to run a single application. If users run many apps, these existing methods deliver 
average performance. Thus, dynamic workloads on each VM must be taken into 
account by future AI-based algorithms. 

Although virtual and physical resource clustering improves QoS services, the 
current VM and physical clusters remain essentially static until an auto-scaling event 
occurs, with overutilization and underutilization of resources as a result. In order to 
overcome this, AI algorithms must take into account the dynamic clusters in cloud 
environments, where VMs must cooperate with one another. 

Study the static workloads in the cloud that can provide better performance using 
static schedulers because AI solutions in the cloud environment do not come with 
free computing and storage. 

The risk associated with cloud scheduling algorithms grows with the use of AI-
based algorithms. Attackers in this case create dynamic traffic using bots, which 
can bypass the cloud security measures and result in denial of service attacks. To 
lower risk in the cloud, AI scheduling algorithms need to be able to find malicious 
payloads ahead of time. 

References 

1. Low, C., Chen, Y., & Mingchang, W. (2011). Understanding the determinants of cloud 
computing adoption. Industrial Management & Data Systems, 111(1006). 

2. Khallouli, W., & Huang, J. (2021). Cluster resource scheduling in cloud computing: Literature 
review and research challenges. The Journal of Supercomputing, 78, 1–46. 

3. Pires, A., Simão, J., & Veiga, L. (2021). Distributed and decentralized orchestration of 
containers on edge clouds. Journal of Grid Computing, 19(3), 1–20.



AI Enabled Resources Scheduling in Cloud Paradigm 25

4. Hustad, E., & Olsen, D. H. (2021). Creating a sustainable digital infrastructure: The role of 
service-oriented architecture. Procedia Computer Science, 181, 597–604. 

5. Rashid, A., & Chaturvedi, A. (2019). Cloud computing characteristics and services: A brief 
review. International Journal of Computer Sciences and Engineering, 7(2), 421–426. 

6. Diaby, T., & Rad, B. B. (2017). Cloud computing: A review of the concepts and deployment 
models. International Journal of Information Technology and Computer Science, 9(6), 50–58. 

7. Tadapaneni, N.R. (2017). Different types of cloud service models. 
8. Singh, S., & Chana, I. (2016). A survey on resource scheduling in cloud computing: Issues and 

challenges. Journal of grid computing, 14(2), 217–264. 
9. Kumar, M., & Sharma, S. C. (2020). PSO-based novel resource scheduling technique to 

improve QoS parameters in cloud computing. Neural Computing and Applications, 32(16), 
12103–12126. 

10. Ma, J., et al. (2016). A novel dynamic task scheduling algorithm based on improved genetic 
algorithm in cloud computing. In Wireless communications, networking and applications (pp. 
829–835). Springer. 

11. Pham, N. M., & Nhut, and Van Son Le. (2017). Applying Ant Colony System algorithm in 
multi-objective resource allocation for virtual services. Journal of Information and Telecom-
munication, 1(4), 319–333. 

12. Madni, S. H. H., et al. (2019). Multi-objective-oriented cuckoo search optimization-based 
resource scheduling algorithm for clouds. Arabian Journal for Science and Engineering, 44(4), 
3585–3602. 

13. Mangalampalli, S., Swain, S. K., & Mangalampalli, V. K. (2022). Multi objective task 
scheduling in cloud computing using cat swarm optimization algorithm. Arabian Journal for 
Science and Engineering, 47(2), 1821–1830. 

14. Calheiros, R. N., et al. (2011). CloudSim: A toolkit for modeling and simulation of cloud com-
puting environments and evaluation of resource provisioning algorithms. Software: Practice 
and Experience, 41(1), 23–50. 

15. Strumberger, I., et al. (2019). Resource scheduling in cloud computing based on a hybridized 
whale optimization algorithm. Applied Sciences, 9(22), 4893. 

16. Sanaj, M. S., Joe, P. M., & Prathap. (2020). Nature inspired chaotic squirrel search algorithm 
(CSSA) for multi objective task scheduling in an IAAS cloud computing atmosphere. 
Engineering Science and Technology, an International Journal, 23(4), 891–902. 

17. Madni, S. H. H., et al. (2019). Hybrid gradient descent cuckoo search (HGDCS) algorithm for 
resource scheduling in IaaS cloud computing environment. Cluster Computing, 22(1), 301– 
334. 

18. Midya, S., et al. (2018). Multi-objective optimization technique for resource allocation and 
task scheduling in vehicular cloud architecture: A hybrid adaptive nature inspired approach. 
Journal of Network and Computer Applications, 103, 58–84. 

19. Prasanna Kumar, K. R., & Kousalya, K. (2020). Amelioration of task scheduling in cloud 
computing using crow search algorithm. Neural Computing and Applications, 32(10), 5901– 
5907. 

20. Almezeini, N., & Hafez, A. (2017). Task scheduling in cloud computing using lion optimiza-
tion algorithm. International Journal of Advanced Computer Science and Applications, 8, 11. 

21. Arul Xavier, V. M., & Annadurai, S. (2019). Chaotic social spider algorithm for load balance 
aware task scheduling in cloud computing. Cluster Computing, 22(1), 287–297. 

22. Alsaidy, S. A., Abbood, A. D., & Sahib, M. A. (2020). Heuristic initialization of PSO task 
scheduling algorithm in cloud computing. Journal of King Saud University-Computer and 
Information Sciences, 34(6), 2370–2382. 

23. Srichandan, S., Kumar, T. A., & Bibhudatta, S. (2018). Task scheduling for cloud computing 
using multi-objective hybrid bacteria foraging algorithm. Future Computing and Informatics 
Journal, 3(2), 210–230. 

24. Moon, Y. J., et al. (2017). A slave ants based ant colony optimization algorithm for task 
scheduling in cloud computing environments. Human-centric Computing and Information 
Sciences, 7(1), 1–10.



26 S. Mangalampalli et al.

25. Shirani, M. R., & Safi-Esfahani, F. (2021). Dynamic scheduling of tasks in cloud computing 
applying dragonfly algorithm, biogeography-based optimization algorithm and Mexican hat 
wavelet. The Journal of Supercomputing, 77(2), 1214–1272. 

26. Awad, N., Mz, A., Liang, J. (2016). Problem definitions and evaluation criteria for the CEC 
2017 special session and competition on single objective bound constrained real-parameter 
numerical optimization. Technical report, Nanyang Technology University, Singapore 

27. Shukri, S. E., et al. (2021). Enhanced multi-verse optimizer for task scheduling in cloud 
computing environments. Expert Systems with Applications, 168, 114230. 

28. Thanka, M., Roshni, P. U., & Maheswari, and E. Bijolin Edwin. (2019). An improved efficient: 
Artificial Bee Colony algorithm for security and QoS aware scheduling in cloud computing 
environment. Cluster Computing, 22(5), 10905–10913. 

29. Nasr, A. A., et al. (2019). Cost-effective algorithm for workflow scheduling in cloud computing 
under deadline constraint. Arabian Journal for Science and Engineering, 44(4), 3765–3780. 

30. Fanian, F., Bardsiri, V. K., & Shokouhifar, M. (2018). A new task scheduling algorithm 
using firefly and simulated annealing algorithms in cloud computing. International Journal 
of Advanced Computer Science and Applications, 9, 2.  

31. Khorsand, R., & Ramezanpour, M. (2020). An energy-efficient task-scheduling algorithm 
based on a multi-criteria decision-making method in cloud computing. International Journal 
of Communication Systems, 33(9), e4379. 

32. Rjoub, G., et al. (2021). Deep and reinforcement learning for automated task scheduling in 
large-scale cloud computing systems. Concurrency and Computation: Practice and Experi-
ence, 33(23), e5919. 

33. Jayanetti, A., Halgamuge, S., & Buyya, R. (2022). Deep reinforcement learning for energy 
and time optimized scheduling of precedence-constrained tasks in edge–cloud computing 
environments. Future Generation Computer Systems, 137, 14–30. 

34. Shruthi, G., et al. (2022). Mayfly Taylor optimisation-based scheduling algorithm with 
deep reinforcement learning for dynamic scheduling in fog-cloud computing. In Applied 
computational intelligence and soft computing. Hindawi Limited. 

35. Islam, M. T., Karunasekera, S., & Buyya, R. (2021). Performance and cost-efficient spark 
job scheduling based on deep reinforcement learning in cloud computing environments. IEEE 
Transactions on Parallel and Distributed Systems, 33(7), 1695–1710. 

36. Wang, L., et al. (2014). Bigdatabench: A big data benchmark suite from internet services. In 
2014 IEEE 20th international symposium on high performance computer architecture (HPCA). 
IEEE. 

37. Suresh Kumar, D., & Jagadeesh Kannan, R. (2020). Reinforcement learning-based controller 
for adaptive workflow scheduling in multi-tenant cloud computing. Journal of Electrical 
Engineering & Education, 0020720919894199. 

38. Mostafavi, S., Fatemeh, A., & Sarram, M. A. (2020). Reinforcement-learning-based fore-
sighted task scheduling in cloud computing (pp. 387–401) 

39. Karthiban, K., & Raj, J. S. (2020). An efficient green computing fair resource allocation 
in cloud computing using modified deep reinforcement learning algorithm. Soft Computing, 
24(19), 14933–14942. 

40. Zheng, T., et al. (2022). Deep reinforcement learning-based workload scheduling for edge 
computing. Journal of Cloud Computing, 11(1), 1–13. 

41. Sonmez, C., Ozgovde, A., & Ersoy, C. (2018). Edgecloudsim: An environment for perfor-
mance evaluation of edge computing systems. Transactions on Emerging Telecommunications 
Technologies, 29(11), e3493. 

42. Wang, Y., et al. (2019). Multi-objective workflow scheduling with deep-Q-network-based 
multi-agent reinforcement learning. IEEE Access, 7, 39974–39982. 

43. Balla, H. A. M., Sheng, C. G., & Jing, W. (2021). Reliability-aware: Task scheduling in 
cloud computing using multi-agent reinforcement learning algorithm and neural fitted Q. 
International Arab Journal of Information Technology, 18(1), 36–47. 

44. Sheng, J., et al. (2022). Learning to schedule multi-NUMA virtual machines via reinforcement 
learning. Pattern Recognition, 121, 108254.



AI Enabled Resources Scheduling in Cloud Paradigm 27

45. Zhong, J. H., et al. (2019). Multi workflow fair scheduling scheme research based on 
reinforcement learning. Procedia Computer Science, 154, 117–123. 

46. Wang, B., Liu, F., & Lin, W. (2021). Energy-efficient VM scheduling based on deep 
reinforcement learning. Future Generation Computer Systems, 125, 616–628. 

47. Cheng, F., et al. (2022). Cost-aware job scheduling for cloud instances using deep reinforce-
ment learning. Cluster Computing, 25(1), 619–631. 

48. Alhaidari, F., & Balharith, T. Z. (2021). Enhanced round-robin algorithm in the cloud 
computing environment for optimal task scheduling. Computers, 10(5), 63. 

49. Hamid, L., Jadoon, A., & Asghar, H. (2022). Comparative analysis of task level heuristic 
scheduling algorithms in cloud computing. The Journal of Supercomputing, 78, 1–19. 

50. Neciu, L.-F., et al. (2021). Efficient real-time earliest deadline first based scheduling for apache 
spark. In 2021 20th International Symposium on Parallel and Distributed Computing (ISPDC). 
IEEE.


	AI Enabled Resources Scheduling in Cloud Paradigm
	1 Introduction to Cloud Computing
	1.1 Characteristics of Cloud Computing
	1.2 Deployment Models of Cloud Computing
	1.3 Service Models of Cloud Computing

	2 Resource Scheduling in Cloud Computing
	2.1 Resource Scheduling Algorithms Modeled by Metaheuristic Approaches in Cloud Computing
	2.2 Resource Scheduling Algorithms Modeled by Metaheuristic Approaches in Cloud Computing

	3 Double Deep Q-Networks
	4 Simulation and Results
	5 Evaluation of Makespan
	5.1 Evaluation of Energy Consumption

	6 Conclusions and Future Research Directions
	7 Future Research Directions
	References


